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ABSTRACT

Using refined asymptotic techniques, we derived small-sample size corrections for the t and F

econometric tests in the linear regression model with ARMA(1,1) errors. These size corrections

are based on the Edgeworth-corrected critical values and on the Cornish-Fisher-corrected test

statistics. In particular, the size correction of the t-test can be derived from the normal or Student-t

approximations. Moreover, the small-sample size corrections for the Wald and F tests can be derived

from the χ2 and F approximations, respectively.

Given that the Edgeworth and Cornish-Fisher corrections have an error of order O(T−3/2), where

T is the sample size, the relative performance of these corrections can be investigated only by means

of simulation experiments.

In the context of the linear regression model with ARMA(1,1) errors, the simulation experiment

conducted in this thesis seems to confirm the theoretical advantages of the Cornish-Fisher corrections.

In almost all cases, the Edgeworth and Cornish-Fisher size corrections seem to improve the

small-sample null rejection probabilities of the corrected t and F tests relative to the corresponding

uncorrected tests.

Keywords: ARMA(1,1), Cornish-Fisher corrections, Edgeworth approximation, Monte Carlo

simulation, refined asymptotics, small sample size corrections, t and F econometric tests.
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Chapter 1

Introduction

1.1 Refined Asymptotic Theory in Econometrics

This study is situated within the framework of refined (i.e., higher-order) asymptotic theory,

aiming to develop small-sample corrections for the t and F test statistics in linear regression

models with a non-scalar error covariance structure. Refined asymptotic theory constitutes one

of the main tools for understanding the small-sample behavior of econometric estimators and

test statistics, alongside exact finite-sample theory and Monte Carlo simulations (Magdalinos

(1983)).

In econometric theory, two primary schools utilize refined asymptotic methods: the Sargan

school and the Nagar school.

The Sargan school relies on representing the estimator or test statistic as a function of

random variables whose cumulants can be analytically computed. Using these cumulants

and the corresponding partial derivatives, one can derive Edgeworth or Edgeworth-type

expansions, which improve the accuracy of the normal approximation (Chambers (1967), Sargan

(1975), Sargan (1976), Sargan (1980), Phillips (1977a), Phillips (1977b), Phillips (1978)).

The polynomials used in these expansions include Hermite (or their transformations such as

Chebyshev-Cramér) for the normal distribution, and Laguerre polynomials in the case of the χ2

distribution (Chandra and Ghosh (1979)).

A hallmark of the Sargan school is its high level of mathematical rigor. However, empirical

applications are limited due to extremely demanding computational requirements. As noted by

Magdalinos (1983), computing symmetric acceptance regions accurate to order O(1/
√
T 3) may

require millions of third-order derivatives, even for relatively small models.

In contrast, the Nagar school adopts a more computationally accessible approach. It is based

on the asymptotic expansion of estimators or statistics in series using statistical differentials.

The first few terms of these series are used to approximate the moments or the distribution

function, resulting in simpler calculations with reliable results (Nagar (1959), Nagar (1962),

Nagar (1970)). This method has been theoretically supported by various researchers (Basmann

(1961), Amemiya (1966), Ramage (1971)), while Magdalinos (1992) largely confirmed its validity

1



Chapter 1: Introduction

in econometric contexts. Moreover, the general validity of Edgeworth expansions and similar

refined asymptotic techniques has been formally justified in mainstream statistical literature

Bhattacharya and Ghosh (1978), Brown et al. (1974), further reinforcing the soundness of the

Nagar school approach.

The methodology of this thesis is grounded in the Nagar school, employing Edgeworth-type

expansions and moment approximations for correcting the t and F statistics. This approach

allows both analytical rigor and practical applicability, with minimal computational burden,

making it suitable for empirical studies with small samples.

1.2 Small Sample Issues and Refined Asymptotic Corrections in the

Generalized Linear Model

The Generalized Linear Model (GLM) is usually estimated using the Feasible Generalized Least

Squares (FGLS) estimator. Although the FGLS estimator has good asymptotic statistical

properties, the lack of a general exact inference theory compels researchers to rely on econometric

tests that are based on first-order asymptotic approximations of the distributions of the test

statistics. However, since the sample size is often small, the actual size of these commonly used

asymptotic tests may significantly deviate from the nominal size, which can lead to incorrect

conclusions and misspecification of the econometric model.

In the econometric literature on the GLM (see, among others, Rothenberg (1984a),

Rothenberg (1984b), Magdalinos and Symeonides (1995), Symeonides et al. (2017)), such

problems are addressed through the use of Refined Asymptotic Techniques, which adjust the

actual size of the t and F econometric tests in small-sample contexts. Unlike the conventional

asymptotic t and F tests, which rely on the normal and chi-squared distributions, respectively,

the corrected tests are based either on corrected critical values or on corrected test statistics.

Specifically, the corrected critical values of the t and F tests are derived from Edgeworth

approximations to the normal (or Student-t) and chi-squared (or F ) distributions, respectively,

while the corrected t and F test statistics are obtained using the Cornish-Fisher expansion

method. It should be noted that the Edgeworth approximations do not correspond to proper

distributions, which means that in the tails of the Edgeworth expansions, negative “probabilities”

may appear. On the contrary, the Cornish-Fisher corrected test statistics are properly defined

random variables and are therefore theoretically preferable to the Edgeworth-corrected critical

values.
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1.3: Local Exactness and Degrees-of-Freedom Adjustments in Refined Asymptotic Approximations

It is worth noting that when exact distributions such as the Student-t and F are used as

reference distributions, the resulting Edgeworth approximations are locally exact, in the sense

that they coincide with the true distribution in simplified versions of the model.

The standard t and F econometric tests are based on consistent (first-order) estimators of

the Ω matrix, which captures the covariance structure of the stochastic error term and both the

Edgeworth and Cornish-Fisher corrections rely on an asymptotic expansion of the estimated Ω

matrix around its true value.

1.3 Local Exactness and Degrees-of-Freedom Adjustments in Refined

Asymptotic Approximations

A fundamental issue arising in statistical testing under small sample conditions is the discrepancy

between the true and nominal size of usual econometric tests. Classical inferential methods, such

as the Wald, likelihood ratio (LR), and Lagrange multiplier (LM) tests, may lead to conflicting

conclusions due to these size differences (Rothenberg (1982)). Size correction constitutes

an effective strategy to address this problem, as it reduces deviations between the true and

theoretical size of tests, with a small cost in terms of power. Thus, even when alternative more

efficient second-order tests exist, the use of size-corrected t and F tests enhances the reliability

of inferences (Rothenberg (1984b)).

In statistical and econometric research, t and F tests are widely used to test hypotheses

concerning model parameters. When the sample size is large, the distributions of these tests are

satisfactorily approximated by the normal and χ2 distributions, respectively. However, in small

samples, there is often a significant discrepancy between the true size of a test and the nominal

significance level, which may lead to erroneous conclusions and misspecification of the model.

To improve the accuracy of statistical tests in small samples, two main size correction

strategies have been proposed:

• Corrected critical values via Edgeworth expansions (Rothenberg (1988)), and

• Corrected test statistics via the Cornish-Fisher method (Cornish and Fisher (1938), Fisher

and Cornish (1960)).

Both techniques rely on asymptotic expansions and have an error of order O(T−3/2), where

T is the sample size. Although considered asymptotically equivalent, they differ with respect to

their behaviour in the tails of the distributions. The Cornish-Fisher approach offers a significant

practical advantage: the same corrected statistic can be used for any significance level, unlike

3
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the Edgeworth approach where critical values must be recalculated for each different level

(Rothenberg (1988)).

Moreover, more refined asymptotic techniques apply degrees-of-freedom adjustments, basing

the approximations on the exact Student-t and F distributions rather than the asymptotic normal

and χ2 ones (Rothenberg (1984b)). This approach leads to greater accuracy, especially when the

standard asymptotic assumptions are not fully met or the convergence rate is slow due to the

number of estimated parameters.

In this context, the notion of local exactness is introduced. An asymptotic approximation

is said to be locally exact when it coincides with the exact distribution of the test statistic in

a sufficiently simplified version of the model (Rothenberg (1984b)). This property makes the

approximation theoretically stronger and practically more reliable, as it reduces the discrepancy

between the theoretical and the true distribution, thereby enhancing the validity of statistical

conclusions.

Finally, for the practical implementation of these methods, unknown parameters and random

variables are replaced by consistent estimators or predictors. In this way, the asymptotic validity

of the expansions is maintained, allowing their application in empirical contexts with limited

sample sizes.

In conclusion, the use of locally exact approaches and size correction methods in statistical

testing improves both the theoretical foundation and empirical reliability of results, particularly

within econometric models of complex structure or small samples.

1.3.1 Stochastic order of our expansions

In this thesis we use the stochastic order ω(·) defined as follows:

For any collection of real-valued stochastic quantities (scalars, vectors, or matrices), we write

Yτ (τ ∈ I), in S, which is defined on the probability space (Ω, A, P ), and we say that it is of

order ω(τ i), and we write Yτ = ω(τ i), if for a given n > 0, there exists some 0 < ε < ∞ such

that

Pr
[
∥ Yτ/τ i ∥> (− ln τ)ε

]
= o(τn), (1.1)

as τ → 0, where ∥ · ∥ denotes the Euclidean norm. If (1.1) holds for every n > 0, then we write

Yτ = ω(∞). The use of this order notation is justified by the fact that if two stochastic quantities

differ by a term of order ω(τ i), then under general conditions the distribution function of one is

an asymptotic expansion of the distribution function of the other, with an error of order O(τ i).

Moreover, the orders ω(·) and O(·) possess the same functional properties Magdalinos (1992).

4



1.4: Objectives of the Doctoral Thesis

1.4 Objectives of the Doctoral Thesis

This doctoral dissertation focuses on improving the accuracy of econometric tests under small

sample conditions. In particular, classical hypothesis tests such as the t and F tests are based on

asymptotic distributions (normal and chi-squared), the accuracy of which decreases significantly

when the sample size is limited. The deviation of these tests’ actual performance in small samples

can lead to substantial discrepancies between the actual and nominal test sizes, resulting in

misleading conclusions and incorrect model specifications.

Based on this observation, the objectives of the dissertation are formulated as follows:

1. Specialization of Edgeworth and Cornish-Fisher corrections for small samples in the

Generalized Linear Model with ARMA(1,1) errors

The first objective is the theoretical and computational development of size corrections for t and

F tests using the Edgeworth and Cornish-Fisher methods, specifically for the Generalized Linear

Model (GLM) in the presence of ARMA(1,1) stochastic errors.

The need for this specialization arises from the fact that existing applications of these

corrections in the literature are mainly limited to simpler models without internal dependence.

The ARMA(1,1) model introduces dynamic dependence and lagged feedback in the error term,

which alters the distribution of test statistics. Therefore, adjustments of the corrections to this

structure are required, through appropriate expressions for the moments and covariances of the

relevant estimators.

The two approaches (Edgeworth and Cornish-Fisher) are selected due to their strong

theoretical foundation, their widespread use in statistical contexts, and their ability to produce

more accurate finite-sample approximations, maintaining an asymptotic error of order O(T−3/2).

2. Comparison of the accuracy of the two corrections using Monte Carlo simulations

The second objective concerns the systematic empirical evaluation of the effectiveness of the

aforementioned corrections using Monte Carlo simulation methods. The aim is to estimate,

across a range of small sample scenarios, the actual size of the corrected t and F tests under each

method and to compare the results with respect to proximity to the nominal significance level.

Particular emphasis will be placed on:

• the effect of dependence in the error term through the parametrization of the ARMA(1,1)

process,

• the investigation of local accuracy of the tests after the corrections,

5



Chapter 1: Introduction

• the performance of the corrected tests at different significance levels (α = 0.01, 0.05, 0.10),

• and the stability of the results across different sample sizes (T = 20, 30).

Through this comparison, the goal is to draw well-documented conclusions regarding the

relative performance and practical usefulness of the two correction methods in the context of

small samples.

General Objective

Overall, the dissertation aims to contribute to econometric methodology by providing practically

applicable and theoretically well-founded techniques for correcting the size of statistical tests,

adapted to small sample conditions. This approach will offer useful tools for empirical researchers,

enhancing the accuracy and reliability of econometric inferences in applications with limited data.

1.5 Doctoral Thesis Structure

This thesis is organized into six main chapters, aiming at a thorough investigation and

computational evaluation of the Generalized Linear Model (GLM) with ARMA(1,1) type

disturbances, as well as the presentation of asymptotic correction theory in small sample cases.

The Second Chapter focuses on the theoretical foundation of the Generalized Least Squares

(GLS) model with ARMA(1,1) type disturbances. The basic AR, MA, and ARMA models are

presented, followed by their incorporation within the GLS framework.

In the Third Chapter, the previous analysis is extended to the Generalized Linear Model

(GLM) with ARMA(1,1) disturbances. A detailed presentation of the t and F tests and their

respective corrections is given, as well as the quantities required for their implementation.

The Fourth Chapter focuses on computational techniques necessary for the estimation of

quantities without closed-form expressions, which are critical for applying corrections to the t

and F tests. Due to the complexity of the ARMA procedures, numerical methods are used to

estimate the relevant quantities.

Two fundamental methodological approaches are also presented: the Gradient Descent

algorithm and L2 Regularization. These techniques contribute to the stability of computations,

preventing instability that arises when model coefficients approach extreme theoretical values

(e.g., -1 or 1).

The chapter includes a basic Monte Carlo experiment, implemented with the purpose of

estimating the necessary quantities without yet applying the corrections. Special emphasis is
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1.5: Doctoral Thesis Structure

placed on the sensitivity analysis of results with respect to the number of repetitions, to ensure

the reliability of computations.

Thus, the Monte Carlo experiment serves a dual purpose: it functions both as a parameter

estimation tool and as a foundation for developing more accurate inference procedures in small

samples. The purpose of the simulation is to quantify the behavior of the maximum likelihood

estimators (MLE) under different combinations of parameters and sample sizes, as well as to

compute the asymptotic moments — specifically the means, variances, and covariances — of the

parameter estimators.

The Fifth Chapter uses the methodology of the previous chapter, in order to develop the full

implementation of the Monte Carlo simulation for the evaluation of corrected t, Wald, and F

tests. The experiment builds on the techniques of the Fourth Chapter, integrating them into a

broader application framework.

The simulation results are extensively analyzed, and the behavior of the statistics is examined

under various scenarios. Special attention is given to cases of negative values in the in the

Cornish-Fisher corrected Wald and F statistics.

The chapter concludes with a comparative assessment of the effectiveness of the corrections

and substantially contributes to the general conclusions of the thesis regarding the validity of

statistical tests under ARMA(1,1) disturbances.

Finally, in the Sixth Chapter, the main findings of the thesis are summarized and the general

conclusions derived from the theoretical and computational investigation are stated.

The thesis is accompanied by appendices, which include theoretical proofs, derivatives of

the variance-covariance matrix, analysis of initial values, as well as regression results and

visualizations. The bibliography is provided at the end.
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Chapter 2

Generalized Least Squares (GLS) with Arma(1,1) disturbances

Time series analysis is a fundamental tool in econometrics, finance, data science and many other

scientific fields, as it allows understanding and predicting the future behaviour of time-dependent

variables. One of the most popular and widely used models for time series analysis is the

Autoregressive Moving Average (ARMA), which combines two basic elements: autoregressive

(AR) and moving average (MA). This chapter presents the basic characteristics of AR(p), AR(1),

MA(q), MA(1), ARMA(p,q), ARMA(1,1) and GLS (Generalized Least Squares) models with

ARMA(1,1) disturbances and their usefulness in time series analysis and forecasting.

2.1 Autoregressive Model AR(p) and AR(1)

The Autoregressive (AR) model is a workhorse of time series analysis and is extensively used

to model and predict the pattern of stationary time series data (Hamilton (1994) and Box and

Jenkins (1976)). It is based on the assumption that the current value of a time series is a

linear function of previous values, with an additional random error term. In essence, the AR

model attempts to capture the dependency of each data point on its past observations, making

it particularly suited to modelling temporal dynamics in fields such as economics, finance, and

the natural sciences. The mathematical equation of the AR model of order p, the AR(p) model,

is expressed as:

Yt = ρ0 + ρ1Yt−1 + ρ2Yt−2 + . . .+ ρpYt−p + εt, (2.1)

where Yt is the value of the time series at time t, ρ0 is a constant, ρ1, ρ2, . . . , ρp are the

autoregressive coefficients, and εt is the error term assumed to be white noise.

One of the main requirements of the AR model is that the series must be stationary. A

stationary series has a constant mean, variance, and autocorrelation over time. The roots of

the characteristic equation of the model must lie inside the unit circle for the AR process to be

stationary. Simply put, this means that the coefficients of the model must not produce explosive

behaviour, so the series oscillates around a constant mean.
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If the series is not stationary, it is typically transformed into a stationary form before an AR

model can be fitted.

A key characteristic of the AR model is that the value at time t is a linear combination of

past values. Specifically, an AR(1) model (references), an autoregressive process of order 1, can

be expressed as:

Yt = ρ0 + ρYt−1 + εt (2.2)

Here, the value at time t depends on the value at time t− 1 and a random shock (error term)

εt. The parameter ρ determines how sensitive the current value is to its past value. If | ρ | < 1,

then the series is stationary, meaning that values will converge to a mean, fluctuating around

it. If | ρ | ≥ 1, the series becomes non-stationary and may diverge without bound, making it

unsuitable for prediction.

The AR model also serves as a building block for more advanced time series models.

For example, the ARMA (Autoregressive Moving Average) model combines autoregressive

and moving average components to capture more complex behaviours. Furthermore, the

ARIMA (Autoregressive Integrated Moving Average) model incorporates differencing to handle

non-stationary data. These extended models, which are based on the AR framework, are widely

used in practice to model and forecast time series data exhibiting trends or seasonality.

Though conceptually simple, the AR model provides a highly effective way of modelling

time series data, especially when the data are stationary or can be transformed into a stationary

form. It preserves temporal dependencies and offers a parsimonious method for forecasting future

observations. However, for the AR model to perform well, the time series must be well-behaved

in terms of stationarity. When used appropriately, the AR model is a valuable tool for uncovering

the underlying structure of a time series and making reasonable predictions.

In brief, the AR model is a powerful and essential time series method that reveals internal

dependencies within a dataset by describing its values as functions of lagged observations. Its

simplicity and ability to capture temporal dependencies make it an indispensable tool in domains

as diverse as finance, economics, and meteorology.

2.2 Moving Average Model MA(q) and MA(1)

The Moving Average (MA) model is one of the prominent techniques in time series analysis,

focusing on modelling error terms or random shocks that affect the data (Hamilton (1994) and

Box and Jenkins (1976)). While the Autoregressive (AR) model primarily captures the influence
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of past observations on present values, the MA model represents a process in which the current

value of a time series is affected by past error terms. The most essential characteristic of the MA

model is its ability to account for short-term behaviour and randomness in a time series — not

explained by past observations themselves, but by shocks (or noise) to the system.

The MA(q) model, where q is the model order, is mathematically represented as:

Yt = µ+ εt + ϕ1 + εt−1 + ϕ2εt−2 + . . .+ ϕqεt−q, (2.3)

where Yt is the value of the time series at time t, µ is the mean of the time series,

εt, εt−1, . . . , εt−q are the error terms at concequtive time periods, and ϕ1, ϕ2, . . . , ϕq are the

moving average coefficients.

The assumption of stationarity is a key feature of the MA model. In time series modelling,

stationarity refers to the statistical properties of the series — such as mean and variance —

remaining constant over time. Because the MA model is a weighted sum of past error terms,

and those errors are assumed to have constant mean and variance, the model is inherently

stationary. This means that, unlike other models, it typically does not require differencing or

other transformations to achieve stationarity.

A key characteristic of the Moving Average (MA) model is that the value at time t depends

on past error terms (shocks), rather than past values of the series itself. Specifically, an MA(1)

model (references) — a moving average process of order 1 — can be expressed as:

Yt = µ+ εt + ϕεt−1. (2.4)

Here, the value at time t is determined by the current shock εt and the previous period’s

shock εt−1. The parameter ϕ controls how much influence the past shock has on the current

value.

The MA(1) process is always stationary, assuming the error terms εt are white noise — that

is, they have zero mean, constant variance, and no autocorrelation.

However, for the model to be invertible, which ensures a unique and stable representation of

the process and allows it to be expressed as an equivalent (infinite) AR process, the condition

must be satisfied is | ϕ | < 1.

Invertibility is important because it ensures that we can model the process in a well-defined

way, avoiding ambiguity in parameter estimation. If | ϕ | ≥ 1, the model becomes non-invertible,

meaning multiple MA representations could produce the same data, making it unsuitable for

reliable modeling and forecasting.
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The MA model is particularly suited for capturing short-run dependencies in time series.

It is especially useful when the data exhibit random shocks or disturbances that have only a

temporary effect. Such disturbances can arise from various sources — for example, market

volatility, weather events, or other random external factors. The MA model provides a way to

model and forecast these transient effects, making it a valuable tool in fields such as economics,

finance, and environmental science.

One of the advantages of the MA model is its simplicity and interpretability. Unlike the AR

model, which is concerned with modelling the influence of past values, the MA model focuses on

how past shocks or innovations contribute to the current value. This makes it a good choice when

random noise or unstable behaviour is present in the data and cannot be adequately explained

by past observations alone. However, the MA model is limited in its ability to capture long-term

dependencies, as it is primarily designed to model short-term dynamics.

In practice, the MA model is often combined with the AR model to form the more general

Autoregressive Moving Average (ARMA) model. The ARMA model includes both autoregressive

and moving average components, allowing it to represent a wider range of short-run and long-run

relationships in time series data. Moreover, the ARIMA model generalizes the ARMA framework

by incorporating differencing, thus enabling it to handle non-stationary series as well.

In summary, the Moving Average (MA) model is a foundational technique in time series

analysis that offers a straightforward and practical method for modelling random shocks in a time

series. By accounting for previous error terms, it effectively captures short-term dependencies

and enables reliable forecasting in the presence of noise. While it may be less suited for modelling

long-term trends, it remains an essential component of more complex models like ARMA and

ARIMA. When used appropriately, the MA model provides valuable insights into the underlying

structure of a time series and supports robust forecasting across a wide range of applications.

2.3 Autoregressive Moving Average Model ARMA(p,q)

Autoregressive Moving Average (ARMA) (Hamilton (1994) and Box and Jenkins (1976)) is a

widely used time series model that combines two integral elements: the Autoregressive (AR)

and the Moving Average (MA) components. By integrating these two elements. The model is

particularly valuable because it accounts for both the impact of lagged values of the series and

the influence of lagged error terms. Therefore, it provides a more comprehensive framework for

predicting and analyzing data affected by both trend-like behaviour and random shocks.

A model of an ARMA(p,q), where p and q are the orders of the autoregressive and moving

average components respectively, can be mathematically expressed as:
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Yt = µ+ ρ1Yt−1 + ρ2Yt−2 + . . .+ ρpYt−p + ϕ1 + εt−1 + ϕ2εt−2 + . . .+ ϕqεt−qεt, (2.5)

where Yt is the value of the time series at time t, µ is the mean of the time series, ρ1, ρ2, . . . , ρp

are the parameters of the AR component, and ϕ1, ϕ2, . . . , ϕq are the parameters of the MA

component. The terms εt, εt−1, . . . represent the error terms. The AR component captures the

influence of past values of the time series, while the MA component captures the effect of past

errors on the current value.

One of the main limitations of the ARMA model, despite its flexibility and effectiveness, is

its reliance on the stationarity assumption. If the time series is non-stationary — for example, if

it exhibits trends or seasonality — the ARMA model cannot be applied directly. In such cases,

differencing is usually applied to transform the series into a stationary one.

The ARMA model is widely applied in various domains. In finance and economics, it is used

to model and forecast time series such as interest rates, exchange rates, and stock prices — all

of which are influenced by past values and random shocks. In engineering, ARMA models are

used to predict system behaviours such as vibrations and noise. In environmental studies, they

help forecast variables like temperature, rainfall, and pollution levels.

In conclusion, the ARMA model is a powerful and essential tool for modelling and forecasting

stationary time series data. Overall, the ARMA model is a benchmark method in time series

analysis, offering valuable insights into dynamic systems and enabling robust forecasting across

a wide range of fields.

2.4 ARMA(1,1)

The ARMA(1,1) model is a special case of the ARMA(p,q) model and combines both the moving

average (MA) and autoregressive (AR) components into one, unifying framework (Hamilton

(1994) and Box and Jenkins (1976)). It is used extensively in time series analysis to examine

data that exhibit short-run correlations and random noise. The ARMA(1,1) model is particularly

effective in scenarios where the current value of a time series depends on its immediate past value

and the past error term. The combination of moving average and autoregressive components in

the ARMA(1,1) model enables it to capture the persistence of past observations as well as the

impact of past disturbances.

The ARMA(1,1) model can be expressed algebraically as:
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Yt = µ+ ρYt−1 + εt + ϕεt−1, (2.6)

where Yt is the time series value at time t, µ is the mean of the series, ρ is the autoregressive

coefficient, which captures the influence of the past period’s value Yt−1 on the present value, and

εt is the error term at time t. The parameter ϕ is the moving average coefficient that reflects the

impact of the lagged error term εt−1 on the level of the series in the current period.

For the ARMA(1,1) model to be valid and interpretable, certain conditions must be satisfied.

Specifically, the autoregressive coefficient ρ must satisfy | ρ | < 1 to ensure stationarity — that

is, that the series has a constant mean and variance over time. Likewise, for the model to be

invertible, allowing for a unique MA representation, the moving average coefficient must satisfy

| ϕ | < 1. These constraints ensure that the model is both mathematically well-defined and

statistically reliable for forecasting.

The ARMA(1,1) model assumes that the present value of the series Yt depends not only on

its recent past value but also on the shock that occurred during the previous period. This dual

dependence allows the model to reflect both the structure present in the series and the effect of

unexpected shocks.

The ARMA(1,1) model assumes that the underlying time series is stationary, i.e., that its

statistical properties, such as mean, variance, and autocorrelation, remain constant over time.

This stationarity assumption is important because it ensures that the relationships between past

values and error terms remain stable, allowing the model to accurately capture the behaviour of

the series. If the series is not stationary—showing trends or seasonal patterns—the data may

need to be transformed (e.g., by differencing) before fitting the ARMA(1,1) model.

The ARMA(1,1) model is typically estimated using maximum likelihood estimation (MLE)

or least squares, by finding the optimum values for the parameters ρ1 and ϕ1 that minimize the

discrepancy between the model’s theoretical values and the actual data. Once the parameters

have been estimated, the model can be used for forecasting purposes, making predictions

on future values based on both past values and past innovations. The ARMA(1,1) model

is well-suited for short-run forecasting, as it leverages both types of past information, often

producing more accurate forecasts than models that rely solely on lagged observations.

This model is widely used across various disciplines. In finance, it is used to model stock

prices, exchange rates, and interest rates, where both historical values and random shocks play a

key role in future movements. In engineering, it is used in signal processing and system control to

forecast behaviour in systems subject to noise or random disturbances. In environmental science,
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the model is applied to forecast variables such as temperature, rainfall, or pollution levels, which

show short-term variation and longer-term persistence.

Finally, the ARMA(1,1) model provides a simple but effective way of modelling and

predicting stationary time series data. By encompassing both moving average and autoregressive

components, it captures both short-run dependencies and the influence of lagged errors on the

current value of the series. Although ARMA(1,1) applies best to stationary data and may require

adjustment when applied to non-stationary series, it remains one of the most widely used and

practical tools for time series forecasting and analysis. Its ability to account for both persistent

patterns and the influence of random shocks makes it a general-purpose tool across numerous

fields, from economics and finance to engineering and environmental science.

2.5 GLS model with ARMA(1,1) disturbances

Generalized Least Squares (GLS) model with ARMA(1,1) errors is a useful generalisation of

the simple linear regression model in which there is more efficient estimation when there are

autocorrelated errors. In time series, normally errors do involve serial correlation; i.e., the current

error term is connected with previous error terms. This violates one of the basic assumptions of

ordinary least squares (OLS) regression, namely, that errors are independent. OLS will produce

inefficient (and possibly inconsistent) estimates when regressors are correlated with past error

terms. To reverse this, GLS adjusts for the autocorrelation structure of the errors and provides

more efficient and unbiased estimates of the regression coefficients. When terms of error follow

an ARMA(1,1) process, the GLS method is even more specific in the sense that it adds both the

moving average and autoregressive terms to the error process.

For ARMA(1,1) errors of the GLS model, we start with a typical linear regression equation:

Yt = Xtβ + ut, (2.7)

where Yt is the dependent variable at time t, Xt is a vector of the explanatory variables, β is a

vector of unknown parameters to be estimated, and ut is the error term at time t. For ARMA(1,1)

disturbances, errors ut are characterized by an ARMA(1,1) process and can be specified as:

ut = ρut−1 + εt + ϕεt−1, (2.8)

where εt is a white noise process of zero mean and constant variance, and ρ, ϕ are the

autoregressive and moving average parameters, respectively. The ARMA(1,1) process indicates

15



Chapter 2: Generalized Least Squares (GLS) with Arma(1,1) disturbances

that the current error term ut is determined by both the previous error ut−1 as well as the

previous shock εt−1 and the present shock εt.

In case of such autocorrelated errors, the GLS method makes a change to the process of

estimation by accounting for the structure of error covariance terms. GLS aims at estimating

the parameters of regression β keeping in view the serial correlation of residuals. The GLS

estimator is:

β̂GLS = (X ′Ω−1X)−1X ′Ω−1Y (2.9)

Where Ω is the error covariance matrix, which in the case of ARMA(1,1) disturbances reflects

the error term autocorrelation pattern. Since the error covariance matrix is not diagonal, the

GLS procedure scales each observation’s weight by the error correlation. Such a transformation

gives more accurate and efficient parameter estimations compared to OLS.

One of the major reasons for using GLS with ARMA(1,1) errors is that it manages

autocorrelated errors very well. With an accurate description of the correlation between the

error terms, GLS ensures that the estimated coefficients are unbiased and more efficient than the

estimated coefficients obtained by OLS, where errors are supposed to be uncorrelated. Also, by

incorporating both the moving average and the autoregressive features, the model can capture

both short-term relationships and the effect of past disturbances, which renders it perfectly

adapted to time series data with these characteristics.

The GLS method also provides an improved estimation process by controlling for the structure

of the error term. The efficiency of this process is particularly beneficial when dealing with

highly autocorrelated time series data since the GLS estimator is designed to incorporate the

time interdependencies between observations. This improves the parameter estimates’ accuracy,

which is most crucial in efficient modelling and forecasting.

To estimate the parameters of the GLS model with ARMA(1,1) errors, one has to first

estimate an ARMA(1,1) model from the regression residuals. This allows for the identification

and estimation of the autoregressive coefficient, ρ, and the moving average coefficient, ϕ, which

describe the error correlation structure. Once these parameters are estimated, the covariance

matrix Ω can be estimated and the GLS estimator can be employed to obtain the regression

coefficients. The estimation is more efficient since the error structure is well accounted for.

The GLS model with ARMA(1,1) disturbances is extremely prevalent across many fields. For

example, in finance and econometrics, it is used most frequently to estimate economic variables

such as stock returns, and exchange or interest rates where autocorrelation of residuals is typically

encountered. In engineering, GLS model with ARMA(1,1)Box and Jenkins (1976), Brockwell
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and Davis (1991), Hamilton (1994), Nelson (1991), Granger and Joyeux (1980), James et al.

(2013) and White (1982) can be used to model the behaviour of systems over time that are

affected by noise or disturbances. Similarly, in environmental science, it is found to be handy for

predicting variables such as temperature, rain or pollution levels, where data are typically found

to exhibit autocorrelation due to prevailing temporal mechanisms.

Generally, the GLS model with ARMA(1,1) disturbances is a useful tool in time series analysis,

providing a way of dealing with autocorrelated errors and improving the efficiency of regression

estimation. By specifying both the moving average and the autoregressive components in the

error structure, the model is capable of modelling both data persistence and the influence of

past random shocks. Despite the model’s assumption of a known and appropriately specified

autocorrelation structure, it remains a useful tool for the study of time series data in economics,

finance, engineering and environmental science. Its ability to generate unbiased and accurate

estimates even under the state of autocorrelated errors makes it a highly crucial tool for successful

modelling and prediction.
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Chapter 3

The generalized linear model with ARMA(1,1) disturbances

3.1 Introduction

Consider the linear regression model:

y = Xβ + σu, (3.1)

where y is the T × 1 vector of observations on the endogenous variable, X is the T × n matrix

of the exogenous variable, β is a n × 1 vector of unknown parameters and σu (σ > 0) is the

T × 1 vector of unobserved errors. The random vector u is distributed as N(0,Ω−1), where the

elements of the T × T matrix Ω are known functions of the unknown k × 1 parameter vector γ

and, possibly, of a T ×m matrix Z of observations on a set of exogenous variables, some of which

may be regressors too. The vector γ belongs to the parameter space Θ, which is an open subset

of the k-dimensional Euclidean space. Let γ̂ is any consistent estimator of γ. For any function

f = f(γ) we write f̂ = f(γ̂). The feasible GLS estimators of β and σ2 are:

β̂ = (X ′Ω̂X)−1X ′Ω̂y, (3.2)

σ̂2 = (y −Xβ̂)′Ω̂(y −Xβ̂)/(T − n). (3.3)

We write Ωi = ∂Ω/∂γi, Ωij = ∂2Ω/∂γi∂γj for T ×T matrices of the first and second order partial

derivatives of the matrix Ω with respect to the elements of the vector γ.

Let

γ =

γ1
γ2

 =

ρ
ϕ

 (3.4)

We define the 3× 1 vector δ with elements

δ0 =
σ̂2 − σ2

τσ2
, δρ =

γ̂1 − γ1
τ

=
ρ̂− ρ
τ

, δϕ =
γ̂2 − γ2
τ

=
ϕ̂− ϕ
τ

, (3.5)

where τ = 1/
√
T , is the “asymptotic scale” of our expansions.

So δ includes δ0, δρ and δϕ and is written as follows:
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δ =


δ0

δρ

δϕ

 =

δ0
δ∗

 (3.6)

where δ∗ is a 2× 1 vector with elements δρ, δϕ.

We assume that the following regularity conditions hold:

1. The elements of the matrices Ω and Ω−1 are bounded for all T and for all T ∈ θ, and the

matrices

A = X ′ΩX/T, F = X ′X/T (3.7)

converge to non-singular matrices as T →∞.

2. The partial derivatives, up to the fourth order, of the elements of the matrix Ω with respect

to the elements of the vector γ are bounded for all T and for all γ ∈ θ.

3. The estimator γ̂ is an even function of u and is functionally unrelated to the parameters

β, that is, it can be written as a function only of X, Z and σu.

4. The vector δ accepts a stochastic expansion of the form

δ = d1 + τd2 + ω(τ2), (3.8)

and the expectations

E(d1d′1), E(
√
Td1 + d2) (3.9)

exist and have finite limits as T →∞.

The first two conditions imply that the matrices

Ai = X ′ΩiX/T, Aij = X ′ΩijX/T, A
∗
ij = X ′ΩiΩ

−1ΩjX/T (3.10)

are bounded and therefore the Taylor expansion of β̂ is a stochastic expansion (Magdalinos

(1992)). Under the condition that the parameters β and γ are functionally unrelated, assumption

(3) is satisfied for a wide class of estimators of γ, including maximum likelihood estimators (ML)

and the simple or iterative estimators based on regression residuals. Moreover, we can show that

condition (4) is satisfied for the same classes of estimators of γ. Note that we do not assume

that the estimator of γ is asymptotically efficient.
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We define the scalars λ0 and µ0, the 2× 1 vectors λ and µ, and the 2× 2 matrix Λ as follows:

Λ =

λρρ λρϕ

λϕρ λϕϕ

 , λ =

λρ
λϕ

 , µ =

µρ
µϕ

 , (3.11)

lim
T→∞

E(d1d′1) =

λ0 λ′

λ Λ

 =


λ0 λρ λϕ

λρ λρρ λρϕ

λϕ λϕρ λϕϕ

 , (3.12)

lim
T→∞

E(
√
Td1 + d2) =

µ0
µ

 =


µ0

µρ

µϕ

 . (3.13)

For each n×m matrix L with elements lij we write:

L = [(lij)i=1,...,n;j=1,...,m] (3.14)

with the corresponding modifications for vectors and square matrices. If Lij are ni×mj matrices,

then the notation means that the matrix L is a (
∑n

i=1 ni)× (
∑m

j=1mj) partitioned matrix with

submatrices Lij .

The properties of the size corrections presented below have proved in Symeonides (1991).

3.2 The t Test

Let e0 be a known scalar and let e be a known n× 1 vector. In order to test the null hypothesis

e′β − e0 = 0 (3.15)

for one-sided alternative hypotheses we use the statistic

t = (e′β̂ − e0)/[σ̂2e
′(X ′Ω̂X)−1e]1/2. (3.16)

We define the k × 1 vector l and the k × k matrix L as

l =

lρ
lϕ

 , L =

Lρρ Lρϕ

Lϕρ Lϕϕ

 , (3.17)
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where

lρ = e′GAρGe/e
′Ge

lϕ = e′GAϕGe/e
′Ge

lρρ = e′GCρρGe/e
′Ge

lϕϕ = e′GCϕϕGe/e
′Ge

lρϕ = e′GCρϕGe/e
′Ge

lϕρ = e′GCϕρGe/e
′Ge

(3.18)

and

G = (X ′ΩX/T )−1

Cρρ = A∗
ρρ − 2AρGAρ +Aρρ/2

Cϕϕ = A∗
ϕϕ − 2AϕGAϕ +Aϕϕ/2 (3.19)

Cρϕ = A∗
ρϕ − 2AρGAϕ +Aρϕ/2

Cϕρ = A∗
ϕρ − 2AϕGAρ +Aϕρ/2

and the matrices Ai, Aij , and A∗
ij are defined in (3.10).

Lemma 3.1. Under the null hypothesis (3.15), the distribution function of the statistic (3.16) assumes

the Edgeworth expansion

Pr(t ≤ x) = I(x)− τ2

2

[(
p1 +

1

2

)
+

(
p2 +

1

2

)
x2
]
xi(x) +O(τ3), (3.20)

where

p1 = tr(ΛL) + l′Λl/4 + l′(µ+ λ/2)− µ0 + (λ0 − 2)/4,

(3.21)

p2 = (l′Λl − 2l′λ+ λ0 − 2)/4

and I(·), i(·) are the distribution and density functions, respectively, of the standard normal

distribution.

Theorem 3.1. Under the hypothesis (3.15) and if the regularity conditions are satisfied, the

Cornish-Fisher corrected statistic

t̃ = t− τ2

2

[(
p1 +

1

2

)
+

(
p2 +

1

2

)
t2
]
t, (3.22)

is distributed, with an error of order O(τ3), as a standard normal variable.
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Lemma 3.2. Under the null hypothesis (3.15) the distribution function of the statistic (3.16) accepts

the Edgeworth-type expansion

Pr(t ≤ x) = IT−n(x)−
τ2

2

(
p1 + p2x

2
)
xiT−n(x) +O(τ3), (3.23)

where the quantities p1 and p2 are defined in (3.21) and IT−n(·) , iT−n(·) are the distribution

and density functions, respectively, of a t variable with T − n degrees of freedom. Moreover, the

approximation is locally exact, i.e., if γ is known to belong to a ball of radius θ, then the approximation

becomes exact as θ → 0.

Theorem 3.2. Under the null hypothesis (3.15) and if the regularity conditions are satisfied, the

Cornish-Fisher corrected statistic

t̂ = t− τ2

2

(
p1 + p2t

2
)
t (3.24)

is distributed, with an error of orderO(τ3), as a t variable with T−n degrees of freedom. Moreover, the

approximation is locally exact, i.e., if γ is known to belong to a ball of radius θ, then the approximation

becomes exact as θ → 0.

Corollary 3.1. The level of significance corresponding to a specific value, say t0, of the t statistic

(3.16) is obtained by comparing the p-value of the Cornish-Fisher corrected t statistic, say t̂0, with

the tables of the Student− t distribution. This means that

Pr(t ≤ t0) = IT−n(t̂0) +O(τ3) (3.25)

and

Pr(t ≤ t0) = 1− IT−n(t̂0) +O(τ3), (3.26)

where IT−n(·), iT−i(·) are the distribution and density functions, respectively, of a t variable with

T − n degrees of freedom.

In the case of the two-sided statistical significance test of the k − th structural parameter βk, it

follows that e has 1 in the k − th position and 0 anywhere else. Therefore, the components of l

and L are estimated as

l̂i = ĝ′kÂiĝk/ĝkk, l̂ij = ĝ′kĈij ĝk/ĝkk, (3.27)

respectively, where ĝk is the k− th column and ĝkk is the k− th diagonal element, respectively, of

the matrix Ĝ = (X ′Ω̂X/T ). Moreover, the symbol ”ˆ” denotes the estimates of the corresponding

quantities from the data.
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Chapter 3: The generalized linear model with ARMA(1,1) disturbances

3.3 The F Test

Let H be an r × n known matrix of rank r and let h be a known r × 1 vector. In order to test

the null hypothesis

Hβ − h = 0 (3.28)

we use the Wald statistic

w = (Hβ̂ − h)′[H(X ′Ω̂X)−1H ′]−1(Hβ̂ − h)/σ̂2. (3.29)

We define the k × 1 vector c and the k × k matrices C and D as

c =

cρ
cϕ

 , C =

cρρ cρϕ

cϕρ cϕϕ

 , (3.30)

where

cρ = tr(AρP )

cϕ = tr(AϕP )

cρρ = tr(CρρP )

cϕϕ = tr(CϕϕP )

cρϕ = tr(CρϕP )

cϕρ = tr(CϕρP )

and

D =

dρρ dρϕ

dϕρ dϕϕ

 , (3.31)

where

dρρ = [(trDρρP )

dϕϕ = [(trDϕϕP )

dρϕ = [(trDρϕP )

dϕρ = [(trDϕρP )

and the matrices Ai, Cij are defined in (3.10) and (3.19), respectively, and

P = GQG, Q = H ′(HGH ′)−1H, Dij = AiPAj/2. (3.32)
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3.3: The F Test

Lemma 3.3. Under the null hypothesis (3.28), the distribution function of the statistic (3.29) admits

the Edgeworth-type expansion

Pr(w ≤ x) = Fr(x)− τ2
(
h1 + h2

x

r + 2

)
+
x

r
fr(x) +O(τ3), (3.33)

where

h1 = tr[Λ(C +D)]− c′Λc/4 + c′µ+ r[c′λ/2− µ0 − (r − 2)λ0/4],

(3.34)

h2 = tr(ΛD) + [c′Λc− (r + 2)(2c′λ− rλ0)]/4

and Fr(·) , fr(·) are the distribution and density functions, respectively, of a chi-square random

variable with r degrees of freedom.

Theorem 3.3. Under the hypothesis (3.28) and if the regularity conditions are satisfied, the

Cornish-Fisher corrected statistic

ŵ = w − τ2
[
h1
r

+
h2

r(r + 2)
w

]
w (3.35)

is distributed, with an error of order O(τ3) , as a chi-square random variable with r degrees of

freedom.

The exact distribution of the statistic (3.29) has not been tabulated, even in cases where

the vector γ is known. Therefore, it is preferable to adjust the statistic (3.29) by correcting the

numerator degrees of freedom, thereby obtaining the modified statistic.

v = (Hβ̂ − h)′[H(X ′Ω̂X)−1H ′]−1(Hβ̂ − h)/rσ̂2. (3.36)

The statistic (3.36) is the exact analogue of the well-known F statistic in the classical linear

model and follows exactly an F distribution when the vector γ is known.

Lemma 3.4. Under the null hypothesis (3.28) the distribution function of the statistic (3.36) has an

Edgeworth-type expansion

Pr(v ≤ x) = F r
T−n(x)− τ2 (q1 + q2x)xf

r
T−n(x) +O(τ3), (3.37)
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where

q1 = h1/r + (r − 2)/2,

(3.38)

q2 = h2/(r + 2)− r/2

and F r
T−n(·) , f rT−n(·) are the distribution and density functions, respectively, of an F random variable

with r and T − n degrees of freedom. Moreover, the approximation is locally exact, that is, if γ is

known to belong to a ball of radius θ, then the approximation becomes exact as θ → 0.

Theorem 3.4. Under the hypothesis (3.28) and if the regularity conditions are satisfied, the

Cornish-Fisher corrected statistic

v̂ = v − τ2 (q1 + q2v) v (3.39)

is distributed, with an error of order O(τ3) , as an F random variable with r and T − n degrees of

freedom. Moreover, the approximation is locally exact, that is, if γ is known to belong to a ball of

radius θ, then the approximation becomes exact as θ → 0.

Corollary 3.2. The level of significance corresponding to a specific value, say v0, of the F statistic

is obtained by comparing the p-value of the Cornish-Fisher corrected F statistic, say v̂0, with the

tables of the F distribution. That is, if F r
T−n(·) , f rT−n(·) are the distribution and density functions,

respectively, of the F distribution with r and T − n degrees of freedom, then

Pr(v > t0) = 1− F r
T−n(v̂0) +O(τ3). (3.40)

3.4 Computation of the quantities involved in the correction formulas

In cases where the model exhibits ARMA(1,1) disturbances, there are no closed-form expressions

available for some quantities required to implement the corrections to the t and F statistical tests.

For the t test, two approaches are considered: the Edgeworth expansion and the

Cornish-Fisher expansion, both under the normal and the Student-t distribution. Similarly,

for the F test, the same two approaches (Edgeworth and Cornish-Fisher) are applied, both under

the χ2 distribution and the F distribution.

3.4.1 Analysis of the quantities involved in the t test formulas

To apply corrections to t tests in models with ARMA(1,1) disturbances, several approaches

are employed based on either the normal or the Student-t distribution. Each approach
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3.4: Computation of the quantities involved in the correction formulas

involves specific correction terms, the computation of which depends on the availability of

closed-form expressions or the feasibility of estimation through theoretical or computational

methods. The following section provides an analysis of the key terms associated with

both distributions, highlighting which ones can be derived analytically and which require

simulation-based techniques rooted in asymptotic expansion theory.

For the normal and Student-t distribution, the correction terms p1 and p2 in (3.21) are used

in both the Edgeworth and Cornish-Fisher expansions.

According to Breusch (1980), the constant λ0 takes the value of 2. Furthermore, the matrix

L and the vector l are computed using the closed-form expressions in equations (3.17), (3.18),

and (3.19).

The matrix Λ is a 2 × 2 covariance matrix that contains the second-order moments of the

quantities δρ and δϕ. Specifically, its elements are given by:

Λ =

λρρ λρϕ

λϕρ λϕϕ

 , (3.41)

where λρρ = E(δ2ρ), λρϕ = E(δρδϕ), λϕρ = E(δϕδρ), and λϕϕ = E(δ2ϕ).

The quantities δρ and δϕ represent deviations of the estimated parameters from their true

values, and are defined as:

δρ =
√
T (ρ̂− ρ), δϕ =

√
T (ϕ̂− ϕ), (3.42)

where T denotes the sample size, ρ̂ and ϕ̂ are the estimators of the autoregressive and moving

average parameters, respectively, based on the regression residuals, and ρ, ϕ are their true values.

Since closed-form expressions for the expected values involved in the elements of Λ are not

available due to the non-linearity of the ML estimators of the ARMA(1,1) parameters, these

expected values are computed through simulation. By repeatedly generating synthetic data

under known parameter values and estimating ρ̂ and ϕ̂, the empirical distributions of δρ and

δϕ can be obtained. These simulations allow for consistent approximation of the elements of

Λ, which are essential for computing the correction terms in the Edgeworth and Cornish-Fisher

expansions.

Similarly, the vector µ consists of the first-order moments of the scaled estimators, and is

defined as:

µ =

µρ
µϕ

 where µρ = E(δρ)/τ, µϕ = E(δϕ)/τ. (3.43)

27



Chapter 3: The generalized linear model with ARMA(1,1) disturbances

As with the elements of the matrix Λ, there are no closed-form expressions available for these

expected values due to the non-linearity of the ML estimators of the ARMA(1,1) parameters.

Therefore, the vector µ is also approximated via simulation. Using the same simulated data sets,

the empirical means of δρ and δϕ are computed and used to construct estimates of µ, which

are necessary for the computation of the correction terms in the Edgeworth and Cornish-Fisher

expansions.

Subsequently, the vector λ consists of the elements λρ and λϕ, which are defined as follows:

λρ = E(δ0δρ), λϕ = E(δ0δϕ). (3.44)

The term δ0 is computed as:

δ0 =
σ̂2 − σ2

τσ2
, (3.45)

where

σ̂2 = (y −Xβ̂)′Ω̂(y −Xβ̂)/(T − n) (3.46)

is the estimated variance, σ2 is the true variance, and τ is the asymptotic scale of our expansions.

The quantity δ0 represents the difference between the estimated and true variances, adjusted by

the asymptotic scale τ , T is the sample size and n refers to the number of parameters estimated

in the model. All of these quantities are computed via simulation, given that no closed-form

expressions exist for these expected values.

The computation of µ0

In order to compute µ0, we use the following procedure: using (3.4), (3.5), (3.6), (3.8) and (3.9),

we can prove that

µ0
µ

 = lim
T→∞

E

√Tσ0 + σ1
√
Td1i − d2i

 , (3.47)

where

µ0 = lim
T→∞

E(
√
Tσ0 + σ1), (3.48)

µ = lim
T→∞

E(
√
Td1i − d2i) = lim

T→∞
E(
√
Tδi). (3.49)

Also, we can prove that
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3.4: Computation of the quantities involved in the correction formulas

ρ̂ = ρ+ τ(ρ1 + τρ2) + ω(τ3)⇒ (3.50)

ϕ̂ = ϕ+ τ(ϕ1 + τϕ2) + ω(τ3)⇒ (3.51)

Therefore, we calculate that

E(δρδρ) = E(ρ21) +O(τ) = λρ∗ (3.52)

E(δϕδϕ) = E(ϕ21) +O(τ) = λϕ∗ (3.53)

E(δρδϕ) = E(ρ1ϕ1) +O(τ) = λρϕ∗. (3.54)

Thus,

Λ∗ = Λ+O(τ) (3.55)

where

Λ =

λρρ∗ λρϕ∗

λϕρ∗ λϕϕ∗

 . (3.56)

Similarly, we can prove that

µρ∗ = E(
√
Tρ1 + ρ2 + ω(τ)) = E(

√
Tρ1 + ρ2) +O(τ) = µρ +O(τ) (3.57)

µϕ∗ = E(
√
Tϕ1 + ϕ2 + ω(τ)) = E(

√
Tϕ1 + ϕ2) +O(τ) = µϕ +O(τ) (3.58)

Then, since

µ0 = lim
T→∞

E(
√
Tσ0 + σ1) (3.59)

where

σ0 = w0 − aρδρ − aϕδϕ (3.60)

σ1 = wρδρ + wϕδϕ + aρρδρδρ + aϕϕδϕδϕ + 2aρϕδρδϕ − b′Âb+ n (3.61)
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we can prove that

µ0 =
1

2

tr(u′Ωρρu)

T
δρδρ +

1

2

tr(u′Ωϕϕu)

T
δϕδϕ +

tr(u′Ωρϕu)

T
δρδϕ. (3.62)

The proofs of the results given in this section are gathered in Appendix C.

3.4.2 Analysis of the quantities involved in the F-test formulas

To apply corrections to F tests in models with ARMA(1,1) disturbances, several approaches are

employed based on either the χ2 or the F distributions. Each approach involves specific correction

terms, the computation of which depends on the availability of closed-form expressions or the

feasibility of estimation through theoretical or computational methods. The following section

provides an analysis of the key terms associated with both distributions, highlighting which ones

can be derived analytically and which require simulation-based techniques rooted in asymptotic

expansion theory.

For the χ2 and F distributions, the correction terms h1, h2 in (3.34) and q1, q2 in (3.38) are

used in both the Edgeworth and Cornish-Fisher expansions.

The parameters µ and λ, which also appear in the correction terms of the t test, retain the

same definitions in the context of the F test. Due to the absence of closed-form expressions, these

quantities are estimated through simulation. In contrast, the constants λ0 and µ0 are available

in closed-form, as in the t-test case.

Finally, the quantities c, C, and D, which are critical for the computation of the correction

terms, are derived analytically from equations (3.30), (3.31), and (3.32).
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Chapter 4

Computational Techniques for Estimating Non-Closed Form Quantities in ARMA

Models

4.1 Introduction

In this chapter, we will present the methods required to compute quantities that do not have

closed-form expressions, which are essential for applying corrections to the t and F tests for

models with ARMA(1,1) disturbances. Given the complexity of the expressions related to

ARMA processes and the lack of direct mathematical formulas for many of these quantities,

computational approaches are needed to estimate them.

Additionally, two other methods crucial for applying corrections and improving computations

will be discussed: the Gradient Descent method and L2 regularization. These methods are

particularly important for regularizing the coefficients, as they help address issues that arise

when the coefficients approach extreme values, such as -1 or 1. The theory suggests that the

ARMA(1,1) coefficients should have absolute values smaller than 1 to ensure the stability and

invertibility of the model. However, in practice, when the coefficients approach these extreme

values, significant problems can arise, such as model instability and overfitting. The Gradient

Descent method and L2 regularization help avoid such issues by constraining the coefficients,

thus improving the robustness and generalizability of the estimates.

Furthermore, the implementation of the Monte Carlo experiment will be analyzed, which will

be used to simulate the necessary data and estimate the required quantities. At the end of the

chapter, the results of the experiment will be presented.

4.2 Introduction to the Gradient Descent Algorithm

Gradient Descent (GD) is one of the most fundamental and widely used optimization algorithms

in machine learning. It is an iterative method employed to minimize a loss function by gradually

adjusting the model parameters in the direction of the steepest descent of the loss function. The

effectiveness of Gradient Descent is influenced by various factors, such as the learning rate, the

management of the convergence rate, and the choice of the appropriate variant (Batch, Stochastic

or Mini-Batch). This algorithm has been extensively studied and applied in numerous domains
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of machine learning and deep learning, forming the backbone of many training procedures Box

and Jenkins (1976), Brockwell and Davis (1991), Hamilton (1994), Nelson (1991), Granger and

Joyeux (1980), James et al. (2013) and White (1982).

4.2.1 Basic Idea of Gradient Descent

The Gradient Descent algorithm is based on the concept of the gradient of the loss function

J(θ) with respect to the model parameters θ. The core step of the algorithm is to update

the parameters based on the negative gradient, which points in the direction of the maximum

decrease of the loss function.

Mathematically, the process is described by the following equation:

θ := θ − α∇J(θ), (4.1)

where:

• θ represents the model parameters,

• α is the learning rate,

• ∇J(θ) is the gradient of the loss function.

This process is repeated for a predetermined number of iterations or until the loss function

approaches a minimum.

4.2.2 Loss Function Calculation

The prediction error is calculated through the loss function. A common choice for the loss

function is the Mean Squared Error (MSE), which calculates the average squared difference

between the actual and predicted values.

The loss function J(θ) for MSE is:

J(θ) =
1

n

n∑
i=1

(yi − ŷi)2, (4.2)

where:

• yi is the actual value of the i-th sample,

• ŷi is the predicted value of the i-th sample,

• n is the size of the dataset (the number of observations).
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4.2: Introduction to the Gradient Descent Algorithm

This function measures the distance between the actual and predicted values, and the goal

of Gradient Descent is to minimize this value, improving the model parameters so that the

predictions get as close to the actual values as possible.

4.2.3 Updating Parameters Based on the Gradient of the loss Function

Based on the gradient of the loss function with respect to the parameters θ, the model parameters

are updated. For instance, for a parameter w, the update rule is:

w ← w − α∂J(θ)
∂w

, (4.3)

where:

• α is the learning rate,

• ∂J(θ)
∂w is the derivative of the loss function with respect to the parameter w, representing

the gradient.

This step is used to adjust the parameters and reduce the prediction error of the model.

4.2.4 Types of Gradient Descent

Batch Gradient Descent

In Batch Gradient Descent, the algorithm computes the gradient using the entire dataset (batch)

in each iteration. The gradient computation is as follows:

∇J(θ) = 1

m

m∑
i=1

∇Ji(θ), (4.4)

where m is the size of the dataset and Ji(θ) is the loss function for the i-th sample. This

approach has high accuracy but can be slow when the dataset is large.

Stochastic Gradient Descent (SGD)

In Stochastic Gradient Descent, the parameter update is done for each sample individually, and

the algorithm computes the gradient for a single random sample at a time:

θ := θ − α∇Ji(θ), (4.5)

where Ji(θ) is the loss function for the i-th sample. This method is faster since it updates the

parameters after each sample, but the process can be more unstable due to random fluctuations

in the updates.
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Mini-Batch Gradient Descent

The Mini-Batch Gradient Descent method combines the advantages of both Batch and Stochastic

Gradient Descent. Here, the algorithm computes the gradient for small groups of data

(mini-batches), offering a good compromise between speed and accuracy:

∇J(θ) = 1

B

B∑
i=1

∇Ji(θ), (4.6)

where B is the size of the mini-batch. This approach helps achieve better performance and

speed without the instability of SGD.

4.2.5 Learning Rate

The learning rate (α) is one of the most important parameters in the Gradient Descent algorithm.

If the learning rate is too small, the algorithm may require many iterations to converge, while if

it is too large, it may fail to converge as the parameter updates can become too large and cause

divergence.

Choosing the right learning rate is crucial for the efficiency of the algorithm. Techniques such

as learning rate decay or dynamic adjustment of the learning rate during training are commonly

used to optimize the convergence process.

Figure 4.1 Effect of a large learning rate: the algorithm overshoots the minimum, potentially diverging.
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Figure 4.2 Effect of a small learning rate: convergence is very slow as the steps are tiny.

These diagrams illustrate how the learning rate affects the gradient descent trajectory. A

very large α leads to oscillations or divergence, while a very small α slows down the convergence,

making the process inefficient.

4.2.6 Conclusion

Gradient Descent is a fundamental optimization method in machine learning that allows finding

the parameters of a model that minimize a loss function. While its basic form is simple, its

successful application requires careful selection of parameters such as the learning rate, as well

as the decision on the appropriate variant (Batch, Stochastic or Mini-Batch) depending on the

problem characteristics and dataset.

4.3 L2 Regularization (Ridge Regularization)

L2 regularization, also known as Ridge Regularization, is one of the most widely used

normalization techniques in machine learning and statistical predictive models. Its main goal

is to reduce model complexity in order to limit the phenomenon of overfitting. This technique

was introduced by Hoerl and Kennard (1970) and has since been applied across a wide range of

problems, from linear regression to deep neural networks.
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4.3.1 Mathematical Foundation of L2 Regularization

L2 regularization is based on adding a penalty term to the model’s loss function, corresponding

to the sum of the squares of the model parameters. For the linear regression, the classical loss

function is the Mean Squared Error (MSE):

J(θ) =
1

n

n∑
i=1

(yi − ŷi)2. (4.7)

By adding the L2 regularization term, the revised loss function is formulated as follows:

J(θ) =
1

n

n∑
i=1

(yi − ŷi)2 + ψ
κ∑

j=1

θ2j , (4.8)

where:

• yi is the actual value,

• ŷi is the predicted value from the model,

• n is the sample size,

• θj are the model coefficients,

• ψ is the regularization hyperparameter that controls the magnitude of the penalty,

• κ is the number of model coefficients

The addition of the ψ
∑m

j=1 θ
2
j term shrinks the model’s coefficients, preventing large values

that could lead to overfitting to the training data.

The parameter ψ in L2 regularization (Ridge Regression) acts as a tuning factor, regulating

the degree of coefficient shrinkage. When ψ is large, the coefficients approach zero, reducing

model complexity and preventing overfitting, but simultaneously increasing bias. On the other

hand, when ψ is very small, the model fits the training data more closely, increasing the risk of

overfitting. Thus, ψ determines the balance between model simplicity and predictive performance,

directly affecting model’s generalization to new data.

4.3.2 Role in Overfitting Prevention and Generalization

L2 regularization improves the model’s generalization ability—its capacity to perform well on

new, unseen data—through the following mechanisms:

• Limiting model complexity: The penalty on the sum of squared coefficients discourages

large parameter values, thereby reducing model variance.
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• Enhancing stability: In cases of high correlation among features (multicollinearity), Ridge

Regression stabilizes coefficient estimation, unlike traditional linear regression.

• Retaining all features: Unlike L1 regularization (Lasso), which zeroes out some coefficients,

L2 regularization reduces the magnitude of all coefficients without eliminating any, making

it ideal for problems where all features contribute to prediction.

4.3.3 Conclusion

L2 regularization is a fundamental tool in machine learning, offering an effective mechanism

for improving model generalization. With the proper choice of the ψ parameter, it can reduce

overfitting and lead to more reliable results. Although it does not provide feature selection like

L1 regularization, its ability to keep all features active makes it valuable in problems where

information is spread across many informative variables.

4.3.4 Problems Arising from Extreme Values of Coefficients

While L2 Regularization is a widely used technique for reducing overfitting and improving model

generalization, it becomes particularly important in the context of time series models such as

ARMA, where extreme values of the coefficients can lead to some significant issues.

Several studies have highlighted these challenges, pointing out the instability, non-invertibility,

and difficulty in parameter estimation, etc., that arise when coefficients approach extreme values

(e.g., Box and Jenkins (1976), Brockwell and Davis (1991), Hamilton (1994), Nelson (1991),

Granger and Joyeux (1980), James et al. (2013) and White (1982)). These findings underscore

the need for regularization techniques to address such problems and improve the robustness of

time series models.

When the coefficients of the AR (ρ) and/or MA (ϕ) components approach extreme values —

namely, close to -1 or 1 — the following problems may arise:

• Model Stability Issue

It occurs when AR coefficients approach -1 or 1, potentially leading to non-stationary time

series.

• Model Invertibility Issue

It occurs when MA coefficients approach -1 or 1, resulting in non-invertible time series.

• Random Walk-Like Behaviour

When AR coefficients are close to 1, the model behaviour tends to approximate that of a

random walk.
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• Sensitivity to Data and Numerical Accuracy

The model may become overly responsive to data changes, leading to inaccurate predictions.

Additionally, computations become numerically unstable near the boundaries.

• Overfitting Problem

In ARMA models, overfitting can occur when the model coefficients are too large, causing

the model to fit the training data too closely and reducing its ability to generalize to new

data.

• Difficulty in Parameter Estimation

Estimation algorithms such as maximum likelihood may struggle to converge when

coefficients approach extreme values.

• Long Memory Effect

It arises when past observations have a disproportionately strong impact on future

predictions, potentially resulting in inaccurate forecasts if older data is no longer

representative.

To mitigate these issues, L2 Regularization (Ridge Regularization) is applied during model

training. By penalizing large coefficient values through an additional term in the loss function,

the regularization helps to constrain the model complexity, improve numerical stability, and

enhance generalization to unseen data.

4.4 ARMA(1,1) with L2 Penalty and Gradient Descent

As discussed in the previous sections, significant estimation issues arise when the coefficients of

the ARMA(1,1) model approach the boundary values of -1 and 1. Although the theory (Box and

Jenkins (1976) and Hamilton (1994)) states that for the model to be stationary and invertible it

is sufficient that the coefficients are less than one in absolute value, in practice these estimates

are adversely affected near the limits.

For this reason, it is necessary to apply techniques that constrain the values of the model’s

coefficients. Two such methods are:

• Gradient Descent for optimizing the loss function.

• L2 Regularization, which penalizes large parameter magnitudes.

Below we develop the mathematical framework for applying these methods to the ARMA(1,1)

model, as used in this study.
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Loss Function

The total loss function consists of two components:

1. The prediction error term (Mean Squared Error - MSE)

2. The L2 regularization penalty on the parameters

It is defined as follows:

L =
1

n

n∑
t=1

(yt − ŷt)2 + ψ(ρ2 + ϕ2), (4.9)

where

• yt is the actual value,

• ŷt is the predicted value from the model,

• n is the sample size,

• ρ, ϕ are the model coefficients (AR and MA respectively),

• ψ is the regularization hyperparameter that controls the penalty magnitude.

Gradient-Based Parameter Updates

According to the paper Park et al. (2018), the update rule for a parameter using L2 regularization

is:

w(t+1) = w(t) − α
(
∂L
∂w

+ ψ
∂Ω

∂w

)
, (4.10)

where

• α is the learning rate,

• Ω(w) = ∥w∥22 is the L2 regularizer (also known as weight decay).

For the ARMA(1,1) model, the update rules for the coefficients become:

ρ̂ = ρ− α
(
∂MSE
∂ρ

+ 2ψρ

)
, (4.11)

ϕ̂ = ϕ− α
(
∂MSE
∂ϕ

+ 2ψϕ

)
. (4.12)
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ARMA(1,1) Model Specification

The model used is of the form:

yt = ρyt−1 + εt + ϕεt−1 (4.13)

and the corresponding prediction is:

ŷt = ρ̂yt−1 + εt + ϕ̂εt−1. (4.14)

Gradient of the MSE

Derivative with respect to ρ:
∂ŷt
∂ρ̂

= yt−1, (4.15)

∂MSE
∂ρ

= − 2

n

n∑
t=1

(yt − ŷt)yt−1. (4.16)

Derivative with respect to ϕ:
∂ŷt

∂ϕ̂
= εt−1, (4.17)

∂MSE
∂ϕ

= − 2

n

n∑
t=1

(yt − ŷt).εt−1 (4.18)

Final Update Equations

The final update equations for the ARMA(1,1) coefficients using gradient descent with L2 penalty

are:

ρ̂ = ρ− α

(
− 2

n

n∑
t=1

(yt − ŷt)yt−1 + 2ψρ

)
, (4.19)

ϕ̂ = ϕ− α

(
− 2

n

n∑
t=1

(yt − ŷt)εt−1 + 2ψϕ

)
. (4.20)

This approach allows the ARMA(1,1) model to be trained in a way that simultaneously

minimizes prediction error while constraining parameter magnitudes, thus enhancing

generalization and numerical stability.
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4.5 Description of the Monte Carlo Experiment for the ARMA(1,1) Model

This section outlines a Monte Carlo experiment conducted within the framework of the

ARMA(1,1) stochastic model, aiming to estimate important quantities required for the

implementation of corrections of the t and F statistical tests.

In cases where the model exhibits ARMA(1,1) disturbances, there are no closed-form

expressions available for some quantities necessary to apply the size corrections of the t and

F tests. For the t test, two approaches are considered: the Edgeworth expansion and the

Cornish-Fisher expansion, both under the normal and the Student-t distribution. Similarly, for

the F test, the same two expansions are applied under the χ2 and F distributions.

The lack of analytical expressions for some quantities involved in the size corrected t and F

tests necessitates the use of simulation based calculation of these quantities. To address this, a

Monte Carlo experiment was designed and implemented to provide reliable numerical estimates

of the required quantities that underpin the correction terms in each case.

The experiment consists of 10000 repetitions for each combination of the values of the model

parameters. Specifically, the values of the autoregression (AR) coefficient ρ and the moving

average (MA) coefficient ϕ range from −0.9 to 0.9 in steps of 0.1, thus covering the full spectrum

of parameter space. Also, four different sample sizes are considered: T = 15, 20, 30 and 50

observations.

This systematic approach enables the numerical estimation of the quantities µ, λ, Λ, and

other derived terms, whose existence is crucial for the application of the corrections arising from

asymptotic expansion theory. These estimates form the essential foundation for the analysis that

follows.

For each combination of the parameters ρ and ϕ, the innovation terms εt are independently

generated from a standard normal distribution N (0, 1), and the standard deviation σ is set to 1.

The underlying model is a generalized linear model with ARMA(1,1) residuals.

According to formula (3.4.7) from Box and Jenkins (1976), the variance of the initial value

of the process u0 is calculated as:

γ0 =
1 + ϕ2 + 2ρϕ

1− ρ2
σ2. (4.21)

Subsequently, the standard deviation is:

σu =
√
γ0. (4.22)
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Thus, the initial value u0 of the process is drawn from the normal distribution N (0, σu).

Then, for t = 1, 2, . . . , T stochastic process ut is then constructed recursively as follows:

ut = ρut−1 + εt + ϕεt−1. (4.23)

For t = 1, the observation is given by:

u1 = ρu0 + ε1 + ϕε0, (4.24)

where u0 ∼ N (0, σu), and ε0, ε1 ∼ N (0, 1). This specific form allows the representation of

both the autoregression component through the dependence on ut−1 and the moving average

component through the influence of εt and εt−1.

After generating the series ut, the estimated parameters ρ and ϕ are estimated using the

Maximum Likelihood Estimation (MLE) method. The initial estimates are further improved

through the Gradient Descent method, aiming to minimize the following loss function:

L(ρ, ϕ) = 1

n

n∑
t=1

(yt − ŷt)2 + ψ(ρ2 + ϕ2). (4.25)

This function includes the Mean Squared Error (MSE) and an L2 regularization term ψ,

which penalizes large parameter values. For the purposes of the present study, we set ψ = 1

is set, as suggested by a relevant study Di Gangi et al. (2022), according to which this value

provides a trade-off between convergence and stability.

The derivatives of the loss function with respect to the etsimated parameters are given by

the following formulas:

∂L
∂ρ

= − 2

n

∑
(yt − ŷt)yt−1 + 2ψρ, (4.26)

∂L
∂ϕ

= − 2

n

∑
(yt − ŷt)εt−1 + 2ψϕ. (4.27)

The estimated parameters are updated using the following rules:

ρ← ρ− α · ∂L
∂ρ
, ϕ← ϕ− α · ∂L

∂ϕ
, (4.28)

where α is the learning rate. Moreover, an early stopping criterion is applied if no improvement

of at least 0.01 in the loss is observed over five consecutive iterations.
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Only the parameter estimates that satisfy the stationarity and invertibility conditions are

retained, that is:

|ρ| < 1 and |ϕ| < 1. (4.29)

For all the valid estimates, the following statistical quantities are computed:

Here, ρ and ϕ denote the true values of the respective parameters, whereas ρ̂ and ϕ̂ denote

their corresponding estimates.

the normalized differences:

δρ = (ρ̂− ρ)
√
T , δϕ = (ϕ̂− ϕ)

√
T , (4.30)

the squared differences:

(δρ)
2, (δϕ)

2, (4.31)

the cross-product:

δρδϕ. (4.32)

The above procedure is repeated for k=10000 valid simulations to ensure statistical reliability.

For the resulting quantities, the following summary statistics are calculated:

the means:

τµρ =
1

k

∑
δρ, τµϕ =

1

k

∑
δϕ, (4.33)

the variances:

λρρ =
1

k

∑
(δρ)

2, λϕϕ =
1

k

∑
(δϕ)

2, (4.34)

the covariance:

λρϕ =
1

k

∑
δρδϕ. (4.35)

These quantities are necessary for the implementation of the Edgeworth and Cornish-Fisher

size corrections of the t and F tests, thereby improving the approximation of the true significance

levels in small-sample distributions.

4.5.1 Conclusion

This experimental study demonstrates that the combined use of the Maximum Likelihood

Estimation (MLE) method, the L2 regularization and the Gradient Descent algorithm, under

appropriate stationarity and invertibility constraints, leads to consistent and reliable estimates

of the asymptotic moments (expectations, variances and covariances) of the ARMA(1,1) model
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parameters. That are essential for the size correction of the t and F econometric tests. The

estimated quantities, µρ, µϕ, λρρ, λϕϕ, and λρϕ, provide a more accurate representation of the

behavior of the estimators in small samples. This enables the correction of the t and F tests

using the Edgeworth and Cornish-Fisher expansions. Thus, the Monte Carlo experiment serves

a dual purpose as both a parameter estimation tool and a foundation for more precise inference

procedures in finite samples.

4.6 Results

This section presents the results of an extensive simulation conducted to evaluate the behavior

of the model under different combinations of parameter values and sample sizes. Specifically, the

experiment consists of 10000 repetitions for every possible combination of the model’s parameter

values.

The parameters that change are the autoregressive coefficient (ρ) and the moving average

coefficient (ϕ), which take values from −0.9 to 0.9 with a step of 0.1, thus fully covering the

entire parameter space. In addition, the analysis is carried out for four different sample sizes:

T = 15, 20, 30, and 50 observations.

For each combination of values of ρ, ϕ, and T , the following statistical quantities are

computed:

• The mean values of the parameter estimates µρ and µϕ, which reflect the accuracy of the

estimators for the autoregressive and moving average parameters, respectively.

• The variances of the estimates λρρ and λϕϕ, which represent the variability of the estimators

for each parameter.

• The covariance between the estimators λρϕ, which indicates the interdependence of the

parameter estimates.

The results are summarized in Appendix E, where the calculated quantities are presented in

detail for every combination of parameter values and sample sizes. The simulation fully covers

the symmetric range of the parameters, that is, both positive and negative values.

Observing the mean values and variances enables the assessment of the consistency and

efficiency of the estimators as the sample size increases, while the covariance between the

estimates provides additional insight into their behavior under interdependent conditions.
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4.7 Sensitivity Analysis on the Number of Repetitions

In order to assess the robustness and stability of the quantities estimated via Monte Carlo

simulation, a sensitivity analysis was conducted with respect to the number of repetitions.

Initially, all quantities of interest—namely λρρ, λϕϕ, λρϕ, µρ, and µϕ—were computed using

10000 repetitions. Subsequently, the same experiment was repeated with reduced numbers of

repetitions, specifically 1000, 2500, and 5000, in order to examine the potential impact of the

number of repetition on the estimation accuracy.

The motivation behind this procedure was twofold. First, to validate whether a smaller

number of repetitions could yield results of comparable quality, thus significantly reducing

computational cost. Second, to ensure that the estimates of the parameters remain consistent

and unbiased across different number of repetition.

This assessment was carried out across all sample sizes considered in the study, specifically for

samples of 15, 20, 30, and 50 observations. However, to limit computational load, this extended

analysis was restricted to selected values of ρ and ϕ. More precisely, the sensitivity checks were

performed for ρ ∈ {±0.1, ±0.5, ±0.9} and symmetrically for ϕ ∈ {±0.1, ±0.5, ±0.9}. In the

bivariate case, we focused on combinations such as (ρ, ϕ) = (0.1,±0.1), (−0.1,±0.1), (0.5,±0.5),

(−0.5,±0.5), (0.9,±0.9), and (−0.9,±0.9).

The results for all combinations of ρ and ϕ are presented in tabular form. A comparative

inspection reveals that the differences between the estimates obtained with 10000 repetitions and

those with fewer repetitions are negligible. More precisely, the values of λρρ, λϕϕ, λρϕ, µρ, and

µϕ exhibit minimal variation across the different experiments, which indicates high numerical

stability and convergence of the estimation procedure.

These findings justify the use of a reduced number of repetitions in practical applications

where computational efficiency is critical, without compromising the reliability of the results.
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Table 4.1 Monte Carlo Estimates with 1000 Repetitions

1000 T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.1 0.1 -0.335 -0.313 0.324 0.220 0.053 -0.418 -0.347 0.440 0.264 0.075 -0.511 -0.420 0.587 0.393 0.088 -0.679 -0.503 0.867 0.587 0.115

0.1 -0.1 -0.328 0.358 0.340 0.259 -0.157 -0.401 0.437 0.458 0.352 -0.239 -0.484 0.514 0.585 0.509 -0.392 -0.639 0.643 0.886 0.846 -0.711

-0.1 0.1 0.450 -0.413 0.430 0.304 -0.224 0.503 -0.459 0.550 0.371 -0.294 0.603 -0.586 0.711 0.584 -0.495 0.777 -0.770 1.080 1.021 -0.896

-0.1 -0.1 0.459 0.256 0.419 0.196 0.089 0.512 0.296 0.506 0.244 0.088 0.582 0.334 0.630 0.359 0.074 0.668 0.405 0.799 0.568 0.045

0.5 0.5 -1.793 -1.374 3.390 1.991 2.406 -2.051 -1.636 4.391 2.772 3.288 -2.430 -2.105 6.052 4.522 5.042 -3.093 -2.845 9.682 8.173 8.733

0.5 -0.5 -1.879 1.884 3.770 3.693 -3.580 -2.172 2.206 5.017 5.041 -4.861 -2.665 2.674 7.441 7.405 -7.271 -3.459 3.443 12.453 12.276 -12.201

-0.5 0.5 2.017 -1.944 4.294 3.928 -3.956 2.296 -2.222 5.568 5.123 -5.167 2.783 -2.731 8.092 7.711 -7.736 3.607 -3.590 13.485 13.332 -13.247

-0.5 -0.5 1.691 1.375 3.073 1.984 2.270 1.924 1.655 3.934 2.835 3.118 2.302 2.105 5.489 4.530 4.775 2.987 2.839 9.064 8.153 8.419

0.9 0.9 -2.809 -2.187 9.064 5.157 6.113 -3.245 -2.686 11.643 7.616 8.590 -3.941 -3.603 16.561 13.353 13.957 -5.205 -4.986 27.862 25.261 25.625

0.9 -0.9 -3.434 3.346 12.041 11.365 -11.541 -4.013 3.890 16.404 15.340 -15.679 -4.923 4.673 24.561 22.166 -23.138 -6.372 6.071 41.008 37.359 -38.939

-0.9 0.9 3.517 -3.047 12.574 9.606 -10.722 4.068 -3.543 16.793 12.887 -14.455 4.972 -4.467 25.018 20.458 -22.316 6.380 -5.974 41.113 36.352 -38.393

-0.9 -0.9 2.683 2.271 8.246 5.590 5.936 3.113 2.761 10.858 8.088 8.382 3.857 3.667 15.956 13.893 13.795 5.095 5.038 26.841 25.898 25.21846
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Table 4.2 Monte Carlo Estimates with 2500 Repetitions

2500 T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.1 0.1 -0.349 -0.312 0.341 0.218 0.060 -0.415 -0.351 0.425 0.271 0.072 -0.506 -0.435 0.552 0.418 0.086 -0.653 -0.519 0.805 0.612 0.114

0.1 -0.1 -0.329 0.352 0.341 0.254 -0.157 -0.383 0.426 0.425 0.350 -0.234 -0.505 0.521 0.585 0.531 -0.409 -0.663 0.663 0.903 0.872 -0.735

-0.1 0.1 0.449 -0.419 0.433 0.305 -0.228 0.516 -0.469 0.542 0.388 -0.314 0.583 -0.578 0.667 0.594 -0.482 0.752 -0.754 1.030 1.000 -0.861

-0.1 -0.1 0.458 0.256 0.418 0.200 0.090 0.507 0.292 0.490 0.255 0.085 0.536 0.358 0.572 0.389 0.070 0.629 0.438 0.755 0.588 0.046

0.5 0.5 -1.808 -1.366 3.441 1.967 2.412 -2.037 -1.647 4.318 2.805 3.292 -2.417 -2.121 5.980 4.586 5.056 -3.079 -2.850 9.601 8.203 8.707

0.5 -0.5 -1.889 1.877 3.808 3.668 -3.586 -2.176 2.193 5.017 4.987 -4.844 -2.690 2.679 7.556 7.440 -7.349 -3.489 3.467 12.645 12.455 -12.392

-0.5 0.5 2.010 -1.942 4.272 3.915 -3.943 2.307 -2.231 5.597 5.169 -5.219 2.773 -2.732 8.013 7.741 -7.716 3.579 -3.566 13.273 13.158 -13.058

-0.5 -0.5 1.711 1.378 3.148 1.993 2.299 1.915 1.657 3.881 2.842 3.106 2.294 2.113 5.441 4.559 4.787 2.968 2.851 8.948 8.219 8.401

0.9 0.9 -2.837 -2.167 9.189 5.068 6.116 -3.218 -2.696 11.535 7.641 8.582 -3.930 -3.608 16.465 13.404 13.942 -5.187 -4.969 27.702 25.117 25.436

0.9 -0.9 -3.456 3.351 12.207 11.395 -11.630 -4.009 3.860 16.357 15.117 -15.537 -4.929 4.685 24.598 22.284 -23.222 -6.363 6.072 40.890 37.383 -38.898

-0.9 0.9 3.527 -3.037 12.650 9.547 -10.708 4.064 -3.530 16.757 12.840 -14.382 4.948 -4.445 24.755 20.272 -22.090 6.339 -5.925 40.583 35.768 -37.831

-0.9 -0.9 2.725 2.279 8.448 5.633 6.055 3.116 2.785 10.876 8.217 8.448 3.830 3.673 15.725 13.954 13.749 5.059 5.063 26.465 26.138 25.18047



C
hapter4:

C
om

putationalTechniques
forE

stim
ating

N
on-C

losed
Form

Q
uantities

in
A

R
M

A
M

odels

Table 4.3 Monte Carlo Estimates with 5000 Repetitions

5000 T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.1 0.1 -0.350 -0.320 0.337 0.227 0.065 -0.405 -0.365 0.409 0.293 0.073 -0.497 -0.434 0.542 0.420 0.084 -0.651 -0.514 0.797 0.601 0.111

0.1 -0.1 -0.329 0.359 0.331 0.264 -0.158 -0.387 0.419 0.415 0.357 -0.232 -0.498 0.519 0.574 0.536 -0.405 -0.682 0.676 0.933 0.869 -0.753

-0.1 0.1 0.445 -0.412 0.420 0.305 -0.223 0.510 -0.474 0.524 0.408 -0.312 0.594 -0.579 0.678 0.600 -0.490 0.731 -0.739 1.000 0.959 -0.832

-0.1 -0.1 0.445 0.261 0.400 0.206 0.087 0.487 0.301 0.471 0.275 0.087 0.536 0.353 0.576 0.391 0.071 0.647 0.433 0.794 0.573 0.049

0.5 0.5 -1.794 -1.376 3.388 1.999 2.411 -2.023 -1.648 4.258 2.809 3.270 -2.424 -2.115 6.017 4.566 5.058 -3.076 -2.844 9.578 8.167 8.677

0.5 -0.5 -1.885 1.885 3.783 3.701 -3.595 -2.180 2.188 5.024 4.981 -4.840 -2.690 2.685 7.562 7.478 -7.369 -3.509 3.484 12.780 12.554 -12.516

-0.5 0.5 2.008 -1.935 4.252 3.899 -3.924 2.307 -2.236 5.584 5.201 -5.227 2.786 -2.744 8.085 7.809 -7.786 3.560 -3.551 13.138 13.030 -12.932

-0.5 -0.5 1.698 1.388 3.105 2.020 2.303 1.905 1.662 3.843 2.858 3.105 2.286 2.117 5.402 4.572 4.778 2.972 2.848 8.970 8.206 8.407

0.9 0.9 -2.816 -2.176 9.109 5.107 6.097 -3.190 -2.697 11.403 7.662 8.483 -3.938 -3.592 16.567 13.300 13.910 -5.196 -4.965 27.794 25.083 25.441

0.9 -0.9 -3.456 3.355 12.193 11.424 -11.639 -4.013 3.857 16.387 15.113 -15.548 -4.930 4.690 24.608 22.338 -23.252 -6.364 6.077 40.898 37.431 -38.938

-0.9 0.9 3.526 -3.037 12.640 9.549 -10.709 4.059 -3.538 16.709 12.907 -14.388 4.942 -4.446 24.704 20.262 -22.077 6.334 -5.927 40.530 35.766 -37.818

-0.9 -0.9 2.702 2.286 8.378 5.664 6.033 3.096 2.792 10.749 8.252 8.419 3.821 3.677 15.679 13.989 13.722 5.062 5.073 26.506 26.224 25.24248
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Table 4.4 Monte Carlo Estimates with 10000 Repetitions

10000 T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.1 0.1 -0.349 -0.315 0.337 0.222 0.062 -0.412 -0.363 0.414 0.294 0.074 -0.514 -0.421 0.549 0.402 0.086 -0.652 -0.510 0.797 0.602 0.105

0.1 -0.1 -0.326 0.363 0.334 0.268 -0.158 -0.392 0.423 0.423 0.357 -0.236 -0.504 0.520 0.584 0.526 -0.408 -0.680 0.677 0.932 0.872 -0.752

-0.1 0.1 0.450 -0.410 0.430 0.304 -0.224 0.505 -0.470 0.525 0.401 -0.308 0.589 -0.577 0.676 0.587 -0.486 0.732 -0.737 1.004 0.956 -0.830

-0.1 -0.1 0.446 0.264 0.407 0.212 0.091 0.487 0.302 0.478 0.272 0.088 0.541 0.353 0.581 0.386 0.070 0.653 0.430 0.805 0.576 0.048

0.5 0.5 -1.795 -1.371 3.397 1.987 2.403 -2.029 -1.645 4.281 2.802 3.273 -2.420 -2.109 5.995 4.537 5.036 -3.080 -2.840 9.602 8.145 8.678

0.5 -0.5 -1.877 1.888 3.757 3.713 -3.583 -2.186 2.192 5.053 4.991 -4.861 -2.698 2.690 7.610 7.498 -7.404 -3.509 3.487 12.781 12.578 -12.525

-0.5 0.5 2.007 -1.932 4.255 3.886 -3.915 2.300 -2.234 5.558 5.185 -5.206 2.783 -2.743 8.076 7.796 -7.780 3.560 -3.547 13.140 13.007 -12.920

-0.5 -0.5 1.694 1.389 3.094 2.025 2.297 1.909 1.660 3.862 2.850 3.109 2.288 2.116 5.412 4.567 4.783 2.969 2.851 8.949 8.221 8.407

0.9 0.9 -2.820 -2.158 9.129 5.053 6.057 -3.203 -2.689 11.469 7.633 8.483 -3.946 -3.584 16.654 13.253 13.897 -5.193 -4.966 27.779 25.092 25.428

0.9 -0.9 -3.452 3.362 12.174 11.471 -11.651 -4.018 3.861 16.425 15.133 -15.577 -4.939 4.700 24.701 22.426 -23.348 -6.370 6.082 40.986 37.506 -39.014

-0.9 0.9 3.529 -3.041 12.663 9.568 -10.733 4.065 -3.540 16.757 12.917 -14.422 4.932 -4.445 24.611 20.235 -22.028 6.334 -5.930 40.527 35.798 -37.833

-0.9 -0.9 2.712 2.282 8.430 5.647 6.041 3.104 2.798 10.798 8.277 8.452 3.829 3.687 15.755 14.051 13.789 5.064 5.068 26.509 26.165 25.24349





Chapter 5

Implementation and Evaluation of Corrected Statistical Tests through Monte Carlo

Simulation

5.1 Description of Monte Carlo Simulation

In the present chapter, we present the Monte Carlo experiment implemented with the aim of

investigating the performance of various corrections of the t and F tests in the case of the linear

model whose disturbance term follows the ARMA(1,1) model is presented.

The purpose of the analysis is the comparison of the classical tests with the corrected tests,

based on the Cornish-Fisher and Edgeworth approximations under the assumptions of normal,

Student-t, χ2 and F distributions for significance levels 1%, 5%, and 10%, as well as for sample

sizes of 15 and 30 observations.

The experiment was designed to cover combinations of the parameters of the ARMA(1, 1)

model, namely ρ and ϕ, as well as the correlation coefficient between any two different explanatory

variables, denoted by A. Each combination of the parameters ρ, ϕ and A corresponds to a point

in the experimental space.

For this purpose, we selected four values for the autoregressive (AR) coefficient, ρ =

±0.5,±0.9, four values for the moving average (MA) coefficient, ϕ = ±0.5,±0.9 and one value

for the coefficient indicating the intensity of multicollinearity A = 0.5.

Next, we create 50 independent observations for the four independent N(0, 1) pseudo-random

numbers zt1, zt2, zt3 and zt4 (t = 1, 2, ..., 50). Using formula (3.1) from the McDonald and

Galarneau (1975) we construct the elements xtj of the matrix of explanatory variables X, using

the following relations:

xt1 = 1 (t = 1, 2, ..., 50) (5.1)

xt2 = (1− α2)1/2zt2 + αzt1 (t = 1, 2, ..., 50) (5.2)

xt3 = (1− α2)1/2zt3 + αzt1 (t = 1, 2, ..., 50) (5.3)

xt4 = (1− α2)1/2zt4 + αzt1 (t = 1, 2, ..., 50) (5.4)
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According to formula (3.4.7) in Box and Jenkins (1976), the variance of the initial value of

the process u0 is calculated as in Appendix D

σ2u = γ0 =
σ2ϵ (1 + ϕ2 + 2ρϕ)

1− ρ2
, (5.5)

where σ2ε is the variance of the white noise ϵt, which has been set equal to unity.

And the standard deviation is:

σu =
√
γ0. (5.6)

These relations arise from the statistical properties of the autocorrelation function of the

ARMA(1, 1) process; the analytical derivation of these relations is given in Appendix E.

The described procedure completes the generation of the data used in the simulation.

Using the matrix of explanatory variables and 10000 different vectors of the dependent

variable, which we created for each of the 32 points of the experimental space, we performed

at each experimental point 10000 repetitions of the process described below.

For each of the 10000 repetitions, the generation of the time series of the disturbance term

ut, which follows the stochastic process ARMA(1,1), is implemented. This process depends on

three main parameters: the autoregressive coefficient ρ, the moving average coefficient ϕ, as well

as the stochastic disturbances εt that follow a normal distribution with zero mean and variance

equal to unity.

Initially, we define the vector εt where εt ∼ N(0, σ2), which is used to create the stochastic

process. The initial value of the error ε0 is a random number generated from the normal

distribution, while the initial value of the disturbance term u0 is generated as a random value

from the normal distribution with zero mean and standard deviation σu, which has already been

calculated from the theoretical variance of the process (see (5.5) and (5.6)).

The first value of the time series ut, where u ∼ N(0, σ2Ω(ρ, ϕ)), i.e. u1, is calculated based

on the relation:

u1 = ρu0 + ε1 + ϕϵ0. (5.7)

This relation incorporates the autoregressive via the term ρu0, as well as the influence of both

the current disturbance ε1 and the previous ε0, through the term ϕε0.

Subsequently, the remaining values of the time series ut are calculated recursively for each

time t = 2, 3, . . . , T , according to the general form of the process:

ut = ρut−1 + εt + ϕεt−1. (5.8)
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In this way, each new value of ut depends both on the previous value of the series itself, as

well as on the current and previous values of the stochastic disturbances. This process naturally

incorporates the dependence structure characterizing the ARMA(1,1) model, ensuring that the

simulated series ut has the desired stochastic properties.

Knowing the vector u, we create the vector of the dependent variable, y, with elements yt,

using the relation

yt = β1 + β2xt2 + β3xt3 + β4xt4 + σut, ut = ARMA(1, 1) (5.9)

where β1, β2, β3, β4 are the parameters to be estimated. To simplify the calculations, we set

β1 = 0, β2 = 0, β3 = 0, β4 = 0 and get the relation

yt = σut, (5.10)

from which we calculate the elements of the vectors y of the dependent variable of the experiment

given the matrix of exogenous variables.

Each vector of the dependent variable was regressed using the ordinary least squares (OLS)

method on the matrix of explanatory variables and we extracted the residuals.

Subsequently, using the OLS residuals, we estimated the parameters of the ARMA(1,1) model

via the Maximum Likelihood Estimation (MLE) method.

As we have analyzed in previous sections, although the theory states that the coefficients in

absolute value should be less than unity, in practice at extreme parameter values, problems arise

that affect the estimates.

For this reason, it is necessary to apply the L2 Regularization and Gradient Descent methods

in order to adjust the estimated coefficient ρ and ϕ.

The initial estimates are further improved through the Gradient Descent method, aiming to

minimize the following loss function:

L(ρ, ϕ) = 1

n

n∑
t=1

(yt − ŷt)2 + ψ(ρ2 + ϕ2). (5.11)

The above function includes the Mean Squared Error (MSE) and an L2 regularization term

ψ, which penalizes large parameter values. For the purposes of the present study, is set equal

to unity, as suggested by a relevant study Di Gangi et al. (2022), according to which this value

provides a trade-off between convergence and stability.

The derivatives of the loss function with respect to the estimated parameters are given by

the following formulas:
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∂L
∂ρ

= − 2

n

∑
(yt − ŷt)yt−1 + 2ψρ, (5.12)

∂L
∂ϕ

= − 2

n

∑
(yt − ŷt)εt−1 + 2ψϕ. (5.13)

The estimated parameters are updated using the following rules:

ρ← ρ− α · ∂L
∂ρ
, ϕ← ϕ− α · ∂L

∂ϕ
, (5.14)

where α is the learning rate. Moreover, an early stopping criterion is applied if no

improvement of at least 0.01 in the loss is observed over five consecutive iterations.

Only the parameter estimates that satisfy the stationarity and invertibility conditions are

retained, that is:

|ρ| < 1 and |ϕ| < 1. (5.15)

In the next stage of the analysis, the matrix Ω is calculated, which expresses the

variance-covariance structure of the disturbance terms of the stochastic process. This matrix

constitutes a critical tool for the application of the Feasible Generalized Least Squares (FGLS)

method, as it allows the adjustment of the linear model in cases of ARMA(1,1) disturbances.

The elements of Ω include both the diagonal (variances) and the non-diagonal (covariances)

values, and are determined based on the formulas proposed by Tiao and Ali (1971) for ARMA(1,1)

processes. The general form of these elements depends on the estimated parameters ρ and ϕ of

the stochastic ARMA(1,1) model.

Specifically, the diagonal elements are calculated according to the equation

ωtt =
1

D

[
(1 + ρϕ)2(1 + ρ2 + 2ρϕ)

+(ϕ+ ρ)2 {(ϕ+ ρ) + ρ(1 + ρϕ)}ϕ2T−1

−(ϕ+ ρ)2(1 + ρϕ)2
{
ϕ2(t−1) + ϕ2(T−t)

}]
, (5.16)

while the non-diagonal elements (for t ̸= t′) are given by
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ωtt′ =
1

D

[
− (ϕ+ ρ)(1 + ρϕ)3(−ϕ)|t−t′|−1

−(ϕ+ ρ)3(1 + ρϕ)(−ϕ)2T−|t−t′|−1

−(ϕ+ ρ)2(1 + ρϕ)2
{
(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)

}]
. (5.17)

The above formulas allow the numerical computation of all elements of the matrix Ω, which

is assembled symmetrically. For a complete mathematical analysis of the above formulas, you

may refer to Appendix A.

Subsequently, Ω is used for estimating the parameter β by the FGLS method as

β̂ =

(
1

T
X⊤ΩX

)−1 1

T
X⊤Ωy, (5.18)

and the parameter σ2 as

σ̂2 =
(y − ŷ)⊤Ω(y − ŷ)

T − k
. (5.19)

Finally, the estimated variance of the estimator β̂ is

V̂ar(β̂) =
σ̂2

T

(
1

T
X⊤ΩX

)−1

. (5.20)

Based on the diagonal elements of this matrix, the t statistic for each coefficient is derived as

tFGLS
j =

β̂j√
V̂ar(β̂j)

, j = 1, 2, 3, 4. (5.21)

Next, the first- and second-order derivatives of the elements of the matrix Ω with respect to

the estimated parameters ρ and ϕ are calculated, according to the following formulas:

We define ωtt as follows:

ωtt = D−1N, (5.22)

where

D = [(1 + ρϕ)2 − (ρ+ ϕ)2ϕ2T ][1− ϕ2] (5.23)

and
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N = (1 + ρϕ)2(1 + ρ2 + 2ρϕ) + (ϕ+ ρ)2 {(ϕ+ ρ) + ρ(1 + ρϕ)}ϕ2T−1

−(ϕ+ ρ)2(1 + ρϕ)2
{
ϕ2(t−1) + ϕ2(T−t)

}
. (5.24)

We define ωtt′ as follows:

ωtt′ = D−1N∗, (5.25)

where

N∗ = −(ϕ+ ρ)(1 + ρϕ)3(−ϕ)|t−t′|−1 − (ϕ+ ρ)3(1 + ρϕ)(−ϕ)2T−|t−t′|−1

−(ϕ+ ρ)2(1 + ρϕ)2
{
(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)

}
. (5.26)

Equations (B.1) and (B.4) in Appendix B imply that

ωtt =
N

D
,

ωtt′ =
N∗
D
. (5.27)

Then,

∂ωtt

∂ρ
=

∂

∂ρ

(
N

D

)
=
DNρ −NDρ

D2
, (5.28)

∂2ωtt

∂ρ2
=

∂

∂ρ

{
DNρ −NDρ

D2

}
=

D2(DρNρ +DNρρ −NρDρ −NDρρ)− (DNρ −NDρ)2DρD

D4

=
D2(DNρρ −NDρρ)− (DNρD

2
ρ −NDρD

2
ρ)

D4
. (5.29)

Similarly,

∂ωtt

∂ϕ
=
DNϕ −NDϕ

D2
, (5.30)
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∂2ωtt

∂ϕ2
=
D2(DNϕϕ −NDϕϕ)− (2D2NϕDϕ − 2DNDϕDϕ)

D4
, (5.31)

∂2ωtt

∂ρ∂ϕ
=

∂

∂ϕ

{
DNρ −NDρ

D2

}
=

D2(DϕNρ +DNρϕ −NϕDρ −NDρϕ)− (DNρ −NDρ)2DDϕ

D4
, (5.32)

∂2ωtt

∂ϕ∂ρ
=

∂

∂ρ

{
DNϕ −NDϕ

D2

}
=

D2(DρNϕ +DNϕρ −NρDϕ −NDϕρ)− (DNϕ −NDϕ)2DDρ

D4
. (5.33)

Also,

∂ωtt′

∂ρ
=

∂

∂ρ

(
N∗
D

)
=
DN∗ρ −N∗Dρ

D2
, (5.34)

∂2ωtt′

∂ρ2
=

∂

∂ρ

{
DN∗ρ −N∗Dρ

D2

}
=

D2(DρN∗ρ +DN∗ρρ −N∗ρDρ −N∗Dρρ)− (DN∗ρ −N∗Dρ)2DDρ

D4

=
D2(DN∗ρρ −N∗Dρρ)− (DN∗ρD

2
ρ − 2DN∗DρD

2
ρ)

D4
. (5.35)

Similarly,

∂ωtt′

∂ϕ
=
DN∗ϕ −N∗Dϕ

D2
, (5.36)

∂2ωtt′

∂ϕ2
=
D2(DN∗ϕϕ −N∗Dϕϕ)− (2D2N∗ϕDϕ − 2DN∗DϕDϕ)

D4
, (5.37)

∂2ωtt′

∂ρ∂ϕ
=

∂

∂ϕ

{
DN∗ρ −N∗Dρ

D2

}
=

D2(DϕN∗ρ +DN∗ρϕ −N∗ϕDρ −N∗Dρϕ)− (DN∗ρ −N∗Dρ)2DDϕ

D4
, (5.38)
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∂2ωtt′

∂ϕ∂ρ
=

∂

∂ρ

{
DN∗ϕ −N∗Dϕ

D2

}
=

D2(DρN∗ϕ +DN∗ϕρ −N∗ρDϕ −N∗Dϕρ)− (DN∗ϕ −N∗Dϕ)2DDρ

D4
. (5.39)

All these derivatives have been calculated analytically in Appendix D.

Using these elements, we define the matrices Ωρ,Ωϕ,Ωρρ,Ωϕϕ,Ωρϕ and Ωϕρ.

For the t test, we considered four hypotheses of the form (3.15), i.e.

β1 = 0, β2 = 0, β3 = 0, β4 = 0 (5.40)

Now, having now all the necessary elements, we calculate the following quantities which are

essential for the formulas of the corrections.

From formula (3.10), we have

Aρ = X ′ΩρX/T

Aϕ = X ′ΩϕX/T

Aρρ = X ′ΩρρX/T

Aϕϕ = X ′ΩϕϕX/T

Aρϕ = X ′ΩρϕX/T

Aϕρ = X ′ΩϕρX/T

A∗
ρρ = X ′ΩρΩ

−1ΩρX/T

A∗
ϕϕ = X ′ΩϕΩ

−1ΩϕX/T

A∗
ρϕ = X ′ΩρΩ

−1ΩϕX/T

A∗
ϕρ = X ′ΩϕΩ

−1ΩρX/T

(5.41)

For each βi = (i = 1, 2, 3, 4), using formulas (3.17), (3.18) and (3.19) we calculate the elements

of

l =

lρ
lϕ

 , L =

Lρρ Lρϕ

Lϕρ Lϕϕ

 , (5.42)

as follows:

lρ = e′GAρGe/e
′Ge

lϕ = e′GAϕGe/e
′Ge

lρρ = e′GCρρGe/e
′Ge

lϕϕ = e′GCϕϕGe/e
′Ge

lρϕ = e′GCρϕGe/e
′Ge

lϕρ = e′GCϕρGe/e
′Ge

(5.43)

where

G = (X ′ΩX/T )−1 (5.44)

and
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Cρρ = A∗
ρρ − 2AρGAρ +Aρρ/2 (5.45)

Cϕϕ = A∗
ϕϕ − 2AϕGAϕ +Aϕϕ/2 (5.46)

Cρϕ = A∗
ρϕ − 2AρGAϕ +Aρϕ/2 (5.47)

Cϕρ = A∗
ϕρ − 2AϕGAρ +Aϕρ/2 (5.48)

For the F test, we considered a hypothesis of the form (3.28), i.e.

Hβ = h, H =


0 1 0 0

0 0 1 0

0 0 0 1

 , h =


0

0

0

 (5.49)

Next, using formulas (3.29) and (3.36) we compute the Wald statistic:

w = (Hβ̂ − h)′[H(X ′Ω̂X)−1H ′]−1(Hβ̂ − h)/σ̂2 (5.50)

and the F statistic

v = (Hβ̂ − h)′[H(X ′Ω̂X)−1H ′]−1(Hβ̂ − h)/rσ̂2. (5.51)

Then we compute all quantities necessary for the correction formulas using formulas (3.30),

(3.31) and (3.32), i.e.

P = GQG, Q = H ′(HGH ′)−1H (5.52)

and

c =

cρ
cϕ

 , C =

cρρ cρϕ

cϕρ cϕϕ

 , D =

dρρ dρϕ

dϕρ dϕϕ

 , (5.53)

where

cρ = tr(AρP )

cϕ = tr(AϕP )

cρρ = tr(CρρP )

cϕϕ = tr(CϕϕP )

cρϕ = tr(CρϕP )

cϕρ = tr(CϕρP )

dρρ = [(trDρρP )

dϕϕ = [(trDϕϕP )

dρϕ = [(trDρϕP )

dϕρ = [(trDϕρP )

Dρρ = AρPAρ/2

Dϕϕ = AϕPAϕ/2

Dρϕ = AρPAϕ/2

Dϕρ = AϕPAρ/2

(5.54)
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According to Breusch (1980), the constant λ0 takes the value 2. Then we compute the

following:

τ = 1/
√
T , (5.55)

δ0 =
σ̂2 − σ2

τσ2
where σ̂2 = (y −Xβ̂)′Ω̂(y −Xβ̂)/(T − n) and σ2 = 1. (5.56)

Next, using all these as inputs, we conduct the internal experiment exactly as described in

the previous chapter, additionally computing the quantities λ0ρ and λ0ϕ, which are defined by

the following expressions:

λ0ρ = E(δ0δρ), λ0ϕ = E(δ0δϕ). (5.57)

This time, however, the internal experiment will be performed using 1000 repetitions instead

of 10000, since we have shown in the previous chapter that the difference in the results is

negligible.

Once the internal experiment has been completed and all necessary results obtained, we

calculate µ0 with the following formula (see Appendix C):

µ0 =
1

2

tr(u′Ωρρu)

T
δρδρ +

1

2

tr(u′Ωϕϕu)

T
δϕδϕ +

tr(u′Ωρϕu)

T
δρδϕ. (5.58)

Next, using the values of the statistics and the density functions of the normal, Student-t,

χ2 and F distributions, we calculated the corresponding significance levels (p-values). More

specifically, we computed the significance levels of the usual t statistic under the assumption

that it follows the Student-t or the normal distribution, and the significance levels of the usual

χ2 and F distributions, respectively. Additionally, we computed the significance levels of the

locally exact Cornish-Fisher corrected t and F statistics under the assumption that they follow

the Student-t and F distributions, respectively. It is worth noticing that the Cornish-Fisher

corrected F statistic (3.39) can assume negative values, which indicates overcorrection, a topic

that will be analyzed further below.

The procedure described in this chapter was repeated 10000 times for each of the 32 points

of the experimental space.
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5.2 Results

The results of the experiment are presented in Tables 5.1 through 5.18. The experiment was

conducted for all combinations of parameter values ρ = ±0.5, ±0.9 and ϕ = ±0.5, ±0.9.

For a sample of 15 observations, Tables 5.1–5.8 report the null rejection probabilities of the

alternative forms of the t-statistic examined in this dissertation for testing null hypotheses of the

form βj = 0 against one-sided alternatives of the form βj > 0 or βj < 0, for j = 1, 2, 3, 4. Each

table presents the null rejection probabilities at significance levels of 1%, 5%, and 10%.

For each significance level, the null rejection probabilities were computed for the following:

• the t-test based on the standard normal distribution (N),

• the Edgeworth correction of the critical values of the normal distribution (NE),

• the corresponding Cornish-Fisher corrected statistic (NCF),

• the t-test based on the Student-t distribution (T),

• the Edgeworth correction of the critical values of the Student-t distribution (TE),

• and the corresponding Cornish-Fisher corrected statistic (TCF).

Table 5.9 presents, also for a sample of 15 observations, the actual size null rejection

probabilities of the χ2 and F statistics examined in this dissertation for testing the null hypothesis

β2 = β3 = β4 = 0 against the alternative that at least one of them differs from zero. The table

includes the null rejection probabilities for significance levels of 1%, 5%, and 10%. Specifically,

it reports:

• the results of the Wald statistic based on the χ2 distribution (X2),

• the Edgeworth correction of the critical values of the χ2 distribution (X2E),

• the corresponding Cornish-Fisher corrected statistic (X2CF),

• the results of the F statistic based on the F distribution (F),

• the Edgeworth correction of the critical values of the F distribution (FE),

• and the corresponding Cornish-Fisher corrected statistic (FCF).

Corresponding results for a sample of 30 observations are presented in Tables 5.10–5.17 for

the t-statistics and in Table 5.18 for the Wald and F statistics.
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Table 5.1 Hypothesis test results for H0 : β1 = 0, using a sample size of 15 and showing the Positive t-statistics

POSITIVE t-STATISTICS
Sample size: T=15
H0 : β1

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 1.63 2.84 5.07 0.59 2.64 4.56 8.87 5.68 7.82 6.28 4.98 7.53 16.71 11.42 12.82 14.93 10.70 12.64
-0.5 1.82 1.78 2.50 0.60 1.59 2.17 9.50 5.77 5.92 6.68 5.08 5.67 17.49 12.86 12.36 15.44 12.16 12.40
0.5 3.44 2.54 1.84 1.69 1.93 1.73 10.28 9.16 8.59 8.15 8.52 8.22 17.02 16.39 16.20 15.20 15.84 15.78
0.9 2.94 2.25 1.61 1.48 1.72 1.47 8.55 7.58 7.26 6.76 7.14 7.01 14.55 13.93 13.83 13.04 13.59 13.54

-0.5

-0.9 1.36 1.31 1.79 0.61 1.11 1.66 5.43 4.61 4.81 4.07 4.18 4.73 9.77 9.87 10.39 8.72 9.50 10.04
-0.5 1.40 1.13 1.03 0.63 0.87 0.90 5.04 4.57 4.52 3.82 4.17 4.21 9.91 9.76 9.89 8.67 9.38 9.47
0.5 2.13 1.46 1.14 0.97 1.13 1.07 6.65 5.78 5.60 5.25 5.42 5.39 11.73 11.23 11.20 10.47 10.84 10.79
0.9 2.16 1.54 0.83 1.14 1.12 0.95 6.60 5.79 5.44 5.43 5.35 5.21 11.44 10.79 10.61 10.16 10.38 10.30

0.5

-0.9 0.43 0.37 0.29 0.16 0.31 0.25 2.21 1.98 1.90 1.58 1.77 1.74 5.51 5.24 5.21 4.56 4.95 4.87
-0.5 2.38 1.59 1.22 1.18 1.31 1.23 6.58 5.91 5.73 5.33 5.54 5.50 11.43 10.80 10.78 10.07 10.48 10.47
0.5 9.81 9.18 5.37 7.02 7.92 6.07 17.38 16.50 14.28 15.42 15.99 14.84 22.93 22.48 21.26 21.78 22.19 21.43
0.9 10.22 12.72 9.18 7.32 11.76 9.15 17.62 19.20 16.73 15.81 18.66 16.95 22.85 23.76 22.10 21.56 23.45 22.39

0.9

-0.9 15.94 13.80 9.43 12.37 11.97 10.91 23.77 22.63 20.87 21.80 21.98 21.17 28.69 28.12 27.04 27.41 27.71 27.09
-0.5 23.31 21.21 13.85 20.06 19.77 15.86 29.68 28.50 24.99 28.15 27.99 24.77 33.47 32.93 30.71 32.59 32.69 29.82
0.5 29.66 32.67 28.56 26.90 31.54 27.14 34.78 36.00 33.31 33.64 35.60 32.16 37.49 38.15 36.34 36.85 37.97 35.02
0.9 30.57 35.93 33.23 27.68 35.13 31.88 35.79 38.25 36.43 34.62 37.83 35.49 38.58 39.84 38.69 37.89 39.69 37.69
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Table 5.2 Hypothesis test results for H0 : β1 = 0, using a sample size of 15 and showing the Negative t-statistics

NEGATIVE t-STATISTICS
Sample size: T=15
H0 : β1

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 1.60 2.85 5.13 0.62 2.56 4.67 8.13 5.33 7.76 5.78 4.77 7.31 16.10 10.62 12.59 14.12 9.96 12.45
-0.5 1.68 2.04 2.62 0.64 1.90 2.29 9.41 5.75 5.94 6.68 5.08 5.82 17.60 13.05 12.56 15.72 12.22 12.54
0.5 3.29 2.38 1.67 1.60 1.81 1.60 10.13 8.88 8.33 8.01 8.25 8.02 16.59 15.82 15.50 14.75 15.23 15.07
0.9 2.82 2.18 1.71 1.46 1.74 1.55 8.61 7.70 7.36 6.91 7.31 7.19 13.76 13.24 13.16 12.30 12.81 12.78

-0.5

-0.9 1.38 1.13 1.71 0.62 0.89 1.54 5.20 4.64 4.94 3.97 4.17 4.75 9.74 9.73 10.14 8.44 9.27 9.76
-0.5 1.28 0.99 1.06 0.48 0.77 0.98 4.80 4.38 4.48 3.59 4.11 4.34 9.35 9.45 9.56 8.14 9.02 9.18
0.5 2.06 1.46 1.10 0.96 1.15 1.11 6.39 5.57 5.37 5.03 5.21 5.14 11.41 10.73 10.72 10.07 10.32 10.31
0.9 1.99 1.29 0.78 0.96 0.99 0.83 6.28 5.33 5.05 4.91 5.04 4.96 11.27 10.68 10.56 9.92 10.35 10.30

0.5

-0.9 0.53 0.40 0.39 0.15 0.30 0.30 2.56 2.22 2.21 1.72 2.08 2.06 5.83 5.57 5.59 4.88 5.32 5.33
-0.5 2.64 1.83 1.48 1.29 1.55 1.47 6.98 6.21 6.04 5.57 5.78 5.74 12.19 11.69 11.66 11.02 11.47 11.41
0.5 10.73 9.92 5.69 7.67 8.40 6.49 18.70 17.89 15.03 16.76 17.28 15.74 23.87 23.25 21.72 22.43 22.88 21.96
0.9 10.45 13.13 9.23 7.57 11.97 9.17 18.20 19.50 16.95 16.21 18.97 17.19 23.44 24.07 22.48 22.17 23.77 22.54

0.9

-0.9 18.41 15.60 10.72 14.09 13.79 12.43 26.41 25.20 23.37 24.45 24.75 23.85 31.39 30.90 29.72 30.23 30.56 29.89
-0.5 26.30 24.17 14.94 23.03 22.30 17.53 33.21 32.07 27.07 31.44 31.47 27.43 36.91 36.54 33.14 36.09 36.21 32.47
0.5 30.94 34.17 29.41 28.18 33.20 27.78 36.42 37.73 34.24 35.30 37.31 32.94 39.41 39.92 37.15 38.71 39.77 35.72
0.9 30.88 36.08 33.23 28.14 35.28 31.79 36.14 38.55 36.57 35.18 38.21 35.45 38.71 40.24 38.72 38.12 40.05 37.63
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Table 5.3 Hypothesis test results for H0 : β2 = 0, using a sample size of 15 and showing the Positive t-statistics

POSITIVE t-STATISTICS
Sample size: T=15
H0 : β2

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 6.26 5.99 6.78 4.29 4.46 6.43 14.18 9.84 9.96 11.63 8.39 9.90 21.47 14.39 13.75 19.56 13.35 13.82
-0.5 6.89 4.73 4.48 4.40 3.24 4.34 15.46 10.00 8.67 13.01 8.58 8.83 22.92 16.06 13.52 21.18 15.08 14.13
0.5 12.69 8.97 5.35 8.77 6.67 6.16 23.10 19.81 17.32 20.47 18.70 17.69 29.35 27.41 26.03 28.10 27.03 26.18
0.9 14.12 10.59 6.76 10.02 7.79 7.34 23.41 20.62 18.15 21.03 19.74 18.40 28.80 27.13 25.52 27.58 26.79 25.67

-0.5

-0.9 1.53 2.34 1.89 0.73 2.07 1.82 5.64 5.29 4.71 4.18 4.87 4.70 10.16 9.70 9.29 8.86 9.37 9.11
-0.5 1.90 1.74 1.19 0.93 1.31 1.12 6.59 5.33 4.85 4.95 4.95 4.80 12.24 10.66 10.33 10.73 10.28 10.16
0.5 2.73 1.60 1.13 1.21 1.17 1.15 7.41 5.76 5.54 5.71 5.40 5.35 12.62 11.05 10.84 11.19 10.68 10.59
0.9 1.69 0.95 0.62 0.74 0.66 0.62 5.84 4.39 4.06 4.62 4.08 3.95 10.70 8.80 8.57 9.28 8.57 8.45

0.5

-0.9 1.78 1.22 0.90 0.93 0.95 0.92 6.01 4.83 4.54 4.71 4.50 4.49 10.97 9.39 9.24 9.59 9.12 9.05
-0.5 2.15 1.38 0.94 1.00 1.04 0.98 6.62 5.39 5.18 5.25 5.05 5.04 11.50 9.99 9.84 10.03 9.63 9.57
0.5 1.17 0.67 0.51 0.42 0.43 0.49 4.88 3.42 2.84 3.55 2.95 2.73 9.29 7.67 7.15 8.09 7.38 7.14
0.9 0.66 0.36 0.76 0.26 0.20 0.74 3.37 2.44 2.43 2.33 2.10 2.31 7.37 6.13 5.99 6.27 5.74 5.85

0.9

-0.9 2.45 1.44 0.92 1.08 1.00 0.95 7.48 5.73 5.46 5.70 5.30 5.28 12.41 10.76 10.62 10.99 10.54 10.48
-0.5 2.80 1.75 1.16 1.35 1.26 1.22 8.11 6.41 5.98 6.53 5.95 5.89 13.43 11.67 11.49 12.07 11.34 11.30
0.5 1.73 1.09 0.83 0.78 0.76 0.86 6.24 4.38 3.66 4.84 3.90 3.67 11.89 8.67 7.72 10.40 8.21 7.81
0.9 1.49 1.39 1.78 0.74 1.14 1.67 5.23 4.07 3.81 4.02 3.57 3.72 9.91 7.50 7.07 8.60 7.03 6.94
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Table 5.4 Hypothesis test results for H0 : β2 = 0, using a sample size of 15 and showing the Negative t-statistics

NEGATIVE t-STATISTICS
Sample size: T=15
H0 : β2

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 6.23 5.85 7.27 4.17 4.37 7.00 13.35 9.42 10.25 11.29 8.29 10.26 20.49 14.02 14.01 18.94 12.89 14.03
-0.5 7.20 5.31 4.80 4.42 3.71 4.63 16.36 10.91 9.53 13.68 9.60 9.67 23.63 16.64 14.18 21.75 15.60 14.65
0.5 11.92 8.28 5.19 7.88 6.03 5.72 21.36 18.08 15.96 19.04 17.20 16.27 27.18 25.10 23.86 25.82 24.68 24.07
0.9 13.03 9.43 6.52 9.20 6.97 7.10 21.81 19.19 17.36 19.65 18.18 17.43 27.28 25.72 24.70 26.13 25.33 24.64

-0.5

-0.9 1.58 2.36 1.82 0.55 2.11 1.74 5.54 5.72 5.14 4.27 5.35 5.05 10.36 10.06 9.61 9.31 9.63 9.48
-0.5 1.94 1.65 1.14 0.84 1.29 1.10 6.58 5.44 5.02 5.02 5.02 4.93 11.52 10.16 9.89 10.22 9.79 9.68
0.5 2.36 1.63 1.27 1.34 1.29 1.27 6.89 5.43 5.16 5.44 5.08 5.02 12.01 10.31 10.19 10.63 9.99 9.92
0.9 1.69 0.99 0.60 0.70 0.64 0.61 5.38 3.99 3.57 4.27 3.61 3.49 9.71 8.06 7.72 8.55 7.77 7.57

0.5

-0.9 2.15 1.27 0.88 1.04 0.99 0.94 6.48 5.16 4.96 5.14 4.81 4.78 11.32 9.63 9.45 9.87 9.30 9.27
-0.5 2.19 1.41 1.04 1.17 1.10 1.08 6.81 5.31 5.11 5.38 4.99 4.96 11.87 10.22 9.98 10.45 9.80 9.74
0.5 1.04 0.60 0.52 0.41 0.44 0.48 4.91 3.37 2.92 3.51 3.00 2.79 9.89 7.83 7.21 8.55 7.36 7.09
0.9 0.60 0.39 0.86 0.20 0.23 0.84 3.06 2.24 2.19 2.21 1.93 2.11 7.21 5.83 5.64 5.96 5.45 5.49

0.9

-0.9 2.47 1.53 1.07 1.18 1.14 1.09 7.31 5.95 5.55 5.96 5.49 5.43 12.98 11.18 11.03 11.41 10.86 10.77
-0.5 2.50 1.61 1.15 1.31 1.23 1.18 8.35 6.40 5.90 6.70 6.03 5.90 14.79 12.83 12.57 13.25 12.41 12.31
0.5 1.81 1.10 0.71 0.79 0.69 0.71 6.49 4.35 3.47 4.93 3.94 3.47 11.85 8.68 7.53 10.46 8.23 7.55
0.9 1.65 1.59 2.08 0.85 1.26 2.02 5.15 4.08 4.05 4.05 3.62 3.93 9.57 7.51 7.18 8.40 7.08 7.07
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Table 5.5 Hypothesis test results for H0 : β3 = 0, using a sample size of 15 and showing the Positive t-statistics

POSITIVE t-STATISTICS
Sample size: T=15
H0 : β3

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 1.50 4.09 5.54 0.73 3.93 5.15 6.19 6.31 8.03 4.79 5.91 7.81 11.94 9.48 11.14 10.36 9.04 11.05
-0.5 1.56 2.01 2.86 0.53 1.77 2.64 6.73 4.76 5.60 4.95 4.31 5.43 13.05 8.97 9.40 11.41 8.52 9.31
0.5 3.06 2.02 1.45 1.46 1.56 1.42 9.09 7.41 6.85 7.31 6.86 6.63 15.18 13.34 12.98 13.79 12.98 12.76
0.9 1.71 1.39 1.09 0.76 1.12 0.97 5.64 4.95 4.79 4.42 4.60 4.58 10.16 8.97 8.82 8.78 8.75 8.69

-0.5

-0.9 0.94 2.36 2.04 0.45 2.15 1.84 4.05 4.33 3.98 2.83 4.08 3.89 8.47 7.72 7.09 7.20 7.32 7.09
-0.5 1.30 1.32 0.96 0.62 1.11 0.97 5.11 4.33 3.84 3.84 3.99 3.81 10.00 8.44 8.08 8.81 8.16 7.97
0.5 1.92 1.59 1.23 0.90 1.28 1.16 6.26 5.52 5.35 5.07 5.16 5.14 11.16 9.97 9.90 9.75 9.74 9.73
0.9 1.43 1.27 1.04 0.65 1.00 0.92 4.60 3.75 3.42 3.62 3.42 3.38 9.11 7.34 7.16 7.89 7.08 7.03

0.5

-0.9 1.90 1.74 1.31 0.80 1.47 1.11 6.35 5.75 5.52 4.75 5.45 5.21 10.64 10.57 10.42 9.45 10.21 10.08
-0.5 1.81 1.51 1.24 0.96 1.28 1.12 6.20 5.43 5.24 4.89 5.14 5.04 11.00 9.84 9.85 9.41 9.59 9.65
0.5 0.88 0.52 0.59 0.38 0.40 0.57 4.17 2.82 2.76 2.93 2.59 2.72 8.36 6.51 6.33 7.28 6.22 6.28
0.9 0.61 0.31 1.00 0.17 0.18 0.90 3.53 2.01 2.43 2.56 1.73 2.49 7.34 5.01 5.41 6.16 4.70 5.34

0.9

-0.9 1.90 1.58 1.13 0.99 1.23 1.13 6.61 5.65 5.41 5.25 5.30 5.13 11.83 10.57 10.42 10.44 10.25 10.23
-0.5 1.90 1.30 0.91 0.81 0.97 0.81 6.11 5.09 4.84 4.91 4.70 4.61 11.69 10.11 9.96 10.28 9.74 9.73
0.5 0.38 0.23 0.51 0.08 0.20 0.46 2.75 1.56 1.78 1.88 1.39 1.68 7.13 4.59 4.44 5.95 4.23 4.42
0.9 0.38 0.19 1.42 0.10 0.15 1.32 2.28 1.05 2.18 1.58 0.90 2.14 6.04 3.43 4.41 4.80 3.18 4.34
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Table 5.6 Hypothesis test results for H0 : β3 = 0, using a sample size of 15 and showing the Negative t-statistics

NEGATIVE t-STATISTICS
Sample size: T=15
H0 : β3

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 1.88 3.84 5.31 1.04 3.61 4.95 6.18 6.29 7.87 4.81 5.89 7.69 11.42 9.09 10.40 10.01 8.50 10.30
-0.5 1.88 2.35 2.79 0.84 1.94 2.70 6.86 5.22 5.67 5.46 4.76 5.55 12.91 9.41 9.29 11.31 8.75 9.22
0.5 3.16 2.11 1.54 1.54 1.63 1.58 9.24 7.44 6.74 7.29 6.81 6.55 15.18 13.51 12.92 13.65 13.08 12.82
0.9 1.64 1.60 1.14 0.82 1.21 1.09 5.48 4.69 4.52 4.17 4.38 4.37 9.87 9.14 9.00 8.87 8.90 8.86

-0.5

-0.9 1.21 2.57 2.28 0.60 2.47 2.15 4.45 4.78 4.49 3.28 4.56 4.39 8.73 8.32 7.86 7.59 7.96 7.75
-0.5 1.49 1.49 1.20 0.77 1.23 1.14 5.42 4.31 3.92 3.94 3.91 3.78 10.60 8.75 8.42 9.08 8.43 8.27
0.5 2.03 1.73 1.33 1.06 1.38 1.26 6.14 5.53 5.24 4.91 5.12 5.06 10.87 9.91 9.78 9.62 9.59 9.57
0.9 1.23 0.95 0.71 0.52 0.74 0.62 5.00 3.69 3.33 3.70 3.42 3.34 9.24 7.47 7.25 8.09 7.27 7.19

0.5

-0.9 1.84 1.83 1.35 0.94 1.56 1.28 6.37 5.98 5.79 4.98 5.57 5.45 11.22 10.93 10.84 9.86 10.65 10.58
-0.5 2.02 1.69 1.25 0.99 1.33 1.19 6.29 5.56 5.41 5.06 5.21 5.20 11.09 10.04 9.85 9.82 9.76 9.68
0.5 1.00 0.50 0.38 0.35 0.31 0.36 3.96 2.70 2.50 2.98 2.54 2.47 8.26 6.22 5.99 7.09 5.96 5.92
0.9 0.73 0.31 0.97 0.25 0.19 0.89 3.27 1.75 2.31 2.30 1.44 2.26 7.21 4.87 5.16 6.06 4.67 5.21

0.9

-0.9 2.14 1.74 1.22 1.06 1.28 1.11 6.51 5.73 5.46 5.23 5.31 5.20 11.34 10.39 10.13 9.92 9.96 9.80
-0.5 1.73 1.20 0.86 0.77 0.84 0.83 5.94 4.77 4.47 4.66 4.38 4.31 11.32 9.75 9.50 9.81 9.39 9.26
0.5 0.38 0.13 0.34 0.08 0.08 0.35 2.83 1.37 1.43 1.86 1.19 1.42 6.53 4.23 4.15 5.34 4.00 4.08
0.9 0.34 0.25 1.59 0.13 0.19 1.48 2.13 1.19 2.50 1.55 1.01 2.44 5.74 3.28 4.51 4.87 3.05 4.41
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Table 5.7 Hypothesis test results for H0 : β4 = 0, using a sample size of 15 and showing the Positive t-statistics

POSITIVE t-STATISTICS
Sample size: T=15
H0 : β4

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 0.18 2.36 3.22 0.07 2.31 2.95 1.35 3.08 4.27 0.83 2.95 4.05 4.29 4.65 6.09 3.30 4.41 5.84
-0.5 0.19 1.03 1.31 0.08 1.02 1.26 1.26 1.66 2.14 0.82 1.58 2.04 3.77 3.31 3.83 2.91 3.06 3.63
0.5 0.60 0.46 0.44 0.33 0.39 0.43 2.88 2.17 2.12 1.98 1.99 2.04 6.13 5.40 5.37 5.23 5.08 5.11
0.9 1.30 0.99 0.71 0.72 0.69 0.71 4.81 3.91 3.71 3.65 3.57 3.58 8.92 7.85 7.86 7.81 7.57 7.58

-0.5

-0.9 0.81 1.85 1.50 0.32 1.65 1.36 3.72 4.20 3.94 2.61 3.86 3.71 7.57 7.79 7.64 6.44 7.53 7.50
-0.5 0.83 1.05 0.83 0.38 0.91 0.79 3.55 3.42 3.31 2.57 3.14 3.05 7.34 6.83 6.78 6.21 6.63 6.60
0.5 1.82 1.27 0.97 0.95 1.02 0.97 5.89 4.83 4.71 4.52 4.58 4.57 10.51 9.52 9.39 9.25 9.12 9.08
0.9 2.17 1.39 0.95 1.10 1.07 1.02 6.50 5.37 5.15 5.05 4.98 4.94 11.13 9.92 9.77 9.76 9.66 9.60

0.5

-0.9 1.67 1.25 0.92 0.88 0.96 0.90 5.45 4.36 4.21 4.17 4.10 4.08 10.29 9.13 9.07 9.05 8.83 8.78
-0.5 2.06 1.37 0.98 0.98 1.03 0.98 6.14 5.12 4.93 4.76 4.76 4.72 10.86 9.80 9.71 9.55 9.35 9.33
0.5 1.49 0.90 0.66 0.72 0.62 0.67 5.73 4.01 3.89 4.21 3.74 3.84 10.33 8.57 8.53 9.05 8.23 8.37
0.9 1.22 0.88 1.22 0.63 0.67 1.16 4.88 3.46 3.99 3.61 3.17 3.86 9.81 7.53 7.95 8.49 7.06 7.78

0.9

-0.9 1.79 1.21 0.86 0.87 0.92 0.87 5.68 4.55 4.42 4.31 4.27 4.26 10.42 9.45 9.31 9.19 9.14 9.08
-0.5 1.77 1.17 0.81 0.86 0.87 0.83 6.01 4.82 4.59 4.56 4.36 4.36 10.61 9.40 9.32 9.29 9.04 9.02
0.5 0.98 0.57 0.65 0.48 0.47 0.64 4.36 3.13 3.15 3.23 2.81 3.07 8.25 6.69 6.86 7.20 6.41 6.77
0.9 0.94 0.82 1.54 0.34 0.53 1.34 3.71 2.98 3.79 2.87 2.75 3.73 7.50 5.94 6.83 6.51 5.58 6.67
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Table 5.8 Hypothesis test results for H0 : β4 = 0, using a sample size of 15 and showing the Negative t-statistics

NEGATIVE t-STATISTICS
Sample size: T=15
H0 : β4

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 0.19 2.24 3.02 0.08 2.14 2.85 1.55 3.01 4.15 1.03 2.91 3.97 4.05 4.45 5.84 3.39 4.27 5.65
-0.5 0.24 1.12 1.40 0.08 1.03 1.26 1.45 1.89 2.39 0.87 1.77 2.25 3.76 3.44 4.16 2.94 3.32 4.03
0.5 0.72 0.47 0.34 0.30 0.34 0.31 2.87 2.18 2.11 2.05 1.97 1.97 6.34 5.50 5.38 5.25 5.16 5.11
0.9 1.54 0.96 0.77 0.73 0.78 0.79 4.83 4.04 3.94 3.74 3.73 3.79 8.90 7.91 7.89 7.81 7.67 7.71

-0.5

-0.9 0.91 1.81 1.45 0.37 1.62 1.27 3.66 4.19 4.00 2.62 3.95 3.80 7.43 7.65 7.50 6.38 7.37 7.29
-0.5 0.92 1.02 0.76 0.36 0.83 0.70 3.57 3.37 3.09 2.64 3.07 2.95 7.26 6.86 6.70 6.30 6.56 6.50
0.5 1.80 1.38 1.10 0.98 1.09 1.05 5.90 4.94 4.72 4.57 4.58 4.53 10.57 9.51 9.47 9.38 9.26 9.24
0.9 2.24 1.59 1.09 1.11 1.09 1.06 6.75 5.61 5.38 5.20 5.25 5.22 11.54 10.43 10.32 10.30 10.16 10.14

0.5

-0.9 1.71 1.19 0.88 0.86 0.85 0.82 5.62 4.52 4.33 4.33 4.27 4.19 9.93 8.85 8.72 8.80 8.54 8.50
-0.5 2.02 1.42 1.10 1.01 1.10 1.07 5.94 5.11 4.96 4.84 4.75 4.73 10.52 9.47 9.38 9.15 9.15 9.14
0.5 1.57 0.96 0.79 0.88 0.69 0.81 5.79 4.24 4.15 4.43 3.95 4.02 10.98 8.89 8.84 9.48 8.58 8.67
0.9 1.42 0.89 1.39 0.68 0.68 1.35 5.29 3.79 4.23 4.02 3.49 4.18 10.19 7.54 8.03 8.80 7.28 7.99

0.9

-0.9 1.85 1.35 1.07 0.99 1.11 1.03 5.81 4.82 4.68 4.55 4.52 4.48 10.37 9.37 9.31 9.14 9.10 9.08
-0.5 2.08 1.38 0.97 1.03 0.98 0.95 5.90 4.95 4.79 4.64 4.57 4.56 10.58 9.31 9.23 9.22 8.99 8.98
0.5 1.11 0.55 0.62 0.42 0.36 0.63 4.51 2.97 2.91 3.30 2.70 2.89 8.69 6.74 6.68 7.50 6.53 6.66
0.9 1.02 0.77 1.41 0.42 0.60 1.37 3.92 2.83 3.62 2.88 2.59 3.52 7.86 5.93 6.57 6.83 5.57 6.46
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Table 5.9 Hypothesis test results for H0 : β2, β3, β4 = 0, using a sample size of 15 and showing the F-statistics

F-STATISTICS
Sample size: T=15
H0 : β2, β3, β4

Nominal size: 1% 5% 10%

Test: X2 X2E X2CF F FE FCF X2 X2E X2CF F FE FCF X2 X2E X2CF F FE FCF

ρ ϕ % % %

-0.9

-0.9 10.97 19.12 5.77 5.50 14.68 4.17 17.17 22.07 8.97 11.72 16.85 7.40 22.29 24.55 11.66 16.82 19.17 10.45
-0.5 11.27 12.86 2.60 5.33 8.46 2.35 18.90 16.44 4.83 12.23 11.39 5.11 25.42 19.43 7.43 18.33 14.50 7.78
0.5 19.90 10.83 0.89 7.47 3.93 3.16 33.38 20.90 3.45 21.64 13.52 11.28 42.81 28.79 11.22 32.36 21.78 18.31
0.9 20.94 11.37 0.92 8.32 4.36 3.57 34.01 21.52 2.73 22.62 13.31 11.47 42.18 29.94 11.31 33.15 22.76 19.16

-0.5

-0.9 3.85 3.76 1.46 0.99 2.55 1.84 8.53 5.62 1.92 4.37 4.26 3.16 12.51 7.65 3.25 8.23 6.12 4.53
-0.5 4.67 2.80 0.75 1.25 1.49 1.29 10.48 5.74 1.71 5.36 4.28 3.91 15.50 8.71 4.44 9.98 7.18 6.54
0.5 4.85 3.25 0.61 1.24 1.89 1.26 11.24 7.16 1.94 5.44 5.39 4.79 16.91 11.69 6.93 10.70 9.93 9.20
0.9 2.53 1.76 0.40 0.51 1.06 0.61 7.66 3.88 1.02 3.00 2.80 2.29 12.70 6.56 3.44 7.32 5.26 4.65

0.5

-0.9 4.34 2.90 0.73 1.10 1.85 1.26 10.70 6.71 1.89 5.00 4.80 4.23 16.06 10.90 5.94 10.25 9.04 8.40
-0.5 4.28 3.10 0.54 1.12 1.85 1.19 10.17 6.85 1.81 4.99 4.99 4.42 16.21 11.02 6.44 9.89 9.51 8.76
0.5 1.15 0.52 0.12 0.26 0.32 0.24 3.92 1.32 0.32 1.36 0.87 0.75 6.98 2.61 1.11 3.66 1.89 1.66
0.9 0.88 0.52 0.06 0.16 0.29 0.11 2.49 1.03 0.18 1.00 0.67 0.37 4.70 1.69 0.59 2.36 1.22 0.81

0.9

-0.9 4.59 3.03 0.59 1.00 1.71 1.13 11.05 6.98 1.75 5.13 4.95 4.50 17.04 11.33 6.59 10.61 9.55 8.93
-0.5 3.97 2.23 0.55 0.88 1.28 0.90 10.29 5.54 1.87 4.58 4.14 3.84 16.25 9.52 5.77 9.86 7.97 7.50
0.5 1.38 2.35 0.38 0.28 2.03 0.24 3.76 3.43 1.08 1.62 2.71 0.98 6.65 4.72 2.35 3.49 3.92 2.30
0.9 1.50 5.64 1.59 0.39 5.07 0.63 3.70 6.74 3.02 1.76 5.94 2.24 5.63 7.82 4.48 3.56 6.91 3.78
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Table 5.10 Hypothesis test results for H0 : β1 = 0, using a sample size of 30 and showing the Positive t-statistics

POSITIVE t-STATISTICS
Sample size: T=30
H0 : β1

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 0.00 1.12 3.55 0.00 1.12 3.36 0.00 1.51 4.90 0.00 1.48 4.73 0.51 2.40 6.33 0.36 2.32 6.18
-0.5 0.02 0.27 1.75 0.01 0.24 1.64 0.28 0.37 2.37 0.19 0.34 2.26 1.53 1.04 3.27 1.35 1.02 3.15
0.5 0.50 0.38 0.35 0.36 0.36 0.33 2.93 2.36 2.24 2.50 2.31 2.21 6.24 5.88 5.73 5.84 5.85 5.74
0.9 1.10 0.90 0.77 0.74 0.83 0.75 4.82 4.55 4.50 4.34 4.50 4.43 9.19 8.82 8.83 8.62 8.73 8.74

-0.5

-0.9 0.00 0.14 0.22 0.00 0.14 0.20 0.01 0.15 0.24 0.01 0.15 0.23 0.34 0.22 0.28 0.23 0.22 0.29
-0.5 0.01 0.01 0.03 0.01 0.01 0.02 0.43 0.14 0.18 0.31 0.14 0.18 1.86 0.96 0.89 1.65 0.93 0.89
0.5 1.39 1.05 0.94 1.00 1.00 0.93 5.55 5.11 5.00 4.97 5.02 4.92 10.04 9.77 9.73 9.49 9.70 9.66
0.9 1.91 1.45 1.12 1.41 1.30 1.12 6.53 6.01 5.86 5.96 5.96 5.82 11.08 10.68 10.65 10.67 10.62 10.58

0.5

-0.9 0.00 0.02 0.03 0.00 0.02 0.03 0.12 0.14 0.14 0.09 0.14 0.14 0.71 0.57 0.57 0.62 0.57 0.56
-0.5 1.52 1.25 1.03 1.13 1.18 1.06 5.68 5.31 5.25 5.20 5.24 5.20 10.31 10.02 10.01 9.71 9.97 9.95
0.5 9.79 10.10 7.88 8.67 9.80 8.11 17.25 17.05 15.98 16.39 16.93 16.25 23.17 22.78 22.27 22.71 22.74 22.40
0.9 9.06 11.60 9.47 8.01 11.33 9.32 16.51 17.18 15.62 15.64 16.98 15.73 22.32 22.00 21.12 21.83 21.89 21.22

0.9

-0.9 12.97 10.91 9.04 11.52 10.33 9.41 20.80 19.84 18.70 20.09 19.67 19.00 25.92 25.45 24.93 25.50 25.37 25.04
-0.5 25.32 24.27 19.27 24.24 23.83 20.57 31.57 30.62 27.95 30.97 30.46 28.26 35.23 34.85 32.95 34.92 34.72 32.74
0.5 30.52 36.57 34.07 29.21 36.32 33.54 35.73 38.94 37.58 35.31 38.79 37.25 38.17 40.44 39.52 37.95 40.34 39.14
0.9 29.40 37.48 36.57 28.26 37.13 36.27 34.83 39.20 38.94 34.37 38.97 38.82 37.87 40.37 40.59 37.49 40.20 40.43
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Table 5.11 Hypothesis test results for H0 : β1 = 0, using a sample size of 30 and showing the Negative t-statistics

NEGATIVE t-STATISTICS
Sample size: T=30
H0 : β1

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 0.00 0.94 3.64 0.00 0.92 3.41 0.01 1.27 4.89 0.01 1.22 4.67 0.44 1.95 6.26 0.31 1.92 6.13
-0.5 0.03 0.25 2.00 0.00 0.23 1.92 0.15 0.40 2.54 0.11 0.39 2.46 1.49 0.90 3.38 1.32 0.89 3.31
0.5 0.39 0.26 0.22 0.25 0.24 0.21 2.68 2.06 1.92 2.26 2.01 1.90 6.16 5.81 5.68 5.75 5.75 5.63
0.9 1.06 0.79 0.64 0.73 0.71 0.67 4.42 4.11 4.02 3.90 4.05 3.95 9.14 8.85 8.80 8.77 8.75 8.74

-0.5

-0.9 0.00 0.10 0.11 0.00 0.10 0.11 0.03 0.11 0.19 0.03 0.11 0.16 0.38 0.22 0.31 0.30 0.21 0.32
-0.5 0.01 0.00 0.02 0.00 0.00 0.02 0.42 0.08 0.12 0.32 0.08 0.11 1.84 0.93 0.89 1.58 0.92 0.91
0.5 1.28 0.87 0.76 0.89 0.77 0.74 5.19 4.71 4.66 4.65 4.62 4.63 10.22 9.84 9.83 9.71 9.75 9.77
0.9 1.88 1.43 1.04 1.37 1.25 1.11 6.19 5.65 5.49 5.60 5.55 5.46 11.59 11.04 10.96 10.99 10.93 10.88

0.5

-0.9 0.00 0.01 0.01 0.00 0.01 0.01 0.18 0.13 0.14 0.11 0.13 0.14 0.90 0.79 0.78 0.80 0.76 0.75
-0.5 1.52 1.21 0.98 1.12 1.10 0.98 5.74 5.20 5.10 5.03 5.10 5.05 10.95 10.51 10.48 10.26 10.44 10.42
0.5 10.16 10.53 8.26 8.76 10.25 8.61 18.52 18.26 17.17 17.67 18.15 17.40 24.44 23.96 23.40 23.86 23.90 23.52
0.9 9.52 12.36 10.01 8.16 12.14 10.01 17.70 18.25 16.67 16.76 18.11 16.86 23.58 23.41 22.19 23.04 23.36 22.33

0.9

-0.9 14.64 12.30 9.31 13.07 11.48 9.81 23.32 22.13 20.13 22.46 21.96 20.45 28.81 28.33 26.76 28.33 28.22 26.85
-0.5 28.07 26.53 20.66 26.70 26.02 22.30 34.53 33.59 30.10 33.94 33.44 30.73 38.31 37.86 35.38 37.86 37.72 35.22
0.5 31.02 37.93 35.60 30.01 37.76 35.23 36.48 40.27 38.78 36.06 40.14 38.52 39.59 41.94 40.99 39.31 41.92 40.77
0.9 30.05 38.94 37.36 28.87 38.64 36.99 35.52 40.65 40.00 35.07 40.50 39.89 38.79 42.09 42.10 38.50 42.03 41.98

72



5.2:
R

esults

Table 5.12 Hypothesis test results for H0 : β2 = 0, using a sample size of 30 and showing the Positive t-statistics

POSITIVE t-STATISTICS
Sample size: T=30
H0 : β2

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 0.71 1.15 4.71 0.52 1.13 4.52 2.76 1.81 6.32 2.42 1.73 6.25 5.58 2.99 7.77 5.23 2.90 7.69
-0.5 1.01 0.85 2.18 0.79 0.81 2.08 3.54 2.02 3.65 3.11 1.93 3.59 6.88 3.60 5.22 6.41 3.49 5.23
0.5 2.43 1.71 1.41 1.72 1.55 1.40 8.58 6.87 6.34 7.87 6.74 6.40 14.90 12.92 12.59 14.17 12.82 12.59
0.9 3.38 2.28 2.03 2.47 2.04 2.03 10.50 8.50 7.89 9.60 8.32 7.96 17.40 15.23 14.68 16.69 15.07 14.67

-0.5

-0.9 0.11 0.17 0.15 0.04 0.16 0.15 1.44 0.55 0.44 1.17 0.52 0.44 4.06 2.21 1.73 3.65 2.14 1.84
-0.5 0.30 0.18 0.15 0.20 0.14 0.14 2.37 1.46 1.20 2.08 1.39 1.27 5.98 4.59 4.32 5.53 4.51 4.31
0.5 1.42 1.48 1.33 1.09 1.40 1.31 5.18 4.92 4.89 4.61 4.83 4.82 10.31 9.90 9.81 9.84 9.80 9.78
0.9 1.22 0.89 0.67 0.85 0.82 0.70 4.93 3.78 3.54 4.43 3.63 3.59 9.97 8.09 7.92 9.40 8.01 7.91

0.5

-0.9 1.28 1.51 1.18 0.98 1.43 1.14 5.23 5.32 5.10 4.50 5.24 5.05 10.11 10.47 10.36 9.67 10.38 10.29
-0.5 1.46 1.53 1.35 1.16 1.50 1.31 5.41 5.08 4.97 4.86 4.96 4.94 10.26 9.81 9.78 9.72 9.77 9.76
0.5 0.85 0.48 0.31 0.58 0.39 0.34 4.42 2.99 2.63 3.95 2.88 2.71 8.87 6.99 6.65 8.41 6.90 6.68
0.9 0.62 0.28 0.18 0.39 0.22 0.18 3.32 2.07 1.72 2.86 1.99 1.72 7.27 5.32 4.65 6.77 5.20 4.73

0.9

-0.9 2.19 1.89 1.89 1.65 1.80 1.85 7.27 6.58 6.50 6.63 6.50 6.51 13.04 12.24 12.15 12.47 12.13 12.13
-0.5 2.46 1.87 1.62 1.76 1.73 1.63 7.56 6.74 6.48 6.90 6.64 6.48 13.35 12.37 12.24 12.68 12.26 12.22
0.5 1.03 0.54 0.54 0.70 0.46 0.56 4.92 2.50 2.06 4.37 2.35 2.13 9.89 5.74 4.88 9.24 5.57 4.98
0.9 0.96 1.04 0.94 0.69 0.97 0.91 3.93 2.29 2.10 3.47 2.15 2.15 8.22 4.98 4.16 7.92 4.85 4.21
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Table 5.13 Hypothesis test results for H0 : β2 = 0, using a sample size of 30 and showing the Negative t-statistics

NEGATIVE t-STATISTICS
Sample size: T=30
H0 : β2

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 0.79 1.32 4.61 0.60 1.30 4.38 2.68 2.10 6.33 2.36 1.97 6.16 5.44 3.32 7.64 5.14 3.22 7.58
-0.5 0.85 0.63 2.10 0.65 0.62 2.04 3.24 1.81 3.41 2.93 1.73 3.32 7.06 3.72 5.23 6.60 3.69 5.22
0.5 2.02 1.45 1.43 1.54 1.28 1.38 7.39 6.02 5.73 6.64 5.92 5.80 13.13 11.68 11.49 12.55 11.63 11.48
0.9 2.77 2.05 1.72 2.12 1.88 1.69 8.86 7.22 6.83 8.08 7.05 6.84 15.15 13.57 13.12 14.73 13.46 13.13

-0.5

-0.9 0.12 0.19 0.23 0.03 0.19 0.23 1.36 0.67 0.58 1.19 0.66 0.56 3.81 2.19 1.88 3.44 2.16 1.96
-0.5 0.34 0.18 0.11 0.25 0.16 0.14 2.61 1.58 1.39 2.14 1.55 1.43 5.98 4.44 4.14 5.48 4.41 4.20
0.5 1.17 1.18 1.08 0.91 1.15 1.08 5.05 4.69 4.58 4.46 4.61 4.52 9.89 9.07 9.03 9.27 8.98 9.02
0.9 1.07 0.71 0.60 0.70 0.66 0.60 4.74 3.56 3.36 4.16 3.49 3.40 9.20 7.53 7.30 8.72 7.46 7.30

0.5

-0.9 1.34 1.47 1.29 0.97 1.43 1.22 5.69 5.77 5.59 5.08 5.65 5.54 10.63 10.68 10.58 10.06 10.59 10.55
-0.5 1.42 1.45 1.38 1.03 1.44 1.33 5.79 5.42 5.30 5.11 5.31 5.25 10.70 10.22 10.17 10.16 10.13 10.13
0.5 0.87 0.40 0.31 0.50 0.35 0.32 4.56 3.09 2.82 3.91 3.00 2.87 9.27 7.44 6.97 8.75 7.36 7.03
0.9 0.51 0.36 0.25 0.32 0.30 0.26 3.42 2.10 1.75 2.98 2.09 1.82 7.81 5.53 4.91 7.20 5.39 5.02

0.9

-0.9 2.30 1.78 1.59 1.54 1.68 1.56 8.07 7.16 6.78 7.37 7.06 6.79 13.95 12.90 12.64 13.33 12.80 12.63
-0.5 2.56 1.84 1.52 1.89 1.61 1.55 8.46 7.34 7.02 7.63 7.23 7.01 14.53 13.47 13.17 13.84 13.33 13.11
0.5 1.24 0.55 0.48 0.86 0.42 0.49 5.13 2.69 2.17 4.60 2.61 2.31 9.92 5.91 5.05 9.49 5.81 5.21
0.9 0.92 1.04 1.01 0.63 0.95 1.00 3.99 2.20 2.19 3.51 2.05 2.14 8.17 4.87 4.04 7.52 4.64 4.11
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Table 5.14 Hypothesis test results for H0 : β3 = 0, using a sample size of 30 and showing the Positive t-statistics

POSITIVE t-STATISTICS
Sample size: T=30
H0 : β3

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 0.20 0.67 3.90 0.12 0.67 3.74 1.81 1.25 5.49 1.50 1.21 5.33 4.68 2.36 7.25 4.33 2.33 7.13
-0.5 0.35 0.39 1.83 0.24 0.35 1.70 2.97 1.38 3.16 2.36 1.35 3.09 7.32 3.85 5.54 6.88 3.77 5.54
0.5 1.77 1.28 1.22 1.24 1.18 1.20 7.05 5.95 5.86 6.34 5.84 5.82 12.91 11.68 11.61 12.25 11.57 11.52
0.9 0.90 0.73 0.67 0.69 0.68 0.65 4.35 3.71 3.60 3.75 3.61 3.56 8.61 8.01 7.89 8.15 7.91 7.85

-0.5

-0.9 0.53 0.35 0.33 0.32 0.33 0.36 3.09 1.44 1.28 2.71 1.37 1.32 7.27 3.68 3.09 6.67 3.65 3.15
-0.5 0.90 0.51 0.37 0.59 0.43 0.40 5.05 3.54 3.06 4.51 3.42 3.16 9.39 7.32 6.93 8.86 7.28 7.04
0.5 1.26 1.00 0.91 0.91 0.92 0.91 5.33 4.79 4.72 4.77 4.67 4.66 9.96 9.40 9.39 9.47 9.36 9.34
0.9 1.10 0.80 0.75 0.62 0.72 0.70 4.55 4.09 3.97 4.07 3.99 3.96 8.99 8.70 8.67 8.52 8.63 8.60

0.5

-0.9 1.57 1.10 0.94 1.11 1.01 0.99 5.60 4.97 4.85 5.13 4.86 4.83 10.56 9.47 9.39 9.92 9.41 9.37
-0.5 1.41 1.05 0.96 0.94 0.96 0.92 5.49 4.94 4.89 4.92 4.87 4.86 10.30 9.75 9.72 9.79 9.69 9.67
0.5 0.35 0.19 0.16 0.17 0.18 0.16 2.90 2.20 2.08 2.44 2.16 2.07 6.64 5.73 5.67 6.17 5.70 5.67
0.9 0.29 0.21 0.18 0.17 0.21 0.21 2.37 1.34 1.18 1.79 1.24 1.16 5.99 4.62 4.25 5.50 4.55 4.26

0.9

-0.9 1.64 1.24 1.15 1.18 1.17 1.14 6.24 5.53 5.48 5.63 5.47 5.46 11.58 10.58 10.48 10.81 10.53 10.45
-0.5 1.03 0.71 0.68 0.66 0.66 0.66 4.99 4.30 4.19 4.45 4.23 4.18 10.16 9.38 9.31 9.57 9.27 9.23
0.5 0.16 0.13 0.10 0.08 0.12 0.10 1.85 1.05 0.83 1.57 0.95 0.86 5.09 3.37 3.08 4.71 3.28 3.10
0.9 0.10 0.94 0.67 0.09 0.91 0.63 1.38 1.52 1.43 1.11 1.48 1.42 4.57 3.49 3.20 4.15 3.43 3.22
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Table 5.15 Hypothesis test results for H0 : β3 = 0, using a sample size of 30 and showing the Negative t-statistics

NEGATIVE t-STATISTICS
Sample size: T=30
H0 : β3

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 0.34 0.79 4.21 0.27 0.77 3.93 1.93 1.53 6.16 1.62 1.47 6.01 4.64 2.54 7.83 4.36 2.45 7.76
-0.5 0.38 0.41 1.89 0.23 0.40 1.84 2.69 1.58 3.44 2.30 1.52 3.41 6.58 3.46 5.57 6.16 3.42 5.57
0.5 1.45 1.04 0.98 1.03 0.98 0.98 6.64 5.53 5.40 5.97 5.44 5.37 12.55 11.31 11.19 11.99 11.22 11.16
0.9 0.91 0.69 0.62 0.63 0.65 0.62 4.21 3.58 3.51 3.65 3.50 3.48 8.56 7.96 7.89 8.14 7.91 7.87

-0.5

-0.9 0.58 0.38 0.35 0.39 0.36 0.34 3.05 1.58 1.23 2.81 1.52 1.29 7.08 3.75 3.13 6.65 3.68 3.22
-0.5 1.02 0.51 0.36 0.67 0.40 0.36 4.52 3.12 2.92 4.00 3.06 2.98 9.20 7.05 6.68 8.73 6.98 6.75
0.5 1.21 0.87 0.80 0.81 0.79 0.79 5.20 4.59 4.53 4.60 4.53 4.52 9.89 9.34 9.31 9.34 9.30 9.28
0.9 1.08 0.80 0.74 0.68 0.76 0.74 4.60 4.17 4.10 4.04 4.08 4.05 9.31 8.89 8.88 8.67 8.81 8.80

0.5

-0.9 1.52 1.16 1.05 1.19 1.08 1.06 5.44 4.69 4.58 4.94 4.60 4.56 10.37 9.57 9.53 9.85 9.54 9.50
-0.5 1.33 1.03 0.92 0.94 0.93 0.91 5.29 4.70 4.61 4.72 4.60 4.56 9.83 9.30 9.29 9.30 9.22 9.23
0.5 0.37 0.23 0.17 0.26 0.21 0.18 2.81 2.21 2.12 2.45 2.17 2.11 6.42 5.54 5.44 5.84 5.50 5.41
0.9 0.29 0.11 0.11 0.16 0.09 0.11 2.14 1.28 1.04 1.86 1.24 1.09 5.61 4.21 3.81 5.20 4.19 3.83

0.9

-0.9 1.46 1.14 1.01 1.10 1.04 1.01 5.72 5.13 5.03 5.17 5.02 4.99 10.75 9.88 9.88 10.15 9.85 9.85
-0.5 0.87 0.63 0.60 0.58 0.60 0.60 4.75 3.98 3.86 4.17 3.90 3.88 9.42 8.55 8.51 8.78 8.51 8.48
0.5 0.12 0.16 0.13 0.10 0.15 0.12 1.65 0.88 0.79 1.29 0.87 0.78 4.93 3.21 3.03 4.59 3.18 3.06
0.9 0.13 0.87 0.70 0.06 0.86 0.68 1.16 1.51 1.39 0.91 1.45 1.33 4.51 3.20 3.06 4.11 3.14 3.05
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Table 5.16 Hypothesis test results for H0 : β4 = 0, using a sample size of 30 and showing the Positive t-statistics

POSITIVE t-STATISTICS
Sample size: T=30
H0 : β4

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 1.22 0.96 4.18 1.06 0.87 4.01 3.15 1.66 5.85 2.88 1.53 5.68 6.33 2.86 7.51 5.96 2.65 7.42
-0.5 1.26 0.59 2.47 1.07 0.49 2.37 4.83 1.90 3.87 4.21 1.70 3.80 9.53 4.22 6.07 8.90 3.98 6.14
0.5 3.76 2.09 2.12 2.75 1.85 2.15 10.88 8.31 7.89 9.99 8.06 7.95 17.49 15.24 14.55 16.70 14.97 14.54
0.9 2.32 1.04 1.36 1.78 0.84 1.35 7.39 4.97 4.79 6.55 4.71 4.71 12.80 10.54 9.89 12.24 10.26 9.91

-0.5

-0.9 0.31 0.29 0.26 0.18 0.27 0.29 2.16 0.82 0.69 1.93 0.76 0.71 5.49 2.32 1.83 5.06 2.29 1.86
-0.5 0.76 0.39 0.26 0.49 0.31 0.27 4.18 2.39 1.96 3.69 2.28 2.01 8.45 5.79 5.22 7.96 5.73 5.33
0.5 1.30 1.06 0.95 0.87 0.97 0.93 5.05 4.46 4.35 4.54 4.39 4.31 9.92 9.11 9.03 9.28 9.07 9.01
0.9 0.68 0.43 0.41 0.38 0.39 0.38 3.67 2.79 2.69 3.11 2.74 2.69 7.70 6.32 6.15 7.18 6.25 6.17

0.5

-0.9 0.91 0.73 0.65 0.61 0.71 0.64 4.32 3.76 3.70 3.70 3.69 3.65 8.68 8.03 7.88 8.12 7.96 7.89
-0.5 1.55 1.24 1.18 1.06 1.19 1.17 5.51 4.94 4.88 4.87 4.89 4.85 10.21 9.73 9.71 9.79 9.62 9.65
0.5 0.60 0.37 0.29 0.44 0.32 0.29 4.23 2.67 2.21 3.70 2.55 2.26 8.65 6.62 6.06 8.17 6.50 6.14
0.9 0.29 1.03 0.37 0.17 0.95 0.37 2.18 2.13 1.39 1.85 2.01 1.40 5.78 4.92 3.95 5.44 4.80 3.99

0.9

-0.9 2.88 2.12 1.86 2.15 1.95 1.87 9.28 7.99 7.63 8.38 7.86 7.60 15.19 14.04 13.77 14.54 13.92 13.73
-0.5 4.82 3.66 3.11 3.85 3.39 3.20 12.60 11.17 10.77 11.76 11.05 10.78 18.74 17.66 17.33 18.14 17.59 17.35
0.5 1.79 1.06 0.92 1.39 0.92 0.93 6.23 2.78 2.16 5.58 2.58 2.15 11.31 5.88 4.29 10.64 5.73 4.43
0.9 1.33 2.28 1.61 1.02 2.16 1.57 4.17 3.37 3.01 3.75 3.26 2.88 7.83 5.07 4.72 7.40 4.92 4.68
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Table 5.17 Hypothesis test results for H0 : β4 = 0, using a sample size of 30 and showing the Negative t-statistics

NEGATIVE t-STATISTICS
Sample size: T=30
H0 : β4

Nominal size: 1% 5% 10%

Test: N NE NCF T TE TCF N NE NCF T TE TCF N NE NCF T TE TCF

ρ ϕ % % %

-0.9

-0.9 0.98 0.87 4.26 0.84 0.81 4.19 3.16 1.53 5.73 2.87 1.43 5.67 6.38 2.82 7.51 5.88 2.63 7.38
-0.5 1.33 0.54 2.43 1.01 0.45 2.33 4.94 1.75 3.85 4.43 1.60 3.82 9.67 4.14 5.90 9.03 3.86 5.91
0.5 3.95 2.19 2.36 2.91 1.92 2.44 10.88 8.79 8.41 9.95 8.50 8.41 17.39 15.11 14.73 16.67 14.92 14.76
0.9 2.24 0.99 1.58 1.63 0.82 1.49 6.80 5.02 5.07 6.15 4.66 5.07 11.83 9.89 9.68 11.28 9.69 9.66

-0.5

-0.9 0.36 0.20 0.21 0.21 0.19 0.21 2.42 0.90 0.71 2.08 0.88 0.76 6.05 2.53 1.89 5.53 2.47 1.99
-0.5 0.68 0.29 0.20 0.41 0.24 0.23 4.59 2.58 2.14 3.92 2.47 2.16 9.26 6.45 5.72 8.81 6.39 5.83
0.5 1.27 0.97 0.91 0.83 0.92 0.90 5.35 4.84 4.79 4.74 4.76 4.71 10.41 9.63 9.56 9.82 9.49 9.47
0.9 0.64 0.50 0.39 0.44 0.42 0.39 3.72 2.87 2.80 3.31 2.82 2.82 7.98 6.69 6.64 7.45 6.65 6.64

0.5

-0.9 0.71 0.56 0.47 0.41 0.52 0.47 4.05 3.49 3.38 3.56 3.44 3.38 8.61 8.08 7.99 8.05 7.98 7.93
-0.5 1.46 1.24 1.06 0.95 1.18 1.05 5.51 5.12 5.06 5.02 5.06 5.02 10.50 9.73 9.70 10.00 9.69 9.67
0.5 0.69 0.25 0.15 0.42 0.23 0.18 3.79 2.24 1.86 3.29 2.09 1.89 8.18 6.06 5.48 7.60 6.00 5.54
0.9 0.22 0.96 0.33 0.10 0.93 0.27 2.26 2.10 1.36 1.92 1.95 1.27 5.50 4.59 3.60 5.15 4.50 3.69

0.9

-0.9 2.71 2.19 2.04 2.07 2.12 2.07 8.66 7.64 7.56 7.84 7.51 7.56 14.22 13.19 13.13 13.65 13.05 13.09
-0.5 4.42 3.37 2.91 3.56 3.10 2.99 11.45 10.09 9.71 10.61 9.94 9.74 17.53 16.45 16.27 16.95 16.36 16.24
0.5 1.41 1.00 0.90 1.12 0.85 0.84 5.75 2.68 2.21 5.20 2.53 2.19 11.36 5.76 4.60 10.50 5.61 4.67
0.9 1.23 2.22 1.66 0.95 2.13 1.54 3.83 3.33 2.93 3.40 3.18 2.83 7.67 5.21 4.69 7.27 5.02 4.62
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Table 5.18 Hypothesis test results for H0 : β2, β3, β4 = 0, using a sample size of 30 and showing the F-statistics

F-STATISTICS
Sample size: T=30
H0 : β2, β3, β4

Nominal size: 1% 5% 10%

Test: X2 X2E X2CF F FE FCF X2 X2E X2CF F FE FCF X2 X2E X2CF F FE FCF

ρ ϕ % % %

-0.9

-0.9 4.27 4.22 1.95 3.35 3.60 1.64 6.88 4.89 2.73 5.91 4.03 2.48 8.66 5.43 3.19 7.75 4.40 3.03
-0.5 4.71 3.47 0.77 3.58 2.60 0.58 8.09 4.44 1.43 6.75 3.15 1.29 10.93 5.31 2.01 9.56 3.95 2.03
0.5 10.59 2.45 0.12 6.41 0.76 0.34 21.15 6.93 0.91 16.88 4.42 2.37 30.07 11.24 3.26 25.81 8.42 5.03
0.9 12.82 3.33 0.22 8.70 1.21 0.65 23.01 7.86 1.33 18.90 4.68 2.81 30.88 12.16 3.81 27.46 8.51 5.58

-0.5

-0.9 0.38 0.04 0.02 0.15 0.04 0.03 1.52 0.13 0.03 0.84 0.08 0.06 3.00 0.23 0.07 2.26 0.14 0.08
-0.5 0.89 0.15 0.01 0.39 0.06 0.03 3.50 0.36 0.06 2.17 0.23 0.11 7.02 0.69 0.12 5.30 0.44 0.19
0.5 2.18 1.06 0.25 1.00 0.69 0.38 6.81 3.28 0.93 4.77 2.54 1.77 12.22 5.89 2.86 9.44 5.30 3.95
0.9 1.35 0.40 0.07 0.60 0.25 0.11 4.78 1.21 0.22 3.16 0.95 0.45 8.85 2.45 0.65 6.65 1.91 1.03

0.5

-0.9 1.52 0.58 0.13 0.65 0.38 0.20 5.75 1.89 0.62 3.69 1.50 0.92 10.30 3.78 1.55 8.16 3.13 2.23
-0.5 2.25 1.23 0.23 1.14 0.82 0.36 7.13 3.46 1.01 4.95 2.83 2.02 12.20 6.28 3.01 9.57 5.64 4.33
0.5 0.59 0.08 0.01 0.25 0.05 0.02 2.62 0.29 0.03 1.66 0.16 0.08 5.78 0.48 0.13 4.05 0.33 0.17
0.9 0.34 0.00 0.00 0.14 0.00 0.00 1.33 0.04 0.00 0.81 0.00 0.00 2.94 0.08 0.00 2.02 0.04 0.01

0.9

-0.9 5.05 1.85 0.18 2.66 0.98 0.41 13.04 5.15 1.18 9.74 3.95 2.52 20.11 9.43 3.80 16.45 8.27 5.77
-0.5 7.00 2.39 0.26 3.81 1.35 0.62 16.46 6.73 1.52 12.39 4.78 2.82 24.12 11.01 4.08 20.33 9.23 5.97
0.5 2.35 1.11 0.26 1.51 0.71 0.29 4.75 1.75 0.54 3.64 1.28 0.62 7.42 2.22 0.74 5.99 1.73 0.81
0.9 1.95 1.27 0.50 1.29 0.91 0.39 3.75 1.63 0.66 2.97 1.23 0.61 5.64 1.84 0.78 4.63 1.41 0.73
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5.2.1 Comments on the results for the t statistic

As observed in Tables 5.1–5.8 and 5.10–5.17, in almost all cases, the Edgeworth and

Cornish-Fisher corrections based on the normal distribution improve the null rejection

probabilities compared to the uncorrected test based on the normal distribution. This

improvement lies in the fact that the null rejection probabilities of the corrected tests better

approximate the nominal size (significance level) of the t tests. The same holds for the Edgeworth

and Cornish-Fisher corrections based on the Student-t distribution compared to the uncorrected

Student-t test.

Furthermore, the tests based on the t distribution appear to perform better than the

corresponding tests based on the normal distribution in almost all regions of the experimental

space.

In addition, in most areas of the experimental space, the Cornish-Fisher corrections

perform better than the Edgeworth corrections, confirming the theoretical advantages of the

Cornish-Fisher corrections over the Edgeworth corrections.

Finally, comparing the tables corresponding to sample size 15 with those for sample size 30,

we observe that as the sample size increases (sample size 30), all t tests based on the normal and

Student-t distributions exhibit improved null rejection probabilities (closer to the nominal size)

compared to the corresponding tests for sample size 15.

5.2.2 Comments on the results for the Wald and F statistics

As observed in Tables 5.9 and 5.18, in almost all cases, the Edgeworth and Cornish-Fisher

corrections based on the χ2 distribution improve the null rejection probabilities compared to the

uncorrected test based on the χ2 distribution. This improvement lies in the fact that the null

rejection probabilities of the corrected tests better approximate the nominal size (significance

level) of the χ2 tests. The same holds for the Edgeworth and Cornish-Fisher corrections based

on the F distribution compared to the uncorrected F test.

Furthermore, the tests based on the F distribution appear to perform better than the

corresponding tests based on the χ2 distribution in almost all regions of the experimental space.

In addition, in most areas of the experimental space, the Cornish-Fisher corrections

perform better than the Edgeworth corrections, confirming the theoretical advantages of the

Cornish-Fisher corrections over the Edgeworth corrections.

Finally, comparing the tables corresponding to sample size 15 with those for sample size 30,

we observe that as the sample size increases (sample size 30), all χ2 and F tests exhibit improved
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null rejection probabilities (closer to the nominal size) compared to the corresponding tests for

sample size 15.

5.2.3 Discussion of Negative Values of Cornish-Fisher Adjusted Wald and F Statistics

From formulas (3.29) and (3.36), it follows that the Cornish-Fisher adjustments may yield

negative values for the adjusted Wald and F statistics. Such values can arise for three main

reasons:

I. Very large values of the unadjusted Wald or F statistic.

II. Large values of the adjustment factors h1, h2 or q1, q2.

III. A combination of the above two factors.

If the occurrence of a negative adjusted statistic is due to a large value of the unadjusted Wald

or F statistic, this phenomenon is not concerning, as it indicates that the unadjusted statistic

is so large that the null hypothesis should be rejected with high confidence. Conversely, if the

negative result is caused by large values of the adjustment factors (h1, h2 or q1, q2), the existence

of a negative Cornish-Fisher adjusted Wald or F statistic cannot be considered as evidence to

reject the null hypothesis, and further investigation is required.

In our experiment, several negative Cornish-Fisher adjusted Wald and F statistics were

detected. For this reason, we investigated their causes as follows:

For each adjusted Wald statistic, we recorded the corresponding value of the unadjusted

Wald statistic and the adjustment factors h1 and h2. Then, for all Cornish-Fisher adjusted Wald

statistics, the following equation was estimated by OLS:

stat_x_2_cf = α0 + α1w+ α2h1 + α3h2 + ε (5.59)

where stat_x_2_cf is the Cornish-Fisher adjusted value of the Wald statistic, w is the unadjusted

value of the Wald statistic, h1 and h2 are adjustment factors used to modify the Wald statistic,

α0, α1, α2, α3 are the regression coefficients, and ε is the error term capturing the random

deviations from the model.

Subsequently, the statistical significance of the individual coefficients as well as the overall

model was examined.

Similarly, for each Cornish-Fisher adjusted F statistic, the corresponding value of the

unadjusted F statistic and the adjustment factors q1 and q2 were recorded. For all observations,
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the following equation was estimated by OLS:

stat_F_cf = α0 + α1v + α2q1 + α3q2 + ε (5.60)

where stat_F_cf is the Cornish-Fisher adjusted value of the F statistic, v is the unadjusted value

of the F statistic, q1 and q2 are adjustment factors used to modify the F statistic, α0, α1, α2, α3

are the regression coefficients, and ε is the error term capturing the random deviations from the

model.

In this case as well, the statistical significance of the coefficients and the overall model was

tested.

The results of these regressions are presented in Appendix F (Tables F.1–F.64).

Additionally, for each sample size (T = 15, 30) and each combination of parameters ρ and ϕ,

graphs were created showing all negative Cornish-Fisher adjusted Wald statistics and the values

of the adjustment factors h1, h2 as functions of the corresponding unadjusted Wald statistic.

Similarly, graphs were created for the negative adjusted F statistics and the values of q1, q2.

These graphs are presented in Appendix F (Figures F.1–F.64).

As an example, this chapter presents the tables and graphs for sample size T = 15 (Tables

F.13–F.16, Figures F.13 and F.14), as well as for T = 30 (Tables F.45–F.48, Figures F.45 and

F.46).

For instance, Table F.13 shows the estimation of the function (for the Wald statistic) for

ρ = −0.5, ϕ = 0.5, and T = 15. The table indicates that the Cornish-Fisher adjusted Wald

statistic is due to the adjustment factors h1 and h2, whose coefficients are statistically significant

at the 1% level. Similarly, Table F.15 presents the estimation of the function (for the F statistic)

under the same conditions (ρ = −0.5, ϕ = 0.5, T = 15). The results show that the Cornish-Fisher

adjusted statistic is attributed to both the adjustment factors q1, q2 and the unadjusted F

statistic, with all coefficients statistically significant at the 1% level.

The corresponding graphs (Figures F.13 and F.14) confirm that the negative adjusted

Cornish-Fisher statistics are associated with large values of h1, h2, q1, and q2. Furthermore,

Figure F.14 (for the F statistics) shows that the negative adjusted Cornish-Fisher statistics are

almost exclusively due to large values of the unadjusted F statistic, for example when the F

values exceed 7.
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Table F.13: Estimated Regression Results
under ρ = −0.5, ϕ = 0.5, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 0.020
(0.047)

h1 −0.051∗∗∗

(0.002)
h2 −0.115∗∗∗

(0.001)
Constant 3.773∗∗∗

(0.262)

Observations 10,000
R2 0.619
Adjusted R2 0.619

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.14: Estimated Regression Results
under ρ = −0.5, ϕ = 0.9, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −7.163∗∗∗

(1.571)
h1 0.551∗∗∗

(0.023)
h2 −0.436∗∗∗

(0.007)
Constant 62.640∗∗∗

(7.162)

Observations 10,000
R2 0.860
Adjusted R2 0.860

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.15: Estimated Regression Results
under ρ = −0.5, ϕ = 0.5, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 0.661∗∗∗

(0.047)
q1 −0.051∗∗∗

(0.002)
q2 −0.192∗∗∗

(0.002)
Constant 0.486∗∗∗

(0.088)

Observations 10,000
R2 0.619
Adjusted R2 0.619

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.16: Estimated Regression Results
under ρ = −0.5, ϕ = 0.9, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −6.699∗∗∗

(1.571)
q1 0.551∗∗∗

(0.023)
q2 −0.726∗∗∗

(0.011)
Constant 19.212∗∗∗

(2.384)

Observations 10,000
R2 0.860
Adjusted R2 0.860

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure F.13: Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.5, and T = 15
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Figure F.14: Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.5, and T=15
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Table F.45: Estimated Regression Results
under ρ = −0.5, ϕ = 0.5, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −0.430∗∗∗

(0.094)
h1 −0.039∗∗∗

(0.001)
h2 −0.174∗∗∗

(0.001)
Constant 9.638∗∗∗

(0.411)

Observations 10,000
R2 0.635
Adjusted R2 0.635

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.46: Estimated Regression Results
under ρ = −0.5, ϕ = 0.9, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −2.839∗∗∗

(0.126)
h1 −0.030∗∗∗

(0.001)
h2 −0.033∗∗∗

(0.0004)
Constant 11.206∗∗∗

(0.479)

Observations 10,000
R2 0.835
Adjusted R2 0.835

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.47: Estimated Regression Results
under ρ = −0.5, ϕ = 0.5, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −0.219∗∗

(0.094)
q1 −0.039∗∗∗

(0.001)
q2 −0.289∗∗∗

(0.002)
Constant 2.660∗∗∗

(0.136)

Observations 10,000
R2 0.635
Adjusted R2 0.635

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.48: Estimated Regression Results
under ρ = −0.5, ϕ = 0.9, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −2.666∗∗∗

(0.126)
q1 −0.030∗∗∗

(0.001)
q2 −0.054∗∗∗

(0.001)
Constant 3.571∗∗∗

(0.160)

Observations 10,000
R2 0.835
Adjusted R2 0.835

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure F.45: Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.5, and T=30
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Figure F.46: Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.5, and T=30
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Chapter 6

Conclusion

In this thesis, we dealt with small-sample correction of the size of the t and F econometric tests

in the generalized linear model with ARMA(1,1) disturbances. The methodology we used falls

within the framework of refined asymptotic theory, according to the Nagar school approach. The

corrections we propose are based on:

• Edgeworth-corrected critical values

• Cornish-Fisher-corrected test statistics

There are both theoretical and practical reasons that support the preference for

Cornish-Fisher corrections. The theoretical reasons are based on the fact that:

• Edgeworth-corrected critical values are derived from Edgeworth expansions, which are

not well-defined distributions (and may assign negative probabilities in the tails of the

distribution)

• Cornish-Fisher-corrected statistics are well-defined random variables with well-behaved

properties

Since both alternative correction methods have an error of the same order of magnitude, the

comparative evaluation of their performance can only be carried out using stochastic simulation

experiments (Monte Carlo).

6.1 The results of the Monte Carlo simulations

As regards the results for the t-test, in almost all cases, the Edgeworth and Cornish-Fisher

corrections based on the normal distribution improve the null rejection probabilities compared to

the uncorrected test based on the normal distribution. This improvement lies in the fact that the

null rejection probabilities of the corrected tests better approximate the nominal size (significance

level) of the t tests. The same holds for the Edgeworth and Cornish-Fisher corrections based on

the Student-t distribution compared to the uncorrected Student-t test.
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Furthermore, the tests based on the t distribution appear to perform better than the

corresponding tests based on the normal distribution in almost all regions of the experimental

space.

In addition, in most areas of the experimental space, the Cornish-Fisher corrections

perform better than the Edgeworth corrections, confirming the theoretical advantages of the

Cornish-Fisher corrections over the Edgeworth corrections.

Finally, comparing the tables corresponding to sample size 15 with those for sample size 30,

we observe that as the sample size increases (sample size 30), all t tests based on the normal and

Student-t distributions exhibit improved null rejection probabilities (closer to the nominal size)

compared to the corresponding tests for sample size 15.

As regards the results for the t-test, in almost all cases, the Edgeworth and Cornish-Fisher

corrections based on the χ2 distribution improve the null rejection probabilities compared to the

uncorrected test based on the χ2 distribution. This improvement lies in the fact that the null

rejection probabilities of the corrected tests better approximate the nominal size (significance

level) of the χ2 tests. The same holds for the Edgeworth and Cornish-Fisher corrections based

on the F distribution compared to the uncorrected F test.

Furthermore, the tests based on the F distribution appear to perform better than the

corresponding tests based on the χ2 distribution in almost all regions of the experimental space.

In addition, in most areas of the experimental space, the Cornish-Fisher corrections

perform better than the Edgeworth corrections, confirming the theoretical advantages of the

Cornish-Fisher corrections over the Edgeworth corrections.

Finally, comparing the tables corresponding to sample size 15 with those for sample size 30,

we observe that as the sample size increases (sample size 30), all χ2 and F tests exhibit improved

null rejection probabilities (closer to the nominal size) compared to the corresponding tests for

sample size 15.

6.2 Some remarks on future research

In this thesis, we evaluated the proposed corrections of statistical tests through simulation

experiments. Each repetition of the simulation corresponds to the situation faced by a researcher

estimating a generalized linear model with ARMA(1,1) errors. This simulation essentially

proposes a procedure for dealing with estimation and testing problems, which consists of the

following steps:
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1. The researcher estimates the model using the Ordinary Least Squares (OLS) method, which

yields consistent estimators and residuals.

2. Using the OLS residuals, the researcher computes the estimates ρ, ϕ, and σ̂2.

3. Assuming the estimated values ρ, ϕ, and σ̂2 as the true parameters, the researcher performs

simulations to estimate the following asymptotic quantities:

µρ = E(δρ)/τ

µϕ = E(δϕ)/τ

λ0 = E(δ20)

λρ = E(δρδ0)

λϕ = E(δϕδ0)

λρρ∗ = E(δρδρ)

λϕϕ∗ = E(δϕδϕ)

λρϕ∗ = E(δρδϕ)

(6.1)

These quantities are then used to compute the proposed Edgeworth and Cornish-Fisher

corrections for the t and F tests.

Alternatively, a researcher can avoid much of the simulation described in step (3) using the

following approach:

1. (a) The researcher estimates the model using OLS and obtains consistent residuals.

(b) Using the OLS residuals, the researcher calculates the estimates ρ, ϕ, and σ̂2.

(c) Based on the estimated values of ρ and ϕ, and utilizing the simulation results from

Chapter 4, the researcher can compute the quantities µρ, µϕ, λρρ, λρϕ, and λϕϕ. The

remaining quantities, namely λ0, λρ, and λϕ, can be obtained through the following

procedure:

2. The researcher performs bootstrap sampling using the original dataset, in order to

approximate the empirical distributions of the estimated σ̂2, ρ, and ϕ. From these empirical

distributions, the quantities λ0, λρ, and λϕ are derived.

The evaluation of this alternative approach, and its comparison with the method proposed

in this thesis, can be conducted through further simulation experiments and constitutes a topic

for future research.
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Appendix A

The elements of the variance-covariance matrix Ω

In this study, the computation of the elements of the variance–covariance matrix Ω are based on

the theoretical framework proposed by Tiao and Ali (1971) for the ARMA(1,1) model. To verify

the correct computation of the elements of this matrix, systematic checks were performed whereby,

through appropriate zeroing of certain parameters, the model reduces either to a first-order

moving average process (MA(1)) or to a first-order autoregressive process (AR(1)). Moreover,

to simplify the mathematical manipulations, the symbol D is defined as the common term

appearing in both the diagonal and non-diagonal elements of the matrix Ω, thereby facilitating

the subsequent analytical treatment.

A.1 Theoretical framework and validation of the variance–covariance matrix

Ω in ARMA(1,1)

According to Tiao and Ali (1971), we can calculate diagonal elements, ωtt, and the non-diagonal

elements, ωtt′ , of the matrix Ω as follows:

ωtt = |Ω|(1− ρ2)−1[1− (−ϕ)2]−2[(1− ρ(−ϕ))2(1 + ρ2 − 2ρ(−ϕ))

+((−ϕ)− ρ)2{((−ϕ)− ρ)− ρ(1− ρ(−ϕ))}(−ϕ)2T−1

−((−ϕ)− ρ)2(1− ρ(−ϕ))2{(−ϕ)2(t−1) + (−ϕ)2(T−t)}]

= |Ω| 1

(1− ρ2)(1− (−ϕ)2)2
[(1 + ρϕ)2(1 + ρ2 + 2ρϕ)

+(ϕ+ ρ)2{−(ϕ+ ρ)− ρ(1 + ρϕ)}(−ϕ)2T−1

−(ϕ+ ρ)2(1 + ρϕ)2{ϕ2(t−1) + ϕ2(T−t)}]. (A.1)

ωtt′ = |Ω|((−ϕ)− ρ)(1− ρ(−ϕ))
(1− ρ2)(1− (−ϕ)2)2

[(1− ρ(−ϕ))2(−ϕ)|t−t′|−1

+((−ϕ)− ρ)2(−ϕ)2T−|t−t′|−1

−((−ϕ)− ρ)(1− ρ(−ϕ)){(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)}]

= |Ω|−(ϕ+ ρ)(1 + ρϕ)

(1− ρ2)(1− ϕ2)2
[(1 + ρϕ)2(−ϕ)|t−t′|−1
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+(ϕ+ ρ)2(−ϕ)2T−|t−t′|−1

+(ϕ+ ρ)(1 + ρϕ){(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)}]. (A.2)

where

t ̸= t′ and t, t′ = 1, . . . , T. (A.3)

The determinant of the matrix Ω−1 is

|Ω|−1 = 1 +
(ρ− (−ϕ))2(1− (−ϕ)2T )

(1− ρ2)(1− (−ϕ)2)
⇒

|Ω|−1 = 1 +
(ρ+ ϕ)2(1− ϕ2T )
(1− ρ2)(1− ϕ2)

. (A.4)

A.1.1 Verification of the Reduction to a First-Order Moving Average (MA(1)) Process

When ρ = 0, the expressions in (A.1), (A.2), and (A.4) reduce to those corresponding to the

stationary first-order moving average process. If ρ = 0 equation (A.4) implies that

|Ω|−1 = 1 +
(0 + ϕ)2(1− ϕ2T )
(1− 02)(1− ϕ2)

= 1 +
ϕ2(1− ϕ2T )

1− ϕ2
=

1− ϕ2 + ϕ2 − ϕ2(T+1)

1− ϕ2
⇒

|Ω|−1 =
1− ϕ2(T+1)

1− ϕ2
⇒ (A.5)

|Ω| = 1− ϕ2

1− ϕ2(T+1)
. (A.6)

If ρ = 0 equation (A.1) implies that

ωtt =
(1− ϕ2)

(1− ϕ2(T+1))

1

(1− ρ02)(1− (−ϕ)2)2
[(1 + 0ϕ)2(1 + 02 + 2ϕ0)

+(ϕ+ 0)2{−(ϕ+ 0)− 0(1 + 0ϕ)}(−ϕ)2T−1

−(ϕ+ 0)2(1 + 0ϕ)2{ϕ2(t−1) + ϕ2(T−t)}]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[1 + ϕ2(−ϕ)(−ϕ)2T−1 − ϕ2(ϕ2(t−1) + ϕ2(T−t))]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[1 + ϕ2(−ϕ)2T − ϕ2t − ϕ2(T+1−t))]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[1 + ϕ2(T+1) − ϕ2t − ϕ2(T+1−t))]. (A.7)

If ρ = 0 equation (A.2) implies that

ωtt′ =
(1− ϕ2)

(1− ϕ2(T+1))

−(ϕ+ 0)(1 + 0ϕ)

(1− 02)(1− ϕ2)2
[(1 + 0ϕ)2(−ϕ)|t−t′|−1

+(ϕ+ 0)2(−ϕ)2T−|t−t′|−1
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+(ϕ+ 0)(1 + 0ϕ){(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)}]

=
(−ϕ)

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)|t−t′|−1 + (−ϕ)2(−ϕ)2T−|t−t′|−1

+ϕ{(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)}]

=
(−ϕ)

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)|t−t′|−1 + (−ϕ)2T−|t−t′|+1

+ϕ{(−ϕ)t+t′(−ϕ)−2 + (−ϕ)2T (−ϕ)−(t+t′)}]

=
(−ϕ)

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)|t−t′|−1 + (−ϕ)2T−|t−t′|+1

+ϕ{ϕ−2(−ϕ)t+t′ + ϕ2T (−ϕ)−(t+t′)}]

=
(−ϕ)

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)|t−t′|−1 + (−ϕ)2T−|t−t′|+1

+ϕ−1(−ϕ)t+t′ + ϕ2T+1(−ϕ)−(t+t′)]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)|t−t′| + (−ϕ)2T−|t−t′|+2

−(−ϕ)t+t′ − ϕ2(T+1)(−ϕ)−(t+t′)]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)|t−t′| + (−ϕ)2(T+1)−|t−t′|

−(−ϕ)t+t′ − ϕ2(T+1)(−ϕ)−(t+t′)]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)|t−t′| + (−ϕ)2(T+1)−|t−t′|

−(−ϕ)t+t′ − (−ϕ)2(T+1)−(t+t′)]. (A.8)

If t′ ≥ t equation (A.8) implies that

ωtt′ =
1

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)t′−t + (−ϕ)2(T+1)−(t′−t)

−(−ϕ)t+t′ − (−ϕ)2(T+1)−(t+t′)]. (A.9)

Then, using the results in Shaman (1969), referring to a first-order moving average process, we

verify the formulae for ωtt and ωtt′ .

If t′ ≥ t equation (A.2) implies that

ωtt′
s =

(−ϕ)t′−t

(1− ϕ2)(1− ϕ2(T+1))
(1− ϕ2t)(1− ϕ2(T−t′+1))

=
(−ϕ)t′−t

(1− ϕ2)(1− ϕ2(T+1))
[1− ϕ2(T+1−t′) − ϕ2t + ϕ2(T+1+t−t′)]

=
(−ϕ)t′−t

(1− ϕ2)(1− ϕ2(T+1))
[1− (−ϕ)2(T+1−t′) − (−ϕ)2t + (−ϕ)2(T+1+t−t′)]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)t′−t − (−ϕ)2(T+1)−2t′+t′−t − (−ϕ)2t+t′−t

+(−ϕ)2(T+1)+2t−2t′+t′−t]
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=
1

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)t′−t − (−ϕ)2(T+1)−(t′+t) − (−ϕ)t′+t

+(−ϕ)2(T+1)−(t′−t)]

= ωtt′ . (A.10)

Then, for t = t′ we take

ωtt′ |t = t′ =
1

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)t′−t + (−ϕ)2(T+1)−(t′−t) − (−ϕ)t+t′

−(−ϕ)2(T+1)−(t+t′)]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[(−ϕ)0 + (−ϕ)2(T+1)−0 − (−ϕ)2t

−(−ϕ)2(T+1)−2t]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[1 + (−ϕ)2(T+1) − (−ϕ)2t − (−ϕ)2(T+1−t)]

=
1

(1− ϕ2)(1− ϕ2(T+1))
[1 + ϕ2(T+1) − ϕ2t − ϕ2(T+1−t)]

= ωtt. (A.11)

So, if in formulae (A.1), (A.2), and (A.4) ρ = 0, then we end up with MA(1).

A.1.2 Verification of the Reduction to a First-Order Autoregressive Process

When ϕ = 0, the expressions in (A.1), (A.2), and (A.4) reduce to those corresponding to the

stationary first-order autoregressive process.

If ϕ = 0 equation (A.4) implies that

|Ω|−1 = 1 +
(ρ+ 0)2(1− 02T )

(1− ρ2)(1− 02)
= 1 +

ρ2

(1− ρ2)
=

1− ρ2 + ρ2

(1− ρ2)
⇒

|Ω|−1 =
1

(1− ρ2)
⇒ (A.12)

|Ω| = (1− ρ2). (A.13)

If ϕ = 0, for t ̸= 1 and t ̸= T equation (A.1) implies that
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ωtt = (1− ρ2) 1

(1− ρ2)(1− 02)2
[(1 + ρ0)2(1 + ρ2 + 2ρ0)

+(0 + ρ)2{−(0 + ρ)− ρ(1 + ρ0)}(−0)2T−1

−(0 + ρ)2(1 + ρ0)2{02(t−1) + 02(T−t)}]⇒

ωtt = (1 + ρ2). (A.14)

If t = 1 equation (A.1) implies that

ω11 = |Ω| 1

(1− ρ2)(1− ϕ2)2
[(1 + ρϕ)2(1 + ρ2 + 2ρϕ)

+(ϕ+ ρ)2{−(ϕ+ ρ)− ρ(1 + ρϕ)}(−ϕ)2T−1

−(ϕ+ ρ)2(1 + ρϕ)2{ϕ2(1−1) + ϕ2(T−1)}]

= |Ω| 1

(1− ρ2)(1− ϕ2)2
[(1 + ρϕ)2(1 + ρ2 + 2ρϕ)

+(ϕ+ ρ)2{−(ϕ+ ρ)− ρ(1 + ρϕ)}(−ϕ)2T−1

−(ϕ+ ρ)2(1 + ρϕ)2{1 + ϕ2(T−1)}], (A.15)

and if t = 1 and ϕ = 0 from (A.13) and (A.15) we take

ω11 = (1− ρ2) 1

(1− ρ2)(1− 02)2
[(1 + ρ0)2(1 + ρ2 + 2ρ0)

+(0 + ρ)2{−(0 + ρ)− ρ(1 + ρ0)}(−0)2T−1

−(0 + ρ)2(1 + ρ0)2{1 + 02(T−1)}]

= [1 + ρ2 + 0− ρ2]⇒

ω11 = 1. (A.16)

If t = T equation (A.1) implies that

ωTT = |Ω| 1

(1− ρ2)(1− ϕ2)2
[(1 + ρϕ)2(1 + ρ2 + 2ρϕ)

+(ϕ+ ρ)2{−(ϕ+ ρ)− ρ(1 + ρϕ)}(−ϕ)2T−1

−(ϕ+ ρ)2(1 + ρϕ)2{ϕ2(T−1) + ϕ2(T−T )}]

= |Ω| 1

(1− ρ2)(1− ϕ2)2
[(1 + ρϕ)2(1 + ρ2 + 2ρϕ)

+(ϕ+ ρ)2{−(ϕ+ ρ)− ρ(1 + ρϕ)}(−ϕ)2T−1

−(ϕ+ ρ)2(1 + ρϕ)2{ϕ2(T−1) + 1}], (A.17)
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and if t = T and ϕ = 0 from (A.13) and (A.17) we take

ωTT = (1− ρ2) 1

(1− ρ2)(1− 02)2
[(1 + ρ0)2(1 + ρ2 + 2ρ0)

+(0 + ρ)2{−(0 + ρ)− ρ(1 + ρ0)}(−0)2T−1

−(0 + ρ)2(1 + ρ0)2{02(T−1) + 1}]

= [1 + ρ2 + 0− ρ2]⇒

ωTT = 1. (A.18)

If |t− t′| = 1 equation (A.2) implies that

ωtt′ = |Ω|−(ϕ+ ρ)(1 + ρϕ)

(1− ρ2)(1− ϕ2)2
[(1 + ρϕ)2(−ϕ)1−1

+(ϕ+ ρ)2(−ϕ)2T−1−1

+(ϕ+ ρ)(1 + ρϕ){(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)}]

= |Ω|−(ϕ+ ρ)(1 + ρϕ)

(1− ρ2)(1− ϕ2)2
[(1 + ρϕ)21

+(ϕ+ ρ)2(−ϕ)2(T−1)

+(ϕ+ ρ)(1 + ρϕ){(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)}]. (A.19)

If |t− t′| = 1 and ϕ = 0 from (A.13) and (A.19) we take

ωtt′ = (1− ρ2)−(0 + ρ)(1 + ρ0)

(1− ρ2)(1− 02)2
[(1 + ρ0)21

+(0 + ρ)2(−0)2(T−1)

+(0 + ρ)(1 + ρ0){(−0)t+t′−2 + (−0)2T−(t+t′)}]⇒

ωtt′ = −ρ. (A.20)

If |t− t′| ̸= 1 and ϕ = 0 we find

ωtt′ = (1− ρ2)−(0 + ρ)(1 + ρ0)

(1− ρ2)(1− 02)2
[(1 + ρ0)2(−0)|t−t′|−1

+(0 + ρ)2(−0)2T−|t−t′|−1

+(0 + ρ)(1 + ρ0){(−0)t+t′−2 + (−0)2T−(t+t′)}]⇒

ωtt′ = 0. (A.21)
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A.1.3 Definition and Role of the Common Term D in Simplifying Matrix Expressions

From equation (A.4) we take

|Ω|−1 = 1 +
(ρ+ ϕ)2(1− ϕ2T )
(1− ρ2)(1− ϕ2)

=
(1− ρ2)(1− ϕ2) + (ρ+ ϕ)2(1− ϕ2T )

(1− ρ2)(1− ϕ2)
(A.22)

|Ω| = (1− ρ2)(1− ϕ2)
(1− ρ2)(1− ϕ2) + (ρ+ ϕ)2(1− ϕ2T )

. (A.23)

Then we define

1

D
= |Ω| 1

(1− ρ2)(1− ϕ2)2
. (A.24)

Using equations (A.23) and (A.24) we find

1

D
=

(1− ρ2)(1− ϕ2)
[(1− ρ2)(1− ϕ2) + (ρ+ ϕ)2(1− ϕ2T )](1− ρ2)(1− ϕ2)2

=
(1− ρ2)(1− ϕ2)

[1− ρ2 − ϕ2 + ρ2ϕ2 + (ρ+ ϕ)2 − (ρ+ ϕ)2ϕ2T ](1− ρ2)(1− ϕ2)2

=
(1− ρ2)(1− ϕ2)

[1− ρ2 − ϕ2 + ρ2ϕ2 + ρ2 + 2ρϕ+ ϕ2 − (ρ+ ϕ)2ϕ2T ](1− ρ2)(1− ϕ2)2

=
(1− ρ2)(1− ϕ2)

[1 + ρ2ϕ2 + 2ρϕ− (ρ+ ϕ)2ϕ2T ](1− ρ2)(1− ϕ2)2

=
(1− ρ2)(1− ϕ2)

[(1 + ρϕ)2 − (ρ+ ϕ)2ϕ2T ](1− ρ2)(1− ϕ2)2
⇒

1

D
=

1

[(1 + ρϕ)2 − (ρ+ ϕ)2ϕ2T ](1− ϕ2)
. (A.25)

From equation (A.25) we take

D = [(1 + ρϕ)2 − (ρ+ ϕ)2ϕ2T ](1− ϕ2)

= (1 + ρϕ)2 − (ρ+ ϕ)2ϕ2T − (1 + ρϕ)2ϕ2 + (ρ+ ϕ)2ϕ2T+2. (A.26)

Using equations (A.1), (A.24) we find
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ωtt =
1

D
[(1 + ρϕ)2(1 + ρ2 + 2ρϕ)

+(ϕ+ ρ)2{(ϕ+ ρ) + ρ(1 + ρϕ)}ϕ2T−1

−(ϕ+ ρ)2(1 + ρϕ)2{ϕ2(t−1) + ϕ2(T−t)}]. (A.27)

Using equations (A.2), (A.24) we find

ωtt′ =
1

D
[−(ϕ+ ρ)(1 + ρϕ)3(−ϕ)|t−t′|−1

−(ϕ+ ρ)3(1 + ρϕ)(−ϕ)2T−|t−t′|−1

−(ϕ+ ρ)2(1 + ρϕ)2{(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)}]. (A.28)
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First- and second-order derivatives of the elements of Ω with respect to ρ and ϕ

Initially, all the necessary individual components and their corresponding derivatives are

computed in order to subsequently assemble the first- and second-order derivatives of the elements

of the matrix Ω with respect to ρ and ϕ. This approach follows a modular strategy, given the

extensive and complex nature of the calculations, which necessitate their division into manageable

and distinct stages.

B.1 Derivatives

We define ωtt as follows:

ωtt = D−1N, (B.1)

where

D = [(1 + ρϕ)2 − (ρ+ ϕ)2ϕ2T ][1− ϕ2] (B.2)

and

N = (1 + ρϕ)2(1 + ρ2 + 2ρϕ) + (ϕ+ ρ)2 {(ϕ+ ρ) + ρ(1 + ρϕ)}ϕ2T−1

−(ϕ+ ρ)2(1 + ρϕ)2
{
ϕ2(t−1) + ϕ2(T−t)

}
. (B.3)

Also, we define ωtt′ as follows:

ωtt′ = D−1N∗, (B.4)

where

N∗ = −(ϕ+ ρ)(1 + ρϕ)3(−ϕ)|t−t′|−1 − (ϕ+ ρ)3(1 + ρϕ)(−ϕ)2T−|t−t′|−1

−(ϕ+ ρ)2(1 + ρϕ)2
{
(−ϕ)t+t′−2 + (−ϕ)2T−(t+t′)

}
. (B.5)

Using equation (B.2) we can write D as follows:

D = (1 + ρϕ)2 − (ρ+ ϕ)2ϕ2T − (1 + ρϕ)2ϕ2 + (ρ+ ϕ)2ϕ2T+2

= D1 −D2 −D3 +D4, (B.6)
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where

D1 = (1 + ρϕ)2,

D2 = (ρ+ ϕ)2ϕ2T , (B.7)

D3 = (1 + ρϕ)2ϕ2,

D4 = (ρ+ ϕ)2ϕ2T+2.

Using equation (B.3) we can write N as follows:

N = (1 + ρϕ)2(1 + ρ2 + 2ρϕ) + (ϕ+ ρ)3ϕ2T−1 + (ϕ+ ρ)2ρ(1 + ρϕ)ϕ2T−1

−(ϕ+ ρ)2(1 + ρϕ)2ϕ2(t−1) − (ϕ+ ρ)2(1 + ρϕ)2ϕ2(T−t)

= N1 +N2 +N3 −N4 −N5, (B.8)

where

N1 = (1 + ρϕ)2(1 + ρ2 + 2ρϕ),

N2 = (ϕ+ ρ)3ϕ2T−1,

N3 = (ϕ+ ρ)2ρ(1 + ρϕ)ϕ2T−1, (B.9)

N4 = (ϕ+ ρ)2(1 + ρϕ)2ϕ2(t−1),

N5 = (ϕ+ ρ)2(1 + ρϕ)2ϕ2(T−t).

Using equation (B.5) we can write N∗ as follows:

N∗ = −(ϕ+ ρ)(1 + ρϕ)3(−ϕ)|t−t′|−1 − (ϕ+ ρ)3(1 + ρϕ)(−ϕ)2T−|t−t′|−1

−(ϕ+ ρ)2(1 + ρϕ)2(−ϕ)t+t′−2 − (ϕ+ ρ)2(1 + ρϕ)2(−ϕ)2T−(t+t′)

= −N1∗ −N2∗ −N3∗ −N4∗, (B.10)

where

N1∗ = (ϕ+ ρ)(1 + ρϕ)3(−ϕ)|t−t′|−1,

N2∗ = (ϕ+ ρ)3(1 + ρϕ)(−ϕ)2T−|t−t′|−1, (B.11)

N3∗ = (ϕ+ ρ)2(1 + ρϕ)2(−ϕ)t+t′−2,

N4∗ = (ϕ+ ρ)2(1 + ρϕ)2(−ϕ)2T−(t+t′).
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B.1.1 Derivatives of D

Derivatives of D1

Equation (B.7) implies that

D1 = (1 + ρϕ)2. (B.12)

Then,
∂D1

∂ρ
= D1ρ = 2(1 + ρϕ)ϕ, (B.13)

∂2D1

∂ρ2
= D1ρρ = 2ϕϕ = 2ϕ2 (B.14)

∂D1

∂ϕ
= D1ϕ = 2(1 + ρϕ)ρ, (B.15)

∂2D1

∂ϕ2
= D1ϕϕ = 2ρρ = 2ρ2, (B.16)

∂2D1

∂ρ∂ϕ
= D1ρϕ =

∂

∂ϕ
{2(1 + ρϕ)ϕ} = 2(1 + ρϕ)′ϕ+ 2(1 + ρϕ)ϕ′

= 2ρϕ+ 2(1 + ρϕ) = 2ρϕ+ 2 + 2ρϕ = 2 + 4ρϕ

= 2(1 + 2ρϕ), (B.17)

and

∂2D1

∂ϕ∂ρ
= D1ϕρ =

∂

∂ρ
{2(1 + ρϕ)ρ} = 2(1 + ρϕ)′ρ+ 2(1 + ρϕ)ρ′

= 2ρϕ+ 2(1 + ρϕ) = 2ρϕ+ 2 + 2ρϕ = 2 + 4ρϕ

= 2(1 + 2ρϕ). (B.18)

Derivatives of D2

Equation (B.7) implies that

D2 = (ρ+ ϕ)2ϕ2T . (B.19)

Then,
∂D2

∂ρ
= D2ρ = 2(ρ+ ϕ)ϕ2T , (B.20)
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∂2D2

∂ρ2
= D2ρρ = 2ϕ2T , (B.21)

∂D2

∂ϕ
= D2ϕ = 2(ρ+ ϕ)ϕ2T + (ρ+ ϕ)22Tϕ2T−1

= 2(ρ+ ϕ)ϕ2T + 2T (ρ+ ϕ)2ϕ2T−1

= 2(ρ+ ϕ)ϕ2T−1[ϕ+ T (ρ+ ϕ)]

= 2(ρ+ ϕ)ϕ2T + 2T (ρ+ ϕ)2ϕ2T−1, (B.22)

∂2D2

∂ϕ2
= D2ϕϕ = 2ϕ2T + 2(ρ+ ϕ)2Tϕ2T−1

+2T2(ρ+ ϕ)ϕ2T−1 + 2T (ρ+ ϕ)2(2T − 1)ϕ2T−2

= 2ϕ2T + 4T (ρ+ ϕ)ϕ2T−1 + 4T (ρ+ ϕ)ϕ2T−1

+2T (2T − 1)(ρ+ ϕ)2ϕ2(T−1)

= 2ϕ2T + 8T (ρ+ ϕ)ϕ2T−1 + 2T (2T − 1)(ρ+ ϕ)2ϕ2(T−1), (B.23)

∂2D2

∂ρ∂ϕ
= D2ρϕ =

∂

∂ϕ

{
2(ρ+ ϕ)ϕ2T

}
= 2ϕ2T + 2(ρ+ ϕ)2Tϕ2T−1

= 2ϕ2T + 4T (ρ+ ϕ)ϕ2T−1, (B.24)

and

∂2D2

∂ϕ∂ρ
= D2ϕρ =

∂

∂ρ

{
2(ρ+ ϕ)ϕ2T + 2T (ρ+ ϕ)2ϕ2T−1

}
= 2ϕ2T + 2T2(ρ+ ϕ)ϕ2T−1

= 2ϕ2T + 4T (ρ+ ϕ)ϕ2T−1. (B.25)

Derivatives of D3

Equation (B.7) implies that

D3 = (1 + ρϕ)2ϕ2. (B.26)

Then,
∂D3

∂ρ
= D3ρ = 2(1 + ρϕ)ϕϕ2 = 2ϕ3(1 + ρϕ), (B.27)
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∂2D3

∂ρ2
= D3ρρ = 2ϕ3ϕ = 2ϕ4, (B.28)

∂D3

∂ϕ
= D3ϕ = 2(1 + ρϕ)ρϕ2 + (1 + ρϕ)22ϕ

= 2(1 + ρϕ)ϕ[ρϕ+ (1 + ρϕ)], (B.29)

∂2D3

∂ϕ2
= D3ϕϕ = 2ρ2ϕ2 + 2(1 + ρϕ)2ϕρ+ 2(1 + ρϕ)2ρϕ+ (1 + ρϕ)22

= 2ρ2ϕ2 + 4ϕρ(1 + ρϕ) + 4ρϕ(1 + ρϕ) + 2(1 + ρϕ)2

= 2ρ2ϕ2 + 8ϕρ(1 + ρϕ) + 2(1 + ρϕ)2, (B.30)

∂2D3

∂ρ∂ϕ
= D3ρϕ =

∂

∂ϕ

{
2ϕ3(1 + ρϕ)

}
= 6ϕ2(1 + ρϕ) + 2ϕ3ρ

= 6ϕ2 + 6ρϕ3 + 2ϕ3ρ

= 6ϕ2 + 8ρϕ3, (B.31)

and

∂2D3

∂ϕ∂ρ
= D3ϕρ =

∂

∂ρ

{
2(1 + ρϕ)ρϕ2 + (1 + ρϕ)22ϕ

}
= 2ϕρϕ2 + 2(1 + ρϕ)ϕ2 + 2(1 + ρϕ)ϕ2ϕ

= 2ρϕ3 + 2ϕ2(1 + ρϕ) + 4ϕ2(1 + ρϕ)

= 2ρϕ3 + 6ϕ2(1 + ρϕ)

= 2ρϕ3 + 6ϕ2 + 6ρϕ3

= 6ϕ2 + 8ρϕ3. (B.32)

Derivatives of D4

Equation (B.7) implies that

D4 = (ρ+ ϕ)2ϕ2T+2. (B.33)

Then,
∂D4

∂ρ
= D4ρ = 2(ρ+ ϕ)ϕ2T+2, (B.34)

107



Appendix B: First- and second-order derivatives of the elements of Ω with respect to ρ and ϕ

∂2D4

∂ρ2
= D4ρρ = 2ϕ2T+2, (B.35)

∂D4

∂ϕ
= D4ϕ = 2(ρ+ ϕ)ϕ2T+2 + (ρ+ ϕ)2(2T + 2)ϕ2T+1, (B.36)

∂2D4

∂ϕ2
= D4ϕϕ = 2ϕ2T+2 + 2(ρ+ ϕ)(2T + 2)ϕ2T+1

+(2T + 2)2(ρ+ ϕ)ϕ2T+1 + (2T + 2)(ρ+ ϕ)2(2T + 1)ϕ2T

= 2ϕ2T+2 + 4(ρ+ ϕ)(T + 1)ϕ2T+1

+4(T + 1)(ρ+ ϕ)ϕ2T+1 + 2(T + 1)(ρ+ ϕ)2(2T + 1)ϕ2T

= 2ϕ2T+2 + 8(T + 1)(ρ+ ϕ)ϕ2T+1

+2(T + 1)(ρ+ ϕ)2(2T + 1)ϕ2T , (B.37)

∂2D4

∂ρ∂ϕ
= D4ρϕ =

∂

∂ϕ

{
2(ρ+ ϕ)ϕ2T+2

}
= 2ϕ2T+2 + 2(ρ+ ϕ)(2T + 2)ϕ2T+1

= 2ϕ2T+2 + 4(ρ+ ϕ)(T + 1)ϕ2T+1

= 2ϕ2(T+1) + 4(ρ+ ϕ)(T + 1)ϕ2T+1, (B.38)

and

∂2D4

∂ϕ∂ρ
= D4ϕρ =

∂

∂ρ

{
2(ρ+ ϕ)ϕ2T+2 + (ρ+ ϕ)2(2T + 2)ϕ2T+1

}
= 2ϕ2T+2 + 2(ρ+ ϕ)2(T + 1)ϕ2T+1

= 2ϕ2T+2 + 4(ρ+ ϕ)(T + 1)ϕ2T+1. (B.39)

B.1.2 Derivatives of N

Derivatives of N1

Equation (B.9) implies that

N1 = (1 + ρϕ)2(1 + ρ2 + 2ρϕ). (B.40)

Then,
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∂N1

∂ρ
= N1ρ = 2(1 + ρϕ)ϕ(1 + ρ2 + 2ρϕ) + (1 + ρϕ)2(2ρ+ 2ϕ)

= (1 + ρϕ)[2ϕ(1 + ρ2 + 2ρϕ) + (1 + ρϕ)(2ρ+ 2ϕ)]

= (1 + ρϕ)[2ϕ+ 2ρ2ϕ+ 4ρϕ2 + 2ρ+ 2ϕ+ 2ρ2ϕ+ 2ρϕ2]

= (1 + ρϕ)[2ρ+ 4ϕ+ 4ρ2ϕ+ 6ρϕ2], (B.41)

∂2N1

∂ρ2
= N1ρρ = ϕ[2ρ+ 4ϕ+ 4ρ2ϕ+ 6ρϕ2] + (1 + ρϕ)[2 + 8ρϕ+ 6ϕ2], (B.42)

∂N1

∂ϕ
= N1ϕ = 2(1 + ρϕ)ρ(1 + ρ2 + 2ρϕ) + (1 + ρϕ)2(2ρ)

= (1 + ρϕ)[2ρ+ 2ρ3 + 4ρ2ϕ+ 2ρ+ 2ρ2ϕ]

= (1 + ρϕ)[4ρ+ 2ρ3 + 6ρ2ϕ], (B.43)

∂2N1

∂ϕ2
= N1ϕϕ = ρ[4ρ+ 2ρ3 + 6ρ2ϕ] + (1 + ρϕ)6ρ2, (B.44)

∂2N1

∂ρ∂ϕ
= N1ρϕ =

∂

∂ϕ

{
(1 + ρϕ)[2ρ+ 4ϕ+ 4ρ2ϕ+ 6ρϕ2]

}
= ρ[2ρ+ 4ϕ+ 4ρ2ϕ+ 6ρϕ2] + (1 + ρϕ)[4 + 4ρ2 + 12ρϕ]

= 2ρ2 + 4ρϕ+ 4ρ3ϕ+ 6ρ2ϕ2 + 4 + 4ρ2 + 12ρϕ+ 4ρϕ

+4ρ3ϕ+ 12ρ2ϕ2

= 6ρ2 + 20ρϕ+ 8ρ3ϕ+ 18ρ2ϕ2 + 4, (B.45)

and

∂2N1

∂ϕ∂ρ
= N1ϕρ =

∂

∂ρ

{
(1 + ρϕ)[4ρ+ 2ρ3 + 6ρ2ϕ]

}
= ϕ[4ρ+ 2ρ3 + 6ρ2ϕ] + (1 + ρϕ)[4 + 6ρ2 + 12ρϕ]

= 4ρϕ+ 2ρ3ϕ+ 6ρ2ϕ2 + (1 + ρϕ)[4 + 6ρ2 + 12ρϕ]

= 4ρϕ+ 2ρ3ϕ+ 6ρ2ϕ2 + 4 + 6ρ2 + 12ρϕ+ 4ρϕ

+6ρ3ϕ+ 12ρ2ϕ2

= 6ρ2 + 20ρϕ+ 8ρ3ϕ+ 18ρ2ϕ2 + 4. (B.46)
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Derivatives of N2

Equation (B.9) implies that

N2 = (ϕ+ ρ)3ϕ2T−1. (B.47)

Then,
∂N2

∂ρ
= N2ρ = 3(ϕ+ ρ)2ϕ2T−1, (B.48)

∂2N2

∂ρ2
= N2ρρ = 6(ϕ+ ρ)ϕ2T−1, (B.49)

∂N2

∂ϕ
= N2ϕ = 3(ϕ+ ρ)2ϕ2T−1 + (ϕ+ ρ)3(2T − 1)ϕ2T−2

= (ϕ+ ρ)2[3ϕ2T−1 + (ϕ+ ρ)(2T − 1)ϕ2T−2], (B.50)

∂2N2

∂ϕ2
= N2ϕϕ = 2(ϕ+ ρ)[3ϕ2T−1 + (ϕ+ ρ)(2T − 1)ϕ2T−2]

+(ϕ+ ρ)2[3(2T + 1)ϕ2T + (2T − 1)ϕ2T−2

+(ϕ+ ρ)(2T − 1)(2T − 2)ϕ2T−3], (B.51)

∂2N2

∂ρ∂ϕ
= N2ρϕ =

∂

∂ϕ

{
3(ϕ+ ρ)2ϕ2T−1

}
= 6(ϕ+ ρ)ϕ2T−1 + 3(ϕ+ ρ)2(2T − 1)ϕ2T−2, (B.52)

and

∂2N2

∂ϕ∂ρ
= N2ϕρ =

∂

∂ρ

{
(ϕ+ ρ)2[3ϕ2T−1 + (ϕ+ ρ)(2T − 1)ϕ2T−2]

}
= 2(ϕ+ ρ)[3ϕ2T−1 + (ϕ+ ρ)(2T − 1)ϕ2T−2]

+(ϕ+ ρ)2(2T − 1)ϕ2T−2

= 6(ϕ+ ρ)ϕ2T−1 + 2(ϕ+ ρ)2(2T − 1)ϕ2T−2

+(ϕ+ ρ)2(2T − 1)ϕ2T−2

= 6(ϕ+ ρ)ϕ2T−1 + 3(ϕ+ ρ)2(2T − 1)ϕ2T−2. (B.53)
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Derivatives of N3

Equation (B.9) implies that

N3 = (ϕ+ ρ)2(ρϕ2T−1 + ρ2ϕ2T ). (B.54)

Then,
∂N3

∂ρ
= N3ρ = 2(ϕ+ ρ)(ρϕ2T−1 + ρ2ϕ2T ) + (ϕ+ ρ)2(ϕ2T−1 + 2ρϕ2T ), (B.55)

∂2N3

∂ρ2
= N3ρρ = 2(ρϕ2T−1 + ρ2ϕ2T ) + 2(ϕ+ ρ)(ϕ2T−1 + 2ρϕ2T )

+2(ϕ+ ρ)(ϕ2T−1 + 2ρϕ2T ) + (ϕ+ ρ)2(2ϕ2T ), (B.56)

∂N3

∂ϕ
= N3ϕ = 2(ϕ+ ρ)(ρϕ2T−1 + ρ2ϕ2T )

+(ϕ+ ρ)2[ρ(2T − 1)ϕ2T−2 + ρ22Tϕ2T−1], (B.57)

∂2N3

∂ϕ2
= N3ϕϕ = 2(ρϕ2T−1 + ρ2ϕ2T )

+2(ϕ+ ρ)[ρ(2T − 1)ϕ2T−2 + ρ22Tϕ2T−1]

+2[ρ(2T − 1)ϕ2T−2 + ρ22Tϕ2T−1](ϕ+ ρ)

+(ϕ+ ρ)2[ρ(2T − 1)(2T − 2)ϕ2T−3

+ρ22T (2T − 1)ϕ2T−2], (B.58)

∂2N3

∂ρ∂ϕ
= N3ρϕ =

∂

∂ϕ

{
2(ϕ+ ρ)(ρϕ2T−1 + ρ2ϕ2T ) + (ϕ+ ρ)2(ϕ2T−1 + 2ρϕ2T )

}
= 2(ρϕ2T−1 + ρ2ϕ2T )

+2(ϕ+ ρ)[ρ(2T − 1)ϕ2T−2 + ρ22Tϕ2T−1]

+2(ϕ+ ρ)(ϕ2T−1 + 2ρϕ2T )

+(ϕ+ ρ)2[(2T − 1)ϕ2T−2 + 4Tρϕ2T−1], (B.59)

and
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∂2N3

∂ϕ∂ρ
= N3ϕρ =

∂

∂ρ
{2(ϕ+ ρ)(ρϕ2T−1 + ρ2ϕ2T )

+(ϕ+ ρ)2[ρ(2T − 1)ϕ2T−2 + ρ22Tϕ2T−1]}

= 2(ρϕ2T−1 + ρ2ϕ2T ) + 2(ϕ+ ρ)(ϕ2T−1 + 2ρϕ2T )

+2(ϕ+ ρ)[ρ(2T − 1)ϕ2T−2 + ρ22Tϕ2T−1]

+(ϕ+ ρ)2[(2T − 1)ϕ2T−2 + 4Tρϕ2T−1]. (B.60)

Derivatives of N4

Equation (B.9) implies that

N4 = (ϕ+ ρ)2(1 + ρϕ)2ϕ2(t−1). (B.61)

Then,

∂N4

∂ρ
= N4ρ = [2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ϕ]ϕ2(t−1)

= 2(ϕ+ ρ)(1 + ρϕ)2ϕ2t−2 + (ϕ+ ρ)2(2ϕ+ 2ρϕ2)ϕ2t−2, (B.62)

∂2N4

∂ρ2
= N4ρρ = 2ϕ2t−2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ϕ]

+ϕ2t−2[2(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2ϕ2)], (B.63)

∂N4

∂ϕ
= N4ϕ = [2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ]ϕ2(t−1)

+(ϕ+ ρ)2(1 + ρϕ)22(t− 1)ϕ2t−3

= 2(ϕ+ ρ)(1 + ρϕ)2ϕ2(t−1) + 2(ϕ+ ρ)2(1 + ρϕ)ρϕ2t−2

+2(t− 1)(ϕ+ ρ)2(1 + ρϕ)2ϕ2t−3, (B.64)

∂2N4

∂ϕ2
= N4ϕϕ = 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ]ϕ2(t−1)

+2(ϕ+ ρ)(1 + ρϕ)22(t− 1)ϕ2t−3

+2[2(ϕ+ ρ)(1 + ρϕ) + (ϕ+ ρ)2ρ]ϕ2t−2ρ

+2(ϕ+ ρ)2(1 + ρϕ)(2t− 2)ϕ2t−3ρ

+2(t− 1)[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ]ϕ2t−3

+2(t− 1)(ϕ+ ρ)2(1 + ρϕ)2(2t− 3)ϕ2t−4, (B.65)
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∂2N4

∂ρ∂ϕ
= N4ρϕ =

∂

∂ϕ

{
2(ϕ+ ρ)(1 + ρϕ)2ϕ2t−2 + (ϕ+ ρ)2(2ϕ+ 2ρϕ2)ϕ2t−2

}
= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ]ϕ2t−2

+2(ϕ+ ρ)(1 + ρϕ)2(2t− 2)ϕ2t−3

+[2(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2 + 4ρϕ)]ϕ2t−2

+(ϕ+ ρ)2(2ϕ+ 2ρϕ2)(2t− 2)ϕ2t−3

= 2(1 + ρϕ)2ϕ2t−2 + 2(ϕ+ ρ)2(1 + ρϕ)ρϕ2t−2

+2(ϕ+ ρ)(1 + ρϕ)2(2t− 2)ϕ2t−3

+2ϕ2t−2(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2 + 4ρϕ)ϕ2t−2

+(ϕ+ ρ)2(2ϕ+ 2ρϕ2)(2t− 2)ϕ2t−3, (B.66)

and

∂2N4

∂ϕ∂ρ
= N4ϕρ =

∂

∂ρ
{2(ϕ+ ρ)(1 + ρϕ)2ϕ2(t−1) + 2(ϕ+ ρ)2(ρ+ ρ2ϕ)ϕ2t−2]

+2(t− 1)(ϕ+ ρ)2(1 + ρϕ)2ϕ2t−3}

= 2ϕ2(t−1)[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ϕ

+2ϕ2t−2[2(ϕ+ ρ)(ρ+ ρ2ϕ) + (ϕ+ ρ)2(1 + 2ρϕ)]

+2(t− 1)ϕ2t−3[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ϕ]

= 2ϕ2t−2(1 + ρϕ)2 + 2ϕ2t−2(ϕ+ ρ)(2ϕ+ 2ρϕ2)

+2ϕ2t−22(ϕ+ ρ)ρ(1 + ρϕ) + ϕ2t−2(ϕ+ ρ)2(2 + 4ρϕ)

+(2t− 2)ϕ2t−32(ϕ+ ρ)(1 + ρϕ)2

+(2t− 2)ϕ2t−3(ϕ+ ρ)22(1 + ρϕ)ϕ. (B.67)

Derivatives of N5

Equation (B.9) implies that

N5 = (ϕ+ ρ)2(1 + ρϕ)2ϕ2(T−t). (B.68)

Then,

∂N5

∂ρ
= N5ρ = [2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ϕ]ϕ2(T−t)

= 2(ϕ+ ρ)(1 + ρϕ)2ϕ2T−2t + (ϕ+ ρ)2(2ϕ+ 2ρϕ2)ϕ2T−2t, (B.69)

∂2N5

∂ρ2
= N5ρρ = 2ϕ2T−2t[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ϕ]

+ϕ2T−2t[2(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2ϕ2)], (B.70)
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∂N5

∂ϕ
= N5ϕ = [2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ]ϕ2(T−t)

+(ϕ+ ρ)2(1 + ρϕ)22(T − t)ϕ2T−2t−1

= 2(ϕ+ ρ)(1 + ρϕ)2ϕ2(T−t) + 2(ϕ+ ρ)2(1 + ρϕ)ρϕ2(T−t)

+2(T − t)(ϕ+ ρ)2(1 + ρϕ)2ϕ2T−2t−1, (B.71)

∂2N5

∂ϕ2
= N5ϕϕ = 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ]ϕ2(T−t)

+2(ϕ+ ρ)(1 + ρϕ)22(T − t)ϕ2(T−t)−1

+2[2(ϕ+ ρ)(1 + ρϕ) + (ϕ+ ρ)2ρ]ϕ2T−2tρ

+2(ϕ+ ρ)2(1 + ρϕ)(2T − 2t)ϕ2T−2t−1ρ

+2(T − t)[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ]ϕ2T−2t−1

+2(T − t)(ϕ+ ρ)2(1 + ρϕ)2(2T − 2t− 1)ϕ2T−2t−2, (B.72)

∂2N5

∂ρ∂ϕ
= N5ρϕ =

∂

∂ϕ

{
2(ϕ+ ρ)(1 + ρϕ)2ϕ2T−2t + (ϕ+ ρ)2(2ϕ+ 2ρϕ2)ϕ2T−2t

}
= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ]ϕ2T−2t

+2(ϕ+ ρ)(1 + ρϕ)2(2T − 2t)ϕ2T−2t−1

+[2(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2 + 4ρϕ)]ϕ2T−2t

+(ϕ+ ρ)2(2ϕ+ 2ρϕ2)(2T − 2t)ϕ2T−2t−1

= 2ϕ2T−2t(1 + ρϕ)2 + 2(ϕ+ ρ)2(1 + ρϕ)ρϕ2T−2t

+2(ϕ+ ρ)(1 + ρϕ)2(2T − 2t)ϕ2T−2t−1

+2ϕ2T−2t(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2 + 4ρϕ)ϕ2T−2t

+(ϕ+ ρ)2(2ϕ+ 2ρϕ2)(2T − 2t)ϕ2T−2t−1, (B.73)

and

∂2N5

∂ϕ∂ρ
= N5ϕρ =

∂

∂ρ
{2(ϕ+ ρ)(1 + ρϕ)2ϕ2(T−t) + 2(ϕ+ ρ)2(ρ+ ρ2ϕ)ϕ2(T−t)

+2(T − t)(ϕ+ ρ)2(1 + ρϕ)2ϕ2T−2t−1}

= 2ϕ2(T−t)[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ϕ]

+2ϕ2(T−t)[2(ϕ+ ρ)(ρ+ ρ2ϕ) + (ϕ+ ρ)2(1 + 2ρϕ)]

+2(T − t)ϕ2T−2t−1[2(ϕ+ ρ)(1 + ρϕ)2
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+(ϕ+ ρ)22(1 + ρϕ)ϕ]

= 2ϕ2T−2t(1 + ρϕ)2 + 2ϕ2T−2t(ϕ+ ρ)2(1 + ρϕ)ϕ

+2ϕ2T−2t2(ϕ+ ρ)(ρ+ ρ2ϕ) + 2ϕ2T−2t(ϕ+ ρ)2(1 + 2ρϕ)

+(2T − 2t)ϕ2T−2t−12(ϕ+ ρ)(1 + ρϕ)2

+(2T − 2t)ϕ2T−2t−1(ϕ+ ρ)22(1 + ρϕ)ϕ. (B.74)

B.1.3 Derivatives of N∗

Derivatives of N1∗

Equation (B.11) implies that

N1∗ = (ϕ+ ρ)(1 + ρϕ)3(−ϕ)|t−t′|−1. (B.75)

For

t′ > t, we have t− t′ < 0, t′ − t > 0, (B.76)

and

N1∗ = (ϕ+ ρ)(1 + ρϕ)3(−ϕ)(t′−t)−1. (B.77)

Then,

∂N1∗
∂ρ

= N1∗ρ = [(1 + ρϕ)3 + (ϕ+ ρ)3(1 + ρϕ)2ϕ](−ϕ)(t′−t)−1

= [(1 + ρϕ)3 + (3ϕ2 + 3ρϕ)(1 + ρϕ)2](−ϕ)(t′−t)−1, (B.78)

∂2N1∗
∂ρ2

= N1∗ρρ = 6ϕ3(−ϕ)t′−t−1 + 6ρϕ4(−ϕ)t′−t−1 + 6ϕ(−ϕ)t′−t−1

+18ρϕ2(−ϕ)t′−t−1 + 12ρ2ϕ3(−ϕ)t′−t−1, (B.79)

∂N1∗
∂ϕ

= N1∗ϕ = [(1 + ρϕ)3 + (ϕ+ ρ)3(1 + ρϕ)2ρ](−ϕ)(t′−t)−1

+(ϕ+ ρ)(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2(−1)

= [(1 + ρϕ)3 + (ϕ+ ρ)3(1 + ρϕ)2ρ](−ϕ)(t′−t)−1

−(ϕ+ ρ)(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2, (B.80)
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∂2N1∗
∂ϕ2

= N1∗ϕϕ = 3(1 + ρϕ)2ρ(−ϕ)(t′−t)−1

+(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2(−1)

+[3ρ(1 + ρϕ)2 + 3ρ(ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)(t′−t)−1

+(ϕ+ ρ)3ρ(1 + ρϕ)2[(t′ − t)− 1](−ϕ)(t′−t)−2(−1)

+[(t′ − t)− 1][(1 + ρϕ)3(−ϕ)(t′−t)−2(−1)

+(ϕ+ ρ)3(1 + ρϕ)2ρ(−ϕ)(t′−t)−2(−1)]

+(−1)(ϕ+ ρ)(1 + ρϕ)3[(t′ − t)− 1]

×[(t′ − t)− 2](−ϕ)(t′−t)−3(−1)

= 3(1 + ρϕ)2ρ(−ϕ)(t′−t)−1

−(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2

+[3ρ(1 + ρϕ)2 + 3ρ(ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)(t′−t)−1

−(ϕ+ ρ)3ρ(1 + ρϕ)2[(t′ − t)− 1](−ϕ)(t′−t)−2

+[(t′ − t)− 1][−(1 + ρϕ)3(−ϕ)(t′−t)−2

−(ϕ+ ρ)3(1 + ρϕ)2ρ(−ϕ)(t′−t)−2]

+(ϕ+ ρ)(1 + ρϕ)3[(t′ − t)− 1]

×[(t′ − t)− 2](−ϕ)(t′−t)−3, (B.81)

∂2N1∗
∂ρ∂ϕ

= N1∗ρϕ =
∂

∂ϕ
{(1 + ρϕ)3(−ϕ)(t′−t)−1

+(3ϕ2 + 3ρϕ)(1 + ρϕ)2(−ϕ)(t′−t)−1}

= 3(1 + ρϕ)2ρ(−ϕ)(t′−t)−1

+(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2(−1)

+(6ϕ+ 3ρ)(1 + ρϕ)2(−ϕ)(t′−t)−1

+(3ϕ2 + 3ρϕ)2(1 + ρϕ)ρ(−ϕ)(t′−t)−1

+(3ϕ2 + 3ρϕ)(1 + ρϕ)2[(t′ − t)− 1](−ϕ)(t′−t)−2(−1)

= 3(1 + ρϕ)2ρ(−ϕ)(t′−t)−1

−(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2

+(6ϕ+ 3ρ)(1 + ρϕ)2(−ϕ)(t′−t)−1

+(3ϕ2 + 3ρϕ)2(1 + ρϕ)ρ(−ϕ)(t′−t)−1

−(3ϕ2 + 3ρϕ)(1 + ρϕ)2[(t′ − t)− 1](−ϕ)(t′−t)−2, (B.82)
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and

∂2N1∗
∂ϕ∂ρ

= N1∗ϕρ =
∂

∂ρ
{[(1 + ρϕ)3 + (3ρϕ+ 3ρ2)(1 + ρϕ)2](−ϕ)(t′−t)−1

+(ϕ+ ρ)(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2(−1)}

= 3(1 + ρϕ)2ϕ(−ϕ)(t′−t)−1

+(3ϕ+ 6ρ)(1 + ρϕ)2(−ϕ)(t′−t)−1

+(3ρϕ+ 3ρ2)2(1 + ρϕ)ϕ(−ϕ)(t′−t)−1

+[(1 + ρϕ)3 + (ϕ+ ρ)3(1 + ρϕ)2ϕ]

×[(t′ − t)− 1](−ϕ)(t′−t)−2(−1)

= 3(1 + ρϕ)2ϕ(−ϕ)(t′−t)−1

+(3ϕ+ 6ρ)(1 + ρϕ)2(−ϕ)(t′−t)−1

+(3ρϕ+ 3ρ2)2(1 + ρϕ)ϕ(−ϕ)(t′−t)−1

+(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2(−1)

+(ϕ+ ρ)3(1 + ρϕ)2ϕ[(t′ − t)− 1](−ϕ)(t′−t)−2(−1)

= 3(1 + ρϕ)2ϕ(−ϕ)(t′−t)−1

+(3ϕ+ 6ρ)(1 + ρϕ)2(−ϕ)(t′−t)−1

+(3ρϕ+ 3ρ2)2(1 + ρϕ)ϕ(−ϕ)(t′−t)−1

−(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2

−(ϕ+ ρ)3(1 + ρϕ)2ϕ[(t′ − t)− 1](−ϕ)(t′−t)−2

= 3(1 + ρϕ)2ϕ(−ϕ)(t′−t)−1

+3ϕ(1 + ρϕ)2(−ϕ)(t′−t)−1

+6ρ(1 + ρϕ)2(−ϕ)(t′−t)−1

+ρ(3ϕ2 + 3ρϕ)2(1 + ρϕ)(−ϕ)(t′−t)−1

−(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2

−(3ϕ2 + ρϕ)(1 + ρϕ)2[(t′ − t)− 1](−ϕ)(t′−t)−2

= 3(1 + ρϕ)2ρ(−ϕ)(t′−t)−1

−(1 + ρϕ)3[(t′ − t)− 1](−ϕ)(t′−t)−2

+(6ϕ+ 3ρ)(1 + ρϕ)2(−ϕ)(t′−t)−1

+(3ϕ2 + 3ρϕ)2(1 + ρϕ)ρ(−ϕ)(t′−t)−1

−(3ϕ2 + 3ρϕ)(1 + ρϕ)2[(t′ − t)− 1](−ϕ)(t′−t)−2. (B.83)

117



Appendix B: First- and second-order derivatives of the elements of Ω with respect to ρ and ϕ

Derivatives of N2∗

Equation (B.11) implies that

N2∗ = (ϕ+ ρ)3(1 + ρϕ)(−ϕ)2T−|t−t′|−1. (B.84)

For

t′ > t, t− t′ < 0, t′ − t > 0 (B.85)

and

N2∗ = (ϕ+ ρ)3(1 + ρϕ)(−ϕ)2T−(t′−t)−1. (B.86)

Then,
∂N2∗
∂ρ

= N2∗ρ = [3(ϕ+ ρ)2(1 + ρϕ) + (ϕ+ ρ)3ϕ](−ϕ)2T−(t′−t)−1, (B.87)

∂2N2∗
∂ρ2

= N2∗ρρ = [6(ϕ+ ρ)(1 + ρϕ) + 3(ϕ+ ρ)2ϕ+ 3(ϕ+ ρ)2ϕ](−ϕ)2T−(t′−t)−1, (B.88)

∂N2∗
∂ϕ

= N2∗ϕ = [3(ϕ+ ρ)2(1 + ρϕ) + (ϕ+ ρ)3ρ](−ϕ)2T−(t′−t)−1

+(ϕ+ ρ)3(1 + ρϕ)[2T − (t′ − t)− 1](−ϕ)2T−(t′−t)−2(−1)

= [3(ϕ+ ρ)2(1 + ρϕ) + (ϕ+ ρ)3ρ](−ϕ)2T−(t′−t)−1

−(ϕ+ ρ)3(1 + ρϕ)[2T − (t′ − t)− 1](−ϕ)2T−(t′−t)−2, (B.89)

∂2N2∗
∂ϕ2

= N2∗ϕϕ = 6ϕ(−ϕ)2T−t′+t−1 − 6ϕ2(2T − t′ + t− 1)(−ϕ)2T−t′+t−2

+ϕ3(2T − t′ + t− 1)(2T − t′ + t− 2)(−ϕ)2T−t′+t−3

+6ρ(−ϕ)2T−(t′−t)−1 − 12ρϕ(2T − t′ + t− 1)(−ϕ)2T−t′+t−2

+3ρϕ2(2T − t′ + t− 1)(2T − t′ + t− 2)(−ϕ)2T−t′+t−3

−6ρ2(2T − t′ + t− 1)(−ϕ)2T−t′+t−2

+3ρ2ϕ(2T − t′ + t− 1)(2T − t′ + t− 2)(−ϕ)2T−t′+t−3

+ρ3(2T − t′ + t− 1)(2T − t′ + t− 2)(−ϕ)2T−t′+t−3

+12ρϕ2(−ϕ)2T−t′+t−1 − 8ρϕ3(2T − t′ + t− 1)(−ϕ)2T−t′+t−2

+ρϕ4(2T − t′ + t− 1)(2T − t′ + t− 2)(−ϕ)2T−t′+t−3

+18ρ2ϕ(−ϕ)2T−t′+t−1 − 18ρ2ϕ2(2T − t′ + t− 1)(−ϕ)2T−t′+t−2

+3ρ2ϕ3(2T − t′ + t− 1)(2T − t′ + t− 2)(−ϕ)2T−t′+t−3

118



B.1: Derivatives

+6ρ3(−ϕ)2T−t′+t−1 − 12ρ3ϕ(2T − t′ + t− 1)(−ϕ)2T−t′+t−2

+3ρ3ϕ2(2T − t′ + t− 1)(2T − t′ + t− 2)(−ϕ)2T−t′+t−3

−ρ4(2T − t′ + t− 1)(−ϕ)2T−t′+t−2

+ρ4ϕ(2T − t′ + t− 1)(2T − t′ + t− 2)(−ϕ)2T−t′+t−3, (B.90)

∂2N2∗
∂ρ∂ϕ

= N2∗ρϕ =
∂

∂ϕ
{3(ϕ+ ρ)2(1 + ρϕ)(−ϕ)2T−(t′−t)−1

+(ϕ+ ρ)3ϕ(−ϕ)2T−(t′−t)−1}

= [6(ϕ+ ρ)(1 + ρϕ) + 3(ϕ+ ρ)2ρ](−ϕ)2T−(t′−t)−1

+3(ϕ+ ρ)2(1 + ρϕ)[2T − (t′ − t)− 1](−ϕ)2T−(t′−t)−2(−1)

+[3(ϕ+ ρ)2ϕ+ (ϕ+ ρ)3](−ϕ)2T−(t′−t)−1

+(ϕ+ ρ)3ϕ[2T − (t′ − t)− 1](−ϕ)2T−(t′−t)−2(−1)

= [6(ϕ+ ρ)(1 + ρϕ) + 3(ϕ+ ρ)2ρ](−ϕ)2T−(t′−t)−1

−3(ϕ+ ρ)2(1 + ρϕ)[2T − (t′ − t)− 1](−ϕ)2T−(t′−t)−2

+[3(ϕ+ ρ)2ϕ+ (ϕ+ ρ)3](−ϕ)2T−(t′−t)−1

−(ϕ+ ρ)3ϕ[2T − (t′ − t)− 1](−ϕ)2T−(t′−t)−2, (B.91)

and

∂2N2∗
∂ϕ∂ρ

= N2∗ϕρ =
∂

∂ρ
{3(ϕ+ ρ)2(1 + ρϕ)(−ϕ)2T−(t′−t)−1

+(ϕ+ ρ)3ρ](−ϕ)2T−(t′−t)−1

+(ϕ+ ρ)3(1 + ρϕ)[2T − (t′ − t)− 1]

×(−ϕ)2T−(t′−t)−2(−1)}

= [6(ϕ+ ρ)(1 + ρϕ) + 3(ϕ+ ρ)2ϕ](−ϕ)2T−(t′−t)−1

+3(ϕ+ ρ)2ρ(−ϕ)2T−(t′−t)−1 + (ϕ+ ρ)3(−ϕ)2T−(t′−t)−1

+[3(ϕ+ ρ)2(1 + ρϕ) + (ϕ+ ρ)3ϕ][2T − (t′ − t)− 1]

×(−ϕ)2T−(t′−t)−2(−1)

= [6(ϕ+ ρ)(1 + ρϕ) + 3(ϕ+ ρ)2ϕ](−ϕ)2T−(t′−t)−1

+3(ϕ+ ρ)2ρ(−ϕ)2T−(t′−t)−1 + (ϕ+ ρ)3(−ϕ)2T−(t′−t)−1

−[3(ϕ+ ρ)2(1 + ρϕ) + (ϕ+ ρ)3ϕ][2T − (t′ − t)− 1]

×(−ϕ)2T−(t′−t)−2. (B.92)
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Derivatives of N3∗

Equation (B.11) implies that

N3∗ = (ϕ+ ρ)2(1 + ρϕ)2(−ϕ)t+t′−2. (B.93)

Then,

∂N3∗
∂ρ

= N3∗ρ = [2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ϕ](−ϕ)t+t′−2, (B.94)

∂2N3∗
∂ρ2

= N3∗ρρ = [2(1 + ρϕ)2 + 2(ϕ+ ρ)2(1 + ρϕ)ϕ

+2(ϕ+ ρ)2ϕ(1 + ρϕ) + (ϕ+ ρ)22ϕ2](−ϕ)t+t′−2, (B.95)

∂N3∗
∂ϕ

= N3∗ϕ = [2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ](−ϕ)t+t′−2

+(ϕ+ ρ)2(1 + ρϕ)2(t+ t′ − 2)(−ϕ)t+t′−3(−1)

= 2(ϕ+ ρ)(1 + ρϕ)2(−ϕ)t+t′−2 + (ϕ+ ρ)22(1 + ρϕ)ρ(−ϕ)t+t′−2

+(ϕ+ ρ)2(1 + ρϕ)2(t+ t′ − 2)(−ϕ)t+t′−3(−1)

= 2(ϕ+ ρ)(1 + ρϕ)2(−ϕ)t+t′−2 + (ϕ+ ρ)22(1 + ρϕ)ρ(−ϕ)t+t′−2

−(ϕ+ ρ)2(1 + ρϕ)2(t+ t′ − 2)(−ϕ)t+t′−3, (B.96)

∂2N3∗
∂ϕ2

= N3∗ϕϕ = 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)t+t′−2

+2(ϕ+ ρ)(1 + ρϕ)2(t+ t′ − 2)(−ϕ)t+t′−3(−1)

+2ρ[2(ϕ+ ρ)(1 + ρϕ) + (ϕ+ ρ)2ρ](−ϕ)t+t′−2

+2ρ(ϕ+ ρ)2(1 + ρϕ)(t+ t′ − 2)(−ϕ)t+t′−3(−1)

+(t+ t′ − 2)(−1)[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ]

×(−ϕ)t+t′−3

+(ϕ+ ρ)2(1 + ρϕ)2(t+ t′ − 2)(−1)(t+ t′ − 3)

×(−ϕ)t+t′−4(−1)

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)t+t′−2
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−2(ϕ+ ρ)(1 + ρϕ)2(t+ t′ − 2)(−ϕ)t+t′−3

+2ρ[2(ϕ+ ρ)(1 + ρϕ) + (ϕ+ ρ)2ρ](−ϕ)t+t′−2

−2ρ(ϕ+ ρ)2(1 + ρϕ)(t+ t′ − 2)(−ϕ)t+t′−3

−(t+ t′ − 2)[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ]

×(−ϕ)t+t′−3

+(ϕ+ ρ)2(1 + ρϕ)2(t+ t′ − 2)(t+ t′ − 3)(−ϕ)t+t′−4, (B.97)

∂2N3∗
∂ρ∂ϕ

= N3∗ρϕ =
∂

∂ϕ
{[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)2(2ϕ+ 2ρϕ2)](−ϕ)t+t′−2}

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)t+t′−2

+2(ϕ+ ρ)(1 + ρϕ)2(t+ t′ − 2)(−ϕ)t+t′−3(−1)

+[2(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2 + 4ρϕ)](−ϕ)t+t′−2

+(ϕ+ ρ)2(2ϕ+ 2ρϕ2)(t+ t′ − 2)(−ϕ)t+t′−3(−1)

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)t+t′−2

−2(ϕ+ ρ)(1 + ρϕ)2(t+ t′ − 2)(−ϕ)t+t′−3

+[2(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2 + 4ρϕ)](−ϕ)t+t′−2

−(ϕ+ ρ)2(2ϕ+ 2ρϕ2)(t+ t′ − 2)(−ϕ)t+t′−3, (B.98)

and

∂2N3∗
∂ϕ∂ρ

= N3∗ϕρ =
∂

∂ρ
{2(ϕ+ ρ)(1 + ρϕ)2(−ϕ)t+t′−2 + (ϕ+ ρ)2(2ρ+ 2ρ2ϕ)

×(−ϕ)t+t′−2 + (ϕ+ ρ)2(1 + ρϕ)2(t+ t′ − 2)(−ϕ)t+t′−3(−1)}

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ϕ](−ϕ)t+t′−2

+[2(ϕ+ ρ)(2ρ+ 2ρ2ϕ) + (ϕ+ ρ)2(2 + 4ρϕ)](−ϕ)t+t′−2

+[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ϕ](t+ t′ − 2)

×(−ϕ)t+t′−3(−1)

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ϕ](−ϕ)t+t′−2

+[2(ϕ+ ρ)(2ρ+ 2ρ2ϕ) + (ϕ+ ρ)2(2 + 4ρϕ)](−ϕ)t+t′−2

−[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ϕ](t+ t′ − 2)

×(−ϕ)t+t′−3. (B.99)
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Derivatives of N4∗

Equation (B.11) implies that

N4∗ = (ϕ+ ρ)2(1 + ρϕ)2(−ϕ)2T−(t+t′). (B.100)

Then,

∂N4∗
∂ρ

= N4∗ρ = [2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ϕ](−ϕ)2T−(t+t′), (B.101)

∂2N4∗
∂ρ2

= N4∗ρρ = [2(1 + ρϕ)2 + 2(ϕ+ ρ)2(1 + ρϕ)ϕ

+2(ϕ+ ρ)2ϕ(1 + ρϕ) + (ϕ+ ρ)22ϕ2](−ϕ)2T−(t+t′), (B.102)

∂N4∗
∂ϕ

= N4∗ϕ = [2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ](−ϕ)2T−(t+t′)

+(ϕ+ ρ)2(1 + ρϕ)2[2T − (t+ t′)](−ϕ)2T−(t+t′)−1(−1)

= 2(ϕ+ ρ)(1 + ρϕ)2(−ϕ)2T−(t+t′) + (ϕ+ ρ)22(1 + ρϕ)ρ(−ϕ)2T−(t+t′)

+(ϕ+ ρ)2(1 + ρϕ)2[2T − (t+ t′)](−ϕ)2T−(t+t′)−1(−1)

= 2(ϕ+ ρ)(1 + ρϕ)2(−ϕ)2T−(t+t′) + (ϕ+ ρ)22(1 + ρϕ)ρ(−ϕ)2T−(t+t′)

−(ϕ+ ρ)2(1 + ρϕ)2[2T − (t+ t′)](−ϕ)2T−(t+t′)−1, (B.103)

∂2N4∗
∂ϕ2

= N4∗ϕϕ = 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)2T−(t+t′)

+2(ϕ+ ρ)(1 + ρϕ)2[2T − (t+ t′)](−ϕ)2T−(t+t′)−1(−1)

+2ρ[2(ϕ+ ρ)(1 + ρϕ) + (ϕ+ ρ)2ρ](−ϕ)2T−(t+t′)

+2ρ(ϕ+ ρ)2(1 + ρϕ)[2T − (t+ t′)](−ϕ)2T−(t+t′)−1(−1)

+[2T − (t+ t′)](−1)[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ]

×(−ϕ)2T−(t+t′)−1

+(ϕ+ ρ)2(1 + ρϕ)2[2T − (t+ t′)](−1)[2T − (t+ t′)− 1]

×(−ϕ)2T−(t+t′)−2(−1)

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)2T−(t+t′)

−2(ϕ+ ρ)(1 + ρϕ)2[2T − (t+ t′)](−ϕ)2T−(t+t′)−1
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+2ρ[2(ϕ+ ρ)(1 + ρϕ) + (ϕ+ ρ)2ρ](−ϕ)2T−(t+t′)

−2ρ(ϕ+ ρ)2(1 + ρϕ)[2T − (t+ t′)](−ϕ)2T−(t+t′)−1

−[2T − (t+ t′)][2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ρ]

×(−ϕ)2T−(t+t′)−1

+(ϕ+ ρ)2(1 + ρϕ)2[2T − (t+ t′)][2T − (t+ t′)− 1]

×(−ϕ)2T−(t+t′)−2, (B.104)

∂2N4∗
∂ρ∂ϕ

= N4∗ρϕ =
∂

∂ϕ
{[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)2(2ϕ+ 2ρϕ2)](−ϕ)2T−(t+t′)}

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)2T−(t+t′)

+2(ϕ+ ρ)(1 + ρϕ)2[2T − (t+ t′)](−ϕ)2T−(t+t′)−1(−1)

+[2(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2 + 4ρϕ)](−ϕ)2T−(t+t′)

+(ϕ+ ρ)2(2ϕ+ 2ρϕ2)[2T − (t+ t′)](−ϕ)2T−(t+t′)−1(−1)

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ρ](−ϕ)2T−(t+t′)

−2(ϕ+ ρ)(1 + ρϕ)2[2T − (t+ t′)](−ϕ)2T−(t+t′)−1

+[2(ϕ+ ρ)(2ϕ+ 2ρϕ2) + (ϕ+ ρ)2(2 + 4ρϕ)](−ϕ)2T−(t+t′)

−(ϕ+ ρ)2(2ϕ+ 2ρϕ2)[2T − (t+ t′)](−ϕ)2T−(t+t′)−1, (B.105)

and

∂2N4∗
∂ϕ∂ρ

= N4∗ϕρ =
∂

∂ρ
{2(ϕ+ ρ)(1 + ρϕ)2(−ϕ)2T−(t+t′)

+(ϕ+ ρ)2(2ρ+ 2ρ2ϕ)(−ϕ)2T−(t+t′)

+(ϕ+ ρ)2(1 + ρϕ)2[2T − (t+ t′)](−ϕ)2T−(t+t′)−1(−1)}

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ϕ](−ϕ)2T−(t+t′)

+[2(ϕ+ ρ)(2ρ+ 2ρ2ϕ) + (ϕ+ ρ)2(2 + 4ρϕ)](−ϕ)2T−(t+t′)

+[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ϕ][2T − (t+ t′)]

×(−ϕ)2T−(t+t′)−1(−1)

= 2[(1 + ρϕ)2 + (ϕ+ ρ)2(1 + ρϕ)ϕ](−ϕ)2T−(t+t′)

+[2(ϕ+ ρ)(2ρ+ 2ρ2ϕ) + (ϕ+ ρ)2(2 + 4ρϕ)](−ϕ)2T−(t+t′)

−[2(ϕ+ ρ)(1 + ρϕ)2 + (ϕ+ ρ)22(1 + ρϕ)ϕ][2T − (t+ t′)]

×(−ϕ)2T−(t+t′)−1. (B.106)
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B.2 Derivatives of the Elements of Ω (ωtt and ωtt′)

In this section, we present the explicit expressions for the first- and second-order derivatives of

both the diagonal and non-diagonal elements of the matrix Ω with respect to ρ and ϕ. These

expressions are obtained by systematically combining all intermediate quantities and derivative

components computed in the preceding sections. The final formulas encapsulate the complete

derivative structure of Ω and serve as the culmination of the analytical process developed above.

Equations (B.1) and (B.4) imply that

ωtt =
N

D
,

ωtt′ =
N∗
D
. (B.107)

Then,

∂ωtt

∂ρ
=

∂

∂ρ

(
N

D

)
=
DNρ −NDρ

D2
, (B.108)

∂2ωtt

∂ρ2
=

∂

∂ρ

{
DNρ −NDρ

D2

}
=

D2(DρNρ +DNρρ −NρDρ −NDρρ)− (DNρ −NDρ)2DρD

D4

=
D2(DNρρ −NDρρ)− (DNρD

2
ρ −NDρD

2
ρ)

D4
. (B.109)

Similarly,

∂ωtt

∂ϕ
=
DNϕ −NDϕ

D2
, (B.110)

∂2ωtt

∂ϕ2
=
D2(DNϕϕ −NDϕϕ)− (2D2NϕDϕ − 2DNDϕDϕ)

D4
, (B.111)

∂2ωtt

∂ρ∂ϕ
=

∂

∂ϕ

{
DNρ −NDρ

D2

}
=

D2(DϕNρ +DNρϕ −NϕDρ −NDρϕ)− (DNρ −NDρ)2DDϕ

D4
, (B.112)
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∂2ωtt

∂ϕ∂ρ
=

∂

∂ρ

{
DNϕ −NDϕ

D2

}
=

D2(DρNϕ +DNϕρ −NρDϕ −NDϕρ)− (DNϕ −NDϕ)2DDρ

D4
. (B.113)

Also,

∂ωtt′

∂ρ
=

∂

∂ρ

(
N∗
D

)
=
DN∗ρ −N∗Dρ

D2
, (B.114)

∂2ωtt′

∂ρ2
=

∂

∂ρ

{
DN∗ρ −N∗Dρ

D2

}
=

D2(DρN∗ρ +DN∗ρρ −N∗ρDρ −N∗Dρρ)− (DN∗ρ −N∗Dρ)2DDρ

D4

=
D2(DN∗ρρ −N∗Dρρ)− (DN∗ρD

2
ρ − 2DN∗DρD

2
ρ)

D4
. (B.115)

Similarly,

∂ωtt′

∂ϕ
=
DN∗ϕ −N∗Dϕ

D2
, (B.116)

∂2ωtt′

∂ϕ2
=
D2(DN∗ϕϕ −N∗Dϕϕ)− (2D2N∗ϕDϕ − 2DN∗DϕDϕ)

D4
, (B.117)

∂2ωtt′

∂ρ∂ϕ
=

∂

∂ϕ

{
DN∗ρ −N∗Dρ

D2

}
=

D2(DϕN∗ρ +DN∗ρϕ −N∗ϕDρ −N∗Dρϕ)− (DN∗ρ −N∗Dρ)2DDϕ

D4
, (B.118)

∂2ωtt′

∂ϕ∂ρ
=

∂

∂ρ

{
DN∗ϕ −N∗Dϕ

D2

}
=

D2(DρN∗ϕ +DN∗ϕρ −N∗ρDϕ −N∗Dϕρ)− (DN∗ϕ −N∗Dϕ)2DDρ

D4
. (B.119)
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Appendix C

Proofs of the computation of µ0

In the case of the Generalized Linear Model with stochastic errors following an ARMA(1,1)

process, we cannot use theoretical formulas to approximate the expected values of δρ, δϕ, δ2ρ,

δ2ϕ and δρδϕ. For this reason, we can use a simulation experiment to empirically compute these

expected values.

Obviously, the approximation of the quantities of interest via simulation introduces an error

whose order of magnitude, as we will see below, is O(τ). Due to the structure of our expansions,

the total error will be of the order O(τ)3, which is acceptable based on the accuracy of the

method.

In this Appendix, we provide the proofs of these results and the formulas with which we can

approximate the quantities µρ, µϕ, λρρ, λϕϕ, and λρϕ. The quantities

λρ = E(δρδ0) (C.1)

λϕ = E(δϕδ0) (C.2)

are obtained from the internal simulation experiment conducted in each iteration of the overall

experiment.

C.1 Proofs of the computation

δ =


δ0

δρ

δϕ

 =

δ0
δ∗

 , (C.3)

where δ∗ is a 2× 1 vector with elements δρ and δϕ, and

δ0 =
σ̂2 − σ2

τσ2
, (C.4)

δρ =
ρ̂− ρ
τ

, (C.5)

δϕ =
ϕ̂− ϕ
τ

. (C.6)
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Also, δ admits a stochastic expansion of the form

δ =


δ0

δρ

δϕ

 = d1 + τd2 + ω(τ2). (C.7)

Let Ω = P ′P . Equation (3.1) can be transformed as follows:

Py = PXβ + Pσu. (C.8)

Since the matrix Ω is unknown, we must use Ω̂ instead of Ω, and by setting Ω̂ = P̂ ′P̂ , we write

the transformed equation as follows:

P̂ y = P̂Xβ + P̂ σu. (C.9)

Let β̂ be the feasible GLS estimator of β.

β̂ = β + τσ(b+ τb∗)⇒ (C.10)

β̂ − β = τσ(b+ τb∗)⇒ (C.11)
√
T (β̂ − β) = σ(b+ τb∗) = σb+ ω(τ)⇒ (C.12)

σb =
√
T (β̂ − β) + ω(τ)⇒ (C.13)

b =

√
T (β̂ − β)
σ

+ ω(τ)⇒ (C.14)

We define the n× 1 vector

k =

√
T (β̂ − β)
σ

= b+ ω(τ) (C.15)

k =

√
T (β̂ − β)
σ

=
√
T (X ′Ω̂X)−1X ′Ω̂u = (X ′Ω̂X/T )−1X ′Ω̂u/

√
T (C.16)

(X ′Ω̂X/T )k = (X ′Ω̂X/T )(X ′Ω̂X/T )−1X ′Ω̂u/
√
T = X ′Ω̂u/

√
T (C.17)

From (3.1), (C.15), and (C.9), it follows that

û = P̂ y − P̂Xβ̂

= P̂ (y −Xβ̂)

= P̂ (σu+Xβ −Xβ̂)

= P̂ σ[u− τX(β̂ − β)/τσ]

= P̂ σ(u− τXk) (C.18)
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Therefore, using (C.17) and (C.18), we obtain

û′û = σ2[u′Ω̂u− k′(X ′Ω̂X/T )k]

= σ2[u′Ω̂u− (b+ ω(τ))′(X ′Ω̂X/T )(b+ ω(τ))]

= σ2[u′Ω̂u− b′(X ′Ω̂X/T )b] + ω(τ) (C.19)

σ̂2 = û′û/T = σ2{[u′Ω̂u− b′(X ′Ω̂X/T )b] + ω(τ)}/T (C.20)

σ̂2

σ2
= [u′Ω̂u− b′(X ′Ω̂X/T )b]/T + ω(τ3)

= (u′Ω̂u/T )− b′(X ′Ω̂X/T )b/T + ω(τ3)⇒
σ̂2

σ2
= (u′Ω̂u/T )− b′Ab/T + ω(τ3) (C.21)

Since ∂Ω/∂ρ = Ωρ, ∂Ω/∂ϕ = Ωϕ, ∂2Ω/∂ρ2 = Ωρρ, ∂2Ω/∂ϕ2 = Ωϕϕ and ∂2Ω/∂ρ∂ϕ = Ωρϕ, by

performing a Taylor expansion of the quantity u′Ω̂u/T around u′Ωu/T , we obtain

u′Ω̂u/T = u′Ωu/T +
∂u′Ωu

∂ρ
(ρ̂− ρ)/T +

∂u′Ωu

∂ϕ
(ϕ̂− ϕ)/T

+
1

2

∂2u′Ωu

∂ρ∂ρ
(ρ̂− ρ)2/T +

1

2

∂2u′Ωu

∂ϕ∂ϕ
(ϕ̂− ϕ)2/T

+
∂2u′Ωu

∂ρ∂ϕ
(ρ̂− ρ)(ϕ̂− ϕ)/T

= u′Ωu/T + (u′Ωρu/T )τ

(
ρ̂− ρ
τ

)
+ (u′Ωϕu/T )τ

(
ϕ̂− ϕ
τ

)

+
1

2
(u′Ωρρu/T )τ

2

(
ρ̂− ρ
τ

)2

+
1

2
(u′Ωϕϕu/T )τ

2

(
ϕ̂− ϕ
τ

)2

+(u′Ωρϕu/T )τ
2

(
ρ̂− ρ
τ

)(
ϕ̂− ϕ
τ

)

= u′Ωu/T + τ(u′Ωρu/T )δρ + τ(u′Ωϕu/T )δϕ +
τ2

2
(u′Ωρρu/T )δρδρ

+
τ2

2
(u′Ωϕϕu/T )δϕδϕ + τ2(u′Ωρϕu/T )δρδϕ + ω(τ3). (C.22)

Analogously to the stochastic expansion (3.8), δ0 has a stochastic expansion of the form

δ0 = σ0 + τσ1 + ω(τ2) (C.23)

where σ0 and σ1 are the first elements of the vectors d1 and d2, respectively, from equation (3.8).

We will now compute the quantities σ0 and σ1.
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ai = −E(u′Ωiu/T ) (C.24)

aij =
1

2
E(u′Ωiju/T ) (C.25)

We also define the scalars

w0 =
√
T (u′Ωu/T − 1) (C.26)

wi =
√
T (u′Ωiu/T + ai) (C.27)

wij =
√
T (u′Ωiju/T − 2aij), (C.28)

and
τ =

1√
T

(C.29)

Using (C.22), (C.23), (C.24), (C.25), (C.26), (C.27), (C.28), and (C.29), it follows that

u′Ω̂u/T = 1− τ
√
T + τ

√
T (u′Ωu/T ) + τ2

√
T (u′Ωρu/T + a)δρ − τaρδρ

+τ2
√
T (u′Ωϕu/T + a)δϕ − τaϕδϕ

+
τ2

2
2aρρδρδρ +

τ3

2

√
T (u′Ωρρu/T − 2aρρ)δρδρ

+
τ2

2
2aϕϕδϕδϕ +

τ3

2

√
T (u′Ωϕϕu/T − 2aϕϕ)δϕδϕ

+τ22aρϕδρδϕ + τ3
√
T (u′Ωρϕu/T − 2aρϕ)δρδϕ + ω(τ3)

= 1 + τw0 + τ2wρδρ − τaρδρ + τ2wϕδϕ − τaϕδϕ

+τ2aρρδρδρ +
τ3

2
wρρδρδρ + τ2aϕϕδϕδϕ +

τ3

2
wϕϕδϕδϕ

+τ22aρϕδρδϕ + τ3wρϕδρδϕ + ω(τ3)

= 1 + τ(w0 − aρδρ − aϕδϕ)

+τ2(wρδρ + wϕδϕ + aρρδρδρ + aϕϕδϕδϕ + 2aρϕδρδϕ) + ω(τ3) (C.30)

From (C.21), it follows that

σ̂2 = û′û/(T − n) ⇔ (T − n)σ̂2 = û′û⇒ (C.31)

û′û/T = (T − n)σ̂2/T = σ̂2 − σ̂2n/T = σ̂2 − σ̂2nτ2. (C.32)

Provided that

σ̂2 = σ2 + ω(τ) (C.33)

it follows that

σ̂2nτ2 = (σ2 + ω(τ))nτ2 ⇒ (C.34)
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σ̂2 = σ2nτ2 + ω(τ3). (C.35)

Therefore,

û′û/T = σ̂2 − σ̂2nτ2. (C.36)

From relations (C.20), (C.23), (C.34), (C.35), and (C.36), and using the definition (3.5), we find

that

σ̂2 = û′û/T + σ̂2nτ2

= σ2[u′Ω̂u/T − b′Âb/T + ω(τ3)] + σ̂2nτ2

= σ2[1 + τ(w0 − aρδρ − aϕδϕ)

+τ2(wρδρ + wϕδϕ + aρρδρδρ + aϕϕδϕδϕ + 2aρϕδρδϕ)]

+τ2σ2(−b′Âb+ n) + ω(τ3) (C.37)

σ̂2 = σ2[1 + τ(w0 − aρδρ − aϕδϕ)

+τ2(wρδρ + wϕδϕ + aρρδρδρ + aϕϕδϕδϕ + 2aρϕδρδϕ − b′Âb+ n)]

+ω(τ3), (C.38)

where

δ0 =
σ̂2 − σ2

τσ2
. (C.39)

From (C.38) it follows that

δ0 = (w0 − aρδρ − aϕδϕ)

+τ2(wρδρ + wϕδϕ + aρρδρδρ + aϕϕδϕδϕ + 2aρϕδρδϕ − b′Âb+ n)

+ω(τ2) (C.40)

and

σ0 = w0 − aρδρ − aϕδϕ (C.41)

σ1 = wρδρ + wϕδϕ + aρρδρδρ + aϕϕδϕδϕ + 2aρϕδρδϕ − b′Âb+ n. (C.42)

Following (Breusch 1980) and relations (3.8), (3.9), and (C.38) it follows that

λ0 λ′

λ Λ

 = lim
T→∞

E(d1d′1) = lim
T→∞

E

 σ20 σ0d
′
1i

σ0d1i d1id
′
1i

 (C.43)
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where

λ0 = lim
T→∞

E(σ20) = lim
T→∞

E[(w0 − aρδρ − aϕδϕ)
2] (C.44)

and also that

δ =

δ0
δ∗

 =

 σ0 + τσ1

d1i − τd2i

+ ω(τ2) =

σ0
d1i

+ τ

 σ1

−d2i

+ ω(τ2) = d1 + τd2 + ω(τ2) (C.45)

µ0
µ

 = lim
T→∞

E

√Tσ0 + σ1
√
Td1i − d2i

 . (C.46)

Therefore,

δi = d1i − τd2i + ω(τ2)⇒ (C.47)

√
Tδi =

√
Td1i − d2i + ω(τ)⇒ (C.48)

lim
T→∞

√
Tδi = lim

T→∞

√
Td1i − d2i. (C.49)

Therefore, for the parameter ρ we have:

δρ =
ρ̂− ρ
τ
⇒ (C.50)

√
Tδρ =

ρ̂− ρ
τ2

. (C.51)

ρ̂ = ρ+ τ(ρ1 + τρ2) + ω(τ3)⇒ (C.52)

ρ̂− ρ = τ(ρ1 + τρ2) + ω(τ3)⇒ (C.53)

δρ =
ρ̂− ρ
τ

= (ρ1 + τρ2) + ω(τ2) (C.54)

and

δρδρ = [(ρ1 + τρ2) + ω(τ2)][(ρ1 + τρ2) + ω(τ2)]

= ρ21 + ω(τ) (C.55)
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and taking expected values we find:

E(δρδρ) = E(ρ21) +O(τ) = λρρ∗ (C.56)

From (C.55) and (C.56), it is shown that theoretically the expected value of δρδρ is E(ρ21) +

O(τ).

In the case where the stochastic terms follow an ARMA(1,1) process, we cannot use theoretical

formulas to compute the expected value of δρδρ. Instead, we use a simulation experiment from

which the expected value E(δρδρ) is computed “empirically”. We denote by λρρ the theoretical

value of E(δρδρ). Correspondingly, we denote by λρρ∗ the empirical estimate of E(δρδρ) from the

Monte Carlo experiment. Therefore, from (C.56) it follows that using the empirical estimate λρρ∗

instead of the theoretical estimate λρρ introduces an error of order O(τ).

Since the term λρρ∗ in our expansions is multiplied by a coefficient τ2, the total error in the

expansion is of order O(τ3), which is acceptable based on the accuracy of the method.

Therefore, for the parameter ϕ we have:

δϕ =
ϕ̂− ϕ
τ
⇒ (C.57)

√
Tδϕ =

ϕ̂− ϕ
τ2

(C.58)

Provided that

ϕ̂ = ϕ+ τ(ϕ1 + τϕ2) + ω(τ3)⇒ (C.59)

ϕ̂− ϕ = τ(ϕ1 + τϕ2) + ω(τ3)⇒ (C.60)

δϕ =
ϕ̂− ϕ
τ

= (ϕ1 + τϕ2) + ω(τ2). (C.61)

and

δϕδϕ = [(ϕ1 + τϕ2) + ω(τ2)][(ϕ1 + τϕ2) + ω(τ2)]

= ϕ21 + ω(τ) (C.62)

and taking expected values we find:

E(δϕδϕ) = E(ϕ21) +O(τ) = λϕϕ∗ (C.63)
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From (C.62) and (C.63), it is shown that theoretically the expected value of δϕδϕ is E(ϕ21) +

O(τ).

In the case where the stochastic terms follow an ARMA(1,1) process, we cannot use theoretical

formulas to compute the expected value of δϕδϕ. Instead, we use a simulation experiment from

which the expected value E(δϕδϕ) is computed “empirically”. We denote by λϕϕ the theoretical

value of E(δϕδϕ). Correspondingly, we denote by λϕϕ∗ the empirical estimate of E(δϕδϕ) from

the Monte Carlo experiment. Therefore, from (C.63) it follows that using the empirical estimate

λϕϕ∗ instead of the theoretical estimate λϕϕ introduces an error of order O(τ).

Since the term λϕϕ∗ in our expansions is multiplied by a coefficient τ2, the total error in the

expansion is of order O(τ3), which is acceptable based on the accuracy of the method.

Using (C.54) and (C.61) we find that

δρδϕ = [(ρ1 + τρ2) + ω(τ2)][(ϕ1 + τϕ2) + ω(τ2)] (C.64)

and taking expected values we find:

E(δρδϕ) = E(ρ1ϕ1) +O(τ) = λρϕ∗ (C.65)

From (C.65), it is shown that theoretically the expected value of δρδϕ is E(ρ1ϕ1) +O(τ).

In the case where the stochastic terms follow an ARMA(1,1) process, we cannot use theoretical

formulas to compute the expected value of δρδϕ. Instead, we use a simulation experiment from

which the expected value E(δρδϕ) is computed “empirically”. We denote by λρϕ the theoretical

value of E(δρδϕ). Correspondingly, we denote by λρϕ∗ the empirical estimate of E(δρδϕ) from

the Monte Carlo experiment. Therefore, from (C.65) it follows that using the empirical estimate

λρϕ∗ instead of the theoretical estimate λρϕ introduces an error of order O(τ).

Since the term λρϕ∗ in our expansions is multiplied by a coefficient τ2, the total error in the

expansion is of order O(τ3), which is acceptable based on the accuracy of the method.

Based on (3.11), (C.56), (C.62), and (C.65), it follows that instead of the matrix Λ we will use

the matrix Λ∗.

Λ∗ =

λρρ∗ λρϕ∗

λϕρ∗ λϕϕ∗

 (C.66)

Λ∗ = Λ+O(τ) (C.67)

µi = lim
T→∞

E(
√
Td1i − d2i) = lim

T→∞
E(
√
Tδi) (C.68)
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µρ = lim
T→∞

E(
√
Td1ρ − d2ρ) = lim

T→∞
E(
√
Tδρ)

= lim
T→∞

E(
ρ̂− ρ
τ2

) (C.69)

ρ̂− ρ
τ2

=
τ(ρ1 + τρ2) + ω(τ3)

τ2
=

(ρ1 + τρ2) + ω(τ2)

τ
=
√
Tρ1 + ρ2 + ω(τ) (C.70)

and taking expected value we find:

µρ∗ = E(
√
Tρ1 + ρ2 + ω(τ)) = E(

√
Tρ1 + ρ2) +O(τ) = µρ +O(τ) (C.71)

From (C.69), (C.70), and (C.71), it follows that theoretically µρ =
√
Tδρ. In the case where the

stochastic terms follow an ARMA(1,1) process, we cannot use theoretical formulas to compute

the expected value of δρ. Instead, we use a simulation experiment from which E(δρ) is computed

“empirically”. We denote by µρ the theoretical E(δρ). Correspondingly, we denote by µρ∗ the

empirical estimate of E(δρ) from the Monte Carlo experiment. Therefore, from (C.71) it follows

that using the empirical estimate µρ∗ instead of the theoretical estimate µρ introduces an error

of order O(τ).

Since the term µρ∗ in our expansions is multiplied by a coefficient τ2/2, the total error in the

expansion is of order O(τ3), which is acceptable based on the accuracy of the method.

µϕ = lim
T→∞

E(
√
Td1ϕ − d2ϕ) = lim

T→∞
E(
√
Tδϕ)

= lim
T→∞

E(
ϕ̂− ϕ
τ2

) (C.72)

ϕ̂− ϕ
τ2

=
τ(ϕ1 + τϕ2) + ω(τ3)

τ2
=

(ϕ1 + τϕ2) + ω(τ2)

τ
=
√
Tϕ1 + ϕ2 + ω(τ) (C.73)

and taking expected value we find:

µϕ∗ = E(
√
Tϕ1 + ϕ2 + ω(τ)) = E(

√
Tϕ1 + ϕ2) +O(τ) = µϕ +O(τ) (C.74)

From (C.72), (C.73), and (C.74), it follows that theoretically µϕ =
√
Tδϕ. In the case where the

stochastic terms follow an ARMA(1,1) process, we cannot use theoretical formulas to compute
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the expected value of δϕ. Instead, we use a simulation experiment from which E(δϕ) is computed

“empirically”. We denote by µϕ the theoretical E(δϕ). Correspondingly, we denote by µϕ∗ the

empirical estimate of E(δϕ) from the Monte Carlo experiment. Therefore, from (C.74) it follows

that using the empirical estimate µϕ∗ instead of the theoretical estimate µϕ introduces an error

of order O(τ).

Since the term µϕ∗ in our expansions is multiplied by a coefficient τ2/2, the total error in the

expansion is of order O(τ3), which is acceptable based on the accuracy of the method.

For µ0 we can use theoretical formulas according to the following method. Theoretically, µ0

is given by the formula:

µ0 = lim
T→∞

E(
√
Tσ0 + σ1). (C.75)

Provided that

σ0 = w0 − aρδρ − aϕδϕ, (C.76)

σ1 = wρδρ + wϕδϕ + aρρδρδρ + aϕϕδϕδϕ + 2aρϕδρδϕ − b′Âb+ n, (C.77)

it follows that

E(σ0) = E(w0 − aρδρ − aϕδϕ) (C.78)

= E(w0)− aρE(δρ)− aϕE(δϕ) (C.79)

= 0 (C.80)

Using (C.54), (C.55), (C.61), (C.62), (C.24) and (C.25) we find that

σ1 =
√
T

(
u′Ωρu

T
+ aρ

)
δρ +

√
T

(
u′Ωϕu

T
+ aϕ

)
δϕ

+aρρδρδρ + aϕϕδϕδϕ + 2aρϕδρδϕ − b′Âb+ n

=
√
T

[(
u′Ωρu

T

)
− E

(
u′Ωρu

T

)]
δρ +

√
T

[(
u′Ωϕu

T

)
− E

(
u′Ωϕu

T

)]
δϕ

+
1

2
E
(
u′Ωρρu

T

)
δρδρ +

1

2
E
(
u′Ωϕϕu

T

)
δϕδϕ

+2
1

2
E
(
u′Ωρϕu

T

)
δρδϕ − b′Âb+ n. (C.81)
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Provided that

E(b′Ab) = trAG = tr In = n (C.82)

taking expected values we find:

µ0 = E(
√
Tσ0 + σ1) =

√
TE(σ0) + E(σ1) = E(σ1). (C.83)

Therefore from (C.81), (C.82) and (C.83) imply that

µ0 =
1

2

tr(u′Ωρρu)

T
δρδρ +

1

2

tr(u′Ωϕϕu)

T
δϕδϕ +

tr(u′Ωρϕu)

T
δρδϕ (C.84)
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Initial value

D.1 Analysis of the ARMA(1,1) Model

The ARMA(1,1) model (Autoregressive Moving Average) is one of the fundamental structures

in time series analysis, combining the characteristics of the autoregressive process (AR) and the

moving average process (MA). The ARMA(1,1) models allows the representation and forecasting

of time series data that exhibit dependencies with errors.

D.1.1 General Form of the Model

The general form of the ARMA(1,1) model is as follows:

Yt = µ+ ρYt−1 + ϵt + ϕϵt−1, (D.1)

where:

• Yt is the value of the time series at time t,

• µ is a constant term,

• ρ is the coefficient of the autoregressive term (AR),

• ϕ is the coefficient of the moving average term (MA),

• ϵt is the stochastic error (white noise) with mean 0 and variance σ2.

The same equation can be expressed with the lag operator L, as follows:

(1− ρL)Yt = δ + (1− ϕL)ϵt. (D.2)

This formulation facilitates the algebraic manipulation of the model and helps in the

calculation of important statistical quantities such as the mean, variance, and autocovariance of

the series.
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D.1.2 Stationarity and Invertibility

For the ARMA(1,1) model to be used statistically in a valid manner, it is necessary to meet two

basic conditions: stationarity and invertibility.

• The model is stationary if |ρ| < 1, meaning the process does not diverge over the long term.

• It is invertible if |ϕ| < 1, which ensures that the errors can be determined from the observed

values of the series.

D.1.3 Mean of the Process

The mean µ = E(Yt) is derived as follows:

First, solving the model for Yt:

Yt =
δ + (1− ϕL)ϵt

(1− ρL)
(D.3)

Yt =
δ

(1− ρL)
+

(1− ϕL)ϵt
(1− ρL)

(D.4)

Yt = (1− ρL)−1δ + (1− ρL)−1(1− ϕL)ϵt. (D.5)

Since the error term ϵt is white noise with zero expected value, the second term of the equation

vanishes when taking the expected value, i.e.

E(Yt) = (1− ρL)−1δ =
δ

1− ρ
. (D.6)

Thus, the mean of the process is:

µ =
δ

1− ρ
. (D.7)

D.1.4 Variance and Covariance

The variance of the series is crucial for understanding the dispersion around the mean. If we

define yt = Yt − µ, then the series of deviations from the mean satisfies the relation

yt = ρyt−1 + ϵt + ϕϵt−1. (D.8)

Thus,

E(yt) = ρE(yt−1)⇒
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µ = ρµ⇒

µ(1− ρ) = 0⇒

µ = 0.

The variance γ0 = E(yt)
2 is calculated as:

γ0 = E(yt)2 = E(ρyt−1 + ϵt + ϕϵt−1)
2

= E(ρ2y2t−1 + ϵ2t + ϕ2ϵ2t−1 + 2ρyt−1ϵt + 2ρϕyt−1ϵt−1 + 2ϕϵtϵt−1)

= ρ2E(yt−1)
2 + E(ϵt)2 + ϕ2E(ϵt−1)

2 + 2ρE(yt−1ϵt)

+2ρϕE(yt−1ϵt−1) + 2ϕE(ϵtϵt−1), (D.9)

which implies that

γ0 = ρ2γ0 + σ2ϵ + ϕ2σ2ϵ + 2ρϕE[(ρyt−2 + ϵt−1 + ϕϵt−2)ϵt−1]

= ρ2γ0 + σ2ϵ + ϕ2σ2ϵ + 2ρϕE(ϵt−1)
2

= ρ2γ0 + σ2ϵ + ϕ2σ2ϵ + 2ρϕσ2ϵ . (D.10)

Therefore,

(1− ρ2)γ0 = σ2ϵ (1 + ϕ2 + 2ρϕ)⇒ (D.11)

γ0 =
σ2ϵ (1 + ϕ2 + 2ρϕ)

1− ρ2
. (D.12)

Similarly, the first- and second-order autocovariances are calculated as:

γ1 = E(yt−1yt) = E[yt−1(ρyt−1 + ϵt + ϕϵt−1)]

= E(ρy2t−1 + yt−1ϵt + ϕyt−1ϵt−1)

= ρE(yt−1)
2 + ϕE(yt−1ϵt−1)

= ργ0 + ϕσ2ϵ , (D.13)
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Appendix D: Initial value

γ2 = E(yt−2yt) = E[yt−2(ρyt−1 + ϵt + ϕϵt−1)]

= E(ρyt−1yt−2 + yt−2ϵt + ϕϵt−1)yt−2

= ρE(yt−1yt−2)

= ργ1, (D.14)

and generally

γk = ργk−1. (D.15)

These quantities are crucial for understanding the temporal dependence of the series.

D.1.5 Calculation of the Initial Value u0

The value u0 refers to the initial value of ut and is necessary for proper simulation or forecasting

of the model.

Once γ0 is calculated, we calculate σu from the following formula:

σu =
√
γ0, (D.16)

and then u0, which can be expressed as a number generated from a distribution with mean

0 and standard deviation σu.
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Appendix E

Monte Carlo estimation of the expectation variance and covariance of ρ and ϕ

This appendix includes the complete set of results obtained from the extensive Monte Carlo

simulation conducted to study the behavior of the estimators of the ARMA(1,1) model in small

sample sizes. The purpose of the simulation was to quantify the behavior of the maximum

likelihood estimates (MLE) under different combinations of parameters and sample sizes, as well

as to compute the asymptotic moments — namely the means, variances, and covariances — of

the parameter estimators.

The results are systematically presented, covering a wide range of values for the autoregressive

coefficient (ρ) and the moving average coefficient (ϕ), which take values from −0.9 to 0.9 in

increments of 0.1. The analysis is performed for four different sample sizes: T = 15, 20, 30, and

50 observations. For each parameter combination, 10000 replications were conducted to ensure

the statistical reliability of the calculations. The estimated quantities include the means µρ and

µϕ, the variances λρρ and λϕϕ, and the covariance λρϕ.

These quantities are critical for adjusting the size of econometric t and F tests, especially

in small samples, through the use of asymptotic expansions such as the Edgeworth and

Cornish-Fisher expansions. Therefore, the simulation results provide a statistical basis for more

accurate inference in empirical data with limited sample sizes.

Subsequently, the results are presented in tables with a uniform format to facilitate reading

and analysis. Each table is structured to display the values of the above quantities for all

combinations of parameters and sample sizes.

More specifically, in the tables, columns are grouped according to the sample size T , while

rows correspond to the combinations of parameters ρ and ϕ. For each case, the estimated means

and moments described above are presented, allowing the reader to accurately evaluate the effect

of parameters and sample size on the performance of the estimators.
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Table E.1 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.1

0.1 -0.349 -0.315 0.337 0.222 0.062 -0.412 -0.363 0.414 0.294 0.074 -0.514 -0.421 0.549 0.402 0.086 -0.652 -0.510 0.797 0.602 0.105
0.2 -0.364 -0.650 0.343 0.540 0.189 -0.432 -0.736 0.415 0.689 0.248 -0.522 -0.865 0.527 0.941 0.342 -0.625 -1.069 0.697 1.410 0.496
0.3 -0.396 -0.969 0.360 1.045 0.338 -0.454 -1.099 0.420 1.332 0.439 -0.531 -1.302 0.504 1.841 0.608 -0.623 -1.637 0.640 2.855 0.900
0.4 -0.424 -1.282 0.377 1.730 0.503 -0.483 -1.462 0.438 2.231 0.659 -0.547 -1.753 0.500 3.173 0.899 -0.631 -2.240 0.610 5.120 1.338
0.5 -0.458 -1.593 0.409 2.606 0.694 -0.516 -1.829 0.468 3.410 0.906 -0.570 -2.222 0.519 5.001 1.227 -0.659 -2.865 0.624 8.267 1.843
0.6 -0.496 -1.902 0.455 3.670 0.911 -0.552 -2.199 0.517 4.883 1.184 -0.608 -2.698 0.572 7.316 1.612 -0.698 -3.503 0.683 12.307 2.416
0.7 -0.539 -2.204 0.520 4.902 1.152 -0.599 -2.565 0.593 6.613 1.508 -0.651 -3.169 0.655 10.067 2.036 -0.739 -4.138 0.784 17.144 3.036
0.8 -0.585 -2.479 0.605 6.191 1.407 -0.647 -2.906 0.694 8.479 1.846 -0.701 -3.619 0.778 13.123 2.508 -0.783 -4.745 0.928 22.537 3.685
0.9 -0.627 -2.706 0.699 7.378 1.637 -0.696 -3.193 0.817 10.233 2.173 -0.758 -4.015 0.942 16.149 3.003 -0.840 -5.306 1.134 28.176 4.417

0.2

0.1 -0.735 -0.269 0.738 0.199 0.150 -0.854 -0.303 0.943 0.252 0.187 -1.025 -0.349 1.287 0.336 0.246 -1.257 -0.428 1.867 0.482 0.358
0.2 -0.753 -0.592 0.754 0.469 0.398 -0.858 -0.674 0.931 0.595 0.514 -1.010 -0.794 1.224 0.802 0.710 -1.220 -1.006 1.721 1.227 1.092
0.3 -0.766 -0.909 0.765 0.930 0.650 -0.870 -1.037 0.942 1.189 0.848 -1.006 -1.246 1.195 1.677 1.182 -1.211 -1.601 1.658 2.701 1.842
0.4 -0.784 -1.222 0.793 1.578 0.916 -0.885 -1.406 0.963 2.062 1.197 -1.015 -1.712 1.200 3.017 1.681 -1.228 -2.218 1.674 5.004 2.656
0.5 -0.811 -1.534 0.841 2.420 1.204 -0.910 -1.775 1.010 3.211 1.572 -1.039 -2.184 1.250 4.826 2.223 -1.260 -2.849 1.749 8.169 3.541
0.6 -0.846 -1.841 0.911 3.444 1.515 -0.942 -2.144 1.085 4.645 1.980 -1.074 -2.659 1.341 7.108 2.813 -1.301 -3.485 1.872 12.181 4.490
0.7 -0.884 -2.136 1.000 4.617 1.839 -0.984 -2.506 1.193 6.320 2.418 -1.115 -3.125 1.467 9.798 3.438 -1.342 -4.110 2.030 16.926 5.468
0.8 -0.924 -2.405 1.107 5.841 2.162 -1.030 -2.840 1.329 8.109 2.864 -1.164 -3.566 1.638 12.750 4.092 -1.384 -4.707 2.229 22.186 6.450
0.9 -0.961 -2.624 1.221 6.960 2.441 -1.077 -3.118 1.487 9.776 3.280 -1.220 -3.953 1.854 15.669 4.745 -1.440 -5.258 2.502 27.676 7.484

0.3

0.1 -1.111 -0.221 1.409 0.182 0.199 -1.264 -0.253 1.780 0.225 0.255 -1.495 -0.296 2.423 0.285 0.347 -1.829 -0.390 3.554 0.402 0.573
0.2 -1.113 -0.540 1.403 0.413 0.555 -1.263 -0.620 1.763 0.520 0.725 -1.473 -0.751 2.333 0.717 1.028 -1.801 -0.986 3.408 1.146 1.669
0.3 -1.118 -0.855 1.411 0.836 0.910 -1.261 -0.988 1.750 1.084 1.193 -1.465 -1.214 2.297 1.587 1.714 -1.804 -1.594 3.395 2.655 2.795
0.4 -1.131 -1.167 1.444 1.449 1.277 -1.272 -1.358 1.779 1.926 1.677 -1.478 -1.682 2.330 2.908 2.430 -1.828 -2.214 3.475 4.978 3.985
0.5 -1.154 -1.477 1.503 2.255 1.657 -1.293 -1.728 1.840 3.050 2.184 -1.502 -2.155 2.408 4.704 3.184 -1.865 -2.843 3.618 8.138 5.248
0.6 -1.182 -1.781 1.584 3.237 2.051 -1.323 -2.093 1.939 4.438 2.716 -1.536 -2.625 2.537 6.940 3.977 -1.905 -3.471 3.797 12.093 6.553
0.7 -1.215 -2.070 1.691 4.354 2.452 -1.361 -2.448 2.072 6.047 3.266 -1.576 -3.082 2.702 9.546 4.788 -1.943 -4.084 4.001 16.723 7.862
0.8 -1.249 -2.331 1.810 5.513 2.832 -1.403 -2.774 2.237 7.761 3.811 -1.622 -3.513 2.915 12.393 5.612 -1.981 -4.667 4.239 21.836 9.148
0.9 -1.282 -2.544 1.938 6.571 3.162 -1.446 -3.045 2.420 9.351 4.300 -1.677 -3.892 3.180 15.212 6.414 -2.037 -5.209 4.578 27.194 10.480
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Table E.2 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.4

0.1 -1.464 -0.175 2.298 0.170 0.211 -1.661 -0.210 2.914 0.201 0.291 -1.949 -0.270 3.944 0.253 0.448 -2.406 -0.390 5.928 0.353 0.837
0.2 -1.455 -0.493 2.266 0.369 0.672 -1.645 -0.581 2.853 0.470 0.901 -1.926 -0.731 3.839 0.675 1.342 -2.394 -0.992 5.844 1.126 2.294
0.3 -1.455 -0.806 2.268 0.760 1.128 -1.640 -0.950 2.836 1.010 1.506 -1.925 -1.195 3.831 1.535 2.243 -2.407 -1.602 5.898 2.668 3.791
0.4 -1.464 -1.116 2.298 1.341 1.586 -1.649 -1.318 2.867 1.827 2.121 -1.939 -1.664 3.886 2.851 3.169 -2.437 -2.221 6.045 5.008 5.353
0.5 -1.479 -1.423 2.357 2.112 2.052 -1.667 -1.685 2.941 2.915 2.751 -1.964 -2.132 3.999 4.615 4.126 -2.473 -2.842 6.240 8.143 6.967
0.6 -1.504 -1.722 2.449 3.050 2.526 -1.693 -2.045 3.052 4.256 3.396 -1.995 -2.592 4.151 6.786 5.100 -2.508 -3.457 6.452 12.017 8.597
0.7 -1.532 -2.004 2.563 4.109 2.993 -1.727 -2.392 3.203 5.800 4.046 -2.031 -3.039 4.344 9.308 6.082 -2.540 -4.055 6.674 16.514 10.201
0.8 -1.564 -2.259 2.699 5.208 3.437 -1.768 -2.710 3.395 7.436 4.686 -2.075 -3.461 4.591 12.056 7.066 -2.575 -4.628 6.943 21.499 11.784
0.9 -1.593 -2.467 2.833 6.218 3.811 -1.808 -2.974 3.598 8.959 5.247 -2.129 -3.832 4.902 14.780 8.011 -2.629 -5.163 7.346 26.745 13.400

0.5

0.1 -1.800 -0.138 3.380 0.167 0.207 -2.036 -0.184 4.280 0.192 0.323 -2.400 -0.264 5.874 0.231 0.573 -3.005 -0.408 9.118 0.328 1.160
0.2 -1.784 -0.453 3.324 0.339 0.766 -2.018 -0.551 4.205 0.438 1.061 -2.385 -0.725 5.794 0.654 1.674 -3.005 -1.012 9.108 1.144 2.983
0.3 -1.779 -0.762 3.313 0.700 1.310 -2.012 -0.919 4.185 0.959 1.797 -2.386 -1.188 5.799 1.516 2.779 -3.022 -1.619 9.213 2.717 4.839
0.4 -1.781 -1.069 3.331 1.253 1.855 -2.017 -1.283 4.213 1.749 2.532 -2.399 -1.650 5.874 2.814 3.900 -3.049 -2.230 9.391 5.055 6.742
0.5 -1.795 -1.371 3.397 1.987 2.403 -2.029 -1.645 4.281 2.802 3.273 -2.420 -2.109 5.995 4.537 5.036 -3.080 -2.840 9.602 8.145 8.678
0.6 -1.813 -1.664 3.485 2.881 2.946 -2.052 -1.998 4.403 4.091 4.022 -2.447 -2.559 6.158 6.643 6.176 -3.106 -3.441 9.807 11.928 10.597
0.7 -1.838 -1.941 3.604 3.892 3.478 -2.084 -2.337 4.572 5.571 4.770 -2.478 -2.996 6.366 9.080 7.315 -3.130 -4.025 10.019 16.304 12.475
0.8 -1.865 -2.190 3.743 4.940 3.975 -2.122 -2.647 4.782 7.137 5.494 -2.521 -3.409 6.645 11.742 8.452 -3.162 -4.590 10.313 21.189 14.345
0.9 -1.889 -2.395 3.877 5.907 4.391 -2.159 -2.907 5.000 8.607 6.122 -2.571 -3.775 6.989 14.385 9.524 -3.216 -5.118 10.777 26.328 16.238

0.6

0.1 -2.118 -0.107 4.629 0.170 0.189 -2.400 -0.165 5.888 0.187 0.352 -2.855 -0.269 8.247 0.220 0.724 -3.622 -0.436 13.175 0.321 1.538
0.2 -2.099 -0.417 4.554 0.320 0.836 -2.381 -0.529 5.798 0.420 1.215 -2.844 -0.725 8.180 0.651 2.017 -3.625 -1.034 13.204 1.178 3.709
0.3 -2.088 -0.723 4.520 0.658 1.466 -2.372 -0.892 5.765 0.922 2.065 -2.844 -1.182 8.192 1.510 3.313 -3.640 -1.636 13.316 2.771 5.906
0.4 -2.086 -1.025 4.529 1.183 2.089 -2.372 -1.252 5.779 1.691 2.913 -2.852 -1.637 8.252 2.788 4.608 -3.658 -2.236 13.472 5.097 8.124
0.5 -2.093 -1.323 4.575 1.886 2.706 -2.381 -1.607 5.844 2.707 3.756 -2.867 -2.086 8.365 4.467 5.906 -3.676 -2.832 13.630 8.124 10.334
0.6 -2.107 -1.610 4.662 2.737 3.314 -2.400 -1.953 5.966 3.948 4.597 -2.886 -2.527 8.514 6.512 7.194 -3.692 -3.420 13.793 11.814 12.521
0.7 -2.128 -1.882 4.781 3.703 3.905 -2.428 -2.284 6.142 5.367 5.432 -2.913 -2.955 8.723 8.875 8.477 -3.709 -3.995 13.986 16.101 14.670
0.8 -2.150 -2.126 4.920 4.706 4.451 -2.462 -2.588 6.359 6.873 6.229 -2.953 -3.361 9.021 11.460 9.753 -3.738 -4.554 14.298 20.903 16.822
0.9 -2.169 -2.326 5.045 5.631 4.904 -2.494 -2.843 6.582 8.289 6.918 -3.001 -3.720 9.399 14.030 10.950 -3.791 -5.074 14.814 25.946 18.976
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Table E.3 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.7

0.1 -2.420 -0.079 6.020 0.177 0.163 -2.752 -0.151 7.713 0.187 0.382 -3.309 -0.276 11.040 0.217 0.882 -4.243 -0.460 18.061 0.324 1.926
0.2 -2.393 -0.386 5.905 0.310 0.890 -2.727 -0.512 7.587 0.414 1.359 -3.293 -0.727 10.941 0.657 2.356 -4.240 -1.052 18.040 1.211 4.430
0.3 -2.375 -0.688 5.843 0.631 1.596 -2.712 -0.870 7.524 0.904 2.315 -3.288 -1.176 10.924 1.509 3.821 -4.243 -1.645 18.080 2.811 6.938
0.4 -2.366 -0.987 5.825 1.134 2.286 -2.706 -1.223 7.510 1.646 3.254 -3.286 -1.622 10.934 2.763 5.267 -4.247 -2.234 18.132 5.107 9.430
0.5 -2.366 -1.279 5.854 1.805 2.964 -2.710 -1.571 7.560 2.628 4.186 -3.292 -2.062 11.007 4.401 6.707 -4.251 -2.818 18.196 8.075 11.896
0.6 -2.375 -1.560 5.929 2.619 3.626 -2.723 -1.909 7.668 3.822 5.106 -3.305 -2.495 11.132 6.390 8.133 -4.258 -3.396 18.304 11.692 14.341
0.7 -2.390 -1.826 6.038 3.545 4.264 -2.745 -2.235 7.835 5.196 6.013 -3.326 -2.916 11.327 8.693 9.548 -4.269 -3.966 18.466 15.918 16.760
0.8 -2.406 -2.067 6.163 4.508 4.852 -2.774 -2.534 8.049 6.648 6.874 -3.361 -3.315 11.633 11.210 10.949 -4.294 -4.520 18.779 20.656 19.176
0.9 -2.418 -2.264 6.277 5.400 5.334 -2.802 -2.784 8.267 8.016 7.613 -3.407 -3.669 12.030 13.712 12.253 -4.345 -5.034 19.336 25.607 21.570

0.8

0.1 -2.683 -0.059 7.450 0.189 0.137 -3.069 -0.145 9.622 0.195 0.420 -3.733 -0.281 14.067 0.219 1.030 -4.836 -0.475 23.466 0.331 2.285
0.2 -2.645 -0.362 7.286 0.313 0.931 -3.035 -0.501 9.439 0.420 1.489 -3.709 -0.726 13.906 0.667 2.665 -4.819 -1.061 23.317 1.235 5.091
0.3 -2.619 -0.661 7.186 0.622 1.699 -3.010 -0.852 9.322 0.898 2.524 -3.690 -1.168 13.789 1.511 4.268 -4.805 -1.645 23.199 2.827 7.867
0.4 -2.602 -0.954 7.141 1.105 2.441 -2.996 -1.198 9.272 1.620 3.539 -3.676 -1.606 13.721 2.741 5.843 -4.791 -2.225 23.088 5.092 10.602
0.5 -2.594 -1.239 7.150 1.745 3.163 -2.991 -1.540 9.287 2.572 4.537 -3.672 -2.039 13.730 4.346 7.403 -4.783 -2.801 23.042 8.017 13.311
0.6 -2.594 -1.515 7.204 2.530 3.864 -2.996 -1.873 9.365 3.733 5.518 -3.675 -2.466 13.800 6.295 8.942 -4.780 -3.374 23.069 11.589 15.998
0.7 -2.602 -1.776 7.302 3.417 4.535 -3.010 -2.192 9.508 5.061 6.475 -3.689 -2.881 13.962 8.550 10.466 -4.785 -3.939 23.185 15.765 18.661
0.8 -2.612 -2.013 7.415 4.346 5.156 -3.030 -2.487 9.697 6.474 7.377 -3.719 -3.275 14.256 11.013 11.967 -4.804 -4.489 23.469 20.450 21.307
0.9 -2.614 -2.212 7.500 5.221 5.664 -3.048 -2.732 9.891 7.796 8.141 -3.758 -3.622 14.640 13.445 13.344 -4.851 -4.997 24.032 25.315 23.899

0.9

0.1 -2.868 -0.049 8.823 0.213 0.133 -3.287 -0.146 11.332 0.211 0.469 -4.056 -0.291 16.829 0.234 1.174 -5.335 -0.487 28.707 0.348 2.600
0.2 -2.822 -0.342 8.634 0.332 0.965 -3.236 -0.493 11.081 0.438 1.587 -4.007 -0.728 16.504 0.688 2.904 -5.286 -1.063 28.214 1.254 5.610
0.3 -2.791 -0.630 8.539 0.622 1.767 -3.196 -0.837 10.903 0.906 2.662 -3.966 -1.163 16.241 1.526 4.584 -5.244 -1.641 27.805 2.836 8.576
0.4 -2.772 -0.914 8.509 1.077 2.549 -3.168 -1.176 10.809 1.609 3.710 -3.933 -1.595 16.061 2.744 6.227 -5.208 -2.216 27.466 5.087 11.488
0.5 -2.765 -1.193 8.543 1.686 3.310 -3.157 -1.510 10.812 2.531 4.740 -3.912 -2.022 15.972 4.320 7.838 -5.182 -2.789 27.249 7.990 14.362
0.6 -2.771 -1.465 8.647 2.436 4.064 -3.155 -1.838 10.887 3.659 5.752 -3.899 -2.444 15.957 6.245 9.423 -5.163 -3.358 27.129 11.534 17.199
0.7 -2.784 -1.723 8.791 3.293 4.790 -3.167 -2.152 11.048 4.951 6.745 -3.902 -2.855 16.079 8.459 10.991 -5.154 -3.919 27.125 15.673 20.002
0.8 -2.805 -1.960 8.976 4.195 5.476 -3.185 -2.443 11.256 6.331 7.681 -3.921 -3.243 16.326 10.872 12.518 -5.159 -4.465 27.298 20.313 22.760
0.9 -2.820 -2.158 9.129 5.053 6.057 -3.203 -2.689 11.469 7.633 8.483 -3.946 -3.584 16.654 13.253 13.897 -5.193 -4.966 27.779 25.092 25.428
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Table E.4 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

-0.1

0.1 0.450 -0.410 0.430 0.304 -0.224 0.505 -0.470 0.525 0.401 -0.308 0.589 -0.577 0.676 0.587 -0.486 0.732 -0.737 1.004 0.956 -0.830
0.2 0.441 -0.755 0.426 0.695 -0.376 0.489 -0.868 0.515 0.918 -0.497 0.577 -1.046 0.666 1.324 -0.745 0.715 -1.322 0.964 2.119 -1.214
0.3 0.415 -1.086 0.412 1.292 -0.496 0.461 -1.250 0.485 1.706 -0.649 0.537 -1.491 0.611 2.424 -0.927 0.661 -1.858 0.847 3.751 -1.443
0.4 0.378 -1.413 0.390 2.097 -0.577 0.411 -1.611 0.441 2.716 -0.723 0.472 -1.912 0.519 3.812 -0.996 0.609 -2.386 0.711 5.889 -1.587
0.5 0.317 -1.724 0.351 3.056 -0.583 0.346 -1.965 0.383 3.953 -0.724 0.411 -2.343 0.435 5.592 -1.014 0.558 -2.956 0.594 8.851 -1.711
0.6 0.253 -2.033 0.318 4.195 -0.540 0.283 -2.325 0.343 5.471 -0.680 0.357 -2.799 0.378 7.897 -1.016 0.514 -3.569 0.515 12.794 -1.842
0.7 0.195 -2.335 0.307 5.500 -0.473 0.218 -2.688 0.323 7.266 -0.592 0.302 -3.268 0.353 10.719 -0.978 0.471 -4.200 0.484 17.678 -1.956
0.8 0.141 -2.623 0.318 6.922 -0.385 0.159 -3.038 0.333 9.264 -0.481 0.246 -3.727 0.366 13.917 -0.896 0.423 -4.823 0.501 23.285 -2.005
0.9 0.095 -2.867 0.354 8.270 -0.293 0.101 -3.341 0.371 11.198 -0.336 0.185 -4.140 0.411 17.163 -0.742 0.366 -5.404 0.563 29.227 -1.932

-0.2

0.1 0.832 -0.450 0.906 0.351 -0.409 0.945 -0.520 1.144 0.463 -0.559 1.116 -0.638 1.555 0.684 -0.849 1.389 -0.824 2.358 1.116 -1.420
0.2 0.838 -0.797 0.930 0.772 -0.708 0.955 -0.916 1.181 1.020 -0.946 1.137 -1.123 1.624 1.517 -1.423 1.440 -1.444 2.545 2.499 -2.371
0.3 0.830 -1.142 0.927 1.427 -0.991 0.937 -1.314 1.162 1.888 -1.302 1.120 -1.591 1.603 2.758 -1.924 1.408 -2.024 2.451 4.459 -3.120
0.4 0.798 -1.472 0.893 2.274 -1.218 0.896 -1.691 1.094 2.995 -1.585 1.057 -2.027 1.463 4.297 -2.262 1.314 -2.539 2.162 6.724 -3.543
0.5 0.749 -1.792 0.835 3.304 -1.381 0.832 -2.049 0.992 4.309 -1.759 0.964 -2.442 1.250 6.099 -2.432 1.222 -3.059 1.855 9.530 -3.847
0.6 0.673 -2.099 0.735 4.482 -1.439 0.744 -2.399 0.852 5.835 -1.815 0.879 -2.871 1.069 8.332 -2.551 1.145 -3.629 1.614 13.265 -4.178
0.7 0.601 -2.400 0.658 5.817 -1.457 0.671 -2.753 0.760 7.638 -1.852 0.809 -3.326 0.949 11.119 -2.680 1.083 -4.244 1.459 18.068 -4.562
0.8 0.533 -2.689 0.610 7.284 -1.441 0.597 -3.103 0.696 9.672 -1.841 0.740 -3.783 0.874 14.349 -2.761 1.033 -4.865 1.401 23.706 -4.961
0.9 0.481 -2.941 0.603 8.709 -1.421 0.533 -3.412 0.673 11.689 -1.797 0.673 -4.201 0.844 17.682 -2.774 0.975 -5.451 1.384 29.754 -5.231

-0.3

0.1 1.192 -0.492 1.616 0.401 -0.615 1.344 -0.562 2.031 0.520 -0.817 1.579 -0.684 2.761 0.759 -1.205 1.963 -0.871 4.206 1.189 -1.947
0.2 1.214 -0.831 1.682 0.845 -1.043 1.384 -0.956 2.160 1.116 -1.390 1.651 -1.170 3.030 1.658 -2.071 2.074 -1.501 4.720 2.702 -3.390
0.3 1.227 -1.180 1.734 1.533 -1.487 1.402 -1.360 2.236 2.035 -1.979 1.685 -1.667 3.166 3.039 -2.954 2.149 -2.149 5.086 5.033 -4.909
0.4 1.220 -1.525 1.734 2.449 -1.904 1.382 -1.758 2.204 3.251 -2.500 1.662 -2.134 3.120 4.775 -3.686 2.103 -2.725 4.913 7.780 -6.003
0.5 1.181 -1.852 1.667 3.536 -2.229 1.331 -2.130 2.084 4.667 -2.902 1.580 -2.560 2.870 6.731 -4.160 1.966 -3.222 4.327 10.637 -6.526
0.6 1.118 -2.165 1.550 4.778 -2.454 1.247 -2.479 1.886 6.250 -3.137 1.460 -2.971 2.489 8.952 -4.402 1.831 -3.733 3.735 14.087 -6.909
0.7 1.038 -2.465 1.401 6.148 -2.578 1.151 -2.826 1.672 8.062 -3.269 1.350 -3.398 2.167 11.623 -4.593 1.736 -4.306 3.358 18.631 -7.458
0.8 0.963 -2.753 1.283 7.641 -2.656 1.067 -3.167 1.513 10.088 -3.367 1.263 -3.843 1.960 14.825 -4.814 1.658 -4.912 3.105 24.193 -8.063
0.9 0.904 -3.011 1.223 9.131 -2.723 0.999 -3.479 1.429 12.165 -3.450 1.191 -4.259 1.843 18.196 -5.003 1.590 -5.498 2.968 30.291 -8.622

147



A
ppendix

E
:M

onte
C

arlo
estim

ation
ofthe

expectation
variance

and
covariance

of
ρ

and
ϕ

Table E.5 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

-0.4

0.1 1.518 -0.524 2.485 0.441 -0.818 1.714 -0.596 3.134 0.568 -1.072 2.019 -0.715 4.298 0.793 -1.545 2.496 -0.873 6.475 1.145 -2.357
0.2 1.565 -0.863 2.641 0.915 -1.379 1.773 -0.986 3.359 1.193 -1.809 2.100 -1.196 4.670 1.735 -2.637 2.623 -1.509 7.214 2.723 -4.191
0.3 1.598 -1.207 2.760 1.618 -1.963 1.825 -1.390 3.574 2.143 -2.604 2.192 -1.700 5.103 3.189 -3.866 2.760 -2.172 8.023 5.181 -6.270
0.4 1.617 -1.560 2.844 2.579 -2.561 1.848 -1.799 3.684 3.424 -3.395 2.234 -2.208 5.321 5.136 -5.078 2.854 -2.851 8.616 8.547 -8.429
0.5 1.610 -1.905 2.848 3.756 -3.111 1.830 -2.198 3.652 4.989 -4.091 2.206 -2.676 5.236 7.380 -6.042 2.794 -3.423 8.318 12.064 -9.837
0.6 1.571 -2.225 2.761 5.056 -3.537 1.769 -2.562 3.469 6.691 -4.596 2.100 -3.092 4.813 9.732 -6.602 2.623 -3.903 7.381 15.479 -10.421
0.7 1.500 -2.528 2.584 6.478 -3.821 1.675 -2.903 3.177 8.528 -4.901 1.965 -3.496 4.265 12.337 -6.915 2.446 -4.409 6.411 19.581 -10.828
0.8 1.417 -2.815 2.385 8.001 -4.002 1.571 -3.236 2.879 10.548 -5.089 1.842 -3.910 3.813 15.375 -7.185 2.333 -4.972 5.856 24.820 -11.540
0.9 1.351 -3.074 2.256 9.532 -4.157 1.492 -3.545 2.697 12.640 -5.270 1.747 -4.317 3.523 18.709 -7.473 2.255 -5.544 5.569 30.822 -12.369

-0.5

0.1 1.825 -0.550 3.497 0.475 -1.017 2.063 -0.610 4.428 0.585 -1.296 2.436 -0.710 6.102 0.757 -1.802 3.037 -0.837 9.372 1.004 -2.648
0.2 1.880 -0.883 3.711 0.965 -1.681 2.133 -1.002 4.742 1.236 -2.184 2.520 -1.191 6.558 1.717 -3.096 3.139 -1.473 10.072 2.564 -4.783
0.3 1.938 -1.225 3.942 1.686 -2.400 2.203 -1.404 5.064 2.207 -3.150 2.623 -1.697 7.130 3.203 -4.573 3.287 -2.135 11.115 5.017 -7.239
0.4 1.982 -1.574 4.130 2.652 -3.154 2.266 -1.815 5.370 3.520 -4.177 2.729 -2.220 7.734 5.242 -6.196 3.450 -2.838 12.297 8.535 -10.065
0.5 2.007 -1.932 4.255 3.886 -3.915 2.300 -2.234 5.558 5.185 -5.206 2.783 -2.743 8.076 7.796 -7.780 3.560 -3.547 13.140 13.007 -12.920
0.6 2.002 -2.273 4.272 5.300 -4.595 2.280 -2.629 5.512 7.072 -6.063 2.749 -3.211 7.941 10.528 -8.965 3.491 -4.123 12.721 17.334 -14.664
0.7 1.960 -2.586 4.153 6.797 -5.109 2.219 -2.984 5.287 9.032 -6.679 2.629 -3.615 7.351 13.236 -9.605 3.286 -4.581 11.347 21.221 -15.226
0.8 1.894 -2.874 3.957 8.356 -5.473 2.120 -3.307 4.915 11.042 -7.044 2.486 -4.002 6.657 16.138 -9.984 3.081 -5.070 10.003 25.851 -15.638
0.9 1.831 -3.132 3.789 9.908 -5.755 2.039 -3.608 4.649 13.113 -7.362 2.369 -4.381 6.149 19.292 -10.348 2.954 -5.602 9.265 31.503 -16.449

-0.6

0.1 2.113 -0.568 4.635 0.494 -1.203 2.393 -0.614 5.885 0.576 -1.490 2.859 -0.684 8.299 0.681 -1.994 3.625 -0.781 13.225 0.820 -2.878
0.2 2.171 -0.896 4.882 0.993 -1.953 2.467 -0.995 6.252 1.223 -2.483 2.931 -1.163 8.747 1.615 -3.466 3.682 -1.405 13.682 2.262 -5.249
0.3 2.241 -1.232 5.194 1.722 -2.775 2.547 -1.394 6.675 2.197 -3.590 3.026 -1.655 9.352 3.052 -5.092 3.787 -2.055 14.538 4.614 -7.914
0.4 2.312 -1.578 5.528 2.694 -3.671 2.632 -1.807 7.133 3.521 -4.810 3.143 -2.179 10.117 5.089 -6.962 3.953 -2.751 15.916 8.045 -11.078
0.5 2.368 -1.934 5.804 3.930 -4.608 2.705 -2.229 7.545 5.214 -6.092 3.266 -2.725 10.948 7.759 -9.036 4.137 -3.494 17.494 12.706 -14.722
0.6 2.397 -2.292 5.970 5.423 -5.532 2.750 -2.652 7.829 7.244 -7.362 3.330 -3.263 11.414 10.931 -11.008 4.268 -4.234 18.676 18.360 -18.359
0.7 2.396 -2.624 6.008 7.028 -6.329 2.732 -3.047 7.782 9.454 -8.392 3.301 -3.734 11.293 14.162 -12.462 4.192 -4.808 18.134 23.458 -20.431
0.8 2.365 -2.929 5.919 8.697 -6.967 2.679 -3.383 7.563 11.581 -9.121 3.178 -4.119 10.576 17.134 -13.185 3.963 -5.242 16.321 27.716 -20.945
0.9 2.323 -3.190 5.790 10.290 -7.448 2.599 -3.674 7.222 13.617 -9.591 3.053 -4.465 9.882 20.075 -13.673 3.775 -5.692 14.903 32.574 -21.510
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Table E.6 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

-0.7

0.1 2.373 -0.569 5.832 0.494 -1.343 2.715 -0.601 7.542 0.548 -1.631 3.285 -0.649 10.915 0.596 -2.137 4.237 -0.732 18.015 0.679 -3.112
0.2 2.442 -0.894 6.152 0.989 -2.175 2.782 -0.982 7.914 1.181 -2.733 3.346 -1.119 11.325 1.467 -3.760 4.273 -1.343 18.337 1.993 -5.754
0.3 2.519 -1.226 6.524 1.712 -3.082 2.866 -1.368 8.390 2.122 -3.931 3.427 -1.599 11.898 2.822 -5.514 4.335 -1.965 18.903 4.123 -8.558
0.4 2.602 -1.563 6.946 2.673 -4.068 2.962 -1.767 8.960 3.397 -5.258 3.532 -2.099 12.665 4.728 -7.473 4.436 -2.615 19.854 7.211 -11.692
0.5 2.682 -1.911 7.375 3.880 -5.139 3.058 -2.188 9.556 5.073 -6.734 3.661 -2.639 13.633 7.329 -9.761 4.609 -3.333 21.516 11.594 -15.541
0.6 2.745 -2.269 7.730 5.366 -6.253 3.144 -2.616 10.112 7.120 -8.283 3.796 -3.206 14.684 10.645 -12.301 4.819 -4.120 23.592 17.505 -20.116
0.7 2.789 -2.627 7.998 7.096 -7.364 3.196 -3.042 10.474 9.496 -9.788 3.881 -3.764 15.384 14.471 -14.748 4.972 -4.906 25.171 24.517 -24.678
0.8 2.798 -2.946 8.089 8.847 -8.287 3.203 -3.432 10.571 11.969 -11.061 3.866 -4.232 15.342 18.136 -16.493 4.910 -5.476 24.684 30.330 -27.164
0.9 2.785 -3.226 8.078 10.558 -9.040 3.166 -3.743 10.415 14.173 -11.924 3.773 -4.582 14.737 21.184 -17.405 4.704 -5.871 22.828 34.733 -27.820

-0.8

0.1 2.599 -0.548 7.048 0.470 -1.413 2.993 -0.572 9.227 0.502 -1.691 3.689 -0.616 13.812 0.530 -2.243 4.834 -0.703 23.457 0.606 -3.383
0.2 2.669 -0.873 7.392 0.948 -2.307 3.068 -0.951 9.654 1.101 -2.888 3.753 -1.074 14.258 1.327 -4.006 4.870 -1.299 23.801 1.820 -6.310
0.3 2.752 -1.202 7.811 1.651 -3.281 3.159 -1.328 10.198 1.994 -4.169 3.826 -1.539 14.797 2.583 -5.868 4.915 -1.902 24.250 3.790 -9.329
0.4 2.849 -1.530 8.329 2.571 -4.336 3.256 -1.717 10.817 3.214 -5.571 3.917 -2.016 15.515 4.327 -7.894 4.982 -2.514 24.939 6.560 -12.522
0.5 2.949 -1.867 8.890 3.738 -5.489 3.364 -2.114 11.525 4.767 -7.112 4.031 -2.512 16.447 6.638 -10.151 5.082 -3.157 26.002 10.312 -16.081
0.6 3.048 -2.215 9.476 5.170 -6.747 3.478 -2.531 12.307 6.730 -8.824 4.171 -3.057 17.627 9.737 -12.821 5.252 -3.877 27.857 15.510 -20.495
0.7 3.123 -2.560 9.942 6.820 -8.009 3.577 -2.957 13.012 9.071 -10.621 4.322 -3.636 18.944 13.633 -15.826 5.486 -4.693 30.453 22.614 -25.993
0.8 3.177 -2.900 10.304 8.655 -9.246 3.645 -3.375 13.533 11.682 -12.363 4.425 -4.206 19.888 18.052 -18.749 5.667 -5.517 32.545 30.934 -31.548
0.9 3.205 -3.200 10.518 10.451 -10.307 3.676 -3.743 13.798 14.248 -13.834 4.448 -4.664 20.156 22.023 -20.889 5.666 -6.094 32.661 37.498 -34.811

-0.9

0.1 2.741 -0.479 8.055 0.413 -1.313 3.161 -0.508 10.599 0.433 -1.577 3.974 -0.567 16.333 0.465 -2.204 5.329 -0.690 28.683 0.589 -3.627
0.2 2.812 -0.806 8.407 0.836 -2.243 3.245 -0.885 11.077 0.971 -2.818 4.055 -1.029 16.917 1.215 -4.101 5.393 -1.280 29.307 1.757 -6.846
0.3 2.898 -1.135 8.858 1.487 -3.247 3.340 -1.265 11.645 1.807 -4.149 4.151 -1.485 17.613 2.386 -6.086 5.451 -1.870 29.905 3.634 -10.134
0.4 3.005 -1.464 9.430 2.364 -4.347 3.456 -1.643 12.371 2.940 -5.592 4.249 -1.945 18.395 4.006 -8.171 5.514 -2.464 30.578 6.236 -13.520
0.5 3.119 -1.794 10.070 3.462 -5.537 3.588 -2.021 13.227 4.365 -7.174 4.365 -2.407 19.333 6.060 -10.433 5.588 -3.062 31.412 9.597 -17.035
0.6 3.243 -2.128 10.802 4.804 -6.853 3.722 -2.413 14.151 6.139 -8.926 4.499 -2.886 20.514 8.656 -12.934 5.693 -3.675 32.634 13.815 -20.866
0.7 3.363 -2.457 11.552 6.339 -8.224 3.861 -2.812 15.168 8.261 -10.831 4.648 -3.399 21.870 11.955 -15.794 5.853 -4.344 34.544 19.316 -25.440
0.8 3.460 -2.771 12.185 8.005 -9.568 3.980 -3.199 16.079 10.622 -12.734 4.813 -3.940 23.440 15.996 -19.012 6.102 -5.120 37.599 26.837 -31.406
0.9 3.529 -3.041 12.663 9.568 -10.733 4.065 -3.540 16.757 12.917 -14.422 4.932 -4.445 24.611 20.235 -22.028 6.334 -5.930 40.527 35.798 -37.833
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Table E.7 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.1

-0.1 -0.326 0.363 0.334 0.268 -0.158 -0.392 0.423 0.423 0.357 -0.236 -0.504 0.520 0.584 0.526 -0.408 -0.680 0.677 0.932 0.872 -0.752
-0.2 -0.314 0.703 0.327 0.632 -0.252 -0.375 0.807 0.410 0.826 -0.367 -0.493 0.976 0.574 1.208 -0.615 -0.673 1.239 0.915 1.943 -1.108
-0.3 -0.298 1.027 0.316 1.184 -0.329 -0.363 1.177 0.394 1.548 -0.479 -0.484 1.408 0.550 2.212 -0.791 -0.647 1.758 0.827 3.437 -1.350
-0.4 -0.281 1.348 0.307 1.929 -0.390 -0.343 1.538 0.376 2.500 -0.558 -0.460 1.832 0.506 3.537 -0.911 -0.635 2.286 0.738 5.476 -1.577
-0.5 -0.260 1.671 0.299 2.880 -0.436 -0.318 1.903 0.356 3.723 -0.611 -0.440 2.267 0.467 5.267 -1.018 -0.621 2.858 0.664 8.324 -1.823
-0.6 -0.232 1.988 0.294 4.012 -0.451 -0.293 2.278 0.347 5.257 -0.655 -0.416 2.731 0.442 7.539 -1.121 -0.606 3.469 0.624 12.131 -2.094
-0.7 -0.206 2.301 0.304 5.340 -0.462 -0.257 2.652 0.349 7.082 -0.658 -0.379 3.214 0.434 10.383 -1.183 -0.587 4.105 0.628 16.917 -2.369
-0.8 -0.174 2.593 0.323 6.760 -0.441 -0.215 3.012 0.366 9.107 -0.625 -0.325 3.696 0.446 13.695 -1.158 -0.545 4.754 0.657 22.641 -2.538
-0.9 -0.141 2.852 0.357 8.179 -0.401 -0.173 3.326 0.402 11.099 -0.559 -0.264 4.126 0.479 17.045 -1.047 -0.461 5.379 0.680 28.957 -2.421

0.2

-0.1 -0.725 0.406 0.742 0.298 -0.339 -0.852 0.474 0.980 0.401 -0.476 -1.056 0.588 1.419 0.595 -0.761 -1.368 0.770 2.287 0.993 -1.323
-0.2 -0.714 0.748 0.739 0.695 -0.573 -0.838 0.867 0.973 0.931 -0.797 -1.051 1.066 1.432 1.392 -1.265 -1.388 1.383 2.397 2.328 -2.211
-0.3 -0.694 1.085 0.716 1.313 -0.784 -0.814 1.251 0.939 1.736 -1.081 -1.027 1.516 1.397 2.548 -1.691 -1.357 1.930 2.319 4.126 -2.891
-0.4 -0.669 1.408 0.686 2.105 -0.961 -0.789 1.618 0.901 2.772 -1.324 -0.996 1.939 1.325 3.977 -2.033 -1.295 2.429 2.101 6.223 -3.340
-0.5 -0.643 1.728 0.658 3.087 -1.118 -0.750 1.974 0.843 4.019 -1.502 -0.951 2.358 1.221 5.726 -2.294 -1.250 2.950 1.914 8.922 -3.784
-0.6 -0.607 2.047 0.623 4.271 -1.236 -0.710 2.337 0.787 5.552 -1.653 -0.905 2.796 1.123 7.930 -2.525 -1.210 3.522 1.766 12.539 -4.266
-0.7 -0.571 2.357 0.597 5.612 -1.329 -0.665 2.709 0.741 7.401 -1.774 -0.859 3.266 1.049 10.737 -2.762 -1.186 4.139 1.710 17.217 -4.855
-0.8 -0.536 2.654 0.588 7.090 -1.401 -0.624 3.069 0.719 9.463 -1.877 -0.805 3.742 1.002 14.052 -2.946 -1.146 4.784 1.680 22.942 -5.395
-0.9 -0.504 2.920 0.598 8.574 -1.453 -0.581 3.389 0.715 11.532 -1.931 -0.744 4.178 0.972 17.498 -3.036 -1.065 5.417 1.604 29.388 -5.666

0.3

-0.1 -1.115 0.450 1.440 0.343 -0.549 -1.292 0.517 1.892 0.448 -0.742 -1.573 0.636 2.732 0.659 -1.130 -1.991 0.821 4.298 1.054 -1.859
-0.2 -1.115 0.788 1.455 0.761 -0.923 -1.299 0.916 1.936 1.023 -1.263 -1.602 1.128 2.863 1.531 -1.948 -2.069 1.462 4.682 2.547 -3.293
-0.3 -1.102 1.132 1.443 1.419 -1.285 -1.287 1.312 1.928 1.902 -1.760 -1.600 1.610 2.888 2.849 -2.721 -2.093 2.087 4.850 4.774 -4.660
-0.4 -1.074 1.466 1.395 2.283 -1.604 -1.254 1.694 1.859 3.038 -2.185 -1.564 2.057 2.799 4.472 -3.348 -2.041 2.622 4.659 7.267 -5.621
-0.5 -1.044 1.788 1.341 3.315 -1.884 -1.217 2.057 1.778 4.377 -2.545 -1.510 2.471 2.634 6.312 -3.825 -1.946 3.107 4.232 9.960 -6.224
-0.6 -1.007 2.103 1.279 4.521 -2.121 -1.162 2.408 1.653 5.909 -2.807 -1.444 2.888 2.431 8.491 -4.202 -1.861 3.618 3.836 13.286 -6.787
-0.7 -0.965 2.416 1.215 5.911 -2.320 -1.109 2.767 1.548 7.740 -3.048 -1.369 3.331 2.219 11.199 -4.530 -1.800 4.194 3.581 17.716 -7.504
-0.8 -0.923 2.711 1.161 7.412 -2.478 -1.053 3.126 1.451 9.834 -3.249 -1.302 3.796 2.071 14.478 -4.870 -1.755 4.822 3.464 23.343 -8.359
-0.9 -0.885 2.984 1.137 8.962 -2.614 -1.006 3.450 1.402 11.961 -3.421 -1.241 4.232 1.975 17.970 -5.157 -1.677 5.457 3.288 29.848 -9.012
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Table E.8 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.4

-0.1 -1.489 0.483 2.394 0.385 -0.763 -1.715 0.551 3.130 0.493 -1.014 -2.048 0.662 4.403 0.690 -1.464 -2.541 0.826 6.694 1.030 -2.269
-0.2 -1.501 0.826 2.442 0.833 -1.286 -1.737 0.953 3.228 1.100 -1.727 -2.105 1.155 4.676 1.603 -2.559 -2.661 1.472 7.396 2.566 -4.135
-0.3 -1.503 1.170 2.467 1.516 -1.801 -1.747 1.357 3.296 2.032 -2.444 -2.149 1.666 4.903 3.046 -3.720 -2.767 2.149 8.043 5.037 -6.208
-0.4 -1.489 1.512 2.448 2.430 -2.289 -1.735 1.753 3.282 3.257 -3.113 -2.148 2.153 4.943 4.891 -4.769 -2.802 2.788 8.320 8.191 -8.102
-0.5 -1.460 1.844 2.381 3.533 -2.722 -1.696 2.133 3.174 4.718 -3.675 -2.103 2.594 4.785 6.966 -5.584 -2.726 3.316 7.943 11.377 -9.307
-0.6 -1.419 2.163 2.284 4.795 -3.086 -1.644 2.490 3.021 6.338 -4.131 -2.028 3.005 4.496 9.227 -6.180 -2.592 3.787 7.197 14.631 -9.978
-0.7 -1.379 2.470 2.191 6.198 -3.406 -1.578 2.836 2.824 8.150 -4.477 -1.943 3.418 4.161 11.824 -6.657 -2.476 4.299 6.548 18.665 -10.664
-0.8 -1.337 2.769 2.107 7.750 -3.687 -1.518 3.185 2.668 10.229 -4.807 -1.852 3.858 3.836 14.984 -7.093 -2.391 4.881 6.135 23.946 -11.579
-0.9 -1.300 3.045 2.054 9.349 -3.933 -1.469 3.510 2.569 12.399 -5.112 -1.782 4.286 3.638 18.455 -7.546 -2.311 5.498 5.839 30.327 -12.546

0.5

-0.1 -1.846 0.511 3.566 0.427 -0.987 -2.098 0.572 4.562 0.526 -1.260 -2.492 0.669 6.367 0.687 -1.750 -3.093 0.803 9.719 0.934 -2.593
-0.2 -1.868 0.851 3.659 0.891 -1.631 -2.146 0.971 4.786 1.150 -2.150 -2.568 1.158 6.791 1.610 -3.075 -3.197 1.436 10.437 2.424 -4.743
-0.3 -1.886 1.197 3.741 1.595 -2.301 -2.184 1.386 4.975 2.127 -3.097 -2.643 1.671 7.221 3.076 -4.538 -3.338 2.114 11.436 4.890 -7.268
-0.4 -1.896 1.544 3.799 2.541 -2.971 -2.198 1.793 5.068 3.420 -4.013 -2.694 2.196 7.538 5.103 -6.055 -3.466 2.827 12.390 8.425 -10.057
-0.5 -1.877 1.888 3.757 3.713 -3.583 -2.186 2.192 5.053 4.991 -4.861 -2.698 2.690 7.610 7.498 -7.404 -3.509 3.487 12.781 12.578 -12.525
-0.6 -1.851 2.215 3.683 5.039 -4.129 -2.145 2.567 4.909 6.753 -5.562 -2.647 3.131 7.386 10.038 -8.415 -3.412 4.006 12.175 16.422 -13.932
-0.7 -1.808 2.529 3.556 6.512 -4.590 -2.080 2.915 4.664 8.633 -6.095 -2.553 3.532 6.927 12.661 -9.094 -3.249 4.466 11.072 20.217 -14.652
-0.8 -1.764 2.826 3.429 8.087 -4.985 -2.016 3.251 4.439 10.678 -6.553 -2.451 3.940 6.449 15.662 -9.660 -3.104 4.975 10.124 24.930 -15.426
-0.9 -1.730 3.104 3.360 9.732 -5.359 -1.958 3.570 4.255 12.840 -6.961 -2.372 4.348 6.122 19.012 -10.256 -3.002 5.549 9.558 30.924 -16.532

0.6

-0.1 -2.179 0.534 4.893 0.465 -1.199 -2.475 0.580 6.266 0.539 -1.479 -2.933 0.655 8.721 0.647 -1.975 -3.674 0.766 13.582 0.807 -2.868
-0.2 -2.219 0.867 5.076 0.935 -1.962 -2.525 0.973 6.530 1.167 -2.509 -3.004 1.136 9.169 1.547 -3.483 -3.745 1.381 14.149 2.198 -5.249
-0.3 -2.251 1.212 5.230 1.653 -2.768 -2.584 1.380 6.848 2.130 -3.626 -3.090 1.639 9.732 2.975 -5.157 -3.863 2.034 15.116 4.511 -7.988
-0.4 -2.272 1.564 5.345 2.622 -3.596 -2.627 1.803 7.097 3.475 -4.803 -3.183 2.172 10.356 5.025 -7.031 -4.015 2.741 16.401 7.952 -11.206
-0.5 -2.284 1.912 5.418 3.824 -4.409 -2.650 2.222 7.252 5.154 -5.958 -3.242 2.718 10.784 7.684 -8.950 -4.168 3.493 17.740 12.659 -14.820
-0.6 -2.269 2.252 5.379 5.224 -5.148 -2.641 2.620 7.248 7.063 -6.990 -3.250 3.219 10.892 10.630 -10.607 -4.220 4.179 18.278 17.891 -17.926
-0.7 -2.244 2.573 5.302 6.759 -5.806 -2.597 2.987 7.061 9.091 -7.815 -3.199 3.660 10.625 13.624 -11.836 -4.108 4.693 17.431 22.398 -19.544
-0.8 -2.206 2.881 5.172 8.424 -6.375 -2.540 3.330 6.817 11.230 -8.495 -3.092 4.048 10.004 16.569 -12.591 -3.928 5.145 16.016 26.737 -20.349
-0.9 -2.169 3.162 5.056 10.119 -6.867 -2.482 3.639 6.581 13.364 -9.042 -3.004 4.425 9.531 19.726 -13.307 -3.779 5.636 14.906 31.957 -21.288
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Table E.9 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

0.7

-0.1 -2.497 0.550 6.385 0.494 -1.400 -2.834 0.581 8.166 0.541 -1.678 -3.378 0.636 11.510 0.596 -2.180 -4.285 0.727 18.416 0.693 -3.137
-0.2 -2.544 0.879 6.621 0.972 -2.265 -2.892 0.963 8.506 1.152 -2.821 -3.438 1.102 11.934 1.445 -3.824 -4.333 1.329 18.848 1.980 -5.785
-0.3 -2.594 1.217 6.883 1.684 -3.190 -2.955 1.363 8.886 2.099 -4.071 -3.521 1.589 12.541 2.796 -5.648 -4.410 1.948 19.558 4.080 -8.635
-0.4 -2.637 1.567 7.118 2.658 -4.167 -3.026 1.781 9.327 3.419 -5.441 -3.622 2.106 13.294 4.746 -7.706 -4.532 2.614 20.720 7.213 -11.949
-0.5 -2.665 1.922 7.278 3.892 -5.162 -3.076 2.212 9.655 5.135 -6.864 -3.723 2.657 14.081 7.393 -10.003 -4.694 3.348 22.304 11.670 -15.901
-0.6 -2.677 2.273 7.364 5.348 -6.126 -3.101 2.638 9.843 7.189 -8.247 -3.792 3.226 14.643 10.725 -12.365 -4.863 4.141 24.005 17.637 -20.394
-0.7 -2.666 2.610 7.339 6.980 -6.998 -3.097 3.035 9.864 9.419 -9.466 -3.806 3.735 14.808 14.230 -14.358 -4.931 4.857 24.767 24.029 -24.234
-0.8 -2.644 2.924 7.265 8.702 -7.767 -3.061 3.392 9.696 11.686 -10.444 -3.764 4.170 14.567 17.623 -15.830 -4.829 5.374 23.891 29.241 -26.214
-0.9 -2.623 3.213 7.195 10.467 -8.453 -3.029 3.716 9.555 13.964 -11.302 -3.691 4.536 14.101 20.776 -16.843 -4.667 5.798 22.449 33.906 -27.232

0.8

-0.1 -2.785 0.560 7.958 0.516 -1.578 -3.170 0.578 10.217 0.538 -1.852 -3.814 0.615 14.663 0.550 -2.357 -4.890 0.698 23.981 0.615 -3.417
-0.2 -2.846 0.885 8.283 0.993 -2.539 -3.235 0.950 10.621 1.128 -3.093 -3.875 1.070 15.131 1.348 -4.154 -4.934 1.288 24.412 1.816 -6.354
-0.3 -2.910 1.219 8.638 1.704 -3.569 -3.312 1.339 11.123 2.038 -4.459 -3.953 1.537 15.756 2.606 -6.094 -4.994 1.885 25.021 3.755 -9.412
-0.4 -2.978 1.570 9.030 2.686 -4.701 -3.393 1.745 11.673 3.307 -5.953 -4.047 2.030 16.523 4.410 -8.249 -5.078 2.502 25.897 6.530 -12.714
-0.5 -3.026 1.920 9.327 3.908 -5.840 -3.469 2.174 12.207 4.998 -7.584 -4.158 2.554 17.463 6.855 -10.679 -5.206 3.170 27.276 10.430 -16.569
-0.6 -3.060 2.280 9.542 5.413 -7.013 -3.525 2.611 12.617 7.084 -9.260 -4.268 3.120 18.428 10.100 -13.407 -5.374 3.919 29.138 15.850 -21.217
-0.7 -3.069 2.635 9.623 7.137 -8.127 -3.560 3.043 12.897 9.514 -10.895 -4.342 3.705 19.111 14.078 -16.211 -5.557 4.753 31.217 23.123 -26.655
-0.8 -3.064 2.968 9.625 8.988 -9.135 -3.559 3.436 12.939 12.033 -12.296 -4.372 4.226 19.428 18.155 -18.614 -5.651 5.506 32.379 30.780 -31.397
-0.9 -3.048 3.268 9.568 10.845 -9.999 -3.544 3.779 12.883 14.482 -13.461 -4.352 4.647 19.325 21.856 -20.365 -5.588 6.023 31.788 36.648 -33.931

0.9

-0.1 -2.999 0.559 9.436 0.530 -1.691 -3.425 0.565 12.120 0.524 -1.946 -4.178 0.592 17.731 0.509 -2.467 -5.428 0.674 29.639 0.568 -3.641
-0.2 -3.082 0.878 9.862 0.995 -2.723 -3.513 0.931 12.668 1.089 -3.280 -4.253 1.037 18.322 1.257 -4.402 -5.482 1.258 30.201 1.710 -6.878
-0.3 -3.174 1.215 10.369 1.705 -3.877 -3.611 1.310 13.311 1.959 -4.742 -4.342 1.492 19.064 2.438 -6.469 -5.549 1.846 30.923 3.561 -10.213
-0.4 -3.264 1.559 10.899 2.666 -5.110 -3.717 1.709 14.042 3.188 -6.374 -4.451 1.962 20.010 4.107 -8.726 -5.637 2.435 31.918 6.139 -13.690
-0.5 -3.348 1.923 11.412 3.933 -6.463 -3.826 2.132 14.846 4.833 -8.190 -4.571 2.463 21.080 6.372 -11.270 -5.740 3.044 33.109 9.547 -17.442
-0.6 -3.412 2.297 11.834 5.505 -7.866 -3.922 2.576 15.577 6.932 -10.145 -4.700 3.005 22.294 9.386 -14.168 -5.879 3.705 34.769 14.119 -21.792
-0.7 -3.454 2.675 12.122 7.369 -9.276 -3.985 3.036 16.088 9.504 -12.155 -4.821 3.587 23.466 13.261 -17.371 -6.060 4.460 36.998 20.409 -27.141
-0.8 -3.462 3.036 12.204 9.404 -10.552 -4.015 3.473 16.358 12.322 -14.005 -4.903 4.183 24.296 17.878 -20.616 -6.246 5.312 39.345 28.809 -33.396
-0.9 -3.452 3.362 12.174 11.471 -11.651 -4.018 3.861 16.425 15.133 -15.577 -4.939 4.700 24.701 22.426 -23.348 -6.370 6.082 40.986 37.506 -39.014
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Table E.10 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

-0.1

-0.1 0.446 0.264 0.407 0.212 0.091 0.487 0.302 0.478 0.272 0.088 0.541 0.353 0.581 0.386 0.070 0.653 0.430 0.805 0.576 0.048
-0.2 0.437 0.592 0.392 0.480 0.239 0.475 0.669 0.453 0.611 0.273 0.521 0.790 0.535 0.848 0.319 0.606 0.988 0.675 1.285 0.426
-0.3 0.432 0.916 0.385 0.948 0.383 0.463 1.039 0.431 1.214 0.452 0.499 1.233 0.481 1.692 0.552 0.571 1.568 0.567 2.677 0.781
-0.4 0.432 1.236 0.387 1.612 0.528 0.459 1.414 0.424 2.097 0.632 0.489 1.690 0.450 2.974 0.790 0.563 2.175 0.520 4.872 1.159
-0.5 0.442 1.560 0.404 2.496 0.686 0.467 1.793 0.436 3.285 0.831 0.493 2.166 0.453 4.770 1.053 0.571 2.802 0.516 7.939 1.571
-0.6 0.459 1.881 0.437 3.584 0.858 0.486 2.175 0.474 4.777 1.052 0.510 2.650 0.487 7.075 1.347 0.585 3.438 0.553 11.883 2.003
-0.7 0.485 2.187 0.488 4.820 1.046 0.518 2.551 0.538 6.542 1.311 0.545 3.138 0.565 9.882 1.706 0.605 4.074 0.630 16.641 2.457
-0.8 0.513 2.467 0.551 6.125 1.237 0.559 2.899 0.626 8.434 1.594 0.602 3.609 0.694 13.051 2.155 0.647 4.705 0.774 22.165 3.029
-0.9 0.540 2.711 0.628 7.400 1.419 0.600 3.197 0.731 10.257 1.874 0.667 4.017 0.853 16.161 2.644 0.739 5.301 1.018 28.119 3.881

-0.2

-0.1 0.796 0.214 0.824 0.189 0.149 0.884 0.242 0.997 0.237 0.164 1.017 0.281 1.284 0.322 0.187 1.229 0.354 1.802 0.467 0.252
-0.2 0.776 0.541 0.789 0.415 0.403 0.859 0.615 0.939 0.531 0.491 0.976 0.731 1.166 0.728 0.637 1.173 0.945 1.599 1.146 0.978
-0.3 0.765 0.863 0.773 0.844 0.649 0.840 0.989 0.898 1.098 0.803 0.951 1.189 1.094 1.558 1.079 1.154 1.551 1.511 2.579 1.705
-0.4 0.763 1.188 0.774 1.487 0.898 0.834 1.368 0.888 1.961 1.122 0.941 1.658 1.065 2.852 1.528 1.154 2.172 1.493 4.833 2.455
-0.5 0.770 1.512 0.798 2.343 1.152 0.839 1.750 0.911 3.127 1.452 0.946 2.140 1.083 4.649 2.002 1.166 2.804 1.525 7.941 3.239
-0.6 0.786 1.830 0.843 3.394 1.418 0.859 2.132 0.969 4.593 1.810 0.964 2.626 1.146 6.947 2.512 1.182 3.440 1.596 11.887 4.039
-0.7 0.811 2.130 0.913 4.582 1.693 0.890 2.503 1.063 6.303 2.194 1.000 3.108 1.264 9.697 3.079 1.201 4.066 1.702 16.578 4.848
-0.8 0.838 2.403 0.995 5.824 1.961 0.932 2.842 1.185 8.120 2.594 1.058 3.567 1.453 12.759 3.723 1.243 4.682 1.898 21.960 5.763
-0.9 0.863 2.641 1.086 7.039 2.205 0.972 3.132 1.318 9.861 2.967 1.125 3.963 1.678 15.745 4.382 1.337 5.262 2.260 27.720 6.950

-0.3

-0.1 1.124 0.170 1.440 0.168 0.173 1.256 0.198 1.768 0.213 0.207 1.458 0.237 2.323 0.272 0.263 1.784 0.337 3.380 0.397 0.466
-0.2 1.099 0.494 1.384 0.359 0.528 1.223 0.572 1.674 0.467 0.666 1.420 0.700 2.185 0.657 0.932 1.752 0.944 3.225 1.091 1.560
-0.3 1.085 0.820 1.357 0.766 0.877 1.204 0.951 1.625 1.014 1.119 1.399 1.169 2.111 1.491 1.590 1.745 1.563 3.178 2.582 2.665
-0.4 1.082 1.144 1.358 1.382 1.222 1.198 1.332 1.615 1.858 1.571 1.392 1.644 2.092 2.794 2.253 1.754 2.189 3.204 4.891 3.794
-0.5 1.088 1.467 1.388 2.213 1.572 1.205 1.715 1.650 3.007 2.037 1.398 2.126 2.127 4.589 2.940 1.768 2.819 3.271 8.019 4.944
-0.6 1.104 1.781 1.448 3.227 1.927 1.224 2.093 1.730 4.435 2.523 1.416 2.607 2.215 6.851 3.651 1.779 3.444 3.357 11.924 6.085
-0.7 1.128 2.074 1.532 4.361 2.283 1.257 2.457 1.854 6.089 3.027 1.450 3.079 2.369 9.529 4.407 1.795 4.059 3.481 16.530 7.222
-0.8 1.155 2.340 1.633 5.546 2.623 1.299 2.788 2.009 7.831 3.534 1.510 3.526 2.618 12.485 5.238 1.836 4.660 3.725 21.768 8.460
-0.9 1.178 2.572 1.734 6.703 2.926 1.338 3.069 2.170 9.493 3.994 1.579 3.911 2.909 15.359 6.054 1.931 5.224 4.205 27.350 9.955
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Table E.11 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

-0.4

-0.1 1.436 0.131 2.232 0.150 0.174 1.613 0.165 2.767 0.187 0.232 1.895 0.225 3.742 0.240 0.364 2.362 0.356 5.708 0.347 0.754
-0.2 1.411 0.456 2.161 0.320 0.629 1.580 0.542 2.658 0.425 0.829 1.863 0.696 3.604 0.629 1.248 2.346 0.972 5.607 1.102 2.216
-0.3 1.394 0.781 2.122 0.703 1.072 1.561 0.923 2.602 0.956 1.413 1.847 1.167 3.544 1.474 2.118 2.349 1.592 5.618 2.648 3.690
-0.4 1.390 1.106 2.122 1.302 1.511 1.556 1.306 2.599 1.792 2.001 1.843 1.643 3.538 2.788 2.991 2.359 2.214 5.674 4.991 5.180
-0.5 1.397 1.426 2.161 2.108 1.954 1.562 1.685 2.643 2.913 2.588 1.847 2.119 3.580 4.565 3.869 2.369 2.836 5.750 8.118 6.670
-0.6 1.411 1.733 2.232 3.078 2.388 1.583 2.057 2.743 4.304 3.195 1.863 2.592 3.682 6.787 4.768 2.376 3.450 5.832 11.975 8.132
-0.7 1.436 2.021 2.334 4.168 2.821 1.617 2.413 2.896 5.901 3.814 1.898 3.052 3.870 9.390 5.704 2.385 4.051 5.950 16.487 9.570
-0.8 1.461 2.279 2.445 5.296 3.222 1.657 2.735 3.079 7.570 4.411 1.957 3.487 4.174 12.241 6.698 2.424 4.639 6.235 21.599 11.112
-0.9 1.481 2.505 2.551 6.399 3.578 1.696 3.008 3.267 9.160 4.952 2.027 3.861 4.531 15.002 7.662 2.522 5.188 6.840 27.005 12.901

-0.5

-0.1 1.735 0.102 3.180 0.141 0.164 1.960 0.148 3.994 0.173 0.264 2.333 0.236 5.563 0.217 0.508 2.962 0.397 8.854 0.322 1.126
-0.2 1.708 0.428 3.092 0.296 0.714 1.929 0.526 3.878 0.403 0.989 2.310 0.706 5.449 0.626 1.595 2.957 1.011 8.818 1.146 2.949
-0.3 1.691 0.752 3.045 0.665 1.247 1.909 0.904 3.811 0.925 1.695 2.295 1.175 5.388 1.487 2.662 2.961 1.626 8.851 2.743 4.777
-0.4 1.686 1.074 3.045 1.248 1.773 1.903 1.285 3.810 1.749 2.404 2.288 1.647 5.378 2.806 3.725 2.966 2.241 8.901 5.110 6.603
-0.5 1.694 1.389 3.094 2.025 2.297 1.909 1.660 3.862 2.850 3.109 2.288 2.116 5.412 4.567 4.783 2.969 2.851 8.949 8.221 8.407
-0.6 1.709 1.690 3.178 2.959 2.809 1.931 2.026 3.982 4.207 3.827 2.302 2.578 5.520 6.742 5.854 2.965 3.452 8.985 12.013 10.153
-0.7 1.733 1.970 3.293 3.998 3.307 1.965 2.373 4.161 5.743 4.543 2.335 3.029 5.734 9.281 6.953 2.968 4.042 9.076 16.441 11.873
-0.8 1.758 2.221 3.418 5.072 3.772 2.005 2.685 4.372 7.345 5.228 2.395 3.452 6.093 12.037 8.103 3.007 4.620 9.403 21.466 13.715
-0.9 1.773 2.442 3.522 6.134 4.172 2.043 2.950 4.583 8.863 5.844 2.466 3.813 6.514 14.686 9.198 3.105 5.154 10.127 26.704 15.769

-0.6

-0.1 2.016 0.084 4.251 0.141 0.160 2.297 0.144 5.434 0.166 0.314 2.776 0.256 7.814 0.205 0.685 3.582 0.441 12.889 0.317 1.553
-0.2 1.988 0.409 4.148 0.288 0.793 2.264 0.520 5.299 0.397 1.153 2.750 0.722 7.683 0.640 1.961 3.574 1.048 12.844 1.204 3.720
-0.3 1.973 0.731 4.101 0.648 1.408 2.240 0.895 5.210 0.919 1.969 2.733 1.189 7.606 1.522 3.214 3.572 1.654 12.841 2.835 5.877
-0.4 1.969 1.050 4.107 1.218 2.014 2.234 1.272 5.207 1.734 2.786 2.719 1.653 7.559 2.839 4.443 3.567 2.261 12.829 5.212 8.017
-0.5 1.976 1.358 4.162 1.970 2.610 2.242 1.641 5.271 2.816 3.598 2.714 2.115 7.570 4.588 5.664 3.552 2.859 12.767 8.287 10.086
-0.6 1.993 1.653 4.260 2.873 3.193 2.263 2.000 5.403 4.137 4.412 2.724 2.569 7.667 6.732 6.890 3.540 3.451 12.735 12.038 12.109
-0.7 2.017 1.924 4.389 3.866 3.750 2.298 2.338 5.610 5.626 5.220 2.758 3.009 7.912 9.205 8.147 3.540 4.035 12.811 16.428 14.129
-0.8 2.038 2.168 4.517 4.891 4.262 2.340 2.639 5.857 7.156 5.990 2.820 3.420 8.326 11.873 9.440 3.577 4.603 13.167 21.364 16.247
-0.9 2.049 2.384 4.613 5.911 4.705 2.375 2.898 6.078 8.613 6.662 2.891 3.770 8.807 14.419 10.650 3.678 5.122 14.018 26.437 18.552
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Table E.12 Full Monte Carlo Estimates with 10000 Repetitions

T=15 T=20 T=30 T=50
ρ ϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ µρ µϕ λρρ λϕϕ λρϕ

-0.7

-0.1 2.278 0.081 5.420 0.147 0.171 2.610 0.151 7.015 0.168 0.383 3.204 0.278 10.408 0.205 0.883 4.194 0.469 17.660 0.327 1.961
-0.2 2.250 0.403 5.307 0.298 0.879 2.570 0.525 6.837 0.413 1.323 3.172 0.741 10.225 0.668 2.330 4.179 1.069 17.546 1.250 4.454
-0.3 2.234 0.724 5.257 0.663 1.570 2.546 0.899 6.739 0.947 2.241 3.146 1.201 10.084 1.565 3.740 4.162 1.667 17.424 2.892 6.911
-0.4 2.228 1.036 5.257 1.223 2.239 2.540 1.269 6.734 1.759 3.151 3.121 1.663 9.968 2.899 5.125 4.137 2.266 17.255 5.264 9.325
-0.5 2.238 1.337 5.324 1.956 2.898 2.546 1.633 6.794 2.832 4.050 3.115 2.119 9.955 4.642 6.502 4.113 2.863 17.093 8.346 11.693
-0.6 2.254 1.623 5.431 2.825 3.535 2.567 1.985 6.941 4.130 4.948 3.123 2.566 10.044 6.764 7.873 4.091 3.450 16.973 12.078 13.986
-0.7 2.276 1.885 5.567 3.775 4.139 2.606 2.310 7.179 5.557 5.835 3.156 2.997 10.308 9.191 9.267 4.089 4.031 17.026 16.451 16.289
-0.8 2.293 2.122 5.690 4.759 4.690 2.648 2.601 7.450 7.021 6.668 3.219 3.395 10.778 11.768 10.683 4.121 4.593 17.392 21.335 18.664
-0.9 2.298 2.333 5.769 5.731 5.168 2.678 2.851 7.671 8.416 7.387 3.289 3.733 11.308 14.209 11.986 4.224 5.096 18.364 26.258 21.189

-0.8

-0.1 2.500 0.098 6.589 0.168 0.225 2.873 0.177 8.589 0.185 0.494 3.587 0.304 13.130 0.219 1.093 4.766 0.479 22.834 0.343 2.290
-0.2 2.471 0.418 6.466 0.338 0.991 2.835 0.549 8.399 0.460 1.517 3.536 0.766 12.806 0.719 2.680 4.732 1.076 22.545 1.281 5.083
-0.3 2.457 0.733 6.420 0.714 1.737 2.807 0.919 8.272 1.017 2.513 3.502 1.226 12.585 1.651 4.235 4.696 1.674 22.234 2.944 7.830
-0.4 2.453 1.036 6.431 1.272 2.456 2.799 1.284 8.253 1.842 3.496 3.475 1.683 12.420 3.004 5.756 4.657 2.272 21.906 5.324 10.517
-0.5 2.462 1.328 6.507 1.989 3.159 2.805 1.638 8.320 2.904 4.463 3.460 2.135 12.347 4.763 7.254 4.616 2.870 21.575 8.430 13.137
-0.6 2.477 1.604 6.619 2.828 3.836 2.831 1.977 8.495 4.162 5.428 3.468 2.574 12.437 6.870 8.747 4.589 3.459 21.377 12.191 15.704
-0.7 2.494 1.856 6.754 3.736 4.471 2.866 2.291 8.748 5.545 6.362 3.505 2.994 12.733 9.246 10.264 4.583 4.036 21.387 16.564 18.260
-0.8 2.506 2.085 6.873 4.672 5.051 2.905 2.571 9.027 6.941 7.231 3.567 3.379 13.240 11.742 11.765 4.617 4.591 21.787 21.401 20.879
-0.9 2.506 2.292 6.938 5.616 5.558 2.925 2.813 9.223 8.280 7.969 3.634 3.701 13.796 14.061 13.125 4.723 5.076 22.878 26.146 23.586

-0.9

-0.1 2.656 0.161 7.655 0.221 0.386 3.044 0.241 9.953 0.241 0.703 3.842 0.355 15.387 0.274 1.346 5.206 0.495 27.504 0.377 2.590
-0.2 2.637 0.470 7.593 0.433 1.182 3.005 0.608 9.763 0.570 1.766 3.791 0.815 15.027 0.831 3.039 5.153 1.097 26.981 1.350 5.632
-0.3 2.624 0.773 7.566 0.830 1.953 2.985 0.970 9.665 1.165 2.812 3.747 1.271 14.719 1.808 4.679 5.088 1.698 26.394 3.056 8.586
-0.4 2.624 1.067 7.620 1.400 2.708 2.979 1.325 9.666 2.010 3.832 3.713 1.719 14.489 3.182 6.271 5.029 2.299 25.837 5.495 11.465
-0.5 2.637 1.349 7.739 2.114 3.446 2.990 1.667 9.777 3.068 4.844 3.692 2.166 14.381 4.958 7.845 4.982 2.897 25.387 8.638 14.284
-0.6 2.660 1.611 7.919 2.930 4.158 3.014 1.993 9.977 4.306 5.843 3.696 2.597 14.449 7.062 9.407 4.944 3.485 25.057 12.450 17.020
-0.7 2.682 1.854 8.116 3.809 4.833 3.051 2.294 10.267 5.640 6.804 3.721 3.007 14.723 9.410 10.949 4.931 4.056 24.984 16.814 19.729
-0.8 2.705 2.076 8.308 4.717 5.470 3.087 2.563 10.577 6.989 7.692 3.776 3.377 15.228 11.824 12.462 4.962 4.602 25.370 21.602 22.479
-0.9 2.712 2.282 8.430 5.647 6.041 3.104 2.798 10.798 8.277 8.452 3.829 3.687 15.755 14.051 13.789 5.064 5.068 26.509 26.165 25.243
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Appendix F

Regression Outputs and Visualizations

This appendix presents the detailed results of the estimated regressions concerning the

Cornish-Fisher adjusted statistics, as well as the corresponding graphs illustrating the

relationships between the adjusted statistics and the adjustment factors. Specifically, for each

observed value of the adjusted Wald statistic, the corresponding values of the unadjusted Wald

statistic and the two adjustment factors h1 and h2 were recorded. Subsequently, the relationship

connecting them was estimated using ordinary least squares. Similarly, for the adjusted F

statistics, the values of the unadjusted F statistic and the adjustment factors q1 and q2 were

recorded, and a corresponding regression was estimated.

This part includes detailed tables with the estimation results for different combinations of

parameters (ρ, ϕ) and sample sizes (T=15, 30). Each table presents the coefficient estimates

and the assessment of their statistical significance, thus providing a comprehensive picture of the

impact of the adjustment factors on the adjusted statistics.

Additionally, the appendix contains graphs depicting the relationship between the negative

adjusted statistics and the respective adjustment factors, as well as their relationship with the

unadjusted statistics. These visualizations contribute to the intuitive understanding of the factors

influencing the values of the adjusted statistics, highlighting characteristic patterns and extreme

values associated with the adjustments.

The graphs included in the appendix illustrate the relationships for the same parameter point

and sample size, first showing the values and adjustment factors related to the Wald statistic,

followed by those related to the F statistic. Correspondingly, the regression tables are organized

so that the estimates for the Wald statistic appear directly above the respective estimates for

the F statistic, facilitating comparative analysis and interpretation of the results.
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Appendix F: Regression Outputs and Visualizations

Table F.1 Estimated Regression Results
under ρ = −0.9, ϕ = −0.9, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 444,473∗∗∗

(72,958.370)
h1 −0.109∗∗∗

(0.003)
h2 −3,640.535∗∗∗

(23.900)
Constant 13,072,341∗∗∗

(1,077,562)

Observations 10,000
R2 0.876
Adjusted R2 0.875

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.2 Estimated Regression Results
under ρ = −0.9, ϕ = −0.5, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 579,345.400∗∗∗

(57,264.750)
h1 −0.029∗∗∗

(0.0004)
h2 −3,305.705∗∗∗

(18.001)
Constant 3,687,546∗∗∗

(917,046.100)

Observations 10,000
R2 0.893
Adjusted R2 0.893

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.3 Estimated Regression Results
under ρ = −0.9, ϕ = −0.9, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 444,479.500∗∗∗

(72,958.280)
q1 −0.109∗∗∗

(0.003)
q2 −6,067.548∗∗∗

(39.833)
Constant 4,348,327∗∗∗

(359,200.800)

Observations 10,000
R2 0.876
Adjusted R2 0.875

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.4 Estimated Regression Results
under ρ = −0.9, ϕ = −0.5, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 579,353.800∗∗∗

(57,264.680)
q1 −0.029∗∗∗

(0.0004)
q2 −5,509.500∗∗∗

(30.002)
Constant 1,220,900∗∗∗

(305,692.900)

Observations 10,000
R2 0.893
Adjusted R2 0.893

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.5 Estimated Regression Results
under ρ = −0.9, ϕ = 0.5, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −55,939.970∗∗∗

(2,033.581)
h1 −7,314.562∗∗∗

(6.429)
h2 1,583.949∗∗∗

(2.849)
Constant 194,813.800∗∗∗

(23,792.250)

Observations 10,000
R2 0.999
Adjusted R2 0.999

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.6 Estimated Regression Results
under ρ = −0.9, ϕ = 0.9, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −3,190.856
(2,203.769)

h1 −822.632∗∗∗

(4.258)
h2 60.310∗∗∗

(1.907)
Constant 34,272.520

(27,058.570)

Observations 10,000
R2 0.940
Adjusted R2 0.940

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.7 Estimated Regression Results
under ρ = −0.9, ϕ = 0.5, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −55,937.910∗∗∗

(2,033.576)
q1 −7,314.551∗∗∗

(6.429)
q2 2,639.914∗∗∗

(4.748)
Constant 72,551.340∗∗∗

(7,932.138)

Observations 10,000
R2 0.999
Adjusted R2 0.999

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.8 Estimated Regression Results
under ρ = −0.9, ϕ = 0.9, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −3,188.699
(2,203.764)

q1 −822.628∗∗∗

(4.258)
q2 100.515∗∗∗

(3.179)
Constant 11,982.260

(9,019.638)

Observations 10,000
R2 0.940
Adjusted R2 0.940

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix F: Regression Outputs and Visualizations

Table F.9 Estimated Regression Results
under ρ = −0.5, ϕ = −0.9, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −410.835
(389.252)

h1 −0.044∗∗∗

(0.00001)
h2 0.017

(0.348)
Constant 3,695.191∗

(2,012.954)

Observations 10,000
R2 1.000
Adjusted R2 1.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.10 Estimated Regression Results
under ρ = −0.5, ϕ = −0.5, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −622.765∗∗∗

(137.507)
h1 −0.090∗∗∗

(0.00000)
h2 −0.249

(0.249)
Constant 1,735.809∗∗

(763.693)

Observations 10,000
R2 1.000
Adjusted R2 1.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.11 Estimated Regression Results
under ρ = −0.5, ϕ = −0.9, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −410.151
(389.252)

q1 −0.044∗∗∗

(0.00001)
q2 0.029

(0.580)
Constant 1,231.311∗

(670.766)

Observations 10,000
R2 1.000
Adjusted R2 1.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.12 Estimated Regression Results
under ρ = −0.5, ϕ = −0.5, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −622.013∗∗∗

(137.507)
q1 −0.090∗∗∗

(0.00000)
q2 −0.415

(0.415)
Constant 577.425∗∗

(254.484)

Observations 10,000
R2 1.000
Adjusted R2 1.000

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.13 Estimated Regression Results
under ρ = −0.5, ϕ = 0.5, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 0.020
(0.047)

h1 −0.051∗∗∗

(0.002)
h2 −0.115∗∗∗

(0.001)
Constant 3.773∗∗∗

(0.262)

Observations 10,000
R2 0.619
Adjusted R2 0.619

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.14 Estimated Regression Results
under ρ = −0.5, ϕ = 0.9, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −7.163∗∗∗

(1.571)
h1 0.551∗∗∗

(0.023)
h2 −0.436∗∗∗

(0.007)
Constant 62.640∗∗∗

(7.162)

Observations 10,000
R2 0.860
Adjusted R2 0.860

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.15 Estimated Regression Results
under ρ = −0.5, ϕ = 0.5, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 0.661∗∗∗

(0.047)
q1 −0.051∗∗∗

(0.002)
q2 −0.192∗∗∗

(0.002)
Constant 0.486∗∗∗

(0.088)

Observations 10,000
R2 0.619
Adjusted R2 0.619

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.16 Estimated Regression Results
under ρ = −0.5, ϕ = 0.9, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −6.699∗∗∗

(1.571)
q1 0.551∗∗∗

(0.023)
q2 −0.726∗∗∗

(0.011)
Constant 19.212∗∗∗

(2.384)

Observations 10,000
R2 0.860
Adjusted R2 0.860

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

161



Appendix F: Regression Outputs and Visualizations

Table F.17 Estimated Regression Results
under ρ = 0.5, ϕ = −0.9, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 0.205∗∗∗

(0.025)
h1 −0.033∗∗∗

(0.0003)
h2 −0.075∗∗∗

(0.001)
Constant 3.020∗∗∗

(0.140)

Observations 10,000
R2 0.644
Adjusted R2 0.644

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.18 Estimated Regression Results
under ρ = 0.5, ϕ = −0.5, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 0.177∗∗∗

(0.024)
h1 −0.065∗∗∗

(0.001)
h2 −0.106∗∗∗

(0.001)
Constant 3.284∗∗∗

(0.129)

Observations 10,000
R2 0.837
Adjusted R2 0.837

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.19 Estimated Regression Results
under ρ = 0.5, ϕ = −0.9, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 0.795∗∗∗

(0.025)
q1 −0.033∗∗∗

(0.0003)
q2 −0.124∗∗∗

(0.002)
Constant 0.392∗∗∗

(0.046)

Observations 10,000
R2 0.653
Adjusted R2 0.653

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.20 Estimated Regression Results
under ρ = 0.5, ϕ = −0.5, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 0.754∗∗∗

(0.024)
q1 −0.065∗∗∗

(0.001)
q2 −0.177∗∗∗

(0.001)
Constant 0.436∗∗∗

(0.043)

Observations 10,000
R2 0.840
Adjusted R2 0.840

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.21 Estimated Regression Results
under ρ = 0.5, ϕ = 0.5, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −938.788∗∗∗

(150.044)
h1 0.084∗∗∗

(0.010)
h2 −0.269∗∗∗

(0.007)
Constant 2,675.689∗∗∗

(535.587)

Observations 10,000
R2 0.179
Adjusted R2 0.179

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.22 Estimated Regression Results
under ρ = 0.5, ϕ = 0.9, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −551.627∗

(301.606)
h1 −0.083∗∗∗

(0.0001)
h2 0.009∗∗∗

(0.003)
Constant 1,686.222∗

(915.847)

Observations 10,000
R2 0.975
Adjusted R2 0.975

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.23 Estimated Regression Results
under ρ = 0.5, ϕ = 0.5, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −938.369∗∗∗

(150.044)
q1 0.084∗∗∗

(0.010)
q2 −0.448∗∗∗

(0.011)
Constant 890.952∗∗∗

(178.529)

Observations 10,000
R2 0.179
Adjusted R2 0.179

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.24 Estimated Regression Results
under ρ = 0.5, ϕ = 0.9, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −551.261∗

(301.606)
q1 −0.083∗∗∗

(0.0001)
q2 0.014∗∗∗

(0.005)
Constant 561.969∗

(305.282)

Observations 10,000
R2 0.975
Adjusted R2 0.975

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix F: Regression Outputs and Visualizations

Table F.25 Estimated Regression Results
under ρ = 0.9, ϕ = −0.9, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −0.229∗∗

(0.102)
h1 −0.092∗∗∗

(0.006)
h2 −0.205∗∗∗

(0.002)
Constant 5.954∗∗∗

(0.558)

Observations 10,000
R2 0.561
Adjusted R2 0.561

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.26 Estimated Regression Results
under ρ = 0.9, ϕ = −0.5, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −0.873∗∗∗

(0.098)
h1 −0.020∗∗∗

(0.008)
h2 −0.084∗∗∗

(0.002)
Constant 6.088∗∗∗

(0.520)

Observations 10,000
R2 0.740
Adjusted R2 0.740

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.27 Estimated Regression Results
under ρ = 0.9, ϕ = −0.9, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 0.382∗∗∗

(0.102)
q1 −0.092∗∗∗

(0.006)
q2 −0.341∗∗∗

(0.003)
Constant 1.041∗∗∗

(0.185)

Observations 10,000
R2 0.561
Adjusted R2 0.561

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.28 Estimated Regression Results
under ρ = 0.9, ϕ = −0.5, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −0.282∗∗∗

(0.098)
q1 −0.020∗∗∗

(0.008)
q2 −0.140∗∗∗

(0.003)
Constant 1.367∗∗∗

(0.172)

Observations 10,000
R2 0.740
Adjusted R2 0.740

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.29 Estimated Regression Results
under ρ = 0.9, ϕ = 0.5, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −597.656∗∗∗

(96.971)
h1 −0.041∗∗∗

(0.002)
h2 −0.092∗∗∗

(0.002)
Constant 1,909.597∗∗∗

(339.207)

Observations 10,000
R2 0.480
Adjusted R2 0.480

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.30 Estimated Regression Results
under ρ = 0.9, ϕ = 0.9, and T = 15

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −626.015
(423.731)

h1 −0.019∗∗∗

(0.00002)
h2 −0.017∗∗∗

(0.003)
Constant 715.948

(1,488.198)

Observations 10,000
R2 0.990
Adjusted R2 0.990

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.31 Estimated Regression Results
under ρ = 0.9, ϕ = 0.5, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −597.263∗∗∗

(96.971)
q1 −0.041∗∗∗

(0.002)
q2 −0.153∗∗∗

(0.003)
Constant 636.120∗∗∗

(113.069)

Observations 10,000
R2 0.480
Adjusted R2 0.480

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.32 Estimated Regression Results
under ρ = 0.9, ϕ = 0.9, and T = 15

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −625.438
(423.731)

q1 −0.019∗∗∗

(0.00002)
q2 −0.028∗∗∗

(0.004)
Constant 238.321

(496.065)

Observations 10,000
R2 0.990
Adjusted R2 0.990

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.33 Estimated Regression Results
under ρ = −0.9, ϕ = −0.9, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −16,917.510∗∗∗

(564.531)
h1 0.183∗∗∗

(0.013)
h2 −0.055∗∗∗

(0.003)
Constant 35,345.830∗∗∗

(3,210.674)

Observations 10,000
R2 0.110
Adjusted R2 0.110

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.34 Estimated Regression Results
under ρ = −0.9, ϕ = −0.5, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −16,902.700∗∗∗

(3,693.997)
h1 50.074∗∗∗

(0.439)
h2 −15.796∗∗∗

(0.132)
Constant 270,023.700∗∗∗

(22,356.580)

Observations 10,000
R2 0.658
Adjusted R2 0.658

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.35 Estimated Regression Results
under ρ = −0.9, ϕ = −0.9, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −16,916.980∗∗∗

(564.530)
q1 0.183∗∗∗

(0.013)
q2 −0.091∗∗∗

(0.005)
Constant 11,781.430∗∗∗

(1,070.222)

Observations 10,000
R2 0.110
Adjusted R2 0.110

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.36 Estimated Regression Results
under ρ = −0.9, ϕ = −0.5, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −16,901.990∗∗∗

(3,693.991)
q1 50.074∗∗∗

(0.439)
q2 −26.327∗∗∗

(0.220)
Constant 89,942.750∗∗∗

(7,452.264)

Observations 10,000
R2 0.658
Adjusted R2 0.658

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.37 Estimated Regression Results
under ρ = −0.9, ϕ = 0.5, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 1,640.171∗∗∗

(158.240)
h1 −85.811∗∗∗

(0.403)
h2 −15.249∗∗∗

(0.064)
Constant −3,669.433∗∗∗

(1,178.259)

Observations 10,000
R2 0.953
Adjusted R2 0.953

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.38 Estimated Regression Results
under ρ = −0.9, ϕ = 0.9, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 10,072.960∗∗∗

(498.356)
h1 −90.624∗∗∗

(2.219)
h2 −3.729∗∗∗

(0.468)
Constant −41,060.320∗∗∗

(4,056.903)

Observations 10,000
R2 0.869
Adjusted R2 0.869

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.39 Estimated Regression Results
under ρ = −0.9, ϕ = 0.5, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 1,640.567∗∗∗

(158.240)
q1 −85.811∗∗∗

(0.403)
q2 −25.414∗∗∗

(0.106)
Constant −1,218.803∗∗∗

(392.793)

Observations 10,000
R2 0.953
Adjusted R2 0.953

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.40 Estimated Regression Results
under ρ = −0.9, ϕ = 0.9, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 10,073.470∗∗∗

(498.355)
q1 −90.623∗∗∗

(2.219)
q2 −6.215∗∗∗

(0.780)
Constant −13,651.410∗∗∗

(1,352.682)

Observations 10,000
R2 0.869
Adjusted R2 0.869

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.41 Estimated Regression Results
under ρ = −0.5, ϕ = −0.9, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −324.082∗∗∗

(67.147)
h1 −0.012∗∗∗

(0.0001)
h2 −0.017∗∗∗

(0.0001)
Constant 895.454∗∗∗

(174.135)

Observations 10,000
R2 0.803
Adjusted R2 0.803

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.42 Estimated Regression Results
under ρ = −0.5, ϕ = −0.5, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 93.724
(137.620)

h1 −41.914∗∗∗

(0.421)
h2 11.518∗∗∗

(0.128)
Constant −7,146.587∗∗∗

(486.629)

Observations 10,000
R2 0.995
Adjusted R2 0.995

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.43 Estimated Regression Results
under ρ = −0.5, ϕ = −0.9, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −323.947∗∗∗

(67.147)
q1 −0.012∗∗∗

(0.0001)
q2 −0.028∗∗∗

(0.0002)
Constant 298.395∗∗∗

(58.045)

Observations 10,000
R2 0.803
Adjusted R2 0.803

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.44 Estimated Regression Results
under ρ = −0.5, ϕ = −0.5, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 93.900
(137.620)

q1 −41.914∗∗∗

(0.421)
q2 19.197∗∗∗

(0.214)
Constant −2,332.546∗∗∗

(162.096)

Observations 10,000
R2 0.995
Adjusted R2 0.995

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.45 Estimated Regression Results
under ρ = −0.5, ϕ = 0.5, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −0.430∗∗∗

(0.094)
h1 −0.039∗∗∗

(0.001)
h2 −0.174∗∗∗

(0.001)
Constant 9.638∗∗∗

(0.411)

Observations 10,000
R2 0.635
Adjusted R2 0.635

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.46 Estimated Regression Results
under ρ = −0.5, ϕ = 0.9, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −2.839∗∗∗

(0.126)
h1 −0.030∗∗∗

(0.001)
h2 −0.033∗∗∗

(0.0004)
Constant 11.206∗∗∗

(0.479)

Observations 10,000
R2 0.835
Adjusted R2 0.835

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.47 Estimated Regression Results
under ρ = −0.5, ϕ = 0.5, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −0.219∗∗

(0.094)
q1 −0.039∗∗∗

(0.001)
q2 −0.289∗∗∗

(0.002)
Constant 2.660∗∗∗

(0.136)

Observations 10,000
R2 0.635
Adjusted R2 0.635

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.48 Estimated Regression Results
under ρ = −0.5, ϕ = 0.9, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −2.666∗∗∗

(0.126)
q1 −0.030∗∗∗

(0.001)
q2 −0.054∗∗∗

(0.001)
Constant 3.571∗∗∗

(0.160)

Observations 10,000
R2 0.835
Adjusted R2 0.835

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.49 Estimated Regression Results
under ρ = 0.5, ϕ = −0.9, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −1.844∗∗∗

(0.111)
h1 −0.007∗∗∗

(0.0001)
h2 −0.036∗∗∗

(0.001)
Constant 7.938∗∗∗

(0.448)

Observations 10,000
R2 0.476
Adjusted R2 0.476

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.50 Estimated Regression Results
under ρ = 0.5, ϕ = −0.5, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 0.112∗∗∗

(0.028)
h1 −0.013∗∗∗

(0.0002)
h2 −0.040∗∗∗

(0.001)
Constant 2.650∗∗∗

(0.125)

Observations 10,000
R2 0.394
Adjusted R2 0.394

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.51 Estimated Regression Results
under ρ = 0.5, ϕ = −0.9, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −1.661∗∗∗

(0.111)
q1 −0.007∗∗∗

(0.0001)
q2 −0.060∗∗∗

(0.001)
Constant 2.452∗∗∗

(0.149)

Observations 10,000
R2 0.475
Adjusted R2 0.475

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.52 Estimated Regression Results
under ρ = 0.5, ϕ = −0.5, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 0.328∗∗∗

(0.028)
q1 −0.013∗∗∗

(0.0002)
q2 −0.066∗∗∗

(0.001)
Constant 0.647∗∗∗

(0.041)

Observations 10,000
R2 0.400
Adjusted R2 0.400

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.53 Estimated Regression Results
under ρ = 0.5, ϕ = 0.5, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −60.420∗∗∗

(2.585)
h1 0.061∗∗∗

(0.011)
h2 −0.038∗∗∗

(0.003)
Constant 138.167∗∗∗

(8.814)

Observations 10,000
R2 0.560
Adjusted R2 0.560

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.54 Estimated Regression Results
under ρ = 0.5, ϕ = 0.9, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −709.540∗∗∗

(83.419)
h1 −0.018∗∗∗

(0.00002)
h2 −0.013∗∗∗

(0.0002)
Constant 1,327.280∗∗∗

(205.677)

Observations 10,000
R2 0.989
Adjusted R2 0.989

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.55 Estimated Regression Results
under ρ = 0.5, ϕ = 0.5, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −60.280∗∗∗

(2.585)
q1 0.061∗∗∗

(0.011)
q2 −0.064∗∗∗

(0.005)
Constant 45.864∗∗∗

(2.933)

Observations 10,000
R2 0.560
Adjusted R2 0.560

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.56 Estimated Regression Results
under ρ = 0.5, ϕ = 0.9, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −709.422∗∗∗

(83.419)
q1 −0.018∗∗∗

(0.00002)
q2 −0.022∗∗∗

(0.0003)
Constant 442.359∗∗∗

(68.559)

Observations 10,000
R2 0.989
Adjusted R2 0.989

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table F.57 Estimated Regression Results
under ρ = 0.9, ϕ = −0.9, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 27.360∗∗∗

(3.386)
h1 −3.443∗∗∗

(0.090)
h2 −1.935∗∗∗

(0.013)
Constant 107.802∗∗∗

(18.841)

Observations 10,000
R2 0.898
Adjusted R2 0.898

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.58 Estimated Regression Results
under ρ = 0.9, ϕ = −0.5, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) 15.513∗∗∗

(5.805)
h1 0.624∗∗∗

(0.071)
h2 −3.966∗∗∗

(0.014)
Constant 354.751∗∗∗

(36.467)

Observations 10,000
R2 0.888
Adjusted R2 0.888

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.59 Estimated Regression Results
under ρ = 0.9, ϕ = −0.9, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 27.638∗∗∗

(3.385)
q1 −3.443∗∗∗

(0.090)
q2 −3.224∗∗∗

(0.022)
Constant 32.587∗∗∗

(6.290)

Observations 10,000
R2 0.898
Adjusted R2 0.898

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.60 Estimated Regression Results
under ρ = 0.9, ϕ = −0.5, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) 15.828∗∗∗

(5.804)
q1 0.623∗∗∗

(0.071)
q2 −6.610∗∗∗

(0.024)
Constant 107.731∗∗∗

(12.159)

Observations 10,000
R2 0.888
Adjusted R2 0.888

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

172



Table F.61 Estimated Regression Results
under ρ = 0.9, ϕ = 0.5, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −366.489∗∗∗

(9.527)
h1 0.063∗∗∗

(0.011)
h2 −0.035∗∗∗

(0.003)
Constant 1,098.936∗∗∗

(46.018)

Observations 10,000
R2 0.232
Adjusted R2 0.232

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.62 Estimated Regression Results
under ρ = 0.9, ϕ = 0.9, and T = 30

Dependent variable:

X2 statistic Cornish Fisher

w (Wald-stat) −2,393.622∗∗∗

(99.369)
h1 −0.025∗∗∗

(0.001)
h2 0.005∗∗∗

(0.0005)
Constant 3,663.431∗∗∗

(384.328)

Observations 10,000
R2 0.322
Adjusted R2 0.321

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.63 Estimated Regression Results
under ρ = 0.9, ϕ = 0.5, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −366.112∗∗∗

(9.527)
q1 0.063∗∗∗

(0.011)
q2 −0.058∗∗∗

(0.005)
Constant 365.934∗∗∗

(15.332)

Observations 10,000
R2 0.232
Adjusted R2 0.231

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table F.64 Estimated Regression Results
under ρ = 0.9, ϕ = 0.9, and T = 30

Dependent variable:

F statistic Cornish Fisher

v (F-statistic) −2,393.217∗∗∗

(99.367)
q1 −0.025∗∗∗

(0.001)
q2 0.008∗∗∗

(0.001)
Constant 1,220.973∗∗∗

(128.107)

Observations 10,000
R2 0.322
Adjusted R2 0.321

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure F.1 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.9, ϕ = −0.9, and T=15
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Figure F.2 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.9, ϕ = −0.9, and T=15
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Figure F.3 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.9, ϕ = −0.5, and T=15
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Figure F.4 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.9, ϕ = −0.5, and T=15
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Figure F.5 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.9, ϕ = 0.5, and T=15
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Figure F.6 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.9, ϕ = 0.5, and T=15
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Figure F.7 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.9, ϕ = 0.9, and T=15

180



Figure F.8 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.9, ϕ = 0.9, and T=15
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Figure F.9 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = −0.9, and T=15
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Figure F.10 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = −0.9, and T=15
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Figure F.11 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = −0.5, and T=15
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Figure F.12 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = −0.5, and T=15
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Figure F.13 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.5, and T=15
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Figure F.14 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.5, and T=15
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Figure F.15 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.9, and T=15
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Figure F.16 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.9, and T=15

189



A
ppendix

F:R
egression

O
utputs

and
V

isualizations

Figure F.17 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.5, ϕ = −0.9, and T=15
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Figure F.18 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.5, ϕ = −0.9, and T=15

191



A
ppendix

F:R
egression

O
utputs

and
V

isualizations

Figure F.19 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.5, ϕ = −0.5, and T=15
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Figure F.20 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.5, ϕ = −0.5, and T=15
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Figure F.21 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.5, ϕ = 0.5, and T=15
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Figure F.22 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.5, ϕ = 0.5, and T=15
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Figure F.23 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.5, ϕ = 0.9, and T=15
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Figure F.24 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.5, ϕ = 0.9, and T=15

197



A
ppendix

F:R
egression

O
utputs

and
V

isualizations

Figure F.25 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.9, ϕ = −0.9, and T=15
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Figure F.26 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.9, ϕ = −0.9, and T=15
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Figure F.27 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.9, ϕ = −0.5, and T=15
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Figure F.28 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.9, ϕ = −0.5, and T=15
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Figure F.29 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.9, ϕ = 0.5, and T=15

202



Figure F.30 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.9, ϕ = 0.5, and T=15
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Figure F.31 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.9, ϕ = 0.9, and T=15

204



Figure F.32 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.9, ϕ = 0.9, and T=15
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Figure F.33 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.9, ϕ = −0.9, and T=30
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Figure F.34 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.9, ϕ = −0.9, and T=30
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Figure F.35 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.9, ϕ = −0.5, and T=30
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Figure F.36 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.9, ϕ = −0.5, and T=30

209



A
ppendix

F:R
egression

O
utputs

and
V

isualizations

Figure F.37 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.9, ϕ = 0.5, and T=30
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Figure F.38 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.9, ϕ = 0.5, and T=30

211



A
ppendix

F:R
egression

O
utputs

and
V

isualizations

Figure F.39 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.9, ϕ = 0.9, and T=30
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Figure F.40 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.9, ϕ = 0.9, and T=30
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Figure F.41 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = −0.9, and T=30
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Figure F.42 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = −0.9, and T=30
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Figure F.43 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = −0.5, and T=30
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Figure F.44 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = −0.5, and T=30
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Figure F.45 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.5, and T=30
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Figure F.46 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.5, and T=30
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Figure F.47 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.9, and T=30
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Figure F.48 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = −0.5, ϕ = 0.9, and T=30
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Figure F.49 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.5, ϕ = −0.9, and T=30
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Figure F.50 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.5, ϕ = −0.9, and T=30
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Figure F.51 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.5, ϕ = −0.5, and T=30
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Figure F.52 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.5, ϕ = −0.5, and T=30
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Figure F.53 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.5, ϕ = 0.5, and T=30
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Figure F.54 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.5, ϕ = 0.5, and T=30
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Figure F.55 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.5, ϕ = 0.9, and T=30
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Figure F.56 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.5, ϕ = 0.9, and T=30
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Figure F.57 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.9, ϕ = −0.9, and T=30
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Figure F.58 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.9, ϕ = −0.9, and T=30
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Figure F.59 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.9, ϕ = −0.5, and T=30

232



Figure F.60 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.9, ϕ = −0.5, and T=30
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Figure F.61 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.9, ϕ = 0.5, and T=30
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Figure F.62 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.9, ϕ = 0.5, and T=30
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Figure F.63 Statistical relationship between h1, h2, and the Wald-Cornish-Fisher statistic under ρ = 0.9, ϕ = 0.9, and T=30
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Figure F.64 Statistical relationship between q1, q2, and the F-Cornish-Fisher statistic under ρ = 0.9, ϕ = 0.9, and T=30
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