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Investigating the feasibility of spectroscopic techniques and non-invasive sampling of

biofluids to explore physiological alterations during physical exercise

Christoforos Chrimatopoulos

Doctoral thesis

Summary

This PhD thesis presents the development and application of an innovative, non-
invasive analytical framework for monitoring physiological and metabolic responses to

physical exercise, utilizing saliva and dried blood spot (DBS) sampling.

The study drew upon a substantial cohort of 260 athletes representing a broad
spectrum of sporting disciplines, encompassing both individual and team sports.
Participants included competitive runners and triathlon athletes, football, basketball,
volleyball and tennis players, boxers, karatekas, and muai thai athletes, as long as aerial
hoops and aerobic gymnastics athletes and pole dancers, ensuring a wide representation
of physiological demands and training regimens. Crucial to the success of this effort was
the close collaboration with numerous sports clubs and athletic associations across the
region of Epirus, Greece. Ongoing communication with coaches, trainers, and
administrative staff facilitated participant recruitment, ensured adherence to protocol
requirements, and strengthened the practical relevance of the study. This regional
network of support not only provided access to a varied and committed participant base
but also helped bridge the gap between laboratory research and applied sports science in

real-world training environments.
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The work is structured into four distinct yet interconnected phases, integrating
analytical techniques —spectroscopic (ATR-FTIR, Vis photometry, and NMR) and
chemometric (multivariate and statistical analyses)— to evaluate biochemical changes
with precision and minimal invasiveness. This integrative approach addresses the
increasing demand for real-time, field-deployable diagnostic tools in sports science,

health monitoring, and personalized fitness assessment.

In Phase 1, attenuated total reflectance Fourier-transform infrared (ATR-FTIR)
spectroscopy was applied to saliva samples from both low-level (occasional light load
training) and high-level athletes (frequent heavy load training) to evaluate its potential as
a non-invasive tool for physiological monitoring. The primary aim was to explore the
feasibility of using salivary biochemical profiles as indicators of training status and
physical conditioning. For the first time, multivariate statistical analysis of the salivary
infrared data revealed clear biochemical distinctions between athletic levels, underlining
the effectiveness of ATR-FTIR in capturing exercise-induced metabolic alterations. These
findings highlighted the responsiveness of salivary composition to training load and
demonstrated the diagnostic value of saliva in capturing cumulative physiological
adaptations. Phase 1 established the proof-of-concept that infrared saliva fingerprinting
can serve as a rapid, field-applicable screening method, laying the analytical and
conceptual foundation for more dynamic, intensity-resolved investigations in the

subsequent Phases.

Phase 2 advanced this line of inquiry by focusing on the dynamics of salivary
composition during physical exercise of increasing intensity (0, 5, 10, and 15 km/h) by
employing ATR-FTIR spectroscopy and advanced multivariate analysis. The novelty lies in
the integration of second-derivative spectral preprocessing with extensive chemometric
modeling—specifically PCA-LDA and PLS-DA—to enable fine-tuned, non-invasive
classification of training loads based on salivary biochemical profiles. The innovation is
expanded on the construction and rigorous validation of predictive models that achieved

high classification accuracy, demonstrating the discriminative power of salivary infrared
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fingerprints. In addition, alterations in salivary lactate and glucose were compared with
the corresponding trends in blood, resulting an excellent harmonization in the case of
lactate, in contrast to glucose, facts that align with the literature. Multivariate analysis
revealed 5 spectral features (corresponding to phosphate, phospholipids, glucose, lactate,
thiocyanate) where they lead to discrimination. To our surprise, thiocyanate (SCN-)
emerged as a prominent spectral feature linked with physical exercise. Phase 2
highlighted the value of spectroscopic fingerprinting in identifying metabolite-specific
signatures of physical stress (such as the candidate SCN~) and in supporting personalized

training strategies.

To quantitatively validate the role of thiocyanate as a biomarker, Phase 3
introduced a robust, cost-effective photometric method tailored for high-throughput
analysis of salivary SCN~ concentrations. A large-scale study involving 161 athletes
confirmed, for the first time, a consistent decrease in thiocyanate levels with escalating
exercise intensity. Detailed statistical evaluation, also revealed statistically significant
influences of gender and smoking status on salivary thiocyanate profiles, thereby
enriching our understanding of interindividual variability in metabolic responses to
physical stress. This comprehensive dataset enabled precise mapping of SCN™ response
trends across diverse athlete profiles and training intensities. The findings represent the
first large-cohort validation of thiocyanate’s utility as a non-invasive, exercise-responsive
biomarker, supporting its future use in personalized monitoring frameworks within sports

and exercise science.

In Phase 4, the research turned to systemic metabolic profiling using nuclear
magnetic resonance (NMR) spectroscopy applied to dried blood spot (DBS) samples. This
approach leveraged the minimally invasive nature of blood microsampling—achieved
through DBS cards and alternative sorbent materials—making it particularly suitable for
athletic monitoring in field conditions. Despite the inherent challenges of limited sample
volume and matrix complexity, NMR successfully distinguished metabolic signatures

associated with increasing exercise intensities. This represents a novel integration of
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microsampling and high-resolution spectroscopy in sports science, where such a
combination remains largely unexplored. The findings not only underscored the impact of
training load on systemic metabolism but also demonstrated the feasibility of DBS-NMR
workflows for real-world biomonitoring. Moreover, this Phase highlights the
complementarity of different biofluids and analytical platforms in constructing a holistic,

minimally invasive physiological monitoring system.

Taken together, this thesis delivers a multidimensional, minimally invasive analytical
strategy for assessing biochemical and metabolic responses to physical exercise. The work
underscores the synergistic utility of ATR-FTIR spectroscopy, photometric quantification
of thiocyanate, and NMR metabolomics in personalizing athletic training, enhancing
performance monitoring, and potentially informing broader health diagnostics. The
methodologies and findings presented herein contribute significantly to the growing field
of non-invasive/minimally-invasive biomonitoring and pave the way for future

translational applications in sports science.
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Alepelvnon avaAutikwy pebBodoloylwv Baclopévwy o LeBOSOUC N EMEUBATIKAG
SelypoatoAnyiog BLoAoykwy UYpwWVY Kol TEXVIKEG GOOUOTOOKOTILAG YL TN LEAETN

GUGLOAOYIKWYV TIPOCAPHOYWYV KATA TN CWHATIKA AOKNOoN

XpLotodopog XpnuatonouAog

Aldaktopikn Statplpn

Mepianym

H mapovoa didaktopikr Slatplpr) avamtuoosl Kal epoapuolel €va KAVOTOMO, 1N
EMEUPATIKO AVAAUTLKO MAQALCLO yla TNV TapakoAoUBnon GucLloAoyLlKwY Kal LETABOALKWY
QMOKPIOEWV KOTA TN OLAPKELA TNG CWHATIKAG AOKNONG, OELOTIOLWVTAG TN OleEAo Kal

Selypata Enpou aipatog (DBS).

H peAétn PBaoclotnke o€ éva avtutpoowmeuTikd Seiypa 260 abAntwv, oL omoiol
TiPoEpyovtav amo €va gupl ¢dacpa oBANTIKWYV KAASdwV, TMePAAUBAVOVTAGC QTOMLKA
(tp€€no, tPlabAo, Tévig, muyuaxia, muay thai, kapdte, pole dancing, aerial hoops
(otedavn), aepofieg ablomaldiég) kot opadikd abAnpata (modoodalpo, HUMAOKET,
BoAeil). KaBoplotiky unnpée n ocuvepyacia pe abAntikoug cUAAOYOUG KOl TTPOTIOVNTIKA
KEVIpA TNCG €UPUTEPNC TEPLOXNG tTNG Hmelpou, péow NG omoiag OleukoAUvOnke n
MpooBaon O0To CUMMETOXIKO Suvaulkd kal Staodaliotnke n ebappoyn Tou €pEUVNTIKOU
TIPWTOKOAOU 0t peallotikd meplBallovta doknong. H Siktvwon aut) ouveBale
oUCLAOTIKA oTn yedUPWON TOU XAOHOTOC METAED E€pyaoTNPLOKAG €PEUVOG KOl

epappoopévng aBANTLKAG ETLOTAUNG.

H pelétn opyavwvetol o T€00epL AAANAOCUUTIANPOUUEVEG DACELS, OTLG OTIOLEC

EVOWMOTWVOVTOL OVOAUTIKEG TEXVIKEC —ddaopatookomikéc (ATR-FTIR, ¢dwtopetpia
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opatoU kat NMR) Kal XNUELOUETPLKA epYaAeiat (TOAUTIOPOUETPLKY) KOL OTOTLOTIKA
ovAAuon)— HE OTOXO TNV akpLfr Kot afLOTLoTn AnmoTtUNwon BLOXNULKWY HETABOAWVY UE
eAaxLoTa EMEUPATIKO TPOTO. To MAALCLO QUTO AVTATIOKPILVETAL OTL GUYXPOVEC AVAYKEG YL
ETUTOTILAL KOLL TIPOCWTIOTOLNEVN TIAPOKOAOUONOoN TNG GUOIKN G KATAOTOONG OTOV XWPO TNG

ETULOTAKNG TNG ABANONG.

Itnv Mpwtn ddon, edappootnke GoopaTOoKOMA UTIEPUBPOU UETACKNUATIOUOU
Fourier pe anooBévouoa oAk avakAaon (ATR-FTIR) oe delypata oléAou amod abAnteg
Sladpopetikol emumedou (xapunAou emutédou aBOANTEC TTOU ALOKOUVTOL TIEPLOTACLOKA KOl
Ama kot uPnAol emumESou aBANTEG MO eKTEAOUV GUXVEG IpomovnoeLg uPnAng €évtaong).
Itoxo eixe tnv afloAdynon tnG olEAOU WG EVAANAKTIKOU, Un-emepBatikou Selypatog yla
TV mapakoAouBbnon ¢ cwpatikng/abAntikng dpactnplotntag. MNa mpwtn ¢opd, n
TIOAUTTAPOLLETPIKN) avaAUon Twv UMEpuBpwv daopdtwyv tng oléAou avedelle ocadeic
Slapopeg petafl uPnAoL kot xapnAoL erunédou abAntwv. H mapovoa Oaon avédelle tn
XPNon Tou UNMEPUBPOU ATMOTUMWHATOG TNG GLEAOU— WG ypryopn, ¢opntr Kal TTPAKTIKN
HEBodog atloAoynonG—anUloupywvtag TNV avaAuTiky Baon yla MePXOUEVEG UEAETEG

OXETLKA HE TNV EVTOONG TNG AOKNONG TIou avarmtuxdnkav otig emopeves OACELG.

H AgUtepn @don eotiooe otnv PeTafoAn tng cuotacng tng olEAou Katd tnv avénon
™¢ évtaong t¢ aoknong (0, 5, 10, 15 km/h) aflonolwvtag paopatookonia unepuBOpou
(ATR-FTIR) KoL TTPONYUEVEG TEXVIKEC TIOAUTIAPOAUETPLKAC ovAAUoNC. H Kalvotopia gykeltat
otov ouvbuaoud dacpatookorniag SeUTEPNG TTAPAYWYOU UE XNHUELOUETPLKA UOVTEAQ—
PCA-LDA «kat PLS-DA—ywa tnv O8lakplon Tou mpomovnTikol ¢optiov HECW TNG
TIOAUTIAPOUETPIKNAG avaAuong Ttou daopatikol mpodid tng olEAou H kawotouia
ETEKTEIVETOL KOL OTNV KATAOKEUH KOl QUOTNPN ETUKUPWON TWV TMPOPAEMTIKWY HOVIEAWY,
Ta omola mapouciacav udnAn akpifela tagvopnong, amodelkviovtag tn OSLOKPLTIKNA
LKOVOTNTO TOU UTEPUBPOU GAOCUATIKOU QMOTUTIWHOTOC TNG OlEAoU. EmutAéov, ol
HETAPBOAEC TOU YOAOKTIKOU 0&€0C Kal NG YAUKOING otnv oiedo ouykpilBnkav He TIg
OVTIOTOL(EC TAOELC TIOU TOpouclalouv OTo aipa, Sivovtag e€alpetikn) taUTon Otnv

TEPLMTWON TOU YAAQKTLKOU, 0€ avtiBeon pe tnv YAUKOLn, yeyovota mou evappovilovtatl
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ue tnv BBAloypadia. H moAumapapetpiky avaluon aveSelfe 5 GAOUATIKEG METAPANTEG
(mou avtotoolv ota Pwodoplkd WOvta, dwodoAumidia, YAUKOln, YOAAKTLKO,
Belokuavika Lovta) otig onoieg odpeiletal n diakplon. NMpog EKMANEN UAG, TO BELOKUAVIKO
oV (SCN7) avadeixbnke w¢ onNUAVIIKOC UETABOAITNG CUCXETIOUEVOC UE TNV CWHATLKNA
aoknon. H @don 2 enwonpave tn onupaocia tg GaopaTOoKOTLKAG TtapakoAolBnong tng
OlEAOU OTNV avASEeLEn XOPOKTNPLOTIKWY UETOBOALTWY TTOU CUVOEOVTAL UE TN CWHATLKA
aoknon (0mwg tnv mepimtwon Twv BELOKUAVIKWY LOVTIWYV), umootnpilovtag mapdAAnAa

TNV avantuén eEATOUIKEV LEVWY OTPATNYLKWY TIPOTIOVNONG.

H Tpitn ®don eétaoe tov poAo Tou BelOKUAVIKOU LOVIOG WG €vav Suvntiko
Blodeiktn pEow TNG OVATITUENC KOl ETUKUPWONG LLOC a€LOTLOTNG, GWTOUETPIKNG HEBOSOU
TOCOTIKOU TPoabloplopol twv SCN™ otnv otelo. e Seiypa 161 abAntwv mapatnpndnke,
yla pwtn dopd otnv BiBAoypadia, otabepn peiwon twv emumédwv SCN™ pe tnv avénon
¢ évtaong aoknong. H evdeAexng otatiotiky avaAuon Katdaypoale €miong oTATIOTIKA
onuavtikeg Sladopomolioelg ava ¢puAo kat ocuvnBeleg kamviopatog. H Paon auvtn
amoteAel TNV MPWTN OAOKANPWHEVN £peuva LEYAANG KALLOKOG TNG CUUMEPLPOPAS TWV
SCN~ oxetllopevn pe tov abAntiopo. Ta efalpetikd supnuata avadelkviouv Ta
BelokuaVIKA LOVTO WG Eva SuvNTIKO pn-emepBatiko Blodeiktn otnv napakoAolOnon—oe
TIPAYUATIKO XPOVOo—TNG GUOLOAOYLKAG OmOKpLONG OTnV Aoknon, &vioxvovtag Tn

Suvatotnta epappoynG TOU O EEUTOUKEUIEVA CUOTAOTO TIPOTIOVNTIKN G afloAdynong.

Ztn Tétaptn @Ddon, n €peuva EMIKEVTIPWONKE OTn OMOTUTWON MUETABOAKWY
oMaywv péow  PAOHATOOKOTIOC TIUPNVIKOU  HayvnTkoU ouvtoviopol (NMR),
epapuoopévng oe Oelypata &npng knAidag aipoatog (DBS). H mpoogyylon auth
aflomoinoe tov eAAXLOTA EMEUPATIKO XOPAKTAPA TNG HUIKpodelypatoAnyiag aipoatoc—
HEow Kaptwv DBS kal evAAAAKTIKWY TTPoopodnTIKWY UALKWV—KaBlotwvtag tnv Wolaitepa
KATAAANAN yla mapakoAoUuBOnon abAntwv oe cuvOnkeg mediou. Mapd T MPOKANCELG TTOU
OXeTlovVTal LE TOV TIEPLOPLOMEVO OYKO Oelypato¢ Kol TNV TOAUTTAOKOTNTA TOU
umootpwpatog, n  ¢aocpatookormicc. NMR katadepe va Tmpoodlopiost mAROoG

XOPOAKTNPLOTIKWY HETABOAITWY, Kot va Stakpivel petafoAikad nmpodiA mou oxetilovroal pe
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NV avénon tng évtaong tng aoknong. H MAaon auth €lodyeL Pe emtuxio pLo KOWOTOUo
ouvbuaotiky edappoyn HpikpodelypatoAnpiag aipatrog kat ¢oaopoatookomiog vPnAnRg
gvaLodnoiog otov Topéa Tou aBANTIOMOU, OToU N €V AOYW TPOCEYYLON TIAPAUEVEL WG ETTL
To MAeiotwv avefepevvntn. ErmumAéov, n Ddaon oavadelkvUeL TN CUUMANPWHOTIKOTNTA
HETAEL OSladopeTkwY BLOAOYIKWY UYPWV Kal aVOAUTIKWV peBoSoloylwv yla tnv
avamtuén €vog OALOTIKOU Kol EAAXLOTOL EMEUPATIKOU  CUOTAMATOG (GUGLOAOYIKNG

mapokoAouBbnong.

JuvoAlkd, n SwtplBy  auty Tpoteivel g ToAudldotatn KAl pn-
enepPatikn/eAdyxlota eMeUPATIKA OTPATNYIKN TTAPAKOAOUONONG TwV PUOLOAOYLKWV Kol
HETAPBOALKWY OIMOKPIoEWY KATA TNV aoknon. Mpoteivel To Belokuavikd wg véo BLodeiktn
€vtaong aoknong kat ouvdualet texvikég ATR-FTIR, dwtopetpiag opatov kat NMR yia tnv
Tapoxn €vOC OAOKANPWUEVOU €pyoAEiou Tpoowmomnolnuevng afloAdynong ¢GuoLkng

KATAOTOONG, UE EVPUTATEG EPAPUOYEC OTNV EMLOTAKN TNG ABANONC.
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The art of sports science -

Theoretical Framework

1. The art of sports science

1.1 Overview of sports science

“The definition of sport science: as a sub-field of humankind’s universal culture, it is
a theoretical system representing the culture of the body by the evidence-based,
systematical and generalised principles, themes, laws and rules, theories and methods. Its
research aim is to enrich values of the society’s culture of the body (as a subculture of the
universal culture), and thus support individual and eventually the totality of societal
development. It is the examination of people as biological-psychological and social units,

who consciously practice physical activity” — Bironé Nagy Edit, 20112,

The significant advancement of sports science began in the 1950s, largely driven by
the competitive rivalry between the Soviet Union and the United States?. Prior to this
period, scientific investigations into health care had examined the effects of physical
education and sports movements on the human body. However, there was a notable
difference in the research focus of the two superpowers: the Soviet Union concentrated
almost exclusively on professional sports, whereas the United States pursued research in
recreation, rehabilitation, and specialized physical education alongside professional
sports studies. The global recognition of the field grew with the introduction of sport
science conferences held in conjunction with the Olympic Games starting in 19562. In

terms of key organizations, the International Federation of Sports Medicine (FIMS) was
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established in 1928, and the International Council of Sport Science and Physical Education

(ICSSPE) was founded in 1960.

The domain of sports science has evolved dramatically over the past few decades,
becoming a critical area of study that integrates knowledge from various scientific
disciplines to optimize human performance and health (Fig. 1). Sports science is an
interdisciplinary field that encompasses physiology, biomechanics, psychology, nutrition,
and medicine. It is dedicated to understanding how the human body responds to exercise,
how performance can be enhanced, and how injuries can be prevented. As athletes
continuously strive to break records and achieve new levels of excellence, sports science
provides the foundational knowledge needed to push the limits of physical capability
while safeguarding the long-term well-being of athletes. This field not only supports elite
athletes in reaching peak performance but also plays a crucial role in public health by

promoting physical activity and helping to combat lifestyle-related diseases?.

Central to sports science is the study of the physiological adaptations that occur in
response to physical training. These adaptations involve complex interactions between
various systems in the body, including the cardiovascular, muscular, skeletal, and nervous
systems*®. By analyzing these interactions, sports scientists can identify the most
effective training methods, tailor exercise programs to individual needs, and develop

strategies to optimize recovery and prevent overtraining.

Moreover, sports science is vital for understanding the mechanisms of fatigue and
the factors that limit performance. Fatigue is a multifaceted phenomenon influenced by
energy depletion, metabolic by-products, neuromuscular function, and psychological
state'®13, Through research, sports scientists have been able to develop interventions to

delay the onset of fatigue, thereby enhancing endurance and overall performance?4.
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Figure 1. The relationship of sport science and the main scientific fields? (taken from ref.

2).

Injury prevention and rehabilitation are also key aspects of sports science. The high

demands placed on athletes’ bodies increase their susceptibility to injuries, which can be

career-threatening if not managed properly. Sports science provides the tools and

knowledge to design training programs that minimize injury risk, identify early signs of
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potential injuries, and implement rehabilitation protocols that ensure a safe return to

competition®.

In addition to physical training, sports science also encompasses the psychological
aspects of performance. Mental toughness, motivation, and focus are critical
determinants of success in sports, and sports psychologists work alongside coaches and
athletes to develop these attributes. Techniques such as goal setting, visualization, and
stress management are used to enhance performance under pressure and maintain

mental well-being!®1’.

Furthermore, the role of nutrition in sports science cannot be overstated. Proper
nutrition supports training adaptations, aids recovery, and ensures that athletes have the
energy and nutrients necessary for peak performance®®®. Sports nutritionists design diet
plans that meet the specific demands of different sports and training Phases, optimizing

macronutrient intake, hydration, and supplementation?°,

The application of technology in sports science has also revolutionized the way
athletes train and compete. Wearable devices, motion analysis systems, and performance
tracking software provide real-time data that can be used to fine-tune training and
improve performance?'~23, These technologies have made it possible to monitor athletes
with unprecedented precision, enabling personalized training programs that account for

individual variability in response to exercise.

Finally, the science of physical exercise plays a crucial role in the development of
youth and amateur athletes. By applying scientific principles to training and competition
at all levels, sports scientists help young athletes develop their full potential while

promoting lifelong habits of physical activity?*2°.

Sports science is indispensable in the modern era of athletics. It provides the
knowledge and tools necessary to enhance performance, prevent injuries, and promote

the overall health of athletes. As the field continues to evolve, it will undoubtedly
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contribute to further advancements in both elite and recreational sports, ensuring that

athletes can achieve their goals in the safest and most effective manner possible.

1.2 Recent scientific advancements in sports science

In recent years, sports science has witnessed significant advancements driven by
new technologies, data analytics, and an increased understanding of human physiology.
These developments have not only deepened our knowledge but also opened new

avenues for enhancing athletic performance and health outcomes.

One of the most prominent areas of advancement is the integration of genomic and
molecular biology into sports science?®?’. The field of exercise genomics has gained
traction as researchers seek to understand how genetic variations influence an
individual’s response to training, susceptibility to injuries, and potential for recovery.
Studies have identified specific genes that are associated with traits such as muscle fiber
composition, oxygen utilization, and inflammation?®-31, allowing for more personalized
approaches to training and rehabilitation. This genetic insight is beginning to inform
training programs tailored to an athlete's unique genetic profile, optimizing performance

while reducing the risk of injury32.

Biomechanics and neuroscience have also seen remarkable progress, particularly in
understanding how the brain and nervous system interact with the musculoskeletal
system during exercise333*. Advances in imaging technologies, such as functional
magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), have enabled
scientists to study the neural mechanisms underlying movement, coordination, and
motor learning in unprecedented detail®. This research is critical for developing
interventions that enhance motion skills, prevent injuries, and rehabilitate athletes after

injury36:37,
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Another significant trend in sports science is the growing emphasis on data analytics
and artificial intelligence (Al)32. The vast amounts of data generated by wearable devices,
performance tracking systems, and physiological monitoring tools have created
opportunities for advanced analytics to identify patterns and predict outcomes3?. Al and
machine learning algorithms are increasingly being used to analyze these data, providing
insights that can refine training regimens®’, optimize in-game strategies*!, and predict
injury risks*. For example, Al-driven models can assess an athlete's workload and
recovery patterns, helping coaches make informed decisions about training intensity and

rest periods®3.

Sports nutrition has also evolved, with a deeper understanding of how
macronutrients, micronutrients, and supplements affect performance and recovery*:.
Research on nutrient timing, the role of gut microbiota in health and performance, and
the impact of personalized nutrition plans has led to more sophisticated dietary strategies
for athletes**’. Additionally, there is growing interest in the use of ergogenic aids—
substances or techniques that enhance performance— ranging from traditional
supplements like creatine and caffeine to novel approaches like ketone esters and

personalized hydration strategies*®4°,

The focus on recovery science has intensified, recognizing that recovery is as crucial
as training itself in the overall performance equation. Techniques such as cryotherapy,
compression garments, massage therapy, and sleep optimization are being rigorously
studied to determine their efficacy in promoting muscle repair, reducing inflammation,
and restoring physiological balance®®>3, Understanding the science behind these recovery

modalities is helping athletes recover faster and perform at their best more consistently.

Lastly, sports psychology has gained prominence as mental health and well-being
are increasingly recognized as integral components of athletic success. Research in this
area has expanded to include the psychological impact of injuries>* and the prevention of
burnout>>. Mental conditioning techniques are now being integrated into regular training

regimens, helping athletes manage stress, enhance focus, and maintain motivation>>=>"’.
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The recent advancements in sports science have transformed the way athletes
train, compete, and recover. The integration of genetic insights, advanced biomechanics,
data analytics, and personalized nutrition is leading to more effective and individualized
approaches to athletic performance. As the field continues to evolve, sports science will
undoubtedly play a pivotal role in pushing the boundaries of human potential while

ensuring the health and well-being of athletes.

1.3 Sports biochemistry: Understanding the molecular basis of

athletic performance

The field of sports biochemistry plays a pivotal role in understanding the complex
biochemical processes that occur in the body during physical activity. As a sub-discipline
of sports science, sports biochemistry focuses on the molecular and metabolic pathways
that underpin exercise, performance, recovery, and adaptation to training. These
biochemical processes not only determine an athlete’s ability to perform but also govern
the body’s response to different types and intensities of exercise, making sports

biochemistry an essential component in the scientific study of athletic performance.

During physical exertion, the human body undergoes a series of rapid biochemical
changes, driven by the need to produce energy for muscle contraction®®, maintain
homeostasis®®, and repair tissues®. The primary source of energy during exercise is
adenosine triphosphate (ATP), which is generated through three main metabolic
pathways: the phosphagen system (creatine phosphate (ATP-PC)), glycolysis, and
oxidative phosphorylation (a series of chemical reactions that generate energy in the

mitochondria)®%-®? (Fig. 2).
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Figure 2. A general representation of aerobic, anaerobic and high energy phosphate

bioenergetic pathways®? (taken from ref. 62).

Each of these systems contributes differently depending on the intensity and
duration of exercise. For example, short bursts of high-intensity activity rely heavily on
the phosphagen system, which uses stored ATP and creatine phosphate in muscles®263,
This system can provide energy for muscles in the initial 1 to 15 seconds of high intensity
exercise®. Longer, endurance-based activities depend more on aerobic pathways such as

oxidative phosphorylation®?3 (Fig. 3).
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The study of sports biochemistry is crucial for understanding how these energy

systems are activated and regulated during exercise, as well as how the body’s

biochemical environment changes in response to different types of physical stress. For

instance, high-intensity exercise results in the accumulation of metabolic by-products

such as lactate and hydrogen ions, leading to muscle acidosis and fatigue®'. The body’s
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ability to buffer and remove these by-products, as well as regenerate ATP, is a key

determinant of athletic performance and endurance®?.

Furthermore, biochemistry in sports plays a significant role in nutritional strategies
for athletes. The body’s biochemical responses to different macronutrients—
carbohydrates, fats, and proteins—are crucial for energy production, muscle repair, and
recovery®. For example, consuming carbohydrates post-exercise helps replenish glycogen

stores, while protein intake supports muscle repair and growth®®.

Sports biochemistry also examines the role of key biochemical markers in muscle
damage and repair. During intense or prolonged exercise, muscle fibers undergo
microscopic tears, triggering an inflammatory response®’. This process leads to the
release of various biochemical markers, such as creatine kinase (CK) and myoglobin,
which are indicative of muscle damage®®®° (Fig. 4). The body responds to this damage
through a series of repair processes, involving protein synthesis, the activation of satellite
cells, and the reorganization of muscle fibers®®. Understanding these biochemical
responses is essential for developing strategies to optimize recovery and minimize the risk

of overtraining and injury.

The study of hormonal regulation during exercise is critical part of overtraining
estimation. Hormones such as cortisol, testosterone, and insulin-like growth factor 1 (IGF-
1) play significant roles in regulating metabolism, muscle growth, and recovery’®. Cortisol,
often referred to as the “stress hormone,” increases in response to physical and
psychological stress’' and helps regulate energy metabolism by promoting
gluconeogenesis and the mobilization of fatty acids’2. However, chronically elevated
cortisol levels, often seen in overtrained athletes, can have detrimental effects on
immune function, muscle tissue, and overall recovery’374. Conversely, testosterone and
IGF-1 promote muscle protein synthesis and adaptation to training’>’®. The balance
between anabolic (muscle-building) hormones and catabolic (muscle-degrading)
hormones is a key factor in determining an athlete’s ability to build muscle and recover

from training”>’”’8, Monitoring these hormonal levels provides valuable insights into an

10
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athlete’s physiological state and can guide adjustments in training volume, intensity, and

recovery periods.

O Myoglobin
® Creatine kinase

Figure 4. Changes in plasma myoglobin concentration and creatine kinase activity after
the rugby matches. Values are mean (SE) (n = 14). *,T Significantly different from resting

state within the same subjects (p<0.05, Wilcoxon signed ranks test)’® (taken from ref. 70).

The applied science of biochemistry in physical exercise is also critical for
understanding fatigue and recovery. For example, elevated levels of cortisol and creatine
kinase, combined with a decrease in immunoglobulin A (IgA), can indicate that an athlete
is not fully recovering between training sessions, increasing the risk of overtraining
syndrome?0. This way enables coaches and sports scientists to intervene before an athlete

reaches a state of chronic fatigue or injury.

For both amateur and professional athletes, preventing injury is essential, especially
with the increasing number of competitions that result in more intense training®. Health
experts warn that excessive training and competition can lead to overtraining, posing

significant health risks®2. Molecular markers mentioned previously can help optimize

11
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training, assess an athlete's functional condition, and provide evidence-based guidance
for high-performance athletes®?. Metabolomics, which measures low molecular weight
metabolites, offers an objective way to analyze the molecular effects of exercise, reducing
injury risk, adjusting training, and speeding up recovery®. The use of -omics data provides
a comprehensive view of the biological processes behind athletic performance, helping to
identify new intervention strategies. The term "sportomics" has been coined to refer to
the application of -omics sciences to understand metabolic changes caused by physical

activity®* (Fig. 5).
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Figure 5. An overview of sportomics and the correlated —omics sciences®® (taken from ref.

85).
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Sports biochemistry serves as the critical link between sportomics and athletic state
monitoring, providing the molecular and metabolic insights necessary to optimize athletic
performance. By understanding the biochemical processes that occur during exercise,
recovery, and adaptation, sports scientists can develop more effective training protocols,
monitor athlete health in real-time, and prevent overtraining and injury. Biofluid analysis,
in turn, allows for the practical application of these biochemical principles, offering a
efficient way to track an athlete’s physiological status and adjust their training
accordingly. The science of sports metabolomics via biofluid monitoring represent

powerful tool in the optimization of human performance.

13
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2. Biofluids: The way the human body talks

2.1 Biofluid monitoring in sports science

In the quest to enhance athletic performance and safeguard the health of athletes,
monitoring physiological and biochemical changes during physical activity is paramount.
This is where biofluid monitoring becomes integral to sportomics. As the body’s
biochemical environment fluctuates during and after exercise, these changes can be
detected and measured through various biofluids, such as blood, urine, sweat, and
saliva®. These biofluds provide a window into the body's internal environment, reflecting
various metabolic and physiological states induced by exercise. They contain a wealth of
biochemical markers that reflect the body’s metabolic, hormonal, and immune responses
to physical activity?’. By analyzing these markers, sports scientists and clinicians can gain
real-time insights into an athlete’s physiological status, allowing for precise adjustments

to training and recovery protocols.

Blood has traditionally been the gold standard in physiological monitoring, offering
detailed insights into a wide array of biomarkers, including hormones, metabolites, and
electrolytes®  For instance, blood is commonly used to measure lactate levels,
hormone concentrations, and inflammatory markers, providing a detailed snapshot of the
body’s biochemical state during and after exercise®*3. A recent study demonstrated
succinate, pantothenate, glucose-6-phosphate, and niacinamide increment in plasma
after physical exercise®, while on metabolic changes were also detected in serum®.
Blood sampling allows for the precise measurement of parameters such as lactate levels,
which indicate anaerobic metabolism®!, and cortisol levels, which reflect stress and
recovery’!. However, the invasive nature of blood sampling poses challenges, particularly

in field settings or during continuous monitoring. The need for trained personnel, the

14
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potential discomfort for athletes, and the logistical difficulties of frequent sampling®® have

spurred the exploration of alternative biofluids.

Urine analysis is another widely used method in sports science, providing valuable
information on hydration status, electrolyte balance, and kidney function, and the
excretion of metabolic waste products®’®8, It has been instrumental in assessing
hydration levels, particularly in endurance sports, where maintaining fluid balance is
crucial®. For example, urine analysis after physical activity, provided remarkable
findings®®1%1 where valine, isoleucine, succinate, citrate, trimethylamine, trimethylamine
N-oxide, tyrosine, and formate remain decreased for few hours after exercise!?2.Urine
sampling is less invasive than blood sampling and can be performed more frequently.
However, like blood, urine sampling typically requires controlled conditions, and the
results can be influenced by factors such as fluid intake and timing, which may limit its

utility for real-time monitoring03,

Sweat is an increasingly popular biofluid for monitoring athletes, in the context of
thermoregulation and electrolyte balance, especially during prolonged exercise in hot
environments®”10% Sweat contains a variety of electrolytes, such as sodium, potassium,
and chloride>1%, as well as metabolic by-products like lactate®®97-199 The analysis of
sweat composition can provide insights into an athlete’s hydration status, electrolyte
losses, and overall metabolic activity during exercise®. Advances in wearable technology
have facilitated the collection and real-time analysis of sweat, allowing for continuous

monitoring during physical activity07110-113,

These developments are particularly
beneficial in hot or humid environments, where maintaining electrolyte balance is

essential for preventing dehydration and heat-related illnesses'04114,

Despite the advantages offered by blood, urine, and sweat, each of these biofluids
has its limitations. Blood sampling is invasive and not always practical for frequent
monitoring®®. Urine analysis, while less invasive, can be affected by external factors like

hydration and fluid intake®3, and sweat analysis, though promising, is still limited by
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variability in sweat production and compositionl®>1> These challenges have led to

increased interest in saliva as a biofluid for monitoring athletes.

Saliva is an attractive alternative for several reasons. It can be collected non-
invasively and repeatedly with minimal discomfort, making it suitable for frequent
monitoring in both laboratory and field settings!'®!'’, Saliva contains a wide range of
biomarkers!8, including hormones (such as cortisol and testosterone!'®!29), immune

123 ‘many of which correlate

markers (like immunoglobulins!?'122), and metabolic enzymes
with blood levels!?*. This makes saliva a valuable surrogate, in a non-invasive manner and
a friendly approach for the volunteers, for assessing physiological responses to exercise,
stress, and recovery!?®>, making it ideal for frequent sampling in both training and

competitive settings!?®.

2.2 Microsampling techniques in blood collection

Invasive intravascular access has been the standard method for blood sampling for
decades and remains widely used in healthcare and disease assessment, but it comes
with several limitations'?’. Collecting blood using a hypodermic needle (typically requiring
more than 1 mL of blood) demands a skilled phlebotomist and a sterile environment28,
This invasive, centralized approach often leads to issues such as discomfort, anxiety, pain,
and phobias, which may lower patient compliance!?®. Indeed, the rather large amount of
sample required makes them less useful for repeated sampling in tight intervals or
vulnerable groups, such as infants or the elderly. Improper venipuncture techniques can
cause haemoconcentration or haemolysis, making the samples unusable and forcing
patients to undergo additional blood draws'?°. Healthcare workers also face risks of sharp
injuries and exposure to bloodborne pathogens, and complications like hematomas,
infections, nerve damage, and iatrogenic anemia may occur, leading to physical,
emotional, and financial burdens!3%133, These factors can delay or prevent medical

procedures and reduce participation in clinical research3*. Additionally, blood samples
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require time-consuming and costly processing to limit pre-analytical variability'3*, with
around 75% needing centrifugation to separate plasma or serum. This increases costs and
can slow down laboratory workflows®3®. Furthermore, wet blood samples must be stored

and shipped under cold-chain conditions to avoid degradation and bacterial

contamination?36,
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Figure 6. Graphical summary of the benefits of microsampling and 2022 publication

statistics of microsampling technologies and applications'?® (taken from ref. 129).

In recent years, microsampling techniques have emerged as innovative solutions to
the challenges associated with traditional blood sampling, particularly in contexts where
frequent, minimally invasive, and low-volume sampling is required. These techniques
enable the collection of small amounts of blood—often in the microliter range —making

them particularly suitable for monitoring athletes, pediatric patients, or individuals in
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remote settings. Among the most commonly employed microsampling techniques are
Dried Blood Spot (DBS) sampling, Volumetric Absorptive Microsampling (VAMS) and
capillary microsampling, microneedle sampling, each offering distinct advantages and
facing unique challenges. Figure 6 summarizes some of the blood microsampling

techniques utilized in 2022 clinical studies.

2.2.1 Dried Blood Spots (DBS)

Dried Blood Spot (DBS) sampling is one of the most widely utilized microsampling
techniques, particularly in clinical and remote settings'®’. Dried blood spots (DBSs) have
been used in newborn screening (NBS) since 1961 with Robert Guthrie and his test to
detect phenylketonuria (PKU) at an early stage in newborn blood!*. Nowadays, standard
DBS cards are still called Guthrie cards and are commonly used for NBS. In 2022, the USA,
Europe and Latin America were the regions with the highest percentage of newborns
screened (100, 78 and 32%, respectively)!®. In DBS sampling, a small drop of capillary
blood is collected via a finger prick (or heel prick in newborns) with the lancet and applied
to a specially designed filter paper card*® (Fig. 7). The blood is allowed to be adsorbed
onto the card and dry at room temperature for 4 hours, after which the card is stored and
transported for laboratory analysis'#°. The minimal volume of blood required—often just
a few microliters, typically <100 pL'**—adds to the procedure’s appeal, particularly for
frequent sampling'?®. The simplicity of DBS sampling makes it highly advantageous; it
requires minimal training and equipment, facilitating its use in field settings or even self-
collection by patients®612%140 Furthermore, once dried, the blood spots are highly stable

141 and can be transported at

for many metabolites, which is helpful for blood banks
ambient temperatures without the need for refrigeration, thereby reducing logistical
challenges. Before analysis, fixed-diameter spots (usually 3 or 6 mm) are punched out of

the paper substrate, and an extraction protocol is executed using appropriate buffers!3’.
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Figure 7. lllustration of dried blood spots collected from fingertip and heel on paper

Whatman® 903 Protein Saver Card (Cytiva, Global).

However, the technique often suffers from variations in sample quantification and
analysis due to technical errors and biological fluctuations, such as hematocrit (Hct)*”.
The Hct is the volume percentage of red blood cellsfluctuates between 36 and 50% based
on factors such as race, sex, age, fluid intake, and overall health42. When spotting a fixed
volume of blood sample on the sample collection card, the Hct affects the resultant size
of spot!43144 The lower the Hct, the lower the viscosity: the blood will spread faster
through paper fibres and will make the blood spot large, colourless and less homogenous.
With a high Hct, the blood spot will be smaller, more intense in colour and more
homogenous'*>14¢, Punching disks of the same size for blood spots with varying Hct levels
results in different volumes, leading to significant measurement and quantification
errors**®. On a traditional DBS card, the spot is punched to remove it from the card.
Multiple punches can be made in one DBS spot. But due to the haematocrit effect,
depending on where the punch is made, the sample may be different. The Hct effect can

introduce variation in analysis, such as the amount of analytes in the sample?.
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Further analytical biases are introduced by the inherent component of DBS
technology that enables the drying of blood: the filter paper. Filter paper properties
determine the maximum loading capacity, blood spreadability, chromatographic effects,
analyte stability and recovery'?®. During the formation of DBS, the content of blood
droplets may undergo a chromatographic effect or coffee-ring effect due to differential
diffusion across the filter paper!?°. Besides Hct, other factors such as humidity, drying
conditions and material of the filter paper also contribute to the uneven distribution of
analytes!®®. Additionally, the process of extracting analytes from dried blood spots can be
complex, with some substances potentially degrading during drying, which may
compromise the reliability of results. Despite these limitations, DBS remains a valuable
tool in microsampling, especially for applications where sample stability and ease of

collection are paramount®®,

Although different modifications to traditional DBS cards exist to minimize the Hct
effects, the easiest approach to eliminate the Hct bias related to spot size and
inhomogeneity is to analyze the complete DBS spot formed from a volumetric application
of blood*?°. Volumetric DBS can be obtained either by punching the entire DBS after the
volumetric application of blood or by volumetrically applying blood on pre-punched
discs'#3. Accurate volumes of blood for application can be procured using a micropipette
or microfluidic channels. However, effective pipetting requires skilled personnel, which

limits its scope of application due to the reduced feasibility of self-sampling?°.

2.2.2 Volumetric Absorptive Microsampling (VAMS)

Another solution to overcome the haematocrit effect is the development of
guantitative devices to collect an exact volume of capillary blood. Volumetric Absorptive
Microsampling (VAMS) represents a more recent advancement in microsampling

technology, addressing some of the limitations associated with DBS. VAMS devices utilize

20



Biofluids: The way the human body talks -

a specially designed porous hydrophilic absorbent tip that collects a fixed, precise volume

of blood—typically around 10 to 20 microliters3’—from a finger prick (Fig. 8).
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Figure 8. Volumetric absorptive microsampling technology. (a) Mitra® device (Trajan
Scientific and Medical, Melbourne, VIC, Australia) and (b) TASSO (Tasso Inc., Seattle, WA,
USA) M-20.
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The absorbent tip is then dried and sent for analysis, similar to the DBS method. The
key advantage of VAMS lies in its precision'4’; it ensures that a consistent blood volume is
collected with each sample, thereby improving the accuracy and reproducibility (<4%
RSD) of analytical results'*®. Like DBS, VAMS is simple to perform and can be used in non-
clinical settings, making it highly versatile. Nevertheless, VAMS devices are generally more
expensive than traditional DBS cards, which can be a consideration in large-scale studies.
While the technique is user-friendly, proper training is essential to ensure that the correct
volume is absorbed, especially in settings where self-collection is involved. As with DBS,
the processing and extraction of samples from VAMS devices can be complex, requiring

specialized protocols for different analytes®°.

2.2.3 Capillary microsampling (CMS)

Capillary microsampling (CMS) involves the collection of small volumes of blood—
typically 1-35 microliters>®— from exact-volume capillaries, coated or not with
anticoagulants, to take up blood obtained via finger prick through capillary forces*?® (Fig.
9). The collected blood is then stored in a capillary tube or microcontainer sealed with
wax for subsequent analysis. From a matrix point of view, no major differences are
expected in the sample by the conventional way, since capillary microsamples are liquid

samples!>!

. CMS’s primary advantage is its requirement for only a tiny amount of
blood>!, making it minimally invasive and suitable for repeated measurements®®2,
Additionally, the blood can be analyzed immediately on-site using portable devices, which
is ideal for real-time monitoring'?®. However, capillary microsampling is not without
challenges. Unlike DBS or VAMS, capillary blood stored in microtubes requires proper
storage conditions to prevent degradation, typically requiring refrigeration or immediate
analysis. For unstable analytes, a stabilizer is added to the sample within a few seconds of

the collection. But for the analytes, which possess high affinity of binding to glass, CMS

can be a constraint!31%4,
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Figure 9. Typical capillary microsampling and hemaPEN® device (Trajan Scientific and

Medical, Melbourne, VIC, Australia).

Although these microsampling devices provide a robust approach for collecting
blood samples to overcome the DBS limitations, they fail to eliminate the impact of Hct
on the extraction efficiency of analytes'??. Despite the inconveniences caused by Hct,
several advancements in the DBS technology have been made to improve existing
features and develop new functionalities. Figure 10 offers an overview of the frequently

used and commercially available microsampling devices for dried blood collection. Above
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all, DBS is the most established blood microsampling technique, adopted by 43.6% of

studies using microsampling technologies in 2022 (Fig. 10)*?°.
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Figure 10. A summary of commercially available of blood microsampling techniques4°

(taken from ref. 140).

2.2.4 Microneedles

Unlike previously mentioned and established techniques, microneedles are capable
of penetrating the skin and sampling at the same time without the use of a blood lancet.
Microneedle sampling is an emerging technology that uses an array of tiny needles, often

no more than a few hundred micrometers in length®>> (Fig. 11a,b), to penetrate the skin’s
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outer layer and access the interstitial fluid or capillary blood®®. These microneedles are
designed to be pain-free and minimally invasive, making them particularly appealing for
frequent monitoring. Early microneedle designs usually possessed a solid body and were
primarily designed for cosmetic or therapeutic purposes, such as drug delivery'>®. Recent
advances in rapid prototyping techniques, for example 3D printing and laser cutting has
enabled microsampling with microneedles for clinical research purposes'>”°8, In most
cases, a patch filled with microneedles was applied to the skin, and blood samples were
continuously extracted through microfluidic channels to the back of the patch for
analysis®>16! (Fig. 11c). The primary advantage of microneedle sampling is its pain-free
collection, which significantly improves comfort for the individual, especially for those
requiring regular sampling. Moreover, the minimal invasiveness of microneedles reduces
the risk of infection and tissue damage, making it a safer option for continuous
monitoring. Microneedles also hold the potential for integration into wearable devices,
enabling continuous or semi-continuous monitoring of blood or interstitial fluid
biomarkers®®. However, the volume of blood that can be collected using microneedles is
extremely small (about 30+ 5 pL of blood sample could be collected by the microneedle
sampling on a rabbit model in 3 min®®), which may limit the range of analyses that can be
performed. Additionally, the cost and complexity of microneedle devices remain
significant barriers to widespread adoption, as the technology is still relatively new and
can be expensive both in terms of the devices themselves!®? and the infrastructure

needed to process the samples.
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Figure 11. (a) The reported dimension of hollow microneedle!®®, (b) schematic
representation of the hollow microneedle array®*, and (c) microneedle TAP device

(YourBio Health, Medford, MA, USA) (taken from ref. 163 and 164).

2.3 Saliva sampling: A non-invasive tool for athlete monitoring

Saliva is a hypotonic fluid primarily made up of water, electrolytes, and organic
molecules like amino acids, proteins, and lipids!®®. The water in saliva mainly comes from

the local capillary bed through intracellular diffusion, aquaporin water channels, and
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extracellular pathways'®®%7 Small neutral molecules from the bloodstream enter the
saliva through passive diffusion from the dense capillary networks surrounding the
salivary glands. Electrolytes enter saliva due to osmotic gradients, with their
concentration regulated by the rate of secretion, the type of stimulus, and circulating

165

mineralocorticoid levels'®>. The organic components of saliva are largely produced

through protein synthesis and stored as granules in acinar cells'®8,

One of the key advantages of saliva over other biofluids is its ability to reflect the
acute responses of the body to exercise!?®. For instance, the concentration of cortisol in
saliva can rapidly increase in response to physical or psychological stress, providing a real-
time indication of the body’s stress levels. Similarly, changes in salivary immunoglobulin
levels can indicate alterations in immune function, which are critical for understanding

the impact of intense training on an athlete's susceptibility to infections.

Salivary analysis also offers practical benefits, particularly in field settings. Unlike
blood or urine, saliva collection does not require specialized equipment or trained
personnel, and it can be performed by the athletes themselves. This ease of collection
facilitates frequent monitoring, enabling coaches and sports scientists to track changes in
an athlete's physiological state throughout training and competition. The following
sections outline the most widely used saliva sampling methods, highlighting their

principles, advantages, and limitations.

2.3.1 Unstimulated - passive drooling method

Unstimulated whole saliva is the mixture of secretions that enters the mouth in the
absence of exogenous stimuli and depends on the daily basal salivary flow rate in the oral
cavity'®®. The composition of unstimulated saliva can be affected by the degree of
hydration, position of head during collection, body posture, light exposure, drugs and

circadian rhythm%, The passive drooling method, practiced since 1934'%°, is the most
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commonly employed technique for saliva sampling due to its simplicity and efficiency. In
this method, the participant allows saliva to accumulate naturally in the mouth and then
dribbles it into a sterile collection tube®® (Fig. 12). Passive drool requires no external
stimulation, ensuring that the sample reflects the baseline composition of saliva without
the interference of materials and substances used to sample or stimulate the salivary flow

that could alter its content?’.

Figure 12. Example of the spitting method into a polypropylene centrifuge tube.

This method offers several advantages. First, passive drool is a true reflection of
unstimulated, whole saliva, making it ideal for measuring biomarkers that are sensitive to
changes in saliva flow rate. It is particularly effective for assessing hormones such as
cortisol, testosterone, and immunoglobulins, which can be affected by physical
exercise'?>172, Second, it is a straightforward and non-invasive method that can be

performed by the participants themselves, reducing the need for specialized personnel
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and equipment!’3, This ease of collection makes passive drool particularly suitable for
field-based studies and large-scale research projects where repeated sampling is

required’’4,

However, there are limitations to passive drool collection. The process can be time-
consuming, as participants must produce an adequate volume of saliva, typically between
1 and 5 milliliters, for most assays'’!. Additionally, some individuals may find it difficult to
produce sufficient salival’>, especially under stressful conditions or in dehydrated states,
which can affect the sample’s quality and volume. Finally, while passive drool provides a
reliable baseline measure, it may not be appropriate for studies requiring rapid or

stimulated saliva production.

2.3.2 Stimulated method

Stimulated saliva is physiologically secreted in response to either masticatory or
gustatory stimulations during food intake!®®. Stimulated saliva collection is used when
larger volumes of saliva are required or when it is important to enhance saliva flow!7¢177
to ensure timely collection. In this method, saliva production is stimulated by external
means, such as chewing on inert substances (e.g., paraffin wax, unflavored chewing gum
base, cotton puff and rubber bands) or applying citric acid to the tongue'®®. The increased
saliva flow allows for quicker sample collection. It was found that salivary flow peaked
(2.7 £ 0.52 mL/min) within the first 2 min of stimulation, and then gradually decreased to
the level of the initial unstimulated flow rate (0.39 + 0.16 mL/min) at 25 min to reach

177

reached a plateau'’/, while other studies report that under stimulation, the flow rate may

increases up to about 4 mL/min'’8,

Stimulated saliva collection allows for rapid collection of sufficient saliva volumes,
making it useful for assays requiring a larger quantity of biofluid. Furthermore, because it

promotes consistent saliva flow, this method can reduce the variability in flow rates seen
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in passive collection methods, potentially leading to more reproducible results in some

contexts. Stimulated saliva is often preferred when analyzing salivary electrolytes’:180,

181 180

enzymes°+, or antimicrobial proteins*®®, as their concentrations can increase with

elevated flow rates, providing a more robust measure of salivary gland function.

Despite these advantages, stimulated saliva collection has notable limitations. The
stimulation process can alter the composition of the saliva, particularly for biomarkers like
hormones that are sensitive to changes in flow rate'®, For instance, researches indicated
that sucrose, homovanillic acid and 3-methoxy-4-hydroxyphenylglycol concentrations
were altered by stimulation'®83, Stimulated saliva is generally more dilute than
unstimulated saliva, which can affect the concentration of certain analytes and may
reduce the accuracy of results for specific assays, as in the case of uric acid where the
concentration decreased from 70 + 20 pg/mL to 30 + 10 pg/mL*84. Additionally, the choice
of stimulation method can introduce further variability (e.g. volume variation observed
when paraffin stimulation was used'8>. A study indicated that the higher flow rate can
increase the pH of saliva from 6.7 + 0.24 initially up to 7.35 + 0.22 pH units after

stimulation””

, potentially impacting the stability of pH-sensitive biomarkers. During
stress, saliva volume and composition which are regulated by the sympathetic and
parasympathetic nervous systems, can be altered. This alteration is often expressed as
dry mouth (xerostomia)8®187, This reduction in saliva secretion leads to a decrease in the
bicarbonate (alkaline) content of saliva, causing increased acidity and a drop in oral pH*88,
Lower oral pH may contribute to the dysregulation of other stress-related saliva

biomarkers, affecting components such as cortisol'®, sIgA¥°, and alpha-amylase!®®. As a

result, pH could play a key role in the stress-induced imbalance of saliva biomarkers!®’.

2.3.3 Swab-based sampling

Salivary swabs are another popular method for saliva sampling, particularly in cases

where the volume of saliva needed is relatively small. Swabbing techniques can be
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divided in two subgroups. In the first case, a stick with fibers frayed at one end was used
to swab the total target area, while applying medium pressure, at an angle relative to the
substrate (to assure that a large area of the swab is in contact with the substrate) and
rotating the swab continually, followed by extraction in buffer'®! (Fig. 13a). On the other
hand, a synthetic or cotton (cellulosic) swab is placed in the mouth between a tongue and
the cheek for a specified period—typically 1 to 2 minutes—to absorb saliva'®®. The swab is
then placed in a sterile tube and centrifuged to extract the collected saliva for analysis

(Fig. 13c).

Swab collection offers several practical advantages. It is a fast and convenient
method that requires minimal cooperation from the participant, making it ideal for
research involving children, elderly individuals'®®, or those unable to provide passive drool
samples due to exercise-induced dehydration status®?. It is also highly useful in situations
where time is a limiting factor, as the collection process is quicker compared to passive
drool. Additionally, swabs are small, portable, and easy to use in field settings, making
them a practical choice for monitoring athletes during competitions or training

sessions!®3.
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Figure 13. (a) One-end swab saliva sampling procedure, (b) Salivette® (blue cap, Sarstedt,
Nimbrecht, Germany) and (c) cotton swab placed in the mouth sampling and handling

procedure.

However, there are some important limitations to this method. The material of the
swab can influence the composition of the saliva sample®>1941%  with some types of
swabs retaining or altering the concentration of specific biomarkers'®. For instance,

cortisol and other steroid hormones tend to adhere to polyurethane-tip applicators,
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potentially leading to lower measured concentrations compared to passive drool'®®. To
mitigate this issue, cotton or synthetic swabs made from inert materials such as polyester
are often preferred!®®. Additionally, the recovery efficiency is also affected by the lack of
uniformity in swabbing techniques. There is no clear indication of how wet or moist such
a swab needs to be, and there is no consensus regarding other parameters, including
swabbing time, swabbing angle, and applied pressure on the swab®!., However, in
addition to the recovery efficiency of the used swab itself, the sampling skills (including
swabbing technique) of the investigator substantially influence the obtained overall
efficiency. Surprisingly, the influence of the investigator’s skills is frequently
underestimated, with only a limited number of articles addressing this crucial aspect®’~
199 Last but not least, placing absorbent swabs in different areas of the mouth may
influence both the amount of sample volume collected and the composition of analytes in
the sample?®%201, Thijs variability can affect the reliability of the results, particularly for

guantitative analyses where accurate measurement of saliva volume is essential.

2.3.4 Dried Saliva Spots (DSS)

Dried Saliva Spots (DSS) are an emerging technique for saliva sampling, offering
several practical advantages. In DSS, a few drops of saliva are spotted onto collection card
and dry at room conditions. DSS needed a low volume of saliva (50 puL) and allowed for a
quantitative recovery of the analyte from a filter paper®®. Subsequently, the DSS is
extracted using a suitable solvent using a combination of vortex-assisted extraction and
ultrasound-assisted extraction similar to DBS?%2. In 2016, Numako et al. utilized DSS for
the determination of D- and L- lactic acid in diabetic, pre-diabetic and nominally healthy
people. The study highlighted the use of DSS results high accuracy and precision and high
recovery of the target molecule from the spot, while the target molecules were stable
during the long storage period until analysis??3. Indeed, the improved preservation and

stability of the saliva sample is an outcome from the absorptive characteristic of the filter
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paper?%?, Therefore, the advantage of DSS significantly reduces transportation costs, while
DSS can be easily stored and transported without the need for refrigeration?°2. However,
DSS also has some limitations. Sharing the same problems with DBS, limitations of DSS
encompass variations in sample volume, sensitivity concerns, vulnerability to external
factors during drying, limited sample volume, analyte stability challenges, potential risks
of contamination, and difficulties in biomarker extraction?®*. Despite these challenges,
DSS remains a promising tool for non-invasive monitoring in sports science and clinical

research.

Moreover, recent advances in analytical techniques, such as Attenuated Total
Reflection-Fourier Transform Infrared (ATR-FTIR) spectroscopy and chemometric
analysis?%®, have enhanced the ability to detect and interpret salivary biomarkers. These
methods allow for the rapid and detailed analysis of saliva, identifying subtle changes in
its composition that may not be detectable with traditional techniques. As a result,
salivary analysis is becoming an increasingly important tool in the arsenal of sports
scientists, offering a non-invasive, cost-effective, and reliable means of monitoring

athletes.

Biofluid monitoring represents a crucial aspect of sports science, providing insights
into the physiological and biochemical states of athletes during training and competition.
While blood, urine, and sweat each offer unique advantages, saliva stands out for its non-
invasive nature and ease of collection. As the field of sports science continues to evolve,
the use of biofluid analysis is likely to expand, offering new opportunities to optimize

performance, prevent injuries, and promote the health and well-being of athletes.
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3. Infrared spectroscopy: Fundamentals and experimental methods

Infrared spectroscopy is certainly one of the most important analytical techniques
available to today’s scientists. One of the great advantages of infrared spectroscopy is
that virtually any sample in virtually any state may be studied. Liquids, solutions, pastes,
powders, films, fibers, gases and surfaces can all be examined with a judicious choice of
sampling technique?®®=211, As a consequence of the improved instrumentation, a variety
of new sensitive techniques have now been developed to examine formerly intractable

samples.

Infrared spectrometers have been commercially available since the 1940s. At that
time, the instruments relied on prisms to act as dispersive elements, but by the mid
1950s, diffraction gratings had been introduced into dispersive machines?!2, The most
significant advances in infrared spectroscopy, however, have come about as a result of
the introduction of Fourier-transform spectrometers. This type of instrument employs an
interferometer and exploits the well-established mathematical process of Fourier-
transformation. Fourier-transform infrared (FTIR) spectroscopy has dramatically improved
the quality of infrared spectra and minimized the time required to obtain data?!?2%3, In
addition, with constant improvements to computers, infrared spectroscopy has made

further great strides?142%>,

Infrared spectroscopy is a technique based on the vibrations of the atoms of a
molecule. An infrared spectrum is commonly obtained by passing infrared radiation
through a sample and determining what fraction of the incident radiation is absorbed at a
particular energy. The energy at which any peak in an absorption spectrum appears

corresponds to the frequency of a vibration of a part of a sample molecule.
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3.1 Electromagnetic radiation

Electromagnetic radiation encompasses a broad range of energy forms, all
characterized by their ability to propagate through space as oscillating electric and
magnetic fields. These forms of radiation differ in their wavelengths and frequencies,
giving rise to different types of interactions with matter, as depicted in the
electromagnetic spectrum (Fig. 14). The visible portion of the spectrum, which can be
detected by the human eye, is just a small fraction of the entire range, which also includes

radiowaves, microwaves, infrared (IR), ultraviolet (UV), X-rays, and gamma rays?16217,
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Figure 14. (a) The regions of the electromagnetic spectrum, showing various properties
across the range of frequencies and wavelengths, (b) simplified picture of an
electromagnetic wave (the oscillations are perpendicular to each other and to the

direction of energy flow) and (c) the visible spectrum.

Spectroscopists use the interactions of radiation with matter to obtain information

about a sample. The matter (analyte) is predominately in its lowest-energy or ground
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state. The radiation then causes some of the analyte species to undergo a transition to a

higher-energy or excited state (Fig. 15).

- — —— >
m
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E

Figure 15. Illustration of quantized discrete energy levels?!? (taken from ref. 212).

The energy required for this transition must be equal to the energy of the radiation
described as a stream of photons or quanta for which the energy, E, is given by the Bohr

equation (Eq. 1), as follows:

E =hv (1)

where h is the Planck constant (h = 6.626 x 10734 J-s) and v is equivalent to the
classical frequency of radiation?’.

The information about the analyte is acquired by measuring the electromagnetic
radiation emitted as it returns to the ground state or by measuring the amount of
electromagnetic radiation absorbed as a result of excitation?'’.

When the sample is stimulated by applying an external electromagnetic radiation
source, several processes are possible. Processes of change, including those of vibration

212" can be represented in terms of

and rotation associated with infrared spectroscopy
guantized discrete energy levels Eg, E1, E3, etc., as shown in Figure 15.
For ultraviolet and visible radiation, excitation occurs when an electron residing in a

low-energy molecular or atomic orbital is promoted to a higher-energy orbital. In
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addition, molecules exhibit two other types of radiation-induced transitions: vibrational
transitions and rotational transitions. Vibrational transitions occur because a molecule
has a multitude of quantized energy levels, or vibrational states, associated with the
bonds that hold the molecule together. Figure 16 depicts the energies E; and E;, two of
the several electronically excited states of a molecule, relative to the energy of the
ground state Eo. This phenomenon involves orbital transitions due to ultraviolet and
visible radiation. In addition, the relative energies of vibrational states associated with
each electronic state are indicated by the lighter horizontal lines. This kind of transitions
occurs when the matter interacts with lower energy (larger wavelength) photons

(infrared radiation).
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Figure 16. Energy level diagram showing some of the energy changes that occur during
absorption of infrared (IR), visible (VIS), and ultraviolet (UV) radiation by a molecular

species?!’ (taken from ref. 217).
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3.2 Infrared absorptions

Infrared radiation generally is not energetic enough to cause electronic transitions,
but it can induce transitions in the vibrational and rotational states associated with the
ground electronic state of the molecule (Fig. 16). With liquid or solid samples, however,
rotation is often hindered or prevented, and the effects of these small energy differences
are not detected?'’. In infrared spectroscopy, for a molecule to exhibit infrared
absorptions, its electric dipole moment must change during the vibration, which serves as
the selection rule for infrared activity?!8. Molecules that meet this criterion, such as
heteronuclear diatomic molecules, are considered "infrared-active" because their dipole
moment changes as the bond stretches and contracts. Conversely, homonuclear diatomic
molecules are "infrared-inactive" as their dipole moment remains constant, regardless of
bond length?'2. In general, the greater the polarity of the bond, the stronger its infrared
absorption is. The carbonyl bond is very polar, and absorbs very strongly. The carbon-
carbon triple bond in most alkynes, in contrast, is much less polar, and thus a stretching
vibration does not result in a large change in the overall dipole moment of the molecule.

Infrared absorption bands are not infinitely narrow; several factors contribute to
their broadening. Collisions between molecules can broaden the bands. Another factor is
the finite lifetime of the states involved in the transition. In quantum mechanics, solving
the Schrodinger equation for time-dependent systems reveals that energy states do not
have precisely defined energies, leading to lifetime broadening?!?. According to the
Heisenberg Uncertainty Principle, the shorter the lifetime of an excited state, the broader

the absorption band is, reflecting a less precisely defined energy?*2.

3.3 Normal modes of vibration

The interactions of infrared radiation with matter may be understood in terms of

changes in molecular dipoles associated with vibrations and rotations. A basic model, a
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molecule can be looked upon as a system of masses joined by bonds with spring-like
properties. The atoms in the molecules can also move relative to one other, that is, bond
lengths can vary or one atom can move out of its present plane. This is a description of
stretching and bending movements that are collectively referred to as vibrations. The
number of ways a molecule can vibrate is related to the number of atoms, and thus the
number of bonds, it contains?'’. For a diatomic molecule, only one vibration that
corresponds to the stretching and compression of the bond is possible. This accounts for
one degree of vibrational freedom. Polyatomic molecules containing many (N) atoms will

have 3N degrees of freedom?'2 (Table 1).

Table 1. Degrees of freedom for polyatomic molecules.

Type of degrees of freedom Non-linear
Translational 3 3
Rotational 2 3
Vibrational 3N-5 3N-6
Total 3N 3N

A molecule can only absorb radiation when the incoming infrared radiation is of the
same frequency as one of the fundamental modes of vibration of the molecule. This
means that the vibrational motion of a small part of the molecule is increased while the
rest of the molecule is left unaffected.

Vibrations can involve either a change in bond length (stretching) or bond angle
(bending) (Fig. 17). Some bonds can stretch in-Phase (symmetrical stretching) or out-of-
Phase (asymmetric stretching), as shown in Figure 17a. Bending vibrations also contribute
to infrared spectra and these are summarized in Figure 17b. Taking the water molecule as
an example, the hydrogens can move in the same direction or in opposite directions in
this plane, here the plane of the page. This results in in-plane and out-of-plane bending

vibrations, as illustrated in Figure 17b. There will be many different vibrations for even
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fairly simple molecules. The complexity of an infrared spectrum arises from the coupling
of vibrations over a large part of or over the complete molecule. Such vibrations are
called skeletal vibrations. For more complex molecules, the analysis becomes simpler
since hydrogen atoms may be considered in isolation because they are usually attached
to more massive, and therefore, more rigid parts of the molecule?!2. Bands associated
with skeletal vibrations are likely to conform to a pattern or fingerprint of the molecule as

a whole, rather than a specific group within the molecule.

Ny” Ny

Symmetric Asymmelric

{a) Stretching vibrations

a /

Y
In-plane rocking In-plane scissoring
+ + + -
Out-of-plane wagging Out-of-plane twisting

(b) Bending vibrations

Figure 17. Types of molecular vibrations. (a) Symmetric and asymmetric stretching

vibrations and (b) in-plane and out-of-plane bending vibrations?!’ (taken from ref. 217).
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3.4 Complicating Factors

There are a number of factors that may complicate the interpretation of infrared
spectra (e.g. overtone and combination bands, Fermi resonance, coupling and vibration-
rotation bands). These factors should be considered when studying spectra as they can
result in important changes to the spectra and may result in the misinterpretation of

bands.

3.4.1 Overtone and anharmonic bands

The sound we hear is a mixture of harmonics, that is, a fundamental frequency
mixed with multiples of that frequency. Overtone bands in an infrared spectrum are
analogous and are multiples of the fundamental absorption frequency. Up to now only
harmonic vibrations have been discussed (Fig. 18a). If anharmonicity is present, vibration
will be periodic but not a simple sine or cosine wave (Fig 18b), thus the vibrational
frequency will no longer be completely independent of amplitude as it is in the harmonic
case. However, any such periodic function can be resolved into simple sine or cosine
components where the frequencies are integral multiples of the fundamental vibrational
frequencies (Fourier analysis) (Fig. 18c). This means that if the molecular vibration is
anharmonic, the dipole moment will oscillate with the fundamental frequency and
integral multiples thereof?!8,

These are called the fundamental, first overtone, second overtone, etc. The energy
required for the first overtone is twice the fundamental, assuming evenly spaced energy
levels. Since the energy is proportional to the frequency absorbed and this is proportional
to the wavenumber, the first overtone will appear in the spectrum at twice the
wavenumber of the fundamental?!2. The intensity of an overtone absorption is dependent
on the amount of anharmonicity in the vibration. Overtones can be detected in the

infrared spectrum but they are usually quite weak, which implies that although molecular
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vibrations are measurably anharmonic, the anharmonicity is not great and can be ignored

in a reasonably good first approximation?28,

-— TIME

HARMONIC ANHARMONIC COMPONENTS
a b o

Figure 18. Plots of mass displacement versus time for (a) harmonic, (b) anharmonic
vibrations and (c) the main components of the anharmonic curve in the middle?*® (taken

from ref. 218).

3.4.2 Fermi resonance

The Fermi resonance effect usually leads to two bands appearing close together
when only one is expected. When an overtone band has the same frequency as, or a
similar frequency to, a fundamental, two bands appear, split either side of the expected
value and are of about equal intensity. The effect is greatest when the frequencies match,
but it is also present when there is a mismatch of a few tens of wavenumbers. The two

bands are referred to as a Fermi doublet?2.
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3.4.3 Coupling

Vibrations in the skeletons of molecules become coupled. Such vibrations are not
restricted to one or two bonds, but may involve a large part of the carbon backbone and
oxygen or nitrogen atoms if present, especially when the motions are in the same part of
the molecule. The energy levels mix, hence resulting in the same number of vibrational
modes, but at different frequencies, and bands can no longer be assigned to one bond.
This is very common and occurs when adjacent bonds have similar frequencies. Coupling
commonly occurs between C-C stretching, C-0O stretching, C—N stretching, C—H rocking

and C—H wagging motions??2,

3.4 Fourier-Transform infrared spectrometers

Fourier Transform Infrared (FTIR) spectrometers are powerful analytical instruments
used to obtain an infrared spectrum of absorption, transmission, or emission of a solid,
liquid, or gas. By measuring how a sample absorbs light across the infrared range, FTIR
spectrometers provide detailed information about the molecular composition, functional
groups, and chemical bonds present in a material. The technique is widely used due to its
ability to analyze both organic and inorganic compounds quickly and with minimal sample
preparation. Modern IR spectroscopic instruments are widely equipped with the FTIR
design to accelerate the scanning and data collection process, while the fundamental unit
of the FTIR spectrometer constitutes the Michelson interferometer?!’. The detailed
optical layout of the ATR-FTIR spectrometer is depicted in Figure 19 along with the path

ways of generating the IR spectrum. The next lines lay the description of each component.
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Figure 19. (a) Schematic optical layout of the FTIR spectrometer mounted with a
trapezoidal crystal ATR accessory and (b) photograph of a typical ATR-FTIR

instrumentation.

3.4.1 Michelson interferometers

The most common interferometer used in FTIR spectrometry is a Michelson
interferometer (invented by the American physicist Albert A. Michelson), is a precision
instrument that produces interference fringes by splitting a light beam into two parts and
then recombining them after they have traveled different optical paths?!2. Michelson
interferometer consists of two perpendicularly plane mirrors, one of which can travel in a
direction perpendicular to the plane. A semi-reflecting film (half-silvered mirror), the
beamsplitter, bisects the planes of these two mirrors. Figure 20 depicts the
interferometer and the path of a light beam from a single point on the extended source S,

which is a ground-glass plate that diffuses the light from a monochromatic lamp. The
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beam strikes the beamsplitter M, where half of it is reflected to the side and half passes
through it. The reflected light travels to the movable plane mirror M1, where it is reflected
back through beamsplitter M to the detector (the observer acts as a simplified version of
the detector). The transmitted half of the original beam is reflected back by the stationary

mirror M; and then toward the observer by beamsplitter.

% r ___ M, (movable)

S d M,
Laser 1 M (fixed)
- l
M N ————— d;
€ Laser S
c |
y (bending of rays

|/
y

v exaggerated)
(@) (b)

Figure 20. (a) The Michelson interferometer and (b) a planar view of the interferometer.

Notice from the figure that one beam passes through M three times and the other
only once, since the reflecting surface of the beam splitter is the surface on the lower
right (more clearly in Fig. 20b). To ensure that both beams traverse the same thickness of
glass, a compensator plate C of transparent glass is placed in the arm containing M. This
plate is a duplicate of M (without the silvering reflective surface) and is usually cut from
the same piece of glass used to produce M. With the compensator in place, any Phase
difference between the two beams is due solely to the difference in the distances they
travel.

If two waves (beams) simultaneously propagate through the same region of space,
the resultant field at any point in that region is the vector sum of the field of each wave.
This is the principle of superposition. If two beams emanate from a common source, but
travel over two different paths to a detector (one path is constant and the second one

changes due to moving mirror), the field at the detector will be determined by the optical
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path difference. This phenomenon concludes to Phase difference between the

transmitted and reflected beam interfere destructively or constructively?!2,

3.4.2 Fourier-Transformation in IR spectroscopy

Fourier-transform infrared (FTIR) spectroscopy is based on the idea of the
interference of radiation between two beams to yield an interferogram. The latter is a

signal produced as a function of the change of pathlength between the two beams.

An interferogram has a 'center-burst’, also called the 'zero-path-difference' point, or
'ZPD'. This corresponds to the place where maximum interference is produced by the
moving mirror in the instrument (Fig. 21)?!°. This center-burst can be placed in the middle
or near to the beginning of the interferogram. The placement of the center-burst is
determined by when the instrument starts data collection during the mirror travel. When
the center-burst is in the middle, the interferogram is called 'double-sided' or 'symmetric'.
When it is placed at the beginning of the interferogram, it is called 'single-sided' or

‘asymmetric'.

Signal amplitude

Mirror displacement

Figure 21. Observed signal from a Michelson interferometer as a function of mirror

displacement for an incident wave consisting of three discrete frequencies. This signal is
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the sum of the three cosine wave signals that would arise from each frequency

separately, as indicated?!® (taken from ref. 219).

The two domains of distance and frequency are interconvertible by the
mathematical method of Fourier-transformation. In Figure 22 is summarized how the
polystyrene film interferogram is transformed into a transmittance spectrum via Fourier

analysis. A detailed documentation about Fourier transformation is described in Section 5.
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Figure 22. Pictorial essay of transformation and Phase correction by the Mertz method:

ent Transmittance

(a) double-sided interferogram of a polystyrene film, (b) real and imaginary portions of
the complex FT, (c) transmittance spectrum after the single-beam spectrum of sample is
ratioed against a single-beam reference spectrum (note that only one-half of each curve
of (c) has been retained since each half is a mirror image of the other and no information

is lost when one half is discarded)??° (taken from ref. 220).

3.5 Attenuated Total Reflectance spectroscopy

Transmission spectroscopy is the oldest and most straightforward infrared method.
This technique is based upon the absorption of infrared radiation at specific wavelengths
as it passes through a sample. It is possible to analyze samples in the liquid, solid or
gaseous forms when using this approach. Reflectance techniques may be used for

samples that are difficult to analyze by the conventional transmittance methods.

48



Infrared spectroscopy: Fundamentals and experimental methods -

Reflectance methods can be divided into two categories. Internal reflectance
measurements can be made by using an attenuated total reflectance cell in contact with
the sample. There is also a variety of external reflectance measurements which involve an
infrared beam reflected directly from the sample surface.

When a propagating wave (e.g. infrared light beam) hits the surface between two
optical media which are characterized by two different refractive indices at a certain
angle of incidence, the light is totally reflected. This angle is called the critical angle.
Attenuated Total Reflectance (ATR) spectroscopy utilizes the phenomenon of total
internal reflection. A beam of radiation entering a crystal will undergo total internal
reflection when the angle of incidence at the interface between the sample and crystal is
greater than the critical angle, where the latter is a function of the refractive indices of
the two surfaces (Fig. 23)?'2. The IR radiation travels through the crystal and interacts
with the sample on the surface in contact with the ATR crystal. The beam penetrates a
fraction of a wavelength beyond the reflecting surface and when a material that
selectively absorbs radiation is in close contact with the reflecting surface, the beam loses
energy at the wavelength where the material absorbs. The resultant attenuated radiation
is measured and plotted as a function of wavelength by the spectrometer and gives rise

to the absorption spectral characteristics of the sample.

3.5.1 ATR cells

Many different ATR accessories are available for FTIR spectrometers. They can be
divided into ATR cells with a single reflection (one bounce) and cells with multiple
reflections (multiple bounce, 25 or more) (Fig. 23)?'2. Depending on the application and
the measured samples, different materials are used as the ATR crystal. The crystals used
in ATR cells are made from materials that have low solubility in water and are of a very
high refractive index. Such materials include zinc selenide (ZnSe), germanium (Ge),

diamond (Fig. 23c,d,e,f) and thallium—iodide (KRS-5)?22.
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Figure 23. (a) Optical ray diagram of a single reflection and (b) multiple reflection internal
reflection element geometries of ATR-FTIR spectrometer. Close-up of a (c) diamond, (d)
zinc selenide (ZnSe), (e) germanium and (f) multi-reflection (ZnSe) ATR crystals??? (taken

from ref. 222).

In single-bounce ATR cell the IR beam and the sample interact only once at a single
point of reflection. Modern FTIR spectrometers with sufficiently large signal-to-noise ratio
(which is a measure of signal quality) allow for reasonable spectra even with only one
bounce. The clear advantage of single-bounce ATR cells is the minimal amount of sample
needed for a measurement. Single-bounce attenuated total reflectance cells are

commonly used for solid samples or powders or whenever only small sample volumes of
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liquids are available. Common single-bounce ATR accessories consist of an ATR crystal
with an interface surface area of about 2 mm? and a clamp which is used to uniformly
press solid or powder samples onto the ATR crystal’s surface (Fig. 19b)?23,

In multiple-bounce ATR cells the IR beam is reflected multiple times. Each reflection
on the ATR crystal’s surface exhibits an evanescent wave which interacts with the
sample??!. Since the interactions are independent of one another the absorptions are
additive and the sensitivity of the recorded spectrum can be increased due to significantly
higher signal-to-noise ratios.

Different designs of ATR cells allow both liquid and solid samples to be examined. It
is also possible to set up a flow-through ATR cell by including an inlet and outlet in the
apparatus?®!2. This allows for the continuous flow of solutions through the cell and permits

spectral changes to be monitored with time.

3.5.2 Evanescent wave

Total internal reflection does not explain the interaction of the IR beam and sample
because the IR beam never leaves the ATR crystal. Instead, the interaction of the IR beam
and sample occurs through an evanescent field, often called evanescent wave (Fig. 24a).
Upon total reflection of the incident light at the interface where the crystal touches the
sample a small fraction of the light extends into the sample as an evanescent wave. When
a wave cannot propagate regularly into the sample, it is concentrated in proximity to the
point of total reflection and starts decaying exponentially??*. The evanescent wave sticks
out into the sample. In areas where the sample is in contact with the evanescent wave
specific parts of the IR beam are absorbed based on the sample’s composition. The totally

reflected IR light lacks the absorbed parts and thus is attenuated.
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Figure 24. (a) Graphical representation of a single bounce ATR and (b) depth penetration

of the evanescent wave depending on the specific wavenumber energy (wavelength, A).

The depth of penetration is defined as the distance to the point at which the
evanescent wave’s amplitude has decreased to 1/e (i.e. about 37%) of its maximum
value??4#??5, The depth of penetration in ATR spectroscopy is a function of the wavelength,
A (Fig. 24b); the refractive index of the crystal, ny; and the angle of incident radiation, 6.

The depth of penetration, dp, for a non-absorbing medium is given by Eq. 2:

A

dy= —— (2)
2m /sin@—(z—;)z

where nj is the refractive index of the sample?2,

3.6 Qualitative applications of ATR-FTIR spectroscopy

An infrared absorption spectrum, even one for a relatively simple compound, often
contains a bewildering array of sharp peaks. Peaks useful for the identification of
functional groups are located in the shorter-wavelength region of the infrared (fingerprint
region), where the peaks positions are only slightly affected by the carbon skeleton of the

molecule?’. This region of the spectrum thus abounds with information regarding the
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overall constitution of the molecule under investigation. Table 2 gives the positions of

characteristic peaks for some common functional groups.

Table 2. Some characteristic infrared absorption peaks?!’ (taken from ref. 217).

Absorption Peaks

Vibration Functional Group Wavenumber,cm!  Wavelength, um
O—H Aliphatic and 3600-3000 2.8-3.3
aromatic
NH, Also secondary and 3600-3100 2.8-3.2
tertiary
C—H Aromatic 3150-3000 3.2-3.3
C—H Aliphatic 3000-2850 3.3-3.5
C=N Nitrile 2400-2200 4.2-4.6
C=C— Alkyne 2260-2100 4.4-4.8
COOR Ester 1750-1700 5.7-5.9
COOH Carboxylic acid 1740-1670 5.7-6.0
= Aldehydes and 1740-1660 5.7-6.0
ketones
CONH; Amides 1720-1640 5.8-6.1
C=C— Alkene 1670-1610 6.0-6.2
Q)—O—R Aromatic 1300-1180 7.7-8.5
R—O—R Aliphatic 1160-1060 8.6-9.4

The ATR-FTIR spectroscopic technique has undergone significant advancements,
enabling detailed analyses of molecular bonding, surface adsorption, interactions,
molecular orientation, kinetics, and structural parameters of samples??®. ATR-FTIR

spectroscopy is a simple, non-invasive tool across a wide range of scientific disciplines. In
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the healthcare sector, it has been integrated with chemometrics and multivariate analysis
to enhance point-of-care diagnostics, offering highly sensitive detection capabilities for
various bio-analytes and disease biomarkers??’-22°, Due to the control of the penetration
depth, ATR-FTIR spectroscopy can selectively probe components within layered surfaces,
such as thin biofilms, peptide layers, or electrolyte interfaces??%230, The potential of ATR-
FTIR spectrometry has also been explored in a variety of infrared imaging applications,
including histopathology, live cell and tissue analysis, and the identification of material

surface properties?31-233,

4. Nuclear Magnetic Resonance (NMR) spectroscopy

Nuclear Magnetic Resonance (NMR) spectroscopy is a highly versatile and widely
used analytical technique that exploits the magnetic properties of specific atomic nuclei.
The fundamental principle of NMR is based on the fact that certain nuclei, when placed in
an external magnetic field, can occupy distinct nuclear spin states. NMR detects
transitions between these spin states, which are characteristic of the nucleus being
studied and provide insight into its chemical environment. However, it is important to
note that NMR is only applicable to nuclei with a non-zero spin quantum number (I0);
nuclei with I=0 are "invisible" to NMR spectroscopy because they lack the magnetic

properties required for signal generation.

Due to these unique properties, NMR has become an invaluable tool for
determining molecular structures, monitoring chemical reactions, and investigating
metabolic processes in living cells. Its applications extend across a broad range of fields,
including medicine, biochemistry, physics, and industry, making it a cornerstone of

research and development in nearly every scientific discipline.
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4.1 Magnetic resonance
4.1.1 Nuclear spins

Nuclei possess a positive charge, and many behave as though they are spinning.
When a charged particle is in motion, it generates a magnetic moment and produces a

corresponding magnetic field. Therefore, a spinning nucleus acts like a tiny bar magnet,

with its magnetic moment?3 aligned along the axis of rotation (Fig. 25a). This property is

commonly referred to as nuclear spin.
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Figure 25. (a) A charged nucleus rotating with angular frequency w creates a magnetic
field B and is equivalent to a small bar magnet whose axis is coincident with the spin

rotation axis. (b) Orientation of spinning nuclei in absence and presence of external

magnetic field.

When such a "tiny magnet" is placed within the field of a much larger external
magnet, its orientation is no longer random. Instead, there will be a preferred
orientation—the most probable parallel orientation?3>. However, it is also possible for the

nucleus to align itself precisely 180° opposite to this preferred direction (Fig. 25b). In
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scientific terms, the more favorable orientation corresponds to the lower-energy state,

while the opposite orientation represents the higher-energy state.

This two-state model is applicable to most nuclei of biological importance, such as
H, 13C, N, "F, and 3'P, all of which have a nuclear spin quantum number () of %2%.
According to quantum mechanics, nuclei with 1=} can only occupy one of these two
distinct energy states when exposed to an external magnetic field—no intermediate

states are possible.

4.1.2 The resonance phenomenon

The small nuclear magnet can spontaneously "flip" between its two possible
orientations (or energy states) while in the presence of a large external magnetic field,
although this flipping occurs infrequently (Fig. 26a)%%®. However, when energy equivalent
to the difference between the two nuclear spin energy levels (AE) is applied to the
nucleus—or, more typically, to a group of nuclei—this flipping between energy states is
greatly enhanced (Fig. 26a). This energy is delivered through a short pulse of

radiofrequency (RF) irradiation, typically lasting several microseconds.
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Figure 26. (a) The nuclei resonance process at thermal equilibrium and after the RF pulse.
(b) Dependence on magnetic field strength B of the separation of nuclear energy levels
(AE) for spin 1=)4 and the relative populations of the energy levels assuming one has

approximately two million protons in the sample?3” (taken from ref. 237).

The absorption of RF energy by the nuclear spins induces transitions between the
two energy levels, leading to flipping both from the lower energy state to the higher
energy state and vice versa. This back-and-forth flipping is a fundamental feature of the
resonance process in NMR. As the nuclear spins absorb energy, they generate a voltage
that can be detected by a coil of wire tuned to the appropriate frequency. This signal is
then amplified and recorded as a free induction decay (FID). Eventually, relaxation
processes return the nuclear spin system to its thermal equilibrium, provided no
additional RF pulses are applied?3¢. The energy required to induce nuclear spin flipping
and generate an NMR signal corresponds exactly to the energy difference between the
two spin orientations. This energy is dependent on the strength of the external magnetic

field (Bo) in which the nucleus is placed, as described by Eq. 3:

_YhBy

AE
2T

(3)

where h is Planck's constant (6.63 x 1077 erg-sec). This equation, also known as the Bohr

condition, allows the frequency (vo) of the nuclear transition to be written as Eq. 4:

Vo = 5 — 4)

This equation is often referred to as the Larmor equation, with wo = 2nve being the
Larmor resonance angular frequency?3>. The gyromagnetic ratio (y) is a constant that is
unique to each type of nucleus and directly relates to the strength of the nucleus’s
magnetic moment. In the magnetic fields typically used in NMR experiments, the

resonance frequencies required to fulfill the conditions of the Larmor equation fall within
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the RF range. For example, in a magnetic field strength of 14.1 T, the resonance frequency

for "H nuclei is 600 MHz, for N it is 60.8 MHz, and for "*C it is 151 MHz?%’.

4.1.3 Sensitivity and the Boltzmann equation

As previously mentioned, the nuclear spin, which behaves like a small bar magnet,
can align in one of two possible orientations within an external magnetic field. The extent
to which one orientation (or energy state) is favored over the other depends on both the
strength of the nuclear magnetic moment (proportional to the gyromagnetic ratio) and
the strength of the external magnetic field (Bo) in which the nucleus is placed?3>. The
distribution of nuclei between these two energy states, in the absence of any RF

perturbation, is described by the Boltzmann equation (Eq. 5):

Nupper _ e_ﬁ (5)

Niower

where Nypper and Niower represent the populations of nuclei in the upper and lower energy
states, respectively, k is the Boltzmann constant, and T is the absolute temperature in

Kelvin.

To illustrate the impact of the magnetic field strength on the population of nuclear
spin states, the distribution of about two million hydrogen nuclei, calculated using Eq. 5,
is shown in Figure 26b. In a magnetic field of 18.8 T, which corresponds to a resonance
frequency of 800 MHz for protons, and at thermal equilibrium at room temperature, the
population ratio is approximately 0.9998722%’. This means that for every 1,000,000 nuclei
in the upper energy state, there are 1,000,128 nuclei in the lower energy state. Although
this is a very small population difference, it is crucial for NMR. Without this slight excess
of nuclei in the lower energy state, NMR signals would not be detectable. However, this

small population difference also presents a significant sensitivity challenge for NMR. Since
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only the population difference—128 out of 2,000,128 nuclei in this example—contributes
to the NMR signal, the vast majority of nuclei cancel each other out, leading to inherently
low sensitivity. The low sensitivity of NMR, rooted in this small population difference, is
one of its main limitations, particularly in applications to biological systems. However, as
seen in Eq. 5, increasing the strength of the magnetic field enhances the population ratio,

thereby improving the sensitivity of NMR measurements?34238,

4.1.4 Magnetization

In a classical mechanical perspective, for a nucleus with a spin quantum number of
I=% placed in a magnetic field of strength By, the nucleus’s magnetic moment undergoes
precession around the z-axis, which is defined by the direction of the applied magnetic
field. This precessional motion is depicted in Figure 27a, albeit with a simplified number
of nuclear spins (represented by arrows). As discussed earlier, nuclei can align either
parallel or antiparallel to the direction of the external magnetic field. Consequently, some
nuclear spins precess about the positive z-axis, while others precess about the negative z-
axis. The overall magnetization resulting from a real sample is the sum of all these
individual nuclear magnetic moments (or spins)?3*. Given that there is a slight excess of
nuclei aligned with the magnetic field—i.e., in the lower energy state—the cumulative
magnetization, denoted as Mo (Fig. 27a), will be oriented along the positive z-axis. It is
this total magnetization, rather than the magnetic moment of an individual nucleus, that

generates the measurable NMR signal®3®.
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Figure 27. (a) Orientation and precession of nuclear spins (I=4) at thermal equilibrium in a
stationary magnetic field Bo that defines the z-axis. (b) Rotation of the magnetization Mo
in the rotating coordinate system that rotates about the z-axis at the NMR instrument's
operating frequency. i) spin system at equilibrium in magnetic field Bo; ii) application of a

90° B; pulse; and iii) a 180° pulse.

4.2 The Nuclear Magnetic Resonance experiment

A proton NMR spectrum can be obtained by gradually sweeping either the magnetic
field or the frequency to satisfy the resonance condition described by Eqg. 3. As this
condition is met for the protons in the sample, signals are generated based on their
distinct chemical environments. The simplest type of NMR experiment is the continuous
wave (CW) experiment, where a constant frequency is applied while the magnetic field is
varied®*°. This method probes the energy levels and detects resonance as the field
changes. Alternatively, the CW experiment can be conducted by maintaining a constant
magnetic field while varying the frequency, though this approach is generally reserved for
specific applications. However, most modern NMR spectrometers utilize pulse-based
techniques. In these experiments, short bursts of radiation are applied that encompass

the entire frequency range needed to excite all nuclei of a particular type, such as '*C. This
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pulsed method is more efficient and versatile than the traditional CW technique, and it

has become the standard in NMR spectroscopy.

4.2.1 Pulsed NMR

The signal-to-noise ratio (S/N) in NMR can be significantly improved through the
technique of signal averaging. In this process, the S/N ratio increases proportionally to the
square root of the number of signals averaged (vVn)?3*. A common and efficient way to
acquire an NMR signal is by detecting the free induction decay (FID) after applying a
strong RF pulse at the resonance frequency of the nuclei. This FID signal can be
immediately followed by another RF pulse to generate a new FID. With the aid of a
computer, the subsequent FID signals are captured and averaged with the initial one,
resulting in an enhanced S/N ratio.

At equilibrium, the net magnetization vector (Mo) aligns along the direction of the
external magnetic field (Bo). This state is referred to as the equilibrium magnetization, Mo.
In this orientation, the component of magnetization along the z-axis (M;) is equal to Mo
and is termed longitudinal magnetization. Importantly, in this equilibrium condition, there
is no transverse magnetization (Mx or My)?3¢. To better understand the behavior of the
magnetization, we use a rotating reference frame with axes x’, y’, and z (Fig. 27b). In this
frame, the x’ and y’ axes rotate around the z-axis at the operating frequency (vo) of the
NMR instrument. By adopting this rotating frame, we can more easily analyze the effect
of applying an RF pulse, denoted as B,, along the x’ axis. This pulse results in a measurable
signal along the y’ axis.

As illustrated in Figure 27b, at thermal equilibrium, the magnetization (Mo) aligns
with the external magnetic field (Bo). When an RF pulse (By) is applied along the x’ axis, it
rotates the magnetization in a plane perpendicular to B, typically the y’z plane?3>236:239,
The pulse must be applied at the appropriate frequency (vo), as described by Eqg. 3. The

angle of rotation (6) depends on several factors: the gyromagnetic ratio (y) of the nucleus,
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the amplitude of the RF pulse (B), and the duration time (tw) for which the pulse is

applied.

Figure 27b shows the effect of a 90° (t/2) RF pulse, which rotates the magnetization
(Mo) by 90°, moving it from the z-axis into the y’-axis of the rotating frame. Such a pulse is

referred to as a 90° or /2 pulse. If the B, field is applied for twice the duration, it results

in a 180° (m) rotation, inverting the magnetization (Mo).

These rotations also have a quantum mechanical interpretation. For example, in the
case of two million protons subjected to a 14.1 T magnetic field, the application of a 90°

pulse equalizes the populations of the nuclear spins in the two energy states. A 180°

pulse, however, inverts the population, leading to a

energy state, as demonstrated in Figure 28.
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Figure 28. Effect of 90° and 180° RF pulses on the population of nuclear spins in a sample
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of about two million protons in a magnetic field?*’ (taken from ref. 237).

4.2.2 Free Induction Decay (FID)

As long as the bulk magnetization Mg lies along the z-axis (parallel to the applied

magnetic field Bo), no NMR signal can be detected.

along the x'-axis, the magnetization vector M is tipped away from the z-axis, creating a

62

However, when a RF pulse is applied



Nuclear Magnetic Resonance (NMR) spectroscopy -

component along the transverse (y'-axis) plane. This transverse component of
magnetization is what generates the observable NMR signal.

Since the receiver detects signals along the y'-axis, signal intensity is initially at its
maximum immediately after a 90° pulse. As precession continues, the magnetization
vector moves around the transverse plane, resulting in sinusoidal variations in the
detected signal. When the vector points directly toward the -y' axis, a negative signal is
detected, reaching maximum negative amplitude at this orientation (Fig. 29)?3>. This
oscillating, decaying signal is called Free Induction Decay (FID) because it decays freely

after the RF pulse is turned off.
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Figure 29. Dynamic evolution of the FID signal with a limited duration oscillating field B1
and a static magnetic field Bo. (a) The spiral curve shows a trajectory of P, where the
yellow part represents Rabi oscillation with an oscillating field turning on, and the blue
part represents FID signal with an oscillating field turning off. The red vortex line
represents the projection of the polarization trajectory on the x’-y’ plane during the FID
process. (b) The blue damped oscillation curve depicts the FID signal of y’?4° (taken from

ref. 240).
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4.2.3 Fourier Transform in NMR

The previously discussed principles of pulsed NMR are straightforward when only
one resonance frequency needs to be monitored, such as the "F signal from fluorouracil
bound to thymidylate synthase or the proton signal from water (H,0) in biological tissues,
where the water proton signal is dominant over other observable protons?3®. In these

cases, a single frequency dominates the NMR signal.

However, in many practical applications, the free induction decay (FID) is a time-
domain signal that often contains contributions from multiple nuclei resonating at
different frequencies. For example, in a protein sample, different types of nitrogen nuclei
(*N) may produce several distinct signals?3®. To obtain a more interpretable frequency-
domain spectrum from such a complex signal, the Fourier transform is applied to the

signal-averaged FID.

By applying a Fourier transform, we convert the time-domain FID data into a
frequency-domain spectrum, where individual resonances are separated and displayed
based on their frequencies?3*. This process is illustrated in Figure 30, where the signal-
averaged FIDs (shown on the left) are transformed into frequency spectra (on the right),
making it easier to distinguish and analyze the contributions from different nuclei. A

detailed documentation about Fourier transformation is described in Section 5.
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Figure 30. The free induction decay (FID) is on the left and its Fourier transform (usual

frequency spectrum) is on the right.

4.3 Core components of an NMR spectrometer

Nuclear Magnetic Resonance (NMR) spectroscopy is an advanced analytical
technique used for the structural and dynamic study of molecules. The performance and
accuracy of an NMR experiment depend significantly on the instrument's components.

This Section provides a detailed overview of NMR instrumentation (Fig. 31).
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Figure 31. A 500 MHz NMR spectrometer (Bruker Ascend 500).

4.3.1 Magnet

The magnet is the core component of an NMR spectrometer, generating the strong
magnetic field essential for nuclear resonance. This field aligns nuclear spins, making
them responsive to radiofrequency pulses. NMR magnets are typically superconducting,
providing both strength and stability. A superconducting magnet operates at low
temperatures (around 4K)?*, using liquid helium to achieve superconductivity, which
results in zero electrical resistance (Fig. 32). Liquid helium is typically surrounded by a
liguid nitrogen (77.4K) container, which acts as a thermal buffer between the room

temperature air (293K) and the liquid helium?3°, The resulted lack of resistance ensures a
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highly stable and uniform magnetic field, crucial for obtaining reproducible and high-

resolution NMR spectra. The field strength ranges today from 4.7 to 23.5 T%°.

Figure 32. Schematic diagram of an NMR instrument highlighting the liquid helium and
liguid nitrogen baths, outer vacuum chamber, superconducting solenoidal magnet and

NMR probe with a sample spinner and sample tube.
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4.3.2 Probe

The probe is an integral part of the NMR spectrometer, housing the sample spinner
(thus the sample) and facilitating RF transmission and detection?*?. It is positioned
precisely in the strong magnetic field that is generated by the superconducting magnet
(Fig. 32). Serving as the interface between the spectrometer and the sample, NMR probes
have three primary functions: holding the sample, exciting nuclear spins with radio
frequency (RF) energy, and detecting the NMR signal that emanates from the sample?%3.
NMR probes are intricate devices composed of various components, each contributing to
the probe's overall functionality in NMR spectroscopy. Understanding these components
is essential for comprehending how NMR probes operate and their role in the broader

context of NMR spectroscopy.

Probe Body: The probe body, typically cylindrical, houses the internal components
of the NMR probe, providing mechanical support and precise alignment for the RF coils
and other elements (Fig. 32). It is specially designed to maintain stability and integrity
under high magnetic fields and varying experimental temperatures?44. The material of the
probe body is a non-magnetic and resistant to RF interference to ensure optimal probe

performance?*.

RF Coils: Radiofrequency coils are the "antennae" of the NMR system, broadcasting
the RF signal to the sample and/or receiving the return signal; transmit and receive
(transceiver). Saddle-shaped is the most frequently used type of coil in NMR
instrumentations. However, surface, Helmholtz pair and bird cage coils (Fig. 33) are
presented in other applications of magnetic resonance phenomenon, like MRI?*>, By
generating an RF magnetic field when an alternating current flows through them, these
coils excite the sample’s nuclear spins. As these spins return to equilibrium, they emit an
NMR signal, which the RF coils detect. Careful design and tuning of these coils are crucial,

as they need to resonate at frequencies specific to the nuclei under study. This specificity
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ensures efficient excitation of the nuclei and precise signal detection, both fundamental

for molecular analysis.

Surface coil Bird cage coil
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Figure 33. Schematic representation of commonly used radiofrequency coils in the NMR

and MRI system?*> (taken from ref. 245).

Sample Tube Holder: The sample tube holder (spinner) secures the NMR sample
tube within the probe, ensuring correct positioning in the magnetic field and relative to
the RF coils (Fig. 32). Precise placement is crucial for uniform excitation and optimal signal
detection. The holder is adaptable to different tube sizes based on probe type, and it

facilitates easy insertion and removal of the sample.

Amplifiers: Amplifiers in NMR probes boost the weak NMR signal (from milli Watts
to tens or hundreds of Watts) detected by the RF coils before it reaches the
spectrometer’s main console?®. Since the raw NMR signal is typically faint, amplification
is needed for accurate signal analysis. These preamplifiers are designed to be highly
sensitive and minimize noise to preserve signal integrity and optimize the signal-to-noise

ratio.
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Shimming Coils: Shimming coils are specialized coils that fine-tune the magnetic
field within the NMR probe, ensuring it is homogeneous. Any minor inhomogeneities in
the magnetic field can distort the NMR spectrum?3*, These inhomogeneities could be
caused by the magnet design, materials in the probe, variations in the thickness of the
sample tube, sample permeability, and ferromagnetic materials around the magnet?3°. By
adjusting the magnetic field at different points within the probe, shimming coils help

achieve uniformity, which is essential for obtaining high-resolution spectra.

Temperature Control System: In many NMR experiments, precise temperature
control of the sample is necessary, sometimes involving extreme temperatures?3%244, The
temperature control system in an NMR probe regulates sample temperature using
heaters, coolers, and sensors, maintaining it at the desired level throughout the
experiment. Accurate temperature control is critical for studying temperature-dependent

molecular properties and in experiments monitoring reaction kinetics24¢:247,

Probe Types: Liquid-state NMR probes are primarily used for samples in a liquid
state. These probes are known for their high sensitivity and are optimized for analyzing
homogeneous solutions?**. They offer significant advantages in high-resolution
spectroscopy, making them ideal for studying a wide range of organic and biochemical
compounds. However, their use is limited to liquid samples, which can be a constraint
when dealing with solid or gaseous substances. These probes are commonly employed in
organic chemistry, biochemistry, and pharmaceutical research, particularly for examining
molecular structures and interactions in solution. Solid-state, cryogenic, HR-MAS and

benchtop probes are included in the family of NMR probes?43,

4.4 Industrial applications

Advances in NMR instrumentation continue to expand the reach and utility of NMR

in diverse fields of research. Moreover, NMR plays a vital role across numerous industries,
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providing precise molecular insights that enhance product development, quality control,
and research. In the pharmaceutical sector, NMR is essential for drug discovery, structural
verification, and purity assessment, ensuring drug safety and efficacy?*®. The chemical
industry benefits from NMR’s detailed analysis of polymers and petrochemicals,
supporting innovation in materials science?*>2*°, In food and beverage, NMR aids in
quality control, nutritional analysis, and preservation research?2>2, Environmental
analysis leverages NMR for pollutant detection and monitoring?>3. These applications

underscore NMR's critical contribution to scientific advancement and industry standards.

5. Fourier Transformation

The Fourier Transform (FT) is introduced as a powerful mathematical method that
allows scientists to convert signals between two domains: serial (time or space) and
spectral (frequency)?*. This conversion is essential for understanding the hidden
structure of signals, whether they come from sound waves, electromagnetic radiation, or
molecular data in chemistry. Although originally a complex and tedious procedure, the
development of computing power and the Fast Fourier Transform (FFT) algorithm has
made it more accessible to scientists and engineers, improving their ability to analyze

signals with greater sensitivity, speed, and resolution.

Fourier Transform is not just a mathematical tool but an approach that mimics real-
world physical processes. It provides a way to understand and process signals that would
otherwise be difficult or impossible to interpret directly. Assume a periodic function f(x)
defined on the line of real numbers, or x € R. In general cases or real-life applications, a
function like f(x) can have a very complicated behavior which makes the finding of its
closed form very difficult or in most cases impossible. This means that there is no closed

mathematical expression that describes the complete behavior of the function exactly.
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Jean Baptiste Joseph Fourier, a French mathematician and physicist discovered that
any complex function (signal), whether periodic or not, can be represented as a sum of
simple sine and cosine waves of different frequencies?>*. Using the sine and cosine, the
properties of the very complicated function is reduced to the characteristics of the
aforementioned trigonometric functions which are very well-known. This decomposition
allows scientists to isolate individual components of a signal and understand its
underlying structure. The FT is particularly useful when physical processes, like scattering
in X-ray crystallography, don’t offer direct observations. The FT allows scientists to
reconstruct images of atomic structures from diffraction patterns—a task that no optical

lens could achieve.

5.1 Serial-Spectral domains

The central idea behind the Fourier Transform is that many physical processes can
be described in two equivalent ways: in the serial domain (over time or space) or in the
spectral domain (frequency). In the serial domain, data is represented as a sequence of
events occur one after another, either over time (e.g., the changing pressure amplitude of
a sound wave at a given point) or across space (e.g., a densitometer measuring optical
density across a plate). The spectral domain, on the other hand, describes how much of

each frequency (or spatial frequency) is present in the signal?>*.

For example, in time domain, we perceive the flashing of a lighthouse light as a
periodic event in time, a serial behavior. However, the light's color, which is determined
by its wavelength, is a spectral characteristic. In the spatial domain, we recognize an
image by its arrangement of pixels (serial), but describe a fabric by the number of threads

per unit length, a spatial frequency.
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As mentioned earlier, any physically meaningful function can be constructed by
adding together simple periodic sine or cosine waves. This idea, though surprising at first,
makes sense when we consider something like the sound produced by a wind instrument.
When a wind instrument is played, the instrument produces a sound with multiple pitch
components, each corresponding to a periodic signal in the spectral domain, which
together create the overall sound we hear in the serial domain (in this case, time).
Fourier's insight bridged the gap between serial and spectral descriptions, making it

possible to analyze complex phenomena in both domains.

5.2 Periodic an aperiodic signals

Fourier theory becomes most straightforward when applied to periodic signals. In
this case, the periodic function can be broken down into a sum of sine waves: a
fundamental wave that shares the same period as the signal, plus an infinite series of
higher harmonics of the fundamental frequency?!8. Each of these harmonics has its own
amplitude and Phase, and their combination recreates the original signal. The relation
between the two domains, serial and spectral, is shown rather vividly, in Figure 34 as a
three-dimensional representation of amplitude against either time or frequency, for a
periodic signal. This illustrates how the original signal can be regarded as constructed by

the summation of its spectral components. The Fourier series is given by Eq. 6:

f(x) = %ao + Z a, cos(nx) + Z b,, sin(nx) (6)

where ao, an and by are the Fourier coefficients.

73



Section — THEORETICAL FRAMEWORK

AMPLITUDE —=

Figure 34. Decomposition of a waveform in both time (serial domain) and frequency

(spectral domain)?>* (taken from ref. 254).

For aperiodic signals, the Fourier series approach doesn’t work directly. Instead, the
Fourier Transform generalizes the concept by considering an infinite range of frequencies.
If the signal (function) is aperiodic, it can be considered as a periodic function with its
period to lengthen indefinitely, when the fundamental frequency will decrease
correspondingly to zero?>*2>, For example a guitar that grows ever longer, with an
accompanying decrease in the fundamental frequency of the vibrations of its strings. The
result of a Fourier transform is a continuous function (Fig. 35c,d) that represents the
signal’s frequency components over an infinite frequency range. Here, the infinite sum of
the series synthesis of f(x) (the case of a periodic signal) will then become an integral Eq.

7:
F(s) = Jf(x)e_iz””dx (7)

Here, F(s) gives the amplitude and Phase of each frequency s, producing a
continuous frequency spectrum (Fig. 35c,d) and resulting the transform between the

serial function, f(x), and the spectral function, F(s).
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Figure 35. Fourier transform spectra and the corresponding interferograms in the case of

periodic (a and b) and aperiodic (c and d) signal®>* (taken from ref. 254).

This allows scientists to analyze signals with continuous variations, such as the
random noise in a chemical experiment or the gradual change in light intensity over
space. In both periodic and aperiodic cases the central problem of Fourier analysis is the

determination of the various coefficients.

5.3 Explaining the domain transformation

The mathematical form of FT does not demonstrate directly its capability of domain
transformation. In this section a demonstration of how the complex exponential “picks

out” the components of f(x) at each frequency, s, to yield the spectrum, F(s).

The complex exponential factor exp(-i2nsx) describes a vector that rotates with a

frequency, s, (a phasor) as a function of the serial parameter, x (e.g. time or space). Thus,

75



Section — THEORETICAL FRAMEWORK

the product can be illustrated as a helicoid (or coil) (Fig. 36)?>*. The sign of the phasor
exponent determines the sence of rotation, clockwise or counterclockwise. The helicoid
can be resolved into real and imaginary components. The FT, which is the integral of this
function at the given value of s, has a real component which is the sum of these real

projections, and a corresponding summed imaginary component.

Im‘

Figure 36. Resolution of the components of the helicoid into the real and imaginary

planes?* (taken from ref. 254).

In the context of FT analysis, consider a sine wave (coil) with a single, fixed
frequency. The wave is coiled with a phasor of same frequency but undergoes a sign
change that coincides with the reversal of the real part of the wave (the coil is coiled by

the phasor) (Fig. 37a). This ends up with the phasor cancels out any contribution on the
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real plane, the resulting transform vyields a contribution solely to the imaginary
component, with the real component being zero (Fig. 37b,c). Thus, a phasor with the
same frequency is able to influence the coil only in the way of amplitude differentiation

(nullification or addition)?°®.

e coil

Imag part

Amplitude

000 025 050 075 100 125 150 175 200
Time (sec )
Figure 37. (a) The sine wave (coil) spread over time with the imaginary and real

components follow a periodic behavior, plus the contribution of the phasor. The resulted

wave after the addition of the phasor (b) in 3D and (c) in 2D.

Conversely, if the wave and the phasor are not perfectly aligned in frequency, the
transform exhibits a coiling behavior (the coil then, coils about itself) (Fig. 38)%%.
Consequently, the Fourier Transform is highly effective in isolating the single frequency of

the sine wave, which appears as a distinct contribution to the overall frequency spectrum
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of the signal. To simplify this, the FT extracts or subtracts every single phasor that changes
the original form of the coil. This process underlines the FT's ability to accurately

decompose periodic functions into their constituent frequencies.

Figure 38. Coiling of the coil. The blue-yellow coil represents the original wave, while the
red coil is the resulted wave after the contribution of the phasor. (a) The phasor has the
same frequency with the wave (only amplitude change is observed). (b) and (c) The
phasor has different frequency than the wave and different frequencies in each case®>*.
(d) 2D representation (imaginary or real plane) of the resulted wave after the contribution

of a same frequency phasor and (e) different frequency phasor.

In the case of an aperioodic function then, the coiling process will still produce a
similar cancellation of all frequency contribution except that one corresponding to the
present frequency of the helicoid (initial coil). Hence, by choosing a succession of
different frequencies and amplitudes for the coiling, results to yield F(s), the spectrum of

f(x).
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5.4 The versatility of FT

In the study of molecular species, chemists view these entities as dynamic,
exhibiting behaviors such as rotation, vibration, and flexing?>”2>8, These properties are
typically explored through spectroscopic techniques, where molecular systems are
excited, and the emitted or transmitted electromagnetic radiation is analyzed. The
radiation comprises contributions from numerous oscillators within the system, resulting
in a complex time-dependent pattern. Since fluctuations in the UV-visible region can
reach frequencies as high as 10" Hz, no detector can accurately track such rapid changes.
To manage this, the time-dependent radiation pattern is usually disregarded, and the
radiation is separated into its frequency components via a monochromator (such as a

prism or grating), producing an amplitude spectrum?>°.

However, this approach is inherently inefficient. Single-detector systems discard
much of the incoming energy when frequency bands are selected sequentially, while
multi-detector systems can be costly—though alternatives like photographic films offer
high sensitivity and resolution but introduce processing delays. Fourier Transform
techniques provide a solution to these limitations by simultaneously capturing all
frequency data and using the FT to resolve the serial-domain data into its frequency
spectrum. This approach enhances both sensitivity and speed by eliminating the need for
spectral separation. The versatility of FT methods extends beyond spectroscopy, offering

significant advantages across various fields.

In a conventional scanning spectrometer, the light source illuminates the sample,
and the transmitted radiation is dispersed and detected one sample at a time through a
scanning mechanism. However, during the majority of the time, the information at
different dispersion angles is discarded, leading to inefficiency. Although a single,
broadband detector or multiple detectors covering the entire spectrum can resolve this
issue, there are limitations that may render such a setup impractical. From an energy and

information perspective, using many detectors is beneficial, but it comes with the
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challenge of cost and size. If only a few spectral lines are important, the problem is
minimal, but if many spectral lines need to be analyzed, then the detectors must be small
and inexpensive. The accompanying table shows the minimum number of detection
channels required to achieve standard resolution in various spectroscopy techniques
(Table 3)?°°. To address this, the goal is to replicate the advantages of a multichannel
system using only one detector. Achieving this requires removing the dispersive element,
which results in a scrambled signal due to interference. This scrambled signal can then be
decoded using FT methods, providing a multiplex advantage without the need for

multiple detectors.

Table 3. Minimum number of channels required for various types of multidetector

spectrometers?>? (taken from ref. 259).

Approximate

Typical spectral

Type of Largest usual Width of one line minimum
frequency (Hz)
spectroscopy frequency (Hz) (Hz) number of
range
channels
Méssbauer 6x 10 108 107 10
ESCA 3.5 x 10% 10%7 104 1,000
Photoelectron 5x 10 3x10% 1012 3,000
Electronic 1.5 x 10%° 1.2 x 10% 10° 1,250,000
Vibrational 2 x 104 1.5 x 10* 3x10° 50,000
Rotational 4 x 10%° 3 x 10% 10° 300,000
BCNMR 8 x 10’ 2 x10* 4x10? 50,000
ICR 2 x10° 2 x10° 10? 20,000
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5.4.1 FT spectroscopy

Over the past year, significant advancements in molecular structure analysis have
been achieved due to the 10- to 100-fold increase in the sensitivity of infrared (IR) and
nuclear magnetic resonance (NMR) spectrometers??’. This progress is largely due to the
development of FT spectroscopy, also referred to as interferometry or time-domain

spectroscopy.

The two most common spectroscopic techniques that are done in an FT mode are IR
and NMR spectroscopy?®?26!, Infrared spectroscopy uses the two-beam Michelson
interferometer where all the beams enter and leave the interferometer in parallel
streams. Initially, the beam is generated by starting with a broadband light source—
containing the full spectrum of wavelengths to be measured. As the mirror in
interferometer moves, each wavelength of light in the beam is periodically blocked,
transmitted, blocked, transmitted, etc. by the interferometer, due to wave interference.
This begins from the reference position, where the path lengths of both beams are equal,
and all frequencies are in Phase simultaneously. Different wavelengths are modulated at
different rates, so that at each moment or mirror position the beam coming out of the
interferometer has a different spectrum?*°. The raw spectrum collected by the detector is
called "interferogram" (Fig. 39a). The Fourier transform converts one domain (in this case
displacement of the mirror in cm) into its inverse domain (wavenumbers in cm™?) (Fig.

39h).

FTIR  spectroscopy has several advantages over conventional IR
spectrophotometers. It allows rapid acquisition of spectra, uses no slits (maximizing light
throughput), and improves sensitivity, especially for low-concentration samples. Multiple
scans can be averaged to enhance the signal-to-noise ratio, although gains diminish with
increasing scans. Additionally, FTIR instruments offer superior resolution due to the highly

reproducible movement of the mirrors, enabling them to distinguish nearby spectral
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peaks more effectively than monochromator-based systems. This makes FTIR highly

suitable for sensitive and high-resolution measurements.

a b
FT .
© FT*
SPACE FREQUENCY
c d
FT .
| © FT!
TIME - FREQUENCY -

Figure 39. (a) Near infrared interferogram and (b) corresponding spectrum; (c) NMR free

induction decay (FID) signal and (d) corresponding spectrum?®? (taken from ref. 262).

The key advantage of FT spectroscopy is its speed compared to conventional
frequency domain methods. For example, in 3C NMR, where a high-resolution spectrum
would take 5000 seconds using conventional methods, FT can achieve the same result in
just 1 second, with superior spectral quality. FT methods also improve the signal-to-noise
ratio (S/N) through coherent signal addition, or "time averaging", which would be
impractically time-consuming in conventional spectroscopy. For instance, achieving the
same S/N in a 3C NMR spectrum using conventional methods could take 60 days, while

FT spectroscopy can do it in just 15 minutes®°.

In NMR spectroscopy, each distinct set of hydrogens in a molecule resonates at a

specific frequency in a magnetic field, much like individual chimes have distinct sounds. A
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traditional continuous-wave (CW) NMR spectrometer identifies each frequency by
irradiating nuclei one at a time, a slow process that can take minutes for a full spectrum.
In contrast, Fourier transform NMR excites all proton nuclei simultaneously using a short,
strong radiofrequency pulse, creating a complex signal as the nuclei relax back to
equilibrium. This complex signal (Fig. 39c), called a free induction decay (FID), is collected
and analyzed using a Fourier transform to convert the time-domain data into the familiar
frequency-domain spectrum (Fig. 39d). This process allows a complete spectrum to be
acquired in just a few seconds. By averaging multiple FID signals from repeated pulses, FT-
NMR enhances the signal strength, enabling the detection of spectra from low-abundance

isotopes like 13C.

5.4.2 FT advantages

One of the traditional applications of Fourier Transform (FT) is in X-ray
crystallography, where it has been used since the early days of crystal structure analysis.
FT helps convert the diffraction patterns obtained from X-ray scattering into real-space
electron density maps, enabling the determination of the atomic arrangement within
crystals. This method remains fundamental in structural biology and materials science for
analyzing crystal structures. The Fellgett and Jacquinot advantages are key benefits of
using Fourier Transform (FT) spectrometers?'725%, The Fellgett advantage (also known as
the multiplex advantage) refers to the ability of FT spectrometers to measure all
wavelengths simultaneously, improving signal-to-noise ratio (SNR) by averaging the signal
across multiple measurements, unlike dispersive instruments that measure one
wavelength at a time. This advantage occurs when the noise strength is constant,
independent of the signal strength; such noise originates in the detector. Fortunately, the
multiplex advantage does operate for the weak sources characteristic of infrared and
NMR spectroscopies. The Jacquinot advantage (or throughput advantage) arises from the

fact that FT spectrometers use fewer optical elements, like slits, allowing more light to
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reach the detector. This higher throughput increases the overall sensitivity, especially
useful in low-light conditions or for weak signals such as in stellar spectroscopy or 3C
NMR. Together, these advantages make FT spectrometers faster, more sensitive, and

better suited for detecting weak signals.

5.4.3 Applications in chemistry

Fourier Transforms have been successfully applied across various fields, particularly
where pulsed signals generate interference (or "beat") responses. Specific examples
include spectroscopic techniques like ion cyclotron resonance (a form of mass
spectrometry), orbitrap mass analyzer, nuclear quadrupole resonance, dielectric and
microwave responses, electron spin resonance, and muon spin rotation?%3-2%°, Beyond
chemical applications, FTs are widely used in physics (e.g., diffusion studies), electrical
engineering (e.g., antenna analysis), statistics, image processing and enhancement?70-273,

demonstrating their broad utility across numerous disciplines.
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6. Multivariate analysis

“We are drowning in information and starved for knowledge”

Tom Peters, Thriving on Chaos?’4

In today’s data-rich world, businesses and researchers alike face the challenge of
transforming vast amounts of information into valuable knowledge. With data collection
and storage capabilities advancing rapidly, organizations are amassing extensive
information in data warehouses, making it essential to “mine” this data effectively for
strategic decision-making?’>. Simple statistics often fall short for these tasks, and
sophisticated multivariate methods are now crucial in navigating and extracting insights
from complex data. Advances in computing power, along with user-friendly software,
have further simplified access to these powerful techniques, allowing even non-specialists

to analyze intricate data efficiently.

Historically, multivariate analysis found its footing in the behavioral and biological
sciences, but its utility has expanded across fields such as business, education,
engineering, and beyond. Multivariate methods allow researchers and practitioners to
make use of multiple measurements per unit or observation, yielding richer,
multidimensional insights. This interdisciplinary relevance, coupled with modern
computing, has cemented multivariate analysis as an indispensable tool for both
academic and applied research across sectors, fostering knowledge-driven innovation and

improvement in decision-making?’®.

6.1 Measurement scales

In multivariate analysis, accurate measurement is essential for identifying variations

in variables and selecting suitable analytical methods. Variables can be classified as either
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non-metric (qualitative) or metric (quantitative), impacting how they can be analyzed?’®.
Non-metric data, such as nominal and ordinal scales, describe differences by type or
order without indicating actual amounts; they allow categorization and ranking but
restrict mathematical operations. For example, gender is a nominal scale that simply
categorizes, while satisfaction levels might use an ordinal scale, ranking items without
specifying the extent of differences. Metric scales, on the other hand, such as interval and
ratio scales, reflect measurable amounts and support most mathematical operations.
Interval scales (like temperature) lack a true zero, while ratio scales (like weight) have an
absolute zero, enabling comparisons in terms of multiples. These distinctions guide the
researcher in applying the correct multivariate techniques, ensuring that non-metric or

metric data are used appropriately to obtain meaningful results.

6.2 A Classification of multivariate techniques

Multivariate techniques are classified based on three key research considerations:
whether variables can be defined as dependent or independent, the number of
dependent variables in the analysis, and the type of measurement for both dependent

and independent variables?’®.

If variables can be classified as dependent and independent, a dependence
technique is used, where the goal is to predict or explain dependent variables using
independent ones. If this classification isn’t possible, an interdependence technique is
applied, which involves the simultaneous analysis of all variables without distinguishing
between dependent and independent roles?’®. The difference between dependence and
interdependence is illustrated in the contrast between the two situations shown in Figure
40—one in which a train car is completely dependent on the engine to pull it, and the
other in which two friends provide mutual support of a helpful nature that is optional and

opportunistic rather than strictly required?”’.
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Dependence

Interdependence

Figure 40. Dependence vs. Interdependence?’’ (taken from ref. 277).

The selection of an appropriate multivariate technique thus depends on these

research-based judgments. Figure 41 assist in becoming familiar with the specific

multivariate techniques, helping to choose the most appropriate technique in each
scenario.
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Figure 41. Selecting a multivariate technique?’® (taken from ref. 276).
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6.2.1 Supervised learning - Dependence techniques

Supervised learning methods involve training a model on a dataset that includes
both input features (predictor variables) and a known target variable (response)?’. The
goal of supervised learning is to predict or classify the target variable based on the input
features, making it highly suitable for dependence techniques. Dependence techniques,
which focus on finding relationships between dependent and independent variables, are
often used in supervised learning. For instance, regression methods (such as multiple
regression for metric dependent variables or logistic regression for nonmetric dependent
variables) can be applied to predict an outcome based on multiple predictors?’®.
Supervised learning techniques utilize dependence relationships, aiming to quantify and

model the influence of independent variables on the dependent variable.

6.2.2 Usupervised learning - Interdependence techniques

Unsupervised learning, on the other hand, involves analyzing data without a
predefined target variable, seeking patterns or clusters within the data?’8. This aligns well
with interdependence techniques, where the focus is on analyzing relationships among all
variables without classifying them as dependent or independent?’®. Techniques like factor
analysis or cluster analysis are examples of interdependence methods used in
unsupervised learning, as they explore the underlying structure of the data. For example,
cluster analysis can group observations with similar characteristics, while factor analysis
uncovers latent factors driving correlations among variables?’®. Thus, while supervised
learning typically relies on dependence relationships to make predictions, unsupervised
learning emphasizes interdependence to uncover patterns and groupings within the

dataset?’8.
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6.3 Types of multivariate techniques

Multivariate analysis is an ever-expanding set of techniques for data analysis that
encompasses a wide range of possible research situations as evidenced by Figure 41. The

more established include the following?’®:

Interdependence techniques:

° Exploratory Factor Analysis (EFA): Includes principal components and common
factor analyses to condense multiple variables into a smaller set of factors that
represent underlying dimensions, such as combining customer satisfaction
indicators into generic factors like "food quality" and "service quality."

. Cluster Analysis: Groups entities into mutually exclusive clusters based on
similarities without predefined groups, e.g., categorizing restaurant customers

by motivations like price or quality.
Dependence techniques:

° Multiple Regression: Predicts a metric dependent variable using multiple metric
independent variables, e.g., predicting dining expenditures from income and
family size.

° Multivariate Analysis of Variance (MANOVA) and Covariance (MANCOVA):
Examines relationships between categorical independent variables and multiple
dependent variables, adjusting for covariates if necessary.

° Multiple Discriminant Analysis (MDA): Differentiates between predefined
groups based on independent variables, such as distinguishing between

national-brand buyers from private-label buyers.
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Logistic Regression: Similar to multiple regression, but for binary dependent
variables, useful for classifications like determining business success based on
financial data.

Structural Equation Modeling (SEM): Models complex relationships among
dependent and independent variables with a focus on measurement and
structural models, such as analyzing factors affecting worker satisfaction.

Partial Least Squares SEM (PLS-SEM): Emphasizes prediction using total
variance, suitable when the research goal is less about confirmation and more
about prediction.

Canonical Correlation: Extends multiple regression by correlating multiple
dependent and independent variables simultaneously.

Conjoint Analysis: Used primarily in product design to assess consumer
preferences and the importance of product attributes.

Perceptual Mapping: Maps consumer preferences or similarities between
brands, aiding in competitive analysis.

Correspondence Analysis: Suitable for nonmetric data, it maps associations in
contingency tables to create perceptual maps, showing brand preferences

linked to demographic variables.

Each technique is defined with its purpose and example applications, providing a

toolkit for analyzing complex, multivariable datasets in research.

6.4 Principal Component Analysis

Principal Components Analysis (PCA), examines the total variance of a dataset and

derives factors (components) that may include small amounts of unique and error

variance, preventing any significant distortion of the factor structure?’®,
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° The main objective is data reduction, aiming to capture the majority of the
variance with the fewest factors possible from the original variables.

° There is prior knowledge that specific and error variance make up a small
proportion of the total variance.

° PCA serves as a preliminary step in the scale development process.

The primary objectives of Principal Component Analysis (PCA) are to reduce the
dimensionality of a dataset while retaining as much variance as possible, simplify the data
structure, and reveal the underlying patterns?’. By transforming the original variables
into a smaller set of uncorrelated principal components, PCA helps identify directions in
the data with the most significant variance?’®. These components allow easier
visualization, interpretation, and analysis of complex data, enabling efficient information
summarization and facilitating subsequent analyses by reducing the complexity of the

dataset.

6.4.1 Step-by-step explanation of PCA

When performing PCA for dimensionality reduction, the goal is typically to reduce a
high-dimensional dataset to a lower-dimensional one, capturing most of the original
variability in fewer dimensions?’®2%9, In cases with only two variables, applying PCA to
create two principal components might seem redundant because we’re not actually
reducing dimensionality. However, the following example can still be useful to illustrate
how PCA works: the two new components represent the directions of maximum variance
in the data, with the first principal component capturing the most variance, and the
second being orthogonal to it. Even though we don't reduce the number of dimensions,
this process shows how PCA reorients data in terms of variance, which is fundamental to
understanding PCA in more complex cases. Let’s assume that the scatter plot of a data set

is as shown below (Fig. 42a).
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Figure 42. Example of a PCA application in a dataset of the measured transcription of two
genes in six different mice. (a) Plotting the samples according to measured transcription.
(b) Indicating the average measurement for gene 2 among samples. (c) Indicating the
average measurement for gene 1 among samples. (d) Indicating the center of the data. (e)
Centering the data. (f) The best fitted line due to the largest SSdistances, the construction of
PC1. (g) The construction of PC2 perpendicular to PC1. (h) Projecting the data point on
PC1 and PC2. (i) Plot rotation so PC1 in horizontal. (j) The use of the projected points to

indicate the samples in the PCA plot. (k) The final PCA plot?®! (adjusted from ref. 281).

Step 1: Standardization

Before performing PCA, it’s essential to standardize continuous variables so that
they contribute equally to the analysis. PCA is sensitive to the variances of the input
variables; if some variables have larger ranges than others, they will dominate the
analysis and lead to skewed results. Standardization solves this by scaling the variables to
a comparable range, usually by subtracting the mean and dividing by the standard
deviation for each variable?®2. This ensures that all variables have similar influence on the

analysis, making the PCA more balanced and effective.

When data is standardized, it is effectively shifted so that its mean is zero, which
centers the data around the origin of the graph (Fig. 42e). This process involves adjusting
each variable by subtracting the mean, so all values are re-centered around zero. Thus,
the standardized data clusters around the origin, with each variable now having a

comparable range and zero mean.

Note: Shifting the data do not change how the data points are positioned relative to each

other.
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Step 2: Creating the PC1

Principal components are constructed in such a manner that the first principal
component (PC1) accounts for the largest possible variance in the data set. The first
principal component is the line that goes through the origin and in which the projections
of the points are the most spread out. Or mathematically speaking, it’s the line that
minimizes the distances between the data point and their projections on it, or (according
to pythagoreon phenomenon) is the line that maximizes the distances between the
projected points and the origin (Fig. 42f)?78282, The last are squared and summed and the

largest resulted value (SSdistances) indicates the orientation of PC1.
Step 3: Creating PC2, PC3, etc.

Ideally, the second principal component is a unit vector that does not contain
information that is already contained in the first component. Or in geometric terms the
second component belongs to the subspace orthogonal to PC1 but other than that, it
should maximize the same quantity as before and following reasoning similar to PC1 (Fig.

42g)?78282 The third component is constructed similarly, and so on.
Step 4: The explained variation

In PCA, eigenvectors and eigenvalues are key concepts used to determine the
principal components, which are the directions that capture the most variation in the

data?’°.

Eigenvectors represent the directions of maximum variance in the data; they are
the axes along which the data varies the most, and these directions/vectors/axes become
the principal components?®2, Eigenvalues, on the other hand, measure the amount of
variance associated with each eigenvector?®?. Each eigenvector has a corresponding
eigenvalue, and together they capture the structure of the data: the eigenvector with the
highest eigenvalue indicates the direction of the most significant variance, forming the
first principal component, while the next highest eigenvalue’s eigenvector forms the

second principal component, and so on.
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The concept of explained variance ties directly to eigenvalues. Explained variance
guantifies how much of the total variation in the dataset is captured by each principal
component. By ranking the eigenvectors based on their eigenvalues (from highest to
lowest), we order the principal components by their importance. This ordering allows us
to focus on the components that capture the most variance, simplifying the data analysis

and interpretation process by prioritizing the most informative components?”°,
Step 5: Recast the data along the principal components axes

As described previously, the first PC has the highest importance explaining the total
variance better. Typically, only few of the very first components are considered, achieving
dimension reduction on the dataset without losing major information?®. To draw the final
PCA plot of two dimensions (taking into consideration only the PC1 and PC2) the principal
component vectors are rotated in a way that PC1 is horizontal and PC2 is vertical (Fig.
41i). Now the lines named principal components, are the axes of the plot?®2. The
projected points on the components axes are used to find where the data go in the PCA

plot (Fig. 42j).

Note: If the components account for a substantial amount of variation, then just using the
first PCs would not create a very accurate representation of the data. However, even in
this case a PCA plot of two dimensions (using the first two PCs) can be used to identify

clusters of data.

PCA is a complex analytical technique that relies on sophisticated mathematical
computations, making it challenging to perform manually?®. Although the foundational
principles and steps of PCA were carefully explained above, the actual calculations are
typically executed by a computer due to their complexity and the large volume of data
often involved?”®. This computational assistance enables the precise extraction of
principal components and ensures efficient handling of the underlying matrix operations

required in PCA.
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6.4.2 Stopping rules: criteria for the number of components to

extract

When deciding on the number of components to extract in factor analysis,

researchers aim to capture the most variance in the data through a set of linear

combinations of variables. The process extracts components in sequence, with each new

component accounting for remaining unexplained variance, until all variance is

covered?’®, The goal is to retain a manageable number of components that adequately

summarize the variance across all variables. Several methods are used to determine how

many factors to retain?76-282;
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A Priori Criterion: The number of factors is predetermined based on theory or
prior research.

Latent Root Criterion (Kaiser Rule): Only components with eigenvalues greater
than 1 are retained, meaning each component should explain as much variance
as an individual variable. This method is most effective with 20-50 variables and
is often a starting point, complemented by other criteria.

Percentage of Variance Criterion: Components are retained until they account
for a specific percentage of total variance (typically 95% in natural sciences,
60% or less in social sciences).

Scree Test: Factors are retained until an “elbow” in a plot of eigenvalues, where
the curve levels off, indicating factors with less common variance. This
approach is subjective but often retains one or two more components than the
Kaiser Rule.

Parallel Analysis: Simulated datasets are generated to compare eigenvalues,
retaining components with eigenvalues above those in the random data. This is

often more precise than the Kaiser Rule.
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6. Heterogeneity of Respondents: When the sample includes subgroups with
unique variance patterns, extra components may be retained to capture

differences between groups.

Researchers generally use a combination of these criteria to ensure both parsimony
and interpretability in their component (factor) solution, balancing the number of
components with the goal of accurately representing the data structure?®®. Multiple

solutions are typically examined to refine the final component structure.

6.4.3 Interpreting the factors — Evaluating the significance of factor

loadings

In multivariate analysis, effective interpretation relies on a strong conceptual
foundation, which can stem from previous research, theory, or accepted principles.
Researchers must make subjective judgments on factors to extract, variable groupings,
and factor solution appropriateness. Interpretation requires assessing factor-loading
significance, and factor interpretation. Each process involves essential considerations,
guiding the researcher to a final, conceptually sound factor structure. In interpreting
factors, researchers must decide which factor loadings merit consideration and
attention?’6282, This discussion addresses issues of practical and statistical significance, as
well as the number of variables, which collectively influence the interpretation of factor

loadings.
Practical significance

The first guideline focuses on practical rather than statistical significance, requiring
an initial examination of the factor matrix with respect to factor loadings. A factor loading
represents the correlation between a variable and a factor, with the squared loading
indicating the proportion of variance in the variable that the factor explains. For example,

a factor loading of 0.30 accounts for approximately 10% of the variable's variance, while a

97



_ Section — THEORETICAL FRAMEWORK

0.50 loading explains about 25%, and a loading above 0.70 accounts for 50%27°.
Therefore, larger absolute values of factor loadings generally signify greater importance in
interpreting the factor matrix. In terms of practical significance, loadings can be assessed

as follows?7:

. Loadings below 0.10 can be treated as equivalent to zero, suggesting no

meaningful contribution.

° Loadings from 0.30 to 0.40 meet the minimal threshold for interpreting
structure.

° Loadings of 0.50 or higher are considered practically significant.

° Loadings exceeding 0.70 indicate a well-defined structure and are desirable in

factor analysis.

Researchers should also recognize that extremely high loadings (0.90 or above) are
uncommon and that practical significance remains an important criterion, especially for
sample sizes of 100 or more where the focus is on practical interpretation rather than

statistical testing.
Statistical significance

Factor loadings, which reflect the correlation between a variable and its
corresponding factor, can also be evaluated statistically. While the statistical significance
of correlation coefficients could theoretically apply, research has shown that factor
loadings tend to exhibit larger standard errors than typical correlations?’®. Consequently,
factor loadings should be assessed with stricter thresholds. To achieve a statistical power
of 80% and a significance level of 0.05, researchers may refer to sample size requirements
for specific loading values, as indicated in Table 4. For example, in a sample of 100, a
loading of 0.55 or higher is significant, whereas a sample size of 50 requires a minimum
loading of 0.75 for significance. Notably, these thresholds are conservative relative to the

previously mentioned practical guidelines and the statistical standards associated with
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correlation coefficients, making them useful starting points. Lower loadings can still be

included in the interpretation if other contextual factors support their significance?’®.

Table 4. Guidelines for identifying significant factor loadings based on sample size

(taken from ref. 276).

Factor Loading

Sample size
needed
for significance @

0.30 350
0.35 250
0.40 200
0.45 150
0.50 120
0.55 100
0.60 85
0.65 70
0.70 60
0.75 50

a Significance is based on a 0.05 significance level (a), a
power level of 80%, and standard errors assumed to be
twice those of conventional correlation coefficients.

Adjustments based on the number of variables

276

A limitation of both practical and statistical significance guidelines is the lack of

consideration for the number of variables and the specific factor being analyzed. Research

suggests that, as the analysis moves from the first factor to subsequent ones, the
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threshold for significant loadings should increase to account for unique and error
variances that emerge in later factors?’®. Similarly, as the number of variables increases,
the acceptable level for defining a loading as significant decreases, making adjustments

based on variable count increasingly important for later-extracted factors.

6.5 Partial Least Squares method

Partial least squares (PLS) technique was developed by Herman Wold in the 1970s
by extending the multiple linear regression model®®328> |t takes a latent variable
approach to model the covariance structures in two spaces (i.e., the X and Y spaces) so
that both variables X and Y are projected to a new space, which is called projection to
latent (hidden) structures. Thus, PLS is alternatively called Projection to Latent

Structures?s®.

Note: A number of N observations (e.g samples) described by J dependent variables (e.g.
concentration of each sample) are stored in a NxJ matrix denoted Y, the values of K
predictors (e.g. absorbance measurement of each sample) collected on these N

observations are collected in the NxK matrix X (Fig. 43).

Supervised Learning Unsupervised Learning
X y X
Input variables or Response Input variables or
features variable features

Figure 43. Inputs and outputs in supervised and unsupervised learning?’® (taken from ref.

278).
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Unsupervised methods (like PCA) work solely with X. There is no Y matrix because
these methods do not require predefined labels or response variables (Fig. 43). Instead,
they focus on finding patterns, clusters, or the underlying structure within the X matrix
alone. In contrast, in supervised methods, such as PLS, the data is divided into two
matrices: X and Y. Here, X represents predictor variables, which are always available,
while Y contains response variables that are aimed to be predicted or understood?’8. The
supervised approach relies on learning a direct relationship from X to Y, enabling

predictions for Y using new X data?®’.

6.5.1 Advantages of the PLS method

Projection to Latent Structures (PLS) and Principal Component Regression (PCR) are
both methods used for modeling relationships between predictor variables (X) and
response variables (Y), with PLS building on PCR’s foundation and offering enhanced
capabilities?®0. Before going deeper, some basic principles about PCR and MLR are

explained in the following lines.

Multiple Linear Regression (MLR) is a traditional linear regression method that
directly models Y as a function of X. MLR, however, requires that the number of
observations be greater than the number of predictor variables, and it is sensitive to noise

and multicollinearity in X, which can skew results?®’.

Principal Component Regression (PCR) improves on MLR by first applying PCA to X,
transforming the data into orthogonal (uncorrelated) components (Fig. 44). This removes
the need for variable selection and reduces noise, as these PCs are less noisy than the
original X data. PCR can work with missing data and relaxes MLR’s requirement due to the

dimension reduction (the number of PCA components are less than initial variables)?®’.
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However, PCR may require extracting several components, some of which may not

correlate strongly with Y, which can increase model complexity unnecessarily.

Multiple linear regression Principal component regression
K 1 K A 1
X MLR X PCA T MLR
N N N N N

Figure 44. Schematic representation of PCR individual steps?®’ (taken from ref. 287).

PLS further extends PCR by using both X and Y data in a single modeling step,

making it more efficient and compact. Unlike PCR, which requires a separate model for

each Y variable?®, PLS can handle multiple correlated Y variables in a single model, saving

time and improving interpretability?®’. PLS also directly assumes there is error in both X

and Y, providing a more realistic model of data variability. Key advantages of PLS over PCR

include:
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Efficiency: PLS avoids calculating redundant scores that do not contribute to the
prediction of Y, resulting in fewer components and a more streamlined model.
Unified Model Structure: PLS maximizes the covariance between X and Y,
meaning that the components are optimized for prediction in a single step,
unlike PCR’s two-step process.

Holistic Use of System Variables: Since PLS uses both X and Y data
simultaneously to extract components, it can reveal shared latent structures

within the same system.
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6.5.2 A conceptual explanation of PLS

PLS can be understood as a latent variable model with a distinct objective. Unlike
PCA, which finds factors (components) to best explain variance in X, PLS seeks factors

(latent variables) that simultaneously optimize three objectives?’8280.287;

1. Best explanation of variance in the X-space,
2. Best explanation of variance in the Y-space, and

3. Maximizing the relationship between X and Y spaces.

This approach enables PLS to capture both the variability within each data block and
the relationship between them, resulting in a model that effectively links X and Y for

predictive or analytical purposes.

6.5.3 A geometric interpretation of PLS

In PLS, the mathematical approach builds on PCA by extending the objective to
optimize variance explanation in both X and Y spaces?®. In PCA, scores and loadings are
calculated to ensure each component maximizes variance in X. PLS modifies this to
simultaneously explain variance in both X and Y. Scores and loadings in PLS are calculated
to capture variance in X while also explaining variance in Y278, thereby maximizing the
relationship between X and Y. This results in latent variables that reveal structural
relationships across both data blocks, optimizing both predictive accuracy and

interpretability.

In PLS, we can visualize the model geometrically with both X and Y data points
centered and scaled to the origin, represented by corresponding points in X- and Y-

space?’®. Each observation in X has a counterpart in Y, and scores are obtained by
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projecting each data point onto direction vectors w1 and ci1 (Fig. 45). These direction
vectors are chosen to maximize the covariance between the X-space scores and Y-space
scores (like PCA does), aligning the latent variable directions to best explain both X and Y

while strengthening their relationship?®’.

The second component in X-space is calculated orthogonally to the first, though it
may not be strictly orthogonal in Y-space (but often nearly is). This approach ensures that
each component captures distinct, meaningful variation in X that correlates with Y,

enhancing predictive power.
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Figure 45. Interpretation of a dataset via PLS method. (a) Plotting the X matrix, (b)
plotting the Y matrix. The first component explaining the variation (c) in X and (d) in Y.

Construction of the second component (e) in X and (f) in Y matrix?®’ (taken from ref. 287).
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6.5.4 Interpreting the scores and loadings in PLS

In PLS, scores summarize the data in X and Y blocks, and have maximal covariance.
Interpreting PLS scores is similar to PCA: looking for clusters, outliers, and patterns in
score plots?®?, However, unlike PCA scores, which only explain variance in X, PLS scores
capture variance in both X and Y while maximizing the relationship between them. This

results in similar but not identical orientations between PCA and PLS scores (Fig. 46a)%®’.

3

Metabolite

Treatment: #Group 1 @ Group 2

PLS-DA

= N
S - LAY
- v \/® \
g - P1 1
c /-—-b nowl o oo |
~ \
& ar.
o

Treatment: ®Group 1 ®Group 2

Figure 46. Examples of two datasets. (a) First components’ orientations of both PCA and
PLS methods applied in the same dataset and (b) recasting the data on PCA and PLS

components plane.

In PLS, interpreting the loadings, also called weights?®’, follows similar principles to
PCA loadings. Highly correlated variables have similar weights and appear close together
in loading plots. A unique feature in PLS is that we often plot the loadings for X and Y
simultaneously?®”. This combined view highlights relationships not only among X variables
and Y variables but also between all variables, reflecting that X and Y come from the same

system.
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6.5.5 Validation of model results

The process of validation is essential to avoid the pitfalls of overfitting, which occurs
when model parameters are too finely tuned to the specific characteristics of the sample
rather than to the general population?’®. Overfitting leads to models that perform well on
the sample data but fail to generalize, meaning they perform poorly on new or
independent data. Overfitting is especially common when the sample size is small, or the

model includes a large number of parameters.
Split-Sample Validation

The simplest method for validation is the split-sample approach, in which the data is
divided into two subsets?’®. One subset, the estimation or training sample, is used to
develop the model, while the other, the holdout or validation or test sample, serves as an
independent dataset to test the model’s performance. Since the holdout sample does not
contribute to model estimation, it provides a separate and unbiased measure of the

model’s validity and accuracy?88.

Cross-Validation

When a sample is too small for effective split-sample validation, cross-validation
techniques are more suitable. Cross-validation divides the data into multiple smaller
subsets and averages the model performance across all subsets?®%288, Three commonly
used cross-validation methods are: (a) K-Fold Cross-Validation: The data is divided into K
subsets, with each subset being used once as the validation sample while the other K-1
subsets serve as the estimation sample?’®. This process repeats K times, each time using a
different subset for validation. This technique is effective even with small datasets as it

allows for a smaller validation sample. (b) Repeated Random Sampling (Resampling): In
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this approach, multiple random samples are drawn as validation samples. The size of
these samples is flexible, independent of the number of subsets, making it useful when
specific sample size requirements are needed?’®. (c) Leave-One-Out Cross-Validation
(Jackknife): This approach is a variation of K-fold validation where each fold contains only
a single observation, meaning one observation is left out each time as the validation

sample?’®, This is repeated until all observations have been used as validation samples.

In multivariate analysis, the goal is not solely to achieve a model that fits the sample
but to build one that accurately reflects the population. Validation provides the means to
achieve this by minimizing overfitting and confirming that the model is both statistically
significant and representative of broader data. Thus, validation is critical in creating
models that not only capture the specifics of the sample data but also hold predictive

power for the population at large.
Determining the Number of Components with Cross-Validation

Cross-validation is a versatile tool that helps prevent overfitting and can be applied
to various models, not just latent variable models. When additional components are
added to a model, the model's fit improves as it explains more of the data's variance, but
this also risks capturing noise instead of meaningful patterns?®’. For latent variable
models like PLS, cross-validation helps determine the appropriate number of components
by dividing the data into groups and calculating the residual variance in the cross-

validated error matrix?78287,

In each cross-validation fold, a PLS model is built on a subset of the data X. The
cumulative residual errors across all folds yield a cross-validated error matrix, from which
a measure (e.g. mean square error, MSE) is computed?’®2%7, MSE eventually decreases
after adding non-informative components, signaling overfitting. For model selection,

practitioners examine plots of MSE to judge component relevance?°,

Although cross-validation provides guidance, there is no exact answer for the "best"

number of components; it should be determined by the model’s purpose, considering
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both predictive accuracy and interpretability?®’. Cross-validation is particularly valuable
for predictive models like PLS but may require adjustment for exploratory or process-

optimization models where component relevance may vary.

6.5.6 PLS in continuous and categorical data

Partial Least Squares (PLS) is a family of models. Partial Least Squares Regression
(PLS-R) and Partial Least Squares Discriminant Analysis (PLS-DA) are both based on PLS
but differ in their objectives and applications?8%2%°, PLSR is used for regression tasks,
where the goal is to predict continuous outcomes by modeling relationships between
predictor variables and a continuous response variable. In contrast, PLS-DA is a
classification method; it adapts PLS for discriminant analysis by converting class labels
(e.g., categories) into a binary or a dummy variable (coding 0-1) rather than a block of
continuous variables, aiming to maximize the separation between predefined
classes?’6280 While PLS-R seeks to minimize prediction error for continuous data, PLS-DA
focuses on maximizing class discrimination, making it useful in cases like biomarker

identification or diagnostic classification.

6.6 Chemometrics

Having explored the fundamentals of multivariate analysis, the term of
chemometrics — a field that applies these techniques to solve complex chemical
problems — can be introduced. Chemometrics leverages multivariate tools, such as PCA
and regression, to analyze chemical data, helping to identify patterns, optimize processes,
and make predictive models. This approach has become essential in handling the
intricate, high-dimensional data common in modern chemical research, transforming raw

data into actionable chemical insights?%0.
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An actual definition of chemometrics is:

the chemical discipline that uses mathematical and statistical methods, (a) to design
or select optimal measurement procedures and experiments, and (b) to provide maximum

chemical information by analyzing chemical data®®*.
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Aim and Objectives

The overarching aim of this research is to develop and evaluate protocols that
leverage spectroscopic techniques and chemometric analysis for effective monitoring and
characterization of physiological responses in the context of physical exercise. This work
seeks to advance our understanding of physiological responses across different exercise
intensities through reliable, non-invasive methods, with a focus on establishing robust,

reproducible protocols using saliva and dried blood spot (DBS) analysis.

The 1%t objective is to create and validate protocols that characterize the distinct
salivary profiles of athletes by employing ATR-FTIR spectroscopy alongside chemometric
techniques. This objective involves defining and standardizing spectral markers in saliva
that reliably differentiate athletes based on factors like training, fitness levels, and

physiological adaptations to exercise (Phase 1).

Furthermore, the 2" objective is to refine methods for distinguishing exercise
intensities through the chemometric analysis of oral biofluid markers, utilizing ATR-FTIR
spectroscopy to correlate biochemical and spectral variations in saliva with physical
activity levels. This aspect of the study prioritizes the development of a rapid and
accessible protocol for exercise intensity monitoring, potentially providing insights for

both training and recovery (Phase 2).

Additionally, a 3" objective is to quantitatively measure biomarkers in saliva that
are associated with different exercise intensities. This Phase focuses on developing and
validating a precise analytical technique to assess thiocyanate ions in saliva, enabling the
evaluation of their variations in response to physical activity. The goal is to establish a

reliable and practical method for monitoring exercise-induced biochemical changes, with
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potential applications in athletic performance assessment and recovery management

(Phase 3).

The final objective is to explore protocols for monitoring biomarkers in exercise
contexts via DBS analysis, employing NMR spectroscopy and multivariate analysis. This
objective seeks to establish a minimally invasive, standardized protocol for DBS that
reliably tracks biochemical changes in response to exercise, enhancing the practical utility

of DBS in exercise biomarker monitoring (Phase 4).

Collectively, these objectives aim to deliver a rigorous, multivariate approach to
biomarker protocol development in exercise physiology. By integrating ATR-FTIR, NMR,
and advanced chemometric analysis, this research aspires to support personalized and
accessible methods for assessing training responses and physiological adaptation at the

molecular level.
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Experimental Part

7. Bioethical considerations

All procedures conducted in this study adhered to ethical guidelines and were
approved by the Independent Personal Data Protection Department of the University of
loannina, Greece. The approval was obtained under protocol number 10253/18-1-2022.
Each participant provided informed consent before their involvement in the study, with
assurances of confidentiality and proper management of personal data. Participants were
thoroughly informed about the study objectives, procedures, and their right to withdraw
at any stage. Measures were taken to ensure anonymity through the coding of collected

samples.

8. Participants

The research group maintained active communication with sports centers and
academies in the city of loannina for a period of four years. This engagement aimed to
inform stakeholders about the study's objectives and recruit suitable athlete participants.
By collaborating with local sports institutions and personal coaches, the team ensured the
selection of a diverse and representative cohort, which contributed to the reliable

development of experiments and the generation of robust, meaningful results.

This study included 260 athletes recruited from various sports disciplines, each

meeting specific eligibility criteria to ensure the validity of the findings. A detailed

117



- Section — EXPERIMENTAL PART

guestionnaire was administered to all participants to collect information about their
training habits, lifestyle, and general health (Appendix 1). The questionnaire included
guestions about training frequency, intensity, and duration, allowing for the
categorization of athletes into low-level and high-level groups. Additional sections
addressed dietary habits, and the use of supplements or medications, ensuring that
participants met the study's eligibility criteria. This structured approach provided critical
baseline data to contextualize biomarker analysis and support the investigation of

differences between recreational and competitive athletes.

8.1 Athletic cohort and management

The cohort management process was tailored to support the study's objectives and

ensure the reliability of results across different sports disciplines and training intensities.

In the preliminary study of the first Phase, a single national-level long-distance
runner was monitored over a period of 12 consecutive days. This initial investigation
aimed to assess salivary biochemical changes before and after a standardized training
session. The findings from this pilot study provided a foundational understanding of the

methodology and helped refine the experimental design for subsequent Phases.

Following the preliminary study, 57 male athletes participated in the main study of
the first Phase. These athletes represented seven distinct sports: football (13 athletes),
basketball (13 athletes), tennis (7 athletes), muay thai (9 athletes), karate (5 athletes),
boxing (9 athletes), and long-distance running (1 athlete). These sports were chosen for
their varying demands on aerobic and anaerobic fitness, as well as the distinct metabolic
adaptations they induce, thus providing a diverse sample for biochemical analysis.
Participants were divided into low-level and high-level groups based on their training
frequency and intensity, according to the questionnaire. The athletes' ages and physical

characteristics reflected the general profiles of amateur and professional competitors in
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these sports, capturing a broad spectrum of training regimens and fitness levels. This
Phase specifically aimed to investigate how salivary profile vary between these two
groups, offering a unique perspective on the biochemical distinctions associated with

recreational and competitive athletic participation.

The second Phase of the study focused on a cohort of 32 high-level male athletes.
This cohort included 22 short-distance runners and 10 triathletes actively engaged in
swimming, cycling, and running disciplines. These athletes were selected due to their
rigorous training schedules and the physiological demands of their respective sports,
which offered a valuable framework for studying salivary biomarkers under varying
exercise intensities. By including high-level athletes from disciplines with demanding
training regimens, this study captured a nuanced perspective on exercise-induced
biochemical variations, contributing to the broader understanding of athletic

performance and metabolic monitoring.

In Phase 3, participant recruitment was carried out through strategic collaborations
with sports centers, academies, and local athletic organizations. Coaches and institutional
representatives played an active role in identifying and engaging athletes from a broad
range of sporting disciplines, including football, basketball, pole dancing, aerial hoops,
tennis, volleyball, middle-distance running, and aerobic gymnastics. In total, 162 athletes
(88 males and 74 females) were enrolled in this Phase, and personal data were collected
by an additional questionnaire (Appendix 2). The experimental protocol was divided into
two distinct parts. The first part involved a subset of 21 non-smoking athletes who
underwent controlled treadmill exercise trials. The second part was designed to validate
the initial findings under more naturalistic training conditions. For this purpose, a larger
and more heterogeneous cohort of 141 athletes (both smokers and non-smokers) was
recruited. A detailed presentation of Phase 3 participants’ management is presented in
Figure 47. This approach allowed for the assessment of salivary thiocyanate fluctuations

under real-world training conditions.
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Figure 47. Cohort management and demographic statistics of Phase 3 participants.

In Phase 4, nine male middle-distance (800 m) runners participated, focusing on
blood metabolome alterations associated with exercise intensity. The initial part involved
two individuals: one professional and one non-professional athlete, selected to represent
contrasting training statuses and physiological baselines. These participants were
monitored over multiple sessions (4 distinct days) to assess intra-individual variation and

the potential influence of training background on metabolic responses.

Subsequently, the cohort was expanded to include seven additional professional
athletes, bringing the total number of participants to nine. All professional athletes were

actively engaged in structured training programs and competitive sports at the national or
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international level. The inclusion of a larger number of athletes enabled the investigation
of inter-individual consistency in metabolic alterations associated with exercise and
facilitated the validation of preliminary findings from the initial comparative part. They
participated in a carefully designed experimental protocol at specific speeds, with blood
samples collected. The inclusion of this group allowed for an in-depth exploration of
blood-based biomarkers linked to exercise-induced metabolic changes, offering a

complementary perspective to the salivary analyses conducted in earlier Phases.

A detailed representation of cohort management in presented in Figure 48. This
meticulous approach to cohort management was crucial in maintaining the integrity of
the data and achieving the research objectives. Together, these cohorts provided a
comprehensive framework for examining the biochemical and metabolic impacts of
varying athletic conditions and exercise intensities, advancing the understanding of

athletic performance and physiological adaptations.
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Figure 48. Athletes’ cohort management. Each circle indicates the number of participants

and the athletic expertise of each. The paths indicate the recruited athletes in every

Phase.

8.2 Anthropometric characteristics

The athletes participating represented a range of sports disciplines, providing a

diverse sample for analysis. Participants in the first Phase were divided into low-level and

high-level training groups, reflecting differences in training frequency and intensity. The

rest Phases focused mainly on high-level athletes. Table 5 summarizes the key

anthropometric characteristics of the participants.

Table 5. Anthropometric characteristics of participated athletes.

Group

= 2
(0 G T i Age (years) Height (m) BMI (kg/m?)
Low-level athletes (39) 28.8+4.2 1.76 £ 0.05 24.78 £ 0.87

1
High-level athletes (18) 25.6+3.0 1.79 £ 0.04 23.09+0.42

Short-distance runners
+ + +

2 and triathletes (32) 26.3+£3.0 1.82 £+ 0.02 24.10+£0.40
Men (88) 24.6 £6.8 1.82 £ 0.06 22.14+1.41

3
Women (74) 24.1+4.9 1.76 £ 0.05 21.02+1.19
4 RGeS 26.5+3.2 1.84 +0.04 21.81 +0.90

runners (9)

The anthropometric characteristics of the athletes who participated reflect their

training habits and the physical demands of their respective sports disciplines. In the first

Phase low-level athletes, primarily recreational participants (hobbyists), demonstrated
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slightly higher body mass indices (BMIs) compared to their high-level counterparts. This
trend aligns with their less frequent training routines, typically one to two sessions per
week at moderate intensity. Conversely, high-level athletes exhibited lower BMls,
indicative of their rigorous training schedules and higher physical conditioning. These
participants engaged in structured, high-intensity training regimens at least four times per
week, with their sports requiring specialized endurance, strength, or speed. Such
consistent physical activity not only enhances fitness levels but also promotes lean body

composition.

The athletes in Phases 2, 3 and 4 were all young individuals, with ages ranging from
19 to 29 vyears, reflecting the prime years of physical performance and athletic
development. Their anthropometric data—characterized by taller heights and lean BMls,
compared to lower level athletes of Phase 1—are indicative of highly trained and
physically optimized athletes. These characteristics align with the demands of competitive
sports such as short/middle-distance running and marathon, emphasizing speed, power,
and endurance??. The data underscores their status and provides a consistent basis for

exploring advanced metabolic and biochemical adaptations to exercise.

8.3 Exclusion criteria

To ensure the integrity and reliability of the findings, strict exclusion criteria were
applied. These criteria were designed to minimize potential confounding variables and
standardize the participant pool, ensuring that observed variations in salivary and blood
biomarkers and other measurements were directly attributable to the study's focus on

physical activity and exercise intensity.
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8.3.1 General health and lifestyle

Participants were excluded if they engaged in behaviors or had conditions that
could significantly alter their physiological or metabolic states. Smoking was prohibited,
as tobacco use can influence cardiovascular health, salivary biochemistry, and overall
metabolism. Smoking is known to alter biomarkers such as lactate and thiocyanate?932%,
which could confound results. However, in Phase 3 smoker athletes were included but
treated separately. In addition, athletes undergoing any medication or treatment that
could affect their physical performance or biochemical markers, such as anti-
inflammatory drugs, hormonal treatments, or metabolic supplements, were excluded
across every Phase. The use of stimulants, energy-boosting supplements, or other

performance-enhancing substances was also not permitted, as these could distort

baseline profiles and comparisons between participants.

8.3.2 Sex-based differences

Participants were selected based on predefined inclusion and exclusion criteria to
ensure the reliability and consistency of the study. In Phases 1, 2, and 4, female
participants were excluded due to the small number of female volunteers and the known
variability in metabolomics between sexes. Hormonal fluctuations, such as those
associated with the menstrual cycle, can significantly affect biomarker levels, introducing
additional complexity to data interpretation. However, in Phase 3, both male and female

athletes participated, for more robust results.
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8.3.3 Nutritional and pre-sampling guidelines

To maintain standard sampling conditions, participants were required to follow
strict pre-sampling guidelines. These included avoiding heavy meals for at least three
hours before sampling (when sampling during day) or 10-12 hours —overnight fasting—
(when sampling in the morning) to prevent the influence of recent food intake on salivary
and blood glucose, phosphate, and other metabolites?®>?%, Participants were also
instructed to refrain from consuming caffeinated or alcoholic beverages within the same

timeframe, as these substances can alter metabolic and hormonal activity?®’.

8.3.4 Medical history and conditions

Finally, participants with known medical conditions that could influence metabolic
biomarkers were excluded. Conditions such as diabetes, thyroid disorders, and chronic
inflammatory or autoimmune diseases often result in altered baseline metabolic

298-300

states , which could interfere with the study’s ability to detect exercise-induced

changes.

By implementing these exclusion criteria, the studies ensured a homogenous
participant group that was representative of the targeted populations. This approach
minimized external variables and enabled a more accurate assessment of the biochemical

and metabolic changes associated with physical exercise and training intensity.

8.4 COVID-19 considerations

Given that the study was conducted during the COVID-19 pandemic, extensive

measures were implemented to ensure the safety of participants and researchers, as well
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as the reliability of the data. All athletes were required to undergo SARS-CoV-2 testing
immediately prior to participation, ensuring that only those with a confirmed negative
result were allowed to proceed with the study. This precaution was essential to prevent
any potential transmission of the virus during sample collection and to maintain a

controlled and safe research environment.

Athlete selection and recruitment processes were adapted to comply with public
health guidelines. The research team maintained close communication with sports
centers and academies to minimize large gatherings and conducted much of the initial
recruitment virtually or in small, staggered sessions to adhere to social distancing
protocols. On-site sample collection was carefully organized, with participants arriving
individually at scheduled times to avoid overlap and ensure proper distancing. Additional
hygiene measures were enforced throughout the study. Researchers wore appropriate
personal protective equipment (PPE), including masks and gloves, always during
interactions with the participants. Hand hygiene was prioritized, and sanitization of

surfaces and equipment was carried out regularly between sampling sessions.

These considerations not only safeguarded the health of everyone involved but also
ensured the continuity of the research under challenging circumstances. The measures
demonstrated the study’s commitment to ethical research practices and public health
compliance, reflecting the adaptability of the methodology in response to unprecedented

global challenges.

9. Experimental design

The experimental design across all four Phases, was carefully structured to evaluate
the physiological responses to a variety exercise intensities. In Phase 1, a preliminary
study was conducted with a single, national-level, long-distance runner, monitored over

12 consecutive days to examine the impact of regular training sessions. Thus, saliva

127



_ Section — EXPERIMENTAL PART

samples were collected before and directly after his training session. In the main work of
the Phase 1, 57 athletes from diverse sports disciplines completed a standardized post-

exercise assessment, so samples were collected after their workout.

The experimental protocol for Phases 2, 3 and 4 focused on assessing physiological
responses at specific exercise intensities. In Phase 2, the athletes came to the outdoor
running track stadium for sampling at 09:00 a.m. to 10:00 a.m. Athletes performed four
distinct exercise states in sequence: rest (0 km/h), walking (4-5 km/h), jogging (9-10
km/h), and running (14-15 km/h). Sampling was conducted at each of these time points
to capture the effects of progressive intensity levels. The total distance covered by
athletes during the protocol was 2-3 km on a standard running track, ensuring consistency

across participants.

On the other hand, Phases 3 and 4 were conducted on a running treadmill to
standardize further the athletic conditions during sampling. Herein, the exercise intensity
was evaluated according to each athlete’s VO;max value for more representative
workout. More specifically, the VO.max value of each athlete was measured via
ergometric test in a third-party laboratory using the Bruce treadmill protocol, a widely
accepted graded exercise test designed to progressively increase workload until volitional
exhaustion. Each test was performed using the same metabolic cart and treadmill model
to maintain consistency across measurements. Prior to each test, equipment calibration
and participant familiarization were conducted in accordance with the laboratory's
standard operating procedures. Based on the globally recognized American College of
Sports Medicine® (ACSM) Metabolic Equations3%?, the targeted exercise effort (i.e., 20%
VO2max, 60% VO,max and 90% VO.max) converted to the set speed on treadmill. For
instance, Table 6 presents the VO;max value of each participant in Phase 4 and the
corresponding speed-state who run. The presentation of exercise intensity as a
percentage of VOomax in Phases 3 and 4 aligns well with the less mature approach used in
Phase 2, where intensity was expressed more directly through running speeds (km/h).

Although expressing intensity in km/h represents a more straightforward and less

128



Experimental design -

physiologically tailored method, using % VO.max provides a more individualized and
standardized measure of exertion across athletes with varying fitness levels. By linking
both methods, the study maintains continuity between Phases while enhancing precision

in exercise prescription and physiological interpretation in these Phases.

Table 6. Running speeds corresponding to 20%, 60%, and 90% of VO.max for each athlete

participated in Phase 4.

Set speed (km/h)

Athlete (m\I{;)kzgn}?nxin)
20% VO;max 60% VO.max 90% VO.max
A 51.6 4.1 8.2 12.9
B 57.4 4.8 9.3 14.4
C 63.0 5.5 10.3 16.0
D 523 4.2 8.4 13.1
E 63.7 5.5 104 16.2
F 62.5 5.4 10.2 15.8
G 56.7 4.7 9.1 14.2
H 59.5 5.0 9.7 15.0
I 65.0 5.7 10.7 16.5

The athletes, in both Phases 3 and 4, covered a distance of 1 km in each exercise

state, exercising in total of 3 kilometers. It should be mentioned that at the end of Phase

129



_ Section — EXPERIMENTAL PART

3, an additional sampling was conducted prior and after a typical training routine of a
large cohort of athletes (see section 8.1) to establish the Phase’s findings. This structured
design allowed for a precise evaluation of how different exercise intensities influence
athletic performance and physiological responses. Figure 49 depicts the experimental

design of the whole study.

Figure 49. Sampling time-points in each Phase. Phase 1: saliva sampling before and after
running session, and after training session of various sports. Phase 2: saliva sampling at
rest and after running session of different intensities. Phase 3: saliva sampling at rest and
after running session of different intensities, and before and after training sessions of
various sports. Phase 4: blood sampling at rest and after running session of different

intensities.
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10. Sample collection

The sample collection process was meticulously designed to ensure consistency,
reliability, and minimal disruption to the athletes' training routines. Specific protocols
were followed for each type of sample, with saliva sampling conducted in Phases 1, 2 and

3 and blood sampling conducted in Phase 4.

10.1 Saliva sampling

Saliva samples were collected before and immediately post-exercise as described
above. Athletes were instructed to avoid food, caffeine, and alcohol for at least three
hours before sampling and to refrain from oral hygiene practices, such as brushing teeth,
flossing or using mouthwash, for 30 minutes before the session to avoid contamination of

saliva with dental products that might interfere with the analysis3°2.

In Phase 1, on the day of sampling, participants rinsed their mouths with water
approximately 10 minutes before the session to remove any residual contaminants. Saliva
was collected directly into sterile 1.5 mL Eppendorf tubes by passive drooling, avoiding

stimulation techniques.

In both Phases 2 and 3, participants used the Salivette® (SARSTEDT, Numbrecht,
Germany) collection technique for sample collection, which involved chewing on a sterile
swab for a standardized period to stimulate saliva production. The swab was then placed
into a sterile Salivette® tube designed to collect and filter the saliva efficiently. This
method ensured the consistent volume and quality of saliva collected across all

participants.

Each sample was labeled with a unique code to maintain anonymity and facilitate

precise tracking. After sampling the containers with the saliva samples were analyzed
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immediately or were stored in refrigerator at 4°C until analysis (the analysis doneina 4 h

window), to prevent degradation of some components and bacterial growth303304,

10.2 Blood enzymatic assay

In Phase 2 of the study, alongside saliva sampling, blood glucose and lactate levels
were measured using commercially available portable assays. Blood samples were
obtained via finger prick at rest and immediately after each exercise intensity (walking,
jogging, and running). The measurements were conducted using validated handheld
devices, ensuring rapid and accurate quantification of glucose and lactate concentrations
in the field. Lactate analyzer Accutrend® Plus (Roche®, Germany) and reagent strips (BM-
Lactate, Roche®) were utilized to determinate the concentration level of lactate in blood,
while Contour® analyzer (Bayer®, Germany) and Contour® blood glucose test strips
(Bayer®, Germany) were used for glucose measurements. These biomarkers provided
additional insights into the physiological responses to incremental exercise intensities,
complementing the salivary analysis, comparing the results with responses in saliva, and

offering a more comprehensive understanding of the athletes' metabolic adaptations.

10.3 Blood sampling

In Phase 4, blood samples were obtained using the minimally invasive dried blood
spot (DBS) technique. In the field of blood microsampling, commercially available
materials such as the Whatman 403 Protein Saver Cards are widely used due to their
reliability and standardization. However, the development and application of synthesized
materials for blood sampling present significant advantages, including potential
improvements in analyte adsorption, selective extraction and extraction efficiency, and

cost-effectiveness. By exploring alternative materials inspired by the FPSE extraction
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technique, it becomes possible to optimize sampling performance, enhance selectivity for
specific biomarkers, and tailor the properties of the substrate to suit diverse analytical
needs3%. This approach not only expands the range of available microsampling media but
also opens new avenues for method customization and innovation in bioanalytical

research.

10.3.1 Synthesis of adsorptive-FPSE based materials

In this study, four synthesized materials were prepared for blood microsampling,
inspired by the Fabric Phase Sorptive Extraction (FPSE) technique. Two fabric substrates —
Whatman Cellulose filter of 125 mm and Whatman Microfiber Glass filter of 110 mm (GE
Healthcare Bio-sciences Corp, Piscataway, NJ, USA) — and two different polymers —
polyethylene glycol (PEG 300) and poly(ethylene glycol)-block-poly(propylene glycol)-
block-poly(ethylene glycol) (PEG-PPG-PEG 5.800) (Sigma-Aldrich, Burlington,
Massachusetts, U.S.) —were tested. In total, four different combinations arose for the

blood microsampling proposes.

The synthesis process involved two main steps: pretreatment of fabric substrates

and the application of sol—gel coatings to create the desired sorbent materials.
Pretreatment of Fabric Substrates:

Both fabrics/substrates chosen to produce sol-gel covered sorbents were initially
soaked in deionized water under sonication to ensure thorough wetting and removal of
impurities. The fabrics were then subjected to a cleaning/activation process by treating
them with 1 M sodium hydroxide (NaOH) under sonication for an hour. Following this, the
fabrics were washed extensively with deionized water to remove residual NaOH.
Subsequently, the fabrics were treated with 0.1 M hydrochloric acid (HCI) under

sonication for an hour, washed again with deionized water, and finally dried overnight in
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an inert atmosphere. The dried fabric substrates were stored in clean, airtight glass

containers until further use.
Preparation of sol—gel solution:

The pretreated fabric substrates were coated with sol-gel derived sorbents to
create four distinct extraction media. The sol-gel synthesis and coating processes is
summarized in the following lines: Each sol—gel solution was prepared by dissolving 5 g of
the corresponding polymer in 10 mL mixture of acetone and dichloromethane (50/50%
v/v) and vortexing for 1 min. Then in a separated container, 5 mL of the generic precursor
molecule methyltrimethoxysilane (MTMS) was added, followed by the addition of 2 mL
trifluoroacetic acid (TFA) catalyst to hydrolyze MTMS, initiating polycondensation. The
two mixtures were combined (5 min vortex) forming a growing sol-gel network

incorporating the polymer.
Coating of the media:

The pretreated fabric media were immersed in this solution for 4 h. The coated
fabric was removed from the sol—gel solution and left in a desiccator overnight for solvent
evaporation. It was then rinsed with acetone/dichloromethane (50/50% v/v) under
sonication for 30 min to remove unreacted residues. Finally, the fabric was cut into 1 cm

diameter circles and stored in a sealed container to prevent contamination.

The resulting sol-gel coated fabrics served as the synthesized materials for blood
microsampling, each possessing unique sorptive properties tailored through the sol—gel

chemistry employed during their preparation.
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10.3.2 Blood microsampling with different materials

Athletes performed four exercise states—rest, 20% VO.max, 60% VO;max, 90%
VO.max, —and blood samples were collected immediately after each state. Capillary
blood samples (approx. 45 uL) were taken via finger prick from the third (middle) or
fourth (ring) fingertip, which had been thoroughly cleaned with water to avoid

interference from alcohol or soap residues.

Using a sterile lancet, a drop of blood was allowed to form and was carefully applied
to the center of a Whatman 903 Protein Saver Card (GE Healthcare Bio-sciences Corp,
Piscataway, NJ, USA) (Fig. 50a) or on the precut synthesized materials. Each medium was
left to dry at room temperature for two hours to ensure stability before storage at -80°C
until analysis. The DBS technique allowed for convenient field sampling, reducing

logistical challenges while maintaining the reliability of the collected samples.

These standardized protocols ensured the collection of high-quality saliva and blood
samples, facilitating robust analyses and reliable comparisons across the different Phases

of the study
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540 pL extracted sol. 60 pL buffer &

550 pL mixture
to NMR tube
—

Figure 50. (a) Collection of blood microvolume from the fingertip on the Whatman 903

DBS card and (b) blood extraction process.

11. Sample pre-processing

The sample pre-processing protocols were designed to ensure the optimal
preparation of saliva and blood samples for subsequent analyses. Specific procedures
were implemented for each biofluid, reflecting the objectives and methodologies of the

respective study Phases.
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11.1 Saliva handling

In Phases 1 and 2, prior analysis, all saliva samples were dried to eliminate residual
humidity, which can interfere with ATR spectra by masking key molecular vibrations and
reducing spectral clarity. Removing moisture ensures that the detected signals represent
the chemical composition of the sample rather than water-related artifacts. Optimizing
the drying step is therefore critical to achieving consistent and high-quality spectra,

enabling reliable interpretation and reproducibility in ATR-based saliva analysis.

Therefore, to optimize the drying process of saliva for ATR-FTIR analysis, a pooled
saliva sample was prepared and evaluated using two drying methods. In the first method,
1 mL of the pooled saliva sample was placed on a watch glass and dried at 37°C. After the
overnight drying process the dried saliva was manually scraped and transferred to the
ATR crystal for analysis. This procedure was repeated ten times to assess the precision of
the technique. For the second method, 10 plL of the pooled saliva sample was deposited
onto a cover glass and dried at the same temperature. Once the initial layer of saliva was
dried, an additional 10 pL was applied directly on top of the dried layer to form a second
stacked layer. This process was repeated iteratively to create a total of 100 stacked layers.
The cover glass was then inverted to place the dried layers in contact with the ATR crystal
for measurement. This method was also repeated ten times to evaluate its precision. Both

methods were compared to determine which produced higher-quality ATR spectra.

Thus, in Phase 1, saliva samples were centrifuged by Centurion Scientific K241
(Centurion Scientific Ltd, Chichester, WS, UK) at 10,000 rpm for 10 minutes to remove
large molecular debris and obtain a clear supernatant. The supernatant was then dried,

with the optimum drying method, to prepare it for ATR-FTIR spectroscopy analysis.

In Phase 2, saliva samples collected using the Salivette® technique were first

centrifuged at 10,000 rpm for 5 minutes to extract absorbed saliva from the cotton
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swabs. The collected saliva was then subjected to further processing, similar to Phase 1.
The biofluid was subjected again to centrifugation at 10,000 rpm for 10 min to separate
and precipitate larger molecules. Aliquots of the centrifuged saliva were dried under
controlled conditions to ensure consistent preparation for analysis. This drying process
concentrated the salivary components, allowing for more precise spectral readings and
biomarker identification. Finally, dried saliva samples were analyzed with ATR-FTIR

instrumentation and the collected spectra were further processed.

In Phase 3, saliva samples, also collected using the Salivette® technique, were
centrifuged at 10,000 rpm for 5 minutes to extract absorbed saliva from the cotton

swabs, and the supernatant was collected for thiocyanate determination.

11.2 Blood handling

In Phase 4, blood samples were processed using the dried blood spot (DBS)
technique. In the case of the synthesized materials the media were already precut, so
blood was deposited directly on the top on the media, where they were then placed in an
Eppendorf tube. On the other hand, discs (6 mm in diameter) were punched from the
dried blood spots of the Whatman 903 DBS cards using a sterile puncher. Each disc,
equivalent to approximately 2.2 mg of dried blood, was placed in an Eppendorf tube. In
both cases, a volume of 600 uL of ultrapure water (produced by a Milli-Q system, Evoqua,
Pittsburg, USA) was added to the tube, and the mixture was gently vortexed for 10
minutes to rehydrate the dried blood and extract metabolites (Fig. 50b). Using water as
the sole extraction solvent was sufficient to elute blood cells and other endogenous
components from the synthesized materials and DBS cards. The volume of water used
was kept to a minimum to ensure the extracted solution remained concentrated while
still being adequate for NMR analysis. The solution was then centrifuged at 12,000 rpm

for 10 minutes to remove the paper punch and solid materials from the card, if appeared.
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Each NMR sample was prepared by combining 10% (60 pL) of a deuterated buffer
solution with 90% (540 puL) of the blood extract (Fig. 50b). The deuterated buffer, widely
employed in NMR-based metabolomics of urine, consisted of 1.5 M potassium
dihydrogen phosphate (KH,PO,) dissolved in 99.9% deuterium oxide (D,0). The buffer
was adjusted to a pH of 7.4 and contained additional components, including 2 mM
sodium azide to prevent microbial growth and 0.1% sodium 3-(trimethylsilyl)propionate-
ds (TSP) as a chemical shift reference standard. The resulting mixture was thoroughly
homogenized to ensure consistency before transferring a final volume of 550 pL into a 5
mm NMR tube. This volume and composition were optimized to provide sufficient sample

integrity and signal quality for subsequent NMR analysis.

These standardized protocols for saliva and blood handling ensured high-quality
samples were prepared for advanced biochemical and metabolomic analyses, enabling

robust and reproducible findings across the study Phases.

12. Thiocyanate assay in saliva

In Phase 3, thiocyanate ions were studied in detail. The determination of
thiocyanate in saliva was performed according to the well-established method of

thiocyanatoiron (I11) ion3°®,

12.1 Calibration curve via artificial saliva

To develop and validate a method for thiocyanate determination in saliva, a series
of thiocyanate standards were prepared at concentrations ranging from 0.01 to 1.5 mM.
Standard thiocyanate solutions were prepared using potassium thiocyanate (KSCN)

dissolved in artificial saliva to create a stock solution of 1.5 M, which was further diluted
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as needed. The calibration curve was constructed using artificial saliva instead of
deionized water to better mimic the sample matrix and account for potential matrix

307 consisting

effects. Artificial saliva was prepared following a standardized composition
of 125.6 mg/L sodium chloride (NaCl), 963.9 mg/L potassium chloride (KCl), 227.9 mg/L
calcium chloride dihydrate (CaCl; - 2H,0), 178 mg/L ammonium chloride (NH4Cl), 336.5
mg/L sodium sulphate (Na;S04), 200 mg/L urea (CH4N20), 630.8 mg/L sodium bicarbonate
(NaHCOs3), and 654.5 mg/L potassium dihydrogen phosphate (KH2POa), all dissolved in

deionized water. Thus, standard thiocyanate solutions were prepared in this artificial

saliva medium.

12.2 Colored complex formation

The reagent of iron(lll) nitrate solution was prepared at a concentration of 0.2 M by
dissolving iron(lll) nitrate Fe(NOs)3 nonahydrate in 1 M HNOs. For analysis, 1.0 mL of the
standard solution or real saliva sample was mixed with 1.0 mL of the iron nitrate reagent.
The mixture was allowed to react (vortex), and the complex was formed immediately. The
resulting solution was then transferred to a cuvette, and the absorbance was measured

photometrically at 458 nm.

13. Instrumentation

13.1 ATR-FTIR spectra acquisition

The acquisition of ATR-FTIR (Attenuated Total Reflectance-Fourier Transform
Infrared) spectra was performed in Phases 1 and 2 to analyze the biochemical
composition of saliva samples. The same instrument and operational conditions were

applied in both Phases to ensure consistency and comparability of results.
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A Spectrum Two FT-IR spectrometer equipped with a UATR Two Accessory (Perkin
Elmer, Waltham, MA, USA) and Spectrum 10 Spectroscopy Software v. 10.5.4 (Perkin
Elmer, Waltham, MA, USA), was used for spectral acquisition. The system operated in
transmittance mode in the mid-infrared range (4000-450 cm™). Background spectrum
was obtained before measurements, to subtract it from each sample spectrum, providing
higher quality spectra. Each dried saliva sample was placed directly on the ATR crystal,
ensuring full contact for optimal signal acquisition. Approximately 1.5 mg of dried saliva
was applied to the crystal surface (2.0 x 2.0 mm) for analysis. The spectra were recorded
with a resolution of 4 cm™, and 32 scans were averaged per sample to enhance the signal-
to-noise ratio. Prior to each measurement, the ATR crystal was cleaned thoroughly with

isopropanol to prevent cross-contamination between samples.

The recorded spectra provided detailed molecular fingerprints of the saliva samples,
enabling the identification and quantification of specific biochemical changes associated

with exercise intensity and athlete training levels.

13.2 Photometric acquisition for thiocyanate assay

The quantification of thiocyanate in saliva was performed wusing a
spectrophotometric assay based on the formation of an iron(lll) thiocyanate complex.
When thiocyanate reacts with iron(lll) nitrate, a red-colored complex forms, exhibiting a
characteristic absorbance at 458 nm. The intensity of the color is directly proportional to
the thiocyanate concentration, allowing for its quantification. Absorbance measurements
were conducted using a UV-Vis spectrophotometer (UV-1800 Spectrtophotometer,
Shimadzu, Kyoto, Japan), and sample concentrations were determined by interpolation

from a calibration curve prepared using artificial saliva standards.
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13.3 NMR spectra acquisition

One-dimensional (1D) H-NMR spectra were acquired using a Bruker AV500
spectrometer operating at a frequency of 500.13 MHz (Bruker Biospin, Rheinstetten,
Germany). The temperature was maintained at a constant 310 K throughout the
measurements, which were conducted using the TopSpin v4 software suite. The spectra
were recorded using the 1D 'H zgpr pulse sequence, with 98,000 data points collected
across a spectral width of 14,705 Hz. A total of 512 scans were performed, preceded by 8

dummy scans, and a relaxation delay of 4 seconds was applied between scans.

The acquired spectra were zero-filled to 132K data points and Fourier-transformed
following the application of an exponential apodization function with a 0.3 Hz line
broadening factor. Baseline and Phase corrections were initially performed using Bruker's
automated software, IconNMR, integrated with TopSpin 4.06. When necessary, manual
corrections were applied, including zero-order and first-order Phase adjustments,
followed by baseline correction. Baseline adjustments were performed by fitting a third-
degree polynomial function to spectral regions devoid of peaks. These manual corrections
were carried out using the "apk" (automatic Phase correction) and "abs" (automatic

baseline correction) functions in TopSpin.

The TSP signal was calibrated to 0.0 ppm for all spectra to ensure consistency.
Additionally, two reference samples (SRs) were prepared by pooling aliquots from all
study samples. These pooled reference samples were analyzed periodically throughout
the study’s Phase to serve as quality control (QC) standards, ensuring reproducibility and
reliability of the NMR measurements The *H-NMR spectra of all samples were acquired

using identical experimental settings (PQN normalization).
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14. Data analysis

Working on Phase 1 of the study, ATR-FTIR spectra were first preprocessed by
converting transmittance to absorbance, followed by baseline correction using the
Sensitive Nonlinear Iterative Peak (SNIP) algorithm3® and normalization based on the
broad band at 3200-3300 cm™ corresponding to water3®. Principal Component Analysis
(PCA) was applied to explore variations in salivary spectral profiles during physical
exercise, while both PCA and Partial Least Squares Discriminant Analysis (PLS-DA) was
used to classify athletes based on their fitness levels. Model optimization and validation
were conducted using a 3-fold repeated stratified cross-validation (30 repeats),
determining the optimal number of components based on the Root Mean Squared Error
of Cross-Validation (RMSECV) and Prediction (RMSEP). All analyses were performed using

Python (v3.8) with scikit-learn3'°, pandas3!!, and numpy3*? libraries.

In Phase 2 spectra were baseline corrected using the Spectragryph licensed
application software version 1.2.15, and multiplicative scatter correction (MSC) was
applied to remove light scattering effects caused by surface irregularities in dried oral
fluid. A second derivative transformation was performed to enhance the separation of
overlapping peaks3'3. PCA was initially used to explore patterns in the dataset, while PCA-
LDA and PLS-DA was applied for classification of saliva spectra based on exercise intensity.
The total spectral range (4000-450 cm™) was utilized for analysis, with the dataset split
into 70% for training and 30% for testing. A 10-fold repeated stratified cross-validation
(100 repeats) was conducted to determine the optimal number of components while
minimizing prediction error. All multivariate procedures and analyses were performed
using MATLAB (R2019a, The Mathworks, Natick, MA, USA) with in-house scripts based on
“Partial Least Squares Regression and Principal Components Regression - MATLAB &
Simulink Example.”, in Mathworks website (Appendix 3). To assess statistical significance
in specified metabolites variations across exercise intensities, Analysis of Variance
(ANOVA) was performed. However, as ANOVA does not indicate where the differences

occur, post hoc tests were conducted to compare group means pairwise. The Bonferroni
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correction was applied to adjust for multiple comparisons, reducing the risk of false
positives and ensuring the reliability of the findings. Statistical analyses were conducted

using Microsoft Excel 2007 (Microsoft Corporation, Redmond, WA, USA).

Similarly, statistical analysis in Phase 3 was done with Microsoft Excel 2007

(Microsoft Corporation, Redmond, WA, USA).

The following data analysis pertains to Phase 4 of the study. The processed 1D 'H
NMR spectra were imported into the SMoIESY platform3!* to remove macromolecular
baseline contributions while preserving the quantitative integrity of the spectra3®®. This
preprocessing step enabled accurate normalization of spectral data by taking into
consideration of dilution effects on total signal intensity3'®. Spectral datasets after
SMOoIESY normalization, ranging from 0.50 to 10.00 ppm, while the suppressed H,O region
from 4.3 to 5.2 ppm was removed, were binned using a 0.02 ppm bin width, resulting in a
dataset of 425 variables. This dataset was used for the untargeted analysis. In addition, a
targeted dataset was created by semi-automated peak assignment and quantification for
metabolites identification, similarly with previous study3!’. Both datasets were
normalized using Probabilistic Quotient Normalization (PQN)3!'8 to account for dilution

variability introduced during the extraction of blood from DBS.

All normalized datasets were imported into MATLAB software (v. 2021b,
MathWorks) and analyzed using Principal Component Analysis (PCA) and Partial Least
Squares - Discriminant Analysis (PLS-DA), through the PLS_ Toolbox (v. 8.7.1, Eigenvector
Research, Inc., Manson, WA, USA). Prior to the statistical processing, the SMolESY
profiling data were mean-centered. All statistical models and corresponding performance
metrics were generated following a cross-validation procedure. To identify important
spectral features, variables loadings and Variable Importance in Projection (VIP) scores
from the PLS-DA models were examined, with VIP values equal to or higher than 1
considered indicative of high influence. Additionally, the statistical significance of
metabolite concentrations was evaluated through univariate analysis using one-way

ANOVA build-in functions available in MATLAB
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(https://uk.mathworks.com/help/stats/one-way-anova.html). To correct for multiple
testing and control the false discovery rate, the Benjamini-Hochberg correction was
applied using the “fdr_bh” script
(https://www.mathworks.com/matlabcentral/fileexchange/27418-fdr_bh).
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Results and Discussion

15. Saliva drying optimization

To optimize the drying process of saliva for ATR-FTIR analysis, two drying methods
were evaluated. In the first method, 1 mL of pooled saliva was dried at 37°C for
approximately 20 hours (overnight) (Fig. 51c), manually scraped, and transferred to the
ATR crystal (Fig. 51d). In the second method, 10 uL aliquots of saliva were sequentially
layered and dried on a cover glass to create progressively 100 stacked layers (Fig. 51b),

which were then inverted onto the ATR crystal (Fig. 51e).
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Figure 51. Images of the drying process of saliva with the two methods: drying on watch
glass and manual scrapping and drying on cover glass and direct placement on ATR
crystal. (a) Side by side viewpoint, (b) top view of dried saliva with cover glass method and
(c) top view of dried saliva with watch glass method. (d) Top view of manually scrapped
dried saliva placed on ATR crystal, (e) top view of inverted cover glass placed on ATR
crystal, (f) side view of manually scrapped dried saliva placed on ATR crystal and (g) side

view of inverted cover glass placed on ATR crystal.

The evaluation of the two drying methods revealed notable differences in the
guality and intensity of the ATR-FTIR spectra obtained (Fig. 52). The method involving the
manual scraping of dried saliva demonstrated superior performance in terms of spectral
intensity and sensitivity. The spectra acquired using this method consistently exhibited
sharper peaks and higher signal intensities, indicating improved interaction between the
solid saliva sample and the ATR crystal surface. This enhanced contact is attributed to the
direct application of the scraped saliva, which likely allowed for more uniform and

intimate contact with the crystal, minimizing gaps or inconsistencies.

In contrast, the stacked-layer method, while innovative, resulted in relatively lower
spectral intensity. This reduction in sensitivity may be due to the inherent structural
inconsistencies introduced during the iterative layering process. Although the stacked
layers formed a solid structure upon drying, their contact with the ATR crystal was likely
less uniform due to potential air gaps or surface irregularities caused by the stacking
technique. Furthermore, the inversion of the cover glass to place the dried layers in
contact with the crystal could have introduced additional challenges, such as uneven

pressure or incomplete contact over the crystal's surface.

Reproducibility tests for both methods showed consistent results across the ten
repetitions, confirming that the drying processes were stable and repeatable. However,

the manual scraping method not only demonstrated better spectral quality but also
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proved to be more practical for ensuring optimal sample-crystal interaction in ATR-FTIR

analysis.
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Figure 52. Averaged spectra (n=10) of dried pooled saliva with the two drying methods:
drying on watch glass and manual scrapping and drying on cover glass and direct

placement on ATR crystal (30 layers and 100 layers are presented). (a) Overlay

presentation, (b) stacked presentation.

These findings underscore the critical role of sample preparation in ATR-FTIR saliva
analysis. The manual scraping method's ability to produce high-quality spectra with

greater sensitivity highlights its suitability on later applications requiring detailed and
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reliable chemical characterization. In contrast, while the stacked-layer method offers an
alternative approach, its limitations in spectral intensity suggest that further refinement is

necessary to enhance its efficacy for ATR-FTIR analysis.
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16. Phase 1 — Spectroscopic and chemometric characterization of

saliva for athlete profiling: A study using ATR-FTIR

Driven by the scientific community's increasing interest in non-invasive biomarker
monitoring, this Phase focused on utilizing a robust approach for tracking biomolecular
changes in saliva during physical exercise through ATR-FTIR spectroscopy. Saliva was
chosen as the biofluid of interest due to its ease of collection, participant-friendly nature,
and rich biochemical composition reflective of systemic physiological changes3'®. ATR-
FTIR spectroscopy was preferred in this study due to its minimal sample preparation
requirements and ability to analyze complex biological matrices, such as saliva, directly.
The technique's sensitivity to molecular vibrations allows for the detection of subtle
biochemical changes, making it ideal for monitoring minimal biomarker variations in

minimal sample volume during physical exercise3%,

16.1 Salivary biochemical changes before and after physical exercise

A preliminary study was performed to investigate the utility of our methodology to
monitor the salivary profile during exercise. The preliminary study conducted in Phase 1
aimed to reveal distinct biochemical changes in saliva before and after physical exercise,

using ATR-FTIR spectroscopy.

A single national-level long-distance athlete was monitored over 12 consecutive
days to evaluate the feasibility of using ATR-FTIR spectroscopy for salivary biomarker
analysis. Saliva samples were collected both before and after the athlete's daily training
sessions, capturing the biochemical changes associated with exercise. This longitudinal

approach provided valuable insights into the day-to-day metabolic fluctuations induced
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by variables such as sleep patterns, physical activity outside training, or hydration status.
By collecting saliva samples consistently before and after each workout over consecutive
days, the study reduced the influence of transient factors, allowing a clearer focus on
exercise-induced biochemical changes. This approach ensured more reliable and

representative data.

Thus, PCA was employed to evaluate these spectral differences and to identify the
key biochemical features driving discrimination. The scree plot displaying the explained
variance of up to 10 principal components (PCs) showed a steep decline in variance
explained by the first few PCs, followed by a gradual leveling off (Fig. 53). PC1 accounted
for a significant portion of the variance (83.27%) reflecting the dominant variation in the
data. PC2 added another substantial contribution (6.03%) bringing the cumulative
explained variance to 89.30%. Subsequent PCs, such as PC3 and PC4, explained
progressively smaller amounts of variance 3.53% and 2.76%, respectively. Beyond PC5,
the variance contributions diminished further, with PC6 to PC10 each explaining less than

1%, reflecting noise or minor variations unrelated to the primary patterns in the data.

The "elbow" of the scree plot clearly observed on PC2, indicating that the majority
of the variance can be captured with the first two components, making them the most
significant for further analysis. According to the Percentage of Variance Criterion, which
recommends retaining components until a specific percentage of the total variance is
explained, the first three PCs are more than sufficient to capture the majority of the
data’s variability (>90%). This approach balances data simplification with information
retention. Following this criterion, the score plots of these three principal components
were examined, providing a detailed visualization of the clustering and separation
between pre- and post-exercise samples, highlighting the key biochemical differences

induced by physical activity.
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Figure 53. Scree plot of PCA. The explained variation in each PC and the cumulative

explained variance (before vs. after physical exercise dataset).

The score scatter plots among PC1, PC2, and PC3 reveal clear patterns of
discrimination between the two groups (before and after exercise) (Fig. 54). It is also
depicted the data distribution within each principal component, providing a more
comprehensive view of the underlying variability. The score plots indicate that the groups
are well-separated, with minimal overlap indicating robust discrimination, suggesting
distinct biochemical profiles associated with the pre- and post-exercise states. Notably,
PC2 appears to be the primary contributor to this discrimination, as it shows the most
significant separation between the groups compared to PC1 and PC3. This finding
underscores the importance of the biochemical features represented by PC2 in capturing
the metabolic changes induced by physical activity. The inclusion of data distributions
within the plots enhances the clarity of these results, visually confirming the distinct
clustering of samples on PC2 (Fig. 54) and supporting the robustness of the PCA model in

differentiating the two groups. These results demonstrate the efficacy of ATR-FTIR
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spectroscopy combined with multivariate analysis for detecting and characterizing

exercise-induced biochemical changes in saliva.
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The loading plots for PC1, PC2, and PC3 provide insights into the specific spectral
features driving the discrimination between pre- and post-exercise salivary samples (Fig.
55). These plots highlight the wavenumbers most strongly contributing to the variance
captured by each principal component, offering a deeper understanding of the

biochemical changes associated with physical exercise.
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Figure 55. Loading plots of the first three principal components (before vs. after physical

exercise dataset).

PC1, which explains the majority of the variance, is primarily influenced by
wavenumbers associated with general biochemical content in saliva. Key contributors
include the amide | (1631 cm™, C=0 stretching vibration) and amide Il (1527 cm™, N-H
bending vibration) regions, indicative of proteins and their secondary structures3%332°, The
high loadings in these regions suggest significant protein-related changes, reflecting
increased protein turnover or secretion post-exercise. Medium-intensity bands in the
infrared spectra also play a significant role, contributing to the overall variance captured
by this principal component. Specifically, the broad band at 982—-1207 cm™, associated
with glucose, glycogen, and sugar moieties (C—C and C-0 stretching vibrations), highlights

the involvement of carbohydrate-related biochemical changes32932%, These peaks indicate
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shifts in energy metabolism, such as glycogen breakdown and glucose utilization, which
are essential metabolic responses to physical activity. Additionally, the band at 1395 cm™,
attributed to carboxylate groups (COO~ stretching vibrations), is indicative of molecules
like lactic acid or carboxyl side chains of salivary proteins3?l. This peak suggests an
alteration in lactic acid levels, a well-known byproduct of anaerobic metabolism during

exerciseS.

For PC2, the primary classification between pre- and post-exercise samples is driven
by specific spectral bands that highlight key biochemical changes. Notably, the band at
622 cm™, associated with the amide | region, reflects alterations in protein secondary
structure3??, potentially indicative of changes in salivary protein dynamics due to exercise-
induced stress or metabolic activity. The band at 921 cm™, linked to membrane
lipids/phospholipids and carbohydrates3??, suggests a metabolic shift involving lipid
mobilization or structural changes in carbohydrate-linked components3?3. These changes
may correspond to enhanced energy demands and cellular membrane activity during
physical exertion. A particularly strong and wide band at 1080 cm™, attributed to sugar
moieties3?%321, shows the most significant contribution to the discrimination along PC2.
This peak highlights changes in glycosylation patterns or variations in glucose-related
metabolites, underscoring the critical role of carbohydrate metabolism in separating pre-
and post-exercise states. The prominent influence of these bands on PC2 reinforces its
role as a key driver of group discrimination, reflecting targeted biochemical adaptations
to physical activity. These findings emphasize the sensitivity of ATR-FTIR spectroscopy in

detecting nuanced molecular responses to exercise.

The strong peak at 1080 cm™, associated with sugar moieties, provides direct
evidence of the critical role that carbohydrates play in energy metabolism during physical
exercise3?4, Simple carbohydrates, such as glucose, are rapidly absorbed and utilized by
muscles for immediate energy, while more complex carbohydrates are gradually broken
down into glucose, fructose, and galactose, offering a sustained energy release3%>. Excess

glucose is stored as glycogen in the liver and muscles, serving as a readily available energy
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reserve, particularly during short, high-intensity activities like sprinting3.

During
exercise, glycogen stores are converted back into glucose to meet the body’s heightened
energy demands3?®, Post-exercise, the depletion of blood glucose levels often leads to
fatigue3?®, further emphasizing the central role of carbohydrate metabolism in sustaining
physical activity. The prominent spectral band at 1080 cm™ highlights the metabolic
activity involving sugar moieties and glycogen mobilization, confirming these physiological

processes.

In general, the analysis of the principal components suggests distinct biochemical
roles for PC1 and PC2 in differentiating before and after exercise salivary samples. PC1
appears to be primarily associated with variables related to proteins, as evidenced by the
strong contributions from the amide | and Il regions. In contrast, PC2 is more strongly
correlated with sugar moieties and carbohydrates, highlighted by prominent peaks such
as the band at 1080 cm™. Together, these components provide complementary insights

into the molecular adaptations underpinning physical exertion.

Overall, the use of ATR-FTIR provided a rapid and reliable analytical approach to
capture molecular fingerprints, enabling the identification of exercise-induced metabolic
alterations. This innovative approach sought to establish saliva as a practical and effective

medium for real-time biomarker assessment in sports science and exercise physiology.

16.2 Biochemical adaptations aid by training habits: high- vs. low-

level athletes discrimination

The findings from the before and after exercise discrimination highlighted the
significant biochemical changes induced by physical activity, demonstrating the utility of
ATR-FTIR spectroscopy for tracking metabolic responses. Building on this foundation, the
study progressed to examine how these biochemical markers vary between athletes of

different training levels.
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While the pre- and post- exercise analysis focused on acute metabolic changes due
to physical exertion, the comparison between high-level and low-level athletes aimed to
explore long-term adaptations driven by training intensity and frequency. The intense and
frequent physical exercise is a defining characteristic of high-level athletes, as it drives the
physiological and metabolic adaptations required for enhanced performance. Consistent,
structured training leads to significant improvements in cardiovascular and metabolic
health by enhancing cardiac output, improving insulin sensitivity, and promoting
favorable changes in blood lipid profiles3?’. Additionally, increasing training frequency,
even with the same total load, can enhance muscle and bone adaptations by maintaining
a more consistent positive protein balance and more frequent training stimuli3?®. Higher
exercise frequency may improve recovery and reduce fatigue, and potentially optimize
motor skill learning3?®. These adaptations highlights a broader perspective on the
importance of sustained physical activity in shaping metabolic profiles, providing insights
into the physiological differences that distinguish highly trained professionals from
recreational or low-level athletes. Understanding these distinctions not only enhances our
comprehension of training adaptations but also underscores the societal and scientific

relevance of promoting structured physical activity.

16.2.1 Questionnaire results: distinguishing low- and high-level

athletes

Although a definition about novice, intermediate, advanced and elite athletes has
been defined3?®, it is challenging to practically differentiate among them. The
guestionnaire results revealed distinct differences between low-level and high-level
athletes, emphasizing the contrasting approaches to training and athletic development.
Figure 56 presents the results of a questionnaire designed to differentiate athletes into

low- and high-level cohorts based on their training habits, affiliations, and motivations.

161



Section — RESULTS AND DISCUSSION
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Figure 56. Questionnaire outcomes.

The majority of respondents practice 1-2 times per week, with fewer training 3—4
times or more than five times weekly, suggesting a predominance of moderate

engagement in athletic activities. Most participants also report training durations of 30—
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45 minutes per session, while fewer exceed 45 minutes. This highlights a tendency toward

shorter training sessions, typical of recreational or fitness-focused athletes.

When asked about affiliation with sports organizations, 61% indicated they are not
members of a club, team, or union. This lack of formal affiliation supports the idea that
most respondents might be participating at a recreational rather than competitive level.
Similarly, nearly half of the respondents characterize their training load as low, with fewer
describing it as intermediate or heavy, further indicating a lighter approach to athletic
participation. The motivations for engaging in athletics reveal that most participants aim
to increase fitness levels or engage in the activity as a hobby. Performance-driven
motivations, such as skill improvement or preparing for championships, were less
common, suggesting that competitive goals are not a primary factor for most

respondents.

Finally, when asked to self-identify based on predefined criteria, 65% described
themselves as low-level athletes, with only 35% identifying as high-level athletes. This
self-assessment aligns with the observed training patterns and motivations, reinforcing
the predominance of recreational athletes in the sample. The inclusion of professional
coaching guidance as a criterion further validated the distinction between the groups,
ensuring a reliable categorization based on both objective training metrics and expert

input.

Overall, the data provides clear distinctions between low- and high-level athletes.
The low-level group is characterized by lighter training loads, shorter sessions, and fitness
or recreational motivations, while the high-level cohort exhibits more intense training
regimens, competitive aspirations, and greater organizational affiliation. Thus, based on
the questionnaire results and the recommendations from professional coaches, a total of
17 athletes were classified as high-level, while 39 athletes were categorized as low-level.
This classification was based on factors such as training frequency, intensity, coaching

involvement, and the athletes' overall commitment to their training regimens, ensuring a
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clear distinction between the two groups for further analysis. This analysis supports the

classification criteria for cohort discrimination.

16.2.2 Discrimination between groups - PCA

Having classified the athletes into high-level and low-level groups based on the
qguestionnaire results and coach recommendations, the next step was to explore the
biochemical differences between these groups. To achieve this, we applied multivariate
analysis techniques, specifically PCA and PLS-DA, to identify and visualize the key
metabolic variations between the two groups. By examining the spectral data from both
groups, we aimed to uncover underlying patterns and biochemical markers that

distinguish high-level athletes from their low-level counterparts.

The mean absorption spectra for low-level and high-level athletes, along with their
standard deviations, provide an overview of the average biochemical profiles for the two
groups (Fig. 57). This visualization illustrates the general consistency of the spectral data
within each group while highlighting overall trends in absorption intensities across the
measured wavenumber range. The spectral regions, including those associated with
proteins (amide | and Il regions), carbohydrates (sugar moieties), lipids, and lactate-
related components, display consistent patterns within each group. The standard
deviation bands further emphasize the reliability of the measurements, showing minimal
variation around the mean, which supports the robustness of the data. These spectra
serve as a foundational comparison for the subsequent PCA analysis, which delves deeper
into the specific wavenumbers contributing to the observed differences between low-

level and high-level athletes.
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Figure 57. Mean FTIR spectra with SDs of high and low fitness level athletes.

In this Phase of the study, a total of 56 athletes participated, comprising 39 low-
level and 17 high-level athletes. The dataset was divided into two subsets: a training set
containing data from 42 athletes (29 low-level and 13 high-level) and a test set comprising
14 athletes (10 low-level and 4 high-level). For the purposes of PCA and later PLS-DA
model construction, only the training dataset was utilized to ensure the development of a
robust and unbiased predictive model. The remaining test dataset served as a validation
set, acting as "unknown" data since it was not presented during the PLS model training.
This separation ensures that the model's performance is evaluated on unseen data,

reflecting its ability to generalize and accurately classify new samples.

The scree plot for the PCA of the low-level and high-level athletes dataset reveals

the proportion of variance explained by each principal component (up to ten PCs). A
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significant amount of variance is captured within the first few PCs, emphasizing their
importance in distinguishing between the two groups. PC1 accounts for a dominant
portion of the variance, explaining 75.13%, reflecting the most significant differences in
the dataset related to athletic level of participants and associated metabolic adaptations
(Fig. 58). PC2 contributes an additional 8.29%, increasing the cumulative explained
variance to 83.41%. This indicates the supplemental role of the second principal
component in capturing further variability between low-level and high-level athletes. PC3,
PC4 and PC5 explain 5.75%, 3.56% and 2.21%, respectively, bringing the total variance

explained by the first three PCs to 94.93%. The rest of components explain less than 1%

each.
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Figure 58. Scree plot of PCA. The explained variation in each PC and the cumulative

explained variance (low-level vs. high-level athletes dataset).
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The scree plot displays an “elbow” at PC2, indicating a point where the explained
variance levels off, and subsequent PCs contribute only marginally to the dataset. These
results suggest that PC1 and PC2 effectively capture the critical biochemical and
metabolic distinctions between the two groups, while PC3 provides additional nuance.
This forms the foundation for subsequent score and loading plot analyses, which

elucidate the specific features driving these separations.

The score plots among PC1, PC2, and PC3, alongside the corresponding distribution
plots, provide insights into the biochemical differences between low-level and high-level
athletes (Fig. 59). The analysis highlights PC1 as the dominant separator, while separation
along PC2 and PC3 is not clearly visible. PC1, explaining 65% of the total variance, is the
primary contributor to group separation. The score plot along PC1 shows distinct
clustering of high-level and low-level athletes, with minimal overlap between the groups.
This indicates that PC1 effectively captures the key biochemical differences associated
with athletic level and long-term physical adaptations. The distribution plot for PC1
further reinforces this separation, with two well-defined and minimally intersecting peaks
representing each group. PC2 and PC3, explaining 20% and 6% of the variance,
respectively, do not show clear separation between the groups. The score plots along PC2
and PC3 display significant overlap, suggesting that these components primarily capture
individual variability rather than features distinguishing the two groups. While PC2 and
PC3 add some nuance to the overall dataset, they do not contribute significantly to the
discrimination between high-level and low-level athletes, emphasizing the importance of

PC1 in distinguishing the metabolic profiles of the two groups.
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Figure 59. (a) Score scatter plots of PCA among the first three PCs and distribution graphs
of data on each component. (b) Score plot of PC1-PC2 highlighting the groups’

discrimination (low-level vs. high-level athletes dataset).

The loading plots provide crucial insights into the spectral features driving the

discrimination between low-level and high-level athletes (Fig. 60). These plots highlight
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the specific wavenumbers and their associated biochemical components that contribute
most significantly to the observed differences in metabolic profiles. While PC1 serves as
the primary axis of separation, PC2 provides complementary information, though it plays
a secondary role in the discrimination. PC3, which explains a minor portion of the total

variance, does not contribute significantly to the separation.
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Figure 60. Loading plots of the first three principal components (low-level vs. high-level

athletes dataset).

PC1, explaining 75.13% of the variance, reveals the dominant biochemical variables
responsible for distinguishing the two groups. Strong spectral bands identified in the

loading plot include:

° 992-1196 cm™: This broad band is associated with glucose, glycogen, and sugar
moieties, representing C—C and C-0 stretching vibrations3?%321, These features
indicate differences in carbohydrate metabolism between the two groups.

o 1529 cm™ (amide Il): Attributed to N-H bending vibrations3°3320, this band
reflects changes in salivary protein content, likely due to differences in protein

turnover or secretion influenced by training intensity.
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o 1642 cm™ (amide 1): Corresponding to C=0 stretching vibrations3°3320, this band

further underscores the role of proteins in differentiating the groups.

Additionally, the peak at 1392 cm™, attributed to carboxylate groups (COO~
stretching vibrations), represents molecules such as lactic acid3?l. The presence of this
band highlights the role of lactate metabolism in high-level athletes, who often engage in
lactate threshold training. This training promotes the production of proteins that aid in
the absorption and conversion of lactic acid into energy33°, emphasizing the metabolic

adaptations driven by higher exercise intensity and frequency.

The loading plot of PC1 suggests that the primary separation between low-level and
high-level athletes arises from proteins (amide | and Il regions) and carbohydrate-related
peaks, reflecting energy utilization and recovery processes linked to structured training.
Proteins (the main discrimination variable on PC1 axis) can also be broken down and used
as a last resort of energy, although this stresses the kidneys and restricts the body's ability

to build and maintain muscle tissue331:332,

PC2, explaining an additional portion of the variance, complements PC1 by
highlighting secondary biochemical features. Bands at 1039 cm™ (sugar moiety-related
band) reinforcing the role of carbohydrate metabolism in group differentiation and 1543
cm™ (amide 1l) and 1619 cm™ (amide 1) emphasizing structural differences in protein
metabolism between the groups are shared in both PCs. The 1401 cm™ band, attributed
to carboxylate groups, is common to both PCs, further supporting the role of lactic acid
and related metabolites in distinguishing between the two groups. Lastly, a medium-
intensity band at 1446 cm™, associated with CH, bending vibrations in lipids or amines,

appears only in PC2, suggesting its relevance to lipid dynamics in the metabolic profiles.

The loading plots confirm that the discrimination between low-level and high-level
athletes is driven primarily by metabolic markers of protein turnover, carbohydrate
metabolism, and lactate dynamics. PC1 emphasizes proteins and sugar moieties as the

dominant features, reflecting energy utilization and recovery processes, while PC2 adds

170



depth by highlighting lipid-related components and additional protein features. Together,
these components illustrate the biochemical adaptations associated with different levels
of training intensity and frequency, providing a detailed molecular fingerprint of athletic

performance.

16.2.3 Discrimination between groups - PLS-DA

PLS-DA was performed subsequent to PCA to enhance the discrimination between
low-level and high-level athletes by focusing directly on the separation of predefined
groups. While PCA is an unsupervised method that identifies patterns and reduces
dimensionality based solely on variance, it does not explicitly consider group labels. In
contrast, PLS-DA is a supervised method that incorporates group membership into the
analysis, maximizing the variance related to class separation. This makes PLS-DA
particularly well-suited for identifying and visualizing the biochemical features most

strongly associated with the differences between low-level and high-level athletes.

From the 56 collected spectra (56 participated athletes), 42 were randomly selected
in a stratified manner and used for PCA. Subsequently, PLS-DA was performed on the
same set of samples to create a predictive model capable of assessing the performance
level of “unknown” samples. For this predictive model, the PCA-tested samples served as
the training dataset, while the remaining 14 “unknown” spectra (10 belonging to low-

level athletes and 4 belonging to high-level athletes) were used as the test dataset.

Cross-validation was performed as part of the PLS-DA to determine the optimal
number of latent variables (LVs) required for effective discrimination between low-level
and high-level athletes. This step is crucial to balance model complexity and performance,
ensuring that the PLS-DA model captures meaningful patterns without overfitting. A 3-
fold repeated stratified cross-validation (30 repeats) was carried out on the training

dataset to identify the optimal number of latent variables (LVs). The root mean squared
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error of cross-validation (RMSECV) and prediction (RMSEP) were plotted against the
number of components, as shown in Figure 61. This analysis revealed that the lowest
RMSE values were observed at two components, indicating that a model with two latent
variables provides the best predictive performance while minimizing the risk of
overfitting. The RMSECV curve showed stabilization and then error increment beyond two
components, suggesting that increasing the number of components would not
significantly enhance prediction accuracy but might lead to model overfitting. Thus, the
optimal PLS-DA model was constructed using two components, balancing prediction

accuracy and robustness.

0.250
0.225

0.200

0.175 X o
0.150 e .-

0.125 P

0.100 /

// —e— RMSECV
0.075 ®---¢ -4-- RMSEP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
No. of components

Figure 61. RMSE of cross-validation (RMSECV) and prediction (RMSEP) indicating the

number of components that should be used for the predictive PLS model.
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The cross-validation results emphasize the robustness of the PLS-DA model and its
ability to generalize well to unseen data. By selecting the optimal number of LVs, the
analysis ensured that the model was neither underfitted (missing key patterns) nor
overfitted (capturing noise), laying a strong foundation for subsequent interpretation of

the PLS-DA loadings and score plots.

The PLS-DA score plot demonstrated an excellent separation between the low-level
and high-level athlete groups (Fig. 62). The two clusters formed by their respective
spectra were distinctly separated along the first latent variable (LV1), which accounted for
the majority of the variance linked to the performance level differentiation. This clear
segregation indicates that the model effectively captured the underlying biochemical
differences between the two groups. Such results highlight the effectiveness of ATR-FTIR
spectroscopy in combination with PLS-DA to differentiate between athlete performance

levels based on their biochemical salivary profiles.
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Figure 62. Scores of athletes plotted in LV1 against LV2 and highlighting the groups’

discrimination in PLS analysis.
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The performance of the PLS-DA model was assessed through multiple metrics,
including the confusion matrix, ROC curve, and classification performance indicators. The
confusion matrix, shown in Figure 63a, reveals the classification accuracy of the PLS-DA
model. As mentioned previously, the remain test dataset was utilized to evaluate the
model’s discrimination ability. This dataset, having 10 low-level and 4 high-level athletes’
spectral data, acts as an “unknown” because it was not included in the building of the
model. Thus, the matrix shows that the model successfully predicted 9 low-level athletes
and 4 high-level athletes correctly, while there was only 1 misclassification of a low-level
athlete as a high-level athlete. This indicates that the model demonstrated high
classification accuracy (93%), especially for distinguishing between low-level and high-
level athletes. The ROC curve, shown in Figure 63b, further confirms the excellent
predictive performance of the PLS-DA model. The decided threshold indicates a near-
perfect separation between the two athlete groups, with a true positive rate (sensitivity,
1.0) of 1.0 and a false positive rate (1-specificity, 1-0.9) of 0.1. The Area Under the Curve
(AUC) value of 0.95 indicates a strong ability of the model to correctly classify the
athletes. AUC values near 1 signify an outstanding predictive model, reinforcing the
conclusion from the confusion matrix that the PLS-DA model performed with a high
degree of accuracy and robustness. Together, the confusion matrix and ROC curve
illustrate the exceptional classification ability of the PLS-DA model in distinguishing
between low-level and high-level athletes, providing strong evidence for the efficacy of
this approach in athlete performance level classification based on biochemical markers

measured in saliva.
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Figure 63. (a) Confusion matrix of the predictive PLS model and (b) ROC curve indicating

sensitivity and specificity of the model.

Following this evaluation, PLS-DA was performed on the entire dataset (56 athletes)
using the described model. When the predictive model was applied to the full set of
collected data, the performance metrics improved, with a sensitivity of 1.0, a specificity of
0.94, and an overall accuracy of 98%. These results highlight the reliability and robustness
of the constructed PLS-DA model in discriminating between low-level and high-level

athletes.

The PLS-DA loading plot reveals key spectral features that contribute to the
discrimination between low-level and high-level athletes (Fig. 64). As seen in the loading
plot, the peaks associated with the discrimination are largely consistent with those
identified in the PCA analysis, including bands related to glucose, glycogen, and sugar
moieties, as well as protein-related bands (amide | and Il). These features continue to play

a major role in differentiating the two groups, consistent with the previous PCA results.
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Figure 64. PLS coefficients plot of the first latent variable (LV1).

However, in the PLS-DA analysis, a new spectral feature emerges. A peak at 2060
cm™, attributed to thiocyanates320:321.333335 is observed, although it is less intense
compared to the other spectral bands. Thiocyanates, which are known to be associated
with various metabolic processes, appear to contribute to the discrimination between
low-level and high-level athletes, providing additional information that enhances the

classification model.

Thiocyanate (SCN™) is a significant ion present in human saliva, arising from both
endogenous and exogenous sources. Endogenously, it is a product of the metabolism of
sulfur-containing compounds, such as glucosinolates found in cruciferous
vegetables33%337, Exogenously, thiocyanate is notably characteristic of smokers’ saliva, as
it results from the metabolic conversion of cyanide compounds present in tobacco

338 While its elevated concentration in smokers makes it a valuable biomarker for

smoke
smoking-related studies, thiocyanate is also naturally present in non-smokers, albeit at

lower levels??3, In saliva, typical concentrations range from 0.5 to 3 mM, with higher levels
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observed in individuals exposed to tobacco smoke33°3%, Thiocyanate plays a vital role in
the antimicrobial defense system of saliva through its involvement in the lactoperoxidase
system34!, However, excessive thiocyanate levels, particularly in smokers, may interfere
with iodine uptake by the thyroid gland, highlighting the dual significance of this molecule

in both health and disease contexts342.

This new feature suggests that thiocyanate levels may serve as a supplementary
biomarker in distinguishing athletes based on their training intensity or performance
levels (more details are presented in Phase 3, Section 18). This addition to the
discrimination model underscores the utility of PLS-DA in identifying subtle, yet

informative, spectral features that may not have been apparent in the simpler PCA model.

Phase 1 represents the first study to employ ATR-FTIR spectroscopy combined with
chemometric analysis (PCA and PLS-DA) to discriminate salivary biochemical profiles
between low- and high-level athletes after physical exercise. While previous studies had
demonstrated that FTIR can capture metabolic shifts in saliva due to exertion, none had
specifically applied this approach to stratify athletes by fitness level using a single post-
exercise saliva sample. This Phase introduced a viable novelty: Salivary infrared spectra
were linked not only to rest/exercise states but also to training status, revealing that
athletes with different fitness levels exhibit distinguishable salivary biochemical

fingerprints after exertion.

In resume, Phase 1 successfully demonstrated the potential of ATR-FTIR
spectroscopy coupled with multivariate analysis to distinguish biochemical changes in
saliva related to physical exercise and athlete performance levels. Through PCA and PLS-
DA, it was shown that saliva can act as a valuable non-invasive biomonitoring tool,
reflecting significant differences in the molecular composition before and after physical
exercise, as well as between low-level and high-level athletes. The findings revealed that
proteins and sugar moieties were the major contributors to these discriminations, with
additional insights from thiocyanates during PLS-DA. Moreover, the high sensitivity,

specificity, and accuracy of the constructed models underscore the reliability of this
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approach. These results lay a solid foundation for further investigations into using saliva

for athletic performance monitoring in sports science.

These findings suggest that salivary composition may reflect long-term physiological
adaptations associated with training status. However, given that sample collection
occurred post-exercise, it remains unclear to what extent these differences were
influenced by the athletes' chronic fitness level versus the acute intensity of exertion at
the time of sampling. This ambiguity highlighted the need for a more controlled approach
to disentangle training-related biochemical signatures from those arising dynamically

during exercise.
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17. Phase 2 - Utilizing ATR-FTIR spectroscopy of saliva for

monitoring and differentiating exercise intensity levels

In Phase 1, we observed distinct salivary profiles between low- and high-level
athletes, likely reflecting the physiological adaptations associated with regular high-
intensity training. However, because high-level athletes are habitually exposed to more
intense physical workloads, it remained unclear whether the observed differences were
solely due to training status or were also influenced by the intensity of effort at the time
of sampling. To address this, we designed Phase 2 to investigate the acute effects of
increasing exercise intensity on salivary composition in a controlled setting. This allowed
us to distinguish between baseline training-related adaptations and the dynamic response
of saliva to varying levels of physical exertion, thereby strengthening the interpretation of

our findings from both phases.

In Phase 2, the experimental design was structured to monitor salivary biochemical
changes under varying running intensities walking (4-5 km/h), jogging (9-10 km/h) and
running (14-15 km/h). The primary aim was to assess whether ATR-FTIR spectroscopy
could capture dynamic physiological adaptations during exercise, offering a non-invasive
tool to evaluate athlete performance and recovery. This Phase involved collecting saliva
samples at different stages of exercise, representing distinct running states, including low-
intensity aerobic running, moderate-intensity steady-state running, and high-intensity

anaerobic sprints.

Running intensity was chosen as the variable of interest because it plays a critical
role in influencing biochemical processes within the body. Low-intensity aerobic running
primarily utilizes fat metabolism, while moderate-intensity states rely on a mix of
carbohydrate and fat metabolism3*3. High-intensity exercise shifts energy production

toward anaerobic pathways, leading to increased lactic acid production and significant
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biochemical changes, such as glycogen breakdown and elevated stress markers®8343,
Monitoring these physiological changes offers valuable insights into energy utilization,

metabolic efficiency, and recovery strategies.

Saliva was chosen as the biofluid of interest due to its non-invasive collection
method, making it suitable for frequent sampling without disrupting exercise
performance. Additionally, saliva contains biomarkers reflective of systemic metabolic
states, such as glucose, proteins, and lactate, which are highly relevant to exercise
physiology. This approach aimed to correlate salivary biochemical profiles with running
intensities, enabling real-time monitoring of athlete performance and recovery during

training sessions.

By integrating these running states into the experimental design, Phase 2 sought to
validate ATR-FTIR spectroscopy as a versatile and practical tool for assessing athlete

status across a wide spectrum of exercise conditions.

In Phase 2, saliva samples were collected during different running intensities from
all participating athletes. A total of 128 spectra were initially recorded. However, as part
of data quality control, spectra with excessive noise, poor signal-to-noise ratio, or
technical issues during acquisition were excluded to ensure accurate analysis. After this
preprocessing step, 125 spectra remained for further analysis, ensuring high-quality data

was used (Fig. 65).

For multivariate analysis, the spectra were divided into two main groups: training
dataset, used for model construction, accounting for 70% of the total spectra, and test
dataset, consisting of the remaining 30%, was reserved for model validation to assess the
predictive capability of the developed models. This separation ensures that the predictive
models are trained on one dataset and validated on unseen data, simulating real-world
scenarios. The division was performed in a stratified manner, maintaining an even
distribution of samples across the various running states to avoid bias in the analysis.
Such careful preprocessing and data splitting procedures were essential to ensure reliable
and robust results in the subsequent multivariate analyses.
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Figure 65. Mean FTIR spectra of saliva samples at rest and three different physical

exercise intensities.

17.1 Chemometric discrimination of different physical exercise

intensities

In Phase 2, PCA was initially performed to explore the feasibility of discriminating
among the four exercise intensity groups—rest (0 km/h), walking (4-5 km/h), jogging (9—
10 km/h), and running (14-15 km/h)—based on the salivary ATR-FTIR spectra. PCA, as an
unsupervised dimensionality reduction technique, was applied to identify patterns,
clusters, and relationships in the spectral dataset without incorporating prior class
information. The primary goal was to determine whether the spectral profiles of saliva

samples clustered according to exercise intensity.

By projecting the high-dimensional spectral data onto principal components (PCs),

the analysis revealed that samples from different classes overlapped significantly (Fig. 66),
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suggesting that individual variability was the primary factor driving sample positioning
rather than the exercise intensity class. Consequently, PCA alone was insufficient to
achieve the desired separation between groups. These results highlighted the limitations
of unsupervised techniques in capturing the subtle biochemical differences associated
with exercise intensity. This outcome necessitated the application of supervised
classification methods, which are specifically designed to optimize discrimination based

on predefined classes.
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Figure 66. PCA scatter plot (PC1 and PC2) of saliva samples at different exercise

intensities.
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17.1.1 Model selection

To address the inefficiencies observed in the unsupervised PCA analysis, the study
investigated whether pre-processing the ATR-FTIR spectra using Multiplicative Scatter
Correction (MSC) would enhance the classification accuracy. MSC is a widely adopted pre-
processing technique that minimizes spectral scattering effects caused by sample surface
irregularities and instrumental artifacts, thereby improving data quality and
interpretability®**. Both PCA-Discriminant Analysis (PCA-DA) and Partial Least Squares-
Discriminant Analysis (PLS-DA) were evaluated under two conditions: using MSC pre-

processed spectra and non-pre-processed spectra.

The score scatter plot of PCA-DA without MSC (Fig. 67a) revealed poor clustering of
samples from the four exercise intensity groups, indicating a lack of distinct separation
among classes. The plot exhibited significant overlap among the groups, with no
discernible patterns. This suggests that the variability in the spectral data was driven
more by noise and scattering artifacts than by meaningful biochemical differences.
Without MSC pre-processing, the spectral data retained inconsistencies caused by surface
irregularities and instrumental effects, masking subtle distinctions necessary for effective
classification. The inability of PCA-DA to differentiate between groups in this condition
underscores the necessity of applying MSC to improve the interpretability and quality of
spectroscopic data before analysis. The score scatter plot of PLS-DA without MSC (Fig.
67b) showed slightly better performance compared to PCA-DA, with some small
clustering observed for the exercise intensity groups. However, the clustering was very
poor, with significant overlap among samples from different groups (rest, walking,
jogging, and running). The limited separation indicates that the model struggled to
capture the subtle biochemical differences necessary for accurate classification. The lack
of MSC pre-processing left scattering effects and instrumental artifacts uncorrected,
which likely contributed to the poor clustering. Although PLS-DA performed marginally

better than PCA-DA, the results highlight the insufficient quality of the raw spectral data
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for reliable discrimination without pre-treatment. This reinforces the critical role of MSC

in enhancing the robustness of supervised classification methods.
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Figure 67. Multivariate analysis without MSC pre-processed data: (a) score scatter plot of
PCA-DA model, (b) score scatter plot of PLS-DA model, (c) mean square error of cross-
validation against the number of components for the two models, (d) confusion matrix of

12-LVs PLS-DA model.

The models were cross-validated and the process indicated that certain factors,
likely stemming from uncorrected scattering effects and instrumental noise, contributed
to an increased error amount in both models. In both cases, these factors were

particularly evident in the higher mean square error of cross-validation (MSECV),
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reflecting the model's reduced ability to generalize and accurately classify samples (Fig.

67c).

The confusion matrix for the PLS-DA model (without MSC) reveals notable
misclassifications across the four exercise intensity groups: rest (R), walking (W), jogging
(), and running (RN) (Fig. 67d). For the rest group, only a portion of the samples were
correctly classified, with others misclassified predominantly as walking or running. The
walking group showed relatively better performance, with most samples correctly
identified, though some were misclassified as running. The jogging group exhibited the
poorest classification, with only a single sample correctly identified, and most being
misclassified. For the running group, a majority of samples were incorrectly predicted.
These misclassifications highlight the difficulty of distinguishing among spectral features
of different exercise intensities. This demonstrates the limitations of the model when
applied to raw spectral data, further supporting the need for pre-processing to enhance
class separation and prediction accuracy. Following this, the overall model accuracy of

40% (with 12 latent variables) underscores these challenges.

Following the application of MSC, the next step was to determine which supervised
model, PCA-DA or PLS-DA, would be most appropriate for discriminating between the
exercise intensity groups. The score scatter plots of both models were analyzed to assess

their ability to separate the groups effectively.

In the PCA-DA score scatter plot, the application of MSC resulted in a slight
improvement compared to the unprocessed data, but the separation of the groups
remained limited (Fig. 68a). There was still big overlap among the different exercise
intensity groups, indicating that PCA-DA might not be able to capture the full complexity
of the data. While the PCA-DA plot showed a minimal tendency to cluster samples, the
separation was not distinct enough to reliably classify the groups. On the other hand, the
PLS-DA score scatter plot exhibited much clearer group separation after MSC pre-
processing (Fig. 68b). PLS-DA, being a supervised technique, showed much better

discrimination between the four exercise intensity classes. Samples from the rest,
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walking, jogging, and running groups were more distinctly separated, indicating that PLS-
DA was better suited to handling the complexity of the data and highlighting the
importance of supervised methods in such analyses. This improved clustering in the PLS-
DA plot suggested that this model could more effectively capture the biochemical

differences between the groups, making it a more appropriate choice for the analysis.
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Figure 68. Scatter plot of saliva second derivative spectra at different exercise intensities

of (a) PCA-DA model and (b) PLS-DA model.

In general, the score scatter plots of both models demonstrated that MSC pre-
processing significantly enhanced the ability of the models to discriminate between the
groups. While PCA-DA provided some clustering, it lacked the clear separation observed
in the PLS-DA plot, confirming PLS-DA as the more appropriate supervised method for this

study.

To minimize the expected error and optimize the performance of both models (PCA-
DA and PLS-DA), cross-validation was performed to evaluate how well each model
generalizes to new data. Cross-validation is an essential step in assessing the robustness
and predictive power of multivariate models, ensuring that the chosen model does not

overfit to the training data but can accurately predict unseen samples. Thus, the number
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of components in both PCA-DA and PLS-DA models was carefully investigated. The goal
was to find the optimal number of components that provided the best trade-off between

model complexity and prediction accuracy, without overfitting the data.

Initially, both models were tested with different numbers of components, with up
to 10 components for PCA-DA and 20 components for PLS-DA. Twenty components may
lead overfitting the data, but diagnostics were used to choose a model with minimum
necessary components. While a higher number of components can lead to a better fit
with the training data, it can also cause overfitting, where the model captures noise or
random fluctuations rather than meaningful patterns. Overfitting can result in poor

performance when the model is applied to new, unseen data (test data).

In the coefficient of determination (R?) analysis, representing the fitting ability of
the two models, PLS-DA showed a much better fitting ability compared to PCA-DA (Fig.
69a). For both models, the fitting ability improved with an increasing number of
components, but the R? value plateaued after 10 components for PLS-DA (R? index of
0.9927), indicating no significant improvement in fitting with additional components. In
contrast, PCA-DA's R? value was significantly lower, even with 10 components (R? index of
0.4421), demonstrating that PCA-DA was not as effective in capturing the data's

underlying structure for exercise intensity discrimination.

To further investigate the optimal number of components, 10-fold repeated cross-
validation (100 repeats) was performed. Cross-validation is a more statistically robust
method for determining the ideal number of components, as it evaluates the model's
performance on unseen data and helps prevent overfitting. The cross-validation results
showed that PCA-DA had higher mean squared error of cross-validation (MSECV)

compared to PLS-DA, indicating a less accurate prediction model (Fig. 69b).
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Figure 69. Diagnostics of PCA-DA vs. PLS-DA models: (a) Fitting ability of the models, (b)
mean squared error of 10-fold cross validation (MSECV) of the models in association with

the number of components.

Specifically, the fourth and seventh components in the PCA-DA model were found
to increase the MSECV, suggesting that the combination of predictor variables in those
components was not strongly related to the response variable. This happens because the
PCA constructs components to explain variation in predictor variables (spectral
intensities), not response variable (exercise intensity). This highlighted that the model
was capturing unnecessary variation, leading to an increased error and further reinforcing
the limitations of PCA-DA for this task. In contrast, the PLS-DA model showed minimum
error with 10 components (Fig. 69b), with the MSECV stabilizing at this point. This result
indicated that 10 components were sufficient to capture the relevant information in the
data without overfitting, as adding more components did not significantly improve the
model's performance. The PLS-DA model with 10 components reached a fitting of 0.9927

R? and an MSECV of 0.3362, demonstrating a high-quality prediction model.

The results of the component optimization and cross-validation analyses confirmed
that PLS-DA with 10 components was the optimal model for discriminating exercise

intensities using ATR-FTIR salivary spectra. The PLS-DA model achieved the best balance
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between fitting the data and avoiding overfitting, making it suitable for distinguishing
among saliva spectra at different exercise intensities. The careful choice of 10
components based on diagnostic measures ensured that the model was both
parsimonious and robust, providing accurate predictions without capturing irrelevant

variations or noise.

17.1.2 Model evaluation

The performance of the PLS-DA model with 10 components was assessed using the
confusion matrix of the test dataset, as shown in (Fig. 70). The confusion matrix provides
an evaluation of how well the model predicts the classes of the “unknown” test samples
by comparing the predicted labels with the actual. The confusion matrix evaluates the
performance of the selected PLS-DA model with 10 LVs (latent variables) for classifying
different exercise intensities (R: 0 km/h, W: 4-5 km/h, J: 9-10 km/h, RN: 14-15 km/h)
based on salivary ATR-FTIR spectra. The matrix shows how the predicted classes
correspond to the true classes, with the diagonal elements representing correctly

classified samples and the off-diagonal elements indicating misclassifications.
From the confusion matrix (Fig. 70), we can make the following observations:

° Class R (0 km/h): The model performed very well in predicting class R, with 8
true positives (correctly predicted as R) and only 1 misclassification (predicted
as W). The model demonstrated high sensitivity, correctly identifying 89% of
the samples with this exercise intensity. This means the model is quite effective
in predicting the rest condition (R), with very few misclassifications.
Additionally, the specificity for class R is perfect at 1, indicating that the model
correctly identified all non-R samples as not being class R, with no false

positives.
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190

Class W (4-5 km/h): Class W had 7 true positives, but also 1 misclassification as
class J and 1 as class RN. Thus, the sensitivity is good at 0.78, meaning the
model correctly identified 78% of the samples in this class. While this is fairly
good, there were some misclassifications, suggesting some overlap with J and
RN classes. The specificity for class W is strong at 0.92, indicating that the
model was able to correctly identify most samples that were not class W. There
was a small amount of misclassification as class R, but overall, class W was well
discriminated from other exercise intensities.

Class J (9-10 km/h): Class J showed 5 misclassifications as class RN and 1
misclassification as class W. This suggests that class J shares some similarities
with other intensities (especially RN and W), leading to some errors in
classification. The low sensitivity suggests that class J is difficult to distinguish
from other classes, and the model struggles to correctly classify these samples.
However, the specificity for class J is high at 0.96, meaning that when the model
predicted class J, it was rarely wrong.

Class RN (14-15 km/h): The model performed well in predicting RN, with 9 true
positives and zero misclassifications. The sensitivity is perfect at 1, indicating
that the model correctly identified all the samples in this class. This suggests
that class RN is well discriminated from other intensities, and the model is
highly accurate in detecting the high-intensity condition. The specificity for class
RN is 77%, which is lower than that of the other classes. This means that some
samples from other classes, particularly J, were misclassified as RN. Despite

this, the model still maintains a good level of specificity in most cases.
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Figure 70. Confusion matrix of predictive 10-components PLS-DA model.

For the selected PLS-DA model with 10 components, class RN (14-15 km/h) shows
the highest sensitivity with 9 true positive test samples, indicating it is very well
discriminated by the model. However, class W is moderately well predicted, while class J
has the most difficulty, exhibiting low sensitivity but high specificity. In total of 35
samples, and out of those, only 9 were misclassified, achieving a total accuracy of 74.3%.
The sensitivity and specificity of each class were extracted from the confusion matrix and

are summarized in Table 7.
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Table 7. Sensitivity and specificity of different exercise intensities.

Exercise intensity Sensitivity Specificity

R (0 km/h) 0.89 1
W (4-5 km/h) 0.78 0.92
J(9-10 km/h) 0.25 0.96
RN (14-15 km/h) 1 0.77

17.1.3 Factors interpretation

To uncover the biochemical features underlying the discrimination of exercise
intensities, the loading plot of the first two latent variables (LVs) in the PLS-DA model was
examined. The loading plot is a critical analytical tool that highlights the spectral
wavenumbers most influential in classifying the saliva samples according to exercise
intensity. By focusing on these features, meaningful biochemical insights can be derived.
The analysis of the loading plot (Fig. 71) revealed that a broad spectral range contributed

to the differentiation of exercise intensity classes.
However, several specific peaks stood out as particularly significant:

o 2056 cm™: This peak corresponds to the vibrations of thiocyanate ions320:321,333-
335.

° 1724 cm™: Assigned to the carbonyl group (C=0) vibrations of esters found in
phospholipids329334, this peak reflects membrane dynamics and lipid
metabolism during exercise.

o 1410 cm™: Linked to lactate vibrations32%3%>, this feature is crucial for
monitoring exercise-induced metabolic shifts, particularly during high-intensity

anaerobic activity where lactate production increases significantly.
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° 1234 cm™: Associated with the asymmetric stretch of phosphate (PO;~) mainly
in nucleic acids303:320,334.345-347 thjs peak suggests changes in cellular activity and
nucleic acid dynamics in response to metabolic stress.

o 1052 cm™: Corresponding to glucose and sugar moieties320:321345 thijs feature
underscores the role of carbohydrate metabolism in energy production across
different exercise intensities.

o 912 cm™: Assigned to the additional vibration of lactic acid3#.
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Figure 71. Loading plot of the first two latent variables LVs of PLS-DA model.

The loading plot analysis provides a detailed biochemical perspective on how saliva

spectra vary with exercise intensity. These findings support the physiological relevance of
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the model's predictions and emphasize the potential of ATR-FTIR spectroscopy for non-
invasive metabolic monitoring, offering a nuanced understanding of the physiological
adaptations to exercise. By linking spectral features to specific biochemical processes, this

analysis provides both a mechanistic and practical foundation for saliva-based diagnostics.

17.2 Trends of salivary vs. blood biomarkers: Lactate and Glucose

After interpreting the factors obtained from the multivariate analysis, we focused
on two widely recognized exercise induced biomarkers—Ilactate and glucose—selected
from the five chemical species identified above (section 17.1.3). Thus, the focus was on
evaluating the agreement between salivary and blood biomarkers, lactate and glucose, as
indicators of exercise. The use of ATR-FTIR spectroscopy for saliva analysis was compared
with enzymatic analyzers used for blood samples. The aim was to determine whether
non-invasive saliva analysis could accurately track biochemical trends during varying
physical activity levels. Thus, the selected salivary biomarkers qualitatively tracked via
infrared spectroscopy and the findings compared with the corresponding blood samples

via reference methods.

Firstly, PLS-Regression (PLS-R) was employed to evaluate the correlation between
the full range salivary ATR-FTIR spectra and blood concentrations of glucose and lactate. A
training set of 90 samples was employed, covering glucose concentrations between 84—
149 mg/dL and lactate concentrations between 0.8—-9.9 mmol/L. An independent test set
of 35 samples was used for validation, with glucose and lactate ranges of 85-142 mg/dL
and 0.8-9.8 mmol/L, respectively. This analysis aimed to determine the extent to which
information being partially present in other salivary spectral regions could predict blood
biomarker levels, thereby validating the use of saliva as a non-invasive matrix for

biochemical monitoring during exercise.
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The glucose PLS-R model was constructed using second derivative ATR-FTIR spectra
and optimized with four latent variables (LVs), determined via 10-fold cross-validation
(Fig. 72a). The model demonstrated a moderate fit for the training set, with an R? value of
0.7008 (Fig. 72b). However, the test set performance revealed significant scattering for
samples with higher glucose concentrations, resulting in limited predictive accuracy (Fig.
72c). Regression coefficients identified key vibrational bands at 1740 cm™, 1408 cm™, and
1244 cm™ as being additionally associated with blood glucose levels (Fig. 72d), while the
characteristic vibration of glucose at 1050 cm™ is weak. These bands are likely linked to
the molecular vibrations of glucose-related functional groups. Despite these associations,
the model's weaker predictive power for the test set suggests variability in glucose trends
between saliva and blood, possibly due to physiological differences in glucose transport
and metabolism in these two matrices34°. Factors such as oral enzymatic activity and the
complexity of glucose regulation may contribute to this variability. Additionally, inter-
individual variability—including differences in hydration status and circadian rhythms—

may significantly influence salivary glucose profiles34°,
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Figure 72. 4-LVs PLS-R model for glucose: (a) 10-fold cross-validation, (b) predicted vs.

measured glucose in training set, (c) predicted vs. measured glucose in test set, (d)

regression coefficients from PLS-R.

For lactate, the PLS-R model utilized nine latent variables, achieving a much

stronger correlation with an R? value of 0.9276 for the training set (Fig. 73b) and 0.7295

for the test set (Fig. 73c). This robust performance underscores the reliability of salivary

lactate as a proxy for blood lactate levels. Regression coefficients highlighted key spectral

bands at 1744 cm™, 1418 cm™, 1246 cm™ and 910 cm™ as indicative of lactate

concentration in blood (Fig. 73d). These vibrations correspond to functional groups linked

to lactate molecules, reaffirming their suitability as markers for metabolic changes of

salivary lactate during exercise.
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Figure 73. 9-LVs PLS-R model for lactate: (a) 10-fold cross-validation, (b) predicted vs.
measured lactate in training set, (c) predicted vs. measured lactate in test set, (d)

regression coefficients from PLS-R.

Overall, the results from PLS-R analysis reinforce the potential of ATR-FTIR
spectroscopy for non-invasive biomarker monitoring, at least for the case of lactate. The
strong correlation and predictive accuracy validate salivary lactate as a reliable marker for
tracking exercise intensity. The identification of specific vibrational bands (e.i. 1418 cm™,

910 cm™ 321345348 strengthens the biochemical basis for this correlation.

Following the PLS-R analysis, we proceeded to semi-quantitatively monitor the

trends of lactate and glucose by integrating their corresponding IR spectral bands and
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plotting their alterations across the increasing exercise intensities. A similar approach was
applied to the blood measured values of these biomarkers. This parallel comparison
helped clarify the outcomes of the PLS model, reinforcing the link between salivary

spectral features and systemic metabolic changes.

Blood lactate levels (measured using Contour® analyzer) exhibited a clear and
expected exponential increase as exercise intensity rose, starting from a baseline of
approximately 1.0 mmol/L at rest to a peak of 9.5 mmol/L during high-intensity running
(14-15 km/h). This aligns with well-established physiological responses, where lactate
production intensifies with increased reliance on anaerobic metabolism under higher
physical exertion. Salivary lactate levels, as measured by ATR-FTIR spectroscopy, mirrored
this trend but displayed a more gradual rise. To obtain quantitative information from the
spectra, the area of the band corresponding to a particular analyte was measured. The
spectral bands associated with lactate (1428-1391 cm™)3***> showed a consistent increase
across exercise intensities. This correlation suggests that salivary lactate could serve as a
non-invasive proxy for blood lactate in monitoring exercise intensity. The biochemical
similarity between trends in saliva and blood supports the validity of saliva as an
alternative matrix for lactate analysis, reinforcing its potential utility in sports science and

athlete monitoring.

In contrast to lactate, glucose trends revealed notable differences between blood
and saliva. Blood glucose levels (measured using Accutrend® Plus analyzer) exhibited a
steady increase with exercise intensity, reaching a maximum of 127 mg/dL at the highest
intensity. This increase corresponds to the physiological mobilization of glucose to meet
energy demands during sustained physical activity®®. Salivary glucose, however, showed a
less pronounced pattern. While there was a slight overall increase in the glucose-related
spectral band (1094-1042 cm™)34>3%, the trend was less clear, with a minor drop
observed at the jogging intensity (9—10 km/h). The small agreement between salivary and
blood glucose levels in multivariate regression above, is now more clear. The mentioned

discrepancy could be attributed to various factors, including the differential transport and

198



regulation of glucose in saliva compared to blood, the individual variability, even to the
simulated collection method of saliva with cotton swab3*. These findings in salivary
glucose trend align with previous research3* that noted similar patterns, with salivary
glucose levels fluctuating depending on the specific exercise intensity. Vieira et al.
reported the same tendency: as salivary glucose increases from rest up to 14 km/h, it
then drops at 15 km/h and remains unchanged until 17 km/h, a point where sharply

increases3%.

The box plots (Fig. 74a—d) visualize the variations of salivary (ATR-FTIR
measurements) and blood (specific enzymatic measurements) lactate and glucose. Direct
comparison is difficult to follow attributed to the different units expressing the variations.

Thus, in Figure 74e,f the co-linearity was examined.

These findings emphasize the importance of refining analytical techniques, highlight
the promise of ATR-FTIR spectroscopy for real-time, non-invasive biomarker monitoring in
exercise physiology and open pathways for personalized athletic performance

assessments.
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Figure 74. Variations and mean values of (a) area of lactate’s second derivative spectral
band in saliva (ATR-FTIR), (b) lactate in blood (enzymatic analyzer), (c) area of glucose’s
second derivative spectral band in saliva (ATR-FTIR), and (d) glucose in blood (enzymatic

analyzer), during increment of exercise intensity. Plot of salivary (ATR-FTIR) vs. blood

(enzymatic analyzers) measurements for (e) lactate and (f) glucose.
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17.3 Monitoring biomarkers during increased physical effort

Having established the efficacy of PLS-DA in distinguishing saliva samples based on
exercise intensity, the focus now shifts to monitoring specific biochemical markers
identified as key contributors to this discrimination. Through PLS-DA analysis, five
biomarkers —lactate, glucose, thiocyanate, phosphate, lipids (phospholipids)— were
pinpointed as critical for capturing metabolic changes associated with physical activity.
These biomarkers are directly linked to physiological adaptations during exercise,
providing valuable insights into energy metabolism, oxidative stress, and cellular
activity®®. These observations underscore the dynamic biochemical responses of the body
during physical activity and highlight the potential of saliva as a non-invasive medium for
monitoring exercise-induced physiological alterations. By focusing on these biomarkers,
the subsequent analysis delves deeper into their individual trajectories during exercise.
Thus, the lactate, glucose and the rest chemical species were monitored and statistically
examined, similarly to previous semi-quantitatively evaluation of lactate and glucose

during the increased exercise intensity.

For phosphates, the spectral intensity showed a slow but consistent linear increase
across all exercise intensities, reflecting gradual metabolic changes (Fig. 75a). In contrast,
phospholipids exhibited a faster and more pronounced increase, particularly at the
highest exercise intensity (RN, 14-15 km/h) (Fig. 75b). This substantial rise, despite
variability in data, points to the metabolic role of phospholipids in energy-demanding
activities3>173>3, with their higher mean levels aligning with heightened physical exertion.
Furthermore, the intensity of glucose bands displayed only a slight increase, suggesting
limited salivary glucose variation during exercise (Fig. 75c). This minor change aligns with
its relatively weaker influence in the PLS-DA loadings plot (region of 1052 cm™) compared
to other biomarkers, such as lactate. The minimal glucose response emphasizes the need
to consider alternative or complementary biomarkers for better monitoring glucose-
related metabolic activity in saliva. Lactate, on the other hand, exhibited a clear upward

trend in spectral intensity, strongly correlating with increased exercise intensity (Fig. 75d).
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This trend aligns with previous findings34°

and blood lactate data from the current Phase,
reinforcing lactate’s significance as an indicator of skeletal muscle metabolism®?°. As
lactate levels are closely tied to energy production and overtraining syndrome!?®, its
robust and consistent increase highlights its potential as a reliable biomarker for tracking
exercise physiology. Only thiocyanates showed a decrease in alteration during the

prolonged exercise intensity (Fig. 75e).

These patterns were further evaluated using an Analysis of Variance (ANOVA).
According to the analysis, responses of all five examined metabolites alter statistically
significantly (p <0.05) during the prolonged exercise. ANOVA performed for glucose
indicated the highest p-value (although <0.05), fact that confirms the visually inspected
inconsistent trend. The performed ANOVA with five metabolites and four exercise
intensity group, conclude that there is a statistically significant difference somewhere
among the four group means. However, ANOVA doesn’t specify where those differences
are. For instance, ANOVA might indicate that not all the groups are the same, but it won’t
tell whether the difference is between group A and group B, or between A and C, or some

other combination.

To pinpoint which groups are significantly different, post hoc test was conducted.
This family of tests compares the means of the groups pair by pair. This level of detail is
critical for understanding the resulted trends and drawing meaningful conclusions.
Additionally, when comparing multiple groups, there’s a higher chance of detecting a
difference just by chance. Post hoc tests adjust for this increased risk, ensuring that any
significant results are less likely to be false positives. Thus, the Bonferroni correction is a
statistical method of the post hoc family tests, used to reduce the likelihood of false
positives errors when conducting multiple comparisons. It adjusts the significance level
(p) by dividing it by the number of comparisons being made. This makes post hoc tests
essential for maintaining the reliability of the findings when dealing with multiple

comparisons.
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Figure 75. Area variations and mean values of second derivative spectral band in saliva,
during increase of exercise intensity: (a) phosphate, (b) phospholipids, (c) glucose, (d)

lactate, (e) thiocyanate. *p-adjusted <0.05, **p-adjusted <0.01

Bonferroni analysis was performed on the five metabolites across R-W, W-J and J-

RN running states and the adjusted p-values are presented in Table 8. For glucose, the
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statistical output indicates that no significant differences were found between any of the
exercise intensity groups after applying the Bonferroni correction (p-adjusted >0.05). This
suggests that the observed variations in salivary glucose levels across intensities were not
strong enough to reach statistical significance under this stringent multiple comparisons
adjustment. The absence of statistical significance in glucose trends was expected, as
previously indicated (section 17.2) by the saliva-blood study of agreement. In that section,
the weak similarity between salivary and blood glucose levels was already evident. This
prior observation aligns with the current results and reinforces the physiological

disconnect between the two matrices.

On the other hand, for thiocyanate, the p-adjusted value being <0.01 after
Bonferroni correction demonstrates highly significant differences between J and RN
groups (Fig. 75e). This indicates that thiocyanate levels changed consistently and
significantly, surpassing the threshold for statistical significance even under the strict

correction for multiple comparisons.

Table 8. ANOVA (p-values) and Post Hoc - Bonferroni (adjusted p-values, <0.05 are in

bold) results across exercise intensity groups.

Post hoc test (Bonferroni)

R-W W-J J-RN
Phosphate 2.26E-06 0.007274 0.108541 0.003733
Phospholipids 4.49E-05 0.173148 0.175853 0.003991
Glucose 0.004475 0.934226 0.028657 0.217306
Lactate 4.34E-07 0.100275 0.011024 0.004729
Thiocyanates 3.13E-07 0.997643 0.016418 0.000198
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Most of the above biomarkers have already been mentioned that are correlated
with physical exercise303319345354  However, this study marks the first comprehensive
analysis of thiocyanate ions (SCN7) in saliva as a biomarker for distinguishing exercise
intensities. While most other biomarkers identified in this research have already been
associated with physical exercise, the discovery of SCN™ as a discriminatory marker is
novel and sheds light on its potential role in monitoring training load and metabolic

responses.

Thiocyanate, an acidic pseudohalide thiolate, is found in high concentrations in
saliva, ranging from 0.5 to 3 mM, making saliva the richest body fluid in terms of SCN-
content®32340_ |ts role extends beyond being a simple metabolite; thiocyanate acts as a
precursor for antimicrobial agents in the presence of salivary peroxidase enzymes such as
lactoperoxidase. During physical exercise, biochemical interactions involving SCN-,
lactate, and peroxidase activity underscore its dynamic behavior as a biomarker. The
reduction in salivary SCN- levels during increasing exercise intensity (Fig. 75e) can be
attributed to its oxidative conversion. Hydrogen peroxide, generated by the action of
lactoperoxidases3>, reacts with SCN™ to produce antimicrobial products such as OSCN-,
HOSCN, 0,SCN-, and OsSCN~3°¢, This oxidative pathway is stimulated by lactate3>¢, which
is known to increase significantly during higher exercise intensities. The interplay
between lactate metabolism and salivary peroxidase activity suggests a direct biochemical
link influencing SCN~ levels. The increase in lactate during exercise likely amplifies salivary
peroxidase activity, boosting hydrogen peroxide production3°¢3>’. This enhanced
peroxidase activity accelerates the oxidation of SCN-, reducing its concentration in saliva.
These findings suggest that SCN™ depletion is not merely a passive outcome but is actively
mediated by exercise-induced biochemical processes involving lactate and salivary

enzymatic activity!?>.

The strong correlation between lactate levels and SCN™ absorption bands implies a
functional relationship between lactate metabolism, oxidative stress, and thiocyanate

concentration3>. As exercise load increases, the simultaneous rise in lactate and salivary
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peroxidase activity results in SCN~ oxidation, making it a reliable marker for tracking
exercise intensity. Thus, the observed decrease in SCN™ reflects a complex interplay of
metabolic and enzymatic processes unique to saliva. These interconnected biochemical
pathways position SCN™ as a dual indicator: it signals both the metabolic demands of

exercise and the systemic oxidative responses.

Overall, thiocyanate’s distinctive response to exercise intensity, coupled with its
strong correlation with lactate, highlights its utility as a salivary biomarker for monitoring
training load and metabolic activity. By capturing the interplay between lactate
metabolism and salivary peroxidase activity, SCN™ provides a unique perspective on the
physiological adaptations to exercise (more details are presented in Phase 3, Section 18).
This finding not only expands the understanding of salivary biochemistry during physical
activity but also paves the way for its application in non-invasive, real-time exercise

monitoring and personalized training strategies.

In summary, Phase 2 demonstrated the feasibility of using saliva as a non-invasive
tool to monitor biochemical changes associated with physical exercise through ATR-FTIR
second derivative spectroscopy. Saliva samples collected at varying exercise intensities—
rest, walking, jogging, and running—were analyzed, with PLS-DA achieving a classification
accuracy of 74.3%. Five key biomarkers—thiocyanate, phospholipids, lactate, phosphate,
and glucose—were identified as significant drivers of discrimination. Among these,
thiocyanate (SCN-) exhibited a novel and significant decrease with increasing exercise
intensity, marking it as a potential biomarker for tracking oxidative stress and metabolic
responses. This study highlights saliva’s potential for real-time, personalized monitoring
of exercise intensity, providing valuable insights for sports science and training

optimization.

Phase 2 established, for the first time, a non-invasive and data-driven framework
capable of classifying graded physical exercise intensities based on salivary biochemical
profiles. By integrating second-derivative ATR-FTIR spectroscopy with advanced

chemometric modeling (PCA-LDA and PLS-DA), this Phase expanded the analytical

206



resolution beyond the binary design of Phase 1, enabling the detection of subtle,
intensity-dependent metabolic changes. The predictive models developed demonstrated
high classification accuracy, underscoring the robustness of saliva-based spectroscopic
fingerprinting (highlighting phosphate, phospholipids, glucose, lactate, thiocyanate) for
physiological load assessment. Notably, thiocyanate (SCN”) emerged as a novel, exercise-
responsive spectral feature, as mentioned previously. While this Phase demonstrated the
feasibility of real-time, non-invasive exertion monitoring, the findings also pointed to the
need for systemic metabolic insights—beyond the oral cavity. This realization set the
foundation for Phase 3 and Phase 4, where quantitative and multi-biofluid strategies were
introduced to validate and expand the physiological interpretations of these initial steps

of the study.
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18. Phase 3 — Exploring salivary thiocyanate as a novel biomarker of

physical activity response

The outcomes of Phase 2 confirmed that salivary biochemical composition is
sensitive to graded exercise intensities and can be effectively monitored using infrared
spectroscopy coupled with chemometric modeling. However, while the spectroscopic
approach provided valuable qualitative insights and revealed promising candidate
biomarkers such as lactate, glucose, and thiocyanate (SCN"), it lacked the ability to deliver
guantitative measurements necessary for clinical validation and broader physiological
interpretation. Among the spectral markers identified, SCN™ emerged as a particularly
responsive feature, yet its exact concentration dynamics during exercise remained
unexplored. To bridge this gap, Phase 3 focused on the development of a robust, specific,

and scalable analytical method for the quantitative determination of salivary thiocyanate.

This transition marked a deliberate methodological shift—from holistic, multivariate
spectral fingerprinting to a targeted, molecular-specific photometric approach. The goal
of Phase 3 was twofold: first, to validate thiocyanate as a physiologically meaningful,
exercise-responsive salivary biomarker, and second, to examine its concentration trends
across multiple exercise intensities in a broader athlete population. This phase thus aimed
to transform a statistically identified spectral feature into a quantifiable biological marker,
advancing the biomarker discovery pipeline from exploratory detection to functional

characterization.

The determination of thiocyanate concentration in saliva is based on the reaction
between iron(lll) ions (Fe3**) and thiocyanate ions (SCN-) to form the thiocyanatoiron(lll)

complex, FeSCN?*. This reaction follows the equilibrium (Eq. 8):

Fe3+(aq) + SCN-(aq) = FeSCN2+(aq) (8)
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When the concentration of iron(lll) ions is significantly higher than that of
thiocyanate, the formation of higher-order complexes such as Fe(SCN),* and Fe(SCN); can
be excluded. The FeSCN?* complex exhibits a deep orange-red color, making it ideal for

spectrophotometric quantification.

To construct the calibration curve, standard solutions were prepared where [Fe3*]
>> [SCN], ensuring that all thiocyanate ions were converted to FeSCN2*. This approach
allows for accurate determination of thiocyanate concentrations in saliva samples by
comparing their absorbance values to the calibration curve. The high sensitivity and
selectivity of this method make it a reliable tool for analyzing thiocyanate variations

during physical exercise.

18.1 Method development

To ensure accurate quantification of thiocyanate in saliva, the method was first
developed by analyzing the visible absorption spectrum of standard FeSCN?* solutions.
Figure 76 presents the absorbance spectra of these standard solutions, showing a
characteristic peak at approximately 458 nm. This peak corresponds to the maximum
absorption of the FeSCN?* complex, confirming its formation and suitability for

spectrophotometric analysis.

The observed absorption peak at 458 nm is in close agreement with the literature
value of 447 nm3%, with slight variations possibly attributed to differences in
experimental conditions such as solvent composition. The intensity of this peak increases
proportionally with thiocyanate concentration, demonstrating a direct relationship
between absorbance and analyte concentration. This characteristic enables the

construction of a calibration curve, which forms the basis for thiocyanate determination.
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Figure 76. Vis spectra of thiocyanate standards (FeSCN?* complex) at various

concentration levels.

The calibration curve for thiocyanate determination was constructed in the form of
y = b (£Sp) x + a (£Sa), where slope is indicated as ‘b’ (Sp: random error of slope) and
intercept indicated as ‘a’ (Sq«: random error of intercept). Using standard SCN- solutions
prepared in artificial saliva, a concentration range from 0.01 to 1.5 mM (ten concentration
levels, three replicates each) was covered. The calibration curve, along with confidence
and prediction intervals, is presented in Figure 77a. The residuals plot in Figure 77b
confirms the absence of a funneling/trumpet-shaped pattern at higher concentration
levels, indicating that the homoscedasticity assumption was met. Furthermore, the
horizontal lines (+ t(0.05, [conc. levels]-2) x S,4) in the residuals plot define the deviation
limits for each individual data point, confirming that no outliers were detected in the
measurements. This ensures the reliability and robustness of the calibration model for

thiocyanate quantification in saliva samples.
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Figure 77. (a) Calibration curve of thiocyanate with confidence and prediction 95%

intervals, (b) regression residuals plot with deviation limits.

The calibration curve for thiocyanate quantification was evaluated using linear
regression analysis, and the statistical outputs are summarized in Table 9. The results
confirm a strong linear relationship between absorbance and thiocyanate concentration,
with a coefficient of determination (R?) of 0.9997. This indicates that 99.97% of the

variability in absorbance is explained by the model, demonstrating an excellent fit.

The ANOVA (Analysis of Variance) results validate the statistical significance of the
regression model. The calculated F-value of 105079.18 is substantially greater than the
critical F-value (4.3512434) at the given degrees of freedom, with an extremely low p-
value of 1.35 x 107, confirming that the linear regression model is highly significant. The
small residual sum of squares (SSges = 0.0101) and standard error (0.01899) further

indicate a precise fit of the experimental data to the regression model.
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Table 9. Regression output of thiocyanate calibration curve.

Regression Statistics

Multiple R
R Square

Adjusted R Square

Standard Error

0.999866794
0.999733605
0.999724091
0.018990959°

Observations 30
ANOVA
df SS MS F Significance F

Regression 1 37.89749192 37.89749192 105079.1775 1.35487E-51
Residual 28 0.010098383 0.000360657
Total 29 37.9075903

Coefficients  Standard Error t Stat P-value
Intercept -0.021333701 0.004970841° -4.291768989 0.000191323
X Variable 1 2.134258228 0.006583982°¢ 324.1591855 1.35487E-51

Lower 95% Upper 95%
Intercept -0.031516007 -0.011151395
X Variable 1 2.120771552 2.147744903

2 S, = Residual standard deviation, ® S, = Intercept standard deviation, ¢S, = Slope standard deviation

The regression coefficients

provide additional

insights

into the model’s

performance. The intercept (-0.0213 + 0.0050) is close to zero, suggesting minimal

systematic error in the calibration. The slope of 2.1343 + 0.0066 confirms the strong

proportional relationship between thiocyanate concentration and absorbance. The

confidence intervals (95%) for both the intercept and slope further demonstrate the

reliability and precision of the estimated parameters.

Overall, the results confirm that the calibration curve follows a highly linear trend,

fulfilling the assumptions for reliable thiocyanate quantification. The high F-value, low

residual error, and strong R? support the model’s reliability, making it well-suited for the

analysis of thiocyanate in saliva samples.
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18.2 Method validation

To ensure the reliability and robustness of the developed method, further validation
was conducted by determining the limits of detection (LOD) and quantification (LOQ).

These values were calculated using the standard formulas (Eq. 9):

a a

LOD=3><;, LOQ=10><; (9)

where b is the slope of the calibration curve (2.1343) and o represents the standard
deviation of the response. The standard deviation was estimated using three different
approaches: (i) the residual standard deviation of the regression (Syx), (ii) the standard
deviation of the intercept (Sq), and (iii) the standard deviation of blank measurements.
The lowest values obtained were considered as the theoretical LOD and LOQ, which were

then experimentally confirmed.

The analytical parameters of the developed thiocyanate quantification method are
summarized in Table 10. The method exhibits excellent sensitivity, with a limit of
detection (LOD) of 0.004 mM and a limit of quantification (LOQ) of 0.01 mM. This low
LOQ allows for the reliable detection of thiocyanate even at very low concentrations,
making the method suitable for physiological studies where small variations in
thiocyanate levels are of interest. The working range of the method spans from 0.01 to
1.5 mM, covering the expected concentration range in saliva samples collected before

and after exercise.

The accuracy of the method was evaluated at three concentration levels (0.1, 0.7,
and 1.25 mM). The accuracy at the lowest concentration (0.1 mM) was slightly
overestimated (110.22%), which could be attributed to matrix effects or a higher relative

impact of small instrumental variations at low concentrations. However, at higher
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concentrations, the accuracy improved significantly, with values of 98.36% (0.7 mM) and
97.57% (1.25 mM), indicating that the method provides reliable quantification across

most of its working range.

Table 10. Analytical parameters of thiocyanate quantification method (n=20).

Analytical parameters

LOD (mM) 0.004
LOQ (mM) 0.01
Working range (mM) 0.01-15
Uncertainty (%) 4.51
0.1 mM 110.22
Accuracy (%) 0.7 mM 98.36
1.25 mM 97.57
0.1 mM 3.70
Intra-day repeatability
(% RSD) 0.7 mM 0.57
1.25 mM 0.54
0.1 mM 3.13
Inter-day repeatability /
reproducibility 0.7 mM 0.83
(% RSD)
1.25mM 0.56

Precision was assessed through intra-day and inter-day repeatability studies,
expressed as the relative standard deviation (% RSD). The intra-day repeatability was

highly satisfactory, with RSD values below 4% for all tested concentrations (3.70% at 0.1
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mM, 0.57% at 0.7 mM, and 0.54% at 1.25 mM), demonstrating excellent consistency
within a single day of analysis. The inter-day reproducibility was also very good, with RSD
values of 3.13% at 0.1 mM, 0.83% at 0.7 mM, and 0.56% at 1.25 mM, indicating that the

method remains robust over multiple days of analysis.

Overall, these results confirm that the developed method is highly sensitive,
accurate, and precise for thiocyanate quantification in saliva. The minor variability
observed at the lowest concentration does not significantly impact its reliability, and the
method’s strong reproducibility makes it a suitable tool for monitoring thiocyanate

variations during physical exercise.

18.3 Thiocyanate determination during increased exercise intensity

Aiming to examine the effect of increasing exercise intensity on salivary thiocyanate
levels in male and female athletes, a controlled treadmill exercise protocol was conducted
with systematic saliva sampling. The goal was to establish how thiocyanate
concentrations respond to progressive physical exertion. This investigation builds upon
previous findings and provides deeper insight into the kinetics of this biomarker under

controlled conditions.

Saliva samples were collected from 11 male and 10 female athletes at four time
points: at rest, after running 1 km at 20% VO,max, 1 km at 60% VO,max, and 1 km at 90%
VO,max. The violin plots in Figure 78 illustrate the distribution of thiocyanate

concentrations in both groups at the different intensities.

For both male and female athletes, a progressive decrease in thiocyanate
concentration was observed with increasing exercise intensity. At rest, thiocyanate levels
were highest, with a noticeable decline after the first stage of exercise (20% VO,max).
This trend continued as the exercise intensity increased, reaching the lowest thiocyanate

concentrations at 90% VO.max. However, variability among individuals was evident, as
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indicated by the spread of values in the box plots, highlighting inter-individual differences

in thiocyanate response to exercise.
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Figure 78. Thiocyanate variations in saliva, during increase of exercise intensity: (a) male
athletes and (b) female athletes. Circle points represent the measured values and X

represents the mean of each group. *p-adjusted <0.05, **p-adjusted <0.01.
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To assess the significance of thiocyanate alterations during exercise, a repeated-
measures ANOVA was performed separately for male and female athletes (Table 11). The
analysis revealed a statistically significant effect of exercise intensity on salivary
thiocyanate levels in both groups (p <0.05), confirming that thiocyanate concentration is

affected by increasing exercise intensity.

Table 11. ANOVA (p-values) and Post Hoc - Bonferroni (adjusted p-values <0.05 are

underlined and <0.01 are double-underlined) results across exercise intensity groups.

Post hoc test (Bonferroni)

Rest — 20% 20% - 60% 60% - 90%

VO,max VO,max VO,;max
Men 0.013949 0.016197 0.001770 0.001243
Women 0.023837 0.009487 0.015651 0.001174

Further pairwise comparisons were conducted using the Bonferroni post-hoc test to
identify which specific exercise intensities led to significant changes in thiocyanate

concentrations, providing deeper insight into between SCN™ and physical exercise.

As a result of the post-hoc Bonferroni test, in the male athlete group, the
comparison between the resting state and the 20% VO,max condition yielded a
statistically significant reduction in thiocyanate concentration with a p-adjusted value
<0.05 (Table 11). In contrast, the subsequent intensity transitions—20% to 60% VO,max
and 60% to 90% VO.max—demonstrated even more pronounced reductions, both

achieving statistical significance with p-adjusted values <0.01.

On the other hand, in the female athlete group, a slightly different pattern was

observed. The first two comparisons—rest to 20% VO,max and 20% to 60% VO,max—
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both showed statistically significant changes with p-adjusted values <0.05. However, only
the final transition from 60% to 90% VO,max resulted in a thiocyanate concentration

difference that met the stricter significance threshold of p-adjusted <0.01 (Table 11).

These results demonstrate that thiocyanate concentration in saliva decreases
progressively as exercise intensity increases, supporting the hypothesis that this

biomarker is sensitive to physical exertion.

While both male and female athletes exhibited a significant reduction in salivary
thiocyanate levels, differences in the magnitude of decline were noted. The violin plots
suggest a more pronounced decrease in male athletes compared to females. This could
be attributed to physiological differences such as higher metabolic demands38, or
respiratory adjustments in males®°. Additionally, differences in salivary flow rate and
gland size between genders3¢%3%! could also influence the extent of thiocyanate

depletion.

This observed decreasing trend in salivary thiocyanate concentration with
increasing exercise intensity aligns with the findings of Phase 2, where ATR-FTIR
spectroscopy revealed a progressive reduction in the intensity of the IR band associated
with the thiocyanate group (approximately 2050-2060 cm™) as exercise intensity
increased. The coherence between the spectroscopic fingerprint and the quantitative
photometric data supports the hypothesis that exercise induces a measurable depletion
of thiocyanates in saliva. This concordance not only validates the utility of the developed
photometric method but also reinforces the role of salivary thiocyanate as a potential
non-invasive biomarker for exercise-induced oxidative stress and related immune

changes.

The findings from this controlled treadmill experiment provide robust evidence that
thiocyanate is a biomarker responsive to exercise intensity. The significant reductions
observed at increasing VO,max levels suggest that thiocyanate is systematically affected
by physical activity, reinforcing its potential as a non-invasive biomarker for monitoring
physiological stress during exercise. However, while these results are highly promising, a
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larger cohort is necessary to validate these findings and account for potential inter-

individual variability more comprehensively.

Building on this controlled laboratory study, the next step was to examine
thiocyanate fluctuations in a real-world training environment, assessing athletes from
various sports before and after their typical training sessions. This approach allowed for a
broader evaluation of thiocyanate as an exercise-induced biomarker across different

types of physical activity.

18.4 Insights from a large athletic cohort

This part of the study aimed to monitor thiocyanate as a salivary biomarker in a
large number of participants, ensuring more reliable and robust results. A high sample
size is particularly valuable in biomarker studies, as it reduces the impact of individual
variability and enhances statistical power. In smaller sample sizes, interindividual
differences—such as metabolism, hydration status, or lifestyle habits—may overshadow
true biological trends. However, with a substantial number of participants, these
variations become less influential, allowing for more generalizable conclusions regarding
the responsiveness of thiocyanate to exercise. By investigating a diverse cohort of
athletes, this study provides stronger evidence for the potential of thiocyanate as an

exercise-sensitive biomarker.

To assess the impact of physical activity on salivary thiocyanate concentration,
athletes from various sports disciplines, including football, basketball, tennis, pole
dancing, aerial hoops, and aerobic/fitness programs, were recruited. Each participant
provided a saliva sample before and immediately after their typical training session. A
total of 141 athletes participated in the study, comprising 77 men and 64 women. To

further investigate individual differences, participants were categorized into four
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subgroups based on gender and smoking habits: male smokers, male non-smokers,

female smokers, and female non-smokers.

A paired t-test was applied within each group to compare thiocyanate levels before
and after exercise. The paired approach was chosen because each participant served as
their own control, allowing for a direct comparison of the same individual's salivary
thiocyanate concentration before and after exercise. Moreover, the saliva samples
collected before and after exercise are inherently linked, representing measurements
from the same individuals at two different time points. This approach accounts for intra-
individual variability, enhancing the sensitivity of the analysis by focusing on changes
within each participant rather than differences between independent groups. The results
revealed a highly significant decrease in thiocyanate levels among male smokers (p
<0.0001), male non-smokers (p <0.0001), and female non-smokers (p <0.001), highlighting

a consistent trend of thiocyanate depletion due to physical exertion.

Interestingly, the female smokers group did not exhibit a statistically significant
change in thiocyanate levels following exercise. This could be attributed to the lower
number of individuals in this group, which may have limited statistical power.
Additionally, the higher baseline thiocyanate levels in smokers—due to the well-
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documented thiocyanate accumulation from tobacco smoke>**—might have masked any

potential exercise-induced depletion.

Figure 79 below illustrates individual changes in thiocyanate concentration for each
group, with the mean values before and after exercise represented by the yellow lines.
Among male smokers, the mean thiocyanate concentration decreased from 0.98 mM to
0.70 mM, while male non-smokers showed a reduction from 0.86 mM to 0.62 mM.
Similarly, female non-smokers experienced a decline from 0.77 mM to 0.66 mM. As
mentioned above, female smokers exhibited no significant alteration, with a mean value

remaining approximately constant at 1.03—1.00 mM.
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Figure 79. Individual variations in salivary thiocyanate concentration before and after
physical exercise in (a) male non-smoker (n=59), (b) female non-smoker (n=52), (c) male
smoker (n=18) and (d) female smoker athletes (n=12). The yellow highlighted lines
represent the mean values of each group. p-values for pre/post paired comparisons are

indicated as: n.s. (non significant), *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001.

The analysis revealed that both male and female smokers exhibited higher initial
salivary thiocyanate concentrations compared to their non-smoking counterparts. This
finding aligns with the well-documented association between tobacco exposure and

elevated thiocyanate levels, as thiocyanate is a major detoxification product of cyanide
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found in cigarette smoke338340362 The consistently higher baseline concentrations across

both sexes suggest that smoking significantly influences thiocyanate homeostasis.

A notable observation in this study is the greater decrease in thiocyanate levels
among male compared to female following exercise. Specifically, thiocyanate
concentrations in male non-smokers decreased 0.24 mM, whereas in female non-
smokers, the reduction was more moderate, 0.11 mM. This difference suggests potential
physiological and biochemical distinctions between males and females in response to
exercise-induced oxidative stress3%3. This observation aligns with the previously

mentioned findings in paragraph 18.3.

While the exact mechanisms underlying this disparity remain to be fully elucidated,
the findings suggest that sex-specific physiological factors should be considered when
using thiocyanate as a biomarker for exercise-induced stress. Future studies could further
investigate these differences by incorporating additional biochemical markers and
exploring the effects of varying exercise intensities on thiocyanate dynamics in both

males and females.

Overall, these findings suggest that thiocyanate responds dynamically to physical
exercise, particularly in non-smokers, where the reduction is more pronounced. The
differences between smokers and non-smokers emphasize the role of lifestyle factors in
modulating salivary biomarkers, potentially influencing their sensitivity and reliability as
indicators of physiological stress. The results further support the potential application of

thiocyanate as a non-invasive biomarker for exercise-induced oxidative stress.

These findings provide strong evidence that salivary thiocyanate levels consistently
decrease following physical exercise across a large and diverse athletic population. By
incorporating a substantial number of participants and accounting for key lifestyle factors
such as smoking, this study minimizes the impact of individual variability and enhances
the reliability of thiocyanate as a novel biomarker. The observed significant reductions
reinforce the association between exercise-induced oxidative stress and thiocyanate

metabolism.
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18.5 Biochemical pathway of exercise-induced thiocyanate

reduction

Thiocyanate (SCN-), an acidic pseudohalide thiolate, is found in high concentrations
in saliva, ranging from 0.5 to 3 mM, making saliva the richest body fluid in terms of SCN~
content®3, In non-smokers, levels typically range from 0.5 to 2 mM, but in heavy smokers,
they can reach up to 6 mM due to dietary and environmental exposure34°. Thiocyanate
acts as a precursor for antimicrobial agents in the presence of salivary peroxidase
enzymes such as lactoperoxidase3*!. The lactoperoxidase (LPO) system, which consists of
SCN-, hydrogen peroxide (H,0,), and the LPO enzyme, plays a critical role in the innate
immune defense of saliva, producing antimicrobial molecules such as hypothiocyanite

(OSCN-)364,

During physical exercise, biochemical interactions involving SCN™ and peroxidase

activity36®

underscore its dynamic behavior as a biomarker. Recent studies observed that
salivary peroxidase activity in athletes increased immediately following an intense
treadmill run but gradually returned to baseline within an hour post-exercise3%6:3%7, Thus,
the reduction in salivary SCN™ levels during increasing exercise intensity can be attributed
to its oxidative conversion, aid by lactoperoxidase. Hydrogen peroxide, generated by the

action of lactoperoxidase, reacts with SCN~ to produce antimicrobial products such as

OSCN~, 0sSCN~, O,SCN~, and HOSCN3>®,

This oxidative pathway is stimulated by salivary lactate, which is known to increase
significantly during higher exercise intensities'®. Lactate accumulation during anaerobic
metabolism enhances the availability of H,0,3%%3%, via a flavin-dependent lactate oxidase
pathway3’°, which H,0; is required for the oxidation of SCN~ into antimicrobial
products®®. The interplay between lactate metabolism and salivary peroxidase
activity3°8357 suggests a biochemical link influencing SCN™ levels. As lactate increases with

exercise intensity, it likely amplifies salivary peroxidase activity, boosting H,O, production.
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This enhanced peroxidase activity accelerates the oxidation of SCN-, reducing its
concentration in saliva. The above aligns with a recent study where a strong correlation

was found between salivary lactate concentration and thiocyanate IR band3>.

These findings suggest that SCN™ reduction is not merely a passive outcome but is
actively mediated by exercise-induced biochemical processes involving lactate and
salivary enzymatic activity. The observed decrease in SCN™ concentration during physical

activity could serve as a functional biomarker of exercise intensity.

To conclude, this Phase establishes, for the first time according to our knowledge,
salivary thiocyanate as a biomarker responsive to physical exercise, demonstrating its
potential application in exercise physiology and sports science. Future research should
further explore the underlying mechanisms and assess the biomarker’s utility in different

athletic and clinical settings.

Despite the strong evidence supporting thiocyanate as a non-invasive marker of
physiological stress, the findings of Phase 3 also revealed considerable interindividual
variability, likely influenced by external factors such as dietary intake and overall lifestyle
habits. Since thiocyanate levels are known to be affected by exogenous sources (e.g.,
cruciferous vegetables and almonds) this biochemical variability introduces challenges for
its use as a standalone marker in all contexts. These limitations highlighted the need to
broaden the metabolic scope of our investigation by including additional endogenous
biomarkers that may offer more stable or complementary physiological insights. This
motivation led to Phase 4, where systemic metabolic profiling was performed using blood
(reflects the systemic circulation with rich metabolic profile — the gold standard matrix in
metabolomics), allowing for a more comprehensive and unbiased exploration of exercise-

related biochemical changes across multiple metabolites.
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19. Phase 4 — Metabolomic profiling of exercise intensity via a novel

approach of DBS microsampling and proton NMR analysis

To complement the salivary results and capture systemic metabolism, Phase 4
expands the investigation to a novel blood metabolomics approach. While previous
Phases focused exclusively on saliva, the need for a complementary biofluid—capable of
capturing broader physiological processes—led to the incorporation of capillary blood
sampling. To address the challenges of invasiveness, logistics, and sample stability often
associated with traditional blood collection, Phase 4 adopted a minimally invasive
strategy based on dried blood spot (DBS) sampling. Utilizing DBS coupled with NMR
spectroscopy, this Phase focuses on exploring systemic metabolic responses to exercise
intensity. This transition, from saliva to blood, allows for a more comprehensive
assessment of exercise-induced changes by leveraging the broader metabolic coverage

offered by blood as a biofluid.

Importantly, this Phase was also designed to validate and expand upon previously
monitored metabolites. By shifting to blood and applying a different analytical platform,
we aimed to cross-confirm key exercise-induced metabolic alterations observed in prior
studies, and assess whether similar physiological signatures—now measured in blood—
could be reliably detected using DBS—NMR. This provided both a methodological

advancement and a biological continuity across phases of the research.

The objective of Phase 4 was to explore, for the first time, the use of dried blood
spot (DBS) sampling combined with nuclear magnetic resonance (NMR) spectroscopy for
monitoring metabolic alterations induced by physical exercise. By combining the
practicality of DBS sampling with the analytical precision of NMR spectroscopy, this Phase
introduces a minimally invasive and field-friendly method for monitoring exercise

metabolism. For the first time, different adsorptive materials evaluated for capillary blood
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collection. This Phase aimed to capture systemic metabolic shifts across different exercise
intensities and evaluate the method’s robustness, repeatability, and capacity to reflect

physiological differences between athletes of varying training status.

To address these objectives comprehensively, the study was structured in two

parts:

1. Part | focused on repeatability and individual comparison. Two athletes—one
professional and one non-professional—were repeatedly sampled across four non-
consecutive days at four defined exercise intensities. This design allowed for the
assessment of intra-individual consistency in metabolic responses and highlighted
potential differences attributable to training level.

2. Part Il expanded the analysis to a broader athletic population. Seven additional
professional athletes were included, enabling the validation of observed metabolic
trends in a larger cohort. This second part aimed to determine whether consistent
and generalizable metabolic patterns could be established among trained

individuals using the DBS—NMR approach.

The results of this Phase are anticipated to provide deeper insights into athlete-
specific adaptations, optimize performance strategies, and further establish the potential

of DBS-NMR in sports science and personalized training applications.

19.1 Selection of blood microsampling adsorptive material

To optimize the efficiency and reliability of blood microsampling for downstream
NMR analysis, the selection and evaluation of suitable adsorptive materials was a critical
initial step in Phase 4. In addition to using a commercial DBS card (Whatman 903), novel
sorptive materials inspired by fabric-phase sorptive extraction (FPSE) were synthesized
and tested as alternative microsampling substrates. This allowed for a comparative

evaluation of material performance in sample handling and compatibility with
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downstream NMR analysis, while also exploring the potential for customized, low-cost
alternatives to commercial DBS solutions. In this study, four synthesized materials
inspired by the FPSE technique and one commercially available material (DBS card,
Whatman 903 Protein Saver Card) were evaluated for their potential use in blood

sampling.

19.1.1 Characterization of the synthesized materials with SEM

analysis

Characterization of the synthesized materials was performed to assess their
morphological properties. While all four materials were successfully synthesized, a
detailed surface morphology analysis using Scanning Electron Microscopy (SEM) was
conducted on the fiberglass filter coated with PEG polymer. SEM imaging was performed
on both the uncoated and coated materials to evaluate the impact of the sol—gel

modification on the substrate's structure.

SEM analysis provided insights into the surface morphology of the fiberglass filter
before and after sol-gel coating. Figures 80a and 80b correspond to the uncoated
fiberglass filter at different magnifications. The uncoated fiberglass filter exhibited a
porous, fibrous network, characteristic of its structure, which facilitates absorption and
diffusion of liquids, making it a suitable substrate for microsampling applications. In
contrast, Figures 80c and 80d, which depict the fiberglass filter after sol—gel coating with
PEG polymer, show significant morphological changes. The coated material displayed a
smoother surface with a thin polymeric layer covering the fibers, indicating successful
deposition of the sol—gel network. It is visible that the sol-gel network diffuses deep into
the substrate, not just on the surface. It could be likened to the sauce among the
spaghetti. This modification is expected to influence the material’s sorptive properties by

enhancing adsorption capabilities and selectivity for targeted metabolites.
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Figure 80. SEM images of the surface of fiberglass fabric before treatment at a) x300 and
b) x1000 times magnification; and the surface of fiberglass fabric modified with a sol-gel

solution coating of PEG polymer at a) x300 and x500 times magnification.

The comparison between the uncoated and coated materials confirms the
successful immobilization of the sol—gel layer while preserving the inherent porosity of
the fiberglass substrate. These structural changes suggest that the modification process
effectively integrates the polymer and sol-gel network within the substrate, potentially

improving the material’s performance in blood microsampling applications.
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19.1.2 Comparison of adsorptive materials and NMR analysis of

blank extracts

The suitability of the synthesized and commercial blood microsampling materials
was evaluated by analyzing potential leachable impurities. This assessment is critical, as
any compounds released from the sampling material may interfere with downstream
metabolomic analysis, masking relevant biological signals. To investigate this, an
extraction was performed on blank (unexposed) materials, and the resulting extracts

were analyzed via NMR spectroscopy.

The NMR spectra of the blank extracts (Fig. 81) revealed significant differences in
the chemical profiles of the five tested materials. The four synthesized materials exhibited
prominent signals in the 3.6-3.8 ppm region, indicating the presence of impurities
leaching from the materials. Furthermore, the two sol-gel coated materials incorporating
PEG-PPG-PEG polymer showed additional impurity signals around 1.2 ppm and 3.5 ppm,
further suggesting unwanted compound release. These findings raise concerns about the
potential impact of such leachables on blood sample integrity, as they may obscure key

metabolic signals in upcoming analyses.

In contrast, the commercially available Whatman 903 Protein Saver Card
demonstrated a much cleaner spectral profile, with minimal detectable impurities. The
absence of significant interfering signals suggests that this material is more suitable for
blood microsampling applications, as it reduces the risk of contamination and unwanted

spectral overlap in metabolomic studies.

The presence of extractable impurities in the synthesized materials poses a
considerable limitation for their application in metabolomic blood analysis. The
overlapping signals within critical spectral regions could compromise the detection of
endogenous metabolites, thereby reducing the reliability of the analytical results. Given
these concerns, the Whatman 903 Protein Saver Card was selected as the preferred

material for blood microsampling in subsequent metabolomic investigations. Its low
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background interference ensures a more accurate representation of the metabolomic

profile, improving the reliability of downstream data interpretation.
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Figure 81. NMR spectra of blank extracts from the five tested blood microsampling
materials. (a) Fiber glass filter coated with PEG-PPG-PEG sol-gel, (b) cellulose filter coated
with PEG-PPG-PEG sol-gel, (c) cellulose filter coated with PEG sol-gel, (d) fiber glass filter

coated with PEG sol-gel and (e) commercially available Whatman 903 Protein Saver Card.

19.2 Quality Control (QC) assessment

To ensure the reliability and reproducibility of the results in Phase 4, two quality
control (QC) samples were analyzed throughout the sequence. These QC samples were
included to monitor the stability of the NMR spectrometer, assess potential batch effects,
and verify the consistency of the metabolic profiling process3’!. By periodically analyzing
the same QC samples alongside the experimental samples, any instrumental drift or

variability in sample preparation could be identified and accounted for, ensuring the
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robustness and accuracy of the generated data. This step was essential for maintaining
high-quality standards and ensuring that the metabolic trends observed were truly

reflective of exercise-induced changes.

Thus, two additional reference samples (SRs) were prepared by pooling portions of
all study samples, serving as part of the quality control (QC) process. Principal Component
Analysis (PCA) was applied to evaluate the quality of the data. Specifically, the PCA scores
plot included all DBS samples (SS) and the two SRs, with the first two principal
components (PC1 and PC2) accounting for approximately 85% of the total variability in
the dataset (Fig. 82). The use of PQN (probabilistic quotient normalization) during
preprocessing ensured that the data were normalized and comparable across all samples,

minimizing the impact of technical variation.
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Figure 82. PCA scores plot demonstrating the consistency of reference samples (SRs) in

quality control analyses.
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The results of the PCA analysis demonstrated the reliability of the QC process. The
SR samples clustered tightly (near-overlap) near the center of the scores plot, with
minimal variability between them. This tight clustering is a strong indication that the NMR
data acquisition and sample preparation steps were consistent and reproducible. The
close proximity of the SRs on the PCA plot underscores the high quality of the
experimental workflow, ensuring that the datasets produced are reliable for downstream

metabolomics analysis in the context of Phase 4.

19.3 Intra-individual repeatability

The PCA quality control assessment confirmed the analytical robustness and
biological relevance of the DBS—-NMR dataset, providing a solid foundation for more
targeted investigations. With confidence in the system’s technical reproducibility, we
proceeded to a two-part analysis aimed at exploring both intra-individual metabolic

consistency and broader population-level trends.

19.3.1 Untargeted metabolomics

In the first part of the Phase, we evaluated the repeatability of exercise-induced
metabolic responses across four sessions in two individuals—a professional and a non-
professional athlete. This design enabled us to examine whether metabolic alterations
were consistent over time and to explore differences in exercise metabolism between

differently trained individuals.
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This strategy recognizes the unique physiological conditions and responses of each
athlete, ensuring that intra-individual variability does not mask the metabolic trends
associated with different running speeds. By focusing on individual-specific analyses, the
pilot study aimed to improve the reliability of identifying metabolic changes and their
correlation with exercise intensity. This approach is particularly advantageous when using
DBS microsampling, as it evaluates whether small but significant metabolic shifts can be
effectively detected and whether these changes are robustly captured through 'H NMR
analysis. The individualized analysis gives an additional layer of precision, laying the

groundwork for more targeted investigations in larger cohorts.

Partial Least Squares Discriminant Analysis (PLS-DA), a supervised multivariate
method, allows for the classification of NMR profiles according to predefined group
labels, such as running speeds. Thus, PLS-DA was performed separately for each athlete
to evaluate whether DBS—NMR profiles could reliably distinguish between the different

exercise intensities.

The PLS-DA models were constructed using latent variables (LVs) to maximize
discrimination between the groups, with the primary focus on LV1 and LV2 to represent
the key variance captured in the data. The PLS-DA scores plots (Fig. 83a,b) reveal clear
separation of the metabolic profiles corresponding to the four running intensities for both

non-professional and professional athletes.

for each running speed (0 km/h [DBS-A0], 5 km/h [DBS-A5], 10 km/h [DBS-A10], 15
km/h [DBS-A15]). LV1 captures 59.45% of the variance, while LV2 captures an additional
29.93%, indicating that the first two components account for nearly 90% of the variability
in the dataset. The diagonal progression of clusters from 0 km/h to 15 km/h along both
LV1 and LV2 reflects a consistent metabolic shift corresponding to increasing running
intensity. The clusters are relatively tight, emphasizing the reproducibility of the
metabolic profiles for each condition, with minimal overlap between adjacent running

intensities, signifying robust discrimination by the PLS-DA model.
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Figure 83. PLS-DA analysis on 'H NMR profiles of DBS extracts. The score plots depict the

first two latent variables for (a) non-professional (DBS-A) and (b) professional (DBS-B)

athletes across four running speeds: 0 km/h (DBS-AO, DBS-B0), 5 km/h (DBS-AS5, DBS-B5),

10 km/h (DBS-A10, DBS-B10), and 15 km/h (DBS-A15, DBS-B15). ROC curves indicating

sensitivity and specificity of the model for both (c) non-professional and (d) professional

athlete profiles.

For the non-professional athlete, the scores plot (Fig. 83a) shows distinct clustering

For the professional athlete, the scores plot (Fig. 83b) demonstrates a similar

pattern of distinct clustering for each running speed (0 km/h, 5 km/h, 10 km/h, 15 km/h).
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However, the explained variance in LV1 (81.24%) and LV2 (26.20%) is even higher than
that observed for the non-professional athlete, underscoring the greater contribution of
these two components to the model's overall discrimination capability. The clusters are
well-separated, particularly for 0 km/h and 15 km/h, indicating pronounced metabolic
differences at rest and at the highest running intensity. Some kind of overlap particularly
in LV2 is observed between intermediate running speeds (5 km/h and 10 km/h),
discontinuing the diagonal trend of discrimination, and suggesting metabolic similarities

at these intensities or a more gradual physiological adaptation in the professional athlete.

The scores plots for both athletes highlight the effectiveness of PLS-DA in capturing
the metabolic distinctions associated with varying running speeds. The separation
achieved in the models suggests that the metabolic profiles undergo significant changes
in response to physical exertion, with clear trends correlating to intensity. This separation
was consistent across all four days, suggesting that the physiological response to exercise,

as captured in the DBS metabolome, is robust and repeatable over time.

These findings serve as a robust foundation for further validation, which is explored
in the following analysis using cross-validated Receiver Operating Characteristic (ROC)
curves to quantitatively assess the classification performance of the PLS-DA models for
each running speed in both non-professional (Figure 83c) and professional athletes
(Figure 83d). The Area Under the Curve (AUC) values are used as performance metrics to
assess the model's ability to differentiate between metabolic profiles corresponding to

different running intensities.

The cross-validated ROC curves for the non-professional athlete demonstrate strong
classification performance for most running speeds. The AUC values for 0 km/h (resting
state) and 15 km/h (highest running intensity) are 0.97 and 0.98, respectively, indicating
near-perfect discrimination of these metabolic states from the others. These results
highlight the significant metabolic differences between rest and maximal exertion, which
align with the distinct clustering observed in the PLS-DA scores plot. Intermediate running

speeds, 5 km/h and 10 km/h, show slightly lower AUC values of 0.83 and 0.56,
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respectively. The reduced performance for 10 km/h suggests some overlap in the
metabolic profiles at moderate intensities, possibly reflecting transitional physiological
states. Nevertheless, the overall classification performance remains robust, emphasizing
the ability of the model to capture key metabolic variations across different running

intensities.

For the professional athlete, the cross-validated ROC curves reveal similarly strong
classification performance. The AUC value for 0 km/h (resting state) is 0.97, consistent
with the significant metabolic differences between rest and active states observed in the
scores plot. The highest running intensity, 15 km/h, also demonstrates excellent
discrimination, with an AUC of 0.92. The AUC values for intermediate running speeds, 5
km/h (0.81) and 10 km/h (0.80), indicate good classification performance, albeit slightly
lower than the resting and maximal intensity. This result aligns with the partial
phenomenon observed in the scores plot for these intensities (described above),
suggesting that the metabolic adaptations during moderate exercise intensities in
professional athletes are less pronounced compared to the extremes of rest and maximal

effort.

Overall, the ROC curve analysis confirms the reliability of PLS-DA models in
distinguishing metabolic profiles across running speeds, with high AUC values highlighting
significant metabolic shifts, especially at rest and maximal intensity. The slightly lower
classification performance at intermediate intensities suggests variability in physiological
responses: for non-professionals, this may stem from lower fitness or individual exertion
differences, while for professionals, it likely reflects gradual metabolic adaptation due to

their advanced training and energy efficiency.

These findings demonstrate the utility of '"H NMR spectroscopy and PLS-DA
modeling in capturing exercise-induced metabolic changes. The ROC curve analysis
provides additional confidence in the discriminatory power of the models and supports
the use of DBS microsampling as a reliable method for studying metabolic adaptations

during physical activity. The results set the stage for further exploration of specific
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metabolites contributing to these observed trends, which will be discussed in the

subsequent sections.

Subsequently, a comprehensive analysis of the Variable Importance in Projection
(VIP) provided crucial insights into the discriminative metabolites contributing to the
separation of metabolic profiles at varying running speeds for professional and non-
professional athletes. In both cases, the spectral bin corresponding to the methyl protons
of lactate at approximately 1.3 ppm (Fig. 84) consistently showed the highest VIP scores,
confirming its central role in differentiating between exercise intensities. This is
consistent with its established role as a key biomolecule of physical activity intensity,

aligning with existing literature372-374,

For non-professional athlete (Fig. 84a), additional metabolic markers, such as
acetate (-CHs) at 1.9 ppm and glucose protons at 3.26 and 3.88 ppm, also displayed
elevated VIP scores. These metabolites indicate a broader range of metabolic adaptations
in response to exercise for less-trained individuals. In contrast, professional athlete (Fig.
84b) demonstrated a more streamlined metabolic response, with lactate dominating the
VIP scores and few additional metabolites contributing significantly to the discrimination.
This streamlined response suggests a more efficient metabolic adaptation in professional

athletes, potentially due to their enhanced physiological conditioning.

The exclusion of the water region around 4.7 ppm further ensured that the VIP
scores were not influenced by artifacts, improving the reliability of the analysis. The
application of NMR combined with VIP analysis highlights the potential of this approach in
identifying exercise-induced metabolic shifts, with DBS microsampling proving to be an

effective method for real-time analysis.
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Figure 84. Plots of the VIP scores from the two PLS-DA analyses for the (a) non-
professional and (b) professional athletes, respectively for across all running speeds—0
km/h (DBS-AO, DBS-BO0), 5 km/h (DBS-A5, DBS-B5), 10 km/h (DBS-A10, DBS-B10), and 15
km/h (DBS-A15, DBS-B15). VIP scores above the read dashed threshold reveal the most

significant variables (i.e., NMR spectral bins).

19.3.2 Targeted metabolomics - metabolic changes

The targeted metabolomics approach conducted in this study enabled a
guantitative evaluation of metabolic changes induced by varying exercise intensities,
using DBS samples analyzed via *H NMR spectroscopy. In total, 11 metabolites were
identified: ATP (Adenosine-5'-triphosphate), acetate, alanine, creatine, creatinine,
formate, glucose, lactate, leucine, pyruvate, and valine. Out of the 11 metabolites reliably
detected and quantified from the NMR spectra, lactate emerged as the most significant
metabolite showing distinct concentration trends across different running speeds for both
the non-professional and professional athletes. The results reinforce the robustness of
NMR-based targeted metabolomics in investigating exercise-induced metabolic changes,
while also shedding light on the differential physiological adaptations between the two

athletic profiles.

The univariate statistical analysis applied in this Phase utilized one-way ANOVA with
multiple comparisons to discern the statistical significance of changes in metabolite
concentrations across four running speeds (rest, walking, jogging, running). The datasets
were PQN-normalized to account for inherent variability in the data, ensuring accurate
and reliable comparison of metabolite levels. Lactate demonstrated a statistically
significant progressive increase in concentration with increasing exercise intensity,

aligning with established metabolic responses to physical exertion.
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In Figure 85, the lactate concentrations (presented in arbitrary units, a.u.) for both
professional and non-professional athlete at the four running speeds exhibit a steep
upward trend, with significant differences noted between successive speeds. The data
reveal a statistically significant difference in lactate levels between baseline (0 km/h) and
moderate to high-intensity exercise (10 km/h and 15 km/h). The lack of significance (ns)
between rest and walking (5 km/h) indicates that at lower exercise intensities, the
metabolic shift toward anaerobic glycolysis is not yet pronounced3’>. However, the sharp
increase of lactate, in both participants, at 10 km/h and 15 km/h highlights the onset of

anaerobic metabolism due to the increased energy demand surpassing aerobic capacity.

In Figure 85b, the professional athlete's lactate concentrations show a more
progressive rate of increase with exercise intensity compared to the non-professional
athlete. The professional athlete exhibits significant differences in lactate levels across
most running speeds, with a more prominent increase evident between baseline and the

highest exercise intensities.

Lactate's role as a key biomarker of exercise intensity is well-documented, reflecting
the balance between energy demand and oxygen availability during physical activity37®.
The measurement of the blood lactate concentration is widely used for assessing the
involvement of anaerobic glycolysis in providing energy for muscle work3”>. The observed
differences in lactate dynamics, mostly in 10 km/h, between the two athletes underscore
their contrasting metabolic profiles®’2. In general, blood lactate levels of the high-level
athlete seem to be increased earlier, in agreement with the recent literature3”’. This
finding aligns with the professional athlete's greater glycolytic capacity and ability to
recruit fast-twitch muscle fibers, which primarily rely on anaerobic pathways for ATP
production under high-intensity conditions3”’. In contrast, the non-professional athlete's
slower accumulation of lactate at middle intensities, coupled with a more pronounced
increase at higher speeds, indicates a limited glycolytic capacity and a reduced ability to
buffer the associated acidosis in blood and muscles37837°, resulting in earlier fatigue

during intense exercise.
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Figure 85. One-way ANOVA with post-hoc multiple comparisons was conducted to

analyze metabolite concentrations: (a) Lactate variations of both non-professional (DBS-
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A) and (b) professional (DBS-B) athletes. (c) ATP, (d) acetate, (e) alanine, (f) creatine, (g)
creatinine, (h) formate, (i) glucose, (j) leucine, (k) pyruvate, and (l) valine variations in
dried blood samples across four running speeds: 0 km/h (DBS-0), 5 km/h (DBS-5), 10 km/h
(DBS-10), and 15 km/h (DBS-15). Statistical significance is denoted as follows: ns (not
significant, p>0.05), * (0.01<p<0.05), ** (0.001<p<0.01), *** (0.0001<p<0.001), and ****
(p<0.0001).

In the case of the non-professional athlete, there were no additional metabolites
demonstrating statistically significant variations across different exercise intensities,
suggesting a more uniform or limited metabolic response beyond lactate. This likely
reflects a less complex metabolic regulation system, potentially influenced by lower levels
of training adaptation3. Evidence is that the professional athlete exhibited a greater
exercise-induced metabolic response, including elevated creatinine levels compared to
the non-professional athlete (Fig. 85g), a finding consistent with previously reported

literature38l.

In professional athlete, various metabolites exhibited fluctuations in concentration,
but no clear or consistent trends were evident across different running speeds (Fig. 85c-l).
These variable changes might be attributed to temporary factors independent of exercise
intensity, such as short-term metabolic adjustments, hydration levels, or dietary
intake®®2%, Nevertheless, certain patterns emerged when comparing resting states to
higher-intensity exercise. Notably, alanine concentrations showed a progressive rise with
increasing exercise intensity in both athletes01363382 (Fig, 85e). Furthermore, specific
trends identified in previous research were confirmed, such as reductions in formate (Fig.
85h), leucine (Fig. 85j), and valine (Fig. 85l) levels, along with an increase in pyruvate
levels in both individuals'©%38238 (Fig. 85k). Additionally, slight elevations in acetate,
creatine, and creatinine levels were noted at 10 km/h compared to baseline, consistent

with findings from recent studies323.
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Professional athletes exhibit a remarkable ability to perform at significantly higher
exercise intensities than non-professionals, a capacity rooted in their advanced
physiological adaptations and metabolic efficiency38*. As running intensities increased up
to 10 km/h, trends in blood metabolite concentrations—either increasing or decreasing—
were observed and were generally consistent with previously reported findings'0%:363:372,
Notably, at the highest running intensity (15 km/h), many of these metabolites either
returned to baseline levels or ceased to show statistically significant changes. This
phenomenon reflects the superior efficiency of professional athletes’” metabolic systems
in maintaining homeostasis and stabilizing metabolite levels under extreme physical
demand?®4, This regulatory efficiency underscores their ability to tolerate and adapt to
the physiological challenges of strenuous exercise, highlighting the role of optimized

metabolic pathways in sustaining high-intensity performance.

A similar pattern was evident in lactate dynamics (Fig. 85a,b). In the professional
athlete, lactate accumulation began earlier and reached higher concentrations compared
to the non-professional athlete, with significant increases noted at 10 km/h. However,
during the highest running intensity (15 km/h), lactate levels stabilized rather than
continuing to rise. This behavior can be attributed to the professional athlete's capacity to
operate at greater intensities, which increases reliance on anaerobic glycolysis (as
mentioned above), leading to elevated lactate production. Despite this, professional
athletes exhibit highly efficient mechanisms for managing lactate, including enhanced
lactate clearance, recycling, and utilization3’3. These mechanisms allow lactate levels to
stabilize even under maximal effort3®*, preventing excessive acidification of the blood and

maintaining muscular performance.

The observed stabilization of both lactate and other metabolites at peak exercise
intensities highlights the advanced metabolic flexibility and resilience of professional
athletes. Such adaptations include a greater capacity for buffering hydrogen ions,
improved oxidative metabolism, and an ability to sustain higher energy demands without

overwhelming metabolic pathways. These findings align with the current understanding
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of elite athletic performance, where metabolic optimization plays a crucial role in
sustaining activity at near-maximal workloads384. By contrast, non-professional athletes,
with less developed metabolic systems, may struggle to maintain stable metabolite levels
under similar conditions, leading to earlier onset of fatigue and reduced performance
capacity. This comparison emphasizes the importance of training-induced physiological

adaptations in shaping metabolic responses to high-intensity exercise.

Overall, the first part of the Phase 4 demonstrated that DBS-NMR metabolomic
profiling is capable of reliably capturing structured and reproducible metabolic changes
induced by exercise within individuals, across multiple days. Both the professional and
non-professional athlete exhibited intensity-dependent metabolic shifts, with distinct

separation across exercise stages.

19.4 Expanded cohort validation

Building on the observations from the initial athlete comparison, this phase was
extended to include seven additional professional athletes, forming a cohort of nine in
total. The aim of this second part was to validate the previously observed metabolic
trends in a larger population of trained individuals and to assess the results across
increased inter-individual biological variability. To this end, DBS—-NMR data from all nine
athletes were analyzed using PLS-DA, to evaluate whether samples could still be clearly
discriminated based on exercise intensity. This approach tested the generalizability of the
identified metabolic signatures and provided insights into the consistency of physiological

responses within a performance-oriented cohort.

The resulting PLS-DA score plot is shown in Figure 86. The model revealed a strong
and structured separation among the four exercise intensity levels (before exercise, 5, 10,

and 15 km/h). The first latent variable (LV1) accounted for 72.13% of the variance, while
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the second latent variable (LV2) explained an additional 15.77%, together capturing

nearly 90% of the total variation in the dataset.
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Figure 86. PLS-DA score plot (LV1 vs LV2) of DBS—-NMR data from nine athletes across four
exercise intensities (0, 5, 10, 15 km/h). Each point represents a DBS sample, colored by

intensity.

This high cumulative variance indicates that the majority of the metabolic signal
associated with exercise intensity is well-explained by the model. Samples from the
resting condition clustered distinctly on the left side of the LV1 axis, progressively shifting
rightward through increasing intensity levels, with high intensity exercise (15 km/h)
samples forming a separate and compact cluster at the far end. This gradient distribution

reflects a consistent and exercise-dependent metabolic response across athletes.
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Importantly, despite individual variability in metabolic baselines, samples from the
same intensity class tended to cluster closely together, suggesting a shared underlying

metabolic response to physical exertion in trained individuals.

The structure of the score plot also suggests that the principal source of variance
(LV1) is tightly linked to exercise intensity, while LV2 may reflect inter-individual
variability or subtle differences in physiological adaptation. However, the separation
remained robust, confirming that exercise load remains the dominant factor shaping the

DBS metabolomic profile in this cohort.

To assess the classification accuracy and robustness of the multivariate model,
cross-validated ROC analysis was performed for each exercise intensity class using the
pooled dataset of nine athletes. ROC curves evaluate the sensitivity and specificity of the

PLS-DA model in correctly assigning samples to their respective exercise intensity levels.

As shown in Figure 87, the model achieved excellent performance for most exercise
stages. The area under the curve (AUC) was 0.8452 for samples collected at rest (0 km/h),
indicating good discrimination of baseline metabolic profiles. Classification performance
improved further for low and high intensities: 5 km/h samples yielded an AUC of 0.9704,
and 15 km/h samples achieved an AUC of 0.9643, both reflecting high sensitivity and
specificity in detecting metabolic shifts at these stages. By contrast, classification
performance was less robust at 10 km/h, where the AUC dropped to 0.6230, suggesting
greater overlap or heterogeneity in metabolic profiles at this intermediate workload. This
finding is consistent with previous observations in part I, where moderate intensities also
showed increased variability—potentially reflecting transitional physiological states or

inter-athlete differences in aerobic-anaerobic thresholds.
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Figure 87. Cross-validated ROC curves for PLS-DA classification of DBS-NMR samples by
exercise intensity. (a) Before exercise (0 km/h), (b) low intensity (5 km/h), (c) moderate

intensity (10 km/h), and (d) high intensity (15 km/h) clusters.
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Despite this localized reduction in discriminatory power, the overall ROC results
support the model’s strong ability to distinguish metabolic profiles across most exercise
intensities. Particularly at rest and maximal exertion, the DBS—-NMR method reliably
captures systemic shifts, while partial overlap at moderate intensity may reflect

meaningful biological variability rather than methodological limitations.

These findings validate the generalizability of the PLS-DA model in a trained
population and affirm the diagnostic potential of DBS-based metabolomic profiling for

monitoring exercise load.

To identify which metabolites contributed most to the separation across exercise
intensities, Variable Importance in Projection (VIP) scores were calculated for LV1, the
primary component explaining 72.13% of the total variance. The VIP analysis (Fig. 88)
highlights the spectral features most influential in the model’s classification performance,

offering biological insight into the metabolic changes underlying physical effort.

The most prominent discriminant variable was the spectral signal at 1.33 ppm,
which exhibited the highest VIP score across all features. This chemical shift corresponds
to lactate, a well-established marker of anaerobic metabolism and muscular energy
turnover3’. Its dominant contribution to LV1 indicates that lactate accumulation is a
central and consistent feature of the metabolic response to increasing exercise intensity
across athletes. The progressive separation observed along LV1 in the PLS-DA score plot is

therefore largely driven by the rising lactate signal with advancing workloads.

In addition to lactate, the region around 3.37 ppm also contributed significantly to
sample discrimination. This signal is attributed to glucose, another critical metabolite in
exercise metabolism. The involvement of glucose reflects its role in both immediate
energy provision and longer-term substrate utilization dynamics3?6. While its contribution
was secondary to lactate, the glucose signal nonetheless helped to refine the intensity-
dependent clustering, particularly at lower and intermediate workloads where glucose

availability and uptake may vary between individuals and over time.
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Figure 88. VIP scores from the PLS-DA model (LV1) showing the most influential NMR

spectral variables for discrimination across exercise intensities.

Together, these findings confirm that the primary drivers of the DBS-NMR model
are physiologically meaningful markers of energy metabolism. The results also
demonstrate the ability of the method to capture both aerobic and anaerobic (lactate-

associated) components of the exercise response.

The expanded analysis in nine professional athletes confirmed that DBS—NMR
metabolomic profiling can sensitively and consistently discriminate between different
exercise intensities, even in the presence of inter-individual biological variability.
Multivariate modeling revealed a clear intensity-dependent structure, with lactate and

glucose emerging as the principal metabolites driving this separation. These results
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validate the repeatability and discriminatory power observed in previous part of this
Phase, demonstrating that the exercise-related metabolic shifts captured via DBS

sampling are robust, reproducible, and generalizable across trained populations.

Overall, Phase 4 introduced a novel and powerful analytical approach by combining
dried blood spot (DBS) microsampling with nuclear magnetic resonance (NMR)
spectroscopy for the metabolomic profiling of exercise responses. This combination
proved to be highly effective, offering a minimally invasive, practical, and reproducible
method for capturing systemic metabolic changes associated with physical effort. The
strength of this method lies in its ability to provide a comprehensive metabolic snapshot
from a single, easily collected blood drop, making it uniquely suited for repeated sampling

in real-world athletic settings.

However, the Phase is not without its limitations. The small sample size (n=9)
restricts the ability to generalize the results to broader populations, and the focus on a
limited subset of metabolites may overlook more extensive metabolic networks and
interactions. Expanding future research efforts to include larger cohorts and a more
extensive range of metabolites, utilizing complementary high-sensitivity techniques such
as LC-MS, will provide a more holistic understanding of metabolic shifts during exercise.
Additionally, controlling for confounding variables such as diet, hydration, and individual

metabolic variability will further enhance the robustness of these findings.

Despite these constraints, the study provides compelling preliminary evidence for
the efficacy of this approach in identifying subtle metabolic differences between athlete
types and exercise intensities. What sets this Phase apart is not only the robustness of the
results, but also the scalability and translational potential of the DBS—NMR technique.
This novel combination in athletic context opens new avenues for high-throughput, field-
deployable athlete monitoring with the precision of metabolomic resolution—
demonstrating the analytical viability of microvolume blood sampling for metabolic
profiling during physical exertion—bridging, this way, the gap between laboratory

capabilities and practical athletic application. In this context, Phase 4 represents a
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significant methodological and conceptual advancement within the study, aiding the
salivary analysis by ATR-FTIR spectroscopy and expanding both the analytical framework

and the biological understanding of how the human body responds to exercise.

This methodology sets the stage for broader applications in sports science and
clinical research, offering a pathway for uncovering intricate metabolic dynamics and

advancing our understanding of exercise physiology.
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Conclusions

This doctoral thesis presents a comprehensive, multi-phase research effort aimed at
developing and validating minimaly-invasive analytical methodologies for monitoring
biochemical and metabolic responses to physical exercise. By integrating saliva and dried
blood spot (DBS) microsampling with advanced spectroscopic techniques—namely
attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, visible-
range photometry, and proton nuclear magnetic resonance (*H NMR) spectroscopy—this
work responds to a growing scientific and practical demand for real-time, field-
deployable, and physiologically meaningful diagnostic tools. Each of the four
experimental Phases targeted a specific aspect of this framework, and collectively, they
form a novel and robust approach to the analysis of exercise-induced biochemical

changes.

The overarching goal of this research was to explore how easily accessible biofluids,
such as saliva and capillary blood, can serve as reliable sources of metabolic information
during and after physical exertion. A total of 260 athletes from diverse disciplines
participated in the study, including endurance runners, team sport players, combat
athletes, and artistic athletes. This heterogeneous cohort ensured a broad representation
of physiological responses and training modalities. The wide demographic and sport-
specific diversity allowed for greater generalizability of findings and increased the

translational value of the proposed methodologies.

Phase 1 established the foundation of this thesis by applying ATR-FTIR spectroscopy
to the analysis of post-exercise saliva samples from low- and high-level athletes. The
primary aim was to evaluate the feasibility of using salivary spectral profiles to distinguish
between levels of physical conditioning. Multivariate statistical analysis, particularly

principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-
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DA) successfully classified the two groups based on distinctive biochemical patterns. This
was the first demonstration of the use of ATR-FTIR saliva fingerprinting as a viable
method for assessing physiological adaptations to fitness level. The results highlighted
specific spectral regions—associated with proteins, carbohydrates, and carboxylic acids—
as differentiating variables, thereby confirming, for the first time, the sensitivity of saliva
to athletic level expressed by the metabolic profile. Phase 1 thus provided a proof-of-
concept that salivary infrared spectroscopy could be used as a non-invasive, rapid

screening tool for athlete profiling, setting the stage for more nuanced investigations.

Phase 2 expanded on the proof-of-concept established in Phase 1 by investigating
the acute biochemical response to graded physical activity. Using a controlled treadmill
protocol (0, 5, 10, 15 km/h), saliva samples were collected at each stage and analyzed
using second-derivative ATR-FTIR spectroscopy. This Phase introduced, for the first time,
advanced chemometric tools—specifically PCA-LDA and PLS-DA—to achieve accurate

classification of samples based on exercise intensity.

Thiocyanate (SCN™) emerged as a particularly responsive spectral feature, alongside
other well-characterized exercise-related metabolites such as lactate. This was the first
time that thiocyanate had been proposed as a candidate salivary biomarker for physical
exertion, based on its distinct spectral behavior. The classification models demonstrated
high predictive accuracy, reinforcing the potential of second-derivative ATR-FTIR
spectroscopy as a rapid method for monitoring real-time physiological stress. Phase 2
thus represented a methodological and analytical advancement, bridging the gap

between non-invasive sampling and real-time metabolic tracking.

Phase 3 addressed a key limitation of the previous phases—namely, the lack of
absolute concentration data—by developing and validating a photometric method for the
guantitative determination of salivary thiocyanate. A large-scale study involving 161
athletes was conducted to evaluate the consistency, reproducibility, and physiological

relevance of thiocyanate concentration in response to exercise. The method was based
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on the formation of a thiocyanato-iron complex and allowed for high-throughput, low-

cost analysis under field-relevant conditions.

The results confirmed that thiocyanate levels consistently decreased with increasing
exercise intensity, providing quantitative support to the spectral observations made in
Phase 2. Furthermore, the study revealed statistically significant effects of gender and
smoking status on thiocyanate concentrations, underscoring the importance of
interindividual variability in biomarker expression. This was the first comprehensive
demonstration of thiocyanate as a practical, exercise-responsive salivary biomarker
validated in a real-world athletic setting. The large cohort size and detailed statistical
treatment of the data enhanced the robustness and generalizability of the findings,
making a strong case for the biomarker’s inclusion in broader physiological monitoring

frameworks.

Phase 4 broadened the scope of the thesis by moving from localized (salivary)
analysis to systemic metabolic profiling using DBS samples analyzed with *H NMR
spectroscopy. This approach addressed several limitations of traditional venipuncture,
including invasiveness and logistical constraints, by leveraging minimally invasive blood
microsampling techniques. Both commercial DBS cards (i.e., Whatman 903) and, for the
first time, custom sorptive substrates developed in-house were used for sample
collection. This methodological innovation allowed for the evaluation of different matrix

materials in terms of compatibility with NMR analysis.

In addition to using commercial DBS cards (i.e., Whatman 903), this Phase also
explored the application of FPSE-inspired adsorptive materials as alternative media for
dried blood microsampling. Although these experimental substrates showed limited
success in terms of analyte recovery and compatibility with NMR analysis, their evaluation
provided valuable insights into the material-specific constraints of microsampling
workflows. Future work may focus on optimizing surface chemistries, polymer coatings,

and sample elution strategies to enhance their performance. With further refinement,
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such materials could offer low-cost, customizable alternatives for decentralized

biomonitoring in sports and clinical settings.

Despite the inherent challenges of low sample volume and matrix effects, NMR
spectroscopy successfully differentiated metabolic profiles associated with different
exercise intensities. Key metabolites such as lactate, alanine, and valine were identified as
responsive to physical exertion, validating earlier findings from salivary analyses and
extending them into the domain of systemic metabolism. Phase 4 thus marked the first
time that DBS-NMR was applied in a sports science context to explore exercise-related
metabolic changes, highlighting the technique’s utility for minimally invasive, high-

resolution biomonitoring.

Together, the four phases of this thesis form a coherent and innovative body of
work that advances the scientific understanding of exercise-induced biochemical changes.
By employing both untargeted (ATR-FTIR and NMR spectroscopy) and targeted (Vis-
photometry) analytical techniques on non-invasively/minimal-invasively collected
samples, this research bridges a crucial gap between laboratory capability and field

applicability.

From a methodological perspective, the thesis showcases the power of
chemometric modeling in extracting meaningful physiological information from complex
spectral data. The integration of second-derivative spectral processing, predictive
multivariate models, and rigorous statistical validation contributes to the growing field of
applied chemometrics in biomedical sciences. The exploration of novel sampling materials
and the validation of DBS protocols for NMR further extend the analytical toolkit available

to exercise scientists and physiologists.

Thus, the work introduces thiocyanate as a novel, exercise-responsive biomarker
and validates it through both qualitative and quantitative means. Moreover, it
demonstrates the feasibility of using both saliva and DBS as reliable matrices for

metabolic monitoring.
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The practical implications are equally significant. The non-invasive, rapid, and
scalable nature of the proposed protocols makes them ideal for real-time monitoring in
athletic settings, training personalization, and potentially even clinical applications in
stress and recovery evaluation. By combining scientific rigor with translational relevance,
this work lays the groundwork for future applications in digital health, wearable

diagnostics, and personalized performance management.

In conclusion, this thesis delivers a comprehensive, analytically validated, and field-
applicable framework for monitoring physiological responses to exercise using saliva and
dried blood spots. It contributes novel biomarkers, methods, and materials to scientific
literature and opens new avenues for minimally invasive biomonitoring in both sports and

health sciences.
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Appendix 1

Athlete Questionnaire

Lab of Analytical Chemistry
Chemistry Dpt Sample code number
University of loannina

1. Age 2. Height 3. Weight

Basic Information
4. How often do you practice per week?
|:| 1-2 times / week |:| 3-4 times / week
|:| >5 times / week
5. Which is the main time period of training per day?
|:| 30-45 minutes |:| 45-60 minutes
|:| 60-75 minutes |:| 75+ minutes

6. Do you belong to any sports club, athlete union or sports team?
(Gym is not included as a positive answer)

[]ves [ INo

7. Are you trained by a professional coach?

[]ves [ INo

8. Do you push yourself to higher training loads?

[]ves [ INo

9. How would you characterize your training load?

[ JLow [ ] Intermediate [ ] Heawy
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Medication and Suppliments

12. Do you use Ephedrine or any other energy boosters / weight cutters?

|:| Yes |:| No

13. Do you use Protein or Creatine or any other Weight Gainers?

|:| Yes |:| No

14. Do you use energy drinks? ("Red Bull", "Rock Star", Etc)
[ ves [ INo
15. Do you use anabolic steroids or steroids of any sort?

[ ]ves [ INo

16. Do you use any other hormones? (HGH, Insulin, Thyroxine, Etc)
|:| Yes |:| No
17. Do you take anything to enhance recovery from training?

[]ves [ INo

18. Have you taken ANY prescription medications or other substances in past
3 months?

[]vYes [ INo

|:|I hereby consent to the processing of the personal data that | have
provided and declare my agreement with the data protection regulations
in the data privacy statement
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10. What are your main motivations for doing athletics? (Why do you do athletics?)
(You can fill more than one options)

E | am hobbyist
| just want to have fun with my friends

| want to lose weight

|: | want to increase my fitness level

|: | am trying to improve my skills in this sport
[ ]1aim to participate in future championships

11. Based on the below definitions, how would you decribe yourself?

|:| Low-level athlete |:| High-level athlete

Low-level athletes are individuals who engage in physically demanding sporting
activities typically on the weekends despite minimal physical activity during the
work week. These athletes perform high-intensity workout regimen without the
proper preparation, probably leading to an increased risk of injury. These weekend
athletes perform solely for pleasure, while on the other hand high level athletes
continuously strive to meet a perfect physical standard.

High-level athletes are usually drafted in higher rounds or playing in higher
divisions and are perceived as having greater performance ability than that of their
peers in the same sport and play at a higher level within a sport (division | vs I,
professional vs amateur).
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Appendix 2

Athlete Questionnaire

Lab of Analytical Chemistry
Chemistry Dpt Sample code number
University of loannina

310

1.Date 2. Sport 3. Sport club

4. Name

5. Gender |:| Male |:| Female
6.Age 7. Height 8. Weight

Basic Information
9. Are you a smoker?
[]ves [ INo
10. When was the last time you smoked?
|:| less than an hour |:| 1-2 hours before
|:| more than 2 hours

11. When was the last time you consumed any meal?

|:| less than an hour |:| 1-2 hours before
|:| more than 2 hours

12. When was the last time you drunk coffee?
|:| less than an hour |:| 1-2 hours before
|:| more than 2 hours

13. When was the last time you had any oral hygiene procedure?
|:| less than an hour |:| 1-2 hours before

|:| more than 2 hours



Medication and Suppliments

14. Do you use Ephedrine or any other energy boosters / weight cutters?

[ves [ 1No

15. Do you use Protein or Creatine or any other Weight Gainers?

|:| Yes |:| No

16. Do you use anabolic steroids or steroids of any sort?
[Ives [ INo

17. Do you use any other hormones? (HGH, Insulin, Thyroxine, Etc)
[ ]Yes []No

18. Do you take anything to enhance recovery from training?

[ ]ves [ INo

19. Have you taken ANY prescription medications or other substances
in past 3 months?

[ ]ves [ INo

Statement of informed consent for participation

| hereby consent to the processing of the personal data that | have
provided and declare my agreement with the data protection regulations
in the data privacy statement.

I am fully aware of the implications of publication the research findings
online in open access format and accept any associated risk.

Athlete signature
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Appendix 3

Matrix = readtable('spectra.csv');

Matrix(2:end,3:end);
Matrix(2:end,2);

A LR EL Table to array-----------------------
= table2array(X);

Y = table2array(Y);

whos X Y

[numSamples, numWavenumbers] = size(X);

[dummy,h] = sort(Y);

oldorder = get(gcf, 'DefaultAxesColorOrder');

set(gcf, 'DefaultAxesColorOrder',jet(numSamples));

plot3(repmat(1:numWavenumbers,numSamples,1)',...
repmat(Y(h),1,numWavenumbers)',X(h,:)");

set(gcf, 'DefaultAxesColorOrder',oldorder);

xlabel('Variable / Wavenumber'); ylabel('Samples'); axis('tight');

grid on
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% Find unique groups in Y (assuming Y contains categorical labels
% or integers representing groups)

uniqueGroups = unique(Y);

% Initialize cell array to store indices for each group

groups = cell(length(uniqueGroups), 1);

% Assign samples to corresponding groups based on Y labels
for i = 1:1length(uniqueGroups)
% Find indices of samples belonging to each group
groups{i} = find(Y == uniqueGroups(i));

end

% Initialize the training and testing indices
trainIndices = [];

testIndices = [];
% Randomly split each group (70% training, 30% testing)

for i = 1:1ength(groups)
groupIndices = groups{i};

numGroupSamples = length(groupIndices);

% Shuffle the group indices
shuffledGroupIndices =

groupIndices(randperm(numGroupSamples));
% Split the group into training and testing sets

% (70% training, 30% testing)

numTrain = round(@.7 * numGroupSamples); % 70% for training
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trainIndices = [trainIndices;
shuffledGroupIndices(1:numTrain)];

testIndices = [testIndices;
shuffledGroupIndices(numTrain+l:end)];

end

% Create the training and testing data

X_train = X(trainIndices, :);
Y_train = Y(trainIndices);

X _test = X(testIndices, :);
Y _test = Y(testIndices);

Y_train_D = dummyvar(Y_train);

Y_test D = dummyvar(Y_test);

[n,p] = size(X_train);
[X1loadings,Yloadings,Xscores,Yscores,betaPLS,PLS percent_of varian
ce,...

PLS_MSEcv,stats] = plsregress(X_train,Y_train_D,20, 'CV',10);

[PCALoadings,PCAScores,...

PCA percent_of variance] = pca(X_train, 'Economy’',false);



plot(1:20,cumsum(100*PLS_percent_of_variance(2,:)), " '-bo");
xlabel('Number of Components');

ylabel('Percent Variance Explained in Y');

figure

plot(1:20,100*cumsum(PLS_percent_of_variance(l,:)), 'b-o',...
1:20,100*cumsum(PCA_percent_of _variance(1:20))/...
sum(PCA_percent_of_variance(1:20)), 'r-o');

xlabel( 'Number of Components');

ylabel('Percent Variance Explained in X');

legend({ 'PLS-DA', 'PCA-LDA'}, 'location','SE");

PCA_MSEcv = sum(crossval(@pcrsse,X_train,Y_train, 'KFold',10),1) /

n;

figure

plot(@:20,PLS MSEcv(2,:), 'b-o', 0:10,PCA MSEcv, 'r-0');
x1lim([1,20])

xlabel( 'Number of Components');

ylabel('MSECV');

legend({ 'PLS-DA", 'PCA-LDA"'}, 'location', "NE");

betaPCR
betaPCR

regress(Y_train-mean(Y_train), PCAScores(:,1:10));
PCALoadings(:,1:10)*betaPCR;
[mean(Y_train) - mean(X_train)*betaPCR; betaPCR];

betaPCR
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yfitPCR = [ones(n,1) X_train]*betaPCR;
TSS_nonD = sum((Y_train-mean(Y_train)).”2);

RSS_PCR = sum((Y_train-yfitPCR)."2);
RsquaredPCR = 1 - RSS_PCR./TSS _nonD

yfitPLS = [ones(n,1) X_train]*betaPLS;
TSS = sum((Y_train_D-mean(Y_train_D)).”"2);

RSS PLS = sum(stats.Yresiduals.”2);
R2PLS = 1 - RSS_PLS./TSS;
R2PLS_uniform = mean(R2PLS)

figure

hold on

y_uni = unique(Y_train);
colors = hsv(length(y_uni));
for k = 1 : length(y_uni)

% Get indices of this particular unique group:
ind = Y_train==y_uni(k);
plot3(Xscores(ind,1),Xscores(ind,2),Xscores(ind,3),...

.','color',colors(k,:), "'markersize’,20);

end
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legend('R (@ km/h)','W (4-5 km/h)','J (9-10 km/h)','RN (14-15
km/h)");

title('PLS-DA");

grid on; view(-30,30);

xlabel('LV1"); ylabel('LV2"'); zlabel('LV3');

figure

hold on
y_uni=unique(Y_train);
colors = hsv(length(y_uni));
for k = 1 : length(y_uni)

% Get indices of this particular unique group:
ind = Y_train==y_uni(k);
plot3(PCAScores(ind,1),PCAScores(ind,2),PCAScores(ind,3),...

.',"'color',colors(k,:), "'markersize’,20);
end

legend('R (@ km/h)','W (4-5 km/h)','J (9-10 km/h)','RN (14-15
km/h)");

title('PCA");

grid on; view(-30,30);

xlabel('PC1"); ylabel('PC2');zlabel('PC3");

figure

plot(1:numWavenumbers,stats.W(:,1:2),"'-");
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xlabel('Variable / Wavenumber');
ylabel('PLS Weights');
legend({'LVl" 'LV2'},

"location’, 'NW'");

figure
plot(1:numWavenumbers,PCALoadings(:,1:2),"'-");
xlabel('Variable / Wavenumber');

ylabel('PCA Loadings');

legend({'PC1" 'PC2'}, "location’,'NW");

Y _pred = [ones(size(X_test,1),1) X test]*betaPLS;

[s1, s2] size(Y_pred);

Y_pred D = Y_pred;
for i =1 : sl
for j =1 : s2
if Y_pred_D(i,j) < max(Y_pred(i,:))
Y_pred_D(i,j) = 0.0;
end
end

end

for i =1: s1
for j =1 : s2
if Y _pred D(i,j) > 0.0
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Y_pred_D(i,j) =1.0;
end
end

end

for i =1 : sl
if Y_pred D(i,:) == Y_test D(i,:)
gl = g1 + 1,
end

end
percentage_of_success = (gl/sl)*100

[~,Y_pred _unD] = max(Y_pred D, [], 2);

figure
confusionchart(Y_test,Y_pred_unD)

title("Confusion matrix");
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