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Abstract 

This thesis focuses on the development of advanced cloud-based medical imaging frameworks, 

high-fidelity visualization techniques, and computational modeling solutions for the 

noninvasive management of peripheral artery disease (PAD). The primary objective is to 

bridge critical gaps in diagnostic precision, clinical workflow efficiency, and personalized 

treatment strategies by leveraging web technologies, deep learning models, and computational 

simulations. This thesis introduces the DECODE Cloud Platform, an open-source cloud-based 

ecosystem that integrates AI-powered vascular segmentation, real-time 3D visualization, and 

predictive modeling for PAD risk assessment and treatment planning. 

The first chapter provides a detailed introduction to PAD, its pathophysiology, and the 

limitations of current diagnostic and treatment approaches, highlighting the need for innovative 

computational solutions. It outlines the role of web-based imaging, cloud computing, and AI 

in advancing PAD diagnostics and the foundation for research objectives. 

The second chapter presents a comprehensive review of state-of-the-art technologies in digital 

health, web-based medical imaging, and cloud-based platforms for PAD management. It 

explores advancements in web visualization, AI-powered vascular segmentation, and 

computational hemodynamics, establishing the theoretical background for the research. In 

addition, it discusses emerging trends and limitations in noninvasive vascular imaging and 

introduces the novel contributions of this work. 

The third chapter examines the computational modeling of drug-eluting balloons (DEBs) for 

PAD treatment. A systematic analysis of fluid‒structure interaction (FSI), molecular dynamics 

(MD), finite element modeling (FEM), and machine learning (ML) techniques is conducted to 

optimize drug diffusion, vascular response, and patient-specific intervention planning. This 

chapter explores how computational simulations enhance DEB design and performance, 

addressing therapeutic efficacy and in-silico validation. 

The fourth chapter focuses on advancing progressive web applications (PWAs) for medical 

imaging visualization, particularly DICOM and multiplanar reconstruction (MPR) 

visualization. It presents the technical architecture, algorithmic enhancements, and 

performance evaluations of the system. Key innovations include the implementation of bicubic 

and weighted bilinear interpolation techniques, ensuring high-precision 3D reconstructions, 

cross-platform compatibility, and offline-accessible imaging workflows. 



XXII 

 

The fifth chapter introduces DECODE-3DViz, a WebGL-based high-fidelity visualization 

platform optimized for large-scale peripheral artery CT imaging. The research addresses 

WebGL texture constraints and real-time performance bottlenecks by integrating a level-of-

detail (LOD) algorithm, dynamic downsampling, and data chunk streaming. In addition, this 

chapter presents the automated PAD risk classification framework, which employs optimized 

volume rendering, dynamic illumination, and quantitative vascular analysis to improve 

diagnostic accuracy and clinical decision support. A detailed performance validation study 

demonstrated the efficacy of DECODE-3DViz in enabling interactive 3D visualization for 

vascular diagnostics. 

The sixth chapter details the DECODE Cloud Platform, an open-source, cloud-native 

infrastructure designed for AI-driven PAD diagnostics and in-silico clinical trials. It integrates 

deep learning-based vascular segmentation, computational hemodynamic modeling, and real-

time 3D visualization, providing a scalable, regulatory-compliant framework for multi-

institutional collaboration. The usability evaluation via the System Usability Scale (SUS) and 

Technology Acceptance Model (TAM) confirms high adoption potential, underscoring its 

clinical viability and integration into real-world medical workflows. 

The seventh chapter presents the conclusions and future directions of this research. This thesis 

highlights the impact of AI-driven vascular imaging, web-based visualization, and 

computational modeling in redefining PAD diagnostics and noninvasive therapeutic planning. 

Future research will focus on WebGPU-enhanced visualization, AI-driven multimodal fusion 

(CT, MRI, and ultrasound), federated learning for privacy-preserving AI training, and real-

time in-silico simulations for optimizing drug-coated balloon (DCB) therapy. The integration 

of blockchain-based regulatory compliance mechanisms and automated AI-generated 

radiology reports will further expand the clinical adoption of DECODE, ensuring its role as a 

pioneering platform in AI-assisted precision vascular medicine. 

The main contributions of this thesis can be summarized as follows: (i) The development of a 

web-based DICOM and MPR visualization system within a PWA framework ensures cross-

platform compatibility, offline accessibility, and optimized real-time rendering for high-

resolution vascular imaging. (ii) The introduction of DECODE-3DViz, a high-fidelity WebGL-

based visualization pipeline that incorporates LOD algorithms and chunk streaming, 

significantly enhances real-time interactive visualization of large-scale CT images while 

optimizing GPU memory and performance efficiency. (iii) The design and validation of an 
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automated PAD risk classification framework integrating dynamic illumination models, 

optimized volume rendering, and quantitative vascular analysis improve diagnostic accuracy, 

reduce interobserver variability, and enable real-time clinical decision support. (iv) The 

application of computational modeling techniques for DEBs, utilizing FSI, MD, and finite 

element simulations, to enhance drug delivery, optimize device performance, and advance 

patient-specific treatment strategies. (v) DECODE, an open-source cloud-based platform that 

integrates AI-driven vascular segmentation, computational hemodynamic modeling, and real-

time 3D visualization, ensures scalability, interoperability, and seamless clinical integration 

into digital healthcare ecosystems, was developed. This thesis establishes a new benchmark in 

cloud-based vascular imaging, risk classification, and computational modeling, providing a 

scalable and clinically viable solution for noninvasive PAD management and precision 

vascular medicine. 
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Περίληψη 

Αυτή η διατριβή επικεντρώνεται στην ανάπτυξη προηγμένων πλαισίων ιατρικής απεικόνισης 

βασισμένων στο νέφος, τεχνικών υψηλής πιστότητας οπτικοποίησης και λύσεων 

υπολογιστικής μοντελοποίησης για τη μη επεμβατική διαχείριση της Περιφερικής Αρτηριακής 

Νόσου (ΠΑΝ). Ο κύριος στόχος είναι η γεφύρωση κρίσιμων κενών στην ακρίβεια της 

διάγνωσης, την αποδοτικότητα των κλινικών ροών εργασίας και τις εξατομικευμένες 

στρατηγικές θεραπείας, αξιοποιώντας διαδικτυακές τεχνολογίες, μοντέλα βαθιάς μάθησης και 

υπολογιστικές προσομοιώσεις. Αυτή η διατριβή παρουσιάζει την Πλατφόρμα DECODE 

Cloud, ένα υπολογιστικό οικοσύστημα ανοιχτού κώδικα βασισμένο στο νέφος, το οποίο 

ενσωματώνει αγγειακή τμηματοποίηση με τεχνητή νοημοσύνη, τρισδιάστατη οπτικοποίηση σε 

πραγματικό χρόνο και προγνωστική μοντελοποίηση για την εκτίμηση κινδύνου ΠΑΝ και τον 

σχεδιασμό θεραπείας. 

Το πρώτο κεφάλαιο παρέχει μια λεπτομερή εισαγωγή στην ΠΑΝ, τη φυσιοπαθολογία της και 

τους περιορισμούς των τρεχουσών διαγνωστικών και θεραπευτικών προσεγγίσεων, 

αναδεικνύοντας την ανάγκη για καινοτόμες υπολογιστικές λύσεις. Περιγράφει τον ρόλο της 

διαδικτυακής απεικόνισης, του υπολογιστικού νέφους και της τεχνητής νοημοσύνης στην 

εξέλιξη της διάγνωσης της ΠΑΝ και θέτει τα θεμέλια για τους ερευνητικούς στόχους. 

Το δεύτερο κεφάλαιο παρουσιάζει μια ολοκληρωμένη ανασκόπηση των πλέον σύγχρονων 

τεχνολογιών στην ψηφιακή υγεία, την ιατρική απεικόνιση μέσω διαδικτύου και τις πλατφόρμες 

βασισμένες στο νέφος για τη διαχείριση της ΠΑΝ. Εξετάζει τις προόδους στην οπτικοποίηση 

ιστού, την αγγειακή τμηματοποίηση με τεχνητή νοημοσύνη και την υπολογιστική 

αιμοδυναμική, εδραιώνοντας το θεωρητικό υπόβαθρο της έρευνας. Επιπλέον, συζητά τις 

αναδυόμενες τάσεις και τους περιορισμούς στη μη επεμβατική αγγειακή απεικόνιση και 

εισάγει τις καινοτόμες συνεισφορές αυτής της μελέτης. 

Το τρίτο κεφάλαιο εξετάζει την υπολογιστική μοντελοποίηση των επικαλυμμένων με φάρμακο 

μπαλονιών (Drug-Eluting Balloons - DEBs) για τη θεραπεία της Περιφερικής Αρτηριακής 

Νόσου (ΠΑΝ). Διεξάγεται μια συστηματική ανάλυση της αλληλεπίδρασης ρευστού-δομής 

(Fluid-Structure Interaction - FSI), της μοριακής δυναμικής (Molecular Dynamics - MD), της 

μοντελοποίησης πεπερασμένων στοιχείων (Finite Element Modeling - FEM) και των τεχνικών 

μηχανικής μάθησης (Machine Learning - ML), με στόχο τη βελτιστοποίηση της διάχυσης του 

φαρμάκου, της αγγειακής απόκρισης και του σχεδιασμού εξατομικευμένων θεραπευτικών 

παρεμβάσεων. Το κεφάλαιο διερευνά τον τρόπο με τον οποίο οι υπολογιστικές προσομοιώσεις 



XXVI 

 

ενισχύουν τον σχεδιασμό και την απόδοση των DEB, βελτιώνοντας τη θεραπευτική τους 

αποτελεσματικότητα και την in-silico επικύρωση. 

Το τέταρτο κεφάλαιο επικεντρώνεται στην προώθηση των Progressive Web Applications 

(PWAs) για την οπτικοποίηση ιατρικής απεικόνισης, ιδιαίτερα της απεικόνισης DICOM και 

της Πολυεπίπεδης Ανακατασκευής (Multiplanar Reconstruction - MPR). Παρουσιάζει την 

τεχνική αρχιτεκτονική, τις αλγοριθμικές βελτιώσεις και τις αξιολογήσεις απόδοσης του 

συστήματος. Βασικές καινοτομίες περιλαμβάνουν την υλοποίηση τεχνικών κυβικής 

παρεμβολής και στάθμισης διγραμμικής παρεμβολής, διασφαλίζοντας υψηλής ακρίβειας 

τρισδιάστατες ανακατασκευές, διαλειτουργικότητα μεταξύ πλατφορμών και ροές εργασίας 

απεικόνισης προσβάσιμες εκτός σύνδεσης. 

Το πέμπτο κεφάλαιο παρουσιάζει το DECODE-3DViz, μια πλατφόρμα οπτικοποίησης υψηλής 

πιστότητας βασισμένη στο WebGL, βελτιστοποιημένη για απεικόνιση περιφερικών αρτηριών 

με αξονική τομογραφία μεγάλης κλίμακας. Η έρευνα αντιμετωπίζει τους περιορισμούς των 

υφών WebGL και τα σημεία συμφόρησης της απόδοσης σε πραγματικό χρόνο, 

ενσωματώνοντας έναν αλγόριθμο Επίπεδου Λεπτομέρειας (Level of Detail - LOD), δυναμική 

υποδειγματοληψία και ροή δεδομένων ανά τμήματα. Επιπλέον, το κεφάλαιο παρουσιάζει το 

αυτοματοποιημένο πλαίσιο ταξινόμησης κινδύνου ΠΑΝ, το οποίο χρησιμοποιεί 

βελτιστοποιημένη ογκομετρική απεικόνιση, δυναμικό φωτισμό και ποσοτική αγγειακή 

ανάλυση για τη βελτίωση της διαγνωστικής ακρίβειας και της υποστήριξης κλινικών 

αποφάσεων. Μια λεπτομερής μελέτη επικύρωσης της απόδοσης αποδεικνύει την 

αποτελεσματικότητα του DECODE-3DViz στην παροχή διαδραστικής τρισδιάστατης 

οπτικοποίησης για αγγειακές διαγνώσεις. 

Το έκτο κεφάλαιο περιγράφει λεπτομερώς την Πλατφόρμα DECODE Cloud, μια ανοιχτού 

κώδικα, εγγενώς βασισμένη στο νέφος υπολογιστική υποδομή, σχεδιασμένη για διαγνωστικές 

διαδικασίες ΠΑΝ με τεχνητή νοημοσύνη και in-silico κλινικές δοκιμές. Ενσωματώνει 

αγγειακή τμηματοποίηση με βαθιά μάθηση, υπολογιστική αιμοδυναμική μοντελοποίηση και 

τρισδιάστατη οπτικοποίηση σε πραγματικό χρόνο, παρέχοντας ένα επεκτάσιμο, συμβατό με 

κανονισμούς πλαίσιο για συνεργασία μεταξύ πολλαπλών ερευνητικών ιδρυμάτων. Η 

αξιολόγηση της χρηστικότητας μέσω της Κλίμακας Χρηστικότητας Συστήματος (System 

Usability Scale - SUS) και του Μοντέλου Αποδοχής Τεχνολογίας (Technology Acceptance 

Model - TAM) επιβεβαιώνει το υψηλό δυναμικό υιοθέτησης, υπογραμμίζοντας τη 
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βιωσιμότητά του στην κλινική πράξη και την ενσωμάτωσή του σε πραγματικά ιατρικά 

περιβάλλοντα. 

Το έβδομο κεφάλαιο παρουσιάζει τα συμπεράσματα και τις μελλοντικές κατευθύνσεις αυτής 

της έρευνας. Τονίζει τον αντίκτυπο της αγγειακής απεικόνισης με τεχνητή νοημοσύνη, της 

διαδικτυακής οπτικοποίησης και της υπολογιστικής μοντελοποίησης στον επαναπροσδιορισμό 

της διάγνωσης της ΠΑΝ και του μη επεμβατικού θεραπευτικού σχεδιασμού. Οι μελλοντικές 

έρευνες θα επικεντρωθούν στη βελτιστοποίηση της οπτικοποίησης με WebGPU, στη 

συγχώνευση πολλαπλών απεικονιστικών δεδομένων (CT, MRI, υπερηχογράφημα) με τεχνητή 

νοημοσύνη, στην ομοσπονδιακή μάθηση για εκπαίδευση τεχνητής νοημοσύνης με διατήρηση 

της ιδιωτικότητας και στις προσομοιώσεις σε πραγματικό χρόνο για τη βελτιστοποίηση της 

θεραπείας με επικαλυμμένα με φάρμακο μπαλόνια (Drug-Coated Balloon - DCB). Η 

ενσωμάτωση μηχανισμών συμμόρφωσης με τους κανονισμούς μέσω blockchain και η 

αυτόματη παραγωγή ακτινολογικών αναφορών από τεχνητή νοημοσύνη θα επεκτείνουν 

περαιτέρω την κλινική υιοθέτηση του DECODE, διασφαλίζοντας τον ρόλο του ως 

πρωτοποριακή πλατφόρμα στην ιατρική ακριβείας με υποστήριξη τεχνητής νοημοσύνης. 

Οι κύριες συνεισφορές αυτής της διατριβής μπορούν να συνοψιστούν ως εξής: (i) Η ανάπτυξη 

ενός διαδικτυακού συστήματος οπτικοποίησης DICOM και Πολυεπίπεδης Ανακατασκευής 

(Multiplanar Reconstruction - MPR) στο πλαίσιο μιας Progressive Web Application (PWA), 

διασφαλίζοντας διαλειτουργικότητα μεταξύ πλατφορμών, πρόσβαση εκτός σύνδεσης και 

βελτιστοποιημένη απόδοση σε πραγματικό χρόνο για αγγειακή απεικόνιση υψηλής ανάλυσης. 

(ii) Η εισαγωγή του DECODE-3DViz, μιας υποδομής οπτικοποίησης υψηλής πιστότητας 

βασισμένης στο WebGL, που ενσωματώνει αλγόριθμους Επίπεδου Λεπτομέρειας (LOD) και 

ροή δεδομένων ανά τμήματα, ενισχύοντας σημαντικά τη διαδραστική οπτικοποίηση μεγάλης 

κλίμακας αξονικής τομογραφίας σε πραγματικό χρόνο, ενώ παράλληλα βελτιστοποιεί τη 

μνήμη GPU και την αποδοτικότητα της απόδοσης. (iii) Ο σχεδιασμός και η επικύρωση ενός 

αυτοματοποιημένου πλαισίου ταξινόμησης κινδύνου για την Περιφερική Αρτηριακή Νόσο 

(ΠΑΝ), το οποίο ενσωματώνει δυναμικά μοντέλα φωτισμού, βελτιστοποιημένη ογκομετρική 

απεικόνιση και ποσοτική αγγειακή ανάλυση, βελτιώνοντας την ακρίβεια διάγνωσης, 

μειώνοντας τη διακύμανση μεταξύ παρατηρητών και επιτρέποντας την υποστήριξη κλινικών 

αποφάσεων σε πραγματικό χρόνο. (iv) Η εφαρμογή τεχνικών υπολογιστικής μοντελοποίησης 

για τα επικαλυμμένα με φάρμακο μπαλόνια (Drug-Eluting Balloons - DEBs), αξιοποιώντας 

την αλληλεπίδραση ρευστού-δομής (Fluid-Structure Interaction - FSI), τη μοριακή δυναμική 

(Molecular Dynamics - MD) και τις προσομοιώσεις πεπερασμένων στοιχείων (Finite Element 
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Simulations) για τη βελτίωση της απελευθέρωσης φαρμάκου, τη βελτιστοποίηση της 

απόδοσης της συσκευής και την προώθηση εξατομικευμένων θεραπευτικών στρατηγικών. (v) 

Η ανάπτυξη του DECODE, μιας ανοιχτού κώδικα πλατφόρμας βασισμένης στο νέφος, η οποία 

ενσωματώνει αγγειακή τμηματοποίηση με τεχνητή νοημοσύνη, υπολογιστική αιμοδυναμική 

μοντελοποίηση και τρισδιάστατη οπτικοποίηση σε πραγματικό χρόνο, διασφαλίζοντας 

επεκτασιμότητα, διαλειτουργικότητα και απρόσκοπτη κλινική ενσωμάτωση στα ψηφιακά 

οικοσυστήματα υγειονομικής περίθαλψης. Αυτή η διατριβή θέτει ένα νέο σημείο αναφοράς 

στην αγγειακή απεικόνιση βασισμένη στο νέφος, την ταξινόμηση κινδύνου και την 

υπολογιστική μοντελοποίηση, προσφέροντας μια επεκτάσιμη και κλινικά βιώσιμη λύση για τη 

μη επεμβατική διαχείριση της ΠΑΝ και την ιατρική ακριβείας στον αγγειακό τομέα. 
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1.1 Background on peripheral artery disease (PAD) 

1.1.1 Pathophysiology of PAD 

PAD is a chronic atherosclerotic condition that predominantly affects the arteries of the lower 

extremities [1, 2]. The disease arises from systemic atherosclerosis, which is characterized by 

endothelial dysfunction, chronic inflammation, and the progressive accumulation of lipid 

plaques within arterial walls. These plaques trigger immune responses, oxidative stress, and 

vascular remodeling, leading to arterial narrowing, reduced blood flow, and ischemia [3, 4]. 

Figure 1.1 illustrates the pathophysiological process of atherosclerosis leading to PAD, 

including plaque formation, arterial narrowing, and subsequent impaired blood flow. 

The progression of PAD follows a continuum from asymptomatic stages to intermittent 

claudication (IC) and, in advanced cases, critical limb-threatening ischemia (CLTI) [5]. CLTI 

is characterized by severe ischemic damage, including rest pain, nonhealing ulcers, gangrene, 

and a heightened risk of limb loss. In patients with diabetes mellitus (DM), the pathophysiology 

of PAD is further exacerbated by hyperglycemia, which promotes the formation of advanced 

glycation end products (AGEs), vascular calcification, and smooth muscle cell proliferation [6]. 

These changes reduce vascular compliance, impair repair mechanisms, and amplify oxidative 



 

2 

 

stress, resulting in ischemic injury. 

The systemic nature of PAD is evident in its frequent coexistence with coronary and 

cerebrovascular disease, reflecting shared atherogenic pathways. Emerging evidence highlights 

the role of atherogenic lipoproteins, particularly apolipoprotein B (ApoB)-containing particles 

and extra-small very-low-density lipoproteins (XS.VLDL.P), which drive PAD progression [7, 

8]. These lipoproteins infiltrate the arterial intima, forming foam cells that accelerate plaque 

buildup and vascular obstruction. In addition, thromboembolic events and in-situ thrombosis, 

which are distinct from coronary artery disease (CAD) mechanisms, contribute to the unique 

pathology of PAD. 

Sex-specific differences further influence PAD pathophysiology. In women, the protective 

effects of estrogen delay endothelial dysfunction [9], but postmenopausal hormonal changes 

increase oxidative stress and inflammation, leading to more severe disease progression and 

reduced collateral circulation. Furthermore, microvascular dysfunction and inadequate 

 

Figure 1.1 Diagrammatic representation of atherosclerosis in the lower limbs leading to 

peripheral arterial disease [2]. 
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angiogenesis have been implicated in advanced PAD, particularly in patients transitioning to 

CLTI. 

In addition to arterial obstruction, PAD impacts skeletal muscle atrophy, mitochondrial 

dysfunction, and impaired oxygen metabolism, which limit functional capacity and mobility. 

These localized effects, coupled with systemic cardiovascular risk factors such as smoking, 

hypertension, and dyslipidemia, underscore the complexity of PAD. Understanding these 

intricate mechanisms is critical for developing targeted therapeutic strategies that address both 

the localized and systemic dimensions of the disease. 

1.1.2 Epidemiology and prevalence 

PAD represents a growing global health burden, affecting over 237 million individuals 

worldwide [10]. The prevalence of PAD has nearly doubled in the last three decades, driven by 

aging populations, urbanization, and increasing rates of atherosclerotic risk factors, such as 

diabetes, smoking, hypertension, and obesity [11]. In the United States, PAD affects an 

estimated 8.5 to 12 million individuals, with prevalence rates ranging from 4% to 10% among 

adults aged 40 years and older and increasing to over 20% among those aged 80 years and above 

[12]. Figure 1.2 illustrates the regional differences in PAD incidence, highlighting the impact 

of socioeconomic and healthcare disparities on disease burden. Globally, PAD is more common 

in low- and middle-income countries, which now account for more than 70% of cases [11]. 

These regions face significant healthcare disparities that exacerbate the impact of PAD, limiting 

access to preventive care, timely diagnosis, and effective management. 

The disease disproportionately affects certain populations. Compared with men, women present 

equal or higher prevalence rates across all age groups, with a marked increase in older women 

due to hormonal changes after menopause. The prevalence of black individuals is nearly twice 

as high as that of other racial groups, compounded by socioeconomic inequities and systemic 

barriers to care. Furthermore, individuals with diabetes are two to seven times more likely to 

develop PAD, particularly in distal arteries such as the dorsalis pedis [13, 14]. Diabetic foot 

ulcers (DFUs), which are common complications in these patients, significantly increase the 

risks of lower limb amputation and mortality. 

Geographic and demographic disparities are pronounced. In high-income countries, PAD is the 

third leading cause of atherosclerotic morbidity after CAD and stroke [15]. However, the burden 

is rising most rapidly in low- and middle-income regions, where limited access to healthcare 

intensifies the toll of PAD. Studies in the Asia‒Pacific region, e.g., reported prevalence rates of 
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5% in the Philippines, 8.2% in Singapore, and 12.1% in Japan [16]. Data from large registries, 

such as the Veterans Affairs Million VeterFans Program, underscore the widespread impact of 

PAD, with African Americans, nonwhite women, and individuals from lower socioeconomic 

backgrounds disproportionately affected [17]. 

Age is a critical determinant of PAD incidence. The incidence doubles each decade after the 

age of 50, reaching over 20% in individuals aged 70 and older [18]. Despite its high prevalence, 

PAD often remains underdiagnosed, particularly in asymptomatic or atypically presenting 

individuals. Alarmingly, 90% of PAD cases in women are undetected, highlighting the pressing 

need for improved diagnostic outreach and public health strategies. This growing 

epidemiological burden underscores the urgent need for targeted screening, early intervention, 

and equitable healthcare policies. Addressing geographic, racial, and socioeconomic disparities 

is essential to reducing the morbidity and mortality associated with PAD, particularly as global 

populations continue to age and chronic disease prevalence increases. 

1.1.3 Diagnostic Methodologies for PAD 

Accurate and early diagnosis of PAD is essential for effective management and improved 

patient outcomes. The cornerstone diagnostic tool is the ankle‒brachial index (ABI), a simple 

and noninvasive method that compares systolic blood pressure in the ankle to that in the arm. 

An ABI ≤ 0.90 confirms PAD, with a sensitivity of 90% and specificity of 98% [19]. In cases 

of arterial calcification, which may result in falsely elevated ABI readings, common among 

patients with diabetes or chronic kidney disease, alternative tests such as the toe-brachial index 

 

Figure 1.2 PAD prevalence comparison across regions [11, 16]. 
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(TBI) and transcutaneous oxygen pressure (TcPO2) [20] are employed for enhanced diagnostic 

accuracy. 

Advanced imaging modalities are critical for detailed vascular assessment and treatment 

planning. Duplex ultrasound provides real-time visualization of arterial stenosis and blood flow 

dynamics, serving as a first-line imaging technique. Computed tomography angiography (CTA) 

and magnetic resonance angiography (MRA) offer high-resolution vascular mapping, enabling 

precise characterization of arterial occlusions and stenotic regions [21]. In severe cases, 

particularly when surgical or endovascular intervention is planned, catheter-based angiography 

remains the gold standard for preoperative planning, offering unparalleled details of vascular 

anatomy. 

1.1.4 Clinical and Economic Impact 

PAD exerts profound clinical and economic burdens on patients and healthcare systems 

worldwide. Clinically, PAD significantly reduces mobility, impairs quality of life, and increases 

the risk of severe cardiovascular events, including myocardial infarction, stroke, and 

cardiovascular death [10]. Advanced stages of the disease, such as CLTI, lead to chronic 

ischemic pain, nonhealing ulcers, gangrene, and increased risks of amputation and mortality. 

Complications such as DFUs in patients with comorbid diabetes further increase morbidity, 

necessitating prolonged hospital stays and extensive rehabilitative care. 

Economically, the management of PAD is resource intensive. Annual healthcare costs 

associated with PAD in the United States alone are estimated to range from $84 billion to $380 

billion, driven by advanced diagnostics, surgical interventions, and long-term care for severe 

cases [22]. Patients with diabetes or CLTI often face disproportionately higher costs, with some 

Medicare beneficiaries incurring over $120,000 annually in treatment-related expenses. 

Hospitalizations, revascularization procedures, and the management of chronic complications 

such as limb amputation further escalate the financial burden [23]. Globally, the economic 

losses is particularly severe in low- and middle-income countries, where limited healthcare 

access exacerbates outcomes and increases costs related to preventable complications [24]. 

Disparities in healthcare access significantly worsen clinical and economic outcomes. Rural, 

low-income, and minority populations, including Black Americans and nonwhite women, face 

disproportionately higher risks of amputation, delayed treatment, and reduced access to limb-

salvage therapies. Compared with men, women with PAD often experience worse functional 

outcomes, such as reduced walking capacity and lower extremity strength [25], highlighting 

gaps in equitable care delivery and underutilization of guideline-based therapies. These 
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systemic inequities underscore the urgent need for targeted public health strategies and resource 

allocation to mitigate the societal and financial impacts of PAD. 

Emerging solutions, including artificial intelligence (AI) and machine learning (ML), offer 

promising avenues to streamline diagnostics and personalize treatment strategies [26], 

potentially reducing healthcare costs and improving patient outcomes. Innovative therapeutic 

approaches, such as lipid-lowering therapies targeting ApoB-containing particles and 

antithrombotic treatments [27], also hold promise in alleviating the clinical and economic 

burden of PAD. Comprehensive care models that emphasize early diagnosis, aggressive risk 

factor management, and equitable access to advanced therapies are essential to address PAD’s 

multifaceted challenges effectively. 

1.2 Limitations of Conventional PAD Treatment 

PAD presents significant clinical challenges because of its multifaceted nature, which affects 

both the macrovascular and microvascular systems [28]. Despite advances in medical and 

surgical interventions, conventional PAD treatments often fail to adequately address the 

complexity of the disease [29], resulting in suboptimal patient outcomes. These limitations are 

further compounded by disparities in healthcare access, particularly among underserved 

populations. This section explores the inherent limitations of current PAD treatment options, 

underscoring the need for innovative, personalized, and noninvasive therapeutic approaches. 

1.2.1 Limitations in Treatment Options 

Conventional PAD treatments primarily involve pharmacotherapy, lifestyle modifications, and 

surgical interventions [30]. While these approaches provide symptomatic relief and risk 

reduction, they are often limited by limited efficacy, safety concerns, and accessibility issues, 

particularly in advanced stages of PAD. 

1.2.1.1 Pharmacotherapy and lifestyle modifications 

Pharmacological management of PAD relies heavily on antiplatelet agents, lipid-lowering 

therapies, and antihypertensives aimed at reducing cardiovascular risk [31]. However, these 

systemic treatments fall short in addressing localized ischemia or reversing arterial narrowing, 

particularly in advanced cases such as chronic limb-threatening ischemia (CLTI). Medications 

such as cilostazol provide modest symptomatic relief but are contraindicated in certain 

populations, such as those with heart failure, owing to adverse effects [32]. In addition, 

emerging therapies such as sodium‒glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-

like peptide-1 receptor agonists (GLP-1 RAs) show promise in improving cardiovascular [33] 
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outcomes but remain inaccessible or underutilized owing to their cost and limited clinical 

adoption. 

Lifestyle modifications, including smoking cessation and supervised exercise programs, are 

recommended for risk reduction and symptom management [34]. However, patient 

noncompliance, socioeconomic barriers, and systemic healthcare disparities limit their 

effectiveness. Furthermore, these interventions demonstrate variable efficacy across different 

demographic groups, particularly among women and underserved populations. 

1.2.1.2 Surgical and endovascular interventions 

Revascularization techniques, including endovascular procedures (angioplasty and stenting) 

and surgical bypass, are the mainstays of PAD management aimed at restoring blood flow and 

alleviating ischemic symptoms [35]. However, these interventions are associated with high rates 

of restenosis, graft failure, and procedural complications, particularly in patients with extensive 

calcification, multilevel occlusions, or comorbid conditions such as diabetes and chronic kidney 

disease. Drug-coated technologies and drug-eluting stents (DESs), although promising, exhibit 

variability in clinical outcomes across patient subgroups and inconsistencies between controlled 

trials and real-world applications [36]. 

Surgical bypass, while effective for limb salvage in advanced PAD patients, is invasive and 

poses substantial perioperative risks, especially in elderly patients or those with complex 

comorbidities. In addition, anatomical variations, such as infrapopliteal disease and heavily 

calcified vessels, complicate procedural success, leading to inconsistent therapeutic outcomes 

[35]. The invasiveness and high cost of these interventions limit their accessibility, particularly 

in low-resource settings, exacerbating health inequities. 

1.2.2 Challenges in PAD visualization 

Accurate visualization of the PAD is fundamental for effective diagnosis, risk stratification, and 

treatment planning [35]. However, conventional imaging modalities face significant challenges 

due to the complex nature of PAD, its heterogeneous presentation, and anatomical variations 

among patients. These challenges are further compounded by the limitations of existing 

technologies in capturing both macrovascular and microvascular changes, leading to suboptimal 

diagnostic accuracy and therapeutic outcomes. This section examines the key challenges in 

PAD visualization, highlighting the need for advanced, noninvasive imaging solutions that offer 

comprehensive, high-resolution, and dynamic assessments. 
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1.2.2.1 Limitations of conventional imaging modalities 

1. Duplex ultrasound (DUS) 

Duplex ultrasound is a commonly employed, noninvasive modality that offers real-time 

imaging and hemodynamic assessments. However, its effectiveness is limited by operator 

dependency, leading to variability in diagnostic accuracy. In addition, DUS has reduced 

sensitivity in visualizing distal arterial branches and heavily calcified vessels, which are 

common in diabetic PAD patients [37]. This limitation is further exacerbated by motion artifacts 

and suboptimal contrast resolution, impacting the detection of complex lesions or dynamic 

blood flow changes. 

2. Computed Tomography Angiography (CTA) and Magnetic Resonance Angiography 

(MRA) 

CTA and MRA are advanced imaging techniques that provide high-resolution, three-

dimensional vascular mapping, enabling detailed assessments of stenosis, plaque morphology, 

and arterial occlusions [38]. However, CTA is associated with radiation exposure and the risk 

of contrast-induced nephropathy, limiting its use in patients with chronic kidney disease. MRA, 

while avoiding ionizing radiation, is cost intensive and contraindicated in patients with 

implanted devices or severe comorbidities. Both modalities demonstrate limited efficacy in 

detecting microvascular disease, nonobstructive PAD, or functional perfusion deficits, which 

are critical for comprehensive PAD assessment. 

3. Invasive Angiography 

Catheter-based angiography remains the gold standard for detailed vascular imaging and 

intervention planning. However, it is an invasive procedure associated with risks such as arterial 

dissection, vascular injury, and contrast-induced nephropathy [39]. Its invasive nature, high 

cost, and requirement for specialized expertise restrict its widespread application, particularly 

in low-resource settings. In addition, invasive angiography focuses on macrovascular anatomy 

and lacks the ability to assess microvascular dysfunction or dynamic blood flow changes [40, 

41]. 

1.2.3 Advanced Imaging Solutions 

Recent advancements in imaging technologies have transformed PAD diagnostics by 

overcoming the limitations of conventional methods [42]. Innovations such as 3D WebGL 

volume rendering, DICOM visualization, and MPR enable more detailed and accurate 
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assessments of vascular structures [43]. These advanced imaging methods not only enhance 

diagnostic precision but also facilitate personalized therapeutic planning and improve patient 

outcomes. This section explores the latest advancements in imaging technologies, emphasizing 

the integration of web-based visualization tools, AI, and hybrid imaging modalities. 

1.2.3.1 3D WebGL volume rendering and DICOM visualization 

1) Real-Time 3D Volume Rendering Using WebGL 

3D WebGL volume rendering has revolutionized PAD visualization by enabling real-time, 

high-fidelity representations of complex vascular structures. This technique uses GPU 

acceleration for interactive rendering, allowing clinicians to explore volumetric data from 

multiple angles and depths [44]. By leveraging web-based platforms, 3D WebGL volume 

rendering facilitates remote diagnostics and collaborative decision-making, bridging 

geographical disparities in healthcare access. In addition, the integration of level-of-detail 

(LOD) algorithms optimizes rendering performance, ensuring smooth visualization even on 

low-bandwidth devices. These advancements enhance diagnostic accuracy, particularly in 

complex cases involving calcified plaques or multilevel stenoses. 

2) DICOM and Multiplanar Reconstruction (MPR) Visualization 

DICOM visualization, combined with MPR, provides comprehensive anatomical assessments 

by reconstructing 2D slices into 3D volumetric representations. MPR allows for interactive 

exploration of axial, sagittal, and coronal planes, enabling detailed evaluations of lesion 

morphology and vessel patency [45]. This approach enhances the detection of complex arterial 

abnormalities, including bifurcations, calcifications, and plaque composition. By integrating the 

MPR with 3D WebGL rendering, clinicians can achieve precise localization of vascular lesions, 

improving procedural planning and therapeutic outcomes. These web-based visualization tools 

also enable seamless integration with cloud platforms, supporting remote consultations and 

collaborative diagnostics. 

1.3 Role of Clouds in Medical Imaging 

1.3.1 Cloud technologies in healthcare 

Cloud technologies fundamentally transform healthcare by enabling scalable, secure, and 

efficient solutions for data storage, processing, and collaboration [46]. In the realm of medical 

imaging, cloud platforms are revolutionizing data management and accessibility, particularly 

for 3D WebGL volume rendering, DICOM visualization, and MPR. These advanced cloud-
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based solutions provide the high-performance computing resources necessary for real-time 

rendering and remote diagnostics, enabling collaborative decision-making and enhancing 

diagnostic accuracy in PAD management. 

Cloud platforms provide the computational power required for high-fidelity 3D WebGL volume 

rendering, supporting interactive and real-time visualization of complex vascular structures 

[47]. By leveraging GPU acceleration through cloud computing, clinicians can explore 

volumetric data with dynamic lighting and shading effects, enhancing the visualization of 

calcified plaques and stenoses. This cloud-based architecture eliminates the limitations of local 

hardware, allowing users to access advanced rendering capabilities on any device with an 

internet connection. 

Cloud technologies enable centralized storage and seamless access to large-scale DICOM 

datasets, streamlining the workflow for MPR. By utilizing cloud-based DICOM viewers, 

healthcare providers can navigate axial, sagittal, and coronal planes interactively, facilitating 

detailed assessments of lesion morphology and vessel patency. This cloud integration enhances 

collaborative diagnostics by allowing multidisciplinary teams to access and analyze DICOM 

images simultaneously, regardless of geographic location [48]. 

The implementation of level-of-detail (LOD) algorithms in cloud-based 3D volume rendering 

optimizes performance by dynamically adjusting the resolution of volumetric data on the basis 

of the user's viewpoint and device capabilities. This approach reduces latency and enhances 

rendering efficiency, ensuring smooth visualization even in low-bandwidth scenarios. The 

integration of LODs with cloud computing provides a scalable and responsive solution for 

complex vascular imaging, supporting accurate risk stratification and personalized treatment 

planning in PAD management. 

1.3.2 Cloud-Driven Innovations in Medical Imaging 

Cloud-driven innovations have fundamentally transformed medical imaging by addressing 

critical challenges in data storage, processing, and analysis. By leveraging cloud infrastructure, 

healthcare institutions can now handle vast volumes of imaging data generated by advanced 

modalities such as CT, MRI, and PET scans [49]. This capability ensures secure, scalable, and 

cost-effective storage solutions, eliminating the limitations of on-premises systems. 

One of the most significant advancements in cloud-based medical imaging is real-time image 

processing powered by GPU-accelerated computation. This allows complex tasks such as 3D 

volume rendering, image segmentation, and reconstruction to be performed rapidly and 
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accurately, enhancing diagnostic precision and reducing turnaround times. These capabilities 

are particularly valuable in time-sensitive scenarios, such as emergency care and PAD 

management, where timely and accurate imaging is critical for clinical decision-making. 

Hybrid cloud models have emerged as powerful solutions, combining the security of private 

clouds with the scalability and computational power of public clouds [50]. This architecture 

allows sensitive patient data to be stored locally while leveraging cloud-based resources for 

intensive image processing and analytics. Moreover, hybrid models ensure compliance with 

healthcare regulations such as the HIPAA and GDPR, [51] maintaining data privacy and 

security without compromising performance. 

Cloud-based medical imaging also supports remote collaboration and telemedicine by enabling 

radiologists and specialists to access and annotate images from anywhere, breaking 

geographical barriers and facilitating global consultations. This capability enhances 

multidisciplinary teamwork, ensuring comprehensive evaluations and personalized treatment 

planning. Real-time data sharing and annotation tools foster collaborative decision-making, 

improving diagnostic confidence and accelerating patient care workflows. 

Furthermore, cloud-driven platforms integrate seamlessly with electronic health records (EHRs) 

and picture archiving and communication systems (PACSs) [52], creating unified ecosystems 

that increase operational efficiency. This interoperability ensures that imaging data are readily 

available within the broader clinical context, streamlining workflows and reducing diagnostic 

delays. 

In conclusion, cloud-driven innovations in medical imaging are revolutionizing the field by 

providing scalable, efficient, and secure solutions that enhance diagnostic accuracy, operational 

efficiency, and patient outcomes. By democratizing access to advanced computational resources 

and enabling collaborative, data-driven care, cloud technologies are setting new standards in 

medical imaging, paving the way for next-generation diagnostic and therapeutic paradigms. 

1.3.3 Peripheral artery disease (PAD) diagnosis and management 

The integration of cloud and web technologies has revolutionized the diagnosis and 

management of PAD, addressing limitations in traditional diagnostic methods and enhancing 

patient care [53]. By leveraging advanced imaging platforms powered by cloud infrastructure, 

healthcare providers can access comprehensive, high-resolution visualizations of vascular 

structures, enabling early detection and precise risk stratification for PAD patients. 
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Cloud-based imaging methods, such as CTA, MRA, and Doppler ultrasound, provide 

centralized storage and real-time processing of complex vascular datasets. These platforms 

support advanced functionalities such as 3D reconstructions and dynamic perfusion analysis, 

offering clinicians a holistic view of arterial health. By enabling seamless integration with AI 

algorithms, these systems automate tasks such as plaque segmentation, stenosis quantification, 

and calcification analysis, significantly increasing diagnostic accuracy while reducing 

interobserver variability. 

One of the most transformative aspects of cloud-driven PAD diagnostics is real-time 

collaboration and remote accessibility [54]. Specialists, including vascular surgeons, 

interventional radiologists, and primary care physicians, can securely access and annotate 

imaging studies from any location, breaking down geographical barriers and ensuring a 

coordinated, multidisciplinary approach to PAD management. Telemedicine platforms, 

integrated with cloud-based imaging tools, further increase accessibility, particularly in 

underserved or remote regions, enabling timely consultations and second opinions without the 

need for patient transfers. 

Web-based imaging tools are pivotal in democratizing access to advanced diagnostic 

capabilities. These platforms leverage modern web technologies, including progressive web 

applications (PWAs), to deliver high-performance imaging experiences directly through 

standard browsers [55]. This eliminates the need for dedicated hardware or software 

installations, reducing deployment costs and making sophisticated imaging tools accessible 

even in resource-constrained settings. Features such as offline functionality, cross-platform 

compatibility, and cloud synchronization ensure uninterrupted access to imaging data, 

supporting continuous workflows and enhancing clinical productivity. 

The integration of AI-driven analytics in web-based platforms provides automated diagnostic 

support, including anomaly detection, disease classification, and treatment planning. For 

example, AI models trained on PAD-specific datasets can identify microvascular abnormalities 

[56], predict plaque rupture risk, and suggest personalized therapeutic strategies, significantly 

improving clinical decision-making. In addition, predictive analytics powered by cloud-based 

AI can predict disease progression, enabling proactive intervention and reducing the incidence 

of critical limb ischemia or amputation. 

Wearable devices integrated with cloud platforms further revolutionize PAD management by 

enabling continuous monitoring of hemodynamic parameters, including the ankle-brachial 
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index (ABI), oxygen saturation, and blood flow dynamics [57]. These real-time data streams 

are analyzed on cloud-based platforms, providing actionable insights into patient status and 

facilitating early detection of critical events, such as ischemia or thrombosis. This proactive 

approach ensures timely interventions, reduces hospitalization rates and improves overall 

patient outcomes. 

The scalability and cost-effectiveness of cloud solutions democratize access to cutting-edge 

PAD diagnostics and management tools, bridging healthcare disparities between urban and rural 

populations. By eliminating the need for expensive on-premises infrastructure and supporting 

pay-as-you-go models, cloud technologies enable smaller clinics and resource-limited 

healthcare settings to access state-of-the-art diagnostic resources [58]. Moreover, hybrid cloud 

models combine the security of private clouds with the computational power of public clouds, 

ensuring compliance with healthcare regulations such as the HIPAA and GDPR while 

maintaining operational efficiency. 

Cloud and web technologies are also driving large-scale PAD research and innovation. By 

aggregating deidentified imaging datasets across multiple institutions, cloud platforms support 

multi-institutional studies, advancing our understanding of PAD pathophysiology [59], risk 

factors, and therapeutic outcomes. These platforms facilitate the development of federated 

learning models, where AI algorithms are trained on diverse, decentralized datasets, enhancing 

the robustness and generalizability of diagnostic solutions while preserving patient privacy. 

In conclusion, cloud and web technologies redefine PAD diagnosis and management by 

delivering scalable, secure, and efficient solutions that enhance diagnostic accuracy, operational 

efficiency, and patient outcomes. By enabling advanced imaging analytics, facilitating real-time 

collaboration, and supporting personalized care pathways, these innovations are setting new 

standards in vascular health management. The ongoing integration of AI, cloud computing, and 

web technologies continues to transform PAD care, bridging gaps in accessibility, improving 

equity in healthcare delivery, and ultimately enhancing the quality of life for PAD patients 

worldwide. 

1.4 Objectives and Scope of the Thesis 

1.4.1 Thesis Objectives 

The objectives of this PhD thesis are centered on advancing medical imaging analysis, high-

fidelity visualization, and noninvasive management solutions for PAD through innovative 

computational frameworks and cloud-based platforms. By integrating web-based technologies, 
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optimized volume rendering, and state-of-the-art computational modeling, this research aims to 

bridge critical gaps in diagnostic precision, clinical workflow efficiency, and personalized 

treatment strategies for PAD. The specific objectives are as follows: 

1) Web-based medical image visualization via PWAs 

To evaluate the integration of Digital Imaging and Communications in Medicine (DICOM) and 

MPR visualization into web platforms via PWAs. This involves: (i) Addressing challenges 

related to cross-platform compatibility and integration capabilities. (ii) Enabling high-resolution 

image reconstruction for medical image visualization. (iii) The offline capabilities and enhanced 

performance features of PWAs can be leveraged to provide seamless medical image access 

across various devices, thereby enhancing accessibility and usability in clinical environments. 

2) High-Fidelity Visualization of Large-Scale CT Datasets 

To optimize the visualization pipeline for large-scale peripheral artery CT datasets via the 

DECODE-3DViz platform, we focus on the following: (i) Efficient WebGL Texture 

Management: Techniques using a level of detail (LOD) algorithm are developed to render large 

datasets without performance degradation or errors, overcoming WebGL texture size 

limitations. (ii) Memory Optimization and Dynamic Downsampling: Implementing memory 

management techniques to prevent browser memory allocation errors and establishing dynamic 

downsampling guided by the LOD algorithm to maintain high visual fidelity. (iii) Chunk 

Streaming and ROI Rendering: Enabling chunk streaming to efficiently manage large datasets 

while maintaining application responsiveness and facilitating region of interest (ROI) rendering 

for high-resolution visualization of critical anatomical structures. (iv) Performance and 

Usability Improvement: Increasing the performance, accuracy, and usability of web-based 

medical imaging applications to support improved diagnostic outcomes. 

3) Automated Risk Classification Framework for PAD 

To introduce an automated risk classification framework for PAD by leveraging optimized 

volume rendering, dynamic illumination, and quantitative vascular analysis. This objective 

includes the following: (i) Enhancing Diagnostic Precision: Automating plaque density and 

vascular curvature analysis to improve diagnostic accuracy. (ii) Reducing interobserver 

variability: Standardizing risk classification to minimize variability in clinical assessments. (iii) 

Supporting early intervention: Enabling personalized patient management through accurate risk 

stratification. (iv) Clinical Validation: Demonstrating the clinical effectiveness of the 
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framework using real patient data to validate its potential for transforming PAD diagnostics and 

advancing clinical decision-making. 

4) Computational Modeling for Drug-Eluting Balloons (DEBs) in PADs 

To systematically examine the application of computational modeling techniques to DEBs for 

PAD treatment. This involves: (i) Evaluating Computational Approaches: Assessing the 

effectiveness of various modeling techniques, such as fluid–structure interaction (FSI), 

molecular dynamics (MD), and ML, for optimizing DEB design. (ii) Impact Analysis of Device 

Performance: Investigating how these computational approaches improve DEB performance 

and therapeutic efficacy. (iii) Exploring Emerging Trends and Challenges: Identifying emerging 

trends, challenges, and future directions in DEB research. (iv) Advancing Patient-Specific 

Modeling: Enhancing patient-specific modeling and in-silico simulations to optimize treatment 

strategies and outcomes for PAD patients. 

5) Development of DECODE: An Open-Source Cloud-Based Platform 

To present DECODE, an innovative open-source cloud-based platform for the noninvasive 

management of PAD, with the following objectives: (i) Integrating AI-driven vascular 

segmentation and computational modeling: Enhancing PAD diagnostics and intervention 

planning through advanced segmentation modules and real-time 3D visualization. (ii) Enabling 

Personalized Treatment Strategies: Utilizing finite element modeling (FEM) for personalized 

simulations of balloon angioplasty and DCB therapy. (iii) Real-Time Visualization and AR 

Integration: Providing real-time volumetric rendering and augmented reality (AR)-assisted 

procedural planning through DECODE-3DViz, powered by WebGL/WebXR technologies. (iv) 

Ensuring scalability and interoperability: Supporting seamless clinical integration with 

RESTful API compatibility for PACS and EHRs. (v) Advancing Precision Vascular Medicine: 

Establishing DECODE as a transformative tool in precision vascular medicine by bridging the 

gap between AI-powered imaging, interactive visualization, and in-silico simulations. 

1.4.2 Structure of the Thesis 

This thesis is organized into seven chapters, systematically addressing the challenges and 

advancements in medical imaging visualization, risk classification, and noninvasive 

management strategies for PAD. This research integrates state-of-the-art web technologies, 

high-fidelity visualization techniques, and advanced computational modeling to bridge 
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significant gaps in diagnostic precision, clinical workflow efficiency, and personalized 

treatment strategies for PAD. 

Chapter 1: Introduction 

The first chapter establishes the foundational context of the thesis by presenting an exploration 

of PAD, focusing on its epidemiology, pathophysiology, and clinical implications. This chapter 

provides a comprehensive overview of conventional diagnostic tools and the limitations 

associated with existing PAD treatment and visualization approaches. This chapter emphasizes 

the necessity for advanced imaging solutions and introduces the role of cloud-based and web 

technologies in enhancing medical imaging functionalities. It concludes by defining the 

research objectives and the scope of the thesis. 

Chapter 2: State of the Art 

This chapter offers a critical review of the literature and state-of-the-art technologies relevant 

to PAD management and medical imaging. It explores technical advancements, including 

digital health technologies, web-based visualization tools, and cloud-based platforms. The 

chapter also investigates clinical innovations in PAD care, emphasizing evolving diagnostic 

practices and patient-centric visualization approaches. It examines emerging trends and future 

directions in comprehensive visualization platforms, establishing a strong theoretical 

foundation for the methodologies and innovations proposed in this thesis. It concludes by 

defining the key contributions. 

Chapter 3: Computational Modeling of Drug-Eluting Balloons 

Chapter 3 provides an examination of computational modeling techniques applied to DEBs for 

PAD treatment. It systematically analyzes a wide range of computational methods, including 

MD, finite element analysis (FEA), computational fluid dynamics (CFD), and ML. This chapter 

evaluates their contributions to optimizing DEB design, enhancing drug release accuracy, and 

improving patient-specific therapeutic outcomes. It contextualizes computational modeling 

within clinical translation and identifies challenges, limitations, and future research directions, 

thus highlighting the importance of advanced modeling techniques in precision vascular 

medicine. 

Chapter 4: Advancing Progressive Web Applications for Medical Imaging Visualization 

This chapter explores the integration of DICOM and MPR visualization into web environments 

via PWAs. It presents the technical framework and architectural design, introducing novel MPR 
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algorithms employing bicubic and weighted bilinear interpolation to enhance image 

reconstruction quality. The chapter details the implementation process, experimental findings, 

and performance analysis across multiple platforms. This demonstrates the effectiveness of the 

proposed solutions in achieving cross-platform compatibility, offline access, and high-

resolution medical imaging visualization, thus contributing to enhanced diagnostic capabilities. 

Chapter 5: DECODE‑3DViz: High-Fidelity Web-Based Visualization and Automated 

Risk Classification for Peripheral Artery Disease 

Chapter 5 presents DECODE-3DViz, an innovative WebGL-based high-fidelity visualization 

pipeline designed for large-scale peripheral artery CT datasets, and integrates an automated risk 

classification framework for PAD. The combined approach leverages optimized volume 

rendering, dynamic illumination, and quantitative vascular analysis to increase diagnostic 

accuracy and clinical decision support. 

The chapter details the system design and implementation of DECODE-3DViz, focusing on the 

integration of level-of-detail (LOD) algorithms and data chunk streaming to optimize rendering 

performance. It presents a comprehensive validation and performance evaluation through 

analytical and clinical assessments, demonstrating significant improvements in rendering time, 

GPU memory efficiency, and diagnostic precision. Building on the visualization capabilities of 

DECODE-3DViz, this chapter introduces the automated risk classification framework, which 

utilizes advanced algorithms for real-time plaque density and vascular curvature assessments. 

By validating the system via real clinical data, this chapter confirms its potential to transform 

PAD diagnostics and highlights its contributions to personalized patient management and 

noninvasive risk assessment. 

This integrated presentation of DECODE-3DViz and the automated risk classification 

framework not only establishes a high-fidelity visualization pipeline but also introduces a 

transformative approach to risk classification, setting a new standard for web-based medical 

imaging and precision vascular medicine. 

Chapter 6: DECODE: An Open-Source Cloud-Based Platform for Noninvasive 

Peripheral Artery Disease Management  

This chapter presents the development and validation of DECODE, an open-source, cloud-

based platform designed for the noninvasive management of PAD by integrating AI-driven 

vascular segmentation, computational hemodynamic modeling, and real-time 3D visualization. 

The platform leverages deep learning (DL) algorithms for high-precision peripheral artery 
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segmentation, intima–media thickness (IMT) analysis, and automated plaque characterization, 

enhancing diagnostic accuracy and risk stratification. Additionally, finite element modeling 

(FEM) enables personalized vascular simulations for optimized treatment planning, particularly 

in balloon angioplasty and drug-coated balloon (DCB) therapy. Built on a cloud-native 

microservice architecture, DECODE ensures scalability, real-time accessibility, and multi-

institutional collaboration. System usability evaluations, including system usability scale (SUS) 

and technology acceptance model (TAM) metrics, confirm high adoption potential, with an SUS 

score of 87.5 and TAM acceptance rating of 4.21, demonstrating its clinical viability. By 

bridging AI-driven vascular imaging, real-time 3D visualization, and predictive computational 

modeling, including in-silico simulations for treatment optimization, DECODE establishes a 

scalable framework for precision vascular medicine and digital PAD diagnostics. 

Chapter 7: Conclusions and Future Work 

The final chapter presents the conclusions and future directions in cloud-based medical imaging 

and computational vascular modeling, emphasizing their role in advancing noninvasive PAD 

diagnostics and treatment planning. This research introduces a web-based DICOM and MPR 

system that integrates AI-driven vascular segmentation, real-time 3D visualization, and 

predictive modeling within a scalable cloud-native framework. Future research will focus on 

enhancing WebGPU-based rendering for high-performance visualization; integrating AI-

powered multimodal fusion for CT, MRI, and ultrasound data; and developing federated AI 

models for privacy-preserving learning. In addition, advancements in cloud-edge AI 

optimization, in-silico simulations for DCB therapy, automated NLP-driven report generation, 

and blockchain-based regulatory compliance mechanisms will further establish DECODE as a 

pioneering AI-driven platform for precision vascular medicine. 
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2.1 Evolution of Web-Based Medical Visualization Platforms 

The evolution of web-based medical visualization platforms has been one of the most 

transformative developments in the management of complex health conditions such as PAD 

[60]. Driven by the increasing volume and complexity of clinical data, particularly from 

diagnostic imaging, interventional studies, and procedural datasets, these platforms have 

drastically changed how clinicians, researchers, and patients interact with medical information. 

Historically, medical visualization tools have been constrained by local software installations 

that limit accessibility and real-time collaboration, creating significant barriers to efficient care 

and communication. 
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The shift from desktop-based systems to cloud-based, web-enabled platforms marks a pivotal 

evolution in medical visualization [61]. Early tools such as 3D Slicer [62] and Medical Imaging 

Interaction Toolkit (MITK) [63], which are powerful for image analysis, required significant 

hardware and were isolated within specific research facilities. They were restricted to 

environments that lacked flexibility, collaboration potential, and scalability. However, the 

integration of cloud computing and web technologies has overcome these challenges, enabling 

remote access and centralized data storage, thus allowing a more seamless integration of 

imaging, clinical, and patient information. 

In the realm of PAD, the transition to web-based visualization has mirrored this broader trend. 

Initially, PAD imaging relied primarily on 2D static images. As technology has advanced, so 

has the sophistication of visualization tools, evolving into 3D interactive models capable of 

rendering complex vascular geometries derived from coronary and peripheral angiograms [64]. 

These web-based platforms not only visualize anatomical structures but also support dynamic 

simulations, providing clinicians with an integrated view of patient-specific vascular health. 

The progression from basic image viewing to full 3D modeling represents a profound leap 

forward in diagnostic capabilities and treatment planning. 

One key development in these platforms is the integration of geographic information systems 

(GISs) and building information modeling (BIM), which parallels advancements in medical 

visualization [65]. This shift has been mirrored in medical visualization, where detailed 

structural information, such as vascular life cycles, device performance, and procedural 

outcomes, can now be integrated into dynamic 3D models. This transformation has enabled a 

deeper understanding of vascular geometries and how procedural changes impact disease 

progression in conditions such as PAD [66]. 

With the integration of real-time data visualization, these platforms have revolutionized how 

clinicians interact with both historical data and real-time updates. For example, in cardiac 

rehabilitation programs (CRPs) for PAD patients, web-based platforms track exercise 

performance, angiographic imaging, and vascular data in an integrated manner [67]. They allow 

dynamic overlays of real-time data with historical trends, offering a comprehensive, patient-

specific view of progress, which is essential for both diagnostics and treatment planning. These 

platforms allow for the visualization of vascular improvements following therapeutic 

interventions or exercise regimens, underscoring their crucial role in PAD management. 
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Another significant innovation in this space is the integration of wearable devices, EHRs, and 

clinical imaging. Web-based platforms now incorporate data interoperability, enabling seamless 

integration of patient information from diverse sources [68]. This evolution reflects a shift 

toward more proactive care for PAD, moving away from reactive methods and emphasizing 

prevention and long-term management. This is exemplified in PAD risk assessment tools that 

combine clinical, diagnostic, and patient-reported data into unified, actionable visualizations. 

In terms of computational power, the leap from desktop-based systems to cloud-enabled 

platforms has been fundamental. Tools such as WebGL and WebRTC have made it possible to 

visualize and render complex 3D medical images in real time without relying on local 

installations [69]. These technologies have allowed for cross-platform functionality, eliminating 

the barriers imposed by hardware limitations. For example, volume rendering, MPR, and 

segmentation are now seamlessly integrated into web-based systems that provide diagnostic 

capabilities previously restricted to powerful desktop systems. This has been particularly 

beneficial for preoperative planning and intervention simulation, where real-time data and 

detailed anatomical modeling are critical for successful outcomes. 

The inclusion of EHRs and automated prognostic tools within medical visualization platforms 

is another critical advancement. Traditional visualization tools operate in isolated environments 

and require manual data entry and retrospective analysis. Today, platforms that integrate with 

EHR systems not only visualize patient-specific anatomical data but also incorporate real-time 

prognostic information [70]. This allows clinicians to receive automated risk calculations, 

helping them make better-informed decisions at the point of care. Platforms now support 

continuous, automated updates, refining patient management strategies over time on the basis 

of integrated, up-to-date data streams. 

In PAD management, this evolution has enhanced clinical decision-making by incorporating 

advanced computational techniques, such as phenotyping algorithms and community-level 

datasets. These allow for real-time visualization of prognostic information that is directly 

integrated into patient records. For example, automated survival prediction tools for PAD are 

now embedded within these platforms, providing a more sophisticated understanding of disease 

progression and guiding therapeutic decisions [71]. 

A particularly notable development is the rise of low-code/no-code platforms such as CdB 

(Cinco de Bio) [72], which democratize access to powerful computational tools. Historically, 

medical imaging and visualization required deep technical expertise, which limited accessibility 



 

22 

 

to only a small pool of professionals. Platforms such as CdB, which offer modular, service-

oriented architectures (SOAs) and domain-specific languages (DSLs) for biomedical research, 

empower a broader group of users, including researchers, clinicians, and even nontechnical 

professionals, to design and execute imaging workflows without needing specialized coding 

knowledge. This shift toward user-centered design is pivotal in fostering collaboration across 

disciplines, particularly in complex areas such as PAD research. 

The integration of AI and ML into medical visualization platforms has further propelled their 

evolution. AI-driven tools such as natural language processing (NLP) and ML algorithms now 

assist in interpreting complex datasets, including vascular imaging and patient histories. For 

example, platforms equipped with CNNs (convolutional neural networks) can classify stenosis 

and localize vascular abnormalities with precision comparable to that of radiologists [73]. The 

incorporation of real-time Doppler waveform analysis into visualization tools offers further 

insight into vascular health, enabling early detection and predictive modeling of disease 

progression. 

The integration of biomimetic intelligence (BI) has also significantly enhanced the dynamic 

nature of medical visualization platforms [60]. Platforms that combine real-time data analytics 

with predictive modeling can now simulate the impact of various interventions on PAD patients. 

By incorporating 3D simulations and interactive data visualizations, these tools allow for more 

personalized treatment planning, considering factors such as vascular geometry, patient-specific 

health metrics, and genetic predispositions. 

Finally, the evolution of educational technologies in medical visualization has been equally 

transformative. Traditionally, medical education relies on static resources such as textbooks and 

printed materials. However, the integration of interactive learning modules, virtual reality (VR) 

simulations, and AR tools has revolutionized how students and clinicians engage with complex 

medical data [74]. Web-based platforms that allow the simulation of vascular conditions and 

treatment outcomes exemplify how digital tools have shifted toward more interactive, 

immersive, and user-centric learning experiences. 

2.2 Technical advantages: Accessibility, real-time data, and multi-user collaboration 

Web-based visualization platforms have revolutionized the management of complex conditions 

such as PAD by offering unique technical advantages, particularly in terms of accessibility, 

real-time data integration, and multiuser collaboration [75]. These platforms not only streamline 

the management of PAD but also foster a more collaborative and efficient healthcare 
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environment. By democratizing access to diagnostic and therapeutic tools, they enable 

clinicians, researchers, and patients to engage with critical data and contribute to decision-

making processes, regardless of their location or technical expertise. 

a) Accessibility 

One of the most significant advantages of web-based platforms is their unparalleled 

accessibility, particularly in managing conditions such as PAD [76]. Traditional medical 

imaging and visualization tools often require specialized hardware and installations, which 

limits their reach. In contrast, web-based platforms eliminate these barriers, enabling access 

through simple browser interfaces and making advanced tools available to healthcare providers 

and researchers worldwide. This democratization of access is particularly crucial for 

underserved regions where access to specialized care is limited. For example, web-based 

systems that visualize ABI measurements or walking performance metrics empower both 

patients and clinicians to track PAD progress remotely, adjusting treatment plans as needed 

[77]. This approach is transformative for PAD patients, who often need continuous monitoring 

and support between clinical visits. 

The cloud-based architecture of these platforms ensures that medical imaging, procedural data, 

and patient information are centralized, providing consistent access across multiple institutions 

[78]. This universal accessibility means that researchers and clinicians—regardless of 

geographical constraints—can collaborate and make informed decisions on the basis of real-

time patient data. Platforms such as trackPAD [79] offer accessible mobile apps that help PAD 

patients engage with supervised exercise therapy (SET) remotely, ensuring that they continue 

to adhere to recommended treatment regimens without needing to be physically present in 

clinics. This type of remote access enhances patient participation and promotes better health 

outcomes, particularly in resource-limited settings. 

b) Real-Time Data 

Another cornerstone of web-based platforms is their real-time data integration capability. In the 

management of PAD, timely access to accurate data can significantly influence clinical 

decisions and improve patient outcomes [35]. These platforms integrate data from diverse 

sources, such as clinical imaging, wearable devices, and patient-reported outcomes, providing 

clinicians with a comprehensive, up-to-date view of a patient's health status. The ability to 

visualize real-time metrics such as vascular responses, pain thresholds, and heart rate during 

supervised exercise therapy enhances treatment personalization and allows clinicians to adjust 
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protocols as needed to optimize results. In PAD rehabilitation programs, for example, clinicians 

can adjust therapy on the basis of real-time feedback on walking performance or vascular health, 

ensuring that patients receive the most appropriate interventions [35]. 

Moreover, real-time data also allow for dynamic procedural planning. Platforms that 

incorporate real-time hemodynamic data, such as blood flow or device performance metrics, 

provide immediate insights into the effectiveness of interventions such as drug-eluting stents 

[80-82]. For example, in the case of PAD, real-time updates from procedural systems allow for 

immediate adjustments to the intervention plan, facilitating more accurate decision-making and 

improving outcomes. By incorporating predictive analytics and automated risk stratification 

tools, these platforms enable clinicians to predict disease progression, predict complications 

such as critical limb ischemia, and adapt treatment strategies accordingly. This real-time 

capability fosters proactive management of PAD, allowing clinicians to intervene earlier, 

potentially preventing more severe complications. 

c) Multiuser Collaboration 

Web-based visualization platforms inherently support multiuser collaboration, which is 

essential in managing complex diseases such as PAD. Given the multidisciplinary nature of 

PAD care—requiring input from vascular surgeons, cardiologists, rehabilitation specialists, and 

data scientists—collaborative features are crucial for optimizing patient outcomes [83, 84]. 

Web-based platforms facilitate the simultaneous interaction of multiple users across different 

specialties, allowing them to access, analyze, and annotate patient data in real time. This shared 

access fosters collaborative decision-making, ensuring that all stakeholders are on the same 

page when developing and adjusting treatment plans. 

In clinical settings, such as during interventions involving drug-eluting stents, the ability to 

share angiographic findings and perform quantitative analyses across multidisciplinary teams 

allows for dynamic treatment planning. In PAD, this could mean that interventional radiologists 

can work closely with surgeons and rehabilitation specialists, all accessing the same 

visualization of a patient’s vascular structure and procedural data [85]. Through web-based 

systems, shared dashboards allow real-time discussion and modification of treatment strategies, 

making it easier to align treatment goals and decisions across specialties. This collaborative 

environment is vital for holistic care—ensuring that PAD treatment is comprehensive and 

tailored to the individual patient. 
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2.3 Advancements in 3D medical imaging 

In medical imaging diagnosis, the importance of three-dimensional (3D) visualization is 

paramount, as it enhances the ability to display volumetric organs on screens, allowing 

observation from various perspectives [86]. This capability facilitates diagnostic assistance, 

comprehensive analysis, decision support, and educational purposes. One of the most widely 

used 3D medical image visualization techniques in clinical practice is MPR, which reconstructs 

3D representations from multiple two-dimensional (2D) images obtained from modalities such 

as computed tomography (CT) or magnetic resonance imaging (MRI) [87]. MPR methods 

enhance both visual and diagnostic capacities, contributing significantly to the accuracy and 

efficiency of clinical workflows. 

Currently, clinical environments benefit from a variety of advanced medical imaging processing 

tools, including high-performance desktop applications and workstations designed to handle 

complex computations. In parallel, there is a growing trend toward cloud-based medical 

imaging applications and repositories, which offer cost-effective, scalable, and flexible 

alternatives for biomedical research [88, 89]. These cloud solutions enable the storage and 

retrieval of medical images as cloud resources, paving the way for enhanced collaboration 

among healthcare professionals. 

To address evolving clinical needs, researchers have developed open-source web-based 

DICOM viewers equipped with both basic and advanced features [90]. These viewers are 

applicable not only in general diagnostic settings but also in telemedicine and clinical research 

platforms. Integrating web-based DICOM viewers within a PACS offers a strategic advantage 

by simplifying image access and interaction with remote data sources without requiring 

application downloads. This integration enhances practicality and accessibility, fostering 

seamless collaboration among radiologists and researchers. 

The advancement of internet technologies has significantly contributed to the development of 

web-based applications that rival traditional desktop and workstation solutions [91]. These 

versatile web applications have permeated diverse sectors, including healthcare and driving 

radiologists, to engage in the design of specialized web applications for radiological use. 

A critical gap remains in the domain of DICOM visualization on the web, particularly 

concerning the adoption of PWAs. This thesis addresses this gap by exploring the integration 

of DICOM visualization into web environments via PWAs, which offer unique attributes such 

as offline accessibility, enhanced performance, and an improved user experience [92]. By 
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leveraging these features, this study aims to overcome current technological challenges, 

contributing to the advancement of web-based medical imaging applications and ultimately 

benefiting radiologists and the broader healthcare community. 

In addition to these challenges, the development of medical imaging applications must address 

critical aspects of web applications, including cross-platform compatibility, integration 

capabilities, speed, scalability, and overall performance. An effective approach to these factors 

is essential for enhancing the functionality and efficiency of medical imaging applications in 

today's digital landscape. 

A particular challenge relevant to MPR for medical image visualization lies in producing high-

resolution images on the web, especially when visualizing volumetric structures such as sagittal 

and coronal views derived from DICOM slices [93]. This complexity necessitates a detailed 

examination, and this study seeks to elucidate and overcome these challenges, ultimately 

driving forward the capabilities of web-based medical imaging systems. 

2.4 Advancements in Web-Based DICOM Viewers 

Web-based DICOM viewers have emerged as pivotal tools in modern medical imaging, offering 

advanced functionalities that enhance diagnostic workflows and clinical collaboration. 

Researchers have explored various technologies and approaches to overcome traditional 

limitations, leading to significant advancements in this domain. Min et al. [94] investigated the 

potential of HTML5 and WebGL to address challenges in web-based medical imaging. Their 

study focused on developing a comprehensive application that enables remote access for 

radiologists, demonstrated through a CT colonography prototype. The evaluation across 

different browsers and operating systems confirms that HTML5 and WebGL are well suited for 

real-time 2D and 3D imaging, ensuring platform independence and improved accessibility. 

However, minor browser compatibility issues were noted, highlighting areas for further 

improvement. Despite these limitations, the study concludes that HTML5 and WebGL provide 

promising foundations for remote medical imaging applications. 

Similarly, Hazarika et al. [95, 96] introduced an innovative approach by developing DICOM-

based medical image repositories via DSpace. This solution is designed to increase visibility 

and reduce storage costs for medical professionals. By integrating DICOM standards with 

DSpace through JavaScript, the system achieves efficient image accommodation and retrieval, 

which is supported by a robust indexing mechanism. Although they are effective for smaller 

datasets, scalability challenges are observed when datasets exceed 5000 images. This work 
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demonstrates the feasibility of a cost-effective web platform for DICOM users, paving the way 

for scalable solutions in future developments. Wadali et al. [97] focused on evaluating free, 

open-source, web-based DICOM viewers for integration with eSanjeevani, the Indian National 

Telemedicine Service. Conducted by the Health Informatics & Electronics Division in Mohali, 

India, this study assesses six viewers, ultimately recommending the DICOM Web Viewer 

(DWV) for its comprehensive features and compatibility. Although the research identifies the 

strengths and weaknesses of each viewer, no single solution fully satisfies all the requirements, 

highlighting the need for customized solutions tailored to specific clinical workflows. 

In the realm of specialized imaging applications, Gorman et al. [98] introduced Slim, an open-

source, web-based, DICOM-compliant slide microscopy viewer developed for the NCI Imaging 

Data Commons. Slim facilitates interactive visualization of diverse microscopy images while 

adhering to FAIR principles, supporting advanced imaging data science. This approach shows 

practical utility in standardized image annotations for ML applications. However, challenges in 

standardization, interoperability, and data format consistency underscore the need for further 

advancements in cross-platform integration. 

Another influential contribution was made by Ziegler et al. [99], who presented the OHIF 

Viewer, a flexible, web-based medical image viewer widely adopted in cancer research. The 

OHIF Viewer supports both basic and advanced imaging functionalities, seamlessly integrating 

into clinical research platforms. Its highly customizable framework reduces software 

development redundancy, streamlining research workflows. Nevertheless, deployment 

challenges for nontechnical users and the need for improved community documentation remain 

areas for enhancement. Chen et al. [100] contributed to the field with the development of 

BlueLight, an open-source DICOM viewer built on low-cost computation algorithms via 

JavaScript. Designed for stability and speed, particularly on mobile devices, BlueLight supports 

both 2D and 3D imaging, leveraging CSS transformations and DICOMweb connectivity. 

Although it demonstrates efficient rendering for 3D medical images, the study suggests 

potential improvements in rendering performance, particularly for mobile applications. 

Exploring novel approaches in medical image reconstruction, Ghoshal et al. [101] proposed a 

3D spine MRI reconstruction algorithm using bicubic and bilinear interpolation from a single 

sequence of 2D slices. This method achieves high accuracy in reconstructing 3D images while 

reducing MRI scan times and associated costs. However, the study has several limitations, such 

as the absence of direct comparisons and performance variability across different datasets, 
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indicating the need for further clinical validation. Finally, Fajar et al. [102] presented an 

innovative algorithm for reconstructing and resizing 3D images from DICOM files, effectively 

addressing metadata variations. The method uses histogram equalization and trilinear 

interpolation to manage large 3D image data sizes, supporting ML applications in 3D image 

generation. This approach enhances the efficiency of 3D image processing, contributing 

significantly to the field of medical image analysis. 

Collectively, these advancements illustrate the transformative potential of HTML5, WebGL, 

and PWAs in overcoming traditional limitations associated with web-based DICOM viewers. 

Table 2.1 provides a comparative overview of these innovations, highlighting their key 

contributions and limitations. By addressing existing challenges and leveraging emerging 

technologies, these studies have contributed to the continuous evolution of web-based medical 

imaging applications. This progression not only advances diagnostic precision but also 

enhances clinical workflows, paving the way for more accessible and efficient medical imaging 

solutions. 

Table 2.1 Comparison of Advancements in Web-Based DICOM Viewers. 

Refs. Technology/Approach Key Features Limitations 

[94] 
HTML5 and WebGL for 

Remote Imaging 

Supports real-time 2D/3D imaging, 

platform-independent 

Minor browser compatibility 

issues 

[95] 
DICOM Repositories via 

DSpace 

Increases visibility, reduces storage 

costs, robust indexing 

Scalability challenges with 

datasets >5000 images 

[97] 
Evaluation of Free Web-

Based Viewers 

Recommends DICOM Web Viewer 

(DWV) for telemedicine 

No single viewer fully meets 

clinical needs 

[98] 
DICOM-Compliant 

Microscopy Viewer 

Supports microscopy images, 

adheres to FAIR principles 

Challenges in standardization 

and interoperability 

[99] 
Customizable Web-Based 

Medical Image Viewer 

Highly customizable, widely used in 

cancer research 

Deployment challenges for 

nontechnical users 

[100] 
JavaScript-Based Low-

Cost DICOM Viewer 

Optimized for mobile devices, CSS-

based transformations 

Performance limitations in 

mobile 3D rendering 

[101] 
3D Spine MRI 

Reconstruction 

Bicubic and bilinear interpolation 

for 3D MRI reconstruction 

Performance variability, 

lacks direct comparisons 

[102] 
3D Image Reconstruction 

and Resizing 

Histogram equalization and trilinear 

interpolation for large datasets 

Metadata variations, requires 

further validation 
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2.5 WebGL-based medical imaging 

The rapid evolution of medical imaging technologies has led to the development of powerful 

tools for visualizing complex volumetric data, particularly from CT and MRI. Among these 

tools, 3D WebGL volume rendering has emerged as a prominent technique, leveraging 

WebGL—a JavaScript API for interactive 3D graphics within web browsers [103]—to enable 

real-time visualization of detailed medical images. The accessibility and cross-platform 

compatibility of WebGL eliminate the need for additional plugins, increasing usability for 

medical professionals [43]. Despite its potential, several challenges hinder its effectiveness 

when it is applied to large-scale medical datasets. 

a) WebGL Texture Size Constraints 

One of the primary challenges is the limitation on texture size in WebGL, which can restrict the 

direct uploading and rendering of extensive medical datasets [104]. These constraints often lead 

to performance degradation and visualization errors. Efficient dataset segmentation and 

handling techniques are essential for maintaining high visualization quality while ensuring 

smooth rendering. 

b) Browser Memory Allocation Issues 

High-resolution medical imaging data demand substantial memory resources. When memory 

allocation exceeds the browser's limits, it results in incomplete rendering and potential loss of 

diagnostic information [105]. The development of optimized memory management strategies is 

crucial for handling large datasets efficiently within the browser environment. 

c) Impact of Large Datasets on Browser Performance 

Rendering large CT imaging datasets can overwhelm browser memory and WebGL capabilities, 

leading to crashes or unresponsiveness [106]. This significantly impacts usability and 

performance. The implementation of techniques such as progressive rendering and LOD can 

help maintain application performance while providing high-quality visualizations. 

d) Data downsampling and its drawbacks 

To conform to WebGL texture size limits, datasets are often downsampled, which reduces the 

resolution and compromises essential diagnostic details. This poses a challenge in maintaining 

visualization quality. Implementing adaptive downsampling methods that preserve critical 

details while enhancing performance is crucial for effective diagnostic imaging [107]. 
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e) High-resolution rendering in specific regions 

Detailed analysis in medical imaging often requires a focus on specific regions of interest 

(ROIs). Downsampled datasets may not provide sufficient resolution in these areas. Adaptive 

rendering techniques that allow for high-resolution visualization in selected regions can 

enhance diagnostic accuracy and clinical decision-making [108]. 

These challenges underscore the necessity for innovative solutions to optimize the visualization 

pipeline in WebGL-based medical imaging. This thesis aims to address these limitations by 

developing advanced rendering techniques that maintain performance, accuracy, and usability, 

ultimately enhancing diagnostic workflows and improving patient outcomes. 

2.6 Advancements in 3D WebGL volume rendering 

Advancements in 3D WebGL volume rendering have been motivated primarily by the need to 

address the complex challenges associated with visualizing large-scale medical datasets. This 

section systematically examines the key contributions of contemporary research, emphasizing 

innovative methodologies, their advantages, and the limitations they aim to overcome. 

Understanding these developments provides a contextual framework for the evolution of 

WebGL-based medical imaging solutions while identifying potential pathways for further 

advancements. 

The advancement toward effective WebGL volume rendering commenced with foundational 

studies that sought to resolve the inherent challenges of multidimensional data visualization. 

Zhang et al. [109] made significant strides with SAMP-Viz, a tool that synergizes subspace 

clustering with RadViz to increase the interpretability of complex datasets. This tool facilitates 

the dynamic exploration of multidimensional data, which is particularly valuable in medical 

imaging, where temporal changes in volumetric data are crucial for accurate diagnosis. By 

employing a technology stack comprising C++, OpenGL, QT, and CUDA, SAMP-Viz shows 

potential for high-performance medical data visualization. Nevertheless, the study revealed 

limitations in managing time-varying data, thus highlighting the necessity for more adaptable 

visualization frameworks. 

Building on this foundational work, Zhang [110, 111] further advanced the field through two 

pivotal projects. The first project utilized server-side scripting with PHP and MySQL to enable 

real-time visualization, interactive analysis, and secure data management. While comprehensive 

in scope, this approach was constrained by WebGL2's data storage limitations, affecting its 

scalability for extensive medical datasets. The second project innovatively leverages JavaScript 
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(Node.js) for web-based rendering, incorporating enhanced interpolation techniques to address 

missing voxels. In addition, the integration of WebCL facilitated high-performance parallel 

computing, thereby overcoming earlier performance bottlenecks. These contributions not only 

demonstrated the evolving capabilities of WebGL for medical imaging but also underscored the 

pressing need for robust data storage solutions to accommodate the growing complexity of 

medical datasets. 

With the increasing demand for efficient web-based medical image rendering, researchers have 

explored diverse strategies to increase performance and usability. Lajara et al. [112] 

significantly contributed to this domain by focusing on the web-based visualization of whole 

slide images conforming to DICOM standards. Their novel approach involved preconstructing 

the pyramidal structure within the middleware layer rather than on the web platform. This 

architectural enhancement led to more efficient frame transmission, thus optimizing the 

rendering speed and ensuring consistent medical image visualization. This strategic innovation 

emphasized the critical role of middleware architecture in achieving scalable and high-

performance medical imaging solutions. 

In continuation of this trend, Visutsak et al. [113] employed marching cubes with histogram 

pyramids for 3D medical volumetric rendering, aiming to increase feature extraction precision. 

Despite methodological advancements, challenges related to surface roughness due to unused 

voxels persist. This limitation underscores the necessity for advanced algorithms capable of 

refining voxel utilization, ultimately enhancing visualization quality. The study highlighted the 

critical importance of accurate voxel processing in optimizing medical image rendering. 

Rendering high-quality medical images within the constraints of browser memory remains a 

significant challenge in WebGL volume rendering. In response, Xu et al. [114] introduced 

cinematic volume rendering (CVR) via JavaScript, which aims to achieve high-fidelity in-

browser rendering of medical images. Although CVR presented a groundbreaking approach, it 

encountered memory limitations that hindered its practical deployment, especially in rendering 

complex volumetric datasets. This highlighted an ongoing challenge within the field, 

necessitating the development of more sophisticated memory management strategies to fully 

exploit the potential of cinematic rendering in web applications. 

To address these challenges, Li et al. [104] introduced a real-time online medical image 

rendering and 3D visualization framework using WebGL and HTML5. Their focus was on 

designing advanced interpolation techniques to manage missing voxels effectively, which 
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significantly improved image quality and rendering accuracy. By addressing voxel interpolation 

challenges, this study contributes to smoother real-time rendering, paving the way for more 

interactive and responsive medical imaging applications. 

To enhance the user experience and optimize rendering performance, researchers have explored 

advanced resolution techniques and dynamic interaction mechanisms. Boutsi et al. [115] 

developed a multiresolution rendering technique utilizing JavaScript, HTML, CSS, PHP, and 

AJAX, integrated with Nexus.js for real-time parameter adjustments and Draco compression 

for efficient mesh data optimization. This technique enables real-time manipulation of 3D 

models, optimizing rendering times for even the most complex medical datasets. The study 

illustrated the substantial potential of multiresolution rendering to deliver interactive, high-

fidelity medical imaging experiences on the web. 

To further enhance interactive visualization, Zhu et al. [116] introduced an adaptive resolution 

enhancement method that leverages spatial interpolation and eye tracking. This technique 

dynamically adjusts the resolution on the basis of the user focus, thereby optimizing the 

rendering efficiency and improving the accuracy of medical image analysis. This study 

demonstrated the ability of adaptive resolution techniques to maximize diagnostic precision by 

strategically concentrating rendering power on regions of interest. Kumar et al. [117] extended 

this trajectory by introducing RadVolViz, a multivariate volume visualization tool utilizing the 

RadViz and HSL colormaps, implemented through WebGL, JavaScript, and ThreeJs. This tool 

enhances visual differentiation for correlated channels and optimizes the manual brushing 

interface, providing an intuitive and detailed visualization experience. By employing RadViz, 

the tool facilitated enhanced discrimination of complex anatomical structures, thereby 

supporting more informed diagnostic decision-making processes. 

The cumulative innovations presented in these studies underscore the transformative potential 

of 3D WebGL volume rendering in addressing longstanding challenges in web-based medical 

imaging. Through the strategic utilization of HTML5, WebGL, and PWAs, these advancements 

have significantly enhanced the accessibility, accuracy, and interactivity of medical imaging 

solutions. Table 2.2 provides a comparative overview of these approaches, highlighting their 

key contributions and limitations in optimizing memory management, real-time rendering, and 

resolution adaptability. 

Building on these foundational advancements, this thesis aims to address ongoing challenges, 

including WebGL texture size constraints, browser memory allocation issues, and resolution 
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degradation due to downsampling. By integrating adaptive rendering techniques, progressive 

loading strategies, and region-specific high-resolution rendering, this chapter aims to improve 

the performance, accuracy, and usability of web-based applications for visualizing large-scale 

medical datasets, particularly in peripheral artery CT imaging. 

Table 2.2 Comparison of advancements in 3D WebGL volume rendering for medical imaging. 

Refs. Rendering Approach Key Features Limitations 

[109] 
PHP and MySQL for Real-

Time Visualization 

Enables interactive analysis and 

secure data management 

Limited scalability due to 

WebGL2 storage constraints 

[112] 
Pyramidal Structure 

Middleware 

Optimizes rendering speed 

using middleware 

Requires middleware-based 

optimizations 

[113] 
Marching Cubes with 

Histogram Pyramids 

Improves feature extraction for 

3D volumetric data 

Surface roughness due to unused 

voxels 

[114] 
Cinematic Volume 

Rendering (CVR) 

Achieves high-fidelity in-

browser rendering 

Memory limitations restrict 

deployment 

[104] 
WebGL and HTML5 for 

Real-Time Rendering 

Advanced interpolation for 

missing voxels 

Voxel interpolation challenges 

remain 

[115] 
Multiresolution Rendering 

with Nexus.js 

Real-time model manipulation 

with mesh compression 

Processing-intensive, dependent 

on Nexus.js 

[116] 
Adaptive Resolution with 

Eye Tracking 

Dynamic resolution adjustment 

for focused regions 

High computational cost for eye 

tracking 

[117] 
RadViz and HSL Colormap-

based Visualization 

Improves visualization of 

correlated anatomical structures 

Manual brushing interface 

requires refinement 

2.7 Cloud-Based Solutions for PAD Management 

The integration of cloud-based platforms in PAD management has demonstrated significant 

potential in enhancing patient outcomes and accessibility to therapeutic interventions. 

TrackPAD, introduced by Paldán et al. [118], supports supervised exercise therapy (SET) for 

PAD patients, resulting in improvements in walking distance and quality of life. Despite its 

effectiveness, the platform relies on manual input and lacks AI-driven automation, limiting its 

scalability and adaptability. In a similar vein, Paredes et al. [119] developed a mobile 

application for home-based exercise therapy that incorporates GPS tracking and pain 

assessment. However, patient adherence has remained low, and the absence of AI-driven 

adjustments has hindered its potential for personalized care. 

To further advance digital health interventions, Kim et al. [120] introduced the HOBBIT-PAD, 

an mHealth platform integrated with wearable devices to support exercise interventions for 
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PAD patients. Positive usability feedback was received, but limitations included restricted 

compatibility (available only on Android), a small sample size for validation, and a lack of AI-

based personalization for real-time adaptation. In a broader review, Wu et al. [121] analyzed 

the effectiveness of SET for PAD patients with IC, confirming its benefits but highlighting low 

enrollment rates. They emphasized the need for enhanced digital-assisted therapies and AI-

driven supervision to improve long-term adherence. 

Reinforcing these findings, Khoury et al. [79] investigated SET as a primary intervention for 

PAD, noting that only 2% of eligible patients participated because of limited awareness and 

accessibility. They suggested that hybrid digital health solutions could improve SET adoption; 

however, existing platforms lack real-time AI monitoring, automated adjustments, and 

predictive analytics. Collectively, these studies underscore the necessity for AI-integrated 

cloud-based platforms to enhance patient engagement, personalized interventions, and long-

term adherence in PAD management. 

In the context of PAD, digital health applications have shown varying degrees of success. 

Shalan et al. [122] introduced YORwalK, an application designed to promote exercise and track 

walking ability in PAD patients. Although the concept is promising, its effectiveness requires 

further validation through patient feedback and clinical trials. Harzand et al. [123] conducted a 

Smart Step trial for a smartphone-enabled exercise program but encountered challenges in terms 

of participant engagement and adherence, particularly in low-resource settings. Addressing 

these challenges, Lortz et al. [124] emphasized the need for improved disease literacy and SET 

support in mobile interventions, although their study was limited by a small sample size and 

limited generalizability. 

In addition to advancing the field of AI applications in PAD, Flores et al. [125] explored ML 

and AI tools to enhance PAD outcomes but highlighted challenges related to data 

interoperability, algorithm bias, and the need for extensive validation. Similarly, Forghani et al. 

[126] developed an intelligent oscillometric system for PAD detection with high accuracy, 

although further validation across different age groups is needed to account for age-related 

variations. In a comparative study, Collins et al. [127] evaluated a smartphone app combined 

with motivational interviewing (MI) for improving walking distance and weight loss in PAD 

patients and concluded that MI was more effective. However, limitations included a small 

sample size, inconsistent app usage, and the absence of an iOS version. 
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2.8 Cloud Computing and AI in Medical Imaging 

Cloud computing integrated with AI is revolutionizing medical imaging by enabling scalable, 

efficient, and real-time diagnostics. Sakellarios et al. [128] developed a cloud-based platform 

for CAD management that integrates ML, computational modeling, and clinical decision 

support systems (CDSSs). Although the platform demonstrated scalability and adaptability, it 

was specific to CAD and lacked modules tailored to PAD, particularly in terms of real-time AI-

driven automation. By extending the application of AI-cloud integration, Wu et al. [129] 

demonstrated enhanced diagnostic efficiency for lung cancer and COVID-19 via cloud-based 

AI systems. However, challenges related to AI standardization and dataset quality persist, 

highlighting the need for more robust and PAD-specific solutions. 

Similarly, Chen et al. [54] examined the impact of AI-enhanced cloud computing on medical 

imaging and reported significant improvements in segmentation, feature extraction, and 

predictive diagnostics. Despite these advancements, the absence of clinical validation and real-

world implementation has limited its applicability to PAD diagnostics. On the other hand, 

Putzier et al. [130] investigated cloud adoption in German hospitals, emphasizing data privacy, 

interoperability, and regulatory compliance. While successfully implemented at Charité 

University Hospital, the system lacked AI-driven clinical decision support and was confined to 

a single facility, indicating limited scalability. 

To further expand on cloud-based medical imaging, Schweitzer et al. [131] developed a 

teleophthalmology platform with cloud-based DICOM storage integrated with the OHIF 

Viewer for remote image annotation and diagnostics. Although the platform demonstrated 

interoperable cloud workflows, it struggled with image retrieval latency and did not incorporate 

AI-driven automation or real-time computational modeling. These studies collectively highlight 

the need for enhanced AI integration, real-time computational modeling, and broader clinical 

validation to fully realize the potential of cloud computing in medical imaging for PAD. 

2.9 Cloud-based multidisciplinary platforms 

In addition to single-domain applications, cloud-based multidisciplinary platforms are emerging 

as pivotal tools for comprehensive patient care and collaborative clinical workflows. Zhang et 

al. [132] developed a cloud-based multidisciplinary team (cMDT) platform aimed at improving 

oncology treatment coordination, resulting in increased response times and better adherence to 

clinical guidelines. However, the system relies heavily on manual expert input and lacks AI-

driven clinical decision-making and predictive analytics for personalized treatment pathways. 
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Building on cloud-based AI-driven platforms, Peng et al. [133] introduced AIScholar, an 

OpenFaaS-based cloud platform designed for intelligent medical data analytics. This platform 

demonstrated scalability and real-time clinical data processing, enhancing diagnostic precision 

and workflow efficiency. Nevertheless, its focus on structured medical data without 

comprehensive imaging diagnostics and real-time computational modeling limits its 

applicability to more complex scenarios such as PAD management. 

Collectively, these studies highlight the evolving landscape of cloud-based multidisciplinary 

platforms. They underscore the necessity for enhanced AI integration, real-time decision 

support, and comprehensive interoperability to optimize clinical workflows and improve patient 

outcomes across various healthcare domains. 

Cloud-based solutions have demonstrated significant potential in enhancing PAD management 

by improving accessibility and patient engagement. However, challenges such as low 

adherence, limited AI-driven automation, and scalability constraints persist. Table 2.3 presents 

a comparative overview of these solutions, emphasizing the necessity for AI integration, real-

time decision support, and enhanced interoperability to optimize digital health interventions for 

PAD. 

2.10 Contribution of this Thesis 

This PhD thesis explores innovative solutions to advance medical imaging visualization, risk 

classification, and noninvasive management strategies for PAD. Through the integration of 

web-based technologies, high-fidelity visualization, and state-of-the-art computational 

modeling, this research addresses critical challenges in diagnostic precision, clinical workflow 

efficiency, and personalized treatment strategies. The scope and contributions of the thesis are 

presented in the context of five main research areas, each contributing to the advancement of 

PAD diagnostics and treatment planning. 

Integration of DICOM and MPR visualization via progressive web applications (PWAs) 

This thesis explores the integration of DICOM and MPR visualization into web environments 

via PWAs. This research aims to overcome significant technological challenges, including 

cross-platform compatibility, integration capabilities, speed, and scalability, particularly within 

medical imaging workflows. By leveraging PWAs’ offline access and enhanced performance 

features, this study seeks to enable seamless medical image visualization across various devices, 

thus enhancing accessibility and usability for healthcare professionals. This research 
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specifically focuses on PAD imaging, aiming to provide radiologists with high-resolution 

medical images that maintain diagnostic accuracy even in offline scenarios. This study 

introduces a novel approach to web-based DICOM and MPR visualization, emphasizing offline 

access, enhanced performance, and an improved user experience. It proposes an MPR algorithm 

that uses bicubic and weighted bilinear interpolation to enhance edge detail, effectively 

addressing the limitations found in conventional implementations. 

Table 2.3 Comparison of Cloud-Based Solutions for PAD Management. 

Refs. Platform Type Key Features Limitations 

[118] 
Supervised Exercise 

Therapy (SET) 

Supports SET; Improves walking 

distance and quality of life 

Manual input, lacks AI-driven 

automation 

[119] 
Home-based Exercise 

Therapy 

Incorporates GPS tracking and 

pain assessment 

Low patient adherence, lacks AI-

driven adjustments 

[120] 

mHealth with 

Wearables 

Wearable-integrated exercise 

interventions 

Limited compatibility (Android 

only), small validation sample, no 

AI personalization 

[121] 
SET for PAD Patients Analyzed effectiveness of SET 

for PAD 

Low enrollment rates, lacks AI-

driven supervision 

[79] 
Hybrid Digital Health 

Solutions 

Suggested hybrid digital health 

for SET adoption 

Low participation (2%), no real-

time AI monitoring 

[122] 
Exercise Tracking App Tracks walking ability Requires more clinical validation 

[123] 
Smartphone Exercise 

Program 

Smartphone-enabled exercise 

program 

Low engagement and adherence in 

low-resource settings 

[124] 
Mobile Intervention for 

Disease Literacy 

Supports SET in mobile 

interventions 

Small sample size, limited 

generalizability 

[125] 
AI and ML for PAD ML and AI for PAD outcomes Challenges in data interoperability 

and algorithm bias 

[126] 
Intelligent 

Oscillometric System 

PAD detection with high accuracy Needs validation across different 

age groups 

[127] 
Motivational 

Interviewing App 

Walking distance & weight loss 

tracking 

Small sample size, inconsistent app 

usage, no iOS version 

[128] 
Cloud-Based CAD 

Platform 

ML, computational modeling, 

CDSSs 

Specific to CAD, lacks PAD 

modules and AI automation 

[129] 
Cloud-Based AI for 

Diagnostics 

Enhanced diagnostic efficiency Challenges in AI standardization 

and dataset quality 

[54] 
AI-Enhanced Cloud 

Computing 

Improvements in segmentation 

and feature extraction 

Lacks clinical validation & real-

world implementation 

[130] 
Cloud Adoption in 

Hospitals 

Implemented in German hospitals Lacks AI-driven clinical decision 

support, limited scalability 

[131] 
Teleophthalmology 

Cloud Platform 

Cloud-based DICOM storage 

with OHIF Viewer 

Image retrieval latency, no AI-

driven automation 

[132] 

Cloud-Based 

Multidisciplinary Team 

(cMDT) 

Improved oncology treatment 

coordination 

Heavy reliance on manual expert 

input, lacks AI decision-making 

[133] 
Cloud-Based AI 

Medical Analytics 

Scalable real-time medical data 

processing 

Focuses on structured data, lacks 

imaging diagnostics 
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In addition, the study examines cross-platform performance variations, recommending optimal 

configurations to ensure consistent functionality. By demonstrating superior loading times and 

reconstruction efficiency compared with existing platforms, this research establishes a new 

benchmark for web-based medical imaging systems. This validates the proposed solution using 

CT scans from PAD patients, thus confirming its potential to enhance diagnostic capabilities 

and clinical workflows. 

High-Fidelity Visualization of Large-Scale Peripheral Artery CT Datasets via DECODE-

3DViz 

This thesis addresses the challenges of rendering high-resolution volumetric medical imaging 

datasets, specifically for peripheral artery CT images, via WebGL technology. It introduces the 

DECODE-3DViz pipeline, which uses level-of-detail (LOD) algorithms and data chunk 

streaming to optimize the visualization pipeline, ensuring real-time interactivity and high-

fidelity visualization. This approach effectively manages WebGL texture size constraints and 

memory limitations, enabling the visualization of large-scale medical images within browser 

environments without performance degradation. The scope of this research includes enhancing 

real-time interaction, maintaining high visual fidelity, and overcoming browser memory 

limitations to support accurate medical diagnostics and clinical decision-making. 

Compared with state-of-the-art visualization tools, the DECODE-3DViz pipeline significantly 

improves rendering performance, achieving up to a 98% reduction in rendering time while 

maintaining a high frame rate. By efficiently managing GPU memory usage, this platform 

enables real-time, high-fidelity interactions with large-scale datasets. This research enhances 

diagnostic accuracy by providing detailed visualizations of the peripheral vasculature, 

supporting advanced diagnostic and treatment planning for complex vascular pathologies. It 

also improves user accessibility through a web-based platform, facilitating widespread clinical 

adoption and enhancing user engagement with interactive real-time rendering adjustments. The 

open-source nature of DECODE-3DViz promotes further research and development in medical 

imaging visualization. 

Automated risk classification framework for PAD 

This thesis proposes a novel computational framework for the automated risk classification of 

PAD, leveraging optimized volume rendering, dynamic illumination, and quantitative vascular 

analysis. It integrates real-time plaque density and vascular curvature assessments to enhance 
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PAD diagnostics by automating risk stratification. The framework aims to improve diagnostic 

precision, reduce interobserver variability, and streamline clinical workflows, thereby enabling 

personalized patient management and early intervention. This research validates the 

effectiveness of this approach via real clinical data, demonstrating its potential for accurately 

classifying PAD risk levels and supporting clinical decision-making. 

The framework introduces a real-time dynamic illumination model to enhance depth perception 

and the realism of vascular geometry. It also implements an automated plaque density and 

vascular curvature analysis algorithm, enabling precise risk classification. The system 

outperforms existing tools by offering advanced automated functionalities, including risk 

classification and quantitative vascular analysis. The research highlights the clinical decision 

support capabilities of the framework, demonstrating its effectiveness in reducing interobserver 

variability and enhancing diagnostic accuracy. By utilizing real clinical data for validation, this 

study confirms the framework's practical applicability in clinical settings and its potential to 

transform PAD diagnostics. 

Computational Modeling of Drug-Eluting Balloons for PAD Treatment 

This thesis systematically examines the application of computational modeling techniques to 

optimize DEBs for PAD treatment. It evaluates a comprehensive range of computational 

approaches, including MD, FEA, computational fluid dynamics (CFD), and ML. Research has 

focused on simulating drug transport, release kinetics, and hemodynamic responses within 

complex vascular geometries, thereby optimizing DEB design and therapeutic efficacy. The 

study also explores emerging trends, challenges, and future directions in DEB research, 

emphasizing patient-specific modeling to enhance predictive accuracy and improve clinical 

outcomes. 

This work provides an in-depth examination of advanced computational techniques for 

optimizing DEB design, highlighting their role in enhancing drug release accuracy, mechanical 

stability, and patient-specific therapeutic outcomes. This study demonstrated how 

computational models can improve drug retention, hemodynamic flow patterns, and plaque 

morphology. This study emphasizes the importance of patient-specific simulations for 

personalized medicine, highlighting their potential to refine DEB strategies tailored to 

individual patient profiles. By identifying limitations in existing models and proposing future 
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directions such as multiscale modeling and AI-driven predictive analytics, this research paves 

the way for next-generation DEBs with enhanced efficacy and safety profiles. 

Development of DECODE: An Open-Source Cloud-Based Platform for Noninvasive 

Peripheral Artery Disease Management 

This thesis presents DECODE, an innovative open-source cloud-based platform designed to 

revolutionize PAD diagnosis and treatment planning. This platform integrates AI-driven 

vascular segmentation, computational modeling, and real-time 3D visualization to provide an 

end-to-end solution for PAD management. It combines DL segmentation with finite element 

modeling (FEM) for personalized simulations of balloon angioplasty and DCB therapy. This 

research addresses challenges in interoperability, scalability, and real-time diagnostics through 

a cloud-integrated ecosystem, ensuring seamless clinical integration and accessibility for 

healthcare professionals. 

DECODE introduces advanced visualization capabilities through DECODE-3DViz, which 

supports real-time volumetric rendering and AR-assisted procedural planning. It achieves high-

fidelity visualization and GPU memory efficiency, enhancing real-time interactions with large-

scale datasets. The platform also integrates predictive modeling for PAD interventions, enabling 

personalized vascular drug delivery strategies. By ensuring cross-platform accessibility and 

seamless integration with EHRs, DECODE has established itself as a transformative tool in 

precision vascular medicine. As an open-source solution, it enables further research and sets a 

new benchmark for noninvasive PAD management and personalized patient care. 
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Chapter 3: Computational Modeling of Drug-Eluting Balloons 

3.1. Introduction 

3.2. Intervention Methods for PAD 

3.3. Computational Methods and Applications 

3.4. Discussion 

3.5. Conclusion 

 

 

 

 

 

 

 

 

 

3.1 Introduction 

Cardiovascular disease (CVD) continues to pose a significant global health challenge, affecting 

over 500 million individuals and contributing to 20.5 million deaths in 2021 [134]. A recent 

systematic review revealed that the prevalence of peripheral arterial disease (PAD) has risen by 

more than 17%, equating to an additional 30 million people over five years [135]. PAD is a 

vascular condition characterized by narrowing or obstruction of arteries that supply the 

extremities, leading to reduced blood flow and impaired tissue perfusion [136]. Traditional 

interventions such as balloon angioplasty have shown limitations in maintaining long-term 

vessel patency and preventing restenosis. Drug-eluting stents (DESs), while offering benefits, 

are associated with restenosis in approximately 10% of patients within two years—a figure that 

doubles in those with comorbid conditions such as diabetes [137]. DESs also present risks of 

late or very late stent thrombosis, often caused by inflammatory reactions to polymeric 

excipients, which delay vessel healing. 

In response to these challenges, DEBs and DCBs have emerged as promising alternatives. These 

devices combine mechanical dilation with localized drug delivery, typically using paclitaxel to 
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inhibit neointimal hyperplasia and improve clinical outcomes. Unlike DESs, DCBs avoid long-

term exposure to polymeric excipients, potentially reducing the risk of delayed vessel recovery 

and late thrombosis [138]. DCBs have demonstrated superiority over balloon angioplasty for 

the treatment of both de novo and in-stent restenotic lesions in femoropopliteal and below-the-

knee occlusive diseases. They have also been found to be equivalent to DESs and superior to 

balloon angioplasty in treating coronary in-stent restenosis [139]. Owing to their smaller 

therapeutic footprint, DCBs are particularly advantageous in cases where DESs may be less 

effective, such as in-stent restenosis, bifurcation lesions, and diffuse atherosclerotic segments. 

Optimizing the therapeutic impact of DCBs requires a sophisticated understanding of their 

mechanical dynamics, drug release kinetics, and distribution profiles within the arterial wall. 

While experimental studies provide crucial insights, the complexity, ethical considerations, and 

high costs associated with in-vivo testing highlight the role of computational modeling as an 

essential, complementary tool. Computational modeling enables researchers to explore DCB 

drug transport and tissue retention dynamics under controlled conditions, providing a systematic 

approach to assess therapeutic efficacy and improve device design [140]. 

In recent years, computational modeling and simulation have become pivotal in developing and 

refining DEBs and DCBs, allowing detailed analysis of device‒tissue interactions, drug uptake, 

and retention. Through advanced 3D models, studies have investigated drug transport behaviors 

during balloon deployment, accounting for variables such as inflation time, arterial 

composition, and drug washout. Computational methods have also been instrumental in 

predicting how coating microstructures influence drug transfer and retention, highlighting 

critical parameters that drive therapeutic outcomes. The convergence of computational 

modeling with experimental and clinical data holds significant potential for advancing PAD 

treatments. These models deepen our understanding of drug delivery mechanisms and offer 

insights that can inform the next generation of DEBs and DCBs with enhanced efficacy and 

safety profiles. In addition, computational simulations pave the way for personalized treatment 

strategies, supporting device customization and deployment techniques on the basis of 

individual patient anatomy and pathology [141]. Despite substantial progress, the application 

of computational modeling to DEBs remains limited compared with that to DESs. Much of the 

current research still relies on simplified geometries and uniform drug coating assumptions, 

which restricts model accuracy. However, recent advancements in 3D modeling and the 

integration of hybrid in-silico and in-vitro methods have enhanced the predictive power of 
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simulations for long-term therapeutic outcomes. Coupling computational methods with in-vitro 

studies, ML, and nanotechnology offers a promising pathway toward the comprehensive 

optimization of drug-eluting devices, underscoring the need for further research to overcome 

existing limitations [142]. 

This chapter systematically examines the application of computational modeling techniques to 

DEBs for PAD treatment, evaluating the range of computational approaches, their contributions 

to DCB design, and their impact on optimizing device performance. Through an analysis of the 

current literature and modeling advancements, this review identifies emerging trends, 

challenges, and future directions in the computational modeling of DEBs, with a focus on 

improving outcomes for PAD patients. 

3.2 Intervention methods for PAD 

PAD treatment strategies span a wide range of modalities aimed at alleviating symptoms and 

improving vascular health. Initial interventions typically include lifestyle modifications and 

pharmacotherapy, the use of antiplatelet agents, lipid-lowering drugs, and vasodilators to 

increase circulation and prevent disease progression. For more advanced cases, 

revascularization procedures, such as surgical bypass grafting and minimally invasive 

endovascular approaches, become essential. Techniques such as atherectomy—mechanical 

removal of plaque—are often combined with other interventions to optimize outcomes in 

challenging lesions. Among implantable devices, DESs have demonstrated efficacy in 

maintaining vessel patency; however, their long-term use is associated with risks, including late 

thrombosis and restenosis, primarily due to inflammatory responses to polymeric coatings. 

As shown in Figure 3.1, when publication trends across PubMed, Scopus, and ScienceDirect 

are analyzed, DEBs dominate research activity, reflecting their clinical importance and 

increasing adoption. The consistent increase in the number of DEB-related publications across 

all three databases highlights their effectiveness in addressing the limitations of other 

interventions, including DCBs, conventional balloon angioplasty (CBA), high-pressure balloon 

angioplasty (HPBA), and cutting balloon angioplasty. DEBs integrate two key mechanisms, 

mechanical dilation and localized drug delivery, providing an effective solution to restenosis, 

particularly in complex cases such as in-stent restenosis and heavily calcified lesions.  
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In addition, they avoid complications associated with permanent implants, such as inflammation 

and late-stage thrombosis, making them a transformative option in PAD management.  

This dominance of DEBs in the research landscape underscores their ability to address 

mechanical and pharmacological challenges simultaneously, reduce procedural risks, and 

improve long-term outcomes. Figure 3 also emphasizes the growing interest in DEBs compared 

with other techniques, validating their role as a central focus in advancing PAD treatment. 

3.2.1 Balloon Angioplasty 

Balloon angioplasty, also known as percutaneous transluminal angioplasty (PTA) [143, 144], 

is a minimally invasive procedure used to open narrowed or blocked blood vessels, typically 

arteries. This technique involves the insertion of a small balloon-tipped catheter into the affected 

artery. Once in place, the balloon is inflated to widen the artery, improving blood flow [145]. 

This procedure is commonly used to treat conditions such as PAD, CAD, and stenosis in 

arteriovenous (AV) fistulas and grafts used for hemodialysis. Types of balloon angioplasty: 

 

 

Figure 3.1 Trends and Comparative Analysis of Balloon Angioplasty Publications (2015–

2024): (A) PubMed, (B) Scopus, (C) ScienceDirect, and (D) Stacked Comparison of 

Article Counts Across Databases. 
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a) Conventional balloon angioplasty (CBA) 

CBA, also known as plain old balloon angioplasty (POBA) [146], involves the use of an 

uncoated balloon to dilate the artery. While effective in the short term, this method often faces 

challenges such as vessel recoil and restenosis, where the artery narrows again after the 

procedure. Studies have shown that while POBA can improve blood flow, it does not 

significantly reduce the long-term need for revascularization or improve clinical outcomes such 

as limb salvage and mortality [147]. 

b) Drug-Coated Balloon (DCB) 

DCBs are an advanced form of balloon angioplasty that involves coating the balloon with 

antiproliferative drugs, such as paclitaxel [148]. These drugs are released into the arterial wall 

during inflation of the balloon, inhibiting the growth of neointimal tissue, which can lead to 

restenosis. 

Efficacy and safety: Multiple studies have demonstrated the superior efficacy of DCBs over 

standard balloon angioplasty [148]. For instance, the IN.PACT SFA trial revealed that DCBs 

had a significantly higher primary patency rate at 12 months than did POBA (82.2% vs. 52.4%, 

P < 0.001) and a lower rate of clinically driven target lesion revascularization (2.4% vs. 20.6%, 

P < 0.001) [149]. Another study, the EffPac Trial, confirmed these findings, showing that DCBs 

maintained superior efficacy over conventional balloons at 2 years, with primary patency rates 

of 90.2% for DCBs compared with 62.7% for POBA [150]. 

Long-term outcomes: The durability of the treatment effect with DCBs has been a focus of 

recent research. The IN.PACT SFA trial reported that at 24 months, DCBs continued to result 

in significantly greater primary patency (78.9% vs. 50.1%, P < 0.001) and lower rates of 

clinically driven target lesion revascularization (9.1% vs. 28.3%, P < 0.001) than did POBA 

[151]. However, there were concerns about higher overall mortality rates in the DCB group, 

which necessitates further investigation. 

Clinical and functional outcomes: While DCBs have shown clear advantages in terms of 

anatomical endpoints such as primary patency and restenosis rates, their impact on clinical 

outcomes such as limb salvage, mortality, and quality of life remains less clear. A 

comprehensive meta-analysis of 45 randomized trials indicated that DCBs significantly reduced 

the rate of target lesion revascularization but did not significantly affect mortality or recurrent 

acute ischemic events compared with conventional revascularization strategies [152]. 
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Technological innovations: Recent advancements in DCB technology include the development 

of novel coatings and delivery mechanisms. For example, a study on a novel paclitaxel-

nanocoated balloon demonstrated improved outcomes in terms of late lumen loss and primary 

patency compared with POBA, with no significant safety concerns. In addition, the combination 

of DCBs with other treatment modalities, such as atherectomy or laser ablation, has shown 

promising results in overcoming the limitations of calcified lesions [153]. 

c) Drug-Eluting Balloon (DEB) 

DEB angioplasty, similar to DCB angioplasty, involves the use of balloons coated with drugs 

that elute over time to prevent restenosis [154]. This method has demonstrated significant 

improvements in patency rates and cost-effectiveness, particularly in the treatment of failing 

dialysis access and PAD. 

Efficacy and Outcomes: Compared with plain balloon angioplasty (PBA) and PTA, DEB 

angioplasty has shown superior outcomes in various studies. A meta-analysis of randomized 

controlled trials (RCTs) revealed that DEB angioplasty significantly reduces late lumen loss, 

restenosis, and the need for target lesion revascularization (TLR) in patients with femoral-

popliteal and infrapopliteal diseases without increasing the risk of major amputation or 

mortality [155]. Another study confirmed that DEBs are more effective than uncoated balloons 

in maintaining primary vessel patency and reducing binary restenosis rates for up to five years 

[156]. 

Clinical Trials and Evidence: Several clinical trials have supported the efficacy of DEB 

angioplasty. For example, the PACUBA trial demonstrated that paclitaxel-eluting balloon 

angioplasty provides significantly higher patency rates and lower TLR rates than does standard 

PTA in patients with in-stent restenosis of the femoropopliteal artery [157]. In addition, the 

IN.PACT SFA trial reported that DEB angioplasty resulted in greater primary patency and 

lower CD-TLR rates at 24 months than did PTA, with similar functional improvements and 

fewer reinterventions [158]. 

Cost-effectiveness: Despite the higher initial cost of DEBs than of uncoated balloons, their long-

term benefits in reducing the need for repeat interventions and improving vessel patency make 

them a cost-effective option for treating PAD [159]. The durability of the treatment effect of 

DEBs, as evidenced by long-term follow-up studies, further supports their cost-effectiveness. 

Limitations and Future Directions: While DEB angioplasty has shown promising results, some 

studies have reported no significant differences in clinical endpoints, such as amputation, death, 
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or changes in the ankle‒brachial index (ABI), compared with uncoated balloon angioplasty 

[160]. Moreover, the heterogeneity in trial designs, patient populations, and follow-up durations 

necessitates further well-designed RCTs with long-term follow-up to fully establish the clinical 

and economic benefits of DEBs [161]. 

d) High-Pressure Balloon Angioplasty (HPBA) 

HPBA is a technique that utilizes balloons capable of withstand higher pressures, making them 

particularly suitable for treating more resistant lesions [162]. This method is often employed in 

conjunction with other techniques to improve clinical outcomes. 

Technical Aspects and Efficacy: HPBA involves the use of noncompliant balloons that can be 

inflated to high pressures, typically ranging from 22 to 24 atmospheres, to effectively dilate 

resistant and calcified arterial lesions. This high-pressure capability is crucial for achieving 

technical success in complex cases, such as long and calcified infrapopliteal and inframalleolar 

lesions. A previous study reported a technical success rate of 95.7% with no procedure-related 

complications, highlighting the feasibility and safety of this approach [163]. 

Comparative effectiveness: Compared with conventional balloon angioplasty, HPBA has 

shown superior outcomes in specific scenarios. For example, in the treatment of long 

infrapopliteal calcified lesions, HPBA achieved high rates of limb salvage and wound healing 

over a follow-up period of up to three years [164]. In addition, the use of ultrahigh-pressure 

balloons in pediatric patients with pulmonary artery stenosis associated with congenital heart 

defects has a success rate of 78.4%, with predictors of success including a larger balloon-to-

waist ratio and the presence of therapeutic tears [165]. 

In combination with other modalities, HPBA is often used in combination with other 

revascularization strategies to optimize outcomes. For example, the combination of atherectomy 

and balloon angioplasty has improved patency rates and reduced the need for bailout stenting 

in femoropopliteal lesions [166]. Similarly, DCBs have been used following HPBA to maintain 

vessel patency and reduce the incidence of TLR. A meta-analysis indicated that DCBs 

significantly reduced TLR rates compared with conventional balloon angioplasty, particularly 

in patients with PAD [152]. 

Safety Considerations: While HPBA is generally safe, it is not without risks. Potential 

complications include vessel dissection, recoil, and restenosis. However, studies have shown 

that with careful patient selection and procedural planning, these risks can be minimized. For 
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example, the use of long balloons with prolonged inflation times has been recommended to 

mitigate the risk of dissection and recoil in infrapopliteal arteries [167]. 

e) Cutting balloon angioplasty 

Cutting balloon angioplasty is a specialized technique used to treat more fibrotic or calcified 

lesions in PAD patients [167]. This method involves a balloon equipped with small blades that 

make precise incisions in the plaque as the balloon is inflated. The primary advantage of this 

technique is its ability to facilitate the fracturing of calcified plaques, which are often resistant 

to conventional balloon angioplasty. 

Mechanism and efficacy: Cutting balloon blades creates controlled microincisions in calcified 

plaques, which helps reduce resistance to balloon expansion and allows for more effective 

lesion dilation. This is particularly beneficial in cases where calcification is severe and 

circumferential, as conventional balloons may fail to achieve adequate expansion, leading to 

suboptimal outcomes such as stent underexpansion and an increased risk of restenosis and 

thrombosis [168]. FEA has shown that the effectiveness of cutting balloons is significantly 

influenced by the balloon-to-diameter ratio and the number of blades facing the calcified lesion. 

For example, models with two blades facing the calcification generate greater principal stresses 

in the calcified plaque, facilitating better expansion even with undersized balloons. This 

approach also reduces the stress on the adjacent arterial wall, thereby minimizing the risk of 

vessel dissection and perforation [169]. 

Clinical Outcomes: Clinical studies have demonstrated that cutting balloon angioplasty can be 

a safe and effective method for treating heavily calcified lesions. For example, the use of scoring 

balloons, which operate on a similar principle, has shown promising results in terms of 

procedural success and long-term patency. However, the benefits of cutting balloons over 

conventional angioplasty techniques, such as POBA or DCB angioplasty, are still being 

evaluated [170]. In a study comparing the Wolverine™ cutting balloon with a noncompliant 

balloon catheter, the cutting balloon achieved higher dilation success rates at lower pressures. 

This was attributed to the increased stresses generated by the cut blades, which effectively 

fractured the calcified plaque. Another study highlighted that vessel preparation with cutting 

balloons before stent implantation could reduce the need for additional stenting and lower the 

incidence of flow-limiting dissections [171].  

Limitations and Future Directions: Despite these advantages, cutting balloon angioplasty has 

the same limitations. The technique requires precise positioning of the blades to maximize 
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efficacy and minimize complications. In addition, the long-term benefits of cutting balloons in 

reducing restenosis rates and improving overall limb outcomes in PAD patients need further 

investigation through large-scale, randomized controlled trials [172]. 

3.2.2 Comparative Insights into Balloon Angioplasty Technologies 

A comprehensive overview of the clinical outcomes and applications of various balloon 

angioplasty techniques is presented in Table 3.1, offering a systematic comparison of their 

effectiveness, patency rates, and safety across diverse clinical scenarios. For example, while 

CBA serves as a standard treatment for PAD, its high restenosis rates highlight the critical need 

for advanced alternatives. Both DCBs and DEBs demonstrate superior patency rates and safety 

profiles [173-175], establishing themselves as transformative solutions for complex vascular 

lesions. Moreover, specialized techniques such as HPBA and cutting balloon angioplasty are 

tailored for resistant or calcified lesions, providing targeted solutions for challenging cases. The 

comparative metrics of these technologies, visualized in Figure 3.2, reveal the superior 

performance of DCBs and DEBs in terms of patency, target lesion revascularization rates, and 

safety. Notably, DEBs further excel in cost-effectiveness, positioning them as pivotal 

innovations in PAD treatment.  

The decision-making framework in Figure 3.3 outlines critical considerations for intervention 

selection, emphasizing tailored approaches on the basis of stenosis type, lesion complexity, and 

patient-specific factors. This structured perspective underscores the importance of 

individualized care in optimizing clinical outcomes. Table 3.2 deepens this analysis by 

highlighting the nuanced clinical applications, efficacy metrics, and technological innovations 

across balloon angioplasty technologies. For example, DCBs are particularly effective for 

managing ISR and small vessel diseases, offering outcomes comparable to those of DESs while 

preserving vasomotor function. In contrast, DEBs excel in addressing severe PAD and heavily 

calcified lesions, reducing restenosis rates and procedural risks without the complications 

associated with permanent implants. In addition, advanced solutions such as Ultra-High-

Pressure (UHP) Balloons deliver precise therapeutic benefits in resistant lesions, and Cutting 

Balloons enable effective plaque modification for calcified vessels. The systematic comparison 

in Table 3.2 complements the graphical insights from Figure 3.2 and Figure 3.3, collectively 

reinforcing the indispensable role of innovations such as DCBs and DEBs in addressing the 

limitations of traditional techniques. These technologies not only advance angioplasty efficacy 

and safety but also exemplify the alignment of innovation with patient-centric care. As the data 
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reveal, careful selection of balloon technology, on the basis of lesion complexity and patient 

needs, is paramount in driving optimal clinical outcomes and cost efficiency. 

Table 3.1 Clinical outcomes of balloon angioplasty. 

Technique Effectiveness Patency Rates Safety 

Conventional 

Balloon 

Angioplasty (CBA 

/ POBA) 

Effective in short-term; 

limited by vessel recoil 

and restenosis; does not 

significantly reduce 

revascularization or 

improve clinical outcomes 

12-month: 52.4% 

[149] 

2-year: 62.7% 

[151] 

Generally safe; minimal 

procedural complications, 

but high restenosis and 

TLR rates  

Drug-Coated 

Balloon (DCB) 

Superior to POBA in 

reducing restenosis and 

TLR; improves vessel 

patency; supported by 

multiple RCTs (e.g., 

IN.PACT SFA, EffPac) 

12-month: 82.2% 

[149] 

2-year: 90.2% 

[151];  

24-month: 78.9% 

vs. 50.1% (DCB vs. 

POBA) [152] 

Generally safe; concerns 

raised about higher long-

term mortality, but not 

consistently supported  

Drug-Eluting 

Balloon (DEB) 

Similar to DCB; effective 

in femoropopliteal and 

infrapopliteal arteries; 

superior to POBA in long-

term outcomes (e.g., 

PACUBA, IN.PACT SFA) 

Up to 5-year 

patency 

significantly better 

than POBA [156, 

157] 

Safe; no significant 

increase in amputation or 

mortality; considered 

cost-effective  

High-Pressure 

Balloon 

Angioplasty 

(HPBA) 

Highly effective in 

calcified/resistant lesions; 

high technical success rate 

(~95.7%) in complex 

infrapopliteal lesions 

Long-term limb 

salvage and wound 

healing outcomes 

favorable [165, 

166] 

Generally safe; dissection 

and recoil risks mitigated 

with technique (e.g., long 

balloons, prolonged 

inflation) 

Cutting Balloon 

Angioplasty 

Effective in fibrotic and 

calcified plaques; micro-

incisions improve dilation; 

facilitates optimal stent 

expansion 

Higher dilation 

success at lower 

pressures; 

improved outcomes 

in specific lesion 

types [172] 

Requires precision; 

reduced vessel stress and 

dissection risk when used 

correctly; long-term 

benefit still under study 
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Table 3.2 Comparative Overview of Balloon Angioplasty Technologies – Clinical 

Applications, Efficacy Metrics, Advantages, Limitations, and Technological Innovations. 

Refs. 
Balloon 

Technology 

Clinical 

Applications 
Limitations 

Technological 

Innovations 

[157] 

DEB In-Stent Restenosis 

(ISR) in 

femoropopliteal 

arteries 

Higher upfront costs; 

paclitaxel-associated risks 

Paclitaxel-coated 

balloons with innovative 

coatings 

[174] 

DEB Complex ISR, severe 

PAD 

Limited evidence for long-

term durability in ISR and 

calcified lesions 

Biodegradable and 

crystalline drug delivery 

matrices 

[169] 

Cutting 

Balloons 

Calcified coronary 

lesions, moderate 

stenosis 

Requires precise blade 

positioning; high technical 

expertise needed 

Finite element analysis 

for optimization; 

undersized balloons for 

reduced risks 

[175] 

DCB Unprotected left main 

(LMS) coronary 

disease, bifurcation 

lesions 

Limited efficacy for complex 

bifurcation lesions (Medina 

1,1,1: proximal main vessel, 

distal main vessel, and side 

branch all involved); may 

require provisional DES in 

some cases 

OCT-guided intervention 

(Optical Coherence 

Tomography); advanced 

delivery systems 

[138] 

DCB ISR, small vessel 

disease, de novo 

lesions, bifurcation, 

calcified lesions 

Limited data for calcified and 

diffuse long lesions; technical 

challenges in drug transfer 

Paclitaxel and sirolimus 

coatings; 

nanotechnology-based 

delivery systems 

[165] 

UHP Pulmonary artery 

stenosis in children 

with congenital heart 

defects (CHD) 

Higher restenosis rates 

compared to stents; limited 

long-term data 

Cross-matrix woven 

ultrahigh molecular 

weight polyethylene for 

durability 

[173] 

DEB Coronary artery 

lesions, ISR, PAD 

Cytotoxicity of paclitaxel; 

limited data for long-term 

safety 

Nano-needle designs; 

micropatterned coatings 

for efficiency 
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3.3 Computational methods and applications 

Computational methods have fundamentally enhanced DEB technology for PADs by offering 

precise insights into drug release, device‒tissue interactions, and patient-specific responses 

[176]. Core techniques, such as computational fluid dynamics (CFD) and FEA, model drug 

transport and structural dynamics to ensure optimal flow dynamics and mechanical stability, 

which are critical for drug efficacy under physiological conditions [177]. ML and AI contribute 

predictive power, enabling personalized treatment approaches by optimizing parameters such 

as dosage and coating properties [178]. At the molecular scale, MD simulations reveal essential 

drug interactions, whereas Monte Carlo (MC) and density functional theory (DFT) methods 

predict release kinetics and stability with probabilistic and molecular-level precision. Advanced 

fluid‒structure interaction (FSI) models integrate CFD and FEA to simulate blood flow impacts 

 

Figure 3.2 Decision-Making Process for Selecting Balloon Angioplasty Techniques Based 

on Stenosis Type [173-175]. 

 

 

Figure 3.3 Comparative Distribution of Clinical Metrics for Conventional Balloons, 

Drug-Coated Balloons (DCBs), and Drug-Eluting Balloons (DEBs) [173-175]. 
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on device stability, whereas patient-specific modeling and statistical optimization refine these 

models to reflect anatomical variability [179]. Together, these computational advancements are 

pivotal in developing DEBs with superior, patient-tailored efficacy, marking significant 

progress toward personalized PAD treatment. 

3.3.1 Computational fluid dynamics (CFD) 

Currently, CFD is a pivotal tool for simulating blood flow and drug delivery dynamics under 

conditions such as PAD [180]. Using finite volume analysis, CFD solves fluid dynamics 

equations, including the Navier‒Stokes equations, and models drug transport through 

convection‒diffusion‒reaction (CDR) equations. The CFD process involves segmenting 

medical imaging data to create patient-specific in-silico arterial models, meshing the geometry, 

applying boundary conditions, and iteratively solving these equations to generate precise 

pressure and velocity profiles. This patient-specific approach allows CFD to simulate 

interventions such as balloon angioplasty or stent deployment, providing insights into drug 

interactions with vascular walls and facilitating dosage optimization. 

In CFD analyses for incompressible flows, the Navier‒Stokes and continuity equations govern 

mass and momentum conservation [181]: 

𝜕𝜌/𝜕𝑡 +  𝛻 ⋅ (𝜌 ∗ 𝑢)  =  0, (3.1) 

𝜌(𝜕𝑢/𝜕𝑡 +  𝑢 ⋅ 𝛻𝑢)  =  −𝛻𝑝 +  𝜇𝛻2𝑢 +  𝜌𝑔, (3.2) 

where 𝜌 is the fluid density, ∇ is the divergence operator, 𝑢 is the velocity vector, 𝑝 denotes the 

pressure, 𝜇 is the dynamic viscosity, and 𝑔 represents the external forces [182]. Drug transport 

dynamics are modeled using the following CDR equation: 

𝜕𝐶

𝜕𝑡
+  𝛻 ⋅ (𝑢 ∗ 𝐶)  =  𝐷𝛻2𝐶 + 𝑅(𝐶), (3.3) 

where 𝐶 is the drug concentration, 𝑢 represents convection, 𝐷 is the diffusion coefficient, and 

𝑅(𝐶) accounts for biochemical reactions within the arterial wall. 

Boundary conditions in CFD are crucial for accurate modeling of fluid behavior, particularly in 

simulating drug diffusion in biological environments. These conditions, derived from 

experimental or patient-specific data, ensure physiological realism. The CFD modeling process 
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includes acquiring anatomical data, performing digital segmentation, meshing, applying 

boundary conditions, running simulations, extracting data, and validating results against clinical 

benchmarks [183]. CFD provides high-resolution insights into hemodynamic factors such as 

wall shear stress (WSS) and time-averaged WSS (TAWSS), aiding in optimizing drug-eluting 

devices and supporting noninvasive testing for therapy planning and device enhancement. This 

technique is invaluable for evaluating localized drug delivery, improving drug efficiency, and 

minimizing side effects. 

Recent advancements in CFD have refined the design of stent- and balloon-based DDSs, 

although clinical adoption remains limited by model simplifications and computational 

demands. Notably, Rikhtegar et al. [184] explored the effects of flow on drug retention in 

coronary arteries but were constrained by biological variability, and Tzafriri et al. [185] 

analyzed coating micromorphology but lacked long-term tissue healing data. More recent 

works, such as those of Totorean et al. and Jain et al. [186, 187], introduced patient-specific 

data and models focused on balloon drug delivery, although computational demands and 

simplified wall models have limited their applicability. Black et al. and Xu et al. [188, 189] 

enhanced hemodynamic simulations with 4D flow-MRI data and angiography-based models, 

respectively, although their generalizability was affected by sample size and boundary 

conditions. These studies confirm the critical role of CFD in drug delivery optimization while 

highlighting the need for advanced models and validation to increase clinical utility. 

3.3.2  Structural Analysis 

Structural analysis, grounded in the FEA method, plays a critical role in understanding the 

mechanical behavior of DDSs, particularly DCBs and stents. FEA discretizes both the device 

and the surrounding tissue into smaller elements, enabling an elementwise analysis that predicts 

the overall structural response under applied mechanical forces, including stresses and strains. 

This method is essential for optimizing device design, ensuring mechanical durability, and 

assessing how interactions with the arterial wall influence drug release dynamics. The FEA 

process comprises meshing, application of boundary conditions, and assignment of material 

properties to each element, allowing researchers to iteratively solve governing equations for 

stress, strain, and deformation, ensuring both structural integrity and efficient drug delivery 

[190]. For anisotropic materials, such as vascular tissues, the stress‒strain relationship is often 

represented in tensor form to capture directional variations in material properties [191]: 
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𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙, (3.4) 

where 𝜎𝑖𝑗 and 𝜖𝑘𝑙 are the stress and strain tensors, respectively, and 𝐶𝑖𝑗𝑘𝑙 is the fourth-order 

elasticity tensor. This approach is necessary to model the complex, anisotropic behavior of 

arterial walls. In addition, for hyperelastic materials that undergo large deformations, as 

observed in vascular tissues, strain energy density functions, such as the Mooney‒Rivlin model, 

are used to represent material behavior [192]: 

𝑊 = 𝐶1(𝐼1 − 3) + 𝐶2(𝐼2 − 3), (3.5) 

where 𝐶1 and 𝐶2 are material constants and 𝐼1 and 𝐼2 are the first and second invariants of the 

Cauchy–Green strain tensor, respectively. FEA also incorporates contact mechanics to simulate 

the interface behavior between the device and arterial wall, with stress determined by Hertzian 

contact mechanics [193]: 

𝜎𝑐 =
3𝐹

2𝜋𝑎2
, (3.6) 

where 𝜎𝑐 is the contact stress, 𝐹 is the applied force, and 𝑎 is the contact radius. This interaction 

is crucial for understanding localized stresses at the arterial interface, which can impact drug 

release efficacy and the tissue response. The force‒displacement relationship is formulated 

through a matrix equation [194]: 

𝐾 ⋅ 𝑢 = 𝐹, (3.7) 

where 𝐾 represents the stiffness matrix, 𝑢 is the displacement vector, and 𝐹 is the force vector. 

This equation is central to determining the structural response of drug delivery devices under 

physiological conditions. 

Boundary conditions are essential in accurately modeling device response under physiological 

loads, such as blood pressure on stents, where fixed supports and applied forces simulate 

realistic pressures. Initial conditions in drug delivery devices capture preexisting stress or strain 

from manufacturing processes, such as stent crimping, to increase model accuracy [195]. FEA 

model construction includes definitions of the geometry, meshing, material property 
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assignment, and application of boundary and initial conditions, followed by simulations and 

post-processing for data extraction and validation against clinical benchmarks [190]. 

In PAD treatment, FEA provides high-resolution simulations of stent‒artery interactions, 

optimizing drug release while minimizing restenosis risk. These findings support accurate 

localized drug delivery analysis, ultimately improving therapeutic outcomes and informing 

next-generation DDS design with applications in personalized cardiovascular care [196]. 

Despite its extensive use in optimizing DDSs, FEA's clinical applicability faces limitations. 

Studies by Mandal et al. [197, 198] demonstrated insights into tissue heterogeneity and drug 

retention, but empirical dependencies reduced generalizability, emphasizing the need for further 

validation. Escuer et al. and McQueen et al. [199, 200] advanced the understanding of 

mechanical deformation and drug effects but used idealized models, limiting their physiological 

accuracy. Liang et al. and Psarras et al. [201, 202] examined device resilience and failure risk, 

revealing progress in the scope of FEA; however, reliance on simplified geometries has 

restricted real-world application. Recent work by Shazly et al. and Kim et al. [203, 204] 

explored coating microstructures and novel stent geometries, revealing improvements in drug 

delivery and mechanical performance, although controlled conditions necessitate further in-vivo 

validation for clinical relevance. These studies affirm FEA’s potential in DDS refinement while 

highlighting the need for validated, physiologically relevant models to advance clinical impact. 

3.3.3 Fluid‒structure interaction (FSI) analysis 

FSI analysis combines CFD and FEA to simulate the interactions between blood flow and the 

structural elements of drug delivery devices, such as stents or balloons, providing a holistic 

view of drug delivery dynamics and device stability under physiological conditions [205]. The 

process begins with CFD to calculate fluid parameters (velocity, pressure, and shear stress), 

which are then integrated with FEA to assess the structural response, enabling precise modeling 

of drug kinetics. FSI simulations require boundary and interface conditions to maintain the 

continuity of stress and velocity at the device‒blood interface, with initial conditions capturing 

the physiological state of both fluid and structural elements [206]. 

The development of FSI models involves various stages, including clinical imaging (CT, MRI) 

for anatomy capture, segmentation, digital reconstruction, and discretization focused on fluid‒

structure interfaces [207]. FSI applications have yielded valuable insights into vascular 

medicine; Lee et al. [208] reported nonuniform drug distribution due to stent-induced 

deformation, highlighting the need for design optimization, whereas McKittrick et al. [209] 
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noted limitations in simplified transport parameters for sirolimus-eluting stents. Anbalakan et 

al. [210] proposed biphasic release for DCBs, although assumptions limited generalization. 

More recent studies have extended the application of FSI, such as that of Fadhil et al. [211], 

who examined the impact of smoking on blood viscosity, although idealized models have 

restricted their clinical relevance. Shahrulakmar et al. [212] advocated for complex, patient-

specific geometries to improve PAD hemodynamic modeling, whereas Khairulin et al. [213] 

explored multilayered artery models affecting stress‒strain responses. Collectively, these 

studies demonstrate the versatility of FSI in vascular simulations, with a continued emphasis on 

patient-specific validations to improve clinical applicability. 

3.3.4 Molecular dynamics (MD) 

MD simulations operate at the atomic scale, enabling precise modeling of interactions between 

atoms and molecules within DDSs. These simulations are pivotal for understanding drug 

binding, stability, and diffusion, offering insights essential for optimizing drug coatings, 

analyzing release mechanisms, and predicting formulation efficacy. MD is widely applied in 

DDS research and involves liposomes, micelles, and nanoparticles to examine complex 

interactions such as hydrophobic effects, van der Waals forces, electrostatics, and hydrogen 

bonding [214]. 

MD simulations utilize boundary conditions to define the simulation box, often employing 

periodic boundaries to simulate bulk environments. The initial particle conditions are based on 

experimental data or randomized within realistic ranges for accurate system representation 

[215]. The key equations in MD include Newton’s second law for particle motion: 

𝐹 = 𝑚 ⋅ 𝑎, (3.8) 

where 𝐹 is the force, 𝑚 is the mass, and 𝑎 is the acceleration. 

3.3.5 Monte Carlo (MC) 

MC simulations are a probabilistic technique used to model complex drug release behaviors, 

particularly where random interactions, such as diffusion through heterogeneous tissue, are 

significant. MC simulations predict how drug molecules disperse through tissues by defining 

the drug and environment as probabilistic events and running numerous iterations to observe 

possible outcomes [216]. This approach is invaluable for understanding drug diffusion and 

absorption patterns, providing insights into release kinetics, bioavailability, and reaction rates. 
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In addition, MC simulations can be used to evaluate drug distribution patterns, uptake 

efficiency, and potential interactions with biological environments, making them highly 

versatile for analyzing various aspects of DDSs [217]. 

The MC simulation process involves (a) defining the problem and identifying system inputs and 

outputs, (b) generating random input values on the basis of probability distributions, (c) running 

simulations with these values to calculate outputs, (d) repeating simulations to create a statistical 

distribution of results, and (e) analyzing results to estimate system behavior probability 

distributions. This iterative process enables MC simulations to represent drug delivery stages 

from source release to tissue dispersion [216]. MC simulations account for molecular 

interactions with the environment and are dynamically adjusted on the basis of concentration 

gradients and tissue characteristics. 

3.3.6 Density functional theory (DFT) 

DFT is a quantum mechanical modeling approach used to study the electronic structure of atoms 

and molecules in drug delivery systems (DDSs). Examination of the electron density 

distribution provides detailed insights into drug‒receptor interactions, which are crucial for 

optimizing drug design, chemical stability, and binding affinity. DFT helps predict the binding 

affinity between drugs and receptors, optimize drug structure and stability, and enhance 

bioavailability and solubility—key factors in drug delivery. It also assists in designing drug 

delivery vehicles such as liposomes, dendrimers, and micelles, thereby reducing the need for 

empirical methods [218]. The Kohn–Sham equation [219], which is foundational to DFT 

calculations, is represented as: 

(−
ℎ2

2𝑚
∇2 + 𝑣𝑒𝑓𝑓(𝑟))𝜑𝑖(𝑟) = 𝜀𝑖𝜑𝑖(𝑟), (3.9) 

where ℎ is the reduced Planck constant, 𝑚 is the mass of the electron, ∇2 represents the 

Laplacian operator, 𝑣𝑒𝑓𝑓(𝑟) is the effective potential, 𝜑𝑖(𝑟) denotes the wave function of the 

𝑖 − 𝑡ℎ electron, and 𝜀𝑖 is the corresponding energy eigenvalue. The equation accounts for the 

kinetic energy of the electrons, as well as their interactions with the effective potential arising 

from electron‒electron interactions and external fields. 



 

59 

 

3.3.7 Machine Learning and Artificial Intelligence 

ML and AI have become integral in drug delivery research, enhancing drug release optimization 

and prediction accuracy for complex therapeutic outcomes [220]. By processing large datasets, 

ML and AI identify key parameters for precise drug targeting, enabling real-time adjustments 

and personalized treatment plans [221]. These methods simulate intricate drug release 

scenarios, optimizing variables such as coating thickness, release rates, and patient-specific 

factors, thus complementing traditional computational methods such as CFD and FEA. This 

fusion of data-driven models with conventional computational techniques yields a more flexible 

and accurate approach in drug delivery research. 

In ML model development for DDSs, training, validation, and test conditions are critical. The 

data are split into training, validation, and test sets: the training set adjusts the model parameters, 

the validation set fine-tunes hyperparameters and mitigates overfitting, and the test set evaluates 

model efficacy. These datasets often include patient-specific data, drug release patterns, and 

experimental outcomes. Initial conditions for ML models involve initial weights, typically 

initialized randomly or with techniques such as Xavier initialization to ensure effective training 

[222]. Loss functions, which are essential for AI model optimization, commonly use the mean 

squared error (MSE) for regression and cross entropy for classification: 

(𝑀𝑆𝐸) = (
1

𝑛
) ⋅ ∑𝑦𝑖 − 𝑦̂𝑖

𝑛

𝑖=1

, (3.10) 

(𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦) = −∑𝑦𝑖 ,

𝑦𝑖

𝑖=1

 (3.11) 

where 𝑦𝑖 represents the true value for the 𝑖 − 𝑡ℎ data point, 𝑦̂𝑖 is the predicted value for the 𝑖 −

𝑡ℎ data point, and 𝑛 denotes the total number of data points. In the case of classification, cross-

entropy loss measures the difference between the predicted probabilities 𝑦̂𝑖 and the actual class 

labels 𝑦𝑖, providing a measure of prediction accuracy. 

AI and ML are transforming DDSs by enabling sophisticated analysis of biological and 

chemical interactions, optimizing drug release, and supporting personalized treatment. AI-

driven DDSs utilize sensor data for intelligent dosing adjustments, refining parameters such as 

dosage and timing to mitigate adverse effects. AI has also accelerated the 4D printing of 

responsive materials that adapt to environmental changes, offering innovative applications in 
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DDSs. In addition, ML enhances drug discovery through virtual screening, expedites the 

identification of drug candidates and refines molecular targets using DL tools such as the 

automated hit identification and optimization tool (A-HIOT). Furthermore, ML predicts critical 

physicochemical properties, including solubility and permeability, reducing the number of 

experimental trials and guiding drug stability. These predictive capabilities extend to 

pharmacokinetics, enabling tailored DDSs that optimize efficacy while minimizing side effects, 

particularly in personalized medicine. 

MLs and AI have had substantial impacts on drug discovery and DDS development. Gupta et 

al. [223] used ML and DL in virtual screening, peptide synthesis, and toxicity prediction, 

although they highlighted computational limits and the need for experimental integration. Wang 

et al. [224] demonstrated AI’s potential in computational pharmaceutics, applying neural 

networks for formulation enhancement but encountering data scarcity challenges. Castro et al. 

[225] employed ML to predict 3D printing parameters for DDSs, achieving accuracy yet 

requiring standardized datasets. Staszak et al. [226] reviewed AI in drug design, demonstrating 

the ability of neural networks to predict structure‒activity relationships, but noted the 

importance of comprehensive datasets. Patel and Shah [227] reported AI-driven gains in drug 

discovery efficiency, although data diversity remains a constraint. Vora et al. [178] explored AI 

in drug interaction prediction, with further experimental validation suggested. Sarkar et al. 

[228] applied DL to protein structure analysis, calling for more validation to manage biological 

complexity. Greenberg et al. [229] highlighted AI's role in extracellular vesicle (EV)-based 

drug targeting, pointing to the need for EV standardization to manage heterogeneity. Visan et 

al. [230] emphasized AI in drug repurposing and target identification, focusing on data 

integration for cost efficiency but noting clinical validation requirements. Hamilton and 

Kingston [231] discussed AI in nanoparticle design for targeted delivery, stressing in-vivo 

validation for computational insights. Xin et al. [232] highlighted the potential of AI in cosmetic 

formulations and reported that ingredient optimization is beneficial, although further validation 

for multicomponent systems is needed. 

Advancing DEB technologies demands a multidisciplinary approach that integrates 

macroscopic modeling of vascular mechanics with microscopic analyses of drug dynamics. 

Computational methods such as CFD and FEA enable detailed insights into blood flow patterns, 

drug diffusion, and arterial wall interactions, whereas MD, DFT, and MC simulations focus on 

molecular-scale drug behavior, structural optimization, and probabilistic variations in drug 

release. These methodologies, coupled with multiscale analysis, provide a comprehensive 
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framework for capturing the complexities of DEB performance in both physiological and 

clinical settings.  

The incorporation of ML and AI further enhances this framework by enabling real-time 

predictions, optimizing drug delivery strategies, and tailoring treatments to individual patient 

profiles. As illustrated in Figure 3.4, these diverse modeling techniques synergistically advance 

the design, optimization, and clinical implementation of DEBs. Key limitations in current 

approaches include challenges in replicating complex in-vivo environments, capturing patient-

specific variability, and addressing the dynamic nature of arterial wall responses. Overcoming 

these hurdles is essential for enhancing accuracy and clinical applicability. The next generation 

of DEBs aims to integrate AI-driven predictive modeling, real-time patient data, and dynamic 

boundary conditions, ensuring tailored and efficient interventions. This integrated approach 

underscores the transformative potential of computational tools in enhancing treatment efficacy 

and advancing precision medicine in PAD. 

3.4 Discussion 

3.4.1 Contextualizing Computational Modeling in DEBs 

Recent advancements in computational modeling have significantly enhanced our 

understanding of DCBs for targeted vascular treatments, particularly in addressing peripheral 

and CADs. By moving from traditional 2D models to more sophisticated 3D and multilayered 

frameworks [233], these simulations now provide greater precision in analyzing drug diffusion, 

binding kinetics, and mechanical interactions within complex vascular geometries. For 

 

Figure 3.4 Computational Modeling Techniques for Optimizing Drug-Eluting Balloons in 

Peripheral Artery Disease [188, 211, 212]. 
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example, 3D mass transport models and CDR equations capture the nuances of drug delivery 

across calcified and healthy tissue layers within superficial femoral arteries [186], simulating 

physiological conditions more accurately and predicting therapeutic outcomes more reliably.  

In addition, patient-specific CFD models, calibrated with 4D flow-MRI data, offer a refined 

approach to capturing intricate hemodynamics in the aorta and coronary arteries [188, 212]. 

These models adapt boundary conditions on the basis of individual vascular profiles, thus 

reflecting patient-specific flow patterns and providing a basis for personalized treatment 

planning. Furthermore, innovations in FEA and FSI models help assess mechanical stresses and 

strain distributions within arterial walls, as seen in applications exploring stent performance and 

angioplasty treatments [211, 213]. Such analyses extend to understanding endothelial dynamic 

strain (EDS) metrics, which gauge the immediate impact of DCB inflation on arterial integrity, 

further advancing the safety and efficacy of DCB therapies. As summarized in Table 3.3, 

various studies have adopted computational modeling approaches to address different aspects 

of DCB performance, from stent simulations to drug release models and validation techniques. 

The diversity of methodologies underscores the versatility of computational tools in enhancing 

our understanding of DCB dynamics. 

MD simulations and AI-driven predictive modeling also play critical roles in optimizing the 

drug delivery performance of DCBs. These methods enable the selection of materials, such as 

hydrogels and polymers, that offer controlled release properties suitable for complex 

environments [234]. Simulations evaluating nanoparticle and metal‒organic framework (MOF) 

behaviors highlight their ability to target and adhere to plaque-laden regions within arteries 

[235]. Functionalized carbon nanotubes and MOF-based carriers, which are modeled for their 

interaction with vascular tissues, have the potential to improve drug retention and localization, 

increasing the efficiency of DCBs in achieving site-specific drug delivery [236]. The integration 

of AI and ML algorithms into computational modeling offers further optimization potential by 

rapidly identifying ideal release profiles, material combinations, and configurations tailored to 

the targeted disease area [231, 232]. These innovations in computational and AI-based 

approaches underscore the evolving role of in-silico methodologies in advancing DCB 

technologies, providing a comprehensive and robust framework for improving patient outcomes 

in vascular treatments. 
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Table 3.3 Comprehensive Analysis of Computational Modeling Approaches for Drug-Coated 

Balloons in the Treatment of Peripheral Artery Disease. 

Refs. Stent/Balloon Simulation 
Drug Release 

Model 
Validation 

[233] 

DCB for superficial femoral 

artery with calcified plaque 

Diffusion-reaction 

equation for 

paclitaxel 

Validated through comparison with 

clinical drug retention studies and 

coating retention analysis 

[196] 
FEA of atherosclerotic 

vessels 

Not applicable Validated with ex-vivo pressure-

inflation testing on human arteries  

[211] 

FSI in a 3D artery under 

varied blood viscosities 

Not applicable Results compared for different viscosity 

effects on velocity, pressure, and stress 

on artery walls 

[212] 

Hemodynamic simulation in 

PAD 

Not applicable Reviewed existing studies with 

validation based on WSS and flow 

patterns 

[188] 

Focus on aorta boundary 

condition calibration, not 

specific to stents or balloons 

Not applicable Validated by comparing CFD results 

with clinical measurements and 

literature 

[189] 
DCB for de novo coronary 

lesions 

Angiography-based 

EDS 

Validated against clinical angiography 

data 

[197] 

DCB angioplasty for in-stent 

restenosis and PAD 

Convection-

diffusion-reaction 

equation for 

sirolimus release 

Compared with existing models for 

drug concentration and retention in 

varied plaque compositions 

[204] 

DCB with hydrophilic 

excipients for PAD 

Computational and 

ex-vivo model for 

paclitaxel transfer 

Ex-vivo validation using porcine 

femoral arteries with SEM and LC‒MS 

quantification 

[203] 

Novel PLLA bioresorbable 

stents with varied 

geometries 

Not applicable Validated by in-vitro mechanical testing 

(radial strength, and flexibility) 

[213] 

Stenting performance in 

multilayered artery with 

CoCr stents 

Not applicable Validated by comparing WSS values in 

different stent designs with clinical data 

[202] 

FEA of angioplasty with 

stent and plaque models 

Not applicable Comparison with literature-based 

mechanical limits and interlaminar 

failure criteria 

3.4.2 Implications for Clinical Translation and Practice 

The clinical translation of computational modeling for DCBs emphasizes critical optimization 

of treatment parameters, including inflation duration and vessel wall composition, to increase 

drug retention and efficacy [233]. Studies indicate that variations in arterial wall properties, 

particularly calcification levels, markedly affect drug uptake, with reduced penetration observed 

in calcified regions [186]. These findings support tailored DCB applications in PADs to achieve 

optimal drug delivery. Models also reveal that parameters such as diffusion coefficients, binding 
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rates, and boundary conditions can refine drug dosage and application, thereby enhancing the 

safety and personalization of DCB therapy. 

Patient-specific CFD models provide precise hemodynamic insights, helping to identify high-

risk regions, such as aneurysm-prone sites in the aorta. By enabling the visualization of flow 

patterns and the WSS, these models can aid clinicians in crafting individualized treatment plans 

on the basis of specific anatomical and flow characteristics [213]. Similarly, EDS evaluations 

indicate that vessel size influences DCB efficacy, with smaller vessels showing greater 

reductions in posttreatment strain, a crucial factor in planning DCB interventions for optimized 

outcomes [212]. 

In CAD, advances in DCB and DES technologies, including polymer-free coatings and 

bioresorbable scaffolds, offer the potential to mitigate restenosis and thrombosis, thus 

addressing long-term safety. Computational models underscore the importance of imaging data 

in DCB planning, as plaque characteristics, including dense calcium and necrotic cores, may 

hinder drug delivery. This insight promotes a more personalized approach, allowing clinicians 

to adapt interventions to each patient's vascular profile [211]. 

In addition to vascular therapy, computational insights have driven advancements in material 

selection and scaffold design across fields such as bone tissue engineering, dentistry, and 

oncology. Specific stent geometries and surface modifications have shown efficacy in 

optimizing drug retention and release, ensuring controlled delivery in high-stress environments 

and enhancing implant durability. Models also highlight the impact of the DCB coating 

microstructure on drug retention, with findings indicating that optimized coating aggregation 

improves PTX transfer [204], thereby promoting targeted and efficient drug delivery in PADs. 

The integration of AI further refines DCB precision, enabling rapid optimization of drug 

formulations, hydrogels, and surfactants for adaptive, patient-specific release profiles. AI 

models effectively predict and tailor release kinetics and material interactions, reducing 

experimental costs and facilitating more targeted drug delivery [231, 232]. As AI-driven 

methodologies evolve, they hold significant potential to enhance DCB design and advance 

personalized medicine, creating DCBs that are responsive to individual patient conditions and 

therapeutic requirements. 

3.4.3 Challenges and Limitations in Current Computational Techniques 

While computational modeling for DCBs has advanced significantly, current techniques still 

face notable limitations, primarily due to the need for idealized conditions that do not fully 
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replicate the complexity of in-vivo environments. Many models rely on simplified geometries 

and static or uniform boundary conditions, omitting critical biological factors such as dynamic 

blood flow, tissue interactions, and patient-specific anatomical variations [189]. For example, 

models using idealized two-material wall compositions or constant diffusivity assumptions may 

not account for the layered structure and specific morphologies of arterial walls, thus impacting 

their predictive accuracy [202]. 

High computational demands further constrain model realism, especially when incorporating 

detailed anatomical or patient-specific data. To manage these demands, models frequently 

assume rigid arterial walls or laminar blood flow, sacrificing accurate representation of complex 

physiological responses and interactions in dynamic vascular settings [176, 203]. Such 

simplifications, though necessary, limit the ability of the models to capture the full mechanical 

and physiological complexity of DCBs in-vivo. 

Moreover, MD, FEA, and DFT simulations, while powerful at the molecular level, are often 

constrained by idealized conditions. Factors such as multilayer plaque heterogeneity, non-

Newtonian blood properties [235, 237], and long-term material degradation remain 

underexplored, limiting the ability of these models to predict drug performance over extended 

periods. In addition, MD and FEA simulations often focus on short-term effects, overlooking 

the long-term stability critical for sustained clinical outcomes. 

AI and ML offer potential for refining DCB design; however, their effectiveness relies heavily 

on high-quality, comprehensive datasets. Limited data availability and the challenges of 

generalizing across diverse biological environments restrict these models. The complexity of 

biological interactions demands extensive experimental validation for reliable AI predictions, 

as factors such as tissue variability and environmental influences introduce complexities that 

are difficult to model accurately in-silico [231, 232]. These challenges, ranging from 

oversimplified geometries and computational limitations to the constraints of current molecular 

and AI models, highlight the need for integrating multiscale models and combining 

computational approaches with experimental validation. Progress in capturing patient-specific 

variations and adapting to the dynamic in-vivo environment is essential to improve DCB 

modeling reliability and clinical applicability. 

3.4.4 Future Directions for DEB Research 

The future of DEB research will focus on advancing computational models to capture patient-

specific characteristics and replicate complex physiological environments with greater 
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precision. By incorporating real-time clinical imaging data and patient-specific geometries 

alongside multilayered arterial models [202, 204], these simulations can account for individual 

anatomy, plaque heterogeneity, and structural dynamics. Multiscale modeling techniques, 

covering cellular to systemic responses, could deepen the understanding of DCB interactions 

across arterial layers, thus enhancing personalized treatment options for PAD and other 

conditions. Future research will also benefit from dynamic boundary conditions that reflect 

blood pulsatility, arterial compliance, and varied plaque compositions, allowing for more 

accurate predictions of drug retention, release, and uptake. Larger, diverse patient cohorts and 

advanced calibration algorithms are needed to better capture transient hemodynamic changes, 

extending the applicability of DCB simulations to a wide range of clinical scenarios [189]. 

Further research into biodegradable and bioresorbable materials, polymer-free coatings, and 

ultrathin struts could reduce adverse effects such as restenosis and inflammation [208]. 

Computational models can play a crucial role in simulating drug diffusion and material 

degradation, enabling long-term predictions of vascular responses tailored to individual needs. 

Continued examination of coating microstructures, balloon designs, and drug formulations will 

refine DCB technology, promoting more targeted drug delivery, especially in challenging cases 

with calcified or stenotic vessels. The incorporation of realistic flow conditions, such as non-

Newtonian blood properties and pulsatile flow [211, 213], along with dynamic drug release 

profiles and tissue interactions, increases model accuracy. Integrating data on arterial elasticity, 

plaque morphology, and biochemical markers will validate and strengthen these models. The 

combination of computational predictions with experimental in-vitro and in-vivo validation will 

support the design of next-generation DCBs for tailored therapies [235]. 

AI and ML offer promising pathways for accelerating DCB development [231, 232]. Building 

extensive datasets of patient-specific variables and drug‒material interactions can improve 

model accuracy and adaptability. Integrating AI-driven predictive models with real-time 

clinical data will allow DCBs to become adaptive systems that respond to specific patient 

variables, such as blood flow and tissue composition. This AI-driven approach can optimize 

DCB efficacy, minimize side effects, and significantly advance the role of DCBs in personalized 

medicine. 

3.5 Conclusion 

Advanced computational modeling and data-driven techniques are revolutionizing DEB 

applications in vascular interventions, enabling precision in patient-specific treatment 
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approaches. With the integration of multilayer arterial models and adaptive boundary 

conditions, simulations now capture unique plaque characteristics, drug transport dynamics, and 

mechanical responses in real time, thus supporting a more personalized strategy for PAD 

therapy. Emerging methods such as fluid‒structure interaction (FSI), MD, and ML have 

improved our understanding of drug release mechanisms and optimized DEB performance 

tailored to individual patient profiles. However, current models still struggle to fully replicate 

in-vivo complexities, such as dynamic blood flow, tissue compliance, and long-term drug 

stability. Advancements in multiscale modeling and the incorporation of real-world clinical data 

will be pivotal to enhancing the clinical relevance of DEB technology. AI further facilitates this 

progress, enabling adaptive DEB systems that modify drug release on the basis of specific 

patient factors, marking a step toward truly personalized vascular treatment. As DEB 

technology evolves, rigorous in-vitro and in-vivo validation will be essential to ensure clinical 

precision and efficacy. This combination of computational innovation, AI, and clinical 

application represents a new paradigm in DEB research, promising for increasing therapeutic 

precision and improving outcomes for PAD patients and related vascular conditions. 
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Chapter 4: Advancing Progressive Web Applications for Medical Imaging 

Visualization 
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4.5. Qualitative and Quantitative Evaluation 

4.6. Discussion 

4.7. Contributions and Future Directions 

 

 

 

 

 

 

 

 

 

 

4.1 Introduction 

PWAs, particularly DICOM and MPR visualization, have emerged as transformative 

technologies in medical imaging. Traditional medical imaging solutions are typically restricted 

to high-performance desktop workstations, which limits accessibility and scalability. In 

contrast, PWAs provide a flexible, cross-platform solution that enhances the user experience 

through offline functionality, seamless updates, and improved performance [55]. Leveraging 

modern web technologies, PWAs enable efficient and accurate visualization of complex 

medical images, thus addressing the growing demand for remote diagnostic tools in healthcare. 

The modular design architecture of PWAs plays a crucial role in enhancing medical image 

visualization. By utilizing React.js [238] and Cornerstone.js [239], seamless DICOM image 
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processing is achieved with advanced user interface components and interactive functionalities. 

This integration facilitates intuitive manipulation of medical images, including zooming, 

panning, and measurement tools, which are critical for accurate clinical analysis. The use of 

advanced interpolation techniques such as bicubic and weighted bilinear interpolation 

significantly enhances volume reconstruction accuracy and visual fidelity, ensuring that precise 

multiplanar views are essential for diagnostic accuracy. 

Efficient data management is a cornerstone of PWA implementation in medical imaging. The 

use of Dexie.js for IndexedDB storage enables the efficient handling of large DICOM datasets 

directly within the browser [240], ensuring rapid image retrieval and offline access. This 

approach minimizes latency and enhances the user experience, particularly in clinical 

environments where quick access to medical images is critical. Cross-browser compatibility 

and responsive design are also integral to the architecture, enabling consistent performance 

across various platforms, including desktops, tablets, and mobile devices. Performance 

optimization is a key focus, with comprehensive evaluations conducted across multiple 

platforms and browsers, including Google Chrome, Firefox, Safari, and Microsoft Edge. The 

PWA demonstrates superior performance in loading times, volume rendering, and slice 

navigation, outperforming state-of-the-art platforms such as DicomViewer.net [241], Image-IN 

[242], and BlueLight [100]. Notably, Google Chrome exhibited the fastest performance across 

all the tested platforms, particularly for volume rendering tasks, whereas Firefox performed 

excellently in slice navigation. These findings highlight the importance of choosing the right 

browser for specific clinical tasks to optimize workflow efficiency. 

Advanced MPR algorithms are implemented to achieve high-resolution image reconstructions, 

particularly for sagittal and coronal views. By employing a combination of bicubic and 

weighted bilinear interpolation, the PWA enhances edge detail and visual fidelity. This 

approach effectively addresses the limitations of conventional linear interpolation methods used 

in existing platforms, thereby improving diagnostic capabilities for complex anatomical 

structures. The incorporation of PWAs in medical imaging also addresses critical challenges 

such as cross-platform compatibility, integration capabilities, speed, and scalability. By 

leveraging service workers for offline functionality and advanced caching strategies, 

uninterrupted access to medical images can be ensured, even in low-connectivity environments. 

This is particularly beneficial for remote healthcare settings and telemedicine applications. 

Moreover, the PWA architecture is designed to integrate seamlessly with existing PACSs [243], 
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enhancing interoperability and facilitating streamlined workflows for radiologists and 

healthcare professionals. 

The potential impact of PWAs on clinical practice extends beyond enhanced visualization. The 

ability to access high-resolution medical images on any device empowers healthcare providers 

with flexible diagnostic tools, reducing the dependency on specialized workstations. This 

contributes to improved patient care by enabling faster decision-making and facilitating 

collaborative consultations among medical teams across different locations. In addition, the 

scalability of PWAs allows for future integration with emerging technologies such as AI and 

ML, paving the way for advanced diagnostic analytics and predictive modeling in medical 

imaging. PWAs represent a significant advancement in medical imaging, particularly for 

DICOM and MPR visualization. Their modular architecture, efficient data management, 

advanced interpolation techniques, and cross-platform compatibility offer a comprehensive 

solution to the challenges faced by traditional desktop-based imaging systems. By delivering 

high-performance, accurate, and accessible medical image visualization, PWAs are poised to 

transform diagnostic workflows and enhance patient care in the digital era of healthcare. 

4.2 Objectives 

This chapter investigates the integration of DICOM and MPR visualization into web 

environments through PWAs, with the goal of overcoming current technology disparities and 

improving web-based medical imaging functionalities. By using the distinctive attributes of 

PWAs, including seamless offline access and improved performance, this chapter presents a 

holistic solution to address challenges such as cross-platform compatibility, integration 

capabilities, speed, and scalability. The ultimate aim was to benefit radiologists and the health 

care community, particularly in addressing issues related to PAD. The code of this work is 

available on GitHub [34]. 

4.3 Technical Framework and Methodology 

The architectural framework and design features of our DICOM and MPR web visualizations 

are presented in the following sections. 

4.3.1 Architectural Framework 

The architectural framework of the DICOM and MPR PWA was designed with modular 

components to provide a seamless user experience, enabling a smooth transition from data 

upload to visualization. Metadata and image information play pivotal roles in retrieving crucial 
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details such as transfer syntax, service-object pair classes and instances [244], pixel 

representations, planar configurations, viewer elements, and image loading. As shown in Figure 

4.1, the design encompasses several key modules that work together to facilitate efficient 

DICOM image handling and MPR. The DICOM image loading (step 1) module is responsible 

for parsing DICOM files via the Cornerstone library, which includes the dicomParser tool. This 

process extracts metadata and image data from DICOM files, storing them locally in Dexie.js 

to ensure that the images are prepared and ready for visualization and manipulation within the 

application. In contrast, the web integration (step 7) module focuses on integrating DICOM data 

with the broader web environment. This includes functionalities for uploading and downloading 

DICOM datasets, allowing users to interact with remote DICOM stores. Dexie.js manages the 

storage and retrieval of data during these interactions. The key distinction between steps 1 and 

7 lies in their scope—step 1 handles the initial parsing and local loading of DICOM images, 

whereas step 7 manages the integration of these images into a web-based workflow, 

encompassing data transfer operations between the client and server. The DICOM viewer (step 

2), tool integration (step 3), and MPR (step 4) modules further enhance the application by 

providing React.js components for the user interface, integrating Cornerstone tools for image 

manipulation, and implementing algorithms for orthogonal plane reconstructions, respectively. 

 

Figure 4.1 Pipeline Architecture of DICOM and Multiplanar Reconstruction Visualization 

as a Progressive Web Application. 
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Both frameworks, Cornerstone.js and React.js, improve performance but face limitations, 

particularly with complex state management and ensuring cross-platform compatibility. The 

Redux state (step 5) module is used for global state management, ensuring consistent state 

handling across the application. Additional features include metadata and measurements (step 

6), which manage the display of crucial image information and measurements, and PWA 

installation (step 9), which enables offline access and enhances performance. 

The DICOM web application integration functions play an instrumental role in establishing 

connectivity to the DICOM store, facilitating the search and loading of specific studies, and 

retrieving DICOM instances for detailed analysis. Leveraging the PWA approach, seamless 

DICOM stores connectivity; focused study examination; and web-based viewer controls for 

zooming, moving or panning, and resetting are ensured by the application. The functionality of 

reference lines and planes is tailored to create reference lines for aligning and comparing 

DICOM images within the MPR views [245]. This involves the construction of 3D lines and 

planes to represent spatial relationships, as well as the coordination of transformations for 

converting 3D perspectives into 2D images. DICOM viewer rendering within the PWA is 

achieved through the setting of DICOM image references, handling image clicks, identifying 

localizer images, and synchronizing DICOM slices [246, 247]. 

4.3.2 Multiplanar reconstruction algorithm 

In the MPR from CT DICOM images, the integration of bicubic interpolation and weighted 

bilinear interpolation plays a significant role in improving the accuracy and visual fidelity of 

the reconstructed volumes. Bicubic interpolation, which uses a smooth and differentiable 

interpolation function across a 4 × 4 grid, proves valuable in addressing edge cases and 

delivering high-quality reconstructions [248]. The overall interpolation process benefits from 

the straightforward cubic interpolation method, which contributes to computational efficiency 

while maintaining a satisfactory level of smoothness in the interpolated values [249]. In 

addition, a balance between simplicity and effectiveness is achieved through the application of 

weighted bilinear interpolation for nonedge pixels. This technique combines the weighted 

contributions of neighboring pixels, facilitating the generation of interpolated values, which are 

crucial in constructing detailed and coherent representations of volume from DICOM images. 

The integration of these interpolation methods enhances the robustness and accuracy of the 

MPR, ultimately improving the diagnostic capabilities of the reconstructed volumetric data in 

the field of peripheral arterial diagnosis. 
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4.3.2.1 Weighted Bilinear Interpolation for Nonedge Pixels 

Weighted bilinear interpolation is applied to non-edge pixels for the generation of interpolated 

planes between original planes in a volumetric dataset. Given an interpolation weight 𝑤 derived 

from the relative position of the target pixel within the interpolation interval, the value of an 

interpolated pixel 𝑃(𝑘) at position 𝑘 is calculated via a weighted average of its neighboring 

pixels in the original planes [250]. The interpolation considers the direct neighbor pixels along 

the same axis in both the current and the next interval planes. The weighting factors for the 

neighbors are adjusted to account for the distance from the interpolated position, emphasizing 

closer neighbors more significantly. For a non-edge pixel 𝑘 located at a position where 𝑘 − 1 >

0 and 𝑘 + 1 < length, the interpolated pixel value 𝑃(𝑘) is given as follows [251, 252]: 

𝑃(𝑘) = 𝑃𝑖(𝑘) + 𝑃𝑖+1(𝑘), (4.1) 

𝑃𝑖(𝑘) = (𝑉𝑖[𝑘] × (1 − 𝑤) × 0.5 + 

𝑉𝑖[𝑘 − 1] × (1 − 𝑤) × 0.25 + 

𝑉𝑖[𝑘 + 1] × (1 − 𝑤) × 0.25), 

(4.2) 

𝑃𝑖+1(𝑘) = (𝑉𝑖+1[𝑘] × 𝑤 × 0.5 + 

𝑉𝑖+1[𝑘 − 1] × 𝑤 × 0.25 + 

𝑉𝑖+1[𝑘 + 1] × 𝑤 × 0.25), 

(4.3) 

where 𝑉𝑖[𝑘] denotes the value of pixel 𝑘 in the original plane at interval 𝑖 and where 𝑉𝑖+1[𝑘] is 

the value of pixel 𝑘 in the next original plane at interval 𝑖 + 1. For edge cases, where 𝑘 − 1 < 0 

or 𝑘 + 1 ≥ in length, the interpolation simplifies the prioritization of available neighboring 

pixels, reducing the weighting factors to 0.75 for the pixel itself and 0.25 for the available 

neighbor, accordingly adjusted by the interpolation weight. 

4.3.2.2 Bicubic Interpolation 

Bicubic interpolation extends cubic interpolation to two dimensions, providing a smooth and 

continuous interpolation function. Given an 4 × 4 grid of data points 𝑃𝑖𝑗 and two interpolation 

parameters 𝑢 and 𝑣, the bicubic interpolation equation is as follows [248, 253]: 
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𝑃(𝑘, 𝑣) =  𝛴𝑖=0
3 𝛴𝑗=0

3 𝑎𝑖𝑗𝑢
𝑖𝑣𝑗 , (4.4) 

The coefficients 𝑎𝑖𝑗 are determined on the basis of the values of 𝑃𝑖𝑗 and their partial derivatives. 

Bicubic interpolation is commonly used for reconstructing detailed and high-resolution images 

from CT DICOM slices. These interpolation methods are fundamental in the reconstruction 

process, contributing to the accurate representation of CT DICOM images in MPRs. The MPR 

protocol is structured as shown in Figure 4.2 to ensure comprehensive reconstruction of 

volumetric data from DICOM slices [100]. 

The design involves calculating the 𝑧 step for the MPR, building a volume on the basis of files 

and method specifications, interpolating planes, and handling overlapping slices. In the 

calculation of the 𝑧 step for the MPR, the protocol determines the 𝑧 step on the basis of the total 

files and specified MPR dimensions, handling cases where the number of files is zero. The 

volume is contingent on whether the number of files matches the specified z-dimension. The 

protocol processes contiguous slices and handles gaps between slices, ordering files on the basis 

of distance, instance number, and location. Interpolating planes involves determining step sizes, 

iterating over intervals, and applying bicubic or weighted bilinear interpolation on the basis of 

pixel characteristics. The protocol addresses overlapping slices by calculating the 𝑧 step for 

overlapping slices and selectively building the volume. This comprehensive protocol ensures 

 

Figure 4.2 Multiplanar Reconstruction Protocol for Volumetric Data from DICOM Slices. 
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effective MPR, facilitating nuanced analysis of volumetric data from DICOM slices in medical 

imaging. 

4.3.3 Application Implementation 

a) Technology Stack 

The DICOM and MPR web application is implemented as a PWA, leveraging the capabilities 

of React.js and Cornerstone.js [254]. 

b) PWA Implementation 

PWAs offer a seamless and responsive user experience across various devices and platforms. 

DICOM and MPR web applications use the power of PWA, ensuring accessibility to different 

browsers and providing users with the ability to install the application on their devices [255]. 

c) Front-End Framework 

React serves as the foundational front-end library for DICOM and MPR web implementation. 

Its component-based architecture facilitates the modular design of the application, enabling 

efficient updates and rendering of DICOM images. The React declarative approach enhances 

the predictability of the user interface, contributing to a smooth user experience [256]. 

d) DICOM image processing 

Cornerstone.js, a robust JavaScript library designed for medical imaging, plays a pivotal role in 

DICOM image rendering and analysis within the proposed application. Cornerstone.js 

seamlessly integrates with React, providing a suite of tools tailored for DICOM image analysis, 

as shown in Table 4.1. 

e) Data Storage 

Dexie is a JavaScript library that simplifies interaction with IndexedDB. IndexedDB is used as 

a low-level data storage application programming interface, enabling the storage and retrieval 

of large amounts of data in the browser. Dexie provides a concise application programming 

interface that streamlines data management processes, contributing to a more intuitive 

developer experience [257]. 
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f) Cross-Browser Compatibility and Platform Accessibility 

DICOM and MPR visualization, built via PWA principles, ensure cross-browser compatibility, 

making the application accessible on various browsers, including Google Chrome, Firefox, 

Safari, and Microsoft Edge. The application’s responsive design guarantees optimal 

performance across different platforms, including desktops, tablets, and mobile devices [258]. 

The integration of React, Cornerstone.js, and Dexie empowers the development of DICOM- 

and MPR-based PWA with a robust foundation, advanced DICOM image analysis tools, and 

efficient data management capabilities. The adherence to PWA principles further extends the 

application’s accessibility and user engagement across diverse environments. 

Table 4.1 DICOM image annotation and measurement tools and their functions. 

DICOM Tool Function 

Length Tool Allows measurement of distances on DICOM images 

Pan Tool Enables users to pan across DICOM images for detailed examination 

Magnify Tool Provides magnification capabilities for closer inspection of image details 

Angle Tool Facilitates angle measurements for anatomical analysis 

Rectangle ROI Tool Allows the creation of rectangular Regions of Interest (ROIs) on DICOM 

images 

WWWC (Window Width and 

Window Center) Tool 

Enables adjustment of the window width and window center for optimal 

image visualization 

Zoom Touch Pinch Tool Supports touch-based zooming gestures for enhanced user interaction 

Probe Tool Provides pixel value information at specific points on DICOM images 

Elliptical ROI Tool Allows the creation of elliptical Regions of Interest (ROIs) for focused 

analysis 

Freehand ROI Tool Enables the creation of freehand Regions of Interest (ROIs) on DICOM 

images 

Stack Scroll Mouse Wheel Tool Facilitates smooth scrolling through DICOM image stacks, enhancing the 

user's ability to navigate volumetric data 

4.4 Experimental Findings and Performance Analysis 

Detailed findings from 2 experiments on the DICOM-based PWA for medical image 

visualization and reconstruction are provided in this section. The key aspects include 

performance evaluation across platforms, dataset characteristics, computer specifications, and 

testing metrics. The experimental findings highlight various browser performances on different 

platforms for loading, volume rendering, and tool execution in local area network (LAN) and 

wide area network (WAN) environments, emphasizing Chrome’s (Google LLC) superiority in 

loading and rendering, whereas Firefox (Mozilla Foundation) excelled in viewing slices. 
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4.4.1 Experimental Design 

In the experimental design phase, our application assisted radiologists in connecting to upload 

medical images seamlessly from local devices. The upload options included single files, folders, 

or links containing DICOM images. Once uploaded, our application provided a variety of 

essential tools for data access, annotation and measurements, image processing, and MPR, 

ensuring a comprehensive environment for image manipulation within a web browser. To assess 

the effectiveness of the DICOM- and MPR-based PWA for medical image visualization and 

reconstruction, 2 distinct experiments were performed. The first experiment aimed to gauge the 

application’s performance across multiple platforms, ensuring compatibility and optimal 

functionality. 

The second experiment was designed to evaluate the application’s performance under 

controlled network conditions. Specifically, tests were conducted within an LAN to minimize 

the effect of internet variability, ensuring consistent bandwidth and reduced latency. This 

approach provided a stable environment for accurately assessing the software’s inherent 

performance, whereas comparisons were also made under WAN settings to understand the 

impact of broader network conditions. 

The dataset provided by the University of Athens was used to evaluate the performance of this 

work on different platforms and browsers. Each dataset series is characterized by its unique 

dimensions, which vary between 512 × 512 × 258 pixels and 512 × 512 × 577 pixels and 

represent the width, height, and depth of the CT scans. The dataset series sizes range from 128 

to 290 MB. In addition, the dataset exhibits variability in slice thickness, spacing between slices, 

and pixel spacing, with values of 5.0, 0.976562, and 0.775391 mm, respectively. These details 

elucidate the characteristics of the dataset, providing a comprehensive understanding of its 

diversity, which is crucial for the thorough evaluation of the work across different platforms 

and browsers. A comprehensive overview of the dataset series is presented in Table 4.2, whereas 

details about the computers used in the experiments are shown in Table 4.3. Notably, the 

computers used were standard laptops accessible to regular users. React and PWAs are 

supported by all major browsers, including Firefox (version 125.0.3), Google Chrome (version 

125.0.6422.78), Safari (Apple Inc), internet Explorer (Microsoft Corp), and Microsoft Edge 

(version 125.0.2535.67; Microsoft Corp). 
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Table 4.2 Characteristics of the computed tomography dataset for peripheral artery patients 

used in the evaluation. 

Patient Dimensions (pixels) 
Size 

(MB) 

Slice thickness 

(mm) 

Spacing between 

slices (mm) 

Pixel spacing 

(mm) 

1 512 × 512 × 377 189 3.75 3.75 0.935547 

2 512 × 512 × 274 138 3.75 3.75 0.960938 

3 512 × 512 × 386 194 3.75 3.75 0.976562 

4 512 × 512 × 531 267 2.5 2.5 0.841797 

5 512 × 512 × 384 193 3.75 3.75 0.955078 

6 512 × 512 × 258 130 5.0 0 0.8984375 

7 512 × 512 × 577 290 2.5 2.5 0.912109 

8 512 × 512 × 334 168 3.75 3.75 0.976562 

9 512 × 512 × 350 176 3.75 3.75 0.976562 

10 512 × 512 × 340 171 3.75 3.75 0.949219 

11 512 × 512 × 352 177 3.75 3.75 0.888672 

12 512 × 512 × 377 189 3.75 3.75 0.976562 

13 512 × 512 × 277 139 5.0 5.0 0.976562 

14 512 × 512 × 310 156 3.75 3.75 0.925781 

15 512 × 512 × 255 128 5.0 5.0 0.976562 

16 512 × 512 × 346 174 3.75 3.75 0.925781 

17 512 × 512 × 374 188 3.75 3.75 0.902344 

18 512 × 512 × 269 135 0.625 5.0 0.976562 

19 512 × 512 × 298 150 3.75 3.75 0.939453 

20 512 × 512 × 316 159 3.75 3.75 0.976562 

21 512 × 512 × 341 171 3.75 3.75 0.896484 

22 512 × 512 × 310 156 3.75 3.75 0.775391 

 

Table 4.3 Computer specifications used in the experiments. 

Computer Type 
Operation 

system 
CPU Memory GPU 

1 Laptop 
Windows 11 

Pro 64-bit 

11th Gen Intel(R) Core (TM) i7-

11800H @ 2.30 GHz, 16 cores 
16 GB 

NVIDIA GeForce 

RTX 3070 

2 Laptop 
Ubuntu 

22.04.3 LTS 

11th Gen Intel(R) Core (TM) i7-

11800H @ 2.30 GHz, 16 cores 
16 GB 

NVIDIA GeForce 

RTX 3070 

3 Laptop 
Mac OS 

Sonoma 14 

11th Gen Intel(R) Core (TM) i7-

11800H @ 2.30 GHz, 4 cores 
8 GB 

NVIDIA GeForce 

RTX 3070 

4 Tablet 

Android 

5.0.2 

(Lollipop) 

Quad-core 1.2 GHz Cortex-A7 1.5 GB Adreno 305 
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The performance evaluation of the proposed system included several key metrics, as detailed in 

Table 4.4, which are essential for ensuring its clinical viability. T1 represents the performance 

time for loading a medical image dataset, assessing the time required to load an entire DICOM 

dataset into the application. 

Table 4.4 Performance Metric Details. 

Function Label Description Measurement 

Data access T1 Performance time for loading a medical image dataset Measured by 

JavaScript code 

T2 Performance time to build a medical image volume 

using Multiplanar Reconstruction (MPR) techniques 

Measured by 

JavaScript code 

T3 Performance time for viewing a slice in a medical 

image dataset while scrolling 

Measured by 

JavaScript code 

Annotation and 

measurements 

tools 

T4 Performance time for the following tools: 'Wwwc', 

'Pan', 'Zoom', 'Length', 'Probe', 'EllipticalRoi', 

'RectangleRoi', 'Angle', 'Magnify', and 'FreehandRoi' 

per slice 

Measured by 

JavaScript code 

Image 

processing 

T5 Performance time for invert tool per slice Measured by 

JavaScript code 

This metric was selected because of the critical need for rapid image access in clinical settings, 

where delays could hinder diagnostic workflow efficiency. T2 evaluates the performance time 

to build a medical image volume via the MPR technique, reflecting the time necessary to 

reconstruct 3D volumes from 2D slices. This is crucial for providing clinicians with timely and 

accurate 3D representations, which are often essential for diagnostic and surgical planning. T3 

monitors the performance time for viewing a slice while scrolling through a medical image 

dataset, a vital metric for ensuring that radiologists can efficiently navigate through large 

datasets to identify relevant anatomical structures. T4 focuses on the performance time for 

annotation and measurement tools per slice, which include tools such as “Wwwc,” “Pan,” 

“Zoom” and region-of-interest tools. The efficiency of these tools is directly linked to the 

accuracy and speed of clinical assessments. Finally, T5 measures the performance time for 

image processing tools, specifically the inverted tool per slice, which is essential for enhancing 

contrast and improving the visibility of subtle pathologies, thus assisting in more accurate 

diagnoses. By minimizing waiting times and enabling faster decision-making, these metrics 

directly correlate with the clinical efficiency and reliability of the application, ensuring that it 

meets the demands of medical professionals in real-world settings. 
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4.4.2 Performance across Multiple Platforms 

In the initial experiment, we used a dataset of 22 patients via LAN to assess the application’s 

performance on various platforms. Our application was tested on computers running Windows, 

Linux, and macOS, each function was executed 5 times with different browsers, and the 

averages were calculated. Table 4.5 presents the average performance for each function across 

the entire dataset of 22 patients. 

Table 4.5 Performance metrics for the proposed application across platforms, browsers, and 

modes (private and ordinary). 

Platform 

Windows Linux macOS 

Google 

Chrome 

(s) 

Microsoft 

Edge (s) 

Firefox 

(s) 

Internet 

Explorer 

(s) 

Google 

Chrome 

(s) 

Firefox 

(s) 

Google 

Chrome 

(s) 

Firefox 

(s) 

Safari 

(s) 

Private  

AT-T1 

(LAN) 
0.778 0.826 0.874 0.958 — — — — — 

AT-T2 

(LAN) 
5.157 5.03 6.306 5.276 — — — — — 

Ordinary  

AT-T1 

(LAN) 
1.036 1.22 0.89 1.305 1.101 6.45 4.434 5.736 6.443 

AT-T2 

(LAN) 
5.215 5.344 6.33 5.277 5.06 6.664 7.69 9.26 19.559 

AT-T1 

(WAN) 
1.212 1.119 0.842 1.263 1.412 5.914 4.823 5.388 5.943 

AT-T2 

(WAN) 
5.068 5.202 6.478 5.39 5.175 6.277 7.276 9.057 19.6 

AT-T3 

(WAN) 
0.00175 0.00188 0.0014 0.0019 0.00177 0.00168 0.00217 0.0015 0.00357 

AT-T4 

(WAN) 
0.000155 0.00013 0.0005 0.00015 0.000135 0.0005 0.000155 0.0012 0.0006 

4.4.2.1 Private Mode Impact on Loading (T1) and Volume Rendering (T2) 

The private mode generally contributed to faster loading times (T1) across browsers. The impact 

on volume rendering times (T2) varied, with some browsers showing minor improvements in 

private mode. These findings provide insights for users seeking optimal performance during 

medical image visualization and reconstruction. 

4.4.2.2 Performance evaluation on Windows, Linux, and macOS on the LAN and WAN 

With respect to T1 loading, Google Chrome demonstrated superior performance on Windows 

(1.036 seconds), Linux (1.101 seconds), and macOS (4.434 seconds), whereas Firefox showed 

competitive performance on Windows at 0.89 seconds. With respect to T2 volume rendering, 

Google Chrome consistently outperformed other browsers on all platforms, with the shortest 
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times on Windows (5.215 s), Linux (5.06 s), and MacOS (7.69 s). Firefox demonstrated a 

competitive time of 6.33-second viewing slices on Windows in a medical image dataset while 

scrolling (T3). Firefox outperformed other browsers across all platforms in terms of scrolling 

performance within the medical image dataset (T3), achieving the fastest times on Windows 

(0.0014 s), Linux (0.00168 s), and Mac (0.0015 s). 

With respect to T4 tool performance per slice, Google Chrome and Microsoft Edge on Windows 

exhibited the fastest times at 0.000155 and 0.00013 seconds, respectively. Google Chrome on 

Linux and macOS demonstrated efficiencies of 0.000135 and 0.000155 s, respectively. Google 

Chrome exhibited superior performance for T1 loading and T2 volume rendering, whereas 

Firefox outperformed T3, and Google Chrome or Microsoft Edge led in the execution of T4 

tools per slice across different platforms in an LAN environment. In a WAN environment, for 

T1 loading, Google Chrome exhibited efficient performance across all platforms, with the 

shortest times on Windows (1.212 s), Linux (1.412 s), and MacOS (4.823 s). Firefox showed 

competitive performance on Windows, with 0.842 seconds. With respect to T2 volume 

rendering, Google Chrome consistently outperformed other browsers on all platforms, with the 

shortest times on Windows (5.068 seconds), Linux (5.175 seconds), and MacOS (7.276 

seconds). Google Chrome demonstrated superior performance for both T1 loading and T2 

volume rendering across Windows, Linux, and MacOS platforms in a WAN environment. 

The experiments demonstrated that the performance time for 2D image processing, specifically 

for the inverted tool per slice (T5), consistently remained significantly at <1 second across all 

the computers. This finding leads to the conclusion that the application exhibits real-time 

performance capabilities for all the provided 2D tools, indicating its efficiency and 

responsiveness in handling the DICOM peripheral artery dataset. 

4.5 Qualitative and Quantitative Evaluation 

The proposed application, which focuses on the accuracy of MPR for both coronal and sagittal 

views, was evaluated by a board-certified medical doctor and surgeon with experience in the 

evaluation of CT images. This assessment used both qualitative and quantitative methods to 

ensure a comprehensive analysis of the application’s performance in medicine through the 

random selection of some dataset series, as shown in Table 4.2. The measurements were 

conducted manually via the tools of our application. Bone structures were selected for 

measurements because of the high edge contrast of bones, which provides clearly visible edges 

for placing measurement points. Care was taken to ensure that the measurements corresponded 
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to the same structure, position, and plane across all 3 views: axial, coronal, and sagittal. In the 

axial view, which represents the data source, the structure is measured along 2 axes that 

represent the coronal and sagittal planes of that structure and are compared with the 

measurements of the same structure in the reconstructed coronal and sagittal planes. The 

measurement points were placed on the edges of the structures via the mouse cursor in a 

magnified view of the structure, ensuring that the pixels representing the exact edge were 

selected. 

For the dataset series of Patient 1, the distal edge of the L1 vertebra was chosen as a 

measurement point. For the dataset series of Patient 2, the measurement focused on the distal 

head of the femur bone. Measurements for the dataset series of patients 3, 4, 10, and 20 were 

performed on the body of the femur bone. The results demonstrated consistent accuracy in the 

measurements of the reconstructions compared with the ground truth images across all the 

examined dataset, as shown in Figure 4.3. The error margin was computed by comparing the 

coronal and sagittal measurements (measured values, 𝑀) to the axial view (ground truth, 𝐺). 

The error for each measurement was calculated as follows: 

𝑒𝑟𝑟𝑜𝑟 𝑚𝑎𝑟𝑔𝑖𝑛 =  
1

𝑛
 ∑|𝑀𝑖 − 𝐺𝑖|

1

𝑛

, (4.5) 

where 𝑛 represents the total number of measurements. 𝑀𝑖 refers to the 𝑖 − 𝑡ℎ measured value 

(in the coronal or sagittal view), and 𝐺𝑖 refers to the corresponding ground truth value (from the 

axial view) at the same measurement point. The subscript 𝑖 indexes each measurement point, 

running from 1 to 𝑛. This formula provides the average error per measurement. Across the 

dataset, the measurements consistently fell within an accepted error margin of less than 0.05 

mm, which was attributed primarily to the inherent limitations of manual measurement 

methods, such as the placement of measurement points via the mouse cursor. 

To further assess the accuracy of the MPR reconstructions, a comparative analysis was 

conducted via 3D Slicer (version 5.6.2; the Slicer Community) [259] on the same dataset series 

of Patient 1, as shown in (Supplementary Figure 1). The distal edge of the L1 vertebra was 

identified across all planes (axial, coronal, and sagittal) via a similar methodology. 

Measurements were performed via the native tool in 3D Slicer, where the markers were 

manually placed via the mouse pointer.  
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Measurements were first taken in the axial plane and then repeated in the coronal and sagittal 

planes. The measurements in the axial plane via 3D Slicer were nearly identical to those 

 
 

Figure 4.3 Clinical evaluation of multiplanar reconstruction accuracy, (A) measurement 

accuracy of the distal edge of the L1 vertebra in the dataset series of patient 1, (B) 

consistency in measuring the distal head of the femur bone in the dataset series of patient 

2, and (C) consistency of reference lines across multiple planes for the dataset series of 

patient 3. 
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obtained via the proposed PWA. Similarly, the measurements in the coronal and sagittal planes 

were consistent with both the axial plane results and the measurements obtained from the 

proposed PWA. As in the proposed PWA, the manual process of placing the cursor at the 

perceived edge of the structure introduced small variations (<0.5 mm) between measurements. 

These differences were attributed to the sensitivity of the mouse cursor positioning and the 

inherent limitations of manual measurement. The consistent appearance of this error margin in 

both the proposed PWA and 3D Slicer indicates that it is due to the manual measurement 

process. The findings of the evaluation indicate the ability of our application to deliver both 

qualitative and quantitative benefits in medicine. By offering precise measurements and 

consistent reference lines across various planes, the application represents a valuable tool for 

medical professionals. 

4.6 Discussion 

4.6.1 Principal Findings 

The key contribution of this chapter lies in addressing the gap in the adoption of PWAs for 

DICOM and MPR visualization on the web. This chapter highlights the unique challenges in 

web-based medical imaging, such as cross-platform compatibility, integration capabilities, 

speed, and scalability. Specifically, focusing on the incorporation of DICOM visualization into 

web settings via PWAs, this chapter aims to provide a comprehensive and effective solution to 

enhance the functionality and efficacy of medical imaging applications in the digital era. 

A significant finding of this chapter is the varying performance of the PWA across different 

browsers and platforms, which has direct implications for its deployment in clinical settings. 

Google Chrome outperforms other browsers in terms of loading times (T1) and volume 

reconstruction efficiency (T2), particularly on Windows and Linux, owing to its efficient V8 

JavaScript engine. Firefox demonstrated strong performance in slice scrolling (T3) but 

exhibited slower (T2) performance on macOS, likely due to differences in memory 

management. Safari and Microsoft Edge lagged behind in T1 and T2, especially on macOS, 

with Safari showing the slowest performance. 

These observations underscore the challenges of ensuring cross-platform consistency, with 

macOS generally showing a slower performance, particularly for T2. Given these findings, 

Google Chrome or Firefox on Windows is recommended for optimal performance, particularly 

in environments requiring rapid data access and processing. This chapter also highlights the 

importance of selecting the appropriate browser on the basis of the specific clinical setting, as 
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performance can vary significantly depending on the browser and platform used. This insight 

is critical for health care providers aiming to implement PWAs in their medical imaging 

workflows. 

Furthermore, this chapter emphasizes the significance of uninterrupted offline access, enhanced 

performance, and improved user experience as distinctive characteristics of PWAs relevant to 

web-based DICOM applications. By doing so, this chapter aimed to overcome the identified 

technological hurdles and contribute to the advancement of web-based medical imaging 

applications. The choice of DICOM as the focus further solidifies the relevance of this chapter 

in the medical imaging domain, where standardization and interoperability are crucial. 

In addition, this chapter contributes to the literature by addressing another challenge in the field 

of medical imaging applications, namely, the lack of an effective method for addressing 

variables inherent to web applications. The emphasis on cross-platform compatibility, 

integration capabilities, speed, and scalability underscores the commitment to providing a 

holistic solution that goes beyond DICOM and MPR visualization. 

The discussion on MPR for medical image visualization adds depth to the contribution. The 

challenges related to generating high-resolution images on the internet and visualizing 

volumetric structures, especially sagittal and coronal views obtained from DICOM slices, are 

acknowledged. This chapter clarifies and addresses these issues, aiming to enhance web-based 

medical imaging capabilities, particularly in the field of peripheral artery imaging. 

The MPR algorithm proposed in this chapter uses bicubic and weighted bilinear interpolation, 

which enhances edge detail, particularly in scenarios in which certain resolutions may result in 

missing intermediate points. This approach differs from conventional implementations such as 

XTK.js and VTK.js [30], which primarily use linear interpolation to prioritize computational 

efficiency. XTK.js adopts linear interpolation to balance smoothness and performance, whereas 

VTK.js supports multiple interpolation methods, including nearest neighbor and cubic methods. 

The detailed description of the application’s architectural framework, the implementation via 

React and Cornerstone.js, and the experimental results on multiple platforms provide practical 

insights into the feasibility and effectiveness of the proposed solution. The study’s systematic 

approach, from design to implementation and evaluation, strengthens its contribution and 

applicability in real-world medical imaging scenarios. 
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4.6.2 Limitations 

This chapter focused on peripheral artery CT imaging for 22 patients and used a single dataset 

type. This dataset limitation may affect how broadly our findings can be applied to different 

medical imaging scenarios. Moreover, the application’s dependency on specific interpolation 

techniques for 3D reconstruction could limit its flexibility and efficiency in processing various 

types of medical imaging data. In addition, the application is designed to handle only DICOM 

formats, which may restrict its utility with other imaging formats prevalent in medicine. 

Furthermore, using vascular structures as reference points for comparing axial and 

reconstructed sagittal and coronal planes in the MPR can be challenging because of the 

uniformity of vascular structures, which often lack distinctive landmarks. This leads to 

inconsistencies in automatically produced reference lines and requires anatomical expertise for 

accurate validation. 

4.6.3 Comparison With Prior Work 

A comprehensive test of our application was conducted using 2 distinct series from the same 

dataset, representing extremes in size. These series correspond to patients 2 and 17, as listed in 

Table 4.2. The dataset for Patient 2 serves as a compact representation with dimensions of 512 

× 512 × 5 pixels and a size of 2.51 MB, exemplifying the lower end of the size spectrum. 

Conversely, the dataset for Patient 17 represents a substantial CT series with dimensions of 512 

× 512 × 2339 pixels, occupying 1.10 GB, highlighting the challenges associated with handling 

voluminous medical image data. These series vary significantly in slice thickness, spacing 

between slices, and pixel spacing, ensuring a thorough evaluation of the application’s 

performance across diverse dataset sizes. 

Highlighting the limitations encountered in the compared platforms, our work stands out as an 

innovative solution, as evidenced by the comprehensive performance analyses presented in 

Tables 4.5 and 4.6. To address compatibility concerns, our application surpassed competitors 

such as DicomViewer.net (version 3.2) [241], Image-IN (accessed February 2024) [242], 

BlueLight (accessed February 2024) [100], and VolView (accessed September 2024) [260]. 

DicomViewer.net, developed as an open-source project under the Open Health Imaging 

Foundation, is compatible with Google Chrome, Firefox, Safari, and Microsoft Edge and faces 

cross-browser compatibility issues on Firefox for macOS when dealing with both low- and 

large-size dataset series. Simultaneously, Image-IN, a web-based 3D visualizer for 

multidimensional DICOM microscopy images, encounters performance challenges on mobile 
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devices, particularly iPads, leading to suboptimal performance and browser crashes with large 

dataset series. BlueLight is an open-source DICOM viewer with a low-cost computation 

algorithm but lacks security and maintenance considerations. 

In addition, the performance evaluation focused primarily on desktop browsers, and the 

compatibility and performance of mobile browsers or devices remain unclear. Addressing these 

limitations and conducting comprehensive evaluations across various platforms and scenarios 

would enhance the applicability and robustness of our proposed solution in real-world medical 

imaging contexts. 

Table 4.5 shows that our application was significantly superior to DicomViewer.net, Image-IN, 

BlueLight, and VolView in terms of both loading times and reconstruction efficiency across 

various configurations. For example, when considering a low-size dataset series of 2.51 MB on 

Windows with Google Chrome, our application resulted in loading times (T1) and 

reconstruction times (T2) that were 63% to 85% faster than those of the competing platforms. 

Specifically, with Google Chrome on Windows, our application achieved a combined metric 

(T1+T2) of 0.374 seconds, whereas DicomViewer.net, Image-IN, BlueLight, and VolView 

experienced crashes or failures (shown as “x” in the table). Furthermore, when tested on a tablet, 

the proposed application outperformed the state-of-the-art methods by maintaining robust 

performance, whereas DicomViewer.net failed to build the MPR, and both Image-IN and 

VolView were unable to upload and build the MPR. This reinforces the scalability and 

versatility of the proposed software across different device types. Table 4.6 shows that our 

application continues to outperform DicomViewer.net, Image-IN, BlueLight, and VolView by 

a significant margin in the analysis of large-size data of 1.10 GB, ranging from 84% to 98%.  

For example, when running on Linux with Google Chrome, our application achieved loading 

and reconstruction times that were notably faster than those of the competitors. However, 

BlueLight encountered issues and stopped at slice 1750 and at slice 520 for Linux on Google 

Chrome and Firefox, respectively. This suggests potential limitations in BlueLight’s ability to 

handle large dataset series, highlighting the robustness and scalability of our application. 

Similarly, VolView encounters a range error when processing a large dataset. Compared with 

DicomViewer.net, Image-IN, BlueLight, and VolView, our application consistently 

outperforms DicomViewer.net in terms of loading time and reconstruction efficiency, 

establishing it as a leading solution in medical image web visualization. The comparison reveals 

our application’s reliability and effectiveness in addressing the challenges encountered by 



 

89 

 

existing platforms, making it a compelling choice for medical image visualization tasks. On the 

basis of the findings presented in Table 4.5, the average number of DICOM slices used for 

evaluating the application is 347. This evaluation was conducted within an LAN environment 

on a Windows platform. 

The combined performance time (T1+T2) ranged from 6.251 seconds when Google Chrome 

was used to 6.564 seconds with Microsoft Edge and 7.22 seconds with Firefox. In contrast, 

BlueLight, as reported in its corresponding study, uses 280 DICOM slices for evaluation. 

Comparative analysis revealed that our application consistently exhibited shorter combined 

performance times across all the browsers, with durations of 8.91 seconds (Google Chrome), 

9.15 seconds (Microsoft Edge), and 16.27 seconds (Firefox). Furthermore, as shown in Figure 

4.4A, our proposed MPR algorithm leverages bicubic interpolation for edge pixels and weighted 

bilinear interpolation for nonedge pixels. This approach yielded favorable reconstruction 

results, particularly for edge pixels, compared with the MPR results produced by BlueLight, as 

illustrated in Figure 4.4B. These results underscore the superior performance of our application 

in loading medical image datasets and executing MPR techniques compared with BlueLight, 

thereby highlighting the efficiency and effectiveness of our application in processing medical 

image datasets and positioning it as a more dependable option for medical image visualization.
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Table 4.6 Comparison of the proposed application performances over the LAN with others, (Low-size data). 

Dataset OS/Tablet Browser 
Proposed software 

DicomViewer.net 

[241] 

Image-

IN [242] 
BlueLight [100] 

VolView 

[260] 

T1 T2 T1+T2 T1 T2 T1+T2 T1 T2 T1+T2 

# 2 

Win 
Chrome 0.285 0.088 0.374 0.629 x 1.63 0.448 0.325 1.586 

Firefox 0.103 0.101 0.204 0.393 x 1.404 0.366 0.281 1.89 

Linux 
Chrome 0.125 0.095 0.22 0.45 x 1.869 0.388 0.305 1.262 

Firefox 0.16 0.107 0.267 0.605 x 2.523 0.354 0.316 1.57 

Mac 
Chrome 0.228 0.115 0.343 0.421 x 2.144 0.569 0.454 3.32 

Firefox 0.179 0.124 0.303 x x x 0.755 0.406 1.9 

Tablet 
Chrome 3.748 6.804 10.552 x x x x x x 

Firefox 4.752 7.576 12.328 2.416 x x 1.578 1.826 x 

 
Table 4.7 Comparison of the proposed application performances over the LAN with others, (Large-size data). 

Dataset OS Browser 
Proposed software 

DicomViewer.net 

[241] 

Image-

IN [242] 
BlueLight [100] 

VolView 

[260] 

T1 T2 T1+T2 T1 T2 T1+T2 T1 T2 x 

# 17 

Win 
Chrome 6.021 0.170 6.192 5.85 x x 310 9.623 x 

Firefox 7.10 0.382 7.482 5.524 x x 319 9.669 x 

Linux 

Chrome 6.326 0.151 6.478 21.939 x x 

stopped 

at slice 

1750 

x x 

Firefox 23.366 0.037 23.403 60.02 x x 

stopped 

at slice 

520 

x x 

Mac 
Chrome 31.019 0.848 31.868 12.264 x x 407 30.22 x 

Firefox 16.628 0.024 16.652 x x x x x x 
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On the basis of these results, our developed application achieved compatibility with all browsers 

and platforms, demonstrating accurate and fast processing. In addition, users can access and 

upload files or folders directly from their local computers, resulting in improved user 

interaction. These advancements surpass the findings of a previous study [94], which used 

HTML5 and WebGL for web-based medical imaging but encountered limitations such as 

compatibility issues with internet Explorer, difficulties with user interaction for local file access, 

and reliance on predefined surface information for 3D visualization. 

This chapter introduces PWA for DICOM and MPR visualization on the web, addressing 

challenges such as cross-platform compatibility, speed, and offline functionality. By leveraging 

PWAs, the application enhances accessibility and performance in medical imaging tasks, 

 

Figure 4.4 Comparison of the proposed application performances over the LAN with 

others, (Large-size data).  
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including offline access, which allows it to function without internet connectivity by caching 

essential resources. This is particularly useful in areas with limited connectivity. In addition, 

improved performance is achieved through React.js and IndexedDB (via Dexie), optimizing the 

handling of large datasets, reducing loading times, and accelerating MPR. These features 

enhance usability and efficiency, improving radiologists’ workflow. Furthermore, our 

application outperforms existing platforms such as DicomViewer.net, Image-IN, and BlueLight 

in terms of loading time and reconstruction efficiency, positioning itself as a robust and reliable 

choice for medical image visualization. 

4.7 Contributions and Future Directions 

This chapter effectively addresses significant gaps in web-based medical imaging applications, 

particularly DICOM and MPR visualization via PWAs. Leveraging the unique features of 

PWAs, such as uninterrupted offline access and enhanced performance, substantial progress has 

been made in overcoming technological barriers and advancing medical imaging functionality. 

Emphasizing cross-platform compatibility, integration capabilities, and speed underscores 

critical aspects in developing web-based medical imaging solutions. The proposed design and 

implementation demonstrate the feasibility and effectiveness of integrating DICOM and MPR 

visualization into web environments via PWAs, benefiting radiologists and health care 

professionals. Moreover, this chapter addresses MPR challenges, enhancing diagnostic 

capabilities through advanced interpolation methods and reconstruction protocols. The 

experimental results consistently showed superior performance compared with existing 

platforms, firmly establishing our application as a leading solution in medical image web 

visualization. The evaluation and testing were conducted using a dataset comprising CT scans 

from patients diagnosed with PAD, adding real-world relevance and validation to our findings. 

Future work will focus on visualizing 3D surfaces and performing volume rendering via MPR 

images. 

 

 

 

 

 



 

93 

 

Chapter 5: DECODE‑3DViz: High-Fidelity Web-Based Visualization and 

Automated Risk Classification for Peripheral Artery Disease 
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5.4. Automated Risk Classification of PAD 

5.5. Validation and Performance Evaluation 

5.6. Results 
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5.1 Introduction 

The visualization of large-scale medical imaging datasets, particularly those from peripheral 

artery CT images, presents unique challenges owing to their high-resolution volumetric nature 

and the need for interactive 3D rendering. Traditional medical imaging systems are often 

restricted by hardware constraints and lack the scalability required for real-time visualization 

and diagnostic applications. To overcome these limitations, advanced web technologies such as 

WebGL have been leveraged, enabling efficient, high-fidelity visualization directly within web 

browsers without the need for additional plugins or specialized hardware [261, 262]. 

DECODE-3DViz introduces a significant advancement in web-based medical imaging by 

addressing the challenges of rendering large volumetric datasets through an innovative pipeline 
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that integrates LOD algorithms and progressive chunk streaming. This approach optimizes 

rendering performance by dynamically adjusting the resolution and streaming data in 

manageable chunks, effectively overcoming WebGL texture size constraints and browser 

memory limitations. This results in a seamless, interactive visualization experience that 

maintains high visual fidelity, which is essential for accurate medical diagnosis and treatment 

planning. 

One of the core innovations of DECODE-3DViz is its dynamic LOD algorithm, which 

intelligently adjusts the resolution on the basis of user interactions and the importance of 

specific regions of interest (ROIs). By preserving high-resolution details where necessary and 

downsampling less critical areas, the system ensures efficient memory utilization and minimizes 

rendering times. This capability is particularly crucial for peripheral artery CT images, where 

precise visualization of complex vascular structures is required for accurate diagnostic 

interpretation and surgical planning. In addition to its advanced LOD implementation, 

DECODE-3DViz employs progressive chunk streaming to efficiently manage large datasets. 

This method divides the volumetric data into smaller, manageable chunks that are streamed and 

rendered incrementally, preventing browser crashes and maintaining application 

responsiveness. The integration of bicubic and trilinear interpolation techniques further 

enhances image quality, ensuring smooth transitions and accurate representations of anatomical 

structures. 

The architecture of DECODE-3DViz is meticulously designed to optimize GPU memory usage 

and resource allocation strategies, enabling high-quality rendering even on resource-constrained 

devices. Comparative evaluations demonstrate that DECODE-3DViz outperforms state-of-the-

art visualization tools in terms of structure definition, depth perception, texture appearance, and 

diagnostic capability. Its ability to deliver high-fidelity visualizations with real-time 

interactivity significantly enhances diagnostic accuracy and clinical decision-making. By 

leveraging the capabilities of WebGL and innovative data management techniques, DECODE-

3DViz bridges the gap between high-fidelity visualization and web-based accessibility, 

enabling medical professionals to interact with complex 3D models of peripheral artery CT 

images in real time. This advancement not only enhances diagnostic workflows and clinical 

decision-making but also supports remote consultations and telemedicine applications, thereby 

expanding access to advanced medical imaging tools. 
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This chapter delves into the technical design, implementation strategies, and performance 

optimization techniques that make DECODE-3DViz a pioneering solution in web-based 

medical imaging. It explores the architectural frameworks, interpolation algorithms, and GPU 

optimization methods employed to achieve real-time, high-fidelity visualization. In addition, 

the chapter presents a comprehensive evaluation of DECODE-3DViz against state-of-the-art 

tools, highlighting its impact on diagnostic workflows and clinical outcomes. 

5.2 Objectives 

To address the challenges identified in the literature, this chapter seeks to develop innovative 

solutions that optimize the visualization pipeline through the application of an LOD algorithm. 

The specific objectives are as follows: 

a) RO1: Efficiently manage WebGL texture size limitations by developing techniques that 

utilize the LOD algorithm to render large peripheral artery CT datasets without performance 

degradation or errors, thereby overcoming texture size constraints. 

b) RO2: Implement strategies to prevent memory allocation errors, employing the LOD 

algorithm to ensure the complete and accurate rendering of high-resolution medical imaging 

data. 

c) RO3: Develop a method for chunk streaming large datasets, preventing browser crashes and 

maintaining application responsiveness and usability. 

d) RO4: Establish an approach to downsample only when necessary, guided by the LOD 

algorithm, to preserve as much detail as possible in the rendered images and maintain high 

visual fidelity. 

e) RO5: Provides functionality for specifying and rendering regions of interest (ROIs) in their 

original resolution using the LOD algorithm, ensuring that critical volumes are visualized 

in high detail for accurate medical diagnosis. 

The overarching aim of these objectives is to increase the performance, accuracy, and usability 

of web-based applications for visualizing large-scale peripheral artery CT imaging datasets. 

This will ultimately support improved diagnostic outcomes and advance the field of medical 

imaging technology. 
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5.3 System Design and Implementation 

5.3.1 System Design 

The system design of DECODE-3DViz for 3D WebGL volume rendering of peripheral artery 

CT images involves a five-stage workflow: volume data input, resource assessment, data 

processing, volume rendering, and postrendering, as shown in Figure 5.1. The system begins 

by assessing and configuring processing resources through resource assessment, where the 

central processing unit (CPU) is primarily responsible for task allocation, data handling, and 

managing heap memory to optimize performance. The graphics processing unit (GPU) is 

configured for high-performance rendering, with constraints such as 

MAX_3D_TEXTURE_SIZE carefully considered to ensure efficient handling of large textures. 

The workflow ensures that computational demands are met while maintaining efficient memory 

and resource utilization. 

Initially, CT slices are collected to form a detailed volumetric dataset, which undergoes resource 

assessment to evaluate computational requirements and configure processing resources 

efficiently. During data processing, the dataset is prepared using techniques such as data 

chunking and an LOD algorithm, which dynamically adjusts the resolution to manage large 

datasets efficiently. The volume rendering stage uses WebGL to cast rays through the data, 

creating a 3D representation with shading and lighting for enhanced visual realism. Volume 

clipping and interaction techniques focus on specific ROIs to improve clarity and detail. In the 

final postrendering stage, a transfer function maps data values to colors and opacities, allowing 

interactive adjustments for detailed visualization and accurate diagnosis. 

5.3.2 Preprocessing Pipeline 

The preprocessing pipeline of DECODE-3DViz consists of several essential steps for effective 

rendering. This section outlines the process starting from source data through the computation 

 

Figure 5.1 Workflow of 3D WebGL Volume Rendering for Peripheral Artery CT Imaging. 
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of the maximum 3D texture size, computation of total chunks required for rendering, streaming 

image chunks, combining chunks, and applying the LOD algorithm, which includes 

downsampling if necessary, as it is shown in Figure 5.2. 

1) Input Data Source 

The source data comprises peripheral artery CT images in DICOM or NIfTI formats [263, 264]. 

These images are volumetric datasets that require processing to be rendered using WebGL 

technology. The importance of using both DICOM and NIfTI formats lies in their widespread 

adoption in medical imaging and their ability to store complex image data with metadata, which 

is crucial for accurate visualization and analysis. The data are loaded into the browser 

environment where WebGL is used for rendering. 

2) Maximum 3D Texture Size 

Determining the maximum 3D texture size supported by WebGL 2.0 is crucial for assessing the 

WebGL context's ability to handle 3D textures. This process involves querying the 

MAX_3D_TEXTURE_SIZE parameter, which specifies the largest dimension in pixels for each 

axis of a 3D texture. Understanding that limitation is vital for partitioning volumetric data into 

manageable chunks, ensuring efficient rendering and optimal performance [104, 265]. In 

addition, optimizing the upload process involves managing the available JavaScript heap 

 

Figure 5.2 Schematic Diagram of the Preprocessing Pipeline for 3D WebGL Volume 

Rendering. 
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memory via the performance.memory API, with 75% of the total heap size typically allocated 

for texture uploads. In cases where this API is not supported, a fallback value is used to maintain 

a balance between maximizing memory usage for uploads and ensuring sufficient memory for 

other operations [266]. 

3) Data Chunk Streaming Process 

The data chunk streaming process is critical for the efficient handling and rendering of 

volumetric datasets in a WebGL environment. To manage large volumes of data, the dataset is 

initially divided into manageable chunks. This division is guided by constraints such as the 

maximum 3D texture size supported by the WebGL context and the available upload memory. 

A chunk factor, typically set as a fraction (e.g., 0.25) of the maximum 3D texture size, 

determines the chunk size, ensuring that the chunks remain within feasible limits. The chunk 

size is computed as follows: 

𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒 = min (⌊𝑚𝑎𝑥3𝐷𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑆𝑖𝑧𝑒 

× 𝑐ℎ𝑢𝑛𝑘𝐹𝑎𝑐𝑡𝑜𝑟⌋, ⌊
𝑚𝑎𝑥𝑈𝑝𝑙𝑜𝑎𝑑𝑀𝑒𝑚𝑜𝑟𝑦𝐵𝑦𝑡𝑒𝑠

2
⌋), 

(5.1) 

where max3DTextureSize represents the maximum allowable texture size along each 

dimension, chunkFactor is the fraction determining the size of each chunk, and 

maxUploadMemoryBytes is the available memory for uploading data. The total number of 

chunks required to process the dataset, denoted totalChunks, is determined by dividing the total 

depth of the dataset by the chunk size and rounding up: 

𝑡𝑜𝑡𝑎𝑙𝐶ℎ𝑢𝑛𝑘𝑠 =  ⌈
𝑑𝑒𝑝𝑡ℎ

𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒
⌉, (5.2) 

where depth is the depth of the dataset along the axis being partitioned. This calculation ensures 

that all the data slices account for [267]. 

In the data chunk streaming phase, the volumetric data are dynamically partitioned into these 

chunks for incremental processing, which optimizes memory usage and enables smooth 

visualization. For each chunk, the starting and ending positions along the depth axis are 

calculated, and data from the original dataset are extracted accordingly. Each voxel within a 
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slice is mapped to the corresponding position in a new array, preserving spatial relationships. 

The assembled chunks, containing the extracted data with updated dimensions, are then added 

to a list of chunks to ensure complete coverage of the dataset [268]. 

The chunks are later combined into a single volumetric dataset, which is essential for 

reconstructing the original volume. This process assumes a consistent width and height across 

all chunks, as derived from the source data. The total depth of the combined dataset, denoted 

by totalDepth, is calculated by summing the individual depths of all chunks: 

𝑡𝑜𝑡𝑎𝑙𝐷𝑒𝑝𝑡ℎ =  ∑𝑑𝑒𝑝𝑡ℎ𝑖

𝑛

𝑖=1

, (5.3) 

where 𝑛 is the total number of chunks and 𝑑𝑒𝑝𝑡ℎ𝑖 is the depth of each individual chunk. This 

approach maintains the correct spatial relationships and ensures that the final dataset is ready 

for subsequent processing or rendering. If the combined dataset exceeds the maximum 3D 

texture size per chunk, an LOD algorithm is applied, as it is shown in Figure 5.2, to keep the 

dataset within these constraints and optimize it for efficient rendering. 

4) Level of detail (LOD) 

LOD adjustment is essential for efficient rendering within the constraints of the WebGL 

context, particularly for managing large volumetric datasets. This adjustment involves reducing 

the dataset’s resolution while preserving critical features. The maximum dimension of the 

dataset is compared to a target maximum dimension to calculate the LOD adjustment factor. If 

the dataset dimensions exceed the target, an adjustment factor, maxFactor, is determined by the 

maximum ratio of the dataset dimensions to the target dimension: 

𝑚𝑎𝑥𝐹𝑎𝑐𝑡𝑜𝑟 = max (
𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠

𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑎𝑥𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛
), (5.4) 

where the dimensions represent the actual dimensions of the dataset, and targetMaxDimension 

is set to half of the maximum 3D texture size: 

𝑡𝑎𝑟𝑔𝑒𝑡𝑀𝑎𝑥𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 =  
𝑚𝑎𝑥3𝐷𝑇𝑒𝑥𝑡𝑢𝑟𝑒𝑆𝑖𝑧𝑒

2
, (5.5) 
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The dataset is then resized by dividing each dimension by maxFactor and rounding up to the 

nearest integer, with the voxel spacing adjusted accordingly to maintain spatial relationships 

[269]. When any dimension of the combined dataset surpasses the maximum 3D texture size 

divided by the total number of chunks, downsampling becomes necessary. This downsampling 

process reduces the dataset's resolution while retaining essential features and uses trilinear 

interpolation to maintain data integrity [270]. Each voxel in the downsampled dataset is 

calculated by interpolating values from the original dataset on the basis of the indices and 

weights of the surrounding voxels. The outcome is a dataset with optimized dimensions and 

voxel spacing suitable for efficient rendering in a WebGL environment, as it is illustrated in the 

LOD algorithm in Figure 5.2. 

5) Conversion and Storage 

The process of data storage and conversion is crucial for preparing downsamples via LODs or 

original combined datasets for efficient rendering. This involves converting the dataset from 

formats such as DICOM or NIfTI to the VTK image data format [271]. This conversion is 

necessary for compatibility with WebGL volume rendering, specifically when vtk.js is utilized 

[272]. The converted data are stored as VTK images, which are optimized for efficient rendering 

in WebGL. 

5.3.3 Large-Scale Volume Rendering 

The WebGL volume rendering pipeline is meticulously structured into several stages, each 

playing a crucial role in generating high-quality, interactive 3D visualizations of peripheral 

 

Figure 5.3 WebGL Volume Rendering Pipeline with Adaptive Resolution and LOD 

Algorithm. 
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artery CT images. This systematic approach, as it is illustrated in Figure 5.3, ensures an 

organized workflow, enabling efficient and effective rendering. 

1) Initialization of the rendering environment 

After preprocessing and conversion, the dataset is prepared for rendering. This involves 

acquiring input image and color data and setting up the core visualization components, 

including a rendering window, a renderer, and an OpenGL rendering window. The rendering 

container is identified within the HTML document, establishing the essential environment for 

visualization [273]. In addition, an interactor is initialized to facilitate responsive and interactive 

user experiences. 

2) User Interactions 

User interaction is further enhanced through a graphical overlay that provides visual feedback 

and a widget manager that handles interactive widgets, such as image cropping tools, allowing 

dynamic modification of rendering parameters with real-time updates [274]. Interactive 

widgets, including the image cropping width and piecewise Gaussian width, support user 

interaction by facilitating selection and focusing on specific volume regions. 

3) Volume Render Processing 

In the volume rendering processing phase, detailed volume rendering settings are configured to 

accurately represent the CT data. This involves setting up volume properties such as color and 

opacity transfer functions, shading parameters, and interpolation types. The volume mapper is 

linked to the input image data to ensure precise visualization [275]. 

A critical component of this phase is the transfer function, which controls the visualization of 

CT data in terms of color and opacity. The main volume rendering is [276]: 

𝐼(𝐷) =  𝐼0𝑒
−∫ 𝜏(𝑡)𝑑𝑡

𝐷
0 + ∫ 𝑒−∫ 𝜏(𝑡)𝑑𝑡

𝐷
𝑠 𝜏(𝑠)𝐶(𝑠)𝑑𝑠

𝐷

0

, (5.6) 

where 𝐼(𝐷) is the intensity of the light after passing through the volume at depth 𝐷, 𝐼0 is the 

initial intensity of the light, 𝜏(𝑡) is the optical depth or attenuation coefficient at position 𝑡, and 

𝐶(𝑠) is the color or emission at position 𝑠. This equation accounts for both absorption and 
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emission within the volume, which is critical for accurate volume rendering. The transfer 

function is defined [277]: 

𝑇(𝜐) = (𝛼(𝜐), 𝑐(𝜐)), 

(5.7) 𝛼(𝜐) =  ∑ 𝑤𝑖𝐺(𝜐 − 𝜐𝑖, 𝜎𝑖)
𝑛
𝑖=1 , 

𝑐(𝜐) =  ∑ 𝑐𝑖𝐿(𝜐 − 𝜐𝑖)
𝑛
𝑖=1 . 

where 𝛼(𝜐) is the opacity transfer function and 𝑐(𝜐) is the color transfer function, 𝐺 is a 

Gaussian function centered at 𝜐𝑖 with width 𝜎𝑖, 𝑤𝑖 represents the weights, 𝐿 is a linear function 

centered at 𝜐𝑖, and 𝑐𝑖 represents the color values associated with intensity 𝜐𝑖. 

To facilitate interactive adjustments, a vtkPiecewiseGaussianWidget is created and configured 

within a dynamically generated HTML container. This widget allows users to modify the color 

and opacity mappings interactively. A histogram is generated from the CT data values, 

providing a visual representation of the data distribution. This histogram is used to set up the 

data array for the widget, enabling users to see and adjust how data values are mapped to colors 

and opacities. The vtkPiecewise function is used to define the opacity transfer mapping, setting 

specific points to make different tissue types transparent or opaque. Simultaneously, the 

vtkColorTransferFunction assigns colors to different intensity values, enhancing the visual 

distinction between various tissues, such as air, lung, fat, muscle, and bone. The widget’s 

opacity change events are closely monitored, and any user adjustments are dynamically applied 

to the transfer functions. This allows for real-time updates to the rendered volume 

representation, ensuring that users can fine-tune the visualization parameters to achieve the best 

possible representation of the CT data. 

4) Rendering Controls and Interaction 

In this stage, interactive features are meticulously refined to enhance user engagement and 

control. Advanced manipulators for pan, zoom, and rotation operations are seamlessly 

integrated, providing users with comprehensive control over the viewing experience. An 

orientation marker widget is added to facilitate spatial orientation within the 3D scene, ensuring 

that users can navigate the volume data effectively [278]. In addition, control panels are 

integrated to allow precise adjustments to various rendering parameters, including gradient 
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opacity, scalar opacity, sample distance, blending modes, visibility, and shading of the volume. 

These controls enable users to customize the visualization to meet specific diagnostic needs, 

thereby enhancing the overall utility and effectiveness of the rendered images. 

5) Final Rendering and Output 

The final rendering stage involves applying the configured settings and controls to produce the 

visual output. The rendering pipeline integrates mechanisms for updating the rendering in 

response to changes in cropping planes, utilizing vtkPlane instances for precise clipping 

operations. The sophisticated color and opacity transfer functions established during volume 

processing are crucial, ensuring that different tissue types are accurately represented and 

visually distinct. Initial rendering involves downsampling for performance optimization on the 

basis of the LOD algorithm. The final color 𝐶𝑓𝑖𝑛𝑎𝑙 along a ray can be computed via the integral 

as: 

𝐶𝑓𝑖𝑛𝑎𝑙 = ∫ 𝑐(𝑡) 𝛼
𝑡1

𝑡0

(𝑡) 𝑒
−∫ 𝜏(𝑠)𝑑𝑠

𝑡1
𝑡0 𝑑𝑡, (5.8) 

where 𝑐(𝑡) is the color at point 𝑡, 𝛼(𝑡) is the opacity at point 𝑡, and 𝜏(𝑠) is the optical depth or 

attenuation coefficient at position 𝑠. The compositing equation used in volume rendering can 

be expressed as follows [279]: 

𝐶 = ∑𝑐𝑖

𝑖

⋅ α𝑖 ⋅ ∏(1 − α𝑗)

𝑖−1

𝑗=1

, (5.9) 

where 𝑐𝑖 is the color of the 𝑖 − 𝑡ℎ sample, 𝛼𝑖 is the opacity of the 𝑖 − 𝑡ℎ sample, and the product 

term accounts for the accumulated transparency of all preceding samples. 

6) Post-rendering 

In the post-rendering stage, further adjustments and enhancements are made to the rendered 

output, benefiting significantly from the initial use of the LOD algorithm in the preprocessing 

phase. This stage focuses on refining the ROIs by rerendering them at the original resolution if 

downsampling has occurred. Adaptive resolution changes enable selective quality improvement 

in specific regions [280]. The process involves several steps: storing current camera settings to 
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maintain the user perspective, calculating subvolume dimensions on the basis of downsampled 

data, cropping the relevant region from the original resolution data, creating a high-resolution 

subvolume, rerendering the region with its original resolution, and finally restoring camera 

settings to reflect the updated high-resolution view. 

The methodology of the LOD algorithm, which underpins the preprocessing phase and supports 

these refinements, is provided in Algorithm 5.1. This pseudocode provides a structured 

overview of the processes involved, from initialization and volume preparation to progressive 

LOD rendering and final visualization. 

5.4 Automated Risk Classification of PAD 

5.4.1 Real-Time Dynamic Illumination 

The proposed framework integrates an advanced real-time dynamic illumination model to 

enhance the visualization of vascular structures, especially in PAD diagnostics. This 

illumination approach uses Perlin noise to simulate the dynamic light direction and a damped 

harmonic oscillator to generate realistic variations in light intensity over time [281]. These 

dynamic lighting techniques improve depth perception, enhance the realism of vascular 

geometry, and enable a detailed visualization of intricate anatomical structures. 

The dynamic behavior of the light is controlled through mathematical formulations that adapt 

in real time on the basis of user-defined parameters. The light direction is calculated using a 

frequency-controlled noise factor, ensuring smooth and natural transitions. This is vital for 

achieving enhanced realism in visualizing complex vascular geometries. On the other hand, the 

light intensity is modulated using a damped harmonic oscillator model to introduce natural 

decay and oscillatory effects [282]. Together, these techniques provide a highly realistic 

simulation of lighting, significantly improving the perception of depth and texture in medical 

imaging applications. 

Dynamic Light Direction [283]: The light direction vector 𝐿(𝑡) is computed as: 

𝐿(𝑡) =  [

sin(𝜔𝑡) + 0.2 𝜂(𝑡)

cos(𝜔𝑡) − 0.2 𝜂(𝑡)

sin(0.5𝜔𝑡)
], (5.10) 
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Algorithm 5.1 Level of detail (LOD) optimization for efficient WebGL volume rendering. 

1. Function InitializeSystem(): 

2.      Initialize WebGL 2.0: 

3.          WebGL ← initializeWebGL2() 

4.          if not WebGL.isCompatible(): 

5.              terminate("WebGL 2.0 not supported") 

6.      Query hardware constraints: 

7.          maxTextureSize ← queryMax3DTextureSize() 

8.      Allocate memory and compute chunk size: 

9.          heapMemory ← getTotalHeapMemory() 

10.         maxUploadMemoryMB ← allocateMemory(heapMemory * 0.75) 

11.         chunkSize ← computeChunkSize(maxUploadMemoryMB, maxTextureSize) 

12. Function PrepareVolumeData(): 

13.     Load and validate medical data: 

14.         medicalData ← loadMedicalData("DICOM/NIfTI") 

15.         if not validateDimensions(medicalData, WebGL.limits): 

16.             terminate("Data dimensions exceed WebGL limits") 

17.     Apply LOD downsampling and partition volume: 

18.         downsampledData ← applyLODDownsampling(medicalData) 

19.         partitionedVolume ← partitionVolume(downsampledData, chunkSize) 

20. Function RenderProgressiveLOD(): 

21.     while not allChunksLoaded(): 

22.         Stream image chunks based on GPU capacity: 

23.             imageChunks ← streamChunks(partitionedVolume, GPU.capacity) 

24.         Detect ROI and refine resolution: 

25.             ROI ← detectROI(imageChunks) 

26.             replaceDownsampledRegions(ROI, medicalData) 

27.         Apply LOD interpolation for seamless transitions: 

28.             applyLODInterpolation(imageChunks) 

29. Function OptimizeGPUAndMemory(): 

30.     while rendering: 

31.         Monitor GPU load and adjust LOD dynamically: 

32.             if monitorGPULoad() > threshold: 

33.                 adjustLODDynamically() 

34. Function FinalizeVisualization(): 

35.     Convert processed data to VTK and apply color mapping: 

36.         renderData ← applyLODColorMapping(convertToVTK(partitionedVolume)) 

37.     Render final 3D volume: 

38.         render3DVolume(renderData) 
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where the noise factor 𝜂(𝑡) is defined as: 

𝜂(𝑡) = sin(𝜔𝑡) ⋅ cos(𝜔𝑡), (5.11) 

where 𝜔 is the light frequency, which is defined by the user input, and where 𝑡 is the current 

time. 

Dynamic Light Intensity: The light intensity 𝐼(𝑡) is modeled as: 

𝐼(𝑡) = 𝐼0 + 𝐴 ⋅ 𝑒−β𝑡 ⋅ sin(α𝑡), (5.12) 

where 𝐼0 is the base intensity, 𝐴 is the amplitude of oscillation, 𝛽 is the damping factor, and 𝛼 

is the angular frequency. 

5.4.2 Plaque density analysis 

To quantitatively assess the extent of plaque accumulation within peripheral arteries, a voxel-

based plaque density analysis was conducted [284]. This method uses the intensity values 

derived from Hounsfield units (HUs) in CT images to segment and classify vascular tissues, 

enabling a precise evaluation of plaque burden [285]. The analysis hinges on defining specific 

HU thresholds to categorize voxels into calcified plaque, soft plaque, and vascular tissue 

regions. 

Thresholding: The classification of voxels is guided by predefined HU ranges as follows: 

Vascular Tissue: 45 ≤ 𝐻𝑈 ≤ 300, (5.13) 

Calcified Plaque: 130 ≤ 𝐻𝑈 ≤ 300, (5.14) 

Soft Plaque: 50≤ 𝐻𝑈 < 130, (5.15) 

This thresholding mechanism ensures the accurate segregation of vascular elements, allowing 

for the extraction of biomarkers associated with arterial health and disease. 
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Plaque density calculation: The plaque density (𝜌𝑝) is computed as the ratio of plaque voxels 

(both calcified and soft) to the total vascular voxels within the specified ROI [286]. The formula 

for calculating plaque density is as follows: 

𝜌𝑝 =
𝑁𝑐  +  𝑁𝑠

𝑁𝑣
, (5.16) 

where 𝑁𝑐 is the number of calcified plaque voxels, 𝑁𝑠 is the number of soft plaque voxels, and 

𝑁𝑣 is the total number of vascular tissue voxels. 

This metric provides a quantitative measure of atherosclerotic plaque burden, offering critical 

insights into the severity and progression of PAD. By combining HU-based segmentation with 

this density calculation, the framework supports enhanced diagnostic precision and risk 

stratification. 

5.4.3 Vascular Curvature Analysis 

The analysis of vascular curvature is crucial for evaluating arterial deformation and identifying 

regions subjected to high morphological stress, which are significant indicators of disease 

severity and progression [287]. By extracting a sequence of centerline points 𝑃𝑖−1, 𝑃𝑖, and 𝑃𝑖+1 

from the arterial geometry, the local curvature at each point can be calculated. This approach 

provides a detailed quantification of the arterial structure, enabling the detection of irregularities 

and potential risk zones. 

The curvature 𝑘𝑖 at a specific centerline point 𝑃𝑖 is determined by the angle between the vectors 

connecting consecutive centerline points [288]. It is expressed mathematically as: 

𝑘𝑖 = arccos(
𝑣1⃗⃗⃗⃗  ⃗ ⋅ 𝑣2⃗⃗⃗⃗  ⃗

|𝑣1⃗⃗⃗⃗  ⃗||𝑣2⃗⃗⃗⃗  ⃗|
), (5.17) 

𝑣1⃗⃗⃗⃗ = 𝑃𝑖 − 𝑃𝑖−1, (5.18) 

𝑣2⃗⃗⃗⃗ = 𝑃𝑖+1 − 𝑃𝑖, (5.19) 

where 𝑣1⃗⃗⃗⃗  is a vector from the previous point to the current point, 𝑣2⃗⃗⃗⃗  is a vector from the current 

point to the next point, and ‖𝑣1⃗⃗⃗⃗ ‖, ‖𝑣2⃗⃗⃗⃗ ‖ are the magnitudes of vectors 𝑣1⃗⃗⃗⃗  and 𝑣2⃗⃗⃗⃗ , respectively. 
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Average Curvature Calculation [289]: To evaluate the overall curvature along the vascular 

centerline, the average curvature 𝑘̅ is computed as the mean of all individual curvature values: 

𝑘̅ =
∑ 𝑘𝑖

𝑁−1
𝑖=1

𝑁 − 2
, (5.20) 

where 𝑁 is the total number of centerline points. 

This metric provides a comprehensive assessment of arterial shape irregularities, aiding in the 

identification of critical morphological changes associated with vascular diseases. By 

integrating curvature analysis into the diagnostic process, this method enhances the precision 

and reliability of disease characterization. 

5.4.4 PAD Risk Classification 

PAD risk classification integrates both plaque density and vascular curvature metrics [290], 

leveraging threshold-based decision-making to stratify patients into high- or low-risk 

categories. This approach ensures a systematic and quantifiable framework for early 

identification and intervention in patients susceptible to PAD. 

The framework uses predefined thresholds: the plaque density threshold (𝜌𝑝,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.3) 

and the curvature threshold (𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0.5). The classification rule is mathematically 

expressed as: 

𝑅𝑖𝑠𝑘 𝐿𝑒𝑣𝑒𝑙 =  {
𝐻𝑖𝑔ℎ 𝑅𝑖𝑠𝑘, 𝑖𝑓 𝜌𝑝 > 𝜌𝑝,𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑜𝑟 𝑘̅  >  𝑘𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐿𝑜𝑤 𝑅𝑖𝑠𝑘, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
, (5.21) 

where 𝜌𝑝 represents the computed plaque density and 𝑘̅ denotes the average vascular curvature. 

This methodology provides an efficient and robust tool for PAD risk assessment, enabling 

clinicians to prioritize patients who may benefit from advanced diagnostic and therapeutic 

interventions. The threshold-based approach simplifies the integration of the algorithm into 

real-time diagnostic systems, thereby enhancing clinical decision-making processes. 
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5.5 Validation and Performance Evaluation 

To ensure the performance and efficiency of DECODE-3DViz, a comprehensive validation 

approach comprising analytical evaluation, clinical evaluation, and user feedback via a 

questionnaire is employed. Each method provides a distinct perspective on the system's 

capabilities, offering a thorough and multifaceted assessment. 

5.5.1 Analytical evaluation 

This evaluation focuses on quantitative performance metrics, including the rendering time (ms), 

frame refresh rate (FPS), and GPU memory usage (MB), which are essential for assessing 

computational efficiency, real-time interactivity, and resource optimization when handling 

large-scale medical imaging datasets [291]. The rendering time was assessed via browser 

developer tools (DevTools) available from multiple web browsers. The performance panel 

within the console was used to capture and profile frame execution times, providing a precise 

evaluation of rendering efficiency. FPS and GPU memory usage were measured through the 

rendering tab in DevTools, specifically the frame rendering stats feature. 

5.5.2 Clinical evaluation 

This assessment evaluated the system's effectiveness in a real-world clinical setting and 

involved specialists in vascular and endovascular surgery who utilized DECODE-3DViz to 

review and diagnose peripheral artery CT images. The clinical evaluation is conducted to 

determine how well the tool aids in accurate diagnosis, its usability within the clinical workflow, 

and its overall impact on patient care. 

5.5.3 User feedback via questionnaire 

User satisfaction and preferences are gathered through a questionnaire, which compares images 

generated by DECODE-3DViz with those from other state-of-the-art (SoTA) tools, such as 

IMAGE-IN [242], BlueLight [100], VolView [114], and Glance [292]. Feedback is collected 

on several visual characteristics via a Likert scale ranging from 1 (very unsatisfied) to 5 (very 

satisfied) [293]. The questionnaire covers three main areas: visual characteristics (including 

structure definition, depth perception, texture appearance, fidelity, and diagnostic ability), 

reliability ratings, and recommendations. In addition, open-ended questions invite participants 

to express their preferences for DECODE-3DViz and suggest improvements, providing 

valuable qualitative feedback to enhance the tool's capabilities. To ensure robust quantitative 

analysis, the collected data were subjected to statistical evaluation via analysis of variance 
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(ANOVA) [294] to determine the significance of differences in user ratings between the tools. 

ANOVA was employed to test the null hypothesis that there are no significant differences in 

the mean ratings across the tools. The F-statistic, calculated as the ratio of between-group 

variance to within-group variance, was used to assess the overall significance of the differences. 

The between-group variance (SSB) measures the variability of the group means from the overall 

mean, whereas the within-group variance (SSW) captures the variability of individual ratings 

within each group. The F-statistic is computed as: 

𝐹 =
𝑆𝑆𝐵 (𝑘 − 1)⁄

𝑆𝑆𝑊 (𝑁 − 𝑘)⁄
, (5.22) 

where 𝑘 is the number of tools, 𝑁 is the total number of observations, SSB is the sum of squares 

between groups, and SSW is the sum of squares within groups. The degrees of freedom for the 

F-statistic are 𝑑𝑓1 = 𝑘 − 1 (between groups) and 𝑑𝑓1 = 𝑘 − 1 (within groups). The resulting 

p-value, derived from the F-distribution, indicates the probability of observing the data if the 

null hypothesis is true. A p-value < 0.05 was considered statistically significant, suggesting that 

at least one tool's mean rating significantly differed from the others. 

5.6 Results 

To evaluate the performance of DECODE-3DViz, tests were conducted via two systems with 

distinct hardware specifications. The first system was a laptop running Windows 11 Pro 64-bit, 

equipped with an Intel(R) Core (TM) i7-11800H CPU at 2.30 GHz with 16 cores, 16 GB of 

memory, and an NVIDIA GeForce RTX 3070 GPU. The display rate for this system was 144 

Hz. The second system was a desktop running Windows 10 Pro 64-bit, featuring an Intel(R) 

Core (TM) i7-9700F CPU at 3.00 GHz with 8 cores, 32 GB of memory, and an NVIDIA 

GeForce RTX 3080 GPU. These hardware configurations were selected to assess DECODE-

3DViz's performance across both mobile and stationary platforms, providing insights into its 

ability to handle high-resolution medical imaging data. 

5.6.1 Effects of Visualization Parameters on Peripheral Artery CT Images 

DECODE-3DViz uses key visualization parameters, including the sample distance, gradient, 

and scalar opacity, to significantly enhance the quality of peripheral artery CT images: 
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a) Sample Distance (0.1 to 1): Controls the interval for sampling data points along rays. Lower 

values provide greater detail and smoother transitions, whereas higher values prioritize 

performance with reduced detail. 

b) Gradient (0 to 1): Enhances shading and depth perception, with higher values increasing 

contrast and highlighting anatomical features such as arteries. 

c) Scalar Opacity (0 to 255): Regulates transparency, allowing for better visualization of 

internal structures at lower values and emphasizing specific regions at higher values. 

Fine-tuning these parameters enable DECODE-3DViz to deliver high-quality, diagnostic-grade 

visualizations that enhance image clarity and utility for clinical evaluation. 

Figure 5.4 illustrates the effects of various visualization parameters on the CT images of Patient 

#17, demonstrating the versatility of DECODE-3DViz across different settings: 

• Figure 5.4(a): High-detail rendering with a sample distance of 0.1 and a gradient of 0.6, 

enhancing peripheral artery visibility with interactive adjustments for regions of interest. 

• Figure 5.4(b): Focused on the feet, maintaining high detail with the same sample distance 

and gradient settings as in Figure 5.4(a). 

• Figure 5.4(c): Comprehensive assessment of the peripheral artery system relative to the 

skeletal structure, using a sample distance of 0.75 and a gradient of 0.6. 

• Figure 5.4(d): Detailed visualization with strong contrast to differentiate vascular structures, 

achieved with a sample distance of 0.1 and a gradient of 1. 

• Figure 5.4(e): Balancing detail and performance, focused on the upper thighs and pelvic 

region, with a sample distance of 0.5 and a gradient of 1. 

• Figure 5.4(f): Provides detailed, contrasting views of the peripheral arteries via the same 

parameters as those used in Figure 5.4(e). 

• Figure 5.4(g): Impact of combined parameters (sample distance of 0.3, gradient of 1, and 

scalar opacity of 170) on visualization quality and detail, particularly for the pelvic arteries. 

This comprehensive set of images highlights the versatility and precision of DECODE-3DViz 

in rendering detailed vascular anatomy. 
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5.6.2 Level of detail optimization in large-scale data management 

To efficiently manage large volumetric datasets and prevent browser crashes, this methodology 

partitions the data into manageable chunks, as demonstrated by the use of the laptop and desktop 

systems in the evaluation and across the three case studies shown in Figure 5.5 and Table 5.1. 

• Case Study 1: This case study, a series for Patient #2, focused on the aorto-iliac segment, 

allowing detailed visualization of the abdominal aorta and iliac arteries. For this case, the 

dataset was divided on the basis of WebGL's texture size limits and JavaScript heap size, 

optimizing memory use and maintaining responsiveness. Downsampling with the LOD 

algorithm was applied only when necessary to preserve crucial details, as shown in Figure 

5.5(a). The pipeline allows for the rendering of ROIs at their original resolution, enhancing 

diagnostic capabilities. Figures 5.5(b) and (c) illustrate the progression from initial 

rendering to high-detail rerendering, revealing finer vascular structures crucial for 

diagnosis. 

 

Figure 5.4 Visualization and Parameter Effects on Peripheral Artery CT Images of Patient 

#17: (a) Top Series Axial View, (b) Bottom Series Axial View, (c) Coronal View, (d) 

Cropped Coronal View, (e) Cropped Front Coronal View of Region of Interest, (f) Cropped 

Back Coronal View of Region of Interest, (g) Enhanced Detailed View of Pelvic Arteries 

with Transfer Function Adjustments. 
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• Case Study 2: This case study, a series involving Patient #17, focused on the femoral 

arteries, specifically the distal parts of the superficial femoral arteries as they passed through 

the Hunter canal. As shown in Figures 5.5(d-f), this case study applies similar chunking and 

downsampling methods to ensure that the intricate anatomical details are clearly visualized. 

The LOD algorithm enables the detailed rendering of the arteries within their surrounding 

anatomical context, improving visualization and diagnostic interpretation of arterial 

segments that are critical for assessing peripheral vascular diseases. 

• Case Study 3: This case study, a series for Patient #21, examines the popliteal arterial 

segment, particularly focusing on the knee area and the P1 segment of the popliteal artery. 

As illustrated in Figures 5.5(g-i), this case study uses chunked and downsampled datasets 

to maintain high resolution while rendering complex arterial pathways. The rerendered 

ROIs in this segment provided a precise view of the arterial structures, supporting accurate 

assessment and planning for interventions. 

This progressive streaming and LOD volume rendering approach effectively manages large 

datasets, minimizes resolution loss, and ensures high-fidelity, interactive 3D visualizations, 

greatly enhancing the diagnostic accuracy of WebGL-based medical imaging tools. 

 

 

Figure 5.5 Visualization Results of Progressive Streaming and Level of Detail (LOD) 

Volume Rendering for Three Case Studies (a-c: Case Study 1; d-f: Case Study 2; g-i: Case 

Study 3). 
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Table 5.1 Parameters and results of progressive streaming and level of detail volume 

rendering for three case studies. 

Parameters Case study 1 Case study 2 Case study 3 

Maximum 3D Texture Size 2048 2048 2048 

Computed Chunk Size 512 512 512 

Initial JS Heap Size Limit 

(MB) 
4095.75 4095.75 4095.75 

Total Chunks to Process 4 5 4 

Processed Chunks (1/5) - Used 

JS Heap Size (MB) 
868.8 869.46 871.43 

Processed Chunks (2/5) - Used 

JS Heap Size (MB) 
1636.81 1637.48 1639.45 

Processed Chunks (3/5) - Used 

JS Heap Size (MB) 
2404.21 2405.53 2407.49 

Processed Chunks (4/5) - Used 

JS Heap Size (MB) 
2558.64 3173.04 3164.36 

Processed Chunks (5/5) - Used 

JS Heap Size (MB) 
- 3459.37 - 

Dimensions of Combined 

Original Data 
[512, 512, 1639] [512, 512, 2239] [512, 512, 2041] 

Dimensions of Vol_img 

downsampled 
[320, 320, 1024] [235, 235, 1024] [257, 257, 1024] 

Dimensions of ROI_Vol_img 

downsampled 
[320, 190, 474] [235, 98, 520] [257, 124, 492] 

Dimensions of ROI_Vol_img 

original 
[512, 304, 761] [512, 216, 1138] [512, 248, 982] 

5.6.3 Effect of Light Controls on CT DICOM Peripheral Artery Imaging 

Dynamic light controls play a pivotal role in enhancing the visualization of CT DICOM images, 

particularly for the evaluation of PADs. Figure 5.6 illustrates the impact of three critical 

parameters—light rotation speed, base intensity, and intensity amplitude—on the imaging 

quality and clinical interpretability of vascular structures. These parameters enable tailored 

visualization, facilitating the identification of arterial abnormalities and enhancing diagnostic 

accuracy. The user interface, as shown in Figure 5.6(a), provides precise control over the 

lighting parameters. The light rotation speed, initially set to 0.001, governs the dynamic 

transitions of light over vascular surfaces, aiding in the identification of calcified plaques and 

soft tissue variations. The base intensity, with a default value of 0.5, modulates the ambient 

brightness, ensuring balanced contrast across the vascular and surrounding regions. The 

intensity amplitude, also set to 0.5 by default, introduces oscillatory variations in lighting, 

enhancing depth perception and emphasizing surface textures. Figure 5.6(b) presents the full 
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3D CT volume of Patient 9 under the default lighting parameters. This configuration achieves 

balanced illumination, enabling an overall assessment of the vascular geometry.  

Focused visualization of the pelvic region is shown in Figure 5.6(c), (d), and (e) under dynamic 

lighting with the default rotation speed (0.001), base intensity (0.5), and intensity amplitude 

(0.5). In Figure 5.6(c), the rotational light highlights the arterial walls and surrounding tissues, 

aiding in the identification of subtle vascular deformities. Figure 5.6(d) and Figure 5.6(e) further 

enhance depth perception and contrast, improving differentiation between calcified plaques and 

soft tissues, which is essential for precise plaque characterization and arterial health assessment. 

In Figure 5.6(f), the light rotation speed is slightly increased to 0.002, the base intensity is 

reduced to 0, and the intensity amplitude is set to 1. This setup generates sharper contrasts and 

pronounced shadowing, emphasizing the contours of the arterial walls. Figure 5.6(g) shows the 

maximum light rotation speed (0.01) and intensity amplitude (1), with the base intensity 

maintained at 0. Rapid light transitions accentuate surface textures and regions of high 

curvature, offering enhanced visualization of complex vascular deformations. However, rapid 

oscillations may introduce artifacts, potentially complicating the evaluation of smaller or less 

 

Figure 5.6 Interactive Visualization of Peripheral Artery CT Imaging for Patient 9 with 

Dynamic Light Controls; (a) User interface for light control parameters; (b) Full CT 

volume visualization; (c-e) Region of interest under dynamic light variation; (f) Increased 

light rotation speed and maximum intensity amplitude; (g) Maximum light rotation speed 

and intensity amplitude; (h) Static lighting with medium intensity. 
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prominent features. Figure 5.6(h) shows the effect of static lighting, which is achieved with a 

rotation speed of 0, a base intensity of 0.5, and an intensity amplitude of 0.5. Uniform and stable 

lighting facilitates a detailed evaluation of the ROI, supporting the analysis of arterial wall 

integrity, plaque distribution, and vascular morphology without distractions from dynamic 

transitions. 

5.6.4 Validation of the Proposed Framework for PAD Risk Classification 

The initial results of the proposed framework, as presented in Table 5.2, provide a detailed 

quantitative analysis of plaque density and vascular curvature metrics for five patients 

diagnosed with PAD. These metrics represent preliminary validation of the framework’s ability 

to assess vascular abnormalities and classify PAD risk effectively. 

Table 5.2 Quantitative Results of Plaque Density and Vascular Curvature Metrics Across 

Patients. 

Patient 

ID 

Total 

Vascular 

Voxels 

Calcified 

Plaque 

Voxels 

Soft 

Plaque 

Voxels 

Plaque 

Density 

Total 

Centerline 

Points 

Average 

Curvature 

PAD Risk 

Classification 

1 5534139 798390 3810908 0.8329 299684 1.132 High Risk of PAD 

2 4853409 1178950 2975082 0.8559 218375 1.4366 High Risk of PAD 

3 4551532 1155706 2952517 0.9026 234276 1.2712 High Risk of PAD 

4 13067145 1463447 10616052 0.9244 234132 1.5417 High Risk of PAD 

5 3499743 721625 2102619 0.807 255167 1.1786 High Risk of PAD 

The plaque density (𝜌𝑝) values ranged from 0.807 for Patient 5 to 0.924 for Patient 4. Elevated 

plaque density values indicate significant arterial plaque accumulation, reflecting advanced 

disease stages. For example, Patient 4, with the highest plaque density of 0.924, presented with 

severe arterial obstruction and pronounced disease progression. The analysis of vascular 

curvature revealed average curvature values (𝑘̅) ranging from 1.132 (Patient 1) to 1.541 (Patient 

4). These values are calculated from the total centerline points, with the highest count of 

299,684 observed in Patient 1. Higher curvature values signify tortuous arterial paths, 

increasing hemodynamic stress and the risk of vascular complications. Patient 4, who displays 

both the highest curvature (𝑘̅ = 1.541) and plaque density (𝜌𝑝 = 0.924), is indicative of an 

advanced disease state with substantial vascular irregularities. 

All five patients were classified as being at high risk of PAD, according to the framework’s 

thresholds for plaque density (> 0.3) and vascular curvature (> 0.5). These results 
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demonstrate the framework’s capacity to quantify critical vascular features and classify PAD 

severity effectively in its initial application. 

5.6.5 Analytical Performance and Evaluation 

This section compares the performance of DECODE-3DViz with that of other visualization 

tools (IMAGE-IN, BlueLight, VolView, and Glance) in the context of 3D WebGL volume 

rendering for CT peripheral artery images. Key metrics, including render time, FPS, and GPU 

memory usage, are evaluated across laptop and desktop environments. DECODE-3DViz 

demonstrates superior efficiency and effectiveness, outperforming the other tools in rendering 

high-quality medical images. 

Table 5.3 presents a detailed comparison, showing that DECODE-3DViz consistently achieves 

faster render times, lower GPU memory usage, and robust FPS performance. Figure 5.7 shows 

the FPS performance, where DECODE-3DViz maintains a high FPS on both laptops (Figure 

5.7(a)) and desktops (Figure 5.7(b)), highlighting its ability to deliver smooth and fluid 

visualizations. In particular, DECODE-3DViz outperforms IMAGE-IN and BlueLight, whereas 

Glance has the highest FPS, indicating superior optimization on desktops. 

Table 5.3 Analytical performance evaluation metrics of DECODE-3DViz and state-of-the-art 

visualization tools for 3D WebGL volume rendering (mean ± std). 

Tool DECODE-3DViz IMAGE-IN BlueLight VolView Glance 

Laptop Render Time 

(ms) 
26.88±2.65 41.35±3.88 604.06±108.73 42.73±4.74 73.74±5.61 

Desktop Render 

Time (ms) 
48.07±2.36 79.57±3.76 688.04±39.35 81.52±5.32 106.93±4.27 

Laptop Refresh Rate 

(FPS) 
115.2 108.5 113.4 90.4 139.5 

Desktop Refresh 

Rate (FPS) 
134.03 128.95 110.89 120.99 143.57 

Laptop GPU 

memory usage (MB) 
3.4 7 108.9 14.4 20 

Desktop GPU 

memory usage (MB) 
2.5 4.12 108.6 11.03 22.61 
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5.6.6 Clinical evaluation 

The DECODE-3DViz tool uses an LOD algorithm, including the processes of rendering and 

rerendering regions of interest (ROIs), to provide detailed and clinical views of peripheral 

arterial segments. This capability is crucial for evaluating potential operative strategies and 

enhancing diagnostic accuracy. In Case Study 1 (Figure 5.5(a-c)), DECODE-3DViz facilitated 

clear visualization of the aortoiliac segment, effectively differentiating adjacent structures. This 

visualization provided critical insights into the diameters and wall morphology of the arteries 

and the extent of atherosclerotic, primarily calcified, lesions. In addition, the tool offered a clear 

view of both larger and smaller arterial branches, particularly around the femoral bifurcation. 

This is advantageous for planning surgical dissections and assessing the development of the 

collateral network. 

In Studies 2 (Figures 5.5(d-f)) and 3 (Figures 5.5(g-i)), the focus was on the femoral‒popliteal 

arterial segment, specifically the distal part of the superficial femoral artery, as it traverses the 

adductor (Hunter) canal and the P1 segment of the popliteal artery. DECODE-3DViz has 

demonstrated its ability to track the arterial pathway and its anatomical relationships with high 

fidelity and texture quality. This detailed level of visualization is instrumental in assessing and 

planning strategies for treating occlusive disease in the femoral‒popliteal segment. The 

rerendered ROIs, processed through the LOD algorithm, provided a more precise view of the 

arterial structures and their relationships with surrounding tissues, enhancing the tool's clinical 

utility in medicine. 

The ability of DECODE-3DViz to adapt to other vascular structures supports its potential use 

in coronary artery imaging. The system's selective rerendering ensures high-resolution 

  
(a)  (b)  

Figure 5.7 Minimum and Maximum Refresh Rate Performance of Visualization Tools on: 

(a) Laptop and (b) Desktop. 
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visualization of regions requiring detailed assessment, making it suitable for evaluating 

aneurysms, stenotic lesions, and vessel integrity in different anatomical contexts. In addition, 

its ability to process large volumetric datasets with adaptive resolution allows its extension to 

other anatomical regions, such as thoracic aortic dissection assessment. Furthermore, the 

system’s ability to distinguish between high-density structures makes it well suited for bone 

visualization, including orthopedic assessments, fracture detection, and skeletal deformity 

analysis. This adaptability highlights its potential in neurology, cardiology, orthopedics, and 

oncology for precise 3D visualization of complex anatomical structures. 

5.6.7 Questionnaire and Assessment Protocol 

The evaluation of DECODE-3DViz was conducted with a cohort of 12 participants (four from 

the University of Ioannina, Greece; one from the University of Patras, Greece; one from the 

University of Milan, Italy; two from the University of Kragujevac, Serbia; one from the 

University of Montpellier, France; and three from AGH University of Krakow, Poland) from 

various professional backgrounds, including researchers, software engineers, PhD students, 

biomedical engineers, professors, and clinicians. The participants reviewed and assessed images 

generated by DECODE-3DViz alongside other state-of-the-art tools (IMAGE-IN, BlueLight, 

VolView, and Glance), providing comprehensive feedback on multiple visual attributes, as 

detailed in Table 5.4, using a structured questionnaire (Supplementary Questionnaire 1). 

5.6.7.1 Visual characteristics 

DECODE-3DViz consistently outperformed the other tools across all visual characteristics. 

Statistical analysis via ANOVA revealed significant differences in user ratings between the 

tools. For the definition of structure, the ANOVA results F(4,15) = 164.44, p < 0.001, indicated 

that DECODE-3DViz (mean = 4.37 ± 0.15) significantly outperformed IMAGE-IN (mean = 

2.68 ± 0.16), BlueLight (mean = 2.12 ± 0.08), VolView (mean = 3.31 ± 0.11), and Glance (mean 

= 3.72 ± 0.16). Similarly, for depth perception, DECODE-3DViz excelled (mean = 4.26 ± 0.12) 

in representing spatial relationships within volumetric data, enhancing the understanding of 

complex anatomical features. The participants also praised DECODE-3DViz for its texture 

appearance (mean = 4.12 ± 0.12), noting the realistic surface textures that improved the visual 

realism and quality of medical images. In terms of fidelity, DECODE-3DViz demonstrated a 

high level of accuracy (mean = 4.30 ± 0.12) in depicting real peripheral artery tissue, which is 

crucial for diagnostic reliability. Finally, for diagnostic ability, DECODE-3DViz (mean = 3.87 

± 0.12) provided more diagnostically useful visualizations than the other tools did, further 
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enhancing its utility in medical applications. The ANOVA results confirmed these differences 

as statistically significant (p<0.001 for all characteristics), underscoring the superior 

performance of DECODE-3DViz. 

5.6.7.2 Additional Questions 

Reliability of DECODE-3DViz: Participants rated the reliability at 4.41, which was 

significantly higher than the SoTA average of 2.66 (p<0.001), indicating strong confidence in 

its performance and consistency. Recommendation of DECODE-3DViz: DECODE-3DViz 

received a high recommendation score of 4.5, whereas the SoTA average was 2.66 (p<0.001), 

reflecting strong user preference and high satisfaction. 
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Table 5.4 Likert’s scale evaluation of volume rendering across Peripheral arteries structures and characteristics from the DECODE-

3DViz and State-of-the-Art Tools. 

Characteristics Tools Iliac 

Artery 

Femoral 

Artery 

Popliteal 

Artery 

Tibial 

Artery 

Mean ± SD 

Definition of 

Structure 

DECODE-3DViz 4.5 4.41 4.41 4.16 4.37 ± 0.15 

IMAGE-IN 2.91 2.6 2.68 2.53 2.68 ± 0.16 

BlueLight 2.2 2.2 2.05 2.05 2.12 ± 0.08 

VolView 3.17 3.42 3.31 3.36 3.31 ± 0.11 

Glance 3.59 3.75 3.6 3.97 3.72 ± 0.16 

Depth Perception DECODE-3DViz 4.33 4.41 4.16 4.16 4.26 ± 0.12 

IMAGE-IN 2.85 2.55 2.6 2.3 2.57 ± 0.14 

BlueLight 2.15 2.2 2.11 2.04 2.12 ± 0.07 

VolView 3.2 3.45 3.35 3.35 3.31 ± 0.11 

Glance 3.6 3.8 3.7 4.0 3.77 ± 0.16 

Texture Appearance DECODE-3DViz 4.25 4.25 4 4 4.12 ± 0.12 

IMAGE-IN 2.91 2.6 2.68 2.53 2.68 ± 0.16 

BlueLight 2.15 2.1 2.07 2.1 2.10 ± 0.07 

VolView 3.2 3.45 3.35 3.35 3.31 ± 0.11 

Glance 3.6 3.8 3.7 4.0 3.77 ± 0.16 

Fidelity DECODE-3DViz 4.41 4.41 4.25 4.16 4.30 ± 0.12 

IMAGE-IN 2.91 2.6 2.68 2.53 2.68 ± 0.16 

BlueLight 2.10 2.0 2.11 2.04 2.08 ± 0.07 

VolView 3.17 3.42 3.31 3.36 3.31 ± 0.11 

Glance 3.59 3.75 3.6 3.97 3.72 ± 0.16 

Diagnostic Ability DECODE-3DViz 4.0 4.0 3.75 3.75 3.87 ± 0.12 

IMAGE-IN 2.91 2.6 2.68 2.53 2.68 ± 0.16 

BlueLight 2.0 2.2 2.14 1.94 2.02 ± 0.10 

VolView 3.5 3.4 3.3 3.3 3.45 ± 0.11 

Glance 3.6 3.8 3.6 3.9 3.67 ± 0.16 
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5.6.7.1 Open-End Questions 

The participants highlighted several key strengths, such as the tool's reliability and superior 

performance on large datasets, producing clear and high-quality visualizations of the peripheral 

vasculature. They noted the detailed and accurate representation of anatomy and pathology, 

particularly in viewing the iliac and femoral arteries. Suggestions for improvement included 

adding rendering filters for visualizing different tissue types, which would increase the utility 

of DECODE-3DViz in medicine. 

5.7 Discussion 

The performance of DECODE-3DViz was evaluated against that of SoTA visualization tools, 

including IMAGE-IN, BlueLight, VolView, and Glance, which focus on render time, FPS, and 

GPU memory usage across laptop and desktop environments. As it is shown in Figure 5.8, 

DECODE-3DViz significantly outperforms the other tools in rendering time, demonstrating a 

93% improvement over BlueLight on both laptops (Figure 5.8(a)) and desktops (Figure 5.8(b)), 

with notable advantages over IMAGE-IN, VolView, and Glance. In terms of FPS, DECODE-

3DViz maintains high performance on laptops (Figure 5.8(c)), outperforms IMAGE-IN and 

 

Figure 5.8 Performance Comparison of DECODE-3DViz and State-of-the-Art 

Visualization Tools which are IMAGE-IN, BlueLight, VolView, and Glance. (a) Render 

Time on Laptop, (b) Render Time on Desktop, (c) Frames Per Second (FPS) on Laptop, (d) 

FPS on Desktop, (e) GPU Memory Usage on Laptop, and (f) GPU Memory Usage on 

Desktop.  
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VolView, and achieves competitive results with Glance. On desktop, as shown in Figure 5.8(d), 

DECODE-3DViz ensures smooth and responsive visualizations, which are crucial for detailed 

analysis and diagnostics. 

In addition, DECODE-3DViz exhibits exceptional GPU memory efficiency, using significantly 

less GPU memory than BlueLight 97% less on laptops (Figure 5.8(e)) and similarly reducing 

usage on desktops (Figure 5.8(f)). This efficiency makes DECODE-3DViz accessible with less 

powerful hardware, enhancing its usability and accessibility for real-time 3D visualization of 

large-scale peripheral artery CT images in web browsers. 

5.7.1 Comparative evaluation of DECODE-3DViz and other modalities on a large-scale 

dataset 

The evaluation of DECODE-3DViz against other SoTA visualization tools, which use large-

scale CT datasets from patients #5 (series 6) and #7 (series 5), is shown in Table 5.5 and detailed 

in Table 5.6.  

a) Rendering Efficiency and Performance 

DECODE-3DViz significantly outperforms other tools, especially BlueLight, by reducing 

rendering times by approximately 98% on both laptops and desktops. It also provided smoother 

and more responsive visualizations, with FPS improvements of 44% on laptops and 131% on 

desktops. 

b) GPU memory usage and resource efficiency 

Compared with BlueLight, the tool demonstrated exceptional GPU memory efficiency, with 

96.7% less memory on laptops and 97.4% less memory on desktops. This efficiency enhances 

the performance on less powerful hardware, expanding the accessibility of DECODE-3DViz. 

 

 

Table 5.5 Large-Size Dataset Specification for DECODE-3DViz validation and 

comparison with others. 

Patient 

ID 
Dimension Size 

Bits 

stored 

Slice 

thickness 

Spacing 

bet slice 

Pixel spacing 

(mm) 

5 (512, 512, 2299) 1.13 

GB 
16 

0.625 

mm 
0.625 mm 

0.955078 

7 (512, 512, 2305) 0.912109 
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c) Challenges in Processing Large-Scale Datasets 

VolView experienced a "range error: invalid array buffer length," indicating issues with large 

datasets. IMAGE-IN and Glance failed to render these datasets, whereas BlueLight successfully 

rendered Patient #7's dataset. These difficulties, indicated by the 'x' values in Table 5.6, 

underscore the limitations of these tools due to high computational demands and inadequate 

memory management, in contrast with DECODE-3DViz's robust handling of extensive data 

volumes.
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Table 5.6 Evaluation Metrics of DECODE-3DViz and State-of-the-Art Visualization Tools on Large-Size Dataset (mean ± std). 

Laptop  

Metrics 
Patient 

ID 

DECODE-

3DViz 
IMAGE-IN BlueLight VolView Glance 

Render Time (ms) 
5 41.8 ± 4.49 x x x x 

7 38.4 ± 1.20 x 2559 ± 157.02 x x 

Refresh Rate 

(FPS) 

5 138.74 ± 4.94 x x x x 

7 142.0 ± 1.47 x 96.38 ± 24.62 x x 

GPU memory 

usage (MB) 

5 3.14 x x x x 

7 3.1 x 94.7 x x 

Desktop 

Render Time (ms) 
5 54.6 ± 2.65 x x x x 

7 53.8 ± 2.85 x 3185.4 ± 394.7 x x 

Refresh Rate 

(FPS) 

5 135.62 ± 3.09 x x x x 

7 129.06 ± 8.92 x 58.6 ± 19.96 x x 

GPU memory 

usage (MB) 

5 2.6 x x x x 

7 2.6 x 101.64 x x 
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5.7.1 Innovations and Robustness in DECODE-3DViz 

DECODE-3DViz introduces significant advancements in web-based medical imaging 

visualization, particularly for handling large-scale datasets such as peripheral artery CT images. 

The system overcomes WebGL texture size limitations and browser memory constraints, which 

have traditionally impeded real-time visualization. Key innovations include progressive chunk 

streaming and dynamic LOD algorithms, optimizing memory usage and enabling high-

resolution rendering tailored to user interactions and the importance of specific regions. These 

features ensure smooth, detailed visualizations crucial for accurate diagnostics. DECODE-

3DViz outperforms other SoTA methods in rendering time, refresh rate, and GPU memory 

usage, highlighting superior GPU resource management. Its robust performance has been 

validated through comprehensive evaluations, confirming its efficiency in complex medical 

imaging tasks. Moreover, DECODE-3DViz's web-based accessibility distinguishes it from 

traditional tools, broadening the availability of high-quality medical visualizations to medical 

professionals and patients. 

5.7.2 Clinical impact of DECODE-3DViz in a real-world clinical setting 

DECODE-3DViz enhances diagnostic precision and intervention planning by providing high-

resolution, interactive views of peripheral artery CT images. Clinicians can assess complex 

pathologies such as atherosclerosis and stenosis with clarity, improving diagnostic accuracy and 

treatment efficacy. Surgical planning enables precise evaluation of arterial segments, 

facilitating accurate measurement of diameters and wall morphology, which is critical for 

assessing lesion severity and optimizing procedures. The tool supports noninvasive monitoring 

of disease progression and postoperative recovery by depicting arterial pathways with high 

fidelity. Its integration into digital workflows enhances real-time collaboration and 

multidisciplinary case discussions, streamlining decision-making in vascular diagnostics. By 

optimizing the diagnostic workflow, DECODE-3DViz accelerates image interpretation, 

reducing the time required for radiologists and vascular specialists to reach conclusions. This 

efficiency benefits triage and urgent interventions, ensuring quicker treatment decisions. 

Seamless integration with PACSs minimizes workflow disruptions, whereas enhanced 

visualization capabilities support telemedicine, allowing remote specialists to review cases 

efficiently and expand access to expert-driven diagnosis and treatment planning. Furthermore, 

DECODE-3DViz enables visualization of both vascular and osseous structures, enhancing 

orthopedic and vascular assessments by allowing simultaneous evaluation of arterial integrity 

and skeletal conditions. The advanced rendering pipeline ensures the precise differentiation of 
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vascular calcifications, fractures, and soft tissue structures, making it an effective tool for 

preoperative planning and post-treatment evaluation. 

DECODE-3DViz significantly enhances the detection and assessment of vascular 

abnormalities, including arterial stenosis, occlusions, and calcifications, by providing clinicians 

with detailed, high-resolution images for accurate interpretation. The ability to visualize both 

large arterial structures and finer vascular branches ensures a comprehensive evaluation of the 

PAD. One of DECODE-3DViz’s most impactful clinical applications is its role in telemedicine 

and remote diagnostics. The system's accessibility allows specialists to review cases remotely 

and provide expert opinions from various geographic locations. This feature is particularly 

beneficial for hospitals with limited vascular imaging expertise, enabling remote consultations 

with specialists to improve patient outcomes. 

5.7.3 Limitations and Future Work 

DECODE-3DViz currently processes datasets only in DICOM and NIfTI formats. In addition, 

advanced rendering filters for tissue differentiation, which are vital for distinguishing between 

similar intensity tissues such as bone, muscle, arterial, and adipose tissue, are lacking. 

Expanding the format support and integrating rendering filters would enhance the applicability 

and versatility of DECODE-3DViz, providing a more comprehensive solution for medical 

imaging visualization and analysis. Future work will focus on enhancing real-time volumetric 

rendering by integrating adaptive transfer functions to improve tissue segmentation and 

classification. Moreover, incorporating AI-driven automation for feature extraction and 

anomaly detection could further streamline clinical decision-making. A key focus will be on 

automated peripheral artery risk classification, leveraging ML models to assess arterial stenosis 

severity and predict potential occlusions. This automated risk assessment could aid clinicians 

in early disease detection and personalized treatment planning, reducing the likelihood of 

adverse cardiovascular events. Expanding cloud-based capabilities will facilitate multiuser 

collaboration and enable seamless access to imaging data across institutions, supporting broader 

clinical adoption and interoperability within modern healthcare infrastructures. 

5.8 Conclusions 

The development and implementation of DECODE-3DViz have enabled significant progress in 

medical imaging, particularly in visualizing peripheral artery CT images. This system adeptly 

addresses key challenges in rendering large-scale medical datasets on web platforms, 

overcoming WebGL texture size constraints and browser memory limitations. By using 
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advanced techniques such as data chunk streaming and the LOD algorithm, DECODE-3DViz 

dynamically adjusts resolution on the basis of user interaction and the importance of visualized 

regions, increasing both user engagement and visualization quality. This capability is invaluable 

for clinical experts, as it enhances diagnostic accuracy and supports detailed preoperative 

planning by delivering high-fidelity visualizations of complex vascular structures. The ability 

to manage extensive datasets without sacrificing performance or visual fidelity sets DECODE-

3DViz apart from existing solutions, offering a more robust and user-friendly tool for medical 

professionals. Future developments include the integration of advanced rendering filters for 

visualizing different tissue types, such as bone, muscle, and adipose tissue, thereby broadening 

the system's applicability across various medical scenarios. In addition, further optimization is 

needed to improve the system's scalability and efficiency in handling even larger datasets. 
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Chapter 6: DECODE: An Open-Source Cloud-Based Platform for the 

Noninvasive Management of Peripheral Artery Disease 
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6.1 Introduction 

This chapter presents the development and validation of DECODE, an open-source cloud-based 

platform designed to transform the noninvasive management of PAD. DECODE integrates DL-

powered segmentation, real-time 3D visualization, and finite element-based computational 

modeling within a unified cloud-native framework, addressing critical limitations of existing 

PAD diagnostic systems. Unlike fragmented solutions that lack comprehensive integration, 

DECODE seamlessly bridges AI-driven medical imaging, predictive analytics, and in-silico 

simulations to offer an automated, scalable infrastructure for vascular precision medicine [295]. 

The motivation behind developing DECODE lies in the increasing demand for advanced 

diagnostic tools that increase diagnostic accuracy, optimize treatment planning, and provide 
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personalized interventions for PAD. Traditional methods often rely on isolated systems with 

limited interoperability, manual processing, and a lack of real-time visualization, which can 

compromise diagnostic precision and clinical decision-making [296]. DECODE overcomes 

these limitations by providing a fully automated, cloud-integrated diagnostic and interventional 

workflow. 

This chapter systematically details the architectural design, implementation, and evaluation of 

DECODE. It explores the platform's modular microservice architecture, which ensures secure, 

efficient data communication across the main, subfrontend and backend servers. The platform's 

core capabilities are highlighted, including DL-powered peripheral artery (PA) segmentation, 

intima–media thickness (IMT) segmentation, and centerline extraction, which are essential for 

precise vascular analysis and computational hemodynamic modeling. In addition, DECODE 

supports in-silico clinical trials through its finite element modeling (FEM) and DCB simulation 

modules, optimizing drug‒device performance and reducing the need for physical trials [297]. 

A critical component of DECODE is its advanced visualization capability powered by 

DECODE-3DViz, a WebGL-based tool that delivers high-fidelity 3D rendering and immersive 

visualization experiences. This capability significantly enhances diagnostic accuracy, 

procedural planning, and personalized treatment strategies. The platform's cloud-native 

architecture ensures seamless integration, scalability, and real-time accessibility, making it 

adaptable for diverse clinical and research workflows. 

This chapter also presents the usability and acceptance evaluations of DECODE, which are 

conducted via the SUS [298] and the TAM [299]. By detailing the technical design, 

implementation challenges, and validation outcomes, this chapter establishes DECODE as a 

pioneering solution in digital vascular diagnostics, paving the way for personalized PAD 

management and advancing the frontier of precision vascular medicine. 

The platform’s core capabilities include the following: 

• Dataset Management Module – A secure, cloud-integrated system for uploading, managing, 

and sharing medical datasets among clinicians and researchers. 

• Data Conversion Module – Convert the DICOM/NIfTI datasets into standardized formats 

for AI-based processing. 

• PA segmentation module – A deep-learning-powered tool for automated arterial 

segmentation, ensuring high diagnostic precision. 
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• IMT segmentation module – AI-driven lumen-intima boundary detection, which is essential 

for vascular risk assessment. 

• Centerline Extraction Module – Computes vascular centerlines, providing geometric 

profiling for computational hemodynamic modeling. 

• DECODE-3DViz – A real-time 3D WebGL-based volume rendering tool that supports 

interactive exploration. 

• Finite element modeling (FEM) module – Enables in-silico simulations of balloon 

angioplasty and vascular interventions, improving patient-specific treatment planning. 

• Scalability and open-source interoperability – A RESTful API-based cloud framework 

ensuring seamless integration with EHRs, telemedicine platforms, and computational 

research workflows. 

DECODE establishes a new benchmark in AI-driven PAD diagnostics and intervention 

planning by integrating DL-powered segmentation, real-time 3D visualization, and 

computational modeling within a fully automated, cloud-native ecosystem. By seamlessly 

bridging the domains of medical imaging, AI-enhanced decision support, and predictive 

modeling, DECODE delivers a comprehensive digital solution tailored for vascular precision 

medicine. 

The primary users of the DECODE platform include clinicians, researchers, and healthcare 

institutions. Clinicians benefit from enhanced diagnostic accuracy and optimized intervention 

planning through advanced segmentation and high-fidelity visualization, improving therapeutic 

outcomes. Researchers utilize DECODE for in-silico simulations, enabling patient-specific 

modeling for DCB therapy and angioplasty, accelerating drug device development and 

optimizing therapeutic strategies. Healthcare institutions leverage their secure, scalable cloud 

infrastructure for multicenter data management and seamless clinical integration, enhancing 

interoperability and collaboration. DECODE drives innovations in vascular diagnostics, in-

silico trials, and personalized treatment planning, revolutionizing PAD management through 

precision medicine. 

6.2 Materials and methods 

6.2.1 Conceptual Design 

To align the DECODE Cloud Platform with clinical, research, and industry needs, a user-

centered design approach was employed, gathering detailed requirements through a structured 
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questionnaire from 16 participants across leading European institutions involved in vascular 

research, medical imaging, and computational modeling. These included researchers from the 

University of Ioannina, University of Athens, University of Patras, University of Milan, 

University of Kragujevac, University of Montpellier, and AGH University of Krakow. The 

insights provided a multidisciplinary perspective, ensuring DECODE’s integration of AI-driven 

analytics, real-time visualization, and scalable cloud infrastructure. As illustrated in Figure 6.1, 

platform development followed eight phases: (1) gathering user requirements; (2) defining key 

architectural components such as segmentation, 3D visualization, and computational modeling; 

(3) establishing secure data management and sharing; (4) integrating tools for data conversion, 

image upscaling, and centerline extraction; (5) implementing DL for accurate artery and lumen-

intima boundary detection; (6) enabling real-time DICOM rendering and WebGL-based volume 

visualization; (7) providing predictive simulations for PAD treatment planning; and (8) 

leveraging open-source cloud infrastructure with RESTful APIs for EHR and telemedicine 

integration. This structured approach ensures that DECODE meets the demands of modern 

vascular research and clinical applications. 

6.2.2 Implementation 

The DECODE Cloud Platform is designed as a modular, cloud-based framework that integrates 

AI-driven diagnostics, real-time visualization, and computational modeling to optimize the 

management of PAD. Figure 6.2 presents the package diagram of the platform, detailing its 

 

Figure 6.1 Conceptual development phases of the DECODE cloud platform. 
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hierarchical structure, interdependence, and information flow across system modules. The 

architecture is structured into frontend and backend layers, each of which is responsible for 

specific functionalities. The frontend, implemented via React.js [238], leverages its component-

based structure and virtual DOM for a highly responsive, interactive user experience. The 

backend, built with Django [300], provides a scalable and secure RESTful API-driven 

environment, facilitating efficient data processing and AI-powered analytics. This architecture 

ensures a seamless and dynamic workflow, allowing users to interact with medical imaging, 

computational modeling, and treatment planning in a cloud-based ecosystem. 

6.2.3 DECODE Cloud Platform Layers 

The DECODE Cloud Platform is architected as a multilayered system to deliver a scalable and 

secure solution for the noninvasive management of PAD, as illustrated in Figure 6.3. The 

architecture comprises five fundamental layers: a hardware layer, a security layer, a workflow 

 

Figure 6.2 Package diagram of the DECODE Cloud Platform. 
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layer, a backend layer, and a frontend layer, each designed for seamless integration, high 

availability, and optimized performance. At the foundation, the hardware layer provides the 

core infrastructure, including networking components, storage solutions, and processing units. 

It is optimized for computationally intensive tasks such as medical imaging, data processing, 

and advanced simulations, ensuring high availability and scalability through cloud-based 

infrastructure. 

The security layer implements robust user authentication, RESTful API security, and access 

control mechanisms. It ensures data integrity and privacy via advanced encryption protocols 

and role-based access control, maintaining strict compliance with the GDPR and HIPAA 

regulations [301]. The workflow layer orchestrates module interactions and manages user 

authentication, including login, signup, and password resets. It facilitates intermodule 

communication and data management, optimizing workflows for seamless data integration, 

transformation, and organization. The Backend Layer serves as the computational engine, 

hosting processing modules for image upscaling, Lumen and Intima segmentation, centerline 

extraction, and PA segmentation. It supports simulation and computational modeling tools such 

as DCB-SimViz and FEAs, enabling predictive simulations for clinical decision-making. It also 

includes visualization tools powered by WebGL Volume Rendering, MPR, and WebXR for 

high-fidelity 3D visualization. 

 

Figure 6.3 The DECODE Cloud Platform's multilayered hierarchical framework. 
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At the top, the Frontend Layer offers a responsive user interface with APIs for visualization, 

image processing, data management, and simulation. It includes dataset management 

functionalities for adding, displaying, and organizing datasets. Built on a PWA framework, it 

ensures cross-platform compatibility and offline accessibility [302], enhancing productivity for 

surgeons, researchers, and pharmaceutical representatives. This layered architecture provides a 

scalable, secure, and high-performance solution for advanced medical imaging and data 

analytics in PAD management. By integrating hardware infrastructure, robust security, efficient 

workflows, powerful backend processing, and an intuitive frontend interface, the DECODE 

Cloud Platform sets a new benchmark for digital health solutions in vascular medicine. 

6.2.4 Distribution of the DECODE Cloud Computing Services to Stakeholders 

The DECODE Cloud Platform is strategically designed to distribute cloud computing services 

efficiently across a diverse range of stakeholders, including clinicians, researchers, developers, 

and patients, as illustrated in Figure 6.4. At the forefront are frontend services, which are 

delivered through an intuitive user interface and interactive visualization modules. These 

modules leverage WebGL and VR/AR technologies to provide immersive experiences, 

enabling clinicians to perform 3D rendering, real-time diagnostics, and precision surgical 

planning. These services are accessible via a PWA, ensuring cross-platform compatibility and 

offline accessibility. 

The backend layer serves as the computational engine, hosting advanced image processing, 

modeling tools, and data management modules. It integrates the finite element method (FEM) 

and ML tools to support complex simulations, predictive analytics, and clinical data analysis. 

The visual analytical engine powers comprehensive data exploration, whereas the workflow 

manager ensures seamless communication among modules. The REST API engine facilitates 

secure and scalable communication between the frontend and backend components via the 

HTTP and JSON protocols [303]. 

Security is ensured through a robust security layer that employs JWT authentication for secure 

login sessions, transport layer security (TLS) protocols for end-to-end data encryption [304], 

and a private credential database for role-based access control, ensuring compliance with the 

GDPR and HIPAA standards. This layered security approach protects sensitive medical data 

while maintaining user privacy. 
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At the core, the hardware infrastructure provides the necessary computational resources, 

including I/O Ports, Memory Units, CPUs, GPUs, and Networking Components, optimized for 

high-performance computing in medical imaging, data processing, and simulation tasks. This 

infrastructure supports virtual machines and Docker containers for scalable deployment and 

high availability. 

This architecture efficiently distributes cloud computing services to stakeholders, enabling 

clinicians to leverage real-time diagnostics, researchers to access advanced modeling tools and 

data processing modules, developers to innovate in PAD management, and patients to maintain 

control over their medical data. By seamlessly integrating front-end visualization, backend 

 

Figure 6.4 Architecture and Service Distribution of the DECODE Cloud Platform. 
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computational power, security mechanisms, and scalable hardware resources, the DECODE 

Cloud Platform delivers a high-performance, secure, and scalable solution for vascular 

diagnostics, in silico trials, and personalized treatment planning. 

6.3 Modules Design and Architecture 

The DECODE Cloud Platform frontend is designed as a PWA that integrates AI-driven modules 

for real-time PAD diagnostics, computational modeling, and 3D visualization. Its modular and 

scalable architecture, as illustrated in Figure 6.5, ensures a seamless workflow from data 

acquisition to advanced treatment simulation. The system is structured into interconnected 

components, facilitating automated medical image processing, DL-based segmentation, FEM, 

and WebGL visualization. This section provides a detailed breakdown of the platform's core 

modules, their functionalities, and interdependencies, highlighting their impact on PAD 

diagnosis and intervention planning. 

6.3.1 User Authentication and Access Control 

The DECODE Cloud Platform employs a secure authentication system to ensure robust access 

control and data security, as illustrated in Figure 6.6. The authentication process is managed by 

an access control module that verifies user credentials, assigns roles, and enforces hierarchical 

security policies. This system supports various user roles, including researchers, doctors, and 

administrators, each with tailored access privileges to platform functionalities. 

The platform uses a RESTful API-based JSON Web Token (JWT) tokenization system to 

securely manage user authentication and authorization. When a user attempts to log in, the User 

Authentication request is processed through the Frontend Authentication Module, which 

 

Figure 6.5 Detailed architecture of the DECODE Cloud Platform. 
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securely transmits the credentials to the Backend Authentication API over an encrypted HTTPS 

request. The server validates user credentials by cross-referencing the information with the User 

Credential Database. If the credentials are correct, the server generates a JWT token containing 

the user ID, expiration time, and a secret key signature. This token is then securely sent to the 

client and stored in LocalStorage for persistent login [305]. 

The system includes a token issuance and response mechanism, ensuring that each request is 

authenticated via the JWT token. The server verifies the JWT by checking the token's signature, 

expiration time, and user role. If validated, the server grants access to the requested resource, 

such as uploading datasets, running segmentation algorithms, or interacting with WebGL 

visualization tools. To maintain security and session integrity, DECODE implements a Token 

Expiry and Refresh mechanism. Once a token expires, users must either reauthenticate or use a 

refresh token to obtain a new JWT without reentering their credentials. This approach balances 

security and user convenience by maintaining continuous authentication sessions without 

frequent logins. This JWT-based authentication architecture provides persistent, role-based 

access management, ensuring data security and system integrity while maintaining a user-

friendly experience. It supports scalable and secure communication across frontend and 

backend servers, enabling seamless interactions within the DECODE Cloud Platform. 

6.3.2 Data Providers 

The DECODE Cloud Platform relies on a data provider to ensure the availability and 

accessibility of medical data essential for simulations, optimizations, and treatment planning, 

 

Figure 6.6 User authentication workflow in the DECODE Cloud Platform. 
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as illustrated in Figures 6.7 and 6.8. The data provider connects the platform's core modules 

with diverse analytical tools, integrating data from various sources, including medical 

databases, patient records, imaging systems, and research studies. It consolidates these data into 

a unified repository, enabling advanced analysis and high-fidelity visualization. Figure 6.7 

shows the data provider architecture, highlighting the integration of key modules: access 

control, data management, data converters, and a data quality control engine. The access control 

module enforces secure authentication and authorization protocols, safeguarding data privacy 

and integrity. The data management module standardizes incoming data formats, ensuring 

compatibility across all platform modules. The Data Converters module transforms raw medical 

data into formats suitable for DL algorithms and computational modeling. To maintain data 

accuracy and reliability, the Data Quality Control Engine continuously monitors and rectifies 

inconsistencies, ensuring high data integrity. 

Figure 6.8 illustrates the data ownership and the collaborative healthcare ecosystem within the 

DECODE platform. It empowers patients as Data Owners, granting them full control over their 

medical data, including the ability to create, read, update, and delete personal information. This 

feature enhances patient engagement by enabling patients to maintain data accuracy and 

exercise control over their participation. Researchers, developers, and doctors utilize the 

 

Figure 6.7 Data provider architecture within the DECODE Cloud Platform. 
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platform’s tools to upload, read, edit, update, analyze, and visualize medical data, fostering a 

collaborative environment for advanced research and personalized patient care while 

maintaining strict compliance with ethical and regulatory standards. 

The data provider supports real-time updates, ensuring that clinical decisions are informed by 

the latest medical insights. It employs efficient data retrieval and caching strategies to maintain 

platform responsiveness, even with large datasets. By enabling secure collaboration and 

advanced analytics, the data provider drives innovation in PAD management and DCB 

optimization. Its modular architecture ensures scalable performance and seamless integration 

with the DECODE Cloud Platform, facilitating responsible data sharing and ethical research 

practices. 

6.3.3 Data Management and Data Quality Control 

A centralized dataset warehouse functions as the primary storage and retrieval system for 

medical imaging data, supporting multiple formats, including DICOM [306] and NIfTI [307]. 

The dataset management module facilitates structured metadata indexing, ensuring that 

uploaded datasets remain traceable and interoperable. Before datasets are processed, they 

undergo a quality validation step managed by the data quality control engine, which performs 

format standardization. This automated pipeline ensures that only high-fidelity images proceed 

to AI-driven segmentation and computational analysis, minimizing errors associated with low-

resolution or inconsistent datasets. 

 

Figure 6.8 Data Ownership and Collaborative Healthcare Ecosystem. 
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6.3.4 Workflow Manager Module 

The workflow manager module is the core orchestration engine of the DECODE Cloud 

Platform, facilitating automated task execution, data transfer, and AI-powered image processing 

[308, 309]. This ensures that segmentation, computational modeling, and visualization 

workflows are executed in a synchronized and scalable manner. The workflow module supports 

asynchronous execution, allowing multiple computational tasks to run in parallel, thus 

optimizing processing efficiency. Through API-driven task scheduling, the module dynamically 

allocates computational resources, reducing latency in real-time applications such as image 

analysis, segmentation, and FEM simulations. 

6.3.5 Visualization 

6.3.5.1 WebXR (eXtended Reality) 

The WebXR Viewer module enables real-time, interactive 3D model visualization and AR 

integration for medical imaging applications [310]. This module is designed to seamlessly 

render and manipulate GLB-formatted anatomical models directly within a web browser, 

eliminating the need for specialized software. The workflow begins with file acquisition, 

allowing users to upload 3D models via drag-and-drop or direct file selection, ensuring an 

intuitive and accessible interface for medical professionals and researchers. The module uses 

Google’s Model Viewer API, providing high-fidelity rendering with adjustable shadow 

intensity, dynamic lighting, and full camera controls to facilitate detailed anatomical inspection 

[311]. Once loaded, interactive scene control, such as zooming, rotation, and object 

manipulation, enhances the ability to examine intricate structures. A key innovation is the 

integration of WebXR-based AR functionality, enabling users to project and visualize 3D 

models within real-world environments via AR-supported devices, bridging the gap between 

digital analysis and physical spatial assessment. 

6.3.5.2 DECODE-3DViz: WebGL 

The DECODE-3DViz [44, 75] module is a WebGL-powered 3D visualization framework 

designed for interactive volume rendering of medical imaging datasets, including DICOM and 

NIfTI formats. This system enables real-time rendering, dynamic parameter control, and high-

fidelity volumetric analysis directly in a web environment, eliminating the need for specialized 

hardware. The visualization pipeline begins with data acquisition, where users can upload single 

or multiple medical imaging files or fetch them remotely via the URL. The preprocessing stage 

ensures compatibility by handling anisotropic voxel spacing, intensity normalization, and 
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adaptive resolution adjustments. The core volume rendering engine, built on WebGL and 

VTK.js, employs gradient-based opacity mapping and transfer function optimization. Users can 

dynamically adjust lighting conditions and perform voxel intensity scaling, refining 

visualization quality for diagnostic precision. In addition, the module integrates interactive 

clipping planes, real-time cropping, and widget-based selection tools to facilitate focused region 

analysis. By incorporating customizable rendering presets, multimodal blending, and high-

performance GPU acceleration, DECODE-3DViz provides an advanced, browser-based 

solution for interactive 3D medical visualization, supporting clinical diagnostics, surgical 

planning, and computational modeling in vascular imaging. 

6.3.6 Routing Architecture of the DECODE Cloud Platform 

The routing architecture of the DECODE Cloud Platform is designed to facilitate seamless 

communication and efficient data flow between its functional modules. By employing RESTful 

API endpoints, the platform ensures standardized data exchange and secure interactions, 

optimizing scalability and maintainability. Table 6.1. The DECODE Cloud Platform Routes 

and Functional Modules illustrate the organized routing scheme categorized by modules, 

ensuring logical grouping and hierarchical navigation. The Authentication and General Pages 

module centralizes the user authentication and navigation endpoints, including /login, /signup, 

and /password-reset. These routes are interconnected to maintain session continuity through 

token-based authentication (JWT). The structured routing within this module ensures 

streamlined access management and secure navigation between general pages such as /home, 

/about, and /contact. 

In the dataset management module, routes are hierarchically organized to handle medical 

datasets, enabling actions such as uploading (/datasets/upload-datasets), retrieving 

(/datasets/show-datasets/:id), and updating datasets (/datasets/show-datasets/:id/update). The 

modular grouping of these endpoints allows efficient data management while maintaining 

scalability for large dataset repositories. 

The image processing module groups related routes for preprocessing tasks, including /image-

processing/centerline-extraction, /image-processing/dataconverter, and /image-

processing/upscale. The interrelation between these routes facilitates data transformation and 

consistency, ensuring compatibility across all imaging workflows. This logical grouping allows 

flexible extension for additional preprocessing functionalities. 
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Table 6.1 DECODE Cloud Platform Routes and Functional Modules. 

Module/Category Endpoints/Routes Description 

Authentication and General 

Pages 

/login 

/signup 

/password-reset 

/password-reset-confirm 

/home 

/about 

/contact 

User authentication, account 

management, and general 

navigation pages. 

Datasets Management /datasets 

/datasets/upload-datasets 

/datasets/show-datasets 

/datasets/show-datasets/:id 

/datasets/show-datasets/:id/update 

Secure uploading, managing, 

and displaying of medical 

datasets. 

Image Processing /image-processing 

/image-processing/centerline-

extraction/image-

processing/dataconverter 

/image-processing/upscale 

Image preprocessing, 

centerline extraction, format 

conversion, and upscaling. 

Segmentation /segmentation 

/segmentation/segmentation-imt 

/segmentation/segmentationPA 

Deep learning-powered 

arterial segmentation and 

lumen-intima boundary 

detection. 

Visualization /visualization 

/api/DECODE-3DViz 

/visualization/webXR 

/dcb-simviz 

Real-time 3D visualization, 

WebGL-based volume 

rendering, and interactive 

exploration. 

Computational Modeling /computational-tools 

/computational-tools/finite-

element/computational-

tools/BAsimulation 

In-silico simulations using 

finite element modeling and 

balloon angioplasty 

simulation. 

Multiplanar Reconstruction /3dMPR High-resolution multiplanar 

reconstruction for detailed 

vascular analysis. 

The segmentation module organizes its routing to streamline automated segmentation 

workflows. The endpoints /segmentation, /segmentation/segmentation-imt, and 

/segmentation/segmentationPA are cohesively grouped, ensuring structured navigation through 

different segmentation tasks. This modular design optimizes route maintainability and 

scalability for evolving DL models. 

The visualization module uses a cohesive routing scheme for 3D rendering and interactive 

exploration. Endpoints such as /visualization, /api/DECODE-3DViz, and /visualization/webXR 

are strategically linked to provide seamless transitions between visualization tools. The 
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interconnected routing structure enhances the user experience by enabling intuitive navigation 

across multiple visualization modes, including volume rendering and AR. 

Computational modeling routes are logically grouped to support in-silico simulations. The 

hierarchical structure includes /computational-tools, /computational-tools/finite-element, and 

/computational-tools/BAsimulation, maintaining consistency across computational workflows. 

This modular routing design allows efficient model execution and integration with other 

computational modules. 

Finally, the MPR module is managed through a single entry point (/3dMPR), maintaining 

simplicity and high navigational efficiency for accessing cross-sectional views. This isolated 

routing structure enhances maintainability and future scalability for multiplanar visualization 

enhancements. 

The DECODE routing architecture employs a modular, hierarchical design, ensuring consistent 

data flow and efficient communication across all modules. By grouping related endpoints within 

each module, the platform maintains logical navigation and ease of extension for future 

functionalities. This organized routing strategy enables seamless interoperability, secure access 

control, and optimal user experience across the DECODE ecosystem. 

6.3.7 Flowchart of the DECODE Cloud Platform 

The DECODE Cloud Platform provides an integrated workflow. Users begin by signing up with 

their credentials, followed by authentication to access core modules. The platform enables 

dataset management, allowing users to add, view, update, and download datasets. Image 

processing supports data conversion, image upscaling, and centerline extraction for medical 

imaging. Segmentation facilitates PA and IMT analysis, with visualization options via 

DECODE-3DViz and Glance. Computational modeling provides advanced simulations, 

whereas MPR processes DICOM inputs for detailed imaging. The visualization module offers 

3D rendering through DECODE-3DViz and WebXR, supporting interactive exploration. In 

addition, DCB-SimViz enables DEB analysis, including arterial drug concentration and 

simulation. As shown in Figure 6.9, this structured workflow streamlines medical imaging, 

analysis, and modeling within a cloud-based environment, enhancing precision in PAD 

management. 
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6.4 Evaluation 

The usability and acceptance of the DECODE Cloud Platform were evaluated via the SUS [298] 

and the TAM [299]. The SUS measures perceived usability across 10 items on a 5-point Likert 

scale (provided in Supplementary Questionnaire 2), assessing effectiveness, efficiency, and user 

satisfaction. The TAM evaluated perceived usefulness (PU), perceived ease of use (PEOU), and 

behavioral intention (BI) through 12 items rated on a 5-point Likert scale (provided in 

Supplementary Questionnaire 3), with a focus on productivity, workflow integration, and user 

adoption intentions. Both evaluations were conducted with the 16 participants described in the 

Conceptual Design section. SUS scores were calculated via the standard method, yielding 

scores ranging from 0 to 100. TAM data were analyzed by calculating average scores for PU, 

PEOU, and BI, providing quantitative insights into user acceptance. In addition, correlation 

analysis was conducted between the SUS and TAM metrics to explore potential dependencies 

between usability and acceptance factors, enhancing the robustness of the evaluation. 

 

Figure 6.9 Flowchart of the DECODE Cloud Platform. 
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6.5 Results 

The DECODE Cloud Platform provides an intuitive web-based interface designed for seamless 

interaction with AI-driven medical imaging, segmentation, computational modeling, and 

visualization tools. The home interface, as depicted in Figure 6.10, serves as the central access 

point for users, including clinicians, researchers, and pharmaceutical companies, facilitating 

efficient navigation through the platform's core functionalities. The interface is structured 

around six primary modules—Datasets, Image Processing, Segmentation, Computational 

Modeling, MPR, Visualization, and DCB-SimViz—ensuring a streamlined workflow from 

medical image acquisition to advanced analysis and simulation. The navigation bar at the top 

provides quick access to platform information, contact support, and user authentication 

functionalities, whereas the social media integration panel on the right enhances collaboration 

and knowledge sharing. By integrating PWA principles, the platform offers real-time 

accessibility, cross-device compatibility, and cloud-based processing. 

 

Figure 6.10 Home Interface of the DECODE Cloud Platform. 
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6.5.1 SUS evaluation 

The SUS revealed an average score 87.5 (SD = 13.2), reflecting high perceived usability. 

According to industry benchmarks, scores above 85 are considered “Excellent,” validating the 

platform's intuitive design, ease of navigation, and effective integration of AI-driven 

segmentation and 3D visualization tools. These results confirm the platform’s usability and 

suitability for clinical and research applications in PAD management. 

6.5.2 TAM evaluation 

• PU: The average PU score 4.04 indicates that users perceived the platform as beneficial for 

enhancing efficiency in PAD imaging and computational modeling. 

• PEOU: The average score 4.29 indicates high learnability and intuitive interaction with 

advanced features, confirming the platform's user-friendly design. 

• BI: The average score 4.44 reflects strong user commitment to continue using and 

recommending the platform, validating its clinical relevance and utility. 

• Overall TAM score: An overall average score 4.21 indicates high user acceptance and 

reinforces the platform's applicability in clinical and research workflows. 

6.5.3 Correlation analysis between the SUS and TAM metrics 

A correlation analysis was conducted to examine the interdependencies between SUS scores 

and TAM constructs (PU, PEOU, and BI). Pearson’s correlation coefficient (r) [312] was 

calculated as follows: 

• SUS and PU (r = 0.42): A moderate positive correlation, indicating that enhanced usability 

contributes to greater perceived usefulness. 

• PEOU and BI (r = 0.72): Strong correlation, emphasizing that ease of use significantly 

influences users' intention to continue using the platform. 

• PU and BI (r = 0.59): Substantial correlation confirming that perceived productivity and 

clinical utility drive users' advocacy and adoption intentions. 

• SUS and BI (r = 0.32): Moderate correlation, suggesting that usability indirectly influences 

behavioral intention through other domain-specific functionalities. 

The correlation matrix, visualized in Figure 6.11, illustrates the strength and direction of these 

relationships, highlighting the interdependence between usability and acceptance factors. This 

analysis quantitatively validates the DECODE Cloud Platform’s user-centric design, 

demonstrating that enhanced usability and perceived value drive user acceptance and adoption. 
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6.6 Discussion 

The DECODE Cloud Platform establishes a transformative approach to PAD management by 

integrating AI-driven segmentation, computational modeling, and GPU-accelerated 

visualization within a unified cloud-based framework. As shown in Figure 6.12, DECODE’s 

architecture uses a modular microservice design to enable efficient medical imaging workflows. 

The platform is organized into main frontend and subfrontend servers that interact with the main 

backend and subbackend servers via a centralized API gateway, ensuring secure and efficient 

data communication. Dataset retrieval is initiated from the DECODE Dataset Repository, which 

supports structured DICOM and NIfTI formats. The data converter module standardizes the 

input formats, enhancing the compatibility with DL algorithms. The PA segmentation module  

uses CT imaging to precisely delineate arterial structures, ensuring high accuracy in vessel 

extraction. The centerline extraction module computes the vascular centerline, curvature, and 

circularity, which are essential for computational hemodynamic modeling and predictive 

simulations. These parameters are processed in the main backend server, with results securely 

 

Figure 6.11 Correlation matrix between the system usability scale (SUS) and technology 

acceptance model (TAM) metrics. 
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stored in the File Repository and DB server for scalable access. DECODE-3DViz enables real-

time volumetric rendering and AR-enabled visualization through GPU-accelerated WebGL, 

significantly enhancing diagnostic accuracy and procedural planning. The platform supports 

interactive 3D visualization for comprehensive vascular analysis, enabling personalized 

treatment planning. 

While previous mHealth interventions, such as TrackPAD [118], have improved patient 

adherence to SET, they lack AI-driven automation and real-time vascular analytics. 

Furthermore, systematic reviews have highlighted low adoption rates and the absence of AI-

powered monitoring in digital SET programs [121]. In contrast, DECODE's cloud-integrated 

AI framework enables automated segmentation, hemodynamic analysis, and predictive 

modeling, addressing critical gaps in personalized PAD management. Similarly, advancements 

in AI-enhanced cloud computing for medical imaging have improved segmentation accuracy 

and predictive diagnostics. However, these approaches lack clinical validation for PAD 

applications and do not incorporate real-time visualization or patient-specific modeling. 

DECODE surpasses these limitations by integrating deep-learning-powered segmentation, real-

time FEM simulations, and WebGL-based 3D visualization, providing clinically actionable 

insights in a scalable cloud environment. 

The DECODE Cloud Platform introduces a groundbreaking cloud-based AI framework that 

seamlessly integrates DL segmentation, computational modeling, and real-time 3D 

 

Figure 6.12 DECODE Cloud Platform ecosystem. 
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visualization for PAD management. Unlike previous systems that focus on isolated aspects of 

vascular imaging or exercise therapy, DECODE establishes a fully automated, scalable, and 

interoperable ecosystem that bridges the gap between AI-driven decision support, in-silico 

modeling, and interactive visualization. 

• Real-Time Cloud-Based Computation: Unlike static image processing workflows, 

DECODE leverages GPU-accelerated cloud computing for automated segmentation, 

geometric vascular profiling, and FEM, optimizing PAD treatment planning through 

patient-specific simulations. 

• High-Fidelity WebGL Visualization: DECODE-3DViz delivers real-time volumetric 

rendering and AR-enabled exploration, enabling interactive procedural planning in a fully 

cloud-integrated environment. 

• Predictive Modeling for PAD Interventions: The DCB-SimViz module enables DCB 

therapy optimization, integrating computational fluid dynamics (CFD) and pharmacokinetic 

simulations to personalize vascular drug delivery strategies. 

• Seamless Clinical Integration: Through RESTful APIs, DECODE ensures interoperability 

with PACS, EHRs, and telemedicine platforms, positioning it as a scalable and adaptable 

solution for precision vascular medicine. 

By unifying AI-driven vascular analysis, interactive 3D visualization, and predictive modeling, 

DECODE establishes a new benchmark for digital PAD diagnostics, advancing data-driven and 

personalized vascular intervention planning. 

PAD remains widely underdiagnosed owing to limited access to advanced imaging tools. 

DECODE automates AI-driven segmentation of PAs and the IMT, reducing interobserver 

variability and enhancing diagnostic confidence. Compared with CTA and MRA, its automated 

centerline extraction and geometric vascular profiling enable early PAD detection and disease 

progression monitoring with superior anatomical fidelity, which often misclassifies vascular 

calcifications. 

Current PAD treatments lack personalization and rely on generalized protocols. DECODE 

integrates the FEM to simulate angioplasty and DCB interventions, optimizing vascular 

response prediction. The DCB-SimViz module enables real-time drug diffusion simulations, 

shifting treatment planning from empirical data to personalized computational modeling, 

reducing restenosis risk and improving long-term outcomes. In addition, DECODE supports in-
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silico clinical trials by virtually testing DCB performance under different anatomical and 

hemodynamic conditions. It also enables optimized balloon design by simulating drug release 

kinetics and mechanical interactions with arterial walls. This allows precise adjustments in 

geometry, material properties, and coatings. The result is improved therapeutic efficacy and 

personalized treatment. 

Traditional PAD diagnostic tools often rely on offline processing and can be computationally 

intensive, limiting real-time clinical decision-making. DECODE eliminates these bottlenecks 

with a cloud-integrated, RESTful API-based framework, providing instant AI-powered analysis 

and real-time 3D visualization. Through DECODE-3DViz, clinicians can interactively assess 

vascular pathologies via WebGL/WebXR-powered volumetric rendering, enabling dynamic 

exploration, computational flow analysis, and AR-driven visualization for precise procedural 

planning. 

Despite its advancements, the DECODE Cloud Platform has inherent limitations that require 

further optimization. The centerline extraction module, while providing high-precision vascular 

geometry analysis, currently requires user-defined starts and endpoints, which introduces 

manual dependency and potential variability in arterial path selection. Future enhancements will 

focus on fully automated centerline detection via graph-based algorithms and topology-aware 

neural networks to eliminate manual input and improve reproducibility. In addition, DECODE’s 

segmentation and computational modeling pipeline is optimized for CT-based vascular 

imaging, limiting its applicability to multimodal datasets such as ultrasound and MRI. 

Expanding compatibility to diverse imaging modalities will require modality-agnostic AI 

models and adaptive preprocessing pipelines to standardize input across different imaging 

formats. Furthermore, DECODE-3DViz’s WebGL-based real-time visualization can 

experience latency when high-resolution datasets are rendered, particularly in low-bandwidth 

cloud environments. Future improvements will integrate progressive mesh streaming and 

WebGPU acceleration to enhance real-time interaction and scalability. Finally, while DECODE 

supports RESTful API integration, seamless interoperability with clinical PACS/EHR systems 

remains a challenge. Future iterations will incorporate FHIR-compliant APIs and encrypted 

cloud-based storage to ensure secure, scalable, and regulatory-compliant deployment in real-

world clinical workflows. 
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6.7 Conclusion 

This chapter presents DECODE, a cloud-based platform that transforms PAD management by 

integrating AI-driven segmentation, computational modeling, and real-time 3D visualization 

within a scalable, cloud-native framework. Unlike traditional systems, DECODE seamlessly 

bridges medical imaging, predictive analytics, and in-silico simulations, delivering a 

comprehensive infrastructure for vascular precision medicine. Through finite element modeling 

(FEM) and DCB simulations, DECODE enables patient-specific modeling of vascular 

interventions, optimizes therapeutic strategies, accelerates drug‒device development, and 

reduces the need for physical trials. 

The chapter demonstrates the platform’s advanced modules, including peripheral artery (PA) 

segmentation, intima–media thickness (IMT) segmentation, and centerline extraction, which 

provide high-precision vascular analysis and detailed geometric profiling for computational 

hemodynamics. The DECODE-3DViz tool, powered by WebGL/WebXR, delivers high-fidelity 

3D visualization, enhancing clinical workflow efficiency and enabling interactive exploration 

of complex datasets. With RESTful API support for PACS/EHR integration, DECODE ensures 

seamless interoperability and cloud scalability. 

The chapter also presents usability and acceptance evaluations, which were conducted via the 

SUS and TAM. The results revealed an average SUS score of 87.5, indicating excellent 

usability, and an overall TAM score of 4.21, confirming high user acceptance. Correlation 

analysis validated the dependencies between usability and acceptance, supporting DECODE’s 

user-centric design approach. 

This chapter establishes DECODE as a next-generation platform for precision vascular 

medicine, enabling in-silico clinical trials and personalized PAD intervention planning. Future 

directions will focus on automating centerline detection, expanding imaging modality support, 

and optimizing real-time rendering performance. By showcasing DECODE as an open-source, 

AI-powered solution, this chapter sets a new benchmark in vascular diagnostics, bridging the 

gap between computational intelligence and real-world clinical applications. The platform code 

is available at https://zenodo.org/records/14872021, providing a foundation for continued 

research and development in vascular precision medicine. 

 

 

https://zenodo.org/records/14872021
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Chapter 7: Conclusions and Future Work 

7.1. Advancements in Cloud-Based Medical Imaging and Computational Vascular Modeling 

7.2. Future Work 

 

 

 

 

 

 

 

 

 

 

 

 

7.1 Advancements in Cloud-Based Medical Imaging and Computational Vascular 

Modeling 

This dissertation addresses critical challenges in web-based medical imaging and computational 

modeling, contributing significantly to the advancement of cloud-based solutions for peripheral 

artery disease (PAD) diagnosis and treatment planning. By integrating state-of-the-art 

technologies in medical image analysis, WebGL-based visualization, and computational 

simulations, this research provides a comprehensive and scalable framework that enhances 

diagnostic precision, workflow efficiency, and patient-specific treatment strategies. 

One of the most impactful contributions of this work is the development of a web-based DICOM 

and MPR visualization system within a PWA architecture. By leveraging React.js, 

Cornerstone.js, and Dexie.js, the system enables efficient medical image loading, real-time 

interaction, and optimized volume rendering, addressing key limitations in cross-platform 

compatibility and offline accessibility. The integration of advanced interpolation techniques 

(bicubic and weighted bilinear) ensures high-precision 3D image reconstructions, achieving an 

error margin below 0.05 mm, making it a clinically viable alternative to traditional high-

performance imaging software. 



 

154 

 

A major breakthrough in this research is the DECODE-3DViz framework, which revolutionizes 

the web-based high-fidelity visualization of large-scale medical imaging datasets. Traditional 

WebGL-based rendering solutions suffer from texture constraints, high GPU memory 

requirements, and real-time performance bottlenecks, limiting their applicability in clinical 

settings. To address this, DECODE-3DViz integrates a level of detail (LOD) algorithm and 

progressive chunk streaming, achieving a 98% reduction in rendering latency, real-time 

visualization at up to 144 FPS, and a significant reduction in GPU memory usage to as low as 

2.6 MB. This LOD-based adaptive resolution rendering ensures that clinically relevant vascular 

structures maintain high precision while optimizing computational resources, making it scalable 

across desktop and mobile devices. 

The introduction of real-time dynamic illumination in vascular imaging represents another 

significant advancement. By mimicking physiological lighting variations, this approach 

enhances depth perception, plaque characterization, and arterial morphology visualization, 

addressing key challenges in atherosclerotic lesion assessment. The GPU-accelerated rendering 

pipeline ensures high-fidelity visualization even for large-scale DICOM datasets, enabling real-

time interaction and superior diagnostic insights. 

Furthermore, this dissertation presents an automated risk classification framework for PAD that 

uses quantitative vascular analysis. The system successfully classifies high-risk PAD cases with 

remarkable accuracy, achieving a plaque density averaging 0.85 and a vascular curvature 

averaging 1.3, providing clinicians with an objective, non-invasive tool for assessing disease 

severity. Compared with traditional static volume rendering techniques, this approach enhances 

diagnostic accuracy, reduces interobserver variability, and optimizes computational efficiency. 

The DECODE Cloud Platform, another key outcome of this research, offers a fully integrated, 

cloud-based infrastructure for AI-powered vascular imaging and in-silico clinical trials. This 

platform combines deep learning-based vascular segmentation, real-time 3D visualization, 

finite element modeling (FEM), and predictive analytics for PAD intervention planning. A 

critical component of the DECODE Cloud Platform is its in-silico modeling capabilities, 

particularly through the balloon angioplasty FEM module and the DCB-SimViz drug-coated 

balloon simulation module. These computational tools provide critical insights into vascular 

mechanics, arterial stress distribution, and drug diffusion kinetics, ensuring optimized 

intervention strategies tailored to individual patient profiles. The integration of patient-specific 
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arterial reconstructions further enhances treatment personalization, reducing restenosis risk and 

improving drug delivery outcomes. 

From a usability and clinical adoption standpoint, this research has demonstrated strong 

acceptance among radiologists, vascular specialists, and medical imaging researchers. The 

system usability scale (SUS) and technology acceptance model (TAM) evaluations yielded an 

SUS score of 87.5 (excellent usability) and a TAM score of 4.21 (high acceptance), confirming 

the effectiveness and practicality of the DECODE ecosystem. This positive correlation between 

usability, AI-driven automation, and real-time visualization capabilities underscores the clinical 

viability of this platform for real-world PAD diagnostics and intervention planning. 

In addition to technical innovations, this dissertation underscores the transformative impact of 

AI, cloud computing, and computational modeling in digital healthcare. By pushing the 

boundaries of automated vascular analysis, scalable 3D visualization, and personalized 

treatment simulations, this research establishes a new benchmark for AI-driven PAD 

management. The combination of deep learning, in-silico modeling, and cloud-based diagnostic 

platforms lays the groundwork for next-generation digital health solutions, facilitating more 

efficient, accessible, and precise cardiovascular disease diagnostics. 

This thesis presents a paradigm shift in vascular imaging and PAD diagnostics, demonstrating 

that real-time WebGL visualization, computational modeling, and cloud-integrated analytics 

can significantly enhance clinical decision-making. The DECODE Cloud Platform, with its 

multi-faceted approach to vascular diagnostics, risk classification, and in-silico simulations, 

represents a scalable, clinically validated framework that bridges research advancements with 

real-world medical applications. By combining state-of-the-art web technologies, GPU-

accelerated processing, and AI-driven medical imaging, this work establishes a solid foundation 

for future advancements in digital health, AI-assisted diagnosis, and cloud-based medical 

imaging ecosystems. 

7.2 Future Work 

Building upon the advancements presented in this thesis, several research directions can further 

enhance the capabilities of web-based medical imaging, AI-driven vascular diagnostics, and 

computational modeling for PAD treatment. Future developments will focus on scalability, real-

time AI integration, cloud-enabled imaging, and personalized in-silico clinical trials, ensuring 
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clinical viability, regulatory compliance, and expanded applicability across multiple imaging 

modalities. 

A key area of future work is enhancing 3D volume rendering with real-time GPU acceleration. 

While WebGL-based visualization has demonstrated high performance, future iterations will 

integrate WebGPUs for even greater efficiency in handling large-scale volumetric datasets. The 

introduction of adaptive transfer functions and real-time shading models will further improve 

tissue differentiation, vascular structure clarity, and contrast-enhanced visualization of arterial 

lesions. In addition, AI-driven segmentation models are incorporated into the rendering 

pipeline, allowing automated feature extraction and pathology segmentation in real time. 

Cloud-based storage and distributed processing play crucial roles in scaling DICOM and 3D 

medical visualization for multi-institutional collaboration. By leveraging cloud computing 

frameworks such as AWS, Microsoft Azure, and Google Cloud, future implementations will 

enable remote GPU acceleration, federated AI model training, and real-time collaborative 

imaging analysis. The integration of edge computing architectures allows AI models to run 

directly on low-power clinical devices, reducing latency and dependency on centralized cloud 

infrastructure while ensuring on-demand access to diagnostic imaging. 

The expansion of real-time multi-user collaboration tools is another essential direction for future 

work. Implementing synchronous communication protocols such as Web real-time 

communication (WebRTC) will enable live diagnostic discussions, shared image annotation, 

and collaborative decision-making between radiologists, vascular specialists, and 

computational researchers. This feature will be particularly beneficial in telemedicine 

applications, allowing clinicians in remote regions to consult complex PAD cases via real-time 

AI-enhanced visualization. 

Another avenue for expansion is extending imaging modalities beyond CT-based visualization. 

While this thesis has focused primarily on peripheral artery CT imaging, future research will 

incorporate MRI, ultrasound, and PET scans into the DECODE Cloud Platform. By developing 

multimodal fusion networks, the system enables cross-modality imaging analysis, improved 

tissue characterization, and better integration of physiological data into computational models. 

This will provide a comprehensive, AI-enhanced imaging pipeline for vascular diagnostics and 

cardiothoracic assessments. 
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For clinical deployment, regulatory and security compliance must be further strengthened to 

meet the Digital Imaging and Communications in Medicine Web Services (DICOMweb), 

Health Level Seven Fast Healthcare Interoperability Resources (HL7 FHIR), General Data 

Protection Regulation (GDPR), and Health Insurance Portability and Accountability Act 

(HIPAA) standards. The implementation of privacy-preserving AI models, federated learning 

for secure model training across institutions, and end-to-end encryption protocols ensures 

compliance with data protection regulations. Moreover, integrating blockchain-based audit 

trials will enhance data integrity, traceability, and interoperability across clinical imaging 

networks. 

In terms of computational modeling, the expansion of personalized drug delivery simulations 

via finite element modeling (FEM) and fluid‒structure interaction (FSI) will be a major focus. 

The development of real-time pharmacokinetic models for DCBs will allow individualized 

simulation of drug diffusion, arterial wall interactions, and restenosis risk prediction. By 

integrating AI-powered predictive analytics, patient-specific vascular geometries can be used 

to optimize DCB deployment, drug absorption rates, and long-term treatment efficacy. 

Another critical advancement will be AI-powered automated report generation and decision 

support. By incorporating natural language processing (NLP) models, the platform will be able 

to generate AI-augmented radiology reports, highlight abnormal findings, and provide clinical 

decision recommendations. This will streamline workflow efficiency, reduce reporting errors, 

and enhance the interpretability of AI-driven vascular imaging results. Furthermore, large-scale 

clinical validation is essential for transitioning DECODE-3DViz and the DECODE Cloud 

Platform into real-world medical applications. Future research will focus on conducting 

multicenter trials to validate AI-based PAD risk classification models. 

By advancing these research directions, the DECODE Cloud Platform will continue to evolve 

as a gold standard in AI-driven PAD diagnostics, high-fidelity web-based visualization, and 

computational modeling for vascular interventions. These future innovations will further push 

the boundaries of digital health, AI-assisted diagnosis, and cloud-based in-silico clinical trials, 

ensuring scalability, efficiency, and widespread clinical adoption. 
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Appendix. 

Supplementary Figure 1. Multiplanar Validation Views in 3D Slicer Software 

 

Supplementary Figure 1. Control measurements of the distal edge of the L1 vertebra for 

patient #1 using 3D Slicer (Version 5.6.2). (a) Measurements performed in the axial view, 

automatically reflected in the coronal and sagittal planes. (b) Manual measurements repeated 

in the coronal and sagittal planes. Minor differences (<0.5mm) observed between the views 

are attributed to the manual measurement process using the mouse cursor. 
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Supplementary Questionnaire 1. DECODE-3DViz Tool 

A. Visual Characteristics Questions 

For each set of images, rate the following characteristics: 

1. Definition of Structure, please rate the sharpness of the edges of the anatomical structures 

in the images: 1 - Very Unsatisfied | 2 - Unsatisfied | 3 - Neutral | 4 - Satisfied | 5 - Very 

Satisfied 

Iliac Arteries: ________ 

Femoral Arteries: ________ 

Popliteal Arteries: ________ 

Tibial Arteries: ________ 

2. Depth Perception, please rate the ability to perceive spatial relationships in the images: 1 - 

Very Unsatisfied | 2 - Unsatisfied | 3 - Neutral | 4 - Satisfied | 5 - Very Satisfied 

Iliac Arteries: ________ 

Femoral Arteries: ________ 

Popliteal Arteries: ________ 

Tibial Arteries: ________  

3. Texture Appearance, please rate the realism of the surface textures in the images: 1 - Very 

Unsatisfied | 2 - Unsatisfied | 3 - Neutral | 4 - Satisfied | 5 - Very Satisfied 

Iliac Arteries: ________ 

Femoral Arteries: ________ 

Popliteal Arteries: ________ 

Tibial Arteries: ________ 

4. Fidelity, please rate how closely the images resemble real peripheral artery tissue: 1 - Very 

Unsatisfied | 2 - Unsatisfied | 3 - Neutral | 4 - Satisfied | 5 - Very Satisfied 

Iliac Arteries: ________ 

Femoral Arteries: ________ 

Popliteal Arteries: ________ 

Tibial Arteries: ________ 

5. Diagnostic Ability, please rate the effectiveness of the images in supporting clinical 

diagnosis/your work: 1 - Very Unsatisfied | 2 - Unsatisfied | 3 - Neutral | 4 - Satisfied | 5 - 

Very Satisfied 
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Iliac Arteries: ________ 

Femoral Arteries: ________ 

Popliteal Arteries: ________ 

Tibial Arteries: ________ 

B. Additional Questions 

6. Reliability of this Tool, please rate the reliability of our tool for 3D volume rendering: 1 - 

Very Unsatisfied | 2 - Unsatisfied | 3 - Neutral | 4 - Satisfied | 5 - Very Satisfied 

7. Recommendation of this Tool, would you recommend our tool to others for advanced 

rendering? 1 - Very Unsatisfied | 2 - Unsatisfied | 3 - Neutral | 4 - Satisfied | 5 - Very Satisfied 

C. Open-Ended Questions 

8. Please provide your preference for using our tool or the other state-of-the-art tools for 

advanced rendering and explain your reasoning. 

9. Please provide any additional comments or suggestions to help improve the rendering 

techniques. 
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Supplementary Questionnaire 2. SUS for DECODE Cloud Platform 

1. I think that I would like to use the DECODE Cloud Platform frequently. 

 

2. I found the DECODE Cloud Platform unnecessarily complex. 

 

3. I thought the DECODE Cloud Platform was easy to use. 
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4. I think that I would need the support of a technical person to use this platform. 

 

5. I found the various functions of the DECODE Cloud Platform were well integrated. 

 

6. I thought there was too much inconsistency in this platform. 
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7. I would imagine that most people would learn to use this platform very quickly. 

 

8. I found the DECODE Cloud Platform very cumbersome to use. 

 

9. I felt very confident using the DECODE Cloud Platform. 
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10. I needed to learn a lot of things before I could get going with this platform. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

199 

 

Supplementary Questionnaire 3. TAM for DECODE Cloud Platform 

A. Perceived Usefulness (PU) 

1. Using the DECODE Cloud Platform improves my efficiency in analyzing PAD 

imaging. 

 

2. The DECODE Cloud Platform enhances my ability to process and visualize vascular 

imaging data. 

 

3. Using this platform increases my productivity in computational modeling and PAD 

diagnosis. 
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4. The DECODE Cloud Platform makes it easier to manage patient-specific PAD 

diagnosis and intervention planning. 

 

5. I find the DECODE Cloud Platform useful for my research or clinical work. 

 

B. Perceived Ease of Use (PEOU) 

6. Learning to use the DECODE Cloud Platform is easy for me. 
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7. I find it easy to interact with the platform’s AI-driven segmentation and visualization 

features. 

 

8. My experience with the DECODE Cloud Platform has been smooth and without 

complications. 

 

9. The platform is user-friendly and well-structured for medical imaging workflows. 
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10. It is easy for me to become skilled at using the DECODE Cloud Platform. 

 

C. Behavioral Intention to Use (BI) 

11. I intend to continue using the DECODE Cloud Platform for medical imaging and 

analysis. 

 

12. I would recommend the DECODE Cloud Platform to other researchers and clinicians 

working with PAD imaging. 
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