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ABSTRACT

This thesis aims to provide a better understanding of the moduli stabilization mechanisms in
string theory and the phenomenological consequences of Grand Unified Theories (GUTs) in the
framework of F-theory. In the first section, a review of the Standard Model is provided along with
the open problems in high energy physics and cosmology. Moreover, the most promising solu-
tions for the Kéhler moduli stabilization problem are analyzed, along with the basic geometric
tools for constructing local F-theory GUTs. In the next chapter, the analysis of perturbative mod-
uli stabilization with D is presented, where the logarithmic string loop corrections are added to
the Kéhler potential complementing the contributions of non-perturbative corrections to the su-
perpotential. We show that de Sitter (dS) vacua are accessible to the low-energy effective theory
due to the uplifting effects of the D-terms, emerging from the magnetic fluxes in the D; branes
context. In addition, more complex geometric compactifications are discussed exhibiting the uni-
versal effect of the loop corrections to the search for dS vacua beyond the simple toroidal-like
volumes. Apart from the stabilization conditions, a model of dark radiation and dark matter is
suggested, where the moduli decay into closed string axions, comprising the dark radiation of
the universe. Additionally, moduli decays to the dark sector degrees of freedom could in prin-
ciple produce the correct dark matter abundance. From the F-theory perspective, two different
GUTs are presented. In the first attempt, a flipped SU(5) is constructed in the spectral cover
approach, where right handed and sterile neutrinos are augmented to explain the tiny mass of
the left handed partners. Furthermore, phenomenological issues like proton decay, 0vpf decay
and g, — 2 are explained, in light of the new symmetry breaking scales introduced in the model.
Finally, an F-theory SU(5) model is examined, pointing towards the emergence of a flavor fam-
ily symmetry from internal fluxes. The complex structure moduli of the geometry’s tori are laid
stabilized to specific non-linear paths due to G; fluxes, resulting in the breaking of the SL(2, 2)
symmetry down to a congruence subgroup I'y. Based on the above, an SU(5) X S, is utilized to
explain the Yukawa matrices in both the quark and the neutrino sector, where the whole setup is
parametrized by the values of the moduli. In the last chapter, a conclusion is outlined sketching

the prospects for future expansions.
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Iepiinymn ota EAAnvird

H obyyxpovn emoyn tng Pvowmng YYniov Evepyeidv PBaciletar otig avaroddyelg tov Kode-
popévov IIpotdnov OepeAtwddv AAAnAemidpdoewv (KII) xan tng Tevinng Oewplag tng Xxett-
®OTNTAG HAT& TOV TEPACHEVO atwva. [lapd Tig ToOANATAEG Tpoomtddeleg epevvnTOV dev Exel
emitevydel 1 TANpNG evomoinon twv depeAlwddv duvapewv ng vong, xadwg to KII meprypdpet
TIG TUPNVIKEG SLVAELS (LoXLPT] KOl AGTEVIG TUPTVINT]) KOl TNV NAEXTPOPXYVNTIT SOVan, o-
yvoovtog tn Papotnta. To KII faciCetor otnv xPoavinn dewpla mediov yio va meprypapet
Tig ovppetpieg Padpidag SU(3) X SU(2)r X U(1), ot omoleg yapoxtnpilovv OAeg TIG aAAnAeTL-
dPACELG TWV LTTOATOUUOV CWUATIIIWY o€ TeElpapaTind emaindevpévo eninedo. H mpoopaty
avoxdAvym tov proloviov Higgs amd tov peydro emtayvvtr adpoviov (LHC) 6to Evpwmaind
[Tupnvwed Kévtpo Epevvidv (CERN) oloxdnpwaoe ev moAdroig to KII, opwg dikgpopa epoTripoto
TOPOPEVOLY OVOTTAVTN T EVTOG TOL TAALGLOU TOV. Avapépovtag evOEMTINA PePHd oITd LT ()
Vv ®PAVToT ToL PopTiov Kot TNV evomoinot twv LevEewv Padpidag P) n tpoélevon tng palog
TV VETPLVOV Y) 1] TApATNPOVHEVT] Lepapyla 6TLG HALeC TV cwpaTdioV €) 1) évtaln Tng PopiTn-
tag o xPovTnd eninedo. HapdAAnia pe Tig e€elibelc 0TV CWPATIOONT UCIHT, KOCHOAOYLIHEG
épevveg vodewvoouy TNV Sapdpweon otnv dopr NG HALOG TOL CUUTAVTOG, OTTO TNV Omoin
T0 85% dev axntwvofolel. H gvon g ouxotelviig OANG Topopével AyvwaoTn Kol TLOTEVETOL TTWG
aoTeAELTOL 0UTTO CWHATIOA TTOL EdPEDOLY GE GHOTELVOVG TOHELG TNG YEWHIETPLAG TOL GUUTTOVTOC,

aAAnAemdpdvtag apdpag pe ta cwpatidia Tov KII

Katadewmvidetal, Aowtdv, g emitantinn avayxn 1 mpoéxtaoct tov KII o pio meplocdTepo o-
AorAnpwpévn dewpla yio TNV opdoTepn TEPLYPAPT] TV COHATIOIWY G OAEG TIG EVEPYELOMEG
Bodpideg. Ov Jewpieg mépav Tov KII ovopdlovrar Meyahoevomomnpéves Oewpieg Badpidag
(Grand Unified Theories, GUTs), oL omoleg meplypapovtal amd peyahTepng CUPHETPLOG ahye-
Bputég opadeg mov éxovv g vtoopddeg To KIL Evideutind ndmoleg oo Tig opadeg auTég eivot
SU(5),SO(10) nadag emiong xou ot etdunég opddeg Eg, E7, Eg. Xapartnplotindtepo mapadetypo
TpOPAeyng avtdv Twv Jewpldv amotelel to EAdyloto Yrnepovppetpied Movtédo, ov pe tnv
eloaywyn g Ymepouppetplog, xatopépel va emtvyel tnv o0levén tov (ev€ewv oe wAipona
~ 106 GeV. Axopun, n Omapén peyoaddtepng Sikotaong avanapactécoewy otic GUTSs pnopoidv
va eEnynoouvy TNy mpoéAevot NG HALOG TWV VETPIVOV, HEC® TNG ELOAYWYNG VEWV COHATLOIWV
%ol TPOTOTLTTWV pNYaviopoV. TTapdha avtd, To TpoPANHATH TNV TPOEAELOT) TNG LEPUPX LG
TV Paldv, xad®G xaL 1) EAAELTAG TTePLYpaPn] TV OAANTLOpaoeV o€ opueTd LYNAEG evépyeLeg
odnynoe otnv perétn g Oewplag twv Yrnepyopdov. H cvyurexpyévn dewpia emtvyydvel oe
podnpotnd eminedo va evtdel ko tnv Papvnta oe kPovind eninedo oe evepyelanég uAipo-
HEG, OPWG, TTOAD LYMAOTEPEG QIO TV TPoaVaPepIEvTY dewpiwv Mpjgner = 2.4 X 101 GeV.

Bapivovoag onpaciag otnv depeliowong g dewplog vepxopdov maillovyv eXTETAPEVO OVTL-



nelpeva, o pepPpdveg D-branes, oL 0moleg EXTEIVOVTOL TTEPAV TWV TPLOV XWPLKOV dLXCTACE-
wv. H Omopén meplocotépwv xopodv SLAcTACEDV GTO GUUITAV TTOTEAEL EYAATIPLO YLaL TNV
TPOTAOT) HXLVOTOHWOV AVGEWV, OAAX TTPODTOTETEL TIG HATAAANAES GLVITIHEG GUIITOLYOTTOLNONG
(compactification) tng dewpiac. H dewpia xopdohv Sitoaxwpiletar oe mévte Stopopetinég dewpieg:
n tomov L, ot Yewpieg tOmov II (ITA o IIB) xou ot etepotinég yopdég (SO(32), Eg X Eg).

H napotoa SratpiPn eotidlel otig dewpleg tomov IIB ko otnv pn-dratapontiny oroxAnpwaon
avtrg v F-Jewpia. ‘Ocov apopd TNV mpdTn, 1 Topodco HEAETN OO YXOAELTHL e TG CUVITIHEG
oTadEPOTNTAG TOL GLHTTAYOTOLNHEVOL XWpov. o cuyrexpyéva, 1 YEWHETPI TOL XWOPOL Ka-
Jopiletarl oo TIg THEG OpLopévy Padpwtav mediwv, twv moduli, Ta omoia ywpilovtot oe dvo
wotnyopieg: oo Kdhler xou T pryadunng dopng. Emievrpovovtog tnv mpocoxr Hog 6TV xoth)-
yopia twv Kdhler, pehetidnue 1 cuvelc@opd Twv kPavTin®y SlataponTindv Slopddoeny 6To
Svvaypund Kdhler. H popen avtdv twv dtopddoenv eivor Aoyoptdpinrg Hopeng kot 1 tpoéhevor
ToVG opeileTon oe oueddoels PopuTovieoy PeTOED TV HEPPPOVAOV KL EVIOTLOHEVOV XOPLPDV
g tetpadiotatng dpaong Einstein-Hilbert otov uddeto xdpo TV pepuPfpovodv. Axdun, 0
ouvépyelx PeTaED TV TTPOaVaPEPIEVTOV HPAVTIHGOV SLOPUOCEDY KXl TWV U] SLUTOUPOHTIHOV
Stopdwoewv oto vItEPSLVOLKO 0O yNoE o€ éva Padpwtd duvayund pe Anti de-Sitter (AdS) eldiyt-
010. 'Op®G, 1) TTOPATHPNOT] TOV CLVEXMOG ETTLTAYVVOHEVOL GOUTTAVTOG evvoel Tig de-Sitter(dS)
Aboelg pe detnn xoopoloyn otadepd, Yeyovog mov odnyel otny elcaywyrn Tov D-6pwv mov
TPOGEPEPOLV TNV AVOPWGT] TOL SUVOHLKOD 6TOVG DepLTovg Ywpovg. Emmpocdeta, péow ow-
TNG TNG HEAETNG EPEVVMOVTOL OL ETLTPETTOPEVES TLHEG HAL TOL OPLAL TTOV TPETTEL VOL LLAVOTTOLOVV OL
elebUepeg TOUPAPETPOL TNG FEWPLOG OTNV TEPLTTWST] OTTOVL O GUUITALYOTTOLNHEVOG X WDPOG ELVAL TO-
poeldoG HOPPTIG, AAG KL GE TTLO YEVELUEVHEVEG YEWHETPLeG LTTOPATPOL. Xe éva deVTEPO Podpo,
eEeTdleTo 1) TPOEAELOT) TNG OHOTELVHG axTIVOPOALOG Mol TNG GHOTEWVNG DANG LTO TO TpioH
TV VEnV Aoyopldpev dopdocewv. Ewdwotepa, peretninuav ol petamtooelg twv moduli
oe aElovinoig Padpotg ehevdeplog, Tov epmepléxovtal atny tomov IIB dewpia, dote avtol va
amoTeAéGOLV TNV copaTIdLONN QOO TNG oxoTevng axtvoPfolriag. [apdAinla, ol emmtooelg
AVTOV TV COHATIOLOV TTePLOPLOVTaL ATTO XOGHOAOYLKA OPLaL, OTTWG O APLIPOG TWV YEVIOV OTX
vetpiva xon ot péleg twv Padpwtdv moduli. "Ocov apopd tnv oxotevy) DAT, OL HETOITTOCELS TWV
moduli ce COPATIOX TWV OHOTELVAOV TOHE®V, TTOL dev dAANAeTdpolV pe Ta cwpatidia Tov KII,
00N YNoe TNV HEAETN TOV HETOIWV TOUPAYWYNS TOVS KOG KL TG EVATIOPELIVOVG UG TTOGOTNTOG
Touvg 6To oVpTav. Ot d0O KLVPLOTEPOL PNYXAVICHOL TAPAYWYT|G ATTOSEMVVETAL TTWG CXETICOVTOL
pe S0 SLoPOPETIUEG UALHOMES EVEPYELOG YLAL TNV DEPHOXPATLA ETAVATEPPAVETIG TOV GUUITAVTOG,
HOUTOARYOVTOG Vo LITAPYEL 1) TIVOTNTA Y OTTapEn CWUATOV oxOTEWVHG DANG He pala amod

pepwd GeV péypt won 101 GeV.
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310 debtepo pépog, N dtpiPr) eatialel otnv F-dewpio ko otnv xataorevr) GUTs pe oxomod tnv
eme€nynon gawvopevoloywmov {ntnpatwv. Katd tpotov peetridnue to povtélo flipped SU(5)
oto Aaiolo Tov spectral cover, TOL yewHETPA oxeTileL TIG LOLOTNTES TNG DANG e TOTTOAOYLKEG
OLOTNTES oL TNV TTPoéAevaT) TNG oLppeTpiog Padpidog pe Tig pileg Tng e€lcwong Tov. XTo cvyxe-
HPEVO POVTENO eEeTOGUTKE TO HOVTENO Seesaw YLa TNV avaltnon HAlag TV VETPLVWV, *ad®g
emiong wadopiotnue TO eVOLAPESO GTAGIHO TNG CUHHETPIOG YO TNV GITOPLYT) TOPATHPNONG
dukomaong mTpwtoviov. Axdpn, HECW TWV VEWV SLAVUGHATIXOD TOTTOL CWHATLOIWV TPOTELIVETAL
pioe Aon yio To mpoPAnpa Tov g, — 2, eved 1) TpdcPartn dapopd otV péla Tov pmoloviov W
propet va e€nyndel Aoyw mopofracewy Tng HovadindTN TG 6TOV AETTOVIXO TOHEX. Avopopind
pe TNV gpyacio oto tedevtaio xepaiato tng dratpPric, avtn e€etadlel Tnv modular cuppetpio
MOl TIG CUVETIELEG TNG OTNV HeEAETN TOL TTPoPAfpaTog TG Yebong twv cwopatdiov. H mpo-
EAeLOTNG ALTNG TNG SLoUPLTNG CUUHETPLOG EVTOTILETOL OTNV YEMHETPLX, OTTOL 1) GUUTTALYOTTOLNOT)
yivetan oe tOpovg. Avtol yoapotnpilovror amd v SL(2, Z) GUHHETPi, CUVETHOGC 1) ELOAYWYT
ECWTEPUDV POV TTPOUAAEL TO GTAGLIO TNG CUHHETPLOG 0dDdVTAG Ta pryadnng dopng moduli oe
ovyxepipéveg dtadpopéc. Ot LITOOPASES TTOL TAPAYOVTOLL ATTO TO TPOAVEPEPDEV GTAGLHLO 0pilovv
nivoueg Iy Sihotoong 2 X 2 pe axépora otoryeior xot fadpd N. O Badpodg N epmAéneton 6Tov
UTTOAOYLOHO TOU GTAGIHATOG GUHHETPLOG Kol XDOPLLeTOL OO TIG OUEPALES POEG OO YDOVTAS GE
TIavEG GUPPETPLeG Yebong Omwg 1 Sy yiao N = 4. Me Bdon ta mopamdve, 1 TeA GUPHETpin
Tov F-Jewpntnod povtéhou eivan 1) SU(5) X Sg, 610ov pedetidnue n dopr twv Yukawa mviuwv
OV OTNV GLYKEPYEVT ewmdva arotelobv modular oxnipata. To mAeovéxtnpa g mpoOceEYyL-
oNG aVTAG £YXELTAL GTO YEYOVOG TG 1) tepapyia paldv (xovapus xol VETPivedv) kol oL YwVieg
HIENG emépyovTan puaLoloynd, piag kot to dtoepopetind modular Bapn twv mediwv propovv va
dopnoovv guvoindtepa TG (evEeLg TOL povTéAOL. AxOUN, Tow cvyxexpipéva modular oxnpoTa
rodopilovtal TANPWG aTTd TIG TIHES TV YEWHETP®V moduli yeyovog mov eiva emlIupnTo yiow

pix dewpio Tov e€dryel omd mpadTeg apxég TIG TPoPAEPELS.

xii
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1 THEORIES BEYOND THE STANDARD

MODEL

1.1 OVERVIEW OF THE STANDARD MODEL

The Standard Model of particle physics describes the fundamental interactions (excluding grav-
ity) of particle physics as a quantum field theory [7; 8; 9; 10; 11]. This theory formulates the
aforementioned interactions under gauge symmetries, where the forces are mediated by the cor-
responding gauge bosons. All of nature’s particle content can be separated into two categories:
the fermions and the bosons. Fermions have half integer spin and bosons have integer spin. The
fermionic sector of the theory forms the matter, while bosons operate as force mediators. The
fundamental forces, which are contained in this framework, are the electromagnetic force, the

electroweak force and the strong force. All the ingredients above are based on the SM gauge
group:

Gsp =SU3)e xSU(2) xU(1)y . (1.1.1)

The first part SU(3)c is associated with the strong nuclear force, providing an explanation of the
forces between the quarks inside the nucleus. The quarks consist the fundamental matter com-
ponents, while the force mediators are labeled as gluons. These quarks come in three generations
due to their assigned quantum number and are confined inside the hadrons (composed of three
quarks) and mesons (composed of quark and anti-quark). The remaining part of the SM gauge
group SU(2); X U(1)y refers to the unified electro-weak sector of the theory. Apart form the
quarks, matter also contains some fermionic degrees of freedom called leptons. This category
contains three families with the electron being the lightest (e, y1, ), and their corresponding neu-
trinos (v, vy, v;). The SU(2); group refers to the weak isospin, acting on the left handed fermions,
while the U(1)y is the hypercharge group. Quarks (u,d, c, s, t, b) transform as a triplet under the
color group SU(3)¢ and as doublet under the SU(2);. Leptons are neutral under the SU(3)¢ and

1



are embedded in a doublet under the SU(2);. Regarding the gauge bosons of the SU(2);, X U(1)y,
there are four different degrees of freedom: the three electroweak bosons (W=, Z) and the photon
12

The missing part of all the above is the Higgs mechanism that provides mass to the particles
through the Yukawa couplings. Its discovery by the LHC experiment in CERN [12; 13] has almost
completed the puzzle of the SM. The vital contribution of the Higgs mechanism is to explain the
spontaneously broken symmetry of SU(2); X U(1)y down to the electromagnetic U(1)gys around
the scale of ~ 100 GeV. In Table 1., all matter content is shown collectively with respect to the

transformation properties under the SM gauge group.

Name Fields SU(3)e xSU((2) xU(1)y
G (83 1)0
Gauge bosons w (1,3)
(1,1)o
u c t
; , (3,2)1
(d)L (S)L (b)L ’
_ 3,1)_:
Quarks a;, Ejz’ t; (3,1) 2
7ot gt (3, 1)1
dR, Sps bR 3
ERE A —
Leptons e \FJp AT 2
LT (1, 1)
e Hpo Ty
Higgs H (1, 2)%

Table 1.1: Transformation properties of the elementary particles of the Standard Model.

The Standard model’s Lagrangian could be separated as below:

L=Ls+Lr+Ly+ Ly, (1.1.2)

where the above terms stand for: L for the gauge sector, L for the fermions sector, L for the
Higgs sector and Ly for the Yukawa sector. We will describe in detail the terms of each sector
and provide the explanation of the Higgs mechanism. Starting with the gauge sector, the relevant

Lagrangian terms can be expanded to be:



1 44 [ 1
L6 ==7GAGM = WL W — ~B,,B", (1.1.3)

where the above field tensors of the SM gauge fields are defined as:

SUB)c: Gl =8,Gy — a,Gl +gs fAP°GPGS, (1.1.4)
SUQ)L: Wi, = 9,W, - a,Wi + g.e P Whiwe?, (1.1.5)
U(l)y: Bu =3B, —dB,. (1.1.6)

In these definitions, we have used the gauge coupling constants gs, g; of the SU(3)¢, SU(2);, cor-
respondingly. In addition, the structure constants f45C, ¢ABC have derived through the commu-

tation relations of the group generators

SUB)e: [T4 T =ifeTe, (1.1.7)
SU@2):  [r%r"] = ie®re, (1.1.8)

where the T matrices are related to the Gell-Matrices T' = A!/2 and the r are associated to Pauli

matrices r' = ¢ /2. As for the fermionic sector, we need to introduce the covariant derivative:

Dy = 9, +ig1YB, + igsW,S" + igsG, T, (1.1.9)

where the S, T are the fundamental representation’s generators of the SU(2), SU(3), while Y is the
hypercharge generator of each field. The electric charge q of the theory is given by the g = T3+,
where the T2 is the third generator of the weak isospin. Furthermore, we need to introduce the
fields definition as:

Ui ViL _ -
QiL = . Lip= . WR, dir, €iR- (1.1.10)



Lr= i(]:mL + éREeR + Q_IDQ + aRIDuR + CIRIDdR) . (1.1.11)

The most interesting part of the SM’s Lagrangian is related to the Higgs field. During the for-
mulation of the theory, the research community had no definite answer on how to include mass
terms to the Lagrangian. The problem was that SM treated the fields as massless particles, before
the introduction of the notion of Spontaneous Symmetry Breaking of gauge symmetries. The
mechanism states that a gauge symmetry could be spontaneously broken if the Lagrangian re-
spects the symmetry, but the vacuum state is not invariant under the relevant transformations.

The Higgs sector of the Lagrangian is written as:

Ly = (D,H)"(D'H) - i*H'H - A(H'H)? . (1.1.12)

The above potential is invariant under the SU (2); X U(1)y, although the vacuum state is not. The
signs of the parameters p, A will determine the structure of the vacua. It is proved that for p? < 0
and A > 0, there exists a plethora of vacua where once a single one is picked, then the symmetry

is broken. More precisely, we can write:

[e)

(H) = (1.1.13)

Sl

c

where v is the vacuum expectation value (vev) v = y/—p?/A. Furthermore, we can expand the

Higgs field around the minimum as:

L@ (1.1.14)
H=— , 1.1.14
V2 v+ h +G™

where the h° is a real scalar field, v is the vev and G*, G~ are the Goldstone bosons [14; 15]. These
degrees of freedom are absorbed in the definitions of W* and Z°. Substituting in the equation
(1.1.12) the vev of the Higgs fields, we can derive four different tree level masses for the fields

WﬂI , B, where these masses can be written as:



v*(g% +93)

M2, =22~ M=
w 4 z 4

, Mi=0. (1.1.15)
The new fields Z, A are the mass eigenstates of the Wi, B, corresponding to massless photon

and the neutral gauge boson Z of the weak interactions. The observed inequality between the
charged bosons W+ and the Z boson leads to the so called Weinberg angle, which is defined as:

M
sin Oy = M—W, tan Oy = 9 . (1.1.16)

Z g2

According to the experimental measurements, the strength of the forces render that the vev of
the Higgs fields must lie at v = 246 GeV. The next step is to define the mass terms for the fields,

i.e. the Yukawa sector of the theory.

. * ¥
Ly=- Z YO iopH ujg — Z YAO Hdjg — Z YSL Hejg + h.c. (1.1.17)
i,j L] LJ

where the Y;; matrices are 3 X 3 complex-valued matrices. It is important to highlight the fact that
the mass matrices are not diagonal, so we need to perform a rotation of the basis. This rotation

can be specified to the following unitary transformation:

Yu

_ yruyuysut d
diag_VYijV Y

_ ydvydydt e
diag_VYijV 7,

_ T
diag = VY5V (1.1.18)

One important implication of the above discussion is that one can write down the weak interac-

tion vertex between fermions and W bosons as:

LD gujdjW+ +h.c. D gul.T(V,de),‘jdjW+ + h.c. (1.1.19)

The new matrix obtained parametrizes the mixing angles between the fermions and the weak in-
teractions gauge bosons. The name of the matrix is denoted as the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix [16; 17]



Ve = ViV . (1.1.20)

The CKM matrix has a standard parametrization, containing four degrees of freedom. This

parametrization is summarized below:

—id
C12€13 $12C13 C13€
= i0 id
Vekm —$812C23 — C12523513€ C12€23 — S12523813€ $23C13 | » (1.1.21)
_ i6 _ _ i6
$12823 — €C12C23513€ C12523 — S12€23513€ €23C13

where the above matrix contains the definitions: cos(8;;) = c;j, sin(6;;) = s;; and 6 stands for a
phase.

As for the open problems of the SM, there are several phenomenona that cannot be explained
within its context. In this paragraph, we will try to refer in short to some of them, before pro-
ceeding to a more complete theory of SM, string theory. From the particle physics point of view,

some of them are:

« Dark Matter: This unknown matter comprise almost 30% of the mass-energy content of the
universe. Its characteristic effect is that it cannot radiate, while we assume that it has to be
electrically neutral in order to be stable. In addition, none of the SM particles can match
the observations due to the assumed dark matter, thus there is a necessity to introduce new

degrees of freedom.

+ Neutrinos: According to the SM, neutrinos have to massless. Although, an observed phe-
nomenon known as Neutrino Oscillations [18], has proved that they do have a tiny mass.
The transitions between their different flavors cannot be explained without some small
mass differences among these particles. In the quantum field theory language, the flavor

eigenstates are expressed as a linear combination of the mass eigenstates vy 2.

viL = Z Uijvej, vip = (Ve Vo Ve) - (1.1.22)
ij

In the above definition, we have included a unitary mixing matrix U, which measures the

mixing between the states and it is an analogue to the CKM matrix. This matrix is called



Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. AS for the upper bound on neutrinos

mass, cosmological bound place it around [19]:

D imi<o01z2ev. (1.1.23)
i

Despite the shortcomings with respect to the particle nature of high energy physics, there are

additional open questions regarding the cosmological evolution.

« Cosmological Constant: Recent observations of supernovae imply that an accelerated phase
of the universe is taking place. This fact would require for the equations of motion to have

some specific form. Starting from the Friedmann-Robertson-Walker (FRW) metric:

dr?

P +r2(d6* + sin® 0d¢?)), (1.1.24)
— kr

ds® = —dt* + ac(t)(1

where the scale factor parametrizes the radial size of the universe. This factor is deter-
mined by the Einstein equations, where a source of negative pressure has been added, the

cosmological constant A.
1
Gy =Ry — Eg”VR =81GT, — Agyy - (1.1.25)

The above equations lead to the Friedmann equations of motion, which are summarized to:

a., 1 k A

)= — - — 4+ — 1.1.26
(0() 3M£Ptot 2 3 ( )
a 1 A
—=—— +3 + —, 1.1.27
2 6M§ (Ptot Ptot) 3 ( )

where for the correct explanation of an accelerated universe, a positive contribution for the
A > 0is required. This cosmological constant lay at the scale of A = 107'2°Mz, since recent

astronomical observations indicate that it has a positive (non vanishing) value [20].

« Baryon Asymmetry: Within the context of standard cosmology, matter and anti-matter
should have been equally produced during the Big Bang. Nevertheless, current observation
tend to point towards that universe’s matter mainly consists of matter. Several solutions
has been provided through the years [21; 22; 23], where this question remains an open

problem yet.



1.2 BASIC NOTIONS OF TYPE IIB FLUX COMPACTIFICATIONS AND

F-THEORY

1.2.1 STRING COMPACTIFICATIONS

The most interesting formulation of string theory is in a ten dimensional flat Minkowski space.
There are many representations of string theories, which are summarized to : type IIA and IIB
closed string theories, type I theory, heterotic string theory, M-theory and the non-perturbative
formulation of type IIB theory, the F-theory. The main problem of the above theories is that we
have to correctly compactify the additional six spatial dimensions, since the the living world is
a four dimensional space. Working in this direction, the ten dimensions are a product of four-
dimensional space with six internal dimensions compactified. Mathematically speaking, this is

translated to:

ds3y = e_ZA(y)dsZ + eZA(y)gmndymdy", (1.2.1)

where the y™ parametrize the internal coordinates and A(y) stands for the wrap factor. Varia-
tions of the wrap factor may result into interesting physical implications, where a separation be-
tween the branes could address the hierarchy problem. This scenario was formulated as Randall-
Sundrum model [24; 25]. The notion of fluxes in warped geometries are given by the background
values for certain tensor fields, which wrap the internal cycles of the manifold. Focusing more
in the type IIB superstring theory in ten dimensions [26; 27; 28; 29], we have to write down its

action in Einstein frame:

1 1, or IGs]? 1 - 1 Cs4 A Gz A G3
Sup = —5 | dxV-G(R - =|—* - — ~|B5]%) + . (122
" zka/ NGRS e ™ 2 2 52, Imz (122)

where the three-form parametrized the field strengths G; = F; — tH3; with the axio-dilaton 7 =
Co + ie™?. The field strengths are defined through the following relations:

~ 1 1
H3 = de, F3 = dC2, F5 = dC4 - EdCZ A de + EBZ A dC2 . (123)

Moreover, type IIB string theory has an additional SL(2, R) symmetry, which leaves invariant the

metric and the C, axion. The transformation properties of the remaining fields are given by:



C a bl|C
ar+b ’ — 2, ad —bc=1. (1.2.4)

B2 c d B2

ct+d’

At the quantum level, the above symmetry is broken to the subgroup SL(2, Z), which symmetry
is manifestly apparent in the F-theory. Additionally, the fluxes of both RR and NSNS sector of the

compactification could take discrete values, i.e. they are quantized, leading to:

1 1

All the above are formulated in background with N' = 2 supersymmetry with 32 supercharges.
In order to discuss about four dimensional theories, someone has to find a consistent solution of
equations of motion in ten dimensions, which admits a Ricci-flat manifold. These manifolds are
called Calabi-Yau and we are going to provide a small summary of this type of manifold properties
regarding its moduli space.

First of all, a manifold M of three complex dimensions is equipped with an important quantity,
the Kéhler form J, which contains the information of the metric g,,s and the internal complex

coordinates z™.

J = igmadz™ A dZ" . (1.2.6)

We are looking for Kéhler manifolds, since we ould like to express the metric in terms of the
internal coordinates, i.e. we would like the Kéhler form to be closed dJ = 0. We will introduce
the definition of the Kahler potential K, where the metric and the (1-1) form are expressed with

respect to this potential as:

Gmi = OmdsK(2,2), ] = idoK . (1.2.7)

The additional property of flatness of this manifold imposes an additional restriction to the Ricci

tensor. This tensor can expressed in term so of the metric as:

R = —iddlog(detg) (1.2.8)

The flatness of the manifold is encoded, now, in the vanishing order of the geometric quantity
the Chern class ¢, (M). If the first class of this quantity is vanished, we deduce that the internal

geometry is flat. Apart form the aforementioned objects, we need to introduce the holomorphic



three-form Q, which will be used on later purposes for the definition of the moduli space.

Q = Qpqrdzf Adz? A dZ, (1.2.9)

where the tensor Q,,, contains the information of the transformation of the spinors inside the

geometry. The connection between the holomorphic three form and the Kahler form is given by:

]A]A]z%QAQ JAQ=0. (1.2.10)

Based on the fact, we need to end up with a four dimensional space, the correct manifold to com-
pactify the extra dimensions has to be a threefold. Besides, the correct preserved supersymmetry
of the 4d space is N = 1, which fact can be safely obtained in a threefold. The next step we have
to make is to examine whether infinitesimal deformations of the metric preserve the flatness of

the space.

89 = 8Gmndz™dZ" + 8gpmndz"dz" + c.c. . (1.2.11)

In addition to the above, we have to choose the gauge V(dg) = 0, where by this particular choice
the two conditions on 6gy,; and g, are separated. For the first deformation, the constraint
implies that the §g,,7 has to an (1,1)-form. The Kéhler form is expanded in this basis, used the
harmonic forms w;, i = 1, .., h%!, as J = t'w;. The h¥! is topological quantity called Hodge number,
which specifies the dimension of the cohomology group H?4(M) = h?4. The scalar fields t' are
named Kéhler moduli. The positivity of the Kahler form in the background geometry, also, leads

to additional comstraints on the 2-cycle %(? and the 4-cycle = of the manifold

J >0, /']A]>0. (1.2.12)
>(4)

3(2)

The intersection number between these moduli fields is given by the triple intersection

kijk = / w; A wj A Wk, (1213)
M
where the volume of the compactified space V in term of the 2-cycles is written as:
L ik
V= gkijkt tjt . (1214)

10



All the above are encoded in the Kihler metric, which resembles a known formula.

K =-2In(V). (1.2.15)

Going to the other sector of the deformation 8¢y, it is proved that it is required to be a (2,0)-form.

In order to go to the H*! group, we have to perform a rescaling of the deformations as:

X = Q;qégfgdzpdzqdzg, (1.2.16)

where a basis for the 3-form could be defined as (a’, b;), i = 0, ..., h*!. The basis has to be complete,

which fact can be written as:

/ a' Abj=8. (1.2.17)
M

The above ingredients come in handy, as long as we define the complex structure moduli space,
where there exist h%! + 1 complex coordinates. The two quantities that are going to be used for
the explicit computation of the holomorphic three form Q are the coordinates z' and the periods
Fi(z)

z":/ Q, F,-:/Q (1.2.18)
A; B;

1 1

with A;, B; being the cycles of the homology group. Now, the holomorphic form can be expressed

as:

Q =z'a; - F;b' (1.2.19)

and the metric of the complex structure’s moduli space [30; 31]

L K = —ln(i/ QAQ). (1.2.20)
M

An additional interesting topological quantity is the Euler characteristic y, which parametrizes

11



the only independent Hodge numbers (h'!, h%!) of a simply connected manifold

x = 2(h" = Ky | (1.2.21)

The rest of the fields are written as an expansion of the harmonic forms in ten dimensions.

By, = bo + b,-a)i, Cy =co + cl-a)i, Cy = dicbi + d:a)l + VJ A aj +A; A bj, (1222)

where the indices run as i = 1,..,h%,j = 1,.., h*!. The by, ¢y are two axions, the b;, ¢; stand
for model dependent axions, where the C, consists of an axion d' along with its dual d; and the

q-form V7 contained in the vector multiplet.

If the theory contains fixed points in the manifold due to O3/O; orientifolds, some degrees of
freedom are projected out. This leads to a different parametrization of the internal coordinates,
since the supersymmetry is reduced to N' = 1. The reformed definitions for the moduli (K&hler

T; and cs z/) and the axio-dilaton S, in this case, are given by:

i .kinn =
S=Co+ie™, T =r+id+—""G™G-G)", Gj=c;—Sb;. (1.2.23)
2(5-9)

Below, two figurative tables are presented depicting the four dimensional spectrum of the com-

pactification both in N = 1, 2 supersymmetry.

Multiplets Multiplicity ~ Fields
gravity multiplet 1 s Vo
vector multiplet h?1 2, VI

Kéhler hypermultiplet h'1 ti, b, ci, d'
universal hypermultiplet 1 S, bo, o

Table 1.2: N = 2 multiplets along with the spectrum’s fields [30].
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Multiplets Multiplicity ~ Fields

gravity multiplet 1 v
chiral multiplet 1 S
Kahler chiral multiplets h! ti,d'
chiral multiplet h1! b;, ¢
vector multiplet h2! Vf
c.s. chiral multiplets h?1 27, by, co

Table 1.3: N =1 multiplets along with the spectrum’s fields [30].

The resulting low energy N = 1 supergravity formula for the scalar potential is written in terms

of the Kahler potential and superpotential ‘W as:
K=-2In(V(T)) —In(S-S) - ln(i/ Q(z) A Q(2)), (1.2.24)
M

V= eK[KU_D{WD]fW —3W|*], W= / GsAQ, (1.2.25)
M

where the indices I, J run over all moduli fields.

1.2.2 GUTs FroM F-THEORY

Despite the great success of the SM theory in describing various low energy phenomena, there
are still mysteries regrading their origin. One of the central questions is a missing explanation on
why the gauge group has this particular structure and whether we could explore the possibility of
a unified more fundamental group. Hints point toward this direction, since the exploitation of the
the gauge couplings at high energies renders unification to a certain value. The most promising
candidate is string theory, which has managed to combine supersymmetry, extra dimensions and
coupling unification at string scales in order to provide solutions to various problems of the SM.
In this chapter, a brief discuss is going to presented about F-theory, the non-perturbative mani-
festation of type IIB string theory on Calabi-Yau manifolds. F-theory was constructed in the late
90’s by Vafa [32] as twelve dimensional string theory. Recalling from the previous section the
action of the type IIB theory and the definition of the axio-dilaton, we are going to sketch the

fundamentals of the F-theory constructions. The invariance of the axio-dilaton under SL(2, Z)
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from a mathematical point of view is identical to the transformation of an elliptic curve E;, more

specifically of its complex structure under modular transformation.

ar+b
T —

i
, =Co+ —, d—bc=1. 1.2.26
ccrd 0 Js ¢ ¢ ( )

The idea was that someone could embed the type IIB string theory on a torus, parametrized by
the value of the value of the axio-dilaton. This means that the geometry corresponds to a complex
fourfold, generated by the elliptic curve, which is actually the elliptic fibration over the threefold.
The non-perturbative nature of the theory is manifested through the fact that the elliptic curve
is correlated to the motion of the string coupling g;. The total space of F-theory, them, can
be described by the four dimensional R*>! space augmented by a X complex fourfold with the
threefold base Bs.

In mathematics, elliptic curves are points that satisfy the Weierstrass equation:

Y’ =x"+ f(2)x +g(2), (1.2.27)

where x,y, z are the complex coordinates and f(z),g(z) are polynomials of eight and twelfth
degree in z. Each point on the base B; through this equation is translated as a torus labeled by
the coordinate z. The two most important quantities of an elliptic fibration are the discriminant A
of the Weierstrass equation and the j-invariant modular function. Starting from the discriminant,

the singularities could be classified by

A =4f% +274% . (1.2.28)

If A # 0, the elliptic curve is non-singular. On the other hand, the vanishing discriminant leads to
the degeneration of the fibration, where 24 roots z; can be identified. These roots correspond to
extended objects, the 7-branes, where their location in the fibration is related to the z coordinate.
In addition, from the definition of the j-function, the existence of 7-branes will emerge more

naturally. This function connect the modular of the torus to the roots through:

_ 4(24f)°  4(24f)’

. —2mit
= R T)=¢e +744 + ... . 1.2.29
A 4f3 + 2742 i) ( )

Jj(7)

If this is the case of a vanishing discriminant, then, in the small vicinity of z; one can expand the

Jj function
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i(r(2)) = z% S r(z) = zim In(z - 2z) . (1.2.30)

1

The above equation has some severe consequences in the understanding the various limits of the
theory. If z — z;, then 7 — ico, which in practice means that the theory resides in the weak
coupling regime. This observation was first noticed by Sen [33]. Proceeding further one can
notice that In(z - z;) = In |z —z;| +i6, where as the root is encirled, the 7 undergoes a monodromy

T—oT+1

Zj Zj

The existence of a monodromy implies the emergence of 7-branes at the location of z; in the
transverse space. The elliptic fiber is not a real physical object, but it is used to track down the
variation of the axio-dilaton along the base B;. The implication of the presence of 7-branes in
the spectrum is that gauge symmetries could possibly emerge from F-theory. In type II string
theories, D-branes are associated to U (1) symmetries, where a stack of N D-branes lead to U(N)
gauge symmetries. Similarly, when 7-branes coincide, at the intersection point, a symmetry en-
hancement is achieved leading to gauge symmetries. The classification of the correspondence
between singularities and gauge symmetries are given by Kodaira [34]. According to his work,
there is a systematic classification of the different ADE algebras descending from the vanishing
order of the discriminant in the Weierstrass equation. More recent works have proceeded the

previous analysis and explored the physical properties of these constructions [35; 36; 37; 38].

Of particular interest is the local F-theory constructions. This approach is related to the Tate
algorithm [39] for the singularities of the Weierstrass equation. A redefinition of the Weierstrass

equation into an equation of local coordinates can be recasted as:

y2 +a1xy+asy = x2 + apx? + adx + ag . (1.2.32)

The a functions are functions depending in the complex coordinate z of the base Bs, while they

are related to the previous functions f, g.
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/= —%(ﬂi - 24p). 9= —ﬁ(—ﬁé + 3624 — 216f) (1.2.33)

A= < (BsfE = s+ 863+ 2757, (1.2.34)

where the new f functions are given by:

Bo = a® +4a;, Py =ajas+2ay, (1.2.35)

Bs = a§ +4as, fs= i(ﬂzﬂé - B . (1.2.36)

Based on the above, the resulting gauge group is associated to the vanishing order of each a
function, since their definition is a; ~ b;z". A geometric origin is that the elliptic fiber is factorized
at the location of the 7-branes on a particular divisor in Bs. In Table 4., the complete classification

of the various gauge groups with respect to the singularity type is presented.

It would be illustrative to discuss local F-theory constructions such as a SU(5) model. Assuming

a = —b5, ag = b4Z, as = —b322, ag = b223, g = Zsbo, (1.2.37)

where if we substitute these factors in the Tate formula, it results to :

y? = x> + boz’ + byxz® + byyz® + byx’z + bsxy. (1.2.38)

16



Type Group a, | as as as ag A

Iy 0 010 0 0 0 0
L - 010 1 1 1 1
L suUi) |o]o]| 1 1 2 2
s - ool 2 | 2 3 3
I - 01| 1 2 3 3
e Sp(n) 010 n n 2n 2n
I, SU(2n) 0|1 n n 2n 2n
I - 0|1 |n+1|n+1|2n+1|2n+1
L., |SU@n+1)| 0 |1 n n+1|2n+1|2n+1
II - 1 1 1 1 1 2
11 SU(2) 1]1] 1 1 2 3
Ivns - 1 1 1 2 2 4
vs SU(3) 11| 1 2 3 4
L Gy 11| 1 2 3 6
s SO(7) 11| 2 2 4 6
g SO(8) 11| 2 2 4 6
s SO(9) 11| 2 3 4 7
s | so(o) | 1] 1| 2 3 5 7
e | oso(1n) | 11| 3 3 5 8
| so12) |1]1]| 3 | 3 5 8
v=ns F, 1] 2 2 3 4 8
v Eq 12| 3 3 5 8
17 E; 12| 3 3 5 9
I Eg 1] 2 3 4 5 10

Table 1.4: Results from Tate’s algorithm.

The above equation leads to an SU(5) singularity. Now, the b coefficients can be understood
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as sections of the line-bundle in the divisor Sgyr. In order to perform an anomaly cancellation
analysis, we have to define c; as the first Chern class of the tangent bundle of Sgyr, while —t as

the first Chern class of the normal bundle. The homology classes are written as:

n==6c—t. (1.2.39)

Based on this definition, we can attribute to each coordinate a specific homology class, the same

goes to the coefficients b;.

x: 2(ci—1t) (1.2.40)
y: 3(ci—1) (1.2.41)
z: -t (1.2.42)
br: n—ke . (1.2.43)
Each term in (1.2.38) has the same homology class, e.g.
byxz® :np—2ci+2(c; —t) =3t =6(c; — ). (1.2.44)

Now, we have to translate the f functions in terms of the b sections.

Bo = bE + 4byz, (1.2.45)
s = bsbsz® + 2b,2°, (1.2.46)
Bs = b3z" +4by2’, (1.2.47)
Bs = 2°(R + z(4boby — b3)), R = b5by — bybsbs + bybs . (1.2.48)

It is a good point to define the matter representations in the F-theory GUTs. These degrees
of freedom lay at the intersection of two 7-branes, where from a mathematical scope they are
Riemann surfaces where some symmetry enhancement is achieved. For instance, by choosing
that the bs = 0, the discriminant becomes A ~ z’. According to the Tate’s classification, this
singularity returns an SO(10) symmetry. Thus, we can deduce that a matter curve is laying along
the intersection of two 7-branes at the singularity, leading to the 10 representation of SU(5). This

matter curve X can be written as:
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210 = {bs = 0} . (1249)

In a similar fashion, one can also obtain the 5 representation of the SU(5) by considering R = 0,
leading to A ~ z%. This is an SU(6) singularity, where in the adjoint decomposition of SU(6)

there is the 5-plet. Again, the matter curve could be expressed as:

25 = {R =0= b§b4 - b2b3b5 + bobg = 0} . (1250)

Finally, the notion of Yukawa couplings in the semi-local approach of F-theory is given by the

triple intersections of 7-branes. For instance the top and bottom Yukawa couplings are given by:

Y; = {bs=0,by =0}, A~ 2z® — E singularity (1.2.51)
Y, — {b3=0,bs =0}, A ~2z®— SO(12) singularity (1.2.52)

Based on this short introduction, one can extract a very useful machinery for the construction
of GUTs in the close vicinity of an geometric singularity. It is also worth mentioning that an
extensive amount of work have been done towards the computation of Yukawa couplings in F-
theory [40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53], since the geometric separation of the
matter curves and their distinctive position in the GUT divisor allows for a natural explanation
to the problem of mass hierarchical structure.

An important ingredient in the engineering of F-theory GUTs is the semi-local approach, mainly
studied by [54]. In this picture the maximal symmetry is the Eg gauge group, which is broken by
geometric Higgs mechanism in resulting a Gs group (a surface for the GUT model), augmented

by a commutant group described by the spectral cover surface.

Es D Gs x SU(N)., (1.2.53)

where the symmetries related to particle physics are
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Es — E¢ x SU(3)., (1.2.54)
Es — SO(10) X SU(4) , (1.2.55)
Eg — SU(5) x SU(5), . (1.2.56)

We will study an example to deeply understand the properties of the spectral cover. Starting from

Gs = SU(5), the matter representation are decomposed as:

248 — (24,1) + (1,24) + (5,10) + (5,10) + (10, 5) . (1.2.57)

The spectral cover equation are defined by the internal coordinates

z—>Ux—>Viy— V3, (1.2.58)
Yy

where based on this redefinition the Tate formula can be recasted to:

0 = boU> + by V2U? + b3V3U? + by VAU + bsV°. (1.2.59)

In order to rewrite the above formula as a polynomial, we use the new variable s = U/V:

Cs = b5 + b4S + b382 + b233 + b134 + boSS (1.2.60)

The roots of this fifth degree polynomial are characterized as weights t; of the perpendicular
group SU(5), [55].

0= b5 + b4S + b332 + b283 + b1S4 + boSS = H?:1 (S + ti) . (1261)

To "charge" the matter fields with the new charges, one has to entangle the charges with the
sections b;, which sections define the matter curves. One can see that the sum and the product

of the roots are given by:
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bl = Z ti = 0, b5 = t1t2t3t4t5 . (1262)
i

The above sections define the matter curves, as mentioned in (1.2.49), where the multiplicity of
the representations are numbered by the number of different charges. For instance, there are five
10plets given by:

210, ¢ Pro=bs —>t;,=0, i=1,23,45. (1.2.63)

In a similar manner, the 10 different 5plets are defined by:

Zgij : P5 =R= H#j(t,' + tj) =0. (1.2.64)

As for the singlets, their degrees of freedom are, also, defined by charges t;, but they parametrize

the space transverse to the matter curves.

Zlij Py = H(i(ti - t])) =0, (1265)

whose polynomial match the discriminant of the spectral cover equation. The effective theory of

this model is given by SU(5) x U(1)%, where the superpotential for the up quark masses

W D 10,10,,5,—s, - (1.2.66)

The above coupling contains the interactions for two different generations, although phenomeno-
logical reasons favor rank-1 mass matrix. Consequently, an additional symmetry would be re-
quired. To introduce this kind of symmetry, we need to understand the relation between the

sections b; and the roots t;.

b; = bi(t;) . (1.2.67)
The inversion of this equation leads to branches due to the fact that there exists monodromies
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t; = t;(b;) [55; 56; 57]. Considering the Z, monodromy, it means that two roots of the spectral

cover equation (1.2.61) do not factorize, leadin to second degree polynomial

a1+azs+a352:0rf

$1 =

The branchcuts are viewed as

—ds + \/W
—’

2as

—ds + \/W
—’

w = ag —4a;as.
2as

Sy =

Vw = e!0/2 lw| =

6 — -0,

V- VW,

S1 € Sy .

(1.2.68)

(1.2.69)

(1.2.70)
(1.2.71)

These branchcut provide an identification t; < t;, where the coupling constant for the up quark

is modified to:

W > 10,,10,,5_;, .

(1.2.72)

The SU(5) spectral cover provide the geometry with a 5-degree polynomial Cs, where some pos-

sible different monodromies can be introduced. All possible indentifications/factorizations of the

polynomial are given below:

CoX(CixXCi x(Cy
Cy X Cy X (4

C3 X Cy X Cq
C3 X Cy

Cyx

. (ay + azs + ass?) (ag + ass) (ag + azs) (as + aos),
: (a1 + azs + ass?®) (ag + ass + ags®) (a7 + ass),

: (a1 + azs + ass® + ays®) (as + aes) (a7 + ass),

s (ar + azs + ass® + ass®) (as + ags + azs>),

: (a1 + azs + ass® + ass® + ass*) (ag + a7s) .
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1.3 TOWARDS STRING PHENOMENOLOGY

1.3.1 MODULI STABILIZATION

Most compactifications share a unique feature regarding their stability conditions. As it can seen
by equation (2.1.67), fluxes can generate a non-trivial scalar potential depending on the various
moduli fields of the theory. Up to the late 90’s, no model had managed to find a consistent solution
for describing the lat-time cosmology, since the allowed vacua were of Anti de-Sitter type. In
order to explain the accelerated phase of the universe, one should derive a de-Sitter (dS) vacuum,
where supersymmetry must be broken in a controllable way and higher derivative corrections
to the vacuum should be subleading. Despite the no-go theorems [58; 59], stating that such
solutions are forbidden in the context of superstring theory, a plethora of attempts point towards
some available dS vacua.

The moduli space in string vacua is characterized by: the Kahler moduli, the complex structrue
moduli and the axio-dilaton. Since these scalar fields are parametrizing the size and the shaoe
of the interanl geometry and remain massless at tree-level, one should generate an 4d effective
potential in order to generate masses for them. The intention to do so is that if they remain
massless, new long range forces should be detected. The existence of extensive objects, like D-
branes, have identified the warped compactifications as a bypass to the no-go theorems. One
should start from the scalr potential (2.1.67), and try to understand the dynamics in the presence
of fluxes. In the seminal work of Giddings at al. [60], they probed that complex structure moduli
and axio-dilaton could be stabilized in the presence of integer fluxes. Starting from the metric of

the type IIB string theory, we can associate the wrap factor A(y) to the self-dual 5-form fluxes Fs.

ds?, = e 24Wgs? 4 240 g dymdy”, (1.3.1)

Fs = (1+%)[da A dx’ Adx' Adx® Adx®], a=e® . (1.3.2)

Now, the 3-form fluxes defined by G3 = F3 — 7Hs are imaginary self dual, satisfying the relation

Gs =i %6 G3, (1.3.3)

where we have properly defined the Hogde dual *¢ in the internal geometry. The preservation of
supersymmetry at the N = 1 level leads to the constraint that the fluxes has to be primitive and
of (2,1) type. The condition (1.3.3) erase the (0,3) part of the fluxes, since this part would attribute

a non supersymmetric vacuum with ‘W = W,. Moreover, the above condition fixes the complex
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structure moduli and the axio-dilaton at high scales

m~ — (1.3.4)

where R is the radius of the manifold. One last that should be addressed is the fluxes and the
presence of D-branes serve as localized sources that could potentially raise some tadpoles. It is
proved in [60] that fluxes generate a tadpole the C, axion. The D;-branes provide some negative
D3 charge in the geometry, where this charge can related in the language of F-theory to the Euler
characteristic y(M).

D _X (1.3.5)

3 24
The resulting tadpole which every type IIB/F-theory compactification must satisfy in the presence

of integer fluxes is

. /H/\F+N Ny =X (1.3.6)
PR A T .
Having managed to provide the mechanism for the stabilization of the cs moduli and axio-dilaton,
the Kahler sector remains undetermined. Two different approaches, KKLT model [61] and Large
Volume Scenario [62], lead to dS vacua have been proposed the last twenty years. We are going

to briefly describe both of them in the rest of the section.
KKLT model

Focusing in the Kahler moduli sector, this proposal argues that non-perturabtive corrections to
the no-scale scalar potential could in principle stabilize the compactification’s volume. In string
theory, there are two types of non-perturabtive corrections: i) Euclidean D3 branes ii) Gaugino

condensations. The first one can be written as:

Wh, = T(z)exp(2rip), (1.3.7)

where T(z) is a prefactor depending in the complex structure moduli and p stands for the volume

modulus. The latter correction’s form is summarized:
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2mip

(Wgaugino = A?\]C = Ae Ne s (138)

where the A parameter is determined by the scale of the gaugino condensation and N, is the
number of branes in the corresponding stack of branes. Taking into account these corrections,

KKLT scenario achieved an AdS vacuum, with the Kéhler potential and the superpotential given

by:

K =-3In(=i(p - p)), W =Wy+AeY. (1.3.9)

Imposing the flatness condition of superpotential DW = 0, it leads to:

2
DW =0= W, =—-Ae"(1+ ga%r), p=io. (1.3.10)

The value of the potential at the vacuum can be found to be:

aZAZe—ZaO'cr
Viags = —————— . (1.3.11)
60cr
This vacuum has be found taking into account that o > 1, in order to have controllable correc-
tions. Additionally, ac > 1 is imposed since the superpotential corrections have to be reliable.
Nevertheless, the resulting vacuum is an AdS vacuum, so a mechanism should be included in
order to uplift the model. The problem can be solved through introducing anti-branes D3, whose

effect is to add a positive term in the scalar potential.

d

" gy

d>0. (1.3.12)

AS for the scalar potential, substituting Kahler potential and superpotential of equation (1.3.9) in

the formula for the scalar potential (2.1.67), one can derive:

alAe % 1 d
V= (zacAe™ + Wy +ae )+ — . (1.3.13)
202 '3 o3
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In the above potential, fine-tuning of D parameter would suffice to uplift the AdS vacuum to dS
vacuum. In the following plot, the two vacua are shown for a specific values of the free parameters
of the theory.

d=10"1°

100 200 250

Figure 1.1: KKLT’s vacua (1.3.13) for suppressed fluxes and a tiny uplift parameter d.

The next step for ensuring that the dS vacuum is stable, would be to explore the decay rate
of the vacuum. The goal is to achieve a decay time, which is shorter than the recurrence time
t, ~e%, Sy = %. Within the thin-wall approximation approach [63], the possibility of vacuum’s

decay rate is related to the dS entropy and can be computed from:

P= exp(—( S(9) ), (1.3.14)

1+ 4V, /3T?)?

where the temperature of the bubble wall is given by:

T= / wd¢\/zV(¢) . (1.3.15)

o

In the limit of considering the inclusion of gravitational effects T? > V, the approximated result

is given by:
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247

2
) ~ exp(—1071%0) (1.3.16)
Vo

P = exp(=S5(¢)) = exp(-

One could easily observe that the dS vacuum is practically stable during the cosmological timeline.
Large Volume Scenario

An alternative to the above scenario was proposed on the basis that there is decompactification

direction in the moduli space along which:

« 7= Im(p;) — oo,

e V<oOforV > 1.

The leading order (a’*) corrections to the Kihler potential has been studied in [64], where this

modification leads to the potential as:

K=-2In(V+ g + world sheet instantons) . (1.3.17)

As for the superpotential, non-perturbative corrections need to added along each direction 7; of

the internal space:

W =W, + ZA,,e"""Pn . (1.3.18)
n

The generic formula for the scalar potential can obtained from the following formula:

vV =eX [prp"(ajAjakAkei(afpf_“kﬁk) + i(ajAjei“fpfwaﬁkK - akAke_iakﬁch?jK)H
24 T7EV +V?

g ATV VY
(V-H2V+d

\URE (1.3.19)

It is worth mentioning, also, that the constant £ controls the strength of the &’ corrections and

its value is given by:

_oxx08E) s &
£= e = 2 (1.3.20)
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The above scalar potential can be split into three sperate terms:

V = Vip, + Vi, + Ve, (1.3.21)

where it’s term formula is summarized below:

—k tk 2 A, 2 ,—2a57s ,Kcs 1
(—kssk )as |(V| e e +O(W)’ (1.3.22)

Vnpl ~

where the index s stands for a modulus 7;, which stays to smaller values than 7; — co. The second

non-perturtabive term is written as:

asTee” 72 Whlekes + 0O 1
V”PZN_TlAS 0|e + ((W . (1323)

As for the perturbative part of the scalar potential, this is computed from the simple formula by:

3¢

Vo ~
“167V3

1
+0(77). (1.3.24)

Summing all the contributions, the scalar potential to the leading order in the large volume sce-

nario could be read by the following derived formula:

—kgskt® _ asTs _ £ 1
2p2_SS 2a5s s°s sTs 2
V~ [aSASTe asts — |AS(W|W6 4T 4 @VWl ] +O(W . (1325)
Given the above limit, the overall potential scale as
InvV
V ~ —eKes |ASWO|W, (1.3.26)

where this potential reaches zero from the negative at large volumes.

1.3.2 ORIGIN OF RIGHT HANDED NEUTRINOS AND MODULAR FLAVOR SYMMETRY

The SM theory included only left-handed neutrinos in the leptonic sector. Despite their presence,

these degrees of freedom cannot acquire mass from any mechanism, since the mass terms are not
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allowed in the Lagrangian. Moreover, neutrinos are the only charge neutral particles of the SM,
so there is a possibility for them to be of Majorana type. Assuming the Majorana case, we can

introduce right-handed neutrinos vg, so the additional terms are:

L = mpVrvg + Mgivgvg + h.c. (1.3.27)

where mp and My are 3x3 matrices. The two terms have a different interpretation: the first one
stands for the Dirac type operator, descending from (Y,);;L;Hvg,. As for the latter term , there
are various model dependent origins, where the simplest one is given by Weinberg [65], who

introduced a dimension 5 operator.

(1.3.28)

The A energy scale denotes the scale of new physics, where one can observe that these terms are
violating the total lepton number by AL = 2. However, dimension 5 operators can be derived
by a mechanism, named seesaw mechanism, where it can embedded easily in GUTs. Seesaw

mechanism is classified into three different types: type I [66], type II [67] and type III [68].

Type I seesaw is the easiest to analyze, since the right handed neutrinos are singlets and no
constraints can be imposed on them with respect to their mass. Given the Lagrangian in equation

(1.3.27), the general mass matrix of both Dirac and Majorana type can be written as:

0 mp
M, = , (1.3.29)

T
mD MR

where the light neutrino masses could be obtained by:

m, = mpMg'm}, . (1.3.30)

In a similar fashion to the quark mixing, there is still missing an explanation for the lepton mixing

[69]. Considering the Lagrangian for the leptons in the SM, we can write:

29



1 o
L=—vYe e - EMiVjv’vaj + h.c. (1.3.31)

Now, the mass matrices can be diagonalized by unitary matrices:

Ye 0 0 mi 0 0
Ul YUy =| 0 y 0| UiMU,=lo m o (1.3.32)
0 0 vy, 0 0 ms

The charged current (CC) couplings to W boson in the flavor basis is given by:

ViL
LD —%ééy”wp_vi = LD % (éL L fL) Upmnsy* Wy | vy |+ hec. . (1.3.33)
V3L

The above matrix can identified as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing

matrix

Upnns = U; Uy, (1.3.34)
This matrix can be parametrized as:
€12€13 $12€13 cze @10 0
UPMNS = | —=s12¢23 — C12523513€0 12023 — S12823813¢™0  spsc13 [[ O et o0 |, (1.3.35)
S12823 — 0120233136"S —C12523 — 312023513€i5 c23c13 [\0 0 eia%

where the ay1, as; are Majorana phases. These phases can be constrained after observing neutri-
noless double beta decay in experiments [70].

Despite the fact that the seesaw mechanism has provided an explanation for the origin of the
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neutrino masses, SM does not give any insight into the origin of fermion masses and the mixing
parameters. The idea of a family symmetry may provide a solution to the above problem, which
symmetry may be discrete or continuous, Abelian or non-Abelian (for some instructive reviews
see [71; 72]). Recently, an interesting class of symmetries descending from the modular group
SL(2, Z) has dragged some attention. From a mathematical point of view, this symmetry describes
a torus whose flat geometry can be viewed as it is cut open. The two dimensional space of
the torus could be identified as the real and the imaginary axis of a complex plane spanning
the upper half plane. The principal congruence subgroup of level N corresponds to a subset of
matrices I'(N), whose determinant equals to unit and contains positive and negative integers.
The connection between particle physics and modular symmetry lays at the understanding that
extra dimensions in string theory are compactified in tori. Although the subgroups of SL(2, Z)
are infinite, finite symmetries can rendered by removing the infinite matrices, leaving only the

quotient group:

Iy = PSL(2,Z)/T(N) . (1.3.36)
a b

SL(2,Z) ={ la,b,c,d € Z, det = 1} . (1.3.37)
c d

Furthermore, the quoetients groups

I}, = SL(2,2)/T(N) (1.3.38)

are denoted by the homogeneous finite modular groups. These matrices are two by two matrices

with entries integers modulo N. The connections between the I'y and T}, is given by:

Ty

{15 _1}

0

Ty = (1.3.39)

The modular group can be generated by two elements S, T. Its transformation properties or the

its action on the torus modulus 7 are summarized below:
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g = L T= , (1.3.40)
-1 0 0 1
1
S:t>—, T:t>71+1 (1.3.41)
T
St=(ST)* =1, S*T =TS>. (1.3.42)

Additionally, the transformation properties of the modulus 7 under the SL(2, Z) is obtained by:

ar+b

. 1.3.43
ct+d ( )

r—oyr=y(1) =

In the rest of this section, we will describe how superymmetric theories include the notions of
modular family symmetries on how to describe the Yukawa matrices depending only in a single
modulus 7 [73]. But, before proceeding in the following Table, the finite modular groups I'y up
to order N = 7 are depicted.

N Iy T |
2 Ss 6
3 Ay 12
4 S, 24
5 As 60
6 S3 X Ay 72
7 PSL(2,7) 168

Table 1.5: Finite modular groups of SL(2, Z).

27 In the context of N' = 1 supersymmetry, the modular invariant supersymmetric theories [73;

74; 75] has the following action:

S = / d*xd*0d*0K (®r, &1, 7, 7) + ( / d*xd*0W (@, 1) + h.c.), (1.3.44)
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where K is the Kahler potential, where it is a real gauge invariant function of the superfields &;.
This action has to respect both the modular symmetry as well as the gauge symmetry of the SM
or some GUT. The transformation properties of ®; are specified by the modular weight k; and

the corresponding representation r; of I'y

——, &> (cr+d)Fp,, (). (1.3.45)
AS for the Kahler potential, it takes the form
K(®;, &1, 7,7) = ~hA? log(~it +if) + Y (=it +iD) M|, h>0. (1.3.46)
1

The above equation is invariant under the Kéhler transformations, given the modular transfor-

mation of the moduli

P Sl A (1.3.47)
T let +d|?’ h
K — K + hA%log(ct + d) + hA* log(cT + d), (1.3.48)

where the last two terms give null contribution after integrating the Grassmann coordinates 6
[76; 77; 78; 79]. Regarding the superpotential ‘W, this can expanded into powers of the fields &;

W= Y, 1, (1) 0. (1.3.49)
The functions Y, are called modular forms of weight ky of level N are given by:

Y(r) = Y(yr) = (et +d)" pr, (y) Y (v), (1.3.50)

where the important constraints imposed in the theory are:
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ky=ki+..+kn, py,®..®p, >1. (1.3.51)

The modular forms are defined as a holomorphic function of a variable 7

a

b
f(ht) = (e + d)kf(r), h = eI'(N), k>0. (1.3.52)
c d

The linear space of these forms are denoted by My (I'(N)) and its dimension is given by:

(k—1)N+6

dimM; (T(N)) = -

1
N°TI,(1 - F)’ N>2k>2. (1.3.53)

Moreover, the automorphy factor J(y, ) is given by:

J(y,7) = ct+d, (1.3.54)

where the generic modular functions F;, = J ~k £(yr) are transforming by

Fy(ht) = J*(h 1) Fy(7),  Fiy(7) = pij (1) fi(2) - (1.3.55)

Observing the above equation, the p matrices are the representation matrices if the y element is
in the quotient group I'y. Consequently, there is always a basis of the modular form space, so

that the Y,(7) are given:

Y, (y7) = (ct+d) p,(y)Yi(z), yeT. prely. (1.3.56)
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2 MoODULI STABILIZATION IN TYPE IIB

STRING THEORY

Recent swampland conjectures [80; 81; 82] have sparked an interesting discussion regarding the
nature of string theory vacua !. This hypothesis states that the string landscape does not contain
stable dS vacua, although allow the possibility of metastable vacua. However, studies, by various
researchers, have shown that dS minima are in principle accessible in string theory, when pertur-
bative and non-perturbative dynamics are taken into account. Apparently, quantum corrections
in string theory are of significant importance in shaping the scalar potential of the effective the-
ory. As mentioned in section 1.3.1, during the past decades efforts have been focused on a solution
to the moduli stabilization and dS vacua problems through introducing non-perturbative correc-
tions and objects like D-branes [85; 86] 2. The uplifting to dS space of the derived vacua can be
attributed to a mechanism utilizing anti-Ds branes (Ds for short), mainly used to the KKLT sce-
nario, or by D-terms as explained in [93], where the leading order o’perturbative corrections [64]
are also included in the Kahler potential dominating the small volume regime. 3

The present work will be in the framework of type IIB string and F-theory compactifications with
Dy-branes and fluxes, where the contributions from perturbative string-loop corrections [95] will
be taken into account. Their origin can be traced back to higher derivative terms in the string
action, whose effect is to generate a localized Einstein-Hilbert term. In the geometry of three
intersecting D;-branes, these contributions emerging as logarithmic corrections to the Kahler
potential. Quantum corrections of this type are standard in the presence of D-branes and were
also studied in the past [96; 97] although in different contexts. Also, in [98] it was shown that
invariance of the effective classical action under SL(2, R) transformations implies logarithmic
corrections to the Kéhler potential which depend on the untwisted Kahler moduli. Such contri-

butions, break the no-scale structure of the Kahler potential and lead to an effective theory with

IFor related reviews and further references see [83] and [84].

2For recent work on KKLT see [87]-[88] and for earlier contributions see [89; 90].For cases suggesting small ‘W,
values see [91; 92].

3Tor a general review regarding four-dimensional compactifications with D-branes and fluxes see [94].
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all Kahler moduli stabilised. Furthermore, D-term contributions related to the Abelian symme-
tries of the intersecting D;- branes, work as an uplift mechanism and ensure the existence of dS
vacua. This chapter features the combination of both the perturbative logarithmic corrections in
the Kahler potential as well as non-perturbative contributions to the superpotential in the deriva-
tion of stable dS vacua in the four dimensional effective theory. Investigations will be focused
on scenarios where the non-tivial non-perturbative corrections are only involving a subset of the
available moduli, leaving the remaining scalar fields to be stabilized by the new quantum effects,
where an additional implication is that they break the no-scale structure of the Kahler potential.
Various string models favor such examples where some of the non-perturbative corrections in
the superpotential are prohibited by Euclidean instanton contributions as described in [99] (see
also[100]), where the world-volume fluxes lift fermionic zero modes preventing their generation.
The following section contains the analysis of the previous mentioned approach. At first, the
string quantum corrections are going to be presented and analyzed and the new contributions
to the Kéhler potential are going to be highlighted, in order to differentiate our methodology
from previous studies. Moreover, two scenarios are investigated: the first one contains only
one non-perturbative correction to the superpotential, while the latter studies the more complex
case of multiple corrections. In both examples, the supersymmetric flatness conditions are scru-
tinized leading to various bounds on the internal fluxes and the free parameters of the theory.
Moreover, an analysis of the aforementioned quantum corrections in fibred compactifications are
summarized, pointing towards the effectiveness of those contributions to a broader spectrum of
geometries. The uplifting of the AdS vacua will be performed by D-terms, resulting to completely
stable dS vacua available for cosmological applications [101; 102]. In the last part of this chapter,
the cosmological implications of these type of stabilized vacua are examined where logarithmic
effects in the off-diagonal elements of the Kéhler metric are taken into account. New contribu-
tions to the decays of moduli to axions are explored, which axions could comprise the particle
nature of universe’s dark radiation. Furthermore, a dark matter scenario is proposed based on
the fact that moduli fields could also decay to degrees of freedom of the geometry’s dark sector.
These decays could potentially result into WIMPs where their mass lay in the range of order
~ 0(10%,10'Y) GeV.
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2.1 PERTURBATIVE MODULI STABILIZATION

2.1.1 QUANTUM CORRECTIONS IN THE KAHLER POTENTIAL

The notation for various fields used in the subsequent analysis is as follows: The dilaton and Kalb-
Ramond fields are denoted with ¢ and B, respectively while the various p-form potentials with
Cp, p = 0,2,4. The C, potential and the dilaton field ¢ are combined in the usual axion-dilaton
combination: _
S=Cot+ie?=Co+—-
9s
Finally, z,, a = 1,2, 3, ... stand for the complex structure (CS) moduli and T;, i = 1,2,3, ... for the

Kahler fields. The fluxed induced superpotential, ‘W, at the classical level is [103]

(WO = / G3 A Q(Za) s (211)

with Q(z,) being the holomorphic (3,0)-form and Gs; := F; — S H3, where the field strengths
are F, := dC,_1,H3 := dB;. The perturbative superpotential W} is a holomorphic function
and depends on the axion-dilaton modulus S, and the CS moduli z,. Thus, at the classical level,
the supersymmetric conditions, D, W, = 0 and DsW, = 0 fix the moduli z,, S, however, the
Kahler moduli remain completely undetermined. At the same order, the Kahler potential depends

logarithmically on the various fields, including the Kahler moduli

3
Ko == Y In(-i(T = T) ~n(=i(5 - §) ~In(=i [ @20 (212)
i=1
Then, the effective potential is computed using the standard formula
Vg = eX Z DI(WOWUDJ—WO - 3|W0|2) , (2.1.3)
Lj

In the absence of any radiative corrections, the latter vanishes identically due to supersymmetric
conditions and the no scale structure of the Kéhler potential. Hence, it is readily inferred that in
order to stabilise the Kéhler moduli it is necessary to go beyond the classical level. In fact, when
quantum corrections are included they break the no-scale structure of the Kéhler potential and
presumably a non-vanishing contribution in the scalar potential, i.e. Vg # 0, is feasible.

As already stated, in the quest for a stable dS minimum in effective string theories, the role of

perturbative as well as non-perturbative corrections will be analysed. Furthermore it should be
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mentioned that this work takes place in the framework of type IIB string theory compactified on
a 6-d Calabi-Yau (CY) manifold X, and the 10-d space is My X X¢. The subsequent computations
are assumed in the context of type IIB string theory compactified on the T°/Zy orbifold limit of
the CY space. Furthermore, a geometric configuration consisting of three intersecting D7 branes
is considered, while the internal volume V is expressed in terms of the imaginary parts o’ (the

two-cycle volumes) of the Kahler moduli
1 ijokoi i
V= gkiij v/0", o' = -Im(T"), (2.1.4)
where k;ji are intersection numbers. The o' are related to 4-cycle volumes 7; as follows:

1 .
T = Ekijkvjvk . (215)

3

In the present case it is simply assumed that V = v'0%0® or, in terms of the 4-cycle volumes 7;’s:

V =nnrs . (2.1.6)

After these preliminaries, in the remaining of this section the various types of corrections will be
presented.
Starting with non-perturbative corrections of the superpotential, in principle, all three Kéhler

moduli considered in this model may contribute. In this case the superpotential takes the form

3
W =W, + ZAke"“kPk , (2.1.7)
k=1

In the above formula, py = by + ity where by is associated with the RR C4 form, 7; is given
by (2.1.5) and W, = / Gs A Q is the tree-level superpotential in (2.1.1). The second term in the
right-hand side of (2.1.7) is the non-perturbative part [104]. The constants A; in general depend
on the complex structure moduli and the a; parameters are assumed to be small (for example
in the case of gaugino condensation in an SU(N), they are of the form %) However, it maybe
possible that the choice of world-volume fluxes [99] allow only some of the Kahler moduli fields
to have non-vanishing non-perturbative (NP) contributions. Before proceeding to the next step,
some comments are due with respect to (w.r.t.) the reliability of the instanton correction and the
specific choices in the subsequent analysis. This type of corrections originates from the presence
of Euclidean D3-branes wrapping four-cycles in the base of the compactification [104]. First of
all, in order the supergravity approximation to be valid, the condition 7; > 1 should be fulfilled.

Two main reasons are in favor of this argument. First, shrinking one direction to small volume
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leads to highly curved Kahler cones or orbilfolds where the effective approximation is at stake.
Second, the logarithmic correction [96] that has been added in the Kahler potential requires large
transverse directions 7;. We come back to this issue in section 3.2.

Next, quantum corrections to the Kihler potential will be discussed, starting with the a’® contri-

butions, which, in the large volume limit imply a redefinition of the dilaton field [64]
e = (Y 4 ) =i (V4 f) (2.1.8)

The last expression on the right-hand side of (2.1.8) holds in the Einstein frame and the volume

is written in terms of the imaginary parts of the Kahler deformations T* as follows

1 .
V= ;K,-jkvlvjvk, of = —Im(T%) = o* e2fu . (2.1.9)
The modifications in the Kéhler potential correspond to a shift of the volume by a constant &
which is determined in terms of the Euler characteristic & = —% X-

The origin of the second type of corrections comes from higher derivative terms which give rise
to multigraviton scattering in string theory. In type IIB theories, the leading terms appearing in
the 10-dimensional effective action are proportional to R*, where R is the Riemann curvature. In
theories with NV = 1 sypersymmetry in 10 dimensions, the leading corrections already appear at
order R%. Here, the terms of interest to us are the R* couplings, which, after compactification to
four dimensions X;9 — My X Xs, they induce a new Einstein-Hilbert (EH) term, multiplied by the
Euler characteristic of the manifold. The one-loop amplitude of the on-shell scattering involving
four gravitons has been worked out in [105; 106; 107; 108; 109; 110; 111; 112] where it has been

shown that the ten-dimensional action reduces to

1
n)a? / fz%(lt})‘ﬁ/(—25(3)6_2¢i4§(2))R(4), (2.1.10)

M4 XX6 M4

S grav

where R(4) denotes the ‘reduced’ Riemann tensor in four dimensions, the + signs refer to the type
ITA/B theory respectively, and the Euler characteristic is defined as
3
=2 [RARAR. (2.1.11)
473
Xe

From (2.1.10), it is observed that a localised EH term * is generated with a coefficient propor-

“The computations have been performed in the orbifold limit [95] and localisation occurs at the orbifold fixed
points p;. These points correspond to the singularities where the Euler number is non-vanishing and in general
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tional to y defined in (2.1.11). Consequently it is inferred that this term is possible only in four
dimensions. In the geometry of the bulk space, the R4 EH terms of (2.1.10) correspond to ver-
tices at points where y # 0, and as such, they emit gravitons and Kaluza-Klein (KK) excitations
in the six-dimensional space. Furthermore, in the presence of D7 branes which are an essential
ingredient of the internal space configurations in type IIB and F-theory, new types of quantum
contributions emerge. It is found thereby that the exchange of closed string modes between the
EH-vertices and D7 branes and O7-planes give rise to logarithmic corrections. These take the
form [95]

1- Z 62¢Tk ln(Rf_/W) Ry . (2.1.12)
k

4{(2) (

(27T)3X M,

In the above, Ty is the tension of the k" 7-brane, R, stands for the size of the two-dimensional
space transverse to the brane, and w is a ‘width’ related to an effective ultraviolet cutoff for the

graviton KK modes propagating in the bulk [109].

2.1.2 EFFECTIVE POTENTIAL

In this section, we are going to present two examples of scalar potentials augmented by both
perturbative and non-perturabtive corrections. The stability conditions will be presented in par-
allel with the flatness conditions of the superpotential, whose ffect is to provide an insight to the
scale of the internal fluxes. In the first example, we assume that only the 7; modulus induces a

non-vanishing contribution in the NP part of the superpotential, thus
W =W, + Ae"*Pr . (2.1.13)

As for the quantum corrections, they are parametrizing all the Kéhler moduli of the geometric

configuration and they are given by

3
S=¢+ Z ni In(zp), (2.1.14)
k=1

where an additional assumption is that all the D;-branes have the same sting tension. This will

lead to a more compact description of the logarithmic factor. The coefficients ny and & are defined

by

X = 2i Xp;- In this sense, the existence of the term R4) is associated with these points, hence the term “localised
gravity”.
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1 X, %ng for orbifolds

nk=n= _EgsTO ; &= (2.1.15)
{(3) for smooth CY
Taking into account the above corrections, the Kahler potential takes the form
K=-2In(Vons+f+nhn(nns)) = -2In(V+&+nhV) - (2.1.16)

The covariant derivative of the superpotential w.r.t. the Kahler modulus p; is defined in the usual
manner, i.e., Dp, W = 9, ‘W + W4, K. Working in the large volume limit, terms proportional to

& and 1 coeflicients compared to the volume V are ignored. Writing the Kéhler potential as

K = —2log(v/(p1 — p1)(p2 — p2)(p3 — p3) + O(n, £)) (2.1.17)

and taking the derivatives >

; 1
p, W = iaAe'", 9, K =— - (2.1.18)
P1—P1
it is readily found that
A+ Woetn
D, W| _ =ie (aA + —Oe) : (2.1.19)
P1=1T1 27

The corresponding supersymmetric condition, D, ‘W = 0, fixes the value of the modulus 7; =
Imp; in terms of the tree-level superpotential ‘W) (determined by the choice of the fluxes) and the
coefficients a, A - related to non-perturbative contributions. Thus, the vanishing of the derivative

(2.1.19) yields

1+ 2w
T =- , (2.1.20)
2a

where w represents either of the two branches Wy, W_1, of the Lambert W-function

w=Wy_g(==) . (2.1.21)

In (2.1.21), the convenient definition has been introduced

_ W

" (2.1.22)

Y

>We denote with calligraphic letters W, ‘W the tree-level and corrected superpotential and reserve the symbols
W, Wy, W_; for the Lambert W-function.
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Real values of the solution are compatible with the bound y > —2e~'/? ~ —1.213 for both branches.
For the “lower” branch W, equation (2.1.20) implies the constraint ar; < 1/2. Requiring also

ar; > 0 it is found that the ratio y = W) /A is confined in the region:
—1213<y<-1- (2.1.23)

This solution is depicted with the blue curve in figure 2.1. The corresponding regions for the

“higher” branch W_y, depicted with the orange curve in figure 2.1, are

~1.213<y <0, (2.1.24)
and ar; € [%, ] .
atq
6F
4+
2k
Nw PR O R S S S SRS ST S S! Y
-1.2 -1.0 -0.8 -06 =0 -2

Figure 2.1: Plot of solution (2.1.20) for ar; as a function of the ratio y = %. The orange (upper) and blue

(lower) curves represent the W_; and W}, branches, respectively. Acceptable values (ar; > 0) for the blue
curve are compatible only with its section satisfying y < —1.

The F-term scalar potential is computed by inserting (2.1.2) into (2.1.3). This yields a rather com-
plicated formula which is not very illuminating, however, in the large volume limit it suffices to
expand it w.r.t. the small parameters n and £/V and obtain a simplified form. Thus, without loos-
ing its essential features, in this approximation the potential is written as a sum of three parts, as
follows:

Vi = Vi, + Vi, + Vg, - (2.1.25)
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The various parts of the RHS in (2.1.25) are given by

(4-InV) o Enlog(V)
(V3 - 9(W0 (V4 )
Vp, = 4%14(14 +and+ W), (2.1.26)

3 -2
V]:l:E(M/O2 5 r’

VF3 = A(Af + W() g) .
where A = e™" A and O(%) or higher terms in the expansion are ignored. Also

_3& - 8n(2ari(2ar; +3) +3) — 4éary (ary + 1) — 2n(2ar; — 1)(2ar; +3) log V

f

2V3
né(2ary +3)((6ar; —3)logV — 4ary)
+ i s
(3 —2ary) (E+2nlog(V)) —24n(1 + ary) (3 —2ary) logV + 2an

In the above all three Kahler moduli 7; are expressed in terms of the volume V with 7; being
considered at its critical value 7{" given in (2.1.20), fixed from the supersymmetric conditions
imposed on the superpotential. Therefore, only the two of them, namely 7, and 73 are left unde-
termined which appear only in the combination 7,73 = V/7¢" ©. It is to be noted that, since there
are regions of solutions D, ‘W = 0, where 7, is hierarchically smaller than the rest of the moduli
and ar; receives relatively moderate values, (see figure 2.1), terms involving A? have also been
retained. It should be further pointed out that, in principle, there are regions of the parameter
space (in particular those with large values of 7") where such terms are comparable to V>, the
latter being omitted in the large volume expansion. Then, A? terms could be safely neglected
too. In this case non-perturbative corrections are suppressed and the perturbative logarithmic
corrections prevail. One of the objectives of this work, however, is to also probe regions where
all terms of (2.1.26) have comparable contributions to the total potential in (2.1.25).

At this point, it is worth clarifying the origin of the components (2.1.26). The term Vf, is derived
from the «’ and perturbative string loop corrections due to the localised EH terms, both entering
in the Kahler potential (2.1.16). Indeed, switching off the non-perturbative corrections, i.e. setting
A =0, the only term remaining in (2.1.26) is the Vr, component which is identified with the one
given in [113] where only perturbative corrections are studied. Setting n and & equal to zero, the
only term that remains is the second component, Vf,. This contribution comes exclusively from
the non-perturbative corrections which were included in the superpotential. Finally, the third

component Vg, is a mixing term and it is non-vanishing only when both perturbative and non-

SFrom now on, we drop “cr” from 7{" and write just ; for simplicity.
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perturbative corrections are present. As an additional check with regard to the non-perturbative
part, the appropriate limit of (2.1.26) is taken to reproduce the already known results in the liter-
ature [85]. Indeed, for = & = 0 the scalar potential becomes

42N gA

Ve, = ——— (" Wy + A+ a1 A) - (2.1.27)
T2 T3

Solving (2.1.19) w.r.t. the ‘W, it is found that:
Wy = —Ae ™ (1 + 2a1;) - (2.1.28)

Substituting in (2.1.27) while putting 73 — 7,7, — 7,77y — 7 the result is

46—2a1a2A2
Vinin = —————, (2.1.29)
T

which (up to numerical factor related to the multiplicity of the Kdher moduli) coincides with
the solution of [85]. To proceed with the minimisation of the scalar potential (2.1.26), a more
convenient form will be worked out. To this end, the following parameter is introduced

2w+ 1
€= .

(2.1.30)
w

Furthermore, for later convenience, the range of the various parameters defined up to this point
for the two branches of the solution are shown in Table 2.1. As already noted, in the LVS regime
it would be more suitable to have large directions given by the lower branch W_;. However, these
solutions represent instanton corrections, and as it is obvious, the W, branch is a strongly coupled
region, where higher order corrections should be taken into account. For the reasons discussed
above and for the correctness of the effective approach, from now on only the W_; branch will

be considered as the solution for the r; modulus. ’

Using the above definitions, and the identities 2w = ye*" = —(2ar; + 1) resulting from (2.1.20-
2.1.22) the F-term potential (2.1.25) can be cast in a convenient compact form. Considering the
VF, piece in particular, under successive substitutions of y = %, 2ar; = —(1+2w) and ye®" = 2w
its third term gives

darAWoe @ WE(1+2w)  WF(1+2w)

=-2 = 2.1.31
% yerny? wV? ( )

"The current understanding of the non-perturbative physics prevent a complete study of the other branch. A
way of treating instanton corrections from D3-branes is presented in [114].
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Branch ar 14 w €

w= Wo(#) 0 -1 -1 0
2 —\/lg -1 1
w= W_l(#) 00 0 —00 2
: —% -1 1

Table 2.1: The range of the various parameters used in the analysis.

Continuing as above, it is found that all three terms of Vr, add up to:

W2 (1+2w) (W)’
Ve = T T ae

Finally, the following compact form of the whole V¢ potential is obtained

Vi ~ (eW))®

—y log(V) — log(V) —
2¢ +4Z($/3g( ) 1)_’753 gEW) 1)+0(%). (2.1.32)

In the present approximation, valid in the large volume limit, it is observed that the parameters
associated with the non-perturbative effects appear in the F-term potential as an overall positive-
definite factor € where € is defined in (2.1.30). Thus, the shape of Vr is controlled by the second
factor which exhibits the volume dependence and involves the parameters £ and n coming from
the perturbative corrections in the Kéhler potential. Indisputably, the properties of the potential
depend decisively on the signs of & 1 given in (2.1.15) which convey topological and geometric
information of the compactification manifold. For closed orientable smooth manifolds and the
particular D7-branes set up [95] in the present study the choice y < 0,& > 0 will be adopted.
Then, dropping the subleading terms of order o % and higher in the large volume regime, and
requiring the vanishing of the first derivative, it is found that the volume at the minimum of the
potential is given by

Viin = —6n Wy (—%e%_%) , (2.1.33)

where W, is the Lambert W-function. Substituting Vi, into the second derivative yields:

d*Vg
dv?

V-6n

_ 2

(2.1.34)

Hence, a minimum exists as long as V > 65 which is obviously true in the large volume regime,
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although this corresponds to an AdS vacuum. Nonetheless, this can be naturally uplifted to a
dS minimum, when D-term contributions are taken into account. It should be pointed out too,
that minimisation of Vr w.r.t. V stabilises only the combination 7,73 = V/7; leaving another
independent combination of 75, 73 moduli undetermined. This will also be rendered with the

inclusion of the D-terms in the next section.

In the next paradigm, we will examine the case where the flux induced superpotential W}, re-
ceives non-perturbative corrections from two Kahler moduli, p; and p;. In this case, the super-

potential takes the form:

W = Wy + Ae'® + Be'*”? | witha > 0andb > 0. (2.1.35)

Cases with two exponentials capture many new features and have been discussed in the literature
in particular constructions. The racetrack form [115] suitable for cosmological applications could
be considered as a particular case when both exponents of (2.1.35) involve the same modulus, i.e.,
when p, in replaced with p; in the second exponential. In general, two or more exponential terms
imply a richer structure for the shape of Vg which could exhibit saddle points between differ-
ent vacua of the theory, so that successful types of inflationary scenarios can be realized [116].
Despite the vast literature devoted on such issues, the combined effects of (2.1.35) with pertur-
bative logarithmic corrections to the Kahler potential have not been investigated so far. These
ingredients are a generic feature of the effective theories derived from the 10-dimensional super-
string action and thence it is the main subject of the subsequent analysis. In the present setup,
the contribution of the moduli p;, p; in the superpotential enters through the non-perturbative
corrections, and thus, the appropriate flatness conditions must be imposed. The latter imply the
vanishing of the corresponding covariant derivatives D, W = 3, "W + W3, K. Introducing the
expansions with respect to n/V and &/V in the large volume limit, it is readily found that

A(e (1 + 2ary) + ﬁe‘bT2 +v)

p2=ity _ _
Dp WV, Ziry = = o, +0(n, &) =0, (2.1.36)
- A(e™ ™ +e7P2(1 4 2b1y) B +
Dy, WIHZ2 =~ e ‘ 2( Wby 0,8 =0, (2.1.37)
72

where S, y, stand for the following ratios :

B Wh

B=—1v=—" (2.1.38)

If some reasonable assumptions concerning the various flux parameters and the range of moduli

fields are made, the solutions of the above transcendental equations can be expressed in closed
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form with good accuracy, in terms of known functions. A possible choice of the approximations

can be better perceptible as follows: The two equations (2.1.36) and (2.1.37) are combined to give
ary e " = fbr, et (2.1.39)

Since a, b are positive constants, it turns out that f > 0, while real solutions of (2.1.36,2.1.37)
exist as long as y < 0. The equation (2.1.39) is plotted in figure (2.2) for several values of f in
the parametric space defined by the pair (ar;, br,). The curves of the left panel correspond to
values f < 1 and the ones on the right, to § > 1. (For § = 1 a trivial solution exists ar; =
br, represented by the diagonal, not shown in the figure). The parametric space has been split
into four regions I, II, I1I, IV with respect to the ranges of ar; and br,. Region I corresponds
to large values of ary, br, and thus, both terms of the non-perturbative contributions in (2.1.35)
are suppressed. In general, in the large volume regime, perturbative logarithmic corrections are
expected to prevail. In the opposite limit, region III corresponds to small values of ary, by, and
both NP-contributions become sizable, however, in this case large V requires 73-values much
bigger than 7, 7,. A drawback of this region is that non-perturbative corrections correspond to
the large coupling regime and as such they are not fully controllable. Nevertheless, for the sake
of completeness a short analysis will be presented in a subsequent section. Finally, the regions

27

IT and IV, for typical values of the gaugino condensation parameters a = 55 ~ b = 2n

ﬁ:
associated with cases where there could be a milder hierarchy between the moduli fields 7; 2 3.

can be

Then, at least one NP-term in (2.1.35) could makesignificant contribution to the superpotential

and it would be interesting to investigate its implications.

w
w

s ] —p03 | | — =13
=06 B=17
B=0.9 B=2.0

Vo s A

Figure 2.2: Graphical solution of Eq (2.1.39) for various values of the parameter f = B/A defined
in (2.1.38). The left panel shows curves for three values of f < 1 and the right panel for § > 1.
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The present study will proceed with the investigation of the properties of V¢ in reasonable parts
of the regions defined in figure 2.2, that is, regions with ar; < 1 and bz, <« 1 will be excluded
from the analysis. In the present section the F-term scalar potential will be analyzed and as a first
approach, the restriction

et <« |y| & Be™t™ < Wy, (2.1.40)

will be imposed which entails a non-perturbative part Be~*" much smaller than the flux induced
tree-level superpotential |'Wp|. It should be noted that in the large volume regime small fluxes
discussed in recent works [91; 117; 118; 119], are not excluded by the assumption imposed above.
For example, for W}, ~ 1078, condition (2.1.40) is satisfied®, for f ~ O(1) and br, > 20. As it will
be seen in the subsequent analysis, in this limiting case it is possible to present sufficiently accu-
rate analytic formulae for the flatness solutions and achieve a compact form of V.g. A different

approach where this condition is relaxed will be presented in a subsequent section.

From (2.1.39) the first term of (2.1.40) is fe~b? = Z—Z e %", Hence, the approximation is valid
for small fluxes associated with the coeflicient B and/or large hierarchies bz, > ary. Thus, the
focus of the analysis in the present section will be on the appropriate sections of the regions I
and II where the hierarchy ar; < bry holds (a similar analysis for region IV is appropriate for

ary > bry). The case of region I will be analyzed using a different parametrization.

In addition, the energy scale and the coefficients a, b related to gaugino condensations on each

brane can differ. Under these assumptions, the equations (2.1.36,2.1.37) reduce to:

=i e (1 + 2ar) +
DW= At
3!
(2.1.41)
=i €79 4 2br,f et 4+
D, W|P_" =-A b Y'~0.

pi=iny 2T2

It is convenient to solve the above with respect to the moduli fields 7y, 7,. Defining the new

variables w, u

1+ 2an;

5 u=-br, (2.1.42)

w =

8Considering the recent activity for the quest of vacua with exponentially small ‘W, it would be worth com-
menting on this parametric region. According to [120], the plethora of flux vacua could be described as a statistical
ensemble where the value of ‘W, plays a significant role. Models with D3 uplift, such as [85], are based on the
conifold geometry for the D-brane configurations [26; 121], since the dilaton and the CS moduli are parametrically
heavier than the Kahler fields and could be effectively integrated out. A large amount of CS moduli (which is the
case for the most well studied CY manifolds) requires big D3 charges in order to satisfy the tadpole cancellation.
Consequently, this implies small values for W} at the weak coupling regime as it is also predicted by the statistical
analysis.
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the solutions are expressed as follows *

w=w(y) = W(Ti/z)’

u=zu(y) =W (\/E;—W[;y) (2.1.43)
_ y1+2w
_ w(ﬁ i~ ) .

In the above solution, W stands for either of the two branches W,, W_; of the Lambert-W function.
For large 7, values however, the function W in (2.1.43) should be identified with the branch W_;.
For later convenience, the following parameters are also introduced:

1+ 2w

e = , £ =
w

(2.1.44)

S| m

The restriction to real values of the two branches W), W_; imposes the bounds on the various
new parameters shown in Table 2.2. The approximation (2.1.40) is valid only for regions I and I

where u = —br, < —1.

Y p w u é
I (=70 | (0,00) (—e0,=3) | (=o0,-1) (=2,0)
I (-F-1 | (00) (-1,-3) | (-e0,=1) (-1,0)
Il (-1 | (6e) (-1,-3) | (-1,0)  (=e0,0)
IV (=750 | (0,00) (=00,=3) | (=1,0) (-0,0)

Table 2.2: Limiting values of different parameters for each one of the regions depicted in Figure 2.2.

Formally the Vr term comprises of three parts, the pure perturbative and non-perturbative parts
and a term which is a mixing of both. Before presenting the total Vf, it is useful to examine
separately the form of the perturbative and non-perturbative parts. For example, implementing
the expansion with respect to 1 and £/V the perturbative part receives the following simplified
form

nlog(V) 1

3 E+2
VF(p) ~ E(Woz 7 + O(W) _ (2.1.45)

For example, the two equations imply e 9% (1 + 2ar;) = -y = 2we %% =y or we" = # etc.
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From this simplified form of the perturbative part (2.1.45) it is observed that the numerator con-

sists of two terms of different volume dependence. For n < 0 and £ > 0 in particular VF(p ) acquires

1, . . . .
a minimum at V, = e372 | however the value of the potential at the minimum is negative,

3¢
(Vlfp ))min = %17@E ' <0, ie., it defines an Anti de Sitter (AdS) vacuum.

The pure non-perturbative part V;np ) becomes

+1)(2w +1)?

u+1)
2uw2Vy?2 z

(u : u(
V}Snp) — _rWOZ = —(EWO)Z 7

(2.1.46)

Remarkably, this term has a volume dependence o % which is exactly the dependence of the D-
term uplift in ((2.1.103)). For the regions I, II where the approximation is valid, however, because
u(1+u) > 0 the contribution of this term is negative and deepens the AdS vacuum.!® The full
F-part of the scalar potential comprising all those three parts can be written in a simple form

using (2.1.39). These manipulations yield

_u(u +1) N (2u+1)(14u + 3) (& + 2n) log(V) - 2417+
2V? 323
48u — (68u* + 60u +9) logV
32V4

Ve ~(EWp)?

(2.1.47)

+né (2.1.48)

It is again emphasized that this form is valid for the regions I, II and cannot be used to describe
%
ignored, the minimum of the potential for the volume modulus can be found analytically. Setting

the physics for regions III and IV. In the large volume case where the term oc =7 can be safely

the first derivative equal to zero and solving, the volume at the minimum is found to be

1 (u)—<
Vinin = —np(u) Wy [—————=eT "2 | | (2.1.49)
np(u)

where, for the subsequent analysis the following convenient parametrization has been introduced

3 (2u+1)(14u+3)
plu) = 16 u(u+1) ’

139+ 4u(7u+5)
3 3+4u(Tu+5)

(2.1.50)

q(w)

Starting with region I, while focusing in the case of large volume limit and small non-perturbative

contributions, it can be observed that the requirement of a positive second derivative of the po-

1%Nonetheless, it will be seen that this term has the same power-law volume dependence with the positive D-term
contributions d/V? and can be compensated by appropriate values of the parameter d.
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tential at the minimum yields

Viin > np(u) = —-np(w)yWy > np(u). (2.1.51)

From the range of u < —1 (region I, Table 1), it is deduced that p(u) > 0 and taking into account
the bound W, > -1 (for real values of the Lambert function), this implies that np(u) < 0 or
n < 0. Furthermore, real W, values defined in (2.1.49) imply that its argument should be greater
than —e~!, which, for np(u) < 0 is satisfied for any & 7. To determine whether a dS vacuum
is attainable, the value of the effective potential at the minimum is required. A straightforward

computation yields

o (1 +2u)(3+14) — 8Vyinu(1 +u)

Veff((vmin) = (é(WO)

48V (2.1.52)
N u(l+u 2 o
= — (EWp)° Trj) ((Vmin - gnp(u)) .

Taking into account that for the range of u € (—oo, —1) the factor u(1 + u) > 0, it is readily seen
that for the parameter space of region I the value of the minimum (2.1.52) is always negative.
Hence when only F-term contributions are taken into account, the resulting potential always

exhibits an AdS vacuum.

Veff
5E 1 \
| ‘ ‘ ‘ ‘ ‘
Vv 2000 3000 2000 :
500 1000 1500 a0
7/”7”””7”77 -1

3k

Ve ff

Figure 2.3: Left panel: The F-term potential Vy for n = —0.5,u = —9 and three values of & = 150, 165, 180.
Lower ¢ values imply deeper AdS minima. Right panel: Vg for n = —0.1,& = 200 and three values of
u =-1.2,-1,25,—1.3. The larger the |u| values the deeper the AdS minima.

The F-part of the potential is plotted in figure 2.3 for two values of the parameter 1 and several
values of u = —b7,. As expected, in all these cases the F-term potential implies always an AdS
minimum and an uplift term such as the one coming from a D3-brane or D-terms induced form
possible U(1)’s associated with D7-branes is necessary.

As a final example, we are going to present a model based on the so called "Swiss-cheese" volume,
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which is a Calabi-Yau manifold with the following type of form:

Nsmall

V = fia(1y) - Z AT, (2.1.53)

i

where the f function is homogeneous function of degree 3/2. In these models, there are rigid divi-
sors, whose paramatrized by the blow-up moduli 7; leaving N, flat direction to the parameter
space after stabilization. These scenarios have extensively studied in the past [122; 123; 124], aim-
ing to embed a natural inflation which is dubbed as "Fibre Inflation". Despite the fact that these
fibre-like volumes are ideal due to the available flat directions, non-perturbative corrections have
been utilized to achieve a stabilized vacuum where additional higher order corrections needed
to fully uplift the vacuum. We are going to show that the logarithmic string loop corrections,
featured in the previous case studies, could bypass many of the problems appearing, such the
strong constraints of the Kahler conditions, from the inclusion of non-perturbative corrections.
In order to proceed, we are going to develop a full analysis of the effective potential by imposing
the loop effects along each one of the world-volume directions, resulting into a Kahler potential

of the following form:

] (2.1.54)

q<:_1og(_)—zlog [(V+§( )3/2 1/22771

where 7; stand for the four-cycle moduli, &£ denotes the o’ corrections and the logarithmic cor-
rections ~ nlog(..) are induced in every direction of the internal world-volume. As for the exact

form of the compactification’s volume, we have to start from Calabi-Yau h!! = 4 Kihler moduli.

A chiral global model that features all the above ingredients, is the one described in [123]. The

volume form, in terms of the four cycle moduli 7;, is reduced in:

tf r,:a,fV
V= 2t4tgly + g
1 1 3/2
V= —\nurery — =1;' " . 2.1.55
NG 4TeT7 — 373 ( )

In the last step, we included the relation of the Kéhler cone, where the basis of the Kéhler form

is written as:
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J=tHD1 + 4Dy + teDg + t7D7 (2156)

The Kéhler cone conditions are be derived from the Kéhler generators as:

Ki=-Di+Dy+Dg+D;, Ky=D;, K3=D4 K4=Ds, (2157)

ri=—1t>0, ro=ti+t;>0, r3s=t3+t4>0, rg=1t;1+1t>0. (2158)

Moreover, the connections between the two-cycle and four-cycle moduli can be obtained through
7, =0;,V:

1

1 = tlz, T4 = 2t6t7, Te = 2t4t7, 7 = 2t4t6 . (2.1.59)

In addition, one can further reduce the volume form in (2.1.62) using the Kéhler cone conditions

and the D-term fixing !! The relevant conditions are summarized below:

ty = atg . (2.1.60)

t6>—t1>0,0{21,
br>—1>0= (2.1.61)
atg > —1] > 0, a <1,

where after applying these conditions, the volume form is written as:

1 1
V= \/T_a\/f_ﬂﬁ - 51'13/2 . (2.1.62)

It is important to mention that the size of the volume is controlled by 74, 76, 77 moduli, while the
rigid divisor 7; parametrizes the diagonal del Pezzo divisor. Regarding the complex structure
moduli z; as well as the axion-dilaton, they are stabilized at high energies by the supersymmetric

flatness conditions.

1A detailed analysis regarding the geometric construction can be found in sections 3.1-3.5 of [123].
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D, W =0=D;W, DW =0=D;W . (2.1.63)

In the above framework, we are going to present a model which features an alternative to the
stabilization procedure of the blow-up modulus scenario. This novel procedure results into one
flat direction that appears at the F-term potential level as a consequence of the higher order terms
scaling as O(1/V %). Since the scalar potential is parametrized by the three moduli (z;, 77, 75), we
would like to trade one of them in order to introduce the volume variable V in the computations.
This reparametrization helps us to perform the large volume expansion. So, in order to include the

overall volume in our computations, we solve the equation (2.1.62) with respect to one modulus

e.g. Te,

V2 (Tf/z + S(V)
Te = 3\/1__7

. (2.1.64)

Using the above definition, we are going to present the necessary computations needed to define
the effective F-scalar potential. In the appendix, we provide a detailed derivation of the BBHL
potential. Moreover, following the calculations used in [125], the Kahler potential can be written

as follows:

. 2 2
2Y = 2(V+§+ﬁlog(% (rf/2+3(vf1) ) (2.1.65)

where we have used the fact that the axio-dilaton and the free parameters can redefined as:

A 1
s=co+ie?, d=e P = E=Ed? f=pd? d=—. (2.1.66)
gs

The scalar potential can be computed by the N = 1 supergravity formula:

e KV = KAB(DAW)(DgW) = 3[W|A, W =W, . (2.1.67)

The first term of the scalar potential (2.1.67) will be displayed below, where we expand in terms

of O(1, %) keeping only the first order terms:
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£ — 167 + fiw N ER(1 - 2w)
4V 2V2 ’

KB (DoW)(DaW) = 395W02(1 + (2.1.68)

2ar
where we define w = log T7(3(V1'1 + 1'15/2)2). It is obvious that the second term in (2.1.67)

cancels the first term above, and by turning off n — 0, it results to:

K 39, Wy Sz f

e ‘/eff = V +0(a) . (2169)

Based on the above, the scalar potential can be easily derived and it is shown below:

3gsW2(E - 166+ fiw) 3, Wiiéw 2.
Verr = 0 3 - (1/04 +0(%,q). (2.1.70)

The above potential is described in terms of three moduli V(V, 71, 77), so we need to minimize
the potential with respect to all of the above 2. As discussed in [123; 127], it is a unique feature of
spaces described by volumes of the form of (2.1.62) to preserve one flat direction. Their approach
is to stabilize first the internal volume and secondly to perform the stabilization of the blow
up divisor by non-perturbative effects, while the 7; remains flat. Our approach differs from the
aforementioned due to the fact that the logarithmic corrections can perform the stabilization
while keeping track of the remaining flat direction. The previous studies of this kind of approach

requires only keeping terms that scales as ,% , but now we will prove that even terms proportional

to~ :Z,—i could be significant. Firstly by inspecting the effective potential (2.1.70), we stabilize w.r.t.
the compactified space while considering that V > 7;:

A % 5/2
ey T 8) —2nlog (Tl + 31'1(1/))

=0=

YV L (2.1.71)
3T1

By substituting the above minimum in the scalar potential, the result is:

12pJease check the correct definition of the fluxes in [126].
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3¢
27N2RT3W?E (ary) 32 g

iA bl
(\/E arfnezﬁ - 3625/3) 3

V€ff|(Vmin = - (2.1.72)

where it can be readily found that both moduli are stabilized at 7;; — 0. In order to avoid the

above statement, we are going to include in our calculations the next to leading order term

395 W5 (£ =160 +hw) 3¢ Winé(w)

Verr = 73 i +O( 3 n") . (2.1.73)

pyr

This new correction will not modify the minimum w.r.t. the volume (at least to a degree that
would lead to destabilization), since it is suppressed by % Nevertheless, it would enhance the
contributions to the transverse directions unraveling the importance of quantum corrections to
the characterization of the flat direction. So, the effective potential along the volume’s minimum

is given by:

T1\VaTy

5_ &
277 Wigs (M + 12£(3€ — 50) — 2ﬁrf/2)

Vef flvn = : , (2.1.74)
min 1 -3 10g 2ary _3_§+50 5/2 4
4 ((36( ( 9 ) U ) -1
where minimizing with respect to 77, there exist one minimum:
0%
e n
7 = (2175)

20 (1251'1 + Tf/z) 2

Given the above minimum, we derive an dS minimum as while there is a flat direction in terms

of a combination of the 7y, 77 moduli. This is depicted below in the following two plots.

) 2(% A
v |T;'”” _ 3(W0 (5_ 16’7)93 >0
effly . A
mn 256§3

(2.1.76)

Nevertheless, we cannot stabilize the moduli, since of all the directions are runaway paths. Now,
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we induce the next to leading order string loop corrections, which fall under two categories:
the KK-corrections and the winding loop corrections. These are summarized to the following

contributions:

C_KKti CW
Ko, =95 l(v =, Kn= —(W , (2.1.77)

where CXX and C} are some functions depending on the complex structure moduli and the open
string moduli. The two cycle volume moduli | denote the transverse space between the D; branes
and orientifold planes O;. On the other hand, the moduli ¢/, correspond to volume curve residing
in the intersection of the D; branes of the theory. Given this Kahler potential’s corrections, the

contribution to the effective scalar potential are given by:

KK 2 KK ~KK g

V = kg S"VZ E C; C U, (2.1.78)
w _ _ 9s

Vgs __qu/z 93__2k‘V3 E — = —” . (2.1.79)

In the above definition, we should also substitute the Kahler metric, which is given by:
K’ = ;(Ztitj — 4V . (2.1.80)
Y16V

Apart from the string loop corrections, there exists higher derivative corrections, where these are

a generic feature for all the Calabi Yau manifolds. Their form is given by:

AWy
e

Ves = —k? II;t, (2.1.81)

where II; are the topological numbers depending on the intersection of the divisors and A is
unknown combinatorial factor. We are going to use these subleading corrections to the scalar

potential. The effective theory is, then, given by:
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39 WEE =160 +Aw) 39 WiHE(w)
eff = 43 - 4

c Ci
+ W(tl + g+ t7) + Vyp + O(W)’ (2.1.82)

We can exchange the two-cycle moduli in the scalar potential with the four-cycle moduli by using

the following identities:

h=vm, b=, 7= ——vT . (2.1.83)

3/2
AT /% + 3V
Vis =~ |+ (2.1.84)
Vi\Vava 3

Based on this construction, one can see that the flat direction is lifted, while the vacuum can be
uplifted by tiny uplift through an appropriate term V,,. In order to study the potential in a more
the canonical normalized basis for the fields. To do, we need to write down the leading order

terms of the Kihler metric, which are:

4—% 0 0
Kij = 0 % 0 5 (2185)
O arty
4\/5\/ET(,T7

where by inverting the defintions of the Kéhler moduli to the normalized fields, we derive the

new basis as:

= eVl g = e, (2.1.86)
1
34/3(p34/3e§(\/§<p1+2¢2) (4 _ 3(,032) 63—5+¢2
T = e , V= oG . (2.1.87)

Given the above form, the kinetic term are now written as:
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- ool 1 )
Ki;0T;T; = Z T Z ~(9pi)*+ ... (2.1.88)

Finally, we display the scalar potential in the new basis as:

A~ 4 8
102402Ef) gsW2e 2V20r 402 (10g ( o3 ) +8V2¢, + 10(,02)

21042
(4-303)°"
3/2 2~ =30, 9ol _ s
322 gWse V2 1 |log | 5,2 +8V2p, + 109, — 48| + 3¢
(3¢5 —4)°

5
512 216 o312 ¢ ¢~ N2 T4 ((9a % 2V20r+e2)1/3 4 91/ (6‘5‘/’1 + e“’z))
+ . (2.1.89)
(4-3¢2)"

Ver == S

+

Due to the complexity of the above potential, we can reduce its form by considering an expansion
with respect to a small parameter. One can readily see in the above form, that there is a factor of

4 - 3(p§, which can be recasted to:

+4
05 = yr=, (2.1.90)
3
Given, this redefinition the y variable could be small, since the @3 describes the small divisor 7;.
So, we can perform a an expansion with respect to this parameter. The leading order terms of

this expansion results into:

s
yopr _ 128V2 0% Pc e v
eff — 3y4

[48\/50 (e‘/i‘/’1 + e‘/’z) +425% 3a)'3 c(y +12) o3 (2V201+02) _
— 3WZ yg,eV2orte: (zﬁ (\/5(— log(2a) + 5¢; — 24) + 8(/)1) + 3\/55) -

A 9
~ 96V Efje Wig, (~2log(2a) +8V2p1 + 109, +y) | +Vip

(2.1.91)

We could further simplify our formula considering the regime where the a parameter is small

a < 1. The simpler formula for the effective potential is then given by:
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5¢1
wpr 32030262
e}f}f _2 ; Z [4\/§c (12 (eﬁq’l + e<"2) +(y+ 12)(60(6(2\/5%-'-@))1/3) -
y
— Wy g, eV2or+e (—«/5;7 log (64a°) +9V2¢ + 67 (8(,01 +V2(5¢;, - 24))) + Vip -
(2.1.92)

From this expression, one can easily derive the minimum with respect to the y variable. This can

approximated to be as:

64\/§c e_\/é‘/’l_q‘72 ((6ae(2‘/§¢1+‘ﬂ2))1/3 + e‘/§§01 + eqﬂz)

Wigs (—\/Eﬁ log (64a%) + 309, — 144) + 9V2& + 48ﬁ(p1)
By recalling the redefinition in (2.1.90), the minimum along ¢5 direction is proven to be:
2 1
P3.min = g(y + 4) . (2.1.94)

As for the other two perpendicular directions, we could substitute the minimal value of y in the

effective scalar potential of equation (2.1.92), which leads to:

301 ~ 4
al2e e Whgh (\/Eﬁ (—log (64a®) + 309, — 144) + 9V2& + 48ﬁ(p1)

Veff|y = — 3 (2.1.95)
196608V2¢3 ((6ae(2‘/§f1’1+‘?2))1/3 +eV2or 4 e<l’2)
By examining the derivative of the above formula with respect to the ¢, the result is:
301 . 3
NVarrly al2e Ve Weqt (\/Eﬁ (—log (64a®) + 309, — 144) + 9V2¢ + 48ﬁ(p1)
= — X
4
92 196608¢3 ((60{6(2‘/5‘/’1“"2))1/3 +eV2on 4 e<”2)
xe? | (264(6ae(2\/5<"1+<”2))1/3 +120e V2010 4 552) -
(2V2p1+92)\1/3 NI 6 V2 £
— | (6ae )2 +3) [6n % log (64a°) + 4V2¢; + 5¢2 | + 9¢ (2.1.96)
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The equation on the brackets could provide an approximate solution, which is summarized below

and the minimal value is expressed in terms of the Lambert function Wy, _;.

1 9f g 94/5 3 (5 +54Bei1s4)
Pomin = o log (640°) — 5 24V2¢, +30 Wy/_4 +184| (2.1.97)

30(1/5

The same method can be applied for the other field, ¢;, and the approximate solution at the

minimum can be expressed as:

671 log(a) — 9 + 2ij (144 + 15log (L) + log(8))
@1,min N
54\/517

IR

. (2.1.98)

To prove the validity of our approximate formula of the potential in (2.1.92) and the exact potential
in (2.1.89), we are going to sketch the potentials in the vicinity of the global minimum. In the
following tables, an numerical example is presented, where the values of the free parameters are

displayed along with the values of the moduli/fields at their corresponding minima.

2 2 2
T 7 Vv mz, mz, ma,

3856 | 1065 | 10286 1.43x 10713 | 1.95x 10714 | 2.1 x 107V

01| 2 | s my, my, my,
492 | 596 | 1.09 1.39x 10710 | 8.74x 10714 | 2.3 x 10714

Table 2.3: The numerical solution for the minima with their corresponding masses.

e
s
S

9s |(W0|
10704 20 |5]05]107%2|8x1072] 10713

Al Vup

Table 2.4: The values used for the model’s free parameters.
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Figure 2.4: The two plots in the upper part display the potentials directions along the ¢, ¢, directions,
correspondingly. In the lower part of the figure, the small divisor’s trajectory is plotted.

2.1.3 UPLIFTING ADS VACUA WITH D-TERMS

Both scalar potentials, describing the two different scenarios of equations (2.1.32) and (2.1.48),
need to be uplifted by properly imported the effects of D-terms. The case of anti-D; branes suffer
from many issues regarding the background geometry and the wrapping factors in the conifold.
In [113] it was proven that it is sufficient to consider the D-term contributions associated with
U(1) factors which arise in the presence of the intersecting D7 branes already included in the
geometric configuration. Flux generated D-terms have the general form [128; 129]

2
9p7,

2
1
i 2
Vb = == | QidpK +Zj qjl @] ) s = =Impi+ - (2.1.99)

9p7,

where Q;, g; are “charges” and {- - - } stand for flux and dilaton dependent corrections while the
®; fields depend on the specific field theory model. For zero ®;-vevs the model dependent term

vanishes (see discussion in [129]) and it turns out that Vp ~ Q?/ 1'?. Then, the generic form of the
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corresponding D-term potential can be approximated by [113]

d > d d 3 d2T1T3
Vp = Z (3T1) 2—3 = —? r_§’+ 5 (2.1.100)

where, d; ~ Ql.2 > 0 and in the last expression the modulus 7, has been traded with the internal

volume modulus V, i.e., 7o = V?/(1,13). Thus, the effective potential being the sum of the (2.1.32)
and (2.1.100), Ve = Vg + Vp, is given as a function of 71, 73 and V:

V-28+4n(1-log(V)) di  ds DT

~ — (eWy)? +—+—=+ 2.1.101
(eWo) 4’3 oo VS ( )
Proceeding as in [113], it is found that the 7y 3 moduli are stabilised at
dk 2 13 1
™=\ —V , k=1,3, where d = (d,d»d5)? (2.1.102)
The potential takes the form
V -2E+4n(1 —logV)
_ 2
Vet | ;in = —(eWp) V3 * 7 (2.1.103)
At the minimum of the potential the volume modulus takes the value
6|1 1—-12r a_¢
WYy = Wi 52 2.1.104
T o 12r °( syl ”) ( )

As in the previous case, the following two constraints are imposed: i) the argument of the W
function must be larger than —1/e and ii) the potential at the minimum must be positive. Once
these restrictions are implemented, the ratio r = m of the F- and D-term coeflicients is found
to be bounded in the region

1 n 1 £

- — <r—- Ze2n R 2.1.105

=

wl\l

[\

For large volumes, the above bounds allow only a tiny region in the vicinity of 1/12 . Given the

ratio r, the inequalities (2.1.105) imply also an upper bound on ¢:

£ 7 6 7
BN/ BNl SN £ < 2[p||In Il _ = (2.1.106)
3Voin 2 12r—-1 3

In figure 2.5 the potential is plotted vs the volume for the set of parameters eW, = 1.9, = 10,5 =
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—1 and three values of the D-term coefficient d. A dS minimum is obtained for a very short range
of d. In contrast to the first case, here there is no constant uplift term, all V¢ terms are suppressed

by powers of V and the potential asymptotically approaches zero as V — co.

Veff
2.0t
150 — d=3.0195x10""
[ d=3.0196x10""
1.0F — d=3.0198x10""
1000 2000 3000 4000 5000

Figure 2.5: Plot of V¢ X 1010 potential vs the volume modulus for eW, = 1.9, = -1, & = 10 for three
values of the D-term coefficient d.

As for the second paradigm, we will follow the same strategy. In the subsequent analysis the
case of large 71, 7, moduli will be considered (i.e. ar; > 1 and br, > 1) where the calculations
for the stabilization of the directions transverse to the volume are simplified. This will provide
a more quantitative comparison of the effect of the “strong" non-perturbative correction to the
logarithmic one. Proceeding the way described above, the total potential is written as:

7(¢ + 2nlog(V)) — 4V N di N d, . dsT Ty .

83 73 Tg %

1

Ve = (eWp)?

(2.1.107)

Minimization of (2.1.107) with respect to the 77, 7, moduli, leads to the following equations:

2

;G V

= (dd )1 , (2.1.108)
203)3

,  diV?

T, = (dd )1 . (2.1.109)
143)3

Substituting the above back into (2.1.107), the potential V. receives the following compact for-

mula:

Z§+2rylog(‘V) 1 3d

~ 2
Veff ~ (E(WO) 8 (V3 z(vz + (vz P

(2.1.110)
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where d = (dydyds)'/3. The volume modulus at the minimum of the potential is

21 4(6r—1) 1_¢
1 o (6r )eé 2), (2.1.111)
4(6r — 1) 21n

(Vmin =
where the new parameter r introduced in the formula of V,,;, above is the ratio of the F- and

D-term coeflicients

3 d
- (eWp)?

For given ¢ and 7 the coefficient r has an upper and a lower bound coming from the following

r (2.1.112)

two constraints: i) Real values of the volume are achieved when the argument of the W, function
must be larger than —1/e and ii) the potential at the minimum must be positive. Implementing

these conditions, the following bounds on r are imposed

=

WO

<rg—+—e 2Wl

7Ip| & _
|8'7| (2.1.113)

AN =

7
+_
12

N =
<|

For positive and large & values, this restricts the values of r in a tiny region close to %. It should
be observed that the exact value r = 1 eliminates the % term form the scalar potential. This
would leave only the perturbative F-part o (¢ + 2log V) /V? which defines only AdS minima.
It is worth noticing that, this value is twice as big compared with that obtained in the case of the
effective potential (2.1.48) derived with only one non-perturbative term in the superpotential. It

is convenient to define a new parameter
0 =10°(6r — 1), (2.1.114)

which can be used to plot the effective potential (2.1.107). Assuming for example the values

& =10,n = —0.5 and using (2.1.113), it can be deduced that a dS minimum exists as long as
2925 <0 $3.125.

The potential (2.1.110) is plotted in figure 2.6 as a function of the volume for three values of the
parameter p. In figure 2.7 a three dimensional plot is shown where the minimum is depicted

along V and 7; directions.
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Figure 2.6: The potential (2.1.110) for n = —0.5, & = 10 and three values of the parameter o = 10°(6r — 1).
For o = 2.925 the potential at the minimum vanishes. For larger o values Veg(Vinin) > 0 while the
minimum disappears for o > 3.125.

.
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Figure 2.7: The potential (2.1.110) for n = —0.5, ¢ = 10,d = 0.6668, Wy = —1,¢ ~ 2,0 = 3.05,d; = d3 = 1.
The light blue plane is just above V = 0% and the blue dot is the intersection with Veg which indicates the
position of the dS the minimum.
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2.2 DARK RADIATION AND DARK MATTER SCENARIOS IN

STABILIZED VACUA

Developments on the attainability of de-Sitter (dS) vacuum in type IIB string compactifications are
populating the literature the recent years. Despite the various swampland conjectures [80; 81; 82;
85; 130; 131; 132; 133; 134], several works are pointing towards a possibility of a dS vacuum either
by incorporating non-perturbative corrections in the Kahler potential [86; 135; 136; 137; 138; 139;
140] or by including perturbative quantum dynamics [95; 113; 141; 142; 143]. Among the most
plausible explanations on the aforementioned question are focusing in the study of the effective
theory, where an Anti de-Sitter (AdS) is evident and various uplifting ingredients are included
(D5 branes and D-terms) in order to achieve a dS vacuum. The central role in these setups are
played by the moduli fields of the theory, which modify not only the relevant scales for the correct
embedding of inflation but also the late-time cosmological dynamics of the universe such as the
reheating temperature, the effective neutrino species number and a potential connection between
dark matter and dark radiation due to their decays. Some recent references regarding the open
problem of moduli stabilization, dark radiation and their correlation to dark matter can be found
to the followings works [86; 91; 136; 144; 145; 146; 147].

In the present section, we will focus on the importance of the quantum string corrections to the
Kahler potential, whose origin can be traced back to the higher derivative terms of the effective
string action and the existence of localized Eistein-Hilbert terms [96; 108; 109; 148] in a geometric
setup of three intersecting D; branes scenario. Their inclusion to the theory provides a novel way
to stabilize the Kédhler moduli fields of the theory, without considering the non-perturabative
corrections whose dynamics could be dangerous regarding the value of the string coupling in
different parametric regions of the theory. Moreover, the dS vacuum is achieved by assuming
the presence of magnetic fluxes along the cycles of the D; branes, which induce some anomalous
U(1) symmetries charging this way the Kahler moduli fields. Their result is an induced D-term
in the level of the effective potential [90; 149], which despite being moduli dependent, its effect
could in principle suffice for the uplifting of the Anti de-Sitter vacuum.

At a second stage, this work focuses on a detailed calculation of the moduli’s mass eigenstates
and eigenvalues and their correlation with the choice of fluxes W} (either exponentially sup-
pressed or order one), which modifies the mass hierarchy and the potential characterization of
the longest lived particle field with its corresponding cosmological dynamics. Based on the above
the couplings of the normalized fields to the axions, which comprise the dark sector of the theory,
are computed unraveling that not only the diagonal decays of the moduli to axions are important

but also that off diagonal decays (due to the quantum corrections) contribute at a considerable
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amount to the dark radiation abundance. On the contrary, the dominant decay to visible sector’s
degrees of freedom is summarized to the Giudice-Masiero mechanism [150], where it is calculated
for the two limiting cases with respect to the fluxes scale, leading to a theoretical estimation of the
neutrino number species AN, . Additionally, a discrimination is provided regarding the relevant
scale of the reheating temperature (O(MeV) < T,;, < O(GeV) scale for exponentially suppressed
fluxes and T,;, > O(Tev) for order one fluxes), which explanation could also indicate an early
matter dominated phase of the universe for low reheating temperatures as it was pointed by [151].
The effect of the quantum string corrections and the uplift parameters in the aforementioned cos-
mological observables are highlighted, notifying the differentiation of our work compared to the

existing literature.

Finally, we study the production of non-thermal dark matter after the reheating process. The pri-
mary candidates in the large volume limit scenarios are the weekly interacting massive particles
(WIMPs) and the thermally underproduced (Higgsino-like or Bino-like) particles, which in many
previous studies tend to be overproduced [152; 153]. A different scenario proposes the idea of
having fuzzy dark matter, where the axions would play the central role in that case [154; 155].
Although, the process we follow is similar to previous studies, the suppression of the reheating
temperature provides a fertile ground to study the most common mechanisms of dark matter pro-
duction (Annihilation scenario and Branching scenario) without the obstacle of overproduction.
Focusing more to the so-called WIMP miracle, we are going to provide a scenario where a possible
superheavy dark matter could arise from the annihilation scenario, where its mass could lay at
10'! GeV. In contrast, the branching scenario could also give the correct dark matter abundance
for dark matter particles at the scale of TeV. Given a possible scenario of low scale baryogenesis
in [156; 157], this model could in principle furnish an explanation for the dark matter-baryon
coincidence, since the modulus could decay to species with B- and CP- violating couplings with

the Standard model particles and has the correct scaling for the dilution factor of entropy Yy, too.

2.2.1 STRUCTURE OF THE POTENTIAL

To set the stage, we begin with the N = 1 supergravity Kéhler potential K, where the geometric
configuration is comprised of three intersecting D; branes. The theory contains various scalar
fields, but we focus our attention on the complex structure moduli (z,, a = 1,2,3), the axio-
dilaton (S) and the Kahler moduli T;, i = 1, 2, 3. Supersymmetric conditions D, W = DsW =0
both fix the complex structure moduli and the axio-dilaton, leaving effectively the Kahler sector
completely undetermined. The internal volume of the six dimensional space in the context of IIB

string theory is denoted by V, and it is expressed in terms of the two-cycles of the theory as:
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1 o . .
V= gkijkv’vak, o' = -Im(T"), (2.2.1)

where the tensor k;j; characterizes the intersection number. A more useful formula for the com-
pactified volume can be extracted in terms of the four-cycles 7; of the theory, where they are

related to the two-cycles as:

5 = 0lok 5> V = Voo, (2.2.2)

where we assume that the non-zero classical triple intersection number is kj33 = 1. Apart from
the compactified volume, the Kahler potential contains the quantum string () correction &,
where this correction corresponds to a constant shift of the volume [64]. In addition, we include
the effects of quantum string loop corrections along each world-volume direction of the internal
space, incorporated in a perturbative form as n log(z;) [95]. Their origin can be traced back to the
higher derivative terms of the 10-dimensional supergravity theory, where the leading effects are
appearing as an R* term, with R being the Riemann curvature. After dimensional reduction to
four dimensions, these effects induce a localized Einstein-Hilbert term, where the computation
of the scattering amplitude between these localized graviton vertices and D; branes (in the form
of closed string modes), leads to a perturbative form of the correction nlog(z;) at the Kéhler
potential level [95].

1
K =-2log(\rirers + €+ p;log(ri)), n= —EgsTif . (2.2.3)

For simplicity, we assume the perturbative parameter 7 to be identical along each directions (r; =

N2 = n3), i.e. the string tension T; of the corresponding branes is tuned to be the same.

Regarding the superpotential of the theory, we assume the existence of background fluxes W

[103] and the non-perturbative effects are turned off.
W=MW,. (2.2.4)

The F-term potential’s computation is completely straightforward, taking into account equations
(2.2.3) and (2.2.4), and trading one modulus, e.g. 73 = V/(7y72), the whole effective potential is

expressed in terms of the volume:

3W02(—8q + &+ 2nlog(V)) _ 9p f(WOZ log(V)
2V3 %

F:

+ 0(%) . (2.2.5)

It is important to highlight the fact that this very compact and illustrating formula has been ob-
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tained, considering that we would like to study the large volume limit where quantum corrections

£
(Vf'l’

proportional to the power of the expansion variables are dropped. In addition, since the leading

are subleading. This fact enables us to perform an expansion in terms of n and while terms

1
order terms are of order ~ O(53), we do not consider terms of order bigger than ~ O(m) in
the large volume regime, bearing in mind that these additional terms are proportional to powers
of n making them less important.

In order to obtain an AdS vacuum, we have to compute the minimum along the volume V direc-

tion, which is given by:

—_

3_ ¢

Vipin = €321 (2.2.6)

The uplift mechanism for realizing a dS minimum is accomplished by adding the D-terms, related
to the three intersecting D7-branes of the geometric configuration. Flux generated D-terms [129;
141; 149; 158] have the following form:

3 2
9p,. o
Vo= 3, () Quor K + Y qllellP) (2.2.7)
i=1

i#]j J#i

where gp, stands for the gauge coupling of the Dy brane, Q;; represents the charges of the Kéhler
moduli, while q{ , <I>{ are the charges and the scalar components of the superfields, correspond-
ingly. Considering that the vevs of the matter fields are (<I>f ) = 0, then the formula is significantly
simplified to:

3

3
Vp = Z [%(ZQUGT].‘K)Z] = Z é di = Q} >0, (2.2.8)
i=3 iz i=1 Ja
where f is cubic polynomial parametrized by a generic four-cycle modulus 7;. Now, the above
formula can be further approximated, as noted in [141; 159; 160], by considering the toroidal-
like symmetry of the underlying geometry. Moreover, the three intersecting stacks of D; branes
(which is the geometric setup of this model) are associated to gauge groups, where in princi-
ple the magnetic fluxes can induce some anomalous U (1) symmetries. As studied rigorously in
[149; 161; 162] a suggestion made by Burgess et al. and Achucarro et al.l3, D-terms of the above
form could, also, be derived from a different origin. From a 4D point of view, this type of D-
terms was identified as a Fayet-Iliopoulos term depending on the Kéhler moduli in the N' = 1
supersymmetric effective action [165]. Taking into account the anomalous U(1), the four-cycle

moduli, parametrizing the transverse volume of the magnetic D; brane, obtain a charge Q under

I3A criticism on this approach can be found on [163; 164].
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the U(1). Additionally in this approach, there are in general the same charges q{ carried by the
scalar fields <I>{ , which fields can be minimized at zero. As a consequence of the above discussion,
we could write down the D-terms of this intersecting D; branes model, following the work of
[113; 149; 161; 162], as

3
= Z % : (2.2.9)

To support our approach, we provide in the Appendix A.3 a detailed proof that the above formula
gives an equivalent dS vacuum to the vacuum that can be derived from the generic formula (2.2.8)
up to a rescaling of the uplifting parameters d;. As a consequence, we can argue that our approxi-
mation does not spoil either the existence of a dS vacuum nor the subsequent analysis. Appending

the D-term effects on the F-term potential, the complete effective potential is summarized below:

_ 3WF(=8n+ &+ 2nlog(V)) Lh e ds

Verr = —+—=+—=. 2.2.10
It 273 D00 (2210)

The 73 modulus could be traded with the internal volume modulus V, i.e., 3 =V?/(1113). Thus,

the effective potential is the sum V¢ = Vr + Vp, while it can expressed as a function of 7;, 7, and

V:

_3WE(8n+E+2nlog(V) di dy sy

Verr = +—+—+ 2.2.11
ff 2VY3 T yeo ( )

For the sake of completeness, we are going to describe the minima along the three transverse
directions (V, 11, 72). Minimizing along every direction, we get the following minima and some
useful relations constraining the free parameters of the theory. Moreover, the potential along
the volume direction is displayed below, where the minimal values for 77, 7, moduli have been

applied.

1/9 2/3 _ 1/9 2/3 2.9.12
(dzdg) V7, (dldg) Vv ( )
13_¢&
3’7 (W2 VVO/ 1 ( (WOZU)
Vipin = , d = (dvdyds)'?, (2.2.13)
2d
6dV +3W2(& - 8n) + 6nW?2log(V
Verr(V) = o (&~ 80) + Wy log(V). (2.2.14)

2V3
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where the W-function denotes the Lambert function. The minimum and the maximum along
the volume direction are characterized by the upper W, and the lower branch W_;, correspond-
Ay d = (didads)'P,

where these bounds are obtained from the Lambert’s function definition (W (x), x > %) and the

ingly. Now, a dS minimum put a stringent bound on the parameter p =

positivity of the potential at the minimum.

(26 —6log (—23—’7)) < % <0. (2.2.15)

A different parametrization for the above coeflicients is given below, which would be more useful

in the following sections:

OV, 6dVin + IpW? 9*V, - Wi(ig+1
I PP AL) oggq ) s os :dﬂ/mlzn>_§,
(0V) Vo (0Vinin) V. nWj 2
(2.2.16)
d AV
ml<__q:q:(%m<_L (2.2.17)
Vo W nW¢

where combining the above bounds the q parameter is strictly bounded between:

3
-2 <g<-1. (2.2.18)

Clearly, our effective potential could admit a dS vacuum (as it is depicted in Figure 1.) for various
combinations of the parameters either in the exponentially suppressed flux limit or for the order

one flux case.
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Figure 2.8: Plot of potential (2.2.14) £ =5, W, = (1,107%),d = (4 x 107%,4 X 107') and 5 = -0.9.

2.2.2 MIXING IN THE KINETIC TERMS AND CANONICAL NORMALIZED FIELDS

Consistently embedding string inflation within type IIB compactifications is one of the challeng-
ing problems in studying early universe cosmology. Various works have attempted to study the
universe’s inflationary evolution, where different mechanisms are employed [101; 160; 166; 167;
168; 169]. The implications of the inflationary scenario in low energy phenomenology could
be viewed indirectly by the correct prediction of the cosmological observables, such as the Big
Bang Nucleosynthesis [170; 171], which is correlated with the scale of inflation and the reheating
process after it. In this section, we are going to present a detailed analysis on the the canoni-
cal normalization of the moduli fields and signify the importance of the logarithmic corrections
in the off-diagonal entries of the Kéhler metric. Our starting point is the relevant discussion in
[160], where they study the inflationary period without expanding to the reheating process and
the relevant decay rates of the moduli fields to the visible sector’s degrees of freedom in the geo-
metric setup. In this discussion, the quantum corrections are justifying their presence, since the
eigenvalue of the volume direction is highly dependent on the quantum parameter n or the gen-
eral parameter g, which fact modifies its scaling and mixing with the other sectors. In addition,
one more advantage of characterizing the mixing between the normalized fields, is that the mass
hierarchy could provide many insights on whether inflationary dynamics lay in the category of a
single field inflation or a multi-field case. Apart from that, the study of the reheating process and
the energy flow to the dark sector is highly influenced by the moduli’s decay channels, where the
longest lived particle will dominate the energy density in the late cosmological times and clarify

the correlation between different important energy scales in the universe’s expansion.

Following the discussion above, we need to change the basis from the Kahler moduli 7; to the
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normalized canonical fields ¢;. First of all, [172], the mixing of the fields is given by the diag-
onalization of the mass matrix and the transformation of the basis is driven by the canonically
corrected kinetic terms. We start by writing down the definition of the Lagrangian in terms of
the moduli fields:

1
L= %japfiap’[j -V - EVT,'T]' + O(T3), (2.2.19)

where V is the scalar potential of the moduli fields, while K;; denotes the K&hler metric

1 _ &+2nlog(V) _ n(&+2nlog(V))
41'12 8T1T2(V 8(V3
1
= &+2nlog(V) 1 1 (£+2nlog(V)) n
%) e o ~nee) +O((Vn,n ) . (2.2.20)
_ n(&2nlog(V)  mi(&+2nlog(V)) 7
33 873 1Yt

Is is important to highlight the fact that we have exchanged the 73 modulus in term of the overall
volume V, which means that the new moduli space is consisted by the (71,75,V’). Another one
thing is that we have kept the leading order terms (~ O(n, £)) in the off diagonal entries, which
parametrize the quantum corrections to the kinetic terms. Our main interest is to see in what
extent these corrections could modify the mixing in the parameter space. The next step would be
to compute the mass matrix and the corresponding eigenvalues and eigenvectors. The definition

of the mass matrix is given by:

1 _
Mjj = 5 (K0 Vi (2.2.21)

where Vi, i, j = (11, 72, V) are the second derivatives of the effective potential computed at the

global minimum, while the inverse Kéhler matrix K is given by:

472 2nn(E+2nlog(V)) 2V (E+2nlog(V))
(31 Vv T2
_ 1
Ky =| mnlrzle®) 472 DVE2E D) 40 (" (2.2.22)
2V (&E+2nlog(V)) 2V (&E+2nlog(V)) 4yt
(7] T 272
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2
(dryllff))l/a 9(%)1/3 _18(%)1/3
1
_ 2 5 4/3 n
Vij = 9(%)1/3 18(,%)1/3 _}3‘;’1/3 +O((W”7 ) - (2.2.23)
4/3 I W?2(2g-1)
_18(%)1/3 _13?1/3 ?Vs

Combining all the above ingredients, we can compute the mass matrix in the following basis
(71, 72, V), where we have expanded in terms of the 1 parameter and kept only leading terms in
terms of % Observing the mass matrix, we could clearly deduce that the quantum corrections
are not affecting the scaling of the eigenvalues at a significant level. Nevertheless, the parameter
q defined in equation (2.2.18) appears at the 33 entry of the matrix, denoting that one eigenvalue
will be correlated to the new effects. This fact may have been neglected in other works, but it is of
crucial importance since the g parameter not only satisfies the bounds for a dS vacuum, but also

contains the integer fluxes W, whose effect is to adjust the scale of the potential at the minimum.

36d 184> _36d°
V2 V? e
1
2 ~ 18 36d 36d%/3 _—n
M} = g 264 a2 +Oﬁqu). (2.2.24)
36 3642/3  18nWi(2q-1)

_(d(V7)l/3 e A2B3 P13

In the above matrices, we are obliged to use the minimal values of the all the moduli fields
(11, 72, V) (2.2.13), but to make the formulas more readable we do not substitute the Vj,;,. In
order to avoid the reader’s confusion, in this section and for the rest of the paper V is denoting
its minimum value V,,;,,. In order to compute the scaling of the mass eigenvalues, we are going

to use the trace and the determinant of the mass matrix M?:

Det[M? mmim?
Tr[M?] = m? + m2 + m?, M) _ >3 (2.2.25)
Tr[M?])? (m3 + m5 +m3)*

A straightforward computation of the above quantities lead to effectively describe the spectrum’s

masses as:

_72d  Det[M?] _ 27qWi (3q+1)

2
Tr{M7] T Tr[M2]2 8(d2Y10)1/3

IR

(2.2.26)
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As stated before, the quantum correction 7 acts as a key player in the masses eigenvalues, where
in addition the scale of the fluxes W, will also modify the hierarchy in the spectrum. Before
attributing these masses to the normalized fields, we would like to derive some useful bounds
for the parameters of the theory. So, in an inflationary scenario the inflaton field would be more

natural to be identified by the lightest field of the spectrum. The first eigenvalue scales as ~
773
reveals that the uplift parameter and the fluxes have the potential to invert this hierarchy even in

v
making it much larger than the second one scaling as ~ Nevertheless, our computation
large fluxes regime. Having that in mind, Figure 2. shows the exact bound of the product between
the uplift parameter and the fluxes with respect to the quantum corrections of the theory, namely

the g parameter and the n parameter.

TrIM?] _ ead PV ead PV 1 eadB g P! (2227
Dbl 3WEGe+n 3 B+ D) 3 (3q+1
Tr[M? 3 (3q+1 33 (49 +1)°
Dr[MZ] <1:>(dw02)1/3<——(3q—1/2 dW? ——9(3q 4) <1 (2.2.28)
e 64 q(nq) £ g
— 9.x107%
8.x10°®
—{7.x10‘6
6.x10°¢
5.x107®
4.x10°8
3.x107®
2.x107®
1.x107°

Figure 2.9: Plot of dW/? in terms of 5 and q.

A crucial difference between the work of [172], it is that we cannot know a priori which normal-
ized field better describes the compactified volume V or the transverse directions 7y, 7,. Addi-
tionally, two different regimes will be investigated, the first one will scan the exponentially small

fluxes Wy < 1 while the second will search for order one fluxes ‘W, ~ 1. These two vastly
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divergent parametric regions have been studied before [141], while recent studies point towards
to dS vacua with small fluxes [91; 118].

In the appendix A.1, we explicitly derive the canonical normalization transformation for the two
cases discussed above. The overall scaling of the moduli in terms of the normalized fields (¢;) and

the correspondence of the fields to the mass eigenvalues are displayed below:

+ ) Having exponentially suppressed fluxes, the mass hierarchy and the field’s mixing is

defined by:
Det[M?]
2 o 2 o2 o 2
r 2 Py, 1= POgy, V= Phgs . (2.2.30)

+ p) Fluxes of order one will result in having ¢; as the heaviest field and the masses are given

by:
Det[M?]
2 o 2 2 o2 o
m¢1=Tr[M]>>m¢z=m¢3=W. (2231)
r 2 Pgy m =Py, V=P, (2.2.32)

It is evident that the above results have a geometric explanation. The moduli, since they are
parametrizing the world volume of distinct stack of branes, are given mainly by different nor-
malized fields. This result leads us to deduce that despite the simple form of the compactified
volume, there exists a geometric separation between the different sectors of the theory. In ad-
dition, the most natural candidate for an inflationary trajectory is the direction of the overall
volume YV, since it contains a flat direction (as depicted in Figure 1.) and a stable minimum
described by equation (2.2.13). The exponentially suppressed W, case could be regarded as an
non-standard inflationary scenario, since the ¢s is the heaviest field and the dynamics of the mod-
uli’s during inflation have to be carefully studied due to destabilization effects. Although, given
the three intersecting branes setup, the visible sector’s branes could be separated from the hidden
sector’s branes placed on the perpendicular directions making plausible a string embedding of
an inflationary evolution. This regime could easily capsulate the dynamics of a multi-fields infla-
tion, based on the arguments given above, with many similar examples existing in the literature

[123; 127]. On the contrary, the case of having order one fluxes renders a scenario where the
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inflaton behaves as the lightest field in the mass spectrum, making the approach of the effective
theory valid. Consequently, this scenario could be characterized as a natural single field inflation
case. However, inflation is not our main object of study in this work but we retain our mission
for a consistent string embedding in a future work.

Interestingly, if we would like to compare our toy model’s structure with the literature, the geom-
etry discussed in [152] and in references therein, shares some interesting features with the above
analysis. In their volume form, the visible sector is completely decoupled by the rest moduli and
they separate two cases regarding the identification of the inflaton field. In the K&hler inflation
case, the inflaton is denoted by the heaviest field and the transverse mode specifies the dark ra-
diation predictions. Compared to our cases, the case «) shares the same features, where due to
the newly quantum dynamics the heaviest field is represented by the inflaton, while a transverse
field will be the longest lived and eventually will specify the late time universe’s energy density
(see discussion in section 4.). Now, in the fibre inflation scenario of [152], the inflaton is identified
by the lightest particle, just like our case ). In addition to the above, an early matter domination
epoch could be included in the Kéhler inflation case, which fact is also evident in our case «),
since the mass hierarchy is inverted and large non-gaussianities. This paragraph had an aim to
place this model in comparison with the known examples with related dynamics in the literature,
where the two distinct inflationary paradigms are discriminated by a matter of choice for the in-
flaton field. Now, this discrimination between the different inflation scenarios could be elucidated
through a more natural explanation, in particular the choice of fluxes, even if they are stemming

from an alike geometry.

2.2.3 REHEATING AND DARK RADIATION PREDICTIONS

After the end of inflation, the inflaton will begin to oscillate around their minima, acquiring a
large energy density in the process. Now, this energy density has to be transferred through a
specific mechanism to the other fields of the theory, either to the visible sector or to the dark sec-
tor. Among this plethora of fields, there is a possibility that the universe’s late time cosmological
dynamics are going to be addressed not by the inflaton, but by a different field whose decay rate is
much smaller. Thus, the final reheating temperature and the effective number of neutrino species
will be determined by the decay rate of the aforementioned longest lived particle. Regarding the
decay products of the moduli, they fall into two categories. The first are the decays that produce
the visible sector’s particles, where these particles could be identified as either Higgs boson or
other Minimal Supersymmetric Standard model’s (MSSM) fields. Among several suggestions to
this problem we are going to employ a Giuduce-Masiero mechanism for describing the relevant

dynamics of the decays to the visible sector. In addition, there may also be decays to hidden sector
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states, which is a generic feature shared by string compactifications. The hidden sector contains
several candidates for dark radiation, such as the axionic partner of the Kéhler moduli fields or
light hidden gauge bosons. Based on the analysis of the previous sections, we will identify the
longest lived particle in each case study (a and f), by explicitly compute the couplings of the
moduli fields to the Higgs field and to the axions. In spite of the criticism receiving these type of
stringy constructions regarding the complex dynamics and the uncertainty with respect to the
effective theory approximation, interesting proposals point towards the direction, where cosmo-
logical solutions could play a bilateral role. Firstly, these solutions provide a stringy origin for
the reheating mechanism but also contribute to the identification of various dark matter particles

[151; 173; 174; 175], correlating this way the dark sector dynamics to the reheating temperature.

As consequence of above, we are going to start from the Lagrangian’s kinetic terms, they can be

expanded as:

L= 7(11(9’“1'18”1'1 + 7(12(9;ﬂ'13”1’2 +7(138y718“"v + 7(21%,1’23“’[1 + 7(22(9;,1’25“1’2
*V
+ 7(238},1'28”(1/ + 7(318,,(‘/3”1'1 + Wgzaﬂ(vapl'g + 7(33(9/1(1/(9”(‘/ +V+ O(W)Tifj . (2233)

Ti T

Since we would like to highlight the effect of the quantum corrected kinetic terms, we would
like to include to the above Lagrangian, terms that contain cubic order interactions and more
specifically, the interactions between moduli and their corresponding axionic partners c;. These

trilinear interaction terms have the following structure:

1
L = (0,Kjk) 19,0 c = (3ri7(jk)5(m,~2 - m? - m,zc)fl-cjck, (2.2.34)

where in the last step we have used the Dirac equation, after integration by parts, to recast the
terms in their equivalent form containing their respective masses. As pointed out in [151], the
cubic terms obtained by the derivatives of the potential are subleading compared to the ones
originated from the kinetic terms. This fact can be addressed to the suppression due to the large
volume expansion, where we expect a similar behavior in our geometry. We can take for granted
that the masses of the axions are negligible compared to moduli’s masses, concluding that only
m; will contribute in the above interaction term. The most crucial point in the above computation
is the derivative of the Kahler metric with respect to each modulus of the parameter space, where

the corresponding matrices are displayed below.
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1 n(6—q) n(6—q)

T 2d2VE 4dV3 4dV3
_ 6— -5
o, K = nidvz) 0 _U1(§v3) , (2.2.35)
n(6-q) _ n(g-5) 0
4dV3 12973
0 n(6—q) _n(g-5) 0 1n(=g+5) 1(—g+6)
4dV3 1273 6(dV10)1/3 2(dV10)1/3
.= | n(6-9) d dn(q—6) = | _n(=g+5) d**n(q-6)
9y = P vl v = W 0 —2(3—13/3
_n(g=5) _ dn(g—6) 0 n(=g+6) _ d*3n(q-6) ok
1273 4dV3 6(dV10)1/3 2V10/3 WAE
(2.2.36)

To all the above matrices, the minimal values of the moduli 7, 72,V have to be applied. So,
every coupling will be expressed only in terms of the free parameters of the theory. Using all
the above ingredients, we could compute for example all the relevant coupling constants needed
for the various decay rates. In doing so, the formulas in Appendix A.2 will be used. Before
proceeding further, it is crucial to rethink which is the longest lived particle on this model, since
this will determine the energy’s composition of the universe at late-times. The most dominant
contribution to the visible sector’s energy will come from the decay a the normalized field to
Higgses. We focus on the Giudice-Masiero mechanism, where for the MSSM the relevant fields
are the Higgses H, and H,. Starting from an extended Kahler potential with the Higgses fields

included, we will conclude to the formula of the process’s decay rate.

_ 1 _ _ _
K=-3In[(T+T)+ g(HuHu + HyHy + ZH,Hy) |, (2.2.37)

where expanded to leading order, the final term will be the most dominant one [153; 176; 177].

Thus, the relevant decay rate for the various moduli fields is given by:

222 m;

_— 2.2.38
4871 Mg ( )

rz'i —HH ~

Returning to our initial question, which is the determination of the longest lived particle, it is
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important to recast the moduli fields 7; to the normalized ones ¢;, where this transition will
contribute an additional factor (mixing factor) to the above decay rate. This factor can be retrieved
from the Appendix A.1. This is the point where the analysis of the previous section comes in

handy.

Let us start from the case «) of having exponentially suppressed fluxes, and we should compute

the relevant decay rates of every normalized field to Higgses:

r 5184 Z2\2d"0q2¢ 432 Z2\2d5/¢ . 7 Z2(-nW2)32(2q + 3)3/
¢1—H. Wi V2 > L—H asy1/3 > T$oH 16V27s d5/3)16/3
(2.2.39)
Ty . nn 6144d%*/0Eg2sy/3 Ty ng 24V2g2E(d7V)1/3
miL IR, bg’s S = V2g 5(2 )" <1, (2.240)
Ly g w? (-n(2q +3)W2)3/ | PN w

The parameters w, s have been properly defined in the Appendix, where they are expressed in
terms of the V, d and q. Based on the above fractions between the decay rates, we observe that
the smallest one is represented by the Iy, making ¢; the longest lived particle. This conclusion
has important consequences in the late-time cosmology’s dynamics, since the energy density
will be determined by the ¢; instead of ¢3 which represents a plausible inflaton. The mixing
has added the uplift parameter d and the fluxes W} in the computation, suppressing the decay
rate sufficiently in order to have a new long lived particle. So sketching up our geometric setup,
we have to place the visible sector on the stack of branes represented by the 73 world-volume,
making this way the 7y, 7, spaces the dark sectors of the geometry. Additionally, as pointed out in
[178], any non-perturbative corrections along the cycles supporting the visible sector can not be
allowed, since they will intersect with the chiral matter. A solution to this stabilization problem
is solved by our proposal of logarithmic loop correction. Rephrasing the above argument, this
type of construction could only possible allow axionic degrees of freedom from the transverse
space of 73. We have to make this particular choice, taking into account the fact that the lightest
and longest lived particle could in principle not only solve the dark radiation problem, but also
their decays could produce the correct abundance of non-thermal dark matter. Thus, ¢; (i.e. the

7; modulus) cannot be identified with the visible sector.

For the case ff) of having order one fluxes, a similar discussion could lead to the following results

for the decay rates of the normalized fields to Higgses.
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5422\/532d5/6 81\/§d2/3§q2(2q + 3)3/222 (_U(Woz) 3/2

F¢2(T1)—>HH = —ﬂ:(Vl7/3 , ¢2(T2)—>HI:I = jT(VSWZ b (2241)
- 729d2/3§q2(2q + 3)3/222 (_Ufwoz) 3/2 2949

$s—HH — 4\/5”(‘/5“,2 ' (2.242)

r¢2(rl)—>Hl-_I _ 16%32'\/\12 r¢2(72)_)HH <1. (2243)

Tsmmn 2762V (—n(+2q +3)W2) 32 Ty _pn

From the above, we can conclude that the normalized field ¢; corresponds to the longest lived
particle in this setup. This case can be considered as more natural, since the longest lived particle
is identified with the inflaton and eventually will specify the energy density after inflation. Again,
as previously, we have to specify the visible and the hidden sector of the internal geometry. In
this case, the visible sector will be identified with the 7; stack of branes, while the ¢5 field will be

important to both the discussions of dark radiation and dark matter.

Returning to our main purpose, which is to calculate the dark radiation predictions of this model,
we have to think which are the important decay channels relevant to our purpose. The decay
rates of the longest lived particle to axions have to be scrutinized and the first thing to do is to

write the interaction terms associated to these processes.

L5 (85, Konp) tmducnd” cm = g, KapPryiPr Py $i9utid ax = Konnp Pryi PP dicja, (2.2.44)
where in the last step we have also transformed the axionic partner c; of the Kahler modulus to the
normalized axion a;. The P;; matrices represent elements of the mixing matrix, when we apply
the basis transformation. The mixing between the axions will be determined by studying the
induced scalar potential, when non-perturbative corrections are included in the superpotential
“W. Geometric constructions, where all type of corrections are turned on, have constructed in
the past [142; 143] and the problem of moduli stabilization is not affected. The large volume limit
is necessary to ensure the validity of the effective theory and to keep the exponential factor the
non perturbative corrections W O Ae™%" relatively small. Since we focus on the impact of the
quantum corrections, we could parametrize this matrix as follows and focus on the qualitative

behavior of the decay rates 4.

14For an extended discussion in a bottom-up string derived model, follow Appendix B in [151]
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C1 M1 Az Asl|on
o | =1 A1 A Axz ||z |- (2.2.45)

C3 As1 Asz Ass)\as

For our first case study «), the longest lived particle is ¢;, which descends from the 7; modulus.
Comparing with the Lagrangian terms of equation (2.2.44), the m, i indices are determined from
our previous analysis, so m = 1,i = 1. As for j, k indices, these can only span (j,k) = (1,2)
since the visible sector is represented by the third modulus. The relevant Lagrangian part for this

process can be written, after summing all the contributions, as:

144V3nd°/6 211+/Eq (
Vdow

AE;V +A21(q - 6))

2
¢1 — aray WlinflelP;1m¢l¢1a1a1 = - hraay .

(2.2.46)

As for the decay rate, we can use the decay formulas in the Appendix and it is computed to be:

1296V222, €% (dnhai(q — 6) + A1 V) ?

Ty o = T M, . (2.2.47)

The second process to study is the ¢; — aza; and the relevant Lagrangian terms are written as:

144v3d%/°n 7134 [Eq (Aij,;v +Ap2(q - 6))

(]51 — 20y WlinlTlP;2P;2mél¢za2a1 = - (VSW ¢10{20(2 ,
(2.2.48)
1296V222%,£q% (dnhaz(q — 6) + A12V) 2
T oy, = 12 M, . (2.2.49)

nd5/6(V9w2

The final process, which is only present since we have included the off diagonal terms in the

Kéahler metric, is the following ¢ — ajay:
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T
Vdow

T

¢1 — X107 (}(1in1

1P;1P;2m21¢1a1a2 =- hraaz, (2.2.50)

where we have defined A = 112451 + 41142 for simplicity. The corresponding decay rate is sum-

marized to:

I _ 324V2&q% (Adn(q — 6) + 2A1141,V)
$roaaz = 7d5/67 92

M, . (2.2.51)

Now, we have to compare the processes, in order to find the leading contributions to dark ra-
diation, and a good approximation would be to completely forget about the first terms in the
parentheses of the numerators. This is justified by the fact that they are suppressed by the uplift
parameter and the quantum correction 5. So, dividing the two decay rates some simple and self

explanatory formulas are derived.

L4 e _ 22,(dn2z(q—6) + A V)2 Tpsapen _ 422, (dnz1(q — 6) + A1 V) 2
F¢1—>a2a2 /1%2 (dﬂ/lgg(q — 6) + )le(V) 2’ r¢1—>0{10{2 (Adl](q - 6) + 2/111/112(‘/) 2

(2.2.52)

4 2
Dpoama A Ipsaa A (2.2.53)
T T S22 -
d1— a0 12 Pr—oay 12

One could see that previous works had omitted the mixed decay channel’s contribution to dark
radiation and only included in their analysis the first process. As for the relevant scale between
the diagonal and the off diagonal entries of matrix (2.2.45), it is expected that A;; > A;, since
we assume a normal ordering in the mass hierarchy. So, we have to take into account the con-
tributions from the off diagonal decays of the moduli to axions. This a novel feature due to the

quantum corrected kinetic terms, which was underestimated in previous studies.

1296‘/5/1%1 (A% + A%z) ng
d5/6V T2 P

Lot = Iy anen + Ipy>aya, = (2.2.54)

Based on the above, we are in a point where we need to connect our theoretical computations

to the observable quantities such as the effective number of neutrino species and the reheating.
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Recall that, the standard definition of the effective number of neutrino species is given by:

AN or = 4_3( 10.75 N Dot _ g( 10.75 )mxlfl (A%, +22) _ 4_3( 10.75 NI 22
D7) Tyma 7 9-(Tw) 4d*ViZ2 7 g(Tn) 4diViz?
(2.2.55)

where in the last step we have defined for brevity A2 = A2, (A2, + A, and ¢..(T,;) denotes is the
number of relativistic degrees of freedom at T, . The astrophysical and cosmological observations
put a constraint on the AN, ¢¢ < 0.4, which fact will be translated to stringent bound on the mixing

angles in the axionic sector.

’ g+(Trn) 1/6 7 120172 9+(Trn) 1/67 2. 20472
N < 0.5(Z Vo zg2qp2 — 0. 5(LZL2N 6 72 p2apy2 2.2.56
<0.5( 10.75 ) ( 10.75 ) Zen W, ( )

Additonally, we are going to define a new quantity for the complete decay rate (both to visible

and dark sector):

rl = T¢1_,HH + Tmt . (2257)

Using this quantity, we can compute straightforward the reheating temperature of this model.

This is given by:

90 F¢1—)HH 1/4
Trn = I'M, . 2.2.58
=gy )V (2258)

Since the decays of the moduli to axions are heavily suppressed compared to the ones on Higgses,
the complete decay rate can be effectively described by the decay rate to the visible sector. The

reheating temperature is, then, described by:

90 90 72 21442, [Eq7
T = (———)"* Ty _uaMp = —( )L/ M, . (2.2.59)

79« (Trn) 7gs(Trn) TV 2

Another one important bound for our model is referred as the cosmological moduli problem
[179; 180]. The lightest modulus is bounded from below to lay at scales O(10)TeV:
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1

10 TeV s
3\/5 rqup

Given this very restrictive bound, we would like to comment on that regarding the geometry of

mg M, > 10 TeV = Wy > (2.2.60)

the compactified space. Our case study suggests that we are exploring exponentially suppressed
integer fluxes. But, the toroidal structure of the volume form seems to not favor a solution for
arbitrary small fluxes. Moreover, we expect that our results will not change significantly by
preserving higher order terms in the effective potential, since they are subleading due to the
suppression because of n" and i,, This fact could also provide a bottop-up proof of why this
geometry, studied before in [113], accommodates more easily stabilized solution with order one
fluxes. In addition, only moderate values of volume is accepted in this case, since the masses of
the moduli would be below the bound presented above. It is imperative to mention that these
cosmological implications of stringy constructions could, also, be used as testing ground in order
to clarify the properties of the background geometry and the discussion on the smallness of ‘W)
[91; 181]. Below, we illustrate three numerical examples (Table 1.) for various scales of reheat-
ing temperature of our case study «). In addition, the moduli masses at the stable vacuum are

presented in Table 2.

Wo n 3 d Trn (GeV) ANerf (A1, A12) A

YV =2425 || 1x1072 | -09 | 5| 3.8 x 10710 10 025 | (8x107%3x%x107%) | 1

V=2425 || 1x107* | -09 | 7| 3.8x1071%2 | 8§x1073 0.25 | (8x107°,3%x107°) | 1

V=290 || 1x1072 | -09 | 5| 4x1078 33 x 10° 0.1 (8x1073,3x107%) | 1

Table 2.5: Different reheating temperatures for various set of parameters. Obviously, exponentially small
fluxes tend to reproduce a low reheating scenario.

2 2 2 2
my (TeV) my my, my

Wy=1x10"3 | 4x10% | 8x10% | 3x 10

Wy=1x10"% | 4x107 | 8x 107 | 1x 10

Wy=1x10"2 || 4x10° | 7x10° | 4 x 10

Table 2.6: The moduli masses along the two numerical examples presented above.

Following the above discussion, we are going to discuss the scenario of having fluxes of order
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Wy ~ O(1). The longest lived particle in this case (case f)) is the ¢3. The relevant Lagrangian

part is written as:

L5 (K3npp;1iprcszjc,km<2ﬁ3¢3ajak , (2.2.61)

where we inserted i = 3 for the ¢3 normalized field and m = 3, since this field descends from the

volume V modulus. The first coupling constant is computed as:

9\/§d5/6l7/133\/EQ(2q + 3)W02 (77/123(q - 6) + /133(V)

(]53 — 303 : Wgin§3P’i3P;3m;3¢3OK3OK3 = 2(V20/3W 30303 .
(2.2.62)
The decay rate for this process is computed to be:
81d20%,Eq% (—n(2q + 3)W?) 32 (nAy3(q — 6) + A33V) 2
b = 3369 (-n(2q+3) 0) (n223(q — 6) + A33V) M (2.2.63)

AN2 7Y 353402 P

The second process we need to inspect is the ¢35 — aza;. The Lagrangian terms for the above

process are summarized to the following expression:

9V3d/onJEq(2q + 3) Wy (nh23hs3(q — 6) + 25, V)
2(V20/3W

. T pc pC ,..2 —
¢3 — 07 Wgin33Pn2Pp2m¢3¢3aga2 = 3002 .

(2.2.64)

There is obviously a similarity of the coupling constant with the previous process’ coupling con-

stant. This fact leads to a similar form for the decay constant.

81d%Eq? (—=n(2q + 3)W?2) 32 (n)y3As3(g — 6) + A2 V)
r¢ ooas = fq ( ’7( q ) o) (’7 23 33(q ) 32 ) Mp- (2.2.65)
3TrHete 4\/§ﬂfv35/3w2

The latter process we have to compute its decay rate refers to the ¢35 — a,as. Firstly, we have to

write down the Lagrangian:
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9\/§d5/6’7\/EQ(2q +3)WZ (a3 (As2 + As3) (g — 6) + 2A3A35V)
4V20/34y

. T pC pC 2 _
¢3 — 03 : Wgin33Pn2Pp3m¢3¢3a2a2 = 30003 |

(2.2.66)

81d2£q? (—n(2q + 3)W?2) 32 (5l (M55 + A — 6) + 232155V 2
Ty = éq ( n(2q +3) 0) (nAa3 (A32 33) (@ —6) 32433V) M, . (2.2.67)
4\/5”(‘/35/3“,2

Now, as in the previous analysis, we have to compare the decay rates in order to find the most
dominant contribution to the dark radiation abundance. Following the argument used before
regarding the first term in the parentheses of the above equations, we can observe the scaling

between the decay rates.

Ly —asas A2, (nda3(q — 6) + A33V) 2 N )1_;13 I oaas 423, (n)23(q — 6) + A33V) N )L_gz,g
r¢3—>0{26¥2 (’7)[23/133(61 - 6) + Agz(v) 2 - /132’ r¢3—>6¥za3 (’7/123 (/132 + /133) (q - 6) + 2/132/133(‘/) 2 Agz .
(2.2.68)

It is evident, again, as to the former case, that the off diagonal entries give rise to new decay rates
that were previously underestimated. Based on the above, we have to sum the two contributions

L, a3 Lpy—apars» Which fact results into:

S (03, + ) B (- (29 +3)W;)
Lot = r¢3—>flaa3 + F<253—>052053 = 4\/57.[(‘/29/3\4,2

M, . (2.2.69)

In this case, the standard definition of the effective number of neutrino species is given by:

7 " 9:(Trn) F¢3—>HH 7 9+(Trn) oY 14/3 72’

43( 10.75 /3 ps—ama; 43 10.75 3 d3 )2

ANefrr = (2.2.70)

where in the last step we have define for brevity 1”72 = A2, (12, + A%,). A similar bound as before

can be derived by the requirement of AN, ¢ < 0.4.

0.765537V"*Z 1075 ¢

AV <
B G T

(2.2.71)
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Now, the reheating temperature is computed as:

900 4 27Vd\Eq(2q +3)**Z (- Wy) **
g+ (Trn) N2 V52w

Trh

N

( M, . (2.2.72)

Finally, we will show below some numerical examples (Table 3. and Table 4.) for the case of
having order one fluxes in this particular toy model. This scenario renders high scale reheating
temperatures, while the effective number of neutrinos species is very suppressed even for order
one coupling constants. This means that, since the AN,rr — 0 is very close to the Standard

model’s value.

Wy | n | ¢ d T.n (GeV) | Z
V = 2425 1 [-09]5]38x107* 101! 1
V=820 | 10 | -09 |7 | 1.3x 1072 1010 1

Table 2.7: Different reheating temperatures for various set of parameters. Obviously, exponentially small
fluxes tend to reproduce a high scale reheating scenario. The effective number of neutrino species AN, rf
is well below the allowed upper bound even for order O(0.1) coupling A”.

2 2 2 2
my, (TeV) || mg | my, | my,

Wy=1 || 5%x107 | 1x107 | 2x10°

Wy, =10 || 2x10% | 1x10° | 3x10°

Table 2.8: The moduli masses along the two numerical examples presented above.

2.2.4 DARK MATTER SCENARIO IN THE PRESENCE OF QUANTUM EFFECTS

In various string models, cosmological predictions tend to point towards non-thermal dark mat-
ter, produced by decays of heavy scalars. The most common production process would need the
decays of the lightest modulus to provide a large amount of entropy, diluting any previous DM
abundance, and then its byproducts would yield the necessary relic density. The potential dark
matter particles span two categories regarding their thermodynamic origin and more specifically

the freeze out temperature Ty ~ mpyy/20.

(I, > Ty) : in this case dark matter particles are in a thermodynamical equilibrium and

annihilations between themselves favor the thermal origin of dark matter.
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* (T4 < Ty) : Here, a discrimination with respect to the dark matter annihilations is needed
to be stated: the efficiency of the aforementioned annihilations is quantified in the criti-
cal abundance Y}),, of dark matter particles, which quantity is obtained by the Boltzmann
equations.

H

YE = —— |7, . (2.2.73)
bM <O'ann0>s rh

In the first sub-case, there is a possibility of having the produced abundance exceeds the critical
value Ypy > Yj,,. Consequently, there exists some further time for annihilations until the two
quantities match, a scenario labeled as "Annihilation scenario". The final relic abundance in this

case is computed to be:

obs <Uannv>f Trh

Y5, ~ (2.2.74)

where npys represents the number density and <0annv>}h ~ 3% 1072 cm3s~! stands for the ther-
mal’s case cross section as a requirement to produce the observed value of dark matter abundance
[182]

GeV

Mmpm

npm
(=~

—)obs = 5% 1071(—) . (2.2.75)

Readily, processes of this type are enhanced by a factor of E as opposed to the thermal pro-
duction, where possible dark matter particles could be thermally underproduced Higgsino-like
or Wino-like particles. In second sub-case, the dark matter abundance is lower compared to the
critical value, making the annihilations more sparse. This scenario is labeled as "Branching sce-

nario", where the produced abundance is simply given by:

3Tn
4my ’

Youm = Y¢BI”DM, Y¢ = (2.2.76)
where the Yy calculates the abundance of the normalized fields and Brpys quantifies the decays
ratio. In this case, Bino-like particles are favored for lower values of Brpy. Following the anal-
ysis of the previous section, we are going to use the computed reheating temperature to scan
the viability of both scenarios along the presence of the newly introduced quantum effects. Ac-

cording to [174], the branching scenario would better describe the regime of low scale reheating
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temperatures. This regime spans the region between:

O(MeV) < T, < O(GeV) . (2.2.77)

We can easily compute the abundance of the normalized fields, using the reheating temperature
of equation (2.2.59):

_ 18\/§ 51/4d13/12\/EqZ
7r3/4gl/4WW ’

Yy =

(2.2.78)

For consistency reasons, we are going to use the values of Table 2., while various plots will be
presented to show the bounds on the parameters and the dark matter mass. In the branching
scenario, the dark matter abundance has to be equal to the observed value (2.2.75), where the

dark matter mass is bounded from below scaling as:

1440 5'46d"/12\[Eqz
ﬂ3/4g1/4q/3/zw

Tf > T, = mpy > — Mp s (2.2.79)

71,3/491/4@“; GeV
\3 51/4d13/12\/ECIZ 36 X 10° Brpy

Y¢ =Ypy = mpy = — (2.2.80)

In the following Figure 3., the required dark matter mass is depicted in order to satisfy the observ-
able dark matter abundance. The values of Table 1. will be used to scan the region of reheating
temperatures from a scale of a few MeV up to a few GeV. While in previous works, the branching
scenario was promoted only for small dark matter masses, we will show that it can also attribute
large values once the branching ratio is lower than Brpy < O(107%) [183; 184]. Recent proposals
tend to that direction to obtain superheavy dark matter that could contribute effectively in the
relic density. A possible explanation on that can be credited to higher order moduli decay or to
non-standard cosmological evolution with a period of early matter domination [173; 185; 186].
As it previously discussed our case study «) resembles the Kahler inflation paradigm, where an
early matter domination period could be established. A special attention should be devoted to
the third case of Figure 3., where a bizarre coincidence can be addressed. As stated in a past work

[156], a Cladogenesis scenario was suggested where the dilution factor due to entropy release
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by modulus decay Y, can both solve the dark matter mystery, but also provide a solution for the
Baryon-Dark Matter Coincidence. This can be characterized as a late time baryogenesis scenario
where the moduli decay could decay naturally in some N species with C- and CP- violation cou-
pling with the visible sector’s dofs. To quantify the above statement, the baryon asymmetry of

the universe is given by:

B — 1B
s

ns = = Y;Brye, (2.2.81)

where € is the generated asymmetry during the N particles decay and Bry denotes the branching
ratio of decays to the observable sector particles. Applying the observed value of the asymmetry

and our result for the modulus decay, we derive:

= 9% 107" = Brye = 1x 107, (2.2.82)

Since the generated asymmetry € is created at one loop level, the parameter could easily accom-
modate a factor of order ~ 107!, Thus, a very specific bound for the branching ratio of the N
particles can be derived, where in contrast to previous studies, Brpys and Bry are not of the same
order. Additionally, we naturally expect Bry to lay between O(107},1), since concrete models
[157] of this type of baryogenesis have been constructed that service this argument. Bringing at-

tention to the coincidence problem, we can compute the two (dark matter and baryon) densities

by:

Qp GeV eBry ) -8
=~ ~6 = eBry = 4.8X107°, Brpy = 107°, mpy ~ 800 TeV . (2.2.83)
Qpyv mpy Brpm

Remarkably, the problem is solved and an explanation is given in accordance with the scenario
described in [156]. Our main difference is that the our dark matter branching ratio is considerably
lower than computed in [156], where studies have shown that this is possible once possible higher
order corrections are added to the decay rates. These corrections could descend from three or
four-body moduli decays to final states with additional dark matter particles, where the branching

ratio could lay lower than Brpy; < 1074,
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Figure 2.10: Plots for the different cases of Table 1. The shaded region represents the allowed masses
for the dark matter particles, where the horizontal line represents the lower bound on mpys set by the
requirement T¢ > Tpp.

As for the annihilation scenario, it would fit better to the case of having high scale reheating
temperatures T,, > GeV. So, our case of order one fluxes could be embedded in this scenario.

The reheating temperature, using equation (2.2.72), in this case is given by:

273 5'/4d"*\[Eq(2q + 3)3/*Z (—nW2) 3/

g Ty Ty M, . (2.2.84)

rh
From equation (2.2.74), we can see that the final relic abundance is given in terms of the number
density and the freeze-out temperature Tr. A lower bound for the dark matter’s mass can be

derived by requiring the freeze-out temperature to exceed the T,

270V3 51/4d"3\[Eq(2q + 3)*1Z (-nW?) 3/4M
gl/4ﬂ3/4(V5/2w P

Tf > T, = mpy > (2.2.85)

In the following plots (Figure 4.), the bounds on the dark matter mass are depicted based on two of

the cases studied in Table 3. The horizontal lines represent two characteristic values for different

number densities (Gan,0)r, While the curve sketches the observed value of DM abundance YB?\Z =

n
(ﬂ)obs. The two examples of the plots are, also, summarized in the equation below, where the
s

93



relic abundance is computed along with the fluxes and the lower bound on the dark matter mass.

6.8 x 107
(o U)th T — Wy =1, mpy > 1012 GeV,
¢ npm anmn=lf Lf <O'ann0>f
Yiu ~ ( s P o T T | 14X 1078 (2.2.86)
ann®/f drh N 2227 Wy =10, mpy > 101 GeV .
<O'ann0>f
. W, =10, mZit= 4 x 10'2 GeV
Wy =1, mZit=2 x 102 GeV v oM
v
5.x1072'}:
102
5.x10722} 107 )
2<0'V>f <OoV>¢
5.x1072 ¢ 1022
5.x10-24" 40<ov>¢ 102 40<0v>¢
mpw (GeV) mpy (GeV)

1.x10"2  1.x10"® 1.x10™ 10" 102 10" 10"

Figure 2.11: Left: The shaded region between the horizontal lines represent the allowed region on
the dark matter mass. The horizontal lines depict the dark matter mass on the region between
(2¢0annv) £, 40{0annv)s). The vertical line represents the lower allowed bound for the T¢ > T,j.

Thus, we see that the annihilation scenario in the case of order one fluxes renders some super-
heavy dark matter particles with mass mpy; > 10! GeV. Some future interesting investigations
would be to extend this analysis on more complex Calabi-Yau spaces and observe the overall dy-
namics in Kéhler moduli sector. Additionally, a possible embedding of an inflationary model in
accordance with the above analysis would be beneficial in order to clarify some ambiguities in
the early universe, like the connection of dark sector’s dynamics to the inflationary observable
quantities. From a phenomenological point of view, it would be interesting to understand the
implications and the experimental signatures of a potential superheavy dark matter candidate,
since various existing and future experiments, like Ice Cube [187] and RNO-G [188], are search-
ing for state of the art methods to probe the nature of dark matter. We retain all these questions

for a future work.
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3 PHENOMENOLOGICAL ASPECTS OF LOCAL
F-taeEorY GUTs

In this chapter, we are going to explore the low energy implications of F-theory GUTs, more
specifically by revisiting the flipped SU(5) in the spectral cover approach. Secondly, the newly
introduced modular flavor symmetry is going to be embedded in the context of local F-theory.
In the present study, an SO(10) divisor is considered augmented by internal fluxes along the
U(1), direction, whose effect is to perform the symmetry breaking. This results exactly to a
flipped SU (5) model, after carefully define the hypercharge generator as a combination of the
U(1), and the Abelian factor of SU(5). The phenomenological signatures of this model include
the seesaw mechanism as the origin for the neutrino masses, the study of the main decay chan-
nels of proton decay and the corresponding bound of the Higgs triplets, the study of the 0vj3p
decay and its lepton flavor violation effects in the determination of mixing between the neu-
trino states. Furthermore, a consistent gauge coupling unification is performed at very high
energies along with the F-theoretic singlet’s vevs provided by the flatness conditions. Regard-
ing the modular family symmetry, in the framework of type IIB string theory with D-branes the
SL(2,Z) symmetry is playing a prominent role in the determination of the residual symmetries.
We now discuss the origins of finite modular symmetries in Type IIB string theory. To this ef-
fect, we will study, expanding on [189] Type IIB orientifold compactifications, where one can
stabilise the moduli in a vacuum that is invariant to finite modular symmetries. The starting
point is Type IIB, which exhibits an explicit modular invariance for the axio-dilaton irrespective
of the details of the compact space. Upon choosing a factorisable toroidal orientifold for the com-
pactification, T®/Z, = (T? x T} x T?)/Z; the theory will also manifest the modular invariance
associated with the complex structure moduli of each of the tori, in other words we will have
SL(2,Z), ® (®}_,SL(2,Z);) before the complex structure moduli are stabilised by Type IIB flux
configurations. Once the fluxes acquire nonvanishing VEVs, we will show that the supersymme-
try preserving vacuum transforms non-trivially under a congruence subgroup of order N, I'(N),

of the original modular symmetries, therefore breaking the preserved symmetry to I'y.
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3.1 FripPED SU(5) AND STERILE NEUTRINOS IN F-THEORY

3.1.1 GEOMETRIC CONSTRUCTION

We would like to investigate the flipped SU(5) X U(1) model in a generic F-theory framework.
Within the proposed framework we implement the spectral cover approach and turn on fluxes
along U(1)’s to determine the geometric properties of the matter curves and the massless spec-
trum residing on them. At this stage we end up with the flipped SU(5) which we envisage it
contains the three generations of the chiral matter fields, and the necessary Higgs representa-
tions to break the symmetry.Before we attempt to derive this model from F-theory, we give a
brief account of the field theory version. The chiral matter fields of each family constitute a
complete 16 spinorial representation of SO(10) which admits the SU(5) X U(1), decomposition
16 =101 +53+1_5. (3.1.1)

Denoting with x the ‘charge’ under U(1), and y under the U(1) of the familiar Standard Model
symmetry group, the hypercharge definition for flipped SU(5) is Y = £ (x + £y). This implies the
following embedding of the Standard Model representations

10.; = F = (Qid;,v; (3.1.2)
5= fi = (u,6) (3.1.3)
15= £ = €. (3.1.4)

As already pointed out, the spontaneous symmetry breaking of the flipped SU(5) symmetry oc-

curs with a pair of Higgs fields accommodated in
H=10_; = (Qu.d§.v5), H=10y = (Qu. df, ) . (3.1.5)
The MSSM Higgs doublets are found in the fiveplets descending from the 10 of SO(10)
h =5, = (Dp hy), h=5, = (Dnhy) . (3.1.6)

A remarkable fact in the case of the flipped model is that the U(1), charge assignment distin-
guishes the Higgs 5_, fields from matter anti-fiveplets 53. In particular, the former contain down-

quark type triplets Dy while the latter accommodate the u¢ quarks.
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The fermion masses arise from the following SU(5) X U(1), invariant couplings

W Do Ad 101 - 10_q - 53 +/1u 101 - 53 . 552 +A[ 1_5- 53 . 52 (317)
DA Qdhg+ A, (Quhy,+ v hy)+Aethy. (3.1.8)

It should be observed that the flipped model at the GUT scale predicts that up-quark and neutrino
Dirac mass matrices are linked to each other and in particular, m; = m, . However, in stark
contrast to the standard SU (5) model, down quarks and lepton mass matrices are unrelated, since

in the flipped model they originate from different Yukawa couplings.

Proceeding with the Higgs sector, as H H acquire large VEVs of the order Mgyr, they break
SU(5) x U(1), down to Standard Model gauge group and at the same time they provide heavy

masses to the color triplets. Indeed, the following mass terms are obtained
HHh+HHh = (v§)d§D + (v&)dyD . (3.1.9)

Moreover, a higher order term providing right-handed neutrinos with Majorana masses is of the

form

1 — —
(WVC = ﬁlOHlOH 10_1 10_1
15 . (3.1.10)
Fagag e \2
= EHHFIFJ = MS<V§_I> Vfl/j .

It should be noted that possible couplings with additional neutral singlets vy may extend the

seesaw mechanism to type II. As we will see, this is exactly the case of the F-theory version.

In the context of local F-theory constructions we may assume an Eg point of enhancement where

the flipped SU (5) emerges through the following symmetry reduction
Eg D SO(10) X SU(4), D [SU(5) xU(1)] xSU(4), , (3.1.11)

where SU (4) , incorporates the symmetries of the spectral cover. Matter fields are accommodated
in irreducible representations emerging from the decomposition of the Eg adjoint under SO(10) X
SU(4)

248 — (45,1) + (1,15) + (10,6) + (16,4) + (16,4) , (3.1.12)

followed by the familiar reduction of SO(10) representations given in (3.1.1) and (3.1.6), accord-
ing to the second stage of breaking SO(10) — SU(5) X U(1) as shown in (3.1.11). The following
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invariant trilinear couplings provide with masses up and down quarks, charged leptons and neu-

trinos

Wiown € (10,4)_; - (10,4)_; - (5,6); (3.1.13)
(Wup/v € (10, 4)_1 . (5, 4)3 . (5, 6)_2 (3114)
W, € (1, 4)_5 : (5, 4)3 : (5, 6)2 . (3115)

As opposed to the plain field theory model, the corresponding trilinear couplings transform non-
trivially under the spectral cover SU(4), group. However, the matter fields reside on 7-branes
whose positions are located at the singularities of the fibration. In the geometric language of
F-theory constructions, the matter fields of the effective model are found on the matter curves
where the gauge SU(5) XU (1) symmetry is appropriately enhanced. Moreover, their correspond-
ing trilinear Yukawa couplings are formed at the intersections of three matter curves where the
symmetry is further enhanced. In the spectral cover picture the symmetry enhancement of each
representation can be described by the appropriate element of the SU(4), Cartan subalgebra
which is parametrized by four weights ; satisfying 3+, t; = 0. The latter are associated with the
roots of a fourth degree polynomial related to the SU(4), spectral cover. The coefficients of this
polynomial equation convey information related to the geometric properties of the fibred man-
ifold to the effective theory. Usually, there are non-trivial monodromies [55] identifying roots
of the fourth degree polynomial equation associated with SU(4) . In the present case the iden-
tification of matter curves occurs through a discrete group which is a subgroup of the maximal
discrete (Weyl) group Sq of SU(4),.

To proceed, first we identify the weights of matter field representations. At the SO(10) level, the
16 transforms in 4 € SU(4), and 10 in 6 € SU(4), so we make the following identifications In
principle, there are four matter curves to accommodate 16 + 16 representations and six for the
10’s of SO(10). We will focus on the phenomenologically viable case of the minimal Z, mon-
odromy. This choice implies rank-one mass matrices where only the third family of quarks are
present at tree-level ensuring a heavy top-quark mass in accordance with the experiments. Thus,
implementing the Z; monodromy by imposing the identification of the two weights t; < t,, the

matter curves of (3.1.1) reduce to

Information regarding the geometric properties of the matter curves and the representations ac-
commodated on them can be extracted from the polynomial equation for the SU (4) spectral cover.

This equation is

4
Z brs* ™ = bys* + bys® + bys? + bys® + by = 0 . (3.1.16)
k=0
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The coefficients by are sections of [b;] = n — kc; while we have defined = 5¢; — t with ¢; (—t)
being the 1% Chern class of the tangent (normal) bundle to the GUT ‘surface’. Under the assumed

Z, monodromy the spectral cover equation is factorized as follows

Cy = (ay + azs + ass?) (ag + ass) (ag + ays)
= aya4a¢ + (a1asag + arasas + a1aqaz)s (3.1.17)

+ (a1asa; + azasag + asasae)s® + (asasae + azasa;)s® + asasa;s* .
Comparing this to (3.1.16) we extract equations of the form by = bi(a;)

b4 = d10d4d¢

b3 = aiasag + azaqdae + ajasay

by, = ajasa; + asasag + asasag (3.1.18)
bl = asasde + asaqay + asasaz

by = asasay,

and use them to derive the relations for the homologies [a;] of the coefficients a;. There are five

equations relating by’s with products of a; coefficients and all five of them can be cast in the form
n—keci=[al+[am] + [a,], where k+[+m+n=15, (3.1.19)

with k = 0,1, 2,3,4 and [, m, n take the values 1, 2, ..., 7. For example, the term a3a4a6s% in (3.1.17)
gives [as] + [a4] + [as] +2[s] = (5 — 2¢1) — 2¢1 = ¢1 — t and analogously for the other terms. The
system (3.1.19) consists of five linear equations involving products of the coefficients a; with yet
unspecified homologies [a;] which must be determined in terms of the known [b]. Since there
are five linear equations with seven unknowns we can express [g;] in terms of two arbitrary

parameters defined as follows:
xs = laslxr=larl, x=xs+x7-
Then, we find that
[ail =n—(B—i)er— x, i=123; [as] = [as] +c1 = x — )75 [a7] = [ag] +c1= x7.
Note that because of the vanishing of the coeflicient b; = 0, we also need to solve the constraint

bi(a;) = 0. It can be readily seen that a possible solution is achieved by defining a new section k
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Matter | t; charges | Section Homology | U(1),
16 I ax n—-2ca—x | M-P
16 ts as —c1+ )5 Ps
16 ty as —C1+ X7 Py
10 1+ 13 ay —Kasas |n—2c0—x | M—P
10 L+, a;—Kasdg | n—2c1—x | M—P
10 24 asag +asa; | —c1+y P
10 I3+ 14 asae +agsa; | —c1+x p

Table 3.1: Properties of SO(10) representations in the Z, monodromy.

with [x] = n — 2y such that

as = Kasa;, as; = —k(asas + asay) . (3.1.20)
Using the above topological data we can now specify the flux restrictions on the matter curves
and determine the multiplicities of the zero mode spectrum and other properties of the effective
field theory model.

From the first of equations (3.1.18), the condition by = 0 becomes ajasas = 0, which defines three
16’s localized at

a1 =0, a4=0, ag=0.

Similarly, the equation b%(a;) = 0 determines the topological properties and the multiplicity of
10’s. Substituting (3.1.20) into b3, we obtain

(asag + agaz) (a1 — kagag) = 0.

Knowing the homologies of the individual a;’s we can compute those of the various matter curves.
The results are shown in the fifth column of Table 3.1 where for convenience homologies are
parametrized with respect to the free parameters ys, y7, x = x5 + x7-

As already noted, the SO(10) — SU(5) X U(1),, breaking is achieved by turning on a U(1),, flux.

At the same time this flux will have implications on the gauge couplings unification ! and the

IFor such effects see for example [190; 191; 192].
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zero-mode multiplicities of the spectrum on the various matter curves. To quantify these effects
we introduce the symbol #; for the U(1), flux parameter and consider the flux restrictions on

the matter curves
P=F-(yx—c); Pu=F1-(yn—c1); n=57 M=F-(n=3¢1); C==F1-¢c1. (3.1.21)

In this way we obtain the results shown in the last column of Table 3.1. We should mention that
if we wish to protect the U(1), boson from receiving a Green-Schwarz (GS) mass we need to
impose

F1-n=0&F-¢c1=0,

which automatically imply M = C = 0. In this case, the sum P = Ps + P; stands for the to-
tal flux permeating matter curves while one can observe form Table 3.1 that the flux vanishes
independently on the %14 and ¥, matter curves (Table 3.2).

Assuming that M is the number of 10, ,, € SO(10), after the SO(10) breaking we obtain the
multiplicities for flipped representations:

10t1: Ml 10t3, M3 1Ot4’ M4
16, =15,, My+P , 16,=145,, M3y —Ps , 16,=15,, My—DP; (3.1.22)
1t13 Ml -P 1t3: M3+P5 1t4s M4+P7
(1) 2 (2) 1
5 M 55, M
0= 370 10p= g (3.1.23)
Sty Mig+P Sprtp Myg =P
M, M; M, P Ps P, M, Mz,
3 1 -1 0 1 -1 1 0
Table 3.2: Model 1
104, : 3% (Q1,df,v5), 104 :1x (H), 10, : —1 X (H)
5n 13X (uf, L), 1p 02X (EY), 1;:—2X (EY), 1y :3x €
Sterts 2 1X (R), 5.9, : 1% (h), (3.1.24)

101



where Mjo,, Ms, stand for the numbers of 10 € SU(5) and 5 € SU(5) representations (a negative
value corresponds to the conjugate representation). Ms,; denote the multiplicities of the singlet

fields. In fact, as for any other representation, this means that
Mij = #14-y; — #1¢,, (3.1.25)

thus, if M;; > 0 then there is an excess of M;; singlets Lyt = 0;; and vice versa.

3.1.2 Low ENERGY SUPERPOTENTIAL

We will construct a model with all three families residing on the same matter curve. Later on, we
will explain how in this case the masses to lighter families can be generated by non-commutative
fluxes [193] or non perturbative effects [48; 194].

Taking into account the transformation properties of the various SU(5) x U(1), representations
presented in the previous section, we can readily write down the superpotential of the model. Re-
garding the field content transforming non-trivially under SU(5) XU (1), we make the following

identifications

10t1 - Fi, 5t1 - ﬁs 1t1 - ec‘s 1t

10,, — H, 10_

— E;, 1, — E;, (3.1.26)

3

b = H, 5.9, —h 5,44, > h. (3.1.27)

Here the indices i, j run over the number of families, i.e., i, j = 1,2,3. All the representations
emerging from the first matter curve labeled with ¢, share the same symbols as those of the field
theory version of flipped SU(5) of the previous section. The two extra pairs with the quantum

numbers of the right-handed electron and its complex conjugate are denoted with E°, E°.

Regarding the singlets 0,4, p,q = 1,2, 3, 4, taking into account the Z, monodromy t;t, we intro-
duce the following naming:

912 = 921 =S, 913 =X 031 = )Z, 914 — ¢, 941 = l/;, 934 — é‘(, 943 — g_ . (3128)

The new symbols assigned to the SU(5) massless spectrum of the flipped model are collected in

Table 3.3. A standard matter parity has also been assumed for all fields.
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Matter Matter

Fields Symbol Parity || Fields Parity

10—, F; - X + M-P
53 fi - ¥ + Ps

15 e — 14 + Py

1o s - ¥ + M-P
15 E¢ - { + P

15 E¢, —~ 4 + P

5 h + H + P

5_, h + H + p

Table 3.3: The SU(5) x U(1), representations with their R-parity assignment. Their multiplicities are
counted by the integers M, P, Ps 7 in the last column.

Note that due to t; ¢, identification after the monodromy action, both types of singlets, 01, and 8,1,
are identified with the same one denoted with s;, with a multiplicity j = 1,2,..., n,; determined
by (3.1.25). For M;; = 0 there is an equal number of 0;, and 0, fields and large mass terms of
the form M, s;s; for all s; are normally expected. However, for M;; # 0 some singlets are not
expected to receive tree-level masses. Such ‘sterile’ singlets s;, (denoted collectively with s in the
following) will play a significant role in relation to neutrino sector. Clearly, in addition to this,
several other identifications will take place among the various flipped representations and the
Yukawa couplings. As an example, implementing the Z; monodromy and the above definitions,

the following gauge invariant terms are rewritten as

_ 4 _ -
104,54,5,41, —> 104,51, 54,41, — Fifih (3.1.29)
Z _
10_;,10;, 091045 —> 10_;,10;,0,04 — HF;sy) . (3.1.30)

With this notation the superpotential terms are written in the familiar field theory notation as

follows:

W = XiFifih+ ASFiFh+ Xe fih + kiHF;s (3.1.31)

+ aij_fne]q ‘/; + ﬂmnE_ﬁnEfl Z + YnjE;ﬁ'h)( . (3.1.32)
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The first three terms provide Dirac masses to the charged fermions and the neutrinos. It can be
observed that the up-quark Yukawa coupling (cc Ffh) appears at tree-level, as well as the bottom
and charged lepton Yukawa couplings. Because in this construction U(1)y fluxes are not turned
on, there is no splitting of the SU(5) representations and thus, their corresponding content of the
three generations resides on the same matter curve. Using the geometric structure of the theory
it is possible to generate the fermion mass hierarchies and the Kobayashi-Maskawa mixing. Here
we give a brief account of the mechanism, while the details are described in a considerable amount
of work devoted to this issue [47; 49; 195; 196; 197; 198].

We first recall that chiral matter fields reside on matter-curves at the intersections of the GUT
surface with other 7-branes, while the corresponding wavefunctions, dubbed here ¥;, can be
determined by solving the appropriate equations [196] where it is found that they have a gaussian
profile along the directions transverse to the matter-curve. The tree-level superpotential terms of
matter fields are formed at triple intersections and each Yukawa coupling coefficient is determined

by integrating over the overlapping wavefuctions
/1ij oc / \I’i‘ijbHdzl ANdZi Ndzy ANdZs
M

where @ is the wavefucntion of the Higgs field. Detailed computations of the Yukawa couplings
with matter curves supporting the three generations, have shown that hierarchical Yukawa matri-
ces -reminiscent of the Froggatt-Nielsen mechanism- are naturally obtained [47; 49; 195; 197; 198]

with eigenmasses and mixing in agreement with the experimental values.

Returning to the superpotential terms (3.1.32), when the Higgs fields H and the singlet i acquire
non-vanishing VEVs, the last term of the first line in particular, generates a mass term coupling
the right-handed neutrino with the singlet field s 2 :

Ki<ITI><l/;>FiS = vasvcs s

where M5 = k; (H) (). Bearing in mind that the top Yukawa coupling also implies a 3 X 3 Dirac

mass for the neutrino m,, = /11?‘].(}_1), and taking into account a mass term M;ss allowed by the

’In order to simplify the notation, occasionally the powers of 1/M", (where My, is of the order of the string
scale) in the non-renormalizable terms will be omitted. Hence we will write ¢ instead of /My, and so on.

104



X X 4 v ¢ ¢
5.6 %101 | 7.7x 10 | 2.2x 107 | 89.3x10% | 7.8 x 10* | 4.4 x 10%°

Table 3.4: Masses in GeV scale. M, = Mgyt = 1.4 X 10'® GeV.

symmetries of the model, the following neutrino mass matrix emerges

: (3.1.33)

0 vas Ms

whereas additional non-renormalizable terms are also possible. The low energy implications
on various lepton flavor and lepton number violating processes will be analysed in section 6.

Furthermore, the following terms are also consistent with the symmetries of the model:
W o Ay (¢ +HH x) hh+ AgHARE + AgHHR( + E207) . (3.1.34)

When the various singlets acquire non-zero VEVs the following fields receive masses. The term
proportional to A, contains a non-renormalizable term proportional to yi and a higher order
one generated by the VEVs of Higges HH. The terms proportional to Az, Ai must provide heavy
masses to the extra color triplet pairs

AHUTI)A(/IL) D%Dh + /1H<H> (

str

@
M? M

str str

) DDy .

Since the magnitude of () is constrained from the size of the y term, large mass for the second
triplet pair requires a large VEV for (/). The solution of the flatness conditions in the appendix
show that this is possible ®. According to the solution for flatness conditions problem obtained in

the appendix, the useful singlets , 1/, y acquire the desirable VEVs shown at Table 3.4, generating

this way an acceptable p-term for the Standard Model Higgs fields.

Continuing with the color triplet fields, we now collect all mass terms derived from non-renormalizable

contributions to the superpotential. They generate a 2X2 mass matrix which is shown in Table 3.5.

30ne might think that it would be possible to eliminate the term yhh while keeping the HHh and HHh{ y terms,
by choosing appropriate Z, parity assignments for y and the other fields. It can be easily shown, however, that there
is no such Z, assignment and possibly generalized Zy or more involved symmetries are required. Such discrete
symmetries are available either from the spectral cover [199], or from the torsion part of the Mordell-Weil group.
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Mp | D D¢,
¢2§2 2

D <H>( ) (HA) (2

" str2 M;ltr Msgtr

D | HA(E) o

Table 3.5: The mass matrix for the down-type colour triplets.

The Higgs color triplets mediate baryon decay processes through dimension-four, and dimension-

five operators, thus their mass scale is of crucial importance. Their eigenmasses are

1//252 X = ¢

mpe = (H)(M2 Z2) cos?(0) - <HH>(M_3) sin(20) + (H) t sin®(6)
L X P8 G
mpe = (H)M cos“(0) + (HH)(M ) sin(260) + (H)(M2 ) sin“(6) ,

where the mixing angle 0 is determined by

2(H) {x*)Mstr

tan(20) = =
OOME, + (Y202

(3.1.35)

For singlets VEVs of the order 10~ Mgy, the triplets acquire heavy masses in the range 10'4-10%°
GeV, (0 ~ %), protecting this way the proton from fast decays. For completeness, we summarize

the possible proton decay processes in the next section.

3.1.3 PROTON DECAY AND NEUTRINO SECTOR

Having determined the masses of the color triplet fields D, D, we are now able to examine possi-
ble bounds on the parameter space from proton decay processes. After the spontaneous breaking
of the flipped SU(5) gauge group, the resulting MSSM Yukawa Lagrangian contains B and L vio-
lating operators giving rise to proton decay channels[200] such as p — (7% K°)e*. Focusing our
attention on the dangerous dimension five operators, in particular, the main contribution comes
from the two relevant couplings F;F;h, F;f;h in the superpotential (3.1.32). Also, it is important
to mention that color triplets can contribute through chirality flipping (LLLL and RRRR) opera-
tors and chirality non-flipping (LLRR) ones. Following [201; 202; 203], these operators could be
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expressed in the mass eigenstate basis:

104, : (Q, VP, Uyev©), Q = (u, VPd)
5, : (u,UL), L= (Upmnsv,e)
1, : (Uge®) . (3.1.36)

Therefore, the color triplets couplings to ordinary MSSM matter fields are expressed as

A Qv AV oDy,

2 ut (U A))ef D,

L L(UA9Y) QDY

A ut(AQV)dDe, (3.1.37)

where V' is the Cabbibo-Kobayashi-Maskawa (CKM) matrix with the corresponding phases and
Uy is the leptonic part of the PMNS-matrix Upyns = U; A plus the CP-phases P = diag(e?).
The dominant effects on proton decay originate from LLRR channels, where after integrating out
the Higgs triplets (recall that in this diagram chirality flipped dressing with a higgsino is required),
are discussed below. These operators, also, should respect the SU(4), charge conservation, so
for each operator the appropriate singlet fields must be introduced. Since the masses of these
singlets are substantially lower that the string scale, further suppression of the anticipated baryon

violating operators is expected. The relevant operators take the form

10,104,105, 05,04 02,0 20) + (7OOM
5, t; 1Vt 10 tl( 31241 + 31343)_)510( 9] <4X§> str(QinQkLm)
MStV Mstr Mstr Mstr (3 1 38)
1041554, 1;, 05,04, 62,0 P20) + (70 YM o
, 1191 tl( 31241 + 31343) _)52<)( 0 <4)(§> Str(dicujuliercn’
Mt Mg, Mstr Mg,
where J; ; are
h eyt h c
5~ — B[y @yh @y, 5~ —T [N a@I)] . (3139)
mequg mD;‘{mD—;{

Given the scale difference between the bidoublet (h) and the triplet Mp, . these operators are
highly suppressed. The novelty of F-theory model building constructions compared to GUT-
model building [202; 203], is that the t;-charge conservation implies additional suppression. Re-
garding the chirality flipping diagrams, as it is pointed out in [202], they are severely constrained
in the flipped SU (5) model, as opposed to their behavior in the standard SU(5) [204].
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We investigate now the implications of the various dimension-6 operators. In this case, baryon
violating decays are mediated by both SU(5) vector gauge fields and color Higgs triplets. The cor-
responding diagrams differ from dimension five operators, since chirality flipping is not needed
(h)
M

in this case, so the extra suppression factor 37~ is absent. From the low energy superpoten-

tial (3.1.32), the relevant to proton decay couplings are:
ASEfih+ A FE R + 25 fih ) (3.1.40)

whereas, the effective operators corresponding to dimension-6 operators are:

105107 5%, 101057 17.

The gauge interactions inducing the dimension six operators can be summarized as:

L ~gs (e,-jchiUL"‘Lj + € OTIXPVP A + eaﬂvTCX“Qﬁ + h.c.) , (3.1.41)
and
L ~ cég’;g’ (uj “d* (ugem + dkvm)) + Cg’;’ﬂ" (ui(vp*dj) + (V*Pdi)uj)uzcej;f . (3.1.42)

The coefficients C;g;;" 5 are given by [202; 203]

ik :((UL)kaij. N (VU(Q’V))U(ULA,(C,Q”’V)))

(6)a M? m2
G D;;I

. V*PAAIV),, (UT A,
ijkm —(( i (U )’), (3.1.43)

6)f 2
OF] o
where Mg is the mass of the gauge boson and the Yukawa couplings A are the diagonal matrices. It
is important to emphasize that the flipped SU(5) gauge bosons do not couple to the right-handed
leptons, in contrast to the standard SU(5). The final state is different in these two cases and their
experimental implication makes the flipped version much more phenomenologically attainable

(see also [201]). As an illustrative example, we present the charged lepton decay channels p —
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(KO, no)lz’e Pt First of all the mixing factors, for the two Wilson coefficients stated above, are:

p— 7l (UD)uVi(ef, ef)
p— KL (UD)aVi (e, e®), (3.1.44)

where the index i denotes the generation of the lepton involved in the proton decay. The decay

rates can be computed as:

2 +
Lyer = (UL 11 V(6% €0) I (g, my) ME(, e+)[A2( LWy, gy Ay, ]
D, DC

2
fye = IOV ) K e, m M) 4 2 P e
Dy

G D5,

(3.1.45)

where A,, Ag are the renormalization factors obtained from the RGE equations (in one-loop level)
for the Wilson coeflicients contributing to the proton decay processes [201; 202; 203]. Since there
are some additional states in the low energy spectrum (namely the vector-like singlets E€), we do
not expect a significant deviation for the gauge coupling unification regarding the supersymmetry
(susy) breaking scale around TeV, as obtained by similar analysis [205]. The rest of the parameters

used in the decay rates are summarized below:

2

m 0
32ﬂ(l - m” )2, M, (e*, 1)) = (2°|(ud)gur |p)+ = (~0.131,-0.118) GeV?,

(]((mi'[’ mp) = &

2
p
—& _i 0 +\\ _ /-0 )
Ko, my) = 222 (1= —2)% MUK, (¢4, 4%) = (| (us)rue ) = (0.103,0.099) GV,
P
2 B 2 myMe+ MM+ B <hu>
o (w) W, g°(d,e") = )2’ g’(s,e") = )2 an(pf) = D (3.1.46)

In figure 3.1 we plot the proton lifetime of the above decay channels, as a function of the triplet
mass mp,, for assuming various values of tan 5, where the horizontal lines represent the current
Super-K [206] and Hyper-K [207] bounds. Regarding the formulas for the proton decay through

the muon’s channel, they can be easily derived if we trade the e* — p*.

109



p —> nle* p —> K%*

Tp(yr) Tp(yr)
— B=tan"'(5)
— -1
1.x10%7 g (10 1.x10%7 — petan)
-X [ Super-K -X i
B=tan"'(10)
1.x10% —— Hyper—K// Super—-K
1.x103! ‘ / ‘ : Mp,(GeV) 1.x103! : / :
1.x10° 1.x10'"" 1.x10" 1.x10" 1.x10° 1.x10" 1.x101
p—>nu’ p—>Kou*
Tp(yr) Tp(yr)
— PB=tan"'(5)
_ -1
1.x10%7 frun 10 1.x10%7 — petan)
X r X r
Super—K )
B=tan"'(10)
1.x 103 | —— Hyper=K 7 Super-K
1.x103! : ‘ / ‘ : Mp,(GeV) 1.x103! : / :
1.x10° 1.x10'"" 1.x10 1.x10% 1.x10° 1.x10"2 1.x105

Figure 3.1: The lifetime of the proton along the two decay channels (p — 7°(e*, u*), p — K°(e*pt)) for
different values of tan(f). It is deduced that the triplets mass is bounded at mpze- = mpe > 10! GeV, Mg =
H

10'® GeV. The asymptotic value of the lifetime is controlled by the masses of the Higgs triplets.

In this section we are going to examine in some detail the mass matrix (3.1.33) involving the
neutrinos and the neutral singlet fields s. Recall that the latter are identified with the singlets
012, 021 and that their number is determined by global dynamics of the model. In the present
semi-local construction we will treat them as a free parameter. The following Yukawa couplings
Ki(H) (Y
= Mi(h), Mg = KilH) ) , (3.1.47)
' Mstr
define the Dirac neutrino mass submatrix and the mixing between the right-handed neutrinos
and the singlet fields. Additional non-renormalizable terms may also generate masses for the

right-handed neutrinos v{ due to a coupling of the form :

2 #\2
Mye = UA<43H> (<l// )+ @5\42)0 ) : (3.1.48)
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Hence, the final structure of the neutrino mass sector is

(3.1.49)

This matrix involves vastly different scales. We assume (also justified by the singlet VEVs) the
hierarchy m,, < M, < Myes, My and implement a double inverse seesaw mechanism to deter-
mine the eigenvalues of the light spectrum. Below we sketch the procedure for obtaining the

normal-order mass hierarchy in the light neutrinos sector. We define:

My, My M,
M,, = , My = , (3.1.50)
0 Mvcs Ms
and
0 M)
M, = . (3.1.51)
MD MR’

Then, implementing the double inverse seesaw formula (see for example [208]) we obtain

— , ~1p4T \-1,,T
my, = = My, (Mye = Myes Mg M,e)) ™ m,,

Myy < (Mye = MyesM; ' M) (3.1.52)

Depending on the scale of the neutral singlets s, there are two basic limits of the previous equation,
which yield different parametric regions for the right-handed neutrinos and the singlets. In the
subsequent sections we would like to implement a leptogenesis scenario, hence it is of crucial
importance to pursue an intermediate mass scale (~ TeV) in the heavy neutrinos sector and to
characterize the properties of the extra singlets. Having this in mind, we proceed with the analysis

of the limiting cases.

a) We assume the hierarchies Mye < M,e; and M < Myes.
In this case, the {22}-entry in the neutrino mass matrix is less significant and the model reduces

to the standard double seesaw:
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-1 —
My, = my, (Mie,)  M;Mim] . (3.1.53)

This scenario accommodates effectively the light neutrino masses, where for example requiring
light neutrinos at sub-eV scale m,, < 0.1 eV and sterile masses around M; ~ 5 keV (m,, ~
100 GeV), the seesaw scale for the right-handed neutrinos is set at M,c; ~ TeV. A much more
interesting and testable prediction from such a case would be the calculation of unitarity violation

1 in the leptonic mixing matrix [209]:

V= (1+n)U, (3.1.54)

where the V matrix diagonalizes the light neutrinos and Uy represents the unitary matrix (identi-
fied with Upyns in the lepton sector), while the 1 matrix can in principle be hermitian. Deviations
from the unitary form of the PMNS mixing matrix are displayed into the rare leptonic decays
(I = Ipy). These decays put stringent bounds on the discrepancies in the mixing matrix, whose
origin can be traced back to the seesaw mechanism. In order the explain how deviations can be
expressed, it is important to recall the GIM mechanism [210] . Flavor changing neutral currents
are induced at loop level in the Standard Model, where their decay rate is parametrized in terms

of the mixing matrix in 1-loop as [211]:

| S VeV (202

F(la — lb}/) k VakVip m%v

r(la - Valbvb) (VVT)aa(VVT)bb ,

10 — 43x + 78x% — 49x> + 4x* + 18x> log(x)

3(x —1)4

F(x) =

, (3.1.55)

where for unitary mixing matrix U the GIM mechanism implies a vanishing contribution for
a # b [212]. In the case of non-unitary mixing matrix, a typical process y — ey results in the
experimental bound (UeyU:e) < 107*,which represents the typical condition needed to be met
by seesaw scenarios. Regarding the computation of the unitary violating effects n, they can be

computed by the neutrino matrix (3.1.51), using the matrix (3.1.54), as:

1 o~ B
= = My (Mp)™ (Mg) ™ Mp . (3.1.56)

Regarding the unitarity violation in the seesaw mechanism analysed here, an estimate of the 5
can be computed after the scales of the seesaw matrix are set. Nevertheless, in both of the two

limits of the seesaw mechanism analyzed here, the 1 parameter is of order:
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2
va

2
VE€s

n~0(—=2)~107° (3.1.57)

i.e., two orders below the present bound.

) My < Myeg << M. In this limit, the two heavy states are

s = My — ML Mo M,
I’?lvc = Mvc . (3158)

Regarding the light neutrino states, depending on the heavy mass hierarchies, we distinguish two
cases. For My < MyesM; 1ML

ves?

-1 _
my = my, (Mle;)  M;Mim]_| (3.1.59)
and for M, > MvcsMs_lMVTCS,
my = —my, Myl m! . (3.1.60)

In the first case, the paradigm (@) is reproduced and in the second one the typical seesaw is
obtained. Here, the new intermediate scale m; could be useful for a dark matter particle, since
the mixing angle between the active and the sterile neutrino is highly suppressed. This angle

could be obtained after integrating out the heavy right-handed neutrino scale M,., leading to:

2m
MVD, (Mye, My < Myeg) & (Mye < MyegM; M), (3.1.61)

VEes

tan(260,5) =

my,, M
tan(20,,) = —2—

—134T
W, M,e > MvcsMg Mv”s . (3162)

The mixing angle of the active-sterile neutrinos are of crucial importance, since this angle char-
acterizes the sterile neutrinos’ properties regarding its nature as a dark matter particle. Astro-
physical data have already opened two “windows” for sterile dark matter particles, the first one
at keV scale with the mixing angle 0,; ~ (107%,107%) and the second one at MeV scale with
0,s ~ (107°,1079).

Next we examine the leptogenesis scenario in the context of the flipped SU(5) model presented in
this work. Our analysis shows that a possible implementation of the leptogenesis scenario can be
realized in the second case (i.e., case ). As is well known, right-handed neutrinos can decay to a

lepton and a Higgs field, producing this way lepton asymmetry. The relevant Yukawa couplings
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are

W = A\Fifih + K/HFE;sy, K| = Ki@ : (3.1.63)

Mstr
Figure 2 shows the relevant vertex of the right-handed neutrino and the standard one-loop graph
contributing to the lepton asymmetry. There are also two wavefucntion self-energy one-loop

correction graphs depicted in figure 3 which also contribute.

Figure 3.2: Standard contributions to the generated lepton asymmetry.

Figure 3.3: Loop diagrams contributions to the generated lepton asymmetry.

The decay rate is given by

r(v¢):i(ﬂ.(AV.)TJm’(K’)T Mye (3.1.64)
i T A y i

where A and k” are the relevant Yukawa couplings in the equation (3.1.32) for the neutrino sector.

The lepton asymmetry factor is summarized to the following contributions:

I (v¢ — Lh) — T,(v¢ — Lh
€ = _Z 10h = ) ~ L) ) (3.1.65)
i

[ (V) ’
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where Iy = I; (v — l_lﬁ) +I5(v§ — l;h) indicates the overall decay rates. The lepton asymmetry

in such a scenario can be written as [213]:

61 = g 2 G + )Gy + )G, (3.1.66)

j#1

~ My,
fite) = VE - (14920, iy = P =

J Ve

(3.1.67)

where the f-factors are the vertex contributions of the Feynman diagrams. Now, the G-factors

contain the Yukawa couplings as:

_ Im| (A5 (A)N?] G,_Im[(/lfj(/livj)*)(rc’('c’)*)]
O b T P VO LR T CO N

(3.1.68)

With regard to the impact of the loop corrections of the second graph in figure 3, the lepton

asymmetry factor can be divided into two cases with respect to the right-handed neutrino mass
M2,
hierarchy x; = M—ch For the case of large hierarchy, x; > 1, the contribution from the loops is

negligible resultinig, in [214]:

3Mye Im[(lfj)*mv(AiVj)T]

@ T len @) ()T + (k)
3MV§
<s—1 (my,.—m,). 3.1.69
1S Tgmm 32 (e~ ) (3.1.69)

From the above, it is obvious that in order to obtain the observed lepton asymmetry €; ~ [1076,107°],
the scale for the right-handed neutrinos should lay close to:
16€;7(m,, )*

Mv" 2

> 10° GeV . (3.1.70)
! 3(mV3 - mvl)

The case x; = 1 describes the enhancement due to the loop diagrams (resonant procedure), where

the asymmetry factor is:

6 = . (3.1.71)

1 [ My Im[(A)*m, (4D Z e In[ (A (4) ) (1 (1)) My
TTx | () O+ D PO+ () Dy Mg — My

1
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It is worth emphasizing that if the first term dominates, fine tuning is required due to the depen-
dence of the mass splitting in the right-handed neutrino sector. Despite the fact that thermal low
scale leptogenesis in most cases requires a tiny mass gap in the heavy states, the second term
(first diagram in figure 3), could accommodate a less constrained mass gap through the suppres-
sion due to the existence of Yukawa couplings A, k¥’ [215; 216; 217]. However, due to the heavy
Higgs H mass included in the loop, this contribution is expected to be suppressed. Simplifying

the contributions of the two terms in the above equation, the results are summarized to:

C

. Vs 2
i €l ~ ———JAm?} ——2— 3.1.72
) el 1670 (my, )2 V7" Mye — My (3.1.72)
M \/— My
. 2 2 2 V2),.712
ii €1l ~ —————=/Ams, ———— X ALK |” . 3.1.73
) | 1| 167T<mVD>2 V31 ]\4-1/g _ Mvg | l]| | | ( )

These couplings are referring not to the first generation, since the lightest of the sterile neutrino’s
coupling is bounded by the thermodynamic condition I'(v{) < H(T = M,¢), where H stands for
the Hubble expansion. The novelty of the F-theory implementation of the leptogenesis scenario is
that fine tuning is not a problem, since the singlets can acquire appropriate VEVs regulating this
way the scale of the produced asymmetry, without the requirement of Am,c — 0. The coupling
k’ is suppressed by the string scale, an effect which is absent in the standard field theory GUT

framework.

3.14 0ffv DECAY AND THE W-BOSON MASS ANOMALY

We have already observed in the analysis of the neutrino mass matrix the involvement of new
neutral states s which act as sterile neutrinos. Furthermore, the Majorana nature of neutrino
states implies violation of lepton number by two units AL = 2. The presence of these ingredients
could potentially provide low energy signals which are worth investigating. Amongst those im-
plications, neutrinoless double beta decay (for a review see [218]) seems a suitable experimental
process, where the presence of additional sterile neutrinos could enhance the decay’s amplitude
and shed some light on the mixing between the active and sterile sectors. Clearly, within the
context of the inverse seesaw mechanism of the present model, the described scenarios of lep-
togenesis, unitarity violation and double beta decay are entangled and the goal of this section is
to extract some bounds for the mass splitting of the right-handed neutrinos and their Majorana
phases.

As can be inferred even a simple extension of the SM with a Majorana mass term could predict

the occurrence of the ff-decay process through a Lagrangian term of the form
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m;
‘£ > ZgFUZY,UPRpﬁ 2YVPL3 (3174)

where the m; represent the masses of the neutrinos and p is the momentum of the virtual particle
4

in the decaying process *.
The neutrinoless double beta decay, 0vf3, in the presence of the light neutrinos is described by

the effective mass:

= |Z 2 m| (3.1.75)

In this model, the summation in the above formula is modified in order to accommodate the

extended neutrino sector [220]:

3+n

Mep = ; Uépzl%lm?’ (3.1.76)
where Uezj stands for the mixing of the electron neutrino with the other states and the decay
width is proportional to Iy,25 ~ me.. Recent experimental constraints put a stringent bound on
the allowed region [219; 221; 222], which is:

|Mee| € [1073,1071] eV . (3.1.77)

It is obvious that for high scale masses of the right-handed neutrinos (m,c > TeV) and interme-
diate scale sterile singlets (m; ~ keV), sizable effects on the 0vff decay could be attributed to
the mass of heavy neutrinos and the mixing of the various sectors. From (3.1.76), there exist two
important limits concerning the mass of the extra neutrinos [220; 223], where the propagator is

modified as:

4 As a matter of fact, this propagator is related to the Nuclear Matrix Element (NME), which is being used to
capture the nucleus dynamics - see for example eq. (3) in [219].
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1 2 m4
hm < pts ——— =5+ +0(=), (3.1.78)
p-—m;y p° p p
3+n
Mee = Z UZm (3.1.79)
i=1
- 21 _ 1, m}
ll) m; > p .T’n?—_—lz"' (F), (3180)
3+n pz
Mee == ) Ulmi— . (3.1.81)
i-1 m;
1 0 0 0 Ce2 0 e sy 0 Cei Se1 O O
c ¢ 0 C12 S12 0 0 1 0 0 —Se1 Ce1l 0 0
U(Ve, Vl) V2, S) = )
0 —s12 c12 0 || —€9%e2 0 cez O 0 0 10
0 0 o0 1 0o 0 0 1 0 0 01

P, (3.1.82)
0 01 0 flo o 1 01|00 cu s

—Ses 0 0 cCes 0 —ss1 0 c¢q1 0 0 —s2 Cs2

We are going to analyze the neutrinoless double beta decay in both of these limits. The case ii,
in particular, represents the seesaw mechanism presented above, but the “light” neutrinos (case
i) could also be interesting for experiments searching low energy sterile neutrinos. In order to
get an insight for the neutrinos sector and reach some representative conclusion, we adopt a tan-
gible strategy and work in a simplified effective scenario. Thus, for the light neutrinos, it would
be reasonable to consider a single neutrino (e.g. the electron neutrino), whilst for the heavier
sector we will assume a case of three neutrinos (two right-handed ones and one sterile). Similar
approach has been considered in previous literature ( for a few representative papers, see for
example relatable examples with 3+1 or 3+2 neutrinos in [220; 224; 225; 226; 227]). In [225], a
similar model was considered, however the present analysis considers three different scales (eV-
keV-TeV) and as stated above it would be ideal to derive a bound for the mass splitting of the
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heavy neutrinos, since this fraction is used in leptogenesis. In addition, we are going to sketch
the production mechanism of the sterile neutrinos, if they were to be identified as a dark matter
particle, through their coupling with the right-handed neutrinos. Consequently, the mixing ma-
trix would be 4 X 4, which can be parameterized as shown in equation (3.1.82). The last matrix in
(3.1.82) represents the Majorana phases ¢ = diag(1, e'?1, e ¢'%s) where ¢ € (0,7) and § is the
Dirac phase (this will not play a crucial role, since we treat light neutrinos as a single state) and
sij» ¢ij» (i,j =e1,2,5), 0 € (0,7%) are the mixing angles between the neutrinos. Now, denoting

with M(rh,, riye, 1iis) the diagonalized neutrino mass matrix the following equation holds:

UM(thy, tivye, ) UT = M, . (3.1.83)

where,

0 0

myp, My My Mg
M, = . (3.1.84)

0 My My My

0 Mls MZs Ms

where M;; denote the elements of the 2 X 2 right-handed neutrino matrix Mc in this exam-
ple. Comparing particular elements of the mass matrix M, with the mass eigenbasis matrix
M (m,, nﬁvic, ;) we can extract some useful bounds. First of all, a few assumptions need to be
taken into account in order to simplify the calculations. Hence, we will assume that the mixing
angles between the active neutrinos v, and the sterile ones viz, vs are small, plus that the masses

of the heavy states are much heavier compared to the light and the sterile states:

0c1, 02, Oes < 1 = cos(0) = 1, sin(0) = 0,

<1. (3.1.85)

Under these assumptions, the sines (se1, Sez, Ses) represent small angles, but we are not going to
change their symbols in the calculations below. Observing the structure of the neutrino mass
matrix M, given in (3.1.84), we compare the two zero entries {11},{13} and the {33} element

M, — p with the corresponding ones of M(r,, riye, 1iis). These yield the following equations

119



M11/1 = (UM(mv, mvl% ms)UT)ll =0, (3'1'86)
M = (UM (1, thye, ) U )13 = 0, (3.1.87)
M3 = (UM (i, thye, ig)U )33 = i . (3.1.88)

For (3.1.86) we obtain:

A

m, _; : . m .

11 v —i(5+2 —is i2A 2 2 —id

M, =—e (0+262) _ 9¢ cslses[(e P21 4 CepZ — rh_)selssl +e ZCSZSeZSSZ] =0,
1

my
(3.1.89)
where we have introduced the definitions
My M My
z=—— A—se’mq521 =~ —; and A¢y = ¢ — ¢ .
mq mi mq
Then,
Sel —i MpCs2Ss2
e . (3.1.90)
Se2 ssl(mlelz fa1 — mZSsz)

Since we have assumed only a single light neutrino, the Dirac phase from this point on is taken
d = 0. In this limit, for small active-sterile angles, we expect the fraction between them to be

positive, which can be translated using the denominator of (3.1.90) to:

A

m
s3> m—;cos(ZAqsgl) . (3.1.91)

It is readily seen, that, the mixing between the left and right-handed neutrinos are fully deter-
mined by the “dark” sector i.e. the right-handed neutrinos and the sterile singlet. Proceeding to

the {33} element, a similar analysis leads to the following bounds:

33 _ ji2gy s 2 o 2 [i2Ady 2 i2¢s 5 2]
M = el + ¢ [0 ¢l ms + e iipst | =

v onis 2 s g T2
A Rl [ R R R I (3.1.92)
my my my

Now, implementing the Cauchy-Schwarz theorem for the {33} element we obtain:
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A AD A2 A N
H 2 | 2 MMs 4 TG 4 MMy 1/2
— <55+ csl( —Cop + —5 S + — sin(26s2) cos(2A¢52)) =
mi my 1 1
ﬁ11 —H rhl
¢ S ———— S < =, (3.1.93)
my — mzssz my

where the last inequality has been derived under the assumptions that i1; > p and ¢ > 0.

Remarkably, using (3.1.91), a very narrow bound can be derived:

iy

A

m
A—l COS(ZA(]SZl) < 3322 <
ma

(3.1.94)

The inequality (3.1.93) which describes the mixing of the sterile sector, can be written equivalently

as: R
m_ L
m m
A < 2 (3.1.95)
$ my 2
= — 3§
my s2

Proceeding as previously the equality (3.1.90) yields:

m Se2C
— > (1 - 22 (3.1.96)
my Ss1Se1

Regarding the Majorana phases from the (3.1.92), the imaginary part of the equation implies:

sin(2¢1) i 5 o

=M 3.1.97
sin(2A¢z1) H for¥s2 ( )

where this equation is valid only for specific regions for ¢ € (0, 7). In figure 4, we plot the
left hand side of equation (3.1.97). In the lower right square the two heavy neutrinos have the
same (negative) CP charge and represent Majorana fermions. In the upper left square, the heave
neutrinos have opposite CP charge and they can form a pseudo-Dirac pair. Considering the case,
where the mass scale p — 0, we expect that lepton number violation is absent and AL = 2

processes are suppressed.
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Figure 3.4: The left hand side of the equation (3.1.97) where we see that that the right-handed neutrinos
can have opposite CP charge (upper left square) or the same (lower right square), which would yield
interesting phenomenological implications. See main text.

The third and last constraint to be imposed is associated with the {13} element. This can be used

to constrain the mixing s.; between the active neutrino and the singlet s. Thus, M3 = 0 yields

i4A¢21 i2A¢21 )

S, Sel —AT‘ATlm + r?zle — 7;126 mys
= = isslcsl = 2 7~ ~ 2 A + O(A_)a (3198)
Se2 Se2 my — csl(ml - mzsszel ¢21) mi

where Amy; = my — iy, while for a controllable calculation we have neglected terms suppressed
by the heavy neutrinos. After the parametrization of the different mixing angles and the phases,
we are in a position to estimate their impact on the neutrinoless double beta decay. Following

the discussion around equations (3.1.78,3.1.80), two distinct regimes can be defined:

. N 2 A 2 A 2 A N 2
i) Mee = My, + Uy + Upiig + Ugiing, 1y << p
N 2 2
_UZ(mVL_I_UelA + 7 +UseA)
Mee = Uep 02 Tz my +my + —-nmy),
e2 e2 e2
2 2
— 5 2 p 2 P 2 A ~ 2
if) Mee = My, — Usy=— — U= + Ui, m; > p
mq ma
2 2 2 2
— 772 My, Uel p p es _a
m (= — 2 -+ 2y (3.1.99)
ee e2 U2 Uz rAn rﬁ 2 S)> ot
e2 e2 "1 2 e2

where in both regimes the amplitude is defined up to an overall factor, but the terms in the

parentheses are in principle responsible for the process. The mixing matrices U2 for small angles
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can be represented by the sines (U3 — s,;) computed before, so from the previous analysis we
know every fraction (see equations (3.1.90,3.1.98) appearing in the formulas. We have neglected
the mixing of the left handed neutrinos, since we have used only the electron neutrino. Conse-

quently, the whole process is parametrized up to an overall factor U2, It is worth noticing that
Uezs — Uezl
o~y

—Aﬁ’lzl + T?A’llei4A¢21 - I’;’lzeiZAdm

= §¢1C . R 3.1.100
simplifying both of the parentheses in equation (3.1.99) as:
m, 21
D) Mee = Ugy (=5 + thy + —5 (g + yiig)) > 0
UeZ e2
W 2 U2 2
ii) Mee = U (—= — P Za P +y1ig)) > 0 (3.1.101)

2 2 V2
UeZ ma UeZ m

The requirement of having positive mass for the m,, leads the quantities in the parentheses to be

bounded as:

~ 2 >
My ~ el /. A mi
1)—2 +my >——2(m1+)’ms) =V <=
e2 e2 s
N 2 2 2 2
m U, R
i) vp 13 S el fj — ) =y > Ap,\ . (3.1.102)
2 2
v, my U m mims

Since we expect a positive fraction (3.1.98) for the mixing angles, we must also have y > 0. Hence
the first case above is incompatible, since the assumptions stated in (3.1.85) imply y < 0. In
the second case a bound for the y variable is extracted, which is going to be used to define the
allowed parametric region for the neutrinoless double beta decay. In order to get an insight for

the leptogenesis scenario regarding the nature of right-handed neutrinos participating in it, we
i

need to check the asymptotic region of the fraction = — (0, 1). In the vanishing mass limit, the

Se1

sy variable reduces to:
e

2
S cos” (A c T m 31w
Set, 508" (A1) 2 S App e (S, U(S ). (3.1.103)
Se2 cos(2A¢a1) cq187, 4" 2 2 4

In this limit, neutrinoless double beta decay scans the Majorana nature of the right-handed neu-

trinos and if baryon asymmetry is explained through leptogenesis, it is expected to happen due
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to the lightest heavy neutrino as in equation (3.1.70). Inversely stated, if two sterile neutrinos are
observed, the mass fraction and their relative CP-charge difference can be used in order to extract

the scale of neutrinoless double beta decay and the scale of possible sterile singlet through the
1y

analysis above. In the degenerate mass limit 1 — 1, some useful conclusions can be extracted

with respect to the mixing of the sterile neutrinos with the two heavy states. In this case the %y

variable is written as

2A - 4A
St Cs1Cs2 (cosz( ¢221) cos ( ¢212)) Ss2 . (3.1.104)
Se2” (cos (2A¢a1) — s2,) (¢, (cos (2A¢a1) s2, — 1) + 1)
As it can be observed in the numerator above, there is a sign flip in the region of A¢y; € (%, %),

where in this region the sterile singlet couples stronger with the second sterile neutrino 6;; > 6;,.
Hence, in this limit if the two sterile neutrinos are observed with A¢,; € (0, Z), the neutrinoless
double beta decay is expected to be suppressed due to the Pseudo-Dirac pair, while in the A¢y; €

(5, ) they represent two Majorana fermions with degenerate mass.

We are going to present the masses of the neutrinos for the singlet VEVs, whose values are shown
in Table (3.4). For these particular VEVs, the neutrinos are computed through the case f) (3.1.60)
of section 6., the leptogenesis through the case ii) (3.1.73) and the neutrinoless double beta decay

is expected at the degenerate mass limit (Table 3.6).

my, (eV) e (GeV) | mg (keV) €1 n 0,5

0.1 43 %10 | 0.55 23%x107° | 2.1x1073 | 4.7x 1074

Table 3.6: Masses computed for the following scales: m,, = 174 GeV, M, = 4.3x10™ GeV, M = 19.1 keV,
Myes = 89.3 X 10° GeV, Am2, = 2.2 X 107* eV?, and the first and second generation of heavy neutrinos at
(1.8x 10,3 10'°) GeV. Regarding the neutrinoless double beta decay, the model probes the blue region

1
of m—; — 0.6.

Also, in the two plots of figure 3.5 a couple of solutions of the equation (3.1.99) are depicted for

various values of U 622 and the effective electron neutrino mass m,,.
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Figure 3.5: The shaded region depicts the allowed parameter space defined by the inequalities
(3.1.94),(3.1.95),(3.1.102) and the curves represent the solutions for the neutrinoless double beta decay
from the equation (3.1.99).

The extra vector-like states appearing in the zero-mode spectrum of the F-theory flipped SU(5)

are a possible source of the g, — 2 enhancement [228; 229]. The relevant couplings are

- ‘el (3.1.105)

. <X¢2>" e _cr C ,C T C ¢ 7 cr
W = Nhh T Y+ A€ fih + amjEnei Y + PranE Ey 4 v Epfihx -
which give rise to the one-loop graph shown in figure 6.
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Figure 3.6: Feynman diagram for the contribution of the vector-like pair in the g, — 2 process
Its contribution to g, —2 is highly dependent on the mass of the additional vector-like lepton-type
charged singlets E°, E°, since the latter participate in the loop. In the model under consideration

their mass is given in terms of the VEV of the singlet 7, i.e., Mz = ({?). It is also worth mention-

ing that, the very same VEV appears in the proton decay process, where the masses of the Higgs
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triplets are assigned a high scale mass due to this singlet. Consequently, low scale supersym-

metry could not be a viable choice, in the case we would like to have a substantial contribution
my(h)

(@ -
can be lowered down to TeV scale and sufficiently explain the g, — 2 discrepancy. Although, due

to Aa, ~ Split susy fits better in such a scenario, where the mass of vector-like singlets

to the mixing of the vector like leptons with the leptonic sector of the model, a mass matrix is

constructed as it is shown in Table 3.7.

M, | E &
M x

L; h
Mstr < >

E ¢ ¥

Table 3.7: Mixing between the vector like leptons and the electrons.

In this case, the resulting mass of the states, which contribute in the above process could in

principle be around TeV scale.

m = j\?x s2(0) - >+§s1n(29)+¢sm )
my = 1 cos?(0) + <h>2+§ n(20) + X Gz gy (3.1.106)

str

For the singlet VEVs mentioned at the previous sections, there are in principle light states af-
ter the mixing between the electrons and the vector-like singlets. Consequently, the heaviest of
these singlets will lay at TeV scale, contributing to the g, — 2 sufficiently to explain the discrep-
ancy. Using the vevs of the model described before, the contribution to the g — 2 anomaly can be

summarized to the following calculation as:

m,(h) 105 x 1073 174 GeV?

ay, ~ ~ ~23%x1071° 3.1.107
oml (89.3 x 103)2GeV? ( )

Recently, the CDFII collaboration [230] using data collected in proton-antiproton collisions at the
Fermilab Tevatron collider, has measured the W-boson mass to be my, = 80,433.5 + 9.4 MeV/c?.
This value is in glaring discrepancy with the SM prediction, and the LEP-Tevatron combination
which is My, = 80,385 + 15 MeV/c?. Since then several SM and MSSM extensions with the in-
clusion of new particles have been proposed to explain theoretically the experimental prediction
of the W-mass. Taking the CDF result at face value, in the following we will show how the

new ingredients in the present flipped SU(5) construction may predict this W-mass enhance-
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ment. We first recall that the neutrino mass matrix formed by the three left- and right-handed
neutrinos, as well as the sterile ones, is diagonalized by a unitary transformation. However, the
mixing matrix diagonalizing the effective 3 X 3 light neutrino mass matrix obtained after the im-
plementation of the inverse seesaw mechanism, need not be unitary. Consequently, this can in
principle lead to a non-unitary leptonic mixing matrix which in section 6 has been parametrized
as V; = (1 + n)Upyns. We will see that such effects can in principle modify the mass of the
W-boson. In the context of the Standard Model, the mass of the W-boson can be inferred by

comparing the muon decay prediction with the Fermi model [231]

M2
M2, (1 W) = Z%em (14 Ap), (3.1.108)

M; - V2Gr

where ., and Gr are the fine structure and Fermi constants respectively, and Ar stands for all
possible radiative corrections [232; 233]. Once Ar is known, the SM prediction of the W-boson
mass is obtained by solving the formula (3.1.108). However, in the present case the non-unitarity
in the PMNS matrix affects drastically the muon decays and consequently the measurement of
the muon lifetime. The precise knowledge of these effects are essential since they determine the
Fermi constant G which is involved in the determination of the W and Z boson masses. Thus,
one might expect possible deviations from the Gr value when measured (G,,) in muon decay. The

non-unitary corrections are connecting them according to [234; 235]:

GF = G,u(l + Hee + Uyy)a (3.1.109)

where 7, 1, are the {11}, {22} elements of the unitarity violation matrix 7. Implementing the

above formula for the Fermi constant, and solving (3.1.108), the mass of the W-boson is given by

M2, = 1 (Mg + \/1 _ Anen(1 = My~ Tee) (1+An)] (3.1.110)
2 VEGM;
Clearly, a possible increment of the W-mass may arise either due to non-unitarity inducing pos-
itive ey, contributions, or from possible suppression of the radiative corrections Ar. Notice
that Ar can also receive additional corrections due to the pair E° + E° appearing in the flipped
SU(5) spectrum. Their couplings in the superpotential induce a Wilson coefficient (Cp,);; =
—/11»/1;? / (4m%) which gives a sufficient contribution to the W-mass for Mg ~ 5 GeV [236; 237]. Us-
ing the bounds for the mixing angles and the 1,4 elements from Table IV of [234], we can plot the
mass of the W-boson in terms of the non-unitary effects, where it is clearly seen that for small de-

viations from the unitary form of the leptonic mixing matrix can explain the experimental result.
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From the diagonalization of the neutrino matrix (3.1.49), we expect two forms for the unitarity

violation, corresponding to the two cases mentioned there. These two cases are

2 2 2 2

1my 1my (M7 + M)
a) n=0(= , = 0(= . 3.1.111
V1=0Ge ) P0G Ge T (31.111)

Since we are interested in the second case, it is obvious that the scale M;, which is responsible
for the lepton number violation will play a crucial role. The specific form (texture) of the fermion
mass matrices, of course, can in principle produce different -model dependent- scenarios of the
unitarity violation. Despite this, we can derive the scale of the n matrix and extract some pre-
liminary insights for the experimental signal. In figure 7, we plot the mass of the W-boson for
different values of the lepton number violating scale M;. As it is pointed out in [235], the insertion
of right-handed neutrinos in the model produces a positive definite # matrix which is a necessary
condition to explain the CDF-measurement of the W-boson mass. In fact a small lepton num-
ber violation can accommodate the W-mass discrepancy. Notably, at the same time, the sterile
states can explain the Cabibbo angle anomaly [238] through the mixing term ;HF;s 1/, although,
the Cabibbo angle anomaly is not completely related to neutrinos, but to the inert singlet states

involved in the seesaw mechanism.
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Figure 3.7: Plot of case ) 1 (3.1.111) (black dots under the assumption n.e ~ 1,,), using m,,, = 174 GeV,
Mye = 4.3 x 10! GeV, My = 19.1 keV, M,c; = 89.3 X 10° GeV. Blue shaded region is the previous W-boson
mass and green is the current measurement.

It is readily seen from the above that unitarity violation plays a crucial role in the mass of the
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W-boson. The main characteristic of the inverse seesaw mechanism ° is the small violation in
the lepton number by the scale M;. Large deviations from the PMNS-matrix can occur in the case
where the sterile neutrinos lay at an intermediate scale (keV — MeV), since there is significant
mixing between those states with the active neutrinos. In conclusion, one could conjecture that
the neutrino masses, or more specifically the violation in the lepton number, play a significant role
in the LFV physics, where sterile states allow this type of processes to evade the GIM suppression
of SM. In conclusion, under the above mentioned circumstances, the rich structure of the F-theory

flipped SU(5) may suggest a viable interpretation of the W-mass increment .

As for the oblique parameters, which parameterize the effects of new physics in the electroweak
observables, they have a direct implication on the recently observed mass shift of the W boson.
Following the work of [241] with respect to the mass of W boson and [242] for the recently
obtained fit on the oblique parameters, we could test our model and the unitary violation as a

proposed solution.

U(cty =iy 2
Mnew a (— 252 - ZCWT + S) AGs?
W_o—_ R -+, (3.1.112)
My 4 (cw - sw) 2 (CW - Sw)

2

where sa, =1- ]]\\44—2; and the AG is the modification of the Fermi constant Gr = G,(1+AG). So, in
our scenario, AG can be identified with the unitarity violation terms AG = e + 1. In the two
figures below, we plot equation (3.1.112) for various values of the S, T parameters with a fixed
U. So, after inserting AG = 2 X 2.1 X 1073 and the masses of the W, Z bosons, the solutions are

depicted below (Fig. 3.8).

S € (=0.04,0.16), T € (—0.01,0.23), U € (0.04, 0.22)
S € (0.06,0.22), T € (0.2,0.32),U = 0 (3.1.113)

>We note that another solution with Type III seesaw with the presence of an SU(2) Higgs triplet has been also
suggested [239].
%In the context of F-theory, a different explanation with D3 branes has been suggested in [240].
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Figure 3.8: Left: Solution for S,T parameters with fixed parameter U, where the blue shaded region covers
the bounds, as obtained by fit taking into account the new mass of W boson. Right: No solutions found
when U is vanishing.

3.1.5 GAUGE COUPLING UNIFICATION

For the RGE’s analysis of our model, we consider a low energy spectrum of the MSSM model
accompanied by the presence of the vector-like singlets E°. Starting with the beta function con-
cerning the MSSM and the flipped SU(5) particle content (for beta functions of flipped see for

example [243; 244]), we summarize the formulas below:

b 3 3n+1 N
=—|—+-n n
P75\ "2 H] T

1
b2=—6+2n+5nH+nU

bs = -9+ 2n+n,,

3n n
bs="2+=>42n-15
2 2
n n
by =+ 42n (3.1.114)
X 4 2

where n is the number of generations and n, is the number of vector-like families. We can easily
deduce that for n = 3, n, = 0 we get the usual beta functions of the MSSM:

{b1,bs, b3} = {1—3, 1,-3} (3.1.115)
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After inserting a vector-like pair in the low energy spectrum, we can plot the running of the
coupling constants at 1-loop level and we can, eventually, spot the unification point. After the
92

insertion of the parameter a = -, we get
T

a7 (Q) = a7 (Q) = 7= log( ), 3.1.116)
0

where the effect of a vector-like singlet family in the model in the beta functions is AbMM =
{1,1,1}. There are two energy regions: from 0 < y < My, we run the beta functions of the SM,
from Mz < p < Mge we run the MSSM plus the vector like particles and finally we run the flipped
SU(5) till a unification point. Plotting the running parameters of the model, we can see in the

following plot that the unification scale is about MgyT ~ 107 GeV.

log(Q)

The unification scale is at My = 10'”GeV, where the couplings constants are

a; (Mz) =59.38, ;' (Myz) = 29.74, a3 (Mz) = 8.44, af' = 22.5 (3.1.117)

As for the Yukawa couplings, we only consider the third generation (where the for the top, bottom
quarks and the 7 lepton are denoted as hy, hy, h; respectively) and the mixing effects of the abelian
U(1) symmetries ,during the evolution down to the low energy values, are being neglected. For
the computation, the Mathematica code SARAH-4.15.0 [245] was used and the following plot
depicts with thick lines the running of the spectrum with the vector-like family, where the dashed
line contains the same information without the additional particles. During the computation, we

have taken into account that the largest correction due to loops of sparticles is affecting the
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bottom Yukawa coupling as:

gs wmgtanf  hi pAtanp

ohy, = + , 3.1.118
b7 12n2 m; 3212 m? ( )
where m;, = 24 ;mbz, my = m“;rmtz are the average masses of the top and bottom squark. Con-

sequently, we could safely extract the conclusion that even at high energies, Yukawa couplings

stay under control at a perturbative regime (Fig. 3.9).

— h{z]
hy[Z]
i h:2]
S hilz]
i hy[2]
02 Msysy h[Z]
7 6 8 10 12 14 16 99
Figure 3.9: Yukawa evolution for the following parameters SUSY parameters my; = 2 TeV,u =

0.5 TeV,tan f = 58, m; = 3 TeV, hi(0) = 0.94,hy(0) = 0.8, h,(0) = 0.48. The dashed lines are the Yukawa
without the vector like families where they deviate for tan § > 50 as expected. The thick lines present the
Yukawa couplings evolution with the insertion of a vector like family.

3.2 MobDULAR FAMILY SYMMETRY FROM THE BOTTOM-UP

3.2.1 GEOMETRIC ORIGIN OF DISCRETE FINITE MODULAR SYMMETRIES

We now discuss how the finite modular symmetry can arise in F-Theory constructions. We first
revisit Type IIB (the perturbative limit of F-Theory) vacua with discrete finite modular symmetry
and explicitly obtain an S, invariant vacuum. We then turn to F-Theory, which inherits the S-
duality from Type IIB, to identify the axio-dilaton modular symmetry, which endows the matter
Yukawa couplings with modular symmetry transformation properties. Finally, we present our
conjecture that F-Theory matter curves can carry a geometric modular symmetry, which will
manifest itself in the Yukawa couplings, endowing F-Theory fluxed GUTs with a discrete modular
family symmetry.

We now discuss the origins of finite modular symmetries in Type IIB string theory. To this effect,

we will study, expanding on [189] Type IIB orientifold compactifications, where one can stabilise
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the moduli in a vacuum that is invariant to finite modular symmetries. The starting point is Type
IIB, which exhibits an explicit modular invariance for the axio-dilaton irrespective of the details
of the compact space. Upon choosing a factorisable toroidal orientifold for the compactification,
T/Zy = (T? X T} x T32) /Zy the theory will also manifest the modular invariance associated
with the complex structure moduli of each of the tori, in other words we will have SL(2,Z), ®
(®7_,SL(2,Z);) before the complex structure moduli are stabilised by Type IIB flux configurations.
Once the fluxes acquire nonvanishing VEVs, we will show that the supersymmetry preserving
vacuum transforms non-trivially under a congruence subgroup of order N, T'(N), of the original
modular symmetries, therefore breaking the preserved symmetry to I'y. As mentioned, we start
with the Type IIB string theory, which is characterised by the strong-weak coupling duality (S-
duality for short) which relates the theory with string coupling g; to that with g;'. S-duality is
a non-perturbative symmetry based on the SL(2,Z) modular group and is realised by the axio-

dilaton modulus 7 whose imaginary component is identified with the inverse string coupling

1
T=Co+ie? =Co+i—=Cy+is, (3.2.1)

s

where ¢ is the dilaton, and for convenience the definition s = gs‘1 has been introduced. The
four-dimensional (4d) effective action of the string moduli is described by the Kahler potential
and the superpotential, both dependent on the complex structure moduli. The Kahler potential

is parametrised in terms of the moduli and the axio-dilaton

K=-In(-i(tr-17)) —2In(V) - 2In (e_%¢ / JAN]T /\]) , (3.2.2)

where ¢ is the dilaton, 7 is the axio-dilaton defined in (3.2.1), V is the volume of the compactified
space, and J its Kahler form dJ = 0 which depends on the complex coordinates z' and g;; the

Kéahler metric, and in its most general form is given by
J= ig,-jdzi AdZ .
The superpotential for the moduli fields is given by the standard Gukov-Vafa-Witten formula

W:/@AQ (3.2.3)
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where the three form flux Gs and the holomorphic three form Q are given by:

G3 = F3 - TH3 (324)
Q= le A de AN d23 . (325)

Finally, for the toroidal case we define z; = x; + 7;y; so that,
dz; = dx; + Tidyi ,

where z; corresponds to the three complex coordinates of the compactified space, and 7' are
the complex structure moduli of the orientifold. In general, the complex structure moduli form
a matrix, 7/, parameterising the 3-cycles of the compactification, but here we take it to be a

diagonal matrix, as we will be considering factorisable toroidal orientifolds.

Let now the basis for 3-forms be (a;, /)
1 2 3 1 ! m i
ag = dx* Adx® Adx’, ocl-:éeilmdx Adx™ A dy
0 1 2 3 i 1 I m i
B’ =dy ANdy" Ady’, B = —Eeilmdy Ady™ Adx', (3.2.6)
where we notice that there is no sum in i = 1, 2, 3, and we have
/ a A =8, (3.2.7)

where the integral is over the compact space. The 3-form field strengths are expanded in terms

of the basis as

Fs = mlay + m'a; + nif* + nof°

Hs = plag + p'as + qif' + qoff° (3.2.8)

where m, n, p, and q are quantised flux components, and are therefore integer valued. In fact, in
the absence of exotic O3-planes, these are all even integers. The 3-form fluxes induce a D3-brane

charge which has to fulfill a tadpole cancellation condition
1 1
Nps3 + ENﬂux = ZNO3 ) (3.2.9)
where Nps is the number of D3-branes, Np; the number of O3-planes to be set by the details of
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the compactified space, and

Njux = / Hs A F3, (3.2.10)

which can be explicitly evaluated to obtain

; . 1
pOflo - CIomO + Z(plni — qiml) =2 (ZNO3 - ND3) . (3_2.11)
i

The most general form of the superpotential for the moduli fields in the basis presented above is
then

W = (m® — tp°) (1) — (m' — op") (Wsi7;) — (ni — 7q3)7" — (no — 7q0)
= T1T3T2(m0 - por) - T3T2(m1 —plr) - 7173(m2 - pZT) - T1T2(m3 —pST)—

—11(ny —1q1) — 12(n2 — 1q2) — 13(n3 — 793) — (N — 7q0) - (3.2.12)

The non-vanishing flux components will fix the moduli along flat directions, where the potential
is minimised, D,W = D, W = 0, without breaking supersymmetry. Along these flat directions,
the invariance of the fluxes under the modular symmetries of the axio-dilaton, 7, and the complex
structure moduli, 7;, will lead to vacua which are invariant under a finite modular subgroup. To

see this, we focus on factorisable toroidal orientifold compactification T%/Z, = (le X T22 X T32) |Zs.

The Type IIB action and the superpotential, (3.2.3), are invariant under the axio-dilaton modu-
lar symmetry, SL(2,Z),, according to which the axio-dilaton and the 3-forms F3, H; transform
as [246]

, ar+b
=R = 3.2.13
’ @ ct+d ( )

Fé a b F3
= , ReSL(2,Z), . (3.2.14)

Hé c d H3

Furthermore, since the compactified space is a factorised torus, we can identity three complex
moduli 7;, where each has its own modular symmetry for vanishing fluxes. Each torus T;, is
defined as the quotient of the complex plane C/A;, where A, is a lattice spanned by the vectors e; =
(ey;» ex;)] = (1;,1)T. One can further define ¢; = (y;, x;) where the coordinates x; € [0, 1), ye [0, 1]
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and z; are introduced according to [247]

€y
zZ; = fiTe,- = (y;, x1) (3.2.15)
ex,
and for (ey,, ex,)] = (1;,1)T in particular,
Ti
zi = (yi, x1) = X + 1Yz - (3.2.16)
1
Under modular symmetry SL(2,Z)
ai b
R, = , R € SL(Z, Z) (3217)
Ci di
the vectors e; transform according to
e; = Riei . (3218)

Both vectors, e’ and e;, span the same lattice, and, since R;R;” =7,

€.
| &
2= (yox)RR| 7 | =€, (x] + T/y)),

ex;

1

where the modulus 7; describes the shape of the torus transforms as

7
€y; , G aiti+b;
Ti:—l—)z’i:———
ey,

1

= . 3.2.19
C;i CiT; + di ( )

Thus, we recover the modular symmetry transformation presented in the previous section. This

transformation also affects the real coordinates
zi = (yi, xi)ei = z; = (v, x;)e; = (y;, xj)Ries (3.2.20)
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therefore, modular invariance implies that (y;, x;) transform under SL(2,Z); as

N

&=

Yi
= (R°HT . (3.2.21)
X Xi

For the remaining of the analysis, it is useful to consider the transformation properties of the

1-forms. Thus, for the torus Tl.z, according to the above reasoning, we have [247]

w = wldfg, dflk = , 0)12 = Ryjw; . (3.2.22)

dxk

1

As can be readily checked, an immediate consequence of the above setup is that the holomorphic

3-form Q, defined in (3.2.5), transforms as

Q
Qo —— (3.2.23)
Hizl(CiTi + dl)
Furthermore, for a factorisable orientifold, in the large volume limit, the last term of the Kéhler

potential, (3.2.2), takes the explicit form

—21n (e-%¢ / N /\]) =—ln(i(r; - 51 — ) (13— 53)) , (3.2.24)
and under ®?:15L(2, Z); transforms as

—In(i(r; = 71) (12 — &) (13 = T3)) = — In (i(7; — 7)) (12 — T2) (73 — T3))

+1n (I, |eim + dif?) (3.2.25)

where we notice that the extra term cancels exactly the factor from (3.2.23) in the supergravity
action, which implies that G; needs to be invariant under the tori modular symmetries. There-
fore, under the axio-dilaton and the three tori modular symmetries, both 3-forms Hs, Fs, and the
real coordinates pairs (x;, y;) on which the 3-form basis is defined transform non-trivially, while
Gs itself remains invariant under the tori modular symmetries. This will imprint non-trivial con-
straints on the flux data. Furthermore, along flat directions of the superpotential, the flux data

allowed by modular invariance will fix the moduli. To see this, we first introduce the following
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configuration for the fluxes

ps=—fm’, q1 = fm% qa=fm', qo = fns, (3.2.26)
where f is an integer. For this set of fluxes, the superpotential is given by

W=(fr-n)(n (m2 - mOTZ) +mln + ns) . (3.2.27)

Using the definition (3.2.22), the 3-forms can now be written as [247]

F3 = Ayjd& A dE) A doxs, (3.2.28)
Hs = Byd& A d&) A dys (3.2.29)
where B;; = —fA;; with
—nj I’I’l1
A= . (3.2.30)
m? m°

Under the transformation of the modular symmetries associated with the torii = 1, 2,1.e. SL(2,Z);X
SL(2,Z),, the 3-forms F3, H; transform as

Fs > (R{PAR;Y)T)jdES A dE) A doxs (3.2.31)
Hs > (RPPARYT)dE A dE] A dxs (3.2.32)

and in order for G; to remain invariant the following relation must hold true
RIMARH =4 (3.2.33)

This imposes non-trivial constraints on the values of the flux data. We now consider the super-

potential in (3.2.27) and its flat supersymmetric directions, 9;W = 9, W = W = 0, which yield

3= fT (3.2.34)
1
—N3 — M T
=—. (3.2.35)
m? — mi7,

From (3.2.34), we see that for f = 1 the axio-dilaton 7 and the complex structure 73 are identified,
T = 13. This implies that the diagonal SL(2,Z) c SL(2,Z), x SL(2,Z),, remains unbroken by the
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vacuum
75 =Rs(13) =R(7) = 7', (3.2.36)

and therefore we have R = Rs, effectively connecting the axio-dilaton modular symmetry with
that of the torus T?. We now focus on the symmetries associated with the tori with labels i = 1, 2.

Following the above discussion, we first solve (3.2.33) with respect to R,

Ry = AT(R;HT(A™HT . (3.2.37)
Next from (3.2.30) we have
2 0 2
-n3 m 1 -m’ m
AT = s (AN = : (3.2.38)
1 0 mim? + mOns 1
m m m'  ns3
from which we finally get’
m'm?a; + m°m?by + m'nscy + mnsd;, —(m?)2by + (n3)?cy + m?ns(a; — dy)
mim? + mOns mim? + mOns
Ry = . (3.2.39)

(m®)?2b; — (mY%cy + m®m'(ay —di)  m°nsby — m°m?b; — minse; + m'm?d;

mim? + mOns mim? + mOns

The above result generalises that of [189], which can be reproduced in the limit (n3, m°) — 0.
Furthermore, one can show that the vacuum direction set by (3.2.35) is invariant under 7; + 7; =
Ri(71) and 7, > 7, = Ry(7,) with R, given by eq:R2. Being an element of SL(2, Z),, the entries of
R, are integers, and the determinant equals unity. This is not a trivial requirement, as the entries
are now parametrically defined by the entries of an R; element and flux data. However, we can
find which congruence subgroup, I'(N), of SL(2, Z), the matrix R; belongs to. To do this, we first

consider the case where the following relations hold

m! = —=2m° m° = n3, n3 = xm?. (3.2.40)

"Here we make use of det(R;) = 1 to simplify the denominator in eq:ATranspose arising from (R;) ™.
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With these, R, can be expressed as

X(—bl +2c1 + d1X) —2a; bl — x(—a1 +cix + dl)

= x2 -2 x2 -2
Ry 4c; — x(2a; + bix — 2d;)  x(ax+by —2¢c1) —2d; |- (3.2.41)
x% -2 2 _ 2

We can now find the explicit congruence subgroup of level N to which R, corresponds to, once
the fluxes are fixed. To do so, we first inspect the off-diagonal terms in (3.2.41). The requirement
that R, € SL(2,7Z), readily suggests that g; is proportional to x? — 2 while s, is proportional to
(x* — 2)/4. Therefore, we can identify T (4/(x* — 2)?) as the principal congruence subgroup of
SL(2,Z), of level N = 4/(x* — 2)2. Since N needs to be an integer, it can take only two possible

values
1 ,x=-2,0,2
N = . (3.2.42)
4 ,x=-1,1
We observe that the values x = —2,0,2 lead to N = 1, i.e., a trivial finite modular group, hence

we focus on the second solution, x? = 1 with N = 4. In this case, (3.2.41) takes the form

x(—b1+2c1+d1x)—2a1
x2-2

b1 —X((ll +C1x+d1)

R, = . (3.2.43)
C1 — ix (2(,11 + b1X - 2d1) W
Additionally, if Ry € T (4/(x* — 2)?), we have
by=c; =0 mod 4/(x*-2)? (3.2.44)
a1 =d; =1 mod 4/(x*-2)?, (3.2.45)
which leads to
10
R, mod 4/(x?-2)% = mod 4/(x? — 2)%, (3.2.46)
0 1

regardless of the sign of x. Therefore, we have encountered the principal congruence subgroup
of level N = 4/(x* — 2)? = 4 of the homogeneous modular groups associated with the moduli

with labels i = 1, 2, which will lead to a finite modular group I'; =~ T'/T'(4) =~ S;. An explicit choice
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of fluxes that produces a vacuum that breaks the full modular group to I} is
{m'=-4,m?>=2m’=2 n3 =2}, (3.2.47)

which produces the total flux, c.f. (3.2.11), Ngyx = 8. To check if this is a valid Type IIB solution,
we first notice that the factorisable toroidal orientifold T®/Z, = (T? x T} X T?)/Z; has 64 fixed
points, each associated with an O3-plane. To preserve N = 1 SUSY in 4d, there cannot be anti-
D3-branes, for which Nps > 0. Therefore, Ny,x = 8 is consistent with the tadpole cancellation

condition eq:tadpole

1
Niux = 2 (ZN‘” - NDg) =2(16 — Nps) < 32. (3.2.48)

In summary, in this section, we have derived the supersymmetric conditions on the fluxes of
the moduli superpotential which predict an S; finite modular group from Type IIB orientifold
compactification. However, this result pertains only to the Type IIB supergravity action and does
not include matter fields and their interactions. To address this, we now move towards F-Theory

constructions.

3.2.2 THE AX10-DILATON IN TYPE IIB AND F-THEORY

The axio-dilaton is related to the string coupling g; as 7 = Cy+i/gs. In Type IIB (and its geometric
counterpart, F-Theory which inherits S-duality from Type IIB) the Yukawa coupling is expected

to depend on the string coupling g as
A(gs: zi) = gs M=) , (3.2.49)

but it is also expected to depend on the complex structure moduli through z; = x; + 7;y;, and
possible flux parameters. These moduli fields will each transform under their respective SL(2, Z)
symmetries. In this subsection we shall be concerned with the axio-dilaton which is common to
both Type IIB and F-Theory.

The Yukawa coupling A will then be transformed under the SL(2,Z),, modular group associated
with the axio-dilaton. From (3.2.1)
=7 1

—=—, (3.2.50)
21 Js

T—T=2is >Imr=s=
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and therefore

, ad—bc 1 1 1
— =Imr —» Im7 =

———Imr = ——Imr = ——+— 3.2.51
gs let + d|? let + d|? let +d|? gs ( )

where the fact that ad — bc = 1 has been utilised. Hence, for an arbitrary power of g5, we have

o

—a 9gs

Y9, = m . (3252)

Focusing on a = 1, for the T generator we have a = b = 1,c = 0,d = 1, and hence
T—o1+1: Co—Co+1,s—>s. (3.2.53)

On the other hand, for the S generator we take a = 0,b = 1,c¢ = —1,d = 0, and so the denominator
in (3.2.52) becomes
let+d|* =17 =C3 +s*, (3.2.54)

and therefore the transformation acquires a specific structure given only in terms of the axion C
and the inverse string coupling g;' = s
1 CO S

T— ——: Co — — , §— .
T C2 + 52 C2 + 52

(3.2.55)

This case is known as strong-weak duality or S-duality since it transforms the string coupling g

to its inverse g, '. Recall now that the axio-dilaton part of the tree-level Kihler potential is
T—7T
K=-log(-i(tr—17))+---=—log (2—1) —log(2) +---=—log(s) +---, (3.2.56)

so that the SL(2, Z), transformation implies that — log(s) — —log m and thus the exponential
X transforms as
eX = |er +d|%eX . (3.2.57)

On the other hand, the gravitino mass is

my, = eK|w|?, (3.2.58)

and since it must stay invariant we must have

(Wl

w LA
- ez +d|?

= W - (3.2.59)

ct+d
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It is now apparent that if S-duality is to be maintained by the perturbative superpotential Yukawa
couplings [248], then the fields must have transformation properties with respect to it. A generic

trilinear term with a tree-level Yukawa coupling of MSSM fields has the form

W D Aii(go) fifih - (3.2.60)

In the simplest context, the Yukawa coupling could simply be taken 4;;(gs) — A;j(zx) gs_l/ ? where
the parameters A;;(zx) may depend on other moduli fields. Then, the 7 — -1/ transformation
discussed above entails

N

|Gy + 322"

-1/2

A o< g (3.2.61)

which matches exactly the transformation property of the tree-level superpotential W w.r.t. axio-
dilaton 7. In a more general context, as we will see, the dependence of the Yukawa couplings
on moduli fields is more involved and non-zero modular weights for the matter fields f;, f;, h
should also be considered. Furthermore, the Yukawa couplings, which are 3 X 3 matrices in
the flavour space, could transform non-trivially under the congruence group left over from the
supersymmetric conditions imposed on fluxes of the moduli superpotential part. The specific
choice of fluxes of the previous section indicates that the underlying flavour symmetry governing
the Yukawa lagangian is Iy ~ I'/T(4) ~ S, with Yukawa matrices being certain modular forms
which belong to specific representations of the Sy group. Additional restrictions are expected
to be derived from the geometric structure of the compactification manifold to further suggest
a specific implementation of the above scenario. In the following, we continue with F-Theory,

where some of these hints become more transparent.

3.2.3 YukAawA COUPLINGS AND FERMION MASS MATRICES IN F-THEORY

We now turn our attention to the Yukawa couplings in F-Theory. Our starting point is an effective
F-Theory GUT model, which is derived from an ADE-type singularity with the world-volume of a
7-brane that wraps the space R*! x S with S being a Kihler manifold of two complex dimensions
z1,z5. At low energies, F-Theory is described by an eight-dimensional YM theory on R*! x S
which must be topologically twisted to preserve N = 1 supersymmetry.

The compactification space is a fibred eight-dimensional space (CY fourfold CY,) where the fibre
over the base B; = CY3 associated with the six-dimensional compact space is described by a two-
dimensional torus whose modulus is the axio-dilaton 7 = Cy + ie™® = Cy + i/ gs. Therefore, the
SL(2,2Z),; S-duality describes the variation of the modulus 7 of the 2-torus over the compactifica-

tion manifold. The geometric configuration consists of 7-branes filling the Minkowski 4D-space
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while wrapping a 4D ‘surface’ S — associated with some GUT symmetry — which is a complex K&h-
ler manifold so that supersymmetry is preserved. The four-dimensional effective F-Theory model
arises upon compactification of the eight-dimensional theory on S. The possible GUT groups, in
particular, are associated with specific types of geometric singularities where the modulus 7 ac-
quires certain values. The massless fields of the low energy spectrum reside on Riemann surfaces,
called matter curves, formed by 7-branes intersecting the GUT surface, while Yukawa couplings
are formed at specific points where triple intersections of matter curves occur. ®

Within this framework, the corresponding gauge theory is that of the eight-dimensional N = 1
supersymmetric YM theory with minimal field content. The bosonic spectrum, in particular,
includes the gauge field A and a holomorphic two-form scalar ®. Both fields are found in the
adjoint representation and descend from the decomposition of the 10-dimensional gauge field A.
Since 7-branes are wrapped on a curved R®>!) xS space, unbroken N = 1 supersymmetry requires
® to be a holomorphic (2,0)-form as a result of the topological twisting [249]. *The superpotential

Wsq of the eight-dimensional fields and an associated D-term take the form

1 -

Weq = m? /Tr(F A®), D= /a) AF+ 5[@, o], (3.2.62)
S S

where F = dA — iAAN A and w = ig/2(dz; A dzy + dz, A dz,) is the Kahler form on S.

The eight-dimensional fields can be organised as one N = 1 vector multiplet, V, and two N =1

chiral supermultiplets, A;; and ®,,,,

V=(A.n" D) (3.2.63)
(I)mn = ((Pmns Xf}lm’ Wmn) > (3265)

where G, Hinn are F-term components, and D represents the D-term, whilst, 170", /8 )(f,‘m are
the fermionic components, which, in the twisted YM theory are associated with a zero, one- and

two-form respectively [251],

n%, Y% = yadz™, % = yi.dz™ A dz".

8Equivalently, the torus over B; can be described by the Weierstrass equation y* = x> + f(z)x* + g(z), where z is a
coordinate of the complex projective space CP' (Riemann sphere). Then 7 = 7(z) = Cy(z) + ie"#(?) and singularities
occur at A(z;) = 0. The torus is associated with the invariant j(z(z)), which, together with the vanishing of A
determines 7 ~ ﬁ log(z — z;). Hence, for given z, 7 is fixed. Also, going around the singularity, there is a shift to
the real part of the modulus Cy — Cy + 1 that corresponds to 7 — 7+ 1 of SL(2,Z).

Within such an F-Theory framework it is well known that there are many complex structure moduli, associated
with the positions of the 7-branes. The positions of the 7-branes are determined by tuning the complex structure
moduli and can produce additional structure in the elliptic fibration [250].

144



The indices m, n take the values 1,2, the complex scalars Ay, ¢, have dimensions of mass M and
G, H, D of squared mass M.

To preserve the supersymmetric vacuum, all variations of the eight-dimensional fields must van-
ish. In the context of the four-dimensional theory, this corresponds to imposing the F- and D-
flantess of the superpotential. Minimising the superpotential (3.2.62) and imposing D-flatness,

one arrives at the following equations

P =0 (3.2.66)
F20 = ¢ (3.2.67)
1
wAF+ 5[cIﬁ, ®]=0. (3.2.68)

The above equations have long been derived in reference [249] and are the basic ingredients for
studying the properties of fields in generic 7-brane configurations. Here, we are interested in
solutions for massless fields residing on 7-brane configurations. The equations can be solved by

expanding the fields A, ® assuming linear fluctuations around the background:
Ap = Ay +am - (D)+0¢, (3.2.69)
with the definitions
a=az;dzi +azdz;, ¢ = @zzdz1 Ndz; . (3.2.70)

Then, keeping only linear terms regarding the fluctuations ¢, a, in the holomorphic gauge the
EoM take the form

5<A>a =0 (3.2.71)
dayp — ila, ()] =0 (3.2.72)
W A daya - %[(cb), ¢]=0. (3.2.73)

Substituting the expansions of the fields into (3.2.62) it is found that the holomorphic trilinear

Yukawa coupling is written in terms of ¢ and a as follows

Wy = —im? /Tr(cp AaAa), (3.2.74)
S

where m, is the scale associated with the supergravity limit of F-Theory.

The fluctuations ¢ and a can be determined by solving the equations (3.2.71-3.2.73) for a variety of
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diagonal or non-diagonal backgrounds [48; 193], the latter being known as T-branes [193]. They
are associated with the zero-modes residing on the matter curves and when three of the latter
define triple intersection a Yukawa coupling is formed. Depending on the details of the model, it
is often the case that multiple zero-modes are accommodated on the same matter curve.

It can be shown that the general form of the solution for zero modes localised on a specific matter

curve, say z; , takes the generic form

¢ = Raxa = Raf (22)g(21, 21, q)e VM tm'aid g2 202 (3.2.75)

where M,, appear when fluxes are also introduced '°. It can be observed that locally the solution
is described by a Gaussian profile, with its peak along the matter curve and waning out along the
transverse direction z;. The function f(z;) is a holomorphic function of z; left undetermined from
the equations of motion and R, encodes the group structure [48] associated with the background.
Analogous solutions can be written for the other intersecting matter curves in the vicinity of the
triple intersection. The integration (3.2.74) ! is performed over the three overlapping wavefunc-
tions where all of them are peaked at the triple intersection and since they are strongly localised,
the integral can be restricted to a small region near the intersection point. At every triple in-
tersection the gauge symmetry is enhanced and generically zero-mode states are assembled into
representations of the higher symmetry. At the same time, multiple states accommodated on a
certain matter curve may be organised into representations of the underlying symmetry of the
complex structure of the matter curve.

Furthermore, assuming for example toroidal compactifications, the function f may depend explic-
itly on the complex structure moduli of the curve, and thus it is conceivable that they may trans-
form as modular forms, as we argue in the next section. We discuss now the overall dependence
of the Yukawa coupings on the mass scales of the theory, and their relation to the axio-dilaton
modulus [253]. In string frame, the overall scale m, in (3.2.74), is given by m® = m8g;? [253],

hence, the resulting dependence of the Yukawa coupling on g is (see details in section 4 of [253])

4
m 1

A oc —Z = —. (3.2.76)
mg  gs

The string coupling is related to the GUT scale. Indeed, let Vs ~ R§ ~ 1/m¢,;; be the volume

For example, in a U(3) model the flux assumes the form (F) = —(2i/3)M?(z; A dz; — Z; A dzz)diag(1,-2,1). In
a generic context, however, when non-Abelian T-branes are considered, a non-primitive flux is required w A F # 0
to satisfy the D-term [48]. For a comprehensive presentation, see review [252].

MIn section 3 eq (3.28) of [193]- using the notion of twisted one-forms, the connection y = a + & A ¢, & =
9"'9*”/ Qdz is implemented - and the Yukawa coupling receives a symmetric form. See the appendix for the relevant
computation.
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of the GUT surface and Vi ~ R® that of the base Bs of the fibration. Compactification to four
dimensions implies M ~ m(Vp while from the kinetic term of the field strength it follows

aabT ~ m{Vs. Combining these relations we obtain a rough estimate

1 mi m? mé 1
~m AV = ——— = ———, (3.2.77)
aGuT ms Moyt Mgyt s

Taking into account the various normalisation effects, the dependence on g is more involved.
One finds [47; 48]

1=Ccdl?

i (3.2.78)

where C may depend on other moduli fields via the wavefunctions of the form (3.2.75) involved
in the triple intersections. This implies that S-duality symmetry is preserved only if the unde-
termined parts of the wavefunctions associated with the Yukawa coupling under consideration

exhibit the appropriate dependence on g;.

3.2.4 YUKAWA MATRICES IN A SU(5) X S4 MODEL

Hitherto, we described a basic F-Theory approach to Yukawa couplings and presented a generic
solution for the EoM. From the above analysis we inferred that the Yukawa coupling inherits
group properties encoded in the matter wavefunctions. The latter depend on the complex struc-
ture moduli through holomorphic functions of the complex coordinates z; left unspecified by the
EoM. Nevertheless, from the preceding sections and more particularly from Section 3.1, we know
that the fluxed superpotential of the moduli fields is subject to modular restrictions. Therefore,
if the Yukawa sector for the ordinary matter of the superpotential is required to retain the same
modular symmetry or a subgroup thereof, its origin is expected to come from the yet unspecified
part of that solution. We are then given the opportunity to consider the wavefunctions trans-

formed as modular forms. For example,

(@) = (et +d)Fif(m), (3.2.79)

where 7; is a complex structure modulus associated with the complex coordinate z;. Addition-
ally, the holomorphic Yukawa coupling, being formed at the intersection of three matter curves,
would be naturally transformed in a non-trivial representation of the congruence subgroup of the
modular group. To illustrate the main idea of the bottom-up approach to F-Theory fluxed GUTs
with modular symmetry, we give a simple example of an SU(5) GUT embedded in E¢ which has

been derived in an F-Theory framework [254]. The novel feature of this example is the inclusion
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of an S, finite modular family symmetry. As has already been pointed out, in this context matter
fields reside on curves which are formed at the intersections of 7-branes with the GUT surface
S, itself wrapped with 7-branes. We consider a divisor with an Es geometric singularity which,
according to the F-Theory prescription, corresponds to an E¢ gauge symmetry of the effective
theory. In the present setup, there are three matter curves accommodating three 27,/ represen-
tations of E¢. These are distinguished from each other by the weights ¢ of the SU(3) Cartan
sublagebra (t] + t;, +t; = 0). We impose a Z, monodromy t] <> t,;, and hence only two distinct
matter curves remain, e.g. 227&3, and use U(1) fluxes to reduce the gauge symmetry down to
SU(5). Alternatively, one may derive this model starting from the maximum admissible (well

behaved) singularity that corresponds to a Eg gauge symmetry subsequently decomposed to

5

Eg D SU(5) x SU(5), 2 SU(5) x U(1)}, Z L=0, (3.2.80)

i=1

where now t; correspond to the Cartan subalgebra of SU(5), . The Eq and SU(5) xSU (5) . proper-
ties of the matter and Higgs multiplets are given in Table 3.8. Due to the aforementioned restric-
tions on ¢/ and the monodromy imposed, the only allowed trilinear Eq term in the superpotential
is W D 27,27127;;. We then assign the fermion supermultiplets to 27, and the Higgs fields to
271‘/ .

3

We break the SU(5) gauge symmetry by turning on a flux along U(1)y € SU(5), which also
splits the 10 and 5 representations of SU(5). However, anomaly cancellation conditions impose

constraints on the multiplicities of the latter which are as follows:
M10M = M51 = _M52 = —M53, ]\/Il()2 = —/\/154 = —]\/155 = M5Hu‘ (3281)

Furthermore, to eliminate extraneous and exotic matter derived from the decomposition of the

78-dimensional representation, we impose the conditions
Mo, = My, = Ms, = N = No = 0, (3.2.82)
These imply that [254]
N=N,. (3.2.83)

The SM zero mode states derived from the complete 27, representations after various successive
symmetry-breaking stages with the U(1) fluxes shown in the last column of Table 3.9. Their

multiplicities are expressed in terms of the flux integers which have remained undetermined by
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Es SO(10) SU(5) Weight

27y 16 53 t+ts
27y 16 10 t
27y 16 015 t1 —ts
27y, 10 5  —t — I3
27y 10 5, t + 14
2715; 1 914 tl - t4
27y 16 55 t3 + 15
27y, 16 10, ts
27% 16 035 t3 - t5
27y 10 5H, -2t
27y 10 54 t3 + Iy
27 1 034 t3 — 14

Table 3.8: SO(10) and SU(5) decompositions of 27 € E¢. The SU(5) indices in 5;,10; representations
designate their origin of the corresponding matter curve (25, and Xy;), and 10y accommodates ordinary
matter fields.

the consistency conditions mentioned above.

In the present work, an explicit model is constructed by choosing the fluxes given in tab:fluxes.
This choice leads to the spectrum given in tab:f-theory-spectrum where both the down quarks
and leptons originate from 27,. As we have argued in the previous section, the states supported
on a matter curve will inherit modular symmetry properties related to the complex structure
moduli parametrising that curve. Therefore, states supported on a given curve are expected to
have the same modular weights and to furnish full representations of the discrete modular group
that survives the compactification. Imposing these modular symmetry properties in the above
representations, a version of the model presented above with non-trivial discrete modular group

S4 can be written as

W=a (”§,2Q1,2Y1(4>)1Hu +p (ui,ZQl,ZYZM))lHu +y (u§Q3Y1(4))1Hu +5 (”§,2Q3Y2(4))1Hu

+ o (d5,012Y ) Hy+ B (d5,012Y, )1 Hy + (del,ZYZ(,?))lHd

0
Y (d5Qu2Yy5 )i Ha + 48" (d5,05%,” )1 Ha + € (d5QsY, ™)1 Ha | 7. (3.2.84)
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Es SO(10) SU(5) Weightvector Ny My SM particle content

27y 16 55 t+ s N  —Ms, —Ms,d° + (—Ms, + N)L

27, 16 105 t —~N  —Ms, —Ms,Q+ (~Ms, + N)u + (=Ms, — N)e*
27y 16 015 t — ts 0 —Ms, —Ms,v*

27y 10 5, —t) — t3 -N  —M;, —Ms,D + (=Ms, — N)H,

27y 10 59 o+ N —M;, —Ms,D + (=Ms, + N)H,

27y 1 014 t — tg 0 —Ms, ~Ms,S

27, 16 55 ts + ts -N  Ms, Ms,, d°+ (Ms, — N)L

27y 16 10, t3 N Ms, Ms, Q+(Ms, —N)u+ (Ms, +N)e
27y 16 035 ts — t5 0 M, Ms,, v*

27, 10 5H, —2t; N M, Ms, D+ (Ms, +N)H,

27, 10 54 b+t -N  Ms, Ms, D+ (Ms,, — N)Hy

27y 1 034 ts — 1y 0 M, Ms,, S

Table 3.9: Complete 27s of Eg and their SO(10) and SU (5) decompositions. The indices of the SU(5) non-
trivial states 10,5 refer to the labelling of the corresponding matter curve (we use the notation of [56]).
We impose the extra conditions on the integers Ny and My ;) from the requirement of having complete
27s of Eg and no 78 matter. The SU(5) matter states decompose into SM states as 5 — d€, L and 10 —
Q,u¢, e with right-handed neutrinos 1 — v¢, while the SU(5) Higgs states decompose as 5 — D, H,, and
55D, H,, where D, D are exotic colour triplets and antitriplets. We identify RH neutrinos as v¢ = 01535
and extra singlets from the 27 as S = 61434.

where M is the F-Theory characteristic compacfication scale and we will set, for simplicity,
0351/M ~ 1 as we expect the VEVs of the singlets to be close to the scale M and this quantity

can be reabsorbed into the definition of the primed coefficients.

According to the superpotential (3.2.84), the up-type quarks Yukawa matrix is given by

a (VP +Y)) = p(Yy - Y}) 2p1Y, 5(Y2-Y?
Ay = 2BY1Y, a(Y2+Y2)+B(Y2-YY) 28vY, |. (3.2.85)
0 0 y (Y] +Y5)

and for the down-type quarks, the relevant Yukawa matrix is written as
oY1 (3Y2=Y2) B Y1 (Y2+Y}) BY (Y24Y7) SV (Y+Y})

Ag = B Yo (Y2+Y}) Y1 (3YZ-Y2)+p' Y1 (Y2+YZ)  &'Yo(Y2+YZ) | . (3.2.86)
v (W=31) Yy (0 -07) (VY7) y v (Yf-sYp) v (Vi) € (Yies)?
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M, Ms, M5, Ms, My, Ms, Ms, My, My, N
4 —4 3 -3 -1 1 0 0 2 1

Table 3.10: The choice of Fluxes used in this model.

Es S0O(10) SU(5) Weight vector Ny My(;) SM particle content Low energy spectrum

27y 16 53 t +1s 1 4 4d° + 5L 3d° + 3L
27y 16 10, t -1 4 40 + 5u° + 3e° 30 + 3u‘ + 3e°
27t{ 16 015 f — I 0 3 3¢ -
274 10 51 -1 — I3 -1 3 3D + 2H, -
27y 10 5, t o+t 1 3 3D + 4H, Hy
27y 16 55 I3+ 15 -1 -1 d° + 2L -
27y 16 10, s 1 -1 0 +2u° -
27y 16 O35 ty — ts 0 0 - -
27y 10 55, -2t 1 0 H, H,
27, 10 5,4 ty + ty -1 0 H, -
27t§ 1 O34 t3 — 1y 0 1 034 -

- 1 031 t3 — 1 0 4 031 -

- 1 053 ts — 13 0 1 Os3 -

- 1 014 H—ty 0 3 014 -

- 1 045 ty — 5 0 2 045 -

Table 3.11: Complete 27s of E¢ and their SO(10) and SU(5) decompositions. We use the notation of
ref [56] for the indices of the SU(5) states and impose the extra conditions on the integers Ny and My (1)
from the requirement of having complete 27s of E¢ and no 78 matter. The SU(5) matter states decompose
into SM states as 5 — d°, L and 10 — Q, u®, e with right-handed neutrinos 1 — v¢, while the SU(5) Higgs
states decompose as 5 — D, H,, and 5— D, Hg, where D, D are exotic colour triplets and antitriplets. We
identify RH neutrinos as v¢ = 6;5. Extra singlets are needed to given mass to neutrinos and exotics and to
ensure F- and D- flatness.

The charged leptons have the same Yukawa matrix structure as the down-type quarks. However,
inspecting the spectrum of F-Theory zero modes in tab:f-theory-spectrum, we see that the three
families of L, Q, e, and d° descend from different linear combinations of UV states from F-Theory
zero modes. Therefore, the superpotential coefficients for the down-type quarks and the charged

leptons are not the same, leading to a realisation of a Georgi-Jarlskog mechanism [255]. We then
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MSSM fields Matter Curves Charge S4 k
Q12, U] 5, €7, 10y h 2 2
Qs, us, €5 10 t 1 2
dS, Ly 54 ho+ts 2 4
ds, Ls 54 ti+ts 1 6
H, 5g, 26 1 0
Hy 52 h+ts 1 0
Ve 015 ti—1ts 3 0

Table 3.12: Perpendicular charges, modular weights, and S4 discrete modular group representations as-
sociated with the matter curves hosting the model from tab:f-theory-spectrum.

write down the charged leptons Yukawa matrix as

"Y1 (3YF-Y2)-p Y1 (Y2+YF) B Yo (Y24Y}) 8" Y1 (YE+Y2)
2 = pra(r4?) RV () (i) |, (3.287)
v (=3 Yy (7 -07) (YP+Y)) v e (Y -3Y))+2ry VYo (YP4Y)) € (Yi+1])?
where the modular form components have the same dependence on 7; as those appearing in the

down-type quark Yukawa matrix.

In the following discussion, we are going to sketch a scenario in which conjugate right-handed
neutrinos are identified with the singlets 0;5, which are included in the particle spectrum of the
F-Theory model. Since these fields are considered as degrees of freedom that lie in the transverse
space of the matter curves [256], this fact leads us to consider the case that they do not carry any
modular weight. However, a simple model is presented here in which the singlets transform as a
triplet under the S, modular symmetry. In addition to the singlets mentioned before, more degrees
of freedom are needed to give a Majorana mass to 65, leading to the implementation of a (type-
I) seesaw scenario for the light neutrino masses. An important condition is that the additional
singlets of the model have to cancel the perpendicular charges of coupling. The superpotential,
following the transformation properties of Table (3.12), is written as:
62,02

W, = (VLY ) Hy + 0 (FLY ) Hy + 4 (V) TR (3.2.88)

where in the last coupling stands for the Majorana mass term of the conjugate right-handed

neutrinos. Given the first two couplings the Yukawa matrix responsible for the neutrino Dirac
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mass can be written as:

—2§Y2Y3 0 I]Yl(Y42—Y52)

1 3
A = —Eg(\/§Y1Y4 +Y;Y5) gg(\ﬁylys +Y2Ys) —nYs(Y1Ys+ V3%2Xs) | (3.2.89)

1 V3
—E{(\/§Y1Y5 +Y,Y,) 7g(x/§Y1Y4 +Y,Y5) nYs(YiYs+V3YLY,)

where the modular form components depend on the same modulus of the up-type quark, z,, and

the conjugate right-handed neutrino Majorana mass matrix can be easily read out as

100
02,62
Mg=|0o 0 1 A%, (3.2.90)
010

where we will take 102,02, /M = AMgyr.
Given the above matrices, we could implement a type-I seesaw mechanism in our model to explain

the neutrino masses. The light neutrino mass matrix is given by:
M, = -MM;"Mp , (3.2.91)

where Mp = vA,, with v = 173 GeV being the Standard Model Higgs vacuum expectation value.

3.2.5 NUMERICAL STUDY

We now perform a brief numerical study to find whether the model presented above and explicitly
stated by the superpotential in superpotl can provide a good fit to quark masses and mixing. To
do so, we will compare the model predictions against the values of the quark masses and mixing
data at the GUT scale, which, for tan f = 5, can be found in tab:quarkdata. The neutrino data
are taken from the latest NuFit 5.3, [257] and is shown in tab:leptondata alongside the charged
lepton Yukawa eigenvalues.

We use the effective Yukawa coupling matrices for the quarks, eq:Lambdau,eq:Lambdad, as well
as for the neutrinos, eq:lambdan,eq:majorana, to compute the predictions and compare them to
the data in tab:quarkdata,tab:leptondata. Although the coefficients of the superpotential are in
principle calculable in F-Theory (see, for example, [47; 48; 195] for Yukawa couplings and [52] for

R-Parity violating terms), in this work we will consider these coefficients as free parameters and
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Quark and CKM Data
yy (4.81+1.06) x107¢ | 01, 13.027° +0.0814°
ys  (9.52+1.03) X 107> | 053  2.054° +0.384°
Y, (6.95+0.175) x 1073 | 613 0.1802° + 0.0281°
y, (292+1.81)x107° |Scp  69.21° £6.19°
y. (1.43+0.100) x 1073
U 0.534 + 0.0341

Table 3.13: Quark and CKM data [258; 259; 260].

Lepton and PMNS Data
Ye (1.97 £0.024) x 107 | sin® 0%, 0.307 £ 0.012
Yy (4.16 £0.05) x 107* sin? 0%, 0.572 £ 0.023
Yy, (7.07 £0.073) x 1073 sin? 0%, (2.203 +£0.58) X 1072
Am?,  (7.41+0.21) X 107° eV? L, 197° + 41°
Am?, (2.511+0.027) X 107> eV?

Table 3.14: Lepton and PMNS data. Neutrino masses are given in normal ordering [257; 258; 259; 260].
When the uncertainty interval is asymmetric, the larger values was taken in the analysis for the Gaussian
likelihood profile.

leave the study of their computation for future work. Additionally, we also have the dependency
on the complex structure moduli fields parametrising the geometry of the matter curves, from
which the matter fields inherit their discrete modular symmetry properties. Since up- and down-
type quark Yukawas emerge at different intersection points in the internal geometry between
different curves, the geometry describing each Yukawa coupling is in general different from each
other and parametrised by its own modulus, i.e. the components of the modular forms appearing
in the up- and down-type Yukawas can depend on different moduli fields, 7, and 7,4, respectively.
However, the charged leptons (neutrino) Yukawa matrix arises from the same intersection as
the down-type (up-type) quark Yukawas and should therefore depend on the same modulus.

Therefore, our (effective) parametric freedom encompasses:

« Four complex coefficients (@, f, d, y) and a complex modulus (z,) for the up-type Yukawa
matrix,

« three complex coeflicients ({, n, A) for the neutrino sector (as well as a dependency on 7,),

» six coefficients (¢, f’, ¥, y;, €’) and one complex modulus (7z) for the down-type Yukawa

matrix,
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» six coefficients (a”, B”, y”, y{, €”) for the charged lepton Yukawa matrix (as well as a

dependency on 7).

This sums up to a total of 19 complex parameters, or 38 real parameters. Although this seems to
over-parameterise our problem, as we only have 19 observables in tab:quarkdata,tab:leptondata,
we must reiterate that the complex coefficients are in principle calculable in F-Theory and that
the analysis present here simplifies this step.

To find whether we can jointly fit all observables, we employ an artificial intelligence search al-
gorithm called Covariant Matrix Approximation Evolutionary Strategy (CMAES) [263], which
was first proposed in [261] to simplify the task of finding valid points in highly constrained mul-
tidimensional BSM parameter spaces.!? CMAES can be seen as a population-based optimisation
algorithm that can find minima of any arbitrary function, irrespective of its continuity and dif-
ferentiability. Therefore, we will use CMAES to minimise the minus log-likelihood of the data,

D, given a point of the parameter space, 0,1
B (fi; — pu(0))*
—1lh(D|0) = E,- T (3.2.92)

where i runs over the observables, p;(0) is the prediction for the observable i given a parameter
space point 0, the data, D, are comprised of the set of tuples {(f;, 0;)}, where fi;, o; are, respec-
tively, the central and 1-0 uncertainty values of the observables and are listed in (3.13) (3.14), and
we have assumed a Gaussian profile likelihood for the data. We implemented CMAES using the
python package cmaes [263], and we performed 1000 independent runs, each running until con-
verged to a minimum of (3.2.92), and kept all points whose observable predictions were within
3-0.!%. The parameters of our model were bounded, so that the superpotential coefficients remain
perturbative and the moduli take values in their fundamental domain with an upper bound on

the imaginary part

{Ti € G, s.t. |R(1)| £05A+1=R(1;)* < I(ry) < 10} Ji=u, d . (3.2.93)

Multiple successful runs converged, generating 18 X 10° points that fit all observables within 3-o.

The best point across all runs, that minimises the eq:llh at a value 1.15 X 107 (i.e., effectively

12See also [262] for a recent application to the Z3 3HDM, where CMAES was shown to have up to nine orders of
magnitude improvement in sampling efficiency over random sampling.

130y, equivalently, to minimise the sum of the )(2.

4This methodology is justified by the fact that our goal is not to draw a complete portrait of the parameter space,
but rather to find examples of viable points.
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with vanishing y? or likelihood of 1), is given by the set of parameters (to up to one decimal digit)

(a, B,8,7) =(—1.8 x 107> + 1.8 X 107°1,4.5 X 107> — 1.4 x 107},
32x 1074 +1.8x107°1,1.8 x 107! + 4.0 X 107%})
(N, B.7. v, €) =(2.1x107° — 8.8 x 107%1, 3.3 X 107> +3.2 X 107%,
—44X107°+7.2%x107%,-23x 107" =23 x 1074,
—77%x107° +1.4%107%,1.3x 107* — 4.6 X 107°})
(CnA) =(=6.1%x1072+9.1x 107", -1.5x 1071 + 7.2 x 1073,
1.8 X 1071 4+ 5.3 X 107%)

(A By vl €) =(7.5%107° +1.4x 10773,2.7 X 107 = 7.3 X 10774,
—1.0x102+1.9%107%,1.2x 107* + 2.6 x 107%i,
—29%X107°+4.1x107°1,4.2Xx 107" = 1.7 x 107%})

T, =—41x10"1+9.1x 107}
T;=—50x10"1+1.2i,
(3.2.94)

where we organised the parameters by mass sector. We notice that the point above requires
some hierarchy between superpotential coefficients which should be around the same order, e.g.
ly| ~ O(1) whereas |a| ~ O(1073%). This hierarchy between coefficients of operators arising from
the intersection of the same matter curves at the same intersection point is at odds with our F-
Theory expectations, which requires further study involving their explicit computation. In (3.10)
we show the values of the moduli field that were obtained by CMAES, where we see that lower
values of the imaginary part of the moduli are preferred, and most points have J(7;) < 2. We
omit scatter plots for the remaining parameters as these are, in principle, computable in F-Theory,
and the details of their numerical realisation are left to future study. We also note that one should
not attempt to make statistical interpretations of the results of CMAES, as it is not an algorithm
designed to populate a posterior (as Monte Carlo Markov Chains do in Bayesian inference) as
it produces points through the path of quickest descent of the loss function (and therefore the
points should also not be used for frequentist interpretations as one usually does with random
sampling). However, all points are within 3-o of all observables and therefore have a very high

likelihood, or, conversely, a very small y?.

156



10
8,
6,
£ =
5 5
4,
2,
o5 0.0 05  —05 0.0 0.5

%(’7‘0 §R(’7‘d)

Figure 3.10: 7, and 75 values for the CMAES scan. All the points hold predictions within 3-c. The red
star point represents the best fit point, (3.2.94). Dashed line represents the boundary of the fundamental
domain.

A

0.0 2.5 5.0 7.5
yu/lo_0

Figure 3.11: Up-type quark Yukawa eigenvalues obtained for the CMAES scan. All the points hold predic-
tions within 3-0. The red star point represents the best fit point, (3.2.94). The dashed (full) lines represent
the central value (3-0 bounds) from (3.13).
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We first look at the results pertaining to the quark data. In (3.11) we can observe the resulting
values for the up-type quark Yukawa eigenvalues of points obtained, and in (3.12) we present the
equivalent plots for the down-type quarks. We see that many points can be arbitrarly close to the
central value, but also span the region within the 3-¢ limits, showing that the model produces
a good fit to the data. The same can be observed in (3.13) for the CKM mixing angle and CP
violating phase.

0.8 1.0 1.2
ys /1074
Figure 3.12: Down-type quark Yukawa eigenvalues obtained for the CMAES scan. All the points hold

predictions within 3-0. The red star point represents the best fit point, (3.2.94). The dashed (full) lines
represent the central value (3-0 bounds) from (3.13).
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Figure 3.13: CKM angles and CP phase obtained for the CMAES scan. All the points hold predictions
within 3-0. The red star point represents the best fit point, (3.2.94). The dashed (full) lines represent the
central value (3-0 bounds) from (3.13).

In (3.14) we can arrive at similar conclusions regarding the charged lepton Yukawa eigenvalues,

neutrinos squared mass differences, PMNS mixing angles, and CP violating phase.
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4.0 4.1 4.2 4.3

Y/107° Yu/107*

Figure 3.14: Charged leptons Yukawa eigenvalues obtained for the CMAES scan. All the points hold
predictions within 3-0. The red star point represents the best fit point, (3.2.94). The dashed (full) lines
represent the central value (3-o bounds) from (3.14).

7.0 7.5 8.0

Figure 3.15: Neutrino squared mass differences obtained for the CMAES scan. All the points hold predic-
tions within 3-0. The red star point represents the best fit point, (3.2.94). The dashed (full) lines represent
the central value (3-0 bounds) from (3.14).
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Figure 3.16: PMNS angles and CP phase obtained for the CMAES scan. All the points hold predictions
within 3-0. The red star point represents the best fit point, (3.2.94). The dashed (full) lines represent the
central value (3-0 bounds) from (3.14).

The above results show that our model can fit the data very well, with the best point having a
likelihood close to unity or, conversely, a vanishingly small y?. However, the problem is over-
parametrised by the number of superpotential coefficients, which, although in principle calculable
in F-Theory, are considered free parameters in this analysis. To assess whether we can reduce

the parametric freedom, we considered alternative scenarios with reduced parametric freedom
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with respect to the moduli. In our first alternative scenario, we fixed the moduli to take the
same values (i.e. 7, = 75 but otherwise allowed the moduli to take values in the fundamental
domain (3.2.93)) even though our F-Theory construction naturally provides distinct moduli for
each Yukawa type. The scans converged successfully as before, from which we can conclude that
our model does not require two independent moduli to fit the data. For the second case, we fixed
the moduli to special values 7,, 75 € {i, ico,w = exp (27i/3)} (but not necessarily equal). In
this scenario, CMAES failed to find points that fit the data. To further study this scenario, we
restricted the problem to only fit the quark data, and even then the best-case scenario was for
the configuration 7, = ico, 7; = i, for which we were able to fit all the observables within 3-c
except for the 6, angle of the CKM matrix. The fact that the best-case scenario relies on 7, = ico
suggests that it is indeed not possible to find good points that fit all the data with the moduli
stabilised at special values, as we have seen in (3.10) that the scans showed a preference for small
values of J(z;). Therefore, we conclude that, despite being over-parameterised, the model works

with fewer parameters although we lack F-Theoretical motivations to restrict their number.
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4 CONCLUSION

In this thesis, we presented some recent progress on modern topics of string phenomenology.
From the more formal point of view, the problem of moduli stabilization in type IIB compacti-
fications was scrutinized based on the recently introduced perturbative loop corrections, where
different aspects of the stability and uplifting conditions were studied along with the possible
connection between those quantum corrections with the dark sector of the stringy geometries.
At the phenomenological frontier, two local F-theory GUTs were constructed providing some ex-
planations on the various low-energy phenomena, like neutrino masses and the origin of flavor

symmetry.

Chapter 2 features the perturbative moduli stabilization procedure followed to ensure the at-
tainability of dS vacua in four dimensional effective string theories. The new ingredient in this
approach has to do with the inclusion of string loop correction to the Kahler potential, where their
origin can be traced by to graviton scattering in the bulk. In the current geometric framework
of intersecting D; branes, the transverse space could accommodate the aforementioned string
effects as corrections of logarithmic scaling parametrizing the localization width of the wavefuc-
tions in an orbifold limit. Upon the insertion of those types of corrections to the Kéhler potential,
their combined effects with the non-perturbative effects in the superpotential lead to various
AdS vacua for the scalar potential. In the large volume limit, i.e. in the regime where the moduli
take large values, the asymptotic behavior of the scalar potential along the volume direction is
largely modified by the loop effects. In addition, the supersymmetric flatness conditions could
fix the value of the moduli, appearing in the superpotential, at large values by properly choosing
the values of the integer fluxes ‘W, ~ O(1), since the solution is given in terms of the Lambert
function. Additionally, the stability conditions of the moduli ratios and the compactified volume
V admit the allowed parameter space for the free parameters of the theory, pointing towards
the relative sign of the logarithmic correction to the Kahler potential. The uplifting mechanism
utilized are the magnetically induced D-terms, which could uplfting the previous vacua up to
Minkowski or dS space. Through this mechanism, despite acquiring the desired result, the pa-

rameter space is very stringent, since the Lambert function implies the correlation between the
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uplift parameter d, the a’ correction ¢ and the perturbative one 7. In a more complex scenario
compared to the symmetric form of the compactified volume, the fibred or "Swiss-cheese" like
CY spaces are also given a similar treatment, where the logarithmic corrections could provide a
glimpse to the internal geometry by determining the branes setup and the orientifold involution.
Finally, a model of dark radiation and dark matter is presented where the non-diagonal entries
of the Kéhler metric, endowed by the logarithmic effects, modify the decays of the moduli to ax-
ions. The new contributions could not be underestimated, since axion can be overproduced and
saturate the bounds provide by the BBN and the effective neutrino number of species. Moreover,
two limiting cases (high and low scale) regarding the reheating temperatures are studied, where
WIMP dark matter candidates are found after moduli decays to degrees of freedom of the dark

sector.

In chapter 3, the phenomenology of local F-theory GUTs is presented. In the first subsection, a
flipped F-SU(5) is studied focusing in the implications to the neutrino sector and the W-boson
mass anomaly. The complete model building is providing, where the spectral cover approach is
used attributing to the matter curves and to the corresponding matter representations their ho-
mological indeces. The multiplicity of the representations are given according to the symmetry
breaking pattern and the anomaly cancellation is performed through the Green-Schwarz mech-
anism. The low energy superpotential terms allow an inverse seesaw mechanism, where the new
scale M is introduced due to the presence of singlet states. The novelty of F-theory constructions
is that the weights of the perpendicular symmetry modify the couplings in the superpotential,
since singlet states have to be augmented and their vevs will characterize the scale of the Yukawa
terms. Proton decay is safely stable as long as the masses of the dangerous Higgs triplets are ac-
quiring masses at Mgy scale, while neutrinoless double beta decay is used as probe for measuring
the lepton number violating effects in the presence of the sterile states. The model;s spectrum
contains an additional electron-like pair of neutral singlets, whose vevs can be connected to an
explanation for the g, — 2 anomaly since these vector-like singlets mix with the leptonic sector.
In the last part of this thesis, we argue that the different patterns of quarks and leptons could be
understood through imposing a flavor symmetry. An F-theory derived SU (5) model is presented
where internal fluxes break the modular group down to S; due to stabilized complex structure
moduli. This discrete modular family group along with the assigned different modular weights
for the matter fields lead to Yukawa matrices, whose textures are parametrized by modular forms’
components. Despite lacking the string framework that would provide additional constraints to
the free parameters of the model, this approach on model building provides insights on the po-
tential embedding of the families into the representations, especially on how they are seperated

in the superpotential level due to their modular weight. To support our arguments and justify
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the existence of correct prediction for the CKM and the PMNS matrix, a numerical y? analysis is
performed scanning the parameter space for available solutions, which also indicate the values of
the complex structure moduli which should lay on the plane shaped by the residual congruence

modular group.
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5 APPENDIX

5.1 MIXING MATRIX FOR DARK RADIATION SECTION

Given the case studies discussed in section 3., we are going to characterize the mixing between
the moduli and the normalized fields ¢;, based on the mass matrix in equation (2.2.24). In the
following form and tracking the procedure given in [151; 172], the mixing matrix P;; for the two

cases can be written as:

T
T1 ﬁl
T | = 171 d)l + az ¢2 + 17[3 ¢3, Pij = 1_4)2 (511)
V i

For the derivation of the corresponding eigenvectors can be derived by following the recipe:

i i

Mlzjﬁ, = mZﬁi, ﬁT -K - ﬁj = 51’]‘, (5.1.2)

where the two components of the each eigenvector will be defined by the first relation, while the
normalization condition will fix the latter component. Consequently, for each case discussed in

section 3., the mixing of the moduli can be approximated to:
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16V3d°/°4fEq  512V3d7/5JE?  5123d"3/°4[Eq? INTAG s s
w w? w? S\w Vvt 2V
p® | _2eVa¥v 2Vl NG [v pP | 512V3d%5E  16V3d/oNfEq  512V3g*dE
Y Vs Vdvs Vv s ’ ij w2 w w2 ’
\/5\/? o2 d v 22 512V3d3/0Eg?  512V3PENAE  48V3d%/6/Eg
TN TTew wz = 5

(5.1.3)

where the variables s, w are defined as:
s=V(dV)3+8, w=48gVd>V +2q+3. (5.1.4)
The corresponding eigenvalues for both cases are given below:

m2 a) o (Tr[MZ]
[T

Det[M?]

) Det[M?] Det[M?]
" Tr[M2]2”

,Tr[M? : :
riM] Tr[ME2 4Tr [ M2

m;f) = (Tr[M?] ). (5.15)
Now, the crucial next step is to define which normalized field mainly describes each one of the
geometric moduli. Starting from the first case @), one can easily observe the dependence of
the textures on the uplift parameter d. This observation is important since, in this case, the uplift
parameter is exponentially small due to the smallness of the integer fluxes. Thus, the denominator
of the fractions containing the parameter d turns to be extremely small and the mixing between

the fields is rendered trivial.

d5/6 7/6 d13/6 )
"2 OGN O G U Ggge e = P

7y = O(dPVYO) gy + O(d PV gy + O(VV?)hs = PL b,

2

V = OV g +Od PV V) gy + O(d V) pg = PL s . (5.1.6)

From the above, it is remarkable that in the regime of exponentially small fluxes |'W;| < 1, there
exists a geometric separation between the world volumes. The overall volume is given by ¢s,
while the transverse directions are approximately independent of this field. Additionally, one
could also observe the correlation of the uplift parameter and the value of V at the minimum.
Even in the case of V > 1, the uplift parameter d will compensate the suppression of the mixing,

providing this nice geometric result.
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The second case ) of mixing following the same reasoning results in a qualitatively same mixing:

= 0(2V2 d*PPV =) gy + 0(2V2 APV gy + O(V2V V) s = PP,
7 = O( (dﬁ/f’(v g1+ 0@ Vg, + O (d“ﬁ(v g3 = Py,

V=0 \/_dS/é(V_m)qﬁ 1+0( \/_dl/é(v 23 gy + OV gy = Pllgs . (5.17)

Again, in this case the overall volume V is given by a single normalized field ¢s. It is remarkable
that geometric separation is a generic feature shared by this compactified space, where this fact
is unraveled only after the process of finding the correct eigenvectors of the system. This feature
was not given much attention on previous works [101], where the inflation scenario was studied
as a multi-field system. This could be avoided after picking the appropriate scale for the fluxes
“Wh. A final remark is that the computations given in this appendix will also be used in section

4., where the coupling of the normalized fields to the axions and Higgses will be calculated.

5.2 DECAY RATE FORMULAS

For the derivation of the decay rates given in the main body of this paper, we used the standard

formula:

M 2
rot M s, (5.2.1)

S 2E
where the djps is the element of the Lorentz invariant phase space and S is the symmetry factor.
The decaying particle’s energy is parametrized by E. There are two possible decay channels,

which can be written as:

Lo gpi)* +gdix . (5.2.2)

In the above equation, we have assumed that the mass of ¢; is much heavier than ¢, y. The
symmetry factor and the matrix element for the first case is given S = 2 and |M|* = 4¢?, while for
the latter one is summarized to S = 1, |[M|?> = g%. The corresponding coupling g in each process

will be read by the Lagrangian terms, so the two decay rates are evaluated to be:
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(5.2.3)

Lgoyy = Lg—yy =

8wmyg, 16wmgy,

5.3 GENERAL FORM OF D-TERMS

In this appendix, we provide a detailed stabilization using the generic D-terms formula, following
the work of [141; 159; 160], and we focus on finding the relevance of the derived vacuum with
our approximation in equation (2.2.9). Starting from the generic formula of the D-terms (2.2.7), it

can be expanded to:

e 3 LS =5 (2 Q) (0 Gl (01, Q).

i3 Ui 1\ 72 73 T2\ T 73 3\ T T2

(5.3.1)

The global embedding of this toy model has been analyzed in [159]. In this work, we need to
stabilize two moduli by the D-terms, which fact is of particular importance for embedding con-
sistent inflationary paradigms in such string scenarios [141; 159; 160]. In order to do so, we are

going to assume that the charges Q;; obey to the following relations:

Q12=023=031, Q21=013=03, Q2% Q1. (5.3.2)

In addition to that, we could in general assume that Q;; = 1, Q51 = 0, since this could significantly
simplify the form of the moduli’s eigenvalues and eigenvectors, helping us to study the qualitative
behavior of dark radiation in a stabilized dS vacuum. Also, since we would like to compare this
new vacuum with the vacuum presented in the main body of the paper, we are going to redefine
the 71, 7, moduli as 77, 7.

di  drjT? s

72 4 2
T,°1] % TV

Vp = (5.3.3)

Minimizing with respect to 7, 7, and V, we have the following minima:
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Vipin = . (5.3.4)

After applying the minimal values of 7], 7, at the D-terms, we get the expected formula:

3d

=77 d = (didyds)'? . (5.3.5)

Vb
Readily, one can see that we haved arrived to the exact same minimal value for the volume mod-
ulus V,,in. Taking into account the derived minima in equation (2.2.13) and the minima derived
from the generic form (5.3.4), it readily found that they are related up to a scaling in the uplifting

parameter d.

g dd)P (ddy)?
1 — 5 2 — s
1 d§/9 2 df”
n=d"’c, = :T—é (5.3.6)
1 1> 2 d4/3 . D

In the last step we have used d; = d°/(dyd3), d; = 1, d3 = 1. Consequently, we can deduce that
this equivalence of the vacua does not spoil the analysis with respect to the observable quantities
in this model, since the scaling (and the minimal value) with respect to the compactified volume

YV is the same.

5.4 SUPERSYMMETRIC CONDITIONS FOR THE FLIPPED SU (5)

Consistency with supersymmetry and anomaly cancellation requires that the singlet VEVs are
subject to F- and D-flatness conditions. The following hierarchy of scales is assumed (H) ~
(H) ~ Mgut = M. The singlet VEVs are also assumed to be smaller than the string scale M.
Using the identification (3.1.28) and Z, monodromy, the Yukawa lagrangian for the singlet fields
is W = Ay 70y + A0y + Ms® + My yx+ Ml/,thb + Mgg;{ .ThemassscalesM;, M, etc are assumed

to be arbitrary and will be fixed through the flatness conditions. The F-flatness equations are
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W, _
T8 0= MYl +Myp=0
oY

W ] _
— =0=> M4+ My =0
oy 1X¢ ¢¢
W, _ _
a—;=0$/12¢)(+M§gV:O

W, _

TS — 0 LY+ My =0

ox

IWs

— =0= Lyl +Myy =0

Y 2X¢ 4

oW,

a_ZS =0= A+ M =0, (5.4.1)

The D-term flatness constraint needs, also, to be imposed which has the following form:

Z qi(eizj - ejz'i) = _CMsztr =

i#]

0 (X = 1)+ qp (= 9°) + g (% = ) = —cM;,, . (5.4.2)

In order to derive a solution to the flatness condition, we need to impose the following conditions

M, =-AiMy, ¢i=1. (5.4.3)
Then, we obtain
_ Mgvp __ Ml/,O'
X ke YT
yo Mg My
M A
_ MII/U s _Mlpp
= _p (=
p=((ME+cM2 AN - XM, o = (222 — M2)V2 (5.4.4)

Demanding the p-term (y singlet) and ¢ to lay at the TeV scale, we are going to derive some

bounds on the parameters above.
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% 1 - Myl
?:1,%:_,50: X/l,Ml’/,»l. (5.4.5)
¥ 2
So, the corresponding bounds for the parameters are:
244 292
2 M MAAT — M2A
22« _—w M? < M;Af, c> % (5.4.6)
M Y ~TeV ALMg,

5.5 ADDITIONAL MODELS FOR THE FLIPPED F — SU(5)

In this paper we have explored a flipped SU(5) model based on a specific choice of fluxes and
choosing a particular matter curve to accommodate the Higgs fields. However, there are other
choices which may lead to somewhat modified phenomenological implications. Here we present

two possible modifications.

We may change the Higgs doublets of the model, discussed in the main text by choosing the
fluxes M}, — M?, = 1, so the new Higgs fields are

h_t,—t,5 flt1+t3, (5.5.1)

Whnatter =ASFifh) + ALFFihy) + Af €5 fih) + kiHFisyr

ijvi
+ amjEq€$y + PrnEmEnl + ynjEnfihd, (5.5.2)

Whiggs = 'ué;(l + /ILIHHQ‘:)I:Ih + AHHHfllﬁg + AHHHh()(g + gzlﬁ) . (5.5.3)

An alternative model with non-zero flux P is the following:

2
10 M10
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This leads to the matter field assignment:

10, (F) : 3% (Q.d5, ), 5, (F) :2x (uf,Ly), 54 (f) : 1 X (u5, Ls)
1, 0 4% (ef), 1y 12X (EY), 14 :=3x(E°), 5.9, :1Xh, 5.4, :1Xh, (5.5.4)

The superpotential for the matter fields is

Winatter =A5Fifihy + /‘l;}‘Fifj'ﬁ + ALFFih+ A% e fih + /'l{‘?ecfjlh)ﬁ

j ij%i ijri
+ kiHFs § + amES, e + BunES ESL + yuj B fihy
N }’;,jEflfj/hXﬂp» (5.5.5)
and for the Higgs
Whiggs = At/ (1+ L, HHY) R + AgHHA(* + x*{%) + AgHHRRL . (5.5.6)
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