
Localization of a Mobile Robot with a GPS sensor,

using Extended and Unscented Kalman Filters

A Thesis

submitted by the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Efstathios Rafailidis

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2025

i

Examining Committee:

• Konstantinos Vlachos, Assistant Professor, Department of Computer Science

and Engineering, University of Ioannina (Supervisor)

• Aristidis Lykas, Professor, Department of Computer Science and

Engineering, University of Ioannina

• Konstantinos Blekas, Professor, Department of Computer Science and

Engineering, University of Ioannina

ii

Dedication

Special thank you to my family for supporting me through the years.

iii

Acknowledgements

Thank you to the University and especially to my supervisor Konstantinos

Vlachos

iv

Table of Contents

Dedication ii

Acknowledgements iii

Table of Contents iv

LIST OF FIGURES vi

LIST OF TABLES viii

Abstract ix

Extended abstract x

CHAPTER 1 INTRODUCTION 1

1.1 Motives ... 1

1.2 Thesis goals ... 2

1.3 Structure of the thesis ... 3

CHAPTER 2 THEORETICAL INTRODUCTION 5

2.1 Machine learning theory ... 5

2.1.1 Machine learning introduction ... 5

2.1.2 Supervised machine learning.. 6

2.1.3 Regression .. 7

2.2 Kalman filter theory .. 10

2.2.1 Introduction to Kalman filters.. 10

2.2.2 Extended Kalman filter theory .. 12

2.2.3 Unscented Kalman filter theory ... 17

CHAPTER 3 SIMULATION SETUP 24

3.1 Robot description ... 24

3.2 Gazebo description... 26

3.3 Robot Operating System (ROS) ... 29

3.3.1 General ROS information .. 29

3.3.2 Thesis specific ROS information .. 30

3.4 Data acquisition .. 33

CHAPTER 4 DATA AND RESULTS 35

4.1 Acquiring comparison data .. 35

4.2 Adding noise .. 36

4.3 Odometry topic ... 38

4.4 Machine learning ... 40

4.5 Extended Kalman filter .. 45

v

4.6 Unscented Kalman filter ... 47

4.7 Real life experiments.. 49

4.7.1 Stationary robot ... 50

4.7.2 Straight line .. 51

4.7.3 Circles .. 54

CHAPTER 5 CONCLUSION 58

5.1 Conclusions .. 58

5.2 Future work .. 59

BIBLIOGRAPHY 61

vi

LIST OF FIGURES

Figure 2.1: Simple example for linear regression. The black dots are the data points, and

the blue line is the model’s prediction. ... 8

Figure 2.2: [4]Simple linear regression (left). Polynomial regression (right). 9

Figure 2.3: Kalman filter Cycle. The time update step predicts the state ahead in time.

The measurement update adjusts the prediction by incorporating a noisy

measurement at that time. The measurement update step can also be found as the

update step [5]. .. 11

Figure 2.4: The initial values of the state vector n for t = 0. x and y are the coordinates

of the robot, θ is its yaw angle and v is its velocity. ... 12

Figure 2.5: Position, yaw angle and velocity of the robot in the next time interval 13

Figure 3.1: A picture of the robot used in our experiments. ... 25

Figure 3.2: High-level gazebo architecture[7]. .. 28

Figure 3.3: Robot's pose in Gazebo. .. 28

Figure 3.4: [8] Three axes and three angles, all needed in order to describe the pose of

an object in the three-dimensional space. ... 29

Figure 3.5: rqt_graph, all nodes and topics that run during the script execution. 32

Figure 4.1: Sinus movement, A = 5m and ω = 0.05rad/s. ... 36

Figure 4.2: Experiment for proving the uniformity of the RAND function. 37

Figure 4.3: The blue dots represent the true trajectory of the robot. The orange dots

represent the position of the robot after adding noise. .. 38

Figure 4.4: True trajectory of the robot (orange line), the trajectory given by the odom

topic (blue line). ... 39

Figure 4.5: The total absolute difference between the true trajectory and the trajectory

from the odom topic. ... 40

Figure 4.6: One of the trajectories used to train the machine learning model. 41

Figure 4.7: One of the trajectories used to train the machine learning model. 42

Figure 4.8: One of the trajectories used to train the machine learning model. 42

Figure 4.9: Comparison between the machine learning model and the ground truth. The

orange line is the ground truth, the blue line is the result of the machine learning

model. ... 45

vii

Figure 4.10: Comparison between the results of the extended Kalman filter and the

ground truth. The blue line is the ground truth, the orange line is the result of the

filter. .. 47

Figure 4.11: Comparison between the results of the extended Kalman filter and the

ground truth. The orange line is the ground truth, the blue line is the result of the

filter. .. 48

Figure 4.12: Robot used for experiments. .. 50

Figure 4.13: longitude and latitude of the stationary robot. .. 51

Figure 4.14: longitude and latitude of the robot for the second experiment. 52

Figure 4.15: x and y coordinates of the robot recorded from the odometry_filtered topic.

 ... 53

Figure 4.16: Visual representation of the EKF results .. 53

Figure 4.17: Visual representation of the UKF results .. 54

Figure 4.18: Longitude and latitude of the robot for the third experiment. 55

Figure 4.19: x and y coordinates of the robot recorded from the odometry_filtered topic.

 ... 55

Figure 4.20: Visual representation of the EKF results. .. 56

Figure 4.21: Visual representation of the UKF results. ... 56

viii

LIST OF TABLES

Table 4.4.1: Part of training data, formatted correctly so they can be used. 43
Table 5.1: Results of all the methods. ... 58

ix

Abstract

In a continuously moving forward world, automation is a necessity. As

more and more trivial for humans tasks get assigned to robots, mobile or immobile

ones, their proper function is crucial. The advantages of using a robot instead of

a human are numerous and we go through some of them later in the thesis, but

the main one will always be the casualties. Worst case scenario, an accident

involving only robots will only result in material losses and nothing more, which

makes is infinitely more preferable than an accident involving humans. After

establishing why, we want to use robots, we need to make sure that they are

functioning properly. One of the issues for mobile robots is the problem of their

localization. Better localization means better path planning which means less

accidents and more efficiency for both energy consumption and completing the

task faster. Our thesis tackles the problem of robot localization and tries to find

ways of improving it.

In this thesis we will compare machine learning and two Kalman filter

variations, in order to find the best one for robot localization. We will start our

report with the motive behind our work and what we are trying to achieve. In

the second chapter we focus on the theory behind our methods and in the next

one we present the simulation setup we used. In chapter four, we present our

data, our methodology of processing them and our results, determining the most

accurate method for robot localization. In chapter five, we discuss our conclusions

from our work and suggest future work to further improve our findings.

x

Extended abstract

Καθώς ο κόσμος εξελίσσεται και οι τεχνολογικές εξελίξεις τρέχουν, όλο και

περισσότερες δουλειές μπορούν να γίνουν από κάποιο ρομπότ. Από μια

τεράστια πολυεθνική εταιρία αυτοκινήτων μέχρι μια τοπική εταιρία

συσκευασίας προϊόντων η χρίση ρομπότ για συγκεκριμένες εργασίες βγάζει

νόημα από πολλές πλευρές. Ένας βασικός παράγοντας είναι η μείωση του

κόστους, ένα ρομπότ μπορεί να συνεχίζει να δουλεύει χωρίς να χρειάζεται να

σταματήσει και φυσικά ένα ατύχημα που στο οποίο συμπεριλαμβάνονται μόνο

ρομπότ θα έχει μόνο υλικές ζημιές και όχι τον τραυματισμό ή ακόμα χειρότερα

την απώλεια κάποιου ανθρώπου.

Έχοντας ξεκαθαρίσει την χρησιμότητα των ρομπότ, θέλουμε να εξασφαλίσουμε

και την σωστή λειτουργία τους. Στην εργασία που ακολουθεί ασχοληθήκαμε με

ένα κινητό ρομπότ και ο στόχος μας ήταν να συγκρίνουμε ένα μοντέλο μηχανικής

μάθησης με δύο διαφορετικές παραλλαγές των φίλτρων Kalman, με σκοπό να

εντοπίσουμε εκείνη που θα μας έδινε την πιο ακριβή θέση του ρομπότ. Η γνώση

της πραγματικής θέσης του ρομπότ, το καθιστά ικανό να σχεδιάζει καλύτερα

την πορεία του με αποτέλεσμα να αποφεύγει πιο αποτελεσματικά τυχόν

εμπόδια, άψυχα ή έμψυχα. Ο καλύτερος σχεδιασμός της πορείας του ρομπότ δεν

έχει σαν μόνο θετικό την αποφυγή συγκρούσεων αλλά και την εξοικονόμηση

ενέργειας καθώς δεν θα χρειαστεί κάνει περιττές κινήσεις όταν καταλάβει ότι

είναι εκτός πορείας προκυμμένου να ξανά σχεδιάσει την πορεία του αλλά μια

κίνηση χωρίς σφάλματα θα βοηθήσει στην περάτωση της αποστολής του

συντομότερα.

Στο πρώτο κεφάλαιο της εργασίας αναφέρουμε πιο αναλυτικά τα κίνητρα μας

καθώς και τους στόχους μας. Κλείνουμε το πρώτο κεφάλαιο δίνοντας μια

περίληψη της δομής της εργασίας για την καλύτερη εποπτική εικόνα του

αναγνώστη. Στο δεύτερο κεφάλαιο παραθέτουμε την θεωρία πίσω από την

μηχανική μάθηση και το συγκεκρινοποιούμε στην παλινδρόμηση καθώς εκείνη

είναι η μέθοδος που χρησιμοποιούμε στην εργασία μας. Στο δεύτερο μισό του

xi

κεφαλαίου, παραθέτουμε την θεωρία για τις δύο παραλλαγές των φίλτρων

Kalman που χρησιμοποιούμε, το unscented και το extended Kalman φίλτρο. Στο

τρίτο κεφάλαιο, αναφέρουμε όλα τα κομμάτια από τα οποία αποτελείτε η

διάταξη μας. Στο τρίτο κεφάλαιο ο αναγνώστης θα βρει επίσης και μια

περιγραφή των χαρακτηριστικών του ρομπότ που χρησιμοποιήσαμε κατά τις

προσομοιώσεις μας. Στο κεφάλαιο τέσσερα, ξεκινάμε με το πώς συλλέξαμε τα

δεδομένα μας και τα επεξεργαστήκαμε ώστε να μοιάζουν με πραγματικά

δεδομένα που θα λάμβανε κανείς από ένα GPS. Το κεφάλαιο συνεχίζει με τα

αποτελέσματα από τις τρεις μεθόδους δίνοντας στον αναγνώστη την απάντηση

για το ποια από τις τρεις μεθόδους είναι πιο ακριβής. Το τέταρτο κεφάλαιο,

κλείνει με τα πειράματα που κάνουμε εκτός του προσομοιωτή, με σκοπό να

βεβαιωθούμε ότι τα φίλτρα Kalman λειτουργούν σωστά. Το τελευταίο κεφάλαιο

περιέχει τα συμπεράσματα μας και μελλοντική δουλεία που μπορεί να γίνει για

να συνεχιστεί αυτή η εργασία.

1

1. CHAPTER 1

 INTRODUCTION

1.1 Motives

1.2 Thesis goals

1.3 structure of the thesis

1.1 Motives

The motive behind this thesis is the desire to have a robust and accurate method

for better mobile robot localization. Nowadays, more and more everyday tasks can

be performed by unmanned robots, especially tasks in places where no humans

are expected to be, so the chances of an accident are low. Humans have been using

mobile robots for various reasons instead of them manually performing these

tasks.

The benefits of robots in place of human labor are numerous. First and

foremost, we have safety. Robots can be sent and work in environments that are

not ideal or are even dangerous for humans, for example from a vast desert or

the depths of an ocean to a radioactive region like Chernobyl. Additionally, thanks

to 21st-century technological advancements the possibility of life in space becomes

more and more viable. With today’s technology, a walk on Mars’s surface for a

human being would be impossible, but that is not the case for a mobile robot.

The second reason is costs. Trivial tasks like night-watching could be easily

performed by a mobile robot equipped with a camera and some image recognition

software. The modularity that mobile robots offer nowadays makes them a

compelling option for reducing costs. Having one robot that, depending on its

2

equipped modules, can perform a few different tasks simultaneously is not

something that big companies can ignore. Companies already use robots for heavy

labor work, freeing up human talent to perform more elaborate, less intensive and

less risky tasks.

Having said all that, a mobile robot needs to know its position. Localization

for a human might be a mundane task, but that is not the case for a robot. Mobile

robots must know their position to plan their next move. The precision needed

depends heavily on the nature of the task. Night-watching in a huge empty-of-

humans factory might not require millimeter-precision movements, but a

maneuver on Mars's surface could cause the whole billion-dollar operation to go

to waste.

1.2 Thesis goals

Our goal for this thesis is to compare different Kalman filters to a machine learning

model in order to identify the better method for robot localization. Behind our

motives there is the need for mobile robots to precisely know their pose; pose

consists of their coordinates and their orientation. The knowledge of their precise

pose will help the robot in a few different ways.

Firstly, there is the navigation. In the last few years, motor companies have

been trying to implement autonomous driving for vehicles, ranging from city cars

to enormous trucks carrying tens of tons of cargo daily. Localization becomes

essential because an autonomous vehicle requires both its pose and its target's

location so as to be able to carry out its path planning.

Next up, there are workplaces where traditional localization methods do

not work. For instance, IMU localization would be unsuccessful in places where

the terrain could cause the wheels to slip. In these scenarios, a robust and accurate

method of localization is needed.

Lastly, the efficiency of a mobile robot, both time efficiency and energy

consumption efficiency, can add up during the whole lifespan of the robot. Better

path planning can help the robot reach its destination faster and consume the

least amount of energy. These factors might not be of importance for every kind

of work, but over a large period, these factors can play a significant role.

3

To summarize, our goal is to benchmark the Extended and the Unscented

Kalman Filter against a machine learning model, so we can conclude which

method would be better for our mobile differential drive robot (we will be talking

in more detail about our robot in later chapters of this thesis).

1.3 Structure of the thesis

 In this subchapter, we present the structure of the thesis. This thesis

consists of five chapters. In the first chapter, we give an overview of the motives

behind our study and what we tried to achieve. In the second chapter, we

elaborate on the theory behind machine learning and the Kalman filters. About

the theory of machine learning, we start with general information about the

different machine learning methods, then we proceed with giving more

information about the supervised machine learning method, and at the end we

introduce the theory behind regression, which is what we used. After the theory

of machine learning, we go on to discuss the theory behind Kalman filters. We

follow the same pattern as we did with machine learning; we start with general

information about the history of Kalman filters and how they started. Once we

are done with the general information, we conclude with the theory about the

extended and the unscented Kalman filters, which are the two Kalman filter

variations we used for our experiments.

In the third chapter, we present our experimental setup. We start with

information about the robot we used in our experiments. Then, we demonstrate

the simulator we used in order to have a visual representation of our robot, which

among other things helped us with making sure that the inputs we were providing

our robot with were received and executed correctly. After we cover all the

necessary points about the simulator, we also bring up the software called robot

operation system (ROS), which provided us with the workspace which enabled

us to communicate with our robot. Lastly, in this chapter, we put forward the way

we were able to collect the data we needed for our experiments.

In chapter four, we show our results from our three different methods of

predicting the current pose of our robot. We first specify a certain trajectory which

the three methods will have to predict in order for us to distinguish the most

accurate one. Then, we introduce the methodology we used in order to add noise

4

to our ground truth data. Next up, we go over one of our earlier failed attempts,

where we used a different ROS topic to get noisy data and why that failed. At the

end of the chapter, we present the results of all three methods used, by comparing

them to the ground truth data.

After validating our methods in the simulator, we move on to some

experiments in real life. In the first experiment, we explore the capabilities of the

GPS module our robot is equipped with. In the next two experiments, we use the

data from the GPS module as input for our Kalman filters in order to make sure

that the filters are working correctly also outside of the simulator.

The last chapter is the conclusions chapter. In this section, we discuss our

final thoughts to the reader based on the comparison of the three methods. Here

is where the reader is called to ponder over the three methods, after seeing all the

data and having all our notes before them. At the end of the chapter, we suggest

some future work to be done.

5

2. CHAPTER 2

 THEORETICAL INTRODUCTION

2.1 Machine learning Theory

2.2 Kalman filter theory

2.1 Machine learning theory

2.1.1 Machine learning introduction

In this chapter, I would like to give a theoretical introduction to the machine

learning method that was used to predict the pose of our robot. Before we dive

into the regression model we used in our experiment, I would like to give a short

overview of what machine learning is.

As explained in the paper [1], machine learning is a subset of a broader

term called artificial intelligence (AI). Machine learning is a process through which

the computer is equipped with the ability to learn using data we provide in order

to be able to make a decision as a human would. By creating and training a

machine learning model, we enable it to comprehend complex problems and find

solutions using the data it has already collected.

There are four methods of machine learning. In the following section, we

will go through them, giving a short explanation for all of them but focusing more

on the method we ended up using. The first method is the supervised. This is the

method we used. In this method the machine learning model takes as input a

data set and tries to recreate the label data. The label data contain the information

we want our model to output. In our case, we used the position, orientation and

input at a specific time interval as input data set while training our model, while

6

we used the position of the robot at the next time interval as label. More specific

information about our data will be found in chapter 4, where we explain exactly

what we did and show our results.

The next method of machine learning is called unsupervised. In this

method, there is no label, meaning that we do not instruct our model on what

the result should be, but rather it is left on its own to try and figure out possible

patterns or connections inside the input data. In that sense, unsupervised learning

can be used when there is no clear connection between the data, but we want the

model to explore our dataset and check if it can find one. Also, the are no training

data.

The second to last machine learning technique is the semi-supervised

machine learning method. The forementioned method is a combination of the

previous two. It is used when there are some data that contain label as in the

supervised method but some of them do not, like in unsupervised machine

learning. We might need to use the semi-supervised method, when getting more

labeled data can be expensive or just difficult. In these cases, instead of just using

unsupervised machine learning we use a combination of supervised and

unsupervised machine learning.

The last machine learning method is called reinforced learning. In this

method there is a start and an end. The agent is being given a positive reward

when choosing the shortest way of reaching the goal. On the other hand, when

making a wrong decision, it is given negative reward.

2.1.2 Supervised machine learning

In this section, we have an overview of the two different supervised

machine learning types. The two types of supervised machine learning are called

classification and regression. Here we provide an outline of both, and in the next

chapter we focus more on regression, as this is the method we used in our study.

[2]Before we get into the two types, I would like to explain a term which

is instrumental in reader's comprehension. The term I am referring to is called

"feature". In the bibliography you might encounter the names "attribute",

"variable" or "dimension", which are all synonyms. A feature is an individual

7

property or characteristic of the phenomenon that we are studying and has to be

measurable, so it can be a part of the data set we use for our machine learning.

Features can have either discrete values, like zip codes and boolean characteristics,

or continuous values, such as temperature and height. Features can also be

categorized as numeric or symbolic. Numeric features can be measured on a scale

and can be directly used in machine learning. Symbolic features are discrete and

can be grouped into categories, for example eye color or grades. Symbolic features

usually need to be converted into numeric values so that they can be used in

machine learning.

Both regression and classification are similar methods with just one main

difference. Both methods use data sets in order to train them and then a different

data set for testing their results. Both get a collection of features as input and try

to predict the label of the data. Their main difference is that classification is used

to predict discrete values as true or false, spam or not spam. In contrast, regression

is used to predict continuous values such as price, age, position, and so on.

2.1.3 Regression

Linear regression is a statistical method used to model the relation between

the features and the label. [3] The simplest form of regression would be the linear

regression. In this case, we try to predict the label data using the dimensions, thus

trying to find, as the name suggests, a linear relationship between the dimensions

and the label. The mathematical representation would be:

𝑦 = 𝛽1 ∗ 𝑋 + 𝛽0 (2.1)

In equation (2.1) 𝑦 is the label, 𝑋 is the dimension,

𝛽1 is the slope and the 𝛽0 is the intercept.

8

Figure 2.1: Simple example for linear regression. The black dots are the data

points, and the blue line is the model’s prediction.

In Figure 2.1, we have a simple example for linear regression. The black

dots present the data points, in this case we could have the x-axes be the feature

and the y-axes to be the label. The blue line is the model's attempt to draw a

straight line as it tries to minimize the residual sum of squares between the data

points and its own prediction. Simple linear regression only uses one feature in

order to predict the value of label. With linear regression, we can determine the

relation between the feature and the label.

Linear regression only works well under the specific conditions we

mentioned above. If for example the relationship between features and label is

not linear then, linear regression would be inappropriate to use. As seen in Figure

2.2, on the left side we have data points with no linear relationship between them,

as we see that the straight line does not fit the data points well. In this example,

we are using a simple linear regression model, which is a variation of linear

9

regression, where the user can only have one dimension as input to predict the

label. In contrast, there is multiple linear regression in which you can have more

than one dimension, but you still need a linear relationship between dimensions

and the label. The last constraint makes even the multiple linear regression not

suitable for the dataset on the right.

As we can imagine, a machine learning model that can handle nonlinear

data would be useful, as there is a plethora of use cases where the dimensions

and the label are not linearly connected. For example, the pricing of a house based

on the different features it could have, is a use case where a nonlinear model

would be used.

Figure 2.2: [4]Simple linear regression (left). Polynomial regression (right).

The solution to this problem comes in the form of polynomial regression.

In polynomial regression the relationship between the features and the label are

model based on a 𝑛𝑡ℎ degree polynomial. In our study, we were not certain about

the relationship between our data, so we used this method as it is very flexible,

because we can change the degree of the polynomial as we see fit. During our

10

experiments, we used different degrees to find the better fit. We used a mixture of

data-driven decision, in which we were trying different degrees and based on the

outcome we selected the one we finally used. We also used a knowledge-driven

decision, in which because of the physics of the problem we could rule out high

degrees for our polynomial. In the end, having combined both methods, we are

certain that we used the best degree for our polynomial.

2.2 Kalman filter theory

2.2.1 Introduction to Kalman filters

In this section, I would like to introduce Kalman filters and the theory

behind them. We start with the history of Kalman filters, then we offer an

overview of the general mechanisms behind the Kalman filters. Lastly, we get into

the specifics of the two Kalman filter variations we used in our study, the extended

Kalman filter and the unscented Kalman filter.

In 1960, R.E Kalman published his paper on a new method capable of

recursively computing the state of a linear dynamic system through noise in an

optimal way using the mathematical formula of what would later become the

Kalman filter [5]. Due to the great advancement of computational power, the

Kalman filter became a subject of research and found many applications,

particularly in autonomous or assisted navigation. Even in the early years of its

creation, it played a crucial role in the navigation systems of the Apollo lunar

mission.

One of the biggest weaknesses of the Kalman filter were the nonlinear

systems. One can easily see the usefulness of a robust mathematical way for

predicting the state of a nonlinear system, as there is a plethora of nonlinear

systems in the real world. The breakthrough came in the 1960s in the form of

the Extended Kalman filter (EKF). The EKF was able to function for nonlinear

systems as it would linearize them and then apply its mechanisms. After the EKF

was invented, it made the Kalman filter more applicable for real life problems. In

the 1990s, the next variation of the Kalman filter would be developed, called

Unscented Kalman filter. Its purpose was to overcome the limitations of the EKF,

making its appeal even greater.

11

Before we dive into the specifics of EKF and UKF, let me give you an

overview of the general mechanism of the Kalman filters. The general mechanism

is the same for all Kalman filters, so it would make sense to present it here.

As a kind of high-level overview, you can think of the Kalman filter as a

two-step process. Kalman filters use a form of feedback control, where the filter

will predict the state of the system at a certain point in time and then it will get

feedback in the form of an actual measurement. Of course, we assume that the

measurement contains noise, so the filter does not consider it as the ground truth.

During this study, we will be referring to these two steps as the prediction step

and the update step as we see in Figure 2.3. Every equation we will be presenting

below will fall under one of the two steps. In the predict step, we estimate the

state and the error covariance of the next time step, which gives us a a priori

estimate. In the update step, where we incorporate the measurement into our

estimation, we calculate a new a posteriori estimate[5].

This would be a rough high-level overview of what a Kalman filter does.

Figure 2.3: Kalman filter Cycle. The time update step predicts the state ahead in

time. The measurement update adjusts the prediction by incorporating a noisy

measurement at that time. The measurement update step can also be found as

the update step [5].

12

2.2.2 Extended Kalman filter theory

 In this section, we describe the steps of the extended Kalman filter. To

provide a better explanation of the EKF, we present and explain the

implementation of the EKF we used step by step. The implementation we used

is originally from, but we had to make some modifications to the code, mostly in

the inputs of the script. More information about the changes to the code will be

presented in chapter 4.

First, we initialize our state vector. The state vector is a set of variables

which can be used to describe a system, in our case this would be our robot

moving in 2 dimensions. It is common for position and velocity variables to be a

part of the state vector, same goes also for variables referring to the orientation.

Lastly, system specific variables can also be a part of the state vector, like sensor

biases or different types of accelerations. In our case, our state vector consists of

the x and y coordinates, as we mentioned earlier, because the robot is moving in

2-dimensions, so the z axis does not come in play. As for orientation, the yaw

angle will also be a part of the state vector and the last property is the velocity of

the robot. So, the state vector will be a 4 by 1 vector and it will consist of x and

y coordinates of the robot, its yaw angle and its velocity as show below:

𝑛 = [

𝑥
𝑦
𝜃
𝑣

] = [

0
0
0
0

]

Figure 2.4: The initial values of the state vector n for t = 0. x and y are the

coordinates of the robot, θ is its yaw angle and v is its velocity.

After we initialize the state vector, we can proceed to predict the next state

of our system. For us to be able to predict the next state we need to two things;

first we need to know the current state, which we do, and the second thing we

need is the motion model. The motion model describes how the state variables

evolve as the time passes. We present our motion model in the figure below. We

also have to mention here that the motion model depends on the robot. Our robot

has differential movement, so it can be described with the equation below. A robot

13

that is able to steer its wheels would need different equations in order to be

described.

[

𝑥𝑡+1

𝑦𝑡+1

𝜃𝑡+1

𝑢𝑡+1

] = [

𝑥𝑡 + 𝑣 ∗ 𝑑𝑡 ∗ 𝑐𝑜𝑠(𝜃𝑡)

𝑦𝑡 + 𝑣 ∗ 𝑑𝑡 ∗ 𝑠𝑖𝑛(𝜃𝑡)

𝜃𝑡 + 𝑑𝑡 ∗ 𝜔
𝑢𝑡

]

Figure 2.5: Position, yaw angle and velocity of the robot in the next time

interval

In Figure 2.5, we present the variables which refer to the next time interval

with the index 𝑡 + 1. These are the values we want to predict. The variables that

refer to the current moment in time have the index 𝑡. 𝑑𝑡 is the time step we used

during our experiment which was 𝑑𝑡 = 0.1428𝑠. This selection was done because

we could not go above ros-rate = 7, due to hardware limitations. In more powerful

systems this limitation would not exist. Going back to ros-rate, this is the rate

with which ros is running when operational. A higher rate would let us control

our robot more times per second, so the movement would be more precise as we

would be able to give instructions to our robot more frequently. Highter frequency

would also be more demanding on the system and lead to higher power

consumption. For our case, 7 was the higher we could go without facing any

issues. Since we did not have to be extremely precise, ros-rate = 7 was satisfactory.

 In the next step, we compute the Jacobian of the motion model. In order

to calculate the Jacobian, we have to do partial derivates on the equations of the

motion model, as seen in the equations below. Below we present only the ones

which are complex and not the rest for them.

14

𝑑𝑥

𝑑𝑦𝑎𝑤
= −𝑣 ∗ 𝑑𝑡 ∗ 𝑠𝑖𝑛(𝑦𝑎𝑤) (2.1)

𝑑𝑥

𝑑𝑣
= 𝑑𝑡 ∗ 𝑐𝑜𝑠(𝑦𝑎𝑤) (2.1)

𝑑𝑦

𝑑𝑦𝑎𝑤
= 𝑣 ∗ 𝑑𝑡 ∗ 𝑐𝑜𝑠(𝑦𝑎𝑤) (2.2)

𝑑𝑦

𝑑𝑣
= 𝑑𝑡 ∗ 𝑠𝑖𝑛(𝑦𝑎𝑤) (2.3)

As we can see in the above equations, we do partial derivatives on the x

and y axis with respect to the variables v and yaw. Finally, after computing the

rest of the partial derivatives, we end up with the Jacobian as we present it below.

𝑗𝐹 = [

1 0 −𝑑𝑡 ∗ 𝑣 ∗ 𝑠𝑖𝑛(𝑦𝑎𝑤) 𝑑𝑡 ∗ 𝑐𝑜𝑠(𝑦𝑎𝑤)

0 1 𝑑𝑡 ∗ 𝑣 ∗ 𝑐𝑜𝑠(𝑦𝑎𝑤) 𝑑𝑡 ∗ 𝑠𝑖𝑛(𝑦𝑎𝑤)

0
0

0
0

1
0

0
1

] (2.4)

The last entity we need to compute in the prediction step is the covariance

of the system. To begin with, we need to initialize the process noise covariance 𝑄.

The process noise covariance matrix a is 4 𝑥 4 table containing the variances of

the variable from the state vector. The process noise covariance matrix contains

non-zero values only in the main diagonal of the table as the variances of the

variable are independent of each other. For these values we had to perform tests

with different values in order to find the values that would perform the best,

trying to give the EKF the best chances to perform as good as it can.

𝑄 = [

𝜎𝑥 0 0 0
0 𝜎𝑦 0 0

0
0

0
0

𝜎𝜃

0
0
𝜎𝑣

]

2

 (2.5)

15

Finally, we can now compute the covariance of the state using the equation

 (2.6)

𝑃𝑝𝑟𝑒𝑑 = 𝑗𝐹 ∗ 𝑃𝐸𝑠𝑡 ∗ 𝑗𝐹𝑇 + 𝑄 (2.6)

This is the last step for the prediction part of the EKF. Next, we move to

the update part of the filter. At this point the filter uses the measurements we

provided it with in order to correct its prediction. We start by initializing the

Jacobian of the Observation model, which we present below.

𝑗𝐻 = [
1 0 0 0
0 1 0 0

] (2.7)

After that, we compute the innovation or residual between the measurement and

the estimated position of our robot, as we see below.

𝑦 = 𝑧 − 𝑧𝑝𝑟𝑒𝑑 (2.8)

where 𝑧 is the table with the x and y coordinates from our measurements as we

can see in equation (2.9).

𝑧 = [
𝑥
𝑦] (2.9)

The 𝑧𝑝𝑟𝑒𝑑 table is the table containing the x and y coordinates we predicted

earlier, and it is shown in equation (2.10).

𝑧𝑝𝑟𝑒𝑑 = [
𝑥
𝑦] (2.10)

16

As we did with process noise covariance 𝑄 matrix, we also have to initialize

the measurement noise covariance 𝑅 matrix as we see below. The measurement

noise covariance matrix captures the variance and the covariance of the system's

measurements. For selecting values for the measurement noise covariance matrix,

we did tests with different values in order to find the best performing ones. Again,

as with the process noise covariance matrix, only the main diagonal has non-zero

values, as the variances of the x and y coordinates are independent to each other.

𝑅 = [
𝜎2

𝑥 0

0 𝜎2
𝑦

] (2.11)

After that, we can compute the Innovation (or residual) covariance using

equation (2.12). The innovation covariance quantifies the

expected uncertainty the innovation which is as we said the difference between

the measurement and the prediction, and we denoted it with the letter 𝑦.

𝑆 = 𝑗𝐻 ∗ 𝑃𝑃𝑟𝑒𝑑 ∗ 𝑗𝐻𝑇 + 𝑅 (2.12)

After calculating the innovation covariance, we can proceed on computing

the Kalman gain. The Kalman gain is chosen so that it can minimize the state

covariance and it is calculated with the equation below.

𝐾 = 𝑃𝑃𝑟𝑒𝑑 ∗ 𝐻𝑇 ∗ 𝑆−1 (2.13)

The Kalman gain determines how much weight should be put on the new

measurement when updating the state of the system. If the covariance of the

measurement is high, meaning that the measurement is noisy, the Kalman gain

will be smaller, making the filter relay more on the prediction. In contrast, if the

17

measurement is less noise the Kalman gain will be bigger, making the filter rely

more on the measurement instead of the prediction.

The last two steps are to update the estimated state and the estimated

covariance of the system. As we see in equation

 (2.14), the new estimated state is the sum of the predicted state and the

Kalman gain multiplied by the residual.

𝑥𝐸𝑠𝑡 = 𝑥𝑃𝑟𝑒𝑑 + 𝐾 ∗ 𝑦 (2.14)

After the estimated state is calculated, we compute the estimated covariance

using the Kalman gain, the Jacobian of the Observation model and the predicted

covariance of the system. The equation we used for the estimation of the

covariance is shown below.

𝑃𝐸𝑠𝑡 = (𝛪 − 𝛫 ∗ 𝑗𝐻) ∗ 𝑃𝑃𝑟𝑒𝑑 (2.15)

These were the steps we used for the EKF, in chapter 4 we will present

how it performed against an unscented Kalman filter, which we will present in

the next chapter, and the machine learning model.

2.2.3 Unscented Kalman filter theory

Before we start diving into the equations of the unscented Kalman filter,

let us point out the flows of the EKF and how the proposal of Jeffrey Uhlmann,

the creator of the UKF, fixed those issues. Let us start with condition under the

UKF is performing better than the EKF. UKF performs better than EKF when

the system is highly non-linear, if the system does not present highly non-linear

properties the two filters are expected to perform similarly. The flaw of the EKF

is based on the way it calculates the optimal state vector and the optimal

prediction. When the system is linear the filter can compute those values, in non-

linear cases the filter has to perform a linearization and here is where the

discrepancy of the two filters appears. EKF uses a linear approximation in order

18

to perform the linearization and then apply the rest of the steps, in contrast UKF

uses third order approximation (Taylor series expansion) [6]. This is why when

the system is not highly non-linear the two filters can perform similarly, as even

a first order approximation does not deviate much from the result a third order

approximation would give.

Now that we explained why the UKF performs better than the EKF in

highly non-linear systems, we will go through the steps we followed in our

implementation of the UKF, similar to what we did with the EKF.

 We will start with our analysis with the three constants that will help us

fine tune our filter these are alpha, beta and kappa. Alpha is responsible for the

spread of the sigma point, we will explain that sigma points are later, a large value

would mean that the sigma points would be far from the mean, in contrast a

small value would generate the sigma points near the mean. Typical values for

alpha are around the 10−3 − 10−4 order of magnitude. In our case we went with

alpha being equal to 10−3. The second parameter is beta. Beta has to do with the

distribution, and we set beta equal to two, which lets our sigma points match up

to the fourth moment (kurtosis) of a Gaussian distribution. The last tuning

parameter is kappa, kappa is also responsible for the spread of our sigma points

around the mean. Typical values for kappa are 0 − (3 − 𝑛) , where 𝑛 is the number

of variables in the state vector. Our selection for the values of the three tuning

parameters is typical in literature [6].

 In order for us to proceed we would have to explain what sigma points

are, so the reader can follow along the steps of our implementation of the

unscented Kalman filter. Sigma points are a minimal set of carefully selected

points that capture the uncertainty of the state distribution, by having the same

mean and the covariance of the distribution.

 The UKF has also some similarities with the EKF, UKF is also a two-step

filter with the first step being the predict step and then we have the update step.

We also have a state vector which will be the same as the state vector in EKF,

containing the x and y axes coordinates, the yaw angle of the robot and its velocity.

19

𝑛 = [

𝑥
𝑦
𝜃
𝑣

] = [

0
0
0
0

] (2.16)

We also have the two noise matrices as we did before, these are the process

noise covariance 𝑄 and the measurement noise covariance matrix 𝑅 as shown in

equations (2.17) and (2.18).

𝑄 = [

𝜎𝑥 0 0 0
0 𝜎𝑦 0 0

0
0

0
0

𝜎𝜃

0
0
𝜎𝑣

]

2

 (2.17)

𝑅 = [
𝜎2

𝑥 0

0 𝜎2
𝑦

] (2.18)

After having initialized all the parameters we need, we can procced to

computing. We start by generating the sigma points using the estimated values of

the state and the covariance of the system. After generating them we predict their

movement using the same motion model we used for the EKF. The last for update

part of the filter is to calculate the predicted values for the state and the covariance

of the system, using the equations (2.19) and

 (2.20).

𝑥𝑃𝑟𝑒𝑑 = (𝑤𝑚 × 𝑠𝑖𝑔𝑚𝑎𝑇)𝑇 (2.19)

𝑃𝑃𝑟𝑒𝑑 = 𝑃𝑃𝑟𝑒𝑑 + 𝑤𝑐 ∗ 𝑑 × 𝑑𝑇 (2.20)

Before we can compute the state and the covariance, we firstly need to

compute the weights 𝑤𝑚 and 𝑤𝑐 as well as the variable 𝑑. In variable 𝑠𝑖𝑔𝑚𝑎 we

20

stored our sigma points. Let us start computing what we are missing. We will

start with the variable 𝑑 which is the difference between our sigma points and the

predicted state of our system, shown in equation (2.21)

 𝑑 = 𝑠𝑖𝑔𝑚𝑎 − 𝑥𝑃𝑟𝑒𝑑 (2.21)

Next up we must calculate the weights 𝑤𝑚 and 𝑤𝑐. The first values of the

two weights get calculated using the equations below, where 𝑛𝑥 is the number of

variables in the state vector and it is equal to 4. The variable 𝜆 is calculated using

the equation (2.24)

𝑤𝑚 =
𝜆

𝜆+𝑛𝑥
 (2.22)

𝑤𝑐 =
𝜆

𝜆+𝑛𝑥
 (1 − 𝛢2 + 𝛣) (2.23)

𝜆 = 𝛢2 ∗ (𝑛𝑥 + 𝛫) − 𝑛𝑥 (2.24)

The rest 2 ∗ 𝑛𝑥 − 1 weights are calculated using the equation

 (2.25)

𝑤𝑚, 𝑤𝑐 =
1

(2∗ (𝜆+𝑛𝑥))
 (2.25)

This would be all for the prediction step for our UKF implementation. We

first generated our sigma points and then we predicted their movement. After

that, we calculated the weights 𝑤𝑐 and 𝑤𝑚 and used them in order to calculate the

predicted state and covariance of the system. After the prediction step, we will

move to the update state, explaining all our steps in the process.

21

 We start the update step, by using our observation model, equation

 (2.26), and the predicted state we previously calculated, in order

to compute our predicted measurement as shown in equation

 (2.27) .

𝐻 = [
1 0 0 0
0 1 0 0

] (2.26)

𝑧𝑃𝑟𝑒𝑑 = 𝐻 × 𝑥𝑃𝑟𝑒𝑑 (2.27)

The we compute the residual using the equation below, as we also did in the EKF.

𝑦 = 𝑧 − 𝑧𝑝𝑟𝑒𝑑 (2.28)

Next step would be to generate the sigma points again but this time instead

of using the estimated values of the state and covariance of the state we use the

predicted ones. After generating them, we calculate their covariance.

𝑠𝑡 = 𝑠𝑡 + 𝑤𝑐 ∗ 𝑑 × 𝑑𝑇 (2.29)

𝑑 = 𝑧_𝑠𝑖𝑔𝑚𝑎 − 𝑧𝑏 (2.30)

𝑧_𝑠𝑖𝑔𝑚𝑎 = 𝐻 × 𝑠𝑖𝑔𝑚𝑎 (2.31)

𝑧𝑏 = (𝑤𝑚 × 𝑠𝑖𝑔𝑚𝑎𝑇)𝑇 (2.32)

22

Then we will compute the Kalman gain which can be found using the

equation below.

𝐾 = 𝑃𝑥𝑧 × 𝑠𝑡−1 (2.33)

We have already calculated the 𝑠𝑡 variable, but not the variable 𝑃𝑥𝑧. For us

to do so we need the following calculations.

23

𝑑𝑥 = 𝑠𝑖𝑔𝑚𝑎 − 𝑥𝑃𝑟𝑒𝑑 (2.34)

𝑑𝑧 = 𝑧𝑠𝑖𝑔𝑚𝑎 − 𝑧𝑏 (2.35)

𝑃𝑥𝑧 = 𝑃𝑥𝑧 + 𝑤𝑐 ∗ 𝑑𝑥 × 𝑑𝑧𝑇 (2.36)

After that, can finally calculate the Kalman gain, and with that we can

calculate the estimated state and covariance of our system, using the equations

below, which is our final step in the process.

𝑥𝐸𝑠𝑡 = 𝑥𝑃𝑟𝑒𝑑 + 𝐾 × 𝑦 (2.37)

𝑃𝐸𝑠𝑡 = 𝑃𝑃𝑟𝑒𝑑 − 𝐾 × 𝑠𝑡 × 𝐾𝑇 (2.38)

24

3. CHAPTER 3

 SIMULATION SETUP

3.1 Robot description

3.2 Gazebo description

3.3 Robot Operating System

3.4 Data acquisition

3.1 Robot description

In this chapter, we talk about the specifics of our robot. Our robot consists of two

parts. The first part is the Jackal from Clearpath robotics, and the second part is

the manipulator on top of it from Kinova robotics. A picture of the robot can be

found below. Everything we needed was compiled in this github repository from

Sungwwoo and it can be found here:

https://github.com/Sungwwoo/jackal_kinova_simulator. In this repository, we

found detailed instructions on how to install all the necessary dependencies and

how to launch a world in gazebo with the robot inside.

25

Figure 3.1: A picture of the robot used in our experiments.

The manipulator on top of Jackal was not necessary, as it was not used in

any of our experiments, but it opens possibilities for further work on the matter.

As for Jackal, it weights 17𝐾𝑔 and its external dimensions are 508 𝑥 430 𝑥 250𝑚𝑚.

The manufacturer claims 4ℎ of usage and a maximum payload of 20𝐾𝑔. By

default, Clearpath has open API for both ROS Melodic and ROS Kinetic.

Unfortunately, we are using ROS noetic, so we are not able to use the official API

on the actual robot, without migrating to a different ROS version.

The capabilities of Jackal can be extended. The robot can be equipped with

a variety of sensors. Cameras can also be installed on the robot making it able to

provide video feed to the user. It also provides 5V, 12V and 24V power options

for any additional component to use. The robot also has an internal area which

can be used for additional computing power or storage, depending on the user's

needs. Satellite navigation modules can also be installed on our robot. In our case

we are using a module called Duro inertial for satellite navigation, which we will

explore later on.

 All these technologies would be useless if they could not be properly

protected and maintained. The Jackal's chassis is built from aluminum which

makes it suitable for all terrain operation. Jackal's built quality gave it an IP62

26

rating, which validates it for use, where temperatures can vary from -20 Celsius

all the way up to +45 Celsius.

Even though we did not use the manipulator as we already said, we still

want to present some of its features. The kinova gen3 lite manipulator has a

maximum reach of 760𝑚𝑚, can hold a maximum of 0.5𝐾𝑔 of continuous payload.

Its weight is 5.4𝐾𝑔 and its power consumption is 20𝑊.

At this point, we would like to also present the GPS module our robot is

equipped with. The Duro inertial, is a multi-band, multi-constellation, GNSS and

INS module, developed by Carnegie Robotics. Multi-band means that it can receive

signals on multiple different frequency bands, which is useful as different

navigation satellite systems use different frequency bands. Being able to use

multiple navigation satellite systems increases the accuracy and reliability of

localization. Carnegie Robotics claims that it can provide location data with

centimetre accuracy. Multi-constellation means that the module can use different

satellite constellations such as, GPS from US, GLONASS from Russia, BeiDou from

Chine and Galileo from Europe. GNSS is the global navigation satellite system,

which is the term coving all the satellite navigation system that provide

geolocation and time data. Lastly, INS (Inertia Navigation System) is the system

which uses gyroscopes and accelerometers in order to calculate the position,

orientation and velocity of the object, where the module is mounted on. Combined

GNSS and INS provide accurate and reliable localization.

3.2 Gazebo description

Gazebo is a 2D/3D simulator initially developed as a part of a Ph.D research

project in 2002. Gazebo supports four different physics engines ODE, bullet,

simbody and dart, with ODE (Open Dynamis Engine) being the default one and

the one that we ended up using. These physics engines allow gazebo to simulate

accurately the physical phenomena of the modeled scenarios. Essentially, the

physics engines enable our simulator to simulate the laws of physics in a simulated

environment.

ODE's features make is a solid option for rigid body simulation. ODE is a

modern library which provides a good balance between performance and

27

capabilities. About the performance part, it has to be fast enough in order to be

able to offer a good experience to the user. ODE manages to achieve these levels

of performance also since it is rewritten in C and C++. As for its capabilities, ODE

provides necessary features as joint support making it easy to simulate robots

with joints, our robot also has a manipulator with joints, but we are not using

them in the scope of this thesis. ODE has built-in collision detection using axis-

aligned bounding boxes (AABB). We should also mention ODE's stability and the

robustness.

Apart from the physics engine, gazebo also provides a graphical environment.

In the gazebo graphical environment, we have two main categories, world and

model. As world, gazebo considers any static object and as model all the dynamic

ones. Both world and model are configurable through parameter easily accessible

via the gazebo graphical environment.

At this point, we would like to present the architecture of gazebo. In Figure

3.2 we present a high-level representation of gazebo's architecture. The

architecture we see below was originally created in 2004 and had little to no

changes as it is simple, and it relays on third party software to enlarge its

capabilities. This structure enables gazebo to be an independent platform which

allows different physics engines for example. There is also a distinction between

server and client. On one hand, there is the server, where the actual simulation

takes place, things like the rendering, the sensors and the physics belong to the

server side. The client on the other hand is responsible for the graphical user

interface and the ability to interact with the simulation [7].

28

Figure 3.2: High-level gazebo architecture[7].

As we are using a wheeled mobile robot, our movement is limited to x and y

axes surface. This limitation entails that we need only the x and y coordinates,

regarding the position of the robot, and only the yaw angle in respect to the

orientation of the robot. Below we have a picture showing our robot. In Figure

3.3, we present our robot in an empty world, and we have noted the x axes, y

axes and the yaw angle (denoted with the letter 𝜃). These are the entities we are

interested in. We have also noted the z axes for the shake of completeness.

Figure 3.3: Robot's pose in Gazebo.

29

Having to deal with only the data for the x and y coordinates and the yaw

angle for the orientation and not all six variables needed to specify the pose of a

non-point abject in 3-dimensional space (see the figure below) significantly

reduces the amount of data we need to compute for our experiment.

Figure 3.4: [8] Three axes and three angles, all needed in order to describe the

pose of an object in the three-dimensional space.

3.3 Robot Operating System (ROS)

3.3.1 General ROS information

Robot operating system is an open-source robot software development

software. ROS creates a workspace where the different components of the robot

can talk to each other using nodes and topics. We would not have any use for

ROS if we were not able to interact with the different components of the robot

ourselves.

Let us break down the communication between components. Most robots

consist of actuators that make the robot move, sensors are the components that

let robots read their surroundings, and control systems which decide the robot’s

30

actions. ROS lets us build these components with relative ease and make them

interact with each other.

We should also mention the different versions ROS offers. ROS is separated

in two main versions, ROS 1 and ROS 2. ROS 1 is legacy and is the one we are

using, more specifically, we are using ROS 1 noetic release. ROS 1 is only available

for linux and still holds the majority of the market, as it is common in the industry

to delay upgrades in software for security and possibly not polished upgrades.

Also, it could be that years of work in ROS 1 would need great time and effort to

migrate to ROS 2, as the transition is not as direct as going from one ROS release

to another of the same version. There have been tools that help with the transition

from ROS 1 to ROS 2, but this is still an Issue for big project in the industry.

Having said all that, ROS 2 is still a great step forward for the robotics’

community. ROS 2 offers multiplatform support for windows, linux and macOS,

making broadly usable for users. One more feature of ROS 2 is the improvements

in security. ROS 2 offers authentication and encryption for its communications

which makes it especially appealing in a networked environment.

3.3.2 Thesis specific ROS information

After some general information about ROS, we now want to be more specific

about how we used ROS. In this section we present our robot specific topics and

nodes that we use and in general how we used ROS for the purpose of this thesis.

In Figure 3.5, we have a graphic representation of all the nodes and topics

as well as the relations between them that are active during our script execution.

The rectangles are called topics, and the ellipses are called nodes. Nodes can

subscribe to a topic; this is indicated by an arrow coming from the topic and

pointing to the node. Subscribing to a topic means that the node is getting

information from that topic. Nodes can subscribe to a topic but can also publish

to one. Publishing is indicated by an arrow going from the node towards the topic

that it publishes to. Publishing to a topic means that the node is providing

information to that topic.

We are not going to examine all the topics and nodes, as there is a high

number of them because of the complexity of our robot and all of its different

31

components. We are going to focus on the " Jackal " node. To interact with our

robot, we created the aforementioned node. As we can see in Figure 3.5, our node

is subscribed to two topics "/gazebo/model_states" and "/clock" and publishing to

"/jackal_velocity_controller/cmd_vel" and "/rosout".

Let us begin with the two topics that Jackal subscribes to. Starting with the

simpler one which is the clock one. The clock topic creates a ground truth

regarding time among the different systems of the robot, by creating a virtual

clock. Having a common ground for time ensures that all the components that we

talked about can work in sync. The clock topic is not relevant for us, but we are

mentioning it for completion. The second topic Jackal subscribes to is the

"/gazebo/model_states". This is the topic that provides us with the real pose of the

robot. As we have already mentioned, our robot moves in two dimensions x and

y, so its pose can be described with just the x, y coordinates and the yaw angle.

Next up, we talk about the two topics that Jackal publishes to. First up we

will start with the "/jackal_velocity_controller/cmd_vel". This is the topic where

we publish the speed, both linear and angular, we want our robot to have an

input. The last topic we will need is the "/rosout". This topic is used for

monitoring and debugging purposes. This topic is also not relevant for us but we

mention it for completion.

To sum up, these aforementioned topics are the topics that our node is

interacting with either by publishing, providing information to them, or by

subscribing to them, retrieving information from them.

32

Figure 3.5: rqt_graph, all nodes and topics that run during the script execution.

33

3.4 Data acquisition

In this part, we explain the process of obtaining positional data from

our robot. We require data about the pose of our robot for both the machine

learning and the Kalman filters. This means we need to make sure that we

are getting the data from the correct source. To do this, we must choose

the correct topic and make sure the data get saved correctly, so no bugs get

introduced during the process.

We start with the odometry data. In order to get the data from

gazebo we are subscribing to the odom topic. Once we get our odometry

message, we need to get into pose, so we can access the pose of our robot.

Then, it is straightforward to assign the values of the x and y coordinates

to some variables. For the orientation, we first need to get all three angles

(roll, pitch, and yaw) as quaternions and then use the

euler_from_quaternions method to convert them to Euler angles. After we

acquire the x and y coordinates and the yaw angle, we can simply output

our three values into a csv file, in order to make the processing of the data

easy.

Now for the ground truth, we follow the same principles with the

small exception that this time x, y, and z coordinates are given in one string.

To solve this issue with have to resort to splitting the string into three, one

for each coordinate. Once this is done, we have our x and y coordinates,

meaning that we only miss the yaw angle, which can be retrieved in the

same way we did for the odometry data, using the euler_from_quaternions

method.

After acquiring the odometry data and the ground truth, we also

need the control input. For our Kalman filters and our machine learning

model to work, we have to be able to access the control input info. This is

something that we could hard code into the Kalman filter and in the data

for the machine learning model, but this would not only be bad practice

but would also limit us to using simple movements, meaning a fixed set of

linear and angular speeds. Using the time module, we are now capable of

using elapsed time in order to change the control input as we wish using

34

the series of if statements. As a result, we can have different linear and

angular speeds, meaning that our robot can now perform more complex

series of movements. Once the variables for linear and angular speed get

their values, we output them in a csv file as we also do for the odometry

and the ground truth. Once that is also done, we publish our speeds to the

cmd_vel topic.

35

4. CHAPTER 4

 DATA AND RESULTS

4.1 Acquiring comparison data

4.2 Adding noise

4.3 Odometry topic

4.4 Machine learning

4.5 Extended Kalman filter

4.6 Unscented Kalman filter

4.7 Real life experiments

4.1 Acquiring comparison data

As for comparing the Kalman filters and the machine learning model, we decided

to use a sinus movement. To get the pose of the robot during the sinus movement

we first had to find a way to make the robot move accordingly. This task was not

trivial as the only inputs we could provide our robot with were its linear and

angular speeds, thus we were forced to get creative.

 The solution to this problem came in the form of a simple point in the 2-

dimensional space. As we could not use x and y coordinates as inputs for our

robot, we created a point, which would move according to a sine. Its y axis was

defined with a simple sine function as we see below,

𝑦 = 𝐴 ∗ sin (𝜔 ∗ 𝑡) (4.1)

36

where y is the y coordinate measured in meters, A is the amplitude measured in

meters, t is the time measured in seconds, and ω is the angular speed measured

in radians per second. In our case, we used 𝐴 = 5𝑚 and 𝜔 = 0.05 𝑟𝑎𝑑/𝑠. These

values were selected as they would give us a clear sinus movement as we see in

the figure below and the actual movement needed from the robot was achievable.

For example, a robot like ours would not be able to perform a movement with its

angular speed being 𝜔 = 5 𝑟𝑎𝑑/𝑠.

Figure 4.1: Sinus movement, A = 5m and ω = 0.05rad/s.

4.2 Adding noise

As our data came from the "/gazebo/model_states" topic, meaning that our

data were error-free, making it impossible for us to correct them. The solution to

this problem was given in the form of adding artificial noise to our data. Our idea

was to try to mimic the data that we would get by using a GPS, so we added a

random number between −0.5𝑚 and 0.5𝑚 to every value. We used the RAND

method of excel in order to add the noise. The RAND function is a uniform

function meaning that each number in the range has the same probability of being

selected. In the Figure 4.2 we created 10000 random numbers using the RAND

function. As we can see the distribution is not perfect, but this has to do with the

fact that we don’t have an infinite amount of numbers in our experiment.

37

Figure 4.2: Experiment for proving the uniformity of the RAND function.

By default, the RAND function provides a random number from 0 up to

1, but in our case, we wanted the noise to be between −0.5𝑚 and 0.5𝑚. We

managed to create random numbers from −0.5 and 0.5. using the equation

 (4.2) in excel.

𝑅𝐴𝑁𝐷() − 0.5 (4.2)

This expression simply creates a random number from 0 up to 1 and by

subtracting 0.5 we manage to move the results inside the range we want.

In order to better present our method of adding noise and its results let us

present you an example. In the Figure 4.3 we present in blue the actual position

of our robot during a random run. These data were recorded from the

"/gazebo/model_states" topic, meaning that there are not errors in our data. In the

orange, we present the same data after adding noise [−0.5. .0.5]𝑚. As we can see,

the orange dots follow the general course of the actual trajectory.

38

Figure 4.3: The blue dots represent the true trajectory of the robot. The orange

dots represent the position of the robot after adding noise.

With the example above we have presented everything we did during the

process of adding noise to our data. Hopefully this section gave you a good

understanding of why and how we added noise to our data.

4.3 Odometry topic

Before we decided to add noise to our data, we tried to use the data

provided by the odometry topic. The odometry topic provides the pose of the

robot using data from sensors like wheel encoders or inertia measurement units

(IMU). One can easily understand that the precision of odometry is quite

susceptible to factors such as slippage due to differences in the terrain because the

power provided to the wheels does not necessarily correspond to the distance

traveled by the robot, or a terrain that is uneven may make it harder for the robot

to move. In theory, none of these factors should come into play for our case as

none of them was introduced in our experimental setup. But so much for theory,

as our experiment showed us a different story.

39

In Figure 4.4, we present a simple trajectory of our robot. In orange we

present the true trajectory of the robot. The trajectory provided by the odom topic

is presented by the blue line. In this movement our robot starts from the (0,0)

point and finishes roughly at the (53,2) as seen from the orange line. In contrast,

the blue line tells us a different story as in this case our robot starts from (0,0) as

well but its finishing point is (52,11).

Figure 4.4: True trajectory of the robot (orange line), the trajectory given by the

odom topic (blue line).

As we can see, the deviation between the true trajectory and the one from

the odom topic keeps getting larger. To quantify this deviation, we present the

sum of the absolute difference between the two trajectories in both axes. In the y-

axes of Figure 4.5, we calculate the sum of the absolute difference between the

two trajectories for each of their points, using the equation (4.3). The

difference is calculated for each one of the 200 points of the trajectories.

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |𝑥𝑖𝑜𝑑𝑜𝑚
− 𝑥𝑖𝑚𝑜𝑑𝑒𝑙𝑠𝑡𝑎𝑡𝑒

| + |𝑦𝑖𝑜𝑑𝑜𝑚
− 𝑦𝑖𝑚𝑜𝑑𝑒𝑙𝑠𝑡𝑎𝑡𝑒

| (4.3)

0

2

4

6

8

10

12

0 10 20 30 40 50 60

x
(m

)

y (m)

40

In the x-axes, we just present the points of the trajectories. The first point

is where our robot started, and the last one presents the last point of the trajectory.

As can easily be observed, the difference gets bigger as the robot travels for longer.

Figure 4.5: The total absolute difference between the true trajectory and the

trajectory from the odom topic.

At this point, we should mention that the above experiment was done with

more than one trajectories, all of them with the same result. As we needed to

make sure that our observation was not a result of a random error, we used

different trajectories with all of them resulting in the same conclusion: at the start

of the movement the data from odom were close to the real data from the

modelstate topic but as the time passed the difference between the two sources

was getting bigger. In some cases, we also noticed the data from odom to

completely change course and paint a completely different movement. As a result

of our observations, we decided against using the odom topic.

4.4 Machine learning

In this chapter, we present the whole process of creating our machine

learning model and predicting our robot's position with it. We start the process

0

2

4

6

8

10

12

0 50 100 150 200 250

d
if

fe
re

n
ce

 (
m

)

points

41

of getting our data in order to train our model, we set up the pipeline for the

code, where we have to parse our data, then we train our model. Once the training

is done, we predict the position of our robot using never seen before input data.

The last thing we have to do is to validate our results and evaluate them by

comparing them to ground truth data, where there is no noise.

The first order of business is for us to collect the data to train our machine

learning model. For this part, we have to have our robot move using random

linear and angular speeds. As our robot is moving, we track its position and its

orientation. Below, we present some of the trajectories our robot followed during

this part.

Figure 4.6: One of the trajectories used to train the machine learning model.

-2

0

2

4

6

8

10

12

14

-8 -6 -4 -2 0 2 4 6 8

y
(m

)

x (m)

02_01_24

42

Figure 4.7: One of the trajectories used to train the machine learning model.

Figure 4.8: One of the trajectories used to train the machine learning model.

In the figures above, we show just three of the trajectories we used to train

our model. In total, we have 17 trajectories. At this point, we should also mention

that we had to make sure that none of our trajectories were similar to the trajectory

we will use in order to compare our methods. Otherwise, we would have given

the model an unfair advantage, as it would already know the correct results it

would need to output.

-8

-7

-6

-5

-4

-3

-2

-1

0

1

0 1 2 3 4 5 6 7 8 9

y
(m

)

x (m)

2_18_24_1

-1

0

1

2

3

4

5

6

7

8

-10 0 10 20 30 40 50

y
(m

)

x (m)

2_6_24_2

43

Next session is about the technicalities of our process regarding the machine

learning. The first thing we have to do is to import our data. For this task, we

create a parser that loads our data and then stores them in a pandas dataframe.

Once parsed, our data would look like in the figure below.

Table 4.4.1: Part of training data, formatted correctly so they can be used.

In column A, we present the current x-axes coordinate. Column B is the y-

axes coordinate. In column C, there is the yaw angle of the robot. The next two

columns are the control input data, with the linear and angular speed presented

accordingly. With the last three columns, we present the future position and

orientation of the robot in the same order as the current ones, with these being

the x-axes coordinate, the y-axes coordinate and lastly the yaw angle. After

explaining all the columns, we now must determine the features/dimensions and

the label data. Columns A through E are the features as these depict the current

state, and columns F, G, and H are the label data, meaning these are the columns

our model will have to predict. After loading all the train data, we also load the

test data in the same way but stored in a different dataframe.

44

The next step is to create our machine learning model and then train it. At

the start, we separate our train data to features and label. The separation was

done according to the previous paragraph. We decide upon predicting the x and

y coordinates separately. For the first run, we use as features the columns A, C,

D, and E and the column F as the label data. For the y coordinate, we use the

columns B, C, D, and E and for the label data the column G. After the selection

of features and label data, we choose the degree of our polynomial, as we already

mentioned, this is done through trial and error. The best results came from a

polynomial of first degree. The last step is to create our linear regression model

and fit it with the train data, both features and label data. By the end of the

process, we have a model capable of predicting the position and orientation of

our robot, but its accuracy had still to be validated. The validation of our model

comes in the form of testing it against a sinus trajectory of our robot.

The last thing we need to do is to test the predicting capabilities of our

model. This time instead of separating the dataset into features and label data,

we only select the features and ask our model to predict the label data. We repeat

this process twice, once for the x coordinate and then for the y coordinate. When

this is done, we have a dataset with the predicted values for the position of our

robot.

Now, we test it against the ground truth data in order to compute the

average deviation per result, for both x and y axes. In Figure 4.9, we present the

data from our machine learning model, blue line, and the ground truth, orange

line. In thisFigure 4.9, it is very difficult to distinguish the two lines, as both are

close enough that they look like they overlap completely. This is the first step in

our analysis, so we have an overview of how well or badly our model is

performing.

The next step is to compute the actual absolute distance for each single

point. The process is repeated for x and y coordinates. We use a simple absolute

difference for each point in order to compute the error for each point. After that,

we sum up all the errors and divide them by the number of points we have. By

doing that, we calculate the average difference between the results of our model

and the true position of the point. The average difference for the x coordinate is

45

0.185𝑚 and for the y coordinate the average difference is 0.003𝑚. For both axes,

the errors are acceptable as our model performs better than our noisy sensors that

have an average of 0.25𝑚 for both axes. We know the exact average of the error

from our sensors, as we are the ones who added the error to them.

Figure 4.9: Comparison between the machine learning model and the ground

truth. The orange line is the ground truth, the blue line is the result of the

machine learning model.

To sum up the machine learning process, we first load our data, then we

create our model and once it is trained, we calculate the average error our model

produced, from the data of our comparison trajectory.

The full code for both the machine learning and the Kalman filters we

used, can be found in this github repository: https://github.com/stathis-

rafailidis/PythonRobotics.

4.5 Extended Kalman filter

In this chapter, we present the methodology we used for the extended

Kalman filter and the results it yielded. The original code uses random numbers

as inputs for the ground truth and then adds some noise in order to mimic the

46

measurements from the sensors. We modify the code, so it loads our data, both

the data for the pose of the robot and the data for the input control to dataframes.

After we make sure the filter is using our data, we have to calibrate the two noise

matrixes, the process noise covariance matrix and the measurement noise

covariance matrix. After the testing, we end up with the values we present below.

𝑄 = [

𝜎𝑥 0 0 0
0 𝜎𝑦 0 0

0
0

0
0

𝜎𝜃

0
0
𝜎𝑣

]

2

= [

1 0 0 0
0 1 0 0
0
0

0
0

31
0

0
1

]

2

 (4.4)

The covariance of x and y are in meters, the covariance of the yaw angle is in

degrees, and the covariance of the velocity is in meters per second. Below we present the

matrix for the measurement noise covariance matrix, where both values are in

meters.

𝑅 = [
𝜎2

𝑥 0

0 𝜎2
𝑦

] = [
3.52 0

0 3.52] (4.5)

As for the results, we plot them below as we did with the results of the

machine learning. In Figure 4.10, we present the comparison between the

extended Kalman filter and the ground truth, ground truth in blue and EKF in

orange. As with the machine learning model, the graph cannot help us much to

distinguish them.

47

Figure 4.10: Comparison between the results of the extended Kalman filter and

the ground truth. The blue line is the ground truth, the orange line is the result

of the filter.

For the final analysis, we need to calculate the average error our filter

produced. We follow the same strategy as we did with machine learning. After

summing up all the absolute differences between ground truth and EKF, we divide

by the number of points in our data set. The average difference for the x

coordinate is 0.206𝑚, and for the y coordinate, it is 0.127𝑚. Again, our results

are acceptable as our filter outperformed the case where we would not have any

measure of reducing the errors from our sensors in place, as in that case the

average error would be around 0.25𝑚.

4.6 Unscented Kalman filter

In this section, we demonstrate our work with the last Kalman filter

variation that we studied, which is the unscented Kalman filter. The whole process

is similar to the process we used for the extended Kalman filter. First, we modify

the original code for the filter in order to use our data as measurements and as

input control. Then through trial and error, we find the best values for the process

noise covariance matrix and the measurement noise covariance matrix, shown

below.

48

𝑄 = [

𝜎𝑥 0 0 0
0 𝜎𝑦 0 0

0
0

0
0

𝜎𝜃

0
0
𝜎𝑣

]

2

= [

1 0 0 0
0 1 0 0
0
0

0
0

0
0

0
0

]

2

 (4.6)

𝑅 = [
𝜎2

𝑥 0

0 𝜎2
𝑦

] = [
22 0

0 22] (4.7)

After that, we have an overview of our results with the graph shown below,

which is a quick way for us to verify that our data are close to the ground truth.

The orange line is the ground truth, the blue line is the EKF.

Figure 4.11: Comparison between the results of the extended Kalman filter and

the ground truth. The orange line is the ground truth, the blue line is the result

of the filter.

Again in Figure 4.11, we cannot have much of an analysis, so we have to

perform the same method as previously in order to determine the accuracy of our

49

filter. The average difference for the x coordinate is 0.184𝑚, and for the y

coordinate, it is 0.128𝑚.

4.7 Real life experiments
After our experiments in the simulator, we devised some real-life

experiments as well. We created three different experiments. In the first

experiment we left the robot stationery for 10 minutes in order to find the average

deviation for longitude and latitude. In the second experiment we left the robot

stationary for 10 minutes then it moved in a straight line for 100 seconds and

then stationary again for another 10 minutes. In the last experiment we had our

robot moving in circles.

The robot we used is the for our experiments, is the same one we also used

in the simulator. We have both the Jackal and the Kinova manipulator. Software

wise, the robot is using the same ROS version as we used in the simulator, which

is the ROS 1 noetic. The common ROS version meant that we could easily port

our code from the simulator to the experiment by using a file transfer protocol

(FTP) application.

50

Figure 4.12: Robot used for experiments.

Our experiments follow the same methodology as the one in the simulator.

Using a python script we input linear and angular speed to the robot by

publishing to the "/cmd_vel". In order to get the data from odometry we have to

subscribe to the "odometry/filtered" topic where the position of the robot gets

calculated using odometry and IMU sensors, then the data is also passed through

a Kalman filter. All the data from the GPS module is taken by subscribing to the

"/piksi/navsatfix_best_fix" topic.

4.7.1 Stationary robot

In this experiment the robot was left stationery for 10 minutes. The robot

was given zero linear and angular speeds. Once the data was collected, we started

processing. Initially we transformed the initial data from latitude and longitude

to meters. Then we moved the starting point of the axes to the first point of our

51

data, effectively making the first point of our data the (0,0) of your cartesian

coordinates. Below we present the data.

Figure 4.13: longitude and latitude of the stationary robot.

In Figure 4.13 we see that there is a range of recorded positions of the

robot, even though the actual position of the robot never changed. After obtaining

the data shown above, we calculated the average position of the robot at (-1.036,

-0.513). After establishing the average position of the robot, we then calculated

the average distance from that position. After the calculations, we found that GPS

have an average of 3.713m deviation for latitude and 1.852m for longitude. With

this experiment, we figured out the average error of the GPS, which was previously

unknown.

4.7.2 Straight line

In this experiment, our robot was stationary for 10 minutes then in moved

in a straight line and then stationary again. The goal behind this experiment is to

make sure our Kalman filters work properly not only in the simulator but also in

real life. The first obstacle in this case, is the fact that in contrast to the simulator

we do not have the actual position of the robot in order to compare it to the

results of the filter, as we did previously.

52

The solution to the missing ground truth data came in the form of the data

collected from the "odometry_filtered" topic. In this topic odometry and IMU

sensors are used in order to track the position of the robot. The final data are also

passed through a Kalman filter so, the results are even closer to the actual position

of the robot.

In Figure 4.14, we present the data from the GPS. There are two areas with

a lot of data, these are the cases where the robot is stationary, initial and final

position, and there is a line connecting the two areas which is the part of the

movement that the robot was moving in a straight line.

Figure 4.14: longitude and latitude of the robot for the second experiment.

In Figure 4.15 we present the data for the same movement as recorded

from the odometry_filtered topic. The data from odometry presents the actual

movement of the robot and this is verified from both the inputs given to the robot

and what we observed during the experiment.

53

Figure 4.15: x and y coordinates of the robot recorded from the

odometry_filtered topic.

Figure 4.16: Visual representation of the EKF results

54

Figure 4.17: Visual representation of the UKF results

The average error for the data from the GPS were 1.3635m and 1.2083m

for longitude and latitude. After we calculated the error of the raw GPS data, we

used both EKF and UKF for the GPS data. The improvements we not big but

were consistent as both filters yielded data with smaller errors. The EKF yielded

1.0666m and 1.2071m for longitude and latitude. Similarly, the UKF 0.7588m

and 0.9131m for longitude and latitude.

4.7.3 Circles

In the last experiment, our robot is repeatedly moving in circles. The

methodology is the same as in the second experiment. The first figures show the

data from GPS and the second one shows the data from udometry.

55

Figure 4.18: Longitude and latitude of the robot for the third experiment.

As seen in Figure 4.18, the circular motion is clearly shown. If we were to

compare it with the data from odometry, it is clear that there GPS data is noisy

compared to the odometry ones.

Figure 4.19: x and y coordinates of the robot recorded from the

odometry_filtered topic.

56

In the two figures below, we have a visual representation of the Kalman

filters. We start with the EKF and then with the UKF. In Both case we have

trajectories closer to the one from the odomotry topic.

Figure 4.20: Visual representation of the EKF results.

Figure 4.21: Visual representation of the UKF results.

57

As we did also with the second experiment, in order to evaluate our filters,

we will be comparing the average errors compared to the error of just the raw

GPS data. The average errors for the data from the GPS were 1.0879m and

0.6780m for longitude and latitude. After we calculated the error of the raw GPS

data, we used both EKF and UKF for the GPS data. The EKF yielded 1.0831m

and 0.6723m for longitude and latitude. Similarly, the UKF 1.0293m and

0.2742m for longitude and latitude. As noticed, the UKF for the circular

movement had much better results as the UKF is specially designed for nonlinear

cases.

58

5. CHAPTER 5

 CONCLUSION

5.1 Conclusions

5.2 Future work

5.1 Conclusions

After everything is set and done, we want to sum up all our findings and share

our conclusions with the reader. We started this paper presenting the methods we

used for this thesis. After having talked about our simulation setup and our

methodology, we went on and shared our results for all of them. The final

numbers of the average deviation from the ground truth our methods ended up

having are shown again below.

Table 5.1: Results of all the methods.

As we can see, the machine learning was two orders of magnitude closer

to the ground truth for the y axis and performed similarly to the UKF in the x

axes. This outcome could be better with more training, but this does not

x (m) y (m)
ML 0.185 0.003
EKF 0.206 0.127
UKF 0.184 0.128

59

necessarily belong to the scope of this thesis as we have already proved that the

machine learning is more accurate than the two filters.

The results show that machine learning is a clearly better method for robot

localization, but this is not the full story. It might be that the ML is more accurate,

but one should also consider the effort required to achieve these kinds of results.

In our case, we were using simulations in order to obtain the ground truth data,

which make the process of obtaining them easy, but if we were to use an actual

robot in real life, the process of obtaining the true pose of the robot would be far

from trivial; An array of accurate sensors would be required, and the

synchronization of them would also pose a big obstacle.

About the real-life experiments, the results that were yielded were positive.

Both our filters performed better than just using the raw GPS data. Also, we fact

that the average GPS error could be calculated, gave us an insight of how close

the GPS data is to the truth. One more benefit of calculating the GPS error is that

after this thesis this knowledge can be transferred to all the future projects with

the same robot we used.

Bottom line, ML performed better than the Kalman filters, but there is no

such thing as a free lunch. ML would need a great amount of effort in order to

gather the ground truth data, and then also computer resources would be needed

for training the model. On the other hand, both filters consist of a few hundred

lines of code which once in place there is no more work to be done. Filters will

contain errors inherently, but if the order of magnitude of the errors is known

and fits the application, one would be incentivized to use them, as they are the

more effortless and cheaper solution.

To conclude this thesis, machine learning performs better than Kalman

filters. If accuracy is of most importance, one should utilize machine learning. If

an estimate of the robot's position will suffice, both filters can perform well enough,

making them a great solution for robot localization.

5.2 Future work

In the last section of this thesis, we want to share with the reader our ideas for

future work. The are two main topics, the first one would be to use more machine

60

learning methods and Kalman filter variations to further enlarge the pool of

methos tested, the second one would be to also establish a key performance

indicator (KPI) for the effort needed for each method.

Adding new methods and comparing them to the existing ones would be

truly interesting, especially for the machine learning methods. Using different ML

methods could yield some impressively accurate data but then we should also

consider the effort and the carbon footprint such a method would have. It is not

a secret that ML has developed significantly in the last decades with the

improvement in efficiency of computers, but the energy costs remain an issue. It

is significantly cheaper than it used to be to run a computer, but a cluster of

computers running a deep neural network is still something that creates a

significant carbon footprint.

In order to have the full picture, further KPIs should be developed. For

example, a KPI about the effort invested or the amount of funds invested would

give the reader a more complete image and even more so, if they are interested

in using some of these methods themselves.

61

6. BIBLIOGRAPHY

[1] Ö. ÇELİK, “A Research on Machine Learning Methods and Its

Applications,” J. Educ. Technol. Online Learn., vol. 1, no. 3, pp. 25–40,

2018, doi: 10.31681/jetol.457046.

[2] A. Lykas and K. Blekas, “preprocessing.” University of Ioannina,

Ioannina, 2022.

[3] D. Maulud and A. M. Abdulazeez, “A Review on Linear Regression

Comprehensive in Machine Learning,” J. Appl. Sci. Technol. Trends, vol.

1, no. 2, pp. 140–147, 2020, doi: 10.38094/jastt1457.

[4] Developers Scikit-learn, “Linear Regression Example.” https://scikit-

learn.org/stable/auto_examples/linear_model/plot_ols.html#sphx-glr-auto-

examples-linear-model-plot-ols-py.

[5] G. Welch and G. Bishop, “An Introduction to the Kalman Filter,” Proc.
Siggraph Course, vol. 8, Jan. 2006.

[6] Z. Cai and D. Zhao, “Unscented Kalman filter for non-linear estimation,”

Geomatics Inf. Sci. Wuhan Univ., vol. 31, no. 2, pp. 180–183, 2006.

[7] Z. B. Rivera, M. C. De Simone, and D. Guida, “Unmanned ground vehicle

modelling in Gazebo/ROS-based environments,” Machines, vol. 7, no. 2,

pp. 1–21, 2019, doi: 10.3390/machines7020042.

[8] I. Bagheri, S. Alizadeh, and E. Irankhah, “Design and Implementation of

Wireless IMU-based Posture Correcting Biofeedback System,” no. June,

2020.

62

SHORT BIOGRAPHY

Efstathios Rafailidis was born in 1997 in Katerini, Greece. He completed his

undergraduate studies in physics at the university of Thessaloniki, in June of

2021. After his undergraduate studies, where he focused on nuclear physics, he

found an interest in computer science. His interest in computer science translated

to him enrolling for a master’s degree in computer science and engineering from

the university of Ioannina. At the same time as his master's degree, he had also

started working as a software engineer.

