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ABSTRACT 
 

 

Aristeidis Panagiotidis Diktampanis,  

M.Sc. in Data and Computer Systems Engineering, Department of Computer Science 

and Engineering, School of Engineering, University of Ioannina, Greece, 2025 

Thesis title: Relighting Gaussian Splats: An overview 

Advisor: Ioannis Fudos, Professor 

 

The emergence of 3D Gaussian Splatting in 3D scene reconstruction has led to a 

wealth of research with diverse applications in both computer vision and graphics. 

A less explored area within this field is the relighting of reconstructed scenes under 

various lighting conditions, such as moving, adding, removing, or altering light 

sources. In this thesis, we aim to explore different approaches to relighting within 

the Gaussian Splatting framework from a computer graphics perspective. By focusing 

on five distinct projects that propose various solutions to this problem, we intend to 

provide an overview of the suggested techniques and an evaluation of their results. 

We begin by analyzing the concept of relighting in 3D Gaussian Splatting, breaking 

it down into its fundamental components. This analysis includes examining different 

methods of scene representation and novel view synthesis, as well as addressing the 

mathematical formulation of light transport, visibility computation, and shading 

pipelines. Our goal is to provide the necessary theoretical background to understand 

and evaluate the different approaches. Next, we delve into the specifics and peculi-

arities of each project's method by carefully examining their pipelines and noting 

their characteristics. Finally, we apply these methods to five diverse datasets that 

encompass a wide range of materials, reflective properties, and scene structures. We 

present our qualitative and quantitative results, along with a comparison of the 

strengths and weaknesses of each approach.  
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Αριστείδης Παναγιωτίδης Δικταμπάνης, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπο-

λογιστικών Συστημάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική 

Σχολή, Πανεπιστήμιο Ιωαννίνων, 2025. 

Τίτλος διατριβής: Επαναφωτισμός με Gaussian Splats: Μια επισκόπηση 

Επιβλέπων: Ιωάννης Φούντος, Καθηγητής  

 

Η έλευση του 3D Gaussian Splatting στην ανακατασκευή τρισδιάστατων σκηνών 

έχει οδηγήσει σε μια πληθώρα έργων με ποικίλες εφαρμογές τόσο στην υπολογι-

στική όραση όσο και στα γραφικά υπολογιστών. Ένα λιγότερο μελετημένο θέμα 

είναι ο επαναφωτισμός μιας ανακατασκευασμένης σκηνής υπό διαφορετικές συν-

θήκες φωτισμού (μετακίνηση, προσθήκη/αφαίρεση ή τροποποίηση πηγών φωτός). 

Με αυτή τη διατριβή στοχεύουμε να διερευνήσουμε τις διαφορετικές προσεγγίσεις 

στον επαναφωτισμό με Gaussian Splatting από την οπτική των γραφικών και των 

δικών τους κριτηρίων και προεκτάσεων. Εστιάζοντας σε πέντε ξεχωριστά project 

που προτείνουν διαφορετικές λύσεις στο πρόβλημα του επαναφωτισμού, σκοπεύ-

ουμε να παρέχουμε μια επισκόπηση των προτεινόμενων τεχνικών και μια αξιολό-

γηση των αποτελεσμάτων τους. Ξεκινάμε αναλύοντας αυτό το γενικό πρόβλημα 

επαναφωτισμού με 3DGS στα δομικά του συστατικά. Από τις διαφορετικές μεθό-

δους αναπαράστασης σκηνών και το Novel View Synthesis έως τη μαθηματική δια-

τύπωση της μεταφοράς φωτός, τον υπολογισμό ορατότητας και τις μεθόδους σκί-

ασης, στοχεύουμε να παρέχουμε το απαραίτητο θεωρητικό υπόβαθρο που θα μας 

βοηθήσει να κατανοήσουμε και να αξιολογήσουμε τις διαφορετικές αυτές προσεγ-

γίσεις. Στη συνέχεια, αναλύουμε κάθε project στα συστατικά του, εξετάζοντας προ-

σεκτικά τη μεθοδολογία του και σημειώνοντας τα χαρακτηριστικά του. Τέλος, ε-

φαρμόζουμε σε πέντε διαφορετικά σύνολα δεδομένων που περιέχουν ένα ευρύ 



 

x 
 

φάσμα υλικών, ανακλαστικών ιδιοτήτων και δομών σκηνής. Αναφέρουμε τα ποιο-

τικά και ποσοτικά μας αποτελέσματα και τα συγκρίνουμε μεταξύ τους αναφέρο-

ντας τις δυνατότητες και τις αδυναμίες τους. 
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CHAPTER 1          

 BACKGROUND 

1.1 Scene Representation 

1.2 Novel View Synthesis 

1.3 Gaussian Splatting 

1.4 Shading 

1.5 Lighting and Material Models 

1.6 Global Illumination 

 

1.1 Scene Representation 

3D representations define how geometry and appearance are stored, accessed, and 

transformed across different stages of a computer graphics pipeline. They are, in 

other words, different ways of describing a scene so that we can represent or work 

with it digitally. Each representation can be better or worse in terms of memory 

efficiency, rendering speed, expressiveness, and suitability for downstream tasks in 

learning and optimization environments. Over the years, the different approaches 

that have been introduced tend to fall in one of two categories. Explicit and implicit 

representations. There have been alternative methods[1], [2] that fuse characteristics 

from both categories, they are however expanding on already established methods 

and are beyond our scope and necessity. In this chapter, we will introduce the two 

main categories and the most common methods that comprise them. We will also 

introduce the 3D Gaussian representation and the incentive behind it. 
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1.1.1 Explicit representations 

Explicit representations store geometric information explicitly. That means that once  

the data used to describe a scene, like for example the 3D coordinates of edges, are 

loaded from memory, no extra computation is needed to understand its structure.  

They are among the most widely used formats in 3D geometry and in this section, 

we will discuss the three most common methods: point clouds, polygonal meshes 

and voxel grids. We will come across their many advantages but also their pain 

points that alternative representation methods are trying to relieve. 

1.1.1.1 Point Cloud 
Point clouds represent geometry as a collection of discrete points in three-dimen-

sional space. Each point is defined by its coordinates (𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and may include ad-

ditional attributes like color or surface normals[3]. They are typically produced by 

3D scanning methods like LiDAR, depth cameras or Structure-from-Motion (SfM) 

reconstruction pipelines. 

Unlike volumetric or mesh-based formats, point clouds are inherently unstruc-

tured, meaning they do not encode topological relationships between points. This 

makes them particularly simple to generate and interpret, especially in applications 

where raw geometric data is sufficient. However, processing tasks like segmentation, 

recognition, and reconstruction pose significant challenges[4] due to their unstruc-

tured nature in combination with the fact that point clouds can be sparce or contain 

noise. 

1.1.1.2 Mesh 
A mesh models the surface of a 3D object using a set of vertices, edges, and faces. 

The vertices define points in 3D space. Edges connect pairs of vertices. Faces, usually 

triangles or quadrilaterals, span those edges to form flat surfaces. Unlike point clouds, 

which consist of unconnected points, meshes encode relationships between points. 

They carry geometric and topological information that enables the efficient compu-

tation of surface properties like normal and curvature which are essential for ren-

dering and for evaluating light interactions. They are expressive, as in, they can 

approximate complex geometries with arbitrary precision simply by adjusting the 
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number of vertices and faces. Moreover, meshes are well-supported by graphics 

hardware making them popular for rendering and simulation tasks[3]. 

Despite their strengths, meshes have limitations. They require clean, watertight 

geometry and well-defined topology to function reliably in lighting and rendering 

tasks, which can be difficult to obtain from real-world data. They are also inherently 

surface-based, making it hard to represent translucent materials or volumetric effects. 

1.1.1.3 Voxel 
A voxel, short for "volume element," is the 3D analogue of a pixel[3]. Just as an 

image is divided into a grid of rectangles in two dimensions, a volume can be sub-

divided into a regular grid, with each one representing a small portion of space. 

Each voxel represents a fixed location, and is typically visualized as a small cube, 

although voxels don’t have to be cubic[5]. They can be tetrahedral[6], prisms or 

whatever shape your marching algorithm can support[7]. Each voxel stores infor-

mation about its position on the grid and may carry one or more values depending 

on the context. In some applications, a single scalar, for opacity or density is enough. 

In others, it may include color, surface normals, or multiple data channels describing 

material properties or physical measurements. Strictly speaking, voxels mark a single 

point on the grid rather than the volume between points. In a voxel-based dataset, 

the space between each voxel is not represented. Common ways to reconstruct the 

volume are interpolation or Signed Distance Functions (SDF) which we will discuss 

Figure 1.1 Explicit 3D representations. 3D model from [40]. 
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a bit more in implicit representations. The likes of Fig 1.1 or Minecraft though prove 

that voxels can be expressive, or even imply aesthetic, simply as cubic explicit repre-

sentations. 

1.1.2 Implicit representations 

Implicit representations describe shape and appearance through continuous func-

tions. Rather than storing surfaces directly, they use a function that tells whether a 

point in space lies inside or outside an object, or what color and density are present 

at a location. 

1.1.2.1 Signed Distance Function 
A common implementation of an implicit representation is provided by a Signed 

Distance Function (SDF). SDF is a function 𝑓𝑓(𝑝𝑝): 𝑅𝑅3 → 𝑅𝑅 that tells us how far a point 

𝑝𝑝 is from the surface of some solid and which side it is on. Mathematically, it can be 

expressed as: 

𝑓𝑓(𝑝𝑝) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥∈𝑆𝑆‖𝑝𝑝 − 𝑥𝑥‖, 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑓𝑓(𝑝𝑝)� = �> 0, 𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑆𝑆
< 0, 𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑆𝑆  (1.1) 

where 𝑆𝑆 is the object surface. Because 𝑓𝑓 measures the shortest Euclidean distance 

to that surface, the shape itself is its zero-level set 𝑓𝑓(𝑝𝑝) = 0. SDF satisfies the Eikonal 

equation[8] ‖∇𝑓𝑓(𝑝𝑝)‖ = 1 almost everywhere, meaning the gradient vector at any 

point points exactly toward the nearest surface. This property makes SDF suitable 

for gradient‐based optimization and differentiable rendering pipelines. 

In practice, these functions are rarely hand-crafted for complex shapes, instead 

they are typically learned with a multilayer perceptron (MLP)[3]. DeepSDF[9] first 

demonstrated that a compact MLP conditioned on a latent vector can learn a con-

tinuous, watertight distance field directly from partial or noisy scans. Then, it recov-

ers crisp meshes via Marching Cubes with far lower memory requirements than 

voxels or dense point clouds. Building on this, Articulated SDFs[10] (A-SDFs) dis-

entangle shape and pose in separate latent codes, enabling on-the-fly deformation of 

learned characters without retraining. AutoSDF[11] incorporates an autoregressive 

shape prior that unifies 3D completion, reconstruction, and unconditional generation 

within a single model. SDF-StyleGAN[12] adapts StyleGAN2’s hierarchical latents to 

an implicit distance field. It uses specialized discriminators targeting both SDF values 
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and gradients to significantly boost the visual fidelity and geometric accuracy of 

generated shapes. LAS-Diffusion[13] brings view-aware local attention into a diffu-

sion framework over SDFs, offering sketch-driven, controllable 3D synthesis that 

respects fine local details. Finally, Shap-E[14] from OpenAI jointly generates SDF 

parameters and NeRF appearance fields, achieving rapid convergence and multi‐

representation outputs that bridge geometry and view synthesis in one network. 

SDFs aren’t without compromises. They demand watertight geometry since holes 

or non‐manifold edges can flip the sign convention. Querying a learned SDF via a 

deep MLP can be computationally heavy if we need dense meshes, prompting re-

search into hybrid grids or spatial hash encodings for faster evaluation. Moreover, 

the medial axis, i.e., points equidistant to multiple patches, can introduce gradient 

discontinuities that trip up naïve optimizers. 

1.1.2.2 Neural Radiance Fields 
Another, newer example of implicit representations is the Neural Radiance Field 

(NeRF)[15]. Neural Radiance Fields (NeRF) propose different approach to novel‐

view synthesis by directly learning a continuous volumetric representation of a scene, 

rather than relying on explicit geometry or densely sampled light fields. NeRF mod-

els a static scene as a 5D vector-valued function: 

𝐹𝐹𝛩𝛩 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝜃𝜃,𝜑𝜑) ↦ (𝜎𝜎, 𝑐𝑐) (1.2) 

where (𝑥𝑥,𝑦𝑦, 𝑧𝑧) are the spatial 3D coordinates of a point, (𝜑𝜑, 𝜃𝜃) is the 2D viewing 

direction, 𝑐𝑐 = (𝑟𝑟,𝑔𝑔, 𝑏𝑏) is the view-dependent emitted color and 𝜎𝜎 is the volume den-

sity (opacity). This function is approximated by a multi‐layer perceptron (MLP) 

whose weights 𝛩𝛩 are optimized so that, when combined with classical volume ren-

dering, the rendered images match a sparse set of RGB images/photographs.  

At rendering time, each pixel’s color 𝐶𝐶(𝑟𝑟) is computed by casting a camera ray  

𝑟𝑟(𝑡𝑡) = 𝑜𝑜 + 𝑡𝑡𝑡𝑡 through the scene near and far bounds [𝑡𝑡𝑛𝑛, 𝑡𝑡𝑓𝑓] and sampling 𝑁𝑁 points 

{𝑡𝑡𝑖𝑖} along the ray. For each sample, the MLP is queried to produce (𝜎𝜎𝑖𝑖 , 𝑐𝑐𝑖𝑖). These 

values are then composited via the volume rendering integral that is approximated 

by: 
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𝐶̂𝐶(𝑟𝑟) = �𝑇𝑇𝑖𝑖(1 − 𝑒𝑒−𝜎𝜎𝑖𝑖𝛿𝛿𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

𝑐𝑐𝑖𝑖 , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇𝑖𝑖 = exp (�𝜎𝜎𝑗𝑗𝛿𝛿𝑗𝑗

𝑖𝑖−1

𝑗𝑗=1

) (1.3) 

with 𝛿𝛿𝑖𝑖 = 𝑡𝑡𝑖𝑖+1 − 𝑡𝑡𝑖𝑖 being the distance between adjacent samples. 

This process is fully differentiable, so by minimizing the photometric error be-

tween 𝐶̂𝐶(𝑟𝑟) and the ground truth pixel colors across training rays we can adjust the 

MLP parameters so that its density and radiance outputs reproduce the real scene’s 

geometry and appearance. 

 

NeRF proposes two optimizations to lessen the number of samples. First, each 

scalar input coordinate is lifted via a sinusoidal positional encoding which mitigates 

the MLP’s low‐frequency bias and enables sharp geometry and view‐dependent ef-

fects. Second, NeRF employs a two‐stage hierarchical sampling: a “coarse” pass uses 

stratified sampling to identify regions of interest along each ray, and a “fine” pass 

draws additional samples from a probability density function derived from the coarse 

output, concentrating evaluations where they matter most. 

In practice, training NeRF requires only a set of RGB images, associated camera 

poses and intrinsics, and scene bounds that are often estimated via structure‐from‐

motion for real scenes. At each iteration, batches of several thousand rays are sam-

pled; for each ray, the coarse network is queried at 𝑁𝑁𝑐𝑐 locations and the fine network 

at an additional 𝑁𝑁𝑓𝑓 locations. The total loss is the sum of squared errors between 

both coarse and fine renderings and the observed pixel colors, optimized via Adam 

over hundreds of thousands of iterations. 

Figure 1.2 NeRF pipeline. Figure from [15]. 
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Vanilla NeRFs do come with limitations. Training a separate MLP per scene 

typically takes one to two days on a modern GPU, restricting it from interactive or 

real‐time applications. The method assumes static scenes with known camera poses; 

handling dynamic content, unbounded outdoor environments, or unknown poses 

requires substantial extensions. Moreover, because appearance and illumination re-

main entangled in the learned radiance field, NeRF does not support relighting or 

explicit material editing. Lastly, the uniform treatment of space makes scaling to very 

large or highly detailed scenes challenging, prompting a rich body of follow‐on work 

on multi‐resolution grids, sparse‐voxel and hash‐based encodings, and hardware‐

accelerated inference to address these bottlenecks. 

Each representation comes with specific trade-offs. Meshes are typically memory-

efficient and render quickly using standard graphics pipelines, but they require clean 

geometry and are less suited for representing fuzzy or transparent regions. Voxel 

grids are easy to work with and support volumetric effects, but they use large 

amounts of memory, especially at high resolutions. Point clouds are lightweight and 

simple to capture, but their lack of structure makes them harder to use in tasks like 

shading or surface reconstruction. Implicit representations, like neural radiance 

fields, are compact and highly expressive, capturing fine detail and view-dependent 

effects, but they are slow to render and difficult to edit directly. Representations like 

3D Gaussians aim to strike a balance by supporting fast, parallel rendering and 

integrating well with gradient-based optimizations, making them suitable for learn-

ing-based pipelines. 

1.2 Novel View Synthesis 

Novel view synthesis addresses the problem of generating photorealistic images of a 

scene from previously unseen camera positions, given only a sparse set of posed 

input photographs. The essential challenge is to infer both the unseen 3D structure 

and the appearance handling occlusions, view-dependent lighting, and fine detail so 

that the rendered views closely match what a real camera would see. Below, we 

survey the principal paradigms[16], explaining each approach, its core concepts, and 

its practical trade-offs. 
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1.2.1 Active 3D Reconstruction Methods 

Active techniques project controlled signals into the scene and recover depth directly 

from their interaction i.e., how these signals are "bouncing" back to the sensor. Com-

puted tomography[17] (CT) acquires many X-ray projections and reconstructs volu-

metric density via inverse Radon transforms, yielding highly accurate internal and 

external models that are widely used in medical imaging and industrial inspection, 

but impractical for everyday environments due to radiation and equipment con-

straints. Structured light[18] systems cast known patterns (e.g., stripes or dots) onto 

the scene and depth is inferred by triangulating the distortion of these patterns in 

the captured image. This delivers real-time performance and sub-millimeter accuracy 

in controlled lighting but fails under strong ambient illumination or on featureless 

surfaces. Time-of-flight (ToF)[19] cameras send out infrared pulses and measure the 

return time per pixel, giving direct depth maps with real-time performance. Their 

trade-off is lower spatial resolution and multipath interference in complex scenes. 

LiDAR/laser scanning[20], [21] sweeps a laser beam and times its reflection, produc-

ing very precise point clouds even over large distances, but typically requires larger, 

more expensive hardware and suffers from occlusion shadows in cluttered environ-

ments. 

1.2.2 Passive 3D Reconstruction Methods 

Passive approaches rely solely on multiple photographs to estimate depth and ge-

ometry. Mimicking human depth perception, binocular stereo[22] uses two cameras: 

it finds matching features in both images and triangulates each match into 3D points; 

it is straightforward but degrades in textureless or repetitive regions. Structure-from-

motion (SfM)[23] extends this to many unstructured images, recovering both camera 

poses and a sparse point cloud via feature matching and bundle adjustment; multi-

view stereo (MVS)[24] then densifies these into depth maps or meshes. While these 

pipelines work with consumer cameras and can handle large scenes, they often pro-

duce noisy reconstructions with holes and require careful post-processing to fuse 

depth maps into watertight meshes. 
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1.2.3 3D Reconstruction Methods Based on Machine Learning 

Instead of building meshes or voxel grids, implicit-neural methods learn a continu-

ous function that tells us, for any point in space (and optionally a viewing direction), 

whether there’s matter there and what color it emits. Occupancy networks[25] train 

a small neural network to answer, “inside or outside?” for any 3D point, yielding 

smooth shapes that naturally handle holes and topology changes. Signed Distance 

Functions (SDFs) go a step further by predicting the exact distance to the nearest 

surface (negative if inside), which is useful for collision, Boolean operations, and 

clean mesh extraction. Neural Radiance Fields (NeRF)[15] combine density (how 

much light something blocks) and radiance (color emitted along a direction) into 

one function of position plus direction; using differentiable volume rendering, NeRF 

learns directly from posed color images and then synthesizes novel views with rich 

detail and soft shadows. The trade-off is training time (often hours per scene) and 

slow ray-marching at render time.  

Figure 1.3 Point cloud of Three Graces by Antonio Canova. Each triangle repre-
sents a camera position. Image by Factum Arte[28]. 
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1.2.4 Hybrid and Real-Time Accelerations 

To bring neural quality toward real-time, hybrid methods merge explicit primitives 

with learned models. 3D Gaussian Splatting[26] represents the scene as a cloud of 

tiny anisotropic Gaussians each carrying position, shape (covariance), color, and 

opacity and splats them onto the screen with GPU shaders. This delivers interactive 

frame rates with smooth interpolation and view-dependence, though one must man-

age how to add, merge, or remove Gaussians as the scene changes. Hash-grid en-

codings (e.g. InstantNGP[27]) store learned feature vectors in a multi-resolution hash 

table indexed by 3D position, replacing expensive positional encodings and yielding 

sub-second training without sacrificing fine detail; however, large scenes can inflate 

memory requirements. 

1.2.5 Dynamic and Large-Scale Extensions 

Real-world applications often involve moving objects or expansive environments. 

Dynamic NeRFs (like D-NeRF[28] or Nerfies[29]) introduce time or deformation 

parameters into the radiance field, letting the model learn how geometry and ap-

pearance evolve; these capture non-rigid motion but need dense temporal sampling 

and additional regularization to prevent flicker. SLAM-based pipelines (e.g., Ki-

nectFusion[30] variants) fuse live RGB-D streams into voxel or Gaussian maps for 

interactive mapping and tracking, trading off global consistency for immediate feed-

back. Block-wise NeRFs partition a large scene into spatial tiles or octrees, training 

and rendering each subregion separately; this scales to city-scale capture but requires 

strategies to blend block boundaries seamlessly and manage loading latency. 

Each paradigm involves trade-offs among capture complexity, reconstruction fi-

delity, training/inference cost, and rendering speed. Active sensors offer precise depth 

but at higher hardware and setup cost; passive multi-view methods work with sim-

ple cameras but struggle under sparse sampling or complex materials; implicit-neural 

models yield unmatched visual quality yet demand significant compute; and hybrids 

aim for real-time performance at the expense of algorithmic and representational 

complexity. Selecting the right pipeline therefore depends on the specific applica-

tion’s requirements for accuracy, speed, cost, and scene dynamics. 
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1.3 Gaussian Splatting 

Gaussian Splatting[26] is a real-time scene representation and rendering method that 

models a 3D scene as a set of anisotropic Gaussian distributions. Each Gaussian is 

parameterized by its position, orientation, scale (in the form of a covariance matrix), 

opacity, and spherical harmonics coefficients for view-dependent color. 

The representation is initialized from sparse point clouds, often obtained from 

Structure-from-Motion (SfM), and optimized through gradient descent for geometry 

reconstruction. Gaussian Splatting makes use of a tile-based rasterizer that efficiently 

blends the Gaussians respecting visibility and depth order while maintaining differ-

entiability. This way, we can achieve real-time rendering contrasting traditional 

NeRF-style methods that rely on expensive volumetric ray-marching. 

In this chapter we will formally introduce the mathematical definition of 3D 

Gaussian splats, describe the process of projecting them into screen space, and discuss 

their blending and optimization within a differentiable framework. We will also pre-

sent some extensions to the base approach and introduce the fundamental principles 

of View Synthesis. 

 

1.3.1 Definition and Properties of 3D Gaussians 

A 3D Gaussian function is mathematically defined as: 

𝐺𝐺(𝑥𝑥) = 𝑒𝑒
1
2(𝑥𝑥)𝑇𝑇𝛴𝛴−1(𝑥𝑥) (1.4) 

where 𝑥𝑥 ∈ 𝑅𝑅3 represents a point in world coordinates, and 𝛴𝛴 ∈ 𝑅𝑅3×3 is the covar-

iance matrix controlling the spread and orientation of the Gaussian. 

𝛴𝛴 is required to be symmetric and positive semi-definite, i.e., all its eigenvalues 

must be non-negative, to define valid ellipsoidal Gaussians. It is factorized as: 

Figure 1.4 3D Gaussian Splatting pipeline. Figure from [26]. 
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𝛴𝛴 = 𝑅𝑅𝑅𝑅𝑆𝑆𝑇𝑇𝑅𝑅𝑇𝑇 (1.5) 

where R is a rotation matrix derived from a unit quaternion 𝑞𝑞, and 𝑆𝑆 is a diagonal 

scaling matrix constructed from a scale vector 𝑠𝑠. This way, we avoid directly opti-

mizing the covariance matrix 𝛴𝛴, which is difficult to constrain during gradient de-

scent. Instead, we split 𝛴𝛴 into separate scale and rotation components, each with 

natural constraints: scaling is limited to positive values while rotation is kept valid 

through quaternion normalization. 

Each Gaussian is parameterized by: 

• Position (𝜇𝜇): the 3D center of the Gaussian. 

• Scale (𝑠𝑠): a 3D vector specifying the scaling along the principal axes. 

• Rotation (𝑞𝑞): a unit quaternion representing orientation, converted into 𝑅𝑅 

for constructing 𝑆𝑆. 

• Opacity (𝑎𝑎): a scalar representing the Gaussian’s transparency, used during 

blending. 

The directional appearance (color) of each Gaussian is encoded via spherical 

harmonics (SH) coefficients 𝑐𝑐. These SH coefficients are optimized alongside the ge-

ometric parameters to model the view-dependent radiance properties of the scene. 

1.3.2 Differentiable Rendering Pipeline 

1.3.2.1 Projection from 3D to 2D Space 
The covariance matrix 𝛴𝛴 is transformed into the camera’s image space using: 

𝛴𝛴′ = 𝐽𝐽𝐽𝐽𝛴𝛴𝑊𝑊𝑇𝑇𝐽𝐽𝑇𝑇 (1.6) 

where 𝑊𝑊 is the camera projection matrix, incorporating the transformation from 

world space to the image plane and 𝐽𝐽 is the Jacobian matrix of the affine approxima-

tion of the projection function 𝑊𝑊[31]. The Jacobian approximates how the projection 

matrix transforms points near 𝜇𝜇, ensuring that anisotropic scaling and rotation are 

accurately handled in the image plane. 

After applying this transformation, the projection simplifies by removing the third 

row and column of 𝛴𝛴′, resulting in a 2 × 2 covariance matrix that defines the shape 
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and orientation of the Gaussian’s elliptical splat in screen space. The mean position 

𝜇𝜇 of each Gaussian is projected into 2D using the projection matrix 𝑊𝑊. 

1.3.2.2 Rasterization and Blending 
Point-based rendering provides a fast way to render point clouds but struggles with 

holes, aliasing, and discontinuities. To overcome these, splatting approaches use 

primitives like ellipsoids or surfels, which reduce aliasing and improve continuity. 

However, these methods still depend on Multi-View-Stereo (MVS) generated geom-

etry which introduces reconstruction errors in complex or featureless regions. Neural 

point-based renderers have improved realism and performance but inherit these 

limitations and often suffer from instability. 

Gaussian Splatting builds on a shared idea found in both point-based rendering 

and volumetric methods like NeRF: the way images are formed by accumulating 

color along a viewing ray. The final color 𝐶𝐶 of a pixel is calculated by adding the 

contributions of multiple samples along the ray: 

𝐶𝐶 = �𝑇𝑇𝑖𝑖𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (1.7) 

where 𝑐𝑐𝑖𝑖 represents the color of sample 𝑖𝑖, 𝛼𝛼𝑖𝑖 is its opacity and 𝑇𝑇𝑖𝑖 is the transmit-

tance accounting for how much light is transmitted from sample 𝑖𝑖 to the camera. 

Opacity 𝛼𝛼𝑖𝑖 is given by the equation: 

𝛼𝛼𝑖𝑖 = 1 − exp (−𝜎𝜎𝑖𝑖𝛿𝛿𝑖𝑖) (1.8) 

where 𝜎𝜎𝑖𝑖 is the sample’s density and 𝛿𝛿𝑖𝑖 the distance between samples. Transmit-

tance 𝑇𝑇𝑖𝑖 represents the accumulated light transmission from previous samples along 

the ray and is given by: 

𝑇𝑇𝑖𝑖 = �(1 − 𝛼𝛼𝑗𝑗)
𝑖𝑖−1

𝑗𝑗=1

 (1.9) 

This method expresses how light from different parts of a scene contributes to 

the pixel color, with closer or denser samples blocking light from farther ones. This 

compositing model describes the blending of Gaussians. The blending process is 
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differentiable, allowing gradients to propagate through rasterization and compositing 

for optimizing all Gaussian parameters. 

To implement this, Gaussian Splatting introduces a tile-based rasterization ap-

proach combined with fast sorting and blending. The screen is divided into 16 × 16 

pixel tiles, and for each tile, projected Gaussians overlapping the tile are identified. 

A culling process eliminates Gaussians whose 99% confidence interval does not in-

tersect the view frustum, and a guard band excludes those whose means are near 

the near plane or far outside the view frustum. Each “surviving” Gaussian is instan-

tiated per overlapping tile and assigned a composite key combining its view-space 

depth and tile ID. This enables a fast GPU Radix sort of all Gaussians across the 

screen, avoiding the need for per-pixel sorting. 

After sorting, each tile receives a depth-sorted list of Gaussians. A thread block 

processes each tile, loading Gaussian packets into shared memory. For each pixel, 

the threads accumulate color and opacity from front-to-back in the sorted list. Pro-

cessing for a pixel stops when its opacity reaches saturation (𝛼𝛼 = 1), and a tile fin-

ishes when all pixels saturate. 

For backpropagation, the system reconstructs the forward blending sequence by 

re-traversing the sorted list, without needing to store long per-pixel lists. In the 

backward pass, traversal is back-to-front, with processing starting only if the Gauss-

ian’s depth is less than or equal to the last contributing splat’s depth. The final 

accumulated opacity of each pixel, stored during the forward pass, is used to recover 

the intermediate opacities needed for gradient computation by dividing by the indi-

vidual splat’s opacity. 

1.3.2.3 Differentiability and Optimization 
The optimization process uses Stochastic Gradient Descent (SGD). It proceeds itera-

tively, alternating between rendering and comparing the synthesized image to 

ground-truth views in the training dataset. Since initial geometry may contain inac-

curacies due to ambiguities in 3D-to-2D projection, the optimization allows the cre-

ation, removal, and repositioning of Gaussians to refine the scene representation. 

To maintain smooth gradients and stability during optimization, a sigmoid acti-

vation function constrains opacity 𝛼𝛼 within the range [0,1), and an exponential acti-

vation function is used for scaling the covariance matrix 𝛴𝛴, ensuring stable updates 
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of the Gaussian shape. The initial covariance is estimated as an isotropic Gaussian, 

with axes scaled to the mean distance to the nearest three neighboring points. 

The loss function driving the optimization combines an 𝐿𝐿1 photometric loss with 

a D-SSIM (Structural Similarity) loss to balance pixel-wise accuracy with perceptual 

quality: 

𝐿𝐿 = (1 − 𝜆𝜆)𝐿𝐿1 + 𝜆𝜆𝐿𝐿𝐷𝐷−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (1.10) 

where 𝜆𝜆 is a weighting factor controlling the trade-off between the two terms and 

is set to 𝜆𝜆 = 0.2. 𝐿𝐿1 loss penalizes pixel-wise differences, while the D-SSIM enhances 

perceptual alignment with the ground truth. 

Another optimization step is – what the authors call – adaptive control of the 

Gaussians. After an initial optimization warm-up phase, Gaussian densification is 

performed every 100 iterations, and Gaussians with opacity 𝛼𝛼 below a threshold 𝜏𝜏𝛼𝛼 

are culled as essentially transparent. Densification targets regions with high posi-

tional gradients – indicative of under or over-reconstruction – by detecting Gaussians 

with average positional gradient magnitudes above a threshold 𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝 that is set to 

0.0002. 

For under-reconstructed regions, small Gaussians are cloned and displaced along 

the direction of the positional gradient. For over-reconstructed regions, large Gauss-

ians are split into two smaller ones, scaling their covariance by a factor 𝜑𝜑 = 1.6 and 

sampling positions from the original Gaussian’s distribution. To prevent excessive 

Gaussian proliferation, every 3000 iterations, the opacity of all Gaussians is reset 

close to zero, allowing the culling mechanism to remove redundant or insignificant 

splats while letting necessary ones reestablish their opacity. 

1.3.3 Extensions and Variants of 3D Gaussian Splatting 

Subsequent work on 3DGS proposes improvements, extensions and pain-point miti-

gation. We can divide these works in seven categories, as proposed by [32]. Note 

however that in this chapter, we reference works that build on 3DGS on a series of 

issues apart from relighting which is the topic of this thesis. We conduct our own 

review of these cases in chapters 2 and 3. Here, we present a state-of-the-art of the 

3DGS paradigm to provide the reader with a compact view on current trends and 

approaches. 
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1.3.3.1 3DGS for Sparse Input 
Sparse-view capture often causes holes or collapsed geometry. Depth regularization 

methods mitigate this by adding external depth cues: DNGaussian[33] applies 

global–local depth normalization to preserve shape consistency, while MVSplat[34] 

constructs a classical multi-view stereo cost volume to guide Gaussian placement. 

Both improve completeness but depend on the quality of the auxiliary depth infor-

mation. Learned-prior approaches such as PixelSplat[35] and Splatter Image[36] 

train a feed-forward network to propose initial Gaussian distributions from as few 

as two images, offering rapid initialization and generalization, though fine detail may 

suffer if training data lack diversity. 

1.3.3.2 Memory-Efficient 3DGS 
Handling millions of Gaussians in large scenes challenges GPU memory. Pruning 

and clustering methods remove low-opacity Gaussians or merge nearby ones into 

“super-Gaussians,” cutting primitive counts by up to 10 times with minimal fidelity 

loss. Complementary attribute compression schemes like LightGaussian[37] quantize 

positions, covariances, and colors into codebooks, achieving ~15 times storage reduc-

tion while still rendering above 200 fps; however, aggressive quantization can intro-

duce banding or color artifacts under complex lighting. 

1.3.3.3 Photorealistic 3DGS 
Basic splatting handles smooth shading but struggles with aliasing and reflections. 

Mip-splatting[38] applies multi-scale Gaussian kernels (or image-space MIP filtering) 

to avoid jagged edges at varying zoom levels. Spec-Gaussian[39] attaches per-prim-

itive BRDF lobes, enabling rudimentary specular highlights. Analytic-splatting[40] 

performs closed-form integration of Gaussians over pixel footprints, producing anti-

aliased edges without extra blur passes. StopThePop[41] ensures consistent visibility 

ordering by sorting per-tile Gaussians, eliminating popping artifacts during camera 

motion. 

1.3.3.4 Improved Optimization Algorithms 
Faster, more stable fitting accelerates pre-processing. COLMAP-Free 3DGS[42] jointly 

estimates camera poses and Gaussians, removing reliance on external SfM and re-

ducing pose-error cascades. RelaxInit[43] introduces coarse-to-fine covariance 
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control, relaxing precise initialization requirements. GsDF[44] hybridizes splatting 

with SDF regularization to recover sharper geometry. FRegs[45] progressively in-

creases frequency content, guiding convergence from smooth to fine detail. GS++[46] 

uses per-Gaussian importance metrics to adaptively split or prune primitives, auto-

matically tuning density for efficiency and quality. 

1.3.3.5 3D Gaussians with Additional Properties 
Enriching Gaussians enables semantics and interaction. Language-embedded Gauss-

ians[47], [48] attach CLIP-style text embeddings for open-vocabulary scene querying 

and editing. Foundation-model GS[49] distills 2D features (e.g., DINO, SAM) into 

each primitive, yielding explicit 3D feature fields for segmentation or object-level 

edits. 4D GS[50]  extends Gaussians with temporal harmonics to capture non-rigid 

dynamics in a single optimization, supporting real-time dynamic rendering. 

1.3.3.6 Hybrid Representations 
Combining Gaussians with structured models affords interpretability and control. 

Scaffold-GS[51] anchors primitives to a coarse mesh or skeletal rig, enabling real-

time avatar retargeting and pose editing with Gaussian detail. Relightable Codec 

Avatars[52] embed per-Gaussian BRDF parameters for on-the-fly relighting under 

novel illumination. DarkGS[53] incorporates learned illumination estimates for ro-

bust splatting in low-light or high-contrast robotics scenarios. 

1.3.3.7 Hybrid Representations 
Moving beyond rasterization-style splatting, ray-traced Gaussian primitives enable 

physically grounded effects. GaussianTracer[54] treats each primitive as an ellipsoidal 

volume and performs exact per-ray integration for correct occlusion and reduced 

popping. EVER (Exact Volumetric Ellipsoid Rendering)[55] derives closed-form 

light transport through Gaussians, facilitating real-time soft shadows and volumetric 

scattering without shadow maps. Though these methods incur higher per-primitive 

cost, they unlock richer lighting effects for applications requiring physical accuracy. 

1.4 Shading 

Shading is the computational process by which a renderer determines the color and 

brightness of a point visible in an image. It operates after visibility has been resolved 
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and assigns radiance values based on how surface elements interact with incoming 

light and how that interaction varies with view direction. The purpose of shading is 

to compute how light interacts with surface geometry and material at a given point. 

The result is the color and brightness values that convey shape, depth, and surface 

characteristics in the rendered image[56]. In classical pipelines, shading is performed 

at discrete points on surface geometry, using predefined models of reflection[57]. In 

more recent approaches, including differentiable and point-based methods, shading 

may be embedded within learned functions or distributed volumetrically. 

1.4.1 Shading Pipeline Architecture 

The architecture of a shading pipeline determines how and when shading calcula-

tions occur during rendering. Depending on the rendering strategy, shading compu-

tations can be coupled with geometry processing, or delayed until after geometry has 

been entirely processed. Two primary pipeline architectures are forward and deferred 

shading. 

Forward shading is the conventional method used in real-time rendering pipe-

lines, where shading and lighting computations are performed directly as geometry 

is rasterized. Once geometry reaches the graphics card, it is projected, broken down 

into vertices, and then further divided into fragments (the potential pixels), each of 

which receives individual lighting calculations. This method is linear and straight-

forward, making it efficient for simple scenes with a limited number of lights. How-

ever, forward shading quickly becomes computationally expensive as the number of 

dynamic lights increases. For multiple lights, each fragment on screen must calculate 

lighting contributions from every single one of these sources, regardless of whether 

the fragment is ultimately visible or hidden behind other geometry. In practice, many 

of these fragments never even reach the screen due to depth testing, meaning a lot 

of lighting calculations are wasted. Culling distant lights, combining static lights into 

precomputed lightmaps, pushing lighting calculations to vertex shaders which re-

duces the load on fragment shaders are all techniques that try to work with these 

restrictions. When dealing with many dynamic lights though, the limit of forward 

shading is still apparent. As an alternative, deferred shading separates geometry and 

lighting computations managing large-scale lighting scenarios way more efficiently. 



 

19 
 

 

Deferred shading was first introduced in a hardware design in 1988[58], with a 

more general purpose method using full screen Geometry Buffers (G-Buffers) fol-

lowing in 1990[59]. Deferred shading decouples geometry and light processing, mak-

ing it relatively simple to manage large numbers of light sources[60]. Rather than 

shading fragments when each object passes through the pipeline, it first performs a 

geometry pass storing relative attributes into intermediate buffers known as Geome-

try Buffers (G-buffers). These can include color, normal, depth, position, material 

(for more than one we can use a derivative method called deferred lighting[61]) and 

are stored per pixel. After that, it performs a shading pass where lighting calculations 

are performed only on visible pixels. This way, redundant computations are avoided 

making deferred shading preferable for scenes with dynamic or complex lights. It 

comes however with its own drawbacks. For one, in order to handle transparency, 

we need to combine deferred with forward rendering for these transparent objects. 

Another solution could be depth peeling in order to achieve order-independent 

transparency but at the cost of G-buffer size. As mentioned, multiple materials need 

a different technique called deferred lighting but at the cost of an extra pass. Finally, 

hardware anti-aliasing cannot produce correct results. To overcome this, a traditional 

way is edge detection with more alternative approaches being MLAA[62] and 

FXAA[63]. 

Figure 1.5 A typical forward shading pipeline 
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1.4.2 Shading in Differentiable Rendering 

Differentiable rendering (DR) is a technique that allows a 3D scene to be adjusted 

by comparing a rendered image to a reference image. It does this by computing how 

changes in scene parameters like geometry, material, lighting, or camera affect the 

final image. Rendering can be treated as a function that maps these 3D scene pa-

rameters to the 2D image pixels’ intensities. In DR, this function is differentiable, 

meaning it can calculate the rate of change of the image with respect to changes in 

the scene parameters. This makes it possible to optimize scenes using gradient de-

scent; same way neural networks are trained. DR methods can be grouped into three 

broad categories based on how the scene is represented and rendered: physics-based, 

NeRF-based, and point-based[64]. 

Physics-based DR follows the light-transport equation and handles reflections, 

shadows, and global illumination aiming for physical accuracy. Its core challenge is 

Figure 1.6 A common deferred shading pipeline. 
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the visibility discontinuity that happens when a tiny change in geometry or camera 

makes a surface suddenly appear or disappear. Then, the rendered pixel values jump, 

so ordinary derivatives break down. There are two proposed solutions: boundary 

sampling, which explicitly integrates contributions near silhouette edges, and re-

parameterization, which remaps the integral so those edges stay fixed. NeRF-based 

DR takes a different route. It learns a continuous volume, via a neural network, that 

relates space-and-view direction to color and density, then renders it with smooth 

volume integration. This side steps discontinuities at the cost of ignoring complex 

light bounces but offers fast, stable gradients. Point-based DR, exemplified by 3D 

Gaussian Splatting, represents the scene as many Gaussian spheres. Each sphere 

projects to the image and blends smoothly with its neighbors, giving real-time speed 

and simple gradients, though at the price of higher memory use and limited geo-

metric editing. Together, these three approaches define the current landscape: phys-

ics-based aims for realism, NeRF-based balances detail and learning ease, and point-

based targets speed. 

1.5 Light and Material Models 

1.5.1 Illumination Models and BRDF 

1.5.1.1 Bidirectional Reflectance Distribution Function (BRDF) 
The Bidirectional Reflectance Distribution Function (BRDF) defines how light is re-

flected off an opaque surface. It relates the amount of light arriving from an incident 

direction (incoming) to the amount reflected in an outgoing direction at a point on 

a surface, taking into account the surface’s material properties. Formally, the BRDF 

𝑓𝑓𝑟𝑟(𝑃𝑃,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) specifies the ratio of reflected radiance in direction 𝜔𝜔𝑜𝑜 to the incident 

irradiance from direction 𝜔𝜔𝑖𝑖 with regard to the surface normal at point 𝑃𝑃. BRDF 

uses 𝑠𝑠𝑠𝑠−1 as it’s units with 𝑠𝑠𝑠𝑠 being the steradians, a unit of solid angle. In rendering, 

BRDF is integrated into the rendering equation[65] like: 

𝐿𝐿𝑜𝑜(𝑃𝑃,𝜔𝜔𝑜𝑜) = 𝐿𝐿𝑒𝑒(𝑃𝑃,𝜔𝜔𝑜𝑜) + � 𝑓𝑓𝑟𝑟(𝑃𝑃,𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)𝐿𝐿𝑖𝑖(𝑃𝑃,𝜔𝜔𝑖𝑖)(𝜔𝜔𝑖𝑖 ,𝑛𝑛)𝑑𝑑𝜔𝜔𝑖𝑖

𝛺𝛺

 (1.11) 
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where 𝐿𝐿𝑜𝑜 is the outgoing radiance at point 𝑃𝑃, 𝐿𝐿𝑒𝑒 represents any emitted light, 𝐿𝐿𝑖𝑖 

is the incoming radiance from direction 𝜔𝜔𝑖𝑖 and 𝑛𝑛 is the surface normal. The integral 

runs over the hemisphere 𝛺𝛺 above the surface. 

The BRDF operates independent of the overall scene geometry or light path 

allowing for materials to be modeled separately from light transport methods. More-

over, the BRDF does not distinguish between direct and indirect illumination. It 

applies equally to light coming directly from sources and light reflected from other 

surfaces. Finally, it does not account for subsurface scattering or transmission of light 

through the surface. These are handled by other functions, namely Bidirectional 

Transmittance Distribution Function (BTDF) or subsurface scattering models. 

1.5.1.2 Common BRDF Models 
BRDFs can be split into three broad categories. Empirical, physically based and 

measured models. Empirical models like Lambertian[66] and Phong[67] are de-

signed to approximate observed light behavior. They do not necessarily adhere to 

physical laws, but they are computationally efficient since they are based on simpli-

fied mathematical functions. 

Physically based models like Cook-Torrance[68] integrate physical principles to 

better capture the real-world behavior of materials. These models are constrained by 

three properties: positivity, reciprocity and energy conservation.  

Positivity requires that the BRDF returns non-negative values for all inputs. For-

mally: 

𝑓𝑓𝑟𝑟(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) ≥ 0 (1.12) 

Reciprocity (or commonly referred to as Helmholtz reciprocity) means that the 

reflection behaves identically if the incoming and outgoing directions are swapped. 

Reversible light paths are a requirement for physically-based or inverse rendering: 

𝑓𝑓𝑟𝑟(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) = 𝑓𝑓𝑟𝑟(𝜔𝜔𝑜𝑜,𝜔𝜔𝑖𝑖) (1.13) 

Energy conservation constraint states that the BRDF must not reflect more energy 

than it receives, formally, the total energy from any incoming direction must not 

exceed the incoming energy: 
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∀𝜔𝜔𝑖𝑖 , � 𝑓𝑓𝑟𝑟(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) cos(𝜃𝜃𝑜𝑜)𝑑𝑑𝜔𝜔𝑜𝑜 ≤ 1
𝛺𝛺

 (1.14) 

where 𝜃𝜃𝑜𝑜 is the angle between the surface normal 𝑛𝑛 and the outgoing direction. 

The integral is taken over the hemisphere 𝛺𝛺. 

Finally, measured models rely on empirical data collected from physical surfaces 

to directly describe reflectance behavior of certain materials. 

Following, we present some of the principal BRDF models. 

Lambertian is one of the simplest BRDF functions. It is used for diffuse term 

which assumes that incident light is scattered in all possible directions equally 

(within the hemisphere around the surface normal). It is a good approximation for 

behavior of many real-world materials and is very fast to evaluate. 

𝑓𝑓𝑟𝑟(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) =
𝜌𝜌
𝜋𝜋
 (1.15) 

where 𝜌𝜌 represents the diffuse reflectance or albedo. The division by 𝜋𝜋 ensures 

that total reflectance remains below or equal to one[69], satisfying energy conserva-

tion. Being an empirical model, Lambertian BRDF lacks view-dependence and sur-

face roughness effects limiting its physical realism. 

The Phong model extends Lambertian with a specular highlight component: 

𝑓𝑓𝑟𝑟(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) = 𝑘𝑘𝑠𝑠(𝑅𝑅 ∙ 𝑉𝑉)𝑛𝑛 (1.16) 

where 𝑘𝑘𝑠𝑠 is the specular reflectance, 𝑅𝑅 is the reflection of the incoming light, 𝑉𝑉 is 

the view direction and 𝑛𝑛 controls the sharpness of the specular highlights. In and of 

itself, Phong in neither energy conserving nor reciprocal. However, many attempts 

have been made to rectify this[70], [71], [72]. 

The Cook-Torrance model is a physically based BRDF that models surfaces as 

collections of tiny surfaces or, microfacets[73] with varying orientations. It satisfies 

positivity, reciprocity, and energy conservation. It is defined as[74]: 

𝑓𝑓𝑟𝑟(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) =
𝐷𝐷(𝐻𝐻)𝐹𝐹(𝜔𝜔𝑖𝑖 ,𝐻𝐻)𝐺𝐺(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜,𝐻𝐻)

4(𝑛𝑛 ∙ 𝜔𝜔𝑖𝑖)(𝑛𝑛 ∙ 𝜔𝜔𝑜𝑜)
 (1.17) 
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where 𝐻𝐻 is the half-vector, defined as the normalized sum of the incoming and 

outgoing directions. It serves as the local normal of a microfacet responsible for 

reflection at a given point. 𝐷𝐷(𝐻𝐻) is the microfacet distribution function that is often 

implemented using the GGX distribution and describes how much and in what way 

microfacets vary. It is typically controlled by the roughness parameter: 

𝐷𝐷𝐺𝐺𝐺𝐺𝐺𝐺(𝐻𝐻) =
𝛼𝛼2

𝜋𝜋[(𝑛𝑛 ∙ 𝐻𝐻)2(𝛼𝛼2 − 1) + 1]2
 (1.18) 

𝐹𝐹(𝜔𝜔𝑖𝑖 ,𝐻𝐻) is the Fresnel term, approximated by Schlick’s formula[75]: 

𝐹𝐹(𝜔𝜔𝑖𝑖 ,𝐻𝐻) = 𝐹𝐹0 + (1 − 𝐹𝐹0)(1 − (𝜔𝜔𝑖𝑖 ∙ 𝐻𝐻)5) (1.19) 

where 𝐹𝐹0 is the reflectance at normal incidence. Fresnel term evaluates how much 

light is reflected off the surface under given angle of incidence. 𝐺𝐺(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜,𝐻𝐻) is the 

geometry term that is responsible for masking and shadowing effects between mi-

crofacets. The denominator[76] comes from derivation of the microfacet model using 

perfect mirrors as microfacets. 

Disney’s[77] empirical model modifies the basic Lambertian reflection by adding 

a grazing-angle adjustment. This helps capture the increase in reflectance observed 

when light hits a surface at a shallow angle. It’s given by the equation: 

𝑓𝑓𝑟𝑟(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) =
𝜌𝜌
𝜋𝜋

[1 + (𝐹𝐹𝐷𝐷90 − 1)(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖)5][1 + (𝐹𝐹𝐷𝐷90 − 1)(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑜𝑜)5] (1.20) 

where 𝜌𝜌 is the diffuse reflectance (albedo) of the surface, 𝜃𝜃𝑖𝑖, 𝜃𝜃𝑜𝑜 are the angles 

between the surface normal 𝑛𝑛 and the incoming and outgoing directions respectively 

and 𝐹𝐹𝐷𝐷90 is the parameter that controls the increase in reflectance at shallow angles. 

It is given by the equation: 

𝐹𝐹𝐷𝐷90 = 0.5 + 2 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃 (1.21) 

1.5.2 Light Interactions 

Accurately simulating light–surface interaction is a central challenge in computer 

graphics. Complete physical modeling of light paths is too computationally intensive 

for real-time rendering. To work around this, lighting can be based on 
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approximations of reality using simplified models that are much easier to process 

and look relatively similar. A common approach, most notably used by the Phong 

illumination model[78] and its derivatives, is the separation of light interaction into 

three components: ambient, diffuse and specular light. 

1.5.2.1 Ambient, Diffuse and Specular Light 
In any scene, light rarely comes from a single, direct source. Instead, surfaces receive 

some level of illumination from light scattered by other surfaces or diffused through 

the environment. A simplification of this behavior can be modeled via the ambient 

light, ensuring that even surfaces not directly illuminated by a light source maintain 

some form of brightness. Ambient light is uniformly applied to all surfaces in a scene 

and does not depend on their orientation or position relative to light sources. A 

typical way of calculating it is: 

𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑘𝑘𝑎𝑎𝐼𝐼𝑎𝑎 (1.22) 

where 𝑘𝑘𝑎𝑎 is the ambient reflectivity of the material and 𝐼𝐼𝑎𝑎 is the ambient light 

intensity. 

Diffuse lighting approximates the scattering of light after hitting rough surfaces. 

It is the most visually significant component of the lighting model. As opposed to 

ambient light, diffuse depends on the angle between the incoming light and the 

surface normal. Based on Lambert’s cosine law[79] which states that brightness is 

proportional to the cosine of the angle between the light direction and the surface 

normal, we can deduct that as the angle increases, the surface will get darker. A 

simplified calculation of diffuse light can be described by the following equation: 

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑘𝑘𝑑𝑑𝐼𝐼𝑑𝑑max (𝑛𝑛 ∙ 𝑙𝑙, 0) (1.23) 

where 𝑘𝑘𝑑𝑑 is the diffuse reflectivity of the material, 𝐼𝐼𝑑𝑑 is the light intensity, 𝑛𝑛 is the 

normalized surface normal and 𝑙𝑙 is the normalized vector pointing to the light source. 

The dot product 𝑛𝑛 ∙ 𝑙𝑙 returns the cosine of the angle between the surface and the 

light. Clamping it at or above zero avoids incorrect shading on surfaces facing away 

from the light source. 

Specular light models the highlights on reflective objects, appearing as bright 

spots on the points where light directly hits their surface. In contrast with diffuse 
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light that is scattered in all directions, specular is more focused and depends on the 

angle between the viewer and the reflected light. It can be described by the equation: 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑘𝑘𝑠𝑠𝐼𝐼𝑠𝑠max (𝑟𝑟 ∙ 𝑣𝑣, 0)𝛼𝛼 (1.24) 

where 𝑘𝑘𝑠𝑠 is the specular reflectivity, 𝐼𝐼𝑠𝑠 is the light intensity, 𝑟𝑟 is the reflection 

vector of the light direction reflected across the surface normal, 𝑣𝑣 is the normalized 

vector pointing toward the viewer, and 𝛼𝛼 is the shininess factor that controls the 

sharpness of the highlight. Higher values for 𝛼𝛼 result in a smaller (more concen-

trated) highlight. The dot product 𝑟𝑟 ∙ 𝑣𝑣 calculates how closely the reflected light aligns 

with the viewer’s direction. 

By combining ambient, diffuse and specular lights we get a complete represen-

tation of how light interacts with an object’s surface. 

1.5.3 Intrinsic Image Decomposition 

Image decomposition refers to the mathematical process of transforming an image 

into a new set of images, with each new image representing a different aspect (or 

component) of the pictured scene[80]. Strictly speaking, image decomposition is con-

cerned with transformations on the signal level with broad applications like de-

noising, scaling etc. There are, however, different kinds of decompositions relative to 

the nature of the components. In the context of lighting in computer graphics, de-

compositions like intrinsic[81] and structural[82] present a more useful tool. Intrinsic 

image decomposition is focused on the content of the scene. Specifically, intrinsic 

scene characteristics like reflectance (diffuse, albedo) and shading. Structural decom-

position, on the other hand, is focused on geometry. 

Intrinsic image decomposition factors each pixel value 𝐼𝐼(𝑥𝑥, 𝑦𝑦) of an observed 

image into reflectance 𝑅𝑅(𝑥𝑥, 𝑦𝑦) and shading 𝑆𝑆(𝑥𝑥, 𝑦𝑦) terms so that 𝐼𝐼 = 𝑅𝑅 ∙ 𝑆𝑆. Here, 𝑅𝑅 

represents the true color or albedo of surfaces (what we would see under neutral, 

even lighting) and 𝑆𝑆 captures how light direction, surface orientation, and shadows 

darken or brighten those colors. This relationship however is fundamentally ill-posed 

since infinitely many (𝑅𝑅, 𝑆𝑆) pairs satisfy it making reliable algorithm design challeng-

ing[83]. Early methods use the Retinex theory[84] stating that sudden changes in 

intensity usually signal a change in surface color. Modern approaches learn statistics 

of real materials and lighting from synthetic or labeled datasets. Once 𝑅𝑅 and 𝑆𝑆 are 
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estimated we are able to relight a scene by altering 𝑆𝑆, swap the material of an object 

by editing 𝑅𝑅, or perform color-consistent edits without altering the lighting. 

Structural decomposition focuses on recovering the shape-related aspects of an 

image rather than its color. From a single photograph we can compute auxiliary 

“structure” images such as surface normals (the direction each point faces), depth 

maps (distance from the camera), curvature or height fields. Traditional shape-from-

shading methods infer normals by assuming a simple light source and smooth sur-

faces; depth-from-focus measures sharpness across different focus settings to estimate 

distance. More recently, convolutional neural networks trained on paired color-and-

depth data can predict normals and depth directly from one RGB image. These 

structural maps feed into 3D reconstruction pipelines building meshes or point 

clouds and enable novel-view synthesis, collision detection in simulations, and phys-

ically based rendering where an accurate geometry model is essential. 

By treating intrinsic and structural decomposition as complementary tasks or 

solving them together in one network, modern systems[85], [86] achieve more con-

sistent outputs. For example, knowing the shading can help disambiguate surface 

orientation, and accurate normals can guide better separation of reflectance and 

shading, resulting in both more realistic relighting and more precise geometry re-

covery. 

1.6 Global Illumination 

Global illumination is a set of techniques that aim to represent how light interacts 

with surfaces in a scene, capturing not only the direct illumination from light sources 

but also the indirect illumination that accounts for rays reflected by other surfaces 

in the scene[87]. While shadows and reflections can be thought of as a part of global 

illumination, typically, we are concerned with what is called diffuse interreflection or, 

the way light is reflected from objects that are not shiny or specular. If the diffuse 

surface is colored, the reflected light is also colored resulting in similar coloration of 

the surrounding objects.  

These techniques are numerical approximations of the rendering equation[65] 

which describes how outgoing light at any point depends on both emission and the 

incoming light reflected by the surface. The approximations are needed since directly 

evaluating this equation is prohibitively expensive for interactive applications because 
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it requires tracing a very large number of light paths and resolving complex visibility 

relationships. Many families of techniques have been proposed throughout the years: 

finite-element radiosity[88], photon mapping[89], multipass hybrids that combine a 

radiosity stage with ray tracing[90], precomputed radiance transfer for static scenes 

under distant lighting[91] and sparse-sampling schemes ranging from image-space 

render caches[92] to line-space radiance caches[93]. However, given our context of 

relighting with 3DGS, we will focus our attention on three main techniques that 

approximate the rendering equation and are commonly found in 3DGS relighting 

implementations. These are Monte Carlo ray tracing[94], Image-based lighting[95] 

and Spherical Harmonics[96]. 

1.6.1 Monte Carlo Ray Tracing 

Monte Carlo ray tracing (often called path tracing) evolved directly from Whitted’s 

recursive ray caster[97], which added perfect specular reflections and refractions to 

visibility rays, and was generalized to stochastic ray scattering for effects like glossy 

reflections and depth of field[98] before being applied to the full rendering equation. 

Monte Carlo ray tracing begins by treating the rendering equation not as an 

impossible high-dimensional integral to solve analytically but as a problem of statis-

tical estimation, in which the true illumination at each pixel is approximated by 

averaging the results of many randomized light paths. To render a single pixel, the 

algorithm casts a primary ray from the camera through the pixel into the scene, 

where it intersects a surface. At that intersection point, the path tracing engine eval-

uates the surface’s bidirectional reflectance distribution function (BRDF) to deter-

mine how light is reflected, then stochastically selects a new outgoing direction over 

the hemisphere above the surface according to a probability density function. This 

choice is made so that the expectation of each sample exactly matches the integral of 

the rendering equation, guaranteeing that the estimator is unbiased that is, the ex-

pected value of the Monte Carlo estimate equals the true value of the lighting integral, 

with no systematic error remaining even as the number of samples grows[94]. As 

the ray continues, it may encounter additional surfaces where the process repeats: at 

each bounce the path accumulates the product of the BRDF, the cosine of the incident 

angle, and any emitted radiance, before terminating when it reaches a light source 

or when a predetermined maximum depth or probabilistic cutoff (Russian 
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roulette[99]) criterion is met. Once 𝑁𝑁 such paths have been traced for the pixel, their 

accumulated radiance values are averaged to produce the final pixel color. 

Monte Carlo path tracing faces a fundamental challenge: each path sample is a 

random variable whose variance contributes to visible image noise. The variance of 

the Monte Carlo estimator over 𝑁𝑁 samples scales inversely with 𝑁𝑁, so that the stand-

ard deviation and thus the perceptual noise level decreases only as 1 √𝑁𝑁⁄ . In practical 

terms, reducing noise by half mandates four times more samples per.  

To address this, several variance-reduction strategies are layered on top of the 

basic algorithm. Importance sampling[100] tailors the sampling density 𝑝𝑝(𝜔𝜔𝑖𝑖) to 

match the shape of the integrand, often choosing directions proportional to the 

BRDF’s main lobe or the distribution of light source contributions, so that high-

contribution paths are sampled more frequently, yielding lower variance for the same 

sample count. Stratified sampling[101] subdivides the integration domain, such as 

the image plane or the hemisphere of directions, into regions (strata) and ensures at 

least one sample per region, smoothing out clustering artifacts and further reducing 

variance. Multiple importance sampling then combines complementary sampling 

strategies, such as BRDF-based and emitter-based proposals, into a single estimator 

using carefully chosen weights that retain unbiasedness while minimizing variance 

across disparate integrand components[87]. 

Efficient implementation of Monte Carlo path tracing requires handling millions 

or even billions of rays per scene. Acceleration structures, including bounding-vol-

ume hierarchies (BVHs)[102] and kd-trees[103], cut the cost of ray–geometry inter-

section tests from linear time in the number of primitives to logarithmic time per 

ray, enabling heavy ray-marching workloads without prohibitive performance pen-

alties. 

1.6.2 Image-based Lighting (HDRs) 

Image-based lighting (IBL) captures the real illumination in a scene and reuses it to 

light virtual objects so they blend naturally without rebuilding full 3D geometry. 

Rather than tracing rays for every bounce, IBL records how light arrives from every 

direction in a single map, then looks up those values at render time to drive both 

diffuse and specular shading[104]. 
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A key form of IBL is the high-dynamic-range (HDR) environment map[95]. To 

create one, we photograph a mirrored sphere at several exposure settings and merge 

those shots into a floating-point panorama that preserves both very bright highlights 

and deep shadows. This panorama is typically stored in an “angle map” projection, 

where each texel corresponds to a specific direction on the sphere. At render time, a 

surface’s normal or reflection vector is converted into those sphere coordinates, and 

the corresponding texel’s RGB value gives the incident radiance without any ray 

tracing.  

For faster diffuse lighting, the HDR map can be projected once into a low-order 

spherical-harmonic basis. By sampling the angle map at uniformly distributed di-

rections and accumulating against the SH basis functions, we compute a small set of 

coefficients that approximate the full lighting function. By that, shading any point 

only needs a single dot product between the probe’s SH coefficients and that point’s 

precomputed transfer terms.  

Because there is no fixed “white” level in an HDR image, renderers must include 

exposure controls to scale the raw radiance values appropriately before lookup or 

projection. While HDR-based IBL delivers realistic lighting with minimal per-frame 

cost, it requires a mirror probe, careful camera calibration, a static scene (no moving 

objects), and a multi-step capture workflow. These factors can limit its use in dynamic 

or mobile settings. 

1.6.3 Spherical Harmonics 

Spherical harmonics can be thought of as the spherical equivalent of the sine and 

cosine waves used in Fourier series: they form a set of smooth “patterns” on the 

surface of a sphere that, when added together in the right proportions, can recreate 

any smoothly varying function of direction—like the way light arrives at a point 

from all around[96]. In plain terms, instead of storing a full environment map 

(which can be large and detailed), we store just a handful of numbers (the SH coef-

ficients) that capture the overall “shape” of the lighting, smoothing out sharp features 

but preserving gradual changes. This makes it much faster to rotate, interpolate, and 

combine lighting for applications like real-time relighting, where we need good-

looking results without the cost of high-resolution data.  
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CHAPTER 2          

 CASE STUDIES 

2.1 GaussianShader: 3D Gaussian Splatting with Shading Functions for Reflective Surfaces 

2.2 Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition 

and Ray Tracing 

2.3 Reflective Gaussian Splatting 

2.4 IRGS: Inter-Reflective Gaussian Splatting with 2D Gaussian Ray Tracing 

2.5 ReCap: Better Gaussian Relighting with Cross-Environment  Captures 

 

2.1 GaussianShader: 3D Gaussian Splatting with Shading Functions 

for Reflective Surfaces 

GaussianShader[105] adds a learnable shading model to the 3D Gaussian Splatting 

method by giving each Gaussian extra attributes like base color, view-dependent 

color variation, specular tint, roughness, and an estimated normal. Normals are de-

rived from each splat’s shortest axis and are then aligned with depth-derived nor-

mals. Both direct and indirect reflections are accounted for by querying a mip-

mapped environment map. GaussianShader is better suited for reflective surfaces 

where it achieves great results on both Novel View Synthesis and relighting. On the 

other hand, it seems to struggle on mat surfaces or real scenes. 

 



 

32 
 

 

2.1.1 Illumination Model 

2.1.1.1 Shading Function 
The shading function used is a simplified version of the rendering function[106]. 

For each Gaussian, the rendered color 𝑐𝑐, for a viewing angle 𝜔𝜔𝑜𝑜 is given by the 

equation: 

𝑐𝑐(𝜔𝜔𝑜𝑜) = 𝛾𝛾(𝑐𝑐𝑑𝑑 + 𝑠𝑠 ⊙ 𝐿𝐿𝑠𝑠(𝜔𝜔𝑜𝑜,𝑛𝑛,𝜌𝜌) + 𝑐𝑐𝑟𝑟(𝜔𝜔𝑜𝑜)) (2.1) 

where 𝑐𝑐𝑑𝑑 ∈ [0,1]3 is the diffuse color, 𝑠𝑠 ∈ [0,1]3 is the specular color, 𝜌𝜌 ∈ [0,1] is 

the roughness factor which controls the dispersion of the reflection and 𝑛𝑛 is the 

normal vector. Residual color 𝑐𝑐𝑟𝑟:𝑅𝑅3 → 𝑅𝑅3 refers to the additional effects (scattering 

and reflections) of indirect lighting. 𝑐𝑐𝑟𝑟 is comprised of 3𝑟𝑟𝑟𝑟 order Spherical Harmonics 

(SH) coefficients and depends on viewing angle. 

The term 𝑠𝑠 ⊙ 𝐿𝐿𝑠𝑠(𝜔𝜔𝑜𝑜,𝑛𝑛, 𝜌𝜌) determines the color of direct light reflections. Specular 

color 𝑠𝑠 is multiplied element-wise with direct specular light 𝐿𝐿𝑠𝑠. Along with 𝑐𝑐𝑟𝑟(𝜔𝜔𝑜𝑜), 

this term accounts for all reflection colors. 𝛾𝛾 is a gamma correction function. 

2.1.1.2 Specular Light 
To calculate the specular light 𝐿𝐿𝑠𝑠, they integrate the incoming radiance 𝐿𝐿(𝜔𝜔𝑖𝑖) with 

the GGX Normal Distribution Function[107]. This procedure is visualized in Figure 
2.2 and is described by the following formula: 

𝐿𝐿𝑠𝑠(𝜔𝜔𝑜𝑜 ,𝑛𝑛,𝜌𝜌) = � 𝐿𝐿(𝜔𝜔𝑖𝑖)𝐷𝐷(𝑟𝑟,𝜌𝜌)(𝜔𝜔𝑖𝑖 ∙ 𝑛𝑛)𝑑𝑑𝜔𝜔𝑖𝑖

𝛺𝛺

 (2.1) 

where 𝛺𝛺 is the hemisphere above each Gaussian. The integral sums the contri-

bution of radiation from all directions 𝜔𝜔𝑖𝑖 within this hemisphere. 𝐿𝐿(𝜔𝜔𝑖𝑖) is the 

Figure 2.1 GaussianShader Pipeline. Figure from [105]. 



 

33 
 

environment light from direction 𝜔𝜔𝑖𝑖. 𝐷𝐷 is the normal elliptical distribution (GGX 

NDF). It’s the circular sector that defines the reflected radiation. It models how 

reflections are spread based on two parameters. 𝑟𝑟, which is the direction of the out-

going reflection and 𝜌𝜌 which is the surface roughness. (𝜔𝜔𝑖𝑖 ∙ 𝑛𝑛) is Lambert's cosine 

law, weighting incoming light based on the angle of incidence. 

 

 

2.1.1.3 Environment Light 
Environment light refers to the incoming radiance from all directions of the scene. 

To represent it, they use a 6 ×  64 ×  64 cube map. That is, 6 two-dimensional tex-

tures of 64 ×  64 pixel resolution. The cube map stores precomputed radiance from 

different directions. To further speed up the calculations they use pre-filtered ver-

sions of this cube map, the so-called mipmaps. Mipmaps are a hierarchy of versions 

of a texture with progressively lower resolution. 

In case of low roughness (𝜌𝜌 ≈  0), there is a sharp reflection. So, sample from 

the highest resolution mip level (detailed environment map). In case of high rough-

ness (𝜌𝜌 ≈  1), there is a diffused reflection. So, sample from lower resolution mip 

level (blurred version of the environment). 

The general pipeline to retrieve the appropriate part of the environment light is: 

• The environment light is stored as a latitude-longitude HDRI texture file. 

This file is converted to a cube map. The mipmaps are generated based on 

that cube map. 

• Compute the reflection direction 𝑟𝑟 = 2(𝜔𝜔𝑜𝑜 ∙ 𝑛𝑛)𝑛𝑛 − 𝜔𝜔𝑜𝑜. 𝑟𝑟 is used to determine 
which texel (color value) to sample from the cube map. 

• Depending on roughness value 𝜌𝜌, select the appropriate mipmap level i.e. 
how blurred that color should be. If 𝜌𝜌 lies between two mipmap levels, 
they take an average of the two levels (they refer to this process as interpo-
lation). 

Figure 2.2 Normal Distribution Function 𝐷𝐷 in Eq. 2.2 is determined 
by roughness ρ and reflective direction r. The surface’s specular lobe 

grows with the value of 𝜌𝜌. Figure from [105]. 
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2.1.2 Normal Estimation 

The authors’ observation is that during optimization, Gaussians tend to approach a 

planar shape (Figure 2.2). That being so, they chose the shortest axis as the normal 

vector of this “flattened” Gaussian as a normal estimate (denoted by 𝑣𝑣). 

 

 

 

 

 

 

 

 

This vector however presents ambiguities. Specifically, the direction of the short-

est axis might point outward or inward from the surface. To tackle this, the authors 

introduce two trainable normal “residuals” (𝛥𝛥𝑛𝑛1, 𝛥𝛥𝑛𝑛2) which are optimized during 

training. 

Initially, they choose the normal direction that coincides with the viewing direc-

tion 𝜔𝜔𝑜𝑜. Then, they apply the corresponding normal residual based on the following 

cases: 

𝑛𝑛 = 𝑣𝑣 + 𝛥𝛥𝑛𝑛1, 𝜔𝜔𝑜𝑜  ∙  𝑣𝑣 > 0  

𝑛𝑛 =  −(𝑣𝑣 + 𝛥𝛥𝑛𝑛2), 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

(2.3) 
 

Moreover, they add a penalty towards normal residual making sure it doesn’t 

deviate much from the shortest axis. This penalty is described by 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖𝛥𝛥𝑛𝑛‖2. 

The above computation is performed per single Gaussian. To guarantee con-

sistency among the local geometry (neighboring Gaussians), the authors introduce a 

new loss 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ‖𝑛𝑛�  −  𝑛𝑛�‖2. 𝑛𝑛� is the rendered normal map containing information 

about the separately defined normal of each Gaussian. 𝑛𝑛� is computed by applying a 

Sobel-like operator on the rendered depth map and contains information on the local 

geometry formulated by multiple Gaussians. The consistency between the local 

Figure 2.3 Gaussians tend to become planar (flat) as they converge. 
Figure from [105]. 
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geometry and the estimated normals is enforced by minimizing the difference be-

tween 𝑛𝑛� and 𝑛𝑛�. 

 

 

 

 

 

2.1.3 Loss Functions 

The total training loss 𝐿𝐿 is: 

𝐿𝐿 = 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜆𝜆𝑛𝑛𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝜆𝜆𝑠𝑠𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜆𝜆𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 (2.4) 

where 𝜆𝜆𝑛𝑛  =  0.01, 𝜆𝜆𝑠𝑠  =  0.001, 𝜆𝜆𝑟𝑟  =  0.001. 

2.1.3.1 Color Loss 

𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ‖𝐶𝐶 −  𝐶𝐶𝑔𝑔𝑔𝑔‖2  (2.5) 

Color loss minimizes the difference between the blended color 𝐶𝐶 of all Gaussians and 

the corresponding pixel in the ground-truth image. 

𝐶𝐶 = �𝑐𝑐𝑖𝑖𝑎𝑎𝑖𝑖�(1 − 𝑎𝑎𝑗𝑗)
𝑖𝑖−1

𝑗𝑗=1𝑖𝑖 ∈𝑁𝑁

 (2.6) 

where 𝑐𝑐𝑖𝑖 is the color of the i-th Gaussian and 𝑎𝑎𝑖𝑖 is the opacity of the i-th Gaussian.  

∏ (1 − 𝑎𝑎𝑗𝑗)𝑖𝑖−1
𝑗𝑗=1  represents the transmittance, i.e., how much of the background is still 

visible after blending previous Gaussians. This is a front-to-back compositing method 

that ensures that closer Gaussians contribute more, while farther Gaussians are at-

tenuated (weakened in visibility/made more transparent) based on the opacity of the 

ones in the front. 

2.1.3.2 Normal Residual Loss 

𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 = ‖∆𝑛𝑛‖2  (2.7) 

Figure 2.4 Relationship between shortest axis 𝑣𝑣, predicted normal 𝑛𝑛 
and depth-derived normal 𝑛𝑛�. ℒ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the consistency loss. Figure 

from [105]. 
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Normal residual loss prevents normal residuals from deviating too much from the 

Gaussian’s shortest axis. 

2.1.3.3 Normal loss 

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = ‖𝑛𝑛�  −  𝑛𝑛�‖2 (2.8) 

Normal loss enforces consistency between the local geometry and the estimated nor-

mals. 

2.1.3.4 Sparsity Loss 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1

|𝛼𝛼|�
|𝑙𝑙𝑙𝑙𝑙𝑙 (𝛼𝛼𝑖𝑖)  +  log(1 −  𝑎𝑎𝑖𝑖)|

𝑎𝑎𝑖𝑖

 (2.9) 

Sparsity loss “pushes” opacity towards 0 (fully transparent) or 1 (fully opaque). This 

way, Gaussians that do not contribute significantly to the rendering are not affecting 

blending. 

2.1.4 Parameters 

We split the parameters of GaussianShader into three categories: trainable, non-train-

able and user-defined. 

The trainable parameters are those optimized during the training process. They 

include Gaussian shape attributes, shading attributes, normals and environment light 

representations. Gaussian shape attributes consist of position 𝑝𝑝, covariance matrix 𝛴𝛴 

– divided into a scaling matrix 𝑆𝑆 and a rotation matrix 𝑅𝑅 – and opacity 𝛼𝛼. Shading 

attributes are diffuse color𝑐𝑐𝑑𝑑, specular color 𝑠𝑠, roughness factor 𝜌𝜌, and residual color 

𝑐𝑐𝑟𝑟. Normal estimation is refined using two normal residuals 𝛥𝛥𝑛𝑛1, 𝛥𝛥𝑛𝑛2. The environ-

ment light is represented by a cube map, along with its pre-filtered mipmap levels. 

The non-trainable parameters remain fixed throughout training and evaluation. 

These include background color, which is either black or white, and camera view-

points that are used both during training and testing. Camera viewpoints share com-

mon attributes such as extrinsics (position and rotation), intrinsics (focal length and 

field of view) and ground truth images. 
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The user-defined parameters configure the model and the optimization process. 

Model parameters include the Spherical Harmonics degree, BRDF mode (which de-

termines whether the environment map is used), environment map resolution and 

the checkpoint saving. Optimization parameters include the number of training steps, 

loss weights (𝜆𝜆𝑛𝑛, 𝜆𝜆𝑠𝑠, 𝜆𝜆𝑟𝑟), densification settings (interval, opacity reset) and regulari-

zation factors (normal and lambda). 

2.1.5 Architecture and Information Flow 

2.1.5.1 Training 
During training, the input consists of dataset images and the COLMAP sparse model 

with information on cameras, images and points. When it comes to shading, an 

additional input is required, that of a lookup table in the form of a BIN file. The 

lookup table represents an integration of the specular BSDF of the GGX model, 

which is the same specular BSDF that is used in the NVDIFFREC[108] shading 

model. The scene’s initial environment map is produced via a random initialization. 

This means that no environment map is required as input. 

The output of the training phase includes the optimized 3D point cloud, the 

camera parameters (intrinsics and extrinsics) used for training, the training configu-

ration arguments and the initial point cloud. These outputs are in accordance with 

the seminal implementation of Gaussian Splats. Where GaussianShader differs is the 

inclusion of brdf_mlp. As mentioned, the initial environment map is produced via a 

random initialization. The reflectance properties of the scene are trained and refined 

over training iterations and are then aggregated into the final environment map. 

That is, an HDR file created from the cube map representing the environment light 

and stored in a latitude-longitude format. 

2.1.5.2 Rendering 
Rendering with GaussianShader assumes the existence of the brdf_mlp HDR file and 

the optimized 3D point cloud produced by the training process. The output contains 

the rendered RGB images of the scene from all camera views. Also included, for each 

view, are the alpha, depth, diffuse, normal, roughness, and specular maps. Finally, 

the 360° lighting for each Gaussian is computed and rendered. These are then com-

bined in both an HDR and a PNG file. 
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2.1.5.3 Relighting 
To perform the relighting of a scene one has to render with a different environment 

map. This process can be inferred i.e., no retraining is required. We can train the 

model once in order to acquire the optimized 3D point cloud and HDR environment 

map. Then, we can simply change the brdf_mlp.hdr file with a different environment 

map and re-render. Note, the GaussianShader implementation requires an HDR file 

with that exact name. When relighting, new RGB images are produced along with 

new specular color maps. All other maps (alpha, depth etc.) remain the same re-

gardless of which environment map is used.  
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2.2 Relightable 3D Gaussians: Realistic Point Cloud Relighting with 

BRDF Decomposition and Ray Tracing 

Relightable 3D Gaussians[109] begins by extending each Gaussian with a surface 

normal and simplified Disney BRDF parameters for albedo and roughness. It then 

constructs a Bounding‐Volume Hierarchy over all Gaussians and performs point‐

based ray tracing to determine which Gaussians are visible from each shading sam-

ple, producing per‐point visibility weights that capture shadows and occlusion. 

Lighting is decomposed into a fixed environment map providing direct incident ra-

diance and a learned indirect visibility field that models interreflections. During 

shading, the physically based rendering equation is calculated for each 3D Gaussian 

to determine its outgoing radiance, denoted as 𝑐𝑐′. Each point’s color is obtained by 

combining diffuse and specular terms from the Disney BRDF using the normal and 

roughness to filter the environment map. The indirect contribution, and all points 

are composited via alpha blending to obtain vanilla color map 𝐶𝐶, PBR color map 𝐶𝐶′, 

depth map 𝐷𝐷, normal map 𝑁𝑁, etc. Relightable 3D Gaussians, are optimized using the 

ground truth image 𝐶𝐶𝑔𝑔𝑔𝑔 and the pseudo normal map derived from 𝐷𝐷 for supervision. 

 

 

2.2.1 Illumination Model 

2.2.1.1 Incident Light 
Incident light is split between local and global components. The sampled incident 

light at a Gaussian from viewing direction 𝜔𝜔𝑖𝑖 is represented as: 

Figure 2.5 Relightable3DG Differential Rendering Pipeline. Figure from [109]. 



 

40 
 

𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖) = 𝑉𝑉(𝜔𝜔𝑖𝑖) ∙ 𝐿𝐿𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝜔𝜔𝑖𝑖) + 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜔𝜔𝑖𝑖) (2.10) 

where 𝐿𝐿𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 or 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is the globally shared direct component parameterized as 

a 16 × 32 environment map and 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 or 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the per Gaussian indirect light 

term that is parameterized as 3rd degree SH. 𝑉𝑉(𝜔𝜔𝑖𝑖) ∈ [0,1] is the visibility term.  

𝑉𝑉 = 1 if the Gaussian is fully visible to the global light source, 𝑉𝑉 = 0 if fully shadowed 

or 0 < 𝑉𝑉 < 1 if partially occluded. 𝑉𝑉 is computed via the ray tracing method that is 

further discussed in a later point. 

2.2.1.2 Rendering Equation 

𝐿𝐿𝑜𝑜(𝜔𝜔𝜊𝜊, 𝑥𝑥) = � 𝑓𝑓(𝜔𝜔𝜊𝜊,𝜔𝜔𝑖𝑖 , 𝑥𝑥)𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖 , 𝑥𝑥)(𝜔𝜔𝑖𝑖 ∙ 𝑛𝑛)𝑑𝑑𝜔𝜔𝑖𝑖
𝛺𝛺

 (2.11) 

where 𝑥𝑥 and 𝑛𝑛 are the surface point and its normal vector, 𝑓𝑓 is the BRDF (material), 

and 𝐿𝐿𝑖𝑖 and 𝐿𝐿𝑜𝑜 denote the incoming (incident) and outgoing radiance in directions 

𝜔𝜔𝑖𝑖 and 𝜔𝜔𝑜𝑜. 𝛺𝛺 signifies the hemispherical domain above the surface. 

BRDF properties – including base (albedo) 𝑏𝑏 ∈ [0,1]3 and roughness 𝑟𝑟 ∈ [0,1] – 

are assigned to each Gaussian. The model adopted is a simplified version of Disney 

BRDF[77] divided into a diffuse and a specular term given by the following equa-

tions: 

𝑓𝑓𝑑𝑑 =
𝑏𝑏
𝜋𝜋

, 𝑓𝑓𝑠𝑠(𝜔𝜔𝑜𝑜,𝜔𝜔𝑖𝑖) =
𝐷𝐷(ℎ; 𝑟𝑟) ∙ 𝐹𝐹(𝜔𝜔𝑜𝑜,ℎ) ∙ 𝐺𝐺(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜, ℎ; 𝑟𝑟)

(𝑛𝑛 ∙ 𝜔𝜔𝑖𝑖) ∙ (𝑛𝑛 ∙ 𝜔𝜔𝑜𝑜)
 (2.12) 

 

where ℎ = (𝜔𝜔𝑖𝑖+𝜔𝜔𝑜𝑜)
2

 is the half vector (i.e. the normalized vector that bisects the 

angle between the incoming light and the viewing direction), 𝐷𝐷, 𝐹𝐹, and 𝐺𝐺 are the 

normal distribution function, Frensel and Geometry terms respectively. 

2.2.1.3 Physical Based Rendering (PBR) 

The general approach is to compute the PBR color {𝑐𝑐𝑖𝑖′}𝑖𝑖=0𝑁𝑁  for each Gaussian and 

then obtain the color map 𝐶𝐶′ via alpha compositing. To evenly distribute the sam-

pling points on the hemisphere, the authors use Fibonacci sampling for 𝑁𝑁𝑠𝑠 incident 

directions. PBR color 𝑐𝑐′ is given by the equation: 
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𝑐𝑐′(𝜔𝜔𝑜𝑜) = ��𝑓𝑓𝑑𝑑 + 𝑓𝑓𝑠𝑠(𝜔𝜔𝑜𝑜,𝜔𝜔𝑖𝑖)�𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖)(𝜔𝜔𝑖𝑖 ∙ 𝑛𝑛)𝛥𝛥𝜔𝜔𝑖𝑖

𝑁𝑁𝑠𝑠

𝑖𝑖=0

 (2.13) 

and color map 𝐶𝐶′ by: 

𝐶𝐶′ = � 𝑇𝑇𝑖𝑖𝛼𝛼𝑖𝑖𝑐𝑐𝑖𝑖′
𝑖𝑖∈𝑁𝑁

 (2.14) 

2.2.2 Point-based Ray Tracing 

The authors propose a ray tracing technique based on the Bounding Volume Hier-

archy (BVH). Specifically, they construct a binary radix tree from a given set of 3D 

Gaussians, where each leaf node represents the tight bounding box of a Gaussian, 

and each internal node denotes the bounding box of its two children. The process 

of ray tracing on 3D Gaussian points can be described as follows:  

1. Traverse BVH recursively to find Gaussians along the ray. Starting from the 
root node of the binary radix tree, intersection tests are recursively per-
formed between the ray and the bounding volumes of each node’s children. 
Upon reaching a leaf node, the associated Gaussian is identified. 

2. For each Gaussian: 
a. Compute 𝑡𝑡𝑗𝑗 (parametric location on the ray where it contributes 

most). 
b. Use 𝑡𝑡𝑗𝑗 to get 𝑟𝑟𝑥𝑥, the estimated intersection point. 
c. Compute 𝑎𝑎𝑗𝑗 (opacity at 𝑟𝑟𝑥𝑥). 
d. Multiply 𝑎𝑎𝑗𝑗 into the transmittance 𝑇𝑇𝑖𝑖. 

3. Repeat for all Gaussians, progressively accumulating transmittance 𝑇𝑇𝑖𝑖. 

𝑇𝑇𝑖𝑖 = (1 − 𝑎𝑎𝑖𝑖−1)𝑇𝑇𝑖𝑖−1, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑗𝑗 − 1 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑇𝑇1 = 1 (2.15) 

4. Stop if transmittance drops below a threshold 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. 

The final value of 𝑇𝑇𝑖𝑖 is independent of the order in which Gaussians are encoun-

tered. 

2.2.2.1 Intersection Points 
Unlike polygons, Gaussians do not have a sharp boundary. This complicates the 

definition of an exact intersection. The authors approximate the intersection of a ray 
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with a 3D Gaussian as a point where the 3D Gaussian’s contribution peaks. The 

intersection point is defined as: 

𝑟𝑟𝑥𝑥 = 𝑟𝑟𝑜𝑜 + 𝑡𝑡𝑗𝑗𝑟𝑟𝑑𝑑 (2.16) 

where 𝑟𝑟𝑜𝑜 is the ray origin (camera position), 𝑟𝑟𝑑𝑑 is the ray direction (unit vector) 

and 𝑡𝑡𝑗𝑗 is a scalar representing the position along the ray where the Gaussian is most 

likely to contribute. Its computed as: 

𝑡𝑡𝑗𝑗 =
(𝜇𝜇 − 𝑟𝑟𝑜𝑜)𝑇𝑇 ∑ 𝑟𝑟𝑑𝑑

𝑟𝑟𝑑𝑑𝑇𝑇 ∑ 𝑟𝑟𝑑𝑑
 (2.17) 

2.2.2.2 Visibility Term 
The visibility term 𝑉𝑉 for incident direction 𝜔𝜔𝑖𝑖 is obtained from the computed trans-

mittance 𝑇𝑇𝑖𝑖. 𝑉𝑉(𝜔𝜔𝑖𝑖) is pre-computed across the hemispherical domain determined by 

𝑛𝑛 for each Gaussian and is subsequently integrated into the rendering equation. This 

is feasible since Relightable 3DGS solely focuses on static scenes. This pre-computa-

tion happens right after the geometry optimization training phase and right before 

the material and lighting optimization. 

2.2.3 Normal Estimation 

They start by assigning a normal attribute (vector) 𝑛𝑛 for each 3D Gaussian. 𝑛𝑛 is 

randomly initialized from the unoptimized point cloud and is optimized via back-

propagation. For every camera pose and each Gaussian in it, they compute the depth 

𝑑𝑑𝑖𝑖. Using the “over” operator to perform alpha compositing, the authors compute 

the depth and normal maps 𝐷𝐷 and 𝑁𝑁. The process is similar to that performed for 

color map calculation and is described by the following function: 

{𝐷𝐷,𝑁𝑁} = �𝑤𝑤𝑖𝑖𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖{𝑑𝑑𝑖𝑖 ,𝑛𝑛𝑖𝑖}
𝑖𝑖∈𝑁𝑁

 (2.18) 

where 𝑤𝑤𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖
∑ 𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖∈𝑁𝑁

 is the weight for each Gaussian along a viewing ray and  

𝑇𝑇𝑖𝑖 = ∏ (1 − 𝑎𝑎𝑗𝑗)𝑖𝑖−1
𝑗𝑗=1  is the transmittance of the ray up to the 𝑖𝑖-th Gaussian. 
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2.2.3.1 Normal Densification 
The core idea is to add more Gaussians in areas where the normal vectors change 

rapidly. This usually happens at edges, corners, or detailed regions. The authors 

introduce an additional criterion to the densification strategy of vanilla 3DGS, one 

that involves the gradients of normals. Specifically, they choose to densify Gaussians 

whose normal gradient exceeds a threshold 𝑇𝑇𝑛𝑛. 

2.2.4 Loss Functions 

2.2.4.1 Total losses 
The training process is divided into two stages. The loss in the first stage is given 

by: 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿1 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜆𝜆𝑛𝑛𝐿𝐿𝑛𝑛 + 𝜆𝜆𝑠𝑠,𝑛𝑛𝐿𝐿𝑠𝑠,𝑛𝑛 + 𝜆𝜆𝑂𝑂𝐿𝐿𝑂𝑂 + 𝜆𝜆𝑢𝑢𝐿𝐿𝑢𝑢 (2.19) 

where 𝜆𝜆1 = 0.8, 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.2, 𝜆𝜆𝑛𝑛 = 0.01, 𝜆𝜆𝑠𝑠,𝑛𝑛 = 0.01, 𝜆𝜆𝑂𝑂 = 0.01, 𝜆𝜆𝑢𝑢 = 0.01. 

The loss in the second stage is given by: 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿1 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜆𝜆𝑙𝑙𝐿𝐿𝑙𝑙 + 𝜆𝜆𝑠𝑠,𝑏𝑏𝐿𝐿𝑠𝑠,𝑏𝑏 + 𝜆𝜆𝑠𝑠,𝑟𝑟𝐿𝐿𝑠𝑠,𝑟𝑟 (2.20) 

where 𝜆𝜆1 = 0.8, 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.2, 𝜆𝜆𝑙𝑙 = 0.0001, 𝜆𝜆𝑠𝑠,𝑏𝑏 = 0.01, 𝜆𝜆𝑠𝑠,𝑟𝑟 = 0.01. 

Apart from the Mean Absolute Error 𝐿𝐿1 and the Structural Similarity Loss 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 

the following constraints are applied: 

2.2.4.2 Normal 

A pseudo-normal map 𝑁𝑁� is computed from the rendered depth map 𝐷𝐷 under the 

local planarity assumption. They encourage the consistency between the rendered 

normal map 𝑁𝑁 and the pseudo-normal map 𝑁𝑁� with the loss function: 

𝐿𝐿𝑛𝑛 = �𝑁𝑁 − 𝑁𝑁��
2
 (2.21) 

2.2.4.3 Depth Distribution 
Depth uncertainty causes Gaussians to be too spread out, leading to inaccurate sur-

faces. The authors introduce a depth distribution constraint to distribute Gaussians 

tightly around an object’s surface. The expected pixel depth is given by the equation 
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𝐷𝐷 = ∑ 𝑤𝑤𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖∈𝑁𝑁  while the expected squared depth by 𝐷𝐷𝑠𝑠𝑠𝑠 = ∑ 𝑤𝑤𝑖𝑖𝑑𝑑𝑖𝑖2𝑖𝑖∈𝑁𝑁 . They minimize 

the uncertainty by minimizing the following loss: 

𝐿𝐿𝑢𝑢 = 𝐷𝐷𝑠𝑠𝑠𝑠 − 𝐷𝐷2 (2.22) 

2.2.4.4 Object Mask 
In the case of an object mask the authors further constrain the optimization by a 

cross entropy loss[110]: 

𝐿𝐿𝑂𝑂 = −𝑀𝑀 log𝑂𝑂 − (1 −𝑀𝑀) log(1 − 𝑂𝑂) (2.23) 

where 𝑀𝑀 is the object mask and 𝑂𝑂 = ∑ 𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖∈𝑁𝑁  the contribution of the Gaussian 

to the rendered pixel. 

2.2.4.5 Light 
The authors apply a light regularization penalizing deviations from neutral white 

lighting (i.e. balanced light intensity across all color channels). 𝐿𝐿𝑐𝑐 represents the 

color intensity in each color channel and 1
3
∑ 𝐿𝐿𝑐𝑐𝑐𝑐  computes the average light intensity 

across all channels. 

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 = � �𝐿𝐿𝑐𝑐 −
1
3
� 𝐿𝐿𝑐𝑐

𝑐𝑐
� , 𝑐𝑐 ∈ {𝑅𝑅,𝐺𝐺,𝐵𝐵}

𝑐𝑐
 (2.24) 

2.2.4.6 Smoothness 
Moreover, the authors apply smoothness constraints 𝐿𝐿𝑠𝑠,𝑟𝑟, 𝐿𝐿𝑠𝑠,𝑛𝑛, 𝐿𝐿𝑠𝑠,𝑏𝑏 on roughness, 

normal and albedo maps respectively. For reference, the roughness constraint is de-

scribed as follows: 

𝐿𝐿𝑠𝑠,𝑟𝑟 = ‖∇𝑅𝑅‖ exp(−�∇𝐶𝐶𝑔𝑔𝑔𝑔�) (2.25) 

2.2.5 Architecture and Information Flow 

2.2.5.1 Training 
The optimization process is divided into two stages. The first stage involves the 

geometry reconstruction and the visibility term precomputation. The second stage 

addresses the material and lighting optimization. The input consists of dataset 



 

45 
 

images along with a JSON file containing information on them and camera intrin-

sics/extrinsics. Furthermore, the authors have performed a series of processing steps 

to extract depth maps, normal maps and object masks for the dataset images. They 

propose the usage of Vis-MVSNet[111] to retrieve the photometrically and geometri-

cally consistent depth maps. They use a differentiable computer vision library named 

Kornia to convert the depth maps to normal maps which are stored in Portable 

FloatMap (PFM) format. Finally, they propose the usage of NSVF[112] or IDR[113] 

for the creation of the object masks (PNG). We note that these maps and masks are 

expected from the pipeline meaning that if they are not part of the input dataset, 

training fails to complete. No environment map is supplied to the pipeline during 

training. This procedure is reserved for relighting. 

After training for 30000 iterations, the output of the first part of training includes, 

in keeping with 3DGS, the optimized 3D point cloud, the camera parameters used 

for training (intrinsics and extrinsics), the training configuration arguments and the 

initial point cloud. Furthermore, training checkpoints are saved (PTH format), the 

interval of which is specified via an argument. 

Rendering occurs during evaluation. It’s output includes ground truth, rendered 

normals and RGB images. The metrics address PSNR, SSIM, LPIPS and L1 loss. 

Finally, a “collage” of rendered image, ground truth, depth map, opacity, normal and 

pseudo-normal is constructed for a sample of views. 

The output of the second part adds to that of the first part in base color, cumu-

lative light along with it broken down into global and local components, roughness 

and visibility renders for every dataset view. Since the second part of training adds 

another 10000 to 20000 iterations depending on dataset, the further optimized point 

cloud is included along with new training checkpoints. Finally, training checkpoints 

for the PBR light are saved in intervals specified via an argument. 

2.2.5.2 Relighting 
The authors provide a relighting script that takes an input of a trained model and 

an environment map and renders the model under the new lighting. The trained 

model must have gone through both parts of training. The environment map can be 

in HDR, EXR or PNG format although I have found that a high resolution tone-

mapped PNG produces the best results. We also need to provide the script with the 
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appropriate transformation matrices. Under the config/ directory, we need to create 

a folder for each dataset. Inside it we need three JSON files: transform which concerns 

the trained model, trajectory for the camera intrinsics/extrinsics and light_transform 

for lighting. Each file contains one transformation matrix per model viewpoint (e.g., 

for a dataset with 200 images, we need 200 transformation matrices).  

When running the script, we have to specify what should be included in the 

output. We can choose among normal, roughness, diffuse, specular, lights, local and 

global lights, visibility, base color, PBR and PBR with the environment map. We can 

do this via the --capture_list flag of the script. Moreover, we can produce a video 

of the relight object via the --video flag. For the purpose of our testing, we limit the 

capture list to PBR which includes the RGB renders of the relit object. 
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2.3 Reflective Gaussian Splatting 

As the name suggests, Reflective Gaussian Splatting[114] proposes a framework for 

real-time rendering of reflective surfaces with inter-reflections in 3D space. First, it 

splats Gaussians into pixel-level maps of albedo, normals, roughness, metallicity, and 

opacity. Second, it ray traces on a lightweight, periodically extracted mesh to deter-

mine occlusion. Third, it uses a physically based deferred renderer that applies BRDF 

terms to the rendering equation via a split-sum approximation to handle both spec-

ular and diffuse components. The approximation alongside a per-Gaussian, spheri-

cal-harmonic indirect term are blended back through the splats to produce the final 

image. To further improve geometry quality, the method adopts 2D Gaussian prim-

itives, runs an initial per-Gaussian shading pass to guide convergence, and propa-

gates normals from high-metallic, low-roughness regions. 

 

 

2.3.1 2D Gaussian Primitive 

View-consistent, 2D[115] oriented, planar Gaussian disks are used as rendering prim-

itives. Each 2D Gaussian is defined by its position 𝑝𝑝, tangential vectors 𝑡𝑡𝑢𝑢 and 𝑡𝑡𝑣𝑣, 

and scaling factors (𝑠𝑠𝑢𝑢, 𝑠𝑠𝑣𝑣) that control its shape and size. Its influence is given by: 

𝐺𝐺(𝑢𝑢, 𝑣𝑣) = exp�−
𝑢𝑢2 + 𝑣𝑣2

2
�, (2.26) 

where (𝑢𝑢, 𝑣𝑣) are coordinates in the local tangent space. The ray-splat intersection 

(𝑢𝑢, 𝑣𝑣) in this space is obtained via: 

Figure 2.6 Reflective Gaussian pipeline. Figure from [114]. 
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𝑥𝑥 = (𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧, 1)𝑇𝑇 = 𝑊𝑊𝑊𝑊(𝑢𝑢, 𝑣𝑣, 1,1)𝑇𝑇, (2.27) 

where 𝐻𝐻 = �𝑠𝑠𝑢𝑢𝑡𝑡𝑢𝑢 𝑠𝑠𝑣𝑣𝑡𝑡𝑣𝑣
0 0     0 𝑝𝑝

0 1� ∈ 𝑅𝑅
4×4. 𝑥𝑥 represents the homogeneous ray passing 

through pixel (𝑥𝑥, 𝑦𝑦) and intersecting the 2D Gaussian disk at depth 𝑧𝑧. 

2.3.2 Illumination Model 

2.3.2.1 Deferred PBR 
In standard PBR, we typically apply the rendering equation at the shading stage per 

pixel, using material properties and scene lighting to evaluate how each surface point 

reflects light toward the camera. In naive Gaussian Splatting approaches, shading is 

done per primitive (i.e., directly on the Gaussians). However, this can cause instability 

during optimization (noisy gradients) because alpha blending of overlapping Gauss-

ians creates ambiguity since multiple Gaussians can contribute to the same pixel, 

making it hard to optimize individual ones when shading happens too early. 

To address this, Ref-Gaussian adopts Deferred PBR, which shifts shading after 

alpha blending. By doing so, noisy per-Gaussian gradients are turned into smooth 

per-pixel ones. It also allows shading to operate on coherent surfaces making mate-

rial estimation and light transport more physically grounded. 

Each Gaussian 𝑖𝑖 is associated with a set of material related properties like albedo 

𝜆𝜆 ∈ [0,1]3, metallic 𝑚𝑚 ∈ [0, 1], and roughness 𝑟𝑟 ∈ [0, 1]. Instead of shading each 

Gaussian independently, Ref-Gaussian first aggregates all of these per-pixel by blend-

ing them using the classic front-to-back alpha compositing rule. For each attribute 

𝑥𝑥𝑖𝑖, the pixel-level aggregated quantity 𝑋𝑋 is given by: 

𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖=1

��1 − 𝑎𝑎𝑗𝑗�
𝑖𝑖−1

𝑗𝑗=1

, (2.28) 

where 𝑋𝑋 = �

𝛬𝛬
𝑀𝑀
𝑅𝑅
𝑁𝑁

� , 𝑥𝑥𝑖𝑖 = �

𝜆𝜆𝑖𝑖
𝑚𝑚𝑖𝑖
𝑟𝑟𝑖𝑖
𝑛𝑛𝑖𝑖

�. 

This way, each pixel is assigned a composited material “signature” 𝑋𝑋 making the 

optimization more stable since the combined contribution of many Gaussians is ac-

counted for. 



 

49 
 

Having obtained the material maps, the rendering function is applied directly at 

the pixel. For the outgoing radiance 𝐿𝐿(𝜔𝜔𝜊𝜊) in direction 𝜔𝜔𝜊𝜊 the rendering function is: 

𝐿𝐿(𝜔𝜔𝑜𝑜) = � 𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖)𝑓𝑓(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)(𝜔𝜔𝑖𝑖 ∙ 𝑁𝑁)𝑑𝑑𝜔𝜔𝑖𝑖
𝛺𝛺

 (2.29) 

where 𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖) is incoming radiance from direction 𝜔𝜔𝑖𝑖 and 𝑓𝑓(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝜊𝜊) is a simplified 

version of the Disney BRDF[77] model representing the integral of reflected incident 

light over the hemisphere 𝛺𝛺. 𝑁𝑁 is the surface normal. 

2.3.2.2 BRDF 
Since BRDF consists of both diffuse and specular terms, the integral can also be 

divided into two parts: 

𝑓𝑓(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑖𝑖) = 𝑓𝑓𝑑𝑑 + 𝑓𝑓𝑠𝑠 (2.30) 

The diffuse term is computed by querying the pre-integrated environment map 

using the normal 𝑁𝑁 and multiplying with the material terms. The specular term of 

the BRDF is given by: 

𝑓𝑓𝑠𝑠(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜) =
𝐷𝐷𝐷𝐷𝐷𝐷

4(𝜔𝜔𝑜𝑜 ∙ 𝑁𝑁)(𝜔𝜔𝑖𝑖 ,𝑁𝑁)
 (2.31) 

where 𝐷𝐷, 𝐹𝐹, and 𝐺𝐺 represent the GGX normal distribution function, the Fresnel 

term, and the shadowing-masking term respectively. 

A typical – but expensive – way to solve the above integral term is Monte Carlo 

sampling. The authors propose the use of split-sum approximation which “breaks” 

the specular computation into two precomputable parts: 

𝐿𝐿𝑠𝑠(𝜔𝜔𝑜𝑜) ≈ � 𝑓𝑓𝑠𝑠(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)(𝜔𝜔𝑖𝑖 ∙ 𝑁𝑁)𝑑𝑑𝜔𝜔𝑖𝑖
𝛺𝛺

∙ � 𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖)𝐷𝐷(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)(𝜔𝜔𝑖𝑖 ∙ 𝑁𝑁)𝑑𝑑𝜔𝜔𝑖𝑖
𝛺𝛺

 (2.32) 

which simplifies into: 

𝐿𝐿𝑠𝑠(𝜔𝜔𝑜𝑜) ≈ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ∙ 𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (2.33) 

The first term depends solely on surface roughness 𝑅𝑅 and the dot product of 

normal and view direction (𝜔𝜔𝑖𝑖  · 𝑁𝑁), which accounts for the cosine falloff of incoming 
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light relative to the surface normal. This allows the results to be precomputed and 

stored in a 2D lookup texture map. 

The second term represents the integral of incident radiance over the specular 

lobe – or, how light is distributed across the environment – and can be pre-integrated 

at the beginning of each training iteration with different roughness levels. That allows 

to efficiently employ a series of cube maps to represent the environment lighting by 

performing trilinear interpolation using the reflected direction and the roughness as 

parameters. 

2.3.2.3 Gaussian Inter-Reflection 
This split-sum formulation assumes that the environment is fully visible in the re-

flected direction. In reflective scenes with complex geometry, nearby surfaces can 

occlude reflection paths, meaning the environment contribution is partially or com-

pletely blocked. This phenomenon is called inter-reflection. In traditional PBR, mod-

eling this requires expensive global illumination techniques.  

Ref-Gaussian addresses this by introducing a visibility factor 𝑉𝑉 ∈ {0,1}, which 

determines whether the reflected direction 𝑅𝑅 = 2(𝜔𝜔𝑜𝑜 ∙ 𝑁𝑁)𝑁𝑁 −𝜔𝜔𝑜𝑜 is occluded. This 

vector 𝑅𝑅 is the perfect specular reflection direction, derived from the view vector 𝜔𝜔𝑜𝑜 

and surface normal 𝛮𝛮.  

To determine visibility in this direction, Ref-Gaussian ray traces from the surface 

along 𝑅𝑅 against a dynamically extracted mesh that is created by using the Truncated 

Signed Distance Function (TSDF) fusion. To accelerate the ray tracing process for 

visibility checks, the authors employ a Bounding Volume Hierarchy (BVH). If the 

ray hits the mesh, 𝑉𝑉 = 0; otherwise, 𝑉𝑉 = 1. 

This allows the specular component to be rewritten conditionally as: 

𝐿𝐿𝑠𝑠′ (𝜔𝜔𝑜𝑜) ≈ (� 𝑓𝑓𝑠𝑠(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)(𝜔𝜔𝑖𝑖 ∙ 𝛮𝛮)𝑑𝑑𝜔𝜔𝑖𝑖

𝛺𝛺

) ∙ [𝐿𝐿𝑑𝑑𝑖𝑖𝑖𝑖 ∙ 𝑉𝑉 + 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 ∙ (1 − 𝑉𝑉)] (2.34) 

where 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑 is the environment lighting sampled in direction 𝑅𝑅, used when visi-

bility is unobstructed (𝑉𝑉 = 1). 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 approximates indirect specular light, used when 

reflection is blocked (𝑉𝑉 = 0). 

𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑 corresponds to the second term of the 𝐿𝐿𝑠𝑠(𝜔𝜔𝑜𝑜) integral. The indirect compo-

nent 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 is not computed from light bounces directly (which would be too 
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expensive). Instead, it's learned as a per-Gaussian, view-dependent radiance field, 

parameterized using spherical harmonics. Each Gaussian stores a set of coefficients 

𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 encoding how much light it emits in different directions after being hit indirectly. 

To produce a per-pixel indirect lighting estimate, the spherical harmonics values  

from all visible Gaussians are composited using the same alpha blending that governs 

Gaussian Splatting: 

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = �𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑖𝑖�(1 − 𝑎𝑎𝑗𝑗)
𝑖𝑖−1

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (2.35) 

This equation means that each Gaussian contributes to the final indirect light 

seen at a pixel in a depth-aware, front-to-back manner. Instead of explicitly modeling 

inter-Gaussian radiance transfer, the authors “gate” the environment map with bi-

nary visibility and fill in the occluded areas with a learned light field. 

In a nutshell, ray tracing is used only for binary visibility tests (on a lightweight 

mesh), and light transport is handled by learned spherical functions instead of phys-

ically simulated bounces. 

2.3.3 Normal Estimation 

The normal vector 𝑛𝑛 ∈ [0,1]3 is derived from the tangential vectors of each 2D 

Gaussian using 𝑛𝑛 = 𝑡𝑡𝑢𝑢 × 𝑡𝑡𝑣𝑣. 

2.3.4 Geometry Optimizations 

2.3.4.1 Initial Stage with per-Gaussian Shading 
When deferred shading is used from the beginning, the model aggregates material 

features first, then shades the composited surface at each pixel. While this is stable 

during rendering, it's problematic for early-stage optimization, because it smooths 

out the gradient signals that are essential for adjusting the Gaussians' positions and 

shapes. 

To address this, the authors introduce an initialization phase in which the shad-

ing is done per-Gaussian, not per-pixel. In this phase: 

• Each Gaussian computes its own outgoing radiance using its own material 
and normal properties. 

• This radiance is then alpha-blended into the image plane. 
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In this initial stage, instead of applying the rendering equation on the composite 

vector 𝑋𝑋, it is applied on each 𝑥𝑥𝑖𝑖 directly. So, instead of: 

𝑋𝑋 = �𝑥𝑥𝑖𝑖𝑎𝑎𝑖𝑖

𝑁𝑁

𝑖𝑖=1

��1 − 𝑎𝑎𝑗𝑗�
𝑖𝑖−1

𝑗𝑗=1

, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑏𝑏𝑏𝑏 𝐿𝐿 = 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋) (2.36) 

they perform: 

𝐿𝐿 = �𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥𝑖𝑖)𝑎𝑎𝑖𝑖�(1 − 𝑎𝑎𝑗𝑗)
𝑖𝑖−1

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (2.37) 

Once the geometry is reasonably established, the training transitions to deferred 

shading. 

2.3.4.2 Material-Aware Normal Propagation 
In PBR, specular highlights are highly sensitive to the surface normal. A small error 

in the normal can shift the reflection direction significantly. During early training, 

normals are unstable, particularly for smooth or reflective materials where there's no 

texture variation to help constrain the shape. Ref-Gaussian addresses this by period-

ically propagating normal information from well-estimated Gaussians to nearby 

ones—guided by their material attributes. 

Specifically, Gaussians with: 

• High metallicity (close to 1), and 
• Low roughness (close to 0) 

are observed to be more likely to produce accurate gradients. The system tem-

porarily increases the scale of these Gaussians, which causes their normals to influ-

ence a broader region of the image. 

2.3.5 Loss Functions 

The total training loss 𝐿𝐿 is: 

𝐿𝐿 = 𝐿𝐿𝑐𝑐 + 𝜆𝜆𝑛𝑛𝐿𝐿𝑛𝑛 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ (2.38) 

where 𝜆𝜆𝑛𝑛 = 0.05 and 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = 1.0. 
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2.3.5.1 Color Reconstruction Loss 
This term encourages the rendered image to match the ground truth, combining an 

L1 loss with a D-SSIM (Differentiable Structural Similarity Index): 

𝐿𝐿𝑐𝑐 = (1 − 𝜆𝜆) ∙ 𝐿𝐿1 + 𝜆𝜆 ∙ 𝐷𝐷 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (2.39) 

Here, 𝜆𝜆 = 0.2 balances pixel-wise accuracy (L1) with structural similarity (D-

SSIM), which is perceptually aligned. 

2.3.5.2 Normal Consistency Loss 
To ensure that the rendered normal map matches the geometry implied by the depth, 

they define: 

𝐿𝐿𝑛𝑛 = 1 − 𝑁𝑁�𝑇𝑇𝑁𝑁 (2.40) 

where 𝑁𝑁 is the rendered normal from the composited material map and 𝑁𝑁� is the 

ground truth or depth-derived surface normal. The loss penalizes angular deviation 

via cosine similarity. 

2.3.5.3 Edge-Aware Normal Smoothness 
This term encourages smooth normals, but only in regions without strong image 

gradients (i.e., uniform surfaces): 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ = ‖∇𝑁𝑁‖ ∙ exp (−�∇𝐶𝐶𝑔𝑔𝑔𝑔�) 

 
(2.41) 

where ∇𝑁𝑁 is the spatial gradient (change) of the normal field and ∇𝐶𝐶𝑔𝑔𝑔𝑔 is the 

gradient of the ground truth color image. 

2.3.6 Architecture and Information Flow 

2.3.6.1 Training 
Training consists of two stages. An initial stage of 18.000 steps for the per-

Gaussian rendering and a final stage of 40.000 steps for the deferred rendering. The 

final stage takes an input of only the geometry of the Gaussians. All colors and 

materials are reset before it.  



 

54 
 

The learning rates of the trainable material attributes are all set to 0.005. The 

learning rate of the environment map is set to 0.01. Normal propagation is conducted 

to those Gaussians with 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 0.02 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 ≤ 0.1. The initial roughness 

value is set to 0.1. 

The input consists of train and test views of the applicable dataset along with 

their respective transformation matrices plus, the sparse point cloud resulting from 

SfM. The output contains the optimized point cloud (saved on set intervals), renders 

of normal maps and reconstructed views along their ground truth images, “collaged” 

iterations of ground truth, render, base color map, specular map, reflection strength 

map, roughness map, rendered alpha, surface depth, rendered normal and surface 

normal. Finally, the learned environment maps are instantiated as PNG files. 

We note that the actual rendering process (i.e., the production of maps and 

images) takes place during evaluation that also results in PSNR, SSIM, LPIPS metrics 

for the trained scene. 

2.3.6.2 Relighting 
To perform relighting with Ref-Gaussian, first we have to specify the new envi-

ronment map. To do so, we place our HDR file in the ref-gaussian/out-

put/model_name/point_cloud/iteration_50000 directory and rename it as 

point_cloud.hdr. Then, we can simply re-render the views through the evaluation 

script, this time passing the --relight flag.  
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2.4 IRGS: Inter-Reflective Gaussian Splatting with 2D Gaussian Ray 

Tracing 

IRGS: Inter-Reflective Gaussian Splatting with 2D Gaussian Ray Tracing[116] uses 

inverse rendering to recover a scene’s geometry, materials, and lighting (including 

indirect bounces) from a set of images by embedding the full rendering equation 

into a Gaussian-splatting framework. It makes use of a fully differentiable 2D Gauss-

ian ray tracer that computes visibility and incident radiance on the fly, and a two-

stage Monte Carlo sampling and optimization scheme for material and lighting esti-

mation. Starting from a pretrained 2D Gaussian model, IRGS first rasterizes Gaussi-

ans into pixel-level G-buffers (depth, normals, albedo, roughness) and initializes ma-

terial parameters. It then traces secondary rays through the Gaussian field to gather 

direct lighting from an environment map and single-bounce indirect lighting via its 

ray tracer. Then, it applies a physically based BRDF to combine these terms and 

optimizes all scene and lighting parameters end-to-end using reconstruction and 

perceptual losses. This pipeline results In accurate relighting and material recovery. 

 

2.4.1 2D Gaussian Primitive 

Each 2D Gaussian is defined by a center point 𝜇𝜇 ∈ 𝑅𝑅3, an opacity parameter 𝑜𝑜 ∈ [0,1], 

two principal tangential vectors 𝑡𝑡𝑢𝑢 ∈ 𝑅𝑅3 and 𝑡𝑡𝑣𝑣 ∈ 𝑅𝑅3 – which are orthogonal to the 

disk’s normal – and a scaling vector 𝑠𝑠 = (𝑠𝑠𝑢𝑢, 𝑠𝑠𝑣𝑣) ∈ 𝑅𝑅2 that defines the elliptical spread 

along 𝑡𝑡𝑢𝑢 and 𝑡𝑡𝑣𝑣. The Gaussian disk lies in the tangent plane at 𝜇𝜇, with its spatial 

influence described via a standard anisotropic Gaussian: 

𝐺𝐺(𝑝𝑝) = exp (−
𝑢𝑢2 + 𝑣𝑣2

2
) (2.42) 

Figure 2.7 IRGS pipeline. Figure from [116]. 
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where 𝑢𝑢 = 1
𝑠𝑠𝑢𝑢

(𝑝𝑝 − 𝜇𝜇)𝑇𝑇𝑡𝑡𝑢𝑢 and 𝑣𝑣 = 1
𝑠𝑠𝑣𝑣

(𝑝𝑝 − 𝜇𝜇)𝑇𝑇𝑡𝑡𝑣𝑣. It defines the Gaussian weight of a 

point 𝑝𝑝 relative to the center 𝜇𝜇, using the local 2D basis vectors. 

2.4.2 2D Gaussian Ray Tracing 

While 3D Gaussian Splatting (3DGS) offers fast and high-quality rendering via ras-

terization, it fundamentally lacks a principled mechanism to compute indirect illu-

mination, as rasterization cannot capture secondary rays or visibility for arbitrary 

directions. A possible solution to this is ray tracing 3D Gaussians. 

The authors examine the case of 3DGRT[117]. There, the intersection of a ray 

with a 3D Gaussian is defined as the point along the ray where the Gaussian density 

reaches its maximum. This point is not necessarily where the Gaussian would con-

tribute most to the rendered image in a rasterization context, because 3DGS projects 

Gaussians onto the image plane and accumulates their influence in screen space, not 

in 3D along rays. 

This discrepancy means that applying 3DGRT on a pretrained 3DGS model – 

which was trained under the screen-space projection and blending assumptions – 

results in a misalignment between the intended influence of the splats and the actual 

light transport computed via ray tracing. The effect is a visible degradation in ren-

dering quality, as shown by lower PSNR and perceptual artifacts. 

IRGS proposes 2DGRT which operates directly on the 2D Gaussian primitives. 

These are defined in the image plane with explicit projection from the start. Because 

the geometry and radiance accumulation are already screen-space aligned, ray-splat 

intersections are unambiguous and consistent with the pretrained model. All steps 

of 2DGRT are differentiable allowing backpropagation of gradients throughout the 

ray tracing process. 

2.4.2.1 Ray/Gaussian Intersection 
To perform ray tracing, the intersection point 𝑝𝑝 between a ray and a Gaussian must 

be calculated. A ray is defined as: 

𝑟𝑟(𝜏𝜏) = 𝑟𝑟𝑜𝑜 + 𝜏𝜏𝑟𝑟𝑑𝑑 (2.43) 
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where 𝑟𝑟𝑜𝑜 is the origin, 𝑟𝑟𝑑𝑑 is the direction, and 𝜏𝜏 is the scalar distance along the 

ray. Each 2D Gaussian disk lies on a plane with normal 𝑛𝑛 = 𝑡𝑡𝑢𝑢 × 𝑡𝑡𝑣𝑣. The intersection 

𝑝𝑝 of the ray with this plane occurs at: 

𝑝𝑝 = 𝑟𝑟𝑜𝑜 + 𝜏𝜏𝑟𝑟𝑑𝑑 , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒    𝜏𝜏 =  
𝑛𝑛𝑇𝑇(𝜇𝜇 − 𝑟𝑟𝑜𝑜)

𝑛𝑛𝑇𝑇𝑟𝑟𝑑𝑑
. (2.44) 

2.4.2.2 Bounding Proxy 
Because ray/Gaussian intersection needs to be efficient (especially for many Gaussi-

ans), each Gaussian is approximated with a bounding mesh – specifically, an icosa-

hedron. 

To construct this, the authors follow 3DGRT's strategy but adapted for 2D disks. 

The key is to scale the icosahedron to fully contain the Gaussian's spatial support 

above a minimum influence threshold 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚. The vertex positions of the bounding 

mesh are given by: 

𝑣𝑣 ← �2 log(𝑜𝑜 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚⁄ )(𝑠𝑠𝑢𝑢𝑡𝑡𝑢𝑢  𝑠𝑠𝑣𝑣𝑡𝑡𝑣𝑣  𝜖𝜖1)𝑣𝑣 + 𝜇𝜇 (2.45) 

where 𝜖𝜖 denotes a small positive number. Each icosahedron mesh consists of 20 

triangular faces, resulting in a total of 20𝑁𝑁 triangles for 𝑁𝑁 2D Gaussian primitives. 

The logarithmic term ensures the boundary encloses the region of significant 

influence (i.e., where 𝐺𝐺(𝑝𝑝) ≥ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚), while the basis vectors and scaling shape the 

bounding volume to match the Gaussian’s anisotropy. These bounding meshes are 

inserted into a Bounding Volume Hierarchy (BVH) for GPU-accelerated ray tracing 

via NVIDIA OptiX. Finally, by applying the 𝑘𝑘 −buffer per-ray sorting algorithm, they 

obtain the exact ordering of intersected Gaussians for each ray. For this, 𝑘𝑘 is set to 

16. 

2.4.2.3 Accumulating Radiance via Ray Tracing 
Once the intersections between rays and the 2D Gaussians are found, the contribu-

tions are blended using standard front-to-back alpha compositing: 

(𝑐𝑐𝑟𝑟𝑡𝑡 , 𝑜𝑜𝑟𝑟𝑡𝑡) ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑟𝑟𝑜𝑜, 𝑟𝑟𝑑𝑑) (2.46) 
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providing the accumulated color and opacity along a given ray. Each intersected 

Gaussian contributes: 

𝐶𝐶 = �𝑎𝑎𝑖𝑖𝑐𝑐𝑖𝑖�(1 − 𝑎𝑎𝑗𝑗)
𝑖𝑖−1

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 (2.47) 

2.4.3 Illumination Model 

IRGS estimates geometry, material, and lighting from posed RGB images by integrat-

ing a full physically-based rendering equation into the Gaussian Splatting framework 

using differentiable 2DGRT. The method has two stages. 

2.4.3.1 Stage I: 2D Gaussian Training 
First, they train a standard 2D Gaussian splatting model to produce the geometry 

(depth and normals) and view-dependent color. RGB rendering is performed via 

alpha blending. Normalized depth and normal maps are rendered via: 

{𝐷𝐷,𝑁𝑁} = �𝑤𝑤𝑖𝑖{𝑑𝑑𝑖𝑖 ,𝑛𝑛𝑖𝑖}, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑤𝑤𝑖𝑖 =
𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖

∑ 𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑁𝑁
𝑖𝑖=1

𝑁𝑁

𝑖𝑖=1

 (2.48) 

From the rendered depth and normal maps, the authors determine the surface 

position 𝑥𝑥 and the corresponding surface normal vector 𝑛𝑛 for each pixel coordinate. 

2.4.3.2 Stage II: Inverse Rendering 
Performing shading on each Gaussian can lead to inaccurate and blurred results 

since the rendered normal map is supervised at the pixel level after rasterization. 

Instead, IRGS proposes applying the rendering equation after rasterization – at the 

pixel level with: 

𝐿𝐿𝑜𝑜(𝜔𝜔𝑜𝑜, 𝑥𝑥) = � 𝑓𝑓(𝜔𝜔𝑜𝑜,𝜔𝜔𝑖𝑖 , 𝑥𝑥)𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖 , 𝑥𝑥)(𝜔𝜔𝑖𝑖 ∙ 𝑛𝑛)𝑑𝑑𝜔𝜔𝑖𝑖

𝛺𝛺

 (2.49) 

where 𝜔𝜔𝑜𝑜 is the outgoing direction, 𝜔𝜔𝑖𝑖 is the incident/incoming direction over the 

hemisphere 𝛺𝛺 defined by the surface normal 𝑛𝑛. 𝑓𝑓 is bidirectional reflectance distri-

bution function (BRDF) and 𝐿𝐿𝑖𝑖 is the radiance of the incident light. 
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2.4.3.3 Stage II: BRDF 
The authors propose a simplified Disney BRDF model[77] which assumes dielectric 

material and is parameterized with only albedo 𝛼𝛼 and roughness 𝑟𝑟. The pixel-level 

albedo map 𝐴𝐴 and the roughness map 𝑅𝑅 are obtained via alpha blending during 

rasterization: 

{𝐴𝐴,𝑅𝑅} = �𝑤𝑤𝑖𝑖{𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖}
𝑁𝑁

𝑖𝑖=1

 (2.50) 

The BRDF is divided into a diffuse term 𝑓𝑓𝑑𝑑 = 𝛼𝛼
𝜋𝜋
 and a specular term𝑓𝑓𝑠𝑠: 

𝑓𝑓𝑠𝑠(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜 , 𝑥𝑥) =
𝐷𝐷𝐷𝐷𝐷𝐷

4(𝜔𝜔𝑖𝑖 ∙ 𝑛𝑛)(𝜔𝜔𝑜𝑜 ∙ 𝑛𝑛)
 (2.51) 

where 𝐷𝐷, 𝐹𝐹, and 𝐺𝐺 represent the normal distribution function, the Fresnel term 

and the geometry term respectively. 

2.4.3.4 Stage II: Incident Light 
The incident radiance 𝐿𝐿𝑖𝑖 at surface point 𝑥𝑥 with direction 𝜔𝜔𝑖𝑖 is split into direct and 

indirect radiance: 

𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖 , 𝑥𝑥) = 𝑉𝑉(𝜔𝜔𝑖𝑖 , 𝑥𝑥)𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑(𝜔𝜔𝑖𝑖) + 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝜔𝜔𝑖𝑖 , 𝑥𝑥) (2.52) 

where 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑(𝜔𝜔𝑖𝑖) is modeled by an environment cube map. 𝑉𝑉(𝜔𝜔𝑖𝑖 , 𝑥𝑥) and 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝜔𝜔𝑖𝑖) 

are queried using 2D Gaussian raytracing: 

(𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖(𝜔𝜔𝑖𝑖 , 𝑥𝑥), 1 − 𝑉𝑉(𝜔𝜔𝑖𝑖 , 𝑥𝑥)) ← 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥,𝜔𝜔𝑖𝑖) (2.53) 

from surface point 𝑥𝑥 in direction 𝜔𝜔𝑖𝑖, retrieving occlusion and bounced radiance. 

The RGB values used in ray tracing correspond to the view-dependent color 𝑐𝑐 from 

the first stage.  

2.4.3.5 Stage II: Rendering 
The authors evaluate the rendering equation via Monte Carlo integration over the 

hemisphere of incoming directions. To reduce variance in the Monte Carlo estimate, 

they employ stratified sampling over the hemisphere. Rather than randomly picking 
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𝑁𝑁𝑟𝑟 directions over the whole hemisphere, they partition its domain into 𝑁𝑁𝑟𝑟 equal-

area bins and sample one direction per bin. 

Each pixel corresponds to a unique surface point 𝑥𝑥. To compute outgoing radi-

ance 𝐿𝐿𝑜𝑜 for that pixel, the rendering equation must be integrated at that location. 

Therefore, 𝑁𝑁𝑟𝑟 refers to the number of sampled incoming directions used to evaluate 

the rendering equation at that pixel. So, each pixel independently uses 𝑁𝑁𝑟𝑟 samples. 

Since evaluating 2DGRT per ray is expensive, the authors cap the total number 

of rays per training iteration to 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. So, they only evaluate the rendering equation 

at:  

�
𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑁𝑁𝑟𝑟

�  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (2.54) 

The final rendering result is computed as: 

𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝 =
2𝜋𝜋
𝑁𝑁𝑟𝑟

�(𝑓𝑓𝑑𝑑 + 𝑓𝑓𝑠𝑠)𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖 , 𝑥𝑥)(𝜔𝜔𝑖𝑖 ∙ 𝑛𝑛)
𝑁𝑁𝑟𝑟

𝑖𝑖=1

 (2.55) 

2.4.3.6  Relighting 
Given a sampled incident direction, we can find the intersecting Gaussians by per-

forming 2D ray tracing. Then, IRGS aggregates albedo, roughness and normal by 

alpha blending {𝐴𝐴𝑟𝑟 ,𝑅𝑅𝑟𝑟 ,𝑁𝑁𝑟𝑟} = ∑ 𝜔𝜔𝑖𝑖(𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖 ,𝑛𝑛𝑖𝑖)𝑖𝑖  where 𝜔𝜔𝑖𝑖 = 𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖
∑ 𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑖𝑖

. These are then shaded 

using a pre-filtered environment map (avoiding the expensive Monte Carlo sam-

pling). 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 can be split into diffuse and specular terms i.e., 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐿𝐿𝑑𝑑 + 𝐿𝐿𝑠𝑠. By ap-

plying the split sum approximation to the specular term, we get 

𝐿𝐿𝑠𝑠 ≈ � 𝑓𝑓𝑠𝑠(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)(𝜔𝜔𝑖𝑖 ∙ 𝑁𝑁𝑟𝑟)𝑑𝑑𝜔𝜔𝑖𝑖

𝛺𝛺

∙ � 𝐿𝐿𝑖𝑖(𝜔𝜔𝑖𝑖)𝐷𝐷(𝜔𝜔𝑖𝑖 ,𝜔𝜔𝑜𝑜)(𝜔𝜔𝑖𝑖 ∙ 𝑁𝑁𝑟𝑟)𝑑𝑑𝜔𝜔𝑖𝑖

𝛺𝛺

 (2.56) 

The left term can be pre-integrated into a 2D lookup texture map since it only 

depends on (𝜔𝜔𝑖𝑖 ∙ 𝑁𝑁𝑟𝑟) and roughness. The left part represents the integral of incident 

radiance and can also be pre-integrated. This way, 𝐿𝐿𝑑𝑑 and 𝐿𝐿𝑠𝑠 can be obtained by a 

single query. 
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2.4.4 Loss Functions 

2.4.4.1 Stage I 

𝐿𝐿1 = 𝐿𝐿𝑐𝑐 + 𝜆𝜆𝑛𝑛𝐿𝐿𝑛𝑛 + 𝜆𝜆𝑑𝑑𝐿𝐿𝑑𝑑 + 𝜆𝜆𝑠𝑠,𝑛𝑛𝐿𝐿𝑠𝑠,𝑛𝑛 + 𝜆𝜆𝑂𝑂𝐿𝐿𝑂𝑂 (2.57) 

with 𝜆𝜆𝑛𝑛 = 0.05, 𝜆𝜆𝑑𝑑 = 1000, 𝜆𝜆𝑠𝑠,𝑛𝑛 = 0.02 and 𝜆𝜆𝑂𝑂 = 0.01. 
𝐿𝐿𝑐𝑐 is the RGB reconstruction loss, 𝐿𝐿𝑛𝑛 is the normal consistency loss and 𝐿𝐿𝑑𝑑 is the 

depth distortion loss. The authors introduce two additional loss functions. An edge 

aware smoothness loss 𝐿𝐿𝑠𝑠,𝑛𝑛 on the normal map: 

𝐿𝐿𝑠𝑠,𝑛𝑛 = ‖∇𝑁𝑁‖exp (−�∇𝐶𝐶𝑔𝑔𝑔𝑔�) (2.58) 

and a binary cross entropy loss 𝐿𝐿𝑂𝑂 using an object mask 𝑀𝑀: 

𝐿𝐿𝑂𝑂 = −𝑀𝑀 log𝑂𝑂 − (1 −𝑀𝑀) log(1 − 𝑂𝑂) (2.59) 

where 𝑂𝑂 = ∑ 𝑇𝑇𝑖𝑖𝑎𝑎𝑖𝑖𝑁𝑁
𝑖𝑖=1  is the accumulated opacity map. 

2.4.4.2 Stage II 

𝐿𝐿2 = 𝐿𝐿1 + 𝜆𝜆1
𝑝𝑝𝑝𝑝𝑝𝑝𝐿𝐿1

𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 + 𝜆𝜆𝑠𝑠,𝑎𝑎𝐿𝐿𝑠𝑠,𝑎𝑎 + 𝜆𝜆𝑠𝑠,𝑟𝑟𝐿𝐿𝑠𝑠,𝑟𝑟 (2.60) 

where 𝜆𝜆1
𝑝𝑝𝑝𝑝𝑝𝑝 = 1.0, 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 = 0.01, 𝜆𝜆𝑠𝑠,𝑎𝑎 = 2.0 and 𝜆𝜆𝑠𝑠,𝑟𝑟 = 2.0. 

𝐿𝐿1 is the training loss of the first stage and 𝐿𝐿1
𝑝𝑝𝑝𝑝𝑝𝑝 is an L1 loss used to supervise 

the final color 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

Operating under the assumption that the diffuse component of indirect illumi-

nation is approximately white-balanced, the authors introduce a white light prior to 

“push” the RGB values toward their mean. 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 is given by the equation: 

𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙ℎ𝑡𝑡 = �(𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 −
1
3
�𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑), 𝑐𝑐 ∈ {𝑅𝑅,𝐺𝐺,𝐵𝐵}
𝑐𝑐𝑐𝑐

 (2.61) 

where 𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
𝑁𝑁𝑟𝑟
∑ 𝐿𝐿(𝜔𝜔𝑖𝑖 , 𝑥𝑥)𝑁𝑁𝑟𝑟
𝑖𝑖=1  is the average incident radiance across the sam-

pled directions 𝜔𝜔𝑖𝑖, focusing on the diffuse component (excluding specular reflection). 

𝐿𝐿𝑠𝑠,𝑎𝑎 and 𝐿𝐿𝑠𝑠,𝑟𝑟 are the edge-aware smoothness regularization terms applied on the 

rendered albedo and roughness maps respectively. 
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2.4.5 Architecture and Information Flow 

The training process consists of two stages. The first stage that is responsible for the 

geometry reconstruction trains for 40.000 iterations. The seconds stage adds another 

20.000 to perform the material decomposition. During optimization, the environ-

ment map used for environmental lighting is represented as a 32 × 32 cube map. 

The rendering equation is evaluated with 𝑁𝑁𝑟𝑟 = 256 rays. At each training iteration, 

BVH is updated and 𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 218 rays are sampled. Ray tracing is terminated when 

transmittance falls below 0.03. 

IRGS receives the typical assortment of datasets as inputs (Blender, LLFF, 

COLMAP etc.). Training output consists of the regular suspects, optimized point 

cloud, visualizations of the different maps and learned environments and evaluation 

metrics. Rendering this output results in images of base color, diffuse, roughness, 

specular, visibility, normals, alpha, along with the ground truth and renders of the 

final reconstructed model with and without it’s environment map. 

2.4.5.1 Relighting 
To perform relighting, we place our EXR environment maps in irgs/assets/env_map 

directory. From there, we can simply run the evaluation scripts for relighting after 

we modify them to include the new environment map paths. Two issues; first, to 

perform this operation our dataset needs to include ground truth views for every 

environment map used. Second, we need to calculate the albedo scaling before re-

lighting. Hopefully, the authors include the appropriate script for some dataset for-

mats. 

Results are stored in output/model_name/irgs/test_rli_light/env_map_name di-

rectory. These include the ground truth images of the model with and without the 

environment map and the rendered images again, with and without the environ-

ments. Metric results are also produced by the above procedure.  
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2.5 ReCap: Better Gaussian Relighting with Cross-Environment  

Captures 

ReCap: Better Gaussian Relighting with Cross-Environment Captures[118] uses 

multiple captures of the same object under different, unknown lighting conditions to 

untangle surface albedo (material) from lighting. Given as input, 𝑘𝑘 sets of object 

appearances from unknown lighting conditions, 𝑘𝑘 learnable environment maps are 

created. It treats each capture as a separate task with its own learnable environment 

map while sharing a single set of Gaussian-based material attributes (base color, 

roughness and specular tint). The shading function is based on the split-sum micro-

facet approximation. Together with post-processing, these environment maps are tied 

to the shared material model in a joint optimization. 2D images are rasterized with 

standard Gaussian splatting and used for loss computation. The use of multiple 

lighting conditions during training helps the model separate material and illumina-

tion resulting in physically meaningful learned lighting representations, better mate-

rial estimates and more accurate relighting. 

 

 

2.5.1 Gaussian Primitive 

ReCap uses the explicit point cloud representation of 3D objects as proposed in the 

seminal paper of 3DGS[26]. 

Figure 2.8 ReCap pipeline. Figure from [118]. 
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2.5.2 Illumination Model 

When it comes to view-dependent color 𝑐𝑐(𝑣𝑣), 3DGS uses spherical harmonics. This 

representation is not well suited for relighting since it abstracts the interactions be-

tween material, lighting and geometry. ReCap proposes an alternative that factors 

out the influence of light, namely, a shading function. The authors start with the 

classic rendering equation. The outgoing radiance at Gaussian point 𝑥𝑥, viewed from 

direction 𝑣𝑣 is given by the classic rendering equation: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑣𝑣) = � 𝑓𝑓𝑟𝑟(𝑥𝑥, 𝑣𝑣, 𝑙𝑙)𝐿𝐿𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑙𝑙)(𝑛𝑛 ∙ 𝑙𝑙)𝑑𝑑𝑑𝑑
𝛺𝛺

 (2.62) 

where 𝛺𝛺 is the hemisphere above the surface, 𝑓𝑓𝑟𝑟 is the bidirectional reflectance 

distribution function (BRDF), 𝑙𝑙 is the incident light direction and 𝐿𝐿𝑖𝑖𝑖𝑖 is the incoming 

radiance. 

2.5.2.1 BRDF 
ReCap adapts an Epic Games simplification[119] that is based on the Disney 

BRDF[77]. The parameters it uses are base color 𝑏𝑏 ∈ [0,1]3, roughness 𝑟𝑟 ∈ [0,1], me-

tallic 𝑚𝑚 ∈ [0,1] and specular 𝑠𝑠 = 0.04 (constant for non-metals). It is described by: 

𝑓𝑓𝑟𝑟(𝑥𝑥, 𝑣𝑣, 𝑙𝑙) = (1 −𝑚𝑚)
𝑏𝑏
𝜋𝜋

+
𝐷𝐷(𝑟𝑟,𝑛𝑛, 𝑙𝑙, 𝑣𝑣)𝐹𝐹(𝑏𝑏,𝑚𝑚, 𝑠𝑠, 𝑙𝑙, 𝑣𝑣)𝐺𝐺(𝑟𝑟,𝑛𝑛, 𝑙𝑙, 𝑣𝑣)

4(𝑙𝑙 ∙ 𝑛𝑛)(𝑣𝑣 ∙ 𝑛𝑛)
 (2.63) 

where D, F and G are the normal distribution function, the Fresnel term and the 

geometry term respectively. 

2.5.2.2 Shading Function 
When it comes to implementing the rendering equation, it is commonly simplified 

as shading functions. By substituting Eq. (2.62) to the rendering equation (2.61) 

and applying the split sum approximation[119] we get: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜(𝑥𝑥, 𝑣𝑣) = 𝐸𝐸𝑑𝑑(𝑛𝑛)(1 −𝑚𝑚)𝑏𝑏�����������
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ 𝐸𝐸𝑠𝑠(𝑛𝑛, 𝑣𝑣)[𝐹𝐹0𝛽𝛽1(𝑟𝑟,𝑛𝑛, 𝑣𝑣) + 𝛽𝛽2(𝑟𝑟,𝑛𝑛, 𝑣𝑣)]�����������������������
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 
(2.64) 

where 𝐸𝐸𝑑𝑑 and 𝐸𝐸𝑠𝑠 are prefiltered environment maps for diffuse and specular re-

flectance. 𝐸𝐸𝑑𝑑 stores the cosine-weighted irradiance, while 𝐸𝐸𝑠𝑠 approximates specular 
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reflection by blurring the environment according to surface roughness. 𝛽𝛽1 and 𝛽𝛽2 are 

precalculated BRDF lookup tables that store precomputed scalar terms used to ap-

proximate the specular BRDF response, depending on view angle and roughness. 

𝐹𝐹0 = 𝑚𝑚𝑚𝑚 + (1 −𝑚𝑚)𝑠𝑠 is the normal incidence from Schlick’s approximation[75] of 

the Fresnel term. It is the reflection coefficient for light incoming parallel to the 

normal (i.e., perpendicular to the surface). Here it is parameterized by base color 

and metallic although the equation provided by the authors appears to be reversed1. 

For metals, 𝑚𝑚 = 1 and 𝐹𝐹0 = 𝑏𝑏. For non-metals, 𝑚𝑚 = 0 and 𝐹𝐹0 = 𝑠𝑠. 

Eq. (2.63) represents a linear blend of two different models controlled by the 

metallic parameter. Continuing with the above mentioned categorization of met-

als/non-metals, and given the authors’ calculation of the 𝐹𝐹0 normal incidence, we can 

discretize (2.63) like: 

𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑠𝑠𝑏𝑏𝛽𝛽1 + 𝐸𝐸𝑠𝑠𝛽𝛽2 
𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸𝑠𝑠𝑠𝑠𝛽𝛽1 + 𝐸𝐸𝑠𝑠𝛽𝛽2 + 𝐸𝐸𝑑𝑑𝑏𝑏 

(2.65) 

however, optimizing the metallic parameter is troublesome since there are ambi-

guities both between 𝑠𝑠 and 𝑏𝑏, and 𝐸𝐸𝑠𝑠𝛽𝛽1 and 𝐸𝐸𝑑𝑑. For that reason, the authors drop 

the metallic parameter while expanding the specular parameter: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑠𝑠𝑠𝑠𝛽𝛽1 + 𝐸𝐸𝑠𝑠𝛽𝛽2 + 𝐸𝐸𝑑𝑑𝑏𝑏 (2.66) 

where 𝑠𝑠 ∈ [0,1]3 is a vector representing the specular tint. For 𝑠𝑠 = [𝑠𝑠, 𝑠𝑠, 𝑠𝑠]𝑇𝑇, we 

get 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. For 𝑠𝑠 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑏𝑏 = 0, we get 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 

2.5.2.3 Post-shading Processing 
After shading, the resulting radiance 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 is clipped to remove out-of-range values, 

then gamma corrected to convert it from physical (linear) space into perceptual (non-

linear) space. This post-processing happens per Gaussian, before the colors are used 

in alpha blending. 

Applying gamma correction at this stage is necessary because the shading model 

is based on linear light transport. Without gamma correction, relighting quality de-

grades, even though novel view synthesis (NVS) might still look acceptable. Previous 

 
1 Note that normal incidence is more commonly found as 𝐹𝐹0 = (1 −𝑚𝑚)𝑏𝑏 + 𝑚𝑚𝑚𝑚 (i.e., 𝐹𝐹0 = 𝑠𝑠 for metals 
and 𝐹𝐹0 = 𝑏𝑏 for dielectrics)[74] or set at a constant value, typically 0.04[120]. 
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works often skipped gamma or used tone-mappers like Reinhard or ACES, but these 

introduced non-linearities that hurt optimization. ReCap uses simple clipping and 

gamma because this keeps gradients stable and training effective. 

By structuring the pipeline this way, learned maps in linear HDR, shading in 

linear space, and post-processing before compositing, ReCap ensures that external 

HDR maps can be used directly for relighting. No normalization or scaling is needed. 

This also allows the model to absorb residual lighting effects into the Gaussians 

themselves, which act as pseudo light sinks. These sinks are shaped by HDR-aware 

shading and processing, helping them approximate ambient light patterns in a way 

that is consistent across environments. 

2.5.2.4 Lighting Representation 
To represent light, ReCap adopts an image based lighting model[121]. Each environ-

ment map is represented by a 6 × 256 × 256 learnable cube map and is pre-filtered 

into a diffuse map 𝐸𝐸𝑑𝑑 and a set of specular mipmaps across different roughness levels 

𝐸𝐸𝑠𝑠. In practice, they use the approximation provided by NVDIFFRAST[122] which 

performs differentiable pre-filtering and querying of the learnable environment maps 

in every forward pass during shading. 

2.5.3 Normal Estimation 

ReCap adopt the shortest axis of the converged Gaussians as an approximation of 

the normal vectors. This method follows the observation that during training, Gauss-

ians tend to flatten and align with the object surface. 

The authors use just a depth-derived normal to constrain the approximated nor-

mal. Prior methods that use learned normals tend to overfit to specific lighting, bak-

ing specular highlights into the geometry. This leads to visually good reconstructions 

under the training light but fails under relighting. ReCap’s cross-lighting supervision 

discourages this overfitting, separating lighting effects from geometry and producing 

more accurate normals and relit highlight shapes. 

2.5.4 Loss Functions 

Apart from the standard ℒ1 reconstruction loss, ReCap makes use of the following 

loss functions. 
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2.5.4.1 Specular Tint 
The expanded range of 𝑠𝑠 in the proposed general expression of the shading function 

introduces unnatural specular colors. To avoid over-saturation of the specular tint, 

the authors propose a saturation penalty on 𝑠𝑠: 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 ∙ ‖𝑠𝑠 − 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚‖ (2.67) 

2.5.4.2 Energy Conservation 
To account for energy conservation, the authors include an extra regularizer ℒ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

to encourage: 

‖𝑠𝑠‖ + ‖𝑏𝑏‖ ≤ 1 (2.68) 

2.5.4.3 Normal Loss 
When it comes to normal calculation, ReCap makes use of a single constraint; that 

of a depth-derived normal 𝑛𝑛�. Depth images are rendered from the Gaussian opacities. 

The depth-normal consistency loss is given by: 

ℒ𝑑𝑑𝑑𝑑 = 𝜆𝜆𝑑𝑑𝑑𝑑 ∙ ‖𝑛𝑛 − 𝑛𝑛�‖2 (2.69) 

2.5.5 Architecture and Information Flow 

ReCap trains for the standard 30.000 iterations. Where it differs, however, is its 

ability to train on more than one environment maps with the authors noting that 

the more they increase the number of environment maps (up to five), the better 

results they yield on relighting performance. 

As shown in Figure 2.9, the same object position can have a different color de-

pending on viewing direction and lighting. These variations can be explained by 

multitude of material/lighting combinations forming what the authors call, the al-

bedo-lighting ambiguity. By training with more environment captures, ReCap is able 

to attribute these variations to the corresponding learnable environment achieving 

better decoupling between geometry and albedo. 
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Figure 2.9 Visualization of pixel color's dependance on viewing angle and scene 
lighting. Figure from [118]. 
 

This differentiation however poses a new challenge. That of the appropriate dataset 

format. Specifically, in order to train with ReCap, we must possess ground truth 

images of the relit objects on the different environment maps that we will use. In 

other words, we need to pre-render the different datasets with the environment maps 

of our choice and supply them as input. 

The output of ReCap includes renders of albedo, depth, diffuse, normal, reflec-

tance, roughness and specular maps for a selection of viewing angles, the learned 

base and diffuse environment maps plus, the rendered images in all viewing angles 

for every environment map. Relighting is embedded to the training procedure, in 

the sense that the training script includes this procedure. We simply have to specify 

the model path and the new environment maps for training and/or relighting.  
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CHAPTER 3          

   RESULTS AND COMPARATIVE ANALYSIS 

3.1 Experiment setup 

3.2 GaussianShader 

3.3 Relightable 3D Gaussians 

3.4 Reflective Gaussian 

3.5 IRGS 

3.6 ReCap 

3.7 Comparison 

 

3.1 Experiments setup 

In this chapter we present the quantitative and qualitative results of novel view 

synthesis and relighting tasks for each Gaussian project under examination. All ex-

periments were conducted on a single NVIDIA RTX 4080 16GB. 

3.1.1.1 Datasets 
For the datasets, we wanted to capture the performance on both synthetic and 

real objects. For synthetic, we chose drums from NeRF Synthetic[15], coffee and 

helmet from Shiny Blender[123], train from Tanks and Temples[124] and gnome 
from Stanford-Orb[125]. NeRF Synthetic included objects with complex geometries 

and non-Lambertian materials. Shiny Blender further expands our selection with 

glossy synthetic data with complex material properties. Tanks and Temples includes 
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real-world scenes with larger-scale environments. Stanford-Orb includes real-world 

objects and was created for evaluating inverse rendering tasks.  

3.1.1.2 Evaluation metrics 
The quantitative metrics used are Peak Signal-to-Noise Ratio (PSNR)[126], Struc-

tural Similarity Index Measure (SSIM)[127] and Learned Perceptual Image Patch 

Similarity (LPIPS)[128]. PSNR evaluates on a color-wise basis and is widely used to 

measure the quality of a reconstructed image. SSIM is used to measure the similari-

ties between two images with one of them being a distortion-free reference (ground 

truth). It considers changes in structural information, perceived luminance, and con-

trast. LPIPS is a perceptual metric that measures the human-perceived similarity 

between two images. Unlike PSNR and SSIM that calculate differences based on raw 

pixel values, LPIPS uses the distance between features extracted by a convolutional 

neural network (CNN) pretrained on an image classification task. For PSNR and 

SSIM, higher values are better. For LPIPS the lower the better. Furthermore, we 

include FLIP comparisons between ground truth and rendered image for Novel View 

Synthesis evaluation. This produces error map images helping us visualize the prob-

lematic regions. 

3.1.1.3 Environment maps 
Relighting was tested with five different environment maps, namely Adams Place 

Bridge[129], Courtyard[130], Shady Patch[131], Hotel Room[132] and Moonless 

Golf[133]. The incentive behind this selection was to capture a variety of lighting 

conditions like interior, exterior, night, day, shaded etc. Depending on implementa-

tion, HDR, EXR or PNG files might be necessary for the environment map represen-

tation. The website where we retrieved the maps from (referenced for each map) 

provides all of them, however, the 8k PNGs had to be scaled down to 1k. The reso-

lution we settled on for the provided map is 1024x512 pixels. 
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3.2 GaussianShader 

3.2.1 Novel View Synthesis 

Table 3.1 Quantitative results in Novel View Synthesis with GaussianShader 
Novel View Synthesis 

 PSNR↑ SSIM↑ LPIPS↓ 

drums 25.65 0.945 0.044 

coffee 24.39 0.949 0.124 

helmet 19.188 0.895 0.132 

train 20.23 0.764 0.271 

gnome 14.47 0.421 0.523 
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Figure 3.1 Qualitative results in Novel View Synthesis with GaussianShader 
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3.2.2 Relighting 

Table 3.2 Quantitative results in relighting with GaussianShader 
Relighting 

PSNR↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 19.59 16.18 19.25 14.93 21.34 

coffee 15.79 12.92 15.84 12.22 24.39 

helmet 19.18 15.44 15.51 13.96 19.18 

train 13.29 8.22 12.83 7.36 16.76 

gnome 10.10 6.02 9.93 5.036 13.45 

SSIM↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.888 0.853 0.882 0.843 0.914 

coffee 0.893 0.869 0.892 0.864 0.949 

helmet 0.895 0.860 0.851 0.856 0.895 

train 0.595 0.437 0.557 0.423 0.668 

gnome 0.379 0.288 0.356 0.273 0.444 

LPIPS↓ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.076 0.106 0.079 0.124 0.062 

coffee 0.157 0.191 0.170 0.201 0.124 

helmet 0.132 0.210 0.180 0.216 0.132 

train 0.377 0.530 0.403 0.546 0.342 

gnome 0.613 0.720 0.621 0.717 0.568 
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Figure 3.2 Qualitative results in relighting with GaussianShader 
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3.3 Relightable 3D Gaussians 

3.3.1 Novel View Synthesis 

Table 3.3 Quantitative results in Novel View Synthesis with R3DG 
Novel View Synthesis 

 PSNR↑ SSIM↑ LPIPS↓ 

drums 25.19 0.948 0.049 

coffee 30.09 0.957 0.095 

helmet 26.29 0.955 0.102 

train - - - 

gnome 40.08 0.988 0.014 

 

We note that in our setup, Relightable 3D Gaussians did not play well with the 

Tanks and Temples dataset. Specifically, due to the large images of the dataset and 

the very large number of points in the resulting from training point cloud, memory 

tends to become an issue. Despite trying different sample size for visibility calculation 

(authors propose 384, we went as far as 8 which is really low), all scenes of Tanks 

and Temples produced a CUDA Out Of Memory (OOM) error during memory allo-

cation. 
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Figure 3.3 Qualitative results in Novel View Synthesis with R3DG 
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3.3.2 Relighting 

Table 3.4 Quantitative results in relighting with R3DG 
Relighting 

PSNR↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 20.17 17.86 19.85 17.07 22.80 

coffee 10.97 13.26 11.77 14.07 17.31 

helmet 15.07 12.91 14.84 12.12 19.46 

train - - - - - 

gnome - - - - - 

SSIM↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.809 0.802 0.807 0.801 0.811 

coffee 0.755 0.766 0.753 0.797 0.807 

helmet 0.789 0.774 0.743 0.788 0.803 

train - - - - - 

gnome - - - - - 

LPIPS↓ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.183 0.192 0.187 0.195 0.176 

coffee 0.269 0.253 0.277 0.249 0.209 

helmet 0.272 0.285 0.280 0.306 0.238 

train - - - - - 

gnome - - - - - 

 

Since Tanks and Temples’ train scene failed to produce a reconstruction, we 

weren’t able to test relighting with it. Moreover, while we were able to relight the 

gnome scene, we couldn’t produce quantitative measurements for the different envi-

ronment maps. That is because evaluating relit scenes requires ground truth images 
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of the scene with that specific environment map. I.e., we needed to pre-render the 

scene with each environment map. Synthetic datasets are produced from 3D models. 

This enables us to create those pre-renders. Stanford-orb dataset, on the other hand, 

provides only the files necessary for reconstruction (images, camera files and ground 

truths). Pre-rendering with only ground truth point cloud proved unsuccessful, since 

critical geometry information is missing. Thus, we could only retrieve qualitative 

results on gnome relighting. 

 

  
Figure 3.4 Qualitative results in relighting with R3DG 
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3.4 Reflective Gaussian 

3.4.1 Novel View Synthesis 

Table 3.5 Quantitative results in Novel View Synthesis with Ref-Gaussian 
Novel View Synthesis 

 PSNR↑ SSIM↑ LPIPS↓ 

drums 26.38 0.952 0.042 

coffee 34.30 0.975 0.077 

helmet 29.80 0.965 0.060 

train 20.57 0.751 0.305 

gnome 16.02 0.571 0.505 
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Figure 3.5 Qualitative results on Novel View Synthesis with Reflective Gaussian 
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3.4.2 Relighting 

Table 3.6 Quantitative results in inferred relighting with Ref-Gaussian 
Relighting 

PSNR↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 25.44 25.01 24.89 24.71 25.39 

coffee 29.62 29.16 28.75 28.06 30.41 

helmet 23.15 21.02 21.08 20.84 22.44 

train 20.22 19.51 19.92 19.81 19.98 

gnome 15.92 15.77 15.91 15.75 15.94 

SSIM↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.947 0.943 0.942 0.941 0.948 

coffee 0.964 0.964 0.962 0.960 0.968 

helmet 0.927 0.917 0.904 0.912 0.930 

train 0.744 0.728 0.738 0.735 0.741 

gnome 0.555 0.553 0.541 0.561 0.559 

LPIPS↓ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.045 0.047 0.049 0.048 0.044 

coffee 0.087 0.088 0.092 0.091 0.084 

helmet 0.112 0.127 0.131 0.124 0.107 

train 0.311 0.321 0.317 0.316 0.312 

gnome 0.513 0.517 0.524 0.517 0.501 
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Figure 3.6 Qualitative results in relighting with Reflective Gaussian 
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3.5 IRGS 

3.5.1 Novel View Synthesis 

Table 3.7 Quantitative results in Novel View Synthesis with IRGS 
Novel View Synthesis 

 PSNR↑ SSIM↑ LPIPS↓ 

drums 27.15 0.953 0.044 

coffee 26.57 0.956 0.104 

helmet 17.75 0.904 0.132 

train 15.82 0.516 0.468 

gnome 17.11 0.610 0.488 

 



 

84 
 

  
Figure 3.7 Qualitative results in Novel View Synthesis with IRGS 
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3.5.2 Relighting 

Table 3.8 Quantitative results in inferred relighting with IRGS 
Relighting 

PSNR↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 17.85 15.80 17.71 15.17 17.76 

coffee 12.78 13.41 13.20 12.78 17.72 

helmet 14.25 11.86 14.05 12.31 14.08 

train - - - - - 

gnome - - - - - 

SSIM↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.797 0.786 0.792 0.789 0.794 

coffee 0.766 0.761 0.767 0.768 0.813 

helmet 0.785 0.752 0.729 0.786 0.769 

train - - - - - 

gnome - - - - - 

LPIPS↓ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.196 0.205 0.202 0.210 0.199 

coffee 0.259 0.265 0.259 0.284 0.220 

helmet 0.333 0.344 0.336 0.333 0.331 

train - - - - - 

gnome - - - - - 
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Figure 3.8 Qualitative results in relighting with IRGS 
 

As we can observe in Figure 3.8, drums model carries it’s background i.e., the en-
vironment map that it is rendered with. That is because IRGS failed to produce a 
clean reconstruction with a white background. Moreover, we failed to produce re-
lighting results for the real-object datasets. The reason being that IRGS expects 
ground truth images for each environment map. Both Tanks and Temples and 
Stanford Orb dataset include no pre-renders and while we tried to render them 
ourselves with Blender and the scripts from [48], we were unable to.  
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3.6 ReCap 

3.6.1 Novel View Synthesis 

Table 3.9 Quantitative results in Novel View Synthesis with ReCap 
Novel View Synthesis 

Adams Place Bridge 

 PSNR↑ SSIM↑ LPIPS↓ 

drums 29.63 0.967 0.028 

coffee 31.46 0.962 0.127 

helmet 29.49 0.963 0.069 

train - - - 

gnome - - - 

Courtyard 

 PSNR↑ SSIM↑ LPIPS↓ 

drums 26.10 0.958 0.035 

coffee 29.65 0.956 0.121 

helmet 28.49 0.956 0.078 

train - - - 

gnome - - - 

 

Although ReCap mentions that the authors had successfully trained and relit ob-
jects from the Stanford-Orb dataset, we had a hard time reproducing their results. 
The provided by the authors dataset did not include renders for this dataset under 
different environment maps (as it did for Nerf Synthetic and Shiny Blender). They 
propose the use of the LLFF dataset structure (provided by Stanford-Orb) that 
contains the sparse cross-environment alignment pairs and the COLMAP estimated 
poses for each environment map, both prerequisites for running ReCap. This for-
mat however is incompatible with the Blender dataset structure that is required by 
the implementation. Our attempt at rendering gnome with different environment 
maps using Blender also proved unsuccessful since the geometry reconstruction of 
the scene is not available in advance. The same thing applied for train scene of the 
Tanks and Temples dataset although here, we only had the COLMAP formatted 
dataset without environment information. Thus, we present our NVS and relight-
ing results with only synthetic scenes, namely, drums, coffee and helmet. 
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Figure 3.9 Qualitative results in Novel View Synthesis with ReCap 
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3.6.2 Relighting 

Table 3.10 Quantitative results in relighting with ReCap 
Relighting 

PSNR↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 26.37 24.37 24.46 23.39 27.19 

coffee 21.59 22.57 20.03 21.81 23.05 

helmet 23.18 22.06 22.16 22.58 25.51 

train - - - - - 

gnome - - - - - 

SSIM↑ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.957 0.949 0.942 0.935 0.938 

coffee 0.943 0.939 0.918 0.941 0.949 

helmet 0.946 0.934 0.875 0.943 0.927 

train - - - - - 

gnome - - - - - 

LPIPS↓ 

 
Adams Place 

Bridge 
Courtyard Shady Patch Hotel Room Moonless Golf 

drums 0.031 0.039 0.038 0.051 0.033 

coffee 0.141 0.132 0.163 0.133 0.099 

helmet 0.075 0.089 0.097 0.096 0.056 

train - - - - - 

gnome - - - - - 
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Figure 3.10 Qualitative results in relighting with ReCap 
 

As already mentioned, NVS and relighting tasks proved unsuccessful for real-world 
scenes. 
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3.7 Comparison 

Having recorded and presented both quantitative and qualitative results for each 

implementation, it’s time to see how they stack up against each other. First, we 

compile a table with their general characteristics. We include the number of training 

iterations, the median size on disk of the resulting reconstruction and relighting, the 

ability of the implementation to handle diverse scenes (synthetic, real captures), the 

ability of the implementation to relight using unknown environment maps, the re-

quirement of ground truth images for relighting (i.e., if our dataset must contain test 

views for every environment map) and finally, if the implementation is using ray 

tracing for global illumination. 

 

Table 3.11 Characteristics comparison between examined implementations. 

 
Gaussian 

Shader 
R3DG 

Reflective 

Gaussian 
IRGS ReCap 

Training  

Iterations 
30.000 40.000 58.000 60.000 30.000 

Median result 

size on disk 
1.4GB 9.4GB 1.5GB 2.8GB 603,6MB 

Scene  

Generalization 
     

Env map  

generalization 
     

Requires GT 

for relight 
×  ×   

Ray tracing ×    × 

 

Following we present quantitative and qualitative comparisons on NVS and relight-
ing among the examined implementations.  
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3.7.1 Novel View Synthesis 

Table 3.12 Quantitative comparison in Novel View Synthesis. Highlighted are the 
best and second best scores for each dataset. 

Novel View Synthesis 

PSNR↑ 

 
Gaussian 

Shader 

Relightable 

3DGS 

Reflective 

Gaussian 
IRGS ReCap 

drums 25.65 25.19 26.38 27.15 29.63 

coffee 24.39 30.09 34.30 26.57 31.46 

helmet 19.188 26.29 29.80 17.75 29.49 

train 20.23 - 20.57 15.82 - 

gnome 14.47 40.08 16.02 17.11 - 

SSIM↑ 

 
Gaussian 

Shader 

Relightable 

3DGS 

Reflective 

Gaussian 
IRGS ReCap 

drums 0.945 0.948 0.952 0.953 0.967 

coffee 0.949 0.957 0.975 0.956 0.962 

helmet 0.895 0.955 0.965 0.904 0.963 

train 0.764 - 0.751 0.516 - 

gnome 0.421 0.988 0.571 0.610 - 

LPIPS↓ 

 
Gaussian 

Shader 

Relightable 

3DGS 

Reflective 

Gaussian 
IRGS ReCap 

drums 0.044 0.049 0.042 0.044 0.028 

coffee 0.124 0.095 0.077 0.104 0.127 

helmet 0.132 0.102 0.060 0.132 0.069 

train 0.271 - 0.305 0.468 - 

gnome 0.523 0.014 0.505 0.488 - 
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Figure 3.11 Qualitative comparison in Novel View Synthesis 
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3.7.2 Relighting 

Table 3.13 Quantitative comparison in relighting drums dataset. Highlighted are 
the best and second best scores for each environment map. 

Relighting Drums 

PSNR↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
19.59 20.17 25.44 17.85 26.37 

Courtyard 16.18 17.86 25.01 15.80 24.37 

Shady Patch 19.25 19.85 24.89 17.71 24.46 

Hotel Room 14.93 17.07 24.71 15.17 23.39 

Moonless Golf 21.34 22.80 25.39 17.76 27.19 

SSIM↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.888 0.809 0.947 0.797 0.957 

Courtyard 0.853 0.802 0.943 0.786 0.949 

Shady Patch 0.882 0.807 0.942 0.792 0.942 

Hotel Room 0.843 0.801 0.941 0.789 0.935 

Moonless Golf 0.914 0.811 0.948 0.794 0.938 

LPIPS↓ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.076 0.183 0.045 0.196 0.031 

Courtyard 0.106 0.192 0.047 0.205 0.039 

Shady Patch 0.079 0.187 0.049 0.202 0.038 

Hotel Room 0.124 0.195 0.048 0.210 0.051 

Moonless Golf 0.062 0.176 0.044 0.199 0.033 
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Figure 3.12 Qualitative comparison in relighting the drums dataset 
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Table 3.14 Quantitative comparison in relighting coffee dataset. Highlighted are the 
best and second best scores for each environment map. 

Relighting Coffee 

PSNR↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
15.79 10.97 29.62 12.78 21.59 

Courtyard 12.92 13.26 29.16 13.41 22.57 

Shady Patch 15.84 11.77 28.75 13.20 20.03 

Hotel Room 12.22 14.07 28.06 12.78 21.81 

Moonless Golf 24.39 17.31 30.41 17.72 23.05 

SSIM↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.893 0.755 0.964 0.766 0.943 

Courtyard 0.869 0.766 0.964 0.761 0.939 

Shady Patch 0.892 0.753 0.962 0.767 0.918 

Hotel Room 0.864 0.797 0.960 0.768 0.941 

Moonless Golf 0.949 0.807 0.968 0.813 0.949 

LPIPS↓ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.157 0.269 0.087 0.259 0.141 

Courtyard 0.191 0.253 0.088 0.265 0.132 

Shady Patch 0.170 0.277 0.092 0.259 0.163 

Hotel Room 0.201 0.249 0.091 0.284 0.133 

Moonless Golf 0.124 0.209 0.084 0.220 0.099 
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Figure 3.13 Qualitative comparison in relighting coffee dataset 
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Table 3.15 Quantitative comparison in relighting helmet dataset. Highlighted are 
the best and second best scores for each environment map. 

Relighting Helmet 

PSNR↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
19.18 15.07 23.15 14.25 23.18 

Courtyard 15.44 12.91 21.02 11.86 22.06 

Shady Patch 15.51 14.84 21.08 14.05 22.16 

Hotel Room 13.96 12.12 20.84 12.31 22.58 

Moonless Golf 19.18 19.46 22.44 14.08 25.51 

SSIM↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.895 0.789 0.927 0.785 0.946 

Courtyard 0.860 0.774 0.917 0.752 0.934 

Shady Patch 0.851 0.743 0.904 0.729 0.875 

Hotel Room 0.856 0.788 0.912 0.786 0.943 

Moonless Golf 0.895 0.803 0.930 0.769 0.927 

LPIPS↓ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.132 0.272 0.112 0.333 0.075 

Courtyard 0.210 0.285 0.127 0.344 0.089 

Shady Patch 0.180 0.280 0.131 0.336 0.097 

Hotel Room 0.216 0.306 0.124 0.333 0.096 

Moonless Golf 0.132 0.238 0.107 0.331 0.056 
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Figure 3.14 Qualitative comparison in relighting drums dataset 
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Table 3.16 Quantitative comparison in relighting gnome dataset. Highlighted are 
the best scores for each environment map. 

Relighting Gnome 

PSNR↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
10.10 - 15.92 - - 

Courtyard 6.02 - 15.77 - - 

Shady Patch 9.93 - 15.91 - - 

Hotel Room 5.036 - 15.75 - -- 

Moonless Golf 13.45 - 15.94 -  

SSIM↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.379 - 0.555 - - 

Courtyard 0.288 - 0.553 - - 

Shady Patch 0.356 - 0.541 - - 

Hotel Room 0.273 - 0.561 - - 

Moonless Golf 0.444 - 0.559 - - 

LPIPS↓ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.613 - 0.513 - - 

Courtyard 0.720 - 0.517 - - 

Shady Patch 0.621 - 0.524 - - 

Hotel Room 0.717 - 0.517 - - 

Moonless Golf 0.568 - 0.501 - - 

  



 

101 
 

 

  

Figure 3.15 Qualitative comparison in relighting gnome dataset 
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Table 3.17 Quantitative comparison in relighting train dataset. Highlighted are the 
best scores for each environment map. 

Relighting Train 

PSNR↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
13.29 - 20.22 - - 

Courtyard 8.22 - 19.51 - - 

Shady Patch 12.83 - 19.92 - - 

Hotel Room 7.36 - 19.81 - - 

Moonless Golf 16.76 - 19.98 - - 

SSIM↑ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.595 - 0.744 - - 

Courtyard 0.437 - 0.728 - - 

Shady Patch 0.557 - 0.738 - - 

Hotel Room 0.423 - 0.735 - - 

Moonless Golf 0.668 - 0.741 - - 

LPIPS↓ 

 
Gaussian 

Shader 
R3DG Ref-Gaussian IRGS ReCap 

Adams Place 

Bridge 
0.377 - 0.311 - - 

Courtyard 0.530 - 0.321 - - 

Shady Patch 0.403 - 0.317 - - 

Hotel Room 0.546 - 0.316 - - 

Moonless Golf 0.342 - 0.312 - - 
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Figure 3.16 Qualitative comparison in relighting train dataset 



 

104 
 

 

 

 

REFERENCES 
 

[1] T. Shen, J. Gao, K. Yin, M.-Y. Liu, and S. Fidler, “Deep marching tetrahedra: a 
hybrid representation for high-resolution 3D shape synthesis,” in Proceedings of 
the 35th International Conference on Neural Information Processing Systems, in 
NIPS ’21. Red Hook, NY, USA: Curran Associates Inc., Dec. 2021, pp. 6087–6101. 

[2] E. R. Chan et al., “Efficient Geometry-aware 3D Generative Adversarial Net-
works,” Proc. IEEECVF Conf. Comput. Vis. Pattern Recognit., pp. 16123–16133, 
2022. 

[3] Z. Wang, “3D Representation Methods: A Survey,” Oct. 09, 2024, arXiv: 
arXiv:2410.06475. doi: 10.48550/arXiv.2410.06475. 

[4] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets 
for 3D Classification and Segmentation,” Apr. 12, 2017, arXiv: arXiv:1612.00593. 
doi: 10.48550/arXiv.1612.00593. 

[5] D. Cavagnino and M. Gribaudo, “Discretization of 3D models using voxel ele-
ments of different shapes,” in Proceedings of the Sixth international conference 
on Computational Aesthetics in Graphics, Visualization and Imaging, in Compu-
tational Aesthetics’10. Goslar, DEU: Eurographics Association, Jun. 2010, pp. 91–
98. 

[6] P. Schwaha, R. Heinzl, T. E. Simos, G. Psihoyios, and Ch. Tsitouras, “Marching 
Simplices,” presented at the ICNAAM 2010: International Conference of Numer-
ical Analysis and Applied Mathematics 2010, Rhodes (Greece), 2010, pp. 1651–
1654. doi: 10.1063/1.3498149. 

[7] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface 
construction algorithm,” SIGGRAPH Comput Graph, vol. 21, no. 4, pp. 163–169, 
Aug. 1987, doi: 10.1145/37402.37422. 

[8] D. Adalsteinsson and J. A. Sethian, “A Fast Level Set Method for Propagating 
Interfaces,” J Comput Phys, vol. 118, no. 2, pp. 269–277, May 1995, doi: 
10.1006/jcph.1995.1098. 

[9] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove, “DeepSDF: 
Learning Continuous Signed Distance Functions for Shape Representation,” Jan. 
16, 2019, arXiv: arXiv:1901.05103. doi: 10.48550/arXiv.1901.05103. 

[10] J. Mu, W. Qiu, A. Kortylewski, A. Yuille, N. Vasconcelos, and X. Wang, “A-
SDF: Learning Disentangled Signed Distance Functions for Articulated Shape 



 

105 
 

Representation,” Apr. 15, 2021, arXiv: arXiv:2104.07645. doi: 
10.48550/arXiv.2104.07645. 

[11] “AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation.” 
Accessed: Jul. 03, 2025. [Online]. Available: https://www.computer.org/csdl/pro-
ceedings-article/cvpr/2022/694600a306/1H1lTkhvKyQ 

[12] X.-Y. Zheng, Y. Liu, P.-S. Wang, and X. Tong, “SDF-StyleGAN: Implicit SDF-
Based StyleGAN for 3D Shape Generation,” Jun. 24, 2022, arXiv: 
arXiv:2206.12055. doi: 10.48550/arXiv.2206.12055. 

[13] “Locally Attentional SDF Diffusion for Controllable 3D Shape Generation | 
ACM Transactions on Graphics.” Accessed: Jul. 03, 2025. [Online]. Available: 
https://dl.acm.org/doi/10.1145/3592103 

[14] H. Jun and A. Nichol, “Shap-E: Generating Conditional 3D Implicit Func-
tions,” May 03, 2023, arXiv: arXiv:2305.02463. doi: 
10.48550/arXiv.2305.02463. 

[15] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and 
R. Ng, “NeRF: representing scenes as neural radiance fields for view synthesis,” 
Commun ACM, vol. 65, no. 1, pp. 99–106, Dec. 2021, doi: 10.1145/3503250. 

[16] L. Zhou, G. Wu, Y. Zuo, X. Chen, and H. Hu, “A Comprehensive Review of 
Vision-Based 3D Reconstruction Methods,” Sensors, vol. 24, no. 7, Art. no. 7, Jan. 
2024, doi: 10.3390/s24072314. 

[17] A. Flisch et al., “Industrial Computed Tomography in Reverse Engineering 
Application.” Accessed: Jul. 05, 2025. [Online]. Available: https://www.re-
searchgate.net/publication/200018530_Industrial_Computed_Tomogra-
phy_in_Reverse_Engineering_Application 

[18] C. Rocchini, P. Cignoni, C. Montani, P. Pingi, and R. Scopigno, “A low cost 3D 
scanner based on structured light,” Comput. Graph. Forum, vol. 20, no. 3, pp. 
299–308, Sep. 2001, doi: 10.1111/1467-8659.00522. 

[19] J. Park, H. Kim, T. Yu-Wing Tai, M. S. Brown, and I. Kweon, “High quality 
depth map upsampling for 3D-TOF cameras: 2011 IEEE International Confer-
ence on Computer Vision, ICCV 2011,” 2011 Int. Conf. Comput. Vis. ICCV 2011, 
pp. 1623–1630, 2011, doi: 10.1109/ICCV.2011.6126423. 

[20] B. Schwarz, “Mapping the world in 3D,” Nat. Photonics, vol. 4, no. 7, pp. 
429–430, Jul. 2010, doi: 10.1038/nphoton.2010.148. 

[21] K. Kraus and N. Pfeifer, “Determination of terrain models in wooded areas 
with airborne laser scanner data,” ISPRS J. Photogramm. Remote Sens., vol. 53, 
no. 4, pp. 193–203, Aug. 1998, doi: 10.1016/S0924-2716(98)00009-4. 

[22] N. Matthews, X. Meng, P. Xu, and N. Qian, “A physiological theory of depth 
perception from vertical disparity,” Vision Res., vol. 43, no. 1, pp. 85–99, Jan. 
2003, doi: 10.1016/S0042-6989(02)00401-7. 

[23] S. K. Karmacharya, N. Ruther, U. Shrestha, and M. B. Bishwakarma, “Eval-
uating the Structure from Motion Technique for Measurement of Bed Morphol-
ogy in Physical Model Studies,” Water, vol. 13, no. 7, Art. no. 7, Jan. 2021, doi: 
10.3390/w13070998. 

[24] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A Comparison 
and Evaluation of Multi-View Stereo Reconstruction Algorithms,” in 2006 IEEE 



 

106 
 

Computer Society Conference on Computer Vision and Pattern Recognition 
(CVPR’06), Jun. 2006, pp. 519–528. doi: 10.1109/CVPR.2006.19. 

[25] Y. Huang, W. Zheng, Y. Zhang, J. Zhou, and J. Lu, “Tri-Perspective View for 
Vision-Based 3D Semantic Occupancy Prediction,” Mar. 02, 2023, arXiv: 
arXiv:2302.07817. doi: 10.48550/arXiv.2302.07817. 

[26] B. Kerbl, G. Kopanas, T. Leimkuehler, and G. Drettakis, “3D Gaussian Splat-
ting for Real-Time Radiance Field Rendering,” ACM Trans Graph, vol. 42, no. 4, 
p. 139:1-139:14, Jul. 2023, doi: 10.1145/3592433. 

[27] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant Neural Graphics Prim-
itives with a Multiresolution Hash Encoding,” ACM Trans. Graph., vol. 41, no. 4, 
pp. 1–15, Jul. 2022, doi: 10.1145/3528223.3530127. 

[28] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-NeRF: 
Neural Radiance Fields for Dynamic Scenes,” in 2021 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), Jun. 2021, pp. 10313–10322. 
doi: 10.1109/CVPR46437.2021.01018. 

[29] K. Park et al., “Nerfies: Deformable Neural Radiance Fields,” in 2021 
IEEE/CVF International Conference on Computer Vision (ICCV), Oct. 2021, pp. 
5845–5854. doi: 10.1109/ICCV48922.2021.00581. 

[30] S. Izadi et al., “KinectFusion: real-time 3D reconstruction and interaction us-
ing a moving depth camera,” in Proceedings of the 24th annual ACM symposium 
on User interface software and technology, in UIST ’11. New York, NY, USA: 
Association for Computing Machinery, Oct. 2011, pp. 559–568. doi: 
10.1145/2047196.2047270. 

[31] M. Zwicker, H. Pfister, J. Van Baar, and M. Gross, “EWA volume splatting,” 
in Proceedings Visualization, 2001. VIS ’01., San Diego, CA, USA: IEEE, 2001, 
pp. 29–538. doi: 10.1109/VISUAL.2001.964490. 

[32] G. Chen and W. Wang, “A Survey on 3D Gaussian Splatting,” Mar. 07, 2025, 
arXiv: arXiv:2401.03890. doi: 10.48550/arXiv.2401.03890. 

[33] J. Li et al., “DNGaussian: Optimizing Sparse-View 3D Gaussian Radiance 
Fields with Global-Local Depth Normalization,” Mar. 24, 2024, arXiv: 
arXiv:2403.06912. doi: 10.48550/arXiv.2403.06912. 

[34] Y. Chen et al., “MVSplat: Efficient 3D Gaussian Splatting from Sparse Multi-
View Images,” vol. 15079, 2025, pp. 370–386. doi: 10.1007/978-3-031-72664-
4_21. 

[35] D. Charatan, S. Li, A. Tagliasacchi, and V. Sitzmann, “pixelSplat: 3D Gaussian 
Splats from Image Pairs for Scalable Generalizable 3D Reconstruction,” Apr. 04, 
2024, arXiv: arXiv:2312.12337. doi: 10.48550/arXiv.2312.12337. 

[36] S. Szymanowicz, C. Rupprecht, and A. Vedaldi, “Splatter Image: Ultra-Fast 
Single-View 3D Reconstruction,” Apr. 16, 2024, arXiv: arXiv:2312.13150. doi: 
10.48550/arXiv.2312.13150. 

[37] Z. Fan, K. Wang, K. Wen, Z. Zhu, D. Xu, and Z. Wang, “LightGaussian: 
Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS,” Nov. 
12, 2024, arXiv: arXiv:2311.17245. doi: 10.48550/arXiv.2311.17245. 

[38] Z. Yu, A. Chen, B. Huang, T. Sattler, and A. Geiger, “Mip-Splatting: Alias-
Free 3D Gaussian Splatting,” in 2024 IEEE/CVF Conference on Computer Vision 



 

107 
 

and Pattern Recognition (CVPR), Jun. 2024, pp. 19447–19456. doi: 
10.1109/CVPR52733.2024.01839. 

[39] Z. Yang et al., “Spec-Gaussian: anisotropic view-dependent appearance for 3D 
Gaussian splatting,” in Proceedings of the 38th International Conference on Neu-
ral Information Processing Systems, in NIPS ’24, vol. 37. Red Hook, NY, USA: 
Curran Associates Inc., Jun. 2025, pp. 61192–61216. 

[40] Z. Liang, Q. Zhang, W. Hu, L. Zhu, Y. Feng, and K. Jia, “Analytic-Splatting: 
Anti-Aliased 3D Gaussian Splatting via Analytic Integration,” in Computer Vision 
– ECCV 2024, A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and G. 
Varol, Eds., Cham: Springer Nature Switzerland, 2025, pp. 281–297. doi: 
10.1007/978-3-031-72643-9_17. 

[41] “StopThePop: Sorted Gaussian Splatting for View-Consistent Real-time Ren-
dering | ACM Transactions on Graphics.” Accessed: Jul. 05, 2025. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/3658187 

[42] Y. Fu, X. Wang, S. Liu, A. Kulkarni, J. Kautz, and A. A. Efros, “COLMAP-
Free 3D Gaussian Splatting,” in 2024 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR), Jun. 2024, pp. 20796–20805. doi: 
10.1109/CVPR52733.2024.01965. 

[43] J. Jung, J. Han, H. An, J. Kang, S. Park, and S. Kim, “Relaxing Accurate Ini-
tialization Constraint for 3D Gaussian Splatting,” May 28, 2024, arXiv: 
arXiv:2403.09413. doi: 10.48550/arXiv.2403.09413. 

[44] M. Yu, T. Lu, L. Xu, L. Jiang, Y. Xiangli, and B. Dai, “GSDF: 3DGS Meets 
SDF for Improved Neural Rendering and Reconstruction,” Adv. Neural Inf. Pro-
cess. Syst., vol. 37, pp. 129507–129530, Dec. 2024. 

[45] J. Zhang, F. Zhan, M. Xu, S. Lu, and E. Xing, “FreGS: 3D Gaussian Splatting 
with Progressive Frequency Regularization,” presented at the 2024 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer 
Society, Jun. 2024, pp. 21424–21433. doi: 10.1109/CVPR52733.2024.02024. 

[46] L. Huang, J. Bai, J. Guo, and Y. Guo, “GS++: Error Analyzing and Optimal 
Gaussian Splatting,” Feb. 01, 2024, arXiv: arXiv:2402.00752. doi: 
10.48550/arXiv.2402.00752. 

[47] J.-C. Shi, M. Wang, H.-B. Duan, and S.-H. Guan, “Language Embedded 3D 
Gaussians for Open-Vocabulary Scene Understanding,” Nov. 30, 2023, arXiv: 
arXiv:2311.18482. doi: 10.48550/arXiv.2311.18482. 

[48] “LangSplat: 3D Language Gaussian Splatting.” Accessed: Jul. 05, 2025. 
[Online]. Available: https://www.computer.org/csdl/proceedings-arti-
cle/cvpr/2024/530000u051/20hLO2hrcR2 

[49] X. Zuo, P. Samangouei, Y. Zhou, Y. Di, and M. Li, “FMGS: Foundation Model 
Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding,” Int. J. 
Comput. Vis., vol. 133, no. 2, pp. 611–627, Feb. 2025, doi: 10.1007/s11263-024-
02183-8. 

[50] S. Zhou et al., “Feature 3DGS: Supercharging 3D Gaussian Splatting to Enable 
Distilled Feature Fields,” in 2024 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), Jun. 2024, pp. 21676–21685. doi: 
10.1109/CVPR52733.2024.02048. 



 

108 
 

[51] T. Lu et al., “Scaffold-GS: Structured 3D Gaussians for View-Adaptive Ren-
dering,” in 2024 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), Jun. 2024, pp. 20654–20664. doi: 
10.1109/CVPR52733.2024.01952. 

[52] “Relightable Gaussian Codec Avatars.” Accessed: Jul. 05, 2025. [Online]. Avail-
able: https://www.computer.org/csdl/proceedings-arti-
cle/cvpr/2024/530000a130/20hRV5btKXm 

[53] T. Zhang, K. Huang, W. Zhi, and M. Johnson-Roberson, “DarkGS: Learning 
Neural Illumination and 3D Gaussians Relighting for Robotic Exploration in the 
Dark,” in 2024 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), Oct. 2024, pp. 12864–12871. doi: 
10.1109/IROS58592.2024.10802684. 

[54] N. Moenne-Loccoz et al., “3D Gaussian Ray Tracing: Fast Tracing of Particle 
Scenes,” Oct. 10, 2024, arXiv: arXiv:2407.07090. doi: 
10.48550/arXiv.2407.07090. 

[55] A. Mai et al., “EVER: Exact Volumetric Ellipsoid Rendering for Real-time 
View Synthesis,” Oct. 29, 2024, arXiv: arXiv:2410.01804. doi: 
10.48550/arXiv.2410.01804. 

[56] R. L. Cook, “Shade trees,” SIGGRAPH Comput Graph, vol. 18, no. 3, pp. 223–
231, Jan. 1984, doi: 10.1145/964965.808602. 

[57] C. Schlick, “A Survey of Shading and Reflectance Models,” Comput. Graph. 
Forum, vol. 13, no. 2, pp. 121–131, 1994, doi: 10.1111/1467-8659.1320121. 

[58] M. Deering, S. Winner, B. Schediwy, C. Duffy, and N. Hunt, “The triangle 
processor and normal vector shader: a VLSI system for high performance 
graphics,” SIGGRAPH Comput Graph, vol. 22, no. 4, pp. 21–30, Jun. 1988, doi: 
10.1145/378456.378468. 

[59] T. Saito and T. Takahashi, “Comprehensible rendering of 3-D shapes,” SIG-
GRAPH Comput Graph, vol. 24, no. 4, pp. 197–206, Sep. 1990, doi: 
10.1145/97880.97901. 

[60] O. Olsson, M. Billeter, and U. Assarsson, “Clustered Deferred and Forward 
Shading,” High Perform. Graph., pp. 1–10, 2012. 

[61] “Deferred lighting approaches | Real-Time Rendering.” Accessed: Jun. 22, 
2025. [Online]. Available: https://www.realtimerendering.com/blog/deferred-
lighting-approaches/ 

[62] A. De Pereyra, “MLAA: Efficiently Moving Antialiasing from the GPU to the 
CPU.” Accessed: Jun. 22, 2025. [Online]. Available: https://gamedev.net/tutori-
als/programming/graphics/mlaa-efficiently-moving-antialiasing-from-the-gpu-to-
the-cpu-r2809 

[63] T. Lottes, “Fast Approximate Anti-Aliasing (FXAA)”. 
[64] R. Gao and Y. Qi, “A Brief Review on Differentiable Rendering: Recent Ad-

vances and Challenges,” Electronics, vol. 13, no. 17, Art. no. 17, Jan. 2024, doi: 
10.3390/electronics13173546. 

[65] J. T. Kajiya, “The rendering equation,” SIGGRAPH Comput Graph, vol. 20, 
no. 4, pp. 143–150, Aug. 1986, doi: 10.1145/15886.15902. 



 

109 
 

[66] S. J. Koppal, “Lambertian Reflectance,” in Computer Vision, Springer, Cham, 
2021, pp. 729–731. doi: 10.1007/978-3-030-63416-2_534. 

[67] B. T. Phong, “Illumination for computer generated pictures,” Commun ACM, 
vol. 18, no. 6, pp. 311–317, Jun. 1975, doi: 10.1145/360825.360839. 

[68] R. L. Cook and K. E. Torrance, “A Reflectance Model for Computer Graphics,” 
ACM Trans Graph, vol. 1, no. 1, pp. 7–24, Jan. 1982, doi: 10.1145/357290.357293. 

[69] S. Saikia, “Deriving Lambertian BRDF from first principles.” Accessed: Jun. 
01, 2025. [Online]. Available: https://sa-
kibsaikia.github.io/graphics/2019/09/10/Deriving-Lambertian-BRDF-From-First-
Principles.html 

[70] J. F. Blinn, “Models of light reflection for computer synthesized pictures,” 
SIGGRAPH Comput Graph, vol. 11, no. 2, pp. 192–198, Jul. 1977, doi: 
10.1145/965141.563893. 

[71] M. Ashikhmin and P. Shirley, “An Anisotropic Phong BRDF Model,” Re-
searchGate, Aug. 2000, Accessed: Jun. 02, 2025. [Online]. Available: 
https://www.researchgate.net/publication/2523875_An_aniso-
tropic_phong_BRDF_model 

[72] J. Lawrence, “Importance Sampling of the Phong Reflectance Model,” 2008. 
[73] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet Models for 

Refraction through Rough Surfaces”. 
[74] J. Boksansky, “Crash Course in BRDF Implementation”. 
[75] C. Schlick, “An Inexpensive BRDF Model for Physically-based Rendering,” 

Comput. Graph. Forum, vol. 13, no. 3, pp. 233–246, 1994, doi: 10.1111/1467-
8659.1330233. 

[76] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet Models for 
Refraction through Rough Surfaces”. 

[77] B. Burley, “Physically Based Shading at Disney”. 
[78] B. T. Phong, “Illumination for Computer Generated Pictures,” vol. 18, no. 6, 

1975. 
[79] F. L. Pedrotti and L. S. Pedrotti, Introduction to optics. Englewood Cliffs, N.J. : 

Prentice Hall, 1993. Accessed: Jun. 02, 2025. [Online]. Available: http://ar-
chive.org/details/introductiontoop00pedr 

[80] M. F. Tappen, “Image Decomposition: Traditional Approaches,” in Computer 
Vision, Springer, Cham, 2021, pp. 605–607. doi: 10.1007/978-3-030-63416-
2_549. 

[81] D. Ulucan, O. Ulucan, and M. Ebner, “Challenges and Applications of Intrinsic 
Image Decomposition: A Short Review,” SN Comput. Sci., vol. 6, no. 2, p. 125, 
Jan. 2025, doi: 10.1007/s42979-025-03659-1. 

[82] D. Frerichs, A. Vidler, and C. Gatzidis, “A survey on object deformation and 
decomposition in computer graphics,” Comput. Graph., vol. 52, pp. 18–32, Nov. 
2015, doi: 10.1016/j.cag.2015.06.004. 

[83] D. Ulucan, O. Ulucan, and M. Ebner, “IID-NORD: A Comprehensive Intrinsic 
Image Decomposition Dataset,” in 2022 IEEE International Conference on Image 
Processing (ICIP), Bordeaux, France: IEEE, Oct. 2022, pp. 2831–2835. doi: 
10.1109/ICIP46576.2022.9897456. 



 

110 
 

[84] E. H. Land, “The Retinex,” Am. Sci., vol. 52, no. 2, pp. 247–264, 1964. 
[85] X. Xing, K. Groh, S. Karaoglu, and T. Gevers, “Intrinsic Image Decomposition 

Using Point Cloud Representation,” Mar. 28, 2024, arXiv: arXiv:2307.10924. doi: 
10.48550/arXiv.2307.10924. 

[86] C. Careaga and Y. Aksoy, “Intrinsic Image Decomposition via Ordinal Shad-
ing,” ACM Trans Graph, vol. 43, no. 1, p. 12:1-12:24, Nov. 2023, doi: 
10.1145/3630750. 

[87] P. Dutré, K. Bala, and P. Bekaert, Advanced global illumination, 2nd ed. 
Wellesley, Mass: AK Peters, 2006. 

[88] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the 
interaction of light between diffuse surfaces,” SIGGRAPH Comput Graph, vol. 18, 
no. 3, pp. 213–222, Jan. 1984, doi: 10.1145/964965.808601. 

[89] H. W. Jensen and N. J. Christensen, “Photon maps in bidirectional Monte Carlo 
ray tracing of complex objects,” Comput. Graph., vol. 19, no. 2, pp. 215–224, 
Mar. 1995, doi: 10.1016/0097-8493(94)00145-O. 

[90] S. E. Chen, H. E. Rushmeier, G. Miller, and D. Turner, “A progressive multi-
pass method for global illumination,” SIGGRAPH Comput Graph, vol. 25, no. 4, 
pp. 165–174, Jul. 1991, doi: 10.1145/127719.122737. 

[91] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for real-
time rendering in dynamic, low-frequency lighting environments,” ACM Trans 
Graph, vol. 21, no. 3, pp. 527–536, Jul. 2002, doi: 10.1145/566654.566612. 

[92] G. Bishop, H. Fuchs, L. McMillan, and E. J. S. Zagier, “Frameless rendering: 
double buffering considered harmful,” in Proceedings of the 21st annual confer-
ence on Computer graphics and interactive techniques, in SIGGRAPH ’94. New 
York, NY, USA: Association for Computing Machinery, Jul. 1994, pp. 175–176. 
doi: 10.1145/192161.192195. 

[93] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen, “The lumigraph,” in 
Proceedings of the 23rd annual conference on Computer graphics and interactive 
techniques, in SIGGRAPH ’96. New York, NY, USA: Association for Computing 
Machinery, Aug. 1996, pp. 43–54. doi: 10.1145/237170.237200. 

[94] M. H. Kalos and P. A. Whitlock, Monte Carlo methods. New York: J. Wiley & 
Sons, 1986. 

[95] H. Ren, H. Qiu, F. He, and K. Leng, “A Survey on Image-Based Approaches 
of Synthesizing Objects,” in 2016 International Conference on Virtual Reality and 
Visualization (ICVRV), Sep. 2016, pp. 264–269. doi: 10.1109/ICVRV.2016.50. 

[96] R. Green, “Spherical Harmonic Lighting: The Gritty Details”. 
[97] “An improved illumination model for shaded display | Communications of 

the ACM.” Accessed: Jul. 06, 2025. [Online]. Available: 
https://dl.acm.org/doi/10.1145/358876.358882 

[98] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” SIGGRAPH 
Comput Graph, vol. 18, no. 3, pp. 137–145, Jan. 1984, doi: 
10.1145/964965.808590. 

[99] A. Rath, P. Grittmann, S. Herholz, P. Weier, and P. Slusallek, “EARS: efficiency-
aware russian roulette and splitting,” ACM Trans Graph, vol. 41, no. 4, p. 81:1-
81:14, Jul. 2022, doi: 10.1145/3528223.3530168. 



 

111 
 

[100] T. Kloek and H. K. van Dijk, “Bayesian Estimates of Equation System Param-
eters: An Application of Integration by Monte Carlo,” Econometrica, vol. 46, no. 
1, pp. 1–19, 1978, doi: 10.2307/1913641. 

[101] M. D. Shields, K. Teferra, A. Hapij, and R. P. Daddazio, “Refined Stratified 
Sampling for efficient Monte Carlo based uncertainty quantification,” Reliab. Eng. 
Syst. Saf., vol. 142, pp. 310–325, Oct. 2015, doi: 10.1016/j.ress.2015.05.023. 

[102] D. Meister, S. Ogaki, C. Benthin, M. J. Doyle, M. Guthe, and J. Bittner, “A 
Survey on Bounding Volume Hierarchies for Ray Tracing,” 2021, Accessed: Jul. 
06, 2025. [Online]. Available: https://doi.org/10.1111/cgf.142662 

[103] Q. P. Chen, B. Xue, and J. I. Siepmann, “Using the k-d Tree Data Structure to 
Accelerate Monte Carlo Simulations,” J. Chem. Theory Comput., vol. 13, no. 4, 
pp. 1556–1565, Apr. 2017, doi: 10.1021/acs.jctc.6b01222. 

[104] P. Debevec, “Rendering synthetic objects into real scenes: bridging traditional 
and image-based graphics with global illumination and high dynamic range pho-
tography,” in Proceedings of the 25th annual conference on Computer graphics 
and interactive techniques, in SIGGRAPH ’98. New York, NY, USA: Association 
for Computing Machinery, Jul. 1998, pp. 189–198. doi: 10.1145/280814.280864. 

[105] Y. Jiang et al., “GaussianShader: 3D Gaussian Splatting with Shading Func-
tions for Reflective Surfaces,” in 2024 IEEE/CVF Conference on Computer Vision 
and Pattern Recognition (CVPR), Seattle, WA, USA: IEEE, Jun. 2024, pp. 5322–
5332. doi: 10.1109/CVPR52733.2024.00509. 

[106] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th annual 
conference on Computer graphics and interactive techniques, in SIGGRAPH ’86. 
New York, NY, USA: Association for Computing Machinery, Aug. 1986, pp. 143–
150. doi: 10.1145/15922.15902. 

[107] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for 
refraction through rough surfaces,” in Proceedings of the 18th Eurographics con-
ference on Rendering Techniques, in EGSR’07. Goslar, DEU: Eurographics Asso-
ciation, Jun. 2007, pp. 195–206. 

[108] J. Munkberg et al., “Extracting Triangular 3D Models, Materials, and Lighting 
From Images,” Apr. 11, 2023, arXiv: arXiv:2111.12503. doi: 
10.48550/arXiv.2111.12503. 

[109] J. Gao et al., “Relightable 3D Gaussians: Realistic Point Cloud Relighting with 
BRDF Decomposition and Ray Tracing,” in Computer Vision – ECCV 2024, vol. 
15103, A. Leonardis, E. Ricci, S. Roth, O. Russakovsky, T. Sattler, and G. Varol, 
Eds., in Lecture Notes in Computer Science, vol. 15103. , Cham: Springer Nature 
Switzerland, 2025, pp. 73–89. doi: 10.1007/978-3-031-72995-9_5. 

[110] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang, “NeuS: learn-
ing neural implicit surfaces by volume rendering for multi-view reconstruction,” 
in Proceedings of the 35th International Conference on Neural Information Pro-
cessing Systems, in NIPS ’21. Red Hook, NY, USA: Curran Associates Inc., Dec. 
2021, pp. 27171–27183. 

[111] J. Zhang, Y. Yao, S. Li, Z. Luo, and T. Fang, “Visibility-aware Multi-view 
Stereo Network,” Aug. 19, 2020, arXiv: arXiv:2008.07928. doi: 
10.48550/arXiv.2008.07928. 



 

112 
 

[112] L. Liu, J. Gu, K. Z. Lin, T.-S. Chua, and C. Theobalt, “Neural sparse voxel 
fields,” in Proceedings of the 34th International Conference on Neural Infor-
mation Processing Systems, in NIPS ’20. Red Hook, NY, USA: Curran Associates 
Inc., Dec. 2020, pp. 15651–15663. 

[113] L. Yariv et al., “Multiview neural surface reconstruction by disentangling ge-
ometry and appearance,” in Proceedings of the 34th International Conference on 
Neural Information Processing Systems, in NIPS ’20. Red Hook, NY, USA: Curran 
Associates Inc., Dec. 2020, pp. 2492–2502. 

[114] Y. Yao, Z. Zeng, C. Gu, X. Zhu, and L. Zhang, “Reflective Gaussian Splatting,” 
Feb. 03, 2025, arXiv: arXiv:2412.19282. doi: 10.48550/arXiv.2412.19282. 

[115] B. Huang, Z. Yu, A. Chen, A. Geiger, and S. Gao, “2D Gaussian Splatting for 
Geometrically Accurate Radiance Fields,” in Special Interest Group on Computer 
Graphics and Interactive Techniques Conference Conference Papers ’24, Denver 
CO USA: ACM, Jul. 2024, pp. 1–11. doi: 10.1145/3641519.3657428. 

[116] C. Gu, X. Wei, Z. Zeng, Y. Yao, and L. Zhang, “IRGS: Inter-Reflective Gaussian 
Splatting with 2D Gaussian Ray Tracing,” Mar. 24, 2025, arXiv: 
arXiv:2412.15867. doi: 10.48550/arXiv.2412.15867. 

[117] N. Moenne-Loccoz et al., “3D Gaussian Ray Tracing: Fast Tracing of Particle 
Scenes,” Oct. 10, 2024, arXiv: arXiv:2407.07090. doi: 
10.48550/arXiv.2407.07090. 

[118] J. Li, Z. Wu, E. Zamfir, and R. Timofte, “ReCap: Better Gaussian Relighting 
with Cross-Environment Captures,” Proc. Comput. Vis. Pattern Recognit. Conf., 
pp. 21307–21316, 2025. 

[119] B. Karis, “Real Shading in Unreal Engine 4,” Proc Phys. Based Shading The-
ory Pract., p. 4(3):1. 

[120] N. Hoffman, “Crafting Physically Motivated Shading Models for Game Devel-
opment”. 

[121] P. Debevec, “Rendering with natural light,” in ACM SIGGRAPH 98  Electronic 
art and animation catalog, in SIGGRAPH ’98. New York, NY, USA: Association 
for Computing Machinery, Jan. 1998, p. 166. doi: 10.1145/281388.281983. 

[122] J. Munkberg et al., “Extracting Triangular 3D Models, Materials, and Lighting 
From Images,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), Jun. 2022, pp. 8270–8280. doi: 
10.1109/CVPR52688.2022.00810. 

[123] D. Verbin, P. Hedman, B. Mildenhall, T. Zickler, J. T. Barron, and P. P. Srini-
vasan, “Ref-NeRF: Structured View-Dependent Appearance for Neural Radiance 
Fields,” Dec. 07, 2021, arXiv: arXiv:2112.03907. doi: 10.48550/arXiv.2112.03907. 

[124] “Tanks and temples: benchmarking large-scale scene reconstruction: ACM 
Transactions on Graphics: Vol 36, No 4.” Accessed: Jun. 29, 2025. [Online]. 
Available: https://dl.acm.org/doi/10.1145/3072959.3073599 

[125] Z. Kuang, Y. Zhang, H.-X. Yu, S. Agarwala, S. Wu, and J. Wu, “Stanford-
ORB: A Real-World 3D Object Inverse Rendering Benchmark,” Jan. 17, 2024, 
arXiv: arXiv:2310.16044. doi: 10.48550/arXiv.2310.16044. 



 

113 
 

[126] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality 
assessment: from error visibility to structural similarity,” IEEE Trans. Image Pro-
cess., vol. 13, no. 4, pp. 600–612, Apr. 2004, doi: 10.1109/TIP.2003.819861. 

[127] J. Nilsson and T. Akenine-Möller, “Understanding SSIM,” Jun. 29, 2020, 
arXiv: arXiv:2006.13846. doi: 10.48550/arXiv.2006.13846. 

[128] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The Unreason-
able Effectiveness of Deep Features as a Perceptual Metric,” in 2018 IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, Jun. 2018, pp. 586–
595. doi: 10.1109/CVPR.2018.00068. 

[129] A. Mischok, “Adams Place Bridge HDRI • Poly Haven,” Poly Haven. Accessed: 
Jun. 29, 2025. [Online]. Available: https://polyhaven.com/a/adams_place_bridge 

[130] “Courtyard HDRI • Poly Haven.” Accessed: Jun. 29, 2025. [Online]. Available: 
https://polyhaven.com/a/courtyard 

[131] G. Zaal, “Shady Patch HDRI • Poly Haven,” Poly Haven. Accessed: Jun. 29, 
2025. [Online]. Available: https://polyhaven.com/a/shady_patch 

[132] G. Zaal, “Hotel Room HDRI • Poly Haven,” Poly Haven. Accessed: Jun. 29, 
2025. [Online]. Available: https://polyhaven.com/a/hotel_room 

[133] G. Zaal, “Moonless Golf HDRI • Poly Haven,” Poly Haven. Accessed: Jun. 29, 
2025. [Online]. Available: https://polyhaven.com/a/moonless_golf 

 


	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Εκτεταμένη Περίληψη
	1 Chapter 1           Background
	1.1 Scene Representation
	1.1.1 Explicit representations
	1.1.1.1 Point Cloud
	1.1.1.2 Mesh
	1.1.1.3 Voxel

	1.1.2 Implicit representations
	1.1.2.1 Signed Distance Function
	1.1.2.2 Neural Radiance Fields


	1.2 Novel View Synthesis
	1.2.1 Active 3D Reconstruction Methods
	1.2.2 Passive 3D Reconstruction Methods
	1.2.3 3D Reconstruction Methods Based on Machine Learning
	1.2.4 Hybrid and Real-Time Accelerations
	1.2.5 Dynamic and Large-Scale Extensions

	1.3 Gaussian Splatting
	1.3.1 Definition and Properties of 3D Gaussians
	1.3.2 Differentiable Rendering Pipeline
	1.3.2.1 Projection from 3D to 2D Space
	1.3.2.2 Rasterization and Blending
	1.3.2.3 Differentiability and Optimization

	1.3.3 Extensions and Variants of 3D Gaussian Splatting
	1.3.3.1 3DGS for Sparse Input
	1.3.3.2 Memory-Efficient 3DGS
	1.3.3.3 Photorealistic 3DGS
	1.3.3.4 Improved Optimization Algorithms
	1.3.3.5 3D Gaussians with Additional Properties
	1.3.3.6 Hybrid Representations
	1.3.3.7 Hybrid Representations


	1.4 Shading
	1.4.1 Shading Pipeline Architecture
	1.4.2 Shading in Differentiable Rendering

	1.5 Light and Material Models
	1.5.1 Illumination Models and BRDF
	1.5.1.1 Bidirectional Reflectance Distribution Function (BRDF)
	1.5.1.2 Common BRDF Models

	1.5.2 Light Interactions
	1.5.2.1 Ambient, Diffuse and Specular Light

	1.5.3 Intrinsic Image Decomposition

	1.6 Global Illumination
	1.6.1 Monte Carlo Ray Tracing
	1.6.2 Image-based Lighting (HDRs)
	1.6.3 Spherical Harmonics


	2 Chapter 2           Case Studies
	2.1 GaussianShader: 3D Gaussian Splatting with Shading Functions for Reflective Surfaces
	2.1.1 Illumination Model
	2.1.1.1 Shading Function
	2.1.1.2 Specular Light
	2.1.1.3 Environment Light

	2.1.2 Normal Estimation
	2.1.3 Loss Functions
	2.1.3.1 Color Loss
	2.1.3.2 Normal Residual Loss
	2.1.3.3 Normal loss
	2.1.3.4 Sparsity Loss

	2.1.4 Parameters
	2.1.5 Architecture and Information Flow
	2.1.5.1 Training
	2.1.5.2 Rendering
	2.1.5.3 Relighting


	2.2 Relightable 3D Gaussians: Realistic Point Cloud Relighting with BRDF Decomposition and Ray Tracing
	2.2.1 Illumination Model
	2.2.1.1 Incident Light
	2.2.1.2 Rendering Equation
	2.2.1.3 Physical Based Rendering (PBR)

	2.2.2 Point-based Ray Tracing
	2.2.2.1 Intersection Points
	2.2.2.2 Visibility Term

	2.2.3 Normal Estimation
	2.2.3.1 Normal Densification

	2.2.4 Loss Functions
	2.2.4.1 Total losses
	2.2.4.2 Normal
	2.2.4.3 Depth Distribution
	2.2.4.4 Object Mask
	2.2.4.5 Light
	2.2.4.6 Smoothness

	2.2.5 Architecture and Information Flow
	2.2.5.1 Training
	2.2.5.2 Relighting


	2.3 Reflective Gaussian Splatting
	2.3.1 2D Gaussian Primitive
	2.3.2 Illumination Model
	2.3.2.1 Deferred PBR
	2.3.2.2 BRDF
	2.3.2.3 Gaussian Inter-Reflection

	2.3.3 Normal Estimation
	2.3.4 Geometry Optimizations
	2.3.4.1 Initial Stage with per-Gaussian Shading
	2.3.4.2 Material-Aware Normal Propagation

	2.3.5 Loss Functions
	2.3.5.1 Color Reconstruction Loss
	2.3.5.2 Normal Consistency Loss
	2.3.5.3 Edge-Aware Normal Smoothness

	2.3.6 Architecture and Information Flow
	2.3.6.1 Training
	2.3.6.2 Relighting


	2.4 IRGS: Inter-Reflective Gaussian Splatting with 2D Gaussian Ray Tracing
	2.4.1 2D Gaussian Primitive
	2.4.2 2D Gaussian Ray Tracing
	2.4.2.1 Ray/Gaussian Intersection
	2.4.2.2 Bounding Proxy
	2.4.2.3 Accumulating Radiance via Ray Tracing

	2.4.3 Illumination Model
	2.4.3.1 Stage I: 2D Gaussian Training
	2.4.3.2 Stage II: Inverse Rendering
	2.4.3.3 Stage II: BRDF
	2.4.3.4 Stage II: Incident Light
	2.4.3.5 Stage II: Rendering
	2.4.3.6  Relighting

	2.4.4 Loss Functions
	2.4.4.1 Stage I
	2.4.4.2 Stage II

	2.4.5 Architecture and Information Flow
	2.4.5.1 Relighting


	2.5 ReCap: Better Gaussian Relighting with Cross-Environment Captures
	2.5.1 Gaussian Primitive
	2.5.2 Illumination Model
	2.5.2.1 BRDF
	2.5.2.2 Shading Function
	2.5.2.3 Post-shading Processing
	2.5.2.4 Lighting Representation

	2.5.3 Normal Estimation
	2.5.4 Loss Functions
	2.5.4.1 Specular Tint
	2.5.4.2 Energy Conservation
	2.5.4.3 Normal Loss

	2.5.5 Architecture and Information Flow


	3 Chapter 3             Results and Comparative Analysis
	3.1 Experiments setup
	3.1.1.1 Datasets
	3.1.1.2 Evaluation metrics
	3.1.1.3 Environment maps

	3.2 GaussianShader
	3.2.1 Novel View Synthesis
	3.2.2 Relighting

	3.3 Relightable 3D Gaussians
	3.3.1 Novel View Synthesis
	3.3.2 Relighting

	3.4 Reflective Gaussian
	3.4.1 Novel View Synthesis
	3.4.2 Relighting

	3.5 IRGS
	3.5.1 Novel View Synthesis
	3.5.2 Relighting

	3.6 ReCap
	3.6.1 Novel View Synthesis
	3.6.2 Relighting

	3.7 Comparison
	3.7.1 Novel View Synthesis
	3.7.2 Relighting


	References


<<

  /ASCII85EncodePages false

  /AllowTransparency false

  /AutoPositionEPSFiles true

  /AutoRotatePages /None

  /Binding /Left

  /CalGrayProfile (Dot Gain 20%)

  /CalRGBProfile (sRGB IEC61966-2.1)

  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

  /sRGBProfile (sRGB IEC61966-2.1)

  /CannotEmbedFontPolicy /Error

  /CompatibilityLevel 1.4

  /CompressObjects /Tags

  /CompressPages true

  /ConvertImagesToIndexed true

  /PassThroughJPEGImages true

  /CreateJobTicket false

  /DefaultRenderingIntent /Default

  /DetectBlends true

  /DetectCurves 0.0000

  /ColorConversionStrategy /CMYK

  /DoThumbnails false

  /EmbedAllFonts true

  /EmbedOpenType false

  /ParseICCProfilesInComments true

  /EmbedJobOptions true

  /DSCReportingLevel 0

  /EmitDSCWarnings false

  /EndPage -1

  /ImageMemory 1048576

  /LockDistillerParams false

  /MaxSubsetPct 100

  /Optimize true

  /OPM 1

  /ParseDSCComments true

  /ParseDSCCommentsForDocInfo true

  /PreserveCopyPage true

  /PreserveDICMYKValues true

  /PreserveEPSInfo true

  /PreserveFlatness true

  /PreserveHalftoneInfo false

  /PreserveOPIComments true

  /PreserveOverprintSettings true

  /StartPage 1

  /SubsetFonts true

  /TransferFunctionInfo /Apply

  /UCRandBGInfo /Preserve

  /UsePrologue false

  /ColorSettingsFile ()

  /AlwaysEmbed [ true

  ]

  /NeverEmbed [ true

  ]

  /AntiAliasColorImages false

  /CropColorImages true

  /ColorImageMinResolution 300

  /ColorImageMinResolutionPolicy /OK

  /DownsampleColorImages true

  /ColorImageDownsampleType /Bicubic

  /ColorImageResolution 300

  /ColorImageDepth -1

  /ColorImageMinDownsampleDepth 1

  /ColorImageDownsampleThreshold 1.50000

  /EncodeColorImages true

  /ColorImageFilter /DCTEncode

  /AutoFilterColorImages true

  /ColorImageAutoFilterStrategy /JPEG

  /ColorACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /ColorImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000ColorACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000ColorImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasGrayImages false

  /CropGrayImages true

  /GrayImageMinResolution 300

  /GrayImageMinResolutionPolicy /OK

  /DownsampleGrayImages true

  /GrayImageDownsampleType /Bicubic

  /GrayImageResolution 300

  /GrayImageDepth -1

  /GrayImageMinDownsampleDepth 2

  /GrayImageDownsampleThreshold 1.50000

  /EncodeGrayImages true

  /GrayImageFilter /DCTEncode

  /AutoFilterGrayImages true

  /GrayImageAutoFilterStrategy /JPEG

  /GrayACSImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /GrayImageDict <<

    /QFactor 0.15

    /HSamples [1 1 1 1] /VSamples [1 1 1 1]

  >>

  /JPEG2000GrayACSImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /JPEG2000GrayImageDict <<

    /TileWidth 256

    /TileHeight 256

    /Quality 30

  >>

  /AntiAliasMonoImages false

  /CropMonoImages true

  /MonoImageMinResolution 1200

  /MonoImageMinResolutionPolicy /OK

  /DownsampleMonoImages true

  /MonoImageDownsampleType /Bicubic

  /MonoImageResolution 1200

  /MonoImageDepth -1

  /MonoImageDownsampleThreshold 1.50000

  /EncodeMonoImages true

  /MonoImageFilter /CCITTFaxEncode

  /MonoImageDict <<

    /K -1

  >>

  /AllowPSXObjects false

  /CheckCompliance [

    /None

  ]

  /PDFX1aCheck false

  /PDFX3Check false

  /PDFXCompliantPDFOnly false

  /PDFXNoTrimBoxError true

  /PDFXTrimBoxToMediaBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXSetBleedBoxToMediaBox true

  /PDFXBleedBoxToTrimBoxOffset [

    0.00000

    0.00000

    0.00000

    0.00000

  ]

  /PDFXOutputIntentProfile ()

  /PDFXOutputConditionIdentifier ()

  /PDFXOutputCondition ()

  /PDFXRegistryName ()

  /PDFXTrapped /False



  /CreateJDFFile false

  /Description <<



    /BGR <>

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

    /CZE <>

    /DAN <>

    /DEU <>

    /ESP <>

    /ETI <>

    /FRA <>

    /GRE <>



    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

    /HUN <>

    /ITA <>

    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

    /LVI <>

    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

    /NOR <>

    /POL <>

    /PTB <>

    /RUM <>

    /RUS <>

    /SKY <>

    /SLV <>

    /SUO <>

    /SVE <>

    /TUR <>

    /UKR <>

    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

  >>

  /Namespace [

    (Adobe)

    (Common)

    (1.0)

  ]

  /OtherNamespaces [

    <<

      /AsReaderSpreads false

      /CropImagesToFrames true

      /ErrorControl /WarnAndContinue

      /FlattenerIgnoreSpreadOverrides false

      /IncludeGuidesGrids false

      /IncludeNonPrinting false

      /IncludeSlug false

      /Namespace [

        (Adobe)

        (InDesign)

        (4.0)

      ]

      /OmitPlacedBitmaps false

      /OmitPlacedEPS false

      /OmitPlacedPDF false

      /SimulateOverprint /Legacy

    >>

    <<

      /AddBleedMarks false

      /AddColorBars false

      /AddCropMarks false

      /AddPageInfo false

      /AddRegMarks false

      /ConvertColors /ConvertToCMYK

      /DestinationProfileName ()

      /DestinationProfileSelector /DocumentCMYK

      /Downsample16BitImages true

      /FlattenerPreset <<

        /PresetSelector /MediumResolution

      >>

      /FormElements false

      /GenerateStructure false

      /IncludeBookmarks false

      /IncludeHyperlinks false

      /IncludeInteractive false

      /IncludeLayers false

      /IncludeProfiles false

      /MultimediaHandling /UseObjectSettings

      /Namespace [

        (Adobe)

        (CreativeSuite)

        (2.0)

      ]

      /PDFXOutputIntentProfileSelector /DocumentCMYK

      /PreserveEditing true

      /UntaggedCMYKHandling /LeaveUntagged

      /UntaggedRGBHandling /UseDocumentProfile

      /UseDocumentBleed false

    >>

  ]

>> setdistillerparams

<<

  /HWResolution [2400 2400]

  /PageSize [612.000 792.000]

>> setpagedevice



