
UNIVERSITY OF IOANNINA

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

PhD Dissertation

Improving Solver Performance in Scheduling Problems through

Symmetry-Aware Modeling

Βελτίωση απόδοσης επιλυτών σε προβλήµατα χρονοπρογραµµατισµού

µέσω µοντελοποίησης εξάλειψης συµµετριών

Angelos Dimitsas

΄Αγγελος ∆ήµητσας

Arta 2025

ΠΙΣΤΟΠΟΙΗΣΗ

Πιστοποιείται ότι η Διδακτορική Διατριβή με θέμα στα ελληνικά:

«Βελτίωση απόδοσης επιλυτών σε προβλήματα χρονοπρογραμματισμού μέσω
μοντελοποίησης εξάλειψης συμμετριών»

και στα αγγλικά:

‘Improving Solver Performance in Scheduling Problems through Symmetry-Aware
Modeling’

του κ. Άγγελου Δήμητσα, παρουσιάστηκε δημόσια στο Τμήμα Πληροφορικής και
Τηλεπικοινωνιών του Πανεπιστημίου Ιωαννίνων (υβριδικά)

στις 21/7/2025

και εξετάστηκε και εγκρίθηκε από την ακόλουθη επταμελή Εξεταστική Επιτροπή:

1. Γκόγκο Χρήστο, Καθηγητή Α’ Βαθμίδας του Τμήματος Πληροφορικής και
Τηλεπικοινωνιών του Πανεπιστημίου Ιωαννίνων

2. Αντωνιάδη Νικόλαο, Καθηγητή Α’ Βαθμίδας του Τμήματος Πληροφορικής και
Τηλεπικοινωνιών του Πανεπιστημίου Ιωαννίνων

3. Τζάλλα Αλέξανδρο, Αναπληρωτή Καθηγητή του Τμήματος Πληροφορικής και
Τηλεπικοινωνιών του Πανεπιστημίου Ιωαννίνων

4. Αλεφραγκή Παναγιώτη, Αναπληρωτή Καθηγητή του Τμήματος Ηλεκτρολόγων
Μηχανικών και Μηχανικών Η/Υ του Πανεπιστημίου Πελοποννήσου

5. Ρεπούση Παναγιώτη, Αναπληρωτή Καθηγητή του Τμήματος Μάρκετινγκ και
Επικοινωνίας του Οικονομικού Πανεπιστημίου Αθηνών

6. Σαμαρά Νικόλαο, Καθηγητή Αb βαθμίδας του Τμήματος Εφαρμοσμένης
Πληροφορικής του Πανεπιστημίου Μακεδονίας

7. Φουτσιτζή Γεωργία, Καθηγήτρια Αb βαθμίδας Τμήματος Πληροφορικής και
Τηλεπικοινωνιών του Πανεπιστημίου Ιωαννίνων

Άρτα 22/7/2025

Ο Πρόεδρος του Τμήματος και
Κοσμήτορας της Σχολής Πληροφορικής

και Τηλεπικοινωνιών

Αναπληρωτής Καθηγητής Αλέξανδρος
Τζάλλας

Ο Επιβλέπων Καθηγητής

Καθηγητής Χρήστος Γκόγκος

Abstract

Symmetry is a pervasive and often problematic feature in combinatorial optimiza-

tion problems, particularly in scheduling and timetabling. While symmetry is tradi-

tionally associated with elegance and balance in mathematics and the sciences, in

optimization it frequently leads to redundant search spaces, inefficiencies, and com-

putational bottlenecks. This thesis investigates the role of symmetry in a variety of

combinatorial optimization contexts, with a focus on its identification, elimination,

and exploitation to improve solution quality and computational performance.

The work begins with a theoretical foundation, exploring symmetry in linear, mixed-

integer, constraint, and quadratic programming, as well as in metaheuristics, QUBO,

and SAT formulations. It then presents five detailed case studies: the Uncapacitated

Examination Timetabling Problem (UETP), Post Enrollment Course Timetabling (PE-

CTT), Thesis Defense Timetabling Problem (TDTP), Sports Scheduling, and One-

Machine Scheduling with Time-Dependent Capacity. Each case study demonstrates

how symmetry manifests in real-world datasets and how its careful handling can

lead to significant improvements in solution quality and solver efficiency.

The thesis introduces novel symmetry-breaking constraints, reformulations, and hy-

brid methodologies, including exact and heuristic approaches. Notably, it proposes

a QUBO-based model for UETP suitable for quantum annealers, a hybrid framework

for PE-CTT, and a symmetry-aware CP model for TDTP that achieves near-optimal

results. In the sports scheduling domain, the work contributes to the ITC2021 com-

petition with a constraint programming-based solver. Finally, a hybrid exact-local

search method is developed for the one-machine scheduling problem, outperforming

state-of-the-art memetic algorithms.

The findings underscore the critical importance of symmetry handling in combinato-

rial optimization and provide a comprehensive toolkit for researchers and practition-

ers seeking to enhance solver performance across diverse problem domains.

Περίληψη

Η συµµετρία αποτελεί ένα διαδεδοµένο και συχνά προβληµατικό χαρακτηριστικό στα

προβλήµατα συνδυαστικής ϐελτιστοποίησης, ιδιαίτερα στον προγραµµατισµό και την

κατάρτιση χρονοδιαγραµµάτων. Αν και η συµµετρία συνδέεται παραδοσιακά µε την

κοµψότητα και την ισορροπία στα µαθηµατικά και τις επιστήµες, στη ϐελτιστοποίηση

οδηγεί συχνά σε πλεονάζοντες χώρους αναζήτησης, αναποτελεσµατικότητα και υπολο-

γιστικά εµπόδια. Η παρούσα διατριβή διερευνά τον ϱόλο της συµµετρίας σε διάφορα

πλαίσια συνδυαστικής ϐελτιστοποίησης, µε έµφαση στην αναγνώριση, την εξάλειψη και

την αξιοποίησή της για τη ϐελτίωση της ποιότητας των λύσεων και της υπολογιστικής

απόδοσης.

Η εργασία ξεκινά µε µια ϑεωρητική ϑεµελίωση, εξετάζοντας τη συµµετρία στον γραµµι-

κό, µικτό ακέραιο, προγραµµατισµό ύπο περιορισµούς και τετραγωνικό προγραµµα-

τισµό, καθώς και σε µεταευρετικούς αλγορίθµους, QUBO και SAT διατυπώσεις. Στη

συνέχεια παρουσιάζονται πέντε λεπτοµερείς µελέτες περίπτωσης : το πρόβληµα κατάρ-

τισης εξεταστικού προγράµµατος χωρίς χωρητικότητα, το πρόβληµα κατάρτισης προ-

γράµµατος µαθηµάτων µετά την εγγραφή , το πρόβληµα κατάρτισης προγράµµατος

υποστηρίξεων διπλωµατικών εργασιών, ο προγραµµατισµός αθλητικών διοργανώσεων

και ο προγραµµατισµός µηχανής µε χρονικά εξαρτώµενη χωρητικότητα. Κάθε µελέτη

περίπτωσης δείχνει πώς εκδηλώνεται η συµµετρία σε πραγµατικά δεδοµένα και πώς η

προσεκτική διαχείρισή της µπορεί να οδηγήσει σε σηµαντικές ϐελτιώσεις στην ποιότητα

των λύσεων και την αποδοτικότητα των επιλυτών.

Η διατριβή εισάγει νέους περιορισµούς διάσπασης συµµετρίας, αναδιατυπώσεις και υ-

ϐριδικές µεθοδολογίες, συµπεριλαµβανοµένων ακριβών και ευρετικών προσεγγίσεων.

Ιδιαίτερα, προτείνεται ένα µοντέλο ϐασισµένο σε QUBO για το UETP κατάλληλο για

κβαντικούς υπολογιστές, ένα υβριδικό πλαίσιο για το PE-CTT και ένα µοντέλο CP µε

επίγνωση συµµετρίας για το TDTP που επιτυγχάνει σχεδόν ϐέλτιστα αποτελέσµατα.

Στον τοµέα του αθλητικού προγραµµατισµού, η εργασία συµβάλλει στον διαγωνισµό

ITC2021 µε έναν επιλυτή ϐασισµένο στον προγραµµατισµό περιορισµών. Τέλος, ανα-

πτύσσεται µια υβριδική µέθοδος ακριβούς-τοπικής αναζήτησης για το πρόβληµα προ-

γραµµατισµού µηχανής, η οποία ξεπερνά τους πιο σύγχρονους µιµητικούς αλγορίθ-

µους.

Τα ευρήµατα υπογραµµίζουν τη Ϲωτική σηµασία της διαχείρισης της συµµετρίας στη

συνδυαστική ϐελτιστοποίηση και παρέχουν ένα ολοκληρωµένο εργαλείο για ερευνη-

τές και επαγγελµατίες που επιδιώκουν να ενισχύσουν την απόδοση των επιλυτών σε

ποικίλους τοµείς προβληµάτων.

- Yesterday’s Future is Today

Contents

1 Introduction 10

1.1 Context . 11

1.2 Examples of symmetries in combinatorial optimization problems. . . . 13

1.2.1 0/1 Knapsack . 13

1.2.2 Symmetric Traveling Salesman Problem 16

1.3 Motivations and objectives . 19

1.4 Structure of the thesis . 20

2 Methods 21

2.1 Linear Programming . 22

2.1.1 Definition . 22

2.1.2 Symmetries in LP . 22

2.2 Mixed-Integer Programming . 24

2.2.1 Definition . 24

2.2.2 Symmetries in MIP . 25

2.3 Quadratic Programming . 26

2.3.1 Definition . 26

2.3.2 Symmetries in QP . 27

2.4 Constraint Programming . 28

2.4.1 Definition . 28

2.4.2 Symmetries in CP . 29

2.5 Non Linear . 30

2.5.1 Definition . 30

2.5.2 Symmetries in NLP . 30

2.6 Metaheuristics . 31

2.6.1 Definition . 31

2.6.2 Symmetries in Metaheuristics 32

1

2.7 Quadratic unconstrained binary optimization 32

2.7.1 Definition . 32

2.7.2 Symmetries in QUBO . 34

2.8 Boolean satisfiability problem . 34

2.8.1 Definition . 34

2.8.2 Symmetries in SAT . 35

2.9 Solvers . 35

3 Case Study: Uncapacitated Examination Timetabling Problem 37

3.1 Problem description . 38

3.1.1 UETP formulation terms . 38

3.2 Related Work . 39

3.3 Datasets . 40

3.4 Symmetries . 41

3.4.1 Bidirectional symmetry . 41

3.4.2 Interchangeable examinations 42

3.5 Mixed Integer Programming . 43

3.6 Results . 45

3.7 sta83 optimal solution . 48

3.7.1 Component sta83_62 . 49

3.7.2 Component sta83_47 . 50

3.7.3 Component sta83_30 . 50

3.8 Unconstrained Binary Model . 51

3.8.1 Dataset . 53

3.8.2 Experiments and results . 54

3.8.3 Conclusion . 55

4 Case Study: Post Enrollment Course Timetabling 57

4.1 Problem Description . 58

4.2 Related Work . 59

4.3 Datasets . 59

4.4 Symmetries and Preprocessing . 61

4.4.1 Event-Room eligibility . 61

4.4.2 Event Conflicts . 61

4.4.3 Event Combinations . 62

4.5 Formulation . 62

4.5.1 Mathematical Model . 62

4.5.2 Model Modifications . 64

4.5.3 Neighborhood operators . 65

4.5.4 Simulated Annealing (SA) . 65

2

4.6 Results . 66

5 Case Study: Thesis Defense Timetabling Problem 68

5.1 Problem Description . 69

5.2 Related Work . 70

5.3 Dataset . 71

5.4 Symmetries and descriptive analytics 72

5.4.1 Candidate symmetry . 72

5.4.2 Opponent symmetry . 73

5.4.3 Faculty members only useful for their Academic Level 73

5.4.4 Session symmetry . 73

5.4.5 Descriptive Analytics . 73

5.4.6 Identical Sessions . 74

5.5 Formulation . 75

5.5.1 Base model . 76

5.5.2 Zero cost solutions . 79

5.6 Experiments and Results . 80

5.6.1 Instances with zero cost . 80

5.6.2 Estimating lower bounds . 80

5.6.3 Results . 81

6 Case Study: Sports Scheduling 84

6.1 Problem Description . 85

6.2 Symmetries in sports scheduling . 86

6.3 International Timetabling Competition 2021 87

6.3.1 The Base Constraints . 87

6.3.2 The Hard and Soft Constraints of ITC2021 88

6.4 Related work . 89

6.5 Dataset . 89

6.6 Constraint Programming Formulation 90

6.6.1 Results . 95

7 Case Study: One-Machine Scheduling with Time-Dependent Capacity 97

7.1 Problem Description . 98

7.1.1 Terminology . 98

7.2 Related Work . 99

7.2.1 Heuristically Constructed Schedules 100

7.3 C-Paths . 101

7.3.1 Fast computation of C-Paths 102

7.4 Dataset . 103

3

7.5 Symmetry and Due times rule . 103

7.6 Formulation and Implementation . 105

7.6.1 Constraint programming formulation 107

7.7 Local search improvement procedures 109

7.7.1 Local search Improve1 . 109

7.7.2 Local search Improve2 . 110

7.7.3 Local search Improve3 . 111

7.8 A multi-staged approach . 112

7.9 Results . 113

7.9.1 CPO vs. CPO+ . 114

7.9.2 Hybrid Exact-Local Search . 115

8 Conclusions 118

8.1 Research contributions . 119

8.2 Results . 119

8.3 Future research directions . 119

4

List of Figures

1.1 Graph for the symmetrical Traveling Salesman Problem instance with

four cities. 16

2.1 Graphical representation of the minimal problem. 23

3.1 Two symmetrical examinations. 43

3.2 Disconnected components of sta83. The weight of each edge is indicated

by its thickness. 48

3.3 UETP: Minimal problem graph (5 examinations, 3 periods). 52

3.4 Difference in percentage from the optimal solution for 50 problem in-

stances. 55

5.1 Result comparison of this work with [1], and [2]. 83

7.1 A graphical representation of the schedule in the last line of Table 7.1. 99

7.2 A suboptimal schedule of cost 35 for the toy problem of Table 7.3. Each

job is depicted with a box, annotated with a label of the form x(y, z),
where x is the job identification number, y is the duration of the job,

and z is its due time. 101

7.3 The graph that corresponds to the schedule of Figure 7.2 102

7.4 (a) Both job i and job j have non-negative tardiness values (b) Job i has

no tardiness, but job j incurs tardiness 105

7.5 Assuming that job j3 has the same duration as the aggregated duration

of jobs j1 and j2, two cases for swapping them become possible. The

first one puts j1 first and j2 second and the other one puts j2 first and

j1 second. 110

7.6 Given a C-Path, this local search procedure swaps two non-consecutive

jobs (j1 and j2), and appropriately shifts the in-between jobs (j3) so as

to keep the C-Path property for all involved jobs. 111

5

7.7 Jobs belonging to two C-Paths swap places to reduce the length or even

remove gaps in the schedule. 112

7.8 Hybrid Exact-Local Search approach. 113

7.9 HELS approach compared with best known results derived from the

MAHYB approach in [3]. 116

7.10Cost values during the execution time, using the HELS approach. . . 117

6

List of Tables

1.1 Properties of items. 13

1.2 All solutions to the 0/1 knapsack instance. Infeasible solutions in red.

Optimal solutions in green. 14

1.3 All solutions to the 0/1 knapsack instance, with the lexicographical

rules. Infeasible solutions in red. Optimal solutions in green. 14

1.4 All solutions to the 0/1 knapsack instance, with the Integer variables

rules. Infeasible solutions in red. Optimal solutions in green. 15

1.5 Distances in minutes between cities. 16

1.6 All solutions to the symmetrical traveling salesman instance. Optimal

solutions in green. 17

1.7 All solutions to the symmetrical traveling salesman instance, starting

from City A. Optimal solutions in green. 18

1.8 All solutions to the symmetrical traveling salesman instance, starting

from City A and visiting City B before C. Optimal solutions in green. . 18

2.1 Solvers . 35

3.1 UETP: Problem Datasets . 41

3.2 Results for the Carter dataset . 45

3.3 Results for the ITC dataset . 46

3.4 Results for the D dataset . 47

3.5 Component sta83_62, sets of interchangable examinations and their

characteristics. 50

3.6 UETP: Q Matrix . 52

3.7 UETP: Q Matrix with bidirectional symmetry elimination 53

3.8 UETP: QUBO Instances and characteristics 54

3.9 Results . 55

4.1 PE-CTT: Dataset ITC2002 . 60

7

4.2 PE-CTT: Dataset ITC2007 . 60

4.3 ITC_2002 and ITC_2007 results . 67

5.1 TDTP: Descriptive Statistics for the Thesis Defense dataset 72

5.2 TDTP: Symmetry statistics . 74

5.3 TDTP: Symmetrical Sessions . 75

5.4 TDTP: Notation . 76

5.5 Lower Bounds obtained by the approximation method described in 5.6.2 80

5.6 Results comparison . 82

6.1 Single round robin tournament for 8 teams. 86

6.2 Single round robin tournament for 8 teams Home Away patterns. . . . 86

6.3 Single round robin tournament for 8 teams Breaks. 86

6.4 Single round robin tournament for 8 teams. All team have a home

break and an away break. 87

6.5 Descriptive Statistics for the ITC 2021 dataset 90

6.6 Results after three hours of execution time for each instance using the

hybrid process. Objective is presented as the tuple (deviation of hard

constraints, penalty of soft constraints). 96

7.1 A sample problem instance with 12 jobs. For each job i, the table shows

its duration pi and its due time di. Also, for a certain schedule, the table

shows for each job i its start time (Si), its completion time (Ci) and the

penalty it incurs (Ti). 99

7.2 Number of C-Paths for schedules of selected problem instances, which

can be found at https://github.com/chgogos/1MSTDC. 102

7.3 Problem instances in the dataset. For each pair of number of jobs and

maximum capacity, 10 individual problem instances exist. 103

7.4 Best results (total tardiness) from the CPO approach and the CPO+

approach. 115

7.5 Best previously known results (total tardiness) achieved from the MAHYB

approach, and results of the HELS approach. 115

7.6 HELS approach performance over best recorded results. 116

https://github.com/chgogos/1MSTDC

Acronyms

CB-CTT Curriculum-based course timetabling

COP Constraint Optimization Problem

CP Constraint Programming

CSP Constraint Satisfaction Problem

ITC International timetabling competition

LP Linear Programming

MINLP Mixed Integer Non Linear Programming

MIP Mixed Integer Programming

MIQP Mixed Integer Quadratic Programming

NLP Nonlinear Programming

NP Non Polynomial

PE-CTT Post-enrollment-based course timetabling

SAT Boolean Satisfiability

SBDD Symmetry Breaking by Dominance Detection

SBDS Symmetry Breaking During Search

QP Quadratic Programming

QUBO Quadratic Unconstrained Binary Optimization

TDTP Thesis defense timetabling problem

UETP Uncapacitated Examination Timetabling Problem

9

Chapter 1

Introduction

10

1.1 Context

Symmetry is a fundamental concept in both the natural and formal sciences, broadly

defined as the property by which an object, system, or equation remains invariant

under a set of transformations or operations. In academic discourse, symmetry is

often associated with notions of balance, proportion, and harmony, but it is more

rigorously characterized through mathematical formalism.

In mathematics and physics, symmetry refers to the invariance of a structure under

specific transformations such as reflection, rotation, translation, or scaling. These

transformations form a group under the framework of group theory, a branch of

abstract algebra. A system is said to exhibit symmetry if it is invariant under the

action of a symmetry group. For instance, a geometric figure like a square has

rotational symmetry of order four, as it appears identical when rotated by 90°, 180°,
270°, or 360°.

In theoretical physics, symmetry principles underpin the formulation of physical

laws. Symmetries are deeply linked to conservation laws through Noether’s theorem,

which states that every continuous symmetry of a physical system corresponds to a

conserved quantity. For example, spatial translational symmetry (the invariance of

a system of equations without rotation) is associated with the conservation of linear

momentum, while temporal symmetry (the concept that the laws of physics are the

same regardless of whether time is running forward or backward) corresponds to the

conservation of energy.

In biology, chemistry, and aesthetics, symmetry is observed in morphological struc-

tures, molecular configurations, and design patterns, often associated with notions

of stability, efficiency, and visual appeal.

Thus, symmetry serves as a unifying and organizing principle across disciplines,

providing insight into both the structural and dynamical aspects of complex sys-

tems.

Symmetry, linked to balance, harmony, and beauty, has been extolled in several

statements throughout the ages:

• “If measure and symmetry are absent from any composition in any degree, ruin

awaits both the ingredients and the composition... Measure and symmetry are

beauty and virtue the world over.” - Socrates

• “The mathematical sciences particularly exhibit order, symmetry, and limita-

tion; and these are the greatest forms of the beautiful.” - Aristotle

• “We find, therefore, under this orderly arrangement, a wonderful symmetry in

11

the universe, and a definite relation of harmony in the motion and magnitude

of the orbs, of a kind that is not possible to obtain in any other way.” - Johannes

Keple

• “Symmetry is what we see at a glance; based on the fact that there is no reason

for any difference, and based also on the face of man; whence it happens that

symmetry is only wanted in breadth, not in height or depth.” - Blaise Pascal

• “Nature seems to take advantage of the simple mathematical representations

of the symmetry laws. When one pauses to consider the elegance and the

beautiful perfection of the mathematical reasoning involved and contrast it

with the complex and far-reaching physical consequences, a deep sense of

respect for the power of the symmetry laws never fails to develop.” - Chen-Ning

Yang

• “To a physicist, beauty means symmetry and simplicity. If a theory is beautiful,

this means it has a powerful symmetry that can explain a large body of data

in the most compact, economical manner. More precisely, and equation is

considered to be beautiful if it remains the same when we interchange its

components among themselves.” - Michio Kaku

It is impossible to disagree with any of these significant scholars. This thesis though

adopts a grim approach to symmetry. For the field of combinatorial optimization in

specific:

• Symmetry is tedious.

• Symmetry is redundant.

• Symmetry is wasting resources.

• Symmetry is a bottleneck.

• Symmetry must be exterminated, if not possible, at least exploited.

Scheduling is subject to the No Free Lunch theorem by Wolpert et al. (1997) [4], for

a review of the theorem you are referred to Adam et al. (2019) [5].

12

1.2 Examples of symmetries in combinatorial opti-

mization problems.

To provide intuition for symmetries in combinatorial optimization problems two fun-

damental combinatorial optimization problems will be briefly examined for sym-

metries. Mathematical formulas are intentionally excluded from this introductory

section.

1.2.1 0/1 Knapsack

The 0/1 Knapsack Problem is a fundamental problem in combinatorial optimization.

Given a set of n items, where each item i has a positive integer value vi and weight

wi, and a knapsack of maximum capacity W , the goal is to determine the subset

of items to include in the knapsack such that the total value is maximized without

exceeding the knapsack’s capacity. Each item can be either included or excluded —

hence “0/1”.

The 0/1 Knapsack Problem is NP-complete, see [6]. However, it admits a pseudo-

polynomial time solution using dynamic programming with time complexity O(nW),
making it weakly NP-complete.

Suppose we have 4 items and a knapsack of capacity 8. Table 1.1 lists items’

properties:

Table 1.1: Properties of items.

Item (i) Value (vi) Weight (wi)

1 16 2

2 14 3

3 14 3

4 14 3

The goal is to choose a subset of items with total weight ≤ 8 that maximizes the total

value. In Table 1.2 both feasible and infeasible solutions are enumerated:

13

Table 1.2: All solutions to the 0/1 knapsack instance. Infeasible solutions in red.

Optimal solutions in green.

Solution Item 1 Item 2 Item 3 Item 4 Total weight Total value

1 0 0 0 0 0 0

2 0 0 0 1 3 14

3 0 0 1 0 3 14

4 0 0 1 1 6 28

5 0 1 0 0 3 14

6 0 1 0 1 6 28

7 0 1 1 0 6 28

8 0 1 1 1 9 42

9 1 0 0 0 2 16

10 1 0 0 1 5 30

11 1 0 1 0 5 30

12 1 0 1 1 8 44

13 1 1 0 0 5 30

14 1 1 0 1 8 44

15 1 1 1 0 8 44

16 1 1 1 1 11 58

So, this instance has 16 solutions in total, 2 are infeasible and 3 are optimal. If one

is to take a good look on Table 1.1 he will notice that items 2, 3 and 4 are identical.

In our optimal solutions two of these items as long as item 1 is selected. We can

exploit this symmetry in two ways.

Lexicographical

We enforce that someone can not choose item 3 if he hasn’t chosen item 2. We also

don’t allow choosing item 4 if item 3 is not also chosen. The solutions with this

approach are listed in Table 1.3.

Table 1.3: All solutions to the 0/1 knapsack instance, with the lexicographical rules.

Infeasible solutions in red. Optimal solutions in green.

Solution Item 1 Item 2 Item 3 Item 4 Total weight Total value

1 0 0 0 0 0 0

2 0 1 0 0 3 14

3 0 1 1 0 6 28

4 0 1 1 1 9 42

5 1 0 0 0 2 16

6 1 1 0 0 5 30

7 1 1 1 0 8 44

8 1 1 1 1 11 58

By eliminating the symmetries, this instance has 8 solutions in total, 2 are infeasible

14

and there is a single optimal solution.

Integer variables

We will alter our decision variables from binary to integer, one can choose an integer

number of similar items (up to the number of these items of course) and 0-1 for non

unique items. The solutions with this approach are listed in Table 1.4.

Table 1.4: All solutions to the 0/1 knapsack instance, with the Integer variables

rules. Infeasible solutions in red. Optimal solutions in green.

Solution Item 1 Counter for items (2,3,4) Total weight Total value

1 0 0 0 0

2 0 1 3 14

3 0 2 6 28

4 0 3 9 42

5 1 0 2 16

6 1 1 5 30

7 1 2 8 44

8 1 3 11 58

The result is the same as before, this instance has 8 solutions in total, 2 are infeasible

and there is a single optimal solution. This is to be excepted, we are eliminating the

same symmetries after all.

15

1.2.2 Symmetric Traveling Salesman Problem

The Traveling Salesman Problem is a classic problem in combinatorial optimization

and theoretical computer science. Imagine a salesman who needs to visit a bunch

of cities, but there’s a catch: they want to visit each city exactly once and return

to where they started. The objective is to take the shortest possible route. In the

symmetric version of the problem, the distance from city A to city B is the same as

from city B to city A.

Here’s a small example with four cities: A, B, C, and D. The distances, let’s say in

minutes, between them are shown in the graph in Figure 1.1 and Table 1.5.

CityA

CityB

10

CityC

10

CityD

2015

12

12

Figure 1.1: Graph for the symmetrical Traveling Salesman Problem instance with

four cities.

Table 1.5: Distances in minutes between cities.

City A City B City C City D

City A 0 10 10 20

City B 10 0 15 12

City C 10 15 0 12

City D 20 12 12 0

16

In Table 1.6 all solutions are enumerated:

Table 1.6: All solutions to the symmetrical traveling salesman instance. Optimal

solutions in green.

Solution Start City Second City Third City Last City Total time

1 City A City B City C City D 57

2 City A City B City D City C 44

3 City A City C City B City D 57

4 City A City C City D City B 44

5 City A City D City B City C 57

6 City A City D City C City B 57

7 City B City A City C City D 44

8 City B City A City D City C 57

9 City B City C City A City D 57

10 City B City C City D City A 57

11 City B City D City A City C 57

12 City B City D City C City A 44

13 City C City A City B City D 44

14 City C City A City D City B 57

15 City C City B City A City D 57

16 City C City B City D City A 57

17 City C City D City A City B 57

18 City C City D City B City A 44

19 City D City A City B City C 57

20 City D City A City C City B 57

21 City D City B City A City C 44

22 City D City B City C City A 57

23 City D City C City A City B 44

24 City D City C City B City A 57

There are 24 solutions in total. 8 of them are optimal. As the name implies the

symmetrical Traveling Salesman Problem is inherently symmetrical. Regardless of

the city that we start we will make a full circle. For this reason we choose to always

start from City A, we could have chosen any city in fact. The solutions are now listed

in Table 1.7.

17

Table 1.7: All solutions to the symmetrical traveling salesman instance, starting

from City A. Optimal solutions in green.

Solution Start City Second City Third City Last City Total time

1 City A City B City C City D 57

2 City A City B City D City C 44

3 City A City C City B City D 57

4 City A City C City D City B 44

5 City A City D City B City C 57

6 City A City D City C City B 57

We are now left with 6 solutions two of them optimal. But there is more, if we

examine the graph in Figure 1.1 we can see that the distances for Cities B and C

to other cities are the same (10 for City A and 12 for City D) the distance between

them is 15 bidirectional since this is the symmetrical version of the problem. If we

now enforce than one must travel first through City B and then C (lexicographical

approach) we can further eliminate symmetrical solutions. The result is shown in

Table 1.8.

Table 1.8: All solutions to the symmetrical traveling salesman instance, starting

from City A and visiting City B before C. Optimal solutions in green.

Solution Start City Second City Third City Last City Total time

1 City A City B City C City D 57

2 City A City B City D City C 44

3 City A City D City B City C 57

Finally there are three non symmetrical solutions to the problem instance, one of

them is optimal.

18

1.3 Motivations and objectives

The motivational factor for this thesis is the complexity of solving integer optimiza-

tion problems. I engage with deterministic single (mostly, sometimes multi but

they are not in the scopes of this thesis) objective combinatorial optimization prob-

lems both in Academia and professionally. Getting rid of symmetries in schedul-

ing and timetabling problems can provide huge benefits in the solution process.

For an overview on scheduling problems readers are referred to the work of Pinedo

(2022) [7].

The objectives are:

1. Use public available instances of scheduling and timetabling problems. So

there can be a comparison.

2. Identify symmetries and rewrite a model that either nullifies symmetries or at

least minimizes their effect.

3. For problems that allow for different solution methods, eliminate symmetries

for all methodologies.

4. Assess the impact of symmetry elimination on the solution methodology.

19

1.4 Structure of the thesis

The remaining chapters of the thesis are organized as follows. Chapter 2 provides

an overview of the methods that are used in this thesis.

The next three Chapters are dedicated to case studies from the world of educational

timetabling:

• Chapter 3 presents the Uncapacitated Examination Timetabling Problem. Mixed

Integer Programming, Metaheuristics and Quadratic unconstrained binary op-

timization is employed here. The instances are taken from real world datasets.

For the Quadratic Unconstrained Binary Optimization approach a new dataset

is constructed so that it can be tested on a Quantum annealer.

• Chapter 4 revolves around the Post Enrollment Course Timetabling Problem.

Mixed Integer Programming, Constraint Programming and Matheuristics (op-

timization algorithms that make use of mathematical programming (MP) tech-

niques in order to obtain heuristic solutions) are used here. Again the instances

are publicly available and used in benchmarking.

• Chapter 5 is dedicated to the Thesis Defense Timetabling Problem. Quadratic

programming and Constraint Programming manage to produce near optimal

or optimal for the most part solutions to two publicly available datasets.

Chapter 6 examines sports scheduling problems. Specifically Constraint Program-

ming and metaheuristics are used to provide solutions for round robin tournament

instances. The participation in the International Timetabling Competition of 2021 is

covered here.

Finally, the last case study is in Chapter 7. This time in the field of task scheduling,

constraint Programming is tested upon a task scheduling problem: One-Machine

Scheduling with Time-Dependent Capacity.

This thesis concludes in Chapter 8 with remarks and highlights of this work. A list

of publications by the author follows in 8.3.

20

Chapter 2

Methods

21

In this chapter an introduction of different methods with the equivalent problem

spaces and exact solvers is presented.

2.1 Linear Programming

2.1.1 Definition

Linear Programming (LP) is a mathematical optimization technique aiming at the

maximization or minimization of a linear objective function while taking into ac-

count a set of linear equality and/or inequality constraints. All of the relationships

between the variables in LP problems are linear, and the problems are formulated

over continuous decision variables. The standard form of a linear program is:

maximize (or minimize) cT x

subject to Ax ≤ b

x ≥ 0

where x ∈ Rn
is the vector of decision variables, c ∈ Rn

is the objective coefficient

vector, A ∈ Rm×n
is the matrix of constraint coefficients, and b ∈ Rm

is the vector of

constraint bounds.

Linear programming has been widely used in various domains such as operations

research, economics, engineering, transportation, and manufacturing. Classical

solution methods include the Simplex algorithm introduced by Dantzig (1963) [8],

Khachiyan (1979) [9] and Interior Point Methods as developed in later years, see

Kojima et al. (1989) [10].

For more comprehensive discussions and theoretical background about LP, see

works by Chvátal (1983) [11] and Bertsimas et al. (1997) [12].

2.1.2 Symmetries in LP

A symmetry in a linear program is a permutation or linear transformation, a function

between vector spaces that preserves vector addition and scalar multiplication, of

the variables that maps feasible solutions to feasible solutions without affecting the

objective function value.

A mapping π : Rn → Rn
is a symmetry if:

22

• Aπ(x) ≤ b ⇔ A ≤ b,

• cT (x) = cT π(x), for all feasible x.

As an example of a symmetrical LP consider:

maximize x1 + x2

subject to x1 + x2 ≤ 10

x1, x2 ≥ 0

Here, swapping x1 and x2 preserves feasibility and the objective value. But since the

feasible region is convex and the objective linear, this symmetry causes no perfor-

mance issues. The reason for this is that Simplex only examines only edge points

in Figure 2.1 only points A, B and C will be examined, any solution in x + y = 10 is

symmetrical and optimal.

Figure 2.1: Graphical representation of the minimal problem.

Symmetries in LP are often harmless and rarely require explicit handling. The na-

ture of Scheduling problems most often requires Integer variables, for this reason

LP problems will not be featured in this thesis. There are multiple reasons why

symmetries are benign in LP:

• Convexity: The feasible region of an LP is a convex polyhedron, so the presence

of symmetry does not create multiple disconnected feasible regions or cause

branching issues.

23

• Deterministic Solvers: Simplex and interior-point methods follow deterministic

paths (e.g., toward extreme points or through the interior), ignoring symmetri-

cal redundancies.

• Unique Optimal Solutions: Most LPs (after minor perturbations) have a unique

optimal solution, minimizing issues due to symmetry.

It is worth noting that there are cases (though rare) when symmetry in fact Does

matter in LP:

• Degenerate LPs: Where multiple basic feasible solutions have the same objec-

tive value; symmetry can cause cycling or performance issues in the simplex

method.

• Model simplification: Detecting symmetry can reduce model size or complexity

(e.g., aggregation in network flow models).

• Preprocessing or problem structure detection: In model generation, symmetry

may indicate redundant structure that could be exploited.

2.2 Mixed-Integer Programming

2.2.1 Definition

Mixed Integer Programming (MIP) is a class of optimization problems where some

decision variables are constrained to assume integer values, while others may be

continuous. It generalizes Linear Programming (LP) by introducing integrality con-

straints, which significantly increase the problem’s computational complexity. MIP

problems are NP-hard due to the combinatorial complexity introduced by integer

constraints. Unlike continuous linear programming, the feasible region in MIP is

non-convex and often requires enumerative techniques for exact solutions. MIP

models are extensively used in operations research, economics, engineering design,

and artificial intelligence to model decisions involving discrete choices, such as:

• Resource allocation

• Scheduling and timetabling

• Network design

• Capital budgeting

• Logistics and supply chain optimization

The general form of a MIP problem is:

24

minimize cT x

subject to Axk ≤ b k ∈ I +J

xi ∈ Z for i ∈ I

xj ∈ R for j ∈ J

where x ∈ Rn
, I ⊆ {1, . . . , n} is the index set of integer-constrained variables, A ∈

Rm×n
, b ∈ Rm

, and c ∈ Rn
.

MIP is used in a wide range of applications including scheduling, logistics, pro-

duction planning, and combinatorial optimization. Solving MIP problems is typically

NP-hard, and solution methods often rely on techniques such as branch-and-bound,

branch-and-cut. Further information about these methods can be consulted in

Nemhauser et al. (1988) [13] and Wolsey (1988) [14].

Significant advancements in solver technology have been made in recent decades,

with modern solvers leveraging strong formulations, preprocessing, heuristics, and

parallel computing. Achterberg (2009) [15],and Lodi (2009) [16] provide insights

about the implementation in solvers.

For a detailed mathematical and computational treatment, readers are referred to

Conforti et al. (2014) [17], and Bertsimas et al. (2005) [18].

2.2.2 Symmetries in MIP

Symmetries in MIP are fundamentally different from those in LP due to the convex

and continuous nature of LP solution spaces. Symmetries in MIP are structural

properties where different solutions (variable assignments) are equivalent in terms of

the objective function and feasibility. While symmetries may seem benign, they pose

significant challenges for MIP solvers by expanding the search space unnecessarily

and causing redundant exploration. See Liberti (2012) [19], Margot (2010) [20],

Pfetsch and Rehn (2019) [21].

Formally, a symmetry in a MIP model is a permutation of variables that maps feasible

solutions to other feasible solutions without changing the objective value. That is, a

mapping π : Rn → Rn
is a symmetry if:

• x is feasibleπ(x) is feasible,

• f (x) = f (π(x)) where f is the objective function.

Sources of symmetry can vary. Identical machines, facilities, or agents in assign-

25

ment and scheduling problems. Similar weighted edges in graph optimization prob-

lems. Binary decision variables that are interchangeable. In this thesis, focusing on

scheduling problems, different kinds of symmetries will be presented. Ranging over

educational timetabling, sports scheduling and job scheduling a plethora of these

symmetries will appear and of course will be dealt with.

Symmetries cause:

• Redundant search in branch-and-bound trees.

• Slow convergence due to exploration of symmetric solutions.

• Increased memory usage.

• In the worst case, exponential growth in the number of symmetric branches.

The detection of symmetries is sometimes being done by the solvers. Graph-based

approaches where a MIP is modeled as a colored graph and specialized tools find

automorphisms. Constraint analysis where solvers automatically identify symmetric

structures in constraints and variables. These techniques can provide significant

performance boosts when solving MIP models, however they fall short where Entities

which have a plethora of decision variables assigned for them can not be detected

by them.

Handling these symmetries can be done automatically in solvers using Orbitopes

(Kaible et al. (2008) [22]) and Orbital branching (Ostrowski et al. (2011) [23]). A

survey in symmetries in Integer programming was presented by Margot (2010) [24].

Symmetry breaking constraints that eliminate symmetric solutions can also be used

especially for symmetries that involve groups of variables.

2.3 Quadratic Programming

2.3.1 Definition

Quadratic Programming (QP) refers to the class of optimization problems where the

objective function is quadratic and the constraints are linear. QP is a fundamental

subclass of nonlinear programming and arises frequently in economics, finance,

machine learning (e.g., support vector machines), and control systems.

A standard QP problem is formulated as:

26

minimize
1

2
xT Qx + cT x

subject to Ax ≤ b,

Ex = d,

x ∈ Rn,

where:

• x ∈ Rn
is the vector of decision variables,

• Q ∈ Rn×n
is a symmetric matrix defining the quadratic part of the objective,

• c ∈ Rn
is a vector defining the linear part,

• A ∈ Rm×n
, b ∈ Rm

represent inequality constraints,

• E ∈ Rp×n
, d ∈ Rp

represent equality constraints.

When Q is positive semidefinite, symmetric matrix where the quadratic form, formed

by multiplying the matrix with a vector and its transpose, is always non-negative for

any vector, the QP is convex and can be solved efficiently using interior-point meth-

ods, active-set methods, or gradient-based algorithms, Nocedal et al. (2006) [25]. If

Q is not positive semi-definite, the problem is non-convex and generally harder to

solve due to the possibility of local minima.

Quadratic programming plays a key role in machine learning—particularly in sup-

port vector machines (SVMs) Cortes et al. (1995) [26]—and in portfolio optimization

problems in finance Markowitz (1952) [27].

2.3.2 Symmetries in QP

Symmetries in Quadratic Programming (QP) present a richer and more nuanced

landscape than in Linear Programming (LP) due to the nonlinear objective function.

These symmetries can impact both theory and computation, especially in non-convex

QPs or when integer variables are involved (e.g., in MIQPs: Mixed Integer Quadratic

Programs).

A symmetry in QP is a permutation or linear transformation of the variables that

preserves the feasible set and the objective function value.

Formally, a permutation π ∈ Sn is a symmetry if for all feasible x:

1

2
xT Qx + cT x =

1

2
πxT Qx + cT π(x)

27

Where Q = PT QP P is the permutation matrix, c = PT c and that all constraints are

preserved.

Structural symmetry is especially common in portfolio optimization, energy systems,

and combinatorial QP models. In convex QPs, symmetry is usually benign, similar

to LP. In non-convex QPs, symmetry can cause:

• Multiple local minima,

• Redundant search space in global optimization,

• Difficulty in branch-and-bound or spatial branch-and-bound.

In MIQPs, symmetries cause the same computational issues as in MIPs, plus the

added complexity of nonlinearity.

Symmetry-Breaking in QP may contain:

• Symmetry-breaking constraints: Imposed to reduce redundant solutions.

• Reformulations: Exploit symmetry to simplify the QP (e.g., by block-diagonalizing

Q).

• Orbital Branching & Isomorphism Pruning: Extended to QP/MIQP from MIP

theory.

• Group-theoretic methods: Used to analyze and exploit symmetry in non-convex

QP models.

2.4 Constraint Programming

2.4.1 Definition

Constraint Programming (CP) is a paradigm for solving combinatorial problems that

involves specifying a set of variables, their respective domains, and a collection of

constraints that restrict the values the variables can simultaneously take. Unlike

traditional optimization methods, CP focuses on feasibility—finding an assignment

that satisfies all constraints—and supports a rich set of variable types and constraint

expressions.

A Constraint Satisfaction Problem (CSP) is formally defined as the triplet (X, D, C),
where:

• X = {x1, x2, . . . , xn} is a finite set of variables,

• D = {D1, D2, . . . , Dn} is a set of finite domains, where xi ∈ Di,

28

• C = {c1, c2, . . . , cm} is a set of constraints over subsets of X .

A solution is an assignment of values to all variables such that all constraints in C

are satisfied. CP can also be extended to Constraint Optimization Problems (COPs)

by associating an objective function to be minimized or maximized, adding an opti-

mization layer to feasibility.

CP is especially powerful in dealing with scheduling, timetabling, configuration, and

resource allocation problems due to its expressiveness and support for global con-

straints, Rossi et al. (2006) [28]. Constraint propagation, domain reduction, back-

tracking search, and consistency techniques (e.g., arc-consistency) are key algorith-

mic foundations see Mackworth (1977) [29], and van Hentenryck (1989) [30].

CP is often implemented through declarative modeling languages and solvers, see

Nethercote et al. (2007) [31].

Although similar there are structural differences from MIP:

• CP focuses on constraint satisfaction; MIP focus on optimization (though CP

can optimize too).

• CP handles logical constraints and combinatorial structures more naturally.

• MIP models rely on linear or nonlinear algebraic constraints; CP can handle

arbitrary constraints.

• CP search is often guided by domain reduction and propagation rather than

relaxations.

2.4.2 Symmetries in CP

While the causes for symmetries in CP remain the same, handling them is done

differently. CP uses symmetry-breaking constraints, dynamic symmetry breaking,

and symmetry-aware search heuristics. Tools like SBDS (Symmetry Breaking During

Search) and SBDD (Symmetry Breaking by Dominance Detection) are common. For

a review on symmetry breaking in the world of CP, see Gent et al. (2000) [32]. The

focus of CP is mainly feasibility so this is a topic often neglected. In this thesis a few

symmetry breaking constraints will be applied to be exploited by CP solvers.

29

2.5 Non Linear

2.5.1 Definition

Nonlinear Programming (NLP) refers to the process of solving optimization problems

where the objective function and/or at least one constraint is nonlinear. These prob-

lems are generally more difficult to solve than their linear counterparts due to issues

such as non-convexity, multiple local optima, and complex feasible regions.

A general NLP problem is formulated as:

minimize f (x)

subject to gi(x) ≤ 0, i = 1, . . . , m

x ∈ Rn

where f : Rn → R is a nonlinear objective function, gi(x) are inequality con-

straints.

Solving NLPs typically involves iterative numerical methods, such as:

• Gradient-based methods (e.g., Sequential Quadratic Programming, Interior

Point Methods)

• Derivative-free methods (e.g., Genetic Algorithms, Simulated Annealing)

• Convex optimization techniques for special cases when convexity is present

NLP has broad applications in engineering design, economics, machine learning,

control systems, and energy optimization, see Nocedal et al. (2006) [25] and Bert-

sekas (1999) [33]. Conditions for optimality, such as the Karush-Kuhn-Tucker (KKT)

conditions (1951) [34], play a central role in theoretical analysis and algorithm de-

velopment.

2.5.2 Symmetries in NLP

Similar to MIP, symmetry can cause redundant search and slow convergence. Sym-

metry detection and breaking techniques from MIP can be adapted. Nonlinearities

add complexity to symmetry exploitation.

30

2.6 Metaheuristics

2.6.1 Definition

Metaheuristics are high-level, problem-independent algorithmic frameworks designed

to find good-quality solutions to complex optimization problems, especially when ex-

act methods are impractical due to problem size or complexity.

They balance exploration (searching new areas) and exploitation (refining known

good solutions) through iterative improvement, randomization, and adaptive mech-

anisms.

Metaheuristics are divided into subcategories:

• Evolutionary Algorithms (EAs): Inspired by natural evolution, e.g., Genetic

Algorithms (GA).

• Swarm Intelligence: Inspired by collective behavior, e.g., Particle Swarm Opti-

mization (PSO), Ant Colony Optimization (ACO).

• Local Search and Neighborhood Search: e.g., Simulated Annealing (SA), Tabu

Search (TS).

• Hybrid Methods: Combine elements of different metaheuristics or combine

metaheuristics with exact methods.

Metaheuristics recently have gained a bad name. The widespread introduction of

metaphor-based metaheuristics has led to a surge of algorithms whose novelty and

scientific grounding are often questionable, see Sorensen (2013) [35]. There is even

a hilarious Gihub page titled Evolutional Computation Bestiary
1

that is trying to

collect all the metaphor-based metaheuristics. The arguments against this situation

are valid but this should not discourage anyone from trying out metaheuristics. They

are proven to be effective in a variety of situations and complex scenarios.

Metaheuristics do not guarantee optimality but often find near-optimal solutions

efficiently. They are widely applicable across domains: scheduling, routing, ma-

chine learning, design, bio-informatics. Parameters and operators are often tuned

to problem specifics. They have been proven effective on large, nonlinear, multi-

modal, or combinatorial problems. For overviews in Metaheuristics, see Blum et al.

(2003) [36], Glover and Kochenberger (2003) [37], and Talbi (2009) [38].

1
https://fcampelo.github.io/EC-Bestiary/

31

https://fcampelo.github.io/EC-Bestiary/

2.6.2 Symmetries in Metaheuristics

Symmetries in metaheuristics refer to situations where multiple solutions are equiv-

alent under some transformation (like variable permutations), causing the search

algorithm to explore redundant or equivalent regions of the solution space. This

can slow convergence or lead to wasted computational effort. A study on integrating

symmetry-breaking techniques in evolutionary algorithms was presented by Morris

and Segura (2014) [39].

As in MIP the causes for symmetry remain the same their effect however on Meta-

heuristics differs:

• Redundant Search: Without addressing symmetry, metaheuristics may repeat-

edly explore symmetric solutions.

• Premature Convergence: Symmetry can cause the search to get stuck cycling

among equivalent solutions.

• Reduced Diversity: Solution diversity decreases if symmetric solutions domi-

nate the population or candidate set.

Symmetry handling is consequently different:

• Symmetry-Breaking Operators: Custom crossover, mutation, or neighborhood

operators designed to avoid generating symmetric solutions.

• Diversity Preservation: Maintaining a diverse population to reduce the chance

of getting trapped in symmetric regions.

• Memory Structures: Using tabu lists or archives to prevent revisiting symmet-

ric solutions.

• Problem Reformulation: Incorporating symmetry-breaking constraints or re-

formulating the problem to minimize symmetry.

2.7 Quadratic unconstrained binary optimization

2.7.1 Definition

Quadratic Unconstrained Binary Optimization (QUBO) is a mathematical formula-

tion used to express a wide range of combinatorial optimization problems. A QUBO

problem seeks to minimize a quadratic objective function over binary variables with-

out any explicit constraints. QUBO can express constrained problems by incorpo-

rating penalty terms into the quadratic objective.

32

The standard QUBO formulation is:

minimize xT Qx

subject to x ∈ {0, 1}n

where x is a binary vector of decision variables and Q ∈ Rn×n
is a symmetric matrix

of coefficients. The objective function may include both linear and quadratic terms

due to the form of Q.

QUBO is equivalent to Ising models in statistical physics and has applications in

combinatorial optimization, machine learning, finance, and particularly in quan-

tum annealing and adiabatic quantum computing, Ising formulations of many NP

problems are presented by Lucas (2014) [40]. The QUBO formulation serves as the

standard input for quantum annealers like those developed by D-Wave Systems, for

a description of adiabatic quantum computation [41].

Many NP-hard problems, including Max-Cut, Graph Coloring, and Set Packing, can

be reformulated as QUBO problems see Glover et al. (2018) [42]. Methods for solving

QUBO problems include classical metaheuristics (e.g., Tabu Search, Simulated An-

nealing), semi-definite programming relaxations, and emerging quantum hardware

approaches [43]. All MIP and many combinatorial problems can be reformulated as

QUBO. QUBO generalizes unconstrained binary quadratic programming.

A nice introduction to the subject can be found at Glover et al. (2022) [44]. More

specifically, QUBO models have been tried for several scheduling and timetabling

problems by Stollenwerk et al. (2016) [45]. For example the nurse scheduling

problem has been addressed using QUBO by Ikeda et al. (2019) [46]. Other examples

can be found in Castillo et al. (2022) [47], Huang et al. (2024) [48].

Another resource that is worth mentioning is: List of QUBO formulations
2

which

presents a list of QUBO formulations for several optimization problems.

Quantum computing is a fascinating relatively new computing paradigm that holds

the promise of surpassing the limits of computation that currently exist. It is based

on a new non Von Neumann architecture and several technology companies invest

large amounts of money and resources in an effort to realize such systems. D-Wave

is a leading company for quantum computing and in this experiments I use the so-

called hybrid solver of D-Wave for the experiments. An evaluation of quantum and

hybrid solvers for combinatorial problems can be found by Bertuzzi et al. [49].

2
https://blog.xa0.de/post/List-of-QUBO-formulations

33

https://blog.xa0.de/post/List-of-QUBO-formulations/

2.7.2 Symmetries in QUBO

Symmetry arises when permuting variables leaves the quadratic form invariant:

xT Qx = π(x)T Qπ(x)

Such symmetries can be exploited to reduce problem size or improve solver efficiency

when solved on a classical computer or improve the solvers accuracy when solved

with non von Neumann architectures. In the case of annealers where couplings i.e.,

how many connections exist between the qubit variables, or how many constants are

non zero in the objective function if you prefer, is especially important. Eliminating

these symmetries can result in less decision variables and couplings.

2.8 Boolean satisfiability problem

2.8.1 Definition

Boolean Satisfiability (SAT) is the problem of determining whether there exists an

assignment of truth values to Boolean variables that makes a given propositional

logic formula true. It is the first problem that was proven to be NP-complete by

Cook (1971) [50] and plays a central role in automated theorem proving, theoretical

computer science, artificial intelligence, and formal methods. Modern SAT solvers

efficiently handle very large problem instances with millions of variables and clauses.

An overview on SAT is provided by Biere et al (2009) [51].

A SAT problem is typically represented in Conjunctive Normal Form (CNF), where

a formula is a conjunction of clauses, and each clause is a disjunction of literals.

Formally, given a Boolean formula φ(x1, . . . , xn), the SAT problem asks whether there

exists an assignment xi ∈ {0, 1} such that φ evaluates to true.

A simple CNF formula:

(x1 ∨ ¬x2) ∧ (x2 ∨ x3)

is satisfiable, for example with x1 = 1, x2 = 0, x3 = 1.

Modern SAT solvers are based on conflict-driven clause learning (CDCL) Marques-

Silva et al. (2009) [52] and utilize various heuristics for variable selection, backtrack-

ing, and clause learning. Despite the NP-completeness of the problem, solvers like

MiniSAT, Eén et al. (2003) [53] and Glucose, Audemard et al. (2018) [54] perform

efficiently on large-scale industrial instances.

SAT has broad applications in hardware and software verification, model checking,

34

automated planning, cryptanalysis, and as a foundation for other decision problems

such as SMT (Satisfiability Modulo Theories) see Barrett et al. [55] and MaxSAT.

2.8.2 Symmetries in SAT

Symmetry in SAT instances can cause solvers to explore redundant branches. Sym-

metry breaking techniques (adding constraints or using symmetry-aware heuristics)

improve solver efficiency. Tools for detecting symmetries include graph automor-

phism software like nauty and saucy exist. Concept from CP like the ones presented

by Gent and Smith (2000) [32] can also be extended to SAT.

2.9 Solvers

It is difficult or even unfair to link specific solvers to specific methods as usually

they are capable of executing more than a single method. A non-exhaustive list

is presented in Table 2.1. Only single objective problems without uncertainty are

considered here as this is the type of problems this thesis examines.

Table 2.1: Solvers

Solver LP MIP MIQP MINLP CP

ILOG CPLEX
1 ✓ ✓ ✓ ✓

Gekko
2 ✓ ✓ ✓ ✓

Gurobi
3 ✓ ✓ ✓ ✓

Hexaly
4 ✓ ✓ ✓ ✓

Highs
5 ✓ ✓ ✓

Insideopt-seeker
6 ✓ ✓ ✓ ✓

Knitro
7 ✓ ✓ ✓ ✓

MOSEK
8 ✓ ✓ ✓

OR-Tools
9 ✓ ✓ ✓

SCIP
10 ✓ ✓ ✓ ✓

3 4 5 6 7 8 9 10 11 12

3
https://www.ibm.com/products/ilog-cplex-optimization-studio

4
https://gekko.readthedocs.io/en/latest

5
www.gurobi.com

6
www.hexaly.com

7
https://highs.dev

8
https://insideopt.com

9
www.artelys.com/solvers/knitro

10
www.mosek.com

11
https://developers.google.com/optimization

12
www.scipopt.org

35

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://gekko.readthedocs.io/en/latest/
https://www.gurobi.com/
https://www.hexaly.com/
https://highs.dev/
https://insideopt.com/
https://www.artelys.com/solvers/knitro/
https://www.mosek.com/
https://developers.google.com/optimization
https://www.scipopt.org/

Different packages exist for metaheuristics for Python MEALPY
13

and DEAP
14

, for

Julia Optimization.jl
15

among others.

For QUBO D-Wave
16

and Qiskit
17

are prominent at this time.

For SAT CaDiCaL
18

, Glucose
19

, MaxSAT Evaluations
20

, and MiniSat
21

can serve as

starting points.

13
https://mealpy.readthedocs.io/en/latest/pages/general/introduction.html

14
https://deap.readthedocs.io/en/master

15
https://docs.sciml.ai/Optimization/stable

16
www.dwavequantum.com

17
https://www.ibm.com/quantum/qiskit

18
https://fmv.jku.at/cadical

19
https://www.labri.fr/perso/lsimon/research/glucose

20
https://maxsat-evaluations.github.io

21
http://minisat.se

36

https://mealpy.readthedocs.io/en/latest/pages/general/introduction.html
https://deap.readthedocs.io/en/master/
https://docs.sciml.ai/Optimization/stable/
https://www.dwavequantum.com/
https://www.ibm.com/quantum/qiskit
https://fmv.jku.at/cadical/
https://www.labri.fr/perso/lsimon/research/glucose/
https://maxsat-evaluations.github.io/
http://minisat.se/

Chapter 3

Case Study: Uncapacitated Examination Timetabling

Problem

37

The Uncapacitated Examination Timetabling Problem is presented in this Chapter.

A MIP approach augmented with Metaheuristics and CP, leads to the first proven

optimal result of an instance. Additionally, a new dataset is generated and tested in

a Quantum Annealer.

3.1 Problem description

The Uncapacitated Examination Timetabling Problem (UETP) is a classic timetabling

problem. The task is to schedule examinations in available periods such as that

no student has to take more than one examination in each period. Moreover, the

resulting timetable should have adequate distances among examinations for all stu-

dents so as to promote better preparation and less anxiety. Carter et al. (1996) [56],

provided 13 real world instances which became known as the Carter datasets and

are since used frequently as benchmarks.

Each UETP instance contains information about the set of examinations that each

student is enrolled in. Each instance has a specific number of periods that can be

used to schedule the examinations to. The single hard constraint is that no student

is allowed to participate in more than one examination per period. To allow time for

each student to study between his examinations, for each student s, for each pair of

examinations taken by s, a penalty of 16 is imposed if the two examinations occur

in adjacent time slots (called distance 1), penalty 8 is imposed for distance 2, 4 for

distance 3, 2 for distance 4, and 1 for distance 5.

The natural way to represent an instance is as a pair consisting of the number

of available periods P and an undirected weighted graph G = (V,E) where each

vertex in V is an examination and each edge in E connects two examinations with

common students. The weight of each edge is the number of common students for

the examinations it connects.

3.1.1 UETP formulation terms

In this section, terms that are used throughout later are defined. Set S is the set of

students, set X is the set of examinations and set P is the set of periods, arranged in

1..P consecutive time-slots. For each student s ∈ S, Xs is the subset of examinations

that student s is enrolled to. As mentioned before V is the set of vertices and E is

the set of edges of the corresponding graph G. The number of common students

between two examinations xi , xj ∈ X is given by wxi ,xj , while the number of enrolled

38

students in each examination xi is given by rxi . Finally, bxi is the set of examinations

that have common students with examination xi.

3.2 Related Work

Early foundational work by Carter et al. (1996) [56] introduced a standardized

dataset and benchmark problems that have been extensively used for evaluation

in the literature. These datasets and the associated performance metrics laid the

groundwork for comparative studies in the field.

Heuristic and metaheuristic approaches have dominated the research landscape

for UETP. Techniques such as simulated annealing, tabu search, and genetic al-

gorithms have been widely applied. For instance, Burke and Newall (1999) [57]

applied a heuristic-based approach that combined hill-climbing with heuristic or-

dering, achieving competitive results on benchmark datasets.

More advanced metaheuristics, such as ant colony optimization and hybrid evolu-

tionary algorithms, have also been explored. Socha, Knowles, and Samples (2002) [58]

introduced a MAX-MIN Ant System tailored for the UETP, which showed promising

results compared to traditional heuristics.

Graph coloring is another common modeling framework for the UETP, where exams

are treated as vertices and student conflicts are represented as edges. Di Gaspero

and Schaerf (2001) [59] investigated local search techniques within this graph-based

representation, highlighting the effectiveness of neighborhood structures and move

operators .

In recent years, hybrid models combining integer programming with metaheuris-

tics have gained attention for their balance of solution quality and computational

efficiency. Pillay (2014) [60] provides a comprehensive survey of these hybrid ap-

proaches, comparing the strengths and weaknesses of different algorithms across

multiple variants of the examination timetabling problem.

Despite the lack of room constraints in UETP, soft constraints such as exam spread

(spacing exams for individual students), compactness, and fairness continue to drive

algorithmic improvements. The continued evolution of benchmark datasets and

objective functions reflects the dynamic nature of this research area.

In [61] our team presented a novel way of estimating lower bounds for UETP in-

stances was proposed. Ideas about symmetry elimination, problem decomposition

and cleansing of the instances were also presented there.

39

3.3 Datasets

The standard benchmark dataset for UETP is Carter’s dataset (a.k.a. Toronto dataset).

Those instances were contributed in [56] back in 1996 and since then were used in

many papers. Recently, 19 new instances that are modified versions of other more

complex formulations, were added by Bellio et al. [62]. All of them are publicly

available in https://opthub.uniud.it/ which is a site that hosts definitions,

datasets and solutions of several timetabling problems that have attracted the inter-

est of the timetabling community.

The characteristics of the instances used in this paper are shown in Table 3.1. Con-

flict density is a metric that is computed by dividing the number of edges of the

problem’s corresponding graph by n(n − 1)/2, where n is the number of vertices.

Moreover, the table presents the best known values that were obtained by solutions

that was downloaded from https://opthub.uniud.it/ in April 2022. Costs

assume integer values and since the problem is of minimization nature, lower val-

ues are favored. Normalized costs are shown in the rightmost column of the table

and are computed by dividing each integer cost by the corresponding number of

students.

40

https://opthub.uniud.it/
https://opthub.uniud.it/

Table 3.1: UETP: Problem Datasets

Instance id Exams Students Periods Conflict density Best known cost Best known normalized cost

car92 543 18419 32 0.137986 67084 3.6421

car91 682 16925 35 0.128386 71727 4.2379

ear83 190 1125 24 0.266945 36473 32.4204

hec92 81 2823 18 0.420679 28325 10.0337

kfu93 461 5349 20 0.055579 68462 12.7990

lse91 381 2726 18 0.062592 26643 9.7737

pur93 2419 30029 42 0.029495 120144 4.0009

rye93 486 11483 23 0.075279 89999 7.8376

sta83 139 611 13 0.143989 95947 157.0327

tre92 261 4360 23 0.180696 33094 7.5904

uta92 622 21266 35 0.125557 62675 2.9472

ute92 184 2749 10 0.084937 68090 24.7690

yor83 181 941 21 0.288889 32375 34.4049

ITC2007_1 607 7883 54 0.050495 5628 0.7139

ITC2007_2 870 12484 40 0.011695 1538 0.1232

ITC2007_3 934 16365 36 0.026187 20768 1.2690

ITC2007_4 273 4421 21 0.149968 47869 10.8276

ITC2007_5 1018 8719 42 0.008693 1567 0.1797

ITC2007_6 242 7909 16 0.061555 30343 3.8365

ITC2007_7 1096 13795 80 0.019323 262 0.0190

ITC2007_8 598 7718 80 0.045489 409 0.0530

ITC2007_9 169 624 25 0.078402 2909 4.6619

ITC2007_10 214 1415 32 0.049713 12184 8.6106

ITC2007_11 934 16365 26 0.026187 54347 3.3209

ITC2007_12 78 1653 12 0.184482 10631 6.4313

D1-2-17 281 37 38 0.053254 2428 65.6216

D5-1-17 277 43 45 0.087166 3653 84.9535

D5-1-18 306 49 45 0.066560 3245 66.2245

D5-2-17 344 43 45 0.092447 8362 194.4651

D5-2-18 425 47 59 0.083629 6619 140.8298

D5-3-18 132 43 22 0.081309 1406 32.6977

D6-1-18 511 57 60 0.059975 9793 171.8070

D6-2-18 539 57 78 0.067639 7883 138.2982

3.4 Symmetries

This section explores the structure of the problem and identifies underlying symme-

tries. It suggests ways to exploit these symmetries, aiming to reduce the complexity

of the search space. Both exact and approximate solvers can benefit from symmetry

breaking.

3.4.1 Bidirectional symmetry

It can be observed that if the period px that each examination x is scheduled to,

changes to P − px , then we effectively get the original solution reversed. Since the

cost is computed based on the distance among periods of scheduled examinations,

it stays unaffected when reverse occurs, as demonstrated in equation 3.1.

41

∣∣∣pxi − pxj

∣∣∣ = ∣∣∣P − pxi − (P − pxj)
∣∣∣ ∀xi , xj ∈ X (3.1)

So, in order to break this type of symmetry, two examinations xi and xj with common

students can be selected and impose inequality 3.2.

pxi < pxj ∀xi , xj ∈ X : (xi , xj) ∈ E (3.2)

3.4.2 Interchangeable examinations

Let I be a set of sets where all examinations in a set are not adjacent with other

examinations in the same set and each examination has edges to the same other

examinations with equal weight values. In mathematical terms examinations xi and

xj with neighbor sets bxi and bxj respectively belong to set I if equations in 3.3 hold.

All examinations in each set of I must be scheduled at the same “best” period in an

optimal solution. Since the examinations of each set are not in conflict, and each

examination conflicts with exactly the same other examinations, there is no benefit

in positioning them in different periods.

bxi ≡ bxj

wxi ,xn = wxj ,xn xn ∈ bxi

(3.3)

The symmetry involving examinations in I can be broken by imposing constraints

that schedule at the same period, all examinations of each set in it.

Another symmetry is revealed by defining set I+ as a set of sets where all exami-

nations in a set are adjacent with all other examinations in the same set and each

examination has edges to the same other examinations using the same weight val-

ues. The set I+ is formally defined in equations 3.4, where the symmetric difference

of neighbor sets bxi and bxj of every pair of examinations xi and xj in a set of I+ is

equal to {xi , xj}.

bxi △ bxj =
{
xi , xj

}
wxi ,xn = wxj ,xn ∀xn ∈ bxi : xn , xj

(3.4)

The symmetry involving examinations in I+ can be broken by imposing constraints

to artificially order (e.g. by id) examinations belonging to the same set. In Figure 3.1,

two examinations are symmetrical, A with B.

42

A
B4

C

1

D

2

1

2

Figure 3.1: Two symmetrical examinations.

3.5 Mixed Integer Programming

As optimality is the main concern the first thoughts that come to mind are Linear

Programming and Mixed Integer Programming. The mathematical model described

below can solve an UETP instance, provided that the instance size is manageable. For

a graph G = (V,E) where vertices V serve as the exams, each edge in E means that

two examinations have common students. The weight of an edge Wv1,v2
connecting

vertices v1 and v2 is equal to the number of common students these examinations

have. P is the number of available periods.

The integer decision variables pv in Equation 3.5 denote the period each examination

v will take place while the derived binary decision variables in Equation 3.6 help us

to activate or deactivate penalties in the objective function in Equation 3.7. In par-

ticular variable y16v1,v2
assumes value 1 when examinations v1 and v2 are positioned

1 period away from each other or 0 otherwise. Likewise, y8v1,v2
, y4v1,v2

, y2v1,v2
and

y1v1,v2
are for distances of 2, 3, 4 and 5 periods correspondingly, between examina-

tions v1 and v2. The constraint in Equation 3.8 forces examinations with common

students to take place in different periods. Equation 3.9 forces binary decision vari-

ables in Equation 3.6 to indicate the distance between two exams. Equations 3.8

and 3.9 are obviously non linear, so the logical constraints feature of IBM ILOG

CPLEX was used to model both of them. In particular, for Equation 3.8 the operator

!= having meaning “different from” was used, while for Equation 3.9 the operator

== means “equivalence”. IBM ILOG CPLEX uses a method called logical constraints

extraction that automatically transforms logical constraints into equivalent linear

formulations. This transformation involves automatic creation of new variables and

constraints. Note that for each equality of Equation 3.9, the right part consists of

adding two equivalences that could not possible be both true at the same time (i.e.,

the equivalences have the same left part but different right parts). This ensures that

the variable at the left part of the equality assumes a binary value. Equation 3.10

allows only one of the penalty indicating variables in Equation 3.6 to be active at

43

any time. This constraint is redundant but its presence seems to help the solver in

reaching better solutions.

pv ∈ [0, P) ∀v ∈ V (3.5)

y16v1,v2
∈ {0, 1} ∀(v1, v2) ∈ E

y8v1,v2
∈ {0, 1} ∀(v1, v2) ∈ E

y4v1,v2
∈ {0, 1} ∀(v1, v2) ∈ E

y2v1,v2
∈ {0, 1} ∀(v1, v2) ∈ E

y1v1,v2
∈ {0, 1} ∀(v1, v2) ∈ E

(3.6)

min 16 ∗
∑

v1,v2∈E

Wv1,v2
∗ y16v1,v2

+8 ∗
∑

v1,v2∈E

Wv1,v2
∗ y8v1,v2

+ 4 ∗
∑

v1,v2∈E

Wv1,v2
∗ y4v1,v2

+2 ∗
∑

v1,v2∈E

Wv1,v2
∗ y2v1,v2

+
∑

v1,v2∈E

Wv1,v2
∗ y1v1,v2

(3.7)

Subject to:

pv1
, pv2

∀(v1, v2) ∈ E (3.8)

y16v1,v2
= (pv1

− pv2
= 1) + (pv1

− pv2
= −1) ∀(v1, v2) ∈ E

y8v1,v2
= (pv1

− pv2
= 2) + (pv1

− pv2
= −2) ∀(v1, v2) ∈ E

y4v1,v2
= (pv1

− pv2
= 3) + (pv1

− pv2
= −3) ∀(v1, v2) ∈ E

y2v1,v2
= (pv1

− pv2
= 4) + (pv1

− pv2
= −4) ∀(v1, v2) ∈ E

y1v1,v2
= (pv1

− pv2
= 5) + (pv1

− pv2
= −5) ∀(v1, v2) ∈ E

(3.9)

y16v1,v2
+ y8v1,v2

+ y4v1,v2
+ y2v1,v2

+ y1v1,v2
≤ 1 ∀(v1, v2) ∈ E (3.10)

In order to break a symmetry of the problem we enforce an order over the examina-

tions belonging to each set. This is formulated in Equation 3.11, where members of

each set S of the sets in I+ are ordered among each other.

vi ≤ vi+1 ∀vi ∈ S : i ∈ 1 . . . S − 1, ∀S ∈ I+ (3.11)

44

Table 3.2: Results for the Carter dataset

Instance id Exams Students

Conflict

Density
Best known

cost

Best known

normalized cost

car92_1(E533_S18328_ID1) 533 18328 0.143139 67084 3.6421

car91_1(E669_S16750_ID1) 669 16750 0.133375 71727 4.2379

ear83_1(E190_S1125_ID1) 190 1125 0.266945 36473 32.4204

hec92_1(E81_S2823_ID1) 81 2823 0.420679 28325 10.0337

kfu93_1(E428_S5194_ID1) 428 5194 0.064326 68462 12.7990

lse91_1(E378_S2724_ID1) 378 2724 0.063576 26643 9.7737

pur93_1(E2336_S29766_ID1) 2336 29766 0.031566 120144 4.0009

rye93_1(E485_S11425_ID1) 485 11425 0.075590 89999 7.8376

sta83_1(E30_S162_ID1) 30 162 0.717241
∗
16002

∗
26.1899

sta83_2(E47_S210_ID3) 47 210 0.351526
∗
47250

∗
77.3322

sta83_3(E62_S239_ID4) 62 239 0.364357
∗
32695

∗
53.5106

tre92_1(E258_S4355_ID1) 258 4355 0.184840 33094 7.5904

uta92_1(E617_S21264_ID1) 617 21264 0.127539 62675 2.9472

ute92_1(E7_S20_ID30) 7 20 0.904762
∗
645

∗
0.2346

ute92_2(E177_S2729_ID1) 177 2729 0.090588 67445 24.5344

yor83_1(E181_S941_ID1) 181 941 0.288889 32375 34.4049

3.6 Results

Some problems are decomposed to subproblems. For most instances a number of

examinations and students are removed since they are in effect noise. The resulting

subproblems are presented in Tables 3.2, 3.3, 3.4. The name of each subproblem

follows the pattern d_i_(Ex_Sy_IDz), where d is the name of the originating instance,

i is a number that assumes value 1 for the smallest subproblem and is incremented

by 1 for each subsequent subproblem (subproblems are ordered by size = number of

exams), x is the number of examinations, y is the number of students and z is the

smallest examination number that exists in the subproblem. Number z is needed in

order to differentiate among subproblems having the same number of examinations

and same number of students. This is indeed the case for subproblems D1-2-17_1

and D1-2-17_2 that both have 8 examinations and 1 student but in the first case the

identifying examination is 217 while for the second case the identifying examination

is 257. Note that the number of examinations and the number of students exclude

noise examinations and noise students respectively. Again, the presence of symbol

∗ denotes that the corresponding integer cost is optimal. It should be also noted

that the normalized cost is computed by dividing the integer cost by the number of

students (including noise ones) that exists in the originating instance. We opt to

use two values for the cost (i.e., an exact integer one and an approximate decimal

one) since the values in the relevant bibliography are decimal, but the integer cost

is needed for precise results.

45

Table 3.3: Results for the ITC dataset

Instance id Exams Students

Conflict

Density
Best known

cost

Best known

normalized cost

ITC2007_1_1(E582_S7798_ID1) 582 7798 0.054563 5628 0.7139

ITC2007_2_1(E9_S33_ID396) 9 33 0.888889
∗
0

∗
0.0000

ITC2007_2_2(E623_S9636_ID1) 623 9636 0.020856 1538 0.1232

ITC2007_3_1(E810_S15726_ID1) 810 15726 0.034214 20768 1.2690

ITC2007_4_1(E273_S4421_ID1) 273 4421 0.149968 47869 10.8276

ITC2007_5_1(E11_S9_ID434) 11 9 0.690909
∗
0

∗
0.0000

ITC2007_5_2(E13_S41_ID206) 13 41 0.487179
∗
0

∗
0.0000

ITC2007_5_3(E14_S263_ID120) 14 263 0.989011 189 0.0217

ITC2007_5_4(E637_S7559_ID1) 637 7559 0.018236 1378 0.1580

ITC2007_6_1(E4_S12_ID5) 4 12 1.000000
∗
33

∗
0.0042

ITC2007_6_2(E7_S75_ID122) 7 75 0.666667
∗
7

∗
0.0009

ITC2007_6_3(E27_S210_ID9) 27 210 0.293447 146 0.0185

ITC2007_6_4(E189_S7386_ID3) 189 7386 0.093662 30157 3.8130

ITC2007_7_1(E18_S143_ID178) 18 143 0.732026
∗
0

∗
0.0000

ITC2007_7_2(E720_S10034_ID2) 720 10034 0.040604 262 0.0190

ITC2007_8_1(E497_S7388_ID1) 497 7388 0.062764 409 0.0530

ITC2007_9_1(E143_S603_ID2) 143 603 0.105683 2909 4.6619

ITC2007_10_1(E7_S81_ID1) 7 81 1.000000
∗
196

∗
0.1385

ITC2007_10_2(E9_S91_ID78) 9 91 0.888889
∗
14

∗
0.0099

ITC2007_10_3(E11_S29_ID87) 11 29 1.000000
∗
54

∗
0.0382

ITC2007_10_4(E12_S111_ID121) 12 111 0.984848 1021 0.7216

ITC2007_10_5(E15_S59_ID200) 15 59 0.857143 292 0.2064

ITC2007_10_6(E16_S220_ID133) 16 220 0.958333 878 0.6205

ITC2007_10_7(E16_S124_ID166) 16 124 0.800000 338 0.2389

ITC2007_10_8(E16_S56_ID51) 16 56 0.550000 76 0.0537

ITC2007_10_9(E17_S143_ID149) 17 143 0.757353 836 0.5908

ITC2007_10_10(E19_S208_ID13) 19 208 0.964912 2356 1.6650

ITC2007_10_11(E23_S215_ID98) 23 215 0.909091 6123 4.3272

ITC2007_11_1(E841_S15857_ID1) 841 15857 0.031989 54347 3.3209

ITC2007_12_1(E5_S62_ID35) 5 62 0.900000
∗
22

∗
0.0133

ITC2007_12_2(E69_S1464_ID1) 69 1464 0.232310 10609 6.4180

46

Table 3.4: Results for the D dataset

Instance id Exams Students

Conflict

Density
Best known

cost

Best known

normalized cost

D1-2-17_1(E8_S1_ID217) 8 1 1.000000
∗
5

∗
0.1351

D1-2-17_2(E8_S1_ID257) 8 1 1.000000
∗
5

∗
0.1351

D1-2-17_3(E10_S1_ID119) 10 1 1.000000
∗
17

∗
0.4595

D1-2-17_4(E11_S1_ID218) 11 1 1.000000
∗
26

∗
0.7027

D1-2-17_5(E12_S1_ID189) 12 1 1.000000
∗
36

∗
0.9730

D1-2-17_6(E13_S2_ID100) 13 2 0.538462
∗
0

∗
0.0000

D1-2-17_7(E14_S1_ID173) 14 1 1.000000
∗
62

∗
1.6757

D1-2-17_8(E18_S1_ID1) 18 1 1.000000
∗
150

∗
4.0541

D1-2-17_9(E18_S1_ID51) 18 1 1.000000
∗
150

∗
4.0541

D1-2-17_10(E28_S2_ID7) 28 2 0.592593
∗
190

∗
5.1351

D1-2-17_11(E120_S18_ID44) 120 18 0.164286 1787 48.2973

D5-1-17_1(E11_S3_ID98) 11 3 1.000000
∗
48

∗
1.1163

D5-1-17_2(E13_S3_ID99) 13 3 0.846154
∗
12

∗
0.2791

D5-1-17_3(E200_S34_ID5) 200 34 0.158945 3593 83.5581

D5-1-18_1(E9_S2_ID263) 9 2 1.000000
∗
8

∗
0.1633

D5-1-18_2(E13_S3_ID88) 13 3 0.846154
∗
12

∗
0.2449

D5-1-18_3(E14_S2_ID200) 14 2 0.736264
∗
10

∗
0.2041

D5-1-18_4(E223_S41_ID1) 223 41 0.118046 3215 65.6122

D5-2-17_1(E18_S1_ID199) 18 1 1.000000
∗
108

∗
2.5116

D5-2-17_2(E324_S42_ID1) 324 42 0.101307 8254 191.9535

D5-2-18_1(E18_S1_ID97) 18 1 1.000000 54 1.1489

D5-2-18_2(E56_S5_ID94) 56 5 0.318182 140 2.9787

D5-2-18_3(E345_S41_ID1) 345 41 0.116144 6425 136.7021

D5-3-18_1(E5_S2_ID40) 5 2 1.000000
∗
6

∗
0.1395

D5-3-18_2(E7_S1_ID59) 7 1 1.000000
∗
18

∗
0.4186

D5-3-18_3(E118_S40_ID3) 118 40 0.097349 1382 32.1395

D6-1-18_1(E12_S1_ID470) 12 1 1.000000
∗
7

∗
0.1228

D6-1-18_2(E22_S2_ID85) 22 2 0.636364
∗
32

∗
0.5614

D6-1-18_3(E403_S52_ID1) 403 52 0.092947 9754 171.1228

D6-2-18_1(E14_S1_ID1) 14 1 1.000000
∗
1

∗
0.0175

D6-2-18_2(E22_S1_ID343) 22 1 1.000000
∗
56

∗
0.9825

D6-2-18_3(E493_S54_ID3) 493 54 0.077904 7826 137.2982

47

sta83_30

sta83_47

sta83_62

Figure 3.2: Disconnected components of sta83. The weight of each edge is indicated

by its thickness.

3.7 sta83 optimal solution

No optimality has ever been proved for any Carter’s dataset instance until now. In

this section we show that the solution for sta83 having value 95947 (95947/611=157.0327

in decimal value, where 611 is the total number of students for sta83) which appears

in many papers is indeed optimal.

Instance sta83 consists of 139 exams, 13 periods and has a relatively low conflict

density of value 0.14. The instance is comprised of 3 disconnected components as

shown in Fig. 3.2.

We can divide the problem into three independent subproblems because these com-

ponents are disconnected. That is, there are three unique groups of students, each of

which does not have an examination in common with the other two groups, allowing

us to work on each component independently. The sum of these answers would be

48

the optimal solution provided that all three of them are solved optimally. Motivated

by the prospect of proving optimality for a Carter’s dataset instance, we focused our

attention on this task, and we managed to optimality solve each subproblem us-

ing a different approach, resulting in a novel way of handling high conflict-density

components.

3.7.1 Component sta83_62

This is the largest component of sta83, having 62 examinations and a conflict density

of 0.36. We tried to solve it using the model described in Section 3.5 using the

IBM ILOG CPLEX IP [63] solver. Unfortunately, after several hours the solver was

unable to prove optimality. We tried to warm start the solution with the current best

solution and have set the MIP emphasis parameter first to “emphasize optimality

over feasibility” and then to “emphasize moving best bound”. Both attempts were

unsuccessful.

We noticed that the component has a special structure. It contains 10 sets of exam-

inations with each set consisting of exactly 5 interchangeable examinations. These

examinations amount for 50 of the 62 examinations that the component has in total.

Details of these sets are presented in Table 3.5. Since interchangeable examinations

can freely swap places with each other while keeping the objective value unchanged,

the introduction of the symmetry breaking constraints of Equation 3.10 greatly im-

proved the solver’s efficiency in proving the optimal solution.

We also noticed that 3 examinations existed (72, 133, 136) in the graph that had

connections with all other exams. So, we tried an approach that fixed these 3 ex-

aminations in specific periods and then tried to solve the remaining problem using

IBM ILOG CPLEX. This time, the result was successful, the solver was able to re-

turn a result, either optimal or infeasible in a few minutes. It should be noted that

infeasibility occurs because the cost of the best known solution is used as a cutoff

constraint. So, we had only to try all possible places for positioning the 3 exam-

inations and then solve the resulting problem. Since there are only 13 periods in

instance sta83, this would mean that only

(
13

3

)
= 286 configurations existed that

should be multiplied by
3!
2

since the 3 examinations can occupy the fixed periods in

any order (divided by 2 due to the inherent symmetry of the problem).

By exploiting the above observations, IBM ILOG CPLEX IP solver was able to solve

each subproblem in a few minutes. After solving all subproblems, the optimal solu-

tion for sta83_62 was proved to be 32695. This solution occurred when examinations

72, 133 and 136 were fixed to periods 3, 6 and 8 respectively. The symmetric solu-

tion also exists and is produced by fixing examinations 72, 133 and 136 to periods 9,

49

6 and 4. Of course, many more symmetric solutions exist due to the interchangeable

exams.

Table 3.5: Component sta83_62, sets of interchangable examinations and their char-

acteristics.

Set Degree Weighted Degree

{17, 38, 58, 85, 120} 8 8

{18, 39, 59, 86, 121} 16 240

{19, 40, 60, 87, 122} 16 264

{20, 41, 61, 88, 123} 15 168

{21, 42, 62, 89, 124} 12 88

{22, 43, 63, 90, 125} 16 160

{23, 44, 64, 91, 126} 15 160

{24, 45, 65, 92, 127} 16 264

{25, 46, 66, 93, 128} 16 280

{26, 47, 67, 94, 129} 16 280

3.7.2 Component sta83_47

This component proved to be the easy part. It consists of 47 examinations and has

a conflict density of 0.35. We can estimate a lower bound by adding the minimum

cost each student’s schedule could possibly inflict. So, for each student in isolation,

an IP model is formulated that given only the number of periods and the number

of examinations that this student participates, decides about the schedule that re-

sults to the minimum possible cost. Of course, since each student is examined in

isolation if two students share the same number of examinations then the problem

needs to be solved just once. In practice, this is the case for several students. By

adding minimum penalties of all students we have a lower bound for this component,

which is 42750. The best known solution turns out to have cost equal to the lower

bound obtained in this manner. Thus, the optimal solution for this component is

47250.

3.7.3 Component sta83_30

This was the last component to solve. It’s the smallest one with just 30 examinations

but a high conflict density of 0.72. With high hopes since just the smallest piece of

the puzzle was missing, we were surprised to find out that to the best of our ability

our MIP models were not able to prove an optimal solution. We have tried the same

trick that we have used successfully in component sta83_62. We noticed that in the

case of sta83_30 there is only one examination (134) that is connected to every other

one. So, we tried to fix this examination to each period in turn and then to solve

the remaining problems using IBM ILOG CPLEX. Unfortunately, this did not helped

50

the solver to prove the optimality of the solution. Each subproblem seemed to run

forever.

By observing closely the high density graph of this component we came up with the

idea of separating examinations with high degrees and examinations with relatively

low degrees. In our approach, we isolated the maximum clique, which for this partic-

ular instance comprises of 12 examinations and tried to arrange those examinations

to the 13 periods leaving one period empty for each possible arrangement.

A significant observation is that irrelevant of the periods that the clique occupies, the

possible placements for the remaining examinations will be the same because their

possible positions are constrained by the examinations of the clique. By multiplying

the number of those possibilities with the number of permutations of the periods

we were able to count all possible solutions to be 13! ∗ 109152 where 13! is the

number of possible period permutations and 109152 is the number of possible ways

to schedule the remaining examinations for the specific component. We aim to find a

set of examinations that has minor impact on the cost but at the same time possible

final positions of the sets’ examinations might be disproportionate large.

3.8 Unconstrained Binary Model

QUBO problems are a specific type of optimization problems where the goal is to find

the optimal assignment of binary variables that minimizes or maximizes an objective

function subject to no constraints.

The general form of a QUBO objective function can be expressed as follows:

min

n∑
i=1

qiixi +

n−1∑
i=1

n∑
j=i+1

qijxixj

where:

• xi are binary variables.

• n is the number of binary variables.

• qii represents the linear coefficient associated with variable xi.

• qij represents the quadratic coefficient associated with the interaction between

variables xi and xj.

The model for a QUBO problem will always be the same. What makes the difference

is the choice of the values in the QMatrix. For this problem the binary decision vari-

51

ables assume the value 1 when a specific exam is scheduled in a period. For exams

in conflict the corresponding quadratic coefficient is calculated as Fp1,p2
Wv1,v2

/2. We

divide by two because the QMatrix is symmetric. As the nature of QUBO formulation

is inherently unconstrained we choose a large enough number M to impose penal-

ties and incentives in the objective function that can act as constraints. We chose

M to equal the sum of all edges multiplied by 16 to ensure that no worse solution

exists when you violate the conflicting exams constraint. To provide the incentive

to schedule all exams, as dictated by constraint, we set the value of an exam being

placed to −M and to M if the exam is placed twice.

We use a minimal problem presented in Figure 3.3 to demonstrate the resulting

QMatrix in Table 3.6. Note that this toy example involves 5 examinations and 3

periods.

1

2

100

3

150

4
50200

5
2

Figure 3.3: UETP: Minimal problem graph (5 examinations, 3 periods).

Table 3.6: UETP: Q Matrix

E1P1 E1P2 E1P3 E2P1 E2P2 E2P3 E3P1 E3P2 E3P3 E4P1 E4P2 E4P3 E5P1 E5P2 E5P3

E1P1 -M M M M 800 400 M 1200 1200 M 400 200 0 0 0

E1P2 M -M M 800 M 800 1200 M 1200 400 M 400 0 0 0

E1P3 M M -M 400 800 M 1200 1200 M 200 400 M 0 0 0

E2P1 M 800 400 -M M M M 1600 800 0 0 0 0 0 0

E2P2 800 M 800 M -M M 1600 M 1600 0 0 0 0 0 0

E2P3 400 800 M M M -M 800 1600 M 0 0 0 0 0 0

E3P1 M 1200 1200 M 1600 800 -M M M 0 0 0 0 0 0

E3P2 1200 M 1200 1600 M 1600 M -M M 0 0 0 0 0 0

E3P3 1200 1200 M 800 1600 M M M -M 0 0 0 0 0 0

E4P1 M 400 200 0 0 0 0 0 0 -M M M M 16 8

E4P2 400 M 400 0 0 0 0 0 0 M -M M 16 M 16

E4P3 200 400 M 0 0 0 0 0 0 M M -M 8 16 M

E5P1 0 0 0 0 0 0 0 0 0 M 16 8 -M M M

E5P2 0 0 0 0 0 0 0 0 0 16 M 16 M -M M

E5P3 0 0 0 0 0 0 0 0 0 8 16 M M M -M

We can also choose to eliminate the bidirectional symmetry by restricting a single

pair of two conflicting exams to be placed in a certain order. If we choose that exam

1 must be scheduled before exam 3 the binary value E1P1 is not needed anymore as

52

exam 1 cannot be placed in the first period and for each combination where exam 1

is scheduled before exam 3 we again provide the value of M to place a heavy penalty

if such a combination is selected. The QMatrix with these modifications is presented

in Table 3.7.

Table 3.7: UETP: Q Matrix with bidirectional symmetry elimination

E1P2 E1P3 E2P1 E2P2 E2P3 E3P1 E3P2 E3P3 E4P1 E4P2 E4P3 E5P1 E5P2 E5P3

E1P2 -M M 800 M 800 1200 M M 400 M 400 0 0 0

E1P3 M -M 400 800 M 1200 1200 M 200 400 M 0 0 0

E2P1 800 400 -M M M M 1600 800 0 0 0 0 0 0

E2P2 M 800 M -M M 1600 M 1600 0 0 0 0 0 0

E2P3 800 M M M -M 800 1600 M 0 0 0 0 0 0

E3P1 1200 1200 M 1600 800 -M M M 0 0 0 0 0 0

E3P2 M 1200 1600 M 1600 M -M M 0 0 0 0 0 0

E3P3 M M 800 1600 M M M -M 0 0 0 0 0 0

E4P1 400 200 0 0 0 0 0 0 -M M M M 16 8

E4P2 M 400 0 0 0 0 0 0 M -M M 16 M 16

E4P3 400 M 0 0 0 0 0 0 M M -M 8 16 M

E5P1 0 0 0 0 0 0 0 0 M 16 8 -M M M

E5P2 0 0 0 0 0 0 0 0 16 M 16 M -M M

E5P3 0 0 0 0 0 0 0 0 8 16 M M M -M

3.8.1 Dataset

Different datasets regarding the UETP problem were made public over the years, but

the sheer size of the included instances make them to big to fit in current state of

the art annealers. While the number of qubits required for some small instances is

acceptable, the nature of the problem i.e., the relation of two exams with students in

common, results in an increase of the Non Zero Couplings in the matrix that is sent

to the solver (usually called a QMatrix) provided to the solver, thus making most of

these instances unfit for the annealer.

In order to demonstrate the proof of concept I opted to generate a dataset consisting

of 50 small instances able to run on current annealers. To create an instance I

randomly choose between 3 and 7 exams and generate a complete graph with them

(all of them have students in common) the number of the periods available equals

the number of nodes in the complete graph to make the instance compact e.g., there

exists no solution with an empty period, then I proceed to add more exams and more

conflicts while keeping the number of conflicts under 60. The students in common

between the conflicting exams (the weight of their edge) is chosen arbitrarily between

1 and 100. However, this number could be higher as this will not result in more

variables.

To test the annealer against the optimal solutions GoogleOR-Tools CP-SAT Solver [64]

53

is employed to solve the problem instances to optimality. The characteristics and

optimal solutions values are presented in Table 3.8.

Table 3.8: UETP: QUBO Instances and characteristics

Instance 1 2 3 4 5 6 7 8 9 10

Examinations 20 19 8 13 22 19 20 17 18 20

Periods 6 6 5 5 4 6 7 5 7 6

C.D.
1

0.23 0.28 0.37 0.55 0.19 0.25 0.24 0.3 0.27 0.27

Optimal 10512 10736 13540 17376 16152 9916 7458 13242 8365 12720

Instance 11 12 13 14 15 16 17 18 19 20

Examinations 24 24 20 18 19 15 23 17 27 8

Periods 4 4 6 5 4 5 5 5 7 6

C.D.
1

0.15 0.15 0.23 0.29 0.25 0.38 0.17 0.33 0.12 0.38

Optimal 16312 13460 10018 13088 16700 12724 9640 11704 8281 12255

Instance 21 22 23 24 25 26 27 28 29 30

Examinations 19 19 26 17 20 19 27 23 19 17

Periods 4 5 7 7 6 7 7 7 6 4

C.D.
1

0.25 0.27 0.14 0.29 0.24 0.24 0.13 0.17 0.24 0.32

Optimal 15592 15628 5316 7464 10445 8301 5718 9265 7700 19680

Instance 31 32 33 34 35 36 37 38 39 40

Examinations 21 25 17 15 22 26 20 17 18 19

Periods 6 6 7 4 4 7 6 5 5 7

C.D.
1

0.21 0.16 0.33 0.39 0.19 0.14 0.24 0.31 0.29 0.25

Optimal 8749 8834 8780 20364 17412 6735 11691 12356 14434 7221

Instance 41 42 43 44 45 46 47 48 49 50

Examinations 24 15 17 21 23 8 18 24 19 18

Periods 7 5 5 4 6 6 5 6 6 6

C.D.
1

0.16 0.44 0.33 0.23 0.17 0.38 0.27 0.18 0.25 0.3

Optimal 5885 15108 18630 24604 8456 9731 7964 8723 9407 9654

[1]Conflict Density.

3.8.2 Experiments and results

Experiments were performed using the hybrid Quantum Annealer provided by D-

Wave. A time limit of 20 seconds was given for each problem instance and the

results are presented in Table 3.9. The justification for using only 20 seconds of

running time per instance is due to the small sizes of the problems and the limited

time that the hybrid solver of D-Wave can use the Quantum infrastructure for the

non-pay version of D-Wave Leap.

Results show that there is potential for using Quantum Annealers for solving UETP

problems. Some results are optimal, while others are near optimal, as can be seen

in Figure 3.4 which shows how far from the optimal solution the results for the 50

problem instances are.

54

Table 3.9: Results

Instance 1 2 3 4 5 6 7 8 9 10

Decision Variables 119 113 79 64 87 113 139 84 125 119

Non Zero Couplings 1950 2061 1290 1215 908 1851 2596 1230 2370 2226

Objective 12082 12687 13540 17376 16784 11265 9515 13302 9176 14899

Difference 3.47% 3.26% 11.38% 0.00% 6.62% 0.60% 6.58% 4.12% 3.56% 4.16%

Instance 11 12 13 14 15 16 17 18 19 20

Decision Variables 95 95 119 89 75 74 114 84 188 95

Non Zero Couplings 864 864 1950 1310 842 1165 1405 1330 2669 1926

Objective 17504 15336 11244 13996 16700 13312 11346 12630 11224 12255

Difference 0.00% 0.00% 0.96% 3.18% 6.06% 0.11% 2.31% 3.94% 1.76% 2.88%

Instance 21 22 23 24 25 26 27 28 29 30

Decision Variables 75 94 181 118 119 132 188 160 113 67

Non Zero Couplings 826 1375 2729 2277 2004 2392 2904 2645 1821 814

Objective 15592 16662 8448 8584 12264 9922 9499 11914 9091 19680

Difference 1.68% 0.00% 1.13% 4.06% 1.90% 7.54% 0.00% 0.00% 1.60% 3.49%

Instance 31 32 33 34 35 36 37 38 39 40

Decision Variables 125 149 118 59 87 181 119 84 89 132

Non Zero Couplings 1971 2229 2524 770 880 2788 2016 1250 1325 2439

Objective 10426 11357 10342 20364 17968 10187 12908 12564 14794 8798

Difference 4.01% 4.45% 12.42% 6.25% 4.14% 0.00% 4.37% 6.25% 4.08% 0.79%

Instance 41 42 43 44 45 46 47 48 49 50

Decision Variables 167 74 84 83 137 95 89 143 113 107

Non Zero Couplings 2638 1320 1335 946 1977 1890 1250 2214 1857 1974

Objective 8789 15108 18790 24604 11036 10404 8156 11369 11097 11133

Difference 10.20% 2.47% 0.42% 0.62% 4.92% 9.90% 0.00% 0.21% 0.00% 1.67%

[1]Results from hybrid solver.

0 2 4 6 8 10 12

Figure 3.4: Difference in percentage from the optimal solution for 50 problem in-

stances.

3.8.3 Conclusion

The examination of the Uncapacitated Examination Timetabling Problem led to some

of the best known solution to public available instances. The first instance to be

proven optimal was presented. A new dataset suitable for Quantum Annealers was

created. This study resulted in the following publications:

C. Gogos, A. Dimitsas, V. Nastos, and C. Valouxis, “Some insights about the Unca-

pacitated Examination Timetabling Problem,” in 2021 6th South-East Europe Design

Automation, Computer Engineering, Computer Networks and Social Media Conference

(SEEDA-CECNSM), Sep. 2021, pp. 1–7

A. Dimitsas, C. Gogos, C. Valouxis, V. Nastos, and P. Alefragis, “A proven optimal

55

result for a benchmark instance of the uncapacitated examination timetabling prob-

lem,” Journal of Scheduling, Mar. 2024

A. Dimitsas, P. Alefragis, C. Valouxis, and C. Gogos, “An unconstrained binary model

for the Uncapacitated Examination Timetabling Problem,” in PATAT Conference 2024

proceedings of the 14th International Conference of the Practice and Theory of Auto-

mated Timetabling, 2024

56

Chapter 4

Case Study: Post Enrollment Course Timetabling

57

In this Chapter the Post Enrollment Course Time Tabling problem is examined. A

combination of Simulated Annealing with CP and MIP is employed here.

4.1 Problem Description

A well-known scheduling problem having both theoretical and practical significance

is course time-tabling. Curriculum-based course time-tabling (CB-CTT) and post-

enrollment course time-tabling (PE-CTT) are two problem variations. While we have

information about each student’s enrollments in PE-CTT, in CB-CTT these enroll-

ments are “hidden” behind courses. The goal of the PE-CTT variation, which is the

subject examined here, is to schedule events in the available time-slots and rooms.

Each day has 9 time-slots, and a week consists of 5 days, so 45 time-slots are

available for all instances.

Various problem instances for Course Timetabling exist, adhering to several assump-

tions about the problem. The International Timetabling Competition held in 2002

and its sequel in 2007 [67] provided a set of instances that were later used by several

researchers as a common testbed. These are the datasets, ITC2002 and ITC2007,

that are used hereafter. For these datasets the hard constraints are:

• Each event must be scheduled in a time-slot and a room.

• Events with common students must be placed at different time-slots.

• A room can host at most one event in each time-slot.

• The capacity and feature requirements of each event must be met by the room

that will eventually host it.

• Certain time-slot requirements may apply to specific events.

• There may be relationships of precedence between events.

Note that the two last hard constraints of the above list manifest themselves only

in problem instances of ICT2007 and not in ITC2002. On the other hand, the soft

constraints are:

• A student attends an event at the last time-slot of a day.

• A student attends three (or more) events in a row on the same day.

• A student attends only one event in a day.

One penalty point is imposed for each of the conditions above.

58

4.2 Related Work

The PE-CTT variant was more formally introduced during the International Time-

tabling Competition 2007 (ITC 2007), which provided standardized benchmarks and

instances Di Gaspero et al., (2007) [67]. These benchmarks facilitated consistent

comparisons and inspired a surge in heuristic and metaheuristic methods.

Several notable approaches have been proposed. Müller (2009) [68] applied a hybrid

method combining constraint-based reasoning with Simulated Annealing, showing

robust performance across multiple ITC 2007 instances. Lü and Hao (2010) [69] in-

troduced a memetic algorithm that hybridized genetic algorithms with local search,

achieving state-of-the-art results on many PE-CTT benchmarks.Mathematical pro-

gramming formulations have also been explored. Lach and Lübbecke (2008) [70]

proposed integer programming techniques, though scalability remained an issue

due to the problem’s NP-hard nature. More recently, machine learning-enhanced

heuristics and hyper-heuristics have gained traction. Pillay (2014) [60] provides a

survey of hyper-heuristics for educational timetabling, including their application

to PE-CTT, emphasizing the adaptability of such methods to changing instance fea-

tures.

For this version of the CTT problem, many papers were published during and after

the competitions. The interest in this problem remains strong, with recent publi-

cations proposing various methodologies. Recent papers focusing on local search

methods are the papers by Goh et al. (2019) [71], (2020) [72] and Nagata et al.

(2018) [73]. Metaheuristics like Simulated Annealing also effectively tackled the

problem by Ceschia et al. (2012) [74]. Cambazard et al. (2012) [75] presented a

Constraint Programming approach. Lewis et al. (2015) [76] explored the connectiv-

ity of the solution space in course timetabling problems under various neighborhood

operators. Valouxis et al. (2012) [77] proposed a decomposition method for High

school time-tabling.

Despite substantial progress, challenges remain in handling real-world constraints,

dynamic enrollment changes, and fairness metrics—areas increasingly addressed in

recent studies Qu et al., 2020 [78].

4.3 Datasets

Details about problem instances belonging to datasets ITC2002 and ITC2007 are

presented in Table 4.1 and Table 4.2 respectively. The former table has three fewer

columns than the latter since problem instances of ITC2002 have neither event-

59

precedence relations nor event-time-slot restrictions.

Table 4.1: PE-CTT: Dataset ITC2002

Instance Name Events Rooms Features Students

Conflict

Density

Average Room

Capacity

Average

Room Suitability

o01.tim 400 10 10 200 0.20 10.40 1.96

o02.tim 400 10 10 200 0.21 10.40 1.92

o03.tim 400 10 10 200 0.23 10.80 3.42

o04.tim 400 10 5 300 0.23 15.30 2.45

o05.tim 350 10 10 300 0.31 17.30 1.78

o06.tim 350 10 5 300 0.26 17.90 3.59

o07.tim 350 10 5 350 0.21 20.60 2.87

o08.tim 400 10 5 250 0.17 12.80 2.93

o09.tim 440 11 6 220 0.17 10.36 2.58

o10.tim 400 10 5 200 0.20 10.70 3.49

o11.tim 400 10 6 220 0.20 11.40 2.06

o12.tim 400 10 5 200 0.20 10.30 1.96

o13.tim 400 10 6 250 0.21 12.60 2.43

o14.tim 350 10 5 350 0.25 20.30 3.08

o15.tim 350 10 10 300 0.25 17.40 2.19

o16.tim 440 11 6 220 0.18 10.73 3.17

o17.tim 350 10 10 300 0.31 17.20 1.11

o18.tim 400 10 10 200 0.21 10.50 1.75

o19.tim 400 10 5 300 0.20 15.30 3.94

o20.tim 350 10 5 300 0.25 17.50 3.43

Table 4.2: PE-CTT: Dataset ITC2007

Instance

Name Events Rooms Features Students

Conflict

Density

Average

Period

Unavailability

Average

Room

Capacity

Average

Room

Suitability

i01.tim 400 10 10 500 0.34 0.44 37.70 4.08

i02.tim 400 10 10 500 0.37 0.43 36.10 3.95

i03.tim 200 20 10 1000 0.47 0.43 86.60 5.04

i04.tim 200 20 10 1000 0.52 0.43 89.15 6.40

i05.tim 400 20 20 300 0.31 0.43 21.55 6.80

i06.tim 400 20 20 300 0.30 0.44 21.80 5.07

i07.tim 200 20 20 500 0.53 0.60 42.00 1.57

i08.tim 200 20 20 500 0.51 0.62 44.50 1.92

i09.tim 400 10 20 500 0.34 0.44 37.90 2.91

i10.tim 400 10 20 500 0.38 0.43 36.30 3.20

i11.tim 200 10 10 1000 0.50 0.44 84.10 3.38

i12.tim 200 10 10 1000 0.58 0.43 84.10 3.35

i13.tim 400 20 10 300 0.32 0.43 22.10 8.68

i14.tim 400 20 10 300 0.32 0.43 22.25 7.56

i15.tim 200 10 20 500 0.53 0.61 44.00 2.23

i16.tim 200 10 20 500 0.45 0.61 43.90 1.74

i17.tim 100 10 10 500 0.70 0.43 138.20 2.77

i18.tim 200 10 10 500 0.65 0.43 70.40 3.48

i19.tim 300 10 10 1000 0.47 0.44 56.30 3.66

i20.tim 400 10 10 1000 0.28 0.44 44.80 3.73

i21.tim 500 20 20 300 0.23 0.42 17.40 7.36

i22.tim 600 20 20 500 0.26 0.43 24.85 5.65

i23.tim 400 20 30 1000 0.44 0.21 68.65 2.89

i24.tim 400 20 30 1000 0.31 0.44 42.65 1.59

60

4.4 Symmetries and Preprocessing

The format of the problem instances assumes rooms with varying capacities along-

side features that each room might have (e.g., video projector, smart-board, labora-

tory equipment, etc.). Additionally, it lists the events that each student participates

and any additional obligations associated with those events. In the ITC2007 dataset,

events can additionally have time-slot restrictions (i.e., a time-slot might be prohib-

ited for certain events) and precedence relations (i.e., an event may be required to

take place earlier than another event). The possibility of tracking all the feasible

combinations consisting of three events in order to reduce the model size is investi-

gated.

4.4.1 Event-Room eligibility

Let E by the set of all events. Equation 4.1 determines when a student attends an

event and the total number of attendees of each event is given by Equation 4.2. This

information is extracted from the problem data.

ase =

1 if student s attends event e

0 otherwise

∀s ∈ S, ∀e ∈ E (4.1)

Se =
∑
s∈S

ase ∀e ∈ E (4.2)

4.4.2 Event Conflicts

Events with common students are prohibited from taking place at the same time-slot

because, by definition, no student can attend more than one event at once. Such

pairs of events are considered conflicting events. Let R be the set of all rooms, and

Re be the set of rooms that can host event e. The number of conflicting events is

increased by adding pair of events without common students if for two events e1

and e2 the relations Re1
≡ Re2

and |Re1
| = |Re2

| = 1 hold true (singleton sets). This

condition means that e1 and e2 can be hosted only in the same room and, therefore,

can not be hosted in the same time-slot. Finally, the pairs of all conflicting events

form set G. Based on the event conflicts, the conflict density of each problem is

twice the size of set C divided by the square of the size of set E. Conflict density can

be considered a measure of each problem instance’s difficulty, but room existence

seems to distort its relevance.

61

4.4.3 Event Combinations

In the preprocessing stage, all combinations of three events are computed and the

number of students participating in each combination is stored. More formally, let

S be the set of students, and Es be the set of events that student s attends. For

every student s, all possible combinations consisting of three events e1, e2, e3, where

e1 ∈ Es, e2 ∈ Es, e3 ∈ Es are generated. Finally, C is the set comprised of all previously

generated three event combinations.

4.5 Formulation

4.5.1 Mathematical Model

In this section the base mathematical model of the problem is presented.

Let S be the set of all students.

Let Se be the total number of students attending event e.

Let R be the set of all rooms.

Let Re be the set of rooms that can not host event e.

Let T be the set of all time-slots.

Let Te be the set of time-slot that event e cannot be scheduled.

Let L = [9, 18, 27, 36, 45]. These numbers refer to the last time-slot of each one of

the 5 days.

Let G be the set of conflicting event pairs.

Let C be the set consisting of combinations of three events with students in com-

mon.

Let Ce1,e2,e3
be the total number of students attending all three events e1, e2 and

e3.

Let P be the set of pairs of events having a precedence relation.

The binary decision variables xetr are defined in equation 4.3. Binary variables ysd

and ze1e2e3
in equations 4.4 and 4.5 are auxiliary variables.

xetr =

1 if event e is scheduled in time-slot t at room r

0 otherwise

∀e ∈ E,∀t ∈ T,∀r ∈ R

(4.3)

62

ysd =

1 if student s has a single event in day d

0 otherwise

∀s ∈ S,∀d ∈ [1..5] (4.4)

ze1e2e3
=

1 if events e1, e2 and e3 are placed in 3 sequential time-slots in the same day

0 otherwise

∀(e1, e2, e3) ∈ C

(4.5)

Minimize

∑
e∈E

∑
t∈L

∑
r∈R

Se ∗ xetr +
∑
s∈S

5∑
d=1

ysd +
∑

(e1,e2,e3)∈C

Ce1,e2,e3
ze1,e2,e3

(4.6)

Subject to ∑
t∈Te

∑
r∈R

xetr = 0 ∀e ∈ E (4.7)

∑
t∈T

∑
r∈Re

xetr = 0 ∀e ∈ E (4.8)

∑
t∈T

∑
r∈R

xetr = 1 ∀e ∈ E (4.9)

∑
e∈E,r∈R

xetr ≤ 1 ∀r ∈ R, ∀t ∈ T (4.10)

∑
r∈R

xe1tr +
∑
r∈R

xe2tr ≤ 1 ∀(e1, e2) ∈ G, ∀t ∈ T (4.11)

∑
t∈T

∑
r∈R

t ∗ xe1tr + 1 ≤
∑
t∈T

∑
r∈R

t ∗ xe2tr ∀(e1, e2) ∈ P (4.12)

t′+2∑
t=t′

∑
r∈R

xe1tr + xe2tr + xe3tr ≤ 2 + ze1e2e3
∀(e1, e2, e3) ∈ C,

∀t′ ∈ T, t′ < [8, 9, 17, 18, 26, 27, 35, 36, 44, 45]

(4.13)

ysd = 1, if

∑
e∈Es

d∗9∑
t=1+(d−1)∗9

∑
r∈R

xetr = 1 ∀s ∈ S, ∀d ∈ [1..5] (4.14)

Equation 4.6 is the objective function that incorporates the costs associated with the

63

three soft constraints. The first term imposes penalty Se for any event e scheduled

in the day’s final time slot. The second term imposes a single penalty point for each

student who participates in only one event during a day. The last term imposes

a penalty equal to the total number of students attending a combination of three

events if these events are in three adjacent time-slots on the same day.

Constraints 4.7, 4.8 handle time-slot and room availability limitations, while con-

straint 4.9 ensures that each event is scheduled once and only once. Constraint 4.10

ensures that at most one event is scheduled in each room in each time-slot. Conflict-

ing events are banned from the same time-slot through the use of constraint 4.11,

and precedence relations are respected as a consequence of constraint 4.12. To en-

force a penalty for three consecutive events constraint 4.13 will activate z decision

variables. Finally, since constraint 4.14 is nonlinear, it can be handled by CP solvers

and MIP solvers equipped with automatic linearization capabilities.

4.5.2 Model Modifications

The base mathematical model may not be able to handle large instances, mainly due

to the large size of C. However, a decomposition of the problem that operates over

2 or 3 days can produce partial solutions that hopefully will drive a Mathheuristic

approach to promising subdomains of the search space.

The three modifications to the base model follows.

• Improve day by day Optimizing each day in isolation results in some advan-

tages. Since the number of events that are scheduled in one day is fewer than

all events, the number of combinations of three events becomes significantly

smaller. Moreover, the second term of the objective function is redundant now

because the events of the day are determined. Finally, since the involved stu-

dents participate in a number of events that cannot be changed, constraint 4.14

becomes redundant.

• Improve days In this modification of the base model, two or three days are con-

sidered. Again, as in the previous modification, the three event combinations

are fewer than combinations involving all events. In this setting, students can

be considered to attend a subset of the events they actually attend since some

events have not been scheduled on the days considered. The advantage is that

now more, temporarily identical students can be identified and consolidated in

the second term of the objective function and constraint 4.14.

• Fix room Starting from a given solution, all events may not to change rooms

but they can change time-slots. Practically, events placed in the same room at

64

different time-slots are allowed to swap places.

4.5.3 Neighborhood operators

Three different neighborhood operators are used in this work:

• Transfer Event: An event e ∈ E is moved from its currently designated time-

slot t ∈ T, to a new, randomly selected time-slot t1 ∈ T. The move is executed

only if t1 is available for e, a compatible free room r ∈ R exists in t1 for event e

and the precedence relations for event e are not violated .

• Swap Events: Two time-slots t1, t2 ∈ T that are designated to two events

e1, e2 ∈ E are swapped. The move is executed only if e1 and e2 are in conflict,

a suitable room r1 ∈ R for e1 is available at t2 and a suitable room r2 ∈ R is

available at t1 and is all the precedence relations for e1 and e2 are not violated.

• Kempe Chain: An event e residing in time-slot t1 ∈ T is selected randomly and

moved to time-slot t2 ∈ T. All events in t2 conflicting with e are moved to t1. An

ejection procedure follows until no conflicting events co-exist in t1 or t2. The

move is executed if:

– At each step for an event es ∈ E a compatible room exists in the selected

time-slot.

– All the precedence relations of e are not violated.

– The selected period is available for the event e.

4.5.4 Simulated Annealing (SA)

Many versions of Simulated Annealing have been proposed in the literature, see

Dowsland et al. (2012) [79]. The version used is based on the classic one proposed

by Kirkpatrick et al. (1983) [80]. In detail, at each iteration, a neighborhood operator

4.5.3 is randomly selected. The move is performed if the objective value is reduced.

If Df > 0, where Df is the difference between the cost of the current iteration and

the cost of the previous iteration, then the candidate solution has the potential of

being accepted. The acceptance depends on the probability defined in equation 4.15

where T is the current temperature value and Ts is the temperature value used for

initiating the procedure. A geometric cooling scheme is employed T = a ∗ T , where

a ∈ [0.9, 0.999] is the cooling rate. Parameters are selected by parameter tuning.

Also, a freezing temperature Ft = 1 is used in the procedure. When T reaches Ft, two

or three random days are selected, and an improve_days model is solved to reduce

the objective value. When the previous step ends, the temperature is set to a random

65

value in the range [0.5 ∗ Ts, 1.5 ∗ Ts]. The procedure terminates when the time limit

expires.

P = e−Df /T
(4.15)

4.6 Results

The experiments were programmed in Python, and used Gurobi MIP solver [81] and

Google OR-Tools CP-SAT solver. The Gurobi MIP solver constructs the initial solu-

tion using the base model. Then, the solution improves by employing the day-by-day

modification of the base model. The Simulated Annealing procedure follows as de-

scribed in section 4.5.4. In each iteration of the Simulated Annealing procedure, a

neighborhood operator is selected randomly either from the operators described in

subsection 4.5.3, or one of the model modifications described in subsection 4.5.2.

The implementations of the model modifications were programmed using CP-SAT

solver. A generous time duration was provided for each execution (all steps) which

amounted to approximately two hours for each problem instance. The experiments

ran in a workstation equipped with an AMD Ryzen 5700G(8C/16T) processor and

32GB of RAM, running Windows 11. Results are presented in table 4.3 for both

ITC2002 ITC2007 datasets. This approach manages to find solutions for all in-

stances.

Course time-tabling is a problem with a special relation to Academia it’s easy to

understand and NP-Hard to solve. In a relatively short time modern exact solvers

can handle real life sized instances. This work produced the following conference

publications:

A. Dimitsas, V. Nastos, C. Valouxis, and C. Gogos, “A mathematical formulation for

constructing feasible solutions for the Post Enrollment Course Timetabling Problem,”

in 2022 7th South-East Europe Design Automation, Computer Engineering, Computer

Networks and Social Media Conference (SEEDA-CECNSM). IEEE, 2022, pp. 1–5

A. Dimitsas, V. Nastos, C. Gogos, and C. Valouxis, “An exact based approach for

the Post Enrollment Course Timetabling Problem,” in Proceedings of the 26th Pan-

Hellenic Conference on Informatics. Athens Greece: ACM, Nov. 2022, pp. 77–82

66

Table 4.3: ITC_2002 and ITC_2007 results

Instance

ITC 2002 Best solution This work

Instance

ITC 2007 Best solution This work

o01.tim N/A 454 i01.tim 0 0

o02.tim 14 19 i02.tim 0 0

o03.tim 36 38 i03.tim 31 193

o04.tim 76 77 i04.tim 21 92

o05.tim 56 65 i05.tim 0 35

o06.tim 1 8 i06.tim 0 0

o07.tim 2 18 i07.tim 0 0

o08.tim 6 14 i08.tim 0 39

o09.tim 8 12 i09.tim 0 31

o10.tim 41 50 i10.tim 0 31

o11.tim 19 27 i11.tim 39 76

o12.tim N/A 460 i12.tim 0 0

o13.tim 51 58 i13.tim 0 0

o14.tim 13 28 i14.tim 0 0

o15.tim 3 17 i15.tim 0 10

o16.tim 4 13 i16.tim 0 34

o17.tim 35 41 i17.tim 0 89

o18.tim 11 20 i18.tim 0 56

o19.tim 46 48 i19.tim 0 50

o20.tim 0 20 i20.tim 543 574

i21.tim 5 6

i22.tim 5 19

i23.tim 1292 1335

i24.tim 0 12

67

Chapter 5

Case Study: Thesis Defense Timetabling Problem

68

The last case study from the world of Educational Timetabling is about Thesis De-

fense Timetabling. In this chapter a Quadratic Programming problem is examined

with MIQP and CP. The symmetry elimination leads to near optimal results.

5.1 Problem Description

The Thesis Defense Timetabling Problem (TDTP) is a specialized variant of academic

timetabling, sharing similarities with course timetabling, examination scheduling,

and meeting scheduling problems. It involves assigning students, advisors, and

committee members to defense slots while satisfying a range of constraints such as

availability, room capacity, and time conflicts.

Three entities exist in this specific version, introduced by Battistutta et al. (2019) [2],

of the thesis defense timetabling problem: candidates, faculty members, and ses-

sions. The effort that should be undertaken would result in allocating candidates

and faculty members to sessions.

Candidates are the students who will be defending their theses once. Each candi-

date has a single faculty member as his supervisor and may have suitable faculty

members to serve as opponents.

Faculty members can participate in numerous sessions and range in academic levels.

Faculty members may only be able to attend some sessions.

Sessions may overlap, and obviously faculty members can not be present in concur-

rent sessions.

The constraints of the problem are either hard constraints or soft constraints. A hard

constraint violation makes a schedule infeasible, while soft constraints penalize the

objective if unsatisfied. The goal is to satisfy all hard constraints while minimizing

soft constraint violations.

The hard constraints are:

• H1. Supervision: The supervisor of a candidate must be present in the ses-

sion.

• H2. Students Per Session: The number of candidates in the same session

must be, at most, a given maximum.

• H3. Overlapping Sessions: A faculty member cannot attend sessions that

overlap.

69

• H4. Availability: Each faculty member must be available in the sessions he

attends.

• H5. Committee Composition: Sessions committees must respect a minimum

and maximum number of faculty staff possessing a specific academic level.

Staff with a higher academic level can replace staff with a lower level but not

vice versa.

The soft constraints are:

• S1. Multiple Duties: If a is the number of sessions a faculty member attends,

then penalty (a − 1)2
is applied if a > 0.

• S2. Opponent Presence: A penalty occurs if a candidate attends a session

without any of his suitable opponents present. If the candidate has no suitable

opponents, no penalty is applied.

The objective function comprises of the sum of soft constraint violations multiplied

by a weight. The weights in the original proposition were wS1 = 1 and wS2 = 3 for

each soft constraint violation, respectively.

5.2 Related Work

The TDTP problem is less studied when compared to other educational timetabling

problems like examination timetabling and course timetabling. Differences in regula-

tions among universities and the rather limited number of students usually affected

by this problem may play a part in this. However, researchers have proposed dif-

ferent problem formulations along with different solution approaches. A university

specific formulation was proposed by Limanto et al. (2018) [84] who then realized

a solution with genetic algorithms. A multi-objective variant of the problem was

introduced by Huynh et al. (2012) [85], and solved using a mixed integer linear

programming model. Another variant of the problem alongside with a carefully con-

structed dataset of real and artificial problem instances was proposed by Battistutta

et al. (2019) [2]. Their approaches for solving the problem are threefold, metaheuris-

tics, constraint programming and mixed integer programming which performs in

this work best for most cases.

Various approaches have been applied to the TDTP problem, as usually occurs with

difficult combinatorial optimization problems. So, approaches like hybrid algorithms

in Su et al. (2020) [86], metaheuristics Tawakkal et al. (2020) [87], and mixed in-

teger programming Almeida (2022) [88] should be able to find good solutions to

TDTP, provided that careful implementations are used. Recent studies have tackled

70

thesis defense scheduling as a multi-constraint, multi-objective optimization prob-

lem.

TDTP has some conceptual similarities with the Conference Scheduling problem see

Stidsen et al. (2018) [89], since in both cases committees are involved. Neverthe-

less, in Conference Scheduling the objective is to create an optimal schedule that

maximizes attendee satisfaction and minimizes conflicts between sessions of interest

while at the same time ensures a balanced and diverse program.

Despite these advances, TDTP remains relatively underexplored compared to broader

timetabling problems. Its unique blend of constraints (e.g., synchronization of mul-

tiple faculty members for a single event) and the dynamic nature of academic cal-

endars call for tailored algorithms that emphasize feasibility, user satisfaction, and

computational efficiency.

5.3 Dataset

Here the public dataset from Battistutta et al. (2019) [2] is briefly described. This

dataset consists of 21 real instances taken from Italian Universities and 45 addi-

tional instances artificially generated that share similar characteristics with the real

instances. Table 5.1 presents the main characteristics of problem instances. Since

the dataset size is relatively large, only the base features of each problem instance

are presented (i.e., number of candidates, number of sessions, number of faculty

members, maximum capacity of all sessions). Further features for each problem

instance, like the number of simultaneous sessions, and others, can be consulted

at https://opthub.uniud.it/.

71

https://opthub.uniud.it/

Table 5.1: TDTP: Descriptive Statistics for the Thesis Defense dataset

Instance Candidates

Faculty

Members

Max

Candidates Sessions Instance Candidates

Faculty

Members

Max

Candidates Sessions

real01 143 155 9 16 art13 110 52 10 13

real02 34 79 10 5 art14 459 504 9 55

real03 144 77 8 18 art15 522 290 10 56

real04 171 101 10 18 art16 532 461 10 60

real05 442 296 12 37 art17 532 796 10 60

real06 79 99 8 10 art18 249 413 10 28

real07 102 66 13 8 art19 183 274 10 19

real08 55 67 10 6 art20 555 671 10 57

real09 173 280 14 15 art21 457 724 10 51

real10 209 435 7 31 art22 276 405 8 37

real11 164 287 12 16 art23 269 127 9 31

real12 222 322 14 16 art24 42 62 10 5

real13 430 435 13 35 art25 71 37 8 9

real14 551 454 13 45 art26 169 187 8 23

real15 428 454 7 66 art27 576 277 10 59

real16 124 84 10 13 art28 326 441 10 34

real17 18 76 10 2 art29 366 196 8 48

real18 172 80 11 18 art30 361 617 10 42

real19 69 79 11 7 art31 263 351 11 26

real20 146 81 11 14 art32 73 192 10 8

real21 58 31 15 4 art33 134 240 10 14

art01 307 251 8 41 art34 52 172 10 6

art02 40 30 8 6 art35 117 205 10 12

art03 208 240 9 24 art36 112 204 10 12

art04 347 409 9 43 art37 90 207 10 10

art05 137 261 8 18 art38 176 296 11 18

art06 434 267 10 45 art39 282 360 11 28

art07 467 261 9 54 art40 243 339 11 24

art08 427 705 9 54 art41 104 207 10 11

art09 73 64 10 8 art42 164 290 11 17

art10 40 39 8 6 art43 141 269 11 15

art11 395 209 9 49 art44 89 227 10 10

art12 255 420 9 32 art45 225 330 11 23

5.4 Symmetries and descriptive analytics

Instances from the dataset are characterized by a great amount of symmetry. Some

symmetries were identified by a descriptive analysis of different entities in the prob-

lem. A systematic search is conducted upon entities like Candidates, Opponents,

Faculty Members and Sessions to identify which have the same characteristics and

the frequency of these similarities.

5.4.1 Candidate symmetry

A candidate c is identified by his supervisor Fc and the set of suitable opponents

Qc. All candidates c1, c2, ..., cn where Fc1
= Fc2

=, ...,= Fcn and Qc1
≡ Qc2

≡, ...,≡ Qcn

are identical. They can be grouped together, the sessions they can be placed are

the same sessions as their supervisor Fc is the same his session requirements will

apply for all of them. The order of all candidates in a candidate group in the final

schedule will be irrelevant as they have exactly the same impact on the objective

function.

72

5.4.2 Opponent symmetry

After grouping candidates based on their supervisor and suitable opponents we can

group them once again based on their suitable opponents disregarding their super-

visor. This can serve to reduce the amount of decision variables and constraints

needed to enforce soft constraint S2 regarding opponent presence. The rationale be-

hind this is that candidate groups with the same suitable opponents seek the same

opponents regardless of their supervisor.

5.4.3 Faculty members only useful for their Academic Level

Each faculty member belongs to one of the three categories:

• Supervisors A faculty member that supervises at least one candidate.

• Suitable opponent A faculty member that is not a supervisor but has at least

one candidate he can suitably oppose.

• Only for academic level A faculty member that is neither a supervisor nor

can he oppose any candidate, his only role in the schedule is to cover the hard

constraint H5 regarding Committee Composition.

A special mention is needed for the last category. Faculty members used only for

their academic level can impose a great amount of symmetry while offering little

in the objective function. They cannot be omitted entirely but can be ignored to

calculate some lower bounds as described in section 5.5.

5.4.4 Session symmetry

A session s is defined by the faculty members that can participate. A groups of

sessions s1, s2, ..., sn where the exactly same set of faculty members can participate

is identical. Overlapping sessions in the instances are always identical as faculty

members not available in a session are also not be available in an overlapping ses-

sion.

5.4.5 Descriptive Analytics

Table 5.2 contains statistics regarding section 5.4. All instances contain groups of

candidates and opponents. The amount of faculty staff useful only for academic

level varies widely between instances from 0 to the majority of all faculty staff falling

under this category.

73

Table 5.2: TDTP: Symmetry statistics

Instance
Candidate

groups

Opponent

groups

Faculty only for

Academic Level Instance
Candidate

groups

Opponent

groups

Faculty only for

Academic Level

real01 103 41 81 art13 86 82 0

real02 31 28 30 art14 428 417 30

real03 115 110 3 art15 441 408 2

real04 140 136 19 art16 467 446 15

real05 174 5 125 art17 492 474 73

real06 67 57 28 art18 236 233 70

real07 87 27 28 art19 175 170 37

real08 41 15 35 art20 494 484 44

real09 104 70 178 art21 422 411 84

real10 174 133 247 art22 257 249 33

real11 108 76 168 art23 211 202 0

real12 146 101 180 art24 41 40 7

real13 166 3 270 art25 54 51 0

real14 195 8 263 art26 142 141 14

real15 328 198 192 art27 493 467 1

real16 104 100 7 art28 292 284 37

real17 17 17 41 art29 311 289 0

real18 149 145 2 art30 338 329 90

real19 61 61 9 art31 185 142 170

real20 130 128 3 art32 60 60 82

real21 25 7 7 art33 115 115 82

art01 281 266 5 art34 46 46 90

art02 36 34 1 art35 100 99 55

art03 190 184 15 art36 97 95 71

art04 318 304 26 art37 65 61 112

art05 127 124 41 art38 123 108 161

art06 367 351 1 art39 196 160 146

art07 395 370 0 art40 157 135 161

art08 392 381 111 art41 80 66 108

art09 60 58 2 art42 114 90 168

art10 33 32 4 art43 97 89 143

art11 338 317 0 art44 64 55 141

art12 237 230 58 art45 142 119 169

5.4.6 Identical Sessions

Table 5.3 contains all instances and the respective sets of identical sessions as

defined in 5.4. Note that overlapping sessions are not always identical. A simple

explanation is that these sessions do overlap but do not necessarily start and end

simultaneously, so a faculty member may be able to attend some of them and not

others.

74

Table 5.3: TDTP: Symmetrical Sessions

Instance Identical Sessions

real04 {13, 14}, {17, 18}

real05

{1, 2}, {3, 4}, {5, 6}, {8, 9}, {10, 11}, {12, 13},

{14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29},

{30, 31}, {32, 33}, {34, 35}, {36, 37}

real08 {2, 3}

real09 {1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15}

real11 {1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15, 16}

real12 {1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14, 15, 16}

real15 {8, 7}, {20, 21}, {46, 47}, {49, 50}, {51, 52}, {53, 54}

real18 {3, 4}, {13, 14}

real20 {1, 2}, {11, 12}

real21 {2, 3}

art31 {1, 2}, {4, 21}, {8, 11}, {10, 18}, {12, 20}, {13, 22}, {26, 19}

art32 {4, 7}

art33 {2, 11}, {4, 7}, {8, 5}

art34 {2, 6}

art35 {1, 10}, {9, 3}

art36 {2, 12}, {5, 6}

art37 {1, 3}, {8, 2}

art38 {1, 13}, {12, 5}, {8, 6}, {17, 11}

art39 {1, 11}, {26, 4}, {16, 7}, {8, 24}, {28, 13}, {25, 15}, {17, 22}, {27, 19}

art40 {1, 5}, {2, 4}, {18, 6}, {8, 21}, {10, 11}, {22, 15}

art41 {5, 6}, {9, 7}

art42 {1, 5}, {2, 12}, {3, 4}, {16, 14}

art43 {1, 11}, {2, 14}, {8, 12}

art44 {2, 5}, {3, 7}

art45 {1, 18}, {9, 3}, {13, 6}, {8, 22}, {12, 21}, {20, 23}

5.5 Formulation

This section describes the formulation of the model. Table 5.4 presents the notation

used hereafter for sets, parameters and constants.

75

Table 5.4: TDTP: Notation

Sets

F Set of faculty members.

G Set of faculty members useful only for their academic level.

S Set of sessions.

O Set of pairs of overlapping sessions.

E Set of pairs of symmetrical sessions.

Sf Set of sessions a faculty member f is unavailable.

Qo Set of sets of suitable opponents.

L = {1, ..., L} Set of academic levels.

Parameters and constants

C Max number of candidates a session can host.

Cfq

Number of candidates whose set of suitable opponents

is q supervised by faculty member f .

D min(C,
∑

f ∈F Cfq)
S Total number of sessions.

L Maximum academic level.

ml Minimum number of faculty members having at least academic level l.
Ml Maximum number of faculty members having at least academic level l.
Bf A numeric identifier assigned for each faculty

member assuming consecutive values starting at 1.

Af Academic level for faculty member f .

5.5.1 Base model

A Constraint Programming formulation is described below. The two primary decision

variables are:

xfqs ∈ [0, min(C, Cfq)] ∀f ∈ F, ∀q ∈ Q, ∀s ∈ S (5.1)

yfs =

1, if faculty member f is scheduled to be in the committee for session s.

0, else.

∀f ∈ F,∀s ∈ S

(5.2)

Then, the following auxiliary decision variables that are used in the objective function

are defined.

zqs ∈ [0, D] ∀q ∈ Q, |q| > 0, ∀s ∈ S (5.3)

vf ∈ [0, S − 1] ∀f ∈ F (5.4)

76

uf ∈ [0, (S − 1)2] ∀f ∈ F (5.5)

The objective function:

min ws1 ∗
∑
f ∈F

uf +ws2 ∗
∑

q∈Q,|q|>0

∑
s∈S

zqs (5.6)

Subject to:

∑
s∈S

xfqs = Cfq ∀f ∈ F ∀q ∈ Q (5.7)

min(C, Cfq) ∗ yfs >=
∑
q∈Q

xfqs ∀f ∈ F ∀s ∈ S (5.8)

∑
f ∈F

∑
q∈Q

xfqs ≤ C ∀s ∈ S (5.9)

yfs1
+ yfs2

≤ 1 ∀s1, s2 ∈ O, ∀f ∈ F (5.10)

yfs = 0 ∀f ∈ F,∀s ∈ Sf (5.11)

ml ≤
∑

f ∈F,Af ≤l

yfs ≤ Ml ∀l ∈ L,∀s ∈ S (5.12)

zqs ≥
∑
f ∈F

xfqs − D ∗
∑
f ∈q

yfs ∀q ∈ Q, |q| > 0, ∀s ∈ S (5.13)

∑
s∈S

(yfs) − 1 ≤ vf ∀f ∈ F (5.14)

uf = vf ∗ vf ∀f ∈ F (5.15)

∑
f ∈F,Af ≤1

Bf ∗ yfs1
≤
∑

f ∈F,Af ≤1

Bf ∗ yfs2
∀s1, s2 ∈ E (5.16)

77

vf1 ≥ vf2 ∀f1, f2 ∈ F, Af1 = Af2 , Sf1 ≡ Sf2 , f1 < G, f2 ∈ G (5.17)

As already mentioned, the two sets of primary decision variables are xfqs and yfs. The

first one assumes integer values in order to eliminate the candidate symmetry. This

occurs because equation 5.1 represents how many candidates supervised by faculty

member f whose set of suitable opponents is q are scheduled in session s, which

means that candidates with the same supervisor and the same suitable opponents

group can swap sessions without affecting the solutions quality. The second set of

primary decision variables, yfs are binary and they are defined in equation 5.2. They

assume value 1 if faculty member f participates in the committee of session s, or 0

otherwise.

Auxiliary decision variables zqs, defined in equation 5.3, keep count of candidates

having set q as their opponent group are left without a suitable opponent in session

s. For the quadratic part of the problem’s definition variables vf in equation 5.4 are

introduced, whose role is to count the excess sessions a faculty member f has to

attend over one session. Finally, decision variables uf are defined in equation 5.5

assuming values of the corresponding variables vf raised to the power of 2.

Constraint 5.7 ensures that all candidates with q as their opponent group and fac-

ulty member f as their supervisor will be scheduled. Constraint 5.8 states that each

supervisor will be present in all sessions that his candidates attend. Constraint 5.9

limits the number of candidates in each session according to the maximum allowed

capacity. Constraint 5.10 ensures that no faculty member is scheduled in overlap-

ping sessions. Constraint 5.11 prohibits faculty members to appear in sessions when

they are unavailable. The committee requirements of hard constraint H5 (committee

composition) are respected by effect of constraint 5.12. Constraint 5.13 ensures that

the decision variable zqs will be equal to the number of candidates with q as their

opponents group provided that these candidates have not been placed with at least

one suitable opponent. Constraints 5.14 and 5.15 set the penalty of the quadratic

part of the objective. Note that in the latter constraint decision variables are raised to

the power of 2 which would require a quadratic solver if mathematical programming

was used. Since the solver of choice is a constraint programming one capable of

handling multiplication of decision variables, this constraint is directly included in

the model.

The last two constraints serve for symmetry reduction. In section 5.4 four differ-

ent kinds of symmetry are presented. The integer primary variables 5.1 and 5.3

to eliminate candidate and opponent symmetries respectively. To reduce the effect

of session symmetry constraint 5.16 is enforced. Using a standard lexicographical

78

technique, symmetrical sessions are forced to be lexicographical ordered (by iden-

tifier) by faculty members of academic level 1 assigned to them. To limit the effect

of faculty members used only for their academic level, the final constraint 5.17 en-

sures that these faculty members will be scheduled in the resulting timetable only

if no other faculty member can replace them without imposing a penalty. The ratio-

nale is that any other faculty member of the same academic level, having the same

unavailabilities, has merit to be used instead since he/she can also serve as an

opponent.

5.5.2 Zero cost solutions

To search for solutions without a cost, some facts about these solutions can be

considered, as to reduce variables and constraints. The only variable needed is

yfs, defined in equation 5.2, which denotes the session a faculty member may be

scheduled to. From the main model described earlier in the present section I opt to

keep only constraints 5.10, 5.11, and 5.12. Additionally, the following constraints

are introduced:

∑
s∈S

yfs <= 1 ∀f ∈ F (5.18)

∑
s∈S

yfs = 1 ∀f ∈ F,
∑
q∈Q

Cfq > 0 (5.19)

∑
f ∈F

∑
q∈Q

Cfq ∗ yfs ≤ C ∀s ∈ S (5.20)

yfs ≤
∑
r∈q

yrs ∀f ∈ F, ∀q ∈ Q, ∀s ∈ S, |q| > 0, Cfq > 0 (5.21)

Constraint 5.18 ensures that any faculty member will appear at most once in the

final schedule and constraint 5.19 ensures that supervisors must be scheduled

once. As supervisors appear once and only once their candidates are assumed to

be in the same session. So, to limit the number of candidates under the threshold

of hard constraint H2, in each session constraint 5.20 is introduced. Finally, every

candidate must have a suitable opponent and this is enforced by constraint 5.21.

As the search is for solutions that satisfy the soft constraints there is no need for an

objective function and the problem becomes a satisfaction one.

79

5.6 Experiments and Results

5.6.1 Instances with zero cost

For the following instances the model described in section 5.5.2 proves that a solu-

tion with zero cost exists and this solution is optimal as the lowest bound for any

instance is also zero:

• Real Dataset: 2, 5, 6, 13, 19.

• Art Dataset: 4, 5, 8, 12, 17, 18, 19, 20, 21, 22, 24, 28, 30, 32, 33, 34, 35, 36,

37, 41, 43, 44.

For the remaining instances this model formulation becomes infeasible meaning

that either there exists a solution with a lower bound greater than zero or that the

instance itself is infeasible (as is the case of instance art25).

5.6.2 Estimating lower bounds

As discussed in section 5.4, a large number of faculty members in each instance is

used only for their academic level. Using a variation of the main model, where these

faculty members are removed from the problem and virtual faculty members of all

academic levels in enough numbers are introduced to cover every committee without

incurring any penalties, some lower bounds for most instances can be obtained.

Table 5.5 presents the lower bounds computed. Instances where this lower bound

is proven to be optimal are denoted with an asterisk.

Table 5.5: Lower Bounds obtained by the approximation method described in 5.6.2

Instance Bound Instance Bound Instance Bound

real01 36* real18 1 art15 11*

real03 1 real20 1 art16 1*

real04 1 real21 9* art23 8*

real07 16* art01 2* art26 1*

real08 14* art02 1* art27 13*

real09 3* art03 1* art29 1

real10 12 art06 2 art31 14*

real11 11* art07 1 art38 1*

real12 1* art09 1* art39 7*

real14 1* art10 1* art40 6*

real15 9* art11 1 art42 3*

real16 4* art13 1* art45 7*

real17 21* art14 1*

∗
denotes optimality.

80

5.6.3 Results

Making use of the base model formulation described in section 5.5. Solutions for

all instances where a zero cost solution was proven by the model of section 5.5.2

not to exist are gathered. These results are presented in Table 5.6 in contrast to

results from Dimitsas et al. [1] and [2] regarding the problem. Lower bounds are the

bounds that the solver, Google’s OR-Tools CP-SAT [64], returns. Figure 5.1 contains

a visualization of the comparison. For the real Dataset 5 instances are with zero

cost, in total 17 out of the 21 instances are solved to optimality. For the artificial

Dataset 22 instances are with zero cost, in total 39 out of the 46 instances are solved

to optimality.

81

Table 5.6: Results comparison

Instance Result [1] [2] Instance Result [1] [2]

real01 36* 36 36* art13 78* 78 78*

real02 0* 0 0* art14 1* 29 1*

real03 49* 49 49* art15 162 (161) 181 169

real04 25* 25 25* art16 44 (1) 62 63

real05 0* 0 0* art17 0* 0 0*

real06 0* 0 0* art18 0* 0 0*

real07 31 (20) 32 31* art19 0* 0 0*

real08 17* 17 17* art20 0* 0 12

real09 32 (3) 35 62 art21 0* 0 0*

real10 38* 41 40 art22 0* 0 0*

real11 11* 11 13 art23 171* 172 171*

real12 22 (1) 35 34 art24 0* 0 0*

real13 0* 0 0* art25 infeasible infeasible infeasible

real14 1* 1 1* art26 14* 14 14*

real15 219 (9) 291 306 art27 205 (196) 229 219

real16 7* 7 7* art28 0* 0 0*

real17 21* 21 21* art29 188* 196 203

real18 46* 46 46* art30 0* 0 0*

real19 0* 0 0* art31 17 (14) 20 26

real20 17* 17 17* art32 0* 0 0*

real21 9* 9 9* art33 0* 0 0*

art01 82* 87 82* art34 0* 0 0*

art02 16* 16 16* art35 0* 0 0*

art03 1* 1 1* art36 0* 0 0*

art04 0* 0 0* art37 0* 0 0*

art05 0* 0 0* art38 1* 1 1*

art06 106* 117 110 art39 9 (7) 10 11

art07 182* 202 201 art40 8 (6) 12 9

art08 0* 0 0* art41 0* 0 0*

art09 8* 8 8* art42 4* 4 4*

art10 12* 12 12* art43 0* 0 0*

art11 204* 212 215 art44 0* 0 0*

art12 0* 0 0* art45 7* 7 7
∗

denotes optimality. Lower bounds in parentheses.

82

rea
l01

rea
l02

rea
l03

rea
l04

rea
l05

rea
l06

rea
l07

rea
l08

rea
l09

rea
l10

rea
l11

rea
l12

rea
l13

rea
l14

rea
l15

rea
l16

rea
l17

rea
l18

rea
l19

rea
l20

rea
l21

art
01

art
02

art
03

art
04

art
05

art
06

art
07

art
08

art
09

art
10

art
11

art
12

art
13

art
14

art
15

art
16

art
17

art
18

art
19

art
20

art
21

art
22

art
23

art
24

art
26

art
27

art
28

art
29

art
30

art
31

art
32

art
33

art
34

art
35

art
36

art
37

art
38

art
39

art
40

art
41

art
42

art
43

art
44

art
45

Instance

0

50

100

150

200

250

300
O

bj
ec

tiv
e

Battistutta et al. [1]
Dimitsas et al. [7]
This work

Figure 5.1: Result comparison of this work with [1], and [2].

This version of the Thesis Defense Timetabling Problem was found out to be espe-

cially vulnerable to a symmetry elimination process. Almost all instances where

solved to optimality. This work resulted in the following publications:

A. Dimitsas, C. Gogos, and E. Pappa, “Better solutions for the Thesis Defense

Timetabling problem using a three-phase approach,” in Proceedings of the 26th Pan-

Hellenic Conference on Informatics. Athens Greece: ACM, Nov. 2022, pp. 58–63

A. Dimitsas and C. Gogos, “Finding Near Optimal Solutions to the Thesis Defense

Timetabling Problem by Exploiting Symmetries,” Operations Research Forum, vol. 5,

no. 3, p. 65, Jul. 2024

83

Chapter 6

Case Study: Sports Scheduling

84

Sports Scheduling is as old as sports themselves, in this Chapter symmetries in

round robin tournaments are identified. An exact approach is employed to solve

tough combinatorial optimization instances of double round robin tournaments.

The participation and the solution process used in the International Timetabling

Competition of 2021 is covered.

6.1 Problem Description

Sports Scheduling is the problem of constructing a tournament schedule consisting

of matches among competing teams that form a league. The schedule should satisfy

the constraints imposed by the tournament’s rules and be ‘invisible’ in the sense that

the various stakeholders such as organizers, teams, spectators, and others should

not have legitimate reasons to question it.

Sports scheduling exists for as long as there are sports and teams willing to partici-

pate in tournaments with matches against each other. For some sports, like tennis,

instead of teams, individual athletes compete. Furthermore, there are tournaments,

like chess or other board games tournaments, where the actual matches would be

hardly identified as sports, in the typical sense. E-sports (electronic sports), is an-

other example of a competition for which its events should be scheduled according

to a carefully crafted plan. The same principles regarding scheduling apply to all

previously identified cases of tournaments and are special instances of the sports

scheduling problem.

Several variations of tournaments exist including single round tournaments, double

round tournaments, tournaments with elimination games, compact tournaments

(all teams have matches in every time-slot), etc. Some heuristics for constructing

sport schedules are known for many years, like the circle method first published by

Reverend Thomas Kirkman in 1847, see Lambrechts et al. (2017) [91] and the Berger

method introduced by Johann Berger in 1893, see Chen and Dong (2011) [92]. But

when constraints are added the problem quickly becomes very hard to solve. Such

constraints might involve the avoidance of consecutive away games for all or some

teams, the enforcement of minimum distances (number of time slots) between a

match and the rematch, and many others. In this work, an approach of generating

high quality schedules for the compact, double round robin (2RR) type of tourna-

ment, is presented.

85

6.2 Symmetries in sports scheduling

Symmetries in sports scheduling can vary based on the competition type (tour-

nament, single-elimination knockout etc.). In leagues where fairness is the most

important factor symmetries are most prevalent. Let’s take a simple example, imag-

ine a single round robin tournament of 8 teams that have to face each other in 7

rounds.

We can construct a schedule using the Circle method, like this in Table 6.1:

Table 6.1: Single round robin tournament for 8 teams.

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

1-8 1-7 1-6 1-5 1-4 1-3 1-2

2-7 8-6 7-5 6-4 5-3 4-2 3-8

3-6 2-5 8-4 7-3 6-2 5-8 4-7

4-5 3-4 2-3 8-2 7-8 6-7 5-6

Now let’s examine the home-away pattern of this tournament, in Table 6.2 we can

notice that teams have to play an unequal number of breaks (the same team plays

two time in a row at home or away). In Table 6.3 there is a comparisson of the total

breaks per team.

Table 6.2: Single round robin tournament for 8 teams Home Away patterns.

Team Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

1 H H H H H H H

2 H H H A A A A

3 H H A A A A H

4 H A A A A H H

5 A A A A H H H

6 A A A H H H A

7 A A H H H A A

8 A H H H A A A

Table 6.3: Single round robin tournament for 8 teams Breaks.

Team Home Breaks Away Breaks Total Breaks

1 6 0 6

2 2 3 5

3 1 3 4

4 1 3 4

5 2 3 5

6 2 2 4

7 2 2 4

8 2 2 4

86

Let’s try to make this tournament more fair. We can create a tournament where

each team has 1 home break and 1 away break, one such schedule is presented in

Table 6.4.

Table 6.4: Single round robin tournament for 8 teams. All team have a home break

and an away break.

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7

4-3 3-1 1-7 2-1 1-6 1-8 4-1

5-1 5-4 2-5 4-7 3-2 2-4 5-3

6-2 7-6 4-6 5-8 7-5 3-7 6-8

7-8 8-2 8-3 6-3 8-4 6-5 7-2

Because the requirement is the same among all teams. We could fix the first round

for example team 1 plays home against 2 in round 1, team 3 plays home against

4 in round 1 etc. If we do this we can enumerate all feasible solutions: 173, 568.

Otherwise, without restricting the teams, because we can choose any permutation

of teams the total number of feasible solutions would be: 8! ∗ 173, 568.

6.3 International Timetabling Competition 2021

The International Timetabling Competition 2021 (ITC2021)
1

was dedicated to au-

tomated sports timetabling. The competition’s problem consists of constructing a

compact double round-robin tournament with 16 to 20 teams while respecting var-

ious hard constraints and minimizing the penalties from violated soft constraints.

The problem description for this specific version can be found at Van Bulck et al.

(2021) [93] and it refers to tournaments categorized as time-constrained double

round robin. Time-constrained or compact means that the timetable uses the mini-

mum number of time slots, i.e. in each time slot all teams play in matches.

6.3.1 The Base Constraints

The base constraints for each tournament are the format of the tournament. All

tournaments are in double round robin format, i.e. each team has two matches

against every other team, one at home and one away. Some of the tournaments

contain the Phase rule; the timetable is divided in half (two phases), a match and its

rematch must be in a different phase. All tournaments are compact.

1
https://robinxval.ugent.be/ITC2021/

87

https://robinxval.ugent.be/ITC2021/

6.3.2 The Hard and Soft Constraints of ITC2021

All type of constraints can be either hard or soft as of the type attribute. Hard

constraints must be satisfied and soft constraints create deviations penalized in

the objective function. There are 9 types of constraints in 5 different constraint

categories.

Capacity Constraints Capacity constraints regulate the matches played by a team

or a group of teams at home or away.

CA1 constraints regulate the number of matches a team plays at home or away in

specific slots.

CA2 constraints regulate the number of matches a team plays at home or away in

specific slots against specific teams.

CA3 constraints regulate the number of matches a team plays at home or away in a

sequence of slots.

CA4 constraints regulate the number of matches a group of teams play at home or

away in specific slots against specific teams.

Game Constraints Game constraints enforce or forbid specific matches in certain

slots.

GA1 constraints deal with fixed or forbidden matches to slots assignments.

Break Constraints If a team plays a game with the same home-away status as its

previous game, we say it has a break.

BR1 constraints limit the breaks a team has in specific slots.

BR2 constraints limit the breaks a group of teams has in specific slots.

Fairness Constraints Fairness constraints attempt to increase fairness and attrac-

tiveness of a tournament.

FA2 constraints limit the difference in played home games of set of teams.

Separation Constraints Separation constraints regulate the number of slots be-

tween matches involving the same pairs of teams.

SE1 limits the difference between matches and rematches of the same teams.

88

6.4 Related work

Several real life tournaments have been addressed using automated techniques in-

volving mathematical programming, constraint programming, metaheuristics and

heuristics; e.g., the Belgian soccer league by Goossens et al. (2009) [94], the Brazil-

ian soccer tournament by Ribeiro and Urrutia (2012) [95], the Finnish national youth

ice hockey league by Nurmi et al. (2014)e [96], the Chilean soccer leagues by Alarcón

et al. (2017) [97], and the South American qualifiers for FIFA 2018 by Durán et al.

(2017) [98].

Lewis and Thompson (2011) [99] present the association of the sports scheduling

problem to the graph coloring problem. Moreover, an edge coloring presentation of

the problem is available in Januario et al. (2016) [100].

Regarding the exploration of the solution space in Costa et al. (2012) [101] it is es-

tablished that the solution space is not connected by the usually used neighborhood

structures, i.e. it’s impossible starting from a feasible timetable to reach all other

possible timetables just by performing the usual heuristic moves proposed in the

bibliography, and Januario and Urrutioa (2016) [102] proposed a new neighborhood

operator to handle this issue.

Since sports timetabling usually results in problems of big sizes, decomposition

approaches can be advantageous. In Trick (2000) [103] a first schedule then break

approach was tried. First it was decided when teams would meet, and the home

advantage is decided later. The opposite, first break then schedule approach can be

seen at Riberio (2013) [104], first it is decided where each team plays at home and

the teams are paired later. An effort on minimizing breaks is available by Miyashiro

(2003) [105]. A research on feasible home-away patterns is presented by Briskorn

(2008) [106].

6.5 Dataset

In table 6.5 some base characteristics of the ITC2021 competition are presented.

2RR is a double round robin tournament, C is for compact, P means there is a phase

rule, and finally SC is the objective, minimize over soft constraints.

89

Table 6.5: Descriptive Statistics for the ITC 2021 dataset

Instance name Teams Slots Classification

Early 1 16 30 2RR, C, P | BR1, BR2, CA1, CA2, CA4, FA2, GA1, SE1 | SC

Early 2 16 30 2RR, C, P | BR1, BR2, CA1, CA3, FA2, GA1 | SC

Early 3 16 30 2RR, C, P | BR1, BR2, CA1, CA2, CA3, FA2, GA1 | SC

Early 4 18 34 2RR, C, P | BR1, BR2, CA1, CA2, CA4, GA1, SE1 | SC

Early 5 18 34 2RR, C, P | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 | SC

Early 6 18 34 2RR, C, P | BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 | SC

Early 7 18 34 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 | SC

Early 8 18 34 2RR, C, NULL | BR1, CA1, CA2, CA3, CA4, FA2, GA1 | SC

Early 9 18 34 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, FA2, GA1 | SC

Early 10 20 38 2RR, C, P | BR1, BR2, CA1, CA2, CA3, CA4, SE1 | SC

Early 11 20 38 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 | SC

Early 12 20 38 2RR, C, P | BR1, BR2, CA1, CA2, CA3, CA4, GA1 | SC

Early 13 20 38 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, GA1 | SC

Early 14 20 38 2RR, C, NULL | BR1, BR2, CA1, FA2, GA1 | SC

Early 15 20 38 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1 | SC

Middle 1 16 30 2RR, C, P | BR1, BR2, CA1, CA2, CA4, SE1 | SC

Middle 2 16 30 2RR, C, P | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 | SC

Middle 3 16 30 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 | SC

Middle 4 18 34 2RR, C, P | BR1, CA1, CA2, CA3, CA4, GA1 | SC

Middle 5 18 34 2RR, C, P | BR1, BR2, CA1, CA2, CA3, FA2, GA1 | SC

Middle 6 18 34 2RR, C, P | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 | SC

Middle 7 18 34 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 | SC

Middle 8 18 34 2RR, C, NULL | BR1, CA1, CA2, CA3, CA4, GA1 | SC

Middle 9 18 34 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1 | SC

Middle 10 20 38 2RR, C, P | BR1, BR2, CA1, CA2, CA4, GA1 | SC

Middle 11 20 38 2RR, C, P | BR1, CA1, CA2, CA3, CA4, FA2, GA1 | SC

Middle 12 20 38 2RR, C, P | BR1, BR2, CA1, CA2, CA3, FA2, GA1, SE1 | SC

Middle 13 20 38 2RR, C, NULL | BR1, CA1, CA2, CA3, CA4, GA1, SE1 | SC

Middle 14 20 38 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1 | SC

Middle 15 20 38 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, GA1, SE1 | SC

Late 1 16 30 2RR, C, NULL | BR1, CA1, CA2, CA3, CA4, FA2, GA1 | SC

Late 2 16 30 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, GA1 | SC

Late 3 16 30 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 | SC

Late 4 18 34 2RR, C, P | BR1, CA1, CA4, GA1, SE1 | SC

Late 5 18 34 2RR, C, P | BR2, CA1, CA2, CA3, CA4, FA2, GA1 | SC

Late 6 18 34 2RR, C, P | BR1, BR2, CA1, CA2, CA4, GA1, SE1 | SC

Late 7 18 34 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, GA1, SE1 | SC

Late 8 18 34 2RR, C, P | BR1, BR2, CA1, CA2, CA3, GA1, SE1 | SC

Late 9 18 34 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, FA2, GA1 | SC

Late 10 20 38 2RR, C, P | BR1, BR2, CA1, CA2, CA3, CA4, GA1, SE1 | SC

Late 11 20 38 2RR, C, P | BR1, BR2, CA1, CA2, CA3, FA2, GA1 | SC

Late 12 20 38 2RR, C, NULL | BR1, BR2, CA1, CA2, CA3, CA4, SE1 | SC

Late 13 20 38 2RR, C, NULL | BR2, CA1, CA2, CA3, CA4, FA2, GA1, SE1 | SC

Late 14 20 38 2RR, C, NULL | BR1, CA1, CA2, CA3, CA4, FA2, GA1 | SC

Late 15 20 38 2RR, C, NULL | BR1, BR2, CA1, CA3, FA2, GA1 | SC

6.6 Constraint Programming Formulation

Decision Variables

For the set of teams T, the set of slots S, with S as the number of available slots and

T as the number of teams we define the following binary decision variables.

90

xi,j,s =

1, If team i plays against team j in slot s

0, Otherwise

∀i, j ∈ T, i , j,∀s ∈ S (6.1)

To monitor the home away pattern we define:

yi,s =

1, If team i plays at home in slot s

0, Otherwise

∀i ∈ T,∀s ∈ S (6.2)

We enforce the home-away pattern to follow the timetable:

yi,s =

T∑
j=1

xi,j,s ∀i ∈ T, i , j,∀s ∈ S (6.3)

In all instances, constraints regarding breaks do not take into consideration if the

breaks occur at Home or Away, so we just have to keep track in which slots a general

break occurs:

zi,s =

1, If team i has a break in slot s

0, Otherwise

∀i ∈ T,∀s ∈ S (6.4)

We enforce the break pattern to follow the home-away pattern:

zi,s =

1, if yi,s = yi,s−1, s > 1

0, if s = 1

∀i ∈ T,∀s ∈ S (6.5)

Base Constraints

Each team must play exactly one match at home against each other team:

S∑
s=1

xi,j,s = 1 ∀i, j ∈ T, i , j (6.6)

To satisfy the compactness rule each team plays one match in each slot:

T∑
j=1

(xi,j,s + xj,i,s) = 1 ∀i ∈ T, i , j,∀s ∈ S (6.7)

For instances with the phase rule a match and its rematch must be in different

91

phases:

S/2∑
s

(xi,j,s + xj,i,s) = 1 ∀i, j ∈ T, i < j,∀s ∈ S (6.8)

CA1 Constraints

Each CA1 constraint with team tc in “teams” field, with Sc the set of teams in “slots”

field and maxc in “max” field, triggers a dc deviation.

CA1 with mode=“H”:

dc =
∑
s∈Sc

ytc ,s −maxc (6.9)

CA1 with mode=“A” and Sc the size of Sc:

dc = Sc −
∑
s∈Sc

ytc ,s −maxc (6.10)

CA2 Constraints

Each CA2 with team t1 in “teams1” field, with Sc the set of slot in “slots” field, with

Tc the set of slots in “teams2” field, with maxc in “max” field triggers a deviation

dc.

CA2 with mode=“H”:

dc =
∑
t2∈Tc

∑
s∈Sc

xt1,t2,s −maxc (6.11)

CA2 with mode=“A”:

dc =
∑
t2∈Tc

∑
s∈Sc

xt2,t1,s −maxc (6.12)

CA2 with mode=“HA”:

dc =
∑
t2∈Tc

∑
s∈Sc

(xt1,t2,s + xt2,t1,s) −maxc (6.13)

CA3 Constraints

Each CA3 with Tc1 the set of teams in “teams1” field, with Sc as the slots in “slots”

field, with Tc2 the set of teams in “teams2” field and maxc in “max” field triggers

deviations dc for each team in Tc1 and for all slot sequences Sc of size intp in “intp”

field.

92

CA3 with mode=“H”:

dc =
∑

t2∈Tc2

k+intp∑
s=k

xt1,t2,s −maxc ∀t1 ∈ Tc1, t1 , t2, 1 ≤ k ≤ Sc − intp (6.14)

CA3 with mode=“A”:

dc =
∑

t2∈Tc2

k+intp∑
s=k

xt2,t1,s −maxc ∀t1 ∈ Tc1, t1 , t2, 1 ≤ k ≤ Sc − intp (6.15)

Special case: In all instances there are at most two Hard CA3 constraints, one with

mode=“H” and the other with mode=“A”, Tc1 = Tc2 = T, Sc = S, maxc is always 2 and

intp is always 3. If both rules exist then the home-away patterns “HHH” and “AAA”

cannot appear, so for those instances a team cannot have two breaks in a row:

zi,s + zi,s−1 ≤ 1 ∀i ∈ T,∀s ∈ S, s > 2 (6.16)

CA4 Constraints Each CA4 with mode2=“GLOBAL” triggers a deviation dc equal to

the sum of the matches between the set of teams Tc1 in “teams1” field and the set of

teams Tc2 in “teams2” field in all slots of the set Sc in “slots” field over maxc in “max”

field.

CA4 with mode2=“GLOBAL” and mode1=“H”:

dc =
∑
s∈Sc

∑
t1∈Tc1

∑
t2∈Tc2

xt1,t2,s −maxc t1 , t2 (6.17)

CA4 with mode2=“GLOBAL” and mode1=“A”:

dc =
∑
s∈Sc

∑
t1∈Tc1

∑
t2∈Tc2

xt2,t1,s −maxc t1 , t2 (6.18)

CA4 with mode2=“GLOBAL” and mode1=“HA”:

dc =
∑
s∈Sc

∑
t1∈Tc1

∑
t2∈Tc2

(xt1,t2,s + xt2,t1,s) −maxc t1 , t2 (6.19)

Each CA4 with mode2=“EVERY” triggers a deviation dc for each slot of the slots

set Sc in “slots” field equal to the sum of the matches between the set of teams

Tc1 in “teams1” field and the set of teams Tc2 in “teams2” field over maxc in “max”

field.

93

CA4 with mode2=“EVERY” and mode1=“H”:

dc =
∑

t1∈Tc1

∑
t2∈Tc2

xt1,t2,s −maxc t1 , t2,∀s ∈ Sc (6.20)

CA4 with mode2=“EVERY” and mode1=“A”:

dc =
∑

t1∈Tc1

∑
t2∈Tc2

xt2,t1,s −maxc t1 , t2,∀s ∈ Sc (6.21)

CA4 with mode2=“EVERY” and mode1=“HA”:

dc =
∑

t1∈Tc1

∑
t2∈Tc2

(xt1,t2,s + xt2,t1,s) −maxc t1 , t2,∀s ∈ Sc (6.22)

GA1 Constraints Each GA1 triggers a deviation dc calculated as the sum of matches

of the set Mc in field “meetings” which occur in set of slots Sc in field “slots” under

minc in field “min” or over maxc in field “max”.

dc =
∑
s∈Sc

∑
t1,t2∈Tc

xt1,t2,s −maxc (6.23)

dc =
∑
s∈Sc

∑
t1,t2∈Tc

xt1,t2,s +minc (6.24)

BR1 Constraints Each BR1 with tc the team in “teams” field, triggers a deviation

dc equal to the sum of teams tc breaks in set of slots Sc in “slots” field over maxc in

“max” field.

dc =
∑
s∈Sc

ztc ,s −maxc (6.25)

BR2 Constraints In all instances where a BR2 constraint exists field “teams” con-

tains all teams and field “slots” contains all slots except the first slot (as a team

cannot have a break in the first slot). As such, a BR2 constraint triggers a deviation

dc equal to the sum of all breaks of all teams over max in “max” field.

dc =
∑
t∈T

∑
s∈S

zt,s −maxc (6.26)

FA2 Constraints In all instances where an FA2 constraint exists field “teams” con-

tains all teams and field “slots” contains all slots. As such, an FA2 constraint triggers

deviations dc for each pair of teams equal to the largest difference in played home

94

games over all slots more than intp in “intp” field.

dc =
max

s ∈ S
(

s∑
m=1

yi,m −

s∑
m=1

yj,m − intp; 0) ∀i, j ∈ T, i < j (6.27)

SE1 Constraints For SE1 we need to keep track of the distance between matches

and rematches for all combinations of the set of teams Tc in field “teams”. Each

combination of teams triggers a deviation dc equal to the sum of the number of time

slots less than min in “min” field between the match and the rematch.

dc =

∣∣∣∣∣∑
s∈S

s ∗ xt1,t2,s −
∑
s∈S

s ∗ xt2,t1,s

∣∣∣∣∣ −minc t1 , t2,∀t1, t2 ∈ Tc (6.28)

Objective Function Hard constraints must not generate any deviation. Soft con-

straints’ deviations are multiplied by pc denoted by the field “penalty” and summed.

Deviations under zero are ignored.

min
∑
c∈C

dc ∗ pc (6.29)

6.6.1 Results

The hybrid process was able to produce solutions for 37 out of 45 instances. The

objective of the solutions can be seen in Table 6.6. Solution files are available at this

github
2

repository. This process managed to solve 37 out of the 45 instances.

2
https://github.com/AngelosDimitsas/papers/tree/main

95

https://github.com/AngelosDimitsas/papers/tree/main/A%20Pragmatic%20Approach%20for%20Solving%20the%20Sports%20Scheduling%20Problem/Solutions

Table 6.6: Results after three hours of execution time for each instance using the

hybrid process. Objective is presented as the tuple (deviation of hard constraints,

penalty of soft constraints).

Instance Objective Instance Objective Instance Objective

Early 1 0, 512 Middle 1 17, - Late 1 0, 2234

Early 2 0, 266 Middle 2 48, - Late 2 0, 5680

Early 3 0, 1354 Middle 3 0, 12170 Late 3 0, 3004

Early 4 6, - Middle 4 0, 7 Late 4 0, 0

Early 5 5, - Middle 5 0, 732 Late 5 39, -

Early 6 0, 3957 Middle 6 0, 1900 Late 6 0, 1440

Early 7 0, 9644 Middle 7 0, 2792 Late 7 0, 3009

Early 8 0, 1614 Middle 8 0, 301 Late 8 0, 1375

Early 9 0, 448 Middle 9 0, 1015 Late 9 0, 1108

Early 10 32, - Middle 10 1, - Late 10 6, -

Early 11 0, 8189 Middle 11 0, 2956 Late 11 0, 511

Early 12 0, 1025 Middle 12 0, 1596 Late 12 0, 7218

Early 13 0, 380 Middle 13 0, 780 Late 13 0, 3576

Early 14 0, 63 Middle 14 0, 1619 Late 14 0, 1650

Early 15 0, 4470 Middle 15 0, 1833 Late 15 0, 80

Sports scheduling has several facets, mainly multiple stakeholders: teams, police,

the board of directors, broadcasters to name a few, that make it an interesting and

difficult problem. Sports scheduling problems are proved to be, in practice (and in

theory), hard to solve. Sometimes even finding a feasible solution or proving that

such a solution does not exist is extremely challenging. This work managed to re-

ceive an entry to the competition and a joint work by the competitions members.

Related papers and conferences:

A. Dimitsas, C. Gogos, C. Valouxis, A. Tzallas, and P. Alefragis, “A pragmatic ap-

proach for solving the sports scheduling problem,” in Proc. 13th Int. Conf. Pract.

Theory Autom. Timetabling, PATAT, vol. 3, 2022, pp. 195–207

D. Van Bulck, D. Goossens, J.-P. Clarner, A. Dimitsas, G. H. Fonseca, C. Lamas-

Fernandez, A. E. Phillips, and R. M. Rosati, “What algorithm to select to create your

sports schedule?” in MathSport International 2023, 2023, pp. 48–48

D. Van Bulck, D. Goossens, J.-P. Clarner, A. Dimitsas, G. H. Fonseca, C. Lamas-

Fernandez, M. M. Lester, J. Pedersen, A. E. Phillips, and R. M. Rosati, “Which al-

gorithm to select in sports timetabling?” European Journal of Operational Research,

vol. 318, no. 2, pp. 575–591, 2024

96

Chapter 7

Case Study: One-Machine Scheduling with

Time-Dependent Capacity

97

The One-Machine Scheduling with Time-Dependent Capacity problem arose in schedul-

ing the charging times of a fleet of electric vehicles. In this Chapter a multi-staged

approach is presented. Constraint programming and Heuristics as-well as symmetry

elimination is presented.

7.1 Problem Description

A detailed description of the problem exists in Mencía and Mencía (2021) [3], so only

a brief description is provided. The problem involves n jobs and one machine with

a certain capacity that varies over time. Each job i has duration Pi and due date

Di. All jobs are available from the start of time (t = 0) and consume one unit of the

machine’s capacity for the period that the job will eventually be scheduled. Once a

job starts, it cannot be preempted and should continue executing until completion.

It is imperative that the capacity of the machine cannot be exceeded at any time.

Finally, the objective that should be minimized is the total tardiness of all jobs,

which is computed based on the due dates of the jobs. If a job i completes execution

before its due date, it does not affect the cost. Otherwise, it imposes a cost equal

to ci − Di, where ci is the completion time that job i assumes at the schedule. The

mathematical formulation of the problem is presented in Section 7.6.

The problem (1, Cap(t)||
∑

ti) is NP-hard, since (1||
∑

ti) and (P ||
∑

ti) problems (P

denotes a known number of identical machines), which are known to be NP-hard as

shown by Koulamas (2010) [110] can be reduced to it.

7.1.1 Terminology

In line with the definition of terms in Mencía et al. (2021) [3] the same notation

is used, Si, pi, di, Ci for start time, duration, due time, and completion time, re-

spectively, of a job i in a given schedule. Then, Ti is the tardiness of job i which is

max{0, Ci − di}.

A concrete example is presented below, which involves 12 jobs, and a capacity line

that reaches a maximum of 4 units. This example is the one used as Example 1 in

Mencía et al. (2019) [111]. Table 7.1 summarizes information related to it, alongside

with values associated with an optimal schedule for this problem instance, achiev-

ing an optimal cost of 20. The schedule corresponding to the table’s third line is

presented graphically in Figure 7.1.

98

i 1 2 3 4 5 6 7 8 9 10 11 12

pi , di 4,4 4,9 2,13 3,4 4,7 3,8 2,10 3,3 2,13 3,5 3,9 5,7

Si , Ci , Ti 4,8,4 8,12,3 10,12,0 2,5,1 6,10,3 5,8,0 8,10,0 0,3,0 12,14,1 3,6,1 6,9,0 9,14,7

Table 7.1: A sample problem instance with 12 jobs. For each job i, the table shows

its duration pi and its due time di. Also, for a certain schedule, the table shows for

each job i its start time (Si), its completion time (Ci) and the penalty it incurs (Ti).

00 1 22 3 4 55 6 7 88 9 10 1111 12 13 14
Time

1

2

3

4

Ca
pa

cit
y

8 (3,3) 10 (3,5) 11 (3,9) 12 (5,7)

4 (3,4) 6 (3,8) 2 (4,9) 9 (2,13)

1 (4,4) 7 (2,10) 3 (2,13)

5 (4,7)

example1_cost20.sol

Figure 7.1: A graphical representation of the schedule in the last line of Table 7.1.

7.2 Related Work

Hard combinatorial optimization problems like the One-Machine Scheduling with

Time-Dependent Capacity problem are approached using numerous solving meth-

ods Lenstra et al. (1977) [112], Gupta et al. (1987) [113]. For a work related to

renewable energy consult Alefragkis et al. (2022) [114] The two basic categories

of such approaches are the exact ones and the heuristics-metaheuristics ones. In

the first category, one can identify Mathematical Programming (i.e., Linear Program-

ming, Integer Programming, and others) Gogos et al. [115], Constraint Programming

Baptiste et al. (2001) [116] and Valouxis et al. (2018) [117] and Gogos (2023) [118],

approaches based on SAT (satisfiability) Großmann et al. (2012) [119] or SMT (Satis-

fiability Modulo Theory) solvers Ansótegui et al. (2011) [120] and in general methods

that intelligently examine the complete search space while pruning parts of it dur-

ing their quest for proven optimal solutions Brucker et al. (1998) [121]. In the

second category the approaches are numerous, including Local Search methods

Vaessens (1995) [122] and Matsuo et al. (1989) [123], Genetic Algorithms Lee et

al. (1998) [124], Genetic Programming Gil-Gala et al. (2019) [125], Memetic Algo-

rithms França et al. (2001) [126], Differential Evolution Wu and Che (2019) [127],

Ant Colony Optimization Merkle and Middendorf (2003) [128], Particle Swarm Op-

timization Lin et al. (2010) [129], Bees Algorithms Yuce et al. (2017) [130], Hyper-

99

heuristics Gil-Gala et al. (2020) [131] and others. For industrial task scheduling

you are referred to Gogos et al. (2025) [132] and Alefragis et al. (2025) [133].

7.2.1 Heuristically Constructed Schedules

In Mencía and Mencía (2021) [3], authors present the schedule builder algorithm,

where jobs are ordered in an arbitrary sequence, and each job is scheduled to start

at the earliest possible time. After positioning each job, the capacity of the machine

is updated in accordance with the partial schedule. When all jobs are scheduled, the

algorithm finishes and returns a feasible schedule. This search space is guaranteed

to contain an optimal solution to any problem instance Mencía et al. (2019) [111].

So, each possible solution can be represented as a sequence of jobs to the schedule

builder. Certain metaheuristic algorithms like Genetic Algorithms may be benefited

by the idea of representing each possible schedule as a sequence of jobs and search

through the space of all possible permutations.

Algorithm 1 Schedule Builder using lanes

Input: A problem instance P
Output: A feasible schedule S

demand← [0,...]

left← 0 ▷ Leftmost time point where capacity is not yet fully utilized

for all jobs job do

t← left

while True do

flag = True

for all capacity[t:t+job.duration], demand[t:t+job.duration] c, d do

if d > c then

flag← False

break

end if

end for

if flag then

lane = find_lowest_available_lane(job, t)

S[job.id]← lane, t

for all [t:t+job.duration] t’ do

demand[t’]← demand[t’] + 1

if demand[t’] = capacity[t’] then

left← t’ + 1

end if

end for

t← t + 1

break

end if

end while

end for

100

Here, algorithm 1 is presented a modification of the schedule builder algorithm [3]

that introduces lanes, which are levels formed by the capacity of the problem. So,

for example, a problem with a maximum capacity of four has four lanes, the first

that is always available during the time horizon and three more that, based on the

capacity, have periods of availability and unavailability. Lanes help plot schedules,

disambiguate solutions with identical costs, and quickly identify jobs that form se-

quences of consecutive jobs.

In algorithm 1, the function find_lowest_available_lane is called this finds

the lowest available lane that can accommodate a job starting at period t.

7.3 C-Paths

A fundamental concept that was introduced by Mencía et al. in (2017) [134] is the

concept of a C-Path. A C-Path is a sequence of consecutive jobs (i.e., in a C-Path, the

finish time of each previous job coincides with the start time of the following job) in

a schedule. The importance of C-Paths stems from the fact that jobs in each C-Path

can easily swap places and keep the schedule feasible. We can consider a graph

view of a schedule, where each job is a node, and directed edges connect nodes that

correspond to consecutive jobs. Then, each path from a source node of the graph

(i.e., a node with no incoming edges) to a sink node (i.e., a node with no outgoing

edges) is a C-Path. This is demonstrated in Figure 7.2 for a sample schedule of cost

35, for the toy problem instance of Table 7.1, alongside with its corresponding graph

in Figure 7.3. The list of C-Paths are identified in this graph are the following 6 ones,

(3,12,4), (3,10,1,6), (3,10,1,2), (7,9,8,5), (7,11,2) and (7,11,6).

00 1 2 33 4 5 6 77 8 9 10 1111 12 13 14 15
Time

1

2

3

4

Ca
pa

cit
y

3 (2,13) 10 (3,5) 1 (4,4) 6 (3,8)

12 (5,7) 4 (3,4) 5 (4,7)

7 (2,10) 9 (2,13) 8 (3,3)

11 (3,9) 2 (4,9)

example1_cost35.sol

Figure 7.2: A suboptimal schedule of cost 35 for the toy problem of Table 7.3. Each

job is depicted with a box, annotated with a label of the form x(y, z), where x is the

job identification number, y is the duration of the job, and z is its due time.

101

3

10

12

1

4

6

2

7

9

11

8 5

Figure 7.3: The graph that corresponds to the schedule of Figure 7.2

The number of C-Paths might be very large, especially for schedules of big-size

problems. This is demonstrated in Table 7.2, which shows the number of C-Paths for

specific schedules of selected problem instances. Note that the number of C-Paths

might change dramatically for different schedules of the same problem instance

and that larger problem instances might have fewer C-Paths than smaller problem

instances for some schedules.

Problem instance Schedule cost Number of C-Paths

i120_3_1 848 3

i120_10_1 749 71

i250_10_1 4094 48

i250_30_1 3013 276

i500_10_1 4614 204

i500_30_1 2670 4528

i750_10_1 4409 22302

i750_50_1 5134 206022

i1000_10_1 641 903826

i1000_100_1 71012 216694

Table 7.2: Number of C-Paths for schedules of selected problem instances, which

can be found at https://github.com/chgogos/1MSTDC.

7.3.1 Fast computation of C-Paths

Since complete enumeration of all C-Paths is out of the question for problems of

large sizes, and a faster method of generating a single C-Path each time it is needed

a new method was developed. This method starts by picking a random job, followed

by two processes that find the right and the left part of a C-Path, having the selected

job as a pivot element. The right side part of the C-path is formed by choosing a next

job that starts at the finish time of the current job. If more than one such jobs exist,

one of them is randomly selected and becomes the new current job. This process

102

https://github.com/chgogos/1MSTDC

continues until no more subsequent jobs are found. The left side of the C-Path is

formed by setting once again as the current job the initially selected job and finding

previous jobs that end at the start time of the current job. Similarly, if more than

one exists, one is chosen at random and becomes the new current job. The process

ends when no more suitable prior jobs can be found.

7.4 Dataset

A dataset consisting of a relatively large number of artificially generated problem

instances is publicly available in github repo
1
. The procedure of generating these

instances is described in [3] and special care has been taken so as the problems’

structures to resemble the structure manifested during the process of electric vehi-

cles charging Hernandez et al. [135]. In total, 190 problem instances exist, as seen

in Table 7.3. The naming of each problem instance is i<n>_<MC>_<k>, where n is

the number of jobs, MC is the Maximum Capacity and k is the sequence number of

each problem instance for this n, MC pair.

Number of jobs (n) Maximum Capacity (MC)

120 3, 5, 7, 10

250 10, 20, 30

500 10, 20, 30

750 10, 20, 30, 50

1000 10, 20, 30, 50, 100

Table 7.3: Problem instances in the dataset. For each pair of number of jobs and

maximum capacity, 10 individual problem instances exist.

Note that the capacity in all problem instances is a unimodal step function that grows

until reaching a peak, then decreases and finally stabilizes at a positive value.

7.5 Symmetry and Due times rule

This work contributes to identifying a rule that involves due times of jobs with equal

durations. The rule states that “Jobs with equal duration should be scheduled in

the order of their due times”. In other words, if two jobs have equal duration, they

should swap places if the due time of the job that is scheduled later is sooner than

the due time of the job that is scheduled sooner. This rule can be used to strengthen

mathematical formulations or as a heuristic for reaching better solutions.

1
https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-

Efficient-Memetic-Algorithms

103

https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-Efficient-Memetic-Algorithms

Proof. Suppose that two jobs, i and j, with the same duration, are scheduled such

that job i comes first and job j follows. Also, suppose that job j has earlier due time

than job i, i.e. dj < di. Let t and t′ be the finish times of jobs i and j, respectively,

and since both jobs have the same duration, t < t′ holds. When both jobs have

non-negative tardiness values, i.e. t − di ≥ 0 and t′ − dj ≥ 0, swapping the jobs

results again in non negative tardiness values for both jobs. This holds because the

tardiness of job j after swap will be t − dj > t − di ≥ 0. Moreover, t′ > t ≥ di, so

the tardiness of job i after swap will be t′ − di ≥ 0. So, the total tardiness before

swap is (t − di) + (t′ − dj), which is equal to the total tardiness after swap which is

(t − dj) + (t′ − di). This situation is depicted in Figure 7.4(a). The top figure shows a

possible configuration of two equal-duration jobs, that both incur tardiness. It can

be easily seen that the total length of the gray bars that represent tardiness remains

the same after swapping jobs i and j.

The benefit of positioning equal duration jobs, according to due times, occurs when

job i completes execution before its due time, and job j incurs some positive value of

tardiness. Since job i has no tardiness, the total tardiness of the initial configuration

is t′ −dj. After the swap the total tardiness will be (t −dj)+ (t′ −di). In order to prove

that the total tardiness is no greater after the swap, the following inequality must

hold, (t − dj) + (t′ − di) ≤ t′ − dj. The inequality leads to a true proposition as follows,

(t − dj) + (t′ − di) ≤ t′ − dj =⇒ t − di ≤ 0 =⇒ t ≤ di. The last inequality holds

since it is the assumption made for this case, i.e. job i has no tardiness. A visual

representation of such a situation is depicted in Figure7.4 (b). The upper part of the

figure shows the situation where job i is scheduled first, while the lower part of the

figure shows the situation after swapping the jobs. Again, the gray bars represent

the tardiness of the jobs, and it can be seen that the total tardiness is decreased

when jobs swap places.

104

i j

t t'didj

j i

t t'didj

i j

t t'didj

j i

t t'didj

(a) (b)

before swap

after swap after swap

before swap

gain
x

x

x

x

x x

x x

Figure 7.4: (a) Both job i and job j have non-negative tardiness values (b) Job i has

no tardiness, but job j incurs tardiness

7.6 Formulation and Implementation

A formulation of the problem is presented below, which will be used to construct

initial solutions to the problem. Then, the formulation is slightly modified and used

for solving problems involving subsets of tasks in an effort to attain better schedules

overall.

Let J be the set of jobs.

Let Pj be the duration of each job j ∈ J.

Let Dj be the due date of each job j ∈ J.

Let T be the number of time points. Note that the value of T is not given explicitly

by the problem, but such a value can be computed by aggregating the duration of

all jobs.

Let Cap(t) be the capacity of the machine at each time point t ∈ 0..T − 1.

We define integer decision variables sj ∈ 0..T − 1 − Pj which denote the start time of

each job j ∈ J.

Likewise, integer decision variables fj ∈ Pj..T − 1 are defined which denote the finish

time of each job j ∈ J.

We also define integer decision variables zj ≥ 0 which denote the tardiness of each

job j ∈ J.

Finally, the binary decision variables xjt and yjt are defined. Each one of the former

105

variables assumes value 1 if job j starts its execution at time point t or else it assumes

value 0. Likewise, each yjt variable marks the time point that job j finishes.

min
∑
j∈J

zj (7.1)

fj = sj + Pj ∀j ∈ J (7.2)

zj ≥ fj − Dj ∀j ∈ J (7.3)

sj ≥ t ∗ xjt ∀j ∈ J ∀t ∈ 0..T − 1 (7.4)

sj ≤ t + (M − t) ∗ (1 − xjt) ∀j ∈ J ∀t ∈ 0..T − 1 (7.5)

∑
t∈0..T−1

xjt = 1 ∀j ∈ J (7.6)

yjt+Pj = xjt ∀j ∈ J ∀t ∈ 0..T − 1 − Pj (7.7)

∑
j∈J

∑
t′∈0..t

xjt′ −
∑
j∈J

∑
t′∈0..t

yjt′ ≤ Cap(t) ∀t ∈ 0..T − 1 (7.8)

A brief explanation of the above model follows.

The aim of the objective function in Equation 7.1 is to minimize the total tardiness

of all jobs.

Equation 7.2 assigns the proper finish time value for each job given its start time

and duration.

Equation 7.3 assigns tardiness values to jobs. In particular, when job j finishes

before its due time, the right side of the inequality is a negative number, and variable

zj assumes the value 0 since its domain is of nonnegative integers. When job j

finishes after its due time, zj becomes fj − Dj. This occurs because zj is included

in the minimized objective function and therefore forced to assume the smallest

possible nonnegative value.

Equations 7.4 and 7.5 drive variables xjt to proper values based on sj values. This

106

occurs because when sj assumes value t, then xjt becomes 1. It should be noted

that M in Equation 7.5 represents a big value, and T − 1 can be used for it. For

the specific time point t that a job will be scheduled to begin, the right sides of both

equalities will assume value t. For all other time points besides t, the right sides of

the former and the latter equations become 0 and M, respectively.

Equation 7.6 enforces that only one among all xjt variables of each job j will assume

value 1.

Equation 7.7 dictates the following association rule. For each job j, when xjt becomes

1 or 0, then the corresponding y variable of j having time offset Pj, which is yjt+Pj , will

also be 1 or 0 respectively.

Equation 7.8 guarantees that for each time point, the capacity of the machine will not

be violated. The values that the left side of the equation assumes are the numbers

of active jobs at each time point t. The first double summation counts the jobs that

have started no later than t, while the second double summation counts the jobs

that have also finished no later than t. Their difference is obviously the number of

active jobs.

7.6.1 Constraint programming formulation

The IBM ILOG Constraint Programming (CP) Solver seems to be a good choice for solv-

ing scheduling problems involving jobs that occupy intervals of time and consume

some types of resources that have time-varying availability Laborie et al. (2018) [63].

The one-machine scheduling problem can be easily formulated in IBM ILOG CP solver

using one fixed size interval variable per job (j), and the constraint always_in that

restricts all of them to assume values that collectively never exceed the maximum

available capacity through time. This is possible by using a pulse cumulative func-

tion expression that represents the contribution of the fixed interval variables over

time. Each job execution requires one capacity unit, which is occupied when the job

starts, retained through its execution and released when the job finishes. In this

case, variable usage aggregates all pulse requirements by all jobs. The objective

function uses a set of integer variables z[job.id] that are stored in a dictionary

having as keys the identifier of each job. Each z[job.id] variable assumes the

value of the job’s tardiness (i.e. the non negative difference of the job’s due time

(job.due_time) from its finish time (end_of(j[job.id])). An additional con-

straint is added that corresponds to the due time rule mentioned in Section 7.5.

Jobs are grouped by duration, and a list ordered by due times is prepared for each

group. Then, for all jobs in a list, the constraint enforces that the order of the jobs

must be respected. This means that each job in a list should have earlier start time

107

than the start time of the job that follows it in the list. The model implementation

using IBM ILOG CP solver’s python API is presented below.

import docplex.cp.model as cpx

model = cpx.CpoModel()

x_ub = int(problem.ideal_duration() * 1.1)

j = {

job.id: model.interval_var(

start=[0, x_ub - job.duration - 1],

end=[job.duration, x_ub - 1],

size=job.duration

)

for job in problem.jobs

}

z = {

job.id: model.integer_var(lb=0, ub=x_ub - 1)

for job in problem.jobs

}

usage = sum([model.pulse(j[job.id], 1) for job in problem.jobs])

for i in range(problem.nint):

model.add(

model.always_in(

usage,

[problem.capacities[i].start, problem.capacities[i].end],

0,

problem.capacities[i].capacity,

)

)

for job in problem.jobs:

model.add(z[job.id] >= model.end_of(j[job.id]) - job.due_time)

for k in problem.size_jobs: # iterate over discrete job durations

jobs_by_due_time = same_duration_jobs[k]

for i in range(len(jobs_by_due_time)-1):

j1, j2 = jobs_by_due_time[i][1], jobs_by_due_time[i+1][1]

model.add(model.start_of(z[j1]) <= model.start_of(z[j2]))

model.minimize(sum([z[job.id] for job in problem.jobs]))

The object problem is supposed to be an instance of a class that has all relevant

information for the problem instance under question (i.e. jobs is the list of all jobs,

108

each job besides id and due_time has also a duration property, nint is the

number of capacity intervals, capacities[i].start and capacities[i].end

are the start time and end time of the i th
capacity step, respectively). Finally, the

problem object has the ideal_duration method that estimates a tight value for

the makespan of the schedule, which is incremented by 10% to accommodate pos-

sible gaps that hinder the full exploitation of the available capacity. The “ideal

duration” is computed by totaling the durations of all jobs and then filling the area

under the capacity line from left to right and from bottom to top, with blocks of

size 1 × 1 until the totaled durations quantity runs out. The rightmost point on the

time axis of the filled area becomes the “ideal duration” and is clearly a relaxation of

the actual completion time of the optimal solution since each job is decomposed in

blocks of duration one and no gaps appear in the filled area.

An effort was undertaken to implement the above model using Google’s ORTools CP-

SAT solver. This solver has the cumulative constraint that can be used in place of

always_in to describe the machine’s varying capacity. A series of FixedSizeInter-

valVar variables were used that transformed the pulse of the capacity to a flat line

equal to the maximum capacity. Unfortunately, the solver under this specific model

implementation could not approximate good results and was finally not used.

7.7 Local search improvement procedures

We have identified three local search procedures that have the potential to improve

the cost of a given schedule. These local search procedures can be considered as

“large” moves since they examine a significant number of neighboring schedules to

the current one.

7.7.1 Local search Improve1

The first local search procedure starts by iterating over all jobs. For each job j1, each

other consecutive job j2 is identified, and then each job j3 with a duration equal to

the aggregated durations of j1 and j2 is found. Since j1 and j2 are consecutive, they

can be swapped with job j3, and the schedule will still remain feasible, as seen in

Figure 7.5. Moreover, the order of the two first jobs does not influence the feasibility.

So, two alternatives are tested that compare the imposed penalties before and after

the swap, and if an improvement is found, the swap occurs. The time complexity of

this procedure is O(|J|) since the maximum number of consecutive jobs for each job is

bounded by the maximum capacity, which is a constant number much smaller than

the number of jobs. Moreover, identifying consecutive jobs and jobs of durations

that are equal to the aggregated duration of two other consecutive jobs is performed

109

using Hash Maps that effectively contribute O(1) to the above complexity. The first

one uses times as keys and has a list of jobs starting at these times as values. By

using as key the finish time of a job j1, the dictionary returns each job j2 that is

consecutive to j1. The second Hash Map uses the jobs’ durations as keys and value

for each key x, the list of jobs with duration x. Note that the second Hash Map is

computed only once and remains unchanged through the solution process.

x x

......

...

j1 j2

...

...j3

x x

......

...

...

...

j3

j1 j2

x x

......

...

...

...

j3

j1j2

before

after (1st case) after (2nd case)

Figure 7.5: Assuming that job j3 has the same duration as the aggregated duration

of jobs j1 and j2, two cases for swapping them become possible. The first one puts

j1 first and j2 second and the other one puts j2 first and j1 second.

7.7.2 Local search Improve2

The second local search procedure uses C-Paths that are computed as described in

subsection 7.3.1. Each C-Path is traversed from left to right until a job j is found

that imposes cost to the schedule (i.e., has finish time greater than its due time).

The only way that the penalty of a job j can be reduced is by moving it to the left side

of the C-Path. So, all jobs that start earlier than job j are examined by swapping

places with job j. If the total penalty imposed by job j and a sequence of jobs up

to another job k is greater than the penalty after swapping jobs j and k, followed

by shifts of jobs in between, then this set of moves occurs. The time complexity

of this procedure is O(|J|2). Since each C-Path has length that is O(|J|), and each

C-Path is traversed once for identifying jobs with penalties, and then for each such

job the C-path is again traversed, it follows that the complexity is quadratic. The

construction of each C-Path costs O(|J|), which is added to the time of the above

procedure and gives O(|J|) + O(|J|2). Since this occurs for every job, |J| C-Paths are

generated, and this results in a total complexity of O(|J|3) for the second local search

procedure.

110

...

j4j3j2j1

...

... j5

before

...

j4 j3 j2j1

...

... j5

after (j2 and j4 switch places, j3 is forced to move too)

Figure 7.6: Given a C-Path, this local search procedure swaps two non-consecutive

jobs (j1 and j2), and appropriately shifts the in-between jobs (j3) so as to keep the

C-Path property for all involved jobs.

7.7.3 Local search Improve3

The third local search procedure starts by identifying periods where the capacity is

not fully used. Given a capacity profile that has the form of a pulse, for each job,

the pulse is lowered by one unit for the period that it is active. This is iterated for all

jobs, and finally, it is possible to exist periods scattered across the horizon that have

non-zero capacity remaining. So, jobs with finish times that fall inside these periods

(gaps) can possibly be moved to the right, and the schedule should still be feasible.

The main idea of this local search procedure is that it allows two jobs of marginally

different durations to swap places. This occurs by firstly identifying two C-Paths,

with no common jobs, that have as rightmost jobs, jobs with finish times falling

inside gaps. Given two such C-Paths, each job of them can be swapped with a job of

the other C-Path, provided that the slack that the gap provides is adequate for this

move. This means that all jobs of a C-Path that are to the right of the smaller between

the two swapping jobs should shift to the right, and all jobs of the other C-Path that

are to the right of the bigger job should shift to the left, giving the opportunity

of further penalty gains. In principle, the number of jobs that might have finish

times that fall inside gaps is O(|J|), but the experiments showed that in practice, this

number is a small fraction of |J|. Since two C-Paths are involved, and each job of a

C-Path has to be checked with each job of the other C-Path, this contributes O(|J|2).
Moreover, all possible pairs of jobs that fall in gaps are used as starting points in

the construction of the corresponding C-Paths, resulting in another O(|J|2) term. So,

the time complexity of the overall procedure is O(|J|4). It should be noted that shifts

due to penalty reductions occur rarely, and their amortized contribution to the time

complexity is neglected. In practice, the time needed for this move is comparable to

the previous one due to the relatively small number of jobs that fall inside gaps.

111

......

... ...

...j7

before

j6j5j4

...

j1 j2 j3

after swapping j3 and j5

gap1 gap2

......

... ...

...j7j6

j5

j4

...

j1 j2

j3

gap1' gap2'

Figure 7.7: Jobs belonging to two C-Paths swap places to reduce the length or even

remove gaps in the schedule.

7.8 A multi-staged approach

The approach employed for addressing the problem uses several stages that operate

cyclically until the available time runs out.

112

Start

Constraint
Programming Solver

(full problem)

Improve1 LS

Improve2 LS

Improve3 LS

Freeze portion of
schedule, solve

remaining with CP
solver

Reorder same
duration jobs

No

Yes

Are
stopping criteria

fulfilled?

Finish

St
oc

ha
st

ic
 S

ea
rc

h

Figure 7.8: Hybrid Exact-Local Search approach.

7.9 Results

The experiments were run on a workstation with 32GB of RAM, and an Intel Core

i7-7700K 4.2GHz CPU (4 cores, 8 threads), running Windows 10. The constraint

programming solver IBM ILOG CP Optimizer Version 22 was used. The local search

procedures, the implementation of the constraint programming model, and the driver

program were all implemented in Python. The results are compared with the results

of Mencía et al. in (2021) [3], which is a continuation of their previous works in

(2017) [134] and (2019) [111]. In their most recent work they present and compare

113

six memetic algorithms termed MASCP, MAiSCP, MASCP+, MACB, MAICP and MAHYB.

The last one gives the best results among all others and the previous approaches

of the authors, and this is the algorithm this approach is compared with. MAHYB

combines CB and ICP procedures under a memetic algorithm. Both procedures use

the concept of a cover. A cover is a disjoint set of C-Paths that covers all jobs. In

CB once a cover is generated, C-Paths of the cover are examined in isolation for

improvements. On the other hand, ICP swaps jobs between C-Paths, again using

a cover to select the C-Paths participating in the procedure. In [3], no values of

schedule costs are given, but the relative performance among the six approaches is

recorded in tables and graphs instead. So, results about the actual schedule costs

of MAHYB and the other approaches that are used in the comparisons hereafter were

taken from github repo
2
, that authors cite in their paper.

7.9.1 CPO vs. CPO+

I call the constraint programming approach, briefly described in [3], CPO (Constraint

Programming Optimizer), and the approach described in subsection 7.6.1 that ex-

ploits the “due rule”, CPO+. Results about the performance of CPO were taken from

the web repository cited at the end of the previous paragraph.

Table 7.4 depicts for each problem instance the total tardiness of all jobs for the

schedule that CPO and CPO+ produced. It shows that CPO+ manages to find equal

to the best-known solutions for 25 out of 190 problem instances, while CPO achieves

this for only 2 problem instances (i120_3_3 and i120_5_4). Best values are

written in bold. An allotted time of n/2 seconds for each problem instance was given

for each run, where n is the number of jobs. All available cores were used, which was

the default setup for the IBM ILOG CP Optimizer. The results of CPO+ are the best

among 10 runs for each problem instance, and random seeds were used to achieve

diversity.

2
https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-

Efficient-Memetic-Algorithms

114

https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-Efficient-Memetic-Algorithms

Problem CPO CPO+

Set 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

i120_3 951 3834 2410 1059 3951 3258 730 4095 1690 1326 867 3620 2410 1019 3859 3123 720 4084 1663 1268

i120_5 1054 1673 999 496 3128 458 550 1227 3486 1245 1030 1538 959 496 3062 455 519 1214 3332 1151

i120_7 1201 2768 3798 4206 3220 2786 1712 3306 4694 546 1133 2725 3551 4083 3095 2665 1655 3225 4510 503

i120_10 764 1212 1554 935 1612 1157 2530 777 1056 881 752 1129 1511 887 1467 1118 2464 721 1006 823

i250_10 4311 552 1480 4871 6921 6563 4857 6108 5453 1405 4144 506 1354 4755 6522 6288 4604 5940 5363 1320

i250_20 5905 1974 2971 2774 1343 1786 1644 2408 1730 6632 5674 1899 2825 2545 1097 1631 1594 2202 1561 6563

i250_30 3381 3348 5273 5099 4560 5333 3990 803 1808 5600 3085 3114 4999 4194 4304 5129 3726 695 1561 5418

i500_10 4791 865 1109 2226 675 6312 3261 4688 497 2227 4614 822 963 2159 610 6100 2864 4472 465 2130

i500_20 8212 899 9440 1495 1859 9349 626 3536 6614 6030 7705 790 9144 1273 1799 9232 525 3252 6420 5886

i500_30 3064 613 6317 4787 6583 1838 4256 9360 1099 482 2822 501 6048 4425 6114 1697 3892 9051 921 369

i750_10 4670 8244 6051 5405 1655 8227 1039 8638 13594 4149 4460 7820 5841 5110 1539 7909 970 8042 13103 3906

i750_20 6100 889 1593 10151 9927 12396 5175 11910 4812 2866 6046 703 1320 9633 9179 11652 4875 11414 4399 2690

i750_30 5092 6045 3200 3240 733 3028 1243 3281 3118 2256 4954 5314 2534 3030 687 2609 1114 2963 2812 2089

i750_50 5989 5766 13945 2699 11096 12590 5748 11425 5689 6139 5303 5098 12615 2433 10190 11998 5122 10898 5402 5242

i1000_10 712 24629 1071 15711 16299 2188 779 20902 23213 4471 641 23821 833 15342 15443 2025 743 20891 22495 4147

i1000_20 10379 17525 20318 8214 15211 25044 10012 17482 11583 11316 9470 16355 20265 8083 14510 24915 9912 17048 10436 10892

i1000_30 7871 2074 20964 13991 4308 13630 10763 2713 15856 20959 7054 1769 18580 12753 3800 12298 10232 2239 15631 19138

i1000_50 3315 16491 13047 1520 1630 18216 21181 2227 15473 4682 2963 16236 12130 1239 1478 17131 20133 2022 14454 4199

i1000_100 73637 81104 28292 39057 76080 50541 47746 55973 26585 17803 78963 81638 26446 37719 77298 49313 45036 53639 24823 16330

Table 7.4: Best results (total tardiness) from the CPO approach and the CPO+ ap-

proach.

7.9.2 Hybrid Exact-Local Search

The HELS (Hybrid Exact-Local Search) approach is shown using the flowchart of Fig-

ure 7.8. Firstly, the constraint programming solver is employed for the full problem.

A n/2 seconds period of time is given for executing this stage. Then, for 3×n seconds

a loop occurs that includes the 3 local search procedures, followed by an activation

of the constraint programming solver again, but this time for subproblems. These

subproblems might involve jobs that intersect with vertical ribbons on the time axis

or groups of consecutive sequences of jobs (i.e., multiple C-Paths). Note, that re-

ordering of jobs might be needed so as the current solution to conform with the

“due rule”, else the constraint programming solver might consider the fixed parts of

the partial solution as infeasible. This is denoted by the extra stage “Reorder same

duration jobs” after the third local search procedure of Figure 7.8.

Table 7.5 presents the best results that were achieved by the approach with the best

known results that are all provided by MAHYB.

Problem MAHYB HELS

Set 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

i120_3 848 3568 2410 1019 3858 3120 720 4084 1663 1268 848 3570 2410 1019 3858 3120 720 4084 1663 1268

i120_5 1030 1511 959 496 3061 455 519 1214 3223 1131 1030 1514 959 496 3061 455 519 1214 3231 1131

i120_7 1120 2725 3493 4021 3059 2640 1655 3225 4470 493 1121 2725 3505 4028 3078 2640 1655 3225 4474 493

i120_10 746 1124 1442 887 1447 1118 2463 721 977 820 749 1125 1453 887 1447 1118 2463 721 983 820

i250_10 4094 506 1349 4731 6390 6280 4497 5881 5321 1293 4103 506 1349 4731 6391 6284 4511 5887 5327 1293

i250_20 5573 1882 2813 2525 1054 1583 1565 2190 1553 6531 5573 1888 2813 2525 1054 1605 1570 2190 1553 6541

i250_30 3013 3054 4758 4098 4197 5034 3641 686 1502 5197 3013 3054 4753 4093 4194 5019 3641 686 1502 5193

i500_10 4614 822 951 2102 610 5981 2768 4460 462 1998 4614 822 953 2116 610 5981 2783 4460 462 2008

i500_20 7649 790 8941 1272 1719 9110 523 3180 6291 5661 7569 790 8970 1272 1744 9097 523 3188 6338 5659

i500_30 2670 477 5975 4307 5869 1614 3795 8946 862 352 2670 477 5974 4307 5873 1626 3795 8888 862 352

i750_10 4379 7744 5819 5086 1517 7895 952 7996 12837 3840 4312 7744 5821 5082 1500 7895 943 7962 12814 3840

i750_20 5891 700 1314 9674 9073 11434 4855 11353 4393 2632 5979 700 1314 9562 9073 11434 4855 11284 4393 2632

i750_30 4713 5128 2364 2951 661 2577 1070 2911 2700 1994 4767 5128 2364 2945 663 2577 1070 2912 2700 1994

i750_50 5134 4978 12601 2356 9840 11483 4868 10580 5154 5204 5134 4792 12147 2356 9847 11500 4868 10583 5154 5028

i1000_10 641 23729 815 15204 15393 2025 735 20686 22358 4028 641 23521 812 15206 15180 2025 729 20574 22162 3982

i1000_20 9440 16069 20168 7962 14183 24693 9816 16994 10290 10781 9440 15971 19986 7975 14183 24507 9726 16789 10301 10781

i1000_30 6902 1687 18433 12399 3768 12090 9795 2085 15625 18728 6780 1668 18087 12411 3707 12090 9765 2085 15528 18483

i1000_50 2883 16418 11613 1142 1390 16656 19566 1886 13740 3989 2883 15977 11618 1142 1390 16667 19566 1889 13747 3989

i1000_100 71034 75101 25977 36374 67109 47540 44545 52266 23704 15664 71012 75181 25594 36376 66419 47541 43437 52266 23690 15230

Table 7.5: Best previously known results (total tardiness) achieved from the MAHYB

approach, and results of the HELS approach.

115

Table 7.6 consolidates the relative performance of this approach when compared

with the best-known results. Someone can observe that the approach manages to

find new best results for 48 of the problem instances. It also equals best-known

results for 91 problem instances. MAHYB achieves better results than this approach

for the remaining 51 problem instances. I also compare the solutions with how

close it reaches the previously best-known solution as a percentage value, and this

metric is called “distance%”. Negative values mean that this approach sets a new

best-known value. The average distance% metric for all problem instances assumes

a negative value of −0.1727%, demonstrating its real good performance. This is fur-

ther supported by Figure 7.9, which shows for each problem subset, consisting of

10 instances, a boxplot of the distance% values. Again, negative values are advan-

tageous for this approach, and the graph clearly shows that this approach achieves

excellent results, especially for large problem instances.

Best Equal Worse Distance (%)

48 91 51 -0.1727

Table 7.6: HELS approach performance over best recorded results.

i1
20

_3

i1
20

_5

i1
20

_7

i1
20

_1
0

i2
50

_1
0

i2
50

_2
0

i2
50

_3
0

i5
00

_1
0

i5
00

_2
0

i5
00

_3
0

i7
50

_1
0

i7
50

_2
0

i7
50

_3
0

i7
50

_5
0

i1
00

0_
10

i1
00

0_
20

i1
00

0_
30

i1
00

0_
50

i1
00

0_
10

0

-3.0

-2.0

-1.0

0.0

1.0

Di
st

an
ce

 %

Memetic Hybrid (MAHYB) vs. Hybrid-Exact Local Search (HELS)

Figure 7.9: HELS approach compared with best known results derived from the

MAHYB approach in [3].

Figure 7.10 includes three graphs showing the cost of solutions during the allotted

116

execution time. Costs start from very high values but sharply fall to smaller values,

not very far from the final ones. The long tails of the graphs indicate that less time

is needed for achieving good quality schedules than the 3.5 × n seconds (n is the

number of jobs) that was used in the experiments. This is further demonstrated by

values of CPO+ and HELS, in Tables 7.4 and 7.5, with the first ones being close to

the second. In particular, for the set of all 190 problem instances, the percentage

distance of CPO+ to HELS has a mean equal to 0.077 and a standard deviation equal

to 0.069.

Regarding comparing the approach with the one by Mencía et al. [3], a few remarks

can be made. Firstly, Mencía et al. do not report in their papers the exact val-

ues that their approaches returned but instead compare their results to their other

less efficient approaches. So I retrieved the values I use in the comparisons from

the site github repo
3

that the authors reference in their paper. Providing exact

values alongside solution files that other researchers can download from the repos-

itory github repo
4

may attract more interest to the problem. Since the run-time

environment used in this case and in Mencía et al. case are different, the focus is

mainly on whether each approach can find the best possible result, given that limited

processing power is exploited in both cases. Furthermore, in this case, Figure 7.10

clearly shows a trend observed in other problem instances: this approach reaches

results very close to the final results using only about 1/5 of the allotted execution

time.

0 100 200 300 400
t (s)

0

10000

20000

30000

40000

50000

Ob
je

ct
iv

e

i120_3_1

0 250 500 750 1000 1250 1500 1750
t (s)

0

25000

50000

75000

100000

125000

150000

175000

Ob
je

ct
iv

e

i500_10_1

0 500 1000 1500 2000 2500 3000 3500
t (s)

0

100000

200000

300000

400000

500000

600000

Ob
je

ct
iv

e

i1000_10_1

Figure 7.10: Cost values during the execution time, using the HELS approach.

The following paper was published based on this work:

C. Valouxis, C. Gogos, A. Dimitsas, P. Potikas, and A. Vittas, “A Hybrid Exact–Local

Search Approach for One-Machine Scheduling with Time-Dependent Capacity,” Al-

gorithms, vol. 15, no. 12, p. 450, 2022

3
https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-

Efficient-Memetic-Algorithms

4
https://github.com/chgogos/1MSTDC

117

https://github.com/raulmencia/One-Machine-Scheduling-with-Time-Dependent-Capacity-via-Efficient-Memetic-Algorithms
https://github.com/chgogos/1MSTDC

Chapter 8

Conclusions

118

8.1 Research contributions

This thesis made contributions to the field of combinatorial optimization, particu-

larly in the context of scheduling and timetabling problems. The key contributions

include:

• Symmetry Identification and Elimination: A systematic approach was devel-

oped to identify and eliminate symmetries in various optimization problems,

leading to reduced search spaces and improved solver performance.

• Modeling Innovations: New mathematical and constraint programming models

were proposed for several real-world problems, including examination timetabling,

course scheduling, thesis defense scheduling, sports scheduling, and one-

machine scheduling with time-dependent capacity.

• Hybrid Approaches: The thesis introduced hybrid methods combining exact

algorithms (e.g., CP, MIP) with local search and metaheuristics, achieving state-

of-the-art results in multiple benchmark datasets.

• Quantum-Ready Formulations: QUBO models were developed and tested on

quantum annealers, demonstrating the feasibility of solving real-world schedul-

ing problems using emerging quantum technologies.

8.2 Results

The proposed methods were evaluated across five major case studies:

• The first proven optimal instance in a public available dataset from 1997 to the

UETP.

• A sports scheduling approach able to generate solutions for double round robin

tournaments in an exact way.

• Optimal solutions for most of the instances in two datasets of the TDTT prob-

lem.

• 48 new best known solutions for a dataset for the One-Machine Scheduling

with Time-Dependent Capacity problem.

8.3 Future research directions

Several promising avenues for future work were identified:

119

• Automated Symmetry Detection: Developing tools that can automatically de-

tect and exploit symmetries in arbitrary optimization models.

• Quantum Optimization: Further exploration of QUBO formulations and their

deployment on quantum annealers and hybrid quantum-classical solvers.

• Generalized Scheduling Frameworks: Creating reusable, modular frameworks

that can adapt to various scheduling domains with minimal customization.

• Real-Time and Dynamic Scheduling: Extending current models to handle dy-

namic environments where inputs and constraints evolve over time.

• Explainability and Fairness: Incorporating fairness metrics and explainable

decision-making into optimization models, especially in educational and public-

sector applications.

120

List of publications

121

Uncapacitated Examination Timetabling Problem

C. Gogos, A. Dimitsas, V. Nastos, and C. Valouxis, “Some insights about the Unca-

pacitated Examination Timetabling Problem,” in 2021 6th South-East Europe Design

Automation, Computer Engineering, Computer Networks and Social Media Conference

(SEEDA-CECNSM), Sep. 2021, pp. 1–7

A. Dimitsas, C. Gogos, C. Valouxis, V. Nastos, and P. Alefragis, “A proven opti-

mal result for a benchmark instance of the uncapacitated examination timetabling

problem,” Journal of Scheduling, Mar. 2024

A. Dimitsas, P. Alefragis, C. Valouxis, and C. Gogos, “An unconstrained binary model

for the Uncapacitated Examination Timetabling Problem,” in PATAT Conference 2024

proceedings of the 14th International Conference of the Practice and Theory of Auto-

mated Timetabling, 2024

Post Enrollment Course Timetabling Problem

A. Dimitsas, V. Nastos, C. Valouxis, and C. Gogos, “A mathematical formulation for

constructing feasible solutions for the Post Enrollment Course Timetabling Problem,”

in 2022 7th South-East Europe Design Automation, Computer Engineering, Computer

Networks and Social Media Conference (SEEDA-CECNSM). IEEE, 2022, pp. 1–5

A. Dimitsas, V. Nastos, C. Gogos, and C. Valouxis, “An exact based approach for

the Post Enrollment Course Timetabling Problem,” in Proceedings of the 26th Pan-

Hellenic Conference on Informatics. Athens Greece: ACM, Nov. 2022, pp. 77–82

Thesis Defense Timetabling Problem

A. Dimitsas, C. Gogos, and E. Pappa, “Better solutions for the Thesis Defense

Timetabling problem using a three-phase approach,” in Proceedings of the 26th Pan-

Hellenic Conference on Informatics. Athens Greece: ACM, Nov. 2022, pp. 58–63

A. Dimitsas and C. Gogos, “Finding Near Optimal Solutions to the Thesis Defense

Timetabling Problem by Exploiting Symmetries,” Operations Research Forum, vol. 5,

no. 3, p. 65, Jul. 2024

122

Sports Scheduling

A. Dimitsas, C. Gogos, C. Valouxis, A. Tzallas, and P. Alefragis, “A pragmatic ap-

proach for solving the sports scheduling problem,” in Proc. 13th Int. Conf. Pract.

Theory Autom. Timetabling, PATAT, vol. 3, 2022, pp. 195–207

D. Van Bulck, D. Goossens, J.-P. Clarner, A. Dimitsas, G. H. Fonseca, C. Lamas-

Fernandez, A. E. Phillips, and R. M. Rosati, “What algorithm to select to create your

sports schedule?” in MathSport International 2023, 2023, pp. 48–48

D. Van Bulck, D. Goossens, J.-P. Clarner, A. Dimitsas, G. H. Fonseca, C. Lamas-

Fernandez, M. M. Lester, J. Pedersen, A. E. Phillips, and R. M. Rosati, “Which al-

gorithm to select in sports timetabling?” European Journal of Operational Research,

vol. 318, no. 2, pp. 575–591, 2024

One-Machine Scheduling with Time-Dependent Capac-

ity

C. Valouxis, C. Gogos, A. Dimitsas, P. Potikas, and A. Vittas, “A Hybrid Exact–Local

Search Approach for One-Machine Scheduling with Time-Dependent Capacity,” Al-

gorithms, vol. 15, no. 12, p. 450, 2022

Various

C. Gogos, A. Dimitsas, C. Valouxis, and P. Alefragis, “Modeling a balanced commute

educational timetabling problem in the context of teaching integer programming,”

in 2022 7th South-East Europe Design Automation, Computer Engineering, Computer

Networks and Social Media Conference (SEEDA-CECNSM). IEEE, 2022, pp. 1–5

E. Hytis, V. Nastos, C. Gogos, and A. Dimitsas, “Automated identification of fraud-

ulent financial statements by analyzing data traces,” in 2022 7th South-East Europe

Design Automation, Computer Engineering, Computer Networks and Social Media Con-

ference (SEEDA-CECNSM). IEEE, 2022, pp. 1–7

123

Bibliography

[1] A. Dimitsas, C. Gogos, and E. Pappa, “Better solutions for the Thesis Defense

Timetabling problem using a three-phase approach,” in Proceedings of the 26th

Pan-Hellenic Conference on Informatics. Athens Greece: ACM, Nov. 2022, pp.

58–63.

[2] M. Battistutta, S. Ceschia, F. De Cesco, L. Di Gaspero, and A. Schaerf, “Mod-

elling and solving the thesis defense timetabling problem,” vol. 70, pp. 1–12,

2019.

[3] R. Mencía and C. Mencía, “One-Machine Scheduling with Time-Dependent

Capacity via Efficient Memetic Algorithms,” Mathematics, vol. 9, no. 23, p.

3030, Jan. 2021.

[4] D. Wolpert and W. Macready, “No free lunch theorems for optimization,” IEEE

Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

[5] S. P. Adam, S.-A. N. Alexandropoulos, P. M. Pardalos, and M. N. Vrahatis,

“No Free Lunch Theorem: A Review,” in Approximation and Optimization, ser.

Springer Optimization and Its Applications, I. C. Demetriou and P. M. Pardalos,

Eds. Springer, December 2019, pp. 57–82.

[6] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[7] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Cham: Springer

International Publishing, 2022.

[8] G. B. Dantzig, Linear Programming and Extensions. Princeton University

Press, 1963.

[9] L. Khachiyan, “Polynomial algorithm in linear programming,” Sov Math Dokl,

vol. 20, Feb. 1979.

124

[10] M. Kojima, S. Mizuno, and A. Yoshise, “A primal-dual interior point algorithm

for linear programming,” Progress in Mathematical Programming: Interior Point

and Related Methods, pp. 29–47, 1989.

[11] V. Chvátal, Linear Programming. W. H. Freeman and Company, 1983.

[12] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization. Athena

Scientific, 1997.

[13] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization.

Wiley-Interscience, 1988.

[14] L. A. Wolsey, Integer Programming. Wiley-Interscience, 1998.

[15] T. Achterberg, “Scip: Solving constraint integer programs,” Mathematical Pro-

gramming Computation, vol. 1, no. 1, pp. 1–41, 2009.

[16] A. Lodi, “Mixed integer programming computation,” In Wiley Encyclopedia of

Operations Research and Management Science, 2010.

[17] M. Conforti, G. Cornuéjols, and G. Zambelli, Integer Programming. Springer,

2014.

[18] D. Bertsimas and R. Weismantel, Optimization over Integers. Dynamic Ideas,

2005.

[19] L. Liberti, “Symmetry in mathematical programming,” in Mixed Integer Non-

linear Programming, J. Lee and S. Leyffer, Eds. New York, NY: Springer New

York, 2012, pp. 263–283.

[20] F. Margot, “Symmetry in Integer Linear Programming,” in 50 Years of Inte-

ger Programming 1958-2008: From the Early Years to the State-of-the-Art,

M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank,

G. Reinelt, G. Rinaldi, and L. A. Wolsey, Eds. Berlin, Heidelberg: Springer,

2010, pp. 647–686.

[21] M. E. Pfetsch and T. Rehn, “A computational comparison of symmetry han-

dling methods for mixed integer programs,” Mathematical Programming Com-

putation, vol. 11, no. 1, pp. 37–93, Mar. 2019.

[22] V. Kaibel and M. E. Pfetsch, “Packing and partitioning orbitopes,” Mathematical

Programming, vol. 114, no. 1, pp. 1–36, 2008.

[23] J. Ostrowski, J. Linderoth, F. Rossi, and S. Smriglio, “Orbital branching,”

Mathematical Programming, vol. 126, no. 1, pp. 147–178, 2011.

125

[24] F. Margot, “Symmetry in integer linear programming,” in 50 Years of Inte-

ger Programming 1958–2008, M. Jünger, T. M. Liebling, D. Naddef, G. L.

Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and L. A. Wolsey, Eds.

Berlin, Heidelberg: Springer, 2010, pp. 647–686.

[25] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer, 2006.

[26] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,

no. 3, pp. 273–297, 1995.

[27] H. Markowitz, “Portfolio selection,” The Journal of Finance, vol. 7, no. 1, pp.

77–91, 1952.

[28] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint Programming.

Elsevier, 2006.

[29] A. K. Mackworth, “Consistency in networks of relations,” Artificial Intelligence,

vol. 8, no. 1, pp. 99–118, 1977.

[30] P. van Hentenryck, Constraint Satisfaction in Logic Programming. MIT Press,

1989.

[31] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack,

“Minizinc: Towards a standard cp modelling language,” in International Con-

ference on Principles and Practice of Constraint Programming. Springer, 2007,

pp. 529–543.

[32] I. P. Gent and B. M. Smith, “Symmetry breaking in constraint programming,”

in Proceedings of the 14th European Conference on Artificial Intelligence (ECAI

2000), Berlin, Germany, 2000, pp. 599–603.

[33] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific, 1999.

[34] H. W. Kuhn and A. W. Tucker, “Nonlinear programming,” in Proceedings of

the Second Berkeley Symposium on Mathematical Statistics and Probability.

University of California Press, 1951, pp. 481–492.

[35] K. Sörensen, “Metaheuristics – the metaphor exposed,” International Transac-

tions of Operations Research, vol. In Press, Feb. 2013.

[36] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: Overview

and conceptual comparison,” ACM Computing Surveys, vol. 35, no. 3, pp. 268–

308, 2003.

[37] F. Glover and G. A. Kochenberger, Eds., Handbook of Metaheuristics. Norwell,

MA: Kluwer Academic Publishers, 2003.

126

[38] E.-G. Talbi, Metaheuristics: From Design to Implementation. Chichester, UK:

Wiley, 2009.

[39] C. Morris and C. Segura, “Symmetry breaking in evolutionary algorithms,”

in Proceedings of the 2014 Annual Conference on Genetic and Evolutionary

Computation (GECCO ’14). ACM, 2014, pp. 839–846.

[40] A. Lucas, “Ising formulations of many np problems,” Frontiers in Physics, vol. 2,

p. 5, 2014.

[41] T. Albash and D. A. Lidar, “Adiabatic quantum computation is equivalent to

standard quantum computation,” Reviews of Modern Physics, vol. 90, no. 1,

p. 015002, 2018.

[42] F. Glover, G. Kochenberger, and Y. Du, “A tutorial on formulating and using

qubo models,” arXiv preprint arXiv:1811.11538, 2018.

[43] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang,

“The unconstrained binary quadratic programming problem: a survey,” Jour-

nal of Combinatorial Optimization, vol. 28, no. 1, pp. 58–81, 2014.

[44] F. Glover, G. Kochenberger, R. Hennig, and Y. Du, “Quantum bridge analytics

I: A tutorial on formulating and using QUBO models,” Annals of Operations

Research, vol. 314, no. 1, pp. 141–183, Jul. 2022.

[45] T. Stollenwerk and A. Basermann, “Experiences with Scheduling Problems

on Adiabatic Quantum Computers,” in Proceedings of the 1st International

Workshop on Post-Moore Era Supercomputing, 2016.

[46] K. Ikeda, Y. Nakamura, and T. S. Humble, “Application of Quantum Annealing

to Nurse Scheduling Problem,” Scientific Reports, vol. 9, no. 1, p. 12837, Sep.

2019.

[47] J. Ossorio-Castillo and F. Pena-Brage, “Optimization of a refinery scheduling

process with column generation and a quantum annealer,” Optimization and

Engineering, vol. 23, no. 3, pp. 1471–1488, Sep. 2022.

[48] C.-Y. Huang, C.-N. Lee, and M.-T. Tsai, “Job Shop-Scheduling Based on Quan-

tum Annealing,” in Proceedings of the 2023 International Conference on Intelli-

gent Computing and Its Emerging Applications, ser. ICEA ’23. New York, NY,

USA: Association for Computing Machinery, Dec. 2024, pp. 113–114.

[49] A. Bertuzzi, D. Ferrari, A. Manzalini, and M. Amoretti, “Evaluation of Quantum

and Hybrid Solvers for Combinatorial Optimization,” in 21th ACM International

Conference on Computing Frontiers, Mar. 2024.

127

[50] S. A. Cook, “The complexity of theorem-proving procedures,” Proceedings of the

Third Annual ACM Symposium on Theory of Computing (STOC), pp. 151–158,

1971.

[51] A. Biere, M. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of Satisfia-

bility. Amsterdam: IOS Press, 2009.

[52] J. Marques-Silva and K. A. Sakallah, “Conflict-driven clause learning sat

solvers,” Handbook of Satisfiability, vol. 185, pp. 131–153, 2009.

[53] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and Applica-

tions of Satisfiability Testing (SAT). Springer, 2003, pp. 502–518.

[54] G. Audemard and L. Simon, “On the glucose sat solver,” International Journal

on Artificial Intelligence Tools, vol. 27, no. 01, p. 1840001, 2018.

[55] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli, “Satisfiability modulo

theories,” Handbook of Satisfiability, vol. 185, pp. 825–885, 2009.

[56] M. W. Carter, G. Laporte, and S. Y. Lee, “Examination Timetabling: Algorith-

mic Strategies and Applications,” Journal of the Operational Research Society,

vol. 47, no. 3, pp. 373–383, Mar. 1996.

[57] E. Burke and J. Newall, “A multistage evolutionary algorithm for the timetable

problem,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 1, pp.

63–74, Apr. 1999.

[58] K. Socha, J. Knowles, and M. Sampels, “A MAX-MIN ant system for the uni-

versity course timetabling problem,” in Ant Algorithms, ser. Ant Algorithms,

vol. 1–13, Oct. 2002.

[59] L. Di Gaspero, “Tabu search techniques for examination timetabling,” Feb.

2001.

[60] N. Pillay, “A survey of school timetabling research,” Annals of Operations Re-

search, vol. 218, no. 1, pp. 261–293, Jul. 2014.

[61] C. Gogos, A. Dimitsas, V. Nastos, and C. Valouxis, “Some insights about the

Uncapacitated Examination Timetabling Problem,” in 2021 6th South-East Eu-

rope Design Automation, Computer Engineering, Computer Networks and Social

Media Conference (SEEDA-CECNSM), Sep. 2021, pp. 1–7.

[62] R. Bellio, S. Ceschia, L. Di Gaspero, and A. Schaerf, “Two-stage

multi-neighborhood simulated annealing for uncapacitated examination

timetabling,” Computers & Operations Research, vol. 132, p. 105300, Aug.

2021.

128

[63] P. Laborie, J. Rogerie, P. Shaw, and P. Vilím, “IBM ILOG CP optimizer for

scheduling: 20+ years of scheduling with constraints at IBM/ILOG,” Con-

straints : an international journal, vol. 23, Mar. 2018.

[64] L. Perron and V. Furnon, “OR-tools,” Google.

[65] A. Dimitsas, C. Gogos, C. Valouxis, V. Nastos, and P. Alefragis, “A proven

optimal result for a benchmark instance of the uncapacitated examination

timetabling problem,” Journal of Scheduling, Mar. 2024.

[66] A. Dimitsas, P. Alefragis, C. Valouxis, and C. Gogos, “An unconstrained binary

model for the Uncapacitated Examination Timetabling Problem,” in PATAT

Conference 2024 proceedings of the 14th International Conference of the Practice

and Theory of Automated Timetabling, 2024.

[67] L. Di Gaspero, B. Mccollum, and A. Schaerf, “The second international

timetabling competition (ITC-2007): Curriculum-based course timetabling

(track 3),” Jan. 2007.

[68] T. Müller, “ITC2007 solver description: A hybrid approach,” Annals of Opera-

tions Research, vol. 172, no. 1, pp. 429–446, Nov. 2009.

[69] Z. Lü and J.-K. Hao, “Adaptive Tabu Search for course timetabling,” European

Journal of Operational Research, vol. 200, no. 1, pp. 235–244, Jan. 2010.

[70] G. Lach and M. Lübbecke, “Curriculum based course timetabling: New so-

lutions to Udine benchmark instances,” Annals of Operations Research, vol.

194, pp. 255–272, Apr. 2012.

[71] S. L. Goh, K. , Graham, and N. R. and Sabar, “Simulated annealing with

improved reheating and learning for the post enrolment course timetabling

problem,” Journal of the Operational Research Society, vol. 70, no. 6, pp. 873–

888, Jun. 2019.

[72] S. L. Goh, G. Kendall, N. Sabar, and S. Abdullah, “An effective hybrid lo-

cal search approach for the post enrolment course timetabling problem,”

OPSEARCH, vol. 57, Jun. 2020.

[73] Y. Nagata, “Random partial neighborhood search for the post-enrollment

course timetabling problem,” Computers & Operations Research, vol. 90, pp.

84–96, Feb. 2018.

[74] S. Ceschia, L. Di Gaspero, and A. Schaerf, “Design, engineering, and exper-

imental analysis of a simulated annealing approach to the post-enrolment

129

course timetabling problem,” Computers & Operations Research, vol. 39, no. 7,

pp. 1615–1624, Jul. 2012.

[75] H. Cambazard, E. Hebrard, B. O’Sullivan, and A. Papadopoulos, “Local search

and constraint programming for the post enrolment-based course timetabling

problem,” Annals of Operations Research, vol. 194, pp. 111–135, Apr. 2012.

[76] R. Lewis and J. Thompson, “Analysing the effects of solution space connectivity

with an effective metaheuristic for the course timetabling problem,” European

Journal of Operational Research, vol. 240, pp. 637–648, Feb. 2015.

[77] C. Valouxis, C. Gogos, P. Alefragis, and E. Housos, “Decomposing the high

school timetable problem,” Practice and Theory of Automated Timetabling

(PATAT 2012), Son, Norway, vol. 61, 2012.

[78] R. Qu, E. Burke, B. Mccollum, L. Merlot, and S. Lee, “A survey of

search methodologies and automated system development for examination

timetabling,” J. Scheduling, vol. 12, pp. 55–89, Feb. 2009.

[79] K. A. Dowsland and J. M. Thompson, “Simulated Annealing,” in Handbook

of Natural Computing, G. Rozenberg, T. Bäck, and J. N. Kok, Eds. Berlin,

Heidelberg: Springer, 2012, pp. 1623–1655.

[80] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated

Annealing,” Science, vol. 220, no. 4598, pp. 671–680, May 1983.

[81] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2024.

[82] A. Dimitsas, V. Nastos, C. Valouxis, and C. Gogos, “A mathematical for-

mulation for constructing feasible solutions for the Post Enrollment Course

Timetabling Problem,” in 2022 7th South-East Europe Design Automation, Com-

puter Engineering, Computer Networks and Social Media Conference (SEEDA-

CECNSM). IEEE, 2022, pp. 1–5.

[83] A. Dimitsas, V. Nastos, C. Gogos, and C. Valouxis, “An exact based approach

for the Post Enrollment Course Timetabling Problem,” in Proceedings of the

26th Pan-Hellenic Conference on Informatics. Athens Greece: ACM, Nov. 2022,

pp. 77–82.

[84] S. Limanto, N. Benarkah, and T. Adelia, “Thesis examination timetabling using

genetic algorithm,” in 2018 International Electronics Symposium on Knowledge

Creation and Intelligent Computing (IES-KCIC), Oct. 2018, pp. 6–10.

[85] T. T. B. Huynh, Q. D. Pham, and D. D. Pham, “Genetic algorithm for solv-

ing the master thesis timetabling problem with multiple objectives,” in 2012

130

Conference on Technologies and Applications of Artificial Intelligence, 2012, pp.

74–79.

[86] P. Su, B. Luo, F. Deng, A. Xia, and Y. Guo, “Group strategy of dissertation

defense based on greedy retrospective hybrid algorithm,” Journal of Physics:

Conference Series, vol. 1634, p. 012077.

[87] M. I. Tawakkal and Suyanto, “Exploration-exploitation balanced krill herd al-

gorithm for thesis examination timetabling,” in 2020 International Conference

on Data Science and Its Applications (ICoDSA), 2020, pp. 1–5.

[88] J. Almeida, D. Santos, J. R. Figueira, and A. P. Francisco, “A multi-objective

mixed integer linear programming model for thesis defence scheduling,” Euro-

pean Journal of Operational Research, vol. 312, no. 1, pp. 92–116, 2024.

[89] T. Stidsen, D. Pisinger, and D. Vigo, “Scheduling euro-k conferences,” Euro-

pean Journal of Operational Research, vol. 270, no. 3, pp. 1138–1147, 2018.

[90] A. Dimitsas and C. Gogos, “Finding Near Optimal Solutions to the Thesis

Defense Timetabling Problem by Exploiting Symmetries,” Operations Research

Forum, vol. 5, no. 3, p. 65, Jul. 2024.

[91] E. Lambrechts, A. Ficker, D. Goossens, and F. Spieksma, “Round-robin tour-

naments generated by the circle method have maximum carry-over,” Mathe-

matical Programming, vol. 172, Feb. 2017.

[92] J. Chen and D. Dong, “Research on the general method of round robin schedul-

ing,” in Advances in Multimedia, Software Engineering and Computing Vol.2,

D. Jin and S. Lin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,

pp. 393–399.

[93] D. Van Bulck and D. Goossens, “The international timetabling competition on

sports timetabling (ITC2021),” European Journal of Operational Research, vol.

308, no. 3, pp. 1249–1267, 2023.

[94] D. Goossens and F. Spieksma, “Scheduling the belgian soccer league,” Inter-

faces, vol. 39, pp. 109–118, Apr. 2009.

[95] C. Ribeiro and S. Urrutia, “Scheduling the brazilian soccer tournament: Solu-

tion approach and practice,” Interfaces, vol. 42, pp. 260–272, Jun. 2012.

[96] K. Nurmi, D. Goossens, and J. Kyngäs, “Scheduling a triple round robin

tournament with minitournaments fo. The Finnish national youth ice hockey

league,” Journal of the Operational Research Society, vol. 65, Nov. 2014.

131

[97] F. Alarcon, G. Duran, M. Guajardo, J. Miranda, H. Muñoz, L. Ramírez,

M. Ramírez, D. Sauré, M. Siebert, S. Souyris, A. Weintraub, R. Wolf-Yadlin,

and G. Zamorano, “Operations research transforms the scheduling of chilean

soccer leagues and south american world cup qualifiers: 2016 franz edelman

award finalists,” Interfaces, vol. 47, Jan. 2017.

[98] G. Duran, M. Guajardo, and D. Sauré, “Scheduling the south american qual-

ifiers to the 2018 FIFA world cup by integer programming,” European Journal

of Operational Research, vol. 262, Apr. 2017.

[99] R. Lewis and J. Thompson, “On the application of graph colouring techniques

in round-robin sports scheduling,” Computers & Operations Research, vol. 38,

no. 1, pp. 190–204, 2011.

[100] T. Januario, S. Urrutia, C. C. Ribeiro, and D. de Werra, “Edge coloring: A nat-

ural model for sports scheduling,” European Journal of Operational Research,

vol. 254, no. 1, pp. 1–8, 2016.

[101] F. N. Costa, S. Urrutia, and C. C. Ribeiro, “An ILS heuristic for the traveling

tournament problem with predefined venues,” Annals of Operations Research,

vol. 194, no. 1, pp. 137–150, Apr. 2012.

[102] T. Januario and S. Urrutia, “A new neighborhood structure for round robin

scheduling problems,” Computers & Operations Research, vol. 70, pp. 127–

139, 2016.

[103] M. A. Trick, “A schedule-then-break approach to sports timetabling,” in Prac-

tice and Theory of Automated Timetabling III, E. Burke and W. Erben, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 242–253.

[104] C. Ribeiro, “Sports scheduling: Problems and applications,” International

Transactions in Operational Research, vol. 19, pp. 201–226, Jan. 2012.

[105] R. Miyashiro and T. Matsui, “Round-robin tournaments with a small number

of breaks,” Oct. 2003.

[106] D. Briskorn, “Feasibility of home–away-pattern sets for round robin tourna-

ments,” Operations Research Letters, vol. 36, no. 3, pp. 283–284, 2008.

[107] A. Dimitsas, C. Gogos, C. Valouxis, A. Tzallas, and P. Alefragis, “A pragmatic

approach for solving the sports scheduling problem,” in Proc. 13th Int. Conf.

Pract. Theory Autom. Timetabling, PATAT, vol. 3, 2022, pp. 195–207.

[108] D. Van Bulck, D. Goossens, J.-P. Clarner, A. Dimitsas, G. H. Fonseca,

C. Lamas-Fernandez, A. E. Phillips, and R. M. Rosati, “What algorithm to

132

select to create your sports schedule?” in MathSport International 2023, 2023,

pp. 48–48.

[109] D. Van Bulck, D. Goossens, J.-P. Clarner, A. Dimitsas, G. H. Fonseca,

C. Lamas-Fernandez, M. M. Lester, J. Pedersen, A. E. Phillips, and R. M.

Rosati, “Which algorithm to select in sports timetabling?” European Journal of

Operational Research, vol. 318, no. 2, pp. 575–591, 2024.

[110] C. Koulamas, “The single-machine total tardiness scheduling problem: Review

and extensions,” European Journal of Operational Research, vol. 202, no. 1,

pp. 1–7, Apr. 2010.

[111] C. Mencía, M. R. Sierra, R. Mencía, and R. Varela, “Evolutionary one-machine

scheduling in the context of electric vehicles charging,” Integrated Computer-

Aided Engineering, vol. 26, no. 1, pp. 49–63, Feb. 2019.

[112] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker, “Complexity of Machine

Scheduling Problems,” in Annals of Discrete Mathematics, ser. Studies in In-

teger Programming, P. L. Hammer, E. L. Johnson, B. H. Korte, and G. L.

Nemhauser, Eds. Elsevier, Jan. 1977, vol. 1, pp. 343–362.

[113] S. K. Gupta and J. Kyparisis, “Single machine scheduling research,” Omega,

vol. 15, no. 3, pp. 207–227, Jan. 1987.

[114] P. Alefragis, K. Plakas, I. Karampinis, C. Valouxis, M. Birbas, A. Birbas, and

C. Gogos, “Sustainable energy aware industrial production scheduling,” in

Proceedings of the 13th International Conference on the Practice and Theory of

Automated Timetabling, 2022, pp. 256–264.

[115] C. Gogos, C. Valouxis, P. Alefragis, G. Goulas, N. Voros, and E. Housos,

“Scheduling independent tasks on heterogeneous processors using heuris-

tics and Column Pricing,” Future Generation Computer Systems, vol. 60, pp.

48–66, Jul. 2016.

[116] P. Baptiste, C. Le Pape, and W. Nuĳten, Constraint-Based Scheduling, ser.

International Series in Operations Research & Management Science, F. S.

Hillier, Ed. Boston, MA: Springer US, 2001, vol. 39.

[117] C. Valouxis, C. Gogos, P. Alefragis, and N. Voros, “Constraint Programming

Modeling for the Task Scheduling Problem with Data Storage at MPSoCs,”

2018.

[118] C. Gogos, “Solving the Distributed Permutation Flow-Shop Scheduling Prob-

lem Using Constrained Programming,” Applied Sciences, vol. 13, no. 23, p.

12562, 2023.

133

[119] P. Großmann, S. Hölldobler, N. Manthey, K. Nachtigall, J. Opitz, and

P. Steinke, “Solving Periodic Event Scheduling Problems with SAT,” in Ad-

vanced Research in Applied Artificial Intelligence, H. Jiang, W. Ding, M. Ali,

and X. Wu, Eds. Berlin, Heidelberg: Springer, 2012, pp. 166–175.

[120] C. Ansótegui, M. Bofill, M. Palah’i, J. Suy, and M. Villaret, “Satisfiability

modulo theories: An efficient approach for the resource-constrained project

scheduling problem,” ser. SARA 2011 - Proceedings of the 9th Symposium on

Abstraction, Reformulation, and Approximation, Jan. 2011, pp. 2–9.

[121] P. Brucker, S. Knust, A. Schoo, and O. Thiele, “A branch and bound algorithm

for the resource-constrained project scheduling problem1,” European Journal

of Operational Research, vol. 107, no. 2, pp. 272–288, Jun. 1998.

[122] R. R. Vaessens, “Generalized job shop scheduling : Complexity and local

search,” 1995.

[123] H. Matsuo, C. Juck SUH, and R. S. Sullivan, “A controlled search simulated

annealing method for the single machine weighted tardiness problem,” Annals

of Operations Research, vol. 21, no. 1, pp. 85–108, Dec. 1989.

[124] K.-M. Lee, T. Yamakawa, and K.-M. Lee, “A genetic algorithm for general

machine scheduling problems,” in 1998 Second International Conference.

Knowledge-Based Intelligent Electronic Systems. Proceedings KES’98 (Cat.

No.98EX111), vol. 2, Apr. 1998, pp. 60–66 vol.2.

[125] F. J. Gil-Gala, C. Mencía, M. R. Sierra, and R. Varela, “Evolving priority rules

for on-line scheduling of jobs on a single machine with variable capacity over

time,” Applied Soft Computing, vol. 85, p. 105782, Dec. 2019.

[126] P. M. França, A. Mendes, and P. Moscato, “A memetic algorithm for the total

tardiness single machine scheduling problem,” European Journal of Opera-

tional Research, vol. 132, no. 1, pp. 224–242, Jul. 2001.

[127] X. Wu and A. Che, “A memetic differential evolution algorithm for energy-

efficient parallel machine scheduling,” Omega, vol. 82, pp. 155–165, Jan.

2019.

[128] D. Merkle and M. Middendorf, “Ant Colony Optimization with Global

Pheromone Evaluation for Scheduling a Single Machine,” Applied Intelligence,

vol. 18, no. 1, pp. 105–111, Jan. 2003.

[129] T.-L. Lin, S.-J. Horng, T.-W. Kao, Y.-H. Chen, R.-S. Run, R.-J. Chen, J.-L. Lai,

and I.-H. Kuo, “An efficient job-shop scheduling algorithm based on particle

134

swarm optimization,” Expert Systems with Applications, vol. 37, no. 3, pp.

2629–2636, Mar. 2010.

[130] B. Yuce, F. Fruggiero, M. S. Packianather, D. T. Pham, E. Mastrocinque,

A. Lambiase, and M. Fera, “Hybrid Genetic Bees Algorithm applied to sin-

gle machine scheduling with earliness and tardiness penalties,” Computers &

Industrial Engineering, vol. 113, pp. 842–858, Nov. 2017.

[131] F. Gil-Gala, M. Sierra, C. Mencía, and R. Arias, “Combining hyper-heuristics to

evolve ensembles of priority rules for on-line scheduling,” Natural Computing,

vol. 21, Jun. 2020.

[132] C. Gogos, C. Valouxis, P. Alefragis, and A. Birbas, “Industrial chocolate pro-

duction as an optimization problem,” 2023.

[133] P. Alefragis, C. Gogos, C. Valouxis, M. Birbas, and A. Birbas, “Industrial pro-

duction scheduling in the energy deregulation era,” 2024.

[134] C. Mencía, M. Sierra, R. Mencía, and R. Arias, “Genetic algorithm for schedul-

ing charging times of electric vehicles subject to time dependent power avail-

ability,” May 2017, pp. 160–169.

[135] A. Hernández-Arauzo, J. Puente Peinador, R. Arias, and J. Sedano, “Electric

vehicle charging under power and balance constraints as dynamic schedul-

ing,” Computers & Industrial Engineering, vol. 85, Apr. 2015.

[136] C. Valouxis, C. Gogos, A. Dimitsas, P. Potikas, and A. Vittas, “A Hybrid Exact–

Local Search Approach for One-Machine Scheduling with Time-Dependent Ca-

pacity,” Algorithms, vol. 15, no. 12, p. 450, 2022.

[137] C. Gogos, A. Dimitsas, C. Valouxis, and P. Alefragis, “Modeling a balanced

commute educational timetabling problem in the context of teaching inte-

ger programming,” in 2022 7th South-East Europe Design Automation, Com-

puter Engineering, Computer Networks and Social Media Conference (SEEDA-

CECNSM). IEEE, 2022, pp. 1–5.

[138] E. Hytis, V. Nastos, C. Gogos, and A. Dimitsas, “Automated identification of

fraudulent financial statements by analyzing data traces,” in 2022 7th South-

East Europe Design Automation, Computer Engineering, Computer Networks

and Social Media Conference (SEEDA-CECNSM). IEEE, 2022, pp. 1–7.

135

	Introduction
	Context
	Examples of symmetries in combinatorial optimization problems.
	0/1 Knapsack
	Symmetric Traveling Salesman Problem

	Motivations and objectives
	Structure of the thesis

	Methods
	Linear Programming
	Definition
	Symmetries in LP

	Mixed-Integer Programming
	Definition
	Symmetries in MIP

	Quadratic Programming
	Definition
	Symmetries in QP

	Constraint Programming
	Definition
	Symmetries in CP

	Non Linear
	Definition
	Symmetries in NLP

	Metaheuristics
	Definition
	Symmetries in Metaheuristics

	Quadratic unconstrained binary optimization
	Definition
	Symmetries in QUBO

	Boolean satisfiability problem
	Definition
	Symmetries in SAT

	Solvers

	Case Study: Uncapacitated Examination Timetabling Problem
	Problem description
	UETP formulation terms

	Related Work
	Datasets
	Symmetries
	Bidirectional symmetry
	Interchangeable examinations

	Mixed Integer Programming
	Results
	sta83 optimal solution
	Component sta83_62
	Component sta83_47
	Component sta83_30

	Unconstrained Binary Model
	Dataset
	Experiments and results
	Conclusion

	Case Study: Post Enrollment Course Timetabling
	Problem Description
	Related Work
	Datasets
	Symmetries and Preprocessing
	Event-Room eligibility
	Event Conflicts
	Event Combinations

	Formulation
	Mathematical Model
	Model Modifications
	Neighborhood operators
	Simulated Annealing (SA)

	Results

	Case Study: Thesis Defense Timetabling Problem
	Problem Description
	Related Work
	Dataset
	Symmetries and descriptive analytics
	Candidate symmetry
	Opponent symmetry
	Faculty members only useful for their Academic Level
	Session symmetry
	Descriptive Analytics
	Identical Sessions

	Formulation
	Base model
	Zero cost solutions

	Experiments and Results
	Instances with zero cost
	Estimating lower bounds
	Results

	Case Study: Sports Scheduling
	Problem Description
	Symmetries in sports scheduling
	International Timetabling Competition 2021
	The Base Constraints
	The Hard and Soft Constraints of ITC2021

	Related work
	Dataset
	Constraint Programming Formulation
	Results

	Case Study: One-Machine Scheduling with Time-Dependent Capacity
	Problem Description
	Terminology

	Related Work
	Heuristically Constructed Schedules

	C-Paths
	Fast computation of C-Paths

	Dataset
	Symmetry and Due times rule
	Formulation and Implementation
	Constraint programming formulation

	Local search improvement procedures
	Local search Improve1
	Local search Improve2
	Local search Improve3

	A multi-staged approach
	Results
	CPO vs. CPO+
	Hybrid Exact-Local Search

	Conclusions
	Research contributions
	Results
	Future research directions

