Design and Implementation of a Synthetic Polygon Generator

A Thesis

submitted to the designated
by the Assembly
of the Department of Computer Science and Engineering

Examination Committee

by

Vasileios Tsolis

in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER
SYSTEMS ENGINEERING

WITH SPECIALIZATION
IN DATA SCIENCE AND ENGINEERING

University of loannina
School of Engineering

loannina 2025

Examining Committee:

e Nikolaos Mamoulis, Professor at the Department of Computer Science and Engineer-

ing, University of loannina (Advisor)

e Panos Vassiliadis, Professor at the Department of Computer Science and Engineering,

University of loannina

e Apostolos Zarras, Professor at the Department of Computer Science and Engineering,

University of loannina

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Professor Nikolaos Mamoulis,
for their continuous guidance, support, and valuable feedback throughout the course of this
thesis. Their expertise and encouragement have been instrumental in shaping this work and
in expanding my understanding of the field.

| am also deeply thankful to PhD Candidate’s Thanasis Georgiadis, whose insightful dis-
cussions, technical advice, and generous assistance played a significant role during the devel-
opment and implementation of the system presented in this thesis.

Finally, | would like to thank the University of loannina and the Department of Computer
Science and Engineering for providing a stimulating academic environment and access to the

necessary resources that made this research possible.

TABLE OF CONTENTS

List of Figures
List of Tables

List of Algorithms
Abstract

CHAPTER1 Introduction

1.1 ObDJECHIVES e cuiiiii ettt

1.2 Structure of the TheSiS ettt

CHAPTER2 Related Work

CHAPTER3 Methodology

3.1 Synthetic geometry generationccccccveeeeeiieiiiiciinnreeeeee e,
3.1.1 Shape Generationccccecueeeiriiieeieniiiee e
3.1.2 Data Distribution.......ccccceerieeieiniiieeneeeeeeeee
3.2 Data-Driven Generation.......cccccccviiiiiiiiieiieeieiiiirceeee s
3.2.1 Empirical Copula Methodccccovvvveveeieeiiiiiiireeeneenn,
3.2.2 Feature EXtraction......ccccccoovvimiiiiiiiiiiiiiiiiicieeeeeees
3.2.3 Similarity ASSESSMENTeeevveeiviiicirrieeeeeee e

CHAPTER4 Web Application and Visualization

4.1 Architecture OVEIVIEWccevvieiiiieiiieeeiiee e
4.2 Web INterfaceoooeeeiieeeeeeeeeeeee e
4.2.1 Generation Interface.......ccocceeviiiiiieniieciiieeceeeen
4.2.2 Interactive Data Space.....cccccocceeeeeiiiieeiiiccee e,
4.2.3 Interactive Visualization........ccocceeevieiniiecniieeniieenen,

vii

viii

4.2.4 UPload DAtasetcceevvuiieiiiiiiiie ittt esitee st e s s saaae e e

CHAPTERS5 Evaluation
5.1 Random Generation EValuation...........ccoouiiiiiiiiiiiiiiiieeceiecete e
5.2 Data-Driven Generation Evaluationcccoeveeiiieiiiiiienieceese e
5.2.1 Distribution EValuationc.cceoiiiiiiiiiiiiiieeeccecee e
5.2.2 Features Extraction Evaluationccccceveiriiiniiiiieneecceeee e

5.2.3 Similarity EValuQtioncooiiiiiiiiiiiiie e
CHAPTER6 Conclusion
Bibliography

APPENDIX A Implementation Samples
F N R O 1YL =Y V=1 YA
A.2 GENEratioN Ul = SCrEENSNOT. . .coveeieeieee ettt et e e et e e e eteeseseaeesesennss

A.3 Example of Feature EXtraction QUELPULcccuvvveeiieiiiiiiiieeeee et erareeeee e

43
44
46
47
55
61

63

66

LIST OF FIGURES

Figure 3.1. Circle based irregular polygons generated across the unit square [0,1] X [0,1].
Centers come from the selected point distribution, and each polygon is built by
randomizing angular steps and radii around a base value. The plot highlights the
diversity produced by different vertexes count together with irregularity and spikiness
SBTEINES. ettt bbb a— b e a—a—aaaeanananannnanannnnennnnnnannnnnannna 11

Figure 3.2. Shrink-transformed Voronoi polygons within the bounding box. The control
points (blue dots) define the rectangular boundary, and each Voronoi cell has been
post-processed using a shrink factor to interpolate its vertices toward the centroid. This
operation increases compactness and visual coherence while ensuring all geometries
remain SPAtially Valid.......coouiiiiiiiee e 14

Figure 3.3. Elongated polygons generated by the flow-aligned method. A TIN is built from
boundary points, edges perpendicular to the flow are selected, a centerline is extracted
from edge midpoints, and lateral offsets form......cccocvvveeiiiiiiiiiciii e 18

Figure 3.4. Example of Mixed-Type Polygon Generation. The dataset includes a random
combination of axis-aligned boxes and irregular polygons distributed within a common
bounding area, illustrating the coexistence of heterogeneous geometric primitives..... 21

Figure 4.1. Web interface of the synthetic spatial data generation platform. The left panel
provides interactive controls for selecting distribution type, geometry configuration,
cardinality, and polygon complexity parameters. Users can also upload external
datasets and adjust bounding box extents. The right panel displays the generated
geometries in real-time within the editable bounding box domain........ccceceeeiiniiiiennn. 36

Figure 4.2. System architecture diagram of the synthetic spatial data generation platform.

The design integrates a web-based client interface (OpenLayers-based) for interactive

parameter input and geometry visualization, a Python backend for geometry generation
and similarity evaluation, and mechanisms for reproducibility and data export............ 38
Figure 4.3. Bounding box configuration panel. Users can manually define the spatial extent
of data generation by specifying minimum and maximum values for the x and y axes.
Upon pressing "Apply Bounding Box", the map and generation domain are immediately
updated, ensuring precision control over the spatial boundaries........cccccccccevvecnrrenenne.n. 40
Figure 5.1. Generation time comparison for core polygon generators across increasing
cardinality. Circle-Based remains highly efficient, while Convex and Sliding show steep
growth due to computational COMPIEXITY ...eceeeiivieiiiieeiieiiiiiee e 45
Figure 5.2. Extended performance comparison including additional methods. Circle-Based
remains the most scalable for polygons, while Voronoi and Elongated are suitable for
high-fidelity or domain-specific tasks despite higher runtime.ccccoevveeiiiiieneininnenn. 46
Figure 5.3. Visual comparison between original (red) and synthetic (blue) data for the
circular distribution. The generator accurately replicates the radial density and double-
ring structure. Minor central diffusion arises from the non-deterministic nature of
sampling, without affecting the overall distributional fidelity.ccccoovveeiiiiiieiiniiiennne 48
Figure 5.4. Original (red) and synthetic (blue) spiral datasets. The generator successfully
captures the winding curvature and radial expansion, maintaining spatial continuity and
density progression along the spiral arms.cooviiiiiriiiie e 49
Figure 5.5. Petal-shaped distribution generated from a sinusoidal radial function. The
synthetic data reproduces the petal structure, preserving radial symmetry and inter-
lobe spacing, with minimal distortion near the center........ccccccevvevciiveeeeeec e, 50
Figure 5.6. Clustered distributions showing real (red) and synthetic (blue) points. The main
clusters are faithfully reproduced in terms of location and density, despite some
emergence of micro-clusters due to bin-based sampling........ccccccevveiiiiiniieiiiicieee e, 51
Figure 5.7. Moons dataset comparison. The generator preserves the twin arc structure and
class separation, successfully capturing the underlying non-linear geometry of the
(o TE A o WX o o APPSR 52
Figure 5.8. Comparison between real and generated spatial distributions for the city of
loannina. The red points represent real building centroids obtained from

OpenStreetMap data, while the blue points denote synthetic points generated through

the data-driven empirical copula method. The generator successfully reproduces the
clustered and elongated urban pattern observed in the real dataset.........cccc.ccceeeunnneee. 53
Figure 5.9. Marginal histograms of the x (left) and y (right) coordinates for real (blue) and
synthetic (red) data. High overlap across bins confirms strong marginal distributional
alignment between real and generated data.cccceeiviiiiiiiiiiee 54
Figure 5.10. Voronoi tessellation is constructed from real spatial distributions for the city of
loannina. Each polygon defines the region of influence of a single point, illustrating the

spatial footprint and neighborhood relationships induced by the generated distribution.

Figure 5.11. Axis-aligned rectangular shapes: comparison of original (red) and synthetic
(blue) geometries. The generator maintains edge alignment, angular consistency, and
proportional aspect ratios across the dataset.ccccvveivieiiiiiiei e, 56

Figure 5.12. Convex polygons: visual comparison between original (red) and synthetic (blue)
shapes. The synthetic output preserves vertex count, compactness, and convexity
without collapsing the global StruCTUre.oiiviiiiciiiieii e 57

Figure 5.13. Non-convex irregular polygons: original (red) and generated (blue) shapes
exhibit comparable spikiness, asymmetry, and variation in vertex distribution, capturing
MOIPhOIOZICAl COMPIEXITY. .evviiiiiiiiiiiieiie e e e e e s aarrereeeeees 58

Figure 5.14. Comparison between real and generated polygonal data for the city of loannina.
Red outlines represent real building footprints from OpenStreetMap, while blue
outlines denote synthetic polygons generated from feature-based distribution
matching. The generator captures the spatial density, orientation, and irregularity
characteristic of the city’s urban morphology.ccccvviviiiiiiiriii e 59

Figure 5.15. Feature distribution comparison between real and generated polygons. Left:

distribution of polygon size. Right: distribution of number of vertices. Close alignment

demonstrates fidelity of feature-based generative modeling..........cccevvvrvveeeieeiiiicnnnen. 60
Figure A.1: Synthetic point generation using diagonal distribution.ccccccveveiiiiiciiireennn.n. 70
Figure A.2: Synthetic point generation using Gaussian distribution.cccccccevviiiiiiniiieennne 71
Figure A.3: Synthetic point generation using diagonal distribution.ccccccevvveiiiiiiiiinennnn.n. 72
Figure A.4: Generate polygons with Voronoi shapes........ccccuevveviieiiiiiiiei s 73
Figure A.5: Generate polygons with Mix-Type MOde.ccovvvvrrreriiiieiiiiirreeeeee e 74

Figure A.6: Generate polygons with Elongated shapes.cccovviiiiniiiiiiiniiee e 75
Figure A.7: User Interface for Synthetic Geometry Generation and Dataset Management... 76
Figure A.8: Evaluation of Synthetic Geometry Generation OUtput.ccccevcveeeiiriiieeiriieeeenne 77

Figure A.9 Average Feature Values of the Generated POIYZONS.........ccoovvevvvveeiieeieeiccnireeeennen. 78

Vi

LIST OF TABLES

Table 5.1 Execution time (in seconds) for generating with ranges from 10,000 to 700,000. A
dash (-) indicates that the method does not scale beyond that size.ccccceeeeeeennnneee. 44

Table 5.2 Final Selection — Generation Time (in seconds) for N Polygons Using Different
Algorithms N ranges from 10,000 to 700,000 polygons. A dash (-) indicates that the

method did not scale beyond that Size.ccueeiiiiiiiiiiiiie e 45

Vii

LIST OF ALGORITHMS

Algorithm 3.1 Generate Polygon around a Center POiNt......ccccocvveeiriiiiieeiniiiee e 9
Algorithm 3.2 Generate Voronoi Polygon with shrink factorcccccccvvvvvvvveeiiciiicieeee, 12
Algorithm 3.3 Elongated Polygon Generation via TIN and Offset Construction...................... 16
Algorithm 3.4 Mix-Type POIYZON ZENEIATON.......cciiiiirireieeee ettt e e e e e e e eearreeeeeeees 19
Algorithm 3.5 Upload-Based Distribution MatChing.........cccceeeiiiiiiiiiiiiiieeiisieeeeeeee i 26
Algorithm 3.6 Point-t0-PoiNt GENEIatioN.......iiiiiiiiiiiiiieeeeee et e e e earrereee e 27
Algorithm 3.7 Polygon-to-Polygon GENEratioN.......cccveeeeieeiiiiiiiiiieeiee e eesenrreeeee e 28
Algorithm 3.8 Point-t0-Voronoi GENErationcoucuiiiiiniiieeeiiiieee e ee e esre e e sieee e 28
Algorithm 3.9 Polygon-to-Polygon GENEratioN.......cccueeeeieiiiiieiiiiieeeee et eeenrreeeee e 29
Algorithm 3.10 Feature Extraction from POIYZONS........cccoviiieiiiiiiiiieiniieee et sieee e 30
Algorithm 3.11 Estimate Spikiness via KDE of Centroidscccvvveeeeieeiiiicinveeeiieeceeiirveeeeeen, 31
Algorithm 3.12 Statistical Analysis Of FEAtUIES.......cccuiiiiiiiiiieieiiiee e 32
Algorithm 3.13 Feature-Aware Synthetic Polygon Generationccccevvevvveereeeeeiiccinveennnnen. 32

viii

ABSTRACT

Vasileios Tsolis, M.Sc. in Data and Computer System Engineering, Department of Computer
Science and Engineering, School of Engineering, University of loannina, Greece, June 2025
Design and Implementation of a Synthetic Polygon Generator

Advisor: Nikolaos Mamoulis, Professor.

The need for synthetic spatial data has grown significantly in recent years, driven by the in-
creasing demand for large, diverse, and statistically representative datasets in geospatial ma-
chine learning, benchmarking, and simulation tasks. While several solutions exist for generat-
ing synthetic point data or raster-based representations, tools for generating realistic and con-
trollable polygonal geometries remain limited. This thesis presents the design and implemen-
tation of a novel web-based system for synthetic polygon generation that bridges the gap be-
tween algorithmic control and statistical realism. The system supports multiple generation
methods, including procedural algorithms (irregular, Voronoi, elongated, and experimental
shapes), a nonparametric empirical copula method for upload-based distribution matching,
and a feature-based generator utilizing geometric descriptors such as area, convexity, aspect
ratio, compactness, and spikiness. A key innovation of this work is the Distributional Geometry
Alignment Score, a metric specifically developed to evaluate the similarity between synthetic
and real polygon datasets in terms of both marginal distributions and inter-feature correla-
tions. The generation platform is implemented using Open Layers and modern web technolo-
gies, offering real-time visualization, interactive configuration, and export in standard formats
such as WKT, CSV, and GeolJSON. Extensive experimental evaluation demonstrates that the
system can generate hundreds of thousands of polygons with high fidelity to reference data,
maintaining scalability and diversity across various spatial distributions. The proposed frame-
work provides a transparent, extensible, and statistically grounded solution for synthetic pol-
ygon generation, making it suitable for applications in data augmentation, simulation, and the

development of machine learning models for spatial tasks.

CHAPTER 1

INTRODUCTION

1.1 Objectives

1.2 Structure of the Thesis

1.1 Objectives

The generation of synthetic spatial data [1] has become increasingly important across a wide
array of scientific and technological disciplines, including geospatial analysis, machine learn-
ing, remote sensing, and simulation-based planning. As access to high-quality, well-annotated
real-world spatial datasets remain limited due to cost, privacy constraints, or geographical
inaccessibility the ability to generate synthetic data that preserves key statistical and geomet-
ric properties has gained critical relevance. Particularly in the context of polygonal data, there
is a clear need for methods that allow the controlled generation of shapes that are not only
geometrically valid but also statistically meaningful. Polygonal geometries carry complex mor-
phological and topological characteristics that make their generation more challenging than
points or raster data, especially when the goal is to preserve shape diversity, internal struc-
ture, and statistical realism.

While several approaches [2] exist for synthetic point generation or image-based data
simulation, tools specifically designed for polygon generation are scarce. Those that do exist
are either overly simplified, focusing on primitive shapes or random noise, or tailored to highly
specialized use cases such as urban footprint generation or terrain simulation. Furthermore,

many systems operate as black boxes, offering limited transparency, low interactivity, and no

mechanism for evaluating the statistical fidelity of the generated data in comparison to a ref-
erence dataset. As a result, there is currently no open and interactive solution that supports
explainable, reproducible, and statistically controlled polygon generation at scale.

The present thesis proposes the design and implementation of a novel web-based system
for synthetic polygon generation that addresses these limitations. The proposed system com-
bines algorithmic and data-driven methods [3] in a unified and extensible framework, allowing
users to generate synthetic polygonal datasets that are morphologically diverse, statistically
representative, and visually explorable. The system integrates three complementary ap-
proaches: procedural generation using configurable algorithms (e.g., irregular, Voronoi, and
elongated shapes), empirical generation based on a nonparametric copula method that
matches the joint distribution of a user-provided dataset, and feature-based generation using
geometric descriptors extracted from real polygons. Together, these methods enable a wide
range of use cases from the simulation of abstract geometric patterns to the replication of
structural features found in real-world spatial datasets.

The user interface of the system, built using Open Layers and modern web technologies,
offers real-time interaction for parameter tuning, visualization, bounding box placement, and
file export in multiple formats such as CSV, WKT, and GeoJSON. A distinctive feature of our
system is the implementation of a nonparametric empirical copula method that allows up-
load-based distribution matching. This allows users to guide the generation process using real
data, ensuring that the synthetic output replicates not only the individual feature distributions
(e.g., area, compactness) but also the correlations among them. Furthermore, a new evalua-
tion metric the Distributional Geometry Alignment Score (DGAS) has been developed to quan-
tify the alignment between synthetic and reference datasets, providing a rigorous basis for
comparison.

This thesis aims to develop a fully functional, modular tool that supports explainable syn-
thetic polygon generation under statistical control. It focuses on generating geometries that
are structurally valid, statistically faithful to reference distributions, and suitable for visualiza-
tion, testing, and augmentation tasks in spatial data science. The system also provides a mech-
anism for benchmarking generative models and evaluating trade-offs between shape com-
plexity, distributional fidelity, and computational performance. The work culminates in a se-
ries of experiments that evaluate the system’s performance across different generation sce-
narios, with extensive comparisons in terms of scalability, statistical similarity, and visual di-

versity.

1.2 Structure of the Thesis

The remainder of this thesis is structured into 6 chapters. Chapter 2 provides a comprehensive
review of the literature on synthetic data generation, geometric modeling, and spatial evalu-
ation methods, highlighting gaps in existing tools and motivating the system’s design. Chapter
3 presents the architecture and implementation of the synthetic generation system, detailing
its procedural, data-driven, and feature-based modules. Chapter 4 describes the interactive
web interface, including visualization layers, parameter controls, and export functionalities.
Chapter 5 focuses on the evaluation of the system in terms of performance, fidelity, and sim-
ilarity to real datasets, introducing and applying the DGAS metric. Finally, Chapter 6 summa-
rizes the contributions of the thesis, reflects current limitations, and outlines potential direc-

tions for future work.

CHAPTER 2

RELATED WORK

Synthetic polygon generation is a fundamental task in computational geometry, GIS, and spa-
tial data science. It supports a variety of downstream applications, including simulation, ma-
chine learning, algorithm benchmarking, and spatial query evaluation. In recent years, the de-
mand for diverse and controllable polygonal datasets has grown, especially in data-driven do-
mains that require extensive training data for model generalization and robustness.

Several techniques have been proposed in the literature for the synthetic generation of
polygonal geometries. One of the most common methods is based on sampling points around
a central shape [4], typically a circle or an ellipse, and connecting them sequentially to form a
closed polygon. These circle-based methods offer a straightforward way to control the num-
ber of vertices and the smoothness of the resulting shape but are generally limited to convex
or mildly non-convex forms. Another widely used strategy involves triangulation. In this ap-
proach, a set of points is generated randomly or from a specified distribution, and then a tri-
angulation method such as Delaunay triangulation is applied. From the triangulated mesh,
subsets of adjacent triangles are merged to construct complex polygonal shapes. This enables
the creation of both convex and non-convex geometries, though the output often requires
cleaning steps to ensure topological validity, such as avoiding self-intersections or duplicate
edges.

Alternative techniques include methods based on random walks, Voronoi diagrams [5],
and Boolean operations over geometric primitives. Complex irregular polygons can be con-
structed by combining simple shapes through union and different operations or by perturbing
grid-based patterns. Other approaches generate polygons from line string skeletons [6] or via
noise-controlled deformation of basic shapes. Several methods rely on procedural noise, re-

cursive subdivision, or rule-based grammar to generate synthetic forms with specific visual or

structural properties. There are also sampling-based approaches that attempt to reproduce
the statistical distribution of vertices or angles found in real-world polygons.

Despite the variety of techniques, most existing implementations are either problem-spe-
cific or do not allow for high-level shape control [7]. Properties such as compactness, elonga-
tion, convexity, irregularity, presence of holes, or area-to-perimeter ratio are often not explic-
itly parametrized, making it hard to target specific polygon types or match distributions. Fur-
thermore, existing approaches rarely allow a systematic exploration of how different polygon
features affect downstream tasks, limiting their utility in the context of machine learning or
algorithmic benchmarking.

One of the few tools designed for synthetic spatial dataset generation is SpiderWeb [8],
which focuses on producing benchmark data for spatial query evaluation. Although it provides
a GUI and supports multiple data types, it is limited to simple geometric structures such as
rectangles and points. It lacks support for complex polygonal generation and does not offer
shape-level customization or feature-based controls. In addition, visual inspection of the gen-
erated data and export functionality in standard formats such as WKT or GeoJSON is not fully
supported.

Other tools and libraries found in GIS packages or geometric frameworks [1], [9], such as
Shapely, GEQS, or CGAL, allow for manual polygon construction or manipulation but are not
designed for scalable, user-friendly synthetic generation of diverse polygon datasets. Moreo-
ver, most open-source solutions do not offer flexible configuration interfaces, nor do they
support high-level polygon descriptors as input parameters. There is also a general absence
of tools that can combine generation with statistical evaluation and visual feedback in a single
workflow.

The limited availability of open, flexible, and extensible polygon generators presents a
significant challenge for the research community. A fully featured polygon generation system
could address several critical needs. It would support the creation of large volumes of diverse
training data for machine learning and deep learning models and enable robust benchmarking
of spatial algorithms and geometric pipelines. Such a system would allow controlled experi-
mentation on polygon properties, including the evaluation of algorithmic behavior on differ-
ent shape types, such as convex, non-convex, irregular, or elongated forms.

Recent research on geometry-aware learning and shape interpretability emphasizes the
importance of using synthetic data with meaningful and diverse shape descriptors [10]. In

cases where real-world datasets are unavailable, private, expensive, or biased, synthetic data

becomes an essential alternative. A new system designed with the capacity to generate vari-
ous polygon types, including those with holes or complex boundaries, and to provide para-
metric control over geometric features such as number of vertices, compactness, elongation,
and spikiness, would be of great value.

Such a system would ideally offer visual preview and interactive manipulation of gener-
ated shapes, export options in common GIS formats like CSV, GeoJSON, or WKT, and seamless
integration with statistical feature extraction modules and similarity metrics for data-driven
generation. The proposed synthetic polygon generation framework aims to fulfill these objec-
tives, offering both flexibility and usability. By combining procedural techniques, visual tools,
and statistical modeling, it extends beyond the scope of existing tools like SpiderWeb and lays

the foundation for systematic experimentation in spatial Al and geometry processing.

CHAPTER 3

METHODOLOGY

3.1 Synthetic Geometry generation
3.1.1 Shape Generation

3.1.2 Synthetic Data Distribution

3.2 Data-Driven Generation

3.2.1 Empirical Copula Method

3.2.2 Feature Extraction

3.2.3 Similarity Assessment

In this chapter, we present the methodological framework developed to support the genera-
tion of synthetic spatial data. The system incorporates two complementary approaches: Syn-
thetic Geometry Generation and Data-Driven Generation, each addressing different use
cases in spatial simulation and modeling.

Section 3.1 focuses on Synthetic Geometry Generation, detailing the design and imple-
mentation of various points and polygon generation algorithms. These include both traditional
techniques such as uniform and Gaussian sampling and more complex, shape-oriented meth-
ods like irregular polygons and Voronoi tessellations. The objective is to offer flexible, control-
lable tools for creating diverse spatial structures within a user-defined bounding area.

Section 3.2 introduces the Data-Driven Generation paradigm, which allows users to up-
load real-world datasets and produce synthetic data that statistically mimics the uploaded
samples. This is achieved through a nonparametric distribution-matching process that pre-

serves both marginal distributions and inter-variable dependencies.

By integrating both geometry-oriented and data-driven techniques, the system empowers
users to produce synthetic spatial datasets that are adaptable to a wide range of analytical

tasks, offering a balance between structural variety and statistical fidelity.

3.1 Synthetic geometry generation

The system supports the generation of two types of primary spatial objects: points and poly-
gons. All objects are generated within a global spatial domain specified by the user in the form
of a bounding box. This bounding box defines the overall extent of the synthetic data space,
not the bounds of each individual shape. Within this domain, spatial objects are generated
according to user-defined parameters that influence object density, spatial distribution, aver-

age shape size, vertex complexity, and irregularity.

3.1.1 Shape Generation

The generation of synthetic shapes begins with the creation of spatial point distributions in-
side the user-specified generation area. Sampling strategies such as uniform, Gaussian, diag-
onal, or clustered placement are available to control how points are spatially distributed.
These generated points then serve as the geometric foundation for constructing polygons.
Depending on the selected method, different polygon generation algorithms are applied to
produce diverse and valid geometries. The following algorithms are applied depending on the
selected method.

To reduce overlaps, the system can space out centers during point generation while taking
each shape’s intended size into account. When the domain is large enough, this makes poly-
gons non overlapping by construction. Voronoi cells are disjoint by definition.

A. Circle-Based Techniques

The first technique [11] focuses on generating irregular polygons around center points to sim-
ulate non-uniform geometric structures. The fundamental concept behind the method is to
construct a closed polygon by sequentially generating vertices at varying angles and distances
from a central point, thus introducing controlled randomness into both the shape's outline
and vertex distribution.

This formulation is realistic because many real spatial patches grow outward from an in-
terior core and exhibit locally uneven boundaries. Examples include small lakes and ponds,

wetland patches, shrub or dune clusters, tree crowns, wildfire burn scars, flood extents, and

lava or landslide deposits. The irregularity control reflects heterogeneous vertex spacing and
the spikiness control reflects boundary roughness observed in these data.

The algorithm operates in two main stages. Initially, a random number of vertices is se-
lected within user-defined minimum and maximum limits. Following this, a set of angular
steps between consecutive vertices is computed. These angular steps are not uniform but are
randomized around a base angle, with the degree of variation governed by an "irregularity"
parameter. A higher irregularity value leads to more irregular spacing between vertices.

For each angle, a corresponding radial distance from the center is generated. This distance
is determined by adding a random perturbation, controlled by a "spikiness" parameter, to a
base radius. Spikiness controls the variation in vertex distances, resulting in more jagged and

complex shapes when higher values are used.

Algorithm 3.1 Generate Polygon around a Center Point

Require: center: (x,y), min _radius, max _radius,irregularity, spikiness,
min_vertices, max_vertices

Ensure: vertices_list: List of points

=

if irregularity < 0or irregularity > 1 then
raise ValueError("Irregularity must be between 0 and 1.")
end if

if spikiness < 0 or spikiness > 1 then

2
3
4
5: raise ValueError("Spikiness must be between 0 and 1.")
6: endif

7: ifminRadius <= 0 or maxRadius <= 0 then

8 raise ValueError("Radius values must be greater than 0.")

9: endif

10: if minRadius > maxRadius then

11: raise ValueError("minRadius must be smaller or equal to maxRadius.")
12: endif

13: sample random integer numVertices between minVertices and maxVertices
14: irregularity « irregularity X (2m /numVertices)

15: angleSteps < randomAngleSteps(numVertices, irregularity)

16: sample baseRadius uniformly in [minRadius, maxRadius]

17: maxSpike « spikiness X maxRadius

18: initialize empty list points

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

sample random angle in [0, 2r]
fori from 1 to numVertices do
if numVertices <= 5 then
if i mod 2 == 0 then
sample spike from Uniform(0.6 X maxSpike, maxSpike)
else
sample spike from Uniform(0.4 X maxSpike, 0.8 X maxSpike)
end if
else
sample spike from Uniform(—maxSpike, maxSpike)
end if
sample radius from Gaussian(baseRadius + spike, 0.5 X maxSpike)
clip radius to [0, baseRadius]
if numVertices <= 5and i mod 3 == 0 then
Multiply radius by random number in [0.6, 0.8]
end If
x < center[0] + radius X cos(angle)
y « center[1] + radius X sin(angle)
create vertex (x,y)
append vertex to points
angle « angle + angleSteps|i]
end for
append points[0] to points to close the polygon

return points

irregularity, spikiness, vertex range), validation steps, and the core loop responsible for com-
puting and assembling the polygon’s vertices. Specifically, the algorithm includes specialized
logic for handling polygons with five or fewer vertices, introducing alternating positive and
negative spikes to avoid degenerate or unrealistic shapes. Each vertex is then positioned using

trigonometric transformations, and all vertices are connected in sequence to form a closed

The full procedure is detailed in Algorithm 3.1, which outlines input requirements (e.g.,

polygon.

10

Once constructed, the final polygon is appended with its initial vertex to ensure closure.
This method provides fine-grained control over geometric properties such as shape complex-
ity, edge irregularity, and compactness, making it highly suitable for synthetic spatial data
generation in applications that require diverse polygonal features. Figure 3.1 shows typical
outputs of the circle-based method over the unit square and illustrates how vertex spacing

and outline roughness vary with the chosen settings.

(0.00, 1.00) (1.00, 1.00)

R AW |
.ﬁ?:xaq f?g ﬁ{ﬁ'pfﬂﬁﬁ‘,/v“ﬂr Y D N
h?}f F[T ﬂ"}; N T V{“‘Jqu_f- ‘f‘;m Ny
\%Q_Jr By A‘;DE!?J{_ h ~ A a‘g—g&gp&p{’ﬁ

e T T e APy,
"JL ‘gﬂﬁ}ﬂi ﬁl‘}?& fﬁ‘%;ﬁr— ="% &gﬂ'g"‘!

q B a’g‘h\'ﬁ#het-&“ﬁ Ea AN 'i"ﬂ ,,u‘nr

\‘;,\‘ Dr,..d.ﬁ-a-l;,ﬂ 4.-m fj.:r ﬁﬁl-q:hu—_\"-»g
T PRI T

=—1.00 —

4 ~ T ba 957 B g

e - 1=

\“‘*‘F:‘b}ﬁ E?JFJ? IRy, "’%'}f =
v

(0.00, 0.00) 1.00—> (1.00, 0.00)

Figure 3.1. Circle based irregular polygons generated across the unit square [0,1] X [0,1].
Centers come from the selected point distribution, and each polygon is built by randomizing
angular steps and radii around a base value. The plot highlights the diversity produced by
different vertexes count together with irregularity and spikiness settings.

B. Voronoi Polygons

The second method employs Voronoi tessellation [11] to generate spatial polygons based on
a set of input seed points. A Voronoi polygon is defined as the region of space closer to a given
point than to any other, resulting in a natural partitioning of the plane into non-overlapping,
contiguous cells. This approach is particularly useful in applications that require polygons shar-

ing edges, such as urban simulations, land division, and spatial proximity analysis.

11

The Algorithm 3.2 operates as follows. First, the set of seed points is collected and trans-
formed into a NumPy array for efficient processing. A Voronoi diagram is then constructed
using the Scipy library, based on the Delaunay triangulation of the points. For each region in
the Voronoi diagram, if the region is finite (i.e., it does not extend to infinity), the correspond-

ing vertices are extracted, and a Shapely polygon is formed.

Algorithm 3.2 Generate Voronoi Polygon with shrink factor
Require: A set of seed points points, bounding box bbox =

(minX, minY, maxX, maxY), shrink factor shrink factor € [0,1]

Ensure: A list of validated, clipped Voronoi polygons

=

If points < 2 then
exit
end if
points_np « Convert points to NumPy array

vor < Voronoi(points_np)

polygons « []

2
3
4
5
6: bounding_box « box(minX, minY, maxX, maxY)
7
8: foreachregionin vor.regions do

9

if region is empty OR contains — 1 then

10: continue
11: end if
12: vertices « Extract vertices from vor.vertices

13: polygon < Polygon(vertices)
14: centroid < polygon.centroid

15: modified_polygon < []

16: for each vertex (x,y) in vertices do

17: new_x < x + shrink_factor X (centroid.x — x)
18: new_y < y + shrink_factor X (centroid.y — y)
19: append (new_x,new_y) to modified_polygon

20: end for

21: shrink_polygon < Polygon(modified_polygon)

22: clipped_polygon « shrunk_polygon N bounding_box
23: validated_polygon « correct_invalid(clipped_polygon)
24: If validated_polygon is valid AND not empty then

12

25: Write validated_polygon to sink
26: end if
27: end for

To improve the geometric consistency of the generated Voronoi polygons, a shrink trans-
formation is applied, as illustrated in Figure 3.1. Specifically, each vertex is moved toward the
centroid of its corresponding polygon according to a user-defined shrink factor. This operation
reduces the spread of vertices, resulting in more compact and visually coherent shapes. Math-
ematically, the new coordinates (x', y') of each vertex are computed by interpolating be-
tween the original vertex (x, y) and the centroid (c,, cy) based on the shrink factor f, follow-
ing the formulas:

x'=x+ f(cy —x)
y'=y+fley—y)

where f = 0 leaves the polygon unchanged and f = 1 collapses it entirely to its centroid.
After applying the shrink operation, each polygon is clipped against the predefined bounding
box to ensure that all resulting geometries remain within the spatial boundaries and are valid

for further processing.

13

(0.00, 1.00) (1.00, 1.00)

=

oW

<l
S

QQDGG OSBRI i
OE%DQ%? Q/Q%?O oS RGE

(0.00, 0.00) <100 —> (1.00, 0.00)

Figure 3.2. Shrink-transformed Voronoi polygons within the bounding box. The control
points (blue dots) define the rectangular boundary, and each Voronoi cell has been post-pro-
cessed using a shrink factor to interpolate its vertices toward the centroid. This operation in-

creases compactness and visual coherence while ensuring all gecometries remain spatially
valid.

The entire process is formalized in Algorithm 3.2, which outlines the steps for validating
and adjusting each region. During validation, polygons are checked for common geometric
issues such as self-intersections and invalid topologies. Minor artifacts such as sliver polygons,
nearly colinear edges, or small holes, are corrected through simplification, snapping, or re-

moval based on threshold criteria.

14

Compared to circle-based polygon generation techniques, Voronoi-based generation en-
sures complete spatial coverage and shared edges, properties that are difficult to achieve with
purely stochastic methods. However, this approach offers limited control over detailed poly-
gon characteristics like spikiness or irregularity. The final structure and size of the polygons
are primarily influenced by the initial distribution of the seed points.

Nevertheless, Voronoi tessellation provides a powerful and structured method for gener-
ating realistic, contiguous spatial datasets suitable for simulations, mapping, and analytic tasks
that benefit from spatial coherence.

C. Elongated Polygons

The third polygon generation method focuses on simulating elongated [12], river-like geome-
tries, which are commonly encountered in natural landscapes such as water networks, valleys,
or flow-dominated terrains. This technique is designed to produce narrow, flow-aligned poly-
gons based on user-defined boundary points and a given flow direction vector.

The generation process is encapsulated in a specialized class and proceeds through a
multi-step algorithm, which systematically constructs an elongated polygon by leveraging a
Triangulated Irregular Network (TIN) and geometric filtering operations.

The overall workflow is outlined below:

1. TIN Construction: The algorithm first constructs a Triangulated Irregular Network
[13] from the provided river boundary points using Delaunay triangulation. This rep-
resentation captures the local topology and connectivity of the boundary geometry.

2. Perpendicular Edge Selection: From the generated TIN, edges that are approximately
perpendicular to the specified flow direction are identified. These edges are pre-
sumed to represent cross-sectional slices of the river or flow path.

3. Mainstream Filtering: To ensure that only relevant structures contribute to the final
shape, edges are filtered to retain only those that intersect with the main river poly-
gon. This step eliminates noise from peripheral or disconnected areas.

4. Centerline Generation: A river centerline is constructed by computing the midpoints
of the selected TIN edges. This centerline serves as the backbone of the elongated
polygon.

5. Polygon Construction: The centerline is then expanded laterally by applying parallel
offsets to the left and right sides, simulating river width. These offset lines are merged
to form a closed polygon, with safeguards in place to correct invalid geometries

through buffering and coordinate rounding.

15

6. Validation and Scaling: The resulting polygon is validated using Shapely’s topological
checks and optionally scaled down for visualization consistency. Any internal rings

(holes) are removed to retain a clean outer boundary.

Algorithm 3.3 Elongated Polygon Generation via TIN and Offset Construction

Require:

river boundaries: list of coordinates

flow direction: vector

of fset distance: width parameter

sink: polygon output interface

Ensure: A valid elongated polygon representing the river shape

1: function RiverPolygon(river boundaries, flow direction)
if length(river boundaries) < 3 then
raise Error “At least 3 boundary points required”

end if
TIN < GenerateTIN(river boundaries)

2

3

4

5

6: if TIN is empty then
7 raise Error “TIN generation failed”
8

9

end if

perpendicular « SelectEdgesPerpendicularToFlow(TIN, flow direction)
10: if perpendicular edges is empty then
11: raise Error “No suitable edges found”
12: end if
13. filter «

FilterEdgesWithinPolygon(perpendicular edges, river boundaries)

14: if filter is empty then
15: raise Error “Filtered edge set is empty”
16: end if
17: centerline « ComputeMidpoints(filtered edges)
18: if length(centerline) < 2 then
19: raise Error “Centerline must have 2 points”
20: end if

21: leftoffset « OffsetLine(centerline,’left’, of fset distance)
22: right of fset « OffsetLine(centerline,'right’, of fset distance)

16

23: coords « Concatenate(left of fset, Reverse(right of f set))
24: raw polygon « Polygon(coords)

25: if not IsValid(raw polygon) then

26: raw polygon « BufferFix(raw polygon)

27: end if

28: cleaned polygon « KeepExteriorOnly(raw polygon)

29: scaled polygon <« ScalePolygon(cleaned polygon,0.1)

30: sink.writePolygon(scaled polygon)

31: sink. flush

32: end function

The full procedure integrates the above steps and writes the final polygon to the data sink.
Each subroutine (such as generate_tin, select_perpendicular_edges, generate_centerline,
and construct_river_polygon) are modular, enabling reuse and easy extension. Figure 3.3
shows typical outputs of the elongated method over the unit square and illustrates narrow
flow-aligned corridors produced by the TIN-based centerline and lateral offsets.

This method is particularly effective in simulating hydrologically inspired structures or lin-
ear geographic features, where elongation and directionality are essential. Compared to other
polygon generation techniques, it offers fine-grained geometric control aligned with real

world flow phenomena.

17

(0.00, 1.00) (1.00, 1.00)
® @

W L
AY)

3
™~

f

<

-, T sy < & e . N
= wey ! e Y N oA ‘i‘ =
. o I N l'%‘ ¢ \ 2
Y —— b
S e N b R N
J N w % g
< #T::- A T ﬁ;—“" E:‘J
\ ~ [
ZNS X .t !
¢ f & N w o+
G ™
1
)\ Q ,c:,,,./i’ - o &) £)\
(0.00, 0.00) e 100—= (1.00, 0.00)

Figure 3.3. Elongated polygons generated by the flow-alighed method. A TIN is built from
boundary points, edges perpendicular to the flow are selected, a centerline is extracted from
edge midpoints, and lateral offsets form.

D. Mixed-Type Polygon

To further enhance the diversity of the synthetic spatial dataset, the system includes a Mixed-
Type Polygon Generation mode. The goal is to emulate heterogeneous environments where
different geometric primitives co-exist in space, as in urban tiles that contain rectilinear build-
ing footprints together with irregular parks, water bodies, or land-use patches. This mode al-
lows the interleaved creation of multiple geometric types, such as bounding boxes and ran-
dom polygons, within a single dataset. The primary objective is to simulate heterogeneous
environments, where different geometric primitives coexist mirroring real-world scenarios

such as urban landscapes, land parcels, and infrastructure planning.

The generation logic is controlled by the user-specified geometry type "mixed" and iter-

ates over a desired number of geometries. For each instance, a random decision is made

18

between generating a box or a polygon, based on a uniform selection from a list of supported
types.

The process is as follows:

1. Random Point Sampling: A random coordinate is generated within the spatial domain
using the configured distribution (e.g., uniform, clustered). This coordinate serves as
the anchor or center point for geometry.

2. Geometry Type Selection: A geometry type is randomly selected from the set ("box",
"polygon"). Each type triggers a distinct generation logic:

o Box Generation: The system constructs a bounding box by sampling a random
size within a predefined range (typically 5% to 20% of the bounding box extent).
The size is applied symmetrically along each dimension to compute the mini-
mum and maximum corner coordinates. The result is an axis-aligned rectangle
centered at the anchor point.

o Polygon Generation: A polygon is generated using the irregular shape algo-
rithm described previously (see Section 3.1.A). For each polygon:

= A pair of random radii determines the size range.

= Random values for irregularity and spikiness introduce controlled ran-
domness.

*= Arandom number of vertices (typically between 3 and 15) defines the
shape complexity.

= The anchor point serves as the polygon's center, and the shape is writ-
ten using a specialized sink (e.g., PointToPolygonSink), which applies

the generation logic described in Algorithm 3.4.

Algorithm 3.4 Mix-Type polygon generator
Require:

numGeometries: number of geometries to generate
generator: spatial point generator
scaled maxsize: scaling factor based on bounding box
sink: geometry output interface
Ensure: A set of randomly generated boxes and polygons
1. if geometryType = “mixed” then
2: possible geometries « [“box”,“polygon”]

3: fori = 1tonumGeometries do

19

4 coordinates « generator.generate point

5 selected geometry <« random choice from possible geometries

6 if selected geometry = “box” then

7: minCoordinates « []

8 maxCoordinates « []

9 dimensions < length of coordinates

10: ford = 1 to dimensions do

11: minsize < 0.05 X scaled maxsize

12: maxsize < 0.2 X scaled maxsize

13: size < Uniform(minsize, maxsize) / 2

14: minCoordinates. append(coordinates[d] — size)

15: maxCoordinates. append(coordinates[d] + size)

16: end for

17: sink.writeBox(minCoordinates, maxCoordinates)

18: else if selected geometry = “polygon” then

19: r1,r2 « Uniform(0.01 X scaled maxsize,scaled maxsize)

20: minradius < min(rl,r2), max radius < max(rl,r2)

21: irregularity < Uniform(0.1,1.0)

22: spikiness « Uniform(0.1,1.0)

23: min vertices, max vertices < random integers in [3,15]

54 polygon sink < PointToPolygonSink(sink, min radius, max radius,
irregularity, spikiness, min vertices, max vertices)

25: polygon sink.writePoint(coordinates)

26: end if

27: end for

28: end if

As illustrated in Figure 3.4, the mixed-type generation produces a spatial composition
of simple rectangular boxes and irregular polygons distributed across the same area. The re-
sulting pattern effectively demonstrates the coexistence of multiple geometric forms within a
shared spatial domain, successfully replicating the heterogeneity typical of real-world spatial

structures such as urban blocks and open spaces.

20

(0.00, 1.00)

(1.00, 1.00)

n oV *b) d
<
SN
0 g 3
. o (I: OD
0 V=
:)
0 0% = ®
C:B o ;_R

q
2!

@ = @
(0.00, 0.00) 100> (1.00, 0.00)

Figure 3.4. Example of Mixed-Type Polygon Generation. The dataset includes a random com-
bination of axis-aligned boxes and irregular polygons distributed within a common bounding
area, illustrating the coexistence of heterogeneous geometric primitives.

E. Other Polygon Generation Techniques
In addition to the core generation methods described above, the system also incorporates a
set of experimental polygon generation techniques. These methods were explored in a re-
search context to assess their potential for further enriching the geometric diversity of syn-
thetic spatial datasets. Although not integrated into the main pipeline, they demonstrate ad-
ditional possibilities for shape manipulation and dynamic geometry simulation.
The techniques include:
¢ Sliding Algorithm Sink: This method [14] simulates sliding or moving geometries by
applying controlled transformations to pre-existing polygons. It is useful for modeling
temporal dynamics, such as the progression of a moving front, deformation under
physical forces, or simulation of motion-driven spatial processes.
e Minkowski Difference Front: This technique uses basic morphological geometry.
Given a base polygon and a small “structuring element” (for example a disk, a square,
a diamond, or a star-shaped kernel), we slide the kernel inside the polygon and keep

the set of kernel centers where the kernel still fits entirely inside the polygon. The

21

result is the polygon eroded by that kernel, also known as the Minkowski difference.
With a disk kernel this is simply an inward buffer. With non-circular kernels the bound-
ary develops directional facets and fine detail, which increases shape complexity in a
controlled way.

e« Random Polygon with Vertex Constraints: A variation of the random polygon genera-
tor, this method [15] introduces explicit constraints on vertex spacing to ensure mini-
mum distances between consecutive points. It allows the generation of more evenly
distributed and realistic polygonal shapes, especially useful in scenarios where sharp
angles or collapsed edges must be avoided.

These methods were implemented and tested in a preliminary, research-oriented setting,
and while they are not part of the core generation framework, they illustrate the extensibility
of the system. Future work may integrate these techniques more systematically or explore
their application in domain-specific simulations.

Overall, the synthetic geometry generation framework presented in this section enables
the creation of diverse, controllable, and application-specific spatial structures. By combining
multiple generation strategies ranging from irregular and Voronoi-based polygons to elon-
gated and mixed-type geometries the system provides flexible tools for simulating real-world
spatial phenomena. To ensure geometric validity, a post-processing phase is applied, correct-
ing topological defects such as self-intersections, decomposing invalid shapes, and trimming
the final output to match the desired number of polygons. These steps guarantee that the
resulting datasets are robust and suitable for downstream tasks such as machine learning,
spatial querying, or geospatial benchmarking.

Importantly, many of the polygonal generation techniques described above depend on an
underlying point generation process, either as seed points (e.g., Voronoi, irregular polygons)
or as geometric anchors (e.g., for boxes and movement-based methods). The distribution of
these initial points plays a critical role in determining the structure and diversity of the result-
ing spatial data.

We now turn to the synthetic data distribution models used in this system, which define
how points are generated across the spatial domain. These models serve either as standalone
spatial datasets or as the foundation for shape construction, supporting a range of real-world

simulation needs.

22

3.1.2 Data Distribution

To support the generation of diverse and application-specific spatial patterns, this study in-
corporates four distinct spatial point distribution models. Each model reflects different types
of real-world spatial phenomena and serves as a basis for constructing either standalone point
datasets or seed-based polygonal geometries.
A. Uniform
The uniform distribution model generates points randomly across the entire extent of the
spatial bounding box [Xmin, Ymin» Xmax» Ymax), €nsuring that each location within this domain
has equal probability of selection. For each point, the x and y coordinates are independently
sampled from a uniform distribution:

x ~Umin Xmax)r Y ~ UWVmins Ymax)

This method produces a homogeneous spatial distribution with no inherent clustering or
directional bias. The resulting pattern is spatially isotropic and often used to simulate evenly
spaced phenomena such as sensor grids or baseline datasets for benchmarking.

B. Gaussian
The Gaussian (normal) distribution model samples each coordinate from a normal distribution
centered at a mean location (uy i,), with specified standard deviations (ay, ;). Each point
is generated using:

x ~N(uy,0%2), y~N(uy,03)

In implementation, the Box—Muller transform is used to obtain normally distributed sam-
ples from uniform random values:

z=u+ a\/TnUl - sin(2nU,), where U;,U, ~ U(0,1)
This model can capture clustered spatial behaviors observed in urbanization, vegetation

density gradients, or other naturally occurring aggregations.

C. Diagonal
The diagonal distribution is designed to generate spatially aligned data along the main diago-
nal of a bounding box [Xmin, Ymin» Xmax» Ymax), Simulating directional spatial patterns such as
linear infrastructures. Each point follows one of two paths:

1. Deterministic alignment (with probability p)

2. Perturbed offset using Gaussian noise (with probability 1 — p)

This behavior is controlled by a Bernoulli random variable:

B ~ Bernoulli(p)

23

In the noisy case (B=0), vertical perturbation is added:
min(w, h)
e ~N(0,0%), a=buffer-T
y=y+e
Where W = Xpax — Xmin] and W = Y00 — Ymin] are the width and height of the
bounding box.
The buffer parameter controls the intensity of noise around the diagonal, with higher val-
ues yielding broader dispersion. The final coordinates are clamped to ensure they remain
within the bounding box:

x = min(max(x, xmin): xmax)r y = min(max(y, Ymin)» Ymax)

D. Clustered
The clustered distribution model simulates localized groupings of points around randomly
generated centroids (c¢f, cl.y) fori=1,..,K;,where K is the number of clusters. Each clus-
ter’s points are generated using polar coordinates with randomized angles and radius:
6 ~ U(0,2m), r~U(O,R)
x=cf+rcosf, y=c’+rsind

Where R is the maximum intra-cluster radius. This formulation enables modeling of both
tightly packed and widely dispersed clusters, effectively capturing spatial heterogeneity.

These distribution models not only serve as foundations for polygon generation but can
also be used independently for tasks requiring synthetic spatial point clouds or geostatistical

simulations.

3.2 Data-Driven Generation

In this section, we introduce a nonparametric method for synthetic data generation based on
user-uploaded spatial datasets. The proposed approach extends the system’s capabilities be-
yond predefined parametric models by leveraging empirical statistics to reproduce both mar-
ginal distributions and inter-variable dependencies. The method is formalized as a data-driven
generation pipeline rooted in empirical copula theory and frequency-based sampling.
Following the description of the generation algorithm, we present a complementary fea-

ture extraction framework that captures geometric characteristics such as size, compactness,

24

irregularity, and vertex complexity from input polygons. These features enable a morphologi-
cally aware generation process, capable of producing realistic and diverse shapes.

Finally, to quantitatively evaluate the alignment between original and synthetic datasets,
we introduce a similarity assessment metric, the Distributional Geometry Alignment Score
(DGAS). This metric assesses both distributional and structural consistency, providing an in-

terpretable and robust evaluation of the generative fidelity.

3.2.1 Empirical Copula Method

In this method, the joint distribution of the uploaded data is approximated without relying on
any predefined parametric copula models like Gaussian. Instead, the algorithm constructs em-
pirical cumulative distribution functions (ECDFs) [16] for each variable to map the data into a
[0,1] range, thereby normalizing the marginals. It then uses frequency tables to discretize
these marginals into intervals with associated probability. To generate new data, a row from
the ECDF-transformed dataset is randomly selected, and for each variable, a new value is sam-
pled uniformly within the corresponding interval from the frequency table. This process pre-
serves both marginal distributions and the dependency structure (copula-like behavior) across
variables.

Importantly, this approach reproduces the multivariate statistical behavior of the original
data without making assumptions about the underlying parametric form and aligns with the
core copula principle: separating marginals from dependency structure. Although it doesn’t
use copulas in a strict mathematical sense, it emulates their function by reconstructing the
dependence structure empirically. As demonstrated in the paper, this method is effective for
generating synthetic data that retains both the univariate and multivariate properties of the
original dataset, making it valuable for data augmentation, privacy-preserving analytics, and
generative simulations.

The main goal of Algorithm 3.5 is to allow users to upload their own spatial datasets typ-
ically consisting of 2D points and generate new synthetic data that preserve both the marginal
distributions and the underlying dependency structure of the original data. The method be-
gins by estimating the empirical cumulative distribution function (CDF) [17] for each variable,
thereby mapping the original values to the unit interval [0,1], while maintaining uniform mar-
ginals. Then, for each variable, a frequency table is constructed through histogram binning,
capturing the empirical distribution without assuming any parametric form. To synthesize new
samples, the algorithm randomly selects rows from the transformed CDF-matrix and, for each

variable, determines the corresponding histogram interval. It then samples a value uniformly

25

within this interval, thereby mimicking the local distribution of the original data. This approach
effectively models joint dependencies using the empirical copula structure, even though no
explicit copula function is used. Finally, if a new spatial bounding box is provided, the synthetic
data are scaled accordingly using affine transformation. This nonparametric framework en-
sures that the generated data shares the same statistical properties and spatial behavior as
the input dataset, making it suitable for downstream tasks such as geospatial simulation, vis-

ualization, or augmentation.

Algorithm 3.5 Upload-Based Distribution Matching
Require:

X: Dataset with columns x and vy,
bins: Integer > 0,
N: Number of synthetic samples to generate (N > 0),
bounding_box: Optional list [min_x, min_y, max_x, max_y]|
Ensure: X_generated: New dataset of N points with the same structure and
empirical distribution as X
if X does not contain 'x" and 'y’ columns then
raise ValueError("Input data must include 'x' and 'y’ columns.")
end if
if bins < 0or N < 0then
end if
old_bbox « (X['x'].min(Q),X['y'].min(),X['x'].max(), X['y']. max())

[A e

1
2
3
4
5: raise ValueError("bins and N must be greater than 0.")
6
7
8: foreach columniin[x','y'| do

9

x_sorted, F < empirical_cdf (X[i])

10: for each value z in X[i] do

11: replace z with corresponding F|[z]
12: end for

13: end for

14: for each columniin['x','y'] do

15: construct frequency table with bins — Freq_abs, Freq_rel, Freq_acum
16: end for

17: initialize empty dataset X_generated

18: generate N random indices from [0, len(X)) — list_ N

26

19: foreach sub_ninlist_N do

20: initialize empty list sample_point

21: for each columniin ['x', 'y'] do

22: h « transformed value from matrix_F[sub_n,i]
23: find interval such that Freq_acum = h

24: if no such interval then interval « —1

25: [lim_inf,lim_sup] « bounds of interval

26: sample value v ~ Uniform(lim_inf, lim_sup)
27: append v to sample_point

28: end for

29: append sample_point to X_generated

30: end for

31: if bounding_box is provided then

32: scale X_generated from old_bbox to bounding_box
33: endif

34: return X_generated

Based on this algorithm framework, the implemented system supports multiple modes of
synthetic data generation. Specifically, the upload-based distribution matching algorithm has
been successfully applied in the following contexts:

e Point-to-Point Generation: Given a set of input 2D points, the system generates new
synthetic point sets that statistically replicate the spatial distribution of the original
dataset. This is particularly useful for augmenting sparse spatial data or simulating var-
iations within a known spatial extent. The implementation steps for this distribution-

based generation process are described in Algorithm 3.6.

Algorithm 3.6 Point-to-Point Generation

[B §

Require: Point dataset X with columns ‘x','y‘; number of bins; N samples

optional bounding box
Ensure: Xsynthetic: synthetic points

1: Validate input columns

2: Xsynthetic « Apply Empirical Distribution Matching on X
3: if bounding box provided then
4

Rescale Xsynthetic to bounding box

27

5: end if
6: return Xsynthetic

e Box-to-Box Generation: For uploaded datasets consisting of rectangular (box-shaped)
geometries, the centroids are likewise extracted and passed through the distribution
matching process. The synthetic centroids are then used to generate new boxes with
dimensions derived from the statistical properties (e.g., average size, aspect ratio) of
the original set. This allows the system to replicate grid-like or structured layouts com-
monly observed in applications such as field plots, urban blocks, or sensor grids. The

step-by-step procedure for this generation method is described in Algorithm 3.7.

Algorithm 3.7 Polygon-to-Polygon Generation

Require: Set of polygons P, bins, N, bounding box
Ensure: Synthetic polygons Psynthetic
1: Extract box centers C « {cl,...,cn}
Csynthetic « Apply Empirical Distribution Matching on C
Estimate average box size s from B
forall cj € Csynthetic do

2
3
4
5: Generate axis — aligned rectangle centered at cj using size s
6: end for

7

return Bsynthetic

e Point-to-Voronoi Generation: The synthetic points produced by the algorithm are
used as seed points for constructing Voronoi polygons. These tessellations preserve
the same spatial density and layout as the uploaded data while ensuring spatial conti-
guity and edge-sharing, making them well-suited for simulations involving spatial par-
titioning or proximity-based analysis. The generation pipeline for this method is de-

tailed in Algorithm 3.8.

Algorithm 3.8 Point-to-Voronoi Generation

Require: Point dataset X, bins, N, bounding box, shrink factor
Ensure: Voronoi polygons Pvoronoi
1: Xsynthetic « Apply Empirical Distribution Matching on X
2: Pvoronoi « GenerateVoronoi(Xsynthetic, bounding box, shrink factor)

3: return Pvoronoi

28

Polygon-to-Polygon Generation: When the uploaded file contains polygonal geome-
tries, the system extracts representative centroids and applies the same empirical gen-
eration method to produce new centroid positions with similar statistical properties.
These new points are then used to generate polygons either as rectangles or as irreg-
ular shapes depending on the structural characteristics of the original dataset (e.g.,
squareness, irregularity). The resulting synthetic polygons inherit the size, spatial dis-
persion, and complexity of the input, while incorporating controlled generative varia-
tion through sampled geometric parameters. The detailed steps of this approach are

presented in Algorithm 3.9.

Algorithm 3.9 Polygon-to-Polygon Generation

Require: Set of polygons P, bins, N, bounding box

Ensure: Synthetic polygons Psynthetic

1:

_ e
= O

© 0 N oY kK WD

Extract centroids C « {cl,...,cn} from P
Csynthetic « Apply Empirical Distribution Matching on C
forall cj € Csynthetic do
if original polygons are rectangular then
Generate rectangle centered at cj
else
Sample parameters: size,irregularity, spikiness, vertices
Generate irregular polygon at cj
end if
end for

return Psynthetic

This flexible application of the empirical copula-based generation pipeline capable of

transforming both point- and shape-based inputs into statistically consistent outputs demon-

strates the robustness and generality of the method across a wide range of geospatial simu-

lation tasks.

In the Voronoi generation workflow, once a set of synthetic points is produced using the

empirical method, these serve directly as inputs to the Voronoi tessellation algorithm devel-

oped earlier in this study. The algorithm then constructs a partition of the space where each

cell represents the area closest to a given synthetic seed. As a result, the generated Voronoi

29

polygons preserve not only the global spatial distribution but also the local neighborhood
structure observed in the original data.

Similarly, in the polygon-to-polygon and box-to-box generation pipelines, the workflow
begins by extracting centroids from the uploaded geometries. These centroids are processed
using the same upload-based distribution matching algorithm to generate a new set of statis-
tically consistent points. The resulting points are subsequently used to construct new geome-
tries by invoking the shape generation algorithms previously developed. For irregular poly-
gons, the algorithm synthesizes shapes with controlled spikiness, irregularity, and vertex com-
plexity; for rectangular shapes, it generates axis-aligned bounding boxes with appropriate
scaling.

This two-stage generative process distribution matching followed by geometry construc-
tions that the synthetic outputs reflect not only the statistical profile of the original data but
also its spatial structure and geometric diversity. In all cases, the previously introduced mod-
ules (e.g., Voronoi tessellation and polygon/box generation) operate as downstream compo-
nents that transform statistically coherent synthetic points into high-fidelity spatial geome-

tries.

3.2.2 Feature Extraction

Beyond the use of nonparametric distribution matching techniques for point synthesis, the
proposed framework incorporates a feature-driven generative mechanism that enables the
creation of synthetic polygons based on the morphological characteristics of existing geome-
tries. This approach recognizes that polygonal shapes encode rich geometric and topological
information, and that replicating this structure is essential for high-fidelity simulation and data
augmentation.

The process begins by applying a detailed feature extraction pipeline to a set of polygon
geometries in Algorithm 3.10. For each polygon, a suite of descriptive metrics is computed,
including size (as the maximum radial distance from the centroid), number of vertices, aspect
ratio, perimeter, area, compactness, and irregularity, which quantifies angular and radial var-
iance relative to a regular polygon. Additional binary descriptors, such as convexity and equi-
laterality, are derived using geometric rules and tolerance-based comparisons. Collectively,
these features form a high-dimensional representation of shape, enabling a comprehensive

analysis of spatial and structural diversity within the dataset.

Algorithm 3.10 Feature Extraction from Polygons
Require: Set of polygons P

30

Ensure: Feature table F

1: foreach Pi € Pdo

2: Compute area, perimeter
3: Compute centroid coordinates (xi, yi)
4: Count vertices vi
5: Compute aspect ratio from bounding box
6: Compute compactness C; = M
perimeter?
7: Determine convexity using cross — product checks
8: Determine equilateral property via edge uniformity
9: Compute irregularity using angular and radial variance

10: Add feature vector to F
11: end for

Once features are extracted in Algorithm 3.11, the system constructs empirical statistical
models to capture their distributions and interdependencies. For continuous attributes such
as size, compactness, and aspect ratio, normalized histograms are used to model their mar-
ginal distributions. Additionally, conditional dependencies such as the relationship between
polygon size and number of vertices are quantified through binned aggregations and summary
statistics. To capture the spatial variation in shape classes, a kernel density estimation (KDE)
[18] process is applied separately to convex and non-convex polygons, using centroid coordi-
nates as input. This KDE-based analysis provides a probabilistic estimate of “spikiness” at each

location, which informs the irregularity and convexity of the generated shapes.

Algorithm 3.11 Estimate Spikiness via KDE of Centroids
Require: Convex and non — convex centroids

Ensure: KDE — based spikiness estimator
1: Fit KDEconvex on convex centroids
2: Fit KDEnonconvex on non — convex centroids
3: for each centroid (x,y) do
4: Compute pc = KDEconvex(x,y)
5

Compute pn = KDEnonconvex(x,y)

6 Compute spikinesss = 1 — Pe
Dc + DPn

7: end for

31

Based on this statistical modeling in Algorithm 3.12, a new set of shape descriptors is syn-
thesized by sampling from the learned distributions. The size of each new polygon is drawn
from the empirical histogram, while the number of vertices is sampled conditionally on size.
The convexity of each polygon is estimated to be using the KDE density maps, allowing spiki-
ness to be assigned in a data-driven manner. If the original dataset predominantly consists of
rectangular shapes identified using side-length uniformity and angular checks the system
switches to an axis-aligned rectangle generator to preserve the geometric consistency. Other-
wise, an irregular polygon generator is invoked, using the sampled feature set (size, spikiness,

irregularity, vertices) to control the shape synthesis process.

Algorithm 3.12 Statistical Analysis of Features
Require: Feature table F

Ensure: Histogram and conditional mappings
1: foreach feature f € F do
Compute histogram of f
end for

2

3

4: Compute correlation matrix of numeric features
5: Group by convexity and compute group means

6

Discretize size into bins and compute mean, std of vertex count

This feature-aware in Algorithm 3.13 pipeline enables the generation of synthetic poly-
gons that retain the global and local characteristics of the original dataset. Unlike purely spa-
tial generation methods, this approach reproduces both the morphological diversity and the
statistical structure of input geometries, making it highly suitable for geospatial simulation,
synthetic data augmentation, and machine learning pretraining tasks. By coupling geometric
analysis with nonparametric modeling, the framework strikes a balance between fidelity and

generative flexibility.

Algorithm 3.13 Feature-Aware Synthetic Polygon Generation
Require: Histograms, conditional tables, KDE models, N synthetic samples

Ensure: Synthetic polygons P’
1: fori = 1toNdo
2: Sample size si from histogram

3: Sample number of vertices vi conditioned on si

32

Sample centroid (xi,yi) from copula distribution
Estimate spikiness spi via KDE
if polygons are mostly square then

Generate rectangle at (xi, yi) of size si

else

© 0 N o v B

Generate irregular polygon using (si, ui, spi)
10: end if

11: Add polygon to P’

12: end for

3.2.3 Similarity Assessment

To ensure that the generated synthetic polygonal data faithfully reflects the statistical and
geometric structure of the original input, we introduce a robust similarity assessment metric:
the Distributional Geometry Alignment Score. This metric is specifically designed to quantify
the alignment between two datasets original and synthetic in terms of their feature distribu-
tions and structural interdependencies, rather than relying solely on raw spatial proximity.
The DGAS is computed by evaluating two complementary components:
A. Feature Distribution Similarity:
This term measures the alignment of marginal distributions across selected geometric
features such as polygon size, compactness, number of vertices, or aspect ratio. Each
feature is normalized using Min-Max scaling to account for scale discrepancies. The
similarity is quantified using the inverse of the 1D Wasserstein distance (Earth Mover’s
Distance) [19], which provides a principled way to compare continuous distributions.
Importantly, each feature's contribution is weighted based on its empirical variance,
prioritizing more informative variables in the global score.
B. Feature Structure Similarity:
Beyond marginal alighment, this component captures how feature interrelationships
are preserved between datasets. For this, we compute the pairwise correlation matri-
ces of the selected features in both original and generated datasets. The Frobenius
norm [20] of the difference between these matrices serves as a proxy for structural
divergence. A normalized score is then derived to express the degree of alighment,

where values close to 1 indicate strong preservation of internal dependencies.

33

The final similarity score is calculated as a convex combination of the two components:
DGAS = a - Sgist + B Sstruct » with default weights a« = 0.6, § = 0.4

This formulation balances the importance of preserving both the distributional shape and
internal geometric logic of the data.

Unlike classic similarity metrics that rely on spatial proximity (e.g., pointwise Euclidean
distance, Hausdorff distance), DGAS intentionally does not incorporate absolute positional in-
formation. This design decision is grounded in the core principle of non-parametric, distribu-
tion-based generation: synthetic geometries are not meant to reproduce the spatial layout of
the input, but to statistically match its distributional properties.

When generating new polygons or points within a potentially different bounding box or
with randomized spatial allocation, enforcing positional similarity becomes both meaningless
and restrictive. Instead, our focus is on maintaining the statistical essence of the input its
shape complexity, feature relationships, and geometric behavior rather than its specific loca-
tion in space.

While this section introduces the similarity assessment mechanism, a more detailed anal-
ysis including case studies, quantitative evaluations, and performance benchmarking is pre-

sented in the Evaluation section of this thesis.

34

CHAPTER 4

WEB APPLICATION AND VISUALIZATION

4.1 Architecture Overview

4.2 Web Interface

4.2.1 Generation Interface

4.2.2 Interactive Synthetic Data Space
4.2.3 Interactive Visualization

4.2.4 Upload Dataset Feature

The generator tool includes a web-based user interface that allows users to configure, visual-
ize, and generate synthetic spatial datasets interactively. The top section of the interface pro-
vides multiple input fields enabling users to specify generation parameters according to their
needs. Users can choose the desired point distribution (Uniform, Gaussian, Diagonal, or Clus-
tered), define the cardinality (number of geometries), select the type of generated geometry
(point, polygon, convex, non-convex, Voronoi-based, etc.), and adjust various generation pa-
rameters such as average radius, irregularity, and spikiness for polygons. Additionally, users
can configure bounding box limits, fix the polygon centers across generations, and apply op-
tional transformations. The interface also supports setting specific parameters depending on
the distribution type, such as buffer size for diagonal distributions or cluster radius for clus-

tered distributions.

35

© Download Dataset - 0,100

I — ’ & e i
© Distribution © cardinality N = =
Uniform - 100 »

: 5 P

© Min Size: © Max Size: =
001 001

@ Min Line Seg: O Max Line Seg:

3 5 " a v
© Upload File [= @

@ Upload Data File:

Choose File | No fle chosen = 0.00,0.00) 100 1.00.0.00)

@ scaie Poiygons

© Adjust Bounding Box (Click to expand/hide)

Figure 4.1. Web interface of the synthetic spatial data generation platform. The left panel
provides interactive controls for selecting distribution type, geometry configuration, cardi-
nality, and polygon complexity parameters. Users can also upload external datasets and ad-
just bounding box extents. The right panel displays the generated geometries in real-time
within the editable bounding box domain.

A key feature of the web interface is the real-time visualization of the generated data.
Once the user defines the configuration parameters and triggers the generation request, a
sample of the dataset is visualized on the page using the Open Layers library. Open Layers
provides a flexible and dynamic environment for rendering vector geometries, allowing mul-
tiple layers to be added, compared, and manipulated. Users can interact with the displayed
geometries by zooming, panning, or overlapping different layers for comparative purposes.
Furthermore, the visualization updates immediately upon changes in the configuration, en-
suring that users can preview the effects of their adjustments without the need for reloading
or manual interventions.

To maintain responsiveness, visualization is limited to a manageable number of geome-
tries (e.g., 1000 samples) even if the final dataset is much larger. This approach ensures fast
rendering and provides a representative preview without overloading the browser or server.
Users also can download the full dataset in formats such as JSON, WKT, or GeoJSON for exter-

nal analysis.

4.1 Architecture Overview

The architecture of the developed system follows a modular and layered design, tailored to
support interactive generation, visualization, and evaluation of synthetic spatial data. It inte-

grates client-side rendering, server-side computation, and data exchange mechanisms in a

36

cohesive workflow that ensures usability, scalability, and reproducibility. The system has been
designed with the dual goal of supporting real-time experimentation and maintaining scien-
tific rigor in the analysis of generated geometries.

At the client level, the web interface is implemented using standard web technologies,
including HTMLS5, CSS, and JavaScript, with OpenlLayers [21] serving as the main visualization
library. OpenLayers enables efficient rendering and manipulation of vector geometries, allow-
ing users to explore generated datasets interactively. The interface provides a rich set of input
controls through which users can define generation parameters such as the type of spatial
distribution (e.g., uniform, Gaussian, diagonal, clustered), geometric configuration (e.g., con-
vex polygons, Voronoi diagrams), and structural constraints (e.g., spikiness, irregularity, num-
ber of vertices). Input fields dynamically adjust based on the selected options, enabling intui-
tive and context-aware configuration. A central element of the Ul is the bounding box editor,
which supports direct manipulation of spatial extents through corner and edge dragging, cou-
pled with real-time geometric regeneration.

On the server side, a Python-based backend is responsible for the actual data generation
and similarity assessment. Upon receiving a request, the backend parses the configuration
parameters, generates a synthetic dataset according to the selected distribution and geome-
try settings, and optionally performs transformations such as shrinkage or scaling. When a
reference dataset is uploaded, the server also performs similarity evaluation using the Distri-
butional Geometry Alignment Score (DGAS) metric. DGAS quantifies how closely the gener-
ated dataset matches the reference in terms of both distributional and structural similarity,
providing users with immediate feedback. Additional outputs include statistical feature sum-
maries and visual plots of marginal distributions.

The overall architecture is illustrated in Figure 4.2, which shows the interaction between
the client interface and the backend services. The diagram highlights the flow of user input,
the geometry generation pipeline, similarity evaluation, and data export mechanisms that en-

able reproducible experimentation and efficient dataset delivery.

37

Client side

[=————————"——)
Web Interface Configuration
interacti i Parameters
« Interactive generation > AR
« Visualization » Spatial dfstrlbutlon
« Evaluation » Geometric
configuration
Openlayers ¢ Structural constraint
Data Exchange
Python Backend Data
» Synthetic data > Storage
generation « JSON
» Similarity assessment o WKT
* » GeoJSON
bBEASIMetne Server-side

Figure 4.2. System architecture diagram of the synthetic spatial data generation platform.

The design integrates a web-based client interface (Openlayers-based) for interactive pa-

rameter input and geometry visualization, a Python backend for geometry generation and
similarity evaluation, and mechanisms for reproducibility and data export.

The system further supports reproducibility and traceability through automated per-
malink generation. All session parameters are encoded in a URL that can be stored or shared,
ensuring that the exact dataset can be regenerated in the future or by collaborators. Data
exports are available in standard formats such as JSON, WKT, and GeoJSON, facilitating further
analysis or integration with external GIS tools.

To maintain responsiveness, the interface renders only a limited number of geometries
(typically 1000) for preview purposes, even when the full dataset is significantly larger. This
decoupling of visualization from generation allows the interface to remain fast and interactive,
while preserving the complete dataset for downstream use.

In summary, the architecture combines scientific flexibility with interactive usability, mak-
ing the system suitable for both researchers aiming to model spatial phenomena and practi-

tioners requiring customized datasets for simulation, benchmarking, or model validation.

38

4.2 Web Interface

The developed web interface serves as the central access point for configuring, generating,
and visualizing synthetic spatial datasets. It is built using HTML5, JavaScript, and the Open
Layers library, providing a modular, responsive, and highly interactive environment. Its design
philosophy prioritizes user experience through clarity, parameter visibility, real-time visual
feedback, and minimal user friction during iterative testing.

The system consists of four core panels: (1) data generation configuration, (2) file upload
and distribution matching, (3) bounding box manipulation, and (4) geometry visualization. To-
gether, they enable seamless experimentation with point- and shape-based data generation

strategies.

4.2.1 Generation Interface

The generation interface (Figure 4.1, left panel) allows users to define synthetic data proper-
ties via an intuitive form. Users can select the distribution type (e.g., uniform, diagonal, Gauss-
ian, cluster), geometry type (e.g., point, box, convex, Voronoi, mixed), and cardinality (number
of records). For shape-based geometries, advanced controls such as minimum and maximum
radius, line segment counts, and shape complexity parameters (irregularity, spikiness, shrink
factor) are dynamically enabled based on the chosen method.

The interface includes a "lock" toggle feature that allows users to regenerate geometries
with identical centers but different shapes, enabling controlled variation a useful capability
for benchmarking, visual analysis, or sensitivity testing. The generation process is instant and

updates the map view in real-time.

4.2.2 Interactive Data Space

The interactive bounding box is a core component of the interface, defining the spatial domain
within which all geometries are generated. It is visualized on the map as a blue rectangle with
labeled corner coordinates and edge dimensions (Figure 4.1, right). Users can manually re-
shape the bounding box by dragging its four corner points or adjusting its edges via midpoints.
These interactions automatically update the underlying extent ([xmin, ymin, xmax, ymax]),
which in turn triggers a regeneration of the synthetic dataset to fit the new spatial domain.
The bounding box serves both as a spatial constraint for generations and as a visual cue

for scale and layout control. Internally, any change to its shape updates the generation engine

39

with a new extent through asynchronous calls. This guarantees coherence between user in-
teractions and generated data, enabling real-time iteration and adjustment without requiring
form resubmission.

An alternative to interactive dragging is the numeric bounding box editor shown in Fig-
ure 4.3, where users can enter precise values for the spatial domain coordinates. This ena-

bles exact control in scenarios requiring reproducibility or alignment with known geospatial

© Adjust Bounding Box (Click to expand/hide)

extents.

0 X Min: 0 X Max:
0 1

O Y Min: O Y Max:
0 1

Figure 4.3. Bounding box configuration panel. Users can manually define the spatial extent
of data generation by specifying minimum and maximum values for the x and y axes. Upon
pressing "Apply Bounding Box", the map and generation domain are immediately updated,
ensuring precision control over the spatial boundaries.
Upon submitting new values via the "Apply Bounding Box" button, the map is automati-
cally updated to reflect the new bounding region. The updated bounding box is immediately
reflected in subsequent data generation processes, ensuring consistency between user-de-

fined input and rendered geometries. This dual-mode interaction (visual + numeric) supports

both exploratory and precision-driven workflows.

4.2.3 Interactive Visualization

The map panel serves as a dynamic visualization environment where all generated geometries
are rendered in real-time. The system supports a wide range of geometry types including
points, boxes, and polygons with efficient vector rendering, ensuring smooth performance
even under high cardinalities. Polygons are controlled by user-defined constraints such as min-
imum and maximum size, as well as minimum and maximum number of vertices, enabling

fine-tuned control over their structural complexity and spatial footprint.

40

A critical feature enhancing interactivity is the lock toggle (displayed as a padlock icon).
When enabled, this feature preserves the centroid locations of all existing geometries during
regeneration. While spatial positions remain fixed, users are still allowed to modify key shape
parameters including polygon size and number of vertices. This results in updated shapes that
retain their original spatial anchoring, making it particularly valuable for controlled experi-
ments where positional stability is essential. The lock ensures that generated polygons are not
lost or repositioned, providing users with consistent visual references and repeatable outputs.

When the lock is disabled, both position and shape attributes are randomized, allowing
for a full reshuffling of the synthetic dataset. The lock’s state dynamically influences several
form components, disabling randomization controls and triggering corresponding updates in
the visualization layer. This mechanism supports both exploratory and repeatable generation
workflows, making the interface suitable for simulation studies, perturbation analyses, and

synthetic benchmarking tasks.

4.2.4 Upload Dataset

In addition to forward generation, the interface includes a file upload feature that supports
standard formats such as CSV, WKT, and GeoJSON. This functionality allows users to import
real-world datasets either point-based or polygonal and visualize them alongside generated
data within the same map canvas.

Upon upload, the system automatically detects the geometric type and displays the asso-
ciated bounding box, which becomes editable through the standard interactive tools. The user
may then choose to scale the imported polygons to fit the current generation domain or to
preserve their original proportions and coordinates. This feature provides flexibility in aligning
heterogeneous datasets with synthetic generation space.

A central capability of the upload module is that it allows users to view and interact with
the original dataset directly on the map. This includes full spatial rendering of the imported
geometries and the ability to overlay synthetic outputs for comparative analysis. Once the
data is visualized, users can select additional generation operations for example, they may
choose to compute a Voronoi tessellation based on the uploaded point dataset, enabling
structured polygonal partitioning of the space. The resulting Voronoi cells can be optionally

scaled via a shrink factor, controlling the tightness or dispersion around each seed point.

41

Through this upload-and-generate mechanism, the interface bridges the gap between
empirical data and synthetic modeling. It enables workflows where users can both replicate
and generalize spatial distributions and structural patterns using the same interactive frame-
work. Combined with similarity scoring and visual comparison tools, this functionality sup-

ports informed evaluation and reproducible synthetic data experimentation.

42

CHAPTER 5

EVALUATION

5.1 Random Generation Evaluation
5.2 Data-Driven Generation Evaluation
5.2.1 Distribution Evaluation

5.2.2 Features Extraction Evaluation

5.2.3 Similarity Evaluation

This chapter presents a comprehensive evaluation of the developed system for synthetic spa-
tial data generation. The evaluation is twofold. Section 5.1 focuses on the performance and
scalability of the geometry generation algorithms, assessing their suitability for various simu-
lation tasks. Section 5.2 evaluates the statistical fidelity of the data-driven generation ap-
proach, which aims to reproduce spatial distributions using empirical matching techniques.

All experiments were conducted on a machine equipped with an Intel Core i5-8300H CPU
(4 physical cores / 8 threads, base frequency 2.30 GHz), 32 GB RAM, and Windows 11 Pro 64-
bit. The implementation was executed in Python 3.10 in single-thread (serial) mode, without
explicit parallelization. This ensures that execution time reflects the raw efficiency of each
algorithm without influence from parallel optimizations.

Each generation method was tested under increasing cardinality, ranging from 10,000 to
700,000 polygons, with a maximum of 50 vertices per polygon. Identical spatial bounds and
parameter settings were applied throughout the evaluation.

For the data-driven evaluation, two stages were conducted. In the first stage, the system
was assessed using synthetically generated points to verify whether it could correctly infer
and reproduce the underlying spatial distribution. In the second stage, real spatial data were
used to test the model’s capability to match authentic spatial patterns and statistical proper-
ties. The same two-step procedure was also applied to polygon generation, first validating the

method with generated reference shapes and then with real geometric datasets.

43

5.1 Random Generation Evaluation

The performance of four core polygon generation algorithms Circle-Based, Convex Hull-Based,
Random Vertex, and Sliding Generator was evaluated across varying dataset sizes. The results
are presented in Table 5.1 and Figure 5.1.

Table 5.1 shows the execution time in seconds for generating different numbers of poly-
gons. The Circle-Based Generator demonstrated superior scalability, completing the genera-
tion of 700,000 polygons in under 30 seconds. In contrast, both the Convex and Sliding Gen-
erators failed to scale beyond 200,000 due to computational bottlenecks. The Random Vertex
Generator showed moderate scalability but suffered from increasing overhead due to collision
detection and shape validation steps. Figure 5.1 visualizes the execution time growth across
the four methods. The Circle-Based Generator exhibits a near-linear scaling trend, making it

the most suitable choice for large-scale applications.

Table 5.1 Execution time (in seconds) for generating with ranges from 10,000 to 700,000. A
dash (-) indicates that the method does not scale beyond that size.

Cardinality

10.000 50.000 100.000 200.000 300.000 400.000 500.000 600.000 700.000

Circle-based 0.59 2.18 5.24 9.75 12.77 17.14 20.84 25.41 29.22
Convex 16.79 72.44 159.32 336.07 - - - - -
Random 2.50 12.24 27.08 45.29 69.30 93.87 118.61 137.78 160.62
Sliding 16.34 86.16 181.61 293.37 - - - - -

These results clearly indicate that the Circle-Based Generator provides the best trade-off
between geometric complexity and execution efficiency. It was therefore selected as the de-
fault method for scalable polygon generation in the final system.

In contrast, the Convex Hull and Sliding Generators, while offering precise geometric
structures, are better suited for smaller datasets or specialized use cases where geometric

rigor outweighs performance constraints.

44

Table 5.1 - Polygon Generation Time vs. Cardinality
R0 # Circle-Based

/
y —e— Convex

f —e— Random
300+ o

Sliding

N
[
(=}

200t /A

=
w
(=]

100

Generation Time (seconds)

50

0 100000 200000 300000 400000 500000 600000 700000
Number of Polygons

Figure 5.1. Generation time comparison for core polygon generators across increasing cardi-
nality. Circle-Based remains highly efficient, while Convex and Sliding show steep growth due
to computational complexity

To support diverse spatial simulation needs, the system also integrates additional meth-
ods: Points, Boxes, Voronoi, Elongated, and Mixed-Type generators. Table 5.2 and Figure 5.2
summarize their performance.

Table 5.2 highlights the speed of point and box generators, which remained below 2.5
seconds even for 700,000 instances. These methods are optimal for applications requiring
simple geometric entities. The Mixed-Type Generator also showed excellent scalability, effec-

tively combining box and irregular shapes with minimal performance degradation.

Table 5.2 Final Selection — Generation Time (in seconds) for N Polygons Using Different Algo-
rithms N ranges from 10,000 to 700,000 polygons. A dash (-) indicates that the method did
not scale beyond that size.

Cardinality

Methods 10.000 50.000 100.000 200.000 300.000 400.000 500.000 600.000 700.000

Points 0.01 0.13 0.34 0.76 0.80 0.89 1.23 0.78 0.93
Box 0.02 0.09 0.25 0.60 0.89 1.42 1.52 2.13 2.06
Circle-based 0.59 2.18 5.24 9.75 12.77 17.14 20.84 25.41 29.22
Voronoi 8.44 38.83 56.66 12421 168.01 236.59 267.43 344.43 429.49

Elongated 21.58 9143 217.91 - - - - - -
Mix-Type 0.11 0.67 1.66 3.07 4.10 5.64 7.59 8.70 10.26

45

In contrast, the Voronoi Generator exhibited significantly higher execution times, exceed-
ing 400 seconds for 700,000 polygons. Similarly, the Elongated Generator, which produces
flow-aligned or infrastructure-like geometries using TIN-based logic, struggled beyond
100,000 polygons due to its high computational complexity.

Figure 5.2 illustrates these findings, confirming that while point, box, and circle-based
methods are computationally efficient, Voronoi and elongated generation methods are more
suited for domain-specific tasks where structural realism outweighs performance considera-

tions.

Generation Time by Algorithm vs. Cardinality

Points

Box

400 o Circle-Based
Voronoi
Elongated
Mix-Type

w
(=]
o

N
o
o

Generation Time (seconds)

=
o
o

ot ~M

0 100000 200000 300000 400000 500000 600000 700000
Number of Geometries

Figure 5.2. Extended performance comparison including additional methods. Circle-Based
remains the most scalable for polygons, while Voronoi and Elongated are suitable for high-
fidelity or domain-specific tasks despite higher runtime.

The Circle-Based Generator emerged as the most balanced solution, combining fast exe-
cution, shape complexity control (via irregularity and spikiness parameters), and robustness.
Its lightweight implementation and parameter-rich design enable controlled generation of re-
alistic yet computationally efficient polygon datasets.

In conclusion, the performance evaluation confirms the modular strength of the system:
users can select from a spectrum of generators based on task requirements, balancing be-

tween scalability, shape fidelity, and structural complexity.

5.2 Data-Driven Generation Evaluation

This section presents a detailed evaluation of the system’s data-driven generation capabilities,
emphasizing its ability to replicate the statistical and morphological properties of real-world

spatial datasets. Unlike parametric techniques, the implemented empirical framework does

46

not assume a predefined model structure; instead, it aims to preserve both the marginal dis-
tributions and the joint dependencies among spatial variables using a nonparametric ap-
proach. The evaluation proceeds in three stages: (i) analysis of the distributional similarity
between real and synthetic point sets; (ii) assessment of feature extraction fidelity across pol-
ygon types; and (iii) quantitative evaluation of structural similarity using the Distributional Ge-
ometry Alignment Score (DGAS). These analyses jointly validate the generator’s performance

in terms of both spatial fidelity and generalizability.

5.2.1 Distribution Evaluation

The first component of the evaluation investigates whether the generated point sets accu-
rately replicate the spatial distribution of original data. Visual comparisons were conducted
for five distinct distribution types of circles, spiral, petals, clusters, and moons. In each case,
synthetic points were generated from empirical copula-based transformations and compared
to the original datasets.

As shown in Figure 5.3, the circular dataset, characterized by a double-ring structure with
a central void, is successfully approximated by the generator. The synthetic data (blue) follows
the same radial density as the original (red), both at the inner and outer rings, without at-
tempting to match specific positions. This confirms that the model captures the overall spatial
distribution, despite minor diffusion near the central gap an artifact consistent with probabil-

istic sampling.

47

(-1.11,1.12) (1.09, 1,12)

e 22 =2
.
My

.
(1.09. -1.10)

L
(-1.11,-1.10)

Figure 5.3. Visual comparison between original (red) and synthetic (blue) data for the circu-
lar distribution. The generator accurately replicates the radial density and double-ring struc-
ture. Minor central diffusion arises from the non-deterministic nature of sampling, without
affecting the overall distributional fidelity.
In Figure 5.4, the spiral distribution is also well reproduced. The synthetic data accurately
follows the curvature and radial growth of the original spiral, including the dense inner coils

and sparser outer arms. The alignment between distributions confirms the generator's ability

to model structured polar patterns using nonparametric, distribution-based techniques.

48

(-9.48,7.92) (12.57,7.92)
: (0]

=— 1B.96 —=

. A =
(-9.48,-11.04) 04— (12,57, -11.04)

Figure 5.4. Original (red) and synthetic (blue) spiral datasets. The generator successfully cap-
tures the winding curvature and radial expansion, maintaining spatial continuity and density
progression along the spiral arms.

The petal-shaped dataset shown in Figure 5.5 further demonstrates the fidelity of the
generator. The synthetic points preserve the sinusoidal radial structure and inter-lobe spacing,
maintaining angular symmetry and density variation consistent with the original dataset.

Slight fluctuations near the origin do not compromise the distributional validity of the result.

49

(-0.93, 0.93) (0.93, 0.93)
9

< 186—>

(-0.93,-0.93) 186-s (0.93.-0.93)

Figure 5.5. Petal-shaped distribution generated from a sinusoidal radial function. The syn-
thetic data reproduces the petal structure, preserving radial symmetry and inter-lobe spac-
ing, with minimal distortion near the center.

In Figure 5.6, the clustered distribution is effectively reproduced. The synthetic data main-
tains the location, density, and spatial extent of the original clusters. While additional micro-
clusters may appear due to stochastic effects, the dominant distributional characteristics re-
main intact. This illustrates the robustness of the generation method when applied to multi-

modal spatial data.

50

-1.10,0.93) (3.82,093)

R
» ¥ '!a- . "y
'”.'--“’- ..".‘;! :‘::; »-.. ;. %
S it _""':"-r':.. (" 'R y
. "i“"ﬂ A& -i"‘.v'.' '-g-.-i,',-'?' b
- "\¢ - .-.\ o He 1“
R RIS

<= B8.19 —>

-
e B
e
L . AR,

S et
.

N

e
ia'q‘-":-.'

i

.

5

K

SE
-
f

=
o
.
D
-

gV
)} ,‘-_m':
‘:}-‘.s.ﬁ--.
e

15

7.10,-726) 105 (382,7.26)

Figure 5.6. Clustered distributions showing real (red) and synthetic (blue) points. The main
clusters are faithfully reproduced in terms of location and density, despite some emergence
of micro-clusters due to bin-based sampling.

Finally, Figure 5.7 shows the classic moons dataset. Despite the well-known complexity of
this non-linear shape, the generator reproduces the twin arc structure and preserves the over-
all spatial balance between the two classes. The gap between classes is maintained, and cur-
vature is respected to a high degree, confirming the method’s ability to replicate complex

geometry-aware distributions.

51

(113,113) (2.06,1.13)

[
. \."g"‘l’?'."ﬂ'af
Y A7 P o 1,
4 o oW l" Iy n-“ﬁl"‘.“' W
},’::n‘ X VT "\:"“:'
s oM
H e X))
e ;:.,'»1- * 'M‘gx'?ﬁ.-_.-
% N
AN L U '
ERRE g ; "i‘ : R
A I .‘ﬁr.) 1. i ‘. .:\"*l" .:':" -: 'ﬁ
| b o, arat .
s | 280, e R Ay,
- " e %
i .!' ' T, " Y, g, " R
- . e .,!', . ',-
T %
.'*r'l"' .':“."$. l'.\l-h'L " rl .
e W, Mg .lt"a#-
" :""::n’ a ' nger r?’
Vet ‘,-:_-_t“,
% 5,
. .l'u::‘i-.l) ¢ l‘-#,m -.
A A5
’ YT L IR MR
R R
— it
(1.13,081) PPN (206, 061)

Figure 5.7. Moons dataset comparison. The generator preserves the twin arc structure and
class separation, successfully capturing the underlying non-linear geometry of the distribu-
tion.

In addition to synthetic reference datasets, the data-driven generator was also tested us-
ing real spatial data to assess its capacity to reproduce authentic geographic distributions.
Specifically, a dataset of building centroid points from the city of loannina, Greece was em-
ployed as the empirical reference (Figure 5.7). The red points correspond to the real building
locations, while the blue points represent the data-driven synthetic generation derived
through the empirical copula transformation. As shown in the figure, the generator success-
fully captures the elongated and clustered spatial pattern characteristic of the urban structure
of loannina, maintaining both local density variations and the overall spatial extent of the city.
Minor deviations at peripheral regions are attributed to sampling variability and do not affect

the overall fidelity of the generated distribution.

52

(0.00, 1.00) (1.00, 1.00)

¢ ® —]
..
-,
(1)
r -
"
., .
.ﬂ.ﬁ.
HY'
o'.. . 4
i .
[ee]
= ®
=
|
v
* ':.o
- -
.‘o o. -
o:".
. ‘ - [R .
(0.00, 0.01) - 100—> (1.00, 0.01)

Figure 5.8. Comparison between real and generated spatial distributions for the city of loan-
nina. The red points represent real building centroids obtained from OpenStreetMap data,
while the blue points denote synthetic points generated through the data-driven empirical
copula method. The generator successfully reproduces the clustered and elongated urban

pattern observed in the real dataset.

In summary, across all six cases, the empirical generation approach succeeds in replicat-
ing the underlying statistical distribution of the original datasets. The generated points do
not attempt to match absolute positions but instead preserve the probability density, sym-
metry, and spatial tendencies of the original patterns. This confirms that the generator ful-
fills its design objective: to produce new, randomly sampled data points that follow the
same distributional behavior as the reference dataset.

To further assess the algorithm's performance, we evaluate the marginal distributions of
the x and y coordinates using one-dimensional Wasserstein distance (also known as Earth
Mover’s Distance). Figure 5.9 presents stacked histograms comparing the real (blue) and syn-
thetic (red) distributions along each axis.

These visualizations offer valuable insights into the degree of fidelity achieved by the gen-

erator. In cases where the spatial structure is symmetric or approximately uniform, the

53

synthetic data tends to follow the original distribution closely. For instance, the peak align-
ment in both histograms suggests that the empirical sampling preserves the most frequent

value ranges and overall distributional mass.

Distribution of x Distribution of y

1200 4 B Real 1400 - = Real

Synthetic Synthetic

1000 - 1200 ~

1000 4
800

800
600

600

400
400

200
200 A

0.8 1.0

Figure 5.9. Marginal histograms of the x (left) and y (right) coordinates for real (blue) and
synthetic (red) data. High overlap across bins confirms strong marginal distributional align-
ment between real and generated data.

However, this performance deteriorates in more asymmetric or structured input datasets,
such as the spiral or crescent-shaped moons. In those cases, the ECDF transformation and
histogram binning induce smoothing effects that result in central clustering or edge diffusion.
In practical terms, this means that the algorithm oversamples mid-range intervals while un-
derrepresenting rare or boundary values particularly in non-linear or multi-modal distribu-
tions.

This discrepancy highlights a key limitation: while the algorithm preserves marginal uni-
formity in an average sense, it lacks awareness of joint spatial dependencies that govern the
structure of more complex patterns. As a result, the generated dataset may appear statisti-
cally similar in isolation but deviate significantly in spatial behavior when visualized or ana-
lyzed holistically.

To mitigate this, future versions of the system could incorporate density-adaptive binning
or copula-enhanced joint modeling, ensuring that both marginals and dependencies are faith-
fully represented.

In addition, Figure 5.10 illustrates the Voronoi tessellation derived from synthetic points
generated to follow a clustered distribution. Each Voronoi polygon represents a spatial region

that is closer to a particular seed point than to any other. As a result, this transformation

54

provides a structured polygonal view of the synthetic point cloud and serves as a valuable tool

for examining the spatial footprint and neighborhood relationships of the generated data.

Figure 5.10. Voronoi tessellation is constructed from real spatial distributions for the city of
loannina. Each polygon defines the region of influence of a single point, illustrating the spa-
tial footprint and neighborhood relationships induced by the generated distribution.

5.2.2 Features Extraction Evaluation

The second component of the evaluation focuses on the system’s ability to replicate polygonal
shape characteristics through feature-based generation. Experiments were conducted across
three representative categories: axis-aligned rectangles, convex polygons, and non-convex ir-
regular polygons. For each shape type, geometric descriptors were extracted from both orig-
inal and synthetic datasets and compared.

As shown in Figure 5.11, the axis-aligned rectangles generated by the system demonstrate
a high level of structural fidelity. The synthetic shapes (blue) preserve edge parallelism, right-

angle geometry, and size uniformity relative to the originals (red). The results confirm the

55

model’s capability to enforce strict angular and linear constraints, making it suitable for struc-

tured spatial layouts such as land parcels, agricultural plots, or grid-based urban modeling.

(0.01, 1.00) (1.00, 1.00)
= o
¢ = = . 5
] s}
F = O
o o 0
[m} - ﬂ
O = DDD =
O O EE| =] or
u]
g
I o
& i =k 8 g
] i
T o° O DLT:’_, [ID O - 0
fa] =]
23 | E% B .
'T o - m ra =
W Em I:I =1 | |
i O |
o m] %: -
d DD IE
= 0
an O O O
-] =]
= [EI T o
= LS (=) 0 =
o e 0 i Oo o
-, & g
Ghcd O H
& P — = o — — &
(0.01, 0.00) - 0.99_> (1.00, 0.00)

Figure 5.11. Axis-aligned rectangular shapes: comparison of original (red) and synthetic
(blue) geometries. The generator maintains edge alignment, angular consistency, and pro-
portional aspect ratios across the dataset.

For convex polygons, illustrated in Figure 5.12, the system introduces controlled irregu-

larity while maintaining convexity. Vertex counts, compactness, and shape regularity metrics

remain within acceptable bounds. The generated shapes follow the overall geometry of the

originals without collapsing symmetry or structural consistency. This highlights the model’s

capacity to emulate naturally occurring convex forms, often found in geospatial footprints and

environmental mapping.

56

(0.99, 0.96)

(0.04, 0.96)
= o ” 9
Qe = el
L NN R J e ©
, © b g _ < LY
Fa 4 {2 =
o@ o v v] Fo -
.. o o g B
W v 5 < e
= %) . Q:—_],
0 L Y 5 g0 P
CoeVm
A %
vy & &
1 ./}E‘ ‘Qﬁh?% o IZZ'{:E:| %C' = = w7
s 0 °, g o
| By = [
Tl F o a ks 2
g o) > o
3 o q&' 5 % :P{}w v Vo8 uﬂg
5, @ 2 ‘g@ veeof, C
£
Dgg o o 4 v q °
@ ‘& ® 0y N &
O E- C [
Co 4 P
) & %>
g)] a a p
oo o § 4 ¢, DY
o— Lo o o o =t o
(0.04, 0.02) — 095> (0.99. 0.02)

Figure 5.12. Convex polygons: visual comparison between original (red) and synthetic (blue)
shapes. The synthetic output preserves vertex count, compactness, and convexity without
collapsing the global structure.

Non-convex shapes, as depicted in Figure 5.13, present a more complex generative task.
Nevertheless, the model captures spikiness, indentation, and irregular contours by leveraging
learned shape descriptors. The output includes synthetic polygons with varying vertex count,

radial asymmetry, and local deformations, aligned with the statistical structure of the input

set. This indicates the generator’s flexibility in replicating non-trivial morphological features

with high variance.

57

IUHY, UHE)

LU, LSS
® S
jﬁ&r " .:'-‘i* e & ®
Lo E’V ga 3“
Q S
USRI PSP
Ll oS
o 7 . ¢ @ "]foﬂ ?{3
& G <
G QO £l |
c;‘:ﬁ ; W % & =)
,-1“{:' F e gﬂ"
1 é"’%& ?9 o & o W@
& @ 00 K ¢
T ’ © § =& °
W "F“ Ij {?
A SR L . e
. o 8 %
p % % 5 9 ® (oA =
Y, by
A G O FD% L
L b %ﬁ% o ®
< D ’ ? Gy
E:.U & I} Gﬁﬂ r
0 Y o> ® A
o % " . @ O i
(0.03, 0.02) < 0.05_> (0.99, 0.02)

Figure 5.13. Non-convex irregular polygons: original (red) and generated (blue) shapes ex-
hibit comparable spikiness, asymmetry, and variation in vertex distribution, capturing mor-
phological complexity.

In addition to synthetic datasets, the feature-based generator was also evaluated using
real polygonal data, specifically building footprints from the city of loannina, Greece (Figure

5.14). The red outlines correspond to real building geometries obtained from OpenStreetMap,

58

while the blue outlines depict the synthetic polygons generated by the system based on ex-

tracted geometric descriptors such as size, compactness, and convexity.

R
\} %@00 {Il' 7
. & ORI

Figure 5.14. Comparison between real and generated polygonal data for the city of loannina.
Red outlines represent real building footprints from OpenStreetMap, while blue outlines de-
note synthetic polygons generated from feature-based distribution matching. The generator
captures the spatial density, orientation, and irregularity characteristic of the city’s urban
morphology.

Although the synthetic shapes do not replicate the exact building geometries, they suc-
cessfully reproduce the statistical distribution of sizes, orientations, and spatial density ob-
served in the real data. The generator effectively captures the heterogeneous and irregular
urban morphology of loannina, demonstrating statistical and morphological fidelity rather
than geometric duplication. Minor deviations in smaller or highly fragmented buildings result
from descriptor aggregation and random sampling but do not compromise the overall repre-
sentational accuracy.

To further quantify the quality of the shapes generated, we compared the empirical dis-

tributions of key geometric features between the real and synthetic datasets. Figure 5.14

59

shows histograms of size and number of vertices. The generated shapes approximate the dis-

tribution of size and structural complexity, achieving strong overlap in global descriptors.

Size Distribution Number of Vertices Distribution

1200
s Original I Original

Generated Generated

1000 0z 4

800 +
0.6

600 4

Density
Density

0.4 4

400

0.2 4

0- S T T T T T T T T T T
0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0 25 50 75 100 125 150 175 200
Size Number of Vertices

200 4

Figure 5.15. Feature distribution comparison between real and generated polygons. Left: dis-
tribution of polygon size. Right: distribution of number of vertices. Close alignment demon-
strates fidelity of feature-based generative modeling.

As illustrated in Figure 5.16, the synthetic polygons align closely with the overall spatial
pattern of the real buildings, confirming the system’s robustness even in complex urban set-
tings. Furthermore, when the dataset is restricted to specific and more isolated building cate-
gories, such as schools, universities, hospitals, and parking areas, the generator achieves an
even closer geometric approximation. This improvement occurs because such structures are
typically larger, more spatially distinct, and exhibit consistent geometric characteristics, allow-

ing the feature-based synthesis process to capture their shape with higher precision.

60

(0.00, 1.00) (1.00. 1.00)
L —

<—1.00—=

@ o
(0.00, 0.00) 100> (1.00, 0.00)

Figure 5.16. Comparison between real (red) and generated (blue) building polygons for the
city of loannina. The system successfully reproduces the spatial density and geometric diver-
sity of the real dataset. When focusing on isolated categories such as schools, universities,
hospitals, and parking areas, the approximation improves further due to their higher regular-
ity and reduced spatial clustering.

This evaluation demonstrates that the system learns and reproduces structural patterns
from empirical data without relying on hardcoded rules. By modeling the underlying feature
distributions, the generator adapts to different shape types while maintaining internal coher-
ence and realism. These properties make the system appropriate for diverse downstream ap-
plications, including training data generation for computer vision models, simulation of built

or natural environments, and synthetic benchmarking in spatial domains.

5.2.3 Similarity Evaluation

Across all synthetic polygon categories (rectangular, convex, non-convex), DGAS scores con-
sistently exceeded 0.7, with distributional alignment scores averaging around 0.85 and struc-

tural alignment ranging from 0.6- 0.75, depending on shape complexity.

61

Unlike traditional similarity metrics based on spatial proximity (e.g., Hausdorff distance or
Chamfer distance), DGAS intentionally omits absolute positional alignment. This decision re-
flects the core philosophy of the framework: the goal is not to reproduce exact spatial config-
urations, but rather to statistically mirror the geometric structure of the original data. This
makes the method robust under translation, scaling, or changes in spatial extent conditions
commonly encountered in practical scenarios involving generalization, data synthesis, or do-
main transfer. The DGAS thus serves not only as a robust evaluation tool but also as a guiding

principle for the design of future generative models in spatial data science.

62

CHAPTER 6

CONCLUSION

This thesis introduced a comprehensive framework for the design, implementation, and eval-
uation of a web-based system for synthetic spatial data generation, specifically tailored to the
controlled creation of polygonal geometries. The work was motivated by the increasing de-
mand for reproducible, scalable, and statistically representative synthetic datasets in fields
such as spatial analysis, machine learning, and simulation, where access to real-world data
may be restricted or biased. At the core of the system lies a modular generation engine sup-
porting both algorithmic and data-driven methods. Procedural generators were implemented
to produce a diverse range of geometric patterns, including circle-based irregular polygons,
Voronoi tessellations, elongated (flow-aligned) shapes, and more experimental forms based
on Minkowski sums and sliding transformations. These generators allow users to configure
parameters interactively, enabling the production of synthetic datasets with customized mor-
phological characteristics.

In parallel, a nonparametric empirical distribution-matching module was developed to en-
able the synthesis of spatial data that aligns closely with the statistical properties of a user-
provided reference dataset. Based on empirical cumulative distribution functions and copula
theory, this method preserves both the marginal distributions and the dependency structure
of input variables, supporting realistic and explainable data-driven synthesis. Feature-based
generation was also introduced as a complementary approach, leveraging extracted de-
scriptors such as size, irregularity, spikiness, compactness, convexity ratio, and aspect ratio to
sample new geometries from kernel density estimations, thereby preserving the feature space
complexity of the original data.

A key contribution of the system is the integration of these components within an inter-
active, browser-based interface built using OpenLayers and modular JavaScript. The platform
supports real-time bounding box manipulation, dataset uploading, parameter tuning, and dy-
namic visualization of generated geometries in multiple map layers. Download options for
CSV, WKT, and GeoJSON formats further enhance its applicability in downstream workflows.

Additionally, a robust evaluation framework was developed to assess the fidelity and

63

scalability of the system. Quantitative assessments showed that circle-based irregular gener-
ators could efficiently scale up to 700,000 polygons, and that the empirical copula approach
consistently achieved high resemblance to original datasets across synthetic distributions such
as spirals, petals, moons, clustered patterns and real dataset. These results were validated
using a newly introduced metric, the Distributional Geometry Alignment Score (DGAS), which
measures distributional similarity based on both feature histograms and correlation matrices.
The evaluation demonstrated that the system successfully achieves its central goal: generat-
ing statistically similar, but spatially distinct, synthetic datasets that retain the essential geo-
metric and relational patterns of the originals.

In the case of real-world datasets with highly dense and contiguous polygonal structures
such as central urban areas with tightly packed buildings, the Voronoi-based generation
method demonstrated superior performance. This is because the Voronoi tessellation inher-
ently adapts to local density variations, effectively partitioning space into distinct yet contin-
uous regions. In contrast, the feature-based polygon generation approach tends to focus on
capturing geometric characteristics (e.g., size, compactness, or convexity) rather than spatial
adjacency, which can lead to overlapping or misaligned geometries in densely built environ-
ments.

Conversely, the data-driven empirical method performed particularly well when applied
to more spatially separated and morphologically consistent building categories, where inter-
feature correlations are easier to identify and preserve. In those cases, the reduced spatial
density allowed the generator to better capture and reproduce the statistical dependencies
among shape descriptors, resulting in higher fidelity of the synthesized polygons.

While the results are promising, several limitations remain. Procedural polygon genera-
tors in the current stack are reliable only up to 50 vertices, beyond that threshold we fre-
guently observe self-intersections or geometric artifacts that invalidate the shape. On the
data-driven side, the method underperforms footprints with very high vertex counts, where
intricate boundaries are not well approximated by the learned feature distributions. More
broadly, the empirical generation can introduce centralization bias when the reference distri-
bution is sparse or strongly non-uniform, and some experimental generators are not yet ex-
posed in the web interface due to runtime complexity. The system is also limited to 2D, static
geometries, with no support for temporal evolution or volumetric (3D) structures.

In summary, this thesis delivers a complete, extensible solution for synthetic polygon gen-

eration, combining algorithmic versatility, data-driven accuracy, and user-oriented design in a

64

single platform. By offering explainable synthetic generation with statistical control and inter-
active visualization, the system opens new possibilities for testing, simulating, and augment-
ing spatial datasets in a transparent and reproducible manner. It provides a robust foundation
for future developments in synthetic geometry generation and contributes a valuable tool to

the geospatial and data science communities.

65

BIBLIOGRAPHY

[1]

[2]

3]

[4]

5]

[6]

[7]
(8]

[9]

[10]

T. Vu, S. Migliorini, A. Eldawy, and A. Belussi, “Spatial Data Generators,” in Spatial
Gems, Volume 1, 1st ed., New York, NY, USA: Association for Computing Machinery,
2022, pp. 13-24. [Online]. Available: https://doi.org/10.1145/3548732.3548736

M. Elhefnawy, A. Ragab, and M. S. Ouali, “Polygon generation and video-to-video
translation for time-series prediction,” J Intell Manuf, vol. 34, no. 1, pp. 261-279, Jan.
2023, doi: 10.1007/s10845-022-02003-1.

Y. Liang, B. Nobakht, and G. Lindsay, “The application of synthetic data generation and
data-driven modelling in the development of a fraud detection system for fuel bun-
kering,” in Measurement: Sensors, Elsevier Ltd, Dec. 2021. doi:
10.1016/j.measen.2021.100225.

J. Liu et al., “PolyFormer: Referring Image Segmentation as Sequential Polygon Gener-
ation.” [Online]. Available: https://polyformer.github.io/

B. Wang, X. Song, C. Weng, X. Yan, and Z. Zhang, “A Hybrid Method Combining Voro-
noi Diagrams and the Random Walk Algorithm for Generating the Mesostructure of
Concrete,” Materials, vol. 17, no. 18, p. 4440, Sep. 2024, doi: 10.3390/ma17184440.
G. Eder, M. Held, and P. Palfrader, “Implementing straight skeletons with exact arith-
metic: Challenges and experiences,” Comput Geom, vol. 96, Jun. 2021, doi:
10.1016/j.comgeo0.2021.101760.

G. H. Hughes, “The Edge Geometry of Regular N-gons (Part | for N < 25).”

P. Katiyar, T. Vu, A. Eldawy, S. Migliorini, and A. Belussi, “SpiderWeb: A Spatial Data
Generator on the Web,” in GIS: Proceedings of the ACM International Symposium on
Advances in Geographic Information Systems, Association for Computing Machinery,
Nov. 2020, pp. 465-468. doi: 10.1145/3397536.3422351.

P. Gorry and P. Mooney, “A software tool for generating synthetic spatial data for GIS-
classroom usage,” AGILE: GlScience Series, vol. 5, pp. 1-7, May 2024, doi: 10.5194/ag-
ile-giss-5-26-2024.

Y. Kang and E. J. Kubatko, “An automatic mesh generator for coupled 1D-2D hydrody-
namic models,” Geosci Model Dev, vol. 17, no. 4, pp. 1603-1625, Feb. 2024, doi:
10.5194/gmd-17-1603-2024.

66

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

D. Ankur, D. Mrunalini Thamankar, N. D. Rai, R. G. Veeresh, and P. Auradkar, “Syn-
thetic Generation of Spatial Polygons On Cloud,” in 2024 3rd International Conference
for Innovation in Technology, INOCON 2024, Institute of Electrical and Electronics En-
gineers Inc., 2024. doi: 10.1109/INOCON60754.2024.10511892.

E. Lewandowicz and P. Flisek, “A method for generating the centerline of an elon-
gated polygon on the example of a watercourse,” ISPRS Int J Geoinf, vol. 9, no. 5, May
2020, doi: 10.3390/ijgi9050304.

K. Hermes and M. Poulsen, “A review of current methods to generate synthetic spatial
microdata using reweighting and future directions,” Comput Environ Urban Syst, vol.
36, no. 4, pp. 281-290, 2012, doi: https://doi.org/10.1016/j.compenvurb-
sys.2012.03.005.

Q. Luo and Y. Rao, “Improved Sliding Algorithm for Generating No-Fit Polygon in the
2D Irregular Packing Problem,” Mathematics, vol. 10, no. 16, Aug. 2022, doi:
10.3390/math10162941.

2020 International Multi-Conference on Industrial Engineering and Modern Technolo-
gies (FarEastCon). IEEE, 2020.

J. P. Restrepo, J. C. Rivera, H. Laniado, P. Osorio, and O. A. Becerra, “Nonparametric
Generation of Synthetic Data Using Copulas,” Electronics (Switzerland), vol. 12, no. 7,
Apr. 2023, doi: 10.3390/electronics12071601.

F. Benali, D. Bodénes, N. Labroche, and C. de Runz, “Synthetic Complex Data Genera-
tion Using Copula. 23rd International Workshop on Design, Optimization, Languages
and Analytical Processing of Big Data (DOLAP),” 2021. [Online]. Available:
https://hal.science/hal-03188317v1

A. De Araujo, J. M. Do Valle, and N. Cacho, “Geographic feature engineering with
points-of-interest from openstreetmap,” in IC3K 2020 - Proceedings of the 12th Inter-
national Joint Conference on Knowledge Discovery, Knowledge Engineering and
Knowledge Management, SciTePress, 2020, pp. 116—-123. doi:
10.5220/0010155101160123.

F. Li, “Feature Selection Based on Wasserstein Distance,” Nov. 2024, [Online]. Availa-

ble: http://arxiv.org/abs/2411.07217

67

[20] Z.Zhang, J. Ge, Z. Wei, C. Zhou, and Y. Wang, “Feature Selection Based on Orthogonal

Constraints and Polygon Area.”
[21] G. Farkas, “Possibilities of using raster data in client-side web maps,” Transactions in

GIS, vol. 24, no. 1, pp. 72-84, Feb. 2020, doi: 10.1111/tgis.12588.

68

APPENDIX A

IMPLEMENTATION SAMPLES

A. 1 Overview

This appendix provides implementation screenshots that complement the synthetic polygon
generation framework described in Chapters 3-5. It serves to illustrate the core components
of the system, validate its output, and demonstrate its flexibility across different generation

modes and evaluation stages.

A.2 Generation Ul - Screenshot

Below are sample screenshots from the web-based generation interface Below are sample

screenshots from the web-based generation interface

69

{0.00, 1.00) {1.00, 1.00]
. . Ll ._. -

" - .:g... -
o ‘_,:d_ H ‘é:f -
e ey .
" L i
;."‘. ‘fz....o .

T - .
ol AT A
?. S Ll ek B ®
; 2. At
-4 u'.itf A
¥l
* .. e
T e -
% 7,
L L L - “;o. w
..0“...?3:'..'.
-1, N
" oo. .x('..o.
. " g *
L '. » - ,‘: "
.;o"' “...-l-

i i
[s . @
{0.00, 0.00) —1.00 —» {1.00, 0.00]

Figure A.1: Synthetic point generation using diagonal distribution.

70

{1.00, 1.00)

(000, 1.00)
& L :
H . - .. .t :." -w
T . s 4 - " "
% L 4 w ® : E s . b2 L []
k!-’ i ..."‘.. L "‘O. "
- ® .. L L
. = " L ":
[2 & -

(0.00, 0.00) A (1.00, 0.00)

Figure A.2:

Synthetic point generation using Gaussian distribution.

71

{1.00, 1.00)

(0.00, 1.00)
L | g &
. il
4
&"ﬁ
-
»
- [2 - .
'\ :.‘q-' » L
T *a L} :.
- .
!
-
(A W'
npd o
. :. " ’.ﬂ-
o f]
L < . :"5'
- A 5%
w10
L L 2 L
(0.00, 0.00) 1,00 —> (1.00, 0.00)

Figure A.3: Synthetic point generation using diagonal distribution.

72

{1.00, 1.00)

(1.00, 0.00)

C
>
7
4
(

|
%
S
-

&= 1.00 —>

(0.00, 0.00)

Figure A.4: Generate polygons with Voronoi shapes.

73

{1.00, 1.00)

:ﬂ'miim}g @ - '
ao TS
ﬂﬁ Tj’
U at p
£ 52 w
! $0 &
T Ow B o
A \A O@ =
OQ’E’@
; @QO D
R ey :

Figure A.5: Generate polygons with Mix-Type mode.

74

(0.00, 1.00)

(1.00, 1.00)

@ N &]
Ty v ?15: / 4
- & N
84 A - /. ¢
NN ~ N
= ¢ / e Y N %. Z
| "Gy & t"ﬂ* ’ Y @
= R - ¢ =
S e AN B k %'57 <~ ¢
J N o 7 N 4
[< - o~ = iL“" V]
~
NSy O ¢
b B & = N = %+
0 AN
| i1 W/i’ = o & j’ 4)|
(0.00, 0.00) 100> (1.00, 0.00)

Figure A.6: Generate polygons with Elongated shapes.

75

© Download Dataset

Enter filename...

© Generate Data
@ Distribution © cardinality
Uniform w 100
® Geometry Type:
MNon-Convex w
O Min Size: ® Max Size:
0.01 0.01
© Min Line Seg: © Max Line Seg:
3 5

© Upload File

© Upload Data File:

Choose File | geometry_data (1).csv
@ Scale Polygons:

Generate Data from File

© Adjust Bounding Box (Click to expand/hide)

e
.,

App

© X Min: O X Max:
] 1
9 Y Min: 9 Y Max:

o]
b

ly Bounding Box

Figure A.7: User Interface for Synthetic Geometry Generation and Dataset Management.

76

A.3 Example of Feature Extraction Output

=y SUS PO =S o
oo e
e ‘
- A8
4
2 4
- ke T
L= =
- w2, E
-
L .
o
L 4 2 v
£ T
-
) % =
- A
L]
im, £ % = »
] e - E]
¥ o4 &= E
a -~ [N
i fre
Sanwrtty Metnos
® Gmliarty Sooom: 00814
Distrbution of 1 Distribution of y

- [a4 e

Fuaburs Ldritssbns [Ongeal v Generded]

Sae Disir bution Mamber af vertioes Disrinucon
- 184]
= nemeind " [=ps
»n
= anq

Figure A.1: Evaluation of Synthetic Geometry Generation Output.

77

Averages

area 0.001550
aspect ratio 1.014492
centroid x 0.433469
centroid y 0.435406
compactness 0746771
convexity 0.490000
equilateral 0
irregularity 0.425817
num_vertices 6
perimeter 0.160726

size 0.031748

Figure A.2 Average Feature Values of the Generated Polygons.

78

SHORT BIOGRAPHY

Vasileios Tsolis was born in loannina in 1996. He received his undergraduate degree in Infor-
matics from the lonian University, where he completed his thesis on the recognition of dis-
eases through data extracted from social media platforms.

He is currently pursuing a master’s degree in data science and engineering at the Univer-
sity of loannina. His academic interests include data management and machine learning. As
part of his graduate studies, he has focused on developing tools and methodologies for gen-
erating and evaluating polygonal geometries in data-driven environments.

He is proficient in Python and has experience with scientific computing libraries such as
NumPy, Pandas, Matplotlib, Scikit-learn, PyTorch and TensorFlow. He has works on Java and
Kotlin for software development, as well as SQL for data querying and relational database
management. During his academic and personal projects, he has also worked with Javascript,
HTML5, Node and he is familiar with Git for version control and collaborative development
workflows.

He is passionate about bridging theory and application in the field of data science, and
aims to contribute to innovative, reproducible, and impactful research in the broader domain

of intelligent systems and applied machine learning.

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	ChaPter 1 Introduction
	1.1 Objectives
	1.2 Structure of the Thesis

	ChaPter 2 Related Work
	ChaPter 3 Methodology
	3.1 Synthetic geometry generation
	3.1.1 Shape Generation
	3.1.2 Data Distribution

	3.2 Data-Driven Generation
	3.2.1 Empirical Copula Method
	3.2.2 Feature Extraction
	3.2.3 Similarity Assessment

	ChaPter 4 Web Application and Visualization
	4.1 Architecture Overview
	4.2 Web Interface
	4.2.1 Generation Interface
	4.2.2 Interactive Data Space
	4.2.3 Interactive Visualization
	4.2.4 Upload Dataset

	ChaPter 5 Evaluation
	5.1 Random Generation Evaluation
	5.2 Data-Driven Generation Evaluation
	5.2.1 Distribution Evaluation
	5.2.2 Features Extraction Evaluation
	5.2.3 Similarity Evaluation

	ChaPter 6 Conclusion
	Bibliography
	APPENDIX A Implementation Samples
	A. 1 Overview
	A.2 Generation UI - Screenshot
	A.3 Example of Feature Extraction Output

	Short Biography

