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ABSTRACT 
 

 

Vasileios Tsolis, M.Sc. in Data and Computer System Engineering, Department of Computer 

Science and Engineering, School of Engineering, University of Ioannina, Greece, June 2025 

Design and Implementation of a Synthetic Polygon Generator 

Advisor: Nikolaos Mamoulis, Professor. 

 

The need for synthetic spatial data has grown significantly in recent years, driven by the in-

creasing demand for large, diverse, and statistically representative datasets in geospatial ma-

chine learning, benchmarking, and simulation tasks. While several solutions exist for generat-

ing synthetic point data or raster-based representations, tools for generating realistic and con-

trollable polygonal geometries remain limited. This thesis presents the design and implemen-

tation of a novel web-based system for synthetic polygon generation that bridges the gap be-

tween algorithmic control and statistical realism. The system supports multiple generation 

methods, including procedural algorithms (irregular, Voronoi, elongated, and experimental 

shapes), a nonparametric empirical copula method for upload-based distribution matching, 

and a feature-based generator utilizing geometric descriptors such as area, convexity, aspect 

ratio, compactness, and spikiness. A key innovation of this work is the Distributional Geometry 

Alignment Score, a metric specifically developed to evaluate the similarity between synthetic 

and real polygon datasets in terms of both marginal distributions and inter-feature correla-

tions. The generation platform is implemented using Open Layers and modern web technolo-

gies, offering real-time visualization, interactive configuration, and export in standard formats 

such as WKT, CSV, and GeoJSON. Extensive experimental evaluation demonstrates that the 

system can generate hundreds of thousands of polygons with high fidelity to reference data, 

maintaining scalability and diversity across various spatial distributions. The proposed frame-

work provides a transparent, extensible, and statistically grounded solution for synthetic pol-

ygon generation, making it suitable for applications in data augmentation, simulation, and the 

development of machine learning models for spatial tasks.  
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CHAPTER 1          

INTRODUCTION 

1.1 Objectives 

1.2 Structure of the Thesis 

1.1 Objectives  

The generation of synthetic spatial data [1] has become increasingly important across a wide 

array of scientific and technological disciplines, including geospatial analysis, machine learn-

ing, remote sensing, and simulation-based planning. As access to high-quality, well-annotated 

real-world spatial datasets remain limited due to cost, privacy constraints, or geographical 

inaccessibility the ability to generate synthetic data that preserves key statistical and geomet-

ric properties has gained critical relevance. Particularly in the context of polygonal data, there 

is a clear need for methods that allow the controlled generation of shapes that are not only 

geometrically valid but also statistically meaningful. Polygonal geometries carry complex mor-

phological and topological characteristics that make their generation more challenging than 

points or raster data, especially when the goal is to preserve shape diversity, internal struc-

ture, and statistical realism. 

While several approaches [2] exist for synthetic point generation or image-based data 

simulation, tools specifically designed for polygon generation are scarce. Those that do exist 

are either overly simplified, focusing on primitive shapes or random noise, or tailored to highly 

specialized use cases such as urban footprint generation or terrain simulation. Furthermore, 

many systems operate as black boxes, offering limited transparency, low interactivity, and no 
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mechanism for evaluating the statistical fidelity of the generated data in comparison to a ref-

erence dataset. As a result, there is currently no open and interactive solution that supports 

explainable, reproducible, and statistically controlled polygon generation at scale. 

The present thesis proposes the design and implementation of a novel web-based system 

for synthetic polygon generation that addresses these limitations. The proposed system com-

bines algorithmic and data-driven methods [3] in a unified and extensible framework, allowing 

users to generate synthetic polygonal datasets that are morphologically diverse, statistically 

representative, and visually explorable. The system integrates three complementary ap-

proaches: procedural generation using configurable algorithms (e.g., irregular, Voronoi, and 

elongated shapes), empirical generation based on a nonparametric copula method that 

matches the joint distribution of a user-provided dataset, and feature-based generation using 

geometric descriptors extracted from real polygons. Together, these methods enable a wide 

range of use cases from the simulation of abstract geometric patterns to the replication of 

structural features found in real-world spatial datasets. 

The user interface of the system, built using Open Layers and modern web technologies, 

offers real-time interaction for parameter tuning, visualization, bounding box placement, and 

file export in multiple formats such as CSV, WKT, and GeoJSON. A distinctive feature of our 

system is the implementation of a nonparametric empirical copula method that allows up-

load-based distribution matching. This allows users to guide the generation process using real 

data, ensuring that the synthetic output replicates not only the individual feature distributions 

(e.g., area, compactness) but also the correlations among them. Furthermore, a new evalua-

tion metric the Distributional Geometry Alignment Score (DGAS) has been developed to quan-

tify the alignment between synthetic and reference datasets, providing a rigorous basis for 

comparison. 

This thesis aims to develop a fully functional, modular tool that supports explainable syn-

thetic polygon generation under statistical control. It focuses on generating geometries that 

are structurally valid, statistically faithful to reference distributions, and suitable for visualiza-

tion, testing, and augmentation tasks in spatial data science. The system also provides a mech-

anism for benchmarking generative models and evaluating trade-offs between shape com-

plexity, distributional fidelity, and computational performance. The work culminates in a se-

ries of experiments that evaluate the system’s performance across different generation sce-

narios, with extensive comparisons in terms of scalability, statistical similarity, and visual di-

versity. 
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1.2 Structure of the Thesis  

The remainder of this thesis is structured into 6 chapters. Chapter 2 provides a comprehensive 

review of the literature on synthetic data generation, geometric modeling, and spatial evalu-

ation methods, highlighting gaps in existing tools and motivating the system’s design. Chapter 

3 presents the architecture and implementation of the synthetic generation system, detailing 

its procedural, data-driven, and feature-based modules. Chapter 4 describes the interactive 

web interface, including visualization layers, parameter controls, and export functionalities. 

Chapter 5 focuses on the evaluation of the system in terms of performance, fidelity, and sim-

ilarity to real datasets, introducing and applying the DGAS metric. Finally, Chapter 6 summa-

rizes the contributions of the thesis, reflects current limitations, and outlines potential direc-

tions for future work. 
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CHAPTER 2          

RELATED WORK 

Synthetic polygon generation is a fundamental task in computational geometry, GIS, and spa-

tial data science. It supports a variety of downstream applications, including simulation, ma-

chine learning, algorithm benchmarking, and spatial query evaluation. In recent years, the de-

mand for diverse and controllable polygonal datasets has grown, especially in data-driven do-

mains that require extensive training data for model generalization and robustness. 

Several techniques have been proposed in the literature for the synthetic generation of 

polygonal geometries. One of the most common methods is based on sampling points around 

a central shape [4], typically a circle or an ellipse, and connecting them sequentially to form a 

closed polygon. These circle-based methods offer a straightforward way to control the num-

ber of vertices and the smoothness of the resulting shape but are generally limited to convex 

or mildly non-convex forms. Another widely used strategy involves triangulation. In this ap-

proach, a set of points is generated randomly or from a specified distribution, and then a tri-

angulation method such as Delaunay triangulation is applied. From the triangulated mesh, 

subsets of adjacent triangles are merged to construct complex polygonal shapes. This enables 

the creation of both convex and non-convex geometries, though the output often requires 

cleaning steps to ensure topological validity, such as avoiding self-intersections or duplicate 

edges. 

Alternative techniques include methods based on random walks, Voronoi diagrams [5], 

and Boolean operations over geometric primitives. Complex irregular polygons can be con-

structed by combining simple shapes through union and different operations or by perturbing 

grid-based patterns. Other approaches generate polygons from line string skeletons [6] or via 

noise-controlled deformation of basic shapes. Several methods rely on procedural noise, re-

cursive subdivision, or rule-based grammar to generate synthetic forms with specific visual or 
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structural properties. There are also sampling-based approaches that attempt to reproduce 

the statistical distribution of vertices or angles found in real-world polygons. 

Despite the variety of techniques, most existing implementations are either problem-spe-

cific or do not allow for high-level shape control [7]. Properties such as compactness, elonga-

tion, convexity, irregularity, presence of holes, or area-to-perimeter ratio are often not explic-

itly parametrized, making it hard to target specific polygon types or match distributions. Fur-

thermore, existing approaches rarely allow a systematic exploration of how different polygon 

features affect downstream tasks, limiting their utility in the context of machine learning or 

algorithmic benchmarking. 

One of the few tools designed for synthetic spatial dataset generation is SpiderWeb [8], 

which focuses on producing benchmark data for spatial query evaluation. Although it provides 

a GUI and supports multiple data types, it is limited to simple geometric structures such as 

rectangles and points. It lacks support for complex polygonal generation and does not offer 

shape-level customization or feature-based controls. In addition, visual inspection of the gen-

erated data and export functionality in standard formats such as WKT or GeoJSON is not fully 

supported. 

Other tools and libraries found in GIS packages or geometric frameworks [1], [9], such as 

Shapely, GEOS, or CGAL, allow for manual polygon construction or manipulation but are not 

designed for scalable, user-friendly synthetic generation of diverse polygon datasets. Moreo-

ver, most open-source solutions do not offer flexible configuration interfaces, nor do they 

support high-level polygon descriptors as input parameters. There is also a general absence 

of tools that can combine generation with statistical evaluation and visual feedback in a single 

workflow. 

The limited availability of open, flexible, and extensible polygon generators presents a 

significant challenge for the research community. A fully featured polygon generation system 

could address several critical needs. It would support the creation of large volumes of diverse 

training data for machine learning and deep learning models and enable robust benchmarking 

of spatial algorithms and geometric pipelines. Such a system would allow controlled experi-

mentation on polygon properties, including the evaluation of algorithmic behavior on differ-

ent shape types, such as convex, non-convex, irregular, or elongated forms. 

Recent research on geometry-aware learning and shape interpretability emphasizes the 

importance of using synthetic data with meaningful and diverse shape descriptors [10]. In 

cases where real-world datasets are unavailable, private, expensive, or biased, synthetic data 
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becomes an essential alternative. A new system designed with the capacity to generate vari-

ous polygon types, including those with holes or complex boundaries, and to provide para-

metric control over geometric features such as number of vertices, compactness, elongation, 

and spikiness, would be of great value. 

Such a system would ideally offer visual preview and interactive manipulation of gener-

ated shapes, export options in common GIS formats like CSV, GeoJSON, or WKT, and seamless 

integration with statistical feature extraction modules and similarity metrics for data-driven 

generation. The proposed synthetic polygon generation framework aims to fulfill these objec-

tives, offering both flexibility and usability. By combining procedural techniques, visual tools, 

and statistical modeling, it extends beyond the scope of existing tools like SpiderWeb and lays 

the foundation for systematic experimentation in spatial AI and geometry processing. 
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CHAPTER 3          

METHODOLOGY 

3.1 Synthetic Geometry generation  

3.1.1 Shape Generation 

3.1.2 Synthetic Data Distribution 

3.2 Data-Driven Generation 

3.2.1 Empirical Copula Method 

3.2.2 Feature Extraction 

3.2.3 Similarity Assessment 

 

In this chapter, we present the methodological framework developed to support the genera-

tion of synthetic spatial data. The system incorporates two complementary approaches: Syn-

thetic Geometry Generation and Data-Driven Generation, each addressing different use 

cases in spatial simulation and modeling. 

Section 3.1 focuses on Synthetic Geometry Generation, detailing the design and imple-

mentation of various points and polygon generation algorithms. These include both traditional 

techniques such as uniform and Gaussian sampling and more complex, shape-oriented meth-

ods like irregular polygons and Voronoi tessellations. The objective is to offer flexible, control-

lable tools for creating diverse spatial structures within a user-defined bounding area. 

Section 3.2 introduces the Data-Driven Generation paradigm, which allows users to up-

load real-world datasets and produce synthetic data that statistically mimics the uploaded 

samples. This is achieved through a nonparametric distribution-matching process that pre-

serves both marginal distributions and inter-variable dependencies. 
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By integrating both geometry-oriented and data-driven techniques, the system empowers 

users to produce synthetic spatial datasets that are adaptable to a wide range of analytical 

tasks, offering a balance between structural variety and statistical fidelity. 

3.1 Synthetic geometry generation 

The system supports the generation of two types of primary spatial objects: points and poly-

gons. All objects are generated within a global spatial domain specified by the user in the form 

of a bounding box. This bounding box defines the overall extent of the synthetic data space, 

not the bounds of each individual shape. Within this domain, spatial objects are generated 

according to user-defined parameters that influence object density, spatial distribution, aver-

age shape size, vertex complexity, and irregularity. 

3.1.1 Shape Generation 

The generation of synthetic shapes begins with the creation of spatial point distributions in-

side the user-specified generation area. Sampling strategies such as uniform, Gaussian, diag-

onal, or clustered placement are available to control how points are spatially distributed. 

These generated points then serve as the geometric foundation for constructing polygons. 

Depending on the selected method, different polygon generation algorithms are applied to 

produce diverse and valid geometries. The following algorithms are applied depending on the 

selected method. 

To reduce overlaps, the system can space out centers during point generation while taking 

each shape’s intended size into account. When the domain is large enough, this makes poly-

gons non overlapping by construction. Voronoi cells are disjoint by definition. 

A. Circle-Based Techniques 

The first technique [11] focuses on generating irregular polygons around center points to sim-

ulate non-uniform geometric structures. The fundamental concept behind the method is to 

construct a closed polygon by sequentially generating vertices at varying angles and distances 

from a central point, thus introducing controlled randomness into both the shape's outline 

and vertex distribution. 

This formulation is realistic because many real spatial patches grow outward from an in-

terior core and exhibit locally uneven boundaries. Examples include small lakes and ponds, 

wetland patches, shrub or dune clusters, tree crowns, wildfire burn scars, flood extents, and 
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lava or landslide deposits. The irregularity control reflects heterogeneous vertex spacing and 

the spikiness control reflects boundary roughness observed in these data. 

The algorithm operates in two main stages. Initially, a random number of vertices is se-

lected within user-defined minimum and maximum limits. Following this, a set of angular 

steps between consecutive vertices is computed. These angular steps are not uniform but are 

randomized around a base angle, with the degree of variation governed by an "irregularity" 

parameter. A higher irregularity value leads to more irregular spacing between vertices. 

For each angle, a corresponding radial distance from the center is generated. This distance 

is determined by adding a random perturbation, controlled by a "spikiness" parameter, to a 

base radius. Spikiness controls the variation in vertex distances, resulting in more jagged and 

complex shapes when higher values are used. 

Algorithm 3.1 Generate Polygon around a Center Point 
Require: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: (𝑥𝑥,𝑦𝑦), min _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, max _𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,  

𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

Ensure: 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

1: if 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 <  0 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 >  1 then 

2:      raise 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉("𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 0 𝑎𝑎𝑎𝑎𝑎𝑎 1. ") 

3: end if 

4: if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 <  0 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 >  1 then 

5:      raise 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉("𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 0 𝑎𝑎𝑎𝑎𝑎𝑎 1. ") 

6: end if 

7: if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 <=  0 𝑜𝑜𝑜𝑜 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 <=  0 then 

8:      raise 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉("𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 0. ") 

9: end if 

10: if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 >  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 then 

11:      raise 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉("𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. ") 

12: end if 

13: sample 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

14: 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ←  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ×  (2𝜋𝜋 / 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

15: 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ←  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 

16: sample 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖 [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚] 

17: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ←  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ×  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

18: initialize 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
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19: sample 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖 [0, 2𝜋𝜋] 

20: for 𝑖𝑖 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 1 𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 do 

21:      if 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 <=  5 then 

22:           if 𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 2 ==  0 then 

23:          sample 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0.6 ×  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

24:     else 

25:       sample 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0.4 ×  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 0.8 ×  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

26:      end if 

27:     else 

28:             sample 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

29:     end if 

30:     sample 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 +  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 0.5 ×  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

31:     clip 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 [0, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏] 

32:     if 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 <=  5 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 3 ==  0 then 

33:     𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝒃𝒃𝒃𝒃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖 [0.6, 0.8] 

34:    end If 

35:    𝑥𝑥 ←  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[0]  +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ×  𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 

36:    𝑦𝑦 ←  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[1]  +  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ×  𝑠𝑠𝑠𝑠𝑠𝑠(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 

37:    create 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝑥𝑥,𝑦𝑦) 

38:    append 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  

39:   𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ←  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑖𝑖] 

40: end for 

41: append 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[0] 𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

42: return 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

 

The full procedure is detailed in Algorithm 3.1, which outlines input requirements (e.g., 

irregularity, spikiness, vertex range), validation steps, and the core loop responsible for com-

puting and assembling the polygon’s vertices. Specifically, the algorithm includes specialized 

logic for handling polygons with five or fewer vertices, introducing alternating positive and 

negative spikes to avoid degenerate or unrealistic shapes. Each vertex is then positioned using 

trigonometric transformations, and all vertices are connected in sequence to form a closed 

polygon. 
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Once constructed, the final polygon is appended with its initial vertex to ensure closure. 

This method provides fine-grained control over geometric properties such as shape complex-

ity, edge irregularity, and compactness, making it highly suitable for synthetic spatial data 

generation in applications that require diverse polygonal features. Figure 3.1 shows typical 

outputs of the circle-based method over the unit square and illustrates how vertex spacing 

and outline roughness vary with the chosen settings. 

 
Figure 3.1. Circle based irregular polygons generated across the unit square [0,1] × [0,1]. 

Centers come from the selected point distribution, and each polygon is built by randomizing 
angular steps and radii around a base value. The plot highlights the diversity produced by 

different vertexes count together with irregularity and spikiness settings. 

B. Voronoi Polygons 

The second method employs Voronoi tessellation [11] to generate spatial polygons based on 

a set of input seed points. A Voronoi polygon is defined as the region of space closer to a given 

point than to any other, resulting in a natural partitioning of the plane into non-overlapping, 

contiguous cells. This approach is particularly useful in applications that require polygons shar-

ing edges, such as urban simulations, land division, and spatial proximity analysis. 
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The Algorithm 3.2 operates as follows. First, the set of seed points is collected and trans-

formed into a NumPy array for efficient processing. A Voronoi diagram is then constructed 

using the Scipy library, based on the Delaunay triangulation of the points. For each region in 

the Voronoi diagram, if the region is finite (i.e., it does not extend to infinity), the correspond-

ing vertices are extracted, and a Shapely polygon is formed. 

Algorithm 3.2 Generate Voronoi Polygon with shrink factor 
Require: 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

 (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), 𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∈  [0,1] 

Ensure: 𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

1: If 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 <  2 then 

2:      𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

3: end if 

4: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛 ←  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 `𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝` 𝑡𝑡𝑡𝑡 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

5: 𝑣𝑣𝑣𝑣𝑣𝑣 ←  𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑛𝑛𝑛𝑛) 

6: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏 ←  𝑏𝑏𝑏𝑏𝑏𝑏(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

7: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  [ ] 

8: for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 do 

9:      if 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑂𝑂𝑂𝑂 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 1 then 

10:           𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

11:   end if 

12:      𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ←  𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣. 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

13:      𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

14:   𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ←  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

15:   𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  [] 

16:     for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (𝑥𝑥,𝑦𝑦) 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 do 

17:       𝑛𝑛𝑛𝑛𝑛𝑛_𝑥𝑥 ←  𝑥𝑥 +  𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ×  (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝑥𝑥 −  𝑥𝑥) 

18:    𝑛𝑛𝑛𝑛𝑛𝑛_𝑦𝑦 ←  𝑦𝑦 +  𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ×  (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.𝑦𝑦 −  𝑦𝑦) 

19:    append (𝑛𝑛𝑛𝑛𝑛𝑛_𝑥𝑥,𝑛𝑛𝑛𝑛𝑛𝑛_𝑦𝑦) 𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

20:  end for 

21:  𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

22:     𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∩  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏 

23:     𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

24:     If 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑨𝑨𝑨𝑨𝑨𝑨 𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 then 
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25:       𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

26:   end if 

27:  end for 

To improve the geometric consistency of the generated Voronoi polygons, a shrink trans-

formation is applied, as illustrated in Figure 3.1. Specifically, each vertex is moved toward the 

centroid of its corresponding polygon according to a user-defined shrink factor. This operation 

reduces the spread of vertices, resulting in more compact and visually coherent shapes. Math-

ematically, the new coordinates (𝑥𝑥′, 𝑦𝑦′) of each vertex are computed by interpolating be-

tween the original vertex (𝑥𝑥,𝑦𝑦) and the centroid (𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦) based on the shrink factor f, follow-

ing the formulas: 

𝑥𝑥′ = 𝑥𝑥 + 𝑓𝑓(𝑐𝑐𝑥𝑥 − 𝑥𝑥) 

𝑦𝑦′ = 𝑦𝑦 + 𝑓𝑓(𝑐𝑐𝑦𝑦 − 𝑦𝑦) 

where 𝑓𝑓 = 0 leaves the polygon unchanged and 𝑓𝑓 = 1 collapses it entirely to its centroid. 

After applying the shrink operation, each polygon is clipped against the predefined bounding 

box to ensure that all resulting geometries remain within the spatial boundaries and are valid 

for further processing.  
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Figure 3.2. Shrink-transformed Voronoi polygons within the bounding box. The control 

points (blue dots) define the rectangular boundary, and each Voronoi cell has been post-pro-
cessed using a shrink factor to interpolate its vertices toward the centroid. This operation in-

creases compactness and visual coherence while ensuring all geometries remain spatially 
valid. 

 

 

The entire process is formalized in Algorithm 3.2, which outlines the steps for validating 

and adjusting each region. During validation, polygons are checked for common geometric 

issues such as self-intersections and invalid topologies. Minor artifacts such as sliver polygons, 

nearly colinear edges, or small holes, are corrected through simplification, snapping, or re-

moval based on threshold criteria. 
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Compared to circle-based polygon generation techniques, Voronoi-based generation en-

sures complete spatial coverage and shared edges, properties that are difficult to achieve with 

purely stochastic methods. However, this approach offers limited control over detailed poly-

gon characteristics like spikiness or irregularity. The final structure and size of the polygons 

are primarily influenced by the initial distribution of the seed points. 

Nevertheless, Voronoi tessellation provides a powerful and structured method for gener-

ating realistic, contiguous spatial datasets suitable for simulations, mapping, and analytic tasks 

that benefit from spatial coherence. 

C. Elongated Polygons 

The third polygon generation method focuses on simulating elongated [12], river-like geome-

tries, which are commonly encountered in natural landscapes such as water networks, valleys, 

or flow-dominated terrains. This technique is designed to produce narrow, flow-aligned poly-

gons based on user-defined boundary points and a given flow direction vector. 

The generation process is encapsulated in a specialized class and proceeds through a 

multi-step algorithm, which systematically constructs an elongated polygon by leveraging a 

Triangulated Irregular Network (TIN) and geometric filtering operations. 

The overall workflow is outlined below: 

1. TIN Construction: The algorithm first constructs a Triangulated Irregular Network 

[13] from the provided river boundary points using Delaunay triangulation. This rep-

resentation captures the local topology and connectivity of the boundary geometry. 

2. Perpendicular Edge Selection: From the generated TIN, edges that are approximately 

perpendicular to the specified flow direction are identified. These edges are pre-

sumed to represent cross-sectional slices of the river or flow path. 

3. Mainstream Filtering: To ensure that only relevant structures contribute to the final 

shape, edges are filtered to retain only those that intersect with the main river poly-

gon. This step eliminates noise from peripheral or disconnected areas. 

4. Centerline Generation: A river centerline is constructed by computing the midpoints 

of the selected TIN edges. This centerline serves as the backbone of the elongated 

polygon. 

5. Polygon Construction: The centerline is then expanded laterally by applying parallel 

offsets to the left and right sides, simulating river width. These offset lines are merged 

to form a closed polygon, with safeguards in place to correct invalid geometries 

through buffering and coordinate rounding. 
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6. Validation and Scaling: The resulting polygon is validated using Shapely’s topological 

checks and optionally scaled down for visualization consistency. Any internal rings 

(holes) are removed to retain a clean outer boundary. 

Algorithm 3.3 Elongated Polygon Generation via TIN and Offset Construction 
Require:  

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Ensure: 𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡ℎ𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎 

1: function 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 

2:      if 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)  <  3 then 

3:           𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 “𝐴𝐴𝐴𝐴 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 3 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟” 

4:      end if 

5:      𝑇𝑇𝑇𝑇𝑇𝑇 ←  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

6:      if 𝑇𝑇𝑇𝑇𝑇𝑇 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 then 

7:           𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 “𝑇𝑇𝑇𝑇𝑇𝑇 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓” 

8:       end if 

9:      𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑇𝑇𝑇𝑇𝑇𝑇,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 

10:      if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 then 

11:           𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 “𝑁𝑁𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓” 

12:      end if 

13: 
     𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ←
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) 

14:      if 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 then 

15:           𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 “𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒” 

16:      end if 

17:      𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ←  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

18:      if 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  <  2 then 

19:           𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 “𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ℎ𝑎𝑎𝑎𝑎𝑎𝑎 2 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝” 

20:      end if 

21:      𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ←  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, ’𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙’, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 

22:      𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ←  𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, ’𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡’, 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) 
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23:      𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ←  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)) 

24:      𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

25:      if 𝑛𝑛𝑛𝑛𝑛𝑛 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) then 

26:           𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

27:      end if 

28:      𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

29:      𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ←  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 0.1) 

30:      𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

31:      𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ 

32: end function 

 

The full procedure integrates the above steps and writes the final polygon to the data sink. 

Each subroutine (such as generate_tin, select_perpendicular_edges, generate_centerline, 

and construct_river_polygon) are modular, enabling reuse and easy extension. Figure 3.3 

shows typical outputs of the elongated method over the unit square and illustrates narrow 

flow-aligned corridors produced by the TIN-based centerline and lateral offsets. 

This method is particularly effective in simulating hydrologically inspired structures or lin-

ear geographic features, where elongation and directionality are essential. Compared to other 

polygon generation techniques, it offers fine-grained geometric control aligned with real 

world flow phenomena. 
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Figure 3.3. Elongated polygons generated by the flow-aligned method. A TIN is built from 

boundary points, edges perpendicular to the flow are selected, a centerline is extracted from 
edge midpoints, and lateral offsets form. 

 

D. Mixed-Type Polygon 

To further enhance the diversity of the synthetic spatial dataset, the system includes a Mixed-

Type Polygon Generation mode. The goal is to emulate heterogeneous environments where 

different geometric primitives co-exist in space, as in urban tiles that contain rectilinear build-

ing footprints together with irregular parks, water bodies, or land-use patches. This mode al-

lows the interleaved creation of multiple geometric types, such as bounding boxes and ran-

dom polygons, within a single dataset. The primary objective is to simulate heterogeneous 

environments, where different geometric primitives coexist mirroring real-world scenarios 

such as urban landscapes, land parcels, and infrastructure planning. 

 

The generation logic is controlled by the user-specified geometry type "mixed" and iter-

ates over a desired number of geometries. For each instance, a random decision is made 
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between generating a box or a polygon, based on a uniform selection from a list of supported 

types. 

The process is as follows: 

1. Random Point Sampling: A random coordinate is generated within the spatial domain 

using the configured distribution (e.g., uniform, clustered). This coordinate serves as 

the anchor or center point for geometry. 

2. Geometry Type Selection: A geometry type is randomly selected from the set ("box", 

"polygon"). Each type triggers a distinct generation logic: 

o Box Generation: The system constructs a bounding box by sampling a random 

size within a predefined range (typically 5% to 20% of the bounding box extent). 

The size is applied symmetrically along each dimension to compute the mini-

mum and maximum corner coordinates. The result is an axis-aligned rectangle 

centered at the anchor point. 

o Polygon Generation: A polygon is generated using the irregular shape algo-

rithm described previously (see Section 3.1.A). For each polygon: 

 A pair of random radii determines the size range. 

 Random values for irregularity and spikiness introduce controlled ran-

domness. 

 A random number of vertices (typically between 3 and 15) defines the 

shape complexity. 

 The anchor point serves as the polygon's center, and the shape is writ-

ten using a specialized sink (e.g., PointToPolygonSink), which applies 

the generation logic described in Algorithm 3.4. 

Algorithm 3.4 Mix-Type polygon generator 
Require:  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠: 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

Ensure: 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

1: if 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  “𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚” then 

2:      𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ←  [“𝑏𝑏𝑏𝑏𝑏𝑏”, “𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝”] 

3:      for 𝑖𝑖 =  1 𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 do 
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4:           𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ←  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔.𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

5:           𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ←  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

6:           if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  “𝑏𝑏𝑏𝑏𝑏𝑏” then 

7:                 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ←  [ ] 

8:                 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ←  [ ] 

9:                 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ←  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

10:                 for 𝑑𝑑 =  1 𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 do 

11:                      𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ←  0.05 ×  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

12:                      𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ←  0.2 ×  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

13:                      𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) / 2 

14:                      𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑑𝑑]  −  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

15:                      𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑑𝑑]  +  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 

16:                 end for 

17:                 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

18:           else if 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  “𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝” then 

19:                 𝑟𝑟1, 𝑟𝑟2 ←  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0.01 ×  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

20:                 𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ←  𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟1, 𝑟𝑟2),𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ←  𝑚𝑚𝑚𝑚𝑚𝑚(𝑟𝑟1, 𝑟𝑟2) 

21:                 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ←  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0.1, 1.0) 

22:                 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(0.1, 1.0) 

23:                 𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ←  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 [3, 15] 

24: 
                𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,  

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

25:                 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

26:           end if 

27:      end for 

28: end if 

 

As illustrated in Figure 3.4, the mixed-type generation produces a spatial composition 

of simple rectangular boxes and irregular polygons distributed across the same area. The re-

sulting pattern effectively demonstrates the coexistence of multiple geometric forms within a 

shared spatial domain, successfully replicating the heterogeneity typical of real-world spatial 

structures such as urban blocks and open spaces. 
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Figure 3.4. Example of Mixed-Type Polygon Generation. The dataset includes a random com-
bination of axis-aligned boxes and irregular polygons distributed within a common bounding 

area, illustrating the coexistence of heterogeneous geometric primitives. 

 

E. Other Polygon Generation Techniques 

In addition to the core generation methods described above, the system also incorporates a 

set of experimental polygon generation techniques. These methods were explored in a re-

search context to assess their potential for further enriching the geometric diversity of syn-

thetic spatial datasets. Although not integrated into the main pipeline, they demonstrate ad-

ditional possibilities for shape manipulation and dynamic geometry simulation. 

The techniques include: 

• Sliding Algorithm Sink: This method [14] simulates sliding or moving geometries by 

applying controlled transformations to pre-existing polygons. It is useful for modeling 

temporal dynamics, such as the progression of a moving front, deformation under 

physical forces, or simulation of motion-driven spatial processes. 

• Minkowski Difference Front: This technique uses basic morphological geometry. 

Given a base polygon and a small “structuring element” (for example a disk, a square, 

a diamond, or a star-shaped kernel), we slide the kernel inside the polygon and keep 

the set of kernel centers where the kernel still fits entirely inside the polygon. The 
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result is the polygon eroded by that kernel, also known as the Minkowski difference. 

With a disk kernel this is simply an inward buffer. With non-circular kernels the bound-

ary develops directional facets and fine detail, which increases shape complexity in a 

controlled way. 

• Random Polygon with Vertex Constraints: A variation of the random polygon genera-

tor, this method [15] introduces explicit constraints on vertex spacing to ensure mini-

mum distances between consecutive points. It allows the generation of more evenly 

distributed and realistic polygonal shapes, especially useful in scenarios where sharp 

angles or collapsed edges must be avoided. 

These methods were implemented and tested in a preliminary, research-oriented setting, 

and while they are not part of the core generation framework, they illustrate the extensibility 

of the system. Future work may integrate these techniques more systematically or explore 

their application in domain-specific simulations. 

Overall, the synthetic geometry generation framework presented in this section enables 

the creation of diverse, controllable, and application-specific spatial structures. By combining 

multiple generation strategies ranging from irregular and Voronoi-based polygons to elon-

gated and mixed-type geometries the system provides flexible tools for simulating real-world 

spatial phenomena. To ensure geometric validity, a post-processing phase is applied, correct-

ing topological defects such as self-intersections, decomposing invalid shapes, and trimming 

the final output to match the desired number of polygons. These steps guarantee that the 

resulting datasets are robust and suitable for downstream tasks such as machine learning, 

spatial querying, or geospatial benchmarking. 

Importantly, many of the polygonal generation techniques described above depend on an 

underlying point generation process, either as seed points (e.g., Voronoi, irregular polygons) 

or as geometric anchors (e.g., for boxes and movement-based methods). The distribution of 

these initial points plays a critical role in determining the structure and diversity of the result-

ing spatial data. 

We now turn to the synthetic data distribution models used in this system, which define 

how points are generated across the spatial domain. These models serve either as standalone 

spatial datasets or as the foundation for shape construction, supporting a range of real-world 

simulation needs. 
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3.1.2 Data Distribution 

To support the generation of diverse and application-specific spatial patterns, this study in-

corporates four distinct spatial point distribution models. Each model reflects different types 

of real-world spatial phenomena and serves as a basis for constructing either standalone point 

datasets or seed-based polygonal geometries. 

A. Uniform 

The uniform distribution model generates points randomly across the entire extent of the 

spatial bounding box [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚], ensuring that each location within this domain 

has equal probability of selection. For each point, the x and y coordinates are independently 

sampled from a uniform distribution: 

𝑥𝑥 ∼ 𝑈𝑈(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚), 𝑦𝑦 ∼ 𝑈𝑈(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) 

This method produces a homogeneous spatial distribution with no inherent clustering or 

directional bias. The resulting pattern is spatially isotropic and often used to simulate evenly 

spaced phenomena such as sensor grids or baseline datasets for benchmarking. 

B. Gaussian  

The Gaussian (normal) distribution model samples each coordinate from a normal distribution 

centered at a mean location (𝜇𝜇𝑥𝑥,𝜇𝜇𝑦𝑦), with specified standard deviations (𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦). Each point 

is generated using: 

𝑥𝑥 ∼ 𝑁𝑁(𝜇𝜇𝑥𝑥,𝜎𝜎𝑥𝑥2), 𝑦𝑦 ∼ 𝑁𝑁(𝜇𝜇𝑦𝑦,𝜎𝜎𝑦𝑦2) 

In implementation, the Box–Muller transform is used to obtain normally distributed sam-

ples from uniform random values: 

𝑧𝑧 = 𝜇𝜇 + 𝜎𝜎�−2𝑙𝑙𝑙𝑙𝑈𝑈1 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠(2𝜋𝜋𝑈𝑈2), 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑈𝑈1,𝑈𝑈2 ∼ 𝑈𝑈(0,1) 

This model can capture clustered spatial behaviors observed in urbanization, vegetation 

density gradients, or other naturally occurring aggregations. 

 

C. Diagonal  

The diagonal distribution is designed to generate spatially aligned data along the main diago-

nal of a bounding box [𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚], simulating directional spatial patterns such as 

linear infrastructures. Each point follows one of two paths: 

1. Deterministic alignment (with probability 𝑝𝑝) 

2. Perturbed offset using Gaussian noise (with probability 1 − 𝑝𝑝) 

This behavior is controlled by a Bernoulli random variable: 

𝐵𝐵 ∼ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝) 
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In the noisy case (B=0), vertical perturbation is added: 

𝜖𝜖 ∼ 𝑁𝑁(0,𝜎𝜎2), 𝜎𝜎 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ⋅
𝑚𝑚𝑚𝑚𝑚𝑚(𝑤𝑤,ℎ)

√2
 

𝑦𝑦 = 𝑦𝑦 + 𝜖𝜖 

Where 𝑤𝑤 =  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚] and 𝑤𝑤 =  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚] are the width and height of the 

bounding box. 

The buffer parameter controls the intensity of noise around the diagonal, with higher val-

ues yielding broader dispersion. The final coordinates are clamped to ensure they remain 

within the bounding box: 

𝑥𝑥 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚),  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚), 𝑦𝑦 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚),  𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) 

 

D. Clustered  

The clustered distribution model simulates localized groupings of points around randomly 

generated centroids (𝑐𝑐𝑖𝑖𝑥𝑥, 𝑐𝑐𝑖𝑖
𝑦𝑦) 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … ,𝐾𝐾𝑖𝑖 , where 𝐾𝐾 is the number of clusters. Each clus-

ter’s points are generated using polar coordinates with randomized angles and radius: 

𝜃𝜃 ∼ 𝑈𝑈(0,2𝜋𝜋), 𝑟𝑟 ∼ 𝑈𝑈(0,𝑅𝑅) 

𝑥𝑥 = 𝑐𝑐𝑖𝑖𝑥𝑥 + 𝑟𝑟 cos 𝜃𝜃 , 𝑦𝑦 = 𝑐𝑐𝑖𝑖
𝑦𝑦 + 𝑟𝑟 sin𝜃𝜃 

Where 𝑅𝑅 is the maximum intra-cluster radius. This formulation enables modeling of both 

tightly packed and widely dispersed clusters, effectively capturing spatial heterogeneity. 

These distribution models not only serve as foundations for polygon generation but can 

also be used independently for tasks requiring synthetic spatial point clouds or geostatistical 

simulations. 

3.2 Data-Driven Generation 

In this section, we introduce a nonparametric method for synthetic data generation based on 

user-uploaded spatial datasets. The proposed approach extends the system’s capabilities be-

yond predefined parametric models by leveraging empirical statistics to reproduce both mar-

ginal distributions and inter-variable dependencies. The method is formalized as a data-driven 

generation pipeline rooted in empirical copula theory and frequency-based sampling. 

Following the description of the generation algorithm, we present a complementary fea-

ture extraction framework that captures geometric characteristics such as size, compactness, 
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irregularity, and vertex complexity from input polygons. These features enable a morphologi-

cally aware generation process, capable of producing realistic and diverse shapes. 

Finally, to quantitatively evaluate the alignment between original and synthetic datasets, 

we introduce a similarity assessment metric, the Distributional Geometry Alignment Score 

(DGAS). This metric assesses both distributional and structural consistency, providing an in-

terpretable and robust evaluation of the generative fidelity. 

3.2.1 Empirical Copula Method 

In this method, the joint distribution of the uploaded data is approximated without relying on 

any predefined parametric copula models like Gaussian. Instead, the algorithm constructs em-

pirical cumulative distribution functions (ECDFs) [16] for each variable to map the data into a 

[0,1] range, thereby normalizing the marginals. It then uses frequency tables to discretize 

these marginals into intervals with associated probability. To generate new data, a row from 

the ECDF-transformed dataset is randomly selected, and for each variable, a new value is sam-

pled uniformly within the corresponding interval from the frequency table. This process pre-

serves both marginal distributions and the dependency structure (copula-like behavior) across 

variables. 

Importantly, this approach reproduces the multivariate statistical behavior of the original 

data without making assumptions about the underlying parametric form and aligns with the 

core copula principle: separating marginals from dependency structure. Although it doesn’t 

use copulas in a strict mathematical sense, it emulates their function by reconstructing the 

dependence structure empirically. As demonstrated in the paper, this method is effective for 

generating synthetic data that retains both the univariate and multivariate properties of the 

original dataset, making it valuable for data augmentation, privacy-preserving analytics, and 

generative simulations. 

The main goal of Algorithm 3.5 is to allow users to upload their own spatial datasets typ-

ically consisting of 2D points and generate new synthetic data that preserve both the marginal 

distributions and the underlying dependency structure of the original data. The method be-

gins by estimating the empirical cumulative distribution function (CDF) [17] for each variable, 

thereby mapping the original values to the unit interval [0,1], while maintaining uniform mar-

ginals. Then, for each variable, a frequency table is constructed through histogram binning, 

capturing the empirical distribution without assuming any parametric form. To synthesize new 

samples, the algorithm randomly selects rows from the transformed CDF-matrix and, for each 

variable, determines the corresponding histogram interval. It then samples a value uniformly 
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within this interval, thereby mimicking the local distribution of the original data. This approach 

effectively models joint dependencies using the empirical copula structure, even though no 

explicit copula function is used. Finally, if a new spatial bounding box is provided, the synthetic 

data are scaled accordingly using affine transformation. This nonparametric framework en-

sures that the generated data shares the same statistical properties and spatial behavior as 

the input dataset, making it suitable for downstream tasks such as geospatial simulation, vis-

ualization, or augmentation. 

Algorithm 3.5 Upload-Based Distribution Matching 
Require:  

𝑋𝑋: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑥𝑥 𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦,  
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 >  0,  
𝑁𝑁: 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 (𝑁𝑁 >  0), 
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏: 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 [𝑚𝑚𝑚𝑚𝑚𝑚_𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚_𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚_𝑥𝑥,𝑚𝑚𝑚𝑚𝑚𝑚_𝑦𝑦] 

Ensure: 𝑋𝑋_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔: 𝑁𝑁𝑁𝑁𝑁𝑁 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑁𝑁 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 

 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑎𝑎𝑎𝑎 𝑋𝑋 

1: if 𝑋𝑋 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ′𝑥𝑥′ 𝑎𝑎𝑎𝑎𝑎𝑎 ′𝑦𝑦′ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 then 

2:      raise 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉("𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ′𝑥𝑥′ 𝑎𝑎𝑎𝑎𝑎𝑎 ′𝑦𝑦′ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. ") 

3: end if 

4: if 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≤  0 𝑜𝑜𝑜𝑜 𝑁𝑁 ≤  0 then 

5:      raise 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉("𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑏𝑏𝑏𝑏 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 0. ") 

6: end if 

7:      𝑜𝑜𝑜𝑜𝑜𝑜_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ←  (𝑋𝑋[′𝑥𝑥′].𝑚𝑚𝑚𝑚𝑚𝑚(),𝑋𝑋[′𝑦𝑦′].𝑚𝑚𝑚𝑚𝑚𝑚(),𝑋𝑋[′𝑥𝑥′].𝑚𝑚𝑚𝑚𝑚𝑚(),𝑋𝑋[′𝑦𝑦′].𝑚𝑚𝑚𝑚𝑚𝑚()) 

8: for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑖𝑖𝑖𝑖 [′𝑥𝑥′, ′𝑦𝑦′] do 

9:      𝑥𝑥_𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐹𝐹 ←  𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋[𝑖𝑖]) 

10:      for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑧𝑧 𝑖𝑖𝑖𝑖 𝑋𝑋[𝑖𝑖] do 

11:           replace 𝑧𝑧 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐹𝐹[𝑧𝑧] 

12:      end for 

13: end for 

14: for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖 𝑖𝑖𝑖𝑖 [′𝑥𝑥′, ′𝑦𝑦′] do 

15:      𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 →  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑎𝑎𝑎𝑎𝑎𝑎,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑟𝑟𝑟𝑟𝑟𝑟,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎    

16: end for 

17: initialize 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑋_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

18: 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑁𝑁 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 [0, 𝑙𝑙𝑙𝑙𝑙𝑙(𝑋𝑋))  →  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑁𝑁 
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19: for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑁𝑁 do 

20:      𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

21:      for each column i in ['x', 'y'] do 

22:           ℎ ←  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝐹𝐹[𝑠𝑠𝑠𝑠𝑠𝑠_𝑛𝑛, 𝑖𝑖] 

23:           𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥  ℎ          

24:           if 𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 then 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ←  −1    

25:           [𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖𝑖𝑖, 𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠]  ←  𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

26:           𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣 ∼  𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑙𝑙𝑙𝑙𝑙𝑙_𝑖𝑖𝑖𝑖𝑖𝑖, 𝑙𝑙𝑙𝑙𝑙𝑙_𝑠𝑠𝑠𝑠𝑠𝑠) 

27:           𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣 𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝   

28:      end for 

29:     𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝑋𝑋_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

30: end for 

31: if 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 then    

32:      𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑋𝑋_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑏𝑏𝑏𝑏𝑏𝑏 

33: end if 

34: return 𝑋𝑋_𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 

 

Based on this algorithm framework, the implemented system supports multiple modes of 

synthetic data generation. Specifically, the upload-based distribution matching algorithm has 

been successfully applied in the following contexts: 

• Point-to-Point Generation: Given a set of input 2D points, the system generates new 

synthetic point sets that statistically replicate the spatial distribution of the original 

dataset. This is particularly useful for augmenting sparse spatial data or simulating var-

iations within a known spatial extent. The implementation steps for this distribution-

based generation process are described in Algorithm 3.6. 

Algorithm 3.6 Point-to-Point Generation 
Require: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑋 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ‘𝑥𝑥‘, ‘𝑦𝑦‘;  𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏;  𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 

Ensure: 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

1: 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

2: 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ←  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑋𝑋 

3: if 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 then 

4:      𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 
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5: end if 

6: return 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

 

• Box-to-Box Generation: For uploaded datasets consisting of rectangular (box-shaped) 

geometries, the centroids are likewise extracted and passed through the distribution 

matching process. The synthetic centroids are then used to generate new boxes with 

dimensions derived from the statistical properties (e.g., average size, aspect ratio) of 

the original set. This allows the system to replicate grid-like or structured layouts com-

monly observed in applications such as field plots, urban blocks, or sensor grids. The 

step-by-step procedure for this generation method is described in Algorithm 3.7. 

Algorithm 3.7 Polygon-to-Polygon Generation 
Require: 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑁𝑁, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 

Ensure: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

1: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐶𝐶 ←  {𝑐𝑐1, . . . , 𝑐𝑐𝑐𝑐} 

2: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ←  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝐶𝐶 

3: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝐵𝐵 

4: for 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐 ∈  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 do 

5:      𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠 

6: end for 

7: return 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

• Point-to-Voronoi Generation: The synthetic points produced by the algorithm are 

used as seed points for constructing Voronoi polygons. These tessellations preserve 

the same spatial density and layout as the uploaded data while ensuring spatial conti-

guity and edge-sharing, making them well-suited for simulations involving spatial par-

titioning or proximity-based analysis. The generation pipeline for this method is de-

tailed in Algorithm 3.8. 

Algorithm 3.8 Point-to-Voronoi Generation 
Require: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑋𝑋, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑁𝑁, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏, 𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Ensure: 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

1: 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ←  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑋𝑋 

2: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ←  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏, 𝑠𝑠ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) 

3: return 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
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• Polygon-to-Polygon Generation: When the uploaded file contains polygonal geome-

tries, the system extracts representative centroids and applies the same empirical gen-

eration method to produce new centroid positions with similar statistical properties. 

These new points are then used to generate polygons either as rectangles or as irreg-

ular shapes depending on the structural characteristics of the original dataset (e.g., 

squareness, irregularity). The resulting synthetic polygons inherit the size, spatial dis-

persion, and complexity of the input, while incorporating controlled generative varia-

tion through sampled geometric parameters. The detailed steps of this approach are 

presented in Algorithm 3.9. 

Algorithm 3.9 Polygon-to-Polygon Generation 
Require: 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑁𝑁, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 

Ensure: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

1: 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐶𝐶 ←  {𝑐𝑐1, . . . , 𝑐𝑐𝑐𝑐} 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑃𝑃 

2: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ←  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝐶𝐶 

3: for 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐 ∈  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 do 

4:      if 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 then 

5:           𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐 

6:      else 

7:      𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

8:      𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐  

9:      end if  

10:  end for  

11: return 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

 

This flexible application of the empirical copula-based generation pipeline capable of 

transforming both point- and shape-based inputs into statistically consistent outputs demon-

strates the robustness and generality of the method across a wide range of geospatial simu-

lation tasks. 

In the Voronoi generation workflow, once a set of synthetic points is produced using the 

empirical method, these serve directly as inputs to the Voronoi tessellation algorithm devel-

oped earlier in this study. The algorithm then constructs a partition of the space where each 

cell represents the area closest to a given synthetic seed. As a result, the generated Voronoi 
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polygons preserve not only the global spatial distribution but also the local neighborhood 

structure observed in the original data. 

Similarly, in the polygon-to-polygon and box-to-box generation pipelines, the workflow 

begins by extracting centroids from the uploaded geometries. These centroids are processed 

using the same upload-based distribution matching algorithm to generate a new set of statis-

tically consistent points. The resulting points are subsequently used to construct new geome-

tries by invoking the shape generation algorithms previously developed. For irregular poly-

gons, the algorithm synthesizes shapes with controlled spikiness, irregularity, and vertex com-

plexity; for rectangular shapes, it generates axis-aligned bounding boxes with appropriate 

scaling. 

This two-stage generative process distribution matching followed by geometry construc-

tions that the synthetic outputs reflect not only the statistical profile of the original data but 

also its spatial structure and geometric diversity. In all cases, the previously introduced mod-

ules (e.g., Voronoi tessellation and polygon/box generation) operate as downstream compo-

nents that transform statistically coherent synthetic points into high-fidelity spatial geome-

tries. 

3.2.2 Feature Extraction 

Beyond the use of nonparametric distribution matching techniques for point synthesis, the 

proposed framework incorporates a feature-driven generative mechanism that enables the 

creation of synthetic polygons based on the morphological characteristics of existing geome-

tries. This approach recognizes that polygonal shapes encode rich geometric and topological 

information, and that replicating this structure is essential for high-fidelity simulation and data 

augmentation. 

The process begins by applying a detailed feature extraction pipeline to a set of polygon 

geometries in Algorithm 3.10. For each polygon, a suite of descriptive metrics is computed, 

including size (as the maximum radial distance from the centroid), number of vertices, aspect 

ratio, perimeter, area, compactness, and irregularity, which quantifies angular and radial var-

iance relative to a regular polygon. Additional binary descriptors, such as convexity and equi-

laterality, are derived using geometric rules and tolerance-based comparisons. Collectively, 

these features form a high-dimensional representation of shape, enabling a comprehensive 

analysis of spatial and structural diversity within the dataset. 

Algorithm 3.10 Feature Extraction from Polygons 
Require: 𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃 
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Ensure: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐹𝐹 

1: for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑃𝑃𝑃𝑃 ∈  𝑃𝑃 do 

2:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

3:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) 

4:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣 

5:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 

6:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐶𝐶𝑖𝑖 =  
4𝜋𝜋 ∙ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2

 

7:      𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

8:      𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  

9:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

10:      𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡 𝐹𝐹  

11: end for  

 

Once features are extracted in Algorithm 3.11, the system constructs empirical statistical 

models to capture their distributions and interdependencies. For continuous attributes such 

as size, compactness, and aspect ratio, normalized histograms are used to model their mar-

ginal distributions. Additionally, conditional dependencies such as the relationship between 

polygon size and number of vertices are quantified through binned aggregations and summary 

statistics. To capture the spatial variation in shape classes, a kernel density estimation (KDE) 

[18] process is applied separately to convex and non-convex polygons, using centroid coordi-

nates as input. This KDE-based analysis provides a probabilistic estimate of “spikiness” at each 

location, which informs the irregularity and convexity of the generated shapes. 

Algorithm 3.11 Estimate Spikiness via KDE of Centroids 
Require: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Ensure: 𝐾𝐾𝐾𝐾𝐾𝐾 − 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

1: 𝐹𝐹𝐹𝐹𝐹𝐹 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

2: 𝐹𝐹𝐹𝐹𝐹𝐹 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

3: for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥,𝑦𝑦) do 

4:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝 =  𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥,𝑦𝑦) 

5:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑝𝑝𝑝𝑝 =  𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝑥𝑥,𝑦𝑦) 

6:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠 =  1 −  𝑝𝑝𝑐𝑐
𝑝𝑝𝑐𝑐 + 𝑝𝑝𝑛𝑛

 

7: end for  
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Based on this statistical modeling in Algorithm 3.12, a new set of shape descriptors is syn-

thesized by sampling from the learned distributions. The size of each new polygon is drawn 

from the empirical histogram, while the number of vertices is sampled conditionally on size. 

The convexity of each polygon is estimated to be using the KDE density maps, allowing spiki-

ness to be assigned in a data-driven manner. If the original dataset predominantly consists of 

rectangular shapes identified using side-length uniformity and angular checks the system 

switches to an axis-aligned rectangle generator to preserve the geometric consistency. Other-

wise, an irregular polygon generator is invoked, using the sampled feature set (size, spikiness, 

irregularity, vertices) to control the shape synthesis process. 

Algorithm 3.12 Statistical Analysis of Features 
Require: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐹𝐹 

Ensure: 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

1: for 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 ∈  𝐹𝐹 do 

2:      𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑓𝑓 

3: end for 

4: 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

5: 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

6: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 

This feature-aware in Algorithm 3.13 pipeline enables the generation of synthetic poly-

gons that retain the global and local characteristics of the original dataset. Unlike purely spa-

tial generation methods, this approach reproduces both the morphological diversity and the 

statistical structure of input geometries, making it highly suitable for geospatial simulation, 

synthetic data augmentation, and machine learning pretraining tasks. By coupling geometric 

analysis with nonparametric modeling, the framework strikes a balance between fidelity and 

generative flexibility. 

Algorithm 3.13 Feature-Aware Synthetic Polygon Generation 
Require: 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐾𝐾𝐾𝐾𝐾𝐾 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

Ensure: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑃𝑃′ 

1: for 𝑖𝑖 =  1 𝑡𝑡𝑡𝑡 𝑁𝑁 do 

2:      𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

3:      𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑣𝑣𝑣𝑣 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠 
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4:      𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑥𝑥𝑥𝑥 , 𝑦𝑦𝑦𝑦) 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

5:      𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣 𝐾𝐾𝐾𝐾𝐾𝐾 

6:      if 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 then 

7:           𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑎𝑎𝑎𝑎 (𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠  

8:      else  

9:           𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑠𝑠𝑠𝑠, 𝑢𝑢𝑢𝑢, 𝑠𝑠𝑠𝑠𝑠𝑠)  

10:      end if  

11:      𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝑃𝑃′  

12: end for  

 

 

3.2.3 Similarity Assessment 

To ensure that the generated synthetic polygonal data faithfully reflects the statistical and 

geometric structure of the original input, we introduce a robust similarity assessment metric: 

the Distributional Geometry Alignment Score. This metric is specifically designed to quantify 

the alignment between two datasets original and synthetic in terms of their feature distribu-

tions and structural interdependencies, rather than relying solely on raw spatial proximity. 

The DGAS is computed by evaluating two complementary components: 

A. Feature Distribution Similarity: 

This term measures the alignment of marginal distributions across selected geometric 

features such as polygon size, compactness, number of vertices, or aspect ratio. Each 

feature is normalized using Min-Max scaling to account for scale discrepancies. The 

similarity is quantified using the inverse of the 1D Wasserstein distance (Earth Mover’s 

Distance) [19], which provides a principled way to compare continuous distributions. 

Importantly, each feature's contribution is weighted based on its empirical variance, 

prioritizing more informative variables in the global score. 

B. Feature Structure Similarity: 

Beyond marginal alignment, this component captures how feature interrelationships 

are preserved between datasets. For this, we compute the pairwise correlation matri-

ces of the selected features in both original and generated datasets. The Frobenius 

norm [20] of the difference between these matrices serves as a proxy for structural 

divergence. A normalized score is then derived to express the degree of alignment, 

where values close to 1 indicate strong preservation of internal dependencies. 
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The final similarity score is calculated as a convex combination of the two components: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝛼𝛼 ∙  𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝛽𝛽 ∙  𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡 𝛼𝛼 = 0.6,  𝛽𝛽 = 0.4 

This formulation balances the importance of preserving both the distributional shape and 

internal geometric logic of the data. 

Unlike classic similarity metrics that rely on spatial proximity (e.g., pointwise Euclidean 

distance, Hausdorff distance), DGAS intentionally does not incorporate absolute positional in-

formation. This design decision is grounded in the core principle of non-parametric, distribu-

tion-based generation: synthetic geometries are not meant to reproduce the spatial layout of 

the input, but to statistically match its distributional properties. 

When generating new polygons or points within a potentially different bounding box or 

with randomized spatial allocation, enforcing positional similarity becomes both meaningless 

and restrictive. Instead, our focus is on maintaining the statistical essence of the input its 

shape complexity, feature relationships, and geometric behavior rather than its specific loca-

tion in space. 

While this section introduces the similarity assessment mechanism, a more detailed anal-

ysis including case studies, quantitative evaluations, and performance benchmarking is pre-

sented in the Evaluation section of this thesis. 
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CHAPTER 4          

WEB APPLICATION AND VISUALIZATION 

4.1 Architecture Overview 

4.2 Web Interface 

4.2.1 Generation Interface 

4.2.2 Interactive Synthetic Data Space 

4.2.3 Interactive Visualization 

4.2.4 Upload Dataset Feature 

 

The generator tool includes a web-based user interface that allows users to configure, visual-

ize, and generate synthetic spatial datasets interactively. The top section of the interface pro-

vides multiple input fields enabling users to specify generation parameters according to their 

needs. Users can choose the desired point distribution (Uniform, Gaussian, Diagonal, or Clus-

tered), define the cardinality (number of geometries), select the type of generated geometry 

(point, polygon, convex, non-convex, Voronoi-based, etc.), and adjust various generation pa-

rameters such as average radius, irregularity, and spikiness for polygons. Additionally, users 

can configure bounding box limits, fix the polygon centers across generations, and apply op-

tional transformations. The interface also supports setting specific parameters depending on 

the distribution type, such as buffer size for diagonal distributions or cluster radius for clus-

tered distributions. 
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Figure 4.1. Web interface of the synthetic spatial data generation platform. The left panel 
provides interactive controls for selecting distribution type, geometry configuration, cardi-

nality, and polygon complexity parameters. Users can also upload external datasets and ad-
just bounding box extents. The right panel displays the generated geometries in real-time 

within the editable bounding box domain. 

A key feature of the web interface is the real-time visualization of the generated data. 

Once the user defines the configuration parameters and triggers the generation request, a 

sample of the dataset is visualized on the page using the Open Layers library. Open Layers 

provides a flexible and dynamic environment for rendering vector geometries, allowing mul-

tiple layers to be added, compared, and manipulated. Users can interact with the displayed 

geometries by zooming, panning, or overlapping different layers for comparative purposes. 

Furthermore, the visualization updates immediately upon changes in the configuration, en-

suring that users can preview the effects of their adjustments without the need for reloading 

or manual interventions. 

To maintain responsiveness, visualization is limited to a manageable number of geome-

tries (e.g., 1000 samples) even if the final dataset is much larger. This approach ensures fast 

rendering and provides a representative preview without overloading the browser or server. 

Users also can download the full dataset in formats such as JSON, WKT, or GeoJSON for exter-

nal analysis. 

4.1 Architecture Overview 

The architecture of the developed system follows a modular and layered design, tailored to 

support interactive generation, visualization, and evaluation of synthetic spatial data. It inte-

grates client-side rendering, server-side computation, and data exchange mechanisms in a 
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cohesive workflow that ensures usability, scalability, and reproducibility. The system has been 

designed with the dual goal of supporting real-time experimentation and maintaining scien-

tific rigor in the analysis of generated geometries. 

At the client level, the web interface is implemented using standard web technologies, 

including HTML5, CSS, and JavaScript, with OpenLayers [21] serving as the main visualization 

library. OpenLayers enables efficient rendering and manipulation of vector geometries, allow-

ing users to explore generated datasets interactively. The interface provides a rich set of input 

controls through which users can define generation parameters such as the type of spatial 

distribution (e.g., uniform, Gaussian, diagonal, clustered), geometric configuration (e.g., con-

vex polygons, Voronoi diagrams), and structural constraints (e.g., spikiness, irregularity, num-

ber of vertices). Input fields dynamically adjust based on the selected options, enabling intui-

tive and context-aware configuration. A central element of the UI is the bounding box editor, 

which supports direct manipulation of spatial extents through corner and edge dragging, cou-

pled with real-time geometric regeneration. 

On the server side, a Python-based backend is responsible for the actual data generation 

and similarity assessment. Upon receiving a request, the backend parses the configuration 

parameters, generates a synthetic dataset according to the selected distribution and geome-

try settings, and optionally performs transformations such as shrinkage or scaling. When a 

reference dataset is uploaded, the server also performs similarity evaluation using the Distri-

butional Geometry Alignment Score (DGAS) metric. DGAS quantifies how closely the gener-

ated dataset matches the reference in terms of both distributional and structural similarity, 

providing users with immediate feedback. Additional outputs include statistical feature sum-

maries and visual plots of marginal distributions. 

The overall architecture is illustrated in Figure 4.2, which shows the interaction between 

the client interface and the backend services. The diagram highlights the flow of user input, 

the geometry generation pipeline, similarity evaluation, and data export mechanisms that en-

able reproducible experimentation and efficient dataset delivery. 
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Figure 4.2. System architecture diagram of the synthetic spatial data generation platform. 
The design integrates a web-based client interface (OpenLayers-based) for interactive pa-
rameter input and geometry visualization, a Python backend for geometry generation and 

similarity evaluation, and mechanisms for reproducibility and data export. 

The system further supports reproducibility and traceability through automated per-

malink generation. All session parameters are encoded in a URL that can be stored or shared, 

ensuring that the exact dataset can be regenerated in the future or by collaborators. Data 

exports are available in standard formats such as JSON, WKT, and GeoJSON, facilitating further 

analysis or integration with external GIS tools. 

To maintain responsiveness, the interface renders only a limited number of geometries 

(typically 1000) for preview purposes, even when the full dataset is significantly larger. This 

decoupling of visualization from generation allows the interface to remain fast and interactive, 

while preserving the complete dataset for downstream use. 

In summary, the architecture combines scientific flexibility with interactive usability, mak-

ing the system suitable for both researchers aiming to model spatial phenomena and practi-

tioners requiring customized datasets for simulation, benchmarking, or model validation. 
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4.2 Web Interface 

The developed web interface serves as the central access point for configuring, generating, 

and visualizing synthetic spatial datasets. It is built using HTML5, JavaScript, and the Open 

Layers library, providing a modular, responsive, and highly interactive environment. Its design 

philosophy prioritizes user experience through clarity, parameter visibility, real-time visual 

feedback, and minimal user friction during iterative testing. 

The system consists of four core panels: (1) data generation configuration, (2) file upload 

and distribution matching, (3) bounding box manipulation, and (4) geometry visualization. To-

gether, they enable seamless experimentation with point- and shape-based data generation 

strategies. 

4.2.1 Generation Interface 

The generation interface (Figure 4.1, left panel) allows users to define synthetic data proper-

ties via an intuitive form. Users can select the distribution type (e.g., uniform, diagonal, Gauss-

ian, cluster), geometry type (e.g., point, box, convex, Voronoi, mixed), and cardinality (number 

of records). For shape-based geometries, advanced controls such as minimum and maximum 

radius, line segment counts, and shape complexity parameters (irregularity, spikiness, shrink 

factor) are dynamically enabled based on the chosen method. 

The interface includes a "lock" toggle feature that allows users to regenerate geometries 

with identical centers but different shapes, enabling controlled variation a useful capability 

for benchmarking, visual analysis, or sensitivity testing. The generation process is instant and 

updates the map view in real-time. 

 

4.2.2 Interactive Data Space 

The interactive bounding box is a core component of the interface, defining the spatial domain 

within which all geometries are generated. It is visualized on the map as a blue rectangle with 

labeled corner coordinates and edge dimensions (Figure 4.1, right). Users can manually re-

shape the bounding box by dragging its four corner points or adjusting its edges via midpoints. 

These interactions automatically update the underlying extent ([xmin, ymin, xmax, ymax]), 

which in turn triggers a regeneration of the synthetic dataset to fit the new spatial domain. 

The bounding box serves both as a spatial constraint for generations and as a visual cue 

for scale and layout control. Internally, any change to its shape updates the generation engine 
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with a new extent through asynchronous calls. This guarantees coherence between user in-

teractions and generated data, enabling real-time iteration and adjustment without requiring 

form resubmission. 

An alternative to interactive dragging is the numeric bounding box editor shown in Fig-

ure 4.3, where users can enter precise values for the spatial domain coordinates. This ena-

bles exact control in scenarios requiring reproducibility or alignment with known geospatial 

extents. 

 
Figure 4.3. Bounding box configuration panel. Users can manually define the spatial extent 
of data generation by specifying minimum and maximum values for the x and y axes. Upon 
pressing "Apply Bounding Box", the map and generation domain are immediately updated, 

ensuring precision control over the spatial boundaries. 

Upon submitting new values via the "Apply Bounding Box" button, the map is automati-

cally updated to reflect the new bounding region. The updated bounding box is immediately 

reflected in subsequent data generation processes, ensuring consistency between user-de-

fined input and rendered geometries. This dual-mode interaction (visual + numeric) supports 

both exploratory and precision-driven workflows. 

 

 

4.2.3 Interactive Visualization 

The map panel serves as a dynamic visualization environment where all generated geometries 

are rendered in real-time. The system supports a wide range of geometry types including 

points, boxes, and polygons with efficient vector rendering, ensuring smooth performance 

even under high cardinalities. Polygons are controlled by user-defined constraints such as min-

imum and maximum size, as well as minimum and maximum number of vertices, enabling 

fine-tuned control over their structural complexity and spatial footprint. 
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A critical feature enhancing interactivity is the lock toggle (displayed as a padlock icon). 

When enabled, this feature preserves the centroid locations of all existing geometries during 

regeneration. While spatial positions remain fixed, users are still allowed to modify key shape 

parameters including polygon size and number of vertices. This results in updated shapes that 

retain their original spatial anchoring, making it particularly valuable for controlled experi-

ments where positional stability is essential. The lock ensures that generated polygons are not 

lost or repositioned, providing users with consistent visual references and repeatable outputs. 

When the lock is disabled, both position and shape attributes are randomized, allowing 

for a full reshuffling of the synthetic dataset. The lock’s state dynamically influences several 

form components, disabling randomization controls and triggering corresponding updates in 

the visualization layer. This mechanism supports both exploratory and repeatable generation 

workflows, making the interface suitable for simulation studies, perturbation analyses, and 

synthetic benchmarking tasks. 

 

 

4.2.4 Upload Dataset 

In addition to forward generation, the interface includes a file upload feature that supports 

standard formats such as CSV, WKT, and GeoJSON. This functionality allows users to import 

real-world datasets either point-based or polygonal and visualize them alongside generated 

data within the same map canvas. 

Upon upload, the system automatically detects the geometric type and displays the asso-

ciated bounding box, which becomes editable through the standard interactive tools. The user 

may then choose to scale the imported polygons to fit the current generation domain or to 

preserve their original proportions and coordinates. This feature provides flexibility in aligning 

heterogeneous datasets with synthetic generation space. 

A central capability of the upload module is that it allows users to view and interact with 

the original dataset directly on the map. This includes full spatial rendering of the imported 

geometries and the ability to overlay synthetic outputs for comparative analysis. Once the 

data is visualized, users can select additional generation operations for example, they may 

choose to compute a Voronoi tessellation based on the uploaded point dataset, enabling 

structured polygonal partitioning of the space. The resulting Voronoi cells can be optionally 

scaled via a shrink factor, controlling the tightness or dispersion around each seed point. 
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Through this upload-and-generate mechanism, the interface bridges the gap between 

empirical data and synthetic modeling. It enables workflows where users can both replicate 

and generalize spatial distributions and structural patterns using the same interactive frame-

work. Combined with similarity scoring and visual comparison tools, this functionality sup-

ports informed evaluation and reproducible synthetic data experimentation. 
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CHAPTER 5          

EVALUATION 

5.1 Random Generation Evaluation 

5.2 Data-Driven Generation Evaluation 

5.2.1 Distribution Evaluation 

5.2.2 Features Extraction Evaluation 

5.2.3 Similarity Evaluation 

 

This chapter presents a comprehensive evaluation of the developed system for synthetic spa-

tial data generation. The evaluation is twofold. Section 5.1 focuses on the performance and 

scalability of the geometry generation algorithms, assessing their suitability for various simu-

lation tasks. Section 5.2 evaluates the statistical fidelity of the data-driven generation ap-

proach, which aims to reproduce spatial distributions using empirical matching techniques. 

All experiments were conducted on a machine equipped with an Intel Core i5-8300H CPU 

(4 physical cores / 8 threads, base frequency 2.30 GHz), 32 GB RAM, and Windows 11 Pro 64-

bit. The implementation was executed in Python 3.10 in single-thread (serial) mode, without 

explicit parallelization. This ensures that execution time reflects the raw efficiency of each 

algorithm without influence from parallel optimizations. 

Each generation method was tested under increasing cardinality, ranging from 10,000 to 

700,000 polygons, with a maximum of 50 vertices per polygon. Identical spatial bounds and 

parameter settings were applied throughout the evaluation.  

For the data-driven evaluation, two stages were conducted. In the first stage, the system 

was assessed using synthetically generated points to verify whether it could correctly infer 

and reproduce the underlying spatial distribution. In the second stage, real spatial data were 

used to test the model’s capability to match authentic spatial patterns and statistical proper-

ties. The same two-step procedure was also applied to polygon generation, first validating the 

method with generated reference shapes and then with real geometric datasets. 
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5.1 Random Generation Evaluation 

The performance of four core polygon generation algorithms Circle-Based, Convex Hull-Based, 

Random Vertex, and Sliding Generator was evaluated across varying dataset sizes. The results 

are presented in Table 5.1 and Figure 5.1. 

Table 5.1 shows the execution time in seconds for generating different numbers of poly-

gons. The Circle-Based Generator demonstrated superior scalability, completing the genera-

tion of 700,000 polygons in under 30 seconds. In contrast, both the Convex and Sliding Gen-

erators failed to scale beyond 200,000 due to computational bottlenecks. The Random Vertex 

Generator showed moderate scalability but suffered from increasing overhead due to collision 

detection and shape validation steps. Figure 5.1 visualizes the execution time growth across 

the four methods. The Circle-Based Generator exhibits a near-linear scaling trend, making it 

the most suitable choice for large-scale applications. 

 

Table 5.1 Execution time (in seconds) for generating with ranges from 10,000 to 700,000. A 
dash (–) indicates that the method does not scale beyond that size. 

Cardinality 

 10.000 50.000 100.000 200.000 300.000 400.000 500.000 600.000 700.000 

Circle-based 0.59 2.18 5.24 9.75 12.77 17.14 20.84 25.41 29.22 

Convex  16.79 72.44 159.32 336.07 - - - - - 

Random 2.50 12.24 27.08 45.29 69.30 93.87 118.61 137.78 160.62 

Sliding 16.34 86.16 181.61 293.37 - - - - - 

 

 

These results clearly indicate that the Circle-Based Generator provides the best trade-off 

between geometric complexity and execution efficiency. It was therefore selected as the de-

fault method for scalable polygon generation in the final system.  

In contrast, the Convex Hull and Sliding Generators, while offering precise geometric 

structures, are better suited for smaller datasets or specialized use cases where geometric 

rigor outweighs performance constraints. 
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Figure 5.1. Generation time comparison for core polygon generators across increasing cardi-
nality. Circle-Based remains highly efficient, while Convex and Sliding show steep growth due 

to computational complexity 

To support diverse spatial simulation needs, the system also integrates additional meth-

ods: Points, Boxes, Voronoi, Elongated, and Mixed-Type generators. Table 5.2 and Figure 5.2 

summarize their performance. 

Table 5.2 highlights the speed of point and box generators, which remained below 2.5 

seconds even for 700,000 instances. These methods are optimal for applications requiring 

simple geometric entities. The Mixed-Type Generator also showed excellent scalability, effec-

tively combining box and irregular shapes with minimal performance degradation. 

 

Table 5.2 Final Selection – Generation Time (in seconds) for N Polygons Using Different Algo-
rithms N ranges from 10,000 to 700,000 polygons. A dash (–) indicates that the method did 

not scale beyond that size. 

Cardinality 

Methods 10.000 50.000 100.000 200.000 300.000 400.000 500.000 600.000 700.000 

Points 0.01 0.13 0.34 0.76 0.80 0.89 1.23 0.78 0.93 

Box 0.02 0.09 0.25 0.60 0.89 1.42 1.52 2.13 2.06 

Circle-based 0.59 2.18 5.24 9.75 12.77 17.14 20.84 25.41 29.22 

Voronoi 8.44 38.83 56.66 124.21 168.01 236.59 267.43 344.43 429.49 

Elongated 21.58 91.43 217.91 - - - - - - 

Mix-Type 0.11 0.67 1.66 3.07 4.10 5.64 7.59 8.70 10.26 
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In contrast, the Voronoi Generator exhibited significantly higher execution times, exceed-

ing 400 seconds for 700,000 polygons. Similarly, the Elongated Generator, which produces 

flow-aligned or infrastructure-like geometries using TIN-based logic, struggled beyond 

100,000 polygons due to its high computational complexity. 

Figure 5.2 illustrates these findings, confirming that while point, box, and circle-based 

methods are computationally efficient, Voronoi and elongated generation methods are more 

suited for domain-specific tasks where structural realism outweighs performance considera-

tions. 

 
Figure 5.2. Extended performance comparison including additional methods. Circle-Based 
remains the most scalable for polygons, while Voronoi and Elongated are suitable for high-

fidelity or domain-specific tasks despite higher runtime. 

The Circle-Based Generator emerged as the most balanced solution, combining fast exe-

cution, shape complexity control (via irregularity and spikiness parameters), and robustness. 

Its lightweight implementation and parameter-rich design enable controlled generation of re-

alistic yet computationally efficient polygon datasets. 

In conclusion, the performance evaluation confirms the modular strength of the system: 

users can select from a spectrum of generators based on task requirements, balancing be-

tween scalability, shape fidelity, and structural complexity. 

5.2 Data-Driven Generation Evaluation 

This section presents a detailed evaluation of the system’s data-driven generation capabilities, 

emphasizing its ability to replicate the statistical and morphological properties of real-world 

spatial datasets. Unlike parametric techniques, the implemented empirical framework does 
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not assume a predefined model structure; instead, it aims to preserve both the marginal dis-

tributions and the joint dependencies among spatial variables using a nonparametric ap-

proach. The evaluation proceeds in three stages: (i) analysis of the distributional similarity 

between real and synthetic point sets; (ii) assessment of feature extraction fidelity across pol-

ygon types; and (iii) quantitative evaluation of structural similarity using the Distributional Ge-

ometry Alignment Score (DGAS). These analyses jointly validate the generator’s performance 

in terms of both spatial fidelity and generalizability. 

5.2.1 Distribution Evaluation 

The first component of the evaluation investigates whether the generated point sets accu-

rately replicate the spatial distribution of original data. Visual comparisons were conducted 

for five distinct distribution types of circles, spiral, petals, clusters, and moons. In each case, 

synthetic points were generated from empirical copula-based transformations and compared 

to the original datasets. 

As shown in Figure 5.3, the circular dataset, characterized by a double-ring structure with 

a central void, is successfully approximated by the generator. The synthetic data (blue) follows 

the same radial density as the original (red), both at the inner and outer rings, without at-

tempting to match specific positions. This confirms that the model captures the overall spatial 

distribution, despite minor diffusion near the central gap an artifact consistent with probabil-

istic sampling. 
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Figure 5.3. Visual comparison between original (red) and synthetic (blue) data for the circu-
lar distribution. The generator accurately replicates the radial density and double-ring struc-
ture. Minor central diffusion arises from the non-deterministic nature of sampling, without 

affecting the overall distributional fidelity. 

In Figure 5.4, the spiral distribution is also well reproduced. The synthetic data accurately 

follows the curvature and radial growth of the original spiral, including the dense inner coils 

and sparser outer arms. The alignment between distributions confirms the generator's ability 

to model structured polar patterns using nonparametric, distribution-based techniques. 
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Figure 5.4. Original (red) and synthetic (blue) spiral datasets. The generator successfully cap-
tures the winding curvature and radial expansion, maintaining spatial continuity and density 

progression along the spiral arms. 

The petal-shaped dataset shown in Figure 5.5 further demonstrates the fidelity of the 

generator. The synthetic points preserve the sinusoidal radial structure and inter-lobe spacing, 

maintaining angular symmetry and density variation consistent with the original dataset. 

Slight fluctuations near the origin do not compromise the distributional validity of the result. 
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Figure 5.5. Petal-shaped distribution generated from a sinusoidal radial function. The syn-

thetic data reproduces the petal structure, preserving radial symmetry and inter-lobe spac-
ing, with minimal distortion near the center. 

 

In Figure 5.6, the clustered distribution is effectively reproduced. The synthetic data main-

tains the location, density, and spatial extent of the original clusters. While additional micro-

clusters may appear due to stochastic effects, the dominant distributional characteristics re-

main intact. This illustrates the robustness of the generation method when applied to multi-

modal spatial data. 
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Figure 5.6. Clustered distributions showing real (red) and synthetic (blue) points. The main 

clusters are faithfully reproduced in terms of location and density, despite some emergence 
of micro-clusters due to bin-based sampling. 

Finally, Figure 5.7 shows the classic moons dataset. Despite the well-known complexity of 

this non-linear shape, the generator reproduces the twin arc structure and preserves the over-

all spatial balance between the two classes. The gap between classes is maintained, and cur-

vature is respected to a high degree, confirming the method’s ability to replicate complex 

geometry-aware distributions. 
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Figure 5.7. Moons dataset comparison. The generator preserves the twin arc structure and 
class separation, successfully capturing the underlying non-linear geometry of the distribu-

tion. 

In addition to synthetic reference datasets, the data-driven generator was also tested us-

ing real spatial data to assess its capacity to reproduce authentic geographic distributions. 

Specifically, a dataset of building centroid points from the city of Ioannina, Greece was em-

ployed as the empirical reference (Figure 5.7). The red points correspond to the real building 

locations, while the blue points represent the data-driven synthetic generation derived 

through the empirical copula transformation. As shown in the figure, the generator success-

fully captures the elongated and clustered spatial pattern characteristic of the urban structure 

of Ioannina, maintaining both local density variations and the overall spatial extent of the city. 

Minor deviations at peripheral regions are attributed to sampling variability and do not affect 

the overall fidelity of the generated distribution. 
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Figure 5.8. Comparison between real and generated spatial distributions for the city of Ioan-
nina. The red points represent real building centroids obtained from OpenStreetMap data, 
while the blue points denote synthetic points generated through the data-driven empirical 
copula method. The generator successfully reproduces the clustered and elongated urban 

pattern observed in the real dataset. 

In summary, across all six cases, the empirical generation approach succeeds in replicat-

ing the underlying statistical distribution of the original datasets. The generated points do 

not attempt to match absolute positions but instead preserve the probability density, sym-

metry, and spatial tendencies of the original patterns. This confirms that the generator ful-

fills its design objective: to produce new, randomly sampled data points that follow the 

same distributional behavior as the reference dataset. 

To further assess the algorithm's performance, we evaluate the marginal distributions of 

the x and y coordinates using one-dimensional Wasserstein distance (also known as Earth 

Mover’s Distance). Figure 5.9 presents stacked histograms comparing the real (blue) and syn-

thetic (red) distributions along each axis. 

These visualizations offer valuable insights into the degree of fidelity achieved by the gen-

erator. In cases where the spatial structure is symmetric or approximately uniform, the 
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synthetic data tends to follow the original distribution closely. For instance, the peak align-

ment in both histograms suggests that the empirical sampling preserves the most frequent 

value ranges and overall distributional mass. 

 
Figure 5.9. Marginal histograms of the x (left) and y (right) coordinates for real (blue) and 

synthetic (red) data. High overlap across bins confirms strong marginal distributional align-
ment between real and generated data. 

However, this performance deteriorates in more asymmetric or structured input datasets, 

such as the spiral or crescent-shaped moons. In those cases, the ECDF transformation and 

histogram binning induce smoothing effects that result in central clustering or edge diffusion. 

In practical terms, this means that the algorithm oversamples mid-range intervals while un-

derrepresenting rare or boundary values particularly in non-linear or multi-modal distribu-

tions. 

This discrepancy highlights a key limitation: while the algorithm preserves marginal uni-

formity in an average sense, it lacks awareness of joint spatial dependencies that govern the 

structure of more complex patterns. As a result, the generated dataset may appear statisti-

cally similar in isolation but deviate significantly in spatial behavior when visualized or ana-

lyzed holistically. 

To mitigate this, future versions of the system could incorporate density-adaptive binning 

or copula-enhanced joint modeling, ensuring that both marginals and dependencies are faith-

fully represented. 

In addition, Figure 5.10 illustrates the Voronoi tessellation derived from synthetic points 

generated to follow a clustered distribution. Each Voronoi polygon represents a spatial region 

that is closer to a particular seed point than to any other. As a result, this transformation 
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provides a structured polygonal view of the synthetic point cloud and serves as a valuable tool 

for examining the spatial footprint and neighborhood relationships of the generated data. 

 
Figure 5.10. Voronoi tessellation is constructed from real spatial distributions for the city of 
Ioannina. Each polygon defines the region of influence of a single point, illustrating the spa-

tial footprint and neighborhood relationships induced by the generated distribution. 

5.2.2 Features Extraction Evaluation 

The second component of the evaluation focuses on the system’s ability to replicate polygonal 

shape characteristics through feature-based generation. Experiments were conducted across 

three representative categories: axis-aligned rectangles, convex polygons, and non-convex ir-

regular polygons. For each shape type, geometric descriptors were extracted from both orig-

inal and synthetic datasets and compared. 

As shown in Figure 5.11, the axis-aligned rectangles generated by the system demonstrate 

a high level of structural fidelity. The synthetic shapes (blue) preserve edge parallelism, right-

angle geometry, and size uniformity relative to the originals (red). The results confirm the 
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model’s capability to enforce strict angular and linear constraints, making it suitable for struc-

tured spatial layouts such as land parcels, agricultural plots, or grid-based urban modeling. 

 
Figure 5.11. Axis-aligned rectangular shapes: comparison of original (red) and synthetic 

(blue) geometries. The generator maintains edge alignment, angular consistency, and pro-
portional aspect ratios across the dataset. 

For convex polygons, illustrated in Figure 5.12, the system introduces controlled irregu-

larity while maintaining convexity. Vertex counts, compactness, and shape regularity metrics 

remain within acceptable bounds. The generated shapes follow the overall geometry of the 

originals without collapsing symmetry or structural consistency. This highlights the model’s 

capacity to emulate naturally occurring convex forms, often found in geospatial footprints and 

environmental mapping. 
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Figure 5.12. Convex polygons: visual comparison between original (red) and synthetic (blue) 
shapes. The synthetic output preserves vertex count, compactness, and convexity without 

collapsing the global structure. 

Non-convex shapes, as depicted in Figure 5.13, present a more complex generative task. 

Nevertheless, the model captures spikiness, indentation, and irregular contours by leveraging 

learned shape descriptors. The output includes synthetic polygons with varying vertex count, 

radial asymmetry, and local deformations, aligned with the statistical structure of the input 

set. This indicates the generator’s flexibility in replicating non-trivial morphological features 

with high variance. 
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Figure 5.13. Non-convex irregular polygons: original (red) and generated (blue) shapes ex-
hibit comparable spikiness, asymmetry, and variation in vertex distribution, capturing mor-

phological complexity. 

 

In addition to synthetic datasets, the feature-based generator was also evaluated using 

real polygonal data, specifically building footprints from the city of Ioannina, Greece (Figure 

5.14). The red outlines correspond to real building geometries obtained from OpenStreetMap, 
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while the blue outlines depict the synthetic polygons generated by the system based on ex-

tracted geometric descriptors such as size, compactness, and convexity.  

 
Figure 5.14. Comparison between real and generated polygonal data for the city of Ioannina. 
Red outlines represent real building footprints from OpenStreetMap, while blue outlines de-
note synthetic polygons generated from feature-based distribution matching. The generator 

captures the spatial density, orientation, and irregularity characteristic of the city’s urban 
morphology. 

 

Although the synthetic shapes do not replicate the exact building geometries, they suc-

cessfully reproduce the statistical distribution of sizes, orientations, and spatial density ob-

served in the real data. The generator effectively captures the heterogeneous and irregular 

urban morphology of Ioannina, demonstrating statistical and morphological fidelity rather 

than geometric duplication. Minor deviations in smaller or highly fragmented buildings result 

from descriptor aggregation and random sampling but do not compromise the overall repre-

sentational accuracy. 

To further quantify the quality of the shapes generated, we compared the empirical dis-

tributions of key geometric features between the real and synthetic datasets. Figure 5.14 
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shows histograms of size and number of vertices. The generated shapes approximate the dis-

tribution of size and structural complexity, achieving strong overlap in global descriptors.  

 
Figure 5.15. Feature distribution comparison between real and generated polygons. Left: dis-
tribution of polygon size. Right: distribution of number of vertices. Close alignment demon-

strates fidelity of feature-based generative modeling. 

As illustrated in Figure 5.16, the synthetic polygons align closely with the overall spatial 

pattern of the real buildings, confirming the system’s robustness even in complex urban set-

tings. Furthermore, when the dataset is restricted to specific and more isolated building cate-

gories, such as schools, universities, hospitals, and parking areas, the generator achieves an 

even closer geometric approximation. This improvement occurs because such structures are 

typically larger, more spatially distinct, and exhibit consistent geometric characteristics, allow-

ing the feature-based synthesis process to capture their shape with higher precision. 
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Figure 5.16. Comparison between real (red) and generated (blue) building polygons for the 

city of Ioannina. The system successfully reproduces the spatial density and geometric diver-
sity of the real dataset. When focusing on isolated categories such as schools, universities, 

hospitals, and parking areas, the approximation improves further due to their higher regular-
ity and reduced spatial clustering. 

 

This evaluation demonstrates that the system learns and reproduces structural patterns 

from empirical data without relying on hardcoded rules. By modeling the underlying feature 

distributions, the generator adapts to different shape types while maintaining internal coher-

ence and realism. These properties make the system appropriate for diverse downstream ap-

plications, including training data generation for computer vision models, simulation of built 

or natural environments, and synthetic benchmarking in spatial domains. 

 

5.2.3 Similarity Evaluation 

Across all synthetic polygon categories (rectangular, convex, non-convex), DGAS scores con-

sistently exceeded 0.7, with distributional alignment scores averaging around 0.85 and struc-

tural alignment ranging from 0.6- 0.75, depending on shape complexity. 



 

 62 

Unlike traditional similarity metrics based on spatial proximity (e.g., Hausdorff distance or 

Chamfer distance), DGAS intentionally omits absolute positional alignment. This decision re-

flects the core philosophy of the framework: the goal is not to reproduce exact spatial config-

urations, but rather to statistically mirror the geometric structure of the original data. This 

makes the method robust under translation, scaling, or changes in spatial extent conditions 

commonly encountered in practical scenarios involving generalization, data synthesis, or do-

main transfer. The DGAS thus serves not only as a robust evaluation tool but also as a guiding 

principle for the design of future generative models in spatial data science. 
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CHAPTER 6          

CONCLUSION 

This thesis introduced a comprehensive framework for the design, implementation, and eval-

uation of a web-based system for synthetic spatial data generation, specifically tailored to the 

controlled creation of polygonal geometries. The work was motivated by the increasing de-

mand for reproducible, scalable, and statistically representative synthetic datasets in fields 

such as spatial analysis, machine learning, and simulation, where access to real-world data 

may be restricted or biased. At the core of the system lies a modular generation engine sup-

porting both algorithmic and data-driven methods. Procedural generators were implemented 

to produce a diverse range of geometric patterns, including circle-based irregular polygons, 

Voronoi tessellations, elongated (flow-aligned) shapes, and more experimental forms based 

on Minkowski sums and sliding transformations. These generators allow users to configure 

parameters interactively, enabling the production of synthetic datasets with customized mor-

phological characteristics. 

In parallel, a nonparametric empirical distribution-matching module was developed to en-

able the synthesis of spatial data that aligns closely with the statistical properties of a user-

provided reference dataset. Based on empirical cumulative distribution functions and copula 

theory, this method preserves both the marginal distributions and the dependency structure 

of input variables, supporting realistic and explainable data-driven synthesis. Feature-based 

generation was also introduced as a complementary approach, leveraging extracted de-

scriptors such as size, irregularity, spikiness, compactness, convexity ratio, and aspect ratio to 

sample new geometries from kernel density estimations, thereby preserving the feature space 

complexity of the original data. 

A key contribution of the system is the integration of these components within an inter-

active, browser-based interface built using OpenLayers and modular JavaScript. The platform 

supports real-time bounding box manipulation, dataset uploading, parameter tuning, and dy-

namic visualization of generated geometries in multiple map layers. Download options for 

CSV, WKT, and GeoJSON formats further enhance its applicability in downstream workflows. 

Additionally, a robust evaluation framework was developed to assess the fidelity and 
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scalability of the system. Quantitative assessments showed that circle-based irregular gener-

ators could efficiently scale up to 700,000 polygons, and that the empirical copula approach 

consistently achieved high resemblance to original datasets across synthetic distributions such 

as spirals, petals, moons, clustered patterns and real dataset. These results were validated 

using a newly introduced metric, the Distributional Geometry Alignment Score (DGAS), which 

measures distributional similarity based on both feature histograms and correlation matrices. 

The evaluation demonstrated that the system successfully achieves its central goal: generat-

ing statistically similar, but spatially distinct, synthetic datasets that retain the essential geo-

metric and relational patterns of the originals. 

In the case of real-world datasets with highly dense and contiguous polygonal structures 

such as central urban areas with tightly packed buildings, the Voronoi-based generation 

method demonstrated superior performance. This is because the Voronoi tessellation inher-

ently adapts to local density variations, effectively partitioning space into distinct yet contin-

uous regions. In contrast, the feature-based polygon generation approach tends to focus on 

capturing geometric characteristics (e.g., size, compactness, or convexity) rather than spatial 

adjacency, which can lead to overlapping or misaligned geometries in densely built environ-

ments. 

Conversely, the data-driven empirical method performed particularly well when applied 

to more spatially separated and morphologically consistent building categories, where inter-

feature correlations are easier to identify and preserve. In those cases, the reduced spatial 

density allowed the generator to better capture and reproduce the statistical dependencies 

among shape descriptors, resulting in higher fidelity of the synthesized polygons.  

While the results are promising, several limitations remain. Procedural polygon genera-

tors in the current stack are reliable only up to 50 vertices, beyond that threshold we fre-

quently observe self-intersections or geometric artifacts that invalidate the shape. On the 

data-driven side, the method underperforms footprints with very high vertex counts, where 

intricate boundaries are not well approximated by the learned feature distributions. More 

broadly, the empirical generation can introduce centralization bias when the reference distri-

bution is sparse or strongly non-uniform, and some experimental generators are not yet ex-

posed in the web interface due to runtime complexity. The system is also limited to 2D, static 

geometries, with no support for temporal evolution or volumetric (3D) structures. 

In summary, this thesis delivers a complete, extensible solution for synthetic polygon gen-

eration, combining algorithmic versatility, data-driven accuracy, and user-oriented design in a 
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single platform. By offering explainable synthetic generation with statistical control and inter-

active visualization, the system opens new possibilities for testing, simulating, and augment-

ing spatial datasets in a transparent and reproducible manner. It provides a robust foundation 

for future developments in synthetic geometry generation and contributes a valuable tool to 

the geospatial and data science communities. 
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APPENDIX A          

       IMPLEMENTATION SAMPLES 

 

A. 1 Overview 

This appendix provides implementation screenshots that complement the synthetic polygon 

generation framework described in Chapters 3–5. It serves to illustrate the core components 

of the system, validate its output, and demonstrate its flexibility across different generation 

modes and evaluation stages. 

A.2 Generation UI - Screenshot 

Below are sample screenshots from the web-based generation interface Below are sample 

screenshots from the web-based generation interface 
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Figure A.1: Synthetic point generation using diagonal distribution. 
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Figure A.2: Synthetic point generation using Gaussian distribution. 
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Figure A.3: Synthetic point generation using diagonal distribution. 
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Figure A.4: Generate polygons with Voronoi shapes. 
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Figure A.5: Generate polygons with Mix-Type mode. 
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Figure A.6: Generate polygons with Elongated shapes. 
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Figure A.7: User Interface for Synthetic Geometry Generation and Dataset Management. 
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A.3 Example of Feature Extraction Output 

 

 
Figure A.1: Evaluation of Synthetic Geometry Generation Output. 
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Figure A.2 Average Feature Values of the Generated Polygons. 
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