

Approximate computing using booth multipliers

A Dissertation

Submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

By

Kazantzidis Panagiotis

In partial fulfillment of the requirements for the degree of

DATA AND COMPUTER SYSTEMS ENGINEERING

WITH SPECIALIZATION IN

ADVANCED COMPUTER SYSTEMS

University of Ioannina

School of Engineering

Ioannina 2025

Examination Committee:

• Aristides Efthymiou, Assistant Professor, Department of Computer Science

and Engineering, University of Ioannina (Supervisor)

• Yiorgos Tsiatouhas, Professor, Department of Computer Science and

Engineering, University of Ioannina

• Xrysovalantis Kavousianos, Professor, Department of Computer Science

and Engineering, University of Ioannina

Acknowledgement

First and foremost, i am extremely grateful to my family for their invaluable

support both financially and spiritually throughout my academic studies.

Furthermore, I would like to thank my supervisor Prof. Aristides Efthimiou and

the PhD candidate Ioannis Rizos, for their catalytic help and valuable guidance

during this master thesis

i

Table of Contents

Table of Figures iii

Abstract v

Περίληψη vi

CHAPTER 1 Introduction ... 1

1.1 Objective ... 1

1.2 Thesis outline ... 2

CHAPTER 2 Background .. 5

2.1 Approximate computing basics and applications 5

2.2 Evaluation and metrics ... 7

2.3 Multiplication Primitives ... 8

2.4 Booth multiplication ... 11

2.5 Approximate booth multipliers and error compensation 16

2.6 Basics of neural networks ... 20

2.7 Floating point extraction and multiplication .. 22

CHAPTER 3 Booth encoding application .. 27

3.1 Objective .. 27

3.2 Booth multiplication of mantissas ... 27

3.3 Implementation and design ... 30

3.4 Benchmarking hardware with vitis ... 33

3.5 Using a Multilayer perceptron ... 34

CHAPTER 4 Evaluation .. 38

ii

4.1 Introduction... 38

4.2 Tools ... 38

4.3 Experiments .. 39

4.3.1 Multiplier testing ... 39

4.3.2 MLP testing ... 47

CHAPTER 5 Conclusions and future thoughts .. 51

5.1 Conclusions.. 51

5.2 Future thoughts .. 52

References 55

iii

TABLE OF FIGURES

Figure 1 Multiplication of 25 * 39 [10] ... 8

Figure 2 Multiplication of 2 numbers with 6bit length each and the generation of

their partial products [10] ... 9

Figure 3 Partial products represented by dots [10] ... 10

Figure 4 Wallace tree with carry save adders .. 11

Figure 5 Selection table of partial sums of radix 2 .. 12

Figure 6 Example of a booth encoder with radix-2 .. 12

Figure 7 Selection table of partial sums of radix 4 .. 13

Figure 8 Example of a booth encoder with radix-4 ...14

Figure 9 Selection table of partial sums [10] ..14

Figure 10 Radix 4 booth encoder with selection signals 15

Figure 11 Broken booth multipler [12] ... 16

Figure 12 8x8 fixed width modified booth multiplier 16

Figure 13 Sorting network odd-even merge ... 17

Figure 14 Simplified sorting network with the use of gates 18

Figure 15 Addition between 1Y and 2Y to calculate 3Y 19

Figure 16 Truth table of a 2 bit adder .. 19

Figure 17 Truth table of an approximate 2 bit adder .. 19

Figure 18 3-layer multilayer perceptron ... 21

Figure 19 32 bit single precision number format by IEEE 23

Figure 20 Simplified Floating Point Multiplication ... 24

Figure 21 Pseudocode of the approximate booth multiplier 29

Figure 22 Flow diagram ... 30

Figure 23 Block design inside vivado’s inteface ... 34

Figure 24 Lut utilization per bit skipped .. 40

Figure 25 Percentile Lut utilization per bits skipped ...41

Figure 36 MRED of 100000 random multiplications .. 42

Figure 26 4x4 Approximate booth multiplier, 0 bits skipped 43

Figure 27 4x4 Approximate booth multiplier, 1 bit skipped.............................. 43

Figure 28 4x4 Approximate booth multiplier, 2 bits skipped 43

Figure 29 4x4 Approximate booth multiplier, 3 bits skipped 44

iv

Figure 30 4x4 multiplier ... 44

Figure 31 Total on chip power ... 45

Figure 32 Timing simulation latency .. 46

Figure 33 Maximum clocking speed ... 46

Figure 34 First dataset, accuracy per bit skipped .. 48

Figure 35 Second dataset, accuracy per bit skipped .. 49

Figure 37 First dataset, time taken ... 50

Figure 38 Second dataset, time taken ... 50

v

ABSTRACT

In the present master thesis, we shall explore the design and implementation of

an approximate Booth multiplier. The primary goal of this research is to

investigate how approximate computing techniques can increase the efficiency of

power intensive systems that are error tolerant.

With the development of artificial intelligence and big data processing, an

unprecedented problem has arisen. These new applications must process massive

datasets using increasingly complex computing architectures, creating a critical

demand for both energy-efficient systems and highly integrated circuitry.

However, high-precision calculations are not always required.

On the contrary, certain small errors can compensate for each other or do not

significantly affect the result. Therefore, Approximate Computing (AC) has

emerged as a new approach for an energy-efficient design, as well as for increasing

the performance of a computing system, with limited loss of accuracy.

Booth encoding is a well-established algorithm used to optimize binary

multiplication by reducing the number of partial products generated and

thereafter improving computational efficiency. By encoding the multiplier

operand, Booth encoding enables the multiplier to handle multiple bits of the

multiplicand simultaneously, thereby minimizing the number of operations

required for multiplication. This reduction in operations translates to faster

computation times, reduced hardware complexity, and lower power consumption,

making the combination of Booth encoding with approximate computing an

attractive choice for high-performance and error tolerant computing systems.

Finally, the results of this thesis, demonstrate the effectiveness of the approximate

Booth multiplier in improving efficiency. By strategically reducing bit precision,

we achieved significant improvements in resource utilization, power efficiency,

and processing speed, while remaining within acceptable error margins. These

findings highlight the potential of approximate computing for designing efficient

and high-performance systems, particularly in applications where minor errors

are permissible.

vi

ΠΕΡΙΛΗΨΗ

Στην παρούσα διπλωματική εργασία θα διερευνήσουμε τη σχεδίαση και την

υλοποίηση ενός προσεγγιστικού πολλαπλασιαστή Booth. Ο πρωταρχικός στόχος

αυτής της έρευνας είναι να διερευνήσουμε πώς οι προσεγγιστικές τεχνικές

υπολογισμού μπορούν να αυξήσουν την αποδοτικότητα των συστημάτων υψηλής

έντασης ισχύος που είναι ανθεκτικά σε σφάλματα.

Με την ανάπτυξη εφαρμογών όπως της τεχνητής νοημοσύνης και της

επεξεργασίας δεδομένων μεγάλου όγκου, έχει προκύψει ένα άνευ προηγουμένου

πρόβλημα. Οι νέες αυτές εφαρμογές αντιμετωπίζουν έναν τεράστιο όγκο

δεδομένων χρησιμοποιώντας ολοένα και πιο πολύπλοκες αρχιτεκτονικές,

απαιτώντας ενεργειακά αποδοτικά συστήματα καθώς και ισχυρά ενσωματωμένα

κυκλώματα. Ωστόσο στην πράξη δεν χρειάζονται πάντα υπολογισμοί υψηλής

ακρίβειας.

Αντιθέτως, ορισμένα μικρά σφάλματα μπορούν εύκολα να αντισταθμίσουν το

ένα το άλλο ή δεν επηρεάζουν σημαντικά το αποτέλεσμα. Ως εκ τούτου, οι

προσεγγιστικοί υπολογισμοί (Approximate Computing, AC) έχουν αναδειχθεί ως

μια νέα προσέγγιση για έναν ενεργειακά αποδοτικό σχεδιασμό, καθώς και για

την αύξηση της απόδοσης ενός υπολογιστικού συστήματος, με περιορισμένη

απώλεια ακρίβειας.

Η κωδικοποίηση Booth είναι ένας καλά εδραιωμένος αλγόριθμος που

χρησιμοποιείται για τη βελτιστοποίηση του δυαδικού πολλαπλασιασμού μέσω

της μείωσης του αριθμού των παραγόμενων μερικών γινομένων και στη συνέχεια

τη βελτίωση της απόδοσης. Με την κωδικοποίηση της πράξης του

πολλαπλασιαστή, η κωδικοποίηση Booth επιτρέπει στον πολλαπλασιαστή να

χειρίζεται ταυτόχρονα πολλά bits της πράξης του πολλαπλασιαστή,

ελαχιστοποιώντας έτσι τον αριθμό των πράξεων που απαιτούνται για τον

πολλαπλασιασμό. Αυτή η μείωση των πράξεων οδηγεί σε ταχύτερους χρόνους

υπολογισμού, μειωμένη πολυπλοκότητα υλικού και χαμηλότερη κατανάλωση

ενέργειας, καθιστώντας τον συνδυασμό της κωδικοποίησης Booth με τον

προσεγγιστικό υπολογισμό μια ελκυστική επιλογή για υπολογιστικά συστήματα

υψηλής απόδοσης με υψηλή ανοχή σε σφάλματα.

vii

Τέλος, τα αποτελέσματα αυτής της διπλωματικής εργασίας αποδεικνύουν την

αποτελεσματικότητα του προσεγγιστικού πολλαπλασιαστή Booth στην αύξηση

της αποδοτικότητας. Αυξάνοντας τον αριθμό των bits που παραλείπονται,

πετύχαμε μειώσεις στη χρήση πόρων, στην κατανάλωση ενέργειας και στο χρόνο

εκτέλεσης , διατηρώντας μια αποδεκτή ανοχή σε σφάλματα. Τα αποτελέσματα

αυτά αναδεικνύουν τις δυνατότητες του προσεγγιστικού υπολογισμού για τη

σχεδίαση αποτελεσματικών και υψηλής επίδοσης συστημάτων, ιδίως σε

εφαρμογές όπου επιδέχονται μικρά σφάλματα.

1

CHAPTER 1

INTRODUCTION

1.1 Objective

1.2 Thesis outline

1.1 Objective

Over the last decades, the size of transistors has decreased exponentially, as

predicted by Moore's law, leading to continuous improvements in the performance

and power efficiency of integrated circuits. However, on the nanometer scale, the

supply voltage cannot be further reduced, which has led to a significant increase

in power density. Hence, a percentage of transistors in a circuit must be turned

off to combat thermal problems. These deactivated transistors are called "dark

silicon". The area of "dark silicon" can reach more than 50% of the initial area

on a 8 nm technology. This indicates a growing challenge to improve circuit

performance and power efficiency when using traditional technologies. To address

this issue, new design methodologies have been explored, including multicore

architectures, external integration, improved arithmetic algorithms and

approximate computing(AC).

In digital computing, arithmetic operations form the backbone of virtually all

computational tasks, influencing everything from basic calculations to complex

algorithmic processes. These operations, including addition, subtraction,

multiplication, and division, are fundamental for executing algorithms and

processing data. Innovations in arithmetic algorithms aim to streamline these

operations, reducing both computation time and resource consumption. One such

advancement is the Booth multiplier, which introduces Booth encoding to

optimize binary multiplication. Booth's algorithm reduces the number of partial

2

products and simplifies the addition process, significantly enhancing both speed

and hardware efficiency.

AC is based on the fact that many applications, such as multimedia, identification,

classification and machine learning, are tolerant of certain errors. Some errors do

not cause a noticeable degradation in the quality of image, audio and video

processing. In addition, the input data to a digital system usually contains noise

and is quantized, so there is already a threshold in the accuracy and truth of

representation of useful information. In the case of probabilistic computation, they

remodel numerical functions into random binary bit streams using simple logic

gates, where minor errors do not lead to a critically different result. Finally, many

applications, including machine learning, rely on iterative tuning. This process can

mitigate or compensate for the effects of trivial errors. Thus, AC is a promising

technique that benefits multiple different fault-tolerant applications.

The main objective of this thesis is to design and implement a novel approximate

multiplier based on Booth encoding. Initially we evaluate its accuracy based on

mean relative error distance, a metric commonly used in AC research. The

multiplier is built on a Field-Programmable Gate Array (FPGA) platform and its

performance was thoroughly evaluated using metrics such as latency, throughput

and power efficiency. We then evaluate its performance in an error-tolerance

application, a neural network framework. Specifically, we replace all multiplication

operations in the training phase of a Multi-Layer Perceptron model and compare

the model's accuracy when using our approximate multiplier and when the exact

multiplication is performed. The MLP models were run an an ARM core present

in the same FPGA platform used for evaluating the proposed aproximate

multiplier and their practical performance is discussed.

1.2 Thesis outline

Chapter 2 provides a foundational background for understanding the key concepts

and technologies fundamental to this thesis. It begins with a discussion on

compute intensive applications, emphasizing the challenges and opportunities

associated with processing and analyzing vast amounts of information. Following

this, the chapter delves into multiplication encoders, exploring tools used to

3

optimize binary multiplication. This section will cover different encoding

techniques, with a particular focus on Booth encoding. The chapter then

introduces approximate computing, a calculation concept that allows for controlled

inaccuracies to achieve faster and more efficient calculations. Then it examines

various evaluation metrics, such as mean error and accuracy, which are essential

for assessing the performance and reliability of these techniques. The chapter also

discusses the rationale behind selecting the Multilayer Perceptron (MLP) as the

neural network for this study. Finally, it highlights the necessity of explicitly

handling floating-point operations, particularly the extraction of floating-point

components to enable accurate multiplication between two float numbers.

Chapter 3 focuses on the development of a novel algorithm designed to enhance

computational efficiency. It introduces a new modified Booth encoding method

aimed at improving the speed and efficiency of binary multiplication operations.

Additionally, it explores the integration of this new Booth encoding with

approximate computing, demonstrating how approximations can enable faster

calculations and reduce computational demands while maintaining acceptable

accuracy levels. It provides a detailed analysis of the new algorithm, explaining

its design, implementation, and the thought process behind its development. This

includes how the algorithm addresses specific challenges and leverages the

strengths of both Booth encoding and approximate computing to achieve efficient

and accurate results. Following this, it discusses the process of benchmarking the

hardware using Vitis, highlighting the steps taken to evaluate performance and

efficiency. The chapter also explores the application of a Multilayer Perceptron

(MLP) in the experiments, explaining its role in testing the proposed algorithms

Chapter 4 focuses on the evaluation of the implementation of the proposed

algorithm. It begins with a detailed description of the hardware used in this thesis,

specifically the Zynq-7000 FPGA on the PYNQ-Z2 board, outlining the

components and configurations essential for supporting the new modified Booth

encoder and approximate computing. The chapter then introduces the tools

utilized for development and testing, providing an overview of their functionalities

and relevance to the experiments. The experiments are divided into two main

categories: Multiplier testing and MLP testing. Multiplier testing includes an

analysis of LUT utilization, schematics complexity, medium error distance of a

4

multiplication (measured by MRED), and on-chip power consumption, providing

insights into the hardware's performance and resource usage. MLP testing focuses

on evaluating accuracy, error tolerance , and time taken, demonstrating the impact

of the new algorithms on computational efficiency and accuracy. This chapter

provides a comprehensive evaluation of the practical implementation and

effectiveness of the proposed methods.

Chapter 5 summarizes the findings and contributions of this thesis while outlining

potential directions for future research. It begins with conclusions that highlight

the key outcomes of the experiments, focusing on the effectiveness of the modified

Booth encoding and approximate computing techniques in improving

computational efficiency, resource utilization, and accuracy. The chapter then

transitions to future thoughts, suggesting opportunities for further exploration,

such as testing on larger FPGA boards, investigating higher-radix designs, and

integrating the algorithms into more complex neural networks and real-world

applications. This chapter emphasizes the significance of the research and its

potential to advance the field of approximate computing and hardware-accelerated

machine learning.

5

CHAPTER 2

BACKGROUND

2.1 Approximate computing basics and applications

2.2 Evaluation and metrics

2.3 Multiplication Primitives

2.4 Booth multiplication

2.5 Approximate booth multiplier and error compensation

2.6 Basics of neural networks

2.7 Floating point extraction and multiplication

2.1 Approximate computing basics and applications

AC is considered suitable for many error-tolerant applications, such as image

processing and machine learning, aiming to increase performance and energy

efficiency. [1]

Approximation techniques of algorithm, architecture and circuit level have been

used collaboratively in the design of an energy-efficient programmable vector

processor for recognition and data mining. These design techniques achieve a

16.7%-56.5% reduction in power consumption compared to a traditional design

without any loss of quality, and a 50.0%-95.0% with output quality insignificantly

reduced. For example, in mainstream image processing applications, sharpening,

smoothing and image multiplication are considered suitable for assessing the

quality of approximate adders and unsigned multipliers [2] [3].

Approximate adders and multipliers have been integrated into deep learning

accelerators to reduce latency and save energy. In large-scale convolutional neural

network (CNN) and deep neural network (DNN) applications, 32-bit floating-point

multipliers are used. In many applications these multipliers have now been

replaced by 16-bit multipliers with constant error compensation. A reduction of

up to 83.6% in circuit area and 86.4% in power consumption is achieved. Also,

in some applications the approximate adders and multipliers have been integrated

6

into a device with varying levels of accuracy for different configurations

determined on the fly according to the application requirements. In this way,

different performance and power improvements can be achieved by compensating

for a variety of levels of processing quality [4] [5] [6].

An approximate computational circuit can be obtained by using the technique of

Voltage Overscaling VOS, by redesigning a logic circuit to an approximate one and

using a simplification algorithm [7]. Using VOS, a lower supply voltage is provided

to reduce the power consumption of a circuit without having to change the circuit

structure. However, the reduced voltage increases the critical path delay,

potentially resulting in timing errors. Thus, the output may be incorrect due to

timing constraints. Moreover, the error characteristics of such an approximate

operation are non-deterministic, as they are affected by parametric variations.

When the most significant bits (MSB) are affected, the output error could be

larger.

Usually, an approximate design is derived from an exact circuit by modifying,

removing, or adding certain elements. For example, in a mirror adder, which is a

type of full adder known for its symmetrical structure and efficient transistor

usage, certain transistors can be removed to create an approximate version. The

mirror adder typically consists of two mirrored halves that generate the sum and

carry outputs simultaneously, making it faster and more power-efficient than

traditional adder designs. By selectively removing transistors, the circuit becomes

simpler, reducing power consumption and increasing speed at the cost of

introducing minor errors in the output [8].

In addition, an approximate circuit can be obtained by simplifying the truth matrix

or Karnaugh map (K-Map). This method leads to circuits with deterministic error

characteristics. However, due to the same structure and basic design principles,

hardware improvements are minimal, particularly when high accuracy is required.

Compared to addition and subtraction, the multiplication, the division and the

calculation of the square root are more complex. Hence, their operations can be

converted into some simpler operations. Mitchell's algorithm, based on the binary

logarithm, provides an efficient way to implement multiplication and division

using only adders and subtractors. The algorithm approximates the logarithm of

a number by interpreting its binary representation, allowing multiplication to be

7

performed as an addition of logarithms and division as a subtraction of

logarithms. For multiplication, the algorithm computes the sum of the logarithms

of the operands and then converts the result back to a linear value using an

antilogarithm approximation. Similarly, for division, it subtracts the logarithms

and converts the result back [7].

Mitchell's algorithm is the origin of most current simplification algorithms for

approximate design of multipliers and divisors alongside functional iteration-

based algorithms for designing divisors. By using algorithmic simplification, the

performance and energy efficiency of a numerical circuit can be significantly

improved due to the simplification of the basic circuit structure. However, the

accuracy of such a design is relatively low. Achieving high accuracy requires many

boards, which can limit the efficiency of the hardware. In practice, several

approximation techniques are used simultaneously in a hybrid approximation

circuit [9].

2.2 Evaluation and metrics

Later in this dissertation we will discuss approximate multipliers. Thus we need

to analyze basic terminologies where they relate to error and their performance.

Two basic error metrics are error rate (ER) and error distance (ED). ER indicates

the probability of producing an incorrect result. ED shows the arithmetic

difference between the approximate and the exact result. Given the approximate

and the exact result M′ and M, respectively, the ED is calculated as follows: 𝐸𝐷 =

|𝑀′ − 𝑀| ER is calculated as :
|𝑀′−𝑀|

𝑀
⋅ 100. Furthermore, the relative error distance

(RED) shows the relative difference compared to the exact result, which is given

by 𝑅𝐸𝐷 = |
𝐸𝐷

𝑀
|. For two sets of inputs that result in the same ED, the one that

produces the least accurate result, M, will result in a larger RED. Similar to the

mean values of all obtained EDs and REDs, called mean error distance (MED)

and mean relative error distance (MRED) are often used to evaluate the accuracy

of an approximate design. Here are the functions for calculating MED and MRED.

𝑀𝐸𝐷 = ∑ 𝐸𝐷𝑖

𝑁

𝑖=0

⋅ 𝑃(𝐸𝐷𝑖)

8

𝑀𝑅𝐸𝐷 = ∑ 𝑅𝐸𝐷𝑖

𝑁

𝑖=0

⋅ 𝑃(𝑅𝐸𝐷𝑖)

where N is the total number of input combinations for a circuit, and 𝐸𝐷𝑖 and 𝑅𝐸𝐷𝑖

are ED and RED for the i-th input number, respectively. 𝑃(𝐸𝐷𝑖) and 𝑃(𝑅𝐸𝐷𝑖) are

the probabilities of 𝐸𝐷𝑖 and 𝑅𝐸𝐷𝑖 occurring, which are the probabilities of the i-

th input combination. NMED is defined as the normalization of MED to the

maximum output of the exact correct circuit.

2.3 Multiplication Primitives

Multiplication is less common than addition, but it is still necessary for

microprocessors, digital signal processors and GPUs. The most basic form of

multiplication consists of calculating the product of two unsigned (positive) binary

numbers. This can be achieved using the conventional technique that is also taught

in primary school. For example, the multiplication of two positive 6-bit positive

binary integers, 25 and 39, is shown in Figure 1.

Figure 1 Multiplication of 25 * 39 [10]

The M × N-bit P = Y × X multiplication can be viewed as forming N partial sums

of length M bits each, and then summing the appropriately shifted partial sums

to produce an outcome P of length M + N bits. Binary multiplication is equivalent

to a logical AND operation. Therefore, the creation of partial sums is the logical

AND operation of the appropriate bits of the multiplier and the multiplicand.

Each column of partial sums must then be added together and, if there are any

carry-overs, they must be passed to the next column. We denote the multiplier as

9

Y={ΥM-1,ΥM-2,...,Υ1,Υ0}and the multiplicand X={ΧN-1,ΧN-2,...,Χ1,Χ0}.For unsigned

multiplication, the product is given in Equation (2.1). Figure 2 illustrates the

creation, shifting, and addition of partial sums in a 6 × 6 bit multiplier.

P= (∑ yj

M-1

j=0
⋅2j) ⋅(∑ xi

N-1
i=0 ⋅2i)= ∑ N-1

i=0 ∑ xiyj2
i+j

M-1

j=0
 (2.1)

Figure 2 Multiplication of 2 numbers with 6bit length each and the generation

of their partial products [10]

Larger multiplications can be better illustrated by using scatter plots. Figure 3

shows a scatter plot of a 16 × 16 multiplier. Each dot represents one bit which

can be 0 or 1. Partial products are represented by a horizontal row of cells

arranged in a grid pattern, which are shifted according to their significance. The

multiplier bits used to generate the partial sums are shown on the right.

10

Figure 3 Partial products represented by dots [10]

There are several techniques that can be used for carry propagation. In general,

the choice is based on factors such as delay, power, energy, area and complexity

of the circuit design. An easy approach is to use an M+1-bit adder (carry-

propagate adder CPA) to add the first two partial sums, then another CPA to add

the third partial sum to the current sum, and so forth. Such an approach requires

N - 1 CPAs and is slow even if a fast CPA is used. There are more efficient parallel

approaches available that use some kind of matrix or tree of complete adders to

sum the partial products. We start with a simple matrix for unsigned multipliers

and then modify the matrix to handle signed numbers of complement of 2 using

the Baugh-Wooley algorithm [11]. The number of partial sums being added can

be reduced using the Booth encoding, and the number of logical levels required

to perform summation can be reduced with Wallace trees (Figure 4).

Unfortunately, Wallace trees are complex to design and have long, uneven wires,

so hybrid table/tree structures may be more attractive. For the sake of

thoroughness, we consider a serial propagation architecture. This was once

popular when gates were relatively expensive, but now it is scarcely useful.

11

Figure 4 Wallace tree with carry save adders

2.4 Booth multiplication

The original Booth's algorithm, introduced by Andrew D. Booth in his seminal

work "A Signed Binary Multiplication Technique", was designed to reduce the

number of partial products in signed binary multiplication. The key insight lies

in recognizing that consecutive ones in the multiplier do not require individual

partial products. Instead, they can be consolidated into fewer operations. For

example, a sequence such as 0111...110 can be transformed into 1000...000 -

000...10, effectively minimizing the required computations.

In practice, the algorithm processes the multiplier bits from right to left, examining

one bit at a time (radix-2 encoding) and generating partial products of ±Y or 0

based on the current and previous bits(Figure 5). However, it comes with a trade-

off, since the number of partial products varies depending on the multiplier's

value. This unpredictability presents significant challenges for hardware

implementation. When designing critical components like Wallace tree adders,

engineers must account for worst-case scenarios since the actual number of partial

products cannot be predetermined.

12

Figure 5 Selection table of partial sums of radix 2

Figure 6 demonstrates a radix-2 Booth encoded multiplication between two

signed binary numbers Y=011001 and X=100111. At the right, X is aligned

vertically from the LSB to the MSB for demonstration purposes. The

multiplication process begins by analyzing pairs of bits starting from the implicit

X₋₁ bit and moving through X₆. We must clarify that the X₋₁ and X₆ bit are always

set to 0. Then each bit pair [Xᵢ Xᵢ₋₁] determines the new partial product of the

multiplicand Y according to Booth's radix 2 encoding rules on Figure 5. Each

partial product shifts left according to its bit position while sign extension

preserves the correct two's complement representation throughout the calculation

The complete set of generated partial products is then summed to produce the

final multiplication result.

For instance, when the algorithm detects a transition from 0 to 1 in the multiplier

bits, it generates a negative partial product (-Y), while a transition from 1 to 0

produces a positive partial product (+Y).

Figure 6 Example of a booth encoder with radix-2

Xi Xi—1 Operation
0 0 0
0 1 +Y
1 0 -Y
1 1 0

13

Building upon the fundamental Booth algorithm, higher radix multipliers were

introduced to further optimize binary multiplication by reducing the number of

partial products. These advanced techniques examine multiple bits of the

multiplier simultaneously. The most widely adopted is radix-4, which examines

two bits plus an overlapping third bit from the previous step. This modification

reduces the number of partial products to approximately N/2, where N is the bit-

width of the multiplier. The possible partial products in radix-4 are 0, ±Y, ±2Y,

with 2Y easily implemented as a left shift. Crucially, the problematic 3Y multiple

is avoided by leveraging signed arithmetic, where 3Y is expressed as 4Y - Y,

shifting the complexity to the next higher-weight partial product.

The selection of partial products in radix-4 Booth encoding follows a predefined

table based on triplets of multiplier bits(Figure 7). Each partial product is shifted

two positions to the left relative to the previous one, reflecting its fourfold increase

in weight. Sign extension is applied for negative multiples, ensuring correct two’s

complement representation.

Figure 7 Selection table of partial sums of radix 4

Figure 8 depicts a radix-4 Booth encoded multiplication between two signed

binary numbers Y=011001 and X=100111. The multiplication iterates overlapping

3-bit windows of the multiplier [Xᵢ₊₁ Xᵢ Xᵢ₋₁] to determine the new partial product

of the multiplicand Y .Each window selects from five possible actions according

to the radix-4 Booth encoding rules as aforementioned(Figure 7).

X2i+1 X2i X2i—1Operation
0 0 0 0
0 0 1 +Y
0 1 0 +Y
0 1 1 +2Y
1 0 0 -2Y
1 0 1 -Y
1 1 0 -Y
1 1 1 0

14

Figure 8 Example of a booth encoder with radix-4

In a common radix-4 Booth encoded multiplier design, each group of 3 bits (a

pair, along with the most significant bit of the previous pair) is encoded in

selection signals (SINGLE i, DOUBLE i, and NEG i, Figure 9) and connected to

the partial product line, as shown in Figure 10.

Figure 9 Selection table of partial sums [10]

The Y multiplier is allocated to all rows. The selector signals control the Booth

selectors that choose the appropriate multiple of Y for each partial product. The

Booth selectors replace the AND gates of a simple matrix multiplier to compute

the i-th partial product. Figure 10 shows a classic encoder design with a Booth

selector. Y is expanded by M+1 bits with zeros. Depending on SINGLEi and

15

DOUBLEi, either 0, Y, or 2Y is selected. The negative partial products must be in

the form of complement by two (i.e., invert and add 1). If NEGi is activated, the

partial product is inverted. The extra ace can be added to the next row to avoid

the need for CPA.

Figure 10 Radix 4 booth encoder with selection signals

Higher-radix versions, such as radix-8 or radix-16, further reduce the number of

partial products but introduce more complex multiples (e.g., ±3Y, ±4Y), which

often outweigh their benefits due to increased hardware overhead.

In this work, we employ a modified version of the original Booth algorithm (radix-

2) rather than radix-4. Given that our primary focus is clarity and predictable

hardware behavior, radix-2 provides a more straightforward solution.

16

2.5 Approximate booth multipliers and error compensation

The modified (or radix-4) Booth encoder is commonly used in the design of

approximate multipliers. Initially targeting a fixed-length signed multiplier, a

widely used method is to cut off a chunk of the LSB's partial products (PPs) to

create an output with the same width as the input. This truncation makes it easier

to collect PPs but introduces a large error. Therefore, many error compensation

schemes have been proposed.

The Broken booth multiplier (BBM) skips the computational cells of the adder to

the right of a VBL line (Vertical breaking line Figure 11), while truncating some

k less significant bits of the input results in a k-Truncated booth multiplier (TBM-

k). The TBM is considered as a basic design for comparing booth multipliers. In

the tests where they were performed, the value of k was approximated

experimentally and ranged from 2 to 6. [12]

Figure 11 Broken booth multipler [12]

A fixed-width Booth multiplier divides the PP array into two regions: one

containing the most significant bits (MSBs) called the Main Part (MP), and the

other containing the LSBs called the Truncation Part (TP). The TP is further

subdivided into TP_major and TP_minor. The final result is obtained by summing

the MP and carry terms generated from the TP.

Figure 12 8x8 fixed width modified booth multiplier

17

To mitigate truncation error, the BM04 architecture introduces a basic error

correction mechanism by examining whether a partial product row is entirely zero

or not. This is captured by a Boolean signal 𝑧𝑒𝑟𝑜i which equals 1 if the i-th row

contains any non-zero bits. The compensation term is generated by summing

selected 𝑧𝑒𝑟𝑜i values, enabling lightweight correction without complex adders or

predictors. The approximate partial product is generated by the equation:

𝜎 = ⌊2−1 (∑  
𝑛/2−2
𝑖=0   zero 𝑖 + 1)⌋ (2.2)

To enable tunable accuracy, BM07 allows adjusting the number of most significant

PP columns retained via a parameter ω. Based on this, different thresholds are

applied to determine whether and how to compensate the error induced by

truncation. [13]

BM11 introduces a new approach to error handling: instead of only estimating

magnitude, it ensures that errors are centered around zero, eliminating systematic

bias. This is achieved using an odd-even merge sorting network, where the carry

signals from TP rows are ranked, and a central (e.g., median) signal is selected to

represent the correction.

Figure 13 Sorting network odd-even merge

The aforementioned circuit sorts the inputs in ascending order from r3 to r0.

According to the authors, utilizing the r2 output suffices to approximate the

18

presence of the carry signal. Following the removal of certain gates and

subsequent partial simplification, the circuit assumes the form shown in Network

2. This network is designated as the SC-generator. [14]

Figure 14 Simplified sorting network with the use of gates

Another Booth multiplier was designed in [15] based on a probabilistic error

estimation approach, specifically addressing the discrepancy between estimated

and actual values. This multiplier architecture is termed as Probability Estimation

Bias Multiplier (PEBM). The number of accumulated partial product columns

varies according to the desired hardware-accuracy trade-off ratio. The error

compensation formula is derived through probability analysis rather than time-

consuming exhaustive simulation. The carry signal generated by the truncated

portion (TP) is approximated as follows:

𝜎 = ⌊2−1(∑  
𝑛/2−1−⌊𝜔/2⌋
𝑖=0   𝑧𝑖 − 1)⌋ (2.3)

Zᵢ = Pₒ,ₙ/₂₋₁ + nₙ/₂₋₁ when i = n/2 - 1, otherwise Zᵢ = 𝑧𝑒𝑟𝑜

Another multiplier variant specifically targets the computation of triple multiples

(3Y). To mitigate the additional latency inherent in radix-8 Booth algorithms, the

design employs an approximate adder for calculating these triple multiplicands

[10]. This is achieved through strategic modifications to the Karnaugh map, which

simplifies the logic function (Figure 15-16-17). The architecture subsequently

19

incorporates a Wallace tree structure combined with a truncation technique for

partial product (PP) accumulation. [16]

The most efficient approximate radix-8 Booth multiplier, designated ABM2_R15,

implements a 15-bit truncation scheme to create a fixed-width multiplier. This

optimized configuration is formally recognized and referenced as ABM2.

Figure 15 Addition between 1Y and 2Y to calculate 3Y

Figure 16 Truth table of a 2 bit adder

Figure 17 Truth table of an approximate 2 bit adder

Below are the Boolean functions derived from the Karnaugh map optimization

shown in Figure 16

𝐶out = ((𝑦𝑖−1 ∨ 𝑦𝑖+1 ∨ 𝐶𝑖𝑛) ∧ 𝑦𝑖)

 ∨ (𝐶𝑖𝑛 ∧ 𝑦𝑖+1 ∧ 𝑦𝑖−1),

𝑆𝑖+1 = (((𝑦𝑖 ∨ 𝑦𝑖−1) ∨ (𝐶𝑖𝑛 ∧ 𝑦𝑖−1)) ∧ 𝑦𝑖+1) ∨

(𝐶𝑖𝑛 ∧ 𝑦𝑖 ∧ 𝑦𝑖−1) ∨ (𝐶𝑖𝑛 ∧ 𝑦𝑖 ∧ 𝑦𝑖−1)) ∧ 𝑦𝑖+1) ,

𝑆𝑖 = 𝐶𝑖𝑛 ⊕ 𝑦𝑖 ⊕ 𝑦𝑖−1,

20

And below Is the Karnaugh output for the simplified circuit in Figure 17

𝐶𝑜𝑢𝑡 = 𝑦𝑖,
𝑆𝑖+1 = 𝑦𝑖+1,

𝑆𝑖 = 𝐶𝑖𝑛 ⊕ 𝑦𝑖 ⊕ 𝑦𝑖−1.

We can easily observe the simplification through the boolean functions.

In this thesis, we adopt a modified approach based on the Broken Booth

Multiplier architecture, deliberately omitting the multiplication of least significant

bits as a strategic design choice. While various error compensation and

approximation techniques exist in the literature, including probabilistic estimation,

truncation methods, and hybrid exact-approximate circuits, our implementation

focuses on computational efficiency through controlled precision reduction.

2.6 Basics of neural networks

One of the attractive features of artificial neural networks is their capability to

adapt themselves to special environment conditions, by “training” their connection

strengths (weights). Especially, feed-forward neural networks with neurons

arranged in layers, are widely used in computational or industrial fields.

Furthermore, as VLSI technology has developed, the interest in implementing

them in hardware is growing.

A Multilayer Perceptron (MLP) is a class of feedforward neural network that

processes information through a series of interconnected layers. The network

consists of an input layer that receives raw data, one or more hidden layers that

transform the data through weighted connections and nonlinear activation

functions, and an output layer that produces the final prediction. During

operation, input signals propagate forward through the network, where each

neuron computes a weighted sum of its inputs, applies an activation function, and

passes the result to subsequent layers. The weights are iteratively adjusted during

training via backpropagation, which minimizes prediction errors by propagating

gradients backward through the network and updating parameters using

optimization techniques such as stochastic gradient descent.

21

Figure 18 shows a multilayer perceptron (simply denoted as an “MLP” in the

following). Each neuron in a layer is connected to all neurons in the adjacent

layers through uni-directional links (synaptic weights). The first and the last

layers are called the input and output layers respectively, and one between them

is called a hidden layer. In this dissertation, we deal with only MLPs which have

one hidden layer. The output of each neuron (𝑜𝑖) is given by:

 𝑜𝑖 = 𝑓(𝑋𝑖) (2.4)

𝑋𝑖 = ∑ 𝑤𝑖𝑗

𝑁𝜌𝑟𝑒

𝑗=0
⋅ 𝑢𝑗 (2.5)

where wij is the value of the synaptic weight from the j-th neuron in the preceding

layer to the i-th neuron (i, j) is called to be the index of the weight while Npre is

the number of the neurons in the preceding layer connected to the i-th

neuron, uj is the output of the j-th neuron in the preceding layer (j is called to be

the index of the neuron). The number of neurons in each layer is determined by

the dimensionality of the input features and the complexity of the desired output,

with wider layers typically required to model higher-dimensional transformations

while balancing computational efficiency against representational capacity. This

architectural choice reflects a trade-off between capturing sufficient nonlinear

relationships in the data and avoiding excessive parameterization that could lead

to overfitting. Finally, wi0 is the synaptic weight connected to the input u0 = 1

corresponding to the threshold, Xi is called the “inner potential” of the i-th neuron,

Figure 18 3-layer multilayer perceptron

22

and f is an activation function. For example, the sigmoid activation function of a

neuron is defined by

𝑓(𝑥) =
1

1+𝑒𝑥𝑝(−𝑥)
 (2.6)

The choice of activation function (e.g., ReLU, sigmoid, tanh) determines the

network's nonlinear modeling capability and training stability, with selection

based on the gradient propagation needs and output range requirements for the

specific task and dataset.

The learning process called ”back-propagation” is a supervised learning method

used to train MLPs by minimizing an error function through gradient descent.

Let O be a set of indices of the neurons in the output layer, and let P be a set of

indices of the learning input examples. The change of each weight for the p-th

learning input example (named 𝑤𝑖𝑗
𝑝
) is done as follows:

𝛥𝑤𝑖𝑗
𝑝 = −𝜂 ⋅

𝜕𝐸𝑝

𝜕𝑤𝑖𝑗
 (2.7)

where 𝐸𝑝 = ∑  𝑖∈𝑂 (𝑡𝑖
𝑝 − 𝑜𝑖

𝑝)
2

/2 is the error rate function and 𝑡𝑖
𝑝(= 0 or 1) is the

learning output example of the i-th neuron in the output layer for the p-th

learning input example (i ∈ O and p ∈ P), 𝑜𝑖
𝑝
 is the output of the i-th neuron in

the output layer for the p-th learning input example, and η is a parameter of a

positive real number (learning rate). Then, the weight modification is repeated

until the following condition is satisfied

max
𝑝∈𝑃,𝑖∈𝑂

 (𝑡𝑖
𝑝 − 𝑜𝑖

𝑝)
2

< 𝑒𝑜
2 (2.8)

where eo is called the output error in learning phase. If an MLP obtained by a

learning with P and eo satisfies this condition, the learning is said to have finished

successfully. [17]

2.7 Floating point extraction and multiplication

The IEEE 754 standard is the most widely used standard for floating point

computation, and is followed by many CPU implementation. The standard defines

formats for representing floating point number (including + zero and denormals)

23

and special values (infinities and NaNs) together with a set of floating point

operations specifies four formats for representing floating point values: single-

precision (32-bit), double-precision (64-bit), single-extended precision (≥ 43-bit,

not commonly used) and double extended precision (≥ 79-bit, usually

implemented with 80 bits) [18].

In single-precision number representation, a total of 32 bits is required. To ensure

a bias is applied, the value 2𝑛−1 − 1 is added to the actual exponent to obtain the

stored exponent. For an 8-bit exponent in the single-precision format, this bias

equals 127. Adding this bias allows the exponent to range from -126 to +127. As

a result, the single-precision format provides a numerical range from 2−126 to

2+127.

Figure 19 illustrates the IEEE 754 single-precision binary format. This format

includes a 1-bit sign (S), an 8-bit exponent (E), and a 23-bit fraction (M), also

referred to as the mantissa. An additional bit is appended to the fraction to form

the significand. When the exponent lies between 0 and 255 and the most

significant bit (MSB) of the significand is 1, the number is referred to as a

normalized number. In this case, the real value of the number is represented as

Equation (2.9).

Figure 19 32 bit single precision number format by IEEE

𝑍 = (−1S) ∗ 2(E−Bias) ∗ (1. M) (2.9)

Where 𝑀 = 𝑚222−1 + 𝑚212−2 + 𝑚202−3 + ⋯ + 𝑚12−22 + 𝑚02−23 with Bias=127.

To multiply two numbers in floating-point format, the process involves the

following steps:

1. Add the exponents of the two numbers and then subtract the bias from the

sum.

24

2. Multiply the significands (mantissas) of the two numbers.

3. Determine the sign of the result by performing an XOR operation on the

signs of the two numbers.

To ensure the result is represented as a normalized number, the most significant

bit (MSB) of the result must be a 1 (referred to as the leading one). A more

detailed explanation of this process is provided in the following section. The

floating point multiplication algorithm is shown in the below flowchart.

Figure 20 Simplified Floating Point Multiplication

As mentioned in the introduction, normalized floating-point numbers are

represented in the format:

𝑍 = (−1S) ∗ 2(E−Bias) ∗ (1. M) (2.10)

To multiply two floating-point numbers, the following steps are performed:

• Multiply the significands (mantissas), which is represented as “1.M1×1.M2”.

• Adjust the decimal point in the resulting value.

• Add the exponents, calculated as “E1+E2−Bias”.

• Determine the sign of the result by performing an XOR operation on the

signs of the two numbers, “S1 XOR S2”.

• Normalize the result so that the most significant bit (MSB) of the significand

is 1.

• Round the result to ensure it fits within the allocated number of bits.

25

Consider a floating-point representation similar to the IEEE 754 single-precision

floating-point format, but with a reduced number of mantissa bits (only 4), while

still retaining the hidden ‘1’ bit for normalized numbers:

A = 0 10000100 0100 = 40,

B = 1 10000001 1110 = -7.5

To multiply A and B:

1.Multiply the significand:

 1.0100

× 1.1110

 00000

 10100

 10100

 10100

+ 10100

 1001011000

2.Place the decimal point:

10.01011000

3. Add exponents:

 10000100

 +10000001

 100000101

The exponent representing the two numbers is already shifted/biased by the bias

value (127) and is not the true exponent.

EA = EA_true + bias ,

EB = EB_true + bias ,

EA + EB = EA_true + EB_true + 2*bias

So we should subtract the bias from the resultant exponent otherwise the bias will

be added twice

100000101

- 01111111

26

10000110

Normalize the result so that there is a 1 positioned just before the decimal point

(radix point). Shifting the decimal point one place to the left increases the

exponent by 1, while shifting it one place to the right decreases the exponent by

1.

For example:

a. Before normalization: 10000110 10.01011000

b. After normalization: 10000111 1.001011000

The final result, excluding the hidden bit, is:

 1 10000111 00101100

Since the mantissa contains more bits than the available 4-bit limit, rounding must

be applied. After truncation rounding is used, the stored value will be:

1 10000111 0010

27

CHAPTER 3

BOOTH ENCODING APPLICATION

3.1 Objective

3.2 Application of booth encoding

3.3 Booth multiplication of mantissas

3.4 Benchmarking hardware with vitis

3.5 Using a multilayer perceptron

3.1 Objective

The primary objective of this chapter is to detail the development and integration

of a novel algorithm that combines Booth encoding with approximate computing

techniques to improve the efficiency of neural network (NN) computations,

particularly multiplication operations. The selected neural network for this study

is a Multi-Layer Perceptron (MLP), chosen for its simplicity, widespread use, and

suitability for foundational experiments. To validate the approach, we will

implement the MLP on the PYNQ-Z2 hardware board, which features an

embedded CPU and an FPGA [19]. Booth encoding will be applied to optimize

the iterative multiplications involved in the weight calculations of the MLP. The

goal of this experiment is to enhance the neural network's efficiency by reducing

computational overhead, heat generation, power consumption, and overall

computation time, while carefully examining the trade-offs between speed,

accuracy, and error tolerance

3.2 Booth multiplication of mantissas

As stated in chapter 2.7, to multiply two float numbers we need to multiply their

mantissas. A classic Booth multiplier operates by processing the bits of the

multiplier in iterations, either one by one (radix-2), three by three (radix-4), and

so on, starting from the least significant bit (LSB) and moving toward the most

28

significant bit (MSB). Based on the bit values, it performs additions or subtractions

of the multiplicand to compute the final result.

In our implementation, for the sake of simplicity, the Booth multiplier will iterate

bit by bit (radix-2). However, unlike the traditional approach, the direction of

iteration will be reversed — starting from the most significant bits (MSB) and

moving toward the least significant bits (LSB). Additionally, by integrating this

Booth multiplier with approximate computing techniques, we will deliberately

skip the iteration of the X final bits based on our specific requirements, thus

optimizing performance and reducing computation where precision is less critical

as outlined in Chapter 2 . The aforementioned description of our algorithm is

coded in Verilog. Verilog is used in FPGA development as it allows for precise

control over hardware resources. By coding the Booth multiplier in Verilog, we

can implement it directly onto the FPGA embedded in the PYNQ-Z2 board. This

ensures that the multiplication operations are carried out at hardware-level speeds,

leveraging the parallel processing capabilities of the FPGA. Furthermore, Verilog's

ability to describe hardware behavior and architecture aligns with the

requirements of our design, including bit-level manipulations and iterative

computations.

The module takes two mul_size-bit inputs, A and B, and produces a 2*mul_size-

bit output, out. A parameter “iterations” portrays how many bits of the input A

we wish to incorporate into our multiplication. The algorithm iterates through the

bits of A (from most significant to least significant), checking for transitions to

identify when to add or subtract appropriately shifted versions of B to an

accumulated result (temp_output). The first "1" in A triggers an addition, and a

transition from "1" to "0" triggers a subtraction. The distinction between the

subtraction and the addition will be executed with the help of the variable

“first_ace”. The final result is assigned to the output wire after the computation.

This approach reduces computational effort by ignoring the least significant bits,

allowing for an approximate result with a trade-off between precision and

efficiency. For a clearer understanding Figure 21 describes the algorithm, then

Figure 22 depicts a flow diagram of the approximate booth multiplication between

the numbers A and B when skipping X bits.

29

FUNCTION booth_multiplier(A, B)

 SET iterations = mul_size-X

 SET first_ace = 0

 SET temp_output = 0

 SET digit = mul_size

 WHILE (iterations ≠ 0) DO

 iterations=iterations-1

 digit=digit-1

 IF A[digit] == 1 THEN

 IF first_ace == 0 THEN

 temp_number = B SHIFT_LEFT (digit + 1)

 temp_output = temp_output + temp_number

 first_ace = 1

 ENDIF

 ELSE IF first_ace == 1 THEN

 temp_number = -B SHIFT_LEFT (digit + 1)

 temp_output = temp_output + temp_number

 first_ace = 0

 ENDIF

 ENDWHILE

 IF first_ace == 1 THEN

 temp_number = -B SHIFT_LEFT (digit)

 temp_output = temp_output + temp_number

 ENDIF

 RETURN temp_output

END FUNCTION

Figure 21 Pseudocode of the approximate booth multiplier

30

Figure 22 Flow diagram

3.3 Implementation and design

We implemented our Booth multiplier using Verilog, developed within the Vivado

2024 environment. The verilog code contains a variable which represents the

amount of least significant bits that are going to be skipped during the

multiplication of the two inputs. Therefore, we can easily create all 32 possible

multipliers (skipping 1 bit , 2 bits etc) and so simplifying the hardware design

and the area occupation of the multiplier on an FPGA. Once we have all of the

31

32 multipliers synthesized, the hardware design was exported from Vivado as xsa

files which the fpga can translate into hardware. These files were subsequently

handled through Vitis 2024 and transferred to the FPGA via serial communication

which was executed with the use of a usb to micro-usb cable. We must note that

the exported design includes all the 32 versions of the multiplier, each

corresponding to a different number of bits skipped during multiplication.

Consequently, all 32 variants of the multiplier are simultaneously available on the

FPGA and they can be used at anytime.

The target platform for this implementation is the PYNQ-Z2 board. The CPU of

this board, which supports the C programming language, includes a set of pre-

installed libraries that facilitate development. The next phase of the project

involved developing a multilayer perceptron (MLP) within Vitis 2024. The MLP

was deployed to the CPU of the board, and its performance was monitored via a

serial interface. During operation, the MLP communicates with the FPGA, which

houses the full set of Booth multipliers, through a wrapper(see Chapter 3.4).

During the training phase of the MLP, every multiplication, whether related to

output computation of a neuron or weight adjustment of an edge, is processed on

the FPGA sequentially. Although a more optimized design would allow batch

processing and concurrent weight updates, a sequential approach was adopted to

maintain simplicity. The primary performance metric under investigation is the

effect of bit-skipping during the training phase, particularly during feedforward

and backpropagation stages of the neural network. The initial configuration uses

no bit-skipping, with subsequent tests progressively increasing the number of

skipped bits. Each experiment run corresponds to a fixed number of skipped bits

and the same number of epochs, however, a dynamic bit-skipping approach which

varies each epoch may be explored in future work.

It is important to note that the testing phase of the MLP does not employ

approximation, as this phase involves only a few multiplications and using

approximation is not going to have an affect at the speed. All weights within the

neural network are randomly initialized at the start of each run, and the number

of training epochs and many other variables are all user-configurable(see Chapter

3.5). The datasets used for training and testing is sourced from open sources.

32

The MLP is designed to address both classification and regression problems

through supervised learning. Example classification problems include handwritten

digit recognition, sentiment analysis, medical diagnosis based on symptom vectors

and many more. The inputs to the network are supplied as static arrays, selected

for their efficiency in memory usage and execution speed. This method leverages

the stack, which offers optimal performance for handling large volumes of data

rapidly. All classification outputs are represented as integer values, such as [0, 1,

2, 3, ...], depending on the class labels assigned in the dataset. Additionally, each

attribute of the dataset was normalized to the interval [-1, 1] using the following

normalization formula:

𝑥norm =
2(𝑥−𝑥min)

𝑥max−𝑥min
− 1 (3.1)

where x is the number we are normalizing and xmin and xmax are the minimum

and maximum values in each attribute.

Custom serial printing functions were developed to accommodate the limitations

of the lightweight Vitis libraries available on the CPU. These functions enable the

display of floating-point results through serial monitoring. The final output

includes the MLP performance metrics such as classification accuracy, execution

time, and mean relative error (MRED), as detailed in earlier chapters.

To efficiently perform floating-point operations, a custom casting method was

employed. This method allows for the extraction of the sign bit, exponent, and

mantissa from each floating-point number.

However, a challenge emerged related to the clocking speed of the FPGA. The

maximum allowable clock frequency of the FPGA is constrained on certain values

and cannot be altered. So higher and more optimal clocking speeds could not be

achieved.

Notably, the transmission of data between the CPU and FPGA through the

wrapper did not achieve sufficient speed to yield a noticeable performance benefit.

While the use of Direct Memory Access (DMA) could resolve that issue, it was not

incorporated into the current design for as we prioritise simplicity. Instead, a

fallback approach involved executing the MLP multiplications on the CPU instead

of the FPGA. This adjustment did not affect the error tolerance of the training

33

phase, and the results remained consistent with what would be obtained if the

calculations were executed on the FPGA.

A more sophisticated design would involve parallel execution, in which multiple

FPGA multipliers with different bit-skip configurations would process arrays of

multiplications concurrently. These arrays would be generated in batches by the

CPU during parallelized weight adjustments in the MLP. This proposed

enhancement, along with other optimizations, is left for future exploration.

3.4 Benchmarking hardware with vitis

In the context of deploying our design onto the Zynq-Z2 board, it is essential to

create an HDL wrapper for the block diagram within the Vivado Design Suite.

This wrapper serves as the top-level module, encapsulating the entire design and

facilitating its integration into the FPGA fabric.

The design comprises several interconnected components, each fulfilling a specific

role in implementing the Booth multiplier on the FPGA. The ZYNQ7 Processing

System serves as the main controller, integrating an ARM Cortex-A9 processor to

manage software execution, system configuration, and communication with the

FPGA fabric. It offers essential interfaces such as DDR for memory access, USB

for external communication, and clock and reset signals for system

synchronization, ensuring efficient operation and management of computational

tasks.

The Processor System Reset module ensures that all components initialize in a

defined state by providing necessary reset signals, preventing errors due to

uninitialized registers.

The AXI Interconnect facilitates data transfer between the ARM processor and the

programmable logic by efficiently managing multiple AXI peripherals, allowing

seamless communication between software and hardware components.

The AXI GPIO blocks provide a flexible interface for general-purpose input and

output, enabling the processor to send and receive control signals to and from the

FPGA. They are particularly useful in setting input values for the Booth multiplier

and retrieving computed results.

The Booth Multiplier module is the core computational unit, performing binary

multiplication using the Booth algorithm, which optimizes signed multiplication

34

by reducing the number of partial products, allowing efficient hardware

acceleration.

The Slice blocks extract specific bit ranges from data signals, ensuring efficient

data handling and precise bit-level manipulation, which is necessary for

organizing and processing inputs and outputs within the FPGA.

The DDR and FIXED IO interfaces enable access to external memory and

peripheral communication, allowing the processing system to handle large datasets

efficiently while ensuring stable data exchange with external components through

USB.

Here is a picture of the entire design block.

Figure 23 Block design inside vivado’s inteface

3.5 Using a Multilayer perceptron

At this part of the thesis, we will describe some key components of the

implementation of a Multilayer Perceptron (MLP) on the PYNQ-Z2 board. The

file main.c implements a set of flexible and adjustable parameters that define the

architecture and behavior of the network. These parameters can be customized by

the user to tailor the model for specific requirements, such as optimizing accuracy,

computational efficiency, or adapting to hardware constraints or data size. The

following parameters define the structure and operation of the MLP:

35

#define __num_hidden_layers 3

This parameter defines the number of hidden layers in the MLP. The user can

adjust this number to modify the depth of the network, which in turn affects its

capacity to learn from the data. A deeper network might capture more complex

patterns but could also increase computational costs.

#define __hidden_layers_neurons "12,10,8"

This defines the number of neurons in each hidden layer. In this case, the first

hidden layer has 12 neurons, the second has 10 neurons, and the third has 8

neurons. Increasing the number of neurons in each layer lead to more accurate

and distinct results but can cause the network to become more complex and

therefore demand more computational resources

#define __hidden_activ_func "tanh,tanh,tanh"

This parameter specifies the activation functions used for each of the hidden

layers. Many activation functions are available each with unique characteristics

and use cases. The identity function outputs the input unchanged and is typically

used in regression tasks. The sigmoid function squashes the input into a range

between 0 and 1 and is commonly used in binary classification but suffers from

the vanishing gradient problem. The tanh function outputs values between -1 and

1, helping with faster convergence but still experiences vanishing gradients in deep

networks. The ReLU function outputs the input if positive or zero if negative and

is widely used in hidden layers for its computational efficiency and ability to avoid

vanishing gradients, although it can suffer from the dying ReLU problem. The

softmax function is used in the output layer for multi-class classification tasks,

converting raw outputs into a probability distribution where the sum of all outputs

is 1.

36

#define __output_size 7

This defines the size of the output layer. In this case, the model has 7 output

units, which is suitable for classification tasks with 7 possible categories. The

user can modify this value for tasks with different numbers of classes. The

classes on the dataset must be integers with the lowest value of 1.

#define __out_activ_func "softmax"

This parameter defines the activation function for the output layer. Users can

replace this with any other activation functions that was mentioned previously

depending on the classification problem.

#define __learning_rate 0.01

This parameter controls the learning rate during training. The learning rate

determines the step size taken in the gradient descent optimization process. A

higher learning rate can speed up convergence, but it may also cause instability,

while a smaller learning rate will converge more slowly but more steadily.

#define __skipped_bits 0

This defines the number of bits that can be skipped in the computation for

hardware optimizations. The user can adjust this parameter for trade-offs between

computation precision and efficiency, particularly when implementing the model

on embedded systems or FPGAs.

#define __max_iterations 200

This parameter defines the maximum number of iterations for the training process

of the model. This value dictates how many times the model will cycle through

37

the entire training dataset during the learning process. The user can adjust this

value depending on the complexity of the task, the size of the dataset, and the

desired training time. Additionally, to prevent overfitting, the training process

involves shuffling the data at the beginning of each epoch. Shuffling the data

ensures that the model is not exposed to the data in a fixed sequence, which helps

to avoid learning spurious patterns that may arise from the order of the dataset.

To conduct an experiment , the user must also modify the data files, specifically

the data.c and data.h files. The data used for training and testing are inserted into

the neural network as arrays, which are defined in the data.c file. In this file, the

arrays represent the input data, with each row containing the feature values for a

given sample. Each row is separated by commas, and the last column in the array

represents the class to which the sample is assigned. The class values must be

integers starting from 1 (for example, 1, 2, 3, etc.), with each integer corresponding

to a specific class label.

In addition to modifying the data array in data.c, the data.h file contains the sizes

of the training set(#define __train_sample_size) and test sets(#define

__test_sample_size) as well as the number of features of the dataset including the

class label(#define __features_size). These values must be updated accordingly to

reflect the number of samples in the dataset. It is important that the user ensures

the data dimensions, the number of features and the class labels are correctly

defined to match the structure expected by the neural network. This allows the

model to properly interpret the data and proceed with training and evaluation.

38

CHAPTER 4

EVALUATION

4.1 Introduction

4.2 Tools

4.3 Experiments

4.1 Introduction

This chapter covers experiments conducted on the PYNQ-Z2 board, focusing on

the implementation and evaluation of our proposed design. The experiments

involve deploying the Verilog-based Booth multiplier onto the FPGA embedded

in the board, allowing us to analyze its performance in terms of efficiency, speed,

and power consumption. Additionally, we explore the impact of approximate

computing techniques on multiplication accuracy and resource utilization.

Through these experiments, we aim to validate the effectiveness of our approach

and demonstrate its advantages in hardware-based neural network acceleration.

4.2 Tools

In this study, Vivado 2023.2 was used for the design, synthesis, and analysis of

the Booth multiplier. This tool enables precise evaluation hardware parameters,

including circuit area, power consumption, and schematic visualization, which

encompasses key processing components such as shifters, multiplexers, and

adders. The hardware description language used for implementation is Verilog,

facilitating efficient hardware modeling and synthesis for FPGA deployment. To

integrate the Booth multiplier into a Multilayer Perceptron (MLP) network, Vitis

2023.2 was employed. In Vitis, we materialized our MLP network using the C

programming language and parameterized it to allow dynamic modifications of

the Booth multiplier as well as the MLP. This flexibility enabled an evaluation of

different multiplier configurations, allowing adjustments based on performance

requirements. The bitstream file generated from Vivado was incorporated into

39

Vitis, where each multiplication operation was replaced with Booth multiplication.

For output monitoring and analysis, serial monitoring was utilized. While various

serial monitoring tools are available, Visual Studio Code was chosen due to its

robust debugging capabilities, versatility, and reliability in handling serial data

communication.

Finally, we utilized the ZYNQ XC7Z020-1CLG400C which integrates a 650MHz

ARM® Cortex®-A9 dual-core processor with programmable logic. The

programmable logic consists of 13,300 logic slices, each containing four 6-input

LUTs and 8 flip-flops, along with 630 KB of block RAM and 220 DSP slices. The

FPGA programming and configuration were carried out using a USB Type-A to

Type-B cable. Additionally, the system includes 512MB DDR3 memory with a

16-bit bus, operating at 1050 Mbps. The ARM processor runs bare-metal (no OS)

for deterministic low-latency control, avoiding the overhead of a full Linux stack.

(Alternatively, if Linux were used, an SD card would be required for booting.)

[19]

4.3 Experiments

4.3.1 Multiplier testing

In this experiment, we evaluate the impact of approximate computing on the

Booth multiplier using three key metrics: Look-Up Table (LUT) usage, schematics

complexity, and on-chip power consumption. These metrics provide a

comprehensive understanding of the trade-offs between computational precision

and resource efficiency in FPGA-based designs. LUT usage reflects the logic

resource utilization, schematics illustrate the structural complexity of the design,

and on-chip power consumption quantifies the energy efficiency of the

implementation. Together, these metrics offer valuable insights into the

effectiveness of bit-skipping as an approximation technique for optimizing Booth

multipliers in resource-constrained environments.

Finally we must note that comparing our multiplier to the one embedded within

Vivado and its compiler is not meaningful, as it is highly optimized through

hardware-level enchantments like DSP slices and not LUTs. Therefore, we conduct

our comparison against a manually implemented multiplier which follows the

40

conventional long multiplication algorithm which we were taught in elementary

school. In all figures below this kind of multiplier is mentioned as normal

multiplication.

LUT utilization

Look-Up Tables (LUTs) are the fundamental building blocks of FPGA logic, used

to implement combinational functions. In the context of Booth multipliers, LUT

usage is directly influenced by the complexity of partial product generation and

accumulation. By skipping bits, we reduce the number of partial products, thereby

simplifying the logic and decreasing the number of LUTs required. This metric is

critical for assessing the resource efficiency of the design, as lower LUT usage

allows for more compact implementations and frees up resources for other tasks.

The following results demonstrate how LUT usage scales with the number of bits

skipped, highlighting the potential for resource savings in approximate

computing. The amount of LUTs on the board "stands at" 53,200. Here is a plot

with the LUT utilization per bits skipped as well as a percentile representation.

Figure 24 Lut utilization per bit skipped

41

Figure 25 Percentile Lut utilization per bits skipped

Error tolerance/Mred

Error tolerance in the context of approximate computing can be quantified using

the Mean Relative Error Distance (MRED), which measures the average deviation

of the approximate results from the exact results, normalized by the magnitude of

the exact values. As the number of skipped bits increases, the precision of the

computation decreases, leading to a corresponding incrementation in MRED. In

this experiment we are generating 100000 random multiplications and then

calculating the MRED as referenced in section 2.2. The following results

demonstrate how MRED scales with the number of skipped bits, providing

insights into the error tolerance of the system under varying levels of

approximation. It is important to note that due to rounding, an average of 11 or

12 bits (half the size of the mantissas) are cut off from the final output . As a

result, the MRED for the first 15 bits appears to have minimal error, as the

rounding effect dominates during the initial stages of approximation. Even though

some bits are lost in single-precision mantissa multiplication, the mean relative

42

error remains very small in most cases, ensuring high reliability.

Figure 26 MRED of 100000 random multiplications

Schematics

The schematics of a design provide a visual representation of its structural

complexity, including the interconnections between logic elements and the overall

organization of the circuit. In the case of Booth multipliers, bit-skipping reduces

the number of partial products and simplifies the adder tree, leading to a less

complex schematic. This reduction in complexity not only makes the design easier

to analyze and debug but also improves routing efficiency on the FPGA. By

examining the schematics at different levels of bit-skipping, we can observe how

approximation techniques streamline the design, making it more suitable for

applications where area and routing resources are limited. The following

schematics illustrate the implementation of a approximate Booth multiplier

designed to multiply two 4-bit numbers, A and B. The design consists of

interconnected components, including shifters, multiplexers, and adders. For

reference, the schematic of a traditional 4x4 multiplier is included to provide a

baseline comparison with the approximate Booth multiplier designs

0

0,2

0,4

0,6

0,8

1

1,2

0 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

M
re

d

Bits Skipped

Mred

43

Figure 27 4x4 Approximate booth multiplier, 0 bits skipped

Figure 28 4x4 Approximate booth multiplier, 1 bit skipped

Figure 29 4x4 Approximate booth multiplier, 2 bits skipped

44

Figure 30 4x4 Approximate booth multiplier, 3 bits skipped

Figure 31 4x4 multiplier

Power on chip

On-chip power consumption is a critical metric for evaluating the energy efficiency

of FPGA-based designs. It is influenced by both the dynamic power (due to

switching activity) and static power (due to leakage currents). In Booth

multipliers, skipping bits reduces the number of logic operations and the switching

activity, thereby lowering dynamic power consumption. Additionally, the

reduction in LUT usage and routing complexity contributes to lower static power.

This metric is particularly important for energy-constrained applications, such as

edge computing or IoT devices, where minimizing power consumption is a key

design objective. The following analysis quantifies the power savings achieved

45

through bit-skipping, demonstrating the potential of approximate computing for

energy-efficient implementations.

Figure 32 Total on chip power

Time taken per multiplication

The time taken for each multiplication is a critical metric for evaluating the

efficiency of the proposed approximate Booth multiplier. In this experiment, we

aim to calculate the average time per multiplication using Vivado timing

simulation. Vivado provides precise timing analysis, allowing us to measure the

latency of each multiplication operation under varying levels of approximation.

By generating a large number of random multiplications and analyzing their

timing, we can determine how the time taken scales with the number of skipped

bits. This analysis provides valuable insights into the trade-offs between

computational speed and precision.

46

Figure 33 Timing simulation latency

From Figure 33 we can produce the corresponding clocking speeds. These speeds

represent the optimal clocking speeds of the FPGA as long as the available

hardware supports them.

Figure 34 Maximum clocking speed

47

4.3.2 MLP testing

In the following section of the thesis, we will explore the integration of a Multi-

Layer Perceptron (MLP) with hardware-accelerated approximate computing on

an FPGA. By replacing all multiplications contained inside the MLP with

approximations using booth multipliers, we aim to accelerate the computation

while leveraging the inherent error tolerance of neural networks to maintain

acceptable accuracy. The MLP's ability to tolerate such errors makes it an ideal

candidate for this approach, as it can often produce good results even with

reduced computational precision due to its iterative nature. This experiment

evaluates the trade-offs between speed, accuracy, and error tolerance when using

approximate multiplication in an MLP, providing insights into the potential for

hardware-accelerated machine learning in resource-constrained environments.

Unfortunately, these tests cannot be conducted with complete exactitude, as the

FPGA clock speed does not align with the ideal operating speed. Consequently,

all tests will be performed using the board’s CPU.

Finally we must note that comparing our multiplier to the one embedded within

a C compiler compiler is futile, as it is highly optimized through software-level

enchantments and loop accelerations. Therefore, we conduct our comparison

against a manually implemented multiplier which follows the conventional long

multiplication algorithm which we were taught in elementary school. In all figures

below this kind of multiplier is mentioned as normal multiplication.

Accuracy

The accuracy of a classification Multilayer Perceptron (MLP) is a fundamental

metric for assessing its performance in tasks such as pattern recognition, image

classification, and decision-making. Accuracy measures the proportion of correctly

classified instances out of the total number of instances, reflecting the MLP's ability

to learn and generalize from training data after a certain amount of epochs. In

the context of approximate computing, where precision is intentionally reduced to

enhance computational efficiency, maintaining high accuracy becomes a significant

challenge. However, the MLP's inherent error tolerance allows it to produce

reliable classification results even with approximate computations, making it a

strong candidate for hardware-accelerated implementations. This section examines

48

how the accuracy of the classification MLP is influenced by the integration of

approximate computing techniques, such as the modified Booth multiplier, and

evaluates the trade-offs between computational efficiency and classification

performance. The following figures represents the accuracy of an MLP with the

according characteristics.

Feature size=5, Training set size =120, Test set size = 30, Neurons Layers, 6,8,8,

Activation functions: Tanh, Tanh, Tanh, Softmax , Epochs=100

Figure 35 First dataset, accuracy per bit skipped

The results from Figure 35 as observed, accuracy remains nearly constant and

close to 100% for up to approximately 9 bits skipped. Beyond this threshold, a

gradual decline in accuracy becomes evident, with more pronounced degradation

occurring after skipping more than 14 bits. Notably, while some fluctuations

appear, due to randomness, such as temporary increases at 18 and 20 bits, the

general trend shows that accuracy diminishes as the level of approximation

increases. At 24 bits skipped, the network's accuracy drops significantly to below

40%.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
cc

u
ra

cy

Bits Skipped

Accuracy

49

Feature size=6, Training set size =200, Test set size = 26, Neurons Layers, 12,10,8,

Activation functions: Tanh, Tanh, Tanh, Softmax, 300 epochs

Figure 36 Second dataset, accuracy per bit skipped

The results presented in Figure 36 depict the accuracy of the multilayer

perceptron on the second dataset as a function of the number of bits skipped

during multiplication. It is evident that accuracy remains consistently high,

approximately 96%. However, the sharp drop in accuracy beyond 16 bits skipped

suggests a critical threshold, beyond which the model begins to lose essential

information from the training data. This degradation may also be influenced by

overfitting, where the model becomes too tightly adapted to the training set and

fails to generalize under altered numerical conditions.

Training time taken

The time taken for all multiplications to be executed during the training phase of

the MLP is significantly reduced when using Booth approximation compared to

classic multiplication. Booth approximation simplifies the classic multiplication

process by skipping bits and reducing the number of partial products, thereby

decreasing latency of each multiplication and so the duration of the training phase.

The following results depict the time taken of the NN to be trained and tested

using the classic and Booth-approximated multiplication, demonstrating the

78,00

80,00

82,00

84,00

86,00

88,00

90,00

92,00

94,00

96,00

98,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

A
cc

u
ra

cy

Bits Skipped

Accuracy

50

potential for faster processing in hardware-accelerated MLPs. It is also important

to emphasize that the comparison was conducted between our custom Booth

multiplier and the straightforward long multiplication algorithm, the same method

typically taught in elementary school. As also mentioned before, using the highly

optimized multiplication operations embedded within the C compiler would have

rendered the comparison invalid. This baseline multiplier, like our Booth designs,

was executed on the CPU (and is shown as "normal multiplication") to ensure a

fair and consistent evaluation environment.

Feature size=5, Training set size =120, Test set size = 30, Neurons Layers, 6,8,8,

Activation functions: Tanh, Tanh, Tanh, Softmax , Epochs=100

Figure 37 First dataset, time taken

Feature size=6, Training set size =200, Test set size = 26, Neurons Layers, 12,10,8,

Activation functions: Tanh, Tanh, Tanh, Softmax, 300 epochs

Figure 38 Second dataset, time taken

51

CHAPTER 5

CONCLUSIONS AND FUTURE THOUGHTS

5.1 Conclusions

5.2 Future thoughts

5.1 Conclusions

This thesis presented the development and evaluation of a new approximate

Booth multiplier designed to handle floating-point numbers and process bits from

the most significant bit (MSB) to the least significant bit (LSB). Unlike traditional

Booth multipliers, which process bits sequentially and focus on reducing the

number of partial products through Booth encoding, our approach prioritizes the

most significant bits first, enabling early termination and reducing computational

complexity. This design choice, combined with approximate computing

techniques, significantly improves efficiency while maintaining acceptable

accuracy. The multiplier was implemented on the PYNQ-Z2 board, and its

performance was evaluated across several key metrics, including LUT utilization,

schematics complexity, on-chip power consumption, accuracy, error tolerance, and

time taken.

The approximate Booth multiplier demonstrated significant reductions in LUT

utilization as the number of skipped bits increased. By simplifying the logic

required for partial product generation and accumulation, the multiplier freed up

valuable FPGA resources, enabling more compact designs and leaving room for

additional functionality. This reduction in LUT usage is particularly beneficial for

resource-constrained environments, where efficient resource allocation is critical.

The schematics complexity of the multiplier also decreased as the number of

skipped bits grew. By reducing the number of partial products and simplifying

the adder tree, the design became more streamlined and easier to route on the

FPGA. This reduction in complexity not only improved the scalability of the

52

design but also made it more suitable for applications where area and routing

resources are limited.

In terms of on-chip power consumption, the multiplier showed a decrease as the

number of skipped bits increased, although the reduction was not as significant

as expected. This is likely due to the limited resources and small scale of the

PYNQ-Z2 board, which constrained the potential power savings. Nevertheless, the

results suggest that approximate computing techniques can contribute to energy-

efficient designs, particularly when implemented on larger FPGAs with more

resources.

Furthermore as the number of skipped bits increases, the computational

complexity decreases, allowing for faster multiplication operations. This reduction

in complexity also enables the FPGA to operate at higher clocking speeds, as long

as the rest of the system supports those speeds.

Despite the reduction in precision caused by bit-skipping, the multiplier

maintained acceptable accuracy levels, especially when integrated into the MLP.

The MLP's inherent error tolerance allowed it to produce reliable results even

with approximate computations, demonstrating the feasibility of using

approximate multipliers in machine learning applications.

The multiplier exhibited strong error tolerance, as quantified by the Mean Relative

Error Distance (MRED). The results suggest that the approximate Booth

multiplier is a suitable choice for applications where error tolerance is critical.

Finally, the time taken for computations was significantly reduced, making it a

viable option for real-time applications where speed is critical.

5.2 Future thoughts

To fully realize the potential of this approximate Booth multiplier, future work

should focus on testing it on a larger FPGA board with more resources, such as

increased LUTs, DSP slices, and memory bandwidth. A larger board would allow

for more extensive experimentation, including the implementation of higher-radix

designs (e.g., radix-2 or radix-4) and the evaluation of more complex neural

networks. Additionally, a larger board would provide a better environment for

analyzing power consumption, as the current results were limited by the small

scale of the PYNQ-Z2.

53

Another promising direction is the parallelization of the hardware, which could

enable even faster speeds by processing multiple operations simultaneously. This

would be particularly beneficial for real-time applications where latency is critical.

Furthermore, a larger board with fewer clocking restrictions would allow for

experiments with faster clocks, enabling true hardware acceleration and providing

a more accurate assessment of the multiplier's performance.

Exploring error compensation techniques could further improve the multiplier's

accuracy without sacrificing efficiency. Extending the multiplier's capabilities to

handle larger datasets and more complex models, such as convolutional neural

networks (CNNs) or recurrent neural networks (RNNs), would also provide

valuable insights. Testing the multiplier in real-world applications, such as edge

computing or IoT devices, would help assess its performance under practical

constraints.

By addressing these areas, future work can build on the foundation laid by this

thesis to advance the field of approximate computing and hardware-accelerated

machine learning, ultimately enabling more efficient and scalable implementations

for a wide range of applications. The contrast between traditional Booth

multipliers and our new approximate approach highlights the potential for

innovation in this space, paving the way for future research and development.

54

SHORT BIOGRAPHY

Panagiotis Kazantzidis was born on September 1, 1999, in Kavala, Greece. In 2017,

he began his undergraduate studies in Computer Science and Engineering in the

University of Ioannina. After five years of dedicated study, he completed his

undergraduate program in 2022 with a thesis titled " Encoding of transmission

data in communication systems via visible trichromatic LED light" showcasing his

interest in embedded systems and data encoding and communication.

In 2023, Panagiotis pursued a postgraduate degree in "Data and Computer

Systems Engineering" with a specialization in "Advanced Computer Systems",

further specializing in digital systems and computer engineering. His current

research focuses on approximate computing using Booth multipliers, exploring

energy-efficient and high-performance computing techniques. With a strong

background in hardware design and computer architecture, his research interests

lie at the intersection of digital circuit optimization, energy-efficient computing,

and emerging hardware paradigms.

55

REFERENCES

[1] V.K. Chippa, H. Jayakumar, D. Mohapatra, K. Roy, and A. Raghunathan.

Energy-efficient recognition and mining processor using scalable effort

design. In CICC, 2013.

[2] F.S. Snigdha, D. Sengupta, J. Hu, and S.S. Sapatnekar. Optimal design of

jpeg hardware under the approximate computing paradigm. In DAC, page

106, 2016.

[3] H.A.F. Almurib, T.N. Kumar, and F. Lombardi. Approximate DCT image

compression using inexact computing. TC, 67(2):149–159, 2017.

[4] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. Diannao:

A small-footprint high-throughput accelerator for ubiquitous machine-

learning. In ACM Sigplan Notices, volume 49, pages 269–284, 2014.

[5] M. Brandalero, A.C.S. Beck, L. Carro, and M. Shafique. Approximate on-

the-fly coarse-grained reconfigurable acceleration for general-purpose

applications. In DAC, pages 1–6, 2018.

[6] M.S. Ansari, V. Mrazek, B.F. Cockburn, L. Sekanina, Z. Vasicek, and J. Han.

Improving the accuracy and hardware efficiency of neural networks using

approximate multipliers. TVLSI, 28(2):317–328, 2020.

[7] J.N. Mitchell. Computer multiplication and division using binary logarithms.

IRE Transactions on Electronic Computers, (4):512–517, 1962.

[8] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. Low-power digital

signal processing using approximate adders. TCAD, 32(1):124137, January

2013..

[9] Approximate Arithmetic Circuits: A Survey,Characterization and Recent

Applications Honglan Jiang, Member, IEEE, Francisco Javier Hernandez

Santiago, Hai Mo, Leibo Liu∗,senior Member, IEEE, and Jie Han∗, Senior

Member, IEEE.

[10] Neil Weste and David Harris. 2010. CMOS VLSI Design: A Circuits and

Systems Perspective (4th. ed.). Addison-Wesley Publishing Company, USA..

56

[11] C. R. Baugh and B. A. Wooley. 1973. A Two's Complement Parallel Array

Multiplication Algorithm. IEEE Trans. Comput. 22, 12 (December 1973).

[12] F. Farshchi, M.S. Abrishami, and S.M. Fakhraie. New approximate

multiplier for low power digital signal processing. In CADS, pages 25–30,

October 2013..

[13] M.A. Song, L.D. Van, and S.Y. Kuo. Adaptive low-error fixed-width Booth

multipliers..

[14] J. Wang, S. Kuang, and S. Liang. High-accuracy fixed-width modified Booth

multipliers.

[15] Y. Chen and T. Chang. A high-accuracy adaptive conditional-probability

estimator for.

[16] H. Jiang, J. Han, F. Qiao, and F. Lombardi. Approximate radix-8 Booth

multipliers for.

[17] Gavrilova, M., & Tan, C. J. K. (2014). Transactions on Computational Science

XXII (1st ed.). Springer Berlin Heidelberg : Imprint: Springer..

[18] IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-2019

(Revision of IEEE 754-2008) , vol., no., pp.1-84, 22 July 2019.

[19] 2018, PYNQ-Z2 Reference Manual v1.0 17 May.

[20] K. Cho, K. Lee, J. Chung, and K.K. Parhi. Design of low-error fixed-width

modified.

