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ABSTRACT

We will examine the basis By of rectangles of R? and R? with sides parallel to the
axis and their differentiation properties in relation to the corresponding maximal
operators using some covering theorems.

We will present the noteworthy set called the Perron tree and use it in order to give
answers to the ”Needle problem” and the existence of Besicovitch sets and examine
the differentiation basis B3 of rectangles of R? and some of its subbases.

We will then work on the distribution function and the decreasing rearrangement of
a given function to acquire inequalities that we will use on the last chapter, which
is a generalization of what preceded, where we will examine the multidimensional
analogues of what we proved previously, on the interval S = (0,1)", for n € N ar-
bitary, getting some differentiation properties of the basis By once again using the
corresponding maximal operator.






[TEPTIAHVH

Ou aoyohndolue pe v Pdon By tov ductnudtov tou R? xor tou R3 ue mhevpéc
TOEEAANAES OTOUG GEOVES XoU TIC WOLOTNTES BlapoELoTC TOUG OE OYEDT YE TOUG avTio-
TOLYOUG PEYLOTIXOUG TEAECTES YENOULOTOIWVTAS XdmoLa Yewpruato xdhudng.

Oa MapoLCLdcoUUE To GUVORO ToU elval YVWOTO wg 8évipo Tou Perron xou Yo to ol-
LOTIOLACOUPE WOTE Vo dcoupe anavtrioel; oto " Needle Problem” xou oty Umoapln tov
cuvohwyv Besicovitch xadog enlong Yo yehetricouvue Tig 10LOTNTES dlapodpiong Tng Bdong

B3 twv oploywviny Tou R2 o)0\& %ot oo xEmowwy ard Tic umofdoelg TNg.

‘Eneita o opicouye TNy cuvdptnon xotavourc xat Ty ¢divouco avadidtadn oG cuvaeTnong
HE OXOTO VA ATMOXTHCOUNE XATOLEG AVICOTNTES oL Vo YPNOWTOICOVUE OTO TEAAUTALO
XEQPAAALO, TO OTOLO ELVAL ULOL YEVIXEUOT) TwV 60wV TeonyHinxay, 6tou Yo UeAeTHoOOUYE

Tar avdhoyo o€ TOMNES peTaBANTéS TwY bowv anodeiayue, oto abvolo S = (0,1)", v

n € N tuyalo, and 6mou Yo Adfouue xdmoteg WBLOTNTES BLopdpiong yia TNV Bdon Bo
YENOWOTOLOVTAS E0VE TOV aVTIOTOLYO UEYIOTXG TEAECTH).
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INTRODUCTION

In Chapter 1 we will present some estimates for the uncentered maximal operator
Mpgn f over cubes in R™ as well as for the maximal operators Mg f, Mgrf and My f
in R , where

Mgn f(x) = sup{@ /Q |f(x)|de , where z € @ ,Q is a cube in R"}

1
Mg f(x) = sup{m /I |f(x)|dx , x € I bounded interval in R}

Mif(z) = sup{—— / " fdy s u € (2,00}

M f (@) = sup{ / " fdy e (—o0,x))

More specifically we will prove that

1
{MRf(:n)>t}:/ FdN, YfeIL'RY), V>0
t S Mpf(2)>t)

and that the same equality holds for My f and

{MRf(x)>t}§2/ fdx, VfeL'@R"), Vt>o.
t S (@)>t)

Using these we will prove the Hardy-Littlewood maximal theorem for LP, p > 1 and
get estimates for the norms of M f, Mg f and My f in LP(R).

In Chapter 2 we shall analyze some interesting covering and differentiation prop-
erties of the basis of intervals in R? . For each # € R™ we consider as Ba(z) the
family of all open bounded intervals containing x, and B = | J,cp2 B2(x). This basis
will be denoted as Be and its maximal operator will be denoted by My where

My f(z) = sup{|}| /I f@)ldr . TC By(a)} .



The basis Bs was the basis that allowed the expansion of the modern theory of dif-
ferentiation after the Lebesgue differentiation theorem was proved.

It is known that By does not differentiate L!(R?) as for a B-F basis B that is invari-
ant by homothecies, differentiation of L! is equivalent to the Vitali property and also
equivalent to the regularity of the basis with respect to the basis of cubic intervals
(Moriyon[1975])(that is there exists 0 < 0 < 1 : VI € By there exists a cube Q such

that I C @Q and % = ¢0) and By does not satisfy the Vitali property(Banach[1924]),
but it is a density basis as proved by Saks[1935].

Furthermore it differentiates L'(14log™ L')(R?) and we will prove this in two ways.
First by considering the basis By as the iterated Cartesian product of the interval
basis of R! and second by proving that if a system of intervals in R? satisfies a
specific covering property then we can select a finite sequence from any collection
of intervals such that | U R;| < oo that covers a good part of UR; and it has a very
small overlap.

In a similar way, if we consider a system of intervals in R? such that there is some
reasonable constraint between their three different side-lengths, that is one of their
side- length is given as a function of the other two, it is to be expected that this
system will behave again like the two-dimensional basis of intervals and so the basis
B, of intervals of R? differentiates L'(1 + log™ L)(R3).

In the first part of Chapter 3 we will present the construction of the Perron tree.
Given a triangle ABC in R? and any € > 0 we can obtain a new figure E, the Perron
tree, that has measure < €-|ABC|. We shall prove this by repetition of a process
called the basic construction which is essentially the partitioning of the basis of the
triangle ABC and the translation of those new triangles that were created parallel
to the Ox axis towards each other. With every application of this process the area
of this newly obtained figure will be decreased up until we get to the desired area of
measure < € - |ABC.

The Perron tree has many applications to a number of different problems, one of
them being the so called ”Needle problem” proposed by Kakeya [1917]. The problem
states : What is the infimum of the areas of those sets in R? such that a needle of
length 1 can be continuously moved within the set so that at the end it occupies
the original place but in inverted position? Using the Perron tree we will prove that
given 1 > 0 and a straight segment AB with length 1 in R? we can construct a figure
F of area less than 7 so that we can continuously move AB within F so that it finally
occupies the same place but in inverted position.

From the construction of the Perron tree we can also obtain a Besicovitch set, a
compact set of null measure in R? that contains a segment of unit length in every

vi



direction. To do so we will take a closed parallelogram P and partition its basis
in order to get the triangles from which we will construct the Perron trees. We
will then substitute each of the intersections of the parallelogram P with the small
triangles of such Perron trees by parallelograms whose union has measure as small
as we wish and contain a segment of unit length in every direction.

In our last application of the construction of the Perron tree we shall prove, using
the Busemann-Feller criterion, that the differentiation basis B generated by all the
triangles {T},}7—, where T}, has basis a dyadic interval, for every n € N, is not a
density basis and by utilizing the inequality

Mrf <c-Mgpf

we will deduce that Br is not a density basis, where Mr is the maximal operator
corresponding to the basis By and Mg the the maximal operator corresponding to
the basis Bg, the basis generated by the rectangles Ry, where Ry is the smallest
rectangle containing 7j,. This of course implies that the basis of all rectangles Bs is
not a density basis.

In the last part of Chapter 3 we will examine the basis B, of parallelograms in la-
T T

cunary directions ¢ = {5, -1} and proving a similar covering theorem as in

2372
Chapter 2 we will obtain the weak type (2,2) inequality for the maximal operator
M, corresponding to the basis By, which is equivalent to the fact that the basis B,

differentiates L2.

In Chapter 4 we will define the distribution function py of a given function f €
Mo(R, p)
pr(A) = p({z € R:|f(x)] > A})

in order to get the definition of equimeasurability; two non negative functions f and
g will be called equimeasurable if their distribution functions coincide. We will then
define the decreasing rearrangement f* of the function f as

F1(6) = inf{A: g (V) < )

which is equimeasurable to f and thus we can substitute f with f* when needed to
take advantage of the extra properties of the decreasing rearrangement. We shall
also prove some inequalities involving the functions f and M f and their decreasing
rearrangements that we will use in our last chapter.

In chapter 5 we will examine some results that we have already seen but in the

general case. We will work on the interval S = (0, 1)k, k € N is arbitary, and we
will extract some differentiation properties for the basis B of the intervals of S. After
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some introductory lemmas, presented in the first section, relating to M ©.1) f we will
prove that this maximal operator is of strong type (p,p), and thus the basis B differ-
entiates LP. Then for functions f € L'(log™ L')(S) we will check that the integral
of f is strongly differentiable at almost every point and the derivative is equal to f
so the basis B also differentiates L' (log™ L')(S).

In the third and last part of Chapter 4 we will consider functions f € L'(logt L)k~1
and prove, through the strong derivative of the integral of f, that the basis B differ-
entiates L' (logTL')*~1(S). Then for intervals of a specific form, where the ratios of
any two of their sides do not exceed a finite number, we will prove that the Vitali
property still holds and so the basis B differentiates L' as well as L'(log* L)k,
for 1 <7 < k which is the general case for the property mentioned above.
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Chapter

Preliminaries

Definition 0.1: For every v € R™ we consider a collection B(x) that consists
of bounded measurable sets of positive measure that contain x and are such that for
every x there exists {R(z)}ren C B(z), with x € Rg(z) Vk € N and 6(R;) — 0,
where 0(Ry,) is the diameter of Ry,. The collection B = | cpn B(x) is called differ-
entiation basis.

Definition 0.2 : For every x € R™ we consider the collection Ba(x) that consists
of bounded intervals of R™ that contain x such that Yz there exists {Ri(z)}ren C
By () with 6(Ry) — 0. Then the collection By = |J,cgn B2(x) is called the differen-
tiation basis of intervals of R™.

Definition 0.3: A differentiation basis B will be called a Busemann-Feller basis

if:
a) B is open, VB € B

b) Vo € B € B, B belongs in B(x)
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Definition 0.4: The differentiation basis B will be called invariant by homothe-
cies and translations if VB € B and V¢ such that ¢(z) = ax +b, a #0, b e R",
¢(B) belongs in B.

Definition 0.5: Let B be a differentiation basis, then for every f € LZOC(R”) and
for every x € R™ we define
a) The upper deriwative of [ f on z with respect to the basis B by

/faf hmsup{|B,/f (y)dy}

BGB(x

and
b) The lower derivative of [ f on x with respect to the basis B by

DB(/f, —}Sl(%llg(f){w/f )dy}

BeB(x)

If for some x € R™ we have Dg([ f,x) = Dg([ f,x) =: Dg([ f,z) then Dg([ f,x
is called the deriwative of [ f on x for the basis B.

Additionally if Dg([ f,z) exists and is equal to f(z) for almost every x € R™ we
say that the basis B differentiates [ f and if B differentiates [ f for every f € X,
for some space X C Lloc( ™) then we say that B differentiates X.

Definition 0.6 : The differentiation basis B will be called density basis if it differ-
entiates every x a, for every A C R™ measurable, where x 4 denotes the characteristic
function of A.

Definition 0.7 : The mazimal operator corresponding to the differentiation basis
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B is defined as

1

Mo () = sup{ /R fWldy: z<ReB@)}

Definition 0.8 : The maximal operator My is called of

a) strong type (p, p), if there exists ¢, > 0 such that
IMBfllr < cpl|fllLe, V€ LP(R")

b) weak type (p, p), if there exists ¢, > 0 such that

p
|{meRn:MBf(m)>A}yg%ungp, Vf e LP(R") and YA > 0.

If My is of strong type (p, p) then it is also of weak type (p,p).

Theorem 0.9 : Let B be a differentiation basis invariant by homothecies and
translations. If the corresponding mazximal operator Mpf is of weak type (1,1) then
B differentiates L'(R™).

Theorem 0.10 (Busemann-Feller criterion): Assume B is a differentiation
basis invariant by homothecies and translations. The following are equivalent:

a) B is a density basis
b) VA € (0,1) there exists ¢y € (0,00) such that VA C R™ bounded and measur-

able the inequality
{Mxa > A} < x4
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holds for every such A.

Theorem 0.11 : Let B be a differentiation basis. The following are equivalent :
a) B is a density basis

b) VA € (0,1), V{Ay} decreasing sequence of bounded measurable sets with |Ay| — 0
and ¥{ry} , ri decreasing to 0 we have

k—o00

{Mry x4, > A} ——0

where
1 Ap,NR
Moea(e) = sw (o [ ol = swp FEEL e
ReB(x) R ReB(x)
5(R)<Tk 5(R)<7"k

Let ¢ : [0,00) — [0,00) be a strictly increasing function with ¢(0) = 0 satisfying
: 3¢ >0, u, > 0 such that

d(u) > cdu, Yu > u,.

We define the space

H(LYR™) ={f:R" =R, f measurable with /Rn o(|f]) < oo}

Theorem 0.12 : a) Let B be a B-F differentiation basis of R™ invariant by
homothecies and translations, My be the corresponding mazximal operator satisfying

s> n<e [ ol vreor! @) ana o
]Rn
where ¢ does not depend on A and f, ¢ is such that

dlap) < cup(a) , Va>0, Yu>0, ¢, < o0.
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Then the basis B differentiates ¢(L'(R™)).

The converse holds under weaker conditions:

b) Let B be a B-F differentiation basis of R™ invariant by homothecies and trans-
lations, differentiating ¢(L'(R™)). Then there exists ¢ > 0 such that YA > 0 and
Vf € ¢(LY(R™)), f >0, the corresponding mazimal operator Mg satisfies

tar > Y <e [ ol

Definition 0.13 : A dyadic interval of R™ is a bounded interval of the form

i oi+1 j oj+1 ¢ C+1
(27,,”7 om )X(?7 2[ )X""X(ﬁa 2k: )
where i, j, (€N, m, 1, .., k€ Z, withi=1,2,..,2"—1, j=1,2,...,2—1,..., ( =
1,2,...,2F—1.

Theorem 0.14 (Calderon - Zygmund decomposition): Given f € L'(R")
and t > 0 there exists an at most countable family Q¢ of non overlapping cubes con-
sisting of those maximal dyadic cubes over which the average of |f| is > t. Then the
family Q; satisfies :

a) for every Q € Qy :  t< ﬁ Jolf(@)|dx < 27 -t

b) for almost every x ¢ UQ: , |f(z)| < t.

Lemma 0.15 : Let f € LY(R™) and M f(x) be the uncentered mazimal operator
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over cubes in R™. Then

37’1,'471

Hx e R": Mf(z) >t} <

R

Lemma 0.16 (Layer cake formula): Let (X, A, u) be a measure space and
f: X —=R. Then, Vp > 0,

/ | flPdp = /OOpAP—lu({yf\ > A})dA.
X 0

Lemma 0.17 (Whitney Lemma) : Let G be an open subset of R", G # 0,
G # R™. Then there exists a disjoint sequence of half open cubes {Qy }ren that can
be chosen as translations of dyadic cubes, such that:

a) G =UQx
d(Qr , 0G)
)2 TGS S0, WheN



Chapter

The maximal function

In this chapter we will prove some estimates and weak type inequalities for the
maximal function Mf : LP(R") — R* that we will frequently use in the next
chapters.

1.1 Norm estimates for the maximal function
Theorem 1.1.1: There exist ¢ ,c such that:

o) {o € R" : Mf(z) > t} gc/
t J{zern: |f(z)|>L}

/
b) {z € R" : Mf(z) > t}] > C/
t J{zern: |f(x)|>t}
Vt >0 and Vf € L'(R™) real function, where Mf is the uncentered mazimal
operator over cubes in R™ and ¢ ,c do not depend on f or t, but only the dimension
of the space.

|/ ()|dx

|/ ()|dx

Proof: We write f = f* + f. where
f@), if [f(@)] >
0, if [f(=)| <

Nl

Nl
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and

N[+

0, if [f(z)| >
fulw) =
fl), if [f(@)| <

N[+

Then t
Mf(x) < Mf*(x) + Mfu(2) < Mf (@) + 5

since M f,(z) <
So

, Vo e R" , as |fu(z)| < L, Vo e R™

N | o+

[z € R Mf(x) > 1}] < |{z € R": Mf*(2) > )] <

3n . 4n . c
<2 i@l = ¢ | F @)l
2 " {z€R™[f(2)[>3}

using Lemma 0.15 and (a) is proved.

Using the Calderon-Zygmund decomposition for f and ¢ we get non-overlapping
cubes @; such that

t< 2 [ alde<2e, v
Q5] Jo,

and

|f(z)| <t for almost every x ¢ UQJ

J

If 2 € Q; we get Mf(z) >t, s0oQ; C {x € R": Mf(x) > t} for every j and

thus
1

R": M tH > | > d
o €217 (0) > 0l > 1041 20 31 L N

since J; Q; 2 {z : |f(2)| >t} a.e and (b) is proved. U



CHAPTER 1. THE MAXIMAL FUNCTION

Theorem 1.1.2: For every 1 < p < oo, there is a constant Cp, > 0 such that for
every f € LP(R™)

([ us@ypan? <G| If@Prdor,

that is || M f||Le < Cpl|fl|Le,

where M f is the uncentered mazimal operator over cubes in R™.

Proof: Using the Layer cake formula and Theorem 1.1.1 we get

/n(Mf(af))pdx = /Oooptp1|{a: M f(x) > t}dt <

00 tpfl
< cp/ / |f(z)|dzdt =
0t Jal@)>4}
) 2| f (=) .
—cp/ P~ / o } )|d$dt—cp/ (/ tP2dt)| f(z)|dx =
x: >3

:szpl/ \f(2)Pdz =: C/ 2)|Pdz. O
p—1

We have seen that the operator M is bounded in LP(R") for 1 < p < oo, since
M f(z) <||fllso, Vo. However, it is not bounded in L(R").

Theorem 1.1.3: Assume f is supported in a ball B C R"™. If |f(z)|log™|f(x)| is
integrable then Mf is also integrable over B , where M f is the uncentered mazximal
operator over cubes in R™.

Proof: We have [ |f(x)|log™|f(z)|dz < co.
Then

/Mf(x)dx:/oo]{ajeB:Mf(a:)>t}dt:2/oo{meB:Mf(x)>2t}|dt§
B 0 0

9
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1 o)
< 2(/0 |B|dt—|—/1 {z € R" : Mf(z) > 2t}|dt)

and using (a) from Theorem 1.1.1 we get that the previous quantity is

@)
<2\B[+c/ / dxdt—Q\B]—l-c/ \/ fdtdx—
z:| f (@ \>t}

— 9B+ /R |f(@)liog* | (x)ldr < o0

and so

/BMf(x)dx < 00

as requested. [

Now let f be a non-negative function in L'(R) and M f be the uncentered maxi-
mal operator corresponding to the differentiation basis of R.

We define the following maximal functions:

Maf(@) =sup{—— [ )y + we (.00)

1 xr
Muf(@) =sup{ s [ F@idy e (<o)
and then it is proved that

M f(z) = max{ Mg f(z), ML f(x)}

For each t > 0, let M = {x : M f(z) > t},

={z:Mpf(z) >t} and MF = {x: Mgf(z) >t}

10
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Lemma 1.1.4: The equalities

a) {Mpf(z) > t}] = / f(2)da

b) {Mf(z) > t}] = / f(a

and the inequality
2
NOLf@ >0 <] [ flan
My

hold for every t > 0.

Proof: We will prove (a) as the My f case is identical.

1
The function s - —— / f is continuous on (z,00) so the set
s—ux
M = {x: Mgf(x) >t} is open.

Therefore, MtR can be written as a unique union of open disjoint intervals
MtR = UZ;(ﬁka Vi)-

Consider an interval (S, vx), which may not be necessarily bounded.
For every = € (B, k) the open set

Nx:{s:/sf>t(s—x), s € (x,v)}

is nonvoid.
For 7j, = oo this is trivial, as for x € (Bg,00) € M/* we have by definition of M}
that there exists s > x such that

Six/;f>t = /;f>t(s—ac)

We define s, = sup N, and consider the case v = +o00. For every x € (8, +00) we
have s, = +o0.
Indeed assume s, < +oo for some x € (B, —I—OO) then

so s € N,.

11
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but s, € (B, +00) so there exists y > s, such that
1 Y
/ >t
Y — Sz Sz

Yy
/ f>t, wherey>s, >z
x

and so
1

y—T
which is a contradiction.
Thus for x € (B, +00) fixed there exists a sequence s,, /* 400 such that

1

Sp— T

Sn
/ f>t and forn — +oo weget 0>t
x

a contradiction.
So for any (B, k) as above we have that v < +o0.

For 7 < oo, assume N, = () for some z € (B, Vk)-
Then there exists w > v such that

/zwf>t(w—x).

Also, by N, =0 we get that, Vs € (z,v) , / f <t(s—x) and since
1 xr

S —X

S
/ f continuous on (z,7x) we get
x

Yk
f <ty —x)

x

so that w > ;.
This gives us

/wf:/wf_ %f>t(w—:v)—t('7k—x)Zt(w—’)/k) = W’kEMtR
Tk x x

which is a contradiction.

12
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Now let s, = sup N, where x € (Sk,vx) and v, < co. We will prove that s, = .
If s, < 7y then

/:cfzt(sx—x) (1)

by the continuity of Mgf.
We have [ <z < s, < = Sz € MtR and since Ny # () so there exists
Y € (S, k) such that

/yf>t(y—sx)- (2)

Combining (1) and (2) we get

/:f+/;f=/zyf>t<y—x>,

which is a contradiction since v, > y > s, by the definition of s, and N,.
Therefore VY € (B, V) » Sz = Yk SO

Yk
/ f >ty —x).

Letting © — B, we get
Vi

; f=>t(ve — Br) (3)

[from which we ensure that (B, vx) is bounded since f € L'(R")]

and as (3) is true for every (Bx,vx) € M we get

/ fEUMEL (4)
v

On the other hand By ¢ (Br, v) € MF so

Tk

[ <t(v — Br)
Bk

and so

/ f<tMEL (5)
ME

Inequalities (4) and (5) gives us

MP| =z Maf(a) > t)] = /MtR f(@)da.

13
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To prove (c) we proceed in a similar way.
We will prove that M f(x) = max{Mgrf(x), Mrf(x)} , Yz € R.

Fix € R and define M, f(z) =
For every z > = we have

! /:leiml Cf < Mif(r)= 6
so, Mpf(z) <6

Similarly My, f(z) < 6, which gives us

max{Mgf(x), Mpf(x)} < 0 = M f(x).

Now assume max{Mpgf(z), My f(x)} = d and (a,b) is an arbitary interval in R such
that « € (a,b) we then have
x 1 b
R
a —aJg

b—a e

x—a b—x, 1 b

b—a x—a/f b—a(b—x/xf)<
_ h—

T MLf(@) + — Mpf()

and Mpf(z), M f(x) < by definition of d, so

— b _
/ f< z_ Z - 25 =0, VY bounded interval (a,b) containing x

b—a

and thus we get

and as a consequence
My f(xz) = max{Mgf(x), ML f(x)}

14



CHAPTER 1. THE MAXIMAL FUNCTION

Also by the above equality we get
M; = Mtu M}
and using the last identity we get
1
R T W W
Mt M

1 2
St[/Mthr 5= so

15



CHAPTER 1. THE MAXIMAL FUNCTION

1.2 The Hardy- Littlewood maximal theorem

Theorem 1.2.1: (Hardy-Littlewood maximal theorem for LP, p > 1)
Let f € LP(R) and p > 1 be a real number. Then:

.
([ Oufpan < 2o [ 1gpasl?

) p
that is  ||MRf||rr < 2inHLP

b)
([ Oep@ypans < 2o [ 1Pl

that is  ||Mpfl||e < p%ufum

and

)
( /R (M f (@) o) < 2 2p / Pl

) 2
that is || Myif||rer < ]flefHLP

Proof: We will use the equality (a) that we proved in Lemma 1.1.4, which is stated
for functions f € LY(R). As we know, C.(R), the space of continuously compacted
functions, is dense in L'(R) and LP(R). Let f € LP(R), we can then find a sequence

{fn} C C.(R) such that f, N f.
Therefore

lfn = fllee = 0 and  |[MR(fn — F)llr < ¢pllfn = flle =0

by Theorem 1.1.2; so
LP
MR(fn — f) — 0.

By the triangle inequality we get
|MRfn(z) = Mrf(2)| < Mr(fn — f)(z), VzeR

16



CHAPTER 1. THE MAXIMAL FUNCTION

thus L
Mpfn — Mgf

and thus it is enough to prove the theorem for functions f € C.(R).

Let f be a fixed function in C,.(R). Using

Ameiép#MM>Mﬁ, (1)

1
Mef >t =7 [ e, @
{MRpf>t}
we get

/(MRf(x))pdx =) /ooptleMRf(fc) > th|dt =
R

0

Mgrf(x
/ P~ 2/ z)|dzdt = /tp 2/ z)|dtds =
MRf>t}

Y _ -
_p/R/O (p_l)dt|f(x)|dx—p_l/R(MRf(x)) |f(z)|dz <

p 1 p-1
< Lot 1@t | (Mrf(a)yda) <o

by Theorem 1.1.2 , where on the third equality we used Fubini’s Theorem and we
also used Holder’s inequality to get the first inequality,

SO

/MRf YPda)r <15 /|f|pd:c

We will not prove (b) as the proof is identical.

To prove (c) we use
2
nse <al<] [ s
{Mf(z)>t}

17



CHAPTER 1. THE MAXIMAL FUNCTION

from Lemma 1.1.4 and proceed similarly. [J

18



Chapter

The basis By of intervals

In this chapter we will prove some covering theorems that entail differentiation
properties for the basis By of intervals.

2.1 Intervals of R?

Assume Bs is the following basis: for every x € R?
By(x) = {I = J x H, where J, H open bounded intervals of R, = € I}.
Then By = U Bs(x), is invariant by homothecies and is also a Busemann-Feller
r€ER?
differentiation basis of R2.
Let My be the corresponding maximal operator in R?, where
1
Maf(a) = sup{y [ 11@)] do. 1€ Ba(w)}
I

where f:R? — R is Lebesgue integrable and z € R2.

Let also Iy = {J : J bounded interval of R} and

1
Migly) = sup{ry /J 9@l dy, yeJel), yeR

the corresponding maximal operator in R where g : R — R is Lebesgue integrable
on R.

19



CHAPTER 2. THE BASIS By, OF INTERVALS

In order to prove the next theorem we will use the following lemma.

Lemma 2.1.1: The mazimal operator My is of weak type (1,1), that is there
exists ¢ > 0 such that

[01g(6) > M) < 5 [ latw)ldy

for every g € L*(R) and every A > 0.

Proof: This weak type inequality is a result of the inequality (c) proved in Lemma
1.14. O

Theorem 2.1.2: There exists a constant k > 0 such that

onf >3 <k [ Havorh

VYA >0 and Vf measurable, for which the integral on the right side of inequality
(*) is finite, and YA > 0.

Proof: Notice that for A > 0 the following equivalence is true:

4 /]

W [t <o [ Blaviegt <o

We will prove ” = 7, with ” <= ” being immediate.

Assume/ IFI(1 +log™|f]) < oo
R2
\f!

For A > 1 we have

[ sty < 3 [ i1+ tog 1) < o0

since  — (1 + log*x) is an increasing function on (0, 00).

< |f] on B2,

SO

20



CHAPTER 2. THE BASIS By, OF INTERVALS

For 0 < A < 1 we have

If] +1f] |f] | f |f]
logt 11y = 1} Y 4 10gty =
/R2 y s /{IfS/\} A +/{|f|>>\} 3 oo

|/ / /] 1
= -~ + (1 +log~ +log|f]) =
/{|ng} A ey A A

1+ log+ 1
T A T 7
{If1=A} {If1>A} {lFI>A}

1+ log 1 1+ logt
< */ A+ / Fliog*f] < A/ 1L+ tog*1f]) < oo,
)\ R2 )\ ]R2 )\ ]R2

Assume f € L} (R?) such that / |fI(1+1ogT|f|) < oo, f>0and A > 0. Then
R2
f € LY(R?).
For every z = (x1,22) € R?, f: R? = R*, we define

1
T\ f(x1,22) = sup{M[]f(ﬁl,xg)dfl, J CR open and bounded with xy € J}

(SO Tlf(xl,l‘g) = le(-,fl,‘g)(Il) , V($1,$2) S R2)

and \
A/\ =A= {(ul,ug) € RQ : Tlf(ul,uQ) > 5}

which can be easily seen that it is measurable.
We also define

1
Tof (x1,22) = sup{ﬁ /HXA(:El,ug)Tlf(xl,uQ)duQ , H C R open, bounded, xo € H}

(so To f(x1,w2) = Myi(xa(z1, )T f(z1,-))(x2)).
We will prove that

B = {(6,6) € B My(61,6) > N} € {(61,6) € B Tuf(61,6) > 5} =i

21



CHAPTER 2. THE BASIS By, OF INTERVALS

Let (z1,22) € B, then there exists I = J x H where x; € J, 9 € H and J, H open
bounded intervals of R such that

i),

— [ >\ *

1) "
Consider the following partition {C1,Cs} of I = J x H:

a) If & € H is such that for every (z1,&2) € J x {§{2} we have Ti f(z1,&2) >
we set J x {&} C C4.

N >

N | >

b) If & € H is such that there exists (z1,&2) € J x {&} with T1f(z1,&) <

we set J X {2} C Cs.
Obviously C1 UCy = J x H=1T and C; N Cy = 0.

For & such that J x {{3} C Oy, by definition of 77 we have

|;|/]f(fla£2)d£1 < g (4)

and integrating (4) over G, where G is the set containing every & € H such that
J x {&} C Oy, we get

A A A
/ f:/ f(&1,&2)dE1dSs §(4)/ 5 Mgz = 5 - [Cal < 5 - |1]
Co EoeG JE1€T

e 2

/If=/01f+/02f§ le+2-rf|

but also A - || < /f from (*) so
1

SO

Furthermore,

1
Tof(z1,x2) > ]H|/ xa(z1,u2)Th f (21, ug)dug >
H

> ‘;‘ /H xAm,uQ)(}, /J Flun, ug)dur )duz =

22



CHAPTER 2. THE BASIS By, OF INTERVALS

1
|J><H| /HXA(SC17U2)/Jf(U1,U2) Ul) U2

1
= m/HXA(J}l,UQ)/Jf(ULUZ)dul)duQ' (5)

Moreover for (uj,u2) € (J x H)NCy (that is when J x {us} C C1) and since z; € J

we have (x1,u2) € C1, thus T1 f(x1,uz) > 5
so (x1,u2) € A, Yug such that J x {ug} C C} so x4(x1,u2) =1 and by (5)

1
Tof(x1,22) > f(u1,u2)durdug =
“” HXJ nCq
1 1 A
=— [ flui,u2)durduy = I >0 5
11 Je, [1] Je, 70 2

We thus get Tof(z1,x2) >
and we finally get B C C.

, V(x1,x9) € B therefore (z1,22) € C', V(z1,22) € B

Lo >

Moving on we are going to estimate |C/:
Using the previous lemma we have: for every fixed z; € R, fixed,

[{&2 € R:Tof(71,&2) > i}| < i/XA(ffl,&)Tlf(!El,&)d& ,  (6)
2 5 JR
as T f (z1,&2) = Mi(xa(z1,§2)T1 f(21,62)).

Then

O] = [(6.62) € B Tof(€1,60) > 5} = [ 62 € R: Baf(61,60) > 5)1d6s <

<) g /R /R valn, )T f (1, &) dérds = & /R /R XAl &)TL (61, €)dxder =

=c P(&2)ds2 (7

£2€eR

where

¢(§2):/RXA(&’&)ATJ@h&)

2

dé; .
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CHAPTER 2. THE BASIS By, OF INTERVALS

By the Layer cake representation we have that for every & € R

(€1,&)T1f(&1,&2)
X

2

o(&2) = /OOO {6 eR: X4

> o}|do =

/01:0 {&eR: XA(§17§2)§1f(§1,§2)

2

> o}|do+

+/oo |{§1 eER: XA(§17§2)§1f(€17§2) > O'}|d0'. (8)

=1 2

So by (7) |C| < 81 + Sz, where

1
S, = C/R/U:O &1 €R: XA(Sh&)flf(fl,fz) > o}dodés

2

Sy = C/R/:Ol {& eR: XA(51’52)§1f(51’52) > o}|dodés.

2

and

Now we get an estimate for Si:
A
If (&1,&2) € A then Th f(&1,&2) > 5 and for o € (0,1)

R XA(glv&)?lf(él,gQ) -

{61 e o} =

2

—0 G eR: (€,6) €A and Tif(6,6) > ga} _

=<1 {1 €R:(&,&) € A} ={& e R: T f(&1, &) > %}

SO

Si=c [ 16 R Ti(6) > SNdea (9)

Using the previous lemma again, for every & € R

e € BT (6,8) > ) < 5 [ 16 @i
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CHAPTER 2. THE BASIS By, OF INTERVALS

as Th f(&1,&2) = M1 f(-, &) (&).

Thus (9) becomes

2c2 2¢2
si< 5 [ [ raeade =2 [ r

In order to calculate Sy we define for every o > 1

{ f(&.&), if f(&,&) <Y
f*(£17€270-) =
0, if f(61,6) > 22
and
0, Zf f(§17§2) < /\Ta
fH (&1, 6,0) =
fl&,&), if f(&.&)> 2

which we will simple write as f.(£1,&2) and f*(&1,&2).

Then f = f*+ fo and Tof < Tof* +Tif.. (10)

Ao

But clearly T} f«(&1,&2) < R Y(&1,&) € R2. (11)

So

o ek MEEINTELE) oy e e r T (e, 0) > ) <

2

A
<goy,an) {& € R TLf* (61, &) > TO-H

thus - )
si<e | [T &) > P Hdod

and using the previous lemma we get

S <o /R / B ij,( /R J* (61, €2)de 1) dody =

_2 ([T f1,6) -
- /R/ﬁl(/{f%f}4 o Kr)dodsy =
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4f(§1 £2)

- / /{f>*}/a 1
- /R(/{f>’\} f(gl/\’ 52))( :1(%52) gdadgl)d& -

f(&1,62)
A

51552

dod€)dés =

4c?
=5 L), S lont + op M e <

f(§17 &2)

2 2
< Zl/c\logél/]Rz f(&1,&)dérdEs + 4;\:/11@ f(&1,E)logt (222220 dg dey.

Summarising,
S+ 8 < 25 / F (€0, €2)dErdes + —1094 / F(61, E0)d1dEn+

f(fl,&) |f]

)dérdes <K/ W 4 1o+ 1)

2
2 [ s o (HEE

for suitable K > 0

and

IC]<S1+ S <K m(1+log (\f\

R2

)

while B C C.

So finally

/]

(66 e s Maf(n ) > M < & [ Hlaviogr i o
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Now, having proved

+ /]

s >3 <& [ Mgl

for every f such that
i+ tog 17 < oc
RQ
that is f € L'(1 + log* (L')) , defining

g(z) = 2(1 +logtz) , for x>0 we have g(|f]) € LI(R2) , ¢g=>0.

Let M,, f be the maximal operator with respect to the intervals of R2,

1
M, f= SUP{]B\/Bf . x€B with §(B) <y}

with 7, N\, 0 and {Ax} a decreasing sequence of measurable bounded sets with

Then
{M,,(fxa,) > A} S {Ma(fxa,) > N}

and
/g<f|>><Ak=/ of) =0, as |Ax =0
R2 Ay
with Apy1 C Ay Yk and  g(|f]) € L*(R™).

So from (*) we get that Vf € L'(1+1log*(L')), VA decreasing sequence of measur-
able bounded sets with |Ax| — 0 and Vry N\, 0

M, (freay) > M < HMa(fra,) > A < / oIf) =0 =

A

{M,, (fxa,) > A} = 0.

Thus by an application of Theorem 0.11 the basis By differentiates L'(1+log™ (L')).
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The same result is proved below using a covering theorem regarding the basis of
intervals.

The following theorem is a special case of a more general theorem for arbitrary
intervals, which can be used for the proof of the fact that the basis Bs differentiates
L(1+log™(L)).

Theorem 2.1.3: Let {By}aca be a collection of open dyadic intervals of R? with
]UBQ\ < 00. Then we can select a finite sequence {Ry} C (Bq)aca such that:

@) [|JBal < el Bl

b) e=Xr < oo | Ry
URy

where c1, co are independent of the initial collection {Bg}acA.

Proof: Let {Bg}aca be a collection of dyadic intervals of R? with ]UBQ\ < oo0.

M
We take a finite sequence {By}L, C {B,}qeca with \UBa| < 2| U Byl
k=1
We can do so by using Lindelof’s theorem as |J, B, can be written as a countable

union U B, = U B,,, where I is at most countable and a; € A, Vi € I.

acA el
Then we can define a new sequence {F,,} where F,, = B, U By, U ... U By,
from which we get |UB“| = |UBai| = ’UF‘11| where {F,,} is increasing so
a ) 7

o0 oo
1
|U F,,| = lim u(F,,) thus there exists i, € N such that |F,, | > —| U F,,| and
e i—00 ° 2 e
io 1
we finally deduce that | U Ba,| > §| U B,|.
Jj=1 a
We denote the side lengths of By , £ = 1,2,....,M by ag,br. We also may as-
sume that by > by > ... > bjs and that no By is contained in any other of the family
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{Bj}jj\ir

We now start constructing our sequence Ry.

First we choose R = Bj.

Assume that Ry, Ra, ..., Rj, have been chosen where Ry, = By, for some [ € {1,2,..., M —
1}.

Then we choose as Ry the first By in the sequence Bjy1, Bito, ..., By such that

1 h
B, XU e ST )
k| J By =

where n will be chosen later.

By this way we get a family {Rj}jq:l of intervals with sides a;j,b; (we continue to
use the notation b; but now for the family {Rj}le such that by > by > ... > by).
We obviously then have

1
R’ (| Rk)\:/ eda.
k<j € ij(Uk<j Ry)
Now for any z € Uk<j Ry there exists k € {1,2,...,j — 1} such that z € Ry so
j—1
xR, (2) > 1 and Za:Rk(z) > 1, thus the last quantity is
k=1
1 j—1 14+n
< [ w0 R @
J
So, for every j € {1,2,..., H}, we have
1+n
IRl = R; 0 (| Re)l + IR — (| Ri)l <@ o 1Bl + IR — U Rl =
k<j k<j k<j
1
| Rj Smmj— U Bxl- (3)
€

k<j
forO<n<e—1.

We shall now prove (b) for ¢ = 20e by induction.

e Firstly
/ XRr, X" = e|Ry| < 20e|Ry|.

R1
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e Next assume that

h
h
/th R_ezﬂ':”‘RJ §206]UR3~\, for 1<h<H-1. (4)
j=1 1%

j=1

" h+1
e We will prove that /XU;L;Fll € i=1 X5 < 90e] LJl R;|.

]:

We have the following

h+1

h+1 h
/XU’}+1R,€Zj_1 XE; :/ . e2i=1 XF; —I—/ . =1 XAy <
g=tiy (Uj:l Rj)—Riny1 Rh+1m(Uj:1 Rj)

IN

/ o1 XR; +/ By <w
(Uh_y By) Rpan(Ul—, Ry)

h
h+1
< 20e| | J Rj| +/ e Xy
=1 Rh+1m(U;'L:1 Rj)
h N h
= 20¢| U Rj| +e/ X e2i=1XR; <) 20¢] U Rj|+e(14n)|Rp11]. (5)
j=1 Rp1in(Uj=q Rj) j=1

h
1
But we have from (3) that |Rh+1’ < W‘R}H—l — (U Rk)|,
e k=1

e

SO,
h h
htly o (I+n)e
/XU?:ll Rjezg:l XR; S 206’ U Rj‘ + W’R}H_l - (U R])| s
7j=1 e 7=1
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1

so choosing n sufficiently small such that % < 20e (which is possible since
T e

. (I+n)e e
ot = 7y <29
e e
we get
h h h+1
Ehjl XR;
/XUh+1 =1 X85 < 90e| | ) Rj| + 20e| Rpy1 — (| Ry)| = 20¢] U Rj|,
j=1 Jj=1

Vh =1,2,...,H — 1 so the induction is completed and (b) is proved for ca = 20e and
{Ri}iZ1 € {Bataea-

Moving on to (a), we want to prove | U B,| < U Ry|.
a

k
It is sufficient to show that

M
(U Br) -
k=1

qu

|<CIUR| (6)

for a suitable constant ¢ independent of the initial family {B,}.ca as we will then

have
|UB|<2|UBk|<2 UBk: (B |+|UR|<(6)

acA = 7j=1 j=1

H H H
< 2lel U Bil + 1 J Bill = 2(c + DI Bjl.
j=1 j=1 j=1

m

Let B € {Bg}L, that has not be chosen in {Ry, Ry, ..., Ry}, that is we have
the finite sequence Ry, Ro,..., Ry, ..., B, ..., (where R; is the last dyadic interval of
{Rj}j]vil before B in the sequence {By}4L,) with side lengths of B a ,b and b; > b
for1 <5<

For this set B we have

1 1
B e e @)
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7

Figure 2.1.3

If we intersect Ry, Ro, ..., Ry and B by a line s parallel to Ox and call the inter-
sections S =BNs, [1 =RiNs,Is =RoNs,...., g =Ry Ns we get

1 1
5] /qugcllkezk—lx% >1+n.

If this wasn’t true, that is, if

1 !
E /SXUL:1 I, ezk:1 X <1+4mn

we would have
Shoixi
/SXUZ:J%G F=1XIk < (14 n)|S]

and by integrating over the projection of B on Oy we would get

1 1
|B| /B X R € < T,
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a contradiction.

So,

1 . 1 i
@ /;XUL—I Ikezk:1 Xlkz S m SXU5:1 IkeZk:]" XIk

thus,
1
s =

S=BnsC{zres: MS(XUkHﬂIkeZkHﬁ ) > 1+ n},

where M, is the 1-dimensional maximal operator with respect to intervals of s.
The above arguments are given for an arbitary B in {By, Bo, ..., Byr }—{R1, Ra, ..., Ri }
therefore we have

M H
H
sN (U By — U Rj))C{zes: MS(XU}?:1IkeZk=1X1k) >14+n} =
k=1 j=1

*

M H
c H
_ . e
|SH(HBk LJIRJ)’ < 1+n/XUkH11ke R=1 X
= J:

from the weak type (1,1) inequality for the one dimensional maximal operator Mj.

M
Integrating over the projection of U By on Oy we get
k=1

C*

M H % H

c S xR,
||B—||R-<7 =145 < 20 llR‘,
’kzl K et ]|_1+n/RQXUszlee _(b)1+n €|j:1 4

which proves (a) for ¢; = 20e lf:n. O

As we mentioned above, using Theorem 2.1.3 we can prove that the basis Bo dif-
ferentiates L'(1 + logT(L')).
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Theorem 2.1.4: The basis By differentiates L'(1 + logt (L*(R?)), that is

|1

\{M2f>)\}\<0/ W 4 gog+ ) o

Proof: To prove the inequality we define the function G : [0, 00) — [0, 00), G(z) =
xlog™ .
For every y > 0 we also define

_J y if0<sy<l
\I/(y)_{ eyfl’ ify>1

Then G(x) = sup(xy — ¥(y)), Vo > 0 that is for every x,y > 0 we have
y=>0

Glz)zzy—V(y) =  ay<G@)+¥(y), Vey=0. (1)

For every A > 0 we define the set Ey = {Myf > A} and take a compact set K
such that K C F).
Then z € K = x € E) so there exists an open set R, € By containing x such

that
1

| Re| R,

F>a (2

So K C U,cx Re , thus there exist x1, 2, ..., 2, € K such that K C Ui Ra,-
Applying Theorem 2.1.3 to the collection {R ., =: C we get a finite sequence
{Ry} C C such that:

a) |URk| > 1| UL, Rs,| and
b) [ur, e Xk dx < co| U, Ryl

Without loss of generality, we assume that f > 0, so we have

1

1
— [ f>x = IR g/f,Vk «
Bl S, [Ril < < . ()
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as {Rp} C C.

So

|K| < | URzi‘ <(a) 3] U Rg| < CsZ!Rk\ <
i=1 %

3 c3 f
<) ~ f=~ /f'XR,:C?)/ T > XR
from which we get

C3Z’Rk| §C3/ {ZXRI@ :Cg[l (**)
k URy k

f
where [1 = / = XR

and continuing our calculations, we have that for any pu > 0

/ / f
031263/ T) Xr, =03 () Xg,)dx <

f + f /
=) /Rz AAL(lOg <)\,u) e URy, (b A xm) = sl +esho

(that is Iy < Iy + I3)

f f
WhereI:/ U X andl},z/log*.
2= ) ( E Ry) e AM( ()\M)

Setting Z XR, =: g we get

W(ug(a))ds + [ W (g (x))dz =

b= [ W)z -
UR, {0<g<13N(URy)

/{g>;}m<um>
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9@ =1 gy +/ pg(x)de <
{0<g<i}ﬂ(URk)

/{gzi}ﬂ(u3k>

1
<=

e“ZXdex—F,u/ XR;, =
6/{gz;}m<u3k> R2Z '

1

e /{g>;}n<um>

M 2 XRy g 4 “Z | Ry |dx

1
< (uw) Captly + = el xRy, (2) gy <

€ /{gz;}ﬂ(URk)

1
< C4H-[1 + 1/ GMZXRIC (fE)dQT S(***) Cq - NIl + :U'/ GZXRk(x)daj
€ {ZXRICZ%} € URy

where we used that e < pe?, Vy > *, 0<p<l, * % *
K Iz

and

1
cap - Iy + eu/ e X (@) gy <) Caprly + csp| U Rg| <
URy,

S(en) Capdy + coply = coply =

(for suitable constants c5 , ¢g , ¢7 > 0)
Ir < crply (s s k)

So
Il < IS + -[2 S(****) I3 + NC7I1 =
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(1—per)ly < I3

1
and for p < — , p < 1 we get
cr

1
I <
1 — pcs

I3 = I < C&U,Ig

for a suitable constant cg.
From the above conclusions we have

’K| <czlo+c3ls =

f,o o 1 f f1
= |K[<cl3= C10/log (T--)= 010/ Slog(5 - —) =
- AT A oy A A

= — — —| = = = =<
€10 /{f>/\u} /\[109()\) + logu] cn [ + cio 7o) )\509)\ <

<ci1 /R2 { + c10 /R2 §109+(§) < ci2 /RZ {(1 + lOg+(x))-

Now since |Ey| =sup{ |K|: K C E), K compact } we have

B = HMaf > A}l < ena [ 500+ Loy ()

and thus

0 > A <€ [ $0+i0g"(5)

which is the required inequality.

We will now prove (****), that is

1
euyguey’ V?JZ *7.“6 (0’1)
1%
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Let p be fixed and set h(y) = ¥ — ue?, y > 0.

Then
b (y) = pe¥ —pe? <0, foranyy >0 since u < 1.
so h(y) is strictly decreasing for y > 0.

Therefore for y > %
1

1 1
h(y) Sh(;)ze—ueﬂ <0,
as f(p) = uei, is also strictly decreasing for p € (0,1),

thus (p) > 6(1) =e = uei > e, Ve (0,1).

2.2 Intervals of R?

In a similar way as in Theorem 2.1.3, if we consider a system of intervals in R3
such that there is some reasonable constraint between their three side-lengths , it is
to be expected that this system will behave again like the two-dimensional basis of

intervals, that is its maximal operator will satisfy the same inequality as above.

We will present the theorem in the dyadic version again and in the same pattern as

before the required inequality can be obtained.

Theorem 2.2.1: Let {By}aca be a collection of dyadic intervals of R® such that
LUa B,| < 0o. Assume that the side-lengths of B in directions Oz, Oy, Oz are aq,
ba, o = ¢(@q,ba), respectively, where ¢ : (0,00) x (0,00) — (0,00) is a fived function

strictly increasing in the two variables separately.
Then we can choose a finite sequence {Ry} from {Bg}aca such that:

@) |U, Bal < ¢*[U Ry|
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b) Juy, € < | U Ry

where c*,c** are absolute constants independent of {Bg}aca-

Proof: We will prove this Theorem on the same pattern as the proof of Theorem
2.1.3.
First we choose a finite sequence {Bj}4L, such that

M
| Bal <2/ Byl
a k=1

We can assume that ¢; > éo > ... > ¢y and that no By, is contained in another one.
By the strict monotonicity of ¢ we have either a > a; or by > b forl1 <k<Il< M.
We can see that this is true because if a; < @ and by < b; then we would get
o(ag, Bk) < ¢(ay, Ek) < ¢(ay, Bl), which gives ¢, < ¢;, a contradiction, since ¢ > ¢;.

Now we proceed exactly as in the previous proof for intervals in R2.
First we choose Ry = By and the Ry as the first B, where k£ > 1 such that

1
|By| /B,

Xr, e <1+mn, wheren will be chosen later.
We then choose R3 as the first By, [ > k, such that

1

2
1B XRUR, €130 < 1
1Bl /g,

and so on.
In that way we obtain {Rj}f:1 from { By}, satisfying
D)6 > > .. > éy

ii) If é; > ¢ then either a; > a; or b > by (where dj,l;j,éj are the side lengths
of R;, j=12, ...,H)

1

1ii
) R

J
/ XUi<; Rj 621:1 i <14n
Rjq1 -
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iv) If B € {B1, Ba, ..., B;yy} — {R1, Ra, ..., Ry} and if Ry, Ry, ..., Ry are intervals

with ¢ > ¢, where ¢ is the side-length of B parallel to Oz, then

1 l
B XS >

As in the previous proof, for every j > 2 (for j = 1 it’s trivial),

1 1+n
‘R ﬂ U Rk / e < — / Uk<] Ry, € Zk 1XRk <(m) T‘R]’
k<] R; m(Uk<J Rk)
Therefore,
14+n
[Rj| =Ry 0 (| Ri)l + IR — (| Re)l < |R;| + URkl
k<j k<j
14+n
= (1- )|R;| < |R; — (| Ba)l
k<j
and for n small enough, we get
Rl < Tl = (U Rl
e k<j
We are now going to prove (b) by induction: We have
/XRIGXRl = e|R1| < 20e|Ry]|.
We assume that
Z XR;
7=1
where h < H.
Then
St xR, _ / Shoixr; / It xR,
X| b+l p €77 =1 Xq N e~ I+ e~ i<
/ U;Z1 Ry (Uj=1 Rj)—Rnta Rnan(U'y R))
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h h
s/ X €= +6/ X g eI <
h . =111 j=11Y
R Rhy1

=1 1Y
h

<(iii) 20¢] U Rj| + e|Rjt1[(1 + n).
j=1

Continuing as before we conclude that

S h|+1|

i—1 XR; .

/XU?fije ’ 7 < 20¢] , 1RJ|'
J:

so we have obtained {R; }le satisfying

H
H
/ X, g, < e Ryl

j=1

We shall now prove (a) using (i)-(iv) and (b).
In order to do so we will prove that

M H H
U By~ UJRil < U Ryl
k=1 j=1 j=1

If B is an interval of {Bk}é\i 1 which has not been chosen, between R; and R4, for
| < H, with side-lengths a,b,c = ¢(a,b) then

1 L ,
B, 0 S > e )

We intersect B and Ry, Ra, ..., R; by a plane o orthogonal to Oz obtaining S, I, 2, ..., I;
where S = BNo, I; = Ry No and so on, as in the figure bellow.
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I\ I
'\ o
— A
I,
,/
[ ]
A B ~—
13 /7 Il Q
P Th+l Tha

Figure 2.2.1(a)

The 3-dimensional inequality (1) is transformed into the 2-dimensional one

Ia//lJ16J“”>Hm (2)

If this was not true, that is if

S _xa,
[ [ e < @ ns

then by integrating over the projection of B, on Oz we would get

Zl':l XR:
[ m e < il

which is a contradiction to (1).

As we stated before, for every j = 1,2, ...,] we have ¢ < ¢; so either a; > a or b; > b.
Let’s assume that a; > a and b; < b for i = 1,2,...,h and a; < a and b; > b for
i=h+1h+2,..1, forgetting about the order of the sides c;.

Let us call P, Q the projections of S and J;, K; the projection of I; over the axes
Ox, Oy.

We can now write I; = J; x Kj and S = P x @), where J; = (o, 3;) , = (74,95).
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i

Kf /// /// /// 3

I he1

- .
Fa
g
b o

Figure 2.2.1 (b)

Without loss of generality assume that I; N I; = () for ¢ # j , 4,5 =1,2,..,h or
i, j=h+1,h+2,...,1. Then

1 . )
|S|//(r Wes Xué_:lj—j(x,y)ezgﬂ xr; ( Jﬂdmdy = Ay + Ay + A

where

1 h
I // X (@ y)e=i=1 X5 @Y qady
15 SOUjr Li=Ujmnn 1) Ui s

1 l
AQ = // X |t (z,y er:h+1 XI; (m,y)dajdy
151 SOUjopr Li-Ujr 1) Ujmnsr 1y ()

and

o f
SIS sz, mnu

Z{Ll XI; E {-,;+1 X1I:
Xk LX) g eTIm i emI=h i dady
imhp )T J=h+
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Now
Al =x21+ 29+ ...+ 24

where

1 h 1 h 1 h
x| = / €Zj:1 XI]-, Tog = / 62]’:1 le’ oy T = / er:I XI; 7
1S Jr ISIJ J, S| Jm,

l

!
Ty={P-( |J J)tx{@nKi}, . Tu={P—( |J J)} x{QN Ky}
m=j+1 j=h+1
and 77 the shaded part of the figure above.

T < 1// 5= X1, dzdy
|S| Px[v1,61]

as Ty C P x Ky =P x [y1,61],

Now,

1 // Z}L XK ;
= — e J=1 J(U)dZEdy
|P||Q‘ Px[v1,01]

(as [ = Jj x Kj and € P implies x € J; Vj =1,2,...,h)

| / / ] 1 XK; (1Y) 1 o S X (¥)
= — drxdy = — e—I=1 15 dy
1PIQI = QI J,,

Similarly we get

Th < - 62?:1 XK (y)dy

|Q| [Vh,0R]

Ail=x1+ 20+ ...+, <
|Q‘ LJ.:1 Kj)ﬂQ
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as Kj = ['yj,dj] and Kj - Q
Analogously we get

1 l- A\
425 0p| /pXPwuéhH gy (e Xy = ay

Furthermore,

— Zl'=1 XJ;x K ;
A3’P| 1<l /yEQﬂ(U?1 Kj) /xePﬂ(Ué'hﬂ Jj) “ T XU?ﬂ(Jj XKJ')XUé':hH(JJ’ XKj)dxdy

We define . .
F(:U, y) = 62;’:1 XJj XK (x,y) er:h+1 XJj XK (l’,y)

and for x € PN (U;:hJrl Jj),ye@Qn (U?Zl K;), we have

Fla,y) = 2= K0T 1) —: Gl y)
as for j =1,2,...,h, we have P C J; and for j =h+1,h+2,...,1, Q C Kj.

As a consequence we have

adrial = [

/ G(z,y)dzdy.
yGQﬂ(U?:l Kj) xePﬂ(U§:h+1 Jj)

A3 — L e é‘:h+1 Jj(x)i e ?:1 Kj(y)’
1Pl JPaW s ) Ql Jonur_, k;)

that is A3 = aqas.
From (2) we get Ay + Ay + A3 > 1 + n, that is a1 + a2 + ajaz > 1 + n so either

ay; > p or ag > p where p := min(HT”, \/H‘T”).

We can see this is true because if a; < p and as < p then a1 < HT", as < HT" and
aipag § H_Tn
This entails that a1 4+ a2 + a1as < 1+ n, a contradiction.
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So for the set B € {By, B, ..., Biy} — {R1,Ra, ..., Ry}, if (z,y,2) € B and as > p
then

1 l. |
[P| /P XPOUizni 75) (t)ezjzhﬂ XiOdt > p

and since € P
ll P i1 XR, (69,2)
[P =h+1XR Y,
‘ ‘ / XUé':h+1 RJ (t7 y, Z)e J y t S

and if a; > p then similarly we get

1 Z?:lXUkL7 R.(I,S,Z)
M/QXU?:1RJ‘($’S’Z)6 J=174 ds > p.
Therefore either
1 > (t9,2)
C . = —h+1 XR,; \L,Y,2 .
e T J X0 () X0 0> ) i
I interval
or
BC{y): swp (L (@5, ) L gs 5 gy
C{(z,y,%): 225) ] ung;:lij x,8,2)e s> pt=:F.

J interval

That is BC FUF.

For fixed y,z we have E =U,.FE(y,z) where

E(y,2) = {(z,y,2) : Mi[xy, (-9, 2)e=" 002 >

Using the weak type (1,1) for the one-dimensional Hardy-Littlewood maximal oper-
ator we get

c H
’E(y7 Z)|1 S p/ XUJI‘I 1Rj (t; y; Z)ezj:l XRj (tvyvz)dt
R =
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and integrating we obtain

" ) C s
Bla<— | xym €= X < ° Rl

Similarly we get

IN

c i . c
|_F’|3 _ XUJI{ R‘eZJilxR‘? S(b) ;C**’UR]’

concluding

UBa <2 eI Ril =1 U R D
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Chapter

The basis of rectangles B3

In this chapter we will present the construction of an important set called the ”Perron
tree” and its contribution in the solution of problems like the "needle problem” and
the construction of other notable sets such as the ”Besicovitch set”. We will also
use the Perron tree to prove that the basis of rectangles Bs does not have good
differentiation properties.

3.1 The Perron tree

Theorem 3.1.1: Let {A,}2—, be the 2™ open triangles in R? obtained by joining
the point (0,1) with the points (0,0), (1,0), ... ,(2™,0). Let A, be the triangle with
vertices (0,1), (h-1,0), (h,0). Then given «, where 1/2 < a < 1, we can make a
parallel translation of each Aj, along the Oz axis to a new position Ay so that we
have

on on
| U Anl < (@ + 201 —a))| | Anl-
h=1 h=1

Proof: We will prove the theorem by repetition of a process called basic construc-
tion.

Basic construction: Consider two adjacent triangles 77, 75, with basis on the Ox
axis, the same basis length b and height length h, as shown in Figure 1.1(a) below.

48



CHAPTER 3. THE BASIS OF RECTANGLES B3

- --ph- - —-— — - — -

Figure 3.1.1(a)

With T3 fixed, we transfer T5 towards 17, so that the sides of the triangles that are
not parallel meet at a point with distance ah from Ox as in Figure 3.1.1(b).

Ao A

— —— . — — r— — . ), e e e - —

— i — — —

RSt .

Figure 3.1.1(b)

The union of T} and T3 consists of a triangle S (not shaded) homothetic to 77 U T5
and two ”excess triangles” A, Ay (shaded).

We will prove that S is homothetic to T} U T5.

Their sides are parallel and, without loss of generality, we can assume A = (0,0),
B = (by,b2), C = (c1,¢2), D = (di1,d2) and E = (z,w), as in figure below, where
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triangle EAD is 77 U Ty and triangle ABC is S. We also denote by B’=(x,y) any
point in the segment BC.

A

I 1
1!
|
(h I ah

|
Iy
1 B B' C
A A Y
Ve

E' D
Figure 3.1.1 (c)
Then from Thales’ theorem we get
|AB| |AB'|  |AC| _

|AE| — |AE'|  |AD|
where X € (0,1), with
1
AE'| = Z|AB/|.
AF| = 114D
Additionally B’ € BC and E' € ED so (z,w) = x(z,y).

Considering the homothecy P : R? — R?, where P(u,v) = 3 (u,v), with homothecy
center the point A= (0,0), we have :

since B'(z,y) € BC then P(B') = 1(z,y) = (2,w) = E' € ED, so P(AB') = AF’
by the continuity of P.

From that we get P(ABC) = AED, that is S is homothetic to 77 U Tb.
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Again from Thales’ theorem and looking at the previous figure we have

|AC| _ah _
ap~n N

SO
1
P(ABC)=P(S)= ~S=AED=T\UT; =

S=a-THUT, = S| =T UTy. (1)

Figure 3.1.1 (d)

As we can see on the figure above, the triangles AB=Z and EHB are similar and so

are the triangles DAO© and DZFE as their sides are parallel so

EB_rH DA _A®
AB  Ez ™ DET A=

and
EB (—a DA
AB 5 DE
A® FEH
entailing that 1=z so by Thales’ theorem once again we get that

©H//AB = =0 =ZH.
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Having proved that the two excess triangles Ay, Ao are equal and we are moving on
to prove that
‘All + ’AQ‘ = 2(1 — 04)2’T1 U TQ‘.

We draw the parallel to ZZ that goes through the point O and separates A;p into
the two triangles KOZ and KOH and Aj into the triangles MOZ and MOO for As.

Figure 3.1.1 (e)

We know from the basic construction that d(FEy, E2) = (1 — a)h and we define
d(Es, E3) = €- h, where 0 < € < .
Now 1 1

|A| =|KOZ|+ |KOH| = 5\0[(! (I1—a)h+ 5\0[(! - €h

and
1 1
|Ag| = |[MOE| + |[MOB| = 5(1 — a)h|OM| + Eeh]OM\

but KOH = MOZ= as O is the point where the diagonals intersect each other
and also the center of the parallelogram, thus OK = OM and OZ = OH and
/ZHOK = /ZMOZ= as opposite angles.
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So the triangles KOH and MOE are equal, therefore e = (1 — a),

1 1
|A1] = [KOZ| + |MOZ| = 5(1 - a)h|OK] + 5(1 — a)hlOM|

= |OK|(1 —a)h

and

|A1] + |Ag| = 2|A1| = 2(1 — a)h|OK| = (1 — a)h|OH|

|[HO| |00 (1—a)h 1-—a 1-a
h = = = =
where BD| ~ 0D p ” = |HO| - |BD|
and so ]
—a
|A1] + A2 = (1 —a)h - |BD| =

h 1
= (1— a)QEa -2b=2(1— a)2§h 20 =2(1 — a)*|Ty U Ty
as |[BD| = a - (2b) and 2b is the length of the basis of the triangle 77 U T5.
Thus, from (1) and (2) we get

Ty UTy| = (a® +2(1 — a)?)|Ty U Ty). (%)

We are now ready to apply this basic construction to our theorem. Consider the 27!
pairs of adjacent triangles (A1, Az), ..., (Aan_1,A2n). Applying the basic construc-
tion to each pair we obtain the triangles S, So, ..., Son_1 and the excess triangles
Al, Al corresponding to S1, A2, A2 corresponding to Sy and so on. We shift Sy
along the Ox towards S so that it is adjacent to Sy and call it So. Then we shift

S5 along Ox so that it is adjacent to S; U Sy and so on.
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A1 \ Az \ Az \ A4

Figure 3.1.1(f)

In these motions every Sy, carries with it the two excess triangles A?, AL so we are
in fact shifting the triangles Ay, Ao, ..., Aon to new positions Ay, Ao, ..., Aon. So
A1 U A U ... U Agn consists of Sy, Ss, ..., Syn—1 where

1S1USsU e USgn1| =a?[A] U AU ..U Agn|  (3)
and the excess triangles AL, AL .. A2""" AZ""" whose union has area
<2(1—a)?|AjUAsU...UAgn|.  (4)

We then apply the basic construction to Si, Sa, ..., 5”2”71 and then applying the
basic construction again, after n-times, we obtain a figure A; U As U ... U Asn which
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consists of a triangle H homothetic to A;UAsU...UAgn of area ™| A;UAsU...U Agn|
and the excess triangles of area

271
< J A2 - @)® + 2021 - a)* + .. + 222D (1 = )7
h=1

Setting Aj=A; we finally get

2n 2n 2n
A n 1 n
U Al < (@™ +2(1 - a)% —2) U Anl < [0 +2(1 = a)]| | 4nl.
h=1 h=1 h=1

Theorem 3.1.2: Let ABC be a triangle with area H. Given any € > 0 we can
partition the basis BC into 2™ parts 11, Io, ..., Ion, where n depends on €, and shift
the triangles T1, 15, ..., Ton with basis I, Ios, ..., Ion and common vertex A along
BC to new positions Ty, T, ..., Ton so that

Ty UTyU...UTon| < €H.

Proof: This theorem is proved using the results of Theorem 3.1.1 working with a
suitable affine transformation. [

The set U,an:l Ty, is called a Perron tree and is noteworthy thanks to its additional
features that we present below.

Remark 1: The triangles Ty, To, ..., Ton of the construction of Theorem 3.1.2 have

their upper vertices in reversed order with respect to their basis as shown in the
figure below.
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Figure R.1

As a result, if we extend them above their upper vertices the extensions are dis-
joint.

Remark 2: If we now extend the triangles T, below their basis these extensions
cover at least a triangle equal to the original one ABC, on the strip parallel to
the basis of width h, as shown in the figure below, no matter of a and n in the
construction of the Perron tree of Theorem 3.1.2.

A
tha
B C ,; N AJN '\\
] ! v \\ ~N
/ N N ~
h / AN N
a / N, Y \ ~
b \‘\.\ N\ ~
l !/ .I II \.\; \\\ \;
Figure R.2

Remark 3: In their final positions the upper vertices of T}, never get further to
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the left of that of 71 by more than the length of the basis of ABC.

Lemma 3.1.3 (Fefferman): Let n > 0 be a small fived number. There exists

a measurable set E C R? and a finite collection of rectangles {Ry,}, which is pair-
wise disjoint, such that:

- 1 -
> -
a) ’EﬂRh| > 100‘Rh|

DIEI <) |Ral

where Ry, denotes the shaded portion of the figure below.

Figure 3.1.3 (a)

Proof: To prove this lemma we will combine Theorem 3.1.2. and Remarks 1 and 2.
For each triangle T}, as in Theorem 3.1.2 we perform the construction indicated in

Figure 3.1.3(a) below taking as Rj, the rectangle indicated and as E the Perron tree
UT},.
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T e

t — —

Figure 3.1.3(b)

From Remark 1 the sets Ry are disjoint as they are contained in the extension
above the upper vertices of Tj,.

From Remark 2 we have Z |Rp| > |ABC| and |E| < €| ABC| , Ve > 0 and thus for
e = we get |B| <03 Ryl

As shown on the figure below, considering a traingle T}, such that ¢ is a acute
angle, we have the following
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Figure 3.1.3(c)

1
OAB| = J|OF|-|AB| (1)

1 - _
§|Rh\ = |Tn| + |OAB| (2)

|OE| =sinw|0OB|, where /OBA=/HBD =w

and w=/HBD < wy = ZHB®O.

So
|CH'|

|CB

|OFE| = sinw|OB| < sinws|OB| = 2|BB'| =
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BB’

=2|CH'| ||C'B|’ = 2|CH'|sin; < 2|CH'| = 2|BH'|tan(ws) =

cos ¢ ha
= 2hgt = 2hgcot ¢ = 2h,—— < 2—
anez cot ¢ sin ¢ sin ¢ 3)

as )

_ ’CH‘ no_ "o /

tan(wg) = BIT| = |CH'| = tan(w2)|BH'| = cot(¢)|BH'|

since wo , ¢ are complementary.
But ¢ is the acute angle of T}, so there exists an angle ¢, for every angle ¢ and for
every T}, such that

b>¢, = sing >sing,.

So from (3) we get

h
|OE| < 2—"~ = c1hy, where ¢; >1
sin ¢,

and
1 - ~ 1 1
S|l = |0AB| + |Ti| = 5|0B| - |AB| + 5|AB] - hy.

But
1 ~
OB|<ahs = S|OE|-|AB| < %|AB\ha = c1|Th| =

. . . 1 -
|OAB’ < 01|Th| = 01|Th‘ + ’Th| > §|Rh’ =
. 1 -
‘Th| > §(1+Cl)|Rh‘. (4)
Furthermore Ry, N E D Tj, and by (4) Th is a good portion of Ry,

so Vh

N N N 1
Ry NE Th — R —|Ry|. O
|Ry N E| > | ‘>4(01+1)‘ h|>100\ bl
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3.2 The needle problem

In 1917 Kakeya proposed a version of what is now called ”the Kakeya problem” or
”the needle problem”: What is the infimum of the areas of those sets in R? such that
a needle of length 1 can be continuously moved within the set so that at the end
it occupies the original place but in inverted position? The solution of the needle
problem is also immediate by using the Perron tree.

Theorem 3.2.1: Given n > 0 and a straight segment AB with length 1 in R? we
can construct a figure F of area less than n so that we can continuously move AB
within F so that it finally occupies the same place but in inverted position.

Proof: We will first show that we can continuously move a segment from one straight
line to another one parallel to it sweeping out an area as small as one wishes.

A=A1 B

Figure 3.2.1 (a)

It is sufficient to observe in the figure above that we can move AB to A4By
sweeping out the shaded area which can be made as small as we wish by taking AB3
sufficiently large.
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We will now show that AB can be moved to a straight line forming an angle of 60°
with its original position within a figure of area less than n < %. Repeating the
process six times should get us the figure F.

Let MNP be an equilateral triangle with area 10, placed so that AB is in the interior
of MN. As a result the height of MNP is bigger than 1.

We apply Theorem 3.1.2 to MNP taking as basis NP and ¢ > 0 such that 10e < %
and we obtain the triangles T}, Tb, ..., Thn, so the area of the respective Perron tree
. n

< —.
is 15

We can continuously move AB within 7} from MN to the opposite side of ;. From
there we can move AB to the side of T parallel to it sweeping an area <

12-2n°

Now we move it again within T> and so on.

The whole process can be seen in the figure below.

M
A M
A
— —»
BT,/ T2\ T3 B
N P -
T, T2 T3
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Figure 3.2.1(b)

The area swept out in this process is less than U and the needle is at MP, that is at

the end of a line forming an angle of 60° with its original position.
As we mentioned before, repeating the same process six times we will have swept

out an area less than 7 and the needle will be in the same place but in inverted
position. [
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3.3 The Besicovitch set

In 1918 Besicovitch, in his attempt to answer a question concerning the Riemann
integral, constructed a compact set in R? of null measure containing a segment of
length one in each direction. Such type of sets are called Besicovitch sets.

We now present a lemma that is needed to prove the existence of Besicovitch sets.

Lemma 3.3.1: Given a closed parallelogram P of sides a,b,c,d and n > 0 there
is a finite collection of closed parallelograms Q = {w1,wa, ...,wy} with one side on a
and another on ¢ such that:

1. |Uwj| <7

2. Each segment joining a point of a to another point of ¢ admits a parallel
translation that carries it to Uw.

Proof: We start by taking two stripes w; = ASTD and wy = DLBT such that
lwi Uwa| < 7, as shown on Figure 3.3.1(a).

v
\
T!'r \ (0]
D\ \ (5
\) \
\
F\ AR
w1 !" \\
d , Ay \\ b
AR
/ At \\
/ ARU
/ by W
| M1 M|+\Il ‘
A S a L B

Figure 3.3.1(a)
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We take the point V as the point where the extension of ST intersects with the par-
allel to LT from B. We divide SB into a finite number of equal segments with length
smaller than AS and we then join V with these dividing points M; and consider the
triangles V- M; M 1.

To each of them we apply the construction of the Perron tree of Theorem 3.1.2 with
€ such that the area of the union of all the Perron trees obtained is < Q.

By Remark 3 we know that the upper vertices of the small triangles obtained in
these Perron trees never go to the left of d.

We now repeat the same process starting from the side BC taking two stripes ws
and w4 and so on.

Finally we substitute each one of the intersections of P with the small triangles of
such Perron tress by the corresponding parallelograms that are contained in these

small triangles, as required in the statement of the theorem and as shown in Figure
3.3.1(b).

Figure 3.3.1 (b)

Each union of the Perron trees has area < 7 and

w1 Uwa| < 1, s U <

>3

so |Uwj| <, as required. O
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The next theorem shows how we can obtain a Besicovitch set from the Perron
tree of Theorem 3.1.2.

Theorem 3.3.2: There ezists a compact set F in R? of null measure containing
a segment of unit length in each direction.

Proof: To prove this it is sufficient to construct a compact null set F that con-

tains a segment of unit length in each direction of an angle of 45°.

We apply the previous lemma to the closed unit square Q = ABCD with i = %
1}

obtaining {w1,we, ...,wH11}. The set L1 = U w; is compact and its area is < %, is
=1

contained on QQ and containing segments ofjunit length in each direction of the angle

LACB of 45°.

1
Now we apply the lemma to each w; with 72 so small that Hllng < 7] and we
obtain {w(j,1),w(j,2), ..., w(j, H)}.
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Figure 3.3.2(a)

Hl! H?
" SN . . s . 1
The set Ly = U U w(j,r) is compact, contained in Lq, it’s area is < 52 and
j=1r=1

contains segments of unit length in each direction of the angle of 45°.

o

Continuing in this way we get the set F' = ﬂ L; which is a compact null set con-
j=1

taining segments in each direction of ZACB as required. Indeed :

Fix E € AB.
From the construction of Lj, Vj, there exists [a;,c;] € L; with ¢; € CD and
a; € AB , such that [a;,¢;] || CE.

By using the Bolzano theorem we can assume without loss of generality that there
exist a’ € AB and ¢’ € CD so that a; — o’ and ¢; — ¢, that is [}, ¢;] — [d/, ] || CE
from before.

D
/f C
s\|45°
/ Fi
VA
s 1@
7 7
// 7/
/
// /
/ /
i
A e B

Figure 3.3.2(b)

Let jo € N, jo > 1, be a fixed number. Then Vk > j, we have [ay,c;] C Ly C Lj,
and ([ag, cx]) — [d/, ] and since L;, is compact we get [a',c'] C Lj,.
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So [d, ] C ﬂ L; = F where [d/,] || CE O.
Jo=1
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3.4 Differentiation properties of the basis of rectangles

In the next theorems we will present some differentiation properties of some bases
of rectangles. Considering what we have proved so far we will now see some differ-
entiation properties of Bs and some of its subbases.

Theorem 3.4.1 Consider the B-F differentiation basis By invariant by homoth-
ecies generated by all the triangles {Ti}?io, where T; has basis the dyadic interval
(g, ’;—nl), 1=0,1,...,2" — 1, Vn € N. Then By is not a density basis.

Proof: Assume My is the maximal operator associated to By and £ = UT; is a
Perron tree constructed from {7;}2", as in Theorem 3.1.1 and let T} be the exten-
sion of T; below the basis up to y=-1.

Figure 3.4.1(a)
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For Tl € Br, we have

as
Tl _ % _1BC _14C
;| 2PE T 2DE - 2AD

since T; similar to T; and

1 AC 1 AO 11 1 1
24D 240' 22 478
That gives us
UT; € {Mr(xe) > 5
By Remark 2, |UT;| > |ABC]| so
|ABC|

o Mr(xe)(z) > 3}| > 14BC| = “2E1 B

|E]

and by the Busemann-Feller criterion for density bases, By cannot be a density ba-

|ABC|
E|

sis, since can be arbitary large, for suitable E. [J

Now for every T; of the previous theorem consider R; the rectangle shown in the
figure below and let Br be the B-F basis invariant by homothecies, generated by

{Ri}.
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Figure 3.4.1 (b)

If Mg is the corresponding maximal operator then, for x € T; C R;

|R\ \R!

and 1
T3] + | K| = §’Ri’

where

1 1
K| = 5|BCIIEB| and |T;| = 5|AE||BC|

SO

K| _|EB
T ~ 4B

<1

as |[AF| > 1 and |[EC| <1 ,s0 |[EB| <1 by the Pythagorian theorem.

Thus |R;| < 4|T;| so finally — < ¢/ = 4.

T3]
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Therefore we have My f(x) < ¢ - Mrf(x) and using the result proved in Theorem
3.4.1 we get

|ABC]
|E|

1 1 1 1
o Mpx > S¢H 2 s Mrxs > 2 S H = [ s Mrxs > 5} = S Bl

8

concluding that B3 is not a density basis.
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We will now see some results concerning bases of rectangles in lacunary directions.

Let ¢ be the set of directions ¢ = {%, 13, %, ...} and consider the basis B, of

rectangles with one side in one of those directions. We want to examine the differ-
entiation properties of the basis By.

Stromberg [1976] proved that By differentiates L?(log"™L)*t¢(R?) for every e > 0
and Cordoba and R. Fefferman [1977] proved that By differentiates L?, which is
equivalent by Theorem 0.12 (as By is invariant by homothecies) to the fact that the
maximal operator My associated to By is of weak type (2,2).

In this chapter we will examine the method of Cordoba and R. Fefferman with
a modified version of By which is easier to handle. We can obtain the same covering
theorem and the weak type (2,2) for the corresponding maximal operator for the
above basis from this result.

Let B be the basis of all parallelograms R such that:

i) Two of their sides are parallel to Oy.

ii) The other pair of sides have one of the directions ¢ = {%, %, %, o

iii) The projection p(R) of R over Ox is a dyadic interval.

. . . -y . . - IRl 1
iv) Each R is so thin that if R is the minimal interval containing R then E\ < 3
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Theorem 3.4.2: Let {By}taca be any collection of open parallelograms of the
basis By defined above with ||J, Ba| < 00. Then we can derive a finite sequence
{R1, Ry, ..., Ry} from {Bu}aca such that

H
1 [Uaea Bal < el Uj= Byl

2. [ (X xr,)* <UL, Ryl

where the constant c is a positive absolute constant not depending on the collection
{Ba}aeA'

Proof: First, we select a finite sequence {Bj1, Ba, ..., By} from {By}aca so that
N

|UB.| <2/ Bl
k=1
By Lindelof’s theorem the set | J ac A Ba can be written as a countable union U B, =
a€A

UB%, I C A, countable. Then we can define a new sequence {F,,} where
el

Fa; = Bay U Ba, U ... U Bq, from which we get | | ] Bal = [ Bail = || Full

acA icl icl

where {F,,} is increasing and | Ej F,,| = Zli)rgo u(Fy,) so there exists an i, € N such
. i=1 ) 1
that |Fy, | > §| U F,,| and we finally deduce that | U Bo,| > 5\ U Ba|.
i=1 j=1 a
We assume that By, Bs, ..., By have been ordered so that b(B;) = length of pro-

jection of Bj over Ox > length of projection of B over Ox = b(Bj41)
and also no B; is contained in another one.

We begin the construction of {Rj}jH:1 by setting Ry = Bj.
If

1
|Bo N Ry| = /XBQXRl < §|32!

we set Ry = Bs , else we leave Bs aside.
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Assume Ry = By, Ry = By. If

2

2
1
Y [BsN Ryl = /X33 z;XRj < ;1B
]:

i=j
we set Rg = Bj, otherwise we leave B3 aside.

Assume R; = By, Ry = By and Bjs has not been chosen.
We examine By. If

1
[ xocw + ) < 5B

then we set R3 = By, otherwise we leave B, aside.
And so on.

By this way we can finish our construction in a finite number of steps obtaining
{Rj}jH:1 that satisfies:

a) b(R;) = b(Rj11)

h
1
b) /XRh+1 E XR]' S §|Rh+1| 3 Vh: 1,2,...,H— 1
J=1

c¢) If B; has not been chosen in the selection process, then

[xnt 3w

b(R;)>b(Bi)

Using (b) we get

H H H
/(ZXRj)Q:/ZXRj+22/(ZXRj)XRk <
j=1 j=1 k=17 <k

H 1 H H
<D IR +2 §Z|Rj! =2 |Ry|.
j=1 =1 j=1

We have
H

> IRj| = |Ri| + |Ro| + ... + |Ru| =
j=1

= |R1| + ‘Rg —R1| + |R2 OR1| + |R3 — (R1 UR2)| + |R3 N (Rl UR2)| +..=
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=|URj|+|RoNRi|+|R3N(R2URy) |+ ... =

H k—1
1
:|URj|+Z/XRk(ZXRJ‘) < |URj|+§Z|Rj|
k=2 J=1

from (b) again.

Therefore
Y OIR)I<2URy (%)
and finally

H
/ (> xm,)? < 4| UL, Ryl
j=1

getting us (2) for a suitable absolute constant C.

We will now try to prove (1) using (c), (iv) and the lacunarity of {Ba}aca-
Let (a,b) be the projection of B; over Ox.
If B; has not been chosen we get from (c)

‘Rj N BZ| 1

E —_— > —.

| Bl 2

b(R;)>b(B;)

Therefore we obviously have either

R;N B; 1 .
(4) Z 7’ . | > =, 18 true
wryzam) P 0
d(R;j)=d(B;)
or
N B; 1
(B) Z 1B N By > 6 is true
b(R;)>b(B;) [Bil
d(Rj)>d(B¢)
or
N B; 1
(C) Z 171 Bi| > = is true ,
wrysamy Pl 0
d(R;)<d(B;)
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where d(R;) , d(B;) are the directions of R; and B; respectively.

The sets B; for which (A) is true are in the situation of the figure

B

i

Figure 3.4.2 (a)

By intersecting by a vertical line I, z = A, and calling M; the unidimensional
maximal operator with respect to intervals of 1=1(\) we get

L (e

[N N B € {(\y) : Mi(D_ xwy) (A y) > 5

where the sum is over those R; that are described in case (A).

Suppose this is not true, so there exists a (\,z) € [N B; for which

M3, (0 ) <

Then

cm>—~

]lﬂB[ ZXR])\t
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where A ranges over the projection of B; to the Ox axis, say € (a,b). Thus by
integrating the previous inequality over (a,b) we get

b 1 b
/ / ZXRj(/\,t)dtd)\ < / |B; N I(A)|dA
A=a JB;ni()) 6/,

SO

1
/ > xrydre < §1Bil=
B;
v
1
> IRjNBi| < glBil
J

a contradiction to (A).

By (**) we have

AN (UB;i) € {(A\y) : YA y) > }—AA

\\Mm

where the union is over those B; for which (A) is true and

H
A, < 60/ZXRj()\,t)dt
j=1

VA such that the line [(\) intersects the set UB;, so
H
|UB;| < / |Ay|dX < 6c/ /ZXRj()\,t)dtdA <6c> |Rjl <) | UR).
A At
7j=1

Consider now a set for which (B) is true.

We choose a R; such that d(R;) > d(B;) and b(R;) > b(B;) and draw the minimal
closed interval Bi containing B;.

We shall prove

|Bz'ijj\ > C\Bz' N Ry
| By | B;|

(o % %)

so we will then get

> BOk

J

CUID
O:\Q
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and therefore similarly as before

N c
B, CB; C {x : MQ(ZXRj)(.’L') > 6}
from which entails that the union of those B; satisfying (B) has area less than
c 1
o M3 xm)@) > £} < ¢ [ xm)? <l UR|
where for the first inequality we used the weak (2,2) inequality for Ms, as we have
proved in the previous chapter that the basis By differentiates L(1 + logt L1)(R?),

and L?(R?) C L'(1 + logT L'(R?) and for the second we used (2).

To prove (***) we consider the following figure

- e e

Figure 3.4.2(b)

where ACDE = B;, ID || JL, IG || AD'.
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For every fixed R; as in (B) , we have

[BiNnBi| _ m _ g _ 1Bl _ |Bil | Bi| _ |Bila
R;nB| Vp @ h Y IEDGF| " |B|IEDGF| ~ |B,|h

where (1) entails from |R; N B;| = mhy and |R; N B;| = phy

(2) from IDG and MDD’ being similar triangles

| Bi q-|AC] q
£ _ _q
and (3) from o 5 CF = [BF)-[AC] ~ h

and because of the lacunarity of ¢ we have # < ¢ as

bj > 2¢; = sin(¢;) > sin(2¢;) = 2sin(¢;) - cos(¢;) =

a a—nh
& 98T s
D1 = 2rg s =
a a—nh
.9 :
i Iel cos(¢;) =
a _ |DI| a a
—>—>2.(=—1 i) > V2 (——1
b2 g 22 (o eos(6) 2 VE- (- )
™ NG a \/i
here ¢; < ~ ) >Y2 and DI >IG thus & —c
were¢_4so cos(¢;) > %5 an > ush<\@_1 c

|R; N B |R; N B;|
<c-: = .
| Bil | B;]

For a set that satisfies (C) a similar consideration holds.

That proves (***)

Therefore we finally obtain | U B,| < ¢|U R;|. O

Colloraly 3.4.3 : The mazimal operator Mg, corresponding to By is of weak
type (2,2).

Proof: Let f € L*(R?) and A = {Mg,f > A} > 0.
Let K be any compact subset of A and € K. Then there exists R, € By, z € R,

such that )

| Rzl J,

f1>A (%)
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Since K C Uzer R, is compact there exist zi,x2,...,z, such that K C R, U
Ry, U...UR,, . Then we apply Theorem 3.4.2 to {R;},cx and obtain {Rj}le such
that

|User Bel < clU; Byl

Then |K| < |UiZy Ra;| < | U; B;| using (1) and so

K< dUR| <X IR <0 § [ 1015 v

which using Holder’s inequality gives

c 1 c 1
AURS| < Sl [ ()% < 5l Ul

Therefore .
Uil < 17l U Rl = 1R < 5l 712
and so
|K| < )\—02||f||%2 , VK CA compact.
Thus

C
4] = [{Ms, f > M < S5 I1fI1»

which gives us the weak (2,2) type inequality. [
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Chapter

The Decreasing Rearrangement

In our 4*" chapter we will examine the decreasing rearrangement of a given function
f proving some useful results that we will utilize in the 5** and last chapter.

We give the following definition: The non-negative measurable functions f and g
will be rearrangement of one another or equimeasurable if their distribution function
coincide.

Note that this notion allows equimeasurability to be defined for functions defined in
different measure spaces.

For every measurable function f we can construct a decreasing right continuous f*
on (0,00) that is equimeasurable with f.

The function f* is called the decreasing rearrangement of f and constructing f* from
f is analogous to rearranging the terms of a finite sequence in decreasing order.

From now on (R, ;1) denotes a totally o- finite measure space and M, is the class of
finite p - almost everywhere functions.

82



CHAPTER 4. THE DECREASING REARRANGEMENT

4.1 The distribution function

Definition 4.1.1 : The distribution function ps of a function fin M, = M,(R, 1)
is given by
pr ) = l{z € R (@) > A}, A>0.

Note that sy depends only on the absolute value | f| and may be oo.

Definition 4.1.2: Two functions f € M,(R,u) and g € M,(S,v) are called
equimeasurable if they have the same distribution function, that is if

pr(A) = vg(N), YA > 0.

Proposition 4.1.3: Let f,g, fn € M,(R,u), n =1,2,... and a # 0. The distri-
bution function py is non-negative, decreasing and right continuous on [0, 00).
Also,

a) g < |fl ae = pg < pg

b) prag(A) = ps(

) Pftg(A1 + A2) < pp(A1) + pg(A2)

d) |f| <liminf|f,| p—ae = pp <liminfpy,
n—oo n—oo

A
44)7 A Z 0
|al

more specifically,
ol A m—ae = pp, Sy

Proof: It is obvious that iy is non-negative and decreasing.

To prove the right continuity we define E(A) = {z : |f(z)| > A}, A > 0, and fix
Ao > 0.

For Ay > A9 we have F(\1) C E()\2) and

EMo) = |J EQ) = EOn), YOn)a satisfying Ay > Ao and A N Ao.
A> Ao n=1
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Thus from the monotone convergence theorem we get

pp(An) = p(EAn)) = p(E(Xo)) = py(Xo)-
To prove (a) assume [g| < |f]. Then {|g(z)| > A} C {|f(x)| > A}
= pig(A) < pyp(A).

A
lal

)

In order to prove (c) assume |f(x) + g(z)] > A1 + A2. Then either |f(x)] > A\
or [g(x)] > A2 so

For (b) : pay(A) = p({z - |af(2)| > A}) = p({z - [f (@) > @‘}) = ps(

Pprg(Ar+ A2) < pp(A) + pg(Aa)-

Moving on to (d), assume |f| < liminf, , |fn] © — a.e and let A > 0 and
E={z: /()] > A} B = {2 [fa@)] > A}, n=1,2,....

Clearly E C [j ﬂ E,,

m=1ln>m

pu( ﬂ E,) < igf w(Ey) <liminf u(E,), Vm=1,2,... (%)

n—oo

SO

n>m

Moreover ﬂ F), is increasing with m so using the monotone convergence theorem

n>m
we get

p(E) < p(lJ () Ba) = lim pl( () En) <( liminf u(E,),
m=1ln>m n>m

Iy < 1 1 .

If |ful 21fl w— a.e., we have

hminf|fn| = lim |fn| = ‘f|
and by (d) we get
pp < liminf py, < limsup py, . (1)
n—oo n—00

On the other hand, since |f,| 7 |f]

(ful <11 = Al > A SAlfI>A =
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E,(AN)<EQX) = ppr,(N)<ppN) = limsuppp, <pp. (2)
Thus from (1), (2)
ff, = by O

Example 4.1.4: The distribution function s of a non-negative simple function f.
Let

f(z) = ZanEj (z)
j=1

where F; are pairwise disjoint subsets of R with finite y-measure and a; > as >
..>an > 0.

If X > ay then pr(N) = p({z € R:|[f(x)] > A}) =0.

If ag < XA < ay then f(xz) > A for x € Ey and py(X) = p(Er).

If a3 < A < ap the py(\) = p(E1 U Ep) and so on.

In general we have

Mf()\) = ijx[(l]'+1,[lj)()\)’ )\ Z 07
j=1

where m; = Zg:1 w(E;), j=1,2,....,n and ap4+1 = 0.

f Kf
a r —
02 —
) e
113 I I T I e
} P(Ez)
T ke
E3 E] EZ X a} aZ al A
Figure 4.1.4
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4.2 The decreasing rearrangement

Definition 4.2.1: Suppose f € M,(R, 11). The decreasing rearrangement of f is the
function f* defined in [0, 00) by

o) =inf{X:pyp(N\) <t}, t>0.

Here we assume inf () = 0o so if p¢(A) > ¢ for all X > 0 the f*(t) = oo.
If (R, i) is a finite measure space then f¢ is bounded by p(R) so f*(t) = 0 for every
t > pu(R) and we can regard f* as a function defined on the interval [0, p(R)).

Example 4.2.2 (a): We will now compute the decreasing rearrangement of the sim-
ple function f(x) =>"_, a;xg;(z), as seen on Example 4.1.4.

By Definition 4.2.1, f*(t) = inf{\ : py(\) < t} we can see that f*(t) = 0 for
t>mp = 2?21 1(Ej).

While for m,, >t > m,,_1 we have f*(t) = a,, and so on.

More generally we see that
n
£ = aiXim,_mp @), >0,
j=1

where m, = 0, when f is given as in Example 4.1.4.
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a -

as'_ -

E3 El E2 X m, ) msy t
Figure 4.2.2 (a)

Geometrically, what we are actually doing is we rearrange the vertical blocks in the
graph of f in decreasing order and in this way we obtain f*. The values of f* at the
jumps are determined by the right continuity, as we will prove in a moment.

Example 4.2.2 (b): Sometimes it is more useful to section functions into horizontal
blocks rather than vertical ones. By doing so the simple function f of Example 4.1.4

fl@) =Y ajxe, (@),
j=1

can also be written

fl@) =) bexs,
k=1

where by = ap — a1 > 0, and apy1 = 0, F, = U?zl Ejk = 1,2,...,n with
M(Fk) <ooand F1 C kK C....C Fi..
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f f*
al -
2
a, — - r—
b,
ay - —  F——— -— ——
! l .
* wR)  ulR) uh) !

Figure 4.2.2(b)

So now

£ = beXour)-
=1

Corollary 4.2.3: Let f,g, fn € Mo(R, 1), n = 1,2,... and a be any scalar. The
decreasing rearrangement f* is a non-negative, decreasing right continuous function
on [0,00). Additionally
a) gl < |fl p—ae=g" <[

b) (af)* = lalf*
¢) (f +9) (1 +t2) < f*(t1) + f*(t2), t1,t2>0

d) |f| <liminf, o0 |fn| ae = f* <liminf, ,o f}

specifically, if |ful 7 |f| p—ae = f3 /[
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CHAPTER 4. THE DECREASING REARRANGEMENT

e) [*(up(N) < X when pp(X) < oo and pp(f*(t)) <t when f*(t) < oo
f) fand f* are equimeasurable

g) (IfP)* = (f*)P, for 0<p<oo

4.3 Some results

The next proposition gives alternative descriptions of the LP-norm in terms of the
distribution function and the decreasing rearrangement.

Proposition 4.3.1 : Assume f € M,. For 0 < p < oo we have

[1ran=p [0 tuan= [ (o
R 0 0
and for p = oo we have

esssup |f(x)| = inf{\: us(X) =0} = f*(0).

TER

Proof: Having proved Proposition 4.1.3 (d) and mentioning Corollary 4.2.3 (d) and
by the Monotone Convergence Theorem it is sufficient to prove the first two equali-
ties for an arbitary non-negative simple function f.

For

f(z) = Z ajxg; ()
=

where E; are disjoint with finite measure and a; > a2 > ... > a, > 0 we obtained,
as seen on Example 4.2.2(a), the decreasing rearrangement

£ = aiXim_1my )
=1
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CHAPTER 4. THE DECREASING REARRANGEMENT

where m; = S7_ u(E;).

Now,

/ i =S a,7u(E;) =
R =
=S o myamy) = [ (f)pdm.
jz::l J =1, 1Ttj /0

We also obtained 7 (A) = 71 mjX(a; 1 ,0;) (M),

SO

00 n aj
p/o )\pl,uf()\)d)\—pij/ ML\ = Z ab )m
7=1

aj+1

= Z% n(E /\flpdu

For the case p = oo we have
esssupzer|f(z) =inf{ce R : |f(z)|<cp—a.e} =

=inf{\:pur(A) =0} = f*(0)
by the definition of f*. [

Unfortunately the decreasing rearrangement does not preserve products of func-
tions but we will state a basic inequality that is true for products of functions.

Lemma 4.3.2: Let g be a non-negative simple function on (R,un) and E be an
arbitary p-measurable subset of R. Then

w(E)
/g dp S/ g*(s)ds.
E 0
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Proof: We write g in the form of Example 4.2.2 (b)
g(@) = bixr, (@)
j=1

where FlgFQQ...an, ijO, j:1,2,...,n.

Then the decreasing rearrangement g* is given by

g (1) =D biXour) ()
j=1
S0,
/E gdp =3 byu(E N Fy) < 3 by min(u(E), u(F)).
j=1 7=1

If w(E) < p(F;) then

w(E)
/0 X[o,u(Fy)) (8)ds = p(E)

so we obtain min(u(E), u(Fj)) = fOM(E) X[0.u(F,)) (8)ds
and thus

n

n . wE) w(E) i
S bymin(uE)n(F) = 30b [ xouy s = [ g s 0
j=1

J=1

Theorem 4.3.3: (G. H Hardy and J. E Littlewood) Assume f,g € My(R, u).
Then

/R|f9|dlt§/ooof*(s)g*(s)ds.
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Proof: As we stated before f*,¢* depend only on the absolute values of f and g,
so it is enough to prove the theorem for non-negative functions f and g.

By Proposition’s 4.2.3 (d) and the Monotone Convergence Theorem we can suppose
f and g to be simple.

We can write f(z) = 377, ajxg;(v) where By C E» C ... C Ey, and a; > 0 as
in Example 4.2.2 (b).

So by the lemma we just proved we have

m m w(Ej)
/\fg\duzzaj/ gduézag’/ g (s)ds =
R j=1 E; 0 0

:/0 Zaﬁx[o,u(Ej»(S)g*(S)dS=/0 f*(s)g*(s)ds. O

j=1
Applying Lemma 1.1.4 we get the following.
Theorem 4.3.4: Let f: (0,1) — R, f € LY((0,1)). The decreasing rearrange-

ment f*:(0,1) — RT satisfies

1 t

(e <y [ Fdu, vie 0
0
where (Mg f)* is the decreasing rearrangement of Mg f
and Mgrf :(0,1) = R UO is defined
1 u
Mpf(x) = sup{H/ |lf()|dt -z <u <1}

The same inequality holds for the mazimal operator My f : (0,1) — R U {0}, where

M f(z) = sup{ﬁ / F(8)]dt 0 < u < z}.
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Chapter

Differentiability of multiple integrals

Our last chapter is a generalization of some of the differentiation properties we have
proved so far as we will work in the k-dimensional space.

Assume f(z1,29,...,x) = f(P) is an integrable function defined in the interval
S =A{(z1,z2,..c,z): 0<z; <1, i=1,2,....k}.

We will say that the integral of the function f is strongly differentiable at the point
P, ,if

. 1
Jm /I f(PyapP (1)

exists and is finite, where I is any interval with sides parallel to the axes, I C S,
P, eI ,]|I] is the measure of I and §(I) the diameter of I.

The limit (1) is called the strong derivative of the integral of f at the point P,.

Theorem A: There is a function f(P) € L' such that its integral is nowhere strongly
differentiable.

Theorem B: If f(P) € LP(S) , p > 1, the strong derivative of the integral of
f(P) exists almost everywhere and is equal to f(P).
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Given a function f(P) € L(S), we write

R WAL I

P,el

and

" =li )|d
fo(P) = tmswp o [ PP )
P,el

Note: Definition (2) should not be confused with the definition of the decreasing
rearrangement of the function f.

5.1 Introductory results
Let f be a function f : S = (0,1) - R, f € L'(S) and we define its extension
F:RSR

f(z), ifzes

flx) =
0, ifx ¢S

and the maximal operators Ml(zo’l), Méo’l) on L'(S) by :
1 u
MO () = sup{H/ FOldt: < u< 1),

MO () = sup{ﬁ / FOldt:0 < u < ).

By Lemma 1.1.4 we have that

{Mpf(z) > M} =~ \f(z)|dz,  YA>0

A /{MRf(x>>A}
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and the same equality holds for M, f .
In this chapter we will work on the interval S = (0,1) for a function f: (0,1) - R
using the maximal operator M (%1 which is defined by

&2
MOV f(z) = sup ! f(z)dx.
f1<a<€o 52 _51 &1
£1,62€(0,1)

Theorem 5.1.1: The mazximal operators Mrf , My f satisfy

1
i@ =<y [
{Mp"" f(z)>A}

1
(MY f(z) > A} <+ / 7]
r A SO paysay
VA>0,Vf:S—R, feLY9).

Proof: The above inequalities can be obtained easily by applying the identities
1
{Mrg(e) >t} = 7 [ lglds
Mt

and )
[Mig(o)> 1} =1 [ lglda
M

of Lemma 1.1.4 that we proved for g : R — R for the extension fof f£:(0,1) = R
and the corresponding maximal operators Mgrf , Mpf. O

Lemma 5.1.2: Let f(z) € LP(S), p > 1. Then

1
ff(x) = sup
gr<z<és §2 — &1

&2
/5 |f(u)|du , Yz € (0,1) (4)

belongs to LP also, where &1,& range over (0,1) under the condition & < x < &3.
Moreover

/ (@) < ¢, / )P
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where ¢, = 2P(
p—1

Proof: The proof is analogous to the one of Theorem 1.2.1. We now use Theorem
5.1.1 instead of Lemma 1.1.4 and we obtain the result. [J

Lemma 5.1.3: If f(z)log™|f(x)| is integrable over S then f*(x) is integrable and

1 1
/ [ (z)dz < A/ |f(x)|log™|f(x)|dz + B
0 0

where A and B are absolute constants.

Proof: We will prove this lemma as in Theorem 1.1.3.

Assume fol f(x)log™|f(x)| < .

We define the extension of f, f : R — R
{ f(z), ifzes

0, ifxgS

fz) =

Then

1 T o0 .
/0 [*(z)dzx < /0 M, f(z)dz :/0 H{z € (0,1): Myf(z) > A}d\ =

= 2/00 [{z € (0,1) : My f(z) > 2X\}|dX
0

1 o] _ [e%s) B
g/ 2|5|+2/ o Myf(2) > A}|d) < 2+20/ 1/ C |f(@)|dadn
0 1 1 A f@)>0
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where we used Theorem 1.1.1

(@)
:2+20/ y/ 1d)\da:—2+2c/ ) 1F (@) | Tog AV @ dz =
{If(@) |>1} {IF(@)>1}

1
—2e2 [ (f@lloglf(@)lde = B+ A [ |f(@)liog*|f(o)]da
{If(z)|>1} 0

for A=2c and B=2 as requested. [

5.2 The case k=2

We will now consider the case k = 2 and we will write x, y for 1 and z3. We denote
S={(z,y) eR?: 0<z<1,0<y<l1}.

From Lemma 5.1.2 we get the following theorem.

Theorem 5.2.1: Assume f(P) € LP, p > 1. Then f*(P) € LP and
5 [w@yar<a, [ e

where Ap = ¢,* and ¢, the constant from Lemma 5.1.2.

Proof: We will prove this theorem using Lemma 5.1.2

We define

6) glay)= sup — f%@wm

v <y<vy V2 — U1
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and

1 &
(1) h(z,y)= sup / 9(u, y)du.
f1<a<€o 52 - 51 &

We will prove that g is LP- integrable on S so h is finite at almost every point
of S.
By Lemma 5.1.2 we have

[ggp(P)dPZ/Oldw/olgp(x,y)dy <

1 1
g/o d:ncp/o |f(;v,y)|pdy:cp/s|f(P)|de<oo

and so
(%) /gp(P)dP < cp/ [F(P)PAP < o0 and g € L?
S S

Similarly,

2
[wir e, [ ¢eap<i e [irene )

ForO<é <z <é <1land0<wv <y <wy <1 we notice that

1 &2 pu2
(&2 —&1)(v2 — v1) /1 /m | f(u,v)|dudv <

< 1
=(©) & — &1

&2
/5 o(uy)du < h(z.y)  (9)

hence
fr(P)<n(p).  (10)

Using (8) we get

/S(f*(P))p < /ShP<P) <cp2/syf(P)\Pdp

as required. [
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Lemma 5.2.2: If f(P)log™t|f(P)| is integrable over S, then the function

f«(P) —hmsup m/]f )|dP

6(I)—0

is integrable and

(1) [ £.(P)aP < A [[|£(P)log™ (PP + B

where A and B are the constants of Lemma 5.1.3.

Proof: By Lemma 5.1.3 we have

[ sty < a [ st log i + 5
where g is defined by equation (6) Vz € (0,1).
Integrating with respect to x we get
(12) [ o(P)ap < A [ |£(P)liog™ F(P)IdP+ B < o
So for almost every y, g(x,y) is integrable as a function of x.

Then by definition of integrability we have

1
lim sup
&1<x<s 52 51
§2—&1—0

&2
/ g(u,y)du = g(z,y), for almost every (z,y)
&1

and (9) gives us f«(P) < g(P) so

[ 1PV < [ 9Py <) A [ 15(P)tog" | F(P)IaP + B.O
S S S
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Theorem 5.2.3: If f(P)log™|f(P)| is integrable over S, then at almost every
point P, the integral of f is strongly differentiable and the derivative is equal to f(P).

Proof: We apply inequality (11) to the function Af, where A > 0 is a constant
and obtain

(13) /S (PP < A /S F(P)liog* AF(PYdP + 5.

Given € > 0 we take A large enough so that % < 5 and put f(P) = ¢(P) +¥(P),
where ¢ is continuous and

(14) /S [$(P)|dP < ¢

and
(15) A/S 1 (P)|log™ A (P)|dP + ? <
Define )
E(e) = {|[Y| > Ve} U{p > Ve}, Ej= E(jj)-
Now

1 1
{lv(P)| > Ve}| < \ﬁ/{|w(P)|>\/€} (P < ﬁ/SW(P)\ <(14) Ve

50 [{P: [$(P)| > v/éH| < v/é and similarly [{P: $,(P) > v&}| < V&
1 2
Therefore |E(e)| < 2v/€ and for e = — we get |Ej| < —.
J J

We will prove that

1
5(111)130m /If(P)dP = f(Py), for almostall P, € S (%)
P,el
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2
7%
We set So = (p2; Ujsp £ = {7 € S : v is in infinite Ej s}

1 1
Indeed, we have E; = E(—4) with |Ej| <24/ =
J

U ;> £j is decreasing with respect to k and

]UE\<Z|E\<Z 3 < oo

7>1

Then

|ﬂUE[-hm|UE|< hmZ]E|< hmz.i:().

k=1j>k ji>k >k 7>k J
If P, ¢ Niey Ujsk £ = So, there exists j, € N such that P, ¢ Ej, Vj > jo, so
- 1
there exists a j, such that P, ¢ E(=;), Vj > jo.
J

1
Thus, since for every j > j, P, ¢ Ej = |[¢Y(P,)] < e so we have

limsup |— /f P)dP — f(P,)| —hmsup\ /w P)dP —¢(P,)| <
s(n—o | 1|
P,el PDGI

<P R <[5+

since Vj > j,
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5.3 The case of arbitary k

We now examine the case of arbitary k. Theorem 5.2.1 still holds for A, = cpk and
so also Theorem B is still true.

Theorem 5.3.1: Assume |f|(logT|f|)*~! is integrable over S. Then the integral

of f(P) is strongly differentiable at almost every point of S to the value f(P), where
S = (0,1)*.

Proof: The proof is analogous to the proof of Theorem 5.2.3 and is omitted. We
would need the following lemma.

Lemma 5.3.2: Assume f(x) is an integrable function defined over the interval
0<z<1and

. B 1 &
Fa= s ote /£ NG

If |[f|(logT|f)", 7 = 1,2, ... is integrable over (0,1), then f*(log™ f*)"~1 is integrable
too and

1 1
/ F(log* 1) Yde < A, / fl(log*|f])dz + B
0 0

where A, and B depend only on r.

Proof: We will use Theorem 4.3.4 and denote the decreasing rearrangements of f
and Mpgf respectively as f and Mg f at this moment.
Let ¢(z) = z(logtz)"L, x € (0, 00).
Let f be an arbitary integrable function on (0,1), we then have :

/ ' (log™ Y de = / 1 MOV f (@) (togt (MY f(2))) 1 <
0 0
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= /{M(O’l)f>M<0,1)f} M}(%O’l)f(m)(log+(MI(%0’1)f(x)))r71+
R =L

+/ M f (@) (log ™ (M f ()" dar <
{MLf>Mgf}

1 1
< / Mpf () (log™ (Mpf(x))) " + / My f(x)(log" (M f(x))"" = I + I
0 0
where

1 [e')
I= / H(Mp () = / { 6(Mpf () > 1}]dt =

=0

(') 1
- / {x : $Mrf () > t}]dt = /0 (VT () d =

=0

1
- /O Mnf(2)(log* M)~ (z)dz = I,

and similarly
1
b= [ Mf(@)tog" MiF) " w)de = I
0

and by Theorem 4.3.4 we get
1 1 T 1 1 T
< / e / F)dtde and I, < / e / F(#)dt)de
0 T Jo 0 T Jo

and

! 1 Tz _ - * *\r—1
o [ swands = [y o)

(=7 [ e @

We will prove (*). To do so we will first prove that if ¢; < to then

ta t1
1 S

ta)o Tt o
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We will use the fact that f is decreasing on (0,1).
Indeed this is true if and only if

tl/OthStQ/Otlf & t1/0t1f+t1/:f§(t1+6)/0t1f

(where tg =t + 6, 6 > 0)

to ta t1
st | f<6 f ad / f< f
t1 0 tl t1 tl
which is true as
1 f2 .
flu)du < f(t1)
to —t1 Jy
and
IR .
1Jo

since f is decreasing, so

ty — 1

and thus

Therefore (f)"(z) = My f(z) = %fox f(t)dt.

/f Y(log™( (“dx<2/ /f t)dt)d

and the proof of the lemma will be completed once we have provided the right upper
bound for the right side of the inequality which involves the decreasing rearrange-
ment f of f.

Using Jensen’s inequality as ¢(x) is convex we get

/ o [ foanas < [ it [ stronanas.
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Now since ¢(f(t)) is a non-increasing function of t we have
1 x 1 1
|5 [ etz = [ @) <isaad [ oiiogtotiar+ 5 -
1 _ B B 1 ~
— 4 [ fog 7y ttog F(tog Fy o+ B < A, | Filog® o+ B,
0 0

1
4, / Fl(log*|f)dz+ B |
0

since the functions |f|(log™|f|)" and |f|(log™|f|)" are equimeasurable.
The latter inequality can be proved by using simple calculus arguments. []
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Assume now that f(P) is an integrable function defined in the k-dimensional
interval S = (0,1)*. By the fundamental theorem of the Lebesgue theory of inte-
gration we deduce that the integral of f is differentiable, in the ordinary sense, at
almost every point P, and the value of the derivative is f(P,). That is,

1 -
Jim /I J(P)AP = f(P,)

as in (1), where the ratios of any two sides of the interval I containing P, do not
exceed a finite constant number, for every P, € S = (0,1)*.

Theorem 5.3.3: Let ay(t),as(t),...,ar(t) be arbitary non-decreasing functions
defined to the right of t = 0, vanishing and continuous for t = 0 and positive for
t > 0. When the intervals I, where P, € I, are of the form

& <a; <¢,
;=& =ai(t), i=1,2, ..., k (19)

the limit )
lim — | f(P)dP
gy o)

exists and is equal to f(P,) at almost every point P,.

For the proof of Theorem 5.3.3 we just need to prove that the Vitali covering lemma
remains valid for intervals I of the form (19).

Theorem 5.3.4: Let A CR". Assume that for every x € A there is a sequence

of intervals { Ki(z) }ken, containing x such that §( Ky (z)) LN}

Let the collection V- = {Ky(x)},ea satisfies: if Th,To € V then there exists a trans-
kEN

€
lation of one of them that puts it inside the other. Then we can choose from V a
disjoint sequence {Si} C V such that |A — USk| = 0.
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Proof: To construct the sequence {Si} we choose S; € V such that
1

|S1| > isup{|T| T eV}
Without loss of generality assume A C (0,1)" and {Ky(z)} C (0,1)", Vo € A,
Vk e N.
If A C 57 we stop.
If A Z Sy then the exists x € A — Sy and as S7 is compact, there exists a set
T € {Ki(x)}}reny €V such that TN Sy = 0.
We then choose S5 € V such that

1

|Sa| > §sup{]T| :TeV, TnNnS =0}
If AC 51US8 we stop.
Is A Z S; US; then there exists z € A — (S1 U S2) and as S7 U Sy is compact there
exists a set T' € {K(z)}reny € V such that TN (Sp U Sy) = 0.
We then choose S3 € V such that
1
|S5| = §SUP{\T’ T eV, TN(SUS:) =0}

and so on.

If the sequence we constructed is finite obviously A C US}.
If not, we will show that TN (Ug—, Sk) # 0, forany T eV. (1)

Assume there exists a set 7' € V such that T'N (Up—; Sk) = 0,
that is {T'e V : TN (Uze; Sk) =0} # 0.
We choose S € V such that
1 o0
(S > Ssup{|T: T eV, Tn(lJS) =0}
k=1
We have S C (0,1)", Vk and S N'S; =0, Vk # j, so
o0
Y Skl<oo = 1S, -0 =
k=1

1
Jjo € N such that |S;,| < §|S\
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but
]_ Jo—1
1S5, = Ssup{|T|: T eV, TN L S0 =0
k=1
and

%) Jo—1
Sn(Jsy=0 = sn(l S=0
k=1 k=1

so combining these two results we get

1
S | > =|S
| ]o‘—Q‘ ‘7

a contradiction.

Now we need to prove that |[A — (IJr—; Sk)| = 0 and to do so we will prove that
h
Ve >0 3JheN such that |A-— (U Si)| <e
k=1

so we will then get

0o h

A— (Sl <lA=(|JSI<e, foranye>o0.
k=1 k=1

Let n > 0 and h € N such that

> ISl <n

k=h+1

where n will be chosen later.
It is true that

h h
A-(UsocliT:Tev, Tn(lJsS=0r (2
k=1 k=1

Sk) =0 , as UZ:l Sk

C =

h
andforxeA—(USk) = Jk € N such that Ki(x)N(
k=1

k=1

is compact and 6(?@(3})) — 0.
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Also
h
ir:Trev, TSk =0}=
k=1

h 00
= ir:Ttev, TS =0, TS #0 ()
k=1 k=1

since VT € V' we have T'N (U Si) # 0, by (1)
k=1

and

h o)
Uir:Tev, Tn(JsS)=0. TSk #0}=
k=1 k=1

o J
T :Tev, TS =0, TnSj#0}
J=h k=1

C U{U{T :TeV, |T|<2|Sjml, TNSjm#0F  (4)
j=h

as for T € V such that T N ( izlsk) =0 and TN Sjp1 # 0, j > h, by our
construction, we have

1 7 1
|Sj+1|Z§sup{|T|:T€V, Tﬂ(U Sk):@}Z§|T| =
k=1

|T| < 2|Sj+1| and T NSji1# 0.

So by (2), (3), (4) we get
h 00

A= Sl <> NHT:T eV, T1<2Snl, TS # 0}
k=1 j=h

T:
Now we observe that for T1,T» € V such that |T1| > |22|, the union U of all of the

sets obtained by translating 75 and having non empty intersection with 77 has area
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< 9™|T|.
This is true as by the existence of a translation that puts one interval into the
other we get that either

al <ab, a2 <dd, .., adt<ad}, if |Ti| <|Ty

or
a; >ay, ai >aj, ..., a} >dy, if || <|Ti

where a! are the sides of T} and a} are the sides of Ty, i = 1,2,...,n.
Assuming |T| < |T»| we get
U| < (a7 +2a3) - (a% +2a3) - ... - (a} 4 2a%) < 3a3 - 3a3 - ... 3a) =
=3"Tz| < 2-3"|T1| < 9™|Th|

and the same inequality holds assuming |T3| > |17/

So the previous quantity is
o0 o0
SISl =0 3 IS <9
j=h j=h+1

and choosing n < 9% we get the required inequality. [

Combining Theorems 5.3.1 and 5.3.3 we get the following.

Theorem 5.3.5: Assume f(P) is a function defined in the k-dimensional interval
S = (0,1)* and a1(t),as(t),...;ar(t), 2 < r < k, are r functions satisfying the
properties of Theorem 5.3.3. If f(log™|f|)*~" is integrable over S, the limit (1) exists,
at almost every point P, and is equal to f(P,), provided the intervals I containing
P, are of the form (20) :

&<z <¢, i=1,2, ..k
i =& =ai(t), G=1,2,r
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Proof: We will prove this for £k = 3 and r = 2. The general case is similar.
We will write z,y, z for z1,x2,z3 and a(t), b(t) for ai(t), az(t).
Let
fe(@o, Yo, 20) = fo(Po) = thUP /|f )|dpP
6(I)—0 ’I|
Poel

where I is of the form (20).
We just need to prove that

l/ﬁ@MP§4/U@WwﬂﬂﬂmP+B (21)
S S

where A | B are independent of f
and then using an argument similar to the one we used for Theorem 5.3.1 the proof
will be complete.

Let

1 g//
g(w,y,2) = sup / f(z,y, w)|dw.
CreaeCr C” C/ ‘ ( ’

From Lemma 5.1.3 we obtain

1 1
/g@%@MSA/U@%@Wwa%MM+B
0 0

from which we can see that g is integrable over S and

/g@MPSA/U@WwﬂﬂmMP+B (22)
S S

Now, define
&'// "
g(7,y,2) = iim Sl}:p &= / / 9(u, v, 2)dudv
/<x< 1" u/
u <y<u’

&'—¢—0 , u’—u'—0

Then obviously

C// C//
g(e,y,2) = sup lc/'um% w)|dw > 10/ e, o w)|dw

¢eseen O S
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V¢, ¢" such that (" < z < ('

1 1 /5// /u// ( )d d
= . g(u,v, z)dudv >
6// _ §/ u// _ u/ , o

"

1 1 1 u// C//
> Iy Sl gl |, / | f (u, v, w)|dwdudv

V¢, ¢” such that (" < z < {’, so

‘ 1 1 é‘// u//
g*($, Y, Z) = ?/r<ns<u§13 5” — é'/ . I /;, /, g(u, v, Z)dudv >
x u
u <y<u'’
-0, u'’'—u'—0
1 1 1 11 u// C//
> lim sup : . | f (u, v, w)|dwdudv
¢ <pet! g// _ 5/ u — CH _ CI , , , >
x u
u <y<u'’
¢ <z<(”

E”—f—>0 ' —u'—0 , CH_C,_>0

S0 9*(%97»2) Zf*($7yaz> (23)
Since a(t), b(t) satisfy the properties of Theorem 5.3.3 we have
9«(z,y,2) = g(x,y, z) at almost every point (z,y,2) of S

and by the inequalities (22), (23) we get

fulz,y,2) < gl 2) = /S f.(P)dP < /S g(P)dP < A /S fllog* ||+ B. O
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We will now prove that Theorem 5.3.1 cannot be strengthened.

Assume ¢(t), 0 <t < o0, is a strictly increasing function satisfying

t—o0

t
»(0) =0, liminf ¢i) >0 (24)
and Ly denotes the class of functions f such that ¢(|f|) is integrable over S.

Therefore by (24), Ly (S) C LY(S).

Lemma 5.3.6: Assume E is an arbitary bounded and measurable set and oq(E),
0 < a <1, is the union of all intervals I for which

|[ENI|>alll (25)
If the differentiability theorem holds for all the functions of the class Ly then the
nequality
1
loa(E)| < co(D)IE] - (26)

1s true for oll E and all a, where C is a constant independent of a and E.

Proof: We will prove this lemma by contradiction.
Suppose (26) is not true. We will prove that there is a function f in Ly for which
the differentiation theorem is false.

Let ¢, be positive numbers chosen such that
1 1
S <o) ()
n Cn

By our assumption there exists, for every n, a bounded and measurable set F,, and
a number a,, 0 < a,, < 1 such that

1
|0a(En)| > cnd(—)|Enl.
an
|En N 1|

T > a, there exists ¢}, with §(1,,) < ¢, (%)
n

For every I, such that
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We write o0q,(E,) = H, and for every n, through a homothecy 1, with ratio

Ay, . such that Ay - ch e, 0, we choose a sequence of sets Hﬁ,

homothetic to H,,, cover S except for a null set and satisfy the condition

Z|Hﬁ|<2|5|:2. (% * *)
k

which are

We can do so by fixing n and writing H for H,. We then let K be a closed subset
of H such that |H| < 2|K| and let I be a square containing K. We divide S into an
enumerable number of disjoint squares {I; };cn.

We write

K| SR ° 4 >
k=" andso | UEKI=D K| =k> |I'|=k|S|.
1] i=1 i=1 i=1
Therefore there exists p; € N such that

p1

Z K| > K|S|, wherek' <k,

i=1
and thus we can get a finite number of squares I”* and consider, for each p;, the
sets HP! and KP! derived from H and K by the same homothetical application by
which I is carried over in IP1.
We then have

S1=8-— ZK’” and so |S1|=1-Fk.
p1

Using Whitney’s Lemma we can divide S, except for a null set, into a finite or
enumerable number of squares and proceed with each of these squares in exactly
the same manner as we proceeded with S. This way we get the sets HP?2 and K?? so

that by writing
Sy =8 - KP
p2

we have

[S2] = (1= K)|S1] = (1 - K')*.

Continuing this process and denoting by H* and K* the sets HP', HP? ... and
KP1 KP2_ .. respectively, the sets H* will satisfy the conditions, since already the
sets K% will cover S except for a null set,

SIKM =1 and |H*| <2|K*| for each k.
k
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Now let E¥ be the set derived by the same homothetical application on E,, by which
H, is carried over in HF.

We assumed before |H,,| > cnqb( )|E | and so

| H| > end(— )IEkl (5 5x)

Set fn(P) = é in the set SN (U, EF) (3 % % % %)

and f,(P) = 0 in the remaining points of S and f(P) = sup,, fn(P) so we have

Lotsmnar <y /S S ful PP <(rnny 3 Z¢(ai>yEg| <
n n k n

SO

/¢ )P < 6(1)

and so f belongs in L.

Also, for every n, almost every point P of S belongs to at least one H,]f = 1 (Hp)

so there exists P’ € H,, = 0,4, (E,) with ¢, ;(P’') = P and as P’ € o,,(E,) there

|En N 1|
1]

For If = k(1) we get 6(IF) = Xy, , - 6(1) < Ay, o€l — 0.

exists I, such that > a, and by (**) we get §(I,,) < .

Therefore P belongs in an interval I¥ such that

|EF N IF > a,|IF| (3 % * * %)
where §(IF) 222 0.
As f(P) > ;- for P€ SN Ek. we obtain
1 I Ny 11
n
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Supposing that the differentiability theorem holds for f, we get f(P) > 1 for almost
every point and so

/S S(F(P))dP > ¢(1)

a contradiction to (28) and the lemma is proved. [J

Theorem 5.3.7: If for every f in Ly the integral of f is strongly differentiable
almost everywhere, then

b(t) > c-t(logTt)F !

where ¢ > 0 a constant.
In other words, f(log™|f|)¥~" is integrable over S.

Proof: For simplicity we give the proof for k = 2.
We will use the lemma we just proved.
We take S as the set E, S = {(z,y) : 0 <2z <1, 0 <y < 1} and then o4(FE)
contains the subset {(z,y): 1<z <1 0<azy<li}

LN

1 a x

Figure 5.3.5
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Hence using Lemma 5.3.6

1

a1 1 1 1 1 1
oq(E) > / —dx = —log—|E| = —log— < co(—)
1 ax a “a a “a a

for all 0 < a < 1 and so ¢(t) > ct - logTt which completes the proof. [J
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