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ABSTRACT

Stergios Papazis, M.Sc. in Data and Computer Systems Engineering, Department of
Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, 2025.
Post-Retrieval Semantic Re-Ranking via Zero-shot LLMs for Segmentation-Free Doc-
ument Image Keyword Spotting.
Advisor: Christophoros Nikou, Professor.

The digitization of historical handwritten documents plays a crucial role in their
preservation. With preservation largely addressed, the focus has shifted toward en-
hancing accessibility. This has led to the development of Keyword Spotting (KWS),
a Content-Based Image Retrieval (CBIR) task that retrieves and ranks word images
based on their similarity to a given query, without requiring prior transcription.

Traditional KWS methods typically treat words as visual patterns, relying solely
on appearance-based features and often neglecting their underlying semantic con-
tent. Even when semantics are considered, it is often within the segmentation-based
setting, which assumes prior word-level segmentation, a non-trivial and error-prone
requirement, particularly for historical manuscripts.

To address these limitations, we propose a novel unsupervised mechanism for
semantic relevance feedback to re-rank the initial output of segmentation-free KWS
systems. Our approach operates in three stages: (1) decoding the retrieved word
images into text using a neural decoder; (2) projecting the transcriptions into a se-
mantic space using pre-trained transformer-based language models such as RoBERTa,
MPNet, and MiniLM, where semantic similarity is measured by cosine distance; (3)
re-ranking the retrieved items by combining visual and semantic similarity.

We evaluate our method on the widely used historical George Washington (GW)
dataset and the modern IAM Handwriting Database (IAM), using the retrieval ranked
lists of two cutting-edge segmentation-free KWS baseline models. We further assess
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the performance across two decoder architectures and two naive fusion strategies
through an extensive ablative analysis.

Numerical results show consistent improvements in Mean Average Precision (mAP)
across all tested configurations, with gains of up to +2.3% (from 94.31% to 96.59%)
on GW and +3% (from 79.15% to 82.12%) on IAM. Notably, even in scenarios with
minimal mAP improvement, we observe significant qualitative gains: semantically rel-
evant but inexact matches are retrieved more frequently. This behavior, known as
semantic KWS, is particularly beneficial in real-world scenarios wherein users may
not know beforehand the precise query needed to locate relevant content.

These findings demonstrate the effectiveness of incorporating semantic feedback
from large language models into visual keyword spotting pipelines. By complement-
ing appearance-based retrieval with NLP-driven semantic re-ranking, our approach
enables more flexible and meaningful document search, even in challenging segment-
ation-free settings. Moreover, it highlights the potential of hybrid vision-language
models to advance document image analysis, especially for noisy, heterogeneous, or
low-resource historical archives.

Keywords: computer vision; deep learning; keyword spotting; document analysis;
segmentation-free retrieval; vision-language models; re-ranking; relevance feedback;
semantic embeddings; large language models; NLP-based retrieval; zero-shot learning
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ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Στέργιος Παπάζης, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-
των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, 2025.
Σημασιολογική Αναδιάταξη Αποτελεσμάτων Εντοπισμού Λέξεων χωρίς Κατάτμηση
σε Εικόνες Χειρογράφων με Μεγάλα Γλωσσικά Μοντέλα.
Επιβλέπων: Χριστόφορος Νίκου, Καθηγητής.

Η ραγδαία τεχνολογική πρόοδος του τελευταίου αιώνα έχει δημιουργήσει τις
συνθήκες ώστε η ψηφιοποίηση ιστορικών κειμένων να είναι οικονομικά και πρακτικά
δυνατή. Καθώς η ύπαρξη αυτών των άυλων ψηφιακών αντιγράφων διασφαλίζει τη
διάσωση και τη μακροχρόνια διατήρηση του περιεχομένου των κειμένων, η προσοχή
πλέον στρέφεται στην ανάπτυξη τεχνικών που διευκολύνουν την προσβασιμότητα
σε αυτά τα ψηφιακά έγγραφα.

H μέθοδος του Εντοπισμού Λέξεων (Keyword Spotting) έχει αναπτυχθεί για την
ανάκτηση πληροφορίας βάσει περιεχομένου σε ψηφιακές συλλογές εικόνων κειμέ-
νου. Ένα τέτοιο σύστημα εντοπίζει περιοχές εικόνων εγγράφων όπου εμφανίζεται
μια δοθείσα λέξη-κλειδί και τις επιστρέφει ταξινομημένες ως προς την οπτική ομοιό-
τητα που παρουσιάζουν με την είσοδο. Κύριο γνώρισμα της μεθόδου είναι ότι δεν
απαιτείται η εκ των προτέρων αναγνώριση του κειμένου, δηλαδή η ανάκτηση βα-
σίζεται αποκλειστικά σε οπτικά χαρακτηριστικά, αποφεύγοντας έτσι τα σφάλματα
που συχνά προκύπτουν στην εξαγωγή μεταγραφών από ιστορικά κείμενα.

Οι παραδοσιακές προσεγγίσεις εντοπισμού λέξεων τείνουν να αντιμετωπίζουν
τις λέξεις αποκλειστικά ως οπτικά πρότυπα, αγνοώντας το υποκείμενο εννοιολο-
γικό περιεχόμενο, πέρα από ορισμένα επιφανειακά χαρακτηριστικά σε επίπεδο χα-
ρακτήρων. Σε ορισμένες περιπτώσεις, η εννοιολογική διάσταση λαμβάνεται υπόψη,
κυρίως στο πλαίσιο κάποιων μεθόδων εντοπισμού λέξεων με κατάτμηση. Ωστόσο, η
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διαδικασία κατάτμησης σε επίπεδο λέξεων είναι ιδιαίτερα επιρρεπής σε σφάλματα
όταν εφαρμόζεται σε εικόνες ιστορικών εγγράφων.

Για την αντιμετώπιση αυτών των προκλήσεων, προτείνουμε έναν νέο μηχανισμό
αναδιάταξης των αποτελεσμάτων εντοπισμού λέξεων, βασισμένο στην ανατροφοδό-
τηση εννοιολογικής σχετικότητας, ο οποίος δεν απαιτεί κατάτμηση των εικόνων σε
επίπεδο γραμμής κειμένου ή λέξης. Το προτεινόμενο σύστημα αξιοποιεί σημασιο-
λογική γνώση για την αναδιάταξη της εξόδου ενός συστήματος εντοπισμού λέξεων,
δηλαδή της διατεταγμένης λίστας αποτελεσμάτων ανάκτησης που μοιάζουν οπτικά
με την προς αναζήτηση λέξη-κλειδί. Η προσέγγισή μας λειτουργεί σε τρία στά-
δια: (1) αποκωδικοποίηση των ανακτημένων εικόνων λέξεων σε κείμενο μέσω ενός
νευρωνικού αποκωδικοποιητή, (2) προβολή της μεταγραφής των αναγνωρισμένων
λέξεων σε έναν σημασιολογικό χώρο μέσω προ-εκπαιδευμένων μεγάλων γλωσσικών
μοντέλων (όπως τα RoBERTa, MPNet και MiniLM), όπου η σημασιολογική συνάφεια
εκφράζεται ως χωρική εγγύτητα, και (3) αναδιάταξη των αποτελεσμάτων μέσω ενός
συνδυασμού της οπτικής και εννοιολογικής ομοιότητας.

Για την αξιολόγηση της προτεινόμενης μεθόδου, πραγματοποιήθηκε εκτενής πει-
ραματική μελέτη σε δύο ευρέως χρησιμοποιούμενα σύνολα χειρογράφων της περιο-
χής: τα George Washington (GW) και IAM Handwriting Database (IAM). Χρησι-
μοποιήθηκαν δύο σύγχρονα συστήματα εντοπισμού λέξεων χωρίς κατάτμησης, τα
οποία παρείχαν τις αρχικές διατεταγμένες λίστες αποτελεσμάτων προς περαιτέρω
αναδιάταξη από το σύστημά μας. Επιπλέον, αξιολογήθηκε η απόδοση της μεθόδου
σε δύο διαφορετικές αρχιτεκτονικές αποκωδικοποιητών, καθώς και υπό δύο εναλ-
λακτικές στρατηγικές συνδυασμού της οπτικής και της σημασιολογικής ομοιότητας.

Τα αριθμητικά αποτελέσματα παρουσιάζουν σταθερές βελτιώσεις στη μετρική
Mean Average Precision (mAP) για όλες τις δοκιμασθείσες πειραματικές διατάξεις,
με αυξήσεις έως και +2.3% (από 94.31% σε 96.59%) στο σύνολο GW και +3% (από
79.15% σε 82.12%) στη συλλογή IAM. Αξιοσημείωτο είναι ότι, ακόμα και σε πε-
ριπτώσεις όπου η αύξηση του mAP είναι περιορισμένη, παρατηρούνται σημαντικά
ποιοτικά οφέλη: εννοιολογικά συναφείς αλλά όχι ταυτόσημες λέξεις, ανακτώνται συ-
χνότερα. Η συμπεριφορά αυτή, γνωστή στη βιβλιογραφία ως σημασιολογικός εντο-
πισμός λέξεων (Semantic Keyword Spotting), είναι ιδιαίτερα χρήσιμη σε πρακτικά
σενάρια, όπου οι χρήστες ενδέχεται να μην γνωρίζουν εκ των προτέρων το ακριβές
ερώτημα που απαιτείται για την ανάκτηση σχετικού περιεχομένου.

Τέλος, τα ευρήματά μας αναδεικνύουν την αξία της ενσωμάτωσης σημασιολογι-
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κής πληροφορίας στα συστήματα εντοπισμού λέξεων, τόσο για την επίτευξη καλύ-
τερης ακρίβειας στην ανάκτηση αποτελεσμάτων, όσο και για μία πιο ευέλικτη και
ουσιαστικής αναζήτηση περιεχομένου σε αντίξοες συνθήκες χειρογράφων που δεν
έχουν υποστεί προ-επεξεργασία ή κατάτμηση. Παράλληλα, διαφαίνεται η δυναμική
υβριδικών μοντέλων που συνδυάζουν οπτικά και γλωσσικά στοιχεία για την αντι-
μετώπιση προκλήσεων σε συλλογές ιστορικών εγγράφων με χαρακτηριστικά όπως
ο θόρυβος, η ετερογένεια και η περιορισμένη διαθεσιμότητα δεδομένων.

Λέξεις κλειδιά: υπολογιστική όραση, μηχανική μάθηση, βαθιά νευρωνικά δίκτυα,
εντοπισμός λέξεων εικόνων χειρόγραφων κειμένων χωρίς κατάτμηση, σημασιολογική
αναδιάταξη, ανατροφοδότηση σχετικότητας, μεγάλα γλωσσικά μοντέλα
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CHAPTER 1

THESIS INTRODUCTION

1.1 Preserving Historical Documents

1.2 Introduction to Keyword Spotting

1.3 Motivation and Objectives

1.4 Thesis Outline and Contributions

1.1 Preserving Historical Documents

Writing is one of humanity’s most impactful inventions. Emerging from the need to
manage practical concerns, such as recording inventories, transactions, and adminis-
trative activities like tax collection and census taking, it gradually became integral to
every facet of human life. From governance and law to commerce, as well as from sci-
ence, education, and culture to philosophy and religion, writing has enabled humans
to overcome the ephemeral nature of speech and the limitations of memory, codifying
both individual and collective knowledge — the foundation upon which knowledge
continually expands. Furthermore, it enables the externalization of thought and the
recording of ideas, facilitating abstract thinking, refinement, reflection, and revision.
It has supported the functioning of complex administrative and governmental sys-
tems; underpinned the development of legal codes, treaties, deeds of ownership, and
contracts; enabled the recording of historical and environmental events, cultural tra-
ditions, folklore, and oral histories; made creative and literary expression possible;
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fostered education, and scientific inquiry through the documentation and commu-
nication of technical knowledge; and shaped religion through the recording and
preservation of sacred texts. Moreover, it has also allowed the ideas and influence
of individuals to resonate far beyond their own time and place, constituting one of
the earliest forms of communication (typically one-way, although occasionally recip-
rocal, for instance in written correspondence) in which participants are not bound
geographically or temporally.

Recognizing the transformative power of writing, civilizations across the globe
developed a wide range of scripts and writing systems, or adapted those of neigh-
boring cultures, to represent their spoken languages. Over the millennia, an immense
body of written works has been produced; yet the overwhelming majority of these
manuscripts have perished over the centuries. It is telling that, in many cases, the
complete works of great ancient writers are known to us only through references,
quotations, or critiques by later authors, with the originals themselves long lost.

In the past, preserving documents often required manual duplication and periodic
restoration to counteract both natural and accidental forms of age-related degradation,
such as fading, tearing, cracking, or damage caused by mold, rot, insects, humidity, or
fire. In many cases, restoration efforts were never undertaken because the documents
were deemed too insignificant to justify the cost and labor involved. As a result,
the number of copies that could be produced and preserved was severely limited.
In other cases, documents were lost unexpectedly due to war or natural disasters.
Even with the advent of the printing press, which revolutionized the production and
distribution of written material, the preservation of documents remained a challenge.
For instance, out-of-print texts grew scarcer, and reissuing them was often impractical
— especially when the original printing templates were unavailable.

In the 20th century, progress in Computer Science and related fields led to the de-
velopment of key technologies, including high-resolution scanning, affordable digital
storage systems, file compression algorithms, and the Internet, which transformed the
way manuscripts are preserved and accessed. The focus has since shifted from merely
safeguarding documents to enabling scholars, students, and other interested individ-
uals to engage meaningfully with the contents of these digital libraries. Examples of
such efforts in document image analysis include transcribing the manuscripts; mod-
ernizing archaic or irregular language (such as outdated scripts, vocabulary, grammar,
and spelling); indexing collections to make them searchable; automatic translation;
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automatic summarization; and other processes that improve the access to and usabil-
ity of these digital archives.

Although such work is typically performed by experts, it tends to be costly and
time-consuming. Automation is therefore a highly desirable alternative, as it can
significantly reduce the resources needed to handle the vast volumes of digitized
materials maintained by libraries and cultural institutions.

1.2 Introduction to Keyword Spotting

Keyword Spotting (KWS), also referred to as Word Spotting (WS), is a Content-Based
Image Retrieval (CBIR) technique that identifies instances of a specific keyword within
a collection of document images [1]. Given a query and a set of document images,
the system locates and retrieves all image regions across the collection whose content
visually resembles the query. The objective is to enable direct keyword-based search
and efficient navigation of digitized manuscript collections.

A naive approach to designing such a CBIR system (or any other document image
analysis system) involves two main stages. The first stage employs Handwritten Text
Recognition (HTR), also known as transcription, in which the location of each word
within each document image is identified, and corresponding character sequences
are extracted using, for example, Optical Character Recognition (OCR) techniques.
The second stage utilizes domain-appropriate Natural Language Processing (NLP)
methods to process the textual output.

While HTR approaches can theoretically preserve textual information with high
fidelity, practical implementations often struggle with reduced transcription accuracy.
This issue is particularly pronounced for handwritten historical documents and de-
graded machine-printed materials, due to factors such as handwriting variability or
physical deterioration (including ink fading, staining, and paper degradation). Most
importantly, this process effectively severs the connection between the text and its
visual origins, treating it merely as a generic textual resource (e.g., text from a web
page).

Sometimes, the nature of the downstream NLP task indicates that exact transcrip-
tion is not strictly necessary, and enforcing it becomes an avoidable constrain. In
such cases, it is often more effective to operate in a recognition-free manner, working
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directly with image features at the character, word, line, or even document level.
These insights have motivated the development of KWS approaches — among the
first in document image analysis to adopt this logic — which, in turn, inspired similar
methods across other tasks within the field.

There are various ways to categorize KWS systems, each reflecting different un-
derlying assumptions and design choices made by researchers. A predominant clas-
sification distinguishes between segmentation-based and segmentation-free approaches.
Segmentation-based methods [2–9] assume that a preliminary segmentation step is
performed prior to retrieval, and as such, they operate explicitly on pre-segmented
word or line images. On the contrary, segmentation-free methods [10–18] process the
entire document image directly, without relying on any prior segmentation.

Another common classification is based on the nature of the query input. Query-by-
Example (QbE) systems [2, 4, 5, 19] accept a sample word image as input, requiring the
user to manually identify at least one instance of the target word within the document
collection. Conversely, Query-by-String (QbS) systems [15–18] accept textual queries
This behavior is often preferable, making QbS systems more user-friendly. Neverthe-
less, QbE approaches can be adapted to assist manual transcription workflows: once a
single word instance is transcribed, all other occurrences are automatically identified
and transcribed, thereby reducing the overall transcription effort.

Furthermore, KWS systems can be categorized based on whether they employ
Machine Learning (ML) techniques to learn features or rely on manually-engineered
features, distinguishing between learning-based [5, 12, 15–18, 20] and learning-free [6, 8,
19] approaches. In recent years, learning-based methods have increasingly dominated
the field due to their superior adaptability and performance, albeit at the cost of
requiring extensive annotated training data.

Finally, a more recent distinction among KWS systems classifies approaches by
their retrieval objective, dividing them into Verbatim Keyword Spotting and Semantic
Keyword Spotting, two terms coined by Wilkinson et al. [21]. Verbatim KWS refers to
the conventional approach discussed previously, where retrieval is primarily guided
by visual similarity between the query and document content. On the other hand,
Semantic KWS [21–24] retrieves word instances that are conceptually related to the
query, even when they bear little or no visual resemblance to it. Notably, these two ap-
proaches are not mutually exclusive: a KWS system may employ a two-stage retrieval
process, first identifying verbatim matches (exact or near-exact) before supplementing
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them with semantically relevant candidates.
The material and terminology presented in this section are primarily adapted from

the seminal survey by Giotis et al. [1]. For a more comprehensive treatment of the
topic, we refer the interested reader to the original work.

1.3 Motivation and Objectives

Notwithstanding substantial advances in Keyword Spotting, current systems appear
to be approaching a fundamental performance ceiling. Conventional KWS methods
rely predominantly on visual characteristics, matching queries to image regions or
word images based solely on character-level features. While computationally efficient,
its representational capacity remains limited to shallow semantic relationships, such
as shared character subsequences. Nevertheless, since false positives (i.e., visually
similar inexact retrievals ranked above true matches) typically exhibit little semantic
relevance to the query, the integration of a deeper semantic understanding within
the KWS pipeline could aid in the detection and elimination of these errors, thereby
improving retrieval accuracy.

Modern NLP techniques, such as pre-trained word embeddings (e.g., Word2Vec
[25], GloVe [26], FastText [27], BERT [28], RoBERTa [29]), have revolutionized the
modeling of semantics through their ability to capture deep linguistic patterns. Recent
advances in document image analysis combining visual and textual features [23, 24,
30–34] demonstrate a viable alternative to conventional vision-only methodologies.
Yet their application to KWS remains limited, since even when adopted they are
typically confined to the segmentation-based scenario.

Segmentation-based approaches face inherent limitations, particularly when ap-
plied to historical manuscripts, where reliable segmentation remains an open chal-
lenge [1]. Issues such as inconsistent spacing, overlapping strokes, decorative letter-
ing, and local skew significantly hinder accurate word segmentation. Dey et al. [35]
demonstrated that the effectiveness of conventional segmentation-based KWS meth-
ods is highly sensitive to the quality of the preceding word segmentation: suboptimal
segmentation leads to substantial degradation in retrieval accuracy.

Taken together, the need to address these limitations motivates the present work.
To this end, we propose a novel post-processing mechanism that leverages semantic

5



relevance feedback to re-rank the output of a segmentation-free KWS system. This mech-
anism exploits modern pre-trained transformer based language models to map the
retrieved instances into a latent word space, where semantic relevance is assessed.
The resulting semantic similarity is then combined with the initial visual similarity
to produce a hybrid similarity score, which is used to re-rank the original retrieval
list. Furthermore, our design pursues three primary objectives: (1) improving Mean
Average Precision (mAP) via false positive suppression and true positive boosting; (2)
enhancing retrieval quality by elevating semantically relevant inexact matches without
compromising exact-match recall — a core aim of semantic KWS; and (3) ensuring a
flexible, modular, lightweight framework, which bridges the gap between vision and
language without requiring end-to-end retraining.

1.4 Thesis Outline and Contributions

We conclude this introduction with a brief overview of the thesis structure and a
summary of the key contributions.

The remainder of this thesis is structured as follows:

• Chapter 2 expands upon the introduction to Keyword Spotting in Section 1.2,
establishing the theoretical framework and surveying relevant methodologies.
It examines the verbatim and semantic Word Spotting paradigms, along with
re-ranking techniques and relevance feedback.

• Chapter 3 introduces the main contribution of this thesis: a semantic-aware re-
ranking framework. It outlines the framework’s architecture and design ratio-
nale, and describes the two baseline models (namely WordRetrievalNet [17] and
KWS-Simplified [18]) whose outputs form the basis for the re-ranking.

• Chapter 4 presents a comprehensive experimental evaluation of the proposed
approach, detailing the datasets, evaluation protocol, and implementation setup.
It also analyzes component-level contributions and qualitative behaviors, con-
cluding with a discussion of the main findings.

• Chapter 5 concludes the thesis by summarizing the main findings and outlining
potential directions for future research.
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In addition to the structure outlined above, the main contributions of this thesis
are summarized below:

• We propose a novel framework for semantic-aware re-ranking in handwritten
document image Keyword Spotting, integrating cutting-edge NLP techniques
(e.g, RoBERTa [36], MPNet [36, 37], MiniLM [36, 38]) into the retrieval pipeline.
To the best of our knowledge, this is the first work to: (1) leverage Large Lan-
guage Models (LLMs) for semantic re-ranking in handwritten document image
KWS; and (2) address semantic modeling in the segmentation-free formulation.

• We explore two distinct neural decoding strategies for converting retrieved word
snippets into text: (1) Transformer-based OCR (TrOCR) [39], a transformer-
based vision-to-text model, as well as (2) a compact CNN-based decoder adapted
from KWS-Simplified [18], that combines character-counting heuristics with
Connectionist Temporal Classification (CTC) [40] re-scoring.

• We conduct extensive experiments on the George Washington (GW) dataset
[41] and the IAM Handwriting Database (IAM) [42] using two state-of-the-art
baseline systems. Our ablation studies assess the impact of key pipeline compo-
nents on Mean Average Precision (mAP), including the transcription decoder,
semantic embedding method, and fusion strategy.

• Our results show that semantic re-ranking consistently improves retrieval per-
formance with low variance across cross-validation iterations, Beyond quanti-
tative gains, the method enables semantically aware, recognition-free retrieval
effectively bridging the gap between verbatim and semantic KWS.
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CHAPTER 2

AN OVERVIEW OF KEYWORD SPOTTING

2.1 Introduction

2.2 Keyword Spotting Fundamentals

2.3 Related Works

2.4 Semantic Keyword Spotting

2.5 Retrieval Enhancement via Relevance Feedback and Re‐Ranking

2.1 Introduction

Building upon the basic concepts and taxonomy introduced in Section 1.2, this chapter
examines the core technical foundations of KWS systems. It is organized as follows.
Section 2.2 introduces the fundamentals of KWS. Section 2.3 reviews related work
across traditional and modern approaches. Section 2.4 explores recent developments
in semantic Word Spotting, while Section 2.5 discusses methods based on relevance
feedback and re-ranking.

2.2 Keyword Spotting Fundamentals

2.2.1 A Typical KWS System

A typical KWS system operates in two main stages: offline processing and online querying,
as illustrated in Figure 2.1.

8



Document

Collection

Document

Page

Segmented 

word/line 

image

Feature

Extraction

Representation

segmentation

-free
segmentation

-based

Offline

Stage

Query

ASCII

string

Segmented 

word/line 

image

Matching

query-by

-example

query-by

-string

Representation

Feature

Extraction

Online

Stage

Indexed

Feature

Vectors

Figure 2.1: The architecture of a general KWS system

During the offline processing stage, the system extracts feature representations from
document images (at word, line, or page level). The feature vectors are indexed
to enable efficient retrieval during the online stage, when they are matched against
query-derived representations. Over time, the feature extraction pipeline has evolved
significantly.

Early systems employed extensive preprocessing (smoothing, filtering, Otsu’s bi-
narization [43]) and normalization prior to extracting handcrafted features. These
approaches utilized manually engineered feature representations — including, but
not limited to: local descriptors (e.g., stroke contours, pixel transitions, region-based
attributes); gradient-based features such as Histogram of Oriented Gradients (HoG)
and Scale Invariant Feature Transform (SIFT); geometric and statistical measures
(including black pixel distributions, contour inclinations); structural features (e.g.,
graphemes, contours, or skeletons); and semantic attribute features (i.e., appearance-
independent properties that bridge visual and textual domains). Finally, these fea-
tures were often modeled with statistical frameworks such as Hidden Markov Models
(HMMs).

With the recent advent of deep learning-based KWS methods, many of these steps
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have been simplified or replaced. A common practice is to normalize input images to
a fixed size before feeding them directly into a Convolutional Neural Network (CNN).
This reflects a broader trend in pattern recognition: the transition from handcrafted
pipelines to end-to-end learned representations, marking a paradigm shift from ex-
plicit feature engineering to implicit feature learning [5, 17, 18, 20, 21].

During the online querying stage, users may submit queries in either of the modal-
ities: QbE, using word image samples, and QbS, using ASCII text inputs. The system
projects the query into the offline feature representation space, computes pairwise
similarities against all indexed entries, and returns the ranked retrieval results. These
modalities differ fundamentally: QbE requires an actual instance of the query word
to exist in the dataset limiting lexical coverage, while QbS enables arbitrary queries
through character-level semantic models at the cost of requiring robust cross-modal
alignment.

KWS systems must strike a balance between accuracy and efficiency — delivering
reliable matching while remaining scalable to large document collections. A common
strategy for improving retrieval speed is the use of fixed-length feature representa-
tions, which enable rapid comparisons using standard similarity measures such as
the cosine distance, along with algorithms like the nearest neighbor search. These
representations typically encode each word image as a compact, discriminative vec-
tor, supporting both efficiency and effective generalization. Some fixed-length vectors
are obtained directly from image features, while others are derived through encod-
ing or pooling mechanisms — such as Spatial Pyramid Pooling (SPP) and Temporal
Pyramid Pooling (TPP) [5] — which aggregate variable-length representations and
variable-size inputs.

Beyond purely visual approaches, a significant research direction in KWS lever-
ages semantic attribute-based embeddings [1, 2]. These techniques encode both the
visual characteristics of word images and their corresponding textual labels into a
unified representation space. By capturing linguistically meaningful properties, they
create discriminative features that are largely invariant to visual appearance. This
dual capability facilitates not only efficient retrieval but also cross-modal matching
between image and text representations. Additionally, such attribute-based methods
demonstrate robustness to variations in writing style while maintaining computational
efficiency for large-scale comparisons. Prominent examples of this approach include
the Pyramidal Histogram of Characters (PHOC) and Discrete Cosine Transform of
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Words (DCToW) representations.
The Pyramidal Histogram of Characters (PHOC) [2] represents words as fixed-

dimensional binary vectors by hierarchically encoding character distribution patterns.
Through multi-level spatial decomposition — partitioning words into progressively
finer segments (typically halves, thirds, quarters, and fifths) — it records character
and frequent bigram occurrences across these regions. This approach preserves ap-
proximate character positioning while maintaining robustness to visual appearance
variations. The resulting binary embedding enables efficient storage and comparison,
with spatial proximity in the subspace reflecting linguistic similarity (e.g., “letter” and
“better” clustering nearby due to shared characters).

Figure 2.2: This figure demonstrates the generation of a three-level PHOC represen-
tation for the word “place”. Figure reproduced from [44].

The Discrete Cosine Transform of Words (DCToW) [21] represents words as com-
pact real-valued vectors through spectral analysis of character distributions. Unlike
binary approaches like PHOC, DCToW first encodes words as K×m matrices (where
K=36 represents the English alphabet size and m the word length) using one-hot
character vectors. It then applies a DCT-II transform row-wise, retaining only the

11



first R=3 low-frequency coefficients per character dimension. This process yields a
108-dimensional embedding (K × R) that implicitly captures both global character
ordering and distribution patterns through its spectral signature.

Figure 2.3: A visualization of the DCToW representation for the string “paddle”.
Figure reproduced from [15].

Notably, the attribute-based design of both PHOC and DCToW facilitates strong
generalization capabilities, enabling effective zero-shot Word Spotting even for queries
absent from training data. By encoding fundamental linguistic properties — whether
through character distributions or spectral signatures — these representations achieve
robust retrieval without requiring prior exposure to specific word forms. Their fixed-
dimensional embeddings preserve structural information while maintaining compu-
tational efficiency, making them particularly suitable for the cross-modal retrieval of
QbS KWS, when integrated with ML techniques.

2.2.2 Applications of Word Spotting

KWS serves as a powerful tool across diverse domains, enabling efficient interaction
with unstructured or historical documents [1]. In cultural heritage preservation, li-
braries and archives employ KWS to index historical manuscripts, newspapers, and
rare books, making them searchable without costly manual annotation. Additionally,
it serves as an assistive technology for human transcribers, particularly when work-
ing with degraded or historical documents. These systems enhances transcription
efficiency by suggesting probable keywords, even for previously unseen terms.

In corporate environments, KWS systems can automate the sorting of handwritten
mail into predefined categories, such as “urgent”, “complaint”, and “cancelation”,
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streamlining workflow efficiency. Beyond mailrooms, corporations leverage KWS to
index archival records, including invoices, contracts, and legal documents allowing
rapid retrieval without the need for full-text transcription.

Furthermore, the healthcare sector can benefit significantly from KWS, particu-
larly in processing handwritten medical records. For example, Patient Care Reports
(PCRs) and prescriptions often contain critical but unstructured notes, including pa-
tient and doctor information, symptoms, medication names, dosages, and care in-
structions. KWS extracts this key data while compensating for handwriting varia-
tions, improving accessibility for patients, doctors, and pharmacists. By automating
prescription processing, it prevents dangerous medical errors caused by handwriting
misinterpretations, thereby improving patient safety through more accurate treatment
administration.

The application scope of KWS extends well beyond conventional documents, find-
ing utility in a range of visually diverse and unstructured sources. Notable examples
include mobile-captured handwritten notes [45], as well as graphical materials such as
maps, posters, and technical diagrams. In mobile note-taking scenarios, KWS can fa-
cilitate real-time transcription and digitization. Alternatively, when applied to graph-
ical documents, it enhances both searchability and contextual understanding by de-
tecting and leveraging embedded textual elements. For instance, it can link keywords
to figures in technical manuals or associate place names with their corresponding
locations on maps.

Overall, KWS offers a scalable and cost-effective alternative to full transcription
for both large-scale and focused applications.

2.2.3 Evaluation Metrics

One of the most widely adopted performance metrics in KWS, as well as in broader
Information Retrieval (IR) tasks, is the Mean Average Precision (mAP), valued for
its objectiveness and reliability [1]. As the name suggests, mAP is the mean of the
Average Precision (AP) across all queries.

For a given query, precision is defined as the fraction of retrieved instances that
are relevant to that query:

Precision =
number of relevant retrieved instances

number of retrieved instances ,

while recall is the fraction of relevant instances that the system was able to retrieve
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successfully:
Recall = number of relevant retrieved instances

number of relevant instances .

In other words, precision quantifies the accuracy of the predictions (fraction of true
positives over true positives and false positives), whereas recall assesses how many
true positives were actually identified (fraction of true positives over true positives and
false negatives). Precision at rank k (P@k) is defined as the precision computed solely
over the top k retrieved results, reflecting the reliability of the system’s highest-ranked
outputs.

For a given query, the Average Precision (AP) is defined as:

AP =
1

R

n∑
k=1

P@k · rel(k),

where rel(k) is an indicator function that returns 1 if the retrieved instance at index
k is considered relevant and 0 otherwise; and R denotes the total number of relevant
instances for the query. This metric approximates the area under the precision-recall
curve (see Figure 2.4) for a single query, providing a comprehensive evaluation of
the precision-recall characteristics across the system’s output ranking.

Finally, a precise definition of relevance is critical to prevent evaluation bias. For
example, if an entire document is counted as relevant simply because it contains one
matching snippet, this will artificially inflate performance metrics. Therefore, in the
context of segmentation-free KWS, a retrieved image region is deemed relevant if it
sufficiently overlaps with a ground-truth bounding box annotated with the same tran-
scription as the query. Overlap is measured using the Intersection over Union (IoU)
criterion, which is satisfied when the IoU exceeds a predefined threshold. Commonly
used thresholds, which we also employ in our study, are 25% (mAP@25) and 50%
(mAP@50). If multiple retrieved regions overlap with a single ground truth region,
only one is considered relevant — typically, the one with the greatest overlap.

2.3 Related Works

Originally, Word Spotting was proposed in the speech recognition community [46]
and was later adapted for printed [47] and handwritten [48] document indexing.

One of the major issues of the preprocessing stage is that possible segmentation
errors are regularly conveyed in the spotting phase. Particularly, accurate word seg-
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Figure 2.4: The precision-recall curve of a ranked list and the corresponding AP.

mentations are difficult to obtain in handwritten and degraded documents. For this
reason, several segmentation-free word spotting techniques have emerged.

Early segmentation-free KWS methods addressed the problem of avoiding explicit
word or line segmentation by analyzing entire document pages directly. This direc-
tion was initially dominated by hand-crafted feature extraction and region-of-interest
proposals. Leydier et al. [49, 50] and Zhang et al. [51, 52] used local keypoints
and gradient-based descriptors or Heat Kernel Signatures (HKSs), matched through
elastic or manifold-based similarity metrics. However, these techniques incurred high
computational costs and did not scale well.

A more scalable direction emerged with patch-based sliding-window frameworks
[10, 12, 19, 53], where descriptors like SIFT, HoG, or pixel densities are extracted
over image regions. In this respect, Rusiñol et al. [10] enhanced retrieval effectiveness
via a Latent Semantic Indexing (LSI) projection, while Rothacker et al. [19] used a
BoF-HMM formulation for robust query modeling.

Graph- and component-based techniques [13, 54, 55] modeled spatial or structural
properties of documents using Connected Components (CCs) or grapheme graphs,
typically matched using graph edit distances or geometric constraints. These methods,
while segmentation-free, were often sensitive to noise, image binarization, and relied
on heuristics to construct valid word proposals.
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More recent advances leverage deep learning for end-to-end segmentation-free
retrieval. Ghosh and Valveny [56] combined region proposal CNNs with attribute-
based deep embeddings (PHOCNet representations [5]) to aggregate features across
word-like regions. Wilkinson et al. [15] introduced Ctrl-F-Net, an end-to-end archi-
tecture that employs a ResNet34 backbone [57], Region Proposal Networks (RPNs),
and word string embeddings such as the PHOC [2] and DCToW [21], to enable robust
QbS retrieval. Rothacker et al. [58] further enhanced region detection under uncer-
tainty by incorporating extremal region proposals and class activation maps into the
word spotting pipeline.

At the multi-task and multi-scale learning frontier, Zhao et al. [17] integrated a
Feature Pyramid Network (FPN) into a CNN architecture, jointly training for pixel
classification, bounding box regression, and visual-to-textual embedding learning (via
DCToW). These contributions have advanced the segmentation-free paradigm to-
wards dense, discriminative, and scalable retrieval pipelines.

While most prior work in this area focus on visual representations and similarity,
recent trends point toward bridging the gap between visual and semantic domains
using embeddings that encode language-aware properties [33]. However, such se-
mantic alignment has remained under-explored in segmentation-free KWS settings.
This motivates our work, which aims to enhance KWS effectiveness by introducing
relevance-aware re-ranking based on language models and semantic embeddings of word
image transcriptions.

2.4 Semantic Keyword Spotting

In a traditional KWS system, document regions are represented using descriptors such
as PHOC or DCToW and matched against queries based solely on visual appearance
and character-level similarity. However, words are more than sequences of characters;
they also carry semantic meaning, which is often overlooked. On the other hand, when
a person struggles to read a word in an illegible portion of a text, they often rely on
the broader semantic context to disambiguate visually similar words. This process
involves determining whether the interpreted letters form a valid word and whether
that word fits logically within the surrounding sentence and passage. Figure 2.5
exemplifies this peculiarity. This observation motivates the integration of semantic
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reasoning into word spotting systems.

(a) (b)

Figure 2.5: An example where relying solely on visual information can lead to ambi-
guity. The word shown in sub-figure (a) may be interpreted as “tcw”, “ton”, or “ten”
based on visual cues alone. Word-level semantic context rules out “tcw” as it does
not correspond to a valid English word. In sub-figure (b), the sentence-level semantic
context enables the correct identification of the word as “ten”.

Semantic KWS was first introduced by Wilkinson et al. [21] as a method to enrich
word image retrieval with language-level knowledge. The authors also coined the
terms Semantic KWS and Verbatim KWS for the new and conventional approaches,
respectively. In the semantic approach, retrieved results are ranked based on their
semantic similarity to the query. When exact matches — results with the exact same
transcription — are also included in the retrieved results, semantic KWS can be
regarded as an extension of verbatim KWS.

The inexact — but conceptually relevant — results introduced by semantic KWS,
can be especially useful when the query provided by the user does not accurately
reflect their intended search targets. This may occur, for instance, when a user explores
a document collection that is unfamiliar to them, when they misspell a query (either
accidentally or because modern spelling has evolved away from historical forms), or
when dealing with hyphenation and word splits across line breaks.

For instance, consider a scenario in which a user searches a document collection
for instances of the word “book”. A typical verbatim system might retrieve visually
similar but semantically irrelevant words such as “look” or “cook”, simply because
they resemble the query when written. However, this fails to take into account the
user’s underlying intent, as the user might not only be interested in exact matches
of “book”, but could instead be referring to a specific book. Deeper semantic cues
could help identify relevant content — even when the term “book” is not explicitly
mentioned.

In other words, even if all instances of “book” are correctly retrieved at the top of
the ranked list, the presence of visually similar yet irrelevant words in high-ranking
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positions diminishes the effectiveness of the search. These positions could instead be
occupied by semantically related terms such as “writer” (if it refers to the book’s
author), “library” or “bookshelf” (if the text mentions where the book is located),
or “publication” (or another synonymous term for “book”). A search system that
retrieves not only exact matches but also semantically related terms could significantly
enhance the quality of both the search and the browsing experience.

The notion of semantic similarity can be subjective and context-dependent, which
makes it challenging to formalize. For example, a word may be considered semanti-
cally related to another word if they are synonyms, morphological variants sharing
the same stem (e.g., singular and plural forms of nouns, different tenses and partici-
ples of verbs, adjectival variations), or categorically related terms (e.g., “cat”, “dog”,
“mammal”, “animal”).

In the literature, semantic retrieval methods can be broadly categorized based on
how they address this challenge: (1) ontology-based techniques and (2) context-based
techniques [24]. Ontology-based approaches [22, 59] use lexical resources such as the
WordNet [60] to identify categorical or lexical similarities. Yet, as noted by Krishnan
et al. [23], such manually constructed databases are limited in both the quality and
quantity of their semantic relationships, as they depend on human annotations, and
typically support only a handful of languages.

Context-based approaches are grounded in the distributional hypothesis [61],
which posits that words appearing in similar contexts tend to share similar mean-
ings. Recent advancements in NLP have produced a wide range of text embedding
techniques, including Word2Vec, GloVe, FastText, and transformer-based models like
BERT, which generate dense vector representations that encode semantic similarity
beyond surface-level string matching. These embeddings have opened new oppor-
tunities for mapping visual content, such as handwritten words, into semantically
meaningful spaces.

To bring this semantic capability into keyword spotting and obtain semantic repre-
sentations, two general strategies have emerged: (1) learning visual-to-semantic map-
pings directly in an end-to-end, recognition-free manner, or (2) transcribing word images
first, followed by transforming those transcriptions through a text-based embedding.

End-to-end approaches are particularly common in segmentation-based settings,
where they circumvent explicit recognition — a process known to yield irrecoverable
errors when mapped directly to embedding spaces. This paradigm was introduced
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by Wilkinson et al. [21], who trained a two-stage CNN with cosine embedding loss to
project word images into a pre-trained semantic space. Subsequent work by Krishnan
et al. [23] extended this approach using the HWNet architecture [20] to jointly learn
syntactic (PHOC or DCToW) and semantic (e.g., FastText) representations. Tüselmann
et al. [33] further evaluated the impact of different embeddings — including Fast-
Text, GloVe, and BERT — using the same architecture, and explored combinations
thereof for document-level semantic understanding. Finally, end-to-end approaches
are particularly valuable because they enable the tackling of downstream NLP tasks
— such as Named Entity Recognition (NER) [30, 62], Visual Question Answering
(VQA) [32, 45], Named Entity Linking (NEL) [31] — directly on image documents,
without explicit recognition.

Although effective, direct embedding methods remain limited in practice: they
require large amounts of annotated training data, and no publicly available pre-
trained models currently exist for generic semantic KWS. A case in point is the
recommendation by Wilkinson et al. [21] to train their system on all 40 volumes
of The Writings of George Washington from the Original Manuscript Sources, 1745–
17991 to effectively capture corpus-level semantics of the George Washington (GW)
database. Similarly, for model pre-training, other works [20, 33] employ a subset of
HW-SYNTH [63] comprising approximately 600,000 word images and covering the
12,000 most frequent English words.

Despite these efforts, recent analysis [24] reveals that visual-semantic embeddings
often retain mostly syntactic characteristics. This suggests a gap between visual and
semantic domains, and highlights the underutilized potential of modern pre-trained
language models in Word Spotting.

Last but not least, to the best of our knowledge, all existing semantic KWS methods
are limited to the segmentation-based setting — a gap we bridge in this work.

2.5 Retrieval Enhancement via Relevance Feedback

and Re‐Ranking

A prominent challenge in KWS systems is the presence of false positives within the
top-ranked retrieval results. To address this issue, several techniques for refining

1Available online: https://archive.org/details/writingsofgeorge01wash
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the ranked list have been proposed In what follows, we review relevant literature
in retrieval enhancement, particularly focusing on relevance feedback and re-ranking
schemes that aim to improve the final ranked list beyond raw visual similarity. This
includes both supervised and unsupervised paradigms and sets the foundation for
our proposed embedding-based re-ranking method that leverages NLP-driven semantic
proximity in the re-ranking process.

Supervised Relevance Feedback

In Supervised Relevance Feedback (SRF), the user manually labels several results
from the initial retrieval as relevant or irrelevant. This information is then used to
either reformulate the query vector (query refinement) or adjust the ordering of the
existing ranked list (re-ranking). Approaches based on Rocchio’s algorithm [64],
as employed by Bhardwaj et al. [65] and Cao et al. [66], optimize the position of
the query in the embedding space by incorporating positive and negative instances.
Rusiñol et al. [67] explore both query reformulation and re-ranking using relevance
scores. Konidaris et al. [68] and Kesidis et al. [69] involve user-selected positives from
synthetic queries to improve real-word image retrieval. Additionally, Wolf et al. [70]
investigate CNN-based confidence metrics to identify and suppress unreliable predic-
tions, employing dropout, surrogate models, and sigmoid-activated meta-classifiers to
evaluate prediction trustworthiness and prune false positives accordingly.

Unsupervised Feedback and Re‐Ranking

The obvious benefits of Supervised Relevance Feedback lie in leveraging user judg-
ments to guide ranking refinement. However, this process can be costly and subjective,
particularly in degraded or historical documents. This limitation has motivated the
adoption of unsupervised alternatives, such as Pseudo-Relevance Feedback (PRF) [71],
where top-N ranked results are automatically assumed to be relevant and used for
re-ranking or query expansion. Almazán et al. [12] introduced a two-stage rank-
ing, combining fast approximate ranking with Fisher vector-based re-ranking and
iterative query expansion. Similar approaches have been employed by Ghosh and
Valveny [72], as well as Shekhar and Jawahar [71], who incorporate spatial pyramids
for refinement. Vats and Fornés [73] propose a local query expansion technique based
on confidence thresholds and keypoint matching, repeated across document pages,
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yielding consistent performance gains.
While these methods have advanced re-ranking pipelines in the visual domain,

they typically rely on low-level image similarity and neglect deeper semantic rela-
tionships between words; particularly useful in the presence of visual ambiguity or
Out-of-Vocabulary (OOV) terms. This limitation further motivates the incorporation
of language-based semantic reasoning into KWS systems, as we explore in the fol-
lowing chapters.
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CHAPTER 3

SEMANTICALLY-INFORMED
RELEVANCE FEEDBACK

3.1 Introduction

3.2 The WordRetrievalNet

3.3 Segmentation‐free KWS Simplified

3.4 Proposed Re‐ranking Pipeline

3.1 Introduction

In this chapter, we introduce a post-processing semantically-aware relevance feed-
back mechanism, designed to enhance the retrieval performance of KWS systems —
the main contribution of this thesis. We first analyze two state-of-the-art KWS ap-
proaches (Sections 3.2 and 3.3), each embodying a distinct approach to traditional
segmentation-free KWS. Their ranked output lists are utilized as inputs in the test-
ing of our re-ranking process. Finally, we conclude the chapter by presenting our
proposed re-ranking methodology in Section 3.4.

An overview of the proposed architecture is illustrated in Figure 3.1. Given a
query, the KWS system retrieves the top-k most visually similar image regions from
the document collection. Each retrieved region is transcribed, and an LLM projects
both the transcription and query into a shared semantic subspace to determine their
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semantic similarity. The final ranking combines the verbatim (visual) and semantic
similarity scores to re-order the ranking and optimize retrieval accuracy.

Additionally, the re-ranking capability of the proposed framework extends be-
yond conventional KWS objectives. As demonstrated in Figure 3.1, visually similar
but irrelevant terms (e.g., “letter”, “understand”, “better”) are replaced with semanti-
cally relevant military terms (e.g.,“sergeant”, “regiment”), providing users with more
meaningful results — a qualitative improvement that traditional KWS metrics fail to
capture.

verbatim
ranked

list

ranked list
with

semantic
similarity

semantic
LLM

transcription
decoder

re-
ranked
list with
combined
similarity

query

“lieutenant”

KWS
system

simcombined = a · simsemantic + (1 − a) · simverbatim

Figure 3.1: Proposed semantic relevance framework integrating LLM-based contex-
tual similarities into the re-ranking of candidate word instances in segmentation-free
KWS ranking lists.

3.2 The WordRetrievalNet

The WordRetrievalNet is a state-of-the-art segmentation-free QbS KWS system intro-
duced by Zhao et al. [17]. It operates in two stages:

i. Offline stage: A CNN is trained to generate a database of candidate bounding
boxes along with their representations in a latent space.

ii. Online stage: The descriptor of a query is matched against the database and a
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ranked list of bounding boxes having the highest cosine similarity is returned.

Its end-to-end design eliminates the need for complex pre- and post-processing
steps commonly required in other traditional KWS approaches. Additionally, it is
scale-insensitive, since its FPN-based architecture [57, 74, 75] enables the extraction
of multi-scale features directly from document images, which are then processed by
three prediction heads:

1. a classification head that identifies pixels belonging to a positive word region,

2. a regression head that predicts the offsets between each pixel in a positive word
region and the boundaries of its corresponding bounding box,

3. an embedding head that maps word regions into the latent space (e.g., DCToW,
PHOC, etc).

The network is trained in a supervised manner minimizing the loss function:

Lall = Lcls + Lbbox + Lembed.

For the classification task, a loss based on the Dice coefficient [75, 76] is used:

Lcls = 1−

2
∑
i,j

ŷi,jcls · y
i,j
cls∑

i,j

(
ŷi,jcls

)2
+
∑
i,j

(
yi,jcls

)2 ,
where ŷi,jcls, y

i,j
cls denote the values of pixel (i, j) in the word classification prediction

ŷcls, and the ground truth ycls, respectively. This loss function counteracts the bias
introduced by the imbalance between word pixels and background pixels.

For the bounding box regression, the Distance-IoU (DIoU) loss [77] is utilized
— a variant of the IoU loss that augments it by incorporating information about
the distance between the centers of predicted and ground-truth boxes. This formula-
tion leads to faster convergence and improved localization accuracy compared to the
conventional IoU. The loss function is defined as:

Lbbox =
1

|C|
∑
i∈C

DIoU (ŷbbox, ybbox) ,

where C denotes the set of positively classified word pixels, ŷbbox is the predicted
bounding box, and ybbox is the ground truth box.
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For the word embedding, the cosine loss Lembed = 1 − cos (ŷembed, yembed) is used
in order to penalizes dissimilarity between the predicted representation ŷembed and
actual representation yembed.

During inference, the set of positive word pixels and their offsets are combined to
construct bounding boxes for the candidate word regions, and a Non-Maximum Sup-
pression (NMS) filter is applied to reduce the density of predictions. The embedding
of each bounding box is computed as the mean embedding of the pixels it contains.
Figure 3.2 summarizes the above-mentioned key model components.
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Figure 3.2: The WordRetrievalNet architecture

3.3 Segmentation‐free KWS Simplified

Retsinas et al. [18] introduced a segmentation-free QbS KWS system, KWS-Simplified,
that formulates KWS as a character counting problem: the goal is to identify im-
age regions containing the same character histograms as the query. Unlike Wor-
dRetrievalNet, the lightweight system architecture eliminates synthetic training data
requirements. However, to refine the initial predictions and compute their similar-
ity with the query, several post-processing steps are applied. These steps include:
(1) Pyramidal Counting, where a descriptor similar to PHOC is constructed and com-
pared against the query descriptor; and (2) CTC-based re-scoring via force alignment.
This alignment approach is used to improve the bounding box estimation and refine
the ranking of candidates, in line with recent developments in CTC alignment and
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scoring [78]. NMS is further applied to reduce overlapping predictions.
The system consists of a ResNet [57] backbone with two prediction heads: (1)

a decoder head that estimates the probability distribution of each character occur-
rence across a document image; and (2) a scaler head that predicts the character
scale at each image location. Figure 3.3 depicts the overall pipeline of the reference
segmentation-free KWS system.
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/Count loss
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Figure 3.3: An overview of the KWS-Simplified network

For a given character c, let F (i, j, c) denote the feature probability distribution
output by the decoder head at image coordinates (i, j), and let S(i, j) represent the
predicted scale factor at the same coordinates. The number of occurrences of character
c within a bounding box spanning from (s1, s2) to (e1, e2) is given by:

yc =

e1∑
i=s1

e2∑
j=s2

F (i, j, c) · S(i, j)

This formulation gives rise to the counting loss function: Lcount = ∥yc − tc∥2, where tc
is the target character count.

During the training of the network, the loss function optimized combines the
counting loss with the CTC loss [40] — a sequence alignment objective, commonly
used in handwriting and speech recognition tasks, bridging continuous input signals
(e.g., audio or image columns) with discrete output sequences (e.g., character labels)
via its unique mechanism of blank token insertion and repetition collapsing. Follow-
ing the approach of Retsinas et al. [18], a weighting factor of 10 is applied to the
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counting loss to balance its contribution relative to the CTC loss:

L = LCTC + 10 · Lcount.

Herein, the feature map produced by the decoder head undergoes column-wise max-
pooling before being fed into the CTC loss. Figure 3.4 overviews these post-processing
scoring steps.
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Figure 3.4: The post-processing stages of the KWS-Simplified pipeline

3.4 Proposed Re‐ranking Pipeline

We conclude this chapter with the presentation of our proposed pipeline: an un-
supervised relevance feedback mechanism enabled by the incorporation of semantic
information during the re-ranking process. Its goal is to enhance retrieval perfor-
mance through the suppression of false positive results that appear high in the initial
ranking, while simultaneously promoting instances whose original rank underesti-
mated their actual relevance.

The proposed framework operates in three stages (see Figure 3.1). Initially, a
segmentation-free QbS KWS system performs verbatim retrieval, generating a list
of candidate image regions that are ranked by their visual resemblance to a given
query. Next, each candidate image region in the list is transcribed by a decoder, and
a semantically aware LLM embeds the resulting transcriptions into a semantic space
[36], where spatial proximity reflects semantic relatedness. Finally, the candidates are
re-ranked based on a combination of their verbatim and semantic similarities.

We examine multiple variations of the framework:

i. two distinct decoder architectures,
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ii. three alternative state-of-the-art semantic LLMs,

iii. two late fusion strategies.

The first decoder is adapted from the KWS-Simplified network. Notably, its charac-
ter probability prediction head can operate as an independent module that generates
transcriptions when a softmax function is applied to its output. For the second de-
coder, we utilize Transformer-based OCR (TrOCR), a state-of-the-art text recognition
model. It integrates a Vision Transformer (ViT) encoder [79] with a Transformer-
based text generator (typically initialized using either RoBERTa or MiniLM). The
combined model has been pre-trained on large-scale synthetic textual data and can
be fine-tuned on both machine-printed and handwritten document collections.

For the generation of semantic embeddings, we use three state-of-the-art BERT-
like LLMs derived from RoBERTa, MPNet, and MiniLM, respectively. Each of these
models has been specifically adapted for the task of semantic search through super-
vised contrastive learning [36], a training paradigm that teaches models to distinguish
between correct sentence pairs and randomly sampled negative pairs. In order to
handle Out-of-Vocabulary (OOV) terms (i.e., words for which no instances or tran-
scriptions are available during training), while maintaining embeddings of a fixed
dimension, the WordPiece [80] subword tokenization technique is used. The final
embedding is obtained by mean pooling all token embeddings, and semantic simi-
larity is quantified as the cosine similarity between the generated embedding vectors.
Mean pooling is employed as it offers greater resilience to errors in the transcription
of individual subtokens.

Finally, we evaluate two strategies that fuse visual and semantic relevance: weighted
combination of similarities and semantic pruning. In the weighted combination strategy,
we compute a weighted average of the verbatim and semantic similarity scores:

simcombined = a · simsemantic + (1− a) · simverbatim,

where a ∈ [0, 1] is a hyperparameter controlling the relative importance of semantic
similarity in the final score. The resulting values are used to re-rank the candidate
list, incorporating both semantic and verbatim relevance. On the other hand, semantic
pruning refers to the process of filtering candidate items by discarding those with a
semantic similarity below a predefined threshold. The remaining candidates are then
re-ranked based on their verbatim similarity.
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CHAPTER 4

EXPERIMENTAL EVALUATION

4.1 Introduction

4.2 Datasets

4.3 Evaluation Protocol

4.4 Implementation Details

4.5 Ablation Experiments

4.6 Qualitative Analysis

4.7 Discussion

4.1 Introduction

This chapter is devoted to the experimental evaluation of the proposed re-ranking
pipeline detailed in Section 3.4. To this end, we conduct experiments on two stan-
dard KWS benchmarks: the George Washington dataset and the IAM Handwriting
Database, presented in Section 4.2. The employed evaluation protocol, outlined in
Section 4.3, follows widely adopted practices for segmentation-free KWS systems.
To ensure transparency and reproducibility, key implementation details are provided
in Section 4.4. Quantitative results are then presented and analyzed in Section 4.5,
assessing both the overall performance of the method and the contributions of its
individual components. Section 4.6 complements this with a qualitative analysis of
retrieval behaviors that are not fully captured by standard evaluation metrics. The
chapter concludes with a discussion and summary of the main findings in Section 4.7.
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4.2 Datasets

We evaluated our approach on two widely adopted KWS benchmarks: the George
Washington (GW) dataset [41] and the IAM Handwriting Database (IAM) [42]. These
datasets serve as standard references for performance comparison in the field [1].

4.2.1 The George Washington Dataset

The George Washington dataset1 comprises 20 handwritten letters from George Wash-
ington’s Papers at the Library of Congress [81]. These 18th-century documents, writ-
ten in historical English by Washington and his aides, contain 4,860 annotated words
with corresponding bounding boxes. Due to the minimal variation in the writing style,
it can be characterized as a single-writer dataset.

Unlike segmentation-based KWS approaches that employ the standardized par-
tition of Almazán et al. [2] for the GW database, no official partition exists for the
evaluation of segmentation-free methods. Instead, we follow the established experi-
mental practices used in prior works [14–18]. Given its limited size, it is customary
to adopt a 4-fold cross-validation scheme, where each fold consists of 5 pages. Thus,
four experimental iterations are conducted. During each iteration, one fold is reserved
as the test set, while the remaining three serve as the training set. Additionally, one
page from the training set is set aside for validation. Test queries are extracted from
the unique transcriptions of the test pages by removing punctuation and lowercasing,
whereas stopwords are retained as queries. Table 4.1 presents the exact partition of
the dataset used in our experiments (the partition was obtained by shuffling the page
indices 0–19 using NumPy with seed 0.)

Table 4.1: The partition of GW used in our experiments.

Fold No. Pages across each fold

1 274, 309, 276, 272, 303

2 306, 273, 301, 300, 278

3 270, 302, 277, 275, 308

4 307, 304, 279, 271, 305

1Available online: https://fki.tic.heia-fr.ch/databases/washington-database
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4.2.2 The IAM Handwriting Database

The IAM Handwriting Database2,3 contains 1,539 pages of modern cursive handwrit-
ten English text produced by 657 writers. The pages are segmented and annotated,
comprising a total of 115,320 words. The variability introduced by the multi-writer
setting is a principal factor contributing to the difficulty of the dataset. We use the
official partition of the database, as is common practice in the literature [15, 18];
however, unlike GW, no cross-validation is performed. The test queries comprise all
unique, lowercased transcriptions from the test set, excluding words that contain non-
alphanumeric characters, punctuation marks, erroneous annotations, or those words
appearing in the official stopword list [2, 5].

Figure 4.1: Examples of document images from the GW and IAM datasets.

4.3 Evaluation Protocol

In recent years, a standard evaluation protocol has emerged for segmentation-free
QbS KWS systems introduced by Rothacker et al. [14] as an extension of the Almazán
protocol [2]. We adhere to this established procedure, ensuring direct comparability

2Available online: https://fki.tic.heia-fr.ch/databases/iam-handwriting-database
3IAM = Institut für Informatik und Angewandte Mathematik, University of Bern, Bern, Switzerland
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with prior work [15–18].
Hence, the test queries are derived from all unique transcriptions in the test

pages. Additionally, these queries undergo normalization, including lowercasing all
words, removing non-alphanumeric characters and punctuation, and optionally fil-
tering stopwords (see Section 4.2 for dataset-specific details). Following standard
practice, we report mAP@25 and mAP@50 as our primary evaluation metrics.

4.4 Implementation Details

This section describes the implementation4 details of the proposed framework, the
training and evaluation of the baseline models, and the modifications made to en-
sure fair and consistent comparisons. Implementation-specific adjustments are docu-
mented to support reproducibility and to explain observed deviations from previously
reported results.

Both WordRetrievalNet and KWS-Simplified offer open-source implementations,
as well as pre-trained models. However, while KWS-Simplified includes training on
the IAM dataset, neither system has been pre-trained on GW.

In order to enable a direct comparison between these architectures and to establish
a rigorous baseline against which we evaluate our framework’s relative improvements,
we trained both systems on GW using the typical 4-fold cross-validation scheme de-
scribed in Section 4.2 and the partition shown in Table 4.1. For each cross-validation
iteration, we trained a WordRetrievalNet model for 120 epochs and a KWS-Simplified
model for 200 epochs, evaluating mAP@25 performance on the validation set within
every 10 epochs and retaining the best-performing model as the final baseline. The
training configuration of each system (e.g., optimizer selection, hyperparameter val-
ues) followed the the settings reported by Zhao et al. [17] and Retsinas et al. [18]
as optimal — those yielding the highest mAP performance in their evaluations. The
reproduced and reported mAP scores are recorded in Table 4.2.

Similarly, WordRetrievalNet was trained on the official IAM split for 80 epochs,
achieving mAP@25 of 79.15% and mAP@50 of 72.85%. It is worth noting that Zhao
et al. [17] do not report results for this dataset.

4The source code, along with the pre-trained models, is publicly available at https://github.com/
stevepapazis/semantically-reranked-kws.
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Table 4.2: Comparison of reproduced and reported mAP scores for the two baseline
models, WordRetrievalNet and KWS-Simplified, on the GW dataset.

Model mAP@25 mAP@50

WordRetrievalNet (Reproduced) 94.31 ± 1.8 88.29 ± 4.0
WordRetrievalNet (Reported) 96.46 94.06

KWS-Simplified (Reproduced) 89.74 ± 0.7 72.29 ± 3.0
KWS-Simplified (Reported) 91.6 66.4

While our reproduced results deviate from prior work, our goal is to establish a
baseline reference system, and therefore, such observed divergences are to be expected
and can be attributed to several factors.

First and foremost, the original implementations used different partitions of GW.
In the case of WordRetrievalNet, an additional source of variability arises from the
use of randomly generated synthetic training data.

Second, we note minor implementation-specific differences in the training data
preparation pipelines. Since both systems are segmentation-free, they employ a de-
tection phase in which the model identifies image regions that are likely to contain
words. These candidate regions are then refined to match the query and produce the
final retrieval results. To train such a detector effectively, it is not sufficient to use only
the tight bounding boxes of the ground truth word images. Instead, it is beneficial to
enlarge these regions so it can learn to segment words more reliably. Overestimating
the bounding box is generally preferable to underestimating it, as missing a word
entirely would hinder recall.

In the training of KWS-Simplified on GW, the authors generate training images by
extending the ground truth bounding boxes by a constant factor. In our implementa-
tion, we enlarged the word image areas by a factor of 2.5. We observed that this larger
context window helped the model learn more robust representations corresponding
to the segmented word regions, which in turn led to a substantial improvement in
mAP@50 performance.

Furthermore, the implementation of WordRetrievalNet uses training data extracted
as image crops that cover regions larger than the ground truth word bounding boxes,
often including multiple word instances. We note here that recovering the exact pa-
rameterization which yielded the optional result in the original work is not possible.

33



Therefore, we modified the patch cropping algorithm used for extracting positive
examples during the training of WordRetrievalNet, aiming to improve the compu-
tational efficiency of the training loop. The original algorithm repeatedly sampled
image patches until no word within a patch crossed its boundary, or until a limit of
1,000 iterations was reached. In practice, this limit was frequently exhausted, creat-
ing an artificial bottleneck that significantly slowed down training and rendered the
computation CPU-bound. Our modified approach addresses this issue by retaining
only the words for which at least 70% of the bounding box falls within the sampled
patch. While the trade-off improved computational efficiency, it came at the expense
of retrieval accuracy, particularly visible in the mAP@50 scores.

Finally, some variability is inevitably introduced by the stochastic nature of neural
network training, such as the random weight initialization and the random sampling
during the minimization of the loss function.

As discussed earlier in Section 3.4, we evaluate two distinct decoder architectures
for transcribing the retrieved image regions. Each KWS-Simplified-based decoder inher-
ently shares weights with the corresponding KWS-Simplified backbone trained on the
same partition, thereby requiring no additional training before deployment. For the
TrOCR-based alternative, we initialized the model in each cross-validation iteration of
GW using weights from a HTR model5 pre-trained on the IAM database. Next, the
model was fine-tuned for 20 epochs using the set of word images from the training
set of the current iteration, while the queries from one page were used for validation.
We employed the AdamW optimization algorithm [82] with an initial learning rate
of 5e−5, which increased linearly during a short warm-up period and then decayed
linearly for the remaining epochs. The fine-tuning reduced the average Character
Error Rate (CER) on the validation sets of GW from 26.76% to 11.05% — a standard
metric in OCR and HTR, which measures the number of character-level errors in a
predicted transcription compared to the ground truth. Although the strong 3.42%
CER performance reported for TrOCR on IAM [39] suggests that there is potential
room for improvement on GW, accurate retrieval does not necessarily require ex-
plicit transcription. We report CER solely to support reproducibility. Moreover, given
this performance, we used the decoder in our experiments on IAM without further
training.

To embed the decoded transcriptions into a semantic space, we employed three
5Model card: https://huggingface.co/microsoft/trocr-base-handwritten
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pre-trained models from the SentenceTransformer6 Python library: (1) stsb-roberta-
base7 (the RoBERTa architecture fine-tuned on the Semantic Textual Similarity bench-
mark [83]), (2) all-mpnet-base-v28 (the MPNet architecture fine-tuned on a corpus
of diverse datasets comprising over one billion sentence pairs), and (3) all-MiniLM-
L12-v29 (the MiniLM architecture fine-tuned on the same diverse corpus).

Ultimately, both WordRetrievalNet and the three semantic embedding models uti-
lize the cosine distance to compute the verbatim and semantic similarities, respectively.
In comparison, the KWS-Simplified system relies on a similarity measure derived
from CTC scores. To ensure that these values are on a comparable scale when com-
bined, we normalize the CTC-based scores to the range [−1, 1] using the minimum
and maximum values observed in the training set.

4.5 Ablation Experiments

This Section presents the ablation experiments conducted to evaluate the impact of
different configurations on the proposed pipeline. These experiments aim to isolate the
effects of the re-ranking strategy and assess the generalization ability of our method
across different initial word spotters. Tables 4.3 to 4.6 present the numerical results
obtained after re-ranking the initial WordRetrievalNet and KWS-Simplified ranking
lists using the proposed weighted combination strategy. These results confirm our in-
tuition that the combination of verbatim and semantic information actually enhances
retrieval accuracy. On the contrary, Tables 4.7 and 4.8 show the results for the alter-
native strategy based on semantic pruning. Despite its aim to alleviate the retrieval
by identifying semantically irrelevant instances, the strategy is overly simplistic and
effectively hampers system performance. Performance on GW is reported as the av-
erage mAP@25 and mAP@50, along with their corresponding Standard Deviations
(SD), computed across four experimental trials. The contribution of each pipeline
component is discussed in detail below.

6Available online: https://sbert.net/
7Model card: https://huggingface.co/sentence-transformers/stsb-roberta-base
8Model card: https://huggingface.co/sentence-transformers/all-mpnet-base-v2
9Model card: https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
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4.5.1 Impact of Baseline KWS Model

The effect of our semantic re-ranking pipeline varies depending on the baseline KWS
model. On one hand, WordRetrievalNet exhibits stronger improvements compared to
the KWS-Simplified variant. As shown in Tables 4.3 and 4.4, as well as Figure 4.2,
the gains on the GW dataset reach ∼ 2.3% in mAP@25 (from 94.31% to 96.59%)
and ∼ 0.9% in mAP@50 (from 88.29% to 90.17%). Even more noticeable are the
improvements on the IAM dataset, where mAP@25 rises by ∼ 3% (from 79.15% to
82.12%) and mAP@50 by ∼2.6% (from 72.85% to 75.43%).

On the other hand, KWS-Simplified achieves smaller gains, as reported in Ta-
bles 4.5 and 4.6, as well as Figure 4.3. On GW, the re-ranking yields an increase of
∼1.2% in mAP@25 (from 89.74% to 90.94%) and ∼0.7% in mAP@50 (from 72.29%
to 72.97%). On IAM, the respective gains are ∼ 1.9% (mAP@25: 86.40% to 88.25%)
and ∼1.2% (mAP@50: 63.73% to 64.88%).

These differences can be attributed to the design of each backbone. WordRetrieval-
Net produces a larger and richer set of candidate detections for each query, since it
performs query-independent spotting by precomputing visual features (e.g., DCToW)
across the document. This allows the re-ranking module to refine the initial results
more effectively, as it has access to more potential matches, including those ranked
low in the initial retrieval.

Conversely, KWS-Simplified retrieves a very limited set of candidates, typically just
a handful per query. This restricts the impact of re-ranking, as relevant instances not
retrieved initially cannot be recovered in later stages. Therefore, KWS-Simplified may
benefit from integrating query expansion techniques aimed at enlarging the initial
candidate pool, making semantic re-ranking more effective.

4.5.2 Impact of Decoder

The decoder module directly influences the effectiveness of the re-ranking process, as
reflected in the performance variations across datasets and architectures. On GW, the
KWS-Simplified decoder yields higher mAP gains than TrOCR, improving mAP@25
by ∼2.3% (from 94.31% to 96.59%) and mAP@50 by ∼0.9% (from 88.29% to 90.17%).
Unlike the first case, TrOCR shows smaller gains: ∼0.6% for mAP@25 (from 89.74%
to 90.38%) and ∼0.3% for mAP@50 (from 72.29% to 72.57%).

This pattern reverses on IAM, where the TrOCR decoder, when paired with Wor-
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Table 4.3: mAP performance on GW. WordRetrievalNet is the employed backbone
paired with the weighted combination strategy across semantic importance thresholds
and embeddings.

Relative
semantic

importance

Semantic
embeddings

KWS‐Simplified decoder TrOCR decoder

mAP@25±SD mAP@50±SD mAP@25±SD mAP@50±SD

0.0*

all-MiniLM
-L12-v2

94.31 ± 1.8 88.29 ± 4.0 94.31 ± 1.8 88.29 ± 4.0
0.1 95.80 ± 1.5 89.51 ± 3.8 94.51 ± 1.8 88.43 ± 4.0
0.2 96.10 ± 1.5 89.75 ± 3.8 93.96 ± 2.0 87.84 ± 4.0
0.3 96.30 ± 1.3 89.79 ± 3.7 93.20 ± 2.1 87.07 ± 3.8
0.4 96.04 ± 1.5 89.64 ± 3.6 91.71 ± 2.5 85.73 ± 3.9
0.5 95.34 ± 1.4 89.01 ± 3.5 89.05 ± 2.9 83.19 ± 3.8
0.6 94.39 ± 1.5 88.20 ± 3.5 84.82 ± 4.2 79.41 ± 4.2
0.7 93.25 ± 1.6 87.37 ± 3.5 79.04 ± 4.8 74.03 ± 3.7
0.8 91.92 ± 1.9 86.26 ± 3.5 73.12 ± 6.1 68.42 ± 4.5
0.9 90.93 ± 2.0 85.42 ± 3.6 69.68 ± 6.6 65.20 ± 4.8
1.0 89.83 ± 2.2 84.28 ± 3.7 64.58 ± 7.5 60.07 ± 6.0
0.0*

all-mpnet
-base-v2

94.31 ± 1.8 88.29 ± 4.0 94.31 ± 1.8 88.29 ± 4.0
0.1 95.90 ± 1.4 89.67 ± 3.8 94.68 ± 1.6 88.62 ± 3.9
0.2 96.27 ± 1.3 89.86 ± 3.8 94.09 ± 1.7 87.98 ± 3.8
0.3 96.50 ± 1.4 89.97 ± 4.0 93.07 ± 2.1 87.02 ± 3.7
0.4 96.56 ± 1.5 90.08 ± 3.9 91.78 ± 2.4 85.85 ± 3.7
0.5 96.00 ± 1.3 89.62 ± 3.6 89.42 ± 2.9 83.85 ± 3.8
0.6 95.04 ± 1.2 88.82 ± 3.5 85.13 ± 3.6 79.84 ± 3.8
0.7 93.83 ± 1.6 87.86 ± 3.4 79.10 ± 5.3 74.10 ± 4.1
0.8 92.57 ± 1.7 86.71 ± 3.4 74.06 ± 6.2 69.30 ± 4.6
0.9 91.53 ± 1.8 85.84 ± 3.6 70.50 ± 6.4 65.90 ± 4.6
1.0 90.21 ± 2.1 84.45 ± 3.7 64.91 ± 7.5 60.31 ± 6.0
0.0*

stsb-roberta
-base

94.31 ± 1.8 88.29 ± 4.0 94.31 ± 1.8 88.29 ± 4.0
0.1 95.83 ± 1.6 89.60 ± 3.9 94.58 ± 2.0 88.55 ± 4.2
0.2 96.19 ± 1.3 89.82 ± 3.7 94.01 ± 2.1 87.91 ± 4.2
0.3 96.59 ± 1.3 90.17 ± 3.7 92.87 ± 2.9 86.92 ± 4.5
0.4 96.44 ± 1.6 89.99 ± 3.7 90.75 ± 3.2 84.96 ± 4.4
0.5 96.32 ± 1.6 89.90 ± 3.7 87.91 ± 3.5 82.32 ± 4.3
0.6 96.04 ± 1.7 89.57 ± 3.8 84.15 ± 4.3 78.83 ± 4.9
0.7 95.27 ± 1.7 88.91 ± 4.0 80.37 ± 4.4 75.25 ± 4.7
0.8 94.37 ± 1.8 88.08 ± 3.9 77.09 ± 4.4 72.16 ± 4.3
0.9 93.54 ± 2.0 87.46 ± 4.0 74.05 ± 4.8 69.22 ± 4.1
1.0 92.32 ± 2.2 86.19 ± 3.9 67.98 ± 5.4 63.34 ± 4.3

*This is essentially the baseline model. It does not use a decoder.
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Table 4.4: mAP performance on IAM. WordRetrievalNet is the employed backbone
paired with the weighted combination strategy across semantic importance thresholds
and embeddings.

Relative
semantic

importance

Semantic
embeddings

KWS‐Simplified decoder TrOCR decoder

mAP@25 mAP@50 mAP@25 mAP@50

0.0*

all-MiniLM
-L12-v2

79.15 72.85 79.15 72.85
0.1 80.60 73.98 82.04 75.40
0.2 79.29 72.62 80.59 73.77
0.3 75.87 69.30 77.68 71.05
0.4 71.36 65.13 74.04 67.66
0.5 65.95 60.19 70.68 64.57
0.6 60.26 54.99 67.17 61.33
0.7 55.95 50.99 64.47 58.88
0.8 53.12 48.38 62.88 57.42
0.9 51.46 46.88 62.22 56.83
1.0 47.96 43.71 54.34 49.48

0.0*

all-mpnet
-base-v2

79.15 72.85 79.15 72.85
0.1 80.84 74.18 82.12 75.43
0.2 80.01 73.21 80.77 74.02
0.3 77.55 70.82 77.87 71.29
0.4 73.86 67.22 74.73 68.33
0.5 69.24 62.95 71.23 65.12
0.6 63.70 57.97 67.84 61.99
0.7 58.18 52.97 65.43 59.78
0.8 53.92 49.10 63.80 58.25
0.9 51.43 46.89 62.78 57.36
1.0 49.26 44.84 54.99 50.11

0.0*

stsb-roberta
-base

79.15 72.85 79.15 72.85
0.1 81.16 74.49 81.88 75.18
0.2 80.39 73.55 80.97 74.22
0.3 77.40 70.68 77.51 70.90
0.4 73.54 66.94 74.29 67.87
0.5 69.45 63.25 71.28 65.11
0.6 64.83 59.05 68.70 62.85
0.7 61.28 55.73 66.71 61.03
0.8 58.23 53.05 65.16 59.66
0.9 56.22 51.22 64.13 58.74
1.0 53.99 49.11 56.03 51.24

*This is essentially the baseline model. It does not use a decoder.
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Table 4.5: mAP performance on GW. KWS-Simplified is the employed backbone paired
with the weighted combination strategy across semantic importance thresholds and
embeddings.

Relative
semantic

importance

Semantic
embeddings

KWS‐Simplified decoder TrOCR decoder

mAP@25±SD mAP@50±SD mAP@25±SD mAP@50±SD

0.0*

all-MiniLM
-L12-v2

89.74 ± 0.7 72.29 ± 3.0 89.74 ± 0.7 72.29 ± 3.0
0.1 90.62 ± 0.5 72.77 ± 3.0 90.27 ± 0.8 72.53 ± 3.1
0.2 90.68 ± 0.4 72.82 ± 3.0 90.38 ± 0.7 72.57 ± 3.1
0.3 90.70 ± 0.5 72.84 ± 3.0 90.35 ± 0.7 72.55 ± 3.2
0.4 90.72 ± 0.5 72.84 ± 3.0 90.30 ± 0.7 72.51 ± 3.2
0.5 90.79 ± 0.4 72.90 ± 3.0 90.32 ± 0.6 72.55 ± 3.2
0.6 90.85 ± 0.5 72.93 ± 3.0 90.32 ± 0.6 72.54 ± 3.2
0.7 90.91 ± 0.5 72.97 ± 3.0 90.26 ± 0.7 72.51 ± 3.2
0.8 90.83 ± 0.4 72.90 ± 2.9 90.12 ± 0.6 72.42 ± 3.1
0.9 90.82 ± 0.4 72.89 ± 2.9 89.93 ± 0.6 72.29 ± 3.0
1.0 90.43 ± 0.7 72.73 ± 2.7 87.16 ± 0.6 70.39 ± 2.1
0.0*

all-mpnet
-base-v2

89.74 ± 0.7 72.29 ± 3.0 89.74 ± 0.7 72.29 ± 3.0
0.1 90.63 ± 0.5 72.78 ± 3.0 90.22 ± 0.7 72.49 ± 3.1
0.2 90.69 ± 0.5 72.83 ± 3.0 90.31 ± 0.7 72.51 ± 3.1
0.3 90.72 ± 0.5 72.84 ± 3.0 90.29 ± 0.6 72.49 ± 3.1
0.4 90.81 ± 0.5 72.91 ± 3.1 90.32 ± 0.7 72.54 ± 3.1
0.5 90.86 ± 0.5 72.96 ± 3.1 90.29 ± 0.7 72.53 ± 3.2
0.6 90.87 ± 0.4 72.94 ± 3.0 90.26 ± 0.6 72.49 ± 3.1
0.7 90.94 ± 0.5 72.97 ± 3.1 90.10 ± 0.7 72.39 ± 3.1
0.8 90.91 ± 0.5 72.96 ± 3.0 90.06 ± 0.6 72.35 ± 3.0
0.9 90.85 ± 0.4 72.92 ± 3.0 89.74 ± 0.4 72.09 ± 2.9
1.0 90.47 ± 0.5 72.78 ± 2.8 87.06 ± 0.7 70.23 ± 2.1
0.0*

stsb-roberta
-base

89.74 ± 0.7 72.29 ± 3.0 89.74 ± 0.7 72.29 ± 3.0
0.1 90.62 ± 0.5 72.78 ± 3.0 90.21 ± 0.6 72.46 ± 3.0
0.2 90.63 ± 0.5 72.79 ± 3.0 90.27 ± 0.6 72.47 ± 3.0
0.3 90.66 ± 0.5 72.80 ± 3.0 90.27 ± 0.6 72.47 ± 3.1
0.4 90.76 ± 0.5 72.88 ± 3.0 90.32 ± 0.6 72.52 ± 3.1
0.5 90.89 ± 0.5 72.97 ± 3.1 90.33 ± 0.5 72.54 ± 3.1
0.6 90.90 ± 0.4 72.97 ± 3.1 90.30 ± 0.4 72.50 ± 3.0
0.7 90.92 ± 0.4 72.97 ± 3.1 90.13 ± 0.4 72.41 ± 2.9
0.8 90.86 ± 0.4 72.92 ± 3.0 89.96 ± 0.5 72.28 ± 2.9
0.9 90.74 ± 0.4 72.86 ± 3.0 89.75 ± 0.5 72.12 ± 2.8
1.0 90.33 ± 0.5 72.71 ± 2.8 87.08 ± 0.9 70.24 ± 2.0

*This is essentially the baseline model. It does not use a decoder.
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Table 4.6: mAP performance on IAM. KWS-Simplified is the employed backbone
paired with the weighted combination strategy across semantic importance thresholds
and embeddings.

Relative
semantic

importance

Semantic
embeddings

KWS‐Simplified decoder TrOCR decoder

mAP@25 mAP@50 mAP@25 mAP@50

0.0*

all-MiniLM
-L12-v2

86.40 63.73 86.40 63.73
0.1 86.71 63.86 87.49 64.22
0.2 86.79 63.94 87.84 64.47
0.3 86.57 63.72 88.01 64.58
0.4 86.11 63.36 88.06 64.60
0.5 85.65 63.01 87.74 64.43
0.6 84.66 62.38 87.28 64.17
0.7 83.32 61.47 86.30 63.56
0.8 81.31 60.20 84.66 62.49
0.9 77.61 57.85 81.51 60.47
1.0 71.97 54.39 76.74 57.24

0.0*

all-mpnet
-base-v2

86.40 63.73 86.40 63.73
0.1 86.69 63.88 87.53 64.25
0.2 86.70 63.87 87.89 64.51
0.3 86.56 63.75 88.16 64.80
0.4 86.32 63.59 88.25 64.88
0.5 85.91 63.33 87.97 64.69
0.6 85.03 62.71 87.52 64.37
0.7 84.15 62.10 86.60 63.77
0.8 82.56 61.09 85.07 62.78
0.9 79.47 59.19 81.97 60.86
1.0 74.04 55.89 77.30 57.78

0.0*

stsb-roberta
-base

86.40 63.73 86.40 63.73
0.1 86.58 63.82 87.35 64.13
0.2 86.78 63.85 87.78 64.52
0.3 86.72 63.74 88.04 64.72
0.4 86.45 63.59 88.12 64.84
0.5 85.87 63.29 87.62 64.60
0.6 85.09 62.79 86.78 64.16
0.7 83.82 61.99 85.44 63.32
0.8 81.96 60.79 83.06 61.79
0.9 79.45 59.12 80.17 59.88
1.0 76.10 57.18 76.49 57.40

*This is essentially the baseline model. It does not use a decoder.
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Figure 4.2: mAP@25 and mAP@50 curves for the WordRetrievalNet baseline paired
with the weighted combination strategy reflecting the results from Tables 4.3 and 4.4
on GW (top) and IAM (bottom) benchmarks.

dRetrievalNet, achieves stronger improvements: ∼ 3% (mAP@25: from 79.15% to
82.16%) and ∼ 2.6% (mAP@50: from 72.85% to 75.43%). The KWS-Simplified de-
coder on the same dataset shows slightly lower gains: ∼2% for mAP@25 and ∼1.6%
for mAP@50. These trends are summarized in Tables 4.4 and 4.6.

Such results are consistent with prior work in KWS: the final performance is
shaped not only by the quality of the decoder but also by the accuracy of the initial
bounding boxes [35]. Even a strong decoder like TrOCR may struggle on GW due
to limited candidate diversity, whereas it benefits more on IAM, where segmentation
is more fine-grained and the linguistic space is richer. This highlights the interplay
between decoder expressiveness and the underlying retrieval quality.

Ultimately, these findings emphasize the importance of holistic system design. De-
coder selection should not be based solely on CER or transcription quality, but also on
how well it complements the retrieval front-end. While our current strategy employs
a simple late-fusion scheme, it still provides meaningful gains with no additional
supervision and minimal computational overhead.
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Figure 4.3: mAP@25 and mAP@50 curves for the KWS-Simplified baseline paired
with the weighted combination strategy reflecting the results from Tables 4.5 and 4.6
on GW (top) and IAM (bottom) benchmarks.

4.5.3 Impact of Semantic Embedding Model

We expected that the more diversely trained semantic embedding models (all-MiniLM-
L12-v2, all-mpnet-base-v2) would outperform stsb-roberta-base. However, across all
model and decoder combinations, we observed at most a 0.5% difference in both
mAP@25 and mAP@50, with performance typically being indistinguishable across
the GW and IAM benchmarks. This can be attributed to factors such transcription
errors, the reliance on word-level context alone and dataset limitations (i.e., the small
size of GW), all of which prevent the more expressive models from demonstrating
their full semantic representational power.

4.5.4 Impact of Fusion Strategy: Weighted Combination

The weighted combination of verbatim and semantic relevance scores leads to con-
sistent performance gains, as showcased in Tables 4.3 to 4.6, along with Figures 4.2
and 4.3. Nonetheless, the extent of the improvement and the importance of the se-
mantic relevance level depend on the performance of the underlying keyword spotter
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and the decoder architecture.
On the GW database, the already strong performance of WordRetrievalNet shifts

the optimal semantic relevance weight toward lower values, favoring verbatim rele-
vance, for both decoders. This effect is less pronounced for the KWS-Simplified de-
coder, where optimal performance is achieved when the semantic weight lies within
the range [0.2, 0.5]. On the contrary, for the TrOCR-based decoder, as well as the
WordRetrievalNet on IAM, the best performance occurs when the semantic influ-
ence is minimal, typically within [0.1, 0.2]. Outside of these ranges, and particularly
when relying solely on semantic similarity, performance deteriorates. This decline
indicates that recognition errors introduced during transcription propagate into the
semantic space as well. Additionally, it highlights the importance of leveraging both
verbatim and semantic signals for effective re-ranking. In each of these cases, the per-
formance drops sharply as the level of semantic importance increases. For instance
in the TrOCR-decoded pipeline, mAP@25 decreases from 94.31% to approximately
65% and mAP@50 drops from 88.29% to about 62% on average across all choices of
semantic embeddings.

In comparison, as shown in the re-ranking results of KWS-Simplified in Table 4.5,
the less accurate initial ranking leads to a stronger reliance on the semantic component
for achieving the best results. Furthermore, the re-ranking consistently outperforms
the baseline for the KWS-Simplified decoder while remains on par with its TrOCR
counterpart. Notably, there appears to be a synergy between the KWS-Simplified
decoder and the baseline model. Since the decoder is an integral part of this baseline
model, the initially predicted bounding boxes are optimally aligned for the decoder
to use. Consequently, the incorporation of semantic relevance offers clear advantages
for this model.

4.5.5 Impact of Fusion Strategy: Semantic Pruning

Thus far, we have presented results based on the weighted combination strategy,
which consistently delivers the best performance among the tested fusion methods.
On the contrary, semantic pruning, a simpler alternative, performs noticeably worse
across all configurations, as shown in Tables 4.7 and 4.8, as well as Figure 4.4.

The key limitation of semantic pruning lies in its rigid filtering rule, which only
accepts candidates exceeding a predefined similarity threshold. While this may boost
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Table 4.7: mAP performance on GW. WordRetrievalNet is the employed backbone
paired with the semantic pruning strategy across filtering thresholds and embeddings.

Filtering
threshold

Semantic
embeddings

KWS‐Simplified decoder TrOCR decoder
mAP@25±SD mAP@50±SD mAP@25±SD mAP@50±SD

0.1

all-MiniLM
-L12-v2

94.25 ± 1.7 88.24 ± 3.9 94.16 ± 1.7 88.20 ± 4.1
0.3 92.02 ± 2.3 86.32 ± 3.7 77.32 ± 6.3 71.77 ± 4.3
0.5 89.87 ± 2.3 84.52 ± 3.7 67.59 ± 6.7 63.15 ± 4.8
0.7 88.58 ± 2.6 83.68 ± 3.8 63.25 ± 6.3 59.34 ± 4.7
0.9 87.81 ± 2.7 83.06 ± 3.8 60.10 ± 6.6 56.45 ± 5.3
0.1

all-mpnet
-base-v2

94.29 ± 1.8 88.28 ± 4.0 93.96 ± 2.1 87.97 ± 4.2
0.3 91.74 ± 2.0 86.21 ± 3.4 76.40 ± 5.8 71.46 ± 4.0
0.5 89.51 ± 2.2 84.27 ± 3.7 66.96 ± 7.0 62.76 ± 5.4
0.7 88.50 ± 2.3 83.51 ± 3.8 63.11 ± 6.2 59.20 ± 4.7
0.9 87.50 ± 2.9 82.76 ± 4.0 59.70 ± 6.8 56.05 ± 5.4
0.1

stsb-roberta
-base

94.33 ± 1.8 88.32 ± 4.0 93.49 ± 1.9 87.45 ± 4.2
0.3 94.32 ± 2.1 88.33 ± 4.2 85.81 ± 3.4 80.42 ± 4.3
0.5 92.95 ± 2.0 87.08 ± 3.7 73.83 ± 4.6 69.09 ± 4.0
0.7 90.72 ± 2.5 85.36 ± 3.7 65.99 ± 5.3 62.04 ± 4.0
0.9 87.82 ± 2.9 83.02 ± 3.9 60.61 ± 6.2 56.93 ± 4.9

Table 4.8: mAP performance on GW. KWS-Simplified is the employed backbone paired
with the semantic pruning strategy across filtering thresholds and embeddings.

Filtering
threshold

Semantic
embeddings

KWS‐Simplified decoder TrOCR decoder
mAP@25±SD mAP@50±SD mAP@25±SD mAP@50±SD

0.1

all-MiniLM
-L12-v2

89.63 ± 0.8 72.18 ± 3.1 89.50 ± 0.9 72.05 ± 3.0
0.3 87.52 ± 1.2 70.26 ± 3.7 71.46 ± 5.1 56.03 ± 3.9
0.5 86.53 ± 1.6 69.69 ± 4.1 63.25 ± 6.1 49.08 ± 4.3
0.7 85.62 ± 2.2 69.01 ± 4.7 59.35 ± 5.9 45.98 ± 4.3
0.9 85.24 ± 2.3 68.71 ± 4.7 56.53 ± 5.9 43.64 ± 4.4
0.1

all-mpnet
-base-v2

89.72 ± 0.7 72.27 ± 3.0 89.34 ± 0.9 71.90 ± 2.9
0.3 87.91 ± 1.4 70.75 ± 3.8 71.68 ± 4.9 56.63 ± 3.4
0.5 86.46 ± 2.0 69.72 ± 4.5 62.64 ± 5.7 48.51 ± 4.4
0.7 85.72 ± 1.9 69.04 ± 4.5 59.04 ± 5.8 45.68 ± 4.0
0.9 85.24 ± 2.5 68.71 ± 4.8 56.15 ± 6.0 43.26 ± 4.4
0.1

stsb-roberta
-base

89.74 ± 0.7 72.29 ± 3.0 88.96 ± 1.1 71.52 ± 3.2
0.3 89.05 ± 1.2 71.73 ± 3.4 81.33 ± 2.7 64.75 ± 3.0
0.5 88.00 ± 1.6 70.90 ± 4.1 69.24 ± 3.8 54.77 ± 3.5
0.7 86.28 ± 2.4 69.62 ± 4.7 62.33 ± 4.6 48.99 ± 3.3
0.9 85.35 ± 2.4 68.83 ± 4.8 57.18 ± 5.4 44.19 ± 3.9
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semantic purity, it often leads to valid instances being discarded due to minor recog-
nition or decoding errors. As a result, retrieval performance deteriorates, especially
under stricter thresholds.

Despite its suboptimal results in verbatim keyword spotting, this strategy serves
an illustrative role: it highlights the value of combining semantic and lexical signals
rather than treating them in isolation. In future applications, semantic pruning might
be better suited for tasks where conceptual alignment or query expansion is more
critical than exact string matches.
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Figure 4.4: mAP@25 and mAP@50 curves for the semantic pruning strategy on GW
reflecting the results from Tables 4.7 and 4.8 for the WordRetrievalNet (top) and
KWS-Simplified (bottom) baselines.

4.6 Qualitative Analysis

Previous sections evaluated the quantitative performance of the proposed framework
through mAP metrics. We now examine its qualitative benefits: the system success-
fully augments retrieval with semantic matches while preserving exact lexical match-
ing capabilities. Visual examples demonstrate these enhancements, which transcend
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standard evaluation indices of verbatim KWS.
Figure 4.5 shows three top-10 ranked lists for the query “forgot”. The first list is

ranked by the conventional (verbatim) KWS similarity, the second by semantic sim-
ilarity, and the third by the combined similarity used in our proposed system. For
each instance, the top-left corner displays the global rank assigned by each method,
using different colors: purple for verbatim, yellow for semantic, and blue for com-
bined similarity. The bottom-right corner shows the similarity scores with respect
to the query, following the same color scheme. The ground-truth bounding box is
highlighted in green.

Due to a suboptimal bounding box prediction, the relevant instance corresponding
to the query “forgot” is initially ranked tenth, following several instances of “fort”.
Both the semantic ranking and the combined re-ranking successfully identify its true
relevance, increasing its score while also reducing the scores of the visually similar
false positive instances corresponding to “fort”. Yet, the visually similar results still
dominate the combined list, due to several factors, including the limited size and
semantic variability of the GW dataset, as well as a significant class imbalance. That

❙✐♠✐❧❛r✐t② ❚♦♣✲✶✵ ❘❛♥❦❡❞ ▲✐sts

❱❡r❜❛t✐♠

❙❡♠❛♥t✐❝

❈♦♠❜✐♥❡❞

Figure 4.5: Top-10 ranked list for the query “forgot” ordered by verbatim (purple),
semantic (yellow), and combined (blue) ranking. The rightmost part of each snippet
represents corresponding similarities, while the ground truth is highlighted in green.
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is, many words have either very few or no semantically related instances in the
database. Although the re-ranking process successfully promotes the correct instance
to the top rank, its bounding box remains unchanged. As a result, under stricter
overlap thresholds, this correction is effectively disregarded, which explains the greater
performance gain in mAP@25 compared to mAP@50.

Another noteworthy qualitative characteristic of the proposed pipeline, useful in
recognition-free semantic retrieval, is illustrated in Figure 4.6. In a similar fashion to
the previous example, we present three ranked lists for the query “soldiers”. While
the vocabulary of the GW dataset generally lacks semantic depth due to its limited
size, this limitation is less pronounced in certain areas, such as military terminology.
In such a scenario, the qualitative benefit is clear: when a user searches for military-
related terms (e.g., “soldiers”), the system is more likely to retrieve other relevant
military terms (e.g., “officers”, “recruits”, “military”) rather than visually similar but
semantically unrelated results. Hence, users receive results that better reflect the in-
tended meaning of their query.

❙✐♠✐❧❛r✐t② ❚♦♣✲✷✶ ❘❛♥❦❡❞ ▲✐sts

❱❡r❜❛t✐♠

❙❡♠❛♥t✐❝

❈♦♠❜✐♥❡❞

Figure 4.6: Top-21 ranked list for the query “soldiers” ordered by verbatim (purple),
semantic (yellow), and combined (blue) ranking. The rightmost part of each snippet
represents corresponding similarities, while the ground truth is highlighted in green.
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Moreover, note that since there is only one instance of the word “soldiers” in the
dataset, the second instance in the initial verbatim retrieval is an erroneous duplication
of the first, possibly due to suboptimal NMS. The final re-ranking correctly discards
this duplicate, a qualitative improvement not effectively measured by mAP.

4.7 Discussion

In a nutshell, our semantic re-ranking framework operates as a modular, plug-and-
play extension to existing KWS systems, requiring neither retraining nor dataset-
specific adaptation. In contrast with approaches that rely on fine-tuned embeddings or
corpus-dependent training, our method is able to generalize effectively across datasets.
This generalization capability is further supported by consistent performance gains
observed across both employed datasets. To ensure robustness of the GW results
despite the limited size of the dataset, we reported mAP scores averaged over four
experimental trials. The consistently low standard deviation observed across these
experiments indicate the reliability and stability of the proposed semantic augmenta-
tion pipeline. This robustness is further evidenced by the consistent effectiveness of
the method across different semantic embedding models, highlighting its adaptability
to varying NLP backends.

The broader candidate pool and richer semantic space of IAM allow the semantic
re-ranking to manifest more clearly, facilitating its ability to exploit higher-level mean-
ing when more linguistic diversity is available. These results validate the generaliza-
tion capacity of our method to adapt to heterogeneous data scenarios. Notably, Wor-
dRetrievalNet features improvements of 3% in mAP@25 (from 79.15% to 82.12%) and
2.6% in mAP@50 (from 72.85% to 75.43%), while KWS-Simplified achieves +1.85%
(from 86.40% to 88.25%) and +1.15% (from 63.73% to 64.88%) respectively.

In our numerical results over GW, we observe consistent improvements for both
baseline models when semantic relevance is incorporated. This behavior holds across
both mAP@25 and mAP@50 metrics, regardless of the decoder architecture. Wor-
dRetrievalNet achieves the most substantial gain, with mAP@25 increasing by 2.3%
(from 94.31% to 96.59%), while KWS-Simplified improves by 1.2% (from 89.74% to
90.94%).

Although the relative improvements in mAP@50 are more modest (typically less
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than 1%), this does not fully capture the value of our method. The high baseline
performance suggests that remaining false negatives are inherently difficult cases,
often involving retrieved instances that fall below the IoU threshold due to imperfect
bounding box predictions by the underlying word spotter. As a result, even when
re-ranking elevates a semantically relevant instance, it may not be counted as correct
under the strict overlap criterion. This evaluation limitation underscores the need
for post-retrieval refinements that can adjust the predicted bounding boxes. Future
extensions such as query expansion [12], late fusion [84], or joint re-ranking and
refinement modules could alleviate this issue.

A natural direction for future exploration involves moving beyond late fusion to-
ward fully trainable semantic re-ranking modules. Integrating fusion architectures
inspired by recent vision-language models, such as CLIP-Rerankers [85] or BLIP
[86], could enable richer cross-modal interactions between query and candidate em-
beddings. While such models introduce additional training complexity, they offer the
potential to jointly optimize retrieval, decoding, and semantic alignment in a single
unified pipeline.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK

5.1 Conclusions

5.2 Future Directions

This final chapter summarizes the key contributions and empirical findings of the
thesis, and outlines potential directions and opportunities for future research.

5.1 Conclusions

This thesis investigates enhanced segmentation-free Keyword Spotting (KWS) through
the integration of semantic understanding enabled by modern NLP breakthroughs,
particularly large pre-trained language models. Motivated by the limitations of exist-
ing systems, especially their dependence on purely visual similarity during retrieval,
we propose a lightweight, modular framework that projects retrieved word snippets
into a latent semantic space, where a semantic similarity score is computed between
each snippet and the query. The resulting semantic similarity scores are fused with
the original visual similarities from the keyword spotter to enable joint re-ranking.

Experimental results on two standard KWS benchmarks, the George Washing-
ton (GW) and IAM datasets validate our initial hypothesis: semantic feedback can
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systematically enhance retrieval precision while maintaining recall. Across two rep-
resentative segmentation-free baselines (WordRetrievalNet and KWS-Simplified) and
multiple decoding strategies, we observe consistent mAP improvements. Most no-
tably, WordRetrievalNet achieves a ∼2.3% absolute gain in mAP@25 on GW, as well
as a ∼ 3% improvement on IAM when paired with TrOCR. These findings demon-
strate that integrating contextual word embeddings enhances Word Spotting retrieval
quality even in recognition-free setups — a scenario where no prior work exists on
semantic KWS to our knowledge.

The robustness of our framework is further supported by its low variance across
cross-validation folds, and its insensitivity to the choice of semantic embedding model.
The optimal fusion weights suggest that a balanced contribution between verbatim
and semantic signals yields the best performance. Moreover, qualitative examples
demonstrate that semantically relevant but visually dissimilar terms can be effectively
elevated in the ranking, showcasing the method’s ability to perform beyond mere
pattern matching.

Overall, our findings encourage a shift in perspective wherein deep language mod-
els need not be confined to transcription, but can actively contribute to the semantic
understanding and retrieval of handwritten documents. We hope this work paves
the way toward more intelligent, generalizable, and semantically aware document
analysis systems.

5.2 Future Directions

While this work demonstrates the viability of semantic-augmented segmentation-free
KWS, several promising directions emerge for further research.

A promising avenue for future research lies in transitioning from late fusion ap-
proaches to fully trainable end-to-end re-ranking systems. Recent advances in vision-
language models — particularly architectures like CLIP-Rerankers [85] and BLIP
[86] — demonstrate the potential for deeper, learnable interactions between visual
and textual embeddings. While such models inevitably introduce greater computa-
tional complexity during training, they offer a significant advantage: the ability to
jointly optimize document retrieval, text decoding, and semantic alignment within a
unified neural framework.
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