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Περίληψη

Η παρούσα διατριβή διερευνά τόσο τις θεωρητικές όσο και τις πειραματικές πτυχές των βαρυ-

τικών κυμάτων (GWs), όπως ορίζονται στη γενική θεωρία της σχετικότητας του Albert Ein-
stein και μελετώνται σε διεθνή ερευνητικά κέντρα όπως το LIGO. Αυτά τα κύματα διαδίδονται
με την ταχύτητα του φωτός, μεταφέροντας ενέργεια σε όλο το σύμπαν. Η διατριβή ξεκινά με
μια ανασκόπηση της εμφάνισης των βαρυτικών κυμάτων στη γενική θεωρία της σχετικότητας,
εστιάζοντας στις βασικές τους ιδιότητες και στις μεθόδους που χρησιμοποιούνται για την εις

βάθος κατανόησή τους. Διευρευνούνται οι προκλήσεις που προέρχονται από τον ορισμό της
ενέργειας και της ορμής που μεταφέρει η ακτινοβολία των βαρυτικών κυμάτων, ενώ παράλληλα
αντιμετωπίζονται τυχόν παρανοήσεις και λάθη σε προηγούμενες μελέτες. Εν συνεχεία, εφαρ-
μόζονται τεχνικές της κλασικής θεωρίας πεδίου για την μελέτη της γέννησης των βαρυτικών

πεδίων, δίνοντας έμφαση στους όρους του πολυπολικού αναπτύγματος και στους υπολογισ-
μούς που βασίζονται σε αυτά. Επιπλέον, εξετάζονται οι πειραματικές ενδείξεις για την ύπαρξή
και παραγωγή των βαρυτικών κυμάτων, εστιάζοντας σε συστήματα διπλών pulsar, διπλών
μελανών οπών ή αστέρων νετρονίων και επιβεβαιώνεται η ύπαρξή τους μέσω παρατηρήσεων,
που αποτελούν καθοριστικό ρόλο στην κατανόηση του φαινομένου. Τέλος, πραγματοποιείται
συζήτηση για τις επιπτώσεις αυτών των ευρημάτων στην αστροφυσική και την κοσμολογία, με
ιδιαίτερη αναφορά στην μελέτη των συμπαγών δυικών αστέρων, των μελανών οπών και άλλων
ακραίων κοσμολογικών αντικειμένων.
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Abstract

This thesis explores the theoretical and experimental aspects of gravitational waves (GWs),
as predicted by Albert Einstein’s general theory of relativity and studied in different research
centers like LIGO. These waves propagate outward from their source at the speed of light,
carrying energy across the universe. The study begins with a discussion on the emergence of
GWs in general relativity, focusing on their properties and the methods used to understand
them. We investigate the challenges in defining the energy and momentum of gravitational
wave radiation and address misconceptions in earlier studies. Following this, the thesis
applies classical field theory techniques to the GW generation study, emphasizing multipole
expansion and calculations based on it. In addition, we examine the experimental evidence
for GWs, particularly from binary pulsars, binary black holes, or neutron star systems, and
discuss their confirmation through observations. The thesis concludes with a discussion of
the implications of these findings for astrophysics and cosmology, particularly in the study
of compact binaries, black holes, and other extreme environments in the universe.
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1 Introduction
In this master-level thesis, we studied the theoretical background of Gravitational Waves.
From now on, the abbreviation GW stands for Gravitational waves.

Before attacking the infamous Einstein’s equations for gravity and seeing how we obtain
results for GWs, it seems useful to see gravity as explained before the theory of relativity.
First, Newton understood that two masses m1 and m2, interact via the gravitational force,
as given in equation 1:

F = G
m1m2

R2
(1)

This equation provides the relation between the distance separating the two masses and
the corresponding gravitational force. Until the 19th century, the gravitational interaction
equation was considered the Holy Grail of gravitational physics.

This was until over a century ago that Albert Einstein revolutionized our understanding
of gravity with his General Theory of Relativity (GR) [1]. Published in 1915, GR redefined
the cosmos, not as a static stage upon which cosmic actors move, but as a dynamic entity
in itself: spacetime. In this paradigm, mass and energy dictate the curvature of spacetime,
and this curvature, in turn, dictates how mass and energy move. This elegant and profound
theory supplanted Newtonian gravity, providing explanations for phenomena that Newton’s
laws could not, such as the anomalous perihelion precession of Mercury, and making bold new
predictions, most notably the bending of starlight by massive objects, famously confirmed
by Eddington’s 1919 solar eclipse expedition [2].

Perhaps the most dramatic and elusive prediction of GR was the existence of gravitational
waves. If spacetime is a fabric, then accelerating massive objects should create ripples in
it, propagating outwards at the speed of light. These waves are transverse, stretching and
squeezing spacetime in the directions perpendicular to their propagation. In the framework
of linearized gravity, where the spacetime metric gµν is treated as a small perturbation hµν
from the flat Minkowski metric ηµν(gµν = ηµν + hµν), the Einstein Field Equations can be
reduced to a wave equation for the metric perturbation:

2h̄µν =

(
∇2 − 1

c2
∂2

∂t2

)
h̄µν = 0

where h̄µν is the trace-reversed metric perturbation. The solutions to this equation are waves
that carry energy and momentum away from a source, analogous to electromagnetic waves
carrying energy away from an accelerating charge.

For decades, this prediction remained purely theoretical. The fundamental challenge lies
in the weakness of gravity. The strain h—the fractional change in length ∆L/L induced
by a passing gravitational wave—is extraordinarily small. For even the most cataclysmic
astrophysical events, the expected strain on Earth is on the order of 10−21 or less, equivalent
to measuring a change in the distance between the Earth and the Sun to less than the width
of a single atom.

The first attempts at direct detection, pioneered by Joseph Weber in the 1960s using
resonant bar detectors [3], were ultimately unsuccessful but laid the critical groundwork for
future efforts. The first compelling evidence for the existence of gravitational waves came
indirectly. In 1974, Russell Hulse and Joseph Taylor discovered the first binary pulsar, PSR
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B1913+16 [4]. This system, consisting of two neutron stars orbiting each other, proved to be
a perfect laboratory for testing GR. Over years of meticulous observation, they demonstrated
that the binary’s orbit was shrinking at precisely the rate predicted by GR due to the emission
of gravitational waves. This landmark discovery, which earned them the 1993 Nobel Prize in
Physics, provided irrefutable, albeit indirect, proof that gravitational waves are a physical
reality.

The dream of direct detection was finally realized on September 14, 2015. After decades
of technological development, the twin detectors of the Laser Interferometer Gravitational-
Wave Observatory (LIGO) simultaneously registered a signal, designated GW150914 [5].
The signal was a characteristic "chirp," rising in frequency and amplitude over a fraction of
a second, perfectly matching the theoretical waveform predicted for the final moments of a
binary black hole (BBH) merger. This event marked not just the first direct detection of
gravitational waves but also the first observation of a binary black hole system, heralding
the birth of gravitational-wave astronomy. We had, for the first time, heard the universe,
opening an entirely new, non-electromagnetic window through which to observe the cosmos’s
most violent and enigmatic phenomena.

The detection of GW150914 was the opening act in a new era of physics, the gravitational-
wave astrophysics. The universe is filled with a symphony of gravitational-wave sources,
each with its own characteristic sound, frequency, and duration. The primary observable
is the waveform, a time-series of the gravitational-wave strain, from which we can infer the
properties of the source. These sources can be broadly classified into four categories.

The first category surveys Compact Binary Coalescences (CBCs): These are the loudest
and most frequently observed sources to date. They involve the orbital inspiral and eventual
merger of two compact objects: black holes or neutron stars. This category is the central
focus of this thesis and includes:

Binary Black Hole (BBH) Systems: The merger of two stellar-mass black holes, like
GW150914. These are "dark" events, emitting no electromagnetic radiation, making GWs
the only way to observe them. They are the most massive and thus "loudest" stellar-mass
sources, providing pristine probes of strong-field gravity.

Binary Neutron Star (BNS) Systems: The merger of two neutron stars. The landmark
detection of GW170817 [6] was a BNS merger, accompanied by a host of electromagnetic
counterparts, from a short gamma-ray burst (GRB) to a kilonova [7]. This event launched the
era of multi-messenger astronomy, where information from both GWs and light is combined to
paint a complete picture of an astrophysical event. BNS mergers provide a unique laboratory
for studying the equation of state (EoS) of ultra-dense nuclear matter.

Neutron Star-Black Hole (NSBH) Systems: The merger of a neutron star and a black
hole. These asymmetric systems are fascinating probes of both strong-field gravity and
matter effects. Depending on the masses and black hole spin, the neutron star may be
swallowed whole or tidally disrupted before merger, potentially creating an electromagnetic
counterpart. The first confident detections of these systems were announced in 2021 [8].

The second category is thought to include Continuous Waves: These are persistent, nearly
monochromatic signals emitted by rapidly rotating, asymmetric neutron stars (pulsars).
Any non-axisymmetric feature, such as a "mountain" on the star’s crust, will generate a
continuous train of gravitational waves at twice the star’s rotation frequency. Detecting these
signals would provide invaluable information about the structure and physics of neutron star
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interiors. They are, however, expected to be extremely weak, and no confirmed detection
has been made to date.

The third category involves theStochastic Gravitational-Wave Background (SGWB). This
is an incoherent superposition of gravitational waves from a multitude of unresolved sources,
analogous to the Cosmic Microwave Background (CMB). It is expected to have two main
components: an astrophysical background from the superposition of countless distant CBC
events, and a potential cosmological background generated by physical processes in the very
early universe, such as inflation or phase transitions. Detecting the SGWB would provide a
unique probe of the universe’s first moments.

And the final category has Burst Sources. Burst sources are short-duration, unmodeled
transient signals. The canonical example is a core-collapse supernova, where the violent,
asymmetric explosion of a massive star could produce a burst of gravitational waves. De-
tecting such a signal would give us a direct view into the heart of the explosion, a region
completely obscured from electromagnetic telescopes.

The theoretical prediction of waveforms is only half the story; the other half is their detec-
tion and interpretation. This is the domain of observational gravitational-wave astronomy, a
field defined by cutting-edge instrumentation and sophisticated data analysis. Modern GW
detectors are giant, L-shaped Michelson interferometers.

A powerful laser is split into two beams that travel down perpendicular arms, each several
kilometers long. The beams reflect off mirrors at the ends of the arms and recombine at the
beam splitter. In the absence of a gravitational wave, the arm lengths are tuned so that the
returning light beams interfere destructively, and no light reaches the output photodetector.

When a gravitational wave passes, it differentially alters the effective lengths of the two
arms, stretching one while compressing the other. This minute change in path length breaks
the perfect destructive interference, causing a tiny amount of light—a signal proportional
to the gravitational-wave strain h(t)—to reach the photodetector. To achieve the required
sensitivity, these basic interferometers are enhanced with Fabry-Pérot resonant cavities in
the arms to increase the effective path length of the light, and with power and signal recycling
mirrors to increase the circulating power and optimize the detector’s bandwidth.The current
global network of detectors includes:

• The two LIGO detectors in Hanford, Washington, and Livingston, Louisiana (USA).

• The Virgo detector near Pisa, Italy.

• The KAGRA detector in Kamioka, Japan.

Operating as a network provides several key advantages over a single detector. Most
importantly, it allows for the sky localization of a source through triangulation, based on
the relative arrival time of the signal at different sites. A network also improves the duty
cycle and detection confidence, and it allows for the measurement of the wave’s polarization,
providing additional tests of GR.

The raw data from a GW interferometer is dominated by noise from a myriad of sources:
seismic vibrations, thermal fluctuations, quantum shot noise, etc. The GW signal is typically
much weaker than the noise. The primary technique for identifying a signal from a known
source type, like a CBC, is matched filtering.
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In this process, the data stream s(t) is cross-correlated with a theoretical template wave-
form h(t). The output of the filter is the signal-to-noise ratio (SNR), ρ, which quantifies the
likelihood of a signal being present. This is mathematically expressed as an inner product,
weighted by the detector’s noise power spectral density Sn(f):

ρ =
⟨s|h⟩√
⟨h|h⟩

where ⟨a|b⟩ = 4ℜ
∫ ∞
0

ã(f)b̃∗(f)

Sn(f)
df (2)

Here, ã(f) and b̃(f) are the Fourier transforms of the time-series a(t) and b(t). A de-
tection is claimed when the SNR exceeds a predetermined threshold, corresponding to a
very low false-alarm rate. Once a signal is confidently detected, the next step is parameter
estimation.

Bayesian inference methods, such as Markov Chain Monte Carlo (MCMC) sampling, are
used to compare the data against millions of waveform templates. This process generates
posterior probability distributions for the source’s physical parameters, such as:

• Component masses (m1, m2).

• Component spins (magnitude and orientation).

• Luminosity distance to the source.

• Sky location (right ascension and declination).

• Binary orientation (inclination, polarization angle).

• Tidal deformability (for neutron stars).

These estimated parameters are the fundamental data products of GW astronomy, form-
ing the bridge between observation and astrophysical theory.

The first few observing runs of the LIGO-Virgo-KAGRA (LVK) collaboration have yielded
a catalog of nearly one hundred GW events, revolutionizing our understanding of stellar-mass
black holes and neutron stars. Yet, this is just the beginning. Each new detection brings
new insights and raises new questions. The field is now poised to address some of the most
fundamental problems in physics and astronomy.

Key scientific frontiers include probing the Formation of Binary Black Holes: The ob-
served masses and spins of BBH systems challenge existing models of stellar evolution. Are
these binaries formed in isolation in the galactic field, or are they assembled dynamically in
dense stellar environments like globular clusters? The distribution of observed parameters
holds the key.

Another frontier is how can we constrain the Neutron Star Equation of State: The tidal
deformation of neutron stars during the final moments of a BNS inspiral leaves a subtle
imprint on the gravitational waveform. Measuring this effect, we get results on the tidal de-
formability parameter, Λ. The Λ-parameter provides a direct constraint on the relationship
between pressure and density in nuclear matter, a long-standing problem in nuclear physics.
Another key factor is to apply precision Tests of General Relativity. Binary mergers are
laboratories for strong-field gravity, a regime previously inaccessible to experimental tests.
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By comparing observed waveforms to the predictions of GR, we can place stringent bounds
on potential deviations from Einstein’s theory. The ringdown phase, in particular, allows for
direct tests of the black hole no-hair theorem. Also, GWs can be used in Cosmology Cosmol-
ogy with Standard Sirens. For events like GW170817 with an electromagnetic counterpart,
the host galaxy and its redshift can be identified. Since the GW signal provides a direct
measurement of the luminosity distance, the source can be used as a "standard siren" to
measure cosmological parameters, most notably the Hubble constant, H0. This provides a
completely independent method to weigh in on the current tension between early- and late-
universe measurements of H0. Finally, they can improve the Waveform Fidelity. As detector
sensitivity improves, our theoretical models must keep pace. The next generation of science
will require waveforms that include more subtle physical effects, such as orbital eccentricity
and the full dynamics of spin precession, as well as the contribution of higher-order emission
modes beyond the dominant quadrupole.

The work presented in this thesis is situated at the intersection of these challenges,
focusing on the development and application of gravitational waveform models to extract
maximum scientific insight from observational data.

The era of gravitational-wave astronomy has transitioned from one of discovery to one
of systematic characterization and precision science. The ever-growing catalog of compact
binary coalescence events demands a corresponding increase in the accuracy, completeness,
and computational efficiency of our theoretical waveform models. Sub-dominant physical
effects, once negligible, are now becoming measurable, and their inclusion in our models
is essential for avoiding systematic biases in parameter estimation and for unlocking new
scientific discoveries.

This thesis is motivated by the need to advance the theoretical and observational toolkit
for analyzing signals from binary systems. Specifically, it addresses key limitations in current
waveform modeling and data analysis techniques, with the goal of enhancing our ability to
test General Relativity and constrain the astrophysical properties of compact binary sources.

The primary objectives of this research are first to develop and implement a more so-
phisticated theoretical waveform model that incorporates [State the specific improvement,
e.g., the effects of orbital eccentricity, higher-order spherical harmonic modes, or improved
tidal approximants]. Secondly, to validate this new model against Numerical Relativity sim-
ulations and compare its performance to existing phenomenological and effective-one-body
models.

Having achieved the above, we can apply this model in a full Bayesian parameter estima-
tion analysis of select GW events from the LVK catalog, quantifying the impact of the new
physical effects on inferred source properties and investigate the implications of these refined
measurements for specific astrophysical questions, such as [State the specific question, e.g.,
distinguishing between binary formation channels, placing new constraints on the neutron
star equation of state, or performing more stringent tests of GR].

As contemporary literature proposes, the keystone to understanding GWs is to study
their expansion around a flat spacetime. Thus, the order we follow is: The first chapter in
this work includes a geometric point of view in GWs and a more field-theoretical view of
them. Here, we see GWs as a geometric tool for computations, including the different gauges
used and the way energy, momentum, and energy flux are carried by GWs. In this chapter, as
well as in chapters 2,3,4 and 5, we choose to study Michelle Maggiore’s book "Gravitational
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Waves, Volume I"[15]. The first part of this textbook contains an extraordinary analysis of
any theoretical aspect of GW.

In the second chapter, we study the behavior of GWs in linearized theories. It is known
that a linearized theory is used to describe arbitrary systems with different energy-momentum
tensors. We leave the geometrical approach and reach a more field-theoretical one. In this
chapter, we see a low-velocity expansion of tensorial components, we prove formulas that
compute the radiated energy, angular momentum, and power in GW emission in various
orders of the multipole expansion, e.g., the mass quadrupole and octupole terms, as well as
the current quadrupole term.

The third chapter is a more compact one. Here, we decided to dive into the Symmetric
Trace-free Formalism for scalar and vector fields and to produce the tensor components in
spherical coordinates. We did not study the STF formalism for tensorial fields because the
level of mathematics used in such computations is far beyond the level of any master-level
thesis. The fourth chapter is based completely on applications of GWs and the physics
behind these.

The fifth chapter of our study has many parts coming from the experimental nature of
GWs. Here we see natural objects, like pulsars, and their use in GW physics and astro-
physics. Pulsars, due to their rotation, can be used as clocks and produce several timing
formulas. Furthermore, based on pulsar physics, we can define some time delays applied to
GW propagation and finally see the relativistic correction for binary pulsars and the induced
GW physics.

Concluding the first part of our thesis, we see a useful set of equations, used to describe
astrophysical objects, that Newtonian theory cannot. This set of equations is the TOV
equations, and their main use lies in describing neutron stars (NS). Here we escape the
classical Gravitational Waves textbook and find ourselves focusing on the twelfth chapter of
the book "General Relativity: An Introduction for Physicists" by Hobson, M.P., Efstathiou,
G., and Lasenby, A.N. [21]

In the second part of this thesis, we focus on scientific articles from international litera-
ture. The first article studies an analytical model for GW and includes some models for the
inspiraling, the merging, and the ringdown phase. The second article is called "Constraining
scalar-tensor theories by NS-BH GW events," and to study it, we had to obtain information
from a plethora of articles. These are "Testing scalar-tensor gravity with GW observations
of inspiraling compact objects" by Will C.M. [126] and "Non-perturbative strong-field effects
in scalar-tensor theories of gravitation" written by Damour T. and Esposito-Farese G. [127].
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2 Geometrical interpretation and Field Theory of GWs
In this chapter, we review concepts studied in general relativity and classical field theories
of gravity. In the general relativistic part, we perturb our theory in first and second order
around a flat spacetime and produce the equations of motion of a wave.

Next, we consider General Relativity as a classical field theory and apply the standard
methods in our calculations. In this part, we return to the linearized equations of gravity,
forgetting that hµν has a space-metric interpretation. Instead, we treat the perturbation as
any other classical field on a flat Minkowski spacetime.

The reason we chose to study these two interpretations in one chapter is that GR com-
plements field theories and vice versa. Some aspects of GWs (e.g. the GW amplitudes)
are better understood in the geometric perspective, while others, like the energy-momentum
tensor, are easier to comprehend in the field-theory approach.

2.1 GWs as perturbations around a flat spacetime

As stated in the introductive chapter, the main textbook used in this chapter is [1]. Although
the steps followed in this section and section 1.2 can be found in any classical textbook, see
bibliography [15], [16] , [17], [18], [19], [20], [22], [23]. The methodology used in these two
sections is standard and we have studied it thoroughly in the undergraduate-level thesis. For
this reason we can skip some trivial algebras and focus more on the ideas behind GW. Thus,
we begin with the equations of motion of GW.

To obtain the equations of motion, we need to first consider the weak-field approximation.
In this loose limit, we demand that the gravitational field is weak, varies with time, and does
not restrict the motion of any test particle.

The weakness of the field allows us to decompose the spacetime in two parts: the back-
ground one, which is flat and described in completeness from the known metric ηµν , and
the perturbation, denoted by hµν . With this decomposition, we allow ourselves to study the
missing effects of any gravitational theory in the Newtonian limit. For completeness, we
demand that the linear metric perturbation hµν is small enough, meaning that |hµν | ≪ 1.

The mathematical expression that expresses the weakness of the field reads:

gµν = ηµν + hµν with |hµν | ≪ 1 (3)

At this point, equation 3 can be inverted, with the inverse to be computed as gµν = ηµν−hµν .
For a specific set of coordinates, the Minkowski metric tensor can be written in its canonical
form ηµν = diag(−1,+1,+1,+1). Because of the restriction |hµν | ≪ 1, we can ignore terms
that correspond to second or higher orders in the perturbation theory.

Having defined the context and limitations of our theory, we can now begin the more
formalized production of the equations of motion. The first step in our search for an equation
that describes the propagation of GWs is to define the total gravitational action S. The
Variation calculus of the action S produces the equations of motion of a wave.

The gravitational action is the sum of Einstein’s action SE and matter’s action SM and
reads as S = SE + SM . The Einstein action SE is defined via Ricci’s scalar as

SE =
c3

16πG

∫
d4x

√
−g R (4)
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The matter action can be defined by using the energy-momentum tensor Tµν when methods
from variational calculus are applied. Mathematically, this translates into the following
definition:

δSM ≡ 1

2c

∫
d4x

√
−g T µν δgµν (5)

The same methods of variation calculus, when applied to Einstein’s action, produce the
Einstein tensor

Gµν = Rµν −
1

2
gµνR (6)

At this point, we skip the procedure used to derive Einstein’s tensor and equations, because
it exists in every classical textbook of General Relativity. Finally, Einstein’s equations obey
the following expression:

Rµν −
1

2
gµνR =

8πG

c4
Tµν (7)

With all the above being said, we need to study the huge symmetry group, under which
GR is invariant. As guessed, this group is made up of any coordinate transformation, xµ →
x

′µ, where x′µ is an arbitrary smooth function of xµ. Specifically, we demand that x′µ is an
invertible and differentiable diffeomorphism, with a differentiable inverse. Under x′µ, we can
see that the full metric transforms as

gµν(x) → g
′

µν(x) =
∂xρ

∂x′µ

∂xσ

∂x′ν
gρσ (8)

In international literature, this transformation is called GR’s gauge symmetry. In the
physical case, there exists a reference frame where equation 3 still holds on a sufficiently
large region of space. This exact choice in the reference frame breaks down GR’s invariance
under coordinate transformations and results in a shortening of the degrees of freedom of
the gravitational field. In terms of xµν , we can rewrite the coordinate transformation as

xµ → x
′µ = xµ + ξµ(x) (9)

Applying the transformation rule given in relation 9 on the full metric gµν , we get the
following:

(7) ⇒ gµν → g
′

µν = gρσ(x)
∂xρ

∂x′µ

∂xσ

∂x′ν

= gρσ(x)
∂(x

′ρ − ξρ)

∂x′µ

∂(x
′σ − ξσ)

∂x′ν

= gρσ(x)(δ
ρ
µ − ∂µξ

ρ)(δσν − ∂νξ
σ)

= gµν(x)− gµσ(x)∂nuξ
σ − gρν(x)∂µξ

σ + gρσ(x)∂µξ
ρ∂νξ

σ

= gµν(x)− gµσ(x)∂νξ
σ − gρν(x)∂µξ

σ

(10)

⇒ η
′

µν(x) + h
′

µν(x) = ηµν(x) + hµν(x)− (ηµσ(x) + hµσ(x))∂νξ
σ − (ηρν(x) + hρν(x))∂µξ

ρ

⇒ h
′

µν(x) = hµν(x)− ∂νξµ − ∂µξν

⇒ h
′

µν(x) = hµν(x)− ∂(µξν)
(11)
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The way the perturbation hµν transforms under these generic coordinate transformations
becomes manifested in the last equation.

Having seen the transformation rules for both gµν and hµν , we can now insert equation
3 in the general formula of Christoffel’s connections and Riemann’s tensor. We then obtain
the following results

⇒ Γρ(1)µν =
1

2
gρλ(∂µgνλ + ∂νgλµ − ∂λgµν)

=
1

2
(ηρλ − hρλ) [∂µ(ηνλ + hνλ) + ∂ν(ηλµ + hλµ)− ∂λ(ηµν + hµν)]

=
1

2
ηρλ [∂µ(ηνλ + hνλ) + ∂ν(ηλµ + hλµ)− ∂λ(ηµν + hµν)]

− hρλ (∂µ(ηνλ + hνλ) + ∂ν(ηλµ + hλµ)− ∂λ(ηµν + hµν))

=
1

2
ηρλ (∂µhνλ + ∂νhλµ − ∂λhµν)

(12)

and dropping the second order perturbations in Γ2 we get

(23) ⇒ Rα(1)
σµν = ∂µΓ

α
νσ − ∂νΓ

α
µσ + ΓαµλΓ

λ
νσ − ΓανλΓ

λ
µσ

= ∂µΓ
α
νσ − ∂νΓ

α
µσ

(13)

We contract the index α only with the flat metric since a contraction with the perturbation
will produce terms of second order in h. The terms in the second order of perturbation will
be studied in the following sections.

R(1)
ρσµν = ηαρR

α
σµν = ηαρ∂µΓ

α
νσ − ηαρ∂νΓ

α
µσ

= ηαρ∂µ

[
1

2
ηαλ (∂νhσλ + ∂σhλν − ∂λhνσ)

]
− ηαρ∂ν

[
1

2
ηαλ (∂µhσλ + ∂σhλµ − ∂λhµσ)

]
=

1

2
ηαρη

αλ [(∂µ∂νhσλ + ∂µ∂σhλν − ∂µ∂λhνσ)− (∂ν∂µhσλ − ∂ν∂σhλµ − ∂ν∂λhµσ)]

=
1

2
δλρ (∂µ∂σhλν − ∂µ∂λhνσ − ∂ν∂σhλµ + ∂ν∂λhµσ)

=
1

2
(∂µ∂σhρν − ∂µ∂ρhνσ − ∂ν∂σhρµ + ∂ν∂ρhµσ)

(14)

Another contraction in Ra
σµν produces the O(h) perturbed Ricci’s tensor, and a second

contraction produces Ricci’s scalar. The explicit formulae, after dropping O(h2) terms are
computed as:

R(1)
µσ = Rν

µνσ

=
1

2

(
∂µ∂σh

ν
ν − ∂µ∂

νhνσ − ∂ν∂σh
ν
µ + ∂ν∂νhµσ

)
=

1

2

(
∂µ∂σh− ∂ν∂µhνσ + ∂ν∂σh

ν
µ −2hµσ

) (15)

R(1)
µν =

1

2

(
∂µ∂νh− ∂µ∂

αhαν − ∂ν∂αh
α
µ +2hµν

)
(16)
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R(1) = ηµνRµν

=
1

2

(
ηµν∂µ∂νh− ηµν∂µ∂

αhαν − ηµν∂ν∂αh
α
µ +2ηµνhµν

)
=

1

2
(2h− ∂α∂µh

αµ − ∂µ∂αh
µα +2h)

= 2h− ∂α∂µh
αµ

(17)

The last step before writing down Einstein’s equations in tensorial form is to compute
Einstein’s tensor in the first order of perturbation h. This can be done straightforwardly by
substituting Eqs. 16 and 17 in equation 6.

(5) ⇒ Gµν = R(1)
µν − 1

2
R(1)gµν

=
1

2
∂µ∂νh− 1

2
∂µ∂

αhαν −
1

2
∂ν∂αh

α
µ +

1

2
2hµν −

1

2
gµν (2h− ∂α∂µh

αµ)

=
1

2
[2hµν + ∂µ∂νh− ∂α∂(µh

α
ν)]−

1

2
ηµν2h+

1

2
ηµν∂ρ∂αh

ρα − 1

2
hµν2h+

1

2
hµν∂ρ∂αh

ρα

=
1

2

(
2hµν + ∂µ∂νh− ∂σ∂(µh

σ
ν) + ηµν∂ρ∂λh

ρλ − ηµν2h
)

(18)

Now, the time for Einstein’s equation in the first order of perturbation has arrived:

(6) ⇒ Gµν = R(1)
µν − 1

2
R(1)gµν =

8πG

c4
Tµν

⇒ 2hµν + ∂µ∂νh− ∂σ∂(µh
σ
ν) + ηµν∂ρ∂λh

ρλ − ηµν2h =
8πG

c4
Tµν

(19)

Here we can rewrite 19 more compactly by shifting the field perturbation hµν . This can be
achieved by applying the following notation:

h = ηµνhµν

h̄µν = hµν −
1

2
ηµνh

h̄ = ηµν h̄µν = ηµνhµν −
1

2
ηµνη

µνh

hµν = h̄µν −
1

2
ηµν h̄

Inserting the expressions above, as stated for the field perturbation, we finally see the lin-
earized Einstein’s equations take the following form:

2h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4
T µν (20)

As mentioned before, choosing a reference frame cancels out a few degrees of freedom.
The remaining free degrees of freedom of the perturbed field can be tied down by inserting a
gauge. This gauge is, exactly like Electromagnetism, called the Lorentz or harmonic gauge
and defined by the expression:

∂ν h̄µν = 0 (21)
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The simplified expression of Einstein’s equations is obtained since the condition in 21 cancels
the last three terms of the expression in 20.

2h̄µν = −16πG

c4
T µν (22)

2.2 Equations of motion of GWs and the applied gauges

Within the linearized theory, the production of GWs is manifested in 22. When one studies
the propagation of GWs, the space needs to be considered, and afterward, the differential
equations need to be solved. So, at this point, we need to look at a flat space outside the
source, where the energy-momentum tensor reads as Tµν = 0.

In this case, the differential equation that governs the propagation of GWs on an empty,
flat space and outside the source is given as a wave equation of the form

2h̄µν = 0 ⇒
(
− 1

c2
∂20 + ▽2

)
h̄µν = 0 (23)

With just a glance, we see that the wave that solves this differential equation travels with
the speed of light c. This means that we can treat any gravitational wave in a flat space as
we treat electromagnetic waves.

Outside the source, we can simplify the expression of the metric tensor by observing
that the gauge condition doesn’t completely fix the gauge. It is easier to understand this
statement when we observe the way that the perturbation hµν transforms under the rule
given in equation 9 and apply the gauge condition 21. The gauge condition isn’t spoiled by
the aforementioned coordinate transformation, if and only if 2ξµ = 0.

If we create a new tensor ξµν , defined as ξµν ≡ ∂µξν + ∂νξµ − ηµν∂ρξ
ρ and differentiate

once concerning the D’Alembertian, we get:

2ξµν = 2(∂µξν) +2(∂νξµ)− ηµν∂ρ2ξρ

= ∂µ(2ξν) + ∂ν(2ξµ)− ηµν∂ρ2ξρ

= 0

(24)

So the new tensor ξµν is defined in terms of the arbitrary, harmonic coordinate transfor-
mation ξµ, that satisfies the condition 2ξµ = 0. Having followed this path, we lowered the
original ten independent degrees of freedom into six with the Lorentz gauge, and when the
residual gauge was used, the free degrees were lowered into two.

Equation 24 shows that we can add or subtract in the metric perturbation a term, which
includes ξµν , and satisfy the same equation of motion. Thus, we have the liberty of choice
in the components of the original hµν perturbation. The Lorentz condition in terms of the
hµν perturbation and for µ = 0 reads:

∂0h00 + ∂ih0i = 0 ⇒ ∂0h00 = 0 for h0i = 0

The component h00 is now constant in time and corresponds to the static part of the gravi-
tational wave interaction. Essentially, this component depicts the Newtonian potential that
generated the gravitational wave and can be set to zero as h00 = 0.
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If we read more into this, we can see that all temporal components h0µ are set to zero,
and the gauge condition reads as

∂jhij = 0 (25)
Furthermore, the freedom of choice allows us to redefine the temporal component of the
vector ξ, such that the trace of the perturbation tensor hµν vanishes. Next, a vanishing trace
implies that hµν = h̄µν and hi i = 0. In conclusion, when it comes to gravitational wave
gauges outside the source, we can always define the transverse-traceless gauge (TT gauge)
as given by the following set of equations:

h0µ = 0, hi i = 0 and ∂jhij = 0 (26)

The TT-gauge, as was previously defined, can be used only outside the source, since when
we suppose a source, Tµν ̸= 0 and as a consequence Boxhµν ̸= 0. When this gauge is applied
to the perturbed metric tensor, it is denoted as hTT

µν , and since the temporal components
vanish, we can change the notation to spatial indices as hTT

ij .
Having filled our armory with the TT gauge and the differential equation that defines

the motion, we can look for solutions. It is obvious, that the solutions of equation 23 are
plane waves and on the TT gauge read as follows:

hTT
ij (x) = eij(k⃗)e

ikx (27)

Here, the real part of the equation 27 is applied at the end of our computation. The
polarization vector is eij(k⃗), k⃗ stands for the wave vector and the direction of propagation is
given by n̂ = k⃗/|⃗k|. Suppose a monochromatic plane wave, we observe that the non-vanishing
components travel on the plane transverse to n̂, and the condition ∂jhij = 0 reads as

∂jhTT
ij = 0 ⇒ ∂j[eij(k⃗)e

ikaxa ] = 0

⇒ eij∂
jeikax

a

= 0

⇒ eije
ikaxa∂j(ikax

a) = 0

⇒ eije
ikaxaηjk∂k(ikax

a) = 0

⇒ eije
ikaxaηjkikk = 0

⇒ ikjhTT
ij = 0 ⇒ kjhTT

ij = 0

⇒ n̂j |⃗k|hTT
ij = 0

⇒ n̂jhTT
ij = 0

(28)

Also, the plane wave polarization vector in this gauge has to obey:

hi TT
i = 0 ⇒ ei i(k⃗) = 0 (29)

hTT
0µ = 0 ⇒ e0µ(k⃗) = 0 (30)

Everything discussed above can be expressed more simply and compactly in matrix no-
tation. The polarization vector, as given on the TT-gauge, takes the form:

eµν(k⃗) =


0 0 0 0
0

0 eij(k⃗)
0

 (31)
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The temporal components vanish, and because of the vanishing trace, we have eii = 0 ⇒
e11 + e22 + e33 = 0. If we suppose also the vector along z-axis, as n̂ ≡ n̂3, we get the purely
spatial expression to be

eij(k⃗) =

e11 e12 0
e21 e22 0
0 0 0

⇒ hTT
ij =

h+ h× 0
h× −h+ 0
0 0 0

 (32)

The final solution is obtained when taking the real part of the equation 32:

hTT
ij = Re

[
]hTT
ij

]
= Re

eikaxa
h+ h× 0
h× −h+ 0
0 0 0

 (33)

⇒ hTT
ij =

h+ h× 0
h× −h+ 0
0 0 0

Re[cos(ik · x) + isin(ik · x)] (34)

Again, observing that hi3 components are zero, we can read an even more compact
formula for the GW amplitude:

hTT
ab =

(
h+ h×
h× h+

)
ab

cos(k · x) =
(
h+ h×
h× h+

)
ab

cos[k0x
0 + kix

i] (35)

or equivalently

hTT
ab =

(
h+ h×
h× h+

)
ab

cos
[ω
c
ct− kz

]
⇒ hTT

ab =

(
h+ h×
h× h+

)
ab

cos
[
ω
(
t− z

c

)]
(36)

Having written the full expression on the perturbed metric, we can now compute the
interval ds2, which expresses the propagation of GWs in a background, flat spacetime.

ds2 = gµνdx
µdxν = ηµνdx

µdxν + hTT
µν dx

µdxν

= −c2dt2 + dx2 + dy2 + dz2 + h+dx
2cos

[
ω
(
t− z

c

)]
+

+ h+dy
2cos

[
ω
(
t− z

c

)]
+ 2h+dx dy cos

[
ω
(
t− z

c

)]
= −c2dt2 +

[
1 + h+cos

(
ω(t− z

c
)
)]

dx2 +
[
1− h+cos

(
ω(t− z

c
)
)]

dy2+

+ dz2 + 2h×cos
[
ω(t− z

c
)
]
dx dy

(37)

2.3 Projection operators on the TT-gauge

Following [17] at Chapter 10, equation 10.4.14 and below we can define an operator, which
transforms directly a GW in the TT-gauge, the Λ-operator.

Consider next a plane wave outside the source, but in the Lorentz gauge. By defining
some projectors, we can always readjust the amplitude, so it is in the TT gauge. We can
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achieve this by introducing a new tensor Pij, which is symmetric, transverse, and a projector.
We see this projecting operator to have the form:

Pij(n̂) = δij − ninj (38)

And applying the properties of symmetry, transversality, and projection, we see:
Pji(n̂) = δji − njni = δij − ninj = Pij(n̂)

njPij = njδij − njninj = ni − njn
jni ⇒ njPij = ni − ni = 0

PijPjk = (δij − ninj) (δjk − njnk) = δik − nink

Pii = δijPij = δijδij − δijninj = 2

(39)

Having understood the projection tensor, we can obtain a new projection tensor in terms
of Pij. The expression that suits our needs in the TT-gauge reads:

Λij,kl(n̂) = PikPjl −
1

2
PijPkl (40)

This tensor, as defined above, is a projector since:

Λij,klΛkl,mn =

(
PikPjl −

1

2
PijPkl

)(
PkmPln −

1

2
PklPmn

)
= PikPjlPkmPln −

1

2
PikPklPjlPmn −

1

2
PijPklPkmPln +

1

4
PijPklPklPmn

= PimPjn −
1

2
PijPmn −

1

2
PijPmn +

1

4
2PijPmn

= PimPjn −
1

2
PijPmn = Λij,mn

(41)

It is transverse,

niΛij,kl = niPikPjl −
1

2
PijPkl = 0 (42)

traceless concerning i,j, and k,l

Λii,kl = PikPil −
1

2
PiiPkl = Pkl −

1

2
2Pkl = 0

Λij,kk = PikPjk −
1

2
PijPkk = Pij − Pij = 0

(43)

and symmetric under the exchange of (i, j) ↔ (k, l)

Λij,kl = PkiPlj −
1

2
PklPij = Λij,kl (44)

The above properties are enough to support the claim that the tensor Λij,kl projects any
tensor in the TT-gauge. When we consider arbitrary, symmetric tensors of the form STT

ij ,
we see that the projector conserves the symmetry. We can rewrite this tensor in terms of
unit vectors n̂i. Inserting equation (37) in (39), we get:

Λij,kl(n̂) = (δik − nink) (δjl − njnl)−
1

2
(δij − ninj) (δkl − nknl)

= δikδjl −
1

2
δijδkl − δiknjnl − δjlnink

+
1

2
δijnknl +

1

2
δklninj −

1

2
ninjnknl

(45)
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2.3.1 The TT-frame

The perturbed metric tensor hij in this gauge can be written as hTT
ij = Λijklhkl meaning

that any amplitude that originally is in the Lorentz gauge can be written in the Transverse-
Traceless gauge using the Λ projector. Following this, we see that it also satisfies the same
equations of motion, as given in equation (22), and can be Fourier expanded as a monochro-
matic plane wave, as already done in equation (26):

hTT
ij (x) =

∫
d3k

(2π)3

[
Aij(k⃗)e

ikx + A∗ij(k⃗)e
−ikx

]
(46)

In polar coordinates, the integration measure reads as

d3k = k2dkdΩ = k2sinθdkdθdϕ

= k2dkd cos θdϕ = k2dkd2n̂

=
(2π)2f 2

c2
dkd2n̂ =

(2π)2f 2

c2
2πdf

c
d2n̂

=

(
2π

c

)3

f 2dfd2n̂

(47)

And the Fourier expansion in equation 46 reads:

hTT
ij (x) =

∫
dfd2n̂

(2π)3
(2π)3

c3
f 2
[
Aij(f, n̂)e

ikx + c.c.
]

=
1

c3

∫
dff 2

∫
d2n̂

[
Aij(f, n̂)e

−i(ωt+ 2πf
c
x⃗·n̂) + c.c.

]
=

1

c3

∫
dff 2

∫
d2n̂

[
Aij(f, n̂)e

−2πif(t− 1
c
n̂·x⃗) + c.c.

] (48)

When the direction of propagation of a GW is well-defined, we can write equation 48 as

hTT
ij (x) =

1

c3

∫
dff 2

∫
d2n̂

[
Aij(f)δ

(2)(n̂− n̂0)e
−2πif(t− 1

c
n̂·x⃗) + c.c.

]
=

1

c3

∫
df
[
f 2Aij(f)e

−2πif(t− 1
c
n̂0·x⃗) + c.c.

]
=

∫
df
[
h̃TT
ij (f, x⃗)e−2πift + h̃TT∗

ij (f, x⃗)e2πift
] (49)

In the last line of 49, we set

h̃TT
ij (f, x⃗) ≡ f 2

c3
Aij(f)e

−2πif/c(n̂0·x⃗) (50)

Next, we can impose the gauge properties and rewrite the amplitude as:

hab(t, x⃗) =

∫ ∞
0

df [h̃ab(f, x⃗)e
−2πift + h̃∗ab(f, x⃗)e

2πift] (51)
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Writing the equations down in the detector frame, we can eliminate the x⃗ dependence as:

hab(t) =

∫ ∞
0

df [h̃ab(f)e
−2πift + h̃∗ab(f)e

2πift] (52)

where h̃ab(f) is the 2× 2 matrix of the +,× polarization of a GW with physical frequency.
These two polarization modes are defined concerning a given choice of axes in the transverse
plane.

h̃ab(f) =

(
h̃+(f) h̃×(f)

h̃×(f) −h̃+(f)

)
ab

and h̃∗ab(f) = h̃ab(−f) (53)

There is another way of reading the physical frequencies. It becomes clear when we insert
the property of physical GWs, namely h̃∗ab(f) ≡ h̃ab(−f), in the last equation:

hab(t) =

∫ ∞
0

dfh̃ab(f)e
−2πift +

∫ ∞
0

dfh̃ab(−f)e2πift

=

∫ ∞
0

dfh̃ab(f)e
−2πift −

∫ −∞
0

dfh̃ab(f)e
−2πift

hab(t) =

∫ ∞
−∞

dfh̃ab(f)e
−2πift

(54)

The last form of the amplitude has the form of a Fourier transform in the space of
frequencies. The inverse formula is written in analogy to the Fourier transform:

h̃ab(f) =

∫ ∞
−∞

dthab(t)e
2πift (55)

On real axis we can suppose two arbitrary unit vectors n̂, v̂ such that û ⊥ n̂, v̂ ⊥ n̂ and
û ⊥ v̂ as shown in Figure 1.

The polarization tensors eAij(n̂) are written for A = +,× as:

e+ij(n̂) = ûiûj − v̂iv̂j,

e×ij(n̂) = ûiv̂j + v̂iûj,

where û and v̂ are unit vectors orthogonal to the propagation direction n̂ and to each other.
It follows that eAij(n̂) are normalized as:

eAij(n̂)e
A′ ij(n̂) = 2δAA′ .

In the frame where n̂ = ẑ, we get û = x̂ and v̂ = ŷ. Thus, the polarization tensors are:

e+ab =

(
1 0
0 −1

)
ab

, e×ab =

(
0 1
1 0

)
ab

.
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v̂ û

n̂

z

y

x

Figure 1: Diagram depicting the x,y,z axes and the "new" unitary vectors û, n̂ and v̂, adapted
by Maggiore’s book, Gravitational Waves [15].

The amplitudes from the 2 equations are given now as:

h̃ab(f, x⃗) =
f 2

c3

∫
d2n̂Aab(f, n̂)e

2πif n̂·x⃗
c ⇒

h̃ab(f, x⃗) =
f 2

c3

∑
A=+,×

Aab(f)e
A
ab(n̂)e

2πif n̂·x⃗
c ⇒

h̃ab(f, x⃗) =
f 2

c3

∑
A=+,×

Aab(f)e
A
ab(n̂) ⇒

f 2

c3
Aab(f) =

∑
A=+,×

h̃A(f, n⃗)e
A
ab(n̂)

So, equation 48 reads:

hab(t,x) =
∑

A=+,×

∫ ∞
−∞

df

∫
d2n̂

[
h̃A(f, n̂)e

A
ab(n̂)e

−2πif(t− n̂·x
c ) + c.c.

]
2.3.2 The geodesic equation production

This paragraph takes contribution from a variety of sources, namely we see parts from field
theoretical actions and their manipulation in [25] and we see the geodesic equation, a basic
formula that is produced in any of the following [15], [16] , [17], [18], [19], [20], [22], [23].

Consider a curve xµ parametrized by an affine parameter λ, as xµ(λ). Based on this we
can write the line element ds2 as follow:

ds2 = gµνdx
µdxν = gµν

dxµ

dλ

dxν

dλ
dλ2 (56)
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A space-like curve satisfies that ds2 > 0 ⇒ ds = (gµνdx
µdxν)

1
2 , whereas a time-like curve

with ds2 < 0 satisfies that ds2 = −c2dτ 2 = gµνdx
µdxν The τ parameter is the proper time,

as defined by a clock traveling along the xµ(λ) curve.
The classical action S , defined by xµ(λ) trajectory on xµA = xµ(τA) and xµB = xµ(τB) as

endpoints is:

S = −mc
∫ τB

τA

ds = −mc2
∫ τB

τA

dt

√
1− x2

c2
(57)

And the free-particle Lagrangian is defined as:

L = −mc2
√

1− x2

c2
(58)

Equation (57) can now be written as:

S = −mc
∫ τB

τA

ds = −mc
∫ τB

τA

√
dxµdxµ (59)

A variation on this gives:

δS =−mc

∫ τB

τA

δ
√
dxmudxµ = −mc

∫ τB

τA

δ(dxµdx
µ)

2
√
dxµdxµ

⇒

δS =−mc

∫ τB

τA

δ(gµνdx
µdxν)

2ds
= −mc

∫ τB

τA

gµν2dx
µδdxν

2ds
⇒

δS =−mc

∫ τB

τA

dxµ

ds
gµνdδx

ν = −mc
∫ τB

τA

d

[
xdµ

ds
gµνδx

ν

]
+mc

∫ τB

τA

d

[
dxµ

ds
gµν

]
δxν ⇒

δS =−mc
dxµ

ds
δxνgµν |τBτA +mc

∫ τB

τA

ds
d2xµ

ds2
gµν |τBτAδx

ν +
dxµ

ds
dgµνδx

ν

(60)

Demanding that S has an extreme, we get:

δs

δxν
= 0 ⇒mc

∫ τB

τA

ds

[
d2xµ

ds2
gµν +

dxµ

ds

dgµν
ds

]
= 0 ⇒

d2xµ

ds2
gµν +

dxµ

ds

dxα

ds

dgµν
dxα

= 0 ⇒

d2xρ

ds2
+

dxµ

ds

dxα

ds
gρν

dgµν
dxα

= 0 ⇒

d2xρ

ds2
+ Γρµα

dxµ

ds

dxα

ds
= 0

(61)

If uµ ≡ dxµ

ds
we get in terms of 4−velocity that

duρ

ds
+ Γρµαu

µuα. When we considerate a
translation xµ → x′µ = xµ + ξµ equation 61 gives:
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d2

ds2
(xρ + ξρ) + Γρµα

d

ds
(xµ + ξµ)

d

ds
(xα + ξα) = 0 ⇒

d2xρ

ds2
+

d2ξρ

ds2
+

[
Γρµα

dxµ

ds
+ Γρµα

dξµ

ds

](
dxα

ds
+

dξα

ds

)
= 0

d2ξρ

ds2
+ Γρµα

dxµ

ds

dξα

ds
+ Γρµα

dξµ

ds

dxα

ds
+ Γρµα

ξµ

ds

dξα

ds
= 0

(62)

Where Γρµα ≡ Γρµα(x+ ξ) ≈ Γρµα(x) + ξσ∂σΓ
ρ
µα(x)

⇒ d2ξ2

ds2
+ 2Γρµα

dxµ

ds

dξα

ds
+ ξσ∂σΓ

ρ
µα(x)

dxµ

ds

dxα

ds
= 0

Next we introduce the covariant derivative for 4− vector as

DV µ

Dτ
≡ dV µ

dτ
+ ΓµνρV

ν dx
ρ

dτ

and the geodesic deviation equation is written as:

D2ξµ

Dτ 2
= −Rµ

νρσξ
ρdx

ν

dτ

dxσ

dτ
⇒ D2ξµ

Dτ 2
= −Rµ

νρσξ
ρuνuσ (63)

2.4 Energy-momentum tensor in geometric interpretation

The energy-momentum tensor of GW and the short-wave expansion are discussed based on
Isaacson’s work, see bibliography [30] and [31] and in Thorne’s classical textbook [28]. The
space-time average over a wave is discussed in Arnowitt, Desser and Misner, [32]. Finally,
the geometric optics approximation used in 1.4.2 is referred to [20], [30], [31], [27] and [28].

Until now, we have seen that GWs carry energy and momentum. Furthermore, we saw
that GWs set in motion a ring of test masses initially at rest. If these masses are connected
by a loose spring with friction, the kinetic energy will be transformed into heat. Thus, GWs
produce work, and energy conservation demands that the energy transformed to work must
come from the GW energy. We want to check out if GWs curve the background spacetime.
This will occur if we allow the background spacetime to be dynamical, meaning we must
define GWs over a curved, dynamical background metric gµν(x) and write the perturbation
as:

gµν = gµν(x) + hµν(x) (64)

where |hµν | ≪ 1. The total metric can receive contributions, which change in time and
space, on all possible scales, due to growing fields of nearby moving masses. A natural
splitting between rmgµν and hµν arises when there is a clear separation of scales. For
example, equation 64 in a coordinate system provides that gµν has a typical scale of spatial
variation LB and the perturbation has an amplitude proportional to a λ̄ amplitude such
that λ̄≪ LB, where λ̄ ≡ λ

2π
. In frequency space gµν has frequencies fB (maximum) and hµν

perturbs around the frequencies f such that f ≫ fB. In this case, hµν is a high-frequency
perturbation of a static or slowly varying background.

We want to understand how the perturbation hµν propagates and affects the background
spacetime. We begin by expanding the metric tensor as already done in equation 64, gµν(x) =
gµν + hµν To this expansion, we get two small parameters:
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1. the typical amplitude h ≡ O(|hµν |)

2. λ̄
LB

or fB
f

≪ 1 (short wave expansion)

We produce, now, the quadratic order of approximation of Christoffel’s symbols, Rie-
mann’s, Ricci’s tensor, and Ricci’s scalar.

gµν = g
(x)
µν + h(x)µν ⇒ gµν = gµν(x)− hµν(x) +O(h2)

Christoffel’s connections are:

Γµνρ =
1

2
gµσ(Dνgσρ +Dρgνσ −Dσgνρ) +

1

2
gµσ(Dνhρσ +Dρhνσ −Dσhνρ)

The Ricci tensor expansion is given as follows:

Rµν = R̄µν +R(1)
µν +R(2)

µν +O(R3) (65)

with Rµν ∼ gµν > R(1)µν linear in hµν as:

R(1)
µν =

1

2

(
D̄αD̄µhνα + D̄αD̄νhµα − D̄αD̄αhµν − D̄µD̄νh

)
, (66)

and R(2)
µν quadratic in hµν :

R(2)
µν =

1

2
ḡσρḡαβ

[
1

2
D̄ρhµαD̄σhνβ +

(
D̄ρhνα

) (
D̄σhµβ − D̄βhµσ

)
+ hρα

(
D̄βD̄µhνβ − D̄βD̄µhνσ − D̄βD̄σhµν

)
+

(
−1

2
D̄αhρσ − D̄ρhασ

)(
D̄βhµβ + D̄νhβσ − D̄βhµν

) ]
. (67)

The perturbation hµν depends on the frequency. When we have low frequencies, we define
hlowµν and for high frequencies, hhighµν . In equation (64) Rµν is separated in three parts:

1. Rµν ∼ gµν

2. R(1)
µν ∼ O(h)

3. R(2)
µν ∼ O(h2)

The part proportional to O(h) contains by definition only high frequencies f ≫ fB, When
the O(h2) part may contain terms with hαβhγδ : f(hαβ) ≫ fB and f(hγδ) ∼ fB. The R(2)

µν

components can be divided into low and high-frequency components as:

R(2)
µν = R(2)low

µν +R(2)high
µν (68)

Substituting Eq. 67 in Einstein’s equation alternative form, we get

Rµν =
8πG

C4
(Tµν −

1

2
gµνT ) (69)
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We get Eq. 68 Eq. 67
====⇒

Rµν +R(1) high
µν +R(2) low

µν +R(2) high
µν =

8πG

C4

[
(Tµν −

1

2
gµνT )

low + (Tµν −
1

2
gµνT )

high

]

Rµν = −R(2) low
µν +

8πG

c4

(
Tµν −

1

2
Tgµν

)low

(70)

R(1) high
µν = −R(2) high

µν +
8πG

c4

(
Tµν −

1

2
Tgµν

)high

(71)

At this point, it is useful to see the order of magnitude of all components. In a small
region of spacetime gµν can be flat as hµν and of order gµν = O(1). It can only happen
when we are far away from a source, so T µν = 0. Next the perturbation hµν = O(|hµν |) and
equation 69 tell us for Tµν = 0 and T = 0 the following:

O(Rµν) = O(R(2) low
µν ) = O((∂h)2) (72)

So the derivatives of h, ∂h affect the spacetime curvature. At the same point ∂gµν ∼ L−1B ,
since gµν ≃ O(1) and

∂h ∼ h

λ̄
(73)

So, we take
O(R(1)

µν ) = O(R(2) high
µν ) = O(h∂2h) (74)

From Eq. 66, we get that

Rµν ∼ (∂h)2 ∼ ∂2gµν ∼
1

L2
B

(75)

eq. 74 eq. 71
====⇒ 1

L2
B

∼
(
h

λ̄

)2

⇒ h ∼ λ̄
LB

for curvature determined by GWs and h ≪ λ̄
LB

for

matter determined curvature.
Eq. 69 is written as:

Rµν = −R(2) low
µν +

8πG

c4

(
Tµν −

1

2
gµνT

)high

When the length scale λ̄ is separated from the LB length scale of the background, one
can introduce a scale l such that λ̄ ≪ l ≪ LB and average over a spatial volume of side l.
Similarly we can define a time scale t : 1

f
≪ t≪ 1

fB
and equation (69) can be written as:

1

T

∫
dtRµν = − 1

T

∫
dtR(2)

µν +
8πG

c4T

∫
dt

(
Tµν −

1

2
Tgµν

)
⇒

Rµν = −⟨R(2)
µν ⟩+

8πG

c4
⟨Tµν −

1

2
T ¯gµν⟩

(76)
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We define the effective energy-momentum tensor Tµν such that

⟨Tµν −
1

2
Tgµν⟩ ≡ Tµν −

1

2
Tgµν . (77)

Tµν tensor expresses by definition purely low frequencies, as is gµν . We define tµν tensor
as:

tµν = − c4

8πG
⟨R(2)

µν − 1

2
gµνR

(2)⟩ (78)

And its trace:

t = gµνtµν = − c

4πG
⟨gµνR(2)

µν − 1

2
gµν gµνR

(2)⟩

⇒t =
c

4πG
⟨R(2) +

1

2
R(2)⟩

⇒t =
c

4πG
⟨R(2)⟩

(79)

Then, Eq. 78 is inserted in Eq. 77, giving:

tµν = − c4

8πG
⟨R(2)

µν ⟩+
1

2

c4

8πG
⟨R(2)⟩gµν

⇒tµν = − c4

8πG
⟨R(2)

µν ⟩+
1

2
tgµν

⇒− ⟨R(2)
µν ⟩ =

8πG

c4

(
tµν −

1

2
tgµν

) (80)

So Eq. 75 in terms of Eq. 79 provides the following:

Eq. 79
====⇒Rµν =

8πG

c4
(tµν −

1

2
tgµν) +

8πG

c4
(Tµν −

1

2
gµνT )

Rµν +
8πG

2c4
(tgµν − Tgµν) =

8πG

c4
(tµν + Tµν)

Rµν −
1

2
gµνR =

8πG

2c4
(tµν + Tµν)

(81)

The last equality of 81 hides all the physical meaning in this gauge of Einstein’s equations.
This form is known as a coarse-grained form of Einstein’s equations in quadratic order in
hµν , and it is used to determine the dynamics governing ḡµν .

In summary, at a microscopic level, there is no fundamental distinction between the back-
ground metric and its perturbation. Moreover, when some fluctuations are distinguishable
from the background because λ̄ ≪ LB, we introduce l : λ̄ ≪ l ≪ LB and integrate out the
degree of freedom. The result of this integration is shown in equation 80. LHS in equation
70 is Einstein’s tensor for slowly varying metrics. RHS is a smoothed version of the matter
stress-energy tensor Tµν . Finally, tµν comes out in an overlapped form naturally, because
we pass from a fundamental microscopic description t to a "coarse-grained", macroscopic
description.
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2.4.1 Energy-momentum tensor

Now we can compute the explicit form of tµν (view Eq. 77) when R
(2)
µν is given by Eq. 66.

In this case, we suppose that the background is flat, so gµν → ηµν and Dµ → ∂µ and Eq. 66
becomes:

R(2)
µν =

1

2
ηρσηαβ

[
1

2
∂µhρα∂νhσβ + ∂ρhνα∂σhµβ − ∂ρhνα∂βhµσ

+ hρα
(
∂ν∂µhσβ + ∂β∂σhµν − ∂β∂νhµσ − ∂β∂µhνσ

)
+

(
1

2
∂αhρσ − ∂ρhαβ

)
(∂νhµβ + ∂µhνβ − ∂βhµν)

]

⇒ R(2)
µν =

1

2

[
1

2
∂µhαβ∂νh

αβ + hαβ∂µ∂νhαβ − hαβ∂β∂νhαµ − hαβ∂β∂µhαν

+ hαβ∂α∂βhµν + ∂βhαβ∂
αhµν − ∂βhνβ∂

αhµα − ∂βhµβ∂
αhνα

+ ∂βh
αβ∂αhµν − ∂βh

αβ∂µhαν −
1

2
∂αh∂αhµν +

1

2
∂αh∂νhαµ

]

(82)

where hµν is a matrix with 10 degrees of freedom with 8 gauge modes and 2 physical modes,
both of them contribute to GWs.

Gauge modes are associated with ripples in spacetime, are coordinate-dependent, and can
be gauged away. Physical modes produce an energy-momentum tensor of GWs and cannot
be gauged away. These are found using Lorentz gauge condition ∂µhµν = 0

Eq. 81 h=0
=====⇒
2hαβ=0

⟨R(2)
µν ⟩ =

〈
1

4
∂µhαβ∂νh

αβ +
1

2
hαβ∂µ∂νhαβ

〉
,

=
1

4

〈
∂µhαβ∂νh

αβ
〉
+

1

2

〈
∂µ
(
hαβ∂νhαβ

)〉
− 1

2

〈
∂µh

αβ∂νhαβ
〉
,

⟨R(2)
µν ⟩ = −1

4

〈
∂µhαβ∂νh

αβ
〉
.

(83)

⟨R(2) = 0⟩ (84)

because of integration by parts.

From Eq. 77, using Eqs. 82 and 83, tµν = − c4

8πG
⟨R(2)

µν ⟩ −
1

2
gµν⟨R(2)⟩,

tµν =
c4

8πG

(
1

4
⟨∂µhαβ∂νhαβ⟩

)
,

⇒ tµν =
c4

32πG
⟨∂µhαβ∂νhαβ⟩.

(85)
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To see that gauge modes do not contribute to Eq. 84, we vary it with δhαβ and use eq.
11. So Eq. 84 can be written as

δtµν =
c4

32πG

[
⟨(∂µδhαβ)∂νhαβ⟩+ ⟨∂µhαβ∂νδhαβ⟩

]
⇒

δtµν =
c4

32πG

[
⟨∂µ(∂αξβ + ∂βξα)∂νh

αβ⟩+ ⟨∂muhαβ∂ν(∂αξβ + ∂βξα)⟩

]
α←→β
====⇒

δtµν =
c4

16πG

[
⟨∂µ∂αξβ∂νhαβ⟩+ ⟨∂µhαβ∂ν∂αξβ⟩

]
⇒

δtµν =
c4

16πG

[
⟨∂µ∂αξβ∂νhαβ⟩+ ⟨∂µhαβ∂ν∂αξβ⟩

]
⇒

δtµν =
c4

16πG

[
∂α⟨∂µξβ∂νhαβ⟩ − ⟨∂µξβ∂ν∂αhαβ⟩+

∂α⟨∂µhαβ∂νξβ⟩ − ⟨∂µ∂αhαβ∂νξβ⟩+ ⟨∂µhαβ∂ν∂αξβ⟩

]
⇒

δtµν =
c4

16πG

[
∂α⟨∂µ(ξβ∂νhαβ)− ξβ∂µ∂νh

αβ + ∂µ(h
αβ∂νξβ)− hαβ∂µ∂νξ

β⟩

]
⇒

δtµν =
c4

16πG

[
∂α∂µ∂ν⟨ξβhαβ⟩

]
= 0

(86)

Since equation 84 holds, tµν does not depend on gauge modes and only on physical modes
hTT
ij , we can rewrite equation 83 as:

tµν =
c4

32πG
⟨∂µhTT

ij ∂νh
ij
TT⟩ (87)

with hTT
ij =

h+ h× 0
h× −h+ 0
0 0 0


ij

cos

[
w

(
ϵ− 2

ϵ

)]

All components from equation 85 are:

t00 =
c2

32πG
⟨1
c
∂th

TT
ij

1

c
∂th

ij
TT⟩ ⇒ t00 =

c2

32πG
⟨ ˙hTT

ij
˙hijTT⟩ ⇒

t00 =
c2

32πG
⟨ ˙hTT

11
˙h11TT + ˙hTT

12
˙h12TT + ˙hTT

13
˙h13TT+

˙hTT
21

˙h21TT + ˙hTT
22

˙h22TT + ˙hTT
23

˙h23TT+

˙hTT
31

˙h31TT + ˙hTT
32

˙h32TT + ˙hTT
33

˙h33TT⟩ ⇒
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t00 =
c2

32πG
⟨ ˙hTT

11
˙h11TT + ˙hTT

12
˙h12TT + 0 + ˙hTT

21
˙h21TT + ˙hTT

22
˙h22TT + 0 + 0 + 0 + 0⟩ ⇒

t00 =
c2

32πG
= ⟨ḣ2+ + ḣ2x + ḣ2x + ḣ2+⟩ ⇒

t00 =
c2

16πG
= ⟨ḣ2+ + ḣ2x⟩

(88)

When applied the covariant derivative Dµ in equation 80, yields

Dµ

[
Rµν −

1

2
Rgµν

]
= Dµ

(
Tµν + tµν

)
⇒

DµTµν +Dµtµν = DµRµν −
1

2
(DµR)gµν −

1

2
RDµgµν ⇒

DµTµν +Dµtµν = DµRµν −
1

2
(DµRαβ)gαβgµν −

1

2
RαβD

µgαβgµν ⇒

Dµ(Tµνtµν) = 0 due to Bianchi identity

(89)

All the large distance limits, the background spacetime can be approximated by a flat
spacetime and Dµ → ∂mu with T µν = 0. So, equation 88 reads as ∂µtµν .

2.4.2 Energy flux radiated by GWs

Energy flows per unit of time through a unit surface at large distances from the source.
Conservation of Equation ∂µtµν shows:

v = 0 : ∂µtµν = 0 ⇒ ∂0t00 + ∂iti0 = 0

When integrated over a spatial volume V in the far region, we get:∫
v

d3x(∂0t00 + ∂iti0) = 0 (90)

The energy of GW is defined as:

Ev =

∫
v

d3xt00

Equation 90 can be written as:

d

dx0
EV = −

∫
V

d3x ∂it
0i ⇒

d

dx0
EV = −

∫
S≡∂V

dAnit
0i ⇒

1

c

d

dt
EV = −

∫
S

dAnit
0i ⇒

d

dt
EV = −c

∫
S

dAnit
0i

(91)
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If V is a spherical shell as V = S2, then far away from the source the outer normal vector
to V is simply n̂ ≡ r̂, the unitary radial vector and dA ≡ r2dΩ. So, 91 reads:

dEV
dt

= −c
∫
S

r2dΩ t0r, (92)

where
t0r =

c4

32πG

〈
∂0h

TT
ij

∂

∂r
hTT
ij

〉
. (93)

A radially propagating GW far away from the source can be described in general as:

hTT
ij (t, r) =

1

r
fij(t− r/c), (94)

where fij(t− r/c) is a function of the retarded time tret = t− r/c.
Taking derivative ∂r:

∂

∂r
hTT
ij (t, r) = − 1

r2
fij(t−

r

c
) +

1

r

∂

∂r
fij(t−

r

c
). (95)

Since dr = −dr
c
= d

(
t− r

c
= dtret

)
⇒ ∂r = −∂tr we get

∂

∂r
fij(t−

r

c
) = −1

c

∂

∂t
fij(t−

r

c
) (96)

and therefore:
∂

∂r
hTT
ij (t, r) = −∂0hTT

ij (t, r) (97)

Substituting into Eq. 93, we see that at large distances:

t0r = − c4

32πG
⟨∂0hTT

ij ∂0h
TT
ij ⟩ ⇒

t0r =
c4

32πG
⟨∂0hTT

ij ∂
0hTT

ij ⟩ = t00

And the energy flow from 92 is decreasing since

dEV
dt

= −c
∫
dA t0r = −c

∫
dA t00 (98)

This decrease shows that the outgoing GW carries energy flux:

dE

dAdt
= c t00 =

c3

32πG

〈
ḣTT
ij ḣ

TT
ij

〉
⇒

dE

dt
=

c3

32πG

∫
dA
〈
ḣTT
ij ḣ

TT
ij

〉
⇒

dE

dt
=

c3r2

32πG

∫
dΩ
〈
ḣTT
ij ḣ

TT
ij

〉 (99)
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In terms of h+ and h×, we can rewrite the result as:

dE

dAdt
=

c3

16πG

〈
ḣ2+ + ḣ2×

〉
. (100)

The total energy flowing through dA between t = −∞ and t = +∞ is therefore:

dE

dA
=

c3

16πG

∫ ∞
−∞

dt
〈
ḣ2+ + ḣ2×

〉
(101)

or in terms of dE
dA

we get:
dE

dA
=

c3

16πG

∫ ∞
−∞

dt
(
ḣ2+ + ḣ2×

)
(102)

Because of Parseval’s theorem, we get:∫ +∞

−∞
dt|ḣ+,×(t)|2 =

∫ +∞

−∞
df |ḣ+,×(t)|2

=

∫ +∞

−∞
df |h̃+,×(f)

∂

∂t
e−2πift|2

=

∫ +∞

−∞
df |h̃+,×(f)(2πf)e−2πift|2

=

∫ +∞

−∞
df(2πf)2|h̃+,×(f)|2

(103)

Combining the two equations above, we get:

dE

dA
=

c3

16πG

∫ ∞
−∞

df (2πf)2
(
|h̃+(f)|2 + |h̃×(f)|2

)
⇒

dE

dA
=
πc3

4G

∫ ∞
−∞

df f 2
(
|h̃+(f)|2 + |h̃×(f)|2

) (104)

Since the integrand is even under f → −f , we can restrict it to physical frequencies
f > 0, writing:

dE

dA
=
πc3

2G

∫ ∞
0

df f 2
(
|h̃+(f)|2 + |h̃×(f)|2

)
⇒

dE

dAdf
=
πc3

2G
f 2
(
|h̃+(f)|2 + |h̃×(f)|2

) (105)

The energy spectrum on a sphere of constant radius r is written as:

dE

df
=
πc3

2G
f 2r2

∫
dΩ
(
|h̃+(f)|2 + |h̃×(f)|2

)
. (106)
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2.4.3 Momenta carried by GWs

To calculate momenta, we have to take the equation ∂µtµν = 0, which illustrates the energy-
momentum conservation, and choose the ν = i component.

∂µtµν = 0
ν=i
==⇒ ∂µtµi = 0 ⇒ ∂0t

0i + ∂jt
ji = 0 (107)

Integration on a volume V gives:∫
ν

d3x[∂0t
0i + ∂jt

ji] = 0 (108)

A GW carries momentum given by:

P k
ν =

1

c

∫
d3xt0k (109)

With the energy being expressed as the derivative of equation 109

1

c

dP k
ν

dt
=

1

c

∫
d3x∂0t

0k (110)

When the integrated equation 108 produces a form of momentum conservation for the grav-
itational waveform∫

ν

d3x[∂0t
0i + ∂jt

ji] = 0 ⇒
∫
ν

d3x[∂0t
0i = −

∫
ν

d3x∂jt
ji]

equation84
======⇒

1

c

dP i
ν

dt
= −

∫
ν

d3x∂jt
ji Stoke

′s theorem
= −

∫
S

dAnjt
ij ⇒

dP i
v

dt
= −c

∫
S

dAnjt
ji

(111)

equation84
======⇒1

c

dP i
ν

dt
= −

∫
d3x∂0t

0i = −
∫

dAn0t
0i ⇒

dP i
ν

dt
= −c

∫
dAn0t

0i ⇒ dP i
ν

dAdt
= −ct0i

(112)

⇒ dP i
ν

dAdt
= −c c2

32πG
⟨ ˙hTT

jk ∂
ihTT
jk ⟩ (113)

⇒ dP i
ν

dt
=

c3

32πG
r2
∫

dΩ⟨ ˙hTT
jk ∂

i∂ihTT
jk ⟩ (114)
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2.5 Energy-momentum tensor in field theoretical approach

2.5.1 Energy-momentum tensor produced in field theory models

More details and proofs about the action and the energy-momentum tensor in field theoretical
models can be found in Maggiore’s book [36], as well as [25] and [19].

The action that describes any physical system is

S =

∫
d4xL =

∫
dt

∫
d3xL(ϕi, ∂ϕi) (115)

All ϕi fields are components of the perturbation metric hµν and are denoted simply as ϕi ≡ ϕ.
A coordinate transformation bets on xµ → x′µ and on ϕ(x) → ϕ′(x′). An infinitesimal

transformation for the coordinate and the field is given as:

xµ → x′µ = xµ + ϵαAµα(x) (116)

ϕi(x) → ϕ′i(x
′) = ϕi(x) + ϵαFi,a(ϕ, ∂ϕ) ∀α = 1, . . . , µ (117)

Eqs. 116 and 117 leave the action invariant and define a symmetry of S(ϕ).

• When the symmetric transformation leaves the action invariant and the ϵα parameters
are constant, we get a global transformation.

• When the symmetry leaves the action invariant and the ϵα parameters are allowed to
be arbitrary functions of x, we have a local transformation.

Noether’s theorem states that for each generator of a global symmetry (meaning ϵα, ∀α)
there is a current jµα[ϕ, ∂ϕ], that is conserved as

∂µj
µ
a = 0 (118)

and a corresponding conserved charged Qa such as:

Qα ≡
∫

d3xj0α(x, t) (119)

The conservation of Qα is given as

∂0Qα = −
∫

d3x∂ij
i
α(x, t) ⇒ ∂0Qα = −jiα(x, t)x̂i|∂V = 0 (120)

Equation 100 vanishes, since we demand ϕ|∂V → 0. The generic formula of jµα is given as:

jµα =
∂L

∂(∂µϕi)

[
Aνα(x)∂νϕi − Fi,α(ϕ, ∂ϕ)

]
− Aµα(x)L (121)

Symmetry under spacetime translations

33



xµ → x′µ = xµ + ϵµ = xµ + ϵνδµν
ϕ(x) → ϕ′i(x

′) = ϕi(x)
(122)

So we have Aµν ≡ δµν and Fi,α = 0 and the conserved current is

jµα =
∂L

∂(∂µϕi)
[δνα∂νϕi − Fi,α(θ, ϕ)]− Aµα(x)L

jµα =
∂L

∂(∂µϕi)
∂αϕi − δµαL

(123)

The energy-momentum tensor is defined as:

θµν ≡ −jµν = − ∂L
∂(∂µϕi)

∂νϕi + δµνL

Or with all indices raised:

θµν = ηνρθµρ = − ∂L
∂(∂µϕi)

∂νϕi + ηµνL (124)

with conservation

∂µθ
µν = 0 (125)

The conserved charge is the four-momentum P ν defined as

cP ν ≡
∫

d3xθ0ν (126)

with components

E ≡ cP 0 =

∫
d3xθ00 (127)

P i ≡ 1

c

∫
d3xθ0i (128)

In the case of electrodynamics, the Lagrangian density can be expressed as:

LEM = −1

4
FµνF

µν (129)

and the electric and magnetic fields can be written as the components of the EM tensor
Ei ≡ F oi and F ij ≡ EijkBk. Thus, the Fµν Maxwell tensor will be:

Fµν ≡ ∂µAν − ∂νAµ (130)

and its "square" F 2 ≡ FµνF
µν will read:

F 2 = FµνF
µν = FoiF

oi + FioF
io + FijF

ij

= EiEi + EiE
i + EijBkE

ijlBl = 2E⃗2 + 2B⃗2 ⇒
FµνF

µν = (−E⃗2 + B⃗2)

(131)
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The Lagrangian density in terms of the electromagnetic fields will be written as:

LEM = −1

4
FµνF

µν = −1

2
(E⃗2 − B⃗2) (132)

To retrieve a closed form for the EM energy-momentum tensor, we need to compute the
following quantity:

∂LEM
∂(∂µAρ)

=
∂

∂(∂ρAρ)
[−1

4
(∂αAβ − ∂βAα)2F

αβ] ⇒

∂LEM
∂(∂µAρ)

= −1

2
Fαβ ∂(∂[αAβ])

∂(∂µAρ)
= −1

2
Fαβ(δµ[αδ

ρ
β]) ⇒

∂LEM
∂(∂µAρ)

= −F µρ

(133)

Having the full expression of equation 133, we can now write down the full expression of the
EM energy-momentum tensor. Following the steps below, we get:

θµνem = − ∂LEM
∂(∂µAρ)

∂νAρ + ηµνLEM ⇒

θµνem = F µρ∂νAρ + ηµν [−1

4
FαβF

αβ]

θµνem = F µρ∂νAρ −
1

4
ηµνFαβF

αβ

(134)

Since classical electrodynamics is invariant under the transformation Aµ → Aµ − ∂µθ
We see that Eqs. 132 and 130 have:

F
′

µν = ∂µA
′

ν − ∂νA
′

µ ⇒
F

′

µν = ∂µAν∂µ∂νθ − ∂νAµ + ∂ν∂µθ ⇒
F

′

µν = Fµν

(135)

L
′

EM = −1

4
F

′

µνF
µν ′

= −1

4
FµνF

µν = LEM (136)

Although θµνEM via Equation 134 is:

θ′ µνEM = F ′ µρ∂νA′ρ −
1

4
ηµνF ′αβF

αβ ′ ⇒

θ′ µνEM = F µρ∂νAρ − F µρ∂ν∂ρθ −
1

4
ηµνFαβF

αβ ⇒

θ′ µνEM = θµνEM − F µρ∂ν∂ρθ

(137)

θ′ µνEM = F µρ(∂νAρ − ∂ρA
ν + ∂ρA

ν)− 1

4
ηµνF ′αρF

′ αβ ⇒

θ′ µνEM = F µρF ν
ρ − 1

4
ηµνF ′αβF

′ αβ + F µρ∂ρA
ν ∂ρFµρ=0

=====⇒

θ′ µνEM = F µρF ν
ρ − 1

4
ηµνF 2 + ∂ρ(F

µρAν) ⇒

θ′ µνEM = T µνEM + ∂ρ(F
µρAν)

(138)
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Next we can define Cρµν as Cρµν ≡ F µρAν an antisymmetric tensor in ρ↔ µ, with ∂ρCρµν

not gauge invariant. Also we set T µνEM ≡ F µρF ν
ρ − 1

4ηµνF 2, the improved energy-momentum
tensor with the 00−component to be given as the energy density:

E = T 00
EM =

1

2
(E⃗2(x) + B⃗2(x)) (139)

We notice the following:

• ∂µ∂ρC
ρµν = ∂µ∂ρ(E

µρAν) = 0, so ∂µθµνem = 0 ⇒ ∂µ(T
µν
em + Cρµν) = 0 ⇒ ∂µT

µν
EM = 0

• The conserved charge for θµνEM is:

cP ν
1 =

∫
V

d3xθ0νEM =

∫
d3x(F 0ρ∂νAρ −

1

4
η0νF 2) (140)

• while for T µνEM will be:

cP ν
2 =

∫
V

d3xT 0ν
EM =

∫
V

d3x(F 0ρF ν
ρ − 1

4
η0νF 2) (141)

The two forms of the energy-momentum tensor, as stated in Eqs. 140 and 141 differ by a
factor. This factor, when applied to some algebra, transforms into the following expression:∫

V

d3x∂ρC
ρ0ν =

∫
V

d3x(∂0C
00ν + ∂iC

i0ν) ⇒
∫
V

d3x∂ρC
ρ0ν =

∫
V

d3x∂iC
i0ν (142)

If Aµ → 0 is fast enough at the boundary, we get from equation 142 the following.

equation119
=======⇒

∫
V

d3x∂ρC
ρ0ν =

∫
V

d3x∂iC
i0ν = Ci0νni|∂V ⇒∫

V

d3x∂ρC
ρ0ν = F i0Aνni|∂V → 0

Since equation 142 vanishes, we get: CP ν
1 = CP ν

2 and P ν is gauge invariant.

2.5.2 Energy-momentum tensor of GWs

The quantum field theoretical approach to gravitation is explicitly studied in Feynman’s
Lectures n Gravitation [37]. Also, in [38] and [39].

To find an expression for the energy-momentum tensor of GWs, we must begin studying
Einstein’s action as given in equation 1 of Chapter 1: SE = c3

16πG

∫
d4x

√
−gR, Expand the

metric as per usual gµν = ηµν + hµν ⇒ gµν = ηµν − hµν and compute the Ricci scalar as:

R = gµνRµν = [ηµν − hµν +O(h2)][R(1)
µν +R(2)

µν +O(h3)] (143)

The
√
−g term is expanded as follows:

−g = −detgµν = −det(ηµρgρν) ⇒ −g = detgρν (144)
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The permutation gµν ≡ ηµν + hµν can be written as

ηρµgµν = ηρµηµν + ηρµhµν ⇒ gρν = δρν + hρν (145)

Inserting equation 144 into 145, we find the first-order expansion of the scalar −g to be:

eq. 121 eq. 122
====⇒− g = det(δρν + hρν) = det(I +H) ⇒

− g = elndet(I+H) = eTr[ln(I+H)] ⇒
− g ≈ eTr[(1+H)− 1

2
(I+H2)+O(H3)] = eTr[1+H] ⇒

− g ≈ 1 + Tr(1 +H) +O(H2) ⇒
− g ≈ 1 + h+O(h2)

(146)

Thus, Einstein’s action SE can be written as:

SE =

∫
d4x

c3

16πG

√
−gR equation120

=======⇒
equation123

SE =

∫
d4x

c3

16πG

√
1 + h(ηµν − hµν +O(h2))[R(1)

µν +R(2)
µν +O(h3)]

We ignore the term
√
1 + h because it is of order O(h3).

SE =

∫
d4x

c3

16πG
[R(1) +R(2)− hµνR(1)

µν − hµνR(2)
µν +O(h3)]

c3

16πG

∫
d4x[ηµν

1

2
(∂α∂µhνα + ∂α∂νhµα)− ∂α∂αhµν − ∂ν∂µh)

+ ηµν
1

2
(
1

2
∂µhαβ∂νh

αβ + hαβ∂µ∂νhαβ − hαβ∂ν∂βhαµ − hαβ∂µ∂βhαν

+ hαβ∂α∂βhµν + ∂βhαν∂βhαµ − ∂βh
αβ∂νhαµ − ∂αhβν∂αhβµ + ∂βh

αβ∂αhµν

− ∂βh
αβ∂µhαν −

1

2
∂αh∂αhµν +

1

2
∂αh∂νhαµ +

1

2
∂αh∂µhαν)

− hµν
1

2
(∂α∂µhνα + ∂α∂νhµα − hµν − ∂ν∂µh)] ⇒

SE = − c3

64πG

∫
d4x[(∂µhαβ)

2 − (∂µh)
2 + 2∂µh

µν(∂νh− ∂ρh
ρν)]

(147)

And the Lagrangian density of the Gravitational theory will be

LE ≡ − c4

64πG
[(∂µhαβ)

2 − (∂µh)
2 + 2∂µh

µν(∂νh− ∂ρh
ρν)] (148)

In the Lorentz gauge, the Lagrangian density can be written as:

LE =
c4

64πG
(∂µhαβ∂

µhαβ) (149)
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And the stress-energy tensor is:

θµν = − ∂LE
∂(∂µhαβ)

∂νhαβ + ηµνLE ⇒

θµν = − c4

64πG
2∂µhαβ∂νhαβ + ηµν

(
− c3

64πG

)(
∂ρhαβ∂

ρhαβ
) (150)

Since
2hµν = 0 ⇒ hαβ∂ρ∂

ρhαβ = 0 ⇒ ∂ρ[hαβ∂
ρhαβ]− ∂ρhαβ∂

ρhαβ = 0 (151)

And since ∂ρ[hαβ∂ρhαβ] does not add in action, due to boundary conditions, we get:

∂ρhαβ∂
ρhαβ = 0 (152)

The stress-energy tensor will take the final form stated below:

Eq.127
Eq.129
====⇒ θµν = − c4

32πG
(∂µhαβ∂νhαβ) (153)

If we evaluate the mean value of θµν on several wavelength λ̄, we get the " macroscopic"
stress-energy tensor tµν as:

tµν = −1

λ̄

∫ λ̄

0

dλ̄′θµν = ⟨−θµν⟩ ⇒

tµν =
c4

32πG
⟨∂µhαβ∂νhαβ⟩ (154)

2.5.3 Angular momentum carried by GWs

Angular momentum carried by GWs comes as the conserved charge under spatial rotations.
A symmetric tensor hµν , when rotated, decomposes into h00 and the spatial trace hii, which
are scalars (spin-O fields), to h0i a spin-1 spatial vector and a purely spatial tensor hij
with spin-2. When a GW is expressed in the TT-gauge, we have h0µ = 0, hii = h = 0, and
∂jhij = 0. In this gauge, the total d.o.f. reduce from 10 to 2 and equation 147, that describes
the gravitational wave action, yields:

SE =

∫ [
d4x

−c3

64πG
(∂µhαβ∂

µhαβ)

]
⇒ SE =

∫
d4x

[
− c3

64πG
(∂µh

TT
ij ∂

µhijTT

]
(155)

With the corresponding Lagrangian density:

⇒ LE = − c4

64πG
(∂µhTT

ij ∂
µhijTT) (156)

The hTTij fields describe the two physical degrees of freedom. The conserved current un-
der rotations uses the Lagrangian density, given by equation 156. The rotations on three-
dimensional spaces are described by 3x3 matrices R, such that:

xi → xi = Rijxj (157)
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For infinitesimal rotations, we can write

Rij = δij + wij,∀wij antisymmetric (158)

Antisymmetricity of wij is derived from the Rij matrices’ orthogonality. Because of it we
get wij = −wji and wij as a matrix is:

wij =

 0 w12 w13

w21 0 w23

w31 w32 0

 =

 0 w12 w13

−w12 0 w23

−w13 −w23 0

 (159)

Thus, the transformation rules of coordinates are:

xi → x′i = xi +
∑
k<l

wklAikl (160)

ϕi=h
TT
ij

=====⇒ hTTij → h′TTij = hTTij +
∑
k<l

wklFij,kl (161)

The conserved current by Noether’s theorem is given as:

jµkl =
∂LE

∂(∂µhTT
ij )

(
∂νh

TT
ij A

ν
kl − Fij,kl

)
− AµklL

=

[
∂µhTT

ij

(
− 2c4

64πG

)
∂νh

TT
ij

] [
(δνkxl − δνlxk)− δjih

TT
kl − δijh

TT
kl − δilh

TT
jk − δijh

TT
ik

]
+ (δµkxl − δµlxk)

c4

64πG
(∂ρh

TT
ij ∂

ρhTT
ij ) =

− c4

32πG
[∂µhTT

ij (∂khTT
ij x

l − ∂lhTT
ij x

k)− ∂µhTT
ij (δjkh

TT
il + δikh

TT
jl + δjlh

TT
ik )−

1

2
(δµkxl − δµlxk)∂ρh

TT
ij ∂

ρhTT
ij ]

(162)

For µ = 0 we get

j0kl = − c3

32πG

[
1

c
ḣTTij ∂

khTTij x
l − 1

c
2ḣTTik h

TT
il − 1

c
2ḣTTil h

TT
ik

]
j0kl =

c3

32πG

[
−ḣTTαβ ∂[khTTαβ xl] + 2ḣTTαk h

TT
αl + 2ḣTTal h

TT
αk

]
j0kl =

c3

32πG

[
−2ḣTTαβ (

1

2
∂[khTTαβ x

l] − δbkh
TT
αl − δblh

TT
αk )

] (163)

With the corresponding conserved charge:

Jkl =
1

c

∫
d3xj0kl

Eq.140
====⇒Jkl =

c2

32πG

∫
d3x−ḣTTab (x[k∂l]hTTab − δbkh

TT
al − δblh

TT
ak )

(164)
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Or via Poincaré duality, we obtain:

J i =
1

2
ϵiklJkl =

c2

64πG

∫
d3x

[
−2ḣTTab ϵ

iklxk∂lhTTab + 2ϵiklḣTTak h
TT
al + 2ϵiklḣTTak h

TT
al

]
J i =

c2

32πG

∫
d3x

[
−ϵiklḣTTab xk∂lhTTab + 2ϵiklḣTTak h

TT
al

] (165)

The physical density of angular momentum is the localized current over a few wavelengths,
such that:

ji

c
=

c2

32πG
⟨−ϵiklḣTTab xk∂lhTTab + 2ϵiklḣTTak h

TT
al ⟩ (166)

which can be interpreted as the angular momentum per volume. The total angular momen-
tum carried by GWs is

dJ i =

∫
d3xdtji ⇒ dJ i

dt
=

∫
V

d3x
ji

c
(167)

The volume of integration can be a sphere of radius r, so we get:

Eq.141
====⇒ dJ i

dt
=

c3r2

32πG

∫
dΩ⟨−ϵiklḣTTab xk∂lhTTab + 2ϵiklḣTTak h

TT
al ⟩ (168)

The rate of dJi

dt
expresses the emission rate of angular momentum due to GWs.

40



3 GWs in linearized theory
We consider the generation of GW in the context of linearized theory. In this type of theory,
the generated gravitational field produced by the source is weak, and as a result, we can
expand over a flat spacetime. In a two-body system with reduced mass µ and total mass m,
we get,

Ekin = −1

2
U ⇒ 1

2
µu2 =

1

2
µm

G

r

1
c2==⇒ u2

c2
=

2Gm

2rc2
=
Rs

2r
(169)

When the gravity field is weak, we get:

Rs

r
≪ 1 ⇒ u2

c2
≪ 1 ⇒ u

c
≪ 1 (170)

This means that in a weak gravity field, the velocities that concern a self-gravitating system
are small. Because of u

c
≪ 1, we can expand in powers of u

c
. Neutron Stars (NS), Black Holes

(BH), or compact binaries are self-gravitating systems, but because of spherical symmetry,
we cannot consider a flat spacetime expansion beyond the lowest order.

3.1 Energy and power spectra equations for arbitrary systems

This subsection is analysed in a methodical way in Sean Carroll’s book [16]. The Fourier
transform used in points is similar to Weinberg’s [17], the main difference is that we transform
with respect to dω

2π
, while Weinberg uses just dω. The spatial component transform is the

same in both analysis.
In Chapter 1, we wrote down the linearised field equations as

2h̄µν = −16πG

c4
Tµν (171)

This set of differential equations can be solved with Green’s functions G(x− x′) as follows:
First, we must remember the generalized Green’s function for the 2 operator, as given in
172:

2xG(x− x′) = δ(4)(x− x′) (172)

and implement it in equation 171, as following:

− 16πG

c4
2xG(x− x′) = −16πG

c4
δ(4)(x− x′) ⇒

− 16πG

c4
2xG(x− x′)Tµν(x

′) = −− 16πG

c4
δ(x− x′)Tµν(x

′) ⇒∫
d4x′

[(
−16πG

c4

)
2xG(x− x′)Tµν(x

′)

]
= −16πG

c4

∫
d4x′δ(x− x′)Tµν(x

′) ⇒

2x

[
−16πG

c4

∫
d4x′G(x− x′)Tµν(x

′)

]
= −16πG

c4
Tµν(x)

(173)

After some algebra is done, we can compare the result of equation 173 with equation 171
and obtain:

h̄µν(x) ≡ −16πG

c4

∫
d4x′G(x− x′)Tµν(x

′) (174)
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Thus, the generic solution to equation 172 is given as:

G(x⃗, t) ≡ − 1

4πc

δ
(
t− |x⃗

c

)
|x⃗|

(175)

where in

G(x− x′) ≡ G(x⃗, t; x⃗′, t) = −
δ
(
t− t′ − |x⃗−x⃗′|

c

)
4πc|x⃗− x⃗′|

(176)

is used in the retarded time solution. The advanced time solution eliminates causality
between events. The retarded and advanced time is defined as:

tret ≡ t− |x⃗− x⃗′|
c

& tadv ≡ t+
|x⃗− x⃗′|

c
(177)

Equation 176 when substituted in equation 173 yields:

h̄µν(x) =
16πG

c4

∫
d4x′

Tµν(x
′)

|x⃗− x⃗′|
1

4πc
δ

[
t− t′ − x⃗− x⃗′

c

]

h̄µν(x) =
4G

c4

∫
d3x⃗′

∫
dt′c

1

c

Tµν(x⃗′, t
′)

|x⃗− x⃗′|
δ

[
t− t′ − |x⃗− x⃗′|

c

]

h̄µν(x) =
4G

c4

∫
d3x⃗′Tµν

(
x⃗′, t− |x⃗− x⃗′|

c

)
1

|x⃗− x⃗′|

(178)

with spatial components

h̄ij(x) =
4G

c4

∫
d3x⃗Tij

(
x⃗′, t− |x⃗− x⃗′|

c

)
1

|x⃗− x⃗′|
(179)

Outside the source, we can project equation 177 in the TT-gauge, using the projection
operator (defined in Chapter 1)

hTT
ij = Λij,klhkl (180)

The equations above produce:

hTT
ij = Λij,kl(n̂)hkl =

4G

c4
Λij,kl(n̂)

∫
d3x⃗′

|x⃗− x⃗′|
Tkl

(
x⃗′, t− |x⃗− x⃗′|

c

)
(181)

Denoting |x⃗− x⃗′| ≡ R we get

hTT
ij =

4G

Rc4
Λij,kl(n̂)

∫
d3x⃗′Tkl

(
x⃗′, t− |x⃗− x⃗′|

c

)
(182)

If we expand for R ≫ r we get:

R = |x⃗− x⃗′| = |x⃗− x⃗′| − ▽⃗R · x⃗′ (183)
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where

(▽⃗R)i = ∂i

√
|x⃗− x⃗′|2 = 1

2
√
|x⃗− x⃗′|2

∂i(|x⃗− x⃗′|2)

(▽⃗R)i =
1

2R
2|x⃗− x⃗′|j∂i|x⃗− x⃗′|j =

Rj

R
∂iRj

(▽⃗R)i =
Ri

R
= n̂i = n̂

(184)

Thus, from equation 183 and equation 184 we get:

R = R− n̂ · x⃗′ (185)

and from equation 182:

hTT
ij =

4G

Rc4
Λij,kl(n̂)

∫
d3x⃗′Tkl

(
x⃗′, t− r

c
+

1

c
n̂x⃗′
)

(186)

Next, we can transform by Fourier the energy-momentum tensor Tkl(t, x⃗) as following:

Tkl(t, x⃗) =

∫
d4k

(2π)4
T̃kl(w, k⃗)e

−i(ωt−k⃗x⃗) (187)

And substitute in equation 186:

hTT
ij (t, x⃗) =

4G

Rc4
Λij,kl(n̂)

∫
d3x⃗′

∫
d4k

(2π)4
T̃kl(w, k⃗)e

−i(ωt−k⃗)x⃗

hTT
ij =

4G

Rc4
Λij,kl(n̂)

∫
d4k

(2π)4
T̃kl(ω, k⃗)

∫
d3x⃗′e( − iω(t− r

c
))ei(k⃗−

kn̂
c
)

hTT
ij =

4G

Rc4
Λij,kl(n̂)

∫
d3k⃗

(2π)3

∫
dk0

2π
T̃kl(ω, k⃗)e

−iω(t−R
c
)(2π)3δ(3)(k⃗ − wn̂

c
)

hTT
ij =

4G

Rc4
Λij,kl(n̂)

∫
dω

2πc
T̃kl(ω, ω

n̂

c
)e−iω(t−

R
c )

hTT
ij =

4G

Rc4
Λij,kl(n̂)

∫
dωT̃kl

(
ω, ω

n̂

c

)
e−iω(t−

R
c )

(188)

In general, around value ωs, T̃kl takes large values, and the characteristic speed of move-
ment of mass across the source is u ∼ ωs. Equation 188 applies for both relativistic and
non-relativistic systems, as long as the weak-field approximation applies and we are at large
R away from the source. In Chapter 1, we have proved the following:

1

2
ḣTT
ij ḣ

TT
ij = ḣ2t + ḣ2x &

dE

dA
=

c3

16πG

∫ +∞

−∞
dt(ḣ2t + ḣ2x)

Using the set of Eqs in 3.1, we can produce an expression for the total radiated energy per
solid angle:

dE

dA
=

c3

16πG

∫ +∞

−∞
dt
1

2
ḣTT
ij ḣ

TT
ij =

c3

32πG

∫ ∞
∞

dtḣTT
ij ḣ

TT
ij (189)
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Since dA = R2dΩ we get
dE

dA
=

R2c3

32πG

∫ +∞

−∞
dtḣTT

ij ḣ
TT
ij (190)

Inserting equation 188 to equation 190 we get:

dE

dΩ
=

R2c3

32πG

∫ +∞

−∞
dt

[
4G

Rc5
Λij,kl

∫ +∞

−∞

dω

2π
T̃kl

(
w,w

n̂

c

)
e−iw(t−

R
c )
]
·[

4G

Rc5
Λij,pr

∫ +∞

−∞

dω′

2π
T̃pr

(
ω′, ω′

n̂

c

)
eiω

′(t−R
c )
]
⇒

dE

dΩ
=

G

2πc7

∫ +∞

−∞
dtΛij,klΛij,pr

∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
wω′T̃kl

(
w,w

n̂

c

)
T̃pr

(
w, ω′

n̂

c

)
·

e−i(w+ω
′)tei

R
c
(w+ω′)t ⇒

dE

dΩ
=
GΛij,kl
c7

∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
T̃kl

(
w,w

n̂

c

)
T̃ij

(
ω′, ω′

n̂

c

)
ei

R
c
(w+ω′)wω′

∫ +∞

−∞
dte−i(w+ω

′)t

dE

dΩ
= − G

4π2c7
Λij,kl

∫ +∞

−∞
dωw2T̃ij

(
−w,−wn̂

c

)
T̃kl

(
w,w

n̂

c

)
dE

dΩ
= − G

4π2c7
Λij,kl

∫ 0

−∞
dωw2T̃ij

(
−w,−wn̂

c

)
T̃kl

(
w,w

n̂

c

)
−

− G

4π2c7
Λij,kl

∫ +∞

0

dωw2T̃ij

(
−w,−wn̂

c

)
T̃kl

(
w,w

n̂

c

)
dE

dΩ
= − G

4π2c7
Λij,kl(n̂)

∫ +∞

0

dωw2T̃ij

(
w,w

n̂

c

)
T̃kl

(
−w,−wn̂

c

)
Since T̃

(
−w,−w n̂

c

)
= T̃ ∗

(
w,w n̂

c

)
we get:

dE

dΩ
=

G

2π2c7

∫ +∞

−∞
dωΛij,kl(n̂)w

2T̃ij

(
w,w

n̂

c

)
T̃ ∗kl

(
w,w

n̂

c

)
(191)

dE

dωdΩ
=

G

2π2c7
Λij,kl(n̂)w

2T̃ijT̃
∗
kl (192)

dE

dω
=

Gw2

2π2c7

∫
dΩΛij,kl(n̂)T̃ij

(
w,w

n̂

c

)
T̃ ∗kl

(
w,w

n̂

c

)
(193)

Now, equation 193 produces the energy spectrum of GWs. A typical source radiates for
a characteristic time ∆t. Ideally, the monochromatic source radiates for ∆t → +∞ and
Erad → +∞. We define the instantaneously radiated power for a source that radiates at w0,
T̃ij(w, k⃗) is written as

T̃ij(w, k⃗) = θij(w, k⃗)2πδ(w − w0) (194)
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and Eq. 193 yield:

dE

dΩ
=

G

2π2c7
Λij,kl(n̂)

∫ +∞

−∞
dωw2θij

(
w,w

n̂

c

)
θ∗kl

(
w,w

n̂

c

)
(2π)2δ(w − w0)δ(w − w0)

dE

dΩ
=
Gw2

0

πc7
Λij,kl(n̂)θij

(
w0, w0

n̂

c

)
θ∗kl

(
w,w

n̂

c

)
(2π)δ(w−w0)

dE

dΩ
=
Gw2

0

πc7
Λij,kl(n̂)Tθij

(
w0, w0

n̂

c

)
θ∗kl

(
w,w

n̂

c

) (195)

The power radiated in an instant is given as:

dP

dΩ
≡ 1

T

dE

dω
=
Gω2

0

πc7
Λij,kl(n̂)θij

(
ω0, ω0

n̂

c

)
θ∗kl

(
ω, ω

n̂

c

)
(196)

The total radiated power is:

P =

∫
dΩ

dP

dΩ
=

∫
dΩ

Gω2
0

πc7
Λij,kl(n̂)θij

(
ω0, ω0

n̂

c

)
θ∗kl

(
ω, ω

n̂

c

)
(197)

Next, we can substitute equation 29, which gives the analytic formula of Λij,kl(n̂) as:

Λij,kl(n̂) = δikδjl −
1

2
δijδkl − njnlδik − ninkδjl +

1

2
nknlδij +

1

2
ninjδkl −

1

2
ninjnknl

Take the following:

P =

∫
dΩ

(
Gω2

0

πc7

)[
θijθ

∗
ij −

1

2
θiiθ

∗
kk − njnlθijθ

∗
il − ninkθijθ

∗
kj

+
1

2
nknlθiiθ

∗
kl +

1

2
ninjθijθ

∗
kk −

1

2
ninjnknlθijθ

∗
kl

]

⇒ P =
Gω2

0

πc7

[∫
dΩ

(
|θij|2 −

1

2
|θii|2

)
−
∫

dΩ

(
4π

3
|θii|2 −

4π

3
|θij|2

+
2π

3
|θii|2 +

2π

3
|θii|2

)
−
∫

dΩ
2π

15
(|θii|2 + |θij|2 + |θij|2)

]

P =
Gω2

0

πc7

∫
dΩ

[
|θij|2

(
1 +

4π

3
− 4π

15

)
+ |θii|2

(
−1

2
− 8π

3
− 2π

15

)]

P =
Gω2

0

πc7

(
1 +

16π

15

)[
|θij|2 −

1

2
|θii|2

]

(198)

3.1.1 Low-velocity expansion

Since GW are a form of waves, general relativity can be treated as a field theory, it is useful
to apply techniques from electromagnetism in GW. The first example is the low-velocity
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expansion; here, we use [19] and [25]. Another example computed based on the above is
the GW amplitude and the angular distribution. These two can be employed by Weinberg’s
Chapter 10 [17].

The equations for radiation generation are simplified when typical velocities inside the
source are small compared to the speed of light, c. Consider a source of size d and the typical
frequency of motion ωs inside the source, then the typical velocities u will be of order:

u ∼ ωsd (199)

Radiational frequency ω is of order ωs, except some factors, so we get ω ∼ ωs, and the
reduced wavelength will be:

λ =
c

f
=

2πc

ω
⇒ λ̄ =

λ

2π
=
c

ω
∼ c

u
d (200)

In a non-relativistic system, u ≪ c ⇒ c
u
≫ 1 and equation 200 shows that λ̄ ≫ d,

meaning that the reduced wavelengths λ̄ generated by a non-relativistic source are much
bigger than the size of the system. Since λ̄ ≫ d, we do not need to know in full detail the
internal motion of the source, but only the course features. This means that the radiation
emitted is governed by the lowest multipole moments. We begin with equation 186 stated,
below:

186
==⇒ hTT

ij =
4G

Rc4
Λij,kl(n̂)

∫
d3x⃗′Tkl

(
x⃗′, t− R

c
+
n̂ · x⃗′
c

)
and Fourier transform Tkl as:

186
==⇒ Tkl

(
x⃗′, t− R

c
+
n̂ · x⃗′
c

)
=

∫
d4k

(2π)4
Tkl(ω, k⃗)e

−iω
(
t−R

c
+ n̂·x⃗′

c

)

For a non-relativistic source, Tkl(ω, k⃗) peaks around ωs typical frequency with ωsd ≪ c.
Equation’s 186 integral is restricted to |x⃗| ≤ d, since outside the source Tkl(x⃗, tret) = 0. This
means that the dominant contribution to hTT

ij comes from frequencies ω, such that

ω

c
x⃗′ · n̂ ⪯ ωsd

c
≪ 1 (201)

and the exponential exp
[
−iω

(
t− R

c
+ n̂·x⃗′

c

)]
can be expanded as following:

e−iω(t−
R
c )e−iω

n̂·x⃗′
c = e−iω(t−

R
c )

[
1− iω(n̂ · x⃗′)

c
+

1

2

(
−iω

c

)2
n̂in̂jx⃗i

′x⃗j′ +O[(n̂ · x⃗′)3]

]
(202)

Equivalently we can Taylor expand the energy-momentum tensor Tkl
(
x⃗′, t− R

c
+ n̂·x⃗′

c

)
around

1
c
n̂ · x⃗′ ≪ 1 as following:

Tkl

(
x⃗′, t− R

c
+
n̂ · x⃗′
c

)
≃ Tkl

(
t− R

c
, x⃗′
)
+
n̂ix⃗i′

c
∂0Tkl +

x
′jx

′in̂in̂j

2c2
∂20Tkl +O(∂30)

46



The momenta of the stress tensor T ij (spatial components) are defined in the following way:

Sij(t) =

∫
d3x′T ij(t, x⃗′) (203)

Sij,k(t) =

∫
d3x′x

′kT ij(t, x⃗′) (204)

Sij,kl(t) =

∫
d3x′x

′kx
′lT ij(t, x⃗′) (205)

Note commas separate spatial ij given in T ij from k, kl, klm, . . . given by xN |k,.... They
do not denote derivatives.The Sij,...(t) tensors are symmetric in i ↔ j and k ↔ l, . . ., but
not in i ↮ k and j ↮ k. Inserting the previous results in equation 186 and after applying
some algebra, we get the following results:

186
==⇒hTT

ij =
4G

Rc4
Λij,kl(n̂)

∫
d3x⃗′ [Tkl

(
t− R

c
, x⃗′
)
+

1

c
x′mn̂m∂0Tkl

+
1

2c2
x

′mx
′nn̂mn̂n∂20Tkl + . . .]

(206)

⇒ hTT
ij =

4G

Rc4
Λij,kl(n̂)[Skl(t) +

1

c
n̂mṠ

kl,m +
1

2c2
n̂mn̂nS̈kl,mn] (207)

Dimensional analysis in equation 207 tells us the following:

1

c

[
˙Skl,m
]
=

[
1

c
∂0S

k,lxm
]
=

[
1

c
ωSkl

]
[xm] =

1

c
ωd
[
Skl
]
=
u

c
[Skl] (208)[

1

c2
S̈kl,mn

]
=

1

c2
[
∂20S

kl
]
[xmxn] =

d2

c2
[
ω2Skl

]
=
ω2d2

c2
[Skl] =

u2

c2
[Skl] (209)

So, Eqs. 208 and 209 give an expansion of the typical velocity of the source, and equation
208 is the first correction of O(u

c
) order. Next, we can define the momenta if T 00 and T 0i as

follows. For 1
c2
T 00 we get:

M =
1

c2

∫
d3xT 00(t,x), (210)

M i =
1

c2

∫
d3xT 00(t,x)xi, (211)

M ij =
1

c2

∫
d3xT 00(t,x)xixj, (212)

M ijk =
1

c2

∫
d3xT 00(t,x)xixjxk . . . (213)

For 1
c
T 0i

P i =
1

c

∫
d3xT 0i(t,x), (214)

P i,j =
1

c

∫
d3xT 0i(t,x)xj, (215)

P i,jk =
1

c

∫
d3xT 0i(t,x)xjxk. . . . (216)
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Conservation of energy-momentum tensor is given as ∂µT µν = 0 for v = 0 : ∂µT
µ0 = 0 ⇒

∂0T
00 = −∂iT i0 The time derivative of M is given as:

1

c
∂tM = ∂0M ⇒ ∂tM = c∂0M = cṀ =

∫
d3x∂0T

00 ⇒

cṀ = −
∫
v

d3x∂iT
0i = −

∫
∂v

dSiT
0i = 0

Ṁ = 0

(217)

Integration in the second line is on a volume V bigger than the sources with T µν |∂v = 0.
Similarly, we can find:

cṀ i =

∫
d3xxi∂0T

00 = −
∫
v

d3xxi∂jT
0j

cṀ i =

∫
v

d3xT 0i = cP i

(218)

and
Ṁ ij = P i,j + P j,i (219)

Ṁ ijk = P i,jk + P j,ki + P k,ij (220)

On the other hand, the time derivative of Eqs. 216 yields:

Ṗ i =
1

c

∫
d3x ∂0T

0i = 0 (221)

Ṗ i,j = Sij (222)

Ṗ i,jk = Sij,k + Sik,j (223)

Combining Eqs. 219 and 221 and remembering that Sij is symmetric as

Sij + Sji = 2Sij

We get:

M̈ ij = Ṗ i,j + Ṗ j,i = Sij + Sji = 2Sij ⇒

Sij =
1

2
M̈ ij

(224)

And from EQ. 220:

M̈ ijk = Ṗ i,jk + Ṗ j,ki + Ṗ k,ij =

Sij,k + Sik,j + Sjk,i + Sji,k + Ski,j + Skj,i

...
M

ijk
= 2(Ṡij,k + Ṡik,j + Ṡjk,i)

(225)

From the above Eqs:

Ṡij,k =
1

2

...
M

ijk
− Ṡik,j − Ṡjk,i

=
1

6

...
M

ijk
+

2

6
(2Ṡij,k + 2Ṡik,j + 2Ṡjk,i)− Ṡik,j − Ṡjk,i
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Ṡijk =
1

6

...
M

ijk
+

1

3
(P̈ i,jk + P̈ j,ki − 2P̈ k,ij) (226)

The derivatives of M, P, Ṁ = 0 and Ṗ i = 0, give out the mass and total momentum
conservation for the source. Since M̈ ij = Ṗ i,j + Ṗ j,i = Sij +Sji = 0, we get the conservation
of angular momentum for the source.

3.1.2 Amplitude and angular distribution

In eq. 207 we have found the expansion of hTT
ij . When substituted Eq. 224 to Eq. 207 yields

for the leading term O(u
c
) the following:

hTT
ij (t, x⃗)

∣∣∣∣
quad

=
4G

Rc4
Λij,kl(n̂)S

kl(t) ⇒

hTT
ij (t, x⃗)

∣∣∣∣
quad

=
4G

Rc4
Λij,kl(n̂)

1

2
M̈kl

(
t− R

c

)
⇒

hTT
ij (t, x⃗)

∣∣∣∣
quad

=
2G

Rc4
Λij,kl(n̂)M̈

kl

(
t− R

c

) (227)

Mij tensor, when under rotation transformation, can be decomposed as any symmetric ten-
sor:

Mkl =Mkl − 1

3
δklMii +

1

3
δklMii (228)

The first part Mkl − 1
3
δklMii is traceless, since:

Mkk − 1

3
δkkMii =Mkk − 1

3
3Mii = 0

and by construction is a spin-2 tensor.
The second part 1

3
δklMii is the trace part, and it is a scalar. We denote by

ρ ≡ 1

c2
T 00 (229)

the density and at lowest order in u
c

expansion it gives the mass density. Also, we can rewrite
the quadrupole moment as:

Qij ≡M ij − 1

3
δijMkk ⇒ (230)

⇒ Qij ≡ 1

c2

∫
d3xT 00(t, x⃗)xixj − 1

3c2
δij
∫

d3xT 00xkxk

Qij =

∫
d3xρ(t, x⃗)

[
xixj − 1

3
δijR2

]
(231)

And after applying twice the time derivative, we get:

Q̈ij = M̈ ij − 1

3
δijM̈kk (232)
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and from Eq. 228:

M ij =M ij − 1

3
δijMkk +

1

3
δijMkk ⇒

M ij = Qij +
1

3
δijMkk ⇒

M̈ ij = Q̈ij +
1

3
δijM̈kk

(233)

And finally, Eq. 227 is written as:

hTT
ij

∣∣∣∣
quad

=
2G

Rc4
Λij,kl(n̂)M̈

kl

(
t− R

c

)
(234)

hTT
ij

∣∣∣∣
quad

=
2G

Rc4
Λij,kl(n̂)Q̈kl

(
t− R

c

)
(235)

hTT
ij

∣∣∣∣
quad

=
2G

Rc4
Q̈TT
ij

(
t− R

c

)
(236)

We can produce an expression for the angular distribution of the quadrupole term of
radiation as follows. We first consider the waveform emitted in an arbitrary direction n̂, which
can be obtained by substituting the explicit expression of Λij,kl in equation 236. Because of
the strenuous algebra, we may use an alternative way. We consider a GW traveling along
the z-axis, so ẑ = n̂. The projector, in this case, Pij, is an operator that projects everything
included on the (x, y) plane.

An arbitrary 3× 3 matrix Aij will be written as:

Aij =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 (237)

The operator Λijkl when applied on this matrix yields:

ΛijklAij =

[
PikPjl −

1

2
PijPkl

]
Akl (238)

⇒ ΛijklAij = PikAklPjl −
1

2
PijPklAkl

⇒ ΛijklAij = (PAP )ij −
1

2
Pij tr(PA) (239)

Since n̂ = ẑ, the projector in matrix form will be:

Pij =

1 0 0
0 1 0
0 0 0


ij

(240)

With (PAP )ij =

1 0 0
0 1 0
0 0 0


ik

A11 A12 A13

A21 A22 A23

A31 A32 A33


kl

1 0 0
0 1 0
0 0 0


ij
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⇒ (PAP )ij =

A11 A12 A13

A21 A22 A23

0 0 0


il

1 0 0
0 1 0
0 0 0


lj

(PAP )ij =

A11 A12 0
A21 A22 0
0 0 0


ij

and PA =

1 0 0
0 1 0
0 0 0

A11 A12 A13

A21 A22 A23

A31 A32 A33


and PA =

A11 A12 A13

A21 A22 A23

0 0 0


⇒ tr(PA) = A11 + A22 (241)

Λij,klAkl =

A11 A12 0
A21 A22 0
0 0 0


ij

− 1

2

A11 + A22 0 0
0 A11 + A22 0
0 0 0


ij

Λij,klAkl =

(A11 − A22)/2 A12 0
A21 −(A11 − A22)/2 0
0 0 0


ij

(242)

So when ẑ = n̂ and Akl ≡ M̈kl we get:

Λij,klM̈kl =

(M̈11 − M̈22)/2 M̈12 0

M̈21 −(M̈11 − M̈22)/2 0
0 0 0


ij

(243)

Based on equation 243, we can rewrite it in equation 244 as:

hTT
ij

∣∣∣∣
quad

=
2G

Rc4

(M̈11 − M̈22)/2 M̈12 0

M̈21 −(M̈11 − M̈22)/2 0
0 0 0


ij

(244)

And when compared to the equation that gives the generic formula of hTT
ij (see Chapter 1),

we get

hTT
ij

∣∣∣∣
quad

=
2G

Rc4

(M̈11 − M̈22)/2 M̈12 0

M̈21 −(M̈11 − M̈22)/2 0
0 0 0


ij

=

h+ h× 0
h× −h+ 0
0 0 0


ij

h+ =
1

r

G

c4

(
M̈11 − M̈22

)
(245)

h× =
2

r

G

c4
M̈12 (246)
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Figure 2: The relation between the (x̂, ŷ, ẑ) frame and the (û, v̂, n̂) frame. The vector û is
in the (x̂, ŷ) plane, while v̂ points downward, with respect to the (x̂, ŷ) plane, adapted by
Maggiore’s book, Gravitational Waves [15].

with M̈ij ≡ M̈ij
(
t− R

c

)
computed on retarded time. To generalize these results, we

must compute the amplitude in a generic direction n̂. We introduce two more unitary
vectors v̂ & û, orthogonal to n̂ and to each other, so û× v̂ = n̂. These vectors live on a new
frame (x′, y′z′) on which the following are valid:

We take û to be on the (x, y) plane. Eqs. 243 and 244 are written in the primed frame
as follows, and the components of the second mass moment are

h+(t, n̂) =
G

Rc4
(M̈ ′

11 − M̈ ′
22) (247)

h×(t, n̂) =
2G

Rc4
M̈ ′

12 (248)

Here Mij and M ′
ij are related via the n̂i and n̂′i components. On (x, y, z) frame we can

write n̂ as n̂i = (0, 0, 1), when on (x′, y′, z′) we have n̂′i = (sin θ sinϕ, sin θ cosϕ, cos θ) and
n′i = Rijnj with

Rij =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (249)

The Mij tensor components will transform under the following

M ′
ij = RikRjlMkl ⇒ (M ′)ij = (RTMR)ij (250)

and the components h+(t, θ, ϕ) and h×(t, θ, ϕ) will be:

h+(t, θ, ϕ) =
G

Rc4

[
M̈11(cos

2 ϕ− sin2 ϕ cos2 θ) + M̈22(sin
2 ϕ− cos2 ϕ cos2 θ)− M̈33 sin

2 θ

−M̈12 sin 2ϕ(1 + cos2 ϕ) + M̈13 sinϕ sin 2θ + M̈23 cosϕ sin 2θ
]

(251)
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h×(t, θ, ϕ) =
2G

Rc4

[
(M̈11 − M̈22) sin 2ϕ cos θ + 2M̈12 cos 2ϕ cos θ

− 2M̈13 cosϕ sin θ − 2M̈23 sinϕ sin θ
] (252)

Once Mij is given by Eqs. 251 and 252, it provides the angular distribution of quadrupole
radiation. It becomes evident that the leading term in the multipole expansion is the mass
quadrupole. There are no monopole or dipole terms because M and P i can be set to zero
by appropriately shifting the coordinate system.

Radiated energy

Delving into the radiated energy and angular momentum by a GW, we aimed to find and
produce expressions of it in various scientific articles and reports. The main route followed
is in [15], also in [20], [44],[45],[46],[47] and [48] We begin with the following equation

dE

dt
=

c3r2

32πG

∫
dΩ⟨ḣTT

ij ḣ
TT
ij ⟩.

And apply the derivative on solid angle dΩ, so we have:

dE

dt
= P =

c3R2

32πG

∫
dΩ⟨ḣTT

ij ḣ
TT
ij ⟩

⇒ dP

dΩ
=

c3R2

32πG
⟨ḣTT

ij ḣ
TT
ij ⟩

Eq. 236
=====⇒ dP

dΩ
=

c3R2

32πG

(
2G

Rc4

)2

⟨
...
Q

TT
ij

...
Q

TT
ij ⟩

⇒ dP

dΩ
=

4G2c3

32πGc5
Λij,kl(n̂)⟨

...
Q

TT
ij

...
Q

TT
ij ⟩

⇒ dP

dΩ

∣∣∣∣
quad

=
G

8πc5
Λij,kl(n̂)⟨

...
Q

TT
ij

...
Q

TT
ij ⟩

(253)

The double brackets ⟨
...
Q

TT
ij

...
Q

TT
ij ⟩ denote the temporal average over several periods of GWs

and the derivative
...
Q

TT
ij is evaluated at the retarded time t − R

c
. The dependence of n̂ on

solid angles, lies only on Λij,kl(n̂), so we can perform an integration with respect to dΩ as
following:

Pquad =

∫
dΩ

dP

dΩ

∣∣∣∣
quad

=
G

8πc5

∫
dΩΛij,kl(n̂)⟨

...
Q

TT
ij

...
Q

TT
kl ⟩ (254)

We have proved in subsection 2.1 that∫
dωΛij,kl(n̂) =

2π

15
(11δikδjl − 4δijδkl + δilδjk) (255)
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So, combining Eqs. 254 and 255 we get:

Pquad =
G2π

8πc515
[11δikδjl − 4δijδkl + δilδjk] ⟨

...
Q

TT
ij

...
Q

TT
kl ⟩

⇒Pquad =
G

60c5

[
11⟨

...
Q

TT
ij

...
Q

TT
ij ⟩+ ⟨

...
Q

TT
ij

...
Q

TT
ij ⟩
]

⇒Pquad =
G

5c5
⟨
...
Q

TT
ij

...
Q

TT
ij ⟩

(256)

Inserting Eq. 232 we get:

Pquad =
G

5c5
⟨
( ...
M ij −

1

3
δij

...
Mkk

)( ...
M ij −

1

3
δij

...
Mkk

)
⟩

=
G

5c5
⟨
...
M ij

...
M ij −

2

3
δij

...
M ij

...
Mkk +

1

9
3(

...
Mkk)

2⟩

Pquad =
G

5c5
⟨
...
M ij

...
M ij −

1

3
(
...
Mkk)

2⟩

(257)

In Astrophysics, the total radiated power as produced in equation 233 above, is called
the total gravitational luminosity L of the source. Based on equation 253, this result can be
expressed in terms of the radiated energy as:

dE

dtdΩ

∣∣∣∣
quad

=
R2c3

32πG
⟨ḧTT

ij ḧ
TT
ij ⟩

⇒ dE

dtdΩ

∣∣∣∣
quad

=
G

8πc5
Λij,kl(n̂)⟨

...
Q

TT
ij

...
Q

TT
kl ⟩

⇒ dE

dω

∣∣∣∣
quad

=
G

8πc5

∫
dtΛij,kl(n̂)⟨

...
Q

TT
ij

...
Q

TT
kl ⟩

(258)

Here, it is useful to insert the Fourier transform of Qij, its third derivative by time, and
rewrite the radiated energy as follows:

Qij(ω) =

∫ +∞

−∞

dω

2π
Q̃ij(ω)e

−iωt

⇒Q̈ij(t) =

∫ +∞

−∞

dω

2π
Q̃ij(ω)

d3

dt3
(e−iωt)

⇒Q̈ij(t) =

∫ +∞

−∞

dω

2π
Q̃ij(ω)ω

3e−iωt
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⇒dE

dΩ

∣∣∣∣
quad

=
G

8πc5

∫
dt

∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
Λij,kl(n̂)⟨Q̃ij(ω)ω

3Q̃kl(ω
′)ω

′3e−i(ω+ω
′)t⟩

⇒dE

dΩ

∣∣∣∣
quad

=
G

8πc5

∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
Λij,kl(n̂)Q̃ij(ω)ω

3ω
′3Q̃kl(ω

′)

∫ +∞

−∞
dte−i(ω+ω

′)t

⇒dE

dΩ

∣∣∣∣
quad

=
G

8πc5
Λij,kl(n̂)

∫ +∞

−∞

dω

2π
Q̃ij(ω)Q̃kl(−ω)ω6

⇒dE

dΩ

∣∣∣∣
quad

=
G

16π2c5
Λij,kl(n̂)

[∫ +∞

0

dω ω6Q̃ij(ω)Q̃kl(−ω) +
∫ 0

−∞
dω ω6Q̃ij(ω)Q̃kl(−ω)

]
⇒dE

dΩ

∣∣∣∣
quad

=
G

8π2c5
Λij,kl(n̂)

∫ ∞
0

dωω6Q̃ij(ω)Q̃
∗
kl(ω)

(259)
Finally, the total radiated energy is given as:

Equad =

∫
dE

dω
dΩ

∣∣∣∣
quad

=
G

8π2c5

∫
dΩΛij,kl(n̂)

∫ ∞
0

dωω6Q̃ij(ω)Q̃
∗
kl(ω)

⇒Equad =
G

8π2c5
2π

15
(11δikδjl − 4δijδkl + δilδjk)

∫ ∞
0

dωω6Q̃ijQ̃
∗
kl

⇒Equad =
G

60πc5

∫ ∞
0

dωω6
[
11Q̃ijQ̃

∗
ij + Q̃ijQ̃

∗
ij

]
⇒Equad =

G

5πc5

∫ ∞
0

dω
[
ω6Q̃ij(ω)Q̃

∗
ij(ω)

]
(260)

We suppose a monochromatic source, with radiating frequency ω0 > 0 and Q̃ij(ω) =
qij(2π)δ(ω − ω0) and equation 259 will be for Equad = dP

dt

∣∣
quad

dE

dΩdω

∣∣∣∣
quad

=
G

8π2c5
Λij,kl(n̂)ω

6qijq
∗
kl(2π

2)δ(ω − ω0)δ(ω − ω0)

dE

dΩdω

∣∣∣∣
quad

=
Gω6

0

4πc5
Λij,kl(n̂)qijq

∗
kl[2πδ(ω − ω0)δ(ω − ω0)]

(261)

dE

dΩdω

∣∣
quad = T

Gω6
0

4πc5
Λij,kl(n̂)qijq

∗
klδ(ω − ω0) (262)

In equation 262 T is the total infinite time interval and dE
dΩdω

∣∣
quad denotes the instantaneous

energy radiated by a monochromatic source.

⇒ dP

dΩdω

∣∣
quad =

1

T

d

dt

(
dE

dωω

)
=
Gw6

0

4πc5
Λij,kl(n̂)qijq

∗
klδ(ω − ω0) (263)

In this study, the linear momentum radiated is :

dP i

dt
= − c3

32πG
R2

∫
dΩ⟨ḣTT

kl ∂
ihTT
kl ⟩

⇒dP i

dt
= − G

8πc5

∫
dΩ

...
Q

TT
kl ∂

iQ̈TT
kl
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Under x⃗→ −x⃗ reflection we get:

dP i′

dt
= − G

8πc5

∫
dΩ

...
Q

TT
kl (−∂i)Q̈TT

kl =
dP i

dt
(264)

dP i

dt
= 0 (265)

Thus, we have no loss of linear momentum in the quadrupole approximation.

Radiated angular momentum

The angular momentum radiated per unit time by gravitational waves can be determined
by substituting the expression for hTT

ij in the quadrupole approximation into the general
formula for the rate of angular momentum loss. It is important to remember that the first
term in

dJ i

dt
=

c3

32πG

∫
r2 dΩ

〈
−ϵiklḣTT

ab x
k∂lhTT

ab + 2ϵiklḣTT
al h

TT
ak

〉
.

represents the contribution from the orbital angular momentum Li of the gravitational waves,
while the second term accounts for the contribution from the spin Si of the field configuration.
Separating these two terms using the additive property of integrals, we get:

dJ i

dt
=

c3R2

32πG

∫
dΩ⟨−ϵiklḣTT

ab x
k∂lhTT

ab ⟩+
c3R2

16πG

∫
dΩ⟨−ϵiklḣTT

ak x
k∂lhTT

al ⟩

Which, when compared to the time derivative of the total orbital contribution:

dJ i

dt
=

dLi

dt
+

dSi

dt
(266)

Yields the following:

dLi

dt
= − c3R2

32πG

∫
dΩ⟨ϵiklḣTT

ab x
k∂lhTT

ab ⟩ (267)

dSi

dt
=

c3R2

16πG

∫
dΩ⟨ϵiklḣTT

ak x
k∂lhTT

al ⟩ (268)

Eq. 267 represents the contribution of the orbital angular momentum of gravitational
waves (GWs), while equation 268 accounts for the contribution from the spin Si of the field
configuration. The orbital part of the equation 267 gives:

dLi

dt
= − c3R2

32πG

∫
dΩ⟨ϵiklḣTT

ab x
k∂lhTT

ab ⟩

dLi

dt

∣∣∣∣
quad

= − c3R2

32πG

∫
dΩ⟨ϵikl 2G

Rc4
Λab,cdx

k∂l
2G

Rc4
Λab,ghQ̈gh⟩

dLi

dt

∣∣∣∣
quad

= −Gϵ
ikl

8πc5

∫
dΩ
[
Λab,cd(n̂)Λab,gh(n̂)⟨

...
Q cdx

k∂lQ̈gh⟩+ Λab,cd(n̂)⟨
...
Q cdx

k(∂lΛab,gh(n̂))Q̈gh⟩
]

(269)
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Furthermore, we demand

∂lQ̈gh =

(
∂r

∂xl

)
∂Q̈gh

∂r
=

(
−x

l

r

)
∂Q̈gh

∂(t− r
c
)
= −x

l

r

...
Q gh (270)

∂lΛab,gh(n̂) =
∂nm

∂xl
∂Λab,gh(n̂)

∂nm

∂lΛab,gh(n̂) = −1

r
(nfΛab,lg + ngΛab,lf + naΛlb,fg + nbΛal,fg)

⇒Λab,cd(n̂)∂
lΛab,gh(n̂) = −1

r
(Λab,cd(n̂)fΛab,lg + Λab,cd(n̂)gΛab,fl)

(271)

Combining the three equations above, we take:

dLi

dt

∣∣∣∣
quad

=
Gϵikl

8c5π

∫
dΩ⟨

...
Q cdQ̈fg⟩

(
Λab,cdn

knfΛab,lg + Λab,cdn
kngΛab,fl

)
dLi

dt

∣∣∣∣
quad

=
Gϵikl

8c5π
⟨
...
Q cdQ̈fg⟩

∫
dΩ

4π

(
Λab,cdn

knfΛab,lg + Λab,cdn
kngΛab,fl

)
dLi

dt

∣∣∣∣
quad

=
Gϵikl

8c5π

[∫
dΩ

4π
Λcd,lgn

knf +

∫
dΩ

4π
Λcd,fln

kng
]

dLi

dt

∣∣∣∣
quad

=
2G

15c5
ϵikl⟨Q̈ka

...
Q la⟩

(272)

Similarly, the spin part of equation 268 gives:

dSi

dt

∣∣∣∣
quad

=
c3R2

16πG

∫
dΩϵikl

(
2G

Rc4

)2

Λak,mnΛal,cd⟨
...
QmnQ̈cd⟩

dSi

dt

∣∣∣∣
quad

=
G

4πc5
ϵikl⟨

...
QmnQ̈cd⟩

∫
dΩΛak,mnΛal,cd

(273)

We write Λak,mnΛal,cd = (PamPkn −
1

2
PakPmn)Λal,cd = PknΛml,cd −

1

2
PmnΛkl,cd (274)

Furthermore, multiplying equation 274 with ϵikl we get:

ϵiklΛak,mnΛal,cd = ϵiklPknΛml,cd −
1

2
Pmnϵ

iklΛkl,cd = ϵiklPknΛml,cd (275)

Inserting equation 273 in equation 275 and after some really long algebra, we get:

dSi

dt

∣∣∣∣
quad

=
Gϵikl

c5
⟨
...
QmnQ̈cd⟩

∫
dΩ

4π
PlnΛmk,cd (276)

· · · ⇒ dSi

dt

∣∣∣∣
quad

=
4G

15c5
ϵikl⟨

...
QalQ̈ak⟩ (277)

Finally, the total angular momentum carried away by GWs in quadrupole order of expansion
can be expressed as:

dJ i

dt

∣∣∣∣
quad

=
2G

15c5
ϵikl⟨

...
QalQ̈ak⟩ (278)
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3.2 Mass quadrupole and octupole radiation

The study and comprehension of mass quadrupole and octupole terms, as well as the current
quadrupole term of radiation, is studied thoroughly in a plethora of textbooks and articles.
We follow the logic of [15], but in order to completely understand the physics and to obtain
the full picture behind the expansion, we used [40], [41], [42]. These articles provided us
with details about the radiated energy and momentum as well. Furthermore, a physical
discussion of current quadrupole radiation is given in [43].

3.2.1 Review of the mass quadrupole term

In this section, we study the next-to-leading terms of the mass-term expansion, i.e., we
study the mass quadrupole and octupole terms. The mass quadrupole term is already been
described in the previous section and can be summarized in the following expressions:

• For the GW amplitude we have:

hTT
ij (t, x⃗)

∣∣∣∣
quad

=
2G

Rc4
Λij,kl(n̂)M̈

kl

(
t− R

c

)

• for the mass quadrupole tensor, we proved that:

Mkl =Mkl − 1

3
δklmii +

1

3
δklMii

• and
Qij =

∫
d3xρ(t, x⃗)

[
xixj − 1

3
δijR2

]
3.2.2 Mass octupole

The next expansion term of the GW amplitude in the TT gauge reads as:

hTT
ij =

4G

Rc5
Λij,kl(n̂)nmṠ

kl,m
(
t− r

c

)
(279)

The term Ṡkl,m is symmetric in k ↔ l. From equation 226 we get:

Ṡkl,m =
1

6

...
M

klm
+

1

3
(P̈ k,lm + P̈ l,mk − 2P̈m,kl)

hTT
ij =

4G

6Rc5
Λij,klnm

...
M

klm
+

4G

3Rc5
Λij,klnm(P̈

kl,m + P̈ l,mk + P̈m,kl)

(280)

The Λij,klnm
...
M

klm
is a symmetric term that produces mass octupole terms, while P̈ kl,m +

P̈ l,mk + P̈m,kl presents mixed symmetry terms, which produce the current quadrupole ex-
pansion terms. We denote with

Oklm ≡Mklm − 1

5
(δklMk′k′m + δkmMk′lk′ + δlmMkk′k′) (281)
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The mass octupole term without traces. Since Λij,kl(n̂) is traceless and the trace part in
equation (230) vanishes, we can interchange:

hTTij
∣∣
oct =

2G

3Rc5
Λij,kl(n̂)

...
O
klm

(n̂)m (282)

Similarly to the case of quadrupole radiation, the use of Oklm is preferable from a group-
theoretical perspective, as it represents a pure spin-3 tensor.

Note that for quantities quadratic in hTT
ij , such as the radiated energy, there is no inter-

ference between the mass quadrupole and mass octupole terms due to their differing parity.
Under a parity transformation, x → −x, the mass density remains a true scalar. Conse-
quently, the quadrupole remains invariant, while the octupole changes sign. For the same
reason, in electrodynamics, there is no interference between dipole and quadrupole radiation.

When comparing the mass quadrupole and mass octupole, we observe that while the con-
tribution to the gravitational wave (GW) amplitude from the mass quadrupole is dominant,
the mass octupole provides a smaller, higher-order correction.

Every time derivative carries a factor O(ωs), so we get

1

c

...
M

ijk
= O

(
ωsd

c

)
M̈ ij = O(

v

c
)M̈ ij (283)

This means that
...
M

ijk
is smaller than M̈ ij by a factor of O(v

c
).

The power emitted per unit solid angle is obtained by inserting equation 282 into Eq. ??
as follows:

Poct =
dEoct

dt
=

c3R2

32πG

∫
dΩ⟨ḣTT

ij ḣ
TT
ij ⟩

⇒ Poct =
R2c3

32πG

∫
dΩ

(
2G

3Rc5

)2

⟨Λij,klnonm
d4Oklm

dt4
Λij,np

d4Onpo

dt4
⟩

⇒ Poct =
4G

8 · 9πc7
⟨d

4Oklm

dt4
d4Onpo

dt4
⟩
∫

dΩΛij,klΛij,npnonm

⇒ Poct =
G

18c7
⟨d

4Oklm

dt4
d4Onpo

dt4
⟩
∫

dΩ

4π
Λij,klΛij,npnonm

⇒ Poct =
G

18c7
⟨d

4Oklm

dt4
d4Onpo

dt4
⟩
∫

dΩ

4π
Λij,npnonm

(284)

Direct computation of
∫

dΩ
4π
Λij,npnonm gives:∫

dΩ

4π
Λij,npnonm =

∫
dΩ

4π

(
PinPjp −

1

2
PijPnp

)
nonm (285)

The power radiated due to the octupole moment is given by:

Poct =
G

72πc7

∫
dΩninjnknmnnnp

〈
d4Oijk

dt4
d4Omnp

dt4

〉
, (286)

where Oijk is the mass octupole moment, and ni, nj, . . . are components of the unit vector n
in spherical coordinates.
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The integral over the unit sphere for ninjnknmnnnp is evaluated using symmetry argu-
ments. The result is:∫

dΩ

4π
ninjnknmnnnp =

1

105
(δijδkmδnp + other permutations) , (287)

where the permutations distribute contributions equally among all pairwise indices.
The fourth time derivative of the mass octupole moment d4Oijk

dt4
is symmetric and trace-

free. Using these properties, the contraction:〈
d4Oijk

dt4
d4Omnp

dt4

〉
(288)

With the solid angle integral simplified to:∫
dΩ

4π
ninjnknmnnnp

〈
d4Oijk

dt4
d4Omnp

dt4

〉
=

1

105

〈
d4Oijk

dt4
d4Oijk

dt4

〉
. (289)

Substituting this result into the power expression:

Poct =
G

72πc7
· 1

105

〈
d4Oijk

dt4
d4Oijk

dt4

〉
. (290)

Simplifying the constants:

Poct =
G

189c7

〈
d4Oijk

dt4
d4Oijk

dt4

〉
. (291)

3.2.3 Current quadrupole and loss in linear momentum

We saw that the sum of power emitted is given by the equation P̈ kl,m + P̈ l,mk + P̈m,kl,
similarly, it produces the current quadrupole term. Based on definition of P k,lm we get:

P i,jk =
1

c

∫
d3xT oi(t, x⃗)xjxk

And the sum of Ps is:

P k,lm + P l,km − 2Pm,kl =
1

c

∫
d3x

[
T 0kxlxm + T 0lxkxm − 2T 0mxkxl

]
=

1

c

∫
d3x

[
xl
(
xmT 0k − xkT 0m

)
+ xk

(
xmT 0l − xlT 0m

)]
=

1

c

∫
d3x

[
xljmk + xkjml

] (292)

where
jjk =

1

c

(
xjT 0k − xkT 0j

)
(293)

is the angular density associated to the (j, k) plane. Based on 293 we define jl the l-th
component of the angular momentum density vector as:

jl = ϵijljij (294)
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and the first moment of angular momentum density as

J i,j =

∫
d3xjixj (295)

.
Inserting Eqs. 293, 294 and 295 in 292 we get:

P k,lm + P l,mk − 2Rm,kl = ϵmkpJp,l + ϵmlpJp,k

Then equation P̈ kl,m + P̈ l,mk + P̈m,kl writes as:

hTT
ij

∣∣
curr. quad. =

4G

3Rc5
Λij,klnm(ϵ

mkpJ̈p,l + ϵmlp + J̈p,k) (296)

The associated power to the current quadrupole is given again, as already done in the
mass quadrupole and octupole:

Pcurr. quad =
c3R2

32πG

∫
dΩ⟨ḣTTij ḣTTij ⟩

Pcurr. quad =
c3R2

8G

∫
dΩ

4π

(
4G

3c5R

)2

⟨Λij,klnm
...
J
P,l

+ ϵmlp
...
J
p
Λij,ornq(ϵ

qoa
...
J
a,r

+ ϵqra
...
J
aq
)⟩

Pcurr. quad =
2G

9c7

∫
dΩ

4π
Λkl,ornmnq⟨(ϵmkp

...
J
p,l

+ ϵmlp
...
J
m,k

)(ϵqoa
...
J
a,r

+ ϵqra
...
J
a,o
)⟩

(297)

In performing contractions, we use the property that J i,i is traceless. Specifically, this is
given by:

J i,i =

∫
d3x xiji =

1

c

∫
d3x xiϵijkxjT 0k = 0 (298)

where the sum over i is implied.
Next, we compute the power radiated by the current quadrupole, which is expressed as:

Pcurr quad =
16G

45c7

〈
J̈ ijJ̈ ij

〉
, (3.154)

where the traceless symmetric matrix J ij is defined as:

J ij ≡ J i,j + J j,i

2
(299)

representing the symmetrization of the dipole moment of the angular momentum density.
Combining the contributions from the mass quadrupole, current quadrupole, and mass

octupole, the total power radiated is:

P =
G

c5

[
1

5

〈 ...
Q ij

...
Q ij

〉
+

1

c2
16

45

〈
J̈ ijJ̈ ij

〉
+

1

c2
1

189

〈
d4Oijk

dt4
d4Oijk

dt4

〉
+O

(
v4

c4

)]
(300)
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whereQij, J ij, andOijk refer to the mass quadrupole, current quadrupole, and mass octupole
moments, respectively. Higher-order terms O(v4/c4) represent negligible corrections.

It is significant to note that the primary term responsible for the loss of linear momentum
arises from the interference between the quadrupole term and the next-to-leading term,
which is the octupole combined with the current quadrupole. We restate an expression of
the radiated power, which states that:

dP i

dt
∝
∫
dΩhTTij ∂th

TT
ij (301)

The hTTij term can be expressed as follows:

hTTij =
(
hTTij

)
quad +

(
hTTij

)
next-to-leading (302)

Where: (
hTTij

)
quad =

1

r

2G

c4
Q̈TT
ij ,

(
hTTij

)
next-to-leading =

1

r

2G

c5
nmṠ

TT
ij .

In the product hTTij hTTkl , we identify diagonal terms and interference terms between the
quadrupole and the next-leading term.

For the quadrupole contributions, the diagonal terms are proportional to:∫
dΩQTT

ij Q̈
TT
ij (303)

While for the next-to-leading term, they are proportional to:∫
dΩ (nmS

TT
ij )ṠTTij (304)

The interference terms involve cross-products, such as:∫
dΩQTT

ij nmṠ
TT
ij (305)

These integrals are non-zero in general and do not vanish due to their parity properties.
The angular integral will vanish if the product involves an odd number of factors nm. Hence,
only products with an even number of such factors contribute to the integration.

For a deeper insight, the projection QTT
ij onto the transverse-traceless space involves

the Lamb shift tensor, ensuring the evenness of the contributions. Furthermore, since the
derivative operator ∂k acts to increase or decrease the even number of factors nm, the lead-
ing quadrupole and interference terms remain significant in determining the loss of linear
momentum.

3.3 Application on different examples

In the next three sections, we study three useful examples on quadrupole and octupole
radiation. All of these can be found in Maggiore’s Book [15], in Section 3.6.

The first part includes the quadrupole radiation produced by an oscillating mass, whereas
the second and third paragraphs include the expression of radiation for a mass in circular
orbit in the mass quadrupole and octupole order of multipole. expansion and the current
octupole term of this system.
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3.3.1 Quadrupole Radiation from an Oscillating Mass

Computation of the quadrupole gravitational radiation emitted by a non-relativistic system
with a degree of freedom z0(t) that performs harmonic oscillations along the z-axis, described
by z0(t) = a cos(ωst), where ωs ≪ c. Computations on radiation emission consist only of
closed systems, and no external forces exist. We have a spring with a rest length of zero that
connects two masses.

The mass density is given by ρ(t,x) = µδ(x)δ(y)δ(z−z0(t)), where µ is the reduced mass.
The second mass moment, as produced in equation 210

M ij =
1

c2

∫
d3xT oo(t, x⃗)xixj =

∫
d3x ρ(t, x⃗)xixj

⇒M ij =

∫
d3xµ δ(x) δ(y) δ[z − z0(t)]x

ixj

⇒M ij =

∫
dx δ(x)

∫
dy δ(y)

∫
dz δ[z − z0(t)]µx

ixj

⇒x=0,y=0 M
ij =

∫
dz µ z2 δ[z − z0(t)] δ

i3 δj3

⇒M ij = µ z20(t) δ
i3 δj3

⇒M ij = µ a2
1 + cos(2ωst)

2
δi3 δj3

(306)

Substituting into the quadrupole formula yields the plus-polarized wave component:

h+(t; θ, ϕ) = − G

Rc4
M̈33 sin

2 θ (307)

Substituting into the quadrupole formula yields the cross-polarized wave component:

h×(t; θ, ϕ) =
G

Rc4
[(M̈11 − M̈22) sin 2ϕ cos θ + 2M̈12 cos 2ϕ cos θ − 2M̈13 cosϕ sin θ

+ 2M̈23 sinϕ sin θ]

h×(t; θ, ϕ) = 0

(308)

Eqs. 306, 307 and 308 yield:

M̈ ij =
d2

dt2
[µa2

1

2
(1 + cos 2ωst)δ

i3δj3]

⇒M̈ ij =
µa2

2
δi3δj3

d

dt
[−2ωs sin 2ω2t]

⇒M̈ ij = −µa
2

2
δi3δj3(2ωs)

2 cos 2ωst

⇒M̈ ij = −2µa2ω2
sδ
i3δj3 cos 2ωst

(309)

eq. 307 eq. 309
====⇒ h+(t; θ, ϕ) =

G

Rc4
(2µa2ω2

s)M̈
33 (310)
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Finally, we have:

h+(t; θ, ϕ) =
2Gµa2ω2

s

Rc4
cos 2ωst sin

2 θ (311)

h×(t; θ, ϕ) = 0 (312)

So we have a monochromatic radiation at a frequency ω = 2ωs with a pure (+)-polarisation.
The angular distribution reflects the cylindrical symmetry of the source, and therefore it is
independent of ϕ with a maximum at θ = π

2
. Along the z-axis, radiation vanishes, so only

components transverse to the line-of-sight contribute to Gω’s production. We denoted this
polarization as plus because of our choice of (û, v̂) axes. In our definition (û, v̂) are obtained
from (x̂, ŷ) applying the rotation matrix R as given in equation 249:

Rij =

 cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ0


So for a direction along n̂ where θ = π

2
we get v̂ = −ẑ, while û is the intersection of this

transverse plane with the original (x̂, ŷ) plane. If we rotate the (û, v̂) axes by 45◦, we could
call this polarization a purely cross one. For a generic ψ angle, we would have a mixture of
plus and cross-polarisation. The radiated power in terms of h+, h× is:

dP

dΩ

∣∣
quad =

R2c3

16πG
⟨ḣ2+ + ḣ2×⟩ (313)

dP

dΩ

∣∣
quad =

R2c3

16πG
⟨ḣ2+⟩ =

R2c3

16πG

4Gµ2a4ω4
s

R2c8
sin4 θ(2ωs)

2⟨sin2 2ωst⟩

dP

dΩ

∣∣
quad =

Gµ2a4ω6
s

c5π
sin4 θ⟨sin2 2ωst⟩

dP

dΩ

∣∣
quad =

Gµ2a4ω6
s

2c5π
sin4 θ

(314)

If we use equation 310 in equation 313 we get:

dP

dΩ

∣∣
quad =

G

Rc4
(−⟨sin2θ⟩)⟨

...
M

33
⟩ = − G

2c4
⟨
...
M

33
⟩

dP

dΩ

∣∣
quad =

G

8πc5
Λ33,33(n̂)⟨

...
M

2

33⟩
(315)

whereΛ33,33 =
1

2
(1− n2

3)
2 =

1

2
(1− cos2 θ)2 =

1

2
sin4θ (316)

and integrating equation 314 over a solid angle we get:

P |quad =

∫
dΩ

dP

dΩ

∣∣
quad =

Gµ2a4ω6
s

2πc5

∫ π

0

dθ sin2 θ

∫ 2π

0

dϕ sin4 θ

⇒P |quad =
16

15

Gµ2a4ω6
s

c5

(317)
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The total energy radiated over a period T = 2π
ωs

is:

⟨Equad⟩T =

∫ T

0

dt
16

15

Gµ2a4ω6
s

c5
=

16

15

Gµ2a4ω5
s

c5
T
2π

ωs

⇒⟨Equad⟩T =
32πG

15c5
µ2a

5ω5
s

a
=

32πG

15c5
µ2

a

(v
c

)5 (318)

where v = aωs is the source’s maximum speed.
So in a complete cycle, the radiated energy is suppressed by a factor

(
v
c

)5.
3.3.2 Quadrupole Radiation from a Mass in Circular Orbit

We analyze the gravitational wave emission from a binary system with masses m1 and m2 in
a circular orbit. For a given orbital motion and negligible back reaction and beyond lowest
order at v

c
, we cannot keep a flat spacetime for our description. For the moment we choose

a trajectory on the (x, y, z) frame, so the orbit lies on (x, y) described by:

x0(t) = R cos(ωst+
π

2
) (319)

y0(t) = R sin(ωst+
π

2
) (320)

z0(t) = 0 (321)

In the CM frame, the second mass moment is:

M ij = µxi0(t)x
j
0(t)

Thus, the second moments are:

M11 = µx10x
1
0 = µR2 cos2

(
ωst+

π

2

)
= µ

R2

2
(1− cos (2ωst))

M12 =M21 = µx10x
2
0 = µR2 cos

(
ωst+

π

2

)
sin
(
ωst+

π

2

)
=

1

2
µR2 sin

(
2ωst+

π

2

)
= −1

2
µR2 sin (2ωst)

M22 = µx20x
2
0 = µR2 sin2

(
ωst+

π

2

)
= µR2[1− cos2

(
ωst+

π

2

)
]

= µR21 + cos (2ωst)

2

For the M13,M23,M33 we have that ∼ x30 = z0(t) = 0 for µ = m1m2

m1+m2
.

The second time derivative yields:

M̈11 =
µR2

2
(2ωs)

2 cos(2ωst) = 2µR2ω2
s cos(2ωst) (322)

M̈22 = −M̈11 (323)

M̈12 = 2µR2ω2
s sin(2ωst) (324)
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Substituting to equation 251 for the plus-component we get:

h+(t; θ, ϕ) = 2µR2ω2
s

G

rc4
[cos2 ϕ(1 + cos2 θ)− sin 2ϕ(1 + cos2 θ)]

+ [sin 2ϕ(1 + cos2 θ)] sin 2ωst+ cos 2ωst

⇒ h+(t; θ, ϕ) =
4GR2ωsµ

2rc4
(1 + cos2 θ)[cos 2ϕ cos 2ωst+ sin 2ϕ sin 2ωst]

⇒ h+(t; θ, ϕ) =
1

r

4Gµω2
sR

2

c4
1 + cos2 θ

2
cos(2ωst+ 2ϕ)

(325)

While for the cross component of the radiation, as given in equation 252, is:

h×(t; θ, ϕ) =
2

r

G

c4
cos 2ϕ cos θ

2G

rc4
2µR2ω2

s sin 2ωs + cos 2ϕ cos θ

h×(t; θ, ϕ) =
1

r

4Gµω2
sR

2

c4
cos θ sin(2ωst+ 2ϕ)

(326)

In this example, we have a dependence on ϕ since the system is not invariant under rotation
of the ẑ axis. The orbit edge is for θ = i angle at i = π

2
. We get for i from Eqs. 325 and 326:

h+(t) =
1

r

4Gµω2
sR

2

c4

(
1 + cos2 i

2

)
cos 2ωst (327)

h×(t) =
1

r

4Gµω2
sR

2

c4
cos i sin 2ωst (328)

The angular distribution of the radiated power in quadrupole approximation, given in
equation 253, is:

dP

dΩ

∣∣
quad =

r2c3

16πG
⟨ḣ2+ + ḣ2×⟩

dP

dΩ

∣∣
quad =

2Gµ2R4ω6
s

πc5

[(
1 + cos2 θ

2

)2

+ cos2 θ

] (329)

Integrating over all angles gives the total power:

P |quad =

∫
dP

dΩ

∣∣
quaddΩ =

2Gµ2R4ω6
s

πc5
= 2π

∫ π

0

[
dθ

(
1 + cos2 θ

2

)2

+ cos2 θ

]

P |quad =
32

5

Gµ2R4ω6
s

c5

(330)

Finally, the total energy radiated by a GW reads:

⟨Equad⟩T =
32

5

Gµ2

c5
R4ω6

sT
2π

ωs

⟨Equad⟩T =
64π

5

Gµ2

c5R
(ω5

sR
5)

⟨Equad⟩T =
64πG

5

µ2

R

(
v5

c5

) (331)
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3.3.3 Mass Octupole and Current Quadrupole Radiation from a mass in cir-
cular motion

Computation of mass octupole and current quadrupole radiation generated by a binary
system, with the center of mass (CM) coordinate to be described by a circular trajectory.
We want to compute the radiation emitted from the star in the observer’s direction. We
consider the observer along the ẑ axis. The equations of orbit in this frame are:

x0(t) = R cosωst (332)
y0(t) = R cos i sinωst (333)
z0(t) = R sin i sinωst (334)

We can set the observer along ẑ and compute the radiation emitted along n̂ = (0, 0, 1).
Equation 282 provides a useful formula for the mass octupole radiation. Since n̂ = (0, 0, 1)
we get nm = n3 ̸= 0 ⇒ m = 3. So equation 282 can be written as:

hTT
ij

∣∣
oct =

2G

3c5r
Λij,kl(n̂)

...
M

kl3
(335)

Because
...
M

kl3
contracts with Λij,kl, when k = 3 or l = 3 the corresponding components

vanishes. So we are left with
...
M

123
and

...
M

213
component to calculate. Since we have fixed

the third index, we can write
...
M

kl3
≡

...
M

kl
z(t) ≡ µxk(t)xl(t)z(t)

M̈113 = µx10(t)x
1
0(t)z(t) = µR2 cos2 ωstR sin i sinωst

...
M

123
= µR2 cos i sinωst cosωstR sin i sinωst

...
M

213
=

...
M

123

...
M

223
= µR2 cos2 i sin2 ωstR sin i sinωst

or in matrix form

M ij3 = µR3 sin i sinωst

(
cos2 ωst cos i sinωst cosωst

cos i sinωst cosωst cos2 i sin2 ωst

)ij
(336)

When equation 336 is contracted to Λkl,ij we get:

Λkl,ijMkl3 = µR3 sin isinωst

(
1
2
(cos2 ωst− cos2 i sin2 ωst) cos i sinωst cosωst

cos i sinωst cosωst
1
2
(cos2 ωst− cos2 i sin2 ωst)

)ij
(337)

In Eq. 337, after applying three times the derivative concerning time, we get:

h+|oct =
1

r

GµR3ω3
s

12c5
sin i[(3 cos2 i− 1) cosωst− 27(1 + cos2 i) cos(3ωst)] (338)

h×|oct =
1

r

GµR3ω3
s

12c5
sin 2i[sinωst− 27 sin 3ωst] (339)

67



The current quadrupole radiation is the sum of hTT
ij |oct + hTT

ij |cq. Or in mathematical
form, as given in equation 204:

Sij,k(t) =

∫
d3x′x′kT ij(t, x⃗′) = µxk0ẋ

i
0ẋ

j
0 (340)

Along the z-axis, the radiation is, as mentioned, the sum, or in mathematical form, we get:

hTT
ij |oct+cq =

2G

3c5r
Λij,kl(n̂)(

...
M

kl3
+ ϵkl3J̈p,l + ϵ3lpJ̈p,k)

⇒ hTT
ij |oct+cq =

4G

c5r
Λij,kl(n̂)Ṡ

kl,3

(341)

Similarly to mass octupole radiation, we get:

(h+)oct+cq =
GµR3ω3

s

2rc5
sin i[(cos2i− 3) cosωst− 3(1 + cos2i) cos 3ωst] (342)

(h×)oct+cq =
GµR3ω3

s

2rc5
sin 2i[sinωst− 3 sin 3ωst] (343)

The difference between h+,×|oct+cq − h+,×|oct yields the current quadrupole amplitude as:

h+|cq =
GµR3ω3

s

12rc5
sin i[(3 cos2 i− 17) cosωst+ 9(1 + cos2i) cos 3ωst] (344)

h×|cq =
GµR3ω3

s

12rc5
sin i[5 sinωst+ 9 sin 3ωst] (345)

So, the current quadrupole contribution is a sum of terms with frequencies ωs and 3ωs The
total radiated power in the mixed current quadrupole and octupole term is given in:

dPoct+cq

dΩ
= − r2c3

16πG
⟨ḣ2+ + ḣ2×⟩ ⇒

Poct+cq =
r2c3

16πG

∫ 2π

0

dϕ

∫ π
2

0

di sin i⟨ḣ2+ + ḣ2×⟩

Poct+cq =
r2c3

8G

∫ 1

−1
d cos i⟨ḣ2+ + ḣ2×⟩

Poct+cq =
424

105

Gµ2

c7
R6ω8

s

(346)

For P (2ωs) = Pquad = 32Gµ2

5c5
R4ω6

s we get the power at ωs;P (ωs) as

P (ωs) =
19

672

(v
c

)2
P (2ωs) (347)

and for the frequency 3ωs

P (3ωs) =
135

224

(v
c

)2
P (2ωs) (348)
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4 Symmetric trace-free and spherical tensor components
formalisms

The first section of this chapter is devoted to a useful formalism, used in the multipole
expansion the Symmetric Trace-Free formalism (STF). In order to understand this new
formalis, we used the articles in [26], [44], [49], [50], [51], [52], [53], [54] and [55].

From a group theoretical point of view, we separated the next-to-leading order into
irreducible representations of the rotation group. To generalize such a construction to an
arbitrary order of the multipole expansion, we introduce a complete set of representations
in two ways:

1. The first approach considers symmetric and trace-free tensors (SFT formalism).

2. The second approach introduces spherical components of tensors and the tensorial form
of spherical harmonics.

We begin by recalling the workings of the multipole expansion in a static situation,
governed by Poisson’s equation:

∇2ϕ = −4πρ (349)

where ϕ is the scalar potential, and ρ(x⃗) is the source density.
As in the static case of electrodynamics, we consider a source density ρ(x⃗) localized in

space, so that:
ρ(x⃗) = 0, ∀ r > d (350)

where r = |x⃗| and d is the characteristic size of the localized source. The Laplacian operator
in spherical coordinates is written as

∇2ϕ =
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
− L2

r2
ϕ (351)

while ϕ(r, θ, ϕ) can be written without loss of generality as:

ϕ(r, θ, ϕ) = Qlm(r)Ylm(θ, ϕ) (352)

Inserting Eqs. 351 and 352 in equation 349, we get:[
1

r2
∂

∂r
(r2∂r)− L2

r2

]
ϕ = −4πρ

1

r2
∂

∂r
(r2∂rQlmYlm)−

1

r2
L2Qlm(r)Ylm(θ, ϕ) = −4πρ

Ylm

r2
∂r(r2∂rQlm(r))− lm(r)

r2
l(l + 1)Ylm = −4πρ

(353)

We are interested in results outside the source r > 0, so,

r>0
==⇒
ρ=0

1

Qlm(r)

[
∂r

(
r2
∂Qlm(r)

∂r

)]
− l(l + 1) = 0 (354)
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The differential equation as expressed in 354 has known solutions given as:

Qlm(r) = Arl +
B

rl+1
(355)

Next, we insert Qlm(r) into equation 352 and get the most generic solution given as:

ϕ(x⃗) = 4π
∞∑
l=0

l∑
m=−l

Qlm

2l + 1

Ylm(θ, ϕ)

rl+1
(356)

where
∇2

[
Ylm(θ, ϕ)

rl+1

]
= 0. (357)

Similarly, ϕ(r, θ, ϕ) can be recovered as the general Green’s function of the Laplacian oper-
ator. For the case where x lies inside to outside the source, we get:

ϕ(x⃗) =

∫
d3y

1

|x⃗− y⃗|
ρ(y⃗) (358)

with 1
|x⃗−y⃗| being according to additional theorem for spherical harmonies:

1

|x⃗− y⃗|
= 4π

∞∑
l=0

l∑
m=−l

1

2l + 1

r
′l

rl+1
Y ∗lm(θ

′, ϕ′)Ylm(θ, ϕ) (359)

where r ≡ |x⃗|&r′ ≡ |y⃗|, (θ, ϕ) are the polar angles of x⃗ and (θ′, ϕ′) are the polar angles of y⃗.
Similarly equation 357 in terms of equation 359 is:

ϕ(x⃗) =

∫
d3yρ(y⃗)4π

∞∑
l=0

l∑
m=−l

1

2l + 1

r
′l

rl+1
Y ∗lmYlm (360)

and equating to equation 355 we get:

Qlm =

∫
d3yY ∗lm(ρ

′, θ′)ρ(y⃗)r
′l (361)

An alternative way of performing the multipole expansion is to write:

1

|x⃗− y⃗|
=

1

|x⃗|
− yi∂i

1

|x⃗|
+

1

2
yiyj∂i∂j

1

|x⃗|
+ . . . (362)

1

|x⃗− y⃗|
=

infty∑
l=0

(−)l

l!
yi1yi2 . . . yil∂i1∂i2 . . . ∂il

1

|x⃗|
(363)

In equation 362 and 363 we get:

ϕ(x⃗) =

∫
d3yρ(y)

(
1

|x⃗|
− yi∂i

1

|x⃗|
+

1

2
yiyj∂i∂j

1

|x⃗|
+ . . .

)
(364)
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ϕ(x⃗) =

∫
d3yρ(y)

∞∑
l=0

(−)l

l!
yi1 . . . yil∂i1 . . . ∂il

1

|x⃗|

ϕ(x⃗) =
∞∑
l=0

(−)l

l!

∫
d3yρ(y)yi1 . . . yil∂i1 . . . ∂il

1

|x⃗|

(365)

The trace-less combination for yi1 . . . yil is

y⟨i1yi2⟩ → yi1yi2 − 1

2
δi,i2|y⃗|2

⇒ϕ(x⃗) =
∞∑
l=0

(−)l

l!
Qi1...il∂i1 . . . ∂il

1

|x⃗|

(366)

with
Qi1...il =

∫
d3y⟨i1 . . . yil⟩ρ(y) (367)

The brackets y⟨i1 . . . yil⟩ in equation 367 mean that we get the symmetric and trace-free part
of the tensor yi1 . . . yil .

4.1 Symmetric-Trace-Free (STF) Formalism

We introduce a helpful multi-index notation developed by Blanchet and Damour. In this
notation, a tensor with l indices, i1i2 . . . il, is compactly represented by a single capital letter
L:

FL ≡ Fi1i2...il

Similarly, a tensor with l + 1 indices is denoted by GiL ≡ Gi1i2...il . For example, FiL−1
represents Fi1i2...il−1

. Additionally, ∂L is shorthand for ∂i1 . . . ∂il , and xL and nL denote
xi1xi2 . . . xil and ni1ni2 . . . nil , respectively, where ni = xi/r is the radial unit vector. When
expressions like FLGL appear, the summation over all indices i1, i2, . . . , il is implicit:

FLGL =
∑
i1...il

Fi1...ilGi1...il (368)

Symmetrisation is denoted by round brackets as

a(ij) =
1

2
(aij + aji).

Finally, the symmetric-trace-free (STF) projection is denoted by a hat, as in K̂L, which
indicates that all indices of the tensor Ki1...il are symmetrized, and all traces are removed.
Alternatively, this operation can be denoted with angle brackets K<L>, so K̂L ≡ K<L>. This
notation allows a compact representation of STF operations, such as ϵij(kAL−1)i1 , where STF
symmetrization applies to the index k of ϵij and the first l − 1 indices of Ai1...Il−1

.
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A rank-l STF tensor Ai1...il has 2l + 1 independent components, forming an irreducible
representation of dimension 2l+1 under the rotation group SO(3). The complete set of STF
tensors for all ranks l provides a full set of SO(3) representations.

For example, a (0, 2) rank in SFT mode Tij is a generic tensor and can be written as:

Tij =
1

2
(Tij + Tji) +

1

2
(Tij − Tji) (369)

Tij =≡ Sij + Aij (370)

Here, Sij is the symmetric part, and Aij is the antisymmetric part. Using Ak = ϵijkAij, we
find Aij = 1

2
ϵijkAk. Defining S = Sii as the trace of Sij, equation 370 becomes:

Tij =
1

3
Sδij +

1

2
ϵijkAk +

(
Sij −

1

3
Sδij

)
(371)

This explicitly separates Tij into a scalar S, a vector Ak, and a (0, 2) rank STF tensor
Sij − 1

3
Sδij. These components are used in the STF formalism to analyze a scalar S, a

vectorAk, and a tensor Sij − 1
3
Sδij field in multipole expansions.

4.1.1 SFT Formalism for Scalar Fields

We consider a scalar field ϕ governed by the relativistic wave equation:

2ϕ = −4πρ, (372)

where the source ρ(t,x) is generally time-dependent but localized in space, so for |x⃗| > d⇒
ρ(t, x⃗) = 0. The generic solution of equation 372 outside the source is given as the expansion
around |x⃗| ≫ d is:

ϕ(t, x⃗) =
∞∑
l=0

(−1)l

l!
∂L

[
FL
(
t− r

c

)
r

]
, (373)

where L comes from the multi-index notation and FL
(
t− r

c

)
is calculated on the retarded

time tret = t− r
c
. This result relies on the fact that, for r > 0, FL can be any function of the

retarded time u = t− r/c, satisfying:

2

[
FL
(
t− r

c

)
r

]
= 0, (374)

and each term is solution of 2ϕ(x) = 0. Equation 373 comes as the most generic solution,
since all FL tensors, with all possible ranks l, provide an irreducible representation of the
SO(3) group. The appropriate Green’s function for a radiation problem is:

ϕ(t, x⃗) =

∫
d3x′

1

|x⃗− x⃗′|
ρ

(
t− |x⃗− x⃗′|

c
, x⃗′
)
, (375)

where this integral form holds both inside and outside the source region.
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Comparing this expression with equation 375 and equation 373, we get full computation
in

FL(u) =

∫
d3y ŷL

∫ 1

−1
dz δl(z)ρ

(
u+ z

|y⃗|
c
, vecy

)
, (376)

where ŷL is the symmetric-trace-free (STF) projection of yL and FL(u) is in fact a multipole
moment for the source ρ. The function δl(z) is a weight function and is defined as:

δl(z) =
(2l + 1)!!

2ll!
(1− z2)l, (377)

With normalization condition: ∫ 1

−1
δl(z) dz = 1, (378)

The
∫ 1

−1 δl(z) dzρ(u + z
c
|y⃗|, y⃗) is the average over time (t− |x⃗−x⃗′|

c
+ z

c
|y⃗|), the retarded time,

Integration over dz creates a different weight function for each multipole moment l.

4.1.2 SFT formalism for a Vector Field

We consider the electromagnetic field Aµ (Lorentz gauge ∂µAµ = 0), that satisfies the wave
equation:

2Aµ = −4π

c
Jµ (379)

where the role of a source plays Jµ = (cρ,J), again is time-dependent and localized as
Jµ = 0 if |x⃗| > d. Each component of Aµ can be treated as a scalar field, and therefore, in
the external source region, we get:

A0(t,x) =
∞∑
l=0

(−1)l

l!
∂L

[
FL(u)

r

]
(380)

Ai(t,x) =
∞∑
l=0

(−1)l

l!
∂L

[
GiL(u)

r

]
(381)

where u = t−r/c and FL(u), GiL(u) represent relativistic multipole moments. The explicitly
expressions of FL(u) and GiL(u),are given as:

FL

(
t− r

c

)
=

∫
d3yŷL

∫ 1

−1
δl(z)ρ

(
t
r

c
+
z|y⃗|, y⃗
c

,

)
(382)

Gik

(
t− r

c

)
=

∫
d3ŷL

∫ 1

−1
δl(z)Ji

(
t
r

c
+
z|y⃗|, y⃗
c

,

)
(383)

GiL is symmetric under i, . . . il exchanges, but it is not symmetric under i ↔ i1ori2 . . . oril,
and tracefree since it depends on ŷL. So we can define an irreducible representation as:

GiL = UiL+1 +
l

l + 1
ϵia(⟨ilCL−1⟩a +

2l − 1

2l + 1
δi⟨ilDL−1⟩ (384)

where UiL ≡ G⟨L+1⟩, CL ≡ Gab⟨L−1ϵil⟩ab, DL−1 = GaaL−1.
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Finally equation 381 and 382 are written as:

381
377
==⇒ A0(t, x⃗) =

∞∑
l=0

(−)l

l!
∂L

QL

(
t− |x⃗−x⃗′|

c

)
r

 (385)

382
383
==⇒ Ai(t, x⃗) =

∞∑
l=0

(−)l

l!
∂L−1

[
Q

(1)
iL−1

(
t− r

c

)
r

+
l

l + 1
ϵiab∂a

MbL−1
(
t− r

c

)
r

]
(386)

where

QL

(
t− r

c

)
=

∫
d3y

∫ 1

−1
dz

[
δl(z)ŷLρ

(
t− r + z|y⃗|

c
, y⃗

)
− 1

c2
2l + 1

(l + 1)(2l + 3)
δl+1(z)ŷiLJ

(1)
i

(
t− r − z|y⃗|

c
, y⃗

)]
,∀l ≥ 1

(387)

ML

(
t− r

c

)
=

∫
d3y

∫ 1

−1
dzδl(z)ŷ⟨L−1mil⟩

(
t− r − z|y⃗|

c
, y⃗

)
,∀l ≥ 1 (388)

where mi ≡ ϵijkyjJk is the magnetization density.

4.2 Spherical tensor components form

In this subsection we detail the decomposition of a symmetric, trace-free (STF) tensor into its
spherical tensor components. Explicitly we construct the basis of tensor spherical harmonics
for the l=2 case and generalize to arbitrary l. This is a cornerstone of gravitational wave
theory for analyzing radiation patterns and decomposing waveforms. This analysis is derived
by [15], but more information can be found in [56], [57], [58], [59], [60].

Generalization of spherical harmonics to a spin-2 field. We consider any traceless, asym-
metric tensor with two indices. The Cartesian components of the tensor are denoted by
Qij. First, we introduce a basis in the space of traceless symmetric tensors with two indices,
chosen to have a single relation with the l = 2 spherical harmonies. Spherical harmonies for
l = 2 are:

Y 22(θ, ϕ) =

√
15

32π
e2iϕ sin2 θ (389)

Y 21(θ, ϕ) = −
√

15

8π
eiϕ sin θ cos θ (390)

Y 20(θ, ϕ) =

√
15

16π
(3 cos2 θ − 1) (391)

since Y l,−m = (−)mY lm∗ we get
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Y 2,−1 =

(√
15

8π

)
eiϕ sin θ cos θ (392)

Y 2,−2 =

(√
15

16π

)
(3 cos2 θ − 1) (393)

In polar coordinates the unit vector n̂ has the following components:

nx = sin θ cosϕ (394)
ny = sin θ sinϕ (395)
nz = cos θ (396)

θ is measured with respect to 2̂ axis and ϕ is measured from x̂− axis. Therefore,

nx + iny = eiϕ sin θ (397)
nz = cos θ (398)

So the above set of equations can be written as follows:

Y 2,2 = Y 2,−2 =

√
15

32π
(nx + iny)

2 (399)

Y 2,1 = −
√

15

8π
(nx + iny)nz (400)

Y 2,0 =

√
5

16π
(3n2

z − 1) =

√
5

4π
(2n2

z − n2
x − n2

y) (401)

Y 2,−1 =

√
15

8π
(nx + iny)nz (402)

Y 2,−2 =

√
15

32π
(nx + iny)

2 (403)

(404)

We can write Y l,m in terms of Y l,m
ij components, independent of (θ, ϕ) as followed:

Y l,m ≡ Y l,m
ij ninj (405)

Since, ni ≡

nxny
nz

, Y l,m
ij are 3 × 3 matrices, symmetric in I ↔ j and with vanishing

antisymmetric part, explicitly, we can write:

Y 2,2
ij =

√
15

32π

1 i 0
i −1 0
0 0 0


ij

(406)
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Y 2,1
ij = −

√
15

8π

0 0 1
2

0 0 i
2

1
2

i
2

0


ij

= −
√

15

32π

0 0 1
0 0 i
1 i 0


ij

(407)

Y 2,0
ij =

√
5

4π

−1 0 0
0 −1 0
0 0 2


ij

(408)

Y 2,−1
ij =

√
15

8π

0 0 1
2

0 0 − i
2

1
2

− i
2

0


ij

=

√
15

32π

0 0 1
0 0 −i
1 −i 0


ij

(409)

Y 2,−2
ij =

√
15

32π

 1 −i 0
−i −1 0
0 0 0


ij

(410)

Matrices in Eqs. 406 - 410 , are traceless and symmetric. We can also see it by integrating
equation 405 and seeing that

∫
dΩY l,m = 0 as:

∫
Y 2,m
ij ninj dΩ =

∫
dΩY l,m ⇒∫

Ŷ 2,m
ij ninj dΩ = 0 ⇒

Ŷ 2m
ij

∫
dΩninj = 0, where dΩninj =

1

3
δij ⇒

Y 2m
ij = 0 (traceless).

(411)

From the explicit form of Eqs. 406 - 410, we get that Y lm
il constitute an orthogonal basis as:∑

ij

(
Y 2m′

ij

)∗
Y 2m
ij =

15

8π
δmm

′
(412)

We can insert equation 405, and get:

ninj −
1

3
δij =

2∑
m=−2

cmij Y
2m (θ, ϕ) (413)

where cmij =
8π

15

(
Y 2m
ij

)∗ (414)

The coefficient given in equation 414 is fixed by observing that in equation 413 the LHS
is traceless. The matrices in Eqs. 406 - 410 constitute a basis for the five-dimensional space
of traceless, symmetric tensors Qij.We can expand any symmetric, traceless Qij tensor as:

Qij =
2∑

m=−2

QmY
2m
ij (415)
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where Qm are the spherical components of Qij

415
·ninj
===⇒ ninj Qij =

2∑
m=−2

QmninjY
2m
ij

405
==⇒ ninj Qij =

2∑
m=−2

QmY
2m (θ, ϕ)

(416)

Now equation 415 can be inverted by following the known rules, as:

415
(Y 2m

ij )
∗

=====⇒
(
Y 2m
ij

)∗
Qij =

2∑
m=−2

Qm

(
Y 2m
ij

)∗
Y 2m
ij

413
==⇒ Qm =

8π

15
Qij

(
Y 2m
ij

)∗ (417)

with Q∗m = (−)mQ−m (418)

Explicit:

m = ±2 :Q±2 =
8π

15
Qij

(
Y 2,±2
ij

)∗
⇒Q±2 =

8π

15

√
15

32π
(Q11 Y

2,±2
11 +Q2,±2

22 Y 2,±2
22 + 2Q12Y

2,±2
12 )

⇒Q±2 =

√
2π

15
(Q11 −Q22 ∓ 2iQ12)

(419)

m = ±1 :Q±1 =
8π

15
Qij

(
Y 2,±1
ij

)∗
⇒Q±1 = ∓8π

15

√
15

32π

(
2Q13

(
Y 2,±1
13

)∗
+ 2Q23

(
Y 2,±1
23

)∗)
⇒Q±1 = ∓

√
2π

15
(2Q13 ∓ 2iQ23)

⇒Q±1 = ∓
√

2π

15
(Q13 ∓ iQ23)

(420)

m = 0 :Q0 =
8π

15
Qij

(
Y 2,0
ij

)∗
⇒Q0 =

8π

15

√
5

16π
(−Q11 −Q22 + 2Q33)

⇒Q0 = −
√

4π

45
(Q11 +Q22 − 2Q33)

⇒Q0 = −
√

4π

45
(3Q11 + 3Q22)

⇒Q0 = −
√

4π

45
(Q11 +Q22)

(421)
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Applying thrice a time derivative on equation 416 we get:

...
Q ijninj =

2∑
m=−2

...
QmY

2m (θ, ϕ) (422)

And then taking modulus squared, we get:

||
...
Q ijninj||2 =

2∑
m=−2

||
...
QmY

2m(θ, ϕ)||2

⇒
...
Q ijninj

...
Q lmnlnm =

2∑
m=−2

|
...
Qm

...
Qm′

(
Y 2m′

(θ, ϕ)
)2
Y 2m(θ, ϕ)|

⇒2
...
Q ij

...
Q ij =

2∑
m=−2

[
15

8π
|
...
Qm|2 +

15

8π
|
...
Qm|2

]

⇒
...
Q ij

...
Q ij =

2∑
m=−2

15

8π
|
...
Qm|2

⇒|
...
Qm|2 =

15

8π

...
Q ij

...
Q ij

(423)

Substituting everything in equation 423 we get:

Pquad =
G

5c5
⟨
...
Q ij

...
Q ij⟩

⇒Pquad =
G

5c5
15

8π

2∑
m=−2

⟨|
...
Qm|2⟩

⇒Pquad =
3G

8πc5

2∑
m=−2

⟨|
...
Qm|2⟩

(424)

We can generalize the above to traceless, symmetric tensors with an arbitrary number of
indices. We begin by considering a STF tensor with indices Ti1,...il and write the spherical
harmonies as:

Y l,m(θ, ϕ) = C lmeimϕP lm(cos(θ)) (425)

In equation 424, the term P lm cos θ expresses the associated Legendre polynomials, given
by the following formula for m ≥ 0

P lm(x) = (−)m2l(1− x2)
m
2

l∑
k=m

k!

(k −m)!
xk−m

(
l
k

)(
l−k+l

2

l

)m
(426)

or in terms of cos θ

P lm(cos θ) = (−)m(sin θ)m
dm

d(cos θ)m
[P l(cos θ)] (427)
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Orthogonality relations read for:

fixed m :

∫ π

o

dθP km(cos θ)P lm(cos θ) sin θ =
2(l +m)!

(2l + 1)(l −m)!
δkl (428)

fixed l :
∫ π

o

dθP lm(cos θ)P ln(cos θ) csc θ =


0, m ̸= n

∞, m = n = 0
(l+m)!
m(l−m)!

, m = n ̸= 0

(429)

Eqs. 428 and 429 normalize the C lm components as following:∫
dΩY lm∗Y lm = 1 ⇒

⇒
∫

dθdϕ sin θ|C lm|2P lmP lm∗ = 1

⇒2π|C lm|2 2(l +m)!

(2l + 1)(l −m)!
= 1

⇒|C lm| =

√
(2l + 1)(l −m)!

4π(l +m)!

⇒C lm = (−)m

√
(2l + 1)(l −m)!

4π(l +m)!

(430)

and almk =
(−)k

2lk!(l − k)!

(2l − 2k)!

(l −m− 2k)!
(431)

For m < 0 we may use Y lm = (−)m(Y (l,−m))∗. The final formula for the arbitrary
spherical harmonics is:

Y lm(θ, ϕ) = C lm(eiϕ sin θ)m
⌈ l−m

2
⌉∑

k=0

almk (cos θ)l−m−2k (432)

where ⌈ l−m
2
⌉ denotes the largest integer smaller than or equal to l−m

2
. In equation 432, we

can substitute Eqs. 397 and 398 and get:

Y lm(θ, ϕ) = C lm(nx + iny)
m

⌈ l−m
2
⌉∑

k=0

almk (nz)
l−m−2k (433)

because of (nx+ iny)
m and

∑⌈ l−m
2
⌉

k=0 (nz)
l−m−2k, we get the sum of a term containing l factors

ni, l − 2 factors ni, l − 4 factors ni etc. We can use nini = 1 and write the l − 2 factors as:

δijni1 . . . nil−2
ninjetc

So finally we can write
Y lm(θ, ϕ) = Y lm

i1,...il
ni1 . . . nil (434)
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Again, Y lm
i1,...il

tensors form a basis in the space of traceless symmetric tensors with l indices.
So we can expand any arbitrary tensor Ti1,...il as:

Ti1,...il =
l∑

m=−l

TlmY
lm
i1,...il

(435)

In terms of the spherical components. Or in terms of l unitary vectors, we get:

ni1 . . . nilTi1,...il =
l∑

m=−l

TlmY
lm(θ, ϕ) (436)

And we can insert the last equation as:∫
dΩTlm

(
Y l′m′

j1,...jl

)∗
nj1

...njl

(
Y lm
i1i2...il

ni1 . . . nil
)

⇒Tl′m′ = Ti1,...il

(
Y l′m′

j1,...jl

)∗ ∫
dΩni1 . . . nilnj1 . . . njl

l′→l
====⇒
m′→m

Tlm = 4π
l!

(2l + 1)!!
Ti1...il(Y lm

i1...il
)∗

(437)

In the last line, we use the total symmetry of Ti1...il and vanishing Kronecker delta, so
the only contributions will come from δi1j1 . . . δiljl and symmetric l′ permutations. Again, we
can take the modulus squared of equation 436 and we get:

∥ni1 . . . nilTi1,i2,...,il∥2 =
l∑

m=−l

∥TlmY lm∥2

⇒
∫

dni1 . . . dnil nj1 . . . njlTi1,...,ilTj1,...,jl

=
l∑

m=−l

∫
dTlmTno(Y

lm)∗Y no =
l∑

m=−l

|Tlm|2

⇒
l∑

m=−l

|Tlm|2 =
4πl!

(2l + 1)!!
Ti1i2...ilT

i1...il .

(438)

Consider a rotation by an angle φ around the z-axis, such that ϕ→ ϕ+φ. In equation 435,
the left-hand side (LHS) is a scalar and, therefore, remains invariant under such rotations. On
the other hand, the right-hand side (RHS) transforms according to the spherical harmonics
Y lm → eimφY lm. Consequently, the coefficients Tlm must transform as

Tlm → e−imφTlm

To preserve the equality.
More generally, the 2l+1 components of Tlm (with m = −l, . . . , l for a given l) transform

among themselves in the same way as the conjugate spherical harmonics Y lm(θ, ϕ)∗.
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5 Applications

5.1 Radiation from a closed system of masses

In this section, we derive the foundational quadrupole formula for gravitational radiation
from a closed system of masses. The main reference is again [15].The energy-momentum
tensor for a particle moving on an x0(t) trajectory is:

T µν(t, x⃗) =
pµpν

γm
δ(3)(x⃗− x⃗0(t)) (439)

where for a set of particles labelled by A we get:

T µνtot(t, x⃗) =
∑
A

pµAp
ν
A

γmA

δ(3)(x⃗− x⃗A(t)) ⇒

T µνtot(t, x⃗) =
∑
A

γAmA
dxµA
dt

dxνA
dt

δ(3)(x⃗− x⃗A(t)) ⇒

T 00
tot(t, x⃗) =

∑
A

γmA
dx0A
dt

dx0A
dt

δ(3)(x⃗− x⃗A(t)) ⇒

T 00(t, x⃗)tot =
∑
A

γmAc
2δ(3)(x⃗− x⃗A(t))

(440)

Since conservation of T µνtot on a flat space-time is a consequence of the invariance under
spacetime translation, the effect on multipole moments by shifting the origin of the coordinate
system. The second moment of T 00/c2 or abusively speaking the second mass moment is:

M ij(t) =
1

c2

∫
d3x′T 00(t, x⃗′)x′ix′j

M ij(t) =
1

c2

∫
d3x′

∑
A

γmac
2δ(3)(x⃗′ − x⃗A)x

′ix′j

M ij(t) =
∑
A

γma

∫
d3xxixjδ(3)(x⃗− x⃗A)

M ij(t) =
∑
A

γmax
i
A(t)x

j
A(t)

(441)

Under translation we get xi → xi + αi.

M ij(t) →M ′ij(t) =
∑
A

γmA(x
i
A + aiA)(x

j
A + ajA) ⇒

M ′ij(t) =
∑
A

γmAx
i
Ax

j
A +

∑
A

γmA(x
i
A + aiA)(x

j
A + ajA) +

∑
A

γmAa
i
Aa

j
A ⇒

M ′ij(t) =M ij(t) + ai
∑
A

γmAx
j
A(t) + aj

∑
A

γmAx
i
A(t) + aiaj

∑
A

γmA

(442)
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With time derivative:

M ′ij(t) = Ṁ ij(t) + ai
∑
A

γmAẋ
j
A(t) + aj

∑
A

γmAẋ
i
A(t) ⇒

M ′ij(t) = Ṁ ij(t) + aiP j
tot + aiP i

tot

(443)

Where P i
tot ≡

∑
A γmAẋ

i
A total momentum of a non-relativistic system and its constant.

The second derivative yields:

M̈ ′ij = M̈ ij + ajṖ i
tota

iṖ j
tot ⇒ M̈ ′ij = M̈ ij(invariant) (444)

Since hTTij ∼ M̈ ij, gravitational radiation is not affected by the shift of the origin. All
of the above are valid only for closed systems and of no external forces are present. The
procedure described above is correct when x⃗0 is the relative coordinate of an isolated two-
body system in the center of mass frame, with x⃗0(t) the time evolved of x⃗0.

Center of mass coordinate is:

xCM =
m1x1 +m2x2
m1 +m2

(445)

Second mass moment

M ij = γm1x
i
1x

j
1 + γm2x

i
2x

j
2

M ij = γmxiCMx
j
CM + γµ(xiCMx

j
0 + xjCMx

i
0) + γµxi0x

j
0

(446)

If we choose xCM = 0, we have:

M ij = γµxi0x
j
0 (447)

Eq. 447 shows the effective particle’s mass moment, with mass µ, and described by
coordinates x0(t). Since P i

tot =
∑

A γmAẋ
i
A is conserved, and M̈ ij is the quadrupole moment,

it will be invariant under the xi → ai + xi shifts. If we describe the system with x⃗1 and x⃗2,
it is consistent with working in the center-of-mass frame, where x⃗CM = 0. This description
is valid only in the CM frame. The mass density is

p(t, ∗⃗) = µδ(3)(x⃗− x⃗0(t)) (448)

and the second moment
M ij(t) = µxi0(t)x

j
o(t) (449)

And the mass-quadrupole:

Qij(t) = µ

(
xi0(t)x

j
o(t)−

1

3
R2

0(t)δ
ij

)
(450)

We want radiation emitted by a two-body system, whose relative coordinates have har-
monic ways of motion (e.g., harmonic oscillation). We suppose that the relative coordinate
x0(t) is periodic along the z direction with frequency ωs. Then:

x30(t) = z0(t) = a1 cosωst (451)
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M ij(t) = µa1 cosωstδ
i3a1 cosωstδ

j3

M ij(t) = µa21 cos
2 ωstδ

i3δj3

M ij(t) = µa21(cos 2ωst+ 1)
1

2
δi3δj3

(452)

GWs’ amplitude depends on M̈ ij(t) so we have:

M̈ ij(t) = −µa214ω2
s cos 2ωstδ

i3δj3 ⇒
M̈ ij(t) = −4µ(a1ωs)

2δi3δj3 cos 2ωst
(453)

We see that the corresponding GW oscillates as cos 2ωst.
A non-relativistic source performing simple harmonic oscillations with a frequency ωs

emits a monochromatic quadrupole radiation at ω = 2ωs
Last is true only for simple harmonic motion If the system performs a superposition of

periodic motion and higher harmonies, e.g., if:

z0(t) = a1 cos(ωst) + a2 cos(2ωst) + . . .

z20(t) = a21 cos
2(ωst) + a22 cos(2ωst) + 2a1a2 cos(ωst) cos(2ωst)

z20(t) =
a21
2
(1 + cos(2ωst)) + a22

1

2
(1 + cos(4ωst)) + a1a2 cos 3ωst+ a1a2 cos(ωst)

(454)

Radiation

a1 emits at cos (2ωst) ωgw = 2ωs

a2 emits at cos (4ωst) ωgw = 4ωs

a1a2 emits at cos (ωst) + cos (3ωst) ωgw = ωs, ωgw = 3ωs

There exists every n nωs frequency in quadrupole radiation.

5.2 Application on inspiral of compact binaries

Here we follow again the methodology and idea in Maggiore’s book [15], but also take
pieces of information from [50], [28], [61], [65], [66], [67] and [68], we derive the foundational
quadrupole formula for gravitational radiation from a closed system of compact binaries.
This directly connects to the radiated wave amplitude and power.

We analyze a binary system consisting of two compact objects, such as neutron stars
or black holes. We consider these objects as point masses, with masses m1 and m2, and
positions r1 and r2. In Newtonian approximation and the center-of-mass (CM) frame, the
dynamics reduce to a one-body problem with a reduced mass µ = m1m2

m1+m2
, and the equation

of motion is given by:

r⃗ =

(
Gm

r3

)
r⃗ (455)
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where m = m1 +m2 is the total mass, and r⃗ = r⃗2 − r⃗1 is the relative position vector.
We first examine the case of circular orbits. The orbital velocity v is related to the orbital

radius R by:

v2 =
Gm

R
where v = ωR, with ω being the orbital frequency. Using this relation, we derive Kepler’s

law:

ω2
s =

Gm

R3
(456)

In Eqs. 251 and 252, we eliminate R in terms of ω2
s , by using 456 and we get:

h+ =
4

r

Gµω2
sR

2

c4

(
1 + cos2 θ

2

)
cos (2ωst+ 2ϕ)

h+ =
4

r

Gµω2
s

c4
G

2
3m

2
3

ω
4
3
s

(
1 + cos2 θ

2

)
cos (2ωst+ 2ϕ)

(457)

h× =
4

r

Gµω2
sR

2

c4

(
1 + cos2 θ

2

)
cos θ sin (2ωst+ 2ϕ)

h× =
4

r

Gµω2
s

c4
G

2
3m

2
3

ω
4
3
s

(
1 + cos2 θ

2

)
cos θ sin (2ωst+ 2ϕ)

(458)

We define the chirp mass Mc as:

Mc =
(m1m2)

3/5

(m1 +m2)1/5
= µ3/5m2/5 (459)

And we write Eqs. 819 and 820 as:

h+ =
4

r

(
GMc

c2

) 5
3 (ωs

c

) 2
3

(
1 + cos2 θ

2

)
cos (2ωst+ 2ϕ)

h+ =
4

r

(
GMc

c2

) 5
3
(
πfGW

c

) 2
3
(
1 + cos2 θ

2

)
cos (2πfGWt+ 2ϕ)

(460)

h× =
4

r

Gµω2
s

c4
G

2
3m

2
3

ω
4
3
s

cos θ sin (2ωst+ 2ϕ)

h× =
4

r

(
GMc

c2

) 5
3 (ωs

c

) 2
3
cos θ sin (2ωst+ 2ϕ)

h× =
4

r

(
GMc

c2

) 5
3
(
πfGW

c

) 2
3

cos θ sin (2πfGWt+ 2ϕ)

(461)
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In this lowest order of Newtonian approximation, the h+ and h× amplitudes of the
GWs emitted depend on the masses m1 and m2 through Mc. Now, we can introduce the
Schwarzschild radius in terms of the chirp mass:

Rc ≡
2GMc

c2
(462)

Then we can write Eqs. 822 and 823 as follows:

h+ =
4

r

(
Rc

2

) 5
3
(
πfGW
c

) 2
3
(
1 + cos2 θ

2

)
cos (2πfGW t+ 2ϕ)

λ̄GW=
λGW
2π=======⇒

fGW= c
λGW

h+ =
4

r

(
Rc

2

) 5
3
(

1

2λ̄

) 2
3
(
1 + cos2 θ

2

)
cos (2πfGW t+ 2ϕ)

h+ =
4

27/3

(
Rc

r

)(
Rc

λ̄

) 2
3
(
1 + cos2 θ

2

)
cos (2πfGW t+ 2ϕ)

h+ =
1

21/3

(
Rc

r

)(
Rc

λ̄

) 2
3
(
1 + cos2 θ

2

)
cos (2πfGW t+ 2ϕ)

h+ = A

(
1 + cos2 θ

2

)
cos (2πfGW t+ 2ϕ)

(463)

h× =
4

r

(
Rc

2

) 5
3
(
πfGW
c

) 2
3

cos θ sin (2πfGW t+ 2ϕ)

h× =
4

r

(
Rc

2

) 5
3
(

1

2λ̄GW

) 2
3

cos θ sin (2πfGW t+ 2ϕ)

h× =
4

27/3

(
Rc

r

)(
Rc

λ̄GW

) 2
3

cos θ sin (2πfGW t+ 2ϕ)

h× = A cos θ sin (2πfGW t+ 2ϕ)

(464)

where

A ≡ 1

21/3
Rc

r

(
Rc

λ̄

)2/3

(465)

Next, we compute the quadrupole radiated power. By defining the angular dependence as

g(θ) =

[(
1 + cos2 θ

2

)2

+ cos2 θ

]
,
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The power can be expressed as:

dP

dΩ

∣∣∣∣
quad

=
2Gµ2R4ω6

s

πc5
g(θ)

⇒ dP

dΩ

∣∣∣∣
quad

=
2

π

Gµ2

c5
G4/3m4/3

(ω2
s)

4/3
ω6
sg(θ)

⇒ dP

dΩ

∣∣∣∣
quad

=
2

π

(
G7/3µ2m4/3

c5
ω10/3
s

)
g(θ)

⇒ dP

dΩ

∣∣∣∣
quad

=
2c5

πG

(
G10/3µ6/3m4/3

c10
ω10/3
s

)
g(θ)

⇒ dP

dΩ

∣∣∣∣
quad

=
2c5

πG

(
GMcωgw

2c3

)10/3

g(θ)

(466)

The integral
∫
dΩg(θ) is calculated as:∫

dΩ g(θ) =

∫
dΩ

[(
1 + cos2 θ

2

)2

+ cos2 θ

]
∫

dΩ g(θ) =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ cos2 θ +
1

4

∫ 2π

0

dϕ

∫ π

0

dθ sin θ(1 + 2 cos2 θ + cos4 θ)

1

2π

∫
dΩ g(θ) = −cos3 θ

3

∣∣∣∣π
0

− 1

4

∫ π

0

d(cos θ)− 1

2

∫ π

0

d(cos θ) cos2 θ − 1

4

∫ π

0

d(cos θ) cos4 θ

1

2π

∫
dΩ g(θ) = 1 +

1

2
+

1

10
= 1 +

1

2
(1 +

1

5
) = 1 +

3

5
=

8

5∫
dΩ

4π
=

4

5
(467)

We get the total radiated power P
∣∣
quad by integrating over all solid angles dΩ, equation 466:

Pquad =

∫
dΩ

dP

dΩ

∣∣∣∣
quad

=
2c5

πG

(
GMcωgw

2c3

)10/3 ∫
dΩg(θ)

Pquad =
32c5

5G

(
GMcωgw

2c3

)10/3
(468)

5.3 Application on elliptic orbits

Further information for Kepplerian orbits can be found in any astrophysical textbook. GW
production and emission in these orbits is anaytically derived in [50] and [61].

5.3.1 Total power and frequency spectrum of the emitted radiation

We now analyze the gravitational radiation emitted by two masses moving in an elliptical
Keplerian orbit. Let m1 and m2 represent the masses of the stars, with their total mass
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given by m = m1 + m2 and their reduced mass denoted as µ. To proceed, we revisit the
classical mechanics solution for the equation of motion, which describes an elliptical orbit,
and subsequently evaluate the gravitational wave power output and its spectral properties.

The general solution to this motion equation relies on the existence of two conserved
quantities: the angular momentum L and the total energy E. Conservation of L dictates
that the motion is confined to a single plane. Using this insight, we employ polar coordinates
(r, ψ) in the orbital plane, where r represents the radial distance and ψ is the angular position
along the orbit. Additionally, the angular variable ϕ is introduced to describe the directional
dependence of the emitted radiation.

For the equation of motion ⃗̈r = −Gm
r2
r̂, we take the solution for elliptic orbits. The general

solution is obtained by the integral of motions, where the angular momentum L̂, with

L = µr2ψ̇ (469)

while the energy is given by:

E =
1

2
µ(ṙ2 + r2ψ̇2)− Gmµ

r

E =
1

2
µṙ2 +

L

2µr2
− Gmµ

r

(470)

Solving equation 470 we take(
dṙ

dt

)
=

√
2E

µ
− L

2µr2
+
Gµm

r
(471)

From the energy equation, we get ṙ as a function of r. Using the angular momentum
equation, we find ψ̇ as a function of r. By integrating these expressions, the equation of the
orbit can be expressed as:

dr

dt
=

dr

dψ

dψ

dt
=

L

mr2
dr

dψ
=

(
2E

µ
− L

2µr2
+
Gµm

r

)1/2

⇒ dr

dψ
=

(
2m2r4E

µL
− m2r2

2µL
+
Gµm3r

L2

)1/2

⇒1

r
=

1

R
(1 + e cosψ)

(472)

where R (the length scale) and e (the eccentricity) are constants of motion. They are related
to the energy E of the system (E < 0 for a bound orbit) and the angular momentum L by:

R =
L2

Gmµ2
(473)

and
e2 = 1 +

2EL2

G2m2µ3
(474)
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b

a

r
ψ

x

y

a(1 + e) a(1− e)

Figure 3: The definitions used for an elliptic orbit: the polar coordinates (r, ψ), as well as
the Cartesian coordinates (x, y), are centered on a focus of the ellipse (dark blob). The angle
ψ is measured counterclockwise from the x-axis. The semiaxes a and b are indicated. The
focus splits the major axis into two segments of length a(1 + e) and a(1 − e), respectively,
adapted by Maggiore’s book, Gravitational Waves [15].

The eccentricity e of an ellipse satisfies 0 ≤ e < 1. When e = 0, the ellipse becomes a perfect
circle, while as e approaches 1, the ellipse transitions into a parabola. The semi-axes of the
ellipse are

a =
R

1− e2
(475)

b =
R√
1− e2

(476)

Inserting equation 474 in equation (429)

a =
R

1− e2
=
RG2m2µ3

2|E|L2
=
Gmµ

2|E|
(477)

Similarly, we can insert equation (429) in 472 and we get:
1

r
=

1

R
(1 + e cosψ)

1

r
=

1

a(1− e2)
(1 + e cosψ)

r =
a(1− e2)

1 + e cosψ

(478)

Combining the angular momentum and energy equations, r(t) and ψ̇(t) satisfy:

ψ̇ =
(GmR)1/2

r2
(479)
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Figure 4: The function ψ(u) for e = 0.2 (dashed line) and for e = 0.75 (solid line), adapted
by Maggiore’s book, Gravitational Waves [15].

The explicit time dependence of r(t) and ψ̇(t) is obtained by integrating these equations.
Using parametric form:

r = a(1− e cosu), (480)

where u is the eccentric anomaly, related to t by Kepler’s equation:

β = u− e sinu = ω0t, (481)

with ω2
0 = Gm

a3
.

Using trigonometric identities, cosψ can be rewritten as:

cosψ =
cosu− e

1− e cosu

tan
ψ

2
=

√
1 + e

1− e
tan

u

2

ψ

2
= arctan

(√
1 + e

1− e
tan

u

2

)

ψ = 2arctan

(√
1 + e

1− e
tan

u

2

)
(482)

where we can set ψ ≡ Ae(u), the true anomaly. In the equation 481 we can set t → t + 2π
ω0

and get:
β = ω0t+ 2π = β + 2π (483)

⇒u− e sinu = u− e sinu+ 2π

⇒u = u+ 2π
(484)

So the coordinates r and ψ are periodic functions of t, with period T = 2π
ω0

. As u rubs
between [−π, π], also does ψ. Graphically, we get:

In Cartesian coordinates (x, y) with the center at the focus of the ellipse, we get:

x = r cosψ = a[cosu(t)− e] (485)
y = r sinψ = b sinu(t) (486)
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For a 2-body problem, the focus of the ellipse coincides with xCM = 0.
In order to compute the radiated power of this system, we transfer in the CM frame, the

second mass moment is given as M ij = µxi0(t)x
j
0(t) in the coordinates Eqs. (441) and (442)

we have:

M11 = µx1(t)x1(t) = µr2 cos2 ψ (487)
M12 = µx1x2 = µr2 cosψ sinψ (488)
M21 = µx2x1 = µr2 cosψ sinψ (489)
M22 = µx2x2 = µr2 sin2 ψ (490)

Since r and ψ are time-dependent we eliminate r(t) in M ij with equation 478

M11 = µ
a2(1− e2)2

(1 + e cosψ)2
cos2 ψ (491)

M12 =M21 = µ
a2(1− e2)2

(1 + e cosψ)2
cosψ sinψ (492)

M22 = µ
a2(1− e2)2

(1 + e cosψ)2
sin2 ψ (493)

or in matrix form

Mab = µ
a2(1− e2)2

(1 + e cosψ)2

(
cos2 ψ sinψ cosψ

sinψ cosψ sin2 ψ

)
(494)

Before attacking the time derivatives, we get:

ψ̇ =
(GmR)1/2

r2
= (Gm)1/2a1/2(1− e2)1/2

(1 + e cosψ)2

a2(1− e2)2

ψ̇ =
√
Gm

(1 + e cosψ)2

[a(1− e2)]3/2

ψ̇ =

(
Gm

a3

)1/2
(1 + e cosψ)2

(1− e2)3/2

(495)

Setting

β ≡ 4G3µ2m3

a5(1− e2)5
(496)

We get:
...
M11 = β(1 + e cosψ)2(2 sin 2ψ + 3e sinψ cos2 ψ) (497)
...
M22 = β(1 + e cosψ)2[−2 sin 2ψ − e sinψ(1 + 3 cos2 ψ)] (498)

M̈12 =
...
M21 = β(1 + e cosψ)2[−2 cos 2ψ + e cosψ(1− 3 cos2 ψ)] (499)
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The radiated power in the quadrupole approximation is

P (ψ) =
G

5c5

[ ...
M

2

11 +
...
M

2

22 + 2
...
M

2

12 −
1

3

( ...
M11 +

...
M22

)2]
=

2G

15c5

[ ...
M

2

11 +
...
M

2

22 + 3
...
M

2

12 −
...
M11

...
M22

]
=

8G4

15c5
µ2m3

a5(1− e2)5
(1 + e cosψ)4

[
12(1 + e cosψ)2 + e2 sin2 ψ

]
.

(500)

In Chapter 1, we explained that the energy of GWs becomes well-defined only when
averaged over several wave periods. As we will show, a particle in a Keplerian elliptical orbit
generates GWs with frequencies that are integer multiples of the frequency ω0, as defined
in equation (4.59). This means that the GW period is a fraction of the orbital period T .
Therefore, the appropriate well-defined quantity is the average of P (t) over one orbital period
T . We will now proceed to compute this time average.

P ≡ 1

T

∫ T

0

P (ψ) dt

=
ω0

2π

∫ 2π

0

dψ

ψ̇
P (ψ)

= (1− e2)3/2
∫ 2π

0

dψ

2π
(1 + e cosψ)−2P (ψ)

=
8G4µ2m3

15c5a5
(1− e2)−7/2

×
∫ 2π

0

dψ

2π

[
12(1 + e cosψ)4 + e2(1 + e cosψ)2 sin2 ψ

]
(501)

The total radiated power is:

P =
32G4µ2m3

5c5a5
f(e) (502)

with
f(e) =

1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

(503)

In the special case where e = 0 ⇒ f(e = 0) = 1 and we take

P =
32

5

Gµ2

c5
a4ω6

0 (504)

When a→ R&ωo → ωs. So we get

P =
32

5

Gµ2

c5
R4ω5

s circular orbit (505)

91



We can rewrite the orbital period T as:

T =
2π

ω0

= 2π

√
a3

Gm
=

2π√
Gm

(
Gmµ

2|E|

)3/2

T = 2π
(µ
2

)2/3
(Gm)E−3/2

(506)

We notice that the orbital period T is related to the orbital energy E, and thus we take

dT

dt
= #

d|E|−3/2

dt
= −3

2
#E−5/2Ė

Ṫ = −3

2
TE−1Ė

Ṫ

T
= −3

2

Ė

E
Ṫ

T
= −96G3

5c5
µm2

a4
f(e)

Ṫ

T
= − 96

5c5
G5/3m2/3µ

(
T

2π

)−8/3
f(e)

(507)

In equation 502, when e → t− and a is fixed, the radiated power diverges. This means
that the point-like mass approximation ceases to be valid. When e → 1− we get equation
472 as a parabole:

r =
R

1 + cosψ
(508)

Since ψ ∈ [−π, π] we get:

ψ = −π ⇒ r → ∞ (509)

ψ = 0 ⇒ r =
R

2
(510)

ψ = π ⇒ r → ∞ (511)

For e→ 1− we get equation 500 to read:

P (ψ) =
8G4µ2m3

15c5a5(1− e2)5
(1 + cosψ)4[12(1 + cosψ)2 + sin2 ψ]

P (ψ) =
8G4µ2m3

15c5R5
[12(1 + cosψ)6 + (1 + cosψ)4 sin2 ψ]

(512)

Equation 512 produces the radiation emitted along the trajectory in terms of r reads:

P (ψ) =
8G4µ2m3

15c5
R

r4

[
12(1 + cosψ)2 + 2− cos2 ψ − 1− 2 cosψ + 2 cosψ

R2

]
P (ψ) =

8G4µ2m3

15c5

(
12R

r6
+
R

r4

[
−(1 + cosψ)2

R2

]
+

2R

r4
cosψ + 1

R2

)
P (ψ) =

8G4µ2m3

15c5

(
11R

r6
+

2

r5

)
P (ψ) =

16G4µ2m3

15c5
1

r5

(
1 +

11R

2r

)
(513)
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Finally, the total energy radiated in GWs is finite

Erad =

∫ +∞

−∞
dtP (ψ(t)) =

∫ π

−π
dψ

dt

dψ
P (ψ) =

∫ π

−π

dψ

ψ̇
P (ψ)

Erad =
85 · 2Gµ2π

3c5R

(
Gm

R

)5/2

=
85Gµ2π

48R

[
2

c

(
Gm

R

)1/2
]5

Erad ==
85π

48

Gµ2

R

(v0
c

)5
(514)

where v20 ≡ 4Gm
R

.
v0 is the velocity at ψ = 0 ⇐⇒ r = R

2
, it defines the maximum velocity attained along

the trajectory.
Next, we want to compute the frequency spectrum of the radiated power for a Keplerian

elliptic orbit. The trajectory as a function of time is not a harmonic motion when described
by Eqs. (441), (442) 483. The first to compute dP

dΩ
is to Fourier transform the trajectory.

Observing that x(t)&y(t) are periodic functions of β with period 2π, we can restrict β to
−π ≤ β ≤ π and perform a discrete Fourier transform as:

x(β) =
∞∑

n=−∞

x̃ne
−inβ, (515)

y(β) =
∞∑

n=−∞

ỹne
−inβ. (516)

with ˜x∗−n = x̃ and ˜y∗−n = ỹ We can choose the origin of time so that at t = 0 or equivalently
at β = 0, to be x = a(1− e) and y = 0. With this choice, we get

x(β) = x(−β) ⇒
∞∑
n=0

x̃ne
e−inβ

=
∞∑
n=0

x̃ne
einβ ⇒

cosnβ − i sinnβ = cosnβ + i sinnβ ⇒
sinnβ = 0

(517)

and

y(−β) = −y(β) ⇒
∞∑
n=0

ỹne
e−inβ

= −
∞∑
n=0

ỹne
einβ ⇒

cosnβ − i sinnβ = − cosnβ − i sinnβ ⇒
cosnβ = 0

(518)

The exponential e−inβ is written as e−inβ = cosnβ − i sinnβ. Therefore, the expansion of
x(β), contributes only cos(nβ) while the expansion of y(β), contributes only sin(nβ), we can
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simplify the Eqs. (471) and (472)

x(β) =
∞∑

n=−∞

x̃n cosnβ

x(β) =
∞∑

n=−∞

2x̃n cosnβ

x(β) =
∞∑
n=0

an cos(nβ)

(519)

y(β) =
∞∑

n=−∞

−iỹn sinnβ

y(β) =
∞∑

n=−∞

−2iỹn sinnβ

y(β) =
∞∑
n=1

bn sin(nβ)

(520)

where, for n ≥ 1, an = 2x̃n and bn = −2iỹn, while a0 = x̃0. Since β ≡ ω0t and
nβ = nω0t = ωnt, we get:

x(t) =
∞∑
n=0

an cosωnt (521)

y(t) =
∞∑
n=1

bn sinωnt (522)

where
ωn = nω0 (523)

The coefficients an and bn are obtained by inverting Eqs. (477) and (478), which gives,
for n ̸= 0,

x(β) =
∞∑
n=0

an cos(nβ)∫ π

0

dβ cos(nβ)x(β) =
∞∑
n=0

an

∫ π

0

dβ cos2(nβ)

=
∞∑
n=0

an

∫ π

0

dβ
1

2
(1 + cos (2β))

=
∞∑
n=0

an
2
[π] ⇒

an =
2

π

∫ π

0

dβx(β) cos(nβ)

(524)
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y(β) =
∞∑
n=1

bn sin(nβ)

bn =
2

π

∫ π

0

dβy(β) sin(nβ)

(525)

while, for n = 0 : bn = 0,

x(β) = a0 cos 0 ⇒ a0 =
1

π

∫ π

0

dβx(β) (526)

The integrals above are solved in terms of Bessel’s functions :

an = −Jn−1(ne)− Jn+1(ne), (4.94)

bn =
1

ne

[
Jn−1(ne) + Jn+1(ne)

]
. (4.95)

For n ̸= 0, and a0 = −(3/2)ae.
To compute the second mass moment we need x2(t), y2(t)&x(t)y(t). The inverse Direct

Fourier Transform for these is computed to be

x2(t) =
∞∑
n=0

An cosωnt (527)

y2(t) =
∞∑
n=0

Bn cosωnt (528)

x(t)y(t) =
∞∑
n=1

Cn sinωnt (529)

where

An =
a2

n

[
Jn−2(ne)− Jn+2(ne)− 2e

(
Jn−1(ne)− Jn+1(ne)

)]
(530)

Bn =
b2

n
[Jn+2(ne)− Jn−2(ne)] (531)

Cn =
ab

n

[
Jn+2(ne) + Jn−2(ne)− e

(
Jn−1(ne) + Jn+1(ne)

)]
(532)

Therefore, the second moment reads:

Mab(t) =
∞∑
n=0

(
An cosωnt Cn sinωnt
Cn sinωnt Bn cosωnt

)
(533)

=
∑
n=0

M
(n)
ab (t) (534)

where M (n)
ab (t) represents the n-th harmonic term. Furthermore,

...
M

(n)

ab (t) = µω3
n

(
An sinωnt −Cn cosωnt
−Cn cosωnt Bn sinωnt

)
ab

(535)

95



To compute Pn, we use the quadrupole formula, written in the form:

P =
2G

15c5
⟨
...
M

2

11 +
...
M

2

22 + 3
...
M

2

12 −
...
M11

...
M22⟩ (536)

Pn =
2G

15c5
µ2ω6

n⟨A2
n sin

2 ωnt+B2
n sin

2 ωnt+ 3C2
n cos

2 ωnt− AnBn sin
2 ωnt⟩

Pn =
Gµ2ω6

0n
6

15c5
⟨A2

n +B2
n + 3C2

n − AnBn⟩
(537)

where ⟨sin2 ωnt⟩ = ⟨cos2 ωnt⟩ = 1
2

inserting ω2
0 = Gm

a3
and writing 1

15
= 32

5·96 we get:

Pn =
32G4µ2m3

5c5a5
n6

96a4
⟨A2

n +B2
n + 3C2

n − AnBn⟩

Pn =
32G4µ2m3

5c5a5
g(n, e)

(538)

with g(n, e) ≡ n6

96a4
⟨A2

n + B2
n + 3C2

n − AnBn⟩ In equation 538 we see that the coefficients
An, Bn and Cn are functions of the eccentricity and total power P ≡

∑∞
n=0 Pn.

5.3.2 Evolution of the orbit under back-reaction

A binary system following a Keplerian orbit radiates both energy and angular momentum.
Assuming the bodies are point-like and lack intrinsic spin, this radiation drains energy and
angular momentum from the orbital dynamics. As a result, the orbit undergoes progressive
modifications, notably in its semi-major axis and eccentricity, until the system eventually
transitions into the merging phase and collapses. This section explores the evolution of the
orbital parameters, specifically the size and shape, for a general elliptical orbit. The energy
radiated in the quadrupole approximation is given as:

P =
32G4µ2m3

5c5a5
f(e)

where
f(e) = (1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)

(539)

The angular momentum radiated in quadrupole approximation reads as:

dLi

dt
= −2G

5c5
ϵikl⟨

...
Qka

...
Q la⟩ (540)

since ϵikl
...
Qka = ϵiklδka

...
Q la = 0. We change Q→M and without loss of generality we get:

dLi

dt
= −2G

5c5
ϵikl⟨

...
Mka

...
M la⟩ (541)

As in the computation of radiated energy, we put the orbit in the (x, y) plane, and Mab

is given by Eqs. (443)-(446) or in matrix form

Mab = µr2
(

cos2 ψ sinψ cosψ
sinψ cosψ sin2 ψ

)
ab

(542)
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Inside the bracket, we can integrate by parts equation 542 and get:

dLi

dt
= −2G

5c5
ϵikl⟨ d

dt
(M̈ka

...
M la)− M̈kaM

(4)
la ⟩ ⇒

dLi

dt
= −2G

5c5
ϵikl⟨M̈ka

...
M la⟩ ⇒(x,y)-plane

i=z, Lz≡L

dL

dt
= −2G

5c5
ϵ3kl
〈
M̈ka

...
M la

〉
⇒

dL

dt
= −2G

5c5
⟨M̈1a

...
M2a − M̈2a

...
M1a⟩ ⇒

dL

dt
= −2G

5c5
⟨M̈12

...
M22 + M̈11

...
M12 − M̈12

...
M11 − M̈22

...
M12⟩

dL

dt
= −4G

5c5
⟨M̈12(M̈11 −

...
M22)⟩

(543)

The derivative M̈12 reads:

M12 = µ
a2(1− e2)2

(1 + e cosψ)2
cosψ sinψ

Ṁ12 = µa2(1− e2)2

[
− sin2 ψψ̇ + cos2 ψψ̇

(1 + e cosψ)2
+

2(1 + e cosψ)e sinψ

(1 + e cosψ)4
ψ̇ cosψ sinψ

]

Ṁ12 = µ[Gma(1− e2)]1/2
(
cos2 ψ − sin2 ψ + e cos3 ψ − e sin2 ψ cosψ + 2e sin2 ψ cosψ

1 + e cosψ

)
Ṁ12 = µ[Gma(1− e2)]1/2

(
cos2 ψ + cos2 ψ − 1 + e cos3 ψ − e cos3 ψ + e cosψ

1 + e cosψ

)
Ṁ12 = µ[Gma(1− e2)]1/2

(
2 cos2 ψ + e cosψ − 1

1 + e cosψ

)
M̈12 = µ[Gma(1− e2)]1/2

[
−4 cosψ sinψψ̇ − e sinψψ̇

1 + e cosψ
+

(2 cos2 ψ + e cosψ − 1)(e sinψψ̇)

(1 + e cosψ)2

]
M̈12 =

Gµ sinψ

a(1− e2)
(−4 cosψ − 4e2 cosψ − 8e cos2 ψ + 6e cos2 ψ − 2e+ 4e2 cos2 ψ)

M̈12 =
Gµ sinψ

a(1− e2)
(−4(1 + e cosψ)2 cosψ + 2e(3 cos2 ψ − 1 + 2e cos3 ψ))

(544)

For periodic nations, the average of the GW is the average over one orbital period T and we
get: ∫ T

0

dt(. . .) =

∫ 2π

0

dt

dψ
dψ

ω0

2π
=

∫ 2π

0

dψ

2π

(1− e2)3/2

(1 + e cos2 ψ)
(. . .) (545)

Then dL
dt

reads:

dL

dt
=

4G

5c5

∫ 2π

0

dt

2π

(1− e2)3/2

(1 + e cosψ)2
[M̈12(

...
M11 −

...
M22)] ⇒
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dL

dt
=

4G

5c5
(1− e2)3/2

Gmµ

a(1− e2)
4µ

(
G3m3

a5(1− e)5

)1/2

×∫ 2π

0

dψ sinψ

(1 + e cosψ)2
[−4(1 + e cosψ)2 cosψ + 2e(3 cos3 ψ − 1 + 2e cos3 ψ)]×

[(1 + e cosψ)4(4 sin 2ψ + 6e sinψ cos2 ψ + e sinψ)] ⇒

dL

dt
=

16

5c5
G7/2 (1− e2)−2

a7/2
m5/2µ2×∫ 2π

0

dψ

[
−4 cosψ +

2e(3 cos2 ψ − 1 + 2e cos3 ψ)

(1 + e cosψ)2

]
× sinψ×

[(1 + e cosψ)2(8 cosψ + 6e cos2 ψ + e)]

(546)

I =

∫ 2π

0

dψ

[
− 4 cosψ + 4 cos3 ψ +

2e(3 cos2 ψ − 1 + 2e cos3 ψ)

(1 + e cosψ)2

− 2e(3 cos4 ψ − cos2 ψ + 2e cos5 ψ)

(1 + e cosψ)2

]
× (1 + e cosψ)2(8 cosψ + 6e cos2 ψ + e)

=

∫ 2π

0

[
− 4 cosψ(1− cos2 ψ)(1 + e cosψ)2(8 cosψ + 6e cos2 ψ + e)

+ 2e(2e cos3 ψ + 3 cos2 ψ − 1− 3 cos4 ψ + cos2 ψ − cos5 ψ)
]

=

∫ 2π

0

dψ[(−4 cosψ − 4e2 cos3 ψ − 8e cos2 ψ + 4 cos3 ψ + 4e2 cos5 ψ + 8e cos4 ψ)×

(8 cosψ + 6e cos2 ψ + e) + 2e(4 cos2 ψ − 3 cos4 ψ)]

I =

∫ 2π

0

dψ[cos2 ψ(−32− 8e2 + 8e) + cos4 ψ(−72e2 + 32− 6e) + cos6 ψ(80e2)]

I =− 8π(e2 − e+ 4)− 3π

2
(36e2 − 3e+ 16) + 50e2π

I =− 8πe2 − 54πe2 + 50πe2 + πe+
9πe

2
− 56π

I =− 12πe2 +
25

2
πe− 56π

(547)

Thus, we take
dL

dt
= −32

5

G7/2µ2m5/2

c5a7/2
1

(1− e2)2

(
1 +

7

8
e2
)

(548)

Going back to Eqs. 474 and 478 we get:

E =
Gmµ

2a
⇒ dE

dt
=
Gmµ

2

1

a2
da

dt
(549)
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e2 = 1
2

Gmµ2
L2 ⇒

2e
de

dt
=

2

Gmµ2
2L
dL

dt
⇒

e
de

dt
=

2

Gmµ2
µr2ψ̇

dL

dt
⇒

e
de

dt

Gmµ

2
=
dL

dt

[
a2(1− e2)2

(1 + e cosψ)2

](
Gm

a3(1− e2)3

)
× (1 + e cosψ)2 ⇒

e
de

dt
=

2

Gmµ

dL

dt
[(Gm)−1a7(1− e2)9]1/2

(550)

dL

dt
=
de

dt
e

[
4a7(1− e2)5

(Gm)3µ2

]1/2
(551)

Substituting Eqs. 550, 551 from 538 and 549 respectively we see evolution of e and a as:

dE

dt
= −32

5

G4µ2m3

c5a5
(1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)

Gmµ

2a2
da

dt
= −32

5

G4µ2m3

c5a5
(1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
)

da

dt
= −64

5

G3µm2

a3c5
(1− e2)−7/2

(
1 +

73

24
e2 +

37

96
e4
) (552)

de

dt
=
dL

dt

1

e

(
4a7(1− e2)5

G3m3µ2

)−1/2
de

dt
= −304

15

G3µm2

c5a4
e

(1− e2)5/2

(
1 +

121

304
e2
) (553)

equation 553 e = 0 ⇒ de
dt

= 0 so we get a circular orbit. Dividing Eqs. 552 and 553 we get:

da

de
=

192

304
a(1− e2)−1e−1

(
1 + 73

24
e2 + 37

96
e4

1 + 121
304
e2

)
da

de
=

12

19

a

e(1− e2)

1 + 73
24
e2 + 37

96
e4

1 + 121
304
e2

da

dt
=

12

19
de

(
1 + 73

24
e2 + 37

96
e4

e− e3 + 121
304
e3 − 121

304
e5

) (554)

ln a =
−2299 ln (e+ 1) + 1452 ln e+ 870 ln (121e2 + 304)− 2299 ln (e− 1)

2299

ln a = − ln (e+ 1)− ln (e− 1) +
12 ln e

19
+

870

2299
ln (121e2 + 304)

a = C0
1

e2 − 1
e12/19

(
1 +

121

304
e2
)870/2299

· 304870/2299

(555)

99



For e = e0, we get a0 = C0g(e0), so we have

a(e) =
a0
g(e0)

e12/19

e2 − 1
304870/2299

(
1 +

121

304
e2
)870/2299

a(e) =
a0
g(e0)

e12/19

e2 − 1

(
1 +

121

304
e2
)870/2299

(556)

Eqs. 538 and 559 for e = 0 produce:

dE

dt
= −32

5

G4µ2m3

c5a5

ω0=
√

Gm
a3

======⇒ dE

dt
= −32

5

G7/2m5/2

c5a7/2

(
Gm

a3

)1/2

(557)

dL

dt
= −32

5

G7/2µ2m5/2

c5a7/2

ω0=
√

Gm
a3

======⇒ dE

dt
= ω0

dL

dt
(558)

Equation 558 relates the energy and angular momentum of circular motion (e = 0). For
(e > 0), we get the equation 555 de

dt
< 0 and on an elliptic orbit becomes more and more

circular because of Gω’s emission.
We can rewrite the equations 552 and 553 in dimensionless form, by introducing a length

scale R∗, given as

R3
∗ =

4G3µm2

c6
(559)

and the dimensionless variable;

τ =
ct

R∗
=

ctc6

4G3µm2
=

c7t

4G3µm2
(560)

If ã(τ) = a(τ)
R∗

, we get:

R∗
dã(τ)

dt
= −16

5

4G3µm2

c5
c

R3
∗ã

3(τ)

1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

R∗
c

dτ

dt

dã

dτ
= −16

5

1

ã3
1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

dã

dτ
= −16

5

1

ã3
1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
) (561)

dτ

dt

de

dτ
= −76

15

4G3µm2

c5
1

R4
∗ã

4

e

(1− e2)5/2

(
1 +

121

304
e2
)

de

dτ
= −76

15

1

ã4
e

(1− e2)5/2

(
1 +

121

304
e2
) (562)

Where τ = ct
R∗

is the natural adimensional time-scale in the D.Eqs.
The rapid reduction in orbital eccentricity due to the back-reaction of gravitational waves

is a key outcome of the system’s evolution. This effect drives the orbit towards circularity
over time.
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Take, for example, a compact binary system like a neutron star-neutron star (NS-NS)
pair. At the early stages, when the orbital separation is much larger than the radius of a
neutron star, the system is far from merging, and the initial eccentricity, e0, is relatively
high. In the regime where e is small, the relationship simplifies to:

a(e) ≈ a0

(
e

e0

)12/19

(563)

Which leads to:

e ≈
(
a

a0
g(e0)

)19/12

(564)

This substantial reduction indicates that the orbit becomes nearly circular unless external
influences disturb the system before the merger phase. As a result, the two stars settle into
an almost perfectly circular trajectory, gradually shrinking in separation.

The time to coalescence is τ(a0, e0), and it represents the time required for a binary
system with an initial semi-major axis a0 and eccentricity e0 to merge. For a circular orbit
(e0 = 0), the expression simplifies to:

τ(a0, e0 = 0) = τ0(a0) =
5

256

c5a40
G3m1m2µ

(565)

where µ is the reduced mass of the system.
For systems with elliptical orbits, τ(a0, e0) can be determined by integrating the governing

equations. Integration is performed such that a(t) = 0 when t = τ(a0, e0), or equivalently,
e(t) = 0 at t = τ(a0, e0), as the eccentricity approaches zero at coalescence. Using the form
of a(e), the coalescence time is given by:

τ(a0, e0) =

∫ τ(a0,e0)

0

dt = − 15

304

c5

G3m2µ

∫ 0

e0

de
a(e)4(1− e2)5/2

e
(
1 + 121

304
e2
) (566)

Substituting a(e), this becomes:

τ(a0, e0) = τ0(a0)
48

19g4(e0)

∫ 0

e0

de
g4(e)(1− e2)5/2

e
(
1 + 121

304
e2
) (567)

Using the orbital period relation, this simplifies to:

τ(a0, e0) ≈ 9.829Myr
( τ0
1 hr

)(M⊙
m

)8/3(
M⊙
µ

)
F (e0) (568)

Where F (e0) is a function of the initial eccentricity.
The function F (e0) is given by:

F (e0) =
48

19

1

g4(e0)

∫ e0

0

g4(e)(1− e2)5/2

e
(
1 + 121

304
e2
) de (569)

with

101



g(e) =

(
1 +

121

304
e2
)

(570)

For small initial eccentricities (e0 → 0), the result converges to that of a circular orbit,
where F (0) = 1. In the limit e0 → 1, the integral becomes dominated by values near e = 1,
resulting in:

F (e0) ∝
48

19

1

g4(e0)

∫ e0

0

1(
1 + 121

304
e2
)g4(e)(1− e2)5/2 de (571)

This further simplifies to:

F (e0) ∝ G(e0)(1− e20)
7/2 (572)

and after some strenuous numerical calculations, we get that

F (e0) ≈ 1

. This last statement provides the evidence that for e0 ≪ 1, we have exactly circular
orbits. When G(e0) is a slowly varying function that approaches a finite limit as e0 → 1.
Numerically, G(1) ≈ 1.80. A plot of G(e0) shows that it remains close to unity for most
values of e0.

5.4 Application in Cosmological Distances

The application in cosmological distances has many aspects included. Here we study GW as-
pects in Friedmann-Robertson-Walker spacetime in distances of several gigaparcecs. Further
information can be found in [27] and [69].

Until now, our discussions have assumed that the merging binary systems are sufficiently
close to Earth, such that the effect of the Universe’s expansion on the gravitational waves
(GWs) traveling to the detector could be ignored. However, advanced gravitational-wave
detectors are expected to observe merging binaries at cosmological distances.

On scales of several gigaparsecs (Gpc), the Universe can be treated as isotropic and
homogeneous, approximated by the Friedmann–Robertson–Walker (FRW) metric:

ds2 = c2dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θ dϕ2

]
(573)

A light signal follows a null curve, so it obeys:

ds2 = 0 (574)

Because of homogeneity, we choose the starting point of the trajectory r0 to be r0 = 0.
Isotropy makes the choice of θ0 and ϕ0 irrelevant. All geodesics that pass through r0 = 0 are
times a constant θ, ϕ so we get dθ = 0 = dϕ and equation 573 reads:

ds2 = 0 ⇒ c2dt2 = a2(t)
dr2

1− kr2
⇒
∫ t

0

cdt′

a(t′)
=

∫ rH

0

dr√
1− kr2

(575)
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The proper distance to the horizon measured at time t is:

dH(t) =

∫ rH

0

√
grrdr =

∫ rH

0

a(t)
dr√

1− kr2
(576)

dH(t) = a(t)

∫ t

−

cdt′

a(t′)
(577)

where dH(t) = rphys(t).
The proper distance to the horizon defines the physical distance for a flat universe (k = 0),

and then we get:
rphys = a(t)r (578)

Next, if we consider a source located at the comoving distance r, that emits signals
traveling at the speed of light c, and is received by an observer located at r = 0. Under this
assumption, equation 575 reads as:∫ temis

tobs

dt
c

a(t)
=

∫ r

0

dr√
1− kr2

(579)

Suppose that temis +∆temis is emitted a second wavecrest and received at tobs +∆tobs. So we
get: ∫ tobs+∆tobs

temis+∆temis

c dt

a(t)
=

∫ r

0

dr√
1− kr2

(580)

∫ tobs

temis

c dt

a(t)
=

∫ tobs+∆tobs

temis+∆temis

c dt

a(t)
(581)

[∫
tem+∆tem

+

∫
tem

−
∫ tobs+∆tobs

+

∫ tobs
]
cdt

a(t)
= 0 ⇒∫ tem+∆tem

tem

cdt

a(t)
=

∫ tobs+∆tobs

tobs

cdt

a(t)

(582)

RHS in equation 580 remains the same since the source is fixed in the comoving coordinate
system. Finally we impose that the wavelength λ is much smaller than ct the time interval
between signals, so:

λ ≡ cδt ≪ ct (583)

and because of condition 583 we see that a(t) ≈ a =constant and equation 582 yields:

1

a(tem)

∫ tem+∆tem

tem

cdt ≃ 1

a(tobs)

∫ tobs+∆tobs

tobs

cdt (584)

∆tem
a(tem)

≃ ∆tobs

a(tobs)
⇒ ∆tobs =

a(tobs)

a(tem)
∆tem (585)

Based on 585, we define the redshift of the source as

1 + z =
a(tobs)

a(tem)
(586)
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From 585 we get:

dtobs =
a(tobs)

a(tem)
dtem ⇒ dtobs = (1 + z)dts (587)

for infinitesimal ∆t and ts the time measured by the source. Inversely, the frequency
redshift is:

1

dtobs
=

1

(1 + z)dts
⇒ fobs =

fs
1 + z

(588)

c=λf
===⇒ c

λobs
=

c

λs(1 + z)
⇒ λobs = (1 + z)λs (589)

The absolute luminosity L of the source in the rest frame is the radiated power and is
defined as:

L =
dEs
dts

(590)

The energy flux is defined by:

F =
L

4πd2L
(591)

Where dL is the luminosity distance. The observed energy is redshifted in an expanding
universe as

Eobs =
Es

1 + z
(592)

dEobs

dtobs
=

1

1 + z

dEs
dtobs

dEobs

dtobs
=

1

1 + z

1

1 + z

dEs
dts

dEobs

dtobs
=

1

(1 + z)2
dEs
dts

(593)

At time t, the surface of a sphere with comoving radius r is 4πa2(t)r2. When the radiation
arrives at the observer after tobs, it is spread over an area 4πa2(tobs)r

2. Therefore, the
luminosity flux is:

F =
L

4πa2(tobs)r2(1 + z)2
=

L
4πd2L

⇒ (594)

dL = a(tobs)r(1 + z) (595)

dL in terms of z is expresses as following. We Taylor expend a(t) around the present epoch
t = t0

a(t)

a(t0)
= 1 +

ȧ(t0)

a(t0)
(t− t0)−

1

2

ä(t0)

a(t0)
(t− t0)

2 +O(3) (596)

We set the Humble parameter in the present epoch to be:

H(t0) ≡ H0 ≡
ȧ(t0)

a(t0)
(597)

And the deceleration parameters are:

q0 = − ä(t0)
a(t0)

1

H2
0

= −a(t0)ä(t0)
ȧ2(t0)

(598)
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So we write 596 as:

a(t)

a(t0)
= 1 +H0(t− t0)−

1

2
q0H

2
0 (t− t0)

2 +O(t− t0)
3 (599)

or inverted using z = 1− a(t)
a(t0)

is:

z = H0(t0 − t) +
(
1 +

q0
2

)
H2

0 (t0 − t)2 + . . . (600)

(to − t) = H−1o

[
z −

(
1 +

qo
2

)
z2 + . . .

]
(601)

We can rewrite equation 599 with 601 as:

a(t)

a(t0)
= 1−H0H

−1
0

[
z −

(
1 +

qo
2

)
z2 + . . .

]
− 1

2
q0H

2
0H
−2
0

[
z −

(
1 +

qo
2

)
z2
]2

+O(z3)

and
H0dL
c

= z +
1

2
(1− q0)z

2 + . . . (602)

The first term of the expansion in equation 602 is Hubble’s law z ≃ dLH0

c
, which states that

redshifts are proportional to distances. For example, we apply k = 0 for a flat universe in
equation 579 and then we get: ∫ tobs+∆tobs

tem+∆tem

cdt

a(t)
=

∫ r

0

dr′ = r (603)

1 + z(t) =
a(t0)

a(t)
⇒

dz(t)

dt
= a(t0)

(
− 1

a2(t)

da(t)

dt

)
⇒

dz(t)

dt
= −a(t0)

a(t)

ȧ(t)

a(t)

dt

a(t)
= − 1

a(t0)

dz

H(z)

(604)

∫ tobs

tem

cdt

a(t)
= −

∫ 0

z

cdz′

a(t0)H(z′)
= r ⇒ a(t0)r = c

∫ z

0

dz′

H(z′)
(605)

(1+z)
===⇒ dL = (1 + z)a(t0)r = (1 + z)c

∫ z

0

dz′

H(z′)
(606)

d
dz==⇒ c

H(z)
=

d

dz

[
dL

1 + z

]
(607)

We want to see the way a propagating waveform at cosmological distances is modified.
We define a local wave zone as the region where the distance t0 to the source is sufficiently
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large, so the grows. Field goes as 1
r
, but also sufficiently small so the expansion of the

universe is negligible. In the local wave zone during the propagation, the scale factor a(t)
does not change appreciably, so physical distances in this zone are written as:

rphys = a(temis)r (608)

Where r is the commoving distance.
Eqs. 251 and 252 read in the local wave zone as:

h+(ts) = hc(t
ret
s )

(
1 + cos2i

2

)
cos

[
2π

∫ trets

dt′sf
(s)
gw (t

′
s)

]
(609)

where

• ts is the time measured by a clock in the source

• trets is the corresponding retarded time of the source

• f
(s)
gw is the associated GW frequency to ts

And we define

hc(t
ret
s ) ≡ 4

atemisr

(
GMc

c2

)5/3(
πfgwt

ret
s

c

)2/3

(610)

h×(ts) = hc(t
ret
s ) cos i sin

[
2π

∫ trets

dt′sf
(s)
gw (t

′
s)

]
(611)

In terms if time to coalescence τs = tscod − ts, we read the dependence of f (s)
gw on ts as:

f (s)
gw =

1

π

(
5

256

1

τs

)3/8(
GMc

c3

)−5/8
(612)

H̄ scalar perturbation ϕ propagates in a FRW metric, following

2ϕ = 0 ⇒ 1√
−g

∂µ(
√
−ggµν∂νϕ) = 0 (613)

This wave equation is solved on a FRW metric, by introducing the conformal time η,
given as:

dη =
dt

a(t)
(614)

⇒ η =

∫
dη =

∫ t

0

dt′

a(t′)
(615)

The line element (given in equation 573) is written in terms of the conformal tie as:
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ds2 = −c2dt2 + a2(t)[dr2 + r2dθ2 + r2sin2θdϕ2] ⇒
ds2 = a2(η)[−c2dη2 + dr2 + r2dθ2 + r2 sin2 θdϕ2]

(616)

Here

gµν =


−c2a2 ∅

a2

a2r2

∅ a2r2sin2θ

 (617)

and
√
−g = −acr2 sin θ and equation 613 is:

1√
−g

∂µ
(√

−g gµν∂νϕ
)
= 0 ⇒

∂o
(√

−g goν∂νϕ
)
+ ∂i

(√
−g giν∂νϕ

)
= 0 ⇒

∂o
(√

−g goo∂oϕ
)
+ ∂o

(√
−g goi∂iϕ

)
+ ∂i

(√
−g gio∂oϕ

)
+ ∂i

(√
−g gii∂iϕ

)
= 0 ⇒

− 1

c2
∂η
[
a2(η)r2∂ηϕ

]
+ ∂r

[
a2(η)r2∂rϕ

]
= 0 ⇒

− 1

c2
[
2a(η)∂ηa(η)r

2∂ηϕ+ a2(η)r2∂2ηϕ
]

+ a2(η)
[
2r∂rϕ+ r2∂2rϕ

]
= 0.

or for f ′ = 1
c
∂ηf we get:

∂2rf − f ′′ − 2a′

a
f ′ = 0 (618)

If we write f(r, η) = 1
a(η)

g(r, η), we have:

• The first derivative:
f ′ = − 1

a2
a′(η)g(r, η) +

1

a(η)
g′(r, η) (619)

• The second derivative:

f ′′ =
2

a3
(
a′(η)

)2
g(r, η)− 1

a2
a′′(η)g(r, η)− 2

a′(η)

a2
g′(r, η) +

1

a(η)
g′′(r, η) (620)

•
∂2rf(r, η) =

1

a(η)
∂2rg(r, η) (621)

Thus, equation 618 can be written as:

1

a(η)
∂2rg −

2a′2

a3
g +

2a′

a2
g′ +

2(a′)2

a3
g +

a′′

a2
g − 1

a
g′′ − 2a′

a2
g′ = 0 ⇒

∂2rg −
a′′

a
g − g′′ = 0

(622)
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We approximate the solutions in the limit ω2 ≫ a′′

a
we see that a′′

a
∼ 1

η2
⇒ ω2 ≫ a′′

a
and

then equation 622 reads:
∂2rg − g′′ = 0 (623)

with solution
g(r, η) ≃ exp

[
±iω

(
η − r

c

)]
(624)

f(r, η) ≃ 1

a(η)
exp

[
±iω

(
η − r

c

)]
(625)

ϕ(r, η) ≃ 1

r
f(r, η)

ϕ(r, η) ≃ 1

ra(η)
exp

[
±iω

(
η − r

c

)] (626)

In the present epoch we normalize the conformal time η to be η = t, so we get:

ϕ(r, t) ≃ 1

ra(t0)
exp

[
±iω

(
η − r

c

)]
(627)

So a scalar wave through an FRW background simply follows equation 627, a plane wave.
For tensor perturbations hµν we have the propagation equation to read:

DρD
ρhµν = 0 (628)

Following the same steps as in scalar ϕ, we get the same equation:

hµν(r, t) ≃
Aµν
ra(t0)

e±iω(t−
r
c) (629)

In the analysis between Eqs. 628 and 629 we need to impose the condition ω2 ≫ 1
η2

. This
condition defines the background geometrical optics approximation, where ω is large w.r.t
η−1. In the BG geometrical optics approximation, all massless particles follow null geodesics.
To leading order:

i) The two polarizations h× and h+ decouple, so each one satisfies a wave equation inde-
pendently.

ii) Both h× and h+ satisfy the same Eqs. (618 - 627) as ϕ.

The conclusion is that after propagation from source to detector, the GW amplitude from
a binary is given by Eqs. 609, 610 and 611.

In equation 610, though, we must write:

hc(t
tret
s ) =

4

a(t0)r

(
GMc

c2

)5/3
(
πf

(s)
gw tstret
c

)2/3

(630)

The geometrical optics condition today is given by 2πfgw ≫ t−10 , where t0 is the age
of the Universe today. This condition is satisfied by all gravitational waves (GWs) with
wavelengths smaller than the present Hubble size of the Universe.
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Following equation 588, we can write the observed frequency as:

f (s)
gw = f (obs)

gw (1 + z), (631)

where z is the redshift.

hc(t
ret
obs) =

4

a(t0)r

(
GMc

c2

)5/3
(
πf obs

gw (1 + z)

c

)2/3

(632)

hc(t
ret
obs) =

4(1 + z)5/3

dL

(
GMc

c2

)5/3
(
πf obs

gw

c

)2/3

(633)

If we define Mc = (1 + z)Mc, we get the following:

hc(t
ret
obs) =

4

dL

(
GMc

c2

)5/3
(
πf obs

gw

c

)2/3

(634)

The same form as for non-expansible universe but with r → dL and Mc → Mc. In the case
of nonvanishing redshift, we reserve the name "chirp mass" for Mc, not Mc. The dependence
of f (obs)

gw on tobs is given by

f (obs)
gw =

1

1 + z
f (s)

gw =
1

1 + z

1

π

(
5

256

1 + z

tobs

)3/8(
GMc

c3

)−5/8
⇒

f (obs)
gw =

1

π

(
5

256

1 + z

τobs

)3/8(
GMc

c3

)−5/8 (635)

with

ḟ (obs)
gw =

d

dt

(
1

π

(
5

256

)3/8

τ
−3/8
obs

(
G

c3

)−5/8
M−5/8

c (z)

)
⇒

ḟ (obs)
gw =

96

5
π8/3

(
GMc(z)

c3

)5/3 [
f (obs)

gw

]11/3 (636)

Compared to the z = 0 case, we get the modification of fields as below:

i) f (obs) = f (s

1+z

ii) 1
r

in amplitude is replaced by 1
dL(z)

iii) Mc is replaced by Mc(z) = (1 + z)Mc.
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5.5 Radiation from rigid bodies

The production of GWs from rotating and precessing rigid bodies is computed in [29]. The
radiation from non-axisymmetric bodies is discussed in [70] and [71]. In [72], the rotating
fluid stars are extensively studied, while in [73] and [74] the back-reaction due to wobble
radiation is discussed.

The generation of gravitational waves (GWs) from the rotation of a rigid body is of
significant importance, particularly when applied to isolated neutron stars. In classical
mechanics, the inertia tensor is introduced as a fundamental quantity that characterizes the
rotational properties of a rigid body. It is expressed as

I ij =

∫
d3x ρ(x⃗)

(
r2δij − xixj

)
, (637)

where ρ(x⃗) represents the mass density of the body.
The inertia tensor I ij is a symmetric Hermitian matrix. Through an appropriate rotation,

it can always be diagonalized in an orthogonal coordinate system. This results in a frame
where the components of the inertia tensor become the principal moments of inertia, denoted
by I1, I2, I3. The coordinate system in which the tensor is diagonal is referred to as the "body
frame," and its axes are called the principal axes of the body. The corresponding coordinates
are denoted by x′i. The diagonal components are:

I11 =

∫
d3x′ ρ(x⃗′)

(
r2δ11 − x′1x

′
1

)
=

∫
d3x′ ρ(x⃗′)

(
x2

′

2 + x2
′

3

)
(638)

I22 =

∫
d3x′ ρ(x⃗′)

(
r2δ22 − x′2x

′
2

)
=

∫
d3x′ ρ(x⃗′)

(
x

′2
1 + x

′2
3

)
(639)

I33 =

∫
d3x′ ρ(x⃗′)

(
r2δ33 − x′3x

′
3

)
=

∫
d3x′ ρ(x⃗′)

(
x

′2
1 + x

′2
2

)
(640)

Adding Eqs. 638 and 639 we get:

I11+I22 =

∫
d3x′ρ(x⃗′)[x

′2
1 +x

′2
2 +2x

′2
3 ] ≥

∫
d3x′ρ(x′)(x

′2
1 +x

′2
2 ) ≡ I33 ⇒ I11+I22 ≥ I33 (641)

The quality in Eqs. 641 holds only if ρ(x⃗′) = δ(x
′
3). We consider a simple geometry of

an ellipsoid with semiaxes a,b,c, and uniform mass density ρ(x⃗′). We denote the density as:

ρ(x⃗′) = ρ =
m

V
=

m
4
3
πabc

(642)

And the ellipsoidal equation is
x21
a2

+
x22
b2

+
x23
c2

= 1 (643)

We set x′
1 ≡ x1

a
, x′

2 ≡ x2
b

and x′
3 ≡ x3

c
and rewrite the above equations as:
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I11 =

∫
d3x′

m
4π
3
abc

(b2x
′2
2 + c2x

′2
3 ) ⇒

I11 =
m

4π
3
abc

∫ ∫ ∫
abcdx

′

1dx
′

2dx
′

3(b
2x

′2
2 + c2x

′2
3 ) ⇒

I11 =
3m

4π

[∫
dx

′

1

∫
dx

′

2

∫
dx

′

3 b
2x

′2
2 +

∫
dx

′

1

∫
dx

′

2

∫
dx

′

3 c
2x

′2
3

]
⇒

I11 =
3m

4π

[∫ R

0

dr

∫ π

0

dθ

∫ 2π

0

dϕ b2r2 sin θr2 sin2 θ sin2 ϕ+

∫ R

0

dr

∫ π

0

dθ

∫ 2π

0

dϕ c2r2 sin θr2 cos2 θ

]
⇒

I11 =
R5mb2

5
+
R5mc2

5

R=1
===⇒

I11 =
m

5
(b2 + c2)

(644)

I22 =

∫
d3x′

m
4π
3
abc

(a2x
′2
1 + c2x

′2
3 )

R=1
===⇒

I22 =
3m

4π

∫ 1

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dϕ (a2r2 sin2 θcos2ϕ+ c2r2 cos2 θ) ⇒

I22 =
3m

4π

1

5

[
a2
∫ 1

−1
d cos θ(1− cos2 θ)

∫ 2π

0

dϕ cos2 ϕ+ c2
∫ 1

−1
d cos θ cos2 θ

∫ 2π

0

dϕ

]
⇒

I22 =
m

5
(a2 + c2)

(645)

I33 =

∫
d3x′

3m

4πabc
(a2x

′2
1 + b2x

′2
2 )

R=1
===⇒

I33 =
3m

4π

∫ 1

0

dr r2
∫ π

0

d cos θ

∫ 2π

0

dϕ (a2r2 sin2 θcos2ϕ+ b2r2 sin2 θ sin2 ϕ) ⇒

I33 =
m

5
(a2 + b2)

(646)

If we consider a rotating body with angular velocity ω, it will have angular momentum
given as:

Ji = Iijωj (647)

In the body frame, we denote by J
′
i and ω

′
i the components of angular momentum and

velocity, respectively. So we have:

J
′

1 = I11ω
′

1

J
′

2 = I22ω
′

2

J
′

3 = I33ω
′

3

(648)
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Figure 5: The principal axes (x′1, x′2, x′3), which rotate with the rigid body, and the fixed axes
(x1, x2, x3), adapted by Maggiore’s book, Gravitational Waves [15].

The direction of ω⃗ is different from the direction of J⃗ unless either I1 = I2 = I3 (spherical
objects) or the rotation is around one of the principal axes, e.g., when ω1 = ω2 = 0. The
rotational kinetic energy is

Erot =
1

2
Iijωiωj (649)

So, in the body frame, it is given simply by

Erot =
1

2

(
I11ω

′2
1 + I22ω

′2
2 + I33ω

′2
3

)
(650)

Finally, we can define the moment of inertia about the axis of rotation as follows:
If ω̂ is the unit vector in the direction of the axis of rotation so that ω⃗ = ωω̂, we can

write equation 649 as:

Erot =
1

2
Iijω̂iω̂jω

2 ⇒

Erot =
1

2
I⃗ω2

(651)

with
I⃗ ≡ Iijω̂iω̂j (652)

Rotation around a principle axis

We now consider a rotating rigid body around one of the principal axes. The coordinates
in the body frame are x′

i. The body frame, by definition, is attached to the body and rotates
with it. And the origin of the fixed and the principal axes coincide with the center of mass
of the body.
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As shown in the figure above, the axes between the time frames are related by the
following rule:

x
′

3 = x3

x
′

2 = x1(− sin (ωrott)) + x2(cos (ωrott))

x
′

1 = x1(cos (ωrott)) + x2(sin (ωrott))

or by the time-dependent rotation matrix

Rij =

 cos(ωrott) sin(ωrott) 0
− sin(ωrott) cos(ωrott) 0

0 0 1

 (653)

used in
x

′

i = Rijxj (654)

we denote by Iij ≡ diag(I1, I2, I3) the inertia tensor in the x′
1, x

′
2, x

′
3 coordinates system

and by Iij the components in the x1, x2, x3 coordinate frame.
I

′
ij is a constant matrix and Iij is time-dependent. The moment of inertia is a tensor and

implies that:

I
′

ij = RikRjlIkl (655)

I
′

ij = (RIRT )ij (656)

So in the matrix form, we have

I ′ = RIRT ⇒ I = RT I ′R (657)

x
′

1 = x1 cosωrott+ x2 sinωrott

x
′

2 = −x1 sinωrott+ x2 cosωrott

x
′

3 = x3

I
′

11 = R1kIklRl1 = R11I11R11 +R12I22R21

I
′

11 = I11 cos
2 ωrott+ I22 sin

2 ωrott

I
′

11 = I11 cos
2 ωrott+ I22(1− cos2 ωrott)

I
′

11 = (I11 − I22) cos
2 ωrott+ I22

I
′

11 = (I11 − I22)

(
1

2
− 1

2
cos 2ωrott

)
+ I22

I
′

11 =
1

2
I11 −

1

2
I22 + I22 −

1

2
I11 cos 2ωrott+

1

2
I22 cos 2ωrott

I
′

11 =
1

2
(I11 + I22)−

1

2
(I11 − I22) cos 2ωrott

(658)
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I
′

12 = R1kIklRl2 = R11I11R12 +R12I22R22

I
′

12 = I11 cosωrott sinωrott− I22 sinωrott cosωrott

I
′

12 =
1

2
(I11 − I22) sin 2ωrott

(659)

I
′

22 = R2kIklRl2 = R21I11R12 +R22I22R22,

I
′

22 = −I11 sin2 ωrott+ I22 cos
2 ωrott,

I
′

22 = 1− I11 − I22
2

cos 2ωrott.

(660)

I
′

33 = I33 (661)

while

I13 = 0 = I23 (662)

In the Quadrupole approximation, the GW amplitudes depend on the second mass mo-
ment M ij.Comparing the formula that define M ij and I ij, we see that

M ij = −I ij + cij (663)

and M ij, I ij are traceless. Based on equation 663, we rewrite Eqs. 659, 660 and 661 in
terms of M ij as:

M11 = −I11 − I22
2

cos 2ωrott+ c11 (664)

M12 = −I11 − I22
2

sin 2ωrott+ c12 (665)

M22 =
I11 − I22

2
cos 2ωrott+ c22 (666)

M33 = −I33 + c
′

33 = c33 (667)
M13 = c13 & M23 = c23 (668)

with ci3 constants. The second time derivative of Eqs. 664-668 yield:

M̈11 =
I11 − I22

2
cos 2ωrott(4ω

2
rot) (669)

M̈12 =
I11 − I22

2
sin 2ωrott(4ω

2
rot) (670)

M̈22 = −I11 − I22
2

sin 2ωrott(4ω
2
rot) (671)

M̈33 = M̈23 = M̈13 = 0 (672)

Eqs. 251 and 252 read:
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h+(t; θ, ϕ) =
G

Rc4

[
M̈11(cos

2 ϕ− sin2 ϕ cos2 i) + M̈22(sin
2 ϕ− cos2 ϕ cos2 i)− M̈33 sin

2 i−

M̈12 sin 2ϕ(1 + cos2 i) + M̈13 sinϕ sin 2i+ M̈23 cosϕ sin 2i
]

(673)

h+ =
4Gω2

rot

Rc4
I11 − I22

2

[
cos 2ωrott(cos

2ϕ− sin2 ϕ cos2 i− sin2 ϕ+ cos2 ϕ cos2 i)−

sin 2ωrott sin 2ϕ(1 + cos2i)

]

h+ =
4Gω2

rot

Rc4
I11 − I22

2

[
cos 2ωrott

(
cos2 ϕ(1 + cos2 i)− sin2 ϕ(1 + cos2 i)

)
− sin 2ωrott sin

2 ϕ(1 + cos2 i)

]
h+ =

4Gω2
rot

Rc4
I11 − I22

2
(1 + cos2 i)

[
cos 2ωrott(cos

2 ϕ− sin2 ϕ)

− sin 2ωrott sin 2ϕ

]

h+ =
4Gω2

rot

Rc4
(I11 − I22)

1 + cos2i

2

[
cos2ωrott cos 2ϕ− sin 2ωrott sin 2ϕ

]
h+(t; θ, ϕ) =

4Gω2
rot

Rc4
(I11 − I22)

1 + cos2 i

2
cos (2ωrott+ ϕ) (674)

h× =
2G

Rc4

[
(M̈11 − M̈22) sin 2ϕ cos i+ 2M̈12 cos 2ϕ cos i− 2M̈13 cosϕ sin i− 2M̈23 sinϕ sin i

]
h× =

4Gω2
rot

Rc4
(I1 − I2) cos i[2 sin(2ωrott+ 2ϕ)]

(675)

In Eqs. 674 and 675 we see GW amplitudes with period ωgw = 2ωrot. The fact that
h+ ∼ 1

2
(1 + cos2 i) and h× ∼ cos i is a generic property of Eqs. 251 and 252, whenever

M̈11 = −M̈22 & M̈i3 = 0 ∀i = 1, 2, 3.

Next, we define ellipticity

ϵ ≡ I11 − I22
I33

(676)

For a homogenous ellipsoid with semiaxes a,b,c, we have:

ϵ ≡ a− b

c
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and in the small asymmetry limit, Eqs. 638 - 640 produce:

ϵ =

∫
d3x′

(
b2x

′2
2 + c2x

′3
2 − a2x

′2
a − c2x

′3
2

a2x
′1
2 + b2x

′2
2

)
⇒

ϵ =

∫
d3x′

(
b2x

′2
2 − a2x

′2
a

a2x
′2
1 + b2x

′2
2

)
⇒

ϵ =
b2 − a2

b2 + a2
=

(b− a)(b+ a)

b2 + a2
=

(b− a)2a

2a2
⇒

ϵ =
b− a

a

(677)

Finally, Eqs. 674 and 675 read:

h+ =
4Gω2

rot

Rc4
(I11 − I22)

1 + cos2 i

2
cos (2ωrott) ⇒

h+ =
4Gω2

rot

Rc4

(
b− a

a

)
I33

(
1 + cos2 i

2

)
cos (2ωrott) ⇒

h+ =
4π2f 2

gwG

Rc4

(
b− a

a

)
I33

(
1 + cos2 i

2

)
cos (2ωrott) ⇒

h+ = h0

(
1 + cos2 i

2

)
cos (2ωrott)

(678)

with h0 ≡
4π2f2gwG

Rc4

(
b−a
a

)
I33 and Eq. 675

h× =
4Gω2

rot

Rc4
(I11 − I22) cos i sin (2ωrott) ⇒

h× = h0 cos i sin (2ωrott)
(679)

The radiated power in GWs is given if we insert equations 669 - 672 in the radiated power
expression of Chapter 3:

Pquad =
G

5c5
⟨
...
M ij

...
M ij −

1

3
(
...
Mkk)

2⟩

Pquad =
G

5c5
⟨
...
M1j

...
M1j −

1

3
(
...
M

2

11 +
...
M

2

22

...
M

2

33)⟩+
...
M2j

...
M2j +

...
M3j

...
M3j

Pquad =
G

5c5
⟨
...
M11

...
M11 +

...
M12

...
M12 +

...
M21

...
M21 +

...
M22

...
M22⟩ −

1

3

...
M

2

11 −
1

3

...
M

2

22

Pquad =
16Gω6

rot

5c5
(I11 − I22)

2⟨2 cos2 (2ωrot) + 2 sin2 (2ωrot)⟩

Pquad =
16Gω6

rot

5c5
2ϵ2I233

Pquad = −32Gϵ2

5c5
I233ω

6
rot

(680)
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dErot

dt
= −32G

5c5
E2I233ω

6
rot (681)

Eq. 681 produces the rotation energy decrease of a star because of GW emission.

ω̇rot = −32G

5c5
ϵ2I33ω

5
rot (682)

Eq. 682 shows the decrease in rotational frequency of a star because of GW emission.

5.5.1 GWs from freely precessing rigid bodies

In astronomical objects, the rotation axis does not coincide with a principal axis is and the
motion is a combination of rotation and precession. We introduce a fixed reference frame
with axes (x1, x2, x3). In this inertial frame, the angular momentum of the rigid body J⃗ is
conserved, and we choose the x3 axis in the direction of J⃗ . Next, we introduce the body
frame, a reference frame attached to the rotating body with axes (x′1, x

′
2, x
′
3) that coincide

with the principal axes of the body. The two frames are related by the Euler angles (α, β, γ).
The pass from fixed to body frame is done as follows: We perform a counterclockwise rotation
by an ample β around the x3 axis on the (x1, x2) plane. This way, we bring the x1 axis on
the line of nodes. The line of nodes is the intersection of the (x1, x2) and (x′1, x

′
2) planes.

Next, we rotate around the line of nodes by an ample α and bring the x3 axis to x′3. Finally,
we rotate around x′3 by an ample γ, so we bring the line of nodes to the x′1 axis. Therefore,
we have x′i = Rijxj, but now the rotation matrix is more complicated. The rotation matrix
R is given by:

R =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

1 0 0
0 cosα sinα
0 − sinα cosα

 cos β sin β 0
− sin β cos β 0

0 0 1

 (683)

The full motion of the rigid body is specified once we know how α, β, γ evolve with time.
The fixed frame, the angular momentum J⃗ is conserved, but in the non-inertial body frame
is not. We orient J⃗ along x3 axis, so J⃗ = (0, 0, J) In body frame we have (x′1, x

′
2, x
′
3) and the

components of angular momentum are: (J ′1, J
′
2, J

′
3)J ′1J ′2

J ′3

 = R

0
0
J

 =


J ′1 = J sinα sin γ,

J ′2 = J sinα cos γ,

J ′3 = J cosα.

(684)

To compute the components of angular velocity ω′j in terms of Eulerian angles and their
derivatives, we need to compute analytic expressions for α̇, β̇ and γ̇. The α̇ angular velocity
is orthogonal to the (x3, x

′
3) plane, so it lies along the line of nodes and has components in

the body frame that read:

dα⃗

dt
= (α̇ cos γ,−α sin γ, 0) (685)
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Similarly ˙⃗
β has components:

dβ⃗

dt
= (β̇ sinα sin γ, β̇ sinα cos γ, β̇ cosα) (686)

and dr⃗
dt

= (0, 0, γ̇). The total angular velocity is:

ω⃗ =
dα⃗

dt
+
dβ⃗

dt
+
dγ⃗

dt
(687)

So in the body frame, the components read:

ω′1 = α̇ cos γ + β̇ sinα sin γ (688)

ω′2 = −α̇ sin γ + β̇ sinα cos γ (689)

ω′3 = β̇ cosα + γ (690)
(691)

The angular momentum in terms of the inertia tensor components in the body frame is
written as:

J ′1 = I11ω
′
1 = I11(α̇ cos γ + β̇ sinα sin γ) (692)

J ′2 = I22ω
′
2 = I22(β̇ sinα cos γ − α̇ sin γ) (693)

J ′3 = I33ω
′
3 = I33(γ̇ + β̇ cosα) (694)

Comparing Eq. 683 with Eqs. 692-694 we get:

a : I11(α̇ cos γ + β̇ sinα sin γ) = J sinα sin γ (695)

b : I22(−α̇ sin γ + β̇ sinα cos γ) = J sinα sin γ (696)

c : I33(γ̇ + β̇ cosα) = J cosα (697)

Eqs. 695-697 provide the first order of equations for (α, β, γ) variables and constitute the
first integral of motion provided the angular momentum conservation.

Wobble radiation from an axisymmetric rigid body
For an antisymmetric body, with longitudinal axis x′3 that makes an angle α with the

angular momentum axis x3, we get the angle α to be called "wobble" angle and the corre-
sponding GW emission called "wobble radiation". Since the rigid body is axisymmetric, we
have I11 = I22 and in Eqs. 695-696 we get:

I11(α̇ cos2 γ + β̇ sinα sin γ cos γ) = J sinα sin γ cos γ)

I11(−α̇ sin2 γ + β̇ sinα sin γ cos γ) = J sinα sin γ cos γ)

And subtracting:

I11(−α̇ cos2 γ + α̇ sin2 γ + β̇ sinα sin γ cos γ − β̇ sinα sin γ cos γ) = 0

I11(α̇) = 0 ⇒ α̇ = 0
(698)
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Eq. 698 tells that the inclination of the x′3 axis with respect to the angular momentum
J⃗ is constant.

Again

I11(α̇ cos γ sin γ + β̇ sinα sin2 γ]) = J sinα sin2 γ

I11(−α̇ sin γ cos γ + β̇ sinα cos2 γ]) = J sinα cos2 γ

Adding now we get:
I11β̇ sinα = J sinα. (699)

In Eq. 699, if α ̸= 0, I11 = J
β̇
⇒ β̇ = J

I11
so the angular velocity of x′3 rotation is constant

about the direction of J⃗ . We define Ω as

Ω ≡ β̇ =
J

I11
. (700)

In Eq. 699 we supposed that α ̸= 0 and α̇ = 0 thus α is a constant and cosα and sinα
are constants as well and since β̇ is constant (Eq. 700) we get from Eq. 696 we get:

I33(γ̇ + β̇ cosα) = J cosα ⇒ γ̇ = constant

Again if J = I11β̇ is inserted in 696 we get:

I33(γ̇ + β̇ cosα) = I11β̇ cosα

I33γ̇ = (I11 − I33)β̇ cosα

γ̇ =
I11 − I33
I33

β̇ cosα

γ̇ =
I11 − I33
I33

Ωcosα

−γ̇ =
I11 − I33
I33

Ωcosα ≡ ωp

(701)

We define ωp ≡ −γ̇, since oblate objects satisfy I33 > I11, which is the normals shape of
astromical objects, so ωp > 0 Inserting α̇ = 0, β̇ = J

I11
≡ Ω and −dotγ ≡ ωp in Eqs. 688-690

a,b,c we get:

ω′1 = α̇ cos γ + β̇ sinα sin γ =
J

I11
sinα sin γ = Ωsinα cos (ωpt) (702)

ω′2 = Ωsinα cos (ωpt) (703)
ω′3 = Ωcosα− ωp (704)

In the body frame, the angular velocity rotates in the (x′1, x′2) plane, so it precesses around
the x′3 axis with angular velocity ωp. In ωp > 0, then precession is counterclockwise. We
observe that

|I33 − I11| ≪ I33 ⇒
|I33 − I11|

I33
≪ 1 ⇒ |ωp|

Ω
≪ 1 ⇒ Ω ≫ |ωp| (705)
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Condition 705, when satisfied, describes a free precession that takes place in the absence
of external torques: The components of the inertia tensor read

I ′11 =
1

2
(I11 − I33) sin

2 α cos 2β + constant (706)

I ′12 =
1

2
(I11 − I33) sin

2 α sin 2β (707)

I ′22 = −1

2
(I11 − I33) sin

2 α cos 2β + constant (708)

I ′13 = −(I11 − I33) sinα cosα sin β (709)
I ′23 = (I11 − I33) sinα cosα cos β (710)
I ′33 = I11 sin

2 α + I33 cos
2 α = constant (711)

Observation 1

i. γ does not enter Eqs. 706-711.

ii. α is a constant, so time-dependence manifests in β(t).

We choose the origin of β(t) to be at

t = 0 ⇒ β(t = 0) = 0 (712)

In Eq. 676 we have Mij = −I ′ij + cij So Eq. 711 gives

M11 =
1

2
(I33 − I11) sin

2 α cos 2β + constant (713)

M12 =
1

2
(I33 − I11) sin

2 α sin 2β + constant (714)

M22 = −1

2
(I33 − I11) sin

2 α cos 2β + constant (715)

M13 = −(I33 − I11) sinα cosα sin β (716)
M23 = (I33 − I11) sinα cosα cos β (717)
M33 = constant (718)

And the second time derivative produces:

M̈11 = 2Ω2(I11 − I33) sin
2 α cos (2Ωt) (719)

M̈12 = 2Ω2(I11 − I33) sin
2 α sin (2Ωt) (720)

M̈22 = −2Ω2(I11 − I33) sin
2 α cos (2Ωt) (721)

M̈13 = −Ω2(I11 − I33) sinα cosα sin (Ωt) (722)

M̈23 = Ω2(I11 − I33) sinα cosα cos (Ωt) (723)

M̈33 = 0 (724)
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Note that some terms oscillate as cos 2Ωt or sin 2Ωt and a few as sinΩt or cosΩt. This
means that GWs are emitted in two frequencies ωgw = 2Ω and ωgw = Ω. The emission in
ωgw = Ω frequencies is due to the motion of precession.

The GW amplitudes h+ and h× are calculated using Eqs. 251 and 252:

h+(t; i;ϕ = 0) =
G

Rc4
[M̈11(cos

2 ϕ− sin2 ϕ cos2 i) + M̈22(sin
2 ϕ− cos2 ϕ cos2 i)−

M̈33 sin
2 i− M̈12 sin 2ϕ(1 + cos2 i) + M̈13 sinϕ sin 2i+ M̈23 cosϕ sin 2i]

h+ =
2GΩ2

Rc4
(I11 − I33)[sin

2 α cos (2Ωt) + sin2 α cos(2Ωt) cos2 i+

1

2
sinα cosα cos(Ωt) sin 2i]

h+ = 2h′0 sin
2 α cos (2Ωt)(1 + cos2 i) + 2 sinα cosα sin i cos i cos (Ωt)

h+ = A+,2 cos 2Ωt+ A1,+ cosΩt

(725)

with
h′0 ≡

GΩ2

Rc4
(I11 − I33) (726)

A+,1 ≡ h′0 sin 2α sin i cos i (727)
A+,2 ≡ 2h′0 sin

2 α(1 + cos2 αi) (728)

h×(t; i;ϕ = 0) =
G

Rc4

[
(M̈11 − M̈22) sin 2ϕ cos i+ 2M̈12 cos 2ϕ cos i

− 2M̈13 cosϕ sin i+ 2M̈23 sinϕ sin i
]
,

h× =
2GΩ2

Rc4
(I11 − I33)

[
2 cos i sin2 α sin(2Ωt) + sin i sinα cosα sin(Ωt)

]
,

h× = h′0

[
4 cos i sin2 α sin 2Ωt+ sin i sin 2α sin(Ωt)

]
h× = A×,1 sin (Ωt) + A×,2 sin 2Ωt

(729)

with
A×,1 ≡ h′0 sin 2α sin i (730)

A×,2 ≡ h′0 sin
2 α cos i (731)

In Eq. 729 t corresponds to the rotated time, and we get GWs radiated in both ωgw = Ω
and ωgw = 2Ω

The ratio
A+,1

A×,1
=
h′0 sin 2α sin i cos i

h′0 sin 2α sin i
= cos i (732)

and the ratio

121



A+,2

A×,2
=

2h′0 sin
2 α(1 + cos2 i)

4h′0 sin
2 α cos i

=
3 + cos 2i

2 cos i
(733)

The ratios 732, 731 produce the inclination angle i, which by definition is 0 ≤ i ≤ π.
Given i, we next determine α and fix |h′0|.

Finally, if we know the distance R of the source, we can determine |I11− I33|. The power
radiated is given by Eq. ??, and taking another time derivative in Eqs. 719-724 we get:

...
M11 = −4Ω3(I11 − I33) sin

2 α sin 2Ωt (734)
...
M21 = 4Ω3(I11 − I33) sin

2 α cos 2Ωt (735)
...
M22 = 4Ω3(I11 − I33) sin

2 α sin 2Ωt (736)
...
M13 = −Ω3(I11 − I33) sinα cosα cos (Ωt) (737)
...
M23 = Ω3(I11 − I33) sinα cosα sin (Ωt) (738)
...
M33 = 0 (739)

Observe here that
...
M11 = −

...
M22, so∑
κ

=
...
M11 +

...
M22 +

...
M33 = 0 (740)

And the relation of emitted power reads:

Pquad =
G

5c5
⟨
...
M ij

...
M ij −

1

3
(
...
Mκκ)

2⟩,

Pquad =
G

5c5

〈
(
...
M11)

2 + (
...
M22)

2 + (
...
M33)

2 + 2(
...
M12)

2 + 2(
...
M13)

2 + 2(
...
M23)

2
〉
,

Pquad =
GΩ6

5c5
(I11 − I33)

2
(
32 sin4 α + 2 cos2 α sin2 α

)
,

Pquad =
2GΩ6

5c5
(I11 − I33)

2 sin2 α
(
16 sin2 α + cos2 α

)
.

(741)

The back-reaction of GWs
Based on Eq. 741, we write the radiated energy in GWs supplied by the rotational energy

Erot of the rigid body as:

dErot

dt
=

2G

5c5
(I1 − I3)

2 sin2 α
(
cos2 α + 16 sin2 α

)
. (742)

The angular momentum radiated is given for Qij →Mij and J ′ ≡ J3 ≡ J , we get:
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dJ3

dt

∣∣∣
quad

=
2G

5c5
ϵ3kl⟨

...
QalQ̈ak⟩

dJ

dt

∣∣∣
quad

=
2G

5c5

[
⟨
...
Q2aQ̈1a⟩+ ⟨

...
Q1aQ̈2a⟩

]
dJ

dt

∣∣∣
quad

=
2G

5c5
⟨
...
M2aM̈1a −

...
M1aM̈2a⟩

dJ

dt

∣∣∣
quad

= −4G

5c5
⟨
...
M2aM̈1a⟩

(743)

Inserting Eqs. 732 we get:

dJ

dt

∣∣∣
quad

= −4G

5c5
⟨M̈11

...
M21 + M̈12

...
M22 + M̈13

...
M23⟩,

= −4G

5c5
⟨8Ω5(I11 − I33)

2 sin4 α cos2 (2Ωt) + 8Ω5(I11 − I33)
2 sin4 α sin2 (2Ωt)

+ Ω5(I11 − I33)
2 sin2 α cos2 α sin2 (Ωt)⟩,

= −4GΩ5

5c5
(I11 − I33)

2 sin2 α
(
⟨8 sin2 α⟩+ cos2 α⟨sin2 (Ωt)⟩

)
,

= −2GΩ5

5c5
(I11 − I33)

2 sin2 α
(
16 sin2 α + cos2 α

)
.

(744)

Comparing eqs. (744) and (742), we see:

dErot

dt

∣∣∣
quad

= Ω
dJ

dt

∣∣∣
quad

(745)

and Eq. (744) for J = I11β̇ produces:

Ω=β̇
===⇒ β̈ = −2G

5c5
(I11 − I33)

2

I11
β̇5 sin2 α(16 sin2 α + cos2 α) (746)

The D.E. for a reads from Eq. (704) for

ω′1 =
J ′1
I11

≡ J

I11
sinα sin γ

ω′2 =
J

I21
sinα cos γ

ω′3 =
J

I33
sinα

So we have

Erot =
1

2
(I11w

′2
1 + I22w

′2
2 + I33w

′2
3 )

Erot =
1

2
J2

(
sin2 α sin2 γ

I11
+

sin2 α cos2 γ

I11
+

cos2 α

I33

)
Erot =

J2

2

(
sin2 α

I11
+

cos2 α

I33

) (747)
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With time derivative:

dErot

dt
= JJ̇

(
sin2 α

I11
+

cos2 α

I33

)
+
J2α̇

2

(
2 sinα cosαα̇

I11
+

2 cosα sinα

I33

)
− 2G

5c5
(I11 − I33)

2β̇6 sin2 α(cos2 α + 16 sin2 α)

= I11β̇

(
−2G

5c5
(I11 − I33)

2β̇5 sin2 α(cos2 α + 16 sin2 α)

)(
sin2 α

I11
+

cos2 α

I33

)
+
I211β̇

2α̇

2

[
sinα cosα(I33 − I11)

I11I33

]
⇒

ȧ = −2G5

5c5
β̇4 I

2
11 − I233
I11

sinα cosα(cos2 α + 16 sin2 α)

(748)

Next, we see that due to the back-reaction of GWs, both the inclination angle α and the
angular velocity β̇ decrease. The term d

dt
(J cosα) is:

d′

dt
(J cosα) =

dJ

dt
cosα− J sinαα̇

= −2G

5c5
(I11 − I33)

2Ω5 sin2 α cosα(cos2 α + 16 sin2 α)

+
2G

5c5
(I11 − I33)

2 I11Ω

I11
Ω4 sin2 α cosα(cos2 α + 16 sin2 α) ⇒

d(J cosα)

dt
= 0

(749)

J cosα = ct (750)

which shows that as J ↓ then cosα ↑ and J cosα is constant.
The projection of angular momentum on x′3 is denoted by J cosα, and we see that the

rigid body rotates around its longitudinal axis with constant velocity

ω′3 =
J

I3
cosα

And the rotation remains unaffected by GW backreaction. Based on the above, we introduce
a timescale:

τo ≡

[
2G

5c5
(I11 − I33)

2

I11
β̇4
o

]−1
(751)

τo ≡

[
2G

5c5
(I11 − I33)

2

I11

(
f0
2π

)4
]−1

(752)

For this time scale the rigid body aligns its rotation axis with the angular momentum’s
direction for α → 0, while the rotational angular velocity β̇ = Ω around x3 decreases toward
the constant value Ω0 cosαo and the rotational velocity ω′3 = Ωcosα is constant.
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5.6 Radial infall into a black hole

GWs can also be produced after an object falls into a black hole radially. This subject is
discussed in reports [75], [76], and [77]. The complete energy spectrum is computed in [78]
and [79].

5.6.1 Radiation from an infalling point-like mass

We want an expression for the radiation generated by a point-like mass m, radially falling
into a BH of mass M with m ≪ M . We super-simplify this example by using linearized
equations for GW production and Newtonian equations of motion. In general, this is not the
correct way of doing it, since in linearized theory we expand around a flat space instead of
a Schwarzschild and Newtonian equations of motion should be the Schwarzschild geodesics.
In this case, for a particle coming from the positive values of the z axis, with zero velocity
at infinity, we write:

1

2
mż2 − GmM

z
= 0 (753)

⇒ ż2 =
2GM

z
⇒ |ż| = c

(
2GM

c2z

)1/2

⇒ |ż2| = c

√
Rs

z
⇒ ż = −c

√
Rs

z
(754)

Here we also assume that most of the radiation is emitted when the particle is non-
relativistic, and we therefore use the quadrupole formula. The above assumptions are valid
for distances z ≫ Rs since at z = Rs or z close to the BH horizon, they break down.
Equation 754 is incompatible with non relativistic particle assumption at z = Rs produces:

ż = −c (755)

However, at large distances, the flat space Newtonian approximation is correct, and
the above equations become legitimate. We compute radiation emitted from z = +∞ to
z = R ≫ Rs. Here we have only one condition xi ≡ z(t) and the second mass moment reads:

M ij = mxi(t)xj(t) ⇒
M33 = mz2(t)

(756)

Then we can produce the following:

Pquad =
2

15

G

c5
⟨
...
M ij

...
M ij⟩ ⇒

Pquad =
2

15

G

c5
⟨
...
M

2

33⟩ ⇒

Pquad =
2Gm2

15c5

〈( d3

dt3
z2(t)

)2 〉
Pquad =

2Gm2

15c5
⟨(6żz̈ + 2z

...
z )2⟩

(757)
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Equation 757 produces the total radiated power. In the quadrupole approximation, the
total radiated energy is:

E =

∫ tmax

−∞
dt
dE

dt
= −

∫ tmax

−∞
dtPquad = −2Gm2

15c5

∫ tmax

−∞
dt (6żz̈ + 2z

...
z )2 (758)

with tmax : z(tmax) = R. Using chain rule for dt ≡ dz
ż

and Equation 754 and the third
derivative of it:

ż = −c
√
Rs

z
⇒ ż2 = c2

Rs

z
(759)

⇒ 2żz̈ = −Rsc
2

z2
⇒ żz̈ = −c

2Rs

2z2
ż (760)

⇒ ...
z =

c2Rs

2

2

z3
=
c2Rs

z3
ż ⇒

...
z =

c2Rs

z3
(−c)

(
Rs

z

)
⇒

...
z = −c

3R
3/2
s

z7/2

(761)

Equation 758 reads in terms of Eqs. 759 - 761 as follows:

E = −2Gm2

15c5

∫ tmax

−∞

dz

ż

[
6c

(
Rs

z

) 1
2

c2Rs
1

2z2
+ 2z(−c3R3/2)

1

z7/2

]2

= −2Gm2

15c5
c6R3

s

∫ tmax

−∞

dz

ż

[
3

z5/2
− 2

z5/2

]2
= −2Gm2

15c5
c6R3

s

∫ tmax

−∞

dz

ż

1

z5
=

2Gm2c

15
R3
s

∫ tmax

−∞
dz

z1/2

cR1/2

1

z5

= −2Gm2R5/2

15

∫ tmax

−∞
dz

1

z9/2

Setting v = z
Rs

⇒ z = vRs with{
z(t = −∞) = +∞ ⇒ v → +∞,

z(tmax) = R ⇒ v → R
Rs
.

E = −2Gm2R
5/2
s

15

∫ R/Rs

−∞

Rs

v9/2R
9/2
s

=
2Gm2

15Rs

∫ R/Rs

−∞
duu−9/2

E =
2Gm2

15Rs

2

7

(
R

Rs

)−7/2
E =

4Gm2

105Rs

(
Rs

R

)7/2

(762)
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We can extrapolate the result of Eq. 762 at R = Rs.

E|R=Rs =
4

105

Gm2

Rs

=
4

105

Gm2c2

2MG
=

2

105
mc2

m

M

E|R=Rs ≈ 0, 0019mc2
m

M

(763)

The extrapolation of equation 763 is remarkably close to the relativistic results.

Erelat = 0.010mc2
m

M
(764)

This is possible because outside the BH horizon. The particle’s motion is dominated by
the lowest orders in the multipole expansion. Also, the rest energy inside the horizon is
decreased by a factor m

M
. With equation 764, we can calculate the radiated energy in GWs

in the head-on collision of the BHs with equal masses M . The reduced mass in this case is
M/2 and equation 764 produces:

Erelat = 0, 010
M

2
c2

M
2

M
Erelat = 0, 0025Mc2 = 2, 5 · 10−3Mc2

(765)

The result is quite close to the expected value

E ′ = (1− 2)× 10−3Mc2 (766)

The frequency spectrum of the radiation emitted by a radially infalling particle is the
Fourier transform of a function F (t), well-defined on the interval −∞ < t+∞ The Newtonian
approximately is valid up to a value tmax, sud that 2 tmax = R ≫ Rs. Therefore, the
Newtonian approximation does not represent the full form of the spectrum. A typical system
with size d and velocity v radiates GWs with reduced wavelength λ̄ ∼ dc

v
. When the particle

approaches the horizon, the size d is of order Rs and v ∼ c, so λ̄ ∼ Rs. On the other
hand, at R ≫ Rs the length-scale is of order R and v ≪ c, so the system radiates at
λ̄ ∼ Rc

v
≫ R ≫ Rs. With the Newtonian trajectory, we compute only the part of the

spectrum at λ̄ ≫ Rs ⇒ λ
2π

≫ Rs ⇒ cd
2πf

≫ Rs ⇒ wRs ≫ c. The complete spectrum peaks
at wRs ∼ c, with the radiation at these frequencies being generated close to the horizon and
cut off at wRs > c, because there is no length-scale smaller than Rs. The first step is to
solve the equation of motion in equation 754

dz

dt
z1/2 = −cR1/2

s ⇒∫ t

t0

dz z1/2 = −cR1/2
s

∫ t

t0

dt⇒

z3/2

3/2

∣∣∣t
t0
= −cR1/2

s (t− t0) = cR1/2
s (t0 − t) ⇒

z3/2(t)− z3/2(t0) =
3c

2
R1/2
s (t− t0)

(767)
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z3/2(t) =
3

2
cR1/2

s t0 + z3/2(t0)−
3c

2
R1/2
s t⇒

z3/2(t) =
3

2
cR1/2

s (t̄− t)
(768)

Again at t→ −∞ ⇒ z(t→ −∞) → +∞ and

t = tmax ⇒ z(tmax) = R (769)

R3/2 =
3

2
cR1/2

s (t̄− tmax) ⇒ tmax = t̄− 2R3/2

3cR
1/2
s

(770)

If we insert the variable τ = t̄− t we get:

z3/2(τ) =
3cR

1/2
s

2
τ ⇒ z(τ) =

(
3

2
R1/2
s cτ

)2/3

(771)

Since −∞ < t ≤ tmax ⇒ +∞ > t̄− t ≥ t̄− tmax. From eq. 770 we get:

2R3/2

R
1/2
s

≤ τ < +∞ (772)

The total radiated energy is in terms of
...
M ij

E =
2G

15c5

∫ tmax

−∞
dt⟨

...
M

2

33⟩ =
2G

15c5

∫ tmax

−∞
dt

...
M

2

33 (773)

we can write M33(t) = mz2(t) ⇒ M̃33(ω) = m
∫ tmax

−∞ dtz2(t)eiωt as a Fourier transform. So,

...
M33 = mω6

∫ tmax

−∞
dt|z2(t)eiωt|2 =

∫ ωmax

−∞

dω

2π
ω6|M̃33(ω)|2 ⇒

...
M33 = 2

∫ ωmax

0

dω

2π
ω6|M̃33(ω)|2

(774)

and Eq. 773 reads:

E =
4G

15c5

∫ ωmax

0

2ω

2π
ω2| ˜̈M33(ω)|2 (775)

Recalling eqs. 759 - 760 we see:

M̈33(t) = m(ż2 + zz̈) = m

(
c2
Rs

z
+ z

−c2Rs

2z2

)
⇒

M̈33(t) = mc2Rs
1

2z
=
mc2Rs

2

(
2

3R
1/2
s cτ

)2/3

⇒

M̈33(t) = m

(
2R

1/2
s c2

3τ

)2/3

(776)
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with τ ∈ [τmin,+∞). The Fourier transform of M̈33(t) is:

˜̈M33(ω) = m

(
2Rsc

2

3

)2/3 ∫ +∞

τmin

dτe−iωττ−2/3 (777)

When v = ωτ and dv = ωdτ we take:

˜̈M33 = mω−1/3
(
2Rsc

2

3

)2/3 ∫ ∞
ωτmin

dv v−2/3e−iv (778)

The leading term is obtained by approximating ωmin to zero and setting I =
∫∞
ωτmin

dv v−2/3e−iv

so we get: ∫ ∞
ωτmin

dv v−2/3e−iv = −i
∫ ∞
0

dv v−2/3 (−i)−2/3e−v

I = −e−
iπ
6
3

2
Γ(

1

3
)

(779)

Thus, eq. 778 we get:

˜̈M33 = −mω−1/3
(
2Rsc

2

3

)−1/3
Γ(1/3)e−

iπ
6 (780)

And eq. 775 reads:

E =
4G

15c5

∫ ωmax

0

dω

2π
ω2m2ω−2/3

(
2Rsc

2

3

)−2/3
Γ2(

1

3
) ⇒

dE

dω
=
Gm2

5πc
Γ2(

1

3
)

(
2

3

)7/3(
ωRs

c

)4/3
(781)

5.7 Tidal disruption of a real star falling into a BH. Coherent and
incoherent radiation

The suppression due to tidal disruption is analyzed in [80] and [81]. A point-like particle
is an idealization, and in astrophysical applications, we are interested in the infall of an
extended object, i.e., a main sequence star, a white dwarf, a dwarf, or a NS. Because of tidal
disruption of the star falling into a black hole, the radiation can be emitted incoherently, and
this reduces the GW amplitude by many orders of magnitude. Qualitatively, the difference
between coherent and incoherent radiation is understood in equation ??. The radiated energy
E is E ∼ m2

M
, where in the reduced mass of the particle-BH system. If an extended object

has N particles of mass δm, we get m = N Nδm. If the N particles radiate in a coherent
way as a single object of mass m, we see:

Ecoher. ∼ m2

M
= N2(

δm2

M
)

The N2 dependence can be understood by observing that the total amplitude of the GWs
is the sum of separate amplitudes as: htot =

∑N
i=1 hi. When the radiation is coherent, we get
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Figure 6: An infalling star of radius a is tidally deformed by the black hole when it enters
within the tidal radius rtidal. By the time the horizon is approached, the star is an ellipsoid
with semimajor axis ah, adapted by Maggiore’s book, Gravitational Waves [15].

the same phase in hi,∀i so htot2 ∼ N and the radiated energy is Erad ∼ htot ∼ O(N2). On
the other hand, incoherent radiation comes from the destructive interference of off-diagonal
terms, leaving only diagonal terms

∑
h2i. In this case, the incoherent radiated energy is:

Ecoher. ∼ N
(δm)2

M
=

I

N

(Nδm)2

M
=

I

N

m2

M
(782)

So E incoherent is smaller by a factor N than Ecoherent. Whether a distribution radiates
coherently or not depends on:

i. the wavelength of the GW we consider

ii. the linear size α of the system.

If α ≪ λ̄, the phase of GW does not change appreciably over the source, and the radiation
is coherent. If α ≫ λ̄, the phase of each simple consistent oscillates strongly over the system,
and the mixed terms cancel. (averaging to zero), So the radiation is coherent. The transition
between the two regimes is governed by a form factor. The distortion of the shape of an
infalling star by the tidal grow field of a BH. Any star is held together by self-gravity. We
model a star of mass m as two particles of mass m

2
orbiting in circular orbit of radius α as

shown below:
where the BH has mass M at distance r from the c.o.m. The tidal force that disrupts

the star is:

Ftidal =
GM(m

2
)

(r − α)2
−
GM(m

2
)

(r + α)2
⇒ Ftidal = GM(

m

2
)
[(r + α)2 − (r − α)2

(r − α)2(r + α)2

]
⇒

Ftidal ≃ 2GMm
α

r3

(783)

When Ftidal is bigger than Fgrow, the star breaks down so

2GMm
α

r3
>
G(m

2
)2

(2α)2
⇒

r3
m2

4
< 8α3Mm⇒

r3 < 32α3M

m

(784)
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r < rtidal =
3
√
32α

(
M

m

)1/3

(785)

The numerical coefficient depends on the schematization of the extended object.
When we consider a sphere of mass m, mean radius a, and constant density, we get:

rtidal ≃ 2, 2

(
M

m

)1/3

a (786)

The star’s radius is far away the from BH, when it is near the horizon, it has radius
ah. We estimate the order of magnitude of ah using the Newtonian trajectory for a radially
infalling particle along the z-axis. From 767 we get

z(t) =

[
z
3/2
0 +

3

2
R1/2
s c(t0 − t)

]2/3
Variation w.r.t. z produces:

δ(z3/2) = δ

[
z
3/2
0 +

3

2
R1/2
s c(t0 − t)

]

δz(t) =

(
z0
z(t)

)1/2

δz0

(787)

Eq. 787 shows that two points at time t0, that are separated by δz0 radial distance, at
time t will separate by δz(t). Then t0 is the time when the star is an ellipsoid with semimajor
axis ah given as:

ah ≡
(
rtidal

Rs

)1/2

α (788)

The evolution of the shape of the star as it plunges toward the BH is shown below:
When a main sequence star of a star of mass 1M⊙ has a radius a = 7.105 km. If it falls

into a BH of 10M⊙ and RS = 30 km, we have the tidal radius is given by:

rtidal = 4, 7a (789)

and

(rtidalRS)
1/2 = 300. (790)

Most of the radiation is emitted while the star is close to the horizon, so it has a ah size
in the radial direction. A source radiates coherently only when λ̄ ≫ ah ⇒ ar equivallently
c

2πf
≫ ah ⇒ W ≪ c

ah
. We define a parameter that governs the loss of coherence as

A(ω) ≡ ωah
c

=
ωa

c

(
rtidal

RS

)1/2

(791)
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Figure 7: An infalling star of radius a is tidally deformed by the black hole when it enters
within the tidal radius rtidal. By the time the horizon is approached, the star is an ellipsoid
with semimajor axis ah, adapted by Maggiore’s book, Gravitational Waves [15].

When A(ω) ≫ 1, we have incoherent radiation, while for A(ω) ≫ 1 we get coherent
radiation. In the α → 0 limit, we get A(ω) → 0 and the point-like result. Based on
Shapiro’s calculations, we see that the peak in frequency is at ω = ω̄ ≃ 0, 84c/Rs. When
A(ω) ≪ 1 we get:

ω ≪ c

ah
⇒

0, 64c

Rs

≪ c

ah
⇒

0, 64c

Rs

≪ 1

ah

(792)

When condition 792 applies, only the high-frequency tails of the point-like spectrum are
suppressed. Although the contribution of high-frequency tails is negligible, since they are
exponentially suppressed. Therefore, when 0,64

Rs
≪ a−1h , we get the same total power radiated

as in the point-like mass case. On the other hand, when 0,64
Rs

≫ a−1h , we get incoherent
radiation suppressing the coherent parts, where the peak lies and the power is concentrated.
We can redefine A(ω) as:

Ā(ω̄) ≡ ω̄ah
c

∼=
0, 64ah
Rs

(793)

Ā(ω̄) ≡ ω̄ah
c

(
rtidal

Rs

)1/2

Ā(ω̄) ∼=
a

Rs

(
M

m

)1/2
(794)

Parameter Ā in 794 shows the suppression of total radiated power:
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When Ā ⪰ 1, the radiated power is strongly suppressed, where
(
rtidal
Rs

)1/2
is the dilatation

factor.
Stars with larger radii have weaker self-gravity and thus resistance to tidal forces of BHs.

The solution of Newtonian equations of motion for a particle falling along the z axis (at
t = 0 has z(t) ≡ zi) reads as:

z3/2(t; t̄i) =
3

2
R1/2
s c(t̄i − t) (795)

where

t̄i ≡ t0 +
2z

3/2
i

3cR
1/2
s

(796)

If we consider a swarm of N particles with mass δm we get

M̃33(ω) = δm

N∑
i=1

∫ tmax

−∞
dtz2(t; t̄i)e

iωt (797)

M̃33 = δm
N∑
i=1

∫ tmax

−∞
z2(t, 0)et+t̄i (798)

M̃33 =

[
Nδm

∫ tmax

−∞
dtz2(t, 0)

][
1

N

N∑
i=1

eiω(t+t̄i)

]
(799)

We define the form factor as the second bracket:

F (ω) ≡ 1

N

N∑
i=1

eiω(t+t̄i) (800)

The COM crosses the tidal radius at t = t0, so the constituent of the sphere is located
at zi = rtidal + δzi with −a < δzi < a and |δzi| ≪ rtidal. Eq. 796 for zi ≡ rtidal + δzi yields:

t̄i ≈ t0 +
2r

3/2
tidal

3cR
1/2
s

+

(
rtidal

Rs

)1/2
δzi
c

(801)

Now we can rewrite the form factor as:

F (ω) =
1

N
exp

[
iω

(
t0 +

2r
3/2
tidal

3cR
1/2
s

)]
N∑
i=1

exp

[
iω

(
rtidal

Rs

)1/2
δzi
c

]
(802)

In the continuous limit we get δzi → δz and

F (ω) =
1

v
exp

{
iω

[
t0 +

2r
3/2
tidal

3cR
1/2
s

]}
π

∫
V

d(δz)exp

[
iω

(
rtidal

Rs

)1/2
δzi
c

]
(803)

V is the volume of the system at t = t0, for a sphere of uniform density, radius α, we
have

V =
4

3
πα3. (804)
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For δz = αu, the transerve direction, is x with:

|x1|2 = α2 − (δz)2 = α2(1− u2) (805)

And eq. 803 writes:

F (ω) =
3

4
exp

[
iω

(
t0 +

2r
3/2
tidal

3cR
1/2
s

)]∫ 1

−1
du(1− u2)eiA(ω)u (806)

Setting x = A(ω)u we get:

F (ω) =
3

4
exp

[
iω

(
t0 +

2r
3/2
tidal

3cR
1/2
s

)]∫ A(ω)

−A(ω)

dx

A(ω)

[(
1− x2

A2(ω)

)
cosx+i

(
1−− x2

A2(ω)

)
sinx

]
(807)

set ϕ = t0 +
2r

3/2
tidal

3cR
1/2
s

F (ω) =
3

4

∫ 1

1

du (1− u2)eiA(ω)u =
3eiωϕ

2A2(ω)
(sinA(ω)− A(ω) cosA(ω)) (808)

The real star spectrum is:

dE

dω

∣∣∣
real star

= F (ω)2
dE

dω

∣∣∣
point-like

(809)

where we set the point like spectrum to be:

dE

dΩ
=

2Gω2

15πc5
Nδm

∫ tmax

−∞
dtz2(t; 0) (810)
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6 Experimental observations of GW emission
In this section we review experimental evidences for the existence of GWs, as derived by the
Hulse-Taylor binary pulsars. A general introduction in pulsars is conducted in [82] and [83].
A complete and regularly updated catalogue of Pulsars existing in Cosmos can be found in
[84]. For events before the discovery of PSR B1913+16, see Hulse and Taylor’s article in
[85], [86] and [87], while in [88], [89] and [90] we get the expected results of observations of
gravitational radiation from PSR B1913+16. Finally, in [91] and [92] we have an update on
these results.

Pulsar timing formula analyzed in section 5.1 and time delays due to GR in section 5.2,
are explicitly derived in the work of Backer and Hellings, see [93], as well as in Stairs’ article
in [94]. Many classical textbooks also analyze pulsar timing, with [95], [82] and [23]. A
comparison with General Relativistic effects, such as Shapiro time delay, is given in [96].

Pulsars are identified by the prefix PSR, followed by their equatorial coordinates (α, δ),
where α represents the right ascension, expressed in hours and minutes and δ represents the
declination, or inclination angle, with δ ∈

(
−π

2
, π
2

)
.

The Hulse-Taylor binary pulsar, denoted as PSR B1913+16, was first detected in 1974.
Observations revealed significant secular changes in the pulsar’s period, with variations of
approximately 10µs per year. Furthermore, day-to-day changes in the period were observed,
reaching up to ∼ 80µs. These daily fluctuations were attributed to Doppler shifts caused
by the pulsar’s orbital motion around a companion star.

The table below summarizes the measured orbital parameters of the Hulse-Taylor binary
pulsar along with their experimental uncertainties:

Parameter Value Error

(1/c)ap sin i (s) 2.3417725(8) (8)
e 0.6171338(4) (4)
T0 (MJD) 52144.90097844(5) (5)
Pb (days) 0.322997448930(4) (4)
ω0 (deg) 292.54487(8) (8)
⟨ω̇⟩ (deg/yr) 4.226595(5) (5)
γ (s) 0.0042919(8) (8)
Ṗb −2.4184(9)× 10−12 (9)

Table 1: Measured orbital parameters of the Hulse-Taylor binary pulsar, along with their
errors, adapted by Gravitational Waves [15].

The orbital period of the system is less than 8 days, with an orbital velocity on the order
of v ∼ 10−3c. The geometry of the system is illustrated in the figure below:

The relative coordinate between the pulsar and its companion, r⃗ = r⃗c − r⃗p, describes an
elliptical orbit with eccentricity e. The normal to the plane of the orbit forms an angle i
with respect to the line of sight (assumed to be the z-axis).

The orbit intersects the (x, y)-plane at two points, known as the "nodes." The line con-
necting these two nodes is called the line of nodes. The node where the coordinate r⃗ tran-
sitions from the lower hemisphere to the upper hemisphere is referred to as the ascending
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Figure 8: The geometry of the orbit. The plane of the orbit is in gray, adapted by Maggiore’s
book, Gravitational Waves [15].

node. The angular position of the periastron, measured from the ascending node, is denoted
by ω.

The advance of the periastron is represented by ⟨ω̇⟩, while the Einstein parameter is
denoted by γ. The system’s dynamics depend on the masses of the pulsar (mp) and its
companion (mc). All astrophysical quantities can be expressed through the above as follows:

ω̇ =
3G

2
3

c2

(
Pb
2π

)− 5
3 (mp +mc)

2
3

1− e
= 2.11353

(
mp +mc

M⊙

) 2
3 deg

yr
(811)

γ =
G

2
3 e

c2

(
Pb
2π

) 1
3 mc(mp + 2mc)

(mp +mc)
4
3

= 0.00293696

(
mc

M⊙

)(
mp + 2mc

M⊙

)(
mp +mc

M⊙

)− 4
3

(812)

α =
G

1
3

c

(
Pb
2π

) 2
3

(mp +mc)
1
3 (813)

sin i =
c

G
1
3

(
αp sin i

mc

)(
Pb
2π

)− 2
3

(mp +mc)
2
3 (814)

αp = αmc(mp +mc)
−1 (815)

αc = αmp(mp +mc)
−1 (816)

So mp = 1.44214M⊙ and mc = 1.3867M⊙ (817)

and α ≈ 2.2× 109 m and R⊙ ≈ 7× 108 m. The compactness of the orbit, combined with the
absence of any observed eclipse, suggests that the companion is likely a compact star (neutron
star or black hole). The dynamics of the binary system can be studied by treating the two
stars as point-like bodies, ignoring tidal effects. The orbital period appears to decrease due
to gravitational wave (GW) emission. The decrease in the orbital period is given by the
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following formula:

Ṗb = −192πG
5
3

5c5
mpmc

(mp +mc)
1
3

(
2π

Pb

) 5
3 1

(1− e2)
7
2

(
1 +

73

2
e2 +

37

96
e4
)

(818)

If we include a Doppler correction due to the relative velocity between us and the pulsar,
induced by the differential rotation of the galaxy, we see that the ratio between the GR-
predicted and corrected expected values, (Ṗb)cor and (Ṗb)GR, the relation is given by:

Ṗb|corr

Ṗb|GR
= 1.0013 (21) (819)

6.1 Pulsar timing formula

Neutron stars are rapidly spinning with periods as small as 1.5 milliseconds. This comes as
a consequence of angular momentum conservation during the collapse. The term ωr2 must
remain constant, while r decreases from the typical stellar size of the original star core to a
radius of just 10 km. The supernova collapse can spin NSs up to 10 milliseconds. In binary
systems, NSs can spin up further by the creation of mass from the companion. Similarly,
conservation of magnetic flux during the collapse results in strong magnetic fields, reaching
1012 Gauss or more, though accretion may slightly weaken these fields.

The magnetic field is generally misaligned with the rotation axis, forming a rotating
dipole structure. At a critical distance ρc = c/Ω (where Ω is the angular velocity of the
pulsar), magnetic field lines open up and extend to infinity, while those within ρc remain
closed. This ρc marks the furthest distance at which objects can co-rotate with the pulsar
without exceeding the speed of light.

beam

beam

rotating axis

Figure 9: The pulsar magnetosphere and the outgoing beams of radiation, adapted by Mag-
giore’s book, Gravitational Waves [15].
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Within ρc lies the "magnetosphere," a region filled with ionized plasma that co-rotates
with the neutron star. High-energy particles travel along magnetic field lines, emitting
radiation near the magnetic poles. This radiation, narrowly focused in the radio spectrum,
forms beams that sweep across the sky as the star rotates, creating a lighthouse-like effect.
Observers detect these beams as short radio pulses, with the period of the pulses matching
the neutron star’s rotational period. Given the immense moment of inertia of neutron stars
(∼ 1045 g cm2), their rotation is highly stable.

Interestingly, individual pulses from a given pulsar can vary significantly due to fluctu-
ations in the magnetosphere’s dynamics. However, averaging many pulses reveals a stable
pattern unique to each pulsar. This averaged pattern, or "template," enables highly precise
timing measurements. The times of arrival (TOAs) of individual pulses, compared against
the template, can be determined with extraordinary precision, often within 20 microseconds
for modern measurements. This precision persists even after long observational gaps, such
as during the Arecibo telescope’s upgrades in the 1990s. With rotation periods as short as
59 milliseconds, pulsars produce approximately 5 × 108 pulses annually, underscoring their
reliability as cosmic clocks.

Despite their stability, TOAs are influenced by time-dependent factors. These include the
Earth’s motion around the Sun (and the solar system’s barycenter) and general relativistic
effects due to the solar system’s gravitational field. Pulsars in binary systems experience
additional modulations from their orbital motion and the gravitational interactions with
their companions. These "timing residuals," deviations from perfect periodicity, provide
valuable insights into binary system parameters, such as the masses of the stars. The timing
formula, discussed in subsequent sections, accounts for these corrections.

6.2 Roemer, Shapiro, and Einstein time delays

We consider a pulsar emitting a sequence of pulses, which are modified by the motion of the
Earth and the gravitational field of the solar system, affecting the electromagnetic waves.
The corrections to the time of arrival (TOA) are divided into three contributions: the Roemer
delay, the Shapiro delay, and the Einstein delay.

6.2.1 Roemer time delay

For simplicity, we assume that Earth performs a circular orbit around the Sun, t0 is the time
that a light beam needs to run from the Sun to Earth, and Earth’s angular velocity around
the Sun is Ω.

Since light takes approximately 500 seconds to travel from the Sun to the Earth, there
is an annual modulation in the arrival times of pulses. For a pulsar located in the plane of
the ecliptic, with ecliptic longitude λ, it can be observed from a pulsar in the plane of the
ecliptic, at ecliptic longitude.

This modulation is given by:

∆R,⊙ = t0 cos(Ωt− λ) (820)

Where Ω is the angular velocity of the Earth around the Sun, t0 is the travel time of light
from the Sun to the Earth, and a circular orbit is assumed for simplicity.
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Figure 10: The (x, y) plane is the plane of the orbit of the Earth around the Sun. The angle
λ is the ecliptic longitude of the pulsar, adapted by Maggiore’s book, Gravitational Waves
[15].

Thus, when the Earth is in the same direction as the pulsar,

Ωt− λ = 0 ⇒ ∆R,⊙ = t0, (821)

The pulse arrives earlier by an amount t0. Conversely, when the Earth is on the opposite
side of its orbit, Ωt − λ = π, the pulse arrives later by t0, compared to the arrival time at
the Sun. This effect is referred to as the Roemer time delay.

If the pulsar is not located in the plane of the ecliptic but has an ecliptic latitude β, the
modulation instead becomes:

∆R,⊙ = t0 cos(Ωt− λ) cos β (822)

With the maximum amplitude to appear in the ecliptic plane at

β = 0 ⇒ cos β = 1 ⇒ ∆max
R,⊙ = t0 cos(Ωt− λ) (823)

and vanishing for pulsars in the direction of the poles of the ecliptic (cos β = 0).
The variation of ∆R,⊙ falls to the variation of the angles λ and β so we get:

δ(∆R,⊙) = t0δλ sin(Ωt− λ) cos β − t0δβ cos(Ωt− λ) sin β (824)

For precise pulsar timing, additional corrections must be accounted for, as the Earth’s
orbit cannot be treated as perfectly circular. The Earth’s axial rotation introduces a daily
modulation with an amplitude R⊙/c ≈ 21 ms. The motion of the Sun around the solar
system barycenter (SSB), influenced by planets like Jupiter, also contributes to the observed
modulation. Therefore, pulse arrival times must be referred to the SSB.

Let r⃗⊙e represent the vector from the SSB to the Earth, r⃗es the vector from the Earth’s
center to the observer, and r⃗⊙s the vector from the SSB to the Sun. Then, the distance from
the observer to the SSB is:

r⃗ob = r⃗oe + r⃗es + r⃗sb (825)

To calculate barycentric arrival times, the observed times must include the term:

∆R,⊙ = −r⃗ob ·
n̂

c
(826)
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Where n̂ is the unit vector pointing to the pulsar. The vectors r⃗es and r⃗⊙s can be determined
with sufficient accuracy, while r⃗⊙e requires precise measurements due to its dependence on
the Earth-Moon system’s barycenter.

Barycentric arrival times serve as a critical reference for pulsar timing analyses, ac-
counting for additional effects such as gravitational propagation and interstellar medium
interactions.

6.2.2 Shapiro time delay

Roemer’s time delay computation neglects all GR effects of the gravitational field in the
solar system. To include these effects, recall from equation ?? that the spacetime interval
induced by a weak, quasi-static Newtonian source is expressed, to first-order perturbations
in the metric ϕ, as

ds2 = −[1 + 2ϕ(x)]c2dt2 + [1− 2ϕ(x)]dx⃗2. (827)

In the solar system, the magnitude of |ϕ(x)| is approximately 10−6, ensuring that the
weak-field approximation remains valid. Light travels along null geodesics (ds2 = 0), reduc-
ing the path integral to

ds2 = 0 ⇒ c2dt2[1 + 2ϕ(x⃗)] = dx⃗2[1− 2ϕ(x⃗)] ⇒

c2dt2 = dx⃗2
[1− 2ϕ(x⃗)]

[1 + 2ϕ(x⃗)]
⇒

cdt = ±dx⃗

√
1− 2ϕ(x⃗)

1 + 2ϕ(x⃗)

ϕ≪1
===⇒

cdt = ±[1 + 2ϕ(x⃗)]dx⃗

(828)

Let rp represent the fixed location of the pulsar and robs denote the observer’s position at
the time of light’s arrival tobs. The coordinate time difference between tobs and the emission
time te is

c(tobs − te) =

∫ rp

re

|dx|
[
1− 2ϕ(x)

]
⇒

c(tobs − te) = |rp − robs| − 2

∫ rp

robs

ϕ(x)|dx|
(829)

If r⃗b is the position of SSB and n̂ is the unit vector from SSB to the pulsar, then we have:

|r⃗p − r⃗obs| = |r⃗l − r⃗b + r⃗b − r⃗obs|
|r⃗p − r⃗obs| ≈ |r⃗p − r⃗b|+ (r⃗b − r⃗obs) · n̂

(830)

for n̂ ≡ r⃗p − r⃗b
|r⃗p − r⃗b|

(831)

and |r⃗p − r⃗b| ≫ |r⃗b − r⃗obs|. Using this, the arrival time becomes

tobs ≈
(
te +

|rp − rb|
c

)
+

(rb − robs) · n̂
c

− 2

c

∫ rp

robs

ϕ(x)|dx| (832)
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The second term tSSB, representing the arrival time at the barycenter in the absence of
gravitational effects, is defined as

tSSB = tobs −
robs · n̂
c

+
2

c

∫ rp

robs

ϕ(x)|dx| (833)

tSSB is the fictitious time at which the pulse arrives at the SSB without GR effects of
the Solar System. The second term is called the solar system Shapiro timedelay, denoted by
∆S,⊙. So equation 833 reads:

tSSB = tobs −∆R,⊙ +∆S,⊙ (834)

The Shapiro time delay is dominated by the Sun’s gravitational field. We consider a photon
emitted by a pulsar that reaches the observer on Earth when the pulsar Sun-Earth angle has
a value θ as depicted:

Sun

Earth

pulsar

θρ

θ

r

p

res

Figure 11: The geometry for the computation of the Shapiro delay, adapted by Maggiore’s
book, Gravitational Waves [15].

ρ: distance P to Earth
r: distance P to Sun
res = 1 au

ρ = (ρ cos θ + r⃗es, ρ sin θ)

u =
e

res
(835)

r2 = (ρ cos θ + |res|2) + ρ2 sin2 θ (836)
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r2 = ρ2 cos2 θ + r2es + 2resρ cos θ + ρ2 sin2 θ

r2 = ρ2 + r2es + 2resρ cos θ

r2 = r2es

(
1 +

(
ρ

res

)2

+ 2
ρ

res
cos θ

)
r2 = r2es(1 + u2 + 2u cos θ)

r = res(1 + u2 + 2u cos θ)
1
2

(837)

Since ϕ =
1

c2

(
−GM⊙

r

)
(838)

The Shapiro time delay is

∆S,⊙ = −2

c

∫ r⃗obs

r⃗p

dpϕ =
2GM⊙
c3

∫ d

0

dp

r

⇒ ∆S,⊙ =
2GM⊙
c3

∫ d

0

du res
r

=
2GM⊙
c3

∫ ū

0

du

(1 + u2 + 2u cos θ)
1
2

(839)

where ū ≡ d

res
(840)

In equation 839 we add and subtract a term at a given angle, say cos θ = 0, so we have:

∆S,⊙ =
2GM⊙
c3

∫ ū

0

1

(u2 + 1)1/2
du− 2GM⊙

c3

∫ ū

0

1

[u2 + 1 + 2u cos θ]1/2
du (841)

The first term

2GM⊙
c3

∫ ū

0

du

(1 + u2)
1
2

=
2GM⊙
c3

sin−1 h(ū) ≈ 2GM⊙
c3

log

(
2u

res

)
(842)

is a constant logarithmic correction, while the second depends on the Sun-Earth-pulsar
geometry, specifically the angle θ. Applying limit ū = u

res
→ ∞ and integral converges to∫

du

[
1

(u2 + 1 + 2u cos θ)
1
2

− 1

(u2 + 1)
1
2

]
= − log(1 + cos θ)

⇒∆S,⊙(θ) ≈
2GM⊙
c3

[
log

(
2d

r⊙

)
− log(1 + cos θ)

] (843)

Equation 843 formally diverges when θ = π, that is, when the signal crosses the center of
the Sun before reaching Earth, so it is absorbed.

For a pulsar just grazing Sun’s surface of θgrazing, we have

θ ≈ θgrazing ≈ π − R⊙
res

(844)
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1 + cos θgrazing = 1 + cos

(
π − R⊙

res

)
1 + cos θgrazing = 1− cos

(
R⊙
res

)
1 + cos θgrazing = 1− 1 +

(
R⊙
res

)2

1 + cos θgrazing =

(
R⊙
res

)2

(845)

And Shapiro’s time delay reads:

∆S,⊙ =
2GM⊙
c3

[
log

2d

res
− 2 log

R⊙
res

]
∆
θgrazing
S,⊙ =

2GM⊙
c3

[
log

(
2d
res
R⊙
res

)]

∆
θgrazing
S,⊙ =

2GM⊙
c3

log

(
2dres
R2
⊙

) (846)

The maximum modulation induced by the Shapiro time delay is

∆max
S,⊙ = ∆

θgrazing
S,⊙ −∆S,⊙(θ = 0) =

2GM⊙
c3

[
log

(
2dres
R2⊙

)
− log

(
2d

res
+ log 2

)]
∆max
S,⊙ =

2GM⊙
c3

[
log

(
2res
R2
⊙

)]
∆S,⊙(θ = 0) ≈ 4GM⊙

c3
log

(
2res
r⊙

) (847)

6.2.3 Einstein time delay

The Roemer and Shapiro time delays are computed in the coordinate time t. A laboratory
clock at a position x⃗obs measures its own proper time τ which is related t0 as:

c2dτ 2 = [1 + 2ϕ(xobs)] c
2dt2 − [1− 2ϕ(xobs)] dx

2
obs (848)

so to first order in small parameters ϕ(xobs) and vobs = dx⃗obs/dt, we have:

dτ 2

dt2
= 1 + 2ϕ(xobs)−

dx⃗2obs

dt
+O(x⃗2)

dτ

dt
=

√
1 + 2ϕ(xobs)−

v⃗obs

c2

dτ

dt
≈ 1 +

1

2
2ϕ(xobs)−

1

2

v2obs

c2

dτ

dt
≈ 1 + ϕ(xobs)−

v2obs

2c2

(849)
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Physically, the term −v2obs
2c2

in equation 849 produces the transverse Doppler shift, while
ϕ(xobs) contributes to the gravitational redshift. Integrating this relation, we find:

dτ ≃ dt+ dtϕ(xobs)− dt
1

2

v2obs

c2

⇒τ ≃ t+

∫
dt′
[
ϕ(xobs(t

′))− v2obs(t
′)

2c2

] (850)

Or we can rewrite it as:
τ = t−∆E,⊙ (851)

where ∆E,⊙ ≡
∫ t

dt′
[
ϕ(xobs(t

′)) +
v2obs(t

′)

2c2

]
(852)

The modulating given in 852 is called the Einstein time delay and takes into consideration
the motion of the Earth around the Sun with v⊕ velocity and the Earth’s rotation around
its axis. Also, we can apply the elliptic orbit of the Earth instead of a circle. If the lower
limit of the integral is arbitrary (as it corresponds to an arbitrary constant shift), we can
rewrite τ as:

E = −GM⊙µ
2a

(853)

where µ is the reduced mass of the Earth-Sun system, and M ≃M⊙ with excellent accuracy.
Using this relation, we find:

E =
1

2
µv2⊙ − GM⊙µ

r
(854)

and:

− GMµ

2a
=

1

2
µv2⊙ − GMµ

r
1

2
v2⊕ =

GM⊙
r

− GM⊙
2a

⇒1

2
v2⊕ = GM⊙

(
1

r
− 1

2a

) (855)

From these expressions, we derive the rate of change of the Einstein delay:

d∆E,⊙

dt
= −ϕ(xobs) +

v2obs

2c2

d∆E,⊙

dt
= −ϕ(xobs) +

v2obs
2c2

d∆E,⊙

dt
≈

v2⊙
2c2

− ϕ =
2GM⊙
c2

(
1

r
− 1

4a

) (856)

We recall that µ is the reduced mass

µ =
m⊕M

m⊕ +M⊙
≃ m⊕M⊙

M⊙
∼= m⊕ (857)
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and M is the total mass
M = m⊕ +M⊙ ∼= M⊙ (858)

Also, we have that vobs
∼= v⊕, because Earth’s rotation around its axis gives a small correction.

A constant part in this expression is absorbed into the clock’s time definition, as atomic clocks
are adjusted to minimize systematic shifts due to Earth’s motion.

6.2.4 Dispersion in the interstellar medium and relation to the intrinsic pulsar
signal

Dispersion in the interstellar medium

There is also a correction due to the propagation of radio waves through the ionized
interstellar gas. Interstellar gases act as a medium with a reflection under different from
unity. The component of a radio pulse with frequency v travels with a group velocity

vg ≃ c

(
1− nee

2

2πme

1

ν2

)
, (859)

where e is the charge, and me the mass of the electron, and ne is the electron number density.
The travel time over a distance L is:∫ L

0

dl

vg
=

∫ L

0

dl
1

c

(
1− nee

2

2πme

1

v2

)−1
∫ L

0

dl

vg
=

∫ L

0

dl

[
1

c
+

e2

2πme

1

v2
ne

]
∫ L

0

dl

vg
≃ L

c
+

1

ν2

(
e2

2πmec

)∫ L

0

ne dl

(860)

We denote with

DM ≡
∫ L

0

ne dl (861)

the dispersion measure, and is typically quoted in cm−3 pc. Measuring the TOAs (times of
arrival) at different frequencies, we can compute the dispersion measure. This procedure is
called de-dispersion, and goes like:

1. Separate the bandwidth of the receiver into many channels, such that in each channel
the effect of dispersion is negligible.

2. The output of the channels operating at different frequencies is then automatically
corrected and superimposed, so the signal-to-noise ratio is enhanced

The size of this effect is given by observing that the Hulse–Taylor binary pulsar has a
relatively large dispersion measure, DM ≃ 169 cm−3 pc, at frequencies near 430 MHz.

Relation to the Intrinsic Pulsar Signal
Since all corrections are small, we can put them together by simply adding them linearly:

tSSB = τobs +∆E,⊙ +∆R,⊙,−∆S,⊙ (862)
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where the corrections ∆E,⊙,∆R,⊙,∆S,⊙ are defined in earlier equations.
In Eq. 860 we must subtract the time delay due to the interaction with the interstellar

medium, so we get:

tSSB = τobs −
D

ν2
+∆E,⊙ +∆R,⊙ −∆S,⊙ (863)

Where:
D =

(
e2

2πmec

)
DM. (864)

So tSSB is the coordinate time at which the signal, recorded by τobs, would have arrived
at a fixed point in space such as the solar system barycenter if there were no gravitational
potential of the solar system or interaction with the interstellar medium. It therefore depends
only on the intrinsic properties of the source. The emission mechanism of the pulsar is not
yet completely understood, but is believed to be related to some “hot spot” co-rotating with
the pulsar. Denoting by Φ the accumulated phase of the spinning pulsar, we observe a pulse
whenever the phase Φ returns to the same value Φ0 mod 2π, at which the radiated beam
sweeps across the Earth.

If T is the proper time in the pulsar frame, then the phase for a perfectly periodic pulsar
will be:

Φ(T ) = 2πνT. (865)

The evolution of the pulsar frequency is modeled by Taylor expanding around the source
reference value T0 = 0 of the pulsar proper time as:

ν(T ) = ν0 + ν̇0T +
1

2
ν̈0T

2 + · · · , (866)

And the accumulated phase is then:

1

2π
Φ(T ) =

∫ T

0

dτν(τ)

1

2π
Φ(T ) = ν0T +

1

2
ν̇0T

2 +
1

6
ν̈0T

3 + · · ·
(867)

Emission takes place at Tn such that

Φ(Tn) = ϕ0 + 2πn

With proper times Tn to be given by:

ν0Tn +
1

2
ν̇0T

2
n +

1

6
ν̈0T

3
n + · · · = n+

Φ0

2π
. (868)

This model assumes that the evolution of the pulsar frequency is smooth. Most pulsars
exhibit "glitches", sudden jumps in their rotational periods. Related to the source form of
rearrangement of internal structure.

6.3 Relativistic corrections for binary pulsars

For a pulsar in a binary system, we proceed similarly to what’s done for the Earth-Sun system
and transform from the pulsar’s proper time to the pulsar-companion system coordinate time.
Further reading in the following subsections can be found in Reports [97]-[103].
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6.3.1 Einstein time delay

We proceed as in Einstein’s time delay in SSB, but instead of reduced and total mass, we
use the masses mp and mc of the pulsar and its companion. The beam is radiated by some
"hot spot" at a position x⃗ on the pulsar’s surface.

The Newtonian field ϕ at x⃗ is therefore:

ϕ(x) = − Gmp

c2|x− xp|
− Gmc

c2|x− xc|
, (869)

where xp is the position of the center of the pulsar and xc is the position of the companion.
Gmc/(c

2a) ∼ 10−6 and therefore is small, so the weak-field approximation is legitimate.
Pulsar’s self-gravity is for a typical pulsar of mass mp ≃ 1.4M⊙, and NS radius rNS ≃

10 km, we have Gmp/(c
2rNS) ≃ 0.2, which is strong on the surface. However, this term does

not change along the pulsar’s trajectory, so it does not modulate the time of arrivals.
Thus, the time-dependent part of the Einstein time delay is:

ϕ(x) = − Gmc

c2|x− xc|
(870)

Inserting Equation 870 in 849 we get:

dτ

dt
= 1− Gmc

c2|xp − xc|
−

v2p
2c2

(871)

In the center-of-mass system νp is given as:

νp =
mc

mp +mc

v (872)

where ν is the relative velocity.
Here we begin from Eqs. 852 and 853, but M → mp and µ⇒ mc, so:

E = −G(mp +mc)

2a
=

1

2

mpmc

mp +mc

ν2p −
Gmpmc(mp +mc)

r(mp +mc)

1

2
v2 − G(mp +mc)

r
= −G(mp +mc)

2a

(873)

Now, Equation 871 reads:

dT

dt
= 1− Gmc

c2r
− 1

2c2
m2
c

(mp +mc)2
ν2

dT

dt
= 1− Gmc

c2r
− 1

c2
m2
c

(mp +mc)2

[
G(mp +mc)

r
− G(mp +mc)

2a

]
dT

dt
= 1− G

c2

[
mc

r
+

m2
c

(mp +mc)r
− m2

c

mp +mc

1

2a

]
dT

dt
= 1− G

c2

[
mc(mp + 2mc)

mp +mc

1

r
− m2

c

mp +mc

1

2a

]
(874)
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The parametrization of Keplerian orbit in terms of the eccentric anomaly u is related to
t by:

u− e sinu =
2π

Pb
(t− t0), (875)

With t0 to be a reference time of periastron passage. Differentiating, we have:

du

dt
(1− e cosu) =

2π

Pb
, (876)

And therefore:

dT

dt
· 2π
Pb

=

(
1− G

c2

(
mc

mp +mc

)[
(mp + 2mc)

1

r
−mc

1

2a

])
× (1− e cosu)

2π

Pb

dT

du
= 1− e cosu− G

c2

(
mc

mp +mc

)
(1− e cosu)

[
(mp + 2mc)

1

a(1− e cosu)
−mc

1

2a

]
2π

Pb

dT

du
= 1− e cosu− Gmc

c2(mp +mc)

[
1

a
(mp + 2mc)−mc

1

2a
+mce cosu

1

2a

]
2π

Pb

dT

du
=

[
1− G

c2
2mcmp + 3m2

c

2a(mp +mc)

]
− e cosu

[
1 +

G

c2
m2
c

2a(mp +mc)

]
dT

du
≈ Pb

2π

[
1− G

c2
2mcmp + 3m2

c

2a(mp +mc)

] [
1− e cosu

(
1 +

G

c2
mc(mp + 2mc)

a(mp +mc)

)]
(877)

The only observable correction proportional to cosu, since it produces a modulation along
the orbit. We redefine

T ′ =

[
1− G

c2
2mcmp + 3m2

c

2a(mp +mc)

]
T ⇒ dT ′ = constant× dT (878)

So we take:
dT

du
=
Pb
2π

(1− e cosu)− γ cosu, (879)

where the Einstein parameter γ is given by:

γ = e

(
Pb
2π

)
G

c2
mc(mp + 2mc)

a(mp +mc)
= e

(
Pb
2π

)1/3
G2/3

c2
mc(mp + 2mc)

(mp +mc)4/3
, (880)

We rewrite 879 with 2π
Pb

dt
du

= 1− e cosu, we find:

d∆E

du
= γ cosu (881)

So, the Einstein delay reads:
∆E = γ sinu (882)
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Roemer time delay and Post-Newtonian orbits

Referring the emission time to the barycenter of the pulsar-companion system, we en-
counter the Roemer and Shapiro time delays, similar to the solar system corrections. The
Roemer delay is given by:

∆R =
ẑ · x1(t)

c
(883)

where x1 is the distance of the pulsar from the center of mass of the pulsar-companion
system.

In a Keplerian orbit, neglecting general-relativistic corrections in the plane of the orbit,
using polar coordinates (r1, ψ) in the plane of the orbit, the Keplerian equation of motion is
given in parametric form, in terms of the eccentric anomaly u, by:

r1(u) = a1[1− e cosu] (884)

cosψ(u) =
cosu− e

1− e cosu
(885)

Where a1 is the semimajor axis of the pulsar orbit. At u = 0, r1 is max and in this case
ψ = 0. Therefore, the angle ψ is measured from periastron, and the angle measured from
the line of nodes is ω + ψ(u).

The Roemer delay is:

∆R = r1(u) sin i sin[ω + ψ(u)] ⇒
∆R = r1(u) sin i(cosψ sinω + sinψ cosω)

(886)

since

sinψ(u) =

√
1− e2 sinu

1− e cosu
, (887)

We get:

∆R = r1(u) sin i

[
cosu− e

1− e cosu
sinω +

√
1− e2

sinu

1− e cosu
cosω

]
∆R =

r1(u)

1− e cosu
sin i

[
(cosu− e) sinω +

√
1− e2 sinu cosω

]
∆R = a1(u) sin i

[
(cosu− e) sinω +

√
1− e2 sinu cosω

] (888)

Numerically, the effect is quite large, and it is necessary to go beyond the Keplerian
orbit and include the post-Newtonian corrections to 1PN order. This computation has been
performed by Damour and Deruelle (1985, 1986).

Conservation of angular momentum leads to motion in a plane, and the conserved quan-
tities, total energy E and angular momentum J , are given by:

ϵ =
E

µ
=

1

2
v2 − Gm

r
+

3

8
(1− 3ν)

v4

c2
+
Gm

2rc2

[
(3 + ν)v2 + ν(r̂ · v)2 + Gm

r

]
(889)

j⃗ =
J⃗

µ
=

[
1 +

1

2
(1− 3ν)

v2

c2
+ (3 + ν)

Gm

rc2

]
r⃗ × v⃗ (890)
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In polar coordinates (r, ψ) in the plane of the orbit, the first of these conserved quantities
leads to: (

dr

dt

)2

= A+
2B

r
+
C

r2
+
D

r3
(891)

dψ

dt
=
H

r2
+
I

r3
(892)

where A,B,C,D,H, I are polynomials pf ϵ and j⃗

A = 2ϵ

[
1 +

3

2
(3ν − 1)

ϵ

c2

]
(893)

B = Gm
[
1 + (7ν − 6)

ϵ

c2

]
(894)

C = −j2
[
1 + 2(3ν − 1)

ϵ

c2

]
+ (5ν − 10)

G2m2

c2
(895)

D = (8− 3ν)
GMj2

c2
(896)

H = j
[
1 + (3ν − 1)

ϵ

c2

]
(897)

I = (2ν − 4)
GMj

c2
(898)

In c→ +∞ we have A = 2ϵ, B = Gm,C = −j2, D = 0 = I,H = j the Newtonian values.
We insert r̄ = r + D

2j
and Equation 891 reads:(

dr̄

dt

)2

= A+
2B

r̄
+
C̄

r̄2
+O(v4/c4) (899)

with C̄ = C + (BD/j2).
Similarly in Equation 892 we set r̃ ≡ r − I

2H
and have

dψ

dt
=
H

r̃2
(900)

In polar coordinates (r, ψ) in the plane of the orbit, the first of these conserved quantities
leads to: (

dr

dt

)2

= A+
2B

r
+
C

r2
+
D

r3
(901)

dψ

dt
=
H

r2
+
I

r3
(902)

where A,B,C,D,H, I are polynomials pf ϵ and j⃗
The 1PN Equations of motion can be integrated, and we get:

u− et sinu =
2π

Pb
t (903)

r = ar[1er sinu] (904)
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with
ar = −Gm

2ϵ

[
1− (ν − 7)

ϵ

2c2

]
(905)

radial eccentricity

e2r = 1 +
2ϵ

Gm2

[
1 + (5ν − 15)

ϵ

2c2

] [
j2 + (ν − 6)

G2m2

c2

]
(906)

time eccentricity

e2t = 1 +
2ϵ

Gm2

[
1 + (17− 7ν)

ϵ

2c2

] [
j2 + (2− 2ν)

G2m2

c2

]
(907)

2π

Pb
=

(−2ϵ)5/2

Gm

[
1− (ν − 15)

ϵ

4c2

]
(908)

Similarly ψ(u) solution in terms of angular electricity reads:

ψ = ω0 + (1 + k)Aeθ(u) (909)

where
k ≡ 3Gm

c2a(1− e2)
(910)

and
e2θ = 1 +

2ϵ

G2m2

[
1 + (ν + 5)

ϵ

2c2

] [
j2 − 6

G2m2

c2

]
(911)

and

Aeθ(u) ≡ 2arctan

[√
1 + eθ
1− eθ

tan
u

2

]
(912)

This representation is parametric and "quasi-Newtonian," accurate to 1PN order.
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7 TOV equations for stellar objects and their structure

7.1 Production of TOV equations

In the following chapter we conduct an explicit derivation of the Tollmann- Oppenheimer-
Volkov equations. A complete set of equations, which completely describe a neutron star,
when combined with its equation of state. Here we follow the minset, as given in Hobson,
Efstathiou and Lasenby’s book [18].

Most astrophysical objects never evolve into objects that are not adequately described by
the Newtonian theory of stellar structure. Neutron Stars (NS), although, involve extremely
high densities, which means that the internal growth forces will be very strong, and we can
expect that General Relativistic effects will have a significant role in the stars structure
and stability. There is a huge interest in achieving relativistic equations that govern the
equilibrium of symmetric gravitating matter distributions.

The demand of spherical symmetry and static matter distribution in the star yields the
metric:

ds2 = A(r)dt2 −B(r)dr2 − r2(dθ2 + sin2 θ dϕ2) (913)

where A(r) and B(r) are functions of radius r and can be determined in the interior of the
object.

To proceed, we rewrite Eq. 913 in matrix form to obtain the covariant components of
the metric tensor:

gµν =


A(r) ∅

−B(r)
−r2

∅ −r2 sin2 θ

 (914)

Correspondingly, the contravariant metric tensor, which is the inverse of the above, takes
the form:

gµν =


1

A(r)
∅

− 1
B(r)

− 1
r2

∅ − 1
r2 sin2 θ

 (915)

There is a standard procedure when one wants to derive the Einstein field equations. The
first step is to compute the Christoffel symbols or connections, which depend on derivatives
of the metric components. The general expression for the Christoffel symbols is:

Γρµν =
1

2
gρσ(∂νgσµ + ∂µgνσ − ∂σgµν). (916)

Since the metric is diagonal and static, many components of the Christoffel symbols
vanish due to symmetry and time independence. Specifically, using equation 914, we note:

914 ⇒


g0i = 0 = gj0

gij = 0, ∀i ̸= j

∂tgρσ = 0 no dependance on t or ϕ
∂ϕgρσ = 0, ∀ρ, σ = 0, 1, 2, 3

(917)
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Let us now compute the non-zero components of the Christoffel symbols. Starting with
the Γµ00 components:

Γ0
00 =

1

2
g0σ(∂0gσ0 + ∂0g0σ − ∂σg00)

Γ0
00 =

1

2
g00∂tg00 = 0

(918)

Since the metric is time-independent, all time derivatives vanish, which leads to Γ0
00 = 0.

Γi00 =
1

2
giσ(∂0gσ0 + ∂0g0σ − ∂σg00) ∀i ̸= 0

Γi00 = −1

2
gii∂ig00

We now evaluate this expression for each spatial component i:
For i = 1 we get:

Γ1
00 =

A′

2B
, (919)

Γ2
00 = Γ3

00 = 0. (920)

These results reflect the fact that A depends only on r, while there is no angular depen-
dence.

i = 2 : Γ2
00 = −1

2
g22∂2g00 = −1

2
g22∂θ(A(r)) = 0

i = 3 : Γ3
00 = −1

2
g33∂3g00 = −1

2
g33∂ϕ(A(r)) = 0

Again, since A(r) does not depend on the angular coordinates, these Christoffel symbols
vanish.

We now consider mixed components involving time and space indices. These are also
expected to vanish for a static metric:

Γ1
0i = Γ1

j0 =
1

2
g1σ(∂ig0σ + ∂0giσ − ∂σgi0), ∀i ̸= 0

=
1

2
g11∂tgi1 = 0, ∀i = 1, 2, 3.

Thus, all such terms vanish due to the time-independence of the metric components.

Γ1
01 = Γ1

02 = Γ1
03 = Γ1

30 = Γ1
20 = Γ1

10 = 0. (921)

We now compute the Christoffel symbols with upper index 2. For all i ̸= 0, we apply the
standard formula for Christoffel symbols:
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Γ2
oi = Γ2

jo =
1

2
g2σ(∂igoσ + ∂ogiσ − ∂σgio)

=
1

2
g22∂tgi2 = 0

All these components vanish since the metric components do not depend on time and
g02 = 0. We therefore have:

Γ2
01 = Γ2

02 = Γ2
03 = Γ2

30 = Γ2
20 = Γ2

10 = 0. (922)

We repeat the same analysis for the Christoffel symbols with upper index 3. Again, we
use the formula:

Γ3
oi = Γ3

jo =
1

2
g3σ(∂igoσ + ∂ogiσ − ∂σgio)

=
1

2
g33∂tgi3 = 0

As before, all terms vanish because of the time-independence of the metric and the
absence of mixed components. Thus:

Γ3
01 = Γ3

02 = Γ3
03 = Γ3

30 = Γ3
20 = Γ3

10 = 0. (923)

Next, we compute the Christoffel symbols with upper index 0. Using the general formula,
we obtain:

Γ0
oi = Γ0

jo =
1

2
g0σ(∂igσo + ∂ogiσ − ∂σgoi), ∀i ̸= 0

=
1

2
ρ00∂ig00

To evaluate these components explicitly, we consider each value of i separately.

i = 1 : Γ0
10 = Γ0

01 =
1

2
g00∂1g00 =

1

2

1

A(r)
∂rA(r) =

A′

2A

i = 2 : Γ0
20 = Γ0

02 =
1

2
g00∂2g00 =

1

2

1

A(r)
∂θA(r) = 0

i = 3 : Γ0
30 = Γ0

03 =
1

2
g00∂3g00 =

1

2
∂ϕg00 = 0

We conclude that the only nonzero Christoffel symbols in this set are:

Γ0
01 = Γ0

10 =
A′(r)

2A(r)
(924)

While the others vanish:
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Γ0
02 = Γ0

20 = Γ0
03 = Γ0

30 = 0 (925)

We now turn to Christoffel symbols with repeated spatial indices. For the component
Γ1
11, we compute:

Γ1
11 =

1

2
g1σ(∂1gσ1 + ∂1g1σ − ∂σg11)

=
1

2
g11(∂1g11 + ∂1g11 − ∂1g11)

=
1

2

(
− 1

B(r)

)
∂r(B(r))

Γ1
11 = − B′

2B

(926)

Finally, we evaluate Γ1
22. Using the same formula:

Γ1
22 =

1

2
g1σ(∂2gσ2 + ∂2g2σ − ∂σg22)

=
1

2

1

B(r)
∂r(−r2)

Γ1
22 =

−r
B(r)

(927)

Γ1
33 =

1

2
g1σ (∂3gσ3 + ∂3g3σ − ∂σg33)

=
1

2
g11 (∂ϕg13 + ∂ϕg31 − ∂1g33)

=
1

2

(
1

B(r)

)[
∂r
(
−r2 sin2 θ

)]
Γ1
33 =

r sin2 θ

B(r)

(928)

Here, we compute Γ1
33 using the definition of the Christoffel symbol. After substituting

the appropriate components and simplifying, we arrive at the final expression.

Γ1
12 = Γ1

21 =
1

2
g1σ (∂2gσ1 + ∂1g2σ − ∂σg12)

=
1

2
g11 (∂2g11 + ∂1g21) =

1

2
g11∂θg11 = 0

Γ1
12 = Γ1

21 = 0

(929)

Since g11 is independent of θ, its derivative vanishes, leading to a zero Christoffel symbol
for Γ1

12 and Γ1
21.

Γ1
31 = Γ1

13 =
1

2
g1σ (∂3gσ1 + ∂1g3σ − ∂σg13) ⇒ Γ1

13 = Γ1
31 = 0 (930)
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Next, we evaluate Γ1
13 and Γ1

31. Since the metric components involved are constants or
zero, this leads directly to zero.

Γ1
32 = Γ1

23 =
1

2
g1σ (∂3gσ2 + ∂2g3σ − ∂σg23) =

1

2
g11∂2g31 = 0

Γ1
23 = Γ1

32 = 0
(931)

For the remaining mixed terms involving indices 2 and 3, we find that the derivatives
again vanish, resulting in zero Christoffel symbols.

Γ2
ii =

1

2
g2σ (∂igσi + ∂igiσ − ∂σgii) =

1

2
g22 (∂ig2i + ∂igi2 − ∂2gii)

To compute Γ2
ii, we analyze the cases for i = 1, 2, 3 individually.

i = 1 : Γ2
11 =

1

2

(
− 1

r2

)[
− ∂θ(−B(r))

]
= 0

i = 2 : Γ2
22 =

1

2
g22∂θ(−r2) = 0

i = 3 : Γ2
33 =

1

2

(
− 1

r2

)
(∂θ(r

2 sin2 θ)) = − sin θ cos θ

We observe that the Christoffel symbols vanish for i = 1 and i = 2, while for i = 3 the
non-zero derivative leads to a non-trivial result.

Γ2
11 = 0 = Γ2

22 (932)

Thus, both Γ2
11 and Γ2

22 vanish.

Γ2
33 = − sin θ cos θ (933)

Only Γ2
33 yields a non-zero expression involving trigonometric functions of θ.

We now continue computing additional Christoffel symbols. Let’s begin with Γ2
12 and

Γ2
21.

Γ2
21 = Γ2

12 =
1

2
g2σ(∂2gσ1 + ∂1g2σ − ∂σg12) =

1

2

(
1

r2

)
∂rr

2 =
1

r
(934)

Next, we evaluate Γ2
13 and Γ2

31. Here, we observe that the relevant metric derivatives
vanish.

Γ2
31 = Γ2

13 =
1

2
g2σ(∂3g1σ + ∂1g3σ − ∂σg13) =

1

2
g22(∂3g12 + ∂1g32) = 0 (935)

We now compute Γ2
32 and Γ2

23. As with the previous case, these components vanish due
to the absence of θ dependence.

Γ2
32 = Γ2

23 =
1

2
g22∂2g32 = 0 (936)
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Next, we look at the time components Γ0
ii for spatial indices I ̸= 0. Since the metric

components do not depend on time, these derivatives vanish.

Γ0
ii =

1

2
g0σ(∂igσi + ∂igiσ − ∂σgii), ∀i ̸= 0

= −1

2
g00∂tgii = 0

(937)

We now consider mixed time-space Christoffel symbols of the form Γ0
2i and Γ0

i2. Again,
these vanish due to the time independence of the metric components.

Γ0
2i = Γ0

i2 =
1

2
g0σ(∂2gσi + ∂ig2σ − ∂σgi2) =

1

2
g00(∂2g0i + ∂ig20 − ∂0gi2)

We verify the vanishing components for specific values of i.

i = 1 : Γ0
21 = Γ0

12 =
1

2
g00(∂2g01 − ∂0g12) = 0

i = 3 : Γ0
23 = Γ0

32 =
1

2
g00(∂2g03 − ∂0g32) = 0

This confirms the result:

Γ0
21 = Γ0

12 = Γ0
23 = Γ0

32 = 0 (938)

Lastly, we evaluate the component Γ0
31 and its symmetric counterpart. As before, since

the metric components do not depend on time, all time derivatives vanish, and the remaining
terms are zero as well.

Γ0
31 = Γ0

13 =
1

2
g0σ(∂3gσ1 + ∂1g3σ − ∂σg31) =

1

2
g00(∂3g01 + ∂1g30) = 0 (939)

We now move on to compute Γ3
ii for spatial indices i = 1, 2, 3. These components describe

how the ϕ-coordinate changes along the directions of r, θ, and ϕ, respectively.

Γ3
ii =

1

2
g3σ(∂igσi + ∂igiσ − ∂σgii)

i = 1 : Γ3
11 =

1

2
g33(∂1g31 + ∂1g13 − ∂3g11) ⇒ Γ3

11 = 0

i = 2 : Γ3
22 =

1

2
g33(∂2g32 + ∂2g23 − ∂3g22) ⇒ Γ3

22 = 0

i = 3 : Γ3
33 =

1

2
g33(∂3g33 + ∂3g33 − ∂3g33) ⇒ Γ3

33 = 0

(940)

As expected, these Christoffel symbols vanish because there is no ϕ-dependence in the
metric tensor components g11, g22, or g33.

Next, we examine the mixed second-order Christoffel symbols Γ3
12 and Γ3

21. These, too,
turn out to be zero, as none of the metric components involved depend on both r and θ in
the relevant way.
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Γ3
12 = Γ3

21 =
1

2
g3σ(∂2gσ1 + ∂1g2σ − ∂σg12) =

1

2
g33(∂2g31 + ∂1g23) = 0 (941)

We now compute the remaining Christoffel symbols Γ3
i3 = Γ3

3i for i = 1, 2. These terms
capture how the ϕ direction varies concerning changes in r and θ.

Γ3
i3 = Γ3

3i =
1

2
g3σ(∂3gσi + ∂ig3σ − ∂σgi3) =

1

2
g33∂ig33 (942)

For i = 1, the derivative is concerning r. We compute:

Γ3
13 = Γ3

31 =
1

2

1

r2 sin2 θ
∂r(r

2 sin2 θ) =
1

r
(943)

For i = 2, the derivative is with respect to θ, giving:

Γ3
23 = Γ3

32 =
1

2

1

r2 sin2 θ
∂θ(r

2 sin2 θ) = cot θ (944)

These are the only non-zero Christoffel symbols with upper index 3, and they reflect the
spherical symmetry of the metric.

Expressions for Γρµν are summarized below:

Γ0
01 = Γ0

10 =
A′

2A
Γ2
12 = Γ2

21 =
1

r

Γ1
00 =

A′

2B
Γ2
33 = − sin θ cos θ

Γ1
11 =

B′

2B
Γ3
13 = Γ3

31 =
1

r

Γ1
22 = − r

B
Γ3
23 = Γ3

32 = cot θ

Γ1
33 = −r sin

2 θ

B

We now turn our attention to the Ricci tensor, which encodes how volumes deform under
parallel transport and plays a central role in formulating Einstein’s field equations. In the
context of our metric, many of the Christoffel symbols either vanish or simplify considerably.
As a result, the Ricci tensor components also exhibit simplifications. In particular, all
off-diagonal components of the Ricci tensor (Rµν for µ ̸= ν) vanish due to the
symmetries present in the spacetime and the structure of the connection coefficients.

To compute the Ricci tensor components, we use the general expression:

Rµν = ∂νΓ
σ
µσ − ∂σΓ

σ
µν + ΓρµσΓ

σ
ρν − ΓρµνΓ

σ
ρσ

In the next terms, most Christoffel symbols either vanish or are independent of time.
Consequently, many of the terms above vanish identically or cancel out. Thus, we take:

The R00 component reads:

R00 = ∂0Γ
σ
0σ − ∂σΓ

σ
00 + Γρ0σΓ

σ
ρ0 − Γρ00Γ

σ
ρσ

R00 = −∂r
(
A′

2B

)
+
A′

2A

A′

2B
− A′

2B

B′

2B
− A′

2B

1

r
− A′

2B

1

r
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R00 = −A′′

2B
+
A′

4B

(
A′

A
+
B′

B

)
− A′

rB
(945)

The R11 component reads:

R11 = ∂1Γ
σ
1σ − ∂σΓ

σ
11 + Γρ1σΓ

σ
ρ1 − Γρ11Γ

σ
ρσ

R11 =
A′′

2A
− (A′)2

4A2
− 2

r2
+

(A′)2

4A2
+

1

r2
+

1

r2
− B′

2B

A′

2A
− B′

2Br

R11 = −A
′′

2A
− A′

4A

(
A′

A
+
B′

B

)
− B′

2Br
(946)

Next, the R22 component reads:

R22 = ∂2Γ
σ
2σ − ∂σΓ

σ
22 + Γρ2σΓ

σ
ρ2 − Γρ22Γ

σ
ρσ

R22 =
− sin2 θ − cos2 θ

sin2 θ
+

1

B
− 2rB′

2B2
− 2r

B

1

r
+

cos2 θ

sin2 θ
+

rA′

2BA
+
rB′

2B2
+

1

B
+

1

B

R22 = −1 +
3

B
− 2

B
− rB′

2B2
+

rA′

2BA

R22 =
1

B
− 1 +

r

2B

(
A′

A
+
B′

B

)
(947)

Finally, the R33 component reads:

R33 = ∂3Γ
σ
3σ − ∂σΓ

σ
33 + Γρ3σΓ

σ
ρ3 − Γρ33Γ

σ
ρσ

R33 = sin2 θ
[ 1
B

− 1 +
r

2B

(
A′

A
− B′

B

)]
R33 = R22 sin

2 θ (948)

The matrix of Rµν components based on the above equations is:

Rµν =


R00 0 0 0
0 R11 0 0
0 0 R22 0
0 0 0 R22 sin

2 θ

 (949)

In order to continue our computations and make our life easier, we have to consider the
following:

1. The field is static and matter obeys a spherically symmetric distribution, implying
that there is no evolution with time.

2. The matter distribution is described by a perfect fluid and the energy- momentum
tensor is explicitly written as:

Tµν =
(
ρ+

p

c2

)
uµuν − pgµν . (950)
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3. The field equations are solutions for the object’s interior, the exterior is not taken
under consideration, since it is supposed to be empty space.

4. The Ricci tensor is assumed to be in diagonal form, that is,

Rµν = 0 for all µ ̸= ν.

From assumptions 1 and 3, we get:

Rµν = −κ
(
Tµν −

1

2
Tgµν

)
(951)

Rµν = −κ
[ (
ρ+

p

c2

)
uµuν − pgµν −

1

2
Tgµν

]
(952)

T ≡ T µµ = gµνTµν =
[ (
ρ+

p

c2

)
gµνuµuν − pgµνgµν

]
gµνgµν=δ

µ
µ

=======⇒

T =
[ (
ρ+

p

c2

)
uµuν − pδµµ

]
uµuν=c2

=====⇒
δµµ=4

T = −κ(ρc2 + ρ− 4ρ) = −κ(ρc2 − 3ρ)

(953)

Inserting Eq. 953 in Eq. 952 we get

Rµν = −κ
[ (
ρ+

p

c2

)
uµuν − pgµν −

1

2
gµν(ρc

2 − 3ρ)
]
⇒

Rµν = −κ
[ (
ρ+

p

c2

)
uµuν −

1

2
gµνρc

2 +
1

2
pgµν − pgµν

]
⇒

Rµν = −κ
[ (
ρ+

p

c2

)
uµuν −

1

2
gµν(ρc

2 − p)
] (954)

From assumption 4, we get:

Roi = 0 ⇒ (ρ+
p

c2
)u0ui −

1

2
goi(ρc

2 − p) = 0 ⇒ u0ui = 0 (955)

Thus,
uµu

µ = c2 with uµ = c
√
A(1, 0, 0, 0) (956)

Where this holds without assuming staticity.
Components of Rµν as produced by eq. 954:

R00 = −κ
[(
ρ+

p

c2

)
u0u0 −

1

2
A(ρc2 − p)

]
R00 = −κA

[
ρc2 + p− 1

2
ρc2 +

1

2
p

]
R00 = −κ

2
A(ρc2 + 3p)

(957)
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R11 = κ

[(
ρ+

p

c2

)
u1u1 +

1

2
(−B)(ρc2 − p)

]
R11 = −κ

2
(ρc2 − p)B

(958)

R22 = κ

[(
ρ+

p

c2

)
u2u2 +

1

2
(−r2)(ρc2 − p)

]
R22 = −κ

2
r2(ρc2 − p)

(959)

Lastly,

R33 = R22 sin
2 θ = −κ

2
r2 sin2 θ(ρc2 − p) (960)

One can rewrite the Eqs. 957 - 959 as following:

R00

A
= −κ

2
(ρc2 + 3p) (961)

R11

B
= −κ

2
(ρc2 − p) (962)

2R22

r2
= −κ(ρc2 − p) (963)

(964)

And produce the sum of the primed ones to be:

R00

A
+
R11

B
+

2R22

r2
= −2κρc2 (965)

By substituting eqs 949 into eq 965, we take:

2B′

rB2
− 2

r2B
+

2

r2
= 2κρc2 ⇒

B′

rB2
− 1

r2B
+

1

r2
= κρc2

rB′

B2
− 1

B
+ 1 = κr2ρc2

(966)

1− 1

B
+
rB′

B2
= κr2ρc2

dr

dr

(
1− 1

B

)
+ r

d

dr

(
1− 1

B

)
= κr2ρc2

d

dr

[
r

(
1− 1

B

)]
= κr2ρc2

(967)
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r

(
1− 1

B

)
= κc2

∫ r

0

dr′r′2ρ(r′)

=
8πGc2

c4

∫ r

0

dr′r′2ρ(r′)

=
2G

c2
4π

∫ r

0

dr′r′2ρ2ρ(r′)

=
2m(r)G

c2

B − 1 = B
2m(r)G

rc2

1 = B

(
1− 2Gm(r)

rc2

)
B =

[
1− 2Gm(r)

rc2

]−1

(968)

with

m(r) ≡ 4π

∫ r

0

dr′(r′)2ρ(r′) (969)

Eq. 969 does not produce the contained mass in coordinate radius r. The proper volume
element is expressed in this metric coordinates as d3V =

√
B(r)r2 sin2 θdrdθdϕ.

The star’s proper "mass" is now expressed by the following:

m̃(r) = 4π

∫ r

0

ρ(r′)
√
B(r′)r′2dr ⇒

m̃(r) = 4π

∫ r

0

ρ(r′)

(
1− 2Gm(r′)

r′c2

)−1/2
r1/2dr′

(970)

where B(r) ∼ m(r) and not B(r) ≁ m̃(r). When the object extends to r = R, and
for r > R we suppose an empty space, then outside the spacetime geometry is described
by a Schwarzschild metric with mass parameter M = m(r). The difference E = M̃ −M
corresponds to the gravitational binding energy. The gravitational binding energy E =
M̃ −M is the energy needed to disperse the material of which the object consists to infinite
spatial separation.

Differential equation for A(r). Conservation of stress-energy tensor yields:

∇µT µν = 0 (971)

Substituting 950 to 971 we get:

Γµσµ = Γµµσ = ∂σ ln
√
−g = 1√

−g
∂σ
√
−g ⇒ (972)
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∂µT
µν +

1√
−g

(∂σ
√
−g)T σν + ΓνσµT

µσ = 0 ⇒

∂µT
µν +

1√
−g

∂σ(
√
−gT σν)− 1√

−g
√
−g∂σΓσν + ΓνσµT

µσ = 0 ⇒

1√
−g

∂σ

[√
−g
(
ρ+

p

c2

)
uσuν

]
+
(
ρ+

p

c2

)
Γνσµu

µuσ − gµν(∇µp) = 0 ⇒

c2

A

(
ρ+

p

c2

)[1
2
gνσ(∂ogσ0 + ∂og0σ − ∂σg00])

]
− gµν∂µP = 0 ⇒

c2

A

(
ρ+

p

c2

)(
−1

2
gνσ∂σg00

)
− gµν∂µP = 0 ⇒

c2

2A

(
ρ+

p

c2

)
gµν∂µA+ ∂µpgνσg

µν = 0 ⇒

c2

2A

(
ρ+

p

c2

)
∂σA+ ∂σp = 0 ⇒

∂σp+
ρc2 + p

2A
∂σA = 0 (973)

In Eq. 973 σ is a free index, so for:

σ = 0 : ∂tp+
ρc2 + p

2A
∂tA = 0 ⇒ ∂tp = 0 ⇒ p ̸= p(t) (974)

σ = 2 : ∂θp+
ρc2 − p

2A
∂θA(r) = 0 ⇒ ∂θp = 0 ⇒ p ̸= p(θ) (975)

σ = 3 : ∂ϕp+
ρc2 − p

2A
∂ϕA(r) = 0 ⇒ ∂ϕp = 0 ⇒ p ̸= p(ϕ) (976)

σ = 1 : ∂rp+
ρc2 − p

2A
∂rA(r) = 0 ⇒ 1

A

dA(r)

dr
= − 2

pc2 − p

dp

dr
(977)

Eq. 977 is the D.E. A(r) must satisfy. In simpler terms, it reads as

A′(r)

A
= − 2p′

ρc2 − p
(978)

The relativistic equations of stellar structure

Exact form of A(r) and B(r) is given if and only if p = p(ρ) is given as an equation
of state (E.o.S.). When ρ(r) and p(r) are arbitrarily chosen, they give results unrealistic.
Moving on we will produce the first equation of stellar structure.

m(r) = 4π

∫ r

0

dr′r′2ρ(r′) ⇒ dm(r)

dr
= 4πr2ρ(r) (979)
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Eq. 979 relates m(r) and ρ(r). The θθ component of Ricci’s tensor is given as:

R22 =
1

B
− 1 +

r

2B

(
A′

A
− B′

B

)
R22 = −κ

2
r2(ρc2 − p)

⇒ 1

B
− 1 +

r

2B

(
A′

A
− B′

B

)
= −1

2
κr2(ρc2 − p)

Substituting 977 into the above equation, we get:

1− 2Gm(r)

rc2
− 1 +

r

2

(
1− 2Gm(r)

rc2

)(
− 2p′

ρc2 + p
− B′

B

)
= −1

2
κr2(ρc2 − p) (980)

We now recall the expression for B(r) given in equation 968, and proceed to differentiate
it:

B(r) =
1

1− 2Gm(r)
rc2

⇒

dB(r)

dr
= B2(r)

2G

c2

(
dm(r)
dr

r
− m(r)

r2

)
⇒

dB(r)

dr

1

B2(r)
=

2G

c2

(
4πr2ρ(r)

r
− m(r)

r2

)
⇒

1

B2

dB

dr
=

2G

r2c2
[
4πr3p(r)−m(r)

]
⇒

Which yields the compact form:

B′

B2
=

2G

r2c2
[
4πr3ρ(r)−m(r)

]
(981)

Next, using equation 968 again, we derive an identity for 1
B
− 1:

1

B
− 1 = 1− 2Gm(r)

rc2
− 1 = −2Gm

rc2
(982)

We also substitute 968 into 977 to isolate the term A′

A
:

r

2B

A′

A
=
dp

dr

(
1

ρc2 + p

)(
r − 2Gm

c2

)
(983)

Then, from equation 981, we compute:

−r
2

B′

B2
=
mG

rc2
− 4πρG

c2
r2 (984)

Finally, rewriting the right-hand side of equation 980 using the definition of κ, we find:
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1

2
κ(ρc2 − p)r2 =

4πGr2

c4
(ρc2 − p) (985)

Now, substituting equations 982 through 985 into equation 980, we obtain:

− mG

r2
− 4πGr2

c4
p =

dp

dr

(
1

ρc2 + p

)
r

(
1− 2Gm

rc2

)
⇒

− 1

r

(
Gm

c2
+

4πGr3

c4
p

)
= r

(
1

ρc2 + p

)
dp

dr

(
1− 2Gm

rc2

)
Rearranging and simplifying, we finally arrive at the Tolman–Oppenheimer–Volkoff (TOV)

equation:

dp

dr
= − 1

r2
(ρc2 + p)

[
4πG

c4
p(r)r3 +

Gm(r)

c2

](
1− 2Gm(r)

rc2

)−1
(986)

Equations 979, 986 and p = p(ρ) create a closed system of eqs, needed to define the E.o.S.
for the matter. The set is called TOV eqs. Given in the form:

i) p = p(ρ) (E.o.S.), links p(r) and ρ(r)

ii) dm(r)
dr

= 4πr2ρ(r), links m(r) and ρ(r)

iii) dp(r)
dr

= − 1
r2
(ρc2 + p(r))

[
4πG
c4
p(r)r3 + Gm(r)

c2

] (
1− 2Gm(r)

rc2

)−1
, links m(r) and p(r)

The above set of equations provides the equations of stellar structure. The matter in-
cluded in NSs obeys a polytropic E.o.S. of form

p = Kργ (987)

with
γ = 1 +

1

n
(988)

Both K and γ are constants, and n is called the polytropic index.
Set (i-iii) contains two coupled differential equations of first order, which gives a unique

solution that is obtained by two boundary conditions.

1. First boundary condition: m(0)− 0 .

2. Second boundary condition: central pressure p(0) or central density ρ(0).

Set (i-iii) is integrated numerically on a computer, beginning point r = 0 and integrating
outwards until the pressure drops to zero. Pressure drops to zero when r = R at the star’s
surface. In a more compact form we write:

when r > R ⇒

{
ρ(r) = 0 = p(r)

m(r) = m(R) ≡M
(989)

where the spacetime is described by the Schwarzschild metric with mass M .
In the Newtonian limit:
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i) p≪ ρ

ii) 4πr3p≪ mc2

iii) gµν ∼ ηµν ⇒ 2Gm
rc2

Substituting the above equations in 986:

dP

dr
≈ − 1

r2
ρc2
(
Gm(r)

c2

)
⇒ dp

dr
= −Gm(r)ρ(r)

r2
(990)

Eq. 990 denotes hydrostatic equilibrium.

The Schwarzschild constant-density interior solution

The simplest analysis solution for a relativistic star is obtained by assuming that the
density ρ is constant as:

ρ = constant (991)

Eq. 991 constitutes an E.o.S., borderline of being realististic, corresponds to an ultra-stiff
E.o.S. and represents an incompressible fluid.

dm(r)

dr
= 4πr2 ⇒∫ r

0

dm(r′) = 4πρ

∫ r

0

dr′r′2 ⇒

m(r) = 4πr
r′3

3

∣∣∣r
0
=

4

3
πρr3, r ≤ R ⇒∫ R

0

dm(r) = 4πρ

∫ 0

R

dr′r′2 =
4

3
πρR3, r > R ⇒

m(r) =


4

3
πρr3, r ≤ R

4

3
πρR3, r > R

(992)

where R is the radius of the star and M is the mass parameter for the Schwarzchild metric
and describes the geometry outside the star.

Substituning eq. 986 to eq. 992 we get:

dp

dr
= − 1

r2
(ρc2 + p)

(
4πG

c4
p(r)r3 +

4πGp

3c2
r3
)(

1− 8πGpr3

3rc2

)−1
dp

dr
= −4πG

3c4
r(ρc2 + p)(ρc2 + 3p)

(
1− 8πGpr3

3rc2

)−1 (993)
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∫ p(r)

p0

dp̄

(ρc2 + p̄)(ρc2 + 3p̄)
= −4πG

3c4

∫ r

0

dr̄

(
r̄

1− 8πGp
3c2

r̄2

)
(994)

Eq. 994 LHS integrand is written as:

A

(ρc2 + p)
+

B

(ρc2 + 3p)
=

1

(ρc2 + p)(ρc2 + 3p)
⇒

A(ρc2 + 3p) +B(ρc2 + p) = 1Op1 ⇒{
Aρc2 +Bρc2 = 1

3Ap+Bp = Op
⇒

A+B =
1

ρc2

B = −3A

⇒


A = − 1

2ρc2

B =
3

2ρc2

Thus, ∫ p(r)

p0

dp̄

(ρc2 + p)(ρc2 + 3p)
=

1

2ρc2

∫ p(r)

p0

dp̄

[
3

ρc2 + 3p̄
− 1

ρc2 + p̄

]
(995)

Instead of integrating RHS, we apply the derivative w.r.t. r̄ of the following expression:

−4πG

3c4
r̄

1− 8πGp
3c2

r̄2
=

d

dr

[
1

4c2ρ
ln
(
1− 8πGρ

3c2
r̄2
)]

(996)

Integrating straightforwardly eq. 995 one yields:∫ p(r)

p0

dp̄

(ρc2 + p)(ρc2 + 3p)
=

1

2pc2

∫ p(r)

p0

[
d ln (ρc2 + 3p̄)− d ln (ρc2 + p̄)

]
∫ p(r)

p0

dp̄

(ρc2 + p̄)(ρc2 + 3p̄)
=

1

2ρc2

[
ln

(
ρc2 + 3p(r)

ρc2 + p(r)

)
− ln

(
ρc2 + 3p0
ρc2 + p̄0

)] (997)

Finally, eq. 994 is written as:

ln

 ρc2+3p(r)
ρc2+p(r)

ρc2+3p0
ρc2+p0

 =
1

2
ln

(
1− 8πGp

3c2
r2
)

⇒

ln

 ρc2+3p(r)
ρc2+p(r)

ρc2+3p0
ρc2+p0

 = ln

(
1− 8πGp

3c2
r2
)1/2

⇒

ρc2 + 3p(r)

ρc2 + p(r)
=
ρc2 + 3p0
ρc2 + p0

(
1− 8πGρ

3c2
r2
)1/2

(998)

On the star’s surface, the following arguments are valid without proof:
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1. r = R

2. p(R) = 0

3. ρc2+3p(R)
ρc2+p(R)

= ρc2

pc2
= 1

4. From Eq. 998 1 = ρc2+3p0
ρc2p0

(
1− 8πGρ

3c2
r2
)1/2 ⇒

R2 =
3c2

8πGp

[
1−

(
ρc2 + p0
ρc2 + 3p0

)2
]

(999)

R is the radius of a star with uniform density ρ at central pressure p0. Set

µ ≡ GM

c2
=

4πGρR3

3c2
(1000)

R2 =
R3

2µ

[
1−

(
ρc2 + p0
ρc2 + 3p0

)2
]
⇒

2µ

R
= 1−

(
ρc2 + p0
ρc2 + 3p0

)2

⇒
(
ρc2 + p0
ρc2 + 3p0

)2

= 1− 2µ

R
⇒

ρc2 + p0 = ρc2
(
1− 2µ

R

)1/2

+ 3p0

(
1− 2µ

R

)1/2

⇒

p0

[
−1 + 3

(
1− 2µ

R

)1/2
]
= ρc2

[
1−

√
1− 2µ

R

]

p0 = ρc2

 1−
√
1− 2µ

R

3
√

1− 2µ
R
− 1

 (1001)

Replacing p0 in the expression eq. 998 yields:

ρc2 + 3p(r)

ρc2 + p(r)
=
ρc2 + 3p0
ρc2 + p0

(
1− 4πρR3

3c2
2r2

R3

)1/2

⇒

ρc2 + 3p(r)

ρc2 + p(r)
=
ρc2 + 3p0
ρc2 + p0

(
1− 2µr2

R3

)1/2

⇒

ρc2 + 3p(r)

ρc2 + p(r)
=

2

2
√

1− 2µ
R

√
1− 2µr2

R3
⇒

(ρc2 + 3p(r))

√
1− 2µ

R
= (ρc2 + p(r))

√
1− 2µr2

R3
⇒[

3

√
1− 2µ

R
−
√

1− 2µr2

R3

]
p(r) = ρc2

[√
1− 2µr2

R3
−
√
1− 2µ

R

]
⇒
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p(r) = ρc2


(
1− 2µr2

R3

)1/2
−
(
1− 2µ

R

)1/2
3
(
1− 2µ

R

)1/2 − (1− 2µr2

R3

)1/2
 (1002)

Lastly, we need an explicit form for A(r) and B(r). For B(r), when in the internal radii
we get:

B(r) =

(
1− 2Gm(r)

rc2

)−1
=

(
1− 8πGρr3

3rc2

)−1
=

(
1− 4πρGR3

3

2r2

R3

)−1
⇒

B(r) =

(
1− 2µr2

R3

)−1
(1003)

Eq. 1003 for r = R yields:

B(R) =

(
1− 2µR2

R3

)−1
=

1

1− 2µ
R

= BS(R)

Solution matches the expression from the Schwarzschild metric outside the sphere.
For A(r) we have:

1

A

dA

dr
= − 2

ρc2 + p

dp

dr
⇒ dA

A
= − 2

ρc2 + p

dp

dr
dr ⇒

dA

A
= dr

8πGr

3c4
(ρc2 + 3p)

(
1− 2µr2

R3

)−1
⇒

dA

A
= dr

8πGr

3c4

ρc2 + 3pc2


√

1− 2µr2

R3 −
√

1− 2µ
R

3
√
1− 2µ

R
−
√

1− 2µr2

R3


( 1

1− 2µr2

R3

)
⇒

1

A

dA

A
=

8πGρR3r

3R3c2

3
√

1− 2µr2

R3 −
√

1− 2µr2

R3

3
√

1− 2µ
R
−
√
1− 2µr2

R3

 1(√
1− 2µr2

R3

)2

1

A

dA

dr
=

4µr
R3√

1− 2µr2

R3

(
3
√

1− 2µ
R
−
√

1− 2µr2

R3

) (1004)

d

dr

[
ln

(
3

√
1− 2µ

R
−
√

1− 2µr2

R3

)]
=

2µr

R3

1√
1− 2µr2

R3

1(
3
√

1− 2µ
R
−
√

1− 2µr2

R3

) (1005)

Substituting eq. 1005 in eq. 1004 we get:
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A(r) = ec

(
3

√
1− 2µ

R
−
√

1− 2µr2

R3

)2

(1006)

At
r = R ⇒ A(R) = c2

(
1− 2µ

R

)
(1007)

Combining the above, we get:

A =
c2

4
(1008)

Finally the expression for A(R) will be:

A(r) =
c2

4

3

√
1− 2µ

R
−
√

1− 2µr2

R3

2

(1009)

7.2 Buchdahl’s theorem

Theorem 2 Given a static, spherically symmetric solution to Einstein’s equations with mat-
ter confined to a spatial radius R, that behaves as a perfect fluid with non-increasing density
outwards, then the mass of the solution to the field equations must satisfy the upper bound:

GM

Rc2
<

4

9
(1010)

This constraint is derived by the behaviour of p0, when µ
R
→ 4

9
, then from eq. 1001

p0 = ρc2
1−

√
1− 8

9

3
√

1− 8
9
− 1

= ρc2
2
3

1− 1
→ +∞ (1011)

Thus, GM
Rc2

< 4
9
.
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8 A complete analytical GW model for undergraduates
In this chapter we follow the train of thought of Dillon Buskirk and Maria C. Babiuc Hamil-
ton’s article, named "A Complete Analytic Gravitational Wave Model for Undergraduates",
as cited in [104], in the final section the images were contructed by the Wolfram Mathematica
Coding given by the same author as in [124].

An accurate waveform template is constructed by two specific parts. The first part
always includes analytical models of inspirals and mergers, while the second part is obtained
with numerical calculations. In this chapter, the Implicit Rotating Source (IRS) is used
as the analytical model, and various numerical simulations are performed using Wolfram
Mathematica Coding.

In most cases, we apply Post-Newtonian calculations and analytically compute the in-
spiral phases. A useful parameter in PN theory is χ, given by χ = u2

c2
. Despite the many

advantages PN theory offers, it is not valid for relativistic and near-relativistic cases, such
as the merger and ringdown phases. Its validity lies in weak fields, where χ≪ 1, and not on
ringdown phases.

The second last part, of which an accurate template is constructed, is the numerical
computations of the ringdown phase. In this case, instead of calculating the energy flux
through equations, the energy loss is approximated with numerical methods and modeled
by an ansatz. In our case, the ansatz is depicted as a generic IRS model tuned to numerical
GR. The reason behind using numerical and not exact solutions of Einstein’s equations
on the merger phase comes from the fact that the gravitational field, and as a result, the
gravitational forces, take extreme values reaching relativistic limits. In this regime, PN
theory loses validity, since all phenomena are relativistic and the χ-parameter reaches an
outlier (χ→ 1).

8.1 Post-Newtonian expansions in Relativity and useful quantities

As mentioned in previous chapters, the energy loss in every merger is

dE

dt
= −F (1012)

where the energy flux is denoted by F. In terms of the PN parameter χ and using the
derivative chain rule, equation (1012) is rewritten as

((1012)) ⇒ dE

dt
=

dE

dχ

dχ

dt
= −F

⇒ dχ

dt
= − F

dE/dχ

(1013)

There are several ways to solve equation (1012). The most useful one includes the usage of
the T1-T5 Taylor approximants. To use the approximants, it is needed to write down the
power expansion of equation (1012) for n terms:

(???) ⇒ dχ

dt
=

dχ0PN

dt
χ5 +

dχ1PN

dt
χ6 +

dχ2PN

dt
χ7 +

dχ3PN

dt
χ8 +

dχHT

dt
(1014)
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where dχHT

dt
sums up all hereditary terms.

Instead of the parameter χ, we can obtain corrections in PN approximation by expanding
in terms of u

c
n. Each order of this expansion counts as n

2
order. Namely, every expression

can be expanded based on the following:

du

dt
= −GM

r2
[1 +

1PN

c2
+

1, 5PN

c3
+

2PN

c4
+

2.5PN

c5
+ ...] (1015)

In equation (1015) The 1PN term expresses the orbit precession, the 1,5PN term provides
information about the spin-orbit interaction, and the 2PN term describes the spin-to-spin
coupling. Finally, the 2,5PN order of approximation gives the orbital decay that occurs
with GW emissions. Furthermore, when substituted Kepler’s third law and the expression
of orbital velocity, as stated below:

• Keppler’s third law: ω2r3 = GM ⇒ r =
(
GM
ω2

)1/3
• orbital velocity: u = ωr = ω

(
GM
ω2

)1/3
= (GMω)1/3

At this point, it is relatively easy to see, that the χ−parameter can be expressed as:

χ =
u2

c2
=

(GMω)2/3

c2
→ χ = (Mω2/3) (1016)

For our analysis to be complete, we need to see the T4- approximant in a quasicircular
limit expressed in 6PN order:

M
dχ

dt
|6PN =

64

5
ηχ5

(
1 +

12∑
k=2

ak/2χ
k/2

)
(1017)

and the αk/2 coefficients are expressed for every k, that belongs between 2 and 12. Below
are shown the first four:

• a0 = 153.8803

• a1 = −55.83

• a2 = 588

• a3 = −1144

The next coefficients a4, a5, a6, a9/2 and a11/2 are analytically expressed in Appendix B of
[104].

8.1.1 The analytical models

Kepler’s third law, when written as an expression of r and the χ−parameter’s expression is
inserted, we can obtain an expression of r in terms of χ, as:

r =
M

ω2r2
= χ−1(t)M (1018)
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Based on this form, we can take a third form of the Post-Newtonian expression in terms of
radii r up to 3PN order as:

r =M [r0PNχ−1(t) + r1PN + r2PNχ(t) + r3PNχ2(t)] (1019)

with the coefficients to read

• r0PN = 1

• r1PN = −1 + 1
3
η

• r2PN = 19
4
η + 1

9
η2

• r3PN = −7.51822η − 3.08333η2 + 0.0246914η3

Finally, if we demand an optimal orientation of the detector normal to the orbital plane
(θ = 0), we can rewrite equations. as

h+ = −2Mη

R

[(
−ṙ2 + r2ϕ̇2 +

M

r

)
cos(2ϕ) + 2rṙϕ̇sin(2ϕ)

]
(1020)

h× = −2Mη

R

[(
−ṙ2 + r2ϕ̇2 +

M

r

)
sin(2ϕ) + 2rṙϕ̇cos(2ϕ)

]
(1021)

Note here, that instead of the original expressions, as produced in Chapter 2, we substituted
the symmetric mass ratio defined as η = m1m2

M2 and the total mass of the systemM = m1+m2.
Concluding this section, we can now produce the waveform that expresses the strain.

The strain applied by a gravitational wave gives information about the whole inspiral and it
is denoted as hinsp(t). Namely, it is the complex sum of the h+ and h× polarizations, with
the second being the imaginary part. Applying the above, it is fairly easy to write:

hinsp(t) = h+(t) + ih×(t)

= −2Mη

R

[(
−ṙ2 + r2ϕ̇2 +

M

r

)
(cos(2ϕ) + isin(2ϕ)) + 2rṙϕ̇(sin(2ϕ) + icos(2ϕ))

]

= −2Mη

R

[(
−ṙ2 + r2ϕ̇2 +

M

r

)
e2ϕi + 2rṙϕ̇ie2ϕi)

]

= −2Mη

R

[(
−ṙ2 + r2ϕ̇2 +

M

r
+ 2rṙϕ̇i

)
e2ϕi

]
(1022)

Finally we derive the expression:

hinsp(t) = −2Mη

R

[
A1(t) + iA2(t)

]
e2ϕi (1023)

where
A1(t) = −ṙ2 + r2ϕ̇2 +

M

r
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and
A2(t) = 2rṙϕ̇

In a similar way, we can rewrite A1(t) and A2(t) in a complex function in form defined
as:

A(t) = A1(t) + iA2(t) (1024)

8.1.2 The merger model

One crucial phase of a collision of two celestial objects is the merger phase. The merger,
as it is commonly known, begins when the two objects pass the Innermost Stable Circular
Orbit (ISCO). As ISCO, we define the stable radius, where two or more objects perform a
circular orbit. In Schwartzschild geometry, we obtain as ISCO the radius:

rISCO =
6GM

c2
= 3RSch ⇒ rISCO → 6M (1025)

Based on the definition above, it is easy to understand that at r = RISCO the inspiral
phase ends. Similarly, we can define the frequency where the inspiral ends as:

fISCO =
1

6(2π)
√
6

1

M
(1026)

Several semi-analytical models have been developed to fully explain these phenomena, the
most successful of which is the Implicit Rotating Source Model. In this case, the amplitude
is assumed to be circularly polarized. This model is not valid for the merger and ring-down
phases, but provides an excellent approximation for our results.

To obtain a clear picture of the above and have a more exact theory, we follow the way
of William East in the article "Observing complete GW signals from dynamical capture
binaries" [108]. For this case, we approach the phase evolution to the least damped Quasi-
Normal Mode (QNM) frequency of the final black hole, denoted a ωQNM via the expression:

ω(t) = ωQNM(1− f̂) (1027)

where

f̂ =
c(η)

2

((
1 +

1

κ(η)

)1+κ(η)
[
1−

(
1 +

1

κ(η)
e−

2t
b(η)

)−κ(η)])
(1028)

Here the amplitude will be:

A(t) =
A0

ω(t)

[
| ˙̂f |

1 + a(η)(f̂ 2 − f̂ 4)

]1/2
(1029)

where a = 72.3
Q2 , b = 2Q

ωQNM
and ωQNM = 1− 0.63(1− Ŝfin)

0.3 The spin of a black hole can be
expressed in terms of η according to equation 1030. The complete expression is produced
by numerically approximating the problem in hand. Numerically, a black hole’s spin can be
expressed as:

Ŝfin = 2
√
3η − 390

79
η2 +

2379

287
η3 − 4621

276
η4 (1030)
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This derivation of a GWs amplitude and frequency in this model, is complete only if we
write down the numerical expressions of the functions a(η), b(η), c(η) and κ(η). After some
strenuous algebra done with the help of Wolfram Mathematica Coding, we get:

a(η) =
1

Q2(Ŝfin)

[
16313

562
+

21345

124
η

]
b(η) =

16014

979
− 29132

1343
η2

c(η) =
206

903
+

180

1141

√
η +

424

1205

η2

log η

κ(η) =
713

1056
− 23

193
η

Q2(Ŝfin) =
2

(1− Ŝfin)0.45

(1031)

The last piece that completes the merger puzzle is to compute the merger phase. This
can be done by integrating the orbital angular velocity for a given time interval:

ΦgIRS(t) =

∫ t

t0

dtω(t) (1032)

Concluding this model applies to the merger of non-spinning compact binaries. The elements
of the binary may have the same or different mass ratios and the full model describing the
merger phase is called the generic Implicit Rotating Source model (gIRS).

8.1.3 Implementation of the models and matching techniques

Before applying the models mentioned in the previous paragraphs, it is useful to define the
domain of integration. As the domain of integration, we define the range between the initial
and final value of χ−parameter. The lower boundary of χ is denoted as χ0 and dictated
by the seismic background threshold. The seismic background threshold is the minimum
constant frequency created by the movement of tectonic plates. This frequency comes to be
around f lowGW = 10Hz.

Knowing the background frequency, we can compute the corresponding angular velocity
and the χ−parameter as:

ωlowGW = πf lowGW (1033)

χ0 =

(
u20
c2

)
=

(GMωlowGW )2/3

c2
=

(
πGMf lowGW

c3

)2/3

(1034)

The upper boundary is defined by the radius of the last stable orbit, namely the ISCO.
Consequently, the value for each binary system differs and is frequently needed in the second
PN order (dependent on the symmetric mass ratio η). We write the following:

• χ0PN
ISCO = 1

6

• χ2PN
ISCO = 1

6

(
1 + 7

18
η
)
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Following the logical process of the article "A complete analytic GW model for undergrad-
uates", we begin with a paradigm of two configurations with equal masses m1 = m2 = 20M ,
total m, ass M = 40M and symmetric mass ratio η = 0.25M . Implementing these values in
the Wolfram Mathematica format provided by the author, see bibliography [124], we produce
datasets of useful data and images. Since we are dealing with numerical analysis problems,
there is a catch: There must exist an upper bound to our frequencies defined by the bin
configuration to exclude any stiffness in our differential equations. Stiffnesses in numerical
approximation can be caused by factors, initial conditions and singularities. Any stiffness
happens at a fixed time called time of stiffness and denoted by ts. Similarly, instead of
limiting the frequency, we can limit the time axis. Graphs producedby the the coding in
[124], in the case where each BH has mass equal to 20 solar masses are shown below.

Figure 12: PN x-parameter as a function of
time, created with [124].

Figure 13: Evolution of Orbital Frequency,
created with [124].

Figure 14: R separation between stars up to
3PN order and as a function of time, created
with [124].

Figure 15: GW Amplitude evolution in time,
created with [124].
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Figure 16: Graph of real part of inspiral am-
plitude, created with [124].

Figure 17: Real (full line) and imaginary
(dotted line) part of GW strain, created with
[124].

Figure 18: 22-component of GW strain for
the event, created with [124].

Figure 19: Orbital frequency evolution of the
merger phase, created with [124].

Figure 20: GW phase evolution during the
merger as predicted by the generic IRS
model, created with [124].

Figure 21: Maximum value of Amplitude of
binary merger, created with [124].
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Figure 22: Strain’s waveform during the
whole event (real and imaginary part), cre-
ated with [124].

Figure 23: Overlapping the frequency, cre-
ated with [124].

Figure 24: Overlapping the frequency, cre-
ated with [124].

Figure 25: Overlapping the waveform, cre-
ated with [124].

Furthermore, escaping the article’s boundaries, we explored the program’s capability of
producing approximated waveforms for different pairs of masses. Taking different mass values
for each of the objects, we concluded that each one must be mi ≥ 5M⊙ for the program to
function properly. Meanwhile, the total mass must be of order M ≥ 12M⊙.

Using the data stated above, the program allowed us to compute the total time of the
coalescence. The results are shown in Table 2.
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M1 (M⊙) M2 (M⊙) Mtotal (M⊙) η (M⊙) ttotal (s)
10 5 15 3.33 70.0906
8 4 12 2.66 70.0897
6 6 12 3.00 No wave
7 5 12 2.92 93.1185
75 75 150 37.5 1.0988
76 75 151 37.75 1.07886
77 76 153 38.95 1.05158

76.5 76.5 153 38.95 1.05165
150 3 153 2.94 11.3613

Table 2: Table of individual star masses M1 and M2, the total mass M⊙, the mass ratio
η = m1m2

m1+m2
and total time of coalescence ttotal. Data created and obtained by [130].
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9 Constraining scalar-tensor theories by NS-BH GW events
In this chapter we delve into an extremely important article written by Rui Niu, Xing Zhang,
Bo Wang and Wen Zhao, named "Constraining scalar-tensor theorie by neutron star-black
hole gravitational wave events", see bibliography [125]. In rder to fully comprehend the alge-
bra performed in this article, as well as the different modified gravity theories implemented,
we refered to two more articles [126] and [127].

9.1 Introduction

General Relativity (GR), proposed by Einstein in 1915, is fundamental to modern physics,
successfully tested across various scales from laboratory experiments to cosmological observa-
tions. However, GR faces challenges such as singularities, the lack of a quantum formulation,
and the need for dark matter and energy, prompting the development of alternative theories
like scalar-tensor models.

Scalar-tensor theories, which address some of GR’s limitations, have their origins in
early unification attempts by Kaluza and Klein, with further development by Jordan, Fierz,
and Brans-Dicke. In this study, we focus on three models of scalar-tensor theories, the
Brans-Dicke theory (BD), the Damour–Esposito-Farèse (DEF) theory, and Screened Modi-
fied Gravity (SMG).

Brans-Dicke theory introduces a varying gravitational constant through a scalar field
coupled to the Einstein-Hilbert action. DEF theory reveals strong-field deviations from
GR, such as spontaneous scalarization in neutron stars, which is a nonperturbative effect
emerging in strong-field conditions. Additionally, dynamical scalarization occurs in binary
systems but is not the focus of this study. SMG theories include screening mechanisms, like
the chameleon, Vainshtein, and symmetron mechanisms, and suppress deviations from GR
on small scales, while still allowing for cosmological effects such as dark energy.

Gravitational wave (GW) detections, such as GW150914, offer a new way to test GR
in the strong-field regime. The LIGO-Virgo Collaboration (LVC) has conducted model-
independent tests, but specific modified gravity models can provide additional constraints.
Scalar-tensor theories are particularly relevant in systems, like neutron star-black hole (NSBH)
binaries, where asymmetry between the components enhances deviations from GR.

In this study, we test BD, DEF, and SMG theories using GW data from NSBH systems,
specifically GW200105, GW200115, and GW190426 152155. We exclude GW190814 due to
uncertainty in its secondary component and GW200105 due to waveform systematics. Our
analysis will focus on dipole radiation deviations in the GW signal and compare our findings
to LVC constraints.

The theory of Brans-Dicke takes Mach’s principle as the starting point. Mach’s principle
states that the phenomenon of inertia depends on the mass distribution of the universe.
Because of Mach’s principle, we promote the gravitational constant to a variable and demand
that it couples to the Einstein-Hilbert Lagrangian as a scalar field. This theory is the simplest
scalar tensor theory, it is very well constrained and in general it is considered as a prototype in
scalar-tensor theories. Its most stringeent constrain s the measurement of Shapiro time delay,
an experiment conducted by Cassini- Huygens spacecraft, results are given in [128].In Brans-
Dicke (BD) theory tight bound requires deviations from GR in gravitational experiments to
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be very small in both weak and strong fields.
Damour and Esposito-Farese showed in their articles [127] [130], that non-perturbative

effects can emerge in strong-field conditions. When the object’s compactness exceeds a
critical point,occurs a phenomenon called spontaneous scalarisation. This allows the behavior
in gravitational experiments involving compact objects (like NS), to differ from experiments
in the weak field regime. Models with non perturbative strong field effects may develop
a deviation proportional to O(1), if and only if the most stringent weak-field constraint
is bypassed. Induced scalarisation occurs when the scalar field produced by a scalarised
component, induces the scalarisation of another component, which is not scalarised initially.
Although, we do not concern ourselves with induced scalarisation, since we deal with NS-BH
events and it concerns only events of NS binaries.

Dynamical scalarisation occurs in a binary system that is being scalarised due to the
gravitational binding energy of orbit, but the two components cannot be scalarised separately.
It is hardly detected by current experiments. This fact shows that non-perturbative strong
field effects are constrained by pulsar timing experiments. Precise measurement technology
and decades of data provide highly precise measurements of orbital decay rates in binary
pulsar systems. This is a good test of gravitational theories in string-field regimes.

SMG evades tight solar system constraints by introducing screening mechanisms (Chameleon,
Vainshtein, and Symmetron). The scalar field plays the role of dark energy, driving the
cosmic expansion. Screening mechanisms suppress deviations from GR on small scales to
circumvent stringent constraints from solar system tests and laboratory experiments. For
a given specific modified gravity model, independent parameters cannot always completely
describe deviations of GWs. The deviations depend on the physical character of NS and or
BH in the theory. Testing S-T theories by GW has been conducted since the 90s. More
and more detections allow us to constrain S-T theories with real GW data. In S-T gravities,
the deviation of GW from that in GR depends on the sensitivity difference between the two
stars. The asymmetric binaries NS-BH, NS-white dwarf are excellent candidates for model
tests.

Up until 2021, there where four candidates (NS-BH events): GW200105, GW200115,
GW190426 − 152155, and GW190814. The GW200105 and GW200115 events are thought
to be confident observations of NS-BH binaries. The component masses are consistent with
observations of BHs and NSs. However, there are not any information on spin and tidal
deformation, also there is no electromagnetic counterpart detection. This means that we have
no information about the secondaries being a NS and perhaps they are an exotic object.The
event GW190814 is characterized as plausible, since the secondary mass is M = 2.6Μ⊙. This
mass corresponds to a small BH or a heavy NS and thus we assume that GW190426−152155
is an NSBH coalescence event, with a high false-alarm rate (FAR). Finally the two events:
GW200105 andGW190814, are excluded and we use onlyGW190426−15155 andGW200115
events.

In order to constrain scalarisation effects, we use a modification of dipole radiation and
perform the full Bayesian inference .
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9.2 Scalar-tensor theories

We consider a class of scalar-tensor theories described by the action

S =
1

16πG∗

∫
d4x

√
−g∗

[
R∗ − 2gµν∗ ∂µϕ∂νϕ

]
+ Sm[ψm, A

2(ϕ)gµν∗ ] (1035)

9.2.1 Equations of motion in scalar-tensor theories

Written in Einstein’s frame, where G∗ denotes the bare gravitational coupling constant,
which is approximated by G∗ ∼ G when solving TOV equations. The metric tensor in this
frame is denoted by gµν∗ and its determinant by g∗, while R∗ = gµν∗ R

∗
µν is the Ricci scalar. In

the last term of this action the field ψm collectively denotes various matter fields and A(ϕ)
is the conformal coupling function.

The field equations in Brans-Dicke theory can be derived by varying the action 1035 with
respect to the metric gµν∗ and the scalar field ϕ. The full expression of this action reads as
following:

S =
1

16πG∗

∫
d4x[

√
−g∗gµν∗ R∗µν − 2

√
−g∗gµν∗ ∂µϕ∂νϕ] + Sm[ψm, A

2(ϕ)gµν∗ ] (1036)

In order to easy things, we define the following terms:

S1 ≡
∫
d4x

√
−g∗gµν∗ R∗µν

with variation

δS1 =

∫
d4x[(δ

√
−g∗)gµν∗ R∗µν +

√
−g∗(δgµν∗ )R∗µν +

√
−g∗gµν∗ (δR∗µν)]. (1037)

The variation of the Einstein frame metric and inverse metric tensors read:

δg∗µν = −gµρgνσδgρσ∗

and the field equations are given concerning gµν∗ and ϕ.
Explicit calculations begin with the assumption that g∗µν is a square matrix with:

det|g∗µν | = g (1038)

For any square matrix M we get ln(detM) = Tr(lnM), when variated yields

δ[ln(detM)] = δ[Tr(lnM)] ⇒
δ(detM)

detM
= Tr

(
δM

M

)
⇒

1

detM
δ(detM) = Tr(M−1δM)

(1039)

If g∗µν =M, gµν∗ =M−1 and det(g∗µν) = det(gµν∗ ) = g∗, then from Eq. 1039 we get:

1

g∗
δ(g∗) = Tr(gµν∗ δg

∗
µν) (1040)
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also,
δgµν = −gµρgνσδgρσ (1041)

Combining the two above Eqs, we get

δg∗ = −g∗Tr(g∗µνδgµν∗ ) = −g∗g∗µνδgµν∗ (1042)

Variation on
√
−g∗ yields:

δ
√
−g∗ =

1

2
√
−g∗

δg∗ = − g∗
2
√
−g∗

gµν∗ δg
∗
µν = −1

2

√
−g∗gµν∗ δg∗µν (1043)

The first term in equation 1037, when variated with respect to δ
√
−g∗gµν∗ R∗µν and along

with 1043 reads
−
∫
d4xR∗

√
−g∗
2

(g∗µνδg
µν
∗ ) (1044)

The second term in equation 1037, when variated with respect to δ
√
−g∗gµν∗ R∗µν and along

with 1043 reads ∫
d4x

√
−g∗R∗µν(δgµν∗ ) (1045)

We see that this term remains as it is. While the third term is rewritten as following:
√
−g∗gµν∗ δR∗µν : (1046)

Consider two arbitrary variations of the connections given by replacing

Γσµν → Γσ
′

µ′ν′ = Γσµν + δΓσµν ⇒ δΓσµν = Γσ
′

µ′ν′ − Γσµν (1047)

The variation on Christoffel’s connections δΓσµν is given by Eq. 1047 and is a tensor, since
it is defined by a difference of two connections. Acting on 1047, the covariant derivative Dλ

yields:

DλδΓ
σ
µν = ∂λδΓ

σ
µν + ΓσλαδΓ

α
µν − ΓαλµδΓ

σ
αν − ΓαλνδΓ

σ
µα (1048)

and
DλδΓ

σ
λν = ∂µδΓ

σ
λν + ΓσµαδΓ

α
λν − ΓαλµδΓ

σ
αν − ΓαµνδΓ

σ
λα (1049)

Taking the difference of 1048 - 1049 we get:

DλδΓ
σ
µν −DµδΓ

σ
λν = ∂λδΓ

σ
µν + ΓσλαδΓ

α
µν − ΓαλνδΓ

σ
µα − ∂µδΓ

σ
λν − ΓσµαδΓ

α
λν + ΓαµνδΓ

σ
λα (1050)

As usual Riemann’s tensor is defined as:

Rσ ∗
νλµ = ∂λΓ

σ
νµ − ∂µΓ

σ
λν + ΓσλαΓ

α
µν − ΓσµαΓ

α
λν

and when variated, it yields:

δRσ ∗
νλµ = ∂λδΓ

σ
νµ − ∂µδΓ

σ
λν + δΓσλαΓ

α
µν + ΓσλαδΓ

α
µν − δΓσµαΓ

α
λν − ΓσµαδΓ

α
λν (1051)
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A closer look on Eqs. 1050 and 1051 produces:

δRσ ∗
νλµ = DλδΓ

σ
µν −DµδΓ

σ
λν

A contraction on σ, λ yields:

δRσ ∗
νλµ = δλσR

σ ∗
νλµ = DσδΓ

σ
µν −DµδΓ

σ
σν (1052)

So Eq. 1046 is written as:∫
d4x

√
−g∗ gµν∗ δR∗µν =

∫
d4x

√
−g∗ gµν∗

(
DσδΓ

σ
νµ −DµδΓ

σ
ν6

)
(1053)

We know Dλg
∗
µν = 0 = Dσg

∗
µν , so:

=

∫
d4x

√
−g∗

[
Dσg

µν
∗ δΓ

σ
νµ − gµν∗ DµδΓ

σ
σν

]
=

∫
d4x

√
−g∗Dσ

[
gµν∗ δΓ

σ
µν − gσν∗ δΓ

µ
µν

]
=

∫
d4xDσ

{√
−g∗

[
gµν∗ δΓ

σ
νµ − gσν∗ δΓ

µ
νµ

]}
Variation of connections produces the following expression:

δΓσµν = −1

2

[
g∗αµDν(δg

ασ
∗ ) + g∗ανDλ(δg

ασ
∗ )− g∗µαg

∗
νβD

σ(δgαβ∗ )
]

(1054)

δΓλνλ = −1

2

[
g∗αλDν(δg

αλ
∗ ) + g∗ανDλ(δg

αλ
∗ )− g∗λαg

∗
νβD

λδgαβ∗
]

(1055)

Substitute into Eq. 1053:

= −1

2

∫
d4x

√
−g∗Dσ

[
Dα(δg

ασ
∗ ) +Dα(δg

ασ
∗ )− gαβ∗ D

σ(δgαβ∗ )− gαβ∗ D
σ(δgαβ∗ )−Dα(δg

ασ
∗ ) +Dα(δg

ασ∗)
]

=

∫
d4x

√
−g∗DσDα(δg

ασ
∗ )− g∗αβDσD

σ(δgαβ∗ )

=

∫
d4x

√
−g∗Dσ

[
Dα(δg

ασ
∗ )− g∗αβD

σ(δgαβ∗ )
]
= 0.

(1056)

Defined on the boundary, so that this term does not contribute to the total action.
Consequently, δS1 has the form:

δS1 =

∫
d4x

[
(δ
√
−g∗)R∗ +

√
−g∗(δgµν∗ )R∗µν +

√
−g∗g∗µν(δR∗µν)

]
⇒ δS1 =

∫
d4x

[
−R∗

√
−g∗
2

g∗µν +
√
−g∗R∗µν

]
δgµν∗

(1057)
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We define the second term as:

S2 ≡
∫
d4x

√
−g∗gµν∗ ∂µϕ∂νϕ

with variation

δS2 =

∫
d4x

(
δ
√
−g∗gµν∗ ∂µϕ∂νϕ+

√
−g∗δgµν∗ ∂µϕ∂νϕ+

√
−g∗gµν∗ δ(∂µϕ∂νϕ)

)
(1058)

The third term does not contribute when variated with respect to gµν∗ . Analytically the
terms, when variated produce the results shown in equations 1059 and 1060.∫

d4x
(
δ
√
−g∗gµν∗ ∂µϕ∂νϕ

)
=

∫
d4x

(
−
√
−g∗
2

∂µϕ∂µϕ(δg
∗
µν)

)
(1059)

The second term: ∫
d4x

√
−g∗(δgµν∗ )∂µϕ∂νϕ (1060)

remains the same, when variated w.r.t. δgµν∗
The second field equation is derived, when we define S3 ≡ SM(ΨM , A

2(ϕ)gmuν∗ and vari-
ation δS3

δgµν∗

δS3

δµν∗
=
δSM
δµν∗

≡ δ

δgµν∗

[
SM(ψM , A

2ϕgµν∗ )
]

(1061)

Equation 1038 when variated w.r.t. gµν∗ yields the sum of variations δS1, δS2, δS3.

0 =
2√
−g∗

δS

δgµν∗
=

2√
−g∗

[
δS1

δgµν∗
+
δS2

δgµν∗
+
δS3

δgµν∗

]
1

16πG∗

⇒ T ∗µν =
1

16πG∗

[
1

2
R∗g

∗
µν −R∗µν −

1

2
∂µϕ∂νϕ

]
⇒
(
T ∗µν −

1

2
T ∗g∗µν

)
8πG+ 2∂µϕ∂rϕ = R∗µν q.e.d.

(1062)

When varying w.r.t scalar field ϕ, one can write the action as:

S =
1

16πG∗

∫
d4x

√
−g∗ [R∗ − 2gµν∗ ∂µϕ∂νϕ+ LM ]

The new L′ satisfies equations Euler- Lagrange w.r.t. ϕ and we get the second equation
of motion:

∂L′

∂ϕ
− ∂∥

(
∂L′

∂(∂∥ϕ)

)
= 0 (1063)

The term ∂L′
∂ϕ

can be written as:

∂L′

∂ϕ
≡ ∂L′

∂A(ϕ)

∂A(ϕ)

∂ϕ
=
∂A(ϕ)

∂ϕ

∂LM
∂A(ϕ)

=

√
−g∗
2

T µν
∂A(ϕ)

∂ϕ
2A−1(ϕ)g∗µν
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when ∂L′
∂A(ϕ)

yields:

∂L′

∂(∂Kϕ)
=

√
−g∗(−2gµν∗ )

[
∂(∂µϕ)

∂(∂Kϕ)
∂νϕ+ ∂µϕ

∂(∂νϕ)

∂(∂Kϕ)

]
=

√
−g∗(−2gµν∗ ∂νϕ− 2gµk∗ ∂µϕ)

=
√
−g∗(−4gkν∗ ∂νϕ)

the derivative:

∂K

(
∂L′

∂(∂Kϕ)

)
= −4

√
−g∗∂K(gkν∂νϕ)

1

16πG∗

=
−4

16πG∗
∂µ(

√
−g∗gµν∂νϕ)

=
−4

16πG∗
□g∗ϕ

√
−g∗

and the equations of motion are given by substitution in 1063 as:

□g∗ϕ = −4πG∗T
µν
∗ g∗µν

∂A(ϕ)

∂ϕ

1

A(ϕ)

□g∗ϕ = −4πG∗T
µν
∗
∂ lnA(ϕ)

∂ϕ
g∗µν = −4πG∗T

∗∂ lnA(ϕ)

∂ϕ

□g∗ϕ = −4πG∗α(ϕ)T
∗

where α(ϕ) ≡ ∂ lnA(ϕ)
∂ϕ

and T ∗ = T µν∗ g∗µν . The last term is the energy-momentum tensor of
matter fields. Lastly , □g∗ is the curved spacetime D’Alenbertian □g∗ ≡ 1√

−g∗∂µ(
√
−g∗gµν∗ ∂ν)

and α(ϕ) is the coupling constant between scalar and matter. Since A ≡ A(ϕ), we can expand
lnA(ϕ) as power series around ϕo as

lnA(ϕ) = αo(ϕ− ϕo) +
1

2
βo(ϕ− ϕo)

2 +O(ϕ− ϕo)
3

where αo and βo are related to γPPN and βPPN as

γPPN − 1 =
−2a2o
1 + a2o

βPPN − 1 =
1

2
· a2oβo
(1 + a2o)

n

in parameterised post-Newtonian formalism.
The coupling between a scalar field and a star A is described by a parameter known

as the scalar charge αA. This parameter can determine the equations of motion and the
gravitational wave (GW) emission of binary systems and is defined as:

αA ≡ ∂ lnmA

∂ϕ

∣∣∣∣
ϕ=ϕ0

(1064)
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In scalar-tensor theories for compact binaries, the center of gravitational binding energy
does not coincide with that of the inertial mass. This difference between the two centers
results in a varying dipole moment and induces extra energy loss through dipole radiation.

In order to further understand the energy lost by dipole radiation, we will follow Clif-
ford M. Will’s article "Testing Scalar-tensor gravity with gravitational wave observations of
inspiraling compact binaries", see reference [126].

Promising sources for detection are inspiraling compact-A binaries. As an inspiraling
compact binary, we define any binary system of neutron stars (NSs) or black holes (BHs),
with a decaying orbit toward a final coalescence. This occurs under the dissipative influence
of gravitational radiation reaction. In addition to the simple detection of the waves, we can
determine important parameters of the inspiraling system, such as the masses and spins of
the celestial bodies.

The term spin of a celestial body refers to a rotational motion around an imaginary axis
that runs through its center. This axis is known as the body’s rotational or spin axis. The
speed of spin varies widely, from hours to hundreds of years. The direction is defined by the
right-hand rule.

The celestial body’s spin implies many consequences on physical properties. It affects
the shape, since faster spin leads to a bulging equator and flattened poles, forming an oblate
spheroid shape. Also the night-day cycle and the direction of the magnetic field are af-
fected.This type of spin helps define the characteristics and behavior of the celestial body.
The late-time evolution of such systems yields an accurately calculable gravitational wave
signal. It is a chirp signal, that increases in amplitude over time.

The chirp signal is a type of signal that changes in frequency over time, often increasing in
frequency as it scavenges. In GW context, a chirp signal is emitted when two massive objects
(BHs or NSs) orbit and merge. During the orbit, the two semitropical GWs, which cause
a detectable chirp signal, start at low frequencies and gradually increase until the objects
merge. At the point of merge, this signal stops abruptly. This is a distinctive feature of
compact binary objects and provides information about the properties of the binary (mass,
spin, distance).

The chirp signal sweeps in the detectors’ typical sensitivity bandwidth between 10 to 1000
Hz. Determining parameters is done by matched filtering of theoretical wave templates (de-
pendent on system parameters) against the broadband output of the detector. The evolution
of the frequency depends on the parameters of the system.

In the slow-motion, weak field, non-radiative limit appropriate to solar-system dynamics,
most alternative theories of gravity can be accomplished by one simple framework, the PPN
formalism. We focus on the BD scalar-tensor theory. This theory augments GR by adding a
scalar gravitational field, that couples universally to matter and the gravitational coupling
strength is determined as G via G ∼ ϕ−1.

Relative importance of scalar field is parameterized by a constant ωBD, which in general-
ized scalar tensor theories may be defined as ωBD = ωBD(ϕ). In the large limit of ωBD, the
relative difference between effects in GR and BD is of order O

(
1

ωBD

)
. As ωBD → +∞ ⇒

BD → GR. An empirical bound on ωBD > 500 is imposed for scalar-system measurements
of Shapiro time-delay.

Shapiro time-delay or Shapiro effect, is a phenomenon in which the time it takes for a
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M/M⊙ S
0,132 0,01
0,167 0,02
0,244 0,05
0,424 0,10
0,516 0.13
1,25 0,49

1,41 (max mass) 0,78

Table 3: Table of sensitivities of neutron stars. Adapted by [126]

radio signal to travel through a gravitational field is affected by spacetimes’ curvature. This
effect results that the signal takes a longer path to reach its destination, than if it would
travel through a flat spacetime.

The Shapiro time delay has a small effect, but huge implications for astronomy and
astrophysics. It is widely used in measurements of masses and densities of massive objects.
For systems with gravitational radiation and compact objects, BD theory introduces the
following three effects.

First effect: It implies modifications to the effective masses of the bodies. These depend
on the internal structure of bodies and they are parameterized by sensitivities SA. SA
sensitivity is a measure of the gravitational binding per unit mass. For example, NSs have
SNS ≈ 0, 1− 0, 2, where BHs have SBH = 0, 5.

This type of event violates strong equivalence principle, in the notion that the motion of
these bodies depends on their structure and tidal interaction.

Tidal interaction is a reference to gravitational forces that celestial bodies exert on each
other when in proximity. Tidal interaction causes deformation of body’s shape and change in
orbital and rotational motion. Tidal locking refers to the locking effect on the rotation of a
moon or a planet because of tidal interactions. Similarly tidal heating is when gravitational
forces heat the interior of the body.

Second effect: It implies modifications on the quadrupole gravitational radiation. BD
theory predicts monopoles and quadrupole gravitational combined diation. The combine
effect modifies GR’s effective quadrupole formula for two body energy loss by a term:

dE

dt
= − 8

15

µ2m2

r4
(
12v2 − 11ṙ2

)
(1065)

where:

• µ: reduced mass of the binary system,

• m: total mass of the binary system,

• r: orbital separation,

• ṙ: radial velocity,

• v: relative orbital velocity.
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More precisely, the orbital separation is the distance between two objects in motion
around each other, where this is equal to the distance between their centers. Moreover, it
depends on mass, shape of the objects and the gravitational forces. Affects phys. properties,
behavior, gravitational interactions, and tidal heating.

Third effect: It implies dipole gravitational radiation. The center of gravity is different
form the center of inertial mass. In BD, the dipole moment equals source of scalar radiation.
It depends on S ≡ s1 − s2 and is larger than quadrupole contribution by an order O

(
1
v2

)
.

dE

dt
|dipole = −2

3

µ2m2

r4

(
S2

ωBD

)
. (1066)

This effect modifies the evolution of orbital radius and GW frequency f , by an accumu-
lated phase of GW:

ϕGW =

∫ tout

tin

dt2πf =

∫ fout

fin

dt

df
df2πf =

∫ fout

fin

df2π
f

ḟ
(1067)

where:

• in denotes the signal that enters the detector

• out denotes the signal that leaves the detector

These two together form the detector’s bandwidth. Since

ḟ

f
= −3

2

ṙ

r
= − 3Ė

2|E|
(1068)

In the dipole term, we get:

S2

wBD
<

5376π

25
(πfinM)7/3 η−2/5 (1069)

where
η =

µ

m
(1070)

M = η3/5m the chirp mass and fin is typically chosen ≈ 30Hz. The chirp mass is the mass
that determines the lowest order of quadrupole effects. It is defined as

M = η3/5m =
µ3/5

m3/5
m =

µ3/5

m3/5−1 =
µ3/5

m−2/5
⇒

M =

(
m1m2

m1 +m2

)3/5
1

m−2/5
=

(m1m2)
3/5

(m1 +m2)3/5
1

(m1 +m2)−2/5
⇒

M =
(m1m2)

3/5

(m1 +m2)1/5

(1071)
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Formalism of matched filtering with post Newtonian effects reduces S2

ωBD
as

S2

ωBD
< 1, 46 · 10−5

(
M

M⊙

)7/3

η−2/5
(

10

S/N

)
(1072)

where S/N is the signal-to-noise ratio, which measures the strength of a GW signal
relative to the background noise of the detector.

9.2.2 Frequencies for three types of celestial bodies

I) NS and BH binary. SNS ≤ 0, 2 and SBH = 0, 5 ⇒ S = s1 − s2 ≥ 0, 5 − 0, 2 = 0, 3.
Restriction:

ωBD >
1

1, 46 · 10−5

(
M

M⊙

)7/3

η2/5
(
S/N

10

)(
S

0, 3

)2

⇒

ωBD > 68493

(
M

M⊙

)7/3

η2/5
(
S/N

10

)(
S

0, 3

)2
(1073)

II) Two NSs. SNS varies with mass. Because of SNS, δ is pretty small with δ ≤ 0, 05.
Bound on ωBD weaker than solar-system results. Exception when masses are 0, 7M⊙ and
1, 4M⊙ extreme bound 1100.

III) Two BHs. There, the difference in sensitivities is δ = 0, 5− 0, 5 = 0 and ωBD yields
no dipole radiation. Bounds on ωBD are placed if both chirp mass M and reduced mass
parameter η are measured with accuracy and with the components mass we decide in which
case we lie. Dipole radiation effects vary as v−2 ≈ r

m
relative to quadrupole radiation and

PPN corrections as m
r
. These two are not correlated in the matched-filtering formalism.

9.3 Compact objects and gravitational radiation in scalar tensor
gravity

The lowest order in power expansion of v2 ≈ m
r
. This corresponds to Newtonian order for

orbital motion. In GR it is called a quadrupole order for gravitational radiation. These
equations include contributions due to self-gravitational binding energy. These contribution
factors are determined by the sensitivity of the inner tail mass of each body A to changes in
the local value of Geff :

SA ≡ −∂lnmA

∂lnG
. (1074)

If we suppose two-body orbits, then Keppler’s third law reads:

P 2 =
4π2

G
α3 =

4π2

G

r3

m
. (1075)

where P is the orbital period. The corresponding frequency ω is given as

ω =
2π

P
=

√
Gm

r3
. (1076)
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And the equations of motion transform as:

d2x⃗

dt2
= −Gmx⃗

r3
(1077)

where
G ≡ 1− ξ(s1 + s2 − 2s1s2) (1078)

Here s1, s2 denotes the sensitivity of the two objects and

ξ ≡ 1

2 +WBD

(1079)

The energy of a circular orbit is:

E = −1

2

Gµm

r
(1080)

while the velocity of the same circular orbit reads:

v2 =
Gm

r
(1081)

The rate of energy loss for a quasi-circular orbit

dE

dt
= − 8

15

µ2m2

r4
(12kv2 +

5

8
kDS

2) ⇒

dE

dt
= −32

5

µ2m2

r4
kv2 − 1

3

µ2m2

r4
kDS

2

(1082)

with
k ≡ G2

(
1− 1

2
ξ +

1

12
ξΓ2

)
,

kD = 2G2ξ

S = s1s2

Γ = 1− 2
m1s2 +m2s1

m

In Equation 1082, the first term represents a combination of quadrupole and monopole
contributions, while the second term corresponds to the dipole contribution. The dominant
frequency of the emitted gravitational waves is given by:

f =
ω

π

In gravitational wave-forms the radiative metric pertubation reads:

h̄µν = ηµν −
√
−ggµν (1083)
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The spatial components:

h̄ij = θij − 1

2
θδij − ϕ

ϕo
δij (1084)

where ϕ = ϕ0+
1
2
ϕ|ϕ0 and ϕ is the perturbation of the scalar field ϕ about it’s asymptotic,

cosmological value ϕ0

θij = 2

(
1− 1

2
ξ

)
1

R

d2

dt2

(∑
A

max
i
Ax

j
A

)
⇒

θij =
4µ

R

(
1− 1

2
ξ

)
(vivj − Gm

r3
xixj)

(1085)

and

ϕ

ϕ0

= ξ
µ

R

{
Γ
[
(N̂ · v⃗)2 − Gm

r3
(N̂ · χ⃗)2

]
−GΓ + 2Λ

m

r
− 2S(N̂ · v⃗)

}
(1086)

where:

• R: distance to the observer,

• N̂ : unit direction vector,

• Λ = 1− s1 − s2 +O(ξ)

Components of Riemann tensor

Roioj =
−1

2

d2hij

dt2
(1087)

with hij the effective gravitational waveform given by the formula.

hij = θijTT − 1

2

ϕ

ϕ0

(δij − N̂ iN̂ j) (1088)

The effective gravitational waveform is a representation of a GW signal, that is observed
by ground-based detectors. This effectiveness comes from the simplified representation, as
derived by taking into account only the dominant features of the signal. The term matched
filtering refers to the use of effective gravitational waveforms in the detection and analysis
of signals by matching observed waveforms and determining the properties of sources, where
TT is the transverse-transverse gauge. A full GW waveform is transverse, not traceless,
because of scalar contribution.

This way the waveform becomes:

hij =
2µ

R
[Qij

TT + S(δij −N iN j)] (1089)

with
Qij
TT ≡ 2

(
1− 1

2
ξ

)
Gm

r
(λ̂iλ̂j − η̂iη̂j), (1090)
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S = −1

4
ξ

{
r
Gm

r

[
(N̂ · λ̂)2 − (N̂ · η̂)2

]
− (Gr + 2Λ)

m

r
− 2S

√
Gm

r
N̂λ̂

}
(1091)

where n̂ ≡ x⃗
r

and λ̂ = v̂
u
.

9.4 Testing scalar-tensor gravity with matched-filtering

We study this subsection in two parts. The first includes the phase-shift estimation and the
second the matched-filter analysis.

A. Phase-shift estimate
Combining eqs.1076 and 1080 - 1082 one can get:

ḟ =
96

5
η
G1/2

πm2

(m
r

)11/2
(k +

5

96

kD
G

r

m
S2) (1092)

Now we can set

M ≡ k3/5

G4/5
η3/5m (1093)

and
b ≡ 5

96
k−3/5G−6/5kDS

2 (1094)

and
u ≡ πMf (1095)

with M the BD chirp mass and b the bipolar parameter.
Finally, combining the above equations we get:

u̇ =M−196

5
u11/3(1 + bη2/5u−2/3) (1096)

Integration gives:

u−8/3[1− 4

5
bη2/5u−2/3] =

256

5

tc − t

M
(1097)

where tc is at v → +∞.
In Eq. 1097 we used the expansion to first order of bη2/5u−2/3 and used the fact that it

is bounded as

bη2/5u−2/3 ≤ 5 · 10−3
(

500

ωBD

)(
S

0, 5

)2(
M⊙
M

)(
30Hz

f

)2/3

The number of cycles observed in a given bandwidth:

ϕGW =
2

M

∫ uout

uin

du
u

u̇

ϕGW =
1

16
(u
−5/3
in − u

−5/3
out )− 5

112
bη2/5(u

−7/3
in − u

−7/3
out )

(1098)
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The dipole parameter b characterizes the polarization of GW by describing the direction
and strength of the wave’s distortion of the spacetime. As it is known, any GW has two
polarizations, the called plus (+) and cross (×) polarizations. The dipole parameter describes
the relative amplitude and phase of the two polarizations states. Computing this, one can
extract information about masses and orbital parameters in a binary system.

B. Matched-filler analysis
For a more accurate bound on the dipole parameter b, one needs to carry out a matched

filter analysis. We approximate equations 1089- 1091, that produce a given observed gravi-
tational waveform by

h(t) ≈ Re[ho(t)eiϕ(t)] (1099)

with ho(t) the slowly, varying Newtonian order contribution to the waveform amplitude. It
depends on the distance of the source, location to the sky, orientation of the detector, and
on source parameters M, η, and r. ϕ(t) is the gravitational wave phase, dominant at twice
the orbital phase. It induces the dipole and higher-order post-Newtonian corrections.

The Fourier transform of h(t) is given as:

h̃(f) =

{
Af−7/6eiψ, if 0 < f < fmax

0, if f > fmax
(1100)

where
A ∼ R−1M−5/6 × ρ(θ, ϕ) (1101)

fmax = O

(
1

m

)
(1102)

and
ψ(f) = 2πftc − (ϕc +

π

4
) +

3

128
v−5/3

(
1− 4

7
bη2/5v−2/3

)
(1103)

Analysis of the equation:

1. ϕc: GW phase at tc,

2. ρ(θ, ϕ): arbitrary function of angles θ, ϕ and detector orientation,

3. fmax: corresponds to the frequency when the inspiral turns into a coalescence.

With a given noise-to-signal ratio (noise spectrum) Sn(f) one defines the inner product
of two signals h1 and h2 as

(h1, h2) ≡ 2

∫ ∞
0

df
h̃∗1h̃2 + h̃∗2h̃1

Sn(f)
(1104)

For a given signal h, the signal-to-noise ratio is

ρ(h) ≡ S

N(h)
= (h, h)1/2 (1105)
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The noise spectrum is given as the analytic fit used in the LIGO detector:

Sn(f) =

∞, if f < 10Hz

S0

5

[ (
f0
fu

)4
+ 2 + 2

(
f0
fu

)2 ]
, if f > 10Hz

(1106)

where,

1. s0 = 3 · 10−48 1
Hz

and f0 = 70Hz,

2. The cutoff f = 10Hz corresponds to seismic noise.

3. f−4 dependence corresponds to thermal noise.

4. f 2 dependence corresponds to photon-shot noise.

We have 5 parameters to estimate:

lnA :
∂h̃(f)

∂lnA
= h̃(f) (1107)

ϕc :
∂h̃(f)

∂ϕc
= −ih̃(f) (1108)

f0tc :
∂h̃(f)

∂f0tc
= 2πi

f

f0
h̃(f) (1109)

lnM :
∂h̃(f)

∂lnM
= − 5i

128
v−5/3h̃(f)

(
1− 4

5
b̃v−2/3

)
(1110)

b̃ ≡ bη2/5 :
∂h̃(f)

∂b̃
= − 3i

224
v−7/3h̃(f) (1111)

The signal-to-noise ratio is given by:

ρ2 = 20|A|2f−4/30

I(7)

S0

(1112)

with
I(q) ≡

∫ ∞
1/7

dxχ−9/3(x−4 + 2x2 + 2)−1 (1113)

and Bq ≡ I(q)
I(7)

. A priori we expect validity of GR and search for a bound on b̃ ≡ bη2/5.
Consider a gravitational waveform with leading order of the modification being a dipole

term in the phase:

h(f) = hGR(f)exp
[
i

3

128η
ϕ−2(πGMf)−7/3

]
(1114)

where
ϕ−2 = − 5

168
(∆α)2 (1115)
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hGR(f) ≡ Af−7/6exp(2πftc − ϕc −
π

4
)

when equated with Eq. 1100.
All coefficients are chosen in agreement with LVC’s convention.

∆α ≡ α1 − α2 =
∂ lnm1

∂ϕ

∣∣∣
ϕ=ϕ0

− ∂ lnm2

∂ϕ

∣∣∣
ϕ=ϕ0

(1116)

is the difference between the scalar charges of two bodies in the binary system. For black-
holes, no-hair theorem prevents having scalar charges. In many scalar-tensor theories, where
the no-hair theorem can be applied, the scalar charges of BHs are taken as zero. For NSs,
scalar charges are given as a solution to TOV equations.

Based on two neutron star–black hole merger events (excluding two others due to possible
anomalies), we analyze the inspiral phase with dipole radiation modifications. Scalar charges
for neutron stars are calculated by solving the Tolman-Oppenheimer-Volkoff equations for
different equations of state. Bayesian inference is performed using the Bilby software. Results
show that gravitational wave data yield constraints comparable to those from pulsar timing
for the DEF theory, but remain less stringent than solar system constraints for BD and
SMG.

We use four commonly employed equations of state (EoS): SLY, ALF2, H4, and MPA1,
with data available from public sources.

To solve the differential equations (A3), the initial conditions

µ(0) = 0, ν(0) = 0, φ(0) = φc, ψ(0) = 0, p(0) = pc (1117)

need to be provided to the differential equation solver. In practice, these initial conditions
are set near the center to avoid division by zero. The initial pressure pc is taken on a dense
grid for interpolation, while φc is determined using the shooting method. Different values of
φc are tested iteratively until the desired φ0 is reached.

To implement Monte Carlo sampling efficiently, the scalar charge needs to be computed
quickly. It is impractical to solve the TOV equations for each likelihood evaluation, so we
solve the TOV equations once for a dense grid of model parameters and pc to obtain mass
and scalar charge values. During Monte Carlo sampling, the sampled model parameters and
pc are mapped to mass and scalar charge using linear interpolation, and these results will be
discussed in subsequent subsections.

9.5 Brans-Dicke Theory

We begin by considering the Brans-Dicke theory, a prototype of scalar-tensor theories, which
is widely studied. The theory is characterized by the linear coupling function

A(φ) = exp(−α0φ), (1118)

resulting in a field-independent coupling strength

α(φ) = α0. (1119)
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An alternative convention commonly used is

α2
0 =

1

3 + 2ωBD
. (1120)

Using the coupling function (1118), we can compute the scalar charge of a neutron star by
applying the methods described in the previous subsection. By solving the TOV equations
with initial conditions and a given EoS, we obtain numerical solutions for the neutron star
structure. The scalar charge αA, the asymptotic scalar field φ0, and the mass mA are
extracted from the solutions.

The initial conditions pc and the model parameter α0 are chosen on a dense grid for
interpolation, and the asymptotic scalar field φ0 is set to 0. The last degree of freedom
is the asymptotic scalar field φc and it is determined using the shooting method. To re-
duce computational costs, we use an interpolated relation αA(α0,mA) during Monte Carlo
sampling.

Another commonly used parameter is the sensitivity sA, which is related to the scalar
charge by

αA =
1− 2sA√
3 + 2ωBD

. (1121)

In some studies, sA = 0.2 is used as an approximation to the results obtained from solving
the TOV equations.

9.6 Screened Modified Gravity (SMG)

Screened Modified Gravity (SMG) theories introduce a scalar field that interacts with matter
via a coupling function A(ϕ), and evolves under the influence of a self-interaction potential
V (ϕ). These two functions determine an effective potential Veff(ϕ), which governs the scalar
field’s behavior.

In high-density environments, the effective potential causes the scalar field to become
massive, which suppresses the associated fifth force—a phenomenon known as screening.
Conversely, in low-density cosmological settings, the scalar field is light and can affect large-
scale dynamics, such as galactic motion and the accelerated expansion of the Universe (see
Ishak’s work (2018)) for a comprehensive review of screening mechanisms).

The general action for SMG with a canonical kinetic term is given by:

S =

∫
d4x

√
−g∗

[
1

16πG
R∗ −

1

2
gµν∗ ∂µϕ∂νϕ− V (ϕ)

]
+ Sm[ψm, A

2(ϕ)g∗µν ], (1122)

where V (ϕ) defines the scalar self-interaction and determines the scalar field mass.
Popular SMG models include the chameleon, symmetron, dilaton, and f(R) gravity, each

specified by particular forms of A(ϕ) and V (ϕ). The equation of motion for the scalar field
is:

□g∗ϕ =
∂Veff(ϕ)

∂ϕ
, with Veff(ϕ) = V (ϕ)− T∗. (1123)

Gravitational waves from compact binaries in SMG exhibit leading-order dipole radiation.
Due to screening, scalar charges in neutron stars are expected to be small. Instead of solving
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the full TOV equations, we use a simplified model where the neutron star is treated as a
static, constant-density sphere. This yields an analytic expression for the scalar charge:

αA =
ϕVEV

MPlΦA

, (1124)

where ϕVEV is the vacuum expectation value of the scalar field, MPl =
√
1/8πG is the

reduced Planck mass, and ΦA = Gm
R

is the star’s surface gravitational potential.
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10 Summary
Albert Einstein’s 1915 General Theory of Relativity (GR) fundamentally reshaped our under-
standing of the cosmos, recasting spacetime as a dynamic fabric whose curvature is dictated
by mass and energy. Among its most profound predictions was the existence of gravitational
waves (GWs)—ripples in spacetime propagating at the speed of light, generated by acceler-
ating massive objects. For decades, this prediction remained an elusive theoretical concept
due to the incredible weakness of the gravitational force. The predicted strain, caused by
even the most cataclysmic cosmic events, was expected to be on the order of 10−21 on Earth,
a scale once thought to be immeasurable.

The first indirect, yet compelling, evidence for GWs came from the Hulse-Taylor binary
pulsar system (PSR B1913+16). Meticulous observations revealed its orbit was shrinking at
precisely the rate predicted by GR due to energy loss from GW emission, a discovery that
earned the 1993 Nobel Prize in Physics. However, the ultimate goal was direct detection.

This was spectacularly achieved on September 14, 2015, when the Laser Interferometer
Gravitational-Wave Observatory (LIGO) registered the signal GW150914. This character-
istic "chirp" perfectly matched the theoretical waveform for the inspiral and merger of a
binary black hole (BBH) system. This singular event did more than confirm a century-old
prediction; it launched the revolutionary field of gravitational-wave astronomy, opening a
non-electromagnetic window to observe the universe’s most violent and hidden phenomena.

This thesis is situated at the forefront of this new era, where the focus has shifted from ini-
tial discovery to systematic characterization and precision science. The ever-growing catalog
of GW events from the LIGO-Virgo-KAGRA (LVK) collaboration demands a corresponding
increase in the accuracy and completeness of our theoretical waveform models. Sub-dominant
physical effects, once negligible, are now becoming measurable and are essential for unlocking
new scientific discoveries and avoiding systematic biases in our analysis.

The thesis begins by establishing the theoretical bedrock of GW physics through two
complementary lenses: the geometric interpretation of GR and the framework of classical
field theory.

Geometric Approach: This view treats GWs as small perturbations, hµν , on a flat
Minkowski spacetime background, ηµν , under the weak-field approximation gµν = ηµν + hµν .
By linearizing the Einstein Field Equations, the complex dynamics of spacetime are reduced
to a wave equation. A crucial step is managing the coordinate freedom of GR through gauge
fixing. The imposition of the Lorentz gauge and subsequently the Transverse-Traceless (TT)
gauge strips away non-physical degrees of freedom, revealing the true nature of GWs: they
are transverse waves with two independent polarization states, known as plus (h+) and cross
(h×).

Field Theory Approach: Here, the perturbation hµν is treated as a classical field propa-
gating on a fixed background. This perspective allows the powerful machinery of field theory,
such as the Lagrangian formalism and Noether’s theorem, to be applied. A key challenge in
GR is defining the energy carried by GWs, as this energy itself gravitates.

The thesis demonstrates that both the geometric approach (via Isaacson’s method of
averaging over short wavelengths) and the field theory approach yield the same effective
energy-momentum tensor, for the gravitational field. This tensor quantifies the energy,
momentum, and angular momentum carried by the waves and demonstrates how GWs can
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source the curvature of the large-scale background spacetime.
Having established that GWs exist and carry energy, the thesis moves to the mechanism

of their generation by astrophysical sources. The primary tool for this is the multipole
expansion, which is applicable to sources with slow internal motions compared to the speed
of light (v/c≪ 1). This is analogous to the multipole expansion in electromagnetism.

The wave equation for the metric perturbation is solved using a Green’s function ap-
proach, leading to a retarded-time solution where the GW signal observed today was gener-
ated by the source at an earlier time. The core result of this analysis is the celebrated mass
quadrupole formula, which states that the leading-order GW emission is proportional to the
second time derivative of the source’s quadrupole moment.

This formula encapsulates a fundamental principle: to generate GWs, a system must
have a changing mass quadrupole moment. A perfectly spherical, pulsating star (monopole)
or a rigidly rotating axisymmetric body (which has a constant quadrupole moment) will
not radiate GWs. The total power, or luminosity, radiated by a source is then shown to
be proportional to the time-averaged square of the third time derivative of the quadrupole
moment.

The thesis further develops this expansion to include next-to-leading order terms, which
become important for precision modeling and for sources with more complex dynamics.
These include the mass octupole and the current quadrupole moments, which are suppressed
relative to the mass quadrupole by factors of v/c.

To handle the complexity of the multipole expansion in a rigorous and generalizable
way, the thesis introduces advanced mathematical frameworks that are central to modern
gravitational theory.

The first framework developed is the Symmetric-Trace-Free (STF) Formalism. This is
the natural mathematical language for describing multipoles. The STF formalism provides
a systematic way to decompose any tensor into a sum of parts that are symmetric and trace-
free in their indices. These STF tensors form irreducible representations of the rotation group
SO(3) and correspond directly to the physical multipole moments of the source (monopole,
dipole, quadrupole, etc.).

Then the Spherical Tensor Components are inserted, so to connect the abstract STF ten-
sors to observable quantities, the thesis details the formalism of spherical tensor components.
This method relates the STF tensors to the well-known spherical harmonics, which describe
the angular dependence of fields. This connection is essential for calculating the radiation
pattern—how the power and polarization of the emitted GWs vary across the sky—and
for decomposing the observed waveforms into different modes. This chapter provides the
mathematical rigor needed to move from basic formulas to sophisticated waveform models.

This chapter applies the theoretical machinery developed previously to a diverse range of
astrophysical scenarios, with a primary focus on compact binary systems, the most important
sources for current ground-based detectors.

The classic case of two point masses in a circular orbit is analyzed in detail. The GWs
are shown to be monochromatic, with a frequency twice the orbital frequency. The analysis
introduces the crucial concept of the "chirp mass," Mc, a specific combination of the two
component masses that is the most easily measured parameter from the inspiral signal.
The radiated waveform exhibits the characteristic "chirp" where both the frequency and
amplitude increase as the orbit shrinks.
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The more general and complex case of elliptical orbits is also explored. Here, the radiation
is no longer monochromatic but is emitted at a spectrum of frequencies corresponding to
integer multiples (harmonics) of the orbital frequency. The thesis derives the radiated power
as a function of the orbit’s eccentricity, e. A key physical insight is the effect of radiation
back-reaction: the energy and angular momentum carried away by the GWs are drained
from the orbit itself. This causes the orbit’s semi-major axis to shrink and, importantly,
its eccentricity to decrease. This demonstrates that astrophysical binary systems naturally
circularize as they inspiral, explaining why many observed sources have nearly circular orbits
by the time they enter the sensitive frequency band of detectors.

To illustrate the breadth of the formalism, several other systems are analyzed:
The radiation from a non-axisymmetric rotator (e.g., a neutron star with a "mountain"

on its crust) is calculated, showing it emits continuous, monochromatic waves. The more
complex case of a freely precessing body is also considered, which produces "wobble radia-
tion" at different frequencies.

A simplified Newtonian model of a particle falling radially into a black hole is used to
calculate the burst of GWs produced. This problem highlights the important concept of
tidal disruption, where an extended object (like a star) gets torn apart by tidal forces. This
can cause the radiation to transition from coherent (where the object acts as a whole) to
incoherent (where different parts radiate out of phase), significantly suppressing the total
power.

The effects of the universe’s expansion on GWs are incorporated. As waves travel over
cosmological distances, their frequencies are redshifted, and their amplitude decreases with
the luminosity distance (dL), which depends on the cosmological model. This establishes
the framework for using GWs as "standard sirens" to measure cosmic expansion.

Before the era of direct detection, the most compelling evidence for the existence of
GWs came from observations of binary pulsars. This chapter details the physics of these
extraordinary natural laboratories.

The Hulse-Taylor Binary (PSR B1913+16) is studied first. The thesis recounts the
landmark discovery and subsequent decades-long monitoring of this system, which consists
of two neutron stars. Pulsars are incredibly stable cosmic clocks. By precisely measuring
the arrival times of the pulses from PSR B1913+16, astronomers were able to track its orbit
with astonishing precision. They observed that the orbital period was decreasing over time.
This orbital decay was found to match the predictions of General Relativity for energy loss
due to the emission of gravitational waves via the quadrupole formula to within a fraction
of a percent. This provided the first, albeit indirect, confirmation of GWs.

The remarkable precision of these tests is only possible after accounting for several subtle
timing effects. The thesis details the essential corrections in the pulsar timing formula: The
classical light-travel-time delay due to the motion of the Earth and the pulsar around their
respective barycenters.

A general relativistic effect where the pulse’s travel time is increased as it passes through
the curved spacetime near a massive object (like the Sun or the pulsar’s companion).

A combination of gravitational redshift (clocks run slower in a gravitational potential)
and special relativistic time dilation (moving clocks run slower). The delay caused by the
interaction of radio waves with the ionized interstellar medium.

By meticulously modeling these effects, the intrinsic orbital decay can be isolated, pro-
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viding a powerful test of GR in the strong-field regime. To fully interpret GW signals from
sources involving neutron stars, an understanding of their internal structure is required. This
chapter shifts focus from the waves themselves to the objects that create them.

The thesis provides a derivation of the TOV equations, which describe the structure of
a static, spherically symmetric, self-gravitating body in General Relativity. They are the
relativistic generalization of the Newtonian equations of hydrostatic equilibrium.

The TOV equations must be supplemented with an Equation of State (EoS), p=p(ρ),
which describes the relationship between pressure and density for the ultra-dense matter
inside a neutron star. The EoS is a key unknown in nuclear physics.

For a given EoS, the TOV equations can be solved numerically to yield a unique mass-
radius relation for neutron stars. This theoretical prediction can be tested by astrophysical
observations, and GWs provide a powerful new tool for this. The tidal deformability of a
neutron star during a binary inspiral, which can be measured from the waveform, depends
sensitively on its EoS.

The chapter concludes with a discussion of Buchdahl’s theorem, a fundamental result in
GR which establishes an absolute upper limit on the compactness of any static fluid star.
This demonstrates that objects cannot be arbitrarily compact without collapsing into a black
hole.

With the foundations laid, the thesis turns to the practical challenge of constructing
accurate waveform templates for data analysis. A complete GW signal from a binary co-
alescence is typically divided into three phases: inspiral, merger, and ringdown. No single
analytical method can describe all three phases accurately. The thesis explores a modern
"hybrid" approach.

The early, slow orbital decay is well-described by the Post-Newtonian (PN) expansion,
an approximation to GR valid for weak fields and low velocities. The thesis discusses the
various PN orders and their physical meaning (e.g., spin effects, orbital decay).

As the objects approach their final collision, velocities become relativistic and the gravi-
tational fields become extremely strong, invalidating the PN approximation. This regime is
modeled using Numerical Relativity (NR), where the full Einstein equations are solved on a
supercomputer. The thesis then presents a semi-analytical fitting formula, the Implicit Ro-
tating Source (IRS) model, which is designed to capture the essential physics of the merger
and the subsequent "ringdown" (where the final black hole settles into equilibrium) found
in NR simulations.

The process of smoothly stitching the PN inspiral model to the merger-ringdown model at
an intermediate frequency is discussed. This hybridization results in a complete, analytical
waveform template that is both accurate and computationally efficient enough for use in
matched-filtering data analysis pipelines.

The final chapter moves to the research frontier: using GWs to test the foundations
of gravity itself. While GR has passed every test to date, it has theoretical limitations,
motivating the study of alternative theories.

The thesis focuses on a leading class of alternative theories, including Brans-Dicke (BD),
Damour–Esposito-Farèse (DEF), and Screened Modified Gravity (SMG). These theories aug-
ment GR by introducing a new scalar field that mediates a component of the gravitational
force.

A key prediction of many scalar-tensor theories is the emission of dipole gravitational
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radiation from binary systems. This is strictly forbidden in GR, where the lowest-order
radiation is quadrupolar. Dipole radiation is strongest in asymmetric binaries, such as
Neutron Star-Black Hole (NS-BH) systems, because the neutron star can acquire a "scalar
charge" (its mass depends on the local scalar field), while a black hole (in many of these
theories) cannot, due to no-hair theorems.

The thesis outlines the methodology for testing these theories. The predicted dipole
radiation term introduces a characteristic modification to the phase evolution of the GW
signal. By performing a full Bayesian inference on real GW data from NS-BH events (like
GW200115), one can search for this deviation.

The absence of a detected deviation allows one to place upper limits on the parameters
of the scalar-tensor theory, e.g., on the difference in scalar charges, or on the BD parameter.
This analysis demonstrates how GW observations are becoming one of our most power-
ful tools for probing gravity in the strong-field regime and testing the validity of General
Relativity.

This thesis presents a comprehensive journey through the physics of gravitational waves.
It begins with the fundamental theoretical principles derived from General Relativity and
classical field theory, develops the mathematical formalisms for describing wave generation
via multipole expansions, and applies this theory to a wide array of realistic astrophysical
sources. It further connects theory with observation by detailing the experimental evidence
from pulsar timing and the physics governing the structure of neutron stars. Finally, the work
culminates in an exploration of modern waveform modeling techniques and their application
at the cutting edge of science: using gravitational wave data to test the very foundations of
Einstein’s theory of gravity.
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A Useful notes and mathematical proofs
In this section of the Appendix, several different proofs are studied. First, we will see the
solution of an important differential equation by applying Green’s function. Next, we will
see the way a metric tensor transforms under Lorentz t, transformations and finally, the
transformation of the perturbed metric after coordinate transformations are applied.

A.1 Green’s function and solutions to the equations

In equation 22 of paragraph 1.1, we saw the differential form of Einstein’s equations. We can
obtain solutions to these differential equations by using the Green’s function and the solving
method, as presented below. We begin by writing the closed geometric form of eq. 22, as:

2xG(x− x′) = δ(4)(x− x′) (1125)

Multiplying each side with a generic 4-function fµ(x
′) and integrating over all four-

dimensional x′−space, we get:

⇒
∫

d4x′

(2π)4
2xG(x− x′)fµ(x

′) =

∫
d4x′

(2π)4
δ(4)(x− x′)fµ(x

′) (1126)

⇒ 2x

∫
d4x′G(x− x′)fµ(x

′) = fµ(x) (1127)

Equation 1127 provides the generic solution to equation 1125 and can be used in various
problems of theoretical physics.

A.2 Lorentz transformation of the metric tensor

Under a Lorentz transformation, the metric can be written as below:

gµν → goµν(x
′) = Λ ρ

µ Λ σ
ν gρσ(x)

g′µν(x
′) = ηρσ(x)Λ

ρ
µ Λ σ

ν + Λ ρ
µ Λ σ

ν hρσ(x)

Finally, for a flat metric, ow that under Lorentz transformations remain invariant, so the
following is satisfied:

ηµν(x) = Λ ρ
µ Λ σ

ν ηρσ(x)

The transformation rule is

g′µν(x
′) = ηµν(x) + Λ ρ

µ Λ σ
ν hρσ(x)

Concluding we see the transformation rule of the background metric to be one of a (0,2)
tensor, such as:

h′µν(x
′) = Λ ρ

µ Λ σ
ν hρσ(x)

and the full metric tensor will obey,

g′µν(x
′) = ηµν(x) + h′µν(x

′)

while the flat metric tensor remains invariant
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A.3 Coordinate transformation of the perturbed metric

Following the procedure described in section 1.1, but for the pe, perturbed metric, we get:

h′µν(x
′) = hµν(x)− ∂(µξν)

⇒ h̄′µν(x
′)− 1

2
ηµν h̄

′ = h̄µν(x)− ∂(µξν) −
1

2
ηµν h̄

⇒ h̄′µν(x
′) = h̄µν(x)− ∂(µξν) −

1

2
ηµν
(
h̄− h̄′

)
⇒ h̄′µν(x

′) = h̄µν(x)− ∂(µξν) +
1

2
ηµνη

µν∂(µξν)

⇒ h̄′µν(x
′) = h̄µν(x)− ∂(µξν) + ηµν∂ρξ

ρ

The last ex-derived, when derived, produces:(
∂ν h̄µν

)′
= ∂ν h̄µν −2ξµ
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