Clustering Methods based on Deep Learning
and Unimodality Testing

A Dissertation

submitted to the designated
by the Assembly
of the Department of Computer Science and Engineering

Examination Committee

by

Georgios Vardakas

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

University of Ioannina
School of Engineering

Ioannina 2025

Advisory Committee:

* Aristidis Likas, Professor, Department of Computer Science and Engineering,

University of Ioannina (Advisor)

* Konstantinos Blekas, Professor, Department of Computer Science and Engi-

neering, University of loannina

¢ Christophoros Nikou, Professor, Department of Computer Science and Engi-

neering, University of loannina

Examining Committee:

* Aristidis Likas, Professor, Department of Computer Science and Engineering,

University of loannina

* Konstantinos Blekas, Professor, Department of Computer Science and Engi-

neering, University of loannina

¢ Christophoros Nikou, Professor, Department of Computer Science and Engi-

neering, University of loannina

* Anastasios Tefas, Professor, Department of Informatics, Aristotle University of

Thessaloniki
* George Vouros, Professor, Department of Digital Systems, University of Piraeus

* Konstantinos Skianis, Assistant Professor, Department of Computer Science

and Engineering, University of loannina

¢ Athanasios Voulodimos, Assistant Professor, School of Electrical and Computer

Engineering, National Technical University of Athens

DEDICATION

«Avta to dévtpa de Poledovtar ue Atyotepo ovpavo,

/ / ’ / ’ 7 4
ouTES oL mETpes O PolevovTal xatov an’ To EEva Bruato,
aUTA Tt TEOOCWTIAL O BOAEVOVTOUL TTAPA LOVO GTOY NALO,
aUTES oL Pl Se [folebovTal Tapd Uovo 6To SixLo. »

— Tévvrne Pitoog, Pwutoctvy

I dedicate this thesis to those who stand for justice, for free and public education and
health care, for the right to dream without fear, for a society just, free and humane,

where knowledge and opportunity belong to everyone.

I also dedicate this thesis to my family for their continuous support, and to my
beloved partner, Evgenia, for her trust, love, and unwavering belief in me throughout

all these years.

ACKNOWLEDGEMENTS

This thesis represents the outcome of an effort that has been as academic as per-
sonal. Its pages reflect not only research and ideas, but also the support, trust, and
encouragement that I have received from many remarkable people along the way.
Their presence made this path lighter, richer, and more meaningful. Before diving
into the work itself, I want to express my heartfelt gratitude to those who supported
me throughout this journey.

First, I would like to sincerely thank my advisor, Professor Aristidis Likas, for his
invaluable guidance, trust, and encouragement throughout our collaboration, which
began when I was still an undergraduate student. From the first day of our col-
laboration, back in 2019, until now, he has been consistently available and always
eager to engage in fruitful scientific discussions. Beyond academic matters, he has
also been a trusted mentor who offered me personal advice during difficult times.
Our collaboration has played a crucial role in shaping the research skills and critical
thinking that I possess today.

I am grateful to my advisory committee members, Prof. Konstantinos Blekas and
Prof. Christophoros Nikou, for their guidance and support, and to the evaluation
committee members for generously contributing their time and expertise to this thesis.

I would like to thank Senior Research Scientist Argyris Kalogeratos for insightful
discussions and for his valuable assistance in presenting the UniForCE algorithm.
I would also like to thank Assistant Professor John Pavlopoulos for our valuable
collaborations over the years. I am also grateful to Dr. Prodromos Kolyvakis for
kindly providing the implementation of Hartigan’s dip test.

I would like to thank my friends and fellow colleagues Dr. Paraskevi Chasani,
Ioannis Papakostas and Ioannis Georvasilis for accompanying me on this journey
and for making our workplace a joyful and welcoming environment. Their friendship,

discussions, collaboration, and daily interaction made working with such remarkable

individuals a truly valuable experience, one that helped me grow both as a researcher
and as a person. I would like to especially thank Ioannis Papakostas for his valuable
assistance in conducting experiments with the global kernel k-means++ algorithm and
the soft silhouette criterion.

I would like to thank my childhood friend Grigorios Papigiotis for his uncon-
ditional support, enthusiasm, and genuine engagement in both scientific and non-
scientific discussions. Our fruitful collaboration in Computational Astrophysics re-
mains one of the most enjoyable research experiences I have been part of.

Moreover, I would like to express my heartfelt gratitude to my close friends for
making everyday life more enjoyable and meaningful. I truly appreciate the time we
spent together. In particular, I wish to thank Ilias Kleftakis, Giannis Zisis, Giannis
Divas, Olga Skarlatou, Sokratis Gkrouidis, Theodore Tsoumanis, Sotiris and Dimitris
Stratos, Christodoulos Giannakos, Konstantinos Kadoglou, Miltiadis Vasiliades, and
Konstantina Kyriakoudi for their unwavering support and understanding.

I am deeply indebted to my beloved family. Their unconditional support, love,
and care throughout my life is something I will always cherish. My mother, Athena,
has been by my side through everything, offering strength and comfort in times of
distress. My younger siblings, my brother Konstantinos and my sister Eleni-Anastasia,
have shown me deep love and affection. Although they often looked up to me, they
may not realize that they are far greater human beings than I will ever be. And
finally, to my father and my personal hero, whose example taught me to demand
more of myself, to not be afraid to face even the most difficult challenges life presents,
to always offer a helping hand and to remain humble.

Last but not least, I owe a special thanks to my partner, Evgenia. Her unwavering
love, care, support, and patience have accompanied me through every stage of my
academic journey over the past ten years, from undergraduate studies to postgraduate

and finally to PhD. Without her, this thesis would not have been possible.

TABLE oF CONTENTS

List of Figures v
List of Tables X
List of Algorithms xii
Glossary xiii
Abstract XV
Extetopévn Ilepindy xvii
1 Introduction 1
1.1 Partitional Clustering 3
1.1.1 k-means for clustering in Euclidean space 4

1.1.2 Kernel k-means for clustering in feature space 10

1.2 Unimodality 15
1.2.1 Unimodality Definition 15

1.2.2 Unimodality Testing 17

1.2.3 Unimodality-based clustering 20

1.3 Deep Learning-based Clustering 26
1.3.1 Deep Clustering it 27

1.3.2 Autoencoder-based Clustering 33

1.3.3 GANs-based Clustering 36

1.4 Thesis Contribution 42
1.5 Thesis Layout L e 47

2 The Global k-means++ Algorithm 48
2.1 Introduction. e 48

2.2 Global k-means++ e e e e e e 49

2.3 Empirical Evaluation o o oL 55
2.3.1 Datasets e e e e e e e e 55
2.3.2 Evaluation e 56
2.3.3 Experimental Setup o0 .. 57
2.3.4 Results. e 59

2.4 Discussion e e 62

2.5 Summary . . o. ...l e e e e e e e e e e e e e 63

The Global Kernel k-means++ Algorithm for Efficient Clustering in the

Feature Space 64
3.1 Introduction. 64
3.2 Global kernel k-means++ Lo e 66
3.3 Complexity Analysis e 71
3.4 Empirical Evaluation. L o Lo, 72
3.4.1 Synthetic Data Demonstration 72
3.4.2 Graph Partitioning o 00000 73
3.4.3 RealDatasets 78
3.5 Summary 91

The UniForCE Algorithm for Clustering and Number of Clusters Estima-

tion 93
41 Introduction. e 93
4.2 Locally unimodal clusters, 98

4.3 Clustering based on local unimodality and the UniForCE algorithm . . 99

4.3.1 Overclustering 0. 100
4.3.2 Unimodal pair testing 101
4.3.3 Finding connected components 103
4.3.4 Complexity analysis 105
4.4 Experimental evaluation 000, 106
4.41 Experimental setup. 106
4.4.2 Experimental resultsonrealdata. 110
4.4.3 Sensitivity study using real data 113
4.4.4 Experimental results on syntheticdata 114
4.5 Discussion and limitationso Lo, 116

ii

6

4.6 SUMMATY b v vttt e e e e e e e e e e e e e e e e e 118

Deep Clustering Using the Soft Silhouette Score 120
5.1 Introduction. 120
5.2 The Soft Silhouette Score 122
5.2.1 Silhouette L 122
5.2.2 Soft Silhouette L L Lo 123
5.3 The DCSS method: Deep Clustering using Soft Silhouette 124
5.4 Experiments. e e 127
5.4.1 Synthetic Data Demonstration. 128
5.4.2 Datasets 129
5.4.3 Neural Network Architectures 131
5.4.4 Evaluation L o 133
5.4.5 Experimental Setup and Results 133
5.5 Summary 135
Deep Clustering Based on Implicit Maximum Likelihood 137
6.1 Introduction. e 137
6.2 Neural Implicit Maximum Likelihood Clustering 138
6.2.1 Implicit Maximum Likelihood Estimation 138
6.2.2 Cluster friendly input distribution 140
6.2.3 The IMLE loss from a clustering perspective 141
6.2.4 The NIMLC architecture 141
6.2.5 The NIMLC objective function 142
6.2.6 Slow paced learning Lo 143
6.2.7 The NIMLC algorithm 144
6.3 Experiments. e 146
6.3.1 Syntheticdatasets. oL 146
6.3.2 Realdatasets 147
6.3.3 Evaluation measures 149
6.3.4 Implementation Details 150
6.3.5 Results on synthetic datasets 151
6.3.6 Resultson real datasets 154
6.4 Summary e e e e e e e e e e 155

1ii

7 Conclusions and Future Work
7.1 Concluding Remarks

7.2 Directions for Future Work

Bibliography

iv

LisT oF F1GURES

11

1.2

1.3

1.4
1.5

2.1

Histogram plots of a unimodal and a bimodal distribution (top row)
and the corresponding CDF plots (bottom row). (a) The dataset corre-
sponding to the left histogram has a dip value of 0.00 with a p-value
of 1.00. (b) The dataset corresponding to the right histogram has a dip
value of 0.02 with a p-value of 0.00.
Application of the dip-dist criterion on 2D synthetic datasets with two
structures of 200 datapoints each. Split viewers are shown in red. (a)
One uniform spherical and one elliptic Gaussian structure. (b), (c) His-
tograms of pairwise distances for the strongest and weakest split view-
ers for Dataset (far). (d) As the two structures move closer, the num-
ber of split viewers and the dip value decrease. (e), (f) Histograms
of pairwise distances for the strongest and weakest split viewers for
Dataset (close). (g) The structures are no longer distinguishable from
each other. (h), (i) Histograms of pairwise distances for the strongest
and weakest split viewers for Dataset (merged).
General autoencoder architecture. The encoder (shown in red, left)
maps the input data to a lower-dimensional embedding space, while
the decoder (shown in blue, right) reconstructs the input data from the
embeddings.
Basic GAN architecture and operation.

ClusterGan Architecture [1]. o oo

[lustration of a running instance of the algorithm applied to the “R15”
dataset [2]. Circles denote the data points, the cluster centers are repre-
sented by red stars, while the center candidates are marked with green

CITOSSES. . & ¢ o v i e

2.2 Relative Percentage Error for the Breast, for different L values.
2.3 Relative Percentage Error for the Pendigits, for different L values.

2.4 Relative Percentage Error for the Wine, for different L values.
2.5 Clustering Error Differences for the MNIST, for different L values. .

2.6 Average number of k-means iterations.

3.1 Ilustrative example of GKEM++ execution. Data instances are denoted
with circles, red crosses indicate cluster centers and red star denotes
the winner candidate corresponding to the best initialization.
3.2 Illustratve example of GKAM++ execution. Circles denote the data in-
StATICES. o e e e
3.3 Clustering results for the eighteen rings dataset.
3.4 Clustering results for the three rings with six Gaussians dataset.
3.5 Relative Percentage Error in the ratio association objective across dif-
ferent graphs. L L
3.6 Relative Percentage Error in the normalized cut objective across differ-
ent graphs. L e
3.7 CPU time comparison across different datasets and problems.
3.8 Comparison of the relative percentage error for each algorithm (rela-
tive to the GKAM method) across various datasets and kernel functions.
Lower values indicate better clustering performance, with global opti-
mization variants achieving the lowest error in most cases.
3.9 Distribution of relative percentage error for different clustering methods
compared to GKkM. (a) Shows the performance of GKkM++ (using both
batch and sequential sampling), which closely aligns with the GKiM
method. (b) Compares KkM++ and RKiM, highlighting their higher
error values. L L
3.10 Comparison of CPU execution time required to compute all cluster-
ing solutions for different datasets and kernels. GKAM++ demonstrates
significantly reduced computational cost compared to other methods.
3.11 Comparison of the average number of iterations required for kernel
k-means to converge across different datasets and kernel functions.

GKEM++ requires fewer iterations as k increases.

vi

84

86

3.12 Effect of the number of candidates L on clustering performance of the

proposed method for several datasets. For each dataset the clustering
error statistics (over 30 runs) is presented for different values of L and
number of clusters K = 10,25,50 using both the sequential and the

batch sampling strategy. 0.

3.13 Effect of the number of candidate initializations L on computational ef-

4.1

4.2

ficiency for several datasets. For each dataset the execution time statis-
tics (over 30 runs) is presented for different values of L and number of
clusters K = 10, 25, 50 using both the sequential and the batch sampling

SLTAteZY. . . v v o i e e e e e e e

The UniForCE pipeline for locally unimodal clustering. The steps
followed by the proposed UniForCE clustering methodology are demon-
strated on a synthetic dataset (Complex 2D, see Tab. 5.1 in Sec. 4.4).
The input dataset is first overclustered into a large number of homo-
geneous subclusters lying in convex regions of the original dataspace.
Then, based on pairs of subclusters that are jointly unimodal (unimodal
pairs), a minimum spanning forest is computed, which provides a lo-
cally unimodal clustering with clusters as disconnected components. . .
Examples of locally unimodal clusters. a) Spherical Gaussian density.
b) Arc-shaped uniform density. ¢) Star-shaped density composed by 3
co-centric Gaussian ellipses. In each case, the data are overclustered in
subclusters, and the computed unimodality graph includes edges (in
green or gray color) between subclusters that are unimodal pairs. Any
sequence of distinct subclusters corresponds to a path along which local
unimodality is statistically confirmed. A spanning tree (green edges) is
a subgraph of the unimodality graph that connects all the subclusters

with the minimal number of edges.

vii

89

97

4.3

4.4

4.5

4.6

4.7

5.1

5.2

Unimodal pair testing. Two subclusters, ¢; and c;, appear in orange

and blue, respectively, and their centers are shown as stars. The dotted

line connects the two centers, while the rigged line is its perpendicular
bisecting hyperplane H;;. On the top, histograms present the density of

the univariate set P;;, containing the point-to-hyperplane signed dis-
tances, which we test for unimodality using the dip-test. a) Unimodal

case: No density gap is observed between the subclusters, hence P;; is
decided as unimodal. b) Multimodal case: A considerable density gap

is observed between the subclusters, hence P;; is decided as multimodal.101
The imbalanced modes problem and our subsampling solution. In

this example, the subcluster pair has originally a size ratio of 75/25.

a) The unimodal pair test fails to reject unimodality when all the data

are considered. b) The problem is tackled when testing for unimodality

the balanced subsample (data points shown in gray are discarded). . . 102
t-SNE visualization of UniForCE clustering results on real datasets. The
embeddings are colored by the cluster labels decided by UniForCE for

6 of the real datasets. 113
Comparison of clustering results. The gray part of each curve corre-
sponds to clustering solutions where K < k* for a dataset. 114
Clustering results using the UniForCE algorithm on a variety of 20

synthetic datasets. L oo 115

The proposed model architecture. The AE comprises the encoder f,
and the decoder gy. The data space is denoted as X, while the embed-
ded space is represented by Z. The clustering network h, consists of
an RBF layer followed by a softmax layer.. 125
Synthetic demonstration of the representation learning capabilities of
several methods. The generated 2-d dataset (top left) is hidden from
the methods. Each method receives as input a 100-d dataset generated
by non-linear transformations applied to the original 2-d data and
provides a 2-d latent representation of the 100-d dataset, which is

presented in the plots. Color indicates the true cluster labels. 128

viil

5.3 Image clustering results on various datasets using the proposed DCSS
method. In each sub-figure, rows correspond to different clusters. In
each row the images are presented from left to right with decreasing

cluster membership probability. 000000 135

6.1 The data points are represented by squares and the samples by circles.
(a) For each data point the nearest sample is found. (b) The generator
is updated at each iteration so that the generated samples minimize the
IMLE objective. e 139
6.2 (a) IMLE general architecture. (b) NIMLC architecture. 142

ix

L.isT oF TABLES

2.1
2.2

3.1
3.2

3.3
3.4

41

4.2

4.3

5.1

Descriptions of datasets. oo,
CPU Time. Values marked by { and { denote that the method could not

be executed due to memory/time and method constraints, respectively.!

Kernels used in our experimental evaluation.
Clustering error comparison of the evaluated methods on 2D synthetic

datasets. e
Descriptions of utilized graphs.

Descriptions of utilized datasets.

The real datasets used in the experiments. N is the number of data
instances, d is the dimensionality, and £ is the number of labeled classes
(i.e. the ground-truth k*). With ‘*’, we mark an embeddings dataset
obtained by training an autoencoder on the original dataset. Several of
the used real datasets come from the UCI machine learning repository.
Summary of the experimental results. The best values per dataset
are shown in bold. Cases marked by { and { indicate experiments that
failed due to memory/time and method constraints, respectively.
Sensitivity analysis of hyperparameters «, L, and M. Results are
reported for 30 experiments per setting, showing how variations in the
significance level «, the number of Monte Carlo simulations L, and the
minimum subcluster size M affect the clustering performance across
six datasets. Performance is evaluated based on the number of clusters
E, AMI,and ARI. o

The datasets used in our experiments. N is the number of data in-

stances, d is the dimensionality, and £ denotes the number of clusters. .

106

108

130

5.2

6.1
6.2
6.3
6.4
6.5

6.6

6.7

Performance results of the compared clustering methods. 132
Description of synthetic datasets. 147
Descriptions of real datasets. 149
Generator architecture for each dataset. 150
Encoder architecture for each dataset. 151

Experimental results on synthetic datasets. Bold numbers indicate the
best average performance on each dataset. 152
Experimental results on real datasets. Bold numbers indicate the best
average performance for each dataset. Results marked by “*” are ex-
cerpted from the paper proposing the method. 153
Experimental results on real datasets. Bold numbers indicate the best
average performance for each dataset. Results marked by “-” denotes

the method was not able to learn the dataset. 154

Xi

LisT oF ALGORITHMS

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.1
2.2
2.3
3.1
3.2
4.1
4.2
4.3

5.1
6.1

The global k-means [3] 7
The fast global k-means [3] 9
Kernel k-Means o i i i i e e e e e e e e e e e 1
Kernel k-Means++ Initialization 12
Global Kernel k-Means o v v v v i i it e e it e e 14
Dip-means 23
Pdip-means 25
Minibatch stochastic gradient descent training of GANs [4]. 38
Minibatch stochastic gradient descent training of ClusterGan [1]. 40
Global k-means++ . . . v v v v v i e e e e e e e e e e e e e e e e 51
Batch Sampling e e e e e 51
Sequential Sampling 52
Global Kernel Kk-Means++ . . . v v v v v v v v v e e e e e e e e e 67
Candidate Selection i i i i it 69
The general UniForCE framework for locally unimodal clustering . . . 100
Unimodality pair test for two subclusters 103

The UniForCE algorithm for clustering and estimation of the number

of clusters L. 105
Deep Clustering using Soft Silhouette algorithm (DCSS) 127
Neural Implicit Maximum Likelihood Clustering 145

xii

(GLOSSARY

AE

AEC

AMI

ARI
ClusterGAN
CVlIs

DCN

DCSS

DEC
DipEncoder
Dip-test
DNN

GAN

GKiM
GKiM++
GEM

GiM++
IDEC

IMLE
KiM++

KL divergence
Latent Space
LLM

ML

NIMLC

Overclustering

Autoencoder
Autoencoder-based Clustering
Adjusted Mutual Information
Adjusted Rand Index

GAN-based clustering method with latent space partitioning

Cluster Validation Indices
Deep Clustering Network
Deep Clustering using the Soft Silhouette Score

Deep Embedding Clustering

Autoencoder model using the Dip-test for clustering loss

Statistical test for unimodality

Deep Neural Network

Generative Adversarial Network

Global kernel k-means

Global kernel k-Means++

Global k-means

Global k-means++

Improved Deep Embedding Clustering

Implicit Maximum Likelihood Estimation
Kernel k-means++

Kullback-Leibler divergence

Representation space learned by neural networks
Large Language Model

Machine Learning

Neural Implicit Maximum Likelihood Clustering

Data partition with more clusters than expected

xiii

Pdip-means
RBF

RCC

RKiM
SMMP
t-SNE
UniForCE

Probabilistic Dip-means clustering

Radial Basis Function

Robust Continuous Clustering

Kernel k-means with random uniform initialization
Scalable Multi-modal Partitioning

t-distributed Stochastic Neighbor Embedding

Unimodality Forest for Clustering and Estimation

Xiv

ABSTRACT

Georgios Vardakas, Ph.D., Department of Computer Science and Engineering, School
of Engineering, University of loannina, Greece, 2025.
Clustering Methods based on Deep Learning and Unimodality Testing.

Adyvisor: Aristidis Likas, Professor.

Data clustering is the process of partitioning a dataset into a finite set of groups, or
clusters, such that data points within each cluster exhibit intra-cluster similarity, while
those belonging to different clusters are characterized by inter-cluster dissimilarity.
Clustering remains a challenging task due to the inherent complexity of uncover-
ing meaningful structures within data. Revealing these hidden structures provides
valuable insights and facilitates a deeper understanding of the underlying patterns.

This thesis concerns the development, implementation and evaluation of novel
clustering methodologies mainly focused on three important problems: i) partitional
clustering in both Euclidean and kernel spaces, ii) unimodality-based clustering,
which incorporates the concept of unimodality into the clustering process, and iii)
deep clustering, which leverages the representational power of deep learning methods.

We first introduce global k-means++, a method developed to address the initializa-
tion challenges inherent in the standard k-means algorithm. The approach integrates
the incremental strategy of global k-means with the probabilistic center selection
mechanism of k-means++, effectively combining the strengths of both techniques.
The resulting synergy delivers high-quality clustering solutions while significantly
reducing the computational cost typically associated with global k-means. Further-
more, we extend this concept from Euclidean to kernel space by proposing global
kernel k-means++, an algorithm specifically designed to overcome the initialization
problem in kernel k-means. The optimization effectiveness of both global k-means

variants is thoroughly validated through extensive experimental evaluation.

XV

Afterwards, we present UniForCE, a clustering method that simultaneously parti-
tions data and estimates the number of clusters k. UniForCE introduces a novel notion
of locally unimodal clusters, focusing on unimodality at local regions of the data den-
sity rather than in the entire cluster. By identifying unimodal pairs of neighboring
subclusters, the method aggregates them into larger, statistically coherent structures
via a unimodality graph. This flexible formulation enables the discovery of arbitrar-
ily shaped clusters. A statistical test determines unimodal pairs, and clustering is
achieved with automatic estimation £ by detecting the number of connected compo-
nents in the unimodality graph. Extensive experiments on synthetic and real datasets
validate both the conceptual soundness of the method and its practical effectiveness.

Furthermore, we introduce the soft silhouette score, a generalization of the widely
used silhouette measure that accommodates probabilistic cluster assignments. Build-
ing on this differentiable measure, we develop an autoencoder-based deep clustering
method utilizing the soft silhouette score. Our method guides the learned latent repre-
sentations to form clusters that are both compact and well-separated. This property is
crucial in real-world applications, as simultaneously ensuring compactness and sep-
arability guarantees that clusters are not only densely packed but also clearly distinct
from each other. We evaluate our method on a variety of benchmark datasets and
against state-of-the-art methods to demonstrate that it outperforms established deep
clustering approaches, highlighting the effectiveness of the soft silhouette score as a
principled objective for improving the quality of learned latent representations.

Finally, we present the neural implicit maximum likelihood clustering, which is a
neural-network-based approach that frames clustering as a generative task within the
Implicit Maximum Likelihood Estimation framework. By adapting ideas from Clus-
terGAN, our method avoids several well-known shortcomings of GAN-based cluster-
ing while maintaining a simple and stable training objective. The method performs
particularly well on small datasets, with experimental comparisons against both deep
and conventional clustering algorithms underscoring its competitive potential. A no-
table strength of our method is its ability to capture diverse cluster geometries without
requiring hyperparameter tuning. Experiments on synthetic datasets show that the

method can successfully cluster both cloud-shaped and ring-shaped data.

XVvi

EXTETAMENH IIEPIAHWH

I'edpyrog Bapdaxacg, A.A., Tunuo Mnyovixody H/Y xou ITAnpogopixng, IToAuteyvixn
2yoAn, Havemomuio Iwavvivwy, 2025.

Mébfodor Op.adomoinorng Baotopéveg oty Babid Mabnon xow o "EAeyyo Movotpomt-
xOTNTOG.

EmiBAénwv: Aptoteidng Avxag, Kabnyntie.

Opadotoinon ovopdletol 1 Stadixocior SLaUEPLomnG EVOS GLVOAOL JESOUEVWY TE EVaL
TIETEPAOUEVO GVUVOAO OUESWY, 1] CLGTASWY, ETOL VOTE T OEOOUEVA TTOL EUTIEQLEYO-
vton og x&be opddo va pavilovy E0WTEPLXY] OLOLOTNTA, EVE OESOUEVO TTOV OLYNXOLY
o€ SLOUPOPETLXES OUASES Vo yapoxTneilovtol amd LeTaEd Toug avopoltdtnta. H opo-
J0TT0(NOY TOPAUEVEL ULOL OTTOLTNTLXY] OLadtxaoior AGYw TNG €YYEVOVS TTOALTTAOXOTNTAG
TTOL TTOPOVGLALEL 1] EVPETY] OLOLAGTIXWY oUWV HEoa oto dedopeva. H avadetEn aw-
TWY TWY XPLVUUEVRY COUWY TTOPEYEL TTOADTLUES TTANPOPOPLES oL SLEVXOAVYEL TNY TTLO
Babid xoTovdnom TwY XPLUUEVE®Y TTEOTOTTWY.

H mapoboo diatplBn apopd Ty avdmtuy, vAomoinoy xal oELoAdYNom xovoTtod-
nwy pebodoroylwy opadomoinong, Le xOpLa eotiaoy o Tplor onpovTixd {nTiuoto:
i) ™ Stopeptotiny] opadoroinon mov Pooiletal otov akydptbpo k-means téoo oe
EuxAeidetovg 660 xan og ywpovg mov opilovtor amd cvvapthoelg moprve. (kernel
functions), ii) v opadoroinon Bootopévn oTN LOVOTEOTIXOTNTA, 1 OTOLOL EVOW-
LOTOVEL TNY EVWOLOL TG LOVOTPOTILXOTNTOS 0TN dtadixacion Tng opadoroinong iii)
™ BobLd opadomoinoy, n omolar aELomolel ™y txavdTnTa dNULOLEYING ATTOSOTLXWY
OV TTAPOOTATEWVY.

Apyxd apovatalovpe Tov global k-means++, pto pébodo mov avoartoybnxe yia
VO OVTLULETWTILOEL TLG TTPOXANOELS QLOYLXOTIOINONG TTOL ELVOL EYYEVELS GTOY XAXGLYO
oAyopLipo k-means. H mpooéyyLlon oty EVOWROTOVEL TNV ETOVOANTITLXY OTOOTY-
Yixn emiAvong tov odyopiBuov global k-means pe tov miboavoxpotind pnyoviopd

ETULAOYYIG XEVTPWY TOL OAYOPLOpOL k-means++, cLYSLALOVTOS KTTOTEAECUOTIXA TOL

Xvii

TIASOVEXTNULOTO. XOL TV 0V0 Texvixwy. H mpoxdmtovoo cuvépyelor Tapéyel AVOELG
Opod0TTOlNoNG LYNANG TTOLOTNTAG, UELWDVOVTAG TOVTOYOPOVO CNULOVTIXG TO ULTTOAOYL-
oTx0 ®x60T0¢ oL cLYNBWG cvvdEeTan Ue Tov aAYOpLBuo global k-means. EmimaAéoy,
ETEXTEIVOLUE TNV LOE LT aTtd Tov EUXAEISELO YWHPO OE YWPEOVE YAPAKTNELOTLRWY
1oL 0ptlovTol amd CLYXPTNOELS TTLETV, TTPoTE{vOoVTOG ToV global kernel k-means++,
Evoy aAyopLipo oxedloouévo Yo var oVTLLETWTLOEL TO TEOBANULO TNG OEYLXOTTOLN-
ong Tov xAootxod oAyoptbuov kernel k-means. H txavotnta eAorytotomoinong xot
TV 3V0 TPOTELYOUEVW®Y TTAPOAAXY®Y Tou global k-means emifBeforwvetol dteEodtud
ULETO OTTH EXTETOWEVY] TEELPOUOTLXY OLELOAGY MO,

X1 ovvéyeta topovatalovpe tov oAyoptbuo UniForCE, pta pébodo opadomoti-
NONG TOL TAVTOYEOVH SLopePLlel Tar dedouévar xaL ToEPEYEL wioe exTiUNnon Yoo TOV
optpd twv opddwy. O UniForCE eiwodyel v €vvolor TV TOTUXE LOVOTQOTULXWY
opadwY, €o0TLElOVTOG OTN HOVOTPOTUXOTNTO. O TOTUXEG TEPLOYES TwWY OEJOUEVMY
ovtl og OAOXANEN TNy opddoa. Me Ty avoryvopLon LovOTPOTX®Y (EVYWY YELTOVL-
XWY LTTOOUAdWY, N UEHOBOG TLG CLUYEVKVEL OE UEYHAVTEQPES, OTATLOTIXA OLUVEXTIXEG
OOUEC UECW EVOS YPAWPOL LLOVOTPOTILXOTNTOGS. ALTN N ELEALXTY SLATOTTWOY] XoOLoTA
duvat ™Y avoxaAvPy opnddwy awbaipetov oxynuatos. Emimpdobeta, mpotelveton
EVOL OTOTLOTLXO TECT Yl Tov Xo00pIiopO TwV HOVOTEOTILXWY LELYWY %Ol 1 OUOSO-
TOLNOY ETUTUYYAVETOL UECK TOU EVTOTILOUOV TWY OLVOEDEUEVWY CUVLGTWOWY GTOV
YOGPO povotpoTxOTTOS. Me Tov TpdTo 0wTd xobLpileTar avtépoto xol o opLd-
wog Ty ouddwy. Extetopéva melpdpato o cuvbeTind xot TEOYROTIXG GOVOAX
Jed0oUEVWY ETILXLEWYOLY TOGO TNY 0p0dTNTA TNg LeEbBBSOL BCO %Ol TNY TEOKXTLXY TNG
OTTOTEAEOUOTLXOTNTOL.

Koatémy, etadyovpe to soft silhouette, pio yevixevon tov evEwg YENOLLOTOLOV-
uevou deixty silhouette, To omolo vrootnEilel mhavoxpatinég avabéoeig opddwy
oto dedopéva. Baotlduevol oe autd T0 SLapoplolho xPLTNELO, TTPOTE(VOLUE ULor -
0odo PBolbiag opadomoinong pe ypnon autoencoder, 1 omoiot SNULOVEYEL AVOTTOOO-
OTAOELS TTOL OYNLOTILOVY OUADES TTOVL ELVOLL TAVTOYPOVO. CUUTIAYELS XAADL KO CGOPWIG
Stoywpetopévee. H pébodog aktoroyeital o didpopo sOVoAa Sedouévwy xaL GLYXPL-
vetot pe TLg TAEoV oUyypoveg nebddovs. Gaivetol vo vtepTepel Evavtt xabiepwuévwy
TpooeYYioewy BobLdg opuadomolinoyg, avadelxvOovToG ETOL TYY ATTOTEASTUOTIXOTYTOL
Tou xpttnptov soft silhouette wg cvvgpTon oToXO YLow TN PeATiwon TNG TOLOTNTOC
TWY XPLUUEVWY OVATTOOAOTACEWY.

TéAhog maopovotalovpe ™ nébodo neural implicit maximum likelihood clustering,

Xviii

YLl TPOOEYYLOM BOOLOUEVY] OE YELPWYLXA BIXTLA, 1 OTTOLOL LY TLUETWTTLLEL TNV OUOSO-
Toinon wg Topaywyxy (generative) dtadixaocion 6to TAaioLo g Lebo3ov éppeong
peytotoroinong g mhavopdvetog (Implicit Maximum Likelihood Estimation). TTpo-
ooppolovtog déeg amd tov aAydptbuo ClusterGAN, 7 mpotewvduevn pébodog aro-
(PEVYEL PXETES YVWOTES adLVOLiES TNG opadomoinorg mov PBaoiletar ot Generative
Adversarial Networks, Statnpwvtog TopdAAnAc Evay amtAd oL evoTodY] XPLTNPLO EX-
motdevone. H pébodog emituyydvet LOLalTtepor xOAG ATTOTEAECTUATA OE YLK GOVOAX
O0cdoUEVWY, UE TTELPAUATIXESG OLYXPLOELS TOoO EvavTt LebBBdwY Babiég doo o cupPo-
TG opadomoinong. ‘Eva aEtoonueiwto mAcovéxtnua g pebddov eivar n txovdtnTd
NG VOt ETULAVEL TTOLXIAEG YEWUETOLEG OLAD WY YWPLG var artattelto pOHuLomn vtepTopa-
uwetpwv. Metpdpata oe ovvbetind odvora dedopévwy deiyvouy 6tL 1 LéEbodog pumopel
VO OLOBOTIOLNOEL ETILTUY WS TOOO OEDOUEVOL OE LOPYPT «VEPOLG>» OG0 %O FECOUEVOL OE

LOPPN «SOXTUALOV ».

Xix

CHAPTER 1

INTRODUCTION

1.1 Partitional Clustering

1.2 Unimodality

1.3 Deep Learning-based Clustering
1.4 Thesis Contribution

1.5 Thesis Layout

An enormous volume of new data is generated on a daily basis, leading researchers
to develop methods to organize it, extract meaningful knowledge, and interpret the
information. As the volume of data continues to grow rapidly, the task of uncov-
ering valuable information becomes increasingly complex. An effective approach to
managing data is to group them into sensible groups that are typically called clus-
ters. This process creates a condensed representation of the information, revealing
underlying similarities and differences, as well as hidden structures and patterns that
might otherwise remain undetected.

Machine learning (ML) is the area of artificial intelligence that equips algorithms
with the ability to learn from examples [5, 6]. It has emerged as a powerful tool, fun-
damentally changing how vast amounts of data are analyzed and interpreted by en-
abling algorithms to discover complex, non-obvious patterns within high-dimensional
datasets [7, 8]. ML is typically divided into two main paradigms: supervised learning
and unsupervised learning, with classification and clustering being their most repre-

sentative problems, respectively. In classification, the goal is to assign a data point

1

x to one of a finite set of discrete class labels, that is, to appropriately categorize it.
This is achieved by constructing a classifier, a parametric function that maps inputs
to predicted class labels. To determine the parameters of this function, an inductive
learning algorithm is employed, which minimizes an empirical risk objective over a
finite labeled dataset X = {(z;,:;)}~,, where each z; is a data instance and y; is
its corresponding class label. The goal of classification is to train a classifier on the
labeled dataset X, enabling it to accurately predict the labels of previously unseen
instances.

The acquisition of labeled data is often expensive and in many cases, impractical
or even an impossible requirement. This thesis focuses on the clustering problem,
a core and fundamental task in machine learning, where the dataset contains no
labeled information and is defined as X = {;})¥,, consisting solely of unlabeled
instances. Data clustering is the process of partitioning a dataset into a finite number
of groups, known as clusters, such that data points within each cluster share common
characteristics and are different from those in other clusters [9]. Although its definition
is intuitively simple, clustering remains a challenging problem due to the complexity
of identifying meaningful structures in high-dimensional or noisy data. Discovering
these hidden structures can provide valuable insight and enable deeper understanding
of the underlying patterns. As a result, clustering has become a widely used technique
across various domains in computer science such as data mining, pattern recognition,
image segmentation and spatial database analysis, as well as in numerous scientific
disciplines, including life sciences, medical research, and economics [10, 11].

Clustering typically relies on a similarity or dissimilarity measure, such as Eu-
clidean distance, to describe the relationships between data points [9]. Clusters are
then formed by applying a suitable clustering algorithm based on this measure. The
choice of both the proximity measure and the clustering algorithm has a significant
impact on the resulting partitioning; different choices can lead to drastically differ-
ent outcomes in terms of cluster shapes, quality of solution, and even number of
clusters. Unlike classification, where each training data point z; is associated with
a known class label, clustering is inherently unsupervised and subjective. There is
no ground truth to indicate how the data should be grouped, making the clustering
process highly dependent on the context and assumptions made. In most cases, even
the number of clusters is not known a priori, further complicating the task. Con-

sequently, evaluating the quality of a clustering solution is not straightforward and

often depends on the specific application and the goals of the analysis.

It is well known that most conventional clustering methods perform effectively on
low-dimensional and relatively simple data, but often struggle with high-dimensional
or complex modalities, such as images. To address these inherent limitations, recent
research has turned to deep neural networks (DNNs) for clustering tasks within the
broader framework of deep learning. DNNs are capable of learning rich and informa-
tive representations directly from raw data, minimizing the need for manual feature
engineering [12]. Their exceptional nonlinear modeling capacity and architectural
flexibility have been shown to enhance both supervised and unsupervised learning
tasks [13, 14].

Although clustering was not the original focus of Deep Learning (DL) research, a
growing body of work has adapted DNNs specifically for clustering purposes, giving
rise to the deep clustering category of methods. These methods aim to leverage the
representational power of neural networks to transform the input data into a latent
space where the structure is more appropriate for clustering. In particular, they strive
to produce cluster-friendly embeddings, where data points form compact and, ideally,
well-separated clusters [15, 16, 17, 18, 19].

This thesis concerns the development, implementation and evaluation of novel
(unsupervised) clustering methodologies mainly focused on three important and very
active machine learning problems, namely: i) partitional clustering in both Euclidean
and kernel spaces, ii) unimodality-based clustering and iii) deep clustering, which
leverages the representational power of deep learning methods. In this Chapter, we
describe these problems, along with a review of the related work. Afterward, we

present the main contributions and the layout of the thesis.

1.1 Partitional Clustering

The typical form of clustering is the partitioning of a given dataset X = {z1,...,zn},
z; € R? into K disjoint clusters C = {C,...,Ck} so that a specific criterion is op-
timized. The most widely used optimization criterion is the clustering error. It is

defined as the within-cluster sum of squared distances between each data z; € C}, to

its cluster center y; as defined in

N K
E(C) =Y e (w)lle: — el (1.1)

i=1 k=1
where 1¢, is the indicator function of the set C, while M = {yu1,..., ux} is the set

of K centers computed as the mean of the data points of each cluster. The number
of ways in which a set of N objects can be partitioned into K non-empty groups is

given by Stirling numbers of the second kind:

S(N,K) = %Z(—l)k(K— k)N (fk() (1.2)

which can be approximated by K%V /K!as N — +oco [20]. It is evident from eq. 1.2 that
a complete enumeration of all possible clusterings to determine the global minimum
of eq. 1.1 is computationally prohibitive. It is worth mentioning that this non-convex
optimization problem is NP-hard [21, 22] not only for two clusters (K = 2) [23], but
also for two-dimensional datasets (D = 2) [24].

The k-means algorithm [25, 26] is a widely used method for minimizing clustering
error. It is an iterative algorithm that has been extensively utilized in many clustering
applications due to its simplicity and speed [27]. However, the k-means algorithm

suffers from two main limitations:

1. Sensitivity to Initial Centers: The solution relies critically on the initial place-
ments of the cluster centers. It is possible that, due to poor initialization, the

k-means may converge to poor local minima of the clustering error.

2. Linear Separability: The resulting clusters are restricted to being linearly sepa-

rable, limiting the algorithm’s effectiveness in identifying complex cluster shapes.

In the remainder of this section, we present the standard k-means algorithm
along with several variants that have been proposed in the literature to overcome

these limitations.

1.1.1 k-means for clustering in Euclidean space
k-means

The k-means algorithm is computationally efficient, conceptually simple, and arguably

the most widely used clustering method in the literature. However, its performance

4

is highly sensitive to the initialization of cluster centers. As a result, the k-means
algorithm often converges to a locally optimal solution with respect to the clustering
error (eq. 1.1). It is an iterative center-based clustering algorithm that starts with
K cluster centers. In its purest form (Lloyd’s algorithm [26]), the K centers are
typically selected uniformly at random from the set of data points X. Then the two-
step algorithmic procedure follows iteratively until convergence, which includes the
data assignment and the center optimization steps. At the assignment step, every data

point z; is assigned to the cluster C; with the nearest center p;:
j= argmkin |2 —]| (1.3)

In the optimization step, each center is updated to the mean of all data points assigned

to its cluster:

1
= — i 1.4

z;€C;

This simple optimization methodology has been proven to be computationally fast
and effective. The main disadvantage of the standard k-means algorithm is that it is a
local optimization method with high sensitivity to the original starting positions of the
cluster centers. Poor center selection usually leads to local minima of the clustering
error. Therefore, to obtain near-optimal solutions using the k-means algorithm, sev-
eral runs must be scheduled differing in the starting positions of the cluster centers.
Among these runs, the solution with the lowest clustering error is naturally chosen
and retained. However, it has been shown that this procedure generally does not
produce satisfactory results [27].

It should be noted that various stochastic global optimization methods have been
proposed, such as simulated annealing and genetic algorithms, to overcome the above
problem, but have not gained wide acceptance. These types of methods involve sev-
eral hyperparameters that are difficult to tune, for example, starting temperature,
cooling, schedule, population size, and crossover/mutation probability and usually re-
quire a large number of iterations, which renders them prohibitive for large datasets.
Consequently, stochastic global optimization methods are usually not preferred, but
instead, methods with multiple random restarts are commonly used [9]. However,
there are some promising genetic approaches in the literature, such as Recombinator-
k-means [28].

k-means++

The k-means++ [29] is probably the most widely used center initialization algorithm.
It selects the cluster centers by sampling data points from a multinomial probability
distribution that strives to effectively spread them away from each other. Specifically,
the algorithm comprises two key steps: i) computing a probability distribution for
center selection and ii) sampling a data point from this distribution as the initial
cluster center position. The method iteratively recalculates the distribution in order
to select subsequent cluster centers. This iterative process terminates when all K
centers have been initialized.

Specifically, the method begins by choosing the first center position through uni-

form random selection from the dataset X. Then it computes the distances

d; = min [|z; — [, (1.5)
J
of each data point z; (: = 1,..., N) from its nearest center and forms the probability
vector P = (py,...,pn), where each component p; is given by
N
j=1

Then, it samples the next center position ;1 from the data using the multinomial
distribution with probability vector P. This two-step procedure is repeated until the
number of centers is equal to K. After the k-means++ center initialization procedure,
the standard k-means algorithm proceeds with the assignment and optimization steps,
described in eq. 1.3 and eq. 1.4 respectively. It is important to note that the k-means++
initialization is computationally efficient and guarantees that the expected clustering

cost is at most a factor of O(logk) larger than the optimal cost [29].

Global k-means

The global k-means [3] algorithm has also been proposed to effectively solve the k-
means initialization problem and is considered one of the most widely used k-means
initialization variants. It constitutes a deterministic global optimization method that
employs the k-means algorithm as local search procedure and does not depend on the
initialization of the centers or empirically adjustable parameters. In particular, several
empirical studies have shown that both global k-means and k-means++ consistently

outperform the standard k-means algorithm in terms of clustering quality [30, 31].

6

Algorithm 1.1 The global k-means [3]

Require: X = {z1,...,xn}: Dataset

Require: K: Number of clusters
L gy X ams M {m}
Tn€X
2:fork=2,...,K do
3: for all z,, € X do
4 {(Cén),Mlin), E(Cli")))} < Run k-means with initial k& centers positions My_1 U {zn }
5 end for
6: (Ck, My) < Solution with the minimum error E(C]:m)) among the IV solutions {(C’,(C"), M,i") , E(Cé”)))}, n=1,...,N
7: end for
8:

return solutions (Cy, M) for every k € {1,..., K}

The global k-means algorithm is outlined in Alg. 1.1. Importantly, instead of
randomly selecting initial values for the cluster centers, the global k-means algorithm
incrementally adds one new cluster center at each stage in an attempt to be optimally
placed. To accomplish that, the global k-means algorithm solves a clustering problem
with K clusters by sequentially solving every intermediate sub-problem with % clusters
(k € {1,...,K}). In order to solve the problem with k clusters, the obtained solution
with k& — 1 cluster centers is exploited.

Note that the set of k centers is denoted as My, the £ clustering partition is denoted
as Cj, and E(C) denotes the clustering error, see eq. 1.1. The algorithm starts by
solving the 1-means problem where the optimal position corresponds to the center of
the dataset X (step 1 in Alg. 1.1). Then, it solves the 2-means problem by performing
N executions of the k-means algorithm (steps 3-5 in Alg. 1.1). In each execution n,
the first cluster center is always initialized at the optimal solution of the 1-means sub-
problem, while the second center is initially set at the data point z,, (n € {1,..., N}).
The best solution, with the lowest error (eq. 1.1), is obtained after the N executions
of the k-means algorithm is considered the solution for the 2-means clustering sub-
problem (step 6 in Alg. 1.1). Following the same incremental procedure, the solution
for kg clusters is obtained (steps 2-7 in Alg. 1.1). In general, for solving the ky,
cluster sub-problem the procedure begins with the initialization of the £ — 1 centers
at the center positions provided by the solution of the (k — 1) problem; then, the new
kw center is initialized at each data point z,,. The k-means algorithm is executed N
times while retaining the best clustering solution. The global k-means algorithm is
very successful in obtaining near-optimal solutions, but computationally expensive
for large N as it involves O(N K) executions of k-means on the entire dataset.

It is important to note that the performance of random initialization methods, such

as k-means++, tends to deteriorate as the number of clusters K increases, especially
compared to more robust strategies such as the global k-means algorithm. High values
of K are often used in overclustering scenarios, where the goal is to uncover finer-
grained substructures within the dataset. In general, a clustering of X is considered an
overclustering when K > k*, where k* denotes the true number of underlying clusters
in X. In various fields such as speech recognition [32] and computational biology [33],
overclustering is not only widely applied but often necessary to capture fine-grained
data structure. For example, in computational biology, overclustering ensures that
relevant cell types can be discovered even if an expected population is split into
sub-populations. Moreover, overclustering is vital in more sophisticated clustering
algorithms as an algorithmic step, particularly when dealing with non-convex data
structures [34, 35]. In overclustering methods, obtaining solutions from the global k-
means clustering algorithm is desirable. However, due to the computational burden
associated with large values of N and K, computationally cheaper alternatives are
practically utilized.

Although global k-means is widely acknowledged for its optimization capabilities,
its prominent drawback lies in its high computational complexity. Specifically, each
k clustering sub-problem necessitates O(/N) k-means executions. Consequently, the
practical application of the algorithm is predominantly confined to small datasets. This
limitation has prompted researchers to explore heuristic techniques for selecting initial
center candidates, with the dual objective of reducing computational complexity while
maintaining clustering results of comparable quality to those obtained with global k-
means. Nonetheless, it is essential to acknowledge that reducing the computational
complexity of the global k-means algorithm results in the loss of its deterministic

nature.

Fast global k-means and variants

The fast global k-means algorithm (FGKM) [3] constitutes an effort to accelerate the
global k-means. Unlike global k-means, which necessitates O(/N) k-means executions
for each k sub-problem, the FGKM algorithm performs only a single k-means exe-
cution. Alg. 1.2 describes the FGKM clustering method.

In particular, for each value of k, the FGKM algorithm computes an upper bound
(denoted as E,) on the clustering error that would arise if the new center was ini-

tialized at the specific point z,, and k-means were executed until convergence. The

8

Algorithm 1.2 The fast global k-means [3]

Require: X = {z1,...,xn}: Dataset

Require: K: Number of clusters

L gy X ams M {m}
Tn€X

2:fork=2,...,K do

3 x;x 4 compute initial position of new ceneter (eq. 1.8)

4 (Ck, M) < Run k-means with initial k centers positions {My_1} U {z;+}

5: end for

6: return solutions (Cy, My) for every k € {1,...,K}

upper bound is defined as E,, < E — b,, where E is the error already found for the

k — 1 clustering sub-problem, while the value b, is given by equation
N .
by = max(d]_, — |[x, — ;||, 0). (1.7)
j=1

In eq. 1.7, the d,_, is defined as the squared euclidean distance between x; and its
closest cluster center among the £ — 1 centers obtained so far. The initial position of
the k-th cluster center is set to the data point =7 with minimum £, or, equivalently,
with maximum b,,:

i* = argmaxb,. (1.8)

Several methods have been proposed that modify the global k-means or the fast
global k-means to make it more efficient [30]. The efficient global k-means clustering
algorithm (EGKM) [36] defines a normalized density function criterion for selecting
the top candidate for the new cluster center. However, EGKM similarly to FGKM
demands all pairwise distances d(z;,z;), thus it needs O(N?) distance computations
and extra memory space. The fast modified global k-means algorithm (FMGKM) [37]
defines a more sophisticated auxiliary function criterion for selecting the candidates
compared to FGKM. Its main drawback is computational complexity because, at each
iteration, it requires the entire or part of the affinity matrix computation, which also
generally requires O(N?). In addition, the FMGKM algorithm exhibits a secondary
limitation due to the utilization of an auxiliary function criterion, which introduces a
non-convex optimization problem. The fast global k-means clustering based on local
geometric information [38] is an attempt to reduce the computational complexity of
FGKM [3] and FMGKM [37] by leveraging local geometric structure information to
decrease the distance computations required in each iteration. The method is claimed
to require O(niny) distance computations to select the new center candidate, where

empirically n; < N and ny < N. Fast global k-means clustering using cluster mem-

9

bership and inequality [39] is also an attempt to reduce the distance computations of
the FGKM. It is claimed that the method requires O(/Nn,) distance computations to
select the new center candidate, where empirically n; < N. It is crucial to emphasize
that all related methods exhibit comparable clustering performance to FGKM and

inferior to global k-means.

1.1.2 Kernel k-means for clustering in feature space
Kernel k-means

The kernel k-means algorithm [40] extends the typical k-means algorithm to another
space of higher dimension, called feature space F. This is achieved by mapping
original data instances using a non-linear function ¢ : X — F. In the transformed
space, the algorithm minimizes the clustering error as presented in the following

equation (weighted version):

N K
EC) =) > Mo (wi)wi||¢(w:) — my| %, (1.9)
=1 k=1 N
Z 1Ck($i)wi¢($i)
where my, = = <) (1.10)
; 1C’k (ﬂﬂz)wz

In the above equation, the weights w; are nonnegative scalars assigned to each data
point z;. The mapping ¢(x;) provides a representation of the data in the feature space.
In the general case ¢(z;) is never computed explicitly. Instead, computations rely on
the kernel matrix, denoted by K € R¥*" where each element K;; = ¢(z;)" ¢(z;)
represents the inner product similarity in the feature space between instance 7 and j.
For the kernel matrix to be valid, it should be positive semidefinite [10, 41].

By utilizing the kernel trick [40, 41], the squared distances in eq. 1.9 can be

computed without explicitly knowing the transformation ¢, as shown in the following

equation:
N N N
2> e (z)wiKiy >0 > Ao (2)1e, (v)wjwKy
=1 =11[=1
1o (as) —my|[* = Ky — = T EENCRTY
Zl 1, (z5)w; 21 ZZI 1o, () 1c, (T1)wjw,
= j=11=

The kernel k-means does not explicitly use the transformation ¢(z); therefore, the

centers my, of the clusters in the feature space cannot be computed directly. How-

10

ever, the values of the kernel matrix provide the information required to compute
the feature space distance between instances and cluster centers. Kernel k-means can
achieve non-linear cluster separation, thereby addressing the second k-means limita-
tion. Unless specified otherwise, we assume the unweighted version of the algorithm,

ie.w;=1,i=1,..., N.

Algorithm 1.3 Kernel k-Means

Require: K: Kernel matrix

Require: K: Number of clusters
Require: {C,Cy,...,Ck}: Cluster Initialization
1: Initialize converged < False

2: while not converged do

3: fork=1,..., K do

4 for all z; € X do

5 Compute ||¢(z;) — my||* using eq. 1.11

6 end for

7: end for

8 for all z; € X do

9 Assign z; to the cluster with the nearest center ¢*(z;) + arg mlgn l|p(z;) — ma|?
10: end for
11: for k=1,...,K do

12: Update cluster Cy, < {z;|c*(z;) = k}

13: end for

14: if no change in cluster labels then

15: converged < True

16: end if

17: end while

18: return final partition C* = {C1,C»,...,Ck} and clustering error E(C*) using eq. 1.9

It is known that given a positive semidefinite kernel matrix, the kernel k-means
monotonically converges to a local minimum of clustering error in the feature space.
In this case, the computational complexity of the algorithm is O(N?7), where 7 denotes
the number of iterations to convergence [42]. It is important to point out that applying
kernel k-means does not require the data vectors themselves, but only the values of
the kernel matrix K. The detailed kernel k-means algorithm is described in Alg. 1.3.
It should be emphasized that the kernel k-means requires an initial partition to be
specified. At each iteration, the partition is updated in order to reduce the clustering
error in feature space. It should be noted that in most software packages, the standard

method for initializing kernel k-means is either random initialization [26] or random

11

instance labeling, also known as Forgy’s method [43]. The former assigns cluster
centers by selecting random positions in the feature space, while the latter initializes
clusters by directly assigning each data point to a randomly chosen cluster. It is

widely known that both strategies very often converge to poor suboptimal solutions.

Kernel k-means++

As previously mentioned, k-means++ [29] is a successful algorithm for selecting ini-
tial center positions in Euclidean space, offering provable guarantees. The intuition
behind the k-means++ initialization algorithm is to select a set of well-dispersed ini-
tial centers throughout the dataset. This makes the algorithm less likely to converge
to poor local minima, leading to improved clustering performance. Thus, we aimed
to evaluate its performance in feature space clustering when used as an initializa-
tion method for kernel k-means. Therefore, we formulate the kernel k-means++ [44]
(KkM++) algorithm that can be derived from k-means++ using the feature space dis-

tance formulation described in Alg. 1.4.

Algorithm 1.4 Kernel k-Means++ Initialization

Require: K: Kernel matrix
Require: K: Number of clusters
Initialize the set of cluster centers M <« {}
Initialize the clusters C = {C},Cy,...,Ck} where C; + {},Vi=1,2,...
Choose a data instance p; ~ U(X)
M+~ MU{u}
for k=2,...,K do

for all z; € X do

Compute distance d; < mind (¢(z;), $(1;)) using eq. 1.12

J
end for

Choose a data instance pu < z; at random from X with probability p; + i
> dj

i=1

10: M« MU {u}

11: end for

12: for all z; € X do

13: Assign z; to the cluster with the nearest center ¢*(x;) < arg mkind (¢p(z:), d(1x)) using eq. 1.12
14: end for

15: for k=1,..., K do

16: Compute initial cluster Cy, {z;|c*(z;) = k}

17: end for

18: return clustering initialization C* = {C1,Cs,...,Ck}

12

In the following formulation, ;1 and m represent a cluster center in Euclidean and
feature spaces, respectively. Specifically, KkM++ requires the number of clusters K
and a kernel matrix K as input. The algorithm begins by initializing the first cluster
center y; by randomly selecting a data instance z; from X (Step 3 in Alg. 1.4). For

2

each data instance x;, it computes the distance d; = mkinH(b(a:i) — my||?, where my

represents the closest cluster center in feature space, defined as my; = ¢(u) (Steps

6-8 in Alg. 1.4). The probability vector P = (py,...,py) is then defined, where each
N

component p; is given by p; = Pr(m = ¢(z;)) = di/ >~ d; (Step 9 in Alg. 1.4). Since
j=1

each cluster center m; = ¢(u;) = ¢(x;) is initialized by a sampled data instance z;

from the dataset X, the distance is computed using kernel matrix values:

d (p(;), my) = d (¢(x:), o(pw)) = ||o(w;) — d(z5)|]> = Kiy — 2Ky + K5 (1.12)

Subsequently, the next center m is sampled from the dataset based on the multinomial
distribution defined by the probability vector P, and the process is repeated until all
K centers are initialized (Steps 5-11 in Alg. 1.4). Note that even though we do not
have direct access to data instances ¢(z) or cluster centers m in the feature space, the
described process allows us to compute the distribution of distances between each
data instance and center in the feature space, thus enabling us to sample the next

cluster center directly from X.

Global kernel k-means

The global kernel k-means (GKKkM) [45] is an extension of the global k-means algo-
rithm for feature space clustering error minimization (eq. 1.9). GKkM employs kernel
k-means as a local minimization procedure and operates incrementally, solving all
subproblems for £ = 1, ..., K successively. The underlying idea is that a near-optimal
solution for £ clusters can be attained by first obtaining a near-optimal solution for
k—1 clusters and then initializing the ky, cluster N times, with each initialization start-
ing from a different data instance. Among the N solutions, the one with the smallest
clustering error is selected for the k-clustering problem. GKkM presents very satisfac-
tory optimization capabilities, provides all solutions for all £ € {1,... K}, and is also
deterministic since it does not depend on initialization. However, its primary limita-
tion is the high computational complexity inherited from GkM. If the final number of
clusters is K, then K N kernel k-means executions are required, resulting in an overall

complexity of O(N3KT), assuming the kernel matrix has been precomputed [45].

13

Algorithm 1.5 Global Kernel k-Means

Require: K: Kernel matrix

Require: K: Number of clusters

1: Initialize Cf + X

2: for k=2,...,K do

3 for all x,, € X do

4 Cl, < {zn}

5. Chy <+ Ciy/{en)

6 C,+C._,UC,

7 (C,E(C}')) + Run kernel k-means(K,k,C;) (Alg. 1.3)

8 end for

9: (C}, E(Cf)) + Solution with the minimum error F(C}) among the N partitions C}
10: end for

11: return solutions (C}, E(C})) for every k € {1,...,K}

The details of GKiM are outlined in Alg. 1.5. Specifically, the algorithm requires
the number of clusters K and a kernel matrix K as input. It should be noted that Cj,
refers to the ky, cluster in the partition, while C;, denotes the entire clustering solution
for k clusters. At first, the method addresses the kernel 1-means subproblem by setting
the clustering solution C; to represent the entire dataset X (Step 1 in Alg. 1.5). Next,
to tackle the kernel 2-means subproblem, kernel k-means is executed N times. In
each of these N executions, the second cluster, €9, is initialized using a data instance
T, which is removed from the previously obtained clustering solution C; (Steps 4
and 5 in Alg. 1.5). The initialization for two clusters is constructed by combining
the solution C| with the single-point cluster C} (Step 6 in Alg. 1.5). The Kernel k-
means then further optimizes the clustering objective using this initialization (Step 7
in Alg. 1.5). After all data instances have been considered as possible initializations
for the second cluster (i.e., kernel k-means has been executed N times), the lowest
error solution is selected as the final solution for the kernel 2-means problem (Step 9
in Alg. 1.5). This process is repeated incrementally for every k = 2,..., K, each time
exploiting the solution with (k — 1) clusters. Finally, the algorithm provides solutions

forall k=1,... K.

14

1.2 Unimodality

In most real-world scenarios, we often work with data samples that are assumed to
be generated from some unknown underlying distribution. From these samples, the
goal is to infer various characteristics of the underlying distribution, which in turn
provide insights into the internal structure of the system under investigation. One key
statistical property of interest is whether the underlying distribution is unimodal or
multimodal, that is, whether it has a single peak or multiple peaks [46]. These peaks,
known as modes, often appear in the sampled data as cluster regions where a large
number of data points are densely concentrated. This grouping behavior becomes
apparent when examining a histogram of the data, where a high concentration of data
points forms a “hill” around the mode. A unimodal underlying distribution suggests
that the data originate from a single group or type of observation. In contrast, a
multimodal distribution may indicate the presence of two or more distinct groups
within the data, each exhibiting different behaviors or characteristics. For example,
suppose that one measures the brightness of stars in a small region of a galaxy. If the
histogram of star brightness shows two clear modes, this might mean there are two
different groups of stars, i.e. one group that is older and dimmer and another that is
younger and brighter. This kind of pattern can possibly tell us that the stars in that
area did not all form at the same time. On the other hand, if the histogram has just one
peak, it could mean that the stars are more similar to each other, possibly formed in
the same star-forming event. In either case, observing unimodality or multimodality
can raise new research questions and ultimately lead to a deeper understanding of
the data under study. An illustrative example of univariate unimodal and bimodal

distributions is presented in Fig. 1.1a and Fig. 1.1b, respectively.

1.2.1 Unimodality Definition

The notion of unimodality [47] is a statistical property characterizing a probability
density function. A univariate probability density f is unimodal if there exists a point
m € R, called mode, such that f is non-decreasing in (—oo,m) and is non-increasing
in (m,o0). Qualitatively, this means that f admits its maximum value at the mode
m, and as we move away from m, it can only remain constant or decrease, with no
other local maxima present. The unimodality property can also be characterized in

terms of the Cumulative Distribution Function (CDF). Specifically, a CDF is unimodal

15

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2

(a) Unimodal case. (b) Bimodal case.

Figure 1.1: Histogram plots of a unimodal and a bimodal distribution (top row)
and the corresponding CDF plots (bottom row). (a) The dataset corresponding to
the left histogram has a dip value of 0.00 with a p-value of 1.00. (b) The dataset

corresponding to the right histogram has a dip value of 0.02 with a p-value of 0.00.

if there exist two points z; and z,, such that the function can be partitioned into three
regions: (a) a convex part in (—oo, z;), (b) a constant part on [z;, x,], and (c) a concave
part on (z,,00). Note that the unimodality condition still holds if either the first two
regions, i.e. (a) and (b) or the last two regions, i.e. (b) and (c), are absent.

Contrary, two modes would emerge if there is a density gap, i.e. a considerable
drop of the density level among two regions of higher density. Specifically, a proba-
bility density function that does not exhibit unimodality is referred to as multimodal,
indicating the presence of two or more modes. A typical example is a distribution
with exactly two modes, which show up as separate peaks (local maxima) in the
density plot and is called bimodal. Bimodal distributions frequently occur as com-
binations of two unimodal distributions, each having a single mode. For instance,
combining two Gaussian distributions with identical variances but separated means
typically produces a bimodal distribution.

Unimodality is a broad property of probability distributions that simply requires
the distribution to have a single “peak” or mode. Because this requirement is very
general, unimodal distributions can still take on a wide variety of shapes and den-
sities. For example, distributions of many prominent families, such as the Uniform,
Gaussian, Gamma and Beta, have this property. For the multivariate case, several
definitions of unimodality have been proposed in the literature which are, however,

not equivalent [48, 47].

16

1.2.2 Unimodality Testing

A reliable approach to assessing the unimodality of the data is through statistical
procedures known as unimodality tests, which are designed to detect the presence of
more than one mode in a distribution. In other words, these tests evaluate whether
a dataset is likely to have been generated by a probability distribution with a single
mode (peak). The concept of unimodality is closely linked to the grouping behavior
of data points, that is, whether the observations tend to cluster around a single central
region or are dispersed across multiple distinct regions.

Several statistical tests have been proposed to assess unimodality [49, 50]. In
this thesis, we focus on one of the most prominent methods: Hartigan’s dip-test of
unimodality [50]. A comprehensive treatment of unimodality testing can be found
in [51, 52, 53].

Hartigan’s dip test [50] is a widely used statistical procedure for assessing the
unimodality of a univariate dataset. Given a univariate sample X = {xy,...,z,}, the
test examines the underlying Empirical Cumulative Distribution Function (ECDF),
defined as

n

1
Flz)==> Yz, <z}, 1.13
(2) = ; {#: < 2} (1.13)
and determines whether the distribution exhibits a single or multiple modes. The

dip statistic is computed as the maximum deviation between the ECDF and the
closest unimodal distribution function, where “closest” is defined as the distribution
that minimizes this maximum difference. Asymptotically, the uniform distribution
serves as the least favorable unimodal case, and the distribution of the dip statistic
is determined both theoretically (asymptotically) and empirically through sampling
from the uniform distribution.

Given a set of real numbers X = {z;,...,x,}, the dip test computes the dip value,
denoted as dip(X), which measures the departure of the empirical cumulative distri-
bution function (ECDF) from unimodality. For two bounded distribution functions

F and G, we define their distance as
p(F,G) = max |F(z) — G(x)]. (1.14)

Let U be the class of all unimodal distribution functions. Then, the dip statistic of a

distribution function [’ is given by
dip(F) = Iélé{{lp(F, G). (1.15)

17

In other words, the dip statistic is defined as the smallest among the largest
deviations between all CDF F' and the CDFs belonging to the class of unimodal
distributions. An appealing property of the dip statistic is its consistency: if X is a
sample of n observations from F, then T}grolo dip(F,,) = dip(F'). For the null hypothesis,
the class of uniform distributions ¢/ is typically employed, since their dip values
are stochastically larger than those of other unimodal distributions, such as those
with exponentially decreasing tails. A further advantage of the dip test is that it is
parameter-free.

To provide the method that the dip statistic is computed, we must introduce two
key definitions. The greatest convex minorant (gcm) of a function F in (—o0,q] is
sup G(z) for x < a, where the sup is taken over all functions G that are convex in
(—o0, @] and nowhere greater than F. Similarly, the least concave majorant (Iem) of
a function F' in [, o0) is defined as inf L(z) for © > a, where the inf is taken over all
functions L that are concave in [«, c0) and nowhere less than F'.

Given a dataset X = {zi,...,x,}, where z; € R, the dip statistic is computed as

follows:
(i) Begin with z;, = z1, zy = x,, D = 0.

(ii) Compute gem G and lem L for F in [z, zy]; suppose the points of contact with

F' are respectively gi,...,g, and [y, ..., [p.

(iii) Suppose d = sup |G(g;) — L(g:)| > sup |G(l;) — L(l;)| and that the sup occurs at
lj S g; S lj+1. Define [L’% = gl,I?J = lj-i-l’

(iv) Suppose d = sup |G(l;) — L(l;)| > sup|G(g;) — L(g;)| and that the sup occurs at
g; < lj < Git1- Define ZL‘OL = gz,l’?] = lj.

(v) If d < D, stop and set D(F) = D.

(vi) If d > D, set D =sup{D, sup |G(z)— F(z)|, sup |L(z)— F(z)|}

zp<z<zl 2 <z<zy

(vii) Set zy = x¥;, z, = 29 and return to (ii).

The dip test conceptually considers all @ possible modal intervals [z, 2| de-
fined by the n sorted observations. For each candidate interval, it constructs in O(n)
time the corresponding gem over (min X, z;) and lem over (z;, max X). Fortunately,

for a given sample X, the overall computation of the dip statistic requires only O(n)

18

time. Beyond the dip value itself, the test also reports a measure of statistical signifi-
cance in the form of a p-value. This p-value is estimated from b bootstrap replicates,
each consisting of n independent observations sampled from the Uniform|0, 1] distri-
bution. Denoting the empirical distribution of the r-th replicate as U;, the p-value is

given by

1 b
P = 5;1{@3()() < dip(U")}, (1.16)

which represents the proportion of bootstrap replicates for which the dip statistic
computed for datasets sampled from the uniform null model is greater than or equal
to the dip of the dataset X. In other words, it measures how often a unimodal
distribution generated under the null hypothesis appears at least as “multimodal” as
the data. A small p-value therefore indicates that it is unlikely for the observed dip(X)
to be explained by a unimodal distribution, providing evidence against unimodality.

It should be noted that for each sample size n, the bootstrap distributions U, are
generated independently of the observed dataset X. Consequently, they need to be
computed only once, together with their corresponding dip statistics dip(U},). The

hypotheses tested by the dip test are:
Hy : X is unimodal, H, : X is multimodal. 1.17)

At a chosen significance level «, the null hypothesis Hj is accepted if the computed
p-value exceeds . Otherwise, Hj is rejected in favor of the alternative hypothesis H,,
indicating evidence of multimodality. An illustrative example of the dip value and
the p-value for unimodal and bimodal datasets is shown in Fig. 1.1.

In the multivariate setting, the notion of unimodality is far less settled. Some defi-
nitions have been proposed in the literature, including star-unimodality and generalized
Anderson-unimodality [47]. However, despite the existence of these mathematical for-
mulations, assessing unimodality in higher dimensions remains challenging, and only
a limited number of practical testing procedures have been developed. Given these

open questions, we do not pursue the multivariate case further in this thesis.

19

Top split viewer: dip=0.094, p-value=0.00 Top no split viewer: dip=0.010, p-value=0.996

03
04
° »02 .03
H -
01
split
no split o1
o Max dip
= =
a 4
T

o

o Mindip 00

(a) Dataset (far) (b) Top split viewer (¢) Top no split viewer
Top split viewer: dip=0.049, p-value=0.00 Top no split viewer: dip=0.009, p-value=0.999
° Eﬂ 02
4 £ fm
split o
no split
o Maxdip 00 00
o Mindip 0 2 4 6 0 2 4 6
(d) Dataset (close) (e) Top split viewer (f) Top no split viewer
. Top split viewer: dip=0.025, p-value=0.08 Top no split viewer: dip=0.008, p-value=1.000
o
split o1
no split
o Maxdip 00 = o= 00 O
o Mindip 0 1 2 3 4 5 6 0 1 2 3 4 5
(g) Dataset (merged) (h) Top dip value viewer (i) Bottom dip value viewer

Figure 1.2: Application of the dip-dist criterion on 2D synthetic datasets with two
structures of 200 datapoints each. Split viewers are shown in red. (a) One uniform
spherical and one elliptic Gaussian structure. (b), (¢) Histograms of pairwise dis-
tances for the strongest and weakest split viewers for Dataset (far). (d) As the two
structures move closer, the number of split viewers and the dip value decrease. (e),
(f) Histograms of pairwise distances for the strongest and weakest split viewers for
Dataset (close). (g) The structures are no longer distinguishable from each other. (h),
(i) Histograms of pairwise distances for the strongest and weakest split viewers for

Dataset (merged).

1.2.3 Unimodality-based clustering

The concept of unimodality and the use of unimodality testing play an important role
in several machine learning domains, including clustering, density estimation, and
feature selection. In data analysis, uncovering structural information in the data is

crucial. For example, clustering is meaningful when a genuine cluster structure exists.

20

In this context, unimodality tests are particularly relevant [54]. A key notion here is
clusterability [54], which refers to the extent to which a dataset exhibits inherent cluster
structure. Assessment of clusterability should precede the application of clustering
algorithms, as their success relies on the presence of such a structure. If clusterability
is confirmed, the appropriate clustering algorithm can be selected. Conversely, when
no clear structure is present, the clustering results are largely arbitrary and may be
misleading, in which case clustering should not be applied.

For illustration, consider a dataset randomly generated from a single Gaussian
distribution. Since the data contains only one coherent cluster, further division is
meaningless. Nevertheless, most clustering algorithms (e.g. k-means with & > 2)
would still partition the data into multiple clusters, even though no genuine multi-
cluster structure exists. A unimodality test applied beforehand could reveal that the
dataset forms a single homogeneous cluster, indicating that clustering would not be
appropriate. Conversely, suppose that the data come from two Gaussian distributions
with widely separated means. The resulting histogram would exhibit two distinct
peaks, reflecting the presence of two clusters, and a unimodality test would correctly
detect multimodality. Thus, running a unimodality test prior to clustering provides
evidence of whether a meaningful cluster structure is present in the dataset. However,
in the case of multidimensional data, unimodality testing faces significant challenges.
Their performance becomes less predictable in high-dimensional real-world applica-
tions, and they often require reducing the data to a single dimension before the test
can be applied.

Building on these ideas, top-down (divisive) clustering methods have been de-
veloped that explicitly rely on unimodality testing to guide the partitioning process.
Such methods begin with the entire dataset treated as a single cluster and iteratively
test each existing cluster for unimodality. If the test fails for a cluster, it is split into
two subclusters, and the procedure continues until all clusters are decided as uni-
modal. Notable examples of this approach include the dip-means algorithm [55] and
its extension, the projected dip-means algorithm [56], both of which simultaneously
perform clustering and estimate the number of clusters. These methods illustrate how
unimodality-based criteria can be incorporated directly into clustering frameworks.
However, they also face important limitations: (i) testing unimodality for complex,
high-dimensional data distributions can be computationally demanding and sensitive

to noise, and (ii) clusters with arbitrary or non-convex shapes often cannot be identi-

21

fied, as they may not conform to unimodality assumptions. Despite these challenges,

they remain important methods in the literature, and we present them in detail next.

Dip-means

The dip-means algorithm [55] combines Hartigan’s dip test with the k-means frame-
work to assess cluster homogeneity through the so-called dip-dist criterion. This cri-
terion evaluates unimodality in a set of data points using only pairwise distances

3

(or similarities). The idea is as follows: for a given data point (called a “viewer”),
form a vector whose components are the distances from that viewer to all other data
points. The distribution of the values in this distance vector can then reveal infor-
mation about the underlying cluster structure. If the data points belong to a single
cluster, the distribution of distances is expected to be unimodal. In contrast, if two
well-separated clusters are present, the distribution will typically exhibit two distinct
modes, each corresponding to distances to points in one of the clusters. Applying a
unimodality test to the distance vector of a viewer therefore provides evidence about
the unimodality of the cluster. Figure 1.2 illustrates the application of the dip-dist
criterion on synthetic 2d datasets.

A key challenge arises from the dependence of the result on the choice of viewer.
Intuitively, viewers located near cluster boundaries are more likely to produce dis-
tance vectors with clearly separated modes when multiple clusters exist. To address
this issue, dip-means treats each data point as a viewer, applies the unimodality test
to every corresponding distance vector, and classifies data points that reject unimodal-
ity as “split viewers”. If the majority of viewers are identified as split viewers, the
algorithm concludes that the cluster contains multiple substructures; otherwise, it is
considered unimodal.

Dip-means operates as an incremental clustering algorithm built from three main
components. The first is a local search procedure that, given a model with k clusters,
optimizes the cluster parameters; this is implemented using k-means, where the clus-
ter centers serve as model representatives. The second and central component applies
the dip-dist criterion to determine whether a given subset of data contains evidence
of multiple cluster structures. Finally, the third component is a divisive (bisecting)
step that when a cluster is deemed multimodal, it splits into two subclusters.

The dip-means method is presented in Algorithm 1.6. Specifically, it requires

as input the dataset X along with two parameters for the dip-dist criterion: the

22

Algorithm 1.6 Dip-means
Require: X (dataset)

Require: kini¢ (initial number of clusters)

Require: « (significance level)

Require: vypg (percentage of split viewers required for cluster to be considered as a split candidate)
Ensure: score = unimodalityTest(c, o, Ugnq) returns a score value for the cluster ¢

Ensure: (C, M) = k-means(X, k) the k-means clustering

Ensure: (C, M) = k-means(X, M) the k-means clustering initialized with model M

Ensure: (u,,ur) =splitCluster(c) that splits ta cluster ¢ and returns two centers pur,, ur

1: k< kinie

2: (C, M) + k-means(X, k)

3: while changes in cluster number occur do

4 forj=1,...,k do

5: score; +— unimodalityTest(c;, a, vng) // compute the score for unimodality test
6: end for

7 if max;(score;) > 0 then

8 target <— arg max; (score;) // index of cluster to be split
9

(pr,pr) < splitCluster(ciarget)

10: M« (M — Htarget, (UL 5 14 R) // replace the old centers with the two new ones
11: (Cy, M) <+ k-means(X, M) // refine solution
12: endif

13: end while
14: return solution (C, M)

significance level a and a percentage threshold vgg, which specifies the minimum
fraction of cluster members that must be split viewers to trigger a division. The
algorithm begins from an initial partition with ki,i; > 1 clusters. At each iteration, all
current k clusters are tested for unimodality. For each cluster c;, the set of split viewers
v; is identified, and the cluster is marked as a split candidate if the proportion of split
viewers is greater than the threshold vgg. Multimodal clusters are assigned a non-
zero score, while unimodal clusters receive a score of zero. Several scoring strategies
are possible, for example, based on the fraction of split viewers or the cluster size. In
the standard formulation, the score of a split candidate c; is defined as the average
dip statistic of its split viewers:
X dip(FE) i] > g,

lejl
score; = zi€v; (1.18)

0 otherwise.
To avoid overestimating the true number of clusters, only the candidate with the
highest score is split in each iteration. Each split divides a cluster into two subclusters
using a 2-means local search, initialized with a pair of sufficiently diverse centers s,

and pr chosen from within the cluster, considering only its data points. The initial

23

centers are set as (ur,pur) < (z;pu — (z — u)), where x is a randomly selected cluster
member and p is the cluster center. In this way, 7, and pg are placed symmetrically
on opposite sides of ;1 at equal distances. The 2-means procedure can be repeated
with different initializations of p; and pp to increase the chance of finding a good
split. After each iteration, the solution is refined using k-means, which fine-tunes
the partition into k£ + 1 clusters. The procedure terminates when no further split

candidates are identified among the existing clusters.

Projected dip-means

The projected dip-means algorithm [56] (pdip-means) is an alternative to the dip-means
algorithm that replaces the dip-dist criterion with a different one, called the projected
dip, to assess cluster homogeneity. Like dip-dist, the projected dip relies on the dip
test of unimodality, but it applies the test to different one-dimensional datasets. As
previously noted, the dip-dist criterion operates on the pairwise distance matrix of
the data. This makes it broadly applicable, even in cases where the original data
objects are unavailable and only their distance matrix is provided. The pdip-means
algorithm considers one-dimensional projections of the data along several axes and
applies the dip test for unimodality on the projections.

Specifically, the projected dip (pdip) criterion to assess the homogeneity of a set
of data vectors operates as follows: A set of L one-dimensional projections is first
specified. For each projection j (j = 1,..., L), the corresponding projected values of
the data vectors are computed, forming the one-dimensional set P;. The dip test is
then applied to P;, yielding dip, and p-value;. In analogy to the dip-dist criterion,
each projection can be viewed as a “point of view”. If multimodality is observed
for several projections, the dataset is considered multimodal; otherwise, it is consid-
ered unimodal. The pdip-means algorithm supports three types of one-dimensional

projections:

1. Projections on each of the d original axes, i.e., applying the dip test to each

column of the dataset.

2. PCA-based projections, where Principal Component Analysis is used to extract

projections along each principal axis.

3. Random projections applied to randomly selected axes.

24

Algorithm 1.7 Pdip-means
Require: X (dataset)

Require: kini¢ (initial number of clusters)

Require: « (significance level)

Ensure: projections = data_projection(c) return several data projections of cluster ¢
Ensure: dip_score = unimodalityTest(d, o) returns a dip score value for the dataset d
Ensure: (C, M) = k-means(X, k) the k-means clustering

Ensure: (C, M) = k-means(X, M) the k-means clustering initialized with model M
Ensure: (u,ur) =splitCluster(c) that splits a cluster ¢ and returns two centers ur,, g
1: k< kinie

2: (C, M) + k-means(X, k)

3: while changes in cluster number occur do

4 forj=1,...,k do

5 projections; ,rj < data_projection(c;)

6: dip_score; prj < unimodality Test(projections; prj, o) // compute the score for unimodality test
7 pdip_score; < maxy,;(dip_score; prj)

8 end for

9 if max;(pdip_score;) > 0 then

10: target <— arg max; (pdip_score;) // index of cluster to be split
11: (1L, pr) < splitCluster(ctarget)

12: M — (M — puarget, L1, LR) // replace the old centers with the two new ones
13: (C, M) < k-means(X, M) // refine solution
14: end if

15: end while
16: return solution (C, M)

In summary, to assess the homogeneity of a set of real-valued data vectors using
the pdip criterion, the dip test is applied 2d +r times: once for each of the d columns
of the data matrix, once for each of the d PCA projections, and r times for random
projections. If at least one dip test indicates multimodality, the dataset is consid-
ered multimodal; otherwise, it is considered unimodal. In cases of multimodality, the
largest dip value among the projections is taken as the dataset’s multimodality score.

The detailed algorithm is presented in Alg. 1.7. Given a set of real-valued data
vectors, the projected dip-means (pdip-means) algorithm can be derived from the
original dip-means by replacing the dip-dist criterion with the projected dip (pdip)
criterion. Thus, pdip-means is an incremental clustering algorithm that begins with
a single cluster and iteratively adds new clusters through splitting based on the pdip
criterion. More specifically, the pdip criterion is applied to each cluster in the current
solution, classifying each cluster as either multimodal or unimodal. For clusters iden-
tified as multimodal, the maximum dip value (maxdip) from the dip tests is retained
as the cluster’s multimodality score. If one or more multimodal clusters exist, the

cluster with the highest multimodality score is selected and split into two subclusters.

25

The number of clusters then increases to k& + 1, and k-means with k + 1 clusters is
applied to refine the partition. These steps are repeated until all clusters are found to
be unimodal, at which point the algorithm terminates, since no further splits are war-
ranted. It is important to note that the number of clusters is automatically determined,

as also happens with the dip-means algorithm.

1.3 Deep Learning-based Clustering

Deep Learning (DL) has emerged as a powerful approach for extracting rich and
meaningful representations from large-scale data without extensive reliance on man-
ually engineered features [13, 57]. A deep neural network (DNN) is a computational
model composed of multiple layers of interconnected processing units, or neurons,
that learn hierarchical representations of data. Each layer applies a linear transforma-
tion followed by a non-linear activation function (e.g., sigmoid, tanh, ReLU), which
enables the network to capture complex and highly non-linear relationships in the
input. By stacking many such layers, DNNs progressively build more abstract and dis-
criminative feature representations, allowing them to approximate intricate functions
and achieve state-of-the-art performance in tasks such as computer vision, natural
language processing, and speech recognition. Many DNN architectures incorporate an
unsupervised learning stage, commonly referred to as unsupervised pretraining (e.g.,
autoencoders), which enables the model to capture more expressive and informa-
tive data representations. This strategy has been shown to significantly enhance the
performance of subsequent supervised or unsupervised learning tasks.

Clustering is a well-studied problem with numerous proposed approaches, which
can be generally classified as hierarchical (divisive or agglomerative), model-based
(e.g. k-means [25], mixture models [5]) and density-based (e.g. DBSCAN [58], Den-
sityPeaks [59]). However, most of those methods are effective when the data space is low
dimensional and not complex, i.e. image data. Various feature extraction and feature
transformation methods have been proposed to map the original complex data to a
simpler feature space as a prepossessing step to address those limitations. Some of
the methods include Principal Component Analysis [60], Non-negative Matrix Fac-
torization [61], Spectral methods [62], and Minimum Density Hyperplanes [63].

More recently, deep neural networks (DNNs) have been employed for cluster-

26

ing in the context of deep learning. DNNs are used to learn rich and useful data
representations from data collections without heavily relying on human-engineered
features [12]. Notably, DNNs can improve the performance of both supervised and
unsupervised learning tasks because of their excellent nonlinear mapping capability
and flexibility [13, 14]. Although clustering has not initially been the primary goal
of deep learning, several clustering methods have been proposed that exploit the
representational power of deep neural networks; thus, the deep clustering category of
methods has emerged. Such methods aim to improve the quality of clustering results
by appropriately training neural networks to transform the input data and generate
cluster-friendly representations, meaning that in the latent space the data will form

compact, and hopefully, well-separated clusters [15, 16, 17, 18, 19].

1.3.1 Deep Clustering

In this thesis, we focus on models for unsupervised learning, with particular attention
to those employed in deep clustering. Most deep clustering approaches share a com-
mon foundation: they first employ deep neural networks (DNNs) to learn meaningful
data representations, which are then used as input for the clustering process [15]. A
general deep clustering framework can be described through several key components:
(1) the neural network architecture, (2) the deep features extracted for clustering, (3)
the non-clustering loss, (4) the clustering loss, (5) the strategy for combining these
losses, and (6) the mechanism for updating cluster assignments during network train-

ing. In the following subsections, we discuss these core concepts.

Neural Network Architectures

In most deep clustering methods, a DNN is employed to transform the input data into
a latent representation that serves as the basis for clustering. Various DNN models
have been utilized in the deep clustering framework [19]. Notable examples include
Generative Adversarial Networks [4], Autoencoders [64], Graph Neural Networks [65]
and regular DNNs have been utilized by methods such as ClusterGan [1], VaDE [66]
and JULE [67]. A brief overview of these representative DNN models is provided

below.

* Multilayer Perceptron (MLP): This type of feedforward network consists of one

or more hidden layers of neurons employing non-linear activation functions. In

27

this architecture, the output of each layer is passed as input to the subsequent

layer, establishing a sequential low of information through the network [68].

Autoencoder (AE): represent a specialized class of ANNs designed for unsu-
pervised learning. They aim to extract efficient data representations without the
need for labeled data. Their primary objective is to compress input data into a
compact form while maintaining the ability to accurately reconstruct it. The core
architecture of an AE consists of three components: the encoder, the bottleneck
layer, and the decoder. The encoder progressively transforms raw input data
into a lower-dimensional, informative representation through a series of hid-
den layers that capture key patterns and features. In the middle the bottleneck
layer lies, also referred to as the latent space, which provides a condensed low-
dimensional encoding of the input, preserving its essential characteristics. This
encoding is then passed to the decoder, which incrementally expands it back to
the original dimensionality. The decoder’s hidden layers refine this reconstruc-
tion step by step, ensuring that the compressed representation is translated into
a faithful approximation of the original input. Through this encoding—decoding
process, AEs learn meaningful patterns within the data, enabling the discovery
of essential features and structures [64]. Several types of AE exist, such as de-
noising, sparse, and variational AE. In this thesis, we focus on the typical AE

model.

Convolutional Neural Network (CNN): Inspired by biological processes in
which the connectivity patterns between neurons resemble the organization of
the visual cortex, CNNs are a specialized form of multilayer perceptrons (MLPs)
designed to process data with a regular grid structure, such as images. They
are particularly effective in achieving invariance to translation, scaling, skewing,

and other distortions [69, 13]. GANs are discussed in Section 1.3.3.

Generative Adversarial Network (GAN): A GAN consists of two competing
neural networks, the generator (G) and the discriminator (D) that engage in a
zero-sum game. The main goal of GANSs is the generation of synthetic samples.
Specifically, the objective of the generator is to produce synthetic samples that
are indistinguishable from real data, while the discriminator attempts to cor-
rectly distinguish between real and generated samples. Through this adversarial

process, both networks iteratively improve, ultimately leading the generator to

28

produce samples that are nearly indistinguishable from real data [4]. GAN’s are

discussed in detail in Section 1.3.3.

Deep Features

Leveraging the architecture of a DNN, the features used for clustering of the input

data can be extracted from either a single layer or multiple layers of the network:

* Single layer: Features are obtained from a specific layer of the DNN. This
approach is often advantageous due to its lower dimensionality, which simplifies

computation and reduces complexity.

* Multiple layers: Features are derived from a combination of outputs across
several layers. This strategy produces a richer representation, enabling the em-
bedded space to capture more complex semantic information. As a result, it

may lead to improved performance in similarity computations [70].

Non-Clustering Loss

The non-clustering loss comes purely from learning a deep representation of the data
using DL methods, and it is independent of the clustering part of the procedure.

Some possible options for non-clustering losses are [15]:

* Absence of non-clustering loss: in this case, the network model is only con-
strained by the clustering loss. The absence of a non-clustering loss can result

in worse representations or even collapsing clusters [71].

e Reconstruction loss: if an autoencoder is used as DNN architecture, then the
non-clustering loss is the reconstruction loss. Usually, the reconstruction loss
is a distance measure d(z;,7;) between the input z; to the autoencoder and
the corresponding reconstruction &;. The most commonly used distance is the

Euclidean: .
Lap(y, @) =Y |lw; — &4l (1.19)

where n is the number of data, z; is the input and Z; is the autoencoder output

(reconstruction).

29

e The min-max loss: if the DNN model is a GAN architecture [4] then the non-

clustering loss function is the following;:

L(D,G) = mgin mng(D, G) = Eimpara(@) 108 D(@)] + E.p. () [log(l — D(G(2)))]
(1.20)

¢ Additional data information can be incorporated to formulate non-clustering
losses that promote the extraction of domain-specific and application-relevant

features.

Clustering Loss

Clustering loss functions guide neural networks to learn representations that are well-
suited for clustering tasks [17, 16, 15]. These functions can generally be divided into
two categories: explicit clustering losses, which directly produce cluster assignments
after training, and implicit clustering losses, which improve the quality of learned

representations but require an additional clustering step to generate the final clusters.

e Explicit Clustering Loss: Training with this type of loss enables cluster assign-
ments to be derived directly, as the loss incorporates both the cluster centers
and the clustering objective. Examples include k-means loss [72], cluster assign-
ment hardening loss [73], agglomerative clustering loss [74], cluster classification

loss [1, 75] and nonparametric maximum margin clustering [76].

¢ Implicit Clustering Loss: This type of loss encourages the network to learn
representations suitable for clustering, but it does not itself provide cluster as-
signments. Thus, an additional clustering stage is required after training. Ex-
amples include locality-preserving loss [77], which enforces the preservation of
local structures in the embedding space, and group sparsity loss [77], which

exploits block-diagonal similarity matrices for representation learning.
The following are representative examples of explicit clustering loss functions [16]:

* No clustering loss: Even when a DNN is trained solely with non-clustering
losses, the learned deep features can still be utilized for clustering after train-
ing. For instance, the network may transform the input data into a lower-

dimensional representation, effectively performing dimensionality reduction.

30

Such representations can sometimes facilitate clustering; however, incorporating

a clustering loss generally leads to superior results [73, 71].

* k-means loss: Also referred to as the clustering error, this loss encourages the
learned representations to be cluster-friendly [71]. By minimizing the clustering
error with respect to the DNN parameters, the distance between each data point
and its assigned cluster centers is reduced in the latent space, thereby improving

the quality of clustering when k-means is applied.

e Agglomerative clustering loss: Based on hierarchical clustering principles, this
loss iteratively merges the two clusters with the highest similarity (or affinity)

in the latent space until a predefined stopping criterion is reached [67].

* Pseudo-label loss: Cluster assignments generated during the update process can
be treated as pseudo-labels and used as a classification loss within an additional
network branch. This approach promotes the extraction of discriminative and

meaningful features across network layers [1, 75].

Additionally, several types of implicit clustering loss functions have been proposed,

some of them follow [16]:

* Locality-preserving loss: this loss target is to ensure the locality of the clusters
by pushing nearby data points together [77]. The mathematical formulation is

the following:

=33 staiapllfe) —)] (1.21)

i JENR(3)
where N, (i) is the set of k nearest neighbors of the data point z; in the input
space, s(z;,x;) is a similarity measure between the points z; and x;, and f(-)
is the nonlinear transformation from the input to the latent space implemented
by a DNN.

* Group sparsity loss: it is inspired by spectral clustering. In this methodol-
ogy, the block diagonal similarity matrix is exploited for representation learn-
ing [62]. Group sparsity is itself an effective feature selection method. As an
example, in [77] the hidden units were divided into G groups, where G is the

assumed number of clusters. Given a z;, the obtained representation has the

31

form {f9(x;)}S_,. Thus the loss can be defined as follows:

N G
=D A (w)] (1.22)

=1 g=1

where {\ }{_, are the weights of sparsity groups, defined as
Ag = ATy (1.23)

where n, is the group size and) is a constant.

Combining The Non-Clustering and Clustering Losses

Consider a deep clustering procedure where both a clustering loss and a non-clustering
loss are employed. An effective strategy for combining these two objectives is essential.

The most common approach adopts the following formulation:
L(0) = L,(0) + AL.(0), (1.24)

where L.(f) denotes the clustering loss, £,,(¢) denotes the non-clustering loss, and
A is a non-negative weighting parameter that balances the contribution of the two
losses. The parameter A thus serves as a hyperparameter in DNN training and may
either remain fixed or vary according to a predefined schedule. Common strategies

for setting or adjusting A during training include [16]:

* Joint training:) is assigned to a constant value so that both losses contribute

simultaneously to the training process.

¢ Variable schedule:) is dynamically adjusted according to a schedule. For ex-
ample, training may begin with a low value of A\, which is gradually increased
over successive epochs to emphasize the clustering objective more strongly as

training progresses.

¢ Pre-training and fine-tuning: Training is carried out in two stages. In the first
stage, A is set to 0, and the model is trained exclusively with the non-clustering
loss. In the second stage, A increases to a positive value, and the model is fine-
tuned using only the clustering loss. This approach leverages pre-training to
learn general representations, though relying solely on the clustering loss in the

second stage may degrade clustering performance.

32

Input Output

Encoder Decoder

Figure 1.3: General autoencoder architecture. The encoder (shown in red, left) maps
the input data to a lower-dimensional embedding space, while the decoder (shown

in blue, right) reconstructs the input data from the embeddings.

1.3.2 Autoencoder-based Clustering

The majority of deep clustering methods rely on AE training [19]. AE-based deep
clustering methodologies attempt to exploit the non-linear capabilities of the encoder
and decoder models in order to assist in latent space [71]. To achieve this goal, novel
objective functions have been proposed that integrate the typical AE reconstruction
error with a clustering loss in order to train the AE network so that in the learned
embedded space, the data will form more compact clusters (achieved through mini-
mization of a clustering objective), while at the same time retaining the information
of the original data (achieved by minimizing the AE reconstruction error).

An AE model consists of an encoder network z = fp(z) which given an input «
provides embedding z, and the decoder network z = g,(z) that provides the recon-
struction 2 given the embedding z, as shown in Fig. 1.3. In the typical AE case, given
a dataset X = {x1,..., 2y}, the parameters # and w are adjusted by minimizing the

reconstruction loss:

1 N
Lree = NZH%—ge(fw(%)ﬂP- (1.25)
=1

A straightforward approach for AE-based clustering is to first train the AE using the
reconstruction loss and then cluster the embeddings z; = f,,(z;) using any clustering
method. Thus, data projection and clustering are performed independently. However,
it has been found that the better results are obtained if the embeddings are formed

taking into account both reconstruction and clustering.

33

Therefore, AE clustering framework has emerged, where the goal is to create cluster-
friendly embeddings z;. To achieve this goal, the reconstruction loss is enhanced with

an appropriately defined clustering loss L resulting in a total loss of the form:
EAE = E'rec +)‘Ecla (126)

where the hyperparameter)\ balances the relative importance of the two objectives.
It should be noted that the minimization of the clustering loss enforces the forma-
tion of embeddings z; with small cluster variance. An easily obtained trivial solution
exists, where all data points z; are mapped to embeddings z; that are all very close
to each other (ie. the encoder is actual a constant function). To avoid this trivial
solution, the reconstruction loss is added that forces the embeddings z; to retain the
information of the original dataset. In essence, AE clustering methods strive to create
embeddings that form compact clusters while keeping the characteristics of the orig-
inal dataset. The most widely used AE-based clustering methods are summarized

next.

Deep Embedding Clustering

Inspired by the ¢-SNE [78] algorithm, the Deep Embedding Clustering (DEC) [73]
method has been proposed that optimizes both the reconstruction objective and a
clustering objective. DEC transforms the data in the embedded space using an AE
and then optimizes a clustering loss defined by the KL divergence between two dis-
tributions p;; and ¢;;: ¢;; are soft clustering assignments of the data based on the
distances in the embedded space between data points and cluster centers, and p;; is
an adjusted target distribution aiming to enhance the clustering quality by leveraging
the soft cluster assignments. More specifically, ¢;; is defined as
(L + [J2i —myl /o)~

a+1 ?

di; = _
> (L4 [z = my|[?/a) ™
where z; = f,,(x;), m; is a cluster center in the embedded space and « are the degrees
Zj/ q7;2j/fij
distribution that aims to sharpen the cluster probability assignments. Finally, DEC

(1.27)

of freedom. Furthermore, p;; = (with f;; = >, ¢;;) is the target probability

performs pretraining to minimize the reconstruction loss and subsequently excludes

the decoder part of the network, focusing solely on the clustering loss during the

34

training phase. The objective function of DEC is the following;:

n k
Lag = Lot A pylog e, (1.28)

i=1 j=1 i
Improved Deep Embedding Clustering

A modification of the DEC method is the Improved Deep Clustering with local struc-
ture preservation (IDEC) [79]. Both DEC and IDEC optimize the same objective func-
tion 1.28, but differ in the training strategy of the autoencoder. Specifically, IDEC
jointly minimizes the reconstruction and clustering losses during training, whereas
DEC discards the decoder and focuses solely on the clustering loss. From eq. 1.27
and eq. 1.28 it is clear that the above approaches aim to minimize only an inner

cluster distance loss.

Deep Clustering Network

Similar to DEC, the Deep Clustering Network (DCN) [71] jointly learns the embeddings
and the cluster assignments by directly optimizing the k-means clustering loss in the

embedded space. The optimized objective function is:

=1
where z; = f,(x;), M is a matrix containing the k cluster centers in the embedded
space, and s; is the cluster assignment vector for data point z; with only one non-
zero element. An analogous early work is AE-based data clustering (AEC) [80] which
also aims to minimize the distance between embedded data and their nearest cluster

centers.

DipEncoder

DipEncoder [81] uses a powerful statistical test in its definition of the clustering loss
function, the dip-test of unimodality [82], which introduced in Section 1.2. Note that
DipEncoder considers all cluster pairs to define the loss function and defines two
terms. Specifically, the first term aims to enforce the unimodal nature of each cluster

in the embedded space and is defined as:

Lunila,b) = = (dip(Z,) + din(Zy 5)) (1.30)

1
2
35

where a, (are two distinct clusters, Z,, # is the projected latent data values of cluster
« onto the line passing through the cluster centers (similarly for 7?4’5), and dip(-)
is the dip-value of the corresponding set. The second term of the clustering loss
is responsible for enforcing multimodality of the union of two clusters a, 8 and is
defined as:

Loii(a,b) = —dip(Z o p). (1.31)

The complete form of the DipEncoder loss function is the following;:

x>

9 -1

Laip = m

k
Z Eum’(au b) + Emulti(au b)7 (132)

a=1 f=a+1

where k is the number of clusters.

1.3.3 GANSs-based Clustering

As mentioned previously, GANs [4] are based on a min—max optimization framework
in which two networks compete in a zero-sum game. The generator (G) aims to pro-
duce synthetic data, while the discriminator (D) seeks to distinguish between real and
generated samples. GANs have achieved remarkable success in a wide range of unsu-
pervised learning tasks, and clustering, as a central unsupervised problem, naturally
benefits from their capabilities. In particular, the latent space learned by GANs not
only facilitates dimensionality reduction but also enables several novel applications.
For example, perturbations in the latent space can be used to generate adversarial
examples, which contribute to building more robust classifiers [83]. Similarly, com-
pressed sensing approaches [84] leverage GANs by identifying latent vectors that
minimize reconstruction error, while generative compression techniques [85] utilize
the latent space for efficient data compression. These properties make GANs partic-
ularly well suited as a backbone for deep clustering methods. In the following, we
first provide an overview of the general framework of GANs and then describe Clus-
terGAN [1], a methodology that extends the GAN architecture by incorporating an

additional encoder network (£).

GANs

GANs [4] aim to approximate the real data distribution by implicit sampling while

simultaneously learning a mapping from a latent space Z to the input space X. To

36

achieve this, the generator produces synthetic samples defined as « = G(z;0,), where
z is typically drawn from a prior distribution z ~ N(0,02I). The discriminator D,
acting as an adversary, attempts to distinguish real samples from those generated by
g, providing D(x;0,), which represents the probability that x is real. Specifically, the
generator’s objective is to maximize the error of the discriminator, while the discrim-
inator strives to minimize it. Training proceeds iteratively until the discriminator can
no longer reliably differentiate between real and generated samples. Formally, the

objective of GANSs is expressed as:
minmax V(D, G) = Euvpy 108 D(a)] + Eovy (o log(1 - DG()] (1.33)

where pgaa represents the distribution of real data, and p, is the prior probability
distribution of noise (usually a Gaussian distribution). Here, 2 and z are samples from
X and Z, respectively. The discriminator D outputs a real number in [0, 1] indicating
whether a sample is real (D(z) — 1) or fake (D(z) — 0) while the generator G

produces synthetic samples intended to resemble real data as closely as possible.

Training set V Discriminator

A\
PR BN
apien 7/ FUllES
=

Generator Fake image

Figure 1.4: Basic GAN architecture and operation.

Figure 1.4 shows the architecture and operation of a typical GAN. Initially, the
generator network receives a random noise vector as input and produces a synthetic
sample as output. Both real samples from the dataset and generated samples are
then fed into the discriminator network, which evaluates their authenticity. Finally,
the discriminator outputs a value in the range [0, 1], representing the probability that

the input sample is real (D(z) — 1) or fake (D(z) — 0).

37

The complete training procedure for GANs is outlined in Alg. 1.8. For the gradient-
based updates, any standard optimization method may be employed, with the Adam

optimizer [86] being the most widely used choice.

Algorithm 1.8 Minibatch stochastic gradient descent training of GANs [4].
Require: X (dataset)

Require: T, ITERATIONS (number of discriminator updates, number of iterations)
Require: G, D (generator, discriminator)

1: iteration < 1

2: while iteration < ITERATIONS do
3 t+1

4: whilet < T do
5 Sample minibatch of m noise samples {z1, ..., z,,} from noise prior p,(z).
6 Sample minibatch of m examples {z1,...,z,,} from data generating distribution pgqe ().
7 Update the discriminator by ascending its stochastic gradient:

m

1
— : 1— NE .
Vau 3 108 D) + og(1 = D(G(z0)] (1.34)
8: t+—t+1
9: end while
10: Sample minibatch of m noise samples {z1,..., 2, } from noise prior p,(z).

11: Update the generator by descending its stochastic gradient:

m

vgg% Y log(1 — D(G(2))). (1.35)

12: iteration < iteration + 1
13: end while

14: return The learned parameters 60, 0,.

ClusterGan

ClusterGAN [1] presents an adaptation of the GAN framework [4] to address the task
of data clustering. Its design integrates several key algorithmic ideas which can be

summarized as follows:

¢ Sampling prior: ClusterGAN employs a latent prior that combines discrete and
continuous variables, enabling the formation of clusters more naturally within

the latent space.

38

¢ Architecture: In addition to the generator and discriminator networks, Clus-
terGAN introduces an encoder network dedicated to clustering. The encoder
provides an inverse mapping from the data space X to the latent space Z, i.e.,
E: X = Z.

* Loss function: Training jointly involves both the GAN and the encoder, guided
by a clustering-specific loss. This ensures that the geometry of the projected

latent space reflects the distance relationships among the latent variables z.

The first step in adapting the vanilla GAN [4] to enhance clustering performance
in the latent space involves designing a more effective sampling prior distribution for
the generator. ClusterGAN [1] achieves this by employing a latent prior composed of
both discrete and continuous variables. This choice ensures that the resulting clusters
remain well separated. Specifically, the latent variable is defined as z = (z,, z.), where
2, is drawn from a multivariate Gaussian distribution (z, ~ N(0,0%I)) and z, is sam-
pled from a one-hot distribution with K elements, corresponding to the number of
clusters. To ensure that each mode generates samples exclusively from its correspond-
ing class in the original data, the standard deviation o must be chosen carefully. A
small value, such as o = 0.10, is typically used so that, with high probability, each
dimension of the normal component satisfies z, ; € (—0.6,0.6) < 1.0 for all j. Setting
o to such a small value is crucial, as it prevents overlap among the clusters in the

latent space Z of the generator, thereby maintaining their separation.

39

Algorithm 1.9 Minibatch stochastic gradient descent training of ClusterGan [1].

Require: X (dataset)

Require: T, I TERATIONS (number of discriminator updates, number of iterations)

Require: G, D, (generator, discriminator, encoder)

1:

iteration <+ 1

2: while iteration < ITERATIONS do

3:
4:
5:

10:

11:

12:

13:

t+1
while ¢t < T do

Sample minibatch of m noise samples {z("),... 2(™} from noise prior P,, where () =
(27(,1), zS)).
Sample minibatch of m examples {z(!),... (™} from data generating distribution P,.

Update the discriminator by ascending its stochastic gradient:

1 — ,
- — (@)
mZ{ +q(1 - DG(zD)))]. (1.36)
tt+1
end while
Sample minibatch of m noise samples {z() ... 2™} from noise prior P,, where (V) =
(z,(f) zg))

Update the generator by descending its stochastic gradient:

V%L(—un +BnZHZ)— G(=) ||2+/3CZH g(zg”)»). (1.37)
=1

i=1
Update the encoder by descending its stochastic gradient:

(B lez“ G(z")) H2+BCZH (200, £(G(2)))). (1.38)

iteration < iteration + 1

14: end while

ClusterGAN extends the standard GAN architecture by incorporating an addi-

tional network called Encoder. Unlike the generator and discriminator, which are part

of the vanilla GAN, the encoder is introduced specifically to enable clustering. Its

primary role is to explicitly perform an inverse mapping from the data space of the

generated samples back to the latent space, i.e., £ : X; — 2, where 2 represents the

estimated latent variables corresponding to a given data sample. This task is inher-

ently challenging because the inverse mapping problem involves navigating a highly

non-convex search space, since the generator is a neural network whose mappings

40

in the latent space Z can vary depending on initialization. By explicitly learning this
inverse mapping, the encoder addresses this challenge efficiently, enabling the model
to recover latent variables in a consistent manner. As a result, the encoder facilitates
the clustering of samples in an unsupervised classification framework.

Figure 1.5 illustrates the architecture and basic operation of ClusterGAN. The
generator takes as input the latent variable z = (z,, z.), where z. encodes the clustering
information, and produces synthetic samples z,. The discriminator receives both real
samples (z,) and generated samples (z,), outputting the probability that each sample
is real. At the same time, the encoder processes the generated samples and projects

them back into the latent space, thereby recovering the latent representation.
—
= /\

|
|
=B

L—_/

|
:—>
|

Discriminator

Encoder

Figure 1.5: ClusterGan Architecture [1].

The ClusterGan’s loss function is a combination of losses that contains the GANs’
loss that targets the data generation and the clustering loss that aims at the data

clustering;:

minmax E ¢(D(z))+ E ¢(1 —-D(G(2)))+

0g,0s 0p x~PT z~Py

Ba B 1z = €G3 + e E H(ze: £(G(2)))

(1.39)

where #(.,.) is the cross-entropy loss, which is defined as H(X) = — > p(z) log(p(x)).
The relative magnitudes of the regularization coefficients 3, and [, gnable a flexible
choice to vary the importance of preserving the discrete and continuous portions of
the latent code, where ¢(.) is the quality function, given as ¢(x) = log(x) for vanilla
GAN [4], and ¢(z) = x for Wasserstein GAN (WGAN) [87].

41

Specifically, the first two terms of the loss function (eq. 1.39) constitute the standard
GAN objective, while the last two terms introduce the clustering loss. In particular,
6%% |z, — E(G(2,))||3, acts as a regularization of the continuous portion z, of the
latentz space, which ensures the reversibility of the continuous portion of the latent
space, i.e., £ : G(z,) — z,. Additionally, the term &Z,IvEﬁ» H(z, E(G(2.))), penalizes the
discrete portion of the latent code in order to guide the ;nappings of points belonging
to the same class in X space to correspond to the same one-hot encoding when
embedded in Z space. This regularization is the most important part to succeed in
data clustering in the latent space. The complete training algorithm of ClusterGan is

presented in Alg. 1.9.

1.4 Thesis Contribution

In this thesis, we investigate the clustering problem with emphasis on three main
axes: (i) partitional clustering in both Euclidean and kernel spaces, (ii) unimodality-
based clustering, and (iii) deep clustering, which leverages the representational power
of deep learning methods. These research directions are not entirely independent, as
they share certain conceptual overlaps. For instance, kernel-based clustering primar-
ily aims to identify non-linearly separable clusters, a goal that deep clustering also
pursues through the learning of richer, non-linear low-dimensional representations.
The key distinction lies in the methodology; specifically in kernel-based clustering,
the kernel function is predefined, whereas in deep clustering, the data representation
is jointly learned during the training process. In the following, we summarize the
main contributions of this thesis.

In Chapter 2, we introduce global k-means++ [88], designed to address the clus-
ter initialization problem inherent in the standard k-means algorithm. The proposed
method integrates the incremental strategy of global k-means with the probabilistic
center selection mechanism of k-means++, thereby combining the strengths of both
approaches. This synergy enables high-quality clustering results while substantially
reducing the computational overhead typically associated with global k-means. Unlike
previous efforts that focused on enhancing the fast global k-means algorithm, which
provides a computationally cheaper approximation, our method directly improves the

original global k-means formulation. We demonstrate that global k-means++ consti-

42

tutes a compelling alternative to both global k-means and k-means++, offering clus-
tering solutions for all £ € 1,..., K. This feature makes it particularly well-suited for
model selection tasks where the number of clusters is unknown. In such scenarios,
our approach exhibits notable efficiency, surpassing even non-incremental methods
such as standard k-means and k-means++.

In a nutshell, we make the following contributions:

* We propose global k-means++, a novel clustering algorithm that combines the
incremental strategy of global k-means with the probabilistic center selection

mechanism of k-means++.

e We incorporate a hyperparameter that balances exploration and exploitation,

ensuring more effective solutions to each clustering subproblem.

¢ We directly enhance the original global k-means formulation, in contrast to prior

work that focused on approximations such as fast global k-means.

e We provide complete clustering solutions for all £ € {1,..., K}, making our
method particularly suitable for model selection tasks where the number of

clusters is unknown.

* We demonstrate through extensive experiments that global k-means++ achieves
clustering quality comparable to global k-means while substantially reducing

computational cost.

In Chapter 3, we extend the concept of global k-means++ from Euclidean to kernel
space. Specifically, we introduce global kernel k-means++ [44], an algorithm designed
to address the initialization problem inherent in kernel k-means. Similarly to the
global variants of k-means, our method incrementally solves all intermediate cluster-
ing subproblems for £ =1,..., K — 1, ultimately yielding the solution for K clusters.
The algorithm achieves an effective trade-off between the strengths of global kernel
k-means and kernel k-means++, delivering high-quality clustering at a much lower
computational cost.

In a nutshell, we make the following contributions:

* We propose global kernel k-means++, an incremental clustering algorithm that

conveys the concept of global k-means++ into the kernel space.

43

* We address the initialization sensitivity of kernel k-means by combining an

incremental strategy with probabilistic center initialization.

* We demonstrate through experiments that the global kernel k-means++ achieves

high clustering accuracy while maintaining low computational cost.

In Chapter 4, we present the Unimodality Forest method for Clustering and num-
ber of clusters Estimation (UniForCE) [89], which simultaneously performs clustering
and estimates the number of clusters k. Our approach is grounded in a novel def-
inition of locally unimodal cluster. Instead of requiring unimodality to hold over the
entire cluster density, we study unimodality at a local level, within subregions of the
cluster density. The method is motivated by the observation that unimodality often
emerges when examining the union of neighboring subclusters. These unimodal pairs
serve as the basis for aggregating smaller subclusters into larger, statistically coherent
cluster structures in a bottom-up manner. A locally unimodal cluster, therefore, spans
connected subregions of the data density that are linked through unimodal pairs in a
single connected component of a unimodality graph. This formulation is flexible, al-
lowing the discovery of arbitrarily shaped clusters, including both classical unimodal
and convex structures. We also introduce a statistical test to determine unimodal
pairs of subclusters and construct the unimodality graph, in which both clustering and
estimation of k£ are performed by the computation of the unimodality spanning for-
est. We validate both the conceptual and algorithmic strengths of UniForCE through
extensive experiments on synthetic and real-world datasets.

In a nutshell, we make the following contributions:

¢ We propose UniForCE, a clustering method that simultaneously clusters data

and estimates the number of clusters k.

¢ We introduce a novel and flexible definition of a locally unimodal cluster, based

on local unimodality in subregions of the data density.

* We design and implement a statistical procedure to test unimodality between
high-dimentional subcluster pairs, ensuring that cluster formation is principled

and data driven.

* We develop an online variant of Kruskal’s algorithm to minimize the number
of statistical tests required, improving efficiency without sacrificing clustering

accuracy.

44

* We formalize the concept of a unimodality graph and show how clustering and
number of clusters estimation can be performed by computing a unimodality

spanning forest.

* We demonstrate that UniForCE can identify complex, non-convex, and arbitrary-
shaped clusters without the need for hard-to-tune hyperparameters, offering a

practical and robust solution.

e We empirically validate the effectiveness of UniForCE in both synthetic and real

datasets, confirming its ability to deliver accurate and scalable clustering results.

In Chapter 5, we introduce the soft silhouette score [90], a generalization of the
widely used silhouette measure that accommodates probabilistic cluster assignments.
Building on this differentiable measure, we develop Deep Clustering with the Soft
Silhouette Score (DCSS), an autoencoder-based framework specifically designed to
optimize this objective [90]. Our method guides the learned latent representations
to form clusters that are both compact and well-separated. This property is crucial
in real-world applications, as simultaneously ensuring compactness and separability
guarantees that clusters are not only densely packed but also clearly distinct from
each other. We evaluate DCSS on a variety of benchmark datasets and against state-
of-the-art methods to demonstrate that it outperforms established deep clustering
approaches, highlighting the effectiveness of the soft silhouette score as a principled
objective for improving the quality of learned latent representations.

In a nutshell, we make the following contributions:

e We propose the soft silhouette score, a probabilistic and differentiable general-

ization of the traditional silhouette measure.

* We develop DCSS, an autoencoder-based deep clustering framework that di-

rectly optimizes the soft silhouette score.

* We demonstrate that our method encourages latent representations to form both

compact and well-separated clusters, a key property for reliable clustering.

* We showcase through extensive experiments on benchmark datasets that DCSS
outperforms established deep clustering approaches, underscoring the practical

value of the soft silhouette score as a natural clustering objective.

45

In Chapter 6, we present the Neural Implicit Maximum Likelihood Clustering
(NIMLO) [91], a neural-network-based approach that frames clustering as a gener-
ative task within the Implicit Maximum Likelihood Estimation (IMLE) framework.
By adapting ideas from ClusterGAN, NIMLC avoids several well-known shortcom-
ings of GAN-based clustering while maintaining a simple and stable training ob-
jective. The method performs particularly well on small datasets, with experimental
comparisons against both deep and conventional clustering algorithms underscoring
its competitive potential. A notable strength of NIMLC is its ability to capture di-
verse cluster geometries without requiring hyperparameter tuning. Experiments on
synthetic datasets show that under the same settings, NIMLC can successfully clus-
ter both cloud-shaped and ring-shaped data. Taken together, these results highlight
that incorporating generative modeling into IMLE provides a robust and versatile
foundation for neural network—based clustering.

In a nutshell, we make the following contributions:

e We propose NIMLC, a novel clustering method that frames clustering as a
generative modeling task within the Implicit Maximum Likelihood Estimation
(IMLE) framework.

e We adapt ideas from ClusterGAN to design a training procedure that avoids the
known instabilities and deficiencies of GAN-based clustering while retaining a

simple and stable objective.

¢ We show that NIMLC performs particularly well on small datasets, where many

deep clustering methods often struggle.

e We demonstrate that NIMLC can discover diverse cluster structures without the

need for hyperparameter tuning, ensuring robustness and ease of use.

* We validate NIMLC through experiments on both synthetic and real datasets,
showing its ability to effectively cluster cloud-shaped, ring-shaped, and other

complex data structures.

46

1.5 Thesis Layout

The rest of this thesis is organized as follows. In Chapter 2, we propose global k-
means++ [88], an effective relaxation of the global k-means algorithm that alleviates
the initialization sensitivity of classical k-means while producing solutions comparable
to global k-means, yet without its prohibitive computational demands. In Chapter 3,
we extend this idea to kernel space and introduce global kernel k-means++ [44], an
efficient error minimization method that leverages kernel functions to capture com-
plex nonlinear cluster structures. In Chapter 4, we present UniForCE [89], a novel
unimodality-based clustering framework that introduces the new concept of locally
unimodal clusters. UniForCE not only detects complex cluster structures, but also
automatically estimates the number of clusters, requires no difficult hyperparameter
tuning, and achieves these results while maintaining statistical rigor and scalabil-
ity. In Chapter 5, we introduce the soft silhouette score [90], a probabilistic and
differentiable generalization of the traditional silhouette measure. Building on this
formulation, we develop an autoencoder-based deep clustering optimization proce-
dure that maximizes the soft silhouette score, thereby guiding the learning of latent
representations that produce compact and well-separated clusters. In Chapter 6, we
introduce NIMLC [91], a neural network-based clustering framework that utilizes
implicit maximum likelihood estimation and delivers promising clustering results.
Finally, Chapter 7 provides concluding remarks, summarizing the main contributions

of this work and outlining directions for future research.

47

CHAPTER 2

THE GLOBAL k-MEANS++ ALGORITHM

2.1 Introduction

2.2 Global k-means++

2.3 Empirical Evaluation
2.4 Discussion

2.5 Summary

2.1 Introduction

The k-means algorithm is highly sensitive to the initialization of cluster centers. As
discussed in Chapter 1, Section 1.1, several variants of k-means have been proposed to
address this issue. Among them, global k-means stands out for its strong optimiza-
tion capabilities. However, as previously noted, its main limitation lies in its high
computational cost.

In this Chapter [88], we propose the global k-means++ clustering algorithm, which
is an effective way of acquiring clustering solutions of comparable clustering errors
to those that global k-means produces without its high computational cost. This is
achieved by employing the effective center selection probability distribution of the
k-means++ method. The global k-means++ algorithm is an attempt to retain the effec-
tiveness of the incremental clustering strategy of the global k-means while reducing
its computational demand using the efficient stochastic center initialization of the

k-means++ algorithm.

48

The proposed algorithm proceeds incrementally by solving all intermediate sub-
problems with k& € {1,2,..., K — 1} to provide the clustering solution for K clusters.
The underlying idea of the proposed method is that an optimal solution for a cluster-
ing problem with K clusters can be obtained using a series of local k-means searches
that are appropriately initialized. More specifically, at each local search, the k — 1
cluster centers are always initially placed at their optimal positions corresponding to
the clustering problem with k — 1 clusters. However, the remaining ky, cluster center
is placed at several starting positions within the data space that are randomly selected
by sampling from the k-means++ probability distribution.

To evaluate the effectiveness of the proposed approach, an extensive series of ex-
periments was conducted on a variety of benchmark datasets. The objective was to
assess the clustering quality, robustness, and scalability of the method in comparison
to well-established algorithms. Specifically, we benchmarked our approach against
classical clustering techniques such as the standard k-means algorithm, k-means++,
fast global k-means, and global k-means. These comparisons allowed us to highlight
the strengths and limitations of each algorithm under different conditions, such as
varying numbers of clusters, dataset complexity, number of data points, and dimen-
sions. Quantitative evaluations were complemented with visualizations to provide
further insight into the structure of the resulting clusters.

The rest of this Chapter is organized as follows. In Section 2.2, we present the
proposed global k-means++ clustering algorithm. In Section 2.3, we provide extensive
comparative experimental results. In Section 2.4 we discuss some key findings derived

from the experimental results. Finally, in Section 2.5 summarizes the Chapter.

2.2 Global k-means++

Global k-means is a deterministic algorithm proposed to tackle the random initializa-
tion problem but it is computationally expensive. It partitions the data to K clusters
by solving all & cluster sub-problems sequentially £ € {1,..., K}. In order to solve
the k clustering sub-problem, the method employs a strategy wherein the k-means
algorithm is executed N times. Each algorithmic cycle considers all N data points as
potential candidate positions for the new cluster center. This comprehensive explo-

ration of candidate positions aims to identify the optimal center placement for the

49

new cluster center and drastically improves the clustering performance.

An approach to reduce the complexity of the global k-means algorithm is to
consider a set of L data points as candidate positions for the new cluster center,
where L < N. However, an effective candidate center selection strategy is required.
Employing a random uniform selection method for the L candidates is not expected
to be a viable choice. An ideal candidate selection method should meet the following

requirements:
Efficiency requirements

i. Low computational complexity.

ii. Low space complexity.
Effectiveness requirement
i. Selection of a set of high-quality center candidates.

We consider as “high-quality” a set of centers assigned to separate data regions.
In order to select such center candidates, prioritizing sampling from regions without
cluster centers is crucial. Such strategy enhances the likelihood of choosing candidates
that belong to different clusters while minimizing the risk of selecting redundant
or sub-optimal center positions. For this reason, we have employed the k-means++
probability distribution as the candidate selection method. The effectiveness of this
distribution in the initial placement of cluster centers makes it an excellent choice for
addressing the aforementioned requirements.

In this Chapter, we propose the global k-means++ algorithm, an effective relaxation
of the global k-means method. Its main difference with the global k-means is that
the proposed method requires only L executions of k-means for each £ cluster sub-
problem, where I < N. The primary goal of our proposed clustering method is
to provide high-quality results that are comparable to those of the global k-means
algorithm, while retaining low computational and space complexity. The complete
global k-means++ method is presented in Alg. 2.1. As with any other global k-means
variant, in order to reduce the computational requirements, we sacrifice determinism
by using an effective stochastic initial center selection procedure.

The algorithm requires as input the dataset X, the number of clusters K, the

number of candidates L to consider, as well as the sampling method S. Two possible

50

Algorithm 2.1 Global k-means++

Require: X = {z1,...,zn}: Dataset

Require: K: Number of clusters
Require: L: Number of candidates

Require: S € {Batch, Sequential}: Sampling method

1: p1 ﬁ St omyy My o+ {p} // Optimal initialization for k = 1
T, €X
2: D« (|Jlor — %, llon — pa]|?) // Distance vector

3: fork=2,...,K do

4 if S = Batch then

5: {c1,...,cr} < Batch Sampling(X, My_1, L, D)

6: else

7: {c1,...,cL} + Sequential Sampling(X, My_1,L, D)
8
9

end if

for all ¢, € {c1,...,cL} do
10: {(C;f), M,ié), E(Cg)))} + Run k-means with initial k centers positions My_1 U {c,}
11: end for

12: (Ck, My) < Solution with the minimum error E‘(C,:M)) among the L solutions {(C,g), M,EZ), E(C,(f)))}, £=1,...,L
13: for all x; € X do

14: D[i] + min ||lz; — p;||? // Pre-computed distances in step 12
j €My,

15: end for

16: end for

17: return solutions (Cy, My) for every k € {1,..., K}

Algorithm 2.2 Batch Sampling

Require: X = {z1,...,xn}: Dataset

Require: M': Set of cluster centers
Require: L: Number of candidates

Require: D: Distance vector
N

1: Compute the probability vector P = (p1,...,pn). where p; = Pr(my = x;) = di/ Z d;
j=1

2: {c1,...,cL} + Sample without replacement L center candidates from dataset X by k-means++ probability vector P

3: return Set of initial center candidates {c1,...,cr}

sampling strategies are considered, namely, batch sampling and sequential sampling. It
should be noted that D = (di,...,dy) represents the distance vector, where d; is the
distance of z; to its closest center m; (eq. 1.5).

Specifically, to solve a clustering problem with K clusters, the method proceeds
as follows. Initially, it addresses the 1-means sub-problem by setting the center 1, as
the mean of the entire dataset X and it initializes the distance vector D (steps 1-2 in
Alg. 2.1). Then, to solve the 2-means sub-problem, it utilizes the 1-means solution as
the first initial center position (obtained in step 1). To initialize the second center, a set
of L candidate positions {cy,...,c.} is sampled using batch or sequential sampling
(steps 4-8 in Alg. 2.1). The k-means algorithm is executed L times until convergence,

one for each candidate position ¢, (steps 9-11 in Alg. 2.1), and the solution with

51

Algorithm 2.3 Sequential Sampling

Require: X = {z1,...,zn}: Dataset
Require: M: Set of cluster centers
Require: L: Number of candidates
Require: D: Distance vector

1: for¢=1,...,L do

N
2: Compute the probability vector P = (p1,...,pn), where p; = Pr(rp = z;) = di/ Z d;
j=1

3: {c1,...,co—1}U{er} < Sample without replacement one ¢, center candidate from dataset X by k-means++ probability
vector P

4 for all z; € X do

5: d <_7‘]‘EIWL1JT{1(i:r11 ,,,,, cl}llxi — 2

6 end for

7: end for

8:

9: return Set of initial center candidates {c1,...,cp}

the minimum error is retained (step 12 in Alg. 2.1). Finally, the distance vector D
is updated (steps 13-15 in Alg. 2.1), using the pre-computed center-to-data point
distances of the best clustering solution. Following the same reasoning, for each
kE = 2,..., K, it incrementally tackles the k cluster sub-problem by leveraging the
solution of the previous (k — 1) cluster sub-problem. To solve for k clusters, it utilizes
the center positions obtained from the (k—1) sub-problem as initialization for the k—1
centers. It then uses batch or sequential sampling strategies, which we discuss next,
to initialize the new kg, center. Finally, the algorithm returns the clustering solution
for every k € {1,..., K}. Importantly, it should be noted that steps 9-11 of Alg. 2.1
can be executed concurrently or in parallel. This parallel execution allows for efficient
computation and optimization.

We can sample candidates from the probability distribution P through either
batch or sequential sampling, presented in Alg. 2.2 and Alg. 2.3, respectively. On
the one hand, batch sampling does not require any additional computations as it
utilizes only the pre-computed center-to-data point distances D = (dy,...,dy). First,
it computes the probability vector P = (pi,...,pn), Where p; represents the selection
probability of the data point x; (step 1 in Alg. 2.2). The distribution P is formulated
so that high selection probabilities are assigned to data points far from cluster centers,
and small to near zero are assigned to data points near cluster centers. Then, a set
of L candidates {c;,...,c.} are sampled without replacement by the constructed k-
means++ probability vector P (step 2 in Alg. 2.2).

On the other hand, sequential sampling strategy selects one candidate ¢, at a time

52

using the distribution P (step 3 in Alg. 2.3). This procedure aims to select candidates
that are far from: i) the set M consisting of the converged solutions of the k—1 centers,
and ii) the ¢ —1 candidates that already sampled. After each sampling the distance d;
of each data point x; is updated accordingly (steps 4-6 in Alg. 2.3). This procedure
is repeated the L times in total to create the set of candidates {ci,...,c.} (steps 1-7 in
Alg. 2.3). Although the sequential sampling method incurs the cost of recalculating

the minimum distance values, it provides a better spread of the L samples in the

dataspace.
® Datapoint . @ Datapoint .
Y Center A~ Y Y Center ¥
4p Candidate ""“." 4 Candidate :”3?‘ +*
G gﬁ
* S *
e
L e Ay $ %
Aﬁh & '.-;-;‘:
& *
!{} :i%
g +
i *:
(a) 1-means sub-problem. (b) 6-means sub-problem.
® Datapoint . ® Datapoint N
* * &
Yo & o) &
* *
&
* U %
g B
- ' . o b B e
BRI X . *.
.#-. o5 ".4} X
ey e
* ' *
y * X
+ % o
(c) 12-means sub-problem. (d) 15-means sub-problem.

Figure 2.1: Illustration of a running instance of the algorithm applied to the “R15”
dataset [2]. Circles denote the data points, the cluster centers are represented by red

stars, while the center candidates are marked with green crosses.

In Figure 2.1, we present an illustration of a running example of the algorithm

53

using the 2-dimensional “R15” dataset [2].! The circles denote the data points, while
their color indicates the cluster category that they belong to, asserted by the global
k-means++ algorithm. With the red star, we represent the converged cluster centers
for each clustering sub-problem %, while with the green cross-symbols, we show the
initial candidate position of the next cluster center. In each sub-figure 2.1a-2.1d, the
algorithm solves the current k-means sub-problem. Based on the current solution,
the algorithm samples the next center candidates from the k-means++ distribution.
The figure demonstrates that the method samples high-quality center candidates.
While the global k-means requires O(NK) k-means executions, the global k-
means++ only requires O(LK), where generally L < N. Additionally, we have em-
pirically observed that k-means converges very fast as £ grows. The speed up in
convergence is reasonable, since in order to solve each £ cluster sub-problem, the
method exploits the centers of k — 1 cluster sub-problem that are already positioned
sufficiently well. Therefore, the k-means does not require many iterations to converge.
It should be noted that the proposed method is a relaxation of the global k-means
algorithm rather than an optimization of the FGKM similar to the methods discussed
in the Chapter 1 in Section 1.1. Its simplicity and speed stem from the fact that the
sampling strategies require none to minimal computations to select the L candidates,
demonstrating superior computational complexity compared to other global k-means
variants. In particular, the batch sampling strategy requires no additional distance
computations since the center-to-data point distances necessary to define the proba-
bility vector P have already been computed by the k-means procedure. Meanwhile,
the sequential sampling strategy requires only O(NL) distance computations for the
selection process, which is the same as k-means++. Note also that solving the k-means
problem with an incremental procedure has many advantages because, due to the un-
supervised nature of the clustering problem, it is usually desirable to obtain solutions
for different k that are evaluated using appropriate quality criteria (e.g. silhouette

coefficient [92]) for selecting the appropriate number of clusters [93].

'The synthetic dataset is available in the following GitHub repository:

https://github.com/deric/clustering-benchmark.git.

o4

https://github.com/deric/clustering-benchmark.git

2.3 Empirical Evaluation

In this Section, we present our experimental study to evaluate the effectiveness of the
proposed global k-means++ clustering method, both in batch (gl++ (b)) and sequential
sampling (gl++ (s)) settings. Our study involved comparisons against other clustering
methods, including global k-means (gl) [3], FGKM (fgl) [3], k-means++ (k-ms++) [29],
scalable k-means++ (k-ms| |) [94] and standard k-means with random uniform initial-
ization (rnd) [26].2 Our implementation of the global k-means++ clustering algorithm
is available in the following GitHub repository: https://github.com/gvardakas/global-
kmeans-pp.git.

Table 2.1: Descriptions of datasets.

Dataset Type Description N D Source
Breast Tabular Characteristics of breast cancer tumors 569 30 [95]
MNIST Image Handwritten digits 60000 784 [96]
Pendigits Tabular Handwritten digits 7494 16 [95]
Wine Tabular Chemical analysis of wines 178 13 [95]

2.3.1 Datasets

In order to evaluate the proposed algorithm, a series of experiments have been con-
ducted on various benchmark and publicly available datasets. Moreover, we delib-
erately selected datasets that exhibited a broad spectrum of data characteristics, en-
compassing factors such as the number of samples NV and the data dimensionality D,
the complexity, and the domain of origin. The description each dataset is presented
in table 2.1. As a pre-processing step, we used min-max normalization to map the
attributes of each real dataset to the [0, 1] interval to prevent attributes with large
ranges from dominating the distance calculations and avoid numerical instabilities in

the computations [97].

2Experiments were carried on a machine with an Intel® Core™ i7-8700 CPU at 3.20 GHz and 16 GB

of RAM.
2The time constraint is set to 7 days of execution while the available memory is 16 GB of RAM.
3The time constraint is set to 7 days of execution while the available memory is 16 GB of RAM.

55

https://github.com/gvardakas/global-kmeans-pp.git
https://github.com/gvardakas/global-kmeans-pp.git

= = global k-means

= global k-means+ + (batch)
= global k-means+ + (sequential) |/
- fast global k-means
= k-means++

——— scalable k-means++
—— random

= = global k-means

= global k-means+ + (batch)
= global k-means+ + (sequential)
- fast global k-means

= k-means++

=~ scalable k-means++

=—— random

«
«

£
=

w
w

N

Percentage Error (%)
N

Percentage Error (%)

,_.
-

o

5 4 5 6 7 8 9 1o 11 12 13 18 15 15 17 13 1o 20 21 22 23 24 25 25 27 28 28 X

Number k of Centroids Number k of Centroids

o

(a) L = 10. (b) L = 25.

= = global k-means

= global k-means+ + (batch)
= global k-means+ + (sequential)
- fast global k-means

= k-means++

——— scalable k-means++

= random

= = global k-means

= global k-means+ + (batch)
= global k-means+ + (sequential)
- fast global k-means
= k-means++

= scalable k-means++
= random

«
w

>
>

w

N

Percentage Error (%)
N w

Percentage Error (%)

,_.
-

o

5 4 5 6 7 8 9 1o 11 12 15 18 15 1s 17 1 1o 20 21 22 23 24 25 25 27 28 28 X 5 4 s 6 7 8 9 1o 11 12 13 18 15 1s 17 13 15 20 21 22 23 24 25 25 27 28 23 X

Number & of Centroids Number & of Centroids

(¢) L = 50. (d) L = 100.

Figure 2.2: Relative Percentage Error for the Breast, for different L values.

2.3.2 Evaluation

The evaluation of clustering methods encompasses various approaches, including
internal and external metrics when the ground truth cluster labels are available.
However, our investigation focuses solely on treating it as an optimization problem,
with the primary objective being the minimization of clustering error. Consequently,
we intentionally disregard any class labels in the data, as our emphasis lies not on
assessing external clustering metrics or determining the number of clusters. Instead,
we focus on clustering error E(Cj) (eq. 1.1) as the performance measure for the
different methods, enabling direct assessment of their error minimization capabilities.

Specifically, in order to evaluate the performance of the different methods, we have
computed the relative Percentage Error, defined as

_ E(CGy) - E(CE

)
PE = 500 x 100%, (2.1)

where E(C}) is the clustering error of the baseline method (global k-means), while
E(Cy) is the error provided by each of the compared methods (refer to Fig. 2.2,
2.3 and 2.4). Considering the MNIST dataset, the global k-means did not terminate
in reasonable time due to its high computational complexity. In that case, we have

used the difference in clustering errors, relative to the best-performing algorithm

56

1Y
= = global k-means = = global k-means
= global k-means+ + (batch) = global k-means+ + (batch)
A |— global k-means+ + (sequential) H|— global k-means+ + (sequential)
& [|=— fast global k-means & [|=— fast global k-means
§ N k-means++ § S| k-means+ +
i} ~— scalable k-means++ i} ~— scalable k-means++
] —— random [} —— random
o o
£ £
€2 €2
o o
=4 =4
o o
a a
1 1
0 ., —— e T _ ¥ 0
34 5 6 7 6 9 1011121314 15 15 17 16 13 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 35 36 37 36 39 40 4142 43 44 45 46 47 45 49 5 3 4 5 6 7 6 9 1011121314 15 15 17 16 13 20 21 22 23 24 25 26 27 25 29 30 31 32 33 34 35 36 37 36 39 40 4142 43 44 45 46 47 45 49 5
Number k of Centroids Number & of Centroids
5 5
= = global k-means = = global k-means
= global k-means+ + (batch) = global k-means+ + (batch)
A |— global k-means+ + (sequential) H | — global k-means+ + (sequential)
& [|=— fast global k-means & [|=— fast global k-means
§ S| k-means++ é S| k-means+ +
i} —— scalable k-means++ i} —— scalable k-means++
] = random [= random
o o
£ £
€2 €2
o o
=4 2
o o
a a
1 1
0 A\ o
34 5 6 7 5 5 101112131415 16 17 10 15 20 2122 73 24 35 26 27 28 79 30 31 32 33 34 35 30 37 38 39 40 41 42 43 44 45 46 47 4B 43 5 34 5 6 7 5 5 1011121311516 17 10 15 20 21 22 23 24 35 26 27 28 29 30 31 32 33 34 35 30 37 39 39 40 41 42 43 44 45 46 47 4B 43 5

Number & of Centroids Number & of Centroids

(¢) L = 50. (d) L = 100.

Figure 2.3: Relative Percentage Error for the Pendigits, for different L values.

to facilitate a transparent comparison (see Fig. 2.5). Additionally, we studied the
convergence speed of each method for each k£ by presenting the CPU time required by
each algorithm (Table 2.2) and the average number of iterations needed for k-means
to converge (Fig. 2.6). In this way, we provide comprehensive information regarding
each method’s ability to minimize clustering error as well as its computational speed

and efficiency.

2.3.3 Experimental Setup

In our experimental study, we executed the compared methods for a maximum num-
ber of clusters, denoted as K and evaluated all clustering solutions for £ € {1,..., K}
in terms of clustering error. We chose the maximum number of clusters K based on
the dataset size, with K = 30 for smaller datasets (Breast and Wine) and K = 50 for
medium (Pendigits) and larger datasets (MNIST). For each dataset, we run the com-
pared algorithms with L values of 10, 25, 50, and 100. This range of values allowed
us to evaluate the impact of L on the performance of the clustering methods.

In the case of the randomly initialized methods, namely k-means++, scalable k-

means++ and standard k-means, we have defined the parameter L to represent the

57

10

= = global k-means
—— global k-means++ (batch)
= global k-means++ (sequential)
- fast global k-means
6| |=== k-means++

—— scalable k-means++

= = global k-means

=~ global k-means++ (batch)
= global k-means++ (sequential)
- fast global k-means

6| |=== k-means++

—— scalable k-means++

Percentage Error (%)
Percentage Error (%)

34 5 6 7 8 5 10 11 12 15 18 15 15 17 18 15 20 21 22 23 28 25 26 27 28 25 5 34 5 6 7 8 8 1o 1 1z 15 18 15 15 17 18 15 20 21 22 23 28 25 26 27 28 29 3

Number of Centroids Number of Centroids

(a) L = 10. (b) L = 25.

= = global k-means { = = global k-means

= global k-means++ (batch) g = global k-means++ (batch)

= global k-means++ (sequential) I

- fast global k-means y

6| |== k-means++ ,
—— scalable k-means++ A

= random

= global k-means++ (sequential)
- fast global k-means

6| == k-means++

= random

Percentage Error (%)
Percentage Error (%)

3 4 5 6 7 8 5 10 1 12 15 14 15 15 17 18 15 20 21 22 23 24 25 26 27 28 29 34 5 6 7 5 8 1o 1 12 15 18 15 15 17 18 15 20 21 22 23 24 25 26 27 28 29

Number of Centroids Number of Centroids

(¢) L = 50. (d) L = 100.

Figure 2.4: Relative Percentage Error for the Wine, for different L values.

number of restarts within each sub-problem k. However, the scalable k-means++
method has an additional hyperparameter [/, which denotes the number of data points
sampled in each iteration that we set equal to L. In contrast, for the incremental op-
timization methods of global k-means++ and FGKM, only a single execution was
performed, considering L candidates. We implemented this approach to ensure a
fair comparison with the randomly initialized methods, which do not utilize prior
sub-problem solutions in their optimization procedure. It is worth noting that the
FGKM [3], as presented in Chapter 1 and Section 1.1, originally considers only one
candidate (eq. 1.8). However, in our study, we relaxed this limitation by allowing the
method to select the top L candidates in each iteration that maximize eq. 1.7. In the
following experiments, we evaluate the optimization capabilities of each method, the
average number of iterations required, as well as the time needed for convergence
to the clustering solution. In summary for each dataset, we conducted the following

experiments:

e We selected K = 30 or K = 50 as the maximum number of clusters depending

on the size of the dataset.

¢ We executed one run of global k-means, global k-means++, and FGKM. For the

58

3000

3000

T x
e global k-means+ + (batch) e global k-means++ (batch)
5 2500]| ©® global k-means+ + (sequential) 5 2500{| ® global k-means+ + (sequential)
u:) ® k-means++ :1:) ® k-means++
o e random o e random
£ 2000 £ 2000
I I
£ £
E] E]
5 1500 5 1500
£ £
8 1000 8 1000
c =
o o
Q Q
£ s00 £ s00
a a
0 s : 0 o
2345067 691011121314 151617 151920212223 24 75 2627 2629 30 31 3233 34 35 3637 38 39 40414243 4445 4647 4843 50 2345067 691011121314 151617 151920212223 24 25 2627 2529 30 31 3233 34 35 3637 38 39 40414243 4445 4647 4843 50
Number % of Centroids Number & of Centroids
3000 3000
e global k-means+ + (batch) e global k-means++ (batch)
5 2500 e global k-means+ + (sequential) 5 2500 e global k-means+ + (sequential)
ut) ® k-means++ ‘u‘:) ® k-means++
o e random o e random
.E 2000 £ 2000
I I
£ £
E] E]
5 1500 5 1500
£ £
& 1000 & 1000
< =4
o o
Q Q
£ s00 £ s00
a a
0 — 0
754567 6 91011121314151617 151920212223 24 75 2627 2629 30 31 3233 34 35 3637 38 39 40414243 4445 4647 4843 50 734567 6 91011121314 151617 151920212223 24 75 2627 2529 30 31 32 33 34 35 3637 38 39 40414243 4445 4647 4843 50
Number & of Centroids Number & of Centroids

Figure 2.5: Clustering Error Differences for the MNIST, for different L values.

two latter methods, we considered L equal to 10, 25, 50 and 100 candidates in

each k cluster sub-problem.

e The k-means++, scalable k-means++ and standard k-means methods were ini-

tialized L times for each k£ =1,..., K.

2.3.4 Results

Figures 2.2, 2.3, and 2.4 depict the relative percentage error between each method and
the baseline algorithm, for the respective datasets: Breast, Pendigits, and Wine. How-
ever, in the case of the MNIST dataset, Figure 2.5 displays the difference in clustering
error between each method and the best-performing algorithm. In the subfigures a,
b, ¢, and d, we present the results of experiments considering different indicative
values of L (i.e., 10, 25, 50, and 100) for the global k-means variants, k-means++,
scalable k-means++, and the standard k-means algorithm. Moreover, Figure 2.6 pro-
vides the average number of iterations required by each algorithm to converge, while
Table 2.2 presents the CPU time necessary to compute all K clustering solutions for
each algorithm.

The results across all datasets demonstrate that both the batch and sequential

59

y - = =<
= global k-means = global k-means+ + (batch)
= global k-means+ + (sequential)
— k-means+ +

= random

20.0

,_.
=
S

= global k-means+ + (batch)

= global k-means+ + (sequential)
- fast global k-means

15.0{(—— k-means++

= scalable k-means++

= random

-
~
o

I}
S

,_.

]

o
-
o
3

,_.

o

°
@
3

o
3

~
&
Average k-means iterations

Average k-means iterations

o
o
IS
S

T5 5 6§ 7 8 5 b T L5 1B T 1 1 B 2 A 2 5 2 25 2 27 2 2 3 234 56 7 8 9101112131415 1517 16 10 20 71 72 25 74 25 76 27 76 79 30 31 32 33 34 35 3 37 36 39 40 4142 43 44 45 46 47 48 49 5
Number k of Centroids Number k of Centroids

(a) Breast. (b) MNIST.

= global k-means

= global k-means+ + (batch)

- global k-means+ + (sequential)
fast global k-means

—— k-means++

g — scalable k-means++

= global k-means

= global k-means+ + (batch)

= global k-means+ + (sequential)
fast global k-means

—— k-means++

= scalable k-means++

w
&

w
S

N
&

N
S

Average k-means iterations
Average k-means iterations

235 56 7 6 5101112131415 1617 16 1920 71 22 75 74 25 76 77 76 70 30 31 32 33 34 35 36 37 36 39 40 4142 43 44 45 46 47 48 45 5 IR R R R R
Number k of Centroids Number & of Centroids

(c) Pendigits. (d) Wine.

Figure 2.6: Average number of k-means iterations.

versions of global k-means++ exhibit similar performance to global k-means, while
clearly outperforming the FGKM, k-means++, scalable k-means++ and the standard
k-means algorithm. The optimization capabilities of global k-means++ are particularly
noteworthy, especially as k increases, where minimizing the clustering error becomes
more challenging. As expected, the performance of global k-means++ improves with
an increasing number of candidates, better approximating the performance of global
k-means. Surprisingly, in the Wine dataset, global k-means++ outperformed global
k-means in several k sub-problems (Fig. 2.4b-2.4d). The relative percentage error of
global k-means++ was less than 1% when considering more than L = 25 candidates.
In the Pendigits dataset 2.3, the baseline model and our algorithm coincide with high
accuracy for L = 25,50, 100. Notably, global k-means required four days of execution,
while global £-means++ completed the task in significantly less time, ranging from 17
second up to almost 2 minutes, depending on the value of L. This indicates that we
achieved comparable results in a fraction of the time. Last but not least, in the case
of the MNIST dataset 2.5, when we consider L = 25 candidates or more, the global
k-means++ consistently outperforms the other methods.

It should be noted that in the Wine dataset (2.4d), the FGKM algorithm with

L =100 candidates demonstrated promising results. However, its performance across

60

Table 2.2: CPU Time. Values marked by { and I denote that the method could not

be executed due to memory/time and method constraints, respectively.®

Dataset L gl gl++ (b) gl++ (s) fgl k-ms++ k-ms]| rnd
10 0.48s 0.64s 0.88s 1.57s 5.03s 1.18s
25 1.30s 1.52s 1.80s 4.10s 19.30s 3.04s
Breast 32.67s
50 2.55s 3.12s 3.40s 8.06s 1.10m 6.40s
100 5.46s 5.86s 6.21s 15.03s 3.91m 12.31s
10 8.35m 9.4m 29.81m 15.5m
25 25.58m 30.23m 1.77h 39.73m
MNIST T T T
50 49.5m 57.25m 3.68h 1.39h
100 1.58h 1.81h 6.7h 2.70h
10 17.50s 24.70s 45.73s 1.00m 41.18s 7.30s
25 27.60s 41.57s 53.06s 2.51im 3.63m 19.15s
Pendigits 4d
50 43.18s 1.04m 1.13m 4.98m 13.88m 38.17s
100 1.15m 1.78m 1.88m 10.00m 57.73m 1.23m
10 0.32s 0.40s 0.36s 1.10s 3.09s 0.49s
25 0.76s 0.95s 0.84s 2.77s 8.72s 1.21s
Wine 5.40s
50 1.51s 1.90s 1.66s 5.47s 22.13s 2.46s
100 3.06s 3.81s 3.24s 10.77s 1 5.10s

all datasets was inconsistent. It is evident that the FGKM algorithm cannot reliably
approximate the clustering solution achieved by the global k-means algorithm. Even
with an increasing number of candidates, the clustering solution provided by the
FGKM significantly deviates from the quality attained by the global k-means++.

As expected, the k-means++ algorithm was successful for small values of £ across
all datasets. However, it becomes apparent that as k increases, the performance of the
k-means++ algorithm deteriorates compared to global k-means and global k-means++.
This is because the k-means problem becomes more challenging when it comes to
selecting the initial center positions as k raises. Additionally, scalable k-means++ had
inferior performance compare to k-means++ in most cases and especially when £ is
large. As expected, the standard k-means with the random uniform selection yielded
the worst results.

Figure 2.6 presents the average number of k-means iterations performed by each
method in all datasets and k sub-problems. It becomes evident that as k increases,
the incremental methods require fewer iterations in each run of k-means due to

improved initialization of the cluster centers. This advantage arises from the fact that

61

the previous k — 1 centers have already been positioned in near-optimal solutions. It
should be reminded that for each cluster number &, the number of executed k-means
runs is O(Lk) for all compared methods, except for global k-means which executes
k-means O(Nk) times. This means that even if global k-means tends to execute a
smaller average number of k-means iterations compared to k-means++, this does not
translate to faster execution times. Table 2.2 presents the CPU time required by each
algorithm to compute all K clustering solutions. It turns out that if we want to find
all k cluster solutions from £ = 2 until a cluster number K, global k-means++ is the

faster approach.

2.4 Discussion

From the above experimental results, the following empirical conclusions can be
drawn.

The Global k-means incremental method exhibits powerful optimization capabili-
ties. However, due to its big computational requirements, it is often applied to smaller
datasets. As shown in the experimental results, even for a medium size dataset like
Pendigits global k-means required very large execution time. Nevertheless, it is a
very powerful extension of k-means and has been widely used in the clustering lit-
erature [98]. It should be noted that the algorithm provides high quality solutions,
however, it does not guarantee the discovery of the global optimum. As we have
analyzed in the introduction, minimization of clustering is known to be a NP-hard
problem. We have observed such a case in the Wine dataset where the global k-mean
did not yield the best results.

FGKM constitutes a natural fast variant of the global k-means method which, in
order to initialize the new cluster center, it selects the data point z;» that minimizes an
upper bound of the final k-means clustering error. We should recall that we allowed
the FGKM method to select the top L candidates that maximize the eq. 1.8 instead of
just one as originally proposed. However, this candidate selection heuristic performs
poorly even compared to the random initialization method. This suggests, that while
FGKM is intuitively justified, it does not constitute a very effective strategy.

The k-means++ algorithm is considered as the state-of-the-art random initializa-

tion algorithm for solving the k-means clustering problem due to strong empirical per-

62

formance, theoretical guarantees of the solution quality, and simplicity [99, 100]. As
expected, it demonstrated good performance and generally surpassed most methods,
including the FGKM, the scalable k-means++, and of course k-means with random
initialization. However, global k-means and global k-means++ had better performance
overall, and this becomes more apparent as k gets larger.

The proposed Global k-means++ produced very satisfactory results. It demon-
strates similar performance to the global k-means with a large reduction in compu-
tational complexity. Its candidate selection method chooses excellent candidates, as
it is inspired by the successful k-means++ seeding strategy. Moreover, it provides the
clustering solution for all intermediate values of k. Therefore, if we wish to obtain
clustering solutions for different £, its time performance is even more impressive com-
pared to the rest of the random initialization methods, which have to be executed

separately for each k.

2.5 Summary

In this Chapter, we introduced the global k-means++ clustering algorithm, which is an
effective relaxation of the global k-means algorithm that provides an ideal compromise
between clustering error and execution speed. The basic idea of the proposed method
is to take advantage of the superior clustering solutions that the global k-means
algorithm can provide while avoiding its substantial computational requirements.
The global k-means++ is an incremental clustering approach that dynamically adds
one cluster center at each k cluster sub-problem. For each £ cluster sub-problem, the
method selects L data points as candidates for the initial position of the new center
using the effective k-means++ selection probability distribution. The selection method
is fast and requires no extra computational effort for distance computations.

Global k-means++ has been tested on various benchmark publicly available datasets
and has been compared to the global k-means, the FGKM with multiple candidates,
the k-means++, the scalable k-means++, and the standard k-means with random uni-
form initialization. The experimental results reveal its superiority against all method
except global k-means. In this case, its performance is comparable but with a signif-

icant decrease in computational cost, thus establishing it as an effective relaxation.

63

CHAPTER 3

THE GLOBAL KERNEL k-MEANS++
ALGORITHM FOR EFFICIENT CLUSTERING IN

THE FEATURE SPACE

3.1 Introduction

3.2 Global kernel k-means++
3.3 Complexity Analysis

3.4 Empirical Evaluation

3.5 Summary

3.1 Introduction

As noted in Chapter 1 and Section 1.1, the k-means algorithm is widely used but
suffers from several limitations. To address its second major limitation, which is the
assumption of linear cluster separability, the kernel k-means algorithm was intro-
duced [40, 101, 10, 45, 102]. The kernel k-means idea is that the data instances are
first mapped from the input space to a higher-dimensional feature space using a
nonlinear transformation. In this richer representation, the transformed data are ex-
pected to become linearly separable, making the use of the k-means algorithm more
effective. Therefore, the k-means clustering error is minimized in this feature space,

allowing for the identification of non-linearly separable clusters in the input space,

64

thus overcoming the second limitation. Spectral clustering constitutes an additional
nonlinear approach to clustering, exploiting the eigenvectors of an affinity matrix con-
structed from the data [103, 104]. Notably, a direct relationship between kernel-based
methods and spectral clustering has been established in [101].

However, introducing kernel-trick into the k-means procedure reintroduces the
first limitation: how to properly initialize the centers in feature space? In this Chap-
ter [44], inspired by the capabilities of the GkM++ method [88], we present the global
kernel k-means++ (GKkM++) algorithm, a novel approach to obtain superior kernel-
based clustering solutions similar to those of GKkM at a lower computational cost.
This improvement is achieved by integrating the effective center selection probability
distribution of kernel k-means++ with the global kernel optimization strategy, al-
lowing GKiM++ to efficiently explore the solution space while maintaining excellent
optimization capabilities.

The optimization of the kernel k-means error is a long-standing obstacle and to
the best of our knowledge, no recent methods have been proposed that specifically
aim to optimize the kernel k-means objective. Instead, some researchers have focused
on developing computationally cheaper kernels to accelerate the process and sim-
plify the overall procedure [105]. Others have attempted to reformulate the kernel
k-means optimization problem into a potentially simpler alternative [106, 102]. In
any case, the global kernel £-means method is considered state of the art approach
for optimizing the kernel k-means error. Additionally, the proposed Global Kernel &-
Means++ method can also benefit from these advancements, such as leveraging more
computationally efficient kernels.

To assess the effectiveness of the proposed approach, we conducted a comprehen-
sive set of experiments on a diverse collection of benchmark datasets. The evaluation
includes both synthetic and publicly available real-world datasets, and the proposed
algorithm is compared against several established methods, including global kernel
k-means, kernel k-means++, and kernel k-means with random uniform initialization
(RKEM). Additionally, we examined its performance on the graph partitioning prob-
lem. The goal was to evaluate the clustering quality, robustness, and scalability of
the method relative to these baseline algorithms. Our analysis considered a range of
conditions, including varying numbers of clusters, dataset complexity, sample size,
and dimensionality. Quantitative results were further supported by visualizations,

providing deeper insight into the structure and coherence of the resulting clusters.

65

The rest of the Chapter is structured as follows. Specifically, in Section 3.2, we
present the global kernel k-means++ algorithm, which offers enhanced optimization
capabilities and reduced computational requirements compared to its predecessor,
the GKiM method. In Section 3.3, we provide results on computational complex-
ity. In Section 3.4, we present the results of an extensive comparative experimental
study using both synthetic and real datasets. Additionally, we evaluate the proposed
method in the context of the graph partitioning task (community detection). Finally,

Section 3.5 summarizes the Chapter.

3.2 Global kernel k-means++

GKkiM (Alg. 1.5) constitutes a deterministic method that aims to tackle the initializa-
tion issue of kernel k-means but at a high computational cost. It operates incremen-
tally and provides feature space partitions into K clusters by sequentially addressing
every k-cluster subproblem £ = 1,..., K. To address the problem with k clusters,
N kernel k-means executions are implemented, where each of the N data instances
is considered as the initial position for the new cluster center in the feature space.
This exhaustive consideration of initial positions for the new cluster center results
in an effective placement; thus, superior clustering solutions are obtained. However,
exhaustive search limits the algorithm’s applicability to relatively small datasets.

To preserve the optimization capabilities of the greedy sequential strategy of
GKkM, and inspired by the GkM++ method, we introduce the global kernel k-means++
(GKEkM++) method for feature space clustering. The key difference is that, instead of
evaluating every data instance z, € X as a potential candidate for the new center,
the proposed method considers only L appropriately selected candidates. Therefore,
only L kernel k-means runs are required for each k-cluster subproblem, with I < N.
GKkM++ achieves this by using an efficient candidate selection strategy that prioritizes
sampling from regions without existing cluster centers in the feature space. Specit-
ically, the method employs the KkM++ instance selection probability distribution to
guide the selection process. The main objective of this approach is to obtain enhanced
optimization capabilities at low computational complexity. The GKkM++ algorithm is
presented in detail in Alg. 3.1.

The algorithm requires as input the kernel matrix K, the final cluster number K,

66

Algorithm 3.1 Global Kernel k-Means++

Require: K: Kernel matrix

Require: K: Number of clusters
Require: L: Number of candidates
Require: S € { Batch', 'Sequential'}: Sampling Method

1: Initialize C} <+ X

2: D <+ (||gp(x1) —mal||%, ..., ||¢(zn) — my||?) using eq. 1.11 // Distance vector
3: fork=2,...,K do

4: {ey,...,cr} + Candidate Selection(S,K, L, D)

5 for all ¢; € {c1,...,c1} do

6 C). < {ce} // Initialization of the new cluster C}, using data instance c,
7: Cr_q < Ci_y/{ce} // Exclude c; from the k — 1 solution
8 C, +C,_,UC, // Initialization of clustering Cj,
9 (CL,E(Cf)) + Run kernel k-means(K, k,C;) (Alg. 1.3)

10: end for

11: (C}, E(C})) + Solution with the minimum error F(C}) among the L partitions Cj,

12: for all z; € X do

13: DJi] + min(||¢(x;) — ijQ) using eq. 1.11 // Pre-computed distances in step 9
J

14: end for

15: end for

16: return solutions (C}, E(C;)) for every k € {1,..., K}

the number of candidates L, and the strategy S used to sample candidates: either
batch or sequential. Note that D = (dy,...,dx) denotes the vector of distances d;, with
d; being the distance of ¢(z;) from its nearest center m; in the feature space. The
method follows the steps outlined below. First, it computes the solution to the kernel
1-means subproblem by setting the first cluster to contain all data instances. It also
initializes the distances d; (steps 1-2 in Alg. 3.1). Then, in order to solve the 2-cluster
subproblem, the kernel 1-means solution (obtained in step 1) is utilized as the first
initial cluster. Then the set of L candidate instances {c,...,c.} is formed through
sampling using the batch or sequential strategy (steps 4 in Alg. 3.1) in order to
determine candidate initialization for the second cluster. Since we do not assume
direct access to ¢(cy), the GKEM++ method, similar to GKkM, initializes the candidate
¢, as a new cluster containing a single element, bypassing this problem (steps 6-8
in Alg. 3.1). Next, L executions of kernel k-means until convergence take place, one
for each initial cluster {c,} (steps 5-10 in Alg. 3.1). From the L solutions found,

we select the one with the minimum clustering error value (step 11 in Alg. 3.1).

67

Finally, we update the distances d; (steps 12-14 in Alg. 3.1). In the same spirit,
for each k = 2,..., K, the method progressively solves the k-cluster subproblem by
exploiting the solution of the (k — 1)-cluster subproblem. To compute the solution
with k clusters, the & — 1 clusters are initialized using the already found partition of
the (k — 1)-cluster subproblem. Then, the L candidate instances are sampled (using
either the batch or sequential strategy discussed next) to select the element that will
be used to initialize the ky, cluster. The final output of the algorithm is a clustering
solution for all £ = 1,..., K. It is important to note that steps 5-10 of Alg. 3.1 could be
executed in parallel, providing significant speedup (up to L times faster). For further
speed up kernel k-means execution, MapReduce schemes [107], and coreset [108]
could also be applied.

The initial center candidates are sampled using the probability distribution P,
which expresses the feature space distance of the instances from the closest cluster
center. As presented in Alg. 3.2, two sampling strategies have been considered. Batch
sampling (steps 2-3 in Alg. 3.2) is simpler since it exploits only the pre-computed
distances d;, i = 1,..., N. Using these distances, the selection probability p; for data
instance z; (step 2 in Alg. 3.2) is computed and the probability vector P = (py,...,pn)
is formed. Probability p; is inversely proportional to distance d;, so data instances far
(in feature space) from the current cluster centers are more likely to be selected. Then,
using the computed kernel k-means++ probability vector P, a set of L candidates
{c1,...,cL} are selected by sampling without replacement (step 3 in Alg. 3.2).

Alternatively, a sequential sampling approach can be used in which each candidate
instance is sequentially sampled. In this case, the distribution P is updated so that
instances are selected to be distant not only from the current cluster centers but
also from the already selected instances (step 7 in Alg. 3.2). Therefore, after each
sampling, the distance d; of each data instance ¢(z;) is updated accordingly (steps
9-11 in Alg. 3.2) to take into account the newly selected instance. After L sampling
steps, the set {c1,...,c} of candidates has been determined (steps 5-12 in Alg. 3.2).
While the sequential sampling method requires recomputing the minimum distance
values, it results in a more effective distribution of the L candidates within the feature
space. It is important to note that at the beginning of the sequential sampling strategy,
the relation d; = 2161]\1} ||¢(x;) — r;|| holds. Consequently, the computation in step 10

only needs to consider the set &, which reduces the distance computation to d; =

min{d;, [¢(z;) — ¢(cr)|*}-

68

Algorithm 3.2 Candidate Selection

Require: K: Kernel matrix

Require: L: Number of candidates
Require: D = (dy,...,dn): Vector of minimum instance to cluster center distances in feature space
1: if S = "Batch' then
2: Compute the probability vector P < (pi,...pn), where p; = d;/ ‘]XV:l d;
j=

3 {c1,...,cL} < Sample without replacement L candidates
4: else
5 for/=1,...,L do
6: Compute the probability vector P = (p,...pn), where p; = d;/ évj d;
7 c¢ < Sample without replacement one candidate instance c, frojrr_llX using P
8 o+ {er,.. e} U{er)
9 for all z; € X do
10: d; < min ||¢(z;) — rj|| using eq. 1.11
r; e MUDLY
11: end for
12: end for
13: end if
14: return Set of initial center candidates {c,--- ,cr}

Figure 3.1 demonstrates a practical example of the proposed GKkiM++ algorithm
using a synthetic two-dimensional dataset with ten clusters arranged in five pairs of
concentric rings. The dots represent the data instances, while the color indicates the
respective cluster assignments determined by the algorithm. Green crosses mark the
candidate positions for initializing the next cluster. Additionally, the red star denotes
the winner candidate corresponding to the best initialization. In subfigures 3.1a-3.1d,
the method addresses a kernel k-means subproblem with different number of clusters
k. Based on each subproblem solution, the next center candidates are sampled from
the KkM++ distribution. Specifically, in Figure 3.1a, the kernel 1-means subproblem
is initially solved by considering the entire dataset as a single cluster (denoted in
blue), and the method successfully samples the next candidate initial center positions
across multiple distinct clusters in the dataset. This effective behavior is consistently
observed in Figure 3.1b and Figure 3.1c until the final clustering with k& = 10 clusters
is achieved in Figure 3.1d.

In Fig. 3.2 (left), we present the solution when the method is halted at k = 8. We
observe that 6 of the 10 clusters have been correctly identified, while the remaining 4

require further refinement. At this stage, we expect data instances located farther from

69

*
i

©

Data Instance
Winner Candidate
Selected Candidate

(a) Solution

with £ = 1 cluster.

@

+ 3@

Data Instance
Winner Candidate
Selected Candidate

@ Data Instance
* % Winner Candidate
gp Selected Candidate

(b) Solution with k& = 5 clusters.

©

©

e ; n
L % N’

(c) Solution with k = 8 clusters. (d) Final solution with k£ = 10

clusters.

Figure 3.1: Illustrative example of GKEM++ execution. Data instances are denoted
with circles, red crosses indicate cluster centers and red star denotes the winner

candidate corresponding to the best initialization.

any cluster center to be more likely to be selected than those closer to the centers. On
the right side of Fig. 3.2, a heatmap illustrates the selection probability of each data
instance as a candidate for initializing the next cluster in the & = 9 subproblem. In
the heatmap, dark blue indicates low selection probability, while red indicates high
selection probability. As observed, data instances in the two outer rings, which do
not form a cluster independently, exhibit a significantly higher selection probability.
Conversely, data instances in the inner rings have a low selection probability, as their
proximity to a cluster center in the feature space reduces the likelihood of their selec-
tion. Lastly, the data instances in outer rings that already form distinct clusters have

a lower selection probability than those in outer rings that have not been partitioned.

70

o (o) () I
4’5"\‘70{“‘:5" o

© o

- O |

(a) Solution for k = 8 clusters. (b) Heatmap with candidate selection prob-

Candidate Selection Probability

abilities.

Figure 3.2: Illustratve example of GKkM++ execution. Circles denote the data in-

stances.

3.3 Complexity Analysis

Since GKkM++ is closely related to GEM++ and kernel k-means, it inherits their compu-
tational complexity. Specifically, the complexity of kernel k-means is O(N?7), where
T represents the number of iterations until convergence. Assuming K clusters, GEkM++
requires O(K L) executions of kernel k-means. Consequently, the computational com-
plexity of GKkM++ is O(N?KLt), assuming access to the kernel matrix K, where
L < N. This is a significant speedup compared to GKkM, which has a O(N*KT)
complexity. It should be noted that we have empirically observed that kernel £-means
tends to converge faster (in fewer iterations) as k increases in this sequential clus-
tering framework. This speedup is reasonable because, when solving each k-cluster
subproblem, the method utilizes the solution from the (k — 1)-cluster subproblem,
which is already well-positioned. As a result, the number of iterations 7 required
for convergence typically decreases as k increases, thereby improving the algorithm’s
overall efficiency.

As mentioned previously, the batch sampling strategy does not require extra dis-
tance computations. Sequential sampling adds O(/NL) distance computations, similar
to KkM++ for sampling the K cluster centers. It should be noted that an additional
advantage emerges from the incremental solution of the kernel k-means problem: in
many cases, the number of clusters is not given. Therefore, it is necessary to obtain
solutions for a range of & values. Those solutions will be subsequently evaluated

using clustering quality criteria (e.g. silhouette score [92], modularity [109], inclu-

71

sion [110, 111] etc.) for cluster number estimation [93].

3.4 Empirical Evaluation

We have conducted an extensive series of experiments to assess the performance of the
proposed KkM++ and GKAkM++ methods, the latter both with batch (b) and sequential
(s) sampling strategy. The methods were compared against GKAM and RKiM.

The experimental evaluation is divided into three subsections. In subsection 3.4.1,
we demonstrate the clustering performance of each algorithm on synthetic two-
dimensional datasets that are not linearly separable. Subsection 3.4.2 focuses on
evaluating the algorithms on graph partitioning tasks, while in subsection 3.4.3, real-

world datasets are considered.

Table 3.1: Kernels used in our experimental evaluation.

Kernel Type Kernel Function
Cosine Kernel K(x;, X)) = ”Xﬁ"ﬁ(j{j”

Polynomial Kernel K(x;,xj) = (fy (xi : xj) + co)deg

RBF Kernel — K(xi,x) = exp (—|/x — x;[|3)

3.4.1 Synthetic Data Demonstration

At first, we considered two challenging synthetic datasets that are not linearly sepa-
rable, as shown in Fig. 3.3 and Fig. 3.4, respectively. Specifically, the first synthetic
dataset (Fig. 3.3) consists of nine pairs of concentric rings, each containing 50 data
instances, resulting in a total of 900 points evenly distributed across eighteen clusters.
The second dataset (Fig. 3.4) comprises three rings and six Gaussian distributions,
with each cluster containing 50 data instances. This results in a total of 450 points
uniformly distributed across all nine clusters. In both cases, the RBF kernel was
employed. Algorithms such as k-means, which rely on identifying linearly separable
clusters in the data space, are therefore unsuitable for these datasets.

In our synthetic data demonstration, the GKkM is executed once since it produces

deterministic clustering results. In contrast, RKkM and KkM++ were employed 100

72

Table 3.2: Clustering error comparison of the evaluated methods on 2D synthetic

datasets.
Dataset RKEM KkiM++ GKEM GKEM++ (b) GKEM++ (s)
18 Rings 362.56 361.66 345.10 345.10 345.10
3 Rings & 6 Gaussians 128.02 127.21 121.75 121.75 121.75

times, from which we report the minimum clustering error, similar to the experi-
mental setup of survey [93]. Furthermore, for the variants of GKkM++, we set the
number of cluster candidates to L = 100 (equal to the number of restarts used for
the rest of kernel k-means variants). We conducted the experiment a single time, as
practiced in [88]. Finally, the quality of the solutions produced by the algorithms is
assessed through clustering error (eq. 1.9) and through visual inspection as shown
in Figures 3.3 and 3.4.

In these challenging clustering tasks, GKAM accurately identifies all clusters. Sim-
ilarly, GKEM++ with sequential and batch sampling also successfully partitions both
datasets, demonstrating the effectiveness of both sampling procedures. The solutions
produced by GKiM and GKkM++ variants achieve the lowest clustering errors, as
shown in Table 3.2. On the other hand, RKAM and KkM++ fail to identify all clus-
ters in both datasets correctly. However, as shown in Table 3.2, KkM++ outperforms

RKEM in both synthetic datasets in terms of clustering error.

3.4.2 Graph Partitioning

Graph partitioning represents a different approach to data clustering. In this context,
we are provided with a graph G = (V,), where V and £ are the sets of vertices and
edges, respectively. Our goal is to partition the graph into disjoint clusters that sat-
isfy specific conditions. Several objectives for graph partitioning have been proposed,
including ratio association, ratio cut, normalized cut, and others. Spectral methods
are commonly used to address these problems by computing the eigenvectors of the
affinity matrix [62]. However, eigenvector computation is computationally intensive,
requiring O(N?) operations, and may become impractical for extensive graphs.

It is known that the kernel k-means objective is equivalent to graph cut objective

once the kernel matrix is appropriately defined [101, 42, 112]. This proof is established

73

(a) GKkM++(b&s)/GKiEM (b) RKkM (c) KkM++

Figure 3.3: Clustering results for the eighteen rings dataset.

(a) GKkM++(b&s)/GKiM (b) RKkM (c) KkM++

Figure 3.4: Clustering results for the three rings with six Gaussians dataset.

by formulating the problem as trace maximization, following a similar methodology
to that in [113], where the k-means objective is also framed as trace maximization.
Kernel k-means bypasses the requirement to compute eigenvectors; however, it cannot
ensure an optimal solution due to its dependence on cluster initialization. Even when
eigenvector computations are feasible, experiments in [42] indicate that kernel k-
means can further enhance the clustering results obtained from spectral methods.
GKkM can be effectively utilized for relatively small graph partitioning tasks [45].
Naturally, KkM++ and GKkM++ can also address the graph partitioning problem, as
they are built upon the foundations of kernel k-means and GKkM, respectively. In the
following experiments, we demonstrate the performance of each clustering method
on the graph partitioning task using three graphs of increasing difficulty (Table 3.3).
We evaluate the performance of the compared methods for a maximum number
of clusters (or communities), denoted by K, and consider each solution for k =
1,..., K. In all experiments, we fix K = 50. To ensure consistency in the comparison,
each subproblem with £ clusters is solved using L = 100, where L represents either
the number of restarts or the number of candidate solutions explored. Specifically,
for KkM++ and RKEM, L defines the number of restarts. For GKkM++, L specifies

the number of candidates selected. Finally, due to its deterministic nature, GKKM is

74

Table 3.3: Descriptions of utilized graphs.

Graph Description # nodes # edges Source
email-Eu-TD1 Email communication among first department members 309 1938 [114]
email-Eu Email exchanges among all institution members 1005 16706 [114]
GRQC Co-authorship in General Relativity and Quantum Cosmology 5242 14496 [114]

executed once.

Graph Datasets

To evaluate the effectiveness of the proposed algorithms, we conducted a series of ex-
periments using freely accessible graphs. We intentionally selected graphs that exhibit
diverse characteristics, including the number of nodes and edges (see Table 3.3).
The email-Eu-TD1 graph captures email communication exclusively among mem-
bers of the first department within a European research institution, with edges in-
dicating the sender-receiver relationships in both directions. In addition, email-Eu
graph is constructed from anonymized email data collected from the same institu-
tion, reflecting all incoming and outgoing communications among its members. An
edge (u,v) exists in this graph if person u has sent at least one email to person v,
thus representing communication solely within the institution, while excluding in-
teractions with external entities. Finally, the GRQC collaboration graph illustrates
scientific collaborations among authors with papers in the General Relativity and
Quantum Cosmology category. An undirected edge exists between authors ¢ and j if
they co-authored a paper together; if a paper has k co-authors, it generates a fully

connected subgraph of £ nodes.

Graph Partitioning Evaluation

Let us define links(A, B) as the cumulative weight of the edges between the nodes
in sets A and B as links(A,B) = >, 4> 5 Aij, where A is the affinity matrix
that captures the pairwise similarities among the vertices. Similarly, let degree(.A)
represent the sum of the edge weights between the nodes in A and all vertices,
expressed as degree(A) = links(A,V), where V is the set of all vertices. Let D be the
diagonal |V| x |V| degree matrix, where D;; = 2‘321 A;;. Next, we define the graph

partitioning objectives optimized in the experimental section: the ratio association and

75

the normalized cut.
1. Ratio Association problem aims to maximize the internal connectivity of clusters
in proportion to their size, and its objective function is presented in the following

equation:

M .
RA(G) = max W (3.0)

=1
To align the objective function of the weighted kernel k-means algorithm with the
ratio association problem, we set w; = 1, w; = 1, w; = 1 and K = A of the eq. 1.9
and eq. 1.11. This makes the problem equivalent to the unweighted kernel k-means,
where the affinity matrix is treated as the kernel matrix [42, 112].

2. Normalized Cut problem seeks to minimize the cut between clusters and the
rest of the graph relative to the cluster’s degree [115, 116]. This objective is widely

used in graph partitioning, and its formulation is the following:

M
links(V;, V/V;
NC(G) = min mdes(v“ V/ Vi), (3.2)
e Var A gree(V;)

To transform the objective function of weighted kernel k-means to correspond to
that of the normalized cut, we need to set w; = D;;, w; = Djj;, w; = Dy, and K =
D'AD™! [42, 112].

The previously discussed definitions of the kernel matrix do not guarantee that
it will be positive semidefinite, which is essential for its validity in our algorithms.
Although being positive semidefinite is a sufficient condition, it is not necessary for
the convergence of the examined algorithms. A solution to this problem is proposed
in [42], which involves applying a diagonal shift to the kernel matrix. To address the
ratio association problem, we define K = A+ A, where I represents the identity matrix
and) is a sufficiently large constant to guarantee that K is positive semidefinite. Addi-
tionally, to tackle the normalized cut problem, we formulate K = AD~'+ D 'AD"!. A
notable point is that this adjustment to the kernel matrix does not alter the goal of the
problem. However, as demonstrated in [42], it may adversely affect the performance
of the algorithms if the shift A is excessive [45].

In our study, clustering is framed as an optimization problem. Our aim is to
obtain solutions of minimum error in the feature space. Therefore, we evaluate the
performance of each method using the clustering error. Minimizing clustering error is
equivalent to maximizing the ratio association (eq. 3.1) in the first case and minimizing the

normalized cut (eq. 3.2) in the second case. For performance comparison we calculate

76

the relative Percentage Error:

B(C) - E(C))
PR e

x 100%, (3.3)

where E(C;) represents the clustering error of the baseline method, which we defined
as GKkM, and E(Cy) denotes the error produced by each of the compared methods
(Figs. 3.5, 3.6). However, in the case of GRQC where GKkM did not provide solutions
in reasonable time due to its high computational burden, we utilized the GKAM++

with sequential sampling strategy as a baseline method.

Graph Partitioning Experimental Results

GKiM
GKkM++(b)

e
® GKkM++(b)
w —0.05 GKkM++(s)

GKEM++ (s) -0.10|| ® KkM++

KkM++
RKKM

—0.15|| ® RKiM

Ratio Association PE (%)

2 5 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters

2 5 10 15 20 25 30 35 40 45 50
Number k of Clusters

(a) email-Eu-TD1 (b) email-Eu (c) GRQC

Figure 3.5: Relative Percentage Error in the ratio association objective across different

graphs.

GKEM
® GKkM++(b)
GKikM+ + (s)
® KkM++
RKKM

b)

GKkM
® GKEkM++(b)
GKiM+ + (s)
® KiM4+
® RKiM

® GKiM++(b)
GKEM+ +(s)

® KiM++

03[l o RKiM

0.4/

Normalized Cut PE (%
°
0

2 5 10 15 20 25 30 35 40 45 50 2 5 10 15 20 25 30 35 40 45 50 2 5 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters

(a) email-Eu-TD1 (b) email-Eu (¢) GRQC

Figure 3.6: Relative Percentage Error in the normalized cut objective across different

graphs.

As it can be observed from the experimental results (Figs. 3.5, 3.6), GKkM++
produces results comparable to GKikM (with a Percentage Error smaller than 0.05
in most cases) which consistently achieves the best performance in both the ratio
association and normalized cut objectives. Note that the ratio association objective is
meant to be maximized (higher values are better), while the normalized cut objective
should be minimized (lower values are better). GKkM failed to complete within a

reasonable time on the GRQC graph due to its high computational demands, while

77

25 - 12
B GKEM

. GKkM+ + (b)
. GKkM+ +(s)
- KM+
m RKEM

o

. GKiM++(b)

n
N
& 3

S

o
S

°
Execution time (m)

Execution time (m)
Execution time (h)

o w
o N & o

o
°

[|
Ratio Association Normalized Cut Ratio Association . Normalized Cut Ratio Association T Normalized Cut
Objectives Objectives Objectives

(a) email-Eu-TD1 (b) email-Eu (c) GRQC

Figure 3.7: CPU time comparison across different datasets and problems.

in such cases, GKkM++ produced the best outcomes. Additionally, the two GKAM++
variants consistently outperform KiM++ and RKEM. Notably, as the value of k£ in-
creases, GKkM++ demonstrates progressively superior performance compared to the
other two algorithms across both types of problems. This is particularly significant
because higher values of k increase the complexity of optimizing the ratio association
and normalized cut objectives.

In an attempt to compare KkM++ with RKikM on the ratio association objective,
we observe that both algorithms exhibit similar behavior (Fig. 3.5). When addressing
the normalized cut objective (Fig. 3.6), we notice that RKikM outperforms KkM++ on
the email-Eu-TD1 graph. In the other two graphs, which contain a larger number of
nodes and thus increase the complexity of the problem, KkM++ consistently delivers
better graph partitioning results. Notably, in the email-Eu graph, as the value of &
increases, the quality of KkM++ solutions becomes increasingly superior to that of
RKEM.

Additionally, Figure 3.7 illustrates the CPU time of each algorithm to compute
all K clustering solutions across the three graphs. Each subfigure shows the time
required for each objective on the compared graphs to solve all clustering problems
for k =1,...,50. Specifically, we observe that regarding the ratio association objective,
the GKkM++ variations require the least time in all graphs. For the normalized cut
objective, GKEkM++ outperforms all other algorithms on the email-Eu-TD1 and email-
Eu graphs, while achieving comparable runtime performance to RKkM on the GRQC

graph.

3.4.3 Real Datasets

We also conducted a series of experiments on several publicly available real-world

datasets. We intentionally chosen datasets encompassing various characteristics, in-

78

cluding the number of samples (), data dimensionality (d), complexity, and domain

of origin. Table 3.4 provides a detailed description of each dataset.

Table 3.4: Descriptions of utilized datasets.

Dataset Description N d Source
Avila Images of an XII century copy of the Bible 20867 10 [95]
Breast cancer Characteristics of breast cancer tumors 569 30 [95]
Dermatology Type of Erythematosquamous disease 366 34 [95]
Ecoli Expression levels of proteins 336 7 [95]
Iris Characteristics of Iris flower species 150 4 [95]
Olivetti faces Face image dataset 400 4096 [117]
Pendigits Handwritten digits 10992 16 [95]
Waveform-vl Waveforms with multiple attributes 5000 21 [95]
Wine Chemical analysis of wines 178 13 [95]

Min-max normalization in the [0, 1] range has been applied to each dataset to
avoid numerical instabilities in the computations [118]. Additionally, for a more thor-
ough investigation, we considered for each real dataset three different kernel func-

tions, as presented in Table 3.1, which resulted in a total of 27 clustering problems.

Experimental Setup

In our experimental study on real-world datasets, we evaluate the compared methods
both for the maximum number of clusters K and for all intermediate clustering
solutions k£ = 1,..., K. We set the maximum number of clusters K = 50 in all cases.
To ensure a fair comparison, in each k subproblem, we executed the algorithms
with L = 100, where L specifies the number of restarts or the number of candidates
examined. In particular, for KkM++ and RKkiM, we used L to control the number of
restarts. In the case of GKkM++, L defines the number of candidates selected. On the
other hand, GKEM is executed once, which is equivalent to running GKiM++ with
the number of candidates L = N, where N is the total number of data instances.
Additionally, we evaluated the clustering performance using three kernel func-
tions: Cosine, Polynomial, and RBF (Radial Basis Function), as shown in Table 3.1.

For simplicity, in the Polynomial and RBF kernels, we set the v hyperparameter for

79

each dataset using the following formula:

¥ =—5 (3.4)

where o2

is the variance and d the dimensionality. This equation accounts for both
the variance of the data and the number of input features, ensuring an adaptive
initialization of ~. This approach aligns with the standard + initialization strategy
of well-known software libraries such as scikit-learn [119]. However, more advanced
techniques can also be applied [120]. Finally, for the Polynomial kernel, we set the

degree deg and the coefficient ¢, to typical values, such as deg = 3 and ¢y = 1.

Evaluation

In this study, we propose kernel-based clustering methods that effectively minimize
the feature space clustering error. Therefore, we use this error E(Cy) (eq. 1.9) for
method comparison that provides a direct evaluation of the optimization capability
of each method. More specifically, we calculate the relative Percentage Error (eq. 3.3),
where E(C;) denotes the error corresponding to the baseline method which is GKEM
(Fig. 3.8). However, due to high computational complexity, in some cases, GKAM did
not provide solutions in a reasonable time. In such cases, we utilized the GKkM++
with sequential sampling strategy as the baseline method. Furthermore, for each
method and k, we report the CPU execution time (Fig. 3.10) and the average number
of kernel k-means iterations (Fig. 3.11). Such an evaluation approach illustrates both
the error minimization capability of each method as well as its computational speed

and efficiency.

Experimental Results

GKEM++ exhibits performance comparable to that of GKiM with both batch and
sequential sampling strategies across all datasets (Fig. 3.8). Notably, it clearly outper-
forms the GKkM method in several cases, which is more evident for large £ values.
It should be noted that GKikM did not terminate within a reasonable time frame in
Avila, Pendigits and Waveform-v1 datasets due to its high computational complexity,
where in these cases, the GKkM++ exhibited the best results. As the number of clusters
k increases, the clustering problem becomes more challenging, and the performance

difference between GKkiM variants and the rest of the compared methods becomes

80

more profound. Solving the clustering problem with a larger number of clusters is
crucial, as datasets inherently contain many clusters, such as Olivetti faces. Addi-
tionally, in most real-world scenarios, the number of clusters is unknown a priori.
Therefore, the clustering problem should be addressed across a range of values for £,
allowing us to determine the most suitable solution. In such cases, the minimization

algorithm must produce good results for even larger k values.

=14 A
12 =
£ 10 26
& &
2 . g
£ E
2

N R
S o
] o
a o Qe 339e o

75 W0 15 20 530 3 40 45 50 75 10 15 20 2530 35 40 45 50 75 10 15 20 2530 B 40 B 50
Number & of Clusters Number k of Clusters Number & of Clusters

(a) Cosine (b) Polynomial (¢) RBF

Avila

© GKiM++(s)
® KiMi+
o RKM

Percentage Error (%)

Percentage Error (%)
o m N W s a o

2 5 10 15

20 25 30 35 40 45 50 25 10 5 40 45 50 75 10 15
Number k of Clusters

15 20 25 30 3 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters

(a) Cosine (b) Polynomial (¢) RBF

Breast cancer

° GKiM

=7 = 10f o[0 oM
“rﬁ % ® GKiM++(b) g ® GKkM++(b)
S S 8f| o GKiMis(s) 5S4l o GKiMasls)
& 5 ® KiMs++ G4 @ KMer
o4 o 5| o Rkm o ® RKiM
> 3 >
£3 8 4 82
§2]]
gl g2 g1
iespgeseesereeess sssra
Ep e e & o ¥ &o
2 5 10 15 20 25 30 3 40 45 50 75 10 15 20 25 30 35 40 45 50 27 5 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters

(a) Cosine (b) Polynomial (¢) RBF

Dermatology

a5
220
i
015
3
S0
£
]
S s
9

sl S0

25 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters

(a) Cosine (b) Polynomial (¢) RBF

Ecoli

81

100 g

8 g ® 82

i} fri o

° o 60 PRt

-3 o >

bt S a0 S10

5 5 5

g g2 g5

o 9 9

& o eers a a o

25 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters

4

< <10|[¢ crim =

< g ® GKiM++(b) g GKiM++(b)

Se s 8| o GKiM++(s) S GKkM++ ()

5 5 ol @ rames &

@, o ‘| o Rram P

-3 o >

2 8 4 8

= € =

92] 1

I v 2 4

o 3 i 3 e tiieey

%o o g =] o

25 10 15 20 25 30 35 40 45 50
Number k of Clusters

(a) Cosine

25 10 15 20 25 30 35 40 45 50
Number k of Clusters

(b) Polynomial

Olivetti faces

7 5 10 1 30 35 40 45 50

5
Number k of Clusters

(c) RBF

s
® GKiM++(b) SB[e GKimerib) S ® GKiM++(b)
GKkM++(s) =150 GKiM++(5) = 12l o GKiMss(s)
il 2125 S 10| o KiMes
o RKM 5 5 ° RKiM
5 100 o8l
06
> >
s g
2 2 o4
§ 050 S
S 8 o2
5025 5
3 & 00
L < 0.00 N 9T
25 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50 02735 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters
07
® GKiMi+(b) Sos|[® S Soal[® SR
06| o GKiM++(s) = © GKM++(s) = e cKiMes(s)
5 o5 o K+ 505/ o KiMer s ° KiMes
S o4l @ ram Soall o Rram 53 o ram
g o3 o3 o2
g))
2 02 202 €
g o Sox gor
g oo £ DU PN 2,
25 10 15 20 25 30 35 40 45 50 2 5 10 15 20 25 30 35 40 45 50 2 5 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters
. =29 GKAM 19
8 < IS
g 5:/17.5 G+ (b) S GKEM:+ + (b)
S g0 GKKkM++ (5) S GKiM++(s)
= S2s 5e 4+
P @100 o
> o >4
hel g7s b}
g § 50 § 2|
S 4 S
4 5 25 o
4 < g &o

15 20 25 30 35 40 45 50
Number k of Clusters

(a) Cosine

the lowest error in most cases.

25 10 35 40 45 50

15 20 25 30
Number k of Clusters

(b) Polynomial

Wine

82

15 20 25 30 35 40 45 50
Number k of Clusters

(c) RBF

Figure 3.8: Comparison of the relative percentage error for each algorithm (relative
to the GKAM method) across various datasets and kernel functions. Lower values

indicate better clustering performance, with global optimization variants achieving

3.5 (mmm GKEM++(b) B 0'175 ——- GKkM++ (Max PE)
3.0/ | GKiM++(s) ’ ——- KkM++ (Max PE)
- 0.150 KM+
0.125 1 RKiM
452.0
5 | 50.100
1.5 0.075
1.0 0.050
0.5 | 0.025
00" {57 —{0 -05 00 05 10 0.000, 10 20 30 40 50

Percentage Error (%) Percentage Error (%)

(a) Relative PE distribution of GKAEM++, (b) Relative PE distribution of KkM++ and
compared to GKkM, using both batch and =~ RKEM, compared to GKkM. The red and
sequential sampling strategies. the blue dash lines indicate the maximum

PE of the GKEM++ and KEkM++ algorithms,

respectively.

Figure 3.9: Distribution of relative percentage error for different clustering methods
compared to GKAM. (a) Shows the performance of GKkM++ (using both batch and
sequential sampling), which closely aligns with the GKkM method. (b) Compares
KkM++ and RKEM, highlighting their higher error values.

Fig. 3.9 presents the relative PE of each method compared to GKAM accumulated
across all k = 2,..., K subproblems and the 18 (out of 27) datasets where GKAM
successfully converged within a reasonable time frame. Note that positive values in-
dicate that the GKAM had superior performance, while negative values mean that the
compared algorithm performed better.

In Fig. 3.9a, it is evident that GKkM++ demonstrates highly effective optimization
capabilities. In most cases, GKkM++, using both batch and sequential strategies, con-
verged to solutions with a PE of 0.5% or less. Even in the worst case, the maximum
PE did not exceed 1.4% in our experiments. The plot emphasizes how closely GKEM++
approximates the performance of GKkM across various clustering subproblems. In-
terestingly, there are several instances where GKkiM++ outperforms the solution of
GK£kM, and this improvement is more pronounced for the sequential sampling strat-
egy (orange histogram) where there are cases in which the solution of GKkM++ had
-1.5 PE compared to GKiM.

Moreover, it is clear that the GKkAM variants consistently outperform both KkM++

and RKiAM as shown in Fig. 3.9b. In the case of RKkM, the Percentage Error (PE)

83

reached as high as 100% (not included in the figure), whereas KkM++ exhibited
a maximum PE of 22%. It should be noted that the dashed red line denotes the
Maximum PE of GKEkM++ algorithm. As anticipated, KkM++ significantly outperforms
RKEM. However, it cannot match the optimization capabilities of the GKAM variants.

Figure 3.10 illustrates the time the CPU needs for each algorithm to compute each
one of K clustering solutions for the datasets. Specifically, each subfigure presents the
time required for each dataset and kernel to provide solutions for all &£ = 1,...,50.
Overall, the GKEM++ variants demonstrate the highest efficiency, requiring the least
execution time, often just a fraction of the time needed by the other methods. Some
notable cases are the Avila, Waveform-v1 and Pendigits datasets in which the differ-
ence of GKEM++ is several days of execution compared to the second fastest algorithm.
In these datasets, the GKkM failed to converge after weeks of execution due to the

large number of data instances N.

B GKKM++(b) 200 == GKiM
. GKkM+ +(s) B GKkM++(b) w17
B KkM+ +

Em RKkM

Execution time (d)
Execution time (s)
~
3
8

Cosine Polynomial "~ Cosine "~ Polynomial RBF "~ Cosine ~ Polynomial RBF
Kernels Kernels Kernels

Avila Breast cancer Dermatology

Execution til

Cosine Polynomial RBF Cosine Polynomial RBF o Cosine Polynomial RBF
Kernels Kernels Kernels

Ecoli Iris Olivetti faces

. GKkM+ + (b)
. GKkM+ +(s)
KM+
— RKEM

. GKiM++(b) . . GKkM
B GKiM+ + (b

N
&

S

Execution time (d)
S

P v S R
Execution time (h)
o
&

o w

Cosine Polynomial RBF Cosine Polynomial RBF o

Cosine Polynomial RBF
Kernels Kernels Kernels

Pendigits Waveform-v1 Wine

Figure 3.10: Comparison of CPU execution time required to compute all clustering
solutions for different datasets and kernels. GKkM++ demonstrates significantly re-

duced computational cost compared to other methods.

This speedup in execution is also highlighted in Fig. 3.11, which shows the aver-

84

age number of kernel k-means iterations required for convergence by each method.
As observed, the GKAM variants tend to require fewer iterations as k increases. This is
mainly because, in each k subproblem, the k£ —1 clusters are already well partitioned.
However, GKEM requires more iterations at lower values of k£ due to its exhaus-
tive search nature, although its behavior is close to that of the GKkM++ variants. In
contrast, KkM++ and RKEM generally require more iterations as k grows, or their
iteration plateau is significantly higher than that of the global variants. This trend is
particularly evident in the Avila, Breast cancer, Olivetti faces, Dermatology, Pendig-
its and Waveform-v1 datasets. Generally, it can be noticed that GKkM++ requires

considerably fewer kernel k-means iterations in all cases.

17500 16000

" © Gk (b) w
£ 15000 ® GKiM++(s) g 14000
5 12500 o KiMi+ -2 12000
s s
8 10000 g 10000
o 7500 gsoou
6000
© 5000 e
] \ 2) @ 4000
< 20 DA D AL L < 2000 v
0 W oA V
25 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50
Number £ of Clusters Number k of Clusters Number k of Clusters

(a) Cosine (b) Polynomial (¢) RBF

Avila

10000 GikM 1 8000 GKiM "
2 ® GKiMi+(b) 2 ® GKiM:+(b) 2 8000
2 8000 o et £ 000 o GKiMi+(s) 2
g 5 o Kimes € 6000
2 6000] ® RKiM 2
4000
o o o
2 4000) G000
2 2000 AL esetes < 2000 2000
< s < S04 < e
0 oo tecsescersserserereererersenses o et ettt s strsestetesrresses o S erteetersrssetesssrerrersesreressrere
25 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters
2500 GRiM . GRiM 2500
2 o GKiMe+(b) 2 100) ® GKiM++(b) 2
2 2000 . 2 o GKM++(s) 2 2000
o © 2000} o KiMi+ °
L1500 N o RKiM 21500
& & &
100 e T 1000 ttetatact gl i S
3 ’ 3 * . b}
Z 0 “‘“\\.“_ Z 500 Ea K’“
. S,
orerrsrtesctrtersrrtrrterres etetererteeerteertterteestrertrsrs e tstet et ettrsserterssreeeeesees
25 10 15 20 25 30 35 40 45 50 75 10 15 20 25 30 35 40 45 50 75 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters
3500 3500
« w w
g 4000 £ 3000 £ 3000
30001 ® 2500 8 2500,
2 £ 2000 £ 2000(|
2000 %1500 & 1500
8 8 8
@ 1000 & 1000
91000 s g b, >
ES ?/" \""‘"\m«_* i 2 500 et e < 500, Poeeoee
75 10 15 20 25 30 35 40 45 50 75 10 15 20 25 30 35 40 45 50 275 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters

(a) Cosine (b) Polynomial (¢) RBF

Ecoli

85

1400 1400 1000
) 21200 £
1200
2 2 GKEM:+ +(5) 2 800
© 1000 © 1000 KM+ ®
£ 00 2 g0 RKkM £ 600
& & &
g 00 g o0 2 00
g 400, g 400 2
200, 200 200, >
25 10 15 20 25 30 35 40 45 50 275 10 15 20 25 30 35 40 45 50 25 10 15 20 25 30 35 40 45 50
Number k of Clusters Number k of Clusters Number k of Clusters
w6000) 1 6000) o._GKiMt " 1
\ @2 ® GKiM:+(b) 25000 |
-2 5000 \ -2 5000 ® GKiM++(s) 2 \
s © 4000
5 4000 15 4000 o, Kithy+ g \
E=3 £ o _RKM £ 3000 \ i
g 3000 g 3000 P
.
© 2000} £ 2000} ©'2000
]
2 1000, M 21000 1000
o o 0
5 20 25 30 3

25 10 2

T 5 40 45 50
Number k of Clusters

(a) Cosine

25 10 15 20 25 30 35 40 45 50
Number k of Clusters

(b) Polynomial

Olivetti faces

25 10 20 25 30 35 40 45 50

T
Number k of Clusters

(c) RBF

" GKiM++ (b) 200 GKiM++ (b)
25000 GKAM+ +(5) £ 4500 GKiM++(5)
2 2 4000 o KiMi+
© 4000 e © RKiM
2 83500
9,300 83000
@ @
4 £ 2500
2 2000 14
< 2000
1000 1500

25 10 15 20 25 30 35 40
Number k of Clusters

(a) Cosine

25 10 15 20 25 30 35 40
Number k of Clusters

(b) Polynomial

Pendigits

75 10

(c) RBF

25 10 15 20 25 30 35 40
Number k of Clusters

(a) Cosine

4500 © GKiM++(b) o (©)
T ° GRiMi+

g 4000 ® GKiM++(s) 2 3500 GKkM++ (s)
2 3500 o KiMs+ -2 3000] KiM+ +
o ® RKiM ©
g0 2 2500
= 2500 =2
& 2000, o
g 81500]

1500
g 2 1000
<1000 .,

00
a5 50

25 10 15 20 25 30 35 40
Number k of Clusters

(b) Polynomial

Waveform-v1

25 10

R " GRiM 1200
2 1400 £ 1500 GKiM+-+ (b)

21200 2 GRRM+-+(s) 1000
s ©1250 KiM+

$ 1000 o 800)

@
8

Average ite
§8

Average il

RKEM

Average iterations
&8 3
g 8

3
8

25 10 15 20 5
Number k of Clusters

(a) Cosine

25 10 15 20 25 30 35 40 45 50
Number k of Clusters

(b) Polynomial

Wine

25 10 15 20 25 30 35 40 45 50
Number k of Clusters

(c) RBF

Figure 3.11: Comparison of the average number of iterations required for kernel k-
means to converge across different datasets and kernel functions. GKkM++ requires

fewer iterations as k increases.

86

Sensitivity Analysis

In this section, we investigate the effect of the number of candidates L on the per-
formance of the proposed method. Since L determines the number of candidates
evaluated at each k-cluster subproblem, it directly influences clustering performance
and computational efficiency. Specifically, a higher L value allows for a more extensive
exploration of alternative solutions, increasing the possibility of selecting high-quality
cluster initialization. Naturally, this comes at the cost of additional computational
overhead.

To analyze this trade-off, we conducted using various datasets and examining four
values of L (10, 25, 50, 100). For each dataset and L value, 30 runs were conducted
and, for each run, the clustering error attained for three different values of K (10,
25, 50) was used for our analysis. Note that both the sequential and batch sampling
strategy were considered.

Figure 3.12 displays the influence of L on clustering performance, as measured
by the clustering error. As expected, the increase of L leads to decrease in clustering
error, since the exploration of more candidate centers improves the possibility of
finding an optimal cluster placement. Additionally, as L grows, the variance of the
clustering error decreases, indicating greater stability and robustness of the obtained
solutions. Notably, there is no significant difference in clustering performance between
the sequential and batch sampling strategies, suggesting that both selection methods
are equally effective in the selected datasets.

Figure 3.13 examines the impact of L on computational efficiency, measured by
execution time. As expected, increasing L results in a higher computational cost due
to the greater number of kernel k-means runs. It can also be observed that there is

no significant difference in the execution time of the two sampling strategies.

87

187 151 121
187.25 1505
187.00 1500 120
5 186.75 5 145 5 N
£ £ £ 119)
5,186:50 = =
£ 2o £
£186.25) 2 g
K] Daass R
5] 5] s}
186.00
148.0
185.75
. L 17
185.50; % C * b4
T TF 1470 . I
185, 0 75 50 00 I 75 £ 100 B Iy 75 50 100
Number L of Candidates Number L of Candidates Number L of Candidates
[Batch
. u7 [Sequential
94
141
. +
116
93
5 140 5 5
s s
£ ug_, £
= o115 + oo
£ ‘l' £ £
3 + g 3
819 £ 2
2 2 + 29
5] Oua i [} N
— +
138 | T .. T + +
Lo [07 &3 - I
B : % % %—l
T +
¥
137 r B =< + 5
o % 50 00 = 0 % 50 100 I 2 50 100
Number L of Candidates Number L of Candidates Number L of Candidates
45 -
280 17.0
+
458
¥ 27.8 16.8)
457, = .
g 2 B
o + & + I}
+ o o
.gas.s N 216 Zes
) 2 2
§ - i 1.
o] 5] s}
455 ra 16.4 |-
< N I
4 + 162
272
. ¥
45 I 25 50 100 i 2 50 100 iy 25 50 100
Number L of Candidates Number L of Candidates Number L of Candidates
7 3.
+
1655 + 33 *
71|,
16.50 330
76
51645 s 5325]
o @75 o
o o)
£1640 £ + £320
g g g
] Tt G4 H
S163s + 3 3315
5] R 5] o3
Py o
73 o
16.30 L 310 H
¥
12 FT L= T
1625 M 305
16 g 7 0 100 3 0 25 50 100
Number L of Candidates

25 50
Number L of Candidates

K =10

%5 50
Number L of Candidates

K =25

Iris

88

K =50

Clustering Error
&

[Batch
Sequential

+

|

+

[A1 ;3

, T it

Clustering Error

195

[Batch
l Sequential

L]
Sl

[-,
T po

[Batch
. Sequential

Clustering Error
w— [+

L
I

N el

+

0 75 50
Number L of Candidates

K =10

100

0 25 50
Number L of Candidates

K =25

Olivetti faces

10 25 50
Number L of Candidates

K =50

755,

Clustering Error

[Batch
. Sequential

+

I

T
T T 8l

Clustering Error
g

[Batch
Sequential

i

=R
[07 L1

[Batch
Sequential

365

Clustering Error
—_
—
+
—

Figure 3.12: Effect of the number of candidates L on clustering performance of the
proposed method for several datasets. For each dataset the clustering error statistics

(over 30 runs) is presented for different values of L and number of clusters K =

25 50
Number L of Candidates

K =10

25 50 00
Number L of Candidates

K =25

Wine

75 50
Number L of Candidates

K =50

10, 25, 50 using both the sequential and the batch sampling strategy.

35|

Execution time (s)
e 3 b S

3

|

1 Batch |

Sequential

¥

ii .
&7 #e

- £

&

0

Execution time (s)

[Batch
Sequential

H[H+

¥

.
+
== +
=
=+
- +
-
T

10| [E Batch M

Sequential
. % =

+
20 + é +
=
e *
10

3

Execution time (s)
2

8

10 %5 50
Number L of Candidates

K =10

%5 50 100
Number L of Candidates

K =25

Breast cancer

89

25 50 100
Number L of Candidates

K =50

- T
10 + +
4 * N +
+
8 150 +
G + g +)
o3 o T @125
£ T Es H £
: =1 T & :
s P S * 8100 %
g . . g b E
:, r E1 G 4 - .
g = Y 9 +]
&S % i i __IE_J &S 7S N
+
* 5.0] +
1 N N) + +
L= = 2 =F
-+ = = - =
10 25 50 100 10 25 50 100 10 25 50 100
Number L of Candidates Number L of Candidates Number L of Candidates
+
+
20| + 40 80|
+
' I
G C) %)
@15, @30 @ 60 +
£ £ E
] = =
§ . K] N s *
El M s * s + +
g 10| g 20 + g 40|
£ £ %
& é H L & s "
N E .
5 ; 10 ; * 20 i
) # *
0 ‘ i
+
=)= — =] = 20 =
Iy %5 50 100 0 75 50 50 0 75 50 0
Number L of Candidates Number L of Candidates Number L of Candidates
2|/ Batch T
[Sequential
5 : N
* 8 20)
N o) *
b b +
g ge : T 2
g H 5 v %
3 + El 3
] . g4 + g10 +
&) + + & s F] + t
o - + +
.= T . R
1 ' s 2 * + 5 *
*
fa BT ¥ 2
= : : = .
0 o= - -
iy % 50 60 o 00 0
Number L of Candidates

K =10

25 50
Number L of Candidates

K =25

Iris

Execution time (s)

20

[Batch *
) Sequential

%5 50 100
Number L of Candidates

K =50

30|
.
© @1 * s
25
o o
+
5 £ £
. s
E s . % 8% N
4 + S10 =
. 2 M 5 +
¢ + g1
3 w “ +
+ % *
) b + Q . P + [;[10 *
* = 1 =
N
+ +ox - b = s| + 1 *
1 # * ES =
i + % = H
=+ = = = =
m 7 50 0 10 100 o
Number L of Candidates

K =10

25 50
Number L of Candidates

K =25

Olivetti faces

90

%5 50 100
Number L of Candidates

K =50

1 Batch + 1 Batch [Batch *
Sequential + Sequential Sequential *
2
. ’ + =
G C) Gl
@ 3 @ 6 + o
£ £ E £ *
] § . 5 iy
3 + 5 E]
g s g = g |
¢ b ¢ ¢
& H T & N l B0 I
= + ¥ + +
-
‘ . 3T : L X B ‘ ,
s COPT s . =H
‘L TT i ol
S + oL
& L == E3F -
T % 50 160 10 % 50 160 T % 55 160
Number L of Candidates Number L of Candidates Number L of Candidates

Figure 3.13: Effect of the number of candidate initializations L on computational
efficiency for several datasets. For each dataset the execution time statistics (over 30
runs) is presented for different values of L and number of clusters K = 10, 25,50

using both the sequential and the batch sampling strategy.

3.5 Summary

In this Chapter, we introduced global kernel k-means++ (GKkM++), a novel clustering
algorithm inspired by global k-means++, a method that combines the sequential clus-
tering strategy of global k-means with the probabilistic initialization of k-means++ in
Euclidean space. Our proposed GKiM++ extends this idea to a feature space using
kernel methods, effectively achieving high-quality clustering results while significantly
reducing computational cost.

Specifically, GKkM++ is an incremental clustering algorithm that extends the well-
established global kernel k-means algorithm by incorporating the stochastic initial-
ization strategy of kernel k-means++ to select L initial cluster candidates. To produce
the solution with K clusters, it sequentially solves all intermediate subproblems for
k =1,...,K, by sampling L initial cluster candidates at each k subproblem, where
L < N. We presented two strategies for the sampling selection procedure: batch and
sequential sampling. Specifically, the batch selection strategy samples L candidates at
once without replacement. At the same time, sequential sampling selects L candidates
one by one, also without replacement, updating the probability distribution accord-
ingly at each sampling step. GKkM++ significantly reduces computational complexity

while preserving superior minimization capabilities akin to those of traditional global

91

kernel k-means (GKAM), making it practical for addressing clustering problems in
larger datasets, where global kernel k-means may not terminate within a reasonable
time frame. Nonetheless, it is important to recognize that reducing the computational
complexity of the GKiM algorithm by sampling initial cluster candidates comes at
the cost of losing its deterministic nature.

We evaluated the proposed algorithm on synthetic and on several publicly avail-
able benchmark datasets and compared it to various methods, including global ker-
nel k-means, kernel k-means++ and kernel k-means with random uniform initial-
ization (RKAM). In all cases, GKkM++ has demonstrated its superior clustering per-
formance and reduced computational cost. In addition, we evaluate its performance
on the graph partitioning problem. Overall, the experimental results demonstrate
that GKkM++ consistently achieves significantly better clustering optimization capa-
bilities than KkM++ and RKiM. Furthermore, its performance is comparable to that
of the GKkM method, with a maximum percentage error of less than 1.4% in the
real datasets while achieving a maximum percentage error of less than 0.25% on the
graph partitioning task. Surprisingly, in many cases, it even exceeds the performance
of the GKiAM. Overall, the GKkM++ variants demonstrate the highest efficiency, re-
quiring the least execution time, often just a fraction of the time needed by the other

methods.

92

CHAPTER 4

THE UNIFORCE ALGORITHM FOR
CLUSTERING AND NUMBER OF CLUSTERS

EsTIMATION

4.1 Introduction

4.2 Locally unimodal clusters

4.3 Clustering based on local unimodality and the UniForCE algorithm
4.4 Experimental evaluation

4.5 Discussion and limitations

4.6 Summary

4.1 Introduction

An essential question to think about before clustering a dataset is the following: what
is a meaningful cluster and how can it be represented? The first part of the question
concerns the cluster assumption, that is, the characteristics that a subset of data should
exhibit in order to be considered a cluster. The second part, which is intertwined
with the former, is how to represent mathematically a cluster of the assumed nature.
Model-based assumptions consider a probabilistic model for each cluster, e.g. Gaus-

sian or linear models. Prototype-based assumptions partition data around objects that

93

can be centroids [121], medoids [122], synthetic prototypes [123], or various other
exemplars [124]. There are also several density-based assumptions, the most typical of
which is the density-level-based that relies on several thresholds expressing the min-
imum local density level that a continuous region should have in order qualify as
a cluster [125]. Mode-seeking approaches, on the other hand, use parametric density
estimation to locate the area in a region where the density is maximized [126].

This Chapter [89] relates to a different type of density-based cluster assumption
that focuses on the density shape. In most of the previous approaches, there are density
shape assumptions that are either implicit (e.g. prototype-based assumptions lead to
convex-shaped clusters) or consequential, but not preconditions (e.g. Gaussian mix-
ture modeling would always fit with Gaussian components regardless of the validity
of this assumption). The previously proposed explicit density shape cluster assump-
tions mainly concern Gaussianity [127, 128, 129]. Furthermore, the work in [55] was
one of the first to introduce unimodality, described in Chapter 1 and Section 1.2, as
an explicit assumption for clustering multivariate data. Unimodality was assessed by
the proposed dip-dist criterion, a statistical methodology for unimodality testing of
multivariate data that relies on multiple univariate unimodality tests (dip-tests) [50]
performed on the distribution of pairwise distances between data points.

Once a clustering model has been selected, a clustering solution of the assumed
properties is usually produced by an algorithm that optimizes an appropriate objec-
tive function. Algorithmic approaches include: k-means or expectation-maximization,
agglomerative methods, incremental (divisive) algorithms that add clusters one by
one, region growing or merging procedures, as well as hybrid approaches [11].
Among them, the incremental density-shape-based approaches have three notable ad-
vantages: i) they are robust as they employ well-founded statistical tests, ii) they
offer a straightforward way to estimate automatically the number of the clusters
k [127, 128, 129, 55, 56], and iii) also examine the clusterability of the data, since the
absence of a multi-cluster structure is formally defined as the null hypothesis and
can be statistically assessed [54].

Determining the number of clusters k& during the optimization procedure is one
of the most challenging problems in the field, especially in high-dimensions [54].
Most methods require k as input. Others claim to estimate k, but they essentially
translate the problem into another, hopefully easier, problem, i.e. the tuning of their

hyperparameters (e.g. [124, 126, 130, 131]). For estimating the number of clusters,

94

several internal cluster validation indices (CVIs) have been proposed, such as the sil-
houette, Davies—Bouldin, Dunn, and Calinski—Harabasz indices, among others [132].
Such CVIs value clusters that are compact and separate to each other. They define
compactness in terms of intra-cluster variance, or distance of the data points to clus-
ter centers, either of which favoring spherical or convex cluster structures. Moreover,
measuring cluster separation requires at least two clusters, i.e. they are undefined
for £ = 1, and hence they cannot decide the clusterability of the input. For these
reasons, they are not well-suited for guiding or evaluating clustering methods that
aim to detect an unknown number of arbitrary-shaped clusters, as is the case in our
work and the related literature [54].

It is important to note that an inadequate clustering assumption for a dataset
makes it more likely that £ will also be wrongly estimated, rendering the cluster-
ing result less informative. The existence of irregular cluster shapes is what makes
most cluster assumptions fail. Typical approaches for dealing with this issue depart
for the original dataspace. Spectral embeddings [133], deep data embeddings [134],
hierarchical local embeddings [135, 136], or data-dependent distance metrics such as
diffusion maps [137] or path-based metrics [138], they all aim at finding a new vector
space to represent the data, where -hopefully- the clusters would be nicely-shaped
and/or far from each other, hence typical methods will be able to recover them. It
should be stressed that those lines of work overlook the discussion of cluster assump-
tions, while the estimation of k is usually beyond their scope. However, the divisive
hierarchical method in [135] projects a data subset onto its principal direction and
introduces a notion of clusterability based on contiguous clusters, i.e., sets that can-
not be extended with additional data points without increasing their maximum in-set
nearest-neighbor distance. It relies on criteria aiming to capture local density gaps
rather than the overall shape of cluster density. Moreover, it does not offer a statisti-
cal test to assess the significance of the identified cluster structure. Finally, assuming
that single clustering objectives are not sufficient, multi-objective approaches have
been proposed combining objectives associated to different assumptions [139, 140].

In this Chapter, we study clustering in the original dataspace, aiming at developing
a clustering methodology that is flexible enough to identify irregular cluster shapes.
One of the approaches that has been followed is to consider multi-prototypes as cluster
representatives, and define variations of multiple-means clustering [141, 131]. Another

recipe is to first employ overclustering to find small highly homogeneous subclusters,

95

and then try to combine them into larger and more complex cluster shapes, for in-
stance via schemes that are density-based [142, 143, 144], a combination of the latter
with graph-based approaches [145, 146], or other visualization-based schemes [147].
Agglomerating subclusters is a long-known approach, and one of the initial proposi-
tions was to use it for reducing the sensitivity and complexity of hierarchical cluster-
ing [148], but it can also be useful for discovering irregular-shaped clusters through
a proper cluster linkage criterion. To some limited extent, this has also been explored
using the unimodality criterion [149, 150], in application-oriented studies, and with
simple merging criteria that would prevent the identification of irregular-shaped clus-
ters.

We focus on the concept of unimodality and propose a flexible cluster definition
called locally unimodal cluster. Such a cluster can be obtained by aggregating subclus-
ters provided by an initial overclustering partition through a merging procedure that
extends for as long as unimodality is locally preserved across pairs of subclusters.
In order to examine this local property, we propose an effective statistical approach
called unimodal pair testing that relies on the univariate dip-test for unimodality [50].
We exploit these elements to propose a cluster aggregation approach, the Unimodal-
ity Forest for Clustering and Estimation method (UniForCE), that boils down to: first,
overclustering the dataset into small homogeneous subclusters lying in convex sub-
regions, and then computing a spanning forest over the unimodality graph formed by
the unimodal pairs of subclusters. Each spanning tree of the forest connects sub-
clusters of the dataset that are aggregated in the same final cluster, and the number
of trees is an estimate for the number of clusters. Therefore, a maximal locally uni-
modal cluster extends for as long as unimodality is locally preserved. This feature
makes our definition flexible enough to identify typical unimodal as well as irregular-
shaped clusters that are statistically significant. Fig. 4.1 illustrates the main steps of
our method on a synthetic dataset. Our experimental study provides clear evidence
that locally unimodal clusters can model sufficiently real and synthetic datasets, and
that our algorithmic design allows the robust estimation of the number of clusters
while effectively partitioning the data.

The rest of the Chapter is organized as follows. First, in Sec. 4.2, we define the
locally unimodal cluster. In Sec. 4.3 we present the UniForCE clustering method and
provide its computational complexity. In Sec. 4.4, we provide extensive experimental

results and comparisons to real and synthetic datasets. Finally, in Sec. 4.5 we present

96

a discussion of the method’s properties and limitations, while Sec. 4.6 summarizes

the Chapter.

(¢) Spanning forest (d) UniForCE clustering

Figure 4.1: The UniForCE pipeline for locally unimodal clustering. The steps
followed by the proposed UniForCE clustering methodology are demonstrated on
a synthetic dataset (Complex 2D, see Tab. 5.1 in Sec. 4.4). The input dataset is first
overclustered into a large number of homogeneous subclusters lying in convex regions
of the original dataspace. Then, based on pairs of subclusters that are jointly unimodal
(unimodal pairs), a minimum spanning forest is computed, which provides a locally

unimodal clustering with clusters as disconnected components.

97

’ i

C1iCy fCy o
C1{Cp /C3,Cy. -

(a) (b) ()

Figure 4.2: Examples of locally unimodal clusters. a) Spherical Gaussian density.
b) Arc-shaped uniform density. ¢) Star-shaped density composed by 3 co-centric
Gaussian ellipses. In each case, the data are overclustered in subclusters, and the
computed unimodality graph includes edges (in green or gray color) between sub-
clusters that are unimodal pairs. Any sequence of distinct subclusters corresponds
to a path along which local unimodality is statistically confirmed. A spanning tree
(green edges) is a subgraph of the unimodality graph that connects all the subclusters

with the minimal number of edges.

4.2 Locally unimodal clusters

Our aim is to develop a clustering methodology that i) is able to capture complicated
cluster structures, ii) can automatically discover the number of clusters, while at the
same time iii) does not include any hard to tune hyperparameters. To this end, we
introduce the concept of a locally unimodal cluster by formulating how unimodality
extends across neighboring subregions that are part of the same larger structure. We

define the locally unimodal cluster as follows:

Definition 4.1. Locally unimodal cluster. A data subset C' C X is a locally unimodal
cluster, if there is a partition C* = {¢y,...,cx} of C into subclusters lying in convex
subregions, such that for every pair (¢;,c;) there exists a sequence S;; of distinct
subclusters, S;; = {s1 = ¢;, 51, .., Sn—1, Sp = ¢;}, Where the union of any two successive

subclusters s; U s;11 is unimodal.

A clustering partition C of X is a locally unimodal clustering if every cluster of
C is locally unimodal. The locally unimodal cluster definition is flexible enough to
encompass not only typical unimodal clusters, but also arbitrary-shaped clusters.

Fig. 4.2 presents examples of locally unimodal clusters, where each c¢; is a subcluster

98

and an edge between subclusters indicates that their union is unimodal. Examining
the Gaussian data density in Fig. 4.2a, we observe that there is a sequence S;; between
any subcluster ¢;, c¢;, represented as a path connecting them on the highlighted graph,
e.g. S19 ={c1,¢a,¢3,¢10,Co}-

This cluster definition can be exploited in a bottom-up clustering framework that
would start from an overclustering into a sufficient number of homogeneous subclus-
ters ¢; lying in convex subregions, which can be computed by a typical partitional
algorithm such as the k-means. Then, a way to identify unimodal pairs, i.e. subclus-
ter pairs whose union is unimodal, need to be defined. Two subclusters forming a
unimodal pair are expected to lie close to each other, since the union of distant sub-
clusters typically demonstrates a density gap that objects unimodality. The existence
of unimodal pairs enables the union of small homogeneous subclusters to larger lo-
cally unimodal clusters, and this can be accomplished in a statistically sound manner.
Our technique for deciding if two subclusters form a unimodal pair is presented in
Sec. 4.3.

Once the initial overclustering partition is computed, we can define the corre-
sponding unimodality graph having the subclusters as vertices and an edge between
each unimodal pair of subclusters (see Fig. 4.2). Note that a path in the unimodal-
ity graph defines a sequence of subclusters such that successive subclusters in the
sequence form unimodal pairs. We call such a path as unimodal path. Based on the
above description, it is evident that the union of subclusters corresponding to any
connected subgraph of the unimodality graph provides a locally unimodal cluster
of arbitrary shape. This is due to the fact that the subgraph is connected, there ex-
ists such a unimodal path between any two subclusters. The connected components
of the unimodality graph correspond to maximal locally unimodal clusters and define
the clustering solution that provided by our method. The details of our method are

described next.

4.3 Clustering based on local unimodality and the UniForCE al-

gorithm

In this section, we present the proposed clustering methodology and an algorithm

implementing it, called Unimodality Forest for Clustering and Estimation (UniForCE).

99

The methodology determines the maximal locally unimodal clusters by finding the
connected components of the unimodality graph, as explained in the section Sec. 4.2.
The general methodological framework is given in Alg. 4.1, and it comprises three
main modules: Overclustering, Unimodal pair testing, and finally Clustering by subcluster
aggregation. In the following subsections, we detail how UniForCE implements each

of these steps.

Algorithm 4.1 The general UniForCE framework for locally unimodal clustering

Require: X (dataset)

Require: K’ (number of subclusters, K’ > k*)
Require: M (minimum subcluster size)
Require: « (significance level)

1: Overclustering: Compute an initial overclustering of X into K’ homogeneous subclusters lying in
convex subregions. Eliminate small subclusters with less than M data points, and determine the
final overclustering partition C* into K < K’ subclusters.

2: Unimodal pair testing: Apply a statistical test to determine whether the union of two subclusters
admits unimodality (with significance level «). This induces the unimodality graph G among the
subclusters.

3: Clustering by subcluster aggregation: Compute the final clustering partition C by determining
the connected components of the unimodality graph G of the overclustering C™.

4: return the locally unimodal clustering partition C.

4.3.1 Overclustering

The overclustering is an essential initial step for our bottom-up strategy, since we
intent examine unimodality in local data regions and then to infer the larger scale
cluster structure. More specifically, the overclustering step oversegments the unknown
optimal partition C*, which we seek to discover, in K’ >> k* homogeneous subclusters
lying in convex subregions (Fig. 4.1b). Since k* is unknown, the hyperparameter K of
the method should be set to a sufficiently large value. The overclustering partition C*
will allow us to infer through a bottom-up aggregation the locally unimodal clusters
(Fig. 4.1d).

An algorithm of the k-means family can be employed to obtain a suitable over-
clustering partition containing homogeneous clusters lying in convex subregions. It
should be noted that for a large number of clusters, the performance of the stan-
dard k-means algorithm deteriorates, as it is merely improbable to draw a good

random initialization for many centers simultaneously. To mitigate this problem, we

100

(+)

Sest0 3 o o

(a) Unimodal case: Two clusters forming a (b) Multimodal case: Two clusters forming

unimodal pair. a multimodal pair.

Figure 4.3: Unimodal pair testing. Two subclusters, ¢; and c;, appear in orange
and blue, respectively, and their centers are shown as stars. The dotted line connects
the two centers, while the rigged line is its perpendicular bisecting hyperplane H;;.
On the top, histograms present the density of the univariate set F;;, containing the
point-to-hyperplane signed distances, which we test for unimodality using the dip-
test. a) Unimodal case: No density gap is observed between the subclusters, hence P,
is decided as unimodal. b) Multimodal case: A considerable density gap is observed

between the subclusters, hence F;; is decided as multimodal.

use instead the global k-means++ algorithm [88], which is an incremental variant that
exhibits robust clustering performance for large numbers of clusters.

Finally, in an additional preprocessing step (implemented by the function preprocess()
in Alg. 5.1), subclusters containing very few data points get eliminated, and their data
points get redistributed to the rest of the subclusters according to the k-means cluster
assignment rule. As the subclusters increase in number, they become naturally more
homogeneous, but their cardinality reduces. Since statistical testing lies at the heart
of our methodology, namely the dip-test of unimodality [50], we need to enforce a
minimum allowed subcluster size, let that be M, to ensure the validity of the test.
Empirical evidence from prior work suggests that a threshold to keep the dip-test
more reliable is the sample size to be greater that 50 data points [151]. As we de-
scribe in detail next, our method tests pairs or subclusters whether they are jointly

unimodal, which justifies setting the minimum subcluster size to M = 25 data points.

4.3.2 Unimodal pair testing

A major step in our algorithm is the unimodal pair testing procedure that decides
whether the union of two subclusters ¢;; = ¢; Uc¢;j, ¢;, ¢; € CT, results in a unimodal

cluster. We exploit the fact that we know the centers j;; and p; of the subclusters

101

(=) (+)

o oo %9 S0 ——— . .
. *_._7 __________ r_.;_qko .

(a) Imbalanced clusters: 75/25 size ratio (b) Balanced clusters: 25/25 size ratio

(p-value ~ 0.28). (p-value ~ 0.02).

Figure 4.4: The imbalanced modes problem and our subsampling solution. In this
example, the subcluster pair has originally a size ratio of 75/25. a) The unimodal pair
test fails to reject unimodality when all the data are considered. b) The problem is
tackled when testing for unimodality the balanced subsample (data points shown in

gray are discarded).

tested for merging. We first define the vector r;; = p1; — p; connecting these centers,
and the perpendicular bisecting hyperplane H;; to r;; passing through its midpoint.
Formally, H;; : w;;x +b;j; = 0, where 2 € R is an input data point, w;; is the vector of
coeflicients of the hyperplane, and b;; is the intercept. More specifically, the equation
of H;j is:

(1j — i) " — %(uj —) (pi + 1) = 0, (4.1

and the signed distance of a data point = to H;; is given by:

(g —) " = 5(p5 —) " (s + 11y)

[y = puall

Let P;; the set that contains the values d(z, H;;) for every = € ¢;;. We apply
the Hartigans’ dip-test [50] for unimodality to F;; to decide whether it is unimodal
with regards to a statistical significance level «. Illustrations of a successful and an
unsuccessful unimodal pair test (when it decides for unimodality, and multimodality,
respectively) are provided in Fig. 4.3. It is clear that if there is a density gap between
the two subclusters, then the signed distances in P;; will be multimodal, and therefore
the dip-test is expected to reject unimodality.

The identification of imbalanced modes is a challenging aspect [151]. In our con-
text, the dip-test employed in the unimodal pair test may fail to reject unimodality
when one of the two subclusters is significantly smaller, even when the two associ-
ated modes are quite well-separated. To address this issue, our approach is to use a

balanced subsample from the two tested subclusters. Specifically, all the data points

102

Algorithm 4.2 Unimodality pair test for two subclusters

Require: c;,c; (two subclusters)

Require: L + 11 (odd number of Monte Carlo simulations)
Require: o < 0.001 (significance level)

1: if |ci| > |c;| then

2: Swap the indices i <+ j

3: end if

4: Compute the centers of u;, p; of the two subclusters

5: Find the perpendicular bisecting hyperplane H;; to the vector r;; = uj — u; connecting the two centers // Eq. 4.1
6: Compute the set P; with the signed distances from H;; for all samples in the smaller cluster c; // Eq. 4.2
7: Initialize v as a zero vector with L elements // Votes for unimodality
8: for all I € [L] do

9: Create c;. by sampling |c;| elements uniformly at random without replacement from the larger cluster c;

10: Compute the set P; with the signed distances from H;; for all samples in cfj // Eq. 4.2
11: P < P,UP; // The set of all signed distances of c; U c;. from H;;
12: p < dip-test(P;;) // The p-value of the Hartigans’ dip-test for unimodality
13: v[l] « 1{p > a} // Store the vote against or for unimodality, 0 or 1 respectively
14: end for

15: m « 1{ SE ol > é} // Compute the majority vote, either 0 or 1

16: return m

are used from the smaller subcluster, let that be ¢;, and a uniform random subsample
¢; C ¢; of equal size is drawn from the larger subcluster to produce the balanced set
/

¢y = ¢ Udj, || = 2[ci|. Thus, the set P; will contain the signed distances to that

/
15°

hyperplane H;; of only the data points of ¢;;, and this will be tested as before with
the dip-test for unimodality. Note that the hyperplane H;; is computed once using
all the data and does not depend on subsampling. Fig. 4.4 illustrates this problem of
wrongly accepting unimodality due to the imbalance of the subclusters in our specific
context, and our workaround.

To account for imbalanced subcluster sizes, this procedure is repeated (Monte
Carlo experiment) for an odd number of times L, and decide the success or failure of
the unimodal pair test based on the majority of the results. The detailed algorithm

for the unimodal pair test is presented in Alg. 4.2.

4.3.3 Finding connected components

The application of the unimodal pair testing procedure on subcluster pairs provides
the unimodality graph of the initial overclustering partition. Finding the connected
components of the unimodality graph is the next step in our methodology. We choose
to represent each connected component by a spanning tree, which is the minimum

structure required. Each spanning tree of the unimodality graph, called unimodal span-

103

ning tree, represents a maximal locally unimodal cluster, and the unimodality spanning
forest provides the overall clustering partition. The UniForCE algorithm computes
the unimodality spanning forest and uses an online graph construction procedure to
minimize the number of the required unimodality tests. Specifically, we make two
relaxations that make the computation much more efficient without affecting the clus-
tering result. First, we remark that any spanning tree (not necessarily the minimum
one) connecting the same set of subclusters of a given overclustering would produce
the same clustering partition. Second, since unimodality extends locally across neigh-
boring subclusters, we can use the proximity of between pairs of subclusters as a
preference for the order in which pairs shall get tested for unimodality.

The exhaustive computation of the unimodality graph for K subclusters would

require K(KT_I) unimodality tests. In order to reduce the computational cost, we use
a simpler strategy by exploiting the above-mentioned preference order for testing
pairs of (closely) neighboring subclusters. We start with a complete distance graph G,

whose vertices are the subclusters and the edge weights 1V are the KE-L)

5) pairwise
Euclidean distances (using other alternatives adapted to the data is possible) between
the centers of the subclusters. Then, we consider the proximity of two subclusters
as an indicator for the possibility that unimodality extends across those subclusters,
hence we test pairs of subclusters in pairwise proximity order.

The unimodal spanning forest approximation /' is computed over G by also testing
for spanning unimodality between pairs of vertices. Algorithmically, we compute F’
using a modification of the classical Kruskal’s algorithm [152]. Initially, F' consists
of K trees, each with only one vertex. The edges of G, sorted in ascending weight
order, indicate the order in which unimodality between pairs of vertices should be
tested. When a test for a pair of vertices is successful, we add an edge in F' connecting
those vertices, and the number of trees (also clusters of the partition) is reduced by 1.
While traversing this list of edge weights, we skip pairs of vertices that are already in
the same spanning tree of F'. Operating in the described way minimizes the number
of unimodality tests that need to be performed without affecting the final clustering

result.

104

Algorithm 4.3 The UniForCE algorithm for clustering and estimation of the number

of clusters
Require: X (dataset)

Require: K’ < 50 (number of subclusters)

Require: M < 25 (minimum subcluster size)

Require: L + 11 (odd number of Monte Carlo Simulations)

Require: a < 0.001 (significance level)

1: {ct = {ci}ierx]> # = {mi}tie[k)} < preprocess(global k-means++(X, K'), M) // Overclustering into K subclusters, with
more than M data points each

2: Consider the subclusters’ centers {;} as graph vertices {V;}, i € [K]

3: Compute the distance graph G with edge weights W;; = dist(u;, 15), 4, € [K] // dist(-,-) < Euclidean distance

4: Initialize the unimodality spanning forest F' with K singleton trees, one for each V; € G, i € [K]

5: for each edge (V;,V;) € G in ascending order of distance W;; do

6: if belongInDifferentTrees(F, V;, V;) and isUnimodalPair(c;, ¢;, L,) then

7 Add the edge (V;, V;) in the unimodality spanning forest F’

8: endif

9: end for

10: for each unimodal spanning tree 7; € F' do

11: Create the cluster C; with the vertices V; € T} // Gather all data points of those subclusters
12: end for
13: return the locally unimodal cluster partition C = {C1, ..., C|r|}. and the estimated k = | F|

4.3.4 Complexity analysis

UniForCE, as all methods that rely on the dip-test, can benefit from a dramatic
acceleration of the statistical tests. Instead of computing the dip statistics, we can make
use of a lookup table with precomputed bootstrap dip statistics of Uniform samples',
over a grid of sample sizes and significance levels. The grid needs to be sufficiently
dense for the scale of the treated problem. Other approaches to accelerate the dip-test
have appeared in the literature [153], offering directions for further refinements.
For the overclustering step, a computationally cheap choice is to use k-means++ [29].
However, in Sec. 4.3.1, we justified the use of the global k-means++ algorithm [88] by
the fact that it takes O(Q K Nd) time, where () is the number of candidates examined
per incremental iteration to initialize the new cluster, K is the desired number of
subclusters, N is the size of the dataset, and d is the dimensionality of the data. The
number of candidates () should be O(1), e.g. between 10 and 20. Thus, the overclus-
tering step takes O(K Nd) time. Postprocessing by removing very small subclusters
from the overclustering partition and reassigning their elements takes O(KN) time.
In the subsequent analysis, we delve into the overall time complexity associated

with the invocations of the isUnimodalPair function. The cost to compute the dip

!'In our implementation we used the repository that is available at: https://pypi.org/project/diptest/.

105

https://pypi.org/project/diptest/

Table 4.1: The real datasets used in the experiments. N is the number of data
instances, d is the dimensionality, and & is the number of labeled classes (i.e. the
ground-truth £*). With ‘*’, we mark an embeddings dataset obtained by training an
autoencoder on the original dataset. Several of the used real datasets come from the

UCI machine learning repository.

Dataset Type Description N d k Source
EMNIST Balanced Digits * Vector Handwritten digits 28000 10 10 [154]
EMNIST Balanced Letters * Vector Handwritten letters (A-]) 28000 10 10 [154]
EMNIST MNIST * Vector Handwritten digits 70000 10 10 [154]
HAR * Vector Sensor data from smartphones 10299 10 6 [95]
Isolet Spectral Speech recordings pronouncing letters 7797 617 26 [95]
Mice Protein Expression Tabular Expression levels of proteins 1080 77 8 [95]
Optdigits Image Handwritten digits 5620 8x8 10 [95]
Pendigits Timeseries Handwritten digits 10992 16 10 [95]
TCGA Tabular Cancer gene expression profiles 801 20531 5 [95]
Waveform-v1 Vector Waveforms with multiple attributes 5000 21 3 [95]
YTF * Vector Face images from videos 2000 10 40 [155]
Complex 2D (synthetic) Vector Multiple structures inside a ring (Fig. 4.1) 5000 2 6 ours

statistic of a dataset of size n using Hartigans’ dip-test is O(n) [50], provided that the
values are sorted. However, since sorting is necessary, the time complexity for calling
once the isUnimodalPair() function is O(nlogn). We can show that the total time

complexity of computing the dip statistic for all unimodal pairs is of O(N log N):

S Vil + Vi tog(1Vil + Vil) < (S2(Vil+1Vil)) log N
ijelK] ijelK]
i<j

< 2N logN.

Note that the number of tests L is supposed to be O(1), e.g. between 1 and 11. The
computation of the spanning forest F' takes O(K?log K') time. Constructing the final
clustering takes O(N) time. Thus, the total time complexity of UniForCE algorithm is
O(KNd+ KN + NlogN + K?log K).

4.4 Experimental evaluation

4.4.1 Experimental setup

Datasets. Tab. 5.1 summarizes the datasets that we used for experimental evaluation,

which vary in size N, dimensions d, number of clusters k (this is the number of

106

labeled classes that we consider as the ground-truth value k*), data type, and domain
of origin.?

The datasets Optigits, Pendigits, EMNIST MNIST (EMNIST-M), and EMNIST Bal-
anced Digits (EMNIST-BD) comprise handwritten digits, with 10 classes correspond-
ing to the digits from 0 to 9. Optigits consist of images with a resolution of 8 x 8, while
EMNIST-M and EMNIST-BD contain images with a higher resolution of 28 x 28. In
contrast, Pendigits’ data instances are represented by 16-dimensional vectors contain-
ing pixel coordinates. EMNIST-BL is a dataset with handwritten letters, with capital
and non-capital characters, from which we selected the 10 classes corresponding to
the letters A to J, that account for 28000 data points. The Isolet dataset is a collection
of speech recordings containing the sound samples of spoken letters, represented by
vectors of 617 spectral coefficients extracted from the speech signal. The TCGA is a
collection of gene expression profiles obtained from RNA sequencing of various can-
cer samples. It includes 801 data instances, clinical information, normalized counts,
gene annotations, and 6 cancer types’ pathways. The Mice Protein Expression dataset
consists of the expression levels of 77 proteins/protein modifications that produced
detectable signals in the nuclear fraction of the cortex. It includes 1080 data points
and 8 eight classes of mice based on genotype, behavior, and treatment features. The
Waveform-v1 consists of 3 classes of generated waves with 5000 data points. Each
class is generated from a combination of 2 of 3 ‘base’ waves. The Human Activity
Recognition (HAR) dataset consists of data recorded from smartphone accelerometers
and gyroscopes as participants performed various activities such as walking, sitting,
and standing. Each instance consists of a 560-dimensional feature vector. The dataset
contains 10299 instances categorized into 6 activity classes. The YouTube Faces (YTF)
dataset consists of face images extracted from videos of a wide range of individu-
als. For our subset, we randomly selected 40 individuals and sampled 50 images per
person, yielding a total of 2000 face images.

EMNIST is an extended and more challenging MNIST dataset. Due to the high
complexity of the three EMNIST versions and the YTF dataset, we used these datasets
after creating a high-quality data embedding via an Autoencoder (AE). The architec-
ture of the convolutional AE is highly used in literature for clustering purposes [156].
Specifically, the encoder part consists of 3 convolutional layers with channel numbers

32, 64, and 128, and kernel sizes of 5 x 5, 5 x 5, and 3 x 3, respectively. This is followed

2The UCI datasets are available at: https://archive.ics.uci.edu/datasets.

107

https://archive.ics.uci.edu/datasets

Table 4.2: Summary of the experimental results. The best values per dataset are
shown in bold. Cases marked by { and i indicate experiments that failed due to

memory/time and method constraints, respectively.

EMNIST-BD EMNIST-BL EMNIST-M YTF

Methods k AMI ARI k AMI ARI k AMI ARI k AMI ARI
X-means 357+10 0.37 0.06 286+ 9 0.37 0.07 576+15 0.35 0.04 T i T
G-means 120+ 5 0.44 0.15 139+11 0.41 0.12 265+ 8 0.39 0.07 T T 1
PG-means 42+ 4 0.58 0.38 44+ 4 056 0.34 48+ 5 0.58 0.37 8+6 0.20 0.20
dip-means 7or8 0.60 0.53 5+ 0 0.60 0.48 9+ 0 0.75 0.72 8+0 0.43 0.15
pdip-means 7+ 0 0.55 0.45 3+ 0 0.45 0.23 5+ 0 0.61 0.44 6+0 0.39 0.14
Mean Shift T T T T T T T T T 49+0 0.92 0.76
HDBSCAN 12+ 0 0.40 0.1 3+ 0 0.02 0.01 10+ 0 0.45 0.19 50+0 0.91 0.83
SMMP T T T T T T T T T 28+0 0.88 0.77
RCC 82+ 0 0.74 0.63 82+ 0 0.52 0.35 T T T 221+0 0.65 0.50
UniForCE 10+ 1 0.87 0.87 12+ 1 0.74 0.69 13+ 1 0.84 0.85 39+1 0.94 0.89

Ground-truth 10 - - 10 - - 10 - - 40 - -

Optdigits Pendigits Isolet Waveform-v1

Methods k AMI ARI k AMI ARI k AMI ARI k AMI ARI
X-means 422+ 9 0.34 0.05 1472419 0.25 0.02 233+ 4 0.49 0.16 10+0 0.32 0.22
G-means 57+ 5 0.53 0.29 184+11 0.44 0.15 101+ 6 0.57 0.33 12+0 0.31 0.21
PG-means i i i 25+ 3 0.58 0.45 i i i 4+1 0.45 0.50
dip-means 4+ 0 0.38 0.27 9+ 1 0.62 0.35 4+ 0 030 0.14 4+0 0.42 0.29
pdip-means 12+ 1 0.69 0.56 12+ 1 0.69 0.43 16+ 1 052 0.34 1+0 0.00 0.00
Mean Shift 73+ 0 0.63 0.66 17+ 0 0.65 0.51 I i T 11+0 0.81 0.91
HDBSCAN 9+ 0 0.48 0.26 28+ 0 0.69 0.54 3£ 0 0.02 0.01 4+0 0.86 0.94
SMMP 13+ 0 0.71 0.69 34+ 0 0.25 0.13 6+ 0 0.13 0.02 56+0 0.34 0.25
RCC 19+ 0 0.87 0.89 46+ 0 0.75 0.75 12+ 0 0.53 0.20 3+0 1.00 1.00
UniForCE 11+ 1 0.85 0.80 17 1 0.78 0.76 27+ 2 071 0.41 3+0 1.00 1.00

Ground-truth 10 - - 10 - - 26 - - 3 - -

HAR TCGA Mice Protein Complex 2D

Methods k AMI ARI k AMI ARI k AMI ARI k AMI ARI
X-means 1536+20 0.15 0.01 20+ 1 0.51 0.32 244+ 2 0.27 0.05 1+0 0.00 0.00
G-means 99+ 5 0.32 0.09 i i i 32+ 1 071 0.75 96+1 0.28 0.04
PG-means 2+ 1 0.40 0.16 T t T i i i 23+2 0.42 0.23
dip-means i T T 2+ 0 0.36 0.24 5+ 0 0.67 0.05 26+1 0.32 0.16
pdip-means T T T i i i 9or10 0.96 0.96 6+0 0.37 0.23
Mean Shift 13+ 0 0.60 0.49 T T T 6+ 0 0.73 0.66 160 0.33 0.19
HDBSCAN 9+ 0 0.52 0.39 5+ 0 0.55 0.35 11+ 0 093 0.95 7+0 0.90 0.95
SMMP 22+ 0 0.16 0.08 4+ 0 0.72 0.65 11+ 0 0.43 0.21 10+0 0.07 0.06
RCC 118+ 0 0.56 0.43 8+ 0 0.84 0.85 54+ 0 0.52 0.32 498+0 0.09 0.01
UniForCE 6+ 1 0.62 0.53 50r6 093 0.94 8+ 0 093 091 6+0 0.98 0.99

Ground-truth 6 - - 5 - - 8 - - 6 - -

108

by a two-layer MLP with 384 and 10 neurons, respectively. The decoder part of the
AE is symmetrical with the encoder. LeakyReLLU activates all intermediate layers of
the AE with a slope equal to 0.1. We trained the AE for 100 epochs using the Adam
optimizer with a constant learning rate of 0.001, batch size of 256 and with the default
setting of 5, = 0.9 and S; = 0.999.

Additionally, for the HAR dataset, we employed a widely used autoencoder ar-
chitecture for feature extraction, following designs commonly adopted in the litera-
ture [73]. Specifically, the encoder consists of three fully connected layers with 500,
500, and 2000 neurons, respectively, followed by a latent space of 10 neurons. The
decoder mirrors the encoder architecture symmetrically. All intermediate layers use
LeakyReLU activation with a negative slope of 0.1. The autoencoder was trained using
the same procedure described previously.

For the Mice Protein Expression dataset, we applied one-hot encoding to manage
categorical values and to address the few missing data; we imputed the missing values
by utilizing the mean values for each column. As a preprocessing step, we used min-
max normalization to map the attributes of each dataset to the [0, 1] interval to prevent
attributes with large value ranges from dominating the distance calculations, and to
also avoid numerical instabilities in the computations.

The 2-dimensional Complex 2D is the only synthetic dataset that we use in the
first experimental part. It contains multiple clusters inside a ring (see Fig. 4.1), some
of which are non-convex and pairwise non-linearly separable. More additional ex-
periments on synthetic datasets are presented in Sec. 4.4.4.

Compared clustering methods. The performance of the UniForCE algorithm is
compared with several methods that perform clustering and automatic estimation
of the number of clusters.® The most related category of methods are those us-
ing statistical tests: X-means [127], G-means [128], PG-means [129], dip-means [55],
and projected dip-means [56] (pdip-means). Additionally, we considered approaches
that do not rely on statistical tests in their optimization procedure, such as HDB-
SCAN [130], RCC [157], SMMP [143], and Mean Shift [158]. HDBSCAN is a method
that performs DBSCAN over varying epsilon values and integrates the results to find
a clustering partition that gives the best stability over epsilon. Since, by design, we
stay in the original data space, we do not consider approaches that integrate embed-

ding and clustering, such as deep clustering methods. In all experiments, we fixed

3Machine specifications: Intel® Core™ i7-8700 CPU at 3.20 GHz and 16 GB of RAM.

109

our hyperparameters to X = 50 (number of initial subclusters), o = 0.001 (statistical
significance level), M = 25 (minimum subcluster size), and L = 11 (number of Monte
Carlo simulations).

Evaluation measures. For evaluating how well a clustering partition matches
the ground-truth label information, we compute the Adjusted Mutual Information

(AMI) [159] measure defined as:
1(Y,C) — E[I(Y,C)
max{H(Y), H(C)} - E[[(Y,C)]’

where Y denotes the vector of ground-truth labels, C' denotes the vector of cluster

AMI(Y,C) =

labels produced by a clustering algorithm, / is the Mutual Information measure, H
the entropy of a partition (either the ground-truth or the produced one), and E[] is
the expected value. We also compute the Adjusted Rand Index (ARI) [160] measure as

follows:

RI(Y,C) — E[RI(Y, C)]

max(RI) — E[RI(Y, C)]’

where RI is the Rand Index measuring the fraction of agreement between Y and C.

ARI(Y, C) =

Higher AMI and ARI values indicate that a clustering partition matches better with
the ground-truth labels. We report the average values for k, AMI and ARI obtained
from 30 executions of each method on each dataset. Care is needed when interpreting
results concerning the estimation of the number of clusters £, since a correct estimation
does not necessarily imply a correct clustering solution. Safer conclusions can be

drawn by considering together the AMI measure and the estimated k.

4.4.2 Experimental results on real data

The experimental results are summarized in Tab. 4.2. First, we empirically confirm
results known in the literature, that top-down methods such as X-means and G-
means fail to capture the structure a dataset unless their assumptions are rather
true. X-means exploits the BIC criterion, while G-means relies on statistical tests for
Gaussianity. Their estimations of the number of clusters is one or even two orders
of magnitude higher than the actual number of clusters in the data. Dip-means and
pdip-means are also top-down approaches but they rely on unimodality tests and
consistently outperform X-means and G-means providing better estimations for the
number of clusters. Therefore, it is evident that the unimodality-based methods per-
form better compared to methods that make ‘stricter’ assumptions, such as Gaussian-

ity. However, on datasets containing many clusters, both dip-means and pdip-means

110

terminate too early and fail to reasonably estimate the number of clusters. There are
two distinct sources for this shortcoming: first, their approach for testing dataset uni-
modality (such as the dip-dist, which is a ‘meta-test’, and variations of it) is not very
effective in the multivariate setting and, since the methods operate in a top-down
fashion, there is high chance for false positive identification of unimodality; second,
the structure of the true clusters may be complex, thus the classical unimodality as-
sumption may not be valid. This is what we aim to capture with the proposed locally
unimodal cluster definition. In addition, Mean Shift performed well only in the YTF
dataset. HDBSCAN gave promising results in YTF, Waveform-v1 and Mice Protein,
while its performance was poor in the remaining datasets due to low AMI and ARI
values or false £ detection. The SMMP method produce promising results only in
YTF, Optidigits and TCGA datasets. The RCC method produced satisfactory results
on the Optdigits, Waveform-vl and TCGA datasets, yet it failed on the rest of the
benchmark datasets because the k estimation is far from the ground truth labeling.

The UniForCE algorithm performed satisfactorily on all benchmark datasets. It
produced high-quality estimates of the number of clusters and high-quality cluster-
ings with a high AMI on all datasets. More specifically, on the EMNIST-BD, EMNIST-
BL, YTF, Waveform-v1, Isolet, HAR, TCGA, and Complex 2D datasets, UniForCE out-
performed the other methods in both estimating & and providing clustering solutions
with high AMI and ARI. In addition, the UniForCE method had the best solutions
for k£ in the Optdigits and Mice Protein datasets, while it was highly competitive in
AMI and ARI. Finally, in the Pendigits and EMNIST-M datasets, the method had
very high AMI and ARI scores with good performance on k, where it overestimated
the ground truth labeling by a small margin. However, it should be noted that the
detectable cluster structure is not always aligned with the number of classes labeled
in the dataset.

Finally, Fig. 4.5 provides visualizations of UniForCE clustering results on 6 of the
real datasets reported in Tab. 4.2. The visualizations are produced in an unsupervised
manner by 2D ¢-SNE embeddings, which are then colored by the cluster labels decided
by UniForCE. In addition, the associated AMI scores are shown in each case. The
results provide clear evidence that the local unimodality clustering performed by
UniForCE is meaningful as it identifies well the cluster structure of high-dimensional

real data.

111

Table 4.3: Sensitivity analysis of hyperparameters «, L, and M. Results are reported
for 30 experiments per setting, showing how variations in the significance level «, the
number of Monte Carlo simulations L, and the minimum subcluster size M affect
the clustering performance across six datasets. Performance is evaluated based on the
number of clusters k, AMI, and ARI.

EMNIST-BD EMNIST-BL Pendigits

o k AMI ARI k AMI ARI k AMI ARI

0.01 10+1 0.87 0.87 16+ 1 0.70 0.67 19+1 0.77 0.75
0.001 101 0.87 0.87 12+ 1 0.74 0.69 171 0.78 0.76
0.0001 100 0.87 0.87 11+ 1 0.74 0.67 161 0.79 0.76

L k AMI ARI k AMI ARI k AMI ARI

1 10+1 0.87 0.87 13+ 1 0.73 0.66 17+1 0.78 0.75
5 10+£0 0.87 0.88 13+ 1 0.74 0.67 17£1 0.78 0.75
11 101 0.87 0.87 12+ 1 0.74 0.69 171 0.78 0.76

M k AMI ARI k AMI ARI k AMI ARI

10 10+1 0.87 0.87 12+ 1 0.75 0.67 17+1 0.78 0.75
15 10+1 0.87 0.87 13+ 1 0.74 0.67 17+1 0.78 0.75
25 10+1 0.87 0.87 12+ 1 0.74 0.69 171 0.78 0.76

Ground-truth 10 - - 10 - - 10 - -
Waveform-vi TCGA Complex 2D
a k AMI ARI k AMI ARI k AMI ARI

0.01 4+1 0.89 0.92 6+ 0 0.88 0.88 61 0.94 0.96
0.001 3£0 1.00 1.00 S5or6 093 0.94 60 0.98 0.99
0.0001 3+0 1.00 1.00 5+ 0 0.96 0.98 6+0 0.98 0.99

L k AMI ARI k AMI ARI k AMI ARI

1 3+0 1.00 1.00 61 091 0.92 6+0 0.98 0.99
5 31 1.00 1.00 S5or6 091 0.92 6+0 0.97 0.98
11 3£0 1.00 1.00 5or6 093 0.94 60 0.98 0.99

M k AMI ARI k AMI ARI k AMI ARI

10 3+0 1.00 1.00 5+ 0 096 0.97 6+0 0.98 0.99
15 3+0 1.00 1.00 5o0or6 093 0.94 60 0.98 0.99
25 3+0 1.00 1.00 5or6 093 0.94 6+0 0.98 0.99

Ground-truth 3 - - 5 - - 6 — _

112

¥
Y-
SN ¢
g_g < .
R /7% o
¥ Y B
.av ‘_‘:l(,.l N
e ‘ :
[] f ﬂ
(a) EMNIST-BD (AMI:
.87) (b) YTF (AMI: .94)
)
":})‘)
524 7Ry
L T P d e
& ! S
° "‘kl.'. e
“ é:ﬁ;%}w
% . . _
(f) Mice Protein (AMI:
(d) HAR (AMI: .63) (e) TCGA (AMI: .93) .93)

Figure 4.5: ¢-SNE visualization of UniForCE clustering results on real
datasets. The embeddings are colored by the cluster labels decided by UniForCE

for 6 of the real datasets.

4.4.3 Sensitivity study using real data

To complement our experimental analysis, we conducted a sensitivity study on the
main hyperparameters of UniForCE. First, we study the influence of the overcluster-
ing resolution (K) in the performance of our method (which was fixed to K = 50
earlier) by experimenting within a range K = 1,...,100. The plots in Fig. 4.6a,
showcase that the UniForCE method is quite robust with respect to the parameter K,
except for the EMNIST-BL dataset, where the final number of clusters k increases as
the initial number of clusters K increases. This may be an indication of the existence
of a large number of substructures (much higher than the number of ground truth
classes k*). Finally, Fig. 4.6b provides a detailed view over the effect that the value
of K has on the AMI measure. For completeness, we included for each curve a first
part appearing in gray, which corresponds to when K < k*, and therefore the cases

where the initialization is not an overclustering, but rather an underclustering.

113

N
v

—e— Pendigits —e— Waveform
—e— EMNIST BD TCGA
EMNIST BL —e— Complex 2D

N
o

0.9

=
w
-
)

0.8

|

v
AMI

0.7 A

Estimated number of clusters (k)

0.6

o

0 10 20 30 40 50 60 70 80 90 100 05 P |07 Pendigits - —e— Waveform

~e— EMNIST BD TCGA
Number of subclusters (K) EMNIST BL —e— Complex 2D

0.4

T T T T T t T T T T T
0 10 20 30 40 50 60 70 80 90 100

(a) k£ vs K: Estimation of the number of Humber of subcluters (0
clusters (k) by the UniForCE method as a (b) AMI vs K: Clustering performance (AMI
function of the number of starting subclus- score) by the UniForCE method as a function

ters (K). of the number of starting subclusters (K).

Figure 4.6: Comparison of clustering results. The gray part of each curve corre-

sponds to clustering solutions where K < k* for a dataset.

In our sensitivity study we also analysed the influence of the significance level
«, the number of Monte Carlo simulations L, and the minimum subcluster size M.
To isolate the effect of each parameter, in each experiment we varied a single hy-
perparameter while keeping the others fixed to default values (K = 50, a = 0.001,
L =11, M = 25). For each configuration, we performed 30 independent executions
and evaluated the results using the estimated number of clusters £, AMI, and ARI.
As shown in Tab. 4.3, lower values of & make UniForCE more conservative, often
discovering fewer clusters, e.g. see the Pendigits and EMNIST-BL datasets. Regarding
the parameter), which sets the minimum subcluster size for applying the dip-test,
our experiments show that the algorithm remains effective even for M < 25, where
M = 25 is a value suggested by the literature [151]. In addition, the performance
of the UniForCE method remains remarkably stable across different values of L.
Overall, the algorithm performed consistently well across all the settings tested, fur-
ther demonstrating its robustness and reliability under a wide range of parameter

configurations.

4.4.4 Experimental results on synthetic data

To provide further insight into the UniForCE’s clustering performance, we conducted

additional experiments with synthetic 2D and 3D datasets that have been used in

114

'EE RS
R EE
g E R
L E B X

Figure 4.7: Clustering results using the UniForCE algorithm on a variety of 20 syn-

thetic datasets.

the related literature®. Fig. 4.7 presents a panorama of 20 cases containing several
typical and irregular shapes: Gaussian clusters, Uniform shapes, rings, rectangles,
very elongated forms such as lines or ‘moons’, irregular shapes, and nested clusters.
In some cases, the clusters are not linearly separable and/or they are imbalanced in
terms of number of data points and spread size. The obtained results are impressive:
the locally unimodal cluster definition seems versatile enough to capture the variety
of data densities and shapes, and also the algorithm manages to find meaningful
clustering solutions. In only few cases, e.g. those in subfigures (1,3) and (3,1), the
postprocessing of the overclustering decided to eliminate very small initial subclusters.
The centers of those subclusters appear as red stars. Such small initial subclusters

occurs quite rarely in practice, and therefore the postprocessing of the overclustering

“They are available at: https://github.com/deric/clustering-benchmark.

115

https://github.com/deric/clustering-benchmark

is of minor importance.

4.5 Discussion and limitations

Our main contribution is the introduction of the local unimodality concept and the
design of a tailored statistical unimodality test for pairs of subclusters. This in turn
allows the definition of the unimodality graph that summarizes the density of the data
with respect to local unimodality. The edge weights of this graph are the p-values
of the associated local unimodality tests, while the given significance level o defines
a threshold that eliminates edges with p-value < «, and reveals the data clusters as
connected components. In that sense, the clustering problem is already solved and
what remains for an algorithmic scheme is to identify those connected components.
The choice of how to achieve this latter does not affect the clustering result.

From an algorithmic point of view, UniForCE’s scheme can be understood as find-
ing any spanning forest in the thresholded unimodality graph. Note the resemblance
to single-link agglomerative clustering, which would find the same top-level clusters
(knowing the stopping k), however this can be understood as finding the minimum
(or maximum) spanning forest in a distance (respectively similarity) graph. The ad-
vantage of the bottom-up algorithmic scheme we propose is that it computes only a
sufficient subset of local unimodality tests instead of the whole unimodality graph.
This is achieved by testing pairs of subclusters in ascending order with regards to the
distance between their centers (taken as a rough indication for homogeneity), and,
as clusters get aggregated, pairs of subclusters already belonging to the same cluster
are not tested.

From a general standpoint, the identification of arbitrary-shaped clusters can be
enabled mainly through data aggregation using a local cluster-merging criterion,
which is the most crucial element of each method. Such a criterion allows a cluster
to extend over a region for as long as a chosen property holds, without commit-
ting to any global cluster shape. This general strategy has been used extensively in
the literature, either formalized as a single-link agglomerative, or as a density-based
approach (DBSCAN and variants). The latter grows a cluster region toward a neigh-
boring area using a local data density criterion. An advantage of this cluster-growing

criterion is that it can also decide the termination of the process, hence estimates the

116

number of clusters. This is not the case for agglomerative clustering that needs an ex-
ternal termination criterion, typically not associated to the employed cluster-merging
criterion.

Despite the numerous clustering algorithms proposed in this vein, the main lim-

itation is that they use heuristic cluster-merging/-growing criteria whose parameters
are particularly difficult to tune; e.g. they may rely on distances between clusters, sim-
ple features of local geometry, cluster variance, local density level, etc. UniForCE’s
novelty lies in that it uses the local unimodality to control the cluster aggregation,
which is done in a statistically sound way and without involving external stopping
criteria.
Deploying UniForCE in practice and limitations. In practice, finding a quality
overclustering needs attention (Sec. 4.3.1), mainly because each subcluster is assumed
to be a homogeneous segment of the data density that, without any further revision,
will be eventually associated to one of the final clusters. The number of subclusters K
obtained is determined by the user guess K’, where K’ > K > k, and the minimum
size of admissible subcluster M. K’ and M set together the resolution of the final
clustering as clusters that are smaller than the inititial X’ subclusters or have less
than M data points cannot be identified. Since our methodology relies on statistical
testing on pairs of subclusters, their union needs to have sufficient data density. The
proposed default value of M = 25 data points is so that 2M/ > 50, which is the
minimal sample size for reliable local unimodality testing using the dip-test [151].
In practice, this value not only is it sufficient for all the datasets we experiment with
later, but our sensitivity analysis shows that the method is robust even for lower M
values (see Sec. 4.4.2 and 4.4.3).

Although it is possible to drop the hyperparameter K’ and ask for a maximal
overclustering constrained only by a chosen small M value, that strategy would be
computationally expensive for large datasets, and would also challenge the local uni-
modality testing by always testing very small samples. The role of K’ is, to mitigate
those risks, at the cost of a not so sensitive tuning. Provided M = 25, we provided
evidence suggesting that setting K’ hyperparameter requires way little sophistication:
i) for different K’ values UniForCE finds similar final data partitions; ii) UniForCE
seems able to produce high quality results with a fixed K’ value in several different
datasets, for instance we used K’ = 50. The sensitivity analysis for this choice is

provided in Fig. 4.6.

117

An inherent limitation of identifying clusters based on the property of local uni-
modality is that it focuses on the local shape of the data density and hence neglects
the level of density, as well as the abruptness of the density variation. Moreover,
regarding the specifics of the UniForCE algorithm and the local statistical tests in-
volved, intensive noise between two clusters could affect the overclustering by placing
there subclusters that could eventually lead to a false merging of two clusters. In that
sense, in such cases, our current implementation may underestimate the number of
clusters. Issues related to noise and data density variation could be addressed at three
levels: i) by a generic denoising preprocessing step before applying UniForCE; ii) by
a method-specific postprocessing step over the overclustering to identify subclusters
that are located at low density or remote areas; iii) by postprocessing the unimodality

forest through inspection of certain links between subclusters.

4.6 Summary

In this Chapter, we presented the UniForCE clustering method that clusters and
estimates the number of clusters k. Determining the number of clusters k during the
optimization procedure is one of the most challenging problems in the field, especially
in high-dimensions. Most methods require k£ as input, while others claim to estimate
k, but they essentially translate the problem into another, hopefully easier, problem,
i.e. hyperparameter-tuning.

The proposed approach is based on the novel definition of locally unimodal cluster.
The main idea is that, instead of perceiving unimodality as a property that needs
to hold for the whole cluster density, we proposed to study it at a local level, at
subregions of the cluster density. We based our approach on the observation that
unimodality may extend across pairs of neighboring subclusters when tested as a
union. Such unimodal pairs enable the aggregation of small subclusters and the bottom-
up formation of larger cluster structures in a statistically sound manner. Specifically,
a locally unimodal cluster extends across subregions of the data density as long as
there are unimodal pairs connecting them in a single connected component of the
unimodality graph. The proposed locally unimodal cluster definition is flexible as it
identifies arbitrary-shaped clusters, including typical unimodal or convex shapes.

As part of the proposed methodology, we have developed a statistical procedure

118

to identify unimodal pairs of subclusters by extending the functionality of the dip
test to multidimensional data. Using the proposed statistical procedure, we built the
unimodality graph in which both clustering and estimation of £ can be addressed
through the computation of a unimodality spanning forest. Each spanning tree of the
forest connects subclusters of the dataset that are aggregated in the same final cluster.
The number of trees is an estimate for the number of clusters that the UniForCE
method provides. The strengths of the contribution’s conceptual and algorithmic
side have been validated with extensive numerical experiments on various real and
synthetic datasets. Additionally, the sensitivity analysis highlights the robustness of

the method with respect to the choice of the relatively few hyperparameters.

119

CHAPTER DO

DeeErP CLUSTERING USING THE SOFT

SILHOUETTE SCORE

5.1 Introduction

5.2 The Soft Silhouette Score

5.3 The DCSS method: Deep Clustering using Soft Silhouette
5.4 Experiments

5.5 Summary

5.1 Introduction

As presented in Chapter 1 and Section 1.3, the vast majority of AE-based methods
learn a representation in which individual clusters have small inner cluster variability.
Most common approaches are the minimization of the k-means error, or the KL
divergence between the soft clustering assignments and a target distribution. Such a
representation has been shown to improve the clustering results in several scenarios.
However, minimizing only the inner cluster distance is a suboptimal strategy. Our
motivation is to formulate a deep clustering objective that simultaneously considers
both the inner cluster distance and the outer cluster separation. This is achieved by
optimizing the soft silhouette objective introduced in this Chapter [90].

Assessing the quality of a clustering solution is typically a challenging task. In this

direction, several quality measures have been proposed which can be categorized as

120

external and internal measures [161]. External quality measures, as the name suggests,
use additional information about the data as the ground truth labels. Well-known
external evaluation measures include Normalized Mutual Information (NMI) [162],
Adjusted Mutual Information (AMD [159], Adjusted Rand Index and (ARI) [160,
163]. However, such measures are not applicable in real-world applications where
the ground truth labels are absent. Internal quality measures, on the other hand, can
be applied to the clustering problem since they are based solely on the information
intrinsic to the data. Some typical internal clustering measures that take into account
both cluster compactness and separation are the Dunn index [164], the Calinski-
Harabasz index [165], the Davies-Bouldin index [166], and the silhouette [92]. In
particular, the silhouette coefficient is the most widely used and successful internal
validation measure [93].

The typical silhouette is considered as an effective clustering quality measure
that combines both inter and intra cluster information. Specifically, silhouette re-
wards clustering solutions that exhibit both compactness within individual clusters
and clear separation between clusters. However, it assumes a hard clustering solution,
thus it cannot be used to evaluate probabilistic clustering solutions, unless they are
transformed to discrete ones based on maximum cluster membership probability. In
addition, the silhouette score cannot be efficiently used as a clustering objective for
neural network training since it is not differentiable.

In this Chapter, in order to overcome the above limitations, we propose an ex-
tension of the silhouette score, called soft silhouette score, that evaluates the quality
of probabilistic clustering solutions without requiring their transformation to discrete
ones. Besides this obvious advantage, a notable property of soft silhouette is that it
is differentiable with respect to cluster assignment probabilities. Assuming that such
probabilities are provided by a parametric machine learning model, the soft silhou-
ette score is used as a clustering objective function to train parametric probabilistic
models using typical gradient-based approaches.

To this end, we propose a novel AE-based deep clustering methodology that
directly provides cluster assignment probabilities as network outputs and exploits
the soft silhouette score as a clustering objective. In this way, by training the network
using soft silhouette, we achieve minimization of the inter-cluster variance, while at
the same time maximizing the margin between clusters in the embedded space.

The rest of the Chapter is organized as follows. In Section 5.2 the soft silhou-

121

ette score introduced. Then in Section 5.3 we describe the proposed deep clustering
methodology by presenting the model architecture, the corresponding objective func-
tion as well as the training method. Finally, in Section 5.4, we provide extensive

experimental results and comparisons, while in Section 5.5, summarizes this Chapter.

5.2 The Soft Silhouette Score

5.2.1 Silhouette

The silhouette score [92, 167] is a measure utilized to assess the quality of a clustering
solution. It assumes that a good clustering solution encompasses compact and well-
separated clusters. Assume that we are given a partition C' = {C1, ..., Cx} of a dataset
X = {z1,...,zn} into K clusters. Let also d(z;,z;) denote the distance between z;
and z;.

The silhouette score computation proceeds by evaluating the individual silhouette
score s(z;) of each data point z; as follows. We first compute its average distance a(z;)

to all other data points within its cluster C7:

a(r;) =

Z d(z;,), (5.1

x;€CT,i#]
where |C}| represents the cardinality of cluster C;, where |C;| > 1. The value of a(z;)
value quantifies how well the data point z; fits within its cluster. A low value of
a(z;) indicates that z; is similar to its cluster members, suggesting that x; is probably
grouped correctly. Conversely, a higher value of a(z;) indicates that x; is far from its
cluster members.
The silhouette score also requires the calculation of the minimum average outer-

cluster distance b(z;) for each data point x; € Cr defined as

b(z;) = = min |CJ| Z d(zs, ;). (5.2)

A large b(z;) value indicates that the data point x; significantly differs from data points
in other clusters which is desirable.

The silhouette score of a data point x; takes into account the requirements for
small a(x;) and large b(z;) and is defined as:

N b(iEz) - a(xl)
S(ml) " max {a(:ci), b(fz)} '

(5.3)

122

It should be noted that —1 < s(z;) < 1. A value close to 1 is achieved when a(x;)
is small and b(z;) is high. This indicates that x; has been assigned to a compact,
well-separated cluster. In contrast, a value close to —1 suggests that x; is more similar
to points in other clusters than to points in its cluster, thus it has probably been
assigned a wrong cluster label.

The total silhouette score for the whole partition C' of the dataset X is obtained

by aggregating the individual silhouette values through typical averaging:

S(X) = %Zs(%). (5.4)

The silhouette score [92] is not only suitable for (internal) clustering evaluation but
also defines an intuitive clustering objective that rewards compact and well-separated
clusters. As presented in Chapter 1 and Section 1.3, while several deep clustering
objectives aim to provide compact clustering solutions, they do not optimize explicitly
for cluster separability. Next, we introduce a probabilistic silhouette score, termed soft

silhouette, which allows us to optimize for both compact and well-separated clusters.

5.2.2 Soft Silhouette

The soft silhouette score introduced below constitutes an extension of the typical
silhouette score that assumes probabilistic cluster assignments instead of hard cluster
assignments. More specifically, assume a dataset X = {z;,...,xy} partitioned into K
clusters C' = {C},...,Ck} and let d(z;,x;) the distance between data points z; and
z;. Let also Pg,(z;) denote the probability that x; belongs to cluster C;. Obviously
S Py () = 1.

Assuming that x; belongs to cluster C; we define as:

* ac,(x;) the value of the distance of z; to cluster C;. This is actually a weighted
average (expected value) of the distances of z; to all other points z; € X with

weight the probability Pr,(x;) (ie. that x; belongs to the cluster of interest C)

% Pe,(xj)d(xi, x;)

ac, (z;) = = ~ : (5.5)

* b, (x;) the minimum value of the (expected) distance of z; from the other

123

clusters C; different from C

ﬁlPa, (z;)d(x, ;)

] . '
be, (z;) = min < =min ac, (x;). (5.6)
>, Po,(x))
J=1j#i

* s¢,(x;) the conditional silhouette value for z; given that it belongs to cluster C;:

bcl (xl) — ¢y (xl)

max {ac (22),bes (2] 6.7

Scy (xl) =

Then the soft silhouette value sf(z;) of data point x; is computed as the expected

value of s¢,(z;) with respect to its cluster assignment probabilities P, (z;):

K
sf(zi) =Y Pey(xi)sc, (x:), (5.8)
I=1

and the total soft silhouette score Sf(X) of the partition is computed by aggregating

(averaging) the individual scores sf(x;):

N

SHX) =+ ;sﬂxi), (5.9)
It should be noted that, in the case of hard clustering, the cluster assignment proba-
bility vectors become one-hot vectors and the soft silhouette equations become similar
to the typical silhouette equations.

It is obvious from the above equations that soft silhouette is differentiable with
respect to the cluster assignment probabilities. Therefore, it can can be employed as
a clustering objective function to be optimized in a deep learning framework. The
major advantage of this objective is that it optimizes simultaneously both cluster

compactness and separation. Such a deep clustering approach is presented next.

5.3 The DCSS method: Deep Clustering using Soft Silhouette

In this section we propose the Deep Clustering using Soft Silhouette (DCSS) algorithm,
which belongs to the category of AE-based deep clustering methods that employ the
soft silhouette as a clustering loss.

As described in Chapter 1 and Section 1.3 a typical AE-based deep clustering

method employs an encoder network
z = fu(z), fu() : RT— R™

124

that provides the latent representations (embeddings) z and a decoder network
& =go(x), go(-) :R™ =R,

that reconstructs the outputs given the embeddings. The networks are trained to
optimize a total loss that is the sum of the reconstruction loss and the clustering loss:

LAE = Lrec +)\Ecl-

Autoencoder

9o 1 X

M

—)

Clustering

Clustering Network (h,)

Figure 5.1: The proposed model architecture. The AE comprises the encoder f,
and the decoder gy. The data space is denoted as X, while the embedded space is
represented by Z. The clustering network h, consists of an RBF layer followed by a

softmax layer.

In the proposed approach, the clustering loss will be based on the soft silhouette
score, which requires the cluster assignment probabilities p(z) = (p1(z), ..., px(x)) for
an input z. For this reason, we enrich the AE-model with an additional network ,(z),
called clustering network, that takes as input the embedding » = f,,(z) of a data point
x and outputs the cluster assignment probabilities p;(z) = h,;(z) for j = 1,... K.
Therefore, given the data set X = {z1,...,zy}, the embedding 2, = f,(z;) is first
computed. Then the pairwise distances d(z;, z;) and the cluster assignment probability
vectors p(z;) = h,(2;) are specified, required for the soft silhouette computation.

The proposed three network architecture is illustrated in Fig. 5.1. It can be ob-

served that the clustering network operates in parallel with the decoder network. For

125

an input vector x, the model provides the embedding vector z, the reconstruction
vector z, and the probability vector p(z).

Based on experimentation with several alternatives, we have selected as a cluster-
ing network h, an a Radial Basis Function (RBF) [168] model with a softmax output
unit that provides the probability vector of the cluster assignments. The number of
RBF units is set equal to the number of clusters K.

Soft silhouette is a criterion that should maximized in order to obtain solutions
of good quality. Since a clustering loss is a quantity to be minimized, we take into

account that Sf <1 and define the clustering loss as follows:
Lq=1-85F. (5.10)

Note that £,; is always positive and attains each minimum value when S f is maximum

(Sf = 1). Thus, the total loss for model training is specialized as follows:

N
1 2

Lap =+ ; ||z = go(fuw(za)|[* + AL = Sf(h (X)), (5.10)

where h,.(X) = {h.(z1),...,h.(xn)} are the cluster assignment probability vectors. It

should be noted that the pairwise distances d(f,(x;), fuw(z;)) between the embeddings
are also involved in the Sf computation. In this Chapter, the Euclidean distance has
been used. Since L, is differentiable with respect to the model parameters w, ¢, r it
can be minimized using typical gradient-based procedures.

A technical issue that has emerged when training the model is that in many cases
a trivial solution is attained where the output probabilities tend to be uniform (e.
equal to 1/K) for many data points. To overcome this difficulty, we have included
an additional term to the objective function that penalizes uniform solutions by mini-
mizing the entropy of the output probability vectors. Thus, the entropy regularization

term L,., is defined as follows:

H(hr(X)) = _Zzhrj<xi) loghrj(xi)ﬂ (5.12)

i=1 j=1

The final total loss that is minimized to train our model is:

LAE = E'r’ec +)\1£cl +)\2£regv (513)

126

Algorithm 5.1 Deep Clustering using Soft Silhouette algorithm (DCSS)
Require: X (dataset)

Require: K (number of clusters)

Require:)\, A2 (regularization hyperparameters)

1: Randomly initialize the w and # AE parameters.
Stage 1: Pretraining

2: Pretrain the encoder f,, and decoder gy by minimizing the reconstruction error L.
(eq. 1.25) through gradient based optimization for T}, epochs. // We employed batch training using
the Adam optimizer.

3: Apply k-means with K clusters to the learned representations z = f,,(X).

4: Initialize the parameters of the clustering network h, using the k-means result.
Stage 2: Training

5: Update the parameters 6, w and r by minimizing the total loss (eq. 5.13) until convergence
through gradient based optimization to obtain 6*, w* and r”*.
Stage 3: Inference

6: Compute the clustering solution C' = arg max softmax(hy(fu(X))). // Data clustering.

7: return the clustering solution C' and the learned parameters w*, 6*, r*.

and in more detail

Lap = 5 D o = golfulw) I+ M1 = S5, (X))

_)\Q%ZZhrj(xi)loghrj(xi). (5.14)

The details of the approach, called Deep Clustering using Soft Silhouette (DCSS),

are summarized in Algorithm 5.1.

5.4 Experiments

In this section we present our experimental results on both real datasets and a syn-
thetic dataset. In the first part, we demonstrate the representation learning capabili-
ties of several methods compared to DCSS on a synthetic dataset. In the second part,
we demonstrate the deep clustering capabilities of the DCSS method on several real
datasets compared to the most widely used (AE-based) deep clustering methods that

have been discussed in Chapter 1 and Section 1.3.

127

5.4.1 Synthetic Data Demonstration

Generated PCA SVD NMF

DipEncoder

DEC IDEC DCN DCSS

Figure 5.2: Synthetic demonstration of the representation learning capabilities of sev-
eral methods. The generated 2-d dataset (top left) is hidden from the methods. Each
method receives as input a 100-d dataset generated by non-linear transformations
applied to the original 2-d data and provides a 2-d latent representation of the 100-d

dataset, which is presented in the plots. Color indicates the true cluster labels.

We have relied on the synthetic dataset considered in [71] (for testing the DCN
method) generated as follows. Let’s suppose the observed high dimensional data
points x; exhibit a clear cluster structure in a two-dimensional latent space Z, ie. the
latent vectors z; € R? form compact and well-separated clusters. Given a latent vector

z;, the corresponding observation z; is generated using the following transformation:
z; = o(Uo(Wz)), (5.15)

where W € R!*2 and U € R'*! are matrices whose entries are sampled from

the Normal distribution A/ (0, 1), and o(z) is the logistic function that introduces non-

128

linearity into the generation process. Given the observations z;, recovering the original
clustering-friendly domain in which z; resides appears to be challenging.

We generated a set of latent vectors z; belonging to four planar clusters, each
with 2,500 samples (as shown in the first subfigure of Fig. 5.2) and we computed
the corresponding observations z;. The rest subfigures Fig. 5.2 demonstrate the two-
dimensional projections provided using several dimensionality reduction methods
given the observations z; as input. More specifically, we present the solutions pro-
vided by Principal Component Analysis (PCA) [60], Singular Value Decomposition
(SVD), Non-negative Matrix Factorization (NMF) [61], Local Linear Embeddings
(LLE) [169], Isomap [170], and t-SNE [78]. We also considered the deep clustering
methods DEC [73], IDEC [79], DCN [71], DipEncoder [81], as well as our proposed
DCSS method.

It is evident that the projection methods that do not optimize a clustering loss
(first and second rows excluding DipEncoder) have failed to reveal the hidden two-
dimensional latent structure. On the contrary, deep clustering methods (bottom row
plus DipEncoder) demonstrated better performance. Specifically, DEC was able to
recover three out of four latent clusters, however the fourth was scattered. DCN was
able to reconstruct all of them, but the blue and red clusters are not sufficiently sepa-
rated. IDEC was able to learn a very informative projection revealing the four cluster
structure. DipEncoder was also able to reveal the four cluster structure, although
some data points remain scattered. Superior are the results of the DCSS method,
which was not only able to reveal the four clusters, but also sufficiently maximized

their separation.

5.4.2 Datasets

Table 5.1 summarizes the benchmark datasets that we used for experimental eval-
uation, which vary in size n, dimensions d, number of clusters k, complexity, data
type, and domain of origin. The subsequent paragraphs offer a more comprehensive
overview of the datasets we employed and outline the preprocessing procedures we
implemented for each of these datasets.

The datasets used in this study include the Pendigits (PEN), EMNIST MNIST (E-
MNIST), and EMNIST Balanced Digits (BD). These datasets consist of handwritten

digits categorized into ten classes, each representing digits from 0 to 9. It is worth

129

Table 5.1: The datasets used in our experiments. N is the number of data instances,

d is the dimensionality, and k denotes the number of clusters.

Dataset Type N d k Source
EMNIST Balanced Digits Image 28000 28 x28 10 [154]
EMNIST MNIST Image 70000 28 x28 10 [154]

EMNIST Balanced Letters (A-]) Image 28000 28 x28 10 [154]
EMNIST Balanced Letters (K-T) Image 28000 28x28 10 [154]
EMNIST Balanced Letters (U-Z) Image 16800 28x28 6 [154]

Fashion MNIST Image 70000 28 x28 10 [171]
Kuzushiji MNIST Image 70000 28 x 28 10 [172]
HAR Tabular 10299 560 6 [173]
Pendigits Tabular 10992 16 10 [95]
Waveform-v1 Tabular 5000 21 3 [95]
Synthetic Tabular 10000 2 4 [71]

noting that the EMNIST dataset constitutes an extended and more challenging version
of the MNIST dataset [96]. Both the E-MNIST and BD datasets comprise images with
a resolution of 28 x 28 pixels. In contrast, Pendigits data instances are represented by
16-dimensional vectors containing pixel coordinates.

In addition, the EMNIST Balanced Letters (BL) dataset is included, featuring
handwritten letters in both uppercase and lowercase forms, with a resolution of 28 x 28
pixels. The BL dataset has been divided into three mutually exclusive subsets. The
first subset contains the letters A to], the second includes the letters K to T, and
the last subset contains the remaining letters U to Z. The first two subsets comprise
28000 data points each, distributed across 10 clusters, while the last subset consists
of 16800 data points and 6 clusters. Furthermore, we used the Kuzushiji MNIST (K-
MNIST) and the Fashion MNIST (F-MNIST) as additional datasets, offering a more
challenging set of variations of the classic MNIST. Both include 70000 data points with
a resolution of 28 x 28 pixel images. More specifically, K-MNIST features ten types
of Japanese (Kuzushiji) symbols, while F-MNIST provides a diverse set of clothing
items with ten types of objects.

The Human Activity Recognition with Smartphones (HAR) dataset was also con-

sidered. This dataset consists of data collected from the accelerometer and gyroscope

130

sensors of smartphones, sampled during a human activity. Specifically, each record
in the dataset is a 560 feature vector with time and frequency domain variables. In
addition, HAR consists of 6 classes of human activities which are the following: walk-
ing, walking upstairs, walking downstairs, sitting, standing, laying. Furthermore, the
Waveform-vl (WVF-v1) dataset was included, which consists of 3 classes of gener-
ated waves with 5000 data points. Each class is generated from a combination of 2
of 3 ‘base’ waves. Finally, we also report results for the synthetic dataset described
in the previous subsection.

In all datasets, we used min-max normalization as a prepossessing step, to map
the attributes of each data point to the [0, 1] interval to prevent attributes with large
ranges from dominating the distance calculations and avoid numerical instabilities in

the computations [27].

5.4.3 Neural Network Architectures

Determining optimal architectures and hyperparameters through cross-validation is
not feasible in unsupervised learning problems. Therefore, we opt for commonly used
architectures for the employed neural network models while avoiding dataset-specific
tuning. Regarding tabular data, our approach involves adopting a well-established
architecture, which consists of fully connected layers [174, 73]. The specific AE archi-

tecture that we used is the following:
g — FC500 — FC500 — FCQOOQ — FCm — FC2000 — FC500 — FC500 — ii'd,

where Fc,, stands for fully connected layer with m neurons and z, represents a
d-dimensional data vector.

In terms of image datasets, convolutional Neural Networks (CNNs) have demon-
strated superior effectiveness in capturing semantic visual features. Consequently,
we exploit a convolutional-deconvolutional AE to learn the embeddings for the im-
age datasets. The AE architecture consists of three convolutional layers (encoder),
one fully connected layer (emdedding layer), and three deconvolutional layers (de-

coder) [175, 176, 156]. More specifically, the architecture is the following:

Tagxas — Convi, — Convy, — Conviy, — Fe,, — Deconvi,, — Deconvy, —

DecoanQ — i’gg %285

131

where Conv{ (Deconv{) denotes a convolutional (deconvolutional) layer with a a x a
kernel and b filters, while the stride is always set to 2.

In the above encoder-decoder networks, the ReLLU activation function is used [177],
except for the embedded layer of the AE, where the Hyperbolic Tangent (tanh)
function is used. The weights and biases are initialized using the He initialization
method [178].

As already mentioned, in what concerns the clustering network, a Radial Basis
Function (RBF) model with the number of hidden units equal to the number of
clusters has been selected. The output of the RBF units is fed into a K output
softmax activation function that provides the cluster assignment probabilities. After
the AE pre-training, we initialize the centers of the RBF layer by using the k-means
algorithm in the embedded space, while we initialize o to a small positive value. The

temperature parameter 7' of the softmax was set equal to 7" = 20.

Table 5.2: Performance results of the compared clustering methods.

Method
Dataset Measure | k-mns AE + k-mns DCN DEC IDEC DipEnc DCSS
BD NMI 0.48 0.72+0.01 0.75+0.02 0.80+0.03 0.82+0.01 0.77+£0.06 0.86+0.04
ARI 0.36 0.65+0.02 0.63+0.05 0.75+0.06 0.77+0.01 0.69+0.08 0.80+0.07
NMI 0.35 0.65+0.02 0.68+0.03 0.77+£0.03 0.77+£0.03 0.69+0.07 0.80+0.02
BL (A ARI 0.25 0.55+0.02 0.56+£0.05 0.69+0.06 0.69+0.05 0.58+0.09 0.72+0.04
BL (K-T) NMI 0.51 0.73£0.02 0.77£0.03 0.84+0.01 0.84+0.02 0.81+0.05 0.90+0.02
ARI 0.43 0.67£0.04 0.69+0.06 0.81+0.02 0.81+0.04 0.75+0.08 0.87+0.03
NMI 0.47 0.64+0.01 0.644+0.02 0.68+0.02 0.67+0.02 0.64+0.04 0.71+0.04
BL (U-2) ARI 0.41 0.60+0.02 0.56+0.04 0.65+0.03 0.63+0.02 0.60+0.05 0.68+0.06
NMI 0.48 0.75+0.01 0.83+0.03 0.84+0.03 0.85+0.02 0.84+0.04 0.88+0.04
E-MNIST ARI 0.36 0.69+0.01 0.78+0.04 0.80+£0.04 0.81+0.03 0.78+0.06 0.83+0.06
F-MNIST NMI 0.51 0.61£0.02 0.62+£0.01 0.57+£0.01 0.59+0.01 0.61+0.02 0.63+0.02
ARI 0.35 0.45+0.02 0.42+0.02 0.41+0.01 0.43+£0.01 0.44+0.03 0.45+0.03
NMI 0.44 0.54+0.00 0.53+0.01 0.56+0.02 0.57+£0.01 0.59+0.02 0.64+0.01
K-MNIST ARI 0.31 0.41+£0.01 0.3840.02 0.43+0.02 0.45+0.01 0.47+£0.02 0.49+0.02
NMI 0.59 0.67+0.06 0.77+0.01 0.74+0.06 0.74+0.10 0.78+0.04 0.81+0.06
HAR ARI 0.46 0.60+0.09 0.70£0.02 0.66+0.08 0.65+0.12 0.67+£0.05 0.74+0.09
PEN NMI 0.69 0.68+0.02 0.73+0.03 0.73+0.03 0.75+0.03 0.75+0.01 0.78+0.02
ARI 0.56 0.59+0.04 0.62+0.05 0.62+0.05 0.65+0.04 0.66+0.01 0.68+0.04
NMI 0.74 0.84+0.13 0.95+0.08 0.93+0.12 0.89+£0.09 1.00+£0.00 1.00+0.00
WVEL ARI 0.70 0.87+0.13 0.95+0.09 0.93+0.14 0.91+0.08 1.00+0.00 1.00+0.00
Synthetic NMI 0.82 0.72+0.14 0.79£0.09 0.91+0.08 0.90+£0.10 0.944+0.01 0.94+0.06
ARI 0.83 0.70+0.19 0.75+0.14 0.92+0.12 0.91+0.11 0.95+0.01 0.95+0.05

132

5.4.4 Evaluation

It is important to mention that since clustering is an unsupervised problem, we en-
sured that all algorithms were unaware of the true clustering of the data. In order to
evaluate the results of the clustering methods, we use standard external evaluation
measures, which assume that ground truth clustering is available [161]. For all algo-
rithms, the number of clusters is set to the number of ground-truth categories and
assumes ground truth that cluster labels coincide with class labels. The first evaluation
measure is the Normalized Mutual Information (NMD) [162] defined as:

2x1(Y,C)
HY)+ H(C)

NMI(Y,C) = (5.16)

where Y denotes the ground-truth labels, C' denotes the clusters labels, I(-) is the
mutual information measure and H(-) the entropy. The second metric used is the
Adjusted Rand Index (ARID) [160, 163], which is a corrected for chance version of the
Rand Index [179] that measures the degree of overlap between two partitions defined

as: RI(Y,C) —E[RI(Y,C)]

maa{RI(Y,C)} — E[RI(Y,C)]
where RI(-) denotes the Rand Index and E[] is the expected value.

(5.17)

ARI(Y,C) =

5.4.5 Experimental Setup and Results

We have conducted a comprehensive performance analysis of the proposed DCSS
method in comparison to well-studied deep clustering methods such as DCN [71],
DEC [73], IDEC [79], and DipEncoder [81]. These methods are designed to facilitate
the learning of a cluster-friendly embedded space, as also happens with our approach.
Furthermore, we have evaluated the performance of k-means [26] both in the origi-
nal space and in the embedded space (AE+k-means). The comparison with the latter
approach quantifies the performance improvements achieved through the utilization
of AE in the clustering procedure. At this point, it should be noted that for a fair
comparison between the deep clustering methods, we used the same model architec-
tures for all the methods, since we observed improved clustering results compared to
those proposed in the original papers.

In experiments involving k-means, we initialized the algorithm 100 times and
retained the clustering solution with the lowest mean sum of squares error. For the

remaining methods, which integrate an AE model in the clustering procedure, we

133

conducted each experiment 10 times. In the context of deep clustering methods, an
AE pre-training phase (ignoring the clustering loss) took place. For image datasets,
we pretrained the AE for 100 epochs with a learning rate of 1 x 1073, while for
tabular datasets, we extended the pre-training to 1000 epochs with a learning rate
of 5 x 1074. During the pre-training phase, a small L, regularization of 1 x 10~° was
applied. In the training phase, the deep clustering models were trained for 100 epochs
with a learning rate of 5 x 107* and without a regularization penalty. A fixed batch
size of 256 was considered and the Adam optimizer [86] with the default settings
of #; = 0.9 and 5, = 0.999 was used in both the pretraining and training phases.
Additionally, there are several methodologies to tune the non-clustering (eq. 5.11)
with the clustering loss (eq. 5.10) [15] during training. We choose the most simplistic
and typical approach by setting our hyper-parameters to small values that balances
the two losses. Specifically, we used A\; = 0.01 and Ay = 0.01. Finally, to initialize the
centers of the RBF layer, we apply k-means in the embeddings of the pretrained AE,
while o was initialized to a small positive value.

In Table 5.2, we present the average performance in terms of NMI and ARI along
with the standard deviation for each method and dataset. As anticipated, the cluster-
ing performance of k-means improves when projecting the data to a low-dimensional
embedded space, as shown in the AE+k-means compared to k-means results. In gen-
eral, the performance of DEC is better than that of DCN in all datasets except HAR and
WVF-v1. At the same time, we can observe that IDEC slightly outperforms the DEC
method in most cases, indicating that some improvement might be obtained by using
the decoder part in the clustering optimization procedure. DipEncoder provides sat-
isfactory results in general, outperforming DCN, DEC, and IDEC on tabular datasets.
The proposed DCSS method demonstrates superior performance across all datasets.
Concerning the NMI measure, there is a significant improvement ranging from 0.03
to 0.07 compared to the second best method for each dataset. In addition, the ARI
measure also shows a similar improvement, ranging from 0.03 to 0.06. These results
strongly indicate that soft silhouette constitutes an effective deep clustering objective
function capable of providing compact and well-separated clusters.

Finally, in Figure 5.3, we provide image clustering examples using the DCSS
method on datasets BL (A-]), BL (K-T), BL (U-Z), E-MNIST, K-MNIST, and F-
MNIST. Images in the same row are assigned to the same cluster and are placed

with decreasing cluster assignment probability, progressing from the leftmost (high

134

probability) to the rightmost (low probability) columns. It is obvious that more rep-
resentative images are assigned higher probability values. The presented results are
very satisfactory, taking into account that they have been obtained using an unsu-
pervised learning method. Occasional assignment errors correspond to cases that are
difficult to be discriminated even by visual inspection. For example, in the 53 row of
the E-MNIST images, it is not clear whether the rightmost image displays the 4 or
the 8 digit.

(VY ZAVE) /23|
VUVNNY Y -~V
WWHF WWH WA/ N\
XWAZXAN2ALLYL
VY Y Yo Y%% %
22X 280>

I ELE
Qe Q{OMo>d

ENXYDTONRE

N/RonabD N

YA OOVOT I~~~
NOARdVYOo=2%Z—X
{ARQLORZ AKX
AN JZOUVY XX
ANZDVUDZI
AGSSOBTIXRITX
TN PPLRNOIZNX
NAPRD Y 2INX
SnDeTIIN'AX
FNRVBDVDOR 7

(\2
o'
SE-1+§
Sdy

ﬁ}sﬁ“ﬁzw '3')) -

e
£
A
v
A

=
P‘AI
r
A

.

S s
S

LN Y A

gﬁ~#:®4w
Q=g = g Ao
Sk e

¢

|
Z
J
7
S
&
?’
'
G

mewg . 28
Aaparliisil)

K-MNIST F-MNIST

X

00
/1
23
3z
Yy
5.5
b d
77
g 8
q

MY P VRSN
oo B ST

PR
XX
fr 7
PATRL)
iﬁj
18
ik

ST o TN X
VAN M- C
OAQRNO L 4Q)-0
E s AN SRSall St

PPAL
=

Figure 5.3: Image clustering results on various datasets using the proposed DCSS
method. In each sub-figure, rows correspond to different clusters. In each row the
images are presented from left to right with decreasing cluster membership proba-

bility.

5.5 Summary

In this Chapter, we have proposed soft silhouette, an extension of the widely used

silhouette score that accounts for probabilistic clustering assignments. Next, we have

135

considered soft silhouette as a differentiable clustering objective function and propose
the DCSS deep clustering methodology that constitutes an AE-based approach suitable
for optimizing the soft silhouette score. The proposed method has been tested and
compared with well-known deep clustering methods on various benchmark datasets,
yielding very satisfactory results. The experimental study indicates that soft silhouette
constitutes as a more suitable deep clustering objective function capable of enhancing

the learned representations of the embedded space for clustering purposes.

136

CHAPTER O

DEeEP CLUSTERING BAseED oN IMmPLICIT

MAXxiMUM LIKELIHOOD

6.1 Introduction
6.2 Neural Implicit Maximum Likelihood Clustering
6.3 Experiments

6.4 Summary

6.1 Introduction

In this Chapter [91], we propose a neural clustering method called Neural Implicit
Maximum Likelihood Clustering (NIMLC). It is a generative clustering method that
relies on the recently proposed method of Implicit Maximum Likelihood Estimation
(IMLE) [180]. This is an alternative approach to GANs [4], which is introduced in
Chapter 1 and Section 1.3. In particular, given a set of data objects, the IMLE method
uses a generator network that takes random input vectors and learns to produce
synthetic samples. By minimizing an appropriate objective, the network is trained so
that the distribution of samples resembles the data distribution. It has been shown
that this training procedure maximizes the likelihood of the dataset without explicitly
computing the likelihood.

In analogy to the ClusterGan [1] method, which exploits the GAN methodology

to perform clustering, we have developed the NIMLC method, which relies on the

137

IMLE methodology to perform clustering. NIMLC utilizes two neural networks, the
generator and the encoder. In contrast to ClusterGAN, the discriminator network is
not needed. The generator network is fed by appropriately selected random samples
(latent vectors) z belonging to K clusters and is trained to produce synthetic samples
that resemble the objects of dataset X. The encoder network provides the partition
of the dataset X into K clusters by learning the inverse map from the data space
X to the latent space Z. Training of both networks is achieved by minimizing an
appropriately defined objective function that involves the IMLE loss (data generation)
and the reconstruction loss for the latent vectors z.

Note that the IMLE method does not suffer from mode collapse, vanishing gradi-
ents, or training instability that are frequently encountered in GAN training. Moreover,
it does not require large datasets for training. Our aim is to exploit those nice IMLE
properties for solving clustering problems through the development of the proposed
NIMLC method.

The organization of the Chapter is the following. In Section 6.2 the IMLE method
is first described and then the proposed NIMLC clustering method is presented and
explained. Finally, Section 6.3 presents comparative experimental results on various

datasets, while Section 6.4 summarizes this Chapter.

6.2 Neural Implicit Maximum Likelihood Clustering

The proposed NIMLC method relies on the data generation capabilities of the IMLE

algorithm, which is summarized next.

6.2.1 Implicit Maximum Likelihood Estimation

Given a dataset X = {zi,...,z,} of d-dimensional vectors, the IMLE algorithm [180]
trains a generative neural network Gy with m inputs, d outputs and parameter vector
(weights) 6. This generator takes as input a random vector z € R™ usually sampled
from an m-dimensional Normal distribution and produces a sample s’ € R, i.e.,
s? = Gy(z) (see Fig. 6.2a). IMLE trains the generator to generate synthetic samples
s’ that resemble the real data ;. It is a simple generative method that, under certain
conditions, implicitly maximizes the likelihood of the dataset, although the IMLE

objective does not explicitly contain any log-likelihood term, and training neural

138

networks using maximum likelihood is considered a difficult task [181].

In each IMLE iteration, a sampling procedure takes place where a set of L random
input vectors z; (called latent vectors) are drawn from the Normal distribution z; ~
N(0,0%I,,) and used for the computation of the corresponding synthetic samples
s? = Gp(z;) GG = 1,...,L). Then, for each real data example z; (i = 1,...,N), its
representative sample r! € S? is determined through nearest neighbor search (NNS)
in S? based on Euclidean distance, i.e. 1Y = NNS(x;,S5%). The generator parameters

¢ are updated in order to minimize the following IMLE objective function:

Orrine = argming Z |7 — ;)2 (6.1)

i=1
Figure 6.1 provides an illustration of the IMLE behavior.

The IMLE method exhibits several nice properties: it does not suffer from mode
collapse, vanishing gradients, or training instability, unlike popular deep generative
methods such as, for example, GANs [4]. Mode collapses do not occur, since the
loss ensures that each data example is represented by at least one sample. Gradients
do not vanish because the gradient of the distance between a data example and its
representative sample does not become zero unless they coincide. Training is stable
because the IMLE estimator is the solution to a simple minimization problem. Finally,

it can be used both for small and large datasets.

) o »
e © o =] &
o 0 01 5] I m
= o O a
= = [¢) o oQ ® a
=}
o
= m 51
o - 2
o
o (5]) ¢ DD _
° a Q m -
2
(¢}
(a) (b)

Figure 6.1: The data points are represented by squares and the samples by circles.
(a) For each data point the nearest sample is found. (b) The generator is updated at

each iteration so that the generated samples minimize the IMLE objective.

139

6.2.2 Cluster friendly input distribution

In the original IMLE method, the random input (latent) vectors z belong to a single
cluster since they are drawn from a multivariate m-dimensional Normal distribu-
tion. This is not convenient for clustering. If we assume that the input vectors z are
drawn from a mixture model, i.e., from K distinct distributions, then a clustering
of the original dataset X could be obtained: each data point z; can be assigned to
the cluster to which its corresponding input vector z; belongs to. Therefore, in the
proposed method, the single Normal distribution is replaced by K non-overlapping
distributions, with the k-th distribution responsible for the generation of the subset
Zy, of input vectors assigned to cluster k. The most obvious first choice is a mixture
of K m-dimensional Gaussian distributions. However, this choice requires the spec-
ification of the means and covariances of K Gaussian distributions so that they are
well separated.

A more sophisticated mechanism for generating m-dimensional random vectors
that belong to K disjoint clusters has been proposed in ClusterGan [1], where input
vector z consists of two parts, i.e., z = (z,, 2.). The first part z,, is random vector (of
dimension d,,) drawn from the Gaussian distribution: z, ~ N (0,02l). The second
part z., is deterministic and specifies the cluster £ to which z is assigned. Specifically,
%, is the one-hot encoding of the corresponding cluster k. Thus, for K clusters, the
dimension of z. is equal to K and, if z belongs to the k-th cluster, then z. = ¢, where
er is the k-th standard unit vector. Note that o should be set to a small value so that
clusters do not overlap.

In summary, in order to generate an input vector z = (z.,2,) belonging cluster
k, we set the z. part equal to the one-hot encoding of £ and draw the z, part from
N(0,0%1,,). By sampling an equal number of vectors for each cluster k, the set of
random input vectors Z is created at each iteration which is partitioned into disjoint
subsets 7, each one containing the random input vectors for cluster k& (k =1,..., K).

Additionally, since s’ = Gy(2), the set S of computed samples is partitioned into
K disjoint clusters S?. Consequently, the original dataset X can be partitioned into K
clusters by assigning each z; to the cluster of its representative r?, i.e. if Y € S? then

x; is assigned to cluster k.

140

6.2.3 The IMLE loss from a clustering perspective

If we examine the IMLE objective function, we can observe its similarities with the k-
means clustering loss. Specifically, if we generate exactly K samples S9 = {sf,..., s%}
in each training epoch, where K is the number of clusters, we can treat those syn-
thetic samples as cluster representatives (centroids). In this case, the IMLE objective

coincides with the k-means objective (1, is the indicator function):

N
> i = I = ZH;CZ NNS(z;, 89)|]? = ZZan)|z — s9||? (6.2)
=1

i=1 k=1
and IMLE can be considered as a clustering procedure that trains the generator to
produce the cluster centers. The major difference between k-means and IMLE is that
the k-means updates the centroids directly in order to minimize the clustering loss;
on the contrary, the IMLE method updates the parameters ¢ of the generator.

An issue to be considered is how to specify the k input vectors z; that will be
used to generate the K samples so that each sample represents a different cluster.
Since 2z = (Znk, 2ck), a straightforward solution is to set 0 = 0, thus z,, = 0 for all
k and z4 = e for all k = 1,..., K. Then by feeding those z; vectors as inputs to
the generator, the synthetic samples s, are provided as outputs which can be treated
as cluster representatives. Training the generator this way using IMLE, we observed
clustering behavior similar to k-means and that the generated K samples resembled

the average data point of each cluster.

6.2.4 The NIMLC architecture

The proposed NIMLC approach is a modification of the IMLE method in order to
achieve not only synthetic data generation but also clustering of the original dataset
X. NIMLC combines ideas from IMLE and ClusterGAN. More specifically, it exploits
the IMLE generator network that is fed with clustered input vectors z that follow
the (z,, z.) representation proposed in ClusterGAN. Additionally, it employs a second
network called encoder (originally proposed in ClusterGAN) that is trained to provide
the cluster assignment for a data point x. It should be noted that, unlike ClusterGAN,
NIMLC does not make use of a discriminator network since it is based on IMLE for
synthetic data generation. The NIMLC architecture is presented in Figure 6.2b.

The generator G is trained to produce synthetic samples that resemble the real

data z; by minimizing the IMLE objective (eq. 6.1). It provides a mapping from the

141

VARY

Zec Ze

(a) (b)

Figure 6.2: (a) IMLE general architecture. (b) NIMLC architecture.

latent space to the data space. The encoder £ is trained jointly with the generator to
implement the inverse mapping from the data space to the latent space. Thus, for
an input z, it provides estimates of Z, and Z.. The latter (Z.) is computed using the
softmax activation function (with K outputs) and provides a soft clustering assignment
of the input = into K clusters.

In summary, the NIMLC architecture feeds an input vector z = (z,,2.) to the
generator, which produces a synthetic sample s = G(z). This sample is subsequently
fed to the encoder, which provides the output 2 = £(s). Note that the NIMLC network
is actually an autoencoder since it takes an input z and provides as output an estimate
z of z. After training, the encoder implements a clustering model providing soft

clustering assignments Z. for any data point z.

6.2.5 The NIMLC objective function

The objective function used to train the NIMLC architecture consists of two parts. The
first part concerns the generative process and is the IMLE error equal to zn: |79 — 2| |2
(eg. 6.1). Since NIMLC is an autoencoder, the second part of the objecti\l/:elfunction is
the reconstruction loss of the autoencoder. This loss can be split into two terms. The

||2. The second term is

first term is the reconstruction loss for the z, part: i ||2ni — Zni
the reconstruction loss for the z. part. Since 2, hasziﬁe form of one-hot vector and 2,
are probability vectors provided by the softmax function, the cross-entropy H(z., 2.)
between z. and 2, is used as a loss function.

The complete objective function is presented below, where /3, and [, are hyper-

parameters adjusting the importance of each term.

142

J<0g7 05) = Z ||ng - xz||2 + ﬁn Z ||an - 2nz||2 + ﬁc ZH(Zcia 202) (63)
=1 =1 =1

It should be noted that the first term depends only on the parameters ¢g of the
generator, while the rest two terms depend on the parameters of both the generator

fg and the encoder 0.

6.2.6 Slow paced learning

A critical hyperparameter of the NIMLC method is the standard deviation o of the
noise distribution used to generate the random part z,, of the input vectors. As men-
tioned earlier, when training the model with o = 0, we have a very strict case with
one generated sample per cluster. This sample can be considered as the represen-
tative of the corresponding cluster, and the obtained clustering results are on par
with those of k-means. On the other hand, if o is relatively large (e.g. o = 0.15), the
random input vectors per cluster are not very close. Therefore, it is possible for the
generator to map the inputs of the same cluster to different regions in the data space,
which negatively affects clustering performance. Moreover, we have observed that it
is difficult to specify an appropriate value for o.

In order to tackle this problem, we propose the following procedure:

¢ Start training with a small value of sigma, preferably ¢ = 0.
* In each training epoch increase o by a small amount Ao.

¢ Stop increasing when a max value o,,,, is reached.

The intuition is that this slow-paced training procedure ([182], [183]) strives to
learn and cluster the “easier” data points first, like those that are close to the cluster
centers and then tries to learn and cluster “more difficult” data points away from the
cluster centers. Thus, we initially start to explore the clustering solution space with
no variability in the input space (¢ = 0). In this way, we enforce only K samples
to be generated and used to train the model. Then, at each training epoch, we add
variability to the inputs by slowly increasing o in order to incrementally capture
complicated structures in the dataset.

Figure 6.3 provides an illustration of the generated samples for the Moons syn-

thetic dataset as training proceeds and o gradually increases. It is clear that the

143

Epoch =250, ¢ =0.0125 Epoch =500, o =0.025

P

Epoch =1000, o =0.05 Fpoch =2000, o =0.1
. .
.
e
. u) ¢
.
Epoch =3000, o =0.15 Fpoch =4000, o =0.15

Figure 6.3: The evolution of generated samples for the Moons synthetic dataset as o pro-

gressively increases.

model progressively succeeds in learning more complex data structures, generating

high-quality samples and providing the correct clustering solution.

6.2.7 The NIMLC algorithm

The NIMLC method is summarized in Algorithm 6.1. At each epoch, a set of input
vectors Z = {z,...,21} is generated, belonging to K clusters Z;, k = 1,..., K of
equal size. Each input vector z; = (2, z¢;) of Zx is computed by sampling z,; from
N(0,021;,) and setting z.; = e,. We then feed the generator with the set of input
vectors Z and the set of synthetic samples $% = {579 ... s%} are generated at its
output, i.e. sfg = G(z;). Then for each data batch X, we compute the nearest synthetic

sample r; for each x; € X, ie. rf 9 = NNS(z;,5%). Next, each r; is fed as input to the

144

encode

update

r that produces the reconstruction z; = £ (rf 9), where Z; = (2., 2.;). Then we

the parameters of the generator and the encoder using the gradients of the

objective function (algorithm 6.1 steps 11 and 12). Finally, before proceeding to the

next epoch, the standard deviation ¢ is updated.

Algorithm 6.1 Neural Implicit Maximum Likelihood Clustering

Require
Require
Require
Require
Require

Require

: X (dataset)

: K, L, T (number of clusters, number of samples, number of epochs)
: G, & (generator, encoder)

: d,, (dimension of noise vector z,)

: Bn + 1, 8. < 1 (regularization parameters)

: Ao <+ 5% 1072, 0 ez < 0.15 (standard deviation increase, maximum standard deviation)

1: Initialize networks parameters g and 0¢.

DO

0

2
3: for epoch < 1 to T do
4

Compute a set of L input vectors Z = {z1,..., 21} belonging to K equally sized subsets Z;,. The

elements of each Z; are computed as z; = (2, 2;) Where z,,; is drawn from N(0,0%1,,) and
Zei = €.
Compute samples S99 = {sfg,...,sig }, where sfg = G(z).

for b + 1 to number of batches do

7 For each z; in batch b find its nearest neighbour rfg € S considering the Euclidean distance
(r% = NNS(x;,5%)).
For each rfg compute z; =& (rfg), where Z; = (2., 2ci)-
Update the generator parameters by descending their stochastic gradient:
Voo {Z 177e — 24]|* + Vo, (m D lzni = 2ail* + Be > Hzeis)) }
i=1 i=1 i=1
10: Update the encoder parameters by descending its stochastic gradient:
v@g <5n Z Hznz - 2ni||2 + Bc ZH(zciv 201))
i=1 i=1
11: end for
12: o0 + min(o + Ao, omax)
13: end for

14: return the final network parameters 0 and 6.

It should be noted that using IMLE for clustering has been introduced in our

previous work [184]. However, that method did not make use of the encoder network.

Instead, a two-stage nearest neighbor search was used to perform cluster assignments.

Specifically, in the first stage, the centroid c; of each subset S was computed, and

145

then the z; was assigned to the cluster | whose centroid ¢; is nearest to z; based
on Euclidean distance. Additionally, in the second stage, instead of determining the
representative sample for z; through the nearest neighbor search over the entire set of
samples S?, the nearest neighbor search was executed only to the specific subset Sf that
contains the samples of cluster /. The NIMLC method proposed herein includes two
substantial improvements that lead to considerable performance enhancement. The
first is the use of the encoder network that directly provides the cluster assignment for
a given input x, while the second is the gradual increase of the noise variance o that
allows for slow-paced learning. Additionally, we exploit the generalization capability
of the encoder network to cluster those data points that the generator could not learn
sufficiently.

A computational overhead of our approach compared to deep clustering meth-
ods is related to nearest neighbor search. The training process involves several epochs
where the algorithm must find the closest synthetic sample to each original data point,
resulting in an O(INL) overhead in distance calculations. However, we observed that
recalculating the nearest neighbors in every training epoch is unnecessary; reusing
them for 5 to 10 epochs can significantly reduce the training time without compro-

mising clustering performance.

6.3 Experiments

In order to evaluate the proposed clustering method (NIMLC), we conducted an
experimental study using several synthetic and real datasets. We have compared
NIMLC against ClusterGan [1] and the two most popular deep clustering methods,
namely DCN [71] and DEC [73]. We also provide results using k-means [25, 26] and
the density-based method of i-DivClu-D [185].

6.3.1 Synthetic datasets

We have used three synthetic two-dimensional datasets (Table 6.1) with known
ground truth and different structures in order to assess the clustering capability of
our method. The Gaussians dataset consists of four clusters (Figure 6.4a), while the
Moons (Figure 6.4b) and the Rings (Figure 6.4c) consist of two clusters. The Gaus-

sians dataset is easier to cluster compared to the other two datasets, whose structure

146

is more complex. It should be emphasized that it is difficult for a parametric method

to be able to cluster both cloud-shaped (Gaussians) and ring-shaped (Rings) datasets.

Table 6.1: Description of synthetic datasets.

Dataset # Points (N) # Features (D) # Clusters (K)

Gaussians 1000

Moons 1000
Rings 1000
& W y :. . -
i R,
Eo o 4%

. . Y5
o %5 . Q
,xﬁ" 2 e t'% ﬁ\f
. . % b . oo
':0 .".. . . '.:,.o] %.’.épdo
(a) Gaussians (b) Rings (¢) Moons

Figure 6.4: The synthetic datasets used in our experiments.

6.3.2 Real datasets

We further evaluated the method by including real datasets in our experimental
study. For all datasets the number of clusters was set equal to the number of classes.
As a pre-processing step, we used min-max normalization to map the attributes of
each dataset to the [0,1] interval in order to prevent attributes with large ranges
from dominating the distance calculation and avoid numerical instabilities in the
computation [97]. The descriptions of the datasets that we included in our study are
given below. For a summary, refer to Table 6.2.

e 10x_73k [186] dataset consists of 73233 RNA-transcripts belonging to 8 different
cell types. The dataset is sparse since the data matrix has about 40% zero values.
Hence, we selected the 720 genes with the highest variances across the cells to reduce
data dimensionality similar to [1].

e Australian [95] two-class dataset is composed of 690 credit card applications. A

14-dimensional feature vector describes each sample.

147

e CMU [95] contains grayscale facial images of twenty individuals captured with
varying poses, expressions, and the presence or absence of glasses. The images are
available in several resolutions, but for the purpose of our study, we have utilized the
128 x 120 resolution images.

e Dermatology [95] is a six-class dataset containing 366 patient records that suffer
from six different types of Eryhemato-Squamous disease. Each patient is described
by a 34-dimensional vector containing clinical and histopathological features.

e E.coli [95] includes 336 proteins from the E.coli bacterium, and seven attributes,
calculated from the amino acid sequences, are provided. Proteins belong to eight
classes according to their cellular localization sites.

e Iris [95] dataset contains three classes of 50 instances each, where each class refers to
a type of iris plant. Each sample is described by a 4-dimensional vector, corresponding
to the length and width of the sepals and petals in centimeters.

e Olivetti [187] is a face database of 40 individuals with ten 64x64 grayscale images
per individual. For some individuals, the images were taken at different times, vary-
ing the lighting, facial expressions (open/closed eyes, smiling/not smiling), and facial
details (glasses/no glasses). All the images were taken against a dark homogeneous
background with the subjects in an upright, frontal position (with tolerance for some
side movement).

e Optical Recognition of Handwritten Digits [95] dataset (ORHD) comprises a set
of handwritten digits, with ten classes corresponding to each digit from 0 to 9. The
resolution of each image is 8x8. For our experiment, we utilized the test set of this
dataset, which consists of 1797 images.

e Pendigits [95] dataset consists of 250 writing samples from 44 different writers, a
total of 10992 written samples. Each sample is a 16-dimensional vector containing
pixel coordinates associated with a label from ten classes.

e United States Postal Service [188] dataset (USPS) is a collection of hand-written
digits consisting of 7291 grayscale images. The dataset is organized into ten classes,
each representing a digit from 0 to 9. Each digit is represented by a set of images,
each of size 16 x 16 pixels.

e Wine [95] three-class dataset consists of 178 samples of chemical analysis of wines.

A 13-dimensional feature vector describes each sample.

148

Table 6.2: Descriptions of real datasets.

Dataset #Points (N) #Features (D) #Classes (K) Source
10x_73k 73233 720 8 [186]
Australian 690 14 2 [95]
CMU 640 128 x 120 20 [95]
Dermatology 366 34 6 [95]
E.coli 336 7 8 [95]
Iris 150 4 3 [95]
Olivetti-Faces 400 64 x 64 40 [187]
ORHD 1797 8 x 8 10 [95]
Pendigits 7494 16 10 [95]
USPS 7291 16 x 16 10 [188]
Wine 178 13 3 [95]

6.3.3 Evaluation measures

It is important to mention that since clustering is an unsupervised problem, we en-
sured that all algorithms were unaware of the true clustering of the data. In order to
evaluate the results of the clustering methods, we use standard external evaluation
measures [161], which assume that ground truth clustering is available. For all algo-
rithms, the number of clusters is set to the number of ground-truth categories [16]
and assumes ground truth that cluster labels coincide with class labels. The first

evaluation measure is clustering accuracy (ACC):

S 1y = m(c))
ACC(Y,C) = max = (6.4)

m n

where 1(z) is the indicator function, y; is the ground-truth label, ¢; is the cluster
assignment generated by the clustering algorithm, and m is a mapping function
which ranges over all possible one-to-one mappings between assignments and labels.
This measure finds the best matching between cluster assignments from a clustering
method and the ground truth. It is worth noting that the optimal mapping function
can be efficiently computed by the Hungarian algorithm [189]. The second evaluation
measure is purity (PUR). The same equation formulates purity as clustering accuracy
(eq. 6.4), but their key difference is in the mapping function m. In this case, the
mapping function of m greedily assigns clustering labels to ground truth categories

in each cluster in order to maximize purity. The third evaluation measure is the

149

normalized mutual information (NMI) defined as [162]:
2x I(Y,C)
HY)+ H(C)

where Y denotes the ground-truth labels, C' denotes the clusters labels, [is the mutual

NMI(Y,C) = (6.5)

information measure and H the entropy. The final evaluation metric is the adjusted
Rand Index (ARD [160, 163], which computes a similarity measure between two clus-
tering solutions defined as the proportion of object pairs that are either assigned to

the same cluster in both clusterings or to different clusters in both clusterings.

6.3.4 Implementation Details

Both the generator and the encoder were trained using the Adam optimizer [86] with
learning rate n = 3x 10~* and coefficients b; = 0.5 and b, = 0.9. We set b,, = b, = 1, and
Ac = 5+107° in all experiments. Additionally, the number of samples was set equal to
100 and 200 for small and big datasets, respectively. We used the same architectures
for the two networks as the ClusterGan [1]. Specifically, the dimension of z,. is the set
equal to the number of clusters. We used Leaky Relu activations (LRelu) with leak
= 0.2 and Batch Normalization (BN). We used the same number of hidden layers
and hidden neurons for all datasets. We present the detailed generator and encoder

architectures in Table 6.3 and Table 6.4, respectively.

Table 6.3: Generator architecture for each dataset.

Dataset Input (zn,2.) Hidden {1, 2} Output (&)
10x_73k (10,8) FC 256 LReLU BN FC 720 Sigmoid
Australian (5,2) FC 256 LReLU BN FC 14 Sigmoid
CMU (100,20) FC 256 LReLU BN FC 128 x 120 Sigmoid
Dermatology (5,6) FC 256 LReLU BN FC 34 Sigmoid
E.coli (4,8) FC 256 LReLU BN FC 7 Sigmoid
Gaussians (1,4) FC 256 LReLU BN FC 2 Sigmoid

Iris (2,3) FC 256 LReLU BN FC 4 Sigmoid
Moons (1,2) FC 256 LReLU BN FC 2 Sigmoid
Olivetti-Faces (10,40) FC 256 LReLU BN FC 64 x 64 Sigmoid
ORHD (100,10) FC 256 LReLU BN FC 8 x 8 Sigmoid
Pendigits (5,10) FC 256 LReLU BN FC 16 Sigmoid
Rings (1,2) FC 256 LReLU BN FC 2 Sigmoid

USPS (100,10) FC 256 LReLU BN FC 16 x 16 Sigmoid
Wine (2,3) FC 256 LReLU BN FC 3 Sigmoid

For ClusterGan, we used the proposed architecture and hyperparameters. In the

case of the DCN and DEC, an extensive search for an autoencoder model was required

150

Table 6.4: Encoder architecture for each dataset.

Dataset Input (z) Hidden {1, 2} Output (2n, Z¢)

10x_73k 720 FC 256 LReLLU BN FC 18 LReL.U for 2 and 8 Softmax for z.
Australian 14 FC 256 LReLU BN FC 7 LReLU for 2 and 2 Softmax for z.
CMU 128 x 120 FC 256 LReLU BN FC 120 LReLU for 2 and 20 Softmax for z.
Dermatology 34 FC 256 LReLU BN FC 11 LReLU for 2 and 6 Softmax for Z.
E.coli 7 FC 256 LReLU BN FC 12 LReLU for 2 and 8 Softmax for z.
Gaussians 2 FC 256 LReLLU BN FC 5 LReLU for 2 and 4 Softmax for Z.
Iris 4 FC 256 LReLU BN FC 5 LReLU for Z and 3 Softmax for Z.
Moons 2 FC 256 LReLU BN FC 3 LReLU for 2 and 2 Softmax for Z.
Olivetti-Faces 64 x 64 FC 256 LReLU BN FC 50 LReLU for 2 and 40 Softmax for z.
ORHD 8 x 8 FC 256 LReLU BN FC 120 LReLU for 2 and 10 Softmax for Z.
Pendigits 16 FC 256 LReLU BN FC 15 LReLU for 2 and 10 Softmax for Z.
Rings 2 FC 256 LReLU BN FC 3 LReLU for 2 and 2 Softmax for Z.
USPS 16 x 16 FC 256 LReLU BN FC 120 LReLU for 2 and 10 Softmax for Z.
Wine 3 FC 256 LReLU BN FC 5 LReLU for 2 and 3 Softmax for Z.

in order to obtain good results. We chose symmetrical encoder and decoder networks
to simplify the architecture search problem. We resorted to an encoder architecture
with three layers : d — [2d, 3d] — d,, where d is the data space dimension and d, is the
latent space dimension. All layers are fully connected.

NIMLC and ClusterGan methods were executed for 5000 epochs, while DCN and
DEC required 300 to 500 epochs of pretraining and 100 epochs of training with the
clustering objective. Furthermore, for the methods that depend on initialization, we
executed the neural approaches of NIMLC, ClusterGan, DCN, and DEC three times
and the k-means algorithm ten times with k-means++ [29] initialization.Average per-
formance results are provided. The i-DivClu-D method is deterministic and requires
the number of nearest neighbors as a hyperparameter. In our experiments we set its

value at the minimum number that resulted in a connected graph.

6.3.5 Results on synthetic datasets

In Table 6.5, we provide the average clustering performance of the compared methods
for the synthetic datasets. All methods performed well when the dataset consisted of
spherical, well-separated data clusters, as happens in the Gaussians dataset. In the
Moons and Rings datasets, ClusterGan and DEC had a similar clustering performance
as the k-means algorithm, while the DCN method performed better. On the other
hand, the NIMLC method could perfectly solve the Moons dataset and had by a

151

Table 6.5: Experimental results on synthetic datasets. Bold numbers indicate the best

average performance on each dataset.

Dataset Algorithm ACC PUR NMI ARI

NIMLC 090 090 0.62 0.64
ClusterGAN 0.52 0.52 0.00 0.00
Rings DCN 0.62 0.62 0.05 0.06
DEC 0.52 0.52 0.00 0.00

k-means 0.50 0.50 0.00 0.00
i-DivClu-D 1.00 1.00 1.00 1.00

NIMLC 1.00 1.00 1.00 1.00
ClusterGAN 0.86 0.86 0.43 0.53
Moons DCN 0.90 090 0.63 0.65
DEC 0.86 0.86 0.44 0.53

k-means 0.86 0.86 0.42 0.52
i-DivClu-D 1.00 1.00 1.00 1.00

NIMLC 1.00 1.00 1.00 1.00
ClusterGAN 1.00 1.00 1.00 1.00
Gaussians DCN 091 091 0.93 0.89
DEC 098 098 0.94 0.96

k-means 1.00 1.00 1.00 1.00
i-DivClu-D 1.00 1.00 1.00 1.00

significant margin the best clustering performance on Rings, which is the most difficult
of the three synthetic datasets. It should be stressed that the NIMLC method presents
the unique capability of solving both the Gaussian and the Rings datasets by training
the same neural architecture. It should be noted that the density-based i-DivClu-D

method demonstrated perfect clustering performance in all three synthetic datasets.

152

Table 6.6: Experimental results on real datasets. Bold numbers indicate the best

average performance for each dataset. Results marked by

paper proposing the method.

1333}

are excerpted from the

Dataset Algorithm ACC PUR NMI ARI
NIMLC 0.81 0.84 0.73 0.69
ClusterGAN NA 0.81* 0.73* NA
10x_73k DCN 0.70 0.70 0.74 0.68
DEC 0.67 0.72 0.72 0.57
k-means 0.56 0.61 0.56 0.36
i-DivClu-D 0.55 0.60 0.63 0.36
NIMLC 0.86 0.86 0.43 0.50
ClusterGAN 0.86 0.86 0.43 0.50
Australian DCN 0.86 0.86 0.43 0.50
DEC 0.77 077 0.25 0.31
k-means 0.86 0.86 0.43 0.50
i-DivClu-D ~ 0.59 0.59 0.01 0.02
NIMLC 0.81 0.82 0.81 0.70
ClusterGAN 0.72 0.77 0.68 0.56
Dermatology DCN 0.83 0.83 0.88 0.81
DEC 0.77 086 0.86 0.74
k-means 0.78 0.87 0.88 0.74
i-DivClu-D 0.68 0.78 0.74 0.58
NIMLC 0.61 076 0.54 0.45
ClusterGAN 0.49 0.76 0.50 0.33
E.coli DCN 0.52 0.70 0.46 0.34
DEC 0.55 0.76 0.54 0.42
k-means 0.60 0.83 0.62 0.43
i-DivClu-D ~ 0.53 0.78 0.53 0.33
NIMLC 0.95 095 0.83 0.85
ClusterGAN 0.89 0.89 0.73 0.72
Iris DCN 0.93 093 0.83 0.80
DEC 0.97 097 091 0.92
k-means 0.89 089 0.74 0.72
i-DivClu-D ~ 0.93 0.93 0.83 0.80
NIMLC 084 084 0.79 0.71
ClusterGAN NA 0.77¢* 0.73* NA
Pendigits DCN 0.72 0.72 0.69 0.56
DEC 0.70 0.74 0.73 0.58
k-means 0.68 0.71 0.69 0.54
i-DivClu-D 0.70 0.73 0.71 0.57
NIMLC 0.93 093 0.80 0.80
ClusterGAN 0.58 0.58 0.28 0.22
Wine DCN 0.93 093 0.80 0.80
DEC 0.94 094 0.82 0.83
k-means 095 095 0.84 0.85
i-DivClu-D ~ 0.92 0.92 0.77 0.77

153

6.3.6 Results on real datasets

Table 6.6 shows the clustering performance of the compared methods on tabular

datasets, while Table 6.7 displays performance results on image datasets.

Table 6.7: Experimental results on real datasets. Bold numbers indicate the best
average performance for each dataset. Results marked by “-” denotes the method

was not able to learn the dataset.

Dataset Algorithm ACC PUR NMI ARI
NIMLC 0.82 0.84 092 0.80
ClusterGAN - - - -
CMU DCN - - - -
DEC - - - -

k-means 0.82 0.82 0.89 0.77
i-DivClu-D 0.67 0.71 0.82 0.57

NIMLC 0.84 084 0.78 0.73
ClusterGAN 0.85 0.85 0.84 0.78
ORHD DCN 0.799 0.79 0.75 0.64
DEC 0.80 0.81 0.80 0.71

k-means 0.80 0.80 0.74 0.67
i-DivClu-D 0.85 0.85 0.80 0.72
NIMLC 0.67 0.69 0.80 0.52
ClusterGAN - - - -
Olivetti-Faces DCN - - - -
DEC - - - -
k-means 0.57 0.63 0.78 0.44
i-DivClu-D 0.47 0.5 0.67 0.29

NIMLC 0.70 0.70 0.58 0.55
ClusterGAN 0.74 0.78 0.71 0.63
USPS DCN 0.69 0.76 0.70 0.60
DEC 0.72 077 071 0.63

k-means 0.68 0.75 0.64 0.56
i-DivClu-D 0.56 0.65 0.62 0.40

The NIMLC method achieved excellent clustering performance on 10x_73k, Aus-
tralian, CMU, Olivetti-Faces, and Pendigits, outperforming all other methods. More-
over, on Dermatology, E.coli, Iris, ORHD, USPS, and Wine datasets, the NIMLC

method demonstrated comparable results with the best-performing method. It should

154

be stressed that the high dimensionality of data and the limited number of train-
ing samples resulted in training failures for ClusterGan, DCN, and DEC on CMU
and Olivetti-Faces datasets. In contrast, the NIMLC method was able to learn these
datasets effectively despite the small number of samples. Compared to k-means and
the density-based clustering method (i-DivClu-D) our method also provides better
or comparative results in all cases with the superiority being more clear on 10x_73k,
Pendigits, Oliveti-Faces and USPS datasets. In summary, experimental results indicate
that the proposed method constitutes a neural-based clustering method that performs
well both for low dimensional and high dimensional data without requiring large
number of samples as happens with typical deep clustering methods. Therefore it

constitutes a viable alternative for both conventional and deep clustering approaches.

6.4 Summary

In this Chapter, we have proposed the NIMLC clustering method that is based on
neural network training. NIMLC is a generative clustering approach that relies on the
IMLE generative methodology to perform clustering. The NIMLC brings ideas from
the ClusterGAN algorithm into the IMLE framework to overcome some of the GAN
deficiencies. The method is based on a simple training objective, does not suffer from
training instabilities, and performs well on small datasets. Experimental comparison
against several deep clustering methods and conventional clustering methods illus-
trates the potential of the approach. A notable characteristic of the method is that, as
shown in the experiments with synthetic data, it is able to cluster both cloud-shaped

and ring-shaped data using the same hyperparameter setting.

155

CHAPTER 7

ConcLusioNns AND FuTurRe WoORK

7.1 Concluding Remarks

7.2 Directions for Future Work

7.1 Concluding Remarks

The objective of this thesis was the development, implementation and evaluation of
novel (unsupervised) clustering methodologies. During the elaboration of the thesis,
we mainly focused on three different axes: i) partitional clustering in both Euclidean
and kernel spaces, ii) unimodality-based clustering, and iii) deep clustering, which
leverages the representational power of deep learning methods.

Specifically, in Chapter 2, we introduced global k-means++, an approach designed
to address the initialization problem inherent in the standard k-means algorithm.
This method combines the incremental strategy of global k-means with the proba-
bilistic center selection mechanism of k-means++. In doing so, it effectively balances
the strengths of both algorithms, achieving high-quality clustering results while sig-
nificantly reducing computational overhead. We argue that global k-means++ offers
a compelling alternative to both global k-means and k-means++. Moreover, it pro-
vides complete clustering solutions for all k£ € 1,..., K, making it particularly well-
suited for model selection tasks where the optimal number of clusters is unknown.
In such scenarios, our method demonstrates notable efficiency, outperforming even

non-incremental approaches like standard k-means and k-means++.

156

In Chapter 3, we introduced global kernel k-means++, which constitutes the ex-
tension of global k-means++ into feature space. The proposed method is designed
to address the initialization problem inherent in the kernel k-means algorithm. Sim-
ilarly to the global k-means++, the proposed algorithm incrementally addresses all
intermediate subproblems for £k = 1,... K — 1, ultimately yielding the solution for K
clusters. In conclusion, the proposed algorithm strikes an optimal balance between
the strengths of both global kernel k-means and kernel k-means++, delivering high-
quality clustering at a significantly lower computational cost.

In Chapter 4, we presented the UniForCE clustering method that clusters and
estimates the number of clusters k. Our approach is based on the novel definition of
locally unimodal cluster. The main idea is that, instead of perceiving unimodality as
a property that needs to hold for the whole cluster density, we proposed to study it at
a local level, at subregions of the cluster density. We based our approach on the ob-
servation that unimodality may extend across pairs of neighboring subclusters when
tested as a union. Such unimodal pairs enable the aggregation of small subclusters
and the bottom-up formation of larger cluster structures in a statistically sound man-
ner. A locally unimodal cluster extends across subregions of the data density as long
as there are unimodal pairs connecting them in a single connected component of the
unimodality graph. The proposed locally unimodal cluster definition is flexible as it
identifies arbitrary-shaped clusters, including typical unimodal or convex shapes. As
part of the proposed methodology, we have developed a statistical procedure to de-
cide on unimodal pairs of subclusters, and we built the unimodality graph in which
both clustering and estimation of k can be addressed through the computation of
a unimodality spanning forest. The strengths of our contribution’s conceptual and
algorithmic side have been validated with extensive numerical results using several
real and synthetic datasets.

In Chapter 5, we introduced the soft silhouette score, a generalization of the
widely used silhouette measure that accommodates probabilistic cluster assignments.
Leveraging this differentiable measure, we developed the DCSS methodology and an
autoencoder-based framework specifically designed to optimize the soft silhouette ob-
jective. Notably, the DCSS method guides the learned latent representations to form
both compact and well-separated clusters. This property is crucial in real-world ap-
plications, as targeting both compactness and separability ensures that the resulting

clusters are not only densely packed, but also distinct from each other. Experiments

157

on a variety of benchmark datasets show that DCSS performs competitively against
established deep clustering approaches, underscoring the effectiveness soft silhouette
as an objective for enhancing the quality of learned latent representations.

In Chapter 6, we presented the NIMLC clustering method, a neural-network-based
approach that frames clustering as a generative task within the implicit maximum
likelihood estimation framework. By adapting ideas from ClusterGAN, NIMLC avoids
some of the known deficiencies of GAN-based clustering while retaining a simple, sta-
ble training objective. The method performs particularly well on small datasets, and
experimental comparisons with both deep and conventional clustering algorithms
underscore its competitive potential. A notable strength of NIMLC is its ability to ac-
commodate diverse cluster geometries without tuning hyperparameters. Experiments
on synthetic datasets demonstrate that the same settings allow NIMLC to effectively
cluster both cloud-shaped and ring-shaped data. Taken together, these results suggest
that the incorporation of generative modeling into IMLE offers a promising avenue

for robust and versatile clustering in neural network-based systems.

7.2 Directions for Future Work

Finally, we outline several potential directions for future work, addressing open issues
related to this thesis that merit further investigation.

For the global k-means++ method presented in Chapter 2 it would be interesting
to investigate a dynamic method for appropriately selecting the number of candidates
L in each k cluster sub-problem. This could potentially lead to a further speed-up
of the algorithm. We could also adapt the global k-means++ algorithm into a semi-
supervised setting by incorporating must-link or cannot-link constraints by utilizing
the exact solver as referred to [190]. Additionally, we aim to test the method in
real applications (such as in biology, speech recognition, face clustering, etc.) initially
requiring a large number of clusters (overclustering solutions). Finally, it would be
interesting to integrate the method into a deep framework for clustering of composite
objects (graphs, images, text, etc.).

For the global kernel k-means++ method presented in Chapter 3 it would be
interesting to investigate a technique for adapting the number of candidates L as k

increases. We observed that fewer candidates are required to be examined for small

158

values of k since the problem is simpler. As k increases, the problem becomes more
difficult, necessitating more extensive exploration using more candidates. We believe
that dynamically tuning L in each k-cluster subproblem could further improve both
the attained clustering error and the execution time of the method. In addition,
we plan to investigate the estimation of the number of clusters in this algorithmic
framework using criteria such as silhouette coefficient [92], modularity [109], and
inclusion [110, 111]. Additionally, it can be used for image segmentation [191], where
grouping pixels or regions with similar features is crucial, and bioinformatics [192]
where analyzing gene expression patterns requires accurate non-linear clustering. In
a graph partitioning framework, the method can be applied to social network analysis
to detect communities in large-scale networks and to recommendation systems for
clustering users based on shared preferences. Finally, we aim to extend this method
to other kernel k-means variations such as fuzzy kernel k-means [193, 194] and use
the method in real-world non-linear clustering applications.

A separate line of research addressed by the UniForCE method introduced in
Chapter 4. Future work could explore its application across diverse domains to fur-
ther evaluate its versatility. Additionally, investigating the potential advantages of
integrating UniForCE within existing machine learning pipelines could reveal valu-
able comparative benefits. A promising future direction is the incorporation of the
mudpod [195] into the UniForCE procedure. Specifically, mudpod is a recent crite-
rion that leverages the dip statistic across random projections to assess multimodality.
It will beneficial to be applied during the initial overclustering stage to validate that
each subcluster is unimodal, an assumption on which UniForCE relies. We believe
that the concept of local unimodality, i.e. the fact that unimodality can be tested and
validated locally, could offer a foundation for future advancements in other unsu-
pervised learning tasks, such as density estimation, dimensionality reduction, and
data visualization. Finally, the development of internal cluster validity indices for
the assessment of irregular-shaped clusters would help in understanding further the
behavior of clustering methodologies.

Regarding the DCSS method introduced in Chapter 5, there are several direc-
tions for future work, such as improving the clustering results using data aug-
mentation techniques since it is adopted as an effective strategy for enhancing the
learned representations [175, 196]. In addition, more sophisticated models and train-

ing methodologies can be used, such as ensemble models [197, 198] or adversarial

159

learning [199, 200]. It is also possible to modify the learning procedure to incorporate
self-paced learning [183], since learning the “easier” data first is expected to improve
the clustering results [201, 202, 203]. However, our major focus will be on extending
the DCCS algorithm for estimating the number of clusters by exploiting unimodality
tests as happens in the dip-means [204] and DIPDECK [134] algorithms.

Finally, for the NIMLC method introduced in Chapter 6, future research could
focus on a more detailed experimental investigation of its performance and its use
in real-world applications. Additionally, we aim to consider a modification of the
method in which the number of samples could vary at each epoch. In the same
spirit, we could explore the possibility of adopting a self-paced approach similar to
the one proposed in [183] for the online tuning of the parameter Ao. Furthermore,
it is interesting to study how the NIMLC approach could be integrated into a general
methodology for estimating the true number of clusters in the dataset.

Building on the method-specific research directions discussed above, we can also
identify broader avenues for future work in data clustering. One key limitation of
current deep clustering methods is their lack of attention to the dimensionality of
the latent space. A high-dimensional latent space can capture richer and more com-
plex information, but it also risks encoding irrelevant details or noise. Conversely, a
low-dimensional latent space produces more compact and manageable embeddings,
but may fail to preserve important information. An interesting direction for future
research is the development of methodologies that can automatically determine and
adapt the appropriate latent dimensionality within deep clustering frameworks.

Relatively little research has addressed the problem of determining the number
of clusters within deep clustering frameworks. As demonstrated in this thesis, this
remains a crucial and challenging issue in data clustering. A promising direction for
future work would be to integrate unimodality testing with deep learning approaches.
One potential path is to build on the methodological foundations of UniForCE and
embed them into a deep clustering framework, enabling automated cluster estimation.
Such an approach could lead to the development of a Deep UniForCE method.

An exciting avenue for future research is the integration of large language models
(LLMs) into text clustering tasks. LLMs provide rich contextual embeddings that
capture deep semantic and syntactic information, far surpassing traditional word or
sentence representations. Incorporating these embeddings into clustering frameworks

could significantly improve the ability to group documents, sentences, or even multi-

160

modal content by meaning rather than surface similarity.

Another promising research direction lies in exploring practical applications of the
proposed approaches across diverse domains. For instance, in computer vision, these
methods could be applied to video summarization, enabling the automatic extraction
of representative frames or segments that capture the essence of long video streams.
Such capabilities would be valuable for content indexing, retrieval, and efficient video
browsing. In the health domain, an especially compelling application is the analysis
of genomic data. Applying clustering techniques to genome sequences could help
uncover previously unrecognized genomic patterns or subgroups, potentially leading
to the discovery of novel biomarkers, patient stratification strategies, or even insights
into rare genetic conditions. These findings could support clinicians in identifying
hidden structures in biological data that might otherwise remain unnoticed, thereby
advancing personalized medicine and improving diagnostic procedure. Beyond these
examples, the adaptability of the approaches suggests broader potential in fields such

as social network analysis, natural language processing, and recommendation systems.

161

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]
[9]

[10]

S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan: Latent space clus-
tering in generative adversarial networks,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 4610-4617.

C.J. Veenman, M. J. T. Reinders, and E. Backer, “A maximum variance cluster
algorithm,” IEEE Transactions on pattern analysis and machine intelligence, vol. 24,
no. 9, pp. 1273-1280, 2002.

A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algo-
rithm,” Pattern recognition, vol. 36, no. 2, pp. 451-461, 2003.

I. Goodfellow,]J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, 2014, pp. 2672—2680.

C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning.
Springer, 2006, vol. 4, no. 4.

K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press
Cambridge, 2016, vol. 1, no. 2.

S. J. Prince, Understanding deep learning. MIT press, 2023.

A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM
computing surveys (CSUR), vol. 31, no. 3, pp. 264-323, 1999.

M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, “A survey of kernel and

spectral methods for clustering,” Pattern recognition, vol. 41, no. 1, pp. 176—-190,
2008.

162

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern recognition
letters, vol. 31, no. 8, pp. 651-666, 2010.

Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 8, pp. 1798-1828, 2013.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information processing

systems, vol. 25, pp. 1097-1105, 2012.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
pp. 436-444, 2015.

E. Aljalbout, V. Golkov, Y. Siddiqui, M. Strobel, and D. Cremers, “Clus-
tering with deep learning: Taxonomy and new methods,” arXiv preprint
arXiv:1801.07648, 2018.

E. Min, X. Guo, Q. Liu, G. Zhang,]J. Cui, and J. Long, “A survey of clustering
with deep learning: From the perspective of network architecture,” IEEE Access,
vol. 6, pp. 39501-39 514, 2018.

G. Nutakki, B. Abdollahi, W. Sun, and O. Nasraoui, An Introduction to Deep
Clustering, 01 2019, pp. 73-89.

S. Zhou, H. Xu, Z. Zheng,]J. Chen, J. Bu, J. Wu, X. Wang, W. Zhu, M. Ester
et al., “A comprehensive survey on deep clustering: Taxonomy, challenges, and

future directions,” arXiv preprint arXiv:2206.07579, 2022.

Y. Ren, J. Pu, Z. Yang, J. Xu, G. Li, X. Pu, P. 5. Yu, and L. He, “Deep clustering;:
A comprehensive survey,” IEEE transactions on neural networks and learning
systems, vol. 36, no. 4, pp. 5858-5878, 2024.

L. Kaufman and P.]. Rousseeuw, Finding groups in data: an introduction to cluster

analysis. John Wiley & Sons, 2009.

V. Cohen-Addad and C. Karthik, “Inapproximability of clustering in lp met-
rics,” in 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS). 1EEE, 2019, pp. 519-539.

163

[22] V. Cohen-Addad, C. Karthik, and E. Lee, “On approximability of clustering
problems without candidate centers,” in Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 2021, pp. 2635-2648.

[23] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “Np-hardness of euclidean
sum-of-squares clustering,” Machine learning, vol. 75, no. 2, pp. 245-248, 2009.

[24] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means problem
is np-hard,” Theoretical Computer Science, vol. 442, pp. 13-21, 2012.

[25] J. MacQueen et al., “Some methods for classification and analysis of multivari-
ate observations,” in Proceedings of the fifth Berkeley symposium on mathematical
statistics and probability, vol. 1, no. 14. Oakland, CA, USA, 1967, pp. 281-297.

[26] S. Lloyd, “Least squares quantization in pcm,” IEEE transactions on information
theory, vol. 28, no. 2, pp. 129-137, 1982.

[27] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of efficient
initialization methods for the k-means clustering algorithm,” Expert systems

with applications, vol. 40, no. 1, pp. 200-210, 2013.

[28] C. Baldassi, “Recombinator-k-means: an evolutionary algorithm that exploits
k-means++ for recombination,” IEEE Transactions on Evolutionary Computation,

vol. 26, no. 5, pp. 991-1003, 2022.

[29] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful
seeding,” Stanford InfoLab, Technical Report 2006-13, June 2006. [Online].
Available: http://ilpubs.stanford.edu:8090/778/

[30] A. Agrawal and H. Gupta, “Global k-means (gkm) clustering algorithm: a sur-

vey,” International journal of computer applications, vol. 79, no. 2, 2013.

[31] P. Franti and S. Sieranoja, “How much can k-means be improved by using better

initialization and repeats?” Pattern Recognition, vol. 93, pp. 95-112, 2019.

[32] J. Ajmera and C. Wooters, “A robust speaker clustering algorithm,” in 2003
IEEE Workshop on Automatic Speech Recognition and Understanding (IEEE Cat.
No.03EX721), 2003, pp. 411-416.

164

http://ilpubs.stanford.edu:8090/778/

[33] Y. Saeys, S. Van Gassen, and B. N. Lambrecht, “Computational low cytometry:
helping to make sense of high-dimensional immunology data,” Nature Reviews
Immunology, vol. 16, no. 7, pp. 449-462, 2016.

[34] Z. Wei and Y.-C. Chen, “Skeleton clustering: Graph-based approach for
dimension-free density-aided clustering,” in NeurIPS 2022 Workshop: New

Frontiers in Graph Learning.

[35] F. Nie, C.-L. Wang, and X. Li, “K-multiple-means: A multiple-means clustering
method with specified k clusters,” in Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, 2019, pp. 959-967.

[36] J. Xie, S. Jiang, W. Xie, and X. Gao, “An efficient global k-means clustering
algorithm.” J. Comput., vol. 6, no. 2, pp. 271-279, 2011.

[37] A. M. Bagirov, J. Ugon, and D. Webb, “Fast modified global k-means algorithm
for incremental cluster construction,” Pattern recognition, vol. 44, no. 4, pp. 866—
876, 2011.

[38] L. Bai, J. Liang, C. Sui, and C. Dang, “Fast global k-means clustering based
on local geometrical information,” Information Sciences, vol. 245, pp. 168—180,
2013.

[39] J. Z. Lai and T.-J. Huang, “Fast global k-means clustering using cluster mem-
bership and inequality,” Pattern Recognition, vol. 43, no. 5, pp. 1954-1963,
2010.

[40] B. Scholkopf, A. Smola, and K.-R. Miiller, “Nonlinear component analysis as a
kernel eigenvalue problem,” Neural computation, vol. 10, no. 5, pp. 1299-1319,
1998.

[41] K.-R. Miiller, S. Mika, K. Tsuda, and K. Schélkopf, “An introduction to kernel-
based learning algorithms,” in Handbook of neural network signal processing. Boca
Raton, FL: CRC Press, 2018, pp. 4-1.

[42] 1. S. Dhillon, Y. Guan, and B. Kulis, A unified view of kernel k-means, spec-
tral clustering and graph cuts. E103 Westgate Building 288 N. Burrowes Rd.
University Park, PA 16802: Citeseer, 2004.

165

[43] E. W. Forgy, “Cluster analysis of multivariate data: efficiency versus inter-

pretability of classifications,” biometrics, vol. 21, pp. 768-769, 1965.

[44] G. Vardakas, I. Papakostas, and A. Likas, “Efficient error minimization in kernel

k-means clustering,” Pattern Analysis and Applications, vol. 28, no. 2, p. 107,
2025.

[45] G. F. Tzortzis and A. C. Likas, “The global kernel k-means algorithm for clus-

tering in feature space,” IEEE transactions on neural networks, vol. 20, no. 7, pp.
1181-1194, 2009.

[46] C. Loader, Local regression and likelihood. Springer Science & Business Media,
2006.

[47] S. Dharmadhikari and K. Joag-Dev, Unimodality, Convexity, and Applications.

Elsevier Science, 1988.

[48] T. Dai, “On multivariate unimodal distributions (Master Thesis),” Ph.D. dis-

sertation, University of British Columbia, 1989.

[49] B. W. Silverman, “Using kernel density estimates to investigate multimodality,”
Journal of the Royal Statistical Society. Series B (Methodological), vol. 43, no. 1, pp.
97-99, 1981.

[50] J. A. Hartigan and P. M. Hartigan, “The Dip Test of Unimodality,” The Annals
of Statistics, vol. 13, no. 1, pp. 70 — 84, 1985.

[51] M. C. Minnotte, A test of mode existence with applications to multimodality. Rice
University, 1993.

[52] N. Fischer, E. Mammen, and J. S. Marron, “Testing for multimodality,” Com-

putational statistics & data analysis, vol. 18, no. 5, pp. 499-512, 1994.
[53] P. Chasani, “Machine learning methods based on unimodality testing,” 2025.

[64] A. Adolfsson, M. Ackerman, and N. C. Brownstein, “To cluster, or not to cluster:
An analysis of clusterability methods,” Pattern Recognition, vol. 88, pp. 13-26,
2019.

166

[55] A. Kalogeratos and A. Likas, “Dip-means: an incremental clustering method for
estimating the number of clusters,” in Advances in Neural Information Processing
Systems, vol. 25, 2012.

[56] T. Chamalis and A. Likas, “The projected dip-means clustering algorithm,” in
Hellenic Conf. on Artificial Intelligence, 2018.

[57] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-

encoders: Explicit invariance during feature extraction,” in Icml, 2011.

[58] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in kdd, vol. 96,
no. 34, 1996, pp. 226-231.

[59] A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,”
science, vol. 344, no. 6191, pp. 1492-1496, 2014.

[60] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemo-
metrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37-52, 1987.

[61] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, no. 6755, pp. 788-791, 1999.

[62] A. Y. Ng, M. L. Jordan, and Y. Weiss, “On spectral clustering: Analysis and
an algorithm,” in Advances in neural information processing systems, 2002, pp.
849-856.

[63] N. G. Pavlidis, D. P. Hofmeyr, and S. K. Tasoulis, “Minimum density hyper-
planes,” Journal of Machine Learning Research, 2016.

[64] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[65] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
“Graph neural networks: A review of methods and applications,” Al open, vol. 1,
pp- 57-81, 2020.

[66] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep embed-
ding: An unsupervised and generative approach to clustering,” arXiv preprint
arXiv:1611.05148, 2016.

167

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep repre-
sentations and image clusters,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 5147-5156.

S. Haykin, Neural networks and learning machines, 3/E. Pearson Education India,
2010.

Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and
time series,” The handbook of brain theory and neural networks, vol. 3361, no. 10,
p- 1995, 1995.

S. Saito and R. T. Tan, “Neural clustering: Concatenating layers for better pro-

jections,” 2017.

B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong, “Towards k-means-friendly

b

spaces: Simultaneous deep learning and clustering,’
on machine learning. PMLR, 2017, pp. 3861-3870.

in international conference

S. Theodoridis and K. Koutroumbas, “Chapter 11 - clustering: Basic
concepts,” in Pattern Recognition (Fourth Edition), fourth edition ed.,
S. Theodoridis and K. Koutroumbas, Eds. Boston: Academic Press, 2009, pp.
595-625. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B978159749272050013X

J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clus-
tering analysis,” in International conference on machine learning. PMLR, 2016,
pp. 478-487.

D. Beeferman and A. Berger, “Agglomerative clustering of a search engine
query log,” in Proceedings of the sixth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2000, pp. 407-416.

C.-C. Hsu and C.-W. Lin, “Cnn-based joint clustering and representation learn-
ing with feature drift compensation for large-scale image data,” IEEE Trans-
actions on Multimedia, vol. 20, no. 2, pp. 421-429, 2017.

G. Chen, “Deep learning with nonparametric clustering,” arXiv preprint
arXiv:1501.03084, 2015.

168

https://www.sciencedirect.com/science/article/pii/B978159749272050013X
https://www.sciencedirect.com/science/article/pii/B978159749272050013X

[77] P. Huang, Y. Huang, W. Wang, and L. Wang, “Deep embedding network for
clustering,” in 2014 22nd International conference on pattern recognition. IEEE,

2014, pp. 1532-1537.

[78] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of

machine learning research, vol. 9, no. 11, 2008.

[79] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering with
local structure preservation.” in Ijcai, 2017, pp. 1753-1759.

[80] C.Song, F. Liu, Y. Huang, L. Wang, and T. Tan, “Auto-encoder based data clus-
tering,” in Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications: 18th Iberoamerican Congress, CIARP 2013, Havana, Cuba, November
20-23, 2013, Proceedings, Part I 18. Springer, 2013, pp. 117-124.

[81] C. Leiber, L. G. Bauer, M. Neumayr, C. Plant, and C. Béhm, “The dipen-
coder: Enforcing multimodality in autoencoders,” in Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp.
846-856.

[82] J. A. Hartigan and P. M. Hartigan, “The dip test of unimodality,” The annals of
Statistics, pp. 70—-84, 1985.

[83] A. Jalal, A. Ilyas, C. Daskalakis, and A. G. Dimakis, “The robust mani-
fold defense: Adversarial training using generative models,” arXiv preprint
arXiv:1712.09196, 2017.

[84] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing using
generative models,” in International Conference on Machine Learning. PMLR,

2017, pp. 537-546.

[85] S. Santurkar, D. Budden, and N. Shavit, “Generative compression,” in 2018
Picture Coding Symposium (PCS). 1EEE, 2018, pp. 258-262.

[86] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[87] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved
training of wasserstein gans,” arXiv preprint arXiv:1704.00028, 2017.

169

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

G. Vardakas and A. Likas, “Global k-means++: an effective relaxation of the
global k-means clustering algorithm,” Applied Intelligence, vol. 54, no. 19, pp.
8876-8888, 2024.

G. Vardakas, A. Kalogeratos, and A. Likas, “Uniforce: The unimodality for-
est method for clustering and estimation of the number of clusters,” Pattern
Recognition, p. 112357, 2025.

G. Vardakas, I. Papakostas, and A. Likas, “Deep clustering using the soft sil-

houette score: Towards compact and well-separated clusters,” arXiv preprint

arXiv:2402.00608, 2024.

G. Vardakas and A. Likas, “Neural clustering based on implicit maximum

likelihood,” Neural Computing and Applications, pp. 1-14, 2023.

P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis,” Journal of computational and applied mathematics, vol. 20, pp.
53-65, 1987.

O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona, “An exten-
sive comparative study of cluster validity indices,” Pattern recognition, vol. 46,
no. 1, pp. 243-256, 2013.

B. Bahmani, B. Moseley, A. Vattani, R. Kumar, and S. Vassilvitskii, “Scalable
k-means++,” Proceedings of the VLDB Endowment, vol. 5, no. 7, pp. 622-633,
2012.

D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online].

Available: http://archive.ics.uci.edu/ml

Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].

Available: http://yann.lecun.com/exdb/mnist/

G. W. Milligan and M. C. Cooper, “A study of standardization of variables in
cluster analysis,” Journal of classification, vol. 5, no. 2, pp. 181-204, 1988.

A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and]J. Heming, “K-
means clustering algorithms: A comprehensive review, variants analysis, and

advances in the era of big data,” Information Sciences, vol. 622, pp. 178-210,
2023.

170

http://archive.ics.uci.edu/ml
http://yann.lecun.com/exdb/mnist/

[99] O. Bachem, M. Lucic, H. Hassani, and A. Krause, “Fast and provably good
seedings for k-means,” Advances in neural information processing systems, vol. 29,
2016.

[100] D. Choo, C. Grunau, J. Portmann, and V. Rozhon, “k-means++: few more steps
yield constant approximation,” in International Conference on Machine Learning.
PMLR, 2020, pp. 1909-1917.

[101] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clustering and
normalized cuts,” in Proceedings of the tenth ACM SIGKDD international conference
on Knowledge discovery and data mining, 2004, pp. 551-556.

[102] D. Paul, S. Chakraborty, S. Das, and J. Xu, “Implicit annealing in kernel spaces:
A strongly consistent clustering approach,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 45, no. 5, pp. 5862-5871, 2022.

[103] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algo-

rithm,” Advances in neural information processing systems, vol. 14, 2001.

[104] H. Jia, S. Ding, X. Xu, and R. Nie, “The latest research progress on spectral
clustering,” Neural Computing and Applications, vol. 24, pp. 1477-1486, 2014.

[105] J.-S. Wu, W.-S. Zheng, J.-H. Lai, and C. Y. Suen, “Euler clustering on large-scale
dataset,” IEEE Transactions on Big Data, vol. 4, no. 4, pp. 502-515, 2017.

[106] G. Franca, M. L. Rizzo, and J. T. Vogelstein, “Kernel k-groups via hartigan’s
method,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 12, pp. 4411-4425, 2020.

[107] N. Tsapanos, A. Tefas, N. Nikolaidis, and 1. Pitas, “A distributed framework
for trimmed kernel k-means clustering,” Pattern recognition, vol. 48, no. 8, pp.
2685-2698, 2015.

[108] S. H.-C. Jiang, R. Krauthgamer, J. Lou, and Y. Zhang, “Coresets for kernel
clustering,” Machine Learning, pp. 1-16, 2024.

[109] M. E. Newman, “Modularity and community structure in networks,” Proceedings
of the national academy of sciences, vol. 103, no. 23, pp. 8577-8582, 2006.

171

[110] N. Koufos and A. Likas, “The inclusion measure for community evaluation and
detection in unweighted networks,” in 2018 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM). 1EEE, 2018,
pp- 1053-1056.

[111] N. Kornelakis and A. Likas, “The inclusion criterion for data clustering quality,”
in Proceedings of the 13th Hellenic Conference on Artificial Intelligence, 2024, pp.
1-4.

[112] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without eigenvec-
tors a multilevel approach,” IEEE transactions on pattern analysis and machine
intelligence, vol. 29, no. 11, pp. 19441957, 2007.

[113] H. Zha, X. He, C. Ding, M. Gu, and H. Simon, “Spectral relaxation for k-means

clustering,” Advances in neural information processing systems, vol. 14, 2001.

[114] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network dataset

collection,” http://snap.stanford.edu/data, Jun. 2014.

[115] J. Shi and]. Malik, “Normalized cuts and image segmentation,” in Proceedings

of IEEE computer society conference on computer vision and pattern recognition.

IEEE, 1997, pp. 731-737.

[116] Shi, “Multiclass spectral clustering,” in Proceedings ninth IEEE international con-
ference on computer vision. 1EEE, 2003, pp. 313-319.

[117] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for
human face identification,” in Proceedings of 1994 IEEE workshop on applications
of computer vision. 1EEE, 1994, pp. 138-142.

[118] G. W. Milligan and M. Cooper, “A study of standardization of variables in
cluster analysis,” Journal of Classification, vol. 5, pp. 181-204, 1988. [Online].
Available: https://api.semanticscholar.org/CorpusID:122116077

[119] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,]J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-

chine learning in Python,” Journal of Machine Learning Research, vol. 12, pp.
2825-2830, 2011.

172

http://snap.stanford.edu/data
https://api.semanticscholar.org/CorpusID:122116077

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

S. Kitayama and K. Yamazaki, “Simple estimate of the width in gaussian kernel
with adaptive scaling technique,” Applied Soft Computing, vol. 11, no. 8, pp.
4726-4737, 2011.

H.-H. Bock, Clustering Methods: A History of k-Means Algorithms. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2007, pp. 161-172.

E. Schubert and P. J. Rousseeuw, “Fast and eager k-medoids clustering: O(k)
runtime improvement of the PAM, CLARA, and CLARANS algorithms,” Infor-
mation Systems, vol. 101, p. 101804, 2021.

A. Kalogeratos and A. Likas, “Document clustering using synthetic cluster

prototypes,” Data & Knowledge Engineering, vol. 70, no. 3, pp. 284-306, 2011.

B.]. Frey and D. Dueck, “Clustering by passing messages between data points,”
Science, vol. 315, no. 5814, pp. 972-976, 2007.

J. Jang and H. Jiang, “DBSCAN++: Towards fast and scalable density cluster-
ing,” in Int’l Conf. on Machine Learning, 2019, pp. 3019-3029.

A. Rodriguez and A. Laio, “Clustering by fast search and find of density peaks,”
Science, vol. 344, no. 6191, pp. 1492-1496, 2014.

D. Pelleg and A. W. Moore, “X-means: Extending k-means with efficient esti-
mation of the number of clusters,” in Int’l Conf. on Machine Learning, 2000, p.
727-734.

G. Hamerly and C. Elkan, “Learning the k in k-means,” in Advances in Neural
Information Processing Systems, S. Thrun, L. Saul, and B. Scholkopf, Eds., vol. 16,
2003.

Y. Feng and G. Hamerly, “PG-means: learning the number of clusters in data,”
in Advances in Neural Information Processing Systems, B. Scholkopf, J. Platt, and
T. Hoffman, Eds., vol. 19, 2006.

R. J. Campello, D. Moulavi, A. Zimek, and]J. Sander, “Hierarchical density
estimates for data clustering, visualization, and outlier detection,” ACM Trans.

on Knowledge Discovery from Data, vol. 10, no. 1, pp. 1-51, 2015.

173

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

D. Li, S. Zhou, T. Zeng, and R. H. Chan, “Multi-prototypes convex merging
based k-means clustering algorithm,” IEEE Trans. on Knowledge and Data En-
gineering, 2023.

M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs, “NbClust: An R pack-
age for determining the relevant number of clusters in a data set,” Journal of

Statistical Software, vol. 61, no. 6, p. 1-36, 2014.

U. von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing,
vol. 17, pp. 395-416, 2007.

C. Leiber, L. G. Bauer, B. Schelling, C. B6hm, and C. Plant, “Dip-based deep em-
bedded clustering with k-estimation,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 2021, pp. 903-913.

S. K. Tasoulis, D. K. Tasoulis, and V. P. Plagianakos, “Enhancing principal
direction divisive clustering,” Pattern Recognition, vol. 43, no. 10, pp. 3391-
3411, 2010.

S. Tasoulis, N. G. Pavlidis, and T. Roos, “Nonlinear dimensionality reduction

for clustering,” Pattern Recognition, vol. 107, p. 107508, 2020.

B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, “Diffusion maps,
spectral clustering and eigenfunctions of fokker-planck operators,” in Neural

Information Processing Systems, 2005, p. 955-962.

A. Little, M. Maggioni, and J. M. Murphy, “Path-based spectral clustering:
Guarantees, robustness to outliers, and fast algorithms,” Journal of Machine

Learning Research, vol. 21, no. 6, pp. 1-66, 2020.

A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, “A survey of multiob-

jective evolutionary clustering,” ACM Computing Surveys, vol. 47, no. 4, 2015.

S. Zhu, L. Xu, and E. D. Goodman, “Hierarchical topology-based cluster rep-
resentation for scalable evolutionary multiobjective clustering,” IEEE Trans. on
Cybernetics, vol. 52, no. 9, pp. 9846-9860, 2022.

F. Nie, C.-L. Wang, and X. Li, “k-multiple-means: A multiple-means clustering
method with specified £ clusters,” in ACM SIGKDD Int’l Conf. on Knowledge
Discovery & Data Mining, 2019, pp. 959-967.

174

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

R. Mehmood, S. El-Ashram, R. Bie, H. Dawood, and A. Kos, “Clustering by
fast search and merge of local density peaks for gene expression microarray
data,” Scientific reports, vol. 7, no. 1, p. 45602, 2017.

J. Guan, S. Li, X. He, J. Zhu,]J. Chen, and P. Si, “SMMP: A stable-membership-
based auto-tuning multi-peak clustering algorithm,” IEEE Trans. on Pattern

Analysis and Machine Intelligence, vol. 45, no. 5, pp. 6307-6319, 2022.

C. Li, S. Ding, X. Xu, H. Hou, and L. Ding, “Fast density peaks clustering algo-
rithm based on improved mutual k-nearest-neighbor and sub-cluster merging,”
Information Sciences, vol. 647, p. 119470, 2023.

D. Cheng, Q. Zhu,]J. Huang, Q. Wu, and L. Yang, “Clustering with local density
peaks-based minimum spanning tree,” IEEE Trans. on Knowledge and Data
Engineering, vol. 33, no. 2, pp. 374-387, 2021.

Z. Wei and Y.-C. Chen, “Skeleton clustering: Graph-based approach for
dimension-free density-aided clustering,” in NeurIPS 2022 Workshop: New
Frontiers in Graph Learning, 2022.

A. Peterson, A. Ghosh, and R. Maitra, “Merging k-means with hierarchical

clustering for identifying general-shaped groups,” Stat, vol. 7, 12 2017.

Y. Zhao, G. Karypis, and U. Fayyad, “Hierarchical clustering algorithms for
document datasets,” Data Mining and Knowledge Kiscovery, vol. 10, pp. 141-168,
2005.

A. Toannidis, V. Chasanis, and A. Likas, “An agglomerative approach for shot
summarization based on content homogeneity,” in Int’l Conf. on Machine Vision,
vol. 9445, 2015, p. 94451F.

T. Chamalis and A. Likas, “Region merging for image segmentation based on
unimodality tests,” in Int’l Conf. on Control, Automation and Robotics, 2017, pp.
381-384.

J. Ameijeiras-Alonso, R. M. Crujeiras, and A. Rodriguez-Casal, “Mode testing,

critical bandwidth and excess mass,” TEST, vol. 28, no. 3, pp. 900-919, 2019.

J. Kleinberg and E. Tardos, Algorithm Design (Sec. 4.6 & 4.7). Addison Wesley,
2006.

175

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

L. G. Bauer, C. Leiber, C. Bohm, and C. Plant, “Extension of the dip-test
repertoire-efficient and differentiable p-value calculation for clustering,” in
SIAM International Conference on Data Mining, 2023, pp. 109-117.

G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik, “Emnist: Extending mnist
to handwritten letters,” in Int’l Joint Conf. on Neural Networks. I1EEE, 2017,
pp- 2921-2926.

L. Wolf, T. Hassner, and 1. Maoz, “Face recognition in unconstrained videos
with matched background similarity,” in IEEE Conference on Computer Vision

and Pattern Recognition, 2011, pp. 529-534.

W. Guo, K. Lin, and W. Ye, “Deep embedded k-means clustering,” in 2021
International Conference on Data Mining Workshops ICDMW). 1EEE, 2021, pp.
686—694.

S. A. Shah and V. Koltun, “Robust continuous clustering,” Proceedings of the
National Academy of Sciences, vol. 114, no. 37, pp. 9814-9819, 2017.

D. Comaniciu and P. Meer, “Mean Shift: A robust approach toward feature space
analysis,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 24, no. 5,
pp- 603-619, 2002.

N. X. Vinh, J. Epps, and]. Bailey, “Information theoretic measures for cluster-

b

ings comparison: Variants, properties, normalization and correction for chance,’

Journal of Machine Learning Research, vol. 11, no. 95, pp. 2837-2854, 2010.

L. Hubert and P. Arabie, “Comparing partitions,” Journal of classification, vol. 2,
no. 1, pp. 193-218, 1985.

E. Rendén, I. Abundez, A. Arizmendi, and E. M. Quiroz, “Internal versus
external cluster validation indexes,” International Journal of computers and com-

munications, vol. 5, no. 1, pp. 27-34, 2011.

P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada, “Normalized mutual

information feature selection,” IEEE Transactions on neural networks, vol. 20,
no. 2, pp. 189-201, 2009.

176

[163] J. E. Chacén and A. I. Rastrojo, “Minimum adjusted rand index for two clus-
terings of a given size,” Advances in Data Analysis and Classification, pp. 1-9,
2022.

[164] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detecting

compact well-separated clusters,” 1973.

[165] T. Caliriski and J. Harabasz, “A dendrite method for cluster analysis,” Commu-

nications in Statistics-theory and Methods, vol. 3, no. 1, pp. 1-27, 1974.

[166] D. L. Davies and D. W. Bouldin, “A cluster separation measure,” IEEE trans-
actions on pattern analysis and machine intelligence, no. 2, pp. 224-227, 1979.

[167]]J. Pavlopoulos, G. Vardakas, and A. Likas, “Revisiting silhouette aggregation,”
in International Conference on Discovery Science. Springer, 2024, pp. 354—-368.

[168] M. D. Buhmann, “Radial basis functions,” Acta numerica, vol. 9, pp. 1-38, 2000.

[169] L. K. Saul and S. T. Roweis, “Think globally, fit locally: unsupervised learning
of low dimensional manifolds,” Journal of machine learning research, vol. 4, no.
Jun, pp. 119-155, 2003.

[170] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global geometric framework
for nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319-
2323, 2000.

[171] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms,” arXiv preprint arXiv:1708.07747,
2017.

[172] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto, and

D. Ha, “Deep learning for classical japanese literature,” arXiv preprint
arXiv:1812.01718, 2018.

[173] E. Bulbul, A. Cetin, and I. A. Dogru, “Human activity recognition using smart-
phones,” in 2018 2nd International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT), 2018, pp. 1-6.

[174] L. Van Der Maaten, “Learning a parametric embedding by preserving local

structure,” in Artificial intelligence and statistics. PMLR, 2009, pp. 384-391.

177

[175] X. Guo, E. Zhu, X. Liu, and J. Yin, “Deep embedded clustering with data
augmentation,” in Asian conference on machine learning. PMLR, 2018, pp. 550—
565.

[176] Y. Ren, N. Wang, M. Li, and Z. Xu, “Deep density-based image clustering,”
Knowledge-Based Systems, vol. 197, p. 105841, 2020.

[177] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in Proceedings of the 27th international conference on machine learning
(ICML-10), 2010, pp. 807-814.

[178] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE

international conference on computer vision, 2015, pp. 1026-1034.

[179] W. M. Rand, “Objective criteria for the evaluation of clustering methods,” Journal

of the American Statistical association, vol. 66, no. 336, pp. 846—850, 1971.

[180] K. Li and J. Malik, “Implicit maximum likelihood estimation,” arXiv preprint
arXiv:1809.09087, 2018.

[181] S. Mohamed and B. Lakshminarayanan, “Learning in implicit generative mod-
els,” arXiv preprint arXiv:1610.03483, 2016.

[182] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in
Proceedings of the 26th annual international conference on machine learning, 2009,
pp- 41-48.

[183] M. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent variable

models,” Advances in neural information processing systems, vol. 23, 2010.

[184] G. Vardakas and A. Likas, “Implicit maximum likelihood clustering,” in IFIP
International Conference on Artificial Intelligence Applications and Innovations.
Springer, 2022, pp. 484-495.

[185] S. Tasoulis, N. G. Pavlidis, and T. Roos, “Nonlinear dimensionality reduction

for clustering,” Pattern Recognition, vol. 107, p. 107508, 2020.

[186] G. X. Zheng,]J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B.
Ziraldo, T. D. Wheeler, G. P. McDermott, J. Zhu et al., “Massively parallel digital

178

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

transcriptional profiling of single cells,” Nature communications, vol. 8, no. 1, pp.
1-12, 2017.

B.]. Frey and D. Dueck, “Clustering by passing messages between data points,”
science, vol. 315, no. 5814, pp. 972-976, 2007.

J. J. Hull, “A database for handwritten text recognition research,” IEEE Trans-
actions on pattern analysis and machine intelligence, vol. 16, no. 5, pp. 550-554,
1994.

H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Re-
search Logistics (NRL), vol. 52, no. 1, pp. 7-21, 2005.

V. Piccialli, A. R. Russo, and A. M. Sudoso, “An exact algorithm for semi-

supervised minimum sum-of-squares clustering,” Computers & Operations Re-

search, vol. 147, p. 105958, 2022.

7. Khan and J. Yang, “Nonparametric k-means clustering-based adaptive unsu-
pervised colour image segmentation,” Pattern Analysis and Applications, vol. 27,
no. 1, p. 17, 2024.

R. Jothi, S. K. Mohanty, and A. Ojha, “Dk-means: a deterministic k-means clus-
tering algorithm for gene expression analysis,” Pattern Analysis and Applications,
vol. 22, pp. 649-667, 2019.

P. Das and A. Das, “A fast and automated segmentation method for detection of

masses using folded kernel based fuzzy c-means clustering algorithm,” Applied
Soft Computing, vol. 85, p. 105775, 2019.

D. Graves and W. Pedrycz, “Kernel-based fuzzy clustering and fuzzy clustering:

A comparative experimental study,” Fuzzy sets and systems, vol. 161, no. 4, pp.
522-543, 2010.

P. Kolyvakis and A. Likas, “A multivariate unimodality test harnessing the
dip statistic of mahalanobis distances over random projections,” arXiv preprint
arXiv:2311.16614, 2023.

X. Deng, D. Huang, D.-H. Chen, C.-D. Wang, and J.-H. Lai, “Strongly aug-

mented contrastive clustering,” Pattern Recognition, vol. 139, p. 109470, 2023.

179

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

S. Affeldt, L. Labiod, and M. Nadif, “Spectral clustering via ensemble deep
autoencoder learning (sc-edae),” Pattern Recognition, vol. 108, p. 107522, 2020.

Z. Hao, Z. Lu, G. Li, F. Nie, R. Wang, and X. Li, “Ensemble clustering with at-
tentional representation,” IEEE Transactions on Knowledge and Data Engineering,
2023.

X. Yang, C. Deng, K. Wei,]J. Yan, and W. Liu, “Adversarial learning for robust
deep clustering,” Advances in Neural Information Processing Systems, vol. 33, pp.
9098-9108, 2020.

N. Mrabah, M. Bouguessa, and R. Ksantini, “Adversarial deep embedded clus-
tering: on a better trade-off between feature randomness and feature drift,”
IEEE Transactions on Knowledge and Data Engineering, vol. 34, no. 4, pp. 1603—
1617, 2020.

F. Li, H. Qiao, and B. Zhang, “Discriminatively boosted image clustering with
fully convolutional auto-encoders,” Pattern Recognition, vol. 83, pp. 161-173,
2018.

X. Guo, X. Liu, E. Zhu, X. Zhu, M. Li, X. Xu, and]. Yin, “Adaptive self-paced
deep clustering with data augmentation,” IEEE Transactions on Knowledge and
Data Engineering, vol. 32, no. 9, pp. 1680-1693, 2019.

K. Zhang, C. Song, and L. Qiu, “Self-paced deep clustering with learning loss,”
Pattern Recognition Letters, vol. 171, pp. 8—14, 2023.

A. Kalogeratos and A. Likas, “Dip-means: an incremental clustering method
for estimating the number of clusters,” Advances in neural information processing

systems, vol. 25, 2012.

180

AUTHOR’S PUBLICATIONS

Journal Publications

T,

7.

J3.

T4.

15.

J6.

G. Vardakas, A. Kalogeratos, and A. Likas, “UniForCE: The Unimodality For-
est method for Clustering and Estimation of the number of clusters,” Pattern
Recognition, p. 112357, 2025.

G. Vardakas, I. Papakostas, and A. Likas, “Efficient error minimization in kernel

k-means clustering,” Pattern Analysis and Applications, vol. 28, no. 2, p. 107, 2025.

G. Papigkiotis, G. Vardakas, A. Likas, and N. Stergioulas, “Universal description
of a neutron star’s surface and its key global properties: A machine learning

approach for nonrotating and rapidly rotating stellar models,” Physical Review
D, vol. 111, no. 8, p. 083056, 2025.

G. Vardakas and A. Likas, “Global k-means++: an effective relaxation of the
global k-means clustering algorithm,” Applied Intelligence, vol. 54, no. 19, pp.
8876-8888, 2024.

J. Pavlopoulos, M. Konstantinidou, E. Perdiki, I. Marthot-Santaniello, H. Essler,
G. Vardakas, and A. Likas, “Explainable dating of greek papyri images,” Ma-
chine Learning, vol. 113, no. 9, pp. 6765-6786, 2024.

G. Vardakas and A. Likas, “Neural clustering based on implicit maximum
likelihood,” Neural computing and applications, vol. 35, no. 29, pp. 21511-21524,
2023.

Conference Publications

C1.

G. Vardakas, A. Karra, E. Pitoura, and A. Likas, “Counterfactual Explanations

for k-means and Gaussian Clustering,” in IEEE 37th International Conference on

https://doi.org/10.1016/j.patcog.2025.112357
https://doi.org/10.1016/j.patcog.2025.112357
https://doi.org/10.1007/s10044-025-01463-4
https://doi.org/10.1007/s10044-025-01463-4
https://doi.org/10.1103/PhysRevD.111.083056
https://doi.org/10.1103/PhysRevD.111.083056
https://doi.org/10.1103/PhysRevD.111.083056
https://doi.org/10.1007/s10489-024-05636-2
https://doi.org/10.1007/s10489-024-05636-2
https://doi.org/10.1007/s10994-024-06589-w
https://doi.org/10.1007/s00521-023-08524-x
https://doi.org/10.1007/s00521-023-08524-x
https://arxiv.org/abs/2501.10234
https://arxiv.org/abs/2501.10234

C2.

C3.

Ca4.

C5.

C6.

C7.

Tools with Artificial Intelligence (ICTAI), 2025.

G. Vardakas, A. Karra, E. Pitoura, and A. Likas, “Evaluating Clustering Quality
in Centroid-Based Clustering Using Counterfactual Distances,” in International
Conference Al for SCIENCE, 2025.

G. Vardakas, A. Karra, E. Pitoura, and A. Likas, “Linkage criteria for agglomer-
ative clustering based on counterfactual distances.” in The Sixteenth International

Conference on Information, Intelligence, Systems and Applications, IEEE Press, 2025.

A. Karra, G. Vardakas, E. Pitoura, and A. Likas, “Generating Counterfactual
Explanations for Clustering Models Based on Their Equivalence to Classification
Models,” in IFIP International Conference on Artificial Intelligence Applications and
Innovations, pp. 85-100, 2025.

J. Pavlopoulos, G. Vardakas, and A. Likas, “Revisiting silhouette aggregation,”

in International Conference on Discovery Science, pp. 354—368, 2024.

J. Pavlopoulos, M. Konstantinidou, G. Vardakas, I. Marthot-Santaniello, E.
Perdiki, D. Koutsianos, A. Likas, and H. Essler, “Explaining the chronologi-
cal attribution of Greek papyri images,” in International Conference on Discovery
Science, pp. 401-415, 2023.

G. Vardakas and A. Likas, “Implicit maximum likelihood clustering,” Proc.
IFIP Int. Conf. Artificial Intelligence Applications and Innovations (AIAD), pp. 484—
495, 2022.

Preprints

1.

G. Vardakas, I. Papakostas, and A. Likas, “Deep clustering using the soft sil-
houette score: Towards compact and well-separated clusters,” arXiv preprint
arXiv:2402.00608, 2024.

https://arxiv.org/abs/2501.10234
https://arxiv.org/abs/2501.10234
https://doi.org/10.1007/978-3-031-96239-4_7
https://doi.org/10.1007/978-3-031-96239-4_7
https://doi.org/10.1007/978-3-031-96239-4_7
https://doi.org/10.1007/978-3-031-78977-9_23
https://doi.org/10.1007/978-3-031-45275-8_27
https://doi.org/10.1007/978-3-031-45275-8_27
https://doi.org/10.1007/978-3-031-08337-2_40
https://arxiv.org/abs/2402.00608
https://arxiv.org/abs/2402.00608

SHORT BIOGRAPHY

Georgios Vardakas was born in Ioannina, Greece, in 1995. He received his Diploma
in Computer Science and Engineering, as well as his M.Sc. in Data Science and En-
gineering, from the Department of Computer Science and Engineering at the Uni-
versity of loannina in 2020 and 2021, respectively. Since 2021, he has been a Ph.D.
candidate in the same department. He has participated as a researcher in several
projects funded by the National Strategic Reference Framework (NSRF) and the Hel-
lenic Foundation for Research and Innovation (HFRI). He also received a scholarship
through the NSRF 2014-2020 under the action Support of the Regional Excellence.
In 2022, he completed a research internship at Archimedes Unit — Center for Re-
search in Artificial Intelligence, Data Science and Algorithms. His research interests
include machine learning, and neural networks, with a special focus on unsupervised

learning, representation learning and clustering.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Partitional Clustering
	k-means for clustering in Euclidean space
	Kernel k-means for clustering in feature space

	Unimodality
	Unimodality Definition
	Unimodality Testing
	Unimodality-based clustering

	Deep Learning-based Clustering
	Deep Clustering
	Autoencoder-based Clustering
	GANs-based Clustering

	Thesis Contribution
	Thesis Layout

	The Global k-means++ Algorithm
	Introduction
	Global k-means++
	Empirical Evaluation
	Datasets
	Evaluation
	Experimental Setup
	Results

	Discussion
	Summary

	The Global Kernel k-means++ Algorithm for Efficient Clustering in the Feature Space
	Introduction
	Global kernel k-means++
	Complexity Analysis
	Empirical Evaluation
	Synthetic Data Demonstration
	Graph Partitioning
	Real Datasets

	Summary

	The UniForCE Algorithm for Clustering and Number of Clusters Estimation
	Introduction
	Locally unimodal clusters
	Clustering based on local unimodality and the UniForCE algorithm
	Overclustering
	Unimodal pair testing
	Finding connected components
	Complexity analysis

	Experimental evaluation
	Experimental setup
	Experimental results on real data
	Sensitivity study using real data
	Experimental results on synthetic data

	Discussion and limitations
	Summary

	Deep Clustering Using the Soft Silhouette Score
	Introduction
	The Soft Silhouette Score
	Silhouette
	Soft Silhouette

	The DCSS method: Deep Clustering using Soft Silhouette
	Experiments
	Synthetic Data Demonstration
	Datasets
	Neural Network Architectures
	Evaluation
	Experimental Setup and Results

	Summary

	Deep Clustering Based on Implicit Maximum Likelihood
	Introduction
	Neural Implicit Maximum Likelihood Clustering
	Implicit Maximum Likelihood Estimation
	Cluster friendly input distribution
	The IMLE loss from a clustering perspective
	The NIMLC architecture
	The NIMLC objective function
	Slow paced learning
	The NIMLC algorithm

	Experiments
	Synthetic datasets
	Real datasets
	Evaluation measures
	Implementation Details
	Results on synthetic datasets
	Results on real datasets

	Summary

	Conclusions and Future Work
	Concluding Remarks
	Directions for Future Work

	Bibliography
	Author's Publications
	Short Biography

