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1. Bone

1.1. Introduction

Bone is one of the hardest substances of the body of vertebrate animals, with human bones rated 
at 5 according to the Mohs hardness scale, with 1 being the softest material (talc) and 10 the 
hardest (diamond), and the organ that constitutes the main rigid part of their skeletal system [1,2]. 
Other parts of the skeletal system of vertebrates include joints, cartilages, and ligaments. Bones 
are charged with the crucial role of providing structural stability and support to the body, as well as 
protecting vital  internal  organs,  such as the brain,  spinal  cord,  heart,  lungs,  etc.  from external 
forces by enclosing them within a sturdy framework. Additionally, bones play a pivotal role in the 
mobility of organisms: skeletal muscles are attached to bones by tendons and effectively use them 
as levers, allowing the body as a whole and the different body parts to move.

Apart from the mechanical roles in support, protection, and movement, bones also have important 
functional roles that contribute to the homeostasis of the body. Bones serve as storage for various 
minerals, with calcium (Ca), more than 99% of which is stored in bones, and phosphorus (P) (both 
combined mainly in the form of hydroxyapatite) being the most important  [3]. Furthermore, the 
internal (marrow) structure of bone contains numerous interconnecting cavities which are filled 
with adipose tissue (fat cells), often referred to as yellow or white marrow, whose function is not 
yet completely clear, but recent evidence shows that it plays a role in maintaining bone marrow 
homeostasis and affects the metabolism of the whole body  [4]. Along with yellow marrow, red 
marrow also occupies the internal cavities of bones, primarily of flat bones in adult organisms, 
which is composed of mesenchymal stem cells, hematopoietic stem cells (hematopoiesis meaning 
“blood formation”), and progenitor cells that mature into myeloid, and lymphoid cells. Red bone 
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marrow is the basic hematopoietic center of the body, where red blood cells, white blood cells,  
and platelets are produced [5].

1.2. Bone structure

Bones are composed of osseous tissue, a specialized, hard, and dense form of connective tissue 
that constitutes most of the skeletal framework. Bone tissue is essential for supporting the body's 
structure, protecting vital  organs, storing minerals,  and facilitating blood cell  production in the 
bone  marrow.  It  consists  of  a  mineralized  matrix  and  three  major  types  of  mature  cells: 
osteoblasts,  which  synthesize  the  organic  components  of  the  matrix;  osteocytes,  which  are 
differentiated osteoblasts enclosed in the material they secrete (lacunae); and osteoclasts, large 
multinucleated cells essential for bone growth and remodeling. The matrix comprises an organic 
component, primarily made of collagen fibers that provide elasticity, and an inorganic component, 
primarily composed of hydroxyapatite crystals, which impart strength and rigidity to bones [6].

The skeletal system of vertebrates varies across classes (e.g., mammals, fish, birds) and species 
(e.g., humans, mice, rabbits); however, they all share a similar set of bone types, which, depending  
on their shape, can be classified into the following categories: long bones, short bones, flat bones,  
sesamoid bones, and irregular bones [7,8].

• Long bones (e.g., tibia, femur, humerus) are usually located in the limbs and have a tubular 
shape with a shaft (diaphysis)  between two wider ends (epiphyses).  They are generally 
elongated  in  shape  and  function  as  levers  that  enable  movement  through  muscle 
contraction.

• Short  bones (e.g.,  carpals,  tarsals)  are  roughly  cube-shaped,  with  approximately  equal 
length, width, and thickness. They provide stability and support to the skeletal system and 
allow for limited movement.

• Flat  bones (e.g.,  bones  of  the  cranium,  pelvis,  and  ribs)  are  thin  and  broad,  often 
resembling  flat  plates  (which  may  also  be  curved).  Their  role  is  to  provide  anchoring 
surfaces for muscles and protect vital internal organs.

• Sesamoid bones (e.g., the patella in humans) are small bones embedded within tendons, 
helping them withstand excessive forces. Their smooth surfaces allow tendons to slide over 
them, acting as pulleys that improve stress distribution and muscle efficiency.

• Irregular bones (e.g., vertebrae, facial bones) have complex, non-uniform shapes that do 
not fit into any other category. They are uniquely adapted for specific functions, such as 
support, protection, and muscle attachment, due to their varied structures and complex 
forms.
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In addition to the classification by shape, bones can also be macroscopically categorized based on 
their internal structure into cortical or trabecular types, depending on the structure of the osseous 
tissue.

• Cortical bone, also known as compact bone, is the dense and hard outer layer of bones,  
providing strength to withstand external forces. It appears smooth and white and accounts 
for approximately 80% of the total mass of an adult human skeleton [9].

• Trabecular bone, also known as cancellous or spongy bone, is found internally and consists 
of a lattice of numerous interconnecting cavities that create a honeycomb-like structure. 
This  configuration reduces the bone’s  weight  and provides space that  is  filled by bone 
marrow.

1.2.1. Bone cells

Bone is a dynamic tissue that undergoes continuous remodeling throughout an organism's life as a 
result of both physiological and pathological responses. The activities of bone-forming cells, such 
as osteoblasts, and bone-resorbing cells, such as osteoclasts, are in constant interplay to maintain 
a delicate balance. When this balance is disrupted, it can lead to diseases such as osteoporosis. It  
is,  therefore,  essential  to  understand  how  the  various  bone  cell  types  contribute  to  bone 
formation, maintenance, and resorption, ultimately influencing overall skeletal health.

Osteoblasts

Osteoblasts are the cells responsible for the formation and storage of new bone tissue. They have 
a single nucleus and do not undergo mitosis, meaning they do not multiply. Osteoblasts arise from 
osteoprogenitor  cells  (which  in  turn  originate  from  mesenchymal  stem  cells),  which  are 
undifferentiated precursors that can differentiate into osteoblasts in response to specific signaling 
factors  [9]. Found exclusively at the surface of the bone matrix, osteoblasts produce the organic 
components of the bone matrix (such as type I collagen, proteoglycans, and glycoproteins) in the 
form of a secreted protein called osteoid. The osteoid subsequently undergoes mineralization to 
form mature bone tissue [6]. During this process, some osteoblasts become encased in the newly-
formed matrix and they differentiate into osteocytes, the most abundant cell type in mature bone. 
Depending on the bone tissue needs and microenvironment, osteoblasts can also become bone-
lining cells that create a thin layer covering the internal and external surfaces of bones, known as 
the periosteum and endosteum, respectively  (Fig.  1.1).  The life  cycle of  osteoblasts ends with 
apoptosis (programmed cell death).
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Osteocytes

Osteocytes are single-nucleus cells and are the most common cells in bone tissue (90-95% of total 
cellular component) [7]. They originate from differentiated osteoblasts, which become encased in 
cavities surrounded by the matrix they secrete. Each of these cavities, known as lacunae, contains 
a  single  osteocyte.  Morphologically,  osteocytes  differ  from  osteoblasts;  they  have  extended 
dendritic processes that connect to other bone cells—such as osteoblasts, bone-lining cells, and 
other osteocytes—as well as to blood vessels. Through these processes and an extensive network 
of small channels approximately 300 nm in diameter (canaliculi),  osteocytes communicate with 
neighboring cells via gap junctions and function as a network of mechanical sensors, detecting 
stress and damage and triggering bone remodeling. Like osteoblasts, they cannot undergo mitosis 
and, in humans, can live for several decades [9]. Following apoptosis, signaling molecules attract 
osteoclasts  to  resorb  the  bone  around  the  dead  cells,  initiating  a  remodeling  cycle  in  which 
osteoblasts lay down new bone and replace the lost osteocytes, preserving bone structure and 
quality [10]. Diseases like osteoporosis can shorten the lifespan of osteocytes, leading to decreased 
bone quality.

Figure  1.1: Bone structure at the cellular level. Zoomed-in insets near the periosteum and endosteum highlight the 
tissue’s cellular structure at these regions. Figure from [7], licensed under CC BY 4.0.

Osteoclasts

Osteoclasts are large, multinucleated cells that can contain anywhere from 5 to more than 50 
nuclei, and they are the only known cells capable of resorbing bone [9]. Unlike osteoblasts, which 
arise from the mesenchymal stem cell lineage involved in the differentiation of connective tissues, 
osteoclasts  originate  from  the  fusion  of  mononuclear  precursor  cells  within  the  monocyte-
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macrophage  lineage,  which  is  associated  with  hematopoiesis  [11].  This  difference  in  origin 
underscores  the  distinct  functions  and  developmental  pathways  of  bone-forming  and  bone-
resorbing cells. During bone resorption, osteoclasts adhere to the bone surface using a specialized 
structure  known as  the  ruffled border,  which  increases  their  surface  area  and enhances  their 
resorptive capabilities. They create a sealed microenvironment called the resorption lacuna, or 
Howship's lacuna. Within this environment, osteoclasts secrete protons, which acidify the area, 
facilitating the dissolution of hydroxyapatite crystals in the bone matrix. They also release lytic 
enzymes, such as collagenase and cathepsin K, which degrade the organic components of the bone 
matrix [9]. This coordinated activity not only allows for the resorption of old or damaged bone but 
also plays a critical role in maintaining calcium and phosphate homeostasis in the body.

1.2.2. Cortical bone

Cortical bone, also known as compact bone, is the dense, hard layer of bone tissue that forms the 
external surface of bones. It represents approximately 80% of the total bone mass of an adult  
human, with the remaining 20% being trabecular bone [9]. The primary role of cortical bone is to 
provide rigidity  and mechanical  strength,  enabling  bones  to  withstand external  loads,  support 
weight-bearing functions, and protect internal structures, including the marrow cavity (Fig. 1.3). It 
is the main type of bone found in the diaphyses of long bones and the surrounding surfaces of flat 
bones. Macroscopically, cortical bone appears white, smooth, and solid; however, a more complex 
structure is revealed under a microscope.

At  the  microscopic  level,  cortical  bone  presents  a  highly  organized  arrangement  of  coaxial 
cylinders,  forming  the  compact,  fundamental  units  known  as  osteons  or  Haversian  systems. 
Osteons have a diameter of 200-250 μm and are oriented parallel to the bone’s long axis [12]. The 
osteon is composed of multiple coaxial layers (lamellae) of mineralized matrix around a central 
canal (Haversian canal), which contains blood vessels, nerves, and lymphatic channels that provide 
nutrients and support the cellular activity [6,13]. Adjacent Haversian canals are interconnected by 
transverse  canals,  called  Volkmann’s  canals,  and  link  the  internal  (endosteum)  and  external 
(periosteum) surfaces of the bone. The presence of Haversian canals within the cortical bone make 
it  porous,  with  an average porosity  of  about  5-15%,  depending on the age and other  factors  
[9,14,15].

The spaces between osteons are filled with irregularly shaped arrangements of parallel lamellae, 
called interstitial lamellae, which are remnants of osteons partially resorbed by osteoclasts during 
bone growth and remodeling.  Directly  beneath the periosteum and above the endosteum are 
layers  of  parallel  lamellae,  known  as  the  external  circumferential  lamellae  and  internal 
circumferential  lamellae,  respectively.  These  lamellae  encircle  the  entire  bone shaft,  providing 
additional support and reinforcing the overall cortical structure. Between the layers of lamellae 
there are osteocytes residing inside their lacunae, with their processes interconnecting through 
the canaliculi [6,7,9].
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Each concentric lamella of an osteon has a thickness of 3-7 μm and is composed of collagen fibers 
and a calcified matrix  [16]. According to the most widely accepted “twisted plywood” model by 
Giraud-Guille et al.  [17], the collagen fibers within a lamella are generally oriented in the same 
direction,  often  following  a  helical  pattern  around  the  lamella.  This  intricate  arrangement  is 
believed to significantly enhance the bone’s ability to resist tensile and shear forces, allowing it to

 withstand impact  and bending  stresses  from multiple  directions.  However,  it  must  be 
noted that other studies challenge this model and suggest that the orientation of collagen fibers 
can exhibit  more complex arrangements;  while adjacent lamellae may display some degree of 
alternating orientation, they may also show smooth, continuous transitions, oscillations, twists, or 
differences in lamellae density [13,18,19].

At  the  nanoscale,  collagen  fibers  are  composed  of  fibrils  primarily  made  of  Type  I  collagen 
molecules, interspersed with thin, flat hydroxyapatite crystals, approximately 2-3 nm in thickness, 
oriented roughly parallel to the fibril’s long axis. These fibrils display a periodic banding pattern 
with 67 nm spacing and 40 nm gaps occupied by the crystals [13,20,21].

Figure 1.2: Cross-sectional diagram of cortical bone showing the arrangement of osteons, the basic structural units of 
cortical bone. Figure from [7], licensed under CC BY 4.0.
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1.2.3. Trabecular bone

Trabecular bone, also known as cancellous or spongy bone, constitutes approximately 20% of the 
total bone mass of an adult human [9]. Unlike the dense and smooth macroscopic appearance of 
cortical  bone,  which  has  a  low  porosity  (typically  around  5-15%),  trabecular  bone  is 
heterogeneous,  anisotropic,  and  highly  porous,  with  a  porosity  ranging  between  50-90%, 
depending on its location and function [14,15]. Trabecular bone is primarily located in regions that 
endure compressive forces, such as the vertebrae, pelvis, and epiphyses of long bones, where its 
porous  nature  allows  it  to  absorb  and  distribute  forces  efficiently.  Additionally,  this  structure 
reduces the overall bone’s weight and increases its flexibility.

The  significant  porosity  of  trabecular  bone comes  as  a  result  of  its  characteristic  honeycomb 
structure (Fig. 1.3(b)), consisting of an intricate network of thin, rod- or plate-like projections called 
trabeculae, that range from 50 to 400 nm in thickness [9]. Despite its porosity, the arrangement of 
trabeculae along lines of stress enables trabecular bone to transfer mechanical loads efficiently to 
the cortical bone, reducing stress concentrations [22]. This alignment also allows trabecular bone 
to  adapt  its  microarchitecture  to  changing  mechanical  demands,  a  phenomenon described by 
Wolff’s Law [22,23].

Trabecular  bone  differs  from  cortical  bone  in  terms  of  vascularization  and  nutrient  supply 
mechanisms. Unlike cortical bone, which has a dense network of blood vessels within its Haversian 
canals, trabecular bone lacks blood vessels within the trabeculae themselves. Instead, the thin 
structure of trabeculae allows them to remain close to the highly vascularized bone marrow that 
fills  the  spaces  between  trabeculae.  This  proximity  enables  efficient  nutrients  and  gaseous 
exchange via diffusion from the surrounding marrow. The bone envelope system, along with the 
interconnected network of  osteocytes  within trabecular  bone,  supports  sufficient  nutrient  and 
oxygen delivery to sustain cellular viability, even in the absence of an internal vascular network 
within the trabeculae [22,24–28].

Structurally, trabecular bones are highly dynamic and undergo rapid remodeling at a rate higher 
than that of cortical bone. This increased remodeling is due to trabecular bone’s high porosity and 
greater surface area relative to its volume, which provides more surfaces for remodeling activity,  
but that also depends on age and site [29–31]. The high remodeling rate allows trabecular bone to 
quickly adapt to mechanical stresses and contributes to calcium homeostasis within the body. 

At the nanoscale, trabecular bone shares compositional similarities with cortical bone, with both 
featuring a matrix composed of Type I  collagen fibers interspersed with hydroxyapatite crystals 
[28]. However, the hydroxyapatite crystals in trabecular bone tend to be smaller than those in 
cortical  bone,  a difference attributed to the higher remodeling rate of  trabecular  bone,  which 
affects the maturity of its mineral crystals [32]. This collagen-hydroxyapatite matrix provides both 
flexibility and rigidity, allowing trabecular bone to withstand compressive forces while retaining 
some elasticity. The mineralized collagen fibrils are organized in a periodic pattern with 67 nm 

41



spacing, a feature that enhances the bone’s mechanical properties and enables it to absorb impact 
forces effectively despite its porous structure [13,20,21].

Figure 1.3: Structure of a long bone. (a) Anterior view with longitudinal cross-sectional cut where the internal structure  
is shown. The diaphysis primarily consists of cortical (compact) bone while the epiphyses consist of trabecular (spongy)  
bone. (b) Part of the bone showing the cortical and trabecular regions. (c) Part of the diaphysis. Figure from [8].

1.3. Bone composition

Bone is a specialized, supportive tissue, composed of a complex matrix with organic and inorganic 
components and water  [8,9,28].  Roughly 25% of bone weight consists of  organic components, 
primarily Type I  collagen fibers,  with smaller contributions from non-collagenous proteins.  This 
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collagenous framework grants bones flexibility, tensile strength, and shock-absorbing capabilities, 
helping them resist fractures under stress. The remaining 60-70% of bone consists of inorganic 
elements, mainly hydroxyapatite crystals—calcium phosphate structures that create a stiff, dense 
network  within  the  collagen  matrix.  These  mineral  crystals  provide  the  compressive  strength 
needed  for  load-bearing  functions  and  protect  internal  structures.  Water,  which  accounts  for 
around 10-15% of bone’s weight, exists within the collagen matrix and around the mineral crystals, 
playing  a  crucial  role  in  nutrient  transport  and  cushioning  against  mechanical  forces.  It  also 
supports the viscoelastic properties of bone, allowing it to adapt to various physiological demands 
and mechanical loads. Together, the bone’s components provide it with the necessary durability 
and  resilience,  enabling  it  to  adapt  to  physiological  demands  and  mechanical  loads  while 
supporting the body and protecting the internal organs.

1.3.1. Organic

The organic matrix of bone constitutes approximately 30-35% of bone's dry weight, with around 
90%  of  it  composed  of  Type  I  collagen  fibers  [33,34],  which  establish  the  primary  structural 
framework, providing bone the necessary tensile strength and flexibility to perform its function. 
The remaining 10% consists of non-collagenous proteins, including osteocalcin, osteopontin, bone 
sialoprotein, and others, which play essential roles in regulating mineralization, cellular signaling, 
and  matrix  organization  [28,35].  These  organic  components  enhance  bone’s  resilience  to 
mechanical stress and support dynamic processes crucial for remodeling and repair.

Collagen

Collagen is the principal structural protein in the extracellular matrix of connective tissues, playing 
an essential role in providing strength, stability, and elasticity to various body structures. As the 
most abundant protein in mammals, collagen forms the framework of bones, tendons, ligaments, 
skin, and cartilage  [36]. In the human body, collagen constitutes about 30% of its protein mass 
[33]. Its structure consists of three polypeptide chains coiled into a triple helix, which assemble 
into fibrils  and further aggregate into organized fiber networks.  These fibers  create a resilient 
matrix that adapts to the specific demands of each tissue. In bones, for instance, collagen fibrils 
align and mineralize to enhance rigidity and facilitate load-bearing [37]. 

Collagen types can be broadly categorized into  fibrillar and  non-fibrillar collagens, each serving 
distinct  structural  functions.  Over  29  different  types  of  collagen  have  been  identified  [38,39]. 
Fibrillar collagens (containing Types I, II, III, V, and XI) are the most common in vertebrates and 
assemble into thick, rope-like fibrils that confer tensile strength and are essential in load-bearing 
tissues like bone, tendons, and cartilage  [33]. These fibrillar structures are highly organized and 
support tissue integrity under mechanical stress. In contrast,  non-fibrillar collagens (such as Type 
IV) do not form fibrils; instead, they create network-like or sheet structures. These collagens are 
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prominent  in  basement membranes,  where they provide support  for  cell  layers,  contribute to 
filtration functions, and act as barriers in tissues like the skin and kidneys [40]. The difference in 
structure between fibrillar  and non-fibrillar  collagens enables  them to fulfill  distinct  functional 
roles, tailored to the mechanical and physiological needs of different tissues.

Molecular structure of collagen

Despite  their  structural  variations,  all  collagen  molecules  share  a  common  fundamental 
architecture characterized by the presence of three polypeptide chains, known as α-chains. Each α-
chain is coiled into a left-handed helix, and the three chains then intertwine around a common 
axis,  resulting  in  the  formation of  a  right-handed,  rope-like  triple  helix  [33].  The  synthesis  of 
collagen begins in the cell  with  procollagen, a precursor form that contains additional peptide 
extensions  at  both  ends  of  each  α-chain.  After  secretion  into  the  extracellular  matrix,  these 
extensions are removed by an enzyme, procollagen peptidase, resulting in the formation of mature 
collagen molecules, referred to as tropocollagen, which has a length of approximately 300 nm and 
thickness  of  about  1.4  nm  [41].  This  distinctive  triple  helical  structure  is  essential  for  the 
mechanical properties and stability of collagen.

The  primary  structure  of  collagen  is  notable  for  its  high  glycine,  proline,  and  hydroxyproline 
content, with glycine making up approximately one-third of all amino acid residues. Each α-chain 
coil contains the characteristic repeating amino acid sequence, X-Y-Gly. In this sequence, glycine 
(Gly, C₂H₅NO₂) consistently occupies the first position, while the second (X) and third (Y) positions 
are often filled by proline (Pro, C₅H₉NO₂) and hydroxyproline (Hyp, C₅H₉NO₃) (Fig. 1.4). This X-Y-Gly 
sequence is highly conserved among collagen types, with glycine present in almost every third 
position across each α-chain [42].

Glycine’s essential role in collagen arises from its small size and single hydrogen side chain, which 
allow the three α-chains to pack tightly together to form the triple helix, as illustrated on Fig. 1.4 
[33]. The stability of this triple helix is further reinforced by hydrogen bonds that form between the 
carbonyl oxygen of one amino acid and the amide hydrogen of another in adjacent chains, which 
significantly contributes to the structural integrity of collagen [43]. Notably, only the telopeptides 
found at the ends of the α-chains, which account for about 2% of the molecule, deviate from the X-
Y-Gly sequence and the triple-helical  conformation  [42]. Proline and hydroxyproline collectively 
account  for  roughly  20%  of  the  residues  in  the  α-chains,  contributing  additional  rigidity  and 
stabilization due to their cyclic structures. It should be noted that the Pro-Hyp-Gly sequence is 
more common in fibrillar collagen [36].

Different types of collagen are composed of different combinations of α-chains, which can vary in 
amino  acid  composition  and  length.  Each  α-chain  typically  contains  about  1,000  residues, 
contributing to the overall structure and function of collagen [39]. For instance, type I collagen is 
primarily formed from two α1 chains and one α2 chain, where the α1 chain is longer and more 
prevalent,  providing the tensile strength necessary for load-bearing tissues.  In contrast,  type II 
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collagen consists entirely of α1 chains, typically found in cartilage, which helps form a mesh-like 
structure to resist compressive forces. Type III collagen, also containing three α1 chains, differs 
from type I in its amino acid profile, contributing to its role in flexible tissues such as skin and blood 
vessels.  Type  IV  collagen,  found  in  basement  membranes,  possesses  α-chains  that  create  a 
network  structure  instead  of  forming  fibrils,  allowing  for  filtration  and  support  [39,42].  This 
diversity in α-chain composition and structure is essential for collagen’s mechanical strength and 
biochemical properties.

Figure 1.4: Top: Skeletal formulas of glycine, proline, and hydroxyproline, the most common amino acid residues in 
collagen. Bottom: 3D representation of the triple helix of collagen with repetition of Pro-Hyp-Gly sequences and 
structural formula of Pro-Hyp-Gly sequence. Figures from [99–102].

Of particular importance in the effective packing of the α-chains of collagen into a stable triple 
helix is its interaction with surrounding water molecules. These water molecules form hydrogen 
bonds with various functional groups on the polypeptide chains, particularly with the carbonyl and 
amide groups within the backbone of the α-chains. A critical aspect of these interactions involves 
Hyp residues, especially when positioned in the Y position of the repeating X-Y-Gly sequence. This 
specific  positioning  enables  the  hydroxyl  group  of  Hyp  to  form  additional  water-mediated 
hydrogen bonds with nearby chains, which greatly enhances the stability of the triple helix  [44]. 
Hyp-dependent, water-mediated hydrogen bonds effectively align and link neighboring chains in 
the helix, counteracting disruptive forces. Additionally, water molecules around collagen form a 
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dynamic  hydration  layer  that  promotes  slight  conformational  flexibility,  which  is  essential  for 
tissues  subjected to  repetitive stress,  such  as  tendons  and cartilage.  This  interaction not  only 
maintains the structural  integrity  of  collagen but also contributes to the mechanical  resilience 
required for collagen-rich tissues to withstand and adapt to physiological loads. However, although 
Pro-Hyp-Gly is a common sequence in Type I collagen, the frequency of Hyp is generally limited; 
thus, water-bridging occurs at specific sites rather than forming an extensive network [36].

The rope-like triple helix of the collagen molecule provides flexibility and sturdiness, as well as high 
tensile  strength,  making  it  well-suited  to  diverse  functions  across  various  body  tissues  [45]. 
Additionally, the helical structure exposes molecules which can be used as binding sites that other 
molecules can attach to. This way collagen can work as a scaffold around which tissue can be 
developed. The same sites can also be used as binding sites for enzymes, other proteins, and 
integrins  (cell  surface  receptors)  [46–49].  These  interactions  are  critical  for  various  biological 
processes, including cell signaling, tissue remodeling, and immune responses.

Organization in collagen fibers

Collagen molecules self-assemble to form fibrils and fibers as shown in Fig.  1.5. The initial step 
involves  the  lateral  aggregation  of  individual  collagen  molecules,  which  align  in  a  staggered 
arrangement, driven by molecular interactions between the triple-helical collagen molecules [36]. 
The collagen fibrils exhibit a characteristic banding pattern, known as D-banding, which can be 
observed under electron microscopy.  This  pattern arises  from the periodic  overlap of  collagen 
molecules, with each molecule shifted slightly (roughly 67 nm for Type I collagen) relative to its 
neighbor [41].

Molecular interactions at the collagen fibril level are further enhanced by covalent cross-linking, 
which  begins  with  the  oxidation  of  lysine  and  hydroxylysine  residues  in  the  telopeptides  of 
adjacent  collagen  molecules  by  the  enzyme  lysyl  oxidase.  This  enzymatic  process  generates 
aldehyde groups, which then react with amino groups or other aldehyde groups to form stable 
covalent  cross-links.  Initial  reducible  (chemically  labile),  divalent  cross-links,  such  as  dehydro-
dihydroxylysinonorleucine  (deH-DHLNL)  and  dehydro-hydroxylysinonorleucine  (deH-HLNL),  are 
considered immature forms. These cross-links can further mature into more stable, non-reducible, 
trivalent structures, such as pyridinoline (PYD) and deoxypyridinoline (DPD), which significantly 
enhance the mechanical stability of collagen fibrils [36,41,50–52]. The ratio of PYD/deH-DHLNL can 
be used as an index of collagen maturity [53].

As collagen fibrils mature, they aggregate into fibers, ranging in thickness from 0.3 μm to 1 μm in 
Type I collagen. Additional enzymes, such as transglutaminase, play a role in further modifying and 
stabilizing  the  fibers  in  certain  tissues.  Non-enzymatic  processes,  including  glycation,  also 
contribute to cross-linking. Advanced glycation end-products (AGEs), formed by reactions between 
reducing sugars and lysine or arginine residues,  accumulate over time and can stiffen collagen 
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fibers.  However,  excessive  AGE  accumulation,  particularly  in  aging  or  diabetic  conditions,  can 
reduce fiber elasticity, leading to brittleness and increased fracture risk [51,54,55].

The balance between enzymatic cross-linking, which enhances fibril  stability and flexibility, and 
non-enzymatic  cross-linking,  which  can  impair  these  properties,  is  critical  for  maintaining  the 
structural and mechanical integrity of collagen fibers. Alterations in this balance are implicated in 
aging, osteoporosis, and other conditions that compromise bone quality.

Collagen in bone

The extracellular matrix of bone is largely composed of three primary types of collagen: Type I, 
Type V, and, to a lesser extent, Type III. Each type plays a role in defining the matrix's structural  
integrity and biomechanical properties of bones, particularly providing it flexibility and resistance 
to fractures. Type I collagen is the most abundant, accounting for around 90% of the organic matrix 
[35,54]. Type I collagen molecules are composed of two α1(I) and one α2(I) polypeptide chains, as 
described in the previous section. Type I collagen fibrils serve as a scaffold for mineral deposition,  
with hydroxyapatite crystals  anchoring between collagen fibers,  thus providing the rigidity and 
resilience necessary for bone’s structural integrity [36,42]. Type V collagen is typically composed of 
two α1(V) and one α2(V) chains, forming a smaller triple-helix that associates closely with Type I 
fibrils. Its positioning within fibrils supports matrix stability and bone strength and plays a role in 
defining the characteristics of Type I collagen fibrils, such as diameter and spacing  [56]. Type III 
collagen is composed of three identical α1(III) chains and plays a role in bone development and 
remodeling [57,58].

Collagen in bone mainly serves a structural role, providing the matrix in which the bone mineral in 
the form of hydroxyapatite is stored and is essential for maintaining the mechanical properties of 
bone.  However,  research has  shown that  it  also plays  a  secondary role  by influencing cellular 
activities involved in bone remodeling. During bone resorption, collagen breakdown products, such 
as specific peptide fragments, are released and can signal to bone cells, thus regulating osteoclast 
and osteoblast activity, which are important for bone’s health and regeneration [59,60].

Bone  diseases  often  target  collagen,  as  defects  in  collagen  production,  structure,  or  function 
directly compromise bone’s integrity. Genetic mutations, such as those in Type I collagen genes, 
can lead to diseases like osteogenesis imperfecta, characterized by fragile bones due to defective 
collagen fibrils that fail to provide the necessary structural support [61]. Similarly, metabolic bone 
diseases,  such  as  osteoporosis,  involve  accelerated  collagen  breakdown,  which  reduces  bone 
density and increases fracture risk. Inflammatory diseases can further degrade collagen in bone, as  
enzymes released during inflammation, such as matrix metalloproteinases, break down collagen, 
weakening the bone matrix [60]. Thus, maintaining collagen integrity is essential not only for bone 
strength but also for its metabolic and regenerative functions.
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Figure  1.5: Hierharchical structure of Type I collagen, the most abundant type of colalgen in bone. The amino acid  
residues form α-chains which self-assemble to form procollagen molecules. The loose procollagen ends are trimmed by  
the  enzym  procollagen  peptase  to  form  tropocollagen.  Finally,  tropocollagen  molecules  are  cross-linked  to  form 
collagen fibrils, which in turn are assembled into collagen fibers. Figure from [41].

Non-collagenous proteins

Non-collagenous proteins (NCPs) make up only a minor fraction of the bone matrix (about 5%), 
they are, however, of significant importance in regulating bone mineralization, matrix organization, 
and cellular activities. These proteins, including glycoproteins, proteoglycans, and various signaling 
molecules,  contribute  to  bone’s  structural  and  functional  integrity  by  mediating  interactions 
between collagen fibers and mineral components [35,62]. While each NCP has a distinct role, some 
contribute more broadly to bone’s stability and adaptability.

One of the most abundant NCPs in bone tissue is osteocalcin, which comprises about 1-20% of 
NCPs, with the percentage depending on species, age, and specific bone site [63]. It is a small (49 
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amino acids long), vitamin K-dependent protein (i.e. its activity depends on the levels of vitamin K) 
that is secreted by osteoblasts and presents high affinity for Ca²⁺ [64]. This makes osteocalcin bind 
strongly to hydroxyapatite, contributing to the regulation of bone mineralization [65]. Beyond its 
structural role, osteocalcin acts as a hormone, impacting energy metabolism and influencing other 
body systems [66,67]. It is also considered as a potential biomarker for osteoporosis [65].

Another key protein, osteopontin, plays an essential role in remodeling and repairing processes.  
Along with bone sialoprotein (BSP), it is a member of the SIBLING (Small Integrin-Binding LIgand, 
N-linked  Glycoprotein)  family  of  glycoproteins,  which  are  particularly  important  in  the 
mineralization  of  bone  and  dentin  [68].  As  a  glycoprotein  that  binds  both  minerals  and  cell 
surfaces,  osteopontin  bridges  cells  and  the  matrix,  facilitating  osteoclast  attachment  to  bone 
surfaces.  This  promotes  bone  resorption  and  crystal  growth  regulation,  making  osteopontin 
essential for the ongoing maintenance and renewal of bone tissue  [69]. BSP is also important, 
particularly  in  early  bone  formation.  Highly  expressed  in  mineralized  tissues,  BSP  promotes 
nucleation  sites  for  hydroxyapatite  deposition,  crucial  for  the  initial  stages  of  mineralization 
[65,70].  Additionally,  BSP  enhances  cell  adhesion  by  binding  to  integrins  on  osteoblast  and 
osteoclast surfaces, supporting stable cell-matrix interactions during bone formation [71].

Several  other  NCPs  contribute  to  specific  but  complementary  aspects  of  bone  structure  and 
function.  Osteonectin,  also  known as  SPARC (Secreted Protein  Acidic  and Rich  in  Cysteine),  is 
critical for connecting the organic and mineral phases of bone. Produced primarily by osteoblasts, 
osteonectin binds both collagen and hydroxyapatite, promoting mineral deposition and organizing 
the matrix. This interaction is essential for the formation and growth of hydroxyapatite crystals 
within the collagen matrix, reinforcing bone’s structural integrity  [65,72]. Proteoglycans, such as 
decorin and biglycan,  play a  structural  role by organizing collagen fibrils,  directly  affecting the 
mechanical properties of bone by enhancing its durability and flexibility [73,74]. Additionally, these 
proteoglycans  influence  cell  signaling  pathways  involved  in  osteoblast  and  osteoclast  activity 
during remodeling [75].

Finally, various growth factors and cytokines stored within the bone matrix—such as transforming 
growth factor-beta (TGF-β) and bone morphogenetic proteins (BMPs)—are released during bone 
remodeling.  These  molecules  activate  signaling  pathways  that  regulate  bone  formation, 
differentiation,  and  repair,  ensuring  bone  maintains  its  strength  and  functionality  over  time 
[65,76,77]. Although not unique to bone, these factors play a supportive role in bone health by 
orchestrating the cellular activities needed for bone regeneration.

1.3.2. Inorganic

The  inorganic  component  of  bone  primarily  consists  of  hydroxyapatite,  a  calcium  phosphate 
mineral  that  gives  bone  its  rigidity  and  strength.  Unlike  the  organic  matrix,  which  is  mainly 
composed of collagen and its mechanical role is to provide flexibility and tensile strength to the 
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bone, the inorganic component is responsible for the bone’s ability to resist compressive forces. 
Apart  from  hydroxyapatite,  the  inorganic  phase  of  bone  also  contains  trace  elements  like 
magnesium,  sodium,  and  carbonate,  which  influence  bone's  mechanical  properties  and  its 
dynamic response to environmental changes [35].

Hydroxyapatite

Hydroxyapatite (HA) is a member of the apatite group of phosphate minerals, which share a similar  
crystal structure. The general formula for apatites is M₁₀(PO₄)₆X₂, where M is typically calcium (Ca), 
and  X  represents  various  anions  such  as  hydroxide  (OH⁻)  and  carbonate  (CO₃⁻)  [78]. 
Hydroxyapatite, with the formula Ca₁₀(PO₄)₆(OH)₂, is the most common and biologically significant 
apatite found in bones and teeth. It is the principal mineral component that provides bone with its  
rigidity  and  structural  integrity.  The  mineralization  of  bone,  which  involves  the  deposition  of 
hydroxyapatite within the collagen matrix, is essential for bone to withstand mechanical stresses 
and maintain its strength over time [35].

Molecular structure of stoichiometric hydroxyapatite

Hydroxyapatite,  the  principal  mineral  component  of  bone,  is  a  calcium  phosphate  crystalline 
structure with the chemical formula Ca₁₀(PO₄)₆(OH)₂. HA crystallizes in the hexagonal P6₃/m space 
group, characterized by a six-fold c-axis oriented perpendicularly to three equivalent a-axes, each 
angled at 120° relative to the others, all lying on the same plane. The lattice parameters for HA’s 
hexagonal structure are a = 9.42 Å and c = 6.88 Å [78–80]. The growth of HA crystals takes place 
along  the  crystallographic  c-axis,  perpendicularly  to  the  hexagonal  planes,  enabling  strong 
structural integrity along this axis [36].

The crystalline structure of stoichiometric HA (Fig.  1.6) consists of two non-equivalent types of 
calcium sites, denoted Ca1 and Ca2. In the unit cell, Ca1 ions of HA form four 9-fold coordinated 
polyhedra (calcium ions surrounded by nine oxygen atoms), positioned in columns aligned along 
the crystallographic c-axis, while the Ca2 ions form six 7-fold coordinated polyhedra (calcium ions 
surrounded  by  seven  oxygen  atoms)  and  surround  the  phosphate  groups  (PO₄³⁻),  providing 
stability to the network of interconnected PO₄³⁻ tetrahedra. Six phosphate groups are contained in 
the unit cell, which are arranged in a way that balances their negative charge with the surrounding 
calcium ions, contributing to the structural integrity of the crystal lattice. The hydroxyl ions (OH⁻) 
are located at the corners of the unit  cell  [78–80].  This orderly arrangement forms layers and 
dictates the direction of the crystal’s growth and elongation to be along the crystallographic c-axis.

Within the crystal lattice of HA, partial or full ionic substitutions can occur, where the primary ions 
of HA (Ca2+, PO₄³⁻, OH⁻) are replaced by other ions, which can alter the mechanical properties of 
HA and influence its stability, solubility, and bioactivity  [81].  Common substitutions include Na⁺, 
Mg²⁺, Sr²⁺, Pb²⁺, and Ba²⁺ for Ca²⁺; CO₃²⁻ and HPO₄²⁻ for PO₄³⁻; F⁻ and Cl⁻ for OH⁻ [80]. To maintain 
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charge neutrality, any difference in charge from substitutions must be balanced. This can occur 
through a compensatory  substitution of  an ion with the appropriate charge or  by introducing 
vacancies within the HA structure. For example, when PO₄³⁻ is substituted by CO₃²⁻, the resulting 
negative charge deficit can be compensated by the removal of Ca²⁻ or OH⁻ ions [82]. Substitutions 
in  HA’s  structure induce changes in  lattice parameters  and bond characteristics,  which can be 
detected  using  analytical  techniques  such  as  X-ray  and  Neutron  Diffraction  or  vibrational 
spectroscopy  methods,  including  Fourier-transform  Infrared  (FTIR)  and  Raman  spectroscopy 
[21,78,80–83].

Hydroxyapatite in bone

In bone tissue, hydroxyapatite plays an essential role by providing structural stability, hardness, and 
resistance to compressive forces. The HA found in bone, often referred to as biological apatite or  
bioapatite, differs significantly from stoichiometric hydroxyapatite due to its composition, crystal 
size, and structural adaptations. Bioapatite contains various ionic substitutions within its crystal 
lattice,  including  carbonate  (CO₃²⁻),  sodium  (Na⁺),  magnesium  (Mg²⁺),  fluoride  (F⁻),  and 
monohydrate  phosphate  (HPO₄²⁻),  which  are  responsible  for  the  mechanical  and  chemical 
properties of biological HA [35].

The ionic substitutions in bioapatite lead to differences in crystal size and shape when compared to 
pure HA. While synthetic or stoichiometric HA typically forms larger, hexagonal, prism- or needle-
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Figure 1.6: Left: Crystal structure of stoichiometric hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂) with the tetrahedric structure of  
PO₄³⁻ highlighted. Figure from [103]. Right: Unit cell of stoichiometric hydroxyapatite with a focus on the Ca1 and Ca2 
atoms. The connections of the Ca1 and Ca2 ions with their surrounding ions are shown as bars and the 7-fold Ca2  
polyhedra are highlighted. Figure from [79].



like crystals that can reach several micrometers in length, bioapatite crystals in bone are nanoscale, 
generally  measuring  between 20–100 nm in  length,  10–40  nm in  width,  and only  1–5  nm in 
thickness  [82,84,85].  Bioapatite  crystals  have  a  smaller,  plate-like,  and  irregular  shape,  which 
results from lattice distortions and vacancies created by ionic substitutions. These disruptions limit 
crystal growth, increase solubility, and enhance reactivity.

One of the primary ionic substitutions that take place in bone HA is carbonate, which can replace 
either OH⁻ or PO₄³⁻ ions within the HA lattice. These substitutions are categorized as Type A and 
Type B substitutions.  Type A substitution occurs when carbonate ions replace hydroxyl  groups, 
whereas  Type B substitution involves the replacement of phosphate by carbonate ions. Type B 
substitution is more prevalent than Type A in bone and typically constitutes about 5–9% of the 
total mineral content by weight [84]. This substitution has a significant impact on the solubility and 
reactivity of bioapatite, with carbonate content increasing the solubility of HA crystals. This higher 
solubility facilitates bone remodeling by enabling HA to be resorbed and redeposited in response 
to metabolic and mechanical demands, allowing for a balance of bone formation and resorption 
under normal physiological conditions [80,82].

Another  important  difference  between  stoichiometric  HA  and  bioapatite  is  the  calcium-to-
phosphorus  (Ca/P)  ratio  [86,87].  Stoichiometric  HA  has  a  Ca/P  ratio  of  1.67,  representing  an 
idealized structure with exact proportions of calcium and phosphate ions. In contrast, the Ca/P 
ratio of bioapatite in bone is typically lower, often ranging from 1.5 to 1.67, due to the presence of 
substitutions  and  vacancies  within  the  lattice.  CO₃²⁻  substitutions,  as  well  as  the  presence  of 
HPO₄²⁻ in place of PO₄³⁻, contribute to this variability [88]. Age-related factors further influence the 
Ca/P ratio in bioapatite. As bone ages, it undergoes gradual changes in mineral composition, with 
older bone often showing a slight increase in the Ca/P ratio, leading to a ratio closer to that of  
stoichiometric HA. This is attributed to an accumulation of mineral content and a reduction in ionic  
substitutions over time, which leads to a more stable, less soluble mineral phase. Additionally, 
younger  bone  generally  exhibits  a  higher  degree  of  carbonate  and  HPO₄²⁻  substitutions, 
contributing to a lower Ca/P ratio and greater reactivity, facilitating bone remodeling. With age, 
the gradual reduction in these substitutions contributes to a slower turnover rate and decreased 
adaptability of the bone matrix, affecting its mechanical properties and overall resilience [89,90].

Bioapatite  in  bone  is  organized  within  a  collagen  matrix,  forming  a  composite  structure  that 
combines the strength of mineralized HA with the flexibility of collagen. Bioapatite crystals align 
along the collagen fibrils in an organized, hierarchical arrangement, which is essential for effective 
load transfer between the mineral and organic phases of bone.  Within this composite structure, 
collagen fibrils provide tensile strength, while the bioapatite crystals confer compressive strength, 
allowing bone to resist  various mechanical  forces.  The crystallographic  c-axis  of  the bioapatite 
crystals is oriented along the longitudinal axis of the collagen fibrils, an arrangement that enhances 
bone’s ability to bear loads and absorb impact. The staggered arrangement of bioapatite along 
collagen fibrils also allows for controlled deformation, where collagen and mineral components can 
work together to distribute stress, reducing the risk of fractures under mechanical load [13,34].
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In addition to its role as a structural unit, bioapatite serves as a reservoir for essential ions, playing 
a critical role in calcium and phosphate metabolism. Bioapatite in bone acts as a readily accessible 
mineral  source,  releasing  calcium and phosphate  ions  into the bloodstream when needed for 
physiological  functions  such  as  nerve  conduction,  muscle  contraction,  and  cellular  signaling. 
Trabecular  bone,  with  its  higher  turnover  rate  and  greater  metabolic  activity,  is  particularly 
responsive to changes in mineral demands, making it an active participant in mineral homeostasis 
[91]. This metabolic function of bioapatite is crucial in maintaining serum calcium levels, which are 
tightly regulated by hormonal mechanisms involving parathyroid hormone (PTH) and calcitonin. 
When calcium levels are low, PTH stimulates osteoclast activity, leading to bioapatite resorption 
and  release  of  calcium  ions  into  the  bloodstream.  Conversely,  when  calcium  levels  are  high, 
calcitonin  reduces  osteoclast  activity,  slowing  bioapatite  resorption  and  promoting  mineral 
deposition. This dynamic balance allows bone to act as both a structural and metabolic organ, 
adapting its mineral content to meet systemic demands [90,92].

1.4. Bone quality

“Bone quality” refers to the combination of structural and compositional attributes that determine 
a bone's material and mechanical properties  [93]. Bone mineral density (BMD) is a widely used 
metric for assessing bone health that primarily quantifies the mineralized tissue in a given area or 
volume, providing an estimate of bone mass. However, BMD alone does not account for critical 
qualitative factors that influence bone strength and fracture resistance. These factors include the 
heterogeneity of bone at both microscopic and molecular levels, such as variations in trabecular 
connectivity  and mineral  crystallinity;  the  organization of  collagen fibers,  which  affects  tensile 
strength;  microarchitecture,  such  as  cortical  porosity  and  trabecular  alignment;  and  the 
accumulation  of  microdamage,  which  can  weaken  bone  over  time  [53,94].  Together,  these 
elements determine the overall strength, toughness, and resilience of bone.

Advances in imaging and spectroscopic techniques can improve our understanding of bone quality 
[53,95–97].  Vibrational  spectroscopy  techniques  like  Fourier-transform  infrared  spectroscopy 
(FTIR)  and  Raman  spectroscopy,  can  provide  molecular-level  insights  into  bone  composition 
[53,98].  Raman  spectroscopy  can  evaluate  mineral-to-matrix  ratios,  carbonate  substitutions  in 
hydroxyapatite, mineral crystallinity, and changes in collagen cross-linking, which are critical for 
understanding how bone’s molecular composition and organization contribute to its mechanical 
performance and susceptibility to diseases like osteoporosis [98].
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2. Osteoporosis

2.1. Introduction

Osteoporosis  is  a  chronic  metabolic  disorder  affecting  the  skeletal  system,  characterized  by  a 
progressive decline in bone mass and alterations in the microarchitecture of bone tissue. These 
changes  weaken  the  structural  integrity  of  bones,  making  them more  fragile  and significantly 
increasing  the  likelihood of  fractures,  even with  minimal  trauma.  [1].  It  is  the  most  common 
metabolic  bone  disease,  predominantly  affecting  older  adults,  with  postmenopausal  women 
experiencing higher rates than men due to hormonal changes during this period that accelerate 
bone resorption  [2]. Although older adults are at greater risk, osteoporosis can also develop in 
younger individuals, particularly in the presence of risk factors such as prolonged glucocorticoid 
use, endocrine disorders, or chronic illnesses [3].

From an epidemiological perspective, osteoporosis represents a significant global health challenge. 
Approximately 500 million people worldwide are estimated to suffer from the disease, with its  
prevalence  increasing  alongside  aging  populations  [4].  In  Europe  and  North  America, 
approximately 30% of women are affected, with one in three women and one in five men over the 
age of 50 experiencing osteoporotic fractures [2,4]. These fractures, particularly in the hip, spine, 
and wrist, result in substantial morbidity and mortality, including a one-year mortality rate of 20–
25% following hip fractures in older adults, as well as loss of mobility, independence, and increased 
long-term care needs [7–9].

In  Greece,  osteoporosis  affects  approximately  5.7% of  the  population,  with  99,000 individuals 
experiencing  osteoporosis-related  fractures  in  2019.  This  number  is  expected  to  increase  to 
121,000 in 2034 [5]. The prevalence of the disease is even higher in China, estimated at 13% of the 
population, with a predicted annual cost of cost approximately $19.92 billion by 2035 [6].
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Racial and ethnic variations in osteoporosis prevalence and fracture risk are also notable. In the 
USA,  17%  of  postmenopausal  Caucasian  women  have  hip  osteoporosis,  compared  to  12%  of 
Hispanic-American  women  and  8%  of  African-American  women.  Similar  trends  are  observed 
among men [10,11].

In addition to its societal impact, osteoporosis imposes a considerable economic burden. In the 
European Union, the annual cost of osteoporosis-related fractures was estimated at over €56.9 
billion in 2019 [12], while in the United States, these costs are expected to exceed $25 billion in 
2025  [13]. With aging populations, longer lifespans, and increasing fracture rates, the economic 
burden of osteoporosis is expected to rise significantly in the coming decades [14]. 

Osteoporosis arises from an imbalance in the bone remodeling process, where bone resorption by 
osteoclasts surpasses bone formation by osteoblasts. This imbalance leads to changes not only in 
bone density but also in its microstructural integrity and composition. Alterations in collagen cross-
linking, mineral crystal size, and the proportion of non-collagenous proteins are among the key 
factors that affect bone fragility [15]. These compositional and structural changes at the molecular 
level emphasize the importance of understanding osteoporosis beyond the traditional focus on 
bone mineral density (BMD), as captured by dual-energy X-ray absorptiometry (DXA), to include 
broader aspects of bone quality. Understanding the multifactorial interplay between the biological, 
compositional, and mechanical aspects of osteoporotic bone is essential for developing effective 
diagnostic and therapeutic strategies.

2.2. Pathophysiology

Osteoporosis  occurs  as  a  result  of  imbalanced  bone  remodeling,  where  bone  resorption  by 
osteoclasts  exceeds  bone  formation  by  osteoblasts.  This  imbalance,  primarily  driven  by 
dysregulated activities of osteoclasts and osteoblasts and influenced by hormonal, genetic, and 
biochemical factors, leads to decreased bone mass and compromised microarchitecture [15].

Osteoporosis can be classified into primary and secondary forms. Primary osteoporosis is the most 
common type and mainly arises due to age-related changes or hormonal deficiencies. It includes 
postmenopausal  osteoporosis  in  women,  which  is  largely  driven  by  estrogen  deficiency  and 
primarily  affects  trabecular  bones,  and  senile  osteoporosis,  which  occurs  with  aging  as  bone 
remodeling becomes increasingly imbalanced  [2,10]. In contrast, secondary osteoporosis results 
from external factors or underlying medical conditions that disrupt bone homeostasis, including 
endocrine disorders (hyperthyroidism, hyperparathyroidism, etc.),  chronic diseases (rheumatoid 
arthritis,  Crohn’s  disease,  etc.),  specific  medications  (long-term  glucocorticoid  therapy),  and 
lifestyle factors (vitamin D insufficiency, prolonged immobilization, etc.) [2,10].

Of  central  importance  to  the  regulation  of  bone  remodeling  is  the  RANKL-RANK-OPG system. 
Receptor activator of NF-κB ligand (RANKL) is a protein that belongs to the tumour necrosis factor  
(TNF)  family  of  proteins  and  is  expressed  by  osteoblasts  and  osteocytes.  RANKL  binds  to  its  
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receptor, RANK, which is located on the surface of osteoclast precursors and mature osteoclasts. 
This  interaction promotes the differentiation,  activation,  and survival  of  osteoclasts,  leading to 
bone resorption. To counterbalance this process, osteoblasts produce osteoprotegerin (OPG), a 
decoy receptor that  binds to RANKL and prevents it  from interacting with RANK. By inhibiting 
osteoclastogenesis, OPG acts as a key regulator of bone remodeling. The balance between RANKL 
and  OPG  is  essential  for  maintaining  bone  homeostasis,  and  disruptions  in  this  system  are 
implicated in conditions like osteoporosis, where elevated RANKL or reduced OPG levels result to 
excessive bone resorption [16,17].

Estrogen deficiency, particularly post-menopause, is the main contributor to primary osteoporosis 
and  significantly  affects  the  RANKL-RANK-OPG  system,  disrupting  the  balance  between  bone 
formation  and  resorption.  Normally,  estrogens  suppress  RANKL  expression  and  enhance  OPG 
production, limiting osteoclast activity. Its deficiency leads to heightened osteoclast activity and 
accelerated  bone  turnover  [18].  Additionally,  estrogens  influence  osteocyte  viability  and  their 
absence increases osteocyte apoptosis, further compromising bone quality and structural integrity 
[19,20].

Chronic  inflammation  is  a  critical  contributor  to  secondary  osteoporosis,  particularly  in  cases 
associated  with  autoimmune  diseases  or  other  inflammatory  conditions.  Pro-inflammatory 
cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6), 
disrupt  bone  homeostasis  by  directly  influencing  the  RANKL-RANK-OPG  system  [21].  These 
cytokines  enhance RANKL expression and suppress  OPG production,  favoring  bone resorption. 
Elevated  levels  of  these  cytokines  are  observed  in  conditions  such  as  rheumatoid  arthritis, 
inflammatory bowel disease, and systemic lupus erythematosus, which are often associated with 
secondary osteoporosis  [22–24].  Additionally,  chronic  inflammation impairs  osteoblast  function 
and decreases their lifespan, reducing bone formation. Oxidative stress, frequently accompanying 
inflammation, intensifies this process by inducing apoptosis in osteocytes and osteoblasts, further 
compromising bone quality [25]. The cumulative effect of these mechanisms is a net loss of bone 
mass and increased fracture risk in patients with chronic inflammatory diseases.

The  treatment  of  inflammatory  and  autoimmune  diseases  frequently  involves  the  use  of 
corticosteroids. However, chronic use of corticosteroids disrupts bone remodeling through multiple 
mechanisms.  They  reduce  osteoblast  lifespan,  differentiation,  and  activity,  negatively  affecting 
bone  formation.  Corticosteroids  also  increase  osteocyte  apoptosis,  weakening  the  structural 
integrity  and  signaling  capacity  of  bone.  Furthermore,  they  increase  RANKL  expression  while 
suppressing  OPG  production,  promoting  bone  resorption  by  osteoclasts  [26].  As  a  result, 
individuals on long-term corticosteroid therapy are at risk for glucocorticoid-induced osteoporosis 
(GIOP), characterized by rapid bone loss and increased fracture likelihood.
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2.3. Bone composition in osteoporosis

2.3.1. Microscopic changes

Osteoporosis causes changes to the microscopic structure of both cortical and trabecular bone, 
with distinct patterns of deterioration in each type. In cortical bone, one pronounced change is the 
increased porosity  within  its  structure.  This  porosity  occurs  primarily  in  the Haversian system, 
where  osteoclastic  resorption  outpaces  osteoblastic  formation,  leading  to  the  enlargement  of 
existing Haversian canals and the creation of new resorption cavities. Volkmann's canals, which 
interconnect  adjacent  Haversian  systems,  also  become  enlarged,  increasing  connectivity  and 
further contributing to overall porosity [15].

With aging and osteoporosis, the geometry of cortical bone also adapts to mechanical changes. 
Both  the  outer  and  inner  diameters  of  cortical  bone  increase,  while  the  cortical  thickness  is 
reduced (Fig. 2.1(A-C)) [27]. This geometric adaptation, combined with increasing porosity, results 
in dramatic changes to the endocortical surface. In advanced stages, the coalescence of Haversian 
canals  and fragmentation of the endocortical  region lead to trabecularization of cortical  bone, 
where cortical remnants take on a trabecular-like structure (Fig.  2.1(D))  [15]. Porosity in cortical 
bone increases from about 4% in young, healthy bones to nearly 12% by age 60 and up to 50% in 
very  elderly  individuals  [28].  These  changes  significantly  impair  the  structural  and mechanical 
integrity of cortical bone, exacerbating fragility and increasing the risk of fractures.

In trabecular bone, the changes are even more pronounced due to its inherently higher metabolic  
activity and higher surface-to-volume ratio compared to cortical bone. Osteoporotic trabeculae 
experience a decrease in thickness and connectivity, leading to a less dense and more fragmented 
trabecular network  [29,30]. Moreover, the structural integrity of trabeculae changes from plate-
like  to  more  rod-like  structures,  further  compromising  the  bone’s  ability  to  withstand  and 
distribute  mechanical  loads  effectively  [31,32].  These  changes  increase  the  risk  of  fractures, 
particularly in weight-bearing bones such as the femoral neck and vertebrae [33]. While thinning is 
the predominant change, some studies suggest that localized thickening of remaining trabeculae 
may occur as a compensatory response to increased mechanical loads. However, this adaptation is 
insufficient to restore the mechanical strength of the trabecular network [30,34].
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2.3.2. Molecular changes

On  a  molecular  level,  osteoporosis  involves  alterations  in  both  the  organic  and  mineral 
components of bone, leading to reduced bone quality. In the organic matrix, changes in collagen 
cross-linking patterns and disruptions in collagen turnover affect the structural and mechanical 
integrity of bone. The balance between enzymatic cross-links, which provide stability, and non-
enzymatic  cross-links,  which  increase  brittleness,  is  disrupted  in  osteoporosis  [35,36].  In  the 
mineral phase, alterations in hydroxyapatite crystal properties, including changes in size, shape, 
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Figure 2.1: (A) Micrograph of cortical bone specimen from a 78 years old woman where increased porosity and cortical  
thinning  can  be  observed.  (B)  Zoomed-in  region  showing  increased  porosity  and  crack  formation  but  no 
trabecularization. (C) Zoomed-in region showing preserved endocortical envelope (arrows) which is indicative of bone 
thinning occurring from within the bone. (D) Micrograph of cortical bone specimen from a 78 years old woman where  
extended trabecularization can be observed. Figure from [28].



and composition, impact the mechanical  behavior of bone. These mineral  modifications,  along 
with a reduced mineral-to-matrix ratio, contribute to increased bone fragility.

Organic matrix

The primary organic component of bone, Type I collagen, undergoes significant modifications in 
osteoporosis.  Collagen's  structural  integrity  is  critical  for  bone’s  flexibility  and  resistance  to 
fractures, and its role is compromised by changes in both enzymatic and non-enzymatic cross-
linking. Enzymatic cross-links, both reducible, such as deH-DHLNL, deH-HLNL, and non-reducible, 
such as PYD and DPD, contribute to the mechanical stability of the collagen network. Studies have 
shown that  while  the concentration of  non-reducible  cross-links  remains  largely  unchanged in 
osteoporotic  bone,  the  concentration  of  reducible  cross-links  has  been  observed to  decrease, 
weakening  the  matrix  and  increasing  the  risk  of  microcracks  [35–39].  Simultaneously,  non-
enzymatic cross-linking, mediated by advanced glycation end-products (AGEs), tends to increase 
with aging and osteoporosis. AGEs alter the flexibility of collagen fibrils, making the bone matrix 
brittle and less capable of withstanding impact forces [35].

Mineral phase

The structure and elemental composition of hydroxyapatite is also affected in osteoporosis. Studies 
in  human  and  animal  models  of  osteoporosis  have  shown  that  the  mineral-to-matrix  ratio  is 
decreased in osteoporotic bone, suggesting an overall  decrease in the mineral content  [40,41]. 
Additionally, osteoporotic bone often exhibits an increased mineral crystal size and a higher degree 
of crystallinity, possibly as a compensatory response to structural weakening [42]. While larger and 
more organized mineral crystals improve stiffness, they reduce the bone's ability to deform under 
stress, making it more prone to fracture.

Alterations in carbonate and acid phosphate substitutions within the hydroxyapatite lattice are 
characteristic features of osteoporotic bone. Increased carbonate and/or acid phosphate levels can 
influence the crystal lattice, potentially leading to decreased Type A carbonate substitutions [39]. 
Acid phosphate levels are indicative of crystal size and perfection, being particularly elevated in 
regions of active bone formation where crystals are smaller and less mature [43]. The carbonate-
to-phosphate ratio, however, is a more variable parameter in osteoporosis and has been reported 
to  either  increase  or  decrease  in  FTIR  studies  depending  on  local  remodeling  dynamics  and 
mineralization heterogeneity  [39,44].  In Raman studies, carbonate-to-phosphate ratio has been 
found to increase in general in osteoporosis, however this is also region-dependent, as on studies 
on iliac crest biopsies of women it  has been observed to increase in cortical  bone, but not in 
trabecular bone [45,46].

Alterations in the calcium-to-phosphorus (Ca/P) ratio have been reported in osteoporotic bone 
[47]. The Ca/P ratio is a key indicator of bone health, playing a critical role in maintaining bone  
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homeostasis and supporting its metabolic activity. This ratio has been found to decrease between 
healthy and osteoporotic bones in animal models [47]. Changes in this ratio can reflect disruptions 
in  mineral  composition  and  bone  remodeling  processes,  making  it  a  valuable  biomarker  for 
assessing bone quality and metabolic status.

2.4. Diagnosis

The diagnosis of osteoporosis primarily relies on the measurement of bone mineral density (BMD) 
through dual-energy X-ray absorptiometry (DXA), which is considered the gold standard [1]. BMD is 
evaluated at key skeletal sites such as the lumbar spine, femoral neck, and total hip, as these are  
most predictive of fracture risk. According to the World Health Organization (WHO), osteoporosis is 
diagnosed when the BMD T-score is  ≤  -2.5,  reflecting a  bone density  more than 2.5 standard 
deviations below the mean of a healthy young adult population [10].

Although DXA is  widely  used,  it  does  not  consider  the  heterogeneity  of  the  bone tissue  and 
provides limited information about bone quality, including microarchitecture, mineralization, and 
the  organic  matrix,  which  are  critical  determinants  of  bone  strength  [48].  Advanced  imaging 
modalities,  such  as  quantitative  computed  tomography  (QCT),  high-resolution  peripheral 
quantitative  computed  tomography  (HR-pQCT),  and  magnetic  resonance  imaging  (MRI),  are 
developed  and  allow  for  the  assessment  of  these  parameters.  However,  their  use  in  clinical  
practice is limited by cost, availability, and exposure to radiation in the case of QCT [49].

Biochemical markers of bone turnover (BTMs), such as procollagen type I N-terminal propeptide 
(P1NP) for bone formation and C-terminal telopeptide of type I collagen (CTX) for bone resorption, 
serve as adjuncts to imaging. Elevated levels of these markers can indicate high bone turnover, 
correlating with increased fracture risk [Eastell et al., 2016].

Spectroscopic  techniques,  particularly  Raman  spectroscopy,  emerge  as  promising  tools  for 
advancing osteoporosis biochemical and biophysical etiology, as it can provide detailed information 
about the mineral and organic components of bone. In osteoporosis, compositional changes such 
as a reduced mineral-to-matrix ratio, altered hydroxyapatite crystallinity, and changes in carbonate 
substitution levels  can  be  quantified  using  Raman spectra.  These  parameters  reflect  impaired 
mineralization and structural integrity that contribute to decreased bone quality and bone fragility 
[46]. Raman spectroscopy also allows for the assessment of the quality of the collagen matrix, a 
crucial  determinant  of  bone  strength.  For  example,  shifts  in  the  ratio  of  enzymatic  to  non-
enzymatic  cross-links,  indicative  of  aging  and  pathological  conditions,  can  be  identified.  Such 
changes directly impact the mechanical properties of bone and are challenging to detect using 
conventional  methods  [50].  Other spectroscopic techniques,  such as Fourier-transform infrared 
spectroscopy  (FTIR),  have  been  used  to  study  bone  quality,  but  Raman  spectroscopy  offers 
advantages in spatial resolution and its capacity to analyze hydrated samples [44]. These features 
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make  it  particularly  suited  for  detailed  compositional  analysis,  complementing  traditional 
diagnostic methods like DXA.

Recent advancements in Raman technology, including portable and fiber-optic systems, as well as 
the development of the spatially-offset Raman spectroscopy (SORS) technique, which allows for 
the extraction of information from deeper layers of the bone tissue,  have facilitated its potential 
application in clinical settings [51,52]. These developments have the potential of being applied for 
in vivo measurements of superficial bone layers, offering a non-invasive approach to assess bone 
quality. However, the most significant facet of spectroscopic analysis is its ability to detect the 
subtle molecular changes occurring in bone tissue affected by osteoporosis.
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3. Raman spectroscopy

3.1. Introduction

Raman spectroscopy is a form of vibrational spectroscopy that is widely used to study the chemical 
composition  of  a  material  through  the  interaction of  light  with  the  vibrational  and  rotational 
modes  of  the  material’s  molecules.  The  technique  is  based  on  the  Raman  effect  or  Raman 
scattering, which was theoretically predicted by A. Smekal in 1923 and named after the Indian 
physicist C. V. Raman who, along with K. S. Krishnan, first observed it experimentally in 1928 [1,2]. 
For this discovery, Raman received the 1930 Nobel prize in Physics, making him the first Asian to 
ever accomplish that.

Raman  scattering  is  the  inelastic  scattering  of  electromagnetic  radiation  by  matter,  producing 
photons with different energy and direction to the initial radiation. Raman experiments usually 
utilize monochromatic laser radiation in the ultraviolet (UV), visible, near-infrared (NIR) range and 
in the X-ray region [3,4].

Various Raman spectroscopy techniques have been developed over the years, such as resonance 
Raman  spectroscopy  (RSR)  [5],  confocal  Raman  microscopy  [6], surface-enhanced  Raman 
spectroscopy  (SERS)  [7],  spatially-offset  Raman  spectroscopy  (SORS) [8,9] and  more.  Raman 
spectroscopy allows for the non-destructive study and molecular characterization of both organic 
and inorganic materials, in either solid or liquid state or in solutions, with minimal preparation 
prior to measurement. By containing characteristic vibrational information specific to the chemical 
bonds of a molecule, Raman spectra can provide a molecular fingerprint of a substance. Due to its  
versatility,  rapid  use,  and  ability  to  provide  both  qualitative  and  quantitative  results,  Raman 
spectroscopy has evolved into a valuable analytical tool with applications in many scientific fields, 
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including,  but  not  limited  to,  life  sciences  [10],  pharmacology  [11],  geology  [12],  and 
semiconductors physics [13].

3.2. Theory of Raman scattering

3.2.1. Elastic and inelastic scattering

When electromagnetic radiation hits a material, the photons making up the radiation can interact 
with the material’s molecules by being absorbed or scattered, or may not interact at all, passing 
straight through the material. During absorption, when the photon’s energy matches the energy 
gap between two molecular states, the photon is absorbed and the molecule transitions from its 
lower-energy state to a higher-energy state. Scattering, on the other hand, refers to the deviation 
of  electromagnetic  radiation  from  a  straight  path  due  to  its  interaction  with  the  material, 
specifically  by  localized  non-uniformities  of  various  sizes  (also  known  as  scattering  centers  or 
scatterers). It can be split into two major categories: elastic and inelastic scattering. 

Figure  3.1:  Rayleigh  scattering,  Raman  scattering  (Stokes  and  anti-Stokes),  and  fluorescence  occurring  upon  
irradiation of a sample with monochromatic radiation.

In elastic scattering the energy of the scattered radiation is equal to the energy of the incident 
radiation. When the scatterers are smaller than the wavelength of the incident light, the process is 
known  as  Rayleigh  scattering.  If  their  size  is  comparable  to  the  wavelength,  it  is  called  Mie 
scattering. Finally, when the scatterers are larger than the wavelength, it is referred to as geometric 
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scattering and the behavior  of  light  can be  described using  geometric  optics [14,15].  In  most 
Raman  experiments,  the  scattering  centers  are  much  smaller  (i.e.,  molecular  level)  than  the 
excitation wavelength and Rayleigh scattering is the dominant type of elastic scattering. However, 
the Raman signal, which arises from inelastic scattering, is only a small fraction of the incident 
radiation intensity (typically 0.1–0.01%), while most of the scattered light is the result of Rayleigh 
scattering [16].

In inelastic scattering, a form of which is Raman scattering, a scattered photon can have either 
more or less energy than the incident photon. In the case of Raman scattering, this change in 
energy occurs due to the interaction and exchange of energy between the incident photon and the 
vibrational energy states of the target material’s molecules. This inelastic scattering process is very 
weak, with the probability of a Raman scattering event being approximately 10-8–10-6 times lower 
than that of Rayleigh scattering [17]. To observe such a low-probability process, a high photon flux 
is required, which can be achieved by using lasers to generate sufficient signal for detection, while 
microscopes can additionally focus the light into small volumes or areas.

3.2.2. Stokes and anti-Stokes scattering

The basic elastic and inelastic processes that take place in Raman scattering are illustrated in Fig.  
3.2.

Figure  3.2: Jablonski diagram of Rayleigh and Raman scattering processes for transitions between two vibrational  
states of a molecule. S0 and S1 denote the ground and first excited electronic states of the molecule, respectively.

When a material is at room temperature, most of its molecules occupy the lowest electronic state 
(ground state) S0 (depicted with bold, continuous horizontal line) and a small fraction can be at 
higher vibrational states (depicted with thin, continuous horizontal lines),  with the first excited 
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vibrational  state  having  a  frequency  difference  vvib from  S0.  If  a  photon  of  energy  h vi hits  a 

molecule of the material but that energy is not close to the energy gap between the initial state 
and a higher energy electronic or vibrational state,  it  cannot be absorbed. However,  it  can be 
considered as getting excited to a virtual energy state (gray dashed horizontal lines). Virtual states 
are not real (stationary) states of the molecule and arise as a result of induced polarization due to 
the  interaction  of  the  electric  field  of  the  incident  photon  with  the  electronic  cloud  of  the 
molecule.  They  have  extremely  short  lifetime  τ  (typically  of  attosecond  (10-18

 s)  duration), 
approximated as:

τ= h
4 π ΔE

(3.1)

where h=6.626068×10−34 m2 kg s−1 is Planck’s constant, and ΔE  is the energy difference between 
the virtual state and the closest real state  [18]. Almost immediately after the excitation to the 
virtual state, the molecule transitions to a lower energy state, emitting a photon of energy equal to 
the energy gap between the excited virtual state and the final state in the process.

There are three ways that the transition from the excited virtual state to a lower energy vibrational  
state may happen. If the molecule returns to its initial energy state, this is the case of Rayleigh 
scattering and the molecule emits a photon of energy equal to the energy of the photon it initially  
absorbed (h vi). If the molecule returns to a vibrational state of higher energy than the initial, then 

the emitted photon has lower energy than the initial photon, so this scattering process is inelastic. 
The energy of the scattered photon is in this case  h(v i−vvib),  and the process is called Stokes 

scattering, in memory of G.G. Stokes who described the conversion of absorbed UV radiation by a 
material to emitted radiation of longer, visible wavelengths (smaller frequencies)  [19]. If, on the 
other hand, the molecule returns to a vibrational state of lower energy than the initial, then the 
scattered photon has higher energy than the initial photon (again a case of inelastic scattering) 
with the scattered photon’s energy being h(v i+v vib), and the process called anti-Stokes scattering.

The  populations  of  the  various  energy  states  of  a  material’s  molecules  influence  the  relative 
intensities  of  the  Stokes  and  anti-Stokes  processes.  The  number  of  molecules  occupying  the 
ground and higher energy vibrational states is calculated by the Boltzmann equation:

N f

N i

=
gf

gi

e
−
E f−Ei

kBT (3.2)

with N f  being the number of molecules in an excited state f , N i the number of molecules in the 

ground state i,  gf  and gi the degeneracy of the energy states (number of different energy states 

with the same energy) i and f  respectively, Ei−Ef  the energy difference between states n and m, 

kB=1.3807×10−23 J /K is  Boltzmann’s  constant,  and  T  the  temperature  of  the  material.  Most 

76



molecules of a material at room temperature and before irradiation are most likely to occupy the 
ground  electronic  state.  This  makes  the  Stokes  process  stronger  overall  than  the  anti-Stokes 
process at room temperature. Furthermore, while the Stokes and anti-Stokes lines in a Raman 
spectrum (corresponding to the vibrational levels of the molecules of the material) appear at the 
same  relative  frequencies  (relative  to  the  frequency  of  the  Rayleigh  line,  i.e.  the  excitation 
frequency of the laser), their intensities are not analogous: in the anti-Stokes spectrum the lines 
get weaker as the frequency difference increases.  This is  because the population of molecules 
decreases exponentially with increasing vibrational energy levels, as described by the Boltzmann 
distribution.  While  the  temperature  of  the  material  increases,  the  anti-Stokes  process  also 
increases in intensity and can be used to measure the material’s temperature  by evaluating the 
Stokes-to-antiStokes  intensity  ratio [20].  Due  to  its  increased intensity,  the  Stokes  part  of  the 
Raman spectrum is typically used in experiments. It  should also be noted that the intensity of 
Raman scattering is analogous to the fourth power of the frequency of the excitation source:

IR∝v4 I 0 N ( ∂a
∂Q )

2

(3.3)

with  v being the excitation frequency,  I 0 the intensity of the source radiation,  N  the number of 

molecules  that  take  place  in  the  scattering,  a the  polarizability  of  the  molecules,  and  Q the 
vibrational amplitude [21].

3.2.3. Raman shift

The intensity behavior of the Stokes and anti-Stokes scattering processes can be observed in the 
typical Raman spectrum of Fig. 3.3, where the Stokes and anti-Stokes spectra of CCl4 are shown as 
an example [22].
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Figure  3.3: Raman spectrum of CCl4, excited with a 532 nm laser. The Rayleigh, Stokes and anti-Stokes scattering 
regions are highlighted with different colors. Image adapted from [22].

The horizontal axis is labeled as “Raman shift” and represents the shift in energy between the 
energy of the excitation radiation and the energy of the Raman scattered light. The Raman shift is 
given by:

Δ~v= 1
λ0

−1
λ (3.4)

where λ0 is the wavelength of the excitation source and λ is the Raman spectrum wavelength. If 

the  wavelengths  are  expressed in  nanometers  (nm),  the  Raman shift  is  expressed  in  units  of 

inverse centimeters (cm-1). In spectroscopy the quantity ~v=1
λ

 is called a “wavenumber”.

3.2.4. Fluorescence

In Raman scattering, the incident radiation excites a molecule to a virtual state and shortly after 
the molecule transitions to a lower energy vibrational state, emitting a photon of higher or lower  
energy than the incident photon. If,  however, the incident photon’s energy is enough to get a 
molecule excited to a higher electronic and vibrational energy state, the photon gets absorbed. 
The  molecule  then  transitions  to  a  lower  energy  state  non-radiatively  through  vibrational 
relaxation  (in  which  the  energy  dissipates  as  heat)  without  the  emission  of  light,  and  then 
fluoresces, emitting a photon of lower energy than the initial. The process is depicted in Fig. 3.4. 
Fluorescence typically takes place in a time-scale of nanoseconds (10-9 s). It should be noted that if 
the  frequency  of  the  incident  radiation  is  close  to  the  absorption  frequency  of  a  molecular 
excitation, a case which is usually referred to as a resonance, the occurring Raman scattering is 
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called Resonance Raman Scattering and has the benefit of greatly increased intensity compared to 
the non-resonant case [23].

Fluorescence can have multiple effects in Raman spectra, acting as a competing phenomenon. The 
leading indication of fluorescence is the background signal. Since fluorescence emission is much 
stronger  than  Raman  scattering,  it  can  lower  the  signal-to-noise  ratio  (SNR)  and  obscure  the 
Raman  signal,  complicating  the  acquisition  and  analysis  of  Raman  spectra.  Furthermore, 
fluorescence can alter the appearance of spectral features in a Raman spectrum by overlapping 
with  Raman  bands  and  distorting  their  shape,  making  the  determination  of  peak  positions, 
intensities, and widths challenging [17,24].

Biological  samples often exhibit  high fluorescence background due to the presence of  intrinsic 
fluorophores, i.e. molecules with conjugated systems, such as aromatic amino acids, porphyrins, 
and other molecules, allowing for delocalized π-electrons  [25,26]. The delocalization lowers the 
energy gap between the ground and excited states, facilitating the absorption of light in the visible 
or  near-visible  spectrum.  After  excitation,  the molecules  relax  non-radiatively  to  lower  energy 
states, from which they return to the ground state by emitting broad-spectrum fluorescence that 
can  overwhelm  the  weaker  Stokes  Raman  signal.  The  heterogeneity  of  biological  samples, 
including the presence of pigments, lipids, and other fluorescent components, further contributes 
to this background.

Figure  3.4: Jablonski diagram presenting the processes of absorption to an excited electronic and vibrational state,  
deexcitation through vibrational relaxation, and fluorescence.

To  mitigate  the  effects  of  fluorescent  emission  experimentally,  an  excitation  source  of  longer 
wavelength can be preferred (near-infrared (NIR) instead of visible or ultraviolet (UV) source), since 
NIR excitation wavelengths exhibit significantly less fluorescence than UV wavelengths, due to the 

79



fact that NIR radiation does not have enough energy to excite molecules to electronic states [27]. 
Furthermore, since fluorescent radiation has less energy than the excitation radiation, anti-Stokes 
Raman scattering may also be employed as a means of efficient fluorescence reduction, given that 
anti-Stokes  scattering  produces  photons with higher  energy  than the excitation radiation  [28]. 
However, this comes at the cost of greatly decreased intensity.  Other experimental  techniques 
include,  but  are  not  limited  to,  the  use  of  ultrashort  laser  pulses  [29–35],  frequency  domain 
demodulation  [36] and  frequency-domain  phase  nulling  [37],  application  of  shifted  excitation 
Raman difference spectroscopy (SERDS) [38,39] and subtracted shifted Raman spectroscopy (SSRS) 
[40], spatially engineered excitation beams [41], photobleching [42], etc [43].

Despite all experimental advancements in suppressing fluorescence, signal background is almost 
always present in Raman spectra, that can still affect spectral features and analysis. To circumvent 
this, computational background removal techniques are also used in combination with the above 
experimental  techniques.  The  most  popular  computational  methods  include  polynomial  fitting 
[44–47], wavelet transform [48–50], and derivatives [51–53].

3.3. Classical description of Raman scattering

The basic aspects of Raman scattering can be described by using classical electrodynamics [28,54]. 
While this classical  approach does not explain all  observed phenomena that take place during 
Raman  scattering,  it  is  simple  enough  and  can  provide  valuable  insights  for  the  frequency 
dependence of the effect, as well as specific elements of the selection rules. In this approach the  
molecules are considered as collections of charged particles (nuclei covered by electron clouds) 
with specific polarizabilities. Upon interaction of a molecule with the oscillating electric field of an 
incident photon, an oscillating electric dipole moment is induced to the molecule, which forces the 
molecule  to  oscillate  and  emit  electromagnetic  radiation  at  specific  frequencies.  It  is  this 
procedure that causes the Rayleigh and Raman scattering.

In  more  detail,  let’s  consider  the  oscillating  electric  field  E⃗ of  an  incident  photon  of  angular 
frequency ωi=2π v i, with v i the frequency of the oscillation. The electric field can be considered as 

a plane wave and is given by:

E⃗=E⃗0 cos( k⃗ i⋅⃗r−ωi t+φ) (3.5)

with E⃗0 the amplitude of the electric field, k⃗ i=
2 π
λ

k̂  the wave vector, r⃗  the position vector, t  the 

time,  and  φ the  phase  offset.  Without  loss  of  generality,  we  use  φ=0 and  set  the  frame of 
reference at the point where the field interacts with the molecule so that  r⃗=0 too. The electric 
field is then simplified to:
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E⃗=E⃗0 cos(ωi t ) (3.6)

The presence of the electric field induces a dipole moment μ⃗ that is given by:

μ⃗=a E⃗ (3.7)

with  a the polarizability of the molecule. Polarizability is a measure of the ability of an atom or 
molecule to become polarized when it  is  influenced by an external electric field. In essence it 
shows how easily  the electron cloud of  an atom or molecule can be distorted by an external 
electric field. As a tensor it is a 3 × 3 matrix of the form:

a=[axx axy axz

a yx a yy a yz

azx azy azz
] (3.8)

The diagonal  elements  of  the matrix  represent  the response of  a  material  to  an electric  field 
applied along the same axis as the dipole moment, while the off-diagonal elements represent the 
response of  the material  to electric  fields applied in perpendicular  directions.  For an isotropic 
material, the off-diagonal elements are zero and the diagonal elements have the same scalar value 
a, reflecting the homogeneity of the material’s response to the electric field in all directions.

For a single molecule that can vibrate without rotating, the polarizability tensor can be expressed 
as a Taylor expansion of each element  aρσ  (with  ρ , σ=x , y , z) around the equilibrium position 

with respect to the normal coordinates as [54,55]:

aρσ=(aρσ)0+∑
k

(∂aρσ

∂Qk
)0

Qk+
1
2∑k ,l ( ∂2aρσ

∂Qk ∂Ql
)

0

QkQl+… (3.9)

with the subscript “0” denoting elements at the equilibrium position, Qk, Ql, … being the normal 

coordinates of vibration that correspond to the vibrational frequencies ωk, ωl, … of the molecule, 

and  the  summations  taken  over  all  normal  coordinates.  Using  the  electrical  harmonic 
approximation, i.e. simplifying the differential equation by considering only terms up to the first 
derivative and neglecting higher-order derivatives, and also focusing only on one normal mode of 
vibration Qk, we can write the following expression:

ak=a0+∑
k

{ak
' Qk} (3.10)
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where ak represents a tensor with components (aρσ )k, a0 is a tensor with components (aρσ )0, and:

ak
' =(∂ aρσ

∂Q k
)

0
(3.11)

also called the derived polarizability tensor. For simple harmonic vibrations of the molecule, Qk is 

given by:

Qk=Qk 0cos (ωk t+δ k ) (3.12)

with  Qk 0 being the normal coordinate’s amplitude and  δ k a phase factor. By using Eq.  3.10 and 

3.12, we obtain:

ak=a0+∑
k

ak
' Q k 0cos (ωk t+δ k) (3.13)

By combining this expression with Eq. 3.6 and 3.7, we get:

μ⃗=a0 E⃗0cos (ωi t)+∑
k

ak
' E⃗0Qk 0 cos (ωk t+δ k)cos (ωi t) (3.14)

Finally, by using the trigonometric identity:

cos (A)cos(B)=1
2
[cos (A−B)+cos (A+B)] (3.15)

we arrive at:

μ⃗=a0 E⃗0cos (ωi t)+
1
2∑k

ak
' E⃗0Qk 0 {cos [(ωi−ωk) t−δ k ]+cos [(ωi+ωk )t+δ k ] } (3.16)

The above expression of the induced electric dipole moment has three frequency components: the 
first component has angular dependence on ωi and is the one producing radiation of frequency v i, 

that is Rayleigh scattering, the second component has angular dependence on ωi−ωk and is the 

one producing radiation of frequency v i−vk, that is Stokes scattering, and the third component has 

angular dependence on ωi+ωk  and is the one producing radiation of frequency v i+vk, that is anti-

Stokes scattering.
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The dependence of the two last terms of the electric dipole moment μ⃗ as stated in Eq. 3.16 from ak
'  

also implies that in order for Raman scattering to take place, ak
'  has to be non-zero, which in turn 

means  that  the  first  derivative  of  aρσ  with  respect  to  Qk (Eq.  3.11),  i.e.  the  slope  of  the 

polarizability at equilibrium position, has to be non-zero:

(∂ aρσ

∂Q k
)

0

≠0 (3.17)

Eq. 3.17 sets the fundamental condition for Raman activity, stating that Raman scattering occurs if 
it induces a change in the polarizability of the molecule

The classical approach is simple but, not unexpectedly, has several limitations, thus is unable to 
describe all features observed in a Raman spectrum. The most important limitation is that it does 
not take into account the quantum nature of molecular systems, more specifically that molecular 
systems  have  discrete  energy  levels,  and  their  interaction  with  light.  Additionally,  it  cannot 
correctly determine the relative intensity of anti-Stokes to Stokes bands and does not describe 
resonance  phenomena.  All  these  limitations  are  overcome  by  using  quantum  mechanics  to 
describe the Raman effect.

3.4. Quantum description of Raman scattering

In quantum mechanics, electromagnetic radiation is absorbed or emitted when a quantum system 
(e.g. atom or molecule) makes a transition from a lower energy state to a higher one and vice 
versa, respectively. This transition takes place if the transition dipole moment between the two 
states is non-zero. When an electromagnetic wave of frequency  v i interacts with a molecule, its 

electric  field  (given  by  Eq.  3.6)  causes  a  perturbation  to  the  molecule’s  wave-function.  This 
perturbation gives rise to an induced transition moment μf i between an initial state i and a final 

state f  that is given by:

μfi=∫ψ f
∗ μ̂ψ idτ (3.18)

where ψ i and ψ f  are the wave functions of the initial and final state, respectively, μ̂ is the induced 

dipole  moment  operator,  dτ  is  a  volume  element  in  configuration  space,  and  the  integral  is 
extended to all this space. The star symbol designates the complex conjugate of the wave function, 
since wave functions are generally complex-valued. The wave functions  ψ  can be separated into 
three  wave  functions:  an  electronic  wave  function  φe,  a  vibrational  wave  function  φυ,  and  a 

rotational wave function Y j [56]. Assuming that only the vibrational wave function changes during 

a vibrational transition, Eq. 3.18 is modified as:
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μfi=∫φυ f

∗ μ̂ φυ i
dτ (3.19)

The induced dipole moment operator, as the induced dipole vector in the classical case, is given by:

μ̂=a E⃗ (3.20)

with a being the polarizability tensor of the system. By combining this equation with Eq. 3.18, we 
have:

μfi=E⃗∫φυ f

∗ a φυi
dτ (3.21)

For a harmonic oscillation around equilibrium, the polarizability tensor can be expanded to a Taylor 
series:

aρσ=(aρσ)0+∑
k

(∂aρσ

∂Qk
)0

Qk+
1
2∑k ,l ( ∂2aρσ

∂Qk ∂Ql
)

0

QkQl+… (3.22)

The above equation is essentially the same as the classical one (Eq. 3.9). By keeping only the terms 
up to first order and focusing only on one normal mode of vibration Qk, we can write Eq. 3.22 as 

we did in the classical approach (Eq. 3.10):

ak=a0+∑
k

{ak
' Qk} (3.23)

By substituting Eq. 3.23 into Eq. 3.21 we obtain the following relation:

μfi=a0 E⃗∫φυf

∗ φυ i
dτ+ E⃗∑

k
{ak'∫φυf

∗Q kφυi
dτ } (3.24)

The vibrational wave functions φυf
 and φυi

 are orthogonal, thus the first term of the right-hand side 

of the equation is non-zero only if the initial and final states are the same. This condition can be 
mathematically expressed as:

∫φυ f

∗φυ i
dτ=0 if φυf

≠φυ i
(3.25)

and:
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∫φυ f

∗φυ i
dτ=1 if φυf

=φυ i
(3.26)

This condition suggests that this term corresponds to Rayleigh scattering, for which the initial and 
final vibrational states are the same. The components of the a0 factor are always non-zero for all 

atoms and molecules, hence Rayleigh scattering is always allowed.

The second term of Eq. 3.24 can be further analyzed. This term corresponds to the case of Raman 
scattering and must be non-zero for Raman scattering to occur. Since Raman scattering is inelastic, 
the initial and final states must be different, which imposes the first term of the equation to be 
zero.  The Raman scattering term shows that  the phenomenon takes  place if  the slope of  the 

polarizability, ak
' , at equilibrium is non-zero, or in other words:

(∂ aρσ

∂Q k
)

0

≠0 (3.27)

which is the same selection rule as the one derived in the classical approach (Eq. 3.17).

Additionally, for a harmonic oscillation, the wave functions of the vibrational states are given by 
[57]:

φυ=N υH υ(√bQ)e
−bQ2

2 (3.28)

with υ=0 ,1 ,2 ,… being the vibrational quantum number, and constant b given by:

b=√ k meff

ℏ2
(3.29)

with k  the force constant of the system, meff  the effective mass of the oscillator, and ℏ the reduced 

Planck constant. N υ is a normalization constant given by:

N υ=
1

√2υυ! (
b
π )

1 /4

(3.30)

H υ is a Hermite polynomial for the vibrational level υ and is expressed as:

H υ(Q)=(−1)υ eQ
2 dυ

dQυ e
−Q2 (3.31)
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The Hermite polynomials are orthogonal and the first 6 are shown in Fig. 3.5.

Figure 3.5: First 6 Hermite polynomials.

By  substituting  Eq.  3.28 into  the  second  term  of  Eq.  3.24 and  using  the  recurrence  relation 

x H n(x)=nH n−1(x )+
1
2
H n+1(x )  on the initial state, we reach:

E⃗∑
k

{ak'∫φυ f

∗Qk φυi
dτ }=E⃗∑

k
{ak' N υ f

N υi
v ι [∫H υ f

H υi−1
e

−
Qk

2

2 dτ+ 1
2
∫H υ f

H υi+1
e

−
bQk

2

2 dτ ]} (3.32)

The first integral on the right-hand side of this equation corresponds to anti-Stokes scattering and,  
since Hermite polynomials are orthogonal, is non-zero only if  υf=υi−1, while the second integral, 

corresponding to Stokes Raman scattering, is non-zero only if  υf=υi+1. These restrictions can be 

expressed as the selection rule:

Δυ=±1 (3.33)

This means that Raman scattered photons can have either increased or reduced energy, compared 
to the energy of the incident photon, by a single quantum of energy,  which for the harmonic  
oscillator model is constant and given by:
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ΔE=hvvib (3.34)

since the energy levels of the harmonic oscillator are given by:

Eυ=(υ+1
2 )h vvib (3.35)

with vvib the frequency difference between two successive vibrational energy levels.

It should be reminded at this point that we have limited our analysis of the quantum approach of 
the  Raman effect  to  the  harmonic  case,  both  by  considering  the  perturbation caused  by  the 
electric field to the polarizability of the molecular system as first order only (Eq. 3.23), and by using 
the  wave  functions  of  the  quantum  harmonic  oscillator  (Eq.  3.28).  Real  molecular  systems, 
however,  may  differ  from  the  harmonic  oscillator  due  to  the  number  of  atoms  involved  (the 
harmonic oscillator includes only two atoms while most molecules have more than two atoms) and 
due to the shape of the molecular potential, which is anharmonic (non-symmetric). Due to these 
reasons and to the existence of higher order terms in the Taylor expansion of polarizability (our  
approach  was  limited  only  to  first  order  polarizability),  the  selection  rule  of  Eq.  3.33 can  be 
“violated”  and  Δυ≠±1 transitions  (overtones),  as  well  as  transitions  involving  combination of 
vibrational  frequencies  (combination  tones/bands),  can  be  observed.  Additionally,  the 
anharmonicity of the molecular potential causes the energy difference of successive vibrational 
levels to decrease as  υ increases. These effects however are fairly weak compared to the ones 
imposed by the selection rules  of  Eq.  3.27 and  3.33,  thus  the harmonic  approximation,  while 
simplistic, provides good insight and sufficiently describes the basic principles of the Raman effect 
[54].

The quantum approach also correctly predicts the experimentally observed ratio of the anti-Stokes 
to Stokes intensity, which for a non-degenerate vibration is given by:

I anti ‑Stokes
I Stokes

=( v i+Δv
v i−Δv )

4

e
−
hΔv
k T (3.36)

where v i is the frequency of the incident light and Δv  is the magnitude of the Raman shift. The 

intensity ratio also depends on the temperature T  and depends on the populations of molecules 
occupying primarily the ground and first excited vibrational states (Eq. 3.2).

Finally,  the  quantum approach predicts  resonance  effects,  i.e.  a  significant  increase  in  Raman 
scattering intensity (up to 106 times compared to the non-resonant case) when the energy of the 
incident radiation matches an electronic molecular transition, which are observed in experiments 
of resonance Raman spectroscopy [58].
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3.5. Raman-active molecular vibrations

The  movement  of  molecules  through  space  can  be  characterized  either  as  external,  where  a 
molecule moves as a whole, similarly to a rigid body, or as internal, where the relative motion of 
atoms within the molecule is considered. A molecule can perform three different types of motions: 
translations,  rotations,  and vibrations.  Translations  describe  the  motion of  an  entire  molecule 
moving from one position to another and they are considered as external motion. Rotations refer 
to the rotational  motion of a molecule around an axis or point and can be either external  or  
internal, if only parts of a molecule rotate. Vibrations refer to the oscillation of molecules and is an 
internal motion.

To describe the motion of molecules, the concept of degrees of freedom (DoF) is used. In this  
concept,  DoF is  the number of  variables that  are required for  a  molecule to fully  describe its 
motion. All molecules have 3 DoF that describe the translational motion of their center of mass 
(along the  x,  y,  z axes). A diatomic molecule has 2 additional rotational DoF, since it can rotate 
along the two axes perpendicular to the molecule’s axis,  and 1 vibrational degree of freedom. 
Linear molecules with N  atoms have 2 rotational DoF in addition to the translational ones, while 
non-linear molecules with N  atoms have 3 rotational DoF. The vibrational DoF are 3 N−5 for linear 
molecules, while non-linear molecules have 3 N−6 (3 DoF account for the displacement of each 
atom along the x,  y,  z axes minus the sum of translational and rotational DoF of the molecule). 
The vibrational DoF correspond to the number of normal modes a molecule has, i.e. the number 
broadly considered as part of independent vibrational motions a molecule can have.

As described in the previous sections, the main rule that must be satisfied for Raman scattering to 
occur is that there must be a non-zero rate of polarizability change in the equilibrium position of a 
molecular vibration (Eq.  3.27). Vibrations that satisfy this rule are said to be “Raman-active”. A 
useful construct that helps determine if a vibration is Raman-active is the polarizability ellipsoid. 
This is a 3-dimensional representation of the polarizability tensor a of a vibrational mode (Eq. 3.8). 
If the magnitude, shape, or orientation of the ellipsoid is different for a vibration’s extremes, then 
the vibration is Raman-active.

In Fig. 3.6 the normal modes of a linear triatomic molecule (e.g. CO2) are shown. Such a molecule 
has 4 normal modes: a symmetric stretching mode (Fig.  3.6 (a)), an asymmetric stretching mode 
(Fig.  3.6 (b)),  and  a  degenerate  bending  mode  (Fig.  3.6 (c)).  Out  of  these  modes,  only  the 
symmetric stretch presents a change in polarizability, thus is Raman active, in accordance with the 
selection rule of Eq. 3.27 [59].
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Figure  3.6:  Normal  modes  of  a  linear  triatomic  molecule  (e.g.  CO2)  (top)  with  their  respective  one-dimensional 
polarizabilities  graphs (bottom).  The polarizability  ellipsoids  are  also drawn over  the graphs for  the  oscillations’  
extremes and equilibrium positions. Only the symmetric stretch mode has non-zero polarizability in the equilibrium  
position, thus is Raman-active. Figure adapted from [22,86].

Figure 3.7: Basic types of normal modes of polyatomic molecules. The oscillations of the molecules of the stretching 
and in-pane bending modes take place on a single plane (i.e. on this page), while the molecules of the out-of-plane  
bending modes oscillate in 3D space (i.e. out of this page).
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Molecules with many atoms have more normal modes, the basic types of which are depicted in 
Fig.  3.7. These modes include oscillations in which molecules move on a two-dimensional plane 
(in-plane vibrations), or oscillations where the molecules move in three-dimensional space (out-of-
plane vibrations). The former include the symmetric and asymmetric stretching vibrations, and the 
scissoring  and  rocking  bending  vibrations,  while  the  latter  include  the  wagging  and  twisting 
bending vibrations.

As the number of atoms in a molecule increases, predicting which vibrations are Raman-active 
becomes an increasingly difficult task. For this reason, group theory is widely used to assist both in  
prediction of  Raman-active modes of  a  molecule  and in  analysis  and interpretation of  Raman 
spectra [59]. While group theory is an invaluable tool, the procedure required for determining the 
Raman-active modes of a molecule is tedious, lengthy, and beyond the scope of this thesis.

3.6. Experimental configuration

A typical Raman setup consists of a laser, a probe, and a spectrometer. A simple experimental  
configuration that is commonly used in Raman spectroscopy experiments is presented in Fig. 3.8. 
The laser provides the required energy to drive the sample’s molecules to an excited (virtual) state 
from which they then de-excite, producing Rayleigh- and Raman-scattered (Stokes and anti-Stokes) 
photons.  Due  to  the  inherently  low  intensity  of  Raman  scattering,  relatively  high-powered 
laboratory lasers are required to generate a detectable signal. Various types of lasers are employed 
in Raman spectroscopy, such as solid-state lasers (e.g. Nd:YAG laser), gas lasers (e.g. He-Ne laser),  
diode lasers, or Excimer lasers, with wavelengths ranging from near-UV to near-IR (325-1064 nm) 
and output power of several hundred mW. The selection of laser wavelength and power depends 
on the particular application. For biomedical applications, diode lasers of 785 nm wavelength are 
commonly used, since they provide a good compromise between signal  intensity,  fluorescence 
interference, cost, and compactness [60].

Experimental Raman configurations may have excitation and signal collection optics coupled in a 
single probe, or they may use separate optics for the excitation light beam and the collection signal  
probe. The former case is depicted in Fig. 3.8. Here the laser light is guided by an optical fiber to 
the coupled probe and gets reflected by a dichroic mirror towards the sample. The dichroic mirror 
is appropriately constructed to reflect the laser light and let scattered light pass through it and is 
effectively used as a beam splitter. The laser light then passes through focusing optics (depicted as 
a single optical lens) and gets focused onto the sample. The scattered light travels through the 
same  focusing  optics  and  gets  separated  by  the  excitation  light  by  the  dichroic  mirror.  The 
scattered light also passes through a longpass filter, which removes most of the Rayleigh-scattered 
light, and then travels through an optical fiber to the spectrometer [61–63].
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Figure 3.8: Schematic diagram of a typical Raman spectroscopy configuration. A coupled probe is used to excite the 
molecules  of  the  sample  and  collect  the  Raman-scattered  light.  The  spectrometer  uses  a  Czerny-Turner  
monochromator to resolve the Raman-scattered light and focus it on a CCD detector, which converts the intensity of  
each frequency of the light to a digitalbut as I see in tutorials how they have no swap space as I do signal. The signal  
from the CCD detector is then sent to a computer to be stored as a spectrum and further processed.

Inside  the  Raman spectrometer,  single  or  multiple  stages  of  monochromators  can be used to 
resolve the collected light of the scattered Raman photons to discrete frequencies. Using multiple 
stages has the benefit of increased spectral resolution of light, however this increased resolving 
power  comes  at  the  cost  of  lower  intensity  [61].  In  Fig.  3.8 a  single-stage  Czerny-Turner 
monochromator is shown [64]. The light that enters the spectrometer gets reflected by a concave 
mirror  onto  a  reflective  grating  with,  typically,  150-4000  grooves  (or  lines,  for  transmission 
gratings) per mm  [61]. The grating disperses the light, causing light of different frequencies to 
diffract at different angles. A second concave mirror collects the dispersed light and focuses it on a 
Charged-Coupled Device (CCD) detector [65]. Using this configuration, the whole spectrum of the 
light that enters the spectrometer is obtained at once. Finally, the intensity of light on each pixel of 
the CCD detector gets converted to a digital signal and this signal is then sent to a computer to be  
stored as a spectrum and further processed. To improve the quality of the acquired spectrum, 
multiple spectra are often recorded and averaged to enhance the signal-to-noise ratio.
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The basic configuration described above can be appropriately adjusted and extended to be used in 
various applications.  For example,  by coupling the Raman probe to a (confocal)  microscope,  a 
technique known as (confocal) Raman microspectroscopy, microscopic structures can be measured 
(also with depth resolution for confocal instruments) [6,61,66], by positioning the collection probe 
at  an  offset  compared  to  the  excitation  probe,  a  technique  known  as  Spatially-Offset  Raman 
Spectroscopy (SORS), information from up to several millimeters inside the sample can be obtained 
[9,67], by using colloidal solutions or substrates of noble metals (usually silver or gold), a technique 
known as Surface Enhanced Raman Spectroscopy (SERS), the Raman signal can be enhanced up to 
1011 times [68], etc.

3.7. Advantages and limitations

Raman spectroscopy has a number of advantages that make it a preferred analytical technique 
over other methods:

• It can be used to study materials in solid, liquid, or gaseous state.

• It  is  a  high  specificity  technique,  allowing  for  the  identification  of  multiple  molecular 
species within a sample.

• Water  (exhibiting  low  polarizability)  only  affects  Raman  spectra  to  a  minimal  degree, 
making Raman spectroscopy an excellent technique for studying wet tissues and aqueous 
solutions.

• Variants  like  confocal  Raman  microscopy  can  provide  sub-micrometer  lateral  spatial 
resolution, allowing for the measurement of microscopic regions within a sample.

• Variants  like  confocal  Raman microscopy or  SORS  can  provide  depth  information for  a 
sample (in the case of SORS, samples inside containers can also be measured).

• It requires minimal to no sample preparation prior to measurement.

• It  is  non-destructive,  allowing  for  the same samples  to  be measured repeatedly  under 
varying conditions or by other analytical techniques.

• Spectra are usually obtained in a short time scale (typically a few seconds).

Despite the important advantages, Raman spectroscopy has specific limitations that must be taken 
into consideration before selecting it as an analytical method:

• Raman scattering has a very small cross-section, making it an overall weak process, thus 
obtaining a signal with adequate intensity can be challenging.

• Depending on the nature of the sample and the excitation wavelengths used, there may be 
significant fluorescent background interfering with the signal.
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• Cannot be used for obtaining spectra of pure metals or alloys.

• Although Raman spectroscopy is in principle a non-destructive technique, the high intensity 
of excitation light or prolonged irradiation that may be required for some samples to obtain 
meaningful spectra may destroy the samples.

3.8. Raman spectra of bone

Raman spectroscopy offers two-fold insights into both the organic and inorganic components of 
bone,  making  it  a  powerful  tool  for  studying  changes  associated  with  diseases  such  as 
osteoporosis. The majority of diagnostically relevant information in a Raman spectrum is found 
within the “fingerprint” region, spanning 400–1800 cm-1.  This  region is  so named because the 
spectral bands within it serve as unique identifiers for the molecular composition of a material, 
akin  to  a  fingerprint's  distinct  patterns.  Additionally,  the high wavenumber region (2800–3800 
cm-1) provides complementary information, primarily capturing vibrational modes associated with 
hydroxyl groups and the CH-stretching vibrations in collagen and lipids [69].

Raman spectra of bone feature multiple bands primarily associated with phosphate, carbonate, 
and collagen, which are considered as markers of bone quality. Quantitative analysis of biological  
samples typically involves measuring the intensities or integrated areas of these bands or their 
subbands.  Ratios,  whether  of  intensities  or  integrated  areas,  are  more  commonly  used  than 
absolute values to reduce the impact of variations in Raman scattering efficiency and other optical 
factors, enabling more reliable and consistent comparisons across samples [70,71].

A typical fingerprint region of a preprocessed Raman spectrum of bone is presented in Fig.  3.9 
[72].
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Figure  3.9: Typical fingerprint region (300―1800 cm-1) of Raman spectrum of healthy human bone obtained with a 
532 nm excitation with the main bands annotated. Figure from [72].

3.8.1. Raman Spectral Regions

The  Raman  spectrum  of  bone  contains  the  molecular  vibrations  of  its  major  components: 
hydroxyapatite, collagen, and minor constituents like lipids. Each spectral region is composed of 
multiple  sub-bands  corresponding  to  specific  molecular  vibrations  that  can  provide  detailed 
insights about bone’s structural and compositional properties. Below are the main Raman bands of 
bone found in the fingerprint region, organized by wavenumber ranges to highlight the unique 
contributions of each region. The main Raman bands of bone along with their assignment are also 
presented in Table 1.

Low-wavenumber phosphate region (400―600 cm-1)

This region contains Raman bands related to the mineral phase of bone, primarily hydroxyapatite. 
The two prominent bands, located at 430 cm∼ -1 and 580 cm∼ -1, correspond to the ν₂ (bending) 
and  ν₄  (bending)  vibrations  of  the phosphate ion (PO₄³⁻),  respectively.  While  these bands  are 
characteristic of the phosphate groups in the mineral lattice, their specific relationship to mineral 
properties, such as lattice structure and crystallinity, remains less explored in the current literature 
[69,70].
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Proline-Hydroxyproline region (830―900 cm-1)

This spectral region contains vibrations primarily associated with the amino acids proline at 856∼  
cm−1 and hydroxyproline at 875 cm∼ −1, which are integral to the structure of Type I collagen, the 
primary  organic  component  of  bone.  The  peaks  within  this  range  primarily  arise  from  v(C–C) 
stretching vibrations in the pyrrolidine rings of proline and hydroxyproline [73]. The intensities and 
positions of these peaks are sensitive to changes in collagen's secondary structure and stability, 
reflecting the role of proline and hydroxyproline in maintaining the integrity of the collagen triple 
helix.

High-wavenumber phosphate region (900―980 cm-1)

The 900―980 cm-1 region contains the most prominent Raman band of bone, located at 960∼  
cm−1.  This band is  primarily attributed to the  ν1 (symmetric  stretching) vibration of phosphate. 
However, it is not a single peak but a composite feature reflecting heterogeneity in the mineral 
phase, with additional sub-bands observed at 920 cm∼ −1, 937 cm∼ −1, and 947 cm∼ −1 [69,74–77]. 
The sub-bands at 920 cm−1 and 937 cm−1, are attributed to v(C–C) vibrations of proline in collagen’s 
backbone and the  sub-band at  947  cm−1 is  associated with  Type B  carbonate  substitutions  in 
hydroxyapatite [77–79].

Carbonate region (1000―1150 cm-1)

The 1000―1150 cm-1 region contains vibrations associated with the carbonate content of bone, 
reflecting the incorporation of carbonate ions into the hydroxyapatite lattice through substitution. 
The most intense and spectroscopically important band in this region is the band located at ∼1070 
cm−1, which is attributed to the symmetric stretching vibration (ν1)  between the carbon and the 
oxygens atoms of  carbonate ions  (CO₃²⁻),  primarily  linked to  Type B  carbonate substitution of 
hydroxyapatite  [69]. At the lower end of this region, a small band corresponding to the  v(C-C) 
vibration of phenylalanine, an amino acid found in collagen, can be observed at ∼1003 cm−1 [77]. 
Additional bands in this region include features at ∼1035 cm−1,  ∼1048 cm−1,  and  ∼1076 cm−1, 
corresponding to the ν₃ asymmetric stretching modes of phosphate,  as well as a band at ∼1060 
cm−1 associated with proteoglycans [77]. These bands exhibit significant overlap with other minor 
contributions, highlighting the complexity of spectral interpretation in this region.

Amide III region (1200―1350 cm-1)

The amide III  region in the Raman spectrum of bone lies between 1200 and 1350 cm -1 and is 
associated with vibrations from the protein backbone, primarily collagen. Amides are functional 
groups characterized by a carbonyl group (C=O) bonded to a nitrogen atom (N). In proteins, amides 
form the peptide bonds that link amino acids together, creating the protein's backbone. The amide 
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III region originates from a combination of N–H bending and C–N stretching vibrations in these 
peptide bonds, making it a marker for collagen's secondary structure (Fig. 3.10) [80].

The bands within this region provide insights into the organization of collagen. The peak near 1242 
cm-1 is typically linked to β-sheet structures or disordered regions (random coils), while the peak 
around  1272 cm-1 as well as the peak at 1340 cm-1 are attributed to  α-helical structures. These 
features make the amide III region sensitive to changes in collagen organization and integrity. The 
amide III region in fresh, untreated bone may overlap with CH₂ and CH₃ bending vibrations from 
lipids and proteins that are found in the 1293–1305 cm-1 region [77].

In  bone,  the  amide  III  region  is  significant  for  studying  collagen  crosslinking  and  maturity. 
Variations in peak positions or intensities can indicate differences in enzymatic and non-enzymatic 
crosslinking patterns, which are critical for bone's mechanical properties. Additionally, shifts in this 
region  may reflect  collagen denaturation due to  thermal,  chemical,  or  pathological  processes, 
revealing disruptions in its triple-helical structure [70].

Figure  3.10: Amide vibrations. Red arrows indicate stretching modes, while blue arrows indicate bending modes. In  
Raman  spectra  of  bone  only  the  amide  I  and  III  vibrations  are  observed  in  the  regions  1590―1750  cm-1 and 

1200―1350 cm-1, respectively [88]. Figure from [87].

CH₂ region (1400―1500 cm-1)

The  1400―1500 cm-1  region  is  primarily  attributed  to  the  deformation  (wagging)  mode  of 
methylene (δ(CH₂)) in the amino acid residues of collagen, typically observed at ∼1450 cm−1 [77].

Amide I region (1590―1750 cm-1)

The amide I  region in  the Raman spectrum of  bone lies  between 1590 and 1750 cm⁻¹  and is 
primarily associated with the C=O stretching vibrations of the peptide bonds in collagen (Fig. 3.10). 
This region is highly sensitive to the secondary structure of proteins, making it a key feature for 
analyzing  collagen's  organization  and  structural  integrity  [77].  The  band  is  complex  and  is 
composed of several subbands, which  correspond to different secondary structures of collagen. 
The  identified  subbands  include  a  band  at  1609  cm∼ -1,  which  corresponds  to  the  stretching 
vibrations of the carbon rings in phenylalanine and tyrosine. Another notable band related to the 
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α-helix structure of collagen is observed at 1640 cm∼ -1, manifesting as a shoulder in the amide I 
envelope. The band at 1660 cm∼ -1 arises from the stretching vibration of C=O and is the most 
intense band in this region, representing the primary amide I  contribution, and is found to be  
related to the amount of non-reducible enzymatic cross-linking (mature cross-linking) [69]. Lastly, 
the band at  1690 cm∼ -1 is  considered as  indicative of  the disordered secondary structutre of 
collagen and is related to reducible cross-linking (immature cross-linking) [69,77].

In bone, the amide I  region is essential for studying quality and maturity of collagen. Shifts or  
changes in the intensity of the amide I band can indicate modifications in collagen crosslinking, 
degradation, or organization. These alterations are particularly relevant in pathological conditions 
such as osteoporosis, where collagen's structural and functional properties may be compromised 
[70].  Additionally,  this  region  reflects  hydrogen  bonding  patterns,  which  are  important  in 
maintaining collagen’s stability and triple-helical conformation [69].
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Table  1: Tentative assignments of main Raman bands observed in bone spectra  [77–79]. Mineral-related bands are 
highlighted with light gray background.

Raman shift (cm-1) Assignment

430 v2PO₄³⁻

580 v4PO₄³⁻

856 v(C-C) proline

875 v(C-C) hydorxyproline

920 v(C-C) proline

937 v(C-C) proline from collagen backbone

947 v1PO₄³⁻ with Type B substitutions of CO₃²⁻

960 v1PO₄³⁻

1003 v(C-C) phenylalanine

1035 v3PO₄³⁻

1048 v3PO₄³⁻

1060 Proteoglycans

1070 v1CO₃²⁻

1076 v3PO₄³⁻

1242 Amide III β-sheet and random coil

1272 Amide III α-helix

1293–1305 δ(=CH) lipids and proteins in fresh bone

1340 Amide III α-helix (CH₂CH₂ wag)

1446 δ(CH₂) collagen side chains

1609 δ(C=C) phenylalanine, tyrosine

1640 v(C-C) α-helix

1660 v(C=O) Amide I

1676 Amide I β-sheet

1690 Amide I β-sheet and random coil

3.9. Bone quality parameters in Raman spectroscopy

Raman spectroscopy is an invaluable tool for assessing bone quality by providing molecular-level 
insights into its composition and structure. It enables the quantification of key parameters that 
influence bone’s mechanical and biological properties, offering a deeper understanding of bone 
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health and disease. The following parameters are particularly significant in characterizing bone 
quality through Raman spectroscopy.

Mineral-to-matrix ratio

The mineral-to-matrix ratio (MMR) is a widely used parameter for assessing bone quality, providing 
information about the relative contributions of the inorganic and organic components of bone. 
This  ratio  is  typically  calculated  using  the  peak  intensities  or  integrated  areas  of  the  main 
phosphate band at 960 cm-1 and the amide I band located at 1660 cm-1 [70]. In addition to the 
amide I band, the peak intensities or integrated areas of other collagen-related bands, such as the 
combined proline (856 + 920 cm-1) or combined proline and hydroxyproline (856 + 875 cm-1 or 856 
+ 920 + 875 cm-1) bands, the CH₂ band at 1450 cm-1, phenylalanine at 1003 cm-1, and the amide III 
band at 1242 cm-1, have also been employed as measures of the mineral-to-organic content of 
bone [69,70,77,81]. While the amide I band is widely used due to its high intensity and relevance 
to collagen, it can be affected by overlapping signals from other proteins or environmental factors, 
potentially complicating its interpretation [77]. In contrast, proline and hydroxyproline peaks offer 
higher specificity to collagen, minimizing interference and allowing for more direct assessment of 
the organic matrix [77].

Carbonate substitution

Carbonate  substitution  in  hydroxyapatite  is  a  key  factor  that  affects  bone’s  biological  and 
mechanical properties. The extent of carbonate substitutions in the apatite lattice of bone can be 
quantified by calculating the carbonate-to-phosphate ratio (CPR) using the main carbonate band at 
1070 cm-1 and the main phosphate band at 960 cm-1 [70]. However, the proximity of the phosphate 
band at 1076 cm-1, which partially overlaps with the carbonate band, can reduce the accuracy of 
CPR measurements, particularly when the carbonate content in hydroxyapatite is low. Additionally, 
the carbonate-to-amide I ratio, which utilizes the 1660 cm-1 band, is another useful metric that may 
be indicative of bone remodeling [70,82].

Crystallinity

Crystallinity, often referred to as mineral maturity, is a measure of the degree of structural order in 
a solid and, in the context of bone, reflects the size and perfection of hydroxyapatite crystals [83]. 
Variations in mineral crystallinity can indicate changes in bone remodeling processes, with higher 
crystallinity often associated with aging or pathological conditions such as osteoporosis.  Higher 
crystallinity is often linked to stiffer but more brittle bone, while lower crystallinity may indicate 
increased bone turnover [83]. In Raman spectroscopy, crystallinity is determined by analyzing the 
full width at half maximum (FWHM) of the main phosphate band at 960 cm -1. This involves fitting 
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the band with a single Gaussian curve and calculating crystallinity as the inverse of the FWHM of 
the fitted curve [70].

Collagen quality

Collagen’s quality in Raman spectra of bone can be determined by utilizing the amide I region at 
1590–1750 cm-1. More specifically, a shift of the amide I band from 1665 to 1678 cm -1 may indicate 
ruptured collagen cross-links, which destabilize the fibrillar structure and reduce the mechanical 
resilience of the organic matrix. Such shifts are often associated with mechanical or enzymatic 
damage,  oxidative  stress,  or  aging-related  changes  in  bone  tissue  [69,70].  The  intensity  or 
integrated area ratios between the subbands at 1690 cm∼ -1 and 1660 cm∼ -1 can show changes in 
collagen secondary structure, particularly the relative proportions of reducible to non-reducible 
collagen cross-links  [70,84].  This  ratio is  sensitive  to  collagen denaturation,  with  an  increased 
1660/1690 cm-1 ratio often reflecting a transition from an organized triple-helix structure to less 
ordered or denatured forms, often seen in pathological conditions like osteoporosis or in thermally 
or chemically degraded bone [69,85].
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4. Neutron powder diffraction

4.1. Introduction

Neutron powder diffraction is an analytical technique used to investigate the atomic structure of 
polycrystalline materials by analyzing the diffraction patterns produced when neutrons interact 
with the nuclei  of  a  powdered material's  atoms.  The technique is  based on the diffraction of 
neutrons by matter, which were discovered by J. Chadwick in 1932  [1], and was experimentally 
observed four years later by two independent groups: D. Mitchell and P. Powers  [2], and H. von 
Halban and P.  Preiswerk  [3].  Significant advancements in methodology were achieved by E.  O. 
Wollan and C. Shull in the 1940s, with Shull receiving the 1994 Nobel Prize in Physics for these 
contributions (Wollan had passed away a decade earlier) [4].

Neutron powder diffraction involves a beam of neutrons directed on a powdered sample, where 
the  random  orientation  of  crystallites  produces  diffraction  patterns.  These  patterns  provide 
detailed  information  about  atomic  arrangements,  lattice  parameters,  thermal  vibrations,  and 
magnetic  ordering.  Neutron  diffraction  is  often  compared  to  X-ray  diffraction  (XRD),  which  is 
considered as  a  complementary  technique that  is  also  used to  uncover  structural  information 
about  materials.  However,  unlike  XRD,  which  relies  on  interactions  with  the  electronic  cloud 
surrounding atoms, neutron diffraction involves direct interactions with the atomic nuclei.  This 
distinction gives neutron diffraction specific advantages, such as sensitivity to light elements in the 
presence of heavy atoms and the ability to differentiate isotopes [5].

Advancements in neutron diffraction techniques have expanded their applicability to include time-
of-flight methods  [6], high-resolution powder diffraction  [7], and in-situ diffraction for studying 
dynamic  processes  [8].  Neutron  powder  diffraction  enables  detailed  analysis  of  crystalline 
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structures in a wide range of materials, including metals, ceramics, and complex compounds [9]. 
While the technique typically requires access to large-scale facilities such as nuclear reactors or 
spallation sources, its ability to yield comprehensive structural information makes it highly valuable 
for  studying  materials  under  varying  conditions,  such  as  extreme  temperatures,  pressures,  or 
magnetic fields.

4.2. Theory of neutron diffraction

Diffraction is a wave phenomenon observed when waves encounter an obstacle, slit, or periodic 
structure, causing them to bend, spread out, or interfere. This behavior is exhibited by various 
types of waves, including light, sound, and particles, such as electrons and neutrons, and forms the 
basis for several analytical techniques used to probe the structure of matter. Diffraction occurs 
because  waves  interact  with  each  other,  producing  patterns  of  constructive  and  destructive 
interference that can be analyzed to extract structural information about a system [10]. The study 
of  the  diffraction  of  neutrons  from  a  material  can  provide  detailed  insight  into  atomic 
arrangements, lattice structures, and magnetic ordering within a material.

4.2.1. Neutrons

Neutrons are electrically neutral subatomic particles that were discovered by J. Chadwick in 1932 
[1]. Together with the positively charged protons, they form the building blocks of atomic nuclei. A 

neutron's mass is slightly greater than that of a proton, weighing approximately  1.675×10−27 kg. 
Like protons and electrons, neutrons are spin-1/2 particles, designated as fermions [8].

The wave-like properties of neutrons, as described by de Broglie in 1924 [11], make them suitable 
for diffraction studies. De Broglie proposed that particles can exhibit wave-like behavior, with their 
wavelength related to their momentum. This relationship is expressed by de Broglie’s equation, 
which connects the velocity (v) and wavelength (λ) of a particle as follows:

λ= h
mv

(4.1)

where h=6.626068×10−34 m2 kg /s is Planck’s constant and m is the particle’s mass. For neutrons 
this equation can be simplified to:

λ=3.956
v

(4.2)

with λ measured in Å and v  in km/s. The kinetic energy of the neutrons as a function of λ is given 
by:
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E= h2

2m λ2 (4.3)

There are three main processes through which neutrons are produced for diffraction experiments: 
fission, spallation, and low energy nuclear reactions (Fig. 4.1) [9,12].

Figure  4.1:  Neutron production processes  for  diffraction experiments:  fission  (top),  spallation  (middle),  and  low 
energy nuclear reactions (bottom). Figure from [9].
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In fission (Fig.  4.1 (top)), neutrons are produced in nuclear reactors when heavy nuclei, such as 
uranium (235U) or plutonium (239Pu), undergo controlled chain reactions. In this process, a heavy 
nucleus absorbs a neutron and splits into two smaller nuclei, releasing approximately 2.5 neutrons 
per fission event along with a significant amount of energy [13]. Among the released neutrons, one 
must be slowed down (moderated) to an appropriate energy level to sustain the chain reaction. 
Moderation is achieved by passing the neutrons through materials like heavy water, graphite, or 
hydrogen-rich substances, which slow them down through elastic collisions [14].

In the process of spallation (Fig. 4.1 (middle)), protons are accelerated in a particle accelerator to 
high energies of approximately 1 GeV and directed at a heavy metal target, such as tungsten (W) or 
lead (Pb) [15]. The impact excites the nuclei in the target material which ejects neutrons, protons, 
and pions that further collide with the target’s nuclei to produce more particles. This method is  
highly efficient, generating large quantities of so-called “evaporation neutrons”, typically 10―30 
per incident proton, with energies around 2 MeV, and some high energy neutrons with energies up 
to the energy of the incident proton[16]. The process of spallation is highly efficient in producing 
high flux of neutrons.

Low-energy nuclear reactions (Fig. 4.1 (bottom)) at accelerator-driven neutron sources provide an 
alternative for neutron production, particularly at energies below 100 MeV. In this range, light 
metals like lithium (Li) and beryllium (Be) are effective targets, especially at lower energies around 
30 MeV, while heavier elements become more efficient at higher energies [17]. Meanwhile, recent 
advancements  in  High-Current  Accelerator-driven  Neutron  Sources  (HiCANS)  demonstrate  the 
potential to achieve performance levels comparable to those of traditional fission and spallation 
neutron  sources  [18,19].  One  key  advantage  of  accelerator-driven  sources  is  their  ability  to 
produce neutrons on demand, while their pulsed structure allows for the efficient use of a full  
neutron wavelength spectrum through time-of-flight methods [9].

In neutron diffraction experiments, the wavelength of neutrons is comparable to the distances 
between the atoms of the material under study, typically around 2 Å. Using Eq.  4.3, this range 
corresponds  to  neutron energies  in  the  order  of  50  meV.  However,  the  processes  of  neutron 
production described earlier (fission, spallation, or low-energy nuclear reactions) generate high-
energy neutrons in the MeV range. These neutrons must be moderated to lower their  energy 
before they can be used in diffraction experiments.

Based on their energy after moderation, neutrons are categorized as hot (100–1000 meV), thermal  
(5–100 meV), or cold (0.05–5 meV). These categories correspond to the equivalent temperatures 
of  the  neutrons’  kinetic  energy  after  reaching  thermal  equilibrium  with  the  moderator.  Hot 
neutrons have a Maxwell-Boltzman energy distribution corresponding to approximately 2300 K, 
thermal neutrons to 300 K (room temperature), and cold neutrons to around 25 K, as shown in Fig. 
4.2.  The  distribution  of  neutron  flux  (neutrons  per  second)  for  a  Maxwellian  source  can  be 
expressed in terms of λ by the relationship [20]:
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φ(λ)=φ0
1

λ5 exp( −h2

2mkBT λ2 ) (4.4)

where φ0 is a normalization constant, m is the neutron’s mass, kB=1.3807×10−23 J /K is Boltzman’s 

constant, and  T  is the absolute temperature of the neutrons after reaching thermal equilibrium 
with  the  moderator.  The  peak  of  the  Maxwellian,  which  corresponds  to  the  most  probable 
wavelength of the neutrons, is given by:

λ= h

√5mkBT
(4.5)

Figure 4.2: Maxwellian distributions of hot (T = 2300 K), thermal (T = 300 K), and cold (T = 25 K) neutrons. Figure from  
[9].

4.2.2. Bragg’s law

The diffraction of waves from a crystal structure is governed by Bragg’s law. In its simplest form, 
the crystal structure can be represented as a two-dimensional (2D) lattice, consisting of a periodic 
array of atoms. These atoms form parallel planes, each separated by a uniform distance d, which is 
referred to as the interplanar spacing. When a wave, such as a neutron wave, interacts with this 2D 
lattice, each plane acts as a scattering center,  and the scattered waves from successive planes 
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interfere  with  each  other.  When the  path  difference  between  waves  scattered  from  adjacent 
planes equals an integer multiple of the wavelength, constructive interference occurs, producing a 
diffraction peak. This condition, known as Bragg’s law, is mathematically expressed as:

n λ=2d sin (θ) (4.6)

with  n being an integer representing the order of diffraction,  λ the wavelength of the incident 
beam of neutrons, d the interplanar spacing, and θ the angle between the incident wave and the 
crystal  planes.  Bragg  diffraction  of  two  parallel  beams  with  the  same wavelength  and  phase, 
scattered by the atoms of a square lattice with interplanar distance d, is shown in Fig. 4.3.

Figure 4.3: Diffraction of two parallel beams with the same wavelength and phase. The beams are scattered by the  
atoms of a square lattice with interplanar distance d and interfere constructively. Figure from [28].

Miller indices

The planes involved in diffraction are part of the crystal's periodic structure, which is defined by 
the unit cell. The unit cell is the smallest repeating unit that describes the entire crystal lattice 

when translated in three dimensions and is characterized by three lattice vectors ( a⃗,  b⃗,  c⃗) that 
define its dimensions and orientation, as well as the angles between them (α , β, γ). Together the 
lattice vectors and angels comprise the parameters of the lattice [20]. The edges and angles of the 
unit cell are determined by the symmetry of the crystal, such as cubic, tetragonal, or hexagonal. 
The various combinations of the lattice parameters form seven crystal systems in total, presented 
in Table 2.

Planes within the crystal lattice are described in relation to the unit cell. These planes are sets of 
parallel,  equally  spaced  atomic  layers,  which  contribute  to  diffraction.  The  spacing  between 
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adjacent planes depends on the orientation of the planes and the dimensions of the unit cell. To 
systematically label and describe these planes, a set of integers called Miller indices (hkl) is used. 
Miller indices represent the orientation of a plane by describing its intercepts with the crystal axes. 
They are calculated as the reciprocals of the fractional intercepts that the plane makes with the 
unit cell axes. For example, a plane with Miller indices (100) intersects the x-axis at one unit cell 
and is parallel to the y- and z-axes, while a plane with Miller indices (110) intersects both the x- and 
y-axes at one unit cell and is parallel to the z-axis. Fig. 4.4 presents sets of planes, as lines, with the 
same Miller indices in a two-dimensional square lattice.

Table 2: Lattice parameters for the seven crystal systems [20].

System Lattice parameters
Triclinic a≠b≠c, α≠β≠γ≠90°

Monoclinic a≠b≠c, α=β=90°, γ≠90°

Orthorombic a≠b≠c, α=β=γ=90°

Trigonal (rhombohedral) a=b=c, α=β=γ≠90°

Hexagonal a=b≠c, α=β=90°, γ=120°

Tetragonal a=b≠c, α=β=γ=90°

Cubic a=b=c, α=β=γ=90°

Figure 4.4: Sets of planes (lines) with the same Miller indices in a two-dimensional square lattice. Figure from [20].
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The  interplanar  spacing  dhkl for  a  given  set  of  planes  can  be  calculated  based  on  the  lattice 

geometry. For cubic crystals, the spacing is given by:

dhkl=
a

√h2+k2+l2 (4.7)

In non-cubic systems, the calculation of interplanar spacing becomes more complex as the lattice 
constants  and  angles  vary.  For  example,  in  hexagonal  systems,  like  the  ones  found  in 
hydroxyapatite, the interplanar spacing dhkl is calculated as:

dhkl=
a

√ 4
3
(h2+hk+k2)+ a2

c2 l
2 (4.8)

Bravais lattices

The periodic arrangement of atoms within a crystal lattice is described not only by the unit cell but  
also by the type of lattice symmetry it exhibits. These symmetries are systematically categorized 
using Bravais lattices, which define all  possible three-dimensional lattice structures that can be 
formed by translating identical unit cells without overlap or gaps. There are 14 unique Bravais 
lattices,  grouped into the seven crystal  systems of  Table  2 and based on their  symmetry  and 
geometric constraints.

Each Bravais lattice is characterized by the arrangement of points within the unit cell and their  
symmetry relations. They are categorized as: primitive (P), which contain lattice points only at the 
corners of the unit cell; body-centered (I), which contain an additional lattice point at the center of 
the unit  cell;  face-centered (F),  which  contain  lattice points  at  the center  of  each face;  base-
centered (C), which contain lattice points at the centers of two opposing faces.  The 14 Bravais 
lattices are shown in Fig 4.5.

Bravais lattices describe the symmetry and periodicity of atomic arrangements within crystals. This 
classification system also determines the orientation and spacing of atomic planes, as described by 
Miller indices. For instance, in cubic crystals, planes with the same Miller indices (e.g., (100), (110))  
are  equivalent  due  to  their  high  symmetry,  whereas  in  triclinic  or  monoclinic  systems,  such 
equivalence does not hold due to lower symmetry.

The symmetry of the Bravais lattice not only defines the geometric arrangement of atoms but also 
determines the selection rules for diffraction. These rules dictate which planes produce reflections 
in the diffraction pattern, as certain combinations of Miller indices (hkl) are allowed or forbidden 

114



based on the lattice type. The selection rules for common Bravais lattices are shown in Table 3 [21]. 
These  selection rules  are  fundamental  for  interpreting  diffraction patterns  and identifying  the 
underlying lattice symmetry. For example, the absence of reflections for specific (hkl) indices can 
help distinguish between simple cubic and body-centered cubic lattices, or between face-centered 
cubic and hexagonal close-packed structures.

Table 3: Selection rules for common crystal structures [21].

Crystal type Selection rule

Primitive Reflection for any h, k , l

Body-centered Reflection only if h+k+l is even

Face-centered Reflection only if h, k , l are all odd or all even

Base-centered Reflection only if h, k , l are all odd or all even

Hexagonal close-packed Reflection if:
• h+2k=3n with l odd, for integer n 
• h+2k=3n with l even, for integer n 
• h+2k=3n±1 with l odd, for integer n 
• h+2k=3n±1 with l even, for integer n 

Diamond Reflection only if  h,  k ,  l are all odd or all even 
and h+k+l≠4 n, for integer n 

By  combining  Bravais  lattices  with  the  concepts  of  unit  cells,  Miller  indices,  and  interplanar 
spacing, a complete framework is established for analyzing diffraction patterns using Bragg’s law. 
The symmetry of the Bravais lattice influences the positions and intensities of diffraction peaks, 
enabling the identification of crystal structures, lattice parameters, and phase compositions.
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Figure 4.5: The 14 Bravais lattices. Figure from [20].
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Lattice defects

While Bravais lattices describe the ideal periodic arrangement of atoms in a crystal, real materials 
often deviate from this perfect order. Inherent limitations of real crystals can affect their diffraction 
patterns,  such  as  finite  crystal  size,  where  sizes  smaller  than  0.5  μm  result  in  broadening  of 
diffraction peaks, and vibrations of atoms around their mean position, which cause detectable 
phase shifts even at very low temperatures  [20]. Additionally, structural irregularities, known as 
lattice imperfections or defects,  play a critical  role in determining the physical  and mechanical 
properties of materials. Lattice imperfections are broadly classified into three main types: point 
defects, line defects, and planar defects. Some common lattice defects are shown in Fig. 4.6.

Figure 4.6: Common lattice defects. (a) Edge dislocation. (b) Stacking fault at the plane denoted by the arrow. (c) Anti-
phase domain boundary. (d) 90° domain wall in a ferroic crystal. Figure from [20].

Point defects occur when the periodic arrangement of atoms is disrupted at a single point in the 
lattice  [20,22]. Vacancies are common point defects, where atoms are missing from lattice sites. 
Interstitial defects, which are the opposite of vacancies, can also occur. In this type of defect, extra 
atoms are embedded in the crystal lattice in positions where atoms would not normally reside, 
introducing local strain. Substitutional defects are another common type of point defect. Even in 
highly pure materials, some impurities (foreign atoms) are present. These foreign atoms replace 
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the original atoms in the crystal lattice and, due to differences in size or oxidation state, may alter 
the structure and electronic properties of the material.

In addition to point defects,  line defects,  or dislocations,  represent another category of lattice 
imperfections  [20,22].  The  two  main  types  of  dislocations  are  edge  dislocations  and  screw 
dislocations. An edge dislocation (Fig.  4.6(a)) occurs when a plane of atoms terminates abruptly 
within  the  crystal  lattice.  This  termination  creates  an  extra  half-plane  of  atoms,  causing  the 
surrounding atomic planes to bend and resulting in a localized distortion of the lattice structure. In 
screw dislocations, the atoms are displaced such that the lattice planes form a helical structure 
around the dislocation line.

Planar defects also occur when the periodicity of the lattice is disrupted across a two-dimensional  
plane [20,22]. Grain boundaries are among the most common planar defects and occur where the 
crystallographic  orientation  of  the  crystal  lattice  changes  abruptly.  These  defects  are  typically 
found in regions where crystals of different orientations meet within a polycrystalline material. 
Another  common  planar  defect  is  the  stacking  fault (Fig.  4.6(b)),  where  the  regular  stacking 
sequence of  atomic layers in a crystal  is  disrupted. In the example of  Fig.  4.6(b),  the stacking 
sequence changes from ACB to CBC at the location indicated by the arrow, before returning to the 
original ABC sequence. In materials with ordered crystal structures, such as ordered alloys, anti-
phase domain boundaries may also occur (Fig.  4.6(c)). These defects form when adjacent planes 
within the crystal have opposite phases, creating a boundary. In the example shown in Fig. 4.6(c), 
the normal sequence of black (B) and white (W) atoms, BWBWBWBWBWBW, is disrupted. The 
sequence changes to BWBWBWWBWBWB, forming a WW region at the boundary highlighted by 
the arrow.

Lattice imperfections influence the diffraction patterns observed in experiments in various ways. 
Dislocations and small (or nano) crystallite sizes introduce strain, resulting in broader diffraction 
peaks.  Vacancies  and  substitutional  defects  alter  lattice  parameters,  causing  shifts  in  peak 
positions,  while  planar  defects,  such as  grain boundaries,  scatter waves incoherently,  reducing 
peak intensities. By analyzing these changes in diffraction patterns, it is possible to quantify defect 
densities, estimate strain, and understand the microstructural features of materials. This ability to 
characterize imperfections complements the analysis of ideal crystal structures, making diffraction 
a powerful tool for both perfect and imperfect lattices.

4.3. Experimental configuration

There are various types of neutron diffractometers, including time-of-flight diffractometers  [23], 
four-circle diffractometers [24], small-angle neutron scattering (SANS) instruments [25], and more. 
However, the two-axis diffractometer remains the most commonly used due to its simplicity and 
versatility in crystallographic studies [26].
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The typical experimental configuration of the two-axis neutron diffractometer G41 at Laboratoire 
Léon Brillouin (LLB), Saclay, France, where we conducted neutron powder diffraction experiments, 
is typical for this kind and is shown in Fig. 4.7 [27]. The neutron beam was produced by a nuclear 
reactor and a single wavelength is selected by a vertical focusing pyrolitic graphite monochromator 
crystal  based  on  Bragg's  law.  The  monochromatic  neutron  beam  was  directed  at  the  sample 
mounted  at  the  center  of  the  instrument  and  is  further  filtered  using  graphite  filters.  The 
powdered sample was placed on a holder to ensure uniform exposure to the neutron beam. The 
scattered neutrons are detected by a movable detector mounted on a goniometer arm, which 
measures the intensity of scattered neutrons at various diffraction angles, referred to as 2θ.

To enhance beam precision, collimators and slits are employed to define the beam profile and 
minimize  background  noise.  The  configuration  can  be  adjusted  based  on  experimental 
requirements,  such  as  the  use  of  cryostats  for  low-temperature  studies  or  furnaces  for  high-
temperature  measurements,  enabling  the  investigation  of  materials  under  a  wide  range  of 
conditions.
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4.4. Advantages and limitations

Neutron powder diffraction presents several advantages which make it a preferable technique over 
other diffraction techniques such as XRD.

• It interacts with the atomic nuclei of the material under study, unlike XRD which interacts 
with  the  electronic  clouds  of  the  atoms,  providing  higher  sensitivity  in  structural 
measurements, thus providing higher resolution diffraction diagrams.

• It is particularly sensitive to light elements such as hydrogen, lithium, carbon, and oxygen, 
making it useful for studying organic materials and materials containing light elements.

• In situ measurements enable the study of materials under high temperatures, pressures, or 
applied fields (magnetic or electric).

• It can distinguish between isotopes of the same element.

Despite its advantages, however, the technique has some important limitations.

• Neutron sources are limited to large-scale facilities such as reactors or spallation sources.

• Neutron beams typically have lower flux compared to X-ray sources, requiring longer data 
collection times.

4.5. Neutron diffraction of bone

Neutron  diffraction  of  bone  does  not  have  specific  "regions"  analogous  to  the  characteristic 
vibrational  modes  in  Raman  spectroscopy.  Instead,  it  focuses  on  crystallographic  information, 
providing insights into the atomic and molecular arrangement, particularly for crystalline phases 
like  hydroxyapatite  (HA).  Neutron  diffraction  studies  often  analyze  the  crystalline  phase  of 
hydroxyapatite in bone, where diffraction peaks correspond to the lattice planes of HA. Changes in 
peak positions or intensities can reveal alterations in crystal structure, size, or strain. The technique 
can also quantify the degree of crystallinity, which, in bone, can reflect pathological states like 
osteoporosis.  Furthermore,  neutron  diffraction  is  sensitive  to  elemental  substitutions  (such  as 
carbonate replacing phosphate or hydroxyl groups in HA) and structural defects, both of which 
significantly impact diffraction patterns and are crucial for understanding bone quality and disease-
related changes.  Additionally,  it  provides  information on the preferred orientation (texture)  of 
hydroxyapatite crystallites, a parameter closely tied to bone's mechanical properties.
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5. Aim of this thesis

The  aim  of  this  thesis  is  to  investigate  the  molecular-level  changes  in  bone  quality  in  an 
inflammation-mediated  osteoporosis  (IMO)  model  in  New  Zealand  white  rabbits.  Raman 
spectroscopy  is  employed  to  detect  chemical  and  structural  alterations  in  the  bone  matrix, 
including variations in crystallinity, mineral-to-matrix ratios, carbonate substitution, and collagen 
quality. Complementing this, neutron powder diffraction examines the crystallographic properties 
of bone mineral, such as lattice parameters and crystallite size. By integrating these techniques, 
this  study  provides  a  comprehensive  characterization  of  the  subtle  changes  associated  with 
osteoporosis, contributing to a deeper understanding of its effects on bone quality. Additionally, 
we conducted a pilot study to discriminate healthy and osteoporotic bone samples using Raman 
spectra collected from the periosteal surface. The study aims to assess the feasibility of a potential 
Spatially-offset  Raman  Spectroscopy  (SORS)  setup  capable  of  discriminating  pathological  from 
healthy  bone.  With  the  ability  of  achieving  sub-epidermal  bone  surface  analysis  by  probing 
superficial scattering volumes, SORS is a promising technique for in vivo applications. Finally, an 
open-source Python package,  PyFasma, is  developed to provide a complete preprocessing and 
Raman analysis solution.
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6. Materials and methods

6.1. Bone samples preparation

For the experimental procedure, excised biopsies were obtained from various skeletal sites of eight 
healthy and two osteoporotic female New Zealand white rabbits, aged 8 months. Inflammation-
mediated  osteoporosis  (IMO)  was  induced to  the  diseased animals  using  a  protocol  that  was 
successfully applied to New Zealand rabbits in previous studies and will be described in section 
6.1.2 [1–3]. The animals were kept and bred in a natural environment and were euthanized using 
light ether anesthesia in a humane manner. All study protocols were approved by the Ioannina 
University Institutional Animal Care and Use Committee (2018)`.

6.1.1. Samples collection

Following euthanasia, the tibias, humeri, femurs, and ribs (Fig.  6.1) were surgically excised with 
sterilized materials to prevent tissue contamination and carefully cleaned to remove the majority 
of soft tissue. Then they were submerged in distilled water for 24 h. After 24 h, the bones were 
further cleaned from leftover tissue residues.

After external cleaning, the epiphyses of the long bones (tibias, humeri, and femurs) and the edges  
of the ribs were trimmed. The bones were subsequently centrifuged at 2500 rpm for 15 minutes to 
extract bone marrow, fat, and residual fluids. To further remove tissue residues and prevent water 
interference  in  subsequent  experiments,  the  bones  were  successively  submerged  in 
ethanol/distilled water solutions with increasing ethanol concentrations:

• 20:80 ethanol/distilled water solution for 30 minutes
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• 50:50 ethanol/distilled water solution for 30 minutes

• 80:20 ethanol/distilled water solution for 30 minutes

Following the final submersion, the bones were centrifuged at 2500 rpm for 2 minutes. Finally, the 
bones were dehydrated by freeze-drying them for approximately 2 h.

After  cleaning  and  superficially  dehydrating  the  excised  bones,  six  transverse  slices,  each 
approximately 2 mm in width, were sectioned from the central, predominantly cortical regions of  
the left diaphyses of the tibias, humeri, and femurs of the healthy animals. For the osteoporotic 
animals, six transverse slices were similarly obtained from both the left and right diaphyses of the 
corresponding bones (tibias, humeri, and femurs). Additionally, six transverse slices of the same 
width were collected from the central region of a rib in both healthy and osteoporotic animals 
(highlighted in Fig. 6.1).

Figure 6.1: Skeletal system of a rabbit. The red ellipses highlight the sites used in our experiments. Figure from [13].

`In total we obtained 192 samples from the healthy animals and 84 samples form the osteoporotic 
animals. The number of samples for each skeletal site is presented analytically in Table 4.
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Table 4: Number of samples obtained from each skeletal site.

Skeletal site No. healthy No. osteoporotic

Left tibia 48 12

Left humerus 48 12

Left femur 48 12

Right tibia - 12

Right humerus - 12

Right femur - 12

Rib 48 12

Total 192 84

6.1.2. Inflammation-mediated osteoporosis protocol

Inflammation-mediated osteoporosis (IMO) was induced in two rabbits by applying the protocol 
described by Armour and Armour  [4]. Despite the fact that this protocol was designed for rats, 
previous  studies  in  our  laboratory  have  demonstrated  its  effectiveness  in  rabbits  [1–3].  The 
method involves the subcutaneous injection of magnesium silicate (Mg₃Si₄O₁₀(OH)₂), also known as 
talc, at various sites on the upper back and sides of the animals. The talc injections trigger an 
acute-phase  response,  leading  to  granulomatous  reactions  and  chronic  inflammation,  and 
ultimately  osteoporosis.  The  bone  loss  occurs  due  to  a  reduction  in  osteoblast  numbers  and 
decreased  bone  formation,  while  osteoclast  numbers  and  resorptive  activity  remain  largely 
unaffected. This mechanism closely mirrors the pathophysiology of human inflammation-mediated 
osteoporosis,  which  is  associated  with  chronic  inflammatory  conditions  such  as  inflammatory 
bowel disease and rheumatoid arthritis [5–7].

The IMO protocol that was followed has a total duration of 21 days and involves the following 
steps:

1. Weighting of the animals.

2. Preparation of the magnesium silicate solution. First, the magnesium silicate was sterilized 
by heating at 160°C for 1 hour.  Then, an 80 mg/mL suspension was prepared in sterile 
saline (0.9% w/v NaCl).

3. Animals  were  anesthetized  using  an  intraperitoneal  injection  of  Vetalar  (ketamine 
hydrochloride, 100 mg/mL) and Rompun (xylazine, 2% solution) at doses of 100 mg/kg and 
20 mg/kg of body weight, respectively. The injection was administered into the lower left 
quadrant of the abdomen.
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4. The prepared magnesium silicate suspension was injected using a 25 G needle at multiple 
sites on the upper back of the animals to deliver a total dose of 1.6 mg/g of body weight. 
Control animals receive the same volume of sterile saline at similar sites.

5. At 21 days after the  magnesium silicate injection,  the animals were euthanized and the 
bones were excised.

The choice of an animal model is critical for the accurate representation of human osteoporosis. 
While the ovariectomized rat is widely used as a model of human osteoporosis, it has significant  
limitations  that  can  affect  its  applicability  depending  on  the  study's  objectives.  One  major 
drawback  is  that  the  rat  skeleton  continues  to  grow  throughout  the  animal's  lifetime,  with 
epiphyseal fusion not occurring during sexual maturation. Consequently, rats used in osteoporosis 
studies often have not achieved full skeletal maturity [3,8]. Moreover, rats lack Haversian systems 
and exhibit minimal to no intracortical remodeling, both of which are key features of human bone 
turnover [3].

In  contrast,  New Zealand rabbits  reach skeletal  maturity  at  32–36 weeks,  exhibit  a  high  bone 
turnover rate, and possess Haversian systems similar to those of humans. Additionally, the long 
bones of aged rabbits demonstrate significant endosteal resorption and periosteal accrual, changes 
analogous to those observed in postmenopausal women  [3]. These characteristics suggest that 
rabbits may be a more suitable model for studying human osteoporosis.

6.2. Experimental measurements

6.2.1. Raman spectroscopy measurements

Raman  measurements  were  performed  using  a  B&WTek  i-Raman  Plus  portable  Raman 
spectrometer equipped with a fiber-optic Raman probe (Fig.  6.2).  The spectrometer utilizes an 
excitation wavelength of 785 nm (NIR) with a maximum power output of 340 mW at the probe. 
The probe has an 8 mm working distance and produces a spot with a radius of approximately 200 
μm on the sample. This wavelength is well-suited for Raman measurements of biological samples, 
as it minimizes autofluorescence compared to visible or UV excitation, albeit at the expense of 
lower scattering intensity. The fiber-optic probe integrates excitation and collection fibers, allowing 
both the excitation and collection of Raman spectra from the same point. The collected Raman 
signal  is  transmitted via  the collection fiber  to the spectrometer's  self-cooled charged-coupled 
device (CCD) detector, maintained at -2°C. The spectrometer covers a spectral range up to 3200 
cm-1 with a nominal resolution of 4.5 cm-1 at 912 nm.
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Figure 6.2: B&WTek i-Raman Plus portable Raman spectrometer. This spectrometer with the fiber probe on the holder  
and the sample on the XYZ stage was used for collecting Raman spectra from the healthy and osteoporotic bone  
samples.

For Raman measurements, the sample was placed on a tray mounted on the XYZ stage. The stage 
knobs were used to precisely position the sample, ensuring that the laser was focused on the  
desired region of interest. To achieve the correct working distance between the probe and the 
sample,  a hollow cap was attached to the end of the probe.  Spectra were acquired using the 
BWSpec  software,  which  enabled  control  of  the  laser  power  output  (0–100%),  spectrum 
acquisition and averaging, automatic dark current subtraction, and basic analysis tools.

Two sets of Raman measurements were performed on slices obtained from the excised bones. In  
the first set, Raman spectra were collected from three distinct points on the transverse surface of 
each slice from the long bones (tibia, humerus, femur), spaced approximately 120º apart. In the 
second set, a single Raman spectrum was collected from the periosteal surface of slices from the 
left-side long bones and ribs. The total number of Raman spectra acquired from each skeletal site 
is summarized in Table 5.
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Table 5: Number of Raman spectra obtained from the transverse and periosteal surfaces of each skeletal site.

Healthy Osteoporotic

Skeletal site No. transverse No. surface No. transverse No. surface

Left tibia 144 48 36 12

Left humerus 144 48 36 12

Left femur 144 48 36 12

Right tibia - - 36 -

Right humerus - - 36 -

Right femur - - 36 -

Rib - 48 - 12

Total 432 192 216 48

Raman spectra were collected using a laser power set to 60% of the maximum power and an 
acquisition  time  of  6  s.  Before  each  measurement,  a  dark  spectrum  was  acquired  and 
automatically subtracted using the BWSpec software. Each Raman spectrum was saved as an SPC 
file  with a  unique filename,  which included details  about  the source animal,  its  health  status 
(healthy or osteoporotic), the skeletal site of the sample, as well as the specific slice and location 
where the spectrum was obtained.

The collected Raman spectra  were then pre-processed and analyzed using PyFasma,  an open-
source  Python  3  package  that  was  developed  as  part  of  the  thesis.  The  package’s  structure,  
functionality, and the procedures for analyzing Raman spectra will be described in Chapter 7.

6.2.2. Neutron powder diffraction measurements

For the neutron powder diffraction experiments, three slices from the left tibia of a healthy rabbit 
and three slices from the left tibia of an osteoporotic rabbit were used. The bone slices were  
grounded to powder using a mortar and pestle, ensuring uniform particle size and proper sample 
preparation for diffraction analysis. To minimize the large incoherent scattering cross-section of 
hydrogen, which exists in collagen, the samples were pre-heated to 350°C. Heat treatment at this 
temperature has no detectable effect on the size, crystallinity, or lattice spacing of the crystals of 
the hydroxyapatite, while it effectively removes most of the organic part in the samples  [9]. The 
ground samples were stored in plastic tubes sealed with parafilm to prevent moisture absorption 
(Fig. 6.3(c)).

Neutron powder diffraction measurements were performed at the G41 two-axis diffractometer at 
the Laboratoire Léon Brillouin (LLB), Saclay, France (Fig. 6.3(a)). G41 is designed for high-resolution 
diffraction studies, enabling the detection of subtle structural changes, and in situ experiments can 
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be conducted under various temperature and pressure conditions, making it versatile for different 
research needs. The typical G41 configuration has been presented in section 4.3.

The incident neutron wavelength used in the experiments was 2.4266 Å. The powdered samples 
were placed inside a vanadium holder (Fig. 6.3(b)). Vanadium’s very low neutron scattering cross-
section ensures minimal interference with the neutron beam, making it an appropriate material for 
sample containment. The diffraction pattern was detected by a linear BF₃ multidetector with 800 
cells covering an 10° to 90° - 2θ range. The configuration was equipped with an aluminum furnace 
that allowed heating the samples up to 1000°C.

Figure 6.3: (a) Neutron powder diffraction chamber of the two-axis diffractometer G41 at LLB. (b) Vanadium sample 
holder. (c) Powdered bone samples.

The measurements performed at the G41 two-axis diffractometer showed the superior resolution 
of the neutron diffraction pattern compared with typical lab X-ray patterns (Fig. 6.4). 
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Figure  6.4:  Comparison  between  neutron  (green)  and  X-ray  (purple  and  brown)  powder  diffraction  data  of  bone  
samples.

In  addition,  we  anticipated  distinct  differences  between  the  patterns  collected  at  increasing 
temperatures as it was evident in Fig. 6.5, due to the evolution of crystallinity. 
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Figure 6.5: The influence of elevated temperatures on the resolution of biological Hap diffraction patterns as  
well as the different peak profiles between normal and osteoporotic patterns.

During the experiment,  we managed to collect  high quality  data of  three bone samples from 
normal and osteoporotic bones under an increasing temperature setup. After a group meeting, 
where the feasibility of our initial plan (increasing gradually the temperature, in situ, from 400°C in 
steps  of  100°C)  was  discussed  thoroughly,  we  decided  to  exclude  the  500°C  step  from  our 
experimental designb. This decision was based on the observation that no significant differences 
were found between the diffraction patterns at 400°C and 500°C. This adjustment allowed us to 
dedicate more time to collecting high-quality data up to 800°C and to focus on the 600°C to 700°C 
range, where significant transformations in HA crystallization occur.
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Our  goal  was  to  carry  out  a  full  Rietveld  refinement  of  the  heat-treated  crystal  structure  of 
biological HA, spotting any differences between healthy and osteoporotic samples, which could 
identify structural changes mostly related to crystallinity (crystal size and strain) and to diverse 
carbonate and phosphate substitutions. These parameters are also known to be interconnected, 
since  literature  data  show  an  inversely  related  linear  relationship  between  carbonation  and 
crystallinity [10].

Neutron diffraction patterns were analyzed using LeBail analysis and Rietveld refinement using the 
GSAS-1  software  [11,12].  LeBail  analysis  extracted  diffraction  intensities  without  adopting  a 
structural  model,  allowing  for  the  refinement  of  lattice  parameters,  and  peak  shapes  as  a 
preparatory  step  for  the  subsequent  structural  analysis.  Rietveld  refinement  fitted  the  entire 
diffraction pattern to a structural model, enabling the determination of atomic positions, thermal 
parameters, and site occupancies.

All  neutron experiments were performed within the 7th Framework Program of the European 
Union: Access Activities of the Integrated Infrastructure Initiative for Neutron Scattering and Muon 
Spectroscopy (NMI3); European Commission, French Atomic Energy Commission (Commissariat à 
l'énergie atomique), CEA-CNRS, Saclay, Paris, France.

6.3. Preprocessing and analysis of Raman spectra

The PyFasma Python package, developed as part of this thesis (details in Chapter 6), was used for  
preprocessing and analyzing Raman spectra. The spectra were collected as SPC files and organized 
in a hierarchical directory structure:

/type/skeletal_site/animal_ID/bone_slice/spectrum.SPC

• type: “transverse” or “surface”

• skeletal_site: “tibia,” “humerus,” “femur,” or “ribs”

• animal_ID: unique identifier for each animal

• bone_slice: bone slice from which spectra were obtained

• spectrum.SPC: unique spectrum file, incorporating identifiers from the directory path.

The spectra were first converted to CSV using PyFasma’s  fileio.spc2csv function. CSV files 
from  each  type  and  skeletal  site  were  then  loaded  as  pandas  DataFrames  with  the 
fileio.load_csvs function, interpolated to a common Raman shift axis, and merged into a 
single CSV file using fileio.merge_CSV.
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The merged spectra were preprocessed through the following steps (details of PyFasma code in 
Chapter 6, Section 6.2.3):

1. Initial crop to the range 100―2400 cm-1. This crop removed the Rayleigh line, the steeply 
increasing spectral region after that, and the high-wavenumber region of the spectra which 
was not used in our analysis. Cropping to this region also improves the application of the 
baseline correction algorithm, as steep changes of the background can cause deviations to 
the background estimation.

2. Removal of both positive and negative spikes which could arise as detector artifacts, cosmic 
rays, etc.

3. Smoothing  using  a  Savitzky-Golay  filter  with  a  17  points  window  and  a  3rd degree 
polynomial to remove noise and improve the signal-to-noise ratio (SNR).

4. Baseline-correction  using  the  SNIP  algorithm  in  a  decreasing  manner  with  a 
max_half_window parameter of 20.

5. Normalization to the intensity of the main phosphate peak at 960 cm-1.

6. Final crop to the fingerprint region (400―1800 cm-1).

Fig.  6.6 illustrates an example of a raw Raman spectrum, alongside its denoised (smoothed and 
despiked) version and baseline estimation.

Figure 6.6: Typical raw Raman spectrum of bone overlayed by the denoised (despiked and smoothed) spectrum. The 
dashed line is the baseline estimation using the SNIP algorithm. The inset shows a more detailed view of the denoised 
spectrum and the baseline estimation in the 990―1230 cm-1 region.
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The resulting preprocessed spectrum is shown in Fig. 6.7.

Figure 6.7: Typical preprocessed Raman spectrum of bone.

Following preprocessing,  multivariate statistical  analyses were performed. Principal  Component 
Analysis (PCA) was applied using PyFasma’s modeling.PCA class to explore data patterns. Partial 
Least Squares Discriminant Analysis  (PLS-DA) was performed via  modeling.PLSDA to develop 
predictive models distinguishing healthy and osteoporotic samples.

To  further  assess  bone  quality,  Raman  bands  from  the  transverse  surface  spectra  were 
deconvoluted into Gaussian components. The number and initial positions of Gaussian peaks were 
based on literature, second-derivative analysis of mean spectra, and spectral region characteristics. 
Bounds  of  ±2  cm⁻¹  were  applied  to  peak  positions  to  allow  small  variations  while  ensuring 
meaningful results. Initial guesses for peak heights and full widths at half maxima (FWHM) were 
determined through trial-and-error and literature references, with bounds selected to maintain 
result  validity.  These  deconvolutions  enabled  the  calculation  of  bone-quality-related  ratios, 
providing additional insights into the molecular composition of healthy and osteoporotic bone.
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7. PyFasma – Software development

7.1. Introduction

Raman  spectroscopy  is  an  analytical  technique  used  to  investigate  molecular  vibrations  and 
chemical compositions in a variety of materials, including biological tissues such as bone. However, 
the complexity of Raman spectra, combined with the challenges of preprocessing and analyzing 
large datasets, necessitates specialized tools tailored to specific research requirements.

Although numerous software tools for preprocessing and analysis exist,  they are either closed-
source  and/or  very  expensive  for  many  researchers,  or  require  high-level  knowledge  of 
programming  [1–6].  Closed-source  software  often  lacks  transparency  in  the  methods  applied, 
making it difficult to validate and reproduce results, which are critical aspects of scientific research. 
Moreover, many existing tools do not include preprocessing functionalities, necessitating the use 
of multiple software solutions for a complete analysis. This fragmented workflow increases the 
complexity of data analysis, introduces interoperability challenges, and risks inconsistencies that 
can complicate the interpretation of results.

In addition, while graphical user interface (GUI) software may seem more accessible to users, it  
often falls  short  when handling  large  datasets  typical  of  Raman experiments.  The  reliance  on 
repetitive actions,  such as clicking through menus, can quickly become tedious and inefficient. 
These  limitations  make  GUI-based  tools  impractical  for  high-throughput  workflows,  where 
automation and reproducibility are essential to avoid errors and ensure consistent results. In this 
context,  there  is  a  consistent  need  for  a  new,  open-source,  user-friendly  but  powerful 
preprocessing tool for Raman spectroscopy. A solution that integrates a command-line interface 
and  a  Jupyter  Notebook  framework  could  significantly  enhance  accessibility  and  usability  by 
allowing users  to customize and automate preprocessing steps within a  standard,  well-known, 
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interactive environment  [7]. Additionally, the integration of a Jupyter Notebook interface would 
make it easier for users to document, share, and reproduce their workflows, enhancing both the 
transparency and reproducibility of Raman spectral analyses.

To  address  these  limitations,  a  dedicated  open-source  Python  package,  named  PyFasma, was 
developed as part of this thesis [8]. The name derives from the Latinized text of the Greek word 
“φάσμα” (fasma), meaning “spectrum.” PyFasma is designed to streamline the preprocessing and 
analysis  of  Raman  spectra  by  providing  robust  and  reproducible  workflows  for  spectral  data 
manipulation. With its modular architecture, the package integrates preprocessing tools, advanced 
analytical methods, and visualization capabilities, enabling users to efficiently derive meaningful 
insights from raw spectral data. Furthermore, all functions, classes, and methods in PyFasma are 
self-documented  using  Python  docstrings,  making  the  package  transparent,  user-friendly,  and 
easier to adopt, even for those with limited programming experience.

While the functions, classes, and methods of PyFasma can be incorporated into Python scripts, the 
package’s true potential is realized when used interactively in a Jupyter Notebook environment. 
This  interactivity  is  particularly  advantageous  for  spectroscopy,  as  it  facilitates  iterative 
adjustments, such as selecting the optimal smoothing window for data through a trial-and-error 
process.  This dynamic approach enables researchers to refine parameters and achieve optimal 
results with minimal effort.

The package has already been successfully applied in a variety of Raman spectroscopy studies. 
These  include  augmenting  Raman  data  using  Generative  Adversarial  Networks  (GANs)  [9], 
exploring the potential of spatially-offset Raman spectroscopy (SORS) for non-melanoma cancer 
diagnosis  [10], and characterizing and differentiating  Candida auris from other  Candida species 
[11].  Although  PyFasma  was  developed  with  Raman  spectroscopy  in  mind,  its  versatility  has 
extended  to  other  spectroscopic  techniques,  as  it  was  successfully  utilized  in  a  study  to 
discriminate the salivary profiles of athletes using ATR-FTIR spectroscopy [12].

7.2. PyFasma package overview

PyFasma is a free and open-source Python package, licensed under the GNU General Public License 
(GPL), that offers a high level programming interface, providing users with all the necessary tools to 
preprocess Raman spectra and deconvolute complex Raman bands, apply Principal Components 
Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) to Raman data, and create 
publication-ready plots. The goal is to assist spectroscopists in exploring and analyzing Raman data 
in a streamlined and intuitive way, without requiring expert knowledge of Python (though such 
knowledge is always beneficial), allowing them to focus more on data interpretation rather than 
programming.

The  package  is  developed  for  Python  3.12  and  later  versions  and  depends  on  several  well-
established  scientific  Python  packages:  LMFIT  [13],  Matplotlib  [14],  NumPy  [15],  pandas  [16], 
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pybaselines  [17],  Seaborn  [18],  SciPy  [19],  scikit-learn  [20],  and Rohan Isaac’s  (rohanisaac)  spc 
module  [21]. PyFasma can be  installed  by  following  the  instructions  provided in  the  project’s 
GitHub repository [22].

The central data structure that PyFasma works with is the pandas DataFrame, which has been 
extended to include additional spectroscopy-specific manipulation capabilities. DataFrames were 
chosen for their versatility and powerful functions for advanced data inspection and manipulation. 
Although pandas DataFrames may lack the speed and memory efficiency of performance-oriented 
structures like NumPy arrays, they excel in exploratory data analysis and interactivity, especially in 
Jupyter Notebooks, where iterative workflows are common.

Figure 7.1: The pandas DataFrame is the central data structure in PyFasma. Two DataFrame formats are utilized: (a) A  
generic format with shape (n_features, n_samples) used in most functions, and (b) a specific format with shape 
(n_samples, n_features) required by the modeling module to ensure compatibility and consistent workflows with 
scikit-learn.  In  the  context  of  Raman spectroscopy, n_features represents  the  Raman shift and  n_samples the 
samples.

PyFasma  consists  of  seven  modules,  namely:  helpers,  fileio,  numpyfuncs,  dffuncs, 
plotting, modeling, and deconvolution. Each of these modules addresses specific aspects of 
Raman spectroscopy workflows, creating a modular and cohesive system designed to meet the 
diverse needs of Raman spectroscopists. A graphical overview of the PyFasma package along with 
brief descriptions of its modules is presented in Fig. 7.2.
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Figure 7.2: Graphical overview of the PyFasma package.

7.2.1. The helpers module

The  helpers module, as its name suggests, contains utility functions designed to support the 
functionality of other modules in PyFasma. While these functions are accessible to end users, they 
are primarily intended for internal use and are not typically required in standard workflows. Since 
the module's role is auxiliary and its functions do not directly contribute to the main workflows or 
analytical processes of PyFasma, a detailed analysis of this module falls outside the scope of this 
thesis.

7.2.2. The fileio module

The fileio module in PyFasma provides functionality for efficiently handling spectroscopy data 
files,  focusing on batch processing and format conversion. Its primary aim is to streamline the 
import, conversion, and merging of spectral data, ensuring compatibility with pandas DataFrames, 
the central data structure used in the package.

The module includes functions for loading (load_csvs) and merging (merge_csvs) multiple CSV 
(comma-separated values) files from a specified directory and its subdirectories. Users can filter 
files  and  directories  to  include  or  exclude  based  on  their  requirements.  The  loaded  files  are 
returned as pandas DataFrames, which can then be seamlessly integrated into PyFasma workflows. 
Additionally,  the module supports  merging multiple DataFrames into a  single DataFrame,  with 
options for data interpolation and customizable column labels.

The fileio module also enables batch conversion of SPC files, a proprietary file format supported 
by Thermo Scientific and widely used for storing spectroscopic data [23], into CSV format using the 
spc2csv function. This format is popular in Raman spectroscopy due to its efficiency in handling 
complex  spectral  data,  making  it  a  standard  in  many  workflows.  The  conversion  functionality 
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preserves directory structures if desired, offering flexibility in organizing and managing converted 
data. Users can preview conversion results before applying changes, minimizing the risk of errors. 
The process is highly customizable, allowing adjustments to delimiters and newline characters in 
the output CSV files.

7.2.3. The numpyfuncs and dffuncs modules

The numpyfuncs and dffuncs modules are designed to work in tandem within PyFasma, forming 
a comprehensive toolkit  for  preprocessing and analyzing Raman spectral  data.  Together,  these 
modules  enable  efficient,  reproducible,  and  flexible  workflows  by  integrating  low-level 
computational  functions with high-level,  DataFrame-based implementations tailored specifically 
for spectroscopy tasks.

The numpyfuncs module provides foundational methods for processing one-dimensional spectral 
data using NumPy arrays, ensuring computational efficiency. While these functions can operate 
independently  on  individual  arrays,  they  primarily  serve  as  the  underlying  framework  for  the 
dffuncs module, which extends their functionality to pandas DataFrames and Series. Advanced 
users can directly utilize these functions to customize or adapt them to specific needs.

The  dffuncs module  introduces  the  .pyfasma accessor,  enabling  users  to  seamlessly  apply 
preprocessing and analytical operations directly to columns of a DataFrame. In this framework, the 
DataFrame  should  have  the  shape  (n_features,  n_samples),  with  the  index  representing 
Raman shifts and the columns containing intensity values for individual samples, as illustrated in 
Fig.  7.1(a).  Using  the  .pyfasma accessor,  PyFasma  methods  follow  the  general  syntax 
df.pyfasma.<method>, where df is the DataFrame containing the spectral data, and <method> 
is the desired PyFasma method.

The  functionalities  provided  by  these  modules  include  preprocessing  and  analysis  methods, 
summarized as follows:

• Despiking  (despike method): Removes  positive,  negative,  or  both  types  of  spikes  in 
spectra using a custom algorithm based on SciPy’s signal.find_peaks function.

• Smoothing (smooth method): Applies filters such as Savitzky-Golay, moving average, and 
Gaussian to reduce noise and improve the signal-to-noise ratio.

• Baseline correction (baseline_correct method): Implements efficient algorithms like 
Improved  Modified  Polynomial  (ImodPoly)  [24],  Statistics-sensitive  Non-linear  Iterative 
Peak-clipping  (SNIP)  [25],  and  Adaptive  Iteratively  Reweighted  Penalized  Least  Squares 
(airPLS), provided by the pybaselines package.

• Normalization  (normalize method): Offers  several  normalization  techniques,  including 
peak intensity normalization, integrated area normalization, L1 and L2 norms (also known 
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as  Manhattan and Euclidean norms,  respectively),  min-max scaling,  and mean absolute 
deviation (MAD).

• Cropping (crop method): Trims spectra to specified Raman shift ranges.

• Interpolation (interpolate method): Aligns spectra to uniform Raman shift grids using 
linear or cubic interpolation.

• Integration (integrate method): Computes the area under the spectral curve for defined 
regions using Simpson’s rule [26].

• Differentiation (differentiate method): Calculates derivatives of arbitrary order, with 
optional smoothing.

These functionalities allow researchers to streamline data preparation and analysis,  supporting 
both exploratory and automated workflows.

Both modules include built-in validation to ensure input data compatibility, such as checking that 
indices are numerical and monotonic, and that all values are numerical and non-null. This reduces 
the potential for errors and enhances reproducibility in Raman spectroscopy workflows.

By  integrating  numpyfuncs and  dffuncs,  PyFasma  ensures  modularity  and  flexibility.  While 
numpyfuncs handles core computational operations efficiently, dffuncs offers an intuitive, high-
level interface tailored for spectroscopy. Together, they provide a robust foundation for processing 
and analyzing Raman spectral data in PyFasma.

An  example  preprocessing  pipeline,  which  is  actually  the  one  used  to  preprocess  the  Raman 
spectra is shown in Fig. 7.3.

Figure 7.3: Pipeline used for preprocessing Raman spectra in a pandas DataFrame (data_df) using PyFasma.
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7.2.4. The modeling module

The modeling module provides two classes for multivariate analysis: one for Principal Component 
Analysis  (PCA)  and  another  for  Partial  Least  Squares  Discriminant  Analysis  (PLS-DA).  The  PCA 
implementation  is  based  on  scikit-learn’s  decomposition.PCA class,  while  the  PLS-DA 
implementation  utilizes  scikit-learn’s  cross_decomposition.PLSRegression class.  To 
maintain consistency with scikit-learn,  the input DataFrames for  these classes must  follow the 
format  shown  in  Fig.  1(b),  where  rows  correspond  to  sample  intensity  values  and  columns 
represent Raman shifts, resulting in a shape of (n_samples, n_features).

Both classes offer flexible sample group assignments through the hue parameter, which accepts a 
list of strings representing sample group labels. This feature allows group definitions to be created 
either manually or dynamically using list comprehensions with conditional statements, as long as 
group identifiers can be derived from the sample names.

The  module  enhances  usability  by  presenting  all  analysis  results  as  pandas  DataFrames  and 
supporting commonly used visualizations, such as scores and loadings plots. These visualizations 
leverage the plotting module, with essential parameters exposed through keyword arguments for 
customization. Moreover, all plots return Matplotlib Figure and Axes objects, enabling users to 
further adjust them using Matplotlib’s object-oriented API.

Principal Component Analysis (PCA)

Principal  Component Analysis  (PCA) is an unsupervised technique widely used in spectral  data 
analysis  for  dimensionality  reduction and other applications.  As an unsupervised method,  PCA 
operates without requiring labeled data, instead focusing on the relationships between variables in 
the  dataset.  Although  often  associated  with  dimensionality  reduction,  PCA  is  also  frequently 
employed for trend identification, visualization of high-dimensional datasets, and filtering noise.

PCA works by calculating the covariance matrix  of  the data to  quantify  relationships  between 
variables  and  projecting  the  dataset  onto  a  new  set  of  orthogonal  axes,  known  as  Principal  
Components (PCs). Each PC maximizes the variance it explains while remaining orthogonal to the 
previous ones. PCs are linear combinations of the original variables, with the coefficients of these 
combinations referred to as loadings. The projections of the original data points onto the PCs are 
called scores. The PCs are ranked by the variance they explain, with the first PC capturing the 
greatest variance, the second capturing the next highest variance, and so on.

In mathematical terms, the original dataset D of shape n×m, where n is the number of samples 
and m is the number of features, is decomposed into matrices S and L such that [27]:

D=S LT (7.1)
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where S is the n×p scores matrix that contains the projections of the samples onto the principal 

components, and  LT  is the  p×m loadings matrix that contains the weights (loadings) for each 
component.

Figure  7.4: (a) PyFasma code required to create a PCA model with 10 components with PyFasma. (b) Summary plot  
containing a scree plot and loadings plots, scores plots (as scatter plots in the lower diagonal and as densities in the  
upper diagonal), and Kernel Density Estimate (KDE) plots (diagonal) for the first three PCs. The ellipses in the scores 
plots are the 95% covariance ellipses.

To perform PCA using PyFasma, users first import the PCA class from the modeling module. The 
class  is  initialized  with  a  pandas  DataFrame  structured  as  shown  in  Fig.  7.2,  and  a  hue list 
containing  class  labels  for  the  samples,  which  are  used  to  color-code  the  visualizations 
appropriately. By default, upon initialization, the class generates a summary plot. This plot includes 
a scree plot, displaying the explained variance and cumulative explained variance as functions of 
the PCs, which helps determine the optimal number of PCs to retain for dimensionality reduction. 
Additionally, it provides loadings plots, scores plots, and Kernel Density Estimate (KDE) plots for the 
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first  three  PCs.  The  initialized  object  provides  access  to  class  methods,  including  scores  and 
loadings DataFrames, visualizations, and more.

The  code  required  to  create  a  PCA  model  for  the  Raman  data  obtained  from  the  transverse 
surfaces of the healthy and osteoporotic tibias is shown in Fig.  7.4(a) and the resulting summary 
plot is shown in Fig. 7.4(b).

Partial Least Squares Discriminant Analysis (PLS-DA)

Partial Least Squares Discriminant Analysis (PLS-DA) is a supervised statistical technique adapted 
from Partial Least Squares Regression (PLSR)  [28,29]. While PLSR is primarily used for predicting 
continuous outcomes, PLS-DA extends this methodology to the classification of categorical data 
represented  numerically.  In  addition  to  classification,  PLS-DA  is  also  used  for  dimensionality 
reduction,  trend identification,  and feature selection in chemometrics  and biomedical  sciences 
[30–33].

PLS-DA  constructs  a  linear  model  that  maximizes  the  covariance  between  the  X  matrix  of 
independent variables (e.g., Raman intensities) and the Y  matrix of dependent variables (e.g., class 
labels). It identifies latent variables (LVs), which are linear combinations of the original variables, 
capturing  significant  variation  and  enabling  class  differentiation.  The  X  and  Y  matrices  are 
decomposed as follows:

X=T PT+E (7.2)

and

Y=UQT+F (7.3)

where T  and U  are the scores matrices, P and Q are the loadings matrices, and E and F  are the 
residual matrices. These scores and loadings provide insights into the contributions of variables 
and samples to the classification process.

Before  applying  PLS-DA,  the  dataset  must  be  split  into  training  and  testing  subsets.  A  70/30 
train/test split is commonly used in Raman spectroscopy datasets. The PLS-DA implementation of  
PyFasma requires the categorical class labels in the Y  matrix to be transformed into a binary (one-
hot encoded) representation to ensure compatibility with the algorithm. PyFasma automates this 
process using scikit-learn’s preprocessing.label_binarize method. For instance, in a binary 
classification problem (e.g., "Healthy" and "Osteoporotic") where the Y matrix contains the classes 
corresponding to samples as strings in a list:
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Y=[Healthy ,Healthy ,Osteoporotic ,Healthy ,Osteoporotic ,…] (7.4)

the classes are encoded internally as:

Y=[
1 0
1 0
0 1
1 0
0 1
⋮ ⋮

] (7.5)

Essential for evaluating the performance of a model and determining its  generalizability is  the 
technique  of  cross-validation  [34].  A  frequently  used  cross-validation  method  is  k-fold  cross-
validation, in which the dataset is divided into  k  equal-sized subsets (folds) (Fig.  7.5). Each fold 
serves as a validation set once, while the remaining k−1 folds are used for training. This process is 
repeated k  times, ensuring that each subset is used for validation exactly once. The performance 
metrics are calculated for each fold and then averaged to provide a robust estimate of the model’s 
performance.  Repeated  k-fold  cross-validation  further  enhances  robustness  by  performing 
multiple  rounds  of  cross-validation  with  different  data  splits.  To  address  class  imbalances  in 
classification tasks, stratified k-fold cross-validation can be used, ensuring that each fold maintains 
the same class distribution as the original dataset. This stratification is crucial when working with 
imbalanced datasets to prevent biased evaluation metrics.
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Figure 7.5: Illustration of k-fold cross-validation. The initial data are split to training and test, and the training data are 
split to k-folds (here 5). Each fold of the train data is used for validating/testing the model while the rest are used for  
training the model k times, each time using a different fold. Figure from [40].

Determining the optimal number of components is critical to avoid overfitting or underfitting the 
model. PyFasma simplifies this process by incorporating repeated stratified k-fold cross-validation. 
When the PLSDA class is initialized with the training (x_train, y_train) and testing (x_test, 
y_test) datasets, cross_val=True, and the number of components (n_components) for cross-
validation,  it  performs  cross-validation  with  the  default  parameters  (repeated  stratified  5-fold 
cross-validation). This process generates an evaluation metrics plot that assists in identifying the 
optimal number of components for the predictive model. The plot includes the following metrics 

accuracy, R2, Q2, and mean squared error (MSE). What these metrics represent and how they are 
calculated are detailed below [32,35]:

• Accuracy: The proportion of correctly classified samples, given by:

Accuracy= TP+TN
TP+TN+FP+FN 

(7.6)

• R2: The proportion of variance in the Y  matrix explained by the model, given by:

R2=1−∑ (Y true−Y pred)
2

∑ (Y true−Ȳ )2 (7.7)
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where Y true are the actual class labels, Y pred are the predicted labels, and Ȳ  is the mean of 

Y true.

• Q2: The predictive power of the model during cross-validation. It is computed similarly to 

R2 but on the test data within each fold:

Q2=1−∑ (Y test−Y test , pred)
2

∑ (Y test−Ȳ test)
2 (7.8)

where Y test are the test labels in each fold.

• MSE: The average squared difference between predicted and actual values, given by:

MSE=1
n
∑ (Y true−Y pred)

2
(7.9)

The  code  for  performing  repeated  stratified  5-fold  cross-validation  with  10  repeats,  used  to 
calculate evaluation metrics for selecting the optimal number of components for PLS-DA applied to 
Raman  spectral  data  from  healthy  and  osteoporotic  tibias  (after  a  70/30  train/test  split),  is 
presented in Fig.  7.6(a). A bend (or “knee”) or peak at a specific number of components is often 
the indication of the optimal number. Fig. 7.6(b) suggests that the optimal number of components 
is 2.
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Figure  7.6:  (a)  PyFasma code  required  to  perform a  epeated stratified 5-fold  cross-validation with  10  repeats  to 
calculate the evaluation metrics for the PLS-DA model. (b) Evaluation metrics plot. The bend for LV2 suggests that the 
optimal number of components for this model should be 2.

Once the optimal number of components is determined through cross-validation, the PLSDA class 
is initialized with the training and testing datasets, setting cross_val=False and specifying the 
optimal  number of  components  using the  n_components parameter.  During initialization,  the 
class computes the PLS model with the specified number of components and provides access to 
tools  for  further  analysis.  Users  can generate various visualizations,  including  X -scores and  Y -
scores plots, a confusion matrix, and performance metrics, to evaluate the model.

The X -scores plot visualizes the distribution of samples in the latent variable space derived from 
the  predictor  variables,  helping  to  assess  the  separation  between  classes  based  on  the 
independent variables. Similarly, the Y -scores plot shows the distribution of samples in the latent 
variable space derived from the response variables, providing insights into how the dependent 
variable drives class differentiation.

The confusion matrix provides a detailed breakdown of the model’s classification performance, 
displaying the number of true positives (TP, correctly predicted samples belonging to the positive 
class),  true negatives (TN , correctly predicted samples not belonging to the positive class),  false 
positives (FP, incorrectly predicted samples as belonging to the positive class), and false negatives 
(FN , incorrectly predicted samples as not belonging to the positive class). For binary classification, 
the confusion matrix is a 2×2 matrix of the form shown in Fig. 7.7:
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Figure 7.7: Generic form of confusion matrix for binary classification. Figure from [41].

Besides accuracy (Eq.  7.6), the following metrics, calculated from these values and provided as a 
DataFrame, are used to assess the model's performance [36]:

• Precision:  The  proportion  of  true  positive  predictions  out  of  all  positive  predictions, 
indicating the model's ability to avoid false positives:

Precision= TP
TP+FP 

(7.10)

• Recall (Sensitivity): The proportion of true positives identified out of all actual positives, 
reflecting the model's ability to detect the target class:

Recall= TP
TP+FN 

(7.11)

• Specificity: The proportion of true negatives out of all actual negatives, representing the 
model's ability to exclude non-target classes:

Specificity= TN
TN+FP (7.12)

• F1 Score: The harmonic mean of precision and recall, balancing the trade-off between the 
two metrics:

F 1 score= 2TP
2TP+FP +FN (7.13)
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The code for applying PLS-DA to Raman spectral  data obtained from healthy and osteoporotic 
tibias after a 70/30 train/test split is shown in Fig.  7.8(a). The visual outputs, including  X -scores 
and Y -scores plots, and a confusion matrix are shown in Fig. 7.8(b–d). These plots reveal the latent 
variable  space,  highlight  class  separation,  and  provide  insights  into  the  model’s  predictive 
capabilities.

Figure 7.8: (a) PyFasma code pipeline required to create: a PLSDA model with two components, an X- and Y-scores plot  
for the training data, and a confusion matrix for the predictive model. (b) X-scores plot for the training data. (c) Y-
scores plot for the training data. (d) Confusion matrix for the evaluation of the predictive model.

7.2.5. The deconvolution module

The deconvolution module in PyFasma is designed for fitting and deconvoluting complex Raman 
spectral  bands  and makes  use  of  the  LMFIT package. It  offers  three  customizable  multi-curve 
models:  Gaussian,  Lorentzian,  and  Voigt,  implemented  as  independent  classes.  These  models 
enable the resolution of overlapping spectral features, critical for detailed Raman spectroscopy 
analysis.

Unlike LMFIT's default implementation, PyFasma uses peak heights (intensities) and Full Widths at 
Half  Maxima  (FWHM) as  fitting  parameters  instead  of  amplitudes  (areas  under  curves)  and 
sigmas/gammas  (peak  widths).  This makes  the  module  more  intuitive  and  aligned  with 
spectroscopic  contexts,  as  peak  heights  and  FWHMs  are  easier  to  estimate  visually  and 
conceptually.  The  input  parameters  for  the  model  are  provided as  a  list  of  dictionaries,  each 
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representing a single curve. These dictionaries specify the initial guesses and optional bounds or 
constraints for the curve parameters. For example, initializing a multi-Gaussian model for fitting 
two overlapping peaks might involve parameter definitions as shown in Fig. 7.9.

Figure 7.9: Example code for creating a model for fitting two Gaussian curves to the data.

PyFasma  implements  three  fitting  models,  a  Gaussian  model,  accessible  through  the 
FitGaussian class,  a Lorentzian model,  accessible through the  FitLorentzian class,  and a 
Voigt model, accessible through the FitVoigt class.

A Gaussian curve is suitable for symmetric peaks and is defined by the equation [37]:

G (x)=A exp(−(x−μ)2

2σ 2 ) (7.14)

with A=Η σ √2π  being the amplitude, H  the height of the curve, σ= FWHM
2√(2 log (2))

 the standard 

deviation of the curve, and μ the center of the curve. 

A Lorentzian curve is common for natural linewidths and is defined by the equation [38]:

L(x)= Α

π γ [1+( x−μ
γ )

2] (7.15)

with A=Η π γ  being the amplitude, H  the height of the curve, γ= FWHM
2

 the half width at half 

maximum (HWHM) of the curve, and μ the center of the curve.

A Voigt curve is given by the convolution of a Gaussian and a Lorentzian function and is suitable for 
asymmetric or mixed peaks. The Voigt curve is represented as [39]:
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V (x)=
ΑRe [w (z)]

σ √2π
(7.16)

with  A= H σ √2π

Re(w ( i γ
σ √2 ))

 being the amplitude,  H  the height  of  the curve,  σ=
FWHMGaussian

2√(2 log(2))
 the 

standard deviation of the Gaussian curve,  γ=
FWHM Lorentzian

2
 the HWHM of the Lorentzian curve, 

z= x−μ+i γ
σ √2

,  μ the center of the curve, and  w (z)=exp(−z2)ercf (−i z) the Faddeeva function (

ercf is the complementary error function).

Fig. 7.10 shows a Gaussian, a Lorentzian, and a Voigt curve of similar parameters:

Figure 7.10: Gaussian, Lorentzian, and Voigt curves of similar parameters.

The  deconvolution  module  generates  composite  models  for  multiple  curves  using  its 
MultiGaussianModel,  MultiLorentzianModel,  and  MultiVoigtModel functions,  which 
dynamically assemble multiple components into a single fitting model. This ensures flexibility in 
fitting datasets with numerous overlapping peaks.

The results from the deconvolution are stored in an accessible and structured format. Parameter 
values and errors are saved as pandas DataFrames, facilitating seamless integration with Python’s  

data analysis  ecosystem. Fit  statistics,  including metrics  like chi-square,  reduced chi-square,  R2 
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values, etc., provide quantitative measures of fit quality. The best-fit curves and their residuals are 
also available for visualization and diagnostic purposes.

PyFasma includes built-in methods for visualizing fit results, such as overlay plots of the original  
data and the fitted curve, individual component curves, and residual plots for assessing model  
performance.  The  plot_fit and  plot_residuals methods provide extensive customization 
options, allowing for the creation of publication-quality figures.
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8. Results and discussion

8.1. Raman measurements (transverse)

8.1.1. Tibia

The mean healthy and osteoporotic preprocessed Raman spectra from the transverse surface of 
the tibias are shown in Fig. 8.1. All Raman bands relevant to bone are observed with the exception 
of phenylalanine (1003 cm-1) which appears as a shoulder in the lower end of the carbonate band 
at the 1000-1130 cm-1 region. The overall appearance of both spectra is similar, with the main 
differences  observed  at  the  v2 and  v4 vibrations  of  phosphate  at  430  cm-1 and  580  cm-1, 
respectively. These variations may suggest alterations in the mineral component of the bone. Small 
differences are also observed in the 1034 cm-1 peak of carbonate and in the amide III region at 
1200-1350 cm-1.
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Figure  8.1: Mean preprocessed healthy and osteoporotic spectra from the transverse surface of the tibias. The 
main Raman bands are annotated. The shaded regions represent the standard deviations.

Multivariate analysis

Principal Components Analysis (PCA)

PCA was performed to explore the inherent variance in the Raman spectra of tibia samples and 
identify clustering patterns between healthy and osteoporotic groups. A summary plot of PCA is 
presented in Fig. 8.2.

The PC1-PC2 scores plots revealed clear separation between healthy and osteoporotic samples 
along PC2, which accounts for 10.35% of the total variance. This separation can be also observed in 
the PC2 KDE plot (diagonal of the scores plots). Combined with PC1, which explains 62.77% of the 
variance, these two components capture 73.11% of the total observed variance. No separation 
between the two classes was observed along PC1, with the corresponding loading indicating nearly 
equal contributions from all  bone Raman bands. This aligns with expectations, as osteoporosis 
primarily  induces  microscopic  and  molecular  alterations  to  bone  quality,  while  the  overall 
composition  remains  largely  similar.  Furthermore,  the  PC1-PC2  scores  plot  shows  that  the 
osteoporotic  samples  are  more  loosely  clustered  compared  to  the  healthy  samples.  This 
observation  suggests  greater  variability  among  osteoporotic  samples,  likely  reflecting  the 
heterogeneity in bone quality alterations associated with osteoporosis.

In the PC2 loading, three prominent peaks were identified: a peak at 430 cm-1, a peak at 592 cm-1, 
and a peak at 965 cm-1, just beyond the primary phosphate peak. The first two peaks correspond to 
the  ν₂ and  ν₄ bending vibrations of phosphate and are consistent with the spectral differences 
observed in the mean spectra (Fig. 8.1). The third peak highlights the need for a closer examination 
of the main phosphate band at 960 cm-1. As shown in Fig. 8.3, the osteoporotic samples exhibit a 
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narrower width of the main phosphate band compared to the healthy samples.  This narrower 
width suggests an increase in mineral crystallinity in osteoporotic samples, consistent with the 
inverse relationship between crystallinity and the FWHM of the main phosphate band [1,2]. The 
remaining bands also contribute to the variance in PC2, albeit to a lesser extent. This indicates that 
the primary factor distinguishing healthy from osteoporotic tibia samples is the alteration in the 
mineral component of the bone.
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Figure 8.2: Summary plot of PCA results for the spectra collected from the transverse surfaces of the tibias.



Figure  8.3:  Mean  spectra  of  tibia  samples  at  the  940-980  cm-1 spectral  region.  A  decreased  width  of  the  main 
phosphate band is observed for osteoporotic samples.

Of particular interest is the behavior of the amide I region (1580-1720 cm-1) in the PC2 loading, 
where the lower half of the band exhibits negative variance, while the higher half shows positive 
variance. A closer examination of this spectral region in the mean spectra (Fig. 8.4), shows a shift 
of the amide I peak from 1672 cm-1  to 1669 cm-1 in osteoporotic samples. Additionally, the lower 
end of the amide I band in osteoporotic samples has higher intensity compared to the healthy 
samples, while the higher end has lower intensity. This peak shift in the amide I band may suggest 
alterations in collagen cross-linking, indicating increased collagen maturity in osteoporotic tibias 
[1].

Figure 8.4: Mean spectra of tibia samples at the 1580-1720 cm -1 spectral region. A shift of the amide I peak from 1672 
cm-1 to 1669 cm-1 is observed for the osteoporotic samples.
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Partial Least Squares Discriminant Analysis (PLS-DA)

In  addition to PCA, we performed PLS-DA to create a a predictive model.  For this  model,  the 
spectra  were  split  in  70/30  train/test  ratio  in  a  stratified  manner  using  scikit-learn’s 
model_selection.train_test_split function. This resulted to 151 spectra (101 healthy and 
50  osteoporotic)  for  training  the  model  and  65  spectra  (43  healthy  and  22  osteoporotic)  for 
assessing the model’s predictive capabilities.

To  determine  the  number  of  components  that  should  be  used  in  the  predictive  model,  we 
performed 5-fold stratified cross-validation with 10 repeats. The resulting evaluation metrics plot is 
shown in Fig.  8.5.  The metrics  indicate that  the optimal number of  components is  2.  For this 
configuration, the model achieves an accuracy of nearly 100% with small MSE. Additionally, the 

values  of  R2 and  Q2,  which  assess  the  goodness  of  fit  and  predictive  power  of  the  model, 
respectively,  are  closely  aligned,  indicating  that  the  model  is  neither  overfit  nor  underfit. 
Furthermore, the small standard deviations observed for 2 components suggest that the model is 
stable and consistent.

Figure 8.5: Cross-validation evaluation metrics of the PLS-DA model of tibias.

Following cross-validation, we created a PLS-DA model with 2 components. The X - and Y -scores of 
the training data for this model are shown in Fig. 8.6 and Fig. 8.7, respectively. Excellent separation 
between the  two classes  (healthy  and osteoporotic)  is  observed.  As  in  PCA,  the  osteoporotic 
samples show higher variation than the healthy samples which clustered together more tightly. 
Additionally, the Y -scores demonstrate clear class separation, further validating the model's ability 
to distinguish between healthy and osteoporotic samples.
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Figure 8.6: X-scores plot for the training data of the PLS-DA model of tibias with 2 components. The ellipses represent  
the 95% confidence ellipses.

Figure 8.7: Y-scores plot for the training data of the PLS-DA model of tibias with 2 components.

Similar to PCA, the coefficients plot (Fig. 8.8) indicates that the primary factor contributing to the 
separation between the classes is the mineral content. This is reflected in the prominence of the ν2 

and ν4 phosphate bands, as well as the narrower width of the main phosphate peak in osteoporotic 
samples.
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Figure 8.8: PLS-DA coefficients plot for the model of tibias.

Finally, the model's performance on the test data was evaluated using a confusion matrix and a  
Receiver  Operating  Characteristic  (ROC)  curve  (Fig.  8.9).  The  confusion  matrix  indicates  no 
misclassified samples, leading to 100% accuracy, sensitivity, specificity, and F1 score, while the ROC 
curve yields an Area Under Curve (AUC) of 1.This performance suggests that the model can reliably 
discriminate and classify samples from the tibias of healthy and osteoporotic rabbits.

Figure 8.9: Confusion matrix (left) and ROC-AUC curve (right) used for the evaluation of the predictive PLS-DA model of 
tibias.

Bone quality assessment

To evaluate how osteoporosis affects bone quality at  the molecular level  compared to healthy 
bone,  the  following  parameters  were  calculated  from  the  spectra:  crystallinity  (a  measure  of 
mineral crystal size and perfection), mineral-to-matrix ratio (MMR; indicating the relative amount 
of mineral to organic matrix), carbonate-to-phosphate ratio (CPR; reflecting carbonate substitution 
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in  the mineral  lattice),  collagen maturity  (assessing cross-linking and age of  collagen),  and the 
hydroxyproline-to-proline ratio (Hyp/Pro ratio; related to collagen stability and turnover).

These parameters were derived by performing peak deconvolution on specific bands in the Raman 
spectra. Crystallinity was calculated from the FWHM of the main phosphate band at 960 cm -1. The 
MMR was determined as the integrated area ratio of the main phosphate band at 960 cm -1 to the 
amide I band at 1660 cm-1. The CPR was calculated as the ratio of the intensity of the carbonate 
band at 1070 cm-1 to the intensity of the main phosphate band. Collagen maturity was assessed 
using the relative intensities of amide I bands at 1660 cm-1 and 1690 cm-1. The Hyp/Pro ratio was 
obtained by the relative intensity ratio of the peaks associated with hydroxyproline and proline in 
the 830–900 cm-1.

The deconvoluted spectral  features provided the data necessary for calculating the parameters 
described above. Below, we present the results for each key spectral region.

Phosphate band (900-990 cm-1) deconvolution

The spectral region from 900 to 990 cm⁻¹ is dominated by the symmetric stretching vibration (ν1) of 
the phosphate group (PO₄³⁻), which is a key feature of the mineral component in bone. This band 
provides insights into the crystallinity and composition of the bone mineral. To analyze this region, 
we applied two fitting approaches: a single Gaussian fit and a four-Gaussian decomposition. The 
single Gaussian fit, commonly used for determining crystallinity, provided the Full Width at Half 
Maximum (FWHM) as a measure of mineral crystallinity [1,2]. In osteoporotic samples, the FWHM 
was narrower compared to healthy samples, indicating increased crystallinity. A representative fit 
is shown in Fig. 8.10.
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Figure 8.10: Fit of the main phosphate band (900–990 cm-1) of tibias using a single Gaussian curve. The FWHM of the 
Gaussian is used to calculate the crystallinity of the samples.

The  four-Gaussian  decomposition  provided  a  more  detailed  analysis  of  the  band’s  structure, 
revealing underlying components that contribute to the overall shape of the main phosphate band. 
To estimate the number of peaks in the band and determine initial guesses for deconvolution, we 
calculated  the  second  derivative  of  the  mean  spectra  in  this  region  (Fig.  8.11).  The  second 
derivative indicated the presence of two prominent features at 917 cm-1 and 960 cm-1. However, 
based on literature references and the observation that using four peaks significantly improved the 
overall fit quality, we employed four Gaussian curves for the deconvolution [3,4].

Figure 8.11: Second derivative of the main phosphate band (900–990 cm-1) of tibias. Two prominent peaks are observed 
and annotated.
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Fig.  8.12 shows  a  representative  deconvoluted  phosphate  band,  highlighting  the  individual 
Gaussian components. The fitted curves were centered approximately at 920 cm-1 (attributed to 
the  v(C-C) vibration of proline), 940 cm-1 (also associated with the  v(C-C) vibration of proline on 
collagen’s  backbone),  948  cm-1 (associated  to  the  v1 vibration  of  phosphate  with  Type  B 
substitutions of carbonate), and 960 cm-1 (belonging to the v1 vibration of phosphate), consistent 
with previously reported bands in the literature for this spectral region [3,5].

Figure 8.12: Deconvolution of the main phosphate band (900–990 cm-1) of tibias with four Gaussian curves.

Amide I band (1580-1720 cm-1) deconvolution

The amide I region (1580–1720 cm-1) is a key spectral feature of bone, primarily associated with 
C=O stretching vibrations of the peptide backbone  [4]. This region is sensitive to changes in the 
organic  matrix,  providing  insights  into  collagen  properties  and  molecular  organization. 
Deconvolution of  the  amide I  band was  performed using  multiple  Gaussian  curves  to  resolve 
overlapping features and quantify contributions within the region. To determine the number of 
peaks and their initial positions, the second derivative of the mean spectra was calculated (Fig. 
8.13). The analysis revealed four prominent features at approximately 1604 cm -1, 1641 cm-1, 1671 
cm-1 and 1694 cm-1. Based on these observations and literature references, we used four Gaussian 
curves for deconvolution.
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Figure 8.13: Second derivative of the amide I band (1580–1720 cm -1) of tibias. Four prominent peaks are observed and 
annotated.

Fig. 8.14 shows a representative deconvoluted amide I region, highlighting the individual Gaussian 
components. The fitted peaks were centered at approximately 1605 cm-1 (representing the δ(C=C) 
vibrations  of  amino  acids  phenylalanine  and  tyrosine),  1640  cm-1 (associated  with  the  v(C-C) 
vibration of the α-helical structure of collagen), 1667 cm -1 (associated with the v(C=O) vibration of 
amide I), and 1688 cm-1 (associated with denatured collagen). These peak positions align well with 
those  reported  in  the  literature  [1,3,4].  Notably,  the  peak  at  1667  cm-1 corresponds  to  the 
commonly  reported  1660  cm-1 peak.  The  slight  deviations  from  the  reported  positions  are 
consistent with observations in other bone studies and are justified by variations in experimental 
conditions, sample preparation, and/or tissue heterogeneity [1].

Figure 8.14: Deconvolution of the amide I band (1580–1720 cm-1) of tibias with four Gaussian curves.
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Carbonate band (990-1140 cm-1) deconvolution

The  spectral  region  from  1000  to  1130  cm-1 is  dominated  by  the  carbonate  band,  primarily 
attributed to the symmetric stretching vibration (ν1) of the carbonate ion (CO₃²⁻) [2]. This band is 
an important indicator of carbonate Type B substitution within the hydroxyapatite lattice, which 
affects bone mineral composition. Deconvolution of the carbonate band was performed to resolve 
the band to its  components.  Initial  guesses for the peak positions were determined using the 
second derivative of the mean spectra (Fig.  8.15). Six prominent peaks are found at 1006 cm-1, 
1027 cm-1, 1045 cm-1, 1073 cm-1, 1106 cm-1, and 1127cm-1. Using these values as starting points, we 
fitted the carbonate band with six Gaussian curves. It must be noted that the 1070 cm -1 (1073 cm-1 

in our case) peak of carbonate is reported to overlap with the 1076 cm -1 peak of phosphate [1,6]. 
That overlapping may affect the intensity and area of the carbonate peak. However, in our spectra 
we were not able to identify any contribution from a band at 1076 cm -1, so we proceeded with the 
six bands identified by the second derivative.

Figure 8.15: Second derivative of the carbonate band (1580–1720 cm-1) of tibias. Six prominent peaks are observed and 
annotated.

Fig.  8.16 shows  a  representative  deconvoluted  carbonate  band,  highlighting  the  individual 
Gaussian components. The fitted peaks  were centered at approximately 1005 cm-1 (belonging to 
the v(C-C) vibration of phenylalanine), 1025 cm-1 (associated with the v3 vibration of phosphate), 
1044 cm-1 (also associated with the  v3 vibration of phosphate),  1074 cm-1 (belonging to the  v1 

vibration of carbonate), 1104 cm-1 and 1127 cm-1 (the last two don’t have a clear association with a 
specific vibration). These peaks are in good agreement with the ones found in literature  [1,3,4]. 
The peak at 1074 cm-1 is the main peak of the carbonate region corresponds to the ν1 carbonate 
band (usually  reported at  1070  cm-1).  This  band is  associated with Type B substitution,  where 
carbonate ions replace phosphate in the hydroxyapatite lattice. 
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Figure 8.16: Deconvolution of the carbonate band (990–1140 cm-1) of tibias with six Gaussian curves.

Proline-Hydroxyproline band (830-900 cm-1) deconvolution

The region 830-900 cm-1 is associated with the vibrations of proline and hydroxyproline, which are 
amino acids of collagen. They can provide information about the composition and turnover of 
collagen. The band was deconvoluted to resolve its  components.  The second derivative of the 
mean spectra indicated two prominent peaks at 853 cm-1 and 882 cm-1 (Fig.  8.17). Based on the 
literature, however, and the wellness of fit on the spectra, we also included peaks at 840 cm-1 and 
890 cm-1 [3].

Figure 8.17: Second derivative of the proline-hydroxyproline band (830–900 cm -1) of tibias. Two prominent peaks are 
observed and annotated.
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A representative deconvoluted proline-hydroxyproline band is shown in Fig. 8.18. The fitted peaks 
were centered at approximately 842 cm-1, 856 cm-1 (associated with proline), 876 cm-1 (associated 
with hydroxyproline), and 888 cm-1. The fitted peaks are in agreement with literature [3,4].

Figure 8.18: Deconvolution of the proline-hydroxyproline band (830–900 cm-1) of tibias with four Gaussian curves.

Bone quality parameters

The deconvoluted Raman bands were used to calculate parameters for  assessing bone quality 
differences between healthy and osteoporotic spectra.  The distribution of each parameter was 
tested for normality using the Shapiro-Wilk test, implemented through SciPy’s  stats.shapiro 
function  [7].  The Shapiro-Wilk test evaluates the null  hypothesis that the data follow a normal 
distribution. A  p-value of less than 0.05 indicates that the null hypothesis is rejected, suggesting 
that  the  data  do  not  follow  a  normal  distribution.  Depending  on  the  normality  test  results, 
statistical comparisons of the bone quality parameters were performed using either a two-sided t-
test, implemented with SciPy’s  stats.ttest_ind function for normally distributed data, or a 
two-sided Mann-Whitney U test, implemented with SciPy’s  stats.mannwhitneyu function for 
non-normally  distributed  data.  The  two-sided  t-test  evaluates  whether  the  means  of  two 
independent groups are significantly different, assuming the data are normally distributed. The 
Mann-Whitney U test, on the other hand, assesses whether there is a significant difference in the 
distributions of two independent groups, making no assumption about normality. A difference is 
considered significant when the p-value is less than 0.05. It should also be noted that during the 
calculation of the bone quality parameters, extreme outliers were identified and excluded from 
further analysis to ensure data reliability and accuracy.
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It should be noted that during the calculation of the bone quality parameters, extreme outliers 
were identified and excluded from further analysis to ensure data reliability and accuracy.

The parameters that were evaluated are:

• Crystallinity, calculated as the inverse of the FWHM of the main phosphate band at 960 
cm-1 fitted with a single Gaussian.

• Mineral-to-matrix ratio (MMR), calculated as the ratio of the integrated area (IA) of the 
phosphate band at 960 cm-1, as obtained by the deconvolution using four Gaussian curves, 
to the integrated area of the of the main amide I band at 1667 cm-1.

• Carbonate-to-phosphate ratio (CPR), calculated as the intensity ratio of the deconvoluted 
carbonate peak at 1074 cm-1 to the main phosphate peak at 960 cm-1 as it was determined 
by four-band deconvolution.

• Collagen maturity, calculated as the ratio of the IA area of the main amide I band at 1667 
cm-1 to the IA of the band at 1688 cm-1.

• Hydroxyproline-to-proline  (Hyp/Pro)  ratio,  calculated  as  the  intensity  ratio  of  the 
hydroxyproline peak at 876 cm-1 to the proline peak at 856 cm-1.

Boxplots of the bone quality parameters are shown in Fig. 8.19.
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Figure 8.19: Bone quality parameters boxplots for the healthy and osteooporotic tibias.

The values of the bone quality parameters are presented in Table 6.
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Table 6: Bone quality parameters for the healthy and osteoporotic tibias.

Parameter
Healthy

(mean ± std)
Osteoporotic
(mean ± std)

Test p-value

Crystallinity
(1/FWHM[960 cm-1])

0.0438 ± 0.0009 0.0445 ± 0.0007 T < 0.001

MMR
(ΙA1667/ΙA960)

5.7 ± 0.8 5.1 ± 0.6 T < 0.001

Collagen maturity
(ΙA1667/ΙA1988)

2.7 ± 0.7 3.7 ± 1 T < 0.001

CPR
(Ι1070/Ι960)

0.159 ± 0.009 0.156 ± 0.011 T NS

Hyp/Pro
(Ι876/Ι856)

1.3 ± 0.2 1.4 ± 0.3 U NS

T: t-test; U: Mann-Whitney U test; NS: not significant

8.1.2. Humerus

The mean healthy and osteoporotic preprocessed Raman spectra from the transverse surface of 
the humeri are shown in Fig. 8.20. All Raman bands relevant to bone are observed. As in the case 
of the tibia, the only exception is the phenylalanine (1003 cm-1) which appears as a shoulder in the 
lower end of the carbonate band at the 1000-1130 cm-1 region. The overall appearance of both 
spectra is similar, with the main differences observed at the v2 and v4 vibrations of phosphate at 
430  cm-1 and  580  cm-1,  respectively.  These  variations  may  suggest  alterations  in  the  mineral 
component of the bone.
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Figure  8.20: Mean preprocessed healthy and osteoporotic spectra from the transverse surface of the humeri. The 
main Raman bands are annotated. The shaded regions represent the standard deviations.

Multivariate analysis

Principal Components Analysis (PCA)

We employed PCA with the purpose of uncovering insights and clustering patterns in the Raman 
spectra of the healthy and osteoporotic samples obtained from the humeri of the rabbits. The 
summary plot of PCA is shown in Fig. 8.21.

As shown, the two classes are separated along PC3, which accounts for 6.97% of the total variance.  
However, this separation is partial, with some overlap observed between the two classes. This 
contrasts  with  the case of  tibias,  where  the  classes  are  completely  separated along PC2.  The 
separation along PC2 in the tibias suggests that the spectral differences driving class separation are 
more pronounced in the tibial spectra compared to those of the humeri. In the PCA of humeri PC1 
accounts for 63.81% and PC2 for 7.94%, with the total variance explained by the first three PCs 
being 78.73%.

In  the  PC3  loading,  the  peaks  with  the  highest  intensity  are  observed at  430  cm -1, 592  cm-1, 
corresponding to the  ν₂ and  ν₄ bending vibrations of phosphate, the same as in the case of the 
tibias. Similarly to the case of the tibias, a third, positive prominent peak at 965 cm-1 also occurs, 
which corresponds to narrower main phosphate band at 960 cm-1 for the osteoporotic samples, 
indicating  increased  crystallinity  (Fig.  8.22).  All  other  bands  in  the  PC3  loading  show  smaller 
contributions to the variance. Equal contributions from all bands are observed in the PC1 loading.
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Figure 8.22: Mean spectra of humerus samples at the 940-980 cm-1 spectral region. A decreased width of the main 
phosphate band is observed for osteoporotic samples.

The amide I region (1580-1720 cm-1) in the PC3 loading does not display the same behavior as in 
the tibia, where the first half was negative and the second half was positive. However, the first half 
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Figure 8.21: Summary plot of PCA results for the spectra collected from the transverse surfaces of the humeri.



of the amide I  region does display decreased intensity.  Furthermore,  as  shown in Fig.  8.23,  a 
smaller  shift  in  the  amide  I  peak  is  observed  for  the  humeri  (from  1672  cm -1 to  1671  cm-1) 
compared to the tibias (from 1672 cm-1 to 1669 cm-1). This suggests that alterations in the cross-
linking of collagen are less pronounced in the osteoporotic humeri.

Figure 8.23: Mean spectra of humerus samples at the 1580-1720 cm -1 spectral region. A small shift of the amide I peak 
from 1672 cm-1 to 1671 cm-1 is observed for the osteoporotic samples.

Partial Least Squares Discriminant Analysis (PLS-DA)

In addition to PCA, PLS-DA was employed to create a predictive model. The spectra were split in 
70/30  train/test  ratio  in  a  stratified  manner  using  scikit-learn’s 
model_selection.train_test_split function. This resulted to 151 spectra (101 healthy and 
50  osteoporotic)  for  training  the  model  and  65  spectra  (43  healthy  and  22  osteoporotic)  for 
assessing the model’s predictive capabilities.

The optimal number of components was determined using 5-fold stratified cross-validation with 10 
repeats. The relevant evaluation metrics plot is shown in Fig. 8.24. From this plot we determined 
that  the  optimal  number  of  components  is  2,  since  this  number  yields  maximum  accuracy, 

minimum MSE, and similar values of R2 and Q2, with small standard deviation for all metrics. These 
metrics suggest that the 2 components model is well-fit and stable.
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Figure 8.24: Cross-validation evaluation metrics of the PLS-DA model of humeri.

Subsequently, we created the PLS-DA model with 2 components, with the X - and Y -scores of the 
training data shown in Fig.  8.25 and Fig.  8.26, respectively. As in the PCA, separation between 
healthy and osteoporotic samples exists in the  X -scores plot, however some overlap is present. 
The Y -scores are well-separated.

Figure  8.25:  X-scores  plot  for  the  training  data  of  the  PLS-DA model  of  humeri  with  2  components.  The  ellipses 
represent the 95% confidence ellipses.
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Figure 8.26: Y-scores plot for the training data of the PLS-DA model of humeri with 2 components.

The coefficients plot (Fig. 8.27) is similar to the case of PCA and to the case of the tibias, indicating 
that the phosphate-related bands (ν2 and ν4 phosphate bands and the narrower main phosphate 
band in osteoporotic samples) are the primary contributors to the discrimination of the classes.

Figure 8.27: PLS-DA coefficients plot for the model of humeri.

The model’s prediction capability was assessed using the confusion matrix and ROC curve (Fig. 
8.28). The confusion matrix indicates that two osteoporotic samples were misclassified as healthy. 
This corresponds to an accuracy of 96.9%, a sensitivity of 95.5%, a specificity of 100%, and an F1 
score of 97.7%. The AUC for this model is 0.99. While these results demonstrate that the PLS-DA 
model for the humeri performs very well in distinguishing healthy from osteoporotic samples, its  
performance is slightly lower than that of the tibial model.
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Figure 8.28: Confusion matrix (left) and ROC-AUC curve (right) used for the evaluation of the predictive PLS-DA model of  
humeri.

Bone quality assessment

The same parameters used to assess bone quality differences between healthy and osteoporotic 
tibias were also calculated for the humeri. Before calculating the bone quality parameters, band 
deconvolution  was  performed  to  extract  the  relevant  spectral  information  required  for  the 
analysis.

Phosphate band (900-990 cm-1) deconvolution

The phosphate band at 900-990 cm-1 was fitted with a single Gaussian and multiple Gaussians. The 
single-Gaussian fit is shown in Fig.  8.29. The FWHM was found decreased for the osteoporotic 
samples compared to the healthy.
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Figure 8.29: Fit of the main phosphate band (900–990 cm -1) of humeri using a single Gaussian curve. The FWHM of the 
Gaussian is used to calculate the crystallinity of the samples.

The same band was also fitted with multiple Gaussians. The second derivative of the mean spectra 
was used to estimate the number of peaks contained in the band and to get estimates for the 
initial  guesses of  the deconvolution parameters  (Fig.  8.30).  The situation remained unchanged 
compared to the tibias, with two prominent features at 917 cm-1 and 960 cm-1. Again, based on 
literature  references  and  the  observation  that  the  use  of  four  peaks  presented  significantly 
improvement to the overall fit quality, we employed four Gaussian curves for the deconvolution.

Figure  8.30:  Second derivative of  the  main  phosphate  band (900–990 cm -1)  of  humeri.  Two prominent  peaks  are 
observed and annotated.
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A representative deconvoluted phosphate band is shown in Fig. 8.31. The bands are the same as in 
the case of the tibias, at 920 cm-1,  941 cm-1, at 948 cm-1, and 960 cm-1,  and are consistent with 
bands reported in the literature for this spectral region [3,4].

Figure 8.31: Deconvolution of the main phosphate band (900–990 cm-1) of humeri with four Gaussian curves.

Amide I band (1580-1720 cm-1) deconvolution

Similarly to the tibias, for deconvoluting the amide I band in the 1580-1720 cm -1 region we resorted 
to second derivative analysis. The second derivative of the mean spectra (Fig.  8.32) showed four 
prominent peaks at 1604 cm-1, 1641 cm-1, 1672 cm-1, and 1694 cm-1. These peaks were used as 
guidance for the initial guesses for the deconvolution of the region using four Gaussians.
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Figure 8.32: Second derivative of the amide I band (1580–1720 cm-1) of humeri. Four prominent peaks are observed and 
annotated.

A  representative  deconvoluted  amide  I  region  is  shown  in  Fig.  8.33.  The  deconvoluted  peak 
positions are essentially the same as in the case of the tibias, at 1605 cm-1, 1641 cm-1, 1667 cm-1, 
and 1688 cm-1, consistent with peaks in this region reported by other studies [1,3,4].

Figure 8.33: Deconvolution of the amide I band (1580-1720 cm-1) of humeri with four Gaussian curves.

Carbonate band (990-1140 cm-1) deconvolution

As  with  the  tibias,  the  second  derivative  of  the  mean  spectra  of  humeri  was  used  for  the 
deconvolution of the carbonate band in the 990-1140 cm-1  region.  The second derivative of the 

184



mean spectra (Fig.  8.34) showed six prominent peaks at 1006 cm-1, 1027 cm-1, 1045 cm-1, 1073 
cm-1, 1106 cm-1, and 1127cm-1. Using these peaks as guidance for the initial guesses, we performed 
deconvolution of this region with six Gaussians.

Figure 8.34: Second derivative of the carbonate band (990-1140 cm-1) of humeri. Six prominent peaks are observed and 
annotated.

A  representative  deconvoluted  amide  I  region  is  shown  in  Fig.  8.35.  The  deconvoluted  peak 
positions are the same as in the case of the tibias, at 1005 cm -1, 1025 cm-1, 1044 cm-1, 1074 cm-1, 
1104 cm-1, and 1127cm-1, consistent with the literature [1,3,4].

Figure 8.35: Deconvolution of the carbonate band (990-1140 cm-1) of humeri with six Gaussian curves.
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Proline-Hydroxyproline band (830-900 cm-1) deconvolution

The second derivative of the mean spectra of the proline and hydroxyproline region (830-900 cm -1) 
indicated two prominent peaks at 853 cm-1 and 882 cm-1 (Fig. 8.36). As we did for the tibias, based 
on the literature and the wellness of fit on the spectra, we also included peaks at 840 cm -1 and 890 
cm-1 [3].

Figure 8.36: Second derivative of the proline-hydroxyproline band (830–900 cm -1) of humeri. Two prominent peaks are 
observed and annotated.

A representative deconvoluted proline-hydroxyproline band is shown in Fig. 8.37. The fitted peaks 
were centered at approximately 842 cm-1, 857 cm-1, 878 cm-1, and 890 cm-1, all in agreement with 
literature [3,4].
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Figure 8.37: Deconvolution of the proline-hydroxyproline band (830–900 cm-1) of humeri with four Gaussian curves.

Bone quality parameters

The bands obtained through deconvolution were used, as with the tibias, to calculate the following 
bone quality parameters: crystallinity, MMR, CPR, collagen maturity, and the Hyp/Pro ratio. The 
Shapiro-Wilk test was employed to assess the normality of the data. Depending on the results,  
either a two-sided t-test (for data satisfying the normality condition) or a Mann-Whitney U test (for 
data not satisfying the normality condition) was used to statistically evaluate differences in the 
means of these parameters between healthy and osteoporotic humeri.  Extreme outliers,  when 
identified, were excluded from further analysis to maintain data reliability and accuracy.

Boxplots of the bone quality parameters are shown in Fig. 8.38.
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Figure 8.38: Bone quality parameters boxplots for the healthy and osteooporotic humeri.

The values of the bone quality parameters are presented in Table 7.
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Table 7: Bone quality parameters for the healthy and osteoporotic humeri.

Parameter
Healthy

(mean ± std)
Osteoporotic
(mean ± std)

Test p-value

Crystallinity
(1/FWHM[960 cm-1])

0.0436 ± 0.0009 0.0442 ± 0.0007 T < 0.001

MMR
(ΙA1667/ΙA960)

5.7 ± 0.8 5.5 ± 0.7 T NS

Collagen maturity
(ΙA1667/ΙA1988)

2.9 ± 0.7 3.3 ± 1.1 U < 0.01

CPR
(Ι1070/Ι960)

0.157 ± 0.008 0.160 ± 0.012 T < 0.01

Hyp/Pro
(Ι876/Ι856)

1.3 ± 0.2 1.4 ± 0.3 U NS

T: t-test; U: Mann-Whitney U test; NS: not significant

8.1.3. Femur

The mean healthy and osteoporotic preprocessed Raman spectra from the transverse surface of 
the femurs are shown in Fig. 8.39. All Raman bands relevant to bone are observed. As in the case 
of the tibia and humerus, the only exception is the phenylalanine (1003 cm-1) which appears as a 
shoulder  in  the  lower  end  of  the  carbonate  band  at  the  1000-1130  cm-1 region.  The  overall 
appearance  of  both  spectra  is  similar,  with  the  main  differences  observed  at  the  v2 and  v4 

vibrations of phosphate at 430 cm-1 and 580 cm-1, respectively, although these differences are less 
prominent than the ones observed in the mean spectra of tibia and humerus. Additionally, the top 
of  the  healthy  spectra  in  the  proline-hydroxyproline  region  (830-900  cm -1)  appears  flatter 
compared of the mean healthy spectra of tibia and humerus at the same region (Fig. 8.40).
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Figure  8.39: Mean preprocessed healthy and osteoporotic spectra from the transverse surface of the femurs. The 
main Raman bands are annotated. The shaded regions represent the standard deviations.

Figure  8.40: Mean spectra of roline-hydroxyproline regions of (a) tibias, (b) humeri, and (c) femurs. The healthy  
mean spectra for the femurs are flatter compared to the others.
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Multivariate analysis

Principal Components Analysis (PCA)

We employed PCA with the purpose of uncovering insights and clustering patterns in the Raman 
spectra of the healthy and osteoporotic samples obtained from the femurs of the rabbits. The 
summary plot of PCA is shown in Fig. 8.41.

Partial separation of the two classes is observed in the PC1-PC3 and PC2-PC3 scores plots, with the  
separation occurring primarily along PC3 and secondarily along PC2, as also evident in the KDE 
plots (diagonal of scores plots) of PC2 and PC3. PC2 accounts for 5.68% of the total variance and 
PC3  for  5.30%,  and  together  with  PC1  explain  81.02%  of  the  observed  variance.  Since  the 
separation occurs at higher principal components compared to the PCA of tibias and humeri, this 
suggests that the effects of osteoporosis in the femurs are less pronounced.

In the PC3 loading, where most of the separation occurs, the peaks with the highest intensity are 
observed at 430 cm-1, 592 cm-1, corresponding to the ν₂ and ν₄ bending vibrations of phosphate, 
the same as in the cases of the tibias and humeri. Unlike these cases, however, the peak at 965 
cm-1, that appears due to the narrowing (increased crystallinity) of the main phosphate peak in 
osteoporosis,  is  less  intense,  suggesting a  narrower  phosphate peak compared to  the healthy 
samples, but overall wider compared to the phosphate peaks observed in osteoporotic tibias and 
femurs (Fig. 8.42). All other bands in the PC3 loading show smaller contributions to the variance. 
Equal contributions from all bands are observed in the PC1 loading, while the most intense peak in 
the PC2 loading corresponds to hydroxyproline.
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Figure  8.42: Mean spectra of  femur samples at the 940-980 cm -1 spectral  region. A decreased width of the main 
phosphate band is observed for osteoporotic samples, although the healthy and osteoporotic bands appear closer  
together compared to the cases for the tibia and the humerus.
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Figure 8.41: Summary plot of PCA results for the spectra collected from the transverse surfaces of the femurs.



The amide I region (1580-1720 cm-1) in the PC3 loading does not display the same behavior as in 
the tibia, where the first half was negative and the second half was positive. However, the first half 
of the amide I region does display decreased intensity, similar to the humerus. Furthermore, as 
shown in Fig. 8.43, a shift in the amide I peak is observed for the femurs (from 1672 cm -1 to 1670 
cm-1) which is larger than in the case of the humerus (from 1672 cm -1 to 1671 cm-1). This suggests 
alterations  in  the  cross-linking  of  collagen  during  osteoporosis.  These  alterationss  are  more 
pronounced in the osteoporotic femurs compared to the humeri.

Figure 8.43: Mean spectra of femur samples at the 1580-1720 cm-1 spectral region. A shift of the amide I peak from 
1672 cm-1 to 1670 cm-1 is observed for the osteoporotic samples.

Partial Least Squares Discriminant Analysis (PLS-DA)

In addition to PCA, PLS-DA was employed to create a predictive model. The spectra were split in 
70/30  train/test  ratio  in  a  stratified  manner  using  scikit-learn’s 
model_selection.train_test_split function. This resulted to 151 spectra (101 healthy and 
50  osteoporotic)  for  training  the  model  and  65  spectra  (43  healthy  and  22  osteoporotic)  for 
assessing the model’s predictive capabilities.

The optimal number of components was determined using 5-fold stratified cross-validation with 10 
repeats. The relevant evaluation metrics plot is shown in Fig. 8.44. From this plot we determined 
that the optimal number of components is 2, since this number yields high accuracy, minimum 

MSE, and similarly high values of  R2 and Q2, with small standard deviation for all metrics. These 
metrics suggest that the 2 components model is well-fit and stable.
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Figure 8.44: Cross-validation evaluation metrics of the PLS-DA model of femurs.

Subsequently, we created the PLS-DA model with 2 components, with the X - and Y -scores of the 
training data shown in Fig. 8.45 and Fig. 8.46, respectively. Good separation is observed between 
healthy  and  osteoporotic  samples  in  the  X -scores  plot,  with  some overlap  of  the  confidence 
ellipses. The Y -scores are well-separated.

Figure 8.45: X-scores plot for the training data of the PLS-DA model of femurs with 2 components. The ellipses represent  
the 95% confidence ellipses.
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Figure 8.46: Y-scores plot for the training data of the PLS-DA model of femurs with 2 components.

The coefficients plot (Fig.  8.47) is similar to the case of PCA and to the case of the tibias and 
jumeri, indicating that the phosphate-related bands (ν2 and ν4 phosphate bands and the narrower 
main phosphate band in osteoporotic samples) are the primary contributors to the discrimination 
of the classes. An additional negative peak corresponding to hydroxyproline is also evident.

Figure 8.47: PLS-DA coefficients plot for the model of femurs.

The model’s prediction capability was assessed using the confusion matrix and ROC curve (Fig. 
8.48). The confusion matrix indicates that one osteoporotic sample was misclassified as healthy. 
This corresponds to an accuracy of 98.4%, a sensitivity of 97.7%, a specificity of 100%, and an F1 
score of 98.8%. The AUC for this model is 1. While these results demonstrate that the PLS-DA 
model for the femurs performs very well in distinguishing healthy from osteoporotic samples, its 
performance is slightly lower than that of the tibial model.
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Figure 8.48: Confusion matrix (left) and ROC-AUC curve (right) used for the evaluation of the predictive PLS-DA model of  
femurs.

Bone quality assessment

The same parameters used to assess bone quality differences between healthy and osteoporotic 
tibias  and  humeri  were  also  calculated  for  the  femurs.  Before  calculating  the  bone  quality 
parameters,  band  deconvolution  was  performed  to  extract  the  relevant  spectral  information 
required for the analysis.

Phosphate band (900-990 cm-1) deconvolution

The phosphate band at 900-990 cm-1 was fitted with a single Gaussian and multiple Gaussians. The 
single-Gaussian fit is shown in Fig.  8.49. The FWHM was found decreased for the osteoporotic 
samples compared to the healthy.
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Figure 8.49: Fit of the main phosphate band (900–990 cm-1) of femurs using a single Gaussian curve. The FWHM of the 
Gaussian is used to calculate the crystallinity of the samples.

The same band was also fitted with multiple Gaussians. The second derivative of the mean spectra 
was used to estimate the number of peaks contained in the band and to get estimates for the 
initial  guesses of  the deconvolution parameters  (Fig.  8.50).  The situation remained unchanged 
compared to the tibias and humeri, with two prominent features at 917 cm -1 and 960 cm-1. Again, 
based  on  literature  references  and  the  observation  that  the  use  of  four  peaks  presented 
significantly  improvement to the overall  fit  quality,  we employed four Gaussian curves for  the 
deconvolution.

Figure  8.50:  Second  derivative  of  the  main  phosphate  band  (900–990 cm -1)  of  femurs.  Two prominent  peaks  are 
observed and annotated.
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A representative deconvoluted phosphate band is shown in Fig. 8.51. The bands are the same as in 
the case of  the tibias  and humeri,  at  920 cm-1,  941 cm-1,  at  948 cm-1,  and 960 cm-1,  and are 
consistent with bands reported in the literature for this spectral region [3,4].

Figure 8.51: Deconvolution of the main phosphate band (900–990 cm-1) of femurs with four Gaussian curves.

Amide I band (1580-1720 cm-1) deconvolution

Similarly to the tibias and humeri, for deconvoluting the amide I band in the 1580-1720 cm -1 region 
we employed second derivative analysis. The second derivative of the mean spectra (Fig.  8.52) 
showed four prominent peaks at 1604 cm-1, 1641 cm-1, 1672 cm-1, and 1694 cm-1. These peaks were 
used as guidance for the initial guesses for the deconvolution of the region using four Gaussians.
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Figure 8.52: Second derivative of the amide I band (1580–1720 cm -1) of femurs. Four prominent peaks are observed and 
annotated.

A  representative  deconvoluted  amide  I  region  is  shown  in  Fig.  8.53.  The  deconvoluted  peak 
positions are essentially the same as in the case of the tibias and humeri, at 1605 cm-1, 1641 cm-1, 
1667 cm-1, and 1688 cm-1, consistent with peaks in this region reported by other studies [1,3,4].

Figure 8.53: Deconvolution of the amide I band (1580-1720 cm-1) of femurs with four Gaussian curves.

Carbonate band (990-1140 cm-1) deconvolution

As with the tibias and humeri, the second derivative of the mean spectra of femurs was used for 
the deconvolution of the carbonate band in the 990-1140 cm-1 region. The second derivative of the 
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mean spectra (Fig.  8.54) showed six prominent peaks at 1006 cm-1, 1027 cm-1, 1045 cm-1, 1073 
cm-1, 1106 cm-1, and 1127cm-1. Using these peaks as guidance for the initial guesses, we performed 
deconvolution of this region with six Gaussians.

Figure 8.54: Second derivative of the carbonate band (990-1140 cm-1) of femurs. Six prominent peaks are observed and 
annotated.

A  representative  deconvoluted  amide  I  region  is  shown  in  Fig.  8.55.  The  deconvoluted  peak 
positions are the same as in the case of the tibias and humeri, at 1005 cm-1, 1025 cm-1, 1044 cm-1, 
1074 cm-1, 1104 cm-1, and 1127cm-1, consistent with the literature [1,3,4].

Figure 8.55: Deconvolution of the carbonate band (990-1140 cm-1) of femurs with six Gaussian curves.
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Proline-Hydroxyproline band (830-900 cm-1) deconvolution

The second derivative of the mean spectra of the proline and hydroxyproline region (830-900 cm -1) 
indicated two prominent peaks at 853 cm-1 and 882 cm-1 (Fig.  8.56). As we did for the tibias and 
humeri, based on the literature and the wellness of fit on the spectra, we also included peaks at 
840 cm-1 and 890 cm-1 [3].

Figure 8.56: Second derivative of the proline-hydroxyproline band (830–900 cm -1) of femurs. Two prominent peaks are 
observed and annotated.

A representative deconvoluted proline-hydroxyproline band is shown in Fig. 8.57. The fitted peaks 
were centered at approximately 842 cm-1, 857 cm-1, 877 cm-1, and 890 cm-1, all in agreement with 
literature [3,4].
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Figure 8.57: Deconvolution of the proline-hydroxyproline band (830–900 cm-1) of femurs with four Gaussian curves.

Bone quality parameters

The  bands  obtained  through  deconvolution  were  used,  similarly  to  the  tibias  and  humeri,  to 
calculate the following bone quality parameters: crystallinity, MMR, CPR, collagen maturity, and 
the  Hyp/Pro  ratio.  The  Shapiro-Wilk  test  was  employed  to  assess  the  normality  of  the  data.  
Depending on the results, either a two-sided t-test (for data satisfying the normality condition) or a 
Mann-Whitney U test (for data not satisfying the normality condition) was used to statistically 
evaluate differences in the means of these parameters between healthy and osteoporotic humeri. 
Extreme outliers, when identified, were excluded from further analysis to maintain data reliability 
and accuracy.

Boxplots of the bone quality parameters are shown in Fig. 8.58.
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Figure 8.58: Bone quality parameters boxplots for the healthy and osteooporotic femurs.

The values of the bone quality parameters are presented in Table 8.
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Table 8: Bone quality parameters for the healthy and osteoporotic femurs.

Parameter
Healthy

(mean ± std)
Osteoporotic
(mean ± std)

Test p-value

Crystallinity
(1/FWHM[960 cm-1])

0.0438 ± 0.0009 0.0440 ± 0.0009 M < 0.05

MMR
(ΙA1667/ΙA960)

5.9 ± 1.0 5.5 ± 1.1 M < 0.05

Collagen maturity
(ΙA1667/ΙA1988)

2.3 ± 0.5 2.7 ± 1.3 M < 0.05

CPR
(Ι1070/Ι960)

0.157 ± 0.010 0.160 ± 0.012 U NS

Hyp/Pro
(Ι876/Ι856)

1.2 ± 0.2 1.3 ± 0.3 T < 0.001

T: t-test; U: Mann-Whitney U test; NS: not significant

8.1.4. Discussion

The molecular changes in bone quality parameters across the tibias, humerus, and femurs provide 
a  comprehensive  view  of  the  effects  of  osteoporosis  on  bone  composition  and  structure,  as  
revealed through Raman spectroscopy. The analysis of crystallinity, mineral-to-matrix ratio (MMR), 
collagen  maturity,  carbonate-to-phosphate  ratio  (CPR),  and  the  hydroxyproline-to-proline  ratio 
(Hyp/Pro) reveals site-specific trends and significant alterations in both the mineral and collagen 
matrix.

Crystallinity, an important indicator of mineral organization and size, exhibited significant increases 
in all three skeletal sites. In the tibias, the difference in crystallinity was highly significant (t-test, p < 
0.001),  reflecting  the  growth  of  larger,  more  ordered  hydroxyapatite  crystals  due  to  reduced 
remodeling turnover. Similar trends were observed in the humerus and femurs, with significant 
increases (p < 0.001 and  p < 0.05, respectively), suggesting consistent remodeling dysregulation 
across  skeletal  sites.  These  findings  align  with  those  of  Paschalis  et  al.  [8],  who  used  FTIR 
spectroscopy to demonstrate increased mineral crystal size and perfection in osteoporotic bone, 
attributed  to  prolonged  crystal  maturation  caused  by  reduced  remodeling  turnover.  Similarly, 
Ruppel et al. confirmed that osteoporotic bone exhibits larger and more ordered hydroxyapatite 
crystals,  which,  while  structurally  stable,  compromise  mechanical  properties  by  increasing 
brittleness and reducing energy dissipation [9].
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The MMR, reflecting the balance between the inorganic and organic components of bone, showed 
significant reductions in the tibias (t-test, p < 0.001) and femurs (Mann-Whitney U test, p < 0.05) 
but no significant difference in the humerus (p = NS). These findings suggest impaired mineral 
deposition and increased resorption in osteoporotic bone at weight-bearing sites, consistent with 
other studies of animal models [3,10,11]. In contrast, the lack of significant change in the humerus 
may  reflect  regional  variability  in  mineralization,  potentially  influenced  by  differences  in 
biomechanical loading or remodeling dynamics.

Collagen  maturity,  indicative  of  cross-linking  profiles,  exhibited  significant  increases  across  all 
skeletal sites, with the tibias showing the most pronounced change (t-test, p < 0.001), followed by 
the humeri (Mann-Whitney U test, p < 0.01) and femurs (Mann-Whitney U test, p < 0.05). These 
findings  are  consistent  with  reports  by  Orkoula  et.  al,  who  observed  altered  Raman  spectral 
signatures  associated  with  increased  non-enzymatic  cross-links  in  osteoporotic  bone  [3].  The 
accumulation  of  advanced  glycation  end-products  (AGEs)  in  collagen  reduces  its  toughness, 
contributing to fragility across skeletal sites. This regional consistency underscores the systemic 
nature of collagen alterations in osteoporosis.

The  CPR,  which  indicates  the  extent  of  carbonate  substitution  in  hydroxyapatite,  showed  no 
significant  differences  in  the tibias  and femurs  (p =  NS)  but  was significantly  increased in  the 
osteoporotic  humerus  (Mann-Whitney  U  test,  p <  0.01).  The  increased  CPR  in  the  humerus 
suggests a greater degree of carbonate incorporation into the hydroxyapatite lattice, which can 
weaken the mineral's structural stability and stiffness. This regional variability may be attributed to 
differences in local remodeling dynamics and metabolic activity.

The Hyp/Pro ratio, reflecting collagen hydroxylation levels, showed mixed results. No significant 
differences were observed in the tibias and humeri, suggesting stable hydroxylation levels in these 
regions. However, a significant increase was detected in the femurs (t-test,  p < 0.001), indicating 
localized changes in collagen post-translational modifications.

Overall,  the findings highlight both systemic and site-specific alterations in bone quality due to 
osteoporosis. Increased crystallinity and altered collagen crosslinking are consistent features across 
all skeletal sites, underscoring their pivotal role in reducing bone’s mechanical competence. Site-
specific differences in MMR, CPR, and Hyp/Pro further emphasize the complexity of osteoporotic 
changes  and their  dependence on local  remodeling  dynamics  and mechanical  loading.  Raman 
spectroscopy has proven capable of capturing these changes in the IMO model of New Zealand 
rabbits, offering a detailed and non-destructive means of studying the molecular basis of bone 
fragility.

8.2. Prospects for Spatially-offset Raman Spectroscopy (SORS)

The Raman spectra that were collected from the periosteal surface of the tibia, humerus, femur, 
and ribs were used for a pilot study to assess the feasibility of using the inflammation-mediated 
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osteoporosis (IMO) model in rabbits to investigate osteoporosis-induced changes with SORS. SORS 
is a Raman technique that allows the extraction of Raman signal from deeper layers within a tissue 
by varying the offset between the point of excitation and the point of signal collection [12]. The 
study  aimed to  determine whether  osteoporotic  samples  could  be distinguished from healthy 
samples based on Raman measurements from the periosteal surface. Given our lab's development 
of  a  custom  SORS  configuration  [13],  this  work  represents  a  step  toward  applying  SORS  to 
differentiate healthy and osteoporotic ex-vivo bone samples. The ultimate goal is to translate this 
technique into clinical practice for in-vivo assessment of osteoporosis in humans by capturing sub-
epidermal Raman spectra of bone.

The mean preprocessed healthy and osteoporotic spectra collected from the periosteal surfaces of 
tibias, humeri, femurs, and ribs are shown in Fig. 8.59. All characteristic spectral features of bone 
are  present,  with  the  exception,  as  in  the  case  of  the  transverse  measurements,  of  the 
phenylalanine peak at 1003 cm∼ -1, which appears as a shoulder on the lower end of the carbonate 
band. The healthy and osteoporotic spectra from tibias, humeri, and femurs appear largely similar, 
with only small differences in corresponding band intensities. However, the spectra from the ribs 
show larger differences in corresponding bands,  with osteoporotic bands being much lower in 
intensity compared tho the healthy. Additionally, larger standard deviations are observed for the 
ribs, highlighting greater variability for this skeletal site.
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Figure  8.59:  Mean preprocessed healthy and osteoporotic spectra from the surfaces of  (a)  tibias,  (b)  humeri,  (c)  
femurs, (d) ribs. The shaded regions represent the standard deviations of the means.

PCA was used for all skeletal sites to uncover any clustering patterns that could indicate separation 
between the two classes, thus supporting the feasibility of future SORS experiments. Summary 
plots of the PCAs of all skeletal sites are shown in the following series of figures (Fig. 8.60-8.63).
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Figure 8.60: Summary plot of PCA results for the spectra collected from the periosteal surface of the tibias.

Figure 8.61: Summary plot of PCA results for the spectra collected from the periosteal surface of the humeri.
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Figure 8.62: Summary plot of PCA results for the spectra collected from the periosteal surface of the femurs.

Figure 8.63: Summary plot of PCA results for the spectra collected from the periosteal surface of the ribs.
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In the PCA of the tibias, separation can be observed in the PC2-PC3 scores plot, primarily along the 
PC3 axis, with PC2 explaining 8.03% of the variance and PC3 explaining 3.47% of the variance.  
Along with PC1, these three PCs explain 85.15% of the total variance. Similarly, in the humerus 
case, there is separation between the two classes in PC2-PC3, with the separation mainly occurring 
along PC3. PC1, PC2, and PC3 account for 63.86%, 11.09%, and 4.09% of the variance, and together 
explain 79.03% of the observed variance. The PCA of the femurs also shows class separation in the 
PC1-PC3 plot,  primarily  along PC3.  PC1 accounts  for  71.74% of  the variance of  the data,  PC3 
accounts for 3.79% of the variance, and, adding PC2 (7.32%), the first three PCs explain 82.85% of 
the variance. No separation is observed for the case of ribs. Excluding the ribs, the loadings of all 
other skeletal sites present similarities with the spectra obtained from the transverse surfaces of 
the corresponding sites, with prominent features related to the mineral content.

These findings demonstrate that the IMO model in New Zealand rabbits induces alterations in both 
cortical  bone  and  the  periosteal  surface  of  long  bones  (tibia,  humerus,  femur),  which  are 
detectable using Raman spectroscopy. This pilot study highlights the potential of the IMO model as 
a controlled osteoporosis model suitable for investigation with SORS.

8.3. Neutron diffraction

Lab X-ray diffraction patterns of  biological  apatite suffer from decreased resolution due to the 
largely amorphous part of HA. Furthermore, the scattering power is dependent of 2-theta, making 
Bragg peaks indistinguishable at higher degrees. It is evident that no successful Rietveld analysis 
can be performed with data similar to that from the representative patterns shown in Fig.  8.64, 
where a pattern from a healthy bone sample (blue) is compared to a pattern from an osteoporotic 
one (red). Small differences, mainly localized at the FWHM peak values, were associated with the 
crystal size under the same instrumental configuration.
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Figure 8.64: Typical X-ray diffraction spectra of mildly heat-treated (150°C) healthy (blue) and osteoporotic (red) bones 
(bones were heated for water removal).

On the  other  hand,  the  large  incoherent  scattering  cross-section of  hydrogen,  which exists  in 
collagen, is an obstacle for neutron diffraction studies. This problem, however, can be minimized 
by heating the samples up to 350oC. Heat treatment at this temperature has no detectable effect 
on the size, crystallinity,  or lattice spacing of the crystals of the Ha, while at the same time it 
effectively removes most of the organic part [14]. 

Scanning  Electron  Microscopy  (SEM)  coupled  with  Energy  Dispersive  X-ray  (EDX)  analysis  was 
conducted to evaluate the elemental composition ratios of the heated samples, confirming notable 
variations in these ratios. (Fig. 8.65). Specifically, the SEM/EDX results revealed a Ca/P ratio of 1.53 
in normal bone samples, compared to 1.32 in osteoporotic bone samples (Table 9).
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Figure 8.65: (a) Left: SEM image of the transverse surface of healthy bone. Right: EDX spectrum corresponding to the 
highlighted region of the SEM image. (b) Left: SEM image of the transverse surface of osteoporotic bone. Right: EDX  
spectrum corresponding to the highlighted region of the SEM image.

Table 9: Elemental analysis of healthy and osteoporotic bone samples.

 Healthy Osteoporotic
Element Weight% Atomic% Compd% Formula Weight% Atomic% Compd% Formula
C K 6.57 11.34 24.07 CO₂ 9.94 15.97 36.41 CO₂
Na K 0.72 0.65 0.97 Na₂O 0.76 0.64 1.02 Na₂O
P K 14.79 9.90 33.90 P₂O₅ 13.38 8.34 30.65 P₂O₅
Ca K 29.35 15.18 41.06 CaO 22.82 10.99 31.92 CaO
O 48.57 62.93 53.11 64.08
Totals 100.00 100.00

After  heating  the  samples  to  700°C,  the  resolution  of  the  X-ray  diffraction  pattern  increased 
significantly (Fig. 8.66), permitting us to continue with the analysis using high-temperature data.
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Figure 8.66: X-ray diffraction patterns of healthy (blue) and osteoporotic (red) samples at 700°C.

We performed LeBail and Rietveld refinements on the neutron diffraction patterns to investigate 
potential differences in the structural organization of HA between normal and osteoporotic bones. 
Additionally, we evaluated variations in the role of the CO₃²⁻ anion based on its structural position. 
We note the importance of studying biological apatites in contrast to synthetic ones, due to the 
ongoing controversy surrounding the exact configuration of carbonate substitution in the lattice of 
B-type  carbonate  HA  [15].  This  issue  remains  unresolved,  as  current  models  for  carbonate 
substitution are derived indirectly from fitting powder diffraction patterns obtained from a limited 
number of synthetic specimens, which do not offer a fully convincing crystallographic model. 

We tested two models, by Ivanova et al.  [16] and Wilson et al.  [17], which explore the structural 
models of carbonated HA with a focus on carbonate substitution at different phosphate sites using 
neutron diffraction. Both studies used the Rietveld method, to investigate the structural impacts of 
carbonate  inclusion  and the  resulting  charge  compensation mechanisms.  Despite  their  shared 
focus on Type B carbonated HA, there are notable similarities and differences in their approaches 
and findings. Both papers emphasize the replacement of PO₄³⁻ ions by CO₃²⁻ ions in the lattice and 
investigate the resulting structural adjustments. They discuss the mechanisms compensating for 
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the  charge  imbalance  caused  by  this  substitution,  with  both  studies  highlighting  the  role  of 
vacancies,  particularly in calcium and hydroxyl  sites.  Additionally,  they report lattice parameter 
modifications due to carbonate substitution, including a reduction in the α  parameter. 

However, the proposed structural models differ significantly. Ivanova et al. propose a model that 
emphasizes  disorder  in  the  O3  site,  splitting  its  occupancy  into  O3p  and  O3c  positions.  They 
identify carbonate ions as occupying sloping faces of the PO4 tetrahedra.

Figure 8.67: A PO₄³⁻tetrahedron with CO₃²⁻ triangles on its faces. The C-O and O-O distances are indicated (in Å). Figure 
from [16].

In contrast, Wilson et al. test multiple structural models, including the "Face," "Mirror Plane," and 
"Side" models,  ultimately refining a model in which  CO₃²⁻ ions are disordered between mirror 
symmetry-related faces of vacant PO₄³⁻ sites. Their model positions the CO₃²⁻ ions at an angle of 
approximately 30° to the c-axis.
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Figure 8.68: Schematic diagrams of the models tested by Wilson et al. The “Face” model (a) was proposed as the one 
that  agrees  more with  chemical  analyses.  In  this  model,  the  CO3²⁻  ions  are  disordered between the two-mirror  
symmetry-related  faces  of  a  vacant  PO4³⁻  site.  The  normal  to  the  plane  of  the  CO3²⁻  ion  was  oriented  at  
approximately 30° to the c-axis, a result consistent with previous polarized IR measurements on francolite and human  
dental enamel. Figure from [17].

Representative  neutron  diffraction  data  for  healthy  and  osteoporotic  samples  heated  at  four 
different  temperatures  (400,  600,  700,  and  800°C)  are  shown  below  (Fig.  8.69-8.72 and  Fig. 
8.73-8.76 for the healthy and osteoporotic samples, respectively). The LeBail fit is presented and 
demonstrates a strong correlation with the data. 
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Figure 8.69: Representative Rietveld fit of the neutron diffraction data (red crosshairs) obtained from healthy samples 
at 400°C.

Figure 8.70: Representative Rietveld fit of the neutron diffraction data (red crosshairs) obtained from healthy samples  
at 600°C.
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Figure 8.71: Representative Rietveld fit of the neutron diffraction data (red crosshairs) obtained from healthy samples at  
700°C.

Figure 8.72: Representative Rietveld fit of the neutron diffraction data (red crosshairs) obtained from healthy samples 
at 800°C.

217



Figure  8.73: Representative Rietveld fit of the neutron diffraction data (red crosshairs) obtained from osteoporotic  
samples at 400°C.

Figure  8.74: Representative Rietveld fit of the neutron diffraction data (red crosshairs) obtained from osteoporotic 
samples at 600°C.
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Figure  8.75: Representative Rietveld fit of the neutron diffraction data (red crosshairs) obtained from osteoporotic  
samples at 700°C.

Figure  8.76: Representative Rietveld fit of the neutron diffraction data (red crosshairs) obtained from osteoporotic  
samples at 800°C.
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During the Rietveld refinement, a spurious Bragg peak was evident in both types of samples at 60° 
2θ, attributed to the evolution of CaO at high temperatures and fitted as an additional structural 
phase.

Figure 8.77: Normalized crystallinity as measured by 2θ vs FWHM for all samples across all temperatures.

To assess the crystallinity, we evaluated the expression FWHM×cos(θ)/ λ, which is often used as a 

measure of the broadening of diffraction peaks. Here, FWHM quantifies the width of a diffraction 
peak, with broader peaks indicating smaller crystallite sizes and/or higher lattice strain, both of 
which  correspond  to  lower  crystallinity.  The  inclusion  of  cos(θ) accounts  for  the  angular 

dependence of the diffraction peaks, ensuring consistency across peaks at different angles. The λ 
(wavelength) term normalizes the calculation, making it independent of the radiation source used, 
whether X-rays or neutrons. Hence, the above expression provides a normalized measure of peak 
broadening, which is inversely proportional to crystallite size and directly related to lattice strain. 
As  a  result,  lower  values  of  FWHM×cos(θ)/ λ generally  indicate  sharper  peaks  and  higher 

crystallinity, while higher values suggest greater disorder, smaller crystallites, or strain within the 
material. 

Fig. 8.77 shows the relationship between FWHM×cos(θ)/ λ (a measure related to diffraction peak 

broadening) and temperature for different Bragg peaks of HA in both normal and osteoporotic 
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samples. As temperature increases, the FWHM decreases for both the (111) and (002) reflections, 
indicating an improvement in crystallinity with thermal treatment. The linear trends fitted to the 
data, particularly for the (002) peak, show a strong correlation, with R² = 0.92 for the (002) peak 
and R² = 0.79 for the (111) peak. Thus, crystallinity improves consistently with heating, especially 
along the  c-axis (002 reflection). At lower temperatures (400–600°C), the osteoporotic samples 
exhibit narrower peaks (lower FWHM values) compared to the healthy samples suggesting higher 
initial crystallinity in the osteoporotic samples. The difference is mostly noticeable in the low-angle 
(002) peak, which is more responsive to thermal treatment. As the temperature increases, both 
sample types undergo significant structural improvements, and by 800°C, the differences between 
healthy and osteoporotic samples diminish, reflecting similar levels of crystallinity. The (002) peak 
shows a more pronounced reduction in FWHM with temperature compared to the (111) peak, 
indicating that the structural order along the  c-axis is more sensitive to thermal treatment than 
other lattice directions [18]. This trend highlights the strong influence of temperature in reducing 
defects,  relieving  lattice strain,  and promoting grain  growth,  particularly  along the  c-axis.  Our 
results suggest that osteoporotic HA initially possesses higher crystallinity, but thermal treatment 
effectively enhances the structural quality of both healthy and osteoporotic samples, eventually 
resulting in comparable crystallinity at higher temperatures.

Through Rietveld refinement, we confirmed that the Wilson model is more plausible compared to 
the one proposed by Ivanova. Table  10 presents the unit cell parameters for all samples across 
various temperatures and Table 11 presents the differences of the Ca/P ratio, and a and c unit cell 
parameters between healthy and osteoporotic samples.

Table 10: Stoichiometric and unit cell parameters for healthy and osteoporotic samples across measured temperatures.

Type Temperature (°C) Ca P Ca/P C (CO₃²⁻) a (Å) c (Å)

Healthy
 
 
 

400 9.21 5.25 1.75 0.43 9.494 6.937

600 9.86 5.72 1.72 0.14 9.514 6.955

700 8.99 4.64 1.93 9.529 6.965

800 8.78 4.55 1.92 9.539 6.980

Osteoporotic 
 
 
 

400 8.72 5.48 1.59 0.24 9.484 6.929

600 9.34 5.65 1.65 0.11 9.510 6.951

700 9.43 4.95 1.90 9.517 6.965

800 8.89 4.63 1.91 9.530 6.976

221



Table  11: Differences of the Ca/P ratio, and a and c unit cell parameters between healthy and osteoporotic samples 
across measured temperatures.

Temperature (°C) Diff. Ca/P Diff. a (Å) Diff. c (Å)

400 0.16 0.010 0.008

600 0.07 0.004 0.004

700 0.03 0.012 0.000

800 0.01 0.009 0.004

The tables provide a comparative analysis of elemental composition, carbonate content, and unit 
cell parameters between healthy and osteoporotic HA samples across temperatures from 400°C to 
800°C.  The  Ca/P  ratio  increases  with  temperature  in  both  sample  types,  reflecting  structural 
adjustments likely caused by carbonate decomposition. At lower temperatures, healthy samples 
exhibit a higher Ca/P ratio (e.g., 1.75 at 400°C compared to 1.59 in osteoporotic samples), larger 
unit  cell  dimensions  (a and  c),  and  higher  carbonate  content,  indicative  of  greater  structural 
integrity.  These  differences  diminish  at  higher  temperatures,  as  thermal  treatment  improves 
crystallinity and reduces structural defects in both samples, equalizing their properties by 800°C. 
Literature highlights that osteoporotic bone generally has a lower degree of mineralization, smaller  
crystallites,  and  higher  carbonate  substitution  than  healthy  bone,  contributing  to  its  reduced 
mechanical strength [19,20]. This aligns with the table’s observation of lower initial Ca/P ratios and 
smaller unit cell dimensions in osteoporotic HA. Additionally, the reduction in carbonate content 
with increasing temperature in  both sample types is  consistent with the thermal  instability  of 
carbonate ions in HA. As the temperature increases, the carbonate content in HA is expected to 
diminish due to the thermal instability of carbonate ions within the structure. This occurs through 
thermal decomposition where carbonate ions break down and release carbon dioxide (CO₂). In 
Type B carbonated HA, where CO₃²⁻ replaces PO₄³⁻, the carbonate ions are more stable compared 
to  Type  A  (where  CO₃²⁻  replaces  OH⁻),  but  decomposition  still  occurs  around  600–800°C 
depending  on  the  sample's  composition  and  crystallinity.  Additionally,  the  removal  of  CO₃²⁻ 
impacts the lattice parameters, often resulting in a contraction as the carbonate ions are replaced 
by the smaller PO₄³⁻ groups or vacancies. 

Healthy and osteoporotic HA samples are expected to exhibit  distinct differences in carbonate 
content  and  thermal  behavior  due  to  variations  in  crystallinity  and  structural  properties. 
Osteoporotic samples, with higher crystallinity, generally have lower initial carbonate content as 
highly crystalline HA incorporates less carbonate, whereas healthy samples may contain higher 
carbonate levels due to their lower crystallinity. The carbonate ions in osteoporotic samples are 
likely  more tightly  integrated into the lattice,  making them slightly  more thermally  stable  and 
resistant to decomposition at lower temperatures, while healthy samples may lose carbonate ions 
more rapidly upon heating, due to their less ordered structure. Phase transformations (like the 
presence of CaO) in osteoporotic samples are expected to occur more uniformly and at higher  
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temperatures, reflecting their greater structural order, whereas healthy samples may show more 
irregular transformations at lower temperatures due to higher lattice disorder. This is evident in 
Fig.  8.69-8.76 where the purple line denotes the goodness of fit. Consistently, healthy samples 
have  lower  quality  fitting  metrics  than  osteoporotic  ones.  Additionally,  as  CO₃²⁻  diminishes, 
osteoporotic samples are likely to exhibit predictable lattice parameter changes, consistent with 
stoichiometric trends, while healthy samples may show more significant and irregular fluctuations 
due to structural heterogeneity.
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9. Conclusions

This  thesis  has  explored  the  molecular  and  structural  changes  in  bone  under  healthy  and 
osteoporotic  conditions  using  advanced  spectroscopic  and  diffraction  techniques.  Raman 
spectroscopy  and  neutron  powder  diffraction  provided  complementary  insights  into  bone 
composition and crystallographic structure, enabling a deeper understanding of bone quality and 
its response to pathological conditions. By combining these approaches, the study contributes to a 
more comprehensive characterization of bone’s molecular and structural properties.

Raman  spectroscopy  revealed  significant  variations  in  bone  quality  parameters  across  skeletal 
sites,  including  the  tibia,  humerus,  and  femur.  Parameters  such  as  mineral-to-matrix  ratios, 
collagen  maturity,  and  crystallinity  were  quantified  through  spectral  deconvolutions  and  band 
fitting methods. Multivariate analyses, including Principal Components Analysis (PCA) and Partial 
Least Squares Discriminant Analysis (PLS-DA), demonstrated the ability of Raman spectroscopy to 
effectively  differentiate  between  healthy  and  osteoporotic  bone.  These  findings  highlight  the 
diagnostic potential of Raman spectroscopy for assessing bone quality and detecting pathological 
changes.

Neutron powder diffraction provided insights into the crystallographic properties of bone mineral, 
particularly hydroxyapatite. The analysis confirmed that inflammation-induced osteoporosis results 
in  measurable  changes  to  mineral  crystallinity  and  lattice parameters,  reflecting  alterations  in 
bone’s  structural  integrity.  This  technique  offered  a  detailed  perspective  on  how  the 
crystallographic structure of bone is impacted under pathological conditions, complementing the 
molecular-level insights obtained through Raman spectroscopy.

Finally, this thesis contributed to methodological advancements by developing a Python package 
for preprocessing and analyzing Raman spectra. The software provides tools for standardized and 
customizable analyses, improving reproducibility and efficiency in spectroscopic research. These 
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developments not only supported the analyses in this study but also offer a framework for future 
investigations of bone and other complex biomaterials.
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Περίληψη

Η οστεοπόρωση,  μια  μεταβολική  διαταραχή των  οστών που χαρακτηρίζεται  από ελαττωμένη 
οστική  μάζα  και  εξασθενημένη  μικροαρχιτεκονική,  αποτελεί  σημαντική  πρόκληση  λόγω  της 
συσχέτισής της με αυξημένο κίνδυνο καταγμάτων. Η παρούσα διατριβή ερευνά τις μοριακές και 
δομικές  αλλαγές  που  σχετίζονται  με  την  οστεοπόρωση  χρησιμοποιώντας  μια  διεπιστημονική 
προσέγγιση, συνδυάζοντας τη φασματοσκοπία Raman, την περίθλαση νετρονίων σε σκόνη, και 
ένα  μοντέλο  οστεοπόρωσης  που  προκαλείται  από  φλεγμονή.  Συνολικά  οι  μέθοδοι  αυτές 
παρέχουν πληροφορίες σχετικά με τη σύνθεση και τις κρυσταλλογραφικές ιδιότητες του οστού, 
επιτρέποντας μια ολοκληρωμένη αξιολόγηση της οστικής ποιότητας.

Αναλύθηκαν  δείγματα  οστών  που  ελήφθησαν  από  διαφορετικές  περιοχές  (κνήμη,  βραχίονα, 
μηρό, και πλευρό) υγιών ζώων και ζώων στα οποία προκλήθηκε οστεοπόρωση μέσω φλεγμονής. 
Η  φασματοσκοπία  Raman  χρησιμοποιήθηκε  για  τη  διερεύνηση  φασματικών  περιοχών  που 
σχετίζονται με την οστική ποιότητα, όπως οι περιοχές των φωσφορικών και ανθρακικών ιόντων, 
του  αμιδίου  Ι,  και  περιοχές  που  σχετίζονται  με  το  κολλαγόνο,  χρησιμοποιώντας  προηγμένες 
τεχνικές προεπεξεργασίας και υπολογιστικά εργαλεία. Εξειδικευμένο λογισμικό που αναπτύχθηκε 
για  την  παρούσα διατριβή  διευκόλυνε  την  εφαρμογή  μεθόδων πολυπαραμετρικής  ανάλυσης, 
συμπεριλαμβανομένων της ανάλυσης κυρίων συνιστωσών (Principal Component Analysis; PCA), 
της  ανάλυσης  διάκρισης  μερικών  ελαχίστων  τετραγώνων  (Partial  Least  Squares  Discriminant 
Analysis;  PLS-DA),  καθώς  και  την  αποσυνέλιξη  κορυφών.  Πραγματοποιήθηκε  ποσοτικός 
προσδιορισμός  των  παραμέτρων  της  οστικής  ποιότητας,  συμπεριλαμβανομένων  της 
κρυσταλλικότητας  του  υδροξυαπατίτη,  του  λόγου  του  ανόργανου μέρους  του  οστού  προς  το 
οργανικό,  η  ωριμότητα  του  κολλαγόνου,  και  η  ανθρακική  υποκατάσταση,  με  σκοπό  τον 
προσδιορισμό συστημικών αλλαγών και αλλαγών που οφείλονται στη θέση του οστού.

Η περίθλαση νετρονίων σε σκόνη παρείχε λεπτομερείς πληροφορίες για την κρυσταλλογραφική 
δομή του ανόργανου τμήματος του οστού. Η τεχνική αυτή προσέφερε πολύτιμες πληροφορίες για 
την ατομική διάταξη και τη σύνθεση των φάσεων του υδροξυαπατίτη, ενισχύοντας την κατανόηση 
των δομικών μεταβολών που σχετίζονται με την οστεοπόρωση.

Τα  αποτελέσματα  κατέδειξαν  σημαντικές  διαφοροποιήσεις  στη  μοριακή  σύνθεση  και  τις 
κρυσταλλογραφικές ιδιότητες σε όλες τις σκελετικές περιοχές, υπογραμμίζοντας τον αντίκτυπο 
της  οστεοπόρωσης που προκαλείται  από φλεγμονή.  Με τον συνδυασμό της  φασματοσκοπίας 
Raman, της περίθλασης νετρονίων και του μοντέλου προκλητής οστεοπόρωσης μέσω φλεγμονής, 
η  εργασία  αυτή  δημιουργεί  ένα  αναλυτικό  πλαίσιο  για  τη  μελέτη  της  υγείας  του  σκελετού. 
Επιπλέον,  το  εξειδικευμένο  λογισμικό  που  αναπτύχθηκε  στο  πλαίσιο  αυτής  της  έρευνας 
συμβάλλει στην ακρίβεια και την αναπαραγωγιμότητα αναλύσεων φασματοσκοπίας Raman και 
παρέχει ένα ακόμη εργαλείο για φασματοσκοπικές αναλύσεις στην επιστημονική κοινότητα.
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Abstract

Osteoporosis, a metabolic bone disorder characterized by reduced bone mass and compromised 
microarchitecture, presents a significant challenge due to its association with increased fracture 
risk.  This  thesis  investigates  the  molecular  and  structural  changes  in  bone  associated  with 
osteoporosis using a multidisciplinary approach, combining Raman spectroscopy, neutron powder 
diffraction, and an inflammation-mediated osteoporosis (IMO) model. These methods collectively 
provide  insights  into  the  compositional,  and  crystallographic  properties  of  bone,  enabling  a 
comprehensive evaluation of bone quality.

Bone samples,  including healthy and osteoporotic specimens generated using the IMO model, 
were analyzed across multiple skeletal sites—tibia, humerus, femur, and rib. Raman spectroscopy 
was employed to explore bone quality-specific spectral  regions,  such as phosphate,  carbonate, 
amide I, and collagen-related bands, using advanced preprocessing techniques and computational 
tools.  Custom  software  developed  for  this  thesis  facilitated  multivariate  analyses,  including 
Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), as well 
as  band  deconvolution.  Quantitative  bone  quality  parameters,  including  mineral  crystallinity, 
mineral-to-matrix ratio, collagen maturity, and carbonate substitution, were calculated to reveal 
site-specific and systemic changes.

Neutron powder diffraction complemented these findings by providing detailed information on the 
crystallographic structure of bone mineral. This technique offered valuable insights into the atomic 
arrangement and phase composition of hydroxyapatite, enhancing the understanding of structural 
alterations associated with osteoporosis.

The results reveal significant trends and variations in molecular composition and crystallographic 
properties across skeletal sites, underscoring the impact of inflammation-induced osteoporosis. By 
combining Raman spectroscopy, neutron diffraction, and the IMO model, this work establishes a 
robust  analytical  framework  for  studying  skeletal  health.  Furthermore,  the  custom  software 
developed as part of this research advances the precision and reproducibility of Raman spectral 
analysis and provides another tool for spectroscopic analyses to the scientific community.
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