

Adding an Edge in Comparability and Permutation Graphs

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Konstantinos Stamatis

in partial fulfilment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2025

Examining Committee:

 Leonidas Palios, Professor, Department of Computer Science and Engineering, Univer-

sity of Ioannina (Supervisor)

 Euripides Markou, Professor, Department of Computer Science and Engineering, Uni-

versity of Ioannina

 Christos Nomikos, Associate Professor, Department of Computer Science and Engi-

neering, University of Ioannina

i

TABLE OF CONTENTS

List of Figures ii

List of Tables iii

List of Algorithms iv

Abstract v

Extended Abstract (Εκτεταμένη Περίληψη) vi

CHAPTER 1 Introduction 1

1.1 Theoretical Framework ...1

1.2 Objective of the Thesis ..4

1.3 Thesis Stucture ...5

CHAPTER 2 On Comparability Graphs 6

2.1 Definitions & Main Idea ..6

2.2 Algorithm-Multiplices ...12

2.3 Comments & Explanation on Code ..16

CHAPTER 3 On Permutation Graphs 29

3.1 Main Idea ..29

3.2 Algorithm-Permutations ...32

3.3 Comments & Explanation on Code ..35

3.4 Another Approach ..43

CHAPTER 4 Concluding Remarks 51

Bibliography 53

CV 55

ii

LIST OF FIGURES

Figure 1.1: A comparability graph (with a transitive orientation)…………………………………………..3

Figure 1.2: A non-comparability graph ..3

Figure 1.3: A graph isomorphic to 𝐺[4,3,6,1,5,2] ..4

Figure 1.4: 𝐺[4,3,6,1,5,2] ...4

Figure 2.1: An indicative initial condition ..8

Figure 2.2: 𝑏 as a neighbor of 𝑣𝑖 ...8

Figure 2.3: Color classes example ...10

Figure 2.4: The enumeration of 𝐶𝐶 ...18

Figure 2.5: 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 calculation ...19

Figure 2.6: Computing 𝑖𝑛𝑑𝑖𝑐𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 ..21

Figure 2.7: 𝐺's maximal multiplices...22

Figure 2.8: A transitive orientation for multiplices that do not contain 𝑣𝑖26

Figure 2.9: A transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 in which 𝑣𝑖 has maximum in degree27

Figure 3.1: Example's permutation graph ...34

Figure 3.2: Transitive orientations in 𝑎𝑙𝑙_𝐹𝑠 ...34

Figure 3.3: A transitive orientation of 𝐺𝑣
̅̅ ̅ ..35

Figure 3.4: A transitive orientation for multiplices that do not contain 𝑣𝑖 (Permutation)36

Figure 3.5: Appending all transitive orientations of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 in a list37

Figure 3.6: 𝐴, 𝐵𝐺 calculation. ..38

Figure 3.7: Sorting the elements of 𝑎𝑙𝑙_𝐹𝑠 ..39

Figure 3.8: Initializations before the TRO Algorithm ..41

Figure 3.9: The TRO Algorithm. ...43

Figure 3.10: A permutation graph 𝐺 ...46

iii

LIST OF TABLES

Table 3.1: Incomplete offsets and columns for [4,2,3,1], 𝑓(𝑣𝑖) = 246

Table 3.2: Complete offsets and columns for [4,2,3,1], 𝑓(𝑣𝑖) = 2 ..47

iv

LIST OF ALGORITHMS

Algorithm 2.1: Algorithm-Multiplices ..14

Algorithm 3.1: Algorithm-Permutation ...32

Algorithm 3.2: Insertion Algorithm ...49

v

ABSTRACT

Konstantinos Stamatis, M.Sc. in Data and Computer Systems Engineering, Department of

Computer Science and Engineering, School of Engineering, University of Ioannina, Greece,

June 2025.

Adding an Edge in Comparability and Permutation Graphs

Supervisor: Leonidas Palios, Professor

Expanding a graph 𝐺(𝑉, 𝐸) of a class 𝐶 by introducing a node 𝑣 ∉ 𝑉 and connecting it with a

certain node 𝑣𝑖 ∈ 𝑉 does not necessarily produce a graph that belongs to 𝐶. This thesis is

concerned with finding and implementing algorithms that decide if the mere addition of an

edge between 𝑣 and 𝑣𝑖 to 𝐺 results in a graph that belongs to 𝐶, and if not, calculates the

minimum number of edges that need to be added to the resulting graph for it to belong to 𝐶,

where 𝐶 either refers to comparability or permutation graphs. In the case of comparability

graphs, we prove that our problem reduces to finding a transitive orientation �⃗� of 𝐺 in which

𝑣𝑖 has minimum out-degree, and we construct an algorithm by taking advantage of 𝐺's maxi-

mal multiplices' connection to its transitive orientations. We use the connection between the

classes of permutation and comparability graphs to transform that algorithm to one that pro-

vides an answer for permutation graphs. We also provide another algorithm that solves the

problem for permutation graphs and relies on the permutations that represent 𝐺. The algo-

rithms were implemented in the Python programming language and explanation on the im-

plementation is provided.

vi

ΕΚΤΕΤΑΜΕΝΗ ΠΕΡΙΛΗΨΗ

Κωνσταντίνος Σταμάτης, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημάτων,

Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο Ιωαννίνων,

Ιούνιος 2025

Προσθήκη Ακμής σε Μεταβατικά και Μεταθετικά Γραφήματα

Επιβλέπων: Λεωνίδας Παληός, Καθηγητής

Η επέκταση ενός γραφήματος 𝐺(𝑉, 𝐸) μιας κλάσης 𝐶 μέσω της εισαγωγής ενός κόμβου 𝑣 ∉

𝑉 και της σύνδεσής του με έναν κόμβο 𝑣𝑖 ∈ 𝑉 δεν παράγει απαραίτητα ένα γράφημα που

ανήκει στην 𝐶. Αυτή η διατριβή αφορά την εύρεση και υλοποίηση αλγορίθμων που

αποφασίζουν εάν η απλή προσθήκη μιας ακμής μεταξύ 𝑣 και 𝑣𝑖 στο 𝐺 έχει ως αποτέλεσμα

ένα γράφημα που ανήκει στην 𝐶, και εάν όχι υπολογίζει το ελάχιστο πλήθος ακμών που

χρειάζεται να προστεθούν στο γράφημα που προέκυψε ώστε αυτό να ανήκει στην 𝐶, όπου 𝐶

είτε αναφέρεται σε μεταβατικά (comparability) ή μεταθετικά (permutation) γραφήματα.

Στην περίπτωση των μεταβατικών γραφημάτων, αποδεικνύουμε ότι το πρόβλημα ανάγεται

στον υπολογισμό μιας μεταβατικής κατεύθυνσης (transitive orientation) �⃗� του 𝐺 στην οποία

η 𝑣𝑖 έχει ελάχιστο out-degree, και κατασκευάζουμε έναν αλγόριθμο εκμεταλλευόμενοι το

γεγονός ότι η ένωση των μεταβατικών κατευθύνσεων όλων των μεγιστικών multiplices ενός

γραφήματος είναι μεταβατική κατεύθυνση του γραφήματος αυτού, που μας επιτρέπει να

ενδιαφερθούμε για το out-degree της 𝑣𝑖 μόνο στα μεγιστικά multiplices στα οποία ανήκουν

ακμές που την περιέχουν.

Χρησιμοποιούμε το γεγονός ότι τα μεταθετικά γραφήματα είναι ακριβώς τα μεταβατικά

γραφήματα με συμπλήρωμα που είναι μεταβατικό γράφημα για να μετατρέψουμε τον

παραπάνω αλγόριθμο σε έναν αλγόριθμο που δίνει απάντηση για τα μεταθετικά γραφήματα.

Επιπλέον, παραθέτουμε τη σχεδίαση ενός ακόμα αλγορίθμου που λύνει το πρόβλημα για

μεταθετικά γραφήματα, ο οποίος βελτιώνει σημαντικά την εξαντλητική αναζήτηση κατά την

vii

οποία προστίθεται ένας αριθμός για τον νέο κόμβο 𝑣 σε κάθε μετάθεση που αναπαριστά το

𝐺 έτσι ώστε να σχηματίζεται αναστροφή με τον ακέραιο που αντιστοιχεί στoν 𝑣𝑖.

Οι αλγόριθμοι υλοποιήθηκαν στη γλώσσα προγραμματισμού Python και τα γραφήματα

μοντελοποιούνται μέσω του module networkx, και εξηγούνται αναλυτικά μετά την παράθεση

του κάθε αλγορίθμου.

1

CHAPTER 1

 INTRODUCTION

1.1 Theoretical Framework

1.2 Objective of the Thesis

1.3 Thesis Structure

1.1 Theoretical Framework

Let 𝑋, 𝑌 be sets, i.e. collections of unique items (called elements of the set). A function from 𝑋

to 𝑌, denoted 𝑓: 𝑋 ⟶ 𝑌 is a rule which associates to each element of 𝑋 exactly one element

of 𝑌. 𝑓 is called one-to-one if ∀𝑥, 𝑦 ∈ 𝑋: 𝑓(𝑥) = 𝑓(𝑦) ⇒ 𝑥 = 𝑦. 𝑓 is called onto if ∀𝑦 ∈ 𝑌, ∃𝑥 ∈

𝑋: 𝑓(𝑥) = 𝑦. A function that is both one-to-one and onto is called a bijection. For two logical

propositions 𝑝 and 𝑞, their logical conjunction will be denoted by 𝑝 ∧ 𝑞 and their logical dis-

junction by 𝑝 ∨ 𝑞 [1].

 If 𝐴 and 𝐵 are two sets, 𝐴 is contained in 𝐵 (or 𝐵 contains 𝐴), denoted by 𝐴 ⊆ 𝐵, if

∀𝑥: 𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵. 𝐴 is equal to 𝐵, denoted by 𝐴 = 𝐵, if 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴. 𝐴 is properly con-

tained in 𝐵 (or 𝐵 properly contains 𝐴) if 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 [1].

 Let 𝑉 be a nonempty set, i.e. a set with at least one element. A binary relation 𝑅 on 𝑉

is a function 𝑅: 𝑉 → 𝒫(𝑉), where 𝒫(𝑉) is 𝑉's powerset, i.e. the set that contains all 𝑉's sub-

sets [1]. 𝑅 is reflexive if and only if ∀𝑥 ∈ 𝑉: 𝑥 ∈ 𝑅(𝑥). 𝑅 is irreflexive if and only if ∀𝑥 ∈ 𝑉: 𝑥 ∉

𝑅(𝑥). 𝑅 is symmetric if and only if ∀𝑥, 𝑦 ∈ 𝑉: 𝑥 ∈ 𝑅(𝑦) ⇔ 𝑦 ∈ 𝑅(𝑥). 𝑅 is antisymmetric if and

only if ∀𝑥, 𝑦 ∈ 𝑉: 𝑥 ∈ 𝑅(𝑦) ⇒ 𝑦 ∉ 𝑅(𝑥). 𝑅 is transitive if and only if ∀𝑥, 𝑦, 𝑧 ∈ 𝑉: (𝑧 ∈ 𝑅(𝑦) ∧

𝑦 ∈ 𝑅(𝑥)) ⇒ 𝑧 ∈ 𝑅(𝑥). It is typical to denote 𝑅 as a collection of ordered pairs of the type

2

(𝑥, 𝑦) where (𝑥, 𝑦) ∈ 𝑅 ⇔ 𝑦 ∈ 𝑅(𝑥). A binary relation 𝑅 is called an equivalence relation if it

is reflexive, symmetric, and transitive, a partial order (or ordering) if it is reflexive, antisym-

metric, and transitive, and, finally, a strict partial order if it is irreflexive and transitive. The

reflexive and transitive closure 𝑅∗ of a binary relation 𝑅: 𝑋 → 𝑋 is the smallest with respect to

⊆ relation that contains 𝑅 that is also reflexive and transitive [2].

 The union, intersection, and difference of two sets 𝐴 and 𝐵 will be denoted as 𝐴 ∪ 𝐵,

𝐴 ∩ 𝐵 and 𝐴\𝐵 respectively. If {𝐴𝑖}𝑖∈𝐼, where 𝐼 is a set of indices, is a family (or simply set) of

sets their union and intersection will be symbolized as ⋃ 𝐴𝑖𝑖∈𝐼 and ⋂ 𝐴𝑖𝑖∈𝐼 respectively. Two

sets 𝐴 and 𝐵 are called disjoint if 𝐴 ∩ 𝐵 = ∅, which shall denote the empty set [1]. The sets in

{𝐴𝑖}𝑖∈𝐼 are called pairwise disjoint if and only if ∀𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗: 𝐴𝑖 ∩ 𝐴𝑗 = ∅. If the sets in

{𝐴𝑖}𝑖∈𝐼 are pairwise disjoint subsets of a set 𝐴 and ⋃ 𝐴𝑖𝑖∈𝐼 = 𝐴 then they are a partition of 𝐴.

When some sets are pairwise disjoint, we may use the symbol + to denote their union instead

of ∪ and their union will be called a disjoint union. The cartesian product of sets {𝑋𝑖}𝑖∈𝑇𝑘
, for

some 𝑘 ∈ ℕ = {1,2,3 … }, where 𝑇𝑘 = {1, … , 𝑘} will be denoted as 𝑋1 × … × 𝑋𝑘 or ∏ 𝑋𝑖
𝑘
𝑖=1

and is defined as {(𝑥1, … , 𝑥𝑘) | ∀𝑖 ∈ 𝑇𝑘: 𝑥𝑖 ∈ 𝑋𝑖}. If ∀𝑖, 𝑗 ∈ 𝑇𝑘: 𝑋𝑖 = 𝑋𝑗 = 𝑋, then 𝑋1 × … × 𝑋𝑘

will be called the cartesian product of 𝑋 with itself 𝑘 times and will be denoted by 𝑋𝑘 [3]. If 𝐴

is a set, then |𝐴| shall denote the number of its elements (also referred to as its cardinality).

 A directed graph 𝐺 consists of a finite set 𝑉 and an irreflexive binary relation on 𝑉,

which will be represented as a collection 𝐸 of ordered pairs or as a function 𝐴𝑑𝑗: 𝑉 → 𝒫(𝑉).

𝑉 shall be 𝐺's node set or set of nodes and its elements shall be called nodes. We shall call

𝐴𝑑𝑗(𝑢) the adjacency set of node 𝑢 and (𝑢, 𝑣) ∈ 𝐸 an edge. Clearly, (𝑢, 𝑣) ∈ 𝐸 ⇔ 𝑣 ∈

𝐴𝑑𝑗(𝑢). If this is the case 𝑢 and 𝑣 are adjacent and they are also endpoints of the edge (𝑢, 𝑣),

more specifically, 𝑢 is the head and 𝑣 is the tail of the edge. For the sake of simplicity, we will

denote edges as 𝑥𝑦⃗⃗⃗⃗⃗ ∈ 𝐸 instead of (𝑥, 𝑦) ∈ 𝐸. The out-degree of a node 𝑣 in 𝐺 is |𝐴𝑑𝑗(𝑣)|

while its in-degree is |{𝑢 ∈ 𝑉 | 𝑣 ∈ 𝐴𝑑𝑗(𝑢)}|. A node is called a source when its in-degree is 0

and a sink when its out-degree is 0.

 If 𝐻 is a collection of ordered pairs then we define its inverse as 𝐻−1 =

{(𝑥, 𝑦) | (𝑦, 𝑥) ∈ 𝐻}. An undirected graph (or simply graph) 𝐺 is a directed graph whose edge

set is equal to its inverse, i.e. 𝐸 = 𝐸−1 or equivalently 𝐸 is symmetric. This means that ∀𝑎𝑏⃗⃗⃗⃗⃗ ∈

𝐸: 𝑏𝑎⃗⃗⃗⃗⃗ ∈ 𝐸. If 𝑣 is a node in an undirected graph, its degree will be |𝐴𝑑𝑗(𝑣)|. In undirected

graphs, we will denote the existence of both 𝑎𝑏⃗⃗⃗⃗⃗ and 𝑏𝑎⃗⃗⃗⃗⃗ in 𝐸 with 𝑎𝑏 ∈ 𝐸 and 𝑎𝑏 will be called

an undirected edge. Graphs, both directed and directed, shall be denoted just by their name

3

(e.g. 𝐺) or by their name followed by an ordered pair that includes their node and edge sets

in this order (e.g. 𝐺(𝑉, 𝐸)).

 An undirected graph is called complete if every distinct pair of its nodes is adjacent. A

complete graph with 𝑛 nodes is notated by 𝐾𝑛. The complement of an undirected graph

𝐺(𝑉, 𝐸) is notated by �̅�(𝑉, �̅�) where �̅� = {(𝑥, 𝑦) ∈ 𝑉2| 𝑥 ≠ 𝑦 ∧ (𝑥, 𝑦) ∉ 𝐸}. If 𝑆 ⊆ 𝑉 then

the subgraph induced by 𝑆 is defined as 𝐺[𝑆](𝑆, 𝐸[𝑆]) where 𝐸[𝑆] = {(𝑥, 𝑦) ∈ 𝐸 | {𝑥, 𝑦} ⊆ 𝑆}.

𝐺[𝑆] is an induced subgraph of 𝐺. A partial subgraph of 𝐺(𝑉, 𝐸) is any graph 𝐻(𝑉′, 𝐸′) such

that 𝑉′ ⊆ 𝑉 ∧ 𝐸′ ⊆ 𝐸. An undirected graph 𝐺(𝑉, 𝐸) is called connected if ∀𝑢, 𝑣 ∈

𝑉 ∃(𝑢1, … , 𝑢𝑘) ∈ 𝑉𝑘: 𝑢 = 𝑢1 ∧ 𝑣 = 𝑢𝑘 ∧ (∀𝑖 ∈ 𝑇𝑘−1: 𝑢𝑖𝑢𝑖+1 ∈ 𝐸). Such an element of 𝑉𝑘 is

called a chain from 𝑢 to v.

 Two graphs 𝐺(𝑉, 𝐸) and 𝐺′(𝑉′, 𝐸′) are called isomorphic, denoted 𝐺 ≅ 𝐺′, if there ex-

ists a bijection 𝑓: 𝑉 → 𝑉′ such that ∀𝑥, 𝑦 ∈ 𝑉: (𝑥, 𝑦) ∈ 𝐸 ⇔ (𝑓(𝑥), 𝑓(𝑦)) ∈ 𝐸′. Such a bijec-

tion will be called an isomorphism between 𝐺 and 𝐺′.

 If 𝐺(𝑉, 𝐸) is an undirected graph, then a collection of ordered pairs �⃗� is an orientation

of 𝐺 (or of 𝐸 or of the edges of 𝐺) if �⃗� ∩ �⃗�−1 = ∅ and �⃗� + �⃗�−1 = 𝐸. An orientation �⃗� of 𝐺 (or

of 𝐸) is transitive if {𝑎𝑐⃗⃗⃗⃗⃗ | ∃𝑏 ∈ 𝑉: 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗�} ⊆ �⃗�. 𝐺 is called a comparability graph if there

exists a transitive orientation of its edges.

Figure 1.1: A comparability graph (with a

transitive orientation)

Figure 1.2: A non-comparability graph

 If 𝜋 = [𝜋1, … , 𝜋𝑛] is a permutation of 𝑇𝑛 , 𝑛 ≥ 1 then its inversion graph 𝐺[𝜋](𝑉, 𝐸) is

defined as: 𝑉 = 𝑇𝑛 and 𝑖𝑗 ∈ 𝐸 ⇔ (𝑖 − 𝑗)(𝜋𝑖
−1 − 𝜋𝑗

−1) < 0. An undirected graph 𝐺 is called a

permutation graph if there exists a permutation 𝜋 such that 𝐺 ≅ 𝐺[𝜋]. Every permutation 𝜋

whose inversion graph is isomorphic to 𝐺 is said to represent 𝐺. It is noted that 𝐺[𝑋] will refer

to an induced subgraph of 𝐺(𝑉, 𝐸) If 𝑋 ⊆ 𝑉 and to an inversion graph if 𝑋 is a permutation of

𝑇𝑛 for some 𝑛 ∈ ℕ.

4

Figure 1.3: A graph isomorphic to

𝐺[4,3,6,1,5,2]

Figure 1.4: 𝐺[4,3,6,1,5,2]

 All definitions apart from the ones whose source is cited are taken from [4].

1.2 Objective of the Thesis

Consider the following question: If 𝐺(𝑉, 𝐸) is a graph belonging to a graph class 𝐶, 𝑣𝑖 ∈ 𝑉, 𝑣 ∉

𝑉, and 𝐺 + 𝑣𝑖𝑣(𝑉𝑛𝑒𝑤 , 𝐸𝑛𝑒𝑤) is a graph where 𝑉𝑛𝑒𝑤 = 𝑉 ∪ {𝑣} and 𝐸𝑛𝑒𝑤 = 𝐸 ∪ {𝑣𝑖𝑣} then

does 𝐺 + 𝑣𝑖𝑣 belong to the class 𝐶, and if not, what is the smallest number possible of edges

incident on 𝑣 that should be added to 𝐺 + 𝑣𝑖𝑣 in order for the resulting graph to belong to 𝐶

and how can we compute that efficiently?

 This question has a trivial answer when 𝐶 represents the class of connected graphs or

trees: in both cases, 𝐺 + 𝑣𝑖𝑣 is in 𝐶. There are also linear time algorithms for split, quasi-

threshold, threshold and 𝑃4-sparse graphs that take advantage of the structure of graphs in

these classes [5]. However, it seems that not many results that concern other perfect graph

classes exist. When it comes to comparability and permutation graphs specifically, this appar-

ent lack of such fruitful research (apart from works like [6] and [7] that tackle related questions

for comparability graphs) was the main motivation behind us working on this problem for

these two classes.

 Despite this being the main goal, a deeper knowledge and understanding of the struc-

tures and properties of both comparability and permutation graphs was not only a means

through which we hoped to attain some algorithmic approach to our inquiries, but also a goal

itself. This thesis also provided us with the opportunity to not only gain such knowledge by

5

studying the works of some of the most important figures in Graph Theory and possibly de-

signing some novel algorithms for our main question, but also to implement our algorithms in

code that would be as precise, effective and thoroughly explained as possible.

1.3 Thesis Structure

Apart from the chapter that you are currently reading, this thesis contains three more chap-

ters. The two that directly follow this one are each entirely dedicated to comparability and

permutation graphs respectively, containing all our mathematical results, required definitions

not included in this chapter, a description of our algorithms design and an in-depth explana-

tion of our code implementation for each class. The last chapter contains comments on our

presented work and possible directions for future research.

 The inner structure of the chapters that concern a single graph class contain at least

three discernible sections. The first one contains the definitions and mathematical results that

support our algorithm and provide a direction for its design. The second one contains a de-

tailed explanation of the design along with proof/examination of its correctness and complex-

ity and, finally, the third one contains a step-by-step guide to understanding our code imple-

mentation. In the chapter that concerns permutation graphs there exists a fourth section in

which an alternative algorithm is suggested and thoroughly described. The last chapter is

made up of only two paragraphs, the first one concerning comments on our work and another

one which we hope will provide motivation for further research in the field.

6

CHAPTER 2

 ON COMPARABILITY GRAPHS

2.1 Definitions & Main Idea

2.2 Algorithm-Multiplices

2.3 Comments & Explanations on Code

2.1 Definitions & Main Idea

In this section, we will explore the suggested approach for solving our problem for compara-

bility graphs, which takes advantage of the existence of groups of edges called multiplices,

whose transitive orientations when combined always result in a transitive orientation of a

comparability graph.

Let 𝐺(𝑉, 𝐸) be a comparability graph with 𝑉 = {𝑣1, … , 𝑣𝑛}, let 𝑣 be a vertex not in 𝑉 and

𝑖 ∈ 𝑇𝑛. If 𝐺 + 𝑣𝑖𝑣 (𝑉𝑛𝑒𝑤 , 𝐸𝑛𝑒𝑤) where 𝑉𝑛𝑒𝑤 = 𝑉 ∪ {𝑣} and 𝐸𝑛𝑒𝑤 = 𝐸 ∪ {𝑣𝑖𝑣} then we want to

know if 𝐺 + 𝑣𝑖𝑣 is a comparability graph and if it is not, we need to figure out a way to turn it

into one by adding to it the smallest number possible of edges incident on 𝑣.

The truth is that there is an equivalent condition to 𝐺 + 𝑣𝑖𝑣 being a comparability graph

mentioned in [8] with an adumbration of its proof. This condition, followed by a more formal

proof, is exactly the following:

Lemma 2.1. 𝐺 + 𝑣𝑖𝑣 is a comparability graph if and only if there exists a transitive orientation

of 𝐺 in which 𝑣𝑖 is a sink.

7

Proof. (⇒) Let 𝐺 + 𝑣𝑖𝑣 be a comparability graph. Since 𝑣 is only connected to 𝑣𝑖 in 𝐺 + 𝑣𝑖𝑣,

𝑣 will be either a source or a sink in any transitive orientation of 𝐺 + 𝑣𝑖𝑣. Let �⃗� be a transitive

orientation of 𝐺 + 𝑣𝑖𝑣 in which 𝑣 is a source. Such an orientation exists because �⃗� is a strict

partial ordering of 𝑉𝑛𝑒𝑤 [4] and the inverse of a strict partial ordering is also a strict partial

ordering [1]. Thus �⃗�−1 is also a transitive orientation of 𝐺 + 𝑣𝑖𝑣 . Then, since ∀𝑗 ∈ 𝑇𝑛\{𝑖},

𝑣𝑣𝑗 ∉ 𝐸 and 𝑣𝑣𝑖⃗⃗⃗⃗⃗⃗⃗ ∈ �⃗�, we have that ∀𝑗 ∈ {𝑘 ∈ 𝑇𝑛\{𝑖} | 𝑣𝑘𝑣𝑖 ∈ 𝐸}: 𝑣𝑗𝑣𝑖⃗⃗⃗⃗ ⃗⃗⃗⃗ ∈ �⃗�, therefore 𝑣𝑖 is a

sink in �⃗�. Let �⃗�′ = �⃗�\{𝑣𝑣𝑖⃗⃗⃗⃗⃗⃗⃗}. Obviously 𝑣𝑖 is a sink in �⃗�′ and this orientation is an orientation

of 𝐺: Let 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗�′. Since 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗�, which is a transitive orientation, we have that 𝑎𝑐 ∈ �⃗�

and, since 𝑎, 𝑏, 𝑐 ≠ 𝑣, it is true that 𝑎𝑐 ∈ �⃗�′. Thus, �⃗�′ is a transitive orientation of 𝐺 in which

𝑣𝑖 is a sink.

(⇐) If �⃗� is a transitive orientation of 𝐺 in which 𝑣𝑖 is a sink, let �⃗�′ = �⃗� ∪ {𝑣𝑣𝑖⃗⃗⃗⃗⃗⃗⃗}, an orientation

of 𝐺 + 𝑣𝑖𝑣, and let 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗�′. We shall prove that 𝑎𝑐⃗⃗⃗⃗⃗ ∈ �⃗�′. If we assumed that 𝑎 = 𝑣 we

would have that 𝑏 = 𝑣𝑖, which would mean that there is an edge of the type 𝑣𝑖𝑥⃗⃗ ⃗⃗ ⃗⃗ , 𝑥 ∈ 𝑉𝑛𝑒𝑤\𝑣𝑖

in �⃗�′ which is not the case for any such 𝑥 because 𝑣𝑖 is a sink in �⃗�, so 𝑎 ≠ 𝑣. Similarly, 𝑏 ≠ 𝑣

because if 𝑏 = 𝑣 it would mean that ∃𝑥 ∈ 𝑉: 𝑥𝑣⃗⃗⃗⃗⃗ ∈ �⃗�′ which again is not the case and, finally,

for the same exact reason, 𝑐 ≠ 𝑣. So, {𝑎, 𝑏, 𝑐} ∩ {𝑣} = ∅ or, equivalently, {𝑎, 𝑏, 𝑐} ⊆ 𝑉. We

thus deduce that 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗�, which is a transitive orientation of 𝐺, therefore 𝑎𝑐 ∈ �⃗� ⊆ �⃗�′. 

 An immediate consequence of Lemma 2.1 is that if a transitive orientation of 𝐺 in

which 𝑣𝑖 is a sink does not exist, we would need to add at least one more edge of the type

𝑣𝑥, 𝑥 ∈ 𝑉 to 𝐺 + 𝑣𝑖𝑣 to create a comparability graph 𝐺𝑣(𝑉𝑛𝑒𝑤 , 𝐸𝑣). Given a transitive orienta-

tion �⃗� of 𝐺, an easy way to produce a comparability graph by adding edges incident on 𝑣 to

𝐺 + 𝑣𝑖𝑣 is to connect 𝑣 with every vertex in 𝑆 = {𝑥 ∈ 𝑉 | 𝑣𝑖𝑥⃗⃗ ⃗⃗ ⃗⃗ ∈ �⃗�}, as shown in the following

lemma.

Lemma 2.2. Let 𝑆 = {𝑥 ∈ 𝑉 | 𝑣𝑖𝑥⃗⃗ ⃗⃗ ⃗⃗ ∈ �⃗�}. If 𝐸𝑣 = 𝐸𝑛𝑒𝑤 ∪ {𝑣𝑥 | 𝑥 ∈ 𝑆} and �⃗� is a transitive orien-

tation of 𝐺 then 𝐺𝑣(𝑉𝑛𝑒𝑤 , 𝐸𝑣) is a comparability graph and �⃗�′ = �⃗� ∪ { 𝑣𝑥⃗⃗⃗⃗⃗ | 𝑥 ∈ 𝑆 ∪ {𝑣𝑖}} is a

transitive orientation of the edges of 𝐺𝑣.

8

Figure 2.1: An indicative initial condition

Proof. Let 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗�′. We shall prove that 𝑎𝑐⃗⃗⃗⃗⃗ ∈ �⃗�′. If {𝑎, 𝑏, 𝑐} ∩ {𝑣} = ∅ then 𝑎, 𝑏, 𝑐 ∈

𝑉, 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗� and since �⃗� is a transitive orientation of 𝐺, 𝑎𝑐⃗⃗⃗⃗⃗ ∈ �⃗� ⊆ �⃗�′. Moreover, 𝑏 and 𝑐 can

never be 𝑣 since there is no edge of the type 𝑥𝑣⃗⃗⃗⃗ ⃗⃗ , 𝑥 ∈ 𝑉 in �⃗�′. If 𝑎 = 𝑣 then 𝑏 is either 𝑣𝑖 or a

neighbor of 𝑣𝑖 in 𝐺 such that 𝑣𝑖𝑏⃗⃗ ⃗⃗ ⃗⃗ ∈ �⃗�, i.e. 𝑏 ∈ 𝑆. If 𝑏 = 𝑣𝑖 then obviously, by the definition of

�⃗�′, 𝑎𝑐⃗⃗⃗⃗⃗ ∈ �⃗�′. If, on the other hand, 𝑏 is a neighbor of 𝑣𝑖 in 𝐺 such that 𝑣𝑖𝑏⃗⃗ ⃗⃗ ⃗⃗ ∈ �⃗�, then since 𝑏, 𝑐 ∈

𝑉 and 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗�′ then 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗� which in turn means that 𝑣𝑖𝑐⃗⃗⃗⃗⃗⃗ ∈ �⃗� (due to �⃗� being transitive) and

this, by the definition of �⃗�′ proves that 𝑎𝑐⃗⃗⃗⃗⃗ ∈ �⃗�′. 

Figure 2.2: 𝑏 as a neighbor of 𝑣𝑖

 This lemma provides us, apart from a guarantee that the construction of a compara-

bility graph by adding zero or more edges to 𝐺 + 𝑣𝑖𝑣 that are incident on 𝑣 is feasible, with a

method of extending 𝐺 + 𝑣𝑖𝑣 into a bigger comparability graph 𝐺𝑣 while constructing a tran-

sitive orientation �⃗�′ of 𝐺𝑣 that includes all directed edges of a given transitive orientation �⃗�

9

of 𝐺 and edges that connect 𝑣 with 𝑣𝑖 and all vertices in 𝑆, with 𝑣 being a source. This proce-

dure adds precisely as many edges as the out-degree of 𝑣𝑖 in �⃗� to 𝐸𝑛𝑒𝑤 . The main proposition

of this chapter, which establishes the connection between the smallest possible number of

edges incident on 𝑣 that must be added to 𝐺 + 𝑣𝑖𝑣 for the result to be a comparability graph

and the smallest possible out-degree of 𝑣𝑖 amongst all transitive orientations of 𝐺, is proven

right after the proof of the following lemma.

Lemma 2.3. Let 𝐺(𝑉, 𝐸) be a comparability graph, �⃗� be a transitive orientation of 𝐺 and 𝑆 =

{𝑥 ∈ 𝑉 | 𝑣𝑖𝑥⃗⃗ ⃗⃗ ⃗⃗ ∈ �⃗�} ⊆ 𝑉. Then 𝐹𝑆
⃗⃗ ⃗⃗ ⃗ = {𝑥𝑦⃗⃗⃗⃗⃗ ∈ �⃗�| 𝑥, 𝑦 ∈ 𝑆} is a transitive orientation of 𝐺[𝑆].

Proof. Let 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ 𝐹𝑆
⃗⃗ ⃗⃗ ⃗. Since 𝐹𝑆

⃗⃗ ⃗⃗ ⃗ ⊆ �⃗� we have that 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ �⃗� and since �⃗� is a transitive ori-

entation of 𝐺, 𝑎𝑐⃗⃗⃗⃗⃗ ∈ �⃗�. However, the fact that 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ ∈ 𝐹𝑆
⃗⃗ ⃗⃗ ⃗ means that 𝑎, 𝑐 ∈ 𝑆. Therefore 𝑎𝑐⃗⃗⃗⃗⃗ ∈

 𝐹𝑆
⃗⃗ ⃗⃗ ⃗ and 𝐹𝑆

⃗⃗ ⃗⃗ ⃗ is a transitive orientation of 𝐺[𝑆]. 

Proposition 2.4. The smallest number of edges incident on 𝑣 that we need to add to 𝐺 + 𝑣𝑖𝑣

for it to become a comparability graph is equal to the smallest possible out-degree of 𝑣𝑖

amongst all transitive orientations of 𝐺.

Proof. Let 𝑥 ∈ ℕ ∪ {0} be the smallest number of edges incident on 𝑣 that we need to add to

𝐺 + 𝑣𝑖𝑣 for it to become a comparability graph. Trivially, the method that is described in

Lemma 2.2 would produce a comparability graph by adding less than 𝑥 edges to 𝐺 + 𝑣𝑖𝑣 if

there existed a transitive orientation of 𝐺 in which 𝑣𝑖 had an out-degree less than 𝑥 to be used

in the method, therefore the smallest possible out-degree of 𝑣𝑖 amongst all transitive orien-

tations of 𝐺 is at least 𝑥. Let us now assume that the smallest possible out-degree of 𝑣𝑖

amongst all transitive orientations of 𝐺 is 𝑦 > 𝑥. Let 𝐺𝑣 be a comparability graph that results

from adding 𝑥 edges incident on 𝑣 to 𝐺 + 𝑣𝑖𝑣 and let �⃗�′ be a transitive orientation of this

graph. Since �⃗� = �⃗�′\{𝑣𝑢⃗⃗⃗⃗⃗, 𝑢𝑣⃗⃗ ⃗⃗⃗: 𝑢 ∈ 𝑉} is the restriction of �⃗�′ to the nodes in 𝑉 ⊆ 𝑉𝑛𝑒𝑤 , by

Lemma 2.3 it is a transitive orientation of 𝐺, and thus the out-degree of 𝑣𝑖 in �⃗� is at least 𝑦,

which is also true for �⃗�′. If 𝑣𝑣𝑖⃗⃗⃗⃗⃗⃗⃗ ∈ �⃗�′ then, because �⃗�′ is a transitive orientation of 𝐺𝑛𝑒𝑤, 𝑣𝑢⃗⃗ ⃗⃗⃗ ∈

�⃗�′ ∀𝑢 ∈ {𝑡 ∈ 𝑉 | 𝑣𝑖𝑡⃗⃗⃗⃗⃗⃗ ∈ �⃗�}. But |{𝑡 ∈ 𝑉 | 𝑣𝑖𝑡⃗⃗⃗⃗⃗⃗ ∈ �⃗�}| ≥ 𝑦 > 𝑥 which is a contradiction. If, on the

other hand, 𝑣𝑖𝑣⃗⃗ ⃗⃗ ⃗⃗ ∈ �⃗�′, similarly, 𝑢𝑣⃗⃗⃗⃗⃗ ∈ �⃗�′ ∀𝑢 ∈ {𝑡 ∈ 𝑉 | 𝑡𝑣𝑖⃗⃗⃗⃗⃗⃗ ∈ �⃗�}. However, |{𝑡 ∈ 𝑉 | 𝑡𝑣𝑖⃗⃗⃗⃗⃗⃗ ∈

�⃗�}| ≥ 𝑦 > 𝑥 since if there existed a transitive orientation of 𝐺 in which 𝑣𝑖's in-degree was

10

smaller than 𝑦, this would mean that 𝑣𝑖's out-degree in the inverse of this orientation is also

smaller than 𝑦, which is impossible, so we are again led to a contradiction. Thus, the smallest

possible out-degree of 𝑣𝑖 among all transitive orientations of 𝐺 is 𝑥. 

 This proposition allows us to reduce our problem to computing a transitive orientation

of 𝐺 in which 𝑣𝑖 has the smallest possible out-degree. Before we can do this, we will need to

provide a few important definitions that we will be using extensively throughout the rest of

this thesis.

Definition 2.5. The binary relation 𝛤 on the edges of an undirected graph 𝐺(𝑉, 𝐸) is defined

as: 𝑎𝑏⃗⃗⃗⃗⃗ 𝛤 𝑎′𝑏′⃗⃗ ⃗⃗ ⃗⃗⃗⃗ ⃗ ⇔ (𝑎 = 𝑎′ ∧ 𝑏𝑏′⃗⃗ ⃗⃗ ⃗⃗ ∉ 𝐸) ∨ (𝑎𝑎′⃗⃗⃗⃗⃗⃗⃗ ∉ 𝐸 ∧ 𝑏 = 𝑏′). [4]

 It is easy to show that the reflexive, transitive closure 𝛤∗ of 𝛤 is an equivalence relation

on 𝐸 [4], which allows us to provide the following definition.

Definition 2.6. The equivalence classes into which 𝛤∗ partitions the edge set 𝐸 of a graph

𝐺(𝑉, 𝐸) will be called implication classes of 𝐺. A set 𝐶 ⊆ 𝐸 is called a color class of 𝐺 if there

exists an implication class 𝐴 of 𝐺 such that 𝐶 = 𝐴 ∪ 𝐴−1. [4]

 For example, the implication classes of the graph in Figure 2.3 are, by the definitions

of 𝛤, 𝛤∗ and an equivalence class, 𝐴1 = {𝑎𝑐⃗⃗⃗⃗⃗, 𝑎𝑑⃗⃗ ⃗⃗⃗, 𝑎𝑒⃗⃗⃗⃗⃗}, 𝐴2 = {𝑐𝑏⃗⃗⃗⃗⃗, 𝑑𝑏⃗⃗⃗⃗ ⃗, 𝑒𝑏⃗⃗⃗⃗⃗}, 𝐴3 = {𝑐𝑑⃗⃗⃗⃗⃗}, 𝐴4 =

{𝑎𝑏⃗⃗⃗⃗⃗}, 𝐴5 = 𝐴1
−1, 𝐴6 = 𝐴2

−1, 𝐴7 = 𝐴3
−1 and 𝐴8 = 𝐴4

−1. It follows that its color classes are 𝐶1 =

𝐴1 ∪ 𝐴1
−1 = {𝑎𝑐, 𝑎𝑑, 𝑎𝑒}, 𝐶2 = 𝐴2 ∪ 𝐴2

−1 = {𝑐𝑏, 𝑑𝑏, 𝑑𝑒}, 𝐶3 = 𝐴3 ∪ 𝐴3
−1 = {𝑐𝑑} and 𝐶4 =

{𝑎𝑏} as is shown in Figure 2.3 where the edges of each color class are presented in a different

style.

Figure 2.3: Color classes example

11

Definition 2.7. Let 𝐺(𝑉, 𝐸) be an undirected graph. A complete subgraph of 𝐺 induced by 𝑉𝑆

(whose edge set we will denote by 𝑆) on 𝑟 + 1 nodes is called a simplex of rank 𝑟 if each

undirected edge 𝑎𝑏 of 𝑆 is contained in a different color class of 𝐺. A simplex is called maximal

if it is not properly contained in any larger simplex. [4]

 To demonstrate what a simplex is, we can observe that the graph in Figure 2.3 has four

complete subgraphs on 3 nodes (the ones induced by {𝑎, 𝑐, 𝑑}, {𝑐, 𝑏, 𝑑}, {𝑎, 𝑏, 𝑑} and {𝑎, 𝑏, 𝑒}).

Ιn the subgraphs induced by the first two node sets, there are pairs of edges that belong to

the same color class, therefore these subgraphs are not simplices. On the other hand, the

complete subgraphs induced by {𝑎, 𝑏, 𝑑} and {𝑎, 𝑏, 𝑒} are simplices of rank 2 because their

three edges belong to three different color classes. Since there are no larger complete sub-

graphs than these in the graph of Figure 2.3, there are also no simplices of rank higher than 2

(which guarantees that the simplices we mentioned are maximal). It is also worth noting that

any two neighboring nodes induce a complete subgraph with exactly one edge, thus the sub-

graph is trivially a simplex of rank 1.

 It is noted that the node set or even the edge set of a simplex may be referred to as

simplices. The following and final definition of this chapter introduces the notion of the mul-

tiplex which will be essential to our algorithm.

Definition 2.8. The multiplex generated by a simplex 𝑆 of rank 𝑟 of a graph 𝐺(𝑉, 𝐸) is defined

to be the partial subgraph 𝐺𝑀(𝑉𝑀 , 𝑀) of 𝐺 where 𝑀 = {𝑎𝑏⃗⃗⃗⃗⃗ ∈ 𝐸 | ∃𝑥𝑦⃗⃗⃗⃗⃗ ∈ 𝑆: 𝑎𝑏⃗⃗⃗⃗⃗ 𝛤∗𝑥𝑦⃗⃗⃗⃗⃗}. A mul-

tiplex is maximal if it is not properly contained in any larger multiplex. [4]

 A careful look at Definition 2.8 shall reveal that a multiplex is nothing more than the

union of the color classes to which the edges of a particular simplex belong. For example,

returning to the graph in Figure 2.3, the multiplex 𝑀 generated by the simplex 𝑆 = {𝑎, 𝑏, 𝑒}

contains all edges of the graph minus 𝑐𝑑. It follows that a simplex of rank 1 generates a mul-

tiplex whose edge set is a color class. We will from now on, often use the name "multiplex" to

refer to just the edges of a multiplex instead of the subgraph itself.

 There are many important results that concern simplices, multiplices and how they are

related to the transitive orientations of a comparability graph [4], [9], but the three that are

the most significant for this thesis all appear in [4] and are presented below.

12

Theorem 2.9. Let 𝑀 be the multiplex generated by a simplex 𝑆. Then, 𝑀 is a maximal multiplex

if and only if 𝑆 is a maximal simplex.

Theorem 2.10. If 𝑀1 and 𝑀2 are maximal multiplices of an undirected graph 𝐺, then either

𝑀1 ∩ 𝑀2 = ∅ or 𝑀1 = 𝑀2.

Theorem 2.11. Let 𝐺(𝑉, 𝐸) be an undirected graph and let 𝐸 = 𝑀1 + ⋯ + 𝑀𝑘 where each 𝑀𝑖

is a maximal multiplex of 𝐸.

(i) If �⃗� is a transitive orientation of 𝐺, then 𝐹 ∩ 𝑀𝑖 is a transitive orientation of (𝑉𝑀𝑖
, 𝑀𝑖).

(ii) If 𝐹1
⃗⃗ ⃗⃗ , … , 𝐹𝑘

⃗⃗⃗⃗⃗ are transitive orientations of 𝑀1, … , 𝑀𝑘, respectively, then 𝐹1
⃗⃗ ⃗⃗ + ⋯ + 𝐹𝑘

⃗⃗⃗⃗⃗ is a

transitive orientation of 𝐺.

(iii) 𝑡(𝐺) = 𝑡(𝑀1) ∙ … ∙ 𝑡(𝑀𝑘) where 𝑡(𝑈) is the number of possible transitive orientations of

an undirected graph 𝑈.

(iv) If 𝐺 is a comparability graph and 𝑟𝑖 = 𝑟𝑎𝑛𝑘(𝑀𝑖), then 𝑡(𝐺) = ∏ (𝑟𝑖 + 1)!𝑘
𝑖=1 .

 Among the four statements of Theorem 2.11, the one that is the most relevant for this

section's method is (ii), which essentially states that the disjoint union of transitive orienta-

tions of all different unique maximal multiplices of a comparability graph is a transitive orien-

tation of that graph. Thus, the main idea behind our method is to calculate all maximal multi-

plices of 𝐺 and then find a transitive orientation of each maximal multiplex that does not in-

clude 𝑣𝑖 and a transitive orientation of each maximal multiplex that includes 𝑣𝑖 in which 𝑣𝑖

has the smallest out-degree possible and then combine all these transitive orientations into a

transitive orientation �⃗� of 𝐺 in which 𝑣𝑖 has minimum out-degree. This minimum out-degree

of 𝑣𝑖 will be equal to the smallest possible number of edges incident on 𝑣 that we could add

to 𝐺 + 𝑣𝑖𝑣 in order to produce a comparability graph, and 𝑆 = {𝑥 ∈ 𝑉 | 𝑣𝑖𝑥⃗⃗ ⃗⃗ ⃗⃗ ∈ �⃗�} will be the

set of nodes that we would need to connect 𝑣 with.

A more thorough explanation of our algorithm and all its steps is provided in the next

paragraph, along with proof of its correctness.

2.2 Algorithm-Multiplices

To fully execute the algorithm that was just briefly described, we would need to fulfill the

following steps in the order that they appear, except one specific case where the order does

13

not impact the execution, and this case is noted. The following steps only describe what is

executed after the graph is provided by the user.

 First, we enumerate all cliques of 𝐺 and save them. We are going to verify which of

these cliques are simplices and which are not.

 Then, we calculate and save all color and implication classes of 𝐺 which are needed to

determine whether a certain clique 𝑆 ⊆ 𝑉 is a simplex or not, and to then generate the maxi-

mal multiplices of 𝐺 by its simplices that are maximal. These first two steps could be executed

in reverse order since neither of these two impacts the other.

 Right after the completion of the first two steps, in whichever order they are imple-

mented, we need to figure out which of the aforementioned cliques are indeed simplices.

After doing that, the focus shall be on what simplices are maximal. These simplices are the

only ones that we need to have saved from now on since the other simplices are inconsequen-

tial due to them not generating maximal multiplices, which are decisive to the answering of

our question.

 We immediately use 𝐺's maximal simplices to generate its maximal multiplices. After

removing any duplicates that may have occurred during this process, we are only left with a

list where each maximal multiplex appears only once and all (undirected versions of) edges of

𝐸 appear in exactly one multiplex.

At this point, for every one of the maximal multiplices that we have saved we examine

whether they contain an edge that is incident on 𝑣𝑖 and, depending on this, we produce a

transitive orientation of the multiplex if it does not contain such an edge, or a transitive ori-

entation of the multiplex in which 𝑣𝑖 has minimum out-degree in the second case. To achieve

the latter, we consider the implication classes 𝐴1, … , 𝐴𝑘, 𝐴1
−1, … , 𝐴𝑘

−1 that make up the maxi-

mal multiplex and for every 𝑖 ∈ 𝑇𝑘 we, for all 𝑆𝑖 ⊆ 𝑇𝑘 with |𝑆𝑖| = 𝑖, produce all possible orien-

tations of the multiplex through (⋃ 𝐴𝑠𝑠∈𝑆𝑖
) ∪ (⋃ 𝐴𝑠

−1
𝑠∈𝑇𝑘\𝑆𝑖

). Note that not all orientations

produced in this fashion are transitive, but every transitive orientation of any multiplex can

be constructed in this fashion due to Theorem 2.5(i). For each transitive orientation of such a

maximal multiplex that is produced, we calculate 𝑣𝑖's out-degree and thus find the transitive

orientation in which this out-degree is minimum. All edges of desirable transitive orientations

of maximal multiplices produced are appended to an initially empty list which by the end of

this process will contain edges that make up a transitive orientation �⃗� of 𝐺 in which 𝑣𝑖 has

minimum out-degree.

14

Our algorithm ends by checking whether 𝑣𝑖's out-degree in �⃗� is 0 or not. If it is, it prints

a message that the mere addition of the edge 𝑣𝑣𝑖 to 𝐺 produces a comparability graph and

then prints �⃗�, otherwise it prints a message that 𝑣 needs to also be connected to all nodes in

𝑆 = {𝑥 ∈ 𝑉 | 𝑣𝑖𝑥⃗⃗ ⃗⃗ ⃗⃗ ∈ �⃗�} for the result to be a comparability graph and then prints �⃗�.

A pseudocode version of the algorithm is provided below.

Algorithm 2.1 Algorithm-Multiplices

Require: 𝐺(𝑉, 𝐸) a permutation graph, 𝑣𝑖 ∈ 𝑉

1: enumerate all cliques of 𝐺

2: enumerate the implication/color classes of 𝐺

3: for 𝑐 in cliques of 𝐺 do

4: if 𝑐 is a simplex do

5: append 𝑐 to a list named 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠

6: for 𝑐 in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 do

7: if 𝑐 is not maximal do

8: delete 𝑐 from 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠

9: 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 ← the multiplices generated by the simplices in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠

10: delete all duplicates from 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠

11: for 𝑚 in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 do

12: if 𝑚 contains 𝑣𝑖 do

13:
 compute a transitive orientation of 𝑚 in which 𝑣𝑖 has

 minimum out degree

14: else do

15: compute a transitive orientation of 𝑚

16: combine all these transitive orientations into a transitive orientation 𝐹 of 𝐺

17: print 𝑣𝑖's out-degree in 𝐹 and the nodes in {𝑥 ∈ 𝑉 | 𝑣𝑖𝑥⃗⃗ ⃗⃗ ⃗⃗ ∈ 𝐹}

 Obviously, this is a rather high-level presentation of the algorithm's steps, so in the

next and final section of this chapter the focus will be placed on our code implementation and

all details that were left unexplored will be examined there. However, before moving on with

that, we need to provide formal proof that Algorithm-Multiplices is indeed guaranteed to pro-

vide a correct answer to our question and analyze its time complexity.

15

Proposition 2.12. When given a comparability graph 𝐺 and one of its nodes 𝑣𝑖 as input, Algo-

rithm-Multiplices will find a transitive orientation �⃗� of 𝐺 in which 𝑣𝑖's out-degree is the small-

est possible amongst all other transitive orientations of 𝐺.

Proof. It is true that �⃗� will be a transitive orientation of 𝐺 because �⃗� is the disjoint union of

transitive orientations of the unique maximal multiplices of 𝐺 (Theorem 2.5(ii)). Let 𝐹1
⃗⃗ ⃗⃗ , … , 𝐹𝑘

⃗⃗⃗⃗⃗

be the transitive orientations whose disjoint union produces �⃗� and 𝑀1, … , 𝑀𝑘 be the respec-

tive unique maximal multiplices of 𝐺. Then, since 𝑣𝑖 has minimum out-degree in 𝐹𝑗
⃗⃗⃗, 𝑗 ∈

{𝑡 ∈ 𝑇𝑘 | ∃𝑥 ∈ 𝑉: 𝑣𝑖𝑥 ∈ 𝑀𝑡}, there is no way to construct a transitive orientation of 𝐺 by com-

bining transitive orientations of 𝐺's unique maximal multiplices in which 𝑣𝑖 has a smaller out-

degree than its one in �⃗�. And, due to Theorem 2.5(i), we have that each transitive orientation's

of 𝐺 restriction to the edges of any of 𝐺's maximal multiplices is a transitive orientation of that

multiplex, so every transitive orientation of 𝐺 is a disjoint union of transitive orientations of

all unique maximal multiplices of 𝐺, therefore the out-degree of 𝑣𝑖 in �⃗� is indeed the smallest

possible amongst all transitive orientations of 𝐺. 

 When it comes to the algorithm's complexity, its first step, i.e. the computation of its

cliques, is the most computationally expensive. Since a graph can have up to 3
𝑛

3⁄ maximal

cliques, an algorithm like the one provided by Bron and Kerbosch (with a time complexity of

𝑂(3
𝑛

3⁄)) is optimal for enumerating 𝐺's maximal cliques [10]. From these maximal cliques, we

can derive the remaining of the graph's cliques (by taking any maximal clique's induced sub-

graph). When it comes to the computation of 𝐺's implication/color classes, this task can be

completed in 𝑂(|𝐸|2) time since for each 𝑎𝑏⃗⃗⃗⃗⃗ ∈ 𝐸, we could examine whether any other 𝑥𝑦⃗⃗⃗⃗⃗ ∈

𝐸 satisfies 𝑎𝑏⃗⃗⃗⃗⃗ 𝛤 𝑥𝑦⃗⃗⃗⃗⃗ in order to add 𝑥𝑦⃗⃗⃗⃗⃗ to 𝑎𝑏⃗⃗⃗⃗⃗'s implication class. Deciding which cliques are

indeed simplices can be done in 𝑂(𝑞𝑐(𝑒𝑐)2) where 𝑞𝑐 is the number of cliques in 𝐺 (bounded

by 2𝑛 which is the number of subsets of a set with 𝑛 elements [1]) and 𝑒𝑐 is the number of

nodes in the largest clique of 𝐺. This is the case because such a clique has 𝑒𝑐(𝑒𝑐 − 1)/2 edges

[11] and of course these are no more than this many edges in any other clique of 𝐺. The dis-

carding of all non-maximal simplices can be done in 𝑂((𝑞𝑠)2) time where 𝑞𝑠 is the number of

simplices in 𝐺, since we can compare two simplices and discard one if it is properly contained

in the other, and once this is done we can generate the maximal multiplices in linear time for

16

each maximal simplex, for we only need to combine the color classes that make up each max-

imal simplex. Just like the simplices, the discarding of duplicate maximal multiplices that may

have occurred can be done in 𝑂((𝑞𝑚)2) time, where 𝑞𝑚 are the maximal multiplices gener-

ated. The computation of a proper transitive orientation for each maximal multiplex requires

𝑂(𝑘32ℎ) time, where 𝑘 is the number of edges in the multiplex and ℎ is th number of transi-

tive orientations that comprise it. That is the case because 2ℎ represents the ways in which

we could combine transitive orientations of the ℎ implication classes that comprise a multi-

plex, and for each such combination, all pairs of the 𝑘 edges of that multiplex, if they are of

the type 𝑎𝑏⃗⃗⃗⃗⃗ and 𝑏𝑐⃗⃗⃗⃗⃗, would need to checked as to whether 𝑎𝑐⃗⃗⃗⃗⃗ belongs to the orientation of the

multiplex we produced. Uniting the transitive orientations that are enumerated during this

process into a transitive orientation �⃗� of 𝐺 takes linear time with respect to the number of

unique maximal multiplices of 𝐺, and outputting the results takes 𝑂(|�⃗�|) time since we only

need to know which edges of �⃗� are of the type 𝑣𝑖𝑥⃗⃗ ⃗⃗ ⃗⃗ for some 𝑥 in 𝑉.

2.3 Comments and Explanations on Code

The code implementations for this thesis are all done in Python 3.13.0 and the graphs are

created and handled through the networkx module exclusively due to it including a plethora

of methods that directly correspond to the processes used in our algorithm.

Initially, the user shall enter the number 𝑘 of undirected edges that make up 𝐺 and

then input the edges one by one by providing both endpoints in a while loop that is active until

𝑘 edges have been given. For an edge 𝑎𝑏 the user only needs to enter 𝑎𝑏⃗⃗⃗⃗⃗ or 𝑏𝑎⃗⃗⃗⃗⃗ but not both.

 Matters like verifying whether the user did not include both directed versions of an

undirected edge, or whether the user has or has not included an invalid edge (e.g. 𝑎𝑎, 𝑎 ∈ 𝑉)

or, finally, verifying if the provided graph is indeed comparability are considered beyond the

interests of this thesis, so such checks have not been implemented. Each edge along with its

inverse is appended upon input to a list named 𝐸 and these edges indirectly indicate 𝐺's node

set 𝑉, which however never gets a variable dedicated to it in our code since we can always

access the node set through the nodes() method in networkx.

Appending 𝑏𝑎⃗⃗⃗⃗⃗ to 𝐸 for every 𝑎𝑏⃗⃗⃗⃗⃗ that the user inputs is not only done for the code to

be consistent with the theory upon which it is based (indeed, it would be possible to execute

all of our algorithms steps without performing this step), but it is chosen as our approach due

to it simplifying our future actions as will soon be demonstrated.

17

 Now that 𝐸 has the desired form, we are finally able to define our graph 𝐺 as a net-

workx graph which gets all edges of 𝐸 added to it via add_edges_from, a networkx method

that adds to a networkx graph the edges present in the argument the method takes. At this

point the user is required to choose 𝑣𝑖, the node to which the new node 𝑣 is going to be

connected to. Again, 𝑣𝑖 (represented in the code by the variable 𝑣𝑖) obviously needs to be in

𝑉 for this input and follow-up execution to be meaningful but the validity of the user's input

is not checked.

 After 𝑣𝑖 is given, all the required user inputs have been gathered and the implementa-

tion of our algorithm begins. We immediately save all cliques of 𝐺 in a list that we call

𝐺_𝑐𝑙𝑖𝑞𝑢𝑒𝑠 by using the networkx method enumerate_all_cliques. This method returns a gen-

erator of lists of nodes that form a clique in 𝐺 (we transform the generator into a list for con-

venience reasons) where the cliques appear in an ascending order of size. After obtaining 𝐺's

cliques in this form, we proceed to print them out.

 In the following section of code, we perform the essential process of calculating all

color and implication classes of 𝐺. For the former, we initialize an empty list 𝐶𝐶, an auxiliary

empty list 𝑡𝑒𝑚𝑝_𝑐𝑐, and a list 𝑡𝑒𝑚𝑝_𝐸 to temporarily hold the edges of 𝐸 left to be explored

at any point of the process, initially identical to 𝐸. While there are still edges left in 𝑡𝑒𝑚𝑝_𝐸,

we randomly choose 𝑟, an edge of 𝑡𝑒𝑚𝑝_𝐸, through the choice method of the random module

which is immediately appended to 𝑡𝑒𝑚𝑝_𝑐𝑐 while 𝑟 and its inverse are removed from 𝑡𝑒𝑚𝑝_𝐸.

The edge 𝑟 is going to be the edge whose color/implication class 𝑡𝑒𝑚𝑝_𝑐𝑐 we will enumerate

so the aforementioned removal is necessary to avoid choosing 𝑟 or (𝑟[1], 𝑟[0]) again and pos-

sibly recalculating the same color/implication classes more than once. Then, a double for loop

begins where for each 𝑖 in 𝑡𝑒𝑚𝑝_𝑐𝑐 we check whether there is any edge 𝑗 in 𝑡𝑒𝑚𝑝_𝐸, i.e. 𝐺's

edges that have not yet been added to a color/implication class, that is directly forced by 𝑖,

i.e. 𝑖 𝛤 𝑗. This is precisely what is expressed in the if statement in line 35 (Figure 2.1). If so, we

add 𝑗 to 𝑡𝑒𝑚𝑝_𝑐𝑐 and remove its inverse from 𝑡𝑒𝑚𝑝_𝐸. A couple of things need to be made

clear at this point. Firstly, since 𝑡𝑒𝑚𝑝_𝑐𝑐 is potentially getting edges added to it during the

execution of this for loop, it is guaranteed that after the completion of this double loop,

𝑡𝑒𝑚𝑝_𝑐𝑐 will not only contain the edges that 𝑟 directly forces, but its whole implication class.

Also, the removal of (𝑗[1], 𝑗[0]) from 𝑡𝑒𝑚𝑝_𝐸 in the case where 𝑗 gets appended to 𝑡𝑒𝑚𝑝_𝑐𝑐

is done not to avoid the risk of (𝑗[1], 𝑗[0]) also getting added to 𝑡𝑒𝑚𝑝_𝑐𝑐 since such a thing

would be impossible due to 𝐺 being a comparability graph [4]. Instead, this is done to avoid

calculating a color/implication class that includes (𝑗[1], 𝑗[0]) because the latter is going to be

18

the inverse of the implication class that is enumerated in 𝑡𝑒𝑚𝑝_𝑐𝑐 once the double for loop

finishes and the former, meaning the color class, is going to be the union of these two impli-

cation classes. After finding all directed edges 𝑗 of 𝑡𝑒𝑚𝑝_𝐸 that a particular 𝑖 of 𝑡𝑒𝑚𝑝_𝑐𝑐 di-

rectly forces we perform the command of line 38 (Figure 2.1) in order to also remove all edges

that were appended to 𝑡𝑒𝑚𝑝_𝑐𝑐 via this process from 𝑡𝑒𝑚𝑝_𝐸. When we finish the double for

loop, an implication class (which practically grants us its corresponding color class and will

from now on be used as such) has been enumerated and is appended to 𝐶𝐶 where eventually

all color classes of 𝐺 will end up. Then 𝑡𝑒𝑚𝑝_𝑐𝑐 is again initialized to an empty list and the

while loop proceeds. The section of code that corresponds to 𝐶𝐶's calculation can be viewed

in Figure 2.4.

Figure 2.4: The enumeration of 𝐶𝐶.

 It is true that by the end of this process 𝐶𝐶 will be a list of lists, where each of 𝐶𝐶's list

elements will be an implication class and not a color class. However, since any color class is

the union of two implication classes that are each other's inverse, we accept this abuse of

notation and take advantage of it directly to save all implication classes in 𝐼𝐶 in the next few

lines of code. Each element of 𝐶𝐶 is an implication class so it gets appended to the initially

empty list 𝐼𝐶 and then for each element of 𝐼𝐶 we save its inverse in a new initially empty list

named 𝑡𝑒𝑚𝑝_𝑖𝑛_𝑖𝑐. After the execution of this loop is done, 𝑡𝑒𝑚𝑝_𝑖𝑛_𝑖𝑐 shall contain the in-

verse of all implication classes that were already in 𝐼𝐶 so we append these lists to 𝐼𝐶 which

now contains all implication classes of 𝐺. We then proceed to print out all color and implica-

tion classes. Note that since we have committed an abuse of notation when it comes to the

color classes, these do not contain lists of undirected edges, i.e. pairs of directed edges that

19

are each other's inverse, but a single 'representative' directed edge for each undirected edge

that belongs to the color class.

 What follows is the calculation of 𝐺's simplices which can be seen in Figure 2.5. To this

end, we initialize an empty list named 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠, which eventually will hold only the maximal

simplices of 𝐺, and enter the following loop: For each 𝑐𝑙𝑖𝑞𝑢𝑒 of 𝐺, if 𝑐𝑙𝑖𝑞𝑢𝑒 contains more

than one node (thus containing at least one edge and therefore being eligible to be a simplex),

we initialize a counter 𝑐 equal to 0 and an empty list 𝑠 which gets all indices within the range

of 𝐶𝐶's length appended to it in ascending order (i.e. if 𝐶𝐶 contains four color classes then

𝑠 = [0,1,2,3], if it contains two color classes then 𝑠 = [0,1] etc.). The reason why we need 𝑠

is that we now enter a nested double for loop that goes through pairs of nodes of 𝑐𝑙𝑖𝑞𝑢𝑒 and

tries to track down the exact color class their edge can be found in. The index of that color

class in 𝐶𝐶 is deleted from 𝑠 because if we were to locate another edge of 𝑐𝑙𝑖𝑞𝑢𝑒 in the same

color class that would mean that clique would not be a simplex of 𝐺, and we increase 𝑐 by 1.

After this double for loop ends, we check whether 𝑐 is equal to 𝑙𝑒𝑛(𝑐𝑙𝑖𝑞𝑢𝑒) ∙ (𝑙𝑒𝑛(𝑐𝑙𝑖𝑞𝑢𝑒) −

1)/2, which is the number of edges in a clique made up of 𝑙𝑒𝑛(𝑐𝑙𝑖𝑞𝑢𝑒) nodes [11]. If this is

true, then and only then, due to us removing from 𝑠 any index where a certain edge was found

at in 𝐶𝐶, 𝑐𝑙𝑖𝑞𝑢𝑒 is a simplex, so it gets appended to 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠. Before discovering which of

these simplices are in fact maximal, we print them out just so that the user can have a better

grasp of the simplices in the graph that they have input and maybe even compare these sim-

plices with the maximal ones that will be printed upon their calculation.

Figure 2.5: 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 calculation

 To obtain a list of only maximal simplices we are going to be evaluating which elements

of 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 are non-maximal and removing them from the list. Instead of removing a simplex

in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 upon realizing that it is not maximal, we compute and save all indices 𝑖 for which

20

𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖] is non-maximal and then remove these elements from 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠. After initial-

izing an empty list named 𝑖𝑛𝑑𝑖𝑐𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 which, as its name suggests, will eventually host

all indices whose corresponding element in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 will be removed, we begin, in line 81,

a double for loop that runs through two indices 𝑖 and 𝑗 of 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 with 𝑗 being larger than

𝑖. Since 𝐺_𝑐𝑙𝑖𝑞𝑢𝑒𝑠 holds 𝐺's cliques in an ascending order of size and 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 has occurred

by handling 𝐺_𝑐𝑙𝑖𝑞𝑢𝑒𝑠' elements in the order that they appear, 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑗] has at least as

many nodes as 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖] in it. We therefore initialize a Boolean variable named 𝑓𝑙𝑎𝑔 as

𝑇𝑟𝑢𝑒 and check whether there exists a node in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖] that is not in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑗]. If this

is the case 𝑓𝑙𝑎𝑔's value is changed to 𝐹𝑎𝑙𝑠𝑒 and the loop in which we perform this test is

broken, for the discovery of such a node means that 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑗] does not, speaking in set

theory terms, properly include 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖] and thus 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑗] is not a simplex that guar-

antees that 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖] is non-maximal. If, on the other hand, we find no node of

𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖] that is not also in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑗], 𝑓𝑙𝑎𝑔 will continue to be 𝑇𝑟𝑢𝑒 which will mean

that 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖] is non-maximal and therefore shall be deleted from 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠. For this to

be done after this for loop is over, we append 𝑖 to 𝑖𝑛𝑑𝑖𝑐𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 and break the inmost

loop. The breaking of the inmost loop is used because once we know that 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖] is non-

maximal, we do not need to compare it to any other simplex 𝑥 that lies to the right of

𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑗] in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 to see if it is properly contained in 𝑥. If 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑖] is not properly

contained in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠[𝑗] ∀𝑗 ∈ {𝑖 + 1, … , 𝑙𝑒𝑛(𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠) − 1} then it is maximal and will not

be deleted from 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠. Once this double for loop is finished and 𝑖𝑛𝑑𝑒𝑥𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 only

holds the indices of 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 where non-maximal simplices lie, we remove these simplices

in the lines 92-96, where the variable 𝑘 allows us to circumvent the changing of indexing that

occurs within a list when elements are removed from it. After this section of the code is fin-

ished and 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 only contains all of 𝐺's maximal simplices, we proceed to print its ele-

ments. The code section in which 𝑖𝑛𝑑𝑒𝑥𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 is calculated is presented in Figure 2.6.

21

Figure 2.6: Computing 𝑖𝑛𝑑𝑖𝑐𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒

 We now possess all the tools we need to finally calculate all maximal multiplices of 𝐺,

these tools being 𝐶𝐶 and 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠. After the initialization of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 as an empty list

which will, at the end of this section of code, contain all unique maximal multiplices of 𝐺, we

begin a for loop that goes through each 𝑚𝑎𝑥𝑆𝑖𝑚𝑝𝑙𝑒𝑥 of 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠, in which we will compute

the maximal multiplex that 𝑚𝑎𝑥𝑆𝑖𝑚𝑝𝑙𝑒𝑥 generates. To this end, we initialize, right after the

beginning of the for loop, an empty list 𝑡𝑒𝑚𝑝_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 which will eventually contain the

maximal multiplex we want to enumerate. Then, a double for loop begins where for each pair

of nodes 𝑣1 and 𝑣2 of 𝑚𝑎𝑥𝑆𝑖𝑚𝑝𝑙𝑒𝑥, when 𝑣1 ≠ 𝑣2 we look through each color class 𝑐𝑐 in

𝐶𝐶 to see if the edge 𝑣1𝑣2 can be found in 𝑐𝑐. A few things must be noted here. First, the

reason why we do this is because the maximal multiplex that is generated by a maximal sim-

plex is nothing more than a combination of all the edges in the different color classes to which

the edges of the maximal simplex belong. Secondly, we check whether 𝑣1 and 𝑣2 are equal in

line 105 just because if they are, then an edge between them does not exist in 𝐺 and therefore

will never be found in any element of 𝐶𝐶, thus rendering the search for a color class that

contains such an edge futile. However, for the same reasons, the code would work and still

produce results even if this check was not implemented. Last but not least, this double for

loop is constructed in a way that if 𝑥, 𝑦 are two nodes in some 𝑚𝑎𝑥𝑆𝑖𝑚𝑝𝑙𝑒𝑥 of 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠,

then both 𝑥𝑦⃗⃗⃗⃗⃗ and 𝑦𝑥⃗⃗⃗⃗⃗ are searched for in 𝐺's color classes, which is necessary since we con-

structed the elements of 𝐶𝐶 in a way that only includes one directed version of every edge

they contain. Continuing, when the edge 𝑣1𝑣2⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ is traced in some 𝑐𝑐 of 𝐶𝐶 then we append 𝑐𝑐

to 𝑡𝑒𝑚𝑝_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥. The reason why we append 𝑐𝑐 itself to 𝑡𝑒𝑚𝑝_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 and not its

edges one by one is going to be explained later. After the ending of this double for loop where

the color class in which each of 𝑚𝑎𝑥𝑆𝑖𝑚𝑝𝑙𝑒𝑥's edges belongs has been appended to

22

𝑡𝑒𝑚𝑝_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥, we append 𝑡𝑒𝑚𝑝_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 itself to 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠. Figure 2.7 contains the

section of code we just described.

Figure 2.7: 𝐺's maximal multiplices

 After this is done for every element of 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠, we will have calculated all maximal

multiplices of 𝐺, but this process may have produced some duplicates. To delete these dupli-

cates we again initialize 𝑖𝑛𝑑𝑒𝑥𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 as an empty list (we use the same variable name

as before since these lists are used to perform essentially the same task and the contents that

𝑖𝑛𝑑𝑒𝑥𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 holds are useless after the removal of all non-maximal simplices from

𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠). This time, checking whether a certain maximal multiplex shall be deleted from

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 is not such a delicate matter. In the double for loop implemented between lines

111 and 115 of the code, if two multiplices are equal then the index of the one that appears

first in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 is appended to 𝑖𝑛𝑑𝑒𝑥𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒. Once the appending is done the in-

most loop is broken, not only due to the need for the multiplex in question to be deleted now

being established, but also because we do not wish to append the same index to

𝑖𝑛𝑑𝑒𝑥𝑒𝑠_𝑡𝑜_𝑑𝑒𝑙𝑒𝑡𝑒 again, which would happen in the event that the multiplex in question

appears three or more times in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠. When this double for loop is finished we remove

duplicates in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 in the exact same manner that we removed non-maximal simplices

from 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠, leaving 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 to contain all unique maximal multiplices of 𝐺, which

we print out.

 Before we move on to the most essential and potentially complicated section of the

algorithm's implementation, we need to examine the issue of why, instead of following the

strict definition of a (maximal) multiplex and making each list in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 contain edges of

a (maximal) multiplex, we structure each element of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 as a list that contains the

color classes (which are lists themselves) that comprise the multiplex. The reason for that is

23

quite simple and is related to the relative convenience that this representation of a multiplex

provides regarding generating possible orientations of said multiplex, compared to a repre-

sentation faithful to the definition. Every transitive orientation of a (maximal) multiplex can

be obtained, as stated in the previous section, by considering the implication classes

𝐴1, … , 𝐴𝑘, 𝐴1
−1, … , 𝐴𝑘

−1 that make up the (maximal) multiplex and for every 𝑖 ∈ 𝑇𝑘 and all 𝑆𝑖 ⊆

𝑇𝑘 with |𝑆𝑖| = 𝑖 and producing all possible transitive orientations of the multiplex through

(⋃ 𝐴𝑠𝑠∈𝑆𝑖
) ∪ (⋃ 𝐴𝑠

−1
𝑠∈𝑇𝑘\𝑆𝑖

). Of course, not every orientation of the multiplex produced via

this method is transitive so each of the orientations' transitive statuses will have to be verified.

But this is a very easy to implement idea that will allow us to efficiently compute all transitive

orientations of a maximal multiplex, that requires that we not only consider the multiplices as

collections of color classes, but also that we only handle them as such. Hence, we are not only

allowed to express multiplices as lists made up of the color classes (that are also expressed as

lists) in which their edges belong, but we are also required to do so if we want to find all

transitive orientations of some maximal multiplices through this convenient method.

 Now that the issue of how we save the maximal multiplices of 𝐺 has been resolved,

we can move on to the explanation of the final section of our code implementation for com-

parability graphs, the one in which we will determine the minimum number of edges incident

on 𝑣 that shall be added to 𝐺 + 𝑣𝑖𝑣 in order for the result to be a comparability graph. We

initially define 𝐹 as an empty list which will eventually hold a transitive orientation of 𝐺 in

which 𝑣𝑖 will have its minimum out-degree, thus being evidence of not only how many edges

we shall add to 𝐺 + 𝑣𝑖𝑣, but also dictating what these edges are according to Lemma 2.2. We

then enter a for loop that goes through each maximal multiplex (represented by the variable

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥) in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠, aiming to find an appropriate transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥

depending on whether 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 contains an edge in which 𝑣𝑖 is an endpoint or not. We

perform this check immediately once the for loop begins by initializing a variable 𝑐 as 0, plan-

ning to change this variable's value if 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 contains 𝑣𝑖 and thus to let 𝑐 indicate whether

𝑣𝑖 is or is not included in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥. This is done in the double for loop that directly succeeds

𝑐's initialization, where we look through each color/implication class 𝑖𝑐 of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 and

through each 𝑒𝑑𝑔𝑒 in 𝑖𝑐 to determine whether 𝑒𝑑𝑔𝑒[0] or 𝑒𝑑𝑔𝑒[1] are equal to 𝑣𝑖. If this

happens to be the case at any point, 𝑐 increases by 1 and the double for loop is broken. If, on

the other hand, at no point in the double for loop's execution such a condition is satisfied, 𝑐's

value is never altered. So, after the normal termination or the breaking of the double for loop,

𝑐's value is 0 if and only if 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 does not contain 𝑣𝑖 and 1 if and only if it contains 𝑣𝑖.

24

 Now what naturally follows is an if-else statement, where we perform different tasks

to calculate a transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 depending on 𝑐′𝑠 value. We begin by con-

sidering the case of 𝑐 == 0, which means, as stated above, that 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 does not contain

𝑣𝑖. In this case, we have established that what we need is just any transitive orientation of

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥. So, it follows from the arguments given in the algorithm's initial description and

the previous paragraph that we now shall combine the edges of the implication classes that

make up 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 as they are or inverted in all possible ways for a transitive orientation of

it to occur. This is done by using the itertools module in Python, and specifically its product

method to calculate the cartesian product of {0,1} with itself as many times as the color clas-

ses that make up 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥, i.e. {0,1} 𝑙𝑒𝑛(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥). Since this method returns a generator

but we would rather use a list, we initialize a variable 𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠 in line 137 to obtain

the desired cartesian product in list form. What 𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠 allows us to do is that each

of its elements can be used to dictate possible ways of combining proper or inverted implica-

tion classes that make up 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 in order to produce an orientation of its edges in the

following way: If the 𝑖-th element in an element of 𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠 is 0 then we can use all

directed edges of the 𝑖-th color/implication class in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 exactly as they appear for our

orientation, whereas if it is 1, we can invert all the directed edges in the same color/implica-

tion class before we add them to our orientation. By having access to {0,1} 𝑙𝑒𝑛(𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥)'s el-

ements we can produce all orientations of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 possible in this manner and then check

if they indeed are transitive.

 We implement this methodology in the following way: Firstly, we initialize a Boolean

variable named 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 as 𝐹𝑎𝑙𝑠𝑒. This variable's truth value will change to

𝑇𝑟𝑢𝑒 once we find a transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 and then we will be in a position to

add this transitive orientation's edges to 𝐹 and move on to the next element of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠

if it exists. Hence, we begin a while loop which will go on for as long as

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛's truth value is 𝐹𝑎𝑙𝑠𝑒. To find a transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥,

as stated, we will go through the elements of 𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠 and let each of them dictate

how we combine proper and inverted versions of entire color/implication classes within

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥. More specifically, we begin a for loop where for each 𝑐ℎ𝑜𝑖𝑐𝑒 in 𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠

we initialize an empty list 𝑡𝑒𝑚𝑝_𝐹 in which we gradually construct the orientation we produce

before examining if it is transitive, and also a variable 𝑖 equal to 0 which is going to be used as

the index through which all of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥's elements will be accessed. Everything is now ready

25

for a for loop to start (in line 143), in which we go through every 𝑖𝑛𝑑𝑒𝑥 in 𝑐ℎ𝑜𝑖𝑐𝑒 and append-

ing every edge of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥[𝑖], i.e. the (𝑖 + 1)-th color/implication class that makes up

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥, to 𝑡𝑒𝑚𝑝_𝐹 if 𝑖𝑛𝑑𝑒𝑥's value is 0, but appending the inverse of every edge in

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥[𝑖] to 𝑡𝑒𝑚𝑝_𝐹 if 𝑖𝑛𝑑𝑒𝑥 is 1. In either case, we increase 𝑖 by 1 after appending the

appropriate edges to 𝑡𝑒𝑚𝑝_𝐹. After this for loop ends, 𝑡𝑒𝑚𝑝_𝐹 is an orientation of the edges

of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 and we shall now test if it is transitive. To this end, we initialize another boolean

variable named 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 as 𝑇𝑟𝑢𝑒, planning to change its truth value to 𝐹𝑎𝑙𝑠𝑒

upon realizing that 𝑡𝑒𝑚𝑝_𝐹 is not transitive. Since a transitive orientation's definition de-

mands that the transitive property holds for every pair of edges of the type 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ in the ori-

entation, we can consider 𝑡𝑒𝑚𝑝_𝐹 to be transitive until proven not to be, and the only way to

prove this is to find a pair of edges 𝑎𝑏⃗⃗⃗⃗⃗, 𝑏𝑐⃗⃗⃗⃗⃗ of 𝑡𝑒𝑚𝑝_𝐹 such that 𝑎𝑐⃗⃗⃗⃗⃗ is not in 𝑡𝑒𝑚𝑝_𝐹. The double

for loop that begins in line 153 is designed to do just that. By going through every possible pair

of edges in 𝑡𝑒𝑚𝑝_𝐹, we can, whenever we find a pair in which the tail of the first edge is

identical to the head of the second edge, check whether the head of the first edge and the tail

of the second one are also connected by a directed edge in 𝑡𝑒𝑚𝑝_𝐹 in this manner. If we find

a single pair for which this is not the case, we turn 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟's truth value to 𝐹𝑎𝑙𝑠𝑒

and break the double for loop. After this double for loop ends, either normally or by being

broken, if 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟 is 𝑇𝑟𝑢𝑒 then we have found a transitive orientation of

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥, namely 𝑡𝑒𝑚𝑝_𝐹, so we change 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 to 𝑇𝑟𝑢𝑒 so that the while

loop that we are in will terminate and add all of 𝑡𝑒𝑚𝑝_𝐹's edges to 𝐹. If 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑉𝑒𝑟𝑖𝑓𝑖𝑒𝑟

is 𝐹𝑎𝑙𝑠𝑒 then we go back to the beginning of the while loop and continue to search for a

transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥. The code that corresponds to the case of 𝑐 being equal to

1 is provided in Figure 2.8.

26

Figure 2.8: A transitive orientation for multiplices that do not contain 𝑣𝑖

 Let us now examine what happens when 𝑐 == 1, i.e. when 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 contains an

edge where 𝑣𝑖 is an endpoint, and how our handling of such multiplices differs from the other

case we examined. We begin by initializing 𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠 exactly like the other case and

then we also initialize 𝑚𝑎𝑥 as 0, which is a variable that will hold, at any point of the execution,

the maximum in-degree that 𝑣𝑖 has had in all of the transitive orientations of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 that

we will have examined up until that point. Since we, in this case, do not just want to calculate

a transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 but rather locate a transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥

in which 𝑣𝑖 has minimum out-degree (or, equivalently, maximum in-degree), we do not enter

a while loop that stops upon the discovery of a transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 but on the

contrary, we enter a for loop that goes through all elements of 𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠, similar to

the one we implemented in the case where 𝑐 == 0, but with a few key differences. The code

inside this for loop for the two cases is identical up until the point where a transitive orienta-

tion of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 is discovered. There, we initialize 𝑖𝑛𝐷𝑒𝑔𝑟𝑒𝑒 as 0, which is a variable in

which 𝑣𝑖's in-degree in 𝑡𝑒𝑚𝑝_𝐹, which is calculated in the following two-line for loop, is saved.

𝑖𝑛𝐷𝑒𝑔𝑟𝑒𝑒 is then compared with 𝑚𝑎𝑥, and if the former is no less than the latter we change

𝑚𝑎𝑥's value to 𝑖𝑛𝐷𝑒𝑔𝑟𝑒𝑒 and let 𝑏𝑒𝑠𝑡_𝐹, a new variable which saves the best orientation we

27

have so far found in terms of 𝑣𝑖's in-degree, be equal to 𝑡𝑒𝑚𝑝_𝐹. After the for loop that begins

in line 168 is over, we append the edges of 𝑏𝑒𝑠𝑡_𝐹 to 𝐹. The differences between this case

and the one in which 𝑐 is equal to 0 can be viewed in detail in Figure 2.9.

Figure 2.9: A transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 in which 𝑣𝑖 has maximum in degree

 We have now fully described the process through which 𝐹 becomes a transitive orien-

tation in which 𝑣𝑖 has maximum 𝑖𝑛𝐷𝑒𝑔𝑟𝑒𝑒 among all other transitive orientations of 𝐺. So, as

we have already proven, 𝑣𝑖's out-degree in 𝐹 is going to be equal to the smallest possible

number of edges incident on 𝑣 that can be added to 𝐺 + 𝑣𝑖𝑣 for the resulting graph

𝐺𝑣(𝑉𝑛𝑒𝑤 , 𝐸𝑣) to be a comparability graph. We calculate this out-degree indirectly, by first ini-

tializing an empty list 𝑛𝑜𝑑𝑒𝑠_𝑡𝑜_𝑐𝑜𝑛𝑛𝑒𝑐𝑡, to which we append all nodes that are tails in edges

of 𝐹 in which 𝑣𝑖 is the head. Now 𝑙𝑒𝑛(𝑛𝑜𝑑𝑒𝑠_𝑡𝑜_𝑐𝑜𝑛𝑛𝑒𝑐𝑡) is precisely 𝑣𝑖's out-degree in 𝐹.

We finish off the code by printing suitable messages depending on whether

𝑙𝑒𝑛(𝑛𝑜𝑑𝑒𝑠_𝑡𝑜_𝑐𝑜𝑛𝑛𝑒𝑐𝑡) is 0 or not, and then printing out 𝐹 for the user to see a transitive

orientation of 𝐺 that is evidence of how the edge additions that we suggest indeed produce a

28

comparability graph. Of course, the printing of 𝐹 alone does not prove the optimal nature of

our solution. For that the user will have to look at the theoretical results, algorithm, code

implementation and explanations that we have provided. What printing 𝐹 undoubtedly

proves though is that we can make a comparability graph 𝐺𝑣 by adding no more than

𝑙𝑒𝑛(𝑛𝑜𝑑𝑒𝑠_𝑡𝑜_𝑐𝑜𝑛𝑛𝑒𝑐𝑡) incident on 𝑣 to 𝐺 + 𝑣𝑖𝑣.

29

CHAPTER 3

 ON PERMUTATION GRAPHS

3.1 Main Idea

3.2 Algorithm-Permutation

3.3 Comments & Explanations on Code

3.4 Another Approach

3.1 Main Idea

Despite this chapter being dedicated entirely to our approach for solving our problem for per-

mutation graphs, it would be wrong to say that the focus is shifted away from comparability

graphs and the method that we developed for them entirely, since the inherent connection

of these two graph classes unsurprisingly makes its way into our algorithm for permutation

graphs.

 Let us briefly restate the question. Let 𝐺(𝑉, 𝐸) be a permutation graph with 𝑉 =

{𝑣1, … , 𝑣𝑛}, let 𝑣 be a vertex not in 𝑉 and 𝑖 ∈ 𝑇𝑛. If 𝐺 + 𝑣𝑖𝑣(𝑉𝑛𝑒𝑤 , 𝐸𝑛𝑒𝑤), where 𝑉𝑛𝑒𝑤 = 𝑉 ∪

{𝑣} and 𝐸𝑛𝑒𝑤 = 𝐸 ∪ {𝑣𝑣𝑖}, then we want to know if 𝐺 + 𝑣𝑖𝑣 is a permutation graph and if it

is not, we need to figure out a way to turn it into one by adding to it the smallest number

possible of edges incident on 𝑣.

 Since an undirected graph is a permutation graph if and only if both it and its comple-

ment are comparability graphs [12], we can actually modify our method for comparability

graphs to answer this question too. Let 𝑀1, … , 𝑀𝑘 be the 𝑘 maximal multiplices of 𝐺 such that

∀𝑎, 𝑏 ∈ 𝑇𝑘: 𝑀𝑎 ∩ 𝑀𝑏 = ∅ and ⋃ 𝑀𝑎𝑎∈𝑇𝑘
= 𝐸. Let {𝐴, 𝐵} be a partition of 𝑇𝑘 such that ∀𝑎 ∈

30

𝐴 ∀𝑦 ∈ 𝑉: 𝑣𝑖𝑦 ∉ 𝑀𝑎 and ∀𝑏 ∈ 𝐵 ∃𝑦 ∈ 𝑉: 𝑣𝑖𝑦 ∈ 𝑀𝑏. Then, for every 𝑎 ∈ 𝐴 we, similarly to the

method for comparability graphs, calculate a transitive orientation of 𝑀𝑎 and for every 𝑏 ∈ 𝐵

calculate every single transitive orientation of 𝑀𝑏. Let {𝐹𝑥
⃗⃗ ⃗⃗ }

𝑥∈𝑇𝑘
 be a family of sets where for

every 𝑥 ∈ 𝑇𝑘, 𝐹𝑥
⃗⃗ ⃗⃗ is the set of transitive orientations of 𝑀𝑥 calculated in the aforementioned

manner. Of course, ∀𝑎 ∈ 𝐴: |𝐹𝑎
⃗⃗ ⃗⃗ | = 1 and ∀𝑏 ∈ 𝐵: |𝐹𝑏

⃗⃗⃗⃗⃗| ≥ 2 since the inverse of every transi-

tive orientation of a multiplex is also its transitive orientation. Then 𝐴, 𝐵𝐺 = 𝐹1
⃗⃗ ⃗⃗ × … × 𝐹𝑘

⃗⃗⃗⃗⃗ is a

set of transitive orientations of 𝐺. While the set of all possible transitive orientations of 𝐺

properly includes 𝐴, 𝐵𝐺 (since ∀𝑎 ∈ 𝐴: 𝐹𝑎
⃗⃗ ⃗⃗ does not contain all transitive orientations of 𝑀𝑎),

the latter's transitive orientations are sufficient to dictate all the possible different ways to

add any amount of edges incident on 𝑣 to 𝐺 + 𝑣𝑖𝑣 and produce a comparability graph through

the method described in Lemma 2.2. Indeed, if �⃗� is a transitive orientation of 𝐺 not in 𝐴, 𝐵𝐺,

then ∃�⃗⃗� ∈ 𝐴, 𝐵𝐺 : ∀𝑏 ∈ 𝐵 the 𝑏-th index of �⃗� and �⃗⃗� are equal. This means that the two transi-

tive orientations will only differ on how multiplices 𝑀𝑎 , 𝑎 ∈ 𝐴𝐹 ⊆ 𝐴 (of course 𝐴𝐹 ≠ ∅) are

oriented, but, by definition, these multiplices do not include edges incident on 𝑣𝑖 and thus do

not impact the number of edges that the process described in Lemma 2.2 adds to 𝐺 + 𝑣𝑖𝑣.

 After doing that, we can sort the elements of 𝐴, 𝐵𝐺 in ascending order with respect to

the out-degree of 𝑣𝑖 in them. Then, we can examine the transitive orientations in this order,

checking whether the complement 𝐺𝑣
̅̅ ̅ of the graph 𝐺𝑣 that results from adding the edges that

Lemma 2.2 and each orientation �⃗� dictate is a comparability graph. This process shall continue

until the first occurrence of 𝐺𝑣
̅̅ ̅ being comparability is met, because, since 𝐺𝑣 is also a compa-

rability graph, 𝐺𝑣 is a permutation graph. The order in which we examine 𝐴, 𝐵𝐺 's elements

guarantees that when we first discover a certain 𝐺𝑣 that is a permutation graph, the number

of edges that was added to 𝐺 + 𝑣𝑖𝑣 for the construction of 𝐺𝑣 is the smallest possible number

of edges incident on 𝑣 that can be added to 𝐺 + 𝑣𝑖𝑣 for the result to be a permutation graph.

 The correctness of this process needs no further arguments for its establishment.

What shall be stated though is that it also is guaranteed to produce a result, i.e. there is always

a way to add edges incident on 𝑣 in 𝐺 + 𝑣𝑖𝑣 resulting in a permutation graph. Let us provide

a more formal version of this statement with a proof.

Proposition 3.1. Let 𝐺(𝑉, 𝐸) be a permutation graph and 𝑣 ∉ 𝑉. Then 𝐺𝑣(𝑉𝑛𝑒𝑤 , 𝐸𝑣) where

𝑉𝑛𝑒𝑤 = 𝑉 ∪ {𝑣}, 𝐸𝑣 = 𝐸 ∪ {𝑣𝑥 | 𝑥 ∈ 𝑉} is a permutation graph.

31

Proof. Let 𝜋 = [𝜋1, … , 𝜋𝑛] be a permutation of 𝑇𝑛 that represents 𝐺, i.e. 𝐺 ≅ 𝐺[𝜋]. This sug-

gests that 𝑛 = |𝑉|. Let 𝜋′ = [𝑛 + 1, 𝜋1, … , 𝜋𝑛], a permutation of 𝑇𝑛+1 where 𝑛 + 1 appears

first and the elements of 𝑇𝑛 appear after it in the exact order that they appear in 𝜋. Let 𝑓: 𝑇𝑛 →

𝑉 be a bijection such that ∀𝑖, 𝑗 ∈ 𝑇𝑛: (𝑖 − 𝑗)(𝜋𝑖
−1 − 𝜋𝑗

−1) < 0 ⟺ 𝑓(𝑖)𝑓(𝑗) ∈ 𝐸. The existence

of 𝑓 is guaranteed by the fact that 𝐺 is a permutation graph represented by 𝜋. Let 𝑓′: 𝑇𝑛+1 →

𝑉𝑛𝑒𝑤 such that ∀𝑥 ∈ 𝑇𝑛: 𝑓′(𝑥) = 𝑓(𝑥) and 𝑓′(𝑛 + 1) = 𝑣. Let 𝑥 ∈ 𝑉𝑛𝑒𝑤 . Then 𝑥 ∈ 𝑉 or 𝑥 = 𝑣.

If 𝑥 ∈ 𝑉 then, since 𝑓 is onto, ∃𝑖 ∈ 𝑇𝑛: 𝑓′(𝑖) = 𝑓(𝑖) = 𝑥. If 𝑥 = 𝑣 then 𝑓′(𝑛 + 1) = 𝑥. There-

fore 𝑓′ is onto 𝑉𝑛𝑒𝑤 . Now let 𝑎, 𝑏 ∈ 𝑇𝑛+1 such that 𝑓′(𝑎) = 𝑓′(𝑏). If {𝑎, 𝑏} ⊆ 𝑇𝑛 then 𝑓(𝑎) =

𝑓′(𝑎) = 𝑓′(𝑏) = 𝑓(𝑏) therefore 𝑎 = 𝑏 because 𝑓 is one-to-one. If {𝑎, 𝑏} ⊈ 𝑇𝑛 then let us as-

sume without loss of generality that 𝑎 ∉ 𝑇𝑛, therefore 𝑎 = 𝑛 + 1 so 𝑓′(𝑎) = 𝑣 = 𝑓′(𝑏). But

since ∀𝑥 ∈ 𝑇𝑛: 𝑓′(𝑥) ∈ 𝑉 and 𝑓′(𝑛 + 1) = 𝑣 we deduce that 𝑏 = 𝑛 + 1, so 𝑎 = 𝑏 which

proves that 𝑓′ is one-to-one. So, 𝑓′ is a bijection. Now let 𝐺[𝜋′] be the inversion graph of 𝜋′

and 𝑖, 𝑗 ∈ 𝑇𝑛+1 such that 𝑖𝑗 ∈ 𝐸𝜋′ which shall denote 𝐺[𝜋′]'s edge set. We will prove that

𝑓′(𝑖)𝑓′(𝑗) ∈ 𝐸𝑣. If {𝑖, 𝑗} ⊆ 𝑇𝑛 then, due to the fact that 𝑖𝑗 ∈ 𝐸𝜋′ ⇔ (𝑖 − 𝑗)(𝜋′
𝑖
−1 − 𝜋′

𝑗
−1) <

0 ⟺ (𝑖 − 𝑗) ((𝜋𝑖
−1 + 1) − (𝜋𝑗

−1 + 1)) < 0 ⟺ (𝑖 − 𝑗)(𝜋𝑖
−1 − 𝜋𝑗

−1) < 0, we have that

𝑓(𝑖)𝑓(𝑗) ∈ 𝐸 ⟹ 𝑓′(𝑖)𝑓′(𝑗) ∈ 𝐸𝑣. If, {𝑖, 𝑗} ⊈ 𝑇𝑛 then let us assume without loss of generality

that 𝑖 ∉ 𝑇𝑛 ⟺ 𝑖 = 𝑛 + 1. Then, since 𝑓′(𝑖) = 𝑓′(𝑛 + 1) = 𝑣 and ∀𝑥 ∈ 𝑉: 𝑥𝑣 ∈ 𝐸𝑣 we have

that 𝑓′(𝑖)𝑓′(𝑗) ∈ 𝐸𝑣. Now let 𝑖, 𝑗 ∈ 𝑇𝑛+1 such that 𝑓′(𝑖)𝑓′(𝑗) ∈ 𝐸𝑣. We will prove that 𝑖𝑗 ∈

𝐸𝜋′. If {𝑖, 𝑗} ⊆ 𝑇𝑛 then 𝑓′(𝑖)𝑓′(𝑗) ∈ 𝐸𝑣 ⟺ 𝑓(𝑖)𝑓(𝑗) ∈ 𝐸 ⟺ (𝑖 − 𝑗)(𝜋𝑖
−1 − 𝜋𝑗

−1) < 0 ⟺ 𝑖𝑗 ∈

𝐸𝜋 ⊆ 𝐸𝜋′. If {𝑖, 𝑗} ⊈ 𝑇𝑛 then let us assume without loss of generality that 𝑖 ∉ 𝑇𝑛 ⟺ 𝑖 = 𝑛 +

1. Then, since 𝜋′
𝑛+1
−1 = 1, ∀𝑥 ∈ 𝑇𝑛+1: 𝑖𝑥 ∈ 𝐸𝜋′. This proves that 𝐺𝑣 is isomorphic to 𝐺[𝜋′] and

thus 𝐺𝑣 is a permutation graph. 

 Before the ending of this section, which precedes a more formal description of the

algorithm that we implemented, it is worth noting that Proposition 3.1 could also be proven

by showing that 𝐺𝑣 is a comparability graph (by combining a transitive orientation of 𝐺 with

{𝑣𝑥⃗⃗⃗⃗⃗ | 𝑥 ∈ 𝑉}) and then showing that the edge set of the complement 𝐺𝑣
̅̅ ̅ of 𝐺𝑣 is identical to

the one of �̅� which proves that 𝐺𝑣
̅̅ ̅ is a comparability graph and thus 𝐺𝑣 is a permutation graph.

32

3.2 Algorithm-Permutation

In this section we will discuss the suggested algorithm for permutation graphs in more detail,

provide its steps one by one and explain them. Since both Algorithm-Permutation and Algo-

rithm-Multiplices perform the exact same steps and use the same implementation up until the

point where all unique maximal multiplices of 𝐺 are the only elements of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 in Al-

gorithm-Multiplices, we will only present and comment on the following steps of Algorithm-

Permutation.

 Once we reach the final point up until which these two algorithms are identical, we

now go through all unique maximal multiplices of 𝐺 and for each of them, we calculate just

one transitive orientation of the multiplex if it does not contain an edge that is incident on 𝑣𝑖,

otherwise we calculate all its transitive orientations, and save our results. These results are

then combined in all possible ways (as described in the previous section of this chapter) to

produce 𝐴, 𝐵𝐺, the out-degree of 𝑣𝑖 in every transitive orientation of 𝐴, 𝐵𝐺 is computed, and

these transitive orientations are then sorted with respect to this out-degree in an ascending

order. Let 𝑆𝐹 be the set of transitive orientations of 𝐴, 𝐵𝐺 ordered using this criterion.

 We then go through each orientation of 𝑆𝐹 in order and produce a comparability graph

𝐺𝑣 out of 𝐺 + 𝑣𝑖𝑣 in the way that Lemma 2.2 provides. We then check whether the comple-

ment 𝐺𝑣
̅̅ ̅ of 𝐺𝑣 is a comparability graph using the TRO Algorithm [4]. If it is not, we continue

with the loop but if it is, we deduce that the number of edges added by Lemma 2.2's method

is the smallest possible one such that 𝐺𝑣 is a permutation graph and break the loop after print-

ing the relevant messages.

 Before moving on to an examination of the algorithm's complexity, here is a pseudo-

code version of the algorithm.

Algorithm 3.2 Algorithm-Permutation

Require: 𝐺(𝑉, 𝐸) a permutation graph, 𝑣𝑖 ∈ 𝑉

1: enumerate all cliques of 𝐺

2: enumerate the implication/color classes of 𝐺

3: for 𝑐 in cliques of 𝐺 do

4: if 𝑐 is a simplex do

5: append 𝑐 to a list named 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠

6: for 𝑐 in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠 do

7: if 𝑐 is not maximal do

33

8: delete 𝑐 from 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠

9: 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 ← the multiplices generated by the simplices in 𝑠𝑖𝑚𝑝𝑙𝑖𝑐𝑒𝑠

10: delete all duplicates from 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠

11: for 𝑚 in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 do

12: if 𝑚 contains 𝑣𝑖 do

13:
 compute a transitive orientation of 𝑚 in which 𝑣𝑖 has

 minimum out degree

14: else do

15: compute all transitive orientations of 𝑚

16:
𝑎𝑙𝑙_𝐹𝑠 ← all transitive orientations of 𝐺 that result from combining these

transitive orientations in every possible way

17: 𝑆𝐹 ← the elements of 𝑎𝑙𝑙_𝐹𝑠 sorted with respect to 𝑣𝑖's out-degree

18: for 𝐹 in 𝑆𝐹 do

19: if 𝐺𝑣
̅̅ ̅ is a comparability graph do

20: print 𝑣𝑖's out-degree in 𝐹 and the nodes in {𝑥 ∈ 𝑉 | 𝑣𝑖𝑥⃗⃗ ⃗⃗ ⃗⃗ ∈ 𝐹}

21: end

 We are only going to examine Algorithm-Permutation's time complexity after it be-

comes different to Algorithm-Multiplices since we have already examined the latter algo-

rithm's complexity in detail in the previous chapter. Even though we now require different

transitive orientations of the maximal multiplices that contain 𝑣𝑖, the computational complex-

ity of the for loop corresponding to the one of Algorithm-Multiplices remains the same, i.e.

𝑂(𝑘32ℎ) for every multiplex, where 𝑘 is the number of edges in the multiplex and ℎ is th

number of transitive orientations that comprise it. Computing 𝑎𝑙𝑙_𝐹𝑠 requires time propor-

tionate to the number of transitive orientations that we enumerated (which are provided by

Theorem 2.11, (iv)), while sorting its elements with respect to 𝑣𝑖's out-degree in 𝑆𝐹 requires

𝑂(𝑛 log 𝑛) time (e.g. if we use the Merge Sort algorithm). Finally, for each element of 𝑆𝐹, we

need to construct 𝐺𝑣
̅̅ ̅ (which requires 𝑂(|𝐸|) time for 𝐺𝑣's computation and then 𝑂(𝑛2) for

evaluating its complement's edges). Recognizing whether 𝐺𝑣
̅̅ ̅ is a comparability graph can be

done in 𝑂(𝛿𝑚) where 𝛿 is the maximum degree of a node in 𝐺𝑣
̅̅ ̅ and 𝑚 is the same graph's

edge set cardinality [4]. If 𝐺𝑣
̅̅ ̅ is indeed a comparability graph, outputting the result of our

search requires 𝑂(𝑚) time.

34

 Let us now present an example of the algorithm's execution. Consider 𝐺(𝑉, 𝐸) to be

the graph pictured below and let 𝑣4 be the node to which we want to connect the new node

𝑣.

Figure 3.1: Example's permutation graph

 We can observe that this graph's color classes are 𝐶1 = 𝐸\{𝑣1𝑣3} and 𝐶2 = {𝑣1𝑣3}.

Therefore, the only simplices of 𝐺 are those induced by any two neighboring nodes and are

all maximal. So, the maximal multiplices of 𝐺 are 𝑀1 = 𝐶1 and 𝑀2 = 𝐶2, and only 𝑀1 involves

𝑣4. Thus, our algorithm will compute just one of the two existent transitive orientations of 𝑀2

and the two existent transitive orientations of 𝑀1 and combine them into the two transitive

orientations of 𝐺 showcased below.

Figure 3.2: Transitive orientations in 𝐴, 𝐵𝐺

 The node 𝑣4 has the minimum out-degree of 0 in the leftmost of the two orientations

so this orientation is going to be placed in the first position of the list in which orientations are

sorted with respect to the out-degree of 𝑣𝑖 in them. By connecting a new node 𝑣 only to 𝑣4

(since this is what the transitive orientation dictates) and producing the complement of the

resulting graph we observe that it is comparability due to it having the transitive orientation

of the figure below:

35

Figure 3.3: A transitive orientation of 𝐺𝑣
̅̅ ̅

 Hence, we deduce that connecting 𝑣 to 𝑣4 alone is the optimal solution to our problem.

Had 𝐺𝑣
̅̅ ̅ not been comparability, we would have to form another 𝐺𝑣 be considering the other

transitive orientation of Figure 3.2.

3.3 Code Implementation & Explanations

We have already discussed that Algorithm-Multiplices and Algorithm-Permutation are not

only, up to a certain stage, identical as algorithms but are also implemented in the same way.

Thus, the description of the implementation of Algorithm-Permutation will begin right after

the calculation of the final form of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 which, exactly like in the implementation of

Algorithm-Multiplices, contains all unique maximal multiplices of 𝐺.

 We now enter the phase where we want to compute a transitive orientation of every

element of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 that does not contain any edges in which 𝑣𝑖 is an endpoint and all the

transitive orientations of the elements of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 that do contain such an edge. To save

the results of our calculations, we initialize a list named 𝑎𝑙𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠. After

the completion of the upcoming for loop, which is very similar to the final for loop of the

implementation discussed in the previous chapter as we will soon see, the 𝑘-th index of

𝑎𝑙𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 will contain a list of one element which will be a transitive ori-

entation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠[𝑘] if 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠[𝑘] does not contain 𝑣𝑖, and a list of all possible

transitive orientations of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠[𝑘] if 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠[𝑘] does contain 𝑣𝑖. Note that transi-

tive orientations of graphs and multiplices are also lists, so 𝑎𝑙𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 will

eventually be a list that contains lists that contain either one or more lists. Despite this usage

of the list structure possibly seeming unnecessary to some, it will prove very practical later.

The for loop that follows accomplishes precisely that by doing the following: we go through

each 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 in 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 and initially perform the same check we implemented in our

36

other algorithm to find out whether 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 contains an edge that features 𝑣𝑖 or not. In

case 𝑐 is equal to 0 (where 𝑐, exactly like in the implementation of Algorithm-Multiplices, in-

dicates whether 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 contains 𝑣𝑖 or not) after the check is performed, we follow the

exact same process we followed for Algorithm-Multiplices, but with a crucial twist. Before go-

ing into the for loop that goes through all elements of 𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠 we initialize an empty

list named 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 which will eventually hold the single transitive

orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 that we want to keep. After managing to verify that 𝑡𝑒𝑚𝑝_𝐹 is a

transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥, we append 𝑡𝑒𝑚𝑝_𝐹 to 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

and then append 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 itself to 𝑎𝑙𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠.

The way the code has now taken shape for the case of 𝑐 being equal to 0 can be seen in Figure

3.4.

Figure 3.4: A transitive orientation for multiplices that do not contain 𝑣𝑖 (Permutation)

 In the case where 𝑐 equals 1 after the check is performed, we again enter a loop that

goes through all the elements of 𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠. The only difference between this loop

and the one we implemented for Algorithm-Multiplices is that we now are not, for the mo-

ment at least, interested in the in or out degree of 𝑣𝑖 in any of the transitive orientations of

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 that we come across (therefore we do not initialize any of the auxiliary variables

that were defined in our other code, namely 𝑚𝑎𝑥, 𝑖𝑛𝐷𝑒𝑔𝑟𝑒𝑒 and 𝑏𝑒𝑠𝑡_𝐹). Our only concern

37

is to append every 𝑡𝑒𝑚𝑝_𝐹 that is a transitive orientation of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 to

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠. After we have gone through all elements of

𝑖𝑐_𝑖𝑛𝑑𝑒𝑥_𝑐𝑜𝑚𝑏𝑜𝑠 we will have saved all transitive orientations of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 that are relevant

to our problem to 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠, and thus we can append it to

𝑎𝑙𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠. Figure 3.5 presents the code that corresponds to this section.

Figure 3.5: Appending all transitive orientations of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥 in a list

Since the next step of our algorithm is to calculate the out-degree of 𝑣𝑖 in each of the

transitive orientations of 𝐺 that we can gather by appropriately combining the transitive ori-

entations of 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑒𝑠 that we calculated, we first need to gain immediate access to these

transitive orientations of 𝐺. This is implemented simply in the following code section where

we take advantage of the fact that we have structured 𝑎𝑙𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 in a way

that the cartesian product ∏ 𝑎𝑙𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠[𝑘 − 1]
𝑙𝑒𝑛(𝑎𝑙𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠)
𝑘=1

is precisely the set of transitive orientations of 𝐺 that we desire. The way we structured

𝑎𝑙𝑙_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒𝑥_𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑠 may have gifted us a convenient way to arrive at 𝑡𝑒𝑚𝑝_𝑎𝑙𝑙_𝐹𝑠

in line 194 (pictured below in Figure 3.6), however the elements of this list are divided into

the color/implication classes that comprise them. So, to extract from 𝑡𝑒𝑚𝑝_𝑎𝑙𝑙_𝐹𝑠 a list in

which each element is a list that contains edges that form a transitive orientation of 𝐺, we

38

execute the loop that immediately follows, producing 𝑎𝑙𝑙_𝐹𝑠, a list that fulfills those desired

criteria. This is realized with the help of 𝑡𝑒𝑚𝑝_𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟, an empty list initialized for every

orientation in 𝑡𝑒𝑚𝑝_𝑎𝑙𝑙_𝐹𝑠 and to which we append every directed edge of every transitive

orientation of every unique maximal multiplex of 𝐺 included in 𝑡𝑒𝑚𝑝_𝑎𝑙𝑙_𝐹𝑠, before append-

ing 𝑡𝑒𝑚𝑝_𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑜𝑟 to 𝑎𝑙𝑙_𝐹𝑠.

Figure 3.6: 𝐴, 𝐵𝐺 calculation

 Now that 𝑎𝑙𝑙_𝐹𝑠 holds all relevant transitive orientations of 𝐺 (in other words, the

transitive orientations of 𝐴, 𝐵𝐺) we finally compute the out-degree of 𝑣𝑖 in every transitive

orientation of 𝑎𝑙𝑙_𝐹𝑠 and save it in 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠. After the computation we initialize a copy

of 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠 named 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠_𝑐𝑜𝑝𝑦 and sort 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠's elements in ascending

order. The existence of these two lists that contain the exact same elements but one of them

is ordered will prove very useful in the upcoming sorting of the elements of 𝑎𝑙𝑙_𝐹𝑠.

 The sorting of the elements of 𝑎𝑙𝑙_𝐹𝑠 occurs in the next small block of code that begins

in line 213 and ends in line 219. The sorted version of 𝑎𝑙𝑙_𝐹𝑠 will be saved in another list

named 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠 which is initialized before the sorting begins. We begin the process using a

double for loop that goes through all indices 𝑖 of 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠 for the outmost loop and 𝑗 of

𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠_𝑐𝑜𝑝𝑦 for the inmost loop. Our plan is to search for 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠[𝑖] (which is

the (𝑖 + 1)-th largest out-degree of 𝑣𝑖 in the orientations of 𝐴, 𝐵𝐺) in 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠_𝑐𝑜𝑝𝑦. The

first index 𝑗 such that 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠[𝑖] == 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠_𝑐𝑜𝑝𝑦[𝑗] is the index of 𝑎𝑙𝑙_𝐹𝑠 where

the transitive orientation of 𝐴, 𝐵𝐺 with the 𝑖-th smallest out-degree for 𝑣𝑖 lies, thus we append

𝑎𝑙𝑙_𝐹𝑠[𝑗] to 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠. Since there may be more than one elements of 𝑎𝑙𝑙_𝐹𝑠 with the same

out-degree for 𝑣𝑖, 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠 and 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠_𝑐𝑜𝑝𝑦 may include duplicate elements. Our

wish to avoid appending the same element of 𝑎𝑙𝑙_𝐹𝑠 to 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠 more than once is what

drives our decision to change the value of an element of 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠_𝑐𝑜𝑝𝑦 to something

that definitely cannot be found in 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠 once two elements of these two out-degree

lists are found to be equal. That way, whenever we examine two or more consecutive equal

elements of 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠, the indices 𝑗 for which these elements are found to be equal to

39

𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠_𝑐𝑜𝑝𝑦[𝑗] always differ, resulting in all different orientations of 𝑎𝑙𝑙_𝐹𝑠 in which

𝑣𝑖 has that out-degree to be eventually appended to 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠. Had we not changed

𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠_𝑐𝑜𝑝𝑦[𝑗] value to "𝑥", or any other value guaranteed not to be equal to any ele-

ment of 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠, the same orientation of 𝑎𝑙𝑙_𝐹𝑠 would be appended to 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠 as

many or even more times than the number of orientations in 𝑎𝑙𝑙_𝐹𝑠 in which 𝑣𝑖 has out-de-

gree equal to 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠[𝑖]. The section that begins with the initialization of 𝑜𝑢𝑡_𝑑𝑒𝑔𝑟𝑒𝑒𝑠

and ends with the sorting of the elements of 𝑎𝑙𝑙_𝐹𝑠 in 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠 can be examined in Figure

3.7.

Figure 3.7: Sorting the elements of 𝑎𝑙𝑙_𝐹𝑠

 Before entering the final section of our code implementation where we seek to pro-

vide an answer to our question, we include a small albeit significant piece of code in which we

construct a list that will feature all undirected, i.e. directed in both possible directions, edges

present in 𝐾|𝑉𝑛𝑒𝑤|. The reason why such a step is important is because the next section of code

will require us to calculate the complement of the comparability graphs 𝐺𝑣 we produce, and

the edges of such complement graphs will be computed by removing the edges present in 𝐺𝑣

from the ones in a complete graph on |𝑉𝑛𝑒𝑤| nodes. After initializing 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑒𝑑𝑔𝑒𝑠, which

is the list in which 𝐾|𝑉𝑛𝑒𝑤|'s edges will be saved, we define a new list named 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠 ini-

tially equal to a list that includes only 𝐺's nodes (which are the integers in 𝑇|𝑉|) and then we

append to it max{𝑉} + 1, which is the integer that will correspond to node 𝑣. Then for every

pair 𝑖 and 𝑗 of non-identical nodes in 𝑛𝑒𝑤_𝑛𝑜𝑑𝑒𝑠 we append (𝑖, 𝑗) to 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑒𝑑𝑔𝑒𝑠.

 We are now ready to proceed to the last section of the code. As we have already sug-

gested, we shall go through the elements of 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠 in the order that they appear and for

40

each 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 in it, examine whether 𝐺𝑣
̅̅ ̅ is a comparability graph, where 𝐺𝑣 is the compa-

rability graph produced by adding edges to 𝐺 + 𝑣𝑖𝑣 using Lemma 2.2 and 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛. To

this end, we begin a for loop that goes through each element called 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 in 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠

and immediately initialize two empty lists named 𝑛𝑒𝑤_𝑒𝑑𝑔𝑒𝑠 and 𝑛𝑜𝑑𝑒𝑠_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑, the for-

mer to include the undirected edges that shall be added to 𝐺 + 𝑣𝑖𝑣 in order for 𝐺𝑣 to occur

and the latter to include the nodes that will be connected to 𝑣 during this process, except 𝑣𝑖.

In the for loop that immediately follows we go through all edges in the orientation that is

currently examined, and if one's head is 𝑣𝑖 then the tail is added to 𝑛𝑜𝑑𝑒𝑠_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 and

both directed versions of an edge that connects 𝑣 with that tail are appended to 𝑛𝑒𝑤_𝑒𝑑𝑔𝑒𝑠.

We then introduce 𝑡𝑜𝑡𝑎𝑙_𝑒𝑑𝑔𝑒𝑠, a list initially identical to 𝐸, that shall represent the edges in

𝐺𝑣. Thus, 𝑣𝑣𝑖 is appended to it, as well as every edge in 𝑛𝑒𝑤_𝑒𝑑𝑔𝑒𝑠. Finally, we are ready to

define 𝑐𝑜𝑚𝑝_𝑒𝑑𝑔𝑒𝑠, the list that will include the edges of 𝐺𝑣
̅̅ ̅, and we initialize it to be equal

to 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒_𝑒𝑑𝑔𝑒𝑠, and then we remove from it all of its elements that can also be found in

𝑡𝑜𝑡𝑎𝑙_𝑒𝑑𝑔𝑒𝑠. The graph 𝐺_𝑐𝑜𝑚𝑝 that represents 𝐺𝑣
̅̅ ̅ can now be defined as a networkx graph

and get its edges from 𝑐𝑜𝑚𝑝_𝑒𝑑𝑔𝑒𝑠.

 Before producing a transitive orientation of 𝐺𝑣
̅̅ ̅ or deciding that it is not a comparability

graph with the help of the TRO Algorithm, we shall initialize three auxiliary lists. The first one

is 𝑡𝑒𝑚𝑝_𝐸, which is the list which we will arbitrarily pick edges from, so it must be defined to

contain exactly the edges of 𝐸. The second is 𝐹, in which we will append the edges of a tran-

sitive orientation of 𝐺𝑣
̅̅ ̅ if such an orientation exists, and 𝑡𝑒𝑚𝑝_𝐹, which will host the implica-

tion classes enumerated during the execution of the TRO Algorithm. Both 𝐹 and 𝑡𝑒𝑚𝑝_𝐸 are

initially empty. These preliminary processes that occur before the execution of the TRO Algo-

rithm can be seen in Figure 3.8.

41

Figure 3.8: Initializations before the TRO Algorithm

 The for loop that immediately follows is where the TRO Algorithm is executed. We use

a for loop because we decide to always choose the first not already accounted for edge of

𝑡𝑒𝑚𝑝_𝐸 to be the edge whose implication class we enumerate, something that the TRO Algo-

rithm allows since the decision on which edge to choose is arbitrary. So, after some edge 𝑖 in

𝑡𝑒𝑚𝑝_𝐸 has been chosen, we need to define the graph in which we will search for 𝑖's implica-

tion class. This is dictated by the TRO Algorithm's design: when looking for an edge's implica-

tion class, we do it by having first removed from the graph that we started the algorithm with

all edges that have already been enumerated in an implication class. This is precisely what we

do in lines 254-255, and this will become clear later when we reach the point where the edges

enumerated in some edge's implication class are removed from 𝑡𝑒𝑚𝑝_𝐸 along with their in-

verse edges. Before the enumeration of 𝑖's implication class, we append 𝑖 to 𝑡𝑒𝑚𝑝_𝐹 (which,

as we stated, will eventually feature 𝑖's whole implication class) and remove 𝑖 from 𝑡𝑒𝑚𝑝_𝐸

as we not only do not wish to ever re-enumerate its implication class but we are also certain

that 𝑖 would eventually force itself to be included in its implication class [4], which would be

undesirable since we would have at least two instances of 𝑖 in 𝑡𝑒𝑚𝑝_𝐹. Then we begin the

main double for loop inside which 𝑖's implication class is enumerated and gradually appended,

edge by edge, to 𝑡𝑒𝑚𝑝_𝐹. The outmost loop goes through all elements of 𝑡𝑒𝑚𝑝_𝐹. Initially

𝑡𝑒𝑚𝑝_𝐹 only contains 𝑖 but as we enumerate the implication class, more and more edges will

be added to it and by examining them we would trace the edges they directly force that were

not directly forced by 𝑖, thus tracing the edges of 𝑡𝑒𝑚𝑝_𝐸 that 𝑖 indirectly, or eventually, forces

42

in 𝐺_𝑐𝑜𝑚𝑝_𝑡𝑒𝑚𝑝. The inmost loop goes through all elements of 𝑡𝑒𝑚𝑝_𝐸, which at any point

of the execution of this double for loop contains the edges of 𝐺_𝑐𝑜𝑚𝑝_𝑡𝑒𝑚𝑝 that either do

not belong to 𝑡𝑒𝑚𝑝_𝐹 or have not yet being checked on whether they do belong to it or not.

Once an edge 𝑘 of 𝑡𝑒𝑚𝑝_𝐸 is found to be directly forced by one edge 𝑗 of 𝑡𝑒𝑚𝑝_𝐹 by satisfying

the 𝛤 relation criterion, we append it to 𝑡𝑒𝑚𝑝_𝐹 and remove it from 𝑡𝑒𝑚𝑝_𝐸 for the same

reasons why we removed 𝑖 from 𝑡𝑒𝑚𝑝_𝐸. After this double for loop ends the calculation of 𝑖's

implication class is complete.

 Where the TRO Algorithm goes next is a test of whether 𝑡𝑒𝑚𝑝_𝐹 transitive. It is true

that 𝑡𝑒𝑚𝑝_𝐹 is transitive if and only if for every edge in 𝑡𝑒𝑚𝑝_𝐹, its inverse is not in 𝑡𝑒𝑚𝑝_𝐹

[13]. We implement this check by initializing a Boolean variable 𝑓𝑙𝑎𝑔 as 𝑇𝑟𝑢𝑒 and going

through each 𝑒𝑑𝑔𝑒 in 𝑡𝑒𝑚𝑝_𝐹 in a for loop. If, for any such 𝑒𝑑𝑔𝑒, it holds that the inverse of

𝑒𝑑𝑔𝑒 is in 𝑡𝑒𝑚𝑝_𝐹, we change 𝑓𝑙𝑎𝑔's truth value to 𝐹𝑎𝑙𝑠𝑒 and break the for loop. If after the

ending of said for loop 𝑓𝑙𝑎𝑔 is still 𝑇𝑟𝑢𝑒 that means that 𝑡𝑒𝑚𝑝_𝐹 is indeed transitive so we

append all its edges to 𝐹 and remove all the inverses of these edges from 𝑡𝑒𝑚𝑝_𝐸 as the TRO

Algorithm demands we do. After we do these tasks for all edges in 𝑡𝑒𝑚𝑝_𝐹, we empty that

list for it to hold the next implication class that we should enumerate in the potential next

iteration of the loop. If, on the other hand, 𝑓𝑙𝑎𝑔 is 𝐹𝑎𝑙𝑠𝑒 we deduce that 𝐺𝑣
̅̅ ̅ is not a compa-

rability graph and we break the for loop that we are currently in, meaning that we move on to

the next 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 in 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠. It should go without saying that we cannot use a linear

time algorithm like the one presented in [14] instead of the TRO Algorithm because such an

algorithm can only produce transitive orientation of 𝐺𝑣
̅̅ ̅ in linear time if it is already known that

𝐺𝑣
̅̅ ̅ is a comparability graph, which is precisely what we want to check. The code for the TRO

Algorithm is presented in full in Figure 3.9.

43

Figure 3.9: The TRO Algorithm

 If, for a certain 𝑜𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 in 𝑠𝑜𝑟𝑡𝑒𝑑_𝐹𝑠, by the end of each enumeration of an im-

plication class, 𝑡𝑒𝑚𝑝_𝐹 always ends up transitive until 𝑡𝑒𝑚𝑝_𝐸 becomes empty, 𝑓𝑙𝑎𝑔 is still

going to be 𝑇𝑟𝑢𝑒 so once we finish the for loop that arbitrarily picks edges from 𝑡𝑒𝑚𝑝_𝐸, we

enter the final if statement having in our hands a transitive orientation of 𝐺𝑣
̅̅ ̅ in the form of 𝐹.

We then proceed to print out our result, which features the number of nodes we needed to

connect to 𝑣 (apart from 𝑣𝑖) in order for 𝐺𝑣 to be a permutation graph (that number is pre-

cisely 𝑙𝑒𝑛(𝑛𝑜𝑑𝑒𝑠_𝑡𝑜_𝑐𝑜𝑛𝑛𝑒𝑐𝑡)), the nodes themselves and finally 𝐹, a transitive orientation

of 𝐺𝑣
̅̅ ̅ which obviously proves that it is a comparability graph.

3.4 Another Approach

At this point, we would like to introduce a second method for solving the same problem for

permutation graphs that is not related to the algorithm that was proposed in Chapter 2 but,

instead, only focuses on permutations that represent our graph. This new approach involves

the insertion of a new number in between any two integers of any permutation that repre-

sents 𝐺 and a computation of the degree of the new integer in the resulting inversion graph,

which, as we will show, is exactly what we aim to minimize. The incorporation of a certain

technique which we will present below is what allows for this degree computation to become

more efficient and therefore make it significantly better than a brute force search.

 Consider our general question as it was posed in the beginning of Section 3.1 and let 𝜋

be a permutation of 𝑇|𝑉| that represents 𝐺. Let 𝑓 be an isomorphism between 𝐺 and 𝐺[𝜋]

such that 𝑓(𝑣𝑖) = 𝑘. Our algorithm is essentially going to try and "insert" every number from

𝑘 − 1/2 down to 1/2 (subtracting 1 in each step) in between any two elements of 𝜋 that lie

44

to the right of 𝜋𝑘
−1 and every number from 𝑘 + 1/2 up to |𝑉| + 1/2 (adding 1 in each step) in

between any two elements that lie to the left of 𝜋𝑘
−1, aiming to minimize inversions of inte-

gers. After the insertion, we can turn the resulting sequence into a permutation of 𝑇|𝑉|+1 by

increasing the inserted number by 1/2 and all the other numbers that were larger than it by

1. The number we insert is representing 𝑣, the new node that is connected to 𝑣𝑖, so the min-

imization of inversions in the resulting permutation entails a minimization of the edges that 𝑣

is connected to in 𝐺𝑣.

 Of course, to guarantee an optimal solution to our problem in the general case we

would need to complete this process for all permutations that represent 𝐺 (an example that

proves that this is the case will be given later), and in the cases where 𝑣𝑖 may correspond to

more than one integers of 𝑇𝑛 through different isomorphisms between 𝐺 and 𝐺[𝜋], we would

also have to examine all these isomorphisms (again, this will be demonstrated by an example).

Finally, for this to be a valid method, we need to make sure that any permutation of 𝑇|𝑉|+1

that represents 𝐺𝑣 will be turned into a permutation of 𝑇|𝑉| that represents 𝐺 by removing the

integer that corresponds to 𝑣 and subtracting 1 from all integers that are larger than it. If this

were not the case, then there may well have been better solutions that our algorithm would

fail to detect. In the following lemma we prove the desired result.

Lemma 3.2: Let 𝑅(𝑉𝑅 , 𝐸𝑅) be a permutation graph, 𝑣 ∈ 𝑉𝑅 and 𝜋 be a permutation such that

𝑅 ≅ 𝐺[𝜋]. Let 𝑓: 𝑉𝑅 → 𝑇𝑛+1, 𝑛 ∈ ℕ be an isomorphism between 𝑅 and 𝐺[𝜋] such that 𝑓(𝑣) =

𝑘. Let 𝐺(𝑉, 𝐸), |𝑉| = 𝑛 be the graph that results from the deletion of 𝑣 from 𝑅. Let 𝜋′ be the

permutation that results from deleting 𝑘 from 𝜋 and subtracting 1 from every integer 𝑙 > 𝑘 in

𝜋. Ιf 𝛱 = {𝜋: 𝜋 is a permutation of 𝑇𝑛 ∧ 𝐺 ≅ 𝐺[𝜋]} then 𝜋′ ∈ 𝛱.

Proof. Let 𝑓′: 𝑉 → 𝑇𝑛 such that 𝑓′(𝑢) = {
𝑓(𝑢), 𝑓(𝑢) < 𝑘

𝑓(𝑢) − 1, 𝑓(𝑢) > 𝑘
. We will first show that 𝑓′ is a

bijection. Let 𝑥, 𝑦 ∈ 𝑉 such that 𝑓′(𝑥) = 𝑓′(𝑦). If both 𝑓(𝑥) and 𝑓(𝑦) are smaller than 𝑘 then

𝑓′(𝑥) = 𝑓′(𝑦) ⇔ 𝑓(𝑥) = 𝑓(𝑦) ⇔ 𝑥 = 𝑦 because 𝑓 is a bijection. Similarly, if 𝑓(𝑥) and 𝑓(𝑦)

are larger than 𝑘 then 𝑓′(𝑥) = 𝑓′(𝑦) ⇔ 𝑓(𝑥) − 1 = 𝑓(𝑦) − 1 ⇔ 𝑥 = 𝑦 again due to 𝑓 being

a bijection. If 𝑓(𝑥) and 𝑓(𝑦) are not both larger or smaller than 𝑘, which is the only scenario

left unexplored, let us suppose, without loss of generality, that 𝑓(𝑥) < 𝑘 and 𝑓(𝑦) > 𝑘,

which, since {𝑓(𝑥), 𝑓(𝑦)} ⊆ 𝑇𝑛+1 ⊆ ℕ, implies that 𝑓(𝑥) ≤ 𝑘 − 1 and 𝑓(𝑦) ≥ 𝑘 + 1. Then

𝑓′(𝑥) = 𝑓′(𝑦) ⇔ 𝑓(𝑥) = 𝑓(𝑦) − 1 ⇔ 𝑓(𝑦) − 𝑓(𝑥) = 1 which is a contradiction because

45

𝑓(𝑦) − 𝑓(𝑥) ≥ 2. Therefore 𝑓′(𝑥) and 𝑓′(𝑦) cannot be equal if (𝑓(𝑥) − 𝑘)(𝑓(𝑦) − 𝑘) < 0.

We have thus deduced that ∀𝑥, 𝑦 ∈ 𝑉: 𝑓′(𝑥) = 𝑓′(𝑦) ⇔ 𝑥 = 𝑦 which means that 𝑓′ is one-

to-one. Now let 𝑚 ∈ 𝑇𝑛. We want to show that 𝑓′ is onto, or equivalently that ∃𝑥 ∈ 𝑉: 𝑓′(𝑥) =

𝑚. We have: 𝑇𝑛 ⊆ 𝑇𝑛+1 ∧ 𝑓: 𝑉𝑅 → 𝑇𝑛+1 ⇒ ∃𝑠 ∈ 𝑉𝑅 : 𝑓(𝑥) = 𝑚. If 𝑚 < 𝑘, then we know that

𝑠 ≠ 𝑣 because 𝑓(𝑣) = 𝑘 and 𝑓 is one-to-one, therefore 𝑠 ∈ 𝑉 and 𝑓′(𝑠) = 𝑓(𝑠) = 𝑚. If 𝑚 ≥

𝑘 then, because 𝑚 + 1 ∈ 𝑇𝑛+1 and 𝑓 is onto, ∃𝑑 ∈ 𝑉𝑅 : 𝑓(𝑑) = 𝑚 + 1. Again, 𝑚 + 1 ≠ 𝑘 so

𝑑 ≠ 𝑣 therefore 𝑑 ∈ 𝑉 and 𝑓′(𝑑) = 𝑓(𝑑) − 1 = (𝑚 + 1) − 1 = 𝑚. So 𝑓′ is onto. Now we

need to show that 𝑓′ is an isomorphism between 𝐺 and 𝐺[𝜋′], i.e. ∀𝑥, 𝑦 ∈ 𝑉: 𝑥𝑦 ∈ 𝐸 ⇔

𝑓′(𝑥)𝑓′(𝑦) ∈ 𝐸(𝐺[𝜋′]). Since 𝐺[𝜋′] is an inversion graph, 𝑓′(𝑥)𝑓′(𝑦) ∈ 𝐸(𝐺[𝜋′]) ⇔

(𝑓′(𝑥) − 𝑓′(𝑦))(𝜋′
𝑓′(𝑥)
−1 − 𝜋′

𝑓′(𝑦)
−1) < 0. Let 𝑥𝑦 ∈ 𝐸. Since 𝐸 ⊆ 𝐸𝑅 (which follows from the

way that 𝐺 is derived from 𝑅) it holds that (𝑓(𝑥) − 𝑓(𝑦))(𝜋𝑓(𝑥)
−1 − 𝜋𝑓(𝑦)

−1) < 0. Let us suppose,

without loss of generality, that 𝑓(𝑥) < 𝑓(𝑦) ∧ 𝜋𝑓(𝑥)
−1 > 𝜋𝑓(𝑦)

−1 . By the definition of 𝑓′ we have

that ∀𝑥, 𝑦 ∈ 𝑉: 𝑓(𝑥) < 𝑓(𝑦) ⇔ 𝑓′(𝑥) < 𝑓′(𝑦). As for 𝜋′, let 𝑚, 𝑡 ∈ 𝑇𝑛+1\{𝑘}: 𝑚 < 𝑡 ∧ 𝜋𝑚
−1 >

𝜋𝑡
−1 and suppose 𝑓(𝑥) = 𝑚, 𝑓(𝑦) = 𝑡. By removing 𝑘 from 𝜋 and then modifying it to get 𝜋′,

𝑚 and 𝑡 will only be decreased by 1 if they are larger than 𝑘 and their position in 𝜋′ will be 1

less than their position in 𝜋 only if they appear after 𝑘 in 𝜋. Whatever their position in 𝜋 is

though, it holds that 𝑚 and 𝑡 are inverted in 𝜋 if and only if the integers that correspond to

them in 𝜋′ are also inverted. But this correspondence between integers of the two permuta-

tions is exactly what 𝑓′ expresses, so we have that ∀𝑥, 𝑦 ∈ 𝑉: 𝜋𝑓(𝑥)
−1 > 𝜋𝑓(𝑦)

−1 ⇔ 𝜋′𝑓′(𝑥)
−1 >

𝜋′𝑓′(𝑦)
−1 . What we have proven is that ∀𝑥, 𝑦 ∈ 𝑉: 𝑓′(𝑥)𝑓′(𝑦) ∈ 𝐸(𝐺[𝜋′]) ⇔ (𝑓(𝑥) −

𝑓(𝑦))(𝜋𝑓(𝑥)
−1 − 𝜋𝑓(𝑦)

−1) < 0 ⇔ 𝑥𝑦 ∈ 𝐸𝑅 . So, what now needs to hold for 𝑓′ to be an isomor-

phism between 𝐺 and 𝐺[𝜋′] is that ∀𝑥, 𝑦 ∈ 𝑉: 𝑥𝑦 ∈ 𝐸 ⇔ 𝑥𝑦 ∈ 𝐸𝑅 which is true because 𝐸 =

𝐸𝑅\{𝑎𝑏 ∈ 𝐸𝑅 | 𝑎 = 𝑣}. Therefore, 𝐺 is a permutation graph that is represented by 𝜋′, which

implies that 𝜋′ ∈ 𝛱. 

 To illustrate the algorithm and the technique that allows us to make it more computa-

tionally efficient than a pure exhaustive search, we are going to use an example. Let 𝐺(𝑉, 𝐸)

be the following graph.

46

Figure 3.10: A permutation graph 𝐺

 It is not hard to verify that 𝐺 can be represented by [4,2,3,1], [4,3,1,2] and [3,4,2,1].

Suppose that 𝑣𝑖 is 𝑏 and that we first want to try inserting a new number to [4,2,3,1]. We

could construct an isomorphism 𝑓 between 𝐺 and 𝐺[4,2,3,1] so that 𝑏 = 𝑣𝑖 corresponds to

either 2 or 3. Let us suppose that we map it to 2. If we do so, we must now try to insert the

numbers 1.5 and 0.5 after 2 in [4,2,3,1] or the numbers 2.5, 3.5 and 4.5 before 2 in the same

permutation. However, instead of computing the inversions caused by each insertion from

scratch, we save time and memory through the following observation.

Table 3.1: Incomplete offsets and columns for [4,2,3,1], 𝑓(𝑣𝑖) = 2

 offset= 2 offset= 3 offset= 2

 4 2 3 1

 1.5 → 0 1.5 → 0 1.5 → 0

 0.5 → −1 0.5 → −1 0.5 → +1

 +1 −1

 The table above has the numbers of the permutation [4,2,3,1] in its second row, with

gaps in between so that in the columns we can demonstrate the insertions that we would like

to test. We have so far only completed the insertions of numbers smaller than 2 (which is

written in bold to remind us that this is the integer that corresponds to 𝑣𝑖) and see that after

inserting 1.5 (which is the largest number smaller than 2 that we insert to the permutation)

exactly to the right of 2 we can compute the inversions that this insertion creates (apart from

the one with 2) and call that the column's offset, as is written in the corresponding column of

the table. Then, we can complete the column in such a way that if we were to add the column's

47

offset with the first 𝑗 elements of the column, the sum would be equal to the inversions caused

by the insertion of the 𝑗-th largest number. To achieve this, we need to observe that the num-

ber that corresponds to 1.5 should be 0 (since the offset is calculated with respect to this

number) and then we should "map" 0.5 to 1 if 1 is to its left (since that would give exactly as

many inversions as the insertion of 1.5 would plus one more new inversion due to 1 and 0.5

now being inverted) and we should map it to −1 if 1 is on its right (this is actually the case in

our example and this is why the arrow next to 0.5 points to −1 in that column).

 We have described how the inversions caused by each insertion in the column exactly

to the right of 2 can be computed without treating each insertion as if it is not related to the

others that we are interested in, i.e. the ones whose resulting inversions we have already

computed. Let us now describe how we can derive the columns to this one's right. Since 3 lies

exactly to the right of 2 in [4,2,3,1] and 1.5 (and hence 0.5) would invert with 3 if we were to

insert it to 3's right, the offset of the next column will increase by 1 and that column shall

otherwise be identical to the one on its left. The +1 number three cells below 3 indicates

precisely this column offset increase. However, when it comes to inserting after the number

1, i.e. at the end of [4,2,3,1], we can see that the inversion between 1.5 and 1 that was re-

flected in the previous column is no longer there (therefore the column offset decreases by 1

as is indicated three cells below 1) however 0.5 now inverts with 1 so we need to demonstrate

that in the new column, which shall be identical to the previous one except for the cell that

corresponds to 0.5 which changes from −1 to 1. The difference between the two consecutive

columns is highlighted by the green color of the sole cell which marks the difference between

the two columns.

 Following this train of thought, we can complete the rest of the table like this.

Table 3.2: Complete offsets and columns for [4,2,3,1], 𝑓(𝑣𝑖) = 2

offset= 1 offset= 2 offset= 2 offset= 3 offset= 2

 4 2 3 1

2.5 → 0 2.5 → 0 1.5 → 0 1.5 → 0 1.5 → 0

3.5 → +1 3.5 → +1 0.5 → −1 0.5 → −1 0.5 → +1

4.5 → +1 4.5 → −1 +1 −1

 −1

48

 To compute what the best possible insertion is for this particular permutation and in-

teger that maps to 𝑏 = 𝑣𝑖 is we would need to find, for which column and integer 𝑗, the

column's offset plus the sum of the first 𝑗 numbers of the column produces the minimum

result. Of course, these sums shall not be calculated independently from one another. Having

calculated the sum 𝑥 of a column's offset plus its (𝑗 − 1) first elements, the calculation of the

sum of the same offset plus the 𝑗 first column elements shall follow immediately after 𝑥's

computation and be equal to 𝑥 plus the 𝑗-th element of the column. And since a sum equal to

0 is guaranteed to be an optimal solution (since it would imply that 𝐺 + 𝑣𝑖𝑣 is a permutation

graph), these sums must be computed right after a column's completion to save unnecessary

time of computing other columns when the optimal solution can potentially be found in the

columns we have already computed. We shall maintain variables of the permutation, the in-

teger 𝑘 that corresponds to 𝑣𝑖, the number that we inserted and the position in which said

number was inserted to, for which the minimum number of inversions (or equivalently sum

of column offset plus the 𝑗 first elements of said column) is achieved. Of course, if we run into

a sum equal to 0 we stop the search after renewing the values of these variables. If this never

happens, after examining all permutations, isomorphisms between these permutations and

𝐺, numbers and positions for possible insertion, we know that a way to turn 𝐺 + 𝑣𝑖𝑣 into a

permutation graph by connecting 𝑣 to as few nodes of 𝑉 as possible is by connecting it to the

nodes of 𝑉 that correspond to the integers (of the permutation where the minimum sum was

achieved) that invert with the number that we inserted in the position where the minimum

sum was achieved.

 Before providing pseudocode for this algorithm, we shall show why examining all per-

mutations that represent 𝐺, as well as all possible isomorphisms between 𝐺 and 𝐺[𝜋], is nec-

essary to guarantee that we will find the optimal solution.

 We will first tackle the need for considering multiple permutations that represent 𝐺

by returning to the example through which we introduced the algorithm. It is easily verifiable

by consulting Table 3.2 that the best an insertion to [4,2,3,1] can achieve is the connection of

𝑣 to one node of 𝑉 apart from 𝑣𝑖 for the result to be a permutation graph. However, if we

consider the permutation [3,4,2,1] and the fact that 𝑏 = 𝑣𝑖 corresponds to the number 3, we

can see that inserting 0.5 to the exact right of 3 creates no other inversions than the one

49

between 3 and 0.5, so 𝐺 + 𝑣𝑖𝑣 is a permutation graph, a fact that we could not detect through

insertions in [4,2,3,1]. The only reason why this does not constitute an example of why we

shall consider multiple isomorphisms between 𝐺 and 𝐺[𝜋] is that we can observe that 𝑏 = 𝑣𝑖

could also be mapped to 4 through an isomorphism, but if we were to insert 3.5 at the end of

the permutation, i.e. right after 1, we would again cause no extra inversions apart from the

one between 4 and 3.5, thus proving 𝐺 + 𝑣𝑖𝑣 is a permutation graph through a different iso-

morphism between 𝐺 and 𝐺[𝜋].

 To illustrate why all isomorphisms between 𝐺 and 𝐺[𝜋] shall be tested we shall intro-

duce a new example. Consider the graph displayed in Figure 3.1 and that 𝑖 = 3, i.e. 𝑣𝑖 = 𝑣3.

That graph, which we will call 𝐺, can be represented by (at least) [4,5,2,1,3] and [4,3,5,1,2],

but we will only focus on 𝜋 = [4,3,5,1,2]. We could either (through an isomorphism 𝑓 be-

tween 𝐺 and 𝐺[𝜋]) map 𝑣3 to 4 or 3. In the first mapping, the insertion of 0.5 exactly to the

right of 4 proves that 𝐺 + 𝑣𝑖𝑣 is a permutation graph and no more connections between 𝑣

and other nodes of 𝑉 are needed. However, for the second mapping, we can observe that no

insertion will produce such a result because any insertion to the right of 3 will invert with 4

(which lies in the first position of 𝜋) and every insertion to the left of 3 will invert with 1 and

2 (which lie in the penultimate and ultimate positions of 𝜋 respectively).

 Below, we provide a pseudocode version of the algorithm.

Algorithm 3.2 Insertion Algorithm

Require: 𝐺(𝑉, 𝐸) a permutation graph, 𝑣𝑖 ∈ 𝑉

1: enumerate all permutations that represent 𝐺

2: for all permutations 𝜋 that represent 𝐺 do

3: find all isomorphisms between 𝐺 and 𝐺[𝜋]

4: for all 𝜋 that represent 𝐺 do

5: for all isomorphisms 𝑓 between 𝐺 and 𝐺[𝜋] (𝑓(𝑣𝑖) = 𝑘) do

6: for each possible insertion point to the right of 𝑘 do

7: compute the offset, column elements and sums

8: if a new minimum sum is located do

9: save all parameters of the optimal insertion

10: if sum= 0 go to 16

11: for each possible insertion point to the left of 𝑘 do

50

12: compute the offset and the column elements

13: if a new minimum sum is located do

14: save all parameters of the optimal insertion

15: if sum= 0 go to 16

16: for the parameters involved in the smallest sum do

17: return the optimal solution according to the parameters

 When it comes to this algorithm’s complexity, the most expensive steps seem to be

the first two. Indeed, by Theorem 2.11, (iv), 𝐺's number of transitive orientations is shown to

be ∏ (𝑟𝑖 + 1)!𝑘
𝑖=1 , where 𝑟𝑖 is the rank of a unique maximal multiplex 𝑀𝑖 of 𝐺, and this number

could be quite large for some particular graphs (and on top of that, one should consider that

the different combined orientations of the implication classes that make up the multiplex shall

also be checked for comprising a transitive orientation of 𝑀𝑖. While this check can be per-

formed in polynomial time, it further increases the complexity). When it comes to finding all

isomorphisms between 𝐺 and the inversion graphs isomorphic to it, there does not seem to

exist a more reliable method for the general permutation graph case than the obvious brute-

force method of checking which of the |𝑉|! bijections between 𝑉 and 𝑇𝑛 are isomorphisms.

After these two more expensive steps are finished, we observe that the total number of in-

sertions that we consider for each permutation 𝜋 and isomorphism 𝑓 are (in the worst case

where an optimal solution is not found before the computation of all columns)

𝑘(𝑛 + 1 + 𝜋𝑘
−1) + 𝜋𝑘

−1(𝑛 + 1 − 𝑘) = (𝑘 + 𝜋𝑘
−1)(𝑛 + 1) − 2𝑘𝜋𝑘

−1 where 𝑘 = 𝑓(𝑣𝑖) and 𝜋𝑘
−1

is 𝑘's position in 𝜋. The number of total insertions may be dependent on 𝑘 and 𝜋𝑘
−1 but these

numbers are bounded by 𝑛 so the insertions' number is linear with respect to 𝑛. For each

insertion/column, we need 𝑂(𝑛) time for the offset and 𝑂(1) for each of the other column

elements if the column lies to the immediate left or right of 𝜋𝑘
−1, and we need 𝑂(1) for both

offset and each column element for all other columns. To compute the sum of the offset plus

the 𝑗 first elements of a particular column we require 𝑂(𝑗) time, with 𝑗 being bounded by 𝑛.

51

CHAPTER 4

 CONCLUDING REMARKS

Now that we have presented all our results, hopefully having succeeded in providing sufficient

answers to the questions that originally motivated us to work on this thesis, it is time to pro-

vide some brief comments on our efforts and some ideas for where future research could

head towards given the contributions of this thesis.

 The algorithms designed for this thesis provide us with a tool to expand, potentially

even ad infinitum, comparability and permutation graphs by adding one node at a time and

connecting it to the fewest possible other nodes. This could prove immeasurably helpful if we,

for example, wanted to model a network which, as time went on, would get nodes added to

it, and its desired properties would also dictate that the graph which would model it shall be

comparability or permutation (e.g. a network whose nodes should be placed in a strict order).

 The chapters that preceded this one indicate directions towards which one could guide

their research. On the purely mathematical front, the study of other characteristic features of

these graph classes (e.g. UPOs, schemes, 𝐺-decompositions and 𝛤∗ matroids for comparability

graphs and permutation sorting for permutation graphs [4]) could potentially allow for these

features' appropriation for the design of more efficient algorithms. There is also room for im-

provement in both our algorithm design and implementation, through potential modifications

that would allow faster algorithms to partake in our design (e.g. the linear time algorithm

presented in [14] instead of the TRO Algorithm) and through the use of fitting data structures

upon which we could perform our desired operations in more concise code that executes

52

quicklier. When it comes to research that is beyond the scope of this thesis, we would like to

restate the seeming lack of work on the general question we posed in the first chapter for

many otherwise well-studied graph classes and encourage interested readers to try providing

effective algorithms for such classes, and also note that our problem is a simpler case of the

one in which the new edges that need to be added to maintain a graph's membership in class

do not necessarily have to be incident on 𝑣. That problem is one of great interest too.

53

BIBLIOGRAPHY

[1] P.C. Tsamatos, Θεμελιώδεις Έννοιες Μαθηματικής Ανάλυσης, Εκδόσεις Τζιόλα, 2009.

[2] R.C. Lacher, MAD 3105. Class Lecture, Topic: "Closure of Relations," Department of Com-

puter Science, Florida State University [Online]. Available:[Accessed Apr. 16, 2025].

[3] S. Goldberg, Probability: An Introduction, Dover Books on Mathematics, Courier Corpora-

tion, p.41, 1986.

[4] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, 2nd ed., Annals of Discrete

Mathematics, vol. 57. Elsevier, 2004.

[5] A. Mpanti, S. D. Nikolopoulos, L. Palios, "Adding a Tail in Classes of Perfect Graphs," Algo-

rithms, vol. 16, no. 6, 289, 2023.

[6] P. Heggernes, F. Mancini, C. Papadopoulos, "Making arbitrary graphs transitively orienta-

ble: Minimal comparability completions," In Proc. ISAAC 2006, Kolkata, India, 2006, Springer

Verlag, pp. 419-428.

[7] M. Andresen, "ON TRANSITIVE ORIENTATIONS OF 𝐺 − �̂�," Discussiones Mathematicae

Graph Theory, vol. 29, no. 1, pp. 423-467, 2009.

[8] S. Olariu, "On sources in comparability graphs, with applications," Discrete Mathematics,

vol. 110, no. 1-3, Dec., pp. 289-292, 1992.

[9] M. Hamadé, A. Belkasri, "A NEW APPROACH TO CHARACTERISE ALL THE TRANSITIVE ORI-

ENTATIONS FOR AN UNDIRECTED GRAPH," in arXiv. Cornell University, [online document],

1994. Available: arXiv, https://arxiv.org/abs/alg-geom/9411013v1 [Accessed: April 17, 2025].

https://arxiv.org/abs/alg-geom/9411013v1

54

[10] D. Eppstein, CS163 & CS265. Class Lecture, Topic: "Cliques and the Bron-Kerbosch Algo-

rithm," Department of Computer Science, University of California, Irvine, Jan. 15, 2025.

[11] L. Euler, "Solutio problematis ad geometriam situs pertinentis," in Euler Archive, Univer-

sity of The Pacific, [online document], 1741, Available: Scholarly Commons, https://scholar-

lycommons.pacific.edu [Accessed: April 17, 2025].

[12] B. Dushnik, E.W. Miller, "Partially Ordered Sets," American Journal of Mathematics, vol.

63, no. 3, Jul., pp. 600-610, 1941.

[13] M.C. Golumbic, A. Trenk, Tolerance Graphs, Cambridge Studies in Advanced Mathemat-

ics, vol. 89, Cambridge University Press, 2004.

[14] R.M. McConnell, J.P. Spinrad, "Modular decomposition and transitive orientation," Dis-

crete Mathematics, vol. 201, no. 1-3, Apr., pp. 189-241, 1999.

https://scholarlycommons.pacific.edu/euler-works/?utm_source=scholarlycommons.pacific.edu%2Feuler-works%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.pacific.edu/euler-works/?utm_source=scholarlycommons.pacific.edu%2Feuler-works%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages

55

CV

Konstantinos Stamatis was born in June of 1999 in Ioannina. He studied in the Department

of Mathematics in the University of Ioannina, in which he enrolled in October 2017 and grad-

uated in April 2022. In October of 2022 he enrolled in the postgraduate program "Data and

Computer Systems Engineering” in the Department of Computer Science & Engineering in the

University of Ioannina. His research interests lie in Graph Theory.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Εκτεταμενη Περιληψη
	CHAPTER 1 Introduction
	1.1 Theoretical Framework
	1.2 Objective of the Thesis
	1.3 Thesis Structure

	CHAPTER 2 on Comparability Graphs
	CHAPTER 3 on Permutation Graphs
	3.1 Main Idea 3.2 Algorithm-Permutation 3.3 Comments & Explanations on Code 3.4 Another Approach
	3.4 Another Approach

	CHAPTER 4 Concluding Remarks
	Bibliography
	CV

