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Abstract

In the present work, we examine a very recent scenario which attempts to explain
the nature of dark matter. This scenario suggests that dark matter is composed
of primordial five-dimensional spinning black holes within the dark dimension
scenario. In the first chapters, we provide an introduction to the basic tools
of both string theory and the swampland program, as well as general relativity
and black holes in extra dimensions. Subsequently, we study the dark dimension
scenario and see that the fact that these black holes perceive the fifth dimension
results in the prolongation of their lifespan to such an extent that black holes
within a specific mass range can survive until today and thus constitute the
entirety of the dark matter we observe today. Finally, we discuss the memory
burden effect and see that if we include it in the picture of the black hole’s
evolution, then we can further open up the mass range limits of the black holes
that can constitute the entirety of the universe’s dark matter.
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Chapter 1

Introduction

Nowadays, string theory is considered the most promising candidate for a the-
ory of quantum gravity. It is the only framework that can unify the previously
incompatible theories—the general theory of relativity and quantum field the-
ory (QFT)—within a single, consistent model. However, string theory faces
significant challenges.

The first major issue is that it cannot make predictions at low energies,
meaning it lacks the ability to produce testable results within the energy scales
accessible to current experiments. The second problem stems from this: string
theory requires extra spatial dimensions—either ten or eleven in total—while our
observable universe appears to be four-dimensional. When attempting to com-
pactify these additional dimensions, the process yields an overwhelming number
of possibilities—over 10500 different ways—making it extremely difficult to iden-
tify the specific Calabi-Yau manifold that corresponds to our four-dimensional
universe.

In recent years, a new research area called the Swampland program has
emerged. Its goal is to distinguish effective field theories (EFTs) that are con-
sistent with quantum gravity (the ”Landscape”) from those that are not (the
”Swampland”). This approach helps identify the essential characteristics that
EFTs must possess to be compatible with a complete theory of quantum gravity
in the ultraviolet regime.

One notable idea arising from this framework is the concept of a ”dark
dimension,” which proposes that one of the six or seven extra dimensions may
be large, characterized by a length scale in the micron range. This idea has
intriguing implications, such as describing dark matter as primordial black holes
residing in this dark dimension.In this paper, we explore this concept further.

In Chapter 2 we will focus on bosonic string theory and Swampland pro-
gram highlighting their main features. We will then briefly discuss some basics
conjectures for the Swampland program which they are very important for the
foundation of dark dimension concept.
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In the last chapter we’ll examine a very recent scenario for the nature of
dark matter. This scenario suggests that dark matter comprises essentially 5-
dimensional primordial black holes. This hypothesis falls within the framework
of a theoretical model called the dark dimension. According to this model,
our universe is a 4-dimensional brane immersed in a 5-dimensional space.This
study generalizes the results of work [16] ,for cases where these primordial black
holes that make up dark matter have a non-zero angular momentum. More
specifically, we will derive the relationship for the lifetime of rotating black holes
using semi-classical methods, and we will examine the mass spectrum range
of these black holes that can explain the amount of dark matter we observe
today.Finaly, we will discuss how the memory burden effect, a phenomenon
conjectured to occur after a black hole has lost half of its mass through Hawking
radiation and which is a purely quantum phenomenon, alters the picture of the
black hole’s evolution.
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Chapter 2

A Brief introduction to
String Theory and the
Swampland Program

The string theory is a theory which attempts to unify all fundamental forces of
nature in a single and well defined frame.Is the only mathematically consistent
quantum gravity which exists nowadays.In this chapter we will discuss some ba-
sic properties and concepts of the theory.After this,we will make an introduction
to the very important concept of the Swampland program.his introduction to
string theory and Swampland program based on [1],[2] and [3].

2.1 The Nambu-Goto action

We want to write down the Lagrangian describing a relativistic particle of mass
m.In anticipation of string theory, we’ll consider D-dimensional Minkowski space
R1,D−1.We work with signature

η = diag(−1, 1, 1, 1) (2.1)

If we fix a frame with coordinates Xµ = (t, x⃗) the action is simple:

S = −m
∫ √

−ẋ2dt(2.2)

with

ẋ =
dxµ

dτ

dxν

dτ
(2.3)

One basic property of the above action is that action is invariant under trans-
formations of this type:

τ → τ̄ (2.4)
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A particle sweeps out a worldline in Minkowski space. A string sweeps out a
worldsheet in Minkowski space.We’ll parameterize this worldsheet by one time-
like coordinate τ , and one spacelike coordinate σ . In this section we’ll focus
on closed strings and take to be periodic, with range

σϵ[0, 2π) (2.5)

In this case the action of a sting which propagate in D dimensional background
spacetime is given by Nambu-Gotto action:

S = −T
∫

dα =

∫ √
Γ dσ2 = −T

∫ √
|det∂αXµ∂βXµ| dσ2 (2.6)

We will mostly be concerned with closed, rather than open, strings. We therefore
identify

σ ≃ σ + 2π (2.7)

But in this form the action is impossible to quantize it.For this reason we should
to re-write the action in a more convinient form to quantize it.This action is
named Polyakov and is given by:

SP = −T
2

∫ √
−hhαβ(ξ)∂αX(ξ)µ∂βX(ξ)νgµν (2.8)

where hαβ(ξ) is the metric of the worldsheet , h = dethαβ and hαβ = (h−1)αβ ..
T is the string tension, which is often denoted in terms of a parameter a′ as:

T =
1

2πa′
(2.9)

We should think of the worldsheet action (2.15) as specifying a two-dimensional
theory with scalar fields Xµ(ξ). Such theories are called sigma models. The
space-time in which the string propagates, parameterised by the Xµ(ξ) is known
as the Target space of the worldsheet theory.The metric on that spacetime,
here ηµν ,is the metric on the field space of the scalar fields Xµ(ξ).So strings
propagating in different target spaces have different metrics on the scalar field
spaces.

The worldsheet theory (2.15) is invariant under local diffeomorphisms:

ξa → ξ̃a (2.10)

It is also invariant under Weyl transformations, which are defined as:

δXµ = 0, hab → h̃ab = e2Λ(ξ)hab (2.11)

The worldsheet symmetries can be used to completely fix the worldsheet metric.
It is worth looking at this generally. For a D-dimensional theory, we can count
the number of degrees of freedom in the metric hab(=

D
2 (D + 1)), a symmetric
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tensor, and in the diffeomorphism(= D) and Weyl symmetries(= 1). We see
that for D = 2, so a string, the number of symmetry parameters is the same as
the degrees of freedom of the metric. Using the symmetries we can therefore
set:

The coordinates therefore parameterise the string worldsheet.We will often
denote

[σ, τ ] ≡ ξa (2.12)

with a = 0, 1.

The equation of motion for the metric corresponding to the vanishing of the
energy momentum tensor:

Taβ = 0 (2.13)

where

Taβ =
4π√
−deth

δSp
δhaβ

(2.14)

The constraint (2.13) its called Virassoro constraint and will play an important
role when we quantize the string. In flat gauge the Polyakov action given by:

Sp =

∫
dσdτ [(∂τX)2 − (∂σX)2] (2.15)

It is convenient to go to so-called light-cone coordinates:

ξ± ≡ τ ± σ, ∂± ≡ 1

2
(∂τ ± ∂σ) (2.16)

In light-cone coordinates the Polyakov action read:

SP = T

∫
Σ

dξ+dξ−∂+X∂−X (2.17)

The equations of motion for the Xµ are readily obtained:

∂+∂−X
µ = 0 (2.18)

We can therefore write as a sum of left-moving and right-moving waves a long
the string:

Xµ = Xµ
L(ξ

+) +Xµ
R(ξ

−) (2.19)

And we must impose periodic boundary conditionsXµ(τ, σ = 0) = Xµ(τ, σ =
2π):

Xµ
R(ξ

−) =
1

2
(xµ + cµ) +

1

2
a′pµRξ

− + i

√
a′

2

∑
neZ,n̸=0

1

n
aµne

−inξ− (2.20)

Xµ
R(ξ

−) =
1

2
(xµ − cµ) +

1

2
a′pµLξ

+ + i

√
a′

2

∑
neZ,n̸=0

1

n
āµne

−inξ+ (2.21)
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Here xµ,cµ,pµL,p
µ
R,a

µ
n and āµn are constants.Periodicity in σ implies:

pµL = pµR ≡ pµ (2.22)

It will be important for later to note that even after the gauge fixing the world
sheet metric, there are still residual symmetries:

ξ± → ξ̃±(ξ±) (2.23)

These are associated to so-called conformal Killing vectors.

2.2 Quantization of string

So far we have considered the string in a classical sense,but in order to study the
spectrum of excitations we need to quantize it.We will do this using so-called
light-cone quantization.The starting point is to introduce target-space light-cone
coordinate:

X± ≡ 1√
2
(X0 ±XD−1) (2.24)

The target-space metric then becomes:

η+− = η−+ = −1, ηij = δij (2.25)

And this gives an inner product:

X2 = −2X+X− + ẊiẊi (2.26)

Consider now the expansion for:

Xµ
R(ξ

−) = x+ + a′p+τ + i

√
a′

2

∑
neZ,n ̸=0

1

n
ā+n e

−inξ− + i

√
a′

2

∑
neZ,n̸=0

1

n
ā+n e

−inξ−

(2.27)
Recall that we have a residual infunite dimensional symmetry after going to
light-cone gauge.We can use this to set all the oscillator modesX+. In that
gauge then we have:

X+ = x+ + a′p+τ (2.28)

Now recall that we must impose the Virasoro constraints(2.21)on the theory. It
can be shown that these imply:

∂±X
− =

1

a′p+
(∂±X

i)2 (2.29)

Therefore,we see that also the X− oscillators are given in terms of the trans-
verse oscillators in Xi.Soonly the transverse oscillators are independent degrees
of freedom. The usefulness of the target-space light-cone gauge is therefore that
only the Xi contain physically independent oscillators.This is useful because it
automatically projects out two polarizations of the string which are unphysi-
cal.This is completely analogous to how a Maxwell field in four dimensions only
has two physical polarizations.
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The action in light-cone gauge reads:

SLC =
1

4πa′

∫
Σ

dτdσ[(∂τX
i)2 − (∂σX

i)2 + 2(−∂τX+∂τX
− + ∂σX

+∂σX
−]

=
1

4πa′

∫
Σ

dτdσ[(∂τX
i)2 − (∂σX

i)2 +

∫
Σ

dτp+∂τq
−

(2.30)

where define:

q− =
1

2π

∫ 2π

0

dσX− (2.31)

From this Lagrangian we can define canonical momenta:

p− ≡ ∂L

∂q̇−
= −p+,Πi ≡

∂L

∂Ẋi
=

Ẋi

2πa′
(2.32)

We then quantize the theory by introducing the canonical commutation rela-
tions:

[Xµ(τ, σ),Πµ(τ, σ′)] = iηµνδ(σ − σ′) (2.33)

which give:

[xi, pi] =iδij (2.34)

[p+, q−] =i

[aim, a
j
n] =mδn+m,0δij

[ãim,
˜
ajn] =mδn+m,0δij

We therefore follow the usual procedure for quantization,as in quantum field the-
ory,by promoting the oscillator modes to operators acting on a Hilbert space.The
ai−n with n > 0 are creation operators acting on a vacuum state.|0, p >..While
the ain with n > 0 are annihilation operators.

Recall that there are no oscillators to quantize for X+, while the X− oscilla-
tors are given in terms of the Xi.Explicitly this reads:

a−n =
1

2
√
2a′p+

m=∞∑
m=−∞

ain−ma
i
m (2.35)

When we quantize the theory the ordering of the a’s matters,and so we should
write things in terms of normal ordered products and a normal ordering constant
a which we need to determine:

a−n =
1

2
√
2a′p+

m=∞∑
m=−∞

: ain−ma
i
m : −aδn,0 (2.36)

8



where

: ain−ma
i
m =


aima

i
n for

m ≤ n

aina
i
m for

m > n

(2.37)

This is the canonical quantization procedure.

2.3 Criticality and Lorentz Invariance

The quantization of the theory was performed in special target-space light-
cone coordinates. It is therefore not clear that the quantum theory respects
Lorentz invariance.Indeed,we will see that requiring the preservation of target-
space Lorentz invariance also in the quantum theory will place rather stringent
constraints on the theory

In general,the generators of Lorentz transformations are:

Jµν =

∫ 2π

0

dσ(XµΠν −XνΠµ) ≡ lµν + Eµν + ˜Eµν (2.38)

where

lµν =xµpν − xνpµ (2.39)

Eµν =− i

∞∑
n=1

1

n
(aµ−na

ν
n − aν−na

µ
n) (2.40)

Eµν =− i

∞∑
n=1

1

n
(ãµ−nã

ν
n − ãν−nã

µ
n) (2.41)

Now the Lorentz algebra reads:

[Jµν , Jρσ] = iηµρJνσ + iηνσJµρ − iηµσJνρ − iηνρJµσ (2.42)

In particular,

[J−i, J−j ] = iη−−J ij + iηijJ−− − iη−jJ i− − iηi−J−j (2.43)

However, an explicit calculation yields:

∆m ≡ m
26−D

12
+

1

m
[
D − 26

12
+ 2(a− 1)] (2.44)

From above it is clear that if we want our theory to be Lorentz invariant we
must impose:

D = 26, a = 1 (2.45)
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2.4 The string spectrum

Having quantized the string we can now examine its spectrum. The classical
Hamiltonian is given by:

H =
a′

2
pipi +

1

2

∞∑
n=−∞

(ai−na
i
n + ãi−nã

i
n) (2.46)

We define:

N ≡
∞∑
n=1

: ai−na
i
n : (2.47)

and

Ñ ≡
∞∑
n=1

: ãi−nã
i
n : (2.48)

The mass in the target-space is given by:

M2 =
2

a′
(N + Ñ − 2a) (2.49)

Finally, we note that for the closed string we have a symmetry of translations
along , and this can be shown to imply the level matching condition:

N = Ñ (2.50)

so the relation for the mass becomes:

M2 =
4

a′
(N − 1) (2.51)

where a = 1 as we mention before. From the above relation we can examine the
spectrum on the string according to how many oscillators are present:

• For N = 0 we have

M2 = − 4

a′
(2.52)

which is the tachyonic mode, which means that it is signaling an instability
in the bosonic string. For superstrings there is no tachyonic mode , and
so such strings are stable.

• For N=1 we have the masless modes of the quantum bosonic string:

M2 = 0 (2.53)

These states are represented by:

λija
i
−1a

j
−1|0, p >, i, j = 1, ...., 24 (2.54)

We can decompose the tensor ij into irreducible representations of SO(24)
as:

λij = g(ij) +B[ij] + ϕ (2.55)

where the g(ij) is the symmetric part of the tensor,the B[ij] the symmetric part
and ϕ is scalar.
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As we see above we find a massless symmetric tensor field which we can show
that it has spin 2.This field has all the properties of the graviton,the particle of
gravitational field.Consequently,we have a self consistent quantum theory which
it contain the gravity.

2.5 Swampland conjecture

In this section we examine some basic conjectures which they come from some
regions of theoretical physic,particularly from the area of quantum gravity,for
example string theory.We believe that this conjectures characterize the quantum
behavior of gravity and a canditate theory of quantum gravity should obey these
relations.

The first conjecture we will see its named distance conjecture and with simple
words it says that:

• Distance Conjecture: Consider a theory, coupled to gravity, with a
moduli space M which is parametrized by the expectation values of some
field ϕi which have no potential. Starting from any point PϵM there
exists another point QϵM such that the geodesic distance between P and
Q, denoted d(P,Q), is infnite.

Therefore,is exists an infinite tower of states, with an associated mass
scale M, such that:

M(Q) ∼M(P )e−ad(P,Q) (2.56)

We will see an example which it confirms the above statement.We will see the
concept of compactification in qft and string theory.First we examine the com-
pactification in qft. We consider D = d+1 dimensional space-time. The spatial
direction Xd is taken to be compact in the shape of circle.So the compact di-
mension is periodically

Xd ≃ Xd + 1 (2.57)

We are interested for d-dimensional effective fileld theory.Also we are working
in the Planck units with d-dimensional Planck mass Md

P = 1.

We can write the metric on the D-dimensional space as:

dS2 = GMNdX
MdXN = e2αϕgµνdX

µdXν + e2bϕ(dXd)2 (2.58)

whichXM is the D-dimensional coordinates witM = 0, ..., d.Also we have the D-
dimensional metric GMN and d-dimensional metric gµν with µ, ν = 0, .., d − 1.
The metric has a parameter ϕ wich it in d dimensions is a dynamical scalar
field.The constants α and b are given by:

a2 =
1

2(d− 2)(d− 1)
(2.59)
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β = −(d− 2)a (2.60)

Then the circular dimension can be write as:

2πR ≡
∫ 1

0

√
GdddX

d = eβϕ (2.61)

We will be interested in the behaviour of the d-dimensional theory under vari-
ations of the expectation value of the eld , which amounts to variations of the
size of the circle. The rst thing we want to do is decompose the D-dimensional
Ricci scalar RD for the metric (2.58). We have:∫

dDX
√
−GRD =

∫
ddX

√
−g[Rd + 1

2
(∂ϕ)2] (2.62)

Now consider introducing a massless D-dimensional scalar field Ψ and is given
by:

Ψ(XM ) =

∞∑
n=−∞

ψn(X
µ)e2iπnX

d

(2.63)

where ψn is the KK modes. The momentum is quantized along the compact
direction

−i ∂

∂Xd
Ψ = 2πnΨ (2.64)

For simplicity we now restrict to gµν = ηµν . Since Ψ is massless in D-
dimensions, its equation of motion is:

∂M∂MΨ = (e−2aϕ∂µ∂µ + e−2βϕ∂2Xd)Ψ = 0 (2.65)

which gives the equations of motion for the ψn modes:

[∂µ∂µ − (
1

2πR
)2(

1

2πR
)

2
d−2 (2πn)2]ψn = 0 (2.66)

The mass of the KK modes is given by:

M2
n = (

n

R
)2(

1

2πR
)

2
d−2 (2.67)

On the other hand in string theory we have the d-th spatial direction to be
compact

Xd ∼ Xd + 2πR (2.68)

We consider the bosonic mode expansion, as in (2.27)but now we will not impose
yet the XM

s (τ, σ + 2π) = XM
s (τ, σ) on the linear terms in σ.So we have

XM
s (τ, σ) = xµ + a′pMτ +

a′

2
(pMR − pML )σ + oscillators (2.69)

For independent left and right moving momenta ,the overall momentum of string
is gven by:

pM =
1

2
(pMR + pML ) (2.70)
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We know tha the dth direction is compact and for that reason the momentum
in that direction is quantized:

pd =
n

R
(2.71)

In the non compact directions we imposed XM
s (τ, σ + 2π) = XM

s (τ, σ) which
leads to pMR = pML , but in the string theory the strings may be winded in the
circular dimension

Xd
s (t, σ + 2π) = Xd

s (t, σ) + 2w (2.72)

with wϵZ wich w is the number which stings be winded around the circular
dimension.For such a winding string we therefore have

a′

2
(pdR − pdL) = wR (2.73)

The Hamiltonian of our theory in this case is

H =
a′

2
[
1

4
(pdR − pdL)

2 + papa + (pd)2] + (N + Ñ − 2)] (2.74)

where i = (a, d) and we have

N − Ñ = nw (2.75)

Then the d-dimensional mass is given by −pµpµ = 2p+p− − papa which, for
states with no oscillators excited, leads to:

(Ms
n,w)

2 = (
n

R
)2 + (

wR

a′
)2 (2.76)

In the Einstein frame the above relation for mass is given by:

(Mn,w)
2 = (

1

2πR
)

2
d−2 (

n

R
)2 + (2πR)

2
d−2 (

wR

a′0
) (2.77)

We can now study the d-dimensional effective theory.We’re looking at how
the spectrum of states changes when the field’s expectation value ϕ varies. This
is straightforward to figure out using relation (2.61), which complements the
action (2.62) and spectrum (2.77). The possible values for ϕ form a field space
(Mϕ) that’s infinitely one-dimensional in real numbers:

Mϕ : −∞ < ϕ < +∞ (2.78)

Let us define a variation of ϕ from some initial value ϕi to some final value
ϕf as:

∆ϕ = ϕf − ϕi (2.79)

There are two infinite towers of massive states in our theory, the KK tower
modes with masses Mn,0 and the tower of winding modes M0,m which given by
(2.77). We can associate to each tower a mass scale

MKK ∼ eaϕ (2.80)
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and
Mw ∼ e−aϕ (2.81)

where

a =
√
2(
d− 1

d− 2
)

1
2 > 0 (2.82)

We see that for ∆ϕ there exists an infinite number of states with some associated
mass scale M, which becomes light at an exponential rate in ∆ϕ:

M(ϕ+∆ϕ) ∼M(ϕ)e−a|∆ϕ| (2.83)

With above picture in our minds, we can make the the following observations
First we see that some tower of states always become light no matter what
the sign of ∆ϕ is. Second,the product of the mass scales of the two towers is
independent of ϕ. The third is that, if |∆| → ∞, then an infinite number of
states become massless, which means that there is no description of that locus in
a d-dimensional quantum field theory. To recap, we can summarize the distance
conjecture with the following sentence:

Consider a theory, coupled to gravity, with a moduli space M which
is parametrized by the expectation values of some field i which have
no potential. Starting from any point P M there exists another point
Q M such that the geodesic distance between P and Q, denoted d
(P, Q), is infinite.Also,there exists an infinite tower of states, with an
associated mass scale M, such that:

M(Q) ∼M(P )e−ad(Q,P ) (2.84)

where a is some positive constant.

The weak gravity conjecture: The weak gravity conjecture which claim
that the force of gravity is the weakest force in nature.

Our analysis of string compactifications on a circle revealed the presence
of two gauge fields, Aµ and Vµ, which possess gauge couplings. Within the
resulting d-dimensional effective theory, states carrying charges for these fields
exhibited a mass-charge relationship of m = gq. Crucially, these weren’t just
isolated states; they represented the foundational elements of an infinite pro-
gression, all characterized by a common mass scale, m = g. This ”tower” of
states implied an alternative description of the effective theory, specifically the
D-dimensional theory in the context of the Kaluza-Klein tower. Therefore, this
mass scale can be interpreted as a cutoff energy for the d-dimensional effective
theory.The aboves can sumerized as:

Consider a theory, coupled to gravity, with a U(1) gauge symmetry
with gauge coupling g

S =

∫
ddX

√
−g[(Md

p )
d−2R

d

2
− 1

4g2
F 2 + ...] (2.85)
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Electric Weak Gravity Conjecture:There is a particle in the theory
with mass m and charge which is related with U(1) gauge symmetry
and satisfying the relation:

m ≤
√
d− 2

d− 3
qg(Md

p )
d−2
2 (2.86)

Magnetic Weak Gravity Conjecture:There is a cut of scale Λ in the
effective field theory which satisfying the relation:

Λ ≤ g(Md
p )

d−2
2 (2.87)

Also, there is the no global symmetries conjecture which is claim that a theory
with a finite number of states, coupled to gravity, can have no exact global
symmetries and the species scale conjecture but for the present thesis we will
not deal with these conjectures.
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Chapter 3

Higher Dimensional Black
Holes

3.1 Mathematical tools of General Relativity

General relativity is the best theory we have for the behavior of gravity and for
gravitational systems in large scales like constelations,black holes and the uni-
vese itself.It tell us that gravity is the curvature of spacetime itself.The quantity
that descibes the curvature of spacetime is called metric tensor and denoted by
gµν where µ and ν are the spacetimes indices that run from 0 to 3.

Consequently, to be able to measure distances on a manifold, it is important
to define the line-element ds2 by means of the metric, which is written as:

ds2 = gµνdx
µdxν (3.1)

where the metric tensor gµν provides us with all the information about the
geometry of spacetime and is a symmetric tensor gµν = gνµ with this important
property:

gµa = gaν (3.2)

Another important quantity in our discusion is the Rieman tensor it’s a ten-
sor (1,3) with n2(n2 − 1)/12 indepentent components that encodes information
about how geodesics (the paths of shortest distance) deviate from being straight
lines due to the curvature of the space. In other words is an object which char-
acterize the curvature of a manifold and is given by:

Rρσµν = ∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (3.3)

where Γρµσare the Christoffel symbols given by:

Γλµν =
1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν) (3.4)
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with property Γλµν = Γλνµ. From the Rieman tensor we can construct two
importan mathematical objects, the Ricci tensor and the Ricci scalar which
they enters in Einstein field equation as we will see bellow and are given by:

Rµν = Rλµλν (3.5)

and
R = gµνRµν (3.6)

At this point it is important to define through the connection, the geodesic
equation for a curve xµ(λ):

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
(3.7)

which give us the shortest distance between two points in spacetime.

3.1.1 Einstein’s Equations

Einstein’s equation tells us how the curvature of spacetime is linked to the dis-
tribution of energy-momentum, represented in the energy-momentum tensor.
Energy and momentum create curvature. Curvature acts as gravity and tells
matter how to move via the geodesic equation. We will derive Einstein’s equa-
tion with the principle of least action. From classical field theory you might be
familiar with this method, but to use it in general relativity we first need to
generalise it to curved spacetime.

The classical solutions for a field theory, where the dynamical variables are
a set of fields Φi(x) will be the critical points of an action S.The action is the
integral of a Lagrange density L, a function of the fields and their covariant
derivatives, over space:

S =

∫
dnxL(Φi,∇µΦ

i) (3.8)

To find the critical points of S we vary the fields and require the action to be
unchanged. So we begin by varying the fields and making an appropriate Taylor
expansion of the Lagrangian:

Φi → Φi + δΦi (3.9)

∇µΦ
i → ∇µΦ

i +∇µ(δΦ
i) (3.10)

L(Φi,∇µΦ
i) → L(Φi,∇µΦ

i) +
∂L
∂Φi

δΦi +
∂L

∂(∇µΦi)
∇µ(δΦ

i) (3.11)

= L+ δL (3.12)

The action then follows with:

S → S + δS (3.13)

=

∫
dnxL(Φi,∇µΦ

i) +

∫
dnx[

∂L
∂Φi

δΦi +
∂L

∂(∇µΦi)
∇µ(δΦ

i)] (3.14)
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We want δS to be zero so the actions remains unchanged under field variations.
To reformulate this condition we factor out the term δΦi in δS. We do this by
integrating the second term by parts:∫
dnx

∂L
∂(∇µΦi)

∇µ(δΦ
i) = −

∫
dnx∇µ(

∂L
∂(∇µΦi)

)δΦi +

∫
dnx∇µ(

∂L
∂(∇µΦi)

δΦi)

(3.15)

= −
∫
dnx∇µ(

∂L′

∂(∇µΦi)
)
√
−gδΦi +

∫
dnx∇µ(

∂L′

∂(∇µΦi)
δΦi)

√
−g

(3.16)

= −
∫
dnx∇µ(

∂L′

∂(∇µΦi)
)
√
−gδΦi (3.17)

where we write the e Lagrangian as:

L =
√
−gL′ (3.18)

The Stokes’s theorem and our choice to set the variation of the field to zero at
the boundary (infinity).Stokes’s theorem in curved spacetime is:∫

dnx∇µV
µ
√
|g| =

∫
dn−1xnµV

µ
√

|γ| (3.19)

with V µ a vector field over a region with boundary ∂Σ,nµ normal to ∂Σ,nµ
and γij the induced metric on ∂Σ.Now we have an expression for δS and we
also know its form by definition:

S =

∫
dnx

√
−g[ ∂L

′

∂Φi
δΦi −∇µ(

∂L′

∂(∇µΦi)
)δΦi] (3.20)

=

∫
dnx

δS

δΦi
δΦi (3.21)

again using equation (2.18). For δS S to be zero we need δS/δΦi to be zero, so:

∂L′

∂Φi
−∇µ(

∂L′

∂(∇µΦi)
) = 0 (3.22)

These are called the Euler-Lagrange equations. Solutions to the field theory
also satisfy these equations.

Now we want to apply this method to general relativity, a field theory with the
metric as dynamic variable. The only independent scalar you can construct from
the metric with no derivatives higher than the first one is the Ricci scalar.So
the Lagrangian and corresponding action, called the Hilbert action, are:

L =
√
−gR (3.23)
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and

S =

∫
dnx

√
−gR (3.24)

The Hilbert action is not of the same form as equation (2.40) (it can not be
written in terms of the metric and its covariant derivative), so we can not
simply plug the Lagrangian in the Euler-Lagrange equation to obtain the field
equations and instead have to explicitly variate the action with respect to the
metric. It turns out to be easier to variate with respect to the inverse metric
gµν and stationary points coming from variations in gµν are equivalent to ones
from variations in gµν . This can be seen from varying the expression

gµλgλν =δµν

(gµλ + δgµλ)(gλν + δgλν) =δ
µ
ν

=δµν + gµλδgλν + δgµλgλν

→ δgµν = gµλgρνδg
λρ (3.25)

We can start by expressing the variation of the Hilbert action as:

δSH = (δS)1 + (δS)2 + (δS)3 (3.26)

We want each of these to have a separate δgµν term, just as in equation
(2.46).(δS)3 is already in the right form. We will first look at (δS)1 We need to
know what the variation of g = detgµν s. For a general square matrix M with
non vanishing determinant the following is true:

ln(detM) = Tr(lnM) (3.27)

The variation of this is

1

detM
δ(detM) = Tr(M−1δM) (3.28)

So for the metric we have:

δg = g(gµνδgµν) = −g(gµνδgµν) (3.29)

using equation().Then we now know

δ
√
−g = − 1

2
√
−g

δg

=
g

2
√
−g

gµνδg
µν

=
1

2

√
−ggµνδgµν (3.30)

and (δS)1 become:

(δS)1 =

∫
dnx

√
−g[Rµν −

1

2
Rgµν ]δg

µν (3.31)
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Now we will look at δS2. The variation of the Riemann tensor δRµν can be
found by varying its definition (equation (2.30)) with respect to the Christoffel
symbols and then inserting the variation of the Christoffel symbols with respect
to the inverse metric. The expression you get can be converted into a boundary
integral by Stokes’s theorem and can be set to zero by making the variation
vanish at infinity. The remaining terms give the variation of the Hilbert action:

δSH =

∫
dnx

√
−g[Rµν −

1

2
Rgµν ]δgµν (3.32)

At the critical points of the action δSH/δg
µν = 0 and comparing equation (2.34)

to equation (2.21) we see that

1δSH
2
√
−gδgµν

= Rµν −
1

2
Rgµν = 0 (3.33)

This is Einstein’s equation in vacuum. To get the field equations of general
relativity coupled to matter we have to include an extra term SM , representing
the matter field, in the action:

S =
1

16πG
SH + SM (3.34)

with G Newton’s gravitational constant. We used a normalisation on the Hilbert
action we know will yield the right equation. When we apply the same method
as above we get

1δSH
2
√
−gδgµν

=
1

16πG
[Rµν −

1

2
Rgµν ] +

1δSM
2
√
−gδgµν

= 0 (3.35)

Now we need a new (and correct) definition of the energy-momentum tensor:

Tµν = −2
1√
−g

δSM
δgµν

(3.36)

such that equation (2.61) becomes

Rµν −
1

2
Rgµν = 8πGTµν (3.37)

This is the complete Einstein’s equation where Gµν ≡ Rµν − 1
2Rgµν is fittingly

called the Einstein tensor. In four dimensions these are 16 second-order differ-
ential equations for the metric. But because both sides of equation (2.39) are
symmetric tensors there are only 10 independent equations. This corresponds
to the 10 unknown metric components. We can rewrite Einstein’s equation, us-
ing R = −8πGT T, in a form that is very convenient when considering vacuum
space:

Rµν = 8πG(Tµν −
1

2
Tgµν) (3.38)

while in the vacuum the Einstein equation is:

Rµν = 0 (3.39)
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3.2 Black holes in 4 dimensions

The most fascinating solutions of Einstein’s field equation are the black hole so-
lutions.The most simple black hole described by the Schwarzschild metric.The
metric describes spherically symmetric and static sources for gravity in vac-
uum space, and is a good approximation to describe the field created by the
Earth or the Sun at distances far greater than the Schwarzschild radius (defined
shortly).The Schwarzschild metric in spherical coordinates is:

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2 (3.40)

where M can be interpreted as the mass of the source and dΩ2 is the metric on
a unit two-sphere:

dΩ2 = dθ2 + sin2θdϕ2 (3.41)

In this section we will derive analytically the Schwarzschild metric.So we assume
a metric of the form:

ds2 = −A(r)dt2 +B(r)dr2 + r2(dθ + sin2θ) (3.42)

So we assume a metric of the form(2.40)In order to solve equation (37), we will
first calculate the Christoffel symbols and the Ricci tensor. We first calculate
the Christoffel symbols, using equation(2.4)

Γ0
01 =

A′(r)

2A(r)
,Γ1

11 =
B′(r)

2B(r)
,Γ1

00 =
A′(r)

2B(r)
,Γ1

22 =
−r
B(r)

,Γ1
33 = − r

B(r)
sin2θ

Γ2
33 = −sinθcosθ,Γ2

21 = Γ3
31 =

1

r
,Γ3

23 =
cosθ

sinθ
(3.43)

and then, from equations (2.3)(2.5) we can calculate the non-zero Ricci tensor
components:

R00 = −A
′′(r)

2B(r)
+
A′(r)

4B(r)
[
A′(r)

A(r)
+
B′(r)

B(r)
]− A′(r)

rB(r)

R11 =
A′′(r)

2A(r)
− A′(r)

4B(r)
[
A′(r)

A(r)
+
B′(r)

B(r)
]− B′(r)

rB(r)

R22 =
1

B(r)
− 1 +

r

2B(r)
[
A′(r)

A(r)
− B′(r)

B(r)
]

R33 = sin2θR22 (3.44)

Then, using the Einstein’s equation, we get:

R00 +
A(r)

B(r)
R11 +

2A(r)

r2
R22 = 0 (3.45)

R11 +
B(r)

A(r)
R00 −

2B(r)

r2
R22 = 0 ⇒ A(r)

B(r)
R11 +R00 −

2A(r)

r2
R22 = 0 (3.46)
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Then, by adding equations (2.45) and (2.46) and employing the expressions
(2.44)-(2.46), we get the equation:

2R00 +
2A(r)

B(r)
R11 = 0 ⇒ −A

′

A
=
B′

B
(3.47)

Also, demanding that R22 = 0, we obtain:

1

B(r)
− 1 +

r

2B(r)
[
A′(r)

A(r)
− B′(r)

B(r)
] = 0 (3.48)

After integrating the equation (2.47), we find the relation:

−lnA(r) + k = lnB(r) ⇒ A(r)B(r) = ek ⇒ B(r) = Λ/A(r) (3.49)

with ek = Λ Now, substituting equation (2.49) into equation (2.48), we have:

A(r)

Λ
− 1 +

r

Λ
A′(r) = 0 ⇒ rA′(r) +A(r) = Λ ⇒ d

dr
(rA(r)) = Λ ⇒ A(r) = Λ(1 +

C

r
)

(3.50)

and then:

B(r) = (1 +
C

r
)−1 (3.51)

Therefore, A(r) and B(r), have the form:

A(r) = 1 +
C

r
(3.52)

B(r) = (1 +
C

r
)−1 (3.53)

where C is a constant and has been absorbed in the time coordinate.

To calculate the constant C, we apply Gauss’s law:∫
gds2 = −4πGM (3.54)

where g is the intensity of the gravitational field and ds2 = r2sinθdθdϕ Therefore
equation (51) becomes:

gr2
∫ π

0

sinθdθ

∫ 2π

0

dϕ = −4πGM ⇒ g = −GM
r2

(3.55)

In order, to find the potential and subsequently the constant C, we use the
well-known relation g = −∇Φ and then:

Φ =

∫
GM

r2
dr = −GM

r
(3.56)
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Taking as an approximation the limit of the weak gravitational field where
A(r) = −1 + 2Φ we have:

2Φ ==
C

r
⇒ −2GM

r
=
C

r
⇒ C = −2GM (3.57)

Thus, for equations (2.52) and (2.53), we have:

A(r) = 1− 2GM

r
≡ (1− rH

r
) (3.58)

B(r) = (1− 2GM

r
)−1 ≡ (1− rH

r
)−1 (3.59)

where 2GM is the Schwarzschild radius,rH = 2GM in four dimensions. After
all we get the Schwarzschild metric:

ds2 = −(1− 2GM

r
)dt2 + (1− 2GM

r
)−1dr2 + r2dΩ2 (3.60)

At the radial coordinate r = 2GM , the term 12GM/r becomes zero, leading
to a coordinate singularity. This is the event horizon, beyond which nothing
can escape the gravitational pull of the black hole.At r = 0 we have the real
spacetime singulaty because the , the curvature invariants become infinite and
near r = 0.

In this section we saw the simplest solution of Einstein equation of motion
which describe a non rotating and electrically neutral black hole.But General
relativity includes and other solutions for black holes with charge(NOrdstromm)
and angular momentum(Kerr).In the next section we will study the Kerr black
hole in four dimensions.

3.3 Kerr Black hole

Another black hole in asymptotically flat vacuum spacetime is the rotating Kerr
black hole. This solution does not have spherical but axial symmetry around
its axis of rotation θ = 0, π. The Kerr metric is given by:

ds2 = −(1− 2GMr

ρ2
)dt2 − 2GMarsin2θ

ρ2
(dtdϕ+ dϕdt) +

ρ2

∆
dr2 (3.61)

+ρ2dθ2 +
sin2θ

ρ2
((r2 + a2)2 − a2∆sin2θ)dϕ2

with
∆(r) = r2 − 2GMr + a2 (3.62)

and
ρ2(r, θ) = r2 + a2cos2θ (3.63)
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The used coordinates t, r, θ, ϕ are called Boyer-Lindquist coordinates. M is again
the mass of the source and a is the angular momentum per unit mass. When
M → 0 flat spacetime in ellipsoidal coordinates is recovered, and as a → 0
the metric reduces to the Schwarzschild metric. The Kerr metric describes a
stationary solution; the black hole rotates in exactly the same way for all time.
The metric components are independent of t but the metric is not time-reversal
invariant. When time is reversed the black hole will spin the other way around.

For this metric the curvature scalar RµνρσRµνρσ diverges at ρ = 0, so at that
point there is a curvature singularity. ρ only vanishes when both r = 0 and
θ = ϕ/2 this describes a ring on the edge of the disk r = 0 (as can be seen by
plugging t = r = 0 and θ = ϕ/2 into the metric).

When searching for event horizons, we again look for those values of r for
which grr = 0s (we have chosen the right coordinates to use this method).Here
grr = ∆/ρ2,and since 2 ≥ 0 we want:

∆(r) = r2 − 2GMr + a2 = 0 (3.64)

There are three possibilities:GM < a,GM = 0 and GM > a.The first one
describes a naked singularity; a singularity without an event horizon around
it.The second one is an unstable solution.We will focus on the case GM > aa
because this one is of the most physical interest.It has been proven that forGM >
a the Kerr metric is the unique stationary solution to Einstein’s equation in
asymptotically flat vacuum spacetime.The mass and angular momentum of the
system uniquely determine the stationary solution. The two event horizons are
in this case:

rH± = GM ±
√
G2M2 − a2 (3.65)

A new feature of rotating black holes is the existence of an ergosphere; a space
around the black hole where it is impossible to stand still. A necessary condition
for an observer to stand still is that its world line, his path in space time, is
timelike. Suppose we try to stay at one fixed point of the coordinate system,
the world line is then:

Xµ(t) = (t, r0, θ0, ϕ0) (3.66)

and the corresponding tangent vector is

Tµ =
dXµ

dt
= (1, 0, 0, 0) (3.67)

For the world line to be timelike we need

gµνT
µT ν = gtt < 0 (3.68)

or specifically for the Kerr metric

gtt = −(1− 2GMr

ρ2
) < 0 (3.69)
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The solutions to gtt = 0 are

rE± = GM ±
√
G2M2 − a2cos2θ (3.70)

and are called stationary limit surfaces.

3.4 Schwarzchild solution in higher dimemsions

In this chapter we will deal with the generalization of the Schwarzchild black
hole in higher dimensions. Schwarzchild black hole is a static and sperically
symmetric solution of Einstein field equation.The static property states that
all components are time independent and there are no space-time cross terms
( dtdxi + dxidt).A first, basic problem is how we can measure the mass and
angular momentum of the solutions. Black holes in general are solutions to the
Einstein equations that do not have any sources of mass; the matter stress tensor
is zero. However, we can also identify the mass and angular momenta of isolated
systems (such as black holes) from the asymptotic behavior of their gravitational
field.The asymptotic behavior of an (N+1)-dimesional metric means that the
system is weakly gravitating(r ≫ rH) and the metric is only modified from flat
spacetime value:

gµν = ηµν + hµν (3.71)

with |hµν | ≪ 1.The metric inverse is:

gµν = ηµν − hµν (3.72)

On the other hand,the condition that the system is non-relativistic means the
time derivatives can be considered much smaller than spatial derivatives which
implies that components of the stress energy tensor may be ordered |T00| ≫
|T0i| ≫ |Tij |.This relation tell us that the dominant source for the gravitational
field is the energy density and that the momentum density provides the next
most important contribution.

For the principle of least action in higher dimensional Einstein-Hilbert action
we get:

Rµν −
1

2
gµνR = 8πGTµν (3.73)

From the above two relations and using the harmonic gauge condition:

(hµν − 1

2
ηµνhαα),ν = 0 , (3.74)

we get the e.o.m for hµν :

∇2hµν = −16πG(Tµν −
1

N − 1
ηµνT ) = −16πGT̄µν (3.75)
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where T = Tµµ ≈ −T00 because as we said before the dominant source for
the gravitational field is the energy density.The Green’s function for the N-
dimensional Laplacian may be used to solve for hµν :

hµν(x
i) =

16πG

(N − 2)AN−1

∫
T̄µν

|x− y|N−2
dNy (3.76)

where AN−1 = 2πN/2

Γ(N/2) :is the (N-1)-sphere area.

Expanding (3.76) in the asymptotic region far from any sources with r =
|x| ≫ |y| gives:

hµν(x
i) =

16πG

(N − 2)AN−1

1

rN−2

∫
T̄µνd

Ny +
16πG

AN−1

xk

rN

∫
ykT̄µνd

Ny + ...⇒

⇒ hµν(x
i) =

16πG

(N − 2)AN−1

1

rN−2

∫
(Tµν−

1

N − 1
ηµνT )d

Ny+
16πG

AN−1

xk

rN

∫
yk(Tµν−

1

N − 1
ηµνT )d

Ny+...

with
∫
T00d

Nx =M ,
∫
T0id

Nx = 0,
∫
xkT00d

Nx = 0,J0k = 0 and Jkl

From the above relations we can calculate the components of hµν :

h00 ≈ 16πG

(N − 2)AN−1

1

rN−2

∫
(T00−

1

N − 1
η00T00)d

Ny+
16πG

AN−1

xk

rN

∫
yk(T00−

1

N − 1
η00T00)d

Ny

≈ 16πG

(N − 2)AN−1

1

rN−2

∫
(
(N − 1)T00 − T00

N − 1
)dNy ≈ 16πG

(N − 2)AN−1

1

rN−2

∫
(
(N − 2)T00
N − 1

)dNy

≈ 16πG

(N − 1)AN−1

1

rN−2

∫
T00d

Ny ≈ 16πG

(N − 1)AN−1

M

rN−2

where M is the mass of the higher dimensional black hole.

h0i ≈
16πG

(N − 2)AN−1

1

rN−2

∫
(T0i −

1

N − 1
η0iT0i)d

Ny

+
16πG

AN−1

xk

rN

∫
yk(T0i −

1

N − 1
η0iT0i)d

Ny

≈ 16πG

AN−1

xk

rN

∫
yk(T0i −

1

N − 1
η0iT0i)d

Ny

≈ 16πG

AN−1

xk

rN

∫
ykT0i −

16πG

AN−1

xk

rN

∫
1

N − 1
η0iT0id

Ny

≈ 16πG

AN−1

xk

rN

∫
−ykT 0i ≈ 16πG

AN−1

xk

rN
Jki

2
≈ −8πG

AN−1

xk

rN
Jki (3.77)
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With the same way we have:

hij ≈
16πG

(N − 2)(N − 1)AN−1

M

rN−2
δij (3.78)

From (2.1) and (2.7) we get:

g00 = η00 + h00 = −1 +
16πG

(N − 1)AN−1

M

rN−2
(3.79)

These results may be used to define the mass for the Schwarzchild black hole in
its center of mass frame.

The general line element of the higher dimensional Schwarzchild black hole
is:

ds2 = −f2(r)dt2 + g2(r)dr2 + r2dΩ2
N−1 (3.80)

where r is a radial coordinate, Ω2
N−1 is the line element on the unit N-sphere,

and f and g are functions of r only. The vacuum Einstein equations then imply
that:

f = g−1 = (1− C

rN−2
)1/2 (3.81)

Correlating the relation (2.9) with the (2.11) we come to the conclusion that:

C =
16πGM

(N − 1)AN−1
(3.82)

Consequently we have:

f = g−1 = (1−
16πGM

(N−1)AN−1

rN−2
)1/2 = (1−

16πGM

(N−1) 2πN/2

Γ(N/2)

rN−2
= (1− 16πGMΓ(N/2)

(N − 1)rN−22πN/2
)1/2

= (1− 16πGMΓ(n+ 3/2)

(n+ 2)rn+12π(n+3)/2
)1/2 = (1− 8πGMΓ((n+ 3)/2)

(n+ 2)rn+1π(n+3)/2
)1/2 (3.83)

where n is the extra spatial dimensions and N = n + 3.Now we know that
the higher dimensional Newton constant can be written functions of the mass
Planck in higher dimensions like that G = 1

M2+n
⋆

.Therefore,from relation (2.13)

we get:

f = g−1 =1−
8π M

M2+n
⋆

Γ((n+ 3)/2)

(n+ 2)rn+1π(n+3)/2
(3.84)

= 1−
(8π M

M2+n
⋆

Γ((n+ 3)/2)/(n+ 2)π(n+3)/2)
n+1
n+1

rn+1
(3.85)

Therefore we have:
f = g−1 = 1− (

rH
r
)n+1 (3.86)
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where

rH =(
8πΓ(n+3

2 )

n+ 2
)

1
n+1 (

M

M2+n
⋆

)
1

n+1 (
1

π
n+3
2

)
1

n+1

= (
8Γ(n+3

2 )

n+ 2
)

1
n+1 (

M

M2+n
⋆

)
1

n+1 (
1

π
n+1
2

)
1

n+1

= (
8Γ(n+3

2 )

n+ 2
)

1
n+1

(M)
1

n+1

M
1

n+1
⋆ (M1+n

⋆ )
1

n+1

(
1

π
n+1
2

) =

1√
πM⋆

(
M

M⋆
)

1
n+1 (

8Γ(n+3
2 )

n+ 2
)

1
n+1 (3.87)

Therefore ,the higher dimensional Schwarzchild metric is given by:

ds2 = −[1− (
rH
r
)n+1]dt2 + [1− (

rH
r
)n+1]−1dr2 + r2dΩ2

2+n (3.88)

where

rH =
1√
πM⋆

(
M

M⋆
)

1
n+1 (

8Γ(n+3
2 )

n+ 2
)

1
n+1 (3.89)

After all these,we can calculate the size of (4+n)-dimensional black hole and
compare with the size of 4 dimensional analog.The radius of 4-dimensional black
hole is given by (2.18) if we put the n=0:

rH ∼ 1

Mpl
(
M

Mpl
) ∼ M

M2
pl

∼ M

M2
⋆ (M⋆R)2

(3.90)

where we use: M2
pl ≈ RnMn+2

⋆ On the other hand the size of (4+n)-dimensional
B.H is given by:

rH ∼ 1

M⋆
(
M

M⋆
)

1
n+1 (3.91)

From (3.89) and (3.90) we relate the two radii:

rH(4)R
nMn

⋆ ∼ rn+1
H(4+n)M

n
⋆ ⇒ rH(4)R

nMn
⋆ ∼ rnH(4+n)rH(4+n)M

n
⋆

⇒
rH(4)

r(4+n)
∼
rn(4+n)M

n
⋆

RnMn
⋆

=
rn(4+n)

Rn
= (

rH(4+n)

R
)n

⇒ rH(4) ≤ rH(4+n) ≤ R (3.92)

because we know that: rH(4+n) ≤ R .The Hawking temperature T4+n of a
(4+n)-dimensional Schwarzchild black hole can be easily estimated from the first
law of black hole thermodynamics.Because the higher dimensional black hole is
larger than 4-d analog we expect that the there are implications in temperature
and lifetime of higher dimensional black hole in relation to 4D analog.
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Consider a static observer at radius r1 > rH outside of (4+n)-dimensional
Schwarzchild black hole.Such an observer moves along orbits of the timelike
killing vector k = ∂t. For our occasion we have the timelike vector in the
following:

kµ = (1, 0, 0, 0) (3.93)

and the four-velocity in this form:

Uµ = [(1− (
rH
r
)n+1))−1/2, 0, 0, 0] (3.94)

So,we know for the 4 dimensional process that the redshift factor given by:

V =

√
1− (

rH
r
) (3.95)

Also we have the relations for four-acceleration,magnitude of four-acceleration
and surface gravity which is associated with the black hole horizon:

αµ = ∇µlnV (3.96)

α =
√
αµαµ = V −1

√
∇µV∇µV (3.97)

κ = V α =
√
∇µV∇µV (3.98)

We use all that to higher dimensional case and we get:

V =

√
1− (

rH
r
)n+1

⇒ ∇µV =
(n+ 1)( rHr )n( rHr )′

2
√
1− ( rHr )n+1

=
(n+ 1)

rn+1
H

rn+2
H

2
√

1− ( rHr )n+1

⇒ ∇µV∇µV =
(n+ 1)2(rn+1

H )2

4(rn+2)2(1− ( rHr )n+1)

(3.99)

α = V −1
√

∇µV∇µV =
1√

1− ( rHr )n+1

(n+ 1)rn+1
H

2rn+2
√
1− ( rHr )n+1

⇒

⇒ V α =
(n+ 1)rn+1

H

2rn+2

(3.100)
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From above equation,if we put r = rH we have the surface gravity:

κ =
(n+ 1)

2rH
(3.101)

Finally we can write the expression of Hawking temperature of (4+n)-dimensional
Schwarzchild black hole as follows:

T =
κ

2π
=
n+ 1

4πrH
(3.102)

We know that the entropy of the black hole is propotional to the area of the
event horizon:

S =
A

4G
→ S(4+n) =

A(4+n)

4GD
=

2π
n+3
2

4GDΓ(
n+3
2 )

[
1

Mn+1
⋆

(
M

M⋆
)

1
n+1 (

2nπ
(n−3)

2 Γ(n+3
2 )

n+ 2
)]n+2 =

=
2π

n+3
2

4GDΓ(
n+3
2 )

1

Mn+1
⋆

(
M

M⋆
)(
2nπ

(n−3)
2 Γ(n+3

2 )

n+ 2
)rH =

2n+1πn

4GD

M

Mn+2
⋆

rH
n+ 2

=

=
2n+1πn

(2π)n

2π

M

n+ 1
rH =

2(2π)n+1M

(2π)n(n+ 2)
rH =

4πM

n+ 2
rH ⇒

.S(4+n) =
4πM

n+ 2
rH

(3.103)

3.5 Myers-Perry Black Hole

In 3 + 1 dimensions an uncharged black hole is completely characterized by two
parameters:

• 1)Mass

• 2)Angular momentum

The situation in higher dimensions is little more complicated.We consider the
Poincare group which in higer dimensions include the space-tme translations
and Lorrentz boosts represented by SO(N,1) group.In this case the parameters
are:

• 1)Mass

• 2)[N/2] invariants(Casimir invariants) of the little group SO(N) which
represent the different angular momentums.
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In other words,the higher dimensional spinning black hole which named Myers-
Perry black hole(from the physicists who discover this solution) is very compli-
cated because it can be rotating in many different planes and has many different
angular momentums. The general metric solution for this higher dimensional
spinning black hole can be written in Kerr-Schild form:

gµν = ηµν + hkµkν (3.104)

where kµ is a null vector field.It is null with respect to the flat metric ηµν and
hence gµν

kµ = gµνkν = ηµνkν (3.105)

gµν = ηµν − hkµkν (3.106)

Odd and even dimensional cases have seperate solutions.

• For even :

kµdx
µ = dt+

r(xidxi + yidyi) + ai(x
idyi − yidxi)

r2 + a2i
(3.107)

and

h =
µr2

ΠF
(3.108)

where

F = 1− a2i (x
2
i + y2i )

(r2 + ai)2
(3.109)

Π =

(N−1)/2∏
i=1

(r2 + a2i ) (3.110)

where i=1,2,......,N/2.

The condition that kµ is null and can be written as:

kµkµ = 0 ⇒ (x2i + y2i )

(r2 + ai)2
= 1 (3.111)

This condition defines the radial coordinate.With the same way

• For odd N:

kµdx
µ = dt+

r(xidxi + yidyi) + ai(x
idyi − yidxi)

r2 + a2i
+
zdz

r
(3.112)

and
h =

µr

ΠF
(3.113)

with F a Π are the same as previous.The condition

kµkµ = 0 ⇒ (x2i + y2i )

(r2 + ai)2
+
z2

r2
= 1 (3.114)

defines the radial cordinate in that case.For N=3 we get the familiar Kerr metric
but in this chapter we are looking for N > 3 solutions.
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Now next up,we want to determine the mass and the angular momentum
of the new metric. Examining the asymptotic form shows they are not in
a form suitable to compare with(2.7).Therefore a transformation to a set of
Boyer-Lindquist coordinates will be made where the desired quantities can be
determined.

First for even N, angular coordinates are introduced with the following trans-
formation:

xi =
√
(r2 + a2i )µi cos[ϕi − tan−1(

ai
r
)] (3.115)

yi =
√

(r2 + a2i )µi sin[ϕi − tan−1(
ai
r
)] (3.116)

Then the metric becomes:

ds2 = −dt2 + (r2 + a2i )(dµ
2
i + µidϕ

2
i ) + 2µ2

i aidϕdr +
µr2

ΠF
(dt+ dr + aiµ

2
i dϕi)

2

(3.117)
with

F = 1− a2iµ
2
i

r2 + a2i
(3.118)

.The first four terms are actually a metric on flat space, and the remaining term
involves a null vector field squared. This metric is constructed here simply to
introduce angular coordinates. Note that the pi are not all independent such

pi = 1 (3.119)

Now we can use these tranformations:

dt̄ = dt− ΠF

Π− µr2
dr (3.120)

dϕ̄i = dϕi +
aidr

r2 + a2i

Π

Π− µr2
(3.121)

and the metric becomes:

ds2 = −dt̄2+(r2+a2i )(dµ
2
i+µidϕ̄

2
i )+

µr2

ΠF
(d̄t

2
+aiµ

2
i dϕ̄

2
i )

2+
ΠF

Π− µr2
dr2 (3.122)

which is the metric an odd D-dimensional spinning black hole(or N even)

These steps are slightly modified for odd N. Angular coordinates are intro-
duced as in (3.12-13) with the additional transformation:

z = ra (3.123)

with −1 < a < 1 we have:

ds2 = −dt2+dr2+r2da2+(r2+a2i )(dµ
2
i+µidϕ

2
i )+2µ2

i aidϕdr+
µr

ΠF
(dt+dr+aiµ

2
i dϕi)

2

(3.124)
with i=1,....,(N-1)/2 and µ2

i + a = 1
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The transformation to BL coordinates for odd N is :

dt̄ = dt− ΠF

Π− µr
dr (3.125)

and

dϕ̄i = dϕi +
aidr

r2 + a2i

Π

Π− µr
(3.126)

yields

ds2 = −dt̄+ r2da2+(r2+a2i )(dµ
2
i +µidϕ̄

2
i )+

µr

ΠF
(d̄t

2
+aiµ

2
i dϕ̄

2
i )

2+
ΠF

Π− µr
dr2

(3.127)
which is the metric of even D-dimensional spinning black hole(or N odd).This
new transformed metric have a suitable asymptotic form to compare to previous
relation:

h00 ≈ 16πGM

(N − 1)AN−1rN−2
(3.128)

One finds g00 ≈ −1 + µ
r(N−2)

for both odd and even metric.Therefore,the black

hole mass and angular momentum for both cases are:

M =
(N − 1)AN−1

16πG
µ (3.129)

and

J =
AN−1

8πG
µ =

2

N − 1
Mai (3.130)

The xi − yi planes are the planes in which the black hole is spinning.When the
spin parameters aiare zero,the previous metric reduces to the D-dimensional
Schwarzchild-Tangherlini metric.When both ai = 0 and µ = 0 the flat metric is
recovered.

We will now focus on the solution in five dimensions(N=4) with n=2d+1,d ≥ 2
which n=dimensions.Our case is d=2(i=1,2) and in this case there are two
Casimir invariant and therefore two angular momentum parameters(a1, a2).We
choose for convinience a1 = a, a2 = b, µ1 = sinθ, µ2 = cosθ, ϕ1 = ψ, ϕ2 =
ϕ.Then the Myers-Perry metric in five dimensions is given by:

ds2 = −dt̄2+µ

Σ
(dt̄+asin2θdψ+bcos2θdϕ)2+

r2Σ

Π− µr2
dr2+Σdθ2+(r2+a2)sin2θdψ2+(r2+b2)cos2θdϕ2

(3.131)
where Σ = r2 + aacos2θ + b2sin2θ and Π = (r2 + a2)(r2 + b2).

We see that various metric components diverge for Σ = 0 and Π − µr2 = 0,
and suspect this metric contains singularities, event horizons and ergospheres.
The situation will be different depending on whether a spin parameter vanishes
or not. We will go over all possibilities now.
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Singularities To find a singularity we examine where the curvature scalar
RµνρσR

µνρσ diverges. It is explicitly given by:

RµνρσR
µνρσ =

24µ2

Σ6
(4r2 − 3Σ)(4r2 − Σ) (3.132)

• When one of the spin parameters vanishes, say b = 0, the curvature scalar
becomes:

RµνρσR
µνρσ|b=0 =

24µ2

(r2 + a2cos2θ)6
(r2−3a2cos2θ)(3r2−a2cos2θ) (3.133)

At r = 0 we see that the curvature scalar diverges for θ → π/2.If we
choose a=0 the singularity would be at r=0,θ = 0.

• When neither spin parameter vanishes(a, b ̸= 0),the curvature scalar re-
mains finite.But we can introduce the coordinate change ρ = r2 and ex-
plore negative values of r2.When a = b the curvature scalar becomes

RµνρσR
µνρσ|b=0 =

24µ2

(r2 + a2)6
(r2 − 3a2)(3r2 − a2) (3.134)

and we see the entire surface ρ = −a2 is singular. If a < b the curvature
scalar diverges for Σ = 0, or

sin2 θ =
−ρ− a2

b2 − a2
(3.135)

where ρ is required to stay in the domain −b2 ≤ ρ ≤ −a2

Event Horizons The event horizon is determined by the condition grr = 0
or in this specific case:

Π− µr2 = (r2 + a2)(r2 + b2)− µr2 = 0 (3.136)

This is a quadratic equation in r2 and its solution is

r2H± =
1

2
(µ− a2 − b2 ±

√
(µ− a2 − b2)2 − 4a2b2 (3.137)

We want real solutions,so we require that

µ ≥ a2 + b2 + 2ab (3.138)

• b = 0:In this case,the condition becomes µ ≥ a2 and the event horizon
are:

r2H+ = µ− a2 ≥ 0 (3.139)

and
r2H− = 0 (3.140)
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• a, b ̸= 0 :We can extend the coordinates to negative values of in this case
and that the singularities are in that region. To avoid naked singularities
we need ρH = r2H± > −a2.The mass condition ensures that ρH > 0 thus
there are no naked singularities[].We can rewrite the mass condition(3.35)
in terms of the (real) mass M and angular momenta J like that:

M3 ≥ 27π

32G
(J2
ψ + J2

ϕ + 2JψJϕ) (3.141)

Just like the Kerr black hole the angular momentum is restricted by the
mass. In dimensions greater than five this restriction is not present and
there are event horizons for arbitrarily large angular momentum. These
are called ultra-spinning black holes.

We can now choose a new coordinate frame, co–rotating with the black hole
horizon, to eliminate the dragging motion on the rotating degrees of freedom of
a tunneling particle by using the following coordinate transformations:

dϕ̄ = dϕ́+Ωad̄t (3.142)

dψ̄ = dψ́ +Ωbd̄t (3.143)

in which the corresponding angular momentum velocities is given by:

Ωa =
a

r2 + a2
(3.144)

and

Ωb =
b

r2 + b2
(3.145)

Then the metric becomes:

ds2 = −Gtt(r, θ, ϕ, ψ)dt2+
r2

ΠF − µr2
dr2+Σdθ2+[(r2+a2+

µa2sin2θ

Σ2
sin2θdϕ́2]+

+ [(r2 + b2 +
µb2cos2θ

Σ2
cos2θdψ́2] +

2abµ

Σ2
sin2θcos2θdϕ́dψ́ (3.146)

We know that in the coordinate wich co-rotate with event horizon gtϕ́ = gtϕ −
gϕiϕjΩj = 0 at the horizon

gtϕ́i
= 0 (3.147)

After that we have:
Gtt(r+) = gtt + gtϕΩa + gtψΩb (3.148)

with

grr =
r2µ

ΠF − µr2
(3.149)

gtt = 1− µ

Σ2
(3.150)
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gtϕ =
aµ sin2 θ

Σ2
(3.151)

gtψ =
bµ cos2 θ

Σ2
(3.152)

Finally,the relation of the Hawking temperature for 5D Myers-Perry black hole
is given by:

TH =
κ(r+)

2π
= lim
r→r+

∂rΠ− 2µr

4πµr2
(3.153)

Also,we can derive the expression of the entropy for that case.The area of the
event horizon of MP black hole is(for odd number of dimensions):

A =
Ωd−2

r+
Π(r2i + a2i ) →d=5→ A =

2π2

r+
(r2 + a2)(r2 + b2) (3.154)

So the Bekenstein-Hawking entropy for MP black hole is given by:

S =
2π2

4GDr+
(r2 + a2)(r2 + b2) (3.155)

Consider the spinning black hole solutions with single nonvanishing spin param-
eter:

ds2 = (1− µ

Σrn−1
)dt2 +

2aµ sin2 θ

Σrn−1
dtϕ− Σ

∆
dr2 − Σdθ2 (3.156)

−(r2 + a2 +
a2µ sin2 θ

Σrn−1
) sin2 θdϕ2 − r2 cos2 θdΩ2

n

with ∆ = r2 + a2 − µ
rn−1 and Σ = r2 + a2cos2θ Again

M =
(n+ 2)An+2

16πG
µ (3.157)

and

J =
2

n+ 2
Ma (3.158)

The line element (3.155) describes successfully a small higher dimensional ro-
tating black hole in spin down phase.After the end of this phase when all the
angular momentum of black hole vanished(a → 0) the black hole is described
by the Schwarzschil-Tagherlini line element.

The black hole horizon is given by:

∆(r) = 0 ⇒ .....⇒ rn+1
H =

µ

1 + a2⋆
(3.159)

with a⋆ =
a
rH

.
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The Hawking temperature of the (n+4)-dimensional rotating black hole is
found to be:

TH =
(n+ 1) + (n− 1)a2⋆

4π(1 + a2⋆)rH
(3.160)

In the limit a → 0 ⇒ a⋆ → 0 we get the relation for Hawking temperature for
static black hole we found previously
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Chapter 4

The Dark Dimension and
the Dark Matter fraction
composed of Rotating
Primordial Black Holes

4.1 The Dark Dimension

In previous chapters, we introduced the necessary tools that we’ll need to study
a new scenario proposed by Luis A. Anchordoqui, Ignatios Antoniadis and Di-
eter Lust[16]. This scenario attempts to explain the nature of dark matter in
the universe. Until recently, several scenarios had been proposed for what this
mysterious dark matter could be, with the most prevalent being supersymme-
try, which suggests that dark matter is composed of supersymmetric particles.
Physicists in the past decade believed it was only a matter of time until these
particles appeared in the Large Hadron Collider (LHC) at CERN. However,
this has not happened, at least not yet. The absence of these particles has led
physicists to search for new scenarios regarding the nature of dark matter.

In this chapter, we’ll examine a very recent scenario for the nature of dark
matter. This scenario suggests that dark matter comprises essentially 5-dimensional
primordial black holes. This hypothesis falls within the framework of a theoret-
ical model called the dark dimension. According to this model, our universe is
a 4-dimensional brane embeded in a 5-dimensional space. This fifth dimension
has a size on the order of a micrometer. Let’s now look in more detail at this
scenario and how, and to what extent, it can explain the amount of dark matter
we observe in our universe.
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Recently, it has been proven that by combining the cosmological hierarchy
problem, i.e., the smallness of dark energy in Planck units, and the distance
conjecture, we deduce that the extra dimension is on the order of a micron.As
we explained in detail in a previous chapter, the distance conjecture essentially
predicts the existence of infinite towers of states that are massless at an infinite
distance in moduli space, which means that the EFT (Effective Field Theory)
description breaks down at infinite distance in moduli space.

On the other hand,the anti-de Sitter (AdS) distance conjecture [3], it suggests
that there should be an infinite tower of states, whose mass is related to the
magnitude of the cosmological constant.More precisely, the mass scale m behaves
as m ∼ |Λ|a, as the negative AdS vacuum energy Λ → 0, with a positive
constant of a O(1).

At this point, we should mention that m essentially represents the mass scale
of the tower of states, while M∗ is a limit beyond which the EFT (Effective
Field Theory) description breaks down. This is called the species scale and
corresponds to the Planck mass in higher dimensions, given by the following

relationM∗ = mn/(n+2)M
2/(n+2)
Pl whereMPl is the Planck mass in 4 dimensions

and n is the number of effective dimensions decompactifying.

When we reconcile the experimental constraints on how much gravity might
deviate from Newton’s inverse-square law [55] with the theoretical bounds im-
posed by swampland conjectures, it leads us to set a = 1/4. This implies that
the characteristic mass of the Kaluza-Klein (KK) modes forming the tower is
estimated as m ∼ λ−1Λ1/4 . Moreover, observations like the heating of neutron
stars [17] are consistent with n=1 [8], and the sharp upper limit observed in the
cosmic ray spectrum suggests that λ ∼ 10−3 [18]. Taken together, the interplay
of swampland considerations and real-world observational data strongly indi-
cates the existence of a single, extra dimension, roughly a micrometer in size
R ∼ λΛ−1/4 ∼ 1µm where Λ1/4 = 2.31meV . This additional dimension, often
referred to as the dark dimension, becomes relevant at the energy scale m of
the particle tower. At and above this scale, a higher-dimensional Effective Field
Theory (EFT) framework is needed to describe physical phenomena, extending
up to a species scale of M ∼ 1010GeV .

4.2 The formation of 5 dimensional PBHs

It was proposed[16] that primordial black holes (PBHs) could have been created
by the collapse of large fluctuations in the very early universe [22–25]. On a
cosmic scale, these PBHs would behave just like typical cold dark matter, even
though their exact mass distribution is not yet known.

The proposal that PBHs could be a form of dark matter dates back to at
least 1975 [26]. Interest in this idea has been renewed at different times, particu-
larly following the 1997 microlensing searches for massive compact halo objects
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(MACHOs) [27] and the 2016 LIGO/Virgo detections of merging binary black
holes [28]. The initial microlensing studies suggested that dark matter might
consist of MACHOs with masses around half that of the sun, which aligns with
the predicted mass of PBHs formed during the quark-hadron phase transition
[29]. However, more recent observations have since ruled out MACHOs as a ma-
jor component of dark matter across most of the plausible mass range [30–36].
[htbp]

The total fraction of dark matter consisting of primordial black holes is given
by relation:

fPBHs ≡
ρPBHs
ρCDM

=

∫
ψ(MBH)dMBH (4.1)

where

ψ(MBH) =
MBH

ρCDM

dnPBHs
dMBH

(4.2)

is the mass distribution of PBHs, dnPBHs is the number density of PBHs within
the mass (MBH ,MBH+dMBH) range, ρCDM is the energy density of cold dark
matter[16].Also ρPBHs =

∫
MBHdnPBHs is the energy density of PBHs.

We assume that the classical black hole production cross section is a good
approximation for the collision of two partons with

√
s sufficiently larger than

M∗.Imagine two massless particles undergoing a collision. With an impact pa-
rameter b and a center-of-mass energy of

√
s = Mi each particle possesses a

momentum of Mi/2 in that frame. Disregarding their spins, the system’s initial
angular momentum before impact is Ji = bMi/2 A black hole is supposed to
emerge when the initial configuration of these two particles (defined by their
mass Mi and angular momentum Ji) can be entirely encompassed by the event
horizon of a black hole with the same mass M =Mi and J = Ji:

b < 2rh(M,J) = 2rh(Mi, bMi/2) (4.3)

where rh(M,J) is the horizon radius of the higher dimensional Kerr black
hole.There is a maximum value in impact parameter b which saturate the above
inequality:

bmax = 2[1 + (
n+ 2

2
)2]−

1
n+1 rh (4.4)

where rh is the radius of rotating black hole.

Below, we will study the physics of rotating primordial black holes within
the framework of the dark dimension scenario. We will specifically examine
the lifespan of rotating black holes in five dimensions and observe that they
annihilate at a much slower rate than black holes in four dimensions. This ob-
viously means that primordial black holes of this type can live much longer and
ultimately constitute a large part of the observed dark matter in the universe.
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Figure 4.1: FIG. 1: (Taken from [40].) Compilation of contraints on fPBH as
a function of the PBH mass MBH, assuming a monochromatic mass function.
The different probes considered are: the impact of PBH evaporation (red) on
the extragalactic -ray background [41] and on the CMB spectrum [42]; non-
observation of microlensing events (blue) from the MACHO [27], EROS [28],
Kepler [29], Icarus [30], OGLE [35] and Subaru-HSC [43] collaborations; PBH
accretion signatures on the CMB (orange), assuming spherical accretion of PBHs
within halos [43]; dynamical constraints, such as disruption of stellar systems
by the presence of PBHs (green), on wide binaries [44] and on ultra-faint dwarf
galaxies [45]; power spectrum from the Ly forest (cyan) [46]; merger rates from
gravitational waves (purple), either from individual mergers [38, 47] or from
searches of stochastic gravitational wave background [48]. Gravitational wave
limits, denoted by dashed lines, are model dependent [51]. The dotted brown line
corresponds to forecasts from the 21 cm power spectrum with SKA sensitivities
[49] and from 21 cm forest prospects [50]
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4.3 The lifetime of 5 dimenional PBHs

In this section we will discuss the case where the primordial 5 dimensional black
hole is rotating.This case generalize the previous results of paper[16]. In this
paper we present an analytic expression for the greybody factors of brane fields
for an n = 1 black hole within the low frequency expansion. Here we outline
our procedure.

In this paper, we will make the following assumption: that the emission of par-
ticles from a black hole during the process of Hawking radiation occurs mainly on
the brane. We will ignore particles with degrees of freedom that can also travel
outside the brane into the bulk, such as the graviton and the dilaton.Below, we
will study the brane field emission from a higher-dimensional black hole, calcu-
late the mass decay rate of a rotating black hole in 5 dimensions, and aim to
calculate the lifetime of the black hole.

In order to do this, we Will make the following ansatz for the Newman-Penrose
null tetrads[12]:

n = dt− asin2θdϕ− Σ

∆
dr (4.5)

n′ =
∆

2Σ
(dt− asin2θdϕ) +

1

2
dr (4.6)

m =
isinθ

21/2(r + iacosθ)
[adt− (a2 + r2)dϕ]− r − iacosθ

21/2
(4.7)

m′ = m̄ (4.8)

where
Σ = r2 + a2cos2θ (4.9)

∆ = r2 + a2 − µr1−n (4.10)

Assuming the previous equations, we can show that the brane field equations
for a massless field with spin 1, 1/2, and 0 can be written in a separated form
as follows:

1

sinθ

d

dθ
(sinθ

dS

dθ
) + [(s− aωcosθ)2 − (scotθ +mscsθ)2 − s(s− 1) +A]S = 0

(4.11)

and

∆−s d

dr
(∆s+1 dR

dr
) + [

K2

∆
+ s(4iωr − i

∆rK

∆
+∆rr − 2)−A (4.12)

+2maω − a2ω2]R = 0

where
K = (r2 + a2)ω −ma (4.13)
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and A is the angular eigenvalue, and the following decomposition is employed:

Φ =

∫
dωe−iωt

∑
m

eimϕ
∑
l

Rωlm(r)Sωlm(θ) (4.14)

The angular part (4.11) is not modified from four dimensions and can be solved
in terms of the spin-weighted spheroidal harmonics sSlm(which reduces to the
spin-weighted spherical harmonics in the limit αω ≪ 1) with angular eigenvalue:

A = l(l + 1)− s(s+ 1)− 2ms2

l(l + 1)
aω +O((aω)2) = A0 +O((aω)2 (4.15)

Next, we will derive the relation that describes the grey body factor for our
case.But what is the grey body factor.As the Hawking radiation particles propa-
gate away from the event horizon, they must travel through the curved spacetime
surrounding the black hole. This curved spacetime acts like a potential barrier.
This barrier reflects some of the particles back into the black hole and allows
others to escape to infinity.The grey body factor represents the probability that
a particle created at the horizon will successfully escape the gravitational po-
tential barrier and be detected by an observer at a great distance.The greybody
factor is essentially the transmission probability for the Hawking radiation.

First we obtain the “near horizon”(NH) and “far field” (FF) solutions in
the following limits.Then we match these two solutions at the “overlapping
region” in which both limits are consistently satisfied.Finally we impose the
“purely ingoing” boundary condition at the near horizon side and then read the
coeffcients of “outgoing” and “ingoing” modes at the far field side, the ratio of
these two coefficients can be translated into the absorption probability of the
mode, which is nothing but the greybody factor itself.

First, we defne the dimensionless quantities:

ξ =
r − rh
rh

(4.16)

ω̃ =rhω (4.17)

Q̃ =
ω −mΩ

2πT
= (1 + a2∗)ω̃ −ma∗ (4.18)

Then the radial equation (4.12) becomes:

ξ2(ξ + 2)2Rξξ + 2(s+ 1)ξ(ξ + 1)(ξ + 2)Rξ + Ṽ R = 0 (4.19)

where

Ṽ = [ω̃ξ(ξ + 2) + Q̃] + 2isω̃ξ(ξ + 1)(ξ + 2) (4.20)

−2isQ̃(ξ + 1)− [A0 +O(a∗, ω̃)]ξ(ξ + 2)
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In the near horizon limit ω̃ξ ≪ 1 the potential V becomes:

Ṽ = Q̃2 − 2is(ξ + 1)Q̃−A0ξ(ξ + 2) +O(ω̃, ξ) (4.21)

and the solution of Eq. (4.19) with the potential (4.21) is obtained with the
hypergeometric function

RNH = C1(
ξ

2
)−s−iQ̃/2(1 +

ξ

2
)−s+iQ̃/2 ×2 F1(−l − s, l − s+ 1, 1− s− iQ̃;

ξ

2
)

(4.22)

+C2(
ξ

2
)iQ̃/2(1 +

ξ

2
)−s+iQ̃/2 ×2 F1(−λ+ Q̃, l + 1 + iQ̃, 1 + s+ iQ̃;−ξ

2
)

(4.23)

To impose the ingoing boundary condition at the horizon i.e:

R ∼ ξ−se−ikr∗ , k
dr∗
dξ

∼ Q̃

2ξ
(4.24)

we put C2 = 0 and normalize C = 1 and then we get:

RNH = (
ξ

2
)−s−iQ̃/2(1 +

ξ

2
)−s+iQ̃/2 ×2 F1(−l − s, l − s+ 1, 1− s− iQ̃;

ξ

2
)

(4.25)

In the far field limit ξ ≫ 1 + |Q̃| Eq (4.8) becomes:

0 = Rξξ +
2(s+ 1)

ξ
Rξ + [ω̃2 +

2iω̃

ξ
(s− 2iω̃)− 1

ξ2
[A0 +O(ω̃)] +O(ξ−3)]R

(4.26)

and the solution is obtained via Kummer’s confluent hypergeometric function

RFF = B1e
−iω̃ξ(

ξ

2
)l−s1F1(l − s+ 1, 2l + 2; 2iω̃ξ) (4.27)

+B2e
−iω̃ξ(

ξ

2
)−l−s−1

1F1(−l − s,−2l; 2iω̃ξ) (4.28)

where singularity from 2l being integer is regularized by the higher order terms
in ω̃.

Matching the NH and FF solutions (4.25) and (4.28) in the overlapping region
1 + |Q̃| ≪ ξ ≪ 1

ω̃ ,we obtain:

B1 =
Γ(2l + 1)Γ(1− s− iQ̃)

Γ(l − s+ 1)Γ(l + 1− iQ̃)

B2 =
Γ(−2l − 1)Γ(1− s− iQ̃)

Γ(−l − s)Γ(−l − iQ̃)
(4.29)
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Then we extend the obtained FF solution toward the region ξ ≫ 1/ω̃

R∞ = Yine
−iω̃ξ(

ξ

2
)−1 + Youte

iω̃ξ(
ξ

2
)−2s−1 (4.30)

where

Yin =
Γ(2l + 1)Γ(2l + 1)Γ(1− s− iQ̃)

Γ(l − s+ 1)Γ(l + s+ 1)Γ(l + 1− iQ̃)
(−4iω̃)−l+s−1

+
Γ(−2l − 1)Γ(−2l)Γ(1− s− iQ̃)

Γ(−l − s)Γ(−l + s)Γ(−l − iQ̃)
(−4iω̃)l+s (4.31)

Yout =
Γ(2l + 1)Γ(2l + 1)Γ(1− s− iQ̃)

[Γ(l − s+ 1)]2Γ(l + 1− iQ̃)
(−4iω̃)−l−s−1 (4.32)

+
Γ(−2l − 1)Γ(−2l)Γ(1− s− iQ̃)

[Γ(−l − s)]2Γ(−l − iQ̃)
(−4iω̃)l−s (4.33)

Let us define R−s as the solution of the equation obtained by a flip of the sign
of s

Therefore, we may calculate the greybody factor Γ the absorption probability
in the same way as Page’s trick:

Γ = 1− |YoutZout
YinZin

| = 1− |1− C

1 + C
|2 (4.34)

where

C =
(4iω̃)2l+1

4
(
(l + s)!(l − s)!

(2l)!(2l + 1)!
)2(−iQ̃− l)2l+1 (4.35)

with (a)n = Πnn′(a+ n′ − 1)) being the Pochhammer symbol.

The time dependence of the mass of the black hole is given by:

dM

dt
= − 1

2π

∫ ∞

0

dω
∑
s,l,m

sΓlmω

e(ω−mΩ)/T − (−1)s
(4.36)

= − 1

2π

∫ ∞

0

dω
∑
s,l,m

sΓlmω

e2π[(1+a
2
∗)ω̃−ma∗] − (−1)s
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because we know that:ω̃ = rhω and Q̃ = ω−mΩ
2πT = (1+a2∗)ω̃−ma∗ If we use the

above relations and for n = 1 and a∗ = 1 we can rewrite the relation as follows:

dM

dt
=− 1

2π

∫ ∞

0

dω
∑
s,l,m

sΓlmω

e2π[2ω̃−m] − (−1)s

=− 1

2πr2h
[g0

∫ ∞

0

dω̃
∑
m

0Γ00ω̃

e2π(2ω̃) − 1
(4.37)

+ g0

∫ ∞

0

dω̃
∑
m

0Γ1mω̃

e2π(2ω̃−m) − 1
+ g0

∫ ∞

0

dω̃
∑
m

0Γ2mω̃

e2π(2 ˜ω−m) − 1

+ g1/2

∫ ∞

0

dω̃
∑
m

1/2Γ1/2mω̃

e2π(2ω̃−m) + 1
+ g1/2

∫ ∞

0

dω̃
∑
m

1/2Γ3/2mω̃

e2π(2ω̃−m) + 1
+

g1

∫ ∞

0

dω̃
∑
m

1Γ1mω̃

e2π(2ω̃−m) − 1
+ g1

∫ ∞

0

dω̃
∑
m

1Γ2mω̃

e2π(2ω̃−m) − 1
] (4.38)

(4.39)

where from(4.19) we write down the explicit expansion of Eq.(4.19) up to O(ω̃6)
terms:

Γ = 1− |1− C

1 + C
|2 = 1− |1− C|2

|1 + C|2

= 1− (1− C)(1− C∗)

(1 + C)(1 + C∗)
= 1− 1− C∗ − C + C∗C

1− C∗ − C + C∗C

= 1− 1− (C + C∗) + |C|2

1 + (C + C∗) + |C|2
=

2(C + C∗)

1 + (C + C∗) + |C|2

Γ =
4Re(C)

1 + 2Re(C) + |C|2
(4.40)

where Re(C) the real part of the complex number C.

If we choose x = 2Re(C) + |C|2 can we use the expansion:

1

1 + x
≃ 1− x+ x2 − ..... (4.41)

and rewrite the eq.(4.29) as such:

Γ = 4Re(C)− 8Re2(C)− 4Re(C)|C|2 + 4Re(C)[2Re(C) + |C|2]2 − .... (4.42)

If we choose the quantum numbers s = l = m = 0 then from (4.19) we get:

C = ω̃Q̃ (4.43)

and

Re(C) =
C∗ + C

2
= ω̃Q̃ (4.44)
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From (4.3) :
Q̃ = (1 + a2∗)ω̃ (4.45)

Now from (4.26),(4.27),(4.28) and (4.29) we have:

Γ = 4ω̃Q̃− 8(ω̃Q̃)2 − 4(ω̃Q̃)(ω̃Q̃)2 + ...

= 4ω̃(1 + a2∗)ω̃ − 8[ω̃(1 + a2∗)ω̃]
2 − ...

= 4ω̃ + 4ω̃a2∗ − 8ω̃4(1 + a2∗)
2 − ... (4.46)

In the low frequency limit we have:

a∗ω̃ < 1, ω̃ < 1 (4.47)

and for that we can neglect the terms ω̃6 and beyond. Finally for s = l = m = 0
we get:

Γ = 4ω̃2 − 8ω̃4 (4.48)

Finally, we write down the explicit expansion of (4.34)

0Γ00 = 4ω̃2 − 8ω̃4 +O(ω̃2) (4.49)

0Γ1m =
4Q̃ω̃3

9
(1 + Q̃2) +O(ω̃6) (4.50)

0Γ2m =
16Q̃ω̃5

2025
(1 +

5Q̃2

4
+
Q̃4

4
) +O(ω̃10) (4.51)

1/2Γ1/2m = ω̃2(1 + 4Q̃2)− ω̃4

36
(1 + 4Q̃2)2 +O(ω̃6) (4.52)

1/2Γ3/2m =
ω̃4

36
(1 +

40Q̃2

9
+

16Q̃4

9
) +O(ω̃6) (4.53)

1Γ1m =
16Q̃ω̃3

9
(1 + Q̃2) +O(ω̃6) (4.54)

1Γ2m =
4Q̃ω̃5

225
(1 +

5Q̃2

4
+
Q̃4

4
) +O(ω̃10) (4.55)

and m:−l ≤ m ≤ l. For the calculation of the above integrals we use the
mathematica and we find that:

−dM
dt

=
1

2πr2h
[4(0.004 + 0.003 + 0.001) + 90(0.011 + 0.002) + 24(0.011 + 0.002)]

=
1

2πr2h
(0.032 + 1.17 + 0.312)

=
01.514

2πr2h
⇒

dM

dt
= −0.241

r2h
(4.56)
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We know that:
rh = (1 + a2∗)

− 1
n+1 rs (4.57)

with rs the Schwarzschild radius.

r2h =
1

2πM∗
(
MBH

M∗
)(
8Γ(2)

3
) (4.58)

with M∗ is the 5 dimensional Planck mass .From (4.11) and (4.12) we get

dM

dt
=

0.241
1

2πM2
∗
(MBH

M∗
)( 8Γ(2)3 )

= − 0.241

8Γ(2)

M2
∗

MBH
(4.59)

From Swampland arguments we had defined the planck mass M∗ ∼ 1010 GeV.
Then we have:

dM

dt
≃ −5.68× 1029

GeV 3

M
(4.60)

We solve for t and we get:

τs.dBH ≃ −0.88× 10−31(M2
f −M2

i )GeV−3 (4.61)

For the realistic case(Standard Model particles),black hole loses roughly 70%
to 80% of her mass in D = 5 before it stops rotation when starting from the
maximum rotation and therefore we have Mf ≃ 0.3Mi − 0.4Mi[13]

Suppose to Mf ≃ 0.3Mi then from (4.16) we get the period of spin-down
phase of 5D rotating black hole:

τs.dBH ≃ 5.2× 10−15(
Mi

g
)2y (4.62)

with g:grams and y:years.

If the initial mass of primordial rotating black hole is Mi ≃ 5 × 1011g then
the spin-down phase period is

τs.dBH ≃ 1.3× 109y (4.63)

Now after the spin-down phase the black hole stops the rotation and become
a non rotating black hole which described by Schwarzschild-Tangherlini equa-
tion.Then the mass of black hole which it remains,evolves according to following
relation:

τS.TBH ≃ 9× 10−15(
Mf

g
)2y (4.64)

If the remaining black hole mass is Mf ∼ 1.5× 1011g then:

τS.TBH ≃ 2× 108y (4.65)
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Finally the lifetime of primordial 5D rotating black hole with initial mass Mi ∼
5× 1011g is given by:

τn=1
M.P = τs.dBH + τS.TBH (4.66)

τn=1
M.P ≃ 1.5× 109y (4.67)

Now for a∗ = 1.5 we have:
ω̃ = rhω (4.68)

Q̃ =
ω − 3

2Ω

2πT
=

13

4
ω̃ − 3

2
m (4.69)

If we use the relation (4.2),(4.23) and (4.24) we get:

−dM
dt

=
1

2πr2h
[4(0.001 + 0, 001 + 0.0005) + 90(0.008 + 0.001) + 24(0.005 + 0.015)] ⇒

⇒ −dM
dt

=
0.21

r2h
(4.70)

From (4.13),(4.14) and (4.26) we have:

dM

dt
= − 0.21

8Γ(2)

M3
∗

MBH
6π (4.71)

As we said before M∗ ∼ 1010GeV then:

dM

dt
= −4.9× 10−29GeV

3

MBH
(4.72)

From above relation we can find the time which black spend in the spi-down
phase:

τs.d ≃ −1× 10−30GeV −3(M2
f −M2

i ) (4.73)

As before from the paper[] the remaining black hole after spin-down phase is
Mf ≃ 0.3Mi.Therefore:

τs.d ≃ 5.94× 10−15(
Mi

g
)2y (4.74)

If Mi ∼ 5× 1011g then:
τs.d ≃ 1.49× 109y (4.75)

We find before that the non rotating period of remaining massMf ∼ 1.5×1011g
is given by:

τs.d ≃ 2× 108y (4.76)
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Figure 4.2: Caption

Finally the lifetime of black hole with a∗ = 1.5 and n = 1 is:

τn=1
M.P = τn=1

s.d + τn=1
S.T = 1.7× 109y (4.77)

We have shown that the rate of Hawking radiation slows down for 5-dimensional
black holes and thereby an all-dark-matter interpretation in terms of PBHs for
1014 ≤MBH/g ≤ 1021.

ForMBH ≈ 5×1011g the radius is rh ≈ 5×10−5µm whereas forMBH ≈ 1017g
we have rh ≈ 2×10−2µm ustifying our assumption that these black holes are 5-
dimensional objects.It is noteworthy that a black hole withMBH ≈ 1021 g has a
horizon radius rh ≈ 2µm saturating the range of validity of our 5D description.

4.4 Memory Burden Effect

The memory burden effect is a proposed phenomenon wherein a system’s ca-
pacity to store information actively resists its decay and proposed by Dvali
[14]. Essentially, the information ”loaded” into a system acts as a stabilizing
force. This effect is particularly pronounced in systems capable of storing a
vast amount of information, like black holes, which possess maximal microstate
degeneracy
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This is obvious from Bekenstein-Hawking entropy:

SBH =
A

4GN
= πR2M2

p (4.78)

where A is the area of the black hole horizon,MP is the Planck mass. This effect
explains why at the early stages of Hawking’s decay, the information stored in
a black hole cannot be released together with radiation.

In the process of a black hole decay, the memory burden grows, and after a
certain characteristic time tM when black hole has lost aproximatelly the half
of its initial mass, reaches a critical value.We should mention that the time
tM is bounded from above by the age of the black hole. After this time tM the
black hole evaporation slow down dramatically.So dramatically that at this point
the black hole has evolved into a “remnant” that cannot continue an ordinary
quantum decay.The fate of this remnant can not be determined by the standard
semi-classical methods.This remnant can be descibed only by the laws of the
quantum gravity.

But black holes are not the only objects with maximal information storage
capacity.For that reason the memory burden effect it is not a property that
describes only black holes.It was shown recently [15] that in some QFT‘s there
are some systems named saturons which saturates the QFT upper bound on the
microstate degeneracy.The bound can be given as the bound of entropy:[14]

S ≡ ln(nst) (4.79)

where nst is number of degenerate microstates.

Equivalently, the bound can be written in terms of the Goldstone scale, f, of
the spontaneously broken Poincare symmetry:

S ≤ πR2f2 (4.80)

The above bound set the maximal degeneracy reachable within the validity of
the QFT description.If in the above relation f =MP then we get the Bekenstein-
Hawking entropy of a black hole.We observe similarities between black holes and
saturons of renormalizable QFTs. Also it was shown recently that the the time
tM which is the start of the memory burden effect is equal to Page time in the
case of black holes[39].

The above correspondence makes the study of saturons important due to the
following reasons. First, it shows that the black hole properties are not specific
to gravity and can be understood within calculability domains of renormal-
izable QFTs. Secondly, saturons can serve as laboratories for understanding
the microscopic nature of known black hole properties and for discovering new
features.
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Now we will apply the above phainomenon for the behavior of the black hole in
our discusion for the lifetime of the five diemnsional primordial black holes. The
Page time is defined by the condition that the mass of a black hole has decreased
to half its original value via Hawking radiation,thalf ∼ MBH/2[D. N. Page,
Information in black hole radiation].Within this time rh → rh/2 and SBH →
SBH/4.Until this time information remain encoded inside the black hole because
the emitted radiation is thermal in character.However, after ,thalf the remaining
black hole has only 1/4 of its initial entropy and so much less information storage
capacity. After this time the memory burden effect starts.We know that the
quantum decay rate(with burden effect) is given by[17]:

dMM.B

dt
=

1

SkBH

dMS.C

dt
(4.81)

where SBH is the entropy of 5D primordial black hole, dMM.B/dt is the mass
decay rate of black hole under memory burden effect and dMS.C/dt is the mass
decay rate which we calculate in the previous section via semi-classical methods.
Throughout, n is a non-negative integer parametrizing the quantum suppression
when the black hole enters the memory burden phase. The entropy of 5D
rotating black hole given by:

SBH =
π2

2GD
µ
√
µ− a2 (4.82)

with µ mass parameter and a rotational parameter which are given by (3.156)
and (3.157).If we want to calculate the quantum mass decay rate, first we shold
calculate the.We know from the previous section that the value of the angular
momentum is given by:

J =
bMBH

2
(4.83)

where b is impact parameter.The maximum value of this parameter is given by
J = bmaxMBH

2

When a∗ = 1.5 and if we combine the relations(3.156),(3.157),(4.70) and
(4.71), we get:

SBH =
π2

2GD
µ

√
µ− 9

13
µ =

π2

2GD
µ

√
4

13
µ (4.84)

We can write the higher dimensional Newton constant in terms of higher di-
mensional Planck mass as follows: GD = 1

M2+n .For our case n=1 and D=5 we
have:G5 = 1

M3
∗
.Then if we use this with relation (4.68) we get:

SBH = 3.8

√
M3
BH

M3
∗

(4.85)
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Then, from relation (4.65) we have:

dMM.B

dt
=

1

[3.8× (MBH

M∗
)3/2]k

(−4.9× 10−29GeV
3

MBH
)

= 1.3× 10−29GeV 3(M∗)
3k/2M

−( 3k
2 +1)

BH ⇒

dt = −0.8× 10−29Gev−3(M∗)
−3k/2M

3k
2 +1dM (4.86)

For this work we choose k = 1[15].Also M∗ = 1010 as we know from we get:

τBH = −8× 10−45GeV −3GeV −3/2M
7/2
i (4.87)

Then

τBH = 2.2× 109(
Mi

g
)7/2y (4.88)

where g is gramms and y are the years. In turn, by requiring that such holes
should live at least as long as the age of the Universe, yields:

M ≥ 10−2.6g (4.89)

We see that from the moment the black hole enters the memory burden effect
phase, it loses mass at an extremely slow rate. In fact, the rate is so slow that
the black hole essentially stabilizes during this phase.
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Chapter 5

Conclusions

In the present work, we provided an introduction to the basic concepts of string
theory as well as some of the most significant conjectures of the Swampland pro-
gram, such as the distance conjecture and the weak gravity conjecture. We then
studied the fundamental properties of black holes in higher dimensions, such as
the existence and number of event horizons and the singularities in these solu-
tions. We also derived the expressions for entropy and Hawking temperature,
both for the case of a static black hole in (n+4) dimensions and for the case of
a rotating black hole in (n+4) dimensions.

Next, we discussed the idea of the Dark Dimension Scenario, that is, the idea
which suggests that one of the extra dimensions predicted by string theory is
decompactified and is of the order of a micron. This scenario arises if we combine
some of the most basic conjectures of the Swampland program, such as the ADS
conjecture and the distance conjecture, with some cosmological observations.
Within the framework of this work, we hypothesized that the dark matter we
observe in the universe essentially consists of primordial rotating black holes that
perceive this dark dimension. We derived the lifetime of 5-dimensional rotating
black holes.We have shown that the rate of Hawking radiation slows down for 5-
dimensional black holes and thereby an all-dark-matter interpretation in terms
of PBHs for 1014 ≤MBH/g ≤ 1021 should be possible.

Finally, we discussed a phenomenon called the memory burden effect and its
implications for the lifetime of a black hole. We showed that from the moment
the memory burden effect begins (which is approximately when the black hole
has lost about half of its mass), we see the black hole loses mass at an extremely
slow rate, so slow that the black hole essentially stabilizes during this phase.
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