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ABSTRACT

George Voudiotis, M.Sc. in Data and Computer Systems Engineering, Department of
Computer Science and Engineering, School of Engineering, University of loannina,
Greece, 2025.

From Handwritten Keyword Spotting to Query-Guided Sentence Retrieval in Docu-
ment Images using Large Language Models.

Advisor: Christophoros Nikou, Professor.

This thesis presents a novel sentence-level retrieval framework that extends traditional
handwritten Keyword Spotting (KWS) toward contextual understanding of historical
document images. Conventional KWS methods identify isolated word occurrences
based solely on visual similarity, without capturing the surrounding linguistic context.
In contrast, the proposed system integrates visual retrieval, selective transcription, and
reasoning through Large Language Models (LLMs) to reconstruct coherent sentences
from handwritten sources.

The pipeline begins with a segmentation-based Seq2Seq KWS model that pro-
duces a ranked list of visually similar word images for a given query. For each of
the top-k ranked results produced by the baseline keyword spotter, a local neigh-
bourhood is examined around the detected hit. Only the word images within this
neighbourhood, determined either by a fixed or dynamically estimated window, are
transcribed through Handwritten Text Recognition (HTR) using the Seq2Seq and
TrOCR architectures. This selective transcription strategy enables efficient, localized
processing instead of full-page transcription. In the first case, a tuneable fixed-size
symmetric window determines the sentence length, whereas when the dynamic win-
dow approach is concerned, an LLM-based mechanism estimates how many left and
right neighbouring words should be included to form a complete sentence. Within
the dynamic windowing framework two distinct techniques are explored: (a) few-shot

prompting, which infers neighbourhood boundary lengths from the target word alone,

vii



and (b) segment-based prompting, where a short local fragment guides the model’s
boundary prediction. Both dynamic strategies employ pre-trained (few-shot) and
fine-tuned LLaMA 3.2-3B and Mistral 7B models adapted via Low-Rank Adaptation
(LoRA) to iteratively refine candidate sentences.

Experimental evaluation on the IAM handwriting dataset demonstrates that dy-
namic windowing significantly outperforms the fixed-size approach. Using the segment-
based strategy, the system achieves BLEU = 77.7% and BERTScore = 85.0% on
Seq2Seq transcriptions, confirming its ability to generate syntactically coherent and
semantically faithful sentence hypotheses. Additional tests with TrOCR further val-
idate robustness under noisier transcriptions. Although the segment-based configu-
ration incurs higher computational cost, it delivers superior accuracy and contextual
completeness compared to both fixed and few-shot strategies.

Overall, this work bridges image-based retrieval and language-based reasoning,
introducing a scalable framework for Query-Guided Sentence Retrieval, and demon-
strating how document summarization can be approached as a reduced sentence
concatenation task derived from reconstructed textual segments. Beyond improving
access to historical handwritten archives, it provides a foundation for future multi-
modal systems combining visual understanding, selective OCR, and generative lan-

guage modeling.
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EXTETAMENH IIEPIAHWH

l'ewpyrog Boudidytng, A.M.XE. otn Myyovixn Aedopévwy xal ITOAOYLOTIXWY ZVOTY-
pwatwy, Tuquo Mnyavixoy H/Y ko ITAnpopopixng, [loAvtexvixy XyoAn, [laveriotiuto
Iwovvivwy, 2025.

Amé6 tov Evtomiopd Aékewy oty Kabodnyoduevn and Epwtmuoa Avaxtnon [lpotd-
oewy oc Ewdveg Xelpdypapwy Ketpévwy pe yponon Meydiwy IMNwootxwy MovtéAwy.

Enprerwv: Xprotdépopog Nixov, Kabnynts.

H avalftmon TANpo@opLy oe YELPOYPOPO. LOTOPLXE EYYQOPA OTTOTEAEL Evar ATl
ToL TTLO ool TNTLXG TTEdlo TNg oUyypovng YmoAoytotixng Opoong xow tng Emekep-
yootog Puoinng I'hdooag. [lapd v mEb0d0 7oL €yl onuelwbel oty avTéUOTN
petaypop xal oty owvalitnon AEewv (Keyword Spotting — KWS), oL UTLap)0V0oES
mpooeYYloelg evToTi{ovy UEUOVWUEVES AEEELC N POAOELS PUOLOUEVES OTTOXAELOTLXE
OE OTTTLXY OLLOLOTNT, YWELS VO OVOXTOVY TO YAWGOLXO TTAXLOLO XOL TO GUUPEALOULEVOL
Hwéaa ata ool avTEG eppavilovtol. Qg aToTEAETUA, O XPNOTNG AcBAVEL amooTo-
opaTLxy] TAnpoopior Tov dev emiTpEmeL BofvTePn *oTOVONGT TOL TEPLEXOUEVOL M|

OV TOUATOTIOLNLEVEG DLODLXATLES, OTTWG N TEPIANYN EYYPAPWY.

H mopoboa petamtoytoxy dtatplPy mpoTelvel éva véo mAalolo avolNtnorg oc emi-
nedo mpodtaorg (sentence-level retrieval framework), To omoio emexTeivel TO TEOBANUAL
tov Keyword Spotting (KWS) 1tpog 0 YONUOTLXY XOTavONom ROl OVOXOTOOXEDY] OLL-
QPEOLOUEVWY. XTOYOG ELVOL 7 UETUTOOTY] TWY OTOTEAECUATWY EVOS TAPXIOGLOXOV
OLOTNLATOG EVTOTILOUOV AEEEWY, TTOL CLYNWS aTToTEAOVVTOL ATTO ALOTEG OTTTLU G TTO-
POULOLWY EUPOVIOEWY, OE CLVEXTIXES TTPOTAOELS TTOU OTTOTUTIWVOLY TO TEPLEYOULEVO

%Ol TO GUUPEALOUEVOL TOL YELPOYPOUPOL XELUEVOL.

O pébodor KWS é€xouvy yvwpioel paySaio eEEALEN, tOlaitepa petd Ty vLtobétnom Po-
BLedy ouveALTIXWY ot axoAoLOLaXWY opPyLTEXTOVIXWY OTtws Tar CNN ot Tar Seq2Seq

povtéia. [lopdAor avTA, Tor ATOTEAECUATE TOVG TTOPAUEVOLY TTEPLOPLOUEVDL O LEUO-
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VOUEVEG AEEELS ] ULXPES PPATELS, OLYVOWVYTOGS TY] OOVTOEY XOL T CLUVOYY] TOU XELUE-
vou. ETLtAgoy, Tor LoTopLXd XELPOYPOPO YopoxTnEtlovTot omtd LPYNAY TToLxLAoOPPL
Yoopns, 66pvBo xow PHopd Adyw TOAXLITNTAG, YEYOVOS TTOL ETLIELVWVEL TNV OTTO-
3007 TV CLOTNUETWY TIAPOLS OTTTLXTG avoryvwptorg (Handwritten Text Recognition -
HTR). Q¢ ex To0TO0UL, amontodvTaL TTLo Ttponyrévee wébodot tov cuvdvdlovy oTTLXd

O YAWOOLXE YOO TNPLOTLXA.

H mpotewvépevn pebodoroyia Paoiletal oc prar moAveminedy vTOAOYLOTIXY SOUN
(pipeline) mov mepthopBdvel téooepa xOptor otddio: (o) omTixh avdxtnomn AéEewy
néow evig povtéhov Seq2Seq, (B) emihextiny petorypapy (Selective HTR) pévo oto
ToTXG YELTOVLXO TAGLOLO TN avtyveLpévng AéEne, (v) duvautx?i mapabvporoinoy
(Dynamic Windowing) pe ypfon Meyéiwv I'\wootxdy Movtéawy (LLMs), ot (d) te-

A Stopbwon xo ovvbeon TpdTaoTg.

2TO TTPWTO GTASLO, TO PLOVTENO Seq2Seq exteAel avalrntnon tomov Query-by-Example
(QbE), mopdryovrtog ToEvounuéveg Aoteg armd AEEELS ToU elvol OTTTLRE TTAPOLOLES UE
TO EPWTNUA. XTY] CUVEXELN, TO COOTNULO UETAYPAPEL LOVO TS AéEELg Ttov PploxovTol
uéoo oc éva xoboplopévo Topdbvpo YOPW aTd TO ATOTEAEOUR, YENOLUOTTOLWVTOG
oo povtéAa Seq25eq xor TrOCR. H emiAextiny] oty LETOYQOPY UELWOVEL SPOOTLXA

TO UTTOAOYLOTLXO XOOTOG OE OYEDY] UE TNV TAYEN UETOYPOPY) OEALSWV.

To Tpito 0TA&dL0, X0l TO TLO XOLYOTOUO, CPOPE 0T OLVOULXY] EXTIUNOY] TOL WEYE-
Bovc touv TaPabBpoL pe xEYon LLMs. E€etdlovrtarl dbo otpotnytxéc: (o) 1 wébodog
few-shot prompting, dmov T0 LOVTEAO TPOBAETEL TOV apLOUd Twv AEEswv apLoTERd
xo dekLd Paotlopevo wévo otn AEN-otoyo, xow (B) 1 wébodog segment-based prompt-
ing, 6mov Topéxetal 0to LLM éva pixpd amoomacpatind copu@paldUevo yLow oxpL-
Béotepn extiunomn TwY 0plwy. XENOLULOTTOLOVYTOL TIPOEXTTALIEVUEVO XOL TTOOCOPUO-
opéva péow Low-Rank Adaptation (LoRA) povtého LLaMA 3.2-3B xow Mistral 7B,
T OOl BEATLOTOTTOLOVYTOL VLA TNY OVOXATUOXEDLY] TTPOTAOEWY ATO YELOOYOOPOL

dedopéva.

270 TeEAXO 0TAdL0, TO oVOTNUO oLVDETEL o SLOPHOVEL TIC LETAYOOUUEVES TTEOTA-
oceLg, eEaheipovtog oQaipoTor xol EEATPAALLOVTOG CLUVTAXTLXY] XOL VONUOTLXY] OL-
voyt. To amotéheopa eivon M ToporywyR LITOYHPLLY TTPOTAoEWY (sentence hypotheses)
IOV OTTOTLTTWOYOLY UE OXPLBEL TO GUUPEALOUEV TOV EQWTNUATOS, TTOOCPEPOVTOS

Evar eVOLAUETO PBNLoL TTPOG ONUACLOAOYLXY OVOLNTNOY] 1 U TOUOTN TLEQLANYT.

H aELtoAdynon mpaypotomotninxe oto obvoro dedopévwy IAM Handwriting Database,

X



70 omoio mepthapPavel mepltoadtepeg amd 100.000 ewxdveg AEewy. AoxtpdotTnxay
TpELg TP TNYLXES Ttapabvpomoinorg, otabepn, few-shot xow segment-based, xoBwg xow
ovo povtéda petaypons, Seq2Seq xar TrOCR. Ta amoteAéopoata €detEay 4Tt M dv-
vouxn mopofvpomoinon vreptepel caPwsg g otabepne. H pébodog segment-based
emttuyyavel BLEU = 77.7% xow BERTScore = 85.0% o7ig petarypopésg Tov Seq2Seq,
OTTOOELXVOOYTOS OTL TO GUOTNUO LTTOPEL VOU TTOLPAYEL CUVTOXTLXA 0pOEC %ot vonuo-
L& CLVEXTIXEG TTPOTAOELS. [lotpd TO ALENUEVO LTTOAOYLOTLXG KOG TOG, 1| GUYXEXPLUEWT

TIPOCEYYLOY] TTPOTPEPEL aVWOTEPT oxPLfPeLaor xoil TANEOTNTO GLLPEEOLOUEVMY.

H epyaocia amodeixvdel 6Tt 0 oLYSLAOUOS OTTTLXNG OVAXTNONG KOl YAWOOLUNG X0~
TOVONOYG UTOPEL vou eTteEXTEIVEL SPOOTIXE TLS SLYATOTNTEG TWY GLATNUATWY KWS.
Me 1 xponon Meydrwy N\wootxdy Movtédwy, 1 avalntnorn LTopel vaw TEPATEL aTtd
70 emimedo g AéENG 070 eMITMESO TNG TPEOTUONG, TTEOGPEPOVTUS TTAOVOLOTEPY] KO
TEPLOCOTEPO ONUOTLOAOYLXT TTtPdoBaon oe LoTtoptxd dedopéva. To TPoTeELYOUEVO V-
OTNUOL LELWOVEL TOY DTTOAOYLOTIXO (POPTO UECL ETULAEXTIXYG LETOYQAPNG, RVEAVEL TNV
oxpiBelor avoxaTooxeLNG TEOTAoEWY %ot BTl 0 Bdon YLa LEAAOYTIXY] XVTOUOTY
TePIANYN EYYPAPWY.

MeMhovtixég emextdoelg meptAopBavovy ™y e@oppoyy ¢ Lebddov o ToALYAWO-
oL YELPOYPOPO GUVOAX OEDOUEVWY, TNY EVOTIOLNGY UE layout analysis Yiow ovoryvwOLo
apbpwv M TOPAYEAPWY, XAOWS KoL TNY AVATTTLEY] UNYAVLOULWY QVTOUATNG TTEQLANYNG
7 EVWOLOAOYLXAG avallATNoTS BooLopévwy oe TOAVTPOTILXES avaTtapaoTdoet (GTwg
CLIP xot BLIP). ZuvoAuxd, v Statolfy eLodyet évar TApWS ASLTOLPYLXO XalL ETTEXTA-
OLUO GUGTNUO AVEXTNOYG TTPOTACEWY OTTO XELPOYPOPX EYYOOPOL, TO OTTOLO AELOTTOLEL
™ SVvoun Twv MeydAwy I'\wooixwy Movtédwy yio ) odvbeon xal xatovonon @u-
oung YAwooog. H ouvelo@opd tng elvarl dLTtn: TeXVLXA, TodeLXVOEL TN BLOOLUOTTO
g petéPoong arnd o KWS oo sentence-level retrieval, xon €TLOTNUOVLXA, OVOLYEL
TOV OPOLO YL VEX €QYOAElr TN PneLoxy] avbpwmlotiny épeuvva, TNV TEXUNELWON

TIOALTLOTLYNG XANOOVOULAS XOL TV ONUAOLOAOYLXY] Vol TNOY OE LOTOPLXA XOYELO.
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CHAPTER 1

THESIS INTRODUCTION

1.1 Introduction to information retrieval in handwritten documents
1.2 Motivation and Obijectives
1.3 Problem Definition

1.4 Thesis outline

Writing has become an integral part of human civilization. Since ancient times, it has
served as a means for people to externalize their thoughts and record them on vari-
ous objects and materials. With the discovery and widespread use of paper, writing
evolved into a tool for documenting the elements of daily life. It was used to record
historical events and holy texts, to preserve customs and traditions, and to support
the rapid growth of literature and education. Writing also enabled the documenta-
tion and exchange of scientific ideas and, perhaps most importantly, allowed people
to communicate and share knowledge across distances and generations.

Throughout history, every culture has developed its own handwritten forms of
expression, producing an immense body of written material. Unfortunately, a signifi-
cant portion of this heritage has been lost. The preservation of manuscripts depended
on laborious manual copying and the periodic replacement of damaged or worn texts.
Wars, natural disasters, and the fragility of early storage materials further contributed
to the disappearance of countless works and collections.

As human technology has advanced, new tools have emerged to preserve manuscripts

through digitization, primarily using high-resolution scanning techniques. However,



the need to improve both the digitization and analysis of such texts continues to grow.
Despite the involvement of domain experts, manual transcription and analysis of his-
torical manuscripts remain time-consuming and labor-intensive tasks. Therefore, the
development of automated techniques for analyzing and extracting information from
digitized collections is becoming increasingly essential. Such methods can signifi-
cantly reduce the resources required to manage the vast and ever-expanding volume

of digital archives, while enabling deeper access to the knowledge they contain.

1.1 Introduction to information retrieval in handwritten docu-

ments

The digitization of handwritten documents has driven the research community to de-
velop methods capable of retrieving information directly from collections of document
images. Two main paradigms have emerged to address this problem: recognition-free
retrieval and recognition-based retrieval.

Recognition-free retrieval, commonly referred to as Keyword Spotting (KWS) or
Word Spotting (WS), focuses on locating all occurrences of a query within a col-
lection of handwritten documents without requiring full transcription. KWS methods
can be further categorized according to how the retrieval process is implemented.
One major distinction is between segmentation-free and segmentation-based approaches.
In segmentation-free methods, word detection is performed directly on full, unseg-
mented document pages. In contrast, segmentation-based methods operate on word
or line images that have been extracted during a preprocessing stage. Segmentation
itself can take place at the word level, where each page is divided into individual
words, or at the line level, where each page is divided into lines.

KWS methods may also differ based on how the user specifies the query. In the
Query-by-Example (QbE) scenario, the user provides an image of the target word,
and the system searches for visually similar word images within the collection. In
the Query-by-String (QbS) scenario, the user provides a text string as input, and the
system must align textual and visual representations to identity relevant matches.

A final distinction concerns the use of training data. Learning-based methods rely
on an offline training stage, during which the system learns visual or textual features

from annotated examples. In contrast, learning-free methods do not require labeled



data and instead use handcrafted features or direct similarity measures to perform
retrieval.

Recognition-based retrieval follows a different philosophy. Instead of comparing vi-
sual representations extracted from document images, it first converts the images into
machine-readable text and then performs retrieval using word recognition techniques.
In this paradigm, Handwritten Text Recognition (HTR) is used for handwritten doc-
uments, while Optical Character Recognition (OCR) is used for printed material. The
output of these methods is a transcription, typically represented in ASCII or another
textual format. Once transcriptions are obtained, the system can build a dictionary or
index of all recognized words, and retrieval is conducted over this textual represen-
tation.

Most recognition-based systems depend on supervised learning and therefore re-
quire large amounts of annotated data for training. These annotations may be pro-
vided at the word level, line level, or even at the character level, depending on the
model design. While this approach enables the use of powerful Natural Language Pro-
cessing (NLP) techniques and supports richer forms of retrieval, it also suffers from
important limitations. Handwritten documents, especially historical ones, exhibit sig-
nificant variation in writing style. In addition, physical degradation introduces noise
and distortions. These factors often lead to transcription errors, which in turn neg-
atively affect retrieval accuracy. As a result, the overall performance of recognition-
based systems is strongly tied to the quality and robustness of the underlying HTR
or OCR model.

The material and terminology presented in this section are primarily adapted from
the seminal survey by Giotis et al. [1]. For an in-depth understanding of the topic,

please refer to their original work.

1.2 Motivation and Obijectives

Despite significant progress in research on Keyword Spotting (KWS), current systems
seem to be reaching a ceiling. Conventional KWS methods rely mainly on visual fea-
tures, which are only effective for matching a query to common or similar images
across a collection of documents. However, the results obtained usually consist of

single word-level hits, offering little or no context for how these words are used in



the text. Understanding the sentence in which a word appears is of great impor-
tance to people dealing with historical manuscripts. Retrieving entire sentences from
manuscripts remains a difficult problem.

Since historical manuscripts exhibit variability in writing style and significant
degradation of text features over time. This affects the Optical Character Recogni-
tion (OCR) and Handwriting Text Recognition (HTR) processes because errors are
introduced during transcription, such as incorrect character recognition and incor-
rect punctuation. Furthermore, the process of transcribing entire collections is time-
consuming, especially when only partial information needs to be extracted from the
texts. These factors make it difficult to retrieve a sentence containing the detected
word.

To address this gap, this thesis proposes a system that bridges the understanding
of KWS with sentence-level understanding. The goal is to go beyond simple word
detection and enable the retrieval of coherent sentences using the visual feature in-
formation of the detected word. You achieve this by integrating visual retrieval with
selective transcription with language modeling techniques capable of inferring how
many neighboring words, to the left and right of the detected word, should be in-

cluded to create a complete sentence.

1.3 Problem Definition

Given a Query-by-Example (QbS), where the input is an image of a handwritten
word, and the ranked list of retrieved instances returned by a KWS system, the goal
is to predict a minimal and linguistically plausible sentence for each of the top-k
retrieved instances in the list.

Each retrieved instance corresponds to a specific position within a sequence of
handwritten word images. Therefore, the task is to determine the appropriate num-
ber of neighboring positions that will be included to the left and right of the de-
tected word in order to reconstruct a coherent and complete sentence. Achieving this
requires combining information from HTR systems through selective transcription,
together with Large-Language Models (LLMs) that infer sentence boundaries and
correct transcription errors introduced during text recognition.

By solving this problem, the proposed approach bridges image-based retrieval



with language-based reasoning, moving beyond traditional word detection toward
sentence-level comprehension and retrieval in handwritten historical sources. This
formulation enables the extraction of meaningful textual information from KWS out-
puts and represents a step toward more context-aware analysis of digitized manuscript

collects.

1.4 Thesis outline
The structure of this thesis is organized as follows.

e Chapter 2 provides an overview of Keyword Spotting (KWS), presenting the
fundamental concepts, taxonomy, and recent developments in segmentation-

based and segmentation-free approaches.

e Chapter 3 introduces the theoretical background and formulates the sentence
retrieval problem, describing the Sequence-to-Sequence (Seq2Seq) baseline and

the principles of Large Language Models (LLMs).

* Chapter 4 presents the proposed system pipeline, detailing each component—
from visual retrieval, selective transcription, and dynamic windowing to LLM-

based correction—along with algorithmic complexity considerations.

e Chapter 5 describes the experimental setup, datasets, evaluation metrics, and
ablation studies, as well as the implementation details used to reproduce the

results.

* Chapter 6 reports and discusses the quantitative results, analyzes performance—

cost trade-offs, and highlights key findings.

* Finally, Chapter 7 concludes the thesis with a summary of contributions and

suggestions for future research directions.



CHAPTER 2

AN OVERVIEW OF WORD SPOTTING.

2.1 Keyword Spotting System Architecture

2.2 Related Works

2.1 Keyword Spotting System Architecture

In this section, the stages of a typical Keyword Spotting (KWS) pipeline are described.
As illustrated in Figure 2.1, a KWS system operates in two phases: an offline phase

and an online phase.

Document
collection query
Segmentation—based/ \Segmentation-free Query-by-Example / \ Query-by-String
Segmented - : Segmented ASCII
word/line ogumen word/line String
im?ge a'ge Image
Representation Representation
I_, Indexed +
Feature Matching
Offline Vectors Online
Stage Stage

Figure 2.1: The architecture of a general KWS system.

In the offline phase, the system processes the entire collection of document images.

Depending on the preprocessing method was applied, the collection may consist of



segmented word images, text lines, or even full page images. Each image is trans-
formed into a feature vector that represents its visual content. Feature extraction
methods can be divided into learning-free and learning-based approaches. Learning-
free methods do not require annotated data and rely on handcrafted features such as
Histogram of Oriented Gradients (HoG) or Scale-Invariant Feature Transform (SIFT).
In contrast, learning-based methods employ supervised training and typically use
deep neural network architectures such as Convolutional Neural Networks (CNNs)
to learn discriminative representations. These models produce fixed-length feature
vectors that facilitate efficient comparison during retrieval.

The online phase begins when the user submits a query, and the nature of this
query determines the retrieval modality. In the Query-by-Example (QbE) setting, the
input is a word image selected from the document collection, which means the query
must already exist within the dataset. In the Query-by-String (QbS) setting, the user
provides an arbitrary text string, allowing greater flexibility since the query does not
need to appear in the collection. Regardless of the query type, the system converts
the input into a feature representation that lies in the same embedding space as the
representations generated in the offline phase. This query vector is then compared
with all stored representations, and similarity scores are computed. Finally, the results
are sorted in descending order of similarity, producing a ranked list in which the most

relevant word images appear at the top.

2.2 Related Works

With the rise of deep learning, neural networks have become the dominant paradigm
in keyword spotting. Early CNN-based systems either produced fixed-length embed-
dings for word images or extracted descriptors from intermediate network activations.
These representations were typically compared using Euclidean or cosine distance.
However, alternative dissimilarity measures like Bray-Curtis in Sudholt et al. [2] were
also shown to be effective for pyramid-based representations.

Some approaches framed KWS as a pairwise similarity learning problem. For
instance, Zhong et al. [3] trained a network on positive and negative word-image pairs
and learned to predict similarity scores directly, treating KWS as both classification

and regression. Because neural methods require large training sets, data augmentation



(affine transformations) and pretraining followed by fine-tuning on target datasets
became common strategies. In some cases, such as the work of Sfikas et al. [4], only
pretraining was used, and activations of intermediate layers were combined to capture
more abstract representations.

A major line of research explored attribute-based embeddings to support both QbE
and QbS. Sudholt et al. [5] extended their PHOCNet by comparing multiple descriptors
such as Pyramidal Histogram of Characters (PHOC), Discrete Cosine Transform of
Words (DCToW), and Spatial Pyramid of Characters (SPOC) a multinomial version
of PHOC. They further improved KWS by introducing Temporal Pyramid Pooling
(TPP), a modification of their former Spatial Pyramid Pooling (SPP) layer [2], to
accept input images of variable size. Different loss functions, such as cosine loss, and
binary cross-entropy were evaluated for training, and cosine distance was used for
final ranking.

To reduce annotation requirements, weakly supervised and synthetic-data-driven
KWS methods were introduced. Gurjar et al. [6] pre-trained PHOCNet CNN on the
synthetic HW-SYNTH / IIIT-HWS dataset [7, 8], then fine-tuned on target datasets,
achieving near state-of-the-art performance while using up to 98% fewer real an-
notations. Al-Rawi et al. [9] extended PHOC to a multi-script representation using
a ResNet-152 [10] backbone, enabling script-independent word spotting across En-
glish, French, German, Arabic, and Bangla via a unified multi-PHOC vector. Wolf et al.
[11, 12] went further by proposing a completely annotation-free KWS pipeline where
CNNs predicted font and slant to generate adapted synthetic data, and pseudo-labels
were created and refined via a TPP-PHOCNet model.

Other works focused on cross-modal embedding spaces. Gomez et al. [13] first
learned a string embedding correlated with Levenshtein distance and then trained
an image embedding model [14] to regress into that space, achieving superior perfor-
mance compared to PHOC and DCToW. Retsinas et al. [15] proposed deep descriptors
derived from max-pooled convolutional zones to capture unigram/bigram informa-
tion, while Krishnan et al. [16] utilize an extended version of the HWNet system [8],
named HWNet v2 [17], which is based on a multi-scale ResNet-34 architectures and
joint image and text embedding to support end-to-end word spotting and recognition.

Building upon these developments, Daraee et al. [18] enhanced CNN-based key-
word spotting by incorporating Monte-Carlo dropout to estimate prediction uncer-

tainty. Multiple stochastic forward passes yield certainty scores, which are used with



adaptive thresholds for both query-by-example and query-by-string. This uncertainty-
aware design improved retrieval accuracy on several handwritten datasets. Majumder
et al. [19] proposed a recognition-free method using dynamic time warping on log-
arithmic word profiles, where multi-view fragments and a voting scheme improved
matching without deep models.

To improve feature robustness under limited supervision, Giotis et al. [20] intro-
duced an adversarial framework with spatial transformer networks to adapt deep
features in weakly supervised keyword spotting. Their Feature Map Adversarial De-
formation module deforms intermediate feature maps to generate harder examples,
improving robustness to handwriting variation. Using PHOC-based embeddings and
minimal fine-tuning, the model achieved performance comparable to supervised state-
of-the-art methods. Krishnan et al. [21] extended this direction with HWNet v3, an
end-to-end label embedding framework that jointly embeds images and text using
synthetic data to improve both spotting and recognition.

The reliance on annotated data was further challenged by Wolf et al. [22] who
addressed the annotation bottleneck by proposing a fully self-training pipeline for
handwritten text recognition and keyword spotting. Models are pretrained on syn-
thetic data and iteratively refined using pseudo-labels on real data, with confidence
thresholds removing noisy samples. This annotation-free method outperformed tra-
ditional learning-free and semi-supervised approaches. Matos et al. [23] applied these
advancements in a full transcription pipeline for medieval Portuguese manuscripts,
combining layout analysis, segmentation, and recognition to reduce manual effort
while maintaining high accuracy.

One of the most significant recent developments in HTR is Transformer OCR
[24], a transformer-based architecture that combines a Vision Transformer encoder
with a Transformer decoder pre-trained on large-scale text corpora and fine-tuned
on handwriting datasets such as IAM. TrOCR achieves state-of-the-art character error
rates, clearly outperforming traditional models. Importantly, TrOCR is a segmentation-
based model that operates directly on isolated word or line images and produces
highly accurate transcriptions even in challenging or historical settings.

Finally, a major advancement in segmentation-based keyword spotting was intro-
duced by Retsinas et al. [25], who proposed a unified architecture combining a CTC
branch for transcription and a Seq2Seq decoder for learning more expressive visual—

textual representations. During training, the decoder forces the encoder to align visual



features with linguistic structure, while at inference time, only the encoder is used
to generate compact word embeddings. This design bridges recognition and retrieval
within a single model, allowing it to support both QbE and QbS. To further optimize
retrieval, the authors applied binarization with straight-through estimators, produc-
ing efficient and discriminative descriptors. This Seq2Seq model achieved state-of-the-
art results on multi-writer datasets such as IAM and GW, outperforming PHOCNet,
HWNet v2, and other leading methods. Since it unifies recognition and spotting in
a single framework and operates directly on segmented word images, Seq2Seq has
become the standard baseline in modern segmentation-based KWS.

In this thesis, Seq2Seq is adopted as the primary keyword spotting backbone,
forming the visual retrieval foundation upon which sentence-level reconstruction is

built.
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CHAPTER 3

THEORETICAL BACKGROUND AND PROBLEM

FORMULATION

3.1 Baseline Model
3.2 Large Language Model

3.3 Problem Formulation

3.1 Baseline Model

Retsinas et al. [25] proposed a Sequence-to-Sequence (Seq2Seq) recognition model
in which handwritten images as well as text strings are represented as fixed-length
vectors. First, they enable efficient KWS. Second, they provide a latent space from
which a transcription can be extracted from a given input image.

The proposed architecture consists of five components. A convolutional backbone,
a bidirectional Gated Recurrent Unit (GRU) encoder, a bidirectional GRU character
encoder, a unidirectional GRU sequence decoder, and an auxiliary Connectionist Tem-
poral Classification (CTC) branch. CTC is only employed during training to accelerate
convergence. During inference the model activates specific branches according to the
input type.

If the given input is a Query-by-Example (QbE), the image is initially processed
by the convolutional backbone, which extracts a sequence of features that captures the

spatial patterns. Then, the sequence is compressed by the encoder into a fixed-length
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vector that contains the visual content of the entire word. This vector can then be used
in two ways. The first approach enables retrieval through discriminative descriptors,
which can be directly compared with the embeddings of other word images to identity
identical or similar words. The other approach determines the transcription using the
decoder, which generates the corresponding text character by character.

On the other hand, if the given input is a Query-by-String (QbS), the aim is to
retrieve occurrences of that word from a collection of handwritten documents. This
can be achieved by using the character encoder to project the string into the embed-
ding space used to represent word images. The resulting vector is then compared
with the image vectors to retrieve the word images with the highest similarity. Fig-
ure 3.1 illustrates the Seq2Seq model used for transcription generation, as well as its
operation in keyword spotting for both QbE and QbS.

Within the scope of this thesis, the Seq2Seq model serves as a necessary com-
ponent of the proposed information retrieval system, as it extracts text from images
of handwritten documents. Its outputs provide information in vector form and also

enable keyword spotting.

Recoghnition QbE KWS QbS KWS
. Corpus Cgrpus
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Figure 3.1: Sequence-to-Sequence model.

3.2 Large Language Model

3.2.1 Auto-regressive

Auto-regressive language modeling [26, 27] is the foundation for many LLMs, such
as LLaMA [28, 29, 30] and Mistral [31], which learn to forecast the next token in a

12



dataset, based on previous tokens. Typically, given a sequence of tokens z;, z, ..., zr,

its probability is factored as follows:

T

Pz, 29,...,27) = Hp(xt|x<t) ) 3.0

t=1
where 7, indicates the prefix of tokens prior to position ¢t. The model is trained by

minimizing the negative log-likelihood of the observed data:

T
L(0) == logPy(zi|r) . (3.2)

t=1

where 0 represents the model’s parameters. This auto-regressive formulation allows

models to produce coherent sequences one token at a time.

3.2.2 Context Window

An important point regarding auto-regressive models is the context window [32], or
as it is otherwise referred to in the literature, context length. The context window is
responsible for the amount of information that the model can use to predict the next
token. For instance, if the context window of a model is equal to 4096, then, according
to equation 3.1, the previous 4096 tokens are used regardless of the text size.

In addition, another point about the context length is that the larger this number,
the more computationally expensive the model becomes. Due to the complexity of
the self-attention mechanism used by transformer models, which scales as O(n2),
the requirements for both memory and computational power increase. Nevertheless,
techniques such as the Group-Query Attention (GQA) [33] and the Sliding Window
Attention mechanism [34, 35], used in LLaMA and Mistral, respectively, reduce the
computational complexity. Therefore, the size of the context length can be increased,

allowing the model to receive more information to predict the next token.

3.2.3 Tokenization

Before employing an LLM, the unprocessed text must be converted to a numerical
representation through tokenization. SentencePiece [36] is an unsupervised tokenizer
that does not require pre-discriminating or language-specific heuristics. It is utilized

in both LLaMA and Mistral to split sentences or words into tokens.
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The algorithm used by SentencePiece to tokenize words is Byte-Pair Encoding
(BPE) [37]. This algorithm iteratively combines the most frequent pairs of characters
from a given text until a dictionary of fixed size is achieved. Hence, both frequent
morphemes and rare words are recorded. Finally, each token produced is mapped
to an embedding vector via an embedding matrix X € R™*? C RV*4 where V is the
vocabulary size, d is the dimension of the model, and n the length of the sequence.

Thus, for each token z;, the corresponding embedding is given by:
z; = X[x;) € R?. (3.3)

To preserve information about word order, adding Positional Encodings [38] to these
embeddings is considered essential prior to passing them through the transformer

architecture.

3.2.4 Transformer Architecture

Vaswani et al. [39] invented the transformer architecture, which serves as the founda-
tion for almost all current LLMs. The self-attention mechanism, referenced to in the
literature as “Scaled Dot-Product Attention”, is the major innovation in this architec-
ture. This strategy helps the model assess the importance of all tokens in a sequence
when representing a specific position.

For a sequence of input representations X € R™*¢ (), K and V are computed as:
Q=XWe K=XWE v=xw", (3.4)

where W@, WX WV € R¥™? and d is the dimension of the model, which enables the

learning process to be stabilized. Subsequently, the attention output is calculated:

Attention(Q, K, V) = softmax(Qj%T> : (3.5)

Multi-Head Attention (MHA) extends the previous idea by projecting the input
sequence into multiple subspaces. In this way, attention can be calculated in parallel.

Therefore, Equation (3.5) is transformed as follows:

MHA(X) = Concat(Hy, H, ..., H))W© | (3.6)

with
H; = Attention(XW2, XWE XWY) | (3.7
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Figure 3.2: Self-Attention Mechanism (left) and Scaled Dot-Product Attention (right)

where W and WX € R4, WY € R>® WO ¢ R#*d and dy = d, = &, h the
number of parallel attention layers.

The original transformer was designed as an encoder-decoder architecture. Never-
theless, the auto-regressive models, such as LLaMA and Mistral, adopt a decoder-only
architecture. The principal variation is that causal masking attention is used. Thus,
Equation (3.5) is modified as follows:

Attention(Q, K, V) = softmax(inT + M) , (3.8)
k

where M is a mask matrix assigning —oo to attention scores from future tokens,
ensuring that the model cannot peek ahead during prediction. Figure 3.2 provides
an overview of the attention mechanism of a decoder-only model.

Although the original transformer architecture is very robust, LLaMA [29, 30]
introduced two main contributions that improve the model’s efficiency. The first en-
hancement is the use of Rotary Positional Embeddings (RoPE) [40] instead of the
sinusoidal encodings employed in the original architecture. By applying RoPE, the
model is able to better process long sequences, including those longer than sequences
observed during training.

The second innovation used by LLaMA, aiming for efficiency and long-term rea-
soning, is GQA [33]. In a typical MHA, the attention weights are calculated with
respect to all keys and values for each element of a sequence, making the process
computationally demanding. In contrast, GQA organizes the queries into groups and

calculates the attention using these groups. This way, the efficiency is improved be-
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cause attention calculations are limited to within the groups. Improving the efficiency
of GQA makes it more scalable to larger sequences and datasets.

Finally, another attention technique, used by the Mistral model [31], is Sliding
Window Attention (SWA) [34, 35]. Contrary to the preceding approach, which uses
information from all tokens in the sequence at once, this procedure benefits the model
by concentrating on a local window of tokens at a time. SWA reduces the quadratic at-
tention complexity to linear with respect to the sliding window size, allowing for more
efficient handling of large sequences. Additionally, the sliding window mechanism
tolerates a fixed attention span, which reduces the cache size required for inference

without compromising the model’s quality.

3.3 Problem Formulation

The primary objective of this thesis is to develop a comprehensive system capable
of retrieving knowledge from handwritten documents, such as historical texts. The
information to be retrieved is represented as sentences based on the visual information
provided to the system.

A QbE, which involves an image of a handwritten word, is given to the system as
input. From this query image, visual features are extracted and compared against the
corpus to identify hits, which are positions in a sequence of word images where the
query word occurs. Each hit corresponds to a single position within the word image
sequence. Therefore, additional context is required to recover a complete sentence.
This is achieved by retrieving the left and right neighboring positions around each
hit. Determining how many neighbors to include on each side is the central prediction
problem addressed in this work.

More specifically, for each hit, two values, L,, and R,,, must be estimated. Here, L,
is the number of tokens before the query word and R, is the number of tokens after
it. These values define the boundaries of the sentence hypothesis. The total predicted
sentence length is L = L, + R, + 1, where the additional +1 accounts for the query
word itself. To solve this problem, two methods are proposed to estimate L,,, R, for
each hit. The methods are described in detail in the following chapter.

Finally, by utilizing the resulting knowledge in conjunction with LLMs, the system

retrieves coherent sentence-level information across the entire document collection.
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Figure 3.3 illustrates the proposed system end-to-end.
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Figure 3.3: Proposed system pipeline integrating KWS, OCR/HTR, (a) dynamic win-
dowing segment-based, (b) dynamic windowing few-shot prompting, (¢) fixed size
window, and LLM-based correction for sentence reconstruction from handwritten

documents.
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CHAPTER 4

ProPOSED SYSTEM

4.1 Pipeline Overview
4.2 Handwritten Text Recognition Normalization
4.3 LLM-Based Dynamic Windowing

4.4 Algorithm and Complexity

4.1 Pipeline Overview

The sentence retrieval system proposed in this thesis is structured as a pipeline that
incrementally transforms the results of KWS into sentence-level retrieval instances and
then into coherent sentence hypotheses. This system combines image-based search,
selective image transcription from a collection of historical or handwritten documents,
and inference using LLMs. Each stage addresses a distinct challenge: locating relevant
words in image form, handling OCR/HTR transcription errors, and resolving variable
sentence boundaries. Figure 4.1 shows a summary of the workflow.

The process begins with KWS. The Seq2Seq model compares a QbE image of a
handwritten word to the document collection, producing a ranked list of matches,
and only the top-k most similar hits are retained. Each hit corresponds to a position
within the word images sequence. To extract text information, the system leverages
OCR/HTR models to selectively transcribe around the hits, rather than transcribing
the entire collection. This selective approach reduces computational costs while still

preserving the amount of knowledge required for sentence reconstruction.
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Figure 4.1: Overview for the proposed system.

The next stage estimates the number of neighboring tokens to include on the
left (L,) and right (R,) of each hit to reconstruct the sentence. Two approaches
have been implemented in this procedure, both relying on a pre-trained LLM. The
first strategy only requires the transcription of the hit. The second strategy creates a
short fragment that includes the neighboring word images of the hit. Both approaches
provide boundary predictions that guide the selection of word images for transcription
and assembly into sentence-level text.

After the sentence has been generated, two additional options are presented. In
the first option, employment of a fine-tuned LLM is included, with a larger context
window, allowing for more accurate boundary estimation, leading to an extended
initial sentence. In the second option, the initial LLM-derived sentence is preserved
without further modification. In either case, the resulting sentence is finally refined
by applying the fine-tuned LLM in a corrective mode. This ensures that transcription
artifacts are minimized and that the sentence hypothesis is both syntactically coherent
and semantically correct.

This multi-stage pipeline provides robust retrieval of sentence-level information
from handwritten and historical sources, which can be noisy, by converting isolated
KWS hits into complete, well-formed sentence hypotheses.

In summary, the input—output flow between the core components of the system is

summarized below. The KWS module receives a query image and produces a ranked
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list of visually similar word instances within the document collection. Each detected
instance, together with its local neighborhood window, forms the input to the Selective
HTR module, which outputs transcribed word sequences. These sequences are then
passed to the LLM-based reasoning module, which predicts sentence boundaries and

refines the textual output into coherent sentence hypotheses.

4.2 Handwritten Text Recognition Normalization

A crucial aspect of the pipeline is the transition from the visual to the textual domain.
Two models are employed for text recognition: TrOCR [24] and a Seq2Seq architecture
[25]. Both models are well-suited for the current task, as they have demonstrated out-
standing results in handwritten image transcription. However, when converting from
one space to another, transcription errors are unavoidable, especially in handwritten
and historical documents.

A common error is the insertion of inappropriate punctuation within words, which
causes fragmented or incorrect tokens. The inconsistent usage of lowercase and capital
letters is another issue. To handle these issues, a technique called normalization is
employed, which lowercases all characters and removes unwanted punctuation from
transcribed words. This ensures that tokens are handled uniformly in subsequent
pipeline stages.

A further difficulty arises from character-level misrecognitions, in which visually
similar symbols are confused. To correct such cases, an additional post-processing step
is implemented. Using the character encoder of the Seq2Seq model, the most similar
correctly spelled word is retrieved from a collection of valid words. This correction
mechanism effectively reduces noise by replacing incorrectly recognized forms with
their closest valid equivalents.

Through this combination of text recognition models and noise reduction proce-
dures, the system ensures that the OCR/HTR results are as accurate as possible. This

provides a strong textual basis for LLM-based boundary prediction.
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4.3 LLM-Based Dynamic Windowing

The central challenge of the sentence retrieval process is to dynamically determine
how many neighboring tokens must be included to the left and to the right of a
detected hit in order to reconstruct the sentence. This task is addressed with the help
of an LLM, which predicts the boundary values based on the input transcription.
Two prompting strategies are employed: few-shot prompting with the hit only, and
segment-based prompting with limited context.

In the first strategy, a pre-trained LLM is provided only with the transcription of
the hit word. The prompt is constructed in a few-shot format, where several annotated
examples of hits are presented together with their corresponding L, and R, values.
These examples guide the LLM boundary prediction task for the current hit.

In the second strategy, a fine-tuned LLM (detailed description in Section 5.4) is
given a short segment that contains the transcription of the hit together with up to
two neighboring transcriptions on each side. The model is prompted to generate m
candidate sentences that incorporate this segment. From the generated sentences, the
values of L,, and R, are calculated by counting the number of tokens occurring to the
left and right of the hit. When multiple candidates are produced, the final boundary
values are obtained by averaging across the predictions.

In both strategies, the predicted values of L,, and R, are used to select the cor-
responding neighboring word images from the document sequence. These images
are then transcribed and corrected, providing the textual material from which the

sentence is assembled.

4.4 Algorithm and Complexity

The proposed sentence retrieval pipeline can be described by the pseudocode in
Algorithm 4.1.

The overall process follows a sequential flow where the output of each stage serves
as the input to the next. Specifically, the ranked hits produced by the KWS module
are passed to the HTR normalization step for selective transcription, whose results
provide the textual input for the LLM-based dynamic windowing and final correction

modules. This explicit linkage ensures a coherent and reproducible pipeline structure.
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Algorithm 4.1 Pseudocode of the proposed end to end system.

Input: Query-by-Example q, document collection D

Output: Final sentence hypotheses H

1: hits = KWS(q, D) //top-k matching positions

2: for hit in hits do

3:  hityans < get_transcription(hit)
4 hitirans < correction(hit)
5. if strategy = ‘ few_shot’ then
6 (Lp, R,) < LLM_FewShot(hityqns)
7.  else if strategy = ‘create’ then
8: neighbor_images < find_neighbors(hit, N) //hit + N images
9: IMageSyrans < correction(neighbor_images)
10: fragment < create_frag(imagesy ans)
11: candidates < LLM _Create( fragment, m)
12: (Ln, R,) < average_boundaries(candidates, hityqns)
13:  end if
14:  extended_images < (hit, L,, R,,)
15:  extended_imagesians < get_transcription(extended_images)
16:  extended_imagesi ans < correction(extended_imagesirans)
17: sentence <— create_sentence(extended_imagestmm)
18:  sentence < LLM_Correct(sentence)
19:  H < H U sentence
20: end for

4.4.1 Runtime Characteristics

As far as runtime is concerned, the algorithm depends mainly on three factors.
First, KWS (step 1) is dependent on the complexity of the feature extraction. For
the Seq2Seq KWS model, the execution time is proportional to the number of word
images in the collection. Second, HTR (steps 3 and 15) processes only the hits and
their local neighborhoods rather than transcribing the entire document collection. If n
is the average neighborhood length, this reduces the cost of transcription from O(|D|)
to O(k - n), where k is the top-k matching positions. Third, LLM inference (steps 6,
11 and 18) depends on the model size and the length of the prompt. The few-shot

strategy uses shorter prompts, while the segment-based strategy requires additional
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context and multiple sentence generations (m candidates). These steps dominate the
runtime when using large-scale models.

Overall, the runtime can be expressed as O(KWS +k-L-HTR+ k- LLM), where
KWS scales with the document collection size, L is the total neighborhood size de-
termined by L, and R, and LLM reflects the cost of inference under the chosen
prompting strategy. The selective design ensures that the cost increases primarily
with the number of hits rather than the total length of the collection, making the

entire process feasible for large collections of handwritten documents.
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CHAPTER DO

EXPERIMENTAL SETUP & PROTOCOLS

5.1 Datasets
5.2 Evaluation Protocols
5.3 Ablation Techniques

5.4 Implementation Details

5.1 Datasets

For the purposes of this work, two datasets were used: the [AM Handwriting Database'?
(IAM) and a subset of the English Wikipedia corpus®. IAM serves as a standard
reference for comparing performance in the field of handwritten documents, while

Wikipedia provides clean textual data for fine-tuning language models.

5.1.1 IAM Handwriting Database

The TAM contains 1539 pages of modern, calligraphic, handwritten English text pro-
duced by 657 authors. The pages are segmented in three different ways: word-level,
line-level and sentence-level, with their corresponding annotations. The heterogene-

ity caused by the multi-writer setup contributes significantly to the difficulty of the

! Available online: https://fki.tic.heia-fr.ch/databases/iam-handwriting-database
2IAM = Institut fiir Informatik und Angewandte Mathematik, University of Bern, Bern, Switzerlan
3 Available online: https://huggingface.co/datasets/wikimedia/wikipedia
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dataset. The official partition of the database was used, as is common practice in
literature [41, 5].

In this thesis, the IAM dataset has a crucial role in multiple stages of the process.
First, it provides the training data for the KWS and OCR/HTR models, which are
required to detect similar word-images as well as to transcribe visual features in to
text. Second, its transcriptions are used to adapt and improve the language models
used for sentence correction. Finally, the IAM serves as the main benchmark for
evaluating keyword spotting performance, word-image transcription accuracy, and
the quality of reconstructed sentence hypotheses.

An overview of the IAM dataset statistics is provided in Table 5.1.

Table 5.1: IAM dataset statistics

Dataset Characteristic Count

# images 115320
# punct. images 14719
# num. images 454
# words 100147
# unique words 12105
# training images 53841
# testing images 17616
# sentences 5677
# unique sentences 4926
Mean Std
sent. length 1726  11.7

5.1.2 Wikipedia Corpus

In addition to the handwritten data, a large corpus was required to support the
language modeling components of the pipeline. For this purpose, a subset of the
English Wikipedia dataset was used. From the full collection, the first 1000 articles
were extracted to provide a sufficiently large but computationally manageable training
set.

The raw texts were pre-processed. As part of the pre-processing steps, all letters

were converted to lowercase, non-standard symbols were removed, as well as unnec-
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essary punctuation. The final dataset comprises well-constructed English sentences
that cover a wide variety of subjects.

The Wikipedia subset is primarily used to improve language models by providing
fluent and coherent sentences. This helps the models increase their ability to transform
noisy or incomplete transcriptions into sentences that are syntactically coherent and
semantically meaningful.

An overview of the statistics of the English Wikipedia subset is provided in Table
5.2.

Table 5.2: English Wikipedia subset statistics

Dataset Characteristic Count

# words 38340

# sentences 41407
Mean Std

sent. length 13.544 3.65

5.1.3 Fragment per Sentence Dataset

In addition to the datasets described in Sections 5.1.1 and 5.1.2, two supplemen-
tary datasets were created specifically for fine-tuning the LLMs (see Section 5.4).
These derived datasets comprise sentence fragments that maintain local syntactic and
semantic coherence around a target word.

The construction of these datasets relied on the perplexity metric, a standard
measure in information theory that reflects the uncertainty in a sample value from
a unknown probability distribution. In language modeling, perplexity expresses the
model’s prediction uncertainty; the lower the value, the more confident the model is

in predicting the next word. Formally, it is defined as:
1 n
PPL(X) = exp( - Zl log(p(yci|x<i))> ,

where p(z;|z;) is the predicted probability of the i" token in sentence X = (2, Ts, ..., y),
and n is the total number of tokens.
The dataset creation procedure is as follows. For each unique word in the original

corpus, one sentence containing that word was selected at random manner. Around
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this target word, multiple fragments are generated by varying the number of tokens
included the left and right. Each candidate fragment is then scored using perplexity,
and the fragment with the lowest score is chosen, since it corresponds to the most
fluent and coherent local context. Repeating this procedure for all unique words pro-
duced two new collections, each organized in a fragment-per-sentence (FPS) format.

Table 5.3 summarizes the statistical information of the newly constructed datasets.

Table 5.3: Fragment per Sentence datasets statistics

Dataset Size Mean Std

train set AM 19205 fragment length 16.54 8.77

test set 4802  fragment length 16.52 8.78

train set 30657  fragment length 9.24 3.07
Wikipedia

test set 7665  fragment length 9.21 3.03

5.2 Evaluation Protocols

5.2.1 Evaluation Strategies

At this point, reference will be made to the scenarios used for evaluating the pro-
posed sentence retrieval system. To evaluate the system’s performance, two main
experimental scenarios were designed. The key difference between them lies in how
the system decides how many neighboring words to include around each retrieved
hit when reconstructing a sentence.

In the first scenario, a fixed-size window is used for every hit. For a given value of
m, the system retrieves m words to the left and m words to the right of the detected
term, creating a sentence segment with a total length of 2m + 1. This setup offers a
simple and consistent way to see how the amount of surrounding context influences
both the accuracy and the fluency of the reconstructed sentences.

In the second scenario, the window size is not fixed but is instead adjusted dy-
namically for each hit. In this case, the system uses pre-trained and fine-tuned LLMs
to estimate the most appropriate number of words to include on each side L, on

the left and R, on the right. These predicted values are then used to select the most
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relevant neighboring words, allowing the system to build a sentence that fits the local
context more naturally.

By comparing these two ways of selecting context (fixed versus dynamic) using the
evaluation metrics described in Subsection 5.2.2, it becomes possible to understand
which approach is better suited for reconstructing complete and coherent sentences

from handwritten documents.

5.2.2 Evaluation Measurements

Evaluating the performance of a KWS system as well as an LLM, requires a com-
bination of quantitative measurements that reflect both the accuracy of information
retrieval and semantic adequacy. For KWS, the problem is formulated as detecting
the appearance or absence of a keyword given a query [1].

For a given query, Precision is defined as the fraction of retrieved instances that

are relevant to that query:

[{relevant instances} N {retrieved instances}|

Precision =
[{retrievedinstances}|

Recall is the fraction of relevant words that are successfully retrieved:

Recall — |{relevant instances} N {Tetrieved instances}|

|{relevant instances}|
The F1-score is calculated as the harmonic mean of precision and recall:

Fl—o Precision - Recall

" Precision + Recall

Precision at rank k (P@k) is defined as the precision calculated exclusively from top-k

retrieved results, indicating the dependability of the system’s highest-ranked outputs:

P@k — [{relevant instances} N {k retrieved instances}|

[{k retrieved instances}|

For a given query Average Precision (AP) is defined as:

1

AP =
|{relevant instances}|

i (P@k x rel(k)) ,

where rel(k) is an indicator function equal to 1 if the word at rank £ is relevant and 0
otherwise. The mean of the Average Precision across all queries in a keyword spotting

task constitutes the Mean Average Precision (mAP).
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While all the aforementioned metrics apply solely to the KWS task, this work
also leverages LLMs, which can generate varied sentences. Therefore, it is necessary
to define appropriate metrics to compare the generated sentences to the reference
sentences, considering both textual and semantic similarity.

The BLEU score [42] measures n-grams precision, adjusted with a brevity penalty:

N
BLEU = BP - exp(anlog(pn)>

n=1

1 ife>r
where BP =

e(1=¢) ife<r.
Here, c is the number of words in the predicted sentence and r is the number of

the reference sentence. According to Papineni et al. [42], N = 4 and the weigths are

1
N

The ROUGE-N [43] emphasizes recall of n-grams and is defined as:
Z Countmateh

ref n—grams

Z Count,.s

ref n—grams

uniform w,, =

ROUGE — N =

where Count,,qch is the number of matching words between the generated sentence
and the reference sentence, and Count,.; is the total number of words in the ref-
erence sentence. METEOR [44] extends these methods by incorporating stemming,
synonymy and paraphrase matching.

Finally, more recent works demonstrate that embedding-based metrics can cap-
ture semantic similarity beyond word overlap. BERTScore [45] leverages contextual

embeddings to align generated and reference tokens. It is defined as:
1 1
R = — max(z} 2;), P =
BERT = 1 Ze azj@( i 23), Pperr

’$'Z‘

Tiy R _ 5 Pprrr - Rperr
T max(xi 933'), BERT = 4° )
|Z| Ti€x Pprprr + Rperr

z,€2
where = and % are the vector representation in the embedding space of reference
and candidate sentences, respectively. At sentence level, semantic similarity can be
computed using the cosine similarity of sentence embeddings:
‘ . x-T
sim(x, ) = ————— ,
([ []]]

which provides a scalar similarity score between [—1,1]. For metrics that use vec-
tors from the embedding space, various encoder-only LLMs can be employed, such
as BERT [46, 47] and RoBERTa [48]. Using different LLMs can result in varying

similarity values because each model generates distinct embedding spaces.
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5.3 Ablation Techniques

The estimation of neighboring words L, and R,, plays a vital role in the proposed
framework. Two additional exploratory models were developed to investigate alter-
native strategies for their prediction. These ablation models were designed to assess
whether encoder-only language models could effectively approximate the boundary
estimation behavior of the larger generative LLMs described in Section 4.3. Although
these models were not ultimately integrated into the final system due to limitations
observed during experimentation, they provide valuable insights into the challenges
of this stage in the proposed framework.

Before presenting the models, it is necessary to describe the dataset used for
their training. The dataset was derived from the FPS-Wikipedia corpus (see Section
5.1.3), augmented with two supervision signals: for each fragment—sentence pair, the
required numbers of neighboring words L,, and R, were computed, representing the
number of tokens that must be added to the left and right sides of the fragment to
reconstruct the original sentence.

As noted above, both ablation models share a common encoder backbone, the
BERT-base* [46] model which serves to encode the textual input into contextualized
embeddings. BERT-base consists of 12 bidirectional transformer layers, each com-
prising 12 self-attention heads, and a hidden size of 768, totaling approximately 110
million parameters. The encoder captures progressively richer linguistic abstractions
across its depth: the lower layers encode surface and syntactic patterns, the middle
layers model contextual relationships, and the later layers represent semantic and
task-specific information [49].

Given the relatively small size of the training dataset and the large number of
parameters in the base encoder, a parameter-freezing strategy was adopted to re-
duce over-fitting and computational cost. Specifically, the first 8 layers of the encoder
were frozen, while the remaining 4 layers were left trainable, enabling fine-tuning
of high-level semantic features for the boundary estimation task. This configuration
retained the general linguistic knowledge of the pre-trained encoder while focusing
the adaptation on task-relevant representations.

The two ablation variants that employ this configuration are described in the

following subsections.

% Available online: https://huggingface.co/google-bert/bert-base-uncased
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5.3.1 Variational Autoencoder and Multilayer Perceptron Predictor

The first ablation model integrates three main components: the encoder-only LLM
described earlier, a Variational Autoencoder (VAE) [50] for dimensionality reduction,
and a Multilayer Perceptron (MLP) classifier for boundary estimation. The model’s
objective is to predict the appropriate values of L, and R, based on the encoded
textual representation.

The VAE module consists of an encoder—decoder pair designed to compress the
pooler output of the LLM into a lower-dimensional latent space. The encoder com-
prises two fully connected layers with dimensions (768,256) and (256, 64), each fol-
lowed by a ReLlU activation. The resulting latent vector z captures the most important
semantic features of the input while reducing redundancy. The decoder mirrors this
structure with two linear layers of dimensions (64, 256) and (256, 768), using the same
activation function to reconstruct the original embedding space of the LLM’s pooled
representations.

The latent vector z is then passed to an MLP responsible for predicting the discrete
boundary values. The MLP contains two linear layers of dimensions (64,32) and
(32,n), where n denotes the number of output classes corresponding to possible L,
and R, values. ReLU activation function is applied between layers, and a dropout
layer with a probability 0.2 is used for regularization. Finally, softmax activation
produces a probability distribution over all candidate boundary values, from which
the most likely L, and R, are selected. Figure 5.1 illustrates the architecture of the

model.

5.3.2 Multilayer Perceptron Predictor

The second model differs from the previous one in that it relies solely on MLP
architecture. Its input is the final hidden state of the BERT model. Specifically, the
output vector produced by the last bidirectional transformer layer. This vector has
dimensions (m, hidden_size), where m denotes the length of the token sequence.
Since the MLP requires fixed-size input, pooling techniques were applied to trans-
form the vector dimensions from (m,hidden_size) to (1,k), where k depends on
the pooling strategy used. Three pooling approaches were evaluated: max pooling
(k = hidden_size), mean pooling (k = hidden_size), and a combined mean—max

pooling strategy (k = 2 x hidden_size). These techniques enable the aggregation of
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Figure 5.1: Architecture of the VAE-MLP model, which combines BERT embeddings
with a VAE for dimensionality reduction and an MLP classifier for predicting L, and
R,.

contextual token-level information into a single representative vector suitable for clas-
sification.

The pooled vector is then passed through an MLP consisting of three linear layers
with dimensions (k,256), (256,64), and (64,n), where n represents the number of
output classes. The network employs ReLU activations, two normalization layers,
and a dropout layer with a probability of 0.3 to improve generalization. As in the
first model, the final output vector is passed through a softmax function to estimate
the most probable values of L,, and R,,. Figure 5.2 illustrates the overall architecture

of this model.

5.3.3 Training Procedure

At this stage, the training process of the two previously described models is pre-
sented. To ensure a fair comparison, both models were trained under identical ex-
perimental conditions. As mentioned earlier in this section, the dataset used was the
FPS-Wikipedia corpus, extended with the corresponding L,, and R, values for each
fragment—sentence pair.

During training, the AdamW optimizer was employed with an initial learning

rate of 2 x 10~*. Furthermore, several learning rate schedulers, such as LinearLR,
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Figure 5.2: Architecture of the MLP model, which applies pooling to the final hidden
states of BERT and uses an MLP to predict L, and R,,.

ExponentialLR, and CosineAnnealingLR, were tested to gradually reduce the learning
rate throughout training. Each model was trained for 200 epochs, with evaluation
performed after every epoch. The loss function used was weighted cross-entropy,
compensating for the class imbalance observed in the dataset.

Despite extensive experimentation, both models exhibited significant overfitting,
as shown in Figure 5.3. Various configurations and regularization attempts failed to
mitigate this issue. The main conclusion drawn from these results is that a larger and
more diverse dataset is required, along with enhanced feature extraction mechanisms

capable of capturing richer contextual information from each input fragment.

VAE-MLP Model MLP Model
1.584 o

1.584 1 1.582

1.580 | ﬁ\

i
1.578 - \J L
1.576

1.574 1

1.582 A

1.580

1.578 A

—— ftraining loss —— training loss
eval loss 1.572 - eval loss
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Figure 5.3: Training and evaluation loss curves for both models (VAE-MLP and

MLP). The plots illustrate the overfitting behaviour observed during training.
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5.4 Implementation Details

This section describes the implementation details of the proposed system, covering
the training of the KWS and HTR models, as well as the adaptation of LLMs for dy-
namic boundary prediction and sentence correction. Where relevant, deviations from
standard practice are highlighted to ensure reproducibility and to provide context for
the observed differences with respect to previous work.

The Seq2Seq® architecture employed for both KWS and HTR follows the open-
source implementation proposed by Retsinas et al. [25]. The official IAM split was
used for training, as described in Section 5.1.1 and shown in Table 5.1. The model
was trained for 160 epochs and evaluated every 5 epochs using thee official test
split and the mAP metric. In each evaluation, the Character Error Rate (CER) was
also computed. The training configuration followed the optimal settings reported by
Retrinas et al. [25], which were found to yield the highest mAP performance. Table

5.4 presents the reproduced and reported mAP and CER scores.

Table 5.4: Comparison of the reproduced and reported mAP and CER scores.

Model QbE mAP QbS mAP CER
Seq2Seq (Reproduced) 92.35 96.09 5.4
Seq2Seq (Reported) 91.62 95.5 5.1

As discussed in Section 4.2, the second architecture used for the HTR process is
TrOCR. Specifically, the TrOCR-large model® was employed, which had already been
fine-tuned on the IAM dataset. No additional fine-tuning was performed in this work,
as Li et al. [24] report that the model achieves a CER of 2.89.

To further reduce the CER where necessary, a post-processing mechanism for cor-
recting misspelled words was implemented. A dictionary containing all unique words
from the IAM test set without access to their corresponding images, was constructed
and encoded using the character encoder from the Seq2Seq architecture. For each
transcribed word generated by either Seq2Seq or TrOCR, its encoded representation
was compared with those in the dictionary, and the most similar entry in embedding
space was selected as the corrected word. Table 5.5 reports the CER and Word Error

Rate (WER) values before and after correction observed on the official IAM test set.

5The Seq2Seq source code, is available at: https://github.com/georgeretsi/Seq2Emb
6Model card: https://huggingface.co/microsoft/trocr-large-handwritten
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Table 5.5: Comparison of CER and WER on the official IAM test set before and after

applying the word-level correction mechanism.

Before After
Model CER WER CER WER
Seq2Seq 5.32 14.8 6.0 11.73
TrOCR 19.9 30.7 22.5 27.3

The estimation of neighboring words L, and R,, as described in Section 4.3,
was performed using two distinct prompting strategies. The first option, a few-shot
prompting approach, used pre-trained LLaMA-3.2-3B” and Mistral-7B® models. For
each top-k transcription retrieved from the KWS stage, a prompt was constructed
that included example triples (word, L,,, R,) drawn heuristically from the Wikipedia
corpus (Table 5.7). The prompt was then provided to the LLM (see Figure 5.5a), and
the predicted boundary values L, and R, were extracted from its response.

The sentence approach, the segment-based strategy, was also implemented using
LLaMA-3.2-3B and Mistral-7B, but these models were fine-tuned to improve bound-
ary prediction and sentence correction. Fine-tuning was conducted in two stages using
the FPS datasets (see Section 5.1.3). In the first stage, the FPS-Wikipedia corpus was
used for 3 epochs; in the second stage, the FPS-IAM dataset was used for 6 epochs.
The AdamW optimizer and a linear scheduler were employed, with an initial learning
rate of 2 x 107, To reduce the computational cost of fine-tuning, Low-Rank Adapta-
tion (LoRA) [51], a Parameter Efficient Fine-Tuning (PEFT) technique [52, 53], was
adopted, with configuration parameters r = 16, o = 32, and dropout = 0.05. Figure 5.4
illustrates the training and evaluation loss observed during the fine-tuning process
for both stages and models.

During inference, after a segment of up to 5 words has been created from the
neighborhood of the hit word from the collection, ensuring that the hit word itself
is included, the corresponding prompt is prepared in the format presented in Fig-
ure 5.5b. This prompt is provided as input to the fine-tuned model, following the
procedure described in Section 4.3 to determine the new segment boundaries. The
retrieved fragment is subsequently passed to the correction model using the prompt

format shown in Figure 5.5c. the output of this step constitutes the sentence hypothe-

"Model card: https://huggingface.co/meta- 1lama/Llama-3.2-3B- Instruct
8Model card: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
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ses from the collection.

All components described above were integrated into a unified sentence retrieval
pipeline. Each module KWS, HTR, boundary estimation, and sentence correction
was implemented as an independent stage, enabling modular experimentation and
consistent evaluation. The final system configuration, incorporating the fine-tuning
LLMs and post-correction mechanisms, was used in all subsequent experiments and
analyses presented in Chapter 6.

To ensure transparency and reproducibility, the main training and fine-tuning
hyperparameters used across all experiments are summarized in Table 5.6. For the
Seq2Seq and HTR components, the configuration follows the optimal settings reported
by Retsinas et al. [25], while minor adjustments were applied for convergence stabil-
ity. Regarding the LLM components, the reported LoRA parameters correspond to
the best-performing setup identified during preliminary experiments. These configu-
rations were kept fixed throughout all subsequent evaluations to ensure consistency

across models and datasets.

Table 5.6: Main hyperparameters used for model training and fine-tuning.

Parameter Seq2Seq / HTR LLMs (LoRA Fine-tuning)
Optimizer Adam AdamW
Learning rate 1x10™* 2x107°

Batch size 16 8

Epochs 160 3+6

LoRA rank (r) - 16

LoRA « — 32

Dropout 0.25 0.05

Precision tp16 tp16
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Figure 5.4: Training and evaluation losses from Mistral-7B and LLaMA-3.2-3B LLM

during fine-tuning.

Table 5.7: Examples for the few-shot strategy

Number of Neighbors

word L, R,
regeneration 7 )
belongs 3 3
center 6 4
entertain 3 6
appears 4 9
sun 3 5
write 5 5
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Figure 5.5: Prompt templates employed in the proposed system. The figure presents
the three prompting configurations: (a) few-shot prompting, (b) creation prompting,

and (c) correction prompting

(a) Few-Shot Prompting Template
Word: word
Number of Neighbors:
left: L,, right: R,

(b) Sentence creation prompt template
You are a helpful assistant.
Write a grammatically correct and natural sentence that includes the phrase

‘fragment’. The sentence must be between 4 and 12 words.

(c) Sentence correction prompt template
You are a grammar correction assistant
Input: ‘sentence’

Output only one corrected sentence, no extra text no explanations:
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CHAPTER O

EXPERIMENTAL RESULTS

6.1 Numerical Results

6.2 Cost-Performance

In this chapter, the numerical results of the proposed sentence retrieval system are
presented and analyzed. The goal is to determine how effective the system can be
in reconstructing complete and coherent sentences from handwritten texts, given a
single word image as input. For this purpose, as mentioned in Section 5.2.1, three
strategies are compared. The first one is a fixed and symmetric context window, while
the other two are dynamic context window techniques, in which the number of left
and right neighbors is estimated using LLMs.

In addition to accuracy, the evaluation also takes into account the practical aspects
of the system. Specifically, the trade-off between performance, latency, and the number
of LLM calls is examined. Finally, common failure cases and limitations of the system
are discussed in order to provide a realistic understanding of the challenges involved

in sentence retrieval from handwritten texts.

6.1 Numerical Results

When using the Seq2Seq model, which gives more accurate transcriptions (see Table

5.5), more accurate results are shown. The dynamic windowing method, and more
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specifically the segment-based strategy, achieves the highest scores in all metrics. As
shown in Table 6.1, the segment-based strategy consistently achieved higher BLEU
and BERTScore values than both the few-shot and fixed window approaches, con-
firming the benefit of contextual prompting and adaptive boundary estimation. For
example, with LLaMA, its BLEU metric score is 77.7% (Table 6.1) compared to 73.7%
(Table 6.2) for the few-shot prompting approach and only 40.5% (Table 6.3) for the
fixed window approach. This roughly corresponds to a 5% BLEU improvement and
a 3% BERTScore gain over the few-shot method, indicating a tangible increase in
contextual coherence and sentence completeness. A similar pattern is observed in se-
mantic similarity, where the BERTScore reached 85.0%, while for fixed windowing
it reached 58.2%. The 27% difference in BERTScore suggests that the sentences gen-
erated by the segment-based method preserve substantially more meaning from the
reference sentences. These differences show that dynamic windowing methods com-
bined with the Seq2Seq model not only give more accurate results in token retrieval
but also produce sentences that are much closer semantically to the ground-truth
sentences.

This advantage is consistent across all three QbE cases and both LLMs. Although
Mistral showed slightly lower scores than LLaMA, the relative ranking between the
strategies remains the same: segment-based > few-shot prompting > fixed-size win-
dowing. As summarized in Tables 6.1 - 6.3 these trends demonstrate that adaptively
estimating the context window yields consistently higher textual and semantic simi-
larity that fixed method. This confirms that dynamically adjusting the context length
provides more robust and reliable sentence reconstruction than using a fixed-size
window.

When the TrOCR model was used to transcribe the word-images, the overall scores
decreased due to the high noise generated during transcription. However, the ranking
of the strategies remains unchanged. For example, in Table 6.4, the segment-based
strategy using LLaMA achieved a BLEU score of 48.6%, while in Table 6.5, the few-
shot prompting strategy reached 38.7%, and in Table 6.6, the fixed window lagged
again at 25.3%. Even in more difficult cases, the segment-based strategy achieved
better results than the other methods. This shows that this strategy is not only more
accurate but also more robust to transcription errors.

During the experiments in the fixed window scenario, a single value of m was

applied to every retrieved instance in the ranked list produced by KWS. Although
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Table 6.1: Quantitative results for the segment-based strategy using LLaMA and

Mistral. Token-level similarity and semantic-level similarity indicate the quality of

reconstructed sentences generated from the Seq2Seq transcriptions.

Token-level Similarity

# model BLEU+SD ROUGE-N+SD METEOR+SD
1 70 T£27.0 80.4 £23.9 81.8 £21.5
2 LLaMA 74.8 £20.2 75.9 £ 15.7 78.6 £ 14.8
3 76.4 +13.6 75.4+21.4 78.5+£17.6
1 68.7 £ 30.0 77.0£278 7744245
2 Mistral 50.5 £29.2 o7.7£21.5 61.0 = 22.0
3 09.4 £24.8 61.5 £27.5 65.2 + 23.8
Semantic-level Similarity

Sen. BERT
# model BERTore BERT,g. £ SD
1 85.0 £ 11.0 0.856 £ 0.083
2 LLaMA 81.9+5.2 0.892 + 0.061
3 77.1+4.5 0.841 + 0.06
1 79.7+£12.7 0.824 £0.073
2 Mistral 73.0+£9.4 0.84 +0.093
3 69.3 £8.2 0.779 £ 0.075

this makes the approach simple and easy to implement, it also makes it essentially
inflexible. In practice, sentence lengths vary considerably, and a single window size
cannot accommodate this variability. As a result, the selected window was often too
small, leading to incomplete or incorrect sentence reconstructions. In such cases, the
LLM used for sentence completion did not receive enough context to produce a
correct or meaningful sentence that aligns with the ground truth. Consequently, the
fixed window method is unable to adapt to the structure of each sentence, which
explains its consistently lower performance.

In contrast, the dynamic windowing approach performs consistently better than
the fixed window strategy, confirming that sentence boundaries should be estimated
adaptively rather than predetermined. Within the dynamic methods, the segment-

based strategy achieves the highest performance. The presence of even a small local
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Table 6.2: Quantitative results for the few-shot prompting strategy using LLaMA

and Mistral. Token-level similarity and semantic-level similarity indicate the quality

of reconstructed sentences generated from the Seq2Seq transcriptions.

Token-level Similarity

# model BLEU+SD ROUGE-N+SD METEOR+SD
1 73.7+32.3 77.5+27.5 78.9 +25.0
2 LLaMA 69.0 +12.4 70.3 £ 8.7 73.6 £9.1
3 47.8 £22.6 53.7+£25.9 57.4+21.6
1 56.7 £ 44.5 68.0 = 39.2 67.0£37.1
2 Mistral 40.0 £19.8 49.1£12.8 53.1 £13.7
3 51.3 +30.1 54.3 +32.8 57.24+30.8

Semantic-level Similarity

Sen. BERT

# model BERTore BERT,g. £ SD
1 82.9+14.3 0.846 + 0.09
2 LLaMA 79.0 £4.7 0.868 £ 0.063
3 65.3 £ 8.8 0.79 +0.048
1 75.8 £17.1 0.807 £ 0.091
2 Mistral 68.5+5.9 0.83 £ 0.08
3 65.1+14.4 0.769 = 0.089

context (up to two neighboring words on each side of the hit) allows the LLM to
better capture sentence boundaries and syntactic dependencies, leading to 4 — 6%
improvement in BLEU and 3% in BERTScore. This indicates that even a minimal
context helps the LLM to better understand the sentence structure and produce more
accurate predictions for L,, and R,.

In comparison, the few-shot prompting strategy relies solely on the target word,
without access to its surrounding context. As a result, it often struggles to infer
the correct boundaries, especially when the word can appear in different syntactic
roles. Furthermore, this strategy is inherently biased by the examples included in the
prompt (see Table 5.5), since the model’s predictions depend not only on the target
word but also on the prior patterns shown in the examples. This limitation further

explains why the segment-based method provides more reliable and contextually
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Table 6.3: Quantitative results for the fixed symmetric window configuration using
LLaMA and Mistral. Token-level similarity and semantic-level similarity indicate the

quality of reconstructed sentences generated from the Seq2Seq transcriptions.

Token-level Similarity

# model BLEU+SD ROUGE-N+SD METEOR+SD
1 40.5 £ 27.0 43.9 £ 34.3 45.7 £ 30.5
2 LLaMA 37.3 £ 22.8 28.7 £ 18.9 33.6 £17.6
3 33.2+18.6 30.0+£21.3 32.5+£20.8
1 35.7+£23.2 42.7 £ 33.8 45.5 £ 32.6
2 Mistral 17.1+£14.3 26.6 £14.5 30.3 £15.5
3 26.5 £21.7 29.5 £21.7 34.3 £22.2
Semantic-level Similarity

Sen. BERT
# model BERTore BERT,g. £ SD
1 58.2 +14.7 0.731 £ 0.125
2 LLaMA 54.2 + 8.9 0.753 £ 0.067
3 56.2 = 10.1 0.765 £ 0.077
1 60.3 £18.2 0.731 £0.125
2 Mistral 54.2 +8.9 0.659 + 0.131
3 54.24+9.4 0.662 £ 0.042

appropriate boundary estimates.

Overall, the results show that sentence retrieval depends significantly on adapting
the context length to each specific result. The fixed window strategy is inflexible to
handle the natural variability of sentences, leading to incomplete results. Dynamic
windowing addresses this limitation by predicting the context window in each case,
resulting in more accurate, complete, and coherent sentences. Among dynamic win-
dowing methods, the segment-based strategy achieves the best performance because
it exploits minimal but capable local context. These findings highlight the importance

of context adaptability in sentence reconstruction from handwritten texts.
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Table 6.4: Quantitative results for the segment-based strategy using LLaMA and
Mistral. Token-level similarity and semantic-level similarity indicate the quality of

reconstructed sentences generated from the TrOCR transcriptions.

Token-level Similarity

# model BLEU+SD ROUGE-N+SD METEOR+SD
1 48.6 £6.3 49.5 £ 18.7 49.6 £13.8
2 LLaMA 48.3 £ 26.6 51.6 £17.3 53.3 £ 18.5
3 33.3+£184 35.8+£23.2 33.4+14.3
1 35.4+16.5 39.2+£20.5 39.6 £18.7
2 Mistral 31.2£204 35.0 =£19.3 36.0 £ 19.1
3 37.44+19.2 39.0 £22.1 39.8£17.6

Semantic-level Similarity

Sen. BERT

# model BERTore BERT,g. £ SD
1 48.5+5.9 0.70 £ 0.04
2 LLaMA 50.6 +11.4 0.663 + 0.10
3 43.7£5.0 0.626 £+ 0.038
1 45.7 £ 7.6 0.684 £ 0.042
2 Mistral 51.2+10.3 0.668 £ 0.09
3 47.1 £8.6 0.661 £ 0.034

6.2 Cost-Performance

In addition to accuracy, it is important to consider the computational cost of each
strategy. The fixed-window approach is the simplest and most computationally ef-
ficient, as it does not require prediction for each retrieved instance. As a result, it
has the lowest latency and minimal LLM usage. However, this efficiency affects the
quality of the final sentences.

The few-shot prompting strategy introduces a moderate increase in computational
cost, as one LLM call is required to estimate L,, and R,, for each hit. The cost remains
manageable, as the LLM is called once for the estimation and once for the correction
of the final sentence. This improves accuracy but adds a small latency compared to
the fixed-window strategy.

Consequently, the segment-based method offers the highest accuracy, but increases
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Table 6.5: Quantitative results for the few-shot prompting strategy using LLaMA

and Mistral. Token-level similarity and semantic-level similarity indicate the quality

of reconstructed sentences generated from the TrOCR transcriptions.

Token-level Similarity

# model BLEU+SD ROUGE-N+SD METEOR+SD
1 38.7+£7.2 46.2 £ 22.5 45.6 £17.3
2 LLaMA 38.6 +25.6 46.2 + 22.6 444+ 21.0
3 376104 49.1 £26.4 47.1£19.1
1 424 £21.7 51.8+£29.5 49.1£22.3
2 Mistral 30.2 +£16.3 32.6 =£20.9 34.3 £18.8
3 25.1£16.7 33.2+24.1 33.5 £ 18.2
Semantic-level Similarity

Sen. BERT
# model BERTore BERT,g. £ SD
1 472+ 5.6 0.706 = 0.034
2 LLaMA 52.2+10.9 0.681 + 0.137
3 454 £ 5.7 0.65 + 0.052
1 50.4 £ 6.0 0.66 £+ 0.056
2 Mistral AT 7TE£74 0.611 + 0.069
3 46.3 £ 7.7 0.658 £ 0.033

computational cost. Since it requires the transcription of an initial segment, the LLM
calls to assess the bounds, which depend on the number of sentences to be generated
to estimate L, and R,, performing additional transcriptions based on the estimate,
and finally employing the LLM again to correct the sentences. This results in the
longest latency and more LLM calls. On average, the total processing time for the
segment-based strategy increased by approximately 10% compared to the few-shot
approach, primarily due to additional LLM inference steps. However, this overhead
yields a 5 — 6% BLEU improvement and around 3% gain in BERTScore, reflecting a
favorable accuracy-cost trade-off.

Nevertheless, the significant improvement in completeness, coherence, and seman-
tic accuracy makes it the most efficient method overall. In practical terms, the addi-

tional computational cost corresponds to roughly 1 minute per processed hit, which
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Table 6.6: Quantitative results for the fixed symmetric window configuration using
LLaMA and Mistral. Token-level similarity and semantic-level similarity indicate the

quality of reconstructed sentences generated from the TrOCR transcriptions.

Token-level Similarity

# model BLEU+SD ROUGE-N+SD METEOR+SD
1 25.3 +£23.2 31.2 £ 30.3 32.0 £28.7
2 LLaMA 12.4 £10.7 13.5£74 16.7£10.1
3 6.8 4.6 13.5£5.9 16.6 £7.1
1 25.3+£23.2 31.3+£29.3 32.5 £ 28.7
2 Mistral 19.2 £ 14.7 135+ 7.8 16.7 £ 10.17
3 6.8 £4.6 13.5£5.9 16.6 £ 7.1

Semantic-level Similarity

Sen. BERT

# model BERTore BERT,g. £ SD
1 44.4 +£10.6 0.58 +0.08
2 LLaMA 41.0+ 34 0.565 + 0.094
3 425+ 34 0.588 £ 0.083
1 44.4+£10.6 0.58 £ 0.081
2 Mistral 41.0£ 34 0.566 = 0.094
3 425+ 34 0.588 + 0.086

is acceptable for research-scale document collections.

In summary, there is a clear trade-off between cost and quality. The fixed win-
dow is efficient but imprecise, the few-shot approach balances cost and efficiency, and
finally, the dynamic segment-based method achieves the best results at the highest
computational cost. Therefore, when high textual fidelity and contextual reconstruc-
tion accuracy are prioritized, the segment-based method provides the optimal balance

despite its increased runtime demands.
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CHAPTER 7

CoNncLUDING REMARKS AND FUTURE

DIRECTIONS

7.1 Concluding Remarks

7.2 Future Research Directions

7.1 Concluding Remarks

This thesis presented a novel framework that extends the classical Handwritten Key-
word Spotting (KWS) paradigm toward the retrieval of semantically coherent sen-
tences from historical handwritten document images. The proposed approach bridges
the gap between purely visual retrieval and linguistic understanding by integrating
four complementary components: visual matching through a Seq2Seq KWS baseline,
selective word-level transcription via Handwritten Text Recognition (HTR), dynamic
context window estimation driven by Large Language Models (LLMs), and sentence
correction through language-based reasoning.

The experimental results obtained on the IAM handwriting dataset demonstrated
that the proposed dynamic windowing mechanism substantially improves the lin-
guistic completeness and contextual fidelity of retrieved sentences compared to fixed-
size approaches. Among the examined variants, the segment-based prompting strategy
achieved the highest overall performance, with BLEU and BERTScore values of 77.7%

and 85.0%, respectively, outperforming the few-shot alternative. The system proved
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robust even under the presence of transcription noise introduced by the HTR module,
highlighting its potential for large-scale deployment in historical document collections.

Beyond quantitative metrics, the framework introduced here establishes a gener-
alizable methodology for combining visual perception and language reasoning in a
unified retrieval process. By treating LLMs as adaptive sentence boundary estimators
and contextual refiners, the system demonstrates how linguistic priors can be lever-
aged to reconstruct coherent textual fragments directly from image-based queries.
This contribution is particularly relevant to the fields of document analysis, digi-
tal humanities, and cultural heritage, where the recovery of textual meaning from
handwritten artifacts remains a major challenge.

Overall, this research contributes both technically and conceptually to the advance-
ment of sentence-level retrieval from handwritten sources. Technically, it introduces
a scalable architecture for integrating visual and language models through selective
transcription and prompt-based contextual reasoning. Conceptually, it redefines the
notion of retrieval in document image analysis, moving from isolated word detection

toward context-aware textual reconstruction.

7.2 Future Research Directions

While the proposed system achieved promising results, several directions for further
research remain open. These directions aim to enhance generalization, scalability, and
interpretability while broadening applicability to more diverse document types and

languages.

() Multilingual and historical adaptation. Extending the current approach to
multilingual and multi-script datasets would require retraining or adapting both
the HTR and LLM components to handle varying alphabets, writing conven-
tions, and historical orthography. Low-resource adaptation through transfer
learning and few-shot fine-tuning could enable generalization to underrepre-

sented languages and scripts.

(ii) Layout and structure-aware retrieval. Integrating document layout analysis
(e.g., region segmentation, reading order estimation) could allow retrieval of en-

tire paragraphs or article-level structures rather than isolated sentences. Com-
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bining sentence retrieval with layout reasoning would facilitate article recon-

struction and page-level summarization.

(iii) Retrieval-augmented summarization. A natural extension of this work involves
using the top-k retrieved sentence hypotheses as inputs to an LLM-based sum-
marizer. This would enable the generation of concise, query-driven summaries

of entire documents while preserving historical language characteristics.

(iv) End-to-end optimization. Although the current pipeline is modular by design,
future implementations could explore end-to-end training strategies that jointly
optimize the retrieval, transcription, and language reasoning stages. Such in-
tegration could minimize cascading errors and improve the overall semantic

consistency of the reconstructed text.

(v) Human-centered evaluation and applications. Beyond quantitative metrics
such as BLEU or BERTScore, human-centered evaluation could assess the in-
terpretability and usefulness of the retrieved sentences for historians, archivists,
and scholars. Developing interactive interfaces for semantic exploration of dig-
itized archives would transform the system into a practical tool for digital hu-

manities research.

In summary, this thesis demonstrates that bridging vision and language models can
fundamentally transform information retrieval from handwritten documents. Future
research building on these findings may lead to fully multimodal systems capable of
query-guided summarization, semantic exploration, and contextual reconstruction of

handwritten heritage archives.
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