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ITepiindn

H mapodoa datplt| diepeuvd 1660 Tig YewpnTinée 660 xou TG TEWRUUATIXES TTUYES TwV Papu-
ukdy kupdrov (GWs), 6nwe opilovtar otn yevixr Yewpla e oyetixétntag tou Albert Ein-
stein xou peAetwvton e Sledvr| epeuvnud xévtpa 6mwe to LIGO. Autd ta xOuato dadidovton
UE TNV ToyUTNTA TOU PWTOC, UeTapépovTag eVERYELX o Oho To olumay. H St Eexvd pe
HLOL OVOOXOTINOT) TNG EPPAVIONE TWV BUpuTIXGY XUUATLY oT1 yevixt| Jewpla TNg oyeEToTNTOG,
eoTdlovToag oTIC Pacinég TOUC WOLOTNTES X OTLC PEYOBOUC TIOL YENOUOTOLOVVTAL Yol TNV ELC
Bddog xatovénot| Toug. ALEUPEUVOUVTAL OL TPOXAY|OEIC TTOU TROEEYOVTAL UmO TOV OPLOUO TNG
EVEQYELUC XL TNG OPUNC TOU UETAPEQREL 1) axTVOBOAL TV PopUTIXGY XUUATWY, EVE RSN
ovTYETOTI oVToL TUY OV TaEavoNoELS xou A& o mponyolueves uerétec. Ev ouveyeia, eqap-
uolovton TeYVIXEC TNG xhaoixc Vewplag mediou yior TNV PEAETN TNG YEVVNONS TV BapuTidY
Tedlev, Blvovtoag €UQaot 6ToUg GPOUS TOU TOAUTIOALXOU aVATTUYUNTOS Xl OTOUG UTOAOYLO-
uo¢ mou Pocilovton oe autd. Emmiéov, eletdlovtan ol metpopatinég evoeielg yior Ty Umopdn
nOoL TOEUYWYT) TV BapuTinedv xuudtwy, ecTidloviac 68 cUCTAUNTY OITAWY pulsar, SITAGOV
UEAOVOY OTWV 1 a0 TépwY VETPOVIWY xou emBeforveTton 1 UToplr Toug UECH TUPATNENOEWY,
Tou anoTeAoVY %xadoploTIXG POAD TNV XaTavdnoT Tou gawvouevou. Télog, mpaypatomoleiton
oL{ATNON Yo TIC EMTTWOELS QUTWY TWV EVPNUATLY OTNY A0 TROPUGIXY| X0l TNV X0opohoYid, Ue
WOafTEEN oVOPORE GTNY HEAETY] TOV CUUTOYMY DUIXMY ACTEQMY, TWV UEAAVMY OOV Xl GAAWY
AAEAULY HOCUOAOY XDV OV TIXEWUEVV.



Abstract

This thesis explores the theoretical and experimental aspects of gravitational waves (GWs),
as predicted by Albert Einstein’s general theory of relativity and studied in different research
centers like LIGO. These waves propagate outward from their source at the speed of light,
carrying energy across the universe. The study begins with a discussion on the emergence of
GWs in general relativity, focusing on their properties and the methods used to understand
them. We investigate the challenges in defining the energy and momentum of gravitational
wave radiation and address misconceptions in earlier studies. Following this, the thesis
applies classical field theory techniques to the GW generation study, emphasizing multipole
expansion and calculations based on it. In addition, we examine the experimental evidence
for GWs, particularly from binary pulsars, binary black holes, or neutron star systems, and
discuss their confirmation through observations. The thesis concludes with a discussion of
the implications of these findings for astrophysics and cosmology, particularly in the study
of compact binaries, black holes, and other extreme environments in the universe.
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1 Introduction

In this master-level thesis, we studied the theoretical background of Gravitational Waves.
From now on, the abbreviation GW stands for Gravitational waves.

Before attacking the infamous Einstein’s equations for gravity and seeing how we obtain
results for GWs, it seems useful to see gravity as explained before the theory of relativity.
First, Newton understood that two masses m; and ms, interact via the gravitational force,
as given in equation 1:

mymsa

F=G=5 (1)

This equation provides the relation between the distance separating the two masses and
the corresponding gravitational force. Until the 19th century, the gravitational interaction
equation was considered the Holy Grail of gravitational physics.

This was until over a century ago that Albert Einstein revolutionized our understanding
of gravity with his General Theory of Relativity (GR) [1]. Published in 1915, GR redefined
the cosmos, not as a static stage upon which cosmic actors move, but as a dynamic entity
in itself: spacetime. In this paradigm, mass and energy dictate the curvature of spacetime,
and this curvature, in turn, dictates how mass and energy move. This elegant and profound
theory supplanted Newtonian gravity, providing explanations for phenomena that Newton’s
laws could not, such as the anomalous perihelion precession of Mercury, and making bold new
predictions, most notably the bending of starlight by massive objects, famously confirmed
by Eddington’s 1919 solar eclipse expedition [2].

Perhaps the most dramatic and elusive prediction of GR was the existence of gravitational
waves. If spacetime is a fabric, then accelerating massive objects should create ripples in
it, propagating outwards at the speed of light. These waves are transverse, stretching and
squeezing spacetime in the directions perpendicular to their propagation. In the framework
of linearized gravity, where the spacetime metric g, is treated as a small perturbation h,,
from the flat Minkowski metric 7,,(¢u, = Muw + hu), the Einstein Field Equations can be
reduced to a wave equation for the metric perturbation:
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where BW is the trace-reversed metric perturbation. The solutions to this equation are waves
that carry energy and momentum away from a source, analogous to electromagnetic waves
carrying energy away from an accelerating charge.

For decades, this prediction remained purely theoretical. The fundamental challenge lies
in the weakness of gravity. The strain h—the fractional change in length AL/L induced
by a passing gravitational wave—is extraordinarily small. For even the most cataclysmic
astrophysical events, the expected strain on Earth is on the order of 107! or less, equivalent
to measuring a change in the distance between the Earth and the Sun to less than the width
of a single atom.

The first attempts at direct detection, pioneered by Joseph Weber in the 1960s using
resonant bar detectors [3], were ultimately unsuccessful but laid the critical groundwork for
future efforts. The first compelling evidence for the existence of gravitational waves came
indirectly. In 1974, Russell Hulse and Joseph Taylor discovered the first binary pulsar, PSR



B1913+16 [4]. This system, consisting of two neutron stars orbiting each other, proved to be
a perfect laboratory for testing GR. Over years of meticulous observation, they demonstrated
that the binary’s orbit was shrinking at precisely the rate predicted by GR due to the emission
of gravitational waves. This landmark discovery, which earned them the 1993 Nobel Prize in
Physics, provided irrefutable, albeit indirect, proof that gravitational waves are a physical
reality.

The dream of direct detection was finally realized on September 14, 2015. After decades
of technological development, the twin detectors of the Laser Interferometer Gravitational-
Wave Observatory (LIGO) simultaneously registered a signal, designated GW150914 [5].
The signal was a characteristic "chirp," rising in frequency and amplitude over a fraction of
a second, perfectly matching the theoretical waveform predicted for the final moments of a
binary black hole (BBH) merger. This event marked not just the first direct detection of
gravitational waves but also the first observation of a binary black hole system, heralding
the birth of gravitational-wave astronomy. We had, for the first time, heard the universe,
opening an entirely new, non-electromagnetic window through which to observe the cosmos’s
most violent and enigmatic phenomena.

The detection of GW150914 was the opening act in a new era of physics, the gravitational-
wave astrophysics. The universe is filled with a symphony of gravitational-wave sources,
each with its own characteristic sound, frequency, and duration. The primary observable
is the waveform, a time-series of the gravitational-wave strain, from which we can infer the
properties of the source. These sources can be broadly classified into four categories.

The first category surveys Compact Binary Coalescences (CBCs): These are the loudest
and most frequently observed sources to date. They involve the orbital inspiral and eventual
merger of two compact objects: black holes or neutron stars. This category is the central
focus of this thesis and includes:

Binary Black Hole (BBH) Systems: The merger of two stellar-mass black holes, like
GW150914. These are "dark" events, emitting no electromagnetic radiation, making GWs
the only way to observe them. They are the most massive and thus "loudest" stellar-mass
sources, providing pristine probes of strong-field gravity.

Binary Neutron Star (BNS) Systems: The merger of two neutron stars. The landmark
detection of GW170817 [6] was a BNS merger, accompanied by a host of electromagnetic
counterparts, from a short gamma-ray burst (GRB) to a kilonova |7]. This event launched the
era of multi-messenger astronomy, where information from both GWs and light is combined to
paint a complete picture of an astrophysical event. BNS mergers provide a unique laboratory
for studying the equation of state (EoS) of ultra-dense nuclear matter.

Neutron Star-Black Hole (NSBH) Systems: The merger of a neutron star and a black
hole. These asymmetric systems are fascinating probes of both strong-field gravity and
matter effects. Depending on the masses and black hole spin, the neutron star may be
swallowed whole or tidally disrupted before merger, potentially creating an electromagnetic
counterpart. The first confident detections of these systems were announced in 2021 [§].

The second category is thought to include Continuous Waves: These are persistent, nearly
monochromatic signals emitted by rapidly rotating, asymmetric neutron stars (pulsars).
Any non-axisymmetric feature, such as a "mountain" on the star’s crust, will generate a
continuous train of gravitational waves at twice the star’s rotation frequency. Detecting these
signals would provide invaluable information about the structure and physics of neutron star



interiors. They are, however, expected to be extremely weak, and no confirmed detection
has been made to date.

The third category involves theStochastic Gravitational-Wave Background (SGWB). This
is an incoherent superposition of gravitational waves from a multitude of unresolved sources,
analogous to the Cosmic Microwave Background (CMB). It is expected to have two main
components: an astrophysical background from the superposition of countless distant CBC
events, and a potential cosmological background generated by physical processes in the very
early universe, such as inflation or phase transitions. Detecting the SGWB would provide a
unique probe of the universe’s first moments.

And the final category has Burst Sources. Burst sources are short-duration, unmodeled
transient signals. The canonical example is a core-collapse supernova, where the violent,
asymmetric explosion of a massive star could produce a burst of gravitational waves. De-
tecting such a signal would give us a direct view into the heart of the explosion, a region
completely obscured from electromagnetic telescopes.

The theoretical prediction of waveforms is only half the story; the other half is their detec-
tion and interpretation. This is the domain of observational gravitational-wave astronomy, a
field defined by cutting-edge instrumentation and sophisticated data analysis. Modern GW
detectors are giant, L-shaped Michelson interferometers.

A powerful laser is split into two beams that travel down perpendicular arms, each several
kilometers long. The beams reflect off mirrors at the ends of the arms and recombine at the
beam splitter. In the absence of a gravitational wave, the arm lengths are tuned so that the
returning light beams interfere destructively, and no light reaches the output photodetector.

When a gravitational wave passes, it differentially alters the effective lengths of the two
arms, stretching one while compressing the other. This minute change in path length breaks
the perfect destructive interference, causing a tiny amount of light—a signal proportional
to the gravitational-wave strain h(t)—to reach the photodetector. To achieve the required
sensitivity, these basic interferometers are enhanced with Fabry-Pérot resonant cavities in
the arms to increase the effective path length of the light, and with power and signal recycling
mirrors to increase the circulating power and optimize the detector’s bandwidth.The current
global network of detectors includes:

e The two LIGO detectors in Hanford, Washington, and Livingston, Louisiana (USA).
e The Virgo detector near Pisa, Italy.

e The KAGRA detector in Kamioka, Japan.

Operating as a network provides several key advantages over a single detector. Most
importantly, it allows for the sky localization of a source through triangulation, based on
the relative arrival time of the signal at different sites. A network also improves the duty
cycle and detection confidence, and it allows for the measurement of the wave’s polarization,
providing additional tests of GR.

The raw data from a GW interferometer is dominated by noise from a myriad of sources:
seismic vibrations, thermal fluctuations, quantum shot noise, etc. The GW signal is typically
much weaker than the noise. The primary technique for identifying a signal from a known
source type, like a CBC, is matched filtering.



In this process, the data stream s(t) is cross-correlated with a theoretical template wave-
form h(t). The output of the filter is the signal-to-noise ratio (SNR), p, which quantifies the
likelihood of a signal being present. This is mathematically expressed as an inner product,
weighted by the detector’s noise power spectral density S, (f):
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Here, a(f) and b(f) are the Fourier transforms of the time-series a(t) and b(t). A de-
tection is claimed when the SNR exceeds a predetermined threshold, corresponding to a
very low false-alarm rate. Once a signal is confidently detected, the next step is parameter
estimation.

Bayesian inference methods, such as Markov Chain Monte Carlo (MCMC) sampling, are
used to compare the data against millions of waveform templates. This process generates
posterior probability distributions for the source’s physical parameters, such as:

e Component masses (my, ms).

e Component spins (magnitude and orientation).

Luminosity distance to the source.

Sky location (right ascension and declination).

e Binary orientation (inclination, polarization angle).

Tidal deformability (for neutron stars).

These estimated parameters are the fundamental data products of GW astronomy, form-
ing the bridge between observation and astrophysical theory.

The first few observing runs of the LIGO-Virgo-KAGRA (LVK) collaboration have yielded
a catalog of nearly one hundred GW events, revolutionizing our understanding of stellar-mass
black holes and neutron stars. Yet, this is just the beginning. Each new detection brings
new insights and raises new questions. The field is now poised to address some of the most
fundamental problems in physics and astronomy.

Key scientific frontiers include probing the Formation of Binary Black Holes: The ob-
served masses and spins of BBH systems challenge existing models of stellar evolution. Are
these binaries formed in isolation in the galactic field, or are they assembled dynamically in
dense stellar environments like globular clusters? The distribution of observed parameters
holds the key.

Another frontier is how can we constrain the Neutron Star Equation of State: The tidal
deformation of neutron stars during the final moments of a BNS inspiral leaves a subtle
imprint on the gravitational waveform. Measuring this effect, we get results on the tidal de-
formability parameter, A. The A-parameter provides a direct constraint on the relationship
between pressure and density in nuclear matter, a long-standing problem in nuclear physics.
Another key factor is to apply precision Tests of General Relativity. Binary mergers are
laboratories for strong-field gravity, a regime previously inaccessible to experimental tests.



By comparing observed waveforms to the predictions of GR, we can place stringent bounds
on potential deviations from Einstein’s theory. The ringdown phase, in particular, allows for
direct tests of the black hole no-hair theorem. Also, GWs can be used in Cosmology Cosmol-
ogy with Standard Sirens. For events like GW170817 with an electromagnetic counterpart,
the host galaxy and its redshift can be identified. Since the GW signal provides a direct
measurement of the luminosity distance, the source can be used as a "standard siren" to
measure cosmological parameters, most notably the Hubble constant, Hy. This provides a
completely independent method to weigh in on the current tension between early- and late-
universe measurements of Hy. Finally, they can improve the Waveform Fidelity. As detector
sensitivity improves, our theoretical models must keep pace. The next generation of science
will require waveforms that include more subtle physical effects, such as orbital eccentricity
and the full dynamics of spin precession, as well as the contribution of higher-order emission
modes beyond the dominant quadrupole.

The work presented in this thesis is situated at the intersection of these challenges,
focusing on the development and application of gravitational waveform models to extract
maximum scientific insight from observational data.

The era of gravitational-wave astronomy has transitioned from one of discovery to one
of systematic characterization and precision science. The ever-growing catalog of compact
binary coalescence events demands a corresponding increase in the accuracy, completeness,
and computational efficiency of our theoretical waveform models. Sub-dominant physical
effects, once negligible, are now becoming measurable, and their inclusion in our models
is essential for avoiding systematic biases in parameter estimation and for unlocking new
scientific discoveries.

This thesis is motivated by the need to advance the theoretical and observational toolkit
for analyzing signals from binary systems. Specifically, it addresses key limitations in current
waveform modeling and data analysis techniques, with the goal of enhancing our ability to
test General Relativity and constrain the astrophysical properties of compact binary sources.

The primary objectives of this research are first to develop and implement a more so-
phisticated theoretical waveform model that incorporates [State the specific improvement,
e.g., the effects of orbital eccentricity, higher-order spherical harmonic modes, or improved
tidal approximants|. Secondly, to validate this new model against Numerical Relativity sim-
ulations and compare its performance to existing phenomenological and effective-one-body
models.

Having achieved the above, we can apply this model in a full Bayesian parameter estima-
tion analysis of select GW events from the LVK catalog, quantifying the impact of the new
physical effects on inferred source properties and investigate the implications of these refined
measurements for specific astrophysical questions, such as [State the specific question, e.g.,
distinguishing between binary formation channels, placing new constraints on the neutron
star equation of state, or performing more stringent tests of GRJ.

As contemporary literature proposes, the keystone to understanding GWs is to study
their expansion around a flat spacetime. Thus, the order we follow is: The first chapter in
this work includes a geometric point of view in GWs and a more field-theoretical view of
them. Here, we see GWs as a geometric tool for computations, including the different gauges
used and the way energy, momentum, and energy flux are carried by GWs. In this chapter, as
well as in chapters 2,3,4 and 5, we choose to study Michelle Maggiore’s book "Gravitational



Waves, Volume I"[15]. The first part of this textbook contains an extraordinary analysis of
any theoretical aspect of GW.

In the second chapter, we study the behavior of GWs in linearized theories. It is known
that a linearized theory is used to describe arbitrary systems with different energy-momentum
tensors. We leave the geometrical approach and reach a more field-theoretical one. In this
chapter, we see a low-velocity expansion of tensorial components, we prove formulas that
compute the radiated energy, angular momentum, and power in GW emission in various
orders of the multipole expansion, e.g., the mass quadrupole and octupole terms, as well as
the current quadrupole term.

The third chapter is a more compact one. Here, we decided to dive into the Symmetric
Trace-free Formalism for scalar and vector fields and to produce the tensor components in
spherical coordinates. We did not study the STF formalism for tensorial fields because the
level of mathematics used in such computations is far beyond the level of any master-level
thesis. The fourth chapter is based completely on applications of GWs and the physics
behind these.

The fifth chapter of our study has many parts coming from the experimental nature of
GWs. Here we see natural objects, like pulsars, and their use in GW physics and astro-
physics. Pulsars, due to their rotation, can be used as clocks and produce several timing
formulas. Furthermore, based on pulsar physics, we can define some time delays applied to
GW propagation and finally see the relativistic correction for binary pulsars and the induced
GW physics.

Concluding the first part of our thesis, we see a useful set of equations, used to describe
astrophysical objects, that Newtonian theory cannot. This set of equations is the TOV
equations, and their main use lies in describing neutron stars (NS). Here we escape the
classical Gravitational Waves textbook and find ourselves focusing on the twelfth chapter of
the book "General Relativity: An Introduction for Physicists" by Hobson, M.P., Efstathiou,
G., and Lasenby, A.N. [21]

In the second part of this thesis, we focus on scientific articles from international litera-
ture. The first article studies an analytical model for GW and includes some models for the
inspiraling, the merging, and the ringdown phase. The second article is called "Constraining
scalar-tensor theories by NS-BH GW events," and to study it, we had to obtain information
from a plethora of articles. These are "Testing scalar-tensor gravity with GW observations
of inspiraling compact objects" by Will C.M. [126] and "Non-perturbative strong-field effects
in scalar-tensor theories of gravitation" written by Damour T. and Esposito-Farese G. [127].
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2 Geometrical interpretation and Field Theory of GWs

In this chapter, we review concepts studied in general relativity and classical field theories
of gravity. In the general relativistic part, we perturb our theory in first and second order
around a flat spacetime and produce the equations of motion of a wave.

Next, we consider General Relativity as a classical field theory and apply the standard
methods in our calculations. In this part, we return to the linearized equations of gravity,
forgetting that h,, has a space-metric interpretation. Instead, we treat the perturbation as
any other classical field on a flat Minkowski spacetime.

The reason we chose to study these two interpretations in one chapter is that GR com-
plements field theories and vice versa. Some aspects of GWs (e.g. the GW amplitudes)
are better understood in the geometric perspective, while others, like the energy-momentum
tensor, are easier to comprehend in the field-theory approach.

2.1 GWs as perturbations around a flat spacetime

As stated in the introductive chapter, the main textbook used in this chapter is [1]. Although
the steps followed in this section and section 1.2 can be found in any classical textbook, see
bibliography [15], [16] , [17], [18], [19], [20], [22], [23]. The methodology used in these two
sections is standard and we have studied it thoroughly in the undergraduate-level thesis. For
this reason we can skip some trivial algebras and focus more on the ideas behind GW. Thus,
we begin with the equations of motion of GW.

To obtain the equations of motion, we need to first consider the weak-field approximation.
In this loose limit, we demand that the gravitational field is weak, varies with time, and does
not restrict the motion of any test particle.

The weakness of the field allows us to decompose the spacetime in two parts: the back-
ground one, which is flat and described in completeness from the known metric 7,,, and
the perturbation, denoted by £,,. With this decomposition, we allow ourselves to study the
missing effects of any gravitational theory in the Newtonian limit. For completeness, we
demand that the linear metric perturbation A, is small enough, meaning that |h,, | < 1.

The mathematical expression that expresses the weakness of the field reads:

G = Ny + Iy with by, | < 1 (3)

At this point, equation 3 can be inverted, with the inverse to be computed as g** = n** —h*".
For a specific set of coordinates, the Minkowski metric tensor can be written in its canonical
form 7, = diag(—1,+1,+1,+1). Because of the restriction |h,,| < 1, we can ignore terms
that correspond to second or higher orders in the perturbation theory.

Having defined the context and limitations of our theory, we can now begin the more
formalized production of the equations of motion. The first step in our search for an equation
that describes the propagation of GWs is to define the total gravitational action S. The
Variation calculus of the action S produces the equations of motion of a wave.

The gravitational action is the sum of Einstein’s action Sg and matter’s action Sy, and
reads as S = Sg + Syr. The Einstein action Sg is defined via Ricci’s scalar as

/d4x V-9 R (4)
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The matter action can be defined by using the energy-momentum tensor 7}, when methods
from variational calculus are applied. Mathematically, this translates into the following
definition:

1
Sy = % /d43: V=9 T" 69, (5)

The same methods of variation calculus, when applied to Einstein’s action, produce the
Einstein tensor

1
G = Ry — §9WR (6)
At this point, we skip the procedure used to derive Einstein’s tensor and equations, because
it exists in every classical textbook of General Relativity. Finally, Einstein’s equations obey

the following expression:

1 8t
R,uu - §QWR = 7T,u1/ (7)
With all the above being said, we need to study the huge symmetry group, under which
GR is invariant. As guessed, this group is made up of any coordinate transformation, x# —
x'*, where z'# is an arbitrary smooth function of z#. Specifically, we demand that z'# is an
invertible and differentiable diffeomorphism, with a differentiable inverse. Under z'#, we can
see that the full metric transforms as
’ oxf 0x°
v(x) = = 2,000 8
Gule) = g, () = £ S0, ®)

In international literature, this transformation is called GR’s gauge symmetry. In the
physical case, there exists a reference frame where equation 3 still holds on a sufficiently
large region of space. This exact choice in the reference frame breaks down GR’s invariance
under coordinate transformations and results in a shortening of the degrees of freedom of
the gravitational field. In terms of z,,, we can rewrite the coordinate transformation as

ot = P = ot 4 () (9)

Applying the transformation rule given in relation 9 on the full metric g,,, we get the
following:

/ oz 0x°
(1) = g — g = gpa(l‘)%w

ox'r ox'v (10)

(11)
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The way the perturbation h,, transforms under these generic coordinate transformations
becomes manifested in the last equation.

Having seen the transformation rules for both g,, and h,,, we can now insert equation
3 in the general formula of Christoffel’s connections and Riemann’s tensor. We then obtain
the following results

1
= FZS}) = igp/\(augl/)\ + al/g)\u - a)\guu)

= S0P W) D i) + 84+ ) — a0+ )]
= P [9r ) 8+ ) — D5+ ) (12)
= WP (0, (Mo + ) + O (e + hixg) = O3 (s + )
= %npk(auhyA4-aghAu-aAhMV)
and dropping the second order perturbations in ' we get
(23) = R0, = 9,0, — 9, + T\, — T\, 13

=01, — 0.1,

We contract the index « only with the flat metric since a contraction with the perturbation
will produce terms of second order in h. The terms in the second order of perturbation will
be studied in the following sections.

RW — Nap 5 = NapOul e — NapOulis

popv ouv

1 1
= napﬁu _na)\ (auha)\ + aah)\y - a)\hya):| - napay |:§77a>\ ((%h(,,\ + (%h,\u — (9,\hw)

2
1
= §na,ﬂyaA (0,0, hox + 0,05hyy — 0,0\Rye) — (0,0,hox — 0,05hy, — 0,0\hye )]
1

= 5(52‘ (0405 hry — 0,,0\Pyy — 0,05 Iy, + 0,0\Pys)
1
=3 (0,05hpy — 0,0,hye — 0,050y + 0,0,h,0)
(14)
Another contraction in R ,, produces the O(h) perturbed Ricci’s tensor, and a second

contraction produces Ricci’s scalar. The explicit formulae, after dropping O(h?) terms are
computed as:

R.) =R,
1 1% 124 v
:5@@my—@amw—@&m,+@@mg (15)
]' 14 14
:5@@m—a@@w+@@@—mm@
1 (0% «
mgziwﬁm—@ﬁhw—a@mu+mm» (16)
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RM — n" Ry,

1 v v (6% v « 14

= 5 (70,01 = 0" 0,0 ey, — 00, 0ah, 1 + O b, -
1

= 5 (Oh = 8.0, — 9,00 + Oh)

— Oh — 0,0,h™"

The last step before writing down Einstein’s equations in tensorial form is to compute
Einstein’s tensor in the first order of perturbation h. This can be done straightforwardly by
substituting Eqs. 16 and 17 in equation 6.

1
(5) = Gy = R() — §R<1>gw,

= %@ﬁuh — %auaaha,, — %&,aahua + %th — %guv (Oh — 0,0,h™")
= %[Dhuu + 0,0,h — 00,y | — %HWDh + %nwapaahpa — %hWDh + %hwapaahpa
_ % (Oh + 0,0k — 0,017, + 1D, DhP — 17,0, 00
(18)
Now, the time for Einstein’s equation in the first order of perturbation has arrived:
(6) = Gy = RY — % R g, - 87CT_4GTW o
= Ohyy 4 0,0,h — 050,17 ) + 10,00 — 1, Oh = 87CT—4GTW

Here we can rewrite 19 more compactly by shifting the field perturbation h,,. This can be
achieved by applying the following notation:

h = nﬂl’huy

1
Py = by — 577Wh

v 1 v
he = NPy, = 0" Py = S 1

- 1
h,ul/ = hwj — 577wjh

Inserting the expressions above, as stated for the field perturbation, we finally see the lin-
earized Einstein’s equations take the following form:

167G

Ol + 1 by = 0,y = F Dy = ——

™ (20)

As mentioned before, choosing a reference frame cancels out a few degrees of freedom.
The remaining free degrees of freedom of the perturbed field can be tied down by inserting a
gauge. This gauge is, exactly like Electromagnetism, called the Lorentz or harmonic gauge
and defined by the expression:

0"y = 0 (21)
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The simplified expression of Einstein’s equations is obtained since the condition in 21 cancels
the last three terms of the expression in 20.

167G

ct

Ohy = — T (22)

2.2 Equations of motion of GWs and the applied gauges

Within the linearized theory, the production of GWs is manifested in 22. When one studies
the propagation of GWs, the space needs to be considered, and afterward, the differential
equations need to be solved. So, at this point, we need to look at a flat space outside the
source, where the energy-momentum tensor reads as 7),, = 0.

In this case, the differential equation that governs the propagation of GWs on an empty,
flat space and outside the source is given as a wave equation of the form

_ 1 _
Oh,, =0 = (—gag - v2> B =0 (23)

With just a glance, we see that the wave that solves this differential equation travels with
the speed of light ¢. This means that we can treat any gravitational wave in a flat space as
we treat electromagnetic waves.

Outside the source, we can simplify the expression of the metric tensor by observing
that the gauge condition doesn’t completely fix the gauge. It is easier to understand this
statement when we observe the way that the perturbation h,, transforms under the rule
given in equation 9 and apply the gauge condition 21. The gauge condition isn’t spoiled by
the aforementioned coordinate transformation, if and only if O¢, = 0.

If we create a new tensor &,,, defined as §,, = 0,§, + 0,§, — 1,,0,£” and differentiate
once concerning the D’Alembertian, we get:

O = D(aufu) + D(aufu) — Nuw0,08,
= au(Dfu) + au(Dgu) — N0, 0E, (24)
=0

So the new tensor &, is defined in terms of the arbitrary, harmonic coordinate transfor-
mation &,, that satisfies the condition 0O, = 0. Having followed this path, we lowered the
original ten independent degrees of freedom into six with the Lorentz gauge, and when the
residual gauge was used, the free degrees were lowered into two.

Equation 24 shows that we can add or subtract in the metric perturbation a term, which
includes ¢,,,, and satisfy the same equation of motion. Thus, we have the liberty of choice
in the components of the original h,, perturbation. The Lorentz condition in terms of the
h,. perturbation and for y = 0 reads:

aohoo + 8Zhol =0= 80h00 =0 for hOi =0

The component hgyy is now constant in time and corresponds to the static part of the gravi-
tational wave interaction. Essentially, this component depicts the Newtonian potential that
generated the gravitational wave and can be set to zero as hgy = 0.

15



If we read more into this, we can see that all temporal components hg, are set to zero,
and the gauge condition reads as
dhy; =0 (25)
Furthermore, the freedom of choice allows us to redefine the temporal component of the
vector &, such that the trace of the perturbation tensor f,, vanishes. Next, a vanishing trace
implies that h,, = BW and h', = 0. In conclusion, when it comes to gravitational wave
gauges outside the source, we can always define the transverse-traceless gauge (TT gauge)
as given by the following set of equations:

R =0, h',=0and &h; =0 (26)

The TT-gauge, as was previously defined, can be used only outside the source, since when
we suppose a source, 1), # 0 and as a consequence Boxhw, # 0. When this gauge is applied
to the perturbed metrlc tensor, it is denoted as ALt uv » and since the temporal components
vanish, we can change the notation to spatial indices as hIT.

Having filled our armory with the TT gauge and the differential equation that defines
the motion, we can look for solutions. It is obvious, that the solutions of equation 23 are
plane waves and on the T'T gauge read as follows:

W (2) = ey (F)e™ (27)

Here, the real part of the equation 27 is applied at the end of our computation. The
polarization vector is e;; (k) k stands for the wave vector and the direction of propagation is
given by n = k / |/; |. Suppose a monochromatic plane wave, we observe that the non-vanishing
components travel on the plane transverse to 7, and the condition d7h;; = 0 reads as

ajhiTjT =0= &ley(k ) k] —
= e;0 e ™ =
= e;;¢* " 3 (ik,a") =0
= eijeikaranjkﬁk(ikax“) =0

e 28
= eijelk“”” *ik, =0 (28)
= ik’h;" =0=kh =0
= n]|k:|hTT =0
A pTIT
Also, the plane wave polarization vector in this gauge has to obey:
WIT=0= ¢ (k)=0 (29)
hot = 0= egu(k) =0 (30)

Everything discussed above can be expressed more simply and compactly in matrix no-
tation. The polarization vector, as given on the TT-gauge, takes the form:

0 0 0 0
R =" (31)
e'wj - O 6@‘(%)
0

16



The temporal components vanish, and because of the vanishing trace, we have e, = 0 =
el + €% + e = 0. If we suppose also the vector along z-axis, as . = 1>, we get the purely

spatial expression to be

. €11 €12 0 h+ hx 0
eij(k) = |exn en 0= h;S-T =|hgx —hy O (32)
0O 0 0 0 0 0

The final solution is obtained when taking the real part of the equation 32:

(b e 0
hii" = Re [Jhi;'] = Re |e™*" [ hy —hy 0 (33)
0 0 0
he he 0
= h; = [hx —hy 0] Relcos(ik - x) + isin(ik - z)] (34)
0 0 0

Again, observing that h;3 components are zero, we can read an even more compact
formula for the GW amplitude:

he h he h Z.
I (h: hi) ) cos(k-x) = (h: hi)@{) coslkox® + k;z'] (35)

or equivalently

hLl = (Zi Zi) . cos [%czﬁ — kz} = hLl = (Zi Zi)ab cos [w (t — E)] (36)

Having written the full expression on the perturbed metric, we can now compute the
interval ds?, which expresses the propagation of GWs in a background, flat spacetime.

ds® = g datda” = nydatda” + hy, datda”
= —Adt* + da? + dy? + d2? + hydaPcos [w <t — E)} +
c

+ hody’cos [w (t _ E)] + 2hdx dy cos [w <t - E)} (37)

= —c*dt* + [1 + hycos (w (t—- )] dz?® + [1 — hicos (w(t - ;))} dy*+
z
c

+dz2+2hxcos[ (t — )] dz dy

2.3 Projection operators on the TT-gauge

Following [17] at Chapter 10, equation 10.4.14 and below we can define an operator, which
transforms directly a GW in the TT-gauge, the A-operator.

Consider next a plane wave outside the source, but in the Lorentz gauge. By defining
some projectors, we can always readjust the amplitude, so it is in the TT gauge. We can

17



achieve this by introducing a new tensor P;;, which is symmetric, transverse, and a projector.
We see this projecting operator to have the form:

Pij(n) = 0ij — nin; (38)
And applying the properties of symmetry, transversality, and projection, we see:
Pji(f) = 6ji — nyjn; = 63 — ngny = Pij(7)
anj = njéij — njnmj =n; — njnjni = anj =n;—n; =0 (39)
PijPjie = (dij — ming) (056 — njni) = i — nimy,
Py =0"Py; = 696;; — 6nin; = 2
Having understood the projection tensor, we can obtain a new projection tensor in terms
of P;;. The expression that suits our needs in the TT-gauge reads:

. 1
Aij(n) = Py Py — §piijl (40)
This tensor, as defined above, is a projector since:
1 1
Nij ki Nt mn = (Pz‘kle - §Piijl) (Pkmpln - §Pklen)
1 1 1
= Py, Pji P P, — §Pz'kpklelen - §PiijszmPln + Z—leijlPklen (41)
1 1 1
= sz]D]n - 5 iijn - 5 ijpmn + Z2R]Pmn
1
- Piijn - 5 iijn - Aij,mn
It is transverse,
. . 1
n'Aij = n' PPy — ipijpkl =0 (42)
traceless concerning i,j, and kI
1 1
N = PPy — §Piipkl = Py — §2Pkl =0
1 (43)
Nij ek = Pix Pji, — §PijPI~ck =PFP;—F;=0
and symmetric under the exchange of (i, 7) <> (k,1)
1
Nijwi = PPy — 3 i Pii = Nij ki (44)

The above properties are enough to support the claim that the tensor A;;x; projects any
tensor in the TT-gauge. When we consider arbitrary, symmetric tensors of the form SE;-T,
we see that the projector conserves the symmetry. We can rewrite this tensor in terms of
unit vectors n'. Inserting equation (37) in (39), we get:

. 1
Nijpa(ft) = (O — i) (050 — mjma) = 5 (85 — ning) (O — 1)

1
= 5ik5jl - §5ij(5kl - 5ikznjnl - (Sjlnink (45)
1
+ §5ijnknl + §5klninj — §nmjnk.nl

18



2.3.1 The TT-frame

The perturbed metric tensor h;; in this gauge can be written as h;gT = Ajjrihy meaning
that any amplitude that originally is in the Lorentz gauge can be written in the Transverse-
Traceless gauge using the A projector. Following this, we see that it also satisfies the same
equations of motion, as given in equation (22), and can be Fourier expanded as a monochro-
matic plane wave, as already done in equation (26):

d3k S S
TT . ikx * —ikx
i) = [ s [AuBiet + @] (46)
In polar coordinates, the integration measure reads as
A3k = K2dkdQ = k?sinfdkdfde
= k*dkd cos Od¢ = k*dkd*n

_ P gz — (@) 2 2mdf

c? c? c
2
- ( :) frafd®n

And the Fourier expansion in equation 46 reads:

d2n (47)

dfd*n (2m)? N
TT 2 ikx
hi () = / e F2 (A (f,n)e™ + c.c]
= _/dff2/ zg f TL 7l(wt+2ﬂffﬁ) 4+ c. C:| (48)
- 5/ df f? / @ | Ay (f, e 200D e
When the direction of propagation of a GW is well-defined, we can write equation 48 as
1 o ~ A —2mif(t—1n-2
W) = 5 [ ar [ 0 [Au(N60 0 - ngpe 21 e
_ ! df [fQA-‘(f)e_me(t_%ﬁO'f) +c c] (49)
=3 ij .C.
_ /df [hTT(f )e—met BET*(f7 f)e%ift]
In the last line of 49, we set
7TT =\ — f2 —2mif /e(fo-T)
hz‘j (f,7) = ;Aij(f)e (50)

Next, we can impose the gauge properties and rewrite the amplitude as:

ha(t, T) = / " Af (£, B)e 2 4 B (f, )Y (51)

0
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Writing the equations down in the detector frame, we can eliminate the 7 dependence as:
halt) = [ dlhun(£)e 274 By (7)) (52
0

where ﬁab( f) is the 2 x 2 matrix of the 4, x polarization of a GW with physical frequency.
These two polarization modes are defined concerning a given choice of axes in the transverse
plane. . .
i he(f) hx(f) > i i
hao(f :(~+ 2 and h'(f) = ha(—f 53
b( ) hx(f) —h+<f) " b( ) b( ) ( )
There is another way of reading the physical frequencies. It becomes clear when we insert
the property of physical GWs, namely A%, (f) = hapy(—f), in the last equation:

ha(t) = /O‘X’ dfilab(f)e_%ift n /OOO dfﬁab(—f)e%ift

_ /oo dfﬁab(ﬁe_%iﬁ _ / o0 dfizab(f)e_%ift (54)
0 0
hab(t) = / dfﬁab(f)e_%rift

The last form of the amplitude has the form of a Fourier transform in the space of
frequencies. The inverse formula is written in analogy to the Fourier transform:

ha(f) = /_ " dthay(£)e2! (55)

o0

On real axis we can suppose two arbitrary unit vectors n, v such that @ 1. n, v L n and
4 L ¥ as shown in Figure 1.

The polarization tensors e

;i(n) are written for A = +, X as:

e;;(n)
6;;(73,) ’ZlﬂA)J + TA)i'LAL]',

Il
>
S

iUy — Vilj,

where @ and ¥ are unit vectors orthogonal to the propagation direction n and to each other.
It follows that e;}(7) are normalized as:

63- (ﬁ)eAlij ('fl) = 26AA’-

In the frame where n = Z, we get & = & and v = y. Thus, the polarization tensors are:

1 0 01
+ _ X
€ab = <o —1>ab’ €ab = (1 o)ab'
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Figure 1: Diagram depicting the x,y,z axes and the "new" unitary vectors u, n and v, adapted
by Maggiore’s book, Gravitational Waves [15].

The amplitudes from the O equations are given now as:

a2 = &5 [ @rdat e =
7 2 e eF
hao(f, T) = JCC—3 > Aw(feg ()™ & =

A=+,%x
7:L — Z Aab ab /ﬁ;
A +,X%
f—jAab<f> = S hlh e @)
C
A=+,%x

So, equation 48 reads:

hao(t,x) = > / df/d” hA el (i)e 2 (-72) +c.c.]

A=+,Xx

2.3.2 The geodesic equation production

This paragraph takes contribution from a variety of sources, namely we see parts from field
theoretical actions and their manipulation in [25] and we see the geodesic equation, a basic
formula that is produced in any of the following [15], [16] , [17], [18], [19], [20], [22], [23].

Consider a curve z# parametrized by an affine parameter A, as z#(\). Based on this we
can write the line element ds? as follow:

dat da¥
dAX dA

ds? = gpdatds” = g,

(56)
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A space-like curve satisfies that ds? > 0 = ds = (gwdx“dx”)%, whereas a time-like curve
with ds® < 0 satisfies that ds* = —c*d7? = g, dz"dz” The 7 parameter is the proper time,
as defined by a clock traveling along the z#()\) curve.

The classical action S , defined by z#(\) trajectory on zy = x#(74) and 2/ = 2#(75) as
endpoints is:

S:—mc/ ds-—mc/ dt 1—— (57)
TA

And the free-particle Lagrangian is defined as:

Equation (57) can now be written as:

B ™B
S = —mc/ ds = —mc/ Vdx,daH (59)
TA

TA

A variation on this gives:

B B m
08 =— mc/ 0/ dx det = —mc/ ;S(dx& =

- - dz,da*

B JT Y B m v
59 = — mc/ 0(gudatda”) _ —mc/ G 2datddz N

A 2ds A 2ds 60

B gt , B $d'“ , daxt ( )
5S:—mc/m Egyydéx = —mc/TA d {d—gwﬁx } —|—mc/TA d [ P guy] ox” =

dat . B 2t dat

08 =— mcgéx G |72 —|—mc/ ds—- 12 —— G| E 0" + d—dg,wdx

TA

Demanding that S has an extreme, we get:

B 2 “w
ﬁ:o;»mc/ ds h—g“;guﬁdx dg“”} —0=

dxv s ds ds
d2z+ dz dz® dg,.
—— G =0=
dsz 9 L ds ds dao (61)
d2ax? N do* da®  dgu, 0=
ds? ds ds 7 dze
d2ax? N dat dz®
ds? o ds ds
dax# du” )
If u* = —— we get in terms of 4—velocity that — + '} ju"u®. When we considerate a

ds
translation x“ — o't = M + £* equation 61 gives:
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2
4 (xf + &)+ 17 i(95“ + §“)%(:I:O‘ +£%) =0=

ds? reds
d?zr d%¢r dzH de+ dx®  d¢&”
| I, o = 62
dsQ—i_ds2+ ““ds+““ds]<ds+ds) (62)
dz¢r dxt dge dér dx® & de
— 4 — = 4 TP = e 2> =90
ds? L ha ds ds r* ds ds F*ds ds
Whe;ezf‘ﬁa =00 (v + &) ~ 17, (v) + 70,1, (x)
d=¢ dxt de” dxt dx®
:> ——— QFP e — O—ao.l—‘p —_—
T2 T ey s T @)
Next we introduce the covariant derivative for 4— vector as
DVvr  dVH dz”
=—+4+IEV—
Dt dr i dr
and the geodesic deviation equation is written as:
D2¢r dx” dx? D2¢r
__puoep — _RE£PuPuC 63
Dr? veos dr dr Dr? ”’”‘75 w (63)

2.4 Energy-momentum tensor in geometric interpretation

The energy-momentum tensor of GW and the short-wave expansion are discussed based on
Isaacson’s work, see bibliography [30] and [31] and in Thorne’s classical textbook [28]. The
space-time average over a wave is discussed in Arnowitt, Desser and Misner, [32]. Finally,
the geometric optics approximation used in 1.4.2 is referred to [20], [30], [31], [27] and [28].

Until now, we have seen that GWs carry energy and momentum. Furthermore, we saw
that GWs set in motion a ring of test masses initially at rest. If these masses are connected
by a loose spring with friction, the kinetic energy will be transformed into heat. Thus, GWs
produce work, and energy conservation demands that the energy transformed to work must
come from the GW energy. We want to check out if GWs curve the background spacetime.
This will occur if we allow the background spacetime to be dynamical, meaning we must
define GWs over a curved, dynamical background metric g, (r) and write the perturbation
as:

G = By (T) + Py () (64)
where |h,,| < 1. The total metric can receive contributions, which change in time and
space, on all possible scales, due to growing fields of nearby moving masses. A natural
splitting between 7mg,, and h,, arises when there is a clear separation of scales. For
example, equation 64 in a coordinate system provides that g, has a typical scale of spatial
variation Lp and the perturbation has an amplitude proportional to a A amplitude such
that X < Lg, where X = % In frequency space g, has frequencies fp (maximum) and h,,
perturbs around the frequencies f such that f > fp. In this case, h,, is a high-frequency
perturbation of a static or slowly varying background.

We want to understand how the perturbation h,, propagates and affects the background
spacetime. We begin by expanding the metric tensor as already done in equation 64, g, (z) =
v + hyw To this expansion, we get two small parameters:
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1. the typical amplitude h = O(|h,,|)

2. % or fTB < 1 (short wave expansion)
We produce, now, the quadratic order of approximation of Christoffel’s symbols, Rie-

mann’s, Ricci’s tensor, and Ricci’s scalar.

Guv = i) + W) = g = g (z) — Y (2) + O(h?)

Christoffel’s connections are:

1 1
Flzf,o = §g”O<DV% + ng? - Dag_l/p) + §g#G(D1/hpcr + Dphua - Dohz/p>
The Ricci tensor expansion is given as follows:

R, = R+ R() + R?) + O(R®) (65)
with R_/w ~ G > R(l)w, linear in h,,, as:
1 N ) Na M N ) N D
R() = 5 (D*Dyhye + D*Dyhye — D*Dohyy — DDy h) (66)
and Rl(fl,) quadratic in hy,:
@ _ Loopan|lz D D D >
Ruu = 59 g §DphuaD0hVﬂ + (Dﬂhl’a) (Dahuﬁ - Dﬁhw)
+ hpa (D°Dyhyg — DgDyhyy — DgDyhy,)
(67)

1 - _ _ _ _
+ (—§Dahm - Dphw) (DPhys + Dyhgo — Dghy,)

The perturbation A, depends on the frequency. When we have low frequencies, we define
hﬁfyw and for high frequencies, hﬁf,gh. In equation (64) R, is separated in three parts:

1. Ry ~ 9w
2. R ~ O(h)

The part proportional to O(h) contains by definition only high frequencies f > fz, When
the O(h?) part may contain terms with haghys : f(hag) > fp and f(h,s) ~ fp. The RY)
components can be divided into low and high-frequency components as:

(2) _ p(2)low (2)high
R;) =R+ R (68)
Substituting Eq. 67 in Einstein’s equation alternative form, we get
(69)

81G 1
Ry = F(Tuv - §guvT)
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We get Eq. 68 La. 07,

S . , 8tG 1 1 ;
R+ i) MO R+ R M = o [(TW = 59w D) + (T = 59 T)""
S ow | TG 1 tow
Ruy - _RE?V) ! + C4 (Tuy - ETg,uu) (70>
. . Ryve. 1 high
v v 57 (1, ) g

At this point, it is useful to see the order of magnitude of all components. In a small
region of spacetime g, can be flat as h,, and of order g, = O(1). It can only happen
when we are far away from a source, so 7" = 0. Next the perturbation h,, = O(|h,,|) and
equation 69 tell us for T, = 0 and 7" = 0 the following:

O(Ru) = O(R) ™) = O((0h)?) (72)

iz

So the derivatives of h, Oh affect the spacetime curvature. At the same point dg,,, ~ Lgl,
since g, ~ O(1) and

h
So, we take '
O(R\)) = O(RG) "9") = O(hoh) (74)

From Eq. 66, we get that

Ry ~ (01)" ~ 0°G ~ (75)

2
LB
eq. 71

B 2
eq. 74 — é ~ (X) = h ~ % for curvature determined by GWs and h < % for

matter determined curvature.
Eq. 69 is written as:

— e 1 high
__ p(2) low =
RHV - R/w + cl (T/W 2gAWT>
When the length scale X is separated from the Lp length scale of the background, one
can introduce a scale [ such that X < | < Lp and average over a spatial volume of side [.
Similarly we can define a time scale ¢ : % Lt < fLB and equation (69) can be written as:

L f — 1 [ o 81G [ _ 1
- / diR, =~ / diR%) + —T / di (T,W — §Tgw,) =

— 8rG 1
Ry, = _<R/S2V)> + _4<T/w - §Tglw>

(76)
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We define the effective energy-momentum tensor 7}, such that

1 1
<T#V — éTglmj> = T#V — éTg'mj. (77)
T_W tensor expresses by definition purely low frequencies, as is g,,. We define ¢, tensor
as:
ct 1

b (@) _ ~g—p()
o Sty <Rw/ 29# > (78>

And its trace:

—w c J
= Pl = o (TR — 77 )

=t =
e

c

- R®
At ()
Then, Eq. 78 is inserted in Eq. 77, giving:

=t

ct 1

ty, = — R® -
K 8ﬂfﬂ”+2wG
- ct ) 1
=t = —%@W) + 50w (80)

&r(G 1
= - <RE¢2V)> = T (t,uu - _tg/w)

(R g

c 2
So Eq. 75 in terms of Eq. 79 provides the following:

Eq. 79 8¢ 1 8G,— 1

:RHV = 7(t’uy - §tg’uy) + ?(THV - §g,ul/ )
— 881G, o 81
R + 2_c4(tglw —Tgu) = ?(tw + Tow) (81)

1. 8G

Ry, — §g#VR = ?(tuv +Tw)

The last equality of 81 hides all the physical meaning in this gauge of Einstein’s equations.
This form is known as a coarse-grained form of Einstein’s equations in quadratic order in
huw, and it is used to determine the dynamics governing g, .

In summary, at a microscopic level, there is no fundamental distinction between the back-
ground metric and its perturbation. Moreover, when some fluctuations are distinguishable
from the background because X < Lg, we introduce [ : X < | < L and integrate out the
degree of freedom. The result of this integration is shown in equation 80. LHS in equation
70 is Einstein’s tensor for slowly varying metrics. RHS is a smoothed version of the matter
stress-energy tensor T_W Finally, ¢,, comes out in an overlapped form naturally, because
we pass from a fundamental microscopic description t to a "coarse-grained", macroscopic
description.
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2.4.1 Energy-momentum tensor

Now we can compute the explicit form of ¢,, (view Eq. 77) when Rfl,) is given by Eq. 66.
In this case, we suppose that the background is flat, so g,, — 7,, and D, — 9, and Eq. 66
becomes:

R} = ;nw aﬂ[ OuhpaOuhos + 0phuaOshus — Ophyalshus
+ P (850, h0p + 0505l — D50, hue — 050, R0 )
+ (%aahpa - aphaﬁ) (Duhyp + Ouhug — aﬁhw)]
(82)
= RO = % [%auhaﬁayhaﬁ + h8,0,has — K050, hay — WP 050, 0
+

h?0008h + 0P hagd®hyy — 0P hyg0* e — 0°h,50% e

1 1
+ 05h*P 00 by — 05h*P 0 hgy — 50" h0abyu + §8ah&,hw]

where N, is a matrix with 10 degrees of freedom with 8 gauge modes and 2 physical modes,
both of them contribute to GWs.

Gauge modes are associated with ripples in spacetime, are coordinate-dependent, and can
be gauged away. Physical modes produce an energy-momentum tensor of GWs and cannot
be gauged away. These are found using Lorentz gauge condition d,h*” = 0

Eq. 81 ==2—(R®) = <lauhaﬁa,,haﬁ + %haﬁauayhaﬂ> ,
= - <a haﬁa S < (h*P0,has)) — = <a h*%0,hyg),  (83)

(R@) = -3 <auhaﬁayhaﬂ> :

o
(R =0) (84)
because of integration by parts.
1
From Eq. 77, using Eqs. 82 and 83, ¢, = G< 2y ég_W<R(2)),

(i b)), (59

=ty = == {0,has0,h*").

32G
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To see that gauge modes do not contribute to Eq. 84, we vary it with §A*? and use eq.
11. So Eq. 84 can be written as

a
Oty = 9 C ((0,6hag)0,h*P) + <auhaﬁayahaﬁ>] =
C4 [ a—
&W - 327G ((()“((%f,g + 6B§a)auha'8> + <amuhocﬁaV(aa£ﬁ + 8ﬂfa>>] :ﬂ
|
Oty = 167G <8M8a§5&,h0‘5> + <8uhaﬁavaa€5>] =
A -
C
Sty = T |OnOnEsdul®?) + (0,100,085 | =
- (86)
C
6tuu - 160G 8a<8u 5&,h°‘5) — <8M558V8ah°‘5>+
O (@uhaﬁa,,fg> — <(9M(9@haﬁayfg> + ((%haﬁa,,@a{ﬁ)] =
_ - aB aB aB s
(Stu,, = ﬁ 8a<au(§5ayh ) — 558M8Vh + 8M(h 0,,55) — hagé?u@,,f >] =
ct [ s
(Stw/ - m aaa,uay<§3ha > = 0

Since equation 84 holds, t,, does not depend on gauge modes and only on physical modes

hi;', we can rewrite equation 83 as:

C4

by = W <auh;5'TavhiTjT> (87)

. o hy he O 9
with b = | hx —hy 0] cos|w(e——
0 0 0 ‘

]
All components from equation 85 are:

C2 1 1 i 02 .
tog = ——(—OhET=0,h.)) = too = hETRY ) =
00 327rG<c gt tr) 00 327TG< K tr)
c? TT 11 TT712 TT}13
oo = —327TG<h11 hTT + h12 hTT + h13 h’TT+

RETAR + WD+ 1+
WA + W + W) =
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02

too = 327TG<h1T1Th¥T+h1'2Th¥T+0+hQTITh%lT+h32Th%2T+0+O+0+0> =
2
C . . . .

to = 35—z = (B + 12+ W} + 1) = (88)
2 .

too = 6 (h3 + h2)

When applied the covariant derivative D, in equation 80, yields

I P .
D"\ R — 5 Rgu | = D" (T + tw) =

- S
D'Tyy + D'ty = D' Ry — 5 (D" R)ay — 5 RD Gy = (89)

_ -1 1
D*T,, + D"t,, = D"R,,, — E(D“Rag)gaﬁg—,w - ERaﬁD“gaﬁg—W =
D*(T,,t,,) = 0 due to Bianchi identity

All the large distance limits, the background spacetime can be approximated by a flat

spacetime and D* — d,,u with T = 0. So, equation 88 reads as Mty

2.4.2 Energy flux radiated by GWs

Energy flows per unit of time through a unit surface at large distances from the source.
Conservation of Equation 0#t,, shows:

v:O:8“t,w20¢60t00+3"ti0:0

When integrated over a spatial volume V' in the far region, we get:

/ d*z(8°tgo + 0'tin) = 0 (90)

(2

The energy of GW is defined as:

dxV
d
-0 V__/ dAnltOlj
dx S=0V (91)
1d
il B —/dAnZtO’ =
& dt S



If V is a spherical shell as V = S2, then far away from the source the outer normal vector
to V is simply 7 = #, the unitary radial vector and dA = r?dQ). So, 91 reads:

dE
d_tv = —C/ST2dQ tOT, (92)
where
for _ c* IuhTT d hTT 93
T 322G\ VY oor Y ) (93)

A radially propagating GW far away from the source can be described in general as:

W () = it = /). (94)

where f;;(t —r/c) is a function of the retarded time ¢,y =t —r/c.
Taking derivative 0,:

o 1 r 10 r
EhiTjT(t,T’) = —pfij(t - E) + ;Efij(t - g>' (95)

Since dr = —d—c” =d (t = dtret) = 0, = —0;, we get

0 r 10 r
5y fult =) = —— 5 fult = -) (96)
and therefore: 9
Eh?(zﬁ r) = —8oh"(t,7) (97)

Substituting into Eq. 93, we see that at large distances:

tOr — 327TG <80hTT80hTT>

tOr = 4G <80 hTTaOhTT> _ tOO

And the energy flow from 92 is decreasing since

dd% = —c/dAtOT = —c/dAtOO (98)

This decrease shows that the outgoing GW carries energy flux:

dFE e PR
= tOO - - hTThTT
dA dt ¢ 327G < > =
hTThTT
dt 327TG / :> (99)
dE  Ar? -
aL Q ( j,TT}j,TT
dt 327G /d <h” i >
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In terms of hy and hy, we can rewrite the result as:

dE 3 <
dAdt 167G

B2+ hi> . (100)

The total energy flowing through dA between t = —oco and t = 400 is therefore:

dE o0 . .

= TG at (i3 + i) (101)
or in terms of % we get:

dE 3 o 1o

= 167TG/ dt <h +h ) (102)

Because of Parseval’s theorem, we get:

+00 . +oo .
/_ dtfiy (B2 = / 0f g (1)

[e%S) _T_Ooo ) 5 |
= [ g
= ‘ (103)
= [ dfhn()enne
=
— [ dremplhe (P
Combining the two equations above, we get:
dE A - o |7 9
e / & @ (i (D + 1 (1)) =
(104)
dE  7cd

=i s (e or)

Since the integrand is even under f — —f, we can restrict it to physical frequencies
f > 0, writing:

dE  wcd [ ~ ~

=T ar (DR + 1 (HF) =
dA 2G (105)

dE 2 (17 2 7 2

i T (|h+(f)| + i (NP)
The energy spectrum on a sphere of constant radius r is written as:
dE- 2,2 7 2 |7 2
7 =50 re et [ (R + ). (106)
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2.4.3 Momenta carried by GWs

To calculate momenta, we have to take the equation 0#t,, = 0, which illustrates the energy-
momentum conservation, and choose the v = ¢ component.

'ty = 0 =5 991, = 0 = Ot + 9;67 = 0 (107)

Integration on a volume V' gives:
/ d*2[0pt” + 9;t7"] = 0 (108)
A GW carries momentum given by:
k1 3, 40k
P = —/d xt (109)
c

With the energy being expressed as the derivative of equation 109

1dPF 1
. dt” == / dP20,t"* (110)

When the integrated equation 108 produces a form of momentum conservation for the grav-
itational waveform

/ d’w[0ot™ + ;"] =0 = / B[t = — / ;) Savationsd,

v v

1 df)Z i; Stoke’s theorem i
= —/d%ajtﬂ Stoke's th —/dAnjt“ = (111)
c v S
dP! y
L = —c/ dAn;t’"
T <

equation. 1 dPZ , ,
q tions? /deé?otOZ = — / dAnotOZ =

c dt
A Oz v e
/d not dAdt ct
= ar, = ¢ (hTTé?’h ) (113)
dAdt (320G VK
dpr: 3 i
== 32ﬂGr2/dQ<h;fkT86th,f) (114)
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2.5 Energy-momentum tensor in field theoretical approach
2.5.1 Energy-momentum tensor produced in field theory models

More details and proofs about the action and the energy-momentum tensor in field theoretical
models can be found in Maggiore’s book [36], as well as [25] and [19].
The action that describes any physical system is

S = /d4:c£ = /dt/d%ﬁ(@,a@) (115)

All ¢' fields are components of the perturbation metric h,,, and are denoted simply as ¢; = ¢.
A coordinate transformation bets on z# — 2 and on ¢(x) — ¢/(2’). An infinitesimal
transformation for the coordinate and the field is given as:

ot — 't =t + e Al (x) (116)
¢i(x) = ¢i(2') = ¢i(x) + € Fo(¢,00) Va=1,...,u (117)
Eqgs. 116 and 117 leave the action invariant and define a symmetry of S(¢).

e When the symmetric transformation leaves the action invariant and the €* parameters
are constant, we get a global transformation.
e When the symmetry leaves the action invariant and the ¢* parameters are allowed to

be arbitrary functions of x, we have a local transformation.

Noether’s theorem states that for each generator of a global symmetry (meaning €%, Vo)
there is a current j#[¢, 04|, that is conserved as

8t =0 (118)

and a corresponding conserved charged @), such as:

Qu = / Bl (. 1) (119)

The conservation of @), is given as
90Qa = — /d?’:z:&-jg(x,t) = 00Qa = —j.(x,1)Z]s, =0 (120)
Equation 100 vanishes, since we demand ¢|s, — 0. The generic formula of j# is given as:

oL

- 0(0u)

Symmetry under spacetime translations

Ar(2)0u¢i — Fia($,09) | — AL(z)L (121)
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ot — ' =t + e =t + €0l

(122)
d(x) = ¢i(z') = ¢i(x)
So we have A% = ¥ and F; , = 0 and the conserved current is
oL
Jo = 060,01 — Fia(0,9)] — AL(x)L
3((%@251-)
ar (123)
b = 577 0athi — 64L
3((%@251-)
The energy-momentum tensor is defined as:
oL
0, = —J) = —5 3~ 0u0i + 0L
8((%@)
Or with all indices raised:
oL
oM =nPot = — "¢ + 0L 124
U T 7 (124)
with conservation
00" =0 (125)
The conserved charge is the four-momentum P* defined as
cP¥ = / d3z6% (126)
with components
E=cP’= / d®z6” (127)
i1 3,.00i
P'=— | d°z0 (128)
c
In the case of electrodynamics, the Lagrangian density can be expressed as:
1
Lgy = _ZF“VFW (129)

and the electric and magnetic fields can be written as the components of the EM tensor
E'= F° and FY = E'*B*. Thus, the F,, Maxwell tensor will be:

F,, =0,A,— 0,4, (130)
and its "square" F? = F,, F* will read:
F? = F, " = F,,F* 4 F;,F"* + F;F
— F'E; + B.E' + E;; ByEY' B! = 2E* + 2% = (131)
F,F" = (—E*+ B?)
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The Lagrangian density in terms of the electromagnetic fields will be written as:
1 1, = -
Lpy = —ZFWF‘“’ = —§(E2 — B?) (132)

To retrieve a closed form for the EM energy-momentum tensor, we need to compute the
following quantity:

OLgm 0 1
= — (0, A5 — 03A,)2F" =
00, A,) ~ Do) 1 ete — 02T
OLpy 1 aﬁa(a[a/lﬁ])_ 1 s su o
04,y 2t 0.4, 2h Cudn) = (133)
OLgn
B A
O(0uA,)

Having the full expression of equation 133, we can now write down the full expression of the
EM energy-momentum tensor. Following the steps below, we get:

o= — O"A, + "L
0@ T
1
Ol = F170" Ay + 11" [ Fap 7] (134)

1
O, = F10" A, = " Fog P

Since classical electrodynamics is invariant under the transformation A, — A, — 9,0
We see that Eqgs. 132 and 130 have:

FW =0,A, — 8,,AM =

Fl, = 8,4,0,0,0 — 0,A, +9,0,0 = (135)
F,=F,
, | VR I

Loy = =7 FuF" = = FuF" = Lpy (136)

Although 6%, via Equation 134 is:
1
GIE";\IZ—F/ upayA/ 4 MVF/ Foz,Bl
1
0;;5(; — F“”a”A _ Fﬂpauapg _ Z—lﬁwFaﬂFQﬁ = (137>
O = g, — P19V ,0

Ohy = F'P(0"A, — 0,A" + 0,A") — i wE F' of =

1 e
Oy = Py — o FlgF % 4 Freg A0 s (138)

1
O = FH0E) — 21 E? + 0, (F" A”) =
O = T + Op(FAY)
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Next we can define CP* as CP* = F#P4" an antisymmetric tensor in p <> p, with 9,07
not gauge invariant. Also we set Ty, = FH _in‘“’F 2 the improved energy-momentum
tensor with the 00—component to be given as the energy density:

£ =THh = 5 () + B(x) (139)
We notice the following:
o 0,0,0° = 8,0,(E" A") = 0, 50 9,01 = 0 = 9,(TH + CP™) = 0 = 9T, =0
e The conserved charge for 0%, is:

1
P! = / oo, = / du(F70" A, = 0™ F?) (140)
14

e while for 7%, will be:

1

cP! = / dPaT, = / d%(FOPFg—ZnO”F?) (141)
14 Vv

The two forms of the energy-momentum tensor, as stated in Eqs. 140 and 141 differ by a
factor. This factor, when applied to some algebra, transforms into the following expression:

/ d320,CP" = / dB32(0C° + 0,C") = / 4320, = / d*z0,Ci (142)
14 |4 |4 14

If A* — 0 is fast enough at the boundary, we get from equation 142 the following.

tion119 ‘ '
Lquationl 19, / d*z9,C" = / 20,0 = C"nilo, =
Vv 4

/ d*29,C"" = FP A" n;ls, — 0
v
Since equation 142 vanishes, we get: C'P/ = C'Py and P” is gauge invariant.

2.5.2 Energy-momentum tensor of GWs

The quantum field theoretical approach to gravitation is explicitly studied in Feynman’s
Lectures n Gravitation [37]. Also, in [38] and [39].

To find an expression for the energy-momentum tensor of GWs, we must begin studying
Einstein’s action as given in equation 1 of Chapter 1: Sg = 160;G J d*z+/=gR, Expand the
metric as per usual g, = Ny + Iy = g = " — h*” and compute the Ricci scalar as:

R=g" Ry, = [0 — " + O(W)|[R) + R) + O(h)] (143)
The /—g term is expanded as follows:

—g = —detg,, = —det(n,,9)) = —g = detg) (144)
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The permutation g¢,, = 71,, + h,, can be written as
0" Gy = 0Ny + 0y, = g° = 62 + R (145)

Inserting equation 144 into 145, we find the first-order expansion of the scalar —g to be:

eq. 122

eq. 121 == — g =det(6! + h?) =det(I + H) =
_ g = elndetI+H) _ Trlin(+H)]

g e TS IHHA O] _ (T H] (146)

—g=~1+Tr(l+H)+O(H?) =

—g~1+h+O(h?

Thus, Einstein’s action Sg can be written as:

4 o equation120
SE — d €T 1/ —gR >

167G equation123

3
Sy = /d% C VTR — 1+ O(2)[RY + R + O(h¥)]
167G

We ignore the term v/1 + h because it is of order O(h?).

3
— 4 ( (9y _ prv p(1) _ puv p(2) 3
S /d v (R0 + R2) — YR — 1 RE + O()
3
C

14 1 (6% (6% (6%
Tere / dh [ S (0°0hua + 90, hua) = O Dahsy = 0,0,h)

e ( 0uhasdh® + h20,0,has — hP8,05ha, — h**0,05hay

+ h® ﬂaaaﬁhu,, + 0P h20shay — OshPDyhey — 0“BEDLhg, + Dgh®P Do, (147)
1 1 1
— 05h*? 0, he,, — 50" M0abyu + 50°hOyhay + 50°huhay)

1
— hw,g(@aauhm + 0“0yhye — by — 0,0,h)] =

C3 )
Se = —gimg | A'5l0uhon)? = (0,0 + 20, O~ 0,0)]

And the Lagrangian density of the Gravitational theory will be

4

G%Gﬂahw) — (0,h)* + 20,h" (d,h — D,h*V)] (148)

Lg

In the Lorentz gauge, the Lagrangian density can be written as:

4

Lo = G0 G(

Oyhaps0hP) (149)
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And the stress-energy tensor is:

OLg

o = - _gp, "L
Ophag) Mes T e =
P , 3 , (150)
uy 2O B v Qv Yoy Ne'
0 647TGah O hap+1 ( 64WG)(aphaﬂah )
Since
Oh,y =0 = hepd,0°hep =0 = 8p[ha/38"ha5] — 8pha58pha’8 =0 (151)

And since 0,[ha30”has] does not add in action, due to boundary conditions, we get:
Dphasd’h®? =0 (152)

The stress-energy tensor will take the final form stated below:

4

Eq.129
Eq127 == " = O"h*P 9" h, 153
. (0 hg) (153)
If we evaluate the mean value of 8*” on several wavelength X, we get the " macroscopic"
stress-energy tensor t*¥ as:
1
o =5 [ aver = (-om) =
A Jo
A
th = (0" WP hos) (154)

327G

2.5.3 Angular momentum carried by GWs

Angular momentum carried by GWs comes as the conserved charge under spatial rotations.
A symmetric tensor h,,, when rotated, decomposes into hoy and the spatial trace h!, which
are scalars (spin-O fields), to hg; a spin-1 spatial vector and a purely spatial tensor h;;
with spin-2. When a GW is expressed in the TT-gauge, we have hg, = 0,hi = h = 0, and
& h;; = 0. In this gauge, the total d.o.f. reduce from 10 to 2 and equation 147, that describes
the gravitational wave action, yields:

e [ Jatogr g @unuonied)| = 5o = [ate|-Zo@uiron] )

With the corresponding Lagrangian density:

4

= Le=—gia

(OphlT 0" hidy) (156)

The hg;T fields describe the two physical degrees of freedom. The conserved current un-
der rotations uses the Lagrangian density, given by equation 156. The rotations on three-
dimensional spaces are described by 3x3 matrices R, such that:

' — 1t = R (157)
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For infinitesimal rotations, we can write
RY = §9 + w" Yw" antisymmetric (158)

Antisymmetricity of w% is derived from the R¥ matrices’ orthogonality. Because of it we
get wY¥ = —w’? and wY as a matrix is:

0 w2 wis 0 W12 W13
wl-j = W1 0 Wa3 = —W12 0 Wa3 (159)
wsg; wsy 0 —wiz —weg 0

Thus, the transformation rules of coordinates are:

vt 2 =o'+ Z w AL (160)
k<l
$i=hiy" ITT T ki
—= [T = " =h" Y wM (161)
k<l

The conserved current by Noether’s theorem is given as:

Je = A0,1TT) (Ouhi;" AYy — Fiju) — AL

2 4
= |:8Mh;1;T (— ¢ ) 8Vh;1;T:| [(5ukle - (Syll'k) — (SjihElT - (Sijh;flT - 5Zlh;r];r - 5Zjh;I];,T:|

647G
+ (6M* 2t — 5”lxk)—64ﬁG(8ph;ij0ph;gT) =
4
— 5 ORI O R = O BTT) = KT+ Sk 4 ) -
1
5(5“’“3@[ — 5“lxk)8phiTjT8phiTjT]
(162)
For p = 0 we get
3
0 _ € Ligpow,rr 0 Yoior,or Yoo, or
Ikl = T 3900 |:Ehij 9 hij T — Ethk hy™ — Ezhu hik }
. c? : : .
I = gy PR hEE !+ 2WEL LT + 2hT R (163)
3 X 1
Ju = 3267TG {—%Z%(ga““h%w” — ouhél — 5bzh§£)]
With the corresponding conserved charge:
1 .
Sy = E/dnglgl
164
Eq.140 _ c? B IT (kI pIT _ 5 pTT _ 5 pTT (164)
== gom | Ta—hg (@707 hay, — dwhar — duhay )
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Or via Poincaré duality, we obtain:

) 1. 2 . .
le?e““l(]l 64C - / @ |~ 2RI Mt T + 26 ML + 26T

(165)

d3 zklh kal hT ¢ zklh h
e / ab &0 T
The physical density of angular momentum is the localized current over a few wavelengths,
such that:
i 2

L= e O 4 2 BT (166)

which can be interpreted as the angular momentum per volume. The total angular momen-
tum carried by GWs is

dJi = / Prdtji = S — / Brl (167)
dt v C
The volume of integration can be a sphere of radius r, so we get:
Bg1a1 dJ? r? / ikl kAl TT kil
— = dQ(—e*pIT2 o' T 4+ 2" BT R 168
dt 32971G < ab ¥ ab + > ( )
The rate of " expresses the emission rate of angular momentum due to GWs.
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3 GWs in linearized theory

We consider the generation of GW in the context of linearized theory. In this type of theory,
the generated gravitational field produced by the source is weak, and as a result, we can
expand over a flat spacetime. In a two-body system with reduced mass y and total mass m,
we get,

1 1

1 G % v 2Gm Rs
Biin = —2U = Sy = 2 & 2, 10 20 _ 1 169
F 2 = Qhm, 2 2rc? 2r (169)
When the gravity field is weak, we get:
R 2
e S (170)
r c c

This means that in a weak gravity field, the velocities that concern a self-gravitating system
are small. Because of 2 < 1, we can expand in powers of . Neutron Stars (NS), Black Holes
(BH), or compact binaries are self-gravitating systems, but because of spherical symmetry,
we cannot consider a flat spacetime expansion beyond the lowest order.

3.1 Energy and power spectra equations for arbitrary systems

This subsection is analysed in a methodical way in Sean Carroll’s book [16]. The Fourier

transform used in points is similar to Weinberg’s [17], the main difference is that we transform

with respect to ‘21—:, while Weinberg uses just dw. The spatial component transform is the

same in both analysis.
In Chapter 1, we wrote down the linearised field equations as

167G

—T, (171)

Ohy, = -

c
This set of differential equations can be solved with Green’s functions G(x — z’) as follows:
First, we must remember the generalized Green’s function for the O operator, as given in
172:

0,G(z — ') = 6W(z — 2) (172)

and implement it in equation 171, as following:

167G 167G

— 0.G(x—2')=— s (x—2a) =

_ '16;G‘DIG(x — 2T (2') = — — 16071G5(x — )T (2') =

/d4x’ [(_ 1671G) 0.G(z — x’)TW(x/)] _ 16ZG /d4x/5(1: T = (173)

c c
[ 167G 167G
O, |—
A

[ @t =it = 250, )

ct

After some algebra is done, we can compare the result of equation 173 with equation 171

and obtain:
167G

hw(T) = — /d%'G(m —a')T,,(2') (174)

ct
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Thus, the generic solution to equation 172 is given as:

G(Z,t) = _LM (175)
’ e |7
where in .
Y (=)
Glx — ') = G(T,t; 2/, t) = — - (176)
dme|z — x|

is used in the retarded time solution. The advanced time solution eliminates causality
between events. The retarded and advanced time is defined as:

|x—x| |:v—x|

tretEt_ &tadv5t+

C C

(177)

Equation 176 when substituted in equation 173 yields:

Bw(x):wZG/d%’T J(2) 1 5[ _:E—x]

|7 —g;’| 4dme c

J 4G/d3’/dt’ xt)é[t—t/—|x_$|] (178)
C g—x’ C

] e L E—a) 1
it G [0, (20- ) 1y

with spatial components

_ 4G - — 1
hij(z) = /d3 2Ty <$’>t— e |) —— (179)

o

C4

Outside the source, we can project equation 177 in the TT-gauge, using the projection
operator (defined in Chapter 1)

hiit = Ngjrihi (180)
The equations above produce:
) AG ) 4>’ Z—a
h;ro = Aij,kl(n)hkl = C_4Aij,k:l(n) ’ﬁ ‘Tkl ( yU— %) (181)
Denoting |Z — /| = R we get
AG 3 - - 7—a
hij: = R 4A¢j,kz(n)/d3I’Tkl (x’,t _ - |> (182)
If we expand for R > r we get
R=|f—a|=|7—a|-vR o (183)



where

(VR)i = 0\ |7 — 2| = —0;(|7 — 2']")
24/ % — 2’2
- 1 R, 184
(GR): = g2l 1,007 — &, = "Do.R, e
(GR) =5 =hi=n
Thus, from equation 183 and equation 184 we get:
R=R—n-a (185)
and from equation 182:
4G - r 1 -
it = i ——Nij (7 )/d3 "Th (x’,t— -+ Enas’) (186)

Next, we can transform by Fourier the energy-momentum tensor Ty,(t, ) as following:
- d'k = (wt—k®
Tkl(t,ﬂf) = / (2 )4Tkl(w k’) ) (187)
And substitute in equation 186:
— 4G d4 —i(w T
hE;T(t,I) Re A z] kl /d3 / Tkl(w /{7) (wt= k)

(27
4 -
hy; = G A n) / (d—kT w, k) /d3x’e( —iw(t — C))ei(k_%n)

4G [ Bk Ak’ - it - wh

hijt = Re 4Aij,kl(n)/ (%)3/ 5 Lia(w, ke~ =2 (27)25) () — ) (188)
4G dw - n ; R

TT A —tw(t—=

h R 4Aij7kl(n)/2—mTkl(w,wz)e ( C)

4G n Ciw(i— R
hTT e 4Az]kl( )/dwTkl( C) e (t Ij)

In general, around value ws, Ty takes large values, and the characteristic speed of move-
ment of mass across the source is u ~ w,. Equation 188 applies for both relativistic and
non-relativistic systems, as long as the weak-field approximation applies and we are at large
R away from the source. In Chapter 1, we have proved the following:

| dE & e
SIS = 2+ R ke o= 1620/ dt(h2 + h2)

Using the set of Eqgs in 3.1, we can produce an expression for the total radiated energy per
solid angle:

400
dt hTThTT / dth T p LT 1
167TG / 327TG A (189)
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Since dA = R?dQ we get
A~ 5G| e 1)
Inserting equation 188 to equation 190 we get:

dE  R*¢® [* 4G 0 dw - n (i
a5 _ [ 1€ po [0 () ele-2)]
dQ 327TG/ |:RC5 ]’kl/_ 27 M (w,wc) ¢ ]

o0

4G oo qu’ 7 ! (1- 1)
{ﬁAij,pT /;Oo gT (UJ w C) e ¢ =
dF G +oo T duw [T dw ~ n\ ~ n
= /_ A / / ( C) T, <w,w/2).

—i(wtw’)t z% (wHw')t

e
400 +oo ~ o +oo
dE = G kl/ dw/ d& T (w,w—) Ty (w’,w'ﬁ) eig(“’”')ww’/ dte i wre)t
c c _

dE 9 ny\ ~ n
- 47r207A” Kl /_oo dww TZ] < w,—wz) T (w,wz)

dE G 0 - ny\ = n
0= 1 7Am Kl - dww2TU (—w, —wz) T (w,wz) -
G foo i il
— WAU’M dwszij ( w, wc) Tkl < E)
0
dE G too A A
d_Q 4 D) 7AU kl( )/0 dww ﬂj ( ) Tk:l <—U}, —wz)

Since T (—w, —w%) =T (w,w%) we get:

dE G [t - A i

d_Q = m/ du)Aij7kl(TL)w2T%j (U),U)E> Tk;l (w,wz) (191)
dE G T

30 = Nija (R)W* T T, (192)

dE Gw?

Now, equation 193 produces the energy spectrum of GWs. A typical source radiates for
a characteristic time 4A;. Ideally, the monochromatic source radiates for A; — +oo and
E,.q — +00. We define the instantaneously radiated power for a source that radiates at wy,
Tij(w, k) is written as

~ -

Ty (w, k) = 045(w, k)26 (w — wp) (194)
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and Eq. 193 yield:

dF G N e

E = WAij’kl(n)/ dww 9” < ,w ) 6 ( > ( )25(11) - wo)é(w - wo)

dE  Gw?

dQ WCOAZ] kl( )92J (wo,wg ) le ( ) U) wo (195)
de Guw? . N n

dQ s OAZ] kl(n)TGU (’wo,wo ) le < )

The power radiated in an instant is given as:

dP 1dE Gu] . ﬁ ﬁ
0" Tdo FAU,M(”)% <W07woz) Or (W WZ) (196)

The total radiated power is:

dp Guw? ) AW it
P = /de = dQ Aij,kl(n)ﬁzj ((UO,WOE> le (w,wz> (197)

Next, we can substitute equation 29, which gives the analytic formula of A;; (1) as:

1

. 1
Aijra(R) = 0w — §5ij5kz — njndik — Ningdj + énknléij + §ninj6kl — T
Take the following:
Gw% * * *
P = dQ 7r_c7 QWQW 9,,9% — njnlgwﬁzl ninkﬁijﬁkj

1 1 1
—+ énknl@ﬂ,’;l + 571,71]9”9;;,9 — §nmjnknl«9ij«9;;l]
1 4 4
/ aq (16,7 — L6u?) - / a0 (g, — Ty,
2 3 3
2 2 2
0+ 5 10) ~ [ Q0T 0l + 107 + |9ij|2>]
47 A7 1 8 2w
912 1 - — 9122 _____ -
|J|(+3 15)+||(2 3 15)]

Guw? 167 1
P = 01 12 2P 12
wc’ ( + 15 ) [|0U| 2’9%‘ ]

3.1.1 Low-velocity expansion

2
Guw;

= P = -
Yy

(198)

2
Gw;

p=_%
el

dQ2

Since GW are a form of waves, general relativity can be treated as a field theory, it is useful
to apply techniques from electromagnetism in GW. The first example is the low-velocity
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expansion; here, we use [19] and [25]. Another example computed based on the above is
the GW amplitude and the angular distribution. These two can be employed by Weinberg’s
Chapter 10 [17].

The equations for radiation generation are simplified when typical velocities inside the
source are small compared to the speed of light, c. Consider a source of size d and the typical
frequency of motion w;, inside the source, then the typical velocities u will be of order:

u ~ wsd (199)

Radiational frequency w is of order w,, except some factors, so we get w ~ ws, and the
reduced wavelength will be:

c 2me A c c
f w = 2r w U ( )

In a non-relativistic system, v < ¢ = £ > 1 and equation 200 shows that X > d,
meaning that the reduced wavelengths A generated by a non-relativistic source are much
bigger than the size of the system. Since X > d, we do not need to know in full detail the
internal motion of the source, but only the course features. This means that the radiation

emitted is governed by the lowest multipole moments. We begin with equation 186 stated,

below: .
4G - - R n-a
ﬁ} h;I;T = Az‘j,kl(ﬁ) /dSZL‘/Tkl (l‘/,t — z + )

Rct c
and Fourier transform 7T}; as:

wo o (5, R A 'k IR
— T / t— —_ _— — T k c c
ki (:U, . + . > / 27)] w(w, ke

For a non-relativistic source, Ty(w, E) peaks around w, typical frequency with w,d < c.
Equation’s 186 integral is restricted to |Z| < d, since outside the source Ty (%, t,e;) = 0. This
means that the dominant contribution to hiTjT comes from frequencies w, such that

wed

c

' -n =<

<1 (201)

@)

4 el )} can be expanded as following:
. . A iw(h - ! 1 2 oo .
eiw(t= ) gmiwtE _ miw(t=7) [1 — —w)(n *) + 3 (—ig) ninat i’ 4+ O[(n - :1:’)3]] (202)
c
Equivalently we can Taylor expand the energy-momentum tensor 7}, (f’ Jt— }—j + ”qu/> around

%fz 1 < 1 as following:

~ =

- R n-a R - nix? g ining
T (l”,t — z + > ~ T <t - —, l’/> + a()Tkl + Tangl + 0(83)

C C C
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The momenta of the stress tensor T% (spatial components) are defined in the following way:

SU(t) = / /T (t, 2 (203)

Siak(t) = /d?’m’:p kT (t, 27) (204)

Skl = /d?’x'x 2T (t, 2 (205)

Note commas separate spatial ij given in T from k, ki, klm, ... given by V| . They

do not denote derivatives.The S%-(t) tensors are symmetric in 7 <+ j and k <> [,..., but

not in ¢ +» k and j «<» k. Inserting the previous results in equation 186 and after applying
some algebra, we get the following results:

4G R - R - 1 N
= =hy' = Re — 5 Nijr(n) /dgm/ [T (t - ZJ’) + EﬂflmnmaoTkz

. (206)
~man 92
+ 2—6293 "M R Ty .
4G 1A ~klom 1 ~man Qklmn
= hi" = . —Nijaa (R)[Sa(t )+Enm5kl’ + 5" SHmn] (207)
Dimensional analysis in equation 207 tells us the following:

171 .. 1 m 1 my 1 u
- [Skhm] - [anskle } - {Ews’fl] 2] = ~wd [$M] = 2[s¥] (208)
1"klmn 2 Gl [m n d® 0y om Wd® gy WP
gs’ = [as}[ k:gpus]— = [SH] = CJS] (209)

So, Eqgs. 208 and 209 give an expansion of the typical velocity of the source, and equation
208 is the first correction of O(%) order. Next, we can define the momenta if 7% and T as
follows. For 5T we get:

1
M= /d3 T%(t, x), (210)
|
M == [ @zT(t,x)a’ (211)
c
. 1
M"Y = APz T(t,x) 2'27, (212)
M+ = /d3 T, x) 2'2xla ... (213)
C
For %TOi
1 /d xT%(t,x) (214)
= /d o TV (t,x) 27, (215)
piik = / P TY(t,x) viz". ... (216)
C
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Conservation of energy-momentum tensor is given as 9,7 =0 forv =0: 9,7 =0 =

OyT% = —9;T™ The time derivative of M is given as:

1 .
—OM = OoM = O,M = cOyM = cM = /d3x80T00 =
C

cM = — / Bro,T" = — / dS, 7% =0
v a’u

M=0

(217)

Integration in the second line is on a volume V bigger than the sources with 7""|5, = 0.

Similarly, we can find:
M = /dsxxi(?OTOO = —/dexiajTOj
M = /d?’xTOi =cP'
and . .. . . ..
MY = pbi 4 pii
Mgk — pidk 4 piki | phii
On the other hand, the time derivative of Eqs. 216 yields:

pP= %/d%@OTOi =0
P =g
piik — giik | giki
Combining Eqs. 219 and 221 and remembering that S¥ is symmetric as
S 4§ = 951

We get:

NF = i 4 pid = 59 4 i = 21 =
SU — Z )Y
2
And from EQ. 220:
Nidk — piik y piki o pkij _
Sij,k +Sik’,j +Sjk,i + Sji,k +Ski,j +Skj,i
= 9§k 4 Gikd 4 Giki)

i
From the above Eqs:

1

vigh _ 2 FOR Gk Gk
S —§M — S — 8

1 .-.ijk
6
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= I 4 T80 4 25T 4 297k — ik — gk

(218)

(219)
(220)

(221)

(222)
(223)

(224)

(225)



. 1 .04 1 ... . T
§* = < Ty R R (226)

The derivatives of M, P, M = 0 and Pl = 0, give out the mass and total momentum
conservation for the source. Since M% = P4 + Pt = §% 4 §it = (), we get the conservation
of angular momentum for the source.

3.1.2 Amplitude and angular distribution

In eq. 207 we have found the expansion of h;gT. When substituted Eq. 224 to Eq. 207 yields
for the leading term O(%) the following:

ﬁ 4G )
hiTjT(t, 7) m/\” () SH (1) =
quad C
4G 1 . R
TT —> ~ kl
h/ij (t,x‘) o = @Aw’kl(n)aM (t — z) = (227)
2G . R
TT(} = B o
hij (1, %) o ~ ReA Aijra(n) M (t — Z)

M;; tensor, when under rotation transformation, can be decomposed as any symmetric ten-
sor:

1 1
MHF = MM — g(skan» - gékan- (228)
The first part M* — £65M;; is traceless, since:
e L e L
3 3
and by construction is a spin-2 tensor.

The second part %OMMM is the trace part, and it is a scalar. We denote by

1
2

% (229)

p

Q

the density and at lowest order in ¢ expansion it gives the mass density. Also, we can rewrite
the quadrupole moment as:

.. . 1 ..
QY = MY — 269 My = (230)

. 1 o 1 ...
= Q7 =— /deTOO(t,f)x’x] - 55” /d?’a:TOOkak
c

c2

- o 1 ...
QY = /d%p(t,f) [mlxj — gé”RQ] (231)
And after applying twice the time derivative, we get:

- - 1 ... .
QY = MY — 269 My (232)
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and from Eq. 228:
MY = MY — %5“]\/[;61{ + %WMM =
MY = QY + éfSiijk = (233)

And finally, Eq. 227 is written as:

2G .. R
hET = — Njim()MF [t — = 234
1] quad RC4 J:kl (TL) c ( )
2G - R
LT = —A;iw(P t—= 235
5| T R (1) Qra ( . ) (235)
2G . R
hET = QM (t—= 2
v quad RC4 Y < c ) ( 36)

We can produce an expression for the angular distribution of the quadrupole term of
radiation as follows. We first consider the waveform emitted in an arbitrary direction n, which
can be obtained by substituting the explicit expression of A;;; in equation 236. Because of
the strenuous algebra, we may use an alternative way. We consider a GW traveling along
the z-axis, so Z = n. The projector, in this case, Pj;, is an operator that projects everything
included on the (z,y) plane.

An arbitrary 3 x 3 matrix A;; will be written as:

A A Agg
Aij = A21 A22 A23 (237)
Azi Az Ass
The operator A;ji; when applied on this matrix yields:
1
NijrAij = |:Pikpjl - §ijkl] A (238)

1
= Nijudi; = PiwAr Py — 5P Pa A

1
Since n = Z, the projector in matrix form will be:
1 00
P,={0 10 (240)
00 0/ .
ij
1 00 Ay A Agg 1 00
000/, \An An An/,\0 0 0/,



A A Agg 1 00
= (PAP)Z] - A21 AQQ A23 O 1 O
0 0 0/,\0 00/,
i j
A A 0
(PAP)Z] - A21 AQQ O
0 0 0/ .
ij
1 00 A A A
and PA = 010 A21 AQQ A23
0 0 0/ \As1 Az Ass
A A A
and PA = | Ay Agy  Ass
0 0 0
= tI‘(PA) = All + A22
Ay A 0 1 A+ Ag 0 0
NijwAw = | Aar Ap 0| — 3 0 A+ A O
0 0 0/ . 0 0 0/ .
] v
(A1 — Agp)/2 A 0
Nij A = Ay —(A;1 —Axn)/2 0
0 0 0/ ..
ij
So when zZ =n and Ay = Mkl we get:
o (Oha-dmy dhe 0
Aij My = My —(My — M3y)/2 0
0 0 0

ij

Based on equation 243, we can rewrite it in equation 244 as:

2 (M"n - M22)/2 . M'u._ 0

hi' = 7 My, —(Myy — My)/2 0
C

quad 0 O 0

ij

(241)

(242)

(243)

(244)

And when compared to the equation that gives the generic formula of hiTjT (see Chapter 1),

we get
. e (Myy — M) /2 My 0 hy hye O
hij - @ M21 _(Mll — MQQ)/Q 0 - hx —h+ 0
quad 0 0 0/ . o 0 0/
1] 1]
1G /.-
th - ;6—4 (Mll - M22> (245)
2G -
hy =—-——M 24
ret (246)



P

Figure 2: The relation between the (z,9, 2) frame and the (@, 0,7n) frame. The vector @ is
in the (Z,7) plane, while v points downward, with respect to the (z,y) plane, adapted by
Maggiore’s book, Gravitational Waves [15].

with sz = M,j (t — %) computed on retarded time. To generalize these results, we
must compute the amplitude in a generic direction n. We introduce two more unitary
vectors ¥ & u, orthogonal to n and to each other, so @ X © = n. These vectors live on a new
frame (2',y'2’) on which the following are valid:

We take @ to be on the (z,y) plane. Eqs. 243 and 244 are written in the primed frame
as follows, and the components of the second mass moment are

R q . .
h+(t, n) = Q(M/ll — M’gg) (247)
R 2G o
hx(t,n) = @M 12 (248)

Here M;; and M;; are related via the 7; and n'; components. On (z,y, z) frame we can
write 7 as 7; = (0,0, 1), when on (2/,1/,2') we have n/; = (sin 6 sin ¢, sin  cos ¢, cos §) and
cos¢p sing 0 1 0 0
Rjj=|—sing cos¢ 0| [0 cosf sind (249)
0 0 1 0 —sinf cosf

The M;; tensor components will transform under the following
M; = RixRy My = (M');; = (R"MR);; (250)

and the components h(t,0,¢) and hy(t,0, ¢) will be:

G or. . .
hy(t,0,¢) =Dt My (cos? ¢ — sin? ¢ cos? 0) + May(sin® ¢ — cos® ¢ cos® 0) — Mz sin? §

— M, sin 2¢(1 + cos? ¢) + M3 sin ¢ sin 20 + Moz cos ¢ sin 20
(251)
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QG[

hy(t,0,¢) = (M11 — M22) sin 2¢) cos 0 + 2M5 cos 2¢ cos 0

(252)
— 2M5 cos ¢psin ) — 2Myg sin ¢hsin @

Once M;; is given by Eqgs. 251 and 252, it provides the angular distribution of quadrupole
radiation. It becomes evident that the leading term in the multipole expansion is the mass
quadrupole. There are no monopole or dipole terms because M and P’ can be set to zero
by appropriately shifting the coordinate system.

Radiated energy

Delving into the radiated energy and angular momentum by a GW, we aimed to find and

produce expressions of it in various scientific articles and reports. The main route followed
is in [15], also in [20], [44],|45],[46],[47] and [48] We begin with the following equation

dE Ar?

ar | TTjTT
dt 327G dQ<h” h” )

And apply the derivative on solid angle d€2, so we have:

dE A R? C

— =P = dQ(h-rhlt

dt 327G / < i i)
R AR

Bq. 236 AP *R* ([ 2G S
A2 ~ 327G \ R <Qw Qi ) (253)
dP AG*c T =TT
= 30 = Jrga tun((Qy Q)
dr G TT o TT
TN = )
dQ quad 8med Jkl( )(Qz] Qz] >
The double brackets (Q ;ST QZT> denote the temporal average over several periods of GWs

and the derivative Q is evaluated at the retarded time ¢ — % The dependence of n on

solid angles, lies only on A;; (1), so we can perform an integration with respect to dQ2 as

following:
dP G TT =TT
Pwa = [ dQ— = dQA; 254
quad / do quad 87TC5/ Jkl( )<ng le > ( 5 )
We have proved in subsection 2.1 that
. 21
/dWAij,kl(n> =15 (118,051 — 40§61 + 00 ) (255)
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So, combining Eqs. 254 and 255 we get:

G2n T o= TT
quad — oy 6515 [1151k5]l 451]5kl + 6zl5]k] <Q7,] le >
G
= Ppuad = o @@ @ (256)
“TT +~*TT
:>Pquad <Q2] Qz] >
Inserting Eq. 232 we get:
G . 1. ..
Pquad 5¢ 5< M 5zyMkk Mj - §5iijk )
G 1, o (257)
G 1 ..
Pquad 5c 5<M M g(Mkk)2>

In Astrophysics, the total radiated power as produced in equation 233 above, is called

the total gravitational luminosity L of

the source. Based on equation 253, this result can be

expressed in terms of the radiated energy as:

dE
dtdQ
dE

7 qd0
dE
7w

quad

quad

quad

_ E("TT",T,T)
327G Y
G
% zgkl( )(QfZTQ’IflT> (258)
G
= 87TC5/thz]kl( )<Q$TQEZT>

Here, it is useful to insert the Fourier transform of @);;, its third derivative by time, and

rewrite the radiated energy as follows:
Qij(w)
=Qu(t) =

=Qy(t) =

-/

T duw ~

QZ]( ) —iwt
oo dw ~ d3 —iwt
/- ﬁ@w)@(e )

T dw ~

[

[e.e]
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" - do o dw 3 37 n '3 . ’

A2 g i)t
:>dQ quad 8mc? / / / A (M){Qij(w)w” Qi (W)w e )

dFE +o0 qu 400 d(,u 3 134 ) 400 ' /

JR— = 7, 1 dt *l(erw )t
:>dQ quad 87rc5/ / el (T )QJ( Jw w le(w)/_oo e

dE T dw ~ ~

- _ Ap (i Z o
~ a0 quad 87rc5 i (7 )/_OO QJ( ) Qi (—w)w
3, #) /+OO dw w0 Qi (w)Qua(~w) +/0 dw wOQ;j(w)Qp(—w)

dQ quad - 16725 ig,kl ; ij . - y ;

dE G 0 ) i

- — —AZ o d 6 i %
a0 quad ST ]’kl(n)/o ww Qi (w)Qpy (w)

(259)

Finally, the total radiated energy is given as:

dE G o ~ ~
E uad — —dQ - dQAZ 1 d 6 i x
wni= [ G0 =g [ A0 [ 0@y
G 27 > 6, )k
:>Equad S 2.5 515 (1151k5 — 45ij5kl + 5i15jk) ; dww Qiijl ( )
260
G e 6 N ) AN )*
= Fquad = W/o dww [HQ@QU + QijQiji|

Bt = 55 [ o [605()Q} )

We suppose a monochromatic source, with radiating frequency wy > 0 and Qij(w) =
¢ij(2m)0(w — wp) and equation 259 will be for Eguaq = dr

dt quad
dE G
— — —A’L i 2 5 _ (5 .
dew'q 4 8 el ()w’ a5, (27%)0(w — wo)d(w — wo) "
e Guws .
dQdw quad ~ 4red Nij (1)@ g5 [2m0 (w — wp) 0 (w — wo)]
dF e A )
de(JJ |quad = —47TCO Aij7k'l (n)qquld(w — wo) (262)

In equation 262 T is the total infinite time interval and 4 denotes the instantaneous

dew
energy radiated by a monochromatic source.

dpP 1d<dE)_Gw8A

= dQdw |quad - T dt T Ageh i3,k (M) Qi3 g0 (W — wo) (263)

dww

In this study, the linear momentum radiated is :

dpi A, . .
— _ dQ hTT thT

dpr G e

= i = %5 dQQ 9'Qy
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Under ¥ — — reflection we get:

s/

dpi G e T oy AP
- _ " = 264
dt S /dQQm ( 8) Kl dt ( 6 )
dP
= 2
I 0 ( 65)

Thus, we have no loss of linear momentum in the quadrupole approximation.

Radiated angular momentum

The angular momentum radiated per unit time by gravitational waves can be determined
by substituting the expression for hL' in the quadrupole approximation into the general

formula for the rate of angular momentum loss. It is important to remember that the first
term in

d.J? 3
d‘i = 32(;G/r2d9< P S P

represents the contribution from the orbital angular momentum L; of the gravitational waves,
while the second term accounts for the contribution from the spin S; of the field configuration.
Separating these two terms using the additive property of integrals, we get:

dJ'  AR?
dt 327G

3}%2
167G

/ dQ< zklhTT kalhTT> / dQ< zklhTT kalthT>

Which, when compared to the time derivative of the total orbital contribution:

dJi dLi ds

— 2
@ @ @ (266)
Yields the following:
dL A R? .y
= 330 / AQ(e™ hgy "0 hy') (267)
st AR? .y
TR e / dQ(e™ I o' hLT) (268)

Eq. 267 represents the contribution of the orbital angular momentum of gravitational
waves (GWs), while equation 268 accounts for the contribution from the spin S* of the field
configuration. The orbital part of the equation 267 gives:

dLZ 03R2 ;
dt 327G / A e hgy w0 gy )
dL? BR2 e G
- — dQ zkl_Aa . kal )
dt quad 327TG <€ Re 4 b,cdl Re 4 bgthh>
dL? Gkl ) L ) A
dt T B / > [A“b’c‘i(nmab:gh(”)(chxkangH + Nabea(P)(Q g™ (0" Mt gn (7)) Qgn)
quad

(269)
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Furthermore, we demand

- 0Qun [ 2\ Qg 2.
Qg1 = <8xl) or (‘7) oft—1) o Con

N 8nm 8Aab7 h(ﬁ)
Fhabgh() = Gt g
R 1
aZAab,gh(n) = _;<anab,lg + ngAab,lf + naAlb,fg + nbAal,fg)
1

= Nabca(R)0 Nap gh () = —= (Mapca(7) fAabig + Nabea(R) g Nab 1)
r

Combining the three equations above, we take:

dL} Geikl e

dt - 8657'(' /dQ<chQfg> (Aab,cdnkanab,lg + Aab,cdnkngAab’fl)
quad

sz Gelkl .. .. dQ

dt - 80577<chQfg>/ A (Aab,cdnknff\ab,zg +Aab,cdnk”gAab,fl)
quad

dLZ Gezkl

dt "~ 8 [/ g Mot /_ACd " ng]
quad

dLi 2G

= Z <Qkana>
de quad L5e 5

Similarly, the spin part of equation 268 gives:

dSl C3R2 2G 2 - )
e dQ ikl Aa mnAa . .
dt quad 167TG / (RC4) k, l, d<anQ d>
ds’ G .
¢ ed) | AUk Aarc
dt 4 47TC5 <anQ d>/ k, lcd
qua
We write Aak,mnAal,cd = (PamPkn - §PakPmn)Aal,cd = PknAml,cd - §PmnAk:l,cd
Furthermore, multiplying equation 274 with €* we get:
1

ikl ikl ikl _ ikl
€ Aak,mnAal,cd =€ PknAml,cd - _]Dmn6 Akl,cd =€ PknAml,cd

2
Inserting equation 273 in equation 275 and after some really long algebra, we get:
ds? Gelkl . dQ2
dt < Q ancd> 4_PlnAmk cd
quad
ds? 4G ikl
I | e 5 € (Q Q)

(270)

(271)

(272)

(273)

(274)

(275)

(276)

(277)

Finally, the total angular momentum carried away by GWs in quadrupole order of expansion

can be expressed as: ‘
dJ’
dt

2G

= @le(@alQak)

quad
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3.2 Mass quadrupole and octupole radiation

The study and comprehension of mass quadrupole and octupole terms, as well as the current
quadrupole term of radiation, is studied thoroughly in a plethora of textbooks and articles.
We follow the logic of [15], but in order to completely understand the physics and to obtain
the full picture behind the expansion, we used [40], [41], [42]. These articles provided us
with details about the radiated energy and momentum as well. Furthermore, a physical
discussion of current quadrupole radiation is given in [43].

3.2.1 Review of the mass quadrupole term

In this section, we study the next-to-leading terms of the mass-term expansion, i.e., we
study the mass quadrupole and octupole terms. The mass quadrupole term is already been
described in the previous section and can be summarized in the following expressions:

e For the GW amplitude we have:

2G . R
TT/, = B N
hij <t7$) o = _RC4 Aij?kl(n)M <t — z)

e for the mass quadrupole tensor, we proved that:
kl KoL cu [T
M™ =M —35 mii—kg& Mz

e and

QY = /d?’xp(t,f) [xzx] - 55”}%2}

3.2.2 Mass octupole
The next expansion term of the GW amplitude in the T'T gauge reads as:

4G ) kL r
PRI = 2 A () S (t—-) (279)

Rcd 1

The term S¥™ is symmetric in k <> . From equation 226 we get:

Ghlm _ é]\/[klm n %(szm | plmk _ 2]5m,kz)
280)
4G ... klm 4G .. . .. (
h;[]‘-T — @Aij,klan + %Aij,klnm(Pkl’m + Pl,mk + Pm,kl)

okl ..
The AjjpnmM "isa symmetric term that produces mass octupole terms, while P*-m™ +

plmk - pmkl presents mixed symmetry terms, which produce the current quadrupole ex-
pansion terms. We denote with

1 /1. ! / /1.
ORI = MMM — (MM 4 g MMI  gtm MH) (281)
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The mass octupole term without traces. Since A;;z(7) is traceless and the trace part in
equation (230) vanishes, we can interchange:

2G AN AN Kklm,
i loct = 3 Miam (W) O () (282)

Similarly to the case of quadrupole radiation, the use of O™ is preferable from a group-
theoretical perspective, as it represents a pure spin-3 tensor.
Note that for quantities quadratic in hiTjT, such as the radiated energy, there is no inter-
ference between the mass quadrupole and mass octupole terms due to their differing parity.
Under a parity transformation, x — —x, the mass density remains a true scalar. Conse-
quently, the quadrupole remains invariant, while the octupole changes sign. For the same
reason, in electrodynamics, there is no interference between dipole and quadrupole radiation.

When comparing the mass quadrupole and mass octupole, we observe that while the con-
tribution to the gravitational wave (GW) amplitude from the mass quadrupole is dominant,
the mass octupole provides a smaller, higher-order correction.

Every time derivative carries a factor O(ws), so we get

“i =0 (” ) M = O(2) N (283)
c c c
This means that A/~ is smaller than M% by a factor of o(%).

The power emitted per unit solid angle is obtained by inserting equation 282 into Eq. 77
as follows:

dEoct R’ i TTj TT
P, = — dQURTTT
oAt 327TG/ oy )
R2:3 204 2 dLokim dronee
:>P0C = S0~ dQ | == Az o m—Azn—
' T 327G / (3Rc5) Wigartonm == Nigor —5—)
4G d40klm d40npo
= Poct = 3. 97TC7< a1 a1 > /dQAij,kZAijmpnonm (284)
G d*OFm gtQmee ds2
= Poct = 1807< d dr >/EAij,klAij,npnonm
G d40klm d40npo dQ
Poc = _Azn ollm
= Foo = 57 T >/47r grpltolt
Direct computation of f %Aijwnonm gives:
dQ2 ds? 1
/EAij,npnonm = /E(-P’LR-PJP - 5 ianp)nonm (285>
The power radiated due to the octupole moment is given by:
G d40ijk: d40mnp
P = W/dﬁ ninjnknmnnnp< i i > , (286)
where O is the mass octupole moment, and n;, nj, ... are components of the unit vector n

in spherical coordinates.
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The integral over the unit sphere for n;n;ngn,n,n, is evaluated using symmetry argu-
ments. The result is:

dQ 1 .
— NN MM My My = —— (00mOnyp + other permutations), (287)
4 105
where the permutations distribute contributions equally among all pairwise indices.
. . 40tk . .
The fourth time derivative of the mass octupole moment <2 is symmetric and trace-

dt*
free. Using these properties, the contraction:

d40ijk d40mnp
288
() 255
With the solid angle integral simplified to:
dn d40ijk d40mnp 1 d40ijk d40ijk
NN T, = (— ). 289
/47rnnjn’“n nnp< dtt dtt > 105< dtta > (289)
Substituting this result into the power expression:
G 1 /d*Oik q*Ov*
Po=—o— —(—————— 290
oY 105< det det > (200)
Simplifying the constants:
G d40ijk d40ijk
Pyt = : 291
‘ 18907< det det > (291)

3.2.3 Current quadrupole and loss in linear momentum

We saw that the sum of power emitted is given by the equation P*-m 4 plmk 4 pm.kl
similarly, it produces the current quadrupole term. Based on definition of P*™ we get:

. 1 . . .
phik = = /ddem(t, 7zl 2"
c

And the sum of Ps is:

Pk,lm + Pl,km . 2Pm,kl — 1/d3l’ [TOkl’lI’m + TOll'ka’m o 2T0mZL‘kZL‘q
&
= %/d?’x (2! (2T — 2*T7™) + 2F (2T — 2'T7)]  (292)
— %/d?)ﬂf [xljmk 4 xkjml}
where ]
§F = . (27T — 2*7%) (293)

is the angular density associated to the (j, k) plane. Based on 293 we define j! the [-th
component of the angular momentum density vector as:

jt=€7ju (294)
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and the first moment of angular momentum density as
JH = /d?’xjixj (295)

Inserting Eqgs. 293, 294 and 295 in 292 we get:
Pk,lm + Pl,mk . 2Rm,kl — Emkap,l + 6mlp(]p,k
Then equation PR plmk 4 pmol rites as:

TT 4G

ij |curr. quad. 3R 5/\”7 lnm( mkapl +€mlp+ Jp ks) (296)

The associated power to the current quadrupole is given again, as already done in the
mass quadrupole and octupole:

A R? B
Prrr. quad = e [ dQURITRIT
curr. quad 327TG/ < i 'Yij >

ASR2 [dQ [ 4G \? e g
P, quad — 8G / (3C5R) <Aij,klnmJP7l +€mlp JpAijp?“nq(quaJ T erra g Q>>

2G dQ m en 7l m "'m,k oa T AT ra ' 0,0
P, quad — @/ 47TAklornmnq<< kaP + € lpJ )(Eq J + " J )>

(297)
In performing contractions, we use the property that J%' is traceless. Specifically, this is
given by:
. o 1 )
J = /d3a: r'yt = —/d3a7 r' ek I T = (298)
c

where the sum over ¢ is implied.
Next, we compute the power radiated by the current quadrupole, which is expressed as:

16G
Pcurr quad — 45¢ TE T <\7W\7”> (3154)

where the traceless symmetric matrix J% is defined as:

iy i
sz% (299)

representing the symmetrization of the dipole moment of the angular momentum density.
Combining the contributions from the mass quadrupole, current quadrupole, and mass
octupole, the total power radiated is:

G, . 116 1 1 /d'O 'Oy vl
N o B 1J 7] 1) 1]
P=3 5<Q”Q”> 245 <‘7 ‘7> c2189< det - det >+O<C4):| (300)
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where Q;;, J%, and Oy, refer to the mass quadrupole, current quadrupole, and mass octupole
moments, respectively. Higher-order terms O(v?/c?) represent negligible corrections.

It is significant to note that the primary term responsible for the loss of linear momentum
arises from the interference between the quadrupole term and the next-to-leading term,
which is the octupole combined with the current quadrupole. We restate an expression of
the radiated power, which states that:

dPi
T / dQ hl o,h" (301)
The hl-TjT term can be expressed as follows:
TT _ (3T TT
h'ij - (hlj >quad + (hZJ )next—to—leading (302)
Where: 126 e
T _ ATT TT _ SNTT
(P auad = 777 Qis (15 ) pexttoteading = 75 %5

In the product hg;.Th{lT, we identify diagonal terms and interference terms between the
quadrupole and the next-leading term.
For the quadrupole contributions, the diagonal terms are proportional to:

TT ATT
[aarar (303)
While for the next-to-leading term, they are proportional to:
/ dQ (n,, SETSET (304)
The interference terms involve cross-products, such as:
/ dQ Q% n,, ST (305)

These integrals are non-zero in general and do not vanish due to their parity properties.
The angular integral will vanish if the product involves an odd number of factors n,,. Hence,
only products with an even number of such factors contribute to the integration.

For a deeper insight, the projection Z-TjT onto the transverse-traceless space involves
the Lamb shift tensor, ensuring the evenness of the contributions. Furthermore, since the
derivative operator 0y acts to increase or decrease the even number of factors n,,, the lead-
ing quadrupole and interference terms remain significant in determining the loss of linear

momentum.

3.3 Application on different examples

In the next three sections, we study three useful examples on quadrupole and octupole
radiation. All of these can be found in Maggiore’s Book [15], in Section 3.6.

The first part includes the quadrupole radiation produced by an oscillating mass, whereas
the second and third paragraphs include the expression of radiation for a mass in circular
orbit in the mass quadrupole and octupole order of multipole. expansion and the current
octupole term of this system.
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3.3.1 Quadrupole Radiation from an Oscillating Mass

Computation of the quadrupole gravitational radiation emitted by a non-relativistic system
with a degree of freedom 2((¢) that performs harmonic oscillations along the z-axis, described
by zo(t) = acos(wst), where wy < ¢. Computations on radiation emission consist only of
closed systems, and no external forces exist. We have a spring with a rest length of zero that
connects two masses.

The mass density is given by p(t,x) = pd(x)0(y)o(z —20(t)), where u is the reduced mass.
The second mass moment, as produced in equation 210

M — 612 / B Tt 7) aizd — / & plt, 7) ')
o MY = / & 13(2) 6(y) [z — =o(t)] 2'a’
oM — / dz 5(z) / dy 3(y) / dz 0]z — 2o(t)] pa'a’

= p0y=0 MY = /dz,uz2 §lz — 20(1)] 6% 672

(306)

= M"Y = p22(t) 6% 67
5 1+ cos(2w;t)

i3 <43
5 0o

= MY = pa
Substituting into the quadrupole formula yields the plus-polarized wave component:

a .
hy(t;0,¢) = —@Mgg sin® 0 (307)

Substituting into the quadrupole formula yields the cross-polarized wave component:

hy(t;0,¢) = @[(Mu — Mas) sin 2¢ cos 0 + 2Mi5 cos 2¢ cos  — 2M;3 cos ¢ sin @
+ 2Moy sin ¢ sin 0] (308)
h(t:0,6) = 0
Eqgs. 306, 307 and 308 yield:
M9 = d—2[ a21(1 + cos 2wt )" 67%)
—ae ) ’
2
i AT i d .
MY = —§%§° —[-2 2wt
= i dt[ ws sin 2wot] (309)
2
=M = —%6i35j3(2w5)2 cos 2wgt
=MV = —21a%w263 67 cos 2w,t
eq. G .
eq. 307 222 1 (4,0, ¢) = — (2ua’w?) M3 (310)

Rct
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Finally, we have:

2 2,2
hy(t;0,0) = % cos 2wt sin” 0 (311)
c

hy(t:0,6) = 0 (312)

So we have a monochromatic radiation at a frequency w = 2w, with a pure (4)-polarisation.
The angular distribution reflects the cylindrical symmetry of the source, and therefore it is
independent of ¢ with a maximum at ¢ = 7. Along the z-axis, radiation vanishes, so only
components transverse to the line-of-sight contribute to Gw’s production. We denoted this
polarization as plus because of our choice of (4, v) axes. In our definition (@, ) are obtained
from (&, ¢) applying the rotation matrix R as given in equation 249:

cos¢p sing 0 1 0 0
Rij = | —sing cos¢ 0 0 cos¢ sing
0 0 1 0 —sing cos¢0
So for a direction along © where 6 = 7 we get © = —Z, while @ is the intersection of this

transverse plane with the original (z,¢) plane. If we rotate the (u,0) axes by 45°, we could
call this polarization a purely cross one. For a generic 1) angle, we would have a mixture of
plus and cross-polarisation. The radiated power in terms of A, hy is:

dpP R

E{quad 167 G<h2 +h2> (313)
R2C3 o R234G,U,24 4 A 0
d_Q|quad BRI h A el R
G,UQ 4 6
dQ|quad T * sin* 0(sin® 2w,t) (314)
T
J2 24,6
d Gu—smA‘Q

d_Q quad 2e071
If we use equation 310 in equation 313 we get:

dP G ) ...33 G ...33
E‘quad - W(_<87’n28>)<M > - _@<M > 315
4P G s (315)
E’quad - 87cd A33733(n) <M33>
whereA —1(1— 22—11— 2«92—1'46’ 316
33,33 — 5 n3) = 2( COS ) = 28271 ( )
and integrating equation 314 over a solid angle we get:
dP G 2 4 6 2
P|quad /dQ | ,LL—/ do Sin29/ do sin? 6
d( 'quad 2 ), 0 (317)
16 GPJ2 4 6
Plogag = —————=
“Plawa = 573
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The total energy radiated over a period T = Z—’r is:

s

dt—
15 15 b Wy

327G ,a’w] 327G <U>5
565" "4 T 156 a

T 2.4, .6 2.4, .5
16 G 16G 2
(Bua)r = [ i S0 - O
0 (318)

:><Equad>T = c

where v = aw, is the source’s maximum speed.
. . . 5
So in a complete cycle, the radiated energy is suppressed by a factor (%) .

3.3.2 Quadrupole Radiation from a Mass in Circular Orbit

We analyze the gravitational wave emission from a binary system with masses m; and ms in
a circular orbit. For a given orbital motion and negligible back reaction and beyond lowest
order at 7, we cannot keep a flat spacetime for our description. For the moment we choose
a trajectory on the (x,y, z) frame, so the orbit lies on (x,y) described by:

2o(t) = Rcos(wyt + g> (319)
yo(t) = Rsin(w,t + g) (320)
2(t) =0 (321)

In the CM frame, the second mass moment is:
MY = pay(t)xh(t)

Thus, the second moments are:

RQ
M"Y = pxirl = uR? cos? (wst + Z) =h5 (1 — cos (2wst))

2
M"Y = M?" = palad = nR*cos (wst + g) sin <w8t + g)
1 1
= —pR*sin <2w5t + E) = ——uR?sin (2w,t)
2 2 2
M?* = pzlzy = pR?sin® (wst + g) = uR*[1 — cos® (wst + g)]
LR 1 + cos (2wst)
2
For the M'?, M?, M* we have that ~ x§ = zo(t) = 0 for p = 72,
The second time derivative yields:
o 0is 2 _ 2, 2
My, = T(Qws) cos(2wst) = 2puRw? cos(2wst) (322)
May = —My; (323)
My = 2pR%*w? sin(2w,t) (324)
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Substituting to equation 251 for the plus-component we get:

hy(t;0,¢) = 2uR? f%[cosZ $(1 4 cos? ) — sin 2¢(1 + cos? 6)]
rc

+ [sin 2¢(1 + cos® §)] sin 2w,t + cos 2wt
4G R2w,pu (325)

= h(t;0,¢) = oo (1 4 cos® 0)[cos 2¢ cos 2wt + sin 2¢ sin 2wt]
14 2R?1 20
= hy(t;0,0) = — G'IZL:SR i CQOS cos(2wgt + 2¢)

While for the cross component of the radiation, as given in equation 252, is:

2
hy(t;0,¢) = —% cos 2¢ cos 8—G2uR2w2 sin 2w, + cos 2¢ cos
re (326)

14Guw? R?
L cos 0 sin (2wt + 2¢)
ct

hy(t;6,0) =

In this example, we have a dependence on ¢ since the system is not invariant under rotation
of the Z axis. The orbit edge is for § = i angle at i = 5. We get for ¢ from Eqs. 325 and 326:

14Guw?R? (1 + cos?i

hy(t) = T 5 cos 2wst (327)
14Guw?R?

hy(t) = _,u—c:s cos i sin 2wt (328)
roc

The angular distribution of the radiated power in quadrupole approximation, given in
equation 253, is:

dP 2 3
— h2 h?
dQ ‘quad 167 G< R
‘ 2GRS | (14 cos20’ o2 (329)
dQ quad wed 2 o8

Integrating over all angles gives the total power:

292G 112 R4 7r 1 29\ 2
Plows = [ St = 25 o [ an (1250 ot
e 0 (330)

32 GpP R'w?

P | quad — 05

Finally, the total energy radiated by a GW reads:

322G, 2T
Eo = ———RwT—
(Eluaa)7 5 Wy
64m G
<Equad>T 5 CBI[;% <W5R5) (331)

647G 1
<Equad>T - 5 E <C_5)
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3.3.3 Mass Octupole and Current Quadrupole Radiation from a mass in cir-
cular motion

Computation of mass octupole and current quadrupole radiation generated by a binary
system, with the center of mass (CM) coordinate to be described by a circular trajectory.
We want to compute the radiation emitted from the star in the observer’s direction. We
consider the observer along the Z axis. The equations of orbit in this frame are:

zo(t) = R coswst (332)
Yo(t) = Rcosisinwgt (333)
2p(t) = Rsinisinwst (334)

We can set the observer along Z and compute the radiation emitted along n = (0,0, 1).
Equation 282 provides a useful formula for the mass octupole radiation. Since n = (0,0,1)
we get n, = nz # 0= m = 3. So equation 282 can be written as:
2G s kl3
L= ——Agju()M (335)

i loct 3657’

.. kI3
Because M contracts with A;;x, when £k = 3 or [ = 3 the corresponding components

...123 ...213
vanishes. So we are left with M and M  component to calculate. Since we have fixed
the third index, we can write

Vi = M) = g ()2 (0)2(8)

MY = pal(t)zb(t)2(t) = pR? cos® wyt R sin i sin w,t
--.123

M = MRZ €08 7 sin w,t cos wt R sin 7 sin w;t
M =M

:++223 2 2. . 92 e e s

M = puR” cos”isin” wgt R sin ¢ sin wgt

or in matrix form

M9 — uR3sinisinwst [ 0% @t €08 ¢ SIN Wyt COS Wyt (336)
COS 7 SIn wyt cos wgt €cos“ 1 81n” wgt
When equation 336 is contracted to A*¥ we get:
ARLETDHS RS i st 2 (cos? wyt — cos? i sin® w,t) COs 1 Sin w;t cos wt Y
s €08 7 Sin wgt cos wyt 1(cos? wyt — cos? i sin® wyt)
(337)
In Eq. 337, after applying three times the derivative concerning time, we get:
1 GuR3w?
hiloct = —% sini[(3cos?i — 1) coswst — 27(1 + cos? i) cos(3w,t)] (338)
r c
1 GuR3w?
B loct = ;% sin 2i[sin wyt — 27 sin 3w,l] (339)
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The current quadrupole radiation is the sum of h;l;'T|oct + h;l;-T|cq. Or in mathematical
form, as given in equation 204:

SUR(p) = / &2/ T (t, ) = pakiyid (340)

Along the z-axis, the radiation is, as mentioned, the sum, or in mathematical form, we get:

2G o eekl3 N .
hig locteq = EAU,M(”)(M + M3 Jpl 4 p gk
TT 4G “kil,3 (341)
= hij locttea = - Niju()S™
Similarly to mass octupole radiation, we get:
G R3 3
(Pt )octeq = % sini[(cos®i — 3) coswst — 3(1 + cos®i) cos 3w,t] (342)
re
G R3 3
(B )octsoq = % sin 2i[sin wyt — 3 sin 3w,t] (343)
re

The difference between hy y|oct+cq — Pt x |oct yields the current quadrupole amplitude as:

GuR3w?

hileg = T&S sini[(3cos®i — 17) coswgt + 9(1 + cos?i) cos 3wst] (344)
G RS 3
Bleq = % sin 4[5 sin wgt + 9 sin 3w,t] (345)

So, the current quadrupole contribution is a sum of terms with frequencies w, and 3w, The
total radiated power in the mixed current quadrupole and octupole term is given in:

dPoct+cq 7“263 72 12
. W2 4k
dQ 167rG< +Hh) =
208 [ 2
Pocticq = ——= dqﬁ/ disini(h? + h3)
r’cd [t P2 72
Pocticq = el /_1 dcosi(hy + h3)
424 G2
Poc cq — __R6 8
trea T g5 T 0 Ys
For P(2,,) = Pyuad = %R‘lwg we get the power at wy; P(w,) as
19 /v\2
P S:-(-)st 347
(w) = o (2) P(20) (347
and for the frequency 3w,
P(3uwy) = 222 (”)213(2 ) (348)
“s) = 504 \¢ s

68



4 Symmetric trace-free and spherical tensor components
formalisms

The first section of this chapter is devoted to a useful formalism, used in the multipole
expansion the Symmetric Trace-Free formalism (STF). In order to understand this new
formalis, we used the articles in [26], [44], [49], [50], [51], [52], [53], [54] and [55].

From a group theoretical point of view, we separated the next-to-leading order into
irreducible representations of the rotation group. To generalize such a construction to an
arbitrary order of the multipole expansion, we introduce a complete set of representations
in two ways:

1. The first approach considers symmetric and trace-free tensors (SFT formalism).

2. The second approach introduces spherical components of tensors and the tensorial form
of spherical harmonics.

We begin by recalling the workings of the multipole expansion in a static situation,

governed by Poisson’s equation:
V¢ = —4mp (349)

where ¢ is the scalar potential, and p(Z) is the source density.
As in the static case of electrodynamics, we consider a source density p(Z) localized in

space, so that:
p(¥) =0, Vr>d (350)

where r = |Z] and d is the characteristic size of the localized source. The Laplacian operator
in spherical coordinates is written as

V2 — 19 ( 2%) L (351)

2 Or " or =
while ¢(r, 0, ) can be written without loss of generality as:

¢(7n7 97 ¢) = le(T)Yim(97 ¢) (352)

Inserting Eqgs. 351 and 352 in equation 349, we get:

19 , L?
oo =g o= A
L9 20000 Vi) — L 12 Yim(0, ¢) = —4 (353)
2 ar(r Qi Yim) — 2 Qun (1) Yin (0, ¢) = —4mp
Yim m(r
—7}2 O (120 Qun (1)) — * ;2 )1(1 +1)Yim = —47p

We are interested in results outside the source r > 0, so,

r>0 1 anm(T)
0 Q) l@" (r2 ar >

—l(l+1)=0 (354)
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The differential equation as expressed in 354 has known solutions given as:

Qua(r) = Ar' + % (355)

Next, we insert Q,(r) into equation 352 and get the most generic solution given as:

Qun_ Yim (6,9
WZZQZIH Fin(0.2) (356)

where
Pl

V2 [M] =0. (357)

Similarly, ¢(r, 6, ¢) can be recovered as the general Green’s function of the Laplacian oper-
ator. For the case where z lies inside to outside the source, we get:

o) = [ ==0li) (358)

with ﬁ being according to additional theorem for spherical harmonies:

l

T —an) Z S Y00 Yin(6,0) (350)

=0 m=—1

where r = |Z|&r’ = 7], (0, ¢) are the polar angles of Z and (¢, ¢') are the polar angles of .
Similarly equation 357 in terms of equation 359 is:

0@ = [ Eupl) 47rZ Z vt (360)

and equating to equation 355 we get:

Q= [ S0 0" (361)
An alternative way of performing the multipole expansion is to write:
1 1 1 1
ﬁzf—yﬁ + yyj&?@ . (362)
[z -yl |7 7] 2 Tl
infty 1
1 ( ) 1,02 il 1
= w10, 0;, ... 0y — 363
In equation 362 and 363 we get:
1 | 1 . . 1
r)= [ d&® — —Y'0i— + =y'y0,0,— + ... 364
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=0 2]
-y 1 (365)
OF) = - / Pyp(y)y™ ... y" 8i,ﬁ
=0
The trace-less combination for y ...y% is
11,0 i1, .0 ]' 1,12 | )
y Uy =gty = oty
B o\l 1 (366)
:>¢(ZE) = Z QQH Zzall alzm
1=0
with
Qi = [yl (367)

The brackets 3 ... y% in equation 367 mean that we get the symmetric and trace-free part
of the tensor ' ...y,

4.1 Symmetric-Trace-Free (STF) Formalism

We introduce a helpful multi-index notation developed by Blanchet and Damour. In this
notation, a tensor with [ indices, i11s . . .%;, is compactly represented by a single capital letter
L:

Fr, = F;

1%92...7]

Similarly, a tensor with [ 4 1 indices is denoted by G;, = Gi,4,..;,- For example, F;, 4
represents Fj;, ;_,. Additionally, d; is shorthand for 0, ...0;,, and z; and n; denote
Ti, Tiy ... x;, and ngng, ... 0y, respectively, where n; = x;/r is the radial unit vector. When
expressions like F. G appear, the summation over all indices i1, 15, ..., %; is implicit:

FiGp = Z F;, .Gi (368)

i1

Symmetrisation is denoted by round brackets as
agj) = 5(ai + ajq).

Finally, the symmetric-trace-free (STF) projection is denoted by a hat, as in K, which
indicates that all indices of the tensor K, ; are symmetrized, and all traces are removed.
Alternatively, this operation can be denoted with angle brackets K_y~, so K=K <r~. This
notation allows a compact representation of STF operations, such as €;;(kA,_1);,, where STF
symmetrization applies to the index k of ¢;; and the first [ — 1 indices of A, j,_,.
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A rank-l STF tensor A;, ; has 2] + 1 independent components, forming an irreducible
representation of dimension 2/ 4 1 under the rotation group SO(3). The complete set of STF
tensors for all ranks [ provides a full set of SO(3) representations.

For example, a (0,2) rank in SFT mode T;; is a generic tensor and can be written as:

1 1
Ty = 5(Ty + Tji) + 5(Ty — Tii) (369)

Here, S;; is the symmetric part, and A;; is the antisymmetric part. Using Ay = €5 A;;, we
find A;; = %eijkAk. Defining S = S;; as the trace of S;;, equation 370 becomes:

1 1 1
ngZJ + _EijkAk + <SZJ - _Séij> (371)

T; =
! 2 3

This explicitly separates T;; into a scalar S, a vector Ay, and a (0,2) rank STF tensor
Sij — %S(L-j. These components are used in the STF formalism to analyze a scalar S, a
vectorAy, and a tensor S;; — %Sdij field in multipole expansions.

4.1.1 SFT Formalism for Scalar Fields

We consider a scalar field ¢ governed by the relativistic wave equation:
O¢ = —4np, (372)

where the source p(t,x) is generally time-dependent but localized in space, so for |Z| > d =
p(t,Z) = 0. The generic solution of equation 372 outside the source is given as the expansion
around |Z| > d is:

!

o5 =3 o,

=0

it - %)

r

: (373)

where L comes from the multi-index notation and F7}, (t — E) is calculated on the retarded
time ¢,y = ¢ — . This result relies on the fact that, for > 0, Fy, can be any function of the
retarded time u =t — r/c, satisfying:

r

Iy (t_g)] =0, (374)

and each term is solution of O¢(z) = 0. Equation 373 comes as the most generic solution,
since all F}, tensors, with all possible ranks [, provide an irreducible representation of the
SO(3) group. The appropriate Green’s function for a radiation problem is:

) 1 7
¢@@:/&yﬁ_mpG—lc|j), (375)

where this integral form holds both inside and outside the source region.
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Comparing this expression with equation 375 and equation 373, we get full computation

/d3ny/ dzd(z (u—l—zu vecy) (376)

where g, is the symmetric-trace-free (STF) projection of y;, and Ff(u) is in fact a multipole
moment for the source p. The function ¢;(z) is a weight function and is defined as:

in

(21 + 1)1

S (1— 22" (377)

51(2) =

With normalization condition:

/1 d(z)dz =1, (378)

1

The f 01(2) dzp(u + 2|y],9) is the average over time (t — @ + 2|y]), the retarded time,
Integratlon over dz creates a different weight function for each multipole moment /.

4.1.2 SFT formalism for a Vector Field

We consider the electromagnetic field A* (Lorentz gauge duA* = 0), that satisfies the wave
equation:

4
) Ry T (379)
c
where the role of a source plays J* = (cp,J), again is time-dependent and localized as

JH =0 if |#] > d. Each component of A* can be treated as a scalar field, and therefore, in
the external source region, we get:

r

W =3 CY, {FL(“)] (380)

r

2t =3 W, {G"““)} (381)

where u =t —r/c and F(u), G;(u) represent relativistic multipole moments. The explicitly
expressions of I, (u) and G,y (u),are given as:

Fr (t—— /dny/ 5i(z ( +Z|%|g> (382)
m t—— /d yL/ 5i( ( Z’y!y) (383)

G, is symmetric under 7, .. .7 exchanges, but it is not symmetric under 7 <+ i 0ris . . . ori,
and tracefree since it depends on 7. So we can define an irreducible representation as:

l 20 —
Gir = Uir41 + H—lﬁm(@'lCL 1)a T+ 21—5 Do (384)

where U;;, = G (L+1)5 Cr=Gaw b(L—1€ilyabs Dy = Gaar-1-
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Finally equation 381 and 382 are written as:

o Qu (¢ — ===
381 4% 07 =3 g, A ) (385)

382 22 A'(L,7) = i o, , [QiH ) S R 2)] (386)

where

1 N
. -+ .
I (t — f) = /d3y/ dz {5;(2’)pr (t _ T Z‘y’,y)
c 1 1

1 20+1 Y .
_ = ) o (- ——— V=1
2+ 12 +3) 1+1(2)9ind; Yy

t— - /d3 / d25l L 1mll (t - T_T’Z|y|,y_)) ,VZ Z 1 (388)

where m; = €;;,y;J is the magnetization density.

(387)

4.2 Spherical tensor components form

In this subsection we detail the decomposition of a symmetric, trace-free (STF) tensor into its
spherical tensor components. Explicitly we construct the basis of tensor spherical harmonics
for the 1=2 case and generalize to arbitrary 1. This is a cornerstone of gravitational wave
theory for analyzing radiation patterns and decomposing waveforms. This analysis is derived
by [15], but more information can be found in [56], [57], [58], [59], [60].

Generalization of spherical harmonics to a spin-2 field. We consider any traceless, asym-
metric tensor with two indices. The Cartesian components of the tensor are denoted by
Q;;. First, we introduce a basis in the space of traceless symmetric tensors with two indices,
chosen to have a single relation with the [ = 2 spherical harmonies. Spherical harmonies for
[l =2 are:

Y2(0,0) = 3175@ @ gin? ¢ (389)
7T
21 15 i
Y=(0,9) = — 8—6 ¢ sin 6 cos 0 (390)
7r
20 15
Y¥(0,0) = Ton ——(3cos’ —1) (391)

since Y™ = (—)mY!™ we get



15Y .
y? 1l = ( 8—> ¢ sin 6 cos 0 (392)
7r

15
Y32 = ( F) (3cos?f — 1) (393)
m

In polar coordinates the unit vector n has the following components:

ng = sin 6 cos ¢ (394)
n, = sin @sin ¢ (395)
n, = cost (396)

0 is measured with respect to 2 axis and ¢ is measured from & — axis. Therefore,

ng +in, = ' sin 6 (397)
n, = cost (398)

So the above set of equations can be written as follows:

[ 15
Y2 =Y>? = 3 (e + iny)® (399)

15
Y& = — g(nx +in,)n, (400)

5 5
V20 _ /E(gni ~1) = E(an —ny—nl) (401)
.. 15 .
y2-1 S—W(nm + iny)n, (402)
y2-2 _ /E(n +in,)? (403)
32m Y

(404)

We can write Y™ in terms of Y;l]m components, independent of (6, ¢) as followed:

lm — ylm
Ny
Since, n; = | ny |, Y;l]m are 3 X 3 matrices, symmetric in / <> j and with vanishing
nZ

antisymmetric part, explicitly, we can write:

1 ¢ 0
2.9 15 .
0= e | 0 -1 0 (406)
327 0 0 0
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00 1 00 1
15 2 15
Vi =— /=100 L] =—/===[0 0 i (407)
J 8 1 3 0 327 1 .
2 2 1] t ¥
(-1 0 0
V0= —lo -1o (408)
T\o o0 2/
4]
0o 0o & 0 0 1
15 2, 15
2l==(0 0 —i| =4/==—[0 0 —i (409)
J 8 1 i 327
] v
1 —i 0
2.—92 ]_5 .
- — =i =10 (410)
327 0 0 0

]
Matrices in Eqs. 406 - 410 , are traceless and symmetric. We can also see it by integrating
equation 405 and seeing that [dQY"™ =0 as:

/ Y nind dQ = / dQyhm =

/Yﬁ’mninj dQ=0=
(411)

Y2m

Qn'n? =0, where dQn'n’ = §5” =

||\

yam (traceless).

From the explicit form of Eqgs. 406 - 410, we get that Y;/™ constitute an orthogonal basis as:

S () v = 2o (412)

— 8
ij

We can insert equation 405, and get:

2

1
m=—2
8 %
whnere C
here ¢ = 7= (v (414)

The coefficient given in equation 414 is fixed by observing that in equation 413 the LHS
is traceless. The matrices in Eqgs. 406 - 410 constitute a basis for the five-dimensional space
of traceless, symmetric tensors ();;.We can expand any symmetric, traceless ();; tensor as:

Z QuY2m (415)

m=—2
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where (), are the spherical components of ();;

415 % nin; Qij = Z an n]Yzm

m=—2
2
=nm; Q= QuY™ (0.9)
m=—2

Now equation 415 can be inverted by following the known rules, as:

Y2m

m*—2

413

= Qm = QU (Y

with @, = (—)mQ,m
Explicit:

m = =£2 :QiZ Q’L] ( 2 i2)

87T 2,42 2,42+ 2,42 2,42
_ ) Y 2 Y )
=Q12 = I 327T(Q11 Y+ Q5 +2Q12Y577)

=Q40 = \/%(Qn — Q22 F 2iQ12)

m = =+1 :Qil sz ( @? il)*

8 15 X
=Q+1 = :F1_75T 39 < Q13 (leg,il) +2Q23 (nzg’il) >

=Q+1 = :F\/%(QQB F 2iQ23)
=Q+1 = :F\/%(lez T iQa3)

8 «
m=0:Qo = %QU (on)

00 =3 2 (01— Gm+204)
=Qp = —\/E(Qn + Q22 — 2Q33)
=Qo = \/E(?)Qn +3Q22)

=Qo = —\/g(Qu + Q)

7

(416)

(417)

(418)

(419)

(420)

(421)



Applying thrice a time derivative on equation 416 we get:

2

Qymin; = Y QY (0,9) (422)

m=—2

And then taking modulus squared, we get:

[1Qsmanyl[* = ZIIQ Y#m (o, 0)|?

m=—2
2o 2
= Gynin; G = 3210, G, (Y*(0,0)) Y*(0,9)
m=—2
2
15 ... 15 ... (423)
20..0.. = - 24 = 2
23,85 = 3 |GGl + g1
2. 15
e ey
=Q,;;Q;; = :Z 8_7T‘Qm|
15 o e
=|Q,.|" = 8_7TQijQij
Substituting everything in equation 423 we get:
G ...
Pquad = %<ng@zg>
G 15 & )
= Pyuad = %S_Wm:_ﬂ@” ) (424)
3G <
:>Pquad 8_ <|Qm| >
m=—2

We can generalize the above to traceless, symmetric tensors with an arbitrary number of
indices. We begin by considering a STF tensor with indices T;,  ; and write the spherical
harmonies as:

Ym0, ¢) = C'™e™? P'™(cos(6)) (425)

In equation 424, the term P'™ cos  expresses the associated Legendre polynomials, given
by the following formula for m > 0

z o I I—k+l\ ™

m _ _ L 2

P™(a) = (—)"2'(1—a%)% ) ——— k ) (k>( z ) (426)
or in terms of cos @

P'™(cosf) = (—)™(sin Q)md—m [P!(cos 6)] (427)



Orthogonality relations read for:

i 2(1 !
fixed m : /O dfP*™ (cos §) P"™(cos 0) sin § = ol —1—(1;—(lm—) oy M (428)
~ 0, m#n
fixed 1: / dGP"™ (cos 0) P (cos ) cscf = { oo, m=n=0 (429)
’ W(Ll(erjln):)n m=n#0
Eqgs. 428 and 429 normalize the C"™ components as following:
/ﬁgwmwm:1¢
:/ﬂw¢mwKWWPmﬂmzﬂ
2 !
=27|CM™ |2 (L+m) =1
(2l + 1)(I —m)! (430)
20+ 1)(1 —m)!
:>|Olm| — ( + )( m)
A (l +m)!
=0T =) ¢ 17(l + m)!
—)k 20 — 2k)!
and ai™ =) ( ) (431)

BT QR — k)L (1 — m — 2K)]

For m < 0 we may use Y = (—)™(Y{l,—m))*. The final formula for the arbitrary
spherical harmonics is:

3

e
Ym0, p) = C'"™ (e sin )™ al™(cos ) ~m 2k (432)

M ‘

el
I
o

where V—Tm] denotes the largest integer smaller than or equal to Z_Tm In equation 432, we
can substitute Eqs. 397 and 398 and get:

3

521
Ym0, ¢) = C'"™(n, +in,)" ai™(n,)lmmk (433)

M ‘

x>
I
o

l=m
because of (n, +in,)™ and ), 3 ](nz , we get the sum of a term containing [ factors

n;, | — 2 factors n;, [ — 4 factors n; etc. We can use n;n; = 1 and write the [ — 2 factors as:

)lfmka:

0ini, ... Ny, ninjete

So finally we can write

l
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Again, Ylm 4, tensors form a basis in the space of traceless symmetric tensors with [ indices.
So we can expand any arbitrary tensor T;, ; as:

Ti,.. Z Tim Y™, (435)

In terms of the spherical components. Or in terms of [ unitary vectors, we get:

ni, . ..ng T, Z T Y™ (0, (436)

m=—1

And we can insert the last equation as:

oo (Vi) v )

g1
=T = 1—;1, <Y;lll’ ljz> /dQn“ ce My Mgy T, (437)
ol can o (yim
o Ilm — W(?l + 1)” 11...7] i1...9]

In the last line, we use the total symmetry of 7, ; and vanishing Kronecker delta, so
the only contributions will come from d;,, ... d;,;, and symmetric I’ permutations. Again, we
can take the modulus squared of equation 436 and we get:

||ni1' nll 01,02, ,HHZ Z “T szm”2

m=—1

= / dnil SR dnil Ty - njlﬂ17~~~7il7—}lv--~7jl

Z /dﬂm no Ylm Y = Z ’Em‘2

m=—I m=—1

4rl! .
2 91...1
= D |Tl* = gy L T

(438)

Consider a rotation by an angle  around the z-axis, such that ¢ — ¢+¢. In equation 435,
the left-hand side (LHS) is a scalar and, therefore, remains invariant under such rotations. On
the other hand, the right-hand side (RHS) transforms according to the spherical harmonics
yim — eimey!m  Consequently, the coefficients T}, must transform as

Ty — €Ty,
To preserve the equality.

More generally, the 2]+ 1 components of T}, (with m = —I,... [ for a given ) transform

among themselves in the same way as the conjugate spherical harmonics Y™ (6, ¢)*.
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5 Applications

5.1 Radiation from a closed system of masses

In this section, we derive the foundational quadrupole formula for gravitational radiation
from a closed system of masses. The main reference is again [15].The energy-momentum
tensor for a particle moving on an x(t) trajectory is:

o PP sy
™ = @z —2° 4
(t,2) m 0(Z — 2°(1)) (439)

where for a set of particles labelled by A we get:

v —-\ pApA —
Th( E ZAZA 503) t)) =
tot ( p— — Za(t))

H v
T (t, 7) = ZVAmAd—LLAWCS(g) (T —Ta(t)) =
A (440)

Since conservation of T}, on a flat space-time is a consequence of the invariance under
spacetime translation, the effect on multipole moments by shifting the origin of the coordinate
system. The second moment of 7% /c? or abusively speaking the second mass moment is:

MU (t) = L /d3 "TO(t, o )a'

MY (t) = /d3 ’Z’yma () — Z4)a" 2"
MU (t vaa/d?’xxixjcs(?’)(f— Za)
MI(t) =Y ymaay(8)a(t)

A

(441)

Under translation we get 2* — z° + o,

MY (t) — M"™(t Z yma(ahy + aly) (@) + aly) =

M (t Z ymazlycy £ ) yma(@ly +ay)(@h + al) + Y ymadyal = (442)
A A A

M (t) = MY(t) + aiZVmAm (t) + o ZymAxfg(t) + a‘a’ ZymA

A A A
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With time derivative:

M (t) = MUt + o Z ymady () +al Y ymaity(t) =
A (443)
M (t) = MU(t) + Pot +a' Py

Where P!, = > , ymad'y total momentum of a non-relativistic system and its constant.
The second derivative yields:

M= MY + ajpota Pl = M = N (invariant) (444)

Since hg;-T ~ M gravitational radiation is not affected by the shift of the origin. All
of the above are valid only for closed systems and of no external forces are present. The
procedure described above is correct when ¥ is the relative coordinate of an isolated two-
body system in the center of mass frame, with Zy(¢) the time evolved of Z.

Center of mass coordinate is:

miT1 + MaTs
Toyy=—""—™—"—7— 445
oM mq + Mo ( )

Second mass moment
MY = ymyzt @ + ymozha?,
N (146
MY = ymaoyaey + i(TemTo + TouTo) + YHTTY
If we choose xcy = 0, we have:
MY = ) (447)

Eq. 447 shows the effective particle’ s mass moment, with mass u, and described by
coordinates xo(t). Since P., = doam Az i 1s conserved, and M is the quadrupole moment,
it will be invariant under the x* — a' 4 x* shifts. If we describe the system with Z; and 7',
it is consistent with working in the center-of-mass frame, where Zoy = 0. This description
is valid only in the CM frame. The mass density is

p(t, %) = po®(F — To(1)) (448)
and the second moment B . .
MY(t) = pah(t)3(0) (449)
And the mass-quadrupole:
. ) ) 1 .
Q") = (sh(0e) - 3300 ) (450)

We want radiation emitted by a two-body system, whose relative coordinates have har-
monic ways of motion (e.g., harmonic oscillation). We suppose that the relative coordinate
xo(t) is periodic along the z direction with frequency ws. Then:

r3(t) = 20(t) = a; coswit (451)
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M"Y (t) = pay cos wtda; cos wytd’®
MY (t) = paj cos® wetd67? (452)

MY (t) = pai(cos 2wt + 1)5513533
GWs” amplitude depends on M%(t) so we have:

MU (t) = —pa4w? cos 2w td367% =

- s 453
MY (t) = —dp(ayws)*0™ 67 cos 2wt (453)

We see that the corresponding GW oscillates as cos 2w;t.

A non-relativistic source performing simple harmonic oscillations with a frequency wj
emits a monochromatic quadrupole radiation at w = 2wy

Last is true only for simple harmonic motion If the system performs a superposition of
periodic motion and higher harmonies, e.g., if:

20(t) = a; cos(wst) + ag cos(2wgt) + . ..

22(t) = a2 cos?(wst) + a3 cos(2wst) + 2a;as cos(wst) cos(2w;t) (454)
2
1
2(t) = %(1 + cos(2w;t)) + a§§(1 + cos(4dwst)) + arag cos Bwst + ajag cos(wst)

Radiation

a; emits at cos (2wst) Wew = 2w,
as emits at cos (dwst) wgw = 4w,

ajay emits at cos (wst) + cos (Bwst) Wew = Wy, Wew = 3Ws

There exists every n nw, frequency in quadrupole radiation.

5.2 Application on inspiral of compact binaries

Here we follow again the methodology and idea in Maggiore’s book [15], but also take
pieces of information from [50], [28], [61], [65], [66], [67] and [68], we derive the foundational
quadrupole formula for gravitational radiation from a closed system of compact binaries.
This directly connects to the radiated wave amplitude and power.

We analyze a binary system consisting of two compact objects, such as neutron stars
or black holes. We consider these objects as point masses, with masses m; and msy, and
positions r; and ry. In Newtonian approximation and the center-of-mass (CM) frame, the
dynamics reduce to a one-body problem with a reduced mass u = %, and the equation
of motion is given by:

e (i—T) 7 (455)
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where m = my + my is the total mass, and ¥ = r, — 7] is the relative position vector
We first examine the case of circular orbits. The orbital velocity v is related to the orbital

radius R by:
s  Gm

"T R

where v = wR, with w being the orbital frequency. Using this relation, we derive Kepler’s

law:
Gm
In Egs. 251 and 252, we eliminate R in terms of w?, by using 456 and we get:
4G R? (1 20
hy = ,uw < o8 ) cos (2wst + 2¢)
2 2 457)
4Guw? Gsms (1 20 (
hy 'LL4 3T3 ( - cos ) cos (2wst + 2¢)
r o c w3 2
4G 2R? 1 20
hy = uw ( o8 ) cos 0 sin (2wt + 2¢)
458)
4Guw? Gims (1 29 (
hy = M4 37113 ( o8 ) cos 0 sin (2wt + 2¢)
r o c w3 2
We define the chirp mass M, as:
o (m1m2)3/5 3/5, 2/5
M, (s £ ma) P wrem (459)
And we write Egs. 819 and 820 as:
4 (GM\? fw,\2 1+ cos?0
he= 2 (GF) () () conzat + 20)
r\ c c
(460)

GMC) 3 (ch;w) 3 (1 + 62082 6) cos (27 fawt + 2¢)

h, = —
* r(c2 c

4G 2G s
,uw e cos 0 sin (2wt + 2¢)

e

hy =
(461)

wlon ‘ﬂw\

) =2 cos B sin (2w,t + 26)

( ) (WfGW) cos O sin (27 fawt + 2¢)
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In this lowest order of Newtonian approximation, the h, and h, amplitudes of the
GWs emitted depend on the masses m; and my through M.. Now, we can introduce the
Schwarzschild radius in terms of the chirp mass:

2G' M.
R. = 2 (462)
Then we can write Eqs. 822 and 823 as follows:
4 RC g WfGW % 1+ COS2 0
hy=-(— cos (27 fawt + 2¢)
r\ 2 c 2
5 2
Aw=2GW 4 (RN\? [ 1\3 [1+cos’d
_ A (L = SN 7 9 t+2
o (8 (3) (25 it
2
4 (R [(R.\?® [(1+cos®0 (463)
h+ = W (7) (7) (T) COS (27ngwt + 2¢)
1 (R [R.\? [1+cos?0
hy = 5173 (7) (7) (T) cos (27 fawt + 2¢)
1 20
hy =A (—l—c%) cos (27 fawt + 2¢)
5 2
4 3 3
hy = — (&) (WfGW) cos 0 sin (27 fawt + 2¢)
r o\ 2 c
5 2
4 (R.\? 1 3 .
hy = - <7> (27\Gw> cos 0sin (27 fewt + 29) (464)
2
4 (R, R. \? .
hy = 57 (7) ()\GW) cos Osin (27 fawt + 2¢)
hy = Acos@sin (27 fowt + 2¢)
where 23
1 R. (R,
Next, we compute the quadrupole radiated power. By defining the angular dependence as
1 20\?
g(0) = (%) + cos? 9] )
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The power can be expressed as:

dpP 2G> R*WS
a0 - mcd 9(9)
quad
dp 2 Gu? GY3m3
— = %0
RErs] I o R A
dP 2 G7/3;L2m4/3
=] =2 (e ) a0 (466)
qua

dP c G10/3u6/3m4/3 0
_ /3
=0 ;E(T% )W)
qua

10/3
o 4P GMctsg 9(0)
dQ quad 7TG 2c3

The integral [ dQg(6) is calculated as:

2 2
/ng(Q) :/dQ (#) +Cos29]

/ng(H):/ d(b/ df sin @ cos* 0 + ~ / d¢/ df sin 0(1 + 2 cos? @ + cos* 0)

1 cos? 0" 1 1 [
— 9] — _ = _ = 4
27r/d (9) 5|, 4/0 d(cos 0) / d(cos ) cos® 6 4/0 d(cos @) cos™ 0
1 1 1 1 3
— [dQg)=1+>+ —=1+-(1 °-°
27r/d 90 =113+ 3 +2(+5) 15 5

Q4

Ar 5

(467)
We get the total radiated power P|qua 4 Dy integrating over all solid angles df2, equation 466:

dP G Mwgy \
Puad = / Qo = (—203 ) / dQ2g(0)
qua

G M., \ 3
Pquad = 3 5
5G 2c

(468)

5.3 Application on elliptic orbits

Further information for Kepplerian orbits can be found in any astrophysical textbook. GW
production and emission in these orbits is anaytically derived in [50] and [61].

5.3.1 Total power and frequency spectrum of the emitted radiation

We now analyze the gravitational radiation emitted by two masses moving in an elliptical
Keplerian orbit. Let m; and msy represent the masses of the stars, with their total mass
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given by m = my + my and their reduced mass denoted as p. To proceed, we revisit the
classical mechanics solution for the equation of motion, which describes an elliptical orbit,
and subsequently evaluate the gravitational wave power output and its spectral properties.

The general solution to this motion equation relies on the existence of two conserved
quantities: the angular momentum L and the total energy E. Conservation of L dictates
that the motion is confined to a single plane. Using this insight, we employ polar coordinates
(r,%) in the orbital plane, where r represents the radial distance and 1 is the angular position
along the orbit. Additionally, the angular variable ¢ is introduced to describe the directional
dependence of the emitted radiation.

For the equation of motion = —ﬁ—g”f, we take the solution for elliptic orbits. The general

solution is obtained by the integral of motions, where the angular momentum L, with

L = i (469)
while the energy is given by:
1 ~ G
B = Sl +r%%) — =5
., L Gmu (470)
E=—-pu — —
2 2ur? r
Solving equation 470 we take
dr 2F L Gum
— ) =,/2=_ 471
(dt) oo 2pur? * r (471)

From the energy equation, we get 7 as a function of r. Using the angular momentum
equation, we find v as a function of . By integrating these expressions, the equation of the
orbit can be expressed as:

dr gd@/)_ L dr

At dy dt omr2dy

(QE L G,um)l/2
e

2

W 2ur r
:>£ _ 2m2rtE B m2r? n Gum3r 1/2 (472)
dvy L 2uL L?

1 1
== E(l + ecos)

where R (the length scale) and e (the eccentricity) are constants of motion. They are related
to the energy E of the system (E < 0 for a bound orbit) and the angular momentum L by:

L2
R= G (473)
and op2
2 _
= G (474)
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a(l+e) a(l—e)

Figure 3: The definitions used for an elliptic orbit: the polar coordinates (r, 1), as well as
the Cartesian coordinates (z,y), are centered on a focus of the ellipse (dark blob). The angle
1 is measured counterclockwise from the z-axis. The semiaxes a and b are indicated. The
focus splits the major axis into two segments of length a(1 + e) and a(1 — e), respectively,
adapted by Maggiore’s book, Gravitational Waves [15].

The eccentricity e of an ellipse satisfies 0 < e < 1. When e = 0, the ellipse becomes a perfect
circle, while as e approaches 1, the ellipse transitions into a parabola. The semi-axes of the
ellipse are

= 475
R
b= 476
T (476)
Inserting equation 474 in equation (429)
R RG*m?*u®  Gmpu
= - = 477
“T1-e T 2E[2  2E| (477)
Similarly, we can insert equation (429) in 472 and we get:
1 1
o= E(l + ecos)
L
) 62)( + ecos 1) (478)
a(l —e?)
r = —
1+ ecosvy
Combining the angular momentum and energy equations, r(t) and w(t) satisfy:
. GmR)Y/?
b= GmB) " mz) (479)
r
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Figure 4: The function ¢(u) for e = 0.2 (dashed line) and for e = 0.75 (solid line), adapted
by Maggiore’s book, Gravitational Waves [15].

The explicit time dependence of r(t) and #(t) is obtained by integrating these equations.
Using parametric form:

r=a(l —ecosu), (480)
where u is the eccentric anomaly, related to ¢ by Kepler’s equation:
f=u—esinu = wyt, (481)

i 2 _ Gm
with wy = =3

Using trigonometric identities, cos v can be rewritten as:

cosu — e
cosY) = ———
1 —ecosu

() 1+e u
tan — = tan —
2 1—e 2

P ( 1+e u) (482)
5 = arctan tan —

1
1 = 2arctan +etemg
1—e 2

where we can set ) = A.(u), the true anomaly. In the equation 481 we can set t — ¢ + i—’g
and get:

B =wot+ 27 =5+ 27 (483)
=u—esinu =u—esinu + 2
u—esinu =u—esinu+ 27 (184)
=u=u-+27
So the coordinates r and 1 are periodic functions of ¢, with period T = Z—Z As u rubs
between [—, 7], also does 1. Graphically, we get:
In Cartesian coordinates (z,y) with the center at the focus of the ellipse, we get:
x =rcosty = a[cosu(t) — €] (485)
y = rsiny = bsinu(t) (486)
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For a 2-body problem, the focus of the ellipse coincides with xcy = 0.

In order to compute the radiated power of this system, we transfer in the CM frame, the
second mass moment is given as M = px{(t)x}(t) in the coordinates Eqs. (441) and (442)
we have:

e~
%)
J

MY = pzt ()2 (t) = pr® cos®
M"Y = pata? = pr? cosp sina)

N
(0%9)
(0.¢)

M = pa?at = pr® cossiny

M?* = px?x® = pr*sin®¢

A~~~ N /N
o o
© oo
o ©
~— ~— ~— ~—

Since r and v are time-dependent we eliminate 7(¢) in M* with equation 478

M = u% cos? 1) (491)
M"? = M?*' = u% cos 1 sin i) (492)
M?*? = u% sin? ¢ (493)
or in matrix form
Moy =t L (oo ) (94

Before attacking the time derivatives, we get:

. (GmR)'/? 1+ )?
w _ ( n:ﬂ) _ (Gm)1/2a1/2(1 . 62)1/2(&2(1€i022)2)
. 14+ 2
= \/Gm% (495)
. (Gm 2 (1 4 ecostp)?
= (%) T
Setting s
_AGp*m
b= B0 =2y (496)
We get:
M1 = B(1 4 ecost))?(2sin 20 + 3esin ¢ cos? 1)) (497)
My = B(1 + ecos ) [—2sin 20 — esinp(1 4 3 cos® )] (498)
Myy = My = B(1 + e cos1h)?[—2 cos 2th + e cos 1h(1 — 3cos? V)] (499)
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The radiated power in the quadrupole approximation is

G 1 2
P(y) = {M11+M22+2M12__<M11+M22> ]

50 3
2G 1.2 .2 ...2

=== [MH 4 My 4 30y — MHMQQ] (500)
8G4 p2m?

= 155 1= ) (14 ecosy)? [12(1 +ecost))? + e sin® zﬂ )

In Chapter 1, we explained that the energy of GWs becomes well-defined only when
averaged over several wave periods. As we will show, a particle in a Keplerian elliptical orbit
generates GWs with frequencies that are integer multiples of the frequency wy, as defined
in equation (4.59). This means that the GW period is a fraction of the orbital period T.
Therefore, the appropriate well-defined quantity is the average of P(t) over one orbital period
T. We will now proceed to compute this time average.

1 /7
P=— P(y)dt
7| Pw
2m dw
= % P(i)
0o
2m d
=(1- 62)3/2/ —¢(1 + ecosy)) 2P()
0o 27
8G4/L2m3
_ 1 — £2)-7/2
15¢%a® (1-¢)
27r w
X o [12(1 + ecosyp)* + €*(1 4 e cos¢)? sin® )] (501)
0
The total radiated power is:
32G* 12m3
P = Wf(e) (502)
with 1 73 37
=~ _ (14+ = P
f(e) T ( +24e —1—966) (503)
In the special case where e = 0 = f(e =0) = 1 and we take
32 G
P = EFGZLCUS (504)
When a - R&w, — w,. So we get
2
P = 35 G/; R*? circular orbit (505)
c
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We can rewrite the orbital period T as:

27 a3 2 (Gm,u)g/2
T=—=27 =

T = o (g)z/ Y (Gm)E?

We notice that the orbital period T is related to the orbital energy F, and thus we take

= TEE
T 3E
T 3E (507)
r 3 2
; —8/3
; _ _%Gw:amwalu (%) / f(e)

In equation 502, when e — ¢t~ and a is fixed, the radiated power diverges. This means
that the point-like mass approximation ceases to be valid. When e — 17 we get equation
472 as a parabole:

R
= 508
" 1+ cosy (508)
Since ¢ € [—m, 7] we get:
Y=—T=1r—00 (509)
R

YV=0=r= B (510)
Y=m1=r— o0 (511)

For e — 17 we get equation 500 to read:

8G* p?m? 4 2 2
P() = (1 62)5(1 + cos )" [12(1 + cos ) + sin” /] 512)
B 8G4u2m3

P(y) = e [12(1 + cos )% 4 (1 + cos9)* sin? 9]

Equation 512 produces the radiation emitted along the trajectory in terms of r reads:

P = 8G*p*m® R [12(1 + cos))® +2 — cos® i) — 1 — 2cos ¢ + 2 cos ¢
1565 ot R?
8G *m? (12R R [—(1 +cos®)?] 2Rcosv + 1
P =55 (w+ﬁL—7?—ﬁ+ﬁ_§Tﬁ
513
8G4u*m? (11R 2 (513)
Plw) = 15¢ 70 i s
16G*2m3 1 11R
”W:‘7§?73@+37)
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Finally, the total energy radiated in GWs is finite

Braa = / T aep() - / av i

o0

=[5

9 5/2 1/27°
B = 85 - 2Gu m (Gm _ _ 8Gu*T 2 (Gm (514)
3R R 48R |c \ R
85w Gu <_>5
T 48 R \¢
where v? = 497,

Vg is the velocity at ¢ =0 <= r = %, it defines the maximum velocity attained along
the trajectory.

Next, we want to compute the frequency spectrum of the radiated power for a Keplerian
elliptic orbit. The trajectory as a function of time is not a harmonic motion when described
by Eqgs. (441), (442) 483. The first to compute dE is to Fourier transform the trajectory.
Observing that z(t)&y(t) are periodic functions of [ with period 27, we can restrict 3 to
—nm < f < 7 and perform a discrete Fourier transform as:

p(B)= > Ene ™ (515)
y(B) = > e’ (516)

with 2*,, = & and y*,, = § We can choose the origin of time so that at t = 0 or equivalently
at 8 =0, to be x = a(1 — e) and y = 0. With this choice, we get

2(B) = x(=p) =

o0 o0
~ —inf ~ infB
E T, e = E et =

cosnf —isinnf = cosnf +isinnf =

sinnf =0
and
y(=B) = —y(B) =
i —zn,B _ ~ ean
cosnf —isinnf = —cosnﬁ —isinnf =
cosnf =0

The exponential e~ is written as e ™ = cosnf3 — isinnf. Therefore, the expansion of
x(f3), contributes only cos(nf) while the expansion of y(/3), contributes only sin(nf3), we can
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simplify the Eqgs. (471) and (472)

= f: Tpn cosnf
= Z 21, cosnf (519)
z(p) = N a, cos(np)
n=0
y(B) = Y —igasinnp
y(B) = > —2ig,sinnf (520)

= i by, sin(np)

where, for n > 1, a, = 27, and b, = —2iy,, while a9 = Zo9. Since § = wyt and
nf = nwot = w,t, we get:

= Z (y, COS Wyl (521)
n=0
= bysinw,t (522)
n=1
where
Wp = MW (523)

The coefficients a,, and b,, are obtained by inverting Eqs. (477) and (478), which gives,
for n # 0,

= i a, cos(nf)
/0 ds cos(np)x Zan/ dp cos®(n)

M8|

/0 d,6§(1 + cos (28)) (524)

0

3
|

En[ﬂ] =

| ase(3)costun)

0

bﬂ@g

o

Ay —

Ik
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y(B) = busin(np)

(525)
2 (" i
b=~ [ dsy(s) sin(np)
T™Jo
while, forn =0:0, =0,
1 7T
z(f) = apcos0 = apg = —/ dpx(pB) (526)
T™Jo
The integrals above are solved in terms of Bessel’s functions :
ap, = —Jp_1(ne) — Jyi1(ne), (4.94)
1
b, = . [Jn—1(ne) + Jnt1(ne)]. (4.95)

For n # 0, and ap = —(3/2)ae.
To compute the second mass moment we need z*(t), y*(¢)&z(t)y(t). The inverse Direct
Fourier Transform for these is computed to be

2 (t) = i A, coswpt (527)
Y2 (t) = i B,, cos wpt (528)
x(t)y(t) = Z Cy sinwyt (529)
where
A, = % [Jo-a(ne) = Juia(ne) — 2e(Jn_1(n€) — Jnya(ne))] (530)
B, = % [Jni2(ne) — Jn_a(ne)] (531)
C, = %b [Jni2(ne) + Jn_a(ne) — e(Jp_1(ne) + Joi1(ne))] (532)

Therefore, the second moment reads:

Mo(t) = Z (An coswnpt C, smwnt> (533)

C,sinw,t B, cosw,t

n=0
= M) (534)
n=0
where M (EZ) (t) represents the n-th harmonic term. Furthermore,

MS;) (1) = Mwi ( A, sinw,t  —C), cos wnt) (535)
b

—C,cosw,t B, sinw,t
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To compute P,, we use the quadrupole formula, written in the form:

2G

= 15e 5<M11 +M22+3M12 M11M22> (536)
2G 2 i 2 2 .52 2 9 . 9
P, = The 5,u w (An sin wyt + B sin® w,t + 3C}; cos” w,t — A, B, sin” wyt)
G*win (537)
_ 0 2 2 2
P, = W(f‘ln + B; +3C; — A, By)
where (sin? wnt) (cos® w,t) = %
inserting w2 = Gm and writing - 5= 5356 we get:
32G* 12m? nd
Po= S e (AL 4 B2+ 32 — A,B,)
832G P (538)
Py == g, )
" 5chad g\,

with g(n,e) = gy (A2 + B2 + 302 — A,B,) In equation 538 we see that the coefficients
A,, B, and C, are functlons of the eccentricity and total power P =" | P,

5.3.2 Evolution of the orbit under back-reaction

A binary system following a Keplerian orbit radiates both energy and angular momentum.
Assuming the bodies are point-like and lack intrinsic spin, this radiation drains energy and
angular momentum from the orbital dynamics. As a result, the orbit undergoes progressive
modifications, notably in its semi-major axis and eccentricity, until the system eventually
transitions into the merging phase and collapses. This section explores the evolution of the
orbital parameters, specifically the size and shape, for a general elliptical orbit. The energy
radiated in the quadrupole approximation is given as:

32G**m?
F=—5es 10
where -3 37
fle)=(1—¢*)"T? (1 + 2462 + 56¢ ) (539)
The angular momentum radiated in quadrupole approximation reads as:
dL} 2G e e
dt = _ﬁe kl(Qkana) (540)

since € Q,, = €"8,,Q,, = 0. We change Q — M and without loss of generality we get:

dL* _ 26
it 56°
As in the computation of radiated energy, we put the orbit in the (z,y) plane, and My,
is given by Eqs. (443)-(446) or in matrix form

2 .
s cos” Y sin ¢ cos Y
Moy = pir (sin Ppcosy  sin® )ab (542)
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Inside the bracket, we can integrate by parts equation 542 and get:
dL’ 2G ikl d

it~ 50° <dt(M’“‘M"‘) Miady') =

dLZ 2G i X,y)-plane
el M Mo M) =000
L 2
d_ = ¢ 3kl <MkaMla>
dt 505 543
il 26 o (543)
% = 5 5 <MlaM2a M2aM1a> =
dL 2G
U 5o <M12M22 + My M — MMy, — M22M12>
dL 4G
U 5o — (Myao(Myy — M22)>
The derivative M12 reads:
a?(1 — e?)? _
My = 'u(l—i—<e—cos17)b)2 cos 1 sin
R o
. — +cos® Yy 2(1 + ecosp)esiny -
Mo = ua2(1 — e2)2 sin” ¢
2= a1 =€) [ (14 ecostp)? T (14 ecost)t Y oospsing
v Gma(l — )] cos? 1) — sin® 1) + e cos® 1 — esin?® 1 cos ) + 2esin’ 1 cos P
= ma(l —e
12 = 1+ ecost
2 2 3 3
. 4+ cos” 1) — 1+ ecos’ Y — ecos® ) + ecos
M.y — 1 e2y/2 [ &8 Y
12 = p[Gma(l — ¢e7)] 1+ ecos
. 2cos? +ecostp — 1
Moo — 1 — o2)]1/2
12 = p[Gma( e’)] 1+ ecos ¢
- —4dcostpsin) —esinpp  (2cos?1p + ecosth — 1)(esin i)
Mo = 1 2\11/2
12 = p[Gma(l —€7)] 14 ecos + (14 ecost)?
v Gusiny 2 2 2 2 .2
My = ﬁ(—40081/} — 4e” cos ) — 8e cos” ) + Ge cos” ) — 2e + 4e” cos” )
a(l—e
. Gpusing ) ) '
My = m(—ll(l + ecos ) cos ) + 2e(3cos” p — 1 4 2e cos’ 1))
(544)
For periodic nations, the average of the GW is the average over one orbital period T and we
get:
T 2w 27 2\3/2
dt dy (1 —e?)3
/ dt(...) = / dw w / 2——2( ) (545)
0 0 o 2m (1+ecos?)
Then reads

d_L B £ 27 dt (1 . 62)3/2

dt 505 0 2T (1 1 ecos w>2[ 12( 11 22)] =
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dL 4G 555 Gmpu G3m3 1/2
dt 505(1 ¢) a(l — 62)4/”L a’(1 — e)s X
T dipsin e ) , ,
/0 (1 + ecos®)? [~4(1 + ecos ) cos ) + 2e(3cos” P — 1+ 2e cos” ¢h)] x
[(1+ ecos Y)*(4sin 2¢) + 6e sin 1) cos® ¢ + esin V)] =

dL 16 (1 —€e’)2 0
a T kT ar X
2n 2e(3 cos? ) — 1 + 2e cos® 1)) (546)
4 I
/0 dy [ cos 1 + (1 + ecos ¥)2 X singx

[(1 4+ ecos)?(8cosp + 6ecos® ¥ + e)]

(3cos? 1 — 1 4 2ecos® )
(14 ecostp)?

2 5 %¢
I = dip| —4cosy + 4cos’ P +
0

a e l(pl_JrC;)iZ;ﬁwj)Lfe e w)] x (14 ecost)*(8costh + Gecos® ) + e)

= /027r [ —4cos(1 — cos® ) (1 + ecos)?(8 cos Y + be cos® 1 + e)
+ 2e(2e cos® ¢ + 3cos® ¢ — 1 — 3cos* 1 + cos? 1 — cos® )
= /% dip[(—4 cosp — 4e? cos® 1h — 8e cos® 1 4 4 cos® b + 4e? cos® P + 8ecostp)x  (547)
(8ocos¢ + 6ecos? ¢ + e) + 2e(4 cos? 1 — 3cost )]
I= /0 " dip[cos® (=32 — 8 + 8e) + cos™ 1(—T72e* + 32 — 6e) + cos’ 1(80e?)]

3T

I=—8n(e? —e+4) 5 (36e* — 3e + 16) + 50>
9
I = — 87e? — 5dne? + 50me? + me + % — 567
25
I =—12me® + 5T - 567

Thus, we take

dL 32G722mb? 1 7
— = 1+ —e? 548
dt 5  cPa’? (1 —e?)? < T3 ) (548)
Going back to Eqs. 474 and 478 we get:
Gmypu dE. Gmpu 1 da
E= = 4
2a = dt 2 a’dt (549)
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2 — 1 L2
‘ Gmu? =
de 2 dL
2e— = 2=
‘" GmpE a7
de 2 o - dL
G g 50
deGmp _dL [ a?(1—e?)? Gm 2
geihe _ on .
“at 2 dt l(1+ecos¢)2 @31 — e2)? X (1+ecosyp)” =
de = 2 dL -1,7 2\911/2
edt__GHULdtKG%w a<1 e)]
7 25 1/2
dL _ de [4a’(1—¢")° 55)
dt  dt (Gm)3 2

Substituting Eqs. 550, 551 from 538 and 549 respectively we see evolution of e and a as:

dE 32 G *m? 73 37
__oebpm (1_62)—7/2 (1+_€2+%64)

dt 5 a’ 24
Gmyu da 32 G*p®m? i 73 37
2w dt - 5 a7 ) (1 ﬂez * %64 (552)

da 64 G2 um? 73 37
" 1 — 2\=7/2 1 Y2 < 4
dt 5 gt (L) to1% T 6"

@ B d_Ll 4@7(1 _ 62>5 —-1/2
dt — dte G3m3 p?

de 304 G3um? e . 121 ,
= —e
dt 15 cPat (1 —e2)5/2 304

(553)

equation 553 e =0 = % = (0 so we get a circular orbit. Dividing Eqs. 552 and 553 we get:

da 192 (1) tet (1 + Be? + %e‘*)

de ﬂa 1+ %62
da _ 12 a 14 SGQ + %64 (554)
91
de  19e(l —e€?) 14 35€2
@:Ede( 1+§€2+%64 )
131 131
dt 19 e—ed+ @63 — me5
L =2299In(e+ 1) + 1452 Ine + 870 In (1216 + 304) — 2299 In (e — 1)
na=
2299
121 870
Ina=—In(e+1) = In(e— 1)+~ + oo In (1216 + 304) (555)
1 191 .\ 870/2299
—C 12/19 (1 4 121 o . 304870/2299
@m0 e * 304"
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For e = ey, we get ag = Cpg(eq), so we have

12/19

870/2299
ale) = o € 304870/2200 (| 4“2 121 /
( 0)ez—1 304° 556
ag €219 191 .\ 870/2299 (556)
_ 1 -
ale) = Jre )62—1(+304 )
Eqgs. 538 and 559 for e = 0 produce:
dE  32GYPmP «=/% dE 3267w (Gm\"?
dat 5 &ad dat 5 cdl? ad (557)
AL 32G"PpPmP? =y F dE dL
a5 Sdl? ar - ar (558)

Equation 558 relates the energy and angular momentum of circular motion (e = 0). For
(e > 0), we get the equation 555 % < 0 and on an elliptic orbit becomes more and more
circular because of Gw’s emission.

We can rewrite the equations 552 and 553 in dimensionless form, by introducing a length
scale R,, given as

4G3 pum?
R} = — (559)
and the dimensionless variable;
ct ctc® c't
= = = 560
’ R, 4GPum?  4G3pum? (560)
If a(r) = %:) we get
da(r) 16 4G3um? ¢ 1 73, 37,
R, =—— — 1+ — —
dt 5 6 RPN (- 21° T o6
R, dT da 16 1 1 73 37
s — | 4 561
c dtdr 5&3(1—62)7/2(+246+96 ) (561)
da 16 1 1 14 73 . 37
- = _6
dr 5 (1— ) 24° T 96°
drde  764G°um? 1 e (1 L2t 121 )
dtdr 15 5 454 (1 — e2)5/2 4
T 5 ¢ Ria* (1 — €?) 30 (562)

de 761 e - 121

dr — 15a4 (1 — e2)5/2 304°
Where 7 = I%_i is the natural adimensional time-scale in the D.Egs.
The rapid reduction in orbital eccentricity due to the back-reaction of gravitational waves

is a key outcome of the system’s evolution. This effect drives the orbit towards circularity
over time.
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Take, for example, a compact binary system like a neutron star-neutron star (NS-NS)
pair. At the early stages, when the orbital separation is much larger than the radius of a
neutron star, the system is far from merging, and the initial eccentricity, eg, is relatively
high. In the regime where e is small, the relationship simplifies to:

ale) ~ ag (3) o (563)

€0

Which leads to:
a 19/12
e~ (—g(eo)> (564)

Qo

This substantial reduction indicates that the orbit becomes nearly circular unless external
influences disturb the system before the merger phase. As a result, the two stars settle into
an almost perfectly circular trajectory, gradually shrinking in separation.

The time to coalescence is T(ag,€p), and it represents the time required for a binary
system with an initial semi-major axis ag and eccentricity ey to merge. For a circular orbit
(eg = 0), the expression simplifies to:

54
(a0, e = 0) = 7o(ag) = 22—6—@;1“7312“ (565)
where p is the reduced mass of the system.

For systems with elliptical orbits, 7(ag, €9) can be determined by integrating the governing
equations. Integration is performed such that a(t) = 0 when ¢t = 7(aq, eg), or equivalently,
e(t) =0 at t = 7(ao, €p), as the eccentricity approaches zero at coalescence. Using the form
of a(e), the coalescence time is given by:

7(ao,e0) 15 ) 0 a(e)4(1 _ 62)5/2
= dt = ——— d 566
(40, €0) /0 304 GPm2u /eo et Ze) (566)
Substituting a(e), this becomes:
48 [0 gMe)(1 =€)
,€0) = —— [ d 567
7€) = ) 1g i) / St e o
Using the orbital period relation, this simplifies to:
70\ ((Mo\Y? (M,
7(ag, €9) ~ 9.829 Myr <1£r> ( m®) ( H®> F(ep) (568)

Where F(eg) is a function of the initial eccentricity.
The function F'(eg) is given by:

48 1 0 gl(e)(1 — e2)>/?
F = — d 569
(<o) 19 g*(ep) /0 e (1 + %62) ‘ (569)

with
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gle) = (1 + %(ﬁ) (570)

For small initial eccentricities (eg — 0), the result converges to that of a circular orbit,
where F'(0) = 1. In the limit ey — 1, the integral becomes dominated by values near e = 1,
resulting in:

48 1 co 1
F _ — _g*e)(1—€e?)P?d 571
@) To e o a0 - (571
This further simplifies to:
Fl(eg) o< Gleg)(1 — e2)™? (572)

and after some strenuous numerical calculations, we get that
F(GO) ~1

This last statement provides the evidence that for ¢y < 1, we have exactly circular
orbits. When G(eg) is a slowly varying function that approaches a finite limit as e — 1.
Numerically, G(1) ~ 1.80. A plot of G(egy) shows that it remains close to unity for most
values of e.

5.4 Application in Cosmological Distances

The application in cosmological distances has many aspects included. Here we study GW as-
pects in Friedmann-Robertson-Walker spacetime in distances of several gigaparcecs. Further
information can be found in [27| and [69].

Until now, our discussions have assumed that the merging binary systems are sufficiently
close to Earth, such that the effect of the Universe’s expansion on the gravitational waves
(GWs) traveling to the detector could be ignored. However, advanced gravitational-wave
detectors are expected to observe merging binaries at cosmological distances.

On scales of several gigaparsecs (Gpc), the Universe can be treated as isotropic and
homogeneous, approximated by the Friedmann—Robertson—Walker (FRW) metric:

d 2
ds® = Adt* — a*(t) ] Tk 5+ r2d0? + r* sin® 0 ¢y’ (573)
— kr
A light signal follows a null curve, so it obeys:
ds®* =0 (574)

Because of homogeneity, we choose the starting point of the trajectory ry to be ro = 0.
Isotropy makes the choice of 6y and ¢q irrelevant. All geodesics that pass through rq = 0 are
times a constant 6, ¢ so we get df = 0 = d¢ and equation 573 reads:

dr?

:>/t cdt _/TH dr
1 — kr? o at) Jo VI—Fkr2?
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The proper distance to the horizon measured at time  is:

TH TH dr
dutt) = [ Vit = [ a2 (576)

dutt) = alt) [ 5

(577)

where dg(t) = Tphys(t)-
The proper distance to the horizon defines the physical distance for a flat universe (k = 0),
and then we get:
Tohys = a(t)r (578)

Next, if we consider a source located at the comoving distance r, that emits signals
traveling at the speed of light ¢, and is received by an observer located at » = 0. Under this
assumption, equation 575 reads as:

/temis di—5_ — /r _dar (579)
tobs a’(t) 0oV 11— k/r2

Suppose that tonis + Atemis 1S emitted a second wavecrest and received at tops + Atgps. SO we
get:

tobs T Atobs dt r d
/ C_ = / —7’ ( 580)
temis+Atemis a(t) 0 V 1 - er
tobs dt tobs+Atobs dt
/ C_ = / C_ (581)
temis a(t) temis+Atemis a(t)
tobs+Atobs tobs cdt
Lo L[
tem+ Ao tem a(t)

/‘tem+Atem Cdt B /tobs""Atobs Cdt
tem a(t) t a(t)

obs

(582)

RHS in equation 580 remains the same since the source is fixed in the comoving coordinate
system. Finally we impose that the wavelength A is much smaller than ct the time interval
between signals, so:

A=ch L ct (583)
and because of condition 583 we see that a(t) ~ a =constant and equation 582 yields:
1 tem+Atem 1 tobs+Atobs
/ cdt ~ / cdt (584)
atem) Jiom altons) Ji,,
Atem Ato S tO S
~ T At = MAtem (585)
a(tem) a(tobs) a(tem)
Based on 585, we define the redshift of the source as
a(tobs)
1 = 586
+z o(ton) (586)
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From 585 we get:

dtobs = %dtem = dtons = (1 + 2)dt, (587)

for infinitesimal At and t, the tiine measured by the source. Inversely, the frequency
redshift is: . . f

i~ (Ot 2ydt 1= 142 (588)

M C  C = (L4 2)A (589)

)\obs )\5(1 + Z)

The absolute luminosity £ of the source in the rest frame is the radiated power and is
defined as:

dE,
L= a. (590)
The energy flux is defined by:
L
- 591
g 47rd2L (591)

Where dy, is the luminosity distance. The observed energy is redshifted in an expanding
universe as

Eq
obs — 592
b 142 (592)
B 1 dE,
dtobs N 1 +z dtobs
dE s 1 1 dE,
b — (593)

dtors 1421+ 2 dt,
dFE e 1 dE,

dtons (L4 2)2 dt,
At time ¢, the surface of a sphere with comoving radius r is 4wa®(t)r?. When the radiation
arrives at the observer after t,,s, it is spread over an area 4ma®(tops)r?. Therefore, the
luminosity flux is:

B L L
CATa2 (tons)T2(1 4+ 2)2 4wd?
dL = a(tobs)r(l + Z) (595)

dy, in terms of z is expresses as following. We Taylor expend a(t) around the present epoch
t =t

= (594)

— =1 t—1ty) — = t—1t 596
a(t0> + a(to) ( 0) 9 a(to)( 0) + O(3> ( )

We set the Humble parameter in the present epoch to be:

a(to)
H(ty) = Hy = 597
( 0) 0 (I(to) ( )
And the deceleration parameters are:

do = _d(to) L _ _CL(tO)d(tO) (598)

" alt) HE a*(to)



So we write 596 as:

1
=1+ Ho(t —to) — 5Q0Hg(t —t9)? + O(t — to)’ (599)

a(t)

alio) 18:

or inverted using z =1 —

2= Holto—t) + (1 + %) H2(tg— )% + ... (600)
(ty— 1) = H! [z—(1+%>z2+...] (601)
We can rewrite equation 599 with 601 as:
a(t) _ o 1 _ o 2
a(to) =1— HoH;* [z - (1 + 5) 2+ ] - §qOH§HO 2 [z - (1 + 5) 22} + O(2?)
and Hd .
()CL:z+§(1—q0)z2+... (602)

The first term of the expansion in equation 602 is Hubble’s law z ~ %o which states that

c Y

redshifts are proportional to distances. For example, we apply k£ = 0 for a flat universe in
equation 579 and then we get:

tobs+Alobs T4 r ;L
AR K o
. CL(to)
14 2(t) = o(t) =
dz(t) 1 da(t)
g~ o) S a2(t) dt ) - (604)
a0 alty) aft)
dt a(t) a(t)
dt 1 dz
a(t) — alto) H(z)
fobs et 0 cd = d
R A e e - 0%
B gy = (1 zpaltar = 1+ 2)e [ (606)
d% C _i dL
— H(z) dz {1 —i—z] (607)

We want to see the way a propagating waveform at cosmological distances is modified.
We define a local wave zone as the region where the distance ¢y to the source is sufficiently

105



large, so the grows. Field goes as %, but also sufficiently small so the expansion of the
universe is negligible. In the local wave zone during the propagation, the scale factor a(t)
does not change appreciably, so physical distances in this zone are written as:

Tphys = &<temis)r (608)

Where r is the commoving distance.
Egs. 251 and 252 read in the local wave zone as:

hy(ty) = ho(t™) (HTCOSQ@) cos lzw / : dt, ) (t;)] (609)
where
e {, is the time measured by a clock in the source
e t'°* is the corresponding retarded time of the source
° fg({fv) is the associated GW frequency to t
And we define ) N ofp 23
=gz (F) () o
pret
hy(ts) = he(t'") cosi sin [27?/ dt'sfg(jv) (t’s)] (611)

In terms if time to coalescence 7, = t2 4, — t5, we read the dependence of fg(fv) on ts as:

5 1\%8 GM. —5/8
2= () (%) 612

H scalar perturbation ¢ propagates in a FRW metric, following

06 =0= VL_—g@u(\/—_gg“” ,6) =0 (613)

This wave equation is solved on a FRW metric, by introducing the conformal time 7,
given as:

dn = — (614)

ﬁ'n—/dn—/ & (615)

The line element (given in equation 573) is written in terms of the conformal tie as:
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ds® = —c*dt* + a*(t)[dr® + r?d6® + r’sin*0de*] =
ds* = a*(n)[—c2dn? + dr* + r?d6* + r* sin® 0d¢?]

Here

Guv = 2,.2

and /—¢ = —acr?sinf and equation 613 is:

1
F 0 <0
80(\/__ggoy 1/¢) + ai(\/__ggw V¢) =0=
a0(\/__9900 0¢) +ao<\/__ggOi z¢)
+0;(vV=99°0.9) + 0;(V—99"0:¢) =0 =
— 0—12877 [a*(n)r?0,0] + 0, [a*(n)r?0,¢] =0 =
1 [2a(n)Bya(n)r?0,¢ + a*(n)r*d2e]  + a*(n)[2rd.¢ + r?02¢] = 0.

c2

or for [/ = %8nf we get:

3ff—f”—2—a/f,=0
a
. o 1 .
If we write f(r,n) = mg(r, n), we have:

e The first derivative: 1 1
! _ ! - /
fr=——amglrn) + o (r,n)

e The second derivative:

2 1 a(n) , 1

£ = (@) glrm) = " glrin) = 22520/ Gm) + o ()
. 1 () = ——0%(rvn)
T 1) = a(n) rg\T, 7]

Thus, equation 618 can be written as:

a(n)

1 20" 2d’ 2(a)? a” 1 2a
09— 59+ 59 +—59+ 59— —¢" — 59 =0=
a a a a a a
"

339—%9—9”20
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(619)

(620)
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We approximate the solutions in the limit w? > %” we see that %” ~ 77% = w? > %ﬂ and
then equation 622 reads:

0y~ ' =0 (623)

with solution
g(r,m) ~ exp [iiw (77 — E)} (624)
flr,m) ~ ﬁ exp [:I:iw (77 - g)} (625)

8(rm) =~ = f(r,)

1 " (626)
o(r,n) = ra(n) P [iiw (77 a E)]
In the present epoch we normalize the conformal time 7 to be n = t, so we get:
o(r,t) ~ ! exp [:I:iw (77 - fﬂ (627)
ra(toy) c

So a scalar wave through an FRW background simply follows equation 627, a plane wave.
For tensor perturbations h,, we have the propagation equation to read:

D,D"h,, =0 (628)
Following the same steps as in scalar ¢, we get the same equation:
A (g
g (1, 1) e~ _Fi (1) 629
H (T7 ) T@(to)e ( )

In the analysis between Eqs. 628 and 629 we need to impose the condition w? > 77% This
condition defines the background geometrical optics approximation, where w is large w.r.t
n~t. In the BG geometrical optics approximation, all massless particles follow null geodesics.
To leading order:

i) The two polarizations hy and h, decouple, so each one satisfies a wave equation inde-
pendently.

ii) Both hy and h, satisfy the same Eqs. (618 - 627) as ¢.

The conclusion is that after propagation from source to detector, the GW amplitude from
a binary is given by Eqs. 609, 610 and 611.
In equation 610, though, we must write:

2/3
4 AN I
he(te) = ——— (—G . ) (—Wf e (630)

a(to)r \ ¢ c
The geometrical optics condition today is given by 27 fe, > tg ! where t; is the age

of the Universe today. This condition is satisfied by all gravitational waves (GWs) with
wavelengths smaller than the present Hubble size of the Universe.
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Following equation 588, we can write the observed frequency as:

£ = flob(1 4 2), (631)

gwW

where z is the redshift.

/3
4 M 5/3 obs 14+ 2
he(tons) = (G ) (—W oL+ 7) (632)

a(to)r \ 2 c

N\ 2/3
i) = =——— (=5 : (633

C C

If we define M, = (1 + z)M,, we get the following:

2/3
re 4 GMC 5/38 ™ O\Efs
hc(tobts) = E < ) 5 (634)

c? c

The same form as for non-expansible universe but with » — d; and M. — M._.. In the case
of nonvanishing redshift, we reserve the name "chirp mass" for M., not M,.. The dependence
of fégvbs) on typs is given by

3/8 —5/8
gov) _ Ly L 105 142 G M. N
ew 1+278Y 1427 \ 256 tops A

(635)
pom (5 1\ (G
W 1 \ 256 Tops A
with
v d (15N s e\
fg(wb):£<; (ﬁ) Tob?s)/g(g) MB(2) | =
(636)

— ﬂ' —
gw 5 CS gw

flobs) — 90 s (GMe(Z))E)/s [l

Compared to the z = 0 case, we get the modification of fields as below:

. obs (s
i) f(b):1f+z

ii) % in amplitude is replaced by _dLl(z)

iii) M. is replaced by M.(z) = (1 + 2)M..
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5.5 Radiation from rigid bodies

The production of GWs from rotating and precessing rigid bodies is computed in [29]. The
radiation from non-axisymmetric bodies is discussed in [70] and [71]. In [72], the rotating
fluid stars are extensively studied, while in 73| and [74] the back-reaction due to wobble
radiation is discussed.

The generation of gravitational waves (GWs) from the rotation of a rigid body is of
significant importance, particularly when applied to isolated neutron stars. In classical
mechanics, the inertia tensor is introduced as a fundamental quantity that characterizes the
rotational properties of a rigid body. It is expressed as

IV = /d3a: p(Z) (r*67 — 2'a?) (637)
where p(Z) represents the mass density of the body.

The inertia tensor I is a symmetric Hermitian matrix. Through an appropriate rotation,
it can always be diagonalized in an orthogonal coordinate system. This results in a frame
where the components of the inertia tensor become the principal moments of inertia, denoted
by Iy, Is, I3. The coordinate system in which the tensor is diagonal is referred to as the "body

frame," and its axes are called the principal axes of the body. The corresponding coordinates
are denoted by x;. The diagonal components are:

I = /dgx’p(a?’) (rPo' — afa)) = /d3:c' p(z) (:cg/ + x%l) (638)

Iy = /dgx'p(f) (r?0% — ahyh) = /d3x’ p(z') <ZL‘1 + x;f) (639)

Iy = / dia’ p(al) (r?6% — apat) = / @/ p(a) (2 + o) (640)
Adding Eqgs. 638 and 639 we get:

111+]22 = /dgl'/p< )[.Tl +ZE2 +2.T3] = /d?’x/p(x')(x/f—i-x;?) = [33 = [11+[22 Z I33 (641)

The quality in Egs. 641 holds only if p(z’) = §(x3). We consider a simple geometry of
an ellipsoid with semiaxes a,b,c, and uniform mass density p(z’). We denote the density as:

Ny M 642
And the ellipsoidal equation is
ﬂ L3y 5 ~1 (643)

b2

’
We set z) = I xzy = %2 and w3 = £ and rewrite the above equations as:
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I = /d3$/ I% o be (V’as + Fa) =

///abcdxldedx3(b r2 + Arl) =

abc
3m ’ ’ 19 19 ’ ’ 1 9 19

Iy = ym dz, [ dxy | dxg b2y + [ dxy [ dzy [ dog x5 | =
3Im R s 2m R T 2m

I = — { / dr / dé / do b*r? sin 02 sin? @ sin” ¢ + / dr / do / d¢ ¢*r*sin 0r® cos® 0
A Jo 0 0 0 0 0

ROmb? R°mc® p—y

Ill -

=
11 5 + 5
m
Ill = g(bQ + 02)
(644)
Iy = /d‘rix’@rl(a%/2 +Paf) 2=
?abc
3m 2m )
Iy = - dr r? d9 sin 0 do (a®r*sin® fcos¢ + c*r? cos? §) =
™
3m 1 ° 2m 1 2w
Iy = —~— [a2/ dcos@(l—cos2 9)/ d¢ COSQ¢+C2/ dcos (30829/ dqﬁ} =
dm 5 -1 0 -1 0
122 = %(Cﬁ + 02)
(645)
]33 = /d3$/4377/; (a2x/12 + b2$’/22) %
3m o 2 2,2 646
I33 = — 1 dr'r dcos& do (a®r*sin® fcos¢ + b*r? sin® O sin” ¢) = (646)
™
133 = ??51(@ -+ 62)

If we consider a rotating body with angular velocity w, it will have angular momentum
given as:

In the body frame, we denote by JZ-/ and w; the components of angular momentum and
velocity, respectively. So we have:

J{ = [lel
Jy = Tngw, (648)
J:; = 133(,0;)
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Figure 5: The principal axes (2}, 24, %), which rotate with the rigid body, and the fixed axes
(21, 22, x3), adapted by Maggiore’s book, Gravitational Waves [15].

The direction of & is different from the direction of J unless either I 1 = Iy = I3 (spherical
objects) or the rotation is around one of the principal axes, e.g., when w; = ws = 0. The
rotational kinetic energy is

1
Eioy = §]ijwiwj (649)

So, in the body frame, it is given simply by

1 ! ! !
Erot = 5 ([11&)12 -+ [22w22 -+ 1330032) (650)

Finally, we can define the moment of inertia about the axis of rotation as follows:
If @ is the unit vector in the direction of the axis of rotation so that & = ww, we can
write equation 649 as:

E. = ijij(ﬁic‘jjwz =
2 (651)
Erot - _]w2
2
with

Rotation around a principle axis

We now consider a rotating rigid body around one of the principal axes. The coordinates
in the body frame are :13; The body frame, by definition, is attached to the body and rotates
with it. And the origin of the fixed and the principal axes coincide with the center of mass
of the body.
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As shown in the figure above, the axes between the time frames are related by the
following rule:

Ty = 1(— sin (wrett)) + T2(cos (wrott))

21 = 21(c0o8 (Wrot)) + x2(sin (wrott))

or by the time-dependent rotation matrix

cos(wyott)  sin(wrett) 0
Rij = | —sin(wyott) cos(wyett) 0 (653)
0 0 1
used in
x; = Ry, (654)

we denote by I;; = diag(l1, I5, I3) the inertia tensor in the @, 7y, 75 coordinates system
and by [;; the components in the z;, x5, 3 coordinate frame.
[gj is a constant matrix and I;; is time-dependent. The moment of inertia is a tensor and

implies that:

I; = Ry Ryl (655)
I,; = (RIRT); (656)

So in the matrix form, we have
I'=RIR" = I =R'TR (657)

/ .
Ty = T COS Wrotl + Xg SIN Wyott
/ .
Ty = —T1 SIN Wyetl + T2 COS Wit

’

1= leIklRll = RlllllRll + R12[22R21

I
.711 = I11 c08? wyoit + oo Sin? wyoet
]11 = 111 co8® Wrot + Tog(1 — c0os? wWroil)
]11 = (I11 — I5) cos? Wrott + Ioo
y 1 1 (658)
I, = (I1; — 1) 3~ §COS 2wrott | + Lo
, 1 1 1 1
Ill = 5111 — 5[22 + 122 — 5111 COS 2wr0tt + 5[22 COS 2wr0tt
p 1 1
]11 = 5(]11 + ]22) — 5(]11 — 122) COS Qwrott
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]12 = Ryl Rip = Rinlii Rig + RigloaRoo

/ . .
L5 = I11 COS Wyotl SIN Wiot? — To2 SIN Wyt COS Wit t
/ 1

[12 = 5([11 — 122) sin QCdrott

];2 = RoplpRip = Roil11Ria + Raolas R,

[éz = — 11 sin? wget + Iyo cos? Wrotts
/ I — I
Iyy =1~ % cOS 2Wyott.
];,3 = I33
while
i3 =0= I

(659)

(660)

(661)

(662)

In the Quadrupole approximation, the GW amplitudes depend on the second mass mo-

ment M%.Comparing the formula that define M% and I, we see that

Mij _ _Iij + cij

(663)

and MY, IV are traceless. Based on equation 663, we rewrite Eqgs. 659, 660 and 661 in

terms of MY as:

I, —1I
My, = — 2 os 2wrott + 11
I, — 1
M12 = —% sin 2wr0tt + C19
I, — I
MQQ = % COS mett =+ Co9
M3z = —1I33 + C;,g = C33

Mis = c13 & Mz = ca3

with ¢;3 constants. The second time derivative of Eqs. 664-668 yield:

. Iy — 1
Mll — u COS 2wrott(4wfot)
. I, — I
M12 — % sin 2Wrott(4w1?ot)
. Iy —1
M22 — e sin 2wr0tt(4w1?ot)

Msg = Myz = Mys =0
Eqgs. 251 and 252 read:
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(666)

(667)
(668)

(669)
(670)

(671)
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G .
[Mll(cos ¢ — sin? ¢ cos? i) + Moy (sin? ¢ — cos? ¢ cos? i) — Mg sin®i—

he(t:0,¢) =
M5 sin 2¢(1 + cos?i) + M3 sin ¢ sin 2i + Mo cos ¢ sin 2i
(673)
4G I —1 .
hy = wat L 5 2 {cos Qrort(cos’p — sin? ¢ cos? i — sin? ¢ + cos? ¢ cos? i) —
c
sin 2wyt sin 2¢(1 + 00522')]
4G I —1
hy = ij;"t L 5 2 {cos 2wyort (cos” ¢(1 + cos® 1) — sin® P(1 + cos® 7))
c
— sin 2wyeet sin? (1 + cos? z)]
4GW2, Iy — I , .
hy = oot el 5 2 (1 + cos? i) {cos 2rort (cos? ¢ — sin? @)
— sin 2wyt t sin 2(4
4G 1 2
hy = Rwrt (I; — hﬁ% [cos2wmtt €08 2¢ — sin 2w,oit Sin 2¢]
4Gw?, 1+ cos?i
h_;,_ (t, 9, ¢) Rl t (Ill IQQ)T COS (2wr0tt + ¢) (674)

2G
(MH — MQZ) sin 2¢ cost + 2 M5 cOS 2¢ cosi — 2M, 3 cos ¢sini — 2 Mo sin ¢ sin z]

4G
hy = R(th (I — 1) cosi[2 sin(2wyort + 29)]
(675)
In Egs. 674 and 675 we see GW amplitudes with period wgy, = 2wyot. The fact that
hy ~ %(1 + cos?i) and hy ~ cosi is a generic property of Eqs. 251 and 252, whenever

My = My & My =0 Vi = 1,2, 3.

Next, we define ellipticity

I, — I
e= L= (676)
I33
For a homogenous ellipsoid with semiaxes a,b,c, we have:
a—>b
€=
c
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and in the small asymmetry limit, Eqs. 638 - 640 produce:

’ / / /
5, [(VPxd + Frg —a*r? — Pag
e= [ d°x =
201 4 p2402
a“ry + 0°x5

b2x2 — a’x'?

_ 3 2 a

€= /d v (a%'z + b%q) =
1 2 (677)

o v —a® (b—a)b+a) (b—a)2a N

2 +a? b2 + a? a 2a2

b—a
€ =
a

Finally, Egs. 674 and 675 read:

4GwW2, 1+ cos?i
h+ — RC4 (]11 — ]22)7 COS (2wrott) =

4Gw2, (b—a 1+ cos?i
o Am*f2.G (b —a I 1+ cos?i (unont) = (678)

p= - 23 5 o8 (2wrot
1 23
hy = hyg <$> oS (2wyott)
with ho = 2= Je (b=0) L. and Eq. 675
4GW?, .
hy = T (111 — Ia) cosisin (2wyot) = (679)

hy = hgcosisin (2wyot)

The radiated power in GWs is given if we insert equations 669 - 672 in the radiated power
expression of Chapter 3:

G ... .. 1

B NP
Piuaa = ﬁ(MijMij - g(Mkk) )
Pawaa = =5 (M1jM1j — 5(Myy + My Ms)) + Mo Maj + Ma; M
Pyuad = ﬁ(MllMll + MyoMyg + Moy Moy + MogMos) — §M11 - §M22
Pouad = 565“”(111 — I59)?(2 cos”® (2wret) + 28in” (2wret))

16GwWS
Pquad = %262]??3

32Ge?

Pquad = _?1323(")1?013
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dE.  32G .

dt = 5¢5 E2[§3wrot (681>
Eq. 681 produces the rotation energy decrease of a star because of GW emission.
32G
Wrot —ﬁﬁzlggwrot (682)

Eq. 682 shows the decrease in rotational frequency of a star because of GW emission.

5.5.1 GWs from freely precessing rigid bodies

In astronomical objects, the rotation axis does not coincide with a principal axis is and the
motion is a combination of rotation and precession. We introduce a fixed reference frame
with axes (21,2, 23). In this inertial frame, the angular momentum of the rigid body J is
conserved, and we choose the x3 axis in the direction of J. Next, we introduce the body
frame, a reference frame attached to the rotating body with axes (2}, x}, x%) that coincide
with the principal axes of the body. The two frames are related by the Euler angles («, 3, 7).
The pass from fixed to body frame is done as follows: We perform a counterclockwise rotation
by an ample [ around the x3 axis on the (x,z5) plane. This way, we bring the z; axis on
the line of nodes. The line of nodes is the intersection of the (z1,x2) and (z,z}) planes.
Next, we rotate around the line of nodes by an ample « and bring the z3 axis to z§. Finally,
we rotate around x4 by an ample 7, so we bring the line of nodes to the z/ axis. Therefore,
we have z; = R;jx;, but now the rotation matrix is more complicated. The rotation matrix
R is given by:

cosy siny 0 1 0 0 cosf sinf 0
R= | —siny cosy 0 0 cosa sina —sinf cosf 0 (683)
0 0 1 0 —sina cosa 0 0 1

The full motion of the rigid body is specified once we know how «, 3,7 evolve with time.
The fixed frame, the angular momentum J is conserved, but in the non-inertial body frame
is not. We orient J along x5 axis, so .JJ = (0,0, .J) In body frame we have (2, 2%, 24) and the
components of angular momentum are: (Ji, J5, J})

J! 0 J{ = Jsinasiny,
Jy| =R| 0| =< J,=Jsinacosv, (684)
Js J Ji = Jcosa.

To compute the components of angular velocity wj in terms of Eulerian angles and their
derivatives, we need to compute analytic expressions for ¢, 3 and 4. The & angular velocity
is orthogonal to the (z3, %) plane, so it lies along the line of nodes and has components in
the body frame that read:

da

i (&vcosy, —asiny, 0) (685)
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Similarly 5 has components:

a8

- = (Bsin asiny, B sin o cos 7y, [ cos a) (686)

and ‘jl—f = (0,0,%). The total angular velocity is:

W= (fl—j: + % + CCZZ_Z (687)
So in the body frame, the components read:
W) = ércosy + fsinasiny (688)
wh = —csiny 4 Bsin a cos~y (689)
wh = Beosa+ (690)
(691)

The angular momentum in terms of the inertia tensor components in the body frame is
written as:

J| = Iy = Iy (dreosy + Bsin asiny) (692)
Jy = Inpwh = Ipp(Bsinacosy — i siny) (693)
Ji = Isswly = Isg(y + Beosa) (694)

Comparing Eq. 683 with Eqgs. 692-694 we get:

a: Iy (ccosy + Bsinasiny) = Jsin asin~y (695)
b: Ipp(—dsiny + Bsinacosy) = Jsin asiny (696)
¢: Iss(y + feosa) = J cosa (697)

Egs. 695-697 provide the first order of equations for («a, f3,7) variables and constitute the
first integral of motion provided the angular momentum conservation.

Wobble radiation from an axisymmetric rigid body

For an antisymmetric body, with longitudinal axis z that makes an angle o with the
angular momentum axis x3, we get the angle o to be called "wobble" angle and the corre-
sponding GW emission called "wobble radiation". Since the rigid body is axisymmetric, we
have I1; = I5; and in Eqs. 695-696 we get:

I (dcos? y + Bsinasiny cosy) = Jsin asiny cos )

Iy (—dsin® y + B sin asiny cosy) = Jsin asiny cos )
And subtracting:

I11(—c cos® y + csin® y + Bsinasin’ycos*y — Bsinasin’ycosv) =0

Li(@)=0=a=0 (698)
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Eq. 698 tells that the inclination of the 2% axis with respect to the angular momentum
J is constant.
Again
L1 (dcosysiny + Bsinasin?4]) = Jsin asin?y

Iy (—dsiny cosy 4 Bsinacos?y]) = J sin a cos?

Adding now we get:

L fsina = Jsina. (699)
In Eq. 699, if a« # 0, I1; = é = 3= % so the angular velocity of 2 rotation is constant
about the direction of .J. We define 2 as
. J
Q=0F=—. (700)
Iy

In Eq. 699 we supposed that o # 0 and & = 0 thus « is a constant and cos @ and sin «
are constants as well and since (3 is constant (Eq. 700) we get from Eq. 696 we get:

Iss(y + Bcosa) = J cosa = 4 = constant

Again if J = I,1 4 is inserted in 696 we get:

Is3(7 + A cos a) = 1118 cosa
I3z = (I — I33)B cos

Is3 (701)
Iy — 1
v = B0 cosa
Is3
Iy — 1
—y = B Ocosa= W
Is3
We define w, = —7, since oblate objects satisfy I33 > Iy, which is the normals shape of

astromical objects, so w, > 0 Inserting & = 0,8 = TJl = () and —doty = w, in Egs. 688-690
a,b,c we get:

W) = @ cosy + Bsinasiny = T sinasiny = Qsin « cos (wpyt) (702)
11

wy = sin a cos (wpt) (703)

wy = Qcosa — w, (704)

In the body frame, the angular velocity rotates in the (z), z) plane, so it precesses around
the 2 axis with angular velocity w,. In w, > 0, then precession is counterclockwise. We
observe that

Is3 — 1
T = Il | _ ol

I3 — 1T I
| I35 n| < Isg = Tns 0

<1= Q> |w, (705)
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Condition 705, when satisfied, describes a free precession that takes place in the absence
of external torques: The components of the inertia tensor read

Observation 1

1

I, = 5(]11 — I33) sin? a cos 23 + constant
1
112 = 5([11 - [33) Sin2 asinQﬂ
1
Iy = —5(]11 — I3) sin® a cos 23 + constant
Iy = —(I1; — I33) sinacos asin 3

I3y = (I — I33) sinacos acos 3

Ity = Iy sin® a + I33 cos® a = constant

1. 77 does not enter Fqs. 706-711.

it. a is a constant, so time-dependence manifests in [5(t).

We choose the origin of () to be at

In Eq. 676 we have M;;

t=0= B(t=0)=0

= —I; + ¢ij So Eq. 711 gives

1
M, = 5(133 — I11) sin® a cos 23 + constant

1
My = 5(1'33 — I;1) sin® asin 283 + constant

1
MQQ = —5(]33 — 111) SiIl2 v COS Qﬁ + constant

M13 = —(133 — .[11) Sil’lOéCOSOéSil’lﬁ
Msys = (I33 — I11) sina cos accos 3

M35 = constant

And the second time derivative produces:

My = 2Q%(Iy; — Is3) sin® o cos (2Q1)
Myy = 20%(Iy; — Iss) sin® asin (20¢)
Myy = —202(I;; — Is3) sin® a cos (2Qt)
Mz = —Q?(I1; — Is3) sin a cos asin (Qt)
Mz = Q3(I1; — Is3) sin a cos o cos (1)
M;3 =0
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Note that some terms oscillate as cos 202t or sin 2Q2t and a few as sin {2t or cos {2t. This
means that GWs are emitted in two frequencies wgy, = 22 and wg,, = 2. The emission in
wew = {2 frequencies is due to the motion of precession.

The GW amplitudes h, and hy are calculated using Eqs. 251 and 252:

aQ .
hy(t;i;0 =0) = T —[Mi1(cos? ¢ — sin® ¢ cos?4) + May(sin® ¢ — cos® ¢ cos® i) —
Mz sin? i — My, sin 2¢(1 + cos? i) 4+ Mz sin ¢ sin 2i + Mg cos ¢ sin 2i]
2G0?
hy = F(IH — I33)[sin® v cos (2Qt) + sin « cos(2Qt) cos® i+ (725)
5 sin av cos o cos () sin 2]
hy = 2h{sin? a cos (2Qt)(1 + cos® i) + 2sin o cos asin i cos i cos ()
hy = Ay 5cos20t + Ay 1 cos U
with .
hy = oo (I = In) (726)
A1 = hysin2asinicosi (727)
A, o = 2hfsin® a(1 + cos® ai) (728)
: G
hy(t;1;0 =0) = Tt [(MH — MQQ) sin 2¢ cost + 2 M5 cOS 2¢ cosi
— 2M;5 cos ¢sini + 2Moas sin ¢ sin z} ,
2G0?
hy = oo ——— (111 — I33) [2 cosisin? asin(2Qt) + sin i sin a cos asin(Qt) |, (729)
hy = hy [4 cos i sin? asin 2Qt + sin 7 sin 2o sin(Qt)}
hy = Ay 18in (Qt) + Ay 28in 20t
with
Ay 1 = hysin2asini (730)
Ay o = hjsin® acosi (731)

In Eq. 729 ¢ corresponds to the rotated time, and we get GWs radiated in both wgy, = 2
and wgy, = 262

The ratio . o .
Ay h{sin2asinicos?

= = ' 732
Axa h{ sin 2acsin i oSt (732)

and the ratio
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Ayo  2hpsin® a1+ cos?i) 3+ cos2i

. 733
Ax 2 4hg sin? o cos i 2cos1 (733)
The ratios 732, 731 produce the inclination angle 7, which by definition is 0 < i < 7.
Given ¢, we next determine a and fix |hg.
Finally, if we know the distance R of the source, we can determine |I1; — I33]. The power
radiated is given by Eq. 77, and taking another time derivative in Eqs. 719-724 we get:

My, = —4Q3 (11 — I33) sin? asin 20t (734)
My = 4Q3(1; — Is3) sin® o cos 20 (735)
Moy = 49°(I1y — I53) sin® v sin 20 (736)
Mg = —Q3(I1; — Is3) sin a cos a cos () (737)
Moy = Q*(I1, — I33) sin v cos avsin (Qt) (738)
Mz =0 (739)

Observe here that MH = —Mgg, SO

And the relation of emitted power reads:

G .. 1o
Pquad = @(M’LJMZ] - g(MKH) >7
Piuaa = §<(M11)2 + (Ma)? + (M33)? + 2(M12)* + 2(M13)* + 2(M23)2>7

Qb (741)
Puuad = ﬁ(ln — I33)? (32 sin® v + 2 cos? asin® a),

2GS
Puuad = ?([11 — I33)? sin® a<16 sin? o 4 cos? 04) .

The back-reaction of GWs
Based on Eq. 741, we write the radiated energy in GWs supplied by the rotational energy
E.o of the rigid body as:

dE..  2G . .
_ t_ ;(11 — I3)?sin® a<0052 a + 16 sin? a). (742)
c

The angular momentum radiated is given for Q;; — M;; and J' = J? = J, we get:
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d_‘]3 _ 2G 3kl
dt quad 565

dJ o
=2 (@0 + (D)

dt quad

(743)
dJ _2G el
<M2aM1a MlaM2a>

<QalQak>

% quad 505
dJ 4G
E quad - _R<M2aM1a>

Inserting Eqs. 732 we get:

dJ 4G
U lquad —ﬁ<M11M21 + Myo Moy + MyzM o),
4G
= _ﬁ<89 ([11 — ]33)2 SiIl4 « COS2 (QQt) + 895([11 - ]33)2 sin4 « sin2 (QQt)
c
+ Q°(I1; — I33)? sin® o cos® asin? (Qt)), (744)
4GV
i ———(I11 — I33)* sin® a((8 sin® &) + cos® av(sin® (Qt))),
2GQ°
T (I11 — I33)? sin” (16 sin” o + cos” av).
Comparing eqgs. (744) and (742), we see:
dE, ot dJ
- 0= 4
dt quad dt quad (7 5)
and Eq. (744) for J = 1113 produces:
- 2G (I — I33)? .
= (= —5(11]—33)55 sin? a(16 sin® o + cos® @) (746)
c 11
The D.E. for a reads from Eq. (704) for
W = S = J sin asin
T I !
p
Wy = — sina cosy
21
w; J si
= —sinaw
5 I
So we have
1 /7 ’ ’
Eior = 5(—7111012 + Lywy + Izzws)
1 sin®asin?y  sin?acos?y  cos’a
By = 2J° ( + + )
' I I I33 (747)
J? (sin’a  cos®a
Ero - 5
£ ( I * Is3 )
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With time derivative:

dE, o . (sin®a  cos®a J26 (2sinacosace  2cosasin o
—JJ + + +
dt ]11 ]33 2 ]11 133

2
- —G(IH — I33)%3% sin” a(cos® a + 16 sin’ )
2

5c5
[ 2G : in”
=11 <—ﬁ(111 — I33)*° sin® a(cos® a + 16 sin” 04)) (811111106 + c023a> (748)

4 11215204 [SiIlOéCOS Oé(]g3 — ]11)] -

2 Iy 133

54 ]121 1323
505 IH

sin v cos a(cos® o + 16sin” o)

Next, we see that due to the ba,ck—reaction of GWs, both the inclination angle o and the
angular velocity 3 decrease. The term 4(J cos ) is:

/

dJ
—(Jcosa) = —cosa — Jsinaa
dt dt
i —(In — I33)*Q° sin? av cos a(cos® a + 16 sin? @)
749)
26 21112 (
+ ﬁ(ln — I33)? }1 Q*sin? a cos a(cos® a + 16 sin® a) =
11
d(Jcosa) 0
.
Jcosa =ct (750)

which shows that as J | then cosa 1 and J cos « is constant.
The projection of angular momentum on % is denoted by J cos«a, and we see that the
rigid body rotates around its longitudinal axis with constant velocity

And the rotation remains unaffected by GW backreaction. Based on the above, we introduce
a timescale:

-1
_ 2,

T, = [%%51 (751)

2G (I11 — I33)* [ fo ! 759

=15 I \or (752

For this time scale the rigid body aligns its rotation axis with the angular momentum’s
direction for a — 0, while the rotational angular velocity f = 2 around 3 decreases toward
the constant value €2 cos «, and the rotational velocity wj = 2 cos «v is constant.
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5.6 Radial infall into a black hole

GWs can also be produced after an object falls into a black hole radially. This subject is
discussed in reports [75], [76], and [77]. The complete energy spectrum is computed in [78§]
and [79].

5.6.1 Radiation from an infalling point-like mass

We want an expression for the radiation generated by a point-like mass m, radially falling
into a BH of mass M with m < M. We super-simplify this example by using linearized
equations for GW production and Newtonian equations of motion. In general, this is not the
correct way of doing it, since in linearized theory we expand around a flat space instead of
a Schwarzschild and Newtonian equations of motion should be the Schwarzschild geodesics.
In this case, for a particle coming from the positive values of the z axis, with zero velocity
at infinity, we write:

=0 (753)

2 z

2GM 2G M\ ? / /
:>22:G—:>\z|:c(G2 > = |2 =c %:»é:—c Ll (754)
z Cc°zZ z z

Here we also assume that most of the radiation is emitted when the particle is non-
relativistic, and we therefore use the quadrupole formula. The above assumptions are valid
for distances z > R, since at z = R, or z close to the BH horizon, they break down.
Equation 754 is incompatible with non relativistic particle assumption at z = R, produces:

Z=—c (755)
However, at large distances, the flat space Newtonian approximation is correct, and

the above equations become legitimate. We compute radiation emitted from z = +o0 to
z = R > R,. Here we have only one condition z; = z(t) and the second mass moment reads:

MY = mz' ()2 (t) =

756
M = mz*(t) (756)
Then we can produce the following:
2 G .. ...
Pquad = Eg<Ml]MU> =
2 G, .2
Pquad = EE<M33> =
(757)

26m? (&, \°
P = 2 ((7°0) )

Pquad = 15¢5



Equation 757 produces the total radiated power. In the quadrupole approximation, the
total radiated energy is:

tmax dE tmax 2Gm2 tmax o e
o /_Oo at’s = —/ Ppna =~ | dr(@E+2:EP (759)

with tpax @ 2(tmax) = R. Using chain rule for dt = % and Equation 754 and the third
derivative of it:

—0o0

R, . R,
f=—cy| = =2 =22 (759)
z 2
2 2
s ) Ry .
= 2% = — 220 = ZZ = —6222 z (760)
AR, 2 (R, . N
Z — = Z
2 23 23
.. R, R,
. AR
Z = —W

Equation 758 reads in terms of Egs. 759 - 761 as follows:

1 2
2Gm? [m dz R\Z , 1 5 3/0n 1
— haind s — /2
5o | 6c ( . ) c R82z2 +22(—c’R*)— 7P

z
t 2
gy [ 2]

1565 o 2 292 252

_ 2Gm 6R3 /tmax %i _ 2GmQCR§ /tmax dz 21/2 l
1565 e 2 2P 15 o CRYZ5
2R [ 1

-1 / o 22

Setting v = Ris = 2z = vR, with

2(t=—-00) =40 = v— +o0,
Z(tmax) = R = v—>R%.

26 2R§/2 R/Rs Rs 2% 2 R/Rs
E = _m—/ = m duu=2"?
15 o 092RY 15R,
2 —7/2
_2m 2 (R (762)
15R, 7 \ R,

AGm? (R
~ 105R, (E)
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We can extrapolate the result of Eq. 762 at R = R,.

4 Gm?* 4 Gm*? 2  ,m

R GE (763)
Elg=p, =0, 0019m02%

E’R:Rs =

The extrapolation of equation 763 is remarkably close to the relativistic results.

Eyetar = 0.010me? % (764)

This is possible because outside the BH horizon. The particle’s motion is dominated by
the lowest orders in the multipole expansion. Also, the rest energy inside the horizon is
decreased by a factor 7;. With equation 764, we can calculate the radiated energy in GWs
in the head-on collision of the BHs with equal masses M. The reduced mass in this case is
M /2 and equation 764 produces:

M
Erelat = 0, 010%8% (765)

Erelat = 0,0025M¢* = 2,5 - 107° M ¢?
The result is quite close to the expected value
E'=(1-2)x107°Mc? (766)

The frequency spectrum of the radiation emitted by a radially infalling particle is the
Fourier transform of a function F'(t), well-defined on the interval —oo < t+o00 The Newtonian
approximately is valid up to a value t..y, sud that 2 t,,, = R > R,. Therefore, the
Newtonian approximation does not represent the full form of the spectrum. A typical system
with size d and velocity v radiates GWs with reduced wavelength X ~ %. When the particle
approaches the horizon, the size d is of order R, and v ~ ¢, so A ~ R,. On the other
hand, at R > R, the length-scale is of order R and v < ¢, so the system radiates at
A~ % > R > R,. With the Newtonian trajectory, we compute only the part of the
spectrum at A > R, = % > Ry = % > R, = wRs > c. The complete spectrum peaks
at wRs ~ ¢, with the radiation at these frequencies being generated close to the horizon and
cut off at wRy > ¢, because there is no length-scale smaller than R,. The first step is to
solve the equation of motion in equation 754

%21/2 = —cR!/? =

dt
t t
/dz z1/2:—cRi/2/dt:>
to to
SR RY2(t —to) = cRY?(ty — t) = o
321, o) = o

3c

() — 2¥2(tg) = S RY(E — to)
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22(t) = gcR;/%O + 23(tg) — %CR;/% =
H2(t) = SeRM(E 1
Again at t - —o00 = 2(t - —00) — +oo and
t = tmax = 2(tmax) = R

3 - _ 2R3?
R3? = ZcRY*(f — tiay) = tmax =1 — ——
27 3cRY?

If we insert the variable 7 = ¢t — t we get:

3cRy? 3 20
B2(r) = C2 T=2(1) = (§R§/207')

Since —00 < t < typax = +00 >t —t >t — tha. From eq. 770 we get:

2R3/2
W <7< 400

The total radiated energy is in terms of M ij

= dt(Mgg) = —

- 1565 ),

2G tmax 2 2G /'tmax .2

we can write Mas(t) = mz2(t) = Mas(w) = m [ dt22(t)e™" as a Fourier transform.

e tmax . Wmax d ~
gy = m® [ A = [ S () =

—00 —00

and Eq. 773 reads:

Recalling eqs. 759 - 760 we see:

.. —_— 2
Mas(t) = m(3* + 22) =m (02& i Rs)

z 222
y 1 2R, 2 \*?
Mis(t) = me Ry = "5 N
22 2 3R ?cr

(768)

(769)

(770)

(771)

(772)

(773)

(774)

(775)

(776)



with 7 € [Ty, +00). The Fourier transform of Mas(t) is:

~ 2Rs 2\ 2/3 400 ]
Ms3(w) =m ( 3C ) / dre T r=2/3 (777)
When v = wr and dv = wdr we take:
~ 2Rs 2\ 2/3 00 )
Mg = mw™/? (TC) / dv v=8e (778)
The leading term is obtained by approximating wp, to zero and setting I = [ dvv=2/3e~"
so we get:
/ dv v™2B8e = —i/ dv v™23 (—i)72Bev
wTmin 0 5 . (779)
[=—e 52T(=
200
Thus, eq. 778 we get:
o 2R5 2 _1/3 s
Mz = —mw™ /3 (Tc) I'(1/3)e" ¢ (780)
And eq. 775 reads:
4G [ dw _ 2R,c? —2/3 1
" e g ( 3 ) rG =
0 (781)

dE. Gm?_, 1, (2 RN
= r2(2) (2
dw dme 37\ 3 c
5.7 Tidal disruption of a real star falling into a BH. Coherent and
incoherent radiation

The suppression due to tidal disruption is analyzed in [80] and [81|. A point-like particle
is an idealization, and in astrophysical applications, we are interested in the infall of an
extended object, i.e., a main sequence star, a white dwarf, a dwarf, or a NS. Because of tidal
disruption of the star falling into a black hole, the radiation can be emitted incoherently, and
this reduces the GW amplitude by many orders of magnitude. Qualitatively, the difference
between coherent and incoherent radiation is understood in equation 7?7. The radiated energy
Fis E ~ mﬁg, where in the reduced mass of the particle-BH system. If an extended object
has N particles of mass dm, we get m = N NJ,,. If the N particles radiate in a coherent
way as a single object of mass m, we see:
coher. m2 2 5m2

The N? dependence can be understood by observing that the total amplitude of the GWs

is the sum of separate amplitudes as: hy = Zfil h;. When the radiation is coherent, we get
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Figure 6: An infalling star of radius a is tidally deformed by the black hole when it enters
within the tidal radius 7q.. By the time the horizon is approached, the star is an ellipsoid
with semimajor axis ay, adapted by Maggiore’s book, Gravitational Waves [15].

the same phase in hi, Vi s0 hyge ~ N and the radiated energy is E,qq ~ hior ~ O(N?). On
the other hand, incoherent radiation comes from the destructive interference of off-diagonal
terms, leaving only diagonal terms > h?i. In this case, the incoherent radiated energy is:

(0m)*> I (Nom)> I m?

M N M NM

So E incoherent is smaller by a factor N than Ecoherent. Whether a distribution radiates
coherently or not depends on:

Ecoher. ~ N

(782)

i. the wavelength of the GW we consider

ii. the linear size « of the system.

If « < A, the phase of GW does not change appreciably over the source, and the radiation
is coherent. If o > X, the phase of each simple consistent oscillates strongly over the system,
and the mixed terms cancel. (averaging to zero), So the radiation is coherent. The transition
between the two regimes is governed by a form factor. The distortion of the shape of an
infalling star by the tidal grow field of a BH. Any star is held together by self-gravity. We
model a star of mass m as two particles of mass % orbiting in circular orbit of radius « as
shown below:

where the BH has mass M at distance r from the c.o.m. The tidal force that disrupts

the star is:

m

GM(%) GM(g)

+a)?—(r—a)?
Fria = ——24 — o P = M ([ |
tidal (r—a)Za (r+ ) tidal <2> (r—a)?(r+ «a)? (783)
Ftidal ~ QGMm—3
,
When Fiiga is bigger than Fgy, the star breaks down so
a  G(g)
2GMm— > —2
= (2c0)?
2
rng < 8a*Mm = (784)
M
r? < 3203 —
m
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M\ 3
r < Tl = V320 (—) (785)
m

The numerical coefficient depends on the schematization of the extended object.
When we consider a sphere of mass m, mean radius a, and constant density, we get:

M 1/3
Ttidal = 2, 2 <—> a (786)

m

The star’s radius is far away the from BH, when it is near the horizon, it has radius
ap. We estimate the order of magnitude of a; using the Newtonian trajectory for a radially
infalling particle along the z-axis. From 767 we get

; 2/3
2(t) = |2 + 5R;/Qc(to - t)]

Variation w.r.t. z produces:

§(2%) =90

3
2% 5R;/?c(to - t)]

52(t) = (%)1/2 52

Eq. 787 shows that two points at time ty, that are separated by dzy radial distance, at
time ¢ will separate by dz(t). Then t; is the time when the star is an ellipsoid with semimajor
axis ay, given as:

(787)

a, = [ [tidal 1/2a (788)
= R.

The evolution of the shape of the star as it plunges toward the BH is shown below:
When a main sequence star of a star of mass 1M has a radius a = 7.105 km. If it falls
into a BH of 10M and Rg = 30 km, we have the tidal radius is given by:

Ttidal = 4, 7a (789)

and

(redal Rs)"? = 300. (790)

Most of the radiation is emitted while the star is close to the horizon, so it has a ay, size
in the radial direction. A source radiates coherently only when XA > a;, = a, equivallently
ﬁ >a,=> WK i We define a parameter that governs the loss of coherence as

. 1/2
Aw) = % - % (7’%‘?) (791)




2a . .
infalling star

Ttidal
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Figure 7: An infalling star of radius a is tidally deformed by the black hole when it enters
within the tidal radius 7q.. By the time the horizon is approached, the star is an ellipsoid
with semimajor axis ay, adapted by Maggiore’s book, Gravitational Waves [15].

When A(w) > 1, we have incoherent radiation, while for A(w) > 1 we get coherent
radiation. In the o — 0 limit, we get A(w) — 0 and the point-like result. Based on
Shapiro’s calculations, we see that the peak in frequency is at w = @ ~ 0,84¢/R,. When
Alw) < 1 we get:

wL — =

0,04 o € 792
R a (792)

0, 64c < 1
RS ap

When condition 792 applies, only the high-frequency tails of the point-like spectrum are
suppressed. Although the contribution of high- frequency tails is negligible, since they are

0 64 < we get the same total power radiated

as in the point-like mass case. On the other hand when M > ah , we get incoherent

radiation suppressing the coherent parts, where the peak lies and the power is concentrated.
We can redefine A(w) as

§ San 0,64
Aw) = wzh > G (793)

wap Td11/2
T/ tidal
A(w)_T(R>

Aw) = Ris <%)1/2

Parameter A in 794 shows the suppression of total radiated power:

(794)
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_ 1/2
When A > 1, the radiated power is strongly suppressed, where (%) is the dilatation

S

factor.

Stars with larger radii have weaker self-gravity and thus resistance to tidal forces of BHs.
The solution of Newtonian equations of motion for a particle falling along the z axis (at
t =0 has z(t) = z;) reads as:

3 _
SRt t) = §R§/2c(ti —1) (795)
where 32
_ 2z;
ti = to + W (796)
If we consider a swarm of N particles with mass 9,, we get
. N rtmax
Ms3(w) = by, Z/ dtz?(t;t;)e™" (797)
i=1 o0
- N tmax _
Mss = omy / 22(t,0)e!th (798)
i=1 7=
- tmax 1 N _
My = [N{Sm /_ ) dtzQ(t,())] [N;ew*m] (799)
We define the form factor as the second bracket:
1 .
Flw) =+ D ettt (800)
i=1

The COM crosses the tidal radius at t = tj, so the constituent of the sphere is located
at z; = rygal + 02; with —a < 0z; < a and |0z;| < ryga. Eq. 796 for z; = ryqa + 02; yields:

. 27“%11 reda " 02
£~ by + TR — (801)

Now we can rewrite the form factor as:

1 , 27“%21 al . Ttidal V2 0%
F(w) = e to + Fll% Z cap|iw | ~ (802)
Clig S

i=1

In the continuous limit we get 6z; — dz and

27”?1{111 (raaa P 0z
to + W T ; d(dz)exp |iw R ~ (803)

V' is the volume of the system at t = ty, for a sphere of uniform density, radius «, we
have

1
Fw) = TP {iw

4
V = —mad.

. (804)
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For dz = au, the transerve direction, is x with:

lz1]* = a® — (62)* = (1 — u?)
And eq. 803 writes:

2r3/ 2

(805)

3 ' :
F(w) = 263D [z’w (to + ; ;;%) ] / du(1 — u?)etAw (806)
c -1

Setting z = A(w)u we get:

3| 2r?/
F(w) = 26%P [zw (to + . ;;%)
Clts

9p3/2

set ¢ =ty + “‘11712

4

The real star spectrum is:

1 ] we
Flw) =2 /1 du (1 — w?)eidn — 37 G Aw) —

dE

d& 2 4E
dw

real star dw

point-like
where we set the point like spectrum to be:

dE  2Gw

tmaa:
o 157rc5N6m/ dtz*(t;0)

134

A(w) cos A(w)) (808)
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6 Experimental observations of GW emission

In this section we review experimental evidences for the existence of GWs, as derived by the
Hulse-Taylor binary pulsars. A general introduction in pulsars is conducted in [82] and [83].
A complete and regularly updated catalogue of Pulsars existing in Cosmos can be found in
[84]. For events before the discovery of PSR B1913+16, see Hulse and Taylor’s article in
[85], [86] and [87], while in [88], [89] and [90] we get the expected results of observations of
gravitational radiation from PSR B1913+16. Finally, in [91] and [92] we have an update on
these results.

Pulsar timing formula analyzed in section 5.1 and time delays due to GR in section 5.2,
are explicitly derived in the work of Backer and Hellings, see [93], as well as in Stairs’ article
in [94]. Many classical textbooks also analyze pulsar timing, with [95], [82] and [23]. A
comparison with General Relativistic effects, such as Shapiro time delay, is given in [96].

Pulsars are identified by the prefix PSR, followed by their equatorial coordinates («, ¢),
where « represents the right ascension, expressed in hours and minutes and ¢ represents the
declination, or inclination angle, with ¢ € (—g, %)

The Hulse-Taylor binary pulsar, denoted as PSR B1913+16, was first detected in 1974.
Observations revealed significant secular changes in the pulsar’s period, with variations of
approximately 10 us per year. Furthermore, day-to-day changes in the period were observed,
reaching up to ~ 80 us. These daily fluctuations were attributed to Doppler shifts caused
by the pulsar’s orbital motion around a companion star.

The table below summarizes the measured orbital parameters of the Hulse-Taylor binary
pulsar along with their experimental uncertainties:

Parameter Value Error
(1/c)a,sini(s) 2.3417725(8) (8)
e 0.6171338(4) (4)
To (MJD) 52144.90097844(5) (5)
P, (days) 0.322997448930(4) (4)
wo (deg) 292.54487(8) (8)
(W) (deg/yr) 4.226595(5) (5)
v (s) 0.0042919(8) (8)
P, —2.4184(9) x 10712 (9)

Table 1: Measured orbital parameters of the Hulse-Taylor binary pulsar, along with their
errors, adapted by Gravitational Waves [15].

The orbital period of the system is less than 8 days, with an orbital velocity on the order
of v ~ 1073c. The geometry of the system is illustrated in the figure below:

The relative coordinate between the pulsar and its companion, ¥ = 7, — 79, describes an
elliptical orbit with eccentricity e. The normal to the plane of the orbit forms an angle ¢
with respect to the line of sight (assumed to be the z-axis).

The orbit intersects the (z,y)-plane at two points, known as the "nodes." The line con-
necting these two nodes is called the line of nodes. The node where the coordinate 7 tran-
sitions from the lower hemisphere to the upper hemisphere is referred to as the ascending
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Figure 8: The geometry of the orbit. The plane of the orbit is in gray, adapted by Maggiore’s
book, Gravitational Waves [15].

node. The angular position of the periastron, measured from the ascending node, is denoted
by w.

The advance of the periastron is represented by (w), while the Einstein parameter is
denoted by 7. The system’s dynamics depend on the masses of the pulsar (m,) and its
companion (m.). All astrophysical quantities can be expressed through the above as follows:

Wl

2 _5 2
Bp\ 3 d
o= 38 <—”) Myt me)s ) 11353 (mpMﬂ) < (811)

2m 1—e ® Y

2 _
fy:Gse by mc(mp—l—%ﬁc) — 0.00293696 [ M my, + 2m, my + M (812)
2 \ 27 M

W=
Wl

(my +me)3 ® Mg Me
Gi (B :
a=— (%> (my, +m,)s (813)
2
¢ [ o,sini B\ 3 2
sini = o ( pmc > <%) (my +m,)3 (814)
ap = ame(my +m) " (315)
e = amy(m, +mg) " (816)
So m, = 1.44214M,, and m, = 1.3867M, (817)

and a ~ 2.2 x 10°m and Ry ~ 7 x 10 m. The compactness of the orbit, combined with the
absence of any observed eclipse, suggests that the companion is likely a compact star (neutron
star or black hole). The dynamics of the binary system can be studied by treating the two
stars as point-like bodies, ignoring tidal effects. The orbital period appears to decrease due
to gravitational wave (GW) emission. The decrease in the orbital period is given by the
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following formula:

5
. 1927G3  m,m or\s 1 73 37
P =— P it Y (B 818

b 5C5 (mp—i—mc)% (Pb) ( % ( + 9 e’ + 966 ) ( )

If we include a Doppler correction due to the relative velocity between us and the pulsar,
induced by the differential rotation of the galaxy, we see that the ratio between the GR-
predicted and corrected expected values, (FPy)cor and (FPy)cr, the relation is given by:

Pb’corr
Bylar

= 1.0013 (21) (819)

6.1 Pulsar timing formula

Neutron stars are rapidly spinning with periods as small as 1.5 milliseconds. This comes as
a consequence of angular momentum conservation during the collapse. The term wr? must
remain constant, while r decreases from the typical stellar size of the original star core to a
radius of just 10 km. The supernova collapse can spin NSs up to 10 milliseconds. In binary
systems, NSs can spin up further by the creation of mass from the companion. Similarly,
conservation of magnetic flux during the collapse results in strong magnetic fields, reaching
10'? Gauss or more, though accretion may slightly weaken these fields.

The magnetic field is generally misaligned with the rotation axis, forming a rotating
dipole structure. At a critical distance p. = ¢/ (where Q is the angular velocity of the
pulsar), magnetic field lines open up and extend to infinity, while those within p,. remain
closed. This p. marks the furthest distance at which objects can co-rotate with the pulsar
without exceeding the speed of light.

rotating axis

beam

Figure 9: The pulsar magnetosphere and the outgoing beams of radiation, adapted by Mag-
giore’s book, Gravitational Waves [15].
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Within p, lies the "magnetosphere," a region filled with ionized plasma that co-rotates

with the neutron star. High-energy particles travel along magnetic field lines, emitting
radiation near the magnetic poles. This radiation, narrowly focused in the radio spectrum,
forms beams that sweep across the sky as the star rotates, creating a lighthouse-like effect.
Observers detect these beams as short radio pulses, with the period of the pulses matching
the neutron star’s rotational period. Given the immense moment of inertia of neutron stars
(~ 10% g cm?), their rotation is highly stable.

Interestingly, individual pulses from a given pulsar can vary significantly due to fluctu-
ations in the magnetosphere’s dynamics. However, averaging many pulses reveals a stable
pattern unique to each pulsar. This averaged pattern, or "template," enables highly precise
timing measurements. The times of arrival (TOAs) of individual pulses, compared against
the template, can be determined with extraordinary precision, often within 20 microseconds
for modern measurements. This precision persists even after long observational gaps, such
as during the Arecibo telescope’s upgrades in the 1990s. With rotation periods as short as
59 milliseconds, pulsars produce approximately 5 x 10® pulses annually, underscoring their
reliability as cosmic clocks.

Despite their stability, TOAs are influenced by time-dependent factors. These include the
Earth’s motion around the Sun (and the solar system’s barycenter) and general relativistic
effects due to the solar system’s gravitational field. Pulsars in binary systems experience
additional modulations from their orbital motion and the gravitational interactions with
their companions. These "timing residuals," deviations from perfect periodicity, provide
valuable insights into binary system parameters, such as the masses of the stars. The timing
formula, discussed in subsequent sections, accounts for these corrections.

6.2 Roemer, Shapiro, and Einstein time delays

We consider a pulsar emitting a sequence of pulses, which are modified by the motion of the
Earth and the gravitational field of the solar system, affecting the electromagnetic waves.
The corrections to the time of arrival (TOA) are divided into three contributions: the Roemer
delay, the Shapiro delay, and the Einstein delay.

6.2.1 Roemer time delay

For simplicity, we assume that Earth performs a circular orbit around the Sun, ¢y is the time
that a light beam needs to run from the Sun to Earth, and Earth’s angular velocity around
the Sun is €.

Since light takes approximately 500 seconds to travel from the Sun to the Earth, there
is an annual modulation in the arrival times of pulses. For a pulsar located in the plane of
the ecliptic, with ecliptic longitude A, it can be observed from a pulsar in the plane of the
ecliptic, at ecliptic longitude.

This modulation is given by:

Apo = tocos(Qt — ) (820)

Where () is the angular velocity of the Earth around the Sun, ¢y is the travel time of light
from the Sun to the Earth, and a circular orbit is assumed for simplicity.
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- =7 To the pulsar

Figure 10: The (z,y) plane is the plane of the orbit of the Earth around the Sun. The angle
A is the ecliptic longitude of the pulsar, adapted by Maggiore’s book, Gravitational Waves
[15].

Thus, when the Earth is in the same direction as the pulsar,
Qt—>\:0:>AR7® = to, (821)

The pulse arrives earlier by an amount ¢y,. Conversely, when the Earth is on the opposite
side of its orbit, 2t — X\ = 7, the pulse arrives later by ¢y, compared to the arrival time at
the Sun. This effect is referred to as the Roemer time delay.

If the pulsar is not located in the plane of the ecliptic but has an ecliptic latitude 3, the
modulation instead becomes:

Ape = tocos(Qt — \) cos 5 (822)
With the maximum amplitude to appear in the ecliptic plane at
B=0=cosf=1= ARY =tycos(t — \) (823)

and vanishing for pulsars in the direction of the poles of the ecliptic (cos f = 0).
The variation of Ag ¢ falls to the variation of the angles A and 3 so we get:

I(ARre) = tedAsin(Qt — X) cos f — 15 cos(2t — A) sin (824)

For precise pulsar timing, additional corrections must be accounted for, as the Earth’s
orbit cannot be treated as perfectly circular. The Earth’s axial rotation introduces a daily
modulation with an amplitude R, /c ~ 21 ms. The motion of the Sun around the solar
system barycenter (SSB), influenced by planets like Jupiter, also contributes to the observed
modulation. Therefore, pulse arrival times must be referred to the SSB.

Let 7%, represent the vector from the SSB to the Earth, 7, the vector from the Earth’s
center to the observer, and 7, the vector from the SSB to the Sun. Then, the distance from
the observer to the SSB is:

7_,»ob = Foe + 7Tes + Fsb (825>

To calculate barycentric arrival times, the observed times must include the term:

Apo = —Top - (826)

o3
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Where 7 is the unit vector pointing to the pulsar. The vectors 7.5 and 75 can be determined
with sufficient accuracy, while 7, requires precise measurements due to its dependence on
the Earth-Moon system’s barycenter.

Barycentric arrival times serve as a critical reference for pulsar timing analyses, ac-
counting for additional effects such as gravitational propagation and interstellar medium
interactions.

6.2.2 Shapiro time delay

Roemer’s time delay computation neglects all GR effects of the gravitational field in the
solar system. To include these effects, recall from equation 7?7 that the spacetime interval
induced by a weak, quasi-static Newtonian source is expressed, to first-order perturbations
in the metric ¢, as

ds® = —[1 4 2¢(x)|dt* + [1 — 2¢(x)]di>. (827)

In the solar system, the magnitude of |¢(z)| is approximately 1079 ensuring that the
weak-field approximation remains valid. Light travels along null geodesics (ds? = 0), reduc-
ing the path integral to

ds? = 0 = Ad?[1 + 2¢(2)] = di?[1 — 26(7)] =

22 _ 1-211 = 20(7)]
c*dt® = dx [1+2¢( = =

- (828)
cdt = +£d7 1_%8 LE<N

cdt = £[1 4 2¢(Z)|d7

Let 7, represent the fixed location of the pulsar and 7, denote the observer’s position at
the time of light’s arrival t,,s. The coordinate time difference between t,,s and the emission
time ¢, is

i —t) = | " a1 - 26(2)] =
e . (829)
C(tobs — te) = |Tp — Tobs| — 2 ¢(x)|dx|

Tobs

If 7, is the position of SSB and n is the unit vector from SSB to the pulsar, then we have:

7o = Total =117 475 = Tote] (830)
|7 — Tobs| & [T — T| + (Th — Tobs) - 70
for n= L0 (831)
|7 — 7T
and |7, — 7| > |7, — Tobs|. Using this, the arrival time becomes
T, —T Ty —T n 2 (™
o (1,4 220 T8 2 g (532)
Tobs
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The second term tggg, representing the arrival time at the barycenter in the absence of
gravitational effects, is defined as

Tobs * T 2 [P

+ - o(z)|dz| (833)

Tobs

tssB = Tobs —

tssp is the fictitious time at which the pulse arrives at the SSB without GR effects of
the Solar System. The second term is called the solar system Shapiro timedelay, denoted by
Age. So equation 833 reads:

tssB = tobs — Aro + Ase (834)

The Shapiro time delay is dominated by the Sun’s gravitational field. We consider a photon
emitted by a pulsar that reaches the observer on Earth when the pulsar Sun-Earth angle has
a value 6 as depicted:

-~ pulsar

Tes Earth

Figure 11: The geometry for the computation of the Shapiro delay, adapted by Maggiore’s
book, Gravitational Waves [15].

p: distance P to Earth
r: distance P to Sun

Tes = 1 au

p = (pcos + e, psin @)

uw=— (835)

12 = (pcost + |res|®) + p® sin? 0 (836)
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r? = p?cos? O +r2 + 2repcos + p?sin? 0
r? = p® 4+ 13 + 2repcost

2
P =r2 1+ P + 2L cosh (837)
“ Tes Tes

r? =72 (14 u® + 2ucosf)
7 = Tes(1 4+ u* + 2u cos 8)%

Since ¢ = é (— GM@) (838)

The Shapiro time delay is

2 [Tobs 2GM, [ dp
AS)@ — ——/ dpgb = 3 © / i
CJr C 0

r

v ) (839)
Al 2GM@/ dures  2GMg /“ du
e & Jooor A Jo (14 u?+2ucosf)2
where 4 = < (840)
reS

In equation 839 we add and subtract a term at a given angle, say cos# = 0, so we have:

2G'M, “ 1 2G'M, v 1
Aso =~ ®/ 57 du — 3@/ g du (841)
¢ o (uW?+1) ¢ 0 [u?+4+ 14 2ucost]
The first term
2GM, [* d 2G M, 2G M, 2
G3 2 / “ - = GMo sin™' (i) ~ GMo log (_u) (842)
C o (1+u?)z 3 c3 Tes

is a constant logarithmic correction, while the second depends on the Sun-Earth-pulsar
geometry, specifically the angle 6. Applying limit @ = ;- — co and integral converges to
1 1

/du T — :
(u>4+ 14 2ucosf)z (u2+1)2

2G M, 2d
=As0(0) ~ Gcg - [bg (%) — log(1 + cos 9)1

= —log(1 + cos0)

(843)

Equation 843 formally diverges when # = m, that is, when the signal crosses the center of
the Sun before reaching Earth, so it is absorbed.
For a pulsar just grazing Sun’s surface of Ograzing, We have

Ro

Tes

(844)

0~ egrazing ~T—
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R
1 + o8 Ograzing = 1 + cos (7r — ®>

TGS

R
1 + cos Ugrazing = 1 — cos ( ®)
TeS
(845)

R\2
1 + cos Ograzing = 1 — 1 + < ®>

Tes
R 2
1+ cos egrazing = ( ®)

TeS

And Shapiro’s time delay reads:

2G'M, 2d R
Age = 3 © {log——Qlog G}
& es es
0 razin 2GM E_Ci
A = =3 “ |log (E (846)

. 2G M, 2dr e
Aegrazmg — O] log ( es )
S,0 c3 R2®

The maximum modulation induced by the Shapiro time delay is

; 2GM 2dr o 2d
Ages = Agg,gzmg — Qs =0)= GC3 - {log ( dr ) — log (— + log 2)}

R2® Tes
max 2GM® 2Tes
s - 20 [y ()] an
4G M, 2T s
AS@((Q = 0) ~ 3 © lOg (E)

6.2.3 Einstein time delay

The Roemer and Shapiro time delays are computed in the coordinate time t. A laboratory
clock at a position 7y, measures its own proper time 7 which is related ¢y as:

Adr? = [1 4 2¢(2obs)] dt? — [1 — 2¢(2obs)] il (848)

so to first order in small parameters ¢(xops) and vons = dZops/dt, we have:

dr? d?

-1 2 obs) — obs O =2
e + 2¢(Tobs) @ T (7°)
dr \/ 1+ 2¢(Zobs) Uons
> obs) —

(Ciit 1 1 622 (849)
T )

— 1+ =2 — _obs

g =15 200es) = 575

dr v2

a1 obs) — obs

dt + ¢(os) 2c2
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2
Physically, the term —1)2‘30‘325 in equation 849 produces the transverse Doppler shift, while

¢(xops) contributes to the gravitational redshift. Integrating this relation, we find:

1 Ugbs

dr ~ dt + dté(zops) — dt=—==
2 e 850
/ / Ugbs(t/) ( )

=T t + dt ¢(x0bs(t )) — T
Or we can rewrite it as:
T=1—Apo (851)
_ ! / / Ugbs(t/)

where Ag o = [ dt' [p(aens(t’)) + oz (852)

The modulating given in 852 is called the Einstein time delay and takes into consideration
the motion of the Earth around the Sun with vg velocity and the Earth’s rotation around
its axis. Also, we can apply the elliptic orbit of the Earth instead of a circle. If the lower
limit of the integral is arbitrary (as it corresponds to an arbitrary constant shift), we can

rewrite 7 as:
GMop

2a
where 1 is the reduced mass of the Earth-Sun system, and M ~ M with excellent accuracy.
Using this relation, we find:

E=-— (853)

1 GM
B = - of (854)
T

and:

- 2_GMM

2a 2“ © T
1, GMg _ GMg

GMp 1

2% T Ty 2a (855)
1, 1 1
R =GM. = - —

:>2U@ GMo (7“ 2&)

From these expressions, we derive the rate of change of the Einstein delay:

dAE,@ - Uc2)bs
T o et oa
dA V2
% = —(Tops) + 2—22 (856)
dAg v2 2G M 1 1
At 2¢2 2 r 4da

We recall that p is the reduced mass

meM  meM,

H e + My M, ® (857)
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and M is the total mass
M = m@ + M@ = M@ (858)

Also, we have that vops = vg, because Earth’s rotation around its axis gives a small correction.
A constant part in this expression is absorbed into the clock’s time definition, as atomic clocks
are adjusted to minimize systematic shifts due to Earth’s motion.

6.2.4 Dispersion in the interstellar medium and relation to the intrinsic pulsar
signal

Dispersion in the interstellar medium

There is also a correction due to the propagation of radio waves through the ionized
interstellar gas. Interstellar gases act as a medium with a reflection under different from
unity. The component of a radio pulse with frequency v travels with a group velocity

e 1
ug:c<1—”e —), (859)

2mm, V2

where e is the charge, and m, the mass of the electron, and n. is the electron number density.
The travel time over a distance L is:

2 -1
/dl /dl_<1_nee 1)
2mm, v2
dl
860
/ /dl[ 27Tme vzne} (860)
Ly 2 L
/— —+—( ‘ )/nedl
0 Vg C 2mmec ) Jo

L
DM = / ne dl (861)
0

We denote with

the dispersion measure, and is typically quoted in cm™ pc. Measuring the TOAs (times of
arrival) at different frequencies, we can compute the dispersion measure. This procedure is
called de-dispersion, and goes like:

1. Separate the bandwidth of the receiver into many channels, such that in each channel
the effect of dispersion is negligible.

2. The output of the channels operating at different frequencies is then automatically
corrected and superimposed, so the signal-to-noise ratio is enhanced

The size of this effect is given by observing that the Hulse-Taylor binary pulsar has a
relatively large dispersion measure, DM ~ 169 cm 3 pc, at frequencies near 430 MHz.
Relation to the Intrinsic Pulsar Signal
Since all corrections are small, we can put them together by simply adding them linearly:

tssB = Tobs + Ape + Are, —Ase (862)
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where the corrections Ag o, Ag e, Age are defined in earlier equations.
In Eq. 860 we must subtract the time delay due to the interaction with the interstellar
medium, so we get:

D
ISSB = Tobs — 2 +Apeo +Are —Ase (863)

D= ( ¢ >DM. (864)

2mmec

Where:

So tssp is the coordinate time at which the signal, recorded by 71s, would have arrived
at a fixed point in space such as the solar system barycenter if there were no gravitational
potential of the solar system or interaction with the interstellar medium. It therefore depends
only on the intrinsic properties of the source. The emission mechanism of the pulsar is not
yet completely understood, but is believed to be related to some “hot spot” co-rotating with
the pulsar. Denoting by ® the accumulated phase of the spinning pulsar, we observe a pulse
whenever the phase ® returns to the same value ®ymod 27, at which the radiated beam
sweeps across the Earth.

If T is the proper time in the pulsar frame, then the phase for a perfectly periodic pulsar
will be:

O(T) = 27vT. (865)

The evolution of the pulsar frequency is modeled by Taylor expanding around the source
reference value Ty = 0 of the pulsar proper time as:

1
v(T) = v + 0T + §D0T2 +e (866)

And the accumulated phase is then:

Lo = /OT dru(7)

27

1 1 1
—&(T) = T + =iT? 4+ ~yT° + - - -
21 2 6

(867)

Emission takes place at T}, such that
O(T,) = ¢ + 2mn

With proper times T}, to be given by:
1 1 0N
T, + =0T? 4+ —igT2 + - - = —.
voT,, + 50T + T + n -+ 5. (868)

This model assumes that the evolution of the pulsar frequency is smooth. Most pulsars
exhibit "glitches", sudden jumps in their rotational periods. Related to the source form of
rearrangement of internal structure.

6.3 Relativistic corrections for binary pulsars

For a pulsar in a binary system, we proceed similarly to what’s done for the Earth-Sun system
and transform from the pulsar’s proper time to the pulsar-companion system coordinate time.
Further reading in the following subsections can be found in Reports [97]-[103].
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6.3.1 Einstein time delay

We proceed as in Einstein’s time delay in SSB, but instead of reduced and total mass, we
use the masses m, and m, of the pulsar and its companion. The beam is radiated by some
"hot spot" at a position & on the pulsar’s surface.

The Newtonian field ¢ at 7 is therefore:

Gm, Gme.

2l —x,]  Alr—ax

¢(z) = (869)

where z,, is the position of the center of the pulsar and z. is the position of the companion.
Gm./(c*a) ~ 1075 and therefore is small, so the weak-field approximation is legitimate.
Pulsar’s self-gravity is for a typical pulsar of mass m, ~ 1.4My, and NS radius ryg =~

10 km, we have Gm,,/(c*rxs) =~ 0.2, which is strong on the surface. However, this term does

not change along the pulsar’s trajectory, so it does not modulate the time of arrivals.
Thus, the time-dependent part of the Einstein time delay is:

Gm,
= —— 870
0a) =~ e (370)
Inserting Equation 870 in 849 we get:
dr Gm v2
B e N 871
dt Ale, — x| 22 (871)
In the center-of-mass system v, is given as:
me
=< 872
“r m, + — (872)
where v is the relative velocity.
Here we begin from Eqs. 852 and 853, but M — m, and y = m,, so:
5o _ G(my +me) L omyme o Gmyme(m, + m.)
2a 2my, +m, P r(my, +me) (873)
11}2 _ G(mp +me) _ _G(mp + me)
2 r N 2a
Now, Equation 871 reads:
dT . Gm. 1 m? )
_— = — _———
dt cAro 2¢2 (my +me)?
ar _ - Gm. 1 m] {G(mp +me)  G(m, + mc)]
dt cAro 2 (my +2mc)2 7; 2a (874)
dr ] G |m. . me m:; 1
dt clr  (mp+mgr my+m.2a
ar . G [mgmy+2m)l  m2 1
dt c? my+me T my+m.2a
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The parametrization of Keplerian orbit in terms of the eccentric anomaly wu is related to
t by:

. 27
U —esinuy = —
b

t—t 875
(o), (875)
With ¢y to be a reference time of periastron passage. Differentiating, we have:

— (1 —ecosu) = — (876)

And therefore:

dr' 2z G m, 1 ]
— 5 =\l om.) = —m,— 1
dt B, < 2 <mp+mc> |:(mp+ mC)r mCQa}) X (1 —ecosu)

2wl =1—ecosu— — (L) (1 —ecosu) [(m +2m ); —m i}
P, du 2 \my, +me P “a(l — ecosu) “2a
Q—Wd—Tzl—ecosu—L [l(m +2m.) —m i—i—m ecosui}
P, du (m,+m.) [a° " ¢ “2a ¢ 2a
2rdT G 2m.m,, + 3m? G m?
Bdu { = 2 2a(m, + my) } —eoosu [1 T Z 2a(my + my) mcﬂ

d_T%& [ _Q—chmp—i—?)mz} {1—ecosu(1+gmc(mp+2mc)>}

du 27 c? 2a(m, + m,) 2 a(m,+m.)

(877)

The only observable correction proportional to cos u, since it produces a modulation along
the orbit. We redefine

G 2m, 3m?
T — |1 = G2 M g constant x dT (878)
c? 2a(m, + m,)
So we take: I P
T 2—;(1—ecosu)—’ycosu, (879)

where the Einstein parameter ~ is given by:

P\ G mc(m,+2m.) P\ 3 G2 me(m, + 2m,)
2 ) ¢ a(m, +m,) 27 2 (m,+m,)
We rewrite 879 with %’;j—i =1 — ecosu, we find:
dA
d_uE =y cosu (881)
So, the Einstein delay reads:
Ap = ysinu (882)
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Roemer time delay and Post-Newtonian orbits

Referring the emission time to the barycenter of the pulsar-companion system, we en-
counter the Roemer and Shapiro time delays, similar to the solar system corrections. The

Roemer delay is given by:

Ap = (883)

where x; is the distance of the pulsar from the center of mass of the pulsar-companion
system.

In a Keplerian orbit, neglecting general-relativistic corrections in the plane of the orbit,
using polar coordinates (r1, 1) in the plane of the orbit, the Keplerian equation of motion is
given in parametric form, in terms of the eccentric anomaly u, by:

r1(u) = a1[1 — ecosul (884)
cosP(u) = % (885)

Where a; is the semimajor axis of the pulsar orbit. At w = 0, r; is max and in this case
1 = 0. Therefore, the angle v is measured from periastron, and the angle measured from
the line of nodes is w + ¥ (u).

The Roemer delay is:

Ap =1 (u)sinisinjw + Y(u)] =

886
Ag = r1(u)sini(cos 1 sinw + sin ) cosw) (886)
since
VI—elsi
sin(u) = +-—— 0 (887)
1—ecosu
We get:
Ag =r(u)sini P gnw+vVI— e cosw
1 —-ecosu 1 —ecosu
AR—#Sini [(cosu—e)sinw—l-vl—eQSinucosw} (888)
—ecosu

Ag = ai(u)sini [(cosu —e)sinw + V1 — e? Sinucosw]

Numerically, the effect is quite large, and it is necessary to go beyond the Keplerian
orbit and include the post-Newtonian corrections to 1PN order. This computation has been
performed by Damour and Deruelle (1985, 1986).

Conservation of angular momentum leads to motion in a plane, and the conserved quan-
tities, total energy E and angular momentum .J, are given by:

E 1, Gm 3 vt Gm 5 . o Gm
€= ; = §U — T g(l —31/)0—2 + ﬁ |:(3—|-V)U +V(T'U) + T (889)
. J 1 v? Gm] . _



In polar coordinates (r, %) in the plane of the orbit, the first of these conserved quantities

leads to:
dr\? 2B C D
) =A== 24 2 891
(dt) * r * 72 + 73 (891)
dw H T
— 892
dt r? + 73 (892)

where A, B,C, D, H, I are polynomials pf ¢ and ;

A=2 [1+ (30 —1) %} (893)
B=Gm [1 + (v — ] (894)
C=—j [1 423y — 1)C } + (50— 10)G2c72n2 (895)
D = (8 —3v) Gﬂsz (896)
H=j [1 + (31/(i 1)652} (897)
I=(2v—4) Gi‘fj (898)

In ¢ — 400 we have A = 2¢, B=Gm,C = —j2,D =0 = I, H = j the Newtonian values.
We insert 7 = r + 22]. and Equation 891 reads:

(%) _A+¥+C+O( 1) (899)

with C = C + (BD/j?%).
Similarly in Equation 892 we set 7 = r — L and have

dy _H
900
dt P2 (500)
In polar coordinates (r, 1) in the plane of the orbit, the first of these conserved quantities
leads to:
dr\? 2B C D
— ) = A+ =4+ =+ = 901
(dt) + r + r2 + r3 (901)
dy H I
— 902
dat - r? + r3 (902)
where A, B,C, D, H, I are polynomials pf € and 7
The 1PN Equations of motion can be integrated, and we get:
2
U — e sinu = %t (903)
r = a,[le, sinul (904)
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with

Gm €
“ 2¢ [ =1 2c2
radial eccentricity
2¢ € G?m?
2 2
e = 1+Gm2 [1+(5y—15)2c2} [] + (v —6) 2 }

time eccentricity

2¢ € G?*m?
2 _ 2
e} =1+ = [1+(17—7u)@] [j +(2-20)7 1
o2 (—2¢)%/? €
Lo w15 —]
b, Gm [ (v )402
Similarly 1(u) solution in terms of angular electricity reads:
b =wo+ (14 k)Ae, (u)
where
I = 3G'm
-~ 2a(l —e?)
and ) P
2 € € 5 m
69—14—@ |:1+(V+5)@:| |:j —6 2 :|
and
14 ey U
A =2 —
0(u) = 2arctan [ e tan2}

This representation is parametric and "quasi-Newtonian,"
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accurate to 1PN order.

(905)

(906)

(907)

(908)

(909)

(910)

(911)

(912)



7 TOV equations for stellar objects and their structure

7.1 Production of TOV equations

In the following chapter we conduct an explicit derivation of the Tollmann- Oppenheimer-
Volkov equations. A complete set of equations, which completely describe a neutron star,
when combined with its equation of state. Here we follow the minset, as given in Hobson,
Efstathiou and Lasenby’s book [18].

Most astrophysical objects never evolve into objects that are not adequately described by
the Newtonian theory of stellar structure. Neutron Stars (NS), although, involve extremely
high densities, which means that the internal growth forces will be very strong, and we can
expect that General Relativistic effects will have a significant role in the stars structure
and stability. There is a huge interest in achieving relativistic equations that govern the
equilibrium of symmetric gravitating matter distributions.

The demand of spherical symmetry and static matter distribution in the star yields the
metric:

ds* = A(r)dt* — B(r)dr? — r*(df? + sin® 0 d¢?) (913)
where A(r) and B(r) are functions of radius r and can be determined in the interior of the
object.

To proceed, we rewrite Eq. 913 in matrix form to obtain the covariant components of
the metric tensor:

Guv = 2 (914)
0 —r2sin® 0
Correspondingly, the contravariant metric tensor, which is the inverse of the above, takes
the form:
1 1]
A(r) )
g = B(r) (915)
0

There is a standard procedure when one wants to derive the Einstein field equations. The
first step is to compute the Christoffel symbols or connections, which depend on derivatives
of the metric components. The general expression for the Christoffel symbols is:

r2sin? 6

1
Ffw - 59’70(@90# + a,ugucr - aag,uy)- (916)

Since the metric is diagonal and static, many components of the Christoffel symbols
vanish due to symmetry and time independence. Specifically, using equation 914, we note:

9oi = 0 = gjo

9i; =0, Vi#]

0:9po =0 no dependance on t or ¢
0pGpc =0, Vp,0=0,1,2,3

914 = (917)
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Let us now compute the non-zero components of the Christoffel symbols. Starting with
the I'fj, components:

1
Fgo = 5900(50900 + 00900 — 05900)

1 (918)
oo = Egooatgoo =0

Since the metric is time-independent, all time derivatives vanish, which leads to I'), = 0.

1 _
It = 5920(50900 + Qogos — Os9o0) Vi # 0

i I
1joo = _59 9900

We now evaluate this expression for each spatial component i:
For ¢+ = 1 we get:

A/
95’ (919)

I3, =I5, =0. (920)

1 _
I_‘OO_

These results reflect the fact that A depends only on r, while there is no angular depen-
dence.

' 1 1
1=2: FSO = —=¢%0sg00 = ——92289(14(7")) =0

2 2
. 1 1
=3 Fgo = —593333900 = —5933@75(14(7”)) =0

Again, since A(r) does not depend on the angular coordinates, these Christoffel symbols
vanish.

We now consider mixed components involving time and space indices. These are also
expected to vanish for a static metric:

1 .
Lo = Fjl'o = 5910(@'90:; + Qogic — Osgi0), Vi # 0

1
= §g118tgi1 = O, Vi = 1, 2, 3.

Thus, all such terms vanish due to the time-independence of the metric components.
Fé1 = Ftl)z = Fé:a = Féa = F%o = Fio = 0. (921)

We now compute the Christoffel symbols with upper index 2. For all ¢ # 0, we apply the
standard formula for Christoffel symbols:
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1
F?)i = F?o = 5920(62'900 + 8og7la - 8091'0)

1
= —g0,90 = 0
2
All these components vanish since the metric components do not depend on time and

go2 = 0. We therefore have:

F(QHZF(Q)Q:F(QB:FO—FO—FO—O (922)

We repeat the same analysis for the Christoffel symbols with upper index 3. Again, we
use the formula:

1
ng = F?o = 5930(aigoa + aogia - 8092'0)

L 33
=—-9"09i3 =0
29 t9i3
As before, all terms vanish because of the time-independence of the metric and the

absence of mixed components. Thus:

F(gﬁ = ng = Fg3 = Fgo - Fgo = F?o = 0. (923)

Next, we compute the Christoffel symbols with upper index 0. Using the general formula,
we obtain:

1
ng = F?o = 5900(82'900 + aogia - 55901-), Vi 7& 0
1

S OOa.
2P 1900

To evaluate these components explicitly, we consider each value of i separately.

, 1 1 1 A
i=1: T=Tq = 29 D190 = 2A(r)a P A(r) = 24
. 1 1 1

1 =2: FOO = F02 = 290082900 2 ( )agA(T'> =0

_ 1
7 =23: FOO = Fog = —90083900 = —8¢g00 =0

We conclude that the only nonzero Christoffel symbols in this set are:

Ar)
2A(r)

19, =9 = (924)
While the others vanish:
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ng = Fgo = F83 = Fgo =0 (925)
We now turn to Christoffel symbols with repeated spatial indices. For the component
I'l,, we compute:

1
Fh = 591 (01951 + 01910 — Os911)
1
= 5911(31911 + 01911 — O1911)
1 1 (926)
=5 |- 9,(B(r))
2\ B(r)
B/
F%l - ﬁ

Finally, we evaluate I'},. Using the same formula:

1
F%z = 5910(32902 + 02920 — 05922)
11 ,
= EB_T)@"(_’” ) (927)
—T
B(r)

1
F22_

1
[y = 5910 (03903 + 03930 — 05933)

= —911 (0p913 + 0931 — O1933)

— % (B%r)) [0, (—r*sin®0)]
rsin? 6
B(r)
Here, we compute '}, using the definition of the Christoffel symbol. After substituting
the appropriate components and simplifying, we arrive at the final expression.

(928)

1
F33_

1
F%Q = F%l = 5910 (02951 + 01920 — OsG12)

1 1
= 5911 (02911 + O1921) = §g1139g11 =0 (929)
F%Q = F%l =0
Since g1 is independent of 6, its derivative vanishes, leading to a zero Christoffel symbol
for T', and T3,.

1
[y =Tl = 5910 (03901 + 01930 — Opg13) = T3 =T3 =0 (930)
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Next, we evaluate I'}; and T'3;. Since the metric components involved are constants or
zero, this leads directly to zero.

1 1
Féz = F§3 = 5910 (33902 + 0930 — 30923) = 591182931 =0
F%s = F§2 =0

(931)

For the remaining mixed terms involving indices 2 and 3, we find that the derivatives
again vanish, resulting in zero Christoffel symbols.

1 5, 1
592 (0i90i + 0iGic — 05ii) = 5922 (0i92i + 0igiz — 02ii)
To compute I'2, we analyze the cases for i = 1,2, 3 individually.

)

2 __
I =

i=1: ri:l( 1) [—ae(—B(r))] —0

2\ r2
. 1
i=2: I5 = 592289(—7“2) =0
1 1
i=3: I3 = 5 (——2) (Dp(r? sin®@)) = — sin 6 cos 6
r

We observe that the Christoffel symbols vanish for ¢ = 1 and ¢ = 2, while for ¢ = 3 the
non-zero derivative leads to a non-trivial result.
2, =0="T% (932)
Thus, both I'?, and I'3, vanish.

I3, = —sinfcosf (933)

Only T2, yields a non-zero expression involving trigonometric functions of 6.
We now continue computing additional Christoffel symbols. Let’s begin with T'?, and
T2,

1

1 1 1
r3, =T, = 5920(82901 + 01920 — Osg12) = B (ﬁ) Oyr? = - (934)

Next, we evaluate '}, and T'3,. Here, we observe that the relevant metric derivatives
vanish.

1 1
F§1 = F%g = 5920(83910 + 01930 — 05913) = 5922(83912 + 01932) =0 (935)

We now compute ', and I'3;. As with the previous case, these components vanish due
to the absence of 6 dependence.

1
I3, =T% = 592282932 =0 (936)
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Next, we look at the time components T'% for spatial indices I # 0. Since the metric
components do not depend on time, these derivatives vanish.

1
5 = 5900(@'9(”‘ + 0i9ic — 05ii), Vi #0
1 (937)
N 008 =0
29 t3ii
We now consider mixed time-space Christoffel symbols of the form '), and T'%. Again,
these vanish due to the time independence of the metric components.

1 1
ng = F?Q = 5900(829[;1' + 0i920 — 0s9i2) = 5900(32901 + 0;920 — Qo Gi2)

We verify the vanishing components for specific values of 7.

_ 1

i=1: I =19 = 5900(32901 — Oog12) =0

. 1

i=3: Ty=T5= 5900(32903 — dogs2) =0
This confirms the result:

Fgl = F?z = F(2)3 = ng =0 (938)
Lastly, we evaluate the component T'J; and its symmetric counterpart. As before, since

the metric components do not depend on time, all time derivatives vanish, and the remaining
terms are zero as well.

1 1
[g, =10 = 5900(33901 + 01930 — 05931) = 5900(33901 + 01930) =0 (939)

We now move on to compute I'2. for spatial indices i = 1,2, 3. These components describe
how the ¢-coordinate changes along the directions of r, 6, and ¢, respectively.

1
I} = 5930(&‘90@' + 0iGic — 059ii)
) 1
i=1: I = §g33(31931 + 1g1s — Osg11) = 5, =0 A
. 3 L g3 3 40
1=2: Iy = 59 (O2g32 + Oagaz — O3g22) = Ty = 0

. 1
i=3: I'iy= 5933(33933 + 0333 — Osgs3) = [ =

As expected, these Christoffel symbols vanish because there is no ¢-dependence in the
metric tensor components gi1, ga2, O gs3.

Next, we examine the mixed second-order Christoffel symbols T, and I'3;. These, too,
turn out to be zero, as none of the metric components involved depend on both r and # in
the relevant way.

157



1
—930(32901 + 01920 — 05912) = —933(32931 + 01g23) =0 (941)

2 2
We now compute the remaining Christoffel symbols I'%; = I's; for ¢ = 1,2. These terms
capture how the ¢ direction varies concerning changes in r and 6.

3 _ 13 _
I-‘12_]'121_

1 1
[ =15 = 5930(5’3gn + 01930 — 009i3) = 593331933 (942)

For ¢ = 1, the derivative is concerning r. We compute:

1 1 1
3 3 2 2
[, =135 = 3 0&(7“ sin” ) = . (943)
For ¢ = 2, the derivative is with respect to 6, giving:

1 1
3 13 _
P =l = 550
These are the only non-zero Christoffel symbols with upper index 3, and they reflect the
spherical symmetry of the metric.

Expressions for I'),, are summarized below:

Dp(r?sin®0) = cot 0 (944)

A 1
Fgl - F?o 9 FQz - F21 -
I 2A r
L= —= I3, = —sinfcosf
Y 3 1
F11_2_§n FS_F31_T
o _7“sin2 0
33 B

We now turn our attention to the Ricci tensor, which encodes how volumes deform under
parallel transport and plays a central role in formulating Einstein’s field equations. In the
context of our metric, many of the Christoffel symbols either vanish or simplify considerably.
As a result, the Ricci tensor components also exhibit simplifications. In particular, all
off-diagonal components of the Ricci tensor (R, for p # v) vanish due to the
symmetries present in the spacetime and the structure of the connection coefficients.

To compute the Ricci tensor components, we use the general expression:

Ry, = 8,15, — 9,1, + T4 9, —T° T

po pv pvt po

In the next terms, most Christoffel symbols either vanish or are independent of time.
Consequently, many of the terms above vanish identically or cancel out. Thus, we take:
The Ryy component reads:

Roo = 9015, — 0,15y + T8, 1% — Thel'%,
AN A A AB A1 AL
Foo = 0, ( )

2A2B 2B2B 2Br 2Br
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A// A/ A/ B/ A/
Ryop=-—mt— (S 42 ) -2 945
00 QB+4B(A+B) B (945)
The Ry; component reads:
Rll = 811—‘({0. - 801—‘(171 + FTU]‘—‘Zl - FTIFZU
R B A” (A/)2 2 + (A/)2 + 1 + 1 B/ Al B/
1794 442 72 4A2 r2  r2 2B2A 2Br
A// A/ A/ B/ B/
Ri=———|——+=| - 946
Y 4A<A+B> 2Br (946)
Next, the Ry component reads:
Roy = 0515, — 0,19, + FSUFZQ — FSQFZU
B _—Sin29—cos20+1 orB’ 2r1+00529+ rA’ +7"B’_'_1+1
2 sin® 0 B 2B*> Br sin?0 2BA 2B B B
R " 3 2 rB rA’
2 B B 2B 2BA
1 r (A B
Ry=——-1+— | —+— 947
2?7 B +QB(A+B) (947)

Finally, the R33 component reads:

R33 = a311%0’ - aUFgS + Fga ZS - F§3FZ¢7
1 r (A B
.2
— - (A= ]
Hay = sin Q[B 3B (A B)

R33 = R22 SiIl2 0 (948)

The matrix of R, components based on the above equations is:

Ry O 0 0
0 Ry O 0
0 0 Ry 0
0 0 0 R22 Sin2 0

In order to continue our computations and make our life easier, we have to consider the
following:

Ry, = (949)

1. The field is static and matter obeys a spherically symmetric distribution, implying
that there is no evolution with time.

2. The matter distribution is described by a perfect fluid and the energy- momentum
tensor is explicitly written as:

p
T;u/ = <P + g) UyUy — PGuv- (950)
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3. The field equations are solutions for the object’s interior, the exterior is not taken

under consideration, since it is supposed to be empty space.

4. The Ricci tensor is assumed to be in diagonal form, that is,

R, =0 forall p# v.

From assumptions 1 and 3, we get:
1
RP«V = —K Tl“’ — éTg‘“’

D 1
R,uzz = _H|: <p + g) UpUy — PGuv — §Tguu:|

v p v v

T= T,il = gu T;w = |: <p + g) gﬂ Uy Uy _pgﬂ g;w:|
P m upuy=c>
T = [ <p+ E) Uy Uy —péﬂ]
T

= —r(pc + p —4p) = —r(pc* — 3p)

sli=4

Inserting Eq. 953 in Eq. 952 we get

Ry, = —k (p + %) Uyt — PGy — %guu(pCQ - 3/))} =
R, =—k (p + %) Uy, — %g,wch + %pgw - pg,w] =
=] o+ )t~ et 0]

From assumption 4, we get:
R,=0= (p+ %)uoui - %gm-(ch —p)=0=uou; =0

Thus,
u,ut =c* with u, = C\/Z(l,0,0,0)

Where this holds without assuming staticity.
Components of R, as produced by eq. 954:

1
Ry = =k [(P + %) Uolp — §A<PC2 —P)]

1 1
RO(] = —rA |:p62 +p— §pC2 + §p]

R = —gA(PC2 +3p)
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(951)

(952)

(953)

(954)

(955)

(956)

(957)



Riy =k [(P + %) wiuy + 5 (=B)(pc® = p

K
Ry = —§(pc2 —p)B

1

Ry =k {(p + %) Ugly + 5(—7"2)(pc2 —p

K
Rap = —57“2(/)02 —p)

Lastly,

R33 = Ry sin? 6 = —gr2 sin® (pc® — p)

One can rewrite the Egs. 957 - 959 as following:

Roo K

2
RH . K 2
5 = gl =)
2R
7,222 = _K(IOC2 _p)

And produce the sum of the primed ones to be:

Roo  Rii 2Ro 9
AT e T

By substituting eqs 949 into eq 965, we take:

2B 2 2 )
TR R R g
B’ 1 1 )
A R
B’ 1

Tt

1 B’

1——= e m"ch2

(958)

(959)

(960)

(961)
(962)

(963)
(964)

(965)

(966)

(967)



= (968)

with

m(r) = 4x /OT dr'(r")?p(r") (969)

Eq. 969 does not produce the contained mass in coordinate radius r. The proper volume
element is expressed in this metric coordinates as d®*V = /B(r)r? sin? 0drdfde.
The star’s proper "mass" is now expressed by the following:

m(r) = 4 /0 Tp(r’)\/mr&dr =
() = 4n /0 ") (1 _ M) gy

where B(r) ~ m(r) and not B(r) »~ m(r). When the object extends to r = R, and
for r > R we suppose an empty space, then outside the spacetime geometry is described
by a Schwarzschild metric with mass parameter M = m(r). The difference E = M — M
corresponds to the gravitational binding energy. The gravitational binding energy E =
M — M is the energy needed to disperse the material of which the object consists to infinite
spatial separation.

Differential equation for A(r). Conservation of stress-energy tensor yields:

o)

(970)

Substituting 950 to 971 we get:

1
Loy =Te =0:Inv—g = —\/_—g&,\/—g = (972)
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1
0T + ——=(0p/=g)T"" +T%,T" =0 =

\/_
aﬂ \/_8 (\/ TUV) — \/—_\/ 8 v + FZMTMU =0=
v B v oW, 0 UV —

[+ D] o B e =0
2
Z ( % |: Ogoo + aogOU - aogOO]):| - gwaﬂp = O =
2
a7 ( % (——9 30900) —g"0,P=0=
02 P uv uv
27 (P ) 9 O+ Oupgiag =0
c? p
ﬁ (p—l—;) 0sA+0,p=0=

oop+ PP 4

(% oA oA =

In Eq. 973 o is a free index, so for:

2
c=0: atp+’)szpatflzOzsdep:O:s p # p(t)
2
c=2: 89p+p2A O A(r) =0= dpp=0=|p # p(h)
pc: —p
o=3: Ogp+ 94 03A(r) = 0= 0yp = 0= |p # p(9)
2
pc —p 1dA(T) 2 dp
—1 Ay =0=| 50 = = P
o arp+ 24 a?" (T) 0= A dr ch—pdT

Eq. 977 is the D.E. A(r) must satisfy. In simpler terms, it reads as

Alr) 2
A pet—p

The relativistic equations of stellar structure

(973)

(974)
(975)

(976)

(977)

(978)

Exact form of A(r) and B(r) is given if and only if p = p(p) is given as an equation
of state (E.0.S.). When p(r) and p(r) are arbitrarily chosen, they give results unrealistic.

Moving on we will produce the first equation of stellar structure.

dm(r)
dr

= 4mr?p(r)

m(r):47r/0 dr'r?p(r') =
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Eq. 979 relates m(r) and p(r). The 00 component of Ricci’s tensor is given as:

A B

Ry = = 1+T< )
=5 l4+oo( 1 r (A B 1
B 2B \ A B 2/ 2
S [T (e B _
Ko, B +2B(A B) 21 pe” = p)
Ry = =517 (pc” — p)

2
Substituting 977 into the above equation, we get:

2G'm(r) r 2Gm(r) 2p' B 1 4,
1 3 1+§<1 - Zip B ShT (pc” — p) (980)

We now recall the expression for B(r) given in equation 968, and proceed to differentiate
it:

1
Br) = 2w =
AB() _ o, 26 e m)
dr " c? r 72

dr B%(r) ¢
1 dB 26
B2 dr  r2c?

dB(r) 1 2G (47r7"2p(7“) m(r)):s

Which yields the compact form:

% = % [4mr®p(r) — m(r)] (981)

Next, using equation 968 again, we derive an identity for % — 1

1 2Gm(r) 2Gm
—1=1- —1=— 2
B rc? rc? (982)

We also substitute 968 into 977 to isolate the term AX/:

r A" dp 1 2Gm
- - — 983
2B A dr (,002 +p) (T c? ) (983)

Then, from equation 981, we compute:

B 4
- mG _AmpG (984)

2 B2 rc2 c?

Finally, rewriting the right-hand side of equation 980 using the definition of x, we find:
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1 A Gr?
5Hlpe® =p)r® = ——(pc* = p) (985)

Now, substituting equations 982 through 985 into equation 980, we obtain:

mG  4rGr? dp 1 . 2G'm N
- - —_ r —
r2 ct p dr \ pc® +p rc2

1 G’_m+47rG’7"3 . 1 dp 1_2Gm
r\ c2 A P)= pc? +p ) dr rc?

Rearranging and simplifying, we finally arrive at the Tolman—Oppenheimer—Volkoff (TOV)
equation:

rc?

(986)

dp 1 [47TG . Gm—(r)} (1 2Gm(r)>_1

dr - _ﬁ(pc2+p) C4 p(r)r + CQ

Equations 979, 986 and p = p(p) create a closed system of eqs, needed to define the E.o.S.
for the matter. The set is called TOV eqgs. Given in the form:

i) p=p(p) (E.0.8.), links p(r) and p(r)

ii) dﬁy) = 47r?p(r), links m(r) and p(r)

-1
i) 20— L (pe? 4 p(r)) | ZEp(r)rd + GM—“] (1 - 2G—’”“) , links m(r) and p(r)

rc

The above set of equations provides the equations of stellar structure. The matter in-
cluded in NSs obeys a polytropic E.o.S. of form

p=Kp (987)
with 1
y=14— (988)
n
Both I and ~ are constants, and n is called the polytropic index.

Set (i-iii) contains two coupled differential equations of first order, which gives a unique
solution that is obtained by two boundary conditions.

1. First boundary condition: m(0) — 0 .

2. Second boundary condition: central pressure p(0) or central density p(0).

Set (i-iii) is integrated numerically on a computer, beginning point » = 0 and integrating
outwards until the pressure drops to zero. Pressure drops to zero when r = R at the star’s
surface. In a more compact form we write:

p(r) =0=p(r)

m(r) =m(R) =M

where the spacetime is described by the Schwarzschild metric with mass M.
In the Newtonian limit:

when r > R = { (989)
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) p<p
i) 47rdp < mc?

e 2Gm
i) gu ~ N = 5

Substituting the above equations in 986:

9P o Lo (Gr;(r)) o Gmlnp(r) 990)

dr r2
Eq. 990 denotes hydrostatic equilibrium.

The Schwarzschild constant-density interior solution

The simplest analysis solution for a relativistic star is obtained by assuming that the
density p is constant as:

p = constant (991)

Eq. 991 constitutes an E.o.S., borderline of being realististic, corresponds to an ultra-stiff
E.0.S. and represents an incompressible fluid.

dm(r)

I =4’ =
/ dm(r') = 47rp/ dr'r”? =
0 0
13 r 4
m(r) = 47rr% = 571',07“3, r<R=

R 0 4
/ dm(r) = 47rp/ dr'r? = —npR®, r>R=
0 R 3

4
§7Tp7“3, r<R

m(r) = 1 (992)
gwag, r>R

where R is the radius of the star and M is the mass parameter for the Schwarzchild metric
and describes the geometry outside the star.
Substituning eq. 986 to eq. 992 we get:

dp 1 (47TG 47err3) (1 B 87er7"3) !

ap _ L 2 anls 3
dr 72 (pe” + ) A p(r)r + 3c? 3rc?
dp 4G (993)

0 —@T(pc2 +p)(pc® + 3p) (1 -

87TGp7‘3> !

3rc?
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P(r) dp ArG [T r
D T _ T
/ 2 = 2 N - 4 / dr 87Gp =2 (994)
Po (pc® +p)(pc® + 3p) 3¢t Jo 1I- 32 |
Eq. 994 LHS integrand is written as:
A N B B 1
(b +p) ~ (pc®+3p)  (pc +p)(pc® + 3p)
A(pe® +3p) + B(pc® + p) = 10p; =
1
1 -
Apc® + Bpc =1 A+B=— A 2pc2
34p+ Bp=0p e 3
p+Bp=0Op B=-34 B=
2pc?
Thus,
p(r) dp 1 p(r) 3 1
[ ot m | Pl | 09
po (P HD)(p2+3p)  2pc* ), pct+3p  pct+p
Instead of integrating RHS, we apply the derivative w.r.t. 7 of the following expression:
e T d 1 8tGp
— =—|—1In(1- 7 996
3ct 1 — %W dr [402/) n 32 )} (996)
Integrating straightforwardly eq. 995 one yields:
p(r) dp 1 p(r)
D / 2 - 2 =
= dln (pc” + 3p) — dIn (pc* + p)
/po (pc® +p)(pc® +3p)  2pc? J,, : ] (997
p(r) dp 1 pc? + 3p(r) pc? + 3py
2 L o\ o2 < =55 |In 2 —In 2 1
p (P +D)(pc® +3p)  2pc pc? + p(r) pc? + po
Finally, eq. 994 is written as:
pc®+3p(r)
In | £ot20) ) = 1ln — SWGPTQ
pc®+3po o 32
pc2+po
pc®+3p(r) 1/2
p+p(r) | _ 87Gp ,
In praemall B In (1 ~ 3@ r ) =
pc2+po
pc* + 3p(r) _ pc® + 3po ( B 87TGpT2> 1/2 (098)
pc? 4 p(r) pc + po 3c?

On the star’s surface, the following arguments are valid without proof:
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1. r=R

2. p(R)=0
p+3p(R) _ pc?
3. pci+p(R) — pc? T 1
4. From Eq. 998 1 = 2543 (1 87Gp,2)1/2
2
o 3 | (1o (999)
8tGp pc% + 3po
R is the radius of a star with uniform density p at central pressure py. Set
GM  4ArGpR3
= = 1
a c? 3c? (1000)
R pc® +po \°
RP=—|1-(——— =
2u pc + 3po

2 2 2 2 2 2
_ﬂzl_(ﬂc_ﬂ?ﬂ) :(pc_ﬂﬂo) o
pc? + 3po

9\ /2 9.\ /2
pc2+p0:pc2(1—ﬁu> +3p0(1—§ﬂ) =

2\ "? ) 2u
+ ( R) pc 7
1—/1-2
po=pc | —=—— (1001)
3./1— 2% 1

Replacing py in the expression eq. 998 yields:

pc® +3p(r)  pc® + 3pg ( dmpR® 2r* ) 1/2
pc + p(r) pc2 + po 3¢ RS

pc +3p(r) _ pc + 3po 2\ "?
pct+p(r) — pc+po ( )

c+3() 2ur?
S




J0-) -
3 (1 B %)1/2 B (1 B 2%2)1/2

Lastly, we need an explicit form for A(r) and B(r). For B(r), when in the internal radii

we get:
2Gm(r)\ " 8rGprd\ ! ArpGR3 2r2\ 7!
— (1= S (T VN T B Ol o L
B ( rc? ) < 3rc? 3 R ~

p(r) = pc (1002)

2ur? -
B(r) = (1 ~ ) (1003)
Eq. 1003 for r = R yields:
2R\ 1
B(R):(l— R3) —1_%:BS(R)

Solution matches the expression from the Schwarzschild metric outside the sphere.
For A(r) we have:

1 dA 2 dp_dA_ 2 dp,
Adr ~  pE+pdr A pE+pdr

dA 8nGr, , 2ur?\ !
I—dr o (pc” + 3p) (1— e =

r2 /
aa _ , 8rGr 2 S ( 1 >=>
1 —

pc” + 3pc

ey T ,,,2
A 3¢t 3\/1___\/1_2;”2 2}’%3
1 dA 87TG,0R3 3\/1 2ur2 _ \/1 . 2ur2 |
A A ~ 3R3¢2 2 2
3y/1- % \/1—2# ( 1_2}%22)
4,ur
l% = (1004)
Adr \/7( = \/1_%,,2)
24 \/ 2pur? 2ur 1 1
1 1—— —4/1-— = 1
dr [ (3\/ R R3 (1005)

- R "
1—%(3\/1—%—\/1—21@22)

Substituting eq. 1005 in eq. 1004 we get:
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2
. 21 2pur?
At
2 2p
r=R= AR)=c 1—§ (1007)
Combining the above, we get:
2
c
A —_ — 1
1 (1008)
Finally the expression for A(R) will be:
2
c? 2/ 2172

7.2 Buchdahl’s theorem

Theorem 2 Given a static, spherically symmetric solution to Einstein’s equations with mat-
ter confined to a spatial radius R, that behaves as a perfect fluid with non-increasing density
outwards, then the mass of the solution to the field equations must satisfy the upper bound:

GM 4
- 1010
R 9 ( )
This constraint is derived by the behaviour of pg, when & — %, then from eq. 1001
1—4/1-8 2
po = pc? = pc?—2— = 40 (1011)
3,/1— 8 — 1-1

Thus, % <4
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8 A complete analytical GW model for undergraduates

In this chapter we follow the train of thought of Dillon Buskirk and Maria C. Babiuc Hamil-
ton’s article, named "A Complete Analytic Gravitational Wave Model for Undergraduates",
as cited in [104], in the final section the images were contructed by the Wolfram Mathematica
Coding given by the same author as in [124].

An accurate waveform template is constructed by two specific parts. The first part
always includes analytical models of inspirals and mergers, while the second part is obtained
with numerical calculations. In this chapter, the Implicit Rotating Source (IRS) is used
as the analytical model, and various numerical simulations are performed using Wolfram
Mathematica Coding.

In most cases, we apply Post-Newtonian calculations and analytically compute the in-
spiral phases. A useful parameter in PN theory is y, given by x = Z—j Despite the many
advantages PN theory offers, it is not valid for relativistic and near-relativistic cases, such
as the merger and ringdown phases. Its validity lies in weak fields, where y < 1, and not on
ringdown phases.

The second last part, of which an accurate template is constructed, is the numerical
computations of the ringdown phase. In this case, instead of calculating the energy flux
through equations, the energy loss is approximated with numerical methods and modeled
by an ansatz. In our case, the ansatz is depicted as a generic IRS model tuned to numerical
GR. The reason behind using numerical and not exact solutions of Einstein’s equations
on the merger phase comes from the fact that the gravitational field, and as a result, the
gravitational forces, take extreme values reaching relativistic limits. In this regime, PN
theory loses validity, since all phenomena are relativistic and the y-parameter reaches an
outlier (x — 1).

8.1 Post-Newtonian expansions in Relativity and useful quantities
As mentioned in previous chapters, the energy loss in every merger is

dE
S 1012
v (1012)

where the energy flux is denoted by F. In terms of the PN parameter y and using the
derivative chain rule, equation (1012) is rewritten as

dE  dEd
(1012)) = — = =X =
at  dy dt
oy . (1013)

T &% dE/dy

There are several ways to solve equation (1012). The most useful one includes the usage of
the T1-T5 Taylor approximants. To use the approximants, it is needed to write down the
power expansion of equation (1012) for n terms:

dX dXOPN dleN dX2PN dX3PN dXHT
77 = = ° ¢ ! ’
(777) XNt~ X T g X YTy

1014
dt dt (1014)
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where d’ng sums up all hereditary terms.

Instead of the parameter y, we can obtain corrections in PN approximation by expanding
in terms of #". Fach order of this expansion counts as § order. Namely, every expression

2
can be expanded based on the following;:

du B GM [1 . 1PN . 1,5PN . 2PN . 25PN
dat r2 c? 3 ct cd

+ ] (1015)

In equation (1015) The 1PN term expresses the orbit precession, the 1,5PN term provides
information about the spin-orbit interaction, and the 2PN term describes the spin-to-spin
coupling. Finally, the 2,5PN order of approximation gives the orbital decay that occurs
with GW emissions. Furthermore, when substituted Kepler’s third law and the expression
of orbital velocity, as stated below:

e Keppler’s third law: w?r® = GM = r = (%—%4)1/3

e orbital velocity: u = wr = w (%)1/3 = (GMw)"?
At this point, it is relatively easy to see, that the y—parameter can be expressed as:

2 GMw)2/3
=t = = ) (1016)
c c

For our analysis to be complete, we need to see the T4- approximant in a quasicircular
limit expressed in 6PN order:

12

dyx 6PN 64 5 k/2
M2 = — 1+ / 1017
& | 5 X gzz a/2X ( )

and the oy, coefficients are expressed for every k, that belongs between 2 and 12. Below
are shown the first four:

e ap = 153.8803

e a; — —55.83
® a5 = 588
e a3 = —1144

The next coefficients ay, as, ag, ag/2 and a1/ are analytically expressed in Appendix B of
[104].

8.1.1 The analytical models

Kepler’s third law, when written as an expression of r and the y—parameter’s expression is
inserted, we can obtain an expression of r in terms of y, as:
M
r= =xt(t)M (1018)

w2r2
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Based on this form, we can take a third form of the Post-Newtonian expression in terms of
radii r up to 3PN order as:

r = M[TOPNX_l(t) 4 TlPN 4 TQPNX(t) 4 T3PNX2(t)] (1019>

with the coefficients to read

° TOPN:1
o 1PN =—141p
o ;2PN = 19, 4 Ly

o 3PN — 7518221 — 3.08333n% + 0.024691473

Finally, if we demand an optimal orientation of the detector normal to the orbital plane
(0 = 0), we can rewrite equations. as

h+::—2%?z{(—f2+raf—%%?>cmﬁ&@—k%ﬁéﬂn@¢ﬂ (1020)
hX::—E%?z{(—f2+raf—%%?>shﬂ?¢)+2rhﬁms@¢ﬂ (1021)

Note here, that instead of the original expressions, as produced in Chapter 2, we substituted
the symmetric mass ratio defined as n = ™7z* and the total mass of the system M = m;+mo.

Concluding this section, we can now produce the waveform that expresses the strain.
The strain applied by a gravitational wave gives information about the whole inspiral and it
is denoted as h"*P(t). Namely, it is the complex sum of the h, and h, polarizations, with
the second being the imaginary part. Applying the above, it is fairly easy to write:

RSP (t) = i (8) + i (1)

2M . M .
- _Tn (—7'"2 +r2¢? + —) (cos(2¢) + isin(2¢)) + 2rro(sin(2¢) + icos(2¢))
T
oMn | MY\ . o
el (—7'"2 +r2¢? + —) e 1 27“7*@62‘7”)]
R r
2My | o M '\ o
- =1 (—%ﬁ+ﬁ¢?+——+2w¢06%1
R r
(1022)
Finally we derive the expression:
: 2M :
WR(E) = == | Ay(t) + iAa(t) | € (1023)

where M
A(t) = =2 +129* + —
,
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and

Ay(t) = 217

In a similar way, we can rewrite A;(t) and As(t) in a complex function in form defined
as:

A(t) = Ai(t) +iAs(t) (1024)

8.1.2 The merger model

One crucial phase of a collision of two celestial objects is the merger phase. The merger,
as it is commonly known, begins when the two objects pass the Innermost Stable Circular
Orbit (ISCO). As ISCO, we define the stable radius, where two or more objects perform a
circular orbit. In Schwartzschild geometry, we obtain as ISCO the radius:

6GM
Trrsco = 2 = 3RSch = T'1sco — oM (1025)

Based on the definition above, it is easy to understand that at r = R;sco the inspiral
phase ends. Similarly, we can define the frequency where the inspiral ends as:

g L1
1sco = 6(2m)v/6 M

Several semi-analytical models have been developed to fully explain these phenomena, the
most successful of which is the Implicit Rotating Source Model. In this case, the amplitude
is assumed to be circularly polarized. This model is not valid for the merger and ring-down
phases, but provides an excellent approximation for our results.

To obtain a clear picture of the above and have a more exact theory, we follow the way
of William East in the article "Observing complete GW signals from dynamical capture
binaries" [108]. For this case, we approach the phase evolution to the least damped Quasi-
Normal Mode (QNM) frequency of the final black hole, denoted a wgn s via the expression:

(1026)

~

w(t) = CUQNM(l — f) (1027)

P () e () ) e

Here the amplitude will be:

where

1/2

Ao
w(t)

Fi
L+ a(m)(f? = f)

where a = %, b= % and woyy = 1 — 0.63(1 — Svfm)O.S The spin of a black hole can be
expressed in terms of n according to equation 1030. The complete expression is produced
by numerically approximating the problem in hand. Numerically, a black hole’s spin can be

expressed as:

At) =

(1029)

300 , 2379 5 4621 ,

S _ 27
Spin = 2V31 791 T og7 T T 9

(1030)
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This derivation of a GWs amplitude and frequency in this model, is complete only if we
write down the numerical expressions of the functions a(n),b(n), c(n) and x(n). After some
strenuous algebra done with the help of Wolfram Mathematica Coding, we get:

. 1 [16313 | 21345
a = =
@S e T
16014 29132

b(n) = _ 2

) =79~ 313"
) =503+ 141"+ 1205 1ogn
) 713 23

= 1056~ 193

. 2

QQ(Sfin> =

(1 _ S'fm)o.45

The last piece that completes the merger puzzle is to compute the merger phase. This
can be done by integrating the orbital angular velocity for a given time interval:

Byns(t) = / " dtw(t) (1032)

to

Concluding this model applies to the merger of non-spinning compact binaries. The elements
of the binary may have the same or different mass ratios and the full model describing the
merger phase is called the generic Implicit Rotating Source model (gIRS).

8.1.3 Implementation of the models and matching techniques

Before applying the models mentioned in the previous paragraphs, it is useful to define the
domain of integration. As the domain of integration, we define the range between the initial
and final value of y—parameter. The lower boundary of x is denoted as xo and dictated
by the seismic background threshold. The seismic background threshold is the minimum
constant frequency created by the movement of tectonic plates. This frequency comes to be
around f¥&% = 10Hz2.

Knowing the background frequency, we can compute the corresponding angular velocity
and the y—parameter as:

ity = I (1033)
ow ow \ 2/3
C C C

The upper boundary is defined by the radius of the last stable orbit, namely the ISCO.
Consequently, the value for each binary system differs and is frequently needed in the second
PN order (dependent on the symmetric mass ratio 7). We write the following:

OPN __
® X1sco =

1
6
* X500 = é (1 + 1_7877)
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Following the logical process of the article "A complete analytic GW model for undergrad-
uates", we begin with a paradigm of two configurations with equal masses m; = my = 20M,
total m, ass M = 40M and symmetric mass ratio n = 0.25M. Implementing these values in
the Wolfram Mathematica format provided by the author, see bibliography [124], we produce
datasets of useful data and images. Since we are dealing with numerical analysis problems,
there is a catch: There must exist an upper bound to our frequencies defined by the bin
configuration to exclude any stiffness in our differential equations. Stiffnesses in numerical
approximation can be caused by factors, initial conditions and singularities. Any stiffness
happens at a fixed time called time of stiffness and denoted by t,. Similarly, instead of
limiting the frequency, we can limit the time axis. Graphs producedby the the coding in
[124], in the case where each BH has mass equal to 20 solar masses are shown below.

600 100
500 80
400 - 60
300 [ 40+
200 - 20
100 " . . .
11.0 1.2 1.4 116 118
11.0 112 1.4 116 11.8

Figure 12: PN z-parameter as a function of  Figure 13: Evolution of Orbital Frequency,
time, created with [124]. created with [124].

r separation

Ainspiral
5x10719 |
4.x10719}

3.x10"19 }

2.x10719}

f(sec)

" 11.0 112 1.4 116 118

f(sec)

Figure 14: R separation between stars up to
3PN order and as a function of time, created  Figure 15: GW Amplitude evolution in time,
with [124]. created with [124].
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Figure 16: Graph of real part of inspiral am-
plitude, created with [124].
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Figure 18: 22-component of GW strain for
the event, created with [124].
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Figure 20: GW phase evolution during the
merger as predicted by the generic IRS
model, created with [124].
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Figure 17: Real (full line) and imaginary
(dotted line) part of GW strain, created with
[124].
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Figure 19: Orbital frequency evolution of the
merger phase, created with [124].
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Figure 21: Maximum value of Amplitude of
binary merger, created with [124].
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hmerger

10}

Figure 22: Strain’s waveform during the
whole event (real and imaginary part), cre-
ated with [124].
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Figure 24: Overlapping the frequency, cre-
ated with [124].
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Figure 23: Overlapping the frequency, cre-
ated with [124].

h,. Strain
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Figure 25: Overlapping the waveform, cre-
ated with [124].

Furthermore, escaping the article’s boundaries, we explored the program’s capability of
producing approximated waveforms for different pairs of masses. Taking different mass values
for each of the objects, we concluded that each one must be m; > 5M,, for the program to
function properly. Meanwhile, the total mass must be of order M > 12M.

Using the data stated above, the program allowed us to compute the total time of the

coalescence. The results are shown in Table 2.
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Table 2: Table of individual star masses M; and Ms, the total mass My, the mass ratio

2. and total time of coalescence tyyq. Data created and obtained by [130].

= mi+ms2

M, (Mo) | My (Mg) | Miotar (Mo) | n (Mo) | tiotal (8)
10 5 15 3.33 70.0906

8 4 12 2.66 70.0897

6 6 12 3.00 | No wave

7 5 12 2.92 93.1185

75 75 150 37.5 1.0988

76 75 151 37.75 | 1.07886

7 76 153 38.95 | 1.05158
76.5 76.5 153 38.95 | 1.05165
150 3 153 2.94 11.3613
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9 Constraining scalar-tensor theories by NS-BH GW events

In this chapter we delve into an extremely important article written by Rui Niu, Xing Zhang,
Bo Wang and Wen Zhao, named "Constraining scalar-tensor theorie by neutron star-black
hole gravitational wave events", see bibliography [125]. In rder to fully comprehend the alge-
bra performed in this article, as well as the different modified gravity theories implemented,
we refered to two more articles [126] and [127].

9.1 Introduction

General Relativity (GR), proposed by Einstein in 1915, is fundamental to modern physics,
successfully tested across various scales from laboratory experiments to cosmological observa-
tions. However, GR faces challenges such as singularities, the lack of a quantum formulation,
and the need for dark matter and energy, prompting the development of alternative theories
like scalar-tensor models.

Scalar-tensor theories, which address some of GR’s limitations, have their origins in
early unification attempts by Kaluza and Klein, with further development by Jordan, Fierz,
and Brans-Dicke. In this study, we focus on three models of scalar-tensor theories, the
Brans-Dicke theory (BD), the Damour-Esposito-Farése (DEF) theory, and Screened Modi-
fied Gravity (SMG).

Brans-Dicke theory introduces a varying gravitational constant through a scalar field
coupled to the Einstein-Hilbert action. DEF theory reveals strong-field deviations from
GR, such as spontaneous scalarization in neutron stars, which is a nonperturbative effect
emerging in strong-field conditions. Additionally, dynamical scalarization occurs in binary
systems but is not the focus of this study. SMG theories include screening mechanisms, like
the chameleon, Vainshtein, and symmetron mechanisms, and suppress deviations from GR
on small scales, while still allowing for cosmological effects such as dark energy.

Gravitational wave (GW) detections, such as GW150914, offer a new way to test GR
in the strong-field regime. The LIGO-Virgo Collaboration (LVC) has conducted model-
independent tests, but specific modified gravity models can provide additional constraints.
Scalar-tensor theories are particularly relevant in systems, like neutron star-black hole (NSBH)
binaries, where asymmetry between the components enhances deviations from GR.

In this study, we test BD, DEF, and SMG theories using GW data from NSBH systems,
specifically GW200105, GW200115, and GW190426 152155. We exclude GW190814 due to
uncertainty in its secondary component and GW200105 due to waveform systematics. Our
analysis will focus on dipole radiation deviations in the GW signal and compare our findings
to LVC constraints.

The theory of Brans-Dicke takes Mach’s principle as the starting point. Mach’s principle
states that the phenomenon of inertia depends on the mass distribution of the universe.
Because of Mach’s principle, we promote the gravitational constant to a variable and demand
that it couples to the Einstein-Hilbert Lagrangian as a scalar field. This theory is the simplest
scalar tensor theory, it is very well constrained and in general it is considered as a prototype in
scalar-tensor theories. Its most stringeent constrain s the measurement of Shapiro time delay;,
an experiment conducted by Cassini- Huygens spacecraft, results are given in [128].In Brans-
Dicke (BD) theory tight bound requires deviations from GR in gravitational experiments to
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be very small in both weak and strong fields.

Damour and Esposito-Farese showed in their articles [127] [130], that non-perturbative
effects can emerge in strong-field conditions. When the object’s compactness exceeds a
critical point,occurs a phenomenon called spontaneous scalarisation. This allows the behavior
in gravitational experiments involving compact objects (like NS), to differ from experiments
in the weak field regime. Models with non perturbative strong field effects may develop
a deviation proportional to O(1), if and only if the most stringent weak-field constraint
is bypassed. Induced scalarisation occurs when the scalar field produced by a scalarised
component, induces the scalarisation of another component, which is not scalarised initially.
Although, we do not concern ourselves with induced scalarisation, since we deal with NS-BH
events and it concerns only events of NS binaries.

Dynamical scalarisation occurs in a binary system that is being scalarised due to the
gravitational binding energy of orbit, but the two components cannot be scalarised separately.
It is hardly detected by current experiments. This fact shows that non-perturbative strong
field effects are constrained by pulsar timing experiments. Precise measurement technology
and decades of data provide highly precise measurements of orbital decay rates in binary
pulsar systems. This is a good test of gravitational theories in string-field regimes.

SMG evades tight solar system constraints by introducing screening mechanisms (Chameleon,
Vainshtein, and Symmetron). The scalar field plays the role of dark energy, driving the
cosmic expansion. Screening mechanisms suppress deviations from GR on small scales to
circumvent stringent constraints from solar system tests and laboratory experiments. For
a given specific modified gravity model, independent parameters cannot always completely
describe deviations of GWs. The deviations depend on the physical character of NS and or
BH in the theory. Testing S-T theories by GW has been conducted since the 90s. More
and more detections allow us to constrain S-T theories with real GW data. In S-T gravities,
the deviation of GW from that in GR depends on the sensitivity difference between the two
stars. The asymmetric binaries NS-BH, NS-white dwarf are excellent candidates for model
tests.

Up until 2021, there where four candidates (NS-BH events): GW/200105, GW 200115,
GW190426 — 152155, and GW190814. The GW200105 and GW200115 events are thought
to be confident observations of NS-BH binaries. The component masses are consistent with
observations of BHs and NSs. However, there are not any information on spin and tidal
deformation, also there is no electromagnetic counterpart detection. This means that we have
no information about the secondaries being a NS and perhaps they are an exotic object.The
event GW190814 is characterized as plausible, since the secondary mass is M = 2.6M. This
mass corresponds to a small BH or a heavy NS and thus we assume that GW 190426 — 152155
is an NSBH coalescence event, with a high false-alarm rate (FAR). Finally the two events:
GW200105 and GW190814, are excluded and we use only GW190426—15155 and GW 200115
events.

In order to constrain scalarisation effects, we use a modification of dipole radiation and
perform the full Bayesian inference .
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9.2 Scalar-tensor theories

We consider a class of scalar-tensor theories described by the action

1
5= 167G,

[ dev=g R~ 20,00,0] + Sl A0)) (1039

9.2.1 Equations of motion in scalar-tensor theories

Written in Einstein’s frame, where G, denotes the bare gravitational coupling constant,
which is approximated by G, ~ G when solving TOV equations. The metric tensor in this
frame is denoted by g/ and its determinant by g., while R. = gi” R}, is the Ricci scalar. In
the last term of this action the field v, collectively denotes various matter fields and A(¢)
is the conformal coupling function.

The field equations in Brans-Dicke theory can be derived by varying the action 1035 with
respect to the metric ¢/ and the scalar field ¢. The full expression of this action reads as
following:

1
167G,

[ i R — 250 0,00,6] + Sulbm, Ag] (1030
In order to easy things, we define the following terms:
S, = /d4:c\/—_g* Ry,
with variation
351 = [ d'al(6V=g)gt By + V=500 By + /Gt OF ) (1037)
The variation of the Einstein frame metric and inverse metric tensors read:

59;1/ = _gupguaagfa

and the field equations are given concerning ¢/ and ¢.
Explicit calculations begin with the assumption that g7, is a square matrix with:

det|g,,| =g (1038)

For any square matrix M we get In(detM) = Tr(InM), when variated yields
d[in(detM)] = 6[Tr(InM)] =
d(detM) _ 7, (5%) N

detM M (1039)
1
——5(detM) = Tr(M~"6M
oo ldetM) =T ( )
If gp, = M, gl" = M~ and det(gr,) = det(gh”) = g., then from Eq. 1039 we get:
1 *

*
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also,
5g;w = _gupguacsgpa (1041)
Combining the two above Eqs, we get
09« = —g.Tr(g,,09.") = —9+9,, 09" (1042)

Variation on /—g, yields:

1 g* v * 1 v *
o =g = 0gs = — 98095, = —5vV—09:9. 093, (1043)
24/ —Gx 27/ —Gx 2

The first term in equation 1037, when variated with respect to d/—g.g," R, and along
with 1043 reads

7%

— [ d*zR, —V;Q*(g* 5gt) (1044)

The second term in equation 1037, when variated with respect to d1/—g.gt” R}, and along
with 1043 reads

[ dev=am b0 (1045)

We see that this term remains as it is. While the third term is rewritten as following;:

V=9.9" RS, - (1046)
Consider two arbitrary variations of the connections given by replacing

I, =T I, +ol, =o', =17

H’IV/ - },I/IVI

-T9, (1047)

The variation on Christoffel’s connections 01", is given by Eq. 1047 and is a tensor, since
it is defined by a difference of two connections. Acting on 1047, the covariant derivative D,
yields:

DTG, = 5019, + 15,00, — 5,009, — 5,677, (1048)

and
Dy6T'S, = 0,015, + FZQ(SFf\YV — FﬁN(SFgV — Fzyéfia (1049)

Taking the difference of 1048 - 1049 we get:
D)ol — DTS, = 0x0Ty, + 15,01, — I'3,00%, — 0,015, — 7,015, + 7,65, (1050)
As usual Riemann’s tensor is defined as:
Ry = 7, = 0%, + T3, — T

and when variated, it yields:

OR,x, = O\01, — 0,01, + oIS, I, + 5,01, — o7, IS, — 7,015, (1051)
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A closer look on Egs. 1050 and 1051 produces:
oR%,y, = Dyol'y, — D,oTS,
A contraction on o, A yields:

SRSy, = 00R%,%, = D,01, — D,0T7, (1052)

[ 2.V [ 2.V

So Eq. 1046 is written as:

/d4x V—09:gi" OR}, = /d4x V=0. g (D,0T, — D,,6T7) (1053)

We know D,g;, = 0= D,g,,, so

— [t v=g [Dagars, - 9D,o13,
_/#x%%HLPRM;—ﬁWWJ
:/#Mkbcgwm%—ﬁm%”
Variation of connections produces the following expression:
oIy, = —% 95, D0(8927) + g5, DA(0927) = G090 D7 (3957)] (1054)

51—‘1))/\ - _% [

Substitute into Eq. 1053:

9irDu(692) + g5, DA(692Y) = gragisD 6927 (1055)

1
—§/ﬁﬁv—%lkpawﬁﬂ+l%®ﬁﬂ—ﬂﬁDW&ﬁ%—gWD%&ﬁﬂ Do (897) 4+ Du(6g°7)
==/ﬁ%v—%I%DA&ﬁﬂ—g%DdW®ﬁm

:/Q%V—%Daﬂhwﬁﬂ—Q%D%@%ﬂ:“-
(1056)

Defined on the boundary, so that this term does not contribute to the total action.
Consequently, 657 has the form:

55) = / £ [0V =GR + V=g.(5¢™)Rs,y + V=90 (OR)]

:>651:/d4a: {—R VQQ* s+ V—9R

(1057)
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We define the second term as:
= [ dav=g.09,00,0

with variation

55, = / d'x (63/=gu gl 0,00, + /= gu09L" 0,00, 6 + /=99t 6(0,00,0))  (1058)

The third term does not contribute when variated with respect to g#”. Analytically the
terms, when variated produce the results shown in equations 1059 and 1060.

/ d'z (03/= 9.9/ 0,00,0) = / d'x (——V;g*a%am&g;») (1059)

The second term:
/ d'z\/=g.(69")0,60, ¢ (1060)

remains the same, when variated w.r.t. dgt”

The second field equation is derived, when we define Sy = Sy(V s, A%(¢)g™ and vari-

ation 55%”

053 08 J
T = 5 = g [Su(un, A%g)] (1061)

Equation 1038 when variated w.r.t. g*” yields the sum of variations 057,055, 0.53.

o 2 88 2 [d5 N 68y 6Ss 1
V=000 /=g, [0g¥  6g T §gt | 167G,
1N 1
T § * 20,00, 1062

* | *
= (T,uu o QT gy,y> 8rG + 2@(]5&(]5 = ij q@d

When varying w.r.t scalar field ¢, one can write the action as:

_ 1 4 — ;U/
= T6rC. /d T/ —gi [Ri — 0,$0,¢ + L]

The new L' satisfies equations Euler- Lagrange w.r.t. ¢ and we get the second equation

of motion:
oL’ < oL’ )
— | =] =0 1063
a¢ Il 8(0H¢) ( )

! .
The term % can be written as:

OL' _ L 0A9) _0A(¢) Oy _ v =Ge 1 0A0),
op — 0A(p) 0J¢ 09 0A(¢) 2 0l0)
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when aiﬁ;&) yields
oc oy | 200u®) 0(0,9)
I [a< 5c0) "+ %5 00)
=V 709« ( gL 0,0 — fkawb)
= V=9.(—440,9)
the derivative:
oL’ B .
aIC (a<alc¢)> - _4\/ _g*alC( 0I/¢) 167 G

167TG Ou(V'=9.9"09)
= T6n G g/ —g

and the equations of motion are given by substitution in 1063 as:

y o« OA(9) 1
B T 1)

Oln A Oln A
Ogutp = —47TG*Tf”na—¢w)9;V — _47TG*T*118—¢@>

Oy = —4nG.a(p)T™

where a(¢) = alna—’z(d)) and T* = T!"gy,. The last term is the energy- momentum tensor of
matter fields. Lastly , [, is the curved spacetime D’Alenbertian Oy, = 7g* 0,(v/ =99 0,)

and «a(¢) is the coupling constant between scalar and matter. Since A = A(¢), we can expand
In A(¢) as power series around ¢, as

In A(6) = (6 — 60) + 306(6 — 00 + O(6 — 6,

where «, and [, are related to yppy and Bppy as

gPPN _

1
1 250
T2 (1+a2)"
in parameterised post-Newtonian formalism.
The coupling between a scalar field and a star A is described by a parameter known

as the scalar charge a4. This parameter can determine the equations of motion and the
gravitational wave (GW) emission of binary systems and is defined as:

Olnmy
8¢ P=0o

s = (1064)
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In scalar-tensor theories for compact binaries, the center of gravitational binding energy
does not coincide with that of the inertial mass. This difference between the two centers
results in a varying dipole moment and induces extra energy loss through dipole radiation.

In order to further understand the energy lost by dipole radiation, we will follow Clif-
ford M. Will’s article "Testing Scalar-tensor gravity with gravitational wave observations of
inspiraling compact binaries", see reference [126].

Promising sources for detection are inspiraling compact-A binaries. As an inspiraling
compact binary, we define any binary system of neutron stars (NSs) or black holes (BHs),
with a decaying orbit toward a final coalescence. This occurs under the dissipative influence
of gravitational radiation reaction. In addition to the simple detection of the waves, we can
determine important parameters of the inspiraling system, such as the masses and spins of
the celestial bodies.

The term spin of a celestial body refers to a rotational motion around an imaginary axis
that runs through its center. This axis is known as the body’s rotational or spin axis. The
speed of spin varies widely, from hours to hundreds of years. The direction is defined by the
right-hand rule.

The celestial body’s spin implies many consequences on physical properties. It affects
the shape, since faster spin leads to a bulging equator and flattened poles, forming an oblate
spheroid shape. Also the night-day cycle and the direction of the magnetic field are af-
fected.This type of spin helps define the characteristics and behavior of the celestial body.
The late-time evolution of such systems yields an accurately calculable gravitational wave
signal. It is a chirp signal, that increases in amplitude over time.

The chirp signal is a type of signal that changes in frequency over time, often increasing in
frequency as it scavenges. In GW context, a chirp signal is emitted when two massive objects
(BHs or NSs) orbit and merge. During the orbit, the two semitropical GWs, which cause
a detectable chirp signal, start at low frequencies and gradually increase until the objects
merge. At the point of merge, this signal stops abruptly. This is a distinctive feature of
compact binary objects and provides information about the properties of the binary (mass,
spin, distance).

The chirp signal sweeps in the detectors’ typical sensitivity bandwidth between 10 to 1000
Hz. Determining parameters is done by matched filtering of theoretical wave templates (de-
pendent on system parameters) against the broadband output of the detector. The evolution
of the frequency depends on the parameters of the system.

In the slow-motion, weak field, non-radiative limit appropriate to solar-system dynamics,
most alternative theories of gravity can be accomplished by one simple framework, the PPN
formalism. We focus on the BD scalar-tensor theory. This theory augments GR by adding a
scalar gravitational field, that couples universally to matter and the gravitational coupling
strength is determined as G via G ~ ¢~ L.

Relative importance of scalar field is parameterized by a constant wgp, which in general-
ized scalar tensor theories may be defined as wpp = wpp(¢). In the large limit of wgp, the

relative difference between effects in GR and BD is of order O (ﬁ . As wpp — +o00 =

BD — GR. An empirical bound on wgp > 500 is imposed for scalar-system measurements
of Shapiro time-delay.
Shapiro time-delay or Shapiro effect, is a phenomenon in which the time it takes for a
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M/M, S
0,132 0,01
0,167 0,02
0,244 0,05
0,424 0,10
0,516 0.13

1,25 0,49
1,41 (max mass) | 0,78

Table 3: Table of sensitivities of neutron stars. Adapted by [126]

radio signal to travel through a gravitational field is affected by spacetimes’ curvature. This
effect results that the signal takes a longer path to reach its destination, than if it would
travel through a flat spacetime.

The Shapiro time delay has a small effect, but huge implications for astronomy and
astrophysics. It is widely used in measurements of masses and densities of massive objects.
For systems with gravitational radiation and compact objects, BD theory introduces the
following three effects.

First effect: It implies modifications to the effective masses of the bodies. These depend
on the internal structure of bodies and they are parameterized by sensitivities Sa. Sa
sensitivity is a measure of the gravitational binding per unit mass. For example, NSs have
Sns =~ 0,1 —0,2, where BHs have Sgyg = 0, 5.

This type of event violates strong equivalence principle, in the notion that the motion of
these bodies depends on their structure and tidal interaction.

Tidal interaction is a reference to gravitational forces that celestial bodies exert on each
other when in proximity. Tidal interaction causes deformation of body’s shape and change in
orbital and rotational motion. Tidal locking refers to the locking effect on the rotation of a
moon or a planet because of tidal interactions. Similarly tidal heating is when gravitational
forces heat the interior of the body.

Second effect: It implies modifications on the quadrupole gravitational radiation. BD
theory predicts monopoles and quadrupole gravitational combined diation. The combine
effect modifies GR’s effective quadrupole formula for two body energy loss by a term:

dE 8 p*m?
d 15 r4

(120* — 117%) (1065)
where:
e 4: reduced mass of the binary system,

e m: total mass of the binary system,

r: orbital separation,

r: radial velocity,

v: relative orbital velocity.
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More precisely, the orbital separation is the distance between two objects in motion
around each other, where this is equal to the distance between their centers. Moreover, it
depends on mass, shape of the objects and the gravitational forces. Affects phys. properties,
behavior, gravitational interactions, and tidal heating.

Third effect: It implies dipole gravitational radiation. The center of gravity is different
form the center of inertial mass. In BD, the dipole moment equals source of scalar radiation.
It depends on S = s; — s9 and is larger than quadrupole contribution by an order O (U%) .

dE| o 2pPm? 5P
dt dipole — 3 7"4 .

This effect modifies the evolution of orbital radius and GW frequency f, by an accumu-
lated phase of GW:

(1066)

WBD

tout Sout dt Jout f
Saw = / denf= [ Zapomp= | arenl (1067)

where:

e in denotes the signal that enters the detector

e out denotes the signal that leaves the detector

These two together form the detector’s bandwidth. Since

f 37 3E

Lo _ L _ 1068
f 27 2| F| ( )
In the dipole term, we get:
S? 5376
o < g (M) (1069)
where
n= % (1070)

M = 1n*/>m the chirp mass and f;, is typically chosen ~ 30Hz. The chirp mass is the mass
that determines the lowest order of quadrupole effects. It is defined as

3/5 3/5 3/5
_ .3/, M _ M M
M =n""m = m3/5m o351 p—2/5 =
o (mme NP1 (muma)?” ! = (1071)
my + Mo m—2/5 (m1 + m2)3/5 (m1 + mz)_2/5
(m1m2)3/5
M
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Formalism of matched filtering with post Newtonian effects reduces % as

52 M3 10
1,46 -107° [ — =25 1072
WBD = (M(D) 7 (S/N> ( )

where S/N is the signal-to-noise ratio, which measures the strength of a GW signal
relative to the background noise of the detector.

9.2.2 Frequencies for three types of celestial bodies
[) NS and BH binary. Sys < 0,2 and Sgg = 0,5 = S = sy — sy > 0,5—-0,2 = 0,3.

Restriction:
. MNP s (SINY (S Y
w [ —_—
D= 1461005\, ) T U0 ) \o.3

M /3 9 S/N S 2
_ AN e __
wpp > 68493( @) n < 10 ) (073)

IT) Two NSs. Sygs varies with mass. Because of Syg, 9 is pretty small with § < 0,05.
Bound on wgp weaker than solar-system results. Exception when masses are 0, 7M, and
1,4M extreme bound 1100.

IIT) Two BHs. There, the difference in sensitivities is 6 = 0,5 — 0,5 = 0 and wpp yields
no dipole radiation. Bounds on wgp are placed if both chirp mass M and reduced mass
parameter n are measured with accuracy and with the components mass we decide in which
case we lie. Dipole radiation effects vary as v=2 ~ - relative to quadrupole radiation and
PPN corrections as ”*. These two are not correlated in the matched-filtering formalism.

(1073)

9.3 Compact objects and gravitational radiation in scalar tensor
gravity

The lowest order in power expansion of v? ~ ™. This corresponds to Newtonian order for
orbital motion. In GR it is called a quadrupole order for gravitational radiation. These
equations include contributions due to self-gravitational binding energy. These contribution
factors are determined by the sensitivity of the inner tail mass of each body A to changes in
the local value of Gs:

Olnmy

Sp=— . 1074
A dlnG ( )
If we suppose two-body orbits, then Keppler’s third law reads:

472 42 3

PP=— o= ——. 1075

G T Gm (1075)
where P is the orbital period. The corresponding frequency w is given as

27 Gm
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And the equations of motion transform as:

d*7 GmT
— = — 1077
dt? r3 ( )
where
G=1—-¢&(s1+ 2 — 25152) (1078)
Here s1, s5 denotes the sensitivity of the two objects and
f=_ 1 (1079)
- 2+ Wap
The energy of a circular orbit is:
1 Gum
E=—- 1080
2 r ( )
while the velocity of the same circular orbit reads:
G
2= 2 (1081)
r
The rate of energy loss for a quasi-circular orbit
dE 8 u*m? 5
2 O ok? 4 2kpS?) =
dE B _2[u2m2k 2 1M2m2kDS2

dt 5 4 v 3 rt
with
k= G? 1—15+i§r2
o 2 12

kp = 2G*¢

S = 5189
P—1-_ 2m132 + mMosy
m

In Equation 1082, the first term represents a combination of quadrupole and monopole
contributions, while the second term corresponds to the dipole contribution. The dominant
frequency of the emitted gravitational waves is given by:

w
f==
™

In gravitational wave-forms the radiative metric pertubation reads:

W = — g (1083)
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The spatial components:

Bl = g 95@] (f 5 (1084)

where ¢ = ¢+ %(b\% and ¢ is the perturbation of the scalar field ¢ about it’s asymptotic,
cosmological value ¢q

1 d? o
0;; =2 <1 — —§> P ( 5 maxfﬁlxﬁ> =
A

(1085)
0, i’g (1 — —§> (v'v ﬁ—gnxzmj)
and
O ¢k {r [(N 2= S >z)2] —Gr+ 20" — a5 - 77)} (1086)
oo R 73 r
where:
e [?: distance to the observer,
e N: unit direction vector,
e A=1—51—5+0(
Components of Riemann tensor
ROI = _21 d;?: (1087)
with h¥ the effective gravitational waveform given by the formula.
h = g, — = g)o(aw NiNY) (1088)

The effective gravitational waveform is a representation of a GW signal, that is observed
by ground-based detectors. This effectiveness comes from the simplified representation, as
derived by taking into account only the dominant features of the signal. The term matched
filtering refers to the use of effective gravitational waveforms in the detection and analysis
of signals by matching observed waveforms and determining the properties of sources, where
TT is the transverse-transverse gauge. A full GW waveform is transverse, not traceless,
because of scalar contribution.

This way the waveform becomes:

hi = EM[ J 4 S(61 — NiNY) (1089)
with . o
1 m <, NN
=9 1_§g) O L] (1090)



9.4 Testing scalar-tensor gravity with matched-filtering

We study this subsection in two parts. The first includes the phase-shift estimation and the

second the matched-filter analysis.
A. Phase-shift estimate

Combining eqs.1076 and 1080 - 1082 one can get:
.96 GY2 rmy\11/2 5kpr
= — —_— k PV 2 1 2
/ 5777rm2<r> (+96Gms) (1092)
Now we can set
k5 3/5
M = cilm (1093)
and .
b= — k355G 5kpS? (1094)
96
and
u=rMf (1095)

with M the BD chirp mass and b the bipolar parameter.
Finally, combining the above equations we get:
(1096)

/L'L — M—l%ull/3(1 +bn2/5u—2/3)

Integration gives:
4 256t, —t
BN Py = T 1097
WL = Zh o = R (1097)

where t. is at v — +00.
In Eq. 1097 we used the expansion to first order of bn*/°u~2/3 and used the fact that it

is bounded as
500 S\? /M 30Hz\*?
b 2/5, —2/3 <5. 1073 R >~ o
= 0,5) \ M 7

WBD
The number of cycles observed in a given bandwidth:
2 Uout U
—— du—
Pew M /u . uu
~7/3 _ u_7/3)

1 —-5/3 —5/3 5 2
= —(u,” — — = pp?/s
¢GW 16 (um out ) 112 Ui (um out

(1098)
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The dipole parameter b characterizes the polarization of GW by describing the direction
and strength of the wave’s distortion of the spacetime. As it is known, any GW has two
polarizations, the called plus (+) and cross (x) polarizations. The dipole parameter describes
the relative amplitude and phase of the two polarizations states. Computing this, one can
extract information about masses and orbital parameters in a binary system.

B. Matched-filler analysis

For a more accurate bound on the dipole parameter b, one needs to carry out a matched
filter analysis. We approximate equations 1089- 1091, that produce a given observed gravi-

tational waveform by '
h(t) ~ Re[h®(t)e'*V)] (1099)

with h°(t) the slowly, varying Newtonian order contribution to the waveform amplitude. It
depends on the distance of the source, location to the sky, orientation of the detector, and
on source parameters M, n, and r. ¢(t) is the gravitational wave phase, dominant at twice
the orbital phase. It induces the dipole and higher-order post-Newtonian corrections.

The Fourier transform of h(t) is given as:

s JAFTOM 0 < f < fax

h(f) = {o, £ F > fo (1100)
where
A~ R IM6 x p(6, ¢) (1101)
—of( 1102
fmax - (E) ( )
and

D(f) = 21 fte — (de + =) + R Y FP T (1103)

= At T @) T 08 7"

Analysis of the equation:

1. ¢.: GW phase at t.,
2. p(0,¢): arbitrary function of angles 6, ¢ and detector orientation,
3. fmae: corresponds to the frequency when the inspiral turns into a coalescence.

With a given noise-to-signal ratio (noise spectrum) S, (f) one defines the inner product
of two signals hy; and hs as

*  RWihy + hihy
hi, h 52/ df —— 2 - 1104
et =2 | ) oy
For a given signal h, the signal-to-noise ratio is
() = o = () (1105)

(h)
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The noise spectrum is given as the analytic fit used in the LIGO detector:

S 00, if f <10Hz
. = 4 2 1106
() %[(f—) +2+2<%) ] it f>10Hz2 (1106)
where,
1. sp=3- 10_48é and fo=70Hz,
2. The cutoff f = 10H z corresponds to seismic noise.
3. f~* dependence corresponds to thermal noise.
4. f? dependence corresponds to photon-shot noise.
We have 5 parameters to estimate:
Oh(f) _ ;
l : =h 11
" Giaa = M) (1107)
Oh(f) 5
e = —th 1108
b5 = i) (1108)
o) ., I
t.: = 2mi—h 1109
Jo IRt i (f) (1109)
Oh(f) TR 4.
M : = - /3 1— —bp %3 111
M ey = "1asY M) 50 (1110)
. Oh(f) 30 e
b=bn?° L = — 73 1111
) — ) (1111)
The signal-to-noise ratio is given by:
¢ = 20/ap g LD (1112)
So
with -
I(q) = / dex B3z + 222 + 2)7! (1113)
17
and B, = %. A priori we expect validity of GR and search for a bound on b = bn?>.

Consider a gravitational waveform with leading order of the modification being a dipole
term in the phase:

h(f) = har(f)exp [il28n¢_2(7TGM f)—7/3] (1114)
where .
¢ = _T%(Aa>2 (1115)



hon(f) = Af ™ Ceap(2n ft. — 6. — )

when equated with Eq. 1100.
All coefficients are chosen in agreement with LVC’s convention.

olnmy _8lnm2

0¢  lo=¢0 09 lg=g0

is the difference between the scalar charges of two bodies in the binary system. For black-
holes, no-hair theorem prevents having scalar charges. In many scalar-tensor theories, where
the no-hair theorem can be applied, the scalar charges of BHs are taken as zero. For NSs,
scalar charges are given as a solution to TOV equations.

Based on two neutron star—black hole merger events (excluding two others due to possible
anomalies), we analyze the inspiral phase with dipole radiation modifications. Scalar charges
for neutron stars are calculated by solving the Tolman-Oppenheimer-Volkoff equations for
different equations of state. Bayesian inference is performed using the Bilby software. Results
show that gravitational wave data yield constraints comparable to those from pulsar timing
for the DEF theory, but remain less stringent than solar system constraints for BD and
SMG.

We use four commonly employed equations of state (EoS): SLY, ALF2, H4, and MPA1,
with data available from public sources.

To solve the differential equations (A3), the initial conditions

Aoz =] — Qg = (1116)

M(O) =0, V(O) =0, @(0) = e, ¢(O) =0, p(O) = De (1117)

need to be provided to the differential equation solver. In practice, these initial conditions
are set near the center to avoid division by zero. The initial pressure p,. is taken on a dense
grid for interpolation, while ¢, is determined using the shooting method. Different values of
. are tested iteratively until the desired g is reached.

To implement Monte Carlo sampling efficiently, the scalar charge needs to be computed
quickly. It is impractical to solve the TOV equations for each likelihood evaluation, so we
solve the TOV equations once for a dense grid of model parameters and p. to obtain mass
and scalar charge values. During Monte Carlo sampling, the sampled model parameters and
p. are mapped to mass and scalar charge using linear interpolation, and these results will be
discussed in subsequent subsections.

9.5 Brans-Dicke Theory

We begin by considering the Brans-Dicke theory, a prototype of scalar-tensor theories, which
is widely studied. The theory is characterized by the linear coupling function

A(p) = exp(—agp), (1118)

resulting in a field-independent coupling strength

a(p) = ao. (1119)
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An alternative convention commonly used is

9 1

= — 1120
%o 3 + 2&)]3]3 ( )

Using the coupling function (1118), we can compute the scalar charge of a neutron star by
applying the methods described in the previous subsection. By solving the TOV equations
with initial conditions and a given EoS, we obtain numerical solutions for the neutron star
structure. The scalar charge a,, the asymptotic scalar field ¢y, and the mass my are
extracted from the solutions.

The initial conditions p. and the model parameter «y are chosen on a dense grid for
interpolation, and the asymptotic scalar field ¢, is set to 0. The last degree of freedom
is the asymptotic scalar field ¢, and it is determined using the shooting method. To re-
duce computational costs, we use an interpolated relation a4(cg, m4) during Monte Carlo
sampling.

Another commonly used parameter is the sensitivity s4, which is related to the scalar

charge by
1-— 28A

\/3 + 2CUBD.

In some studies, s4 = 0.2 is used as an approximation to the results obtained from solving
the TOV equations.

ay = (1121)

9.6 Screened Modified Gravity (SMG)

Screened Modified Gravity (SMG) theories introduce a scalar field that interacts with matter
via a coupling function A(¢), and evolves under the influence of a self-interaction potential
V(¢). These two functions determine an effective potential Veg(¢), which governs the scalar
field’s behavior.

In high-density environments, the effective potential causes the scalar field to become
massive, which suppresses the associated fifth force—a phenomenon known as screening.
Conversely, in low-density cosmological settings, the scalar field is light and can affect large-
scale dynamics, such as galactic motion and the accelerated expansion of the Universe (see
Ishak’s work (2018)) for a comprehensive review of screening mechanisms).

The general action for SMG with a canonical kinetic term is given by:

1
S = / d*z\/—g, {WR* — %g’:” 00, — V(@) | + Silthm, A*(9)g3,], (1122)

where V(¢) defines the scalar self-interaction and determines the scalar field mass.
Popular SMG models include the chameleon, symmetron, dilaton, and f(R) gravity, each
specified by particular forms of A(¢) and V' (¢). The equation of motion for the scalar field

1S:
0,6 = 2719 ik Vie(d) = V() - T.. (1123)
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Gravitational waves from compact binaries in SMG exhibit leading-order dipole radiation.
Due to screening, scalar charges in neutron stars are expected to be small. Instead of solving
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the full TOV equations, we use a simplified model where the neutron star is treated as a
static, constant-density sphere. This yields an analytic expression for the scalar charge:

OvEV
g = , 1124
Mp® 4 (1124)
where ¢ygy is the vacuum expectation value of the scalar field, Mp = /1/87G is the
reduced Planck mass, and ® 4 = G?m is the star’s surface gravitational potential.
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10 Summary

Albert Einstein’s 1915 General Theory of Relativity (GR) fundamentally reshaped our under-
standing of the cosmos, recasting spacetime as a dynamic fabric whose curvature is dictated
by mass and energy. Among its most profound predictions was the existence of gravitational
waves (GWs)—ripples in spacetime propagating at the speed of light, generated by acceler-
ating massive objects. For decades, this prediction remained an elusive theoretical concept
due to the incredible weakness of the gravitational force. The predicted strain, caused by
even the most cataclysmic cosmic events, was expected to be on the order of 102! on Earth,
a scale once thought to be immeasurable.

The first indirect, yet compelling, evidence for GWs came from the Hulse-Taylor binary
pulsar system (PSR B1913+16). Meticulous observations revealed its orbit was shrinking at
precisely the rate predicted by GR due to energy loss from GW emission, a discovery that
earned the 1993 Nobel Prize in Physics. However, the ultimate goal was direct detection.

This was spectacularly achieved on September 14, 2015, when the Laser Interferometer
Gravitational-Wave Observatory (LIGO) registered the signal GW150914. This character-
istic "chirp" perfectly matched the theoretical waveform for the inspiral and merger of a
binary black hole (BBH) system. This singular event did more than confirm a century-old
prediction; it launched the revolutionary field of gravitational-wave astronomy, opening a
non-electromagnetic window to observe the universe’s most violent and hidden phenomena.

This thesis is situated at the forefront of this new era, where the focus has shifted from ini-
tial discovery to systematic characterization and precision science. The ever-growing catalog
of GW events from the LIGO-Virgo-KAGRA (LVK) collaboration demands a corresponding
increase in the accuracy and completeness of our theoretical waveform models. Sub-dominant
physical effects, once negligible, are now becoming measurable and are essential for unlocking
new scientific discoveries and avoiding systematic biases in our analysis.

The thesis begins by establishing the theoretical bedrock of GW physics through two
complementary lenses: the geometric interpretation of GR and the framework of classical
field theory.

Geometric Approach: This view treats GWs as small perturbations, h,,, on a flat
Minkowski spacetime background, 7,,, under the weak-field approximation g,, = 1., + l..
By linearizing the Einstein Field Equations, the complex dynamics of spacetime are reduced
to a wave equation. A crucial step is managing the coordinate freedom of GR through gauge
fixing. The imposition of the Lorentz gauge and subsequently the Transverse-Traceless (TT)
gauge strips away non-physical degrees of freedom, revealing the true nature of GWs: they
are transverse waves with two independent polarization states, known as plus (hy) and cross
(7).

Field Theory Approach: Here, the perturbation h,, is treated as a classical field propa-
gating on a fixed background. This perspective allows the powerful machinery of field theory,
such as the Lagrangian formalism and Noether’s theorem, to be applied. A key challenge in
GR is defining the energy carried by GWs, as this energy itself gravitates.

The thesis demonstrates that both the geometric approach (via Isaacson’s method of
averaging over short wavelengths) and the field theory approach yield the same effective
energy-momentum tensor, for the gravitational field. This tensor quantifies the energy,
momentum, and angular momentum carried by the waves and demonstrates how GWs can
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source the curvature of the large-scale background spacetime.

Having established that GWs exist and carry energy, the thesis moves to the mechanism
of their generation by astrophysical sources. The primary tool for this is the multipole
expansion, which is applicable to sources with slow internal motions compared to the speed
of light (v/c < 1). This is analogous to the multipole expansion in electromagnetism.

The wave equation for the metric perturbation is solved using a Green’s function ap-
proach, leading to a retarded-time solution where the GW signal observed today was gener-
ated by the source at an earlier time. The core result of this analysis is the celebrated mass
quadrupole formula, which states that the leading-order GW emission is proportional to the
second time derivative of the source’s quadrupole moment.

This formula encapsulates a fundamental principle: to generate GWs, a system must
have a changing mass quadrupole moment. A perfectly spherical, pulsating star (monopole)
or a rigidly rotating axisymmetric body (which has a constant quadrupole moment) will
not radiate GWs. The total power, or luminosity, radiated by a source is then shown to
be proportional to the time-averaged square of the third time derivative of the quadrupole
moment.

The thesis further develops this expansion to include next-to-leading order terms, which
become important for precision modeling and for sources with more complex dynamics.
These include the mass octupole and the current quadrupole moments, which are suppressed
relative to the mass quadrupole by factors of v/c.

To handle the complexity of the multipole expansion in a rigorous and generalizable
way, the thesis introduces advanced mathematical frameworks that are central to modern
gravitational theory.

The first framework developed is the Symmetric-Trace-Free (STF) Formalism. This is
the natural mathematical language for describing multipoles. The STF formalism provides
a systematic way to decompose any tensor into a sum of parts that are symmetric and trace-
free in their indices. These STF tensors form irreducible representations of the rotation group
SO(3) and correspond directly to the physical multipole moments of the source (monopole,
dipole, quadrupole, etc.).

Then the Spherical Tensor Components are inserted, so to connect the abstract STF ten-
sors to observable quantities, the thesis details the formalism of spherical tensor components.
This method relates the STF tensors to the well-known spherical harmonics, which describe
the angular dependence of fields. This connection is essential for calculating the radiation
pattern—how the power and polarization of the emitted GWs vary across the sky—and
for decomposing the observed waveforms into different modes. This chapter provides the
mathematical rigor needed to move from basic formulas to sophisticated waveform models.

This chapter applies the theoretical machinery developed previously to a diverse range of
astrophysical scenarios, with a primary focus on compact binary systems, the most important
sources for current ground-based detectors.

The classic case of two point masses in a circular orbit is analyzed in detail. The GWs
are shown to be monochromatic, with a frequency twice the orbital frequency. The analysis
introduces the crucial concept of the "chirp mass," M., a specific combination of the two
component masses that is the most easily measured parameter from the inspiral signal.
The radiated waveform exhibits the characteristic "chirp" where both the frequency and
amplitude increase as the orbit shrinks.
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The more general and complex case of elliptical orbits is also explored. Here, the radiation
is no longer monochromatic but is emitted at a spectrum of frequencies corresponding to
integer multiples (harmonics) of the orbital frequency. The thesis derives the radiated power
as a function of the orbit’s eccentricity, e. A key physical insight is the effect of radiation
back-reaction: the energy and angular momentum carried away by the GWs are drained
from the orbit itself. This causes the orbit’s semi-major axis to shrink and, importantly,
its eccentricity to decrease. This demonstrates that astrophysical binary systems naturally
circularize as they inspiral, explaining why many observed sources have nearly circular orbits
by the time they enter the sensitive frequency band of detectors.

To illustrate the breadth of the formalism, several other systems are analyzed:

The radiation from a non-axisymmetric rotator (e.g., a neutron star with a "mountain"
on its crust) is calculated, showing it emits continuous, monochromatic waves. The more
complex case of a freely precessing body is also considered, which produces "wobble radia-
tion" at different frequencies.

A simplified Newtonian model of a particle falling radially into a black hole is used to
calculate the burst of GWs produced. This problem highlights the important concept of
tidal disruption, where an extended object (like a star) gets torn apart by tidal forces. This
can cause the radiation to transition from coherent (where the object acts as a whole) to
incoherent (where different parts radiate out of phase), significantly suppressing the total
power.

The effects of the universe’s expansion on GWs are incorporated. As waves travel over
cosmological distances, their frequencies are redshifted, and their amplitude decreases with
the luminosity distance (dL), which depends on the cosmological model. This establishes
the framework for using GWs as "standard sirens" to measure cosmic expansion.

Before the era of direct detection, the most compelling evidence for the existence of
GWs came from observations of binary pulsars. This chapter details the physics of these
extraordinary natural laboratories.

The Hulse-Taylor Binary (PSR B1913+16) is studied first. The thesis recounts the
landmark discovery and subsequent decades-long monitoring of this system, which consists
of two neutron stars. Pulsars are incredibly stable cosmic clocks. By precisely measuring
the arrival times of the pulses from PSR B1913+-16, astronomers were able to track its orbit
with astonishing precision. They observed that the orbital period was decreasing over time.
This orbital decay was found to match the predictions of General Relativity for energy loss
due to the emission of gravitational waves via the quadrupole formula to within a fraction
of a percent. This provided the first, albeit indirect, confirmation of GWs.

The remarkable precision of these tests is only possible after accounting for several subtle
timing effects. The thesis details the essential corrections in the pulsar timing formula: The
classical light-travel-time delay due to the motion of the Earth and the pulsar around their
respective barycenters.

A general relativistic effect where the pulse’s travel time is increased as it passes through
the curved spacetime near a massive object (like the Sun or the pulsar’s companion).

A combination of gravitational redshift (clocks run slower in a gravitational potential)
and special relativistic time dilation (moving clocks run slower). The delay caused by the
interaction of radio waves with the ionized interstellar medium.

By meticulously modeling these effects, the intrinsic orbital decay can be isolated, pro-
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viding a powerful test of GR in the strong-field regime. To fully interpret GW signals from
sources involving neutron stars, an understanding of their internal structure is required. This
chapter shifts focus from the waves themselves to the objects that create them.

The thesis provides a derivation of the TOV equations, which describe the structure of
a static, spherically symmetric, self-gravitating body in General Relativity. They are the
relativistic generalization of the Newtonian equations of hydrostatic equilibrium.

The TOV equations must be supplemented with an Equation of State (EoS), p=p(p),
which describes the relationship between pressure and density for the ultra-dense matter
inside a neutron star. The EoS is a key unknown in nuclear physics.

For a given EoS, the TOV equations can be solved numerically to yield a unique mass-
radius relation for neutron stars. This theoretical prediction can be tested by astrophysical
observations, and GWs provide a powerful new tool for this. The tidal deformability of a
neutron star during a binary inspiral, which can be measured from the waveform, depends
sensitively on its EoS.

The chapter concludes with a discussion of Buchdahl’s theorem, a fundamental result in
GR which establishes an absolute upper limit on the compactness of any static fluid star.
This demonstrates that objects cannot be arbitrarily compact without collapsing into a black
hole.

With the foundations laid, the thesis turns to the practical challenge of constructing
accurate waveform templates for data analysis. A complete GW signal from a binary co-
alescence is typically divided into three phases: inspiral, merger, and ringdown. No single
analytical method can describe all three phases accurately. The thesis explores a modern
"hybrid" approach.

The early, slow orbital decay is well-described by the Post-Newtonian (PN) expansion,
an approximation to GR valid for weak fields and low velocities. The thesis discusses the
various PN orders and their physical meaning (e.g., spin effects, orbital decay).

As the objects approach their final collision, velocities become relativistic and the gravi-
tational fields become extremely strong, invalidating the PN approximation. This regime is
modeled using Numerical Relativity (NR), where the full Einstein equations are solved on a
supercomputer. The thesis then presents a semi-analytical fitting formula, the Implicit Ro-
tating Source (IRS) model, which is designed to capture the essential physics of the merger
and the subsequent "ringdown" (where the final black hole settles into equilibrium) found
in NR simulations.

The process of smoothly stitching the PN inspiral model to the merger-ringdown model at
an intermediate frequency is discussed. This hybridization results in a complete, analytical
waveform template that is both accurate and computationally efficient enough for use in
matched-filtering data analysis pipelines.

The final chapter moves to the research frontier: using GWs to test the foundations
of gravity itself. While GR has passed every test to date, it has theoretical limitations,
motivating the study of alternative theories.

The thesis focuses on a leading class of alternative theories, including Brans-Dicke (BD),
Damour—Esposito-Farése (DEF), and Screened Modified Gravity (SMG). These theories aug-
ment GR by introducing a new scalar field that mediates a component of the gravitational
force.

A key prediction of many scalar-tensor theories is the emission of dipole gravitational

202



radiation from binary systems. This is strictly forbidden in GR, where the lowest-order
radiation is quadrupolar. Dipole radiation is strongest in asymmetric binaries, such as
Neutron Star-Black Hole (NS-BH) systems, because the neutron star can acquire a "scalar
charge" (its mass depends on the local scalar field), while a black hole (in many of these
theories) cannot, due to no-hair theorems.

The thesis outlines the methodology for testing these theories. The predicted dipole
radiation term introduces a characteristic modification to the phase evolution of the GW
signal. By performing a full Bayesian inference on real GW data from NS-BH events (like
GW200115), one can search for this deviation.

The absence of a detected deviation allows one to place upper limits on the parameters
of the scalar-tensor theory, e.g., on the difference in scalar charges, or on the BD parameter.
This analysis demonstrates how GW observations are becoming one of our most power-
ful tools for probing gravity in the strong-field regime and testing the validity of General
Relativity.

This thesis presents a comprehensive journey through the physics of gravitational waves.
It begins with the fundamental theoretical principles derived from General Relativity and
classical field theory, develops the mathematical formalisms for describing wave generation
via multipole expansions, and applies this theory to a wide array of realistic astrophysical
sources. It further connects theory with observation by detailing the experimental evidence
from pulsar timing and the physics governing the structure of neutron stars. Finally, the work
culminates in an exploration of modern waveform modeling techniques and their application
at the cutting edge of science: using gravitational wave data to test the very foundations of
Einstein’s theory of gravity.
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A Useful notes and mathematical proofs

In this section of the Appendix, several different proofs are studied. First, we will see the
solution of an important differential equation by applying Green’s function. Next, we will
see the way a metric tensor transforms under Lorentz t, transformations and finally, the
transformation of the perturbed metric after coordinate transformations are applied.

A.1 Green’s function and solutions to the equations

In equation 22 of paragraph 1.1, we saw the differential form of Einstein’s equations. We can
obtain solutions to these differential equations by using the Green’s function and the solving
method, as presented below. We begin by writing the closed geometric form of eq. 22, as:

0,G(z — ') = 6W(z — ') (1125)

Multiplying each side with a generic 4-function f,(2') and integrating over all four-
dimensional z’—space, we get:

” / %Dw(w — ) fule) = / égﬂ‘”(x —2)ful@) (1126)
- o, / d2'Gr — ) fula') = fu(2) (1127)

Equation 1127 provides the generic solution to equation 1125 and can be used in various
problems of theoretical physics.

A.2 Lorentz transformation of the metric tensor
Under a Lorentz transformation, the metric can be written as below:
G = 9o (7') = NSNS Gpo (z)
G () = M (T)NPN,7 + N PN D (1)

Finally, for a flat metric, ow that under Lorentz transformations remain invariant, so the
following is satisfied:

77;W ($) = A“pAVana(x)
The transformation rule is

9y (@) = M () + A LA Do (2)

Concluding we see the transformation rule of the background metric to be one of a (0,2)
tensor, such as:

P (2') = A LA o ()

and the full metric tensor will obey,

G (@) = Ny (@) + By, (2)

while the flat metric tensor remains invariant
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A.3 Coordinate transformation of the perturbed metric

Following the procedure described in section 1.1, but for the pe, perturbed metric, we get:

Py (%) = Py () = O

1 — - 1 _
mwh, = hy () — vy — §nuvh

7./ / 7 1 7 7/
= hy (2') = hyw(2) = 0.&0) — PR (h - h)
1/ ! 7 1 v
= hlw(:)j ) = h/w(x) - 8(u€u) + 577;w77u 8(ugz/)
= f_l;“,(x') = f_LW(m) — 0uv) + N 0,€”

The last ex-derived, when derived, produces:

(h) = By = 08,
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