Παράρτημα – Αρχεία Log Πειραμάτων

Αναλυτικά logs από τα πειράματα που περιγράφονται στη μεταπτυχιακή διπλωματική εργασία.

Δημιουργήθηκε από: Κων/νος Μπαλαδήμας
Μεταπτυχιακή Διπλωματική Εργασία: Κατασκευή χαρακτηριστικών με Γραμματική Εξέλιξη
Πανεπιστήμιο Ιωαννίνων, 2025

Παραδείγματα πειραμάτων

Iteration: 1 Best Fitness: -54.7607 Best program:
f1(x)=((-4.07)*x8)
f2(x)=(x9-(x21/((-47.77)/(-02.29))*x1+(890.7/(-71.899))*x7+x9+(-102.04)*x8))

Iteration: 2 Best Fitness: -49.7566 Best program:
f1(x)=(89.01*x8)
f2(x)=(x9-(x21/((-47.77)/(-02.29))*x1+(890.7/(-71.899))*x7+x9+(-102.04)*x8))

Iteration: 3 Best Fitness: -47.5498 Best program:
f1(x)=x1
f2(x)=((-432.33)*x6*cos((-7.77)*x19+867.91*x5))

Iteration: 4 Best Fitness: -41.7281 Best program:
f1(x)=x27
f2(x)=((-47.733)*x6*cos((-7.7)*x28+abs(((-6.59)/88.81)*x23+x27)))

Iteration: 5 Best Fitness: -37.437 Best program:
f1(x)=((-4.77)*x8)
f2(x)=((-47.738)*x28*cos((-7.77)*x19+867.91*x5))

** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[0]=16.8297368647 test[0]=22.035009 class[0]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[1]=16.8297368647 test[1]=22.035009 class[1]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[2]=16.8297368647 test[2]=22.035009 class[2]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[3]=16.8297368647 test[3]=22.035009 class[3]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[4]=16.8297368647 test[4]=22.035009 class[4]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[5]=16.8297368647 test[5]=22.035009 class[5]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[6]=16.8297368647 test[6]=22.035009 class[6]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[7]=16.8297368647 test[7]=22.035009 class[7]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[8]=16.8297368647 test[8]=22.035009 class[8]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[9]=16.8297368647 test[9]=22.035009 class[9]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[10]=16.8297368647 test[10]=22.035009 class[10]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[11]=16.8297368647 test[11]=22.035009 class[11]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[12]=16.8297368647 test[12]=22.035009 class[12]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[13]=16.8297368647 test[13]=22.035009 class[13]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[14]=16.8297368647 test[14]=22.035009 class[14]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[15]=16.8297368647 test[15]=22.035009 class[15]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[16]=16.8297368647 test[16]=22.035009 class[16]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[17]=16.8297368647 test[17]=22.035009 class[17]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[18]=16.8297368647 test[18]=22.035009 class[18]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[19]=16.8297368647 test[19]=22.035009 class[19]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[20]=16.8297368647 test[20]=22.035009 class[20]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[21]=16.8297368647 test[21]=22.035009 class[21]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[22]=16.8297368647 test[22]=22.035009 class[22]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[23]=16.8297368647 test[23]=22.035009 class[23]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[24]=16.8297368647 test[24]=22.035009 class[24]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[25]=16.8297368647 test[25]=22.035009 class[25]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[26]=16.8297368647 test[26]=22.035009 class[26]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[27]=16.8297368647 test[27]=22.035009 class[27]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[28]=16.8297368647 test[28]=22.035009 class[28]=9.473684%
** CONFUSION MATRIX ** Number of classes: 2
  86   12 
  15  172 
PRECISION 0.8931338786 RECALL: 0.8986685583
train[29]=16.8297368647 test[29]=22.035009 class[29]=9.473684%
=================================================
AVERAGES (TRAIN,TEST,CLASS): 16.829737 22.035009 9.4736842%
AVERAGES (PRECISION,RECALL): 0.89313388 0.89866856
  
Iteration: 1 Best Fitness: -0.00204664 Best program:
f1(x)=(x21*(3.01/(-21.4))*x14)
f2(x)=((-00.73)*x34)

Iteration: 2 Best Fitness: -0.00204661 Best program:
f1(x)=cos((x11/94.01*x28))
f2(x)=(x31*((-96.77)*x30))

Iteration: 3 Best Fitness: -0.00204661 Best program:
f1(x)=cos((x11/94.01*x28))
f2(x)=(x31*((-96.77)*x30))

Iteration: 4 Best Fitness: -0.0020466 Best program:
f1(x)=cos((x11/94.91*x28))
f2(x)=(x31*((-96.77)*x27))

Iteration: 5 Best Fitness: -0.0020466 Best program:
f1(x)=cos((x11/94.01*x28))
f2(x)=(x31*((-96.97)*x27))

** CONFUSION MATRIX ** Number of classes: 26
1416 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
PRECISION -1.#IND000000 RECALL: -1.#IND000000
train[0]=0.0020466045 test[0]=0.000240 class[0]=91.384181%
...
** CONFUSION MATRIX ** Number of classes: 26
1416 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
PRECISION   -1.#IND000000 RECALL:  -1.#IND000000
train[29]=0.0020466045 test[29]=0.000240 class[29]=91.384181%
=================================================
AVERAGES (TRAIN,TEST,CLASS): 0.0020466045 0.00023989394 91.384181%
AVERAGES (PRECISION,RECALL): 0 0
  

Πειράματα κατηγοριοποίησης (Classification)

📊 Wdbc dataset

# Settings Tab: Advanced
# Run Date:     03/09/2025 13:55:31
# Run Time:     00:00:03 (3680 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/MLDATASETS-master/CLASSIFICATION/wdbc.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. RBF Weights: 10

@ Results: ===============================================================

** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[0]=25.9227927775 test[0]=3.664261 class[0]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[1]=25.8800910378 test[1]=3.667537 class[1]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[2]=27.5945805897 test[2]=3.927761 class[2]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[3]=26.8536077687 test[3]=3.853917 class[3]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[4]=26.8822465012 test[4]=3.804635 class[4]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[5]=26.8536077687 test[5]=3.853917 class[5]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[6]=26.8536077687 test[6]=3.853917 class[6]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[7]=26.8536077687 test[7]=3.853917 class[7]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[8]=26.3292217687 test[8]=3.708895 class[8]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[9]=26.5818609312 test[9]=3.853080 class[9]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[10]=26.0080155506 test[10]=3.700908 class[10]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[11]=27.4946978178 test[11]=3.939192 class[11]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[12]=25.8800910378 test[12]=3.667537 class[12]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[13]=26.7564229510 test[13]=3.857585 class[13]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[14]=26.8536077687 test[14]=3.853917 class[14]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[15]=25.8800910378 test[15]=3.667537 class[15]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[16]=25.9389937738 test[16]=3.672113 class[16]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[17]=26.8717769750 test[17]=3.798392 class[17]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[18]=26.7359874057 test[18]=3.840590 class[18]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[19]=25.8800910378 test[19]=3.667537 class[19]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[20]=26.3263366638 test[20]=3.729642 class[20]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[21]=26.8536077687 test[21]=3.853917 class[21]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[22]=26.1320385424 test[22]=3.765706 class[22]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[23]=25.9389937738 test[23]=3.672113 class[23]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  18    2 
   3   34 
PRECISION          0.9007936508 RECALL:         0.9094594595
train[24]=27.1064490730 test[24]=3.827796 class[24]=8.771930%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[25]=25.8800910378 test[25]=3.667537 class[25]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[26]=26.5923330196 test[26]=3.809561 class[26]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[27]=25.9389937738 test[27]=3.672114 class[27]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    2 
   4   34 
PRECISION          0.8769841270 RECALL:         0.8947368421
train[28]=26.1320385424 test[28]=3.765706 class[28]=10.526316%
** CONFUSION MATRIX ** Number of classes: 2
  17    3 
   4   33 
PRECISION          0.8630952381 RECALL:         0.8709459459
train[29]=31.5131309240 test[29]=4.978596 class[29]=12.280702%
=============================================================================
AVERAGES (TRAIN,TEST,CLASS):       26.643967       3.8149945       10.526316%
AVERAGES (PRECISION,RECALL):      0.87731481      0.89443457
  
# Settings Tab: Advanced
# Run Date:     03/09/2025 14:02:18
# Run Time:     00:53:54 (3234164 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/wdbc.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. Neural Weights: 10
14. Neural Training Method: Genetic
15. BFGS Iteration: 2001
16. GN Chromosomes: 500
17. GN Max Generations: 200
18. GN Selection Rate: 0,10
19. GN Mutation Rate: 0,05
20. GN Local Search Rate: 0,00
21. GN Local Search Method: BFGS

@ Results: ===============================================================

** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[0]=12.6381656772 test[0]=2.314435 class[0]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[1]=12.6381656772 test[1]=2.314435 class[1]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[2]=12.6381656772 test[2]=2.314435 class[2]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[3]=12.6381656772 test[3]=2.314435 class[3]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[4]=12.6381656772 test[4]=2.314435 class[4]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[5]=12.6381656772 test[5]=2.314435 class[5]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[6]=12.6381656772 test[6]=2.314435 class[6]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[7]=12.6381656772 test[7]=2.314435 class[7]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[8]=12.6381656772 test[8]=2.314435 class[8]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[9]=12.6381656772 test[9]=2.314435 class[9]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[10]=12.6381656772 test[10]=2.314435 class[10]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[11]=12.6381656772 test[11]=2.314435 class[11]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[12]=12.6381656772 test[12]=2.314435 class[12]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[13]=12.6381656772 test[13]=2.314435 class[13]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[14]=12.6381656772 test[14]=2.314435 class[14]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[15]=12.6381656772 test[15]=2.314435 class[15]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[16]=12.6381656772 test[16]=2.314435 class[16]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[17]=12.6381656772 test[17]=2.314435 class[17]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[18]=12.6381656772 test[18]=2.314435 class[18]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[19]=12.6381656772 test[19]=2.314435 class[19]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[20]=12.6381656772 test[20]=2.314435 class[20]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[21]=12.6381656772 test[21]=2.314435 class[21]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[22]=12.6381656772 test[22]=2.314435 class[22]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[23]=12.6381656772 test[23]=2.314435 class[23]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[24]=12.6381656772 test[24]=2.314435 class[24]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[25]=12.6381656772 test[25]=2.314435 class[25]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[26]=12.6381656772 test[26]=2.314435 class[26]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[27]=12.6381656772 test[27]=2.314435 class[27]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[28]=12.6381656772 test[28]=2.314435 class[28]=5.263158%
** CONFUSION MATRIX ** Number of classes: 2
  19    1 
   2   35 
PRECISION          0.9384920635 RECALL:         0.9479729730
train[29]=12.6381656772 test[29]=2.314435 class[29]=5.263158%
=============================================================================
AVERAGES (TRAIN,TEST,CLASS):       12.638166       2.3144347       5.2631579%
AVERAGES (PRECISION,RECALL):      0.93849206      0.94797297
  
# Settings Tab: Advanced
# Run Date:     03/09/2025 16:15:23
# Run Time:     00:54:50 (3290500 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/wdbc.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. RBF Weights: 10
14. GE Chromosomes: 500
15. GE Max Generations: 200
16. GE Selection Rate: 0,10
17. GE Mutation Rate: 0,05
18. GE Length: 40
19. GE Local Search Generations: 20
20. GE Local Search Rate: 0,05
21. GE Local Search Method: Crossover
22. GE Method: Genetic

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -19.0007  Best program:
 f1(x)=(9.4/(-65.95))*x3
f2(x)=(x15-((-4.79)/(-3.321))*x29+51.5*x25+abs(x10+x21))

Iteration:  2  Best Fitness:  -17.165  Best program:
 f1(x)=(46.4*x8)
f2(x)=(x15-((-4.79)/(-3.321))*x29+51.5*x25+abs(x10+x21))

Iteration:  3  Best Fitness:  -16.5999  Best program:
 f1(x)=abs(log((265.95/2.4)*x27+((-170.366)/(-71.538))*x16+((-8.9)/(-3.65))*x8+x16))
f2(x)=(x15-((-4.79)/(-3.391))*x29+51.3*x25+abs(x10+x21))

Iteration:  4  Best Fitness:  -15.9128  Best program:
 f1(x)=abs(log((265.95/2.4)*x27+((-170.366)/(-71.538))*x16+((-8.9)/(-3.65))*x8+x16))
f2(x)=(x15-((-4.79)/(-4.891))*x29+51.9*x25+abs(x10+x21))

Iteration:  5  Best Fitness:  -15.7504  Best program:
 f1(x)=abs(log((265.95/2.4)*x27+((-170.366)/(-71.538))*x16+((-8.9)/(-3.65))*x8+x16))
f2(x)=(x15-((-4.79)/(-4.891))*x29+59.5*x25+abs(x10+x21))

Iteration:  6  Best Fitness:  -14.8172  Best program:
 f1(x)=abs(log((265.95/2.4)*x27+((-170.366)/(-71.538))*x16+((-8.9)/3.65)*x8+x16))
f2(x)=(x15-((-4.73)/1.321)*x29+51.5*x25+abs(x10+x21))

Iteration:  7  Best Fitness:  -14.6054  Best program:
 f1(x)=(665.7/(-61.582))*x7
f2(x)=(x15-((-4.70)/1.321)*x29+51.5*x25+abs(x10+x21))

Iteration:  8  Best Fitness:  -14.5642  Best program:
 f1(x)=(665.7/(-61.582))*x7
f2(x)=(x15-((-4.73)/1.321)*x29+51.5*x25+abs(x10+x21))

Iteration:  9  Best Fitness:  -14.5583  Best program:
 f1(x)=(665.7/(-61.562))*x7
f2(x)=(x15-((-4.73)/1.321)*x29+51.5*x25+abs(x30+x21))

Iteration:  10  Best Fitness:  -14.326  Best program:
 f1(x)=abs(log((265.96/244.2)*x2+x22+x11))
f2(x)=(x13-((-47.9)/5.891)*x29+51.5*x25+abs(x10+x21))

Iteration:  11  Best Fitness:  -12.8215  Best program:
 f1(x)=abs(log((265.96/244.2)*x2+x22+x11))
f2(x)=(x13-((-47.9)/4.891)*x29+51.5*x25+abs(x10+x21))

Iteration:  12  Best Fitness:  -12.8215  Best program:
 f1(x)=abs(log((265.96/244.2)*x2+x22+x11))
f2(x)=(x13-((-47.9)/4.891)*x29+51.5*x25+abs(x10+x21))

Iteration:  13  Best Fitness:  -12.5198  Best program:
 f1(x)=abs(log((235.95/274.215)*x22+x6))
f2(x)=(x13-((-47.9)/4.891)*x29+51.5*x25+abs(x10+x21))

Iteration:  14  Best Fitness:  -12.2842  Best program:
 f1(x)=abs(sqrt((0.776*x22)))
f2(x)=(x13-((-47.9)/4.896)*x29+51.5*x25+abs(x10+x21))

Iteration:  15  Best Fitness:  -12.202  Best program:
 f1(x)=abs(sqrt((0.776*x22)))
f2(x)=(x13-((-47.9)/4.891)*x29+61.5*x25+abs(x29+x21))

Iteration:  16  Best Fitness:  -12.202  Best program:
 f1(x)=abs(sqrt((0.776*x22)))
f2(x)=(x13-((-47.9)/4.891)*x29+61.5*x25+abs(x29+x21))

Iteration:  17  Best Fitness:  -12.202  Best program:
 f1(x)=abs(sqrt((0.776*x22)))
f2(x)=(x13-((-47.9)/4.891)*x29+61.5*x25+abs(x29+x21))

Iteration:  18  Best Fitness:  -12.202  Best program:
 f1(x)=abs(sqrt((0.776*x22)))
f2(x)=(x13-((-47.9)/4.891)*x29+61.5*x25+abs(x29+x21))

Iteration:  19  Best Fitness:  -12.1969  Best program:
 f1(x)=abs(sqrt((0.776*x22)))
f2(x)=(x13-((-47.3)/4.896)*x29+56.5*x25+abs(x8+x21))

Iteration:  20  Best Fitness:  -11.7345  Best program:
 f1(x)=abs(sqrt((2.718*x22)))
f2(x)=(x13-((-47.9)/4.891)*x29+61.5*x25+abs(x29+x21))

Iteration:  21  Best Fitness:  -11.7345  Best program:
 f1(x)=abs(sqrt((2.718*x22)))
f2(x)=(x13-((-47.9)/4.891)*x29+61.5*x25+abs(x29+x21))

Iteration:  22  Best Fitness:  -11.7345  Best program:
 f1(x)=abs(sqrt((2.718*x22)))
f2(x)=(x13-((-47.9)/4.891)*x29+61.5*x25+abs(x29+x21))

Iteration:  23  Best Fitness:  -11.7298  Best program:
 f1(x)=abs(sqrt((2.718*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  24  Best Fitness:  -11.7298  Best program:
 f1(x)=abs(sqrt((2.718*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  25  Best Fitness:  -11.7298  Best program:
 f1(x)=abs(sqrt((2.718*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  26  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  27  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  28  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  29  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  30  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  31  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  32  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  33  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  34  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  35  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  36  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  37  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  38  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  39  Best Fitness:  -11.7275  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  40  Best Fitness:  -11.7269  Best program:
 f1(x)=abs(sqrt((2.711*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.7*x25+abs(x29+x21))

Iteration:  41  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  42  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  43  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  44  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  45  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  46  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  47  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  48  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  49  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  50  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  51  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  52  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  53  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  54  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  55  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  56  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  57  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  58  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  59  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  60  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  61  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  62  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  63  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  64  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  65  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  66  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  67  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  68  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  69  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  70  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  71  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  72  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  73  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  74  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  75  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  76  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  77  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  78  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  79  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  80  Best Fitness:  -11.7214  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  81  Best Fitness:  -11.721  Best program:
 f1(x)=abs(sqrt((2.700*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21))

Iteration:  82  Best Fitness:  -11.5701  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21+((-9.72)/(-9.87))*x29+((-9.54)/(-318.246))*x22))

Iteration:  83  Best Fitness:  -11.5701  Best program:
 f1(x)=abs(sqrt((2.701*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21+((-9.72)/(-9.87))*x29+((-9.54)/(-318.246))*x22))

Iteration:  84  Best Fitness:  -11.5697  Best program:
 f1(x)=abs(sqrt((2.700*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21+((-9.72)/(-9.87))*x29+((-9.54)/(-318.246))*x22))

Iteration:  85  Best Fitness:  -11.5694  Best program:
 f1(x)=abs(sqrt((2.700*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21+((-9.72)/(-9.79))*x29+((-9.54)/(-318.046))*x22))

Iteration:  86  Best Fitness:  -11.5694  Best program:
 f1(x)=abs(sqrt((2.700*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21+((-9.72)/(-9.79))*x29+((-9.54)/(-318.046))*x22))

Iteration:  87  Best Fitness:  -11.5694  Best program:
 f1(x)=abs(sqrt((2.700*x22)))
f2(x)=(x13-((-47.9)/4.831)*x29+61.6*x25+abs(x29+x21+((-9.73)/(-9.79))*x29+((-9.54)/(-318.046))*x22))

Iteration:  88  Best Fitness:  -11.464  Best program:
 f1(x)=abs(sqrt((2.704*x22)))
f2(x)=(x13-((-47.9)/3.831)*x29+61.6*x25+abs(x29+x21+((-7.72)/(-9.87))*x29+((-9.53)/(-318.246))*x22))

Iteration:  89  Best Fitness:  -11.4367  Best program:
 f1(x)=abs(sqrt((2.700*x22)))
f2(x)=(x13-((-47.9)/3.831)*x29+61.6*x25+abs(x29+x21+((-7.72)/(-9.87))*x29+((-9.53)/(-318.246))*x22))

Iteration:  90  Best Fitness:  -11.4335  Best program:
 f1(x)=abs(sqrt((2.300*x22)))
f2(x)=(x13-((-47.9)/3.831)*x29+61.6*x25+abs(x29+x21+((-7.72)/(-9.87))*x29+((-9.53)/(-318.246))*x22))

Iteration:  91  Best Fitness:  -11.4029  Best program:
 f1(x)=abs(sqrt((2.700*x22)))
f2(x)=(x13-((-47.9)/3.831)*x29+51.6*x25+abs(x29+x21+((-7.72)/(-9.87))*x29+((-9.53)/(-318.245))*x22))

Iteration:  92  Best Fitness:  -11.3084  Best program:
 f1(x)=abs(sqrt((2.309*x22)))
f2(x)=(x13-((-47.9)/3.808)*x29+61.6*x25+abs(x29+x21+((-7.72)/(-9.87))*x29+((-9.53)/(-088.246))*x22))

Iteration:  93  Best Fitness:  -11.0606  Best program:
 f1(x)=abs(sqrt((2.309*x22)))
f2(x)=(x13-((-47.9)/4.808)*x29+61.6*x25+abs(x29+x21+((-9.72)/(-9.87))*x29+((-9.54)/(-088.246))*x22))

Iteration:  94  Best Fitness:  -10.716  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.806)*x29+61.6*x25+abs(x29+x21+((-7.72)/(-9.87))*x29+((-9.53)/(-068.246))*x22))

Iteration:  95  Best Fitness:  -10.2588  Best program:
 f1(x)=log(sqrt((527.119*x10)))
f2(x)=(x13-((-47.9)/3.806)*x29+61.6*x25+abs(x29+x21+((-7.72)/(-9.87))*x29+((-9.53)/(-068.246))*x22))

Iteration:  96  Best Fitness:  -9.61305  Best program:
 f1(x)=((-625.7)/(-911.227))*x10
f2(x)=(x13-((-47.9)/3.804)*x29+61.6*x25+abs(x29+x21+(7.55/(-9.87))*x29+((-9.53)/(-048.246))*x22))

Iteration:  97  Best Fitness:  -9.49524  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x29+x21+((-7.53)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  98  Best Fitness:  -9.49524  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x29+x21+((-7.53)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  99  Best Fitness:  -9.49524  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x29+x21+((-7.53)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  100  Best Fitness:  -9.49524  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x29+x21+((-7.53)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  101  Best Fitness:  -9.4952  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x29+x21+((-7.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  102  Best Fitness:  -9.46126  Best program:
 f1(x)=abs(sqrt((52.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x29+x21+((-7.55)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  103  Best Fitness:  -9.45925  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.4*x25+abs(x29+x21+((-7.65)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  104  Best Fitness:  -9.45925  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.4*x25+abs(x29+x21+((-7.65)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  105  Best Fitness:  -9.30867  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x27+x21+((-7.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  106  Best Fitness:  -9.30867  Best program:
 f1(x)=abs(sqrt((27.001*x8)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x27+x21+((-7.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  107  Best Fitness:  -9.24637  Best program:
 f1(x)=abs(log((573.002*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x27+x21+((-7.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  108  Best Fitness:  -9.24637  Best program:
 f1(x)=abs(log((573.002*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.2*x25+abs(x27+x21+((-7.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  109  Best Fitness:  -8.91461  Best program:
 f1(x)=abs(sin((523.017*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-7.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  110  Best Fitness:  -8.91461  Best program:
 f1(x)=abs(sin((523.017*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-7.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  111  Best Fitness:  -8.91461  Best program:
 f1(x)=abs(sin((523.017*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-7.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  112  Best Fitness:  -8.91461  Best program:
 f1(x)=abs(sin((523.017*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-7.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  113  Best Fitness:  -8.91455  Best program:
 f1(x)=abs(sin((523.019*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-7.52)/(-9.89))*x29+((-9.53)/(-048.245))*x22))

Iteration:  114  Best Fitness:  -8.91247  Best program:
 f1(x)=abs(sin((523.017*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-5.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  115  Best Fitness:  -8.91174  Best program:
 f1(x)=abs(sin((523.017*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  116  Best Fitness:  -8.91055  Best program:
 f1(x)=abs(sin(((-523.119)*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-5.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  117  Best Fitness:  -8.90959  Best program:
 f1(x)=abs(sin((523.119*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  118  Best Fitness:  -8.90613  Best program:
 f1(x)=abs(sin((523.816*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  119  Best Fitness:  -8.90461  Best program:
 f1(x)=abs(sin((523.907*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  120  Best Fitness:  -8.90461  Best program:
 f1(x)=abs(sin((523.907*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  121  Best Fitness:  -8.90461  Best program:
 f1(x)=abs(sin((523.907*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  122  Best Fitness:  -8.90461  Best program:
 f1(x)=abs(sin((523.907*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  123  Best Fitness:  -8.90461  Best program:
 f1(x)=abs(sin((523.907*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.87))*x29+((-9.53)/(-048.245))*x22))

Iteration:  124  Best Fitness:  -8.90337  Best program:
 f1(x)=abs(sin((523.41*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.045))*x22))

Iteration:  125  Best Fitness:  -8.90337  Best program:
 f1(x)=abs(sin((523.41*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.045))*x22))

Iteration:  126  Best Fitness:  -8.90337  Best program:
 f1(x)=abs(sin(((-523.407)*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.045))*x22))

Iteration:  127  Best Fitness:  -8.90337  Best program:
 f1(x)=abs(sin(((-523.407)*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.045))*x22))

Iteration:  128  Best Fitness:  -8.90337  Best program:
 f1(x)=abs(sin(((-523.407)*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.045))*x22))

Iteration:  129  Best Fitness:  -8.90337  Best program:
 f1(x)=abs(sin(((-523.407)*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.045))*x22))

Iteration:  130  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.045))*x22))

Iteration:  131  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.045))*x22))

Iteration:  132  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.87))*x29+((-9.53)/(-048.045))*x22))

Iteration:  133  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.53)/(-048.045))*x22))

Iteration:  134  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.53)/(-048.045))*x22))

Iteration:  135  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.53)/(-048.045))*x22))

Iteration:  136  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.53)/(-048.045))*x22))

Iteration:  137  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.53)/(-048.045))*x22))

Iteration:  138  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.53)/(-048.045))*x22))

Iteration:  139  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.53)/(-048.045))*x22))

Iteration:  140  Best Fitness:  -8.90336  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.53)/(-048.045))*x22))

Iteration:  141  Best Fitness:  -8.87456  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  142  Best Fitness:  -8.8707  Best program:
 f1(x)=abs(sin((523.202*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  143  Best Fitness:  -8.8707  Best program:
 f1(x)=abs(sin((523.202*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  144  Best Fitness:  -8.87031  Best program:
 f1(x)=abs(sin((523.100*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  145  Best Fitness:  -8.87021  Best program:
 f1(x)=abs(sin(((-523.102)*x10)))
f2(x)=(x13-((-47.9)/3.804)*x29+51.9*x25+abs(x27+x21+((-3.22)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  146  Best Fitness:  -8.86867  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-3.51)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  147  Best Fitness:  -8.86867  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-3.51)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  148  Best Fitness:  -8.86867  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-3.51)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  149  Best Fitness:  -8.86798  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-3.42)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  150  Best Fitness:  -8.86798  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-3.42)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  151  Best Fitness:  -8.86798  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-3.42)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  152  Best Fitness:  -8.86798  Best program:
 f1(x)=abs(sin((523.402*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-3.42)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  153  Best Fitness:  -8.85602  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  154  Best Fitness:  -8.85602  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  155  Best Fitness:  -8.85602  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  156  Best Fitness:  -8.85602  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  157  Best Fitness:  -8.85602  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  158  Best Fitness:  -8.85602  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  159  Best Fitness:  -8.85602  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  160  Best Fitness:  -8.856  Best program:
 f1(x)=abs(sin((523.107*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-1.52)/(-9.89))*x29+((-9.93)/(-048.045))*x22))

Iteration:  161  Best Fitness:  -8.85231  Best program:
 f1(x)=abs(sin(((-523.402)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.9*x25+abs(x27+x21+((-1.56)/(-9.81))*x29+((-9.93)/(-048.045))*x22))

Iteration:  162  Best Fitness:  -8.84697  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(3.42/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  163  Best Fitness:  -8.84697  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(3.42/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  164  Best Fitness:  -8.8248  Best program:
 f1(x)=abs(sin(((-523.106)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.42/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  165  Best Fitness:  -8.82478  Best program:
 f1(x)=abs(sin((523.107*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.42/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  166  Best Fitness:  -8.81941  Best program:
 f1(x)=abs(sin(((-523.806)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.42/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  167  Best Fitness:  -8.81941  Best program:
 f1(x)=abs(sin(((-523.806)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.42/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  168  Best Fitness:  -8.81914  Best program:
 f1(x)=abs(sin(((-523.806)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.42/(-9.81))*x29+((-9.93)/(-048.005))*x22))

Iteration:  169  Best Fitness:  -8.81896  Best program:
 f1(x)=abs(sin(((-523.806)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  170  Best Fitness:  -8.81896  Best program:
 f1(x)=abs(sin(((-523.806)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  171  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  172  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  173  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  174  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  175  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  176  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  177  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  178  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  179  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  180  Best Fitness:  -8.81895  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  181  Best Fitness:  -8.8189  Best program:
 f1(x)=abs(sin(((-523.802)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  182  Best Fitness:  -8.81889  Best program:
 f1(x)=abs(sin(((-523.702)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  183  Best Fitness:  -8.81888  Best program:
 f1(x)=abs(sin((523.732*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  184  Best Fitness:  -8.81888  Best program:
 f1(x)=abs(sin((523.732*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.52/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  185  Best Fitness:  -8.81884  Best program:
 f1(x)=abs(sin((523.732*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  186  Best Fitness:  -8.81884  Best program:
 f1(x)=abs(sin((523.732*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  187  Best Fitness:  -8.81884  Best program:
 f1(x)=abs(sin((523.732*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  188  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  189  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  190  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  191  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  192  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  193  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  194  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  195  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  196  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  197  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  198  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  199  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

Iteration:  200  Best Fitness:  -8.81883  Best program:
 f1(x)=abs(sin(((-523.739)*x10)))
f2(x)=(x13-((-47.9)/3.104)*x29+51.0*x25+abs(x27+x21+(7.53/(-9.89))*x29+((-9.93)/(-048.005))*x22))

** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[0]=9.8839521344 test[0]=2.927627 class[0]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[1]=8.8353828760 test[1]=3.163888 class[1]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[2]=8.8353828760 test[2]=3.163888 class[2]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[3]=8.8258745442 test[3]=3.089131 class[3]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[4]=9.6675959521 test[4]=3.049988 class[4]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[5]=9.7306803872 test[5]=3.026100 class[5]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[6]=8.8353828760 test[6]=3.163888 class[6]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[7]=8.8203257366 test[7]=3.137859 class[7]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[8]=8.8203257366 test[8]=3.137859 class[8]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[9]=8.8223797243 test[9]=3.124223 class[9]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[10]=8.8250463919 test[10]=3.098320 class[10]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[11]=8.8861775756 test[11]=3.117832 class[11]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[12]=8.8203257366 test[12]=3.137859 class[12]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[13]=8.9031442780 test[13]=3.155036 class[13]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[14]=8.8237981733 test[14]=3.141708 class[14]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[15]=9.7306803872 test[15]=3.026100 class[15]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[16]=8.8237981733 test[16]=3.141708 class[16]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[17]=9.8799238193 test[17]=3.042663 class[17]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[18]=9.8260182391 test[18]=2.749506 class[18]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[19]=8.8229698997 test[19]=3.128451 class[19]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[20]=9.6675959521 test[20]=3.049988 class[20]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[21]=8.8203257366 test[21]=3.137859 class[21]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[22]=8.8203257366 test[22]=3.137859 class[22]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[23]=9.8260182391 test[23]=2.749506 class[23]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[24]=8.8353828760 test[24]=3.163888 class[24]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[25]=9.6294389490 test[25]=2.791986 class[25]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[26]=8.8181161043 test[26]=3.106115 class[26]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[27]=8.8258745442 test[27]=3.089131 class[27]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[28]=8.8203257366 test[28]=3.137859 class[28]=7.017544%
** CONFUSION MATRIX ** Number of classes: 2
  18    1 
   3   35 
PRECISION          0.9146825397 RECALL:         0.9342105263
train[29]=9.6949042189 test[29]=2.960542 class[29]=7.017544%
=============================================================================
AVERAGES (TRAIN, TEST, CLASS):       9.1392491        3.068279       7.0175439%
AVERAGES (PRECISION, RECALL):      0.91468254      0.93421053
  
# Settings Tab: Advanced
# Run Date:     03/09/2025 18:41:17
# Run Time:     00:57:41 (3461274 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/wdbc.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. GE Chromosomes: 500
14. GE Max Generations: 200
15. GE Selection Rate: 0,10
16. GE Mutation Rate: 0,05
17. GE Length: 40
18. GE Local Search Generations: 20
19. GE Local Search Rate: 0,05
20. GE Local Search Method: Crossover
21. GE Method: Genetic
22. RBF Weights: 10
23. Neural Weights: 10
24. Neural Training Method: Genetic
25. BFGS Iteration: 2001
26. GN Chromosomes: 500
27. GN Max Generations: 200
28. GN Selection Rate: 0,10
29. GN Mutation Rate: 0,05
30. GN Local Search Rate: 0,00
31. GN Local Search Method: BFGS

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -20.0994  Best program:
 f1(x)=((-072.10)/(-892.868))*x13
f2(x)=(85.39*x8+(x29*(x13-((-6.6)*x24))))

Iteration:  2  Best Fitness:  -16.9829  Best program:
 f1(x)=(x25*((-85.26)*x24))
f2(x)=abs(x1+x3+((-1.739)/260.47)*x2)

Iteration:  3  Best Fitness:  -16.1823  Best program:
 f1(x)=(x25*((-85.26)*x24))
f2(x)=(85.39*x8+(x29*(x13-((-6.6)*x24))))

Iteration:  4  Best Fitness:  -13.7919  Best program:
 f1(x)=x23+x22+((-451.887)/(-5.6))*x29
f2(x)=(x21+((-59.5)*x7))

Iteration:  5  Best Fitness:  -13.7919  Best program:
 f1(x)=x23+x22+((-451.887)/(-5.6))*x29
f2(x)=(x21+((-59.5)*x7))

Iteration:  6  Best Fitness:  -12.9385  Best program:
 f1(x)=x23+x22+((-456.887)/(-5.6))*x29
f2(x)=((-117.006)*x28)

Iteration:  7  Best Fitness:  -12.5704  Best program:
 f1(x)=x23+x22+((-451.887)/(-5.6))*x29
f2(x)=((-134.004)*x28+(x1+((-1.793)/635.584)*x4))

Iteration:  8  Best Fitness:  -12.5704  Best program:
 f1(x)=x23+x22+((-451.887)/(-5.6))*x29
f2(x)=((-134.004)*x28+(x1+((-1.793)/635.584)*x4))

Iteration:  9  Best Fitness:  -12.1062  Best program:
 f1(x)=x23+x22+((-651.827)/(-5.6))*x29+((-888.07)/3.44)*x5+582.1*x5
f2(x)=((-117.006)*x28)

Iteration:  10  Best Fitness:  -12.1062  Best program:
 f1(x)=x23+x22+((-651.827)/(-5.6))*x29+((-888.07)/3.44)*x5+582.1*x5
f2(x)=((-117.006)*x28)

Iteration:  11  Best Fitness:  -11.3885  Best program:
 f1(x)=x23+x22+((-651.827)/(-9.6))*x29+((-888.07)/3.44)*x5+582.1*x5
f2(x)=((-117.006)*x28)

Iteration:  12  Best Fitness:  -11.3883  Best program:
 f1(x)=x23+x22+((-251.827)/(-3.7))*x29+((-888.09)/3.44)*x5+582.1*x5
f2(x)=((-117.006)*x28)

Iteration:  13  Best Fitness:  -11.2926  Best program:
 f1(x)=x23+x22+((-551.817)/(-5.6))*x29+((-881.07)/6.48)*x6+582.1*x5
f2(x)=((-117.006)*x28)

Iteration:  14  Best Fitness:  -11.0459  Best program:
 f1(x)=x23+x22+((-551.847)/(-9.6))*x29+((-888.07)/6.34)*x5+582.1*x5
f2(x)=((-1.740)*x11)

Iteration:  15  Best Fitness:  -11.0214  Best program:
 f1(x)=x23+x22+((-651.827)/(-9.6))*x29+((-888.07)/6.34)*x5+582.1*x5
f2(x)=((-1.740)*x11)

Iteration:  16  Best Fitness:  -10.2977  Best program:
 f1(x)=x23+x22+((-256.847)/(-9.6))*x29+((-888.0)/(-4.93))*x25+((-0.82)/4.32)*x26+x6+73.6*x7
f2(x)=((-1.740)*x11)

Iteration:  17  Best Fitness:  -10.2906  Best program:
 f1(x)=x23+x22+((-256.847)/(-9.6))*x29+((-888.0)/(-4.93))*x25+((-0.82)/4.32)*x26+x6+73.6*x7
f2(x)=((-1.740)*x19)

Iteration:  18  Best Fitness:  -9.43994  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.0)/(-4.93))*x25+((-0.82)/4.36)*x26+x6+73.6*x7
f2(x)=((-1.740)*x11)

Iteration:  19  Best Fitness:  -9.36583  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.4)/(-4.93))*x25+((-0.82)/4.36)*x26+x6+73.6*x7
f2(x)=((-1.740)*x19)

Iteration:  20  Best Fitness:  -9.08013  Best program:
 f1(x)=x23+x22+((-256.847)/(-2.6))*x29+((-888.0)/(-4.93))*x25+((-75.2)/4.32)*x26+x6+73.6*x7
f2(x)=((-1.7)*x15)

Iteration:  21  Best Fitness:  -8.97269  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.9)/(-4.93))*x25+((-75.2)/4.36)*x26+x6+73.6*x7
f2(x)=((-1.7)*x15)

Iteration:  22  Best Fitness:  -8.92298  Best program:
 f1(x)=x23+x22+((-256.847)/(-2.6))*x29+((-888.0)/(-4.23))*x25+((-75.2)/4.32)*x26+x6+73.7*x7
f2(x)=((-1.7)*x15)

Iteration:  23  Best Fitness:  -8.67985  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.0)/(-4.23))*x25+((-75.2)/4.36)*x26+x6+73.6*x7
f2(x)=((-1.7)*x15)

Iteration:  24  Best Fitness:  -8.29583  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.9)/(-2.93))*x25+((-75.2)/4.36)*x26+x6+73.9*x7
f2(x)=((-1.7)*x15)

Iteration:  25  Best Fitness:  -8.29471  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.9)/(-2.93))*x25+((-75.2)/4.36)*x26+x6+77.6*x7
f2(x)=((-1.7)*x15)

Iteration:  26  Best Fitness:  -8.29054  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.9)/(-2.93))*x25+((-75.2)/4.36)*x26+x6+93.9*x7
f2(x)=((-1.7)*x15)

Iteration:  27  Best Fitness:  -8.27666  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.9)/(-2.93))*x25+((-75.2)/4.36)*x26+x9+77.6*x7
f2(x)=((-1.7)*x15)

Iteration:  28  Best Fitness:  -8.26604  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.9)/(-2.93))*x25+((-75.2)/4.36)*x26+x12+73.9*x7
f2(x)=(1.7*x15)

Iteration:  29  Best Fitness:  -8.26389  Best program:
 f1(x)=x23+x22+((-656.847)/(-9.6))*x29+((-888.4)/(-2.93))*x25+((-75.2)/4.36)*x26+x12+77.6*x7
f2(x)=((-1.7)*x15)

Iteration:  30  Best Fitness:  -8.25099  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-888.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x12+77.6*x7
f2(x)=((-1.7)*x15)

Iteration:  31  Best Fitness:  -8.25099  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-888.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x12+77.6*x7
f2(x)=((-3.7)*x15)

Iteration:  32  Best Fitness:  -8.24977  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x12+93.9*x7
f2(x)=(1.7*x15)

Iteration:  33  Best Fitness:  -8.24976  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x12+93.9*x7
f2(x)=(1.746*x19)

Iteration:  34  Best Fitness:  -8.23768  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-848.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x12+93.9*x7
f2(x)=((-1.7)*x15)

Iteration:  35  Best Fitness:  -8.23025  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(1.7*x15)

Iteration:  36  Best Fitness:  -8.23025  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(1.7*x15)

Iteration:  37  Best Fitness:  -8.22954  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(1.74*x7)

Iteration:  38  Best Fitness:  -8.22954  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(1.74*x7)

Iteration:  39  Best Fitness:  -8.22954  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(1.74*x7)

Iteration:  40  Best Fitness:  -8.22741  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(3.74*x7)

Iteration:  41  Best Fitness:  -8.22328  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(16.46*x19)

Iteration:  42  Best Fitness:  -8.22328  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(16.46*x19)

Iteration:  43  Best Fitness:  -8.22003  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(2.74*x27)

Iteration:  44  Best Fitness:  -8.22003  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(2.74*x27)

Iteration:  45  Best Fitness:  -8.21572  Best program:
 f1(x)=x23+x22+((-556.847)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(26.46*x19)

Iteration:  46  Best Fitness:  -8.21572  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(26.46*x19)

Iteration:  47  Best Fitness:  -8.21493  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.6*x7
f2(x)=(4.74*x27)

Iteration:  48  Best Fitness:  -8.2145  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.46*x19)

Iteration:  49  Best Fitness:  -8.2145  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.46*x19)

Iteration:  50  Best Fitness:  -8.2145  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.46*x19)

Iteration:  51  Best Fitness:  -8.2145  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.46*x19)

Iteration:  52  Best Fitness:  -8.21448  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  53  Best Fitness:  -8.21448  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  54  Best Fitness:  -8.21448  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  55  Best Fitness:  -8.21448  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  56  Best Fitness:  -8.21448  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  57  Best Fitness:  -8.21448  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  58  Best Fitness:  -8.21448  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  59  Best Fitness:  -8.21448  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  60  Best Fitness:  -8.21448  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-848.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  61  Best Fitness:  -8.21422  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  62  Best Fitness:  -8.21422  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.49*x19)

Iteration:  63  Best Fitness:  -8.214  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(28.89*x19)

Iteration:  64  Best Fitness:  -8.20927  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(23.89*x19*(-00.936)*x26+((-263.8)/187.473)*x26)

Iteration:  65  Best Fitness:  -8.20927  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(23.89*x19*(-00.936)*x26+((-263.8)/187.473)*x26)

Iteration:  66  Best Fitness:  -8.20927  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(23.89*x19*(-00.936)*x26+((-263.8)/187.473)*x26)

Iteration:  67  Best Fitness:  -8.20927  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(23.89*x19*(-00.936)*x26+((-263.8)/187.473)*x26)

Iteration:  68  Best Fitness:  -8.20835  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(23.89*x19*(-00.936)*x26+((-273.8)/187.473)*x26)

Iteration:  69  Best Fitness:  -8.2079  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(23.89*x19*(-00.936)*x26+((-263.8)/177.473)*x26)

Iteration:  70  Best Fitness:  -8.2079  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(23.89*x19*(-00.936)*x26+((-263.8)/177.473)*x26)

Iteration:  71  Best Fitness:  -8.18633  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(23.89*x19*(-05.936)*x26+((-205.865)/(-784.35))*x26)

Iteration:  72  Best Fitness:  -8.17101  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(25.89*x19*(-00.936)*x26+((-673.8)/184.473)*x26)

Iteration:  73  Best Fitness:  -8.17101  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(25.89*x19*(-00.936)*x26+((-673.8)/184.473)*x26)

Iteration:  74  Best Fitness:  -8.17101  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x15+93.1*x7
f2(x)=(25.89*x19*(-00.936)*x26+((-673.8)/184.473)*x26)

Iteration:  75  Best Fitness:  -8.16956  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.7)/(-2.74))*x25+((-75.2)/4.35)*x26+x9+93.5*x7
f2(x)=(23.89*x19*(-01.936)*x26+((-273.8)/087.473)*x26)

Iteration:  76  Best Fitness:  -8.16445  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(23.89*x19*(-01.936)*x26+((-673.8)/184.473)*x26)

Iteration:  77  Best Fitness:  -8.16445  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(23.89*x19*(-01.936)*x26+((-673.8)/184.473)*x26)

Iteration:  78  Best Fitness:  -8.16217  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(23.89*x19*(-01.936)*x26+((-673.8)/184.473)*x26)

Iteration:  79  Best Fitness:  -8.16131  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.936)*x26+((-273.8)/087.473)*x26)

Iteration:  80  Best Fitness:  -8.16131  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-849.9)/(-2.93))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.936)*x26+((-273.8)/087.473)*x26)

Iteration:  81  Best Fitness:  -8.16125  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(23.82*x19*(-01.936)*x26+((-673.8)/174.473)*x26)

Iteration:  82  Best Fitness:  -8.16125  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(23.82*x19*(-01.936)*x26+((-673.8)/174.473)*x26)

Iteration:  83  Best Fitness:  -8.16125  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(23.82*x19*(-01.936)*x26+((-673.8)/174.473)*x26)

Iteration:  84  Best Fitness:  -8.16125  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(23.82*x19*(-01.936)*x26+((-673.8)/174.473)*x26)

Iteration:  85  Best Fitness:  -8.16125  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(23.82*x19*(-01.936)*x26+((-673.8)/174.473)*x26)

Iteration:  86  Best Fitness:  -8.16105  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.936)*x26+((-673.8)/174.473)*x26)

Iteration:  87  Best Fitness:  -8.16105  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.936)*x26+((-673.8)/174.473)*x26)

Iteration:  88  Best Fitness:  -8.16098  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.936)*x26+((-655.4)/176.473)*x26)

Iteration:  89  Best Fitness:  -8.16096  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.936)*x26+((-663.8)/177.473)*x26)

Iteration:  90  Best Fitness:  -8.16096  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.936)*x26+((-655.8)/174.473)*x26)

Iteration:  91  Best Fitness:  -8.16096  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.936)*x26+((-655.8)/174.473)*x26)

Iteration:  92  Best Fitness:  -8.16091  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/174.473)*x26)

Iteration:  93  Best Fitness:  -8.16091  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/174.473)*x26)

Iteration:  94  Best Fitness:  -8.16091  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-663.8)/177.473)*x26)

Iteration:  95  Best Fitness:  -8.16091  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-663.8)/177.473)*x26)

Iteration:  96  Best Fitness:  -8.16091  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-663.8)/177.473)*x26)

Iteration:  97  Best Fitness:  -8.16091  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-663.8)/177.473)*x26)

Iteration:  98  Best Fitness:  -8.16091  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.967)*x26+((-655.4)/176.173)*x26)

Iteration:  99  Best Fitness:  -8.16091  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.967)*x26+((-655.8)/176.173)*x26)

Iteration:  100  Best Fitness:  -8.1609  Best program:
 f1(x)=x23+x22+((-556.867)/(-9.6))*x29+((-897.4)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-663.8)/177.473)*x26)

Iteration:  101  Best Fitness:  -8.15854  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/184.473)*x26)

Iteration:  102  Best Fitness:  -8.15854  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/184.473)*x26)

Iteration:  103  Best Fitness:  -8.15809  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/174.473)*x26)

Iteration:  104  Best Fitness:  -8.15809  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/174.473)*x26)

Iteration:  105  Best Fitness:  -8.15809  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/174.473)*x26)

Iteration:  106  Best Fitness:  -8.15809  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/174.473)*x26)

Iteration:  107  Best Fitness:  -8.15809  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/174.473)*x26)

Iteration:  108  Best Fitness:  -8.15809  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/174.473)*x26)

Iteration:  109  Best Fitness:  -8.15809  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-653.4)/174.473)*x26)

Iteration:  110  Best Fitness:  -8.15808  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.967)*x26+((-658.4)/174.573)*x26)

Iteration:  111  Best Fitness:  -8.15808  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.967)*x26+((-658.4)/174.573)*x26)

Iteration:  112  Best Fitness:  -8.15808  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-668.8)/177.473)*x26)

Iteration:  113  Best Fitness:  -8.15808  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-658.4)/174.573)*x26)

Iteration:  114  Best Fitness:  -8.15808  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-665.4)/176.453)*x26)

Iteration:  115  Best Fitness:  -8.15808  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.966)*x26+((-665.4)/176.453)*x26)

Iteration:  116  Best Fitness:  -8.15807  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.39*x19*(-01.966)*x26+((-668.8)/177.473)*x26)

Iteration:  117  Best Fitness:  -8.15806  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.39*x19*(-01.966)*x26+((-668.4)/176.173)*x26)

Iteration:  118  Best Fitness:  -8.15806  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.39*x19*(-01.966)*x26+((-668.4)/176.173)*x26)

Iteration:  119  Best Fitness:  -8.15806  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.39*x19*(-01.966)*x26+((-668.4)/176.173)*x26)

Iteration:  120  Best Fitness:  -8.15805  Best program:
 f1(x)=x23+x22+((-550.827)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.573)*x26)

Iteration:  121  Best Fitness:  -8.15805  Best program:
 f1(x)=x23+x22+((-550.865)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.573)*x26)

Iteration:  122  Best Fitness:  -8.15805  Best program:
 f1(x)=x23+x22+((-550.865)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.573)*x26)

Iteration:  123  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.403)*x26)

Iteration:  124  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.7)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.403)*x26)

Iteration:  125  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.865)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.373)*x26)

Iteration:  126  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.173)*x26)

Iteration:  127  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.173)*x26)

Iteration:  128  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.173)*x26)

Iteration:  129  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.173)*x26)

Iteration:  130  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.173)*x26)

Iteration:  131  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.173)*x26)

Iteration:  132  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.173)*x26)

Iteration:  133  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.173)*x26)

Iteration:  134  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.4)/174.173)*x26)

Iteration:  135  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.865)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.7)/174.173)*x26)

Iteration:  136  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.865)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.7)/174.173)*x26)

Iteration:  137  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.7)/174.173)*x26)

Iteration:  138  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.7)/174.173)*x26)

Iteration:  139  Best Fitness:  -8.15804  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-678.7)/174.173)*x26)

Iteration:  140  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-679.8)/174.173)*x26)

Iteration:  141  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-679.8)/174.173)*x26)

Iteration:  142  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-679.8)/174.173)*x26)

Iteration:  143  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-679.8)/174.173)*x26)

Iteration:  144  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.765)*x26+((-679.8)/174.173)*x26)

Iteration:  145  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  146  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  147  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  148  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  149  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  150  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  151  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  152  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  153  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  154  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  155  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  156  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  157  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  158  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  159  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.173)*x26)

Iteration:  160  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.113)*x26)

Iteration:  161  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.113)*x26)

Iteration:  162  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  163  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  164  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  165  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  166  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  167  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  168  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  169  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  170  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  171  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  172  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  173  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  174  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  175  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  176  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  177  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  178  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  179  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  180  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.8)/174.103)*x26)

Iteration:  181  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  182  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  183  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  184  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  185  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  186  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  187  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  188  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  189  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  190  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  191  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  192  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  193  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  194  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  195  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  196  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  197  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  198  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  199  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

Iteration:  200  Best Fitness:  -8.15803  Best program:
 f1(x)=x23+x22+((-550.867)/(-9.6))*x29+((-897.9)/(-2.94))*x25+((-75.2)/4.35)*x26+x9+93.1*x7
f2(x)=(25.89*x19*(-01.767)*x26+((-679.9)/174.103)*x26)

** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[0]=21.3790622691 test[0]=3.680159 class[0]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[1]=21.3790622691 test[1]=3.680159 class[1]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[2]=21.3790622691 test[2]=3.680159 class[2]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[3]=21.3790622691 test[3]=3.680159 class[3]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[4]=21.3790622691 test[4]=3.680159 class[4]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[5]=21.3790622691 test[5]=3.680159 class[5]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[6]=21.3790622691 test[6]=3.680159 class[6]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[7]=21.3790622691 test[7]=3.680159 class[7]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[8]=21.3790622691 test[8]=3.680159 class[8]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[9]=21.3790622691 test[9]=3.680159 class[9]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[10]=21.3790622691 test[10]=3.680159 class[10]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[11]=21.3790622691 test[11]=3.680159 class[11]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[12]=21.3790622691 test[12]=3.680159 class[12]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[13]=21.3790622691 test[13]=3.680159 class[13]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[14]=21.3790622691 test[14]=3.680159 class[14]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[15]=21.3790622691 test[15]=3.680159 class[15]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[16]=21.3790622691 test[16]=3.680159 class[16]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[17]=21.3790622691 test[17]=3.680159 class[17]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[18]=21.3790622691 test[18]=3.680159 class[18]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[19]=21.3790622691 test[19]=3.680159 class[19]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[20]=21.3790622691 test[20]=3.680159 class[20]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[21]=21.3790622691 test[21]=3.680159 class[21]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[22]=21.3790622691 test[22]=3.680159 class[22]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[23]=21.3790622691 test[23]=3.680159 class[23]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[24]=21.3790622691 test[24]=3.680159 class[24]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[25]=21.3790622691 test[25]=3.680159 class[25]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[26]=21.3790622691 test[26]=3.680159 class[26]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[27]=21.3790622691 test[27]=3.680159 class[27]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[28]=21.3790622691 test[28]=3.680159 class[28]=3.508772%
** CONFUSION MATRIX ** Number of classes: 2
  19    0 
   2   36 
PRECISION          0.9523809524 RECALL:         0.9736842105
train[29]=21.3790622691 test[29]=3.680159 class[29]=3.508772%
=============================================================================
AVERAGES (TRAIN, TEST, CLASS):       21.379062       3.6801595       3.5087719%
AVERAGES (PRECISION, RECALL):      0.95238095      0.97368421
  

📊 Heart dataset

# Settings Tab: Advanced
# Run Date:     04/09/2025 18:05:16
# Run Time:     00:00:00 (590 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/heart.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. RBF Weights: 10

@ Results: ===============================================================

** CONFUSION MATRIX ** Number of classes: 2
   8    3 
   4   12 
PRECISION          0.7333333333 RECALL:         0.7386363636
train[0]=45.1098941739 test[0]=5.145636 class[0]=25.925926%
** CONFUSION MATRIX ** Number of classes: 2
   7    3 
   5   12 
PRECISION          0.6916666667 RECALL:         0.7029411765
train[1]=44.1930556513 test[1]=5.056525 class[1]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
  10    3 
   2   12 
PRECISION          0.8166666667 RECALL:         0.8131868132
train[2]=46.3813658493 test[2]=4.916375 class[2]=18.518519%
** CONFUSION MATRIX ** Number of classes: 2
   6    4 
   6   11 
PRECISION          0.6166666667 RECALL:         0.6235294118
train[3]=46.1154658874 test[3]=5.482175 class[3]=37.037037%
** CONFUSION MATRIX ** Number of classes: 2
   6    4 
   6   11 
PRECISION          0.6166666667 RECALL:         0.6235294118
train[4]=46.4527485070 test[4]=5.612704 class[4]=37.037037%
** CONFUSION MATRIX ** Number of classes: 2
   7    4 
   5   11 
PRECISION          0.6583333333 RECALL:         0.6619318182
train[5]=45.0898788502 test[5]=5.110384 class[5]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   7    3 
   5   12 
PRECISION          0.6916666667 RECALL:         0.7029411765
train[6]=44.4375935412 test[6]=4.956903 class[6]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   7    2 
   5   13 
PRECISION          0.7250000000 RECALL:         0.7500000000
train[7]=44.5854903878 test[7]=4.938638 class[7]=25.925926%
** CONFUSION MATRIX ** Number of classes: 2
   6    3 
   6   12 
PRECISION          0.6500000000 RECALL:         0.6666666667
train[8]=44.9847418741 test[8]=5.087949 class[8]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   7    4 
   5   11 
PRECISION          0.6583333333 RECALL:         0.6619318182
train[9]=44.9706619339 test[9]=5.020150 class[9]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   8    4 
   4   11 
PRECISION          0.7000000000 RECALL:         0.7000000000
train[10]=45.9207763507 test[10]=5.443337 class[10]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   6    3 
   6   12 
PRECISION          0.6500000000 RECALL:         0.6666666667
train[11]=44.1556460027 test[11]=5.011034 class[11]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[12]=45.7059454419 test[12]=5.350810 class[12]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   7    3 
   5   12 
PRECISION          0.6916666667 RECALL:         0.7029411765
train[13]=44.0573882640 test[13]=5.068122 class[13]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   6    3 
   6   12 
PRECISION          0.6500000000 RECALL:         0.6666666667
train[14]=44.1384380001 test[14]=5.292698 class[14]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   8    3 
   4   12 
PRECISION          0.7333333333 RECALL:         0.7386363636
train[15]=45.2939429062 test[15]=4.967693 class[15]=25.925926%
** CONFUSION MATRIX ** Number of classes: 2
   7    3 
   5   12 
PRECISION          0.6916666667 RECALL:         0.7029411765
train[16]=45.3946497630 test[16]=5.340496 class[16]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   7    3 
   5   12 
PRECISION          0.6916666667 RECALL:         0.7029411765
train[17]=44.6406110416 test[17]=5.033041 class[17]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   6    4 
   6   11 
PRECISION          0.6166666667 RECALL:         0.6235294118
train[18]=45.9389337583 test[18]=5.319131 class[18]=37.037037%
** CONFUSION MATRIX ** Number of classes: 2
   9    4 
   3   11 
PRECISION          0.7416666667 RECALL:         0.7390109890
train[19]=46.0294805917 test[19]=5.216264 class[19]=25.925926%
** CONFUSION MATRIX ** Number of classes: 2
   7    4 
   5   11 
PRECISION          0.6583333333 RECALL:         0.6619318182
train[20]=44.3158938112 test[20]=4.998159 class[20]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   6    3 
   6   12 
PRECISION          0.6500000000 RECALL:         0.6666666667
train[21]=44.2898341765 test[21]=4.987968 class[21]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   7    5 
   5   10 
PRECISION          0.6250000000 RECALL:         0.6250000000
train[22]=45.4562967789 test[22]=5.355562 class[22]=37.037037%
** CONFUSION MATRIX ** Number of classes: 2
   7    3 
   5   12 
PRECISION          0.6916666667 RECALL:         0.7029411765
train[23]=45.1929998749 test[23]=5.389578 class[23]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   6    3 
   6   12 
PRECISION          0.6500000000 RECALL:         0.6666666667
train[24]=44.2681806636 test[24]=5.145677 class[24]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   7    3 
   5   12 
PRECISION          0.6916666667 RECALL:         0.7029411765
train[25]=44.6052267531 test[25]=4.845154 class[25]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   6    3 
   6   12 
PRECISION          0.6500000000 RECALL:         0.6666666667
train[26]=44.5083588819 test[26]=5.367579 class[26]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   7    3 
   5   12 
PRECISION          0.6916666667 RECALL:         0.7029411765
train[27]=44.3002632530 test[27]=5.112136 class[27]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   6    3 
   6   12 
PRECISION          0.6500000000 RECALL:         0.6666666667
train[28]=44.1420848908 test[28]=5.057046 class[28]=33.333333%
** CONFUSION MATRIX ** Number of classes: 2
   7    4 
   5   11 
PRECISION          0.6583333333 RECALL:         0.6619318182
train[29]=45.4732807052 test[29]=5.185210 class[29]=33.333333%
=============================================================================
AVERAGES (TRAIN,TEST,CLASS):       45.004971       5.1604712       30.864198%
AVERAGES (PRECISION,RECALL):      0.68055556       0.6895994
  
# Settings Tab: Advanced
# Run Date:     04/09/2025 18:08:14
# Run Time:     00:16:01 (961806 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/heart.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. Neural Weights: 10
14. Neural Training Method: Genetic
15. BFGS Iteration: 2001
16. GN Chromosomes: 500
17. GN Max Generations: 200
18. GN Selection Rate: 0,10
19. GN Mutation Rate: 0,05
20. GN Local Search Rate: 0,00
21. GN Local Search Method: BFGS

@ Results: ===============================================================

** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[0]=25.2026607333 test[0]=2.789474 class[0]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[1]=25.2026607333 test[1]=2.789474 class[1]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[2]=25.2026607333 test[2]=2.789474 class[2]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[3]=25.2026607333 test[3]=2.789474 class[3]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[4]=25.2026607333 test[4]=2.789474 class[4]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[5]=25.2026607333 test[5]=2.789474 class[5]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[6]=25.2026607333 test[6]=2.789474 class[6]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[7]=25.2026607333 test[7]=2.789474 class[7]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[8]=25.2026607333 test[8]=2.789474 class[8]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[9]=25.2026607333 test[9]=2.789474 class[9]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[10]=25.2026607333 test[10]=2.789474 class[10]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[11]=25.2026607333 test[11]=2.789474 class[11]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[12]=25.2026607333 test[12]=2.789474 class[12]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[13]=25.2026607333 test[13]=2.789474 class[13]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[14]=25.2026607333 test[14]=2.789474 class[14]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[15]=25.2026607333 test[15]=2.789474 class[15]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[16]=25.2026607333 test[16]=2.789474 class[16]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[17]=25.2026607333 test[17]=2.789474 class[17]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[18]=25.2026607333 test[18]=2.789474 class[18]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[19]=25.2026607333 test[19]=2.789474 class[19]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[20]=25.2026607333 test[20]=2.789474 class[20]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[21]=25.2026607333 test[21]=2.789474 class[21]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[22]=25.2026607333 test[22]=2.789474 class[22]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[23]=25.2026607333 test[23]=2.789474 class[23]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[24]=25.2026607333 test[24]=2.789474 class[24]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[25]=25.2026607333 test[25]=2.789474 class[25]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[26]=25.2026607333 test[26]=2.789474 class[26]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[27]=25.2026607333 test[27]=2.789474 class[27]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[28]=25.2026607333 test[28]=2.789474 class[28]=11.111111%
** CONFUSION MATRIX ** Number of classes: 2
  10    1 
   2   14 
PRECISION          0.8833333333 RECALL:         0.8920454545
train[29]=25.2026607333 test[29]=2.789474 class[29]=11.111111%
=============================================================================
AVERAGES (TRAIN,TEST,CLASS):       25.202661       2.7894739       11.111111%
AVERAGES (PRECISION,RECALL):      0.88333333      0.89204545
  
# Settings Tab: Advanced
# Run Date:     04/09/2025 21:00:45
# Run Time:     00:22:28 (1348413 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/heart.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. GE Chromosomes: 500
14. GE Max Generations: 200
15. GE Selection Rate: 0,10
16. GE Mutation Rate: 0,05
17. GE Length: 40
18. GE Local Search Generations: 20
19. GE Local Search Rate: 0,05
20. GE Local Search Method: Crossover
21. GE Method: Genetic
22. RBF Weights: 10

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -37.3649  Best program:
 f1(x)=((-15.989)*x13*x12)
f2(x)=02.94*x10+(-4.314)*x3+x9+x6

Iteration:  2  Best Fitness:  -35.1017  Best program:
 f1(x)=(-815.483)*x13
f2(x)=(58.14*x3*abs(((-5.4)*x7-(x12+3.86*x3))))

Iteration:  3  Best Fitness:  -32.3135  Best program:
 f1(x)=(x9+x11+75.1*x12)
f2(x)=67.2*x3+(963.088/14.24)*x2+x7+39.996*x9+(0.67/236.963)*x5+(08.4/4.138)*x11

Iteration:  4  Best Fitness:  -29.9344  Best program:
 f1(x)=abs((34.7*x3*(x8-((-854.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  5  Best Fitness:  -29.6172  Best program:
 f1(x)=abs((34.7*x3*(x8-((-804.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  6  Best Fitness:  -28.6181  Best program:
 f1(x)=(x9+x10+75.1*x12)
f2(x)=(-67.2)*x3+(963.086/(-32.39))*x13+x1+((-42.28)/507.1)*x9+x9

Iteration:  7  Best Fitness:  -27.4231  Best program:
 f1(x)=abs(((-34.5)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  8  Best Fitness:  -27.4021  Best program:
 f1(x)=abs(((-34.5)*x3*(x4-((-854.77)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  9  Best Fitness:  -26.4306  Best program:
 f1(x)=abs(((-44.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  10  Best Fitness:  -26.4306  Best program:
 f1(x)=abs(((-44.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  11  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  12  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  13  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  14  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  15  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  16  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  17  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  18  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  19  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  20  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  21  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  22  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  23  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  24  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  25  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  26  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  27  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  28  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  29  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  30  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  31  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  32  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  33  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  34  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  35  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  36  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  37  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  38  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  39  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  40  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  41  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  42  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  43  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  44  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  45  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  46  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  47  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  48  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  49  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  50  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  51  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  52  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  53  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  54  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  55  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  56  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  57  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  58  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  59  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  60  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  61  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  62  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  63  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  64  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  65  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  66  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  67  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  68  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  69  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  70  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  71  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  72  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  73  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  74  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  75  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  76  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  77  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  78  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  79  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  80  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  81  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  82  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  83  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  84  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  85  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  86  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  87  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  88  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  89  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  90  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  91  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  92  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  93  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  94  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  95  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  96  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  97  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  98  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  99  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  100  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  101  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  102  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  103  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  104  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  105  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  106  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  107  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  108  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  109  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  110  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  111  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  112  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  113  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  114  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  115  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  116  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  117  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  118  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  119  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  120  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  121  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  122  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  123  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  124  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  125  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  126  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  127  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  128  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  129  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  130  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  131  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  132  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  133  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  134  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  135  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  136  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  137  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  138  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  139  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  140  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  141  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  142  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  143  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  144  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  145  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  146  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  147  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  148  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  149  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  150  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  151  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  152  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  153  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  154  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  155  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  156  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  157  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  158  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  159  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  160  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  161  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  162  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  163  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  164  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  165  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  166  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  167  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  168  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  169  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  170  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  171  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  172  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  173  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  174  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  175  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  176  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  177  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  178  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  179  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  180  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  181  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  182  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  183  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  184  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  185  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  186  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  187  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  188  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  189  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  190  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  191  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  192  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  193  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  194  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  195  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  196  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  197  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  198  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  199  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  200  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   4   14 
PRECISION          0.8000000000 RECALL:         0.8333333333
train[0]=31.6013777467 test[0]=4.537580 class[0]=18.518519%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   4   14 
PRECISION          0.8000000000 RECALL:         0.8333333333
train[1]=31.7807179355 test[1]=4.688846 class[1]=18.518519%
** CONFUSION MATRIX ** Number of classes: 2
   9    1 
   3   14 
PRECISION          0.8416666667 RECALL:         0.8617647059
train[2]=31.1155729828 test[2]=4.627102 class[2]=14.814815%
** CONFUSION MATRIX ** Number of classes: 2
   7    3 
   5   12 
PRECISION          0.6916666667 RECALL:         0.7029411765
train[3]=34.6021031792 test[3]=6.460408 class[3]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   9    2 
   3   13 
PRECISION          0.8083333333 RECALL:         0.8153409091
train[4]=27.8744638882 test[4]=3.767803 class[4]=18.518519%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[5]=26.9855421589 test[5]=3.738533 class[5]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[6]=30.2383367188 test[6]=4.572193 class[6]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[7]=31.4997492814 test[7]=4.856934 class[7]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   7    2 
   5   13 
PRECISION          0.7250000000 RECALL:         0.7500000000
train[8]=31.2608434500 test[8]=4.950515 class[8]=25.925926%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[9]=26.6227227340 test[9]=3.801555 class[9]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    1 
   3   14 
PRECISION          0.8416666667 RECALL:         0.8617647059
train[10]=31.6214569507 test[10]=4.574447 class[10]=14.814815%
** CONFUSION MATRIX ** Number of classes: 2
   6    2 
   6   13 
PRECISION          0.6833333333 RECALL:         0.7171052632
train[11]=56.1461887442 test[11]=8.852024 class[11]=29.629630%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[12]=31.7412718907 test[12]=4.861070 class[12]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[13]=26.6556084794 test[13]=3.872114 class[13]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   7    1 
   5   14 
PRECISION          0.7583333333 RECALL:         0.8059210526
train[14]=33.5617851851 test[14]=4.879140 class[14]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[15]=26.7556611332 test[15]=3.912199 class[15]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[16]=26.6556040526 test[16]=3.872439 class[16]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    1 
   3   14 
PRECISION          0.8416666667 RECALL:         0.8617647059
train[17]=31.1155729828 test[17]=4.627102 class[17]=14.814815%
** CONFUSION MATRIX ** Number of classes: 2
   9    1 
   3   14 
PRECISION          0.8416666667 RECALL:         0.8617647059
train[18]=28.6434228377 test[18]=3.814055 class[18]=14.814815%
** CONFUSION MATRIX ** Number of classes: 2
   9    2 
   3   13 
PRECISION          0.8083333333 RECALL:         0.8153409091
train[19]=27.7929607004 test[19]=4.342120 class[19]=18.518519%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[20]=26.6617713422 test[20]=3.876597 class[20]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[21]=32.0059615919 test[21]=5.000233 class[21]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   7    2 
   5   13 
PRECISION          0.7250000000 RECALL:         0.7500000000
train[22]=30.0584182638 test[22]=4.374390 class[22]=25.925926%
** CONFUSION MATRIX ** Number of classes: 2
   2    0 
  10   15 
PRECISION          0.5833333333 RECALL:         0.8000000000
train[23]=8226.5392034721 test[23]=979.474163 class[23]=37.037037%
** CONFUSION MATRIX ** Number of classes: 2
   7    2 
   5   13 
PRECISION          0.7250000000 RECALL:         0.7500000000
train[24]=31.2608434501 test[24]=4.950516 class[24]=25.925926%
** CONFUSION MATRIX ** Number of classes: 2
   9    1 
   3   14 
PRECISION          0.8416666667 RECALL:         0.8617647059
train[25]=31.1155729828 test[25]=4.627102 class[25]=14.814815%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[26]=33.8657187939 test[26]=4.991984 class[26]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    2 
   3   13 
PRECISION          0.8083333333 RECALL:         0.8153409091
train[27]=31.7049891897 test[27]=4.644567 class[27]=18.518519%
** CONFUSION MATRIX ** Number of classes: 2
   9    2 
   3   13 
PRECISION          0.8083333333 RECALL:         0.8153409091
train[28]=27.7706507638 test[28]=3.807696 class[28]=18.518519%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   4   13 
PRECISION          0.7666666667 RECALL:         0.7823529412
train[29]=31.4646080097 test[29]=4.917602 class[29]=22.222222%
=============================================================================
AVERAGES (TRAIN, TEST, CLASS):       304.22396       37.142434       21.604938%
AVERAGES (PRECISION, RECALL):      0.77138889      0.79645679
  
# Settings Tab: Advanced
# Run Date:     04/09/2025 21:52:08
# Run Time:     00:27:51 (1671624 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/heart.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. GE Chromosomes: 500
14. GE Max Generations: 200
15. GE Selection Rate: 0,10
16. GE Mutation Rate: 0,05
17. GE Length: 40
18. GE Local Search Generations: 20
19. GE Local Search Rate: 0,05
20. GE Local Search Method: Crossover
21. GE Method: Genetic
22. RBF Weights: 10
23. Neural Weights: 10
24. Neural Training Method: Genetic
25. BFGS Iteration: 2001
26. GN Chromosomes: 500
27. GN Max Generations: 200
28. GN Selection Rate: 0,10
29. GN Mutation Rate: 0,05
30. GN Local Search Rate: 0,00
31. GN Local Search Method: BFGS

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -37.3649  Best program:
 f1(x)=((-15.989)*x13*x12)
f2(x)=02.94*x10+(-4.314)*x3+x9+x6

Iteration:  2  Best Fitness:  -35.1017  Best program:
 f1(x)=(-815.483)*x13
f2(x)=(58.14*x3*abs(((-5.4)*x7-(x12+3.86*x3))))

Iteration:  3  Best Fitness:  -32.3135  Best program:
 f1(x)=(x9+x11+75.1*x12)
f2(x)=67.2*x3+(963.088/14.24)*x2+x7+39.996*x9+(0.67/236.963)*x5+(08.4/4.138)*x11

Iteration:  4  Best Fitness:  -29.9344  Best program:
 f1(x)=abs((34.7*x3*(x8-((-854.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  5  Best Fitness:  -29.6172  Best program:
 f1(x)=abs((34.7*x3*(x8-((-804.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  6  Best Fitness:  -28.6181  Best program:
 f1(x)=(x9+x10+75.1*x12)
f2(x)=(-67.2)*x3+(963.086/(-32.39))*x13+x1+((-42.28)/507.1)*x9+x9

Iteration:  7  Best Fitness:  -27.4231  Best program:
 f1(x)=abs(((-34.5)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  8  Best Fitness:  -27.4021  Best program:
 f1(x)=abs(((-34.5)*x3*(x4-((-854.77)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  9  Best Fitness:  -26.4306  Best program:
 f1(x)=abs(((-44.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  10  Best Fitness:  -26.4306  Best program:
 f1(x)=abs(((-44.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  11  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  12  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  13  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  14  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  15  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  16  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  17  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  18  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  19  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  20  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  21  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  22  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  23  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  24  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  25  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  26  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  27  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  28  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  29  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  30  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  31  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  32  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  33  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  34  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  35  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  36  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  37  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  38  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  39  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  40  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  41  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  42  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  43  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  44  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  45  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  46  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  47  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  48  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  49  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  50  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  51  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  52  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  53  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  54  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  55  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  56  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  57  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  58  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  59  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  60  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  61  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  62  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  63  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  64  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  65  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  66  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  67  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  68  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  69  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  70  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  71  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  72  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  73  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  74  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  75  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  76  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  77  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  78  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  79  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  80  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  81  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  82  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  83  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  84  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  85  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  86  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  87  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  88  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  89  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  90  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  91  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  92  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  93  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  94  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  95  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  96  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  97  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  98  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  99  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  100  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  101  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  102  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  103  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  104  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  105  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  106  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  107  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  108  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  109  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  110  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  111  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  112  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  113  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  114  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  115  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  116  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  117  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  118  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  119  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  120  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  121  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  122  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  123  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  124  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  125  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  126  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  127  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  128  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  129  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  130  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  131  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  132  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  133  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  134  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  135  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  136  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  137  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  138  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  139  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  140  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  141  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  142  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  143  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  144  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  145  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  146  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  147  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  148  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  149  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  150  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  151  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  152  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  153  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  154  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  155  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  156  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  157  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  158  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  159  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  160  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  161  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  162  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  163  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  164  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  165  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  166  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  167  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  168  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  169  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  170  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  171  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  172  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  173  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  174  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  175  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  176  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  177  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  178  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  179  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  180  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  181  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  182  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  183  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  184  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  185  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  186  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  187  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  188  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  189  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  190  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  191  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  192  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  193  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  194  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  195  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  196  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  197  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  198  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  199  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

Iteration:  200  Best Fitness:  -26.3991  Best program:
 f1(x)=abs(((-43.2)*x3*(x4-((-954.17)*x12))))
f2(x)=(x11*((-185.789)*x13))

** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[0]=40.7218294234 test[0]=4.449998 class[0]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[1]=40.7218294234 test[1]=4.449998 class[1]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[2]=40.7218294234 test[2]=4.449998 class[2]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[3]=40.7218294234 test[3]=4.449998 class[3]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[4]=40.7218294234 test[4]=4.449998 class[4]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[5]=40.7218294234 test[5]=4.449998 class[5]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[6]=40.7218294234 test[6]=4.449998 class[6]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[7]=40.7218294234 test[7]=4.449998 class[7]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[8]=40.7218294234 test[8]=4.449998 class[8]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[9]=40.7218294234 test[9]=4.449998 class[9]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[10]=40.7218294234 test[10]=4.449998 class[10]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[11]=40.7218294234 test[11]=4.449998 class[11]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[12]=40.7218294234 test[12]=4.449998 class[12]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[13]=40.7218294234 test[13]=4.449998 class[13]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[14]=40.7218294234 test[14]=4.449998 class[14]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[15]=40.7218294234 test[15]=4.449998 class[15]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[16]=40.7218294234 test[16]=4.449998 class[16]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[17]=40.7218294234 test[17]=4.449998 class[17]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[18]=40.7218294234 test[18]=4.449998 class[18]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[19]=40.7218294234 test[19]=4.449998 class[19]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[20]=40.7218294234 test[20]=4.449998 class[20]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[21]=40.7218294234 test[21]=4.449998 class[21]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[22]=40.7218294234 test[22]=4.449998 class[22]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[23]=40.7218294234 test[23]=4.449998 class[23]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[24]=40.7218294234 test[24]=4.449998 class[24]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[25]=40.7218294234 test[25]=4.449998 class[25]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[26]=40.7218294234 test[26]=4.449998 class[26]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[27]=40.7218294234 test[27]=4.449998 class[27]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[28]=40.7218294234 test[28]=4.449998 class[28]=22.222222%
** CONFUSION MATRIX ** Number of classes: 2
   9    3 
   3   12 
PRECISION          0.7750000000 RECALL:         0.7750000000
train[29]=40.7218294234 test[29]=4.449998 class[29]=22.222222%
=============================================================================
AVERAGES (TRAIN, TEST, CLASS):       40.721829       4.4499977       22.222222%
AVERAGES (PRECISION, RECALL):           0.775           0.775
  

📊 Appendicitis dataset

# Settings Tab: Advanced
# Run Date:     05/09/2025 17:50:03
# Run Time:     00:00:00 (118 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/appendicitis.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. RBF Weights: 10

@ Results: ===============================================================

** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[0]=7.6435032626 test[0]=1.067907 class[0]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[1]=7.2978886637 test[1]=1.101884 class[1]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[2]=7.5606690790 test[2]=1.075813 class[2]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[3]=7.3470077993 test[3]=1.151776 class[3]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[4]=7.2356293760 test[4]=1.169196 class[4]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[5]=7.3440289744 test[5]=1.129633 class[5]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[6]=7.3037632116 test[6]=1.094688 class[6]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[7]=7.4905133734 test[7]=1.082342 class[7]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[8]=7.2613425292 test[8]=1.153153 class[8]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[9]=7.7804074673 test[9]=1.087106 class[9]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[10]=7.4754377440 test[10]=1.096616 class[10]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[11]=7.4265966509 test[11]=1.099143 class[11]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[12]=7.2741553647 test[12]=1.151313 class[12]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[13]=7.5539833110 test[13]=1.043004 class[13]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[14]=7.4802107952 test[14]=1.071998 class[14]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[15]=7.3938844919 test[15]=1.094030 class[15]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[16]=7.4952738368 test[16]=1.122175 class[16]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[17]=7.4203512159 test[17]=1.059582 class[17]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[18]=7.3043872158 test[18]=1.152102 class[18]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[19]=7.4767591631 test[19]=1.139307 class[19]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[20]=7.4934121795 test[20]=1.080130 class[20]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[21]=7.3509248226 test[21]=1.126832 class[21]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[22]=7.4238809196 test[22]=1.092636 class[22]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[23]=7.2610196830 test[23]=1.142045 class[23]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[24]=7.3315895596 test[24]=1.111088 class[24]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[25]=7.6426654532 test[25]=1.053209 class[25]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[26]=7.8215572811 test[26]=1.039033 class[26]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[27]=7.3612732259 test[27]=1.140831 class[27]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[28]=7.3414852783 test[28]=1.097940 class[28]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[29]=7.2580934302 test[29]=1.142715 class[29]=10.000000%
=============================================================================
AVERAGES (TRAIN,TEST,CLASS):       7.4283898        1.105641              10%
AVERAGES (PRECISION,RECALL):            0.75      0.94444444
  
# Settings Tab: Advanced
# Run Date:     05/09/2025 18:06:49
# Run Time:     00:05:19 (319089 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/appendicitis.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. Neural Weights: 10
14. Neural Training Method: Genetic
15. BFGS Iteration: 2001
16. GN Chromosomes: 500
17. GN Max Generations: 200
18. GN Selection Rate: 0,10
19. GN Mutation Rate: 0,05
20. GN Local Search Rate: 0,00
21. GN Local Search Method: BFGS

@ Results: ===============================================================

** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[0]=7.4362988898 test[0]=0.956594 class[0]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[1]=7.4362988898 test[1]=0.956594 class[1]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[2]=7.4362988898 test[2]=0.956594 class[2]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[3]=7.4362988898 test[3]=0.956594 class[3]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[4]=7.4362988898 test[4]=0.956594 class[4]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[5]=7.4362988898 test[5]=0.956594 class[5]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[6]=7.4362988898 test[6]=0.956594 class[6]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[7]=7.4362988898 test[7]=0.956594 class[7]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[8]=7.4362988898 test[8]=0.956594 class[8]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[9]=7.4362988898 test[9]=0.956594 class[9]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[10]=7.4362988898 test[10]=0.956594 class[10]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[11]=7.4362988898 test[11]=0.956594 class[11]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[12]=7.4362988898 test[12]=0.956594 class[12]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[13]=7.4362988898 test[13]=0.956594 class[13]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[14]=7.4362988898 test[14]=0.956594 class[14]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[15]=7.4362988898 test[15]=0.956594 class[15]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[16]=7.4362988898 test[16]=0.956594 class[16]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[17]=7.4362988898 test[17]=0.956594 class[17]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[18]=7.4362988898 test[18]=0.956594 class[18]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[19]=7.4362988898 test[19]=0.956594 class[19]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[20]=7.4362988898 test[20]=0.956594 class[20]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[21]=7.4362988898 test[21]=0.956594 class[21]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[22]=7.4362988898 test[22]=0.956594 class[22]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[23]=7.4362988898 test[23]=0.956594 class[23]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[24]=7.4362988898 test[24]=0.956594 class[24]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[25]=7.4362988898 test[25]=0.956594 class[25]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[26]=7.4362988898 test[26]=0.956594 class[26]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[27]=7.4362988898 test[27]=0.956594 class[27]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[28]=7.4362988898 test[28]=0.956594 class[28]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[29]=7.4362988898 test[29]=0.956594 class[29]=10.000000%
=============================================================================
AVERAGES (TRAIN, TEST, CLASS):       7.4362989      0.95659366              10%
AVERAGES (PRECISION, RECALL):            0.75      0.94444444
  
# Settings Tab: Advanced
# Run Date:     05/09/2025 18:28:32
# Run Time:     00:03:00 (180982 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/appendicitis.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. GE Chromosomes: 500
14. GE Max Generations: 200
15. GE Selection Rate: 0,10
16. GE Mutation Rate: 0,05
17. GE Length: 40
18. GE Local Search Generations: 20
19. GE Local Search Rate: 0,05
20. GE Local Search Method: Crossover
21. GE Method: Genetic
22. RBF Weights: 10

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -7.02193  Best program:
 f1(x)=((-7.8)*x6/(-825.79)*x5)
f2(x)=abs(x5+x7)

Iteration:  2  Best Fitness:  -7.02193  Best program:
 f1(x)=((-7.8)*x6/(-825.79)*x5)
f2(x)=abs(x5+x7)

Iteration:  3  Best Fitness:  -6.67723  Best program:
 f1(x)=sin((x1+(9.7*x7/(5.109*x3-(217.16*x6)))))
f2(x)=x6+x4

Iteration:  4  Best Fitness:  -6.57889  Best program:
 f1(x)=((-03.79)/(-71.967))*x7
f2(x)=abs(x4+x7)

Iteration:  5  Best Fitness:  -6.56358  Best program:
 f1(x)=(03.72/(-73.922))*x1
f2(x)=abs(x4+x7)

Iteration:  6  Best Fitness:  -6.55057  Best program:
 f1(x)=((-03.79)/(-71.967))*x1
f2(x)=abs(x4+x7)

Iteration:  7  Best Fitness:  -6.46273  Best program:
 f1(x)=(05.79/(-71.967))*x4
f2(x)=abs(x4+x7)

Iteration:  8  Best Fitness:  -6.46273  Best program:
 f1(x)=(05.79/(-71.967))*x4
f2(x)=abs(x4+x7)

Iteration:  9  Best Fitness:  -6.45809  Best program:
 f1(x)=(05.42/(-63.922))*x4
f2(x)=abs(x4+x7)

Iteration:  10  Best Fitness:  -6.45797  Best program:
 f1(x)=(05.49/(-61.967))*x4
f2(x)=abs(x4+x7)

Iteration:  11  Best Fitness:  -6.45759  Best program:
 f1(x)=(05.52/(-63.922))*x4
f2(x)=abs(x4+x7)

Iteration:  12  Best Fitness:  -6.45757  Best program:
 f1(x)=(05.47/63.122)*x4
f2(x)=abs(x4+x7)

Iteration:  13  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.977))*x4
f2(x)=abs(x4+x7)

Iteration:  14  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.925))*x4
f2(x)=abs(x4+x7)

Iteration:  15  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.925))*x4
f2(x)=abs(x4+x7)

Iteration:  16  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.925))*x4
f2(x)=abs(x4+x7)

Iteration:  17  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  18  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  19  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  20  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  21  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  22  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  23  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  24  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  25  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  26  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  27  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  28  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  29  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  30  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  31  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  32  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  33  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  34  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  35  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  36  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  37  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  38  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  39  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  40  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  41  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  42  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  43  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  44  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  45  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  46  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  47  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  48  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  49  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  50  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  51  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  52  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  53  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  54  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  55  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  56  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  57  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  58  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  59  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  60  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  61  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  62  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  63  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  64  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  65  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  66  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  67  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  68  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  69  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  70  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  71  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  72  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  73  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  74  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  75  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  76  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  77  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  78  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  79  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  80  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  81  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  82  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  83  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  84  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  85  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  86  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  87  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  88  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  89  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  90  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  91  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  92  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  93  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  94  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  95  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  96  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  97  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  98  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  99  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  100  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  101  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  102  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  103  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  104  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  105  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  106  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  107  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  108  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  109  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  110  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  111  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  112  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  113  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  114  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  115  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  116  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  117  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  118  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  119  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  120  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  121  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  122  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  123  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  124  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  125  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  126  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  127  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  128  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  129  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  130  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  131  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  132  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  133  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  134  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  135  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  136  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  137  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  138  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  139  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  140  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  141  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  142  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  143  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  144  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  145  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  146  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  147  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  148  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  149  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  150  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  151  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  152  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  153  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  154  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  155  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  156  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  157  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  158  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  159  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  160  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  161  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  162  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  163  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  164  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  165  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  166  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  167  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  168  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  169  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  170  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  171  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  172  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  173  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  174  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  175  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  176  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  177  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  178  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  179  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  180  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  181  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  182  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  183  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  184  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  185  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  186  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  187  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  188  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  189  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  190  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  191  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  192  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  193  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  194  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  195  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  196  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  197  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  198  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  199  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  200  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[0]=7.4557397234 test[0]=1.310010 class[0]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[1]=7.5685683315 test[1]=1.206724 class[1]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[2]=7.6864194919 test[2]=1.164587 class[2]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[3]=7.7782847755 test[3]=1.180401 class[3]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[4]=7.1404469320 test[4]=1.346615 class[4]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[5]=7.6864194919 test[5]=1.164587 class[5]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[6]=7.6493610995 test[6]=1.202188 class[6]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   0    0 
PRECISION          0.5000000000 RECALL:         0.4000000000
train[7]=7.5701982469 test[7]=1.533762 class[7]=20.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[8]=7.6864194919 test[8]=1.164587 class[8]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[9]=7.7782847755 test[9]=1.180401 class[9]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[10]=7.5640229916 test[10]=1.194585 class[10]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[11]=7.2586169997 test[11]=1.356684 class[11]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[12]=7.5405999610 test[12]=1.207395 class[12]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   0    0 
PRECISION          0.5000000000 RECALL:         0.4000000000
train[13]=7.2103596936 test[13]=1.589855 class[13]=20.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[14]=7.3969815561 test[14]=1.332076 class[14]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[15]=7.6711770258 test[15]=1.216177 class[15]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[16]=7.6444616714 test[16]=1.178234 class[16]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[17]=7.6864194919 test[17]=1.164587 class[17]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[18]=7.6175190345 test[18]=1.202145 class[18]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[19]=7.5728060914 test[19]=1.196834 class[19]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[20]=7.6864194919 test[20]=1.164587 class[20]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[21]=7.8570406781 test[21]=1.284070 class[21]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[22]=7.5701853950 test[22]=1.214000 class[22]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   0    0 
PRECISION          0.5000000000 RECALL:         0.4000000000
train[23]=7.3674594000 test[23]=1.791155 class[23]=20.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[24]=7.4321729640 test[24]=1.251578 class[24]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   0    0 
PRECISION          0.5000000000 RECALL:         0.4000000000
train[25]=6.6031650928 test[25]=2.103642 class[25]=20.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[26]=7.5889752871 test[26]=1.274440 class[26]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[27]=7.6711770258 test[27]=1.216177 class[27]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    2 
   0    0 
PRECISION          0.5000000000 RECALL:         0.4000000000
train[28]=6.4135791310 test[28]=2.979392 class[28]=20.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[29]=7.3290294889 test[29]=1.415602 class[29]=10.000000%
=============================================================================
AVERAGES (TRAIN, TEST, CLASS):       7.4894104       1.3595692       11.666667%
AVERAGES (PRECISION, RECALL):      0.70833333       0.8537037
  
# Settings Tab: Advanced
# Run Date:     05/09/2025 19:06:12
# Run Time:     00:06:28 (388432 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Classification/appendicitis.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. GE Chromosomes: 500
14. GE Max Generations: 200
15. GE Selection Rate: 0,10
16. GE Mutation Rate: 0,05
17. GE Length: 40
18. GE Local Search Generations: 20
19. GE Local Search Rate: 0,05
20. GE Local Search Method: Crossover
21. GE Method: Genetic
22. RBF Weights: 10
23. Neural Weights: 10
24. Neural Training Method: Genetic
25. BFGS Iteration: 2001
26. GN Chromosomes: 500
27. GN Max Generations: 200
28. GN Selection Rate: 0,10
29. GN Mutation Rate: 0,05
30. GN Local Search Rate: 0,00
31. GN Local Search Method: BFGS

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -7.02193  Best program:
 f1(x)=((-7.8)*x6/(-825.79)*x5)
f2(x)=abs(x5+x7)

Iteration:  2  Best Fitness:  -7.02193  Best program:
 f1(x)=((-7.8)*x6/(-825.79)*x5)
f2(x)=abs(x5+x7)

Iteration:  3  Best Fitness:  -6.67723  Best program:
 f1(x)=sin((x1+(9.7*x7/(5.109*x3-(217.16*x6)))))
f2(x)=x6+x4

Iteration:  4  Best Fitness:  -6.57889  Best program:
 f1(x)=((-03.79)/(-71.967))*x7
f2(x)=abs(x4+x7)

Iteration:  5  Best Fitness:  -6.56358  Best program:
 f1(x)=(03.72/(-73.922))*x1
f2(x)=abs(x4+x7)

Iteration:  6  Best Fitness:  -6.55057  Best program:
 f1(x)=((-03.79)/(-71.967))*x1
f2(x)=abs(x4+x7)

Iteration:  7  Best Fitness:  -6.46273  Best program:
 f1(x)=(05.79/(-71.967))*x4
f2(x)=abs(x4+x7)

Iteration:  8  Best Fitness:  -6.46273  Best program:
 f1(x)=(05.79/(-71.967))*x4
f2(x)=abs(x4+x7)

Iteration:  9  Best Fitness:  -6.45809  Best program:
 f1(x)=(05.42/(-63.922))*x4
f2(x)=abs(x4+x7)

Iteration:  10  Best Fitness:  -6.45797  Best program:
 f1(x)=(05.49/(-61.967))*x4
f2(x)=abs(x4+x7)

Iteration:  11  Best Fitness:  -6.45759  Best program:
 f1(x)=(05.52/(-63.922))*x4
f2(x)=abs(x4+x7)

Iteration:  12  Best Fitness:  -6.45757  Best program:
 f1(x)=(05.47/63.122)*x4
f2(x)=abs(x4+x7)

Iteration:  13  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.977))*x4
f2(x)=abs(x4+x7)

Iteration:  14  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.925))*x4
f2(x)=abs(x4+x7)

Iteration:  15  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.925))*x4
f2(x)=abs(x4+x7)

Iteration:  16  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.925))*x4
f2(x)=abs(x4+x7)

Iteration:  17  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  18  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  19  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  20  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  21  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  22  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  23  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  24  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  25  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  26  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  27  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  28  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  29  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  30  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  31  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  32  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  33  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  34  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  35  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  36  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  37  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  38  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  39  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  40  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  41  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  42  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  43  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  44  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  45  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  46  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  47  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  48  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  49  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  50  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  51  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  52  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  53  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  54  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  55  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  56  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  57  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  58  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  59  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  60  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  61  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  62  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  63  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  64  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  65  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  66  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  67  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  68  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  69  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  70  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  71  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  72  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  73  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  74  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  75  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  76  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  77  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  78  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  79  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  80  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  81  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  82  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  83  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  84  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  85  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  86  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  87  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  88  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  89  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  90  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  91  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  92  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  93  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  94  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  95  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  96  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  97  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  98  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  99  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  100  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  101  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  102  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  103  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  104  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  105  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  106  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  107  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  108  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  109  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  110  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  111  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  112  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  113  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  114  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  115  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  116  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  117  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  118  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  119  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  120  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  121  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  122  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  123  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  124  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  125  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  126  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  127  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  128  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  129  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  130  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  131  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  132  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  133  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  134  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  135  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  136  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  137  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  138  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  139  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  140  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  141  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  142  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  143  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  144  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  145  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  146  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  147  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  148  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  149  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  150  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  151  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  152  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  153  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  154  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  155  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  156  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  157  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  158  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  159  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  160  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  161  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  162  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  163  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  164  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  165  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  166  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  167  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  168  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  169  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  170  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  171  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  172  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  173  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  174  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  175  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  176  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  177  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  178  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  179  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  180  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  181  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  182  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  183  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  184  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  185  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  186  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  187  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  188  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  189  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  190  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  191  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  192  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  193  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  194  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  195  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  196  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  197  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  198  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  199  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

Iteration:  200  Best Fitness:  -6.45756  Best program:
 f1(x)=(05.55/(-63.927))*x4
f2(x)=abs(x4+x7)

** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[0]=8.2570668000 test[0]=0.945776 class[0]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[1]=8.2570668000 test[1]=0.945776 class[1]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[2]=8.2570668000 test[2]=0.945776 class[2]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[3]=8.2570668000 test[3]=0.945776 class[3]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[4]=8.2570668000 test[4]=0.945776 class[4]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[5]=8.2570668000 test[5]=0.945776 class[5]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[6]=8.2570668000 test[6]=0.945776 class[6]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[7]=8.2570668000 test[7]=0.945776 class[7]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[8]=8.2570668000 test[8]=0.945776 class[8]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[9]=8.2570668000 test[9]=0.945776 class[9]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[10]=8.2570668000 test[10]=0.945776 class[10]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[11]=8.2570668000 test[11]=0.945776 class[11]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[12]=8.2570668000 test[12]=0.945776 class[12]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[13]=8.2570668000 test[13]=0.945776 class[13]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[14]=8.2570668000 test[14]=0.945776 class[14]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[15]=8.2570668000 test[15]=0.945776 class[15]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[16]=8.2570668000 test[16]=0.945776 class[16]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[17]=8.2570668000 test[17]=0.945776 class[17]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[18]=8.2570668000 test[18]=0.945776 class[18]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[19]=8.2570668000 test[19]=0.945776 class[19]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[20]=8.2570668000 test[20]=0.945776 class[20]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[21]=8.2570668000 test[21]=0.945776 class[21]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[22]=8.2570668000 test[22]=0.945776 class[22]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[23]=8.2570668000 test[23]=0.945776 class[23]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[24]=8.2570668000 test[24]=0.945776 class[24]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[25]=8.2570668000 test[25]=0.945776 class[25]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[26]=8.2570668000 test[26]=0.945776 class[26]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[27]=8.2570668000 test[27]=0.945776 class[27]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[28]=8.2570668000 test[28]=0.945776 class[28]=10.000000%
** CONFUSION MATRIX ** Number of classes: 2
   8    1 
   0    1 
PRECISION          0.7500000000 RECALL:         0.9444444444
train[29]=8.2570668000 test[29]=0.945776 class[29]=10.000000%
=============================================================================
AVERAGES (TRAIN, TEST, CLASS):       8.2570668      0.94577625              10%
AVERAGES (PRECISION, RECALL):            0.75      0.94444444
  

Πειράματα παλινδρόμησης (Regression)

📊 Abalone dataset

# Settings Tab: Advanced
# Run Date:     06/09/2025 15:16:22
# Run Time:     00:00:10 (10926 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/QFC_GUI_datasets/Regression/abalone.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/abalone.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/abalone.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. RBF Weights: 10

@ Results: ===============================================================

train[0]=26212.0525070282 test[0]=3579.543637
train[1]=26528.4827632451 test[1]=3619.370022
train[2]=26575.8278232673 test[2]=3663.521036
train[3]=27098.7871230094 test[3]=3664.538292
train[4]=26335.0948666773 test[4]=3607.732494
train[5]=25836.5231498885 test[5]=3562.667540
train[6]=26444.4391771873 test[6]=3608.909416
train[7]=26207.8906783764 test[7]=3624.418594
train[8]=26213.9611328383 test[8]=3625.911551
train[9]=25861.8336267897 test[9]=3583.917442
train[10]=28053.3775765046 test[10]=3767.399861
train[11]=25076.6453210967 test[11]=3394.604043
train[12]=26207.8906783764 test[12]=3624.418594
train[13]=26207.8906783764 test[13]=3624.418594
train[14]=30107.6358847518 test[14]=4154.201307
train[15]=25862.8619277157 test[15]=3562.258359
train[16]=26207.8906783764 test[16]=3624.418594
train[17]=26211.5859885288 test[17]=3579.485602
train[18]=25077.6000373159 test[18]=3394.597037
train[19]=26596.0496978005 test[19]=3666.730239
train[20]=26241.2455467601 test[20]=3585.920403
train[21]=26896.9821496187 test[21]=3576.258288
train[22]=24987.8934076518 test[22]=3377.222817
train[23]=25676.7063936708 test[23]=3485.480264
train[24]=25606.1807519296 test[24]=3475.830135
train[25]=25334.5354305563 test[25]=3398.857296
train[26]=25077.6000373160 test[26]=3394.597037
train[27]=26207.8906783764 test[27]=3624.418594
train[28]=26253.3884848305 test[28]=3531.511101
train[29]=26251.2044954294 test[29]=3530.722326
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):     26248.598      3583.796       
AVERAGES (TRAIN_RMSE, TEST_RMSE):   162.01419      59.864815      
  
# Settings Tab: Advanced
# Run Date:     06/09/2025 15:40:09
# Run Time:     03:18:12 (11892734 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Regression/abalone.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. Neural Weights: 10
14. Neural Training Method: Genetic
15. BFGS Iteration: 2001
16. GN Chromosomes: 500
17. GN Max Generations: 200
18. GN Selection Rate: 0,10
19. GN Mutation Rate: 0,05
20. GN Local Search Rate: 0,00
21. GN Local Search Method: BFGS

@ Results: ===============================================================

train[0]=17699.9586712188 test[0]=2119.426673
train[1]=17699.9586712188 test[1]=2119.426673
train[2]=17699.9586712188 test[2]=2119.426673
train[3]=17699.9586712188 test[3]=2119.426673
train[4]=17699.9586712188 test[4]=2119.426673
train[5]=17699.9586712188 test[5]=2119.426673
train[6]=17699.9586712188 test[6]=2119.426673
train[7]=17699.9586712188 test[7]=2119.426673
train[8]=17699.9586712188 test[8]=2119.426673
train[9]=17699.9586712188 test[9]=2119.426673
train[10]=17699.9586712188 test[10]=2119.426673
train[11]=17699.9586712188 test[11]=2119.426673
train[12]=17699.9586712188 test[12]=2119.426673
train[13]=17699.9586712188 test[13]=2119.426673
train[14]=17699.9586712188 test[14]=2119.426673
train[15]=17699.9586712188 test[15]=2119.426673
train[16]=17699.9586712188 test[16]=2119.426673
train[17]=17699.9586712188 test[17]=2119.426673
train[18]=17699.9586712188 test[18]=2119.426673
train[19]=17699.9586712188 test[19]=2119.426673
train[20]=17699.9586712188 test[20]=2119.426673
train[21]=17699.9586712188 test[21]=2119.426673
train[22]=17699.9586712188 test[22]=2119.426673
train[23]=17699.9586712188 test[23]=2119.426673
train[24]=17699.9586712188 test[24]=2119.426673
train[25]=17699.9586712188 test[25]=2119.426673
train[26]=17699.9586712188 test[26]=2119.426673
train[27]=17699.9586712188 test[27]=2119.426673
train[28]=17699.9586712188 test[28]=2119.426673
train[29]=17699.9586712188 test[29]=2119.426673
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):     17699.959      2119.4267
AVERAGES (TRAIN_RMSE, TEST_RMSE):   133.04119      46.037231
  
# Settings Tab: Advanced
# Run Date:     06/09/2025 19:14:17
# Run Time:     07:16:22 (26182921 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Regression/abalone.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. RBF Weights: 10
14. GE Chromosomes: 500
15. GE Max Generations: 200
16. GE Selection Rate: 0,10
17. GE Mutation Rate: 0,05
18. GE Length: 40
19. GE Local Search Generations: 20
20. GE Local Search Rate: 0,05
21. GE Local Search Method: Crossover
22. GE Method: Genetic

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -18450  Best program:
 f1(x)=((-76.56)*x4)
f2(x)=((-41.54)*x8/((-4.67)*x6))

Iteration:  2  Best Fitness:  -18108.3  Best program:
 f1(x)=((-234.702)/(-8.1))*x4+x3
f2(x)=((-41.54)*x8/((-4.67)*x6))

Iteration:  3  Best Fitness:  -17207.1  Best program:
 f1(x)=((-5.13)*x5)
f2(x)=((-41.54)*x8/((-4.67)*x6))

Iteration:  4  Best Fitness:  -17061.2  Best program:
 f1(x)=((-5.13)*x5)
f2(x)=((-41.54)*x8/((-4.87)*x6))

Iteration:  5  Best Fitness:  -17061.2  Best program:
 f1(x)=((-5.13)*x5)
f2(x)=((-41.54)*x8/((-4.87)*x6))

Iteration:  6  Best Fitness:  -17060  Best program:
 f1(x)=((-8.13)*x5)
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  7  Best Fitness:  -16816.1  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.6)*x1*cos(((-7.398)*x4/((-193.0)*x8*(71.6*x2)))))))
f2(x)=((-41.54)*x8/((-4.87)*x6))

Iteration:  8  Best Fitness:  -16815  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.6)*x1*cos(((-7.398)*x4/((-193.0)*x2*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  9  Best Fitness:  -16815  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.6)*x1*cos(((-7.398)*x4/((-193.0)*x2*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  10  Best Fitness:  -16815  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.6)*x1/cos(((-7.398)*x3/((-193.0)*x2*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  11  Best Fitness:  -16746.5  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1*cos((7.398*x4/((-193.4)*x8*(71.6*x2)))))))
f2(x)=((-41.04)*x8/((-4.87)*x6))

Iteration:  12  Best Fitness:  -16744.8  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1*cos((7.398*x4/((-193.8)*x8*(71.6*x2)))))))
f2(x)=((-41.53)*x8/(4.87*x6))

Iteration:  13  Best Fitness:  -16742.3  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/((-193.0)*x7*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.88*x6))

Iteration:  14  Best Fitness:  -16733.3  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/((-193.4)*x8*(71.6*x2)))))))
f2(x)=((-41.54)*x8/((-4.87)*x6))

Iteration:  15  Best Fitness:  -16733.2  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/((-193.0)*x8*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  16  Best Fitness:  -16724.5  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-1.398)*x3/((-193.49)*x7/cos((x2-((-0.1)*x5)))))))))
f2(x)=(41.54*x8/((-4.87)*x6))

Iteration:  17  Best Fitness:  -16724.5  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-1.398)*x3/((-193.49)*x7/cos((x2-((-0.1)*x5)))))))))
f2(x)=(41.54*x8/((-4.87)*x6))

Iteration:  18  Best Fitness:  -16718  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-1.998)*x3/((-193.49)*x7/cos((x2-((-0.1)*x5)))))))))
f2(x)=(41.54*x8/((-4.87)*x6))

Iteration:  19  Best Fitness:  -16717.6  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/((-193.0)*x5))))))
f2(x)=((-41.54)*x8/(4.88*x6))

Iteration:  20  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  21  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  22  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.394)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  23  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.394)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  24  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.394)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  25  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.394)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  26  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  27  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  28  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  29  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  30  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  31  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  32  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  33  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  34  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  35  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  36  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  37  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  38  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  39  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  40  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  41  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  42  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  43  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  44  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  45  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  46  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  47  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  48  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  49  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  50  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  51  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  52  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  53  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  54  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  55  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  56  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  57  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  58  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  59  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  60  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  61  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  62  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  63  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  64  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  65  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  66  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  67  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  68  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  69  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  70  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  71  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  72  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  73  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  74  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  75  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  76  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  77  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  78  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  79  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  80  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  81  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  82  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  83  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  84  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  85  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  86  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  87  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  88  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  89  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  90  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  91  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  92  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  93  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  94  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  95  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  96  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  97  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  98  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  99  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  100  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  101  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  102  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  103  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  104  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  105  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  106  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  107  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  108  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  109  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  110  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  111  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  112  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  113  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  114  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  115  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  116  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  117  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  118  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  119  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  120  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  121  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  122  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  123  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  124  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  125  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  126  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  127  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  128  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  129  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  130  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  131  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  132  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  133  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  134  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  135  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  136  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  137  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  138  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  139  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  140  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  141  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  142  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  143  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  144  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  145  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  146  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  147  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  148  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  149  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  150  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  151  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  152  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  153  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  154  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  155  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  156  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  157  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  158  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  159  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  160  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  161  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  162  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  163  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  164  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  165  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  166  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  167  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  168  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  169  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  170  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  171  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  172  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  173  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  174  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  175  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  176  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  177  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  178  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  179  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  180  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  181  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  182  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  183  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  184  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  185  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  186  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  187  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  188  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  189  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  190  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  191  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  192  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  193  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  194  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  195  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  196  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  197  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  198  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  199  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  200  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

train[0]=17586.2454605729 test[0]=2141.402397
train[1]=17798.7470694513 test[1]=2188.341165
train[2]=16729.3145122629 test[2]=1993.520600
train[3]=16849.5598696286 test[3]=2016.897845
train[4]=16732.8699090266 test[4]=2004.401124
train[5]=17584.0700867986 test[5]=2141.145401
train[6]=16727.9763796791 test[6]=1992.878929
train[7]=17587.4677064967 test[7]=2141.518347
train[8]=17358.0320158405 test[8]=2169.067924
train[9]=17397.8821146959 test[9]=2159.638230
train[10]=17337.4237468313 test[10]=2167.621912
train[11]=17582.1608796275 test[11]=2140.118157
train[12]=17425.9969509258 test[12]=2189.039892
train[13]=17341.2844534525 test[13]=2169.091278
train[14]=16717.3377388044 test[14]=1989.517442
train[15]=16720.6673865185 test[15]=1993.464002
train[16]=16714.0013353895 test[16]=1987.999340
train[17]=17437.8821304296 test[17]=2180.988957
train[18]=17422.6146406217 test[18]=2107.998417
train[19]=16771.2495163562 test[19]=1989.004936
train[20]=17564.6227547327 test[20]=2137.019703
train[21]=17716.7040073564 test[21]=2138.231060
train[22]=16717.9267049367 test[22]=1992.248273
train[23]=17415.6917019016 test[23]=2185.656957
train[24]=17564.6227547327 test[24]=2137.019703
train[25]=17306.8446154233 test[25]=2181.451494
train[26]=16873.8878958471 test[26]=1996.901106
train[27]=17564.6227547328 test[27]=2137.019703
train[28]=17584.0700867986 test[28]=2141.145401
train[29]=17564.6227547327 test[29]=2137.019703
==============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):      17256.547       2101.579
AVERAGES (TRAIN_RMSE, TEST_RMSE):    131.36417       45.842982
  
# Settings Tab: Advanced
# Run Date:     07/09/2025 19:14:17
# Run Time:     10:20:13 (37213825 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Regression/abalone.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/abalone.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/abalone.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. GE Chromosomes: 500
14. GE Max Generations: 200
15. GE Selection Rate: 0,10
16. GE Mutation Rate: 0,05
17. GE Length: 40
18. GE Local Search Generations: 20
19. GE Local Search Rate: 0,05
20. GE Local Search Method: Crossover
21. GE Method: Genetic
22. RBF Weights: 10
23. Neural Weights: 10
24. Neural Training Method: Genetic
25. BFGS Iteration: 2001
26. GN Chromosomes: 500
27. GN Max Generations: 200
28. GN Selection Rate: 0,10
29. GN Mutation Rate: 0,05
30. GN Local Search Rate: 0,00
31. GN Local Search Method: BFGS

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -18450  Best program:
 f1(x)=((-76.56)*x4)
f2(x)=((-41.54)*x8/((-4.67)*x6))

Iteration:  2  Best Fitness:  -18108.3  Best program:
 f1(x)=((-234.702)/(-8.1))*x4+x3
f2(x)=((-41.54)*x8/((-4.67)*x6))

Iteration:  3  Best Fitness:  -17207.1  Best program:
 f1(x)=((-5.13)*x5)
f2(x)=((-41.54)*x8/((-4.67)*x6))

Iteration:  4  Best Fitness:  -17061.2  Best program:
 f1(x)=((-5.13)*x5)
f2(x)=((-41.54)*x8/((-4.87)*x6))

Iteration:  5  Best Fitness:  -17061.2  Best program:
 f1(x)=((-5.13)*x5)
f2(x)=((-41.54)*x8/((-4.87)*x6))

Iteration:  6  Best Fitness:  -17060  Best program:
 f1(x)=((-8.13)*x5)
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  7  Best Fitness:  -16816.1  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.6)*x1*cos(((-7.398)*x4/((-193.0)*x8*(71.6*x2)))))))
f2(x)=((-41.54)*x8/((-4.87)*x6))

Iteration:  8  Best Fitness:  -16815  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.6)*x1*cos(((-7.398)*x4/((-193.0)*x2*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  9  Best Fitness:  -16815  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.6)*x1*cos(((-7.398)*x4/((-193.0)*x2*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  10  Best Fitness:  -16815  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.6)*x1/cos(((-7.398)*x3/((-193.0)*x2*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  11  Best Fitness:  -16746.5  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1*cos((7.398*x4/((-193.4)*x8*(71.6*x2)))))))
f2(x)=((-41.04)*x8/((-4.87)*x6))

Iteration:  12  Best Fitness:  -16744.8  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1*cos((7.398*x4/((-193.8)*x8*(71.6*x2)))))))
f2(x)=((-41.53)*x8/(4.87*x6))

Iteration:  13  Best Fitness:  -16742.3  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/((-193.0)*x7*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.88*x6))

Iteration:  14  Best Fitness:  -16733.3  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/((-193.4)*x8*(71.6*x2)))))))
f2(x)=((-41.54)*x8/((-4.87)*x6))

Iteration:  15  Best Fitness:  -16733.2  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/((-193.0)*x8*(71.6*x2)))))))
f2(x)=((-41.54)*x8/(4.87*x6))

Iteration:  16  Best Fitness:  -16724.5  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-1.398)*x3/((-193.49)*x7/cos((x2-((-0.1)*x5)))))))))
f2(x)=(41.54*x8/((-4.87)*x6))

Iteration:  17  Best Fitness:  -16724.5  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-1.398)*x3/((-193.49)*x7/cos((x2-((-0.1)*x5)))))))))
f2(x)=(41.54*x8/((-4.87)*x6))

Iteration:  18  Best Fitness:  -16718  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-1.998)*x3/((-193.49)*x7/cos((x2-((-0.1)*x5)))))))))
f2(x)=(41.54*x8/((-4.87)*x6))

Iteration:  19  Best Fitness:  -16717.6  Best program:
 f1(x)=((-5.13)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/((-193.0)*x5))))))
f2(x)=((-41.54)*x8/(4.88*x6))

Iteration:  20  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  21  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  22  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.394)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  23  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.394)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  24  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.394)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  25  Best Fitness:  -16705.3  Best program:
 f1(x)=((-5.23)*x5-sin(((-9.7)*x1/cos(((-7.394)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  26  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  27  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  28  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  29  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  30  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  31  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  32  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  33  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  34  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  35  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  36  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  37  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  38  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  39  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  40  Best Fitness:  -16703.4  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos(((-7.398)*x3/(193.0*x5))))))
f2(x)=((-41.54)*x8/(4.89*x6))

Iteration:  41  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  42  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  43  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  44  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  45  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.398*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  46  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  47  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  48  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  49  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  50  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  51  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  52  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  53  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  54  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  55  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  56  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  57  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  58  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  59  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  60  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  61  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  62  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  63  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  64  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  65  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  66  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  67  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  68  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  69  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  70  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  71  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  72  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  73  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  74  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  75  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  76  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  77  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  78  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  79  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  80  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  81  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  82  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  83  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  84  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  85  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  86  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  87  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  88  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  89  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  90  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  91  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  92  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  93  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  94  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  95  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  96  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  97  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  98  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  99  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  100  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  101  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  102  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  103  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  104  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  105  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  106  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  107  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  108  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  109  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  110  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  111  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  112  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  113  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  114  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  115  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  116  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  117  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  118  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  119  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  120  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  121  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  122  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  123  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  124  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  125  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  126  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  127  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  128  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  129  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  130  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  131  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  132  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  133  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  134  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  135  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  136  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  137  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  138  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  139  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  140  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  141  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  142  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  143  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  144  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  145  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  146  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  147  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  148  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  149  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  150  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  151  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  152  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  153  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  154  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  155  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  156  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  157  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  158  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  159  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  160  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  161  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  162  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  163  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  164  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  165  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  166  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  167  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  168  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  169  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  170  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  171  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  172  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  173  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  174  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  175  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  176  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  177  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  178  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  179  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  180  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  181  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  182  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  183  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  184  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  185  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  186  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  187  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  188  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  189  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  190  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  191  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  192  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  193  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  194  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  195  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  196  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  197  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  198  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  199  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

Iteration:  200  Best Fitness:  -16702.3  Best program:
 f1(x)=((-5.24)*x5-sin(((-9.7)*x1/cos((7.397*x3/(193.0*x5))))))
f2(x)=(41.57*x8/(4.89*x6))

train[0]=17199.8369578895 test[0]=1998.300283
train[1]=17199.8369578895 test[1]=1998.300283
train[2]=17199.8369578895 test[2]=1998.300283
train[3]=17199.8369578895 test[3]=1998.300283
train[4]=17199.8369578895 test[4]=1998.300283
train[5]=17199.8369578895 test[5]=1998.300283
train[6]=17199.8369578895 test[6]=1998.300283
train[7]=17199.8369578895 test[7]=1998.300283
train[8]=17199.8369578895 test[8]=1998.300283
train[9]=17199.8369578895 test[9]=1998.300283
train[10]=17199.8369578895 test[10]=1998.300283
train[11]=17199.8369578895 test[11]=1998.300283
train[12]=17199.8369578895 test[12]=1998.300283
train[13]=17199.8369578895 test[13]=1998.300283
train[14]=17199.8369578895 test[14]=1998.300283
train[15]=17199.8369578895 test[15]=1998.300283
train[16]=17199.8369578895 test[16]=1998.300283
train[17]=17199.8369578895 test[17]=1998.300283
train[18]=17199.8369578895 test[18]=1998.300283
train[19]=17199.8369578895 test[19]=1998.300283
train[20]=17199.8369578895 test[20]=1998.300283
train[21]=17199.8369578895 test[21]=1998.300283
train[22]=17199.8369578895 test[22]=1998.300283
train[23]=17199.8369578895 test[23]=1998.300283
train[24]=17199.8369578895 test[24]=1998.300283
train[25]=17199.8369578895 test[25]=1998.300283
train[26]=17199.8369578895 test[26]=1998.300283
train[27]=17199.8369578895 test[27]=1998.300283
train[28]=17199.8369578895 test[28]=1998.300283
train[29]=17199.8369578895 test[29]=1998.300283
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):     17199.837      1998.3003
AVERAGES (TRAIN_RMSE, TEST_RMSE):   131.14815      44.702352
  

📊 Mortgage dataset

# Settings Tab: Advanced
# Run Date:     04/09/2025 08:00:39
# Run Time:     00:00:04 (4348 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Regression/mortgage.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. RBF Weights: 10

@ Results: ===============================================================

train[0]=1268.9890414715 test[0]=132.156846
train[1]=1289.9407795622 test[1]=142.072212
train[2]=1204.8216506783 test[2]=133.874704
train[3]=1268.9890414715 test[3]=132.156846
train[4]=1499.2237092982 test[4]=157.825833
train[5]=1721.4467904275 test[5]=187.437312
train[6]=1243.1632733701 test[6]=138.853516
train[7]=1329.8224573135 test[7]=136.084654
train[8]=1234.3076953079 test[8]=136.868677
train[9]=1179.3500325657 test[9]=129.055817
train[10]=1368.6907862186 test[10]=144.023195
train[11]=1167.3820602846 test[11]=128.774290
train[12]=1182.8477866766 test[12]=128.990002
train[13]=1498.5886799993 test[13]=157.740044
train[14]=1338.6020932355 test[14]=139.387633
train[15]=1424.0194903095 test[15]=151.292540
train[16]=1177.8020045236 test[16]=128.944011
train[17]=1448.2513786664 test[17]=155.164050
train[18]=1562.0223126830 test[18]=170.283557
train[19]=1162.7094520858 test[19]=128.147494
train[20]=1477.9462834871 test[20]=155.796133
train[21]=1221.0290128430 test[21]=136.025021
train[22]=1182.8477866766 test[22]=128.990002
train[23]=1424.0194903095 test[23]=151.292540
train[24]=1139.6684167537 test[24]=125.382807
train[25]=1329.8224573135 test[25]=136.084654
train[26]=1477.9462834871 test[26]=155.796133
train[27]=1329.8224573135 test[27]=136.084654
train[28]=1510.2050785183 test[28]=164.762718
train[29]=1424.0194903095 test[29]=151.292540
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):     1336.2766      143.35468      
AVERAGES (TRAIN_RMSE, TEST_RMSE):   36.555117      11.973082 
  
# Settings Tab: Advanced
# Run Date:     06/09/2025 09:45:11
# Run Time:     00:56:37 (3397563 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Regression/mortgage.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. Neural Weights: 10
14. Neural Training Method: Genetic
15. BFGS Iteration: 2001
16. GN Chromosomes: 500
17. GN Max Generations: 200
18. GN Selection Rate: 0,10
19. GN Mutation Rate: 0,05
20. GN Local Search Rate: 0,00
21. GN Local Search Method: BFGS

@ Results: ===============================================================

train[0]=256.2787688824 test[0]=31.627707
train[1]=256.2787688824 test[1]=31.627707
train[2]=256.2787688824 test[2]=31.627707
train[3]=256.2787688824 test[3]=31.627707
train[4]=256.2787688824 test[4]=31.627707
train[5]=256.2787688824 test[5]=31.627707
train[6]=256.2787688824 test[6]=31.627707
train[7]=256.2787688824 test[7]=31.627707
train[8]=256.2787688824 test[8]=31.627707
train[9]=256.2787688824 test[9]=31.627707
train[10]=256.2787688824 test[10]=31.627707
train[11]=256.2787688824 test[11]=31.627707
train[12]=256.2787688824 test[12]=31.627707
train[13]=256.2787688824 test[13]=31.627707
train[14]=256.2787688824 test[14]=31.627707
train[15]=256.2787688824 test[15]=31.627707
train[16]=256.2787688824 test[16]=31.627707
train[17]=256.2787688824 test[17]=31.627707
train[18]=256.2787688824 test[18]=31.627707
train[19]=256.2787688824 test[19]=31.627707
train[20]=256.2787688824 test[20]=31.627707
train[21]=256.2787688824 test[21]=31.627707
train[22]=256.2787688824 test[22]=31.627707
train[23]=256.2787688824 test[23]=31.627707
train[24]=256.2787688824 test[24]=31.627707
train[25]=256.2787688824 test[25]=31.627707
train[26]=256.2787688824 test[26]=31.627707
train[27]=256.2787688824 test[27]=31.627707
train[28]=256.2787688824 test[28]=31.627707
train[29]=256.2787688824 test[29]=31.627707
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):     256.27877      31.627707
AVERAGES (TRAIN_RMSE, TEST_RMSE):   16.008709      5.6238516
  
# Settings Tab: Advanced
# Run Date:     06/09/2025 11:02:27
# Run Time:     01:09:13 (4153918 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Regression/mortgage.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. GE Chromosomes: 500
14. GE Max Generations: 200
15. GE Selection Rate: 0,10
16. GE Mutation Rate: 0,05
17. GE Length: 40
18. GE Local Search Generations: 20
19. GE Local Search Rate: 0,05
20. GE Local Search Method: Crossover
21. GE Method: Genetic
22. RBF Weights: 10

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -247.083  Best program:
 f1(x)=(70.470/(-84.567))*x11
f2(x)=(-14.4)*x11+(-3.48)*x6

Iteration:  2  Best Fitness:  -240.887  Best program:
 f1(x)=(6.95*x3-(x6-(x3/(4.8*x12))))
f2(x)=(-14.4)*x11+(-3.48)*x6

Iteration:  3  Best Fitness:  -203.827  Best program:
 f1(x)=(70.470/(-844.6))*x13
f2(x)=(-14.4)*x11+(-3.48)*x6

Iteration:  4  Best Fitness:  -190.994  Best program:
 f1(x)=(74.420/(-844.6))*x13
f2(x)=(-14.4)*x11+(-4.46)*x6

Iteration:  5  Best Fitness:  -180.198  Best program:
 f1(x)=(70.470/(-804.6))*x13
f2(x)=(-14.4)*x11+(-5.48)*x6

Iteration:  6  Best Fitness:  -177.024  Best program:
 f1(x)=(4.687*x6)
f2(x)=(-08.4)*x11+(-3.48)*x6

Iteration:  7  Best Fitness:  -172.809  Best program:
 f1(x)=(4.689*x6)
f2(x)=(-12.4)*x11+(-5.48)*x6

Iteration:  8  Best Fitness:  -172.673  Best program:
 f1(x)=(4.639*x6)
f2(x)=(-08.4)*x11+(-3.96)*x6

Iteration:  9  Best Fitness:  -170.97  Best program:
 f1(x)=(4.189*x6)
f2(x)=(-08.4)*x11+(-3.96)*x6

Iteration:  10  Best Fitness:  -170.868  Best program:
 f1(x)=(4.189*x6)
f2(x)=(-08.4)*x11+(-3.98)*x6

Iteration:  11  Best Fitness:  -170.812  Best program:
 f1(x)=(4.182*x6)
f2(x)=(-08.3)*x11+(-3.96)*x6

Iteration:  12  Best Fitness:  -170.229  Best program:
 f1(x)=(4.285*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  13  Best Fitness:  -170.229  Best program:
 f1(x)=(4.285*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  14  Best Fitness:  -170.007  Best program:
 f1(x)=(4.235*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  15  Best Fitness:  -170.007  Best program:
 f1(x)=(4.235*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  16  Best Fitness:  -169.968  Best program:
 f1(x)=(4.226*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  17  Best Fitness:  -169.964  Best program:
 f1(x)=(4.225*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  18  Best Fitness:  -169.952  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  19  Best Fitness:  -169.952  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  20  Best Fitness:  -169.952  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  21  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  22  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  23  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  24  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  25  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  26  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  27  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  28  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  29  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  30  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  31  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  32  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  33  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  34  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  35  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  36  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  37  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  38  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  39  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  40  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  41  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  42  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  43  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  44  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  45  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  46  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  47  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  48  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  49  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  50  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  51  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  52  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  53  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  54  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  55  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  56  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  57  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  58  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  59  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  60  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  61  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  62  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  63  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  64  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  65  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  66  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  67  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  68  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  69  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  70  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  71  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  72  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  73  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  74  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  75  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  76  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  77  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  78  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  79  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  80  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  81  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  82  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  83  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  84  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  85  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  86  Best Fitness:  -115.126  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x11+(-3.59)*x6

Iteration:  87  Best Fitness:  -112.113  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  88  Best Fitness:  -88.4968  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x4+(-3.995)*x5

Iteration:  89  Best Fitness:  -58.6713  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x4+(-3.98)*x6

Iteration:  90  Best Fitness:  -50.4624  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x5+(-3.99)*x6

Iteration:  91  Best Fitness:  -38.5865  Best program:
 f1(x)=(04.32*x9/sin((6.76/(-357.53))*x10))
f2(x)=(-08.1)*x5+(-5.99)*x6

Iteration:  92  Best Fitness:  -38.5865  Best program:
 f1(x)=(04.32*x9/sin((6.76/(-357.53))*x10))
f2(x)=(-08.1)*x5+(-5.99)*x6

Iteration:  93  Best Fitness:  -37.8666  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-354.53))*x10))
f2(x)=(-08.1)*x5+(-5.98)*x6

Iteration:  94  Best Fitness:  -36.8402  Best program:
 f1(x)=(04.42*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  95  Best Fitness:  -27.3551  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.53)*x10))
f2(x)=(-08.1)*x5+(-5.96)*x6

Iteration:  96  Best Fitness:  -27.3551  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.53)*x10))
f2(x)=(-08.1)*x5+(-5.96)*x6

Iteration:  97  Best Fitness:  -22.7841  Best program:
 f1(x)=(06.82*x6/sin((6.76/351.53)*x10))
f2(x)=(-08.1)*x5+(-5.96)*x6

Iteration:  98  Best Fitness:  -22.4294  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.52)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  99  Best Fitness:  -22.351  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.53)*x10))
f2(x)=(-05.1)*x5+(-3.95)*x6

Iteration:  100  Best Fitness:  -22.0381  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.33)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  101  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  102  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  103  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  104  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  105  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  106  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  107  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  108  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  109  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  110  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  111  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  112  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  113  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  114  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  115  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  116  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  117  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  118  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  119  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  120  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  121  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  122  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  123  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  124  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  125  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  126  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  127  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  128  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  129  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  130  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  131  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  132  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  133  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  134  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  135  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  136  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  137  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  138  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  139  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  140  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  141  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  142  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  143  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  144  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  145  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  146  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  147  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  148  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  149  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  150  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  151  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  152  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  153  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  154  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  155  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  156  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  157  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  158  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  159  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  160  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  161  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  162  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  163  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  164  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  165  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  166  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  167  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  168  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  169  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  170  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  171  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  172  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  173  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  174  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  175  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  176  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  177  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  178  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  179  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  180  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  181  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  182  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  183  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  184  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  185  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  186  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  187  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  188  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  189  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  190  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  191  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  192  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  193  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  194  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  195  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  196  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  197  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  198  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  199  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  200  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

train[0]=392.4716581322 test[0]=68.926807
train[1]=65.3003238738 test[1]=43.226337
train[2]=65.3003238738 test[2]=43.226337
train[3]=59.1816929430 test[3]=20.033621
train[4]=124.6191906515 test[4]=41.301946
train[5]=89.7771960777 test[5]=37.934131
train[6]=127.7557050844 test[6]=44.641646
train[7]=127.7557050844 test[7]=44.641646
train[8]=32.0800438817 test[8]=16.333137
train[9]=52.3420363628 test[9]=17.403368
train[10]=104.3146133864 test[10]=50.380269
train[11]=32.7107731777 test[11]=16.774979
train[12]=123.3560371100 test[12]=39.468196
train[13]=67.2947671212 test[13]=23.632696
train[14]=127.3585337666 test[14]=45.322726
train[15]=127.7557050844 test[15]=44.641646
train[16]=69.9666571551 test[16]=28.196439
train[17]=120.2660924924 test[17]=42.499115
train[18]=97.0775702905 test[18]=49.675088
train[19]=127.7557050844 test[19]=44.641646
train[20]=63.8406802677 test[20]=21.735265
train[21]=68.3701709320 test[21]=20.644265
train[22]=31.8873658116 test[22]=13.828811
train[23]=65.3003238738 test[23]=43.226337
train[24]=32.0800435193 test[24]=16.333050
train[25]=75.7651894990 test[25]=30.941818
train[26]=104.6928735195 test[26]=50.808832
train[27]=120.2660924924 test[27]=42.499115
train[28]=124.6191906515 test[28]=41.301946
train[29]=63.1644789311 test[29]=27.898397
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):     96.147558      35.73732
AVERAGES (TRAIN_RMSE, TEST_RMSE):   9.8054861      5.97807
  
# Settings Tab: Advanced
# Run Date:     06/09/2025 12:30:38
# Run Time:     01:43:18 (6198456 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Regression/mortgage.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. GE Chromosomes: 500
14. GE Max Generations: 200
15. GE Selection Rate: 0,10
16. GE Mutation Rate: 0,05
17. GE Length: 40
18. GE Local Search Generations: 20
19. GE Local Search Rate: 0,05
20. GE Local Search Method: Crossover
21. GE Method: Genetic
22. RBF Weights: 10
23. Neural Weights: 10
24. Neural Training Method: Genetic
25. BFGS Iteration: 2001
26. GN Chromosomes: 500
27. GN Max Generations: 200
28. GN Selection Rate: 0,10
29. GN Mutation Rate: 0,05
30. GN Local Search Rate: 0,00
31. GN Local Search Method: BFGS

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -247.083  Best program:
 f1(x)=(70.470/(-84.567))*x11
f2(x)=(-14.4)*x11+(-3.48)*x6

Iteration:  2  Best Fitness:  -240.887  Best program:
 f1(x)=(6.95*x3-(x6-(x3/(4.8*x12))))
f2(x)=(-14.4)*x11+(-3.48)*x6

Iteration:  3  Best Fitness:  -203.827  Best program:
 f1(x)=(70.470/(-844.6))*x13
f2(x)=(-14.4)*x11+(-3.48)*x6

Iteration:  4  Best Fitness:  -190.994  Best program:
 f1(x)=(74.420/(-844.6))*x13
f2(x)=(-14.4)*x11+(-4.46)*x6

Iteration:  5  Best Fitness:  -180.198  Best program:
 f1(x)=(70.470/(-804.6))*x13
f2(x)=(-14.4)*x11+(-5.48)*x6

Iteration:  6  Best Fitness:  -177.024  Best program:
 f1(x)=(4.687*x6)
f2(x)=(-08.4)*x11+(-3.48)*x6

Iteration:  7  Best Fitness:  -172.809  Best program:
 f1(x)=(4.689*x6)
f2(x)=(-12.4)*x11+(-5.48)*x6

Iteration:  8  Best Fitness:  -172.673  Best program:
 f1(x)=(4.639*x6)
f2(x)=(-08.4)*x11+(-3.96)*x6

Iteration:  9  Best Fitness:  -170.97  Best program:
 f1(x)=(4.189*x6)
f2(x)=(-08.4)*x11+(-3.96)*x6

Iteration:  10  Best Fitness:  -170.868  Best program:
 f1(x)=(4.189*x6)
f2(x)=(-08.4)*x11+(-3.98)*x6

Iteration:  11  Best Fitness:  -170.812  Best program:
 f1(x)=(4.182*x6)
f2(x)=(-08.3)*x11+(-3.96)*x6

Iteration:  12  Best Fitness:  -170.229  Best program:
 f1(x)=(4.285*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  13  Best Fitness:  -170.229  Best program:
 f1(x)=(4.285*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  14  Best Fitness:  -170.007  Best program:
 f1(x)=(4.235*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  15  Best Fitness:  -170.007  Best program:
 f1(x)=(4.235*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  16  Best Fitness:  -169.968  Best program:
 f1(x)=(4.226*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  17  Best Fitness:  -169.964  Best program:
 f1(x)=(4.225*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  18  Best Fitness:  -169.952  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  19  Best Fitness:  -169.952  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  20  Best Fitness:  -169.952  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.98)*x6

Iteration:  21  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  22  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  23  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  24  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  25  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  26  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  27  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  28  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  29  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  30  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  31  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  32  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  33  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  34  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  35  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  36  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  37  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  38  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  39  Best Fitness:  -169.921  Best program:
 f1(x)=(4.222*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  40  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  41  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  42  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  43  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  44  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  45  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  46  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  47  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  48  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  49  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  50  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  51  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  52  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  53  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  54  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  55  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  56  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  57  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  58  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  59  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  60  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  61  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  62  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  63  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  64  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  65  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  66  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  67  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  68  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  69  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  70  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  71  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  72  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  73  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  74  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  75  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  76  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  77  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  78  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  79  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  80  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  81  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  82  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  83  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  84  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  85  Best Fitness:  -169.913  Best program:
 f1(x)=(04.22*x6)
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  86  Best Fitness:  -115.126  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x11+(-3.59)*x6

Iteration:  87  Best Fitness:  -112.113  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x11+(-3.99)*x6

Iteration:  88  Best Fitness:  -88.4968  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x4+(-3.995)*x5

Iteration:  89  Best Fitness:  -58.6713  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x4+(-3.98)*x6

Iteration:  90  Best Fitness:  -50.4624  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-08.1)*x5+(-3.99)*x6

Iteration:  91  Best Fitness:  -38.5865  Best program:
 f1(x)=(04.32*x9/sin((6.76/(-357.53))*x10))
f2(x)=(-08.1)*x5+(-5.99)*x6

Iteration:  92  Best Fitness:  -38.5865  Best program:
 f1(x)=(04.32*x9/sin((6.76/(-357.53))*x10))
f2(x)=(-08.1)*x5+(-5.99)*x6

Iteration:  93  Best Fitness:  -37.8666  Best program:
 f1(x)=(04.22*x6/sin((6.75/(-354.53))*x10))
f2(x)=(-08.1)*x5+(-5.98)*x6

Iteration:  94  Best Fitness:  -36.8402  Best program:
 f1(x)=(04.42*x6/sin((6.75/(-35.45))*x4))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  95  Best Fitness:  -27.3551  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.53)*x10))
f2(x)=(-08.1)*x5+(-5.96)*x6

Iteration:  96  Best Fitness:  -27.3551  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.53)*x10))
f2(x)=(-08.1)*x5+(-5.96)*x6

Iteration:  97  Best Fitness:  -22.7841  Best program:
 f1(x)=(06.82*x6/sin((6.76/351.53)*x10))
f2(x)=(-08.1)*x5+(-5.96)*x6

Iteration:  98  Best Fitness:  -22.4294  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.52)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  99  Best Fitness:  -22.351  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.53)*x10))
f2(x)=(-05.1)*x5+(-3.95)*x6

Iteration:  100  Best Fitness:  -22.0381  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.33)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  101  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  102  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  103  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  104  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  105  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  106  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  107  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  108  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  109  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  110  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  111  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  112  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  113  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  114  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  115  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  116  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  117  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  118  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  119  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  120  Best Fitness:  -21.9444  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.98)*x6

Iteration:  121  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  122  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  123  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  124  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  125  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  126  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  127  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  128  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  129  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  130  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  131  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  132  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  133  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  134  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  135  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  136  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  137  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  138  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  139  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  140  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  141  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  142  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  143  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  144  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  145  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  146  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  147  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  148  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  149  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  150  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  151  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  152  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  153  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  154  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  155  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  156  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  157  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  158  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  159  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  160  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  161  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  162  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  163  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  164  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  165  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  166  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  167  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  168  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  169  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  170  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  171  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  172  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  173  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  174  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  175  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  176  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  177  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  178  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  179  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  180  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  181  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  182  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  183  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  184  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  185  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  186  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  187  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  188  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  189  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  190  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  191  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  192  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  193  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  194  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  195  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  196  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  197  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  198  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  199  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

Iteration:  200  Best Fitness:  -21.94  Best program:
 f1(x)=(04.32*x6/sin((6.76/351.38)*x10))
f2(x)=(-05.1)*x5+(-3.99)*x6

train[0]=150.0999088668 test[0]=24.551206
train[1]=150.0999088668 test[1]=24.551206
train[2]=150.0999088668 test[2]=24.551206
train[3]=150.0999088668 test[3]=24.551206
train[4]=150.0999088668 test[4]=24.551206
train[5]=150.0999088668 test[5]=24.551206
train[6]=150.0999088668 test[6]=24.551206
train[7]=150.0999088668 test[7]=24.551206
train[8]=150.0999088668 test[8]=24.551206
train[9]=150.0999088668 test[9]=24.551206
train[10]=150.0999088668 test[10]=24.551206
train[11]=150.0999088668 test[11]=24.551206
train[12]=150.0999088668 test[12]=24.551206
train[13]=150.0999088668 test[13]=24.551206
train[14]=150.0999088668 test[14]=24.551206
train[15]=150.0999088668 test[15]=24.551206
train[16]=150.0999088668 test[16]=24.551206
train[17]=150.0999088668 test[17]=24.551206
train[18]=150.0999088668 test[18]=24.551206
train[19]=150.0999088668 test[19]=24.551206
train[20]=150.0999088668 test[20]=24.551206
train[21]=150.0999088668 test[21]=24.551206
train[22]=150.0999088668 test[22]=24.551206
train[23]=150.0999088668 test[23]=24.551206
train[24]=150.0999088668 test[24]=24.551206
train[25]=150.0999088668 test[25]=24.551206
train[26]=150.0999088668 test[26]=24.551206
train[27]=150.0999088668 test[27]=24.551206
train[28]=150.0999088668 test[28]=24.551206
train[29]=150.0999088668 test[29]=24.551206
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):     150.09991      24.551206
AVERAGES (TRAIN_RMSE, TEST_RMSE):   12.251527      4.9549174
  

📊 Ailerons dataset

# Settings Tab: Advanced
# Run Date:     09/09/2025 15:02:53
# Run Time:     00:07:18 (438727 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Regression/ailerons.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. RBF Weights: 10

@ Results: ===============================================================

train[0]=0.0020526498 test[0]=0.000230
train[1]=0.0020528884 test[1]=0.000230
train[2]=0.0020503656 test[2]=0.000230
train[3]=0.0020530989 test[3]=0.000230
train[4]=0.0020546017 test[4]=0.000230
train[5]=0.0020503656 test[5]=0.000230
train[6]=0.0020530989 test[6]=0.000230
train[7]=0.0020548189 test[7]=0.000230
train[8]=0.0020548045 test[8]=0.000230
train[9]=0.0020530989 test[9]=0.000230
train[10]=0.0020528194 test[10]=0.000230
train[11]=0.0020530989 test[11]=0.000230
train[12]=0.0020530989 test[12]=0.000230
train[13]=0.0020503656 test[13]=0.000230
train[14]=0.0020530989 test[14]=0.000230
train[15]=0.0020503656 test[15]=0.000230
train[16]=0.0020503656 test[16]=0.000230
train[17]=0.0020530989 test[17]=0.000230
train[18]=0.0020545534 test[18]=0.000230
train[19]=0.0020548189 test[19]=0.000230
train[20]=0.0020545806 test[20]=0.000230
train[21]=0.0020548189 test[21]=0.000230
train[22]=0.0020530989 test[22]=0.000230
train[23]=0.0020530989 test[23]=0.000230
train[24]=0.0020530989 test[24]=0.000230
train[25]=0.0020548189 test[25]=0.000230
train[26]=0.0020510860 test[26]=0.000230
train[27]=0.0020530989 test[27]=0.000230
train[28]=0.0020534887 test[28]=0.000230
train[29]=0.0020530989 test[29]=0.000230
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):     0.0020529921   0.00022998795
AVERAGES (TRAIN_RMSE, TEST_RMSE):   0.045309956    0.015165354
  
# Settings Tab: Advanced
# Run Date:     09/09/2025 15:50:27
# Run Time:     28:14:43 (101683045 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/datasets/MLDATASETS-master/QFC_GUI_datasets/Regression/ailerons.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/dataset.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFc_UI/debug/exports/experiments/export.cpp
 7. Features: 1
 8. Feature Create Model: Copy
 9. Feature Evaluate Model: Neural
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 1
13. Neural Weights: 10
14. Neural Training Method: Genetic
15. BFGS Iteration: 2001
16. GN Chromosomes: 500
17. GN Max Generations: 200
18. GN Selection Rate: 0,10
19. GN Mutation Rate: 0,05
20. GN Local Search Rate: 0,00
21. GN Local Search Method: BFGS

@ Results: ===============================================================

train[0]=0.0003137038 test[0]=0.000036
train[1]=0.0003137038 test[1]=0.000036
train[2]=0.0003137038 test[2]=0.000036
train[3]=0.0003137038 test[3]=0.000036
train[4]=0.0003137038 test[4]=0.000036
train[5]=0.0003137038 test[5]=0.000036
train[6]=0.0003137038 test[6]=0.000036
train[7]=0.0003137038 test[7]=0.000036
train[8]=0.0003137038 test[8]=0.000036
train[9]=0.0003137038 test[9]=0.000036
train[10]=0.0003137038 test[10]=0.000036
train[11]=0.0003137038 test[11]=0.000036
train[12]=0.0003137038 test[12]=0.000036
train[13]=0.0003137038 test[13]=0.000036
train[14]=0.0003137038 test[14]=0.000036
train[15]=0.0003137038 test[15]=0.000036
train[16]=0.0003137038 test[16]=0.000036
train[17]=0.0003137038 test[17]=0.000036
train[18]=0.0003137038 test[18]=0.000036
train[19]=0.0003137038 test[19]=0.000036
train[20]=0.0003137038 test[20]=0.000036
train[21]=0.0003137038 test[21]=0.000036
train[22]=0.0003137038 test[22]=0.000036
train[23]=0.0003137038 test[23]=0.000036
train[24]=0.0003137038 test[24]=0.000036
train[25]=0.0003137038 test[25]=0.000036
train[26]=0.0003137038 test[26]=0.000036
train[27]=0.0003137038 test[27]=0.000036
train[28]=0.0003137038 test[28]=0.000036
train[29]=0.0003137038 test[29]=0.000036
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):     0.00031370381   3.6162119e-05
AVERAGES (TRAIN_RMSE, TEST_RMSE):   0.017711686     0.0060134948
  
# Settings Tab: Advanced
# Run Date:     10/09/2025 21:04:45
# Run Time:     211:50:38 (762638408 ms)

@ Parameters: ============================================================

 1. Dataset File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/QFC_GUI_datasets/Regression/ailerons.data
 2. Dataset Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/ailerons.train
 3. Dataset Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/ailerons.test
 4. Export Train File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/export.train
 5. Export Test File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/export.test
 6. Export Cpp File: C:/Users/Erarbo/Desktop/Diplomatiki/MyProjects/QFC_GUI/build/Desktop_Qt_5_15_2_MinGW_32_bit-Debug/debug/exports/export.cpp
 7. Features: 2
 8. Feature Create Model: RBF
 9. Feature Evaluate Model: RBF
10. Test Iters: 30
11. Random Seed: 1
12. Threads: 6
13. GE Chromosomes: 500
14. GE Max Generations: 200
15. GE Selection Rate: 0,10
16. GE Mutation Rate: 0,05
17. GE Length: 40
18. GE Local Search Generations: 20
19. GE Local Search Rate: 0,05
20. GE Local Search Method: Crossover
21. GE Method: Genetic
22. RBF Weights: 10

@ Results: ===============================================================

Iteration:  1  Best Fitness:  -0.00088716  Best program:
 f1(x)=abs(cos((-06.61)*x15+sin(abs(94.3*x19))))
f2(x)=(x33-(48.100/68.63)*x7+994.84*x40)

Iteration:  2  Best Fitness:  -0.000728601  Best program:
 f1(x)=(x19+(067.7/(-030.920))*x7)
f2(x)=(x33-(48.100/68.63)*x7+994.84*x40)

Iteration:  3  Best Fitness:  -0.000622079  Best program:
 f1(x)=x7
f2(x)=(x3-((-188.1)*x21))

Iteration:  4  Best Fitness:  -0.000622079  Best program:
 f1(x)=x7
f2(x)=(x3-((-188.1)*x21))

Iteration:  5  Best Fitness:  -0.000609159  Best program:
 f1(x)=x7
f2(x)=(x3-((-120.973)*x20))

Iteration:  6  Best Fitness:  -0.000598913  Best program:
 f1(x)=(x7+((-013.62)*x13))
f2(x)=(x3-((-120.273)*x20))

Iteration:  7  Best Fitness:  -0.000587434  Best program:
 f1(x)=(x7+((-019.4)*x17))
f2(x)=(x3-((-118.1)*x21))

Iteration:  8  Best Fitness:  -0.000587434  Best program:
 f1(x)=(x7+((-019.4)*x17))
f2(x)=(x3-((-118.1)*x21))

Iteration:  9  Best Fitness:  -0.000583024  Best program:
 f1(x)=x7
f2(x)=(x3-((-158.1)*x14))

Iteration:  10  Best Fitness:  -0.000583011  Best program:
 f1(x)=(x7+((-019.464)*x34))
f2(x)=(x3-((-158.1)*x14))

Iteration:  11  Best Fitness:  -0.000583011  Best program:
 f1(x)=(x7+((-019.464)*x34))
f2(x)=(x3-((-158.1)*x14))

Iteration:  12  Best Fitness:  -0.000569386  Best program:
 f1(x)=x7+((-242.8)/(-3.0))*x28+97.8*x12+(59.90/(-45.115))*x37+(9.423/43.0)*x28
f2(x)=(x3-((-158.1)*x14))

Iteration:  13  Best Fitness:  -0.000569386  Best program:
 f1(x)=x7+((-242.8)/(-3.0))*x28+97.8*x12+(59.90/(-45.115))*x37+(9.423/43.0)*x28
f2(x)=(x3-((-158.1)*x14))

Iteration:  14  Best Fitness:  -0.000569312  Best program:
 f1(x)=x7+((-24.3)/43.0)*x28+97.8*x12+(59.90/(-45.815))*x37+(4.423/43.0)*x28
f2(x)=(x3-((-158.1)*x14))

Iteration:  15  Best Fitness:  -0.000564765  Best program:
 f1(x)=x7+((-242.8)/(-3.077))*x17+log(x12+x12)
f2(x)=(x3-((-158.1)*x14))

Iteration:  16  Best Fitness:  -0.000559494  Best program:
 f1(x)=x7+((-342.8)/(-3.077))*x17+log(x12+x12)
f2(x)=(x3-((-158.1)*x14))

Iteration:  17  Best Fitness:  -0.000533188  Best program:
 f1(x)=x7+((-34.3)/43.0)*x7+97.8*x12+(59.90/(-45.115))*x37+(4.42/(-9.3))*x26
f2(x)=(x3-((-158.1)*x14))

Iteration:  18  Best Fitness:  -0.000517073  Best program:
 f1(x)=x7+((-34.8)/43.0)*x7+97.8*x12+((-59.90)/(-45.115))*x37+(4.42/9.3)*x26
f2(x)=(x3-((-128.1)*x14))

Iteration:  19  Best Fitness:  -0.000504846  Best program:
 f1(x)=x7+((-242.8)/(-3.077))*x9+x30
f2(x)=(x3-((-150.9)*x14))

Iteration:  20  Best Fitness:  -0.000500217  Best program:
 f1(x)=x7+((-34.3)/47.0)*x7+97.8*x12+(59.13/(-45.115))*x37+(4.42/(-9.7))*x26
f2(x)=(x3-((-128.1)*x14))

Iteration:  21  Best Fitness:  -0.000497297  Best program:
 f1(x)=x7+((-34.3)/49.2)*x7+97.8*x12+(593.0/(-55.615))*x37+((-4.42)/(-9.9))*x26
f2(x)=(x3-((-128.9)*x14))

Iteration:  22  Best Fitness:  -0.000497297  Best program:
 f1(x)=x7+((-34.3)/49.2)*x7+97.8*x12+(593.0/(-55.615))*x37+((-4.42)/(-9.9))*x26
f2(x)=(x3-((-128.9)*x14))

Iteration:  23  Best Fitness:  -0.000495675  Best program:
 f1(x)=x7+((-33.3)/49.2)*x7+97.1*x12+(593.0/(-45.615))*x37+(4.32/(-9.9))*x26
f2(x)=(x3-((-129.1)*x14))

Iteration:  24  Best Fitness:  -0.000488745  Best program:
 f1(x)=x6+((-34.3)/44.2)*x7+97.8*x12+(598.6/(-45.215))*x37+(-4.42)*x4
f2(x)=(x3-((-128.1)*x14))

Iteration:  25  Best Fitness:  -0.000424461  Best program:
 f1(x)=x6+((-24.3)/44.2)*x7+97.8*x12+(596.67/50.15)*x37+(-4.42)*x4
f2(x)=(x3-((-028.1)*x14))

Iteration:  26  Best Fitness:  -0.000416689  Best program:
 f1(x)=x6+((-34.3)/44.2)*x7+(-97.8)*x12+(593.0/(-5.06))*x18+sin((-4.42)*x4)
f2(x)=(x3-((-124.9)*x14))

Iteration:  27  Best Fitness:  -0.000409606  Best program:
 f1(x)=x6+((-24.3)/44.2)*x7+97.8*x12+(596.67/50.15)*x37+(-2.42)*x4
f2(x)=(x3-((-028.1)*x14))

Iteration:  28  Best Fitness:  -0.000401669  Best program:
 f1(x)=x6+((-24.3)/44.2)*x7+97.8*x12+(596.67/50.15)*x37+(-4.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  29  Best Fitness:  -0.00039567  Best program:
 f1(x)=x6+((-24.3)/44.2)*x7+97.8*x12+(596.67/50.15)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  30  Best Fitness:  -0.000389032  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+97.8*x12+(596.67/50.15)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  31  Best Fitness:  -0.000389032  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+97.8*x12+(596.67/50.15)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  32  Best Fitness:  -0.000389032  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+97.8*x12+(596.69/50.05)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  33  Best Fitness:  -0.000388713  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+97.8*x12+(996.67/50.15)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  34  Best Fitness:  -0.000388295  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+97.8*x12+(596.67/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  35  Best Fitness:  -0.000387811  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+97.8*x12+(996.67/90.15)*x37+(-2.42)*x4
f2(x)=(x3-((-038.139)*x17))

Iteration:  36  Best Fitness:  -0.000387791  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+97.1*x12+(596.67/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  37  Best Fitness:  -0.000387564  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+97.1*x12+(596.67/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.4)*x14))

Iteration:  38  Best Fitness:  -0.000387088  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(595.67/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  39  Best Fitness:  -0.000386987  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.67/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  40  Best Fitness:  -0.000386919  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.139)*x17))

Iteration:  41  Best Fitness:  -0.000386901  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.4*x12+(596.67/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.1)*x14))

Iteration:  42  Best Fitness:  -0.000386539  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.67/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  43  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(595.77/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.931)*x17))

Iteration:  44  Best Fitness:  -0.000386362  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(597.67/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.985)*x17))

Iteration:  45  Best Fitness:  -0.000386359  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.67/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.985)*x17))

Iteration:  46  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  47  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  48  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  49  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  50  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  51  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  52  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  53  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  54  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  55  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  56  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  57  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  58  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  59  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  60  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17))

Iteration:  61  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.938)*x17))

Iteration:  62  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.938)*x17))

Iteration:  63  Best Fitness:  -0.000386343  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.938)*x17))

Iteration:  64  Best Fitness:  -0.000352323  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+(596.32/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17-((-24.72)*x1*(x30*((-342.413)*x17)))))

Iteration:  65  Best Fitness:  -0.000351475  Best program:
 f1(x)=x6+((-24.3)/41.9)*x7+95.8*x12+(596.37/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.938)*x17))

Iteration:  66  Best Fitness:  -0.000348438  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+93.8*x12+(596.81/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.933)*x17-((-24.72)*x1*(x30*((-342.413)*x17)))))

Iteration:  67  Best Fitness:  -0.000348438  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+93.8*x12+(596.81/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.933)*x17-((-24.72)*x1*(x30*((-342.413)*x17)))))

Iteration:  68  Best Fitness:  -0.000348067  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+93.8*x12+(596.81/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-034.939)*x17-((-24.72)*x1*(x30*((-342.413)*x17)))))

Iteration:  69  Best Fitness:  -0.000344269  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x12+((-593.32)/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17-((-34.92)*x1*(x30*((-442.973)*x17)))))

Iteration:  70  Best Fitness:  -0.000343412  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+95.8*x17+(595.32/5.215)*x37+(-2.42)*x4
f2(x)=(x3-((-033.939)*x17-((-74.72)*x1*(x30*((-342.436)*x17)))))

Iteration:  71  Best Fitness:  -0.00034197  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+92.8*x12+(5.203/54.275)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17-((-64.72)*x1*(x30*((-442.413)*x17)))))

Iteration:  72  Best Fitness:  -0.000341969  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+92.8*x12+(5.603/54.275)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17-((-64.72)*x1*(x30*((-442.973)*x17)))))

Iteration:  73  Best Fitness:  -0.000341825  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+91.8*x12+(5.203/54.275)*x37+(-2.42)*x4
f2(x)=(x3-((-038.939)*x17-((-64.72)*x1*(x30*((-442.413)*x17)))))

Iteration:  74  Best Fitness:  -0.00034144  Best program:
 f1(x)=x6+((-24.3)/41.9)*x7+91.8*x12+(592.3/46.215)*x37+(-2.42)*x4
f2(x)=(x3-((-033.939)*x17-((-64.72)*x1*(x30*((-442.413)*x17)))))

Iteration:  75  Best Fitness:  -0.000341393  Best program:
 f1(x)=x6+((-24.3)/41.9)*x7+91.8*x12+(592.3/461.15)*x37+(-2.42)*x4
f2(x)=(x3-((-033.939)*x17-((-64.72)*x1*(x30*((-442.418)*x17)))))

Iteration:  76  Best Fitness:  -0.000341393  Best program:
 f1(x)=x6+((-24.3)/41.9)*x7+91.8*x12+(592.3/461.15)*x37+(-2.42)*x4
f2(x)=(x3-((-033.939)*x17-((-64.72)*x1*(x30*((-442.418)*x17)))))

Iteration:  77  Best Fitness:  -0.000341206  Best program:
 f1(x)=x6+((-24.3)/41.6)*x7+93.2*x12+(5.308/(-45.825))*x37+(-2.42)*x4
f2(x)=(x3-((-033.934)*x17-((-74.92)*x1*(x30*((-442.133)*x17)))))

Iteration:  78  Best Fitness:  -0.000341076  Best program:
 f1(x)=x6+((-24.3)/41.0)*x7+93.8*x12
f2(x)=(x3-((-033.339)*x17-((-64.72)*x1*(x30*((-494.413)*x17)))))

Iteration:  79  Best Fitness:  -0.000340971  Best program:
 f1(x)=x6+((-23.3)/41.9)*x7+91.8*x12+((-596.3)/46.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.71)*x1*(x30*((-494.418)*x17)))))

Iteration:  80  Best Fitness:  -0.00034095  Best program:
 f1(x)=x6+((-23.3)/41.6)*x7+91.8*x12+(5.30/245.275)*x37+(-2.32)*x4
f2(x)=(x3-((-033.999)*x17-((-74.74)*x1*(x30*((-442.133)*x17)))))

Iteration:  81  Best Fitness:  -0.000340944  Best program:
 f1(x)=x6+((-23.3)/41.6)*x7+91.8*x12+(59.5/(-246.615))*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.74)*x1*(x30*((-492.418)*x17)))))

Iteration:  82  Best Fitness:  -0.000340925  Best program:
 f1(x)=x6+((-23.3)/41.5)*x7+91.8*x12+(59.5/(-246.615))*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.70)*x1*(x30*((-494.413)*x17)))))

Iteration:  83  Best Fitness:  -0.000340904  Best program:
 f1(x)=x6+((-23.3)/41.5)*x7+91.8*x12+((-595.3)/46.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.70)*x1*(x30*((-442.433)*x17)))))

Iteration:  84  Best Fitness:  -0.000340887  Best program:
 f1(x)=x6+((-23.3)/41.5)*x7+91.8*x12+((-595.3)/46.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.74)*x1*(x30*((-492.133)*x17)))))

Iteration:  85  Best Fitness:  -0.00034087  Best program:
 f1(x)=x6+((-23.3)/41.5)*x7+91.8*x12+((-995.3)/43.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.74)*x1*(x30*((-492.418)*x17)))))

Iteration:  86  Best Fitness:  -0.000340846  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+91.8*x12+((-799.0)/46.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.70)*x1*(x30*((-442.443)*x17)))))

Iteration:  87  Best Fitness:  -0.000340846  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+91.8*x12+((-799.0)/46.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.70)*x1*(x30*((-442.443)*x17)))))

Iteration:  88  Best Fitness:  -0.000340823  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+91.8*x12+((-799.0)/46.215)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.70)*x1*(x30*((-474.478)*x17)))))

Iteration:  89  Best Fitness:  -0.000340821  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+91.8*x12+((-795.0)/42.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.73)*x1*(x30*((-492.413)*x17)))))

Iteration:  90  Best Fitness:  -0.000340814  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+91.8*x12+((-995.3)/43.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.74)*x1*(x30*((-474.473)*x17)))))

Iteration:  91  Best Fitness:  -0.000340814  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+91.8*x12+((-995.3)/43.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.74)*x1*(x30*((-474.471)*x17)))))

Iteration:  92  Best Fitness:  -0.000340811  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+91.8*x12+((-79.506)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.74)*x1*(x30*((-492.438)*x17)))))

Iteration:  93  Best Fitness:  -0.000340811  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+91.8*x12+((-79.506)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.74)*x1*(x30*((-492.438)*x17)))))

Iteration:  94  Best Fitness:  -0.000340791  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-799.0)/45.655)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.73)*x1*(x30*((-492.713)*x19)))))

Iteration:  95  Best Fitness:  -0.000340791  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-799.0)/45.655)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.73)*x1*(x30*((-492.713)*x19)))))

Iteration:  96  Best Fitness:  -0.000340785  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-999.0)/46.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.70)*x1*(x30*((-472.478)*x19)))))

Iteration:  97  Best Fitness:  -0.000340783  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-999.0)/43.245)*x37+(-2.32)*x4
f2(x)=(x3-((-033.932)*x17-((-74.70)*x1*(x30*((-472.473)*x17)))))

Iteration:  98  Best Fitness:  -0.000340782  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/43.615)*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.74)*x1*(x30*((-474.438)*x19)))))

Iteration:  99  Best Fitness:  -0.000340753  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-795.1)/43.245)*x37+(-2.32)*x4
f2(x)=(x3-((-034.909)*x17-((-74.74)*x1*(x30*((-492.473)*x17)))))

Iteration:  100  Best Fitness:  -0.000340748  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-795.1)/43.245)*x37+(-2.32)*x4
f2(x)=(x3-((-034.909)*x17-((-74.74)*x1*(x30*((-474.438)*x17)))))

Iteration:  101  Best Fitness:  -0.000340748  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-795.1)/43.245)*x37+(-2.32)*x4
f2(x)=(x3-((-034.909)*x17-((-74.72)*x1*(x30*((-474.438)*x17)))))

Iteration:  102  Best Fitness:  -0.000340742  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/43.655)*x37+(-2.32)*x4
f2(x)=(x3-((-033.939)*x17-((-74.74)*x1*(x30*((-474.438)*x17)))))

Iteration:  103  Best Fitness:  -0.000340743  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/47.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.939)*x17-((-74.04)*x1*(x30*((-476.238)*x17)))))

Iteration:  104  Best Fitness:  -0.000340735  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-99.016)/3.245)*x37+(-2.32)*x4
f2(x)=(x3-((-034.909)*x17-((-74.74)*x1*(x30*((-472.4)*x24)))))

Iteration:  105  Best Fitness:  -0.000340735  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-99.016)/3.245)*x37+(-2.32)*x4
f2(x)=(x3-((-034.909)*x17-((-74.74)*x1*(x30*((-472.4)*x24)))))

Iteration:  106  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/27.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.438)*x17)))))

Iteration:  107  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/27.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.438)*x17)))))

Iteration:  108  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/27.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.438)*x17)))))

Iteration:  109  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-972.3)/27.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.471)*x19)))))

Iteration:  110  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-972.3)/27.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.478)*x17)))))

Iteration:  111  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-972.3)/27.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.478)*x17)))))

Iteration:  112  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-972.3)/27.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.478)*x17)))))

Iteration:  113  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-972.3)/27.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.478)*x17)))))

Iteration:  114  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-972.3)/27.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.478)*x17)))))

Iteration:  115  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/29.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.4)*x18)))))

Iteration:  116  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/29.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.4)*x18)))))

Iteration:  117  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/29.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.4)*x18)))))

Iteration:  118  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/29.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.4)*x18)))))

Iteration:  119  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/29.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.4)*x18)))))

Iteration:  120  Best Fitness:  -0.000340734  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.8*x12+((-995.3)/29.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.74)*x1*(x30*((-472.418)*x17)))))

Iteration:  121  Best Fitness:  -0.000340695  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.092)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.809)*x17-((-74.61)*x1*(x30*((-474.4)*x18)))))

Iteration:  122  Best Fitness:  -0.000340695  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.092)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.809)*x17-((-74.61)*x1*(x30*((-472.703)*x17)))))

Iteration:  123  Best Fitness:  -0.000340695  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.092)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.809)*x17-((-74.61)*x1*(x30*((-472.418)*x23)))))

Iteration:  124  Best Fitness:  -0.000340694  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.092)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x16-((-74.61)*x1*(x30*((-472.438)*x17)))))

Iteration:  125  Best Fitness:  -0.000340695  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.092)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x16-((-74.61)*x1*(x30*((-472.488)*x17)))))

Iteration:  126  Best Fitness:  -0.000340695  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.092)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x16-((-74.61)*x1*(x30*((-472.408)*x19)))))

Iteration:  127  Best Fitness:  -0.000340694  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.839)*x17-((-74.61)*x1*(x30*((-472.713)*x19)))))

Iteration:  128  Best Fitness:  -0.000340694  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.092)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.928)*x17-((-74.63)*x1*(x30*((-472.488)*x17)))))

Iteration:  129  Best Fitness:  -0.000340694  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.869)*x17-((-74.61)*x1*(x30*((-472.733)*x17)))))

Iteration:  130  Best Fitness:  -0.000340694  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.905)*x17-((-74.71)*x1*(x30*((-472.738)*x17)))))

Iteration:  131  Best Fitness:  -0.000340694  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.905)*x17-((-74.71)*x1*(x30*((-472.738)*x17)))))

Iteration:  132  Best Fitness:  -0.000340637  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.809)*x17-((-74.74)*x2*(x30*((-472.408)*x19)))))

Iteration:  133  Best Fitness:  -0.000340637  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.809)*x17-((-74.74)*x2*(x30*((-472.408)*x19)))))

Iteration:  134  Best Fitness:  -0.000340637  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.809)*x17-((-74.74)*x2*(x30*((-472.408)*x19)))))

Iteration:  135  Best Fitness:  -0.000340637  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.809)*x17-((-74.74)*x2*(x30*((-472.408)*x19)))))

Iteration:  136  Best Fitness:  -0.000340637  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.809)*x17-((-74.74)*x2*(x30*((-472.408)*x19)))))

Iteration:  137  Best Fitness:  -0.000340637  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-93.072)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.809)*x17-((-74.74)*x2*(x30*((-472.408)*x19)))))

Iteration:  138  Best Fitness:  -0.000340542  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  139  Best Fitness:  -0.000340542  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  140  Best Fitness:  -0.000340542  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  141  Best Fitness:  -0.00034053  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.062)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.195)*x17-((-75.71)*x2*(x30*((-242.738)*x19)))))

Iteration:  142  Best Fitness:  -0.000340542  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  143  Best Fitness:  -0.000340542  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  144  Best Fitness:  -0.000340509  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-83.070)/2.165)*x37+(-2.32)*x4
f2(x)=(x3-((-034.991)*x17-((-75.71)*x2*(x30*((-472.7)*x24)))))

Iteration:  145  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  146  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  147  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  148  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  149  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  150  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  151  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  152  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  153  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  154  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  155  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  156  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  157  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  158  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  159  Best Fitness:  -0.000340524  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.012)/2.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.995)*x17-((-75.71)*x2*(x30*((-472.738)*x19)))))

Iteration:  160  Best Fitness:  -0.000340502  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-98.291)/2.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.998)*x17-((-75.71)*x2*(x30*((-434.738)*x19)))))

Iteration:  161  Best Fitness:  -0.000340502  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-98.291)/2.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.998)*x17-((-75.71)*x2*(x30*((-434.738)*x19)))))

Iteration:  162  Best Fitness:  -0.000340502  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-98.291)/2.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.998)*x17-((-75.71)*x2*(x30*((-434.738)*x19)))))

Iteration:  163  Best Fitness:  -0.000340502  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-98.291)/2.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.998)*x17-((-75.71)*x2*(x30*((-434.738)*x19)))))

Iteration:  164  Best Fitness:  -0.000340502  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-98.291)/2.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.998)*x17-((-75.71)*x2*(x30*((-434.738)*x19)))))

Iteration:  165  Best Fitness:  -0.000340502  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-98.291)/2.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.998)*x17-((-75.71)*x2*(x30*((-434.738)*x19)))))

Iteration:  166  Best Fitness:  -0.000340502  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-98.291)/2.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.998)*x17-((-75.71)*x2*(x30*((-434.738)*x19)))))

Iteration:  167  Best Fitness:  -0.000340502  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-98.291)/2.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.998)*x17-((-75.71)*x2*(x30*((-434.738)*x19)))))

Iteration:  168  Best Fitness:  -0.000340502  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-98.291)/2.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.998)*x17-((-75.71)*x2*(x30*((-434.738)*x19)))))

Iteration:  169  Best Fitness:  -0.00034042  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.372)/6.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.772)*x19)))))

Iteration:  170  Best Fitness:  -0.00034042  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.372)/6.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.772)*x19)))))

Iteration:  171  Best Fitness:  -0.00034042  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.372)/6.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.772)*x19)))))

Iteration:  172  Best Fitness:  -0.00034042  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.372)/6.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.772)*x19)))))

Iteration:  173  Best Fitness:  -0.00034042  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.372)/6.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.772)*x19)))))

Iteration:  174  Best Fitness:  -0.00034042  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-99.372)/6.615)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.772)*x19)))))

Iteration:  175  Best Fitness:  -0.000340365  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.772)*x19)))))

Iteration:  176  Best Fitness:  -0.000340329  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.708)*x19)))))

Iteration:  177  Best Fitness:  -0.000340329  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.708)*x19)))))

Iteration:  178  Best Fitness:  -0.000340329  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.708)*x19)))))

Iteration:  179  Best Fitness:  -0.000340329  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.708)*x19)))))

Iteration:  180  Best Fitness:  -0.000340329  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.708)*x19)))))

Iteration:  181  Best Fitness:  -0.000340329  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.708)*x19)))))

Iteration:  182  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  183  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  184  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  185  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  186  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  187  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  188  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  189  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  190  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  191  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  192  Best Fitness:  -0.000340314  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/86.645)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.71)*x2*(x30*((-372.738)*x19)))))

Iteration:  193  Best Fitness:  -0.000340312  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/84.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-79.01)*x2*(x30*((-372.708)*x19)))))

Iteration:  194  Best Fitness:  -0.000340312  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.07)/84.255)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-79.01)*x2*(x30*((-372.708)*x19)))))

Iteration:  195  Best Fitness:  -0.000340308  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.67)/87.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.21)*x2*(x30*((-376.738)*x19)))))

Iteration:  196  Best Fitness:  -0.000340308  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.67)/87.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.21)*x2*(x30*((-376.738)*x19)))))

Iteration:  197  Best Fitness:  -0.000340308  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.67)/87.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.21)*x2*(x30*((-376.738)*x19)))))

Iteration:  198  Best Fitness:  -0.000340308  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.67)/87.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.21)*x2*(x30*((-376.738)*x19)))))

Iteration:  199  Best Fitness:  -0.000340308  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.67)/87.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.21)*x2*(x30*((-376.738)*x19)))))

Iteration:  200  Best Fitness:  -0.000340308  Best program:
 f1(x)=x6+((-23.3)/41.1)*x7+90.1*x12+((-19.67)/87.655)*x37+(-2.32)*x4
f2(x)=(x3-((-034.901)*x17-((-75.21)*x2*(x30*((-376.738)*x19)))))

train[0]=0.0003407294 test[0]=0.000038
train[1]=0.0003403092 test[1]=0.000038
train[2]=0.0003404335 test[2]=0.000038
train[3]=0.0003404207 test[3]=0.000038
train[4]=0.0003403121 test[4]=0.000038
train[5]=0.0003403386 test[5]=0.000038
train[6]=0.0003403129 test[6]=0.000038
train[7]=0.0003403285 test[7]=0.000038
train[8]=0.0003403110 test[8]=0.000038
train[9]=0.0003404718 test[9]=0.000038
train[10]=0.0003404231 test[10]=0.000038
train[11]=0.0003403840 test[11]=0.000038
train[12]=0.0003403118 test[12]=0.000038
train[13]=0.0003403150 test[13]=0.000038
train[14]=0.0003403277 test[14]=0.000038
train[15]=0.0003403091 test[15]=0.000038
train[16]=0.0003403626 test[16]=0.000038
train[17]=0.0003409022 test[17]=0.000038
train[18]=0.0003409022 test[18]=0.000038
train[19]=0.0003403140 test[19]=0.000038
train[20]=0.0003404032 test[20]=0.000038
train[21]=0.0003403114 test[21]=0.000038
train[22]=0.0003403082 test[22]=0.000038
train[23]=0.0003403403 test[23]=0.000038
train[24]=0.0003403212 test[24]=0.000038
train[25]=0.0003403117 test[25]=0.000038
train[26]=0.0003403086 test[26]=0.000038
train[27]=0.0003403083 test[27]=0.000038
train[28]=0.0003403085 test[28]=0.000038
train[29]=0.0003403078 test[29]=0.000038
=============================================================
AVERAGES (TRAIN_MSE, TEST_MSE):      0.00034039162  3.8211114e-05
AVERAGES (TRAIN_RMSE, TEST_RMSE):    0.018449705    0.0061815139
  
  Δεν εκτελέστηκε λόγω υψηλού υπολογιστικού κόστους.