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Abstract 

 

In a continuously moving forward world, automation is a necessity. As 

more and more trivial for humans tasks get assigned to robots, mobile or immobile 

ones, their proper function is crucial. The advantages of using a robot instead of 

a human are numerous and we go through some of them later in the thesis, but 

the main one will always be the casualties. Worst case scenario, an accident 

involving only robots will only result in material losses and nothing more, which 

makes is infinitely more preferable than an accident involving humans. After 

establishing why, we want to use robots, we need to make sure that they are 

functioning properly. One of the issues for mobile robots is the problem of their 

localization. Better localization means better path planning which means less 

accidents and more efficiency for both energy consumption and completing the 

task faster. Our thesis tackles the problem of robot localization and tries to find 

ways of improving it. 

In this thesis we will compare machine learning and two Kalman filter 

variations, in order to find the best one for robot localization. We will start our 

report with the motive behind our work and what we are trying to achieve. In 

the second chapter we focus on the theory behind our methods and in the next 

one we present the simulation setup we used. In chapter four, we present our 

data, our methodology of processing them and our results, determining the most 

accurate method for robot localization. In chapter five, we discuss our conclusions 

from our work and suggest future work to further improve our findings. 
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Extended abstract 

 

Καθώς ο κόσμος εξελίσσεται και οι τεχνολογικές εξελίξεις τρέχουν, όλο και 

περισσότερες δουλειές μπορούν να γίνουν από κάποιο ρομπότ. Από μια 

τεράστια πολυεθνική εταιρία αυτοκινήτων μέχρι μια τοπική εταιρία 

συσκευασίας προϊόντων η χρίση ρομπότ για συγκεκριμένες εργασίες βγάζει 

νόημα από πολλές πλευρές. Ένας βασικός παράγοντας είναι η μείωση του 

κόστους, ένα ρομπότ μπορεί να συνεχίζει να δουλεύει χωρίς να χρειάζεται να 

σταματήσει και φυσικά ένα ατύχημα που στο οποίο συμπεριλαμβάνονται μόνο 

ρομπότ θα έχει μόνο υλικές ζημιές και όχι τον τραυματισμό ή ακόμα χειρότερα 

την απώλεια κάποιου ανθρώπου. 

Έχοντας ξεκαθαρίσει την χρησιμότητα των ρομπότ, θέλουμε να εξασφαλίσουμε 

και την σωστή λειτουργία τους. Στην εργασία που ακολουθεί ασχοληθήκαμε με  

ένα κινητό ρομπότ και ο στόχος μας ήταν να συγκρίνουμε ένα μοντέλο μηχανικής 

μάθησης με δύο διαφορετικές παραλλαγές των φίλτρων Kalman, με σκοπό να 

εντοπίσουμε εκείνη που θα μας έδινε την πιο ακριβή θέση του ρομπότ. Η γνώση 

της πραγματικής θέσης του ρομπότ, το καθιστά ικανό να σχεδιάζει καλύτερα 

την πορεία του με αποτέλεσμα να αποφεύγει πιο αποτελεσματικά τυχόν 

εμπόδια, άψυχα ή έμψυχα. Ο καλύτερος σχεδιασμός της πορείας του ρομπότ δεν 

έχει σαν μόνο θετικό την αποφυγή συγκρούσεων αλλά και την εξοικονόμηση 

ενέργειας καθώς δεν θα χρειαστεί κάνει περιττές κινήσεις όταν καταλάβει ότι 

είναι εκτός πορείας προκυμμένου να ξανά σχεδιάσει την πορεία του αλλά μια 

κίνηση χωρίς σφάλματα θα βοηθήσει στην περάτωση της αποστολής του 

συντομότερα. 

Στο πρώτο κεφάλαιο της εργασίας αναφέρουμε πιο αναλυτικά τα κίνητρα μας 

καθώς και τους στόχους μας. Κλείνουμε το πρώτο κεφάλαιο δίνοντας μια 

περίληψη της δομής της εργασίας για την καλύτερη εποπτική εικόνα του 

αναγνώστη. Στο δεύτερο κεφάλαιο παραθέτουμε την θεωρία πίσω από την 

μηχανική μάθηση και το συγκεκρινοποιούμε στην παλινδρόμηση καθώς εκείνη 

είναι η μέθοδος που χρησιμοποιούμε στην εργασία μας. Στο δεύτερο μισό του 
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κεφαλαίου, παραθέτουμε την θεωρία για τις δύο παραλλαγές των φίλτρων 

Kalman που χρησιμοποιούμε, το unscented και το extended Kalman φίλτρο. Στο 

τρίτο κεφάλαιο, αναφέρουμε όλα τα κομμάτια από τα οποία αποτελείτε η 

διάταξη μας. Στο τρίτο κεφάλαιο ο αναγνώστης θα βρει επίσης και μια 

περιγραφή των χαρακτηριστικών του ρομπότ που χρησιμοποιήσαμε κατά τις 

προσομοιώσεις μας. Στο κεφάλαιο τέσσερα, ξεκινάμε με το πώς συλλέξαμε τα 

δεδομένα μας και τα επεξεργαστήκαμε ώστε να μοιάζουν με πραγματικά 

δεδομένα που θα λάμβανε κανείς από ένα GPS. Το κεφάλαιο συνεχίζει με τα 

αποτελέσματα από τις τρεις μεθόδους δίνοντας στον αναγνώστη την απάντηση 

για το ποια από τις τρεις μεθόδους είναι πιο ακριβής. Το τέταρτο κεφάλαιο, 

κλείνει με τα πειράματα που κάνουμε εκτός του προσομοιωτή, με σκοπό να 

βεβαιωθούμε ότι τα φίλτρα Kalman λειτουργούν σωστά. Το τελευταίο κεφάλαιο 

περιέχει τα συμπεράσματα μας και μελλοντική δουλεία που μπορεί να γίνει για 

να συνεχιστεί αυτή η εργασία.
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1. CHAPTER 1          

         INTRODUCTION 

1.1 Motives 

1.2 Thesis goals 

1.3 structure of the thesis 

1.1 Motives 

The motive behind this thesis is the desire to have a robust and accurate method 

for better mobile robot localization. Nowadays, more and more everyday tasks can 

be performed by unmanned robots, especially tasks in places where no humans 

are expected to be, so the chances of an accident are low. Humans have been using 

mobile robots for various reasons instead of them manually performing these 

tasks. 

The benefits of robots in place of human labor are numerous. First and 

foremost, we have safety. Robots can be sent and work in environments that are 

not ideal or are even dangerous for humans, for example from a vast desert or 

the depths of an ocean to a radioactive region like Chernobyl. Additionally, thanks 

to 21st-century technological advancements the possibility of life in space becomes 

more and more viable. With today’s technology, a walk on Mars’s surface for a 

human being would be impossible, but that is not the case for a mobile robot. 

The second reason is costs. Trivial tasks like night-watching could be easily 

performed by a mobile robot equipped with a camera and some image recognition 

software. The modularity that mobile robots offer nowadays makes them a 

compelling option for reducing costs. Having one robot that, depending on its 
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equipped modules, can perform a few different tasks simultaneously is not 

something that big companies can ignore. Companies already use robots for heavy 

labor work, freeing up human talent to perform more elaborate, less intensive and 

less risky tasks. 

Having said all that, a mobile robot needs to know its position. Localization 

for a human might be a mundane task, but that is not the case for a robot. Mobile 

robots must know their position to plan their next move. The precision needed 

depends heavily on the nature of the task. Night-watching in a huge empty-of-

humans factory might not require millimeter-precision movements, but a 

maneuver on Mars's surface could cause the whole billion-dollar operation to go 

to waste. 

1.2 Thesis goals  

Our goal for this thesis is to compare different Kalman filters to a machine learning 

model in order to identify the better method for robot localization. Behind our 

motives there is the need for mobile robots to precisely know their pose; pose 

consists of their coordinates and their orientation. The knowledge of their precise 

pose will help the robot in a few different ways.  

Firstly, there is the navigation. In the last few years, motor companies have 

been trying to implement autonomous driving for vehicles, ranging from city cars 

to enormous trucks carrying tens of tons of cargo daily. Localization becomes 

essential because an autonomous vehicle requires both its pose and its target's 

location so as to be able to carry out its path planning. 

Next up, there are workplaces where traditional localization methods do 

not work. For instance, IMU localization would be unsuccessful in places where 

the terrain could cause the wheels to slip. In these scenarios, a robust and accurate 

method of localization is needed. 

Lastly, the efficiency of a mobile robot, both time efficiency and energy 

consumption efficiency, can add up during the whole lifespan of the robot. Better 

path planning can help the robot reach its destination faster and consume the 

least amount of energy. These factors might not be of importance for every kind 

of work, but over a large period, these factors can play a significant role. 
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To summarize, our goal is to benchmark the Extended and the Unscented 

Kalman Filter against a machine learning model, so we can conclude which 

method would be better for our mobile differential drive robot (we will be talking 

in more detail about our robot in later chapters of this thesis). 

1.3 Structure of the thesis 

 In this subchapter, we present the structure of the thesis. This thesis 

consists of five chapters. In the first chapter, we give an overview of the motives 

behind our study and what we tried to achieve. In the second chapter, we 

elaborate on the theory behind machine learning and the Kalman filters. About 

the theory of machine learning, we start with general information about the 

different machine learning methods, then we proceed with giving more 

information about the supervised machine learning method, and at the end we 

introduce the theory behind regression, which is what we used. After the theory 

of machine learning, we go on to discuss the theory behind Kalman filters. We 

follow the same pattern as we did with machine learning; we start with general 

information about the history of Kalman filters and how they started. Once we 

are done with the general information, we conclude with the theory about the 

extended and the unscented Kalman filters, which are the two Kalman filter 

variations we used for our experiments. 

In the third chapter, we present our experimental setup. We start with 

information about the robot we used in our experiments. Then, we demonstrate 

the simulator we used in order to have a visual representation of our robot, which 

among other things helped us with making sure that the inputs we were providing 

our robot with were received and executed correctly. After we cover all the 

necessary points about the simulator, we also bring up the software called robot 

operation system (ROS), which provided us with the workspace which enabled 

us to communicate with our robot. Lastly, in this chapter, we put forward the way 

we were able to collect the data we needed for our experiments. 

In chapter four, we show our results from our three different methods of 

predicting the current pose of our robot. We first specify a certain trajectory which 

the three methods will have to predict in order for us to distinguish the most 

accurate one. Then, we introduce the methodology we used in order to add noise 
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to our ground truth data. Next up, we go over one of our earlier failed attempts, 

where we used a different ROS topic to get noisy data and why that failed. At the 

end of the chapter, we present the results of all three methods used, by comparing 

them to the ground truth data. 

After validating our methods in the simulator, we move on to some 

experiments in real life. In the first experiment, we explore the capabilities of the 

GPS module our robot is equipped with. In the next two experiments, we use the 

data from the GPS module as input for our Kalman filters in order to make sure 

that the filters are working correctly also outside of the simulator. 

The last chapter is the conclusions chapter. In this section, we discuss our 

final thoughts to the reader based on the comparison of the three methods. Here 

is where the reader is called to ponder over the three methods, after seeing all the 

data and having all our notes before them. At the end of the chapter, we suggest 

some future work to be done. 
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2. CHAPTER 2          

     THEORETICAL INTRODUCTION 

2.1 Machine learning Theory 

2.2 Kalman filter theory 

2.1 Machine learning theory 

2.1.1 Machine learning introduction 

In this chapter, I would like to give a theoretical introduction to the machine 

learning method that was used to predict the pose of our robot. Before we dive 

into the regression model we used in our experiment, I would like to give a short 

overview of what machine learning is. 

As explained in the paper [1], machine learning is a subset of a broader 

term called artificial intelligence (AI). Machine learning is a process through which 

the computer is equipped with the ability to learn using data we provide in order 

to be able to make a decision as a human would. By creating and training a 

machine learning model, we enable it to comprehend complex problems and find 

solutions using the data it has already collected. 

There are four methods of machine learning. In the following section, we 

will go through them, giving a short explanation for all of them but focusing more 

on the method we ended up using. The first method is the supervised. This is the 

method we used. In this method the machine learning model takes as input a 

data set and tries to recreate the label data. The label data contain the information 

we want our model to output. In our case, we used the position, orientation and 

input at a specific time interval as input data set while training our model, while 
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we used the position of the robot at the next time interval as label. More specific 

information about our data will be found in chapter 4, where we explain exactly 

what we did and show our results.  

The next method of machine learning is called unsupervised. In this 

method, there is no label, meaning that we do not instruct our model on what 

the result should be, but rather it is left on its own to try and figure out possible 

patterns or connections inside the input data. In that sense, unsupervised learning 

can be used when there is no clear connection between the data, but we want the 

model to explore our dataset and check if it can find one. Also, the are no training 

data.  

The second to last machine learning technique is the semi-supervised 

machine learning method. The forementioned method is a combination of the 

previous two. It is used when there are some data that contain label as in the 

supervised method but some of them do not, like in unsupervised machine 

learning. We might need to use the semi-supervised method, when getting more 

labeled data can be expensive or just difficult. In these cases, instead of just using 

unsupervised machine learning we use a combination of supervised and 

unsupervised machine learning.  

The last machine learning method is called reinforced learning. In this 

method there is a start and an end. The agent is being given a positive reward 

when choosing the shortest way of reaching the goal. On the other hand, when 

making a wrong decision, it is given negative reward.  

2.1.2 Supervised machine learning 

In this section, we have an overview of the two different supervised 

machine learning types. The two types of supervised machine learning are called 

classification and regression. Here we provide an outline of both, and in the next 

chapter we focus more on regression, as this is the method we used in our study.  

[2]Before we get into the two types, I would like to explain a term which 

is instrumental in reader's comprehension. The term I am referring to is called 

"feature". In the bibliography you might encounter the names "attribute", 

"variable" or "dimension", which are all synonyms. A feature is an individual 
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property or characteristic of the phenomenon that we are studying and has to be 

measurable, so it can be a part of the data set we use for our machine learning. 

Features can have either discrete values, like zip codes and boolean characteristics, 

or continuous values, such as temperature and height. Features can also be 

categorized as numeric or symbolic. Numeric features can be measured on a scale 

and can be directly used in machine learning. Symbolic features are discrete and 

can be grouped into categories, for example eye color or grades. Symbolic features 

usually need to be converted into numeric values so that they can be used in 

machine learning. 

Both regression and classification are similar methods with just one main 

difference. Both methods use data sets in order to train them and then a different 

data set for testing their results. Both get a collection of features as input and try 

to predict the label of the data. Their main difference is that classification is used 

to predict discrete values as true or false, spam or not spam. In contrast, regression 

is used to predict continuous values such as price, age, position, and so on. 

2.1.3 Regression 

Linear regression is a statistical method used to model the relation between 

the features and the label. [3] The simplest form of regression would be the linear 

regression. In this case, we try to predict the label data using the dimensions, thus 

trying to find, as the name suggests, a linear relationship between the dimensions 

and the label. The mathematical representation would be: 

 

𝑦 =  𝛽1 ∗ 𝑋 +  𝛽0      (2.1) 

In equation       (2.1) 𝑦 is the label, 𝑋 is the dimension, 

𝛽1 is the slope and the 𝛽0 is the intercept.  
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Figure 2.1: Simple example for linear regression. The black dots are the data 

points, and the blue line is the model’s prediction. 

 

In Figure 2.1, we have a simple example for linear regression. The black 

dots present the data points, in this case we could have the x-axes be the feature 

and the y-axes to be the label. The blue line is the model's attempt to draw a 

straight line as it tries to minimize the residual sum of squares between the data 

points and its own prediction. Simple linear regression only uses one feature in 

order to predict the value of label. With linear regression, we can determine the 

relation between the feature and the label. 

Linear regression only works well under the specific conditions we 

mentioned above. If for example the relationship between features and label is 

not linear then, linear regression would be inappropriate to use. As seen in Figure 

2.2, on the left side we have data points with no linear relationship between them, 

as we see that the straight line does not fit the data points well. In this example, 

we are using a simple linear regression model, which is a variation of linear 
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regression, where the user can only have one dimension as input to predict the 

label. In contrast, there is multiple linear regression in which you can have more 

than one dimension, but you still need a linear relationship between dimensions 

and the label. The last constraint makes even the multiple linear regression not 

suitable for the dataset on the right.  

As we can imagine, a machine learning model that can handle nonlinear 

data would be useful, as there is a plethora of use cases where the dimensions 

and the label are not linearly connected. For example, the pricing of a house based 

on the different features it could have, is a use case where a nonlinear model 

would be used.  

 

 

Figure 2.2: [4]Simple linear regression (left). Polynomial regression (right). 

 

The solution to this problem comes in the form of polynomial regression. 

In polynomial regression the relationship between the features and the label are 

model based on a 𝑛𝑡ℎ degree polynomial. In our study, we were not certain about 

the relationship between our data, so we used this method as it is very flexible, 

because we can change the degree of the polynomial as we see fit. During our 
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experiments, we used different degrees to find the better fit. We used a mixture of 

data-driven decision, in which we were trying different degrees and based on the 

outcome we selected the one we finally used. We also used a knowledge-driven 

decision, in which because of the physics of the problem we could rule out high 

degrees for our polynomial. In the end, having combined both methods, we are 

certain that we used the best degree for our polynomial. 

2.2 Kalman filter theory 

2.2.1 Introduction to Kalman filters  

In this section, I would like to introduce Kalman filters and the theory 

behind them. We start with the history of Kalman filters, then we offer an 

overview of the general mechanisms behind the Kalman filters. Lastly, we get into 

the specifics of the two Kalman filter variations we used in our study, the extended 

Kalman filter and the unscented Kalman filter.  

In 1960, R.E Kalman published his paper on a new method capable of 

recursively computing the state of a linear dynamic system through noise in an 

optimal way using the mathematical formula of what would later become the 

Kalman filter [5]. Due to the great advancement of computational power, the 

Kalman filter became a subject of research and found many applications, 

particularly in autonomous or assisted navigation. Even in the early years of its 

creation, it played a crucial role in the navigation systems of the Apollo lunar 

mission.  

One of the biggest weaknesses of the Kalman filter were the nonlinear 

systems. One can easily see the usefulness of a robust mathematical way for 

predicting the state of a nonlinear system, as there is a plethora of nonlinear 

systems in the real world. The breakthrough came in the 1960s in the form of 

the Extended Kalman filter (EKF). The EKF was able to function for nonlinear 

systems as it would linearize them and then apply its mechanisms. After the EKF 

was invented, it made the Kalman filter more applicable for real life problems. In 

the 1990s, the next variation of the Kalman filter would be developed, called 

Unscented Kalman filter. Its purpose was to overcome the limitations of the EKF, 

making its appeal even greater.   
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Before we dive into the specifics of EKF and UKF, let me give you an 

overview of the general mechanism of the Kalman filters. The general mechanism 

is the same for all Kalman filters, so it would make sense to present it here.  

As a kind of high-level overview, you can think of the Kalman filter as a 

two-step process. Kalman filters use a form of feedback control, where the filter 

will predict the state of the system at a certain point in time and then it will get 

feedback in the form of an actual measurement. Of course, we assume that the 

measurement contains noise, so the filter does not consider it as the ground truth. 

During this study, we will be referring to these two steps as the prediction step 

and the update step as we see in Figure 2.3. Every equation we will be presenting 

below will fall under one of the two steps. In the predict step, we estimate the 

state and the error covariance of the next time step, which gives us a a priori 

estimate. In the update step, where we incorporate the measurement into our 

estimation, we calculate a new a posteriori estimate[5].  

This would be a rough high-level overview of what a Kalman filter does.  

 

 

Figure 2.3: Kalman filter Cycle. The time update step predicts the state ahead in 

time. The measurement update adjusts the prediction by incorporating a noisy 

measurement at that time. The measurement update step can also be found as 

the update step [5]. 
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2.2.2 Extended Kalman filter theory 

 In this section, we describe the steps of the extended Kalman filter. To 

provide a better explanation of the EKF, we present and explain the 

implementation of the EKF we used step by step. The implementation we used 

is originally from, but we had to make some modifications to the code, mostly in 

the inputs of the script. More information about the changes to the code will be 

presented in chapter 4.  

First, we initialize our state vector. The state vector is a set of variables 

which can be used to describe a system, in our case this would be our robot 

moving in 2 dimensions. It is common for position and velocity variables to be a 

part of the state vector, same goes also for variables referring to the orientation. 

Lastly, system specific variables can also be a part of the state vector, like sensor 

biases or different types of accelerations. In our case, our state vector consists of 

the x and y coordinates, as we mentioned earlier, because the robot is moving in 

2-dimensions, so the z axis does not come in play. As for orientation, the yaw 

angle will also be a part of the state vector and the last property is the velocity of 

the robot. So, the state vector will be a 4 by 1 vector and it will consist of x and 

y coordinates of the robot, its yaw angle and its velocity as show below: 

 

𝑛 =  [

𝑥
𝑦
𝜃
𝑣

] =  [

0
0
0
0

] 

Figure 2.4: The initial values of the state vector n for t = 0. x and y are the 

coordinates of the robot, θ is its yaw angle and v is its velocity. 

 

After we initialize the state vector, we can proceed to predict the next state 

of our system. For us to be able to predict the next state we need to two things; 

first we need to know the current state, which we do, and the second thing we 

need is the motion model. The motion model describes how the state variables 

evolve as the time passes. We present our motion model in the figure below. We 

also have to mention here that the motion model depends on the robot. Our robot 

has differential movement, so it can be described with the equation below. A robot 
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that is able to steer its wheels would need different equations in order to be 

described. 

 

[

𝑥𝑡+1

𝑦𝑡+1

𝜃𝑡+1

𝑢𝑡+1

] =  [

𝑥𝑡 + 𝑣 ∗ 𝑑𝑡 ∗ 𝑐𝑜𝑠(𝜃𝑡)

𝑦𝑡 + 𝑣 ∗ 𝑑𝑡 ∗ 𝑠𝑖𝑛(𝜃𝑡)

𝜃𝑡 + 𝑑𝑡 ∗ 𝜔
𝑢𝑡

] 

Figure 2.5: Position, yaw angle and velocity of the robot in the next time 

interval 

 

In Figure 2.5, we present the variables which refer to the next time interval 

with the index  𝑡 + 1. These are the values we want to predict. The variables that 

refer to the current moment in time have the index 𝑡. 𝑑𝑡 is the time step we used 

during our experiment which was 𝑑𝑡 =   0.1428𝑠. This selection was done because 

we could not go above ros-rate = 7, due to hardware limitations. In more powerful 

systems this limitation would not exist. Going back to ros-rate, this is the rate 

with which ros is running when operational. A higher rate would let us control 

our robot more times per second, so the movement would be more precise as we 

would be able to give instructions to our robot more frequently. Highter frequency 

would also be more demanding on the system and lead to higher power 

consumption. For our case, 7 was the higher we could go without facing any 

issues. Since we did not have to be extremely precise, ros-rate = 7 was satisfactory.  

 In the next step, we compute the Jacobian of the motion model. In order 

to calculate the Jacobian, we have to do partial derivates on the equations of the 

motion model, as seen in the equations below. Below we present only the ones 

which are complex and not the rest for them. 
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𝑑𝑥

𝑑𝑦𝑎𝑤
=  −𝑣 ∗ 𝑑𝑡 ∗ 𝑠𝑖𝑛(𝑦𝑎𝑤)     (2.1) 

𝑑𝑥

𝑑𝑣
=  𝑑𝑡 ∗ 𝑐𝑜𝑠(𝑦𝑎𝑤)     (2.1) 

𝑑𝑦

𝑑𝑦𝑎𝑤
=  𝑣 ∗ 𝑑𝑡 ∗ 𝑐𝑜𝑠(𝑦𝑎𝑤)    (2.2) 

𝑑𝑦

𝑑𝑣
=  𝑑𝑡 ∗ 𝑠𝑖𝑛(𝑦𝑎𝑤)     (2.3) 

 

As we can see in the above equations, we do partial derivatives on the x 

and y axis with respect to the variables v and yaw. Finally, after computing the 

rest of the partial derivatives, we end up with the Jacobian as we present it below. 

 

𝑗𝐹 =  [

1 0 −𝑑𝑡 ∗ 𝑣 ∗ 𝑠𝑖𝑛(𝑦𝑎𝑤) 𝑑𝑡 ∗ 𝑐𝑜𝑠(𝑦𝑎𝑤)

0 1 𝑑𝑡 ∗ 𝑣 ∗ 𝑐𝑜𝑠(𝑦𝑎𝑤) 𝑑𝑡 ∗ 𝑠𝑖𝑛(𝑦𝑎𝑤)

0
0

0
0

1
0

0
1

]  (2.4) 

 

The last entity we need to compute in the prediction step is the covariance 

of the system. To begin with, we need to initialize the process noise covariance 𝑄. 

The process noise covariance matrix a is 4 𝑥 4 table containing the variances of 

the variable from the state vector. The process noise covariance matrix contains 

non-zero values only in the main diagonal of the table as the variances of the 

variable are independent of each other. For these values we had to perform tests 

with different values in order to find the values that would perform the best, 

trying to give the EKF the best chances to perform as good as it can. 

 

𝑄 =  [

𝜎𝑥 0 0 0
0 𝜎𝑦 0 0

0
0

0
0

𝜎𝜃

0
0
𝜎𝑣

]

2

    (2.5) 
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Finally, we can now compute the covariance of the state using the equation  

   (2.6)  

 

𝑃𝑝𝑟𝑒𝑑  = 𝑗𝐹 ∗ 𝑃𝐸𝑠𝑡 ∗ 𝑗𝐹𝑇 + 𝑄    (2.6) 

 

This is the last step for the prediction part of the EKF. Next, we move to 

the update part of the filter. At this point the filter uses the measurements we 

provided it with in order to correct its prediction. We start by initializing the 

Jacobian of the Observation model, which we present below. 

 

𝑗𝐻 =  [
1 0 0 0
0 1 0 0

]    (2.7) 

After that, we compute the innovation or residual between the measurement and 

the estimated position of our robot, as we see below. 

 

𝑦 = 𝑧 − 𝑧𝑝𝑟𝑒𝑑      (2.8) 

 

where 𝑧 is the table with the x and y coordinates from our measurements as we 

can see in equation      (2.9). 

 

𝑧 =  [
𝑥
𝑦]     (2.9) 

 

The 𝑧𝑝𝑟𝑒𝑑 table is the table containing the x and y coordinates we predicted 

earlier, and it is shown in equation      (2.10). 

𝑧𝑝𝑟𝑒𝑑 =  [
𝑥
𝑦]     (2.10) 
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As we did with process noise covariance 𝑄  matrix, we also have to initialize 

the measurement noise covariance 𝑅 matrix as we see below. The measurement 

noise covariance matrix captures the variance and the covariance of the system's 

measurements. For selecting values for the measurement noise covariance matrix, 

we did tests with different values in order to find the best performing ones. Again, 

as with the process noise covariance matrix, only the main diagonal has non-zero 

values, as the variances of the x and y coordinates are independent to each other. 

 

𝑅 = [
𝜎2

𝑥 0

0 𝜎2
𝑦

]     (2.11) 

 

After that, we can compute the Innovation (or residual) covariance using 

equation     (2.12). The innovation covariance quantifies the 

expected uncertainty the innovation which is as we said the difference between 

the measurement and the prediction, and we denoted it with the letter 𝑦. 

 

𝑆 = 𝑗𝐻 ∗ 𝑃𝑃𝑟𝑒𝑑 ∗ 𝑗𝐻𝑇 + 𝑅    (2.12) 

 

After calculating the innovation covariance, we can proceed on computing 

the Kalman gain. The Kalman gain is chosen so that it can minimize the state 

covariance and it is calculated with the equation below. 

  

𝐾 = 𝑃𝑃𝑟𝑒𝑑 ∗ 𝐻𝑇 ∗ 𝑆−1     (2.13) 

 

The Kalman gain determines how much weight should be put on the new 

measurement when updating the state of the system. If the covariance of the 

measurement is high, meaning that the measurement is noisy, the Kalman gain 

will be smaller, making the filter relay more on the prediction. In contrast, if the 
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measurement is less noise the Kalman gain will be bigger, making the filter rely 

more on the measurement instead of the prediction.   

The last two steps are to update the estimated state and the estimated 

covariance of the system. As we see in equation     

 (2.14), the new estimated state is the sum of the predicted state and the 

Kalman gain multiplied by the residual. 

 

𝑥𝐸𝑠𝑡 = 𝑥𝑃𝑟𝑒𝑑 + 𝐾 ∗ 𝑦     (2.14) 

 

After the estimated state is calculated, we compute the estimated covariance 

using the Kalman gain, the Jacobian of the Observation model and the predicted 

covariance of the system. The equation we used for the estimation of the 

covariance is shown below. 

 

𝑃𝐸𝑠𝑡 =  (𝛪 − 𝛫 ∗ 𝑗𝐻) ∗ 𝑃𝑃𝑟𝑒𝑑    (2.15) 

 

These were the steps we used for the EKF, in chapter 4 we will present 

how it performed against an unscented Kalman filter, which we will present in 

the next chapter, and the machine learning model. 

2.2.3 Unscented Kalman filter theory 

Before we start diving into the equations of the unscented Kalman filter, 

let us point out the flows of the EKF and how the proposal of Jeffrey Uhlmann, 

the creator of the UKF, fixed those issues. Let us start with condition under the 

UKF is performing better than the EKF. UKF performs better than EKF when 

the system is highly non-linear, if the system does not present highly non-linear 

properties the two filters are expected to perform similarly. The flaw of the EKF 

is based on the way it calculates the optimal state vector and the optimal 

prediction. When the system is linear the filter can compute those values, in non-

linear cases the filter has to perform a linearization and here is where the 

discrepancy of the two filters appears. EKF uses a linear approximation in order 
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to perform the linearization and then apply the rest of the steps, in contrast UKF 

uses third order approximation (Taylor series expansion) [6]. This is why when 

the system is not highly non-linear the two filters can perform similarly, as even 

a first order approximation does not deviate much from the result a third order 

approximation would give.  

Now that we explained why the UKF performs better than the EKF in 

highly non-linear systems, we will go through the steps we followed in our 

implementation of the UKF, similar to what we did with the EKF. 

 We will start with our analysis with the three constants that will help us 

fine tune our filter these are alpha, beta and kappa. Alpha is responsible for the 

spread of the sigma point, we will explain that sigma points are later, a large value 

would mean that the sigma points would be far from the mean, in contrast a 

small value would generate the sigma points near the mean. Typical values for 

alpha are around the 10−3  − 10−4 order of magnitude. In our case we went with 

alpha being equal to 10−3. The second parameter is beta. Beta has to do with the 

distribution, and we set beta equal to two, which lets our sigma points match up 

to the fourth moment (kurtosis) of a Gaussian distribution. The last tuning 

parameter is kappa, kappa is also responsible for the spread of our sigma points 

around the mean. Typical values for kappa are 0 − (3 − 𝑛) , where 𝑛 is the number 

of variables in the state vector. Our selection for the values of the three tuning 

parameters is typical in literature [6]. 

 In order for us to proceed we would have to explain what sigma points 

are, so the reader can follow along the steps of our implementation of the 

unscented Kalman filter. Sigma points are a minimal set of carefully selected 

points that capture the uncertainty of the state distribution, by having the same 

mean and the covariance of the distribution.  

 The UKF has also some similarities with the EKF, UKF is also a two-step 

filter with the first step being the predict step and then we have the update step. 

We also have a state vector which will be the same as the state vector in EKF, 

containing the x and y axes coordinates, the yaw angle of the robot and its velocity. 
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𝑛 =  [

𝑥
𝑦
𝜃
𝑣

] =  [

0
0
0
0

]      (2.16) 

 

We also have the two noise matrices as we did before, these are the process 

noise covariance 𝑄 and the measurement noise covariance matrix 𝑅 as shown in 

equations     (2.17) and      (2.18). 

 

𝑄 =  [

𝜎𝑥 0 0 0
0 𝜎𝑦 0 0

0
0

0
0

𝜎𝜃

0
0
𝜎𝑣

]

2

    (2.17) 

 

𝑅 = [
𝜎2

𝑥 0

0 𝜎2
𝑦

]     (2.18) 

 

After having initialized all the parameters we need, we can procced to 

computing. We start by generating the sigma points using the estimated values of 

the state and the covariance of the system. After generating them we predict their 

movement using the same motion model we used for the EKF. The last for update 

part of the filter is to calculate the predicted values for the state and the covariance 

of the system, using the equations     (2.19) and   

  (2.20).  

 

𝑥𝑃𝑟𝑒𝑑 = (𝑤𝑚 × 𝑠𝑖𝑔𝑚𝑎𝑇)𝑇    (2.19) 

 

𝑃𝑃𝑟𝑒𝑑 = 𝑃𝑃𝑟𝑒𝑑 + 𝑤𝑐 ∗ 𝑑 × 𝑑𝑇    (2.20) 

 

Before we can compute the state and the covariance, we firstly need to 

compute the weights 𝑤𝑚 and 𝑤𝑐 as well as the variable 𝑑. In variable 𝑠𝑖𝑔𝑚𝑎 we 
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stored our sigma points. Let us start computing what we are missing. We will 

start with the variable 𝑑 which is the difference between our sigma points and the 

predicted state of our system, shown in equation    (2.21) 

 

    𝑑 = 𝑠𝑖𝑔𝑚𝑎 − 𝑥𝑃𝑟𝑒𝑑   (2.21) 

 

Next up we must calculate the weights 𝑤𝑚 and 𝑤𝑐. The first values of the 

two weights get calculated using the equations below, where 𝑛𝑥 is the number of 

variables in the state vector and it is equal to 4. The variable 𝜆 is calculated using 

the equation     (2.24) 

 

𝑤𝑚 =  
𝜆

𝜆+𝑛𝑥
     (2.22) 

 

𝑤𝑐 =  
𝜆

𝜆+𝑛𝑥
 (1 − 𝛢2 + 𝛣)    (2.23) 

 

𝜆 =  𝛢2 ∗ (𝑛𝑥 + 𝛫) − 𝑛𝑥    (2.24) 

 

The rest 2 ∗  𝑛𝑥 − 1 weights are calculated using the equation    

  (2.25) 

 

𝑤𝑚, 𝑤𝑐 =  
1

(2∗ (𝜆+𝑛𝑥))
     (2.25) 

 

This would be all for the prediction step for our UKF implementation. We 

first generated our sigma points and then we predicted their movement. After 

that, we calculated the weights 𝑤𝑐 and 𝑤𝑚 and used them in order to calculate the 

predicted state and covariance of the system. After the prediction step, we will 

move to the update state, explaining all our steps in the process. 
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 We start the update step, by using our observation model, equation   

   (2.26),  and the predicted state we previously calculated, in order 

to compute our predicted measurement as shown in equation     

 (2.27) . 

 

𝐻 =  [
1 0 0 0
0 1 0 0

]     (2.26) 

 

𝑧𝑃𝑟𝑒𝑑 = 𝐻 × 𝑥𝑃𝑟𝑒𝑑      (2.27) 

 

The we compute the residual using the equation below, as we also did in the EKF. 

 

𝑦 = 𝑧 − 𝑧𝑝𝑟𝑒𝑑      (2.28) 

 

Next step would be to generate the sigma points again but this time instead 

of using the estimated values of the state and covariance of the state we use the 

predicted ones. After generating them, we calculate their covariance.  

 

𝑠𝑡 = 𝑠𝑡 + 𝑤𝑐 ∗ 𝑑 × 𝑑𝑇     (2.29) 

 

𝑑 = 𝑧_𝑠𝑖𝑔𝑚𝑎 − 𝑧𝑏     (2.30) 

 

𝑧_𝑠𝑖𝑔𝑚𝑎 = 𝐻 × 𝑠𝑖𝑔𝑚𝑎    (2.31) 

 

𝑧𝑏 = (𝑤𝑚 × 𝑠𝑖𝑔𝑚𝑎𝑇)𝑇     (2.32) 
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Then we will compute the Kalman gain which can be found using the 

equation below. 

 

𝐾 =  𝑃𝑥𝑧 × 𝑠𝑡−1     (2.33) 

 

We have already calculated the 𝑠𝑡 variable, but not the variable 𝑃𝑥𝑧. For us 

to do so we need the following calculations. 
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𝑑𝑥 = 𝑠𝑖𝑔𝑚𝑎 −  𝑥𝑃𝑟𝑒𝑑      (2.34) 

 

𝑑𝑧 = 𝑧𝑠𝑖𝑔𝑚𝑎 − 𝑧𝑏     (2.35) 

 

𝑃𝑥𝑧 =  𝑃𝑥𝑧 + 𝑤𝑐 ∗ 𝑑𝑥 × 𝑑𝑧𝑇    (2.36) 

 

After that, can finally calculate the Kalman gain, and with that we can 

calculate the estimated state and covariance of our system, using the equations 

below, which is our final step in the process. 

 

𝑥𝐸𝑠𝑡 =  𝑥𝑃𝑟𝑒𝑑 + 𝐾 × 𝑦     (2.37) 

 

𝑃𝐸𝑠𝑡 = 𝑃𝑃𝑟𝑒𝑑 − 𝐾 × 𝑠𝑡 × 𝐾𝑇    (2.38) 
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3. CHAPTER 3          

        SIMULATION SETUP 

3.1 Robot description 

3.2 Gazebo description 

3.3 Robot Operating System 

3.4 Data acquisition 

3.1 Robot description 

In this chapter, we talk about the specifics of our robot. Our robot consists of two 

parts. The first part is the Jackal from Clearpath robotics, and the second part is 

the manipulator on top of it from Kinova robotics. A picture of the robot can be 

found below. Everything we needed was compiled in this github repository from 

Sungwwoo and it can be found here: 

https://github.com/Sungwwoo/jackal_kinova_simulator. In this repository, we 

found detailed instructions on how to install all the necessary dependencies and 

how to launch a world in gazebo with the robot inside.  
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Figure 3.1: A picture of the robot used in our experiments. 

 

The manipulator on top of Jackal was not necessary, as it was not used in 

any of our experiments, but it opens possibilities for further work on the matter. 

As for Jackal, it weights 17𝐾𝑔 and its external dimensions are 508 𝑥 430 𝑥 250𝑚𝑚. 

The manufacturer claims 4ℎ of usage and a maximum payload of 20𝐾𝑔. By 

default, Clearpath has open API for both ROS Melodic and ROS Kinetic. 

Unfortunately, we are using ROS noetic, so we are not able to use the official API 

on the actual robot, without migrating to a different ROS version. 

The capabilities of Jackal can be extended. The robot can be equipped with 

a variety of sensors. Cameras can also be installed on the robot making it able to 

provide video feed to the user. It also provides 5V, 12V and 24V power options 

for any additional component to use. The robot also has an internal area which 

can be used for additional computing power or storage, depending on the user's 

needs. Satellite navigation modules can also be installed on our robot. In our case 

we are using a module called Duro inertial for satellite navigation, which we will 

explore later on. 

 All these technologies would be useless if they could not be properly 

protected and maintained. The Jackal's chassis is built from aluminum which 

makes it suitable for all terrain operation. Jackal's built quality gave it an IP62 
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rating, which validates it for use, where temperatures can vary from -20 Celsius 

all the way up to +45 Celsius.  

Even though we did not use the manipulator as we already said, we still 

want to present some of its features. The kinova gen3 lite manipulator has a 

maximum reach of 760𝑚𝑚, can hold a maximum of 0.5𝐾𝑔 of continuous payload. 

Its weight is 5.4𝐾𝑔 and its power consumption is 20𝑊. 

At this point, we would like to also present the GPS module our robot is 

equipped with. The Duro inertial, is a multi-band, multi-constellation, GNSS and 

INS module, developed by Carnegie Robotics. Multi-band means that it can receive 

signals on multiple different frequency bands, which is useful as different 

navigation satellite systems use different frequency bands. Being able to use 

multiple navigation satellite systems increases the accuracy and reliability of 

localization. Carnegie Robotics claims that it can provide location data with 

centimetre accuracy. Multi-constellation means that the module can use different 

satellite constellations such as, GPS from US, GLONASS from Russia, BeiDou from 

Chine and Galileo from Europe. GNSS is the global navigation satellite system, 

which is the term coving all the satellite navigation system that provide 

geolocation and time data. Lastly, INS (Inertia Navigation System) is the system 

which uses gyroscopes and accelerometers in order to calculate the position, 

orientation and velocity of the object, where the module is mounted on. Combined 

GNSS and INS provide accurate and reliable localization.  

3.2 Gazebo description 

Gazebo is a 2D/3D simulator initially developed as a part of a Ph.D research 

project in 2002. Gazebo supports four different physics engines ODE, bullet, 

simbody and dart, with ODE (Open Dynamis Engine) being the default one and 

the one that we ended up using. These physics engines allow gazebo to simulate 

accurately the physical phenomena of the modeled scenarios. Essentially, the 

physics engines enable our simulator to simulate the laws of physics in a simulated 

environment.  

ODE's features make is a solid option for rigid body simulation. ODE is a 

modern library which provides a good balance between performance and 
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capabilities. About the performance part, it has to be fast enough in order to be 

able to offer a good experience to the user. ODE manages to achieve these levels 

of performance also since it is rewritten in C and C++. As for its capabilities, ODE 

provides necessary features as joint support making it easy to simulate robots 

with joints, our robot also has a manipulator with joints, but we are not using 

them in the scope of this thesis. ODE has built-in collision detection using axis-

aligned bounding boxes (AABB). We should also mention ODE's stability and the 

robustness. 

Apart from the physics engine, gazebo also provides a graphical environment. 

In the gazebo graphical environment, we have two main categories, world and 

model. As world, gazebo considers any static object and as model all the dynamic 

ones. Both world and model are configurable through parameter easily accessible 

via the gazebo graphical environment. 

At this point, we would like to present the architecture of gazebo. In Figure 

3.2 we present a high-level representation of gazebo's architecture. The 

architecture we see below was originally created in 2004 and had little to no 

changes as it is simple, and it relays on third party software to enlarge its 

capabilities. This structure enables gazebo to be an independent platform which 

allows different physics engines for example. There is also a distinction between 

server and client. On one hand, there is the server, where the actual simulation 

takes place, things like the rendering, the sensors and the physics belong to the 

server side. The client on the other hand is responsible for the graphical user 

interface and the ability to interact with the simulation [7]. 
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Figure 3.2: High-level gazebo architecture[7]. 

As we are using a wheeled mobile robot, our movement is limited to x and y 

axes surface. This limitation entails that we need only the x and y coordinates, 

regarding the position of the robot, and only the yaw angle in respect to the 

orientation of the robot. Below we have a picture showing our robot. In Figure 

3.3, we present our robot in an empty world, and we have noted the x axes, y 

axes and the yaw angle (denoted with the letter 𝜃). These are the entities we are 

interested in. We have also noted the z axes for the shake of completeness. 

 

 

Figure 3.3: Robot's pose in Gazebo. 
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Having to deal with only the data for the x and y coordinates and the yaw 

angle for the orientation and not all six variables needed to specify the pose of a 

non-point abject in 3-dimensional space (see the figure below) significantly 

reduces the amount of data we need to compute for our experiment. 

 

 

Figure 3.4: [8] Three axes and three angles, all needed in order to describe the 

pose of an object in the three-dimensional space. 

3.3 Robot Operating System (ROS) 

3.3.1 General ROS information 

Robot operating system is an open-source robot software development 

software. ROS creates a workspace where the different components of the robot 

can talk to each other using nodes and topics. We would not have any use for 

ROS if we were not able to interact with the different components of the robot 

ourselves. 

Let us break down the communication between components. Most robots 

consist of actuators that make the robot move, sensors are the components that 

let robots read their surroundings, and control systems which decide the robot’s 
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actions. ROS lets us build these components with relative ease and make them 

interact with each other. 

We should also mention the different versions ROS offers. ROS is separated 

in two main versions, ROS 1 and ROS 2. ROS 1 is legacy and is the one we are 

using, more specifically, we are using ROS 1 noetic release. ROS 1 is only available 

for linux and still holds the majority of the market, as it is common in the industry 

to delay upgrades in software for security and possibly not polished upgrades. 

Also, it could be that years of work in ROS 1 would need great time and effort to 

migrate to ROS 2, as the transition is not as direct as going from one ROS release 

to another of the same version. There have been tools that help with the transition 

from ROS 1 to ROS 2, but this is still an Issue for big project in the industry.  

Having said all that, ROS 2 is still a great step forward for the robotics’ 

community. ROS 2 offers multiplatform support for windows, linux and macOS, 

making broadly usable for users. One more feature of ROS 2 is the improvements 

in security. ROS 2 offers authentication and encryption for its communications 

which makes it especially appealing in a networked environment. 

3.3.2 Thesis specific ROS information 

After some general information about ROS, we now want to be more specific 

about how we used ROS. In this section we present our robot specific topics and 

nodes that we use and in general how we used ROS for the purpose of this thesis. 

In Figure 3.5, we have a graphic representation of all the nodes and topics 

as well as the relations between them that are active during our script execution. 

The rectangles are called topics, and the ellipses are called nodes. Nodes can 

subscribe to a topic; this is indicated by an arrow coming from the topic and 

pointing to the node. Subscribing to a topic means that the node is getting 

information from that topic. Nodes can subscribe to a topic but can also publish 

to one. Publishing is indicated by an arrow going from the node towards the topic 

that it publishes to. Publishing to a topic means that the node is providing 

information to that topic.  

We are not going to examine all the topics and nodes, as there is a high 

number of them because of the complexity of our robot and all of its different 
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components. We are going to focus on the " Jackal " node. To interact with our 

robot, we created the aforementioned node. As we can see in Figure 3.5, our node 

is subscribed to two topics "/gazebo/model_states" and "/clock" and publishing to 

"/jackal_velocity_controller/cmd_vel" and "/rosout".  

Let us begin with the two topics that Jackal subscribes to. Starting with the 

simpler one which is the clock one. The clock topic creates a ground truth 

regarding time among the different systems of the robot, by creating a virtual 

clock. Having a common ground for time ensures that all the components that we 

talked about can work in sync. The clock topic is not relevant for us, but we are 

mentioning it for completion. The second topic Jackal subscribes to is the 

"/gazebo/model_states". This is the topic that provides us with the real pose of the 

robot. As we have already mentioned, our robot moves in two dimensions x and 

y, so its pose can be described with just the x, y coordinates and the yaw angle.  

Next up, we talk about the two topics that Jackal publishes to. First up we 

will start with the "/jackal_velocity_controller/cmd_vel". This is the topic where 

we publish the speed, both linear and angular, we want our robot to have an 

input. The last topic we will need is the "/rosout". This topic is used for 

monitoring and debugging purposes. This topic is also not relevant for us but we 

mention it for completion.  

To sum up, these aforementioned topics are the topics that our node is 

interacting with either by publishing, providing information to them, or by 

subscribing to them, retrieving information from them.  
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Figure 3.5: rqt_graph, all nodes and topics that run during the script execution. 
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3.4 Data acquisition 

In this part, we explain the process of obtaining positional data from 

our robot. We require data about the pose of our robot for both the machine 

learning and the Kalman filters. This means we need to make sure that we 

are getting the data from the correct source. To do this, we must choose 

the correct topic and make sure the data get saved correctly, so no bugs get 

introduced during the process. 

We start with the odometry data. In order to get the data from 

gazebo we are subscribing to the odom topic. Once we get our odometry 

message, we need to get into pose, so we can access the pose of our robot. 

Then, it is straightforward to assign the values of the x and y coordinates 

to some variables. For the orientation, we first need to get all three angles 

(roll, pitch, and yaw) as quaternions and then use the 

euler_from_quaternions method to convert them to Euler angles. After we 

acquire the x and y coordinates and the yaw angle, we can simply output 

our three values into a csv file, in order to make the processing of the data 

easy. 

Now for the ground truth, we follow the same principles with the 

small exception that this time x, y, and z coordinates are given in one string. 

To solve this issue with have to resort to splitting the string into three, one 

for each coordinate. Once this is done, we have our x and y coordinates, 

meaning that we only miss the yaw angle, which can be retrieved in the 

same way we did for the odometry data, using the euler_from_quaternions 

method. 

After acquiring the odometry data and the ground truth, we also 

need the control input. For our Kalman filters and our machine learning 

model to work, we have to be able to access the control input info. This is 

something that we could hard code into the Kalman filter and in the data 

for the machine learning model, but this would not only be bad practice 

but would also limit us to using simple movements, meaning a fixed set of 

linear and angular speeds. Using the time module, we are now capable of 

using elapsed time in order to change the control input as we wish using 
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the series of if statements. As a result, we can have different linear and 

angular speeds, meaning that our robot can now perform more complex 

series of movements. Once the variables for linear and angular speed get 

their values, we output them in a csv file as we also do for the odometry 

and the ground truth. Once that is also done, we publish our speeds to the 

cmd_vel topic. 
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4. CHAPTER 4          

        DATA AND RESULTS 

4.1 Acquiring comparison data 

4.2 Adding noise 

4.3 Odometry topic 

4.4 Machine learning 

4.5 Extended Kalman filter 

4.6 Unscented Kalman filter 

4.7 Real life experiments 

4.1 Acquiring comparison data  

As for comparing the Kalman filters and the machine learning model, we decided 

to use a sinus movement. To get the pose of the robot during the sinus movement 

we first had to find a way to make the robot move accordingly. This task was not 

trivial as the only inputs we could provide our robot with were its linear and 

angular speeds, thus we were forced to get creative.  

 The solution to this problem came in the form of a simple point in the 2-

dimensional space. As we could not use x and y coordinates as inputs for our 

robot, we created a point, which would move according to a sine. Its y axis was 

defined with a simple sine function as we see below, 

 

𝑦 = 𝐴 ∗ sin (𝜔 ∗ 𝑡)     (4.1) 
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where y is the y coordinate measured in meters, A is the amplitude measured in 

meters, t is the time measured in seconds, and ω is the angular speed measured 

in radians per second. In our case, we used 𝐴 = 5𝑚 and 𝜔 = 0.05 𝑟𝑎𝑑/𝑠. These 

values were selected as they would give us a clear sinus movement as we see in 

the figure below and the actual movement needed from the robot was achievable. 

For example, a robot like ours would not be able to perform a movement with its 

angular speed being 𝜔 = 5 𝑟𝑎𝑑/𝑠. 

 

 

Figure 4.1: Sinus movement, A = 5m and ω = 0.05rad/s. 

4.2 Adding noise 

As our data came from the "/gazebo/model_states" topic, meaning that our 

data were error-free, making it impossible for us to correct them. The solution to 

this problem was given in the form of adding artificial noise to our data. Our idea 

was to try to mimic the data that we would get by using a GPS, so we added a 

random number between −0.5𝑚 and 0.5𝑚 to every value. We used the RAND 

method of excel in order to add the noise. The RAND function is a uniform 

function meaning that each number in the range has the same probability of being 

selected. In the Figure 4.2 we created 10000 random numbers using the RAND 

function. As we can see the distribution is not perfect, but this has to do with the 

fact that we don’t have an infinite amount of numbers in our experiment.  

 



37 
 

 

Figure 4.2: Experiment for proving the uniformity of the RAND function. 

 

By default, the RAND function provides a random number from 0 up to 

1, but in our case, we wanted the noise to be between −0.5𝑚 and 0.5𝑚. We 

managed to create random numbers from −0.5 and 0.5. using the equation  

    (4.2) in excel. 

 

𝑅𝐴𝑁𝐷() − 0.5     (4.2) 

 

This expression simply creates a random number from 0 up to 1 and by 

subtracting 0.5 we manage to move the results inside the range we want. 

In order to better present our method of adding noise and its results let us 

present you an example. In the Figure 4.3 we present in blue the actual position 

of our robot during a random run. These data were recorded from the 

"/gazebo/model_states" topic, meaning that there are not errors in our data. In the 

orange, we present the same data after adding noise [−0.5. .0.5]𝑚. As we can see, 

the orange dots follow the general course of the actual trajectory. 
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Figure 4.3: The blue dots represent the true trajectory of the robot. The orange 

dots represent the position of the robot after adding noise. 

 

With the example above we have presented everything we did during the 

process of adding noise to our data. Hopefully this section gave you a good 

understanding of why and how we added noise to our data. 

4.3 Odometry topic 

Before we decided to add noise to our data, we tried to use the data 

provided by the odometry topic. The odometry topic provides the pose of the 

robot using data from sensors like wheel encoders or inertia measurement units 

(IMU). One can easily understand that the precision of odometry is quite 

susceptible to factors such as slippage due to differences in the terrain because the 

power provided to the wheels does not necessarily correspond to the distance 

traveled by the robot, or a terrain that is uneven may make it harder for the robot 

to move. In theory, none of these factors should come into play for our case as 

none of them was introduced in our experimental setup. But so much for theory, 

as our experiment showed us a different story. 
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In Figure 4.4, we present a simple trajectory of our robot. In orange we 

present the true trajectory of the robot. The trajectory provided by the odom topic 

is presented by the blue line. In this movement our robot starts from the (0,0) 

point and finishes roughly at the (53,2) as seen from the orange line. In contrast, 

the blue line tells us a different story as in this case our robot starts from (0,0) as 

well but its finishing point is (52,11). 

  

 

Figure 4.4: True trajectory of the robot (orange line), the trajectory given by the 

odom topic (blue line). 

 

As we can see, the deviation between the true trajectory and the one from 

the odom topic keeps getting larger. To quantify this deviation, we present the 

sum of the absolute difference between the two trajectories in both axes. In the y-

axes of Figure 4.5, we calculate the sum of the absolute difference between the 

two trajectories for each of their points, using the equation   (4.3). The 

difference is calculated for each one of the 200 points of the trajectories.   

 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  |𝑥𝑖𝑜𝑑𝑜𝑚
−  𝑥𝑖𝑚𝑜𝑑𝑒𝑙𝑠𝑡𝑎𝑡𝑒

| + |𝑦𝑖𝑜𝑑𝑜𝑚
−  𝑦𝑖𝑚𝑜𝑑𝑒𝑙𝑠𝑡𝑎𝑡𝑒

|  (4.3) 
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In the x-axes, we just present the points of the trajectories. The first point 

is where our robot started, and the last one presents the last point of the trajectory. 

As can easily be observed, the difference gets bigger as the robot travels for longer.  

 

 

Figure 4.5: The total absolute difference between the true trajectory and the 

trajectory from the odom topic. 

 

At this point, we should mention that the above experiment was done with 

more than one trajectories, all of them with the same result. As we needed to 

make sure that our observation was not a result of a random error, we used 

different trajectories with all of them resulting in the same conclusion: at the start 

of the movement the data from odom were close to the real data from the 

modelstate topic but as the time passed the difference between the two sources 

was getting bigger. In some cases, we also noticed the data from odom to 

completely change course and paint a completely different movement. As a result 

of our observations, we decided against using the odom topic. 

4.4 Machine learning 

In this chapter, we present the whole process of creating our machine 

learning model and predicting our robot's position with it. We start the process 
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of getting our data in order to train our model, we set up the pipeline for the 

code, where we have to parse our data, then we train our model. Once the training 

is done, we predict the position of our robot using never seen before input data. 

The last thing we have to do is to validate our results and evaluate them by 

comparing them to ground truth data, where there is no noise.  

The first order of business is for us to collect the data to train our machine 

learning model. For this part, we have to have our robot move using random 

linear and angular speeds. As our robot is moving, we track its position and its 

orientation. Below, we present some of the trajectories our robot followed during 

this part.  

 

 

Figure 4.6: One of the trajectories used to train the machine learning model. 
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Figure 4.7: One of the trajectories used to train the machine learning model. 

 

 

Figure 4.8: One of the trajectories used to train the machine learning model. 

 

In the figures above, we show just three of the trajectories we used to train 

our model. In total, we have 17 trajectories. At this point, we should also mention 

that we had to make sure that none of our trajectories were similar to the trajectory 

we will use in order to compare our methods. Otherwise, we would have given 

the model an unfair advantage, as it would already know the correct results it 

would need to output.  
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Next session is about the technicalities of our process regarding the machine 

learning. The first thing we have to do is to import our data. For this task, we 

create a parser that loads our data and then stores them in a pandas dataframe. 

Once parsed, our data would look like in the figure below. 

 

Table 4.4.1: Part of training data, formatted correctly so they can be used. 

 

 

In column A, we present the current x-axes coordinate. Column B is the y-

axes coordinate. In column C, there is the yaw angle of the robot. The next two 

columns are the control input data, with the linear and angular speed presented 

accordingly. With the last three columns, we present the future position and 

orientation of the robot in the same order as the current ones, with these being 

the x-axes coordinate, the y-axes coordinate and lastly the yaw angle. After 

explaining all the columns, we now must determine the features/dimensions and 

the label data. Columns A through E are the features as these depict the current 

state, and columns F, G, and H are the label data, meaning these are the columns 

our model will have to predict. After loading all the train data, we also load the 

test data in the same way but stored in a different dataframe. 
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The next step is to create our machine learning model and then train it. At 

the start, we separate our train data to features and label. The separation was 

done according to the previous paragraph. We decide upon predicting the x and 

y coordinates separately. For the first run, we use as features the columns A, C, 

D, and E and the column F as the label data. For the y coordinate, we use the 

columns B, C, D, and E and for the label data the column G. After the selection 

of features and label data, we choose the degree of our polynomial, as we already 

mentioned, this is done through trial and error. The best results came from a 

polynomial of first degree. The last step is to create our linear regression model 

and fit it with the train data, both features and label data. By the end of the 

process, we have a model capable of predicting the position and orientation of 

our robot, but its accuracy had still to be validated. The validation of our model 

comes in the form of testing it against a sinus trajectory of our robot. 

The last thing we need to do is to test the predicting capabilities of our 

model. This time instead of separating the dataset into features and label data, 

we only select the features and ask our model to predict the label data. We repeat 

this process twice, once for the x coordinate and then for the y coordinate. When 

this is done, we have a dataset with the predicted values for the position of our 

robot. 

Now, we test it against the ground truth data in order to compute the 

average deviation per result, for both x and y axes. In Figure 4.9, we present the 

data from our machine learning model, blue line, and the ground truth, orange 

line. In thisFigure 4.9, it is very difficult to distinguish the two lines, as both are 

close enough that they look like they overlap completely. This is the first step in 

our analysis, so we have an overview of how well or badly our model is 

performing.  

The next step is to compute the actual absolute distance for each single 

point. The process is repeated for x and y coordinates. We use a simple absolute 

difference for each point in order to compute the error for each point. After that, 

we sum up all the errors and divide them by the number of points we have. By 

doing that, we calculate the average difference between the results of our model 

and the true position of the point. The average difference for the x coordinate is 
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0.185𝑚 and for the y coordinate the average difference is 0.003𝑚. For both axes, 

the errors are acceptable as our model performs better than our noisy sensors that 

have an average of 0.25𝑚 for both axes. We know the exact average of the error 

from our sensors, as we are the ones who added the error to them. 

 

 

Figure 4.9: Comparison between the machine learning model and the ground 

truth. The orange line is the ground truth, the blue line is the result of the 

machine learning model. 

To sum up the machine learning process, we first load our data, then we 

create our model and once it is trained, we calculate the average error our model 

produced, from the data of our comparison trajectory. 

The full code for both the machine learning and the Kalman filters we 

used, can be found in this github repository: https://github.com/stathis-

rafailidis/PythonRobotics. 

4.5 Extended Kalman filter 

In this chapter, we present the methodology we used for the extended 

Kalman filter and the results it yielded. The original code uses random numbers 

as inputs for the ground truth and then adds some noise in order to mimic the 
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measurements from the sensors. We modify the code, so it loads our data, both 

the data for the pose of the robot and the data for the input control to dataframes. 

After we make sure the filter is using our data, we have to calibrate the two noise 

matrixes, the process noise covariance matrix and the measurement noise 

covariance matrix. After the testing, we end up with the values we present below. 

𝑄 =  [

𝜎𝑥 0 0 0
0 𝜎𝑦 0 0

0
0

0
0

𝜎𝜃

0
0
𝜎𝑣

]

2

=  [

1 0 0 0
0 1 0 0
0
0

0
0

31
0

0
1

]

2

    (4.4) 

     

The covariance of x and y are in meters, the covariance of the yaw angle is in 

degrees, and the covariance of the velocity is in meters per second. Below we present the 

matrix for the measurement noise covariance matrix, where both values are in 

meters. 

𝑅 = [
𝜎2

𝑥 0

0 𝜎2
𝑦

] =  [
3.52 0

0 3.52 ]    (4.5) 

As for the results, we plot them below as we did with the results of the 

machine learning. In Figure 4.10, we present the comparison between the 

extended Kalman filter and the ground truth, ground truth in blue and EKF in 

orange. As with the machine learning model, the graph cannot help us much to 

distinguish them.  
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Figure 4.10: Comparison between the results of the extended Kalman filter and 

the ground truth. The blue line is the ground truth, the orange line is the result 

of the filter. 

For the final analysis, we need to calculate the average error our filter 

produced. We follow the same strategy as we did with machine learning. After 

summing up all the absolute differences between ground truth and EKF, we divide 

by the number of points in our data set. The average difference for the x 

coordinate is 0.206𝑚, and for the y coordinate, it is 0.127𝑚. Again, our results 

are acceptable as our filter outperformed the case where we would not have any 

measure of reducing the errors from our sensors in place, as in that case the 

average error would be around 0.25𝑚. 

4.6 Unscented Kalman filter 

In this section, we demonstrate our work with the last Kalman filter 

variation that we studied, which is the unscented Kalman filter. The whole process 

is similar to the process we used for the extended Kalman filter. First, we modify 

the original code for the filter in order to use our data as measurements and as 

input control. Then through trial and error, we find the best values for the process 

noise covariance matrix and the measurement noise covariance matrix, shown 

below. 
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𝑄 =  [

𝜎𝑥 0 0 0
0 𝜎𝑦 0 0

0
0

0
0

𝜎𝜃

0
0
𝜎𝑣

]

2

=  [

1 0 0 0
0 1 0 0
0
0

0
0

0
0

0
0

]

2

     (4.6) 

 

 

𝑅 = [
𝜎2

𝑥 0

0 𝜎2
𝑦

] =  [
22 0

0 22 ]     (4.7) 

 

 

After that, we have an overview of our results with the graph shown below, 

which is a quick way for us to verify that our data are close to the ground truth. 

The orange line is the ground truth, the blue line is the EKF.  

 

Figure 4.11: Comparison between the results of the extended Kalman filter and 

the ground truth. The orange line is the ground truth, the blue line is the result 

of the filter. 

 

Again in Figure 4.11, we cannot have much of an analysis, so we have to 

perform the same method as previously in order to determine the accuracy of our 
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filter. The average difference for the x coordinate is 0.184𝑚, and for the y 

coordinate, it is 0.128𝑚. 

4.7 Real life experiments 
After our experiments in the simulator, we devised some real-life 

experiments as well. We created three different experiments. In the first 

experiment we left the robot stationery for 10 minutes in order to find the average 

deviation for longitude and latitude. In the second experiment we left the robot 

stationary for 10 minutes then it moved in a straight line for 100 seconds and 

then stationary again for another 10 minutes. In the last experiment we had our 

robot moving in circles. 

The robot we used is the for our experiments, is the same one we also used 

in the simulator. We have both the Jackal and the Kinova manipulator. Software 

wise, the robot is using the same ROS version as we used in the simulator, which 

is the ROS 1 noetic. The common ROS version meant that we could easily port 

our code from the simulator to the experiment by using a file transfer protocol 

(FTP) application. 
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Figure 4.12: Robot used for experiments. 

Our experiments follow the same methodology as the one in the simulator. 

Using a python script we input linear and angular speed to the robot by 

publishing to the "/cmd_vel". In order to get the data from odometry we have to 

subscribe to the "odometry/filtered" topic where the position of the robot gets 

calculated using odometry and IMU sensors, then the data is also passed through 

a Kalman filter. All the data from the GPS module is taken by subscribing to the 

"/piksi/navsatfix_best_fix" topic.  

4.7.1 Stationary robot 

In this experiment the robot was left stationery for 10 minutes. The robot 

was given zero linear and angular speeds. Once the data was collected, we started 

processing. Initially we transformed the initial data from latitude and longitude 

to meters. Then we moved the starting point of the axes to the first point of our 
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data, effectively making the first point of our data the (0,0) of your cartesian 

coordinates. Below we present the data. 

 

Figure 4.13: longitude and latitude of the stationary robot. 

In Figure 4.13 we see that there is a range of recorded positions of the 

robot, even though the actual position of the robot never changed. After obtaining 

the data shown above, we calculated the average position of the robot at (-1.036, 

-0.513). After establishing the average position of the robot, we then calculated 

the average distance from that position. After the calculations, we found that GPS 

have an average of 3.713m deviation for latitude and 1.852m for longitude. With 

this experiment, we figured out the average error of the GPS, which was previously 

unknown. 

4.7.2 Straight line 

In this experiment, our robot was stationary for 10 minutes then in moved 

in a straight line and then stationary again. The goal behind this experiment is to 

make sure our Kalman filters work properly not only in the simulator but also in 

real life. The first obstacle in this case, is the fact that in contrast to the simulator 

we do not have the actual position of the robot in order to compare it to the 

results of the filter, as we did previously.  
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The solution to the missing ground truth data came in the form of the data 

collected from the "odometry_filtered" topic. In this topic odometry and IMU 

sensors are used in order to track the position of the robot. The final data are also 

passed through a Kalman filter so, the results are even closer to the actual position 

of the robot. 

In Figure 4.14, we present the data from the GPS. There are two areas with 

a lot of data, these are the cases where the robot is stationary, initial and final 

position, and there is a line connecting the two areas which is the part of the 

movement that the robot was moving in a straight line. 

 

Figure 4.14: longitude and latitude of the robot for the second experiment. 

In Figure 4.15 we present the data for the same movement as recorded 

from the odometry_filtered topic. The data from odometry presents the actual 

movement of the robot and this is verified from both the inputs given to the robot 

and what we observed during the experiment. 
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Figure 4.15: x and y coordinates of the robot recorded from the 

odometry_filtered topic. 

 

 

Figure 4.16: Visual representation of the EKF results 
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Figure 4.17: Visual representation of the UKF results 

 

The average error for the data from the GPS were 1.3635m and 1.2083m 

for longitude and latitude. After we calculated the error of the raw GPS data, we 

used both EKF and UKF for the GPS data. The improvements we not big but 

were consistent as both filters yielded data with smaller errors. The EKF yielded 

1.0666m and 1.2071m for longitude and latitude. Similarly, the UKF 0.7588m 

and 0.9131m for longitude and latitude. 

 

4.7.3 Circles 

In the last experiment, our robot is repeatedly moving in circles. The 

methodology is the same as in the second experiment. The first figures show the 

data from GPS and the second one shows the data from udometry. 
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Figure 4.18: Longitude and latitude of the robot for the third experiment. 

As seen in Figure 4.18, the circular motion is clearly shown. If we were to 

compare it with the data from odometry, it is clear that there GPS data is noisy 

compared to the odometry ones. 

 

 

Figure 4.19: x and y coordinates of the robot recorded from the 

odometry_filtered topic. 
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In the two figures below, we have a visual representation of the Kalman 

filters. We start with the EKF and then with the UKF. In Both case we have 

trajectories closer to the one from the odomotry topic. 

 

Figure 4.20: Visual representation of the EKF results. 

 

Figure 4.21: Visual representation of the UKF results. 
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As we did also with the second experiment, in order to evaluate our filters, 

we will be comparing the average errors compared to the error of just the raw 

GPS data. The average errors for the data from the GPS were 1.0879m and 

0.6780m for longitude and latitude. After we calculated the error of the raw GPS 

data, we used both EKF and UKF for the GPS data. The EKF yielded 1.0831m 

and 0.6723m for longitude and latitude. Similarly, the UKF 1.0293m and 

0.2742m for longitude and latitude. As noticed, the UKF for the circular 

movement had much better results as the UKF is specially designed for nonlinear 

cases. 
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5. CHAPTER 5          

         

 CONCLUSION  

5.1 Conclusions 

5.2 Future work 

5.1 Conclusions 

After everything is set and done, we want to sum up all our findings and share 

our conclusions with the reader. We started this paper presenting the methods we 

used for this thesis. After having talked about our simulation setup and our 

methodology, we went on and shared our results for all of them. The final 

numbers of the average deviation from the ground truth our methods ended up 

having are shown again below. 

Table 5.1: Results of all the methods. 

 

 

As we can see, the machine learning was two orders of magnitude closer 

to the ground truth for the y axis and performed similarly to the UKF in the x 

axes. This outcome could be better with more training, but this does not 

x (m) y (m)
ML 0.185 0.003
EKF 0.206 0.127
UKF 0.184 0.128
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necessarily belong to the scope of this thesis as we have already proved that the 

machine learning is more accurate than the two filters. 

The results show that machine learning is a clearly better method for robot 

localization, but this is not the full story. It might be that the ML is more accurate, 

but one should also consider the effort required to achieve these kinds of results. 

In our case, we were using simulations in order to obtain the ground truth data, 

which make the process of obtaining them easy, but if we were to use an actual 

robot in real life, the process of obtaining the true pose of the robot would be far 

from trivial; An array of accurate sensors would be required, and the 

synchronization of them would also pose a big obstacle.  

About the real-life experiments, the results that were yielded were positive. 

Both our filters performed better than just using the raw GPS data. Also, we fact 

that the average GPS error could be calculated, gave us an insight of how close 

the GPS data is to the truth. One more benefit of calculating the GPS error is that 

after this thesis this knowledge can be transferred to all the future projects with 

the same robot we used. 

Bottom line, ML performed better than the Kalman filters, but there is no 

such thing as a free lunch. ML would need a great amount of effort in order to 

gather the ground truth data, and then also computer resources would be needed 

for training the model. On the other hand, both filters consist of a few hundred 

lines of code which once in place there is no more work to be done. Filters will 

contain errors inherently, but if the order of magnitude of the errors is known 

and fits the application, one would be incentivized to use them, as they are the 

more effortless and cheaper solution.  

To conclude this thesis, machine learning performs better than Kalman 

filters. If accuracy is of most importance, one should utilize machine learning. If 

an estimate of the robot's position will suffice, both filters can perform well enough, 

making them a great solution for robot localization. 

5.2 Future work 

In the last section of this thesis, we want to share with the reader our ideas for 

future work. The are two main topics, the first one would be to use more machine 
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learning methods and Kalman filter variations to further enlarge the pool of 

methos tested, the second one would be to also establish a key performance 

indicator (KPI) for the effort needed for each method.  

Adding new methods and comparing them to the existing ones would be 

truly interesting, especially for the machine learning methods. Using different ML 

methods could yield some impressively accurate data but then we should also 

consider the effort and the carbon footprint such a method would have. It is not 

a secret that ML has developed significantly in the last decades with the 

improvement in efficiency of computers, but the energy costs remain an issue. It 

is significantly cheaper than it used to be to run a computer, but a cluster of 

computers running a deep neural network is still something that creates a 

significant carbon footprint. 

In order to have the full picture, further KPIs should be developed. For 

example, a KPI about the effort invested or the amount of funds invested would 

give the reader a more complete image and even more so, if they are interested 

in using some of these methods themselves. 
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