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PREFACE

Understanding the genetics behind complex diseases is fundamental in modern
research. It offers a chance to untangle how genetics and environment interact to shape
disease risk. Most conditions usually arise from the interplay between genetic
predispositions and environmental or lifestyle factors. Traditional epidemiology has
provided key insights into disease risk, but genetic epidemiology has taken this further
by revealing the underlying biological mechanisms. Genetic epidemiological studies
have identified thousands of genes for complex traits. However, translating these
discoveries to clinical benefits is not always an easy task. The fact that these traits are
highly polygenic and are affected by several sources of small genetic effects which can
interact with external factors makes the discovery of the involved pathways and the

understanding of their role very challenging.

Many biological pathways of multiple conditions are often interconnected. However,
most genetic studies focus on single traits. This one-dimensional (univariate) approach
might neglect these interconnections between phenotypes and overlook critical insights
into their shared underlying mechanisms. Therefore, more innovative approaches are

needed that combine genetic information from multiple traits into a single framework.

Multivariate methods can explore the shared genetic architecture between multiple
traits, offering a more comprehensive view of their connections. These techniques allow
to identify new genetic risk factors and shared pathways, improving the understanding

of disease pathophysiologies and genetic links between phenotypes.

This thesis investigates multivariate analytical methods to explore the genetic structure
of complex phenotypes. It begins with an introduction to the genetic epidemiology of
complex traits and the rationale behind multivariate approaches. It then reviews existing
multi-trait methods and applies the most suitable of them to real data on various
diseases and other phenotypes to investigate genetic effects. The aim is to deepen the
understanding of the genetic basis for these conditions and contribute to more effective

preventive and therapeutic strategies.
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CHAPTER 1

INTRODUCTION TO GENETIC EPIDEMIOLOGY

Genetic epidemiology is the scientific field that combines the principles of genetics and
epidemiology aiming to study the genetic determinants of human health. In contrast
with traditional epidemiology, which studies non-genetic factors, such as
environmental and lifestyle, it focuses on genetic variations and their role in the

pathophysiology of diseases (Duncan, 2004).

1.1 Overview of Genetic Epidemiology

Genetic epidemiology arose as a distinct field in the 1980s. It brought together
methodologies from genetics, epidemiology, biostatistics, and bioinformatics under the
need to investigate the human genetic basis and its impact on the overall health (Morton

and Chung, 1978, Evangelou, 2018).

Its initial focused was restricted to the study of Mendelian (monogenic) diseases, where
a single gene is the main causal factor of the disease (Zheng et al., 2012). Therefore,
family-based studies were designed (see section 3.1.1) to track the inheritance through

family trees in order to identify the causal genes that affect the diseases (Duncan, 2004).

After the completion of the Human Genome Project along with other advancements in
genomic technologies, genetic epidemiology was able to expand its focus to complex
phenotypes, which are influenced by multiple factors (Lander et al., 2001, Zheng et al.,
2012). As a result, new methodologies were developed leading to the discovery of
thousands of novel genes. Nevertheless, the study of complex traits is still a very
challenging task considering the influence of multiple genetic variants of smaller effect,
which are not easy to discover, that interact each other and with external factors

(Balding et al., 2007).

Finally, genetic epidemiology plays a crucial role in precision (personalised) medicine.

In this innovative field, based on individual’s genetic and molecular profiles, therapy
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and prevention strategies can be adjusted to each patient’s needs optimising the safest

treatment scheme for the patient (Dawn Teare, 2011).

1.2 Population Genetics and its role in Genetic Epidemiology

Population genetics consists of the basis of genetic epidemiology providing the
essential theoretical foundation to understand how genetic variation affects phenotypes.
This field investigates how evolutionary forces, like natural selection and mutations,
cause changes to the distribution and frequency of genetic variants within a population
over time (Kar et al., 2022). Below are discussed a few basic principles of population

genetics.
1.2.1 Allele Frequency

Allele frequency reflects the genetic diversity within populations and refers to the
proportion of an allele at a genetic locus within a population. The most frequent allele
at a locus is called major allele, while the least frequent is called minor allele and its
frequency minor allele frequency (MAF). The study of allele frequency is vital in
genetic association studies. Common diseases are assumed to be influenced mainly by
common genetic variants (MAF > 0.05), otherwise, they wouldn’t be common in a
population. Nevertheless, the role or rare variants (MAF < 0.01) in common diseases
cannot be excluded either (Evangelou, 2018, Zheng et al., 2012). Allele frequencies can
be affected due to genetic drift, migration, selection, and mutation. They can be used to
understand population structure or minimise potential confounding factors such as
population stratification. For instance, certain alleles may be rare in the general
population but common in specific ethnic groups or isolated populations (Evangelou,

2018).
1.2.2 Hardy-Weinberg Equilibrium

Hardy-Weinberg equilibrium (HWE) examines weather allele and genotype
frequencies in a population remain constant from generation to generation under the
absence of evolutionary influences, such as selection, mutation, or migration.
Deviations from HWE can indicate selection bias, non-random mating, or population

stratification (Balding et al., 2007, Evangelou, 2018).
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For a biallelic variant with alleles A and a and frequencies in the population p and q,
respectively, there are three possible genotypes: AA, Aa and aa. Then, the genotype

equilibrium frequencies for the variant can be calculated by the algebraic equation:

(p + @)? = p* + 2pq + ¢* (1.1)

The HWE equation (1.1) provides the expected frequencies of the alleles for the next
generation. Figure 1.1 is a schematic overview of the above equation. It shows how the
alleles of a genetic variant are inherited from one generation to the next one. A deviation
from HWE test is performed using a Pearson’s chi-squared hypothesis test comparing

the expected allele frequencies with the observed ones calculated from data.

The Hardy-Weinberg law

applied to two alleles
mother

I\
i\

parental
gametic
frequencies \\

for alleles
Aanda PA)
father ; ;
M PR P?(AA) pq(Aa)
) ol gl

a@ pq(Aa) q*(aa)

© 2010 Encyclopzedia Britannica, Inc.

Figure 1.1 The Hardy-Weinberg law for a variant of two alleles

Source: https://www.britannica.com/science/Hardy-Weinberg-law

1.2.3 Linkage Disequilibrium

Linkage disequilibrium (LD) refers to the non-random allocation of alleles at different

genetic loci within a population. It occurs when alleles within the same or neighbouring
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regions are inherited together more frequently than expected by chance (haplotypes or
LD blocks), often due to limited recombination events that prevent these alleles from
segregating independently (Dawn Teare, 2011). Recombination events within families
gradually disintegrate chromosomal segments across generations and in a population
basis, their effect is amplified tending to break apart the segments until all alleles
become independent (linkage equilibrium) (Figure 1.2) (Bush and Moore, 2012).
However, this is not possible to happen due to natural selection mechanisms and LD
blocks can be formed eventually even under a uniform recombination rate (Wang et al.,

2002).
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Figure 1.2 Linkage within a family (left) and linkage disequilibrium within a
population (right)

Source: (Bush and Moore, 2012)

Several measures of pairwise LD have been suggested, but all of them are related to the

LD coefficient D:

D = pap — PaPs (1.2)

where pag is the frequency of haplotype AB (a genotype with alleles A and B at two
loci), while pa and pg are the frequencies of alleles A and alleles B, respectively. When

D = 0 means that there is a linkage equilibrium, which is similar to HWE as it indicates
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that the alleles are randomly associated (Slatkin, 2008). The magnitude of D represents
the degree of LD, where positive values mean that the haplotype is more frequent than

expected and negative values that it is less frequent than expected.

However, D is not often the optimal measurement because of its infinite range, which
is determined by the allele frequencies. Hence, other measurements are preferred
instead, such as D" and r?, which help quantify the degree of association between alleles
within a more limited and comparable range of values. D" reflects the proportion of the
maximum possible disequilibrium observed:

D (1.3)

Dmax

D' =

min (1 - 1- , whenD <0
where Dy = { (Paps, (1 —p)(1 —p3))

min(pA(l —pg),pg(1 — pA)), when D >0

and itranges —1 < D’ < 1 with the zero indicating independence of the alleles, positive
values that the alleles are observed more frequently than expected and negative values

that the alleles are observed less frequently than expected (Lewontin, 1964).

The other commonly used LD measurement, r?, provides a correlation coefficient that

is more interpretable for association studies and can be calculated by the equation:

D? (1.4)

2 _
B pa(l —pa)pp(1 —pp)

It ranges from 0 to 1 with values close to 0 indicating independence while values close
to 1 high LD. Thus, information for one variant’s allele can accurately indicate the allele
for other variants in high LD, enabling more cost-efficient genotyping using imputation
techniques. However, it might complicate the identification of true causal variants

leading to multiple false positive associations (Evangelou, 2018, Balding et al., 2007).

LD allows to map genetic markers to close genes and infer their associations with
phenotypic outcomes. It also allows to test fewer markers while capturing broader
genomic information, but in return, it requires careful interpretation to distinguish true
signals from spurious associations caused by LD with nearby variants (Zheng et al.,
2012). LD patterns vary across populations and can be influenced by several factors

such as genetic drift, mutation, and recombination rates (Duncan, 2004).
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1.2.4 Identity by Descent and Identity by State

Identity by descent (IBD) refers to alleles inherited from a common ancestor, while
identity by state (IBS) to identical in allele sequences, which are not necessarily
inherited by the same ancestor. IBD and IBS can be used to detect genetic relationships
between individuals, such as kinship coefficients, which measure the probability that
two individuals share alleles IBD, and therefore, can assess the genetic relatedness

within populations (Evangelou, 2018, Duncan, 2004).

1.3 Importance of Genetic Epidemiology in Public Health

Genetic epidemiology has evolved into an irreplaceable pillar for public health. The
field has witnessed a significant growth over the past years allowing to conduct studies
of bigger and bigger sample sizes, where millions of genetic variants are examined with
a plethora of phenotypes, which in turn results in an increasing publication rate (Figure

1.3).
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Figure 1.3 Publications related to genetic association studies over time

Source: www. Scopus.com

Genetic predisposition holds a significant role for various diseases. A detrimental

genetic effect can increase the disease burden, worsen quality of life and eventually
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reduce healthy lifespan (Figure 1.4). Thus, genetic epidemiology is, beyond doubt, a
crucial field to public health contributing to better understand disease aetiologies,
pushing forward the development of targeted interventions and improved treatment
strategies (Manolio et al., 2009, Visscher et al., 2017). Additionally, it is also
determining to the development of precision medicine. Individuals with high genetic
predisposition for a disease can benefit in a way that limit the disease risk after
implementing more accurate and early interventions (Collins et al., 2003, Khera and
Kathiresan, 2017, Torkamani et al., 2018). Finally, it informs public health policy to
develop more targeted interventions based on population-level risk factors (Khoury et

al., 2016, Manolio and Collins, 2009).
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Figure 1.4 The impact of different polygenic scores on public health

*DALYs Disability-Adjusted Life Years. Expected loss of healthy life years for
individuals in the top 10% of the score compared to the rest 90%.
Source: Data Science — Genetic Epidemiology Lab, Institute for Molecular Medicine Finland, HiLIFE,

University of Helsinki and Massachusetts General Hospital, Harvard Medical School
(https://www.dsgelab.org)



CHAPTER 2

INTRODUCTION TO COMPLEX PHENOTYPES

Complex traits are phenotypes that correspond to biological features or health
conditions. They are influenced by the combined effects of multiple genetic and
environmental factors. Thus, it is very challenging to predict their development and
progression. Yet, they are often responsible for a significant amount of the disease

burden in populations.

Their development involves various biological mechanisms, including metabolic
pathways, regulatory systems, and cellular signalling, but it is also influenced by non-
genetic factors like age, sex, diet, lifestyle, and other environmental exposures. Each
causal factor may effect on the outcome either directly or through interactions with

other factors (Rowe and Tenesa, 2012).

2.1 Genetic Architecture of Complex Phenotypes

The genetic structure of complex traits is very challenging and cannot effectively be
addressed by traditional epidemiological approaches. It requires the consideration of
the combined effects of many genetic variants, each contributing a small amount to the
overall phenotype (Lander, 2011, McCarthy et al., 2008). This section summarises some

basic parameters of the genetic architecture of complex traits.
2.1.1 Polygenicity

During the last years, previous genetic epidemiological studies have discovered
thousands of genes affecting complex traits. However, there is still a significant
proportion of phenotypic variance that remains unexplained. Complex traits are
characterised by polygenicity, a phenomenon where the final shape of a phenotype is
controlled by the effect of many genetic variants (Visscher et al., 2017). These variants
might be located in non-coding regions of the genome regulating gene expressions
rather than directly coding for proteins (Maurano et al., 2012). The polygenic nature of
complex traits makes their prediction and study very challenging (Plomin et al., 2016).

10



Chapter 2: Introduction to Complex Phenotypes

The higher the polygenicity of a phenotype, the higher the number of the susceptibility
genetic variants that are associated with this phenotype and at the same time, the lower
the effect size of these variants. This practically means the more polygenic a trait is, the

higher sample sizes are needed (Figure 2.1) (Matoba et al., 2022).
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Figure 2.1 Connection of polygenicity and discoverability of genetic variants
SNP Single-Nucleotide Polymorphism
Source: (Matoba et al., 2022)

2.1.2 Inheritance, Penetrance and Genetic Effect Models

Inheritance refers to the process where the genetic information is transmitted from
parents to their offspring following the principles of Mendelian genetics (Griffiths,
2000).

Penetrance concerns the probability that a person carrying a specific genetic variant
will express the associated phenotype. It provides information about the phenotypic
expression, as even individuals with the same genetic variant might not always exhibit

the phenotype (Dawn Teare, 2011).

Genetic effect models refer to the modes of inheritance that describe how different
alleles at a genetic locus can contribute to the overall phenotype (Zheng et al., 2012).

The most common models include:
1. Additive: the effects of the two alleles are summed.

2. Dominant: the presence of one allele (dominant) is sufficient to express the

trait, regardless of the second allele.

3. Recessive: two copies of the allele (recessive) are required for the trait to be

expressed.

11
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4. Multiplicative: the two alleles interact each other and their effect is multiplied

(Evangelou, 2018).
2.1.3 Heritability

Heritability measures the proportion of phenotypic variation in a population that is
attributed to genetic differences among individuals. In other words, it quantifies the
genetic contribution to the phenotypes. It can be distinguished to broad-sense
heritability (H?), which measures the overall genetic effect, and narrow-sense
heritability (h?), which focuses on additive genetic effects only (Evangelou, 2018,
Dawn Teare, 2011, Griffiths, 2000).

Heritability is not a fixed characteristic and varies across populations (Balding et al.,
2007). It is calculated as the ratio of genetic to total phenotypic variance for continuous
traits, while for binary traits (e.g., diseases), its calculation is more challenging due to

more complex modelling and requires careful interpretation (Griffiths, 2000).
2.1.4 Gene-Gene and Gene-Environment Interaction

Gene-gene interactions (epistasis) occur when the effect of one gene on a phenotype
is influenced by the presence of another (Evangelou, 2018). On the other hand, gene-
environment interactions refer to the phenomenon where the genetic effect on a
phenotype is influenced by environmental factors. In other words, the phenotypic
expression of genetic predispositions can be modified, either enhanced or suppressed
by external influences (Hunter, 2005). The study of these interactions provides insights
into understanding the role of genetic mechanisms on the phenotypic expression under

the presence or absence of other genetic or environmental exposures (Evangelou, 2018).

2.2 Genetic Pleiotropy and its Impact on Complex Traits

Genetic pleiotropy refers to the phenomenon where a single genetic locus influences
multiple phenotypic traits. The effects of a single genetic variant may manifest across
different traits, making it difficult to isolate its specific contribution to a particular trait.
Pleiotropic genes may be involved in multiple pathways, increasing the complexity of

their roles in disease aetiology (Solovieff et al., 2013).

Pleiotropy can be observed at allelic or gene level and can be categorised into three

main types based on how a genetic variant affects multiple traits (Figure 2.2):

12
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1. Biological Pleiotropy (horizontal): the genetic variant directly influences more

than one phenotypic trait.

2. Mediated Pleiotropy (vertical): the genetic variant influences one phenotype,

which affects another phenotype. This type of pleiotropy suggests a causal

relationships between traits.

3. Spurious Pleiotropy: a genetic variant appears to be associated with multiple

traits due to confounding factors rather than a true biological effect. Spurious

pleiotropy can arise from issues like population stratification or LD (Solovieff

etal., 2013).
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Figure 2.2 Types of pleiotropy

Source: (Solovieff et al., 2013)

Nature Reviews | Genetics

Pleiotropy is intrinsically connected to comorbidity (see section 2.3) as pleiotropic

genes might contribute to shared genetic pathways underlying different diseases

(Sivakumaran et al., 2011, Solovieff et al., 2013). The identification of pleiotropic

13
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effects can provide insights into shared genetic mechanisms across different traits

(Pickrell et al., 2016).

2.3 Comorbidity in Complex Traits

Comorbidity refers to the co-occurrence of two or more diseases or conditions in an
individual. Four different models have been proposed to explain the aetiological
relationships that lead to comorbidity.: 1) direct causation, ii) associated risk factors, iii)

heterogeneity, and iv) independence (Figure 2.3) (Valderas et al., 2009).
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Figure 2.3 Aetiological models of comorbid diseases

Source: (Valderas et al., 2009)

Integrative approaches, combining genetic, transcriptomic, and proteomic data, help in

elucidating the molecular underpinnings of comorbid conditions. For instance, gene

14
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expression data can capture both the cause and consequence of diseases and in
combination with genetic data can improve the understanding of comorbidity

relationships (Sanchez-Valle and Valencia, 2023).

Genetic studies of comorbidity also have implications for public health. By identifying
individuals at risk for multiple conditions, healthcare systems can better allocate
resources and develop targeted interventions. Understanding the genetic links between
comorbid conditions can lead to the discovery of new therapeutic targets that may

benefit patients with multiple related diseases.

15



CHAPTER 3

METHODOLOGIES IN GENETIC EPIDEMIOLOGY

Understanding the genetic basis of complex traits requires a robust methodological
framework that integrates both classical and advanced statistical techniques. In this
chapter, the key methodologies that underpin genetic epidemiology are discussed,
focusing on most important study designs in the field and analytical techniques used
for the score of the present thesis. The methodologies discussed here provide the
foundation for understanding how genetic variation influences phenotypes, guiding the
identification of genetic associations. This chapter sets the stage for the application of
these methods in the subsequent analysis of genetic data, highlighting their significance

and relevance to the field of genetic epidemiology.

3.1 Study Designs in Genetic Epidemiology

The study designs in genetic epidemiology often adapt traditional epidemiological
approaches. They can be broadly categorised into family-based and population-based
studies (Dawn Teare, 2011). Family-based designs focus on the genetic relationships
within families to identify heritable traits, while population-based designs examine
genetic variation across broader populations to uncover associations with disease and

traits (Ott et al., 2011).
3.1.1 Family-Based Studies

Family-based studies have been widely utilised to investigate the genetic basis of
complex traits. These studies leverage the genetic relationships within families, making
them particularly effective in controlling for confounding factors such as population
stratification, which can significantly bias results in population-based studies (Dawn

Teare, 2011, Balding et al., 2007).

One of the most used methods in family-based studies is the Transmission
Disequilibrium Test (TDT). This test compares the transmission of alleles from parents

to affected offspring (Spielman et al., 1993). It can eliminate the effects of population
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stratification because the non-transmitted alleles serve as internal controls. This method
is particularly useful in case-parent trio designs, where genotypes from both parents
and an affected child are available (Zheng et al., 2012). The TDT has been extended to
various scenarios, including situations where only one parent is available or when
analysing haplotypes rather than single markers (Balding et al., 2007, Dawn Teare,
2011).

Family-based designs are not without limitations. One of them is the difficulty in
recruiting suitable family members, especially for late-onset diseases where parents
may no longer be available (Dawn Teare, 2011). Additionally, the shared genetic
background of family members can lead to reduced statistical power (Zheng et al.,

2012).
3.1.2 Population-Based Studies

Population-based studies in genetic epidemiology often utilise similar frameworks to
traditional epidemiology. The most basic study designs include case-control, cohorts,

and cross-sectional studies (Rothman et al., 2008).

Two primary methodologies have emerged in population-based genetic studies:
Candidate Gene Studies and Genome-Wide Association Studies (GWAS). The
candidate gene studies (3.1.2.1) focus on investigating specific genes offering a targeted
analysis but may miss associations in other, untested regions of the genome (Tabor et
al., 2002). On the other hand, GWAS (3.1.2.2) provides a more comprehensive
approach by scanning the entire genome, without requiring prior hypotheses about

specific genes (Hirschhorn and Daly, 2005, McCarthy et al., 2008).

3.1.2.1 Candidate Gene Studies

Candidate gene studies investigate specific genes hypothesised to be associated with
the phenotype of interest. This approach is grounded in prior biological knowledge,
often derived from functional studies or the known physiological role of the gene in
disease pathways (Tabor et al., 2002). Thus, genes are selected based on their suspected
involvement in a biological process relevant to the disease. These genes are then
examined for genetic variation to determine whether certain variants are more
frequently observed in cases compared to controls (Risch and Merikangas, 1996). This
approach is very powerful when the gene's role in the disease is known, allowing for a

more directed investigation compared to hypothesis-free methods like GWAS
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(Hirschhorn and Daly, 2005). They have been used extensively to validate findings from
other types of studies, such as GWAS. However, one of their limitations is its reliance
on existing knowledge means that it may miss important associations outside the

studied genes (Tabor et al., 2002).

3.1.2.2 Genome-Wide Association Studies
Genome-Wide Association Studies (GWAS) is a key approach in genetic
epidemiology. It is an agnostic approach scanning the entire genome to detect

associations between genetic variants and traits (Uffelmann et al., 2021).

GWAS scan the whole genome aiming to identify genetic variants that occur more
frequently in cases compared to controls. The process begins with the collection of
DNA samples from a large cohort of participants, which are then genotyped to decode
the information of target SNPs across the genome. These genetic data are quality
controlled and used to impute the information of millions of untyped variants based on
LD reference panels. The genotyped and imputed variants are analysed using statistical
methods to identify associations between SNPs and the trait of interest (Figure 3.1)

(Hirschhorn and Daly, 2005, Uffelmann et al., 2021).

A typical GWAS analysis generally includes linear or logistic regression models,
depending on the phenotype nature (continuous or binary, respectively), including

covariates, such as age and sex, to adjust for potential confounders.

GWAS have identified thousands of genetic associations with phenotypes by analysing
huge numbers of variants across the genome (Visscher et al., 2017). However, they also
face several limitations, such as multiple testing burden, which increases dramatically
the likelihood of false positives (Pe'er et al., 2008). To control for Type I error, a
genome-wide significance threshold of P < 5x10°® has been established, but there are
GWAS using an even more conservative threshold of P < 1x10® or P < 5x10”.
Additionally, although GWAS is effective at identifying genetic loci, it is often
challenging to detect the exact causal variants, mostly due to LD (Bush and Moore,
2012). Another challenge is the fact that GWAS results can only explain a small fraction
of the overall heritability of the phenotype. Rare variants, gene-gene interactions, and
gene-environment interactions possibly play a significant role in the phenotypic
variation, which is not fully captured by GWAS (Manolio et al., 2009). Population

stratification, a phenomenon observed in GWAS where allele frequencies differ
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between cases and controls due to different LD structure across population ancestries,
is another challenge as such underlying genetic differences can cause confounding
issues resulting in spurious associations (Marchini et al., 2004). This issue can be
addressed using suitable methods, such as principal component analysis, limiting the

probability of false-positive associations (Price et al., 2006).
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Figure 3.1 Overview of a genome-wide association study workflow

Source: (Uffelmann et al., 2021)

3.2 Advanced Analytical Techniques in Genetic Epidemiology

In addition to the multivariate methods that form the core analytical framework of this
thesis, several other key techniques have been employed. These analytical techniques
are crucial for validating and refining the findings derived from multivariate

approaches. These methodologies enhance the precision of genetic associations and
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provide deeper insights into the underlying biological mechanisms. The following

sections provide detail on techniques applied for the scope of this research.
3.2.1 Fine-Mapping and Functional Annotation

Fine-mapping pinpoints specific genetic variants within a locus that are most likely
responsible for the observed associations. It narrows down the broad regions identified
in GWAS by using additional statistical methods and incorporating biological data, such
as LD patterns and functional genomics data. The goal is to identify causal variants that

directly influence the phenotype (Benner et al., 2016, Schaid et al., 2018).

Functional annotation complements fine-mapping by integrating various biological
datasets to predict the functional impact of the identified variants. This process involves
mapping the variants to known regulatory elements, protein-coding regions, or non-
coding RNAs, and assessing their potential role in gene regulation or protein function
(Roadmap Epigenomics Consortium et al., 2015). Together, fine-mapping and

functional annotation help to translate statistical associations into biological insights.
3.2.2 Colocalisation

Colocalisation analysis is a method to assess whether two or more traits share a
common causal variant at a specific locus. Therefore, it is particularly useful in
investigating pleiotropy elucidating whether genetic associations between traits arise
from the same causal variant or occur through different variants in LD (Solovieff et al.,

2013, Giambartolomei et al., 2014).

Several methods are widely used for colocalisation analysis. COLOC, a popular
Bayesian approach, estimates the probability that two traits share a causal variant within
a specific region. It tests five hypotheses where multiple traits may share common

genetic loci (Giambartolomei et al., 2014, Wallace, 2021):

Ho: neither trait has a causal variant in the locus

Hi: only the first trait has a causal variant in the locus

Ha: only the second trait has a causal variant in the locus

Hs: both traits have causal variants in the locus, but not the same one (Figure 3.2A)

Ha: both traits share the same causal variant in the locus (Figure 3.2B and C)

However, colocalisation cannot distinguish between horizontal (Figure 3.2B) and

vertical pleiotropy (Figure 3.2C) and therefore infer whether the two traits are causally
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related. Additional analyses are needed for that including Mendelian randomisation (see

section 3.2.4).
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Figure 3.2 Schematic illustration in three colocalisation scenarios
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A) No colocalisation, B) colocalisation due to horizontal pleiotropy, C) colocalisation due to
vertical pleiotropy

Source: (Zuber et al., 2022)

An extension of the previous method, HyPrColoc, can handle multiple traits
simultaneously. It also uses a Bayesian algorithm to build a hierarchical framework and

identify shared causal variants across multiple phenotypes (Foley et al., 2021).

Colocalisation analysis has been extensively used to understand the genetic architecture
of complex diseases. By integrating GWAS with expression quantitative trait loci
(eQTL) data, colocalisation methods help to identify genetic loci that influence disease
risk and also regulate gene expression in disease-relevant tissues. This can provide

insights into the biological pathways affected by genetic variants (Zhu et al., 2016).
3.2.3 Phenome-Wide Association Study

The Phenome-Wide Association Study (PheWAS) is a method that explores the
association between a single genetic variant and a wide array of phenotypes. It can use
electronic health records (EHRs) or other phenotypic measures, linking them with
genetic information. Unlike GWAS, which examines many genetic variants with a

single trait, PheWAS scans multiple phenotypes with specific genetic variants (Denny

etal., 2010).
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It can provide a broad view of the potential genetic impact on different aspects of human
health and thus, it can reveal pleiotropic effects, which might remain hidden in a GWAS
approach. It can also contribute to the identification of new disease associations or

common pathways between seemingly unrelated diseases (Tyler et al., 2016).

PheWAS can be combined with other genetic approaches, such as Polygenic Risk Score
(PRS), a score that quantifies the cumulative effect of multiple genetic variants on an
individual's risk for a given trait. PRS is typically used in a disease-specific context to
predict the genetic predisposition to a single phenotype (Chatterjee et al., 2016).
However, using PheWAS, PRS can be applied across a broad range of phenotypes
allowing the exploration of pleiotropy and comorbidity (Wang et al., 2021).

3.2.4 Mendelian Randomisation for Causal Inference

Mendelian randomisation (MR) uses genetic variants as instrumental variables to
infer causal relationships between risk factors (exposures) and health outcomes. The
underlying principle of MR is based on Mendel's law of inheritance, which ensures the
random allocation of alleles during meiosis. This natural mechanism mimics the
randomisation process in controlled trials, thereby reducing the risk of confounding and
reverse causation, creating a natural experiment for causal inference (Smith and

Ebrahim, 2003, Davies et al., 2018).

In MR, genetic variants (instruments) are chosen as proxies for modifiable exposures.
These genetic instruments are assumed to influence the outcome only through their
effect on the exposure, satisfying three key assumptions (Figure 3.3) (Burgess et al.,

2013):

1. Relevance: The genetic instruments are associated with the exposure.

2. Independence: The instruments are independent (not associated) of other
factors (confounders) which affect the outcome.

3. Exclusion Restriction (no pleiotropy): The instrument affects the outcome

exclusively through the exposure, not via any alternative pathways

There are several approaches to MR analysis, each addressing different scenarios
and data types. One-sample MR, where both the genetic instruments and the
exposure/outcome data come from the same sample of individuals (Burgess et al.,

2015).
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Figure 3.3 Mendelian randomisation overview and assumptions

Source: (Wang et al., 2022)

Two-sample MR utilises genetic instruments for the exposure and outcome derived
from separate populations. Common methods used in two-sample MR include inverse
variance weighted (IVW) analysis, MR-Egger, and weighted median (WM) approaches
(Burgess et al., 2015, Hemani et al., 2018). IVW-MR is one of the most widely used
approaches for MR. It combines the effect estimates from each genetic variant weighted
by the inverse of their variance, providing a meta-analytic estimate of the causal effect.
It assumes that all genetic instruments are valid without horizontal pleiotropy. MR-
Egger allows for the possibility of horizontal pleiotropy, where genetic variants
influence the outcome through pathways other than the exposure. It performs a
weighted linear regression of the outcome-exposure associations and if the intercept is
significantly different from zero, it indicates the presence of horizontal pleiotropy. WM-
MR provides a causal estimate by taking the median of the weighted distribution of the
genetic instruments. This approach is robust to invalid instruments, provided that at
least 50% of the weight in the analysis comes from valid instruments (Bowden et al.,

2015, Burgess et al., 2015).

Bidirectional MR allows the investigation of potential reverse causation by examining
the effect in both directions between two traits (Richmond and Davey Smith, 2022).
Multivariable MR (MVMR) extends standard MR by incorporating multiple
exposures, adjusting the estimation of direct effects of each exposure on the outcome
(Sanderson, 2021). Multi-response MR (MR?2), a recently suggested method, is a joint

multivariable (multiple exposures) and multivariate (multiple outcomes) MR model,
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designed to explore the unmeasured pleiotropic pathways of multiple related exposures

on multiple outcomes (Zuber et al., 2023).
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CHAPTER 4

MULTIVARIATE METHODS IN GENETIC EPIDEMIOLOGY

Multivariate analysis is an advanced statistical approach that examines multiple
variables simultaneously. It can be used in genetic epidemiology to uncover genetic

relationships with complex traits by enabling the study of multiple phenotypes together.

Most genetic epidemiological studies follow univariate approaches focusing on single
traits that examine associations between one independent variable (e.g., a single SNP)
and one outcome variable (e.g., a specific phenotype). However, many correlated traits
are one multivariate phenotype in nature with several components. Thus, univariate
methods might fall short in capturing the complex structure of interconnected traits,
which may correspond to linked biological pathways, or the co-occurrence of
symptoms. Multivariate approaches allow the joint analysis of multiple phenotypes and
can offer essential insights into pleiotropy and shared genetic architecture of

phenotypes (Yang and Wang, 2012, Vroom et al., 2019).

Additionally, many univariate genetic studies may be underpowered to detect small-to-
moderate genetic effects. Hence, the rationale for employing multivariate analysis is
based on its ability to improve statistical power. This can be accomplished through the
exploitation of the covariance among phenotypes that can lead to increased probability
to detect genetic loci associated with phenotypes of interest, especially when
phenotypes are correlated. Furthermore, these methods can limit multiple testing issues
that arise from testing multiple phenotypes separately (Yang and Wang, 2012, Vroom
etal., 2019).

With a few exceptions, multivariate methods generally test a null hypothesis of no
association with any trait. However, they present more differences in terms of the exact
alternative hypothesis they test. Some of them test the hypothesis that the joint effect
for a genetic variant on two or more traits deviates from zero, while others that the
genetic variant is associated with at least one trait. Also, the choice of multivariate
methods can be influenced by the type of data they are able to analyse. Some of them

can only incorporate continuous phenotypes only, others dichotomous, categorical or
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mixed. All methods suitable for continuous traits assume a multivariate norma

distribution for all traits (Vroom et al., 2019).

Methods within multivariate analysis vary in their objectives and methodologies, from
regression-based models that accommodate correlated outcomes to dimension
reduction techniques that simplify high-dimensional data by identifying key underlying
factors. This section provides an overview of the key multivariate methods of all
continuous and dichotomous outcomes following Yang and Wang’s conceptual

classification (Yang and Wang, 2012).

4.1 Univariate Test Statistics Combination Methods

Univariate test statistics combination methods combine P-values or test statistics
derived from univariate analyses to test a multivariate hypothesis. The simplicity is the
main benefit of such approaches as using univariate methods is generally easier and
conceptually simpler than multivariate methods. These methods are usually applicable
to any type of phenotypes including both continuous and dichotomous outcomes. The
test statistics that can be combined include beta effect estimate coefficients, P-values or
test statistics values. However, the most challenging part of these methods is to handle
effectively the statistics correlations, which come from the correlations of the

phenotypes. (Yang and Wang, 2012, Vroom et al., 2019).

The alternative hypothesis (Hi) that most of these methods test is whether the genetic
marker is associated with at least one of the examined traits against the null hypothesis
(Ho) of no associations to any trait. These methods can assume homogeneous or
heterogeneous genetic effects. The models assuming homogeneous genetic effects
constraint all genetic variants effects to be the same and thus they are most powerful
under this scenario while the heterogeneous genetic effects models are expected to be
more powerful when the genetic effects differ in size or sign across traits (Yang and

Wang, 2012, Vroom et al., 2019).

4.2 Dimension Reduction Methods

Dimension reduction methods aim to reduce the number of variables. With a few
exceptions (e.g. factor analysis), these methods are applicable only to continuous

phenotypes that follow an approximate normal distribution. As a principle, these
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methods initially create new variates that are linear combinations of the original

phenotypic variation:
Y =bo+ b1y1 + by, + -+ by ym (4.1)

where by, ..., bm are coefficients weighting the contribution of each original trait to the
new variates. Afterwards, the generated variable is tested with the genetic variants for
any potential associations (Yang and Wang, 2012, Vroom et al., 2019). This section

discusses three key methods performing dimension reduction.
4.2.1 Principal Component Analysis

Principal Component Analysis (PCA) transforms a set of correlated and standardised
traits into uncorrelated linear combinations that account for the most variability in the
original variables. The new variates are called Principal Components (PC) and their
number cannot be bigger than the number of the original traits. For each PC, weights
are selected in such a way to maximise its variance. The first PC (PC1) explains the
largest part of the overall multidimensional variability of the full set of the original
traits, followed by the second PC (PC2), the third (PC3) and so forth (Vroom et al.,
2019, Yang et al., 2016).

4.2.2 Factor Analysis

Factor Analysis creates a common factor from a set of correlated traits, calculates a
factor score and then uses it as a dependent variable in regression models. The method
determines the weights by, ..., bm in equation (4.1) so that the factor accounts for the
maximum possible variance common to the traits (Vroom et al., 2019). Although factor
analysis and PCA show many similarities, they show some differences. First, PCA aims
to explain the total variance of the traits, while factor analysis focuses on the shared
covariance between the traits (Lawley and Maxwell, 1962). Second, the two methods
differ in their concept as factors can represent an underlying theoretical construct (e.g.
a health condition that cannot measured directly), while PCs are just statistical
combinations. Third, unlike PCA, factor analysis assumes that residuals are

uncorrelated (Vroom et al., 2019).
4.2.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) extracts a linear combination (canonical

variable) of a set of traits that has the highest possible correlation (canonical correlation)
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with the genetic variant. Thus, for each genetic variant, the weights of the canonical
variable differ across traits indicating their strength of association with the genetic
variant. CCA is the only dimension reduction method that incorporates information
from the genetic variants to the new variate (Ferreira and Purcell, 2009). The covariance
matrix of a multivariate outcome Y and a genetic marker X is estimated as follows:

Y] 2yy ZYX] (4.2)

cov [X =

B ZXY ZXX

where Zyy is the variance matrix of Y, Zyx and its transpose Xxy are the covariance
matrices between Y and X and Xxx is the variance matrix of X. Under an additive
genetic model of codominance, CCA’s performance is identically with MANOVA (see
section 4.3.1) (Yang and Wang, 2012).

4.3 Multivariate Regression Modelling Methods

Multivariate regression modelling is another common approach to analyse associations
between a genetic variant and continuous or categorical multivariate traits. As a rule,
most multivariate regression-based models assume a multivariate normal distribution

of the traits. In general, these models follow the equation:
Y=BX+E (4.3)

where Y is a matrix containing the phenotypic values, X is a matrix of predictors with
genotypic information, B is a matrix of the trait-specific regression weights and E is a
matrix of trait-specific zero-mean residuals (error or disturbance terms). The residuals
are assumed to have the same variance (homoscedasticity) across traits. Including E in

the model allows to account for all sources of residual covariance (Vroom et al., 2019).

Next, some of the most common multivariate regression-based methods are presented.
Of them, all except for the reversed ordinal multiple regression constitute specific

instances of the equation (4.3).
4.3.1 Multivariate Analysis of Variance

Multivariate Analysis of Variance (MANOVA) extends the traditional analysis of
variance (ANOVA) allowing to assess the joint effects of genetic variants on multiple
traits simultaneously. Standard MANOVA uses an unconstrained covariance matrix

testing the null hypothesis of all zero regression coefficients. It compares variance-
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covariance matrices within and between genotypes (Yang et al., 2016). Some methods
assume equal regression weights of the genetic variants (homogenous effect) while
others allow for different regression weights (heterogenous effect) across traits (Vroom
et al.,, 2019). This method assumes a multivariate normal distribution for the traits,
which can offer many statistical advantages in hypothesis tests, but it comes with strong

assumptions, which might be violated in many cases (Yang et al., 2016).
4.3.2 Mixed Effects Models

Mixed effects models are multivariate regression models, where fixed effects are
assumed to estimate the genetic effects, while additional random effects are used to
account for the correlations between traits. In general, these models can address various
types of potential confounding, such as familial relatedness or population stratification.
Depending on the type of outcomes, two different models are mainly used. Linear
Mixed-Effects Models (LMM) are used to model continuous outcomes following the

form:
Yie = Bo + BrX + 1, + e (4.4)

where o is the intercept capturing the non-genetic fixed effect, Bk is the genetic fixed
effect size of the genetic variant on the k™ phenotype, N« corresponds to the random
effects correlation between traits assuming to follow a normal distribution and ex
represent the random errors (residuals) also following a normal distribution. In models
using individual level data, nx is expected to be correlated between traits within an

individual, but independent between different individuals.

When the outcomes are categorical, the Generalised Linear Mixed-Effects Models

(GLMM) are used as follows:

EYelne) = = (Bo + BiX + nx) 4.5)

where L is the link function. For normally distributed traits, the p corresponds to the
identity link and GLMM equation (4.5) becomes identical to LMM (4.4), while for

binary outcomes, | corresponds to the logit link.

The null hypothesis for both LMM and GLMM assumes a zero genetic effect on any
trait (Ho: f1 = ... = fr = 0) and can be tested using the likelihood ratio or a Wald chi-
squared test (Yang and Wang, 2012, Vroom et al., 2019).
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4.3.3 Generalised Estimating Equations

Generalised Estimating Equations (GEE) belong to the class of marginal models.
Unlike mixed effects model, which use n and residuals as separate terms to model
phenotypic correlation, GEE collapse random effects and random residual errors in the
model. The structure of the residual correlation matrix can be assumed to correspond
to conditionally uncorrelated traits, conditionally correlated traits or freely estimated
conditional correlations. The null hypothesis of no association between the genetic
variant and any phenotype can be tested using a Wald test statistic (Yang and Wang,
2012, Vroom et al., 2019).

4.3.4 Structural Equation Modelling

Structural equation modelling (SEM) is a multivariate statistical approach modelling
directly and indirectly observed (latent) variables. SEM is a hypothesis-driven approach
(not agnostic) that uses a system of linear equations combining techniques such as
regression models, factor analysis and path analysis. It comprises two sub-models: the
measurement model, which estimates relationships between the observed (indicators)
and unobserved (latent) variables using a factor analysis framework and the structural
model, which develops relationships between the latent variables. The measurement

model consists multiple equations (one for each indicator) following the form:
X; = Ax&E+ 6; (4.6)
Yi=Aym+ ¢ 4.7)

where Xi and Y; are the indicators, £ and n are the latent variables, Ax and Ay are the

factor loadings, d; and &; are the residuals. The structural model consists of the equation:
n=a+Bf+( (4.8)

where 1 is a vector of the latent variables, a is a vector of intercepts, B is a matrix of
the genetic coefficients on 1 and ( is a vector of disturbances. The model assumes that

9, € and ( are mutually uncorrelated (Stein et al., 2012).
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Figure 4.1 Structural Equations Modelling workflow under a simple scenario

4.3.5 Reversed Ordinal Multiple Regression

This method, named MultiPhen, reverses the regression model, considering genetic
variants as an ordinal outcome [0, 1, 2] and traits as predictors. Thus, the distributional
assumptions of the phenotypes (e.g., conditional multivariate normality) are not
necessary anymore. The phenotypes can be any combination of continuous and
categorical (as dummy-coded) variables. The null hypothesis is that all coefficients in

the regression model are zero (O'Reilly et al., 2012).

4.4 Multivariate Meta-Analytical Methods

Multivariate meta-analysis allows the joint synthesis of multiple outcomes
accounting for their correlation. Most meta-analyses aim to estimate multiple summary
results jointly from the same meta-analysis model (van Houwelingen et al., 2002). Most
meta-analytical methods are based on one or more of the previous categories to produce
summary statistics using various approaches and, on this aspect, they do not strictly
form a distinct class of multivariate methods. They allow a larger number of studies to
contribute into the meta-analysis results for each outcome, which can improve
efficiency and reduce risk of bias compared to performing separate univariate meta-

analyses for each outcome (Hattle et al., 2022).
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4.5 Bayesian Multivariate Modelling Methods

There have been suggested some multivariate methods using a Bayesian approach.
Many of these methods use multivariate regression models, but they infer based on a
Bayes Factor (BF) instead of P-value. They use various forms of prior information
including priors about the genetic effect model (additive, dominant, recessive) and

priors about the genetic effect size (Marchini et al., 2007, Stephens, 2013).
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CHAPTER 5

OBJECTIVES OF THE THESIS

Genetic association studies typically investigate associations between single genetic

variants and single phenotypes. Yet, multivariate approaches, which allow the joint

analysis of genetic effects on multiple phenotypes, have the potential to capture the

shared genetic architecture between correlated traits. These multi-trait methods exhibit

many advantages; they can increase the statistical power to detect novel genetic loci

and they allow for a more holistic investigation of genetic pleiotropy.

The present thesis explores the multivariate methods that utilise data from GWAS,

makes a comparison and prioritises the most effective methods to discover novel

genetic loci and investigate pleiotropy. Specific objectives:

1.

To systematically review and compare the existing multivariate methods that
combine summary statistics from GWAS on human complex traits aiming to
prioritise the most efficient multivariate methods for the discovery of novel loci
and for the investigation of pleiotropy.

To discover novel genetic loci of blood cell traits using suitable multivariate
method to GWAS summary statistics on blood cell traits and prioritise genetic
variants with global effect.

To investigate the shared genetic architecture between inflammation and
cardiometabolism. More specifically, using multi-trait methods on genomic
data, this thesis aimed to identify genetic loci with pleiotropic effect between
C-reactive protein, a marker of chronic inflammation, and several
cardiometabolic risk factors and also, to discover shared biological
mechanisms.

To understand the comorbidity of Alzheimer's and cardiovascular diseases
attributed to genetic predisposition through the application of multi-trait GWAS,
to discover novel genetic loci for Alzheimer's disease, identify pleiotropic loci

and shared biological pathways aiming to define common therapeutic targets.
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CHAPTER 6

MULTIVARIATE METHODS IN GENOME-WIDE ASSOCIATION

STUDIES: A SYSTEMATIC REVIEW

6.1 Background

GWAS typically examine associations in a univariate approach between single genetic
variants and single traits. Although univariate GWAS successfully identified thousands
of novel genetic loci, yet they might not be able to explain only a sufficient proportion
of heritability of complex phenotypes (Manolio et al., 2009, Eichler et al., 2010).
However, multivariate methods, which allow the joint analysis of multiple phenotypes,
can be more efficient in capturing the complex genetic architecture of multiple
correlated traits offering several advantages (Galesloot et al., 2014, Zhu et al., 2015a).
They can improve the statistical power by leveraging the genetic correlation of the
examined traits, and thus identify more genetic variants of small-to-moderate effects.
They can also reduce the number of tests limiting the inflation of type I error due to
multiple testing (Allison et al., 1998, Yang and Wang, 2012, Galesloot et al., 2014).
Under the presence of pleiotropy, multivariate modelling is more consistent with

biology (Chavali et al., 2010).

Several multivariate methodologies have been suggested varying in their objectives and
concepts. These methods can be classified into five main categories: methods that
combine test statistics from univariate models, dimension reduction approaches,
multivariate regression models, multivariate meta-analysis and Bayesian multivariate
methods. Each category shows unique advantages and limitations (Yang and Wang,
2012, Vroom et al., 2019). While most multivariate methods were initially applicable
to individual-level data only, recently, there has been a recent increasing number of
multivariate methods that can utilise summary statistics from GWAS. Yet, there has not
been a systematic review assessing the existing multivariate methods that incorporate

summary statistics.
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This study aims to systematically review all the existing multivariate methods that
perform a single SNP — multiple phenotypes GWAS using exclusively summary
statistics from univariate GWAS. It also aims to compare and understand their varying

approaches and prioritise the most widely used methods with practical applications.

6.2 Methods
6.2.1 Eligibility Criteria

All studies suggesting new multivariate methods to perform joint analysis of single
SNPs - multiple phenotypes genome-wide associations using GWAS summary statistics
were included. The studies that met any of the following criteria were excluded: not
introducing a novel method to jointly analyse multiple phenotypes, not applicable to
human populations, not performing genome-wide association analysis between single
SNPs and multiple complex traits, not incorporating exclusively summary statistics,
extensions or implementation of existing multivariate methods, and absence of software

with practical application.
6.2.2 Information Sources and Search Strategy

A systematic search of the literature was conducted to detect multivariate methods
applicable to GWAS summary statistics. We searched PubMed on 12 December 2023
using the algorithm: “(multivariate OR "multivariate analysis" OR multitrait* OR
multi-trait* OR "multiple trait" OR "multiple traits" OR multiphenotype* OR multi-
phenotype™® OR "cross phenotype" OR "cross phenotypes" OR crossphenotype* OR
cross-phenotype*) AND (GWA OR GWAS OR genome wide OR genome scan)”.

To identify any studies that were not included in PubMed database or were missed by
the search algorithm, an additional manual search for eligible articles was performed

on the references of the included articles.
6.2.3 Study Selection and Data Extraction

The retrieved citations from PubMed were screened at two stages: first, at a title and
abstract level and then at a full text level. The articles were assessed against the
predefined eligibility criteria. The references of the eligible articles were manually

reviewed, and the articles meeting the inclusion criteria that were not included in the
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list of citations from PubMed were examined using the same screening approach and

eligibility criteria as described earlier.

Data extraction included information on the first author’s name, publication year,
journal, multivariate name, type and classification of multivariate method, data type
that the method uses (summary statistics or individual level data), software environment
(e.g. Python, R), number of phenotypes the method can incorporate, type of input
phenotypes (continuous, categorical or both), type of output phenotype (combined or
trait-specific), type of input summary statistics (beta/se, Z, P-value, etc), type of output
summary statistics, feasibility of joint analysis on multiple variants, and suitability for

rare variants analysis.
6.2.4 Citation Analysis

A citation analysis of the included studies was conducted using the Scopus database to
prioritise the most cited methods. The extracted information included the total number

of citations and the average annual number of citations up to 31 December 2023.

6.3 Results

6.3.1 Evidence Base Overview

The search in PubMed identified 3827 citations, which corresponded to 26 eligible
articles while one additional article was identified from their references (Figure 6.1).
The 27 included articles (26 from PubMed and 1 from the reference search) referred to
24 distinct multivariate methods (Table 6.1).

The 24 methods, published between 2013 and 2023, perform a multi-trait genome-wide
association analysis using exclusively summary statistics from univariate GWAS. In
summary, 8 of them can be classified as pure univariate test statistics combination
(UTSC) methods, 2 as pure dimension reduction (DR) methods and another 2 as a
combination of UTSC and DR methods. Moreover, 5 methods follow a pure meta-
analytical approach while 3 other methods are based on combinations between meta-
analysis and techniques from other categories. Five methods incorporate linear
modelling approaches including multinomial logistic regression or linear combination
models. Finally, 2 pure Bayesian methods were found and another 2 combining

Bayesian with approaches from other categories.
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Figure 6.1 Flow chart for the selection of eligible studies

Source: Page MJ, et al. BMJ 2021;372:n71. doi: 10.1136/bmj.n71.

The null hypothesis in most methods assumes that the SNP has no genetic effect on any
of the phenotypes, while the alternative hypothesis assumes the existence of genetic
effect between the SNP and at least one phenotype. In contrast, PLACO assumes that
the SNP effects zero or one trait under the null hypothesis and that it effects both traits
under the alternative hypothesis. A Bayesian method, iMAP, in a simple scenario of two
traits, it tests four hypotheses: the SNP effects none of the traits (Ho), the first trait only
(H1), the second trait only (H») and both traits (H3).

Three methods (MultiMeta, MTAG and GWAMA) generate trait-specific summary
statistics per SNP, while the rest methods produce single summary statistics per SNP
summarising the joint genetic effect on the set of the examined traits. PLACO can only
perform a bivariate analysis while the rest methods are able to incorporate two or more
phenotypes. The methods aMAT and MRP can efficiently analyse rare variants (MAF
< 0.01) while the methods aSPU, HSVS-M, metaCCA and MRP can perform a

multivariate set-SNP analysis.

A software or code is provided for all methods, with eighteen available in the R

environment, five in Python, and one in FORTRAN.
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6.3.2 Citation Metrics

The citation analysis on the included studies indicated MTAG as the method with the
highest impact, followed by Genomic SEM and CPASSOC (Table 6.2). The number of
citations for these three methods corresponded to the 85% of the overall number of the
citations for all methods, while the number of citations for the three methods separately
corresponded to the 40% for MTAG, 26.7% for Genomic SEM and 18.6% for
CPASSOC. Figures 6.2 and Figure 6.3 highlight changes in citation counts and

cumulative average rate of citations across years for the nine most cited studies.

Table 6.2 Number of citations per year for the included studies

Method Publ Year >2016 2017 2018 2019 2020 2021 2022 2023 Tot Cit Avg Cit
MTAG 2018 0 0 21 63 56 88 99 117 | 444 740
GenomicSEM 2019 0 0 0 12 27 76 94 88 297 594
GWAMA 2019 0 0 0 7 19 39 44 35 144 28.8
CPASSOC 2015 20 26 25 26 20 32 31 27 207 230
TATES 2013 50 20 14 16 16 14 13 10 153 13.9
metaCCA 2016 0 9 11 10 16 13 8 9 76 9.5
PLACO 2020 0 0 0 0 0 6 7 19 32 8.0
metaUSAT 2018 0 0 1 6 10 8 5 7 37 6.2
asPU 2015 2 6 8 4 11 7 4 8 50 5.6
MPAT 2019 0 0 0 0 4 4 6 4 18 3.6
iMAP 2018 0 0 0 2 2 7 6 3 20 33
HIPO 2018 0 0 0 1 4 6 5 3 19 3.2
MTAR 2019 0 0 0 0 4 3 2 7 16 3.2
CGWAS 2022 0 0 0 0 0 0 0 5 25
aMAT 2020 0 0 0 0 2 2 2 2 2.0
EBMMT 2022 0 0 0 0 0 0 1 2 3 15
MultiMeta 2015 1 2 0 2 3 0 2 2 12 1.3
CONFIT 2018 0 0 0 0 2 1 1 2 6 1.0
JASS 2020 0 0 0 0 0 1 1 2 4 1.0
MRP 2021 0 0 0 0 0 0 2 0 2 0.7
PolarMorphism 2022 0 0 0 0 0 0 0 1 1 0.5
PAT 2022 0 0 0 0 0 0 0 1 1 0.5
HSVS-M 2022 0 0 0 0 0 0 0 0 0 0.0
MTAFS 2023 0 0 0 0 0 0 0 0 0 0.0

Publ Year: Publication Year; Tot Cit: Total number of citations; Avg Cit: Average number of Citations
from publication year
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Figure 6.2 Trend of the total citations over time for the most cited studies
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6.3.3 Overview of MTAG

Multi-Trait Analysis of GWAS (MTAG) (Turley et al., 2018) can boost statistical power
combining information from the correlation of the variant’s effects and from the
correlation of the estimation error of the variant’s effect to account for sample overlap
and biases such as population stratification or cryptic relatedness. This method models
the shared genetic structure between traits in three steps. First, it estimates the variance-
covariance matrix of the estimation errors of genetic effects using an LD score
regression approach (LDSC) (Bulik-Sullivan et al., 2015). Second, it estimates the
variance-covariance matrix of the genetic effects using a generalised method of
moments. Third, it generates the MTAG estimates based on a weighted sum of the
original GWAS estimates incorporating the information from the two estimated

variance-covariance matrices.

MTAG can be considered a generalisation of inverse-variance-weighted meta-analysis
that incorporates summary statistics from k number of single-trait GWAS and returns a
k number of MTAG-generated trait-specific summary statistics. Thus, the MTAG
statistics can be interpreted similarly with those from a univariate GWAS and can be

used in subsequent post-GWAS analyses.

MTAG assumes homoscedasticity for the genetic effects across traits under a random
effect model and homogeneity for the effect’s estimation error across all SNPs. These
are two strong assumptions, which might be violated under many scenarios, especially
for variants with truly null effects on some traits and truly non-null effects on other

traits, which might increase the probability of false positive associations.
6.3.4 Overview of Genomic SEM

Genomic Structural Equation Modelling (Genomic Sem) (Grotzinger et al., 2019) is a
SEM approach performing in two steps. The first step includes the estimation of the
empirical genetic covariance matrix and its associated sampling covariance matrix.
These two covariance matrices are modified to include information from the SNPs

effects.

The second step comprises a multivariate system of regression to specify a SEM and
covariance associations to estimate a model-implied genetic covariance matrix. A set of
parameters for these associations are selected such that the discrepancy between the

model-implied and the empirical covariance matrices is minimised. In the measurement
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model of SEM, the latent genetic factors are defined as linear functions based on the
SNP effects on each phenotype, trying to fit the model to data. In the structural model
of SEM, regression coefficients are estimated that relate latent variables to each other

using another linear model.

Genomic SEM assumes that the SNPs affect phenotypes through the common factors
exclusively. However, the method calculates a heterogeneity statistic of effect sizes
Qsnp, similar to a heterogeneity Q statistic in meta-analysis, which can be used as an

index measuring the violation of this assumption.

6.3.5 Overview of GWAMA

Genome-Wide Association Meta-Analysis (GWAMA) (Baselmans et al.,, 2019)
includes two different meta-analytical approaches that can be used complementary to
each other: N-weighted GWAMA (N-GWAMA) and Model-Averaging GWAMA (MA-
GWAMA). Both methods can account for sample overlap, population stratification and

cryptic relatedness using LDSC (Bulik-Sullivan et al., 2015).

N-GWAMA assumes a homogenous genetic effect across traits. It is a UTSC method
where the multivariate statistic is generated as a sample size based weighted sum of Z

that follows a standard normal distribution under the null hypothesis.

MA-GWAMA relaxes the assumption of homogenous genetic effects across traits. It is
amodel-averaging approach that combines results from multiple models under different
assumptions about the genetic structure of the traits weighting the models based on the
Akaike information criterion (AIC) (Akaike, 1979). Then, it generates trait-specific
effect estimates for each SNP, which include the model averaged effect sizes for the

effect of a particular variant on the trait and follow a multivariate normal distribution.

6.4 Discussion

Multivariate methods generally can leverage the genetic correlation between traits and
boost the statistical power for associations between genetic variants and phenotypes.
This systematic review provides a comprehensive evaluation of multivariate methods
in GWAS that utilise summary statistics. Twenty-four methods were identified and
classified under various multivariate categories, including UTSC, DR, linear
modelling, multivariate meta-analysis and Bayesian approaches. Each of these

categories exhibits unique features and follows different frameworks to generate
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multivariate test statistics (Yang and Wang, 2012, Vroom et al., 2019). A citation
analysis on the 24 multivariate methods indicated that MTAG, Genomic SEM and
GWAMA are the methods with the highest impact.

The first multivariate methods with applications in GWAS summary statistics were
mainly UTSC methods following a simpler approach. Although these methods perform
different calculations to produce the combined test statistic, most of them share the
same rationale of minimising the generated P-value or maximising a Z-based test
statistic. However, after the development of techniques that allow the estimation of the
genetic covariance between traits using GWAS summary statistics (Bulik-Sullivan et
al., 2015, Yang et al., 2011), several multivariate methods were suggested that follow

more complex and advanced frameworks such as MTAG and Genomic SEM.

Many of the reviewed methods show significant advantages in the investigation and
interpretation of pleiotropy. They enable the discovery of shared genetic factors across
traits and contribute to a deeper understanding of the genetic pleiotropic architecture of
complex traits. Some multivariate methods such as MTAG and GWAMA can generate
trait-specific summary statistics allowing for the incorporation of the multivariate
statistics into subsequent post-GWAS analyses. Therefore, they can be more efficient
in investigating pleiotropy of shared mechanisms underlying two or more conditions,
providing deep insights into shared genetic mechanisms. Multivariate methods can also
increase the statistical power and detect more associations compared to univariate
methods. However, these benefits are fruitful under certain circumstances such as high
genetic correlation between the examined traits and other assumptions related to each
method separately and therefore, they should be used after careful consideration of the

assumptions and complementary to univariate GWAS.

Despite their benefits, multivariate methods face several limitations. Many rely on
assumptions of homoscedasticity or homogeneity of genetic effects across traits, which
can be violated under certain scenarios leading to inflated false-positive rates.
Additionally, these methods incorporate summary statistics only and thus, any biases
of the original univariate GWAS are inherited to the multivariate methods. For the same
reason, these methods do not allow to address any potential confounding factors that
have not been considered in the original GWAS. Furthermore, the interpretation of
results from multivariate methods is more challenging compared to univariate methods

and should be done with caution. Also, multivariate methods usually show higher
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probability of false positive findings and therefore, additional methods and analyses

should be performed for validation.

Another limitation of this study is that it did not consider multivariate methods that use
individual-level data. However, such methods have been studied previously and
discussed in detail elsewhere (Vroom et al., 2019). This systematic review focused only
methods that perform multivariate analysis between single SNPs and multiple
phenotypes. However, there are methods that perform multivariate analysis between
sets of SNPs and multiple phenotypes such as MSKAT (Guo and Wu, 2019b) and
MTAR (Luo et al., 2020). Finally, the search strategy of this study included citations
only from only from PubMed, thus methods not included in PubMed database might
not have been considered. However, a manual search on the references of the included

studies was conducted to limit the probability of non-identified studies.

This systematic review identified multivariate methods designed for single-variant and
multi-trait genome-wide association analysis using GWAS summary statistics. It
indicated MTAG as the most influential method within the scientific community and
presented its statistical framework in detail. Additionally, it highlighted its advantages
such as the generation of trait-specific summary statistics that can be used in post-
GWAS analyses and pointed out its limitations that need carefully consideration in

practical applications.
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CHAPTER 7

MULTI-TRAIT GWAS DISCOVERS NOVEL GENETIC LOCI FOR

BLOOD CELL TRAITS

7.1 Background

Haematopoiesis is a highly regulated and hierarchical biological process that involves
the differentiation of primitive hematopoietic stem cells to mature blood cells. Blood
cell traits are complex and highly polygenic, with strong heritability. Their study is
valuable to understand the genetic architecture of haematopoiesis (Bao et al., 2019).
Although GWAS have previously identified thousands of genes linked to blood traits,
the genetic loci discovered so far accounts for only a small proportion of the phenotypic
variance (e.g., up to 28% in European population) revealing the highly polygenic nature

of these traits (Visscher et al., 2017, Timpson et al., 2018).

The shared origin of blood cells through hematopoietic process explains the strong
genetic correlation between blood traits and the numerous shared mechanisms
underlying them. Many of the identified genes have been associated with multiple blood
cell phenotypes indicating pleiotropic effects (Vuckovic et al., 2020). While most of the
previous GWAS studied multiple blood traits, they mainly employed single-trait
approaches that might fail to capture the correlation between traits (Vuckovic et al.,
2020, Chen et al., 2020, Astle et al., 2016). In contrast, multi-trait approaches can
account for these correlations offering several advantages such as increased statistical
power (Turley et al., 2018, Zhou and Stephens, 2014, Grotzinger et al., 2019,
Baselmans et al., 2019). These methods have the potential to complement and extend
the findings from previous single-trait GWAS when applied to complex traits with

shared genetic architecture such as blood cell phenotypes.

This study sought to identify novel genetic loci associated with blood cell traits and
further explore their genetic architecture. It included multi-trait GWAS on fifteen blood

cell traits, gene, pathway, gene expression and colocalisation analyses. The findings
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extend the current knowledge and highlight target variants with broad effects across

multiple phenotypes.

7.2 Methods

7.2.1 Study Design & Population Sample

The summary statistics from 15 GWAS on blood cell traits were used including 6
GWAS on traits related to white blood cells: basophil count (BAS), eosinophil count
(EOS), neutrophil count (NEU), lymphocyte count (LYM), monocyte count (MON),
white blood cell count (WBC); 7 GWAS on traits related to red blood cells: haematocrit
(HCT), haemoglobin (HGB), mean corpuscular haemoglobin (MCH), mean
corpuscular haemoglobin concentration (MCHC), mean corpuscular volume (MCV),
red blood cell count (RBC), red distribution width (RDW); and 2 GWAS related to
platelets: platelet count (PLT), mean platelet volume (MPV). Details on the population
characteristics of the included GWAS are described elsewhere (Vuckovic et al., 2020).

7.2.2 Genotypic Quality Control

Initially, approximately 47m genotyped and imputed SNPs were included for each trait.
Insertions, deletions, rare variants (MAF <0.01), variants in sex chromosomes, variants
with sample size less than the 2/3 of the 90th percentile, ambiguous/palindromic SNPs
and non-overlapping SNPs across the analysed traits were excluded from the analysis.

After exclusions, approximately 8.6m SNPs were retained for the analysis.
7.2.3 Multi-Trait Genome-Wide Association Analysis

The 15 blood traits GWAS were categorised into three sets: 1) red blood cell-related
traits, 2) white blood cell-related traits and 3) platelet-related traits. The traits of each
set were jointly analysed using MTAG (Turley et al., 2018) resulting in three separate
MTAG analyses. For each analysis, the genetic correlation between the respective traits
was calculated and bivariate LD score regression was applied to account for sample
overlap. Fifteen GWAS datasets were generated in total by MTAG, with each dataset
containing the trait-specific summary statistics, allowing for an interpretation in a

similar way with those from a univariate single-trait GWAS (Turley et al., 2018).
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7.2.4 Functional Mapping and Annotation

The Functional Mapping and Annotation of GWAS (FUMA) platform (Watanabe et al.,
2017) was used to functionally analyse the 15 trait-specific summary statistics from
MTAG. For each trait, the genome-wide significance (GWS) threshold was set at P =
5x10” and clumping was performed twice using different r* thresholds: initially, at r* <
0.6 to determine the borders of the LD blocks and subsequently, at r* < 0.1 to identify
independent signals. The GWS SNPs with r* < 0.6 were included for further annotation
and gene prioritisation, while those at 0.1 < r*> < 0.6 were assigned to the same LD
block. LD blocks closer than 250kb were merged into one genomic region. The lead
variant of each genomic locus was the GWS independent SNP with the smallest MTAG
P-value. The European sample from 1000 Genome Project Phase 3 was used as a
reference panel to calculate pairwise LD between variants using PLINK v1.96.
ANOVAR (Wang et al., 2010) was used to positionally map the SNPs to their nearest

protein coding genes, based on Ensembl build v92, with a maximum distance of 10kb.
7.2.5 Novel Genetic Risk Regions Identification

As the main aim was to identify novel loci, genomic regions previously identified to be
associated with the trait of interest were excluded from the annotation analysis.
Specifically, variants within 500kb from the top signals of previous GWAS (Vuckovic

et al., 2020) for the respective traits were excluded from further consideration.
7.2.6 Gene-Based, Gene-Set and Tissue Expression Analysis

We performed gene, gene-set and gene-property analysis on 15 trait specific summary
results from MTAG using Multi-marker Analysis of GenoMic Annotation software
(MAGMA v1.08)9. In the gene analysis, we used the 1000 Genomes phase3 to prioritise
the genes which the GWA significant SNPs were located in. We implemented a SNP-
wide mean model for gene tests following the default parameters of the FUMA pipeline.
In the gene-set analysis, we tested more than 15,000 different gene-sets derived from

MsigDB v7.010.

We also performed a tissue expression analysis to test possible associations between
prioritised genes and tissue-specific gene expression profiles using the Genotype-
Tissue Expression version 8 (GTEx v8) for 30 general tissue types. The gene, gene-set
and gene-property analyses were all corrected using a Bonferroni significance

threshold.
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7.2.7 Colocalisation Analysis

A multi-trait colocalisation analysis was conducted on the loci identified by MTAG to
prioritise potential shared causal variants across blood traits. A Bayesian divisive
clustering algorithm was applied, as implemented in HyPrColoc v.1.0.0R8. The
analysis investigated regions £200kb from top signals using the MTAG summary
statistics. Variant-specific priors were applied under the assumption that the probability
of a variant colocalising with a set of traits decreases as the number of traits increases.
A prior probability for an association between a variant and a single trait was set at P =
1x10"* while a conditional prior probability for an association with an additional trait
at P =0.02. Only regions with strong evidence of colocalisation (Posterior Probability,
PP > 0.75) where the shared association was sufficiently explained by one single causal

variant (proportion of PP explained by the SNP, %PP > 80%) were considered.

For colocalised loci with a candidate shared causal variant, an additional colocalisation
analysis was performed using expression quantitative trait loci (eQTL) in the most
significantly associated tissues identified in tissue expression analysis in order to detect
shared genes across blood traits. The eQTL information was derived from Genotype
Tissue Expression version 7 (GTEx v7). The same parameters with multi-trait

colocalisation analysis were applied as described earlier.

7.3 Results

7.3.1 Multi-Trait GWAS and Novel Loci of Blood Cell Traits

Three distinct MTAG analyses were conducted using: 1) seven red blood cell-related
traits (RBC-MTAG), 2) six white blood cell-related traits (WBC-MTAG), and 3) two
platelet-related traits (PLT-MTAG). The three analyses identified 3,100 novel
conditionally independent trait-variant associations (P < 5x107°) involving 2,317
unique SNPs, assigned to 711 genomic loci (Figure 7.1). The number of loci per blood
cell phenotype ranged from 47 to 141. Specifically, 1,447 associations (302 loci)
concerned RBC-related traits, 1,188 (374 loci) WBC-related traits, and 465 (137 loci)
PLT-related traits. Out of the 711 identified loci, 29 (corresponding to 53 trait-locus
associations) had not been previously linked to any blood trait in populations of

European ancestry (Table 7.1).
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Figure 7.1 Results from MTAG on fifteen blood cell traits

a) Heatmap presenting the genetic correlation between traits. b) Circular plot showing the
identified novel loci for each trait. The size of the dots indicates if the locus is shared across
multiple traits (large) or is unique for each trait (small). The annotations show the identified
genes associated with at least two different blood cell types.

MPV: Mean platelet volume, PLT: Platelet count, HCT: Haematocrit, HGB: Haemoglobin, MCH: Mean
corpuscular haemoglobin, MCHC: Mean corpuscular haemoglobin concentration, MCV: Mean
corpuscular volume, RBC: Red blood cell count, RDW: Red distribution width, BAS: Basophil count,
EOS: Eosinophil count, NEU: Neutrophil count, LYM: Lymphocyte count, MON: Monocyte count,
WBC: White blood cell count

Table 7.1 Novel loci that were not previously associated with any blood cell trait

Locus Gene SNP Chr Pos OA EA MAF Trait P Beta
1 AL133249.1 rs112881196 2 31982811 C G 0.03 RDW 3.9x10 0.04
2 IGKV20R2-2 rs74175482 2 97720549 C T 0.14 EOS 4.8x102%  -0.04
LINCO00116 rs62160551 2 110971661 T C 0.02 MON 55x10% -0.08

3 RBC 2.5x101  -0.04
AC112229.6 rs62162561 2 111091622 G A 0.06 MCH 2.0x10°% 0.03

MCV  8.9x101° 0.03

4 ANO10 rs142641363 3 43637642 A C 0.04 MON 1.4x10% 0.05
5 VPRBP rs147715078 3 51490257 G A 0.08 EOS 7.7x10%2  -0.04
6 AC117401.1 rs149366143 3 123773622 G A 0.01 MPV 25x10% 0.18
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PLT  1.3x10% -0.08

7 RP11328KA.L __ rs6844726 4 104244730 _C__ G 0.05 LYM _L17x10% -0.03
CTD-2316BL2 __ rs2037852 5 87237448 T __C_ 023 RBC _ 15x10% _ 0.02
8 MCH 87107 -0.02
TMEMI6IB 154916880 5 87430691 C T 032 —acH—oles 82
9 TMEM232 1727884335 100814915_C__A 010 EOS _ 25x100 0,02
10 SLC27A6 1517790915 5 128118887 G __A 0.5 __RDW _ 23x10%_ 0.04
ZNF322 177093797 6 266682718 A __G__0.06 MCHC 53x10% 0.17
" COX11P1 16902687 6 28413491 T C 031 RBC 9.3x10% 002
LINC00533 ___ 1s114179634 6 28626101 _C__G__ 008 _MCH 7.0x10%% 0.16
RPSAP2 16456834 6 28700352 G T _ 016 PLT 2.1x10% -0.02
MCH _ 25x1090_ 0.02
12 MIR3668 4896507 6 140563842 A T 010 —hcH 230 002
13 GRML 176173020 6 146649257 A T 002 MPV__19x10% 0.4
1512698545 7 _ 66203017 T G 0.24 NEU 22x107 002
14 KCTDTRABGEFL ™ g0280808 7 66219179 C T 005 WBC 6.6x100° -0.04
NEU L16x100 002
15 RPLI-3791193  rs78521480 8  605BL490 T C 021 — ot — ot
1576855829 8 100051894 G A 004 MCH 39x10% -0.03

16 VPS13B
1578889654 8 100163721 C G 0.04 MCV 17x10%0 -0.04
17 Coorfl7l rsl17516010 O 135314229 C A 003 MPV 3.0x10%0 -0.04
18 RP51051H14.2  rs78198807 10 9800835 _C T 003 EOS 3.1x10%° 003
9 RP1L- 914056 10 46962001 G 04g MCH 22x107 002
! 38L15.3:5vT15  (o/014056 104 1 A0 T a0 0.02

MCH 4.5x1016 0.05
RP11-292F22.5 rs74622866 47541708 G 0.04
20 MCV  7.4x10%® 0.05

ANTXRLP1 rs139283651 10 47603424 G A 0.01 RDW 3.5x10%2 0.08

HCT  9.0x102° 0.02

21 DNAJC24 rs6484504 11 31424823 T C 026 HGB 58x10% 0.02
RBC 5.2x102° 0.02

=
S)
>

” OR8K2P rs4939033 11 56104645 C T 035 EOS 1.4x107%? -0.02
OR9G1 rs111517495 11 56478951 C T 011 MCV 4.7x101 -0.02

ANKK1 rs45612940 11 113268660 A C 0.02 PLT 1.2x10% 0.05

2 DRD2 rs4319541 11 113451055 T C 0.07 MPV 1.7x10% -0.03
24 SNORD112 rs11052592 12 33433752 C T 0.01 MPV  1.9x10% 0.05
25 MUCL1 rs73124517 12 55268789 T A 0.01 RDW 82x10! 0.06
rs3874239 15 45331689 C G 011 MCHC 1.1x10% 0.02

26 SORD rs4774514 15 45374055 C T 0.05 RDW 23x10° 0.03
RP5-991G20.1 rs34889159 16 72747685 T A 012 RBC 1.4x10% 0.02

27 ZFHX3 rs62053161 16 72877116 G A 010 HGB 27x10%° 0.02
28 ZNF486 rs118091526 19 20290149 T C 0.01 PLT 7.6x10% 0.09
29 RP4-610C12.4 rs192359675 20 29512487 C T 0.01 IE(L)'? 22:182 _(5)1017
RP4-610C12.1 rs2379715 20 29597785 C T 043 MCH 4.8x10% -0.02

OA: Other allele; EA: Effect allele; MAF: Minor allele frequency

The effects of the 2,317 blood-related SNPs indicated by MTAG were investigated
across blood traits. Among these, 1,794 variants (550 loci) were associated (P < 5x107°)

with at least two traits, while 5 of them (2 loci) with up to fourteen traits. The variant
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15657197 (mapped to ATXN2) was associated with all traits at P < 5x107". Additionally,
48 variants (5 loci) were associated with all RBC-related traits, 210 variants (22 loci)
with all WBC-related traits and 268 variants (80 loci) with all PLT-related traits.
Furthermore, 13 variants (2 loci) were associated with all RBC and all WBC-related
traits, 14 variants (2 loci) with all RBC and all PLT-related traits and 35 variants (5 loci)
with all WBC and all PLT-related traits.

7.3.2 Genetic Pathways of the Novel Loci

Gene analysis identified 4,988 trait-gene associations at the Bonferroni significance
threshold (P < 4x107%). Across these associations, there were 2,557 unique genes linked
to one or more blood cell traits. The number of the associated genes per trait ranged
from 221 to 440. Among these genes, 1,062 were associated with two or more traits and
68 of them, showed associations with phenotypes of all blood cell types. Three genes
within the major histocompatibility complex region (GPX6, SCAND3, and TRIM?27),

were associated with all fifteen examined blood cell traits.

Pathway analysis revealed 302 trait-specific associations involving 221 different gene-
sets at the Bonferroni significance threshold (P < 3.3x10°). The number of gene-sets
per trait ranged from 2 to 70. Nine blood cell traits were positively associated with the
downregulation of a gene-set in fibroblasts related to expressing mutant forms of
ERCC3 after ultraviolet irradiation while 5 other blood cell traits were positively
associated with the upregulation of a gene-set in brain involved in the pathway of

Alzheimer’s disease.

Tissue expression analysis across 30 tissue types identified 43 Bonferroni significant
trait-specific associations (P < 1.7x107) with 8 tissues (Supplementary Table 1). The
most frequently associated tissues were blood and spleen (each associated with 12
blood cell traits), followed by lung (with 8 blood cell traits). The strongest associations

were observed between white blood cell-related traits and spleen, blood, and lung.
7.3.3 Colocalisation

A multi-trait colocalisation analysis was performed on the 711 identified loci to
prioritise variants with broad causal effects across blood traits. This analysis detected 9
variants with broad effect on 10 or more blood traits (Figure 7.2, Supplementary
Table 2). The exonic variant rs3811444 (TRIMS58:0OR2W3) was the only one that
colocalised with as many as 14 blood traits (all but MPV, PP = 0.88) explaining 100%
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of PP of the shared association. Also, the intronic variant rs10849925 (CUX2)
colocalised with 13 blood traits (all but MPV and MCV, PP = 0.76, 100% of PP
explained by SNP). Furthermore, 11 variants showed global blood cell type-specific
effects on all WBC-related (Supplementary Table 3), while 4 other variants on all
RBC-related traits (Supplementary Table 4).
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Figure 7.2 Results from colocalisation analysis

The plot presents the candidate variants with broad effects across blood cell traits. The dots
show a variant-trait association. The rectangles on top show the Posterior Probability (PP),
while the circles on bottom the percentage of the PP which is explained by the variant.

MPV: Mean platelet volume, PLT: Platelets count, HCT: Hematocrit, HGB: Hemoglobin, MCH: Mean
corpuscular hemoglobin, MCHC: Mean corpuscular hemoglobin concentration, MCV: Mean corpuscular
volume, RBC: Red blood cells count, RDW: Red distribution width (RDW), BAS: Basophils count, EOS:
Eosinophils count, NEU: Neutrophils count, LYM: Lymphocytes count, MON: Monocytes count, WBC:
White blood cells count

To identify shared genes across blood traits that are expressed in the three most strongly
associated tissues from tissue expression analysis (whole blood, spleen and lung), a
subsequent eQTL colocalisation analysis was conducted. This analysis on the 9 loci
with broad effects detected 16 variant-gene-tissue associations in 4 loci highlighting 11
shared genes and 5 candidate causal variants (Supplementary Table 5). The variant

17953257 exhibited the broadest effect, colocalising with 11 traits, with lower mean
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levels of the blood traits and higher expression of PHETAI (PP = 0.85, 100% of PP
explained by SNP) and higher expression of ALDH?2 (PP = 0.89, 100% of PP explained
by SNP) in whole blood.

Another variant with a broad effect, rs615632, colocalized with a different set of 11
traits and was associated with higher mean levels of nine traits and higher expression
of ERII in lung (PP = 0.78, 100% of PP explained by SNP). Also, 19977672 was the
causal variant of a shared association for a set of 10 traits leading to lower mean levels
of 9 blood traits and higher expression of E7S2 in whole blood (PP = 0.91, 95% of PP
explained by SNP) and spleen (PP = 0.91, 99% of PP explained by SNP).

The eQTL colocalisation on the 11 loci with WBC-specific global effects identified 5
variant-gene-tissue associations involving 4 genes in 3 loci and highlighted 4 candidate
causal variants (Supplementary Table 6). The intronic variants rs11738827 showed a
global causal effect on all white blood cell traits and was an eQTL for SLC2245
expressed in whole blood (PP = 1, 100% of PP explained by SNP) and for NEDDS§
expressed in spleen (PP = 0.81, 83% of PP explained by SNP). Another eQTL
colocalisation on the 4 loci with RBC-specific global effects showed 5 variant-gene-
tissue associations of 4 genes in 2 loci and prioritised 2 candidate causal variants
(Supplementary Table 7). The intronic variant rs143875230 was an eQTL for LCMT?2
in spleen (PP = 0.76, %PP = 100%) and lung (PP = 0.8, 100% of PP explained by SNP)
as well as for ADAL in lung (PP = 0.94, 100% of PP explained by SNP).

7.4 Discussion

Three multi-trait GWAS analyses were conducted using MTAG on red blood cell-
related traits, white blood cell-related traits and platelet-related traits discovering 711
novel blood cell loci and highlighting 221 gene-sets associated with blood traits.
Through subsequent colocalisation analyses, we detected 9 loci with broad causal
effects across at least 10 blood traits, 11 loci with global effects on white blood cells
and 4 loci with global effects on red-blood cells through shared genes expressed in

blood-related tissues.

We leveraged the close genetic link and high genetic correlation between blood traits
to boost statistical power and increase the number of identified loci. Particularly, this

study discovered 29 loci that have not been previously associated with any blood trait
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in European populations. Several genes within these 29 loci are involved in key cellular
pathways, such as lipid metabolism and membrane dynamics, signal transduction or
cellular communication, immune response, and protein homeostasis. These results
highlight the diverse genetic mechanisms that affect blood traits through pathways
critical to cellular functions. For instance, the variant rs657197 (4TXN2) demonstrated
associations with all traits at P < 5x1077. ATXN2, with an important role in RNA
metabolism and regulation (Costa et al., 2024), has previously been associated with
various blood cell traits. This study extended these associations and included
associations with six additional traits. These findings are complementary to previous

GWAS expanding the current knowledge of the genetic architecture of blood traits.

To gain a deeper understanding of the underlying mechanisms behind the novel
findings, this study implemented a versatile analytical framework including
colocalisation and pathway analyses. Several of the identified variants were associated
with multiple blood traits possibly indicating a fundamental role of those loci with
generic effects on eukaryotic cells or a blood-specific impact on premature blood cells
at earlier stages of haematopoiesis. For example, the variant rs7953257 colocalised and
was positively associated with eleven blood traits tissue and expression of PH domain
containing endocytic trafficking adaptor 1 (PHETAI) in whole blood. This gene
encodes a protein of the endocytic trafficking which is required for receptor recycling
from endosomes (Noakes et al., 2011). Dysfunctionalities of this protein could affect
several cellular activities including those of blood cells. This gene has previously been
associated with eosinophil (Kichaev et al., 2019) and platelet count (Astle et al., 2016).
This study expanded the associations for this gene with nine additional blood traits
including all white blood cell traits. PHETA1, as an important part of the endosome
function, plays a significant role in endocytic trafficking and hence, in several cellular
activities. The same variant was additionally colocalised with higher mean levels for a
set of eleven blood traits and higher expression of ALDH?2. Aldehyde dehydrogenase 2
(ALDH?) encodes an enzyme essential for the oxidative pathway of alcohol metabolism
(LeFort et al., 2024). The findings of this study support that this gene plays a significant
role in haematopoiesis and the maintenance of blood cell integrity. Increased ALDH?2
expression may enhance the detoxification of harmful aldehydes, thereby promoting

healthy blood cell function. This aligns with previous studies highlighting ALDH?2’s
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critical role in cellular protection and longevity (Wu and Ren, 2019, Ajoolabady et al.,
2024).

Another variant exhibiting broad effects, rs615632, colocalised with 11 traits and was
identified as an eQTL for ERI! in the lung. ERII (Exoribonuclease 1) plays a vital role
in RNA processing and degradation, particularly in regulating histone mRNA and
rRNA. Increased ERII expression may enhance the stability and functionality of
essential RNA molecules, thereby supporting efficient cell cycle progression and

optimal function of hematopoietic cells.

The exonic variant rs3811444, mapped within the genes tripartite motif containing 58
(TRIM58) and olfactory receptor family 2 subfamily W member 3 (OR2W3),
colocalised with all blood traits except for the mean platelet volume. However, no
shared gene was detected when using eQTL in whole blood or spleen tissues, possibly
indicating either a horizontal pleiotropy of that locus on blood traits via different genes

or an indirect association via shared genes expressed in other tissue types.

This study had several notable strengths. Firstly, its design ensured enhanced statistical
power by employing appropriate multivariate methods on large-scale GWAS data
encompassing over 500,000 participants. Secondly, it integrated advanced genetic
epidemiology approaches, including multivariate analysis and colocalisation analysis.
However, the study also had limitations. The analysis was confined to individuals of
European ancestry, which may limit the generalisability of the findings to other
populations. Additionally, the investigation excluded rare variants (MAF < 1%),
leaving a significant portion of genetic predisposition unexplored. Furthermore, some
associations might reflect false-positive findings or biased results. Finally, as MTAG

utilised summary statistics, it was not possible to adjust for potential confounders.

In summary, using the largest GWAS on 15 blood traits to date, this study provides
several novel genetic loci implicated in blood physiology. It also offers new insights
into mechanisms underlying haematopoiesis, emphasising loci with potential effects at

various stages of hematopoietic process.
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CHAPTER 8

SHARED GENETIC ARCHITECTURE OF INFLAMMATION AND

CARDIOMETABOLISM: A MULTI-TRAIT GWAS

8.1 Background

C-reactive protein (CRP) is an acute phase reactant secreted mainly by the liver and
released in high concentrations in blood as a protective response to harmful irritants
such as pathogens or damaged tissue. Genetic and environmental determinants of CRP
levels have been widely studied as its levels have been associated with plethora of
phenotypes and diseases including disorders of the immune system, cardiovascular

diseases (CVD) and endocrine/metabolic-related disorders (Markozannes et al., 2021).

Genome-wide association studies (GWAS) on CRP levels have identified numerous,
robustly associated, genetic loci associated with CRP levels (Dehghan et al., 2011)
supporting a polygenic model for this trait. Several of the identified CRP loci are
annotated not only to inflammation-related genes but also to lipid and glucose
metabolism-related genes (Ligthart et al., 2018), providing evidence towards common

biological pathways between inflammation and metabolic traits.

Here, we investigate further the pleiotropic nature of the genetic architecture of CRP.
We performed MTAG on CRP levels with established cardiometabolic risk factors
followed by a series of in silico analyses to identify novel pleiotropic genes, their tissue
site of action and evidence for causal associations with a range of disease outcomes.
Ultimately, the study provides additional biological insights into low-grade
inflammation and highlights biological pathways that are likely to link inflammation to

different chronic diseases.

60



Chapter 8: Shared Genetic Architecture of Inflammation and Cardiometabolism:
A Multi-Trait GWAS

8.2 Methods

8.2.1 Study Design & Population Samples

The summary statistics from six GWAS were used in this study: CRP (Said et al., 2022),
high-density lipoprotein (HDL) levels (Neale lab team, 2018), low-density lipoprotein
(LDL) levels (Neale lab team, 2018), triglyceride (TG) levels (Neale lab team, 2018),
body mass index (BMI) (Pulit et al., 2019) and cigarettes per day (CPD) (Liu et al.,
2019). The largest GWAS in European population for each trait was selected. All
included GWAS have were conducted exclusively or partially in UK Biobank (UKB).

8.2.2 Genotypic Quality Control

The initial datasets contained 11,140,987 SNPs for CRP; 13,791,468 SNPs for HDL;
13,791,468 SNPs for LDL; 13,791,468 SNPs for TG; 27,381,303 SNPs for BMI and
12,003,614 SNPs for CPD. The datasets included both genotyped and imputed SNPs.
SNPs that were any of insertions, deletions, rare (MAF < 0.01), with a sample size less
than 2/3 of the 90™ percentile or palindromic were excluded from the analysis.
Moreover, non-overlapping SNPs that were not present in at least one dataset were

removed. After these exclusions, 6,206,408 SNPs remained for analysis.

8.2.3 Multi-Trait GWAS

A multi-trait GWAS analysis was performed using MTAG (Turley et al., 2018) to jointly
analyse the summary statistics of the traits of interest. Genetic correlations between the
traits were calculated and adjusted for sample overlap using bivariate LD score
regression. The MTAG-generated summary statistics are trait-specific and can be
interpreted similar to those from univariate analysis. Moreover, three additional
bivariate MTAG were performed between CRP and lipids, CRP and BMI, and CRP and

CPD, following a similar approach as described above.
8.2.4 Functional Mapping and Annotation

The MTAG results were subjected to functional analysis using Functional Mapping and
Annotation of GWAS (FUMA) (Watanabe et al., 2017). Fourteen datasets were
analysed: 6 from the multi-trait MTAG, 4 from the CRP-lipids MTAG, 2 from the CRP-
BMI MTAG, and 2 from the CRP-CPD MTAG. The GWS SNPs (P < 5x10%) were
identified and clumped two times at different r* thresholds. The first clumping at 1> <

0.6 was used to define the genomic risk loci coordinates. The second clumping at 1 <
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0.1 was performed to identify independent signals. SNPs in LD at 0.1 <12 < 0.6 were
grouped into the same LD block. LD blocks closer than 500 kb were merged. The top
lead SNPs were those with the smallest P-value within genomic risk regions. Pairwise
LD between SNPs was calculated with PLINK v1.923 using the European sample of
1000 Genome Project Phase 3 as a reference panel. SNPs were mapped to their nearest
protein-coding genes from Ensembl build v92 within a maximum distance of 10kb

using ANNOtate VARiation (ANNOVAR) (Wang et al., 2010).
8.2.5 Identification of Novel CRP Loci

CRP was included in four MTAG analyses (one multivariate and three bivariate).
Independent CRP signals from all four analyses were combined and duplicate signals
or proxies (either in distance + 500 kb or in LD r* > 0.1) were excluded. The resulting
top CRP signals were compared to previously identified (Said et al., 2022) and signals
from this study either further than 500 kb or r? < 0.1 from previously reported signals

were considered novel.
8.2.6 Gene-Based, Gene-Set and Tissue Expression Analysis

Gene, gene-set, and gene-property analyses were conducted using the Multi-marker
Analysis of GenoMic Annotation software (MAGMA v1.08) (Mathur et al., 2018). In
the gene analysis, the included SNPs were mapped to genes using the 1000 Genomes
phase 3 reference panel. The gene-set analysis tested 15,477 gene-sets obtained from
MsigDB v7.024. A Bonferroni approach was implemented to correct both gene (P-
value threshold: 2.7x10%) and gene-set analysis (P-value threshold: 3.2x10°) for

multiple tests.

The tissue expression analysis between tissue-specific gene expression profiles and the
genes associated with the examined traits included 30 general and 53 more specific
tissue types using data from Genotype-Tissue Expression version 8 (GTEx v8) and

implementing a Bonferroni correction.
8.2.7 Colocalisation

A multi-trait colocalisation analysis was conducted using HyPrColoc R package (Foley
et al., 2021). This approach was employed to detect colocalised loci between CRP and
any combination of the other examined traits and to prioritise candidate causal variants

that can explain the shared association in genomic regions associated with CRP. This
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analysis was performed on each CRP locus identified by MTAG in a region +200 kb
around the top SNP. Variant-specific priors were incorporated, reflecting the
assumption that the probability of a variant being colocalised with a set of traits
decreases as the number of traits in the set increases. Two priors were specified for this
model: the prior probability of a variant being associated with a single trait (P =1x107%)
and the conditional prior probability of a variant being associated with an additional
trait given its association with another trait (Pc = 0.02). A PP > 0.8 was considered
evidence for colocalisation, while variants explaining the highest percentage of the
shared association within a region were considered candidate causal variants as long as

the percentage was > 80%.
8.2.8 Investigation of Direction of Genetic Effect and Phe WAS

Variants colocalised with CRP and any combination of the other examined traits were
further analysed to examine the direction of their genetic effects across all examined
traits. Opposite directions of effect between CRP and any of LDL, TG, BMI, and CPD
or the same directions between CRP and HDL were considered discordant if the

associations were statistically significant for both traits (P < 0.05).

A PheWAS analysis was performed in the UKB for each SNP with discordant direction
of effect. The analysis was restricted to participants of European ancestry and one
participant from each pair of relatives (kinship coefficient > 0.0884) was randomly

excluded. After quality control, 424,439 individuals were included in the analysis.

Data from the inpatient Hospital Episode Statistics (HES) records, cancer registries,
and death registries were used, with diagnoses coded according to the World Health
Organisation’s (WHO) International Classification of Diseases, 9th Revision (ICD-9)
and 10th Revision (ICD-10). These codes were translated into the phecode grouping
system as implemented in the PheWAS R package (Carroll et al., 2014). For each
phecode, case-control groups were defined, with cases identified as individuals meeting
the specific phecode criteria and controls defined as those with no record of the

corresponding outcome or related phecodes.

To ensure sufficient statistical power, only phecodes with at least 200 cases were
analysed, as recommended by previous simulation studies (Verma et al., 2018). Logistic

regression models were applied, adjusting for age, sex, and the first 15 genetic principal
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components. To account for multiple testing and minimise false positives, the false

discovery rate (FDR) method was applied (Benjamini and Hochberg, 1995).
8.2.9 Mendelian Randomisation

MR analysis was conducted to explore potential causal relationships between CRP and
selected outcomes with plausible biological connections. Multiple MR analyses were
performed, included the six examined traits as exposures (CRP, HDL, LDL, TG, BMI,
and CPD) with 14 selected outcomes, including circulatory system diseases, neoplasms,
mental disorders, and metabolomic traits (Supplementary Table 8). For each exposure,
the genetic instrumental variables were the independent SNPs (LD 2 < 0.1, P <5x107%)

identified for the respective trait through multivariate MTAG.

The primary analysis employed the IVW method under a random-effects model
(Burgess et al., 2013). Two additional MR methods were performed as sensitivity
analyses: the weighted median MR (Bowden et al., 2016) and the MR-Egger (Bowden
et al., 2015). To investigate a potential pleiotropic influence, a subgroup MR analysis
was also conducted on two groups: one comprising colocalised CRP SNPs only, and
another including non-colocalised SNPs that were non-significant for all other

examined traits (MTAG P-value > 0.01).

8.3 Results

8.3.1 Multi-Trait GWAS and Novel CRP Loci

A schematic for the study design is provided in Figure 8.1. Multi-trait MTAG was
performed to analyse CRP and five cardiometabolic risk factors including HDL levels,
LDL levels, TG levels, BMI and CPD. Additionally, bivariate MTAG were conducted
between CRP and each cardiometabolic trait. The multi-trait MTAG identified 797
independent signals across 283 genetic loci associated with CRP at GWS level (P <
5x10°®) (Figure 8.2). For the other traits, 549 independent signals (185 loci) were found
for HDL, 527 (144) for LDL, 534 (173) for TG, 1,552 (740) for BMI and 108 (62) for
CPD (Figure 8.2). Among the 797 CRP-associated variants, 295 (151 loci) were also
associated with at least one other examined trait (P < 5x10®) and 8 variants (8 loci)

with at least 4 of the 5 traits (Supplementary Figure 1).
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Figure 8.1 Schematic overview of the study

BMI: Body mass index, CPD: Cigarettes per day, CRP: C-reactive protein, HDL: High-density
lipoprotein, LDL: Low-density lipoprotein, TG: Triglycerides, ADHD: Attention deficit hyperactivity
disorder, ASD: Autism spectrum disorder, BD: Bipolar disease, MDD: Major depressive disorder, Schz:
Schizophrenia, BrCa: Breast cancer, PrCa: Prostate Cancer, CAD: Coronary artery disease, MI:
Myocardial infarction, T2D: Type 2 diabetes, Gluc: Fasting glucose, Insl: Fasting insulin, WHR: Waist-
to-hip ratio, WC: Waist circumference

The bivariate MTAG identified 41 additional loci associated with CRP. Altogether, the
324 CRP loci (283 from multi-trait and 41 from bivariate MTAG) included 41 novel
genomic loci (Table 8.1, Supplementary Figure 2). The most significant novel CRP
locus was located in LPL (rs35237252, P = 5x107%°), which encodes lipoprotein lipase,

an enzyme expressed in heart, muscle, and adipose tissue (Shang and Rodrigues, 2021).
8.3.2 Functional Annotation and Pathway Enrichment

Functional annotation identified 1,816 genes associated with CRP levels. Of these,
1,245 genes were additionally associated with one or more of the other traits, while 23
of them with all six traits, suggesting broad pleiotropic effects (Supplementary Figure
3). Pathway analysis revealed 19 CRP gene-sets at Bonferroni significance level (P <
3.2x107%) (Supplementary Table 9). All examined traits were significantly associated
with nucleic acid binding pathway. Tissue expression analysis showed that CRP genes
were differentially expressed in the liver and pituitary, brain cerebellum and brain

cerebellar hemisphere (Supplementary Figure 4).
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Table 8.1 Novel genomic loci associated with C-reactive protein

SNP Chr:Pos EA OA EAF Beta P Gene
rs545152 1:96886504 T C 0366 0.01 4.7x10° UBE2WP1
rs6587552 1:151018861 A G 0229 001 25x10°8 BNIPL
rs8024 1:201845575 A C 0301 0.01 4.0x10° IPO9
rs11122456 1:230305966 A G 0391 0.01 8.8x1071° GALNT2
rs754524 2:21311541 G T 0257 001 8.4x10° TDRD15
rs76866386 2:44075483 C T 0079 -0.03 1.7x107% ABCG8
rs4519576 2:48966146 C T 0450 0.01 4.2x10° STON1-GTF2AlL
rs12998606 2:188725859 G A 0461 -0.01 2.3x10°8 LINC01090
rs566279474  3:44135752 C T 0.003 006 15x10° MIR138-1
rs171390 3:154038412 C T 0424 001 4.7x10° DHX36
rs2606227 3:183536836 T C 0361 0.01 45x10% MAP6D1
rs34811474 4:25408838 A G 0.217 —0.02 6.3x10°!° ANAPC4
rs1229978 4:100256199 C T 0406 001 1.7x10° ADH1C
rs1450786 4:112653076 G A 0367 -0.01 3.7x10°® RP11-269F21.1
rs10461497 5:63942398 C T 0.494 —0.01 3.3x10°® MRPL49P1
rs6870983 5:87697533 T C 0236 -0.01 7.3x10° TMEM161B-AS1
rs11135450 5:95554016 A G 0345 -0.01 24x10°8 CTD-2337A12.1
rs2228213 6:12124855 A G 0333 -0.01 1.8x10°* HIVEP1
rs2635727 6:50820940 T C 0250 -0.01 25x10° RPS17P5
rs57648913 7:21602065 A G 0145 002 24x107° DNAH11
rs35237252 8:19870271 A C 0.273 —0.02 5.1x1072° LPL
rs10464844 8:106419754 G A 0.230 0.01 2.0x10°® ZFPM2
rs1411432 9:16728532 C A 0183 0.02 1.1x10°% BNC2
rs10968576 9:28414339 G A 0302 001 1.1x10° LINGO2
rs722564 10:118550831 T C 038 -0.01 43x10°% RPL5P27
rs36089024 11:67244644 T C 0.401 -0.01 1.6x107° AIP
rs10750096  11:116656788 C A 0093 0.02 4.1x10° ZNF259
rs7138803 12:50247468 A G 0.338 0.01 1.5x107® RP11-70F11.7
rs56205943 12:57679414 A G 0193 -0.01 49x10° R3HDM2
rs825457 12:124538302 C A 0161 -0.02 2.7x10°® FAM101A
rs17522122 14:33302882 T G 0489 001 26x107° AKAP6
rs11856579 15:78012688 A G 0220 -0.01 21x10°® LINGO1
rs879620 16:4015729 C T 038 —0.01 1.7x10° ADCY9
rs12446515 16:56987015 T C 0292 -0.02 1.3x107"° AC012181.1
rs2000999 16:72108093 A G 0192 0.02 9.8x10° TXNL4B
rs56823429 16:81533789 C A 0283 0.01 3.6x10"° CMIP
rs77542162 17:67081278 G A 0011 0.05 54x107"2 ABCA6
rs9951447 18:20009691 C T 0439 -0.01 7.3x10° RP11-863N1.4
rs2236707 18:21114997 T C 0430 -0.01 1.0x10" NPC1
rs2147338 20:50320079 C T 0406 0.01 2.8x10° ATP9A
rs3746778 20:61341472 A G 0392 -0.01 3.0x10°8 NTSR1
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Figure 8.2 Circular plot with MTAG results
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The inner part displays the Manhattan plots for each trait. The middle part highlights the
genomic regions. The outer part shows the CRP genes with colourful squares on the gene lines

indicating the associated traits. Red texts correspond to novel genes.

BMI: body mass index, CPD: cigarettes per day, CRP: C-reactive protein; HDL: high-density lipoprotein,

LDL: low-density lipoprotein, TG: triglycerides

8.3.3 Colocalisation of CRP Loci

A colocalisation analysis on the 324 CRP loci found 102 colocalised loci

between CRP

and at least one other trait and prioritised 41 single candidate causal variants. Among

these, 33 were CRP top signals including 9 novel (Table 8.2). The exonic variant

rs1260326 within GCKR colocalised with all traits and was a candidate causal variant

for the shared association (PP = 0.94, 100% of the PP explained by SNP). Also, the

intergenic variant rs2211320, located 9kb upstream from the CRP gene, colocalised
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with CRP, HDL, LDL, TG and CPD (PP =0.97, 99.9% of PP explained by SNP). Novel
CRP associated variants rs34811474 (ANAPC4), rs10968576 (LINGO?2), and rs879620
(ADCY?9), colocalised with HDL, BMI, and CPD, respectively.

Table 8.2 C-reactive protein candidate shared causal variants with other traits

Causal SNP Chr:Pos Traits PP PP%
rs75460349 1:27180088 CRP, TG 1.00 80.1%
rs61812598 1:154420087 CRP, HDL, LDL 0.96 88.3%
rs2211320 1:159693605 CRP, HDL, LDL, TG, CPD 0.97 100.0%
rs4658403 1:243832560 CRP, HDL, BMI 0.95 99.7%
rs1260326 2:27730940 CRP, HDL, LDL, TG, BMI, CPD 0.94 100.0%
rs17326656 2:48962291 CRP,HDL, TG 0.93  98.6%
rs2161037 2:169893419 CRP, LDL 1.00  99.9%
rs6792725 3:24520283 CRP, LDL, TG 1.00 100.0%
rs171390 3:154038412 CRP, BMI 0.98 87.0%
rs247975 3:173107443 CRP, HDL, TG, BMI, CPD 0.80 88.9%
rs34811474 4:25408838 CRP, HDL, BMI, CPD 0.95 100.0%
rs10938397 4:45182527 CRP, HDL, BMI 0.86 82.7%
rs6870983 5:87697533 CRP, BMI 1.00 100.0%
rs2228213 6:12124855 CRP, BMI 0.96 90.6%
rs5017416 6:18492350 CRP, BMI 1.00 94.0%
rs1490384 6:126851160 CRP, LDL 0.81 92.5%
rs35237252 8:19870271 CRP, CPD 0.98 92.8%
rs112875651 8:126506694 CRP, LDL, TG 1.00  100.0%
rs7031064 9:14455076 CRP, BMI 1.00 99.4%
rs10968576 9:28414339 CRP, HDL, BMI, CPD 0.87 85.6%
rs11012732 10:21830104 CRP, BMI 0.99 85.6%
rs6486122 11:13361524 CRP, HDL, LDL, TG 0.99 96.1%
rs6265 11:27679916 CRP, BMI, CPD 0.93 91.6%
rs4755720 11:43628749 CRP,HDL, TG 0.96 80.2%
rs3741298 11:116657561 CRP, LDL, TG 0.95 100.0%
rs7138803 12:50247468 CRP, HDL, BMI 0.99 100.0%
rs9604045 13:113927208 CRP, HDL 0.99 100.0%
rs2239222 14:73011885 CRP, LDL 1.00 100.0%
rs11635675 15:63793238 CRP, LDL, TG, BMI 0.94 81.3%
rs11852372 15:78801394 CRP, TG, CPD 0.83 99.7%
rs879620 16:4015729 CRP, HDL, BMI, CPD 0.98 100.0%
rs3814883 16:29994922 CRP, HDL, TG, BMI 0.93 100.0%
rs1421085 16:53800954 CRP, HDL, LDL, BMI, CPD 0.98 100.0%
rs183130 16:56991363 CRP, HDL, LDL, TG, CPD 0.89 100.0%
rs2000999 16:72108093 CRP, LDL, TG 0.99  88.1%
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rs2925979 16:81534790 CRP,HDL, TG 0.93 100.0%
rs56113850 19:41353107 CRP, BMI, CPD 0.95 100.0%
rs429358 19:45411941 CRP, BMI, CPD 1.00 100.0%
rs117113213 20:39165692 CRP, LDL, TG 0.99 99.4%
rs1800961 20:43042364 CRP, HDL, LDL 1.00 100.0%
rs397092 21:46582564 CRP, HDL, TG, BMI, CPD 0.91 96.0%

Causal SNP: Candidate shared causal variant; Chr:Pos: Chromosome:Position; Traits: Traits that
colocalise; PP: Posterior Probability; PP%: Percentage of PP explained by SNP; BMI: body mass index;
CPD: cigarettes per day; CRP: C-reactive protein; LDL: high-density lipoprotein, LDL: low-density
lipoprotein, TG: triglyceride

8.3.4 PheWAS on pleiotropic variants with discordant direction of effects

Of the 41 colocalised variants, 12 exhibited significant associations (MTAG P < 0.05)

with discordant direction of effects between traits (Figure 8.3).
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Figure 8.3 Effect sizes across traits for the twelve colocalised variants with
discordant direction of effects

Inverse effect directions between CRP and any of LDL, TG, BMI, and CPD, or direct effect
directions between CRP and HDL, were classified as discordant when the SNP's association
with the discordant trait was statistically significant (P < 0.05) in the multi-trait MTAG analysis.
The red dashed line in the figure represents the zero-effect value. Nominally significant
associations (P < 0.05) are depicted with white-filled circles, while genome-wide significant
associations are indicated by black-filled circles.

BMI: body mass index, CPD: cigarettes per day, CRP: C-reactive protein; HDL: high-density lipoprotein,
LDL: low-density lipoprotein, TG: triglycerides
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PheWAS on the 12 discordant variants identified discordant FDR associations for 7
variants translating the discordant genetic effects into clinical outcomes with various
diseases (Figure 8.4). For instance, rs1260326 (GCKR) associated with increased levels
of CRP and LDL and lower BMI in MTAG, was linked to 28 diseases in PheWAS
including direct associations with lipometabolism disorders, gout, and angina pectoris
and inverse associations with type 2 diabetes, cholelithiasis, alcoholism, and fasciitis.
Also, rs1421085 (FTO) was associated with 27 diseases including direct associations
with obesity, type 2 diabetes, and hypertension and inverse association with breast

cancer, and fasciitis.
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Figure 8.4 Results from phenome-wide association analysis for the twelve variants
with discordant direction of effects

The plot shows FDR-significant associations for colocalised variants with discordant direction
of effects between C-reactive protein levels and any of the other examined traits. The bar colour
shows the genetic effect size while the bar length the statistical significance (—logioP). The
variant 15429358 (APOE) showed 96 FDR-significant associations. To optimise the
visualisation, diseases associated exclusively with this variant were excluded from the graph.
Additionally, the variant rs11635675 (USP3) was excluded from the graph as it presented no
FDR-significant associations.
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8.3.5 Mendelian Randomisation

Two-sample MR showed that genetically predicted higher CRP levels were associated
with a lower risk of schizophrenia with consistent results across sensitivity analyses
(Figure 8.5). Weak evidence was observed for a direct association between genetically
determined CRP levels and breast cancer. [IVW analysis suggested potential pleiotropy
for several other outcomes (e.g., ischemic heart disease and diabetes), but sensitivity
analyses did not provide evidence of causality. In the subgroup analyses restricted to
SNPs associated exclusively with CRP levels, no strong evidence of causal effects was
observed for any outcome except for schizophrenia, which showed modest evidence of

an inverse association with genetically determined higher CRP levels.
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Figure 8.5 Results from Mendelian randomisation analysis

Each row represents a distinct exposure, while each column corresponds to a different outcome.
Each Mendelian randomisation analysis is depicted within a four-sectioned box, summarising
the estimates from the inverse-variance weighted (IVW) method (top left), weighted median
(WM) method (top right), Egger method slope (bottom left), and Egger method intercept
(bottom right). The colour of each section reflects the effect size, with asterisks denoting the
level of statistical significance.

BMI: Body mass index, CPD: Cigarettes per day, CRP: C-reactive protein, HDL: High-density
lipoprotein, LDL: Low-density lipoprotein, TG: Triglycerides, ADHD: Attention deficit hyperactivity
disorder, ASD: Autism spectrum disorder
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8.4 Discussion

This study used MTAG between CRP and five cardiometabolic risk factors identifying
41 novel CRP loci. Moreover, it provides a comprehensive exploration of the
pleiotropic genetic basis of CRP, indicating 19 gene-sets as potential master regulators
of chronic low-grade inflammation with extensive pleiotropic effects on lipids and other
cardiometabolic pathways. A colocalisation analysis identified 41 potential shared
causal variants between CRP and cardiometabolic risk factors and a PheWAS explored
the associations across the phenome for 12 colocalised variants with discordant effect
direction between CRP and other traits. An MR supported a causal association between
genetically predicted low-grade chronic inflammation and lower risk of schizophrenia
aligning with findings from previous studies (Said et al., 2022). However, evidence for
causal associations with other diseases was limited when pleiotropic signals were

excluded.

The multi-trait MTAG leveraged the correlation between CRP with its key determinants
to increase the number of identified loci. The results reinforce the strong connection
between CRP and lipometabolism. Several novel CRP loci overlapped with well-
established lipid and BMI loci, such as variants mapped at LPL, APOB and LINGO?2,
which had not been previously linked to CRP in univariate GWAS. Additionally,
numerous novel CRP loci have not been previously associated with any of the other
examined traits, demonstrating the added statistical power of MTAG (Turley et al.,
2018). The prioritised CRP loci were enriched for expression in the liver, pituitary, brain
cerebellum and cerebellar hemisphere, highlighting the potential importance of these

pleiotropic loci in brain.

An exonic variant (rs2228213) within HIVEPI, which encodes the human
immunodeficiency virus type I enhancer-binding protein 1, colocalised between CRP
and BMI and was identified as a novel CRP locus. HIVEP]I is involved in regulation of
the transcription of inflammatory target genes such as those belonging to the interleukin
signalling pathway. Its deficiency has been connected to increased inflammation in
septic conditions (Matsumoto et al., 2021). This colocalised exonic variant may provide

insights into mechanisms connecting infection, inflammation and adiposity.

The non-synonymous exon variant rs34811474 in ANAPC4, encoding the anaphase-

promoting complex subunit 4, was identified as the candidate causal variant for multiple
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traits including CRP, HDL, BMI and CPD. While pleiotropy at the locus and gene level
is common throughout the genome, variants with broad pleiotropic effects relatively
rare (Watanabe et al., 2019). This variant has also been previously linked to cognitive
performance and educational attainment (Lee et al., 2018), lung function (Kichaev et
al., 2019), and osteoarthritis (Tachmazidou et al., 2019). Although the biological
function of ANAPC4 remains poorly understood, its extensive pleiotropic effects and

low tissue specificity suggest a role in fundamental biological processes.

DHX36 (rs171390) colocalised with CRP and BMI and was identified as a novel locus
for CRP. This gene is a highly conserved member of the DExD/H box helicase family,
binds to and unfolds G-Quadruplex (G4) DNA structures, influencing DNA- and RNA-
dependent processes (Antcliff et al., 2021). G4 structures and DHX36 interactivity have
been implicated in cancer and tumorigenesis, neurodegenerative diseases and aging
mechanisms including cellular senescence (Antcliff et al., 2021). These findings
suggest a potential role for this gene in CRP and BMI through pathways related to

inflammation and adiposity.

The study demonstrated several strengths. Large-scale datasets were used with sample
sizes exceeding 500,000 participants, ensuring high statistical power. This power was
further enhanced through the application of suitable multivariate methods. Advanced
genetic epidemiology techniques were combined allowing for a thorough exploration
of the data. Additionally, associations between CRP and numerous risk factors for
complex conditions, such as cardiovascular diseases, mental disorders, neoplasms, and

other diseases, were investigated.

However, certain limitations were identified. The analysis was confined to individuals
of European ancestry, potentially limiting the applicability of the findings to other
populations. Rare variants (MAF < 1%) were excluded from the MTAG analysis and
subsequent investigations, which may have led to the omission of rare variants with
significant effects. The use of summary statistics in MTAG prevented adjustment for
additional confounders. Sample overlap within each GWAS was also a limitation,
though it was addressed using bivariate LD score regression (Bulik-Sullivan et al.,

2015).

Although shared genetic associations suggest pleiotropy, they do not necessarily

indicate common biological pathways. Pleiotropic genes might affect traits
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independently via distinct pathways or be expressed in different tissues in response to
various signals (Gratten and Visscher, 2016, Pickrell et al., 2016). Extensive pleiotropy
at CRP loci could introduce bias into the MR assumption of no pleiotropy. Analyses
restricting CRP-associated variants to those not linked with lipids or BMI might have

been underpowered.

Furthermore, several novel genes associated with CRP were introduced by MTAG.
However, the high polygenicity and pleiotropy of the trait present challenges in
elucidating precise biological mechanisms, especially since many of the newly

identified variants exhibit small individual effects on CRP.

In conclusion, this study conducted a comprehensive multi-trait analysis of CRP and
cardiometabolic traits, identifying 41 novel CRP genetic loci. Colocalisation analysis
further identified 41 shared causal variants linking inflammation and cardiometabolism,
suggesting that disruptions in these loci could influence multiple traits. This detailed
investigation of pleiotropic effects provides a foundation for identifying novel
preventive and therapeutic targets and understanding potential side effects across traits.
Functional studies to clarify the causal variants and mechanisms within these loci could

yield valuable insights into the underlying etiological pathways connecting these traits.
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CHAPTER 9

MULTI-TRAIT GWAS REVEALS SHARED GENETIC LOCI

BETWEEN ALZHEIMER'S AND CARDIOVASCULAR DISEASES

9.1 Background

Alzheimer’s disease (AD), the most frequent cause of dementia, is a brain disease that
poses significant health challenges. In 2020, more than 55 million people worldwide
were estimated to be living with dementia and 60%-70% of them are estimated to be
AD patients (Rizzi et al., 2014, Gauthier S, 2022). Although AD’s primary pathology
is confined to the brain, yet epidemiological studies and recent genetic analyses
supported mechanisms connecting AD and cardiovascular (CV) abnormalities
(Newman et al., 2005, Breteler et al., 1994, Bleckwenn et al., 2017). One hypothesis
for explaining this suggests that AD and CVD-related traits share common causal
factors such as inflammation, obesity and diabetes, which may contribute to both
diseases through independent (horizontal pleiotropy) or common biological pathways
(Tublin et al., 2019). Other hypotheses include the indirect influence of impaired
vascular functions that initiate or accelerate the progression of AD (ladecola and

Gottesman, 2018).

They also may share common genetic determinants (Broce et al., 2019). GWAS have
previously identified common genetic risk loci for both AD and pathological CV
phenotypes that may correspond to overlapping biological pathways. For example,
apolipoprotein E (APOE), which encodes a lipid-transport protein crucial to cholesterol
metabolism (Mahley, 2016), is an established genetic risk factor for AD (Jansen et al.,
2019, Schwartzentruber et al., 2021), coronary artery disease (CAD) (van der Harst and
Verweij, 2018) and myocardial infarction (MI) (Hartiala et al., 2021). A deeper
exploration of the shared genetic structure of AD and CV traits can provide insights
into potentially shared aetiologies and identify shared targets and mechanisms which

can address both neurodegenerative and CVDs through suitable interventions.
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This study aimed to investigate the genetic commonalities between AD and CV traits
and identify loci with pleiotropic effects on both conditions. Multi-trait GWAS on AD
and several CV traits were conducted, followed by genetic colocalisation to identify

potential pleiotropic genes and the tissues that they are expressed.

9.2 Methods

9.2.1 Study Population

The study was restricted to a population of European ancestry. Summary statistics from
seven GWAS were used: AD (Jansen et al., 2019), atrial fibrillation (AF) (Nielsen et
al., 2018), CAD (Nikpay et al., 2015), carotid intima-media thickness (cIMT), stroke
(Malik et al., 2018), systolic blood pressure (SBP) (Evangelou et al., 2018), and
diastolic blood pressure (DBP) (Evangelou et al., 2018).

9.2.2 Genotypic Quality Control

The initial datasets contained genotyped and imputed variants ranging from 7 to 34
million SNPs. Only SNPs that were present in both datasets (AD and the examined CV
trait) were included in the analysis. Furthermore, all insertions, deletions, rare variants
(MAF < 0.01), variants with sample sizes less than 2/3 of the 90" percentile and
palindromic variants were excluded. Finally, approximately 5.75 million SNPs were

included in the analysis.
9.2.3 Multi-Trait Association Analysis

Bivariate MTAG analyses were conducted pairwise between AD and CV traits (1. AF,
2. CAD, 3. cIMT, 4. Stroke, 5. SBP-DBP) (Turley et al., 2018). Genetic correlations
between traits were calculated and the data were corrected for sample overlap using
bivariate LD score regression (Bulik-Sullivan et al., 2015). MTAG generated trait-
specific datasets (11 in total: 5 with AD plus 6 with CV traits). The MTAG summary
statistics can be interpreted in a same way to those from single-trait GWAS (Turley et

al., 2018).
9.2.4 Functional Mapping & Annotation

FUMA (Watanabe et al., 2017) was used to functionally analyse all the MTAG
generated results. The GWS SNPs (P < 5x10°%) were initially clumped at 1> < 0.6 to

determine the genomic risk loci coordinates and then clumped once more at > < 0.1 to
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identify independent signals. SNPs in LD at 0.1 < r?> < 0.6 or SNPs closer than 500kb
were assigned to the same LD block. The remaining SNPs after the second clumping
were considered the independent and those with the most significant P-value in each
LD block were the top signals. Annotation and gene prioritisation were performed on
the SNPs that survived the first clumping. The European sample from 1000 Genome
Project Phase 3 (Genomes Project et al., 2015) was used to calculate pairwise LD
between SNPs. SNPs were positionally mapped to their nearest protein-coding genes
(Ensembl build v92). To ensure robustness of the results, MTAG loci were considered
only if the respective top variants were also associated with the examined trait at P <
0.01 in the original GWAS with a concordant direction of effect. To identify the unique
AD top and secondary independent signals, AD independent signals from all pairwise
MTAG were considered, excluding duplicate signals or proxies (either in distance

+£500 kb or in LD 1 >0.1) and keeping the signal with the strongest P-value.
9.2.5 Novel loci definition and replication

A signal indicated by MTAG was considered novel if all the following criteria were

met:

1. the top variant of the locus achieved genome-wide significance (P <5 x 107%) in
the MTAG results

2. the top variant of the locus was significant (P <0.01) in the included original
GWAS with a concordant direction of effect

3. the top variant was not located within £500kb or in LD (r2>0.1) with

previously reported loci

For AD, in addition to the included GWAS study (Jansen et al., 2019), novel loci were
also compared to two previously published key GWAS studies (Kunkle et al., 2019,
Bellenguez et al., 2022).

To explore whether expressions of the novel AD genes in relevant brain tissues were
causally associated with AD risk, summary-data-based MR (SMR) (Zhu et al., 2016)
and Heterogeneity In Dependent Instruments (HEIDI) analysis were conducted. SMR
was performed by integrating eQTL data from GTEx version 8 (Consortium, 2020) in
hippocampus and cortex (SNPs within 1 Mb of the transcription start site with
P<1x107°) and AD summary statistics from MTAG.
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9.2.6 Trait-Trait and Trait-eQTL Colocalisation Analysis

Colocalisation was conducted using HyPrColoc (Foley et al., 2021), which is a
Bayesian divisive clustering algorithm to detect shared genetic associations using
GWAS summary statistics. This method was applied to identify colocalised loci
between AD and CV traits and prioritise causal variants explaining the shared
association. The colocalisation was conducted on regions +200 kb from the top SNP
from MTAG. The prior probability for a variant to be associated with a single trait only
at P = 1x10"* and a conditional prior probability for a variant to be associated with an

additional trait given that it is already associated with another trait at Pc = 0.02.

Colocalisation evidence was categorised as considerable (0.5 <PP <0.75) or strong (PP
>0.75). To limit spurious pleiotropy, analyses was restricted to regions with at least one
SNP with P < 5x107* in the respective univariate GWAS. Variants explaining at least
80% of the shared association were considered candidate causal. To limit the probability
of false positive findings, variants were considered causal only if they were associated

(P <0.01) with both AD and the respective CV trait in the univariate GWAS.

For colocalised loci, a expression quantitative trait loci (eQTL) colocalisation was
performed using AD, CV trait and eQTL data from 48 tissues, obtained from GTEx v7,
following the same approach as described before. The eQTL colocalisation analysis

aimed to identify shared genes between the traits and tissues of expression.

9.3 Results

9.3.1 Multi-Trait Genetic Association Analysis

Five pairwise MTAG analyses were performed between AD and one each time of the
following CV trait: CAD, AF, stroke, cIMT, and blood pressure (BP). The genetic
correlations between AD and the examined CV traits were calculated (Supplementary
Table 10) and the MTAG results were visually illustrated in comparison with the
original GWAS (Supplementary Figures 5-10). The analysis identified 27 unique
genetic loci associated with AD at GWS level (P < 5x10°®) that corresponded tol14
unique SNPs. Among these loci, 5 were novel for AD with rs73069394 (ULK4)

showing the strongest association (Table 9.1).

To validate the associations for the novel AD loci, a SMR analysis was conducted using

eQTL data from relevant brain tissues. This analysis showed a potentially causal
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association between ULK4 expression in the hippocampus and AD risk (beta = 0.04, P

= 3.4x107"°, Pygipr = 0.22). SMR was not applicable for the remaining loci due to

unavailability of gene expression data.

Moreover, 740 genetic loci associated with CV traits at GWS level including 1222
independent signals. Among these, 13 novel loci were identified, including 4 for CAD,
8 for cIMT, and 1 for stroke (Table 9.1). Overall, 15 unique AD SNPs (in 9 loci) were

also associated with at least one of the examined CV traits at GWS level.

Table 9.1 Novel genetic loci for Alzheimer’s disease and cardiovascular traits

SNP Chr Pos EA OA MAF Beta P Gene
Alzheimer’s disease

rs7529220 1 22282619 T C 0139 -0.01 1.7x10% HSPG2
rs11692604 2 19947507 C T 0483 0.01 4.1x108 AC019055.1
rs73069394 3 41787233 A G 0.188 0.03 1.5x10% ULK4
rs77399788 5 123003001 G A 0058 0.03 1.8x101° KRT18P16
rs56365761 19 39148103 G A 0436 -0.01 4.6x108 ACTN4
Coronary artery disease

s2552527 2 218688596 G T 0409 -0.02 2.0x10% TNS1
rs748431 3 14928077 G T 0.395 0.02 3.5x108 FGD5
rs11723436 4 120901336 G A 0.327 0.02 2.7x10°8 RPI11-700N1.1
rs15052 19 41813375 C T 0.158 0.02 3.6x10% HNRNPULI:TGFBI
Carotid intima-media thickness

rs10064683 5 95567760 A G 0352 0.02 1.3x10® CTD-2337412.1
$6904596 6 27491299 A G 0082 0.04 1.2x10°8 HNRNPAIPI
rs56118607 9 127898024 A G 0124 0.03 3.8x10° SCAI
rs1887182 10 97013497 G T 0467 002 1.0x10% PDLIM]I
rs11029956 11 27355804 A G 0340 0.02 7.4x10° CCDC34
rs12370774 12 106510413 T C 0.097 -0.04 3.4x10?® NUAKI
rs76064118 19 2235284 T C 0.053 0.06 4.8x10°8 PLEKHIJI
rs1034565 22 19984211 T C 0.284 0.03 9.8x107° ARVCF
Stroke

rs2284665 10 124226630 T G 0.197 -0.01 4.4x108 HTRAI

SNP: Single-nucleotide polymorphism; Chr: Chromosome; Pos: Position; EA: Effect allele; OA: Other
allele; MAF: Minor allele frequency; Beta: Effect size estimate; P: Two-sided P-value

9.3.2 Colocalisation Defines Genetic Loci Shared by AD and CV Traits

The colocalisation analysis on the 767 loci identified by MTAG (62 AD + 740 CV)
identified 21 colocalised loci between AD and CV traits (Figure 9. 1, Supplementary
Table 11).
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Figure 9.1 Circular scheme showing multiple regional plots for the colocalised loci
between Alzheimer's and cardiovascular traits

The figure presents the distribution of P-values (-logioP) from MTAG with inner orientation.
The annotations show the mapped genes of the lead variants

Most colocalised loci were found between AD and AF (7 loci) or between AD and DBP
(7 loci). In three out of the twenty-one colocalised loci, a single candidate causal variant
explained a sufficiently the shared association: rs11786896 (PLEC; colocalised with
AD and AF; PP=0.97; 86% of PP explained by SNP), rs7529220 (HSPG2; colocalised
with AD and AF; PP = 1; 90% of PP explained by SNP) and rs429358 (4APOE;
colocalised with AD and CAD; PP = 0.57; 93% of PP explained by SNP). The variant
rs11786896 in PLEC was not considered a novel AD locus due to its proximity to a
previously reported variant (rs34173062 in SHARPIN). Nevertheless, the two loci may
represent distinct and independent signals as supported by pairwise genetic correlation

(r*=0.006) and regional plots (Supplementary Figure 11).
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9.3.3 Gene Expression Colocalisation Prioritises Shared Causal Genes

To identify pleiotropic causal genes for the 21 colocalised loci, a gene expression
colocalisation was performed using eQTL data in 48 tissues. The analysis found 16 loci
that colocalised with AD, at least one CV trait and expression of genes, for a total of 53
associations with 43 genes (Supplementary Figure 12, Supplementary Table 12).
These associations included 20 for AF (in 6 loci with 17 genes), 22 for DBP (6 loci with
16 genes), 3 for stroke (1 locus with 3 genes) and 8 for cIMT (3 loci with 6 genes).

In two loci, a single candidate causal variant explained the colocalisation for AD, CV
trait, and tissue-specific gene expression. The intronic variant rs11786896 (PLEC)
colocalised with AD and AF and was an eQTL for PLEC in the cardiac left ventricle
(PP = 0.99, 99% of PP explained by SNP) and skeletal muscle (PP = 0.92, 98%PP
explained by SNP) (Figure 9.2). The variant was associated with increased risk of AD
(Odds Ratio, OR = 1.02, P = 5x107®), increased risk of AF (OR =1.02, P=1.1x107°),
and lower PLEC expression in both cardiac left ventricle (Beta =—0.71, P = 5.9x107'3)
and skeletal muscle (Beta=-0.3, P=7.7x107).

Expression Quantitative Trait Loci (eQTL)

.
- I S R il Tissue types
AR, ., + Heart Left Ventricle
=85 34 P N
> echa Al o ny . Muscle Skeletal
[ )
s % -
2 U - FR X -7

rs11786896 r?
g ma
g mos
! 08
07
2 0.6
Alzheimer's Disease A Top lead SNP
rs11786896 A secondary lead SNP
77777777777777777777777777777777777777777777777777777 e 7T O Proxies of top lead SNP

5 =1
i ¢ L] o a
H oo
gy
T

2

145 Mb 145.25 Mb
Chromosome 8
PLEC PLAH SPEP\N
FARETO EXTECH WAFT
SPATCY CYCRIARTETS

Figure 9.2 Regional plots for the candidate causal variant rs11786896 in PLEC
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The intergenic variant rs7529220 (HSPG?2) explained the colocalisation of AD and AF
with the expression levels of C/QA4 (PP = 0.85, 82% of PP explained by SNP), C/IOB
(PP = 0.83, %PP = 97%), and CI1QC (PP = 0.61, 99% of PP explained by SNP) in
mammary tissue. This variant was associated with an increased risk of AD (OR = 1.01,
P = 1.7x107®), an increased risk of AF (OR = 1.01, P = 2.7x107'%), and elevated
expression of C/1QA (Beta = 0.19, P = 2.4x10*), CIQB (Beta=0.17, P = 2.6x10™%),
and C/QC (Beta=0.15, P = 8.1x107*) in mammary tissue.

9.4 Discussion

A comprehensive approach was adopted to understand the co-occurrence between AD
and various CV diseases and traits based on several multi-trait GWAS to characterise
their shared genetic architecture. Convergent evidence from colocalisation between
AD, AF and eQTLs prioritised two genetic regions that each included a single candidate
causal variant (rs11786896 was eQTL for PLEC and 157529220 for C1QA, CI1QB, and
CI1QC). These findings provide new insights into genetic pleiotropic effects and
potential shared mechanisms causally related to both AD and CVD.

This study identified five not previously reported AD loci. Among these, the intronic
variant rs73069394 (ULK4) demonstrated the strongest association and was also GWS
for DBP. However, the locus showed no evidence of colocalisation between AD and
DBP, suggesting that it is not likely the causal for both traits. Beyond its association
with DBP, previous GWAS have linked this locus to schizophrenia and bipolar disorder
(Luo et al., 2022). The role of ULK4 protein in neurodegeneration is little studied, but
its function suggests relevance to AD. It is involved in the regulation of autophagy and
in multiple pathways related to AD pathology and brain functions such as neuronal
growth, endocytosis, and myelination (Luo et al., 2022, Liu et al., 2018). Furthermore,
this study provided additional evidence from SMR analysis supporting a potentially

causal relationship between ULK4 expression levels and AD.

Out of the several CV traits and diseases examined with AD, AF showed the largest
number of pleiotropic signals with AD. Numerous observational studies, provide
growing evidence that BP and AF are associated with cognitive impairment, risk of AD
and other dementias (Rivard et al., 2022, Livingston et al., 2020). The suggested
mechanisms linking these traits and AD involve a combination of cerebrovascular

damage, neuroinflammation, amyloid-beta accumulation, oxidative stress, and
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endothelial dysfunction (Iturria-Medina et al., 2016, Sweeney et al., 2019). However, it
is unclear whether the diseases have a shared pathophysiology or whether the

relationship arises as downstream consequences of BP and AF (e.g., stroke).

This study provides evidence suggesting shared genetic determinants for the two
diseases. The colocalised intronic variant rs11786896 within the plectin gene (PLEC)
was associated with lower expression of PLEC in the cardiac left ventricle and
increased risk for both AD and AF. PLEC is a member of a protein family, named
plakins, with a crucial structural role in the cytoskeleton including cell architecture and
tissue integrity and a partially functional role in the assembly, positioning, and
regulation of signalling complexes (Sonnenberg and Liem, 2007, Leung et al., 2002).
Previous studies of human tissues or preclinical models provide independent evidence
for an association of plectin with diseases including AD and AF (Thorolfsdottir et al.,
2017, Lagisetty et al., 2022). Plectin deficiency in mice has been associated with
diminished learning capabilities and reduced long-term memory compared to wild-type
littermates (Valencia et al., 2021). A hypothesis supports that the risk of AD may be
affected via functions of plectin in astrocytes (Potokar and Jorgacevski, 2021).
Astrocytes play multiple roles, central to the pathology of AD, including metabolic
support for neurons, modulation of brain microvascular function and, through activities
associated with those of microglia, inflammatory responses (Potokar and Jorgacevski,
2021, Nedergaard et al., 2003). These functional roles may be mediated in part by
interactions of plectin with intermediate filaments, microtubules and actin filaments
(Potokar and Jorgacevski, 2021). Intermediate filaments are important structural
components of the cytoskeleton with crucial roles in synaptic activity, neurogenesis and
repair after brain injury (Potokar et al., 2020). Differences in expression of plectin
modulate neuronal function and vesicular trafficking generally and interactions with
tau suggest potential roles specific to AD (Valencia et al., 2021, Deak, 2014, Fuchs et
al., 2009). The role of PLEC in AF has been largely hypothesised to act via structural
effects on the heart and cause electrophysiological abnormalities (Thorolfsdottir et al.,
2017). Therefore, in accordance with the hypothesised mechanisms linking PLEC to
AD above, PLEC may play related roles in cardiomyocytes for assembling and
mobilising the intermediate filaments and their networks. These effects further
modulate contractile function in cardiomyocytes and inflammatory responses in

macrophages which may further contribute to AF (Kamal et al., 2018).

83



Multivariate Analysis of Genetic Data on Complex Diseases and Phenotypes

Another colocalised variant between AD and AF, the intergenic rs7529220, which is
located 19k upstream from Heparan Sulfate Proteoglycan 2 (HSPG2) and 21k
downstream from Chymotrypsin Like Elastase 3B (CELA3B), was associated with
increased risk of AD and AF and higher expression of three genes of the Complement
Component 1, Q Subcomponent (C/Q) family (C/QA4, CIQB, and CIQC) in breast
mammary tissue (and, by inference, in brain vasculature) and is a previously unreported
locus for AD. The variant is located 680kb downstream of C/Q genes. The complement
system plays a central role in synaptic remodelling in the brain and in cellular damage
response more generally in the body (Gomez-Arboledas et al., 2021, Carpanini et al.,
2022). It is possible that greater expression of C/Q may lead to higher activity of the
complement system which in turn may potentiate synapse loss in early AD (Dejanovic
etal., 2022). Similarly, C1Q has roles in the genesis of atherosclerotic plaques (Haskard
et al.,, 2008) and in the regulation of early stages of inflammatory responses to the

cardiomyocyte injury associated with a range of cardiac traits (Mihlan et al., 2011).

This study had several strengths. First, it achieved high statistical power by
incorporating GWAS with substantial sample sizes and by performing suitable
multivariate methods. Second, it combined advanced methodologies from genetic

epidemiology to provide supporting evidence.

However, a few limitations also must be acknowledged. We restricted our analyses to a
population of European ancestry. The lack of genetic diversity may have hampered the
possibility of detecting other relevant variants. Additionally, a considerable portion of
the genetic predisposition coming from rare variants (MAF < 1%) was excluded from
the analyses. However, including these variants might lead to false-positive findings
and biased results. Moreover, statistical methods were used to detect pleiotropy, and
therefore considered a genetic locus pleiotropic if it was statistically significantly
associated with two or more phenotypes. However, this approach for identification of
pleiotropic genes may not always highlight shared biological pathways, as the identified
genes could affect the traits independently via different pathways (horizontal
pleiotropy), or they could even be expressed in different tissues in response to different

signals (Gratten and Visscher, 2016, Pickrell et al., 2016).

In conclusion, multi-trait GWAS analyses were performed on AD and CV traits and
subsequent colocalisation analyses detected 16 shared genetic loci and prioritised two

candidate shared causal variants. These findings define shared mechanisms for AD and
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different CVDs. The complement system has been explored as a target for novel
preventive or disease-modifying therapies in CVDs (Miyamoto et al., 2020) and AD
(Spurrier et al., 2022). This work suggests that plectin could offer new and potentially
promising targets for preventive and therapeutic medicines with benefits across these

common comorbid disorders.
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CONCLUSIONS

This thesis explores both the theoretical and practical aspects of multivariate methods
in genetic epidemiology, including their statistical frameworks and conceptual
classifications. Through applications to large genomic datasets, it expands knowledge
on the genetic architecture of complex phenotypes discovering novel loci. It emphasises
its focus on the investigation of pleiotropy providing new insights into shared genetic

mechanisms across phenotypes.

A systematic review on multivariate methods that perform single variant — multiple
phenotypes associations using GWAS summary statistics identified several methods of
various statistical frameworks, each with its own advantages and limitations. MTAG
was prioritised among others for a number of reasons including its special ability to

generate trait-specific summary statistics that can be used to post-GWAS analyses.

Suitable multi-trait approaches including MTAG were applied on genomic data from
15 blood traits discovering 711 novel genetic loci involved in blood physiology and

also providing insights into their effects on different stages of haematopoiesis.

Similarly, a multi-trait analytical framework on CRP and CV traits identified 41 novel
CRP genetic loci, along with 41 shared causal variants linking inflammation and
cardiometabolism. Further functional validation may elucidate aetiological pathways

connecting inflammation with cardiometabolic disorders.

Another multi-trait analysis on AD and CV traits detected 5 novel AD loci and 19 shared
genetic loci. Two potential causal variants prioritised through colocalisation analysis.
These findings reveal shared biological mechanisms between AD and CV diseases.
Targets within the complement system and plectin suggest promising opportunities for

the development of therapies addressing the comorbidity of these disorders.

Overall, multivariate methods can be highly effective for applications in genetic
epidemiology studies, as they are better equipped to capture the genetic correlation of
the phenotypes under investigation. As such, they can offer significant advantages in

GWAS, including, on the one hand, being more effective in identifying a larger number
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of novel genetic loci due to increased statistical power, and on the other hand, providing

a more comprehensive approach to the study of pleiotropy.
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SUMMARY

Genetic association studies mainly focus on associations between single genetic
variants and single phenotypes. However, multivariate methods allow the investigation
of genetic effects on multiple phenotypes and, therefore, can better capture the shared
genetic architecture between correlated traits. These multi-trait approaches offer many
advantages, such as increased statistical power for detecting novel genetic loci, reduced

multiple testing burden and a more holistic exploration of genetic pleiotropy.

The main objective of this thesis was to identify multivariate methods that utilise
summary statistics from genome-wide association studies (GWAS), to compare and
prioritise the most effective multivariate approaches for the discovery of novel genetic
loci and exploration of pleiotropy. Specific aims included a systematic review of
existing multivariate methods in order to identify the most efficient of them and
practical applications of suitable multivariate methods on real GWAS data. This
research applied advanced multivariate techniques to discover novel genetic loci for
blood cell traits and prioritise genes with effects on different stages of haematopoiesis.
It also examines the shared genetic architecture between inflammation and
cardiometabolism and identified several pleiotropic loci and common mechanisms.
Furthermore, the present thesis explored the genetic predisposition for comorbidity
between Alzheimer's and cardiovascular diseases, identified novel loci and genes with

pleiotropic effects and suggested new potential therapeutic targets.

The systematic review on multivariate methods of single variant - multiple traits
genome-wide associations using GWAS summary statistics identified 24 distinct
methods of various statistical frameworks. Multi-Trait Association of GWAS (MTAQG)
was indicated as the most influential method within the scientific community and was
prioritised due to its special feature to generate trait-specific summary statistics that can

be used to post-GWAS analyses.

Blood cells play a crucial role in the pathophysiology of several diseases, with their
phenotypes exhibiting high heritability and polygenicity. However, previous GWAS

have only partially explained the overall phenotypic variance of these traits. To further
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explore the genetic structure of blood cells, a multi-trait GWAS was conducted on
fifteen blood cell traits, which identified 3,100 novel associations across 711 genomic
loci, including 29 loci not previously linked to any blood trait in the European
population. A subsequent gene expression colocalisation analysis highlighted variants
with broad or cell type-specific effects. These findings provide insights into underlying
mechanisms involved into different stages of haematopoiesis and consist potential

therapeutic targets for blood-related disorders.

C-reactive protein (CRP), a marker of chronic inflammation, is involved in a wide range
of pathological conditions and likely shares biological pathways with metabolic traits.
A multi-trait GWAS on CRP levels and cardiometabolic traits, including body mass
inde, lipids and smoking, identified 41 novel CRP loci. A subsequent colocalisation
analysis highlighted 41 shared variants between CRP and cardiometabolic risk factors,
with 12 of them demonstrating unexpected discordant effects. Phenome-wide
association studies linked these variants to clinical outcomes. These findings expand
knowledge on the shared genetic architecture between inflammation and
cardiometabolism, suggesting potential targets for preventive and therapeutic

strategies.

The co-occurrence of cardiovascular and neurodegenerative diseases, such as
Alzheimer’s disease, indicates a shared genetic architecture between the two
conditions. A multi-trait GWAS was performed on Alzheimer’s disease and several
cardiovascular diseases, identifying 5 novel genetic loci for Alzheimer’s disease and 16
potentially pleiotropic loci affecting both conditions. Fine-mapping and colocalisation
analyses suggested that lower expression of PLEC in the cardiac left ventricle or higher
expression of C/Q genes can lead, through independent pathways, to increased risks of
Alzheimer’s disease and atrial fibrillation. These findings suggest PLEC and CIQ as
potential therapeutic targets for addressing the comorbidity of cardiovascular and

neurodegenerative diseases.

This thesis investigated theoretical foundations and practical applications of
multivariate techniques in genetic epidemiology. It extends the current knowledge
about the genetic architecture of several complex diseases and phenotypes, emphasising

on the discovery of novel genetic loci and exploration of genetic pleiotropy.
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IIEPIAHYH

Ot peAéteg YEVETIKOV GCULGYETICEWV EMIKEVIPOVOVTAL Kupimwg otnv  avalitnon
ovoyeTice®V  PETAE) UEUOVOUEVOV  YEVETIKOV TOPOAAAYDV KOl HELOVOUEVOV
QeoVOTOHT®V. 26TOC0, OPIGUEVES TOAVUETAPANTEG HEBODOL EMTPETOLY TN dlEPEVVNON
YEVETIK®OV EMOPACEOV GE TOAAATAOVS (POIVOTOTOVE KO, ETOUEVMOE, UTOPOLV Vo
OLAAGPOVY KOADTEPO TNV KOV YEVETIKN OPYITEKTOVIKY] UETOEL GLOYETILOUEV®V
YOPOKTNPIOTIKAOV. AVTEC 01 TOAVUETOPANTEG TPOGEYYICEIS TPOGPEPOVY CMUAVTIKA
TAEOVEKTNUATO, OO ALENUEVT] CTOTIOTIKN OYD Y10 TOV EVIOMIGUO VEDV YEVETIKOV
TONOV, LELOUEVO POPTIO TOAAATADY GTATICTIKAOV EAEYXMV KOl 0L TTLO OAOKANPOUEV

SlepeHVNON NG YEVETIKNG TAELOTPOTING.

O KOp1og 6TOKOG TNG TOPOVGAS SlaTPPNG NTAY O EVIOTIGHOS HeBOO®V TOAVUETOPANTNG
aVAALGNG TOL YPNGYLOTOLOVY GLVOTTIKG OTATICTIKG Oedopéva amd LEAETES gvpeiag
cbpwong tov yovidwwpatog (GWAS), va cvykpivel kol vo 1EpOpyYNoEL TIG TLO
OMOTEAECUATIKEG TOAVUETAPANTEG TPOCEYYIGELS Y10 TNV OVAKAADYT VE®V YEVETIKDOV
tomev Ko v e&epedivnon g mAstotponiag. Ewdwotepol otdyol cupmepiiappavay,
aQPeVOS, TN CLGTNUOTIKY AVOCKOTNON VPICTAUEVOV TOAVUETAPANTOV HeBOd®V, BOTE
VO EVTOTIGTOVV Ol MO OMOJOTIKEG €6 QVTMOV KO QPETEPOV, TNV TPAKTIKY EQOAPLOYN
KatéAAniov moAivpetofAntov pefddwv oe mpaypoatikd ogdopéva GWAS. X
OLYKEKPIUEVN €PELVA, EPOPUOCTNKAY TPONYUEVEG TOADUETAPANTEG TEYXVIKES Yol TNV
AVOKAALYN VEOV YEVETIKOV TOMOV TOV OUOKLTTOPIKOV YOPOKTNPIOTIKOV Kol TNV
epapynon yovwiov pe Pdaon v emidpacy Tovg ota Sdgopa GTAS NG
apatomoinone. EmmAéov, diepeuvnnke 1 Kown YEVETIKY aPYLTEKTOVIKN HETAED TNG
QAEYHOVIG KOl TOV KOPOOUETOPOAMGHOD KOl EVIOMICTNKOV OPKETOL TAEOTPOTIKOL
TOmOl KOl KOvol yeveTkol pmyoviopol. Akoun, n mapovca oaTpiPr] peAétnoe
YEVETIKN] Tpodldbeon Yoo cvvvoonpotnto petald g vocov AAToydipep Kot
KOPOYYEWKOV TaONcE®VY, €VIOMICE VEOLG TOTOLG KOl YOVIOIO LE TAELOTPOTIKES

EMOPAGELS KO TPOTEWVE VEOLG THAVOVE BEPATELTIKOVG GTOYOVG.

H ovomupotiky  avaoxkdémnon  mlve ot moAvpetafAntéc  pebddovg
EVPLYOVISIOUOTIKOV GUCYETICEMV WHETAED €VOG YEVETIKOL TOTOL Kol TOALUTAMV

(QOWVOTUTI®V LE YPNOT GLVOTMTIK®V OTATICTIKOV amd peAéteg GWAS evtomoe 24
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Eexoplotéc pebooovg dpdpwv ototioTik®wv mAociov. H pébodog Multi-Trait
Association of GWAS (MTAG) avadeiyOnke o¢ n TAEOV EMOPACTIKN GTN EXCTNLOVIKN
KOWOTNTO KO TPOTIUAONKE AOY® TNG €101KNG TS WO1OTNTOG VO dNULOVPYEL GUVOTTIK
OTOTIOTIKA Y10 KéOe QavoTumo EeywploTd, To OToio, LTOPOVV Vo XpNoLomombovy og

enakdAovOeg g GWAS avaiidocelc.

To opoatikd kdttapo mailovv kaboplotikd poéAo oty maboPuololoyio. apKETMV
acleveldv, evd ot @ovoTVTol TOLG eUEOVICOLY VYNAY KANPOVOUNGIUOTNTA Kot
moAvyovikdtnta. Qotdc0o, mponyovpeveg GWAS peléteg £xovv e€nynoet povo v pépet
TN GLUVOAIKT] POIVOTVTIKT] SLOKDLOVGT] OVTMV TOV YopoKTNPLoTiK®V. [Ipokepévon va
depeuvnBel mepetaipw M yEVETIKN OOUN TOV OUATIKOV KLTTOP®V, EQOUPUOCTNKE
moAvpetafAnt perétn GWAS ce 0ekomévTe YOPAKTNPLOTIKE OUOTIKOV KLTTAP®V, M
omoia evtomioe 3.100 véeg cvoyetioelg oe 711 yovidiwpatikovg tdémovg, petald Tmv
omoiwv 29 1omol mov dev elyov cvvdedel TPONYOLUEVMG HE KOVEVO XOPAKTNPIOTIKO
aipatog oe gvpomaikd mtAnBvopd. Eraxdéiovdn avaivorn cuveviomouov Yoviolokng
éxppaong (gene expression colocalisation) VEJEIEE YEVETIKEG TOPAAAAYES LLE YEVIKES
N KuTTapOoEdkég emdpdoels. Ta ovykekpiuéva evpnuata OTILovy TAELPES Yia TNV
EMIOPAOT VTOKEIUEVOV UNYOVICUOV 7OV EUTAEKOVTOL GE OPOpPO. OTAdINL TNG
OLILOTOTOINONG Kot GLVIGTOVV TBOVOUS BEPUTEVTIKOVG GTOYOVG Yo OLOTAPOYES TTOV

oyetilovtal pe To aipa.

H C-avtwwpooa npwteivny (CRP), évag deiktng ypoviag eAeyLovNG, EUTAEKETOL GE £val
evpl PAGLO TABOAOYIKAOV KOTAGTAGE®V Kol TOavAOG potpdaletat frodoyikd LovoraTio
LLE YOPOUKTNPLOTIKA TOV peTafoAopod. Ateénydn mtoivpetofint) perétn GWAS mhvo
ota eninedo CRP kot opiopévoug kapdtopetafoAtkong oeiktes, OTMG 0 deiktng pnalog
OMUOTOG, To MTidt Kot T0 Kamvicpa, evromilovtog 41 véoug yevetikohg TOmovg g
CRP. Ipaypatomomdnke avdAvcn YEVETIKOD GUVEVTOTIGLOVL OV 0vEdElse 41 Kotvolg
YeVeTIKOOG moAvpopeiopovg avapesa ot CRP kot kapdiopetafoikons mapdyovteg
KWvOOVoL, €K TV Omoimv 12 gUEAVIGOV UM OVOUEVOUEVEG OVTUPATIKEG EMOPACELS.
Meléteg cLoYETIONG TOV €VPVTEPOL POVOTLTIKOV GLVOAOL (PheWAS) cvuvédecav
aUTEG TIG TOPOAAayEC pe KAVIKEG ekPacelc. Ta ocvykekpylévo OmoTeAEGHOTO
EMEKTEIVOLV TN YVADGT GYETIKA LLE TNV KON YEVETIKT OPYLTEKTOVIKT] TNG PAEYLOVIG Kol

TOV KOPOOUETAPOMGLOV, TPOTEIVOVTOS TOOVOVS GTOYOLS TPOANYMG Ko Bepameiog.

H ocvvvoonpomrta kapdiayyelok®v Kol VEVPOEKPUAGTIKOV Tabce®V, OT®S 1 VOCOG

AAtoydupep, VTOONADVEL KOV YEVETIKY] OPYITEKTOVIKY OVAUEGH OTIG 600 TOONGCELS.
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Epappootre moivuetapint) avaivon GWAS mdveo ot voco AAToyduuep kot
dLapopeg Kapdrayyelakés achéveles, eviomilovag 5 VEOLS YEVETIKOVG TOTOVG THG VOGO
Altoydupep kot 16 mbavodg TAEOTPOTIKOVS TOTOVE OV EMOPOLV Kol OTIS OVO
nanoelg. EmmAéov avaldoelc Aemtopepovg yoptoypdonong (fine-mapping) ot
YEVETIKOD GUVEVTOTIGUOU £0€1&av OTL PEUEVN €K@paoT Tov yovidiov PLEC oty
aploTeP] KotMa g Kapoldc N awéEnuévn ékepacn tov yovidiov CIQ upmopetl va
00N YNOEL, HECH aVEEAPTNTOV LOVOTATIOV, GE CLENUEVO KIVOLVO EUPAVIOTG TS VOGOV
ALtoyduep Kot TG KOATIKNG popprapuyne. To eupipata avtd vwodeikvhovy To yoviola
PLEC xar CIQ og mBovods Bepamentikong oTOYOLS Yo TV OVTILETMOMICN TNG

GLVVOGTPOTNTOG KOPOLOLYYELKMY KOl VEVPOEKPVAGTIKMOV 0GOEVELDV.

H mopovoa dwrpipr] Oiepedvnoe Bewpntikéc PACES Kol TPOKTIKEG E£QAPUOYES
TOAVUETAPANTOV TEYVIKOV OTN YEVETIKN emdnoioyia. Emexteivel v tpéyovca
YVOON GYETIKA LE TN YEVETIKY OPYLTEKTOVIKY O14Popmv cVUVOET®MV 0cheveldv Kot
QOWVOTUTI®V, OvOovTOG EUPACT OTNV OVOKAALYN VE®V YEVETIKOV TOTMOV Kol TNV

€EEPELYN O TG YEVETIKNG TAELOTPOTLOG.
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B. SUPPLEMENTARY FIGURES

HDL

LDI L.DI

Supplementary Figure 1 Venn diagrams

A) 295 C-reactive protein independent SNPs which are also genome-wide significantly associated with any of the other
examined traits and B) the same focusing on the novel CRP SNPs only

HDL: high density lipoprotein levels, LDL: low density lipoprotein levels, TG: triglyceride levels, BMI: body mass index, CPD:
cigarettes per day
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Supplementary Figure 2 Circular dendrogram presenting the novel C-reactive protein (CRP) loci
Starting from the centre, the layers represent chromosome, rsID, MTAG analysis (1: multi-trait, 2: bivariate on CRP-
lipids, 3: bivariate on CRP-BMI), and the mapped genes, respectively. The loci from multi-trait MTAG are coloured
with blue and from bivariate with red

BMI: Body mass index; CPD: Cigarettes per day; CRP: C-reactive protein; HDL: High-Density lipoprotein; LDL: Low-Density

lipoprotein; TG: Triglycerides
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CPD

1.DL.

TG

Supplementary Figure 3 Venn diagram of C-Reactive Protein associated genes which are also associated
with any of the other examined traits

HDL: High-Density Lipoprotein, LDL: Low-Density Lipoprotein, TG: Triglycerides, BMI: Body Mass Index, CPD: Cigarettes per
day
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a 30 general tissue types b 34 specific tissue types
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Supplementary Figure 4 Tissue expression analysis of a) 30 general and b) 54 more specific tissue types
for each examined trait

Horizontal line represents the Bonferroni threshold (a: P=1.7x10; b: P=9.3x107%). Bonferroni significant tissues are
colored with red.

CRP: C-Reactive Protein, BMI: Body Mass Index, HDL: High-Density Lipoprotein, LDL: Low-Density Lipoprotein, TG:
Triglycerides, CPD: Cigarettes per day
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Supplementary Figure S Manhattan plots of MTAG results for A) Alzheimer’s disease and B) atrial
fibrillation.

Each mirror Manhattan plot illustrates the results from the MTAG analysis (upper part in turquoise) compared with the
original GWAS results for the same trait and the same set of SNPs (lower part in red). Annotated genes denote novel
discoveries identified by the MTAG analysis.

AD Alzheimer’s disease, AF atrial fibrillation.
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Supplementary Figure 6 Manhattan plots of MTAG results for A) Alzheimer’s disease and B)
coronary artery disease.

Each mirror Manhattan plot illustrates the results from the MTAG analysis (upper part in turquoise) compared with the
original GWAS results for the same trait and the same set of SNPs (lower part in red). Annotated genes represent novel
discoveries identified by the MTAG analysis.

AD Alzheimer’s disease, CAD coronary artery disease.
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Supplementary Figure 7 Manhattan plots of MTAG results for A) Alzheimer’s disease and B) carotid
intima-media thickness.

Each mirror Manhattan plot illustrates the results from the MTAG analysis (upper part in turquoise) compared with the
original GWAS results for the same trait and the same set of SNPs (lower part in red). Annotated genes represent novel
discoveries identified by the MTAG analysis.

AD Alzheimer’s disease, CIMT carotid intima-media thickness.
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Supplementary Figure 8 Manhattan plots of MTAG results for A) Alzheimer’s disease and B) stroke.

Each mirror Manhattan plot illustrates the results from the MTAG analysis (upper part in turquoise) compared with the
original GWAS results for the same trait and the same set of SNPs (lower part in red). Annotated genes represent novel
discoveries identified by the MTAG analysis.

AD Alzheimer’s disease, STRK stroke.
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C MTAG: AD & BP
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Supplementary Figure 9 Manhattan plots of MTAG results for A) Alzheimer’s disease, B) systolic
blood pressure and C) diastolic blood pressure.

Each mirror Manhattan plot illustrates the results from the MTAG analysis (upper part in turquoise) compared with the
original GWAS results for the same trait and the same set of SNPs (lower part in red). Annotated genes represent novel
discoveries identified by the MTAG analysis.

AD Alzheimer’s disease, BP blood pressure, SBP systolic blood pressure, DBP diastolic blood pressure.
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Trait: AD Trait: SBP

K MTAG: AD-BP

Trait: DBP

Supplementary Figure 10 QQ-plots of bivariate MTAG analyses for Alzheimer's disease and the
examined cardiovascular traits

This figure presents the QQ-plots resulting from five bivariate MTAG analyses, each comparing Alzheimer's disease
(AD) with a different cardiovascular trait. The examined traits alongside AD include atrial fibrillation (AF), coronary
artery disease (CAD), carotid intima-media thickness (cIMT), stroke (STRK), and blood pressure (BP). Each QQ-plot
displays the observed versus expected -log10(P-values) for genetic associations, comparing the MTAG results (blue)
with the original GWAS results (orange) for the same trait and the same set of SNPs. The plots are organised as follows:
A) AD results from the AD-AF MTAG analysis, B) AF results from the AD-AF MTAG analysis, C) AD results from the
AD-CAD MTAG analysis, D) CAD results from the AD-CAD MTAG analysis, E) AD results from the AD-CIMT
MTAG analysis, F) CIMT results from the AD-CIMT MTAG analysis, G) AD results from the AD-STRK MTAG
analysis, H) STRK results from the AD-STRK MTAG analysis, I) AD results from the AD-BP MTAG analysis, J) SBP
results from the AD-BP MTAG analysis, K) DBP results from the AD-BP MTAG analysis.
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Supplementary Figure 11 Regional plots of PLEC region across different genome-wide association
studies on Alzheimer's disease

The variant rs11786896 (PLEC), which was indicated by MTAG as a top signal associated with Alzheimer's disease is
located approximately 150kb upstream from another previously identified variant (rs34173062). The two variants likely
represent two independent signals (linkage disequilibrium 12 = 0.006)
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Supplementary Figure 12 Regional plots on the colocalized loct between Alzheimer’s disease (bottom),
cardiovascular trait (middle) and the expression quantitative trait loci for the respective tissues (top)
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