
 

UNIVERSITY OF IOANNINA 

SCHOOL OF PHYSICAL SCIENCES 

DEPARTMENT OF CHEMISTRY 

 

 

INVESTIGATING THE FEASIBILITY OF SPECTROSCOPIC TECHNIQUES AND 

NON-INVASIVE SAMPLING OF BIOFLUIDS TO EXPLORE PHYSIOLOGICAL 

ALTERATIONS DURING PHYSICAL EXERCISE 

 

 

CHRISTOFOROS CHRIMATOPOULOS 

CHEMIST, MSc 

 

 

DOCTORAL THESIS 

2025 

IOANNINA 

 



  



 

UNIVERSITY OF IOANNINA 

SCHOOL OF PHYSICAL SCIENCES 

DEPARTMENT OF CHEMISTRY 

 

 

INVESTIGATING THE FEASIBILITY OF SPECTROSCOPIC TECHNIQUES AND 

NON-INVASIVE SAMPLING OF BIOFLUIDS TO EXPLORE PHYSIOLOGICAL 

ALTERATIONS DURING PHYSICAL EXERCISE 

 

 

CHRISTOFOROS CHRIMATOPOULOS 

CHEMIST, MSc 

 

 

DOCTORAL THESIS 

2025 

IOANNINA 

 



  



 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ 

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 

ΤΜΗΜΑ ΧΗΜΕΙΑΣ 

 

 

ΔΙΕΡΕΥΝΗΣΗ ΑΝΑΛΥΤΙΚΩΝ ΜΕΘΟΔΟΛΟΓΙΩΝ ΒΑΣΙΣΜΕΝΩΝ ΣΕ ΜΕΘΟΔΟΥΣ 

ΜΗ ΕΠΕΜΒΑΤΙΚΗΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΒΙΟΛΟΓΙΚΩΝ ΥΓΡΩΝ ΚΑΙ ΤΕΧΝΙΚΕΣ 

ΦΑΣΜΑΤΟΣΚΟΠΙΑΣ ΓΙΑ ΤΗ ΜΕΛΕΤΗ ΦΥΣΙΟΛΟΓΙΚΩΝ ΠΡΟΣΑΡΜΟΓΩΝ ΚΑΤΑ 

ΤΗ ΣΩΜΑΤΙΚΗ ΑΣΚΗΣΗ 

 

 

ΧΡΙΣΤΟΦΟΡΟΣ ΧΡΗΜΑΤΟΠΟΥΛΟΣ 

ΧΗΜΙΚΟΣ, MSc 

 

 

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ 

2025 

ΙΩΑΝΝΙΝΑ 



 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

«Η έγκριση της διδακτορικής διατριβής από το Τμήμα Χημείας της Σχολής Θετικών 

Επιστημών, του Πανεπιστημίου Ιωαννίνων δεν υποδηλώνει αποδοχή των γνωμών του 

συγγραφέα Ν. 5343/32, άρθρο 202, παράγραφος 2»  



 

 



i 
 

Ορισμός Τριμελούς Συμβουλευτικής Επιτροπής από τη Συνέλευση: 1032/12-02-2021 

 

Μέλη Τριμελούς Συμβουλευτικής Επιτροπής: 

 

Επιβλέπων: 

Βασίλειος Σακκάς, Καθηγητής, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων 

Μέλη: 

Μάμαντος Προδρομίδης, Καθηγητής, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων 

Κωνσταντίνος Σταλίκας, Καθηγητής, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων 

 

Ημερομηνία ορισμού θέματος: 22-04-2021 

Θέμα: «Investigating the feasibility of spectroscopic techniques and non-invasive 

sampling of biofluids to explore physiological alterations during physical exercise» 

 

ΟΡΙΣΜΟΣ ΕΠΤΑΜΕΛΟΥΣ ΕΞΕΤΑΣΤΙΚΗΣ ΕΠΙΤΡΟΠΗΣ από τη Συνέλευση: 1145/30-06-2025 

1. Βασίλειος Σακκάς, Καθηγητής, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων 

2. Μάμαντος Προδρομίδης, Καθηγητής, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων 

3. Κωνσταντίνος Σταλίκας, Καθηγητής, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων 

4. Αθανάσιος Βλεσσίδης, Καθηγητής, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων  

5. Δημοσθένης Γκιώκας, Καθηγητής, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων  

6. Νικόλαος Κουρκουμέλης, Καθηγητής, Τμήμα Ιατρικής, Πανεπιστήμιο Ιωαννίνων  

7. Παντελεήμων Τάκης, Επίκουρος Καθηγητής, Τμήμα Χημείας, Πανεπιστήμιο Ιωαννίνων  

 

Έγκριση Διδακτορικής Διατριβής με βαθμό «ΑΡΙΣΤΑ» (Δέκα-10) στις 10-07-2025 

 

Η Πρόεδρος του Τμήματος Χημείας 
Δήμητρα Χελά, Καθηγήτρια 

Η Γραμματέας του Τμήματος 
Ξανθή Τουτουνζόγλου 



ii 
 

 

  



iii 
 

Ευχαριστίες 

 

 παρούσα διδακτορική διατριβή αποτελεί το επιστέγασμα μιας 

πολύχρονης διαδρομής, γεμάτης προκλήσεις, αμφισβητήσεις, 

αναζητήσεις αλλά και έντονες στιγμές δημιουργικότητας και 

προσωπικής εξέλιξης. Η εκπόνησή της πραγματοποιήθηκε στο Εργαστήριο Αναλυτικής 

Χημείας του Τμήματος Χημείας του Πανεπιστημίου Ιωαννίνων και αποτελεί την πιο 

ώριμη και ουσιαστική φάση της επιστημονικής μου πορείας μέχρι σήμερα. 

Θα ήθελα πρώτα και πάνω από όλα να εκφράσω την ειλικρινή μου ευγνωμοσύνη 

στον επιβλέποντα καθηγητή μου, Καθηγητή του Τμήματος Χημείας του Πανεπιστημίου 

Ιωαννίνων κ. Βασίλειο Σακκά, για την πολύτιμη καθοδήγηση, τη διαρκή υποστήριξη και 

την εμπιστοσύνη που μου έδειξε καθ’ όλη τη διάρκεια της διατριβής. Η συνέπειά του, το 

επιστημονικό του ήθος και η αφοσίωσή του στην έρευνα αποτέλεσαν φάρο 

καθοδήγησης, αλλά και πηγή έμπνευσης. Η ευκαιρία να εργαστώ υπό την επίβλεψή του 

με τιμά βαθύτατα. 

Θα ήθελα να ευχαριστήσω θερμά τον Καθηγητή του Τμήματος Χημείας του 

Πανεπιστημίου Ιωαννίνων κ. Μάμαντο Προδρομίδη. για τη ουσιαστική παρουσία του 

καθ’ όλη τη διάρκεια της διατριβής. Με την επιστημονική του εμπειρία, την οξυδέρκεια 

και την ικανότητά του να εστιάζει στην ουσία των πραγμάτων, προσέφερε πολύτιμη 

καθοδήγηση και στήριξη. Η συμβολή του, μέσα από εύστοχες παρατηρήσεις και γόνιμες 

συζητήσεις, συνέβαλε καθοριστικά στην εξέλιξη και ωρίμανση του ερευνητικού μου 

έργου. 

Θερμές ευχαριστίες οφείλω επίσης στον Καθηγητή του Τμήματος Χημείας του 

Πανεπιστημίου Ιωαννίνων κ. Κωνσταντίνο Σταλίκα, για τη διαρκή του διαθεσιμότητα, την 

ενθάρρυνση και τις τεκμηριωμένες προτάσεις του σε κρίσιμα στάδια της διατριβής. Ο 

συνδυασμός επιστημονικής αυστηρότητας και ευγένειας που τον διακρίνει, αποτέλεσε 

H 



iv 
 

για μένα παράδειγμα επιστημονικής δεοντολογίας. Η συμβολή του στην πορεία μου 

υπήρξε ουσιαστική και του είμαι ειλικρινά ευγνώμων. 

Θα ήθελα να ευχαριστήσω ιδιαίτερα τα μέλη της εξεταστικής επιτροπής Καθηγητή 

του Τμήματος Ιατρικής του Πανεπιστημίου Ιωαννίνων κ. Νικόλαο Κουρκουμέλη. και 

Επίκουρου Καθηγητή του Τμήματος Χημείας του Πανεπιστημίου Ιωαννίνων κ. 

Παντελεήμων Τάκη, με τους οποίους είχα τη χαρά και την τιμή να συνεργαστώ στενά σε 

επιμέρους στάδια της διατριβής. Η ενεργή τους συμμετοχή, οι διορατικές τους 

επισημάνσεις και η επιστημονική τους καθοδήγηση συνέβαλαν ουσιαστικά στην 

εμβάθυνση της έρευνάς μου. Η εμπειρία και η αφοσίωσή τους αποτελούν για μένα 

πολύτιμο παράδειγμα επιστημονικής στάσης και ήθους. 

Ευχαριστώ επίσης εγκάρδια τα μέλη της εξεταστικής επιτροπής Καθηγητές του 

Τμήματος Χημείας του Πανεπιστημίου Ιωαννίνων κ. Αθανάσιο Βλεσσίδη. και κ. 

Δημοσθένη Γκιώκα για τη διάθεση και τον χρόνο που αφιέρωσαν για την αξιολόγηση της 

παρούσας διατριβής. Η πόρτα των εργαστηρίων και γραφείων τους ήταν πάντα ανοιχτή, 

και παρουσία τους στην επιτροπή αποτελεί για μένα ιδιαίτερη τιμή. 

Ιδιαίτερη μνεία αξίζει στους αγαπητούς φίλους και συνεργάτες μου, Δρ. Ελευθέριο 

Παύλου, Καλλιόπη Παπαδοπούλου και Θεοδώρα Τσιλούλη, καθώς και στον αδερφό μου 

Γρηγόρη Χρηματόπουλο με τους οποίους μοιράστηκα απαιτητικά αλλά γόνιμα στάδια 

της έρευνας. Η μεταξύ μας συνεργασία υπήρξε παραγωγική, αλληλοσυμπληρούμενη και 

βαθιά ανθρώπινη. 

Στο χώρο του εργαστηρίου, δεν ήμουν ποτέ μόνος. Συνεργάτες και φίλοι, με τη 

γενναιόδωρη διάθεσή τους να μοιραστούν γνώσεις και ιδέες, αποτέλεσαν το υπόβαθρο 

μιας συλλογικής προσπάθειας που ξεπέρασε το στενό πλαίσιο μιας διατριβής. Στην 

συνοδοιπόρο των πρώτων μου ερευνητικών βημάτων Dr. Cristina Jiménez-Holgado, στην 

Dr. Maria Laura Tummino, και στον Ελευθέριο Ηλιάδη οφείλω ένα μεγάλο ευχαριστώ για 

την συνεργασία και τις όμορφες στιγμές. 



v 
 

Θα ήθελα, επίσης, να εκφράσω την ιδιαίτερη ευγνωμοσύνη μου στην Δρ. Μερίνα 

Καλαμπόκα, η οποία υπήρξε καθοδηγητική μορφή κατά τη διάρκεια των μεταπτυχιακών 

μου σπουδών και εξακολουθεί μέχρι σήμερα να αποτελεί για μένα πολύτιμη μέντορα και 

προσωπικότητα ήθους. Η υπομονή της, η σαφήνεια της σκέψης της και η γενναιοδωρία 

με την οποία μοιράστηκε μαζί μου τις γνώσεις και την εμπειρία της, με σημάδεψαν 

βαθιά και με ακολουθούν σε κάθε βήμα της επιστημονικής μου πορείας. Η συμβολή της 

υπερβαίνει τα χρονικά όρια ενός προγράμματος σπουδών – είναι διαρκής και αληθινά 

εμπνευστική. 

Ένα μεγάλο και ειλικρινές ευχαριστώ οφείλω σε όλους τους εθελοντές, τους 

αθλητές, τους προπονητές, καθώς και τις αθλητικές ομάδες και συλλόγους με τους 

οποίους είχα τη χαρά να συνεργαστώ στο πλαίσιο της παρούσας έρευνας. Η πολύτιμη 

συμμετοχή και η πρόθυμη ανταπόκρισή τους υπήρξαν καθοριστικές για την υλοποίηση 

ενός σημαντικού μέρους της εργασίας μου, το οποίο εκτελέστηκε εκτός του κλασικού 

εργαστηριακού πλαισίου. Η συνέπεια, ο επαγγελματισμός και η θετική τους διάθεση 

έδωσαν ουσιαστικό περιεχόμενο στα πειραματικά δεδομένα. Χωρίς τη συμβολή τους, η 

παρούσα διατριβή δεν θα είχε την ίδια πληρότητα και δυναμική. 

Θα ήθελα να ευχαριστήσω τον Δρ. Λάμπρο Νούση, τον Καθηγητή του Τμήματος 

Ιατρικής του Πανεπιστημίου Ιωαννίνων κ. Κωνσταντίνο Τσιλίδη και το Εργαστήριο 

Υγιεινής και Επιδημιολογίας του Τμήματος Ιατρικής του Πανεπιστημίου Ιωαννίνων, το 

οποίο αποτέλεσε το εφαλτήριο της επαγγελματικής μου εμπειρίας. Εκεί στεγάστηκαν τα 

πρώτα μου επαγγελματικά βήματα και μου δόθηκε η πολύτιμη ευκαιρία να εργάζομαι 

παράλληλα με την εκπόνηση του διδακτορικού μου. Το εργαστήριο αυτό δεν αποτέλεσε 

μόνο έναν χώρο εργασίας, αλλά και έναν πυρήνα μάθησης, ευθύνης και καθημερινής 

εξέλιξης. Πέρα όμως από την επιστημονική γνώση και εμπειρία, μου χάρισε κάτι ακόμη 

πιο πολύτιμο: τη γνωριμία με δύο εξαιρετικούς ανθρώπους, την Χριστίνα Διαμάντη και 

τον Χρήστο Τσιόστα, που δεν ήταν απλώς συνεργάτες αλλά αληθινοί φίλοι, 

συνοδοιπόροι και στήριγμα σε πολλές στιγμές της διαδρομής αυτής. 



vi 
 

Θα ήταν άδικο να μην ευχαριστήσω τους φίλους μου, Ανέστη Τσιαρτσιανίδη, 

Γιάννη Δουλιάκα και Τάσο Κωνσταντίνη, και την κοπέλα μου Ειρήνη Χατζή που στάθηκαν 

δίπλα μου με κατανόηση και ενθάρρυνση, προσφέροντάς μου πολύτιμες στιγμές 

ανάπαυλας, ειλικρινούς συντροφιάς και εσωτερικής ισορροπίας. Η παρουσία τους 

υπήρξε λυτρωτική στις πιο απαιτητικές περιόδους της διαδρομής αυτής. 

Τέλος, η πιο ειλικρινής και βαθιά ευγνωμοσύνη μου ανήκει στην οικογένειά μου – 

Θεόδωρο Χρηματόπουλο και Ευτυχία Νούση, στον αδερφό μου Γρηγόρη Χρηματόπουλο 

και στην γιαγιά μου Ερμιόνη Νούση – καθώς και στον νονό μου Νίκο Χαλτογιαννίδη για 

την αγάπη, τη στήριξη και την αδιάλειπτη πίστη τους σε μένα. Η ύπαρξή τους είναι το 

στέρεο θεμέλιο κάθε μου προσπάθειας. 

Ευχαριστώ! 

 

Χριστόφορος Χρηματόπουλος 

Ιούνιος 2025, Ιωάννινα 

  



vii 
 

  



viii 
 

  



ix 
 

 

Table of Contents 

 

Ευχαριστίες ............................................................................................................................ iii 

Summary ................................................................................................................... xvii 

Περίληψη ................................................................................................................... xxi 

Theoretical Framework ................................................................................................. 1 

1. The art of sports science ................................................................................................... 1 

1.1 Overview of sports science .......................................................................................... 1 

1.2 Recent scientific advancements in sports science ...................................................... 5 

1.3 Sports biochemistry: Understanding the molecular basis of athletic performance ... 7 

2. Biofluids: The way the human body talks ....................................................................... 14 

2.1 Biofluid monitoring in sports science ........................................................................ 14 

2.2 Microsampling techniques in blood collection .......................................................... 16 

2.2.1 Dried Blood Spots (DBS) ...................................................................................... 18 

2.2.2 Volumetric Absorptive Microsampling (VAMS) .................................................. 20 

2.2.3 Capillary microsampling (CMS) ........................................................................... 22 

2.2.4 Microneedles ....................................................................................................... 24 

2.3 Saliva sampling: A non-invasive tool for athlete monitoring .................................... 26 

2.3.1 Unstimulated – passive drooling method ........................................................... 27 

2.3.2 Stimulated method ............................................................................................. 29 

2.3.3 Swab-based sampling .......................................................................................... 30 



x 
 

2.3.4 Dried Saliva Spots (DSS) ....................................................................................... 33 

3. Infrared spectroscopy: Fundamentals and experimental methods ................................ 35 

3.1 Electromagnetic radiation .......................................................................................... 36 

3.2 Infrared absorptions ................................................................................................... 39 

3.3 Normal modes of vibration ........................................................................................ 39 

3.4 Complicating Factors .................................................................................................. 42 

3.4.1 Overtone and anharmonic bands ........................................................................ 42 

3.4.2 Fermi resonance .................................................................................................. 43 

3.4.3 Coupling ............................................................................................................... 44 

3.4 Fourier-Transform infrared spectrometers ................................................................ 44 

3.4.1 Michelson interferometers.................................................................................. 45 

3.4.2 Fourier-Transformation in IR spectroscopy ......................................................... 47 

3.5 Attenuated Total Reflectance spectroscopy .............................................................. 48 

3.5.1 ATR cells ............................................................................................................... 49 

3.5.2 Evanescent wave ................................................................................................. 51 

3.6 Qualitative applications of ATR-FTIR spectroscopy ................................................... 52 

4. Nuclear Magnetic Resonance (NMR) spectroscopy ........................................................ 54 

4.1 Magnetic resonance ................................................................................................... 55 

4.1.1 Nuclear spins ....................................................................................................... 55 

4.1.2 The resonance phenomenon ............................................................................... 56 

4.1.3 Sensitivity and the Boltzmann equation ............................................................. 58 

4.1.4 Magnetization ...................................................................................................... 59 



xi 
 

4.2 The Nuclear Magnetic Resonance experiment.......................................................... 60 

4.2.1 Pulsed NMR ......................................................................................................... 61 

4.2.2 Free Induction Decay (FID) .................................................................................. 62 

4.2.3 Fourier Transform in NMR .................................................................................. 64 

4.3 Core components of an NMR spectrometer ............................................................. 65 

4.3.1 Magnet ................................................................................................................ 66 

4.3.2 Probe ................................................................................................................... 68 

4.4 Industrial applications ................................................................................................ 70 

5. Fourier Transformation ................................................................................................... 71 

5.1 Serial-Spectral domains ............................................................................................. 72 

5.2 Periodic an aperiodic signals...................................................................................... 73 

5.3 Explaining the domain transformation ...................................................................... 75 

5.4 The versatility of FT .................................................................................................... 79 

5.4.1 FT spectroscopy ................................................................................................... 81 

5.4.2 FT advantages...................................................................................................... 83 

5.4.3 Applications in chemistry .................................................................................... 84 

6. Multivariate analysis ........................................................................................................ 85 

6.1 Measurement scales .................................................................................................. 85 

6.2 A Classification of multivariate techniques ............................................................... 86 

6.2.1 Supervised learning - Dependence techniques .................................................. 88 

6.2.2 Usupervised learning - Interdependence techniques ......................................... 88 

6.3 Types of multivariate techniques .............................................................................. 89 



xii 
 

6.4 Principal Component Analysis .................................................................................... 90 

6.4.1 Step-by-step explanation of PCA ......................................................................... 91 

6.4.2 Stopping rules: criteria for the number of components to extract..................... 96 

6.4.3 Interpreting the factors − Evaluating the significance of factor loadings ........... 97 

6.5 Partial Least Squares method .................................................................................. 100 

6.5.1 Advantages of the PLS method ......................................................................... 101 

6.5.2 A conceptual explanation of PLS ....................................................................... 103 

6.5.3 A geometric interpretation of PLS ..................................................................... 103 

6.5.4 Interpreting the scores and loadings in PLS ...................................................... 106 

6.5.5 Validation of model results ............................................................................... 107 

6.5.6 PLS in continuous and categorical data ............................................................. 109 

6.6 Chemometrics .......................................................................................................... 109 

Aim and Objectives.................................................................................................... 113 

Experimental Part ...................................................................................................... 117 

7. Bioethical considerations ............................................................................................... 117 

8. Participants .................................................................................................................... 117 

8.1 Athletic cohort and management ............................................................................ 118 

8.2 Anthropometric characteristics ............................................................................... 123 

8.3 Exclusion criteria ...................................................................................................... 124 

8.3.1 General health and lifestyle............................................................................... 125 

8.3.2 Sex-based differences ........................................................................................ 125 

8.3.3 Nutritional and pre-sampling guidelines ........................................................... 126 



xiii 
 

8.3.4 Medical history and conditions ......................................................................... 126 

8.4 COVID-19 considerations ......................................................................................... 126 

9. Experimental design ...................................................................................................... 127 

10. Sample collection ........................................................................................................ 131 

10.1 Saliva sampling ....................................................................................................... 131 

10.2 Blood enzymatic assay ........................................................................................... 132 

10.3 Blood sampling ...................................................................................................... 132 

10.3.1 Synthesis of adsorptive-FPSE based materials ................................................ 133 

10.3.2 Blood microsampling with different materials ............................................... 135 

11. Sample pre-processing ................................................................................................ 136 

11.1 Saliva handling ....................................................................................................... 137 

11.2 Blood handling ....................................................................................................... 138 

12. Thiocyanate assay in saliva .......................................................................................... 139 

12.1 Calibration curve via artificial saliva ...................................................................... 139 

12.2 Colored complex formation ................................................................................... 140 

13. Instrumentation ........................................................................................................... 140 

13.1 ATR-FTIR spectra acquisition ................................................................................. 140 

13.2 Photometric acquisition for thiocyanate assay ..................................................... 141 

13.3 NMR spectra acquisition ........................................................................................ 142 

14. Data analysis ................................................................................................................ 143 

Results and Discussion .............................................................................................. 149 

15. Saliva drying optimization ........................................................................................... 149 



xiv 
 

16. Phase 1 − Spectroscopic and chemometric characterization of saliva for athlete 

profiling: A study using ATR-FTIR ....................................................................................... 154 

16.1 Salivary biochemical changes before and after physical exercise ......................... 154 

16.2 Biochemical adaptations aid by training habits: high- vs. low-level athletes 

discrimination ................................................................................................................. 160 

16.2.1 Questionnaire results: distinguishing low- and high-level athletes ................ 161 

16.2.2 Discrimination between groups – PCA ............................................................ 164 

16.2.3 Discrimination between groups – PLS-DA ....................................................... 171 

17. Phase 2 − Utilizing ATR-FTIR spectroscopy of saliva for monitoring and differentiating 

exercise intensity levels ..................................................................................................... 179 

17.1 Chemometric discrimination of different physical exercise intensities................. 181 

17.1.1 Model selection ............................................................................................... 183 

17.1.2 Model evaluation ............................................................................................. 189 

17.1.3 Factors interpretation ..................................................................................... 192 

17.2 Trends of salivary vs. blood biomarkers: Lactate and Glucose .............................. 194 

17.3 Monitoring biomarkers during increased physical effort ...................................... 201 

18. Phase 3 − Exploring salivary thiocyanate as a novel biomarker of physical activity 

response ............................................................................................................................. 208 

18.1 Method development ............................................................................................ 209 

18.2 Method validation .................................................................................................. 213 

18.3 Thiocyanate determination during increased exercise intensity........................... 215 

18.4 Insights from a large athletic cohort ...................................................................... 219 

18.5 Biochemical pathway of exercise-induced thiocyanate reduction ........................ 223 

19. Phase 4 − Metabolomic profiling of exercise intensity via a novel approach of DBS 

microsampling and proton NMR analysis .......................................................................... 225 



xv 
 

19.1 Selection of blood microsampling adsorptive material ......................................... 226 

19.1.1 Characterization of the synthesized materials with SEM analysis.................. 227 

19.1.2 Comparison of adsorptive materials and NMR analysis of blank extracts ..... 229 

19.2 Quality Control (QC) assessment ........................................................................... 230 

19.3 Intra-individual repeatability ................................................................................. 232 

19.3.1 Untargeted metabolomics .............................................................................. 232 

19.3.2 Targeted metabolomics – metabolic changes ................................................ 239 

19.4 Expanded cohort validation ................................................................................... 245 

Conclusions .............................................................................................................. 253 

Bibliography ............................................................................................................. 259 

Appendix 1 ......................................................................................................................... 307 

Appendix 2 ......................................................................................................................... 310 

Appendix 3 ......................................................................................................................... 312 

 

  



xvi 
 

  



xvii 
 

Investigating the feasibility of spectroscopic techniques and non-invasive sampling of 

biofluids to explore physiological alterations during physical exercise 

 

Christoforos Chrimatopoulos 

Doctoral thesis 

 

Summary 

 

This PhD thesis presents the development and application of an innovative, non-

invasive analytical framework for monitoring physiological and metabolic responses to 

physical exercise, utilizing saliva and dried blood spot (DBS) sampling.  

The study drew upon a substantial cohort of 260 athletes representing a broad 

spectrum of sporting disciplines, encompassing both individual and team sports. 

Participants included competitive runners and triathlon athletes, football, basketball, 

volleyball and tennis players, boxers, karatekas, and muai thai athletes, as long as aerial 

hoops and aerobic gymnastics athletes and pole dancers, ensuring a wide representation 

of physiological demands and training regimens. Crucial to the success of this effort was 

the close collaboration with numerous sports clubs and athletic associations across the 

region of Epirus, Greece. Ongoing communication with coaches, trainers, and 

administrative staff facilitated participant recruitment, ensured adherence to protocol 

requirements, and strengthened the practical relevance of the study. This regional 

network of support not only provided access to a varied and committed participant base 

but also helped bridge the gap between laboratory research and applied sports science in 

real-world training environments. 



xviii 
 

The work is structured into four distinct yet interconnected phases, integrating 

analytical techniques —spectroscopic (ATR-FTIR, Vis photometry, and NMR) and 

chemometric (multivariate and statistical analyses)— to evaluate biochemical changes 

with precision and minimal invasiveness. This integrative approach addresses the 

increasing demand for real-time, field-deployable diagnostic tools in sports science, 

health monitoring, and personalized fitness assessment. 

In Phase 1, attenuated total reflectance Fourier-transform infrared (ATR-FTIR) 

spectroscopy was applied to saliva samples from both low-level (occasional light load 

training) and high-level athletes (frequent heavy load training) to evaluate its potential as 

a non-invasive tool for physiological monitoring. The primary aim was to explore the 

feasibility of using salivary biochemical profiles as indicators of training status and 

physical conditioning. For the first time, multivariate statistical analysis of the salivary 

infrared data revealed clear biochemical distinctions between athletic levels, underlining 

the effectiveness of ATR-FTIR in capturing exercise-induced metabolic alterations. These 

findings highlighted the responsiveness of salivary composition to training load and 

demonstrated the diagnostic value of saliva in capturing cumulative physiological 

adaptations. Phase 1 established the proof-of-concept that infrared saliva fingerprinting 

can serve as a rapid, field-applicable screening method, laying the analytical and 

conceptual foundation for more dynamic, intensity-resolved investigations in the 

subsequent Phases. 

Phase 2 advanced this line of inquiry by focusing on the dynamics of salivary 

composition during physical exercise of increasing intensity (0, 5, 10, and 15 km/h) by 

employing ATR-FTIR spectroscopy and advanced multivariate analysis. The novelty lies in 

the integration of second-derivative spectral preprocessing with extensive chemometric 

modeling—specifically PCA-LDA and PLS-DA—to enable fine-tuned, non-invasive 

classification of training loads based on salivary biochemical profiles. The innovation is 

expanded on the construction and rigorous validation of predictive models that achieved 

high classification accuracy, demonstrating the discriminative power of salivary infrared 



xix 
 

fingerprints. In addition, alterations in salivary lactate and glucose were compared with 

the corresponding trends in blood, resulting an excellent harmonization in the case of 

lactate, in contrast to glucose, facts that align with the literature. Multivariate analysis 

revealed 5 spectral features (corresponding to phosphate, phospholipids, glucose, lactate, 

thiocyanate) where they lead to discrimination. To our surprise, thiocyanate (SCN⁻) 

emerged as a prominent spectral feature linked with physical exercise. Phase 2 

highlighted the value of spectroscopic fingerprinting in identifying metabolite-specific 

signatures of physical stress (such as the candidate SCN⁻) and in supporting personalized 

training strategies. 

To quantitatively validate the role of thiocyanate as a biomarker, Phase 3 

introduced a robust, cost-effective photometric method tailored for high-throughput 

analysis of salivary SCN⁻ concentrations. A large-scale study involving 161 athletes 

confirmed, for the first time, a consistent decrease in thiocyanate levels with escalating 

exercise intensity. Detailed statistical evaluation, also revealed statistically significant 

influences of gender and smoking status on salivary thiocyanate profiles, thereby 

enriching our understanding of interindividual variability in metabolic responses to 

physical stress. This comprehensive dataset enabled precise mapping of SCN⁻ response 

trends across diverse athlete profiles and training intensities. The findings represent the 

first large-cohort validation of thiocyanate’s utility as a non-invasive, exercise-responsive 

biomarker, supporting its future use in personalized monitoring frameworks within sports 

and exercise science. 

In Phase 4, the research turned to systemic metabolic profiling using nuclear 

magnetic resonance (NMR) spectroscopy applied to dried blood spot (DBS) samples. This 

approach leveraged the minimally invasive nature of blood microsampling—achieved 

through DBS cards and alternative sorbent materials—making it particularly suitable for 

athletic monitoring in field conditions. Despite the inherent challenges of limited sample 

volume and matrix complexity, NMR successfully distinguished metabolic signatures 

associated with increasing exercise intensities. This represents a novel integration of 



xx 
 

microsampling and high-resolution spectroscopy in sports science, where such a 

combination remains largely unexplored. The findings not only underscored the impact of 

training load on systemic metabolism but also demonstrated the feasibility of DBS-NMR 

workflows for real-world biomonitoring. Moreover, this Phase highlights the 

complementarity of different biofluids and analytical platforms in constructing a holistic, 

minimally invasive physiological monitoring system. 

Taken together, this thesis delivers a multidimensional, minimally invasive analytical 

strategy for assessing biochemical and metabolic responses to physical exercise. The work 

underscores the synergistic utility of ATR-FTIR spectroscopy, photometric quantification 

of thiocyanate, and NMR metabolomics in personalizing athletic training, enhancing 

performance monitoring, and potentially informing broader health diagnostics. The 

methodologies and findings presented herein contribute significantly to the growing field 

of non-invasive/minimally-invasive biomonitoring and pave the way for future 

translational applications in sports science. 
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Διερεύνηση αναλυτικών μεθοδολογιών βασισμένων σε μεθόδους μη επεμβατικής 

δειγματοληψίας βιολογικών υγρών και τεχνικές φασματοσκοπίας για τη μελέτη 

φυσιολογικών προσαρμογών κατά τη σωματική άσκηση 

 

Χριστόφορος Χρηματόπουλος 

Διδακτορική διατριβή 

 

Περίληψη 

 

Η παρούσα διδακτορική διατριβή αναπτύσσει και εφαρμόζει ένα καινοτόμο, μη 

επεμβατικό αναλυτικό πλαίσιο για την παρακολούθηση φυσιολογικών και μεταβολικών 

αποκρίσεων κατά τη διάρκεια της σωματικής άσκησης, αξιοποιώντας τη σίελο και 

δείγματα ξηρού αίματος (DBS).  

Η μελέτη βασίστηκε σε ένα αντιπροσωπευτικό δείγμα 260 αθλητών, οι οποίοι 

προέρχονταν από ένα ευρύ φάσμα αθλητικών κλάδων, περιλαμβάνοντας ατομικά 

(τρέξιμο, τρίαθλο, τένις, πυγμαχία, muay thai, καράτε, pole dancing, aerial hoops 

(στεφάνη), αερόβιες αθλοπαιδιές) και ομαδικά αθλήματα (ποδόσφαιρο, μπάσκετ, 

βόλεϊ). Καθοριστική υπήρξε η συνεργασία με αθλητικούς συλλόγους και προπονητικά 

κέντρα της ευρύτερης περιοχής της Ηπείρου, μέσω της οποίας διευκολύνθηκε η 

πρόσβαση στο συμμετοχικό δυναμικό και διασφαλίστηκε η εφαρμογή του ερευνητικού 

πρωτοκόλλου σε ρεαλιστικά περιβάλλοντα άσκησης. Η δικτύωση αυτή συνέβαλε 

ουσιαστικά στη γεφύρωση του χάσματος μεταξύ εργαστηριακής έρευνας και 

εφαρμοσμένης αθλητικής επιστήμης. 

Η μελέτη οργανώνεται σε τέσσερις αλληλοσυμπληρούμενες φάσεις, στις οποίες 

ενσωματώνονται αναλυτικές τεχνικές —φασματοσκοπικές (ATR-FTIR, φωτομετρία 
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ορατού και NMR) και χημειομετρικά εργαλεία (πολυπαραμετρική και στατιστική 

ανάλυση)— με στόχο την ακριβή και αξιόπιστη αποτύπωση βιοχημικών μεταβολών με 

ελάχιστα επεμβατικό τρόπο. Το πλαίσιο αυτό ανταποκρίνεται στις σύγχρονες ανάγκες για 

επιτόπια και προσωποποιημένη παρακολούθηση της φυσικής κατάστασης στον χώρο της 

επιστήμης της άθλησης. 

Στην Πρώτη Φάση, εφαρμόστηκε φασματοσκοπία υπερύθρου μετασχηματισμού 

Fourier με αποσβένουσα ολική ανάκλαση (ATR-FTIR) σε δείγματα σιέλου από αθλητές 

διαφορετικού επιπέδου (χαμηλού επιπέδου αθλητές που ασκούνται περιστασιακά και 

ήπια και υψηλού επιπέδου αθλητές που εκτελούν συχνές προπονήσεις υψηλής έντασης). 

Στόχο είχε την αξιολόγηση της σιέλου ως εναλλακτικού, μη-επεμβατικού δείγματος για 

την παρακολούθηση της σωματικής/αθλητικής δραστηριότητας. Για πρώτη φορά, η 

πολυπαραμετρική ανάλυση των υπέρυθρων φασμάτων της σιέλου ανέδειξε σαφείς 

διαφορές μεταξύ υψηλού και χαμηλού επιπέδου αθλητών. Η παρούσα Φάση ανέδειξε τη 

χρήση του υπέρυθρου αποτυπώματος της σιέλου—ως γρήγορη, φορητή και πρακτική 

μέθοδος αξιολόγησης—δημιουργώντας την αναλυτική βάση για επερχόμενες μελέτες 

σχετικά με την έντασης της άσκησης που αναπτύχθηκαν στις επόμενες Φάσεις. 

Η Δεύτερη Φάση εστίασε στην μεταβολή της σύστασης της σιέλου κατά την αύξηση 

της έντασης της άσκησης (0, 5, 10, 15 km/h) αξιοποιώντας φασματοσκοπία υπερύθρου 

(ATR-FTIR) και προηγμένες τεχνικές πολυπαραμετρικής ανάλυσης. Η καινοτομία έγκειται 

στον συνδυασμό φασματοσκοπίας δεύτερης παραγώγου με χημειομετρικά μοντέλα—

PCA-LDA και PLS-DA—για την διάκριση του προπονητικού φορτίου μέσω της 

πολυπαραμετρικής ανάλυσης του φασματικού προφίλ της σιέλου Η καινοτομία 

επεκτείνεται και στην κατασκευή και αυστηρή επικύρωση των προβλεπτικών μοντέλων, 

τα οποία παρουσίασαν υψηλή ακρίβεια ταξινόμησης, αποδεικνύοντας τη διακριτική 

ικανότητα του υπέρυθρου φασματικού αποτυπώματος της σιέλου. Επιπλέον, οι 

μεταβολές του γαλακτικού οξέος και της γλυκόζης στην σίελο συγκρίθηκαν με τις 

αντίστοιχες τάσεις που παρουσιάζουν στο αίμα, δίνοντας εξαιρετική ταύτιση στην 

περίπτωση του γαλακτικού, σε αντίθεση με την γλυκόζη, γεγονότα που εναρμονίζονται 
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με την βιβλιογραφία. Η πολυπαραμετρική ανάλυση ανέδειξε 5 φασματικές μεταβλητές 

(που αντιστοιχούν στα φωσφορικά ιόντα, φωσφολιπίδια, γλυκόζη, γαλακτικό, 

θειοκυανικά ιόντα) στις οποίες οφείλεται η διάκριση. Προς έκπληξή μας, το θειοκυανικό 

ιόν (SCN⁻) αναδείχθηκε ως σημαντικός μεταβολίτης συσχετισμένος με την σωματική 

άσκηση. Η Φάση 2 επισήμανε τη σημασία της φασματοσκοπικής παρακολούθησης της 

σιέλου στην ανάδειξη χαρακτηριστικών μεταβολιτών που συνδέονται με τη σωματική 

άσκηση (όπως την περίπτωση των θειοκυανικών ιόντων), υποστηρίζοντας παράλληλα 

την ανάπτυξη εξατομικευμένων στρατηγικών προπόνησης. 

Η Τρίτη Φάση εξέτασε τον ρόλο του θειοκυανικού ιόντος ως έναν δυνητικό 

βιοδείκτη μέσω της ανάπτυξης και επικύρωσης μιας αξιόπιστης, φωτομετρικής μεθόδου 

ποσοτικού προσδιορισμού των SCN⁻ στην σίελο. Σε δείγμα 161 αθλητών παρατηρήθηκε, 

για πρώτη φορά στην βιβλιογραφία, σταθερή μείωση των επιπέδων SCN⁻ με την αύξηση 

της έντασης άσκησης. Η ενδελεχής στατιστική ανάλυση κατάγραψε επίσης στατιστικά 

σημαντικές διαφοροποιήσεις ανά φύλο και συνήθειες καπνίσματος. Η Φάση αυτή 

αποτελεί την πρώτη ολοκληρωμένη έρευνα μεγάλης κλίμακας της συμπεριφοράς των 

SCN⁻ σχετιζόμενη με τον αθλητισμό. Τα εξαιρετικά ευρήματα αναδεικνύουν τα 

θειοκυανικά ιόντα ως ένα δυνητικό μη-επεμβατικό βιοδείκτη στην παρακολούθηση—σε 

πραγματικό χρόνο—της φυσιολογικής απόκρισης στην άσκηση, ενισχύοντας τη 

δυνατότητα εφαρμογής του σε εξατομικευμένα συστήματα προπονητικής αξιολόγησης. 

Στη Τέταρτη Φάση, η έρευνα επικεντρώθηκε στη αποτύπωση μεταβολικών 

αλλαγών μέσω φασματοσκοπίας πυρηνικού μαγνητικού συντονισμού (NMR), 

εφαρμοσμένης σε δείγματα ξηρής κηλίδας αίματος (DBS). Η προσέγγιση αυτή 

αξιοποίησε τον ελάχιστα επεμβατικό χαρακτήρα της μικροδειγματοληψίας αίματος—

μέσω καρτών DBS και εναλλακτικών προσροφητικών υλικών—καθιστώντας την ιδιαίτερα 

κατάλληλη για παρακολούθηση αθλητών σε συνθήκες πεδίου. Παρά τις προκλήσεις που 

σχετίζονται με τον περιορισμένο όγκο δείγματος και την πολυπλοκότητα του 

υποστρώματος, η φασματοσκοπία NMR κατάφερε να προσδιορίσει πλήθος 

χαρακτηριστικών μεταβολιτών, και να διακρίνει μεταβολικά προφίλ που σχετίζονται με 



xxiv 
 

την αύξηση της έντασης της άσκησης. Η Φάση αυτή εισάγει με επιτυχία μια καινοτόμο 

συνδυαστική εφαρμογή μικροδειγματοληψίας αίματος και φασματοσκοπίας υψηλής 

ευαισθησίας στον τομέα του αθλητισμού, όπου η εν λόγω προσέγγιση παραμένει ως επί 

το πλείστων ανεξερεύνητη. Επιπλέον, η Φάση αναδεικνύει τη συμπληρωματικότητα 

μεταξύ διαφορετικών βιολογικών υγρών και αναλυτικών μεθοδολογιών για την 

ανάπτυξη ενός ολιστικού και ελάχιστα επεμβατικού συστήματος φυσιολογικής 

παρακολούθησης. 

Συνολικά, η διατριβή αυτή προτείνει μια πολυδιάστατη και μη-

επεμβατική/ελάχιστα επεμβατική στρατηγική παρακολούθησης των φυσιολογικών και 

μεταβολικών αποκρίσεων κατά την άσκηση. Προτείνει το θειοκυανικό ως νέο βιοδείκτη 

έντασης άσκησης και συνδυάζει τεχνικές ATR-FTIR, φωτομετρίας ορατού και NMR για την 

παροχή ενός ολοκληρωμένου εργαλείου προσωποποιημένης αξιολόγησης φυσικής 

κατάστασης, με ευρύτατες εφαρμογές στην επιστήμη της άθλησης. 
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Theoretical Framework 

 

1. The art of sports science 

1.1 Overview of sports science 

 

“The definition of sport science: as a sub-field of humankind’s universal culture, it is 

a theoretical system representing the culture of the body by the evidence-based, 

systematical and generalised principles, themes, laws and rules, theories and methods. Its 

research aim is to enrich values of the society’s culture of the body (as a subculture of the 

universal culture), and thus support individual and eventually the totality of societal 

development. It is the examination of people as biological-psychological and social units, 

who consciously practice physical activity”  ̶  Biróné Nagy Edit, 20111. 

The significant advancement of sports science began in the 1950s, largely driven by 

the competitive rivalry between the Soviet Union and the United States2. Prior to this 

period, scientific investigations into health care had examined the effects of physical 

education and sports movements on the human body. However, there was a notable 

difference in the research focus of the two superpowers: the Soviet Union concentrated 

almost exclusively on professional sports, whereas the United States pursued research in 

recreation, rehabilitation, and specialized physical education alongside professional 

sports studies. The global recognition of the field grew with the introduction of sport 

science conferences held in conjunction with the Olympic Games starting in 19562. In 

terms of key organizations, the International Federation of Sports Medicine (FIMS) was 
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established in 1928, and the International Council of Sport Science and Physical Education 

(ICSSPE) was founded in 1960.   

The domain of sports science has evolved dramatically over the past few decades, 

becoming a critical area of study that integrates knowledge from various scientific 

disciplines to optimize human performance and health (Fig. 1). Sports science is an 

interdisciplinary field that encompasses physiology, biomechanics, psychology, nutrition, 

and medicine. It is dedicated to understanding how the human body responds to exercise, 

how performance can be enhanced, and how injuries can be prevented. As athletes 

continuously strive to break records and achieve new levels of excellence, sports science 

provides the foundational knowledge needed to push the limits of physical capability 

while safeguarding the long-term well-being of athletes. This field not only supports elite 

athletes in reaching peak performance but also plays a crucial role in public health by 

promoting physical activity and helping to combat lifestyle-related diseases3.  

Central to sports science is the study of the physiological adaptations that occur in 

response to physical training. These adaptations involve complex interactions between 

various systems in the body, including the cardiovascular, muscular, skeletal, and nervous 

systems4–9. By analyzing these interactions, sports scientists can identify the most 

effective training methods, tailor exercise programs to individual needs, and develop 

strategies to optimize recovery and prevent overtraining. 

Moreover, sports science is vital for understanding the mechanisms of fatigue and 

the factors that limit performance. Fatigue is a multifaceted phenomenon influenced by 

energy depletion, metabolic by-products, neuromuscular function, and psychological 

state10–13. Through research, sports scientists have been able to develop interventions to 

delay the onset of fatigue, thereby enhancing endurance and overall performance14. 
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Figure 1. The relationship of sport science and the main scientific fields2 (taken from ref. 

2). 

 

Injury prevention and rehabilitation are also key aspects of sports science. The high 

demands placed on athletes’ bodies increase their susceptibility to injuries, which can be 

career-threatening if not managed properly. Sports science provides the tools and 

knowledge to design training programs that minimize injury risk, identify early signs of 
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potential injuries, and implement rehabilitation protocols that ensure a safe return to 

competition15. 

In addition to physical training, sports science also encompasses the psychological 

aspects of performance. Mental toughness, motivation, and focus are critical 

determinants of success in sports, and sports psychologists work alongside coaches and 

athletes to develop these attributes. Techniques such as goal setting, visualization, and 

stress management are used to enhance performance under pressure and maintain 

mental well-being16,17. 

Furthermore, the role of nutrition in sports science cannot be overstated. Proper 

nutrition supports training adaptations, aids recovery, and ensures that athletes have the 

energy and nutrients necessary for peak performance18,19. Sports nutritionists design diet 

plans that meet the specific demands of different sports and training Phases, optimizing 

macronutrient intake, hydration, and supplementation20. 

The application of technology in sports science has also revolutionized the way 

athletes train and compete. Wearable devices, motion analysis systems, and performance 

tracking software provide real-time data that can be used to fine-tune training and 

improve performance21–23. These technologies have made it possible to monitor athletes 

with unprecedented precision, enabling personalized training programs that account for 

individual variability in response to exercise. 

Finally, the science of physical exercise plays a crucial role in the development of 

youth and amateur athletes. By applying scientific principles to training and competition 

at all levels, sports scientists help young athletes develop their full potential while 

promoting lifelong habits of physical activity24,25. 

Sports science is indispensable in the modern era of athletics. It provides the 

knowledge and tools necessary to enhance performance, prevent injuries, and promote 

the overall health of athletes. As the field continues to evolve, it will undoubtedly 
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contribute to further advancements in both elite and recreational sports, ensuring that 

athletes can achieve their goals in the safest and most effective manner possible. 

 

1.2 Recent scientific advancements in sports science 

 

In recent years, sports science has witnessed significant advancements driven by 

new technologies, data analytics, and an increased understanding of human physiology. 

These developments have not only deepened our knowledge but also opened new 

avenues for enhancing athletic performance and health outcomes. 

One of the most prominent areas of advancement is the integration of genomic and 

molecular biology into sports science26,27. The field of exercise genomics has gained 

traction as researchers seek to understand how genetic variations influence an 

individual’s response to training, susceptibility to injuries, and potential for recovery. 

Studies have identified specific genes that are associated with traits such as muscle fiber 

composition, oxygen utilization, and inflammation28–31, allowing for more personalized 

approaches to training and rehabilitation. This genetic insight is beginning to inform 

training programs tailored to an athlete's unique genetic profile, optimizing performance 

while reducing the risk of injury32. 

Biomechanics and neuroscience have also seen remarkable progress, particularly in 

understanding how the brain and nervous system interact with the musculoskeletal 

system during exercise33,34. Advances in imaging technologies, such as functional 

magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), have enabled 

scientists to study the neural mechanisms underlying movement, coordination, and 

motor learning in unprecedented detail35. This research is critical for developing 

interventions that enhance motion skills, prevent injuries, and rehabilitate athletes after 

injury36,37. 
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Another significant trend in sports science is the growing emphasis on data analytics 

and artificial intelligence (AI)38. The vast amounts of data generated by wearable devices, 

performance tracking systems, and physiological monitoring tools have created 

opportunities for advanced analytics to identify patterns and predict outcomes39. AI and 

machine learning algorithms are increasingly being used to analyze these data, providing 

insights that can refine training regimens40, optimize in-game strategies41, and predict 

injury risks42. For example, AI-driven models can assess an athlete's workload and 

recovery patterns, helping coaches make informed decisions about training intensity and 

rest periods43. 

Sports nutrition has also evolved, with a deeper understanding of how 

macronutrients, micronutrients, and supplements affect performance and recovery44. 

Research on nutrient timing, the role of gut microbiota in health and performance, and 

the impact of personalized nutrition plans has led to more sophisticated dietary strategies 

for athletes45–47. Additionally, there is growing interest in the use of ergogenic aids  ̶

substances or techniques that enhance performance ̶ ranging from traditional 

supplements like creatine and caffeine to novel approaches like ketone esters and 

personalized hydration strategies48,49. 

The focus on recovery science has intensified, recognizing that recovery is as crucial 

as training itself in the overall performance equation. Techniques such as cryotherapy, 

compression garments, massage therapy, and sleep optimization are being rigorously 

studied to determine their efficacy in promoting muscle repair, reducing inflammation, 

and restoring physiological balance50–53. Understanding the science behind these recovery 

modalities is helping athletes recover faster and perform at their best more consistently. 

Lastly, sports psychology has gained prominence as mental health and well-being 

are increasingly recognized as integral components of athletic success. Research in this 

area has expanded to include the psychological impact of injuries54 and the prevention of 

burnout55. Mental conditioning techniques are now being integrated into regular training 

regimens, helping athletes manage stress, enhance focus, and maintain motivation55–57. 
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Τhe recent advancements in sports science have transformed the way athletes 

train, compete, and recover. The integration of genetic insights, advanced biomechanics, 

data analytics, and personalized nutrition is leading to more effective and individualized 

approaches to athletic performance. As the field continues to evolve, sports science will 

undoubtedly play a pivotal role in pushing the boundaries of human potential while 

ensuring the health and well-being of athletes. 

 

1.3 Sports biochemistry: Understanding the molecular basis of 

athletic performance 

 

The field of sports biochemistry plays a pivotal role in understanding the complex 

biochemical processes that occur in the body during physical activity. As a sub-discipline 

of sports science, sports biochemistry focuses on the molecular and metabolic pathways 

that underpin exercise, performance, recovery, and adaptation to training. These 

biochemical processes not only determine an athlete’s ability to perform but also govern 

the body’s response to different types and intensities of exercise, making sports 

biochemistry an essential component in the scientific study of athletic performance. 

During physical exertion, the human body undergoes a series of rapid biochemical 

changes, driven by the need to produce energy for muscle contraction58, maintain 

homeostasis59, and repair tissues60. The primary source of energy during exercise is 

adenosine triphosphate (ATP), which is generated through three main metabolic 

pathways: the phosphagen system (creatine phosphate (ATP-PC)), glycolysis, and 

oxidative phosphorylation (a series of chemical reactions that generate energy in the 

mitochondria)61,62 (Fig. 2). 
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Figure 2. A general representation of aerobic, anaerobic and high energy phosphate 

bioenergetic pathways62 (taken from ref. 62).  

 

Each of these systems contributes differently depending on the intensity and 

duration of exercise. For example, short bursts of high-intensity activity rely heavily on 

the phosphagen system, which uses stored ATP and creatine phosphate in muscles62,63. 

This system can provide energy for muscles in the initial 1 to 15 seconds of high intensity 

exercise64. Longer, endurance-based activities depend more on aerobic pathways such as 

oxidative phosphorylation62,63 (Fig. 3). 
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Figure 3. Energy systems and their application to training. (a) Energy continuum, (b) 

primary energy sources for different running distances63 (taken from ref. 63). 

The study of sports biochemistry is crucial for understanding how these energy 

systems are activated and regulated during exercise, as well as how the body’s 

biochemical environment changes in response to different types of physical stress. For 

instance, high-intensity exercise results in the accumulation of metabolic by-products 

such as lactate and hydrogen ions, leading to muscle acidosis and fatigue61. The body’s 
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ability to buffer and remove these by-products, as well as regenerate ATP, is a key 

determinant of athletic performance and endurance61. 

Furthermore, biochemistry in sports plays a significant role in nutritional strategies 

for athletes. The body’s biochemical responses to different macronutrients—

carbohydrates, fats, and proteins—are crucial for energy production, muscle repair, and 

recovery65. For example, consuming carbohydrates post-exercise helps replenish glycogen 

stores, while protein intake supports muscle repair and growth66. 

Sports biochemistry also examines the role of key biochemical markers in muscle 

damage and repair. During intense or prolonged exercise, muscle fibers undergo 

microscopic tears, triggering an inflammatory response67. This process leads to the 

release of various biochemical markers, such as creatine kinase (CK) and myoglobin, 

which are indicative of muscle damage68,69 (Fig. 4). The body responds to this damage 

through a series of repair processes, involving protein synthesis, the activation of satellite 

cells, and the reorganization of muscle fibers60. Understanding these biochemical 

responses is essential for developing strategies to optimize recovery and minimize the risk 

of overtraining and injury. 

The study of hormonal regulation during exercise is critical part of overtraining 

estimation. Hormones such as cortisol, testosterone, and insulin-like growth factor 1 (IGF-

1) play significant roles in regulating metabolism, muscle growth, and recovery70. Cortisol, 

often referred to as the “stress hormone,” increases in response to physical and 

psychological stress71 and helps regulate energy metabolism by promoting 

gluconeogenesis and the mobilization of fatty acids72. However, chronically elevated 

cortisol levels, often seen in overtrained athletes, can have detrimental effects on 

immune function, muscle tissue, and overall recovery73,74. Conversely, testosterone and 

IGF-1 promote muscle protein synthesis and adaptation to training75,76. The balance 

between anabolic (muscle-building) hormones and catabolic (muscle-degrading) 

hormones is a key factor in determining an athlete’s ability to build muscle and recover 

from training75,77,78. Monitoring these hormonal levels provides valuable insights into an 
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athlete’s physiological state and can guide adjustments in training volume, intensity, and 

recovery periods. 

 

 

Figure 4. Changes in plasma myoglobin concentration and creatine kinase activity after 

the rugby matches. Values are mean (SE) (n = 14). *,† Significantly different from resting 

state within the same subjects (p<0.05, Wilcoxon signed ranks test)79 (taken from ref. 70). 

 

The applied science of biochemistry in physical exercise is also critical for 

understanding fatigue and recovery. For example, elevated levels of cortisol and creatine 

kinase, combined with a decrease in immunoglobulin A (IgA), can indicate that an athlete 

is not fully recovering between training sessions, increasing the risk of overtraining 

syndrome80. This way enables coaches and sports scientists to intervene before an athlete 

reaches a state of chronic fatigue or injury. 

For both amateur and professional athletes, preventing injury is essential, especially 

with the increasing number of competitions that result in more intense training81. Health 

experts warn that excessive training and competition can lead to overtraining, posing 

significant health risks82. Molecular markers mentioned previously can help optimize 
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training, assess an athlete's functional condition, and provide evidence-based guidance 

for high-performance athletes82. Metabolomics, which measures low molecular weight 

metabolites, offers an objective way to analyze the molecular effects of exercise, reducing 

injury risk, adjusting training, and speeding up recovery83. The use of -omics data provides 

a comprehensive view of the biological processes behind athletic performance, helping to 

identify new intervention strategies. The term "sportomics" has been coined to refer to 

the application of -omics sciences to understand metabolic changes caused by physical 

activity84 (Fig. 5).  

 

 

Figure 5. An overview of sportomics and the correlated –omics sciences85 (taken from ref. 

85). 
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Sports biochemistry serves as the critical link between sportomics and athletic state 

monitoring, providing the molecular and metabolic insights necessary to optimize athletic 

performance. By understanding the biochemical processes that occur during exercise, 

recovery, and adaptation, sports scientists can develop more effective training protocols, 

monitor athlete health in real-time, and prevent overtraining and injury. Biofluid analysis, 

in turn, allows for the practical application of these biochemical principles, offering a 

efficient way to track an athlete’s physiological status and adjust their training 

accordingly. The science of sports metabolomics via biofluid monitoring represent 

powerful tool in the optimization of human performance. 
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2. Biofluids: The way the human body talks 

2.1 Biofluid monitoring in sports science 

 

In the quest to enhance athletic performance and safeguard the health of athletes, 

monitoring physiological and biochemical changes during physical activity is paramount. 

This is where biofluid monitoring becomes integral to sportomics. As the body’s 

biochemical environment fluctuates during and after exercise, these changes can be 

detected and measured through various biofluids, such as blood, urine, sweat, and 

saliva86. These biofluds provide a window into the body's internal environment, reflecting 

various metabolic and physiological states induced by exercise. They contain a wealth of 

biochemical markers that reflect the body’s metabolic, hormonal, and immune responses 

to physical activity87. By analyzing these markers, sports scientists and clinicians can gain 

real-time insights into an athlete’s physiological status, allowing for precise adjustments 

to training and recovery protocols. 

Blood has traditionally been the gold standard in physiological monitoring, offering 

detailed insights into a wide array of biomarkers, including hormones, metabolites, and 

electrolytes88–90. For instance, blood is commonly used to measure lactate levels, 

hormone concentrations, and inflammatory markers, providing a detailed snapshot of the 

body’s biochemical state during and after exercise91–93. A recent study demonstrated 

succinate, pantothenate, glucose-6-phosphate, and niacinamide increment in plasma 

after physical exercise94, while on metabolic changes were also detected in serum95. 

Blood sampling allows for the precise measurement of parameters such as lactate levels, 

which indicate anaerobic metabolism61, and cortisol levels, which reflect stress and 

recovery71. However, the invasive nature of blood sampling poses challenges, particularly 

in field settings or during continuous monitoring. The need for trained personnel, the 
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potential discomfort for athletes, and the logistical difficulties of frequent sampling96 have 

spurred the exploration of alternative biofluids. 

Urine analysis is another widely used method in sports science, providing valuable 

information on hydration status, electrolyte balance, and kidney function, and the 

excretion of metabolic waste products97,98. It has been instrumental in assessing 

hydration levels, particularly in endurance sports, where maintaining fluid balance is 

crucial99. For example, urine analysis after physical activity, provided remarkable 

findings100,101, where valine, isoleucine, succinate, citrate, trimethylamine, trimethylamine 

N-oxide, tyrosine, and formate remain decreased for few hours after exercise102.Urine 

sampling is less invasive than blood sampling and can be performed more frequently. 

However, like blood, urine sampling typically requires controlled conditions, and the 

results can be influenced by factors such as fluid intake and timing, which may limit its 

utility for real-time monitoring103. 

Sweat is an increasingly popular biofluid for monitoring athletes, in the context of 

thermoregulation and electrolyte balance, especially during prolonged exercise in hot 

environments97,104. Sweat contains a variety of electrolytes, such as sodium, potassium, 

and chloride105,106, as well as metabolic by-products like lactate90,107–109. The analysis of 

sweat composition can provide insights into an athlete’s hydration status, electrolyte 

losses, and overall metabolic activity during exercise90. Advances in wearable technology 

have facilitated the collection and real-time analysis of sweat, allowing for continuous 

monitoring during physical activity107,110–113. These developments are particularly 

beneficial in hot or humid environments, where maintaining electrolyte balance is 

essential for preventing dehydration and heat-related illnesses104,114. 

Despite the advantages offered by blood, urine, and sweat, each of these biofluids 

has its limitations. Blood sampling is invasive and not always practical for frequent 

monitoring96. Urine analysis, while less invasive, can be affected by external factors like 

hydration and fluid intake103, and sweat analysis, though promising, is still limited by 
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variability in sweat production and composition109,115. These challenges have led to 

increased interest in saliva as a biofluid for monitoring athletes. 

Saliva is an attractive alternative for several reasons. It can be collected non-

invasively and repeatedly with minimal discomfort, making it suitable for frequent 

monitoring in both laboratory and field settings116,117. Saliva contains a wide range of 

biomarkers118, including hormones (such as cortisol and testosterone119,120), immune 

markers (like immunoglobulins121,122), and metabolic enzymes123, many of which correlate 

with blood levels124. This makes saliva a valuable surrogate, in a non-invasive manner and 

a friendly approach for the volunteers,  for assessing physiological responses to exercise, 

stress, and recovery125, making it ideal for frequent sampling in both training and 

competitive settings126. 

 

2.2 Microsampling techniques in blood collection 

 

Invasive intravascular access has been the standard method for blood sampling for 

decades and remains widely used in healthcare and disease assessment, but it comes 

with several limitations127. Collecting blood using a hypodermic needle (typically requiring 

more than 1 mL of blood) demands a skilled phlebotomist and a sterile environment128. 

This invasive, centralized approach often leads to issues such as discomfort, anxiety, pain, 

and phobias, which may lower patient compliance128. Indeed, the rather large amount of 

sample required makes them less useful for repeated sampling in tight intervals or 

vulnerable groups, such as infants or the elderly. Improper venipuncture techniques can 

cause haemoconcentration or haemolysis, making the samples unusable and forcing 

patients to undergo additional blood draws129. Healthcare workers also face risks of sharp 

injuries and exposure to bloodborne pathogens, and complications like hematomas, 

infections, nerve damage, and iatrogenic anemia may occur, leading to physical, 

emotional, and financial burdens130–133. These factors can delay or prevent medical 

procedures and reduce participation in clinical research134. Additionally, blood samples 
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require time-consuming and costly processing to limit pre-analytical variability134, with 

around 75% needing centrifugation to separate plasma or serum. This increases costs and 

can slow down laboratory workflows135. Furthermore, wet blood samples must be stored 

and shipped under cold-chain conditions to avoid degradation and bacterial 

contamination136. 

 

 

Figure 6. Graphical summary of the benefits of microsampling and 2022 publication 

statistics of microsampling technologies and applications129 (taken from ref. 129). 

 

In recent years, microsampling techniques have emerged as innovative solutions to 

the challenges associated with traditional blood sampling, particularly in contexts where 

frequent, minimally invasive, and low-volume sampling is required. These techniques 

enable the collection of small amounts of blood—often in the microliter range —making 

them particularly suitable for monitoring athletes, pediatric patients, or individuals in 
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remote settings. Among the most commonly employed microsampling techniques are 

Dried Blood Spot (DBS) sampling, Volumetric Absorptive Microsampling (VAMS) and 

capillary microsampling, microneedle sampling, each offering distinct advantages and 

facing unique challenges. Figure 6 summarizes some of the blood microsampling 

techniques utilized in 2022 clinical studies. 

 

2.2.1 Dried Blood Spots (DBS) 

 

Dried Blood Spot (DBS) sampling is one of the most widely utilized microsampling 

techniques, particularly in clinical and remote settings137. Dried blood spots (DBSs) have 

been used in newborn screening (NBS) since 1961 with Robert Guthrie and his test to 

detect phenylketonuria (PKU) at an early stage in newborn blood138. Nowadays, standard 

DBS cards are still called Guthrie cards and are commonly used for NBS. In 2022, the USA, 

Europe and Latin America were the regions with the highest percentage of newborns 

screened (100, 78 and 32%, respectively)139. In DBS sampling, a small drop of capillary 

blood is collected via a finger prick (or heel prick in newborns) with the lancet and applied 

to a specially designed filter paper card140 (Fig. 7). The blood is allowed to be adsorbed 

onto the card and dry at room temperature for 4 hours, after which the card is stored and 

transported for laboratory analysis140. The minimal volume of blood required—often just 

a few microliters, typically <100 μL129—adds to the procedure’s appeal, particularly for 

frequent sampling129. The simplicity of DBS sampling makes it highly advantageous; it 

requires minimal training and equipment, facilitating its use in field settings or even self-

collection by patients96,129,140. Furthermore, once dried, the blood spots are highly stable 

for many metabolites, which is helpful for blood banks141 and can be transported at 

ambient temperatures without the need for refrigeration, thereby reducing logistical 

challenges. Before analysis, fixed-diameter spots (usually 3 or 6 mm) are punched out of 

the paper substrate, and an extraction protocol is executed using appropriate buffers137. 
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Figure 7. Illustration of dried blood spots collected from fingertip and heel on paper 

Whatman® 903 Protein Saver Card (Cytiva, Global). 

 

However, the technique often suffers from variations in sample quantification and 

analysis due to technical errors and biological fluctuations, such as hematocrit (Hct)137. 

The Hct is the volume percentage of red blood cellsfluctuates between 36 and 50% based 

on factors such as race, sex, age, fluid intake, and overall health142. When spotting a fixed 

volume of blood sample on the sample collection card, the Hct affects the resultant size 

of spot143,144. The lower the Hct, the lower the viscosity: the blood will spread faster 

through paper fibres and will make the blood spot large, colourless and less homogenous. 

With a high Hct, the blood spot will be smaller, more intense in colour and more 

homogenous145,146. Punching disks of the same size for blood spots with varying Hct levels 

results in different volumes, leading to significant measurement and quantification 

errors146. On a traditional DBS card, the spot is punched to remove it from the card. 

Multiple punches can be made in one DBS spot. But due to the haematocrit effect, 

depending on where the punch is made, the sample may be different. The Hct effect can 

introduce variation in analysis, such as the amount of analytes in the sample147. 
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Further analytical biases are introduced by the inherent component of DBS 

technology that enables the drying of blood: the filter paper. Filter paper properties 

determine the maximum loading capacity, blood spreadability, chromatographic effects, 

analyte stability and recovery129. During the formation of DBS, the content of blood 

droplets may undergo a chromatographic effect or coffee-ring effect due to differential 

diffusion across the filter paper129. Besides Hct, other factors such as humidity, drying 

conditions and material of the filter paper also contribute to the uneven distribution of 

analytes148. Additionally, the process of extracting analytes from dried blood spots can be 

complex, with some substances potentially degrading during drying, which may 

compromise the reliability of results. Despite these limitations, DBS remains a valuable 

tool in microsampling, especially for applications where sample stability and ease of 

collection are paramount96. 

Although different modifications to traditional DBS cards exist to minimize the Hct 

effects, the easiest approach to eliminate the Hct bias related to spot size and 

inhomogeneity is to analyze the complete DBS spot formed from a volumetric application 

of blood129. Volumetric DBS can be obtained either by punching the entire DBS after the 

volumetric application of blood or by volumetrically applying blood on pre-punched 

discs143. Accurate volumes of blood for application can be procured using a micropipette 

or microfluidic channels. However, effective pipetting requires skilled personnel, which 

limits its scope of application due to the reduced feasibility of self-sampling129. 

 

2.2.2 Volumetric Absorptive Microsampling (VAMS) 

 

Another solution to overcome the haematocrit effect is the development of 

quantitative devices to collect an exact volume of capillary blood. Volumetric Absorptive 

Microsampling (VAMS) represents a more recent advancement in microsampling 

technology, addressing some of the limitations associated with DBS. VAMS devices utilize 
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a specially designed porous hydrophilic absorbent tip that collects a fixed, precise volume 

of blood—typically around 10 to 20 microliters137—from a finger prick (Fig. 8).  

 

Figure 8. Volumetric absorptive microsampling technology. (a) Mitra® device (Trajan 

Scientific and Medical, Melbourne, VIC, Australia) and (b) TASSO (Tasso Inc., Seattle, WA, 

USA) M-20. 
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The absorbent tip is then dried and sent for analysis, similar to the DBS method. The 

key advantage of VAMS lies in its precision147; it ensures that a consistent blood volume is 

collected with each sample, thereby improving the accuracy and reproducibility (<4% 

RSD) of analytical results149. Like DBS, VAMS is simple to perform and can be used in non-

clinical settings, making it highly versatile. Nevertheless, VAMS devices are generally more 

expensive than traditional DBS cards, which can be a consideration in large-scale studies. 

While the technique is user-friendly, proper training is essential to ensure that the correct 

volume is absorbed, especially in settings where self-collection is involved. As with DBS, 

the processing and extraction of samples from VAMS devices can be complex, requiring 

specialized protocols for different analytes150. 

 

2.2.3 Capillary microsampling (CMS) 

 

Capillary microsampling (CMS) involves the collection of small volumes of blood—

typically 1-35 microliters150— from exact-volume capillaries, coated or not with 

anticoagulants, to take up blood obtained via finger prick through capillary forces129 (Fig. 

9). The collected blood is then stored in a capillary tube or microcontainer sealed with 

wax for subsequent analysis. From a matrix point of view, no major differences are 

expected in the sample by the conventional way, since capillary microsamples are liquid 

samples151. CMS’s primary advantage is its requirement for only a tiny amount of 

blood151, making it minimally invasive and suitable for repeated measurements152. 

Additionally, the blood can be analyzed immediately on-site using portable devices, which 

is ideal for real-time monitoring129. However, capillary microsampling is not without 

challenges. Unlike DBS or VAMS, capillary blood stored in microtubes requires proper 

storage conditions to prevent degradation, typically requiring refrigeration or immediate 

analysis. For unstable analytes, a stabilizer is added to the sample within a few seconds of 

the collection. But for the analytes, which possess high affinity of binding to glass, CMS 

can be a constraint153,154. 
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Figure 9. Typical capillary microsampling and hemaPEN® device (Trajan Scientific and 

Medical, Melbourne, VIC, Australia). 

 

Although these microsampling devices provide a robust approach for collecting 

blood samples to overcome the DBS limitations, they fail to eliminate the impact of Hct 

on the extraction efficiency of analytes129. Despite the inconveniences caused by Hct, 

several advancements in the DBS technology have been made to improve existing 

features and develop new functionalities. Figure 10 offers an overview of the frequently 

used and commercially available microsampling devices for dried blood collection. Above 
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all, DBS is the most established blood microsampling technique, adopted by 43.6% of 

studies using microsampling technologies in 2022 (Fig. 10)129. 

 

 

Figure 10. A summary of commercially available of blood microsampling techniques140 

(taken from ref. 140). 

 

2.2.4 Microneedles 

 

Unlike previously mentioned and established techniques, microneedles are capable 

of penetrating the skin and sampling at the same time without the use of a blood lancet. 

Microneedle sampling is an emerging technology that uses an array of tiny needles, often 

no more than a few hundred micrometers in length155 (Fig. 11a,b), to penetrate the skin’s 
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outer layer and access the interstitial fluid or capillary blood96. These microneedles are 

designed to be pain-free and minimally invasive, making them particularly appealing for 

frequent monitoring. Early microneedle designs usually possessed a solid body and were 

primarily designed for cosmetic or therapeutic purposes, such as drug delivery156. Recent 

advances in rapid prototyping techniques, for example 3D printing and laser cutting has 

enabled microsampling with microneedles for clinical research purposes157,158. In most 

cases, a patch filled with microneedles was applied to the skin, and blood samples were 

continuously extracted through microfluidic channels to the back of the patch for 

analysis159–161 (Fig. 11c). The primary advantage of microneedle sampling is its pain-free 

collection, which significantly improves comfort for the individual, especially for those 

requiring regular sampling. Moreover, the minimal invasiveness of microneedles reduces 

the risk of infection and tissue damage, making it a safer option for continuous 

monitoring. Microneedles also hold the potential for integration into wearable devices, 

enabling continuous or semi-continuous monitoring of blood or interstitial fluid 

biomarkers96. However, the volume of blood that can be collected using microneedles is 

extremely small (about 30 ± 5 μL of blood sample could be collected by the microneedle 

sampling on a rabbit model in 3 min96), which may limit the range of analyses that can be 

performed. Additionally, the cost and complexity of microneedle devices remain 

significant barriers to widespread adoption, as the technology is still relatively new and 

can be expensive both in terms of the devices themselves162 and the infrastructure 

needed to process the samples. 
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Figure 11. (a) The reported dimension of hollow microneedle163, (b) schematic 

representation of the hollow microneedle array164, and (c) microneedle TAP device 

(YourBio Health, Medford, MA, USA) (taken from ref. 163 and 164). 

 

2.3 Saliva sampling: A non-invasive tool for athlete monitoring 

 

Saliva is a hypotonic fluid primarily made up of water, electrolytes, and organic 

molecules like amino acids, proteins, and lipids165. The water in saliva mainly comes from 

the local capillary bed through intracellular diffusion, aquaporin water channels, and 
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extracellular pathways166,167. Small neutral molecules from the bloodstream enter the 

saliva through passive diffusion from the dense capillary networks surrounding the 

salivary glands. Electrolytes enter saliva due to osmotic gradients, with their 

concentration regulated by the rate of secretion, the type of stimulus, and circulating 

mineralocorticoid levels165. The organic components of saliva are largely produced 

through protein synthesis and stored as granules in acinar cells168. 

One of the key advantages of saliva over other biofluids is its ability to reflect the 

acute responses of the body to exercise125. For instance, the concentration of cortisol in 

saliva can rapidly increase in response to physical or psychological stress, providing a real-

time indication of the body’s stress levels. Similarly, changes in salivary immunoglobulin 

levels can indicate alterations in immune function, which are critical for understanding 

the impact of intense training on an athlete's susceptibility to infections.  

Salivary analysis also offers practical benefits, particularly in field settings. Unlike 

blood or urine, saliva collection does not require specialized equipment or trained 

personnel, and it can be performed by the athletes themselves. This ease of collection 

facilitates frequent monitoring, enabling coaches and sports scientists to track changes in 

an athlete's physiological state throughout training and competition. The following 

sections outline the most widely used saliva sampling methods, highlighting their 

principles, advantages, and limitations. 

 

2.3.1 Unstimulated – passive drooling method 

 

Unstimulated whole saliva is the mixture of secretions that enters the mouth in the 

absence of exogenous stimuli and depends on the daily basal salivary flow rate in the oral 

cavity169. The composition of unstimulated saliva can be affected by the degree of 

hydration, position of head during collection, body posture, light exposure, drugs and 

circadian rhythm170. The passive drooling method, practiced since 1934169, is the most 
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commonly employed technique for saliva sampling due to its simplicity and efficiency. In 

this method, the participant allows saliva to accumulate naturally in the mouth and then 

dribbles it into a sterile collection tube169 (Fig. 12). Passive drool requires no external 

stimulation, ensuring that the sample reflects the baseline composition of saliva without 

the interference of materials and substances used to sample or stimulate the salivary flow 

that could alter its content171. 

 

 

Figure 12. Example of the spitting method into a polypropylene centrifuge tube. 

 

This method offers several advantages. First, passive drool is a true reflection of 

unstimulated, whole saliva, making it ideal for measuring biomarkers that are sensitive to 

changes in saliva flow rate. It is particularly effective for assessing hormones such as 

cortisol, testosterone, and immunoglobulins, which can be affected by physical 

exercise125,172. Second, it is a straightforward and non-invasive method that can be 

performed by the participants themselves, reducing the need for specialized personnel 
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and equipment173. This ease of collection makes passive drool particularly suitable for 

field-based studies and large-scale research projects where repeated sampling is 

required174. 

However, there are limitations to passive drool collection. The process can be time-

consuming, as participants must produce an adequate volume of saliva, typically between 

1 and 5 milliliters, for most assays171. Additionally, some individuals may find it difficult to 

produce sufficient saliva175, especially under stressful conditions or in dehydrated states, 

which can affect the sample’s quality and volume. Finally, while passive drool provides a 

reliable baseline measure, it may not be appropriate for studies requiring rapid or 

stimulated saliva production. 

 

2.3.2 Stimulated method 

 

Stimulated saliva is physiologically secreted in response to either masticatory or 

gustatory stimulations during food intake169. Stimulated saliva collection is used when 

larger volumes of saliva are required or when it is important to enhance saliva flow176,177 

to ensure timely collection. In this method, saliva production is stimulated by external 

means, such as chewing on inert substances (e.g., paraffin wax, unflavored chewing gum 

base, cotton puff and rubber bands) or applying citric acid to the tongue169. The increased 

saliva flow allows for quicker sample collection. It was found that salivary flow peaked 

(2.7 ± 0.52 mL/min) within the first 2 min of stimulation, and then gradually decreased to 

the level of the initial unstimulated flow rate (0.39 ± 0.16 mL/min) at 25 min to reach 

reached a plateau177, while other studies report that under stimulation, the flow rate may 

increases up to about 4 mL/min178. 

Stimulated saliva collection allows for rapid collection of sufficient saliva volumes, 

making it useful for assays requiring a larger quantity of biofluid. Furthermore, because it 

promotes consistent saliva flow, this method can reduce the variability in flow rates seen 
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in passive collection methods, potentially leading to more reproducible results in some 

contexts. Stimulated saliva is often preferred when analyzing salivary electrolytes179,180, 

enzymes181, or antimicrobial proteins180, as their concentrations can increase with 

elevated flow rates, providing a more robust measure of salivary gland function. 

Despite these advantages, stimulated saliva collection has notable limitations. The 

stimulation process can alter the composition of the saliva, particularly for biomarkers like 

hormones that are sensitive to changes in flow rate169. For instance, researches indicated 

that sucrose, homovanillic acid and 3-methoxy-4-hydroxyphenylglycol concentrations 

were altered by stimulation182,183. Stimulated saliva is generally more dilute than 

unstimulated saliva, which can affect the concentration of certain analytes and may 

reduce the accuracy of results for specific assays, as in the case of uric acid where the 

concentration decreased from 70 ± 20 μg/mL to 30 ± 10 μg/mL184. Additionally, the choice 

of stimulation method can introduce further variability (e.g. volume variation observed 

when paraffin stimulation was used185. A study indicated that the higher flow rate can 

increase the pH of saliva from 6.7 ± 0.24 initially up to 7.35 ± 0.22 pH units after 

stimulation177, potentially impacting the stability of pH-sensitive biomarkers. During 

stress, saliva volume and composition which are regulated by the sympathetic and 

parasympathetic nervous systems, can be altered. This alteration is often expressed as 

dry mouth (xerostomia)186,187. This reduction in saliva secretion leads to a decrease in the 

bicarbonate (alkaline) content of saliva, causing increased acidity and a drop in oral pH188. 

Lower oral pH may contribute to the dysregulation of other stress-related saliva 

biomarkers, affecting components such as cortisol189, sIgA190, and alpha-amylase190. As a 

result, pH could play a key role in the stress-induced imbalance of saliva biomarkers187. 

 

2.3.3 Swab-based sampling 

 

Salivary swabs are another popular method for saliva sampling, particularly in cases 

where the volume of saliva needed is relatively small. Swabbing techniques can be 
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divided in two subgroups. In the first case, a stick with fibers frayed at one end was used 

to swab the total target area, while applying medium pressure, at an angle relative to the 

substrate (to assure that a large area of the swab is in contact with the substrate) and 

rotating the swab continually, followed by extraction in buffer191 (Fig. 13a). On the other 

hand, a synthetic or cotton (cellulosic) swab is placed in the mouth between a tongue and 

the cheek for a specified period—typically 1 to 2 minutes—to absorb saliva169. The swab is 

then placed in a sterile tube and centrifuged to extract the collected saliva for analysis 

(Fig. 13c). 

Swab collection offers several practical advantages. It is a fast and convenient 

method that requires minimal cooperation from the participant, making it ideal for 

research involving children, elderly individuals169, or those unable to provide passive drool 

samples due to exercise-induced dehydration status192. It is also highly useful in situations 

where time is a limiting factor, as the collection process is quicker compared to passive 

drool. Additionally, swabs are small, portable, and easy to use in field settings, making 

them a practical choice for monitoring athletes during competitions or training 

sessions193. 
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Figure 13. (a) One-end swab saliva sampling procedure, (b) Salivette® (blue cap, Sarstedt, 

Nümbrecht, Germany) and (c) cotton swab placed in the mouth sampling and handling 

procedure. 

 

However, there are some important limitations to this method. The material of the 

swab can influence the composition of the saliva sample185,194,195, with some types of 

swabs retaining or altering the concentration of specific biomarkers196. For instance, 

cortisol and other steroid hormones tend to adhere to polyurethane-tip applicators, 
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potentially leading to lower measured concentrations compared to passive drool196. To 

mitigate this issue, cotton or synthetic swabs made from inert materials such as polyester 

are often preferred196. Additionally, the recovery efficiency is also affected by the lack of 

uniformity in swabbing techniques. There is no clear indication of how wet or moist such 

a swab needs to be, and there is no consensus regarding other parameters, including 

swabbing time, swabbing angle, and applied pressure on the swab191. However, in 

addition to the recovery efficiency of the used swab itself, the sampling skills (including 

swabbing technique) of the investigator substantially influence the obtained overall 

efficiency. Surprisingly, the influence of the investigator’s skills is frequently 

underestimated, with only a limited number of articles addressing this crucial aspect197–

199. Last but not least, placing absorbent swabs in different areas of the mouth may 

influence both the amount of sample volume collected and the composition of analytes in 

the sample200,201. This variability can affect the reliability of the results, particularly for 

quantitative analyses where accurate measurement of saliva volume is essential. 

 

2.3.4 Dried Saliva Spots (DSS) 

 

Dried Saliva Spots (DSS) are an emerging technique for saliva sampling, offering 

several practical advantages. In DSS, a few drops of saliva are spotted onto collection card 

and dry at room conditions. DSS needed a low volume of saliva (50 μL) and allowed for a 

quantitative recovery of the analyte from a filter paper169. Subsequently, the DSS is 

extracted using a suitable solvent using a combination of vortex-assisted extraction and 

ultrasound-assisted extraction similar to DBS202. In 2016, Numako et al. utilized DSS for 

the determination of D- and L- lactic acid in diabetic, pre-diabetic and nominally healthy 

people. The study highlighted the use of DSS results high accuracy and precision and high 

recovery of the target molecule from the spot, while the target molecules were stable 

during the long storage period until analysis203. Indeed, the improved preservation and 

stability of the saliva sample is an outcome from the absorptive characteristic of the filter 
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paper202. Therefore, the advantage of DSS significantly reduces transportation costs, while 

DSS can be easily stored and transported without the need for refrigeration202. However, 

DSS also has some limitations. Sharing the same problems with DBS, limitations of DSS 

encompass variations in sample volume, sensitivity concerns, vulnerability to external 

factors during drying, limited sample volume, analyte stability challenges, potential risks 

of contamination, and difficulties in biomarker extraction204. Despite these challenges, 

DSS remains a promising tool for non-invasive monitoring in sports science and clinical 

research. 

Moreover, recent advances in analytical techniques, such as Attenuated Total 

Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and chemometric 

analysis205, have enhanced the ability to detect and interpret salivary biomarkers. These 

methods allow for the rapid and detailed analysis of saliva, identifying subtle changes in 

its composition that may not be detectable with traditional techniques. As a result, 

salivary analysis is becoming an increasingly important tool in the arsenal of sports 

scientists, offering a non-invasive, cost-effective, and reliable means of monitoring 

athletes. 

Biofluid monitoring represents a crucial aspect of sports science, providing insights 

into the physiological and biochemical states of athletes during training and competition. 

While blood, urine, and sweat each offer unique advantages, saliva stands out for its non-

invasive nature and ease of collection. As the field of sports science continues to evolve, 

the use of biofluid analysis is likely to expand, offering new opportunities to optimize 

performance, prevent injuries, and promote the health and well-being of athletes. 
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3. Infrared spectroscopy: Fundamentals and experimental methods 

 

Infrared spectroscopy is certainly one of the most important analytical techniques 

available to today’s scientists. One of the great advantages of infrared spectroscopy is 

that virtually any sample in virtually any state may be studied. Liquids, solutions, pastes, 

powders, films, fibers, gases and surfaces can all be examined with a judicious choice of 

sampling technique206–211. As a consequence of the improved instrumentation, a variety 

of new sensitive techniques have now been developed to examine formerly intractable 

samples. 

Infrared spectrometers have been commercially available since the 1940s. At that 

time, the instruments relied on prisms to act as dispersive elements, but by the mid 

1950s, diffraction gratings had been introduced into dispersive machines212. The most 

significant advances in infrared spectroscopy, however, have come about as a result of 

the introduction of Fourier-transform spectrometers. This type of instrument employs an 

interferometer and exploits the well-established mathematical process of Fourier-

transformation. Fourier-transform infrared (FTIR) spectroscopy has dramatically improved 

the quality of infrared spectra and minimized the time required to obtain data212,213. In 

addition, with constant improvements to computers, infrared spectroscopy has made 

further great strides214,215. 

Infrared spectroscopy is a technique based on the vibrations of the atoms of a 

molecule. An infrared spectrum is commonly obtained by passing infrared radiation 

through a sample and determining what fraction of the incident radiation is absorbed at a 

particular energy. The energy at which any peak in an absorption spectrum appears 

corresponds to the frequency of a vibration of a part of a sample molecule.  

 

 



Section − THEORETICAL FRAMEWORK 

36 
 

3 

3.1 Electromagnetic radiation 

 

Electromagnetic radiation encompasses a broad range of energy forms, all 

characterized by their ability to propagate through space as oscillating electric and 

magnetic fields. These forms of radiation differ in their wavelengths and frequencies, 

giving rise to different types of interactions with matter, as depicted in the 

electromagnetic spectrum (Fig. 14). The visible portion of the spectrum, which can be 

detected by the human eye, is just a small fraction of the entire range, which also includes 

radiowaves, microwaves, infrared (IR), ultraviolet (UV), X-rays, and gamma rays216,217. 

 

 

Figure 14. (a) The regions of the electromagnetic spectrum, showing various properties 

across the range of frequencies and wavelengths, (b) simplified picture of an 

electromagnetic wave (the oscillations are perpendicular to each other and to the 

direction of energy flow) and (c) the visible spectrum. 

 

Spectroscopists use the interactions of radiation with matter to obtain information 

about a sample. The matter (analyte) is predominately in its lowest-energy or ground 
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state. The radiation then causes some of the analyte species to undergo a transition to a 

higher-energy or excited state (Fig. 15).  

 

 

Figure 15. Illustration of quantized discrete energy levels212 (taken from ref. 212). 

 

The energy required for this transition must be equal to the energy of the radiation 

described as a stream of photons or quanta for which the energy, E, is given by the Bohr 

equation (Eq. 1), as follows: 

 

𝐸 = ℎ 𝑣      (1) 

 

where h is the Planck constant (h = 6.626 × 10−34 J·s) and ν is equivalent to the 

classical frequency of radiation217. 

The information about the analyte is acquired by measuring the electromagnetic 

radiation emitted as it returns to the ground state or by measuring the amount of 

electromagnetic radiation absorbed as a result of excitation217.  

When the sample is stimulated by applying an external electromagnetic radiation 

source, several processes are possible. Processes of change, including those of vibration 

and rotation associated with infrared spectroscopy212, can be represented in terms of 

quantized discrete energy levels E0, E1, E2, etc., as shown in Figure 15. 

For ultraviolet and visible radiation, excitation occurs when an electron residing in a 

low-energy molecular or atomic orbital is promoted to a higher-energy orbital. In 
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addition, molecules exhibit two other types of radiation-induced transitions: vibrational 

transitions and rotational transitions. Vibrational transitions occur because a molecule 

has a multitude of quantized energy levels, or vibrational states, associated with the 

bonds that hold the molecule together. Figure 16 depicts the energies E1 and E2, two of 

the several electronically excited states of a molecule, relative to the energy of the 

ground state E0. This phenomenon involves orbital transitions due to ultraviolet and 

visible radiation. In addition, the relative energies of vibrational states associated with 

each electronic state are indicated by the lighter horizontal lines. This kind of transitions 

occurs when the matter interacts with lower energy (larger wavelength) photons 

(infrared radiation). 

 

 

Figure 16. Energy level diagram showing some of the energy changes that occur during 

absorption of infrared (IR), visible (VIS), and ultraviolet (UV) radiation by a molecular 

species217 (taken from ref. 217). 
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3.2 Infrared absorptions 

 

Infrared radiation generally is not energetic enough to cause electronic transitions, 

but it can induce transitions in the vibrational and rotational states associated with the 

ground electronic state of the molecule (Fig. 16). With liquid or solid samples, however, 

rotation is often hindered or prevented, and the effects of these small energy differences 

are not detected217. In infrared spectroscopy, for a molecule to exhibit infrared 

absorptions, its electric dipole moment must change during the vibration, which serves as 

the selection rule for infrared activity218. Molecules that meet this criterion, such as 

heteronuclear diatomic molecules, are considered "infrared-active" because their dipole 

moment changes as the bond stretches and contracts. Conversely, homonuclear diatomic 

molecules are "infrared-inactive" as their dipole moment remains constant, regardless of 

bond length212. In general, the greater the polarity of the bond, the stronger its infrared 

absorption is. The carbonyl bond is very polar, and absorbs very strongly. The carbon-

carbon triple bond in most alkynes, in contrast, is much less polar, and thus a stretching 

vibration does not result in a large change in the overall dipole moment of the molecule. 

Infrared absorption bands are not infinitely narrow; several factors contribute to 

their broadening. Collisions between molecules can broaden the bands. Another factor is 

the finite lifetime of the states involved in the transition. In quantum mechanics, solving 

the Schrödinger equation for time-dependent systems reveals that energy states do not 

have precisely defined energies, leading to lifetime broadening212. According to the 

Heisenberg Uncertainty Principle, the shorter the lifetime of an excited state, the broader 

the absorption band is, reflecting a less precisely defined energy212. 

 

3.3 Normal modes of vibration 

 

The interactions of infrared radiation with matter may be understood in terms of 

changes in molecular dipoles associated with vibrations and rotations. A basic model, a 
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molecule can be looked upon as a system of masses joined by bonds with spring-like 

properties. The atoms in the molecules can also move relative to one other, that is, bond 

lengths can vary or one atom can move out of its present plane. This is a description of 

stretching and bending movements that are collectively referred to as vibrations. The 

number of ways a molecule can vibrate is related to the number of atoms, and thus the 

number of bonds, it contains217. For a diatomic molecule, only one vibration that 

corresponds to the stretching and compression of the bond is possible. This accounts for 

one degree of vibrational freedom. Polyatomic molecules containing many (N) atoms will 

have 3N degrees of freedom212 (Table 1).  

 

Table 1. Degrees of freedom for polyatomic molecules. 

Type of degrees of freedom Linear Non-linear 

Translational 3 3 

Rotational 2 3 

Vibrational 3N-5 3N-6 

Total 3N 3N 

 

A molecule can only absorb radiation when the incoming infrared radiation is of the 

same frequency as one of the fundamental modes of vibration of the molecule. This 

means that the vibrational motion of a small part of the molecule is increased while the 

rest of the molecule is left unaffected. 

Vibrations can involve either a change in bond length (stretching) or bond angle 

(bending) (Fig. 17). Some bonds can stretch in-Phase (symmetrical stretching) or out-of-

Phase (asymmetric stretching), as shown in Figure 17a. Bending vibrations also contribute 

to infrared spectra and these are summarized in Figure 17b. Taking the water molecule as 

an example, the hydrogens can move in the same direction or in opposite directions in 

this plane, here the plane of the page. This results in in-plane and out-of-plane bending 

vibrations, as illustrated in Figure 17b. There will be many different vibrations for even 
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fairly simple molecules. The complexity of an infrared spectrum arises from the coupling 

of vibrations over a large part of or over the complete molecule. Such vibrations are 

called skeletal vibrations. For more complex molecules, the analysis becomes simpler 

since hydrogen atoms may be considered in isolation because they are usually attached 

to more massive, and therefore, more rigid parts of the molecule212. Bands associated 

with skeletal vibrations are likely to conform to a pattern or fingerprint of the molecule as 

a whole, rather than a specific group within the molecule. 

 

 

Figure 17. Types of molecular vibrations. (a) Symmetric and asymmetric stretching 

vibrations and (b) in-plane and out-of-plane bending vibrations217 (taken from ref. 217). 
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3.4 Complicating Factors 

 

There are a number of factors that may complicate the interpretation of infrared 

spectra (e.g. overtone and combination bands, Fermi resonance, coupling and vibration-

rotation bands). These factors should be considered when studying spectra as they can 

result in important changes to the spectra and may result in the misinterpretation of 

bands. 

 

3.4.1 Overtone and anharmonic bands 

 

The sound we hear is a mixture of harmonics, that is, a fundamental frequency 

mixed with multiples of that frequency. Overtone bands in an infrared spectrum are 

analogous and are multiples of the fundamental absorption frequency. Up to now only 

harmonic vibrations have been discussed (Fig. 18a). If anharmonicity is present, vibration 

will be periodic but not a simple sine or cosine wave (Fig 18b), thus the vibrational 

frequency will no longer be completely independent of amplitude as it is in the harmonic 

case. However, any such periodic function can be resolved into simple sine or cosine 

components where the frequencies are integral multiples of the fundamental vibrational 

frequencies (Fourier analysis) (Fig. 18c). This means that if the molecular vibration is 

anharmonic, the dipole moment will oscillate with the fundamental frequency and 

integral multiples thereof218.  

These are called the fundamental, first overtone, second overtone, etc. The energy 

required for the first overtone is twice the fundamental, assuming evenly spaced energy 

levels. Since the energy is proportional to the frequency absorbed and this is proportional 

to the wavenumber, the first overtone will appear in the spectrum at twice the 

wavenumber of the fundamental212. The intensity of an overtone absorption is dependent 

on the amount of anharmonicity in the vibration. Overtones can be detected in the 

infrared spectrum but they are usually quite weak, which implies that although molecular 
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vibrations are measurably anharmonic, the anharmonicity is not great and can be ignored 

in a reasonably good first approximation218. 

 

 

Figure 18. Plots of mass displacement versus time for (a) harmonic, (b) anharmonic 

vibrations and (c) the main components of the anharmonic curve in the middle218 (taken 

from ref. 218). 

 

3.4.2 Fermi resonance 

 

The Fermi resonance effect usually leads to two bands appearing close together 

when only one is expected. When an overtone band has the same frequency as, or a 

similar frequency to, a fundamental, two bands appear, split either side of the expected 

value and are of about equal intensity. The effect is greatest when the frequencies match, 

but it is also present when there is a mismatch of a few tens of wavenumbers. The two 

bands are referred to as a Fermi doublet212. 
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3.4.3 Coupling 

 

Vibrations in the skeletons of molecules become coupled. Such vibrations are not 

restricted to one or two bonds, but may involve a large part of the carbon backbone and 

oxygen or nitrogen atoms if present, especially when the motions are in the same part of 

the molecule. The energy levels mix, hence resulting in the same number of vibrational 

modes, but at different frequencies, and bands can no longer be assigned to one bond. 

This is very common and occurs when adjacent bonds have similar frequencies. Coupling 

commonly occurs between C–C stretching, C–O stretching, C–N stretching, C–H rocking 

and C–H wagging motions212. 

 

3.4 Fourier-Transform infrared spectrometers 

 

Fourier Transform Infrared (FTIR) spectrometers are powerful analytical instruments 

used to obtain an infrared spectrum of absorption, transmission, or emission of a solid, 

liquid, or gas. By measuring how a sample absorbs light across the infrared range, FTIR 

spectrometers provide detailed information about the molecular composition, functional 

groups, and chemical bonds present in a material. The technique is widely used due to its 

ability to analyze both organic and inorganic compounds quickly and with minimal sample 

preparation. Modern IR spectroscopic instruments are widely equipped with the FTIR 

design to accelerate the scanning and data collection process, while the fundamental unit 

of the FTIR spectrometer constitutes the Michelson interferometer217. The detailed 

optical layout of the ATR-FTIR spectrometer is depicted in Figure 19 along with the path 

ways of generating the IR spectrum. The next lines lay the description of each component. 

 



 Infrared spectroscopy: Fundamentals and experimental methods 

45 
 

 

Figure 19. (a) Schematic optical layout of the FTIR spectrometer mounted with a 

trapezoidal crystal ATR accessory and (b) photograph of a typical ATR-FTIR 

instrumentation. 

 

3.4.1 Michelson interferometers  

 

The most common interferometer used in FTIR spectrometry is a Michelson 

interferometer (invented by the American physicist Albert A. Michelson), is a precision 

instrument that produces interference fringes by splitting a light beam into two parts and 

then recombining them after they have traveled different optical paths212. Michelson 

interferometer consists of two perpendicularly plane mirrors, one of which can travel in a 

direction perpendicular to the plane. A semi-reflecting film (half-silvered mirror), the 

beamsplitter, bisects the planes of these two mirrors. Figure 20 depicts the 

interferometer and the path of a light beam from a single point on the extended source S, 

which is a ground-glass plate that diffuses the light from a monochromatic lamp. The 
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beam strikes the beamsplitter M, where half of it is reflected to the side and half passes 

through it. The reflected light travels to the movable plane mirror M1, where it is reflected 

back through beamsplitter M to the detector (the observer acts as a simplified version of 

the detector). The transmitted half of the original beam is reflected back by the stationary 

mirror M2 and then toward the observer by beamsplitter. 

 

 

Figure 20. (a) The Michelson interferometer and (b) a planar view of the interferometer. 

 

Notice from the figure that one beam passes through M three times and the other 

only once, since the reflecting surface of the beam splitter is the surface on the lower 

right (more clearly in Fig. 20b). To ensure that both beams traverse the same thickness of 

glass, a compensator plate C of transparent glass is placed in the arm containing M2. This 

plate is a duplicate of M (without the silvering reflective surface) and is usually cut from 

the same piece of glass used to produce M. With the compensator in place, any Phase 

difference between the two beams is due solely to the difference in the distances they 

travel.  

If two waves (beams) simultaneously propagate through the same region of space, 

the resultant field at any point in that region is the vector sum of the field of each wave. 

This is the principle of superposition. If two beams emanate from a common source, but 

travel over two different paths to a detector (one path is constant and the second one 

changes due to moving mirror), the field at the detector will be determined by the optical 
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path difference. This phenomenon concludes to Phase difference between the 

transmitted and reflected beam interfere destructively or constructively212. 

 

3.4.2 Fourier-Transformation in IR spectroscopy 

 

Fourier-transform infrared (FTIR) spectroscopy is based on the idea of the 

interference of radiation between two beams to yield an interferogram. The latter is a 

signal produced as a function of the change of pathlength between the two beams.  

An interferogram has a 'center-burst', also called the 'zero-path-difference' point, or 

'ZPD'. This corresponds to the place where maximum interference is produced by the 

moving mirror in the instrument (Fig. 21)219. This center-burst can be placed in the middle 

or near to the beginning of the interferogram. The placement of the center-burst is 

determined by when the instrument starts data collection during the mirror travel. When 

the center-burst is in the middle, the interferogram is called 'double-sided' or 'symmetric'. 

When it is placed at the beginning of the interferogram, it is called 'single-sided' or 

'asymmetric'.  

 

Figure 21. Observed signal from a Michelson interferometer as a function of mirror 

displacement for an incident wave consisting of three discrete frequencies. This signal is 
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the sum of the three cosine wave signals that would arise from each frequency 

separately, as indicated219 (taken from ref. 219). 

The two domains of distance and frequency are interconvertible by the 

mathematical method of Fourier-transformation. In Figure 22 is summarized how the 

polystyrene film interferogram is transformed into a transmittance spectrum via Fourier 

analysis. A detailed documentation about Fourier transformation is described in Section 5. 

 

Figure 22. Pictorial essay of transformation and Phase correction by the Mertz method: 

(a) double-sided interferogram of a polystyrene film, (b) real and imaginary portions of 

the complex FT, (c) transmittance spectrum after the single-beam spectrum of sample is 

ratioed against a single-beam reference spectrum (note that only one-half of each curve 

of (c) has been retained since each half is a mirror image of the other and no information 

is lost when one half is discarded)220 (taken from ref. 220). 

 

3.5 Attenuated Total Reflectance spectroscopy 

 

Transmission spectroscopy is the oldest and most straightforward infrared method. 

This technique is based upon the absorption of infrared radiation at specific wavelengths 

as it passes through a sample. It is possible to analyze samples in the liquid, solid or 

gaseous forms when using this approach. Reflectance techniques may be used for 

samples that are difficult to analyze by the conventional transmittance methods. 
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Reflectance methods can be divided into two categories. Internal reflectance 

measurements can be made by using an attenuated total reflectance cell in contact with 

the sample. There is also a variety of external reflectance measurements which involve an 

infrared beam reflected directly from the sample surface. 

When a propagating wave (e.g. infrared light beam) hits the surface between two 

optical media which are characterized by two different refractive indices at a certain 

angle of incidence, the light is totally reflected. This angle is called the critical angle. 

Attenuated Total Reflectance (ATR) spectroscopy utilizes the phenomenon of total 

internal reflection. A beam of radiation entering a crystal will undergo total internal 

reflection when the angle of incidence at the interface between the sample and crystal is 

greater than the critical angle, where the latter is a function of the refractive indices of 

the two surfaces (Fig. 23)212. The IR radiation travels through the crystal and interacts 

with the sample on the surface in contact with the ATR crystal. The beam penetrates a 

fraction of a wavelength beyond the reflecting surface and when a material that 

selectively absorbs radiation is in close contact with the reflecting surface, the beam loses 

energy at the wavelength where the material absorbs. The resultant attenuated radiation 

is measured and plotted as a function of wavelength by the spectrometer and gives rise 

to the absorption spectral characteristics of the sample. 

 

3.5.1 ATR cells 

 

Many different ATR accessories are available for FTIR spectrometers. They can be 

divided into ATR cells with a single reflection (one bounce) and cells with multiple 

reflections (multiple bounce, 25 or more) (Fig. 23)212. Depending on the application and 

the measured samples, different materials are used as the ATR crystal. The crystals used 

in ATR cells are made from materials that have low solubility in water and are of a very 

high refractive index. Such materials include zinc selenide (ZnSe), germanium (Ge), 

diamond (Fig. 23c,d,e,f) and thallium–iodide (KRS-5)221. 
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Figure 23. (a) Optical ray diagram of a single reflection and (b) multiple reflection internal 

reflection element geometries of ATR-FTIR spectrometer. Close-up of a (c) diamond, (d) 

zinc selenide (ZnSe), (e) germanium and (f) multi-reflection (ZnSe) ATR crystals222 (taken 

from ref. 222). 

 

In single-bounce ATR cell the IR beam and the sample interact only once at a single 

point of reflection. Modern FTIR spectrometers with sufficiently large signal-to-noise ratio 

(which is a measure of signal quality) allow for reasonable spectra even with only one 

bounce. The clear advantage of single-bounce ATR cells is the minimal amount of sample 

needed for a measurement. Single-bounce attenuated total reflectance cells are 

commonly used for solid samples or powders or whenever only small sample volumes of 
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liquids are available. Common single-bounce ATR accessories consist of an ATR crystal 

with an interface surface area of about 2 mm2 and a clamp which is used to uniformly 

press solid or powder samples onto the ATR crystal’s surface (Fig. 19b)223. 

In multiple-bounce ATR cells the IR beam is reflected multiple times. Each reflection 

on the ATR crystal’s surface exhibits an evanescent wave which interacts with the 

sample221. Since the interactions are independent of one another the absorptions are 

additive and the sensitivity of the recorded spectrum can be increased due to significantly 

higher signal-to-noise ratios.  

Different designs of ATR cells allow both liquid and solid samples to be examined. It 

is also possible to set up a flow-through ATR cell by including an inlet and outlet in the 

apparatus212. This allows for the continuous flow of solutions through the cell and permits 

spectral changes to be monitored with time. 

 

3.5.2 Evanescent wave 

 

Total internal reflection does not explain the interaction of the IR beam and sample 

because the IR beam never leaves the ATR crystal. Instead, the interaction of the IR beam 

and sample occurs through an evanescent field, often called evanescent wave (Fig. 24a). 

Upon total reflection of the incident light at the interface where the crystal touches the 

sample a small fraction of the light extends into the sample as an evanescent wave. When 

a wave cannot propagate regularly into the sample, it is concentrated in proximity to the 

point of total reflection and starts decaying exponentially224. The evanescent wave sticks 

out into the sample. In areas where the sample is in contact with the evanescent wave 

specific parts of the IR beam are absorbed based on the sample’s composition. The totally 

reflected IR light lacks the absorbed parts and thus is attenuated. 
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Figure 24. (a) Graphical representation of a single bounce ATR and (b) depth penetration 

of the evanescent wave depending on the specific wavenumber energy (wavelength, λ). 

 

The depth of penetration is defined as the distance to the point at which the 

evanescent wave’s amplitude has decreased to 1/e (i.e. about 37%) of its maximum 

value224,225. The depth of penetration in ATR spectroscopy is a function of the wavelength, 

λ (Fig. 24b); the refractive index of the crystal, n2; and the angle of incident radiation, θ. 

The depth of penetration, dp, for a non-absorbing medium is given by Eq. 2: 

 

𝑑𝑝 =  

𝜆

𝑛1

2𝜋 √sin 𝜃−(
𝑛1
𝑛2

)2
      (2) 

where n1 is the refractive index of the sample212. 

 

3.6 Qualitative applications of ATR-FTIR spectroscopy 

 

An infrared absorption spectrum, even one for a relatively simple compound, often 

contains a bewildering array of sharp peaks. Peaks useful for the identification of 

functional groups are located in the shorter-wavelength region of the infrared (fingerprint 

region), where the peaks positions are only slightly affected by the carbon skeleton of the 

molecule217. This region of the spectrum thus abounds with information regarding the 
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overall constitution of the molecule under investigation. Table 2 gives the positions of 

characteristic peaks for some common functional groups. 

 

Table 2. Some characteristic infrared absorption peaks217 (taken from ref. 217). 

 
Absorption Peaks 

Vibration Functional Group Wavenumber, cm-1 Wavelength, μm 

O—H 
Aliphatic and 

aromatic 
3600-3000 2.8-3.3 

NH2 
Also secondary and 

tertiary 
3600-3100 2.8-3.2 

C—H Aromatic 3150-3000 3.2-3.3 

C—H Aliphatic 3000-2850 3.3-3.5 

C≡N Nitrile 2400-2200 4.2-4.6 

C≡C— Alkyne 2260-2100 4.4-4.8 

COOR Ester 1750-1700 5.7-5.9 

COOH Carboxylic acid 1740-1670 5.7-6.0 

C═O 
Aldehydes and 

ketones 
1740-1660 5.7-6.0 

CONH2 Amides 1720-1640 5.8-6.1 

C═C— Alkene 1670-1610 6.0-6.2 

Ǿ—O—R Aromatic 1300-1180 7.7-8.5 

R—O—R Aliphatic 1160-1060 8.6-9.4 

 

The ATR-FTIR spectroscopic technique has undergone significant advancements, 

enabling detailed analyses of molecular bonding, surface adsorption, interactions, 

molecular orientation, kinetics, and structural parameters of samples226. ATR-FTIR 

spectroscopy is a simple, non-invasive tool across a wide range of scientific disciplines. In 
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the healthcare sector, it has been integrated with chemometrics and multivariate analysis 

to enhance point-of-care diagnostics, offering highly sensitive detection capabilities for 

various bio-analytes and disease biomarkers227–229. Due to the control of the penetration 

depth, ATR-FTIR spectroscopy can selectively probe components within layered surfaces, 

such as thin biofilms, peptide layers, or electrolyte interfaces221,230. The potential of ATR-

FTIR spectrometry has also been explored in a variety of infrared imaging applications, 

including histopathology, live cell and tissue analysis, and the identification of material 

surface properties231–233. 

 

4. Nuclear Magnetic Resonance (NMR) spectroscopy 

 

Nuclear Magnetic Resonance (NMR) spectroscopy is a highly versatile and widely 

used analytical technique that exploits the magnetic properties of specific atomic nuclei. 

The fundamental principle of NMR is based on the fact that certain nuclei, when placed in 

an external magnetic field, can occupy distinct nuclear spin states. NMR detects 

transitions between these spin states, which are characteristic of the nucleus being 

studied and provide insight into its chemical environment. However, it is important to 

note that NMR is only applicable to nuclei with a non-zero spin quantum number (I≠0); 

nuclei with I=0 are "invisible" to NMR spectroscopy because they lack the magnetic 

properties required for signal generation. 

Due to these unique properties, NMR has become an invaluable tool for 

determining molecular structures, monitoring chemical reactions, and investigating 

metabolic processes in living cells. Its applications extend across a broad range of fields, 

including medicine, biochemistry, physics, and industry, making it a cornerstone of 

research and development in nearly every scientific discipline. 
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4.1 Magnetic resonance 

4.1.1 Nuclear spins 

 

Nuclei possess a positive charge, and many behave as though they are spinning. 

When a charged particle is in motion, it generates a magnetic moment and produces a 

corresponding magnetic field. Therefore, a spinning nucleus acts like a tiny bar magnet, 

with its magnetic moment234 aligned along the axis of rotation (Fig. 25a). This property is 

commonly referred to as nuclear spin. 

 

 

Figure 25. (a) A charged nucleus rotating with angular frequency ω creates a magnetic 

field B and is equivalent to a small bar magnet whose axis is coincident with the spin 

rotation axis. (b) Orientation of spinning nuclei in absence and presence of external 

magnetic field. 

 

When such a "tiny magnet" is placed within the field of a much larger external 

magnet, its orientation is no longer random. Instead, there will be a preferred 

orientation—the most probable parallel orientation235. However, it is also possible for the 

nucleus to align itself precisely 180° opposite to this preferred direction (Fig. 25b). In 
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scientific terms, the more favorable orientation corresponds to the lower-energy state, 

while the opposite orientation represents the higher-energy state. 

This two-state model is applicable to most nuclei of biological importance, such as 

¹H, ¹³C, ¹⁵N, ¹⁹F, and ³¹P, all of which have a nuclear spin quantum number (I) of ½235. 

According to quantum mechanics, nuclei with I=½ can only occupy one of these two 

distinct energy states when exposed to an external magnetic field—no intermediate 

states are possible. 

 

4.1.2 The resonance phenomenon 

 

The small nuclear magnet can spontaneously "flip" between its two possible 

orientations (or energy states) while in the presence of a large external magnetic field, 

although this flipping occurs infrequently (Fig. 26a)236. However, when energy equivalent 

to the difference between the two nuclear spin energy levels (ΔE) is applied to the 

nucleus—or, more typically, to a group of nuclei—this flipping between energy states is 

greatly enhanced (Fig. 26a). This energy is delivered through a short pulse of 

radiofrequency (RF) irradiation, typically lasting several microseconds. 
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Figure 26. (a) The nuclei resonance process at thermal equilibrium and after the RF pulse. 

(b) Dependence on magnetic field strength B0 of the separation of nuclear energy levels 

(ΔE) for spin I=½ and the relative populations of the energy levels assuming one has 

approximately two million protons in the sample237 (taken from ref. 237). 

The absorption of RF energy by the nuclear spins induces transitions between the 

two energy levels, leading to flipping both from the lower energy state to the higher 

energy state and vice versa. This back-and-forth flipping is a fundamental feature of the 

resonance process in NMR. As the nuclear spins absorb energy, they generate a voltage 

that can be detected by a coil of wire tuned to the appropriate frequency. This signal is 

then amplified and recorded as a free induction decay (FID). Eventually, relaxation 

processes return the nuclear spin system to its thermal equilibrium, provided no 

additional RF pulses are applied236. The energy required to induce nuclear spin flipping 

and generate an NMR signal corresponds exactly to the energy difference between the 

two spin orientations. This energy is dependent on the strength of the external magnetic 

field (B₀) in which the nucleus is placed, as described by Eq. 3: 

𝛥𝛦 =  
𝛾 ℎ 𝐵0

2𝜋
                                                              (3) 

where h is Planck's constant (6.63 x 10⁻²⁷ erg·sec). This equation, also known as the Bohr 

condition, allows the frequency (ν₀) of the nuclear transition to be written as Eq. 4: 

𝑣0  =  
𝛾 𝐵0

2𝜋
                                                               (4) 

This equation is often referred to as the Larmor equation, with ω₀ = 2πν₀ being the 

Larmor resonance angular frequency235. The gyromagnetic ratio (γ) is a constant that is 

unique to each type of nucleus and directly relates to the strength of the nucleus’s 

magnetic moment. In the magnetic fields typically used in NMR experiments, the 

resonance frequencies required to fulfill the conditions of the Larmor equation fall within 
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the RF range. For example, in a magnetic field strength of 14.1 T, the resonance frequency 

for ¹H nuclei is 600 MHz, for ¹⁵N it is 60.8 MHz, and for ¹³C it is 151 MHz237. 

 

4.1.3 Sensitivity and the Boltzmann equation 

 

As previously mentioned, the nuclear spin, which behaves like a small bar magnet, 

can align in one of two possible orientations within an external magnetic field. The extent 

to which one orientation (or energy state) is favored over the other depends on both the 

strength of the nuclear magnetic moment (proportional to the gyromagnetic ratio) and 

the strength of the external magnetic field (B₀) in which the nucleus is placed235. The 

distribution of nuclei between these two energy states, in the absence of any RF 

perturbation, is described by the Boltzmann equation (Eq. 5): 

𝑁𝑢𝑝𝑝𝑒𝑟

𝑁𝑙𝑜𝑤𝑒𝑟
 =  𝑒− 

ℎ 𝑣

𝑘 𝑇     (5) 

 

where Nupper and Nlower represent the populations of nuclei in the upper and lower energy 

states, respectively, k is the Boltzmann constant, and T is the absolute temperature in 

Kelvin. 

To illustrate the impact of the magnetic field strength on the population of nuclear 

spin states, the distribution of about two million hydrogen nuclei, calculated using Eq. 5, 

is shown in Figure 26b. In a magnetic field of 18.8 T, which corresponds to a resonance 

frequency of 800 MHz for protons, and at thermal equilibrium at room temperature, the 

population ratio is approximately 0.999872237. This means that for every 1,000,000 nuclei 

in the upper energy state, there are 1,000,128 nuclei in the lower energy state. Although 

this is a very small population difference, it is crucial for NMR. Without this slight excess 

of nuclei in the lower energy state, NMR signals would not be detectable. However, this 

small population difference also presents a significant sensitivity challenge for NMR. Since 
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only the population difference—128 out of 2,000,128 nuclei in this example—contributes 

to the NMR signal, the vast majority of nuclei cancel each other out, leading to inherently 

low sensitivity. The low sensitivity of NMR, rooted in this small population difference, is 

one of its main limitations, particularly in applications to biological systems. However, as 

seen in Eq. 5, increasing the strength of the magnetic field enhances the population ratio, 

thereby improving the sensitivity of NMR measurements234,238. 

 

4.1.4 Magnetization 

 

In a classical mechanical perspective, for a nucleus with a spin quantum number of 

I=½ placed in a magnetic field of strength B₀, the nucleus’s magnetic moment undergoes 

precession around the z-axis, which is defined by the direction of the applied magnetic 

field. This precessional motion is depicted in Figure 27a, albeit with a simplified number 

of nuclear spins (represented by arrows). As discussed earlier, nuclei can align either 

parallel or antiparallel to the direction of the external magnetic field. Consequently, some 

nuclear spins precess about the positive z-axis, while others precess about the negative z-

axis. The overall magnetization resulting from a real sample is the sum of all these 

individual nuclear magnetic moments (or spins)234. Given that there is a slight excess of 

nuclei aligned with the magnetic field—i.e., in the lower energy state—the cumulative 

magnetization, denoted as M₀ (Fig. 27a), will be oriented along the positive z-axis. It is 

this total magnetization, rather than the magnetic moment of an individual nucleus, that 

generates the measurable NMR signal236. 
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Figure 27. (a) Orientation and precession of nuclear spins (I=½) at thermal equilibrium in a 

stationary magnetic field B0 that defines the z-axis. (b) Rotation of the magnetization M0 

in the rotating coordinate system that rotates about the z-axis at the NMR instrument's 

operating frequency. i) spin system at equilibrium in magnetic field B0; ii) application of a 

90° B1 pulse; and iii) a 180° pulse. 

 

4.2 The Nuclear Magnetic Resonance experiment 

 

A proton NMR spectrum can be obtained by gradually sweeping either the magnetic 

field or the frequency to satisfy the resonance condition described by Eq. 3. As this 

condition is met for the protons in the sample, signals are generated based on their 

distinct chemical environments. The simplest type of NMR experiment is the continuous 

wave (CW) experiment, where a constant frequency is applied while the magnetic field is 

varied239. This method probes the energy levels and detects resonance as the field 

changes. Alternatively, the CW experiment can be conducted by maintaining a constant 

magnetic field while varying the frequency, though this approach is generally reserved for 

specific applications. However, most modern NMR spectrometers utilize pulse-based 

techniques. In these experiments, short bursts of radiation are applied that encompass 

the entire frequency range needed to excite all nuclei of a particular type, such as ¹³C. This 
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pulsed method is more efficient and versatile than the traditional CW technique, and it 

has become the standard in NMR spectroscopy. 

 

4.2.1 Pulsed NMR 

 

The signal-to-noise ratio (S/N) in NMR can be significantly improved through the 

technique of signal averaging. In this process, the S/N ratio increases proportionally to the 

square root of the number of signals averaged (√n)234. A common and efficient way to 

acquire an NMR signal is by detecting the free induction decay (FID) after applying a 

strong RF pulse at the resonance frequency of the nuclei. This FID signal can be 

immediately followed by another RF pulse to generate a new FID. With the aid of a 

computer, the subsequent FID signals are captured and averaged with the initial one, 

resulting in an enhanced S/N ratio. 

At equilibrium, the net magnetization vector (M0) aligns along the direction of the 

external magnetic field (B0). This state is referred to as the equilibrium magnetization, M₀. 

In this orientation, the component of magnetization along the z-axis (Mz) is equal to M₀ 

and is termed longitudinal magnetization. Importantly, in this equilibrium condition, there 

is no transverse magnetization (Mx or My)236. To better understand the behavior of the 

magnetization, we use a rotating reference frame with axes x’, y’, and z (Fig. 27b). In this 

frame, the x’ and y’ axes rotate around the z-axis at the operating frequency (ν₀) of the 

NMR instrument. By adopting this rotating frame, we can more easily analyze the effect 

of applying an RF pulse, denoted as B₁, along the x’ axis. This pulse results in a measurable 

signal along the y’ axis. 

As illustrated in Figure 27b, at thermal equilibrium, the magnetization (M₀) aligns 

with the external magnetic field (B₀). When an RF pulse (B₁) is applied along the x’ axis, it 

rotates the magnetization in a plane perpendicular to B₁, typically the y’z plane235,236,239. 

The pulse must be applied at the appropriate frequency (ν0), as described by Eq. 3. The 

angle of rotation (θ) depends on several factors: the gyromagnetic ratio (γ) of the nucleus, 
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the amplitude of the RF pulse (B₁), and the duration time (tw) for which the pulse is 

applied. 

Figure 27b shows the effect of a 90° (π/2) RF pulse, which rotates the magnetization 

(M₀) by 90°, moving it from the z-axis into the y’-axis of the rotating frame. Such a pulse is 

referred to as a 90° or π/2 pulse. If the B₁ field is applied for twice the duration, it results 

in a 180° (π) rotation, inverting the magnetization (M₀). 

These rotations also have a quantum mechanical interpretation. For example, in the 

case of two million protons subjected to a 14.1 T magnetic field, the application of a 90° 

pulse equalizes the populations of the nuclear spins in the two energy states. A 180° 

pulse, however, inverts the population, leading to a greater number of spins in the higher-

energy state, as demonstrated in Figure 28. 

 

 

Figure 28. Effect of 90° and 180° RF pulses on the population of nuclear spins in a sample 

of about two million protons in a magnetic field237 (taken from ref. 237). 

 

4.2.2 Free Induction Decay (FID) 

 

As long as the bulk magnetization M0 lies along the z-axis (parallel to the applied 

magnetic field B0), no NMR signal can be detected. However, when a RF pulse is applied 

along the x'-axis, the magnetization vector M is tipped away from the z-axis, creating a 
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component along the transverse (y'-axis) plane. This transverse component of 

magnetization is what generates the observable NMR signal.  

Since the receiver detects signals along the y'-axis, signal intensity is initially at its 

maximum immediately after a 90° pulse. As precession continues, the magnetization 

vector moves around the transverse plane, resulting in sinusoidal variations in the 

detected signal. When the vector points directly toward the -y' axis, a negative signal is 

detected, reaching maximum negative amplitude at this orientation (Fig. 29)235. This 

oscillating, decaying signal is called Free Induction Decay (FID) because it decays freely 

after the RF pulse is turned off. 

 

 

Figure 29. Dynamic evolution of the FID signal with a limited duration oscillating field B1 

and a static magnetic field B0. (a) The spiral curve shows a trajectory of 𝐏, where the 

yellow part represents Rabi oscillation with an oscillating field turning on, and the blue 

part represents FID signal with an oscillating field turning off. The red vortex line 

represents the projection of the polarization trajectory on the x’-y’ plane during the FID 

process. (b) The blue damped oscillation curve depicts the FID signal of y’240 (taken from 

ref. 240). 
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4.2.3 Fourier Transform in NMR 

 

The previously discussed principles of pulsed NMR are straightforward when only 

one resonance frequency needs to be monitored, such as the ¹⁹F signal from fluorouracil 

bound to thymidylate synthase or the proton signal from water (H₂O) in biological tissues, 

where the water proton signal is dominant over other observable protons236. In these 

cases, a single frequency dominates the NMR signal. 

However, in many practical applications, the free induction decay (FID) is a time-

domain signal that often contains contributions from multiple nuclei resonating at 

different frequencies. For example, in a protein sample, different types of nitrogen nuclei 

(¹⁵N) may produce several distinct signals236. To obtain a more interpretable frequency-

domain spectrum from such a complex signal, the Fourier transform is applied to the 

signal-averaged FID. 

By applying a Fourier transform, we convert the time-domain FID data into a 

frequency-domain spectrum, where individual resonances are separated and displayed 

based on their frequencies234. This process is illustrated in Figure 30, where the signal-

averaged FIDs (shown on the left) are transformed into frequency spectra (on the right), 

making it easier to distinguish and analyze the contributions from different nuclei. A 

detailed documentation about Fourier transformation is described in Section 5. 
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Figure 30. The free induction decay (FID) is on the left and its Fourier transform (usual 

frequency spectrum) is on the right. 

 

4.3 Core components of an NMR spectrometer 

 

Nuclear Magnetic Resonance (NMR) spectroscopy is an advanced analytical 

technique used for the structural and dynamic study of molecules. The performance and 

accuracy of an NMR experiment depend significantly on the instrument's components. 

This Section provides a detailed overview of NMR instrumentation (Fig. 31). 
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Figure 31. A 500 MHz NMR spectrometer (Bruker Ascend 500). 

 

4.3.1 Magnet 

 

The magnet is the core component of an NMR spectrometer, generating the strong 

magnetic field essential for nuclear resonance. This field aligns nuclear spins, making 

them responsive to radiofrequency pulses. NMR magnets are typically superconducting, 

providing both strength and stability. A superconducting magnet operates at low 

temperatures (around 4K)241, using liquid helium to achieve superconductivity, which 

results in zero electrical resistance (Fig. 32). Liquid helium is typically surrounded by a 

liquid nitrogen (77.4K) container, which acts as a thermal buffer between the room 

temperature air (293K) and the liquid helium239. The resulted lack of resistance ensures a 
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highly stable and uniform magnetic field, crucial for obtaining reproducible and high-

resolution NMR spectra. The field strength ranges today from 4.7 to 23.5 T239. 

 

Figure 32. Schematic diagram of an NMR instrument highlighting the liquid helium and 

liquid nitrogen baths, outer vacuum chamber, superconducting solenoidal magnet and 

NMR probe with a sample spinner and sample tube. 
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4.3.2 Probe 

 

The probe is an integral part of the NMR spectrometer, housing the sample spinner 

(thus the sample) and facilitating RF transmission and detection242. It is positioned 

precisely in the strong magnetic field that is generated by the superconducting magnet 

(Fig. 32). Serving as the interface between the spectrometer and the sample, NMR probes 

have three primary functions: holding the sample, exciting nuclear spins with radio 

frequency (RF) energy, and detecting the NMR signal that emanates from the sample243. 

NMR probes are intricate devices composed of various components, each contributing to 

the probe's overall functionality in NMR spectroscopy. Understanding these components 

is essential for comprehending how NMR probes operate and their role in the broader 

context of NMR spectroscopy. 

Probe Body: The probe body, typically cylindrical, houses the internal components 

of the NMR probe, providing mechanical support and precise alignment for the RF coils 

and other elements (Fig. 32). It is specially designed to maintain stability and integrity 

under high magnetic fields and varying experimental temperatures244. The material of the 

probe body is a non-magnetic and resistant to RF interference to ensure optimal probe 

performance244. 

RF Coils: Radiofrequency coils are the "antennae" of the NMR system, broadcasting 

the RF signal to the sample and/or receiving the return signal; transmit and receive 

(transceiver). Saddle-shaped is the most frequently used type of coil in NMR 

instrumentations. However, surface, Helmholtz pair and bird cage coils (Fig. 33) are 

presented in other applications of magnetic resonance phenomenon, like MRI245. By 

generating an RF magnetic field when an alternating current flows through them, these 

coils excite the sample’s nuclear spins. As these spins return to equilibrium, they emit an 

NMR signal, which the RF coils detect. Careful design and tuning of these coils are crucial, 

as they need to resonate at frequencies specific to the nuclei under study. This specificity 
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ensures efficient excitation of the nuclei and precise signal detection, both fundamental 

for molecular analysis. 

 

 

Figure 33. Schematic representation of commonly used radiofrequency coils in the NMR 

and MRI system245 (taken from ref. 245). 

 

Sample Tube Holder: The sample tube holder (spinner) secures the NMR sample 

tube within the probe, ensuring correct positioning in the magnetic field and relative to 

the RF coils (Fig. 32). Precise placement is crucial for uniform excitation and optimal signal 

detection. The holder is adaptable to different tube sizes based on probe type, and it 

facilitates easy insertion and removal of the sample. 

Amplifiers: Amplifiers in NMR probes boost the weak NMR signal (from milli Watts 

to tens or hundreds of Watts) detected by the RF coils before it reaches the 

spectrometer’s main console239. Since the raw NMR signal is typically faint, amplification 

is needed for accurate signal analysis. These preamplifiers are designed to be highly 

sensitive and minimize noise to preserve signal integrity and optimize the signal-to-noise 

ratio. 
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Shimming Coils: Shimming coils are specialized coils that fine-tune the magnetic 

field within the NMR probe, ensuring it is homogeneous. Any minor inhomogeneities in 

the magnetic field can distort the NMR spectrum234. These inhomogeneities could be 

caused by the magnet design, materials in the probe, variations in the thickness of the 

sample tube, sample permeability, and ferromagnetic materials around the magnet239. By 

adjusting the magnetic field at different points within the probe, shimming coils help 

achieve uniformity, which is essential for obtaining high-resolution spectra. 

Temperature Control System: In many NMR experiments, precise temperature 

control of the sample is necessary, sometimes involving extreme temperatures238,244. The 

temperature control system in an NMR probe regulates sample temperature using 

heaters, coolers, and sensors, maintaining it at the desired level throughout the 

experiment. Accurate temperature control is critical for studying temperature-dependent 

molecular properties and in experiments monitoring reaction kinetics246,247. 

Probe Types: Liquid-state NMR probes are primarily used for samples in a liquid 

state. These probes are known for their high sensitivity and are optimized for analyzing 

homogeneous solutions244. They offer significant advantages in high-resolution 

spectroscopy, making them ideal for studying a wide range of organic and biochemical 

compounds. However, their use is limited to liquid samples, which can be a constraint 

when dealing with solid or gaseous substances. These probes are commonly employed in 

organic chemistry, biochemistry, and pharmaceutical research, particularly for examining 

molecular structures and interactions in solution. Solid-state, cryogenic, HR-MAS and 

benchtop probes are included in the family of NMR probes243. 

 

4.4 Industrial applications 

 

Advances in NMR instrumentation continue to expand the reach and utility of NMR 

in diverse fields of research. Moreover, NMR plays a vital role across numerous industries, 
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providing precise molecular insights that enhance product development, quality control, 

and research. In the pharmaceutical sector, NMR is essential for drug discovery, structural 

verification, and purity assessment, ensuring drug safety and efficacy248. The chemical 

industry benefits from NMR’s detailed analysis of polymers and petrochemicals, 

supporting innovation in materials science249,250. In food and beverage, NMR aids in 

quality control, nutritional analysis, and preservation research251,252. Environmental 

analysis leverages NMR for pollutant detection and monitoring253. These applications 

underscore NMR's critical contribution to scientific advancement and industry standards. 

 

5. Fourier Transformation 

 

The Fourier Transform (FT) is introduced as a powerful mathematical method that 

allows scientists to convert signals between two domains: serial (time or space) and 

spectral (frequency)254. This conversion is essential for understanding the hidden 

structure of signals, whether they come from sound waves, electromagnetic radiation, or 

molecular data in chemistry. Although originally a complex and tedious procedure, the 

development of computing power and the Fast Fourier Transform (FFT) algorithm has 

made it more accessible to scientists and engineers, improving their ability to analyze 

signals with greater sensitivity, speed, and resolution. 

Fourier Transform is not just a mathematical tool but an approach that mimics real-

world physical processes. It provides a way to understand and process signals that would 

otherwise be difficult or impossible to interpret directly. Assume a periodic function f(x) 

defined on the line of real numbers, or x ∈ R. In general cases or real-life applications, a 

function like f(x) can have a very complicated behavior which makes the finding of its 

closed form very difficult or in most cases impossible. This means that there is no closed 

mathematical expression that describes the complete behavior of the function exactly. 
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Jean Baptiste Joseph Fourier, a French mathematician and physicist discovered that 

any complex function (signal), whether periodic or not, can be represented as a sum of 

simple sine and cosine waves of different frequencies254. Using the sine and cosine, the 

properties of the very complicated function is reduced to the characteristics of the 

aforementioned trigonometric functions which are very well-known. This decomposition 

allows scientists to isolate individual components of a signal and understand its 

underlying structure. The FT is particularly useful when physical processes, like scattering 

in X-ray crystallography, don’t offer direct observations. Τhe FT allows scientists to 

reconstruct images of atomic structures from diffraction patterns—a task that no optical 

lens could achieve. 

 

5.1 Serial-Spectral domains 

 

The central idea behind the Fourier Transform is that many physical processes can 

be described in two equivalent ways: in the serial domain (over time or space) or in the 

spectral domain (frequency). In the serial domain, data is represented as a sequence of 

events occur one after another, either over time (e.g., the changing pressure amplitude of 

a sound wave at a given point) or across space (e.g., a densitometer measuring optical 

density across a plate). The spectral domain, on the other hand, describes how much of 

each frequency (or spatial frequency) is present in the signal254. 

For example, in time domain, we perceive the flashing of a lighthouse light as a 

periodic event in time, a serial behavior. However, the light's color, which is determined 

by its wavelength, is a spectral characteristic. In the spatial domain, we recognize an 

image by its arrangement of pixels (serial), but describe a fabric by the number of threads 

per unit length, a spatial frequency. 
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As mentioned earlier, any physically meaningful function can be constructed by 

adding together simple periodic sine or cosine waves. This idea, though surprising at first, 

makes sense when we consider something like the sound produced by a wind instrument. 

When a wind instrument is played, the instrument produces a sound with multiple pitch 

components, each corresponding to a periodic signal in the spectral domain, which 

together create the overall sound we hear in the serial domain (in this case, time). 

Fourier's insight bridged the gap between serial and spectral descriptions, making it 

possible to analyze complex phenomena in both domains. 

 

5.2 Periodic an aperiodic signals 

 

Fourier theory becomes most straightforward when applied to periodic signals. In 

this case, the periodic function can be broken down into a sum of sine waves: a 

fundamental wave that shares the same period as the signal, plus an infinite series of 

higher harmonics of the fundamental frequency218. Each of these harmonics has its own 

amplitude and Phase, and their combination recreates the original signal. The relation 

between the two domains, serial and spectral, is shown rather vividly, in Figure 34 as a 

three-dimensional representation of amplitude against either time or frequency, for a 

periodic signal. This illustrates how the original signal can be regarded as constructed by 

the summation of its spectral components. The Fourier series is given by Eq. 6: 

 

𝑓(𝑥) =  
1

2
𝑎0 +  ∑ 𝑎𝑛 cos(𝑛𝑥) 

∞

𝑛=1

+  ∑ 𝑏𝑛 sin(𝑛𝑥)

∞

𝑛=1

                         (6) 

where a0, an and bn are the Fourier coefficients. 
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Figure 34. Decomposition of a waveform in both time (serial domain) and frequency 

(spectral domain)254 (taken from ref. 254). 

 

For aperiodic signals, the Fourier series approach doesn’t work directly. Instead, the 

Fourier Transform generalizes the concept by considering an infinite range of frequencies. 

If the signal (function) is aperiodic, it can be considered as a periodic function with its 

period to lengthen indefinitely, when the fundamental frequency will decrease 

correspondingly to zero254,255. For example a guitar that grows ever longer, with an 

accompanying decrease in the fundamental frequency of the vibrations of its strings. The 

result of a Fourier transform is a continuous function (Fig. 35c,d) that represents the 

signal’s frequency components over an infinite frequency range. Here, the infinite sum of 

the series synthesis of f(x) (the case of a periodic signal) will then become an integral Eq. 

7: 

𝐹(𝑠) =  ∫ 𝑓(𝑥)𝑒−𝑖2𝜋 𝑠 𝑥𝑑𝑥

+ ∞

−∞

                                               (7) 

Here, F(s) gives the amplitude and Phase of each frequency s, producing a 

continuous frequency spectrum (Fig. 35c,d) and resulting the transform between the 

serial function, f(x), and the spectral function, F(s). 
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Figure 35. Fourier transform spectra and the corresponding interferograms in the case of 

periodic (a and b) and aperiodic (c and d) signal254 (taken from ref. 254). 

 

This allows scientists to analyze signals with continuous variations, such as the 

random noise in a chemical experiment or the gradual change in light intensity over 

space. In both periodic and aperiodic cases the central problem of Fourier analysis is the 

determination of the various coefficients.  

 

5.3 Explaining the domain transformation 

 

The mathematical form of FT does not demonstrate directly its capability of domain 

transformation. In this section a demonstration of how the complex exponential “picks 

out” the components of f(x) at each frequency, s, to yield the spectrum, F(s). 

The complex exponential factor exp(-i2πsx) describes a vector that rotates with a 

frequency, s, (a phasor) as a function of the serial parameter, x (e.g. time or space). Thus, 
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the product can be illustrated as a helicoid (or coil) (Fig. 36)254. The sign of the phasor 

exponent determines the sence of rotation, clockwise or counterclockwise. The helicoid 

can be resolved into real and imaginary components. The FT, which is the integral of this 

function at the given value of s, has a real component which is the sum of these real 

projections, and a corresponding summed imaginary component.  

 

 

Figure 36. Resolution of the components of the helicoid into the real and imaginary 

planes254 (taken from ref. 254). 

In the context of FT analysis, consider a sine wave (coil) with a single, fixed 

frequency. The wave is coiled with a phasor of same frequency but undergoes a sign 

change that coincides with the reversal of the real part of the wave (the coil is coiled by 

the phasor) (Fig. 37a). This ends up with the phasor cancels out any contribution on the 
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real plane, the resulting transform yields a contribution solely to the imaginary 

component, with the real component being zero (Fig. 37b,c). Thus, a phasor with the 

same frequency is able to influence the coil only in the way of amplitude differentiation 

(nullification or addition)256. 

 

 

Figure 37. (a) The sine wave (coil) spread over time with the imaginary and real 

components follow a periodic behavior, plus the contribution of the phasor. The resulted 

wave after the addition of the phasor (b) in 3D and (c) in 2D. 

 

Conversely, if the wave and the phasor are not perfectly aligned in frequency, the 

transform exhibits a coiling behavior (the coil then, coils about itself) (Fig. 38)254. 

Consequently, the Fourier Transform is highly effective in isolating the single frequency of 

the sine wave, which appears as a distinct contribution to the overall frequency spectrum 
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of the signal. To simplify this, the FT extracts or subtracts every single phasor that changes 

the original form of the coil. This process underlines the FT's ability to accurately 

decompose periodic functions into their constituent frequencies. 

 

 

Figure 38. Coiling of the coil. The blue-yellow coil represents the original wave, while the 

red coil is the resulted wave after the contribution of the phasor. (a) The phasor has the 

same frequency with the wave (only amplitude change is observed). (b) and (c) The 

phasor has different frequency than the wave and different frequencies in each case254. 

(d) 2D representation (imaginary or real plane) of the resulted wave after the contribution 

of a same frequency phasor and (e) different frequency phasor. 

 

In the case of an aperioodic function then, the coiling process will still produce a 

similar cancellation of all frequency contribution except that one corresponding to the 

present frequency of the helicoid (initial coil). Hence, by choosing a succession of 

different frequencies and amplitudes for the coiling, results to yield F(s), the spectrum of 

f(x). 
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5.4 The versatility of FT 

 

In the study of molecular species, chemists view these entities as dynamic, 

exhibiting behaviors such as rotation, vibration, and flexing257,258. These properties are 

typically explored through spectroscopic techniques, where molecular systems are 

excited, and the emitted or transmitted electromagnetic radiation is analyzed. The 

radiation comprises contributions from numerous oscillators within the system, resulting 

in a complex time-dependent pattern. Since fluctuations in the UV-visible region can 

reach frequencies as high as 10¹³ Hz, no detector can accurately track such rapid changes. 

To manage this, the time-dependent radiation pattern is usually disregarded, and the 

radiation is separated into its frequency components via a monochromator (such as a 

prism or grating), producing an amplitude spectrum259. 

However, this approach is inherently inefficient. Single-detector systems discard 

much of the incoming energy when frequency bands are selected sequentially, while 

multi-detector systems can be costly—though alternatives like photographic films offer 

high sensitivity and resolution but introduce processing delays. Fourier Transform 

techniques provide a solution to these limitations by simultaneously capturing all 

frequency data and using the FT to resolve the serial-domain data into its frequency 

spectrum. This approach enhances both sensitivity and speed by eliminating the need for 

spectral separation. The versatility of FT methods extends beyond spectroscopy, offering 

significant advantages across various fields. 

In a conventional scanning spectrometer, the light source illuminates the sample, 

and the transmitted radiation is dispersed and detected one sample at a time through a 

scanning mechanism. However, during the majority of the time, the information at 

different dispersion angles is discarded, leading to inefficiency. Although a single, 

broadband detector or multiple detectors covering the entire spectrum can resolve this 

issue, there are limitations that may render such a setup impractical. From an energy and 

information perspective, using many detectors is beneficial, but it comes with the 
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challenge of cost and size. If only a few spectral lines are important, the problem is 

minimal, but if many spectral lines need to be analyzed, then the detectors must be small 

and inexpensive. The accompanying table shows the minimum number of detection 

channels required to achieve standard resolution in various spectroscopy techniques 

(Table 3)259. To address this, the goal is to replicate the advantages of a multichannel 

system using only one detector. Achieving this requires removing the dispersive element, 

which results in a scrambled signal due to interference. This scrambled signal can then be 

decoded using FT methods, providing a multiplex advantage without the need for 

multiple detectors. 

 

Table 3. Minimum number of channels required for various types of multidetector 

spectrometers259 (taken from ref. 259). 

Type of 
spectroscopy 

Largest usual 
frequency (Hz) 

Typical spectral 
frequency (Hz) 

range 

Width of one line 
(Hz) 

Approximate 
minimum 
number of 
channels 

Mössbauer 6 x 1018 108 107 10 

ESCA 3.5 x 1017 1017 1014 1,000 

Photoelectron 5 x 1015 3 x 1015 1012 3,000 

Electronic 1.5 x 1015 1.2 x 1015 109 1,250,000 

Vibrational 2 x 1014 1.5 x 1014 3 x 109 50,000 

Rotational 4 x 1010 3 x 1010 105 300,000 

13C NMR 8 x 107 2 x 104 4 x 10-1 50,000 

ICR 2 x 106 2 x 106 102 20,000 
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5.4.1 FT spectroscopy 

 

Over the past year, significant advancements in molecular structure analysis have 

been achieved due to the 10- to 100-fold increase in the sensitivity of infrared (IR) and 

nuclear magnetic resonance (NMR) spectrometers217. This progress is largely due to the 

development of FT spectroscopy, also referred to as interferometry or time-domain 

spectroscopy. 

The two most common spectroscopic techniques that are done in an FT mode are IR 

and NMR spectroscopy260,261. Infrared spectroscopy uses the two-beam Michelson 

interferometer where all the beams enter and leave the interferometer in parallel 

streams. Initially, the beam is generated by starting with a broadband light source—

containing the full spectrum of wavelengths to be measured. As the mirror in 

interferometer moves, each wavelength of light in the beam is periodically blocked, 

transmitted, blocked, transmitted, etc. by the interferometer, due to wave interference. 

This begins from the reference position, where the path lengths of both beams are equal, 

and all frequencies are in Phase simultaneously. Different wavelengths are modulated at 

different rates, so that at each moment or mirror position the beam coming out of the 

interferometer has a different spectrum259. The raw spectrum collected by the detector is 

called "interferogram" (Fig. 39a). The Fourier transform converts one domain (in this case 

displacement of the mirror in cm) into its inverse domain (wavenumbers in cm−1) (Fig. 

39b). 

FTIR spectroscopy has several advantages over conventional IR 

spectrophotometers. It allows rapid acquisition of spectra, uses no slits (maximizing light 

throughput), and improves sensitivity, especially for low-concentration samples. Multiple 

scans can be averaged to enhance the signal-to-noise ratio, although gains diminish with 

increasing scans. Additionally, FTIR instruments offer superior resolution due to the highly 

reproducible movement of the mirrors, enabling them to distinguish nearby spectral 
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peaks more effectively than monochromator-based systems. This makes FTIR highly 

suitable for sensitive and high-resolution measurements. 

 

 

Figure 39. (a) Near infrared interferogram and (b) corresponding spectrum; (c) NMR free 

induction decay (FID) signal and (d) corresponding spectrum262 (taken from ref. 262). 

 

The key advantage of FT spectroscopy is its speed compared to conventional 

frequency domain methods. For example, in 13C NMR, where a high-resolution spectrum 

would take 5000 seconds using conventional methods, FT can achieve the same result in 

just 1 second, with superior spectral quality. FT methods also improve the signal-to-noise 

ratio (S/N) through coherent signal addition, or "time averaging", which would be 

impractically time-consuming in conventional spectroscopy. For instance, achieving the 

same S/N in a 13C NMR spectrum using conventional methods could take 60 days, while 

FT spectroscopy can do it in just 15 minutes259. 

In NMR spectroscopy, each distinct set of hydrogens in a molecule resonates at a 

specific frequency in a magnetic field, much like individual chimes have distinct sounds. A 
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traditional continuous-wave (CW) NMR spectrometer identifies each frequency by 

irradiating nuclei one at a time, a slow process that can take minutes for a full spectrum. 

In contrast, Fourier transform NMR excites all proton nuclei simultaneously using a short, 

strong radiofrequency pulse, creating a complex signal as the nuclei relax back to 

equilibrium. This complex signal (Fig. 39c), called a free induction decay (FID), is collected 

and analyzed using a Fourier transform to convert the time-domain data into the familiar 

frequency-domain spectrum (Fig. 39d). This process allows a complete spectrum to be 

acquired in just a few seconds. By averaging multiple FID signals from repeated pulses, FT-

NMR enhances the signal strength, enabling the detection of spectra from low-abundance 

isotopes like 13C. 

 

5.4.2 FT advantages 

 

One of the traditional applications of Fourier Transform (FT) is in X-ray 

crystallography, where it has been used since the early days of crystal structure analysis. 

FT helps convert the diffraction patterns obtained from X-ray scattering into real-space 

electron density maps, enabling the determination of the atomic arrangement within 

crystals. This method remains fundamental in structural biology and materials science for 

analyzing crystal structures. The Fellgett and Jacquinot advantages are key benefits of 

using Fourier Transform (FT) spectrometers217,259. The Fellgett advantage (also known as 

the multiplex advantage) refers to the ability of FT spectrometers to measure all 

wavelengths simultaneously, improving signal-to-noise ratio (SNR) by averaging the signal 

across multiple measurements, unlike dispersive instruments that measure one 

wavelength at a time. This advantage occurs when the noise strength is constant, 

independent of the signal strength; such noise originates in the detector. Fortunately, the 

multiplex advantage does operate for the weak sources characteristic of infrared and 

NMR spectroscopies. The Jacquinot advantage (or throughput advantage) arises from the 

fact that FT spectrometers use fewer optical elements, like slits, allowing more light to 
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reach the detector. This higher throughput increases the overall sensitivity, especially 

useful in low-light conditions or for weak signals such as in stellar spectroscopy or 13C 

NMR. Together, these advantages make FT spectrometers faster, more sensitive, and 

better suited for detecting weak signals. 

 

5.4.3 Applications in chemistry 

 

Fourier Transforms have been successfully applied across various fields, particularly 

where pulsed signals generate interference (or "beat") responses. Specific examples 

include spectroscopic techniques like ion cyclotron resonance (a form of mass 

spectrometry), orbitrap mass analyzer, nuclear quadrupole resonance, dielectric and 

microwave responses, electron spin resonance, and muon spin rotation263–269. Beyond 

chemical applications, FTs are widely used in physics (e.g., diffusion studies), electrical 

engineering (e.g., antenna analysis), statistics, image processing and enhancement270–273, 

demonstrating their broad utility across numerous disciplines. 
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6. Multivariate analysis 

 

“We are drowning in information and starved for knowledge” 

Tom Peters, Thriving on Chaos274 

In today’s data-rich world, businesses and researchers alike face the challenge of 

transforming vast amounts of information into valuable knowledge. With data collection 

and storage capabilities advancing rapidly, organizations are amassing extensive 

information in data warehouses, making it essential to “mine” this data effectively for 

strategic decision-making275. Simple statistics often fall short for these tasks, and 

sophisticated multivariate methods are now crucial in navigating and extracting insights 

from complex data. Advances in computing power, along with user-friendly software, 

have further simplified access to these powerful techniques, allowing even non-specialists 

to analyze intricate data efficiently. 

Historically, multivariate analysis found its footing in the behavioral and biological 

sciences, but its utility has expanded across fields such as business, education, 

engineering, and beyond. Multivariate methods allow researchers and practitioners to 

make use of multiple measurements per unit or observation, yielding richer, 

multidimensional insights. This interdisciplinary relevance, coupled with modern 

computing, has cemented multivariate analysis as an indispensable tool for both 

academic and applied research across sectors, fostering knowledge-driven innovation and 

improvement in decision-making276. 

 

6.1 Measurement scales 

 

In multivariate analysis, accurate measurement is essential for identifying variations 

in variables and selecting suitable analytical methods. Variables can be classified as either 
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non-metric (qualitative) or metric (quantitative), impacting how they can be analyzed276. 

Non-metric data, such as nominal and ordinal scales, describe differences by type or 

order without indicating actual amounts; they allow categorization and ranking but 

restrict mathematical operations. For example, gender is a nominal scale that simply 

categorizes, while satisfaction levels might use an ordinal scale, ranking items without 

specifying the extent of differences. Metric scales, on the other hand, such as interval and 

ratio scales, reflect measurable amounts and support most mathematical operations. 

Interval scales (like temperature) lack a true zero, while ratio scales (like weight) have an 

absolute zero, enabling comparisons in terms of multiples. These distinctions guide the 

researcher in applying the correct multivariate techniques, ensuring that non-metric or 

metric data are used appropriately to obtain meaningful results. 

 

6.2 A Classification of multivariate techniques 

 

Multivariate techniques are classified based on three key research considerations: 

whether variables can be defined as dependent or independent, the number of 

dependent variables in the analysis, and the type of measurement for both dependent 

and independent variables276. 

If variables can be classified as dependent and independent, a dependence 

technique is used, where the goal is to predict or explain dependent variables using 

independent ones. If this classification isn’t possible, an interdependence technique is 

applied, which involves the simultaneous analysis of all variables without distinguishing 

between dependent and independent roles276. The difference between dependence and 

interdependence is illustrated in the contrast between the two situations shown in Figure 

40—one in which a train car is completely dependent on the engine to pull it, and the 

other in which two friends provide mutual support of a helpful nature that is optional and 

opportunistic rather than strictly required277. 
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Figure 40. Dependence vs. Interdependence277 (taken from ref. 277). 

 

The selection of an appropriate multivariate technique thus depends on these 

research-based judgments. Figure 41 assist in becoming familiar with the specific 

multivariate techniques, helping to choose the most appropriate technique in each 

scenario. 

 

 

Figure 41. Selecting a multivariate technique276 (taken from ref. 276). 
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6.2.1 Supervised learning - Dependence techniques 

 

Supervised learning methods involve training a model on a dataset that includes 

both input features (predictor variables) and a known target variable (response)278. The 

goal of supervised learning is to predict or classify the target variable based on the input 

features, making it highly suitable for dependence techniques. Dependence techniques, 

which focus on finding relationships between dependent and independent variables, are 

often used in supervised learning. For instance, regression methods (such as multiple 

regression for metric dependent variables or logistic regression for nonmetric dependent 

variables) can be applied to predict an outcome based on multiple predictors276. 

Supervised learning techniques utilize dependence relationships, aiming to quantify and 

model the influence of independent variables on the dependent variable. 

 

6.2.2 Usupervised learning - Interdependence techniques 

 

Unsupervised learning, on the other hand, involves analyzing data without a 

predefined target variable, seeking patterns or clusters within the data278. This aligns well 

with interdependence techniques, where the focus is on analyzing relationships among all 

variables without classifying them as dependent or independent276. Techniques like factor 

analysis or cluster analysis are examples of interdependence methods used in 

unsupervised learning, as they explore the underlying structure of the data. For example, 

cluster analysis can group observations with similar characteristics, while factor analysis 

uncovers latent factors driving correlations among variables276. Thus, while supervised 

learning typically relies on dependence relationships to make predictions, unsupervised 

learning emphasizes interdependence to uncover patterns and groupings within the 

dataset278. 
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6.3 Types of multivariate techniques 

 

Multivariate analysis is an ever-expanding set of techniques for data analysis that 

encompasses a wide range of possible research situations as evidenced by Figure 41. The 

more established include the following276: 

 

Interdependence techniques: 

 Exploratory Factor Analysis (EFA): Includes principal components and common 

factor analyses to condense multiple variables into a smaller set of factors that 

represent underlying dimensions, such as combining customer satisfaction 

indicators into generic factors like "food quality" and "service quality." 

 Cluster Analysis: Groups entities into mutually exclusive clusters based on 

similarities without predefined groups, e.g., categorizing restaurant customers 

by motivations like price or quality. 

Dependence techniques: 

 Multiple Regression: Predicts a metric dependent variable using multiple metric 

independent variables, e.g., predicting dining expenditures from income and 

family size. 

 Multivariate Analysis of Variance (MANOVA) and Covariance (MANCOVA): 

Examines relationships between categorical independent variables and multiple 

dependent variables, adjusting for covariates if necessary. 

 Multiple Discriminant Analysis (MDA): Differentiates between predefined 

groups based on independent variables, such as distinguishing between 

national-brand buyers from private-label buyers. 
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 Logistic Regression: Similar to multiple regression, but for binary dependent 

variables, useful for classifications like determining business success based on 

financial data. 

 Structural Equation Modeling (SEM): Models complex relationships among 

dependent and independent variables with a focus on measurement and 

structural models, such as analyzing factors affecting worker satisfaction. 

 Partial Least Squares SEM (PLS-SEM): Emphasizes prediction using total 

variance, suitable when the research goal is less about confirmation and more 

about prediction. 

 Canonical Correlation: Extends multiple regression by correlating multiple 

dependent and independent variables simultaneously. 

 Conjoint Analysis: Used primarily in product design to assess consumer 

preferences and the importance of product attributes. 

 Perceptual Mapping: Maps consumer preferences or similarities between 

brands, aiding in competitive analysis. 

 Correspondence Analysis: Suitable for nonmetric data, it maps associations in 

contingency tables to create perceptual maps, showing brand preferences 

linked to demographic variables. 

Each technique is defined with its purpose and example applications, providing a 

toolkit for analyzing complex, multivariable datasets in research. 

 

6.4 Principal Component Analysis 

 

Principal Components Analysis (PCA), examines the total variance of a dataset and 

derives factors (components) that may include small amounts of unique and error 

variance, preventing any significant distortion of the factor structure276. 

PCA is particularly applied when: 
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 The main objective is data reduction, aiming to capture the majority of the 

variance with the fewest factors possible from the original variables. 

 There is prior knowledge that specific and error variance make up a small 

proportion of the total variance. 

 PCA serves as a preliminary step in the scale development process. 

The primary objectives of Principal Component Analysis (PCA) are to reduce the 

dimensionality of a dataset while retaining as much variance as possible, simplify the data 

structure, and reveal the underlying patterns279. By transforming the original variables 

into a smaller set of uncorrelated principal components, PCA helps identify directions in 

the data with the most significant variance276. These components allow easier 

visualization, interpretation, and analysis of complex data, enabling efficient information 

summarization and facilitating subsequent analyses by reducing the complexity of the 

dataset. 

 

6.4.1 Step-by-step explanation of PCA 

 

When performing PCA for dimensionality reduction, the goal is typically to reduce a 

high-dimensional dataset to a lower-dimensional one, capturing most of the original 

variability in fewer dimensions279,280. In cases with only two variables, applying PCA to 

create two principal components might seem redundant because we’re not actually 

reducing dimensionality. However, the following example can still be useful to illustrate 

how PCA works: the two new components represent the directions of maximum variance 

in the data, with the first principal component capturing the most variance, and the 

second being orthogonal to it. Even though we don't reduce the number of dimensions, 

this process shows how PCA reorients data in terms of variance, which is fundamental to 

understanding PCA in more complex cases. Let’s assume that the scatter plot of a data set 

is as shown below (Fig. 42a). 
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Figure 42. Example of a PCA application in a dataset of the measured transcription of two 

genes in six different mice. (a) Plotting the samples according to measured transcription. 

(b) Indicating the average measurement for gene 2 among samples. (c) Indicating the 

average measurement for gene 1 among samples. (d) Indicating the center of the data. (e) 

Centering the data. (f) The best fitted line due to the largest SSdistances, the construction of 

PC1. (g) The construction of PC2 perpendicular to PC1. (h) Projecting the data point on 

PC1 and PC2. (i) Plot rotation so PC1 in horizontal. (j) The use of the projected points to 

indicate the samples in the PCA plot. (k) The final PCA plot281 (adjusted from ref. 281). 

 

Step 1: Standardization 

Before performing PCA, it’s essential to standardize continuous variables so that 

they contribute equally to the analysis. PCA is sensitive to the variances of the input 

variables; if some variables have larger ranges than others, they will dominate the 

analysis and lead to skewed results. Standardization solves this by scaling the variables to 

a comparable range, usually by subtracting the mean and dividing by the standard 

deviation for each variable282. This ensures that all variables have similar influence on the 

analysis, making the PCA more balanced and effective. 

When data is standardized, it is effectively shifted so that its mean is zero, which 

centers the data around the origin of the graph (Fig. 42e). This process involves adjusting 

each variable by subtracting the mean, so all values are re-centered around zero. Thus, 

the standardized data clusters around the origin, with each variable now having a 

comparable range and zero mean. 

Note: Shifting the data do not change how the data points are positioned relative to each 

other. 
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Step 2: Creating the PC1 

Principal components are constructed in such a manner that the first principal 

component (PC1) accounts for the largest possible variance in the data set. The first 

principal component is the line that goes through the origin and in which the projections 

of the points are the most spread out. Or mathematically speaking, it’s the line that 

minimizes the distances between the data point and their projections on it, or (according 

to pythagoreon phenomenon) is the line that maximizes the distances between the 

projected points and the origin (Fig. 42f)278,282. The last are squared and summed and the 

largest resulted value (SSdistances) indicates the orientation of PC1. 

Step 3: Creating PC2, PC3, etc. 

Ideally, the second principal component is a unit vector that does not contain 

information that is already contained in the first component. Or in geometric terms the 

second component belongs to the subspace orthogonal to PC1 but other than that, it 

should maximize the same quantity as before and following reasoning similar to PC1 (Fig. 

42g)278,282. The third component is constructed similarly, and so on. 

Step 4: The explained variation 

In PCA, eigenvectors and eigenvalues are key concepts used to determine the 

principal components, which are the directions that capture the most variation in the 

data279. 

Eigenvectors represent the directions of maximum variance in the data; they are 

the axes along which the data varies the most, and these directions/vectors/axes become 

the principal components282. Eigenvalues, on the other hand, measure the amount of 

variance associated with each eigenvector282. Each eigenvector has a corresponding 

eigenvalue, and together they capture the structure of the data: the eigenvector with the 

highest eigenvalue indicates the direction of the most significant variance, forming the 

first principal component, while the next highest eigenvalue’s eigenvector forms the 

second principal component, and so on. 
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The concept of explained variance ties directly to eigenvalues. Explained variance 

quantifies how much of the total variation in the dataset is captured by each principal 

component. By ranking the eigenvectors based on their eigenvalues (from highest to 

lowest), we order the principal components by their importance. This ordering allows us 

to focus on the components that capture the most variance, simplifying the data analysis 

and interpretation process by prioritizing the most informative components279. 

Step 5: Recast the data along the principal components axes 

As described previously, the first PC has the highest importance explaining the total 

variance better. Typically, only few of the very first components are considered, achieving 

dimension reduction on the dataset without losing major information280. To draw the final 

PCA plot of two dimensions (taking into consideration only the PC1 and PC2) the principal 

component vectors are rotated in a way that PC1 is horizontal and PC2 is vertical (Fig. 

41i). Now the lines named principal components, are the axes of the plot282. The 

projected points on the components axes are used to find where the data go in the PCA 

plot (Fig. 42j). 

Note: If the components account for a substantial amount of variation, then just using the 

first PCs would not create a very accurate representation of the data. However, even in 

this case a PCA plot of two dimensions (using the first two PCs) can be used to identify 

clusters of data. 

PCA is a complex analytical technique that relies on sophisticated mathematical 

computations, making it challenging to perform manually280. Although the foundational 

principles and steps of PCA were carefully explained above, the actual calculations are 

typically executed by a computer due to their complexity and the large volume of data 

often involved279. This computational assistance enables the precise extraction of 

principal components and ensures efficient handling of the underlying matrix operations 

required in PCA. 
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6.4.2 Stopping rules: criteria for the number of components to 

extract 

 

When deciding on the number of components to extract in factor analysis, 

researchers aim to capture the most variance in the data through a set of linear 

combinations of variables. The process extracts components in sequence, with each new 

component accounting for remaining unexplained variance, until all variance is 

covered276. The goal is to retain a manageable number of components that adequately 

summarize the variance across all variables. Several methods are used to determine how 

many factors to retain276,282: 

1. A Priori Criterion: The number of factors is predetermined based on theory or 

prior research. 

2. Latent Root Criterion (Kaiser Rule): Only components with eigenvalues greater 

than 1 are retained, meaning each component should explain as much variance 

as an individual variable. This method is most effective with 20-50 variables and 

is often a starting point, complemented by other criteria. 

3. Percentage of Variance Criterion: Components are retained until they account 

for a specific percentage of total variance (typically 95% in natural sciences, 

60% or less in social sciences). 

4. Scree Test: Factors are retained until an “elbow” in a plot of eigenvalues, where 

the curve levels off, indicating factors with less common variance. This 

approach is subjective but often retains one or two more components than the 

Kaiser Rule. 

5. Parallel Analysis: Simulated datasets are generated to compare eigenvalues, 

retaining components with eigenvalues above those in the random data. This is 

often more precise than the Kaiser Rule. 
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6. Heterogeneity of Respondents: When the sample includes subgroups with 

unique variance patterns, extra components may be retained to capture 

differences between groups. 

Researchers generally use a combination of these criteria to ensure both parsimony 

and interpretability in their component (factor) solution, balancing the number of 

components with the goal of accurately representing the data structure280. Multiple 

solutions are typically examined to refine the final component structure. 

 

6.4.3 Interpreting the factors − Evaluating the significance of factor 

loadings 

 

In multivariate analysis, effective interpretation relies on a strong conceptual 

foundation, which can stem from previous research, theory, or accepted principles. 

Researchers must make subjective judgments on factors to extract, variable groupings, 

and factor solution appropriateness. Interpretation requires assessing factor-loading 

significance, and factor interpretation. Each process involves essential considerations, 

guiding the researcher to a final, conceptually sound factor structure. In interpreting 

factors, researchers must decide which factor loadings merit consideration and 

attention276,282. This discussion addresses issues of practical and statistical significance, as 

well as the number of variables, which collectively influence the interpretation of factor 

loadings. 

Practical significance 

The first guideline focuses on practical rather than statistical significance, requiring 

an initial examination of the factor matrix with respect to factor loadings. A factor loading 

represents the correlation between a variable and a factor, with the squared loading 

indicating the proportion of variance in the variable that the factor explains. For example, 

a factor loading of 0.30 accounts for approximately 10% of the variable's variance, while a 
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0.50 loading explains about 25%, and a loading above 0.70 accounts for 50%276. 

Therefore, larger absolute values of factor loadings generally signify greater importance in 

interpreting the factor matrix. In terms of practical significance, loadings can be assessed 

as follows276: 

 Loadings below 0.10 can be treated as equivalent to zero, suggesting no 

meaningful contribution. 

 Loadings from 0.30 to 0.40 meet the minimal threshold for interpreting 

structure. 

 Loadings of 0.50 or higher are considered practically significant. 

 Loadings exceeding 0.70 indicate a well-defined structure and are desirable in 

factor analysis. 

Researchers should also recognize that extremely high loadings (0.90 or above) are 

uncommon and that practical significance remains an important criterion, especially for 

sample sizes of 100 or more where the focus is on practical interpretation rather than 

statistical testing. 

Statistical significance 

Factor loadings, which reflect the correlation between a variable and its 

corresponding factor, can also be evaluated statistically. While the statistical significance 

of correlation coefficients could theoretically apply, research has shown that factor 

loadings tend to exhibit larger standard errors than typical correlations276. Consequently, 

factor loadings should be assessed with stricter thresholds. To achieve a statistical power 

of 80% and a significance level of 0.05, researchers may refer to sample size requirements 

for specific loading values, as indicated in Table 4. For example, in a sample of 100, a 

loading of 0.55 or higher is significant, whereas a sample size of 50 requires a minimum 

loading of 0.75 for significance. Notably, these thresholds are conservative relative to the 

previously mentioned practical guidelines and the statistical standards associated with 
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correlation coefficients, making them useful starting points. Lower loadings can still be 

included in the interpretation if other contextual factors support their significance276. 

 

Table 4. Guidelines for identifying significant factor loadings based on sample size276 

(taken from ref. 276). 

Factor Loading 
Sample size 

needed 
 for significance a 

0.30 350 

0.35 250 

0.40 200 

0.45 150 

0.50 120 

0.55 100 

0.60 85 

0.65 70 

0.70 60 

0.75 50 

a Significance is based on a 0.05 significance level (α), a 
power level of 80%, and standard errors assumed to be 
twice those of conventional correlation coefficients. 

 

Adjustments based on the number of variables 

A limitation of both practical and statistical significance guidelines is the lack of 

consideration for the number of variables and the specific factor being analyzed. Research 

suggests that, as the analysis moves from the first factor to subsequent ones, the 
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threshold for significant loadings should increase to account for unique and error 

variances that emerge in later factors276. Similarly, as the number of variables increases, 

the acceptable level for defining a loading as significant decreases, making adjustments 

based on variable count increasingly important for later-extracted factors. 

 

6.5 Partial Least Squares method 

 

Partial least squares (PLS) technique was developed by Herman Wold in the 1970s 

by extending the multiple linear regression model283–285. It takes a latent variable 

approach to model the covariance structures in two spaces (i.e., the X and Y spaces) so 

that both variables X and Y are projected to a new space, which is called projection to 

latent (hidden) structures. Thus, PLS is alternatively called Projection to Latent 

Structures286. 

Note: A number of N observations (e.g samples) described by J dependent variables (e.g. 

concentration of each sample) are stored in a N×J matrix denoted Y, the values of K 

predictors (e.g. absorbance measurement of each sample) collected on these N 

observations are collected in the N×K matrix X (Fig. 43). 

 

 

Figure 43. Inputs and outputs in supervised and unsupervised learning278 (taken from ref. 

278). 



 Multivariate analysis 

101 
 

 

Unsupervised methods (like PCA) work solely with X. There is no Y matrix because 

these methods do not require predefined labels or response variables (Fig. 43). Instead, 

they focus on finding patterns, clusters, or the underlying structure within the X matrix 

alone. In contrast, in supervised methods, such as PLS, the data is divided into two 

matrices: X and Y. Here, X represents predictor variables, which are always available, 

while Y contains response variables that are aimed to be predicted or understood278. The 

supervised approach relies on learning a direct relationship from X to Y, enabling 

predictions for Y using new X data287. 

 

6.5.1 Advantages of the PLS method 

 

Projection to Latent Structures (PLS) and Principal Component Regression (PCR) are 

both methods used for modeling relationships between predictor variables (X) and 

response variables (Y), with PLS building on PCR’s foundation and offering enhanced 

capabilities280. Before going deeper, some basic principles about PCR and MLR are 

explained in the following lines. 

Multiple Linear Regression (MLR) is a traditional linear regression method that 

directly models Y as a function of X. MLR, however, requires that the number of 

observations be greater than the number of predictor variables, and it is sensitive to noise 

and multicollinearity in X, which can skew results287. 

Principal Component Regression (PCR) improves on MLR by first applying PCA to X, 

transforming the data into orthogonal (uncorrelated) components (Fig. 44). This removes 

the need for variable selection and reduces noise, as these PCs are less noisy than the 

original X data. PCR can work with missing data and relaxes MLR’s requirement due to the 

dimension reduction (the number of PCA components are less than initial variables)287. 
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However, PCR may require extracting several components, some of which may not 

correlate strongly with Y, which can increase model complexity unnecessarily. 

 

 

Figure 44. Schematic representation of PCR individual steps287 (taken from ref. 287). 

 

PLS further extends PCR by using both X and Y data in a single modeling step, 

making it more efficient and compact. Unlike PCR, which requires a separate model for 

each Y variable280, PLS can handle multiple correlated Y variables in a single model, saving 

time and improving interpretability287. PLS also directly assumes there is error in both X 

and Y, providing a more realistic model of data variability. Key advantages of PLS over PCR 

include: 

 Efficiency: PLS avoids calculating redundant scores that do not contribute to the 

prediction of Y, resulting in fewer components and a more streamlined model. 

 Unified Model Structure: PLS maximizes the covariance between X and Y, 

meaning that the components are optimized for prediction in a single step, 

unlike PCR’s two-step process. 

 Holistic Use of System Variables: Since PLS uses both X and Y data 

simultaneously to extract components, it can reveal shared latent structures 

within the same system. 
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6.5.2 A conceptual explanation of PLS 

 

PLS can be understood as a latent variable model with a distinct objective. Unlike 

PCA, which finds factors (components) to best explain variance in X, PLS seeks factors 

(latent variables) that simultaneously optimize three objectives278,280,287: 

1. Best explanation of variance in the X-space, 

2. Best explanation of variance in the Y-space, and 

3. Maximizing the relationship between X and Y spaces. 

This approach enables PLS to capture both the variability within each data block and 

the relationship between them, resulting in a model that effectively links X and Y for 

predictive or analytical purposes. 

 

6.5.3 A geometric interpretation of PLS 

 

In PLS, the mathematical approach builds on PCA by extending the objective to 

optimize variance explanation in both X and Y spaces280. In PCA, scores and loadings are 

calculated to ensure each component maximizes variance in X. PLS modifies this to 

simultaneously explain variance in both X and Y. Scores and loadings in PLS are calculated 

to capture variance in X while also explaining variance in Y278, thereby maximizing the 

relationship between X and Y. This results in latent variables that reveal structural 

relationships across both data blocks, optimizing both predictive accuracy and 

interpretability. 

In PLS, we can visualize the model geometrically with both X and Y data points 

centered and scaled to the origin, represented by corresponding points in X- and Y-

space278. Each observation in X has a counterpart in Y, and scores are obtained by 
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projecting each data point onto direction vectors w1 and c1 (Fig. 45). These direction 

vectors are chosen to maximize the covariance between the X-space scores and Y-space 

scores (like PCA does), aligning the latent variable directions to best explain both X and Y 

while strengthening their relationship287. 

The second component in X-space is calculated orthogonally to the first, though it 

may not be strictly orthogonal in Y-space (but often nearly is). This approach ensures that 

each component captures distinct, meaningful variation in X that correlates with Y, 

enhancing predictive power. 
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Figure 45. Interpretation of a dataset via PLS method. (a) Plotting the X matrix, (b) 

plotting the Y matrix. The first component explaining the variation (c) in X and (d) in Y. 

Construction of the second component (e) in X and (f) in Y matrix287 (taken from ref. 287). 
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6.5.4 Interpreting the scores and loadings in PLS 

 

In PLS, scores summarize the data in X and Y blocks, and have maximal covariance. 

Interpreting PLS scores is similar to PCA: looking for clusters, outliers, and patterns in 

score plots280. However, unlike PCA scores, which only explain variance in X, PLS scores 

capture variance in both X and Y while maximizing the relationship between them. This 

results in similar but not identical orientations between PCA and PLS scores (Fig. 46a)287. 

 

 

Figure 46. Examples of two datasets. (a) First components’ orientations of both PCA and 

PLS methods applied in the same dataset and (b) recasting the data on PCA and PLS 

components plane. 

In PLS, interpreting the loadings, also called weights287, follows similar principles to 

PCA loadings. Highly correlated variables have similar weights and appear close together 

in loading plots. A unique feature in PLS is that we often plot the loadings for X and Y 

simultaneously287. This combined view highlights relationships not only among X variables 

and Y variables but also between all variables, reflecting that X and Y come from the same 

system. 
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6.5.5 Validation of model results 

 

The process of validation is essential to avoid the pitfalls of overfitting, which occurs 

when model parameters are too finely tuned to the specific characteristics of the sample 

rather than to the general population276. Overfitting leads to models that perform well on 

the sample data but fail to generalize, meaning they perform poorly on new or 

independent data. Overfitting is especially common when the sample size is small, or the 

model includes a large number of parameters. 

Split-Sample Validation 

The simplest method for validation is the split-sample approach, in which the data is 

divided into two subsets276. One subset, the estimation or training sample, is used to 

develop the model, while the other, the holdout or validation or test sample, serves as an 

independent dataset to test the model’s performance. Since the holdout sample does not 

contribute to model estimation, it provides a separate and unbiased measure of the 

model’s validity and accuracy288. 

 

Cross-Validation 

When a sample is too small for effective split-sample validation, cross-validation 

techniques are more suitable. Cross-validation divides the data into multiple smaller 

subsets and averages the model performance across all subsets280,288. Three commonly 

used cross-validation methods are: (a) K-Fold Cross-Validation: The data is divided into K 

subsets, with each subset being used once as the validation sample while the other K–1 

subsets serve as the estimation sample276. This process repeats K times, each time using a 

different subset for validation. This technique is effective even with small datasets as it 

allows for a smaller validation sample. (b) Repeated Random Sampling (Resampling): In 
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this approach, multiple random samples are drawn as validation samples. The size of 

these samples is flexible, independent of the number of subsets, making it useful when 

specific sample size requirements are needed276. (c) Leave-One-Out Cross-Validation 

(Jackknife): This approach is a variation of K-fold validation where each fold contains only 

a single observation, meaning one observation is left out each time as the validation 

sample276. This is repeated until all observations have been used as validation samples. 

In multivariate analysis, the goal is not solely to achieve a model that fits the sample 

but to build one that accurately reflects the population. Validation provides the means to 

achieve this by minimizing overfitting and confirming that the model is both statistically 

significant and representative of broader data. Thus, validation is critical in creating 

models that not only capture the specifics of the sample data but also hold predictive 

power for the population at large. 

Determining the Number of Components with Cross-Validation 

Cross-validation is a versatile tool that helps prevent overfitting and can be applied 

to various models, not just latent variable models. When additional components are 

added to a model, the model's fit improves as it explains more of the data's variance, but 

this also risks capturing noise instead of meaningful patterns287. For latent variable 

models like PLS, cross-validation helps determine the appropriate number of components 

by dividing the data into groups and calculating the residual variance in the cross-

validated error matrix278,287. 

In each cross-validation fold, a PLS model is built on a subset of the data X. The 

cumulative residual errors across all folds yield a cross-validated error matrix, from which 

a measure (e.g. mean square error, MSE) is computed278,287. MSE eventually decreases 

after adding non-informative components, signaling overfitting. For model selection, 

practitioners examine plots of MSE to judge component relevance280. 

Although cross-validation provides guidance, there is no exact answer for the "best" 

number of components; it should be determined by the model’s purpose, considering 
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both predictive accuracy and interpretability287. Cross-validation is particularly valuable 

for predictive models like PLS but may require adjustment for exploratory or process-

optimization models where component relevance may vary. 

 

6.5.6 PLS in continuous and categorical data 

 

Partial Least Squares (PLS) is a family of models. Partial Least Squares Regression 

(PLS-R) and Partial Least Squares Discriminant Analysis (PLS-DA) are both based on PLS 

but differ in their objectives and applications289,290. PLSR is used for regression tasks, 

where the goal is to predict continuous outcomes by modeling relationships between 

predictor variables and a continuous response variable. In contrast, PLS-DA is a 

classification method; it adapts PLS for discriminant analysis by converting class labels 

(e.g., categories) into a binary or a dummy variable (coding 0–1) rather than a block of 

continuous variables, aiming to maximize the separation between predefined 

classes276,280. While PLS-R seeks to minimize prediction error for continuous data, PLS-DA 

focuses on maximizing class discrimination, making it useful in cases like biomarker 

identification or diagnostic classification. 

 

6.6 Chemometrics 

 

Having explored the fundamentals of multivariate analysis, the term of 

chemometrics — a field that applies these techniques to solve complex chemical 

problems — can be introduced. Chemometrics leverages multivariate tools, such as PCA 

and regression, to analyze chemical data, helping to identify patterns, optimize processes, 

and make predictive models. This approach has become essential in handling the 

intricate, high-dimensional data common in modern chemical research, transforming raw 

data into actionable chemical insights280. 
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An actual definition of chemometrics is: 

the chemical discipline that uses mathematical and statistical methods, (a) to design 

or select optimal measurement procedures and experiments, and (b) to provide maximum 

chemical information by analyzing chemical data291. 
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Aim and Objectives 

 

The overarching aim of this research is to develop and evaluate protocols that 

leverage spectroscopic techniques and chemometric analysis for effective monitoring and 

characterization of physiological responses in the context of physical exercise. This work 

seeks to advance our understanding of physiological responses across different exercise 

intensities through reliable, non-invasive methods, with a focus on establishing robust, 

reproducible protocols using saliva and dried blood spot (DBS) analysis. 

The 1st objective is to create and validate protocols that characterize the distinct 

salivary profiles of athletes by employing ATR-FTIR spectroscopy alongside chemometric 

techniques. This objective involves defining and standardizing spectral markers in saliva 

that reliably differentiate athletes based on factors like training, fitness levels, and 

physiological adaptations to exercise (Phase 1). 

Furthermore, the 2nd objective is to refine methods for distinguishing exercise 

intensities through the chemometric analysis of oral biofluid markers, utilizing ATR-FTIR 

spectroscopy to correlate biochemical and spectral variations in saliva with physical 

activity levels. This aspect of the study prioritizes the development of a rapid and 

accessible protocol for exercise intensity monitoring, potentially providing insights for 

both training and recovery (Phase 2). 

Additionally, a 3rd objective is to quantitatively measure biomarkers in saliva that 

are associated with different exercise intensities. This Phase focuses on developing and 

validating a precise analytical technique to assess thiocyanate ions in saliva, enabling the 

evaluation of their variations in response to physical activity. The goal is to establish a 

reliable and practical method for monitoring exercise-induced biochemical changes, with 
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potential applications in athletic performance assessment and recovery management 

(Phase 3). 

The final objective is to explore protocols for monitoring biomarkers in exercise 

contexts via DBS analysis, employing NMR spectroscopy and multivariate analysis. This 

objective seeks to establish a minimally invasive, standardized protocol for DBS that 

reliably tracks biochemical changes in response to exercise, enhancing the practical utility 

of DBS in exercise biomarker monitoring (Phase 4). 

Collectively, these objectives aim to deliver a rigorous, multivariate approach to 

biomarker protocol development in exercise physiology. By integrating ATR-FTIR, NMR, 

and advanced chemometric analysis, this research aspires to support personalized and 

accessible methods for assessing training responses and physiological adaptation at the 

molecular level. 
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Experimental Part 

 

7. Bioethical considerations 

 

All procedures conducted in this study adhered to ethical guidelines and were 

approved by the Independent Personal Data Protection Department of the University of 

Ioannina, Greece. The approval was obtained under protocol number 10253/18-1-2022. 

Each participant provided informed consent before their involvement in the study, with 

assurances of confidentiality and proper management of personal data. Participants were 

thoroughly informed about the study objectives, procedures, and their right to withdraw 

at any stage. Measures were taken to ensure anonymity through the coding of collected 

samples. 

 

8. Participants 

 

The research group maintained active communication with sports centers and 

academies in the city of Ioannina for a period of four years. This engagement aimed to 

inform stakeholders about the study's objectives and recruit suitable athlete participants. 

By collaborating with local sports institutions and personal coaches, the team ensured the 

selection of a diverse and representative cohort, which contributed to the reliable 

development of experiments and the generation of robust, meaningful results.  

This study included 260 athletes recruited from various sports disciplines, each 

meeting specific eligibility criteria to ensure the validity of the findings. A detailed 
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questionnaire was administered to all participants to collect information about their 

training habits, lifestyle, and general health (Appendix 1). The questionnaire included 

questions about training frequency, intensity, and duration, allowing for the 

categorization of athletes into low-level and high-level groups. Additional sections 

addressed dietary habits, and the use of supplements or medications, ensuring that 

participants met the study's eligibility criteria. This structured approach provided critical 

baseline data to contextualize biomarker analysis and support the investigation of 

differences between recreational and competitive athletes. 

 

8.1 Athletic cohort and management 

 

The cohort management process was tailored to support the study's objectives and 

ensure the reliability of results across different sports disciplines and training intensities.  

In the preliminary study of the first Phase, a single national-level long-distance 

runner was monitored over a period of 12 consecutive days. This initial investigation 

aimed to assess salivary biochemical changes before and after a standardized training 

session. The findings from this pilot study provided a foundational understanding of the 

methodology and helped refine the experimental design for subsequent Phases. 

Following the preliminary study, 57 male athletes participated in the main study of 

the first Phase. These athletes represented seven distinct sports: football (13 athletes), 

basketball (13 athletes), tennis (7 athletes), muay thai (9 athletes), karate (5 athletes), 

boxing (9 athletes), and long-distance running (1 athlete). These sports were chosen for 

their varying demands on aerobic and anaerobic fitness, as well as the distinct metabolic 

adaptations they induce, thus providing a diverse sample for biochemical analysis. 

Participants were divided into low-level and high-level groups based on their training 

frequency and intensity, according to the questionnaire. The athletes' ages and physical 

characteristics reflected the general profiles of amateur and professional competitors in 
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these sports, capturing a broad spectrum of training regimens and fitness levels. This 

Phase specifically aimed to investigate how salivary profile vary between these two 

groups, offering a unique perspective on the biochemical distinctions associated with 

recreational and competitive athletic participation. 

The second Phase of the study focused on a cohort of 32 high-level male athletes. 

This cohort included 22 short-distance runners and 10 triathletes actively engaged in 

swimming, cycling, and running disciplines. These athletes were selected due to their 

rigorous training schedules and the physiological demands of their respective sports, 

which offered a valuable framework for studying salivary biomarkers under varying 

exercise intensities. By including high-level athletes from disciplines with demanding 

training regimens, this study captured a nuanced perspective on exercise-induced 

biochemical variations, contributing to the broader understanding of athletic 

performance and metabolic monitoring. 

In Phase 3, participant recruitment was carried out through strategic collaborations 

with sports centers, academies, and local athletic organizations. Coaches and institutional 

representatives played an active role in identifying and engaging athletes from a broad 

range of sporting disciplines, including football, basketball, pole dancing, aerial hoops, 

tennis, volleyball, middle-distance running, and aerobic gymnastics. In total, 162 athletes 

(88 males and 74 females) were enrolled in this Phase, and personal data were collected 

by an additional questionnaire (Appendix 2). The experimental protocol was divided into 

two distinct parts. The first part involved a subset of 21 non-smoking athletes who 

underwent controlled treadmill exercise trials. The second part was designed to validate 

the initial findings under more naturalistic training conditions. For this purpose, a larger 

and more heterogeneous cohort of 141 athletes (both smokers and non-smokers) was 

recruited. A detailed presentation of Phase 3 participants’ management is presented in 

Figure 47. This approach allowed for the assessment of salivary thiocyanate fluctuations 

under real-world training conditions. 
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Figure 47. Cohort management and demographic statistics of Phase 3 participants. 

 

In Phase 4, nine male middle-distance (800 m) runners participated, focusing on 

blood metabolome alterations associated with exercise intensity. The initial part involved 

two individuals: one professional and one non-professional athlete, selected to represent 

contrasting training statuses and physiological baselines. These participants were 

monitored over multiple sessions (4 distinct days) to assess intra-individual variation and 

the potential influence of training background on metabolic responses. 

Subsequently, the cohort was expanded to include seven additional professional 

athletes, bringing the total number of participants to nine. All professional athletes were 

actively engaged in structured training programs and competitive sports at the national or 

162
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international level. The inclusion of a larger number of athletes enabled the investigation 

of inter-individual consistency in metabolic alterations associated with exercise and 

facilitated the validation of preliminary findings from the initial comparative part. They 

participated in a carefully designed experimental protocol at specific speeds, with blood 

samples collected. The inclusion of this group allowed for an in-depth exploration of 

blood-based biomarkers linked to exercise-induced metabolic changes, offering a 

complementary perspective to the salivary analyses conducted in earlier Phases. 

A detailed representation of cohort management in presented in Figure 48. This 

meticulous approach to cohort management was crucial in maintaining the integrity of 

the data and achieving the research objectives. Together, these cohorts provided a 

comprehensive framework for examining the biochemical and metabolic impacts of 

varying athletic conditions and exercise intensities, advancing the understanding of 

athletic performance and physiological adaptations. 
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Figure 48. Athletes’ cohort management. Each circle indicates the number of participants 

and the athletic expertise of each. The paths indicate the recruited athletes in every 

Phase. 

 

8.2 Anthropometric characteristics 

 

The athletes participating represented a range of sports disciplines, providing a 

diverse sample for analysis. Participants in the first Phase were divided into low-level and 

high-level training groups, reflecting differences in training frequency and intensity. The 

rest Phases focused mainly on high-level athletes. Table 5 summarizes the key 

anthropometric characteristics of the participants. 

 

Table 5. Anthropometric characteristics of participated athletes. 

Phase 
Group 

(no. of participants) 
Age (years) Height (m) BMI (kg/m²) 

1 

Low-level athletes (39) 28.8 ± 4.2 1.76 ± 0.05 24.78 ± 0.87 

High-level athletes (18) 25.6 ± 3.0 1.79 ± 0.04 23.09 ± 0.42 

2 
Short-distance runners 

and triathletes (32) 
26.3 ± 3.0 1.82 ± 0.02 24.10 ± 0.40 

3 

Men (88) 24.6 ± 6.8 1.82 ± 0.06 22.14 ± 1.41 

Women (74) 24.1 ± 4.9 1.76 ± 0.05 21.02 ± 1.19 

4 
Middle-distance 

runners (9) 
26.5 ± 3.2 1.84 ± 0.04 21.81 ± 0.90 

 

The anthropometric characteristics of the athletes who participated reflect their 

training habits and the physical demands of their respective sports disciplines. In the first 

Phase low-level athletes, primarily recreational participants (hobbyists), demonstrated 



Section – EXPERIMENTAL PART 

124 
 

8 

slightly higher body mass indices (BMIs) compared to their high-level counterparts. This 

trend aligns with their less frequent training routines, typically one to two sessions per 

week at moderate intensity. Conversely, high-level athletes exhibited lower BMIs, 

indicative of their rigorous training schedules and higher physical conditioning. These 

participants engaged in structured, high-intensity training regimens at least four times per 

week, with their sports requiring specialized endurance, strength, or speed. Such 

consistent physical activity not only enhances fitness levels but also promotes lean body 

composition. 

The athletes in Phases 2, 3 and 4 were all young individuals, with ages ranging from 

19 to 29 years, reflecting the prime years of physical performance and athletic 

development. Their anthropometric data—characterized by taller heights and lean BMIs, 

compared to lower level athletes of Phase 1—are indicative of highly trained and 

physically optimized athletes. These characteristics align with the demands of competitive 

sports such as short/middle-distance running and marathon, emphasizing speed, power, 

and endurance292. The data underscores their status and provides a consistent basis for 

exploring advanced metabolic and biochemical adaptations to exercise. 

 

8.3 Exclusion criteria 

 

To ensure the integrity and reliability of the findings, strict exclusion criteria were 

applied. These criteria were designed to minimize potential confounding variables and 

standardize the participant pool, ensuring that observed variations in salivary and blood 

biomarkers and other measurements were directly attributable to the study's focus on 

physical activity and exercise intensity. 
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8.3.1 General health and lifestyle 

 

Participants were excluded if they engaged in behaviors or had conditions that 

could significantly alter their physiological or metabolic states. Smoking was prohibited, 

as tobacco use can influence cardiovascular health, salivary biochemistry, and overall 

metabolism. Smoking is known to alter biomarkers such as lactate and thiocyanate293,294, 

which could confound results. However, in Phase 3 smoker athletes were included but 

treated separately. In addition, athletes undergoing any medication or treatment that 

could affect their physical performance or biochemical markers, such as anti-

inflammatory drugs, hormonal treatments, or metabolic supplements, were excluded 

across every Phase. The use of stimulants, energy-boosting supplements, or other 

performance-enhancing substances was also not permitted, as these could distort 

baseline profiles and comparisons between participants. 

 

8.3.2 Sex-based differences 

 

Participants were selected based on predefined inclusion and exclusion criteria to 

ensure the reliability and consistency of the study. In Phases 1, 2, and 4, female 

participants were excluded due to the small number of female volunteers and the known 

variability in metabolomics between sexes. Hormonal fluctuations, such as those 

associated with the menstrual cycle, can significantly affect biomarker levels, introducing 

additional complexity to data interpretation. However, in Phase 3, both male and female 

athletes participated, for more robust results. 
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8.3.3 Nutritional and pre-sampling guidelines 

 

To maintain standard sampling conditions, participants were required to follow 

strict pre-sampling guidelines. These included avoiding heavy meals for at least three 

hours before sampling (when sampling during day) or 10-12 hours –overnight fasting– 

(when sampling in the morning) to prevent the influence of recent food intake on salivary 

and blood glucose, phosphate, and other metabolites295,296. Participants were also 

instructed to refrain from consuming caffeinated or alcoholic beverages within the same 

timeframe, as these substances can alter metabolic and hormonal activity297. 

 

8.3.4 Medical history and conditions  

 

Finally, participants with known medical conditions that could influence metabolic 

biomarkers were excluded. Conditions such as diabetes, thyroid disorders, and chronic 

inflammatory or autoimmune diseases often result in altered baseline metabolic 

states298–300, which could interfere with the study’s ability to detect exercise-induced 

changes. 

By implementing these exclusion criteria, the studies ensured a homogenous 

participant group that was representative of the targeted populations. This approach 

minimized external variables and enabled a more accurate assessment of the biochemical 

and metabolic changes associated with physical exercise and training intensity. 

 

8.4 COVID-19 considerations 

 

Given that the study was conducted during the COVID-19 pandemic, extensive 

measures were implemented to ensure the safety of participants and researchers, as well 
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as the reliability of the data. All athletes were required to undergo SARS-CoV-2 testing 

immediately prior to participation, ensuring that only those with a confirmed negative 

result were allowed to proceed with the study. This precaution was essential to prevent 

any potential transmission of the virus during sample collection and to maintain a 

controlled and safe research environment. 

Athlete selection and recruitment processes were adapted to comply with public 

health guidelines. The research team maintained close communication with sports 

centers and academies to minimize large gatherings and conducted much of the initial 

recruitment virtually or in small, staggered sessions to adhere to social distancing 

protocols. On-site sample collection was carefully organized, with participants arriving 

individually at scheduled times to avoid overlap and ensure proper distancing. Additional 

hygiene measures were enforced throughout the study. Researchers wore appropriate 

personal protective equipment (PPE), including masks and gloves, always during 

interactions with the participants. Hand hygiene was prioritized, and sanitization of 

surfaces and equipment was carried out regularly between sampling sessions. 

These considerations not only safeguarded the health of everyone involved but also 

ensured the continuity of the research under challenging circumstances. The measures 

demonstrated the study’s commitment to ethical research practices and public health 

compliance, reflecting the adaptability of the methodology in response to unprecedented 

global challenges. 

 

9. Experimental design 

 

The experimental design across all four Phases, was carefully structured to evaluate 

the physiological responses to a variety exercise intensities. In Phase 1, a preliminary 

study was conducted with a single, national-level, long-distance runner, monitored over 

12 consecutive days to examine the impact of regular training sessions. Thus, saliva 
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samples were collected before and directly after his training session. In the main work of 

the Phase 1, 57 athletes from diverse sports disciplines completed a standardized post-

exercise assessment, so samples were collected after their workout. 

The experimental protocol for Phases 2, 3 and 4 focused on assessing physiological 

responses at specific exercise intensities. In Phase 2, the athletes came to the outdoor 

running track stadium for sampling at 09:00 a.m. to 10:00 a.m. Athletes performed four 

distinct exercise states in sequence: rest (0 km/h), walking (4–5 km/h), jogging (9–10 

km/h), and running (14–15 km/h). Sampling was conducted at each of these time points 

to capture the effects of progressive intensity levels. The total distance covered by 

athletes during the protocol was 2-3 km on a standard running track, ensuring consistency 

across participants. 

On the other hand, Phases 3 and 4 were conducted on a running treadmill to 

standardize further the athletic conditions during sampling. Herein, the exercise intensity 

was evaluated according to each athlete’s VO2max value for more representative 

workout. More specifically, the VO2max value of each athlete was measured via 

ergometric test in a third-party laboratory using the Bruce treadmill protocol, a widely 

accepted graded exercise test designed to progressively increase workload until volitional 

exhaustion. Each test was performed using the same metabolic cart and treadmill model 

to maintain consistency across measurements. Prior to each test, equipment calibration 

and participant familiarization were conducted in accordance with the laboratory's 

standard operating procedures.  Based on the globally recognized American College of 

Sports Medicine® (ACSM) Metabolic Equations301, the targeted exercise effort (i.e., 20% 

VO2max, 60% VO2max and 90% VO2max) converted to the set speed on treadmill. For 

instance, Table 6 presents the VO2max value of each participant in Phase 4 and the 

corresponding speed-state who run. The presentation of exercise intensity as a 

percentage of VO2max in Phases 3 and 4 aligns well with the less mature approach used in 

Phase 2, where intensity was expressed more directly through running speeds (km/h). 

Although expressing intensity in km/h represents a more straightforward and less 
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physiologically tailored method, using % VO2max provides a more individualized and 

standardized measure of exertion across athletes with varying fitness levels. By linking 

both methods, the study maintains continuity between Phases while enhancing precision 

in exercise prescription and physiological interpretation in these Phases. 

 

Table 6. Running speeds corresponding to 20%, 60%, and 90% of VO₂max for each athlete 

participated in Phase 4. 

Athlete 
VO2max 

(mL/kg/min) 

Set speed (km/h) 

20% VO2max 60% VO2max 90% VO2max 

A 51.6 4.1 8.2 12.9 

B 57.4 4.8 9.3 14.4 

C 63.0 5.5 10.3 16.0 

D 52.3 4.2 8.4 13.1 

E 63.7 5.5 10.4 16.2 

F 62.5 5.4 10.2 15.8 

G 56.7 4.7 9.1 14.2 

H 59.5 5.0 9.7 15.0 

I 65.0 5.7 10.7 16.5 

Average 59.1 5.0 9.6 14.9 

SD 4.9 0.6 0.9 1.3 

 

The athletes, in both Phases 3 and 4, covered a distance of 1 km in each exercise 

state, exercising in total of 3 kilometers. It should be mentioned that at the end of Phase 
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3, an additional sampling was conducted prior and after a typical training routine of a 

large cohort of athletes (see section 8.1) to establish the Phase’s findings. This structured 

design allowed for a precise evaluation of how different exercise intensities influence 

athletic performance and physiological responses. Figure 49 depicts the experimental 

design of the whole study. 

 

 

Figure 49. Sampling time-points in each Phase. Phase 1: saliva sampling before and after 

running session, and after training session of various sports. Phase 2: saliva sampling at 

rest and after running session of different intensities. Phase 3: saliva sampling at rest and 

after running session of different intensities, and before and after training sessions of 

various sports. Phase 4: blood sampling at rest and after running session of different 

intensities. 
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10. Sample collection 

 

The sample collection process was meticulously designed to ensure consistency, 

reliability, and minimal disruption to the athletes' training routines. Specific protocols 

were followed for each type of sample, with saliva sampling conducted in Phases 1, 2 and 

3 and blood sampling conducted in Phase 4. 

 

10.1 Saliva sampling 

 

Saliva samples were collected before and immediately post-exercise as described 

above. Athletes were instructed to avoid food, caffeine, and alcohol for at least three 

hours before sampling and to refrain from oral hygiene practices, such as brushing teeth, 

flossing or using mouthwash, for 30 minutes before the session to avoid contamination of 

saliva with dental products that might interfere with the analysis302. 

In Phase 1, on the day of sampling, participants rinsed their mouths with water 

approximately 10 minutes before the session to remove any residual contaminants. Saliva 

was collected directly into sterile 1.5 mL Eppendorf tubes by passive drooling, avoiding 

stimulation techniques.  

In both Phases 2 and 3, participants used the Salivette® (SARSTEDT, Numbrecht, 

Germany) collection technique for sample collection, which involved chewing on a sterile 

swab for a standardized period to stimulate saliva production. The swab was then placed 

into a sterile Salivette® tube designed to collect and filter the saliva efficiently. This 

method ensured the consistent volume and quality of saliva collected across all 

participants.  

Each sample was labeled with a unique code to maintain anonymity and facilitate 

precise tracking. After sampling the containers with the saliva samples were analyzed 
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immediately or were stored in refrigerator at 4°C until analysis (the analysis done in a 4 h 

window), to prevent degradation of some components and bacterial growth303,304. 

 

10.2 Blood enzymatic assay 

 

In Phase 2 of the study, alongside saliva sampling, blood glucose and lactate levels 

were measured using commercially available portable assays. Blood samples were 

obtained via finger prick at rest and immediately after each exercise intensity (walking, 

jogging, and running). The measurements were conducted using validated handheld 

devices, ensuring rapid and accurate quantification of glucose and lactate concentrations 

in the field. Lactate analyzer Accutrend® Plus (Roche®, Germany) and reagent strips (BM-

Lactate, Roche®) were utilized to determinate the concentration level of lactate in blood, 

while Contour® analyzer (Bayer®, Germany) and Contour® blood glucose test strips 

(Bayer®, Germany) were used for glucose measurements. These biomarkers provided 

additional insights into the physiological responses to incremental exercise intensities, 

complementing the salivary analysis, comparing the results with responses in saliva, and 

offering a more comprehensive understanding of the athletes' metabolic adaptations. 

 

10.3 Blood sampling 

 

In Phase 4, blood samples were obtained using the minimally invasive dried blood 

spot (DBS) technique. In the field of blood microsampling, commercially available 

materials such as the Whatman 403 Protein Saver Cards are widely used due to their 

reliability and standardization. However, the development and application of synthesized 

materials for blood sampling present significant advantages, including potential 

improvements in analyte adsorption, selective extraction and extraction efficiency, and 

cost-effectiveness. By exploring alternative materials inspired by the FPSE extraction 
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technique, it becomes possible to optimize sampling performance, enhance selectivity for 

specific biomarkers, and tailor the properties of the substrate to suit diverse analytical 

needs305. This approach not only expands the range of available microsampling media but 

also opens new avenues for method customization and innovation in bioanalytical 

research. 

 

10.3.1 Synthesis of adsorptive-FPSE based materials 

 

In this study, four synthesized materials were prepared for blood microsampling, 

inspired by the Fabric Phase Sorptive Extraction (FPSE) technique. Two fabric substrates   ̶ 

Whatman Cellulose filter of 125 mm and Whatman Microfiber Glass filter of 110 mm (GE 

Healthcare Bio-sciences Corp, Piscataway, NJ, USA)  ̶  and two different polymers   ̶ 

polyethylene glycol (PEG 300) and poly(ethylene glycol)-block-poly(propylene glycol)-

block-poly(ethylene glycol) (PEG-PPG-PEG 5.800) (Sigma-Aldrich,  Burlington, 

Massachusetts, U.S.)   ̶ were tested. In total, four different combinations arose for the 

blood microsampling proposes. 

The synthesis process involved two main steps: pretreatment of fabric substrates 

and the application of sol–gel coatings to create the desired sorbent materials. 

Pretreatment of Fabric Substrates: 

Both fabrics/substrates chosen to produce sol–gel covered sorbents were initially 

soaked in deionized water under sonication to ensure thorough wetting and removal of 

impurities. The fabrics were then subjected to a cleaning/activation process by treating 

them with 1 M sodium hydroxide (NaOH) under sonication for an hour. Following this, the 

fabrics were washed extensively with deionized water to remove residual NaOH. 

Subsequently, the fabrics were treated with 0.1 M hydrochloric acid (HCl) under 

sonication for an hour, washed again with deionized water, and finally dried overnight in 
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an inert atmosphere. The dried fabric substrates were stored in clean, airtight glass 

containers until further use.  

Preparation of sol–gel solution: 

The pretreated fabric substrates were coated with sol–gel derived sorbents to 

create four distinct extraction media. The sol–gel synthesis and coating processes is 

summarized in the following lines: Each sol–gel solution was prepared by dissolving 5 g of 

the corresponding polymer in 10 mL mixture of acetone and dichloromethane (50/50% 

v/v) and vortexing for 1 min. Then in a separated container, 5 mL of the generic precursor 

molecule methyltrimethoxysilane (MTMS) was added, followed by the addition of 2 mL 

trifluoroacetic acid (TFA) catalyst to hydrolyze MTMS, initiating polycondensation. The 

two mixtures were combined (5 min vortex) forming a growing sol–gel network 

incorporating the polymer. 

Coating of the media: 

The pretreated fabric media were immersed in this solution for 4 h. The coated 

fabric was removed from the sol–gel solution and left in a desiccator overnight for solvent 

evaporation. It was then rinsed with acetone/dichloromethane (50/50% v/v) under 

sonication for 30 min to remove unreacted residues. Finally, the fabric was cut into 1 cm 

diameter circles and stored in a sealed container to prevent contamination. 

The resulting sol–gel coated fabrics served as the synthesized materials for blood 

microsampling, each possessing unique sorptive properties tailored through the sol–gel 

chemistry employed during their preparation. 
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10.3.2 Blood microsampling with different materials 

 

Athletes performed four exercise states—rest, 20% VO2max, 60% VO2max, 90% 

VO2max, —and blood samples were collected immediately after each state. Capillary 

blood samples (approx. 45 µL) were taken via finger prick from the third (middle) or 

fourth (ring) fingertip, which had been thoroughly cleaned with water to avoid 

interference from alcohol or soap residues. 

Using a sterile lancet, a drop of blood was allowed to form and was carefully applied 

to the center of a Whatman 903 Protein Saver Card (GE Healthcare Bio-sciences Corp, 

Piscataway, NJ, USA) (Fig. 50a) or on the precut synthesized materials. Each medium was 

left to dry at room temperature for two hours to ensure stability before storage at -80°C 

until analysis. The DBS technique allowed for convenient field sampling, reducing 

logistical challenges while maintaining the reliability of the collected samples. 

These standardized protocols ensured the collection of high-quality saliva and blood 

samples, facilitating robust analyses and reliable comparisons across the different Phases 

of the study 
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Figure 50. (a) Collection of blood microvolume from the fingertip on the Whatman 903 

DBS card and (b) blood extraction process. 

. 

 

11. Sample pre-processing 

 

The sample pre-processing protocols were designed to ensure the optimal 

preparation of saliva and blood samples for subsequent analyses. Specific procedures 

were implemented for each biofluid, reflecting the objectives and methodologies of the 

respective study Phases. 



 Sample pre-processing 

137 
 

 

11.1 Saliva handling 

 

In Phases 1 and 2, prior analysis, all saliva samples were dried to eliminate residual 

humidity, which can interfere with ATR spectra by masking key molecular vibrations and 

reducing spectral clarity. Removing moisture ensures that the detected signals represent 

the chemical composition of the sample rather than water-related artifacts. Optimizing 

the drying step is therefore critical to achieving consistent and high-quality spectra, 

enabling reliable interpretation and reproducibility in ATR-based saliva analysis. 

Therefore, to optimize the drying process of saliva for ATR-FTIR analysis, a pooled 

saliva sample was prepared and evaluated using two drying methods. In the first method, 

1 mL of the pooled saliva sample was placed on a watch glass and dried at 37°C. After the 

overnight drying process the dried saliva was manually scraped and transferred to the 

ATR crystal for analysis. This procedure was repeated ten times to assess the precision of 

the technique. For the second method, 10 µL of the pooled saliva sample was deposited 

onto a cover glass and dried at the same temperature. Once the initial layer of saliva was 

dried, an additional 10 µL was applied directly on top of the dried layer to form a second 

stacked layer. This process was repeated iteratively to create a total of 100 stacked layers. 

The cover glass was then inverted to place the dried layers in contact with the ATR crystal 

for measurement. This method was also repeated ten times to evaluate its precision. Both 

methods were compared to determine which produced higher-quality ATR spectra. 

Thus, in Phase 1, saliva samples were centrifuged by Centurion Scientific K241 

(Centurion Scientific Ltd, Chichester, WS, UK) at 10,000 rpm for 10 minutes to remove 

large molecular debris and obtain a clear supernatant. The supernatant was then dried, 

with the optimum drying method, to prepare it for ATR-FTIR spectroscopy analysis. 

In Phase 2, saliva samples collected using the Salivette® technique were first 

centrifuged at 10,000 rpm for 5 minutes to extract absorbed saliva from the cotton 
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swabs. The collected saliva was then subjected to further processing, similar to Phase 1. 

The biofluid was subjected again to centrifugation at 10,000 rpm for 10 min to separate 

and precipitate larger molecules. Aliquots of the centrifuged saliva were dried under 

controlled conditions to ensure consistent preparation for analysis. This drying process 

concentrated the salivary components, allowing for more precise spectral readings and 

biomarker identification. Finally, dried saliva samples were analyzed with ATR-FTIR 

instrumentation and the collected spectra were further processed. 

In Phase 3, saliva samples, also collected using the Salivette® technique, were 

centrifuged at 10,000 rpm for 5 minutes to extract absorbed saliva from the cotton 

swabs, and the supernatant was collected for thiocyanate determination. 

 

11.2 Blood handling 

 

In Phase 4, blood samples were processed using the dried blood spot (DBS) 

technique. In the case of the synthesized materials the media were already precut, so 

blood was deposited directly on the top on the media, where they were then placed in an 

Eppendorf tube. On the other hand, discs (6 mm in diameter) were punched from the 

dried blood spots of the Whatman 903 DBS cards using a sterile puncher. Each disc, 

equivalent to approximately 2.2 mg of dried blood, was placed in an Eppendorf tube. In 

both cases, a volume of 600 µL of ultrapure water (produced by a Milli-Q system, Evoqua, 

Pittsburg, USA) was added to the tube, and the mixture was gently vortexed for 10 

minutes to rehydrate the dried blood and extract metabolites (Fig. 50b). Using water as 

the sole extraction solvent was sufficient to elute blood cells and other endogenous 

components from the synthesized materials and DBS cards. The volume of water used 

was kept to a minimum to ensure the extracted solution remained concentrated while 

still being adequate for NMR analysis. The solution was then centrifuged at 12,000 rpm 

for 10 minutes to remove the paper punch and solid materials from the card, if appeared.  
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Each NMR sample was prepared by combining 10% (60 μL) of a deuterated buffer 

solution with 90% (540 μL) of the blood extract (Fig. 50b). The deuterated buffer, widely 

employed in NMR-based metabolomics of urine, consisted of 1.5 M potassium 

dihydrogen phosphate (KH₂PO₄) dissolved in 99.9% deuterium oxide (D₂O). The buffer 

was adjusted to a pH of 7.4 and contained additional components, including 2 mM 

sodium azide to prevent microbial growth and 0.1% sodium 3-(trimethylsilyl)propionate-

d₄ (TSP) as a chemical shift reference standard. The resulting mixture was thoroughly 

homogenized to ensure consistency before transferring a final volume of 550 μL into a 5 

mm NMR tube. This volume and composition were optimized to provide sufficient sample 

integrity and signal quality for subsequent NMR analysis. 

These standardized protocols for saliva and blood handling ensured high-quality 

samples were prepared for advanced biochemical and metabolomic analyses, enabling 

robust and reproducible findings across the study Phases. 

 

12. Thiocyanate assay in saliva 

 

In Phase 3, thiocyanate ions were studied in detail. The determination of 

thiocyanate in saliva was performed according to the well-established method of 

thiocyanatoiron (III) ion306.  

 

12.1 Calibration curve via artificial saliva 

 

To develop and validate a method for thiocyanate determination in saliva, a series 

of thiocyanate standards were prepared at concentrations ranging from 0.01 to 1.5 mM. 

Standard thiocyanate solutions were prepared using potassium thiocyanate (KSCN) 

dissolved in artificial saliva to create a stock solution of 1.5 M, which was further diluted 
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as needed. The calibration curve was constructed using artificial saliva instead of 

deionized water to better mimic the sample matrix and account for potential matrix 

effects. Artificial saliva was prepared following a standardized composition307, consisting 

of 125.6 mg/L sodium chloride (NaCl), 963.9 mg/L potassium chloride (KCl), 227.9 mg/L 

calcium chloride dihydrate (CaCl2 ⋅ 2H2O), 178 mg/L ammonium chloride (NH4Cl), 336.5 

mg/L sodium sulphate (Na2SO4), 200 mg/L urea (CH4N2O), 630.8 mg/L sodium bicarbonate 

(NaHCO3), and 654.5 mg/L potassium dihydrogen phosphate (KH2PO4), all dissolved in 

deionized water. Thus, standard thiocyanate solutions were prepared in this artificial 

saliva medium. 

 

12.2 Colored complex formation 

 

The reagent of iron(III) nitrate solution was prepared at a concentration of 0.2 M by 

dissolving iron(III) nitrate Fe(NO3)3 nonahydrate in 1 M HNO3. For analysis, 1.0 mL of the 

standard solution or real saliva sample was mixed with 1.0 mL of the iron nitrate reagent. 

The mixture was allowed to react (vortex), and the complex was formed immediately. The 

resulting solution was then transferred to a cuvette, and the absorbance was measured 

photometrically at 458 nm. 

 

13. Instrumentation 

13.1 ATR-FTIR spectra acquisition 

 

The acquisition of ATR-FTIR (Attenuated Total Reflectance-Fourier Transform 

Infrared) spectra was performed in Phases 1 and 2 to analyze the biochemical 

composition of saliva samples. The same instrument and operational conditions were 

applied in both Phases to ensure consistency and comparability of results. 
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A Spectrum Two FT-IR spectrometer equipped with a UATR Two Accessory (Perkin 

Elmer, Waltham, MA, USA) and Spectrum 10 Spectroscopy Software v. 10.5.4 (Perkin 

Elmer, Waltham, MA, USA), was used for spectral acquisition. The system operated in 

transmittance mode in the mid-infrared range (4000–450 cm⁻¹). Background spectrum 

was obtained before measurements, to subtract it from each sample spectrum, providing 

higher quality spectra. Each dried saliva sample was placed directly on the ATR crystal, 

ensuring full contact for optimal signal acquisition. Approximately 1.5 mg of dried saliva 

was applied to the crystal surface (2.0 × 2.0 mm) for analysis. The spectra were recorded 

with a resolution of 4 cm⁻¹, and 32 scans were averaged per sample to enhance the signal-

to-noise ratio. Prior to each measurement, the ATR crystal was cleaned thoroughly with 

isopropanol to prevent cross-contamination between samples.  

The recorded spectra provided detailed molecular fingerprints of the saliva samples, 

enabling the identification and quantification of specific biochemical changes associated 

with exercise intensity and athlete training levels. 

 

13.2 Photometric acquisition for thiocyanate assay 

 

The quantification of thiocyanate in saliva was performed using a 

spectrophotometric assay based on the formation of an iron(III) thiocyanate complex. 

When thiocyanate reacts with iron(III) nitrate, a red-colored complex forms, exhibiting a 

characteristic absorbance at 458 nm. The intensity of the color is directly proportional to 

the thiocyanate concentration, allowing for its quantification. Absorbance measurements 

were conducted using a UV-Vis spectrophotometer (UV-1800 Spectrtophotometer, 

Shimadzu, Kyoto, Japan), and sample concentrations were determined by interpolation 

from a calibration curve prepared using artificial saliva standards. 

 



Section – EXPERIMENTAL PART 

142 
 

13 

13.3 NMR spectra acquisition 

 

One-dimensional (1D) 1H-NMR spectra were acquired using a Bruker AV500 

spectrometer operating at a frequency of 500.13 MHz (Bruker Biospin, Rheinstetten, 

Germany). The temperature was maintained at a constant 310 K throughout the 

measurements, which were conducted using the TopSpin v4 software suite. The spectra 

were recorded using the 1D 1H zgpr pulse sequence, with 98,000 data points collected 

across a spectral width of 14,705 Hz. A total of 512 scans were performed, preceded by 8 

dummy scans, and a relaxation delay of 4 seconds was applied between scans. 

The acquired spectra were zero-filled to 132K data points and Fourier-transformed 

following the application of an exponential apodization function with a 0.3 Hz line 

broadening factor. Baseline and Phase corrections were initially performed using Bruker's 

automated software, IconNMR, integrated with TopSpin 4.06. When necessary, manual 

corrections were applied, including zero-order and first-order Phase adjustments, 

followed by baseline correction. Baseline adjustments were performed by fitting a third-

degree polynomial function to spectral regions devoid of peaks. These manual corrections 

were carried out using the "apk" (automatic Phase correction) and "abs" (automatic 

baseline correction) functions in TopSpin. 

The TSP signal was calibrated to 0.0 ppm for all spectra to ensure consistency. 

Additionally, two reference samples (SRs) were prepared by pooling aliquots from all 

study samples. These pooled reference samples were analyzed periodically throughout 

the study’s Phase to serve as quality control (QC) standards, ensuring reproducibility and 

reliability of the NMR measurements The 1H-NMR spectra of all samples were acquired 

using identical experimental settings (PQN normalization). 
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14. Data analysis 

 

Working on Phase 1 of the study, ATR-FTIR spectra were first preprocessed by 

converting transmittance to absorbance, followed by baseline correction using the 

Sensitive Nonlinear Iterative Peak (SNIP) algorithm308 and normalization based on the 

broad band at 3200–3300 cm⁻¹ corresponding to water309. Principal Component Analysis 

(PCA) was applied to explore variations in salivary spectral profiles during physical 

exercise, while both PCA and Partial Least Squares Discriminant Analysis (PLS-DA) was 

used to classify athletes based on their fitness levels. Model optimization and validation 

were conducted using a 3-fold repeated stratified cross-validation (30 repeats), 

determining the optimal number of components based on the Root Mean Squared Error 

of Cross-Validation (RMSECV) and Prediction (RMSEP). All analyses were performed using 

Python (v3.8) with scikit-learn310, pandas311, and numpy312 libraries. 

In Phase 2 spectra were baseline corrected using the Spectragryph licensed 

application software version 1.2.15, and multiplicative scatter correction (MSC) was 

applied to remove light scattering effects caused by surface irregularities in dried oral 

fluid. A second derivative transformation was performed to enhance the separation of 

overlapping peaks313. PCA was initially used to explore patterns in the dataset, while PCA-

LDA and PLS-DA was applied for classification of saliva spectra based on exercise intensity. 

The total spectral range (4000-450 cm⁻¹) was utilized for analysis, with the dataset split 

into 70% for training and 30% for testing. A 10-fold repeated stratified cross-validation 

(100 repeats) was conducted to determine the optimal number of components while 

minimizing prediction error. All multivariate procedures and analyses were performed 

using MATLAB (R2019a, The Mathworks, Natick, MA, USA) with in-house scripts based on 

“Partial Least Squares Regression and Principal Components Regression - MATLAB & 

Simulink Example.”, in Mathworks website (Appendix 3). To assess statistical significance 

in specified metabolites variations across exercise intensities, Analysis of Variance 

(ANOVA) was performed. However, as ANOVA does not indicate where the differences 

occur, post hoc tests were conducted to compare group means pairwise. The Bonferroni 
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correction was applied to adjust for multiple comparisons, reducing the risk of false 

positives and ensuring the reliability of the findings. Statistical analyses were conducted 

using Microsoft Excel 2007 (Microsoft Corporation, Redmond, WA, USA). 

Similarly, statistical analysis in Phase 3 was done with Microsoft Excel 2007 

(Microsoft Corporation, Redmond, WA, USA). 

The following data analysis pertains to Phase 4 of the study. The processed 1D ¹H 

NMR spectra were imported into the SMolESY platform314 to remove macromolecular 

baseline contributions while preserving the quantitative integrity of the spectra315. This 

preprocessing step enabled accurate normalization of spectral data by taking into 

consideration of dilution effects on total signal intensity316. Spectral datasets after 

SMolESY normalization, ranging from 0.50 to 10.00 ppm, while the suppressed H₂O region 

from 4.3 to 5.2 ppm was removed, were binned using a 0.02 ppm bin width, resulting in a 

dataset of 425 variables. This dataset was used for the untargeted analysis. In addition, a 

targeted dataset was created by semi-automated peak assignment and quantification for 

metabolites identification, similarly with previous study317. Both datasets were 

normalized using Probabilistic Quotient Normalization (PQN)318 to account for dilution 

variability introduced during the extraction of blood from DBS. 

All normalized datasets were imported into MATLAB software (v. 2021b, 

MathWorks) and analyzed using Principal Component Analysis (PCA) and Partial Least 

Squares - Discriminant Analysis (PLS-DA), through the PLS_Toolbox (v. 8.7.1, Eigenvector 

Research, Inc., Manson, WA, USA). Prior to the statistical processing, the SMolESY 

profiling data were mean-centered. All statistical models and corresponding performance 

metrics were generated following a cross-validation procedure. To identify important 

spectral features, variables loadings and Variable Importance in Projection (VIP) scores 

from the PLS-DA models were examined, with VIP values equal to or higher than 1 

considered indicative of high influence. Additionally, the statistical significance of 

metabolite concentrations was evaluated through univariate analysis using one-way 

ANOVA build-in functions available in MATLAB 
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(https://uk.mathworks.com/help/stats/one-way-anova.html). To correct for multiple 

testing and control the false discovery rate, the Benjamini-Hochberg correction was 

applied using the “fdr_bh” script 

(https://www.mathworks.com/matlabcentral/fileexchange/27418-fdr_bh). 
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Results and Discussion 

 

15. Saliva drying optimization 

 

To optimize the drying process of saliva for ATR-FTIR analysis, two drying methods 

were evaluated. In the first method, 1 mL of pooled saliva was dried at 37°C for 

approximately 20 hours (overnight) (Fig. 51c), manually scraped, and transferred to the 

ATR crystal (Fig. 51d). In the second method, 10 µL aliquots of saliva were sequentially 

layered and dried on a cover glass to create progressively 100 stacked layers (Fig. 51b), 

which were then inverted onto the ATR crystal (Fig. 51e).  
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Figure 51. Images of the drying process of saliva with the two methods: drying on watch 

glass and manual scrapping and drying on cover glass and direct placement on ATR 

crystal. (a) Side by side viewpoint, (b) top view of dried saliva with cover glass method and 

(c) top view of dried saliva with watch glass method. (d) Top view of manually scrapped 

dried saliva placed on ATR crystal, (e) top view of inverted cover glass placed on ATR 

crystal, (f) side view of manually scrapped dried saliva placed on ATR crystal and (g) side 

view of inverted cover glass placed on ATR crystal. 

 

The evaluation of the two drying methods revealed notable differences in the 

quality and intensity of the ATR-FTIR spectra obtained (Fig. 52). The method involving the 

manual scraping of dried saliva demonstrated superior performance in terms of spectral 

intensity and sensitivity. The spectra acquired using this method consistently exhibited 

sharper peaks and higher signal intensities, indicating improved interaction between the 

solid saliva sample and the ATR crystal surface. This enhanced contact is attributed to the 

direct application of the scraped saliva, which likely allowed for more uniform and 

intimate contact with the crystal, minimizing gaps or inconsistencies. 

In contrast, the stacked-layer method, while innovative, resulted in relatively lower 

spectral intensity. This reduction in sensitivity may be due to the inherent structural 

inconsistencies introduced during the iterative layering process. Although the stacked 

layers formed a solid structure upon drying, their contact with the ATR crystal was likely 

less uniform due to potential air gaps or surface irregularities caused by the stacking 

technique. Furthermore, the inversion of the cover glass to place the dried layers in 

contact with the crystal could have introduced additional challenges, such as uneven 

pressure or incomplete contact over the crystal's surface. 

Reproducibility tests for both methods showed consistent results across the ten 

repetitions, confirming that the drying processes were stable and repeatable. However, 

the manual scraping method not only demonstrated better spectral quality but also 
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proved to be more practical for ensuring optimal sample-crystal interaction in ATR-FTIR 

analysis. 

 

 

Figure 52. Averaged spectra (n=10) of dried pooled saliva with the two drying methods: 

drying on watch glass and manual scrapping and drying on cover glass and direct 

placement on ATR crystal (30 layers and 100 layers are presented). (a) Overlay 

presentation, (b) stacked presentation. 

 

These findings underscore the critical role of sample preparation in ATR-FTIR saliva 

analysis. The manual scraping method's ability to produce high-quality spectra with 

greater sensitivity highlights its suitability on later applications requiring detailed and 
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reliable chemical characterization. In contrast, while the stacked-layer method offers an 

alternative approach, its limitations in spectral intensity suggest that further refinement is 

necessary to enhance its efficacy for ATR-FTIR analysis. 

 



Section – RESULTS AND DISCUSSION 

154 
 

16 

 

16. Phase 1 − Spectroscopic and chemometric characterization of 

saliva for athlete profiling: A study using ATR-FTIR 

 

Driven by the scientific community's increasing interest in non-invasive biomarker 

monitoring, this Phase focused on utilizing a robust approach for tracking biomolecular 

changes in saliva during physical exercise through ATR-FTIR spectroscopy. Saliva was 

chosen as the biofluid of interest due to its ease of collection, participant-friendly nature, 

and rich biochemical composition reflective of systemic physiological changes319. ATR-

FTIR spectroscopy was preferred in this study due to its minimal sample preparation 

requirements and ability to analyze complex biological matrices, such as saliva, directly. 

The technique's sensitivity to molecular vibrations allows for the detection of subtle 

biochemical changes, making it ideal for monitoring minimal biomarker variations in 

minimal sample volume during physical exercise303. 

 

16.1 Salivary biochemical changes before and after physical exercise 

 

A preliminary study was performed to investigate the utility of our methodology to 

monitor the salivary profile during exercise. The preliminary study conducted in Phase 1 

aimed to reveal distinct biochemical changes in saliva before and after physical exercise, 

using ATR-FTIR spectroscopy. 

A single national-level long-distance athlete was monitored over 12 consecutive 

days to evaluate the feasibility of using ATR-FTIR spectroscopy for salivary biomarker 

analysis. Saliva samples were collected both before and after the athlete's daily training 

sessions, capturing the biochemical changes associated with exercise. This longitudinal 

approach provided valuable insights into the day-to-day metabolic fluctuations induced 
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by variables such as sleep patterns, physical activity outside training, or hydration status. 

By collecting saliva samples consistently before and after each workout over consecutive 

days, the study reduced the influence of transient factors, allowing a clearer focus on 

exercise-induced biochemical changes. This approach ensured more reliable and 

representative data.  

Thus, PCA was employed to evaluate these spectral differences and to identify the 

key biochemical features driving discrimination. The scree plot displaying the explained 

variance of up to 10 principal components (PCs) showed a steep decline in variance 

explained by the first few PCs, followed by a gradual leveling off (Fig. 53). PC1 accounted 

for a significant portion of the variance (83.27%) reflecting the dominant variation in the 

data. PC2 added another substantial contribution (6.03%) bringing the cumulative 

explained variance to 89.30%. Subsequent PCs, such as PC3 and PC4, explained 

progressively smaller amounts of variance 3.53% and 2.76%, respectively. Beyond PC5, 

the variance contributions diminished further, with PC6 to PC10 each explaining less than 

1%, reflecting noise or minor variations unrelated to the primary patterns in the data.  

The "elbow" of the scree plot clearly observed on PC2, indicating that the majority 

of the variance can be captured with the first two components, making them the most 

significant for further analysis. According to the Percentage of Variance Criterion, which 

recommends retaining components until a specific percentage of the total variance is 

explained, the first three PCs are more than sufficient to capture the majority of the 

data’s variability (>90%). This approach balances data simplification with information 

retention. Following this criterion, the score plots of these three principal components 

were examined, providing a detailed visualization of the clustering and separation 

between pre- and post-exercise samples, highlighting the key biochemical differences 

induced by physical activity. 
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Figure 53. Scree plot of PCA. The explained variation in each PC and the cumulative 

explained variance (before vs. after physical exercise dataset). 

The score scatter plots among PC1, PC2, and PC3 reveal clear patterns of 

discrimination between the two groups (before and after exercise) (Fig. 54). It is also 

depicted the data distribution within each principal component, providing a more 

comprehensive view of the underlying variability. The score plots indicate that the groups 

are well-separated, with minimal overlap indicating robust discrimination, suggesting 

distinct biochemical profiles associated with the pre- and post-exercise states. Notably, 

PC2 appears to be the primary contributor to this discrimination, as it shows the most 

significant separation between the groups compared to PC1 and PC3. This finding 

underscores the importance of the biochemical features represented by PC2 in capturing 

the metabolic changes induced by physical activity. The inclusion of data distributions 

within the plots enhances the clarity of these results, visually confirming the distinct 

clustering of samples on PC2 (Fig. 54) and supporting the robustness of the PCA model in 

differentiating the two groups. These results demonstrate the efficacy of ATR-FTIR 
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spectroscopy combined with multivariate analysis for detecting and characterizing 

exercise-induced biochemical changes in saliva. 

 

Figure 54. (a) Score scatter plots of PCA among the first three PCs and distribution graphs 

of data on each component. (b) Score plot of PC1-PC2 highlighting the groups’ 

discrimination (before vs. after physical exercise dataset). 
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The loading plots for PC1, PC2, and PC3 provide insights into the specific spectral 

features driving the discrimination between pre- and post-exercise salivary samples (Fig. 

55). These plots highlight the wavenumbers most strongly contributing to the variance 

captured by each principal component, offering a deeper understanding of the 

biochemical changes associated with physical exercise. 

 

 

Figure 55. Loading plots of the first three principal components (before vs. after physical 

exercise dataset). 

 

PC1, which explains the majority of the variance, is primarily influenced by 

wavenumbers associated with general biochemical content in saliva. Key contributors 

include the amide I (1631 cm⁻¹, C=O stretching vibration) and amide II (1527 cm⁻¹, N–H 

bending vibration) regions, indicative of proteins and their secondary structures303,320. The 

high loadings in these regions suggest significant protein-related changes, reflecting 

increased protein turnover or secretion post-exercise. Medium-intensity bands in the 

infrared spectra also play a significant role, contributing to the overall variance captured 

by this principal component. Specifically, the broad band at 982–1207 cm⁻¹, associated 

with glucose, glycogen, and sugar moieties (C–C and C–O stretching vibrations), highlights 

the involvement of carbohydrate-related biochemical changes320,321. These peaks indicate 
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shifts in energy metabolism, such as glycogen breakdown and glucose utilization, which 

are essential metabolic responses to physical activity. Additionally, the band at 1395 cm⁻¹, 

attributed to carboxylate groups (COO⁻ stretching vibrations), is indicative of molecules 

like lactic acid or carboxyl side chains of salivary proteins321. This peak suggests an 

alteration in lactic acid levels, a well-known byproduct of anaerobic metabolism during 

exercise58. 

For PC2, the primary classification between pre- and post-exercise samples is driven 

by specific spectral bands that highlight key biochemical changes. Notably, the band at 

622 cm⁻¹, associated with the amide I region, reflects alterations in protein secondary 

structure322, potentially indicative of changes in salivary protein dynamics due to exercise-

induced stress or metabolic activity. The band at 921 cm⁻¹, linked to membrane 

lipids/phospholipids and carbohydrates320, suggests a metabolic shift involving lipid 

mobilization or structural changes in carbohydrate-linked components323. These changes 

may correspond to enhanced energy demands and cellular membrane activity during 

physical exertion. A particularly strong and wide band at 1080 cm⁻¹, attributed to sugar 

moieties320,321, shows the most significant contribution to the discrimination along PC2. 

This peak highlights changes in glycosylation patterns or variations in glucose-related 

metabolites, underscoring the critical role of carbohydrate metabolism in separating pre- 

and post-exercise states. The prominent influence of these bands on PC2 reinforces its 

role as a key driver of group discrimination, reflecting targeted biochemical adaptations 

to physical activity. These findings emphasize the sensitivity of ATR-FTIR spectroscopy in 

detecting nuanced molecular responses to exercise. 

The strong peak at 1080 cm⁻¹, associated with sugar moieties, provides direct 

evidence of the critical role that carbohydrates play in energy metabolism during physical 

exercise324. Simple carbohydrates, such as glucose, are rapidly absorbed and utilized by 

muscles for immediate energy, while more complex carbohydrates are gradually broken 

down into glucose, fructose, and galactose, offering a sustained energy release325. Excess 

glucose is stored as glycogen in the liver and muscles, serving as a readily available energy 



Section – RESULTS AND DISCUSSION 

160 
 

16 

reserve, particularly during short, high-intensity activities like sprinting326. During 

exercise, glycogen stores are converted back into glucose to meet the body’s heightened 

energy demands326. Post-exercise, the depletion of blood glucose levels often leads to 

fatigue326, further emphasizing the central role of carbohydrate metabolism in sustaining 

physical activity. The prominent spectral band at 1080 cm⁻¹ highlights the metabolic 

activity involving sugar moieties and glycogen mobilization, confirming these physiological 

processes.  

In general, the analysis of the principal components suggests distinct biochemical 

roles for PC1 and PC2 in differentiating before and after exercise salivary samples. PC1 

appears to be primarily associated with variables related to proteins, as evidenced by the 

strong contributions from the amide I and II regions. In contrast, PC2 is more strongly 

correlated with sugar moieties and carbohydrates, highlighted by prominent peaks such 

as the band at 1080 cm⁻¹. Together, these components provide complementary insights 

into the molecular adaptations underpinning physical exertion.  

Overall, the use of ATR-FTIR provided a rapid and reliable analytical approach to 

capture molecular fingerprints, enabling the identification of exercise-induced metabolic 

alterations. This innovative approach sought to establish saliva as a practical and effective 

medium for real-time biomarker assessment in sports science and exercise physiology. 

 

16.2 Biochemical adaptations aid by training habits: high- vs. low-

level athletes discrimination 

 

The findings from the before and after exercise discrimination highlighted the 

significant biochemical changes induced by physical activity, demonstrating the utility of 

ATR-FTIR spectroscopy for tracking metabolic responses. Building on this foundation, the 

study progressed to examine how these biochemical markers vary between athletes of 

different training levels. 
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While the pre- and post- exercise analysis focused on acute metabolic changes due 

to physical exertion, the comparison between high-level and low-level athletes aimed to 

explore long-term adaptations driven by training intensity and frequency. The intense and 

frequent physical exercise is a defining characteristic of high-level athletes, as it drives the 

physiological and metabolic adaptations required for enhanced performance. Consistent, 

structured training leads to significant improvements in cardiovascular and metabolic 

health by enhancing cardiac output, improving insulin sensitivity, and promoting 

favorable changes in blood lipid profiles327. Additionally, increasing training frequency, 

even with the same total load, can enhance muscle and bone adaptations by maintaining 

a more consistent positive protein balance and more frequent training stimuli328. Higher 

exercise frequency may improve recovery and reduce fatigue, and potentially optimize 

motor skill learning328. These adaptations highlights a broader perspective on the 

importance of sustained physical activity in shaping metabolic profiles, providing insights 

into the physiological differences that distinguish highly trained professionals from 

recreational or low-level athletes. Understanding these distinctions not only enhances our 

comprehension of training adaptations but also underscores the societal and scientific 

relevance of promoting structured physical activity. 

 

16.2.1 Questionnaire results: distinguishing low- and high-level 

athletes 

 

Although a definition about novice, intermediate, advanced and elite athletes has 

been defined329, it is challenging to practically differentiate among them. The 

questionnaire results revealed distinct differences between low-level and high-level 

athletes, emphasizing the contrasting approaches to training and athletic development. 

Figure 56 presents the results of a questionnaire designed to differentiate athletes into 

low- and high-level cohorts based on their training habits, affiliations, and motivations. 
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Figure 56. Questionnaire outcomes. 

 

The majority of respondents practice 1–2 times per week, with fewer training 3–4 

times or more than five times weekly, suggesting a predominance of moderate 

engagement in athletic activities. Most participants also report training durations of 30–
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45 minutes per session, while fewer exceed 45 minutes. This highlights a tendency toward 

shorter training sessions, typical of recreational or fitness-focused athletes. 

When asked about affiliation with sports organizations, 61% indicated they are not 

members of a club, team, or union. This lack of formal affiliation supports the idea that 

most respondents might be participating at a recreational rather than competitive level. 

Similarly, nearly half of the respondents characterize their training load as low, with fewer 

describing it as intermediate or heavy, further indicating a lighter approach to athletic 

participation. The motivations for engaging in athletics reveal that most participants aim 

to increase fitness levels or engage in the activity as a hobby. Performance-driven 

motivations, such as skill improvement or preparing for championships, were less 

common, suggesting that competitive goals are not a primary factor for most 

respondents.  

Finally, when asked to self-identify based on predefined criteria, 65% described 

themselves as low-level athletes, with only 35% identifying as high-level athletes. This 

self-assessment aligns with the observed training patterns and motivations, reinforcing 

the predominance of recreational athletes in the sample. The inclusion of professional 

coaching guidance as a criterion further validated the distinction between the groups, 

ensuring a reliable categorization based on both objective training metrics and expert 

input.  

Overall, the data provides clear distinctions between low- and high-level athletes. 

The low-level group is characterized by lighter training loads, shorter sessions, and fitness 

or recreational motivations, while the high-level cohort exhibits more intense training 

regimens, competitive aspirations, and greater organizational affiliation. Thus, based on 

the questionnaire results and the recommendations from professional coaches, a total of 

17 athletes were classified as high-level, while 39 athletes were categorized as low-level. 

This classification was based on factors such as training frequency, intensity, coaching 

involvement, and the athletes' overall commitment to their training regimens, ensuring a 
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clear distinction between the two groups for further analysis. This analysis supports the 

classification criteria for cohort discrimination. 

 

16.2.2 Discrimination between groups – PCA 

 

Having classified the athletes into high-level and low-level groups based on the 

questionnaire results and coach recommendations, the next step was to explore the 

biochemical differences between these groups. To achieve this, we applied multivariate 

analysis techniques, specifically PCA and PLS-DA, to identify and visualize the key 

metabolic variations between the two groups. By examining the spectral data from both 

groups, we aimed to uncover underlying patterns and biochemical markers that 

distinguish high-level athletes from their low-level counterparts. 

The mean absorption spectra for low-level and high-level athletes, along with their 

standard deviations, provide an overview of the average biochemical profiles for the two 

groups (Fig. 57). This visualization illustrates the general consistency of the spectral data 

within each group while highlighting overall trends in absorption intensities across the 

measured wavenumber range. The spectral regions, including those associated with 

proteins (amide I and II regions), carbohydrates (sugar moieties), lipids, and lactate-

related components, display consistent patterns within each group. The standard 

deviation bands further emphasize the reliability of the measurements, showing minimal 

variation around the mean, which supports the robustness of the data. These spectra 

serve as a foundational comparison for the subsequent PCA analysis, which delves deeper 

into the specific wavenumbers contributing to the observed differences between low-

level and high-level athletes. 
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Figure 57. Mean FTIR spectra with SDs of high and low fitness level athletes. 

 

In this Phase of the study, a total of 56 athletes participated, comprising 39 low-

level and 17 high-level athletes. The dataset was divided into two subsets: a training set 

containing data from 42 athletes (29 low-level and 13 high-level) and a test set comprising 

14 athletes (10 low-level and 4 high-level). For the purposes of PCA and later PLS-DA 

model construction, only the training dataset was utilized to ensure the development of a 

robust and unbiased predictive model. The remaining test dataset served as a validation 

set, acting as "unknown" data since it was not presented during the PLS model training. 

This separation ensures that the model's performance is evaluated on unseen data, 

reflecting its ability to generalize and accurately classify new samples. 

The scree plot for the PCA of the low-level and high-level athletes dataset reveals 

the proportion of variance explained by each principal component (up to ten PCs). A 
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significant amount of variance is captured within the first few PCs, emphasizing their 

importance in distinguishing between the two groups. PC1 accounts for a dominant 

portion of the variance, explaining 75.13%, reflecting the most significant differences in 

the dataset related to athletic level of participants and associated metabolic adaptations 

(Fig. 58). PC2 contributes an additional 8.29%, increasing the cumulative explained 

variance to 83.41%. This indicates the supplemental role of the second principal 

component in capturing further variability between low-level and high-level athletes. PC3, 

PC4 and PC5 explain 5.75%, 3.56% and 2.21%, respectively, bringing the total variance 

explained by the first three PCs to 94.93%. The rest of components explain less than 1% 

each. 

 

 

Figure 58. Scree plot of PCA. The explained variation in each PC and the cumulative 

explained variance (low-level vs. high-level athletes dataset). 
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The scree plot displays an “elbow” at PC2, indicating a point where the explained 

variance levels off, and subsequent PCs contribute only marginally to the dataset. These 

results suggest that PC1 and PC2 effectively capture the critical biochemical and 

metabolic distinctions between the two groups, while PC3 provides additional nuance. 

This forms the foundation for subsequent score and loading plot analyses, which 

elucidate the specific features driving these separations. 

The score plots among PC1, PC2, and PC3, alongside the corresponding distribution 

plots, provide insights into the biochemical differences between low-level and high-level 

athletes (Fig. 59). The analysis highlights PC1 as the dominant separator, while separation 

along PC2 and PC3 is not clearly visible. PC1, explaining 65% of the total variance, is the 

primary contributor to group separation. The score plot along PC1 shows distinct 

clustering of high-level and low-level athletes, with minimal overlap between the groups. 

This indicates that PC1 effectively captures the key biochemical differences associated 

with athletic level and long-term physical adaptations. The distribution plot for PC1 

further reinforces this separation, with two well-defined and minimally intersecting peaks 

representing each group. PC2 and PC3, explaining 20% and 6% of the variance, 

respectively, do not show clear separation between the groups. The score plots along PC2 

and PC3 display significant overlap, suggesting that these components primarily capture 

individual variability rather than features distinguishing the two groups. While PC2 and 

PC3 add some nuance to the overall dataset, they do not contribute significantly to the 

discrimination between high-level and low-level athletes, emphasizing the importance of 

PC1 in distinguishing the metabolic profiles of the two groups. 
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Figure 59. (a) Score scatter plots of PCA among the first three PCs and distribution graphs 

of data on each component. (b) Score plot of PC1-PC2 highlighting the groups’ 

discrimination (low-level vs. high-level athletes dataset). 

 

The loading plots provide crucial insights into the spectral features driving the 

discrimination between low-level and high-level athletes (Fig. 60). These plots highlight 
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the specific wavenumbers and their associated biochemical components that contribute 

most significantly to the observed differences in metabolic profiles. While PC1 serves as 

the primary axis of separation, PC2 provides complementary information, though it plays 

a secondary role in the discrimination. PC3, which explains a minor portion of the total 

variance, does not contribute significantly to the separation. 

 

 

Figure 60. Loading plots of the first three principal components (low-level vs. high-level 

athletes dataset). 

 

PC1, explaining 75.13% of the variance, reveals the dominant biochemical variables 

responsible for distinguishing the two groups. Strong spectral bands identified in the 

loading plot include: 

 992–1196 cm⁻¹: This broad band is associated with glucose, glycogen, and sugar 

moieties, representing C–C and C–O stretching vibrations320,321. These features 

indicate differences in carbohydrate metabolism between the two groups. 

 1529 cm⁻¹ (amide II): Attributed to N–H bending vibrations303,320, this band 

reflects changes in salivary protein content, likely due to differences in protein 

turnover or secretion influenced by training intensity. 
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 1642 cm⁻¹ (amide I): Corresponding to C=O stretching vibrations303,320, this band 

further underscores the role of proteins in differentiating the groups. 

Additionally, the peak at 1392 cm⁻¹, attributed to carboxylate groups (COO⁻ 

stretching vibrations), represents molecules such as lactic acid321. The presence of this 

band highlights the role of lactate metabolism in high-level athletes, who often engage in 

lactate threshold training. This training promotes the production of proteins that aid in 

the absorption and conversion of lactic acid into energy330, emphasizing the metabolic 

adaptations driven by higher exercise intensity and frequency. 

The loading plot of PC1 suggests that the primary separation between low-level and 

high-level athletes arises from proteins (amide I and II regions) and carbohydrate-related 

peaks, reflecting energy utilization and recovery processes linked to structured training. 

Proteins (the main discrimination variable on PC1 axis) can also be broken down and used 

as a last resort of energy, although this stresses the kidneys and restricts the body's ability 

to build and maintain muscle tissue331,332. 

PC2, explaining an additional portion of the variance, complements PC1 by 

highlighting secondary biochemical features. Bands at 1039 cm⁻¹ (sugar moiety-related 

band) reinforcing the role of carbohydrate metabolism in group differentiation and 1543 

cm⁻¹ (amide II) and 1619 cm⁻¹ (amide I) emphasizing structural differences in protein 

metabolism between the groups are shared in both PCs. The 1401 cm⁻¹ band, attributed 

to carboxylate groups, is common to both PCs, further supporting the role of lactic acid 

and related metabolites in distinguishing between the two groups. Lastly, a medium-

intensity band at 1446 cm⁻¹, associated with CH₂ bending vibrations in lipids or amines, 

appears only in PC2, suggesting its relevance to lipid dynamics in the metabolic profiles. 

The loading plots confirm that the discrimination between low-level and high-level 

athletes is driven primarily by metabolic markers of protein turnover, carbohydrate 

metabolism, and lactate dynamics. PC1 emphasizes proteins and sugar moieties as the 

dominant features, reflecting energy utilization and recovery processes, while PC2 adds 
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depth by highlighting lipid-related components and additional protein features. Together, 

these components illustrate the biochemical adaptations associated with different levels 

of training intensity and frequency, providing a detailed molecular fingerprint of athletic 

performance. 

 

16.2.3 Discrimination between groups – PLS-DA 

 

PLS-DA was performed subsequent to PCA to enhance the discrimination between 

low-level and high-level athletes by focusing directly on the separation of predefined 

groups. While PCA is an unsupervised method that identifies patterns and reduces 

dimensionality based solely on variance, it does not explicitly consider group labels. In 

contrast, PLS-DA is a supervised method that incorporates group membership into the 

analysis, maximizing the variance related to class separation. This makes PLS-DA 

particularly well-suited for identifying and visualizing the biochemical features most 

strongly associated with the differences between low-level and high-level athletes. 

From the 56 collected spectra (56 participated athletes), 42 were randomly selected 

in a stratified manner and used for PCA. Subsequently, PLS-DA was performed on the 

same set of samples to create a predictive model capable of assessing the performance 

level of “unknown” samples. For this predictive model, the PCA-tested samples served as 

the training dataset, while the remaining 14 “unknown” spectra (10 belonging to low-

level athletes and 4 belonging to high-level athletes) were used as the test dataset. 

Cross-validation was performed as part of the PLS-DA to determine the optimal 

number of latent variables (LVs) required for effective discrimination between low-level 

and high-level athletes. This step is crucial to balance model complexity and performance, 

ensuring that the PLS-DA model captures meaningful patterns without overfitting. A 3-

fold repeated stratified cross-validation (30 repeats) was carried out on the training 

dataset to identify the optimal number of latent variables (LVs). The root mean squared 



Section – RESULTS AND DISCUSSION 

172 
 

16 

error of cross-validation (RMSECV) and prediction (RMSEP) were plotted against the 

number of components, as shown in Figure 61. This analysis revealed that the lowest 

RMSE values were observed at two components, indicating that a model with two latent 

variables provides the best predictive performance while minimizing the risk of 

overfitting. The RMSECV curve showed stabilization and then error increment beyond two 

components, suggesting that increasing the number of components would not 

significantly enhance prediction accuracy but might lead to model overfitting. Thus, the 

optimal PLS-DA model was constructed using two components, balancing prediction 

accuracy and robustness. 

 

 

Figure 61. RMSE of cross-validation (RMSECV) and prediction (RMSEP) indicating the 

number of components that should be used for the predictive PLS model. 
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The cross-validation results emphasize the robustness of the PLS-DA model and its 

ability to generalize well to unseen data. By selecting the optimal number of LVs, the 

analysis ensured that the model was neither underfitted (missing key patterns) nor 

overfitted (capturing noise), laying a strong foundation for subsequent interpretation of 

the PLS-DA loadings and score plots. 

The PLS-DA score plot demonstrated an excellent separation between the low-level 

and high-level athlete groups (Fig. 62). The two clusters formed by their respective 

spectra were distinctly separated along the first latent variable (LV1), which accounted for 

the majority of the variance linked to the performance level differentiation. This clear 

segregation indicates that the model effectively captured the underlying biochemical 

differences between the two groups. Such results highlight the effectiveness of ATR-FTIR 

spectroscopy in combination with PLS-DA to differentiate between athlete performance 

levels based on their biochemical salivary profiles. 

 

 

Figure 62. Scores of athletes plotted in LV1 against LV2 and highlighting the groups’ 

discrimination in PLS analysis. 
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The performance of the PLS-DA model was assessed through multiple metrics, 

including the confusion matrix, ROC curve, and classification performance indicators. The 

confusion matrix, shown in Figure 63a, reveals the classification accuracy of the PLS-DA 

model. As mentioned previously, the remain test dataset was utilized to evaluate the 

model’s discrimination ability. This dataset, having 10 low-level and 4 high-level athletes’ 

spectral data, acts as an “unknown” because it was not included in the building of the 

model. Thus, the matrix shows that the model successfully predicted 9 low-level athletes 

and 4 high-level athletes correctly, while there was only 1 misclassification of a low-level 

athlete as a high-level athlete. This indicates that the model demonstrated high 

classification accuracy (93%), especially for distinguishing between low-level and high-

level athletes. The ROC curve, shown in Figure 63b, further confirms the excellent 

predictive performance of the PLS-DA model. The decided threshold indicates a near-

perfect separation between the two athlete groups, with a true positive rate (sensitivity, 

1.0) of 1.0 and a false positive rate (1-specificity, 1-0.9) of 0.1. The Area Under the Curve 

(AUC) value of 0.95 indicates a strong ability of the model to correctly classify the 

athletes. AUC values near 1 signify an outstanding predictive model, reinforcing the 

conclusion from the confusion matrix that the PLS-DA model performed with a high 

degree of accuracy and robustness. Together, the confusion matrix and ROC curve 

illustrate the exceptional classification ability of the PLS-DA model in distinguishing 

between low-level and high-level athletes, providing strong evidence for the efficacy of 

this approach in athlete performance level classification based on biochemical markers 

measured in saliva. 
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Figure 63. (a) Confusion matrix of the predictive PLS model and (b) ROC curve indicating 

sensitivity and specificity of the model. 

 

Following this evaluation, PLS-DA was performed on the entire dataset (56 athletes) 

using the described model. When the predictive model was applied to the full set of 

collected data, the performance metrics improved, with a sensitivity of 1.0, a specificity of 

0.94, and an overall accuracy of 98%. These results highlight the reliability and robustness 

of the constructed PLS-DA model in discriminating between low-level and high-level 

athletes. 

The PLS-DA loading plot reveals key spectral features that contribute to the 

discrimination between low-level and high-level athletes (Fig. 64). As seen in the loading 

plot, the peaks associated with the discrimination are largely consistent with those 

identified in the PCA analysis, including bands related to glucose, glycogen, and sugar 

moieties, as well as protein-related bands (amide I and II). These features continue to play 

a major role in differentiating the two groups, consistent with the previous PCA results. 
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Figure 64. PLS coefficients plot of the first latent variable (LV1). 

 

However, in the PLS-DA analysis, a new spectral feature emerges. A peak at 2060 

cm−1, attributed to thiocyanates320,321,333–335, is observed, although it is less intense 

compared to the other spectral bands. Thiocyanates, which are known to be associated 

with various metabolic processes, appear to contribute to the discrimination between 

low-level and high-level athletes, providing additional information that enhances the 

classification model.  

Thiocyanate (SCN−) is a significant ion present in human saliva, arising from both 

endogenous and exogenous sources. Endogenously, it is a product of the metabolism of 

sulfur-containing compounds, such as glucosinolates found in cruciferous 

vegetables336,337. Exogenously, thiocyanate is notably characteristic of smokers’ saliva, as 

it results from the metabolic conversion of cyanide compounds present in tobacco 

smoke338. While its elevated concentration in smokers makes it a valuable biomarker for 

smoking-related studies, thiocyanate is also naturally present in non-smokers, albeit at 

lower levels293. In saliva, typical concentrations range from 0.5 to 3 mM, with higher levels 
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observed in individuals exposed to tobacco smoke339,340. Thiocyanate plays a vital role in 

the antimicrobial defense system of saliva through its involvement in the lactoperoxidase 

system341. However, excessive thiocyanate levels, particularly in smokers, may interfere 

with iodine uptake by the thyroid gland, highlighting the dual significance of this molecule 

in both health and disease contexts342. 

This new feature suggests that thiocyanate levels may serve as a supplementary 

biomarker in distinguishing athletes based on their training intensity or performance 

levels (more details are presented in Phase 3, Section 18). This addition to the 

discrimination model underscores the utility of PLS-DA in identifying subtle, yet 

informative, spectral features that may not have been apparent in the simpler PCA model. 

Phase 1 represents the first study to employ ATR-FTIR spectroscopy combined with 

chemometric analysis (PCA and PLS-DA) to discriminate salivary biochemical profiles 

between low- and high-level athletes after physical exercise. While previous studies had 

demonstrated that FTIR can capture metabolic shifts in saliva due to exertion, none had 

specifically applied this approach to stratify athletes by fitness level using a single post-

exercise saliva sample. This Phase introduced a viable novelty: Salivary infrared spectra 

were linked not only to rest/exercise states but also to training status, revealing that 

athletes with different fitness levels exhibit distinguishable salivary biochemical 

fingerprints after exertion. 

In resume, Phase 1 successfully demonstrated the potential of ATR-FTIR 

spectroscopy coupled with multivariate analysis to distinguish biochemical changes in 

saliva related to physical exercise and athlete performance levels. Through PCA and PLS-

DA, it was shown that saliva can act as a valuable non-invasive biomonitoring tool, 

reflecting significant differences in the molecular composition before and after physical 

exercise, as well as between low-level and high-level athletes. The findings revealed that 

proteins and sugar moieties were the major contributors to these discriminations, with 

additional insights from thiocyanates during PLS-DA. Moreover, the high sensitivity, 

specificity, and accuracy of the constructed models underscore the reliability of this 
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approach. These results lay a solid foundation for further investigations into using saliva 

for athletic performance monitoring in sports science. 

These findings suggest that salivary composition may reflect long-term physiological 

adaptations associated with training status. However, given that sample collection 

occurred post-exercise, it remains unclear to what extent these differences were 

influenced by the athletes' chronic fitness level versus the acute intensity of exertion at 

the time of sampling. This ambiguity highlighted the need for a more controlled approach 

to disentangle training-related biochemical signatures from those arising dynamically 

during exercise. 
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17. Phase 2 − Utilizing ATR-FTIR spectroscopy of saliva for 

monitoring and differentiating exercise intensity levels 

 

In Phase 1, we observed distinct salivary profiles between low- and high-level 

athletes, likely reflecting the physiological adaptations associated with regular high-

intensity training. However, because high-level athletes are habitually exposed to more 

intense physical workloads, it remained unclear whether the observed differences were 

solely due to training status or were also influenced by the intensity of effort at the time 

of sampling. To address this, we designed Phase 2 to investigate the acute effects of 

increasing exercise intensity on salivary composition in a controlled setting. This allowed 

us to distinguish between baseline training-related adaptations and the dynamic response 

of saliva to varying levels of physical exertion, thereby strengthening the interpretation of 

our findings from both phases. 

In Phase 2, the experimental design was structured to monitor salivary biochemical 

changes under varying running intensities walking (4–5 km/h), jogging (9–10 km/h) and 

running (14–15 km/h). The primary aim was to assess whether ATR-FTIR spectroscopy 

could capture dynamic physiological adaptations during exercise, offering a non-invasive 

tool to evaluate athlete performance and recovery. This Phase involved collecting saliva 

samples at different stages of exercise, representing distinct running states, including low-

intensity aerobic running, moderate-intensity steady-state running, and high-intensity 

anaerobic sprints. 

Running intensity was chosen as the variable of interest because it plays a critical 

role in influencing biochemical processes within the body. Low-intensity aerobic running 

primarily utilizes fat metabolism, while moderate-intensity states rely on a mix of 

carbohydrate and fat metabolism343. High-intensity exercise shifts energy production 

toward anaerobic pathways, leading to increased lactic acid production and significant 
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biochemical changes, such as glycogen breakdown and elevated stress markers58,343. 

Monitoring these physiological changes offers valuable insights into energy utilization, 

metabolic efficiency, and recovery strategies. 

Saliva was chosen as the biofluid of interest due to its non-invasive collection 

method, making it suitable for frequent sampling without disrupting exercise 

performance. Additionally, saliva contains biomarkers reflective of systemic metabolic 

states, such as glucose, proteins, and lactate, which are highly relevant to exercise 

physiology. This approach aimed to correlate salivary biochemical profiles with running 

intensities, enabling real-time monitoring of athlete performance and recovery during 

training sessions. 

By integrating these running states into the experimental design, Phase 2 sought to 

validate ATR-FTIR spectroscopy as a versatile and practical tool for assessing athlete 

status across a wide spectrum of exercise conditions. 

In Phase 2, saliva samples were collected during different running intensities from 

all participating athletes. A total of 128 spectra were initially recorded. However, as part 

of data quality control, spectra with excessive noise, poor signal-to-noise ratio, or 

technical issues during acquisition were excluded to ensure accurate analysis. After this 

preprocessing step, 125 spectra remained for further analysis, ensuring high-quality data 

was used (Fig. 65). 

For multivariate analysis, the spectra were divided into two main groups: training 

dataset, used for model construction, accounting for 70% of the total spectra, and test 

dataset, consisting of the remaining 30%, was reserved for model validation to assess the 

predictive capability of the developed models. This separation ensures that the predictive 

models are trained on one dataset and validated on unseen data, simulating real-world 

scenarios. The division was performed in a stratified manner, maintaining an even 

distribution of samples across the various running states to avoid bias in the analysis. 

Such careful preprocessing and data splitting procedures were essential to ensure reliable 

and robust results in the subsequent multivariate analyses. 
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Figure 65. Mean FTIR spectra of saliva samples at rest and three different physical 

exercise intensities. 

 

17.1 Chemometric discrimination of different physical exercise 

intensities 

 

In Phase 2, PCA was initially performed to explore the feasibility of discriminating 

among the four exercise intensity groups—rest (0 km/h), walking (4–5 km/h), jogging (9–

10 km/h), and running (14–15 km/h)—based on the salivary ATR-FTIR spectra. PCA, as an 

unsupervised dimensionality reduction technique, was applied to identify patterns, 

clusters, and relationships in the spectral dataset without incorporating prior class 

information. The primary goal was to determine whether the spectral profiles of saliva 

samples clustered according to exercise intensity.  

By projecting the high-dimensional spectral data onto principal components (PCs), 

the analysis revealed that samples from different classes overlapped significantly (Fig. 66), 
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suggesting that individual variability was the primary factor driving sample positioning 

rather than the exercise intensity class. Consequently, PCA alone was insufficient to 

achieve the desired separation between groups. These results highlighted the limitations 

of unsupervised techniques in capturing the subtle biochemical differences associated 

with exercise intensity. This outcome necessitated the application of supervised 

classification methods, which are specifically designed to optimize discrimination based 

on predefined classes. 

 

 

Figure 66. PCA scatter plot (PC1 and PC2) of saliva samples at different exercise 

intensities. 
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17.1.1 Model selection 

 

To address the inefficiencies observed in the unsupervised PCA analysis, the study 

investigated whether pre-processing the ATR-FTIR spectra using Multiplicative Scatter 

Correction (MSC) would enhance the classification accuracy. MSC is a widely adopted pre-

processing technique that minimizes spectral scattering effects caused by sample surface 

irregularities and instrumental artifacts, thereby improving data quality and 

interpretability344. Both PCA-Discriminant Analysis (PCA-DA) and Partial Least Squares-

Discriminant Analysis (PLS-DA) were evaluated under two conditions: using MSC pre-

processed spectra and non-pre-processed spectra.  

The score scatter plot of PCA-DA without MSC (Fig. 67a) revealed poor clustering of 

samples from the four exercise intensity groups, indicating a lack of distinct separation 

among classes. The plot exhibited significant overlap among the groups, with no 

discernible patterns. This suggests that the variability in the spectral data was driven 

more by noise and scattering artifacts than by meaningful biochemical differences. 

Without MSC pre-processing, the spectral data retained inconsistencies caused by surface 

irregularities and instrumental effects, masking subtle distinctions necessary for effective 

classification. The inability of PCA-DA to differentiate between groups in this condition 

underscores the necessity of applying MSC to improve the interpretability and quality of 

spectroscopic data before analysis. The score scatter plot of PLS-DA without MSC (Fig. 

67b) showed slightly better performance compared to PCA-DA, with some small 

clustering observed for the exercise intensity groups. However, the clustering was very 

poor, with significant overlap among samples from different groups (rest, walking, 

jogging, and running). The limited separation indicates that the model struggled to 

capture the subtle biochemical differences necessary for accurate classification. The lack 

of MSC pre-processing left scattering effects and instrumental artifacts uncorrected, 

which likely contributed to the poor clustering. Although PLS-DA performed marginally 

better than PCA-DA, the results highlight the insufficient quality of the raw spectral data 
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for reliable discrimination without pre-treatment. This reinforces the critical role of MSC 

in enhancing the robustness of supervised classification methods. 

 

 

Figure 67. Multivariate analysis without MSC pre-processed data: (a) score scatter plot of 

PCA-DA model, (b) score scatter plot of PLS-DA model, (c) mean square error of cross-

validation against the number of components for the two models, (d) confusion matrix of 

12-LVs PLS-DA model. 

 

The models were cross-validated and the process indicated that certain factors, 

likely stemming from uncorrected scattering effects and instrumental noise, contributed 

to an increased error amount in both models. In both cases, these factors were 

particularly evident in the higher mean square error of cross-validation (MSECV), 
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reflecting the model's reduced ability to generalize and accurately classify samples (Fig. 

67c). 

The confusion matrix for the PLS-DA model (without MSC) reveals notable 

misclassifications across the four exercise intensity groups: rest (R), walking (W), jogging 

(J), and running (RN) (Fig. 67d). For the rest group, only a portion of the samples were 

correctly classified, with others misclassified predominantly as walking or running. The 

walking group showed relatively better performance, with most samples correctly 

identified, though some were misclassified as running. The jogging group exhibited the 

poorest classification, with only a single sample correctly identified, and most being 

misclassified. For the running group, a majority of samples were incorrectly predicted. 

These misclassifications highlight the difficulty of distinguishing among spectral features 

of different exercise intensities. This demonstrates the limitations of the model when 

applied to raw spectral data, further supporting the need for pre-processing to enhance 

class separation and prediction accuracy. Following this, the overall model accuracy of 

40% (with 12 latent variables) underscores these challenges. 

Following the application of MSC, the next step was to determine which supervised 

model, PCA-DA or PLS-DA, would be most appropriate for discriminating between the 

exercise intensity groups. The score scatter plots of both models were analyzed to assess 

their ability to separate the groups effectively. 

In the PCA-DA score scatter plot, the application of MSC resulted in a slight 

improvement compared to the unprocessed data, but the separation of the groups 

remained limited (Fig. 68a). There was still big overlap among the different exercise 

intensity groups, indicating that PCA-DA might not be able to capture the full complexity 

of the data. While the PCA-DA plot showed a minimal tendency to cluster samples, the 

separation was not distinct enough to reliably classify the groups. On the other hand, the 

PLS-DA score scatter plot exhibited much clearer group separation after MSC pre-

processing (Fig. 68b). PLS-DA, being a supervised technique, showed much better 

discrimination between the four exercise intensity classes. Samples from the rest, 
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walking, jogging, and running groups were more distinctly separated, indicating that PLS-

DA was better suited to handling the complexity of the data and highlighting the 

importance of supervised methods in such analyses. This improved clustering in the PLS-

DA plot suggested that this model could more effectively capture the biochemical 

differences between the groups, making it a more appropriate choice for the analysis. 

 

 

Figure 68. Scatter plot of saliva second derivative spectra at different exercise intensities 

of (a) PCA-DA model and (b) PLS-DA model. 

 

In general, the score scatter plots of both models demonstrated that MSC pre-

processing significantly enhanced the ability of the models to discriminate between the 

groups. While PCA-DA provided some clustering, it lacked the clear separation observed 

in the PLS-DA plot, confirming PLS-DA as the more appropriate supervised method for this 

study. 

To minimize the expected error and optimize the performance of both models (PCA-

DA and PLS-DA), cross-validation was performed to evaluate how well each model 

generalizes to new data. Cross-validation is an essential step in assessing the robustness 

and predictive power of multivariate models, ensuring that the chosen model does not 

overfit to the training data but can accurately predict unseen samples. Thus, the number 
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of components in both PCA-DA and PLS-DA models was carefully investigated. The goal 

was to find the optimal number of components that provided the best trade-off between 

model complexity and prediction accuracy, without overfitting the data. 

Initially, both models were tested with different numbers of components, with up 

to 10 components for PCA-DA and 20 components for PLS-DA. Twenty components may 

lead overfitting the data, but diagnostics were used to choose a model with minimum 

necessary components. While a higher number of components can lead to a better fit 

with the training data, it can also cause overfitting, where the model captures noise or 

random fluctuations rather than meaningful patterns. Overfitting can result in poor 

performance when the model is applied to new, unseen data (test data). 

In the coefficient of determination (R²) analysis, representing the fitting ability of 

the two models, PLS-DA showed a much better fitting ability compared to PCA-DA (Fig. 

69a). For both models, the fitting ability improved with an increasing number of 

components, but the R² value plateaued after 10 components for PLS-DA (R2 index of 

0.9927), indicating no significant improvement in fitting with additional components. In 

contrast, PCA-DA's R² value was significantly lower, even with 10 components (R2 index of 

0.4421), demonstrating that PCA-DA was not as effective in capturing the data's 

underlying structure for exercise intensity discrimination.  

To further investigate the optimal number of components, 10-fold repeated cross-

validation (100 repeats) was performed. Cross-validation is a more statistically robust 

method for determining the ideal number of components, as it evaluates the model's 

performance on unseen data and helps prevent overfitting. The cross-validation results 

showed that PCA-DA had higher mean squared error of cross-validation (MSECV) 

compared to PLS-DA, indicating a less accurate prediction model (Fig. 69b). 
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Figure 69. Diagnostics of PCA-DA vs. PLS-DA models: (a) Fitting ability of the models, (b) 

mean squared error of 10-fold cross validation (MSECV) of the models in association with 

the number of components. 

 

Specifically, the fourth and seventh components in the PCA-DA model were found 

to increase the MSECV, suggesting that the combination of predictor variables in those 

components was not strongly related to the response variable. This happens because the 

PCA constructs components to explain variation in predictor variables (spectral 

intensities), not response variable (exercise intensity). This highlighted that the model 

was capturing unnecessary variation, leading to an increased error and further reinforcing 

the limitations of PCA-DA for this task. In contrast, the PLS-DA model showed minimum 

error with 10 components (Fig. 69b), with the MSECV stabilizing at this point. This result 

indicated that 10 components were sufficient to capture the relevant information in the 

data without overfitting, as adding more components did not significantly improve the 

model's performance. The PLS-DA model with 10 components reached a fitting of 0.9927 

R² and an MSECV of 0.3362, demonstrating a high-quality prediction model. 

The results of the component optimization and cross-validation analyses confirmed 

that PLS-DA with 10 components was the optimal model for discriminating exercise 

intensities using ATR-FTIR salivary spectra. The PLS-DA model achieved the best balance 
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between fitting the data and avoiding overfitting, making it suitable for distinguishing 

among saliva spectra at different exercise intensities. The careful choice of 10 

components based on diagnostic measures ensured that the model was both 

parsimonious and robust, providing accurate predictions without capturing irrelevant 

variations or noise. 

 

17.1.2 Model evaluation 

 

The performance of the PLS-DA model with 10 components was assessed using the 

confusion matrix of the test dataset, as shown in (Fig. 70). The confusion matrix provides 

an evaluation of how well the model predicts the classes of the “unknown” test samples 

by comparing the predicted labels with the actual. The confusion matrix evaluates the 

performance of the selected PLS-DA model with 10 LVs (latent variables) for classifying 

different exercise intensities (R: 0 km/h, W: 4-5 km/h, J: 9-10 km/h, RN: 14-15 km/h) 

based on salivary ATR-FTIR spectra. The matrix shows how the predicted classes 

correspond to the true classes, with the diagonal elements representing correctly 

classified samples and the off-diagonal elements indicating misclassifications. 

From the confusion matrix (Fig. 70), we can make the following observations: 

 Class R (0 km/h): The model performed very well in predicting class R, with 8 

true positives (correctly predicted as R) and only 1 misclassification (predicted 

as W). The model demonstrated high sensitivity, correctly identifying 89% of 

the samples with this exercise intensity. This means the model is quite effective 

in predicting the rest condition (R), with very few misclassifications. 

Additionally, the specificity for class R is perfect at 1, indicating that the model 

correctly identified all non-R samples as not being class R, with no false 

positives. 
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 Class W (4-5 km/h): Class W had 7 true positives, but also 1 misclassification as 

class J and 1 as class RN. Thus, the sensitivity is good at 0.78, meaning the 

model correctly identified 78% of the samples in this class. While this is fairly 

good, there were some misclassifications, suggesting some overlap with J and 

RN classes. The specificity for class W is strong at 0.92, indicating that the 

model was able to correctly identify most samples that were not class W. There 

was a small amount of misclassification as class R, but overall, class W was well 

discriminated from other exercise intensities. 

 Class J (9-10 km/h): Class J showed 5 misclassifications as class RN and 1 

misclassification as class W. This suggests that class J shares some similarities 

with other intensities (especially RN and W), leading to some errors in 

classification. The low sensitivity suggests that class J is difficult to distinguish 

from other classes, and the model struggles to correctly classify these samples. 

However, the specificity for class J is high at 0.96, meaning that when the model 

predicted class J, it was rarely wrong. 

 Class RN (14-15 km/h): The model performed well in predicting RN, with 9 true 

positives and zero misclassifications. The sensitivity is perfect at 1, indicating 

that the model correctly identified all the samples in this class. This suggests 

that class RN is well discriminated from other intensities, and the model is 

highly accurate in detecting the high-intensity condition. The specificity for class 

RN is 77%, which is lower than that of the other classes. This means that some 

samples from other classes, particularly J, were misclassified as RN. Despite 

this, the model still maintains a good level of specificity in most cases. 
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Figure 70. Confusion matrix of predictive 10-components PLS-DA model. 

 

For the selected PLS-DA model with 10 components, class RN (14-15 km/h) shows 

the highest sensitivity with 9 true positive test samples, indicating it is very well 

discriminated by the model. However, class W is moderately well predicted, while class J 

has the most difficulty, exhibiting low sensitivity but high specificity. In total of 35 

samples, and out of those, only 9 were misclassified, achieving a total accuracy of 74.3%. 

The sensitivity and specificity of each class were extracted from the confusion matrix and 

are summarized in Table 7. 
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Table 7. Sensitivity and specificity of different exercise intensities. 

Exercise intensity Sensitivity Specificity 

R (0 km/h) 0.89 1 

W (4-5 km/h) 0.78 0.92 

J (9-10 km/h) 0.25 0.96 

RN (14-15 km/h) 1 0.77 

 

17.1.3 Factors interpretation 

 

To uncover the biochemical features underlying the discrimination of exercise 

intensities, the loading plot of the first two latent variables (LVs) in the PLS-DA model was 

examined. The loading plot is a critical analytical tool that highlights the spectral 

wavenumbers most influential in classifying the saliva samples according to exercise 

intensity. By focusing on these features, meaningful biochemical insights can be derived. 

The analysis of the loading plot (Fig. 71) revealed that a broad spectral range contributed 

to the differentiation of exercise intensity classes.  

However, several specific peaks stood out as particularly significant: 

 2056 cm⁻¹: This peak corresponds to the vibrations of thiocyanate ions320,321,333–

335. 

 1724 cm⁻¹: Assigned to the carbonyl group (C=O) vibrations of esters found in 

phospholipids320,334, this peak reflects membrane dynamics and lipid 

metabolism during exercise. 

 1410 cm⁻¹: Linked to lactate vibrations321,345, this feature is crucial for 

monitoring exercise-induced metabolic shifts, particularly during high-intensity 

anaerobic activity where lactate production increases significantly. 
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 1234 cm⁻¹: Associated with the asymmetric stretch of phosphate (PO₂⁻) mainly 

in nucleic acids303,320,334,345–347, this peak suggests changes in cellular activity and 

nucleic acid dynamics in response to metabolic stress. 

 1052 cm⁻¹: Corresponding to glucose and sugar moieties320,321,345, this feature 

underscores the role of carbohydrate metabolism in energy production across 

different exercise intensities. 

 912 cm⁻¹: Assigned to the additional vibration of lactic acid348. 

 

 

Figure 71. Loading plot of the first two latent variables LVs of PLS-DA model. 

 

The loading plot analysis provides a detailed biochemical perspective on how saliva 

spectra vary with exercise intensity. These findings support the physiological relevance of 
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the model's predictions and emphasize the potential of ATR-FTIR spectroscopy for non-

invasive metabolic monitoring, offering a nuanced understanding of the physiological 

adaptations to exercise. By linking spectral features to specific biochemical processes, this 

analysis provides both a mechanistic and practical foundation for saliva-based diagnostics. 

 

17.2 Trends of salivary vs. blood biomarkers: Lactate and Glucose 

 

After interpreting the factors obtained from the multivariate analysis, we focused 

on two widely recognized exercise induced biomarkers—lactate and glucose—selected 

from the five chemical species identified above (section 17.1.3). Thus, the focus was on 

evaluating the agreement between salivary and blood biomarkers, lactate and glucose, as 

indicators of exercise. The use of ATR-FTIR spectroscopy for saliva analysis was compared 

with enzymatic analyzers used for blood samples. The aim was to determine whether 

non-invasive saliva analysis could accurately track biochemical trends during varying 

physical activity levels. Thus, the selected salivary biomarkers qualitatively tracked via 

infrared spectroscopy and the findings compared with the corresponding blood samples 

via reference methods.  

Firstly, PLS-Regression (PLS-R) was employed to evaluate the correlation between 

the full range salivary ATR-FTIR spectra and blood concentrations of glucose and lactate. A 

training set of 90 samples was employed, covering glucose concentrations between 84–

149 mg/dL and lactate concentrations between 0.8–9.9 mmol/L. An independent test set 

of 35 samples was used for validation, with glucose and lactate ranges of 85–142 mg/dL 

and 0.8–9.8 mmol/L, respectively. This analysis aimed to determine the extent to which 

information being partially present in other salivary spectral regions could predict blood 

biomarker levels, thereby validating the use of saliva as a non-invasive matrix for 

biochemical monitoring during exercise.  
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The glucose PLS-R model was constructed using second derivative ATR-FTIR spectra 

and optimized with four latent variables (LVs), determined via 10-fold cross-validation 

(Fig. 72a). The model demonstrated a moderate fit for the training set, with an R2 value of 

0.7008 (Fig. 72b). However, the test set performance revealed significant scattering for 

samples with higher glucose concentrations, resulting in limited predictive accuracy (Fig. 

72c). Regression coefficients identified key vibrational bands at 1740 cm⁻¹, 1408 cm⁻¹, and 

1244 cm⁻¹ as being additionally associated with blood glucose levels (Fig. 72d), while the 

characteristic vibration of glucose at 1050 cm-1 is weak. These bands are likely linked to 

the molecular vibrations of glucose-related functional groups. Despite these associations, 

the model's weaker predictive power for the test set suggests variability in glucose trends 

between saliva and blood, possibly due to physiological differences in glucose transport 

and metabolism in these two matrices349. Factors such as oral enzymatic activity and the 

complexity of glucose regulation may contribute to this variability. Additionally, inter-

individual variability—including differences in hydration status and circadian rhythms—

may significantly influence salivary glucose profiles349. 
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Figure 72. 4-LVs PLS-R model for glucose: (a) 10-fold cross-validation, (b) predicted vs. 

measured glucose in training set, (c) predicted vs. measured glucose in test set, (d) 

regression coefficients from PLS-R. 

 

For lactate, the PLS-R model utilized nine latent variables, achieving a much 

stronger correlation with an R2 value of 0.9276 for the training set (Fig. 73b) and 0.7295 

for the test set (Fig. 73c). This robust performance underscores the reliability of salivary 

lactate as a proxy for blood lactate levels. Regression coefficients highlighted key spectral 

bands at 1744 cm⁻¹, 1418 cm⁻¹, 1246 cm⁻¹ and 910 cm⁻¹ as indicative of lactate 

concentration in blood (Fig. 73d). These vibrations correspond to functional groups linked 

to lactate molecules, reaffirming their suitability as markers for metabolic changes of 

salivary lactate during exercise. 
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Figure 73. 9-LVs PLS-R model for lactate: (a) 10-fold cross-validation, (b) predicted vs. 

measured lactate in training set, (c) predicted vs. measured lactate in test set, (d) 

regression coefficients from PLS-R. 

 

Overall, the results from PLS-R analysis reinforce the potential of ATR-FTIR 

spectroscopy for non-invasive biomarker monitoring, at least for the case of lactate. The 

strong correlation and predictive accuracy validate salivary lactate as a reliable marker for 

tracking exercise intensity. The identification of specific vibrational bands (e.i. 1418 cm⁻¹, 

910 cm⁻¹ 321,345,348) strengthens the biochemical basis for this correlation.  

Following the PLS-R analysis, we proceeded to semi-quantitatively monitor the 

trends of lactate and glucose by integrating their corresponding IR spectral bands and 
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plotting their alterations across the increasing exercise intensities. A similar approach was 

applied to the blood measured values of these biomarkers. This parallel comparison 

helped clarify the outcomes of the PLS model, reinforcing the link between salivary 

spectral features and systemic metabolic changes. 

 Blood lactate levels (measured using Contour® analyzer) exhibited a clear and 

expected exponential increase as exercise intensity rose, starting from a baseline of 

approximately 1.0 mmol/L at rest to a peak of 9.5 mmol/L during high-intensity running 

(14–15 km/h). This aligns with well-established physiological responses, where lactate 

production intensifies with increased reliance on anaerobic metabolism under higher 

physical exertion. Salivary lactate levels, as measured by ATR-FTIR spectroscopy, mirrored 

this trend but displayed a more gradual rise. To obtain quantitative information from the 

spectra, the area of the band corresponding to a particular analyte was measured. The 

spectral bands associated with lactate (1428–1391 cm⁻¹)345 showed a consistent increase 

across exercise intensities. This correlation suggests that salivary lactate could serve as a 

non-invasive proxy for blood lactate in monitoring exercise intensity. The biochemical 

similarity between trends in saliva and blood supports the validity of saliva as an 

alternative matrix for lactate analysis, reinforcing its potential utility in sports science and 

athlete monitoring. 

In contrast to lactate, glucose trends revealed notable differences between blood 

and saliva. Blood glucose levels (measured using Accutrend® Plus analyzer) exhibited a 

steady increase with exercise intensity, reaching a maximum of 127 mg/dL at the highest 

intensity. This increase corresponds to the physiological mobilization of glucose to meet 

energy demands during sustained physical activity58. Salivary glucose, however, showed a 

less pronounced pattern. While there was a slight overall increase in the glucose-related 

spectral band (1094–1042 cm⁻¹)345,350, the trend was less clear, with a minor drop 

observed at the jogging intensity (9–10 km/h). The small agreement between salivary and 

blood glucose levels in multivariate regression above, is now more clear. The mentioned 

discrepancy could be attributed to various factors, including the differential transport and 
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regulation of glucose in saliva compared to blood, the individual variability, even to the 

simulated collection method of saliva with cotton swab349. These findings in salivary 

glucose trend align with previous research345 that noted similar patterns, with salivary 

glucose levels fluctuating depending on the specific exercise intensity. Vieira et al. 

reported the same tendency: as salivary glucose increases from rest up to 14 km/h, it 

then drops at 15 km/h and remains unchanged until 17 km/h, a point where sharply 

increases345. 

The box plots (Fig. 74a–d) visualize the variations of salivary (ATR-FTIR 

measurements) and blood (specific enzymatic measurements) lactate and glucose. Direct 

comparison is difficult to follow attributed to the different units expressing the variations. 

Thus, in Figure 74e,f the co-linearity was examined. 

These findings emphasize the importance of refining analytical techniques, highlight 

the promise of ATR-FTIR spectroscopy for real-time, non-invasive biomarker monitoring in 

exercise physiology and open pathways for personalized athletic performance 

assessments. 
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Figure 74. Variations and mean values of (a) area of lactate’s second derivative spectral 

band in saliva (ATR-FTIR), (b) lactate in blood (enzymatic analyzer), (c) area of glucose’s 

second derivative spectral band in saliva (ATR-FTIR), and (d) glucose in blood (enzymatic 

analyzer), during increment of exercise intensity. Plot of salivary (ATR-FTIR) vs. blood 

(enzymatic analyzers) measurements for (e) lactate and (f) glucose. 
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17.3 Monitoring biomarkers during increased physical effort 

 

Having established the efficacy of PLS-DA in distinguishing saliva samples based on 

exercise intensity, the focus now shifts to monitoring specific biochemical markers 

identified as key contributors to this discrimination. Through PLS-DA analysis, five 

biomarkers –lactate, glucose, thiocyanate, phosphate, lipids (phospholipids)– were 

pinpointed as critical for capturing metabolic changes associated with physical activity. 

These biomarkers are directly linked to physiological adaptations during exercise, 

providing valuable insights into energy metabolism, oxidative stress, and cellular 

activity58. These observations underscore the dynamic biochemical responses of the body 

during physical activity and highlight the potential of saliva as a non-invasive medium for 

monitoring exercise-induced physiological alterations. By focusing on these biomarkers, 

the subsequent analysis delves deeper into their individual trajectories during exercise. 

Thus, the lactate, glucose and the rest chemical species were monitored and statistically 

examined, similarly to previous semi-quantitatively evaluation of lactate and glucose 

during the increased exercise intensity. 

For phosphates, the spectral intensity showed a slow but consistent linear increase 

across all exercise intensities, reflecting gradual metabolic changes (Fig. 75a). In contrast, 

phospholipids exhibited a faster and more pronounced increase, particularly at the 

highest exercise intensity (RN, 14–15 km/h) (Fig. 75b). This substantial rise, despite 

variability in data, points to the metabolic role of phospholipids in energy-demanding 

activities351–353, with their higher mean levels aligning with heightened physical exertion. 

Furthermore, the intensity of glucose bands displayed only a slight increase, suggesting 

limited salivary glucose variation during exercise (Fig. 75c). This minor change aligns with 

its relatively weaker influence in the PLS-DA loadings plot (region of 1052 cm-1) compared 

to other biomarkers, such as lactate. The minimal glucose response emphasizes the need 

to consider alternative or complementary biomarkers for better monitoring glucose-

related metabolic activity in saliva. Lactate, on the other hand, exhibited a clear upward 

trend in spectral intensity, strongly correlating with increased exercise intensity (Fig. 75d). 



Section – RESULTS AND DISCUSSION 

202 
 

17 

This trend aligns with previous findings345 and blood lactate data from the current Phase, 

reinforcing lactate’s significance as an indicator of skeletal muscle metabolism125. As 

lactate levels are closely tied to energy production and overtraining syndrome125, its 

robust and consistent increase highlights its potential as a reliable biomarker for tracking 

exercise physiology. Only thiocyanates showed a decrease in alteration during the 

prolonged exercise intensity (Fig. 75e). 

These patterns were further evaluated using an Analysis of Variance (ANOVA). 

According to the analysis, responses of all five examined metabolites alter statistically 

significantly (p <0.05) during the prolonged exercise. ANOVA performed for glucose 

indicated the highest p-value (although <0.05), fact that confirms the visually inspected 

inconsistent trend. The performed ANOVA with five metabolites and four exercise 

intensity group, conclude that there is a statistically significant difference somewhere 

among the four group means. However, ANOVA doesn’t specify where those differences 

are. For instance, ANOVA might indicate that not all the groups are the same, but it won’t 

tell whether the difference is between group A and group B, or between A and C, or some 

other combination. 

To pinpoint which groups are significantly different, post hoc test was conducted. 

This family of tests compares the means of the groups pair by pair. This level of detail is 

critical for understanding the resulted trends and drawing meaningful conclusions. 

Additionally, when comparing multiple groups, there’s a higher chance of detecting a 

difference just by chance. Post hoc tests adjust for this increased risk, ensuring that any 

significant results are less likely to be false positives. Thus, the Bonferroni correction is a 

statistical method of the post hoc family tests, used to reduce the likelihood of false 

positives errors when conducting multiple comparisons. It adjusts the significance level 

(p) by dividing it by the number of comparisons being made. This makes post hoc tests 

essential for maintaining the reliability of the findings when dealing with multiple 

comparisons.  
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Figure 75. Area variations and mean values of second derivative spectral band in saliva, 

during increase of exercise intensity: (a) phosphate, (b) phospholipids, (c) glucose, (d) 

lactate, (e) thiocyanate. *p-adjusted <0.05, **p-adjusted <0.01 

 

Bonferroni analysis was performed on the five metabolites across R-W, W-J and J-

RN running states and the adjusted p-values are presented in Table 8. For glucose, the 
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statistical output indicates that no significant differences were found between any of the 

exercise intensity groups after applying the Bonferroni correction (p-adjusted >0.05). This 

suggests that the observed variations in salivary glucose levels across intensities were not 

strong enough to reach statistical significance under this stringent multiple comparisons 

adjustment. The absence of statistical significance in glucose trends was expected, as 

previously indicated (section 17.2) by the saliva-blood study of agreement. In that section, 

the weak similarity between salivary and blood glucose levels was already evident. This 

prior observation aligns with the current results and reinforces the physiological 

disconnect between the two matrices.  

On the other hand, for thiocyanate, the p-adjusted value being <0.01 after 

Bonferroni correction demonstrates highly significant differences between J and RN 

groups (Fig. 75e). This indicates that thiocyanate levels changed consistently and 

significantly, surpassing the threshold for statistical significance even under the strict 

correction for multiple comparisons. 

 

Table 8. ANOVA (p-values) and Post Hoc - Bonferroni (adjusted p-values, <0.05 are in 

bold) results across exercise intensity groups.  

 

ANOVA 
Post hoc test (Bonferroni) 

 R - W W - J J - RN 

Phosphate 2.26E-06 0.007274 0.108541 0.003733 

Phospholipids 4.49E-05 0.173148 0.175853 0.003991 

Glucose 0.004475 0.934226 0.028657 0.217306 

Lactate 4.34E-07 0.100275 0.011024 0.004729 

Thiocyanates 3.13E-07 0.997643 0.016418 0.000198 
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Most of the above biomarkers have already been mentioned that are correlated 

with physical exercise303,319,345,354. However, this study marks the first comprehensive 

analysis of thiocyanate ions (SCN⁻) in saliva as a biomarker for distinguishing exercise 

intensities. While most other biomarkers identified in this research have already been 

associated with physical exercise, the discovery of SCN⁻ as a discriminatory marker is 

novel and sheds light on its potential role in monitoring training load and metabolic 

responses. 

Thiocyanate, an acidic pseudohalide thiolate, is found in high concentrations in 

saliva, ranging from 0.5 to 3 mM, making saliva the richest body fluid in terms of SCN⁻ 

content339,340. Its role extends beyond being a simple metabolite; thiocyanate acts as a 

precursor for antimicrobial agents in the presence of salivary peroxidase enzymes such as 

lactoperoxidase. During physical exercise, biochemical interactions involving SCN⁻, 

lactate, and peroxidase activity underscore its dynamic behavior as a biomarker. The 

reduction in salivary SCN⁻ levels during increasing exercise intensity (Fig. 75e) can be 

attributed to its oxidative conversion. Hydrogen peroxide, generated by the action of 

lactoperoxidases355, reacts with SCN⁻ to produce antimicrobial products such as OSCN⁻, 

HOSCN, O₂SCN⁻, and O₃SCN⁻356. This oxidative pathway is stimulated by lactate356, which 

is known to increase significantly during higher exercise intensities. The interplay 

between lactate metabolism and salivary peroxidase activity suggests a direct biochemical 

link influencing SCN⁻ levels. The increase in lactate during exercise likely amplifies salivary 

peroxidase activity, boosting hydrogen peroxide production356,357. This enhanced 

peroxidase activity accelerates the oxidation of SCN⁻, reducing its concentration in saliva. 

These findings suggest that SCN⁻ depletion is not merely a passive outcome but is actively 

mediated by exercise-induced biochemical processes involving lactate and salivary 

enzymatic activity125. 

The strong correlation between lactate levels and SCN⁻ absorption bands implies a 

functional relationship between lactate metabolism, oxidative stress, and thiocyanate 

concentration355. As exercise load increases, the simultaneous rise in lactate and salivary 
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peroxidase activity results in SCN⁻ oxidation, making it a reliable marker for tracking 

exercise intensity. Thus, the observed decrease in SCN⁻ reflects a complex interplay of 

metabolic and enzymatic processes unique to saliva. These interconnected biochemical 

pathways position SCN⁻ as a dual indicator: it signals both the metabolic demands of 

exercise and the systemic oxidative responses. 

Overall, thiocyanate’s distinctive response to exercise intensity, coupled with its 

strong correlation with lactate, highlights its utility as a salivary biomarker for monitoring 

training load and metabolic activity. By capturing the interplay between lactate 

metabolism and salivary peroxidase activity, SCN⁻ provides a unique perspective on the 

physiological adaptations to exercise (more details are presented in Phase 3, Section 18). 

This finding not only expands the understanding of salivary biochemistry during physical 

activity but also paves the way for its application in non-invasive, real-time exercise 

monitoring and personalized training strategies. 

In summary, Phase 2 demonstrated the feasibility of using saliva as a non-invasive 

tool to monitor biochemical changes associated with physical exercise through ATR-FTIR 

second derivative spectroscopy. Saliva samples collected at varying exercise intensities—

rest, walking, jogging, and running—were analyzed, with PLS-DA achieving a classification 

accuracy of 74.3%. Five key biomarkers—thiocyanate, phospholipids, lactate, phosphate, 

and glucose—were identified as significant drivers of discrimination. Among these, 

thiocyanate (SCN⁻) exhibited a novel and significant decrease with increasing exercise 

intensity, marking it as a potential biomarker for tracking oxidative stress and metabolic 

responses. This study highlights saliva’s potential for real-time, personalized monitoring 

of exercise intensity, providing valuable insights for sports science and training 

optimization. 

Phase 2 established, for the first time, a non-invasive and data-driven framework 

capable of classifying graded physical exercise intensities based on salivary biochemical 

profiles. By integrating second-derivative ATR-FTIR spectroscopy with advanced 

chemometric modeling (PCA-LDA and PLS-DA), this Phase expanded the analytical 
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resolution beyond the binary design of Phase 1, enabling the detection of subtle, 

intensity-dependent metabolic changes. The predictive models developed demonstrated 

high classification accuracy, underscoring the robustness of saliva-based spectroscopic 

fingerprinting (highlighting phosphate, phospholipids, glucose, lactate, thiocyanate) for 

physiological load assessment. Notably, thiocyanate (SCN⁻) emerged as a novel, exercise-

responsive spectral feature, as mentioned previously. While this Phase demonstrated the 

feasibility of real-time, non-invasive exertion monitoring, the findings also pointed to the 

need for systemic metabolic insights—beyond the oral cavity. This realization set the 

foundation for Phase 3 and Phase 4, where quantitative and multi-biofluid strategies were 

introduced to validate and expand the physiological interpretations of these initial steps 

of the study. 
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18. Phase 3 − Exploring salivary thiocyanate as a novel biomarker of 

physical activity response 

 

The outcomes of Phase 2 confirmed that salivary biochemical composition is 

sensitive to graded exercise intensities and can be effectively monitored using infrared 

spectroscopy coupled with chemometric modeling. However, while the spectroscopic 

approach provided valuable qualitative insights and revealed promising candidate 

biomarkers such as lactate, glucose, and thiocyanate (SCN⁻), it lacked the ability to deliver 

quantitative measurements necessary for clinical validation and broader physiological 

interpretation. Among the spectral markers identified, SCN⁻ emerged as a particularly 

responsive feature, yet its exact concentration dynamics during exercise remained 

unexplored. To bridge this gap, Phase 3 focused on the development of a robust, specific, 

and scalable analytical method for the quantitative determination of salivary thiocyanate. 

This transition marked a deliberate methodological shift—from holistic, multivariate 

spectral fingerprinting to a targeted, molecular-specific photometric approach. The goal 

of Phase 3 was twofold: first, to validate thiocyanate as a physiologically meaningful, 

exercise-responsive salivary biomarker, and second, to examine its concentration trends 

across multiple exercise intensities in a broader athlete population. This phase thus aimed 

to transform a statistically identified spectral feature into a quantifiable biological marker, 

advancing the biomarker discovery pipeline from exploratory detection to functional 

characterization. 

The determination of thiocyanate concentration in saliva is based on the reaction 

between iron(III) ions (Fe³⁺) and thiocyanate ions (SCN⁻) to form the thiocyanatoiron(III) 

complex, FeSCN²⁺. This reaction follows the equilibrium (Eq. 8): 

Fe3+
(aq) + SCN-

(aq) ⇌ FeSCN2+
(aq)     (8) 
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When the concentration of iron(III) ions is significantly higher than that of 

thiocyanate, the formation of higher-order complexes such as Fe(SCN)₂⁺ and Fe(SCN)₃ can 

be excluded. The FeSCN²⁺ complex exhibits a deep orange-red color, making it ideal for 

spectrophotometric quantification. 

To construct the calibration curve, standard solutions were prepared where [Fe3+] 

>> [SCN-], ensuring that all thiocyanate ions were converted to FeSCN²⁺. This approach 

allows for accurate determination of thiocyanate concentrations in saliva samples by 

comparing their absorbance values to the calibration curve. The high sensitivity and 

selectivity of this method make it a reliable tool for analyzing thiocyanate variations 

during physical exercise. 

 

18.1 Method development 

 

To ensure accurate quantification of thiocyanate in saliva, the method was first 

developed by analyzing the visible absorption spectrum of standard FeSCN²⁺ solutions. 

Figure 76 presents the absorbance spectra of these standard solutions, showing a 

characteristic peak at approximately 458 nm. This peak corresponds to the maximum 

absorption of the FeSCN²⁺ complex, confirming its formation and suitability for 

spectrophotometric analysis. 

The observed absorption peak at 458 nm is in close agreement with the literature 

value of 447 nm306, with slight variations possibly attributed to differences in 

experimental conditions such as solvent composition. The intensity of this peak increases 

proportionally with thiocyanate concentration, demonstrating a direct relationship 

between absorbance and analyte concentration. This characteristic enables the 

construction of a calibration curve, which forms the basis for thiocyanate determination. 
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Figure 76. Vis spectra of thiocyanate standards (FeSCN²⁺ complex) at various 

concentration levels. 

 

The calibration curve for thiocyanate determination was constructed in the form of 

y = b (±Sb) x + α (±Sα), where slope is indicated as ‘b’ (Sb: random error of slope) and 

intercept indicated as ‘α’ (Sα: random error of intercept). Using standard SCN- solutions 

prepared in artificial saliva, a concentration range from 0.01 to 1.5 mM (ten concentration 

levels, three replicates each) was covered. The calibration curve, along with confidence 

and prediction intervals, is presented in Figure 77a. The residuals plot in Figure 77b 

confirms the absence of a funneling/trumpet-shaped pattern at higher concentration 

levels, indicating that the homoscedasticity assumption was met. Furthermore, the 

horizontal lines (± t(0.05, [conc. levels]-2) × Sy/x) in the residuals plot define the deviation 

limits for each individual data point, confirming that no outliers were detected in the 

measurements. This ensures the reliability and robustness of the calibration model for 

thiocyanate quantification in saliva samples. 
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Figure 77. (a) Calibration curve of thiocyanate with confidence and prediction 95% 

intervals, (b) regression residuals plot with deviation limits. 

 

The calibration curve for thiocyanate quantification was evaluated using linear 

regression analysis, and the statistical outputs are summarized in Table 9. The results 

confirm a strong linear relationship between absorbance and thiocyanate concentration, 

with a coefficient of determination (R²) of 0.9997. This indicates that 99.97% of the 

variability in absorbance is explained by the model, demonstrating an excellent fit.  

The ANOVA (Analysis of Variance) results validate the statistical significance of the 

regression model. The calculated F-value of 105079.18 is substantially greater than the 

critical F-value (4.3512434) at the given degrees of freedom, with an extremely low p-

value of 1.35 × 10⁻⁵¹, confirming that the linear regression model is highly significant. The 

small residual sum of squares (SSRES = 0.0101) and standard error (0.01899) further 

indicate a precise fit of the experimental data to the regression model. 
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Table 9. Regression output of thiocyanate calibration curve. 

Regression Statistics     

Multiple R 0.999866794     
R Square 0.999733605     
Adjusted R Square 0.999724091     
Standard Error 0.018990959a     
Observations 30     

      
ANOVA      

 df SS MS F Significance F 

Regression 1 37.89749192 37.89749192 105079.1775 1.35487E-51 
Residual 28 0.010098383 0.000360657   
Total 29 37.9075903      

      

 Coefficients Standard Error t Stat P-value  

Intercept -0.021333701 0.004970841b -4.291768989 0.000191323  
X Variable 1 2.134258228 0.006583982c 324.1591855 1.35487E-51  
 Lower 95% Upper 95%    
Intercept -0.031516007 -0.011151395    
X Variable 1 2.120771552 2.147744903    

 
a Sy/x = Residual standard deviation, b Sα = Intercept standard deviation, c Sb = Slope standard deviation 

 

The regression coefficients provide additional insights into the model’s 

performance. The intercept (-0.0213 ± 0.0050) is close to zero, suggesting minimal 

systematic error in the calibration. The slope of 2.1343 ± 0.0066 confirms the strong 

proportional relationship between thiocyanate concentration and absorbance. The 

confidence intervals (95%) for both the intercept and slope further demonstrate the 

reliability and precision of the estimated parameters. 

Overall, the results confirm that the calibration curve follows a highly linear trend, 

fulfilling the assumptions for reliable thiocyanate quantification. The high F-value, low 

residual error, and strong R² support the model’s reliability, making it well-suited for the 

analysis of thiocyanate in saliva samples. 
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18.2 Method validation 

 

To ensure the reliability and robustness of the developed method, further validation 

was conducted by determining the limits of detection (LOD) and quantification (LOQ). 

These values were calculated using the standard formulas (Eq. 9): 

 

𝐿𝑂𝐷 = 3 × 
𝜎

𝑏
 ,      𝐿𝑂𝑄 = 10 × 

𝜎

𝑏
     (9) 

 

where b is the slope of the calibration curve (2.1343) and σ represents the standard 

deviation of the response. The standard deviation was estimated using three different 

approaches: (i) the residual standard deviation of the regression (Sy/x), (ii) the standard 

deviation of the intercept (Sα), and (iii) the standard deviation of blank measurements. 

The lowest values obtained were considered as the theoretical LOD and LOQ, which were 

then experimentally confirmed. 

The analytical parameters of the developed thiocyanate quantification method are 

summarized in Table 10. The method exhibits excellent sensitivity, with a limit of 

detection (LOD) of 0.004 mM and a limit of quantification (LOQ) of 0.01 mM. This low 

LOQ allows for the reliable detection of thiocyanate even at very low concentrations, 

making the method suitable for physiological studies where small variations in 

thiocyanate levels are of interest. The working range of the method spans from 0.01 to 

1.5 mM, covering the expected concentration range in saliva samples collected before 

and after exercise. 

The accuracy of the method was evaluated at three concentration levels (0.1, 0.7, 

and 1.25 mM). The accuracy at the lowest concentration (0.1 mM) was slightly 

overestimated (110.22%), which could be attributed to matrix effects or a higher relative 

impact of small instrumental variations at low concentrations. However, at higher 
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concentrations, the accuracy improved significantly, with values of 98.36% (0.7 mM) and 

97.57% (1.25 mM), indicating that the method provides reliable quantification across 

most of its working range. 

 

Table 10. Analytical parameters of thiocyanate quantification method (n=20). 

 Analytical parameters 

LOD (mM) 0.004 

LOQ (mM) 0.01 

Working range (mM) 0.01 – 1.5 

Uncertainty (%) 4.51 

Accuracy (%) 

0.1 mM 110.22 

0.7 mM 98.36 

1.25 mM 97.57 

Intra-day repeatability 
(% RSD) 

0.1 mM 3.70 

0.7 mM 0.57 

1.25 mM 0.54 

Inter-day repeatability / 
reproducibility 

(% RSD) 

0.1 mM 3.13 

0.7 mM 0.83 

1.25 mM 0.56 

 

Precision was assessed through intra-day and inter-day repeatability studies, 

expressed as the relative standard deviation (% RSD). The intra-day repeatability was 

highly satisfactory, with RSD values below 4% for all tested concentrations (3.70% at 0.1 
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mM, 0.57% at 0.7 mM, and 0.54% at 1.25 mM), demonstrating excellent consistency 

within a single day of analysis. The inter-day reproducibility was also very good, with RSD 

values of 3.13% at 0.1 mM, 0.83% at 0.7 mM, and 0.56% at 1.25 mM, indicating that the 

method remains robust over multiple days of analysis. 

Overall, these results confirm that the developed method is highly sensitive, 

accurate, and precise for thiocyanate quantification in saliva. The minor variability 

observed at the lowest concentration does not significantly impact its reliability, and the 

method’s strong reproducibility makes it a suitable tool for monitoring thiocyanate 

variations during physical exercise. 

 

18.3 Thiocyanate determination during increased exercise intensity 

 

Aiming to examine the effect of increasing exercise intensity on salivary thiocyanate 

levels in male and female athletes, a controlled treadmill exercise protocol was conducted 

with systematic saliva sampling. The goal was to establish how thiocyanate 

concentrations respond to progressive physical exertion. This investigation builds upon 

previous findings and provides deeper insight into the kinetics of this biomarker under 

controlled conditions. 

Saliva samples were collected from 11 male and 10 female athletes at four time 

points: at rest, after running 1 km at 20% VO₂max, 1 km at 60% VO₂max, and 1 km at 90% 

VO₂max. The violin plots in Figure 78 illustrate the distribution of thiocyanate 

concentrations in both groups at the different intensities. 

For both male and female athletes, a progressive decrease in thiocyanate 

concentration was observed with increasing exercise intensity. At rest, thiocyanate levels 

were highest, with a noticeable decline after the first stage of exercise (20% VO₂max). 

This trend continued as the exercise intensity increased, reaching the lowest thiocyanate 

concentrations at 90% VO₂max. However, variability among individuals was evident, as 
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indicated by the spread of values in the box plots, highlighting inter-individual differences 

in thiocyanate response to exercise. 

 

 

Figure 78. Thiocyanate variations in saliva, during increase of exercise intensity: (a) male 

athletes and (b) female athletes. Circle points represent the measured values and X 

represents the mean of each group. *p-adjusted <0.05, **p-adjusted <0.01. 
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To assess the significance of thiocyanate alterations during exercise, a repeated-

measures ANOVA was performed separately for male and female athletes (Table 11). The 

analysis revealed a statistically significant effect of exercise intensity on salivary 

thiocyanate levels in both groups (p <0.05), confirming that thiocyanate concentration is 

affected by increasing exercise intensity. 

 

Table 11. ANOVA (p-values) and Post Hoc - Bonferroni (adjusted p-values <0.05 are 

underlined and <0.01 are double-underlined) results across exercise intensity groups.  

 

ANOVA 

Post hoc test (Bonferroni) 

 
Rest – 20% 

VO2max 
20% - 60% 

VO2max 
60% - 90% 

VO2max 

Men 0.013949 0.016197 0.001770 0.001243 

Women 0.023837 0.009487 0.015651 0.001174 

 

Further pairwise comparisons were conducted using the Bonferroni post-hoc test to 

identify which specific exercise intensities led to significant changes in thiocyanate 

concentrations, providing deeper insight into between SCN- and physical exercise. 

As a result of the post-hoc Bonferroni test, in the male athlete group, the 

comparison between the resting state and the 20% VO₂max condition yielded a 

statistically significant reduction in thiocyanate concentration with a p-adjusted value 

<0.05 (Table 11). In contrast, the subsequent intensity transitions—20% to 60% VO₂max 

and 60% to 90% VO₂max—demonstrated even more pronounced reductions, both 

achieving statistical significance with p-adjusted values <0.01. 

On the other hand, in the female athlete group, a slightly different pattern was 

observed. The first two comparisons—rest to 20% VO₂max and 20% to 60% VO₂max—
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both showed statistically significant changes with p-adjusted values <0.05. However, only 

the final transition from 60% to 90% VO₂max resulted in a thiocyanate concentration 

difference that met the stricter significance threshold of p-adjusted <0.01 (Table 11). 

These results demonstrate that thiocyanate concentration in saliva decreases 

progressively as exercise intensity increases, supporting the hypothesis that this 

biomarker is sensitive to physical exertion. 

While both male and female athletes exhibited a significant reduction in salivary 

thiocyanate levels, differences in the magnitude of decline were noted. The violin plots 

suggest a more pronounced decrease in male athletes compared to females. This could 

be attributed to physiological differences such as higher metabolic demands358, or 

respiratory adjustments in males359. Additionally, differences in salivary flow rate and 

gland size between genders360,361 could also influence the extent of thiocyanate 

depletion. 

This observed decreasing trend in salivary thiocyanate concentration with 

increasing exercise intensity aligns with the findings of Phase 2, where ATR-FTIR 

spectroscopy revealed a progressive reduction in the intensity of the IR band associated 

with the thiocyanate group (approximately 2050-2060 cm⁻¹) as exercise intensity 

increased. The coherence between the spectroscopic fingerprint and the quantitative 

photometric data supports the hypothesis that exercise induces a measurable depletion 

of thiocyanates in saliva. This concordance not only validates the utility of the developed 

photometric method but also reinforces the role of salivary thiocyanate as a potential 

non-invasive biomarker for exercise-induced oxidative stress and related immune 

changes. 

The findings from this controlled treadmill experiment provide robust evidence that 

thiocyanate is a biomarker responsive to exercise intensity. The significant reductions 

observed at increasing VO₂max levels suggest that thiocyanate is systematically affected 

by physical activity, reinforcing its potential as a non-invasive biomarker for monitoring 

physiological stress during exercise. However, while these results are highly promising, a 
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larger cohort is necessary to validate these findings and account for potential inter-

individual variability more comprehensively.  

Building on this controlled laboratory study, the next step was to examine 

thiocyanate fluctuations in a real-world training environment, assessing athletes from 

various sports before and after their typical training sessions. This approach allowed for a 

broader evaluation of thiocyanate as an exercise-induced biomarker across different 

types of physical activity. 

 

18.4 Insights from a large athletic cohort 

 

This part of the study aimed to monitor thiocyanate as a salivary biomarker in a 

large number of participants, ensuring more reliable and robust results. A high sample 

size is particularly valuable in biomarker studies, as it reduces the impact of individual 

variability and enhances statistical power. In smaller sample sizes, interindividual 

differences—such as metabolism, hydration status, or lifestyle habits—may overshadow 

true biological trends. However, with a substantial number of participants, these 

variations become less influential, allowing for more generalizable conclusions regarding 

the responsiveness of thiocyanate to exercise. By investigating a diverse cohort of 

athletes, this study provides stronger evidence for the potential of thiocyanate as an 

exercise-sensitive biomarker. 

To assess the impact of physical activity on salivary thiocyanate concentration, 

athletes from various sports disciplines, including football, basketball, tennis, pole 

dancing, aerial hoops, and aerobic/fitness programs, were recruited. Each participant 

provided a saliva sample before and immediately after their typical training session. A 

total of 141 athletes participated in the study, comprising 77 men and 64 women. To 

further investigate individual differences, participants were categorized into four 
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subgroups based on gender and smoking habits: male smokers, male non-smokers, 

female smokers, and female non-smokers. 

A paired t-test was applied within each group to compare thiocyanate levels before 

and after exercise. The paired approach was chosen because each participant served as 

their own control, allowing for a direct comparison of the same individual's salivary 

thiocyanate concentration before and after exercise. Moreover, the saliva samples 

collected before and after exercise are inherently linked, representing measurements 

from the same individuals at two different time points. This approach accounts for intra-

individual variability, enhancing the sensitivity of the analysis by focusing on changes 

within each participant rather than differences between independent groups. The results 

revealed a highly significant decrease in thiocyanate levels among male smokers (p 

<0.0001), male non-smokers (p <0.0001), and female non-smokers (p <0.001), highlighting 

a consistent trend of thiocyanate depletion due to physical exertion. 

Interestingly, the female smokers group did not exhibit a statistically significant 

change in thiocyanate levels following exercise. This could be attributed to the lower 

number of individuals in this group, which may have limited statistical power. 

Additionally, the higher baseline thiocyanate levels in smokers—due to the well-

documented thiocyanate accumulation from tobacco smoke338—might have masked any 

potential exercise-induced depletion. 

Figure 79 below illustrates individual changes in thiocyanate concentration for each 

group, with the mean values before and after exercise represented by the yellow lines. 

Among male smokers, the mean thiocyanate concentration decreased from 0.98 mM to 

0.70 mM, while male non-smokers showed a reduction from 0.86 mM to 0.62 mM. 

Similarly, female non-smokers experienced a decline from 0.77 mM to 0.66 mM. As 

mentioned above, female smokers exhibited no significant alteration, with a mean value 

remaining approximately constant at 1.03–1.00 mM. 
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Figure 79. Individual variations in salivary thiocyanate concentration before and after 

physical exercise in (a) male non-smoker (n=59), (b) female non-smoker (n=52), (c) male 

smoker (n=18) and (d) female smoker athletes (n=12). The yellow highlighted lines 

represent the mean values of each group. p-values for pre/post paired comparisons are 

indicated as: n.s. (non significant), *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001. 

 

The analysis revealed that both male and female smokers exhibited higher initial 

salivary thiocyanate concentrations compared to their non-smoking counterparts. This 

finding aligns with the well-documented association between tobacco exposure and 

elevated thiocyanate levels, as thiocyanate is a major detoxification product of cyanide 
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found in cigarette smoke338,340,362. The consistently higher baseline concentrations across 

both sexes suggest that smoking significantly influences thiocyanate homeostasis. 

A notable observation in this study is the greater decrease in thiocyanate levels 

among male compared to female following exercise. Specifically, thiocyanate 

concentrations in male non-smokers decreased 0.24 mM, whereas in female non-

smokers, the reduction was more moderate, 0.11 mM. This difference suggests potential 

physiological and biochemical distinctions between males and females in response to 

exercise-induced oxidative stress363. This observation aligns with the previously 

mentioned findings in paragraph 18.3. 

While the exact mechanisms underlying this disparity remain to be fully elucidated, 

the findings suggest that sex-specific physiological factors should be considered when 

using thiocyanate as a biomarker for exercise-induced stress. Future studies could further 

investigate these differences by incorporating additional biochemical markers and 

exploring the effects of varying exercise intensities on thiocyanate dynamics in both 

males and females. 

Overall, these findings suggest that thiocyanate responds dynamically to physical 

exercise, particularly in non-smokers, where the reduction is more pronounced. The 

differences between smokers and non-smokers emphasize the role of lifestyle factors in 

modulating salivary biomarkers, potentially influencing their sensitivity and reliability as 

indicators of physiological stress. The results further support the potential application of 

thiocyanate as a non-invasive biomarker for exercise-induced oxidative stress. 

These findings provide strong evidence that salivary thiocyanate levels consistently 

decrease following physical exercise across a large and diverse athletic population. By 

incorporating a substantial number of participants and accounting for key lifestyle factors 

such as smoking, this study minimizes the impact of individual variability and enhances 

the reliability of thiocyanate as a novel biomarker. The observed significant reductions 

reinforce the association between exercise-induced oxidative stress and thiocyanate 

metabolism. 
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18.5 Biochemical pathway of exercise-induced thiocyanate 

reduction 

 

Thiocyanate (SCN⁻), an acidic pseudohalide thiolate, is found in high concentrations 

in saliva, ranging from 0.5 to 3 mM, making saliva the richest body fluid in terms of SCN⁻ 

content339. In non-smokers, levels typically range from 0.5 to 2 mM, but in heavy smokers, 

they can reach up to 6 mM due to dietary and environmental exposure340.  Thiocyanate 

acts as a precursor for antimicrobial agents in the presence of salivary peroxidase 

enzymes such as lactoperoxidase341. The lactoperoxidase (LPO) system, which consists of 

SCN⁻, hydrogen peroxide (H₂O₂), and the LPO enzyme, plays a critical role in the innate 

immune defense of saliva, producing antimicrobial molecules such as hypothiocyanite 

(OSCN⁻)364. 

During physical exercise, biochemical interactions involving SCN⁻ and peroxidase 

activity365 underscore its dynamic behavior as a biomarker. Recent studies observed that 

salivary peroxidase activity in athletes increased immediately following an intense 

treadmill run but gradually returned to baseline within an hour post-exercise366,367. Thus, 

the reduction in salivary SCN⁻ levels during increasing exercise intensity can be attributed 

to its oxidative conversion, aid by lactoperoxidase. Hydrogen peroxide, generated by the 

action of lactoperoxidase, reacts with SCN⁻ to produce antimicrobial products such as 

OSCN⁻, O₃SCN⁻, O₂SCN⁻, and HOSCN356. 

This oxidative pathway is stimulated by salivary lactate, which is known to increase 

significantly during higher exercise intensities125. Lactate accumulation during anaerobic 

metabolism enhances the availability of H₂O₂368,369, via a flavin-dependent lactate oxidase 

pathway370, which H2O2 is required for the oxidation of SCN⁻ into antimicrobial 

products356. The interplay between lactate metabolism and salivary peroxidase 

activity356,357 suggests a biochemical link influencing SCN⁻ levels. As lactate increases with 

exercise intensity, it likely amplifies salivary peroxidase activity, boosting H₂O₂ production. 



Section – RESULTS AND DISCUSSION 

224 
 

18 

This enhanced peroxidase activity accelerates the oxidation of SCN⁻, reducing its 

concentration in saliva. The above aligns with a recent study where a strong correlation 

was found between salivary lactate concentration and thiocyanate IR band355. 

These findings suggest that SCN⁻ reduction is not merely a passive outcome but is 

actively mediated by exercise-induced biochemical processes involving lactate and 

salivary enzymatic activity. The observed decrease in SCN⁻ concentration during physical 

activity could serve as a functional biomarker of exercise intensity. 

To conclude, this Phase establishes, for the first time according to our knowledge, 

salivary thiocyanate as a biomarker responsive to physical exercise, demonstrating its 

potential application in exercise physiology and sports science. Future research should 

further explore the underlying mechanisms and assess the biomarker’s utility in different 

athletic and clinical settings. 

Despite the strong evidence supporting thiocyanate as a non-invasive marker of 

physiological stress, the findings of Phase 3 also revealed considerable interindividual 

variability, likely influenced by external factors such as dietary intake and overall lifestyle 

habits. Since thiocyanate levels are known to be affected by exogenous sources (e.g., 

cruciferous vegetables and almonds) this biochemical variability introduces challenges for 

its use as a standalone marker in all contexts. These limitations highlighted the need to 

broaden the metabolic scope of our investigation by including additional endogenous 

biomarkers that may offer more stable or complementary physiological insights. This 

motivation led to Phase 4, where systemic metabolic profiling was performed using blood 

(reflects the systemic circulation with rich metabolic profile – the gold standard matrix in 

metabolomics), allowing for a more comprehensive and unbiased exploration of exercise-

related biochemical changes across multiple metabolites. 
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19. Phase 4 − Metabolomic profiling of exercise intensity via a novel 

approach of DBS microsampling and proton NMR analysis 

 

To complement the salivary results and capture systemic metabolism, Phase 4 

expands the investigation to a novel blood metabolomics approach. While previous 

Phases focused exclusively on saliva, the need for a complementary biofluid—capable of 

capturing broader physiological processes—led to the incorporation of capillary blood 

sampling. To address the challenges of invasiveness, logistics, and sample stability often 

associated with traditional blood collection, Phase 4 adopted a minimally invasive 

strategy based on dried blood spot (DBS) sampling. Utilizing DBS coupled with NMR 

spectroscopy, this Phase focuses on exploring systemic metabolic responses to exercise 

intensity. This transition, from saliva to blood, allows for a more comprehensive 

assessment of exercise-induced changes by leveraging the broader metabolic coverage 

offered by blood as a biofluid. 

Importantly, this Phase was also designed to validate and expand upon previously 

monitored metabolites. By shifting to blood and applying a different analytical platform, 

we aimed to cross-confirm key exercise-induced metabolic alterations observed in prior 

studies, and assess whether similar physiological signatures—now measured in blood—

could be reliably detected using DBS–NMR. This provided both a methodological 

advancement and a biological continuity across phases of the research. 

The objective of Phase 4 was to explore, for the first time, the use of dried blood 

spot (DBS) sampling combined with nuclear magnetic resonance (NMR) spectroscopy for 

monitoring metabolic alterations induced by physical exercise. By combining the 

practicality of DBS sampling with the analytical precision of NMR spectroscopy, this Phase 

introduces a minimally invasive and field-friendly method for monitoring exercise 

metabolism. For the first time, different adsorptive materials evaluated for capillary blood 
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collection. This Phase aimed to capture systemic metabolic shifts across different exercise 

intensities and evaluate the method’s robustness, repeatability, and capacity to reflect 

physiological differences between athletes of varying training status. 

To address these objectives comprehensively, the study was structured in two 

parts: 

1. Part I focused on repeatability and individual comparison. Two athletes—one 

professional and one non-professional—were repeatedly sampled across four non-

consecutive days at four defined exercise intensities. This design allowed for the 

assessment of intra-individual consistency in metabolic responses and highlighted 

potential differences attributable to training level. 

2. Part II expanded the analysis to a broader athletic population. Seven additional 

professional athletes were included, enabling the validation of observed metabolic 

trends in a larger cohort. This second part aimed to determine whether consistent 

and generalizable metabolic patterns could be established among trained 

individuals using the DBS–NMR approach. 

The results of this Phase are anticipated to provide deeper insights into athlete-

specific adaptations, optimize performance strategies, and further establish the potential 

of DBS-NMR in sports science and personalized training applications. 

 

19.1 Selection of blood microsampling adsorptive material 

 

To optimize the efficiency and reliability of blood microsampling for downstream 

NMR analysis, the selection and evaluation of suitable adsorptive materials was a critical 

initial step in Phase 4. In addition to using a commercial DBS card (Whatman 903), novel 

sorptive materials inspired by fabric-phase sorptive extraction (FPSE) were synthesized 

and tested as alternative microsampling substrates. This allowed for a comparative 

evaluation of material performance in sample handling and compatibility with 
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downstream NMR analysis, while also exploring the potential for customized, low-cost 

alternatives to commercial DBS solutions. In this study, four synthesized materials 

inspired by the FPSE technique and one commercially available material (DBS card, 

Whatman 903 Protein Saver Card) were evaluated for their potential use in blood 

sampling. 

 

19.1.1 Characterization of the synthesized materials with SEM 

analysis  

 

Characterization of the synthesized materials was performed to assess their 

morphological properties. While all four materials were successfully synthesized, a 

detailed surface morphology analysis using Scanning Electron Microscopy (SEM) was 

conducted on the fiberglass filter coated with PEG polymer. SEM imaging was performed 

on both the uncoated and coated materials to evaluate the impact of the sol–gel 

modification on the substrate's structure. 

SEM analysis provided insights into the surface morphology of the fiberglass filter 

before and after sol–gel coating. Figures 80a and 80b correspond to the uncoated 

fiberglass filter at different magnifications. The uncoated fiberglass filter exhibited a 

porous, fibrous network, characteristic of its structure, which facilitates absorption and 

diffusion of liquids, making it a suitable substrate for microsampling applications. In 

contrast, Figures 80c and 80d, which depict the fiberglass filter after sol–gel coating with 

PEG polymer, show significant morphological changes. The coated material displayed a 

smoother surface with a thin polymeric layer covering the fibers, indicating successful 

deposition of the sol–gel network. It is visible that the sol-gel network diffuses deep into 

the substrate, not just on the surface. It could be likened to the sauce among the 

spaghetti. This modification is expected to influence the material’s sorptive properties by 

enhancing adsorption capabilities and selectivity for targeted metabolites. 
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Figure 80. SEM images of the surface of fiberglass fabric before treatment at a) x300 and 

b) x1000 times magnification; and the surface of fiberglass fabric modified with a sol-gel 

solution coating of PEG polymer at a) x300 and x500 times magnification. 

 

The comparison between the uncoated and coated materials confirms the 

successful immobilization of the sol–gel layer while preserving the inherent porosity of 

the fiberglass substrate. These structural changes suggest that the modification process 

effectively integrates the polymer and sol–gel network within the substrate, potentially 

improving the material’s performance in blood microsampling applications. 
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19.1.2 Comparison of adsorptive materials and NMR analysis of 

blank extracts 

 

The suitability of the synthesized and commercial blood microsampling materials 

was evaluated by analyzing potential leachable impurities. This assessment is critical, as 

any compounds released from the sampling material may interfere with downstream 

metabolomic analysis, masking relevant biological signals. To investigate this, an 

extraction was performed on blank (unexposed) materials, and the resulting extracts 

were analyzed via NMR spectroscopy. 

The NMR spectra of the blank extracts (Fig. 81) revealed significant differences in 

the chemical profiles of the five tested materials. The four synthesized materials exhibited 

prominent signals in the 3.6-3.8 ppm region, indicating the presence of impurities 

leaching from the materials. Furthermore, the two sol–gel coated materials incorporating 

PEG-PPG-PEG polymer showed additional impurity signals around 1.2 ppm and 3.5 ppm, 

further suggesting unwanted compound release. These findings raise concerns about the 

potential impact of such leachables on blood sample integrity, as they may obscure key 

metabolic signals in upcoming analyses. 

In contrast, the commercially available Whatman 903 Protein Saver Card 

demonstrated a much cleaner spectral profile, with minimal detectable impurities. The 

absence of significant interfering signals suggests that this material is more suitable for 

blood microsampling applications, as it reduces the risk of contamination and unwanted 

spectral overlap in metabolomic studies. 

The presence of extractable impurities in the synthesized materials poses a 

considerable limitation for their application in metabolomic blood analysis. The 

overlapping signals within critical spectral regions could compromise the detection of 

endogenous metabolites, thereby reducing the reliability of the analytical results. Given 

these concerns, the Whatman 903 Protein Saver Card was selected as the preferred 

material for blood microsampling in subsequent metabolomic investigations. Its low 
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background interference ensures a more accurate representation of the metabolomic 

profile, improving the reliability of downstream data interpretation. 

 

 

Figure 81. NMR spectra of blank extracts from the five tested blood microsampling 

materials. (a) Fiber glass filter coated with PEG-PPG-PEG sol-gel, (b) cellulose filter coated 

with PEG-PPG-PEG sol-gel, (c) cellulose filter coated with PEG sol-gel, (d) fiber glass filter 

coated with PEG sol-gel and (e) commercially available Whatman 903 Protein Saver Card. 

 

19.2 Quality Control (QC) assessment 

 

To ensure the reliability and reproducibility of the results in Phase 4, two quality 

control (QC) samples were analyzed throughout the sequence. These QC samples were 

included to monitor the stability of the NMR spectrometer, assess potential batch effects, 

and verify the consistency of the metabolic profiling process371. By periodically analyzing 

the same QC samples alongside the experimental samples, any instrumental drift or 

variability in sample preparation could be identified and accounted for, ensuring the 
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robustness and accuracy of the generated data. This step was essential for maintaining 

high-quality standards and ensuring that the metabolic trends observed were truly 

reflective of exercise-induced changes. 

Thus, two additional reference samples (SRs) were prepared by pooling portions of 

all study samples, serving as part of the quality control (QC) process. Principal Component 

Analysis (PCA) was applied to evaluate the quality of the data. Specifically, the PCA scores 

plot included all DBS samples (SS) and the two SRs, with the first two principal 

components (PC1 and PC2) accounting for approximately 85% of the total variability in 

the dataset (Fig. 82). The use of PQN (probabilistic quotient normalization) during 

preprocessing ensured that the data were normalized and comparable across all samples, 

minimizing the impact of technical variation.  

 

 

Figure 82. PCA scores plot demonstrating the consistency of reference samples (SRs) in 

quality control analyses. 
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The results of the PCA analysis demonstrated the reliability of the QC process. The 

SR samples clustered tightly (near-overlap) near the center of the scores plot, with 

minimal variability between them. This tight clustering is a strong indication that the NMR 

data acquisition and sample preparation steps were consistent and reproducible. The 

close proximity of the SRs on the PCA plot underscores the high quality of the 

experimental workflow, ensuring that the datasets produced are reliable for downstream 

metabolomics analysis in the context of Phase 4. 

 

 

19.3 Intra-individual repeatability 

 

The PCA quality control assessment confirmed the analytical robustness and 

biological relevance of the DBS–NMR dataset, providing a solid foundation for more 

targeted investigations. With confidence in the system’s technical reproducibility, we 

proceeded to a two-part analysis aimed at exploring both intra-individual metabolic 

consistency and broader population-level trends. 

 

19.3.1 Untargeted metabolomics 

 

In the first part of the Phase, we evaluated the repeatability of exercise-induced 

metabolic responses across four sessions in two individuals—a professional and a non-

professional athlete. This design enabled us to examine whether metabolic alterations 

were consistent over time and to explore differences in exercise metabolism between 

differently trained individuals. 
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This strategy recognizes the unique physiological conditions and responses of each 

athlete, ensuring that intra-individual variability does not mask the metabolic trends 

associated with different running speeds. By focusing on individual-specific analyses, the 

pilot study aimed to improve the reliability of identifying metabolic changes and their 

correlation with exercise intensity. This approach is particularly advantageous when using 

DBS microsampling, as it evaluates whether small but significant metabolic shifts can be 

effectively detected and whether these changes are robustly captured through 1H NMR 

analysis. The individualized analysis gives an additional layer of precision, laying the 

groundwork for more targeted investigations in larger cohorts. 

Partial Least Squares Discriminant Analysis (PLS-DA), a supervised multivariate 

method, allows for the classification of NMR profiles according to predefined group 

labels, such as running speeds. Thus, PLS-DA was performed separately for each athlete 

to evaluate whether DBS–NMR profiles could reliably distinguish between the different 

exercise intensities.  

The PLS-DA models were constructed using latent variables (LVs) to maximize 

discrimination between the groups, with the primary focus on LV1 and LV2 to represent 

the key variance captured in the data. The PLS-DA scores plots (Fig. 83a,b) reveal clear 

separation of the metabolic profiles corresponding to the four running intensities for both 

non-professional and professional athletes.  

for each running speed (0 km/h [DBS-A0], 5 km/h [DBS-A5], 10 km/h [DBS-A10], 15 

km/h [DBS-A15]). LV1 captures 59.45% of the variance, while LV2 captures an additional 

29.93%, indicating that the first two components account for nearly 90% of the variability 

in the dataset. The diagonal progression of clusters from 0 km/h to 15 km/h along both 

LV1 and LV2 reflects a consistent metabolic shift corresponding to increasing running 

intensity. The clusters are relatively tight, emphasizing the reproducibility of the 

metabolic profiles for each condition, with minimal overlap between adjacent running 

intensities, signifying robust discrimination by the PLS-DA model. 
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Figure 83. PLS-DA analysis on 1H NMR profiles of DBS extracts. The score plots depict the 

first two latent variables for (a) non-professional (DBS-A) and (b) professional (DBS-B) 

athletes across four running speeds: 0 km/h (DBS-A0, DBS-B0), 5 km/h (DBS-A5, DBS-B5), 

10 km/h (DBS-A10, DBS-B10), and 15 km/h (DBS-A15, DBS-B15). ROC curves indicating 

sensitivity and specificity of the model for both (c) non-professional and (d) professional 

athlete profiles. 

 

For the non-professional athlete, the scores plot (Fig. 83a) shows distinct clustering  

For the professional athlete, the scores plot (Fig. 83b) demonstrates a similar 

pattern of distinct clustering for each running speed (0 km/h, 5 km/h, 10 km/h, 15 km/h). 



Phase 4 

235 
 

However, the explained variance in LV1 (81.24%) and LV2 (26.20%) is even higher than 

that observed for the non-professional athlete, underscoring the greater contribution of 

these two components to the model's overall discrimination capability. The clusters are 

well-separated, particularly for 0 km/h and 15 km/h, indicating pronounced metabolic 

differences at rest and at the highest running intensity. Some kind of overlap particularly 

in LV2 is observed between intermediate running speeds (5 km/h and 10 km/h), 

discontinuing the diagonal trend of discrimination, and suggesting metabolic similarities 

at these intensities or a more gradual physiological adaptation in the professional athlete. 

The scores plots for both athletes highlight the effectiveness of PLS-DA in capturing 

the metabolic distinctions associated with varying running speeds. The separation 

achieved in the models suggests that the metabolic profiles undergo significant changes 

in response to physical exertion, with clear trends correlating to intensity. This separation 

was consistent across all four days, suggesting that the physiological response to exercise, 

as captured in the DBS metabolome, is robust and repeatable over time.  

These findings serve as a robust foundation for further validation, which is explored 

in the following analysis using cross-validated Receiver Operating Characteristic (ROC) 

curves to quantitatively assess the classification performance of the PLS-DA models for 

each running speed in both non-professional (Figure 83c) and professional athletes 

(Figure 83d). The Area Under the Curve (AUC) values are used as performance metrics to 

assess the model's ability to differentiate between metabolic profiles corresponding to 

different running intensities. 

The cross-validated ROC curves for the non-professional athlete demonstrate strong 

classification performance for most running speeds. The AUC values for 0 km/h (resting 

state) and 15 km/h (highest running intensity) are 0.97 and 0.98, respectively, indicating 

near-perfect discrimination of these metabolic states from the others. These results 

highlight the significant metabolic differences between rest and maximal exertion, which 

align with the distinct clustering observed in the PLS-DA scores plot. Intermediate running 

speeds, 5 km/h and 10 km/h, show slightly lower AUC values of 0.83 and 0.56, 
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respectively. The reduced performance for 10 km/h suggests some overlap in the 

metabolic profiles at moderate intensities, possibly reflecting transitional physiological 

states. Nevertheless, the overall classification performance remains robust, emphasizing 

the ability of the model to capture key metabolic variations across different running 

intensities. 

For the professional athlete, the cross-validated ROC curves reveal similarly strong 

classification performance. The AUC value for 0 km/h (resting state) is 0.97, consistent 

with the significant metabolic differences between rest and active states observed in the 

scores plot. The highest running intensity, 15 km/h, also demonstrates excellent 

discrimination, with an AUC of 0.92. The AUC values for intermediate running speeds, 5 

km/h (0.81) and 10 km/h (0.80), indicate good classification performance, albeit slightly 

lower than the resting and maximal intensity. This result aligns with the partial 

phenomenon observed in the scores plot for these intensities (described above), 

suggesting that the metabolic adaptations during moderate exercise intensities in 

professional athletes are less pronounced compared to the extremes of rest and maximal 

effort. 

Overall, the ROC curve analysis confirms the reliability of PLS-DA models in 

distinguishing metabolic profiles across running speeds, with high AUC values highlighting 

significant metabolic shifts, especially at rest and maximal intensity. The slightly lower 

classification performance at intermediate intensities suggests variability in physiological 

responses: for non-professionals, this may stem from lower fitness or individual exertion 

differences, while for professionals, it likely reflects gradual metabolic adaptation due to 

their advanced training and energy efficiency. 

These findings demonstrate the utility of ¹H NMR spectroscopy and PLS-DA 

modeling in capturing exercise-induced metabolic changes. The ROC curve analysis 

provides additional confidence in the discriminatory power of the models and supports 

the use of DBS microsampling as a reliable method for studying metabolic adaptations 

during physical activity. The results set the stage for further exploration of specific 
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metabolites contributing to these observed trends, which will be discussed in the 

subsequent sections. 

Subsequently, a comprehensive analysis of the Variable Importance in Projection 

(VIP) provided crucial insights into the discriminative metabolites contributing to the 

separation of metabolic profiles at varying running speeds for professional and non-

professional athletes. In both cases, the spectral bin corresponding to the methyl protons 

of lactate at approximately 1.3 ppm (Fig. 84) consistently showed the highest VIP scores, 

confirming its central role in differentiating between exercise intensities. This is 

consistent with its established role as a key biomolecule of physical activity intensity, 

aligning with existing literature372–374. 

For non-professional athlete (Fig. 84a), additional metabolic markers, such as 

acetate (-CH3) at 1.9 ppm and glucose protons at 3.26 and 3.88 ppm, also displayed 

elevated VIP scores. These metabolites indicate a broader range of metabolic adaptations 

in response to exercise for less-trained individuals. In contrast, professional athlete (Fig. 

84b) demonstrated a more streamlined metabolic response, with lactate dominating the 

VIP scores and few additional metabolites contributing significantly to the discrimination. 

This streamlined response suggests a more efficient metabolic adaptation in professional 

athletes, potentially due to their enhanced physiological conditioning. 

The exclusion of the water region around 4.7 ppm further ensured that the VIP 

scores were not influenced by artifacts, improving the reliability of the analysis. The 

application of NMR combined with VIP analysis highlights the potential of this approach in 

identifying exercise-induced metabolic shifts, with DBS microsampling proving to be an 

effective method for real-time analysis. 
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Figure 84. Plots of the VIP scores from the two PLS-DA analyses for the (a) non-

professional and (b) professional athletes, respectively for across all running speeds—0 

km/h (DBS-A0, DBS-B0), 5 km/h (DBS-A5, DBS-B5), 10 km/h (DBS-A10, DBS-B10), and 15 

km/h (DBS-A15, DBS-B15). VIP scores above the read dashed threshold reveal the most 

significant variables (i.e., NMR spectral bins). 

 

 

19.3.2 Targeted metabolomics – metabolic changes 

 

The targeted metabolomics approach conducted in this study enabled a 

quantitative evaluation of metabolic changes induced by varying exercise intensities, 

using DBS samples analyzed via 1H NMR spectroscopy. In total, 11 metabolites were 

identified: ATP (Adenosine-5'-triphosphate), acetate, alanine, creatine, creatinine, 

formate, glucose, lactate, leucine, pyruvate, and valine. Out of the 11 metabolites reliably 

detected and quantified from the NMR spectra, lactate emerged as the most significant 

metabolite showing distinct concentration trends across different running speeds for both 

the non-professional and professional athletes. The results reinforce the robustness of 

NMR-based targeted metabolomics in investigating exercise-induced metabolic changes, 

while also shedding light on the differential physiological adaptations between the two 

athletic profiles. 

The univariate statistical analysis applied in this Phase utilized one-way ANOVA with 

multiple comparisons to discern the statistical significance of changes in metabolite 

concentrations across four running speeds (rest, walking, jogging, running). The datasets 

were PQN-normalized to account for inherent variability in the data, ensuring accurate 

and reliable comparison of metabolite levels. Lactate demonstrated a statistically 

significant progressive increase in concentration with increasing exercise intensity, 

aligning with established metabolic responses to physical exertion.  
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In Figure 85, the lactate concentrations (presented in arbitrary units, a.u.) for both 

professional and non-professional athlete at the four running speeds exhibit a steep 

upward trend, with significant differences noted between successive speeds. The data 

reveal a statistically significant difference in lactate levels between baseline (0 km/h) and 

moderate to high-intensity exercise (10 km/h and 15 km/h). The lack of significance (ns) 

between rest and walking (5 km/h) indicates that at lower exercise intensities, the 

metabolic shift toward anaerobic glycolysis is not yet pronounced375. However, the sharp 

increase of lactate, in both participants, at 10 km/h and 15 km/h highlights the onset of 

anaerobic metabolism due to the increased energy demand surpassing aerobic capacity. 

In Figure 85b, the professional athlete's lactate concentrations show a more 

progressive rate of increase with exercise intensity compared to the non-professional 

athlete. The professional athlete exhibits significant differences in lactate levels across 

most running speeds, with a more prominent increase evident between baseline and the 

highest exercise intensities.  

Lactate's role as a key biomarker of exercise intensity is well-documented, reflecting 

the balance between energy demand and oxygen availability during physical activity376. 

The measurement of the blood lactate concentration is widely used for assessing the 

involvement of anaerobic glycolysis in providing energy for muscle work375. The observed 

differences in lactate dynamics, mostly in 10 km/h, between the two athletes underscore 

their contrasting metabolic profiles372. In general, blood lactate levels of the high-level 

athlete seem to be increased earlier, in agreement with the recent literature377. This 

finding aligns with the professional athlete's greater glycolytic capacity and ability to 

recruit fast-twitch muscle fibers, which primarily rely on anaerobic pathways for ATP 

production under high-intensity conditions377. In contrast, the non-professional athlete's 

slower accumulation of lactate at middle intensities, coupled with a more pronounced 

increase at higher speeds, indicates a limited glycolytic capacity and a reduced ability to 

buffer the associated acidosis in blood and muscles378,379, resulting in earlier fatigue 

during intense exercise. 
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(continued)

 

Figure 85. One-way ANOVA with post-hoc multiple comparisons was conducted to 

analyze metabolite concentrations: (a) Lactate variations of both non-professional (DBS-
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A) and (b) professional (DBS-B) athletes. (c) ATP, (d) acetate, (e) alanine, (f) creatine, (g) 

creatinine, (h) formate, (i) glucose, (j) leucine, (k) pyruvate, and (l) valine variations in 

dried blood samples across four running speeds: 0 km/h (DBS-0), 5 km/h (DBS-5), 10 km/h 

(DBS-10), and 15 km/h (DBS-15). Statistical significance is denoted as follows: ns (not 

significant, p>0.05), * (0.01<p≤0.05), ** (0.001<p≤0.01), *** (0.0001<p≤0.001), and **** 

(p≤0.0001). 

 

In the case of the non-professional athlete, there were no additional metabolites 

demonstrating statistically significant variations across different exercise intensities, 

suggesting a more uniform or limited metabolic response beyond lactate. This likely 

reflects a less complex metabolic regulation system, potentially influenced by lower levels 

of training adaptation380. Evidence is that the professional athlete exhibited a greater 

exercise-induced metabolic response, including elevated creatinine levels compared to 

the non-professional athlete (Fig. 85g), a finding consistent with previously reported 

literature381. 

In professional athlete, various metabolites exhibited fluctuations in concentration, 

but no clear or consistent trends were evident across different running speeds (Fig. 85c-l). 

These variable changes might be attributed to temporary factors independent of exercise 

intensity, such as short-term metabolic adjustments, hydration levels, or dietary 

intake58,296. Nevertheless, certain patterns emerged when comparing resting states to 

higher-intensity exercise. Notably, alanine concentrations showed a progressive rise with 

increasing exercise intensity in both athletes101,363,382 (Fig. 85e). Furthermore, specific 

trends identified in previous research were confirmed, such as reductions in formate (Fig. 

85h), leucine (Fig. 85j), and valine (Fig. 85l) levels, along with an increase in pyruvate 

levels in both individuals101,382,383 (Fig. 85k). Additionally, slight elevations in acetate, 

creatine, and creatinine levels were noted at 10 km/h compared to baseline, consistent 

with findings from recent studies383. 
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Professional athletes exhibit a remarkable ability to perform at significantly higher 

exercise intensities than non-professionals, a capacity rooted in their advanced 

physiological adaptations and metabolic efficiency384. As running intensities increased up 

to 10 km/h, trends in blood metabolite concentrations—either increasing or decreasing—

were observed and were generally consistent with previously reported findings101,363,372. 

Notably, at the highest running intensity (15 km/h), many of these metabolites either 

returned to baseline levels or ceased to show statistically significant changes. This 

phenomenon reflects the superior efficiency of professional athletes’ metabolic systems 

in maintaining homeostasis and stabilizing metabolite levels under extreme physical 

demand384. This regulatory efficiency underscores their ability to tolerate and adapt to 

the physiological challenges of strenuous exercise, highlighting the role of optimized 

metabolic pathways in sustaining high-intensity performance. 

A similar pattern was evident in lactate dynamics (Fig. 85a,b). In the professional 

athlete, lactate accumulation began earlier and reached higher concentrations compared 

to the non-professional athlete, with significant increases noted at 10 km/h. However, 

during the highest running intensity (15 km/h), lactate levels stabilized rather than 

continuing to rise. This behavior can be attributed to the professional athlete's capacity to 

operate at greater intensities, which increases reliance on anaerobic glycolysis (as 

mentioned above), leading to elevated lactate production. Despite this, professional 

athletes exhibit highly efficient mechanisms for managing lactate, including enhanced 

lactate clearance, recycling, and utilization373. These mechanisms allow lactate levels to 

stabilize even under maximal effort384, preventing excessive acidification of the blood and 

maintaining muscular performance. 

The observed stabilization of both lactate and other metabolites at peak exercise 

intensities highlights the advanced metabolic flexibility and resilience of professional 

athletes. Such adaptations include a greater capacity for buffering hydrogen ions, 

improved oxidative metabolism, and an ability to sustain higher energy demands without 

overwhelming metabolic pathways. These findings align with the current understanding 
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of elite athletic performance, where metabolic optimization plays a crucial role in 

sustaining activity at near-maximal workloads384. By contrast, non-professional athletes, 

with less developed metabolic systems, may struggle to maintain stable metabolite levels 

under similar conditions, leading to earlier onset of fatigue and reduced performance 

capacity. This comparison emphasizes the importance of training-induced physiological 

adaptations in shaping metabolic responses to high-intensity exercise. 

Overall, the first part of the Phase 4 demonstrated that DBS–NMR metabolomic 

profiling is capable of reliably capturing structured and reproducible metabolic changes 

induced by exercise within individuals, across multiple days. Both the professional and 

non-professional athlete exhibited intensity-dependent metabolic shifts, with distinct 

separation across exercise stages.  

 

19.4 Expanded cohort validation 

 

Building on the observations from the initial athlete comparison, this phase was 

extended to include seven additional professional athletes, forming a cohort of nine in 

total. The aim of this second part was to validate the previously observed metabolic 

trends in a larger population of trained individuals and to assess the results across 

increased inter-individual biological variability. To this end, DBS–NMR data from all nine 

athletes were analyzed using PLS-DA, to evaluate whether samples could still be clearly 

discriminated based on exercise intensity. This approach tested the generalizability of the 

identified metabolic signatures and provided insights into the consistency of physiological 

responses within a performance-oriented cohort. 

The resulting PLS-DA score plot is shown in Figure 86. The model revealed a strong 

and structured separation among the four exercise intensity levels (before exercise, 5, 10, 

and 15 km/h). The first latent variable (LV1) accounted for 72.13% of the variance, while 
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the second latent variable (LV2) explained an additional 15.77%, together capturing 

nearly 90% of the total variation in the dataset. 

 

 

Figure 86. PLS-DA score plot (LV1 vs LV2) of DBS–NMR data from nine athletes across four 

exercise intensities (0, 5, 10, 15 km/h). Each point represents a DBS sample, colored by 

intensity. 

 

This high cumulative variance indicates that the majority of the metabolic signal 

associated with exercise intensity is well-explained by the model. Samples from the 

resting condition clustered distinctly on the left side of the LV1 axis, progressively shifting 

rightward through increasing intensity levels, with high intensity exercise (15 km/h) 

samples forming a separate and compact cluster at the far end. This gradient distribution 

reflects a consistent and exercise-dependent metabolic response across athletes. 
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Importantly, despite individual variability in metabolic baselines, samples from the 

same intensity class tended to cluster closely together, suggesting a shared underlying 

metabolic response to physical exertion in trained individuals.  

The structure of the score plot also suggests that the principal source of variance 

(LV1) is tightly linked to exercise intensity, while LV2 may reflect inter-individual 

variability or subtle differences in physiological adaptation. However, the separation 

remained robust, confirming that exercise load remains the dominant factor shaping the 

DBS metabolomic profile in this cohort. 

To assess the classification accuracy and robustness of the multivariate model, 

cross-validated ROC analysis was performed for each exercise intensity class using the 

pooled dataset of nine athletes. ROC curves evaluate the sensitivity and specificity of the 

PLS-DA model in correctly assigning samples to their respective exercise intensity levels. 

As shown in Figure 87, the model achieved excellent performance for most exercise 

stages. The area under the curve (AUC) was 0.8452 for samples collected at rest (0 km/h), 

indicating good discrimination of baseline metabolic profiles. Classification performance 

improved further for low and high intensities: 5 km/h samples yielded an AUC of 0.9704, 

and 15 km/h samples achieved an AUC of 0.9643, both reflecting high sensitivity and 

specificity in detecting metabolic shifts at these stages. By contrast, classification 

performance was less robust at 10 km/h, where the AUC dropped to 0.6230, suggesting 

greater overlap or heterogeneity in metabolic profiles at this intermediate workload. This 

finding is consistent with previous observations in part I, where moderate intensities also 

showed increased variability—potentially reflecting transitional physiological states or 

inter-athlete differences in aerobic-anaerobic thresholds. 
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Figure 87. Cross-validated ROC curves for PLS-DA classification of DBS–NMR samples by 

exercise intensity. (a) Before exercise (0 km/h), (b) low intensity (5 km/h), (c) moderate 

intensity (10 km/h), and (d) high intensity (15 km/h) clusters. 
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Despite this localized reduction in discriminatory power, the overall ROC results 

support the model’s strong ability to distinguish metabolic profiles across most exercise 

intensities. Particularly at rest and maximal exertion, the DBS–NMR method reliably 

captures systemic shifts, while partial overlap at moderate intensity may reflect 

meaningful biological variability rather than methodological limitations. 

These findings validate the generalizability of the PLS-DA model in a trained 

population and affirm the diagnostic potential of DBS-based metabolomic profiling for 

monitoring exercise load. 

To identify which metabolites contributed most to the separation across exercise 

intensities, Variable Importance in Projection (VIP) scores were calculated for LV1, the 

primary component explaining 72.13% of the total variance. The VIP analysis (Fig. 88) 

highlights the spectral features most influential in the model’s classification performance, 

offering biological insight into the metabolic changes underlying physical effort. 

The most prominent discriminant variable was the spectral signal at 1.33 ppm, 

which exhibited the highest VIP score across all features. This chemical shift corresponds 

to lactate, a well-established marker of anaerobic metabolism and muscular energy 

turnover370. Its dominant contribution to LV1 indicates that lactate accumulation is a 

central and consistent feature of the metabolic response to increasing exercise intensity 

across athletes. The progressive separation observed along LV1 in the PLS-DA score plot is 

therefore largely driven by the rising lactate signal with advancing workloads. 

In addition to lactate, the region around 3.37 ppm also contributed significantly to 

sample discrimination. This signal is attributed to glucose, another critical metabolite in 

exercise metabolism. The involvement of glucose reflects its role in both immediate 

energy provision and longer-term substrate utilization dynamics326. While its contribution 

was secondary to lactate, the glucose signal nonetheless helped to refine the intensity-

dependent clustering, particularly at lower and intermediate workloads where glucose 

availability and uptake may vary between individuals and over time. 
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Figure 88. VIP scores from the PLS-DA model (LV1) showing the most influential NMR 

spectral variables for discrimination across exercise intensities. 

 

Together, these findings confirm that the primary drivers of the DBS–NMR model 

are physiologically meaningful markers of energy metabolism. The results also 

demonstrate the ability of the method to capture both aerobic and anaerobic (lactate-

associated) components of the exercise response. 

The expanded analysis in nine professional athletes confirmed that DBS–NMR 

metabolomic profiling can sensitively and consistently discriminate between different 

exercise intensities, even in the presence of inter-individual biological variability. 

Multivariate modeling revealed a clear intensity-dependent structure, with lactate and 

glucose emerging as the principal metabolites driving this separation. These results 
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validate the repeatability and discriminatory power observed in previous part of this 

Phase, demonstrating that the exercise-related metabolic shifts captured via DBS 

sampling are robust, reproducible, and generalizable across trained populations. 

Overall, Phase 4 introduced a novel and powerful analytical approach by combining 

dried blood spot (DBS) microsampling with nuclear magnetic resonance (NMR) 

spectroscopy for the metabolomic profiling of exercise responses. This combination 

proved to be highly effective, offering a minimally invasive, practical, and reproducible 

method for capturing systemic metabolic changes associated with physical effort. The 

strength of this method lies in its ability to provide a comprehensive metabolic snapshot 

from a single, easily collected blood drop, making it uniquely suited for repeated sampling 

in real-world athletic settings.  

However, the Phase is not without its limitations. The small sample size (n=9) 

restricts the ability to generalize the results to broader populations, and the focus on a 

limited subset of metabolites may overlook more extensive metabolic networks and 

interactions. Expanding future research efforts to include larger cohorts and a more 

extensive range of metabolites, utilizing complementary high-sensitivity techniques such 

as LC-MS, will provide a more holistic understanding of metabolic shifts during exercise. 

Additionally, controlling for confounding variables such as diet, hydration, and individual 

metabolic variability will further enhance the robustness of these findings. 

Despite these constraints, the study provides compelling preliminary evidence for 

the efficacy of this approach in identifying subtle metabolic differences between athlete 

types and exercise intensities. What sets this Phase apart is not only the robustness of the 

results, but also the scalability and translational potential of the DBS–NMR technique. 

This novel combination in athletic context opens new avenues for high-throughput, field-

deployable athlete monitoring with the precision of metabolomic resolution—

demonstrating the analytical viability of microvolume blood sampling for metabolic 

profiling during physical exertion—bridging, this way, the gap between laboratory 

capabilities and practical athletic application. In this context, Phase 4 represents a 
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significant methodological and conceptual advancement within the study, aiding the 

salivary analysis by ATR-FTIR spectroscopy and expanding both the analytical framework 

and the biological understanding of how the human body responds to exercise. 

This methodology sets the stage for broader applications in sports science and 

clinical research, offering a pathway for uncovering intricate metabolic dynamics and 

advancing our understanding of exercise physiology. 
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Conclusions 

 

This doctoral thesis presents a comprehensive, multi-phase research effort aimed at 

developing and validating minimaly-invasive analytical methodologies for monitoring 

biochemical and metabolic responses to physical exercise. By integrating saliva and dried 

blood spot (DBS) microsampling with advanced spectroscopic techniques—namely 

attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, visible-

range photometry, and proton nuclear magnetic resonance (1H NMR) spectroscopy—this 

work responds to a growing scientific and practical demand for real-time, field-

deployable, and physiologically meaningful diagnostic tools. Each of the four 

experimental Phases targeted a specific aspect of this framework, and collectively, they 

form a novel and robust approach to the analysis of exercise-induced biochemical 

changes. 

The overarching goal of this research was to explore how easily accessible biofluids, 

such as saliva and capillary blood, can serve as reliable sources of metabolic information 

during and after physical exertion. A total of 260 athletes from diverse disciplines 

participated in the study, including endurance runners, team sport players, combat 

athletes, and artistic athletes. This heterogeneous cohort ensured a broad representation 

of physiological responses and training modalities. The wide demographic and sport-

specific diversity allowed for greater generalizability of findings and increased the 

translational value of the proposed methodologies. 

Phase 1 established the foundation of this thesis by applying ATR-FTIR spectroscopy 

to the analysis of post-exercise saliva samples from low- and high-level athletes. The 

primary aim was to evaluate the feasibility of using salivary spectral profiles to distinguish 

between levels of physical conditioning. Multivariate statistical analysis, particularly 

principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-
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DA) successfully classified the two groups based on distinctive biochemical patterns. This 

was the first demonstration of the use of ATR-FTIR saliva fingerprinting as a viable 

method for assessing physiological adaptations to fitness level. The results highlighted 

specific spectral regions—associated with proteins, carbohydrates, and carboxylic acids—

as differentiating variables, thereby confirming, for the first time, the sensitivity of saliva 

to athletic level expressed by the metabolic profile. Phase 1 thus provided a proof-of-

concept that salivary infrared spectroscopy could be used as a non-invasive, rapid 

screening tool for athlete profiling, setting the stage for more nuanced investigations. 

Phase 2 expanded on the proof-of-concept established in Phase 1 by investigating 

the acute biochemical response to graded physical activity. Using a controlled treadmill 

protocol (0, 5, 10, 15 km/h), saliva samples were collected at each stage and analyzed 

using second-derivative ATR-FTIR spectroscopy. This Phase introduced, for the first time, 

advanced chemometric tools—specifically PCA-LDA and PLS-DA—to achieve accurate 

classification of samples based on exercise intensity.  

Thiocyanate (SCN−) emerged as a particularly responsive spectral feature, alongside 

other well-characterized exercise-related metabolites such as lactate. This was the first 

time that thiocyanate had been proposed as a candidate salivary biomarker for physical 

exertion, based on its distinct spectral behavior. The classification models demonstrated 

high predictive accuracy, reinforcing the potential of second-derivative ATR-FTIR 

spectroscopy as a rapid method for monitoring real-time physiological stress. Phase 2 

thus represented a methodological and analytical advancement, bridging the gap 

between non-invasive sampling and real-time metabolic tracking. 

Phase 3 addressed a key limitation of the previous phases—namely, the lack of 

absolute concentration data—by developing and validating a photometric method for the 

quantitative determination of salivary thiocyanate. A large-scale study involving 161 

athletes was conducted to evaluate the consistency, reproducibility, and physiological 

relevance of thiocyanate concentration in response to exercise. The method was based 
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on the formation of a thiocyanato-iron complex and allowed for high-throughput, low-

cost analysis under field-relevant conditions. 

The results confirmed that thiocyanate levels consistently decreased with increasing 

exercise intensity, providing quantitative support to the spectral observations made in 

Phase 2. Furthermore, the study revealed statistically significant effects of gender and 

smoking status on thiocyanate concentrations, underscoring the importance of 

interindividual variability in biomarker expression. This was the first comprehensive 

demonstration of thiocyanate as a practical, exercise-responsive salivary biomarker 

validated in a real-world athletic setting. The large cohort size and detailed statistical 

treatment of the data enhanced the robustness and generalizability of the findings, 

making a strong case for the biomarker’s inclusion in broader physiological monitoring 

frameworks. 

Phase 4 broadened the scope of the thesis by moving from localized (salivary) 

analysis to systemic metabolic profiling using DBS samples analyzed with 1H NMR 

spectroscopy. This approach addressed several limitations of traditional venipuncture, 

including invasiveness and logistical constraints, by leveraging minimally invasive blood 

microsampling techniques. Both commercial DBS cards (i.e., Whatman 903) and, for the 

first time, custom sorptive substrates developed in-house were used for sample 

collection. This methodological innovation allowed for the evaluation of different matrix 

materials in terms of compatibility with NMR analysis. 

In addition to using commercial DBS cards (i.e., Whatman 903), this Phase also 

explored the application of FPSE-inspired adsorptive materials as alternative media for 

dried blood microsampling. Although these experimental substrates showed limited 

success in terms of analyte recovery and compatibility with NMR analysis, their evaluation 

provided valuable insights into the material-specific constraints of microsampling 

workflows. Future work may focus on optimizing surface chemistries, polymer coatings, 

and sample elution strategies to enhance their performance. With further refinement, 
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such materials could offer low-cost, customizable alternatives for decentralized 

biomonitoring in sports and clinical settings. 

Despite the inherent challenges of low sample volume and matrix effects, NMR 

spectroscopy successfully differentiated metabolic profiles associated with different 

exercise intensities. Key metabolites such as lactate, alanine, and valine were identified as 

responsive to physical exertion, validating earlier findings from salivary analyses and 

extending them into the domain of systemic metabolism. Phase 4 thus marked the first 

time that DBS-NMR was applied in a sports science context to explore exercise-related 

metabolic changes, highlighting the technique’s utility for minimally invasive, high-

resolution biomonitoring. 

Together, the four phases of this thesis form a coherent and innovative body of 

work that advances the scientific understanding of exercise-induced biochemical changes. 

By employing both untargeted (ATR-FTIR and NMR spectroscopy) and targeted (Vis-

photometry) analytical techniques on non-invasively/minimal-invasively collected 

samples, this research bridges a crucial gap between laboratory capability and field 

applicability.  

From a methodological perspective, the thesis showcases the power of 

chemometric modeling in extracting meaningful physiological information from complex 

spectral data. The integration of second-derivative spectral processing, predictive 

multivariate models, and rigorous statistical validation contributes to the growing field of 

applied chemometrics in biomedical sciences. The exploration of novel sampling materials 

and the validation of DBS protocols for NMR further extend the analytical toolkit available 

to exercise scientists and physiologists. 

Thus, the work introduces thiocyanate as a novel, exercise-responsive biomarker 

and validates it through both qualitative and quantitative means. Moreover, it 

demonstrates the feasibility of using both saliva and DBS as reliable matrices for 

metabolic monitoring. 
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The practical implications are equally significant. The non-invasive, rapid, and 

scalable nature of the proposed protocols makes them ideal for real-time monitoring in 

athletic settings, training personalization, and potentially even clinical applications in 

stress and recovery evaluation. By combining scientific rigor with translational relevance, 

this work lays the groundwork for future applications in digital health, wearable 

diagnostics, and personalized performance management. 

In conclusion, this thesis delivers a comprehensive, analytically validated, and field-

applicable framework for monitoring physiological responses to exercise using saliva and 

dried blood spots. It contributes novel biomarkers, methods, and materials to scientific 

literature and opens new avenues for minimally invasive biomonitoring in both sports and 

health sciences. 
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Appendix 1 

Athlete Questionnaire

Lab of Analytical Chemistry

Chemistry Dpt Sample code number ____________

University of Ioannina

1. Age _____ 2. Height ________ 3. Weight ________

4. How often do you practice per week?

  1-2 times / week   3-4 times / week

  ≥5 times / week

5. Which is the main time period of training per day?

30-45 minutes 45-60 minutes

60-75 minutes 75+ minutes

6. Do you belong to any sports club, athlete union or sports team?

    (Gym is not included as a positive answer)

Yes No

7. Are you trained by a professional coach?

Yes No

8. Do you push yourself to higher training loads?

Yes No

9. How would you characterize your training load?

Low Intermediate Heavy

Basic Information
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12. Do you use Ephedrine or any other energy boosters / weight cutters?

Sample code number ____________

Yes No

13. Do you use Protein or Creatine or any other Weight Gainers?

Yes No

14. Do you use energy drinks? ("Red Bull", "Rock Star", Etc)

Yes No

15. Do you use anabolic steroids or steroids of any sort?

Yes No

16. Do you use any other hormones? (HGH, Insulin, Thyroxine, Etc)

Yes No

17. Do you take anything to enhance recovery from training?

Yes No

18. Have you taken ANY prescription medications or other substances in past

       3 months?

Yes No

I hereby consent to the processing of the personal data that I have

provided and declare my agreement with the data protection regulations

in the data privacy statement 

Medication and Suppliments
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10. What are your main motivations for doing athletics? (Why do you do athletics?)

      (You can fill more than one options)

I am hobbyist

I just want to have fun with my friends

I want to lose weight

I want to increase my fitness level

I am trying to improve my skills in this sport

I aim to participate in future championships

11. Based on the below definitions, how would you decribe yourself?

Low-level athlete High-level athlete

Low-level athletes are individuals who engage in physically demanding sporting

activities typically on the weekends despite minimal physical activity during the

work week. These athletes perform high-intensity workout regimen without the

proper preparation, probably leading to an increased risk of injury. These weekend

athletes perform solely for pleasure, while on the other hand high level athletes

continuously strive to meet a perfect physical standard.

High-level athletes are usually drafted in higher rounds or playing in higher

divisions and are perceived as having greater performance ability than that of their

peers in the same sport and play at a higher level within a sport (division I vs II,

professional vs amateur).
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Appendix 2 

Athlete Questionnaire

Lab of Analytical Chemistry

Chemistry Dpt Sample code number ___________

University of Ioannina

1. Date _____ 2. Sport _________ 3. Sport club _________

4. Name ___________________________________

5. Gender    Male    Female

6. Age _____ 7. Height ________ 8. Weight ________

9. Are you a smoker?

Yes No

10. When was the last time you smoked?

less than an hour 1-2 hours before

more than 2 hours

11. When was the last time you consumed any meal?

less than an hour 1-2 hours before

more than 2 hours

12. When was the last time you drunk coffee?

less than an hour 1-2 hours before

more than 2 hours

13. When was the last time you had any oral hygiene procedure?

less than an hour 1-2 hours before

more than 2 hours

Basic Information
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14. Do you use Ephedrine or any other energy boosters / weight cutters?

Yes No

15. Do you use Protein or Creatine or any other Weight Gainers?

Yes No

16. Do you use anabolic steroids or steroids of any sort?

Yes No

17. Do you use any other hormones? (HGH, Insulin, Thyroxine, Etc)

Yes No

18. Do you take anything to enhance recovery from training?

Yes No

19. Have you taken ANY prescription medications or other substances

       in past 3 months?

Yes No

Athlete signature

I am fully aware of the implications of publication the research findings 

online in open access format and accept any associated risk.

Statement of informed consent for participation

I hereby consent to the processing of the personal data that I have

provided and declare my agreement with the data protection regulations

in the data privacy statement.

Medication and Suppliments
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Appendix 3 

 

% ---------------------------Inport the csv----------------------- 

 

Matrix = readtable('spectra.csv'); 

 

X = Matrix(2:end,3:end); 

Y = Matrix(2:end,2); 

 

% ---------------------------Table to array----------------------- 

 

X = table2array(X); 

Y = table2array(Y); 

 

whos X Y 

[numSamples, numWavenumbers] = size(X); 

 

%---------------------------Loading the Spectra------------------- 

 

[dummy,h] = sort(Y); 

oldorder = get(gcf,'DefaultAxesColorOrder'); 

set(gcf,'DefaultAxesColorOrder',jet(numSamples)); 

plot3(repmat(1:numWavenumbers,numSamples,1)',... 

      repmat(Y(h),1,numWavenumbers)',X(h,:)'); 

set(gcf,'DefaultAxesColorOrder',oldorder); 

xlabel('Variable / Wavenumber'); ylabel('Samples'); axis('tight'); 

grid on 

 

% ----------------------------Split the data----------------------  
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% Find unique groups in Y (assuming Y contains categorical labels 

% or integers representing groups) 

uniqueGroups = unique(Y); 

 

% Initialize cell array to store indices for each group 

groups = cell(length(uniqueGroups), 1); 

 

% Assign samples to corresponding groups based on Y labels 

for i = 1:length(uniqueGroups) 

    % Find indices of samples belonging to each group 

    groups{i} = find(Y == uniqueGroups(i));  

end 

 

% Initialize the training and testing indices 

trainIndices = []; 

testIndices = []; 

 

% Randomly split each group (70% training, 30% testing) 

 

for i = 1:length(groups) 

    groupIndices = groups{i}; 

    numGroupSamples = length(groupIndices); 

     

    % Shuffle the group indices 

    shuffledGroupIndices = 

groupIndices(randperm(numGroupSamples)); 

     

    % Split the group into training and testing sets 

    % (70% training, 30% testing) 

    numTrain = round(0.7 * numGroupSamples);  % 70% for training 
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    trainIndices = [trainIndices; 

shuffledGroupIndices(1:numTrain)]; 

    testIndices = [testIndices; 

shuffledGroupIndices(numTrain+1:end)]; 

end 

 

% Create the training and testing data 

X_train = X(trainIndices, :); 

Y_train = Y(trainIndices); 

 

X_test = X(testIndices, :); 

Y_test = Y(testIndices); 

 

Y_train_D = dummyvar(Y_train); 

Y_test_D = dummyvar(Y_test); 

 

% -------------------------------PLS-DA--------------------------- 

 

[n,p] = size(X_train); 

[Xloadings,Yloadings,Xscores,Yscores,betaPLS,PLS_percent_of_varian

ce,... 

 PLS_MSEcv,stats] = plsregress(X_train,Y_train_D,20,'CV',10); 

 

% ---------------------------------PCA---------------------------- 

 

[PCALoadings,PCAScores,... 

 PCA_percent_of_variance] = pca(X_train,'Economy',false); 

 

% -----------------------------Y vs comps------------------------- 

 

figure 
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plot(1:20,cumsum(100*PLS_percent_of_variance(2,:)),'-bo'); 

xlabel('Number of Components'); 

ylabel('Percent Variance Explained in Y'); 

 

% -----------------------------Χ vs comps------------------------- 

 

figure 

plot(1:20,100*cumsum(PLS_percent_of_variance(1,:)),'b-o',... 

     1:20,100*cumsum(PCA_percent_of_variance(1:20))/... 

     sum(PCA_percent_of_variance(1:20)),'r-o'); 

xlabel('Number of Components'); 

ylabel('Percent Variance Explained in X'); 

legend({'PLS-DA', 'PCA-LDA'},'location','SE'); 

 

% -------------------------Cross Validation----------------------- 

 

PCA_MSEcv = sum(crossval(@pcrsse,X_train,Y_train,'KFold',10),1) / 

n; 

 

figure 

plot(0:20,PLS_MSEcv(2,:),'b-o', 0:10,PCA_MSEcv,'r-o'); 

xlim([1,20]) 

xlabel('Number of Components'); 

ylabel('MSECV'); 

legend({'PLS-DA','PCA-LDA'},'location','NE'); 

 

% -----------------------------Fitting --------------------------- 

 

betaPCR = regress(Y_train-mean(Y_train), PCAScores(:,1:10)); 

betaPCR = PCALoadings(:,1:10)*betaPCR; 

betaPCR = [mean(Y_train) - mean(X_train)*betaPCR; betaPCR]; 
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yfitPCR = [ones(n,1) X_train]*betaPCR; 

 

TSS_nonD = sum((Y_train-mean(Y_train)).^2); 

 

RSS_PCR = sum((Y_train-yfitPCR).^2); 

RsquaredPCR = 1 - RSS_PCR./TSS_nonD 

 

 

yfitPLS = [ones(n,1) X_train]*betaPLS; 

 

TSS = sum((Y_train_D-mean(Y_train_D)).^2); 

 

RSS_PLS = sum(stats.Yresiduals.^2); 

R2PLS = 1 - RSS_PLS./TSS; 

R2PLS_uniform = mean(R2PLS) 

 

 

% -----------------------------Score plot------------------------- 

 

figure 

hold on 

y_uni = unique(Y_train); 

colors = hsv(length(y_uni)); 

for k = 1 : length(y_uni) 

     

    % Get indices of this particular unique group: 

    ind = Y_train==y_uni(k);  

    plot3(Xscores(ind,1),Xscores(ind,2),Xscores(ind,3),... 

          '.','color',colors(k,:),'markersize',20); 

 

end 
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legend('R (0 km/h)','W (4-5 km/h)','J (9-10 km/h)','RN (14-15 

km/h)'); 

title('PLS-DA'); 

grid on; view(-30,30); 

xlabel('LV1'); ylabel('LV2'); zlabel('LV3'); 

 

 

figure 

hold on 

y_uni=unique(Y_train); 

colors = hsv(length(y_uni)); 

for k = 1 : length(y_uni) 

     

    % Get indices of this particular unique group: 

    ind = Y_train==y_uni(k);  

    plot3(PCAScores(ind,1),PCAScores(ind,2),PCAScores(ind,3),... 

          '.','color',colors(k,:),'markersize',20); 

 

end 

 

legend('R (0 km/h)','W (4-5 km/h)','J (9-10 km/h)','RN (14-15 

km/h)'); 

title('PCA'); 

grid on; view(-30,30); 

xlabel('PC1'); ylabel('PC2');zlabel('PC3'); 

 

% ----------------------------Loading plot------------------------ 

 

figure 

plot(1:numWavenumbers,stats.W(:,1:2),'-'); 
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xlabel('Variable / Wavenumber'); 

ylabel('PLS Weights'); 

legend({'LV1' 'LV2'},  ... 

 'location','NW'); 

 

figure 

plot(1:numWavenumbers,PCALoadings(:,1:2),'-'); 

xlabel('Variable / Wavenumber'); 

ylabel('PCA Loadings'); 

legend({'PC1' 'PC2'},'location','NW'); 

 

 

% -----------------------------Prediction------------------------- 

 

Y_pred = [ones(size(X_test,1),1) X_test]*betaPLS; 

 

[s1, s2] = size(Y_pred); 

 

Y_pred_D = Y_pred; 

 

for i = 1 : s1 

    for j = 1 : s2 

        if Y_pred_D(i,j) < max(Y_pred(i,:)) 

            Y_pred_D(i,j) = 0.0; 

        end 

    end 

end 

 

for i = 1 : s1 

    for j = 1 : s2 

        if Y_pred_D(i,j) > 0.0 
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            Y_pred_D(i,j) =1.0; 

        end 

    end 

end 

 

g1 = 0; 

for i = 1 : s1 

        if Y_pred_D(i,:) == Y_test_D(i,:) 

            g1 = g1 + 1; 

        end         

end 

 

percentage_of_success = (g1/s1)*100 

 

 

[~,Y_pred_unD] = max(Y_pred_D, [], 2); 

 

 

figure 

confusionchart(Y_test,Y_pred_unD) 

title("Confusion matrix"); 
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