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Abstract

This thesis aims to provide a better understanding of the moduli stabilization mechanisms in
string theory and the phenomenological consequences of Grand Unified Theories (GUTs) in the
framework of F-theory. In the first section, a review of the Standard Model is provided along with
the open problems in high energy physics and cosmology. Moreover, the most promising solu-
tions for the Kähler moduli stabilization problem are analyzed, along with the basic geometric
tools for constructing local F-theory GUTs. In the next chapter, the analysis of perturbative mod-
uli stabilization with 𝐷7 is presented, where the logarithmic string loop corrections are added to
the Kähler potential complementing the contributions of non-perturbative corrections to the su-
perpotential. We show that de Sitter (dS) vacua are accessible to the low-energy effective theory
due to the uplifting effects of the D-terms, emerging from the magnetic fluxes in the 𝐷7 branes
context. In addition, more complex geometric compactifications are discussed exhibiting the uni-
versal effect of the loop corrections to the search for dS vacua beyond the simple toroidal-like
volumes. Apart from the stabilization conditions, a model of dark radiation and dark matter is
suggested, where the moduli decay into closed string axions, comprising the dark radiation of
the universe. Additionally, moduli decays to the dark sector degrees of freedom could in prin-
ciple produce the correct dark matter abundance. From the F-theory perspective, two different
GUTs are presented. In the first attempt, a flipped 𝑆𝑈 (5) is constructed in the spectral cover
approach, where right handed and sterile neutrinos are augmented to explain the tiny mass of
the left handed partners. Furthermore, phenomenological issues like proton decay, 0𝜈𝛽𝛽 decay
and 𝑔𝜇 − 2 are explained, in light of the new symmetry breaking scales introduced in the model.
Finally, an F-theory 𝑆𝑈 (5) model is examined, pointing towards the emergence of a flavor fam-
ily symmetry from internal fluxes. The complex structure moduli of the geometry’s tori are laid
stabilized to specific non-linear paths due to 𝐺3 fluxes, resulting in the breaking of the 𝑆𝐿(2, 𝑍 )
symmetry down to a congruence subgroup Γ𝑁 . Based on the above, an 𝑆𝑈 (5) × 𝑆4 is utilized to
explain the Yukawa matrices in both the quark and the neutrino sector, where the whole setup is
parametrized by the values of the moduli. In the last chapter, a conclusion is outlined sketching
the prospects for future expansions.

ix



Περίληψη στα Ελληνιϰά

Η σύγχρονη εποχή της Φυσιϰής Υψηλών Ενεργειών βασίζεται στις αναϰαλύψεις του Καϑιε-
ρωµένου Προτύπου Θεµελιωδών Αλληλεπιδράσεων (ΚΠ) ϰαι της Γενιϰής Θεωρίας της Σχετι-
ϰότητας ϰατά τον περασµένο αιώνα. Παρά τις πολλαπλές προσπάϑειες ερευνητών δεν έχει
επιτευχϑεί η πλήρης ενοποίηση των ϑεµελιωδών δυνάµεων της φύσης, ϰαϑώς το ΚΠ περιγράφει
τις πυρηνιϰές δυνάµεις (ισχυρή ϰαι ασϑενής πυρηνιϰή) ϰαι την ηλεϰτροµαγνητιϰή δύναµη, α-
γνοώντας τη βαρύτητα. Το ΚΠ βασίζεται στην ϰβαντιϰή ϑεωρία πεδίου για να περιγράψει
τις συµµετρίες βαϑµίδας 𝑆𝑈 (3) × 𝑆𝑈 (2)𝐿 ×𝑈 (1), οι οποίες χαραϰτηρίζουν όλες τις αλληλεπι-
δράσεις των υποατοµιϰών σωµατιδίων σε πειραµατιϰά επαληϑευµένο επίπεδο. Η πρόσφατη
αναϰάλυψη του µποζονίου 𝐻𝑖𝑔𝑔𝑠 από τον µεγάλο επιταχυντή αδρονίων (𝐿𝐻𝐶) στο Ευρωπαϊϰό
Πυρηνιϰό Κέντρο Ερευνών (𝐶𝐸𝑅𝑁 ) ολοϰλήρωσε εν πολλοίς το ΚΠ, όµως διάφορα ερωτήµατα
παραµένουν αναπάντητα εντός του πλαισίου του. Αναφέροντας ενδειϰτιϰά µεριϰά από αυτά: α)
την ϰβάντωση του φορτίου ϰαι την ενοποίηση των ζεύξεων βαϑµίδας β) η προέλευση της µάζας
των νετρίνων γ) η παρατηρούµενη ιεραρχία στις µάζες των σωµατιδίων ε) η ένταξη της βαρύτη-
τας σε ϰβαντιϰό επίπεδο. Παράλληλα µε τις εξελίξεις στην σωµατιδιαϰή φυσιϰή, ϰοσµολογιϰές
έρευνες υποδειϰνύουν την διάρϑρωση στην δοµή της µάζας του σύµπαντος, από την οποία
το 85% δεν αϰτινοβολεί. Η φύση της σϰοτεινής ύλης παραµένει άγνωστη ϰαι πιστεύεται πως
αποτελείται από σωµατίδια που εδρεύουν σε σϰοτεινούς τοµείς της γεωµετρίας του σύµπαντος,
αλληλεπιδρώντας αµιδρώς µε τα σωµατίδια του ΚΠ.

Καταδειϰνύεται, λοιπόν, ως επιταϰτιϰή ανάγϰη η προέϰταση του ΚΠ σε µία περισσότερο ο-
λοϰληρωµένη ϑεωρία για την ορϑότερη περιγραφή των σωµατιδίων σε όλες τις ενεργειαϰές
βαϑµίδες. Οι ϑεωρίες πέραν του ΚΠ ονοµάζονται Μεγαλοενοποιηµένες Θεωρίες Βαϑµίδας
(𝐺𝑟𝑎𝑛𝑑 𝑈𝑛𝑖 𝑓 𝑖𝑒𝑑 𝑇ℎ𝑒𝑜𝑟𝑖𝑒𝑠, 𝐺𝑈𝑇𝑠), οι οποίες περιγράφονται από µεγαλύτερης συµµετρίας αλγε-
βριϰές οµάδες που έχουν ώς υποοµάδες το ΚΠ. Ενιδειϰτιϰά ϰάποιες από τις οµάδες αυτές είναι
𝑆𝑈 (5), 𝑆𝑂 (10) ϰαϑώς επίσης ϰαι οι ειδιϰές οµάδες 𝐸6, 𝐸7, 𝐸8. Χαραϰτηριστιϰότερο παράδειγµα
πρόβλεψης αυτών των ϑεωριών αποτελεί το Ελάχιστο Υπερσυµµετριϰό Μοντέλο, που µε την
εισαγωγή της Υπερσυµµετρίας, ϰαταφέρει να επιτύχει την σύζευξη των ζεύξεων σε ϰλίµαϰα
∼ 1016 𝐺𝑒𝑉 . Αϰόµη, η ύπαρξη µεγαλύτερης διάστασης αναπαραστάσεων στις 𝐺𝑈𝑇𝑠 µπορούν
να εξηγήσουν την προέλευση της µάζας των νετρίνων, µέσω της εισαγωγής νέων σωµατιδίων
ϰαι πρωτότυπων µηχανισµών. Παρόλα αυτά, τα προβλήµατα στην προέλευση της ιεραρχίας
των µαζών, ϰαϑώς ϰαι η ελλειπής περιγραφή των αλληπιδράσεων σε αρϰετά υψηλές ενέργειες
οδήγησε στην µελέτη της Θεωρίας των Υπερχορδών. Η συγϰεϰριµένη ϑεωρία επιτυγχάνει σε
µαϑηµατιϰό επίπεδο να εντάξει ϰαι την βαρύτητα σε ϰβαντιϰό επίπεδο σε ενεργειαϰές ϰλίµα-
ϰες, όµως, πολύ υψηλότερες από των προαναφερϑέντων ϑεωρίων 𝑀𝑃𝑙𝑎𝑛𝑐𝑘 � 2.4 × 1018 𝐺𝑒𝑉 .
Βαρύνουσας σηµασίας στην ϑεµελίωσης της ϑεωρίας υπερχορδών παίζουν εϰτεταµένα αντι-
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ϰείµενα, οι µεµβράνες 𝐷-𝑏𝑟𝑎𝑛𝑒𝑠 , οι οποίες εϰτείνονται πέραν των τριών χωριϰών διαστάσε-
ων. Η ύπαρξη περισσοτέρων χωριϰών διαστάσεων στο σύµπαν αποτελεί εφαλτήριο για την
πρόταση ϰαινοτόµων λύσεων, αλλά προϋποϑέτει τις ϰατάλληλες συνϑήϰες συµπαγοποίησης
(𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛) της ϑεωρίας. Η ϑεωρία χορδών διαχωρίζεται σε πέντε διαφορετιϰές ϑεωρίες:
η τύπου Ι, οι ϑεωρίες τύπου ΙΙ (ΙΙΑ ϰαι ΙΙΒ) ϰαι οι ετεροτιϰές χορδές (𝑆𝑂 (32), 𝐸8 × 𝐸8).

Η παρούσα διατριβή εστιάζει στις ϑεωρίες τύπου ΙΙΒ ϰαι στην µη-διαταραϰτιϰή ολοϰλήρωση
αυτής την 𝐹 -ϑεωρία. ΄Οσον αφορά την πρώτη, η παρούσα µελέτη ασχολείται µε τις συνϑήϰες
σταϑερότητας του συµπαγοποιηµένου χώρου. Πιο συγϰεϰριµένα, η γεωµετρία του χώρου ϰα-
ϑορίζεται από τις τιµές ορισµένων βαϑµωτών πεδίων, των𝑚𝑜𝑑𝑢𝑙𝑖 , τα οποία χωρίζονται σε δυο
ϰατηγορίες: τα 𝐾 ”𝑎ℎ𝑙𝑒𝑟 ϰαι τα µιγαδιϰής δοµής. Επιϰεντρώνοντας την προσοχή µας στην ϰατη-
γορία των 𝐾 ”𝑎ℎ𝑙𝑒𝑟 , µελετήϑηϰε η συνεισφορά των ϰβαντιϰών διαταραϰτιϰών διορϑώσεων στο
δυναµιϰό𝐾 ”𝑎ℎ𝑙𝑒𝑟 . Η µορφή αυτών των διορϑώσεων είναι λογαριϑµιϰής µορφής ϰαι η προέλευση
τους οφείλεται σε σϰεδάσεις βαρυτονίων µεταξύ των µεµβρανών ϰαι εντοπισµένων ϰορυφών
της τετραδιάστατης δράσης 𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛-𝐻𝑖𝑙𝑏𝑒𝑟𝑡 στον ϰάϑετο χώρο των µεµβρανών. Αϰόµη, η
συνέργεια µεταξύ των προαναφερϑέντων ϰβαντιϰών διορϑώσεων ϰαι των µη διαταραϰτιϰών
διορϑώσεωνστο υπερδυναµιϰό οδήγησεσε έναβαϑµωτό δυναµιϰό µε𝐴𝑛𝑡𝑖 𝑑𝑒-𝑆𝑖𝑡𝑡𝑒𝑟 (𝐴𝑑𝑆) ελάχι-
στο. ΄Οµως, η παρατήρηση του συνεχώς επιταχυνόµενου σύµπαντος ευνοεί τις 𝑑𝑒-𝑆𝑖𝑡𝑡𝑒𝑟 (𝑑𝑆)
λύσεις µε ϑετιϰή ϰοσµολογιϰή σταϑερά, γεγονός που οδηγεί στην εισαγωγή των 𝐷-όρων που
προσέφερουν την ανύψωση του δυναµιϰού στους ϑεµιτούς χώρους. Επιπρόσϑετα, µέσω αυ-
τής της µελέτης ερευνώνται οι επιτρεπόµενες τιµές ϰαι τα όρια που πρέπει να ιϰανοποιούν οι
ελεύϑερες παράµετροι της ϑεωρίας στην περίπτωση όπου ο συµπαγοποιηµένος χώρος είναι το-
ροειδούς µορφής, αλλά ϰαι σε πιο γενειϰευµένες γεωµετρίες υποβάϑρου. Σε ένα δεύτερο βαϑµό,
εξετάζεται η προέλευση της σϰοτεινής αϰτινοβολίας ϰαι της σϰοτεινής ύλης υπό το πρίσµα
των νέων λογαριϑµιϰών διορϑώσεων. Ειδιϰότερα, µελετήϑηϰαν οι µεταπτώσεις των 𝑚𝑜𝑑𝑢𝑙𝑖
σε αξιονιϰούς βαϑµούς ελευϑερίας, που εµπεριέχονται στην τύπου ΙΙΒ ϑεωρία, ώστε αυτοί να
αποτελέσουν την σωµατιδιαϰή φύση της σϰοτεινής αϰτινοβολίας. Παράλληλα, οι επιπτώσεις
αυτών των σωµατιδιών περιορίζονται από ϰοσµολογιϰά όρια, όπως ο αριϑµός των γενιών στα
νετρίνα ϰαι οι µάζες των βαϑµωτών𝑚𝑜𝑑𝑢𝑙𝑖 . ΄Οσον αφορά την σϰοτεινή ύλη, οι µεταπτώσεις των
𝑚𝑜𝑑𝑢𝑙𝑖 σε σωµατίδια των σϰοτεινών τοµέων, που δεν αλληλεπιδρούν µε τα σωµατίδια του ΚΠ,
οδήγησε στην µελέτη των µεϑόδων παραγωγής τους ϰαϑώς ϰαι της εναποµείνουσας ποσότητας
τους στο σύµπαν. Οι δύο ϰυριότεροι µηχανισµοί παραγωγής αποδειϰνύεται πως σχετίζονται
µε δύο διαφορετιϰές ϰλιµαϰές ενέργειας για την ϑερµοϰρασία επαναϑέρµανσης του σύµπαντος,
ϰαταλήγοντας να υπάρχει η πιϑανότητα για ύπαρξη σωµάτων σϰοτεινής ύλης µε µάζα από
µεριϰά 𝐺𝑒𝑉 µέχρι ϰαι 1011 𝐺𝑒𝑉 .
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Στο δεύτερο µέρος, η διατριβή εστιάζει στην 𝐹 -ϑεωρία ϰαι στην ϰατασϰευή𝐺𝑈𝑇𝑠 µε σϰοπό την
επεξήγηση φαινοµενολογιϰών ζητηµάτων. Κατά πρώτον µελετήϑηϰε το µοντέλο 𝑓 𝑙𝑖𝑝𝑝𝑒𝑑 𝑆𝑈 (5)
στο πλαίσιο του 𝑠𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑐𝑜𝑣𝑒𝑟 , που γεωµετριϰά σχετίζει τις ιδιότητες της ύλης µε τοπολογιϰές
ιδιότητες ϰαι την προέλευση της συµµετρίας βαϑµίδος µε τις ρίζες της εξίσωσης του. Στο συγϰε-
ϰριµένο µοντέλο εξετάσϑηϰε το µοντέλο 𝑠𝑒𝑒𝑠𝑎𝑤 για την αναζήτηση µάζας των νετρίνων, ϰαϑώς
επίσης ϰαϑορίστηϰε το ενδιάµεσο σπάσιµο της συµµετρίας για την αποφυγή παρατήρησης
διάσπασης πρωτονίου. Αϰόµη, µέσω των νέων διανυσµατιϰού τύπου σωµατιδίων προτείνεται
µία λύση για το πρόβληµα του 𝑔𝜇 − 2, ενώ η πρόσφατη διαφορά στην µάζα του µποζονίου𝑊
µπορεί να εξηγηϑεί λόγω παραβιάσεων της µοναδιϰότητας στον λεπτονιϰό τοµέα. Αναφοριϰά
µε την εργασία στο τελευταίο ϰεφάλαιο της διατριβής, αυτή εξετάζει την 𝑚𝑜𝑑𝑢𝑙𝑎𝑟 συµµετρία
ϰαι τις συνέπειες της στην µελέτη του προβλήµατος της γεύσης των σωµατιδίων. Η προ-
έλευσης αυτής της διαϰριτής συµµετρίας εντοπίζεται στην γεωµετρία, όπου η συµπαγοποίηση
γίνεται σε τόρους. Αυτοί χαραϰτηρίζονται από την 𝑆𝐿(2, 𝑍 ) συµµετρία, συνεπώς η εισαγωγή
εσωτεριϰών ροών προϰαλεί το σπάσιµο της συµµετρίας οϑώντας τα µιγαδιϰής δοµής𝑚𝑜𝑑𝑢𝑙𝑖 σε
συγϰεριµένες διαδροµές. Οι υποοµάδες που παράγονται από το προανεφερϑέν σπάσιµο ορίζουν
πίναϰες Γ𝑁 διάστασης 2 × 2 µε αϰέραια στοιχεία ϰαι βαϑµό Ν. Ο βαϑµός 𝑁 εµπλέϰεται στον
υπολογισµό του σπασίµατος συµµετρίας ϰαι ϰαϑορίζεται από τις αϰέραιες ροές οδηγώντας σε
πιϑανές συµµετρίες γεύσης όπως η 𝑆4 για 𝑁 = 4. Με βάση τα παραπάνω, η τελιϰή συµµετρία
του 𝐹 -ϑεωρητιϰού µοντέλου είναι η 𝑆𝑈 (5) × 𝑆4, όπου µελετήϑηϰε η δοµή των 𝑌𝑢𝑘𝑎𝑤𝑎 πινάϰων
που στην συγϰεριµένη ειϰόνα αποτελούν 𝑚𝑜𝑑𝑢𝑙𝑎𝑟 σχήµατα. Το πλεονέϰτηµα της πρόσεγγι-
σης αυτής έγϰειται στο γεγονός πως η ιεραρχία µαζών (ϰουαρϰς ϰαι νετρίνων) ϰαι οι γωνίες
µίξης επέρχονται φυσιολογιϰά, µιας ϰαι τα διαφορετιϰά𝑚𝑜𝑑𝑢𝑙𝑎𝑟 βάρη των πεδίων µπορούν να
δοµήσουν ευνοϊϰότερα τις ζεύξεις του µοντέλου. Αϰόµη, τα συγϰεϰριµένα 𝑚𝑜𝑑𝑢𝑙𝑎𝑟 σχήµατα
ϰαϑορίζονται πλήρως από τις τιµές των γεωµετριϰών𝑚𝑜𝑑𝑢𝑙𝑖 γεγονός που είναι επιϑυµητό για
µια ϑεωρία που εξάγει από πρώτες αρχές τις προβλέψεις.
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1 | Theories beyond the Standard
Model

1.1 Overview of the Standard model

The Standard Model of particle physics describes the fundamental interactions (excluding grav-
ity) of particle physics as a quantum field theory [7; 8; 9; 10; 11]. This theory formulates the
aforementioned interactions under gauge symmetries, where the forces are mediated by the cor-
responding gauge bosons. All of nature’s particle content can be separated into two categories:
the fermions and the bosons. Fermions have half integer spin and bosons have integer spin. The
fermionic sector of the theory forms the matter, while bosons operate as force mediators. The
fundamental forces, which are contained in this framework, are the electromagnetic force, the
electroweak force and the strong force. All the ingredients above are based on the SM gauge
group:

𝐺𝑆𝑀 = 𝑆𝑈 (3)𝐶 × 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 . (1.1.1)

The first part 𝑆𝑈 (3)𝐶 is associated with the strong nuclear force, providing an explanation of the
forces between the quarks inside the nucleus. The quarks consist the fundamental matter com-
ponents, while the force mediators are labeled as gluons. These quarks come in three generations
due to their assigned quantum number and are confined inside the hadrons (composed of three
quarks) and mesons (composed of quark and anti-quark). The remaining part of the SM gauge
group 𝑆𝑈 (2)𝐿 × 𝑈 (1)𝑌 refers to the unified electro-weak sector of the theory. Apart form the
quarks, matter also contains some fermionic degrees of freedom called leptons. This category
contains three families with the electron being the lightest (𝑒, 𝜇, 𝜏), and their corresponding neu-
trinos (𝜈𝑒, 𝜈𝜇, 𝜈𝜏 ). The 𝑆𝑈 (2)𝐿 group refers to the weak isospin, acting on the left handed fermions,
while the𝑈 (1)𝑌 is the hypercharge group. Quarks (𝑢,𝑑, 𝑐, 𝑠, 𝑡, 𝑏) transform as a triplet under the
color group 𝑆𝑈 (3)𝐶 and as doublet under the 𝑆𝑈 (2)𝐿 . Leptons are neutral under the 𝑆𝑈 (3)𝐶 and
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are embedded in a doublet under the 𝑆𝑈 (2)𝐿 . Regarding the gauge bosons of the 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 ,
there are four different degrees of freedom: the three electroweak bosons (𝑊 ±, 𝑍 ) and the photon
𝛾 .

The missing part of all the above is the Higgs mechanism that provides mass to the particles
through the Yukawa couplings. Its discovery by the LHC experiment in CERN [12; 13] has almost
completed the puzzle of the SM. The vital contribution of the Higgs mechanism is to explain the
spontaneously broken symmetry of 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 down to the electromagnetic𝑈 (1)𝐸𝑀 around
the scale of ∼ 100 GeV. In Table 1., all matter content is shown collectively with respect to the
transformation properties under the SM gauge group.

Name Fields 𝑆𝑈 (3)𝐶 × 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌

Gauge bosons
𝐺

𝑊

𝐵

(8, 1)0
(1, 3)0
(1, 1)0

Quarks

(
𝑢

𝑑

)
𝐿

,
(
𝑐

𝑠

)
𝐿

,
(
𝑡

𝑏

)
𝐿

𝑢
†
𝑅
, 𝑐†

𝑅
, 𝑡†

𝑅

𝑑
†
𝑅
, 𝑠†

𝑅
, 𝑏†

𝑅

(3, 2) 1
6

(3̄, 1)− 2
3

(3̄, 1) 1
3

Leptons

(
𝜈𝑒
𝑒

)
𝐿

,
(
𝜈𝜇
𝜇

)
𝐿

,
(
𝜈𝜏
𝜏

)
𝐿

𝑒
†
𝑅
, 𝜇†

𝑅
, 𝜏†

𝑅

(1, 2)− 1
2

(1, 1)1

Higgs H (1, 2) 1
2

Table 1.1: Transformation properties of the elementary particles of the Standard Model.

The Standard model’s Lagrangian could be separated as below:

L = L𝐺 + L𝐹 + L𝐻 + L𝑌 , (1.1.2)

where the above terms stand for: L𝐺 for the gauge sector, L𝐺 for the fermions sector, L𝐺 for the
Higgs sector and L𝑌 for the Yukawa sector. We will describe in detail the terms of each sector
and provide the explanation of the Higgs mechanism. Starting with the gauge sector, the relevant
Lagrangian terms can be expanded to be:
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L𝐺 = −1
4
𝐺𝐴𝜇𝜈𝐺

𝐴𝜇𝜈 − 1
4
𝑊 𝐼
𝜇𝜈𝑊

𝐼 𝜇𝜈 − 1
4
𝐵𝜇𝜈𝐵

𝜇𝜈 , (1.1.3)

where the above field tensors of the SM gauge fields are defined as:

𝑆𝑈 (3)𝐶 : 𝐺𝐴𝜇𝜈 = 𝜕𝜇𝐺
𝐴
𝜈 − 𝜕𝜈𝐺𝐴𝜇 + 𝑔3𝑓

𝐴𝐵𝐶𝐺𝐵,𝜇𝐺𝐶,𝜈 , (1.1.4)

𝑆𝑈 (2)𝐿 : 𝑊 𝐼
𝜇𝜈 = 𝜕𝜇𝑊

𝐴
𝜈 − 𝜕𝜈𝑊 𝐴

𝜇 + 𝑔𝑒𝜖𝐴𝐵𝐶𝑊 𝐵,𝜇𝑊 𝐶,𝜈 , (1.1.5)

𝑈 (1)𝑌 : 𝐵𝜇𝜈 = 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇 . (1.1.6)

In these definitions, we have used the gauge coupling constants 𝑔3, 𝑔2 of the 𝑆𝑈 (3)𝐶, 𝑆𝑈 (2)𝐿 cor-
respondingly. In addition, the structure constants 𝑓 𝐴𝐵𝐶, 𝜖𝐴𝐵𝐶 have derived through the commu-
tation relations of the group generators

𝑆𝑈 (3)𝐶 : [𝑇 𝑎,𝑇𝑏] = 𝑖 𝑓 𝑎𝑏𝑐𝑇 𝑐, (1.1.7)

𝑆𝑈 (2)𝐿 : [𝑟𝑎, 𝑟𝑏] = 𝑖𝜖𝑎𝑏𝑐𝑟𝑐, (1.1.8)

where the 𝑇 matrices are related to the Gell-Matrices 𝑇 𝑖 = 𝜆𝑖/2 and the 𝑟 are associated to Pauli
matrices 𝑟 𝑖 = 𝜎𝑖/2. As for the fermionic sector, we need to introduce the covariant derivative:

𝐷𝜇 = 𝜕𝜇 + 𝑖𝑔1𝑌𝐵𝜇 + 𝑖𝑔2𝑊𝜇𝑆
𝐼 + 𝑖𝑔3𝐺

𝐴
𝜇𝑇

𝐴, (1.1.9)

where the 𝑆,𝑇 are the fundamental representation’s generators of the 𝑆𝑈 (2), 𝑆𝑈 (3), while𝑌 is the
hypercharge generator of each field. The electric charge 𝑞 of the theory is given by the 𝑞 = 𝑇 3+𝑌 ,
where the 𝑇 3 is the third generator of the weak isospin. Furthermore, we need to introduce the
fields definition as:

𝑄𝑖𝐿 =
©­­«
𝑢𝑖𝐿

𝑑𝑖𝐿

ª®®¬ , 𝐿𝑖𝐿 =
©­­«
𝜈𝑖𝐿

𝑒𝑖𝐿

ª®®¬ , 𝑢𝑖𝑅, 𝑑𝑖𝑅, 𝑒𝑖𝑅 . (1.1.10)
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L𝐹 = 𝑖 (𝐿 /𝐷𝐿 + 𝑒𝑅 /𝐷𝑒𝑅 +𝑄 /𝐷𝑄 + 𝑢𝑅 /𝐷𝑢𝑅 + 𝑑𝑅 /𝐷𝑑𝑅) . (1.1.11)

The most interesting part of the SM’s Lagrangian is related to the Higgs field. During the for-
mulation of the theory, the research community had no definite answer on how to include mass
terms to the Lagrangian. The problem was that SM treated the fields as massless particles, before
the introduction of the notion of Spontaneous Symmetry Breaking of gauge symmetries. The
mechanism states that a gauge symmetry could be spontaneously broken if the Lagrangian re-
spects the symmetry, but the vacuum state is not invariant under the relevant transformations.
The Higgs sector of the Lagrangian is written as:

L𝐻 = (𝐷𝜇𝐻 )†(𝐷𝜇𝐻 ) − 𝜇2𝐻 †𝐻 − 𝜆(𝐻 †𝐻 )2 . (1.1.12)

The above potential is invariant under the 𝑆𝑈 (2)𝐿×𝑈 (1)𝑌 , although the vacuum state is not. The
signs of the parameters 𝜇, 𝜆 will determine the structure of the vacua. It is proved that for 𝜇2 < 0
and 𝜆 > 0, there exists a plethora of vacua where once a single one is picked, then the symmetry
is broken. More precisely, we can write:

⟨𝐻 ⟩ = 1
√

2

©­­«
0

𝑣

ª®®¬ , (1.1.13)

where 𝑣 is the vacuum expectation value (vev) 𝑣 =
√︁
−𝜇2/𝜆. Furthermore, we can expand the

Higgs field around the minimum as:

𝐻 =
1
√

2

©­­«
𝐺+

𝑣 + ℎ0 +𝐺−

ª®®¬ , (1.1.14)

where the ℎ0 is a real scalar field, v is the vev and𝐺+,𝐺− are the Goldstone bosons [14; 15]. These
degrees of freedom are absorbed in the definitions of𝑊 + and 𝑍 0. Substituting in the equation
(1.1.12) the vev of the Higgs fields, we can derive four different tree level masses for the fields
𝑊 𝐼
𝜇 , 𝐵𝜇 , where these masses can be written as:
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𝑀2
𝑊 ± =

𝑔2
2𝑣

2

4
, 𝑀2

𝑍 =
𝑣2(𝑔2

1 + 𝑔2
2)

4
, 𝑀2

𝐴 = 0 . (1.1.15)

The new fields 𝑍,𝐴 are the mass eigenstates of the𝑊 3
𝜇 , 𝐵𝜇 , corresponding to massless photon

and the neutral gauge boson 𝑍 of the weak interactions. The observed inequality between the
charged bosons𝑊 ± and the 𝑍 boson leads to the so called Weinberg angle, which is defined as:

sin𝜃𝑊 =
𝑀𝑊

𝑀𝑍

, tan𝜃𝑊 =
𝑔1

𝑔2
. (1.1.16)

According to the experimental measurements, the strength of the forces render that the vev of
the Higgs fields must lie at 𝑣 � 246 GeV. The next step is to define the mass terms for the fields,
i.e. the Yukawa sector of the theory.

L𝑌 = −
∑︁
𝑖, 𝑗

𝑌𝑢𝑖 𝑗𝑄
†
𝑖
𝑖𝜎2𝐻

∗𝑢 𝑗𝑅 −
∑︁
𝑖, 𝑗

𝑌𝑑𝑖 𝑗𝑄
†
𝑖
𝐻𝑑 𝑗𝑅 −

∑︁
𝑖, 𝑗

𝑌 𝑒𝑖 𝑗𝐿
†
𝑖
𝐻𝑒 𝑗𝑅 + h.c. (1.1.17)

where the𝑌𝑖 𝑗 matrices are 3×3 complex-valued matrices. It is important to highlight the fact that
the mass matrices are not diagonal, so we need to perform a rotation of the basis. This rotation
can be specified to the following unitary transformation:

𝑌𝑢
𝑑𝑖𝑎𝑔

= 𝑉𝑢𝑌𝑢𝑖 𝑗𝑉
𝑢†, 𝑌𝑑

𝑑𝑖𝑎𝑔
= 𝑉 𝑑𝑌𝑑𝑖 𝑗𝑉

𝑑†, 𝑌 𝑒
𝑑𝑖𝑎𝑔

= 𝑉 𝑒𝑌 𝑒𝑖 𝑗𝑉
𝑒† . (1.1.18)

One important implication of the above discussion is that one can write down the weak interac-
tion vertex between fermions and𝑊 ± bosons as:

L ⊃ 𝑔𝑢†
𝑖
𝑑 𝑗𝑊

+ + h.c. ⊃ 𝑔𝑢†
𝑖
(𝑉 †
𝑢 𝑉𝑑)𝑖 𝑗𝑑 𝑗𝑊 + + h.c. (1.1.19)

The new matrix obtained parametrizes the mixing angles between the fermions and the weak in-
teractions gauge bosons. The name of the matrix is denoted as the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix [16; 17]
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𝑉𝐶𝐾𝑀 = 𝑉 †
𝑢 𝑉𝑑 . (1.1.20)

The CKM matrix has a standard parametrization, containing four degrees of freedom. This
parametrization is summarized below:

𝑉𝐶𝐾𝑀 =

©­­­­­­«
𝑐12𝑐13 𝑠12𝑐13 𝑐13𝑒

−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒

𝑖𝛿 𝑠23𝑐13

𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒
𝑖𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒

𝑖𝛿 𝑐23𝑐13

ª®®®®®®¬
, (1.1.21)

where the above matrix contains the definitions: cos(𝜃𝑖 𝑗 ) = 𝑐𝑖 𝑗 , sin(𝜃𝑖 𝑗 ) = 𝑠𝑖 𝑗 and 𝛿 stands for a
phase.
As for the open problems of the SM, there are several phenomenona that cannot be explained
within its context. In this paragraph, we will try to refer in short to some of them, before pro-
ceeding to a more complete theory of SM, string theory. From the particle physics point of view,
some of them are:

• Dark Matter: This unknownmatter comprise almost 30% of the mass-energy content of the
universe. Its characteristic effect is that it cannot radiate, while we assume that it has to be
electrically neutral in order to be stable. In addition, none of the SM particles can match
the observations due to the assumed dark matter, thus there is a necessity to introduce new
degrees of freedom.

• Neutrinos: According to the SM, neutrinos have to massless. Although, an observed phe-
nomenon known as Neutrino Oscillations [18], has proved that they do have a tiny mass.
The transitions between their different flavors cannot be explained without some small
mass differences among these particles. In the quantum field theory language, the flavor
eigenstates are expressed as a linear combination of the mass eigenstates 𝜈1,2,3.

𝜈𝑖𝐿 =
∑︁
𝑖, 𝑗

𝑈𝑖 𝑗𝜈𝐿𝑗 , 𝜈𝑖𝐿 = (𝜈𝑒, 𝜈𝜇, 𝜈𝜏 ) . (1.1.22)

In the above definition, we have included a unitary mixing matrix 𝑈 , which measures the
mixing between the states and it is an analogue to the CKM matrix. This matrix is called
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Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. AS for the upper bound on neutrinos
mass, cosmological bound place it around [19]:

∑︁
𝑖

𝑚𝑖 < 0.12 eV . (1.1.23)

Despite the shortcomings with respect to the particle nature of high energy physics, there are
additional open questions regarding the cosmological evolution.

• Cosmological Constant: Recent observations of supernovae imply that an accelerated phase
of the universe is taking place. This fact would require for the equations of motion to have
some specific form. Starting from the Friedmann-Robertson-Walker (FRW) metric:

𝑑𝑠2 = −𝑑𝑡2 + 𝛼 (𝑡) ( 𝑑𝑟 2

1 − 𝑘𝑟 2 + 𝑟 2(𝑑𝜃 2 + sin2 𝜃𝑑𝜙2)), (1.1.24)

where the scale factor parametrizes the radial size of the universe. This factor is deter-
mined by the Einstein equations, where a source of negative pressure has been added, the
cosmological constant Λ.

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑅 = 8𝜋𝐺𝑇𝜇𝜈 − Λ𝑔𝜇𝜈 . (1.1.25)

The above equations lead to the Friedmann equations of motion, which are summarized to:

( ¤𝛼
𝛼
)2 =

1
3𝑀2

𝑝

𝜌𝑡𝑜𝑡 −
𝑘

𝛼2 + Λ

3
(1.1.26)

¥𝛼
𝛼
= − 1

6𝑀2
𝑝

(𝜌𝑡𝑜𝑡 + 3𝑝𝑡𝑜𝑡 ) +
Λ

3
, (1.1.27)

where for the correct explanation of an accelerated universe, a positive contribution for the
Λ > 0 is required. This cosmological constant lay at the scale of Λ � 10−120𝑀4

𝑃
, since recent

astronomical observations indicate that it has a positive (non vanishing) value [20].

• Baryon Asymmetry: Within the context of standard cosmology, matter and anti-matter
should have been equally produced during the Big Bang. Nevertheless, current observation
tend to point towards that universe’s matter mainly consists of matter. Several solutions
has been provided through the years [21; 22; 23], where this question remains an open
problem yet.
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1.2 Basic notions of type IIB flux compactifications and
F-theory

1.2.1 String compactifications

The most interesting formulation of string theory is in a ten dimensional flat Minkowski space.
There are many representations of string theories, which are summarized to : type IIA and IIB
closed string theories, type I theory, heterotic string theory, M-theory and the non-perturbative
formulation of type IIB theory, the F-theory. The main problem of the above theories is that we
have to correctly compactify the additional six spatial dimensions, since the the living world is
a four dimensional space. Working in this direction, the ten dimensions are a product of four-
dimensional space with six internal dimensions compactified. Mathematically speaking, this is
translated to:

𝑑𝑠2
10 = 𝑒

−2𝐴(𝑦)𝑑𝑠2
4 + 𝑒2𝐴(𝑦)𝑔𝑚𝑛𝑑𝑦

𝑚𝑑𝑦𝑛, (1.2.1)

where the 𝑦𝑚 parametrize the internal coordinates and 𝐴(𝑦) stands for the wrap factor. Varia-
tions of the wrap factor may result into interesting physical implications, where a separation be-
tween the branes could address the hierarchy problem. This scenario was formulated as Randall-
Sundrum model [24; 25]. The notion of fluxes in warped geometries are given by the background
values for certain tensor fields, which wrap the internal cycles of the manifold. Focusing more
in the type IIB superstring theory in ten dimensions [26; 27; 28; 29], we have to write down its
action in Einstein frame:

𝑆𝐼 𝐼𝐵 =
1

2𝑘2
10

∫
𝑑10𝑥

√
−𝐺 (𝑅 − 1

2
| 𝜕𝜏
𝐼𝑚𝜏

|2 − |𝐺3 |2
2𝐼𝑚𝜏

− 1
4
|𝐹5 |2) +

1
8𝑖𝑘2

10

∫
𝐶4 ∧𝐺3 ∧𝐺3

𝐼𝑚𝜏
, (1.2.2)

where the three-form parametrized the field strengths 𝐺3 = 𝐹3 − 𝜏𝐻3 with the axio-dilaton 𝜏 =

𝐶0 + 𝑖𝑒−𝜙 . The field strengths are defined through the following relations:

𝐻3 = 𝑑𝐵2, 𝐹3 = 𝑑𝐶2, 𝐹5 = 𝑑𝐶4 −
1
2
𝑑𝐶2 ∧ 𝑑𝐵2 +

1
2
𝐵2 ∧ 𝑑𝐶2 . (1.2.3)

Moreover, type IIB string theory has an additional 𝑆𝐿(2, 𝑅) symmetry, which leaves invariant the
metric and the 𝐶4 axion. The transformation properties of the remaining fields are given by:
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𝜏 → 𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑 ,

©­­«
𝐶2

𝐵2

ª®®¬ →
©­­«
𝑎 𝑏

𝑐 𝑑

ª®®¬
©­­«
𝐶2

𝐵2

ª®®¬ , 𝑎𝑑 − 𝑏𝑐 = 1 . (1.2.4)

At the quantum level, the above symmetry is broken to the subgroup 𝑆𝐿(2, 𝑍 ), which symmetry
is manifestly apparent in the F-theory. Additionally, the fluxes of both RR and NSNS sector of the
compactification could take discrete values, i.e. they are quantized, leading to:

1
(2𝜋)2𝛼′

∫
𝐹 ∈ Z,

1
(2𝜋)2𝛼′

∫
𝐻 ∈ Z . (1.2.5)

All the above are formulated in background with N = 2 supersymmetry with 32 supercharges.
In order to discuss about four dimensional theories, someone has to find a consistent solution of
equations of motion in ten dimensions, which admits a Ricci-flat manifold. These manifolds are
called Calabi-Yau andwe are going to provide a small summary of this type of manifold properties
regarding its moduli space.
First of all, a manifold 𝑀 of three complex dimensions is equipped with an important quantity,
the Kähler form 𝐽 , which contains the information of the metric 𝑔𝑚𝑛 and the internal complex
coordinates 𝑧𝑚 .

𝐽 = 𝑖𝑔𝑚𝑛𝑑𝑧
𝑚 ∧ 𝑑𝑧𝑛 . (1.2.6)

We are looking for Kähler manifolds, since we ould like to express the metric in terms of the
internal coordinates, i.e. we would like the Kähler form to be closed 𝑑 𝐽 = 0. We will introduce
the definition of the Kähler potential 𝐾 , where the metric and the (1-1) form are expressed with
respect to this potential as:

𝑔𝑚𝑛 = 𝜕𝑚𝜕𝑛𝐾 (𝑧, 𝑧), 𝐽 = 𝑖𝜕𝜕𝐾 . (1.2.7)

The additional property of flatness of this manifold imposes an additional restriction to the Ricci
tensor. This tensor can expressed in term so of the metric as:

𝑅 = −𝑖𝜕𝜕 log(det𝑔) (1.2.8)

The flatness of the manifold is encoded, now, in the vanishing order of the geometric quantity
the Chern class 𝑐𝑛 (𝑀). If the first class of this quantity is vanished, we deduce that the internal
geometry is flat. Apart form the aforementioned objects, we need to introduce the holomorphic
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three-form Ω, which will be used on later purposes for the definition of the moduli space.

Ω = Ω𝑝𝑞𝑟𝑑𝑧
𝑝 ∧ 𝑑𝑧𝑞 ∧ 𝑑𝑧𝑟 , (1.2.9)

where the tensor Ω𝑝𝑞𝑟 contains the information of the transformation of the spinors inside the
geometry. The connection between the holomorphic three form and the Kähler form is given by:

𝐽 ∧ 𝐽 ∧ 𝐽 =
3𝑖
4
Ω ∧ Ω, 𝐽 ∧ Ω = 0 . (1.2.10)

Based on the fact, we need to end up with a four dimensional space, the correct manifold to com-
pactify the extra dimensions has to be a threefold. Besides, the correct preserved supersymmetry
of the 4d space isN = 1, which fact can be safely obtained in a threefold. The next step we have
to make is to examine whether infinitesimal deformations of the metric preserve the flatness of
the space.

𝛿𝑔 = 𝛿𝑔𝑚𝑛𝑑𝑧
𝑚𝑑𝑧𝑛 + 𝛿𝑔𝑚𝑛𝑑𝑧𝑚𝑑𝑧𝑛 + 𝑐.𝑐 . . (1.2.11)

In addition to the above, we have to choose the gauge ∇(𝛿𝑔) = 0, where by this particular choice
the two conditions on 𝛿𝑔𝑚𝑛 and 𝛿𝑔𝑚𝑛 are separated. For the first deformation, the constraint
implies that the 𝛿𝑔𝑚𝑛 has to an (1,1)-form. The Kähler form is expanded in this basis, used the
harmonic forms𝜔𝑖, 𝑖 = 1, .., ℎ1,1, as 𝐽 = 𝑡 𝑖𝜔𝑖 . Theℎ1,1 is topological quantity called Hodge number,
which specifies the dimension of the cohomology group 𝐻𝑝,𝑞 (𝑀) = ℎ𝑝,𝑞 . The scalar fields 𝑡 𝑖 are
named Kähler moduli. The positivity of the Kähler form in the background geometry, also, leads
to additional comstraints on the 2-cycle Σ(2) and the 4-cycle Σ(4) of the manifold

∫
Σ(2)

𝐽 > 0,
∫
Σ(4)

𝐽 ∧ 𝐽 > 0 . (1.2.12)

The intersection number between these moduli fields is given by the triple intersection

𝑘𝑖 𝑗𝑘 =

∫
𝑀

𝜔𝑖 ∧ 𝜔 𝑗 ∧ 𝜔𝑘 , (1.2.13)

where the volume of the compactified spaceV in term of the 2-cycles is written as:

V =
1
6
𝑘𝑖 𝑗𝑘𝑡

𝑖𝑡 𝑗𝑡𝑘 . (1.2.14)
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All the above are encoded in the Kähler metric, which resembles a known formula.

𝐾 = −2 ln(V) . (1.2.15)

Going to the other sector of the deformation 𝛿𝑔𝑚𝑛 , it is proved that it is required to be a (2,0)-form.
In order to go to the 𝐻 2,1 group, we have to perform a rescaling of the deformations as:

𝜒 = Ω𝑟𝑝𝑞𝛿𝑔𝑟𝑠𝑑𝑧
𝑝𝑑𝑧𝑞𝑑𝑧𝑠, (1.2.16)

where a basis for the 3-form could be defined as (𝑎𝑖, 𝑏𝑖), 𝑖 = 0, ..., ℎ2,1. The basis has to be complete,
which fact can be written as:

∫
𝑀

𝑎𝑖 ∧ 𝑏 𝑗 = 𝛿𝑖𝑗 . (1.2.17)

The above ingredients come in handy, as long as we define the complex structure moduli space,
where there exist ℎ2,1 + 1 complex coordinates. The two quantities that are going to be used for
the explicit computation of the holomorphic three form Ω are the coordinates 𝑧𝑖 and the periods
𝐹𝑖 (𝑧)

𝑧𝑖 =

∫
𝐴𝑖

Ω, 𝐹𝑖 =

∫
𝐵𝑖

Ω (1.2.18)

with𝐴𝑖, 𝐵𝑖 being the cycles of the homology group. Now, the holomorphic form can be expressed
as:

Ω = 𝑧𝑖𝑎𝑖 − 𝐹𝑖𝑏𝑖 (1.2.19)

and the metric of the complex structure’s moduli space [30; 31]

𝑔𝑖 𝑗 =
𝜕2𝐾𝑐𝑠

𝜕𝑧𝑖𝜕𝑧 𝑗
, 𝐾𝑐𝑠 = − ln(𝑖

∫
𝑀

Ω ∧ Ω) . (1.2.20)

An additional interesting topological quantity is the Euler characteristic 𝜒 , which parametrizes
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the only independent Hodge numbers (ℎ1,1, ℎ2,1) of a simply connected manifold

𝜒 = 2(ℎ1,1 − ℎ2,1) . (1.2.21)

The rest of the fields are written as an expansion of the harmonic forms in ten dimensions.

𝐵2 = 𝑏0 + 𝑏𝑖𝜔𝑖, 𝐶2 =𝑐0 + 𝑐𝑖𝜔𝑖, 𝐶4 = 𝑑
𝑖𝜔̃𝑖 + 𝑑′𝑖𝜔𝑖 +𝑉 𝑗 ∧ 𝑎 𝑗 +𝐴′

𝑗 ∧ 𝑏 𝑗 , (1.2.22)

where the indices run as 𝑖 = 1, ..., ℎ1,1, 𝑗 = 1, ..., ℎ2,1. The 𝑏0, 𝑐0 are two axions, the 𝑏𝑖, 𝑐𝑖 stand
for model dependent axions, where the 𝐶4 consists of an axion 𝑑𝑖 along with its dual 𝑑𝑖 and the
q-form 𝑉 𝑗 contained in the vector multiplet.

If the theory contains fixed points in the manifold due to 𝑂3/𝑂7 orientifolds, some degrees of
freedom are projected out. This leads to a different parametrization of the internal coordinates,
since the supersymmetry is reduced to N = 1. The reformed definitions for the moduli (Kähler
𝑇𝑖 and cs 𝑧 𝑗 ) and the axio-dilaton 𝑆 , in this case, are given by:

𝑆 = 𝐶0 + 𝑖𝑒−𝑖𝜙 , 𝑇𝑖 = 𝜏𝑖 + 𝑖𝑑𝑖 +
𝑖𝑘𝑖𝑛𝑛

2(𝑆 − 𝑆)
𝐺𝑚 (𝐺 −𝐺)𝑛, 𝐺 𝑗 = 𝑐 𝑗 − 𝑆𝑏 𝑗 . (1.2.23)

Below, two figurative tables are presented depicting the four dimensional spectrum of the com-
pactification both in N = 1, 2 supersymmetry.

Multiplets Multiplicity Fields
gravity multiplet 1 𝑔𝜇𝜈 ,𝑉0

vector multiplet ℎ2,1 𝑧 𝑗 ,𝑉 𝑗

Kähler hypermultiplet ℎ1,1 𝑡𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑
𝑖

universal hypermultiplet 1 𝑆, 𝑏0, 𝑐0

Table 1.2: N = 2 multiplets along with the spectrum’s fields [30].
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Multiplets Multiplicity Fields
gravity multiplet 1 𝑔𝜇𝜈

chiral multiplet 1 𝑆

Kähler chiral multiplets ℎ
1,1
+ 𝑡𝑖, 𝑑

𝑖

chiral multiplet ℎ1,1
− 𝑏𝑖, 𝑐𝑖

vector multiplet ℎ
2,1
+ 𝑉

𝑗
+

c.s. chiral multiplets ℎ2,1
− 𝑧 𝑗−, 𝑏0, 𝑐0

Table 1.3: N = 1 multiplets along with the spectrum’s fields [30].

The resulting low energyN = 1 supergravity formula for the scalar potential is written in terms
of the Kähler potential and superpotentialW as:

𝐾 = −2 ln(V(𝑇 )) − ln(𝑆 − 𝑆) − ln(𝑖
∫
𝑀

Ω(𝑧) ∧ Ω(𝑧)), (1.2.24)

𝑉 = 𝑒𝐾
[
𝐾 𝐼 𝐽D𝑖WD𝐽W̄ − 3|W|2], W =

∫
𝑀

𝐺3 ∧ Ω , (1.2.25)

where the indices 𝐼 , 𝐽 run over all moduli fields.

1.2.2 GUTs from F-theory

Despite the great success of the SM theory in describing various low energy phenomena, there
are still mysteries regrading their origin. One of the central questions is a missing explanation on
why the gauge group has this particular structure and whether we could explore the possibility of
a unified more fundamental group. Hints point toward this direction, since the exploitation of the
the gauge couplings at high energies renders unification to a certain value. The most promising
candidate is string theory, which has managed to combine supersymmetry, extra dimensions and
coupling unification at string scales in order to provide solutions to various problems of the SM.
In this chapter, a brief discuss is going to presented about F-theory, the non-perturbative mani-
festation of type IIB string theory on Calabi-Yau manifolds. F-theory was constructed in the late
90’s by Vafa [32] as twelve dimensional string theory. Recalling from the previous section the
action of the type IIB theory and the definition of the axio-dilaton, we are going to sketch the
fundamentals of the F-theory constructions. The invariance of the axio-dilaton under 𝑆𝐿(2, 𝑍 )
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from a mathematical point of view is identical to the transformation of an elliptic curve 𝐸𝜏 , more
specifically of its complex structure under modular transformation.

𝜏 → 𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑 , 𝜏 = 𝐶0 +

𝑖

𝑔𝑠
, 𝑎𝑑 − 𝑏𝑐 = 1 . (1.2.26)

The idea was that someone could embed the type IIB string theory on a torus, parametrized by
the value of the value of the axio-dilaton. This means that the geometry corresponds to a complex
fourfold, generated by the elliptic curve, which is actually the elliptic fibration over the threefold.
The non-perturbative nature of the theory is manifested through the fact that the elliptic curve
is correlated to the motion of the string coupling 𝑔𝑠 . The total space of F-theory, them, can
be described by the four dimensional 𝑅3,1 space augmented by a 𝑋 complex fourfold with the
threefold base 𝐵3.
In mathematics, elliptic curves are points that satisfy the Weierstrass equation:

𝑦2 = 𝑥3 + 𝑓 (𝑧)𝑥 + 𝑔(𝑧), (1.2.27)

where 𝑥,𝑦, 𝑧 are the complex coordinates and 𝑓 (𝑧), 𝑔(𝑧) are polynomials of eight and twelfth
degree in 𝑧. Each point on the base 𝐵3 through this equation is translated as a torus labeled by
the coordinate z. The two most important quantities of an elliptic fibration are the discriminant Δ
of the Weierstrass equation and the j-invariant modular function. Starting from the discriminant,
the singularities could be classified by

Δ = 4𝑓 3 + 27𝑔2 . (1.2.28)

If Δ ≠ 0, the elliptic curve is non-singular. On the other hand, the vanishing discriminant leads to
the degeneration of the fibration, where 24 roots 𝑧𝑖 can be identified. These roots correspond to
extended objects, the 7-branes, where their location in the fibration is related to the z coordinate.
In addition, from the definition of the j-function, the existence of 7-branes will emerge more
naturally. This function connect the modular of the torus to the roots through:

𝑗 (𝜏) = 4(24𝑓 )3

Δ
=

4(24𝑓 )3

4𝑓 3 + 27𝑔2 , 𝑗 (𝜏) = 𝑒−2𝜋𝑖𝜏 + 744 + ... . (1.2.29)

If this is the case of a vanishing discriminant, then, in the small vicinity of 𝑧𝑖 one can expand the
𝑗 function
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𝑗 (𝜏 (𝑧)) � 1
𝑧 − 𝑧𝑖

→ 𝜏 (𝑧) � 1
2𝜋𝑖

ln(𝑧 − 𝑧𝑖) . (1.2.30)

The above equation has some severe consequences in the understanding the various limits of the
theory. If 𝑧 → 𝑧𝑖 , then 𝜏 → 𝑖∞, which in practice means that the theory resides in the weak
coupling regime. This observation was first noticed by Sen [33]. Proceeding further one can
notice that ln(𝑧−𝑧𝑖) = ln |𝑧−𝑧𝑖 | +𝑖𝜃 , where as the root is encirled, the 𝜏 undergoes a monodromy
𝜏 → 𝜏 + 1

∮
𝑧𝑖

𝐹1 =

∮
𝑧𝑖

𝑑𝐶0 = 1 . (1.2.31)

The existence of a monodromy implies the emergence of 7-branes at the location of 𝑧𝑖 in the
transverse space. The elliptic fiber is not a real physical object, but it is used to track down the
variation of the axio-dilaton along the base 𝐵3. The implication of the presence of 7-branes in
the spectrum is that gauge symmetries could possibly emerge from F-theory. In type II string
theories, D-branes are associated to𝑈 (1) symmetries, where a stack of N D-branes lead to𝑈 (𝑁 )
gauge symmetries. Similarly, when 7-branes coincide, at the intersection point, a symmetry en-
hancement is achieved leading to gauge symmetries. The classification of the correspondence
between singularities and gauge symmetries are given by Kodaira [34]. According to his work,
there is a systematic classification of the different ADE algebras descending from the vanishing
order of the discriminant in the Weierstrass equation. More recent works have proceeded the
previous analysis and explored the physical properties of these constructions [35; 36; 37; 38].

Of particular interest is the local F-theory constructions. This approach is related to the Tate
algorithm [39] for the singularities of the Weierstrass equation. A redefinition of the Weierstrass
equation into an equation of local coordinates can be recasted as:

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥
2 + 𝑎4𝑥 + 𝑎6 . (1.2.32)

The 𝑎 functions are functions depending in the complex coordinate z of the base 𝐵3, while they
are related to the previous functions 𝑓 , 𝑔.
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𝑓 = − 1
48

(𝛽2
2 − 24𝛽4), 𝑔 = − 1

864
(−𝛽2

2 + 36𝛽2𝛽4 − 216𝛽6) (1.2.33)

Δ =
1
8
(𝛽8𝛽

2
2 − 9𝛽2𝛽4𝛽6 + 8𝛽3

4 + 27𝛽2
6), (1.2.34)

where the new 𝛽 functions are given by:

𝛽2 = 𝑎
2
1 + 4𝑎2, 𝛽4 = 𝑎1𝑎3 + 2𝑎4, (1.2.35)

𝛽6 = 𝑎
2
3 + 4𝑎6, 𝛽8 =

1
4
(𝛽2𝛽6 − 𝛽2

4) . (1.2.36)

Based on the above, the resulting gauge group is associated to the vanishing order of each 𝑎
function, since their definition is 𝑎𝑖 ∼ 𝑏𝑖𝑧𝑛 . A geometric origin is that the elliptic fiber is factorized
at the location of the 7-branes on a particular divisor in 𝐵3. In Table 4., the complete classification
of the various gauge groups with respect to the singularity type is presented.

It would be illustrative to discuss local F-theory constructions such as a 𝑆𝑈 (5) model. Assuming

𝑎1 = −𝑏5, 𝑎2 = 𝑏4𝑧, 𝑎3 = −𝑏3𝑧
2, 𝑎4 = 𝑏2𝑧

3, 𝑎6 = 𝑧
5𝑏0, (1.2.37)

where if we substitute these factors in the Tate formula, it results to :

𝑦2 = 𝑥3 + 𝑏0𝑧
5 + 𝑏2𝑥𝑧

3 + 𝑏3𝑦𝑧
2 + 𝑏4𝑥

2𝑧 + 𝑏5𝑥𝑦. (1.2.38)
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Type Group 𝑎1 𝑎2 𝑎3 𝑎4 𝑎6 Δ

𝐼0 0 0 0 0 0 0 0

𝐼1 - 0 0 1 1 1 1

𝐼2 𝑆𝑈 (2) 0 0 1 1 2 2

𝐼𝑛𝑠3 - 0 0 2 2 3 3

𝐼 𝑠3 - 0 1 1 2 3 3

𝐼𝑛𝑠2𝑛 𝑆𝑝 (𝑛) 0 0 𝑛 𝑛 2𝑛 2𝑛

𝐼 𝑠2𝑛 𝑆𝑈 (2𝑛) 0 1 𝑛 𝑛 2𝑛 2𝑛

𝐼𝑛𝑠2𝑛 - 0 1 𝑛 + 1 𝑛 + 1 2𝑛 + 1 2𝑛 + 1

𝐼 𝑠2𝑛+1 𝑆𝑈 (2𝑛 + 1) 0 1 𝑛 𝑛 + 1 2𝑛 + 1 2𝑛 + 1

𝐼 𝐼 - 1 1 1 1 1 2

𝐼 𝐼 𝐼 𝑆𝑈 (2) 1 1 1 1 2 3

𝐼𝑉 𝑛𝑠 - 1 1 1 2 2 4

𝐼𝑉 𝑠 𝑆𝑈 (3) 1 1 1 2 3 4

𝐼 ∗𝑛𝑠0 𝐺2 1 1 1 2 3 6

𝐼 ∗𝑠𝑠0 𝑆𝑂 (7) 1 1 2 2 4 6

𝐼 ∗𝑠0 𝑆𝑂 (8) 1 1 2 2 4 6

𝐼 ∗𝑛𝑠1 𝑆𝑂 (9) 1 1 2 3 4 7

𝐼 ∗𝑠1 𝑆𝑂 (10) 1 1 2 3 5 7

𝐼 ∗𝑛𝑠2 𝑆𝑂 (11) 1 1 3 3 5 8

𝐼 ∗𝑠2 𝑆𝑂 (12) 1 1 3 3 5 8

𝐼𝑉 ∗𝑛𝑠 𝐹4 1 2 2 3 4 8

𝐼𝑉 ∗𝑠 𝐸6 1 2 3 3 5 8

𝐼 𝐼 𝐼 ∗𝑠 𝐸7 1 2 3 3 5 9

𝐼 𝐼 𝑠 𝐸8 1 2 3 4 5 10

Table 1.4: Results from Tate’s algorithm.

The above equation leads to an 𝑆𝑈 (5) singularity. Now, the 𝑏 coefficients can be understood
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as sections of the line-bundle in the divisor 𝑆𝐺𝑈𝑇 . In order to perform an anomaly cancellation
analysis, we have to define 𝑐1 as the first Chern class of the tangent bundle of 𝑆𝐺𝑈𝑇 , while −𝑡 as
the first Chern class of the normal bundle. The homology classes are written as:

𝜂 = 6𝑐1 − 𝑡 . (1.2.39)

Based on this definition, we can attribute to each coordinate a specific homology class, the same
goes to the coefficients 𝑏𝑖 .

𝑥 : 2(𝑐1 − 𝑡) (1.2.40)

𝑦 : 3(𝑐1 − 𝑡) (1.2.41)

𝑧 : −𝑡 (1.2.42)

𝑏𝑘 : 𝜂 − 𝑘𝑐1 . (1.2.43)

Each term in (1.2.38) has the same homology class, e.g.

𝑏2𝑥𝑧
3 : 𝜂 − 2𝑐1 + 2(𝑐1 − 𝑡) − 3𝑡 = 6(𝑐1 − 𝑡) . (1.2.44)

Now, we have to translate the 𝛽 functions in terms of the 𝑏 sections.

𝛽2 = 𝑏
2
5 + 4𝑏4𝑧, (1.2.45)

𝛽4 = 𝑏3𝑏5𝑧
2 + 2𝑏2𝑧

3, (1.2.46)

𝛽6 = 𝑏
2
3𝑧

4 + 4𝑏0𝑧
5, (1.2.47)

𝛽8 = 𝑧
5(𝑅 + 𝑧 (4𝑏0𝑏4 − 𝑏2

2)), 𝑅 = 𝑏2
3𝑏4 − 𝑏2𝑏3𝑏5 + 𝑏0𝑏5 . (1.2.48)

It is a good point to define the matter representations in the F-theory GUTs. These degrees
of freedom lay at the intersection of two 7-branes, where from a mathematical scope they are
Riemann surfaces where some symmetry enhancement is achieved. For instance, by choosing
that the 𝑏5 = 0, the discriminant becomes Δ ∼ 𝑧7. According to the Tate’s classification, this
singularity returns an 𝑆𝑂 (10) symmetry. Thus, we can deduce that a matter curve is laying along
the intersection of two 7-branes at the singularity, leading to the 10 representation of 𝑆𝑈 (5). This
matter curve Σ can be written as:
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Σ10 = {𝑏5 = 0} . (1.2.49)

In a similar fashion, one can also obtain the 5 representation of the 𝑆𝑈 (5) by considering 𝑅 = 0,
leading to Δ ∼ 𝑧6. This is an 𝑆𝑈 (6) singularity, where in the adjoint decomposition of 𝑆𝑈 (6)
there is the 5-plet. Again, the matter curve could be expressed as:

Σ5 = {𝑅 = 0 = 𝑏2
3𝑏4 − 𝑏2𝑏3𝑏5 + 𝑏0𝑏

2
5 = 0} . (1.2.50)

Finally, the notion of Yukawa couplings in the semi-local approach of F-theory is given by the
triple intersections of 7-branes. For instance the top and bottom Yukawa couplings are given by:

𝑌𝑡 → {𝑏5 = 0, 𝑏4 = 0}, Δ ∼ 𝑧8 → 𝐸6 singularity (1.2.51)

𝑌𝑏 → {𝑏3 = 0, 𝑏5 = 0}, Δ ∼ 𝑧8 → 𝑆𝑂 (12) singularity (1.2.52)

Based on this short introduction, one can extract a very useful machinery for the construction
of GUTs in the close vicinity of an geometric singularity. It is also worth mentioning that an
extensive amount of work have been done towards the computation of Yukawa couplings in F-
theory [40; 41; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51; 52; 53], since the geometric separation of the
matter curves and their distinctive position in the GUT divisor allows for a natural explanation
to the problem of mass hierarchical structure.

An important ingredient in the engineering of F-theory GUTs is the semi-local approach, mainly
studied by [54]. In this picture the maximal symmetry is the 𝐸8 gauge group, which is broken by
geometric Higgs mechanism in resulting a 𝐺𝑆 group (a surface for the GUT model), augmented
by a commutant group described by the spectral cover surface.

𝐸8 ⊃ 𝐺𝑆 × 𝑆𝑈 (𝑁 )⊥, (1.2.53)

where the symmetries related to particle physics are
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𝐸8 → 𝐸6 × 𝑆𝑈 (3)⊥, (1.2.54)

𝐸8 → 𝑆𝑂 (10) × 𝑆𝑈 (4)⊥, (1.2.55)

𝐸8 → 𝑆𝑈 (5) × 𝑆𝑈 (5)⊥ . (1.2.56)

We will study an example to deeply understand the properties of the spectral cover. Starting from
𝐺𝑆 = 𝑆𝑈 (5), the matter representation are decomposed as:

248 → (24, 1) + (1, 24) + (5, 10) + (5̄, 1̄0) + (10, 5̄) . (1.2.57)

The spectral cover equation are defined by the internal coordinates

𝑧 → 𝑈 , 𝑥 → 𝑉 2, 𝑦 → 𝑉 3, (1.2.58)

where based on this redefinition the Tate formula can be recasted to:

0 = 𝑏0𝑈
5 + 𝑏2𝑉

2𝑈 3 + 𝑏3𝑉
3𝑈 2 + 𝑏4𝑉

4𝑈 + 𝑏5𝑉
5. (1.2.59)

In order to rewrite the above formula as a polynomial, we use the new variable 𝑠 = 𝑈 /𝑉 :

𝐶5 = 𝑏5 + 𝑏4𝑠 + 𝑏3𝑠
2 + 𝑏2𝑠

3 + 𝑏1𝑠
4 + 𝑏0𝑠

5 (1.2.60)

The roots of this fifth degree polynomial are characterized as weights 𝑡𝑖 of the perpendicular
group 𝑆𝑈 (5)⊥ [55].

0 = 𝑏5 + 𝑏4𝑠 + 𝑏3𝑠
2 + 𝑏2𝑠

3 + 𝑏1𝑠
4 + 𝑏0𝑠

5 = Π5
𝑖=1(𝑠 + 𝑡𝑖) . (1.2.61)

To "charge" the matter fields with the new charges, one has to entangle the charges with the
sections 𝑏𝑖 , which sections define the matter curves. One can see that the sum and the product
of the roots are given by:

20



𝑏1 =
∑︁
𝑖

𝑡𝑖 = 0, 𝑏5 = 𝑡1𝑡2𝑡3𝑡4𝑡5 . (1.2.62)

The above sections define the matter curves, as mentioned in (1.2.49), where the multiplicity of
the representations are numbered by the number of different charges. For instance, there are five
10plets given by:

Σ10𝑖 : P10 = 𝑏5 → 𝑡𝑖 = 0, 𝑖 = 1, 2, 3, 4, 5 . (1.2.63)

In a similar manner, the 10 different 5plets are defined by:

Σ5̄𝑖 𝑗 : P5 = 𝑅 = Π𝑖≠ 𝑗 (𝑡𝑖 + 𝑡 𝑗 ) = 0 . (1.2.64)

As for the singlets, their degrees of freedom are, also, defined by charges 𝑡𝑖 , but they parametrize
the space transverse to the matter curves.

Σ1𝑖 𝑗 : P0 = Π(±(𝑡𝑖 − 𝑡 𝑗 )) = 0, (1.2.65)

whose polynomial match the discriminant of the spectral cover equation. The effective theory of
this model is given by 𝑆𝑈 (5) ×𝑈 (1)4, where the superpotential for the up quark masses

W ⊃ 10𝑡𝑖10𝑡𝑖5−𝑡𝑖−𝑡 𝑗 . (1.2.66)

The above coupling contains the interactions for two different generations, although phenomeno-
logical reasons favor rank-1 mass matrix. Consequently, an additional symmetry would be re-
quired. To introduce this kind of symmetry, we need to understand the relation between the
sections 𝑏𝑖 and the roots 𝑡𝑖 .

𝑏𝑖 = 𝑏𝑖 (𝑡𝑖) . (1.2.67)

The inversion of this equation leads to branches due to the fact that there exists monodromies
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𝑡𝑖 = 𝑡𝑖 (𝑏𝑖) [55; 56; 57]. Considering the 𝑍2 monodromy, it means that two roots of the spectral
cover equation (1.2.61) do not factorize, leadin to second degree polynomial

𝑎1 + 𝑎2𝑠 + 𝑎3𝑠
2 = 0 ⇒ (1.2.68)

𝑠1 =
−𝑎2 +

√
𝑤

2𝑎3
, 𝑠2 =

−𝑎2 +
√
𝑤

2𝑎3
, 𝑤 = 𝑎2

2 − 4𝑎1𝑎3. (1.2.69)

The branchcuts are viewed as

√
𝑤 = 𝑒𝑖𝜃/2

√︁
|𝑤 | ⇒ (1.2.70)

𝜃 → −𝜃,
√
𝑤 → −

√
𝑤, 𝑠1 ↔ 𝑠2 . (1.2.71)

These branchcut provide an identification 𝑡1 ↔ 𝑡2, where the coupling constant for the up quark
is modified to:

W ⊃ 10𝑡110𝑡15−2𝑡1 . (1.2.72)

The 𝑆𝑈 (5) spectral cover provide the geometry with a 5-degree polynomial𝐶5, where some pos-
sible different monodromies can be introduced. All possible indentifications/factorizations of the
polynomial are given below:

𝐶2 ×𝐶1 ×𝐶1 ×𝐶1 : (𝑎1 + 𝑎2𝑠 + 𝑎3𝑠
2) (𝑎4 + 𝑎5𝑠) (𝑎6 + 𝑎7𝑠) (𝑎8 + 𝑎9𝑠), (1.2.73)

𝐶2 ×𝐶2 ×𝐶1 : (𝑎1 + 𝑎2𝑠 + 𝑎3𝑠
2) (𝑎4 + 𝑎5𝑠 + 𝑎6𝑠

2) (𝑎7 + 𝑎8𝑠), (1.2.74)

𝐶3 ×𝐶1 ×𝐶1 : (𝑎1 + 𝑎2𝑠 + 𝑎3𝑠
2 + 𝑎4𝑠

3) (𝑎5 + 𝑎6𝑠) (𝑎7 + 𝑎8𝑠), (1.2.75)

𝐶3 ×𝐶2 : (𝑎1 + 𝑎2𝑠 + 𝑎3𝑠
2 + 𝑎4𝑠

3) (𝑎5 + 𝑎6𝑠 + 𝑎7𝑠
2), (1.2.76)

𝐶4 ×𝐶1 : (𝑎1 + 𝑎2𝑠 + 𝑎3𝑠
2 + 𝑎4𝑠

3 + 𝑎5𝑠
4) (𝑎6 + 𝑎7𝑠) . (1.2.77)
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1.3 Towards string phenomenology

1.3.1 Moduli stabilization

Most compactifications share a unique feature regarding their stability conditions. As it can seen
by equation (2.1.67), fluxes can generate a non-trivial scalar potential depending on the various
moduli fields of the theory. Up to the late 90’s, nomodel hadmanaged to find a consistent solution
for describing the lat-time cosmology, since the allowed vacua were of Anti de-Sitter type. In
order to explain the accelerated phase of the universe, one should derive a de-Sitter (dS) vacuum,
where supersymmetry must be broken in a controllable way and higher derivative corrections
to the vacuum should be subleading. Despite the no-go theorems [58; 59], stating that such
solutions are forbidden in the context of superstring theory, a plethora of attempts point towards
some available dS vacua.
The moduli space in string vacua is characterized by: the Kähler moduli, the complex structrue
moduli and the axio-dilaton. Since these scalar fields are parametrizing the size and the shaoe
of the interanl geometry and remain massless at tree-level, one should generate an 4d effective
potential in order to generate masses for them. The intention to do so is that if they remain
massless, new long range forces should be detected. The existence of extensive objects, like D-
branes, have identified the warped compactifications as a bypass to the no-go theorems. One
should start from the scalr potential (2.1.67), and try to understand the dynamics in the presence
of fluxes. In the seminal work of Giddings at al. [60], they probed that complex structure moduli
and axio-dilaton could be stabilized in the presence of integer fluxes. Starting from the metric of
the type IIB string theory, we can associate the wrap factor𝐴(𝑦) to the self-dual 5-form fluxes 𝐹5.

𝑑𝑠2
10 = 𝑒

−2𝐴(𝑦)𝑑𝑠2
4 + 𝑒2𝐴(𝑦)𝑔𝑚𝑛𝑑𝑦

𝑚𝑑𝑦𝑛, (1.3.1)

𝐹5 = (1 + ∗)[𝑑𝑎 ∧ 𝑑𝑥0 ∧ 𝑑𝑥1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3], 𝑎 = 𝑒4𝐴(𝑦) . (1.3.2)

Now, the 3-form fluxes defined by 𝐺3 = 𝐹3 − 𝜏𝐻3 are imaginary self dual, satisfying the relation

𝐺3 = 𝑖 ∗6 𝐺3, (1.3.3)

where we have properly defined the Hogde dual ∗6 in the internal geometry. The preservation of
supersymmetry at the N = 1 level leads to the constraint that the fluxes has to be primitive and
of (2,1) type. The condition (1.3.3) erase the (0,3) part of the fluxes, since this part would attribute
a non supersymmetric vacuum withW = W0. Moreover, the above condition fixes the complex
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structure moduli and the axio-dilaton at high scales

𝑚 ∼ 𝛼′

𝑅3 , (1.3.4)

where 𝑅 is the radius of the manifold. One last that should be addressed is the fluxes and the
presence of D-branes serve as localized sources that could potentially raise some tadpoles. It is
proved in [60] that fluxes generate a tadpole the𝐶4 axion. The 𝐷7-branes provide some negative
D3 charge in the geometry, where this charge can related in the language of F-theory to the Euler
characteristic 𝜒 (𝑀).

𝑄
𝐷7
3 = − 𝜒

24
. (1.3.5)

The resulting tadpole which every type IIB/F-theory compactificationmust satisfy in the presence
of integer fluxes is

1
(2𝜋)4𝛼′2

∫
𝐻3 ∧ 𝐹3 + 𝑁𝐷3 − 𝑁𝐷̄3 =

𝜒

24
. (1.3.6)

Havingmanaged to provide the mechanism for the stabilization of the cs moduli and axio-dilaton,
the Kähler sector remains undetermined. Two different approaches, KKLT model [61] and Large
Volume Scenario [62], lead to dS vacua have been proposed the last twenty years. We are going
to briefly describe both of them in the rest of the section.

KKLT model

Focusing in the Kähler moduli sector, this proposal argues that non-perturabtive corrections to
the no-scale scalar potential could in principle stabilize the compactification’s volume. In string
theory, there are two types of non-perturabtive corrections: i) Euclidean 𝐷3 branes ii) Gaugino
condensations. The first one can be written as:

W𝐷3 = 𝑇 (𝑧)exp(2𝜋𝑖𝜌), (1.3.7)

where𝑇 (𝑧) is a prefactor depending in the complex structure moduli and 𝜌 stands for the volume
modulus. The latter correction’s form is summarized:
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Wgaugino = Λ3
𝑁𝑐

= 𝐴𝑒
2𝜋𝑖𝜌
𝑁𝑐 , (1.3.8)

where the A parameter is determined by the scale of the gaugino condensation and 𝑁𝑐 is the
number of branes in the corresponding stack of branes. Taking into account these corrections,
KKLT scenario achieved an AdS vacuum, with the Kähler potential and the superpotential given
by:

𝐾 = −3 ln(−𝑖 (𝜌 − 𝜌)), W = W0 +𝐴𝑒𝑖𝑎𝜌 . (1.3.9)

Imposing the flatness condition of superpotential 𝐷W = 0, it leads to:

𝐷W = 0 ⇒ W0 = −𝐴𝑒𝑎𝜎𝑐𝑟 (1 + 2
3
𝑎𝜎𝑐𝑟 ), 𝜌 = 𝑖𝜎 . (1.3.10)

The value of the potential at the vacuum can be found to be:

𝑉𝐴𝑑𝑆 = −𝑎
2𝐴2𝑒−2𝑎𝜎𝑐𝑟

6𝜎𝑐𝑟
. (1.3.11)

This vacuum has be found taking into account that 𝜎 ≫ 1, in order to have controllable correc-
tions. Additionally, 𝑎𝜎 > 1 is imposed since the superpotential corrections have to be reliable.
Nevertheless, the resulting vacuum is an AdS vacuum, so a mechanism should be included in
order to uplift the model. The problem can be solved through introducing anti-branes 𝐷̄3, whose
effect is to add a positive term in the scalar potential.

𝛿𝑉𝐷3 =
𝑑

(Im𝜌)3 , 𝑑 > 0 . (1.3.12)

AS for the scalar potential, substituting Kähler potential and superpotential of equation (1.3.9) in
the formula for the scalar potential (2.1.67), one can derive:

𝑉 =
𝑎𝐴𝑒−𝑎𝜎

2𝜎2 ( 1
3
𝑎𝜎𝐴𝑒−𝑎𝜎 +W0 + 𝑎𝑒−𝑎𝜎 ) +

𝑑

𝜎3 . (1.3.13)
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In the above potential, fine-tuning of D parameter would suffice to uplift the AdS vacuum to dS
vacuum. In the following plot, the two vacua are shown for a specific values of the free parameters
of the theory.

W0≃-10
-4

d≃10-10

100 150 200 250
τ

-2

-1

1

2

V

Figure 1.1: KKLT’s vacua (1.3.13) for suppressed fluxes and a tiny uplift parameter 𝑑 .

The next step for ensuring that the dS vacuum is stable, would be to explore the decay rate
of the vacuum. The goal is to achieve a decay time, which is shorter than the recurrence time
𝑡𝑟 ∼ 𝑒𝑆0, 𝑆0 =

24𝜋2

𝑉0
. Within the thin-wall approximation approach [63], the possibility of vacuum’s

decay rate is related to the dS entropy and can be computed from:

𝑃 = exp(− 𝑆 (𝜙)
(1 + 4𝑉0/3𝑇 2)2 ), (1.3.14)

where the temperature of the bubble wall is given by:

𝑇 =

∫ ∞

𝜙0

𝑑𝜙
√︁

2𝑉 (𝜙) . (1.3.15)

In the limit of considering the inclusion of gravitational effects𝑇 2 ≫ 𝑉0, the approximated result
is given by:
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𝑃 � exp(−𝑆 (𝜙)) � exp(−24𝜋2

𝑉0
) ∼ exp(−10−120) . (1.3.16)

One could easily observe that the dS vacuum is practically stable during the cosmological timeline.

Large Volume Scenario

An alternative to the above scenario was proposed on the basis that there is decompactification
direction in the moduli space along which:

• 𝜏𝑖 ≡ Im(𝜌𝑖) → ∞.

• 𝑉 < 0 for V ≫ 1.

The leading order (𝛼′3) corrections to the Kähler potential has been studied in [64], where this
modification leads to the potential as:

𝐾 = −2 ln(V + 𝜉
2
+world sheet instantons) . (1.3.17)

As for the superpotential, non-perturbative corrections need to added along each direction 𝜏𝑖 of
the internal space:

W = W0 +
∑︁
𝑛

𝐴𝑛𝑒
𝑖𝑎𝑛𝜌𝑛 . (1.3.18)

The generic formula for the scalar potential can obtained from the following formula:

𝑉 = 𝑒𝐾
[
𝐺𝜌 𝑗𝜌𝑘 (𝑎 𝑗𝐴 𝑗𝑎𝑘𝐴𝑘𝑒𝑖 (𝑎 𝑗𝜌 𝑗−𝑎𝑘𝜌𝑘 ) + 𝑖 (𝑎 𝑗𝐴 𝑗𝑒𝑖𝑎 𝑗𝜌 𝑗𝑊̄ 𝜕𝜌𝑘𝐾 − 𝑎𝑘𝐴𝑘𝑒−𝑖𝑎𝑘𝜌𝑘𝑊 𝜕 𝑗𝐾))+

+ 3𝜉
(𝜉2 + 7𝜉V +V2)
(V − 𝜉) (2V + 𝜉)2 |𝑊 |2] . (1.3.19)

It is worth mentioning, also, that the constant 𝜉 controls the strength of the 𝛼′ corrections and
its value is given by:

𝜉 = − 𝜒 (𝑋 )𝜁 (3)
2(2𝜋)3 , 𝜉 =

𝜉

𝑔2
𝑠

. (1.3.20)
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The above scalar potential can be split into three sperate terms:

𝑉 = 𝑉𝑛𝑝1 +𝑉𝑛𝑝2 +𝑉𝛼 ′, (1.3.21)

where it’s term formula is summarized below:

𝑉𝑛𝑝1 ∼
(−𝑘𝑠𝑠𝑘𝑡𝑘)𝑎2

𝑠 |𝐴𝑠 |2𝑒−2𝑎𝑠𝜏𝑠𝑒𝐾𝑐𝑠

V + O( 1
V2 ), (1.3.22)

where the index 𝑠 stands for a modulus 𝜏𝑠 , which stays to smaller values than 𝜏𝑖 → ∞. The second
non-perturtabive term is written as:

𝑉𝑛𝑝2 ∼ −𝑎𝑠𝜏𝑠𝑒
−𝑎𝑠𝜏2

V2 |𝐴𝑠W0 |𝑒𝐾𝑐𝑠 + O( 1
V3 ) . (1.3.23)

As for the perturbative part of the scalar potential, this is computed from the simple formula by:

𝑉𝛼 ′ ∼
3𝜉

16V3 + O( 1
V4 ) . (1.3.24)

Summing all the contributions, the scalar potential to the leading order in the large volume sce-
nario could be read by the following derived formula:

𝑉 ∼
[
𝑎2
𝑠𝐴

2
𝑠

−𝑘𝑠𝑠𝑘𝑡𝑘
V 𝑒−2𝑎𝑠𝜏𝑠 − |𝐴𝑠W|𝑎𝑠𝜏𝑠V2 𝑒

−𝑎𝑠𝜏𝑠 + 𝜉

V3 |W|2
]
+ O( 1

V4 ) . (1.3.25)

Given the above limit, the overall potential scale as

𝑉 ∼ −𝑒𝐾𝑐𝑠 |𝐴𝑠𝑊0 |
lnV
V3 , (1.3.26)

where this potential reaches zero from the negative at large volumes.

1.3.2 Origin of right handed neutrinos and modular flavor symmetry

The SM theory included only left-handed neutrinos in the leptonic sector. Despite their presence,
these degrees of freedom cannot acquire mass from any mechanism, since the mass terms are not
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allowed in the Lagrangian. Moreover, neutrinos are the only charge neutral particles of the SM,
so there is a possibility for them to be of Majorana type. Assuming the Majorana case, we can
introduce right-handed neutrinos 𝜈𝑅 , so the additional terms are:

L =𝑚𝐷𝜈𝐿𝜈𝑅 +𝑀𝑅𝜈𝑅𝜈𝑅 + ℎ.𝑐. (1.3.27)

where𝑚𝐷 and 𝑀𝑅 are 3x3 matrices. The two terms have a different interpretation: the first one
stands for the Dirac type operator, descending from (𝑌𝜈 )𝑖 𝑗𝐿𝑖𝐻𝜈𝑅 𝑗

. As for the latter term , there
are various model dependent origins, where the simplest one is given by Weinberg [65], who
introduced a dimension 5 operator.

L = 𝜆
𝑖 𝑗
𝜈

𝐿𝑖𝐻𝐻𝐿 𝑗

Λ
. (1.3.28)

The Λ energy scale denotes the scale of new physics, where one can observe that these terms are
violating the total lepton number by Δ𝐿 = 2. However, dimension 5 operators can be derived
by a mechanism, named seesaw mechanism, where it can embedded easily in GUTs. Seesaw
mechanism is classified into three different types: type I [66], type II [67] and type III [68].

Type I seesaw is the easiest to analyze, since the right handed neutrinos are singlets and no
constraints can be imposed on themwith respect to their mass. Given the Lagrangian in equation
(1.3.27), the general mass matrix of both Dirac and Majorana type can be written as:

𝑀𝜈 =
©­­«

0 𝑚𝐷

𝑚𝑇
𝐷

𝑀𝑅

ª®®¬ , (1.3.29)

where the light neutrino masses could be obtained by:

𝑚𝜈 =𝑚𝐷𝑀
−1
𝑅 𝑚

𝑇
𝐷 . (1.3.30)

In a similar fashion to the quark mixing, there is still missing an explanation for the leptonmixing
[69]. Considering the Lagrangian for the leptons in the SM, we can write:
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L = −𝑣𝑑𝑌 𝑒𝑖 𝑗𝑒𝑖𝐿𝑒
𝑗

𝑅
− 1

2
𝑀𝜈
𝑖 𝑗𝜈

𝑖
𝐿𝜈
𝑐 𝑗

𝐿
+ ℎ.𝑐. (1.3.31)

Now, the mass matrices can be diagonalized by unitary matrices:

𝑈 †
𝑒𝐿
𝑌 𝑒𝑈𝑒𝑅 =

©­­­­­­«
𝑦𝑒 0 0

0 𝑦𝜇 0

0 0 𝑦𝜏

ª®®®®®®¬
, 𝑈 †

𝜈𝐿
𝑀𝜈𝑈 ∗

𝜈𝑅
=

©­­­­­­«
𝑚1 0 0

0 𝑚2 0

0 0 𝑚3

ª®®®®®®¬
(1.3.32)

The charged current (CC) couplings to W boson in the flavor basis is given by:

L ⊃ − 𝑔
√

2
𝑒𝑖𝐿𝛾

𝜇𝑊 −
𝜇 𝜈

𝑖
𝐿 ⇒ L ⊃ 𝑔

√
2

(
𝑒𝐿 𝜇𝐿 𝜏𝐿

)
𝑈𝑃𝑀𝑁𝑆𝛾

𝜇𝑊 −
𝜇

©­­­­­­«
𝜈1𝐿

𝜈2𝐿

𝜈3𝐿

ª®®®®®®¬
+ ℎ.𝑐. . (1.3.33)

The above matrix can identified as Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing
matrix

𝑈𝑃𝑀𝑁𝑆 = 𝑈
†
𝑒𝐿
𝑈𝜈𝐿 . (1.3.34)

This matrix can be parametrized as:

𝑈𝑃𝑀𝑁𝑆 =

©­­­­­­«
𝑐12𝑐13 𝑠12𝑐13 𝑐13𝑒

−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒

𝑖𝛿 𝑠23𝑐13

𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒
𝑖𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒

𝑖𝛿 𝑐23𝑐13

ª®®®®®®¬
©­­­­­­«
1 0 0

0 𝑒𝑖
𝑎21

2 0

0 0 𝑒𝑖
𝑎31

2

ª®®®®®®¬
, (1.3.35)

where the 𝑎21, 𝑎31 are Majorana phases. These phases can be constrained after observing neutri-
noless double beta decay in experiments [70].
Despite the fact that the seesaw mechanism has provided an explanation for the origin of the
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neutrino masses, SM does not give any insight into the origin of fermion masses and the mixing
parameters. The idea of a family symmetry may provide a solution to the above problem, which
symmetry may be discrete or continuous, Abelian or non-Abelian (for some instructive reviews
see [71; 72]). Recently, an interesting class of symmetries descending from the modular group
𝑆𝐿(2, 𝑍 ) has dragged some attention. From amathematical point of view, this symmetry describes
a torus whose flat geometry can be viewed as it is cut open. The two dimensional space of
the torus could be identified as the real and the imaginary axis of a complex plane spanning
the upper half plane. The principal congruence subgroup of level 𝑁 corresponds to a subset of
matrices Γ(𝑁 ), whose determinant equals to unit and contains positive and negative integers.
The connection between particle physics and modular symmetry lays at the understanding that
extra dimensions in string theory are compactified in tori. Although the subgroups of 𝑆𝐿(2, 𝑍 )
are infinite, finite symmetries can rendered by removing the infinite matrices, leaving only the
quotient group:

Γ𝑁 = 𝑃𝑆𝐿(2, 𝑍 )/Γ̄(𝑁 ) . (1.3.36)

𝑆𝐿(2, 𝑍 ) = {
©­­«
𝑎 𝑏

𝑐 𝑑

ª®®¬ |𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑍, det = 1} . (1.3.37)

Furthermore, the quoetients groups

Γ′𝑁 ≡ 𝑆𝐿(2, 𝑧)/Γ(𝑁 ) (1.3.38)

are denoted by the homogeneous finite modular groups. These matrices are two by two matrices
with entries integers modulo N. The connections between the Γ𝑁 and Γ′

𝑁
is given by:

Γ𝑁 �
Γ′
𝑁

{1,−1} (1.3.39)

The modular group can be generated by two elements 𝑆,𝑇 . Its transformation properties or the
its action on the torus modulus 𝜏 are summarized below:
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𝑆 =
©­­«

0 1

−1 0

ª®®¬ , 𝑇 =
©­­«
1 1

0 1

ª®®¬ . (1.3.40)

𝑆 : 𝜏 → −1
𝜏
, 𝑇 : 𝜏 → 𝜏 + 1 (1.3.41)

𝑆4 = (𝑆𝑇 )3 = 1, 𝑆2𝑇 = 𝑇𝑆2 . (1.3.42)

Additionally, the transformation properties of the modulus 𝜏 under the 𝑆𝐿(2, 𝑍 ) is obtained by:

𝜏 → 𝛾𝜏 = 𝛾 (𝜏) = 𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑 . (1.3.43)

In the rest of this section, we will describe how superymmetric theories include the notions of
modular family symmetries on how to describe the Yukawa matrices depending only in a single
modulus 𝜏 [73]. But, before proceeding in the following Table, the finite modular groups Γ𝑁 up
to order 𝑁 = 7 are depicted.

𝑁 Γ𝑁 |Γ𝑁 |
2 𝑆3 6
3 𝐴4 12
4 𝑆4 24
5 𝐴5 60
6 𝑆3 ×𝐴4 72
7 𝑃𝑆𝐿(2, 7) 168

Table 1.5: Finite modular groups of 𝑆𝐿(2, 𝑍 ).

27 In the context of N = 1 supersymmetry, the modular invariant supersymmetric theories [73;
74; 75] has the following action:

𝑆 =

∫
𝑑4𝑥𝑑2𝜃𝑑2𝜃𝐾 (Φ𝐼 , Φ̄𝐼 , 𝜏, 𝜏) +

( ∫
𝑑4𝑥𝑑2𝜃W(Φ𝐼 , 𝜏) + ℎ.𝑐.

)
, (1.3.44)
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where 𝐾 is the Kähler potential, where it is a real gauge invariant function of the superfields Φ𝐼 .
This action has to respect both the modular symmetry as well as the gauge symmetry of the SM
or some GUT. The transformation properties of Φ𝐼 are specified by the modular weight 𝑘𝐼 and
the corresponding representation 𝑟𝐼 of Γ𝑁

𝜏 → 𝛾𝜏 =
𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑 , Φ𝐼 → (𝑐𝜏 + 𝑑)−𝑘𝐼 𝜌𝑟𝐼 (𝛾)Φ𝐼 . (1.3.45)

AS for the Kähler potential, it takes the form

𝐾 (Φ𝑖, Φ̄𝐼 , 𝜏, 𝜏) = −ℎΛ2 log(−𝑖𝜏 + 𝑖𝜏) +
∑︁
𝐼

(−𝑖𝜏 + 𝑖𝜏)−𝑘𝐼 |Φ𝐼 |2, ℎ > 0 . (1.3.46)

The above equation is invariant under the Kähler transformations, given the modular transfor-
mation of the moduli

𝜏 − 𝜏 → 𝜏 − 𝜏
|𝑐𝜏 + 𝑑 |2 , (1.3.47)

𝐾 → 𝐾 + ℎΛ2 log(𝑐𝜏 + 𝑑) + ℎΛ2 log(𝑐𝜏 + 𝑑), (1.3.48)

where the last two terms give null contribution after integrating the Grassmann coordinates 𝜃
[76; 77; 78; 79]. Regarding the superpotentialW, this can expanded into powers of the fields Φ𝐼

W =
∑︁
𝑛

𝑌𝐼1 ..𝐼𝑛 (𝜏)Φ𝐼1 ...Φ𝐼𝑛 . (1.3.49)

The functions 𝑌𝑛 are called modular forms of weight 𝑘𝑌 of level 𝑁 are given by:

𝑌 (𝜏) → 𝑌 (𝛾𝜏) = (𝑐𝜏 + 𝑑)𝑘𝑌 𝜌𝑟𝑌 (𝛾)𝑌 (𝜏), (1.3.50)

where the important constraints imposed in the theory are:
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𝑘𝑌 = 𝑘1 + ... + 𝑘𝑛, 𝜌𝑟𝑌 ⊗ ... ⊗ 𝜌𝑟𝑛 ∋ 1 . (1.3.51)

The modular forms are defined as a holomorphic function of a variable 𝜏

𝑓 (ℎ𝜏) = (𝑐𝜏 + 𝑑)𝑘 𝑓 (𝜏), ℎ =
©­­«
𝑎 𝑏

𝑐 𝑑

ª®®¬ ∈ Γ(𝑁 ), 𝑘 > 0. (1.3.52)

The linear space of these forms are denoted by𝑀𝑘 (Γ(𝑁 )) and its dimension is given by:

dim𝑀𝑘 (Γ(𝑁 )) = (𝑘 − 1)𝑁 + 6
24

𝑁 2Π𝑝 (1 −
1
𝑝2 ), 𝑁 > 2, 𝑘 ≥ 2 . (1.3.53)

Moreover, the automorphy factor 𝐽 (𝛾, 𝜏) is given by:

𝐽 (𝛾, 𝜏) = 𝑐𝜏 + 𝑑, (1.3.54)

where the generic modular functions 𝐹𝑖𝛾 ≡ 𝐽−𝑘 𝑓𝑖 (𝛾𝜏) are transforming by

𝐹𝑖𝛾 (ℎ𝜏) = 𝐽𝑘 (ℎ, 𝜏)𝐹𝑖𝛾 (𝜏), 𝐹𝑖𝛾 (𝜏) = 𝜌𝑖 𝑗 (𝛾) 𝑓 𝑗 (𝜏) . (1.3.55)

Observing the above equation, the 𝜌 matrices are the representation matrices if the 𝛾 element is
in the quotient group Γ𝑁 . Consequently, there is always a basis of the modular form space, so
that the 𝑌𝑟 (𝜏) are given:

𝑌𝑟 (𝛾𝜏) = (𝑐𝜏 + 𝑑)𝑘𝜌𝑟 (𝛾)𝑌𝑟 (𝜏), 𝛾 ∈ Γ, 𝜌𝑟 ∈ Γ𝑁 . (1.3.56)
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2 | Moduli Stabilization in type IIB
string theory

Recent swampland conjectures [80; 81; 82] have sparked an interesting discussion regarding the
nature of string theory vacua 1. This hypothesis states that the string landscape does not contain
stable dS vacua, although allow the possibility of metastable vacua. However, studies, by various
researchers, have shown that dS minima are in principle accessible in string theory, when pertur-
bative and non-perturbative dynamics are taken into account. Apparently, quantum corrections
in string theory are of significant importance in shaping the scalar potential of the effective the-
ory. Asmentioned in section 1.3.1, during the past decades efforts have been focused on a solution
to the moduli stabilization and dS vacua problems through introducing non-perturbative correc-
tions and objects like D-branes [85; 86] 2. The uplifting to dS space of the derived vacua can be
attributed to a mechanism utilizing anti-𝐷3 branes (𝐷3 for short), mainly used to the KKLT sce-
nario, or by D-terms as explained in [93], where the leading order 𝛼′perturbative corrections [64]
are also included in the Kähler potential dominating the small volume regime. 3

The present work will be in the framework of type IIB string and F-theory compactifications with
𝐷7-branes and fluxes, where the contributions from perturbative string-loop corrections [95] will
be taken into account. Their origin can be traced back to higher derivative terms in the string
action, whose effect is to generate a localized Einstein-Hilbert term. In the geometry of three
intersecting 𝐷7-branes, these contributions emerging as logarithmic corrections to the Kähler
potential. Quantum corrections of this type are standard in the presence of D-branes and were
also studied in the past [96; 97] although in different contexts. Also, in [98] it was shown that
invariance of the effective classical action under 𝑆𝐿(2, 𝑅) transformations implies logarithmic
corrections to the Kähler potential which depend on the untwisted Kähler moduli. Such contri-
butions, break the no-scale structure of the Kähler potential and lead to an effective theory with

1For related reviews and further references see [83] and [84].
2For recent work on KKLT see [87]-[88] and for earlier contributions see [89; 90].For cases suggesting smallW0

values see [91; 92].
3For a general review regarding four-dimensional compactifications with D-branes and fluxes see [94].
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all Kähler moduli stabilised. Furthermore, D-term contributions related to the Abelian symme-
tries of the intersecting 𝐷7- branes, work as an uplift mechanism and ensure the existence of dS
vacua. This chapter features the combination of both the perturbative logarithmic corrections in
the Kähler potential as well as non-perturbative contributions to the superpotential in the deriva-
tion of stable dS vacua in the four dimensional effective theory. Investigations will be focused
on scenarios where the non-tivial non-perturbative corrections are only involving a subset of the
available moduli, leaving the remaining scalar fields to be stabilized by the new quantum effects,
where an additional implication is that they break the no-scale structure of the Kähler potential.
Various string models favor such examples where some of the non-perturbative corrections in
the superpotential are prohibited by Euclidean instanton contributions as described in [99] (see
also[100]), where the world-volume fluxes lift fermionic zero modes preventing their generation.
The following section contains the analysis of the previous mentioned approach. At first, the
string quantum corrections are going to be presented and analyzed and the new contributions
to the Kähler potential are going to be highlighted, in order to differentiate our methodology
from previous studies. Moreover, two scenarios are investigated: the first one contains only
one non-perturbative correction to the superpotential, while the latter studies the more complex
case of multiple corrections. In both examples, the supersymmetric flatness conditions are scru-
tinized leading to various bounds on the internal fluxes and the free parameters of the theory.
Moreover, an analysis of the aforementioned quantum corrections in fibred compactifications are
summarized, pointing towards the effectiveness of those contributions to a broader spectrum of
geometries. The uplifting of the AdS vacua will be performed by D-terms, resulting to completely
stable dS vacua available for cosmological applications [101; 102]. In the last part of this chapter,
the cosmological implications of these type of stabilized vacua are examined where logarithmic
effects in the off-diagonal elements of the Kähler metric are taken into account. New contribu-
tions to the decays of moduli to axions are explored, which axions could comprise the particle
nature of universe’s dark radiation. Furthermore, a dark matter scenario is proposed based on
the fact that moduli fields could also decay to degrees of freedom of the geometry’s dark sector.
These decays could potentially result into WIMPs where their mass lay in the range of order
∼ O(103, 1011) 𝐺𝑒𝑉 .
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2.1 Perturbative moduli stabilization

2.1.1 Quantum corrections in the Kähler potential

The notation for various fields used in the subsequent analysis is as follows: The dilaton and Kalb-
Ramond fields are denoted with 𝜙 and 𝐵2 respectively while the various 𝑝-form potentials with
𝐶𝑝, 𝑝 = 0, 2, 4. The 𝐶0 potential and the dilaton field 𝜙 are combined in the usual axion-dilaton
combination:

𝑆 = 𝐶0 + 𝑖 𝑒−𝜙 ≡ 𝐶0 +
𝑖

𝑔𝑠
·

Finally, 𝑧𝑎, 𝑎 = 1, 2, 3, ... stand for the complex structure (CS) moduli and 𝑇𝑖, 𝑖 = 1, 2, 3, . . . for the
Kähler fields. The fluxed induced superpotential,W0, at the classical level is [103]

W0 =

∫
𝐺3 ∧ Ω(𝑧𝑎) , (2.1.1)

with Ω(𝑧𝑎) being the holomorphic (3,0)-form and 𝐺3 := 𝐹3 − 𝑆 𝐻3, where the field strengths
are 𝐹𝑝 := 𝑑 𝐶𝑝−1, 𝐻3 := 𝑑𝐵2. The perturbative superpotential W0 is a holomorphic function
and depends on the axion-dilaton modulus 𝑆 , and the CS moduli 𝑧𝑎 . Thus, at the classical level,
the supersymmetric conditions, D𝑧𝑎W0 = 0 and D𝑆W0 = 0 fix the moduli 𝑧𝑎, 𝑆 , however, the
Kähler moduli remain completely undetermined. At the same order, the Kähler potential depends
logarithmically on the various fields, including the Kähler moduli

K0 = −
3∑︁
𝑖=1

ln(−𝑖 (𝑇𝑖 −𝑇𝑖)) − ln(−𝑖 (𝑆 − 𝑆)) − ln(−𝑖
∫

Ω ∧ Ω̄) · (2.1.2)

Then, the effective potential is computed using the standard formula

𝑉eff = 𝑒K
(∑︁
𝐼 ,𝐽

D𝐼W0K 𝐼 𝐽D𝐽W0 − 3|W0 |2
)
· (2.1.3)

In the absence of any radiative corrections, the latter vanishes identically due to supersymmetric
conditions and the no scale structure of the Kähler potential. Hence, it is readily inferred that in
order to stabilise the Kähler moduli it is necessary to go beyond the classical level. In fact, when
quantum corrections are included they break the no-scale structure of the Kähler potential and
presumably a non-vanishing contribution in the scalar potential, i.e. 𝑉eff ≠ 0, is feasible.
As already stated, in the quest for a stable dS minimum in effective string theories, the rôle of
perturbative as well as non-perturbative corrections will be analysed. Furthermore it should be
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mentioned that this work takes place in the framework of type IIB string theory compactified on
a 6-d Calabi-Yau (CY) manifold X6, and the 10-d space isM4 ×X6. The subsequent computations
are assumed in the context of type IIB string theory compactified on the 𝑇 6/𝑍𝑁 orbifold limit of
the CY space. Furthermore, a geometric configuration consisting of three intersecting 𝐷7 branes
is considered, while the internal volume V is expressed in terms of the imaginary parts 𝑣𝑖 (the
two-cycle volumes) of the Kähler moduli

V =
1
6
𝑘𝑖 𝑗𝑘𝑣

𝑖𝑣 𝑗𝑣𝑘 , 𝑣𝑖 = −Im(𝑇 𝑖) , (2.1.4)

where 𝑘𝑖 𝑗𝑘 are intersection numbers. The 𝑣𝑖 are related to 4-cycle volumes 𝜏𝑖 as follows:

𝜏𝑖 =
1
2
𝑘𝑖 𝑗𝑘𝑣

𝑗𝑣𝑘 . (2.1.5)

In the present case it is simply assumed thatV = 𝑣1𝑣2𝑣3 or, in terms of the 4-cycle volumes 𝜏𝑖 ’s:

V =
√
𝜏1𝜏2𝜏3 . (2.1.6)

After these preliminaries, in the remaining of this section the various types of corrections will be
presented.
Starting with non-perturbative corrections of the superpotential, in principle, all three Kähler
moduli considered in this model may contribute. In this case the superpotential takes the form

W = W0 +
3∑︁
𝑘=1

𝐴𝑘𝑒
𝑖𝑎𝑘𝜌𝑘 , (2.1.7)

In the above formula, 𝜌𝑘 = 𝑏𝑘 + 𝑖𝜏𝑘 where 𝑏𝑘 is associated with the RR 𝐶4 form, 𝜏𝑘 is given
by (2.1.5) and W0 =

∫
𝐺3 ∧ Ω is the tree-level superpotential in (2.1.1). The second term in the

right-hand side of (2.1.7) is the non-perturbative part [104]. The constants 𝐴𝑖 in general depend
on the complex structure moduli and the 𝑎𝑖 parameters are assumed to be small (for example
in the case of gaugino condensation in an 𝑆𝑈 (𝑁 ), they are of the form 2𝜋

𝑁
). However, it maybe

possible that the choice of world-volume fluxes [99] allow only some of the Kähler moduli fields
to have non-vanishing non-perturbative (NP) contributions. Before proceeding to the next step,
some comments are due with respect to (w.r.t.) the reliability of the instanton correction and the
specific choices in the subsequent analysis. This type of corrections originates from the presence
of Euclidean D3-branes wrapping four-cycles in the base of the compactification [104]. First of
all, in order the supergravity approximation to be valid, the condition 𝜏1 ≥ 1 should be fulfilled.
Two main reasons are in favor of this argument. First, shrinking one direction to small volume
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leads to highly curved Kähler cones or orbilfolds where the effective approximation is at stake.
Second, the logarithmic correction [96] that has been added in the Kähler potential requires large
transverse directions 𝜏𝑖 . We come back to this issue in section 3.2.
Next, quantum corrections to the Kähler potential will be discussed, starting with the 𝛼 ′3 contri-
butions, which, in the large volume limit imply a redefinition of the dilaton field [64]

𝑒−2𝜙4 = 𝑒−2𝜙10 (V + 𝜉) = 𝑒− 1
2𝜙10 (V̂ + 𝜉) · (2.1.8)

The last expression on the right-hand side of (2.1.8) holds in the Einstein frame and the volume
is written in terms of the imaginary parts of the Kähler deformations 𝑇 𝑘 as follows

V =
1
3!
𝜅𝑖 𝑗𝑘𝑣

𝑖𝑣 𝑗𝑣𝑘 , 𝑣𝑘 = −Im(𝑇 𝑘) = 𝑣𝑘 𝑒 1
2𝜙10 · (2.1.9)

The modifications in the Kähler potential correspond to a shift of the volume by a constant 𝜉
which is determined in terms of the Euler characteristic 𝜉 = − 𝜁 (3)

4(2𝜋)3 𝜒 .
The origin of the second type of corrections comes from higher derivative terms which give rise
to multigraviton scattering in string theory. In type IIB theories, the leading terms appearing in
the 10-dimensional effective action are proportional to 𝑅4, where 𝑅 is the Riemann curvature. In
theories with N = 1 sypersymmetry in 10 dimensions, the leading corrections already appear at
order 𝑅2. Here, the terms of interest to us are the 𝑅4 couplings, which, after compactification to
four dimensionsX10 → M4×X6, they induce a new Einstein-Hilbert (EH) term, multiplied by the
Euler characteristic of the manifold. The one-loop amplitude of the on-shell scattering involving
four gravitons has been worked out in [105; 106; 107; 108; 109; 110; 111; 112] where it has been
shown that the ten-dimensional action reduces to

Sgrav =
1

(2𝜋)7𝛼′4

∫
𝑀4×X6

𝑒−2𝜙R(10) −
𝜒

(2𝜋)4𝛼′

∫
𝑀4

(
−2𝜁 (3)𝑒−2𝜙 ± 4𝜁 (2)

)
𝑅(4) , (2.1.10)

where 𝑅(4) denotes the ‘reduced’ Riemann tensor in four dimensions, the ± signs refer to the type
IIA/B theory respectively, and the Euler characteristic is defined as

𝜒 =
3

4𝜋3

∫
X6

𝑅 ∧ 𝑅 ∧ 𝑅 · (2.1.11)

From (2.1.10), it is observed that a localised EH term 4 is generated with a coefficient propor-

4The computations have been performed in the orbifold limit [95] and localisation occurs at the orbifold fixed
points 𝑝𝑖 . These points correspond to the singularities where the Euler number is non-vanishing and in general
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tional to 𝜒 defined in (2.1.11). Consequently it is inferred that this term is possible only in four
dimensions. In the geometry of the bulk space, the 𝑅(4) EH terms of (2.1.10) correspond to ver-
tices at points where 𝜒 ≠ 0, and as such, they emit gravitons and Kaluza-Klein (KK) excitations
in the six-dimensional space. Furthermore, in the presence of 𝐷7 branes which are an essential
ingredient of the internal space configurations in type IIB and F-theory, new types of quantum
contributions emerge. It is found thereby that the exchange of closed string modes between the
EH-vertices and 𝐷7 branes and 𝑂7-planes give rise to logarithmic corrections. These take the
form [95]

4𝜁 (2)
(2𝜋)3 𝜒

∫
𝑀4

(
1 −

∑︁
𝑘

𝑒2𝜙𝑇𝑘 ln(𝑅𝑘⊥/w)
)
𝑅(4) . (2.1.12)

In the above, 𝑇𝑘 is the tension of the 𝑘𝑡ℎ 7-brane, 𝑅⊥ stands for the size of the two-dimensional
space transverse to the brane, and w is a ‘width’ related to an effective ultraviolet cutoff for the
graviton KK modes propagating in the bulk [109].

2.1.2 Effective potential

In this section, we are going to present two examples of scalar potentials augmented by both
perturbative and non-perturabtive corrections. The stability conditions will be presented in par-
allel with the flatness conditions of the superpotential, whose ffect is to provide an insight to the
scale of the internal fluxes. In the first example, we assume that only the 𝜏1 modulus induces a
non-vanishing contribution in the NP part of the superpotential, thus

W = W0 +𝐴𝑒𝑖𝑎 𝜌1 · (2.1.13)

As for the quantum corrections, they are parametrizing all the Kähler moduli of the geometric
configuration and they are given by

𝛿 = 𝜉 +
3∑︁
𝑘=1

𝜂𝑘 ln(𝜏𝑘), (2.1.14)

where an additional assumption is that all the 𝐷7-branes have the same sting tension. This will
lead to a more compact description of the logarithmic factor. The coefficients 𝜂𝑘 and 𝜉 are defined
by

𝜒 =
∑

𝑖 𝜒𝑝𝑖 . In this sense, the existence of the term R (4) is associated with these points, hence the term “localised
gravity”.
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𝜂𝑘 ≡ 𝜂 = −1
2
𝑔𝑠𝑇0 ; 𝜉 = − 𝜒

4
×


𝜋2

3 𝑔
2
𝑠 for orbifolds

𝜁 (3) for smooth CY
. (2.1.15)

Taking into account the above corrections, the Kähler potential takes the form

K = −2 ln
(√
𝜏1𝜏2𝜏3 + 𝜉 + 𝜂 ln (𝜏1𝜏2𝜏3)

)
≡ −2 ln (V + 𝜉 + 𝜂 lnV) · (2.1.16)

The covariant derivative of the superpotential w.r.t. the Kähler modulus 𝜌1 is defined in the usual
manner, i.e., 𝐷𝜌1𝑊 = 𝜕𝜌1W +W𝜕𝜌1K . Working in the large volume limit, terms proportional to
𝜉 and 𝜂 coefficients compared to the volumeV are ignored. Writing the Kähler potential as

K = −2 log(
√︁
(𝜌1 − 𝜌1) (𝜌2 − 𝜌2) (𝜌3 − 𝜌3) + O(𝜂, 𝜉)) (2.1.17)

and taking the derivatives 5

𝜕𝜌1W = 𝑖𝛼𝐴𝑒𝑖𝛼𝜌1, 𝜕𝜌1K = − 1
𝜌1 − 𝜌1

(2.1.18)

it is readily found that

𝐷𝜌1W
��
𝜌1=𝑖𝜏1

= 𝑖𝑒−𝛼𝜏1

(
𝛼𝐴 + 𝐴 +W0𝑒

𝛼𝜏1

2𝜏1

)
· (2.1.19)

The corresponding supersymmetric condition, 𝐷𝜌1W = 0, fixes the value of the modulus 𝜏1 =

Im𝜌1 in terms of the tree-level superpotentialW0 (determined by the choice of the fluxes) and the
coefficients 𝛼,𝐴 - related to non-perturbative contributions. Thus, the vanishing of the derivative
(2.1.19) yields

𝜏1 = −1 + 2𝑤
2𝛼

, (2.1.20)

where𝑤 represents either of the two branches𝑊0,𝑊−1, of the Lambert W-function

𝑤 =𝑊0/−1(
𝛾

2
√
𝑒
) . (2.1.21)

In (2.1.21), the convenient definition has been introduced

𝛾 =
W0

𝐴
· (2.1.22)

5We denote with calligraphic lettersW0,W the tree-level and corrected superpotential and reserve the symbols
𝑊,𝑊0,𝑊−1 for the Lambert W-function.
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Real values of the solution are compatiblewith the bound𝛾 ⩾ −2𝑒−1/2 ≈ −1.213 for both branches.
For the “lower” branch𝑊0, equation (2.1.20) implies the constraint 𝛼𝜏1 ⩽ 1/2. Requiring also
𝛼𝜏1 > 0 it is found that the ratio 𝛾 = W0/𝐴 is confined in the region:

−1.213 ≤ 𝛾 ≤ −1 · (2.1.23)

This solution is depicted with the blue curve in figure 2.1. The corresponding regions for the
“higher” branch𝑊−1, depicted with the orange curve in figure 2.1, are

−1.213 ≤ 𝛾 ≤ 0 , (2.1.24)

and 𝛼𝜏1 ∈ [ 1
2 ,∞] .

-1.2 -1.0 -0.8 -0.6 -0.4 -0.2
γ

2

4

6

ατ1

Figure 2.1: Plot of solution (2.1.20) for 𝛼𝜏1 as a function of the ratio 𝛾 =
W0
𝐴
. The orange (upper) and blue

(lower) curves represent the𝑊−1 and𝑊0 branches, respectively. Acceptable values (𝑎𝜏1 > 0) for the blue
curve are compatible only with its section satisfying 𝛾 < −1.

The F-term scalar potential is computed by inserting (2.1.2) into (2.1.3). This yields a rather com-
plicated formula which is not very illuminating, however, in the large volume limit it suffices to
expand it w.r.t. the small parameters 𝜂 and 𝜉/V and obtain a simplified form. Thus, without loos-
ing its essential features, in this approximation the potential is written as a sum of three parts, as
follows:

𝑉𝐹 ≈ 𝑉𝐹1 +𝑉𝐹2 +𝑉𝐹3 · (2.1.25)
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The various parts of the RHS in (2.1.25) are given by

𝑉𝐹1 =
3
2
W2

0
𝜉 − 2𝜂 (4 − lnV)

V3 − 9W2
0
𝜉𝜂 log(V)

V4 ,

𝑉𝐹2 = 4
𝛼𝜏1

V2 𝐴̃(𝐴̃ + 𝑎𝜏1𝐴̃ +W0) ,

𝑉𝐹3 = 𝐴̃(𝐴̃ 𝑓 +W0 𝑔) ·

(2.1.26)

where 𝐴̃ = 𝑒−𝛼𝜏1𝐴 and O( 1
V5 ) or higher terms in the expansion are ignored. Also

𝑓 =
3𝜉 − 8𝜂 (2𝛼𝜏1(2𝛼𝜏1 + 3) + 3) − 4𝜉𝛼𝜏1(𝛼𝜏1 + 1) − 2𝜂 (2𝛼𝜏1 − 1) (2𝛼𝜏1 + 3) logV

2V3

+ 𝜂𝜉 (2𝛼𝜏1 + 3) ((6𝛼𝜏1 − 3) logV − 4𝛼𝜏1)
V4 ,

𝑔 =
(3 − 2𝛼𝜏1) (𝜉 + 2𝜂 log(V)) − 24𝜂 (1 + 𝛼𝜏1)

V3 − 6𝜂𝜉
(3 − 2𝛼𝜏1) logV + 2𝛼𝜏1

V4 ·

In the above all three Kähler moduli 𝜏𝑖 are expressed in terms of the volume V with 𝜏1 being
considered at its critical value 𝜏𝑐𝑟1 given in (2.1.20), fixed from the supersymmetric conditions
imposed on the superpotential. Therefore, only the two of them, namely 𝜏2 and 𝜏3 are left unde-
termined which appear only in the combination 𝜏2𝜏3 = V/𝜏𝑐𝑟1 6. It is to be noted that, since there
are regions of solutions 𝐷𝜌1W = 0, where 𝜏1 is hierarchically smaller than the rest of the moduli
and 𝛼𝜏1 receives relatively moderate values, (see figure 2.1), terms involving 𝐴̃2 have also been
retained. It should be further pointed out that, in principle, there are regions of the parameter
space (in particular those with large values of 𝜏𝑐𝑟1 ) where such terms are comparable toV−5, the
latter being omitted in the large volume expansion. Then, 𝐴̃2 terms could be safely neglected
too. In this case non-perturbative corrections are suppressed and the perturbative logarithmic
corrections prevail. One of the objectives of this work, however, is to also probe regions where
all terms of (2.1.26) have comparable contributions to the total potential in (2.1.25).
At this point, it is worth clarifying the origin of the components (2.1.26). The term𝑉𝐹1 is derived
from the 𝛼′ and perturbative string loop corrections due to the localised EH terms, both entering
in the Kähler potential (2.1.16). Indeed, switching off the non-perturbative corrections, i.e. setting
𝐴 = 0, the only term remaining in (2.1.26) is the 𝑉𝐹1 component which is identified with the one
given in [113] where only perturbative corrections are studied. Setting 𝜂 and 𝜉 equal to zero, the
only term that remains is the second component, 𝑉𝐹2 . This contribution comes exclusively from
the non-perturbative corrections which were included in the superpotential. Finally, the third
component 𝑉𝐹3 is a mixing term and it is non-vanishing only when both perturbative and non-

6From now on, we drop “𝑐𝑟” from 𝜏𝑐𝑟1 and write just 𝜏1 for simplicity.
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perturbative corrections are present. As an additional check with regard to the non-perturbative
part, the appropriate limit of (2.1.26) is taken to reproduce the already known results in the liter-
ature [85]. Indeed, for 𝜂 = 𝜉 = 0 the scalar potential becomes

𝑉𝐹2 =
4𝑒−2𝛼𝜏1𝛼𝐴

𝜏2𝜏3
(𝑒𝛼𝜏1W0 +𝐴 + 𝛼𝜏1𝐴) · (2.1.27)

Solving (2.1.19) w.r.t. theW0, it is found that:

W0 = −𝐴𝑒−𝛼𝜏1 (1 + 2𝛼𝜏1) · (2.1.28)

Substituting in (2.1.27) while putting 𝜏3 → 𝜏, 𝜏2 → 𝜏, 𝜏1 → 𝜏 the result is

𝑉𝑚𝑖𝑛 = −4𝑒−2𝛼𝜏𝛼2𝐴2

𝜏
, (2.1.29)

which (up to numerical factor related to the multiplicity of the Käher moduli) coincides with
the solution of [85]. To proceed with the minimisation of the scalar potential (2.1.26), a more
convenient form will be worked out. To this end, the following parameter is introduced

𝜖 =
2𝑤 + 1
𝑤

· (2.1.30)

Furthermore, for later convenience, the range of the various parameters defined up to this point
for the two branches of the solution are shown in Table 2.1. As already noted, in the LVS regime
it would be more suitable to have large directions given by the lower branch𝑊−1. However, these
solutions represent instanton corrections, and as it is obvious, the𝑊0 branch is a strongly coupled
region, where higher order corrections should be taken into account. For the reasons discussed
above and for the correctness of the effective approach, from now on only the𝑊−1 branch will
be considered as the solution for the 𝜏1 modulus. 7

Using the above definitions, and the identities 2𝑤 = 𝛾𝑒𝛼𝜏1 = −(2𝛼𝜏1 + 1) resulting from (2.1.20-
2.1.22) the F-term potential (2.1.25) can be cast in a convenient compact form. Considering the
𝑉𝐹2 piece in particular, under successive substitutions of 𝛾 =

W0
𝐴
, 2𝛼𝜏1 = −(1+2𝑤) and 𝛾𝑒𝛼𝜏1 = 2𝑤

its third term gives

4𝛼𝜏1𝐴W0𝑒
−𝛼𝜏1

V2 = −2
W2

0 (1 + 2𝑤)
𝛾𝑒𝛼𝜏1V2 = −

W2
0 (1 + 2𝑤)
𝑤V2 (2.1.31)

7The current understanding of the non-perturbative physics prevent a complete study of the other branch. A
way of treating instanton corrections from 𝐷3-branes is presented in [114].
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Branch 𝑎𝜏 𝛾 𝑤 𝜖

𝑤 =𝑊0( 𝛾

2
√
𝑒
) 0 −1 − 1

2 0
1
2 − 2√

𝑒
−1 1

𝑤 =𝑊−1( 𝛾

2
√
𝑒
) ∞ 0 −∞ 2

1
2 − 2√

𝑒
−1 1

Table 2.1: The range of the various parameters used in the analysis.

Continuing as above, it is found that all three terms of 𝑉𝐹2 add up to:

𝑉𝐹2 = −
W2

0
V2

(1 + 2𝑤)2

4𝑤2 = − (𝜀W0)2

4V2 .

Finally, the following compact form of the whole 𝑉𝐹 potential is obtained

𝑉𝐹 ≈ (𝜖W0)2
(
2𝜉 −V + 4𝜂 (log(V) − 1)

4V3 − 𝜂𝜉 3 log(V) − 1
V4

)
+ O

(
1
V5

)
· (2.1.32)

In the present approximation, valid in the large volume limit, it is observed that the parameters
associated with the non-perturbative effects appear in the F-term potential as an overall positive-
definite factor 𝜖2 where 𝜖 is defined in (2.1.30). Thus, the shape of 𝑉𝐹 is controlled by the second
factor which exhibits the volume dependence and involves the parameters 𝜉 and 𝜂 coming from
the perturbative corrections in the Kähler potential. Indisputably, the properties of the potential
depend decisively on the signs of 𝜉, 𝜂 given in (2.1.15) which convey topological and geometric
information of the compactification manifold. For closed orientable smooth manifolds and the
particular D7-branes set up [95] in the present study the choice 𝜒 < 0, 𝜉 > 0 will be adopted.
Then, dropping the subleading terms of order ∝ 1

V4 and higher in the large volume regime, and
requiring the vanishing of the first derivative, it is found that the volume at the minimum of the
potential is given by

Vmin = −6𝜂𝑊0

(
− 1

6𝜂
𝑒

4
3−

𝜉

2𝜂

)
, (2.1.33)

where𝑊0 is the Lambert W-function. SubstitutingVmin into the second derivative yields:

𝑑2𝑉𝐹

𝑑V2 = (𝜖W0)2V − 6𝜂
2V5 · (2.1.34)

Hence, a minimum exists as long asV ⩾ 6𝜂 which is obviously true in the large volume regime,
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although this corresponds to an AdS vacuum. Nonetheless, this can be naturally uplifted to a
dS minimum, when D-term contributions are taken into account. It should be pointed out too,
that minimisation of 𝑉𝐹 w.r.t. V stabilises only the combination 𝜏2𝜏3 = V/𝜏1 leaving another
independent combination of 𝜏2, 𝜏3 moduli undetermined. This will also be rendered with the
inclusion of the D-terms in the next section.

In the next paradigm, we will examine the case where the flux induced superpotential W0, re-
ceives non-perturbative corrections from two Kähler moduli, 𝜌1 and 𝜌2. In this case, the super-
potential takes the form:

W = W0 +𝐴𝑒𝑖𝑎𝜌1 + 𝐵𝑒𝑖𝑏𝜌2 , with 𝑎 > 0 and𝑏 > 0 . (2.1.35)

Cases with two exponentials capture many new features and have been discussed in the literature
in particular constructions. The racetrack form [115] suitable for cosmological applications could
be considered as a particular case when both exponents of (2.1.35) involve the same modulus, i.e.,
when 𝜌2 in replaced with 𝜌1 in the second exponential. In general, two or more exponential terms
imply a richer structure for the shape of 𝑉eff which could exhibit saddle points between differ-
ent vacua of the theory, so that successful types of inflationary scenarios can be realized [116].
Despite the vast literature devoted on such issues, the combined effects of (2.1.35) with pertur-
bative logarithmic corrections to the Kähler potential have not been investigated so far. These
ingredients are a generic feature of the effective theories derived from the 10-dimensional super-
string action and thence it is the main subject of the subsequent analysis. In the present setup,
the contribution of the moduli 𝜌1, 𝜌2 in the superpotential enters through the non-perturbative
corrections, and thus, the appropriate flatness conditions must be imposed. The latter imply the
vanishing of the corresponding covariant derivatives 𝐷𝜌𝑖𝑊 = 𝜕𝜌𝑖W +W𝜕𝜌𝑖K . Introducing the
expansions with respect to 𝜂/V and 𝜉/V in the large volume limit, it is readily found that

𝐷𝜌1W|𝜌2=𝑖𝜏2
𝜌1=𝑖𝜏1

= −𝐴(𝑒
−𝑎𝜏1 (1 + 2𝑎𝜏1) + 𝛽𝑒−𝑏𝜏2 + 𝛾)

2𝜏1
+ O(𝜂, 𝜉) = 0, (2.1.36)

𝐷𝜌2W|𝜌2=𝑖𝜏2
𝜌1=𝑖𝜏1

= −𝐴(𝑒
−𝑎𝜏1 + 𝑒−𝑏𝜏2 (1 + 2𝑏𝜏2)𝛽 + 𝛾)

2𝜏2
+ O(𝜂, 𝜉) = 0 , (2.1.37)

where 𝛽,𝛾, stand for the following ratios :

𝛽 =
𝐵

𝐴
, 𝛾 =

W0

𝐴
. (2.1.38)

If some reasonable assumptions concerning the various flux parameters and the range of moduli
fields are made, the solutions of the above transcendental equations can be expressed in closed
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form with good accuracy, in terms of known functions. A possible choice of the approximations
can be better perceptible as follows: The two equations (2.1.36) and (2.1.37) are combined to give

𝑎𝜏1 𝑒
−𝑎𝜏1 = 𝛽 𝑏𝜏2 𝑒

−𝑏𝜏2 . (2.1.39)

Since 𝑎, 𝑏 are positive constants, it turns out that 𝛽 > 0, while real solutions of (2.1.36,2.1.37)
exist as long as 𝛾 < 0. The equation (2.1.39) is plotted in figure (2.2) for several values of 𝛽 in
the parametric space defined by the pair (𝑎𝜏1, 𝑏𝜏2). The curves of the left panel correspond to
values 𝛽 < 1 and the ones on the right, to 𝛽 > 1. (For 𝛽 = 1 a trivial solution exists 𝑎𝜏1 =

𝑏𝜏2 represented by the diagonal, not shown in the figure). The parametric space has been split
into four regions 𝐼 , 𝐼 𝐼 , 𝐼 𝐼 𝐼 , 𝐼𝑉 with respect to the ranges of 𝑎𝜏1 and 𝑏𝜏2. Region 𝐼 corresponds
to large values of 𝑎𝜏1, 𝑏𝜏2 and thus, both terms of the non-perturbative contributions in (2.1.35)
are suppressed. In general, in the large volume regime, perturbative logarithmic corrections are
expected to prevail. In the opposite limit, region 𝐼 𝐼 𝐼 corresponds to small values of 𝑎𝜏1, 𝑏𝜏2, and
both NP-contributions become sizable, however, in this case large V requires 𝜏3-values much
bigger than 𝜏1, 𝜏2. A drawback of this region is that non-perturbative corrections correspond to
the large coupling regime and as such they are not fully controllable. Nevertheless, for the sake
of completeness a short analysis will be presented in a subsequent section. Finally, the regions
𝐼 𝐼 and 𝐼𝑉 , for typical values of the gaugino condensation parameters 𝑎 = 2𝜋

𝑀
∼ 𝑏 = 2𝜋

𝑁
, can be

associated with cases where there could be a milder hierarchy between the moduli fields 𝜏1,2,3.
Then, at least one NP-term in (2.1.35) could makesignificant contribution to the superpotential
and it would be interesting to investigate its implications.
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Figure 2.2: Graphical solution of Eq (2.1.39) for various values of the parameter 𝛽 = 𝐵/𝐴 defined
in (2.1.38). The left panel shows curves for three values of 𝛽 < 1 and the right panel for 𝛽 > 1.
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The present study will proceed with the investigation of the properties of𝑉eff in reasonable parts
of the regions defined in figure 2.2, that is, regions with 𝑎𝜏1 ≪ 1 and 𝑏𝜏2 ≪ 1 will be excluded
from the analysis. In the present section the F-term scalar potential will be analyzed and as a first
approach, the restriction

𝛽𝑒−𝑏𝜏2 ≪ |𝛾 | ↔ 𝐵𝑒−𝑏𝜏2 ≪ |W0 | , (2.1.40)

will be imposed which entails a non-perturbative part 𝐵𝑒−𝑏𝜏2 much smaller than the flux induced
tree-level superpotential |W0 |. It should be noted that in the large volume regime small fluxes
discussed in recent works [91; 117; 118; 119], are not excluded by the assumption imposed above.
For example, for W0 ∼ 10−8, condition (2.1.40) is satisfied8, for 𝛽 ∼ 𝑂 (1) and 𝑏𝜏2 > 20. As it will
be seen in the subsequent analysis, in this limiting case it is possible to present sufficiently accu-
rate analytic formulae for the flatness solutions and achieve a compact form of 𝑉eff . A different
approach where this condition is relaxed will be presented in a subsequent section.

From (2.1.39) the first term of (2.1.40) is 𝛽 𝑒−𝑏𝜏2 =
𝑎𝜏1
𝑏𝜏2
𝑒−𝑎𝜏1 . Hence, the approximation is valid

for small fluxes associated with the coefficient 𝐵 and/or large hierarchies 𝑏𝜏2 ≫ 𝑎𝜏1. Thus, the
focus of the analysis in the present section will be on the appropriate sections of the regions 𝐼
and 𝐼 𝐼 where the hierarchy 𝑎𝜏1 ≪ 𝑏𝜏2 holds (a similar analysis for region 𝐼𝑉 is appropriate for
𝑎𝜏1 ≫ 𝑏𝜏2). The case of region 𝐼 𝐼 𝐼 will be analyzed using a different parametrization.

In addition, the energy scale and the coefficients 𝑎, 𝑏 related to gaugino condensations on each
brane can differ. Under these assumptions, the equations (2.1.36,2.1.37) reduce to:

𝐷𝜌1W|𝜌2=𝑖𝜏2
𝜌1=𝑖𝜏1

= −𝐴𝑒
−𝑎𝜏1 (1 + 2𝑎𝜏1) + 𝛾

2𝜏1
≈ 0,

𝐷𝜌2W|𝜌2=𝑖𝜏2
𝜌1=𝑖𝜏1

= −𝐴𝑒
−𝑎𝜏1 + 2𝑏𝜏2𝛽 𝑒

−𝑏𝜏2 + 𝛾
2𝜏2

≈ 0 .
(2.1.41)

It is convenient to solve the above with respect to the moduli fields 𝜏1, 𝜏2. Defining the new
variables𝑤,𝑢

𝑤 = −1 + 2𝑎𝜏1

2
, 𝑢 = −𝑏𝜏2 , (2.1.42)

8Considering the recent activity for the quest of vacua with exponentially small W0, it would be worth com-
menting on this parametric region. According to [120], the plethora of flux vacua could be described as a statistical
ensemble where the value of W0 plays a significant rôle. Models with 𝐷3 uplift, such as [85], are based on the
conifold geometry for the D-brane configurations [26; 121], since the dilaton and the CS moduli are parametrically
heavier than the Kähler fields and could be effectively integrated out. A large amount of CS moduli (which is the
case for the most well studied CY manifolds) requires big 𝐷3 charges in order to satisfy the tadpole cancellation.
Consequently, this implies small values for W0 at the weak coupling regime as it is also predicted by the statistical
analysis.
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the solutions are expressed as follows 9

𝑤 ≡ 𝑤 (𝛾) =𝑊 ( 𝛾

2
√
𝑒
),

𝑢 ≡ 𝑢 (𝛾) =𝑊
(√
𝑒 𝑒𝑤 + 𝛾

2𝛽

)
≡𝑊

(
𝛾

𝛽

1 + 2𝑤
4𝑤

)
.

(2.1.43)

In the above solution,𝑊 stands for either of the two branches𝑊0,𝑊−1 of the Lambert-W function.
For large 𝜏2 values however, the function𝑊 in (2.1.43) should be identified with the branch𝑊−1.
For later convenience, the following parameters are also introduced:

𝜀 =
1 + 2𝑤
𝑤

, 𝜀 =
𝜀

𝑢
. (2.1.44)

The restriction to real values of the two branches𝑊0,𝑊−1 imposes the bounds on the various
new parameters shown in Table 2.2. The approximation (2.1.40) is valid only for regions 𝐼 and 𝐼 𝐼
where 𝑢 ≡ −𝑏𝜏2 < −1.

𝛾 𝛽 𝑤 𝑢 𝜖

𝐼 (− 2√
𝑒
, 0) (0,∞) (−∞,− 3

2 ) (−∞,−1) (−2, 0)

𝐼 𝐼 (− 2√
𝑒
,−1) (0,∞) (−1,− 1

2 ) (−∞,−1) (−1, 0)

𝐼 𝐼 𝐼 (− 2√
𝑒
,−1) (0,∞) (−1,− 1

2 ) (−1, 0) (−∞, 0)

𝐼𝑉 (− 2√
𝑒
, 0) (0,∞) (−∞,− 3

2 ) (−1, 0) (−∞, 0)

Table 2.2: Limiting values of different parameters for each one of the regions depicted in Figure 2.2.

Formally the 𝑉𝐹 term comprises of three parts, the pure perturbative and non-perturbative parts
and a term which is a mixing of both. Before presenting the total 𝑉𝐹 , it is useful to examine
separately the form of the perturbative and non-perturbative parts. For example, implementing
the expansion with respect to 𝜂 and 𝜉/V the perturbative part receives the following simplified
form

𝑉
(𝑝)
𝐹

≈ 3
2
W2

0
𝜉 + 2𝜂 log(V)

V3 + O( 1
V4 ) . (2.1.45)

9For example, the two equations imply 𝑒−𝑎𝜏1 (1 + 2𝑎𝜏1) = −𝛾 ⇒ 2𝑤𝑒−𝑎𝜏1 = 𝛾 or𝑤𝑒𝑤 =
𝛾

2
√
𝑒
etc.
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From this simplified form of the perturbative part (2.1.45) it is observed that the numerator con-
sists of two terms of different volume dependence. For 𝜂 < 0 and 𝜉 > 0 in particular𝑉 (𝑝)

𝐹
acquires

a minimum at V0 = 𝑒
1
3+

𝜉

2 |𝜂 | , however the value of the potential at the minimum is negative,
(𝑉 (𝑝)
𝐹

)𝑚𝑖𝑛 = 2
3𝜂𝑒

3𝜉
2𝜂−1

< 0, i.e., it defines an Anti de Sitter (AdS) vacuum.
The pure non-perturbative part 𝑉 (𝑛𝑝)

𝐹
becomes

𝑉
(𝑛𝑝)
𝐹

= −W2
0
(𝑢 + 1) (2𝑤 + 1)2

2𝑢𝑤2V2 ≡ −(𝜀W0)2 𝑢 (𝑢 + 1)
2V2 . (2.1.46)

Remarkably, this term has a volume dependence ∝ 1
V2 which is exactly the dependence of the D-

term uplift in ((2.1.103)). For the regions 𝐼 , 𝐼 𝐼 where the approximation is valid, however, because
𝑢 (1 + 𝑢) > 0 the contribution of this term is negative and deepens the AdS vacuum.10 The full
F-part of the scalar potential comprising all those three parts can be written in a simple form
using (2.1.39). These manipulations yield

𝑉𝐹 ≈(𝜀W0)2
(
−𝑢 (𝑢 + 1)

2V2 + (2𝑢 + 1) (14𝑢 + 3) (𝜉 + 2𝜂) log(V) − 24𝜂
32V3 + (2.1.47)

+𝜂𝜉
48𝑢 −

(
68𝑢2 + 60𝑢 + 9

)
logV

32V4

)
. (2.1.48)

It is again emphasized that this form is valid for the regions 𝐼 , 𝐼 𝐼 and cannot be used to describe
the physics for regions 𝐼 𝐼 𝐼 and 𝐼𝑉 . In the large volume case where the term ∝ 1

V4 can be safely
ignored, the minimum of the potential for the volume modulus can be found analytically. Setting
the first derivative equal to zero and solving, the volume at the minimum is found to be

V𝑚𝑖𝑛 = −𝜂𝑝 (𝑢)𝑊0

(
− 1
𝜂𝑝 (𝑢)𝑒

𝑞(𝑢)− 𝜉

2𝜂

)
, (2.1.49)

where, for the subsequent analysis the following convenient parametrization has been introduced

𝑝 (𝑢) = 3
16

(2𝑢 + 1) (14𝑢 + 3)
𝑢 (𝑢 + 1) ,

𝑞(𝑢) = 1
3

39 + 4𝑢 (7𝑢 + 5)
3 + 4𝑢 (7𝑢 + 5) .

(2.1.50)

Starting with region 𝐼 , while focusing in the case of large volume limit and small non-perturbative
contributions, it can be observed that the requirement of a positive second derivative of the po-

10Nonetheless, it will be seen that this term has the same power-law volume dependence with the positive D-term
contributions 𝑑/V2 and can be compensated by appropriate values of the parameter 𝑑 .

50



tential at the minimum yields

V𝑚𝑖𝑛 > 𝜂 𝑝 (𝑢) ⇒ −𝜂 𝑝 (𝑢)𝑊0 > 𝜂 𝑝 (𝑢) . (2.1.51)

From the range of 𝑢 ⩽ −1 (region 𝐼 , Table 1), it is deduced that 𝑝 (𝑢) > 0 and taking into account
the bound𝑊0 ⩾ −1 (for real values of the Lambert function), this implies that 𝜂𝑝 (𝑢) < 0 or
𝜂 < 0. Furthermore, real𝑊0 values defined in (2.1.49) imply that its argument should be greater
than −𝑒−1, which, for 𝜂𝑝 (𝑢) < 0 is satisfied for any 𝜉, 𝜂. To determine whether a dS vacuum
is attainable, the value of the effective potential at the minimum is required. A straightforward
computation yields

𝑉eff (V𝑚𝑖𝑛) = (𝜖W0)2 𝜂 (1 + 2𝑢) (3 + 14) − 8V𝑚𝑖𝑛𝑢 (1 + 𝑢)
48V3

𝑚𝑖𝑛

= − (𝜖W0)2 𝑢 (1 + 𝑢)
6V3

𝑚𝑖𝑛

(
V𝑚𝑖𝑛 −

2
3
𝜂𝑝 (𝑢)

)
.

(2.1.52)

Taking into account that for the range of 𝑢 ∈ (−∞,−1) the factor 𝑢 (1 + 𝑢) > 0, it is readily seen
that for the parameter space of region 𝐼 the value of the minimum (2.1.52) is always negative.
Hence when only F-term contributions are taken into account, the resulting potential always
exhibits an AdS vacuum.
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Figure 2.3: Left panel: The F-term potential 𝑉𝐹 for 𝜂 = −0.5, 𝑢 = −9 and three values of 𝜉 = 150, 165, 180.
Lower 𝜉 values imply deeper AdS minima. Right panel: 𝑉𝐹 for 𝜂 = −0.1, 𝜉 = 200 and three values of
𝑢 = −1.2,−1, 25,−1.3. The larger the |𝑢 | values the deeper the AdS minima.

The F-part of the potential is plotted in figure 2.3 for two values of the parameter 𝜂 and several
values of 𝑢 = −𝑏𝜏2. As expected, in all these cases the F-term potential implies always an AdS
minimum and an uplift term such as the one coming from a 𝐷3-brane or D-terms induced form
possible𝑈 (1)’s associated with 𝐷7-branes is necessary.
As a final example, we are going to present a model based on the so called "Swiss-cheese" volume,
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which is a Calabi-Yau manifold with the following type of form:

V = 𝑓3/2(𝜏 𝑗 ) −
𝑁𝑠𝑚𝑎𝑙𝑙∑︁
𝑖

𝜆𝜏
3/2
𝑖
, (2.1.53)

where the 𝑓 function is homogeneous function of degree 3/2. In these models, there are rigid divi-
sors, whose paramatrized by the blow-up moduli 𝜏𝑖 leaving 𝑁𝑠𝑚𝑎𝑙𝑙 flat direction to the parameter
space after stabilization. These scenarios have extensively studied in the past [122; 123; 124], aim-
ing to embed a natural inflation which is dubbed as "Fibre Inflation". Despite the fact that these
fibre-like volumes are ideal due to the available flat directions, non-perturbative corrections have
been utilized to achieve a stabilized vacuum where additional higher order corrections needed
to fully uplift the vacuum. We are going to show that the logarithmic string loop corrections,
featured in the previous case studies, could bypass many of the problems appearing, such the
strong constraints of the Kähler conditions, from the inclusion of non-perturbative corrections.
In order to proceed, we are going to develop a full analysis of the effective potential by imposing
the loop effects along each one of the world-volume directions, resulting into a Kähler potential
of the following form:

K = − log(𝑠 − 𝑠
𝑖

) − 2 log
[
V + 𝜉

2
(𝑠 − 𝑠

2𝑖
)3/2 + (𝑠 − 𝑠

2𝑖
)−1/2

∑︁
𝑖

𝜂𝑖 log(𝜏𝑖 − 𝜏𝑖
2

)
]

(2.1.54)

where 𝜏𝑖 stand for the four-cycle moduli, 𝜉 denotes the 𝛼′ corrections and the logarithmic cor-
rections ∼ 𝜂 log(..) are induced in every direction of the internal world-volume. As for the exact
form of the compactification’s volume, we have to start from Calabi-Yau ℎ1,1 = 4 Kähler moduli.

A chiral global model that features all the above ingredients, is the one described in [123]. The
volume form, in terms of the four cycle moduli 𝜏𝑖 , is reduced in:

V = 2𝑡4𝑡6𝑡7 +
𝑡3
1
3

𝜏𝑖=𝜕𝑖V
======⇒

V =
1
√

2
√
𝜏4𝜏6𝜏7 −

1
3
𝜏

3/2
1 . (2.1.55)

In the last step, we included the relation of the Kähler cone, where the basis of the Kähler form
is written as:
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𝐽 = 𝑡1𝐷1 + 𝑡4𝐷4 + 𝑡6𝐷6 + 𝑡7𝐷7 (2.1.56)

The Kähler cone conditions are be derived from the Kähler generators as:

𝐾1 = −𝐷1 + 𝐷4 + 𝐷6 + 𝐷7, 𝐾2 = 𝐷7, 𝐾3 = 𝐷4, 𝐾4 = 𝐷6, (2.1.57)

𝑟1 = −𝑡1 > 0, 𝑟2 = 𝑡1 + 𝑡7 > 0, 𝑟3 = 𝑡3 + 𝑡4 > 0, 𝑟4 = 𝑡1 + 𝑡6 > 0 . (2.1.58)

Moreover, the connections between the two-cycle and four-cycle moduli can be obtained through
𝜏𝑖 = 𝜕𝑡𝑖V:

𝜏1 = 𝑡
2
1 , 𝜏4 = 2𝑡6𝑡7, 𝜏6 = 2𝑡4𝑡7, 𝜏7 = 2𝑡4𝑡6 . (2.1.59)

In addition, one can further reduce the volume form in (2.1.62) using the Kähler cone conditions
and the D-term fixing 11 The relevant conditions are summarized below:

𝑡4 ≡ 𝛼𝑡6 . (2.1.60)

𝑡7 > −𝑡1 > 0 ⇒

𝑡6 > −𝑡1 > 0, 𝛼 ≥ 1,

𝛼𝑡6 > −𝑡1 > 0, 𝛼 ≤ 1 ,
(2.1.61)

where after applying these conditions, the volume form is written as:

V =
1

√
2𝛼

√
𝜏7𝜏6 −

1
3
𝜏

3/2
1 . (2.1.62)

It is important to mention that the size of the volume is controlled by 𝜏4, 𝜏6, 𝜏7 moduli, while the
rigid divisor 𝜏1 parametrizes the diagonal del Pezzo divisor. Regarding the complex structure
moduli 𝑧𝑖 as well as the axion-dilaton, they are stabilized at high energies by the supersymmetric
flatness conditions.

11A detailed analysis regarding the geometric construction can be found in sections 3.1-3.5 of [123].
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𝐷𝑧𝑖𝑊 = 0 = 𝐷𝑧𝑖𝑊̄ , 𝐷𝑠𝑊 = 0 = 𝐷𝑠𝑊̄ . (2.1.63)

In the above framework, we are going to present a model which features an alternative to the
stabilization procedure of the blow-up modulus scenario. This novel procedure results into one
flat direction that appears at the F-term potential level as a consequence of the higher order terms
scaling as O(1/V4). Since the scalar potential is parametrized by the three moduli (𝜏1, 𝜏7, 𝜏6), we
would like to trade one of them in order to introduce the volume variableV in the computations.
This reparametrization helps us to perform the large volume expansion. So, in order to include the
overall volume in our computations, we solve the equation (2.1.62) with respect to one modulus
e.g. 𝜏6,

𝜏6 =

√
2
√
𝛼

(
𝜏

3/2
1 + 3V

)
3√𝜏7

. (2.1.64)

Using the above definition, we are going to present the necessary computations needed to define
the effective F-scalar potential. In the appendix, we provide a detailed derivation of the BBHL
potential. Moreover, following the calculations used in [125], the Kähler potential can be written
as follows:

2𝑌 = 2V + 𝜉 + 𝜂 log
(
2𝛼𝜏7

9

(
𝜏

5/2
1 + 3V𝜏1

)2
)
, (2.1.65)

where we have used the fact that the axio-dilaton and the free parameters can redefined as:

𝑠 = 𝑐0 + 𝑖𝑒−𝜙 , 𝑑 = 𝑒−𝜙 ⇒ 𝜉 = 𝜉 𝑑3/2, 𝜂 = 𝜂 𝑑−1/2, 𝑑 =
1
𝑔𝑠
. (2.1.66)

The scalar potential can be computed by the N = 1 supergravity formula:

𝑒−K𝑉𝑘 = 𝐾
𝐴𝐵 (𝐷𝐴𝑊 ) (𝐷𝐵𝑊̄ ) − 3|𝑊 |2, 𝑊 = W0 . (2.1.67)

The first term of the scalar potential (2.1.67) will be displayed below, where we expand in terms

of O(𝜂, 𝜉V) keeping only the first order terms:
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𝐾𝐴𝐵 (𝐷𝐴𝑊 ) (𝐷𝐵𝑊̄ ) = 3𝑔𝑆W2
0

(
1 + 𝜉 − 16𝜂 + 𝜂𝑤

4V + 𝜉𝜂 (1 − 2𝑤)
2V2

)
, (2.1.68)

where we define 𝑤 = log
(
2𝛼𝜏7

9
(3V𝜏1 + 𝜏5/2

1 )2
)
. It is obvious that the second term in (2.1.67)

cancels the first term above, and by turning off 𝜂 → 0, it results to:

𝑒−K𝑉𝑒 𝑓 𝑓 =
3𝑔𝑠W2

0 𝜉

4V + O( 𝜉V𝑛
) . (2.1.69)

Based on the above, the scalar potential can be easily derived and it is shown below:

𝑉𝑒 𝑓 𝑓 =
3𝑔𝑠W2

0 (𝜉 − 16𝜂 + 𝜂𝑤)
4V3 −

3𝑔𝑠W2
0 𝜂𝜉𝑤

V4 + O( 𝜉V𝑛
, 𝜂𝑛) . (2.1.70)

The above potential is described in terms of three moduli 𝑉 (V, 𝜏1, 𝜏7), so we need to minimize
the potential with respect to all of the above 12. As discussed in [123; 127], it is a unique feature of
spaces described by volumes of the form of (2.1.62) to preserve one flat direction. Their approach
is to stabilize first the internal volume and secondly to perform the stabilization of the blow
up divisor by non-perturbative effects, while the 𝜏7 remains flat. Our approach differs from the
aforementioned due to the fact that the logarithmic corrections can perform the stabilization
while keeping track of the remaining flat direction. The previous studies of this kind of approach
requires only keeping terms that scales as 1

V3 , but nowwewill prove that even terms proportional

to∼ 𝜂𝜁

V4 could be significant. Firstly by inspecting the effective potential (2.1.70), we stabilize w.r.t.
the compactified space while considering thatV ≫ 𝜏1:

𝜕V𝑉𝑒 𝑓 𝑓 =

9W2
0 𝑔𝑠

(
−𝜂 log

(
2𝛼𝜏7

9

)
− 𝜉 + 2𝜂

(
V

𝜏
3/2
1 +3V

+ 8
)
− 2𝜂 log

(
𝜏

5/2
1 + 3𝜏1V

))
4V4 = 0 ⇒

V �
𝑒

1
6

(
−3 log

(
2𝛼𝜏7

9

)
− 3𝜉

𝜂
+50

)
− 𝜏5/2

1
3𝜏1

. (2.1.71)

By substituting the above minimum in the scalar potential, the result is:

12Please check the correct definition of the fluxes in [126].
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𝑉𝑒 𝑓 𝑓 |V𝑚𝑖𝑛
= −

27
√

2𝜂𝜏3
1W2

0 (𝛼𝜏7) 3/2𝑒
3𝜉
2𝜂𝑔𝑠(√

2
√︃
𝛼𝜏5

1𝜏7𝑒
𝜉

2𝜂 − 3𝑒25/3
)

3
, (2.1.72)

where it can be readily found that both moduli are stabilized at 𝜏1,7 → 0. In order to avoid the
above statement, we are going to include in our calculations the next to leading order term

𝑉𝑒 𝑓 𝑓 =
3𝑔𝑠W2

0 (𝜉 − 16𝜂 + 𝜂𝑤)
4V3 −

3𝑔𝑠W2
0 𝜂𝜉 (𝑤)
V4 + O( 𝜉

𝑛

V𝑛
, 𝜂𝑛) . (2.1.73)

This new correction will not modify the minimum w.r.t. the volume (at least to a degree that
would lead to destabilization), since it is suppressed by 1

V4 . Nevertheless, it would enhance the
contributions to the transverse directions unraveling the importance of quantum corrections to
the characterization of the flat direction. So, the effective potential along the volume’s minimum
is given by:

𝑉𝑒 𝑓 𝑓 |V𝑚𝑖𝑛
=

27𝜏4
1W2

0 𝑔𝑠

(
3
√

2𝜂𝑒
25
3 − 𝜉

2𝜂

𝜏1
√
𝛼𝜏7

+ 12𝜉 (3𝜉 − 50𝜂) − 2𝜂𝜏3/2
1

)
4
(
𝑒

1
6

(
−3 log

(
2𝛼𝜏7

9

)
− 3𝜉

𝜂
+50

)
− 𝜏5/2

1

)
4

, (2.1.74)

where minimizing with respect to 𝜏7, there exist one minimum:

𝜏7 =
9𝑒

50
3 −

𝜉

𝜂

2𝛼
(
12𝜉𝜏1 + 𝜏5/2

1

)
2
. (2.1.75)

Given the above minimum, we derive an dS minimum as while there is a flat direction in terms
of a combination of the 𝜏1, 𝜏7 moduli. This is depicted below in the following two plots.

𝑉𝑒 𝑓 𝑓 |
𝜏𝑚𝑖𝑛

7
V𝑚𝑖𝑛

=
3W2

0 (𝜉 − 16𝜂)𝑔𝑠
256𝜉3

> 0 . (2.1.76)

Nevertheless, we cannot stabilize the moduli, since of all the directions are runaway paths. Now,
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we induce the next to leading order string loop corrections, which fall under two categories:
the KK-corrections and the winding loop corrections. These are summarized to the following
contributions:

𝐾𝐾𝐾𝑔𝑠 = 𝑔𝑠

∑︁
𝑖

𝐶𝐾𝐾𝑖 𝑡 𝑖⊥
V , 𝐾𝑤𝑔𝑠 =

∑︁
𝑖

𝐶𝑤
𝑖

V𝑡 𝑖∩
, (2.1.77)

where𝐶𝐾𝐾𝑖 and𝐶𝑤
𝑖
are some functions depending on the complex structure moduli and the open

stringmoduli. The two cycle volumemoduli 𝑡 𝑖⊥ denote the transverse space between the𝐷7 branes
and orientifold planes𝑂7. On the other hand, the moduli 𝑡 𝑖∩ correspond to volume curve residing
in the intersection of the 𝐷7 branes of the theory. Given this Kähler potential’s corrections, the
contribution to the effective scalar potential are given by:

𝑉 𝐾𝐾𝑔𝑠
= 𝑘𝑔2

𝑠

W2
0

V2

∑︁
𝑖 𝑗

𝐶𝐾𝐾𝑖 𝐶𝐾𝐾𝑗 𝐾0
𝑖 𝑗 , (2.1.78)

𝑉𝑊𝑔𝑠 = −2𝑘
𝑊 2

0
V2𝐾

𝑤
𝑔𝑠 = −2𝑘

𝑊 2
0

V3

∑︁
𝑖

𝐶𝑤
𝑖

𝑡 𝑖∩
, 𝑘 = ( 𝑔𝑠

8𝜋
) . (2.1.79)

In the above definition, we should also substitute the Kähler metric, which is given by:

𝐾0
𝑖 𝑗 =

1
16V (2𝑡 𝑖𝑡 𝑗 − 4V𝜅𝑖 𝑗 ) . (2.1.80)

Apart from the string loop corrections, there exists higher derivative corrections, where these are
a generic feature for all the Calabi Yau manifolds. Their form is given by:

𝑉𝐹 4 = −𝑘2 𝜆W
4
0

𝑔
3/2
𝑠 V4

Π𝑖𝑡
𝑖, (2.1.81)

where Π𝑖 are the topological numbers depending on the intersection of the divisors and 𝜆 is
unknown combinatorial factor. We are going to use these subleading corrections to the scalar
potential. The effective theory is, then, given by:
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𝑉𝑒 𝑓 𝑓 =
3𝑔𝑠W2

0 (𝜉 − 16𝜂 + 𝜂𝑤)
4V3 −

3𝑔𝑠W2
0 𝜂𝜉 (𝑤)
V4 + 𝑐

V4 (𝑡1 + 𝑡6 + 𝑡7) +𝑉𝑢𝑝 + O( 𝑐𝑖V4 ), (2.1.82)

We can exchange the two-cycle moduli in the scalar potential with the four-cycle moduli by using
the following identities:

𝑡1 =
√
𝜏1, 𝑡7 =

1
√

2𝛼
𝜏6√
𝜏7
, 𝜏6 =

1
√

2𝛼
√
𝜏7 . (2.1.83)

𝑉𝐹 4 =
𝑐

V4

( √
𝜏7√

2
√
𝛼
+ √

𝜏1 +
𝜏

3/2
1 + 3V

3𝜏7

)
(2.1.84)

Based on this construction, one can see that the flat direction is lifted, while the vacuum can be
uplifted by tiny uplift through an appropriate term𝑉𝑢𝑝 . In order to study the potential in a more
the canonical normalized basis for the fields. To do, we need to write down the leading order
terms of the Kähler metric, which are:

𝐾𝑖 𝑗 =

©­­­­­­«
1

4𝜏2
7

0 0

0 1
2𝜏2

6
0

0 0
√
𝛼𝜏7

4
√

2√𝜏1𝜏6𝜏7

ª®®®®®®¬
, (2.1.85)

where by inverting the defintions of the Kähler moduli to the normalized fields, we derive the
new basis as:

𝜏7 = 𝑒
√

2𝜑1, 𝜏6 = 𝑒
𝜑2, (2.1.86)

𝜏1 =
34/3𝜑34/3𝑒

1
3 (

√
2𝜑1+2𝜑2)

25/3𝛼
, V =

(
4 − 3𝜑32) 𝑒 𝜑1√

2
+𝜑2

4
√

2
√
𝛼

. (2.1.87)

Given the above form, the kinetic term are now written as:
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𝐾𝑖 𝑗 𝜕𝑇𝑖𝜕𝑇𝑗 =
∑︁
𝑖

𝜕𝑇𝑖𝜕𝑇𝑖

(𝑇𝑖 +𝑇𝑖)2 =
∑︁
𝑖

1
2
(𝜕𝜑𝑖)2 + ... . (2.1.88)

Finally, we display the scalar potential in the new basis as:

𝑉𝑒 𝑓 𝑓 = −
1024𝛼2𝜉𝜂 𝑔𝑆W2

0 𝑒
−2

√
2𝜑1−4𝜑2

(
log

(
94𝜑8

3
210𝛼2

)
+ 8

√
2𝜑1 + 10𝜑2

)
(
4 − 3𝜑2

3
)4 +𝑉𝑢𝑝−

−
32
√

2𝛼3/2𝑔𝑠W2
0 𝑒

− 3𝜑1√
2
−3𝜑2

(
𝜂

(
log

(
94𝜑8

3
210𝛼2

)
+ 8

√
2𝜑1 + 10𝜑2 − 48

)
+ 3𝜉

)
(
3𝜑2

3 − 4
)3 +

+
512 21/6 𝛼3/2 𝑐 𝑒

− 5𝜑1√
2
−4𝜑2

(
(9𝛼 𝜑2

3 𝑒
2
√

2𝜑1+𝜑2)1/3 + 21/3
(
𝑒
√

2𝜑1 + 𝑒𝜑2
))

(
4 − 3𝜑2

3
)4 . (2.1.89)

Due to the complexity of the above potential, we can reduce its form by considering an expansion
with respect to a small parameter. One can readily see in the above form, that there is a factor of
4 − 3𝜑2

3 , which can be recasted to:

𝜑2
3 =

𝑦 + 4
3

. (2.1.90)

Given, this redefinition the 𝑦 variable could be small, since the 𝜑3 describes the small divisor 𝜏1.
So, we can perform a an expansion with respect to this parameter. The leading order terms of
this expansion results into:

𝑉
𝑎𝑝𝑝𝑟

𝑒 𝑓 𝑓
=

128
√

2 𝛼3/2𝑐 𝑒
− 5𝜑1√

2
−4𝜑2

3𝑦4

[
48
√

2𝑐
(
𝑒
√

2𝜑1 + 𝑒𝜑2
)
+ 4 25/6 (3𝛼)1/3 𝑐 (𝑦 + 12) 𝑒 1

3 (2
√

2𝜑1+𝜑2)−

− 3W2
0 𝑦𝑔𝑠𝑒

√
2𝜑1+𝜑2

(
2𝜂

(√
2(− log(2𝛼) + 5𝜑2 − 24) + 8𝜑1

)
+ 3

√
2𝜉

)
−

− 96
√
𝛼 𝜉𝜂𝑒

𝜑1√
2W2

0 𝑔𝑠

(
−2 log(2𝛼) + 8

√
2𝜑1 + 10𝜑2 + 𝑦

) ]
+𝑉𝑢𝑝 .

(2.1.91)

We could further simplify our formula considering the regime where the 𝛼 parameter is small
𝛼 ≪ 1. The simpler formula for the effective potential is then given by:

59



𝑉
𝑎𝑝𝑝𝑟

𝑒 𝑓 𝑓
=

32𝛼3/2𝑒
− 5𝜑1√

2
−4𝜑2

3𝑦4

[
4
√

2𝑐
(
12

(
𝑒
√

2𝜑1 + 𝑒𝜑2
)
+ (𝑦 + 12) (6𝛼𝑒 (2

√
2𝜑1+𝜑2))1/3

)
−

−W2
0𝑦 𝑔𝑠 𝑒

√
2𝜑1+𝜑2

(
−
√

2𝜂 log
(
64𝛼6) + 9

√
2𝜉 + 6𝜂

(
8𝜑1 +

√
2(5𝜑2 − 24)
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(2.1.92)

From this expression, one can easily derive the minimum with respect to the 𝑦 variable. This can
approximated to be as:

𝑦 �
64
√

2𝑐 𝑒−
√

2𝜑1−𝜑2
(
(6𝛼𝑒 (2

√
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√
2𝜑1 + 𝑒𝜑2

)
W2

0 𝑔𝑠

(
−
√

2𝜂 log (64𝛼6) + 30𝜑2 − 144) + 9
√

2𝜉 + 48𝜂𝜑1

) . (2.1.93)

By recalling the redefinition in (2.1.90), the minimum along 𝜙3 direction is proven to be:

𝜑2
3,𝑚𝑖𝑛 =

1
3
(𝑦 + 4) . (2.1.94)

As for the other two perpendicular directions, we could substitute the minimal value of 𝑦 in the
effective scalar potential of equation (2.1.92), which leads to:

𝑉𝑒 𝑓 𝑓 |𝑦 � −
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By examining the derivative of the above formula with respect to the 𝜑2, the result is:
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The equation on the brackets could provide an approximate solution, which is summarized below
and the minimal value is expressed in terms of the Lambert function𝑊0/−1.

𝜑2,𝑚𝑖𝑛 �
1
30

©­«log
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2𝜑1 + 30𝑊0/−1

©­«2 24/5𝑒
1
30

(
9𝜉
𝜂
+54

√
2𝜑1−184

)
3𝛼1/5

ª®¬ + 184ª®¬ (2.1.97)

The same method can be applied for the other field, 𝜑1, and the approximate solution at the
minimum can be expressed as:

𝜑1,𝑚𝑖𝑛 �
6𝜂 log(𝛼) − 9𝜉 + 2𝜂

(
144 + 15 log

( 13
5
)
+ log(8)

)
54
√

2𝜂
. (2.1.98)

To prove the validity of our approximate formula of the potential in (2.1.92) and the exact potential
in (2.1.89), we are going to sketch the potentials in the vicinity of the global minimum. In the
following tables, an numerical example is presented, where the values of the free parameters are
displayed along with the values of the moduli/fields at their corresponding minima.

𝜏1 𝜏7 V

3856 1065 10286

𝜑1 𝜑2 𝜑3

4.92 5.96 1.09

𝑚2
𝜏1 𝑚2

𝜏7 𝑚2
V

1.43 × 10−13 1.95 × 10−14 2.1 × 10−17

𝑚2
𝜑1 𝑚2

𝜑2 𝑚2
𝜑3

1.39 × 10−10 8.74 × 10−14 2.3 × 10−14

Table 2.3: The numerical solution for the minima with their corresponding masses.

𝑔𝑠 |W0 | 𝜉 |𝜂 | 𝛼 |𝜆 | 𝑉𝑢𝑝

10−4 20 5 0.5 10−2 8 × 10−2 10−13

Table 2.4: The values used for the model’s free parameters.
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Veff
appr

5.0 5.5 6.0 6.5 7.0
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6.×10-14
7.×10-14
8.×10-14
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Veff

Veff

Veff
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5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0
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1.4×10-13
Veff

Figure 2.4: The two plots in the upper part display the potentials directions along the 𝜑1, 𝜑2 directions,
correspondingly. In the lower part of the figure, the small divisor’s trajectory is plotted.

2.1.3 Uplifting AdS vacua with D-terms

Both scalar potentials, describing the two different scenarios of equations (2.1.32) and (2.1.48),
need to be uplifted by properly imported the effects of D-terms. The case of anti-𝐷3 branes suffer
from many issues regarding the background geometry and the wrapping factors in the conifold.
In [113] it was proven that it is sufficient to consider the D-term contributions associated with
𝑈 (1) factors which arise in the presence of the intersecting 𝐷7 branes already included in the
geometric configuration. Flux generated D-terms have the general form [128; 129]

𝑉𝐷 =
𝑔2
𝐷7𝑖
2

(
𝑄𝑖𝜕𝜌𝑖𝐾 +

∑︁
𝑗

𝑞 𝑗 |Φ 𝑗 |2
)2

,
1
𝑔2
𝐷7𝑖

= Im𝜌𝑖 + · · · (2.1.99)

where 𝑄𝑖, 𝑞 𝑗 are “charges” and {· · · } stand for flux and dilaton dependent corrections while the
Φ 𝑗 fields depend on the specific field theory model. For zero Φ 𝑗 -vevs the model dependent term
vanishes (see discussion in [129]) and it turns out that𝑉𝐷 ≈ 𝑄2

𝑖 /𝜏3
𝑖 . Then, the generic form of the
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corresponding D-term potential can be approximated by [113]

𝑉D =

3∑︁
𝑖=1

𝑑𝑖

𝜏𝑖

(
𝜕K
𝜕𝜏𝑖

)2
≈

3∑︁
𝑖=1

𝑑𝑖

𝜏3
𝑖

≡ 𝑑1

𝜏3
1
+ 𝑑3

𝜏3
3
+
𝑑2𝜏

3
1𝜏

3
3

V6 , (2.1.100)

where, 𝑑𝑖 ≈ 𝑄2
𝑖 > 0 and in the last expression the modulus 𝜏2 has been traded with the internal

volumemodulusV , i.e., 𝜏2 = V2/(𝜏1𝜏3). Thus, the effective potential being the sum of the (2.1.32)
and (2.1.100), 𝑉eff = 𝑉𝐹 +𝑉𝐷 , is given as a function of 𝜏1, 𝜏3 andV:

𝑉eff ≈ − (𝜖W0)2 V − 2𝜉 + 4𝜂 (1 − log(V))
4V3 + 𝑑1

𝜏3
1
+ 𝑑3

𝜏3
3
+
𝑑2𝜏

3
1𝜏

3
3

V6 · (2.1.101)

Proceeding as in [113], it is found that the 𝜏1,3 moduli are stabilised at

𝜏𝑘 =

(
𝑑𝑘

𝑑
V2

)1/3
, 𝑘 = 1, 3, where 𝑑 = (𝑑1𝑑2𝑑3)

1
3 (2.1.102)

The potential takes the form

𝑉eff |𝜏𝑚𝑖𝑛
1,3

= −(𝜖W0)2V − 2𝜉 + 4𝜂 (1 − logV)
4V3 + 3𝑑

V2 (2.1.103)

At the minimum of the potential the volume modulus takes the value

V𝑉 ′=0 =
6|𝜂 |

1 − 12r
𝑊0

(
1 − 12r

6|𝜂 | 𝑒
4
3−

𝜉

2𝜂

)
(2.1.104)

As in the previous case, the following two constraints are imposed: i) the argument of the𝑊0

function must be larger than −1/𝑒 and ii) the potential at the minimum must be positive. Once
these restrictions are implemented, the ratio r = 𝑑

(𝜖W0)2 of the 𝐹 - and 𝐷-term coefficients is found
to be bounded in the region

1
12

− 𝜂

3V𝑚𝑖𝑛

⩽ r ⩽
1
12

− 𝜂
2
𝑒

𝜉

2𝜂−
7
3 , (2.1.105)

For large volumes, the above bounds allow only a tiny region in the vicinity of 1/12 . Given the
ratio r, the inequalities (2.1.105) imply also an upper bound on 𝜉 :

− 𝜂

3V𝑚𝑖𝑛

< −𝜂
2
𝑒

𝜉

2𝜂−
7
3 ⇒ 𝜉 < 2|𝜂 |

(
ln

6|𝜂 |
12r − 1

− 7
3

)
(2.1.106)

In figure 2.5 the potential is plotted vs the volume for the set of parameters 𝜖W0 = 1.9, 𝜉 = 10, 𝜂 =
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−1 and three values of the D-term coefficient 𝑑 . A dS minimum is obtained for a very short range
of 𝑑 . In contrast to the first case, here there is no constant uplift term, all𝑉eff terms are suppressed
by powers ofV and the potential asymptotically approaches zero asV → ∞.

1000 2000 3000 4000 5000


1.0

1.5

2.0

Veff

d=3.0195×10-1

d=3.0196×10-1

d=3.0198×10-1

Figure 2.5: Plot of 𝑉𝑒 𝑓 𝑓 × 1010 potential vs the volume modulus for 𝜖W0 = 1.9, 𝜂 = −1, 𝜉 = 10 for three
values of the D-term coefficient 𝑑 .

As for the second paradigm, we will follow the same strategy. In the subsequent analysis the
case of large 𝜏1, 𝜏2 moduli will be considered (i.e. 𝑎𝜏1 ≫ 1 and 𝑏𝜏2 ≫ 1 ) where the calculations
for the stabilization of the directions transverse to the volume are simplified. This will provide
a more quantitative comparison of the effect of the “strong" non-perturbative correction to the
logarithmic one. Proceeding the way described above, the total potential is written as:

𝑉eff ≈ (𝜀𝑊0)2 7(𝜉 + 2𝜂 log(V)) − 4V
8V3 + 𝑑1

𝜏3
1
+ 𝑑2

𝜏3
2
+
𝑑3𝜏

3
1𝜏

3
2

V6 · (2.1.107)

Minimization of (2.1.107) with respect to the 𝜏1, 𝜏2 moduli, leads to the following equations:

𝜏3
1 =

𝑑
2
3
1 V2

(𝑑2𝑑3)
1
3
, (2.1.108)

𝜏3
2 =

𝑑
2
3
2 V2

(𝑑1𝑑3)
1
3
· (2.1.109)

Substituting the above back into (2.1.107), the potential 𝑉eff receives the following compact for-
mula:

𝑉eff ≈ (𝜀W0)2
(
7
8
𝜉 + 2𝜂 log(V)

V3 − 1
2V2

)
+ 3𝑑
V2 , (2.1.110)
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where 𝑑 = (𝑑1𝑑2𝑑3)1/3. The volume modulus at the minimum of the potential is

V𝑚𝑖𝑛 =
21𝜂

4(6r − 1)𝑊0
(4(6r − 1)

21𝜂
𝑒

1
3−

𝜉

2𝜂
)
, (2.1.111)

where the new parameter r introduced in the formula of V𝑚𝑖𝑛 above is the ratio of the F- and
D-term coefficients

r =
𝑑

(𝜀W0)2 . (2.1.112)

For given 𝜉 and 𝜂 the coefficient r has an upper and a lower bound coming from the following
two constraints: i) Real values of the volume are achieved when the argument of the𝑊0 function
must be larger than −1/𝑒 and ii) the potential at the minimum must be positive. Implementing
these conditions, the following bounds on r are imposed

1
6
+ 7

12
|𝜂 |
V ≲ r ≲

1
6
+ 7|𝜂 |

8
𝑒
− 𝜉

2 |𝜂 |−
4
3 . (2.1.113)

For positive and large 𝜉 values, this restricts the values of r in a tiny region close to 1
6 . It should

be observed that the exact value r = 1
6 eliminates the 1

V2 term form the scalar potential. This
would leave only the perturbative F-part ∝ (𝜉 + 2𝜂 logV)/V3 which defines only AdS minima.
It is worth noticing that, this value is twice as big compared with that obtained in the case of the
effective potential (2.1.48) derived with only one non-perturbative term in the superpotential. It
is convenient to define a new parameter

𝜚 = 105(6r − 1) , (2.1.114)

which can be used to plot the effective potential (2.1.107). Assuming for example the values
𝜉 = 10, 𝜂 = −0.5 and using (2.1.113), it can be deduced that a dS minimum exists as long as

2.925 ≲ 𝜚 ≲ 3.125 .

The potential (2.1.110) is plotted in figure 2.6 as a function of the volume for three values of the
parameter 𝜚 . In figure 2.7 a three dimensional plot is shown where the minimum is depicted
alongV and 𝜏1 directions.
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ϱ=2.925
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ϱ=3.125
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Veff
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Figure 2.6: The potential (2.1.110) for 𝜂 = −0.5, 𝜉 = 10 and three values of the parameter 𝜚 = 105(6𝑟 − 1).
For 𝜚 = 2.925 the potential at the minimum vanishes. For larger 𝜚 values 𝑉eff (V𝑚𝑖𝑛) > 0 while the
minimum disappears for 𝜚 ≳ 3.125.

Figure 2.7: The potential (2.1.110) for 𝜂 = −0.5, 𝜉 = 10, 𝑑 = 0.6668,W0 = −1, 𝜀 ≈ 2, 𝜚 = 3.05, 𝑑2 = 𝑑3 = 1.
The light blue plane is just above𝑉 = 0+ and the blue dot is the intersection with𝑉eff which indicates the
position of the dS the minimum.
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2.2 Dark radiation and dark matter scenarios in
stabilized vacua

Developments on the attainability of de-Sitter (dS) vacuum in type IIB string compactifications are
populating the literature the recent years. Despite the various swampland conjectures [80; 81; 82;
85; 130; 131; 132; 133; 134], several works are pointing towards a possibility of a dS vacuum either
by incorporating non-perturbative corrections in the Kähler potential [86; 135; 136; 137; 138; 139;
140] or by including perturbative quantum dynamics [95; 113; 141; 142; 143]. Among the most
plausible explanations on the aforementioned question are focusing in the study of the effective
theory, where an Anti de-Sitter (AdS) is evident and various uplifting ingredients are included
(𝐷̄3 branes and D-terms) in order to achieve a dS vacuum. The central role in these setups are
played by themoduli fields of the theory, whichmodify not only the relevant scales for the correct
embedding of inflation but also the late-time cosmological dynamics of the universe such as the
reheating temperature, the effective neutrino species number and a potential connection between
dark matter and dark radiation due to their decays. Some recent references regarding the open
problem of moduli stabilization, dark radiation and their correlation to dark matter can be found
to the followings works [86; 91; 136; 144; 145; 146; 147].
In the present section, we will focus on the importance of the quantum string corrections to the
Kähler potential, whose origin can be traced back to the higher derivative terms of the effective
string action and the existence of localized Eistein-Hilbert terms [96; 108; 109; 148] in a geometric
setup of three intersecting𝐷7 branes scenario. Their inclusion to the theory provides a novel way
to stabilize the Kähler moduli fields of the theory, without considering the non-perturabative
corrections whose dynamics could be dangerous regarding the value of the string coupling in
different parametric regions of the theory. Moreover, the dS vacuum is achieved by assuming
the presence of magnetic fluxes along the cycles of the 𝐷7 branes, which induce some anomalous
𝑈 (1) symmetries charging this way the Kähler moduli fields. Their result is an induced D-term
in the level of the effective potential [90; 149], which despite being moduli dependent, its effect
could in principle suffice for the uplifting of the Anti de-Sitter vacuum.
At a second stage, this work focuses on a detailed calculation of the moduli’s mass eigenstates
and eigenvalues and their correlation with the choice of fluxes W0 (either exponentially sup-
pressed or order one), which modifies the mass hierarchy and the potential characterization of
the longest lived particle field with its corresponding cosmological dynamics. Based on the above
the couplings of the normalized fields to the axions, which comprise the dark sector of the theory,
are computed unraveling that not only the diagonal decays of the moduli to axions are important
but also that off diagonal decays (due to the quantum corrections) contribute at a considerable
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amount to the dark radiation abundance. On the contrary, the dominant decay to visible sector’s
degrees of freedom is summarized to the Giudice-Masiero mechanism [150], where it is calculated
for the two limiting cases with respect to the fluxes scale, leading to a theoretical estimation of the
neutrino number species Δ𝑁𝑒 𝑓 𝑓 . Additionally, a discrimination is provided regarding the relevant
scale of the reheating temperature (O(MeV) ≤ 𝑇𝑟ℎ ≤ O(GeV) scale for exponentially suppressed
fluxes and 𝑇𝑟ℎ ≫ O(Tev) for order one fluxes), which explanation could also indicate an early
matter dominated phase of the universe for low reheating temperatures as it was pointed by [151].
The effect of the quantum string corrections and the uplift parameters in the aforementioned cos-
mological observables are highlighted, notifying the differentiation of our work compared to the
existing literature.

Finally, we study the production of non-thermal dark matter after the reheating process. The pri-
mary candidates in the large volume limit scenarios are the weekly interacting massive particles
(WIMPs) and the thermally underproduced (Higgsino-like or Bino-like) particles, which in many
previous studies tend to be overproduced [152; 153]. A different scenario proposes the idea of
having fuzzy dark matter, where the axions would play the central role in that case [154; 155].
Although, the process we follow is similar to previous studies, the suppression of the reheating
temperature provides a fertile ground to study the most commonmechanisms of dark matter pro-
duction (Annihilation scenario and Branching scenario) without the obstacle of overproduction.
Focusingmore to the so-calledWIMPmiracle, we are going to provide a scenario where a possible
superheavy dark matter could arise from the annihilation scenario, where its mass could lay at
1011 GeV. In contrast, the branching scenario could also give the correct dark matter abundance
for dark matter particles at the scale of TeV. Given a possible scenario of low scale baryogenesis
in [156; 157], this model could in principle furnish an explanation for the dark matter-baryon
coincidence, since the modulus could decay to species with B- and CP- violating couplings with
the Standard model particles and has the correct scaling for the dilution factor of entropy 𝑌𝜙 , too.

2.2.1 Structure of the Potential

To set the stage, we begin with theN = 1 supergravity Kähler potential K , where the geometric
configuration is comprised of three intersecting 𝐷7 branes. The theory contains various scalar
fields, but we focus our attention on the complex structure moduli (𝑧𝑎, 𝑎 = 1, 2, 3), the axio-
dilaton (S) and the Kähler moduli 𝑇𝑖, 𝑖 = 1, 2, 3. Supersymmetric conditions D𝑧𝑎W = D𝑆W = 0
both fix the complex structure moduli and the axio-dilaton, leaving effectively the Kähler sector
completely undetermined. The internal volume of the six dimensional space in the context of IIB
string theory is denoted byV , and it is expressed in terms of the two-cycles of the theory as:
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V =
1
6
𝑘𝑖 𝑗𝑘𝑣

𝑖𝑣 𝑗𝑣𝑘 , 𝑣𝑖 = −Im(𝑇 𝑖), (2.2.1)

where the tensor 𝑘𝑖 𝑗𝑘 characterizes the intersection number. A more useful formula for the com-
pactified volume can be extracted in terms of the four-cycles 𝜏𝑖 of the theory, where they are
related to the two-cycles as:

𝜏𝑖 = 𝑣
𝑗𝑣𝑘 → V =

√
𝜏1𝜏2𝜏3, (2.2.2)

where we assume that the non-zero classical triple intersection number is 𝑘123 = 1. Apart from
the compactified volume, the Kähler potential contains the quantum string (𝛼′3) correction 𝜉 ,
where this correction corresponds to a constant shift of the volume [64]. In addition, we include
the effects of quantum string loop corrections along each world-volume direction of the internal
space, incorporated in a perturbative form as 𝜂 log(𝜏𝑖) [95]. Their origin can be traced back to the
higher derivative terms of the 10-dimensional supergravity theory, where the leading effects are
appearing as an R4 term, with R being the Riemann curvature. After dimensional reduction to
four dimensions, these effects induce a localized Einstein-Hilbert term, where the computation
of the scattering amplitude between these localized graviton vertices and 𝐷7 branes (in the form
of closed string modes), leads to a perturbative form of the correction 𝜂 log(𝜏𝑖) at the Kähler
potential level [95].

K = −2 log(√𝜏1𝜏2𝜏3 + 𝜉 + 𝜂𝑖 log(𝜏𝑖)), 𝜂 = −1
2
𝑔𝑠𝑇𝑖𝜉 . (2.2.3)

For simplicity, we assume the perturbative parameter 𝜂 to be identical along each directions (𝜂1 �

𝜂2 � 𝜂3), i.e. the string tension 𝑇𝑖 of the corresponding branes is tuned to be the same.
Regarding the superpotential of the theory, we assume the existence of background fluxes W0

[103] and the non-perturbative effects are turned off.

W = W0 . (2.2.4)

The F-term potential’s computation is completely straightforward, taking into account equations
(2.2.3) and (2.2.4), and trading one modulus, e.g. 𝜏3 = V/(𝜏1𝜏2), the whole effective potential is
expressed in terms of the volume:

𝑉𝐹 =
3W2

0 (−8𝜂 + 𝜉 + 2𝜂 log(V))
2V3 −

9 𝜂 𝜉W2
0 log(V)
V4 + O( 1

V𝑛
) . (2.2.5)

It is important to highlight the fact that this very compact and illustrating formula has been ob-
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tained, considering that wewould like to study the large volume limit where quantum corrections
are subleading. This fact enables us to perform an expansion in terms of 𝜂 and 𝜉

V𝑛 , while terms
proportional to the power of the expansion variables are dropped. In addition, since the leading
order terms are of order ∼ O( 1

V3 ), we do not consider terms of order bigger than ∼ O( 1
V4 ) in

the large volume regime, bearing in mind that these additional terms are proportional to powers
of 𝜂 making them less important.
In order to obtain an AdS vacuum, we have to compute the minimum along the volumeV direc-
tion, which is given by:

V𝑚𝑖𝑛 = 𝑒
13
3 −

𝜉

2𝜂 . (2.2.6)

The uplift mechanism for realizing a dS minimum is accomplished by adding the D-terms, related
to the three intersecting D7-branes of the geometric configuration. Flux generated D-terms [129;
141; 149; 158] have the following form:

𝑉𝐷 =

3∑︁
𝑖=1

𝑔2
𝐷7𝑖

2
(
∑︁
𝑖≠ 𝑗

𝑄𝑖 𝑗 𝜕𝑇𝑗K +
∑︁
𝑗≠𝑖

𝑞
𝑗

𝑖
|Φ 𝑗
𝑖
|2)2, (2.2.7)

where 𝑔𝐷7𝑖
stands for the gauge coupling of the𝐷7 brane,𝑄𝑖 𝑗 represents the charges of the Kähler

moduli, while 𝑞 𝑗
𝑖
,Φ 𝑗

𝑖
are the charges and the scalar components of the superfields, correspond-

ingly. Considering that the vevs of the matter fields are ⟨Φ 𝑗
𝑖
⟩ = 0, then the formula is significantly

simplified to:

𝑉𝐷 �
3∑︁
𝑖=3

[ 1
𝜏𝑖

(∑︁
𝑖≠ 𝑗

𝑄𝑖 𝑗 𝜕𝑇𝑗K
)2] �

3∑︁
𝑖=1

𝑑𝑖

𝑓 3
𝑎

, 𝑑𝑖 � 𝑄
2
𝑖 𝑗 > 0, (2.2.8)

where 𝑓 3
𝑎 is cubic polynomial parametrized by a generic four-cycle modulus 𝜏 𝑗 . Now, the above

formula can be further approximated, as noted in [141; 159; 160], by considering the toroidal-
like symmetry of the underlying geometry. Moreover, the three intersecting stacks of 𝐷7 branes
(which is the geometric setup of this model) are associated to gauge groups, where in princi-
ple the magnetic fluxes can induce some anomalous 𝑈 (1) symmetries. As studied rigorously in
[149; 161; 162] a suggestion made by Burgess et al. and Achucarro et al.13, D-terms of the above
form could, also, be derived from a different origin. From a 4D point of view, this type of D-
terms was identified as a Fayet-Iliopoulos term depending on the Kähler moduli in the N = 1
supersymmetric effective action [165]. Taking into account the anomalous 𝑈 (1), the four-cycle
moduli, parametrizing the transverse volume of the magnetic 𝐷7 brane, obtain a charge 𝑄 under

13A criticism on this approach can be found on [163; 164].
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the 𝑈 (1). Additionally in this approach, there are in general the same charges 𝑞 𝑗
𝑖
carried by the

scalar fields Φ 𝑗
𝑖
, which fields can be minimized at zero. As a consequence of the above discussion,

we could write down the D-terms of this intersecting 𝐷7 branes model, following the work of
[113; 149; 161; 162], as:

𝑉𝐷 �
3∑︁
𝑖=1

𝑑𝑖

𝜏3
𝑖

. (2.2.9)

To support our approach, we provide in the Appendix A.3 a detailed proof that the above formula
gives an equivalent dS vacuum to the vacuum that can be derived from the generic formula (2.2.8)
up to a rescaling of the uplifting parameters 𝑑𝑖 . As a consequence, we can argue that our approxi-
mation does not spoil either the existence of a dS vacuumnor the subsequent analysis. Appending
the D-term effects on the F-term potential, the complete effective potential is summarized below:

𝑉𝑒 𝑓 𝑓 =
3W2

0 (−8𝜂 + 𝜉 + 2𝜂 log(V))
2V3 + 𝑑1

𝜏3
1
+ 𝑑2

𝜏3
2
+ 𝑑3

𝜏3
3
. (2.2.10)

The 𝜏3 modulus could be traded with the internal volume modulus V , i.e., 𝜏3 =V2/(𝜏1𝜏2). Thus,
the effective potential is the sum𝑉𝑒 𝑓 𝑓 = 𝑉𝐹 +𝑉𝐷 , while it can expressed as a function of 𝜏1, 𝜏2 and
V:

𝑉𝑒 𝑓 𝑓 =
3W2

0 (−8𝜂 + 𝜉 + 2𝜂 log(V))
2V3 + 𝑑1

𝜏3
1
+ 𝑑2

𝜏3
2
+
𝑑3𝜏

3
1𝜏

3
2

V6 . (2.2.11)

For the sake of completeness, we are going to describe the minima along the three transverse
directions (V, 𝜏1, 𝜏2). Minimizing along every direction, we get the following minima and some
useful relations constraining the free parameters of the theory. Moreover, the potential along
the volume direction is displayed below, where the minimal values for 𝜏1, 𝜏2 moduli have been
applied.

𝜏1 = (
𝑑2

1
𝑑2𝑑3

)1/9V2/3, 𝜏2 = (
𝑑2

2
𝑑1𝑑3

)1/9V2/3, (2.2.12)

V𝑚𝑖𝑛 =

3𝜂 W2
0 𝑊0/−1

(
2𝑑𝑒

13
3 − 𝜉

2𝜂

3𝜂 W2
0

)
2𝑑

, 𝑑 = (𝑑1𝑑2𝑑3)1/3 , (2.2.13)

𝑉𝑒 𝑓 𝑓 (V) =
6𝑑V + 3W2

0 (𝜉 − 8𝜂) + 6𝜂W2
0 log(V)

2V3 . (2.2.14)
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where the𝑊 -function denotes the Lambert function. The minimum and the maximum along
the volume direction are characterized by the upper𝑊0 and the lower branch𝑊−1, correspond-
ingly. Now, a dS minimum put a stringent bound on the parameter 𝜌 = 𝑑

(W0)2 , 𝑑 = (𝑑1𝑑2𝑑3)1/3,
where these bounds are obtained from the Lambert’s function definition (𝑊 (𝑥), 𝑥 ≥ 1

𝑒
) and the

positivity of the potential at the minimum.

− 𝜂

V < 𝜌 < −3
2
𝜂 𝑒

𝜉

2𝜂−
16
3 ,

1
3

(
26 − 6 log

(
− 3𝜂

2𝑒𝜌

))
<
𝜉

𝜂
< 0 . (2.2.15)

A different parametrization for the above coefficients is given below, which would be more useful
in the following sections:

𝜕2𝑉𝑒 𝑓 𝑓

(𝜕V)2 = −
6𝑑V𝑚𝑖𝑛 + 9𝜂W2

0

V5
𝑚𝑖𝑛

> 0 ⇒
𝜕2𝑉𝑒 𝑓 𝑓

(𝜕V𝑚𝑖𝑛)2 = −
−9𝜂W2

0 (
2
3𝑞 + 1)

V5
𝑚𝑖𝑛

> 0 ⇒ 𝑞 =
𝑑V𝑚𝑖𝑛

𝜂W2
0

> −3
2
,

(2.2.16)

− 𝜂

V <
𝑑

W2
0
⇒ 𝑞 =

𝑑V𝑚𝑖𝑛

𝜂W2
0

< −1, (2.2.17)

where combining the above bounds the 𝑞 parameter is strictly bounded between:

−3
2
< 𝑞 < −1 . (2.2.18)

Clearly, our effective potential could admit a dS vacuum (as it is depicted in Figure 1.) for various
combinations of the parameters either in the exponentially suppressed flux limit or for the order
one flux case.
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Figure 2.8: Plot of potential (2.2.14) 𝜉 = 5,W0 = (1, 10−4), 𝑑 = (4 × 10−4, 4 × 10−12) and 𝜂 = −0.9.

2.2.2 Mixing in the kinetic terms and canonical normalized fields

Consistently embedding string inflation within type IIB compactifications is one of the challeng-
ing problems in studying early universe cosmology. Various works have attempted to study the
universe’s inflationary evolution, where different mechanisms are employed [101; 160; 166; 167;
168; 169]. The implications of the inflationary scenario in low energy phenomenology could
be viewed indirectly by the correct prediction of the cosmological observables, such as the Big
Bang Nucleosynthesis [170; 171], which is correlated with the scale of inflation and the reheating
process after it. In this section, we are going to present a detailed analysis on the the canoni-
cal normalization of the moduli fields and signify the importance of the logarithmic corrections
in the off-diagonal entries of the Kähler metric. Our starting point is the relevant discussion in
[160], where they study the inflationary period without expanding to the reheating process and
the relevant decay rates of the moduli fields to the visible sector’s degrees of freedom in the geo-
metric setup. In this discussion, the quantum corrections are justifying their presence, since the
eigenvalue of the volume direction is highly dependent on the quantum parameter 𝜂 or the gen-
eral parameter 𝑞, which fact modifies its scaling and mixing with the other sectors. In addition,
one more advantage of characterizing the mixing between the normalized fields, is that the mass
hierarchy could provide many insights on whether inflationary dynamics lay in the category of a
single field inflation or a multi-field case. Apart from that, the study of the reheating process and
the energy flow to the dark sector is highly influenced by the moduli’s decay channels, where the
longest lived particle will dominate the energy density in the late cosmological times and clarify
the correlation between different important energy scales in the universe’s expansion.
Following the discussion above, we need to change the basis from the Kähler moduli 𝜏𝑖 to the
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normalized canonical fields 𝜙𝑖 . First of all, [172], the mixing of the fields is given by the diag-
onalization of the mass matrix and the transformation of the basis is driven by the canonically
corrected kinetic terms. We start by writing down the definition of the Lagrangian in terms of
the moduli fields:

L = K𝑖 𝑗 𝜕𝜇𝜏𝑖𝜕
𝜇𝜏 𝑗 −𝑉 − 1

2
𝑉𝜏𝑖𝜏 𝑗 + O(𝜏3), (2.2.19)

where 𝑉 is the scalar potential of the moduli fields, while 𝐾𝑖 𝑗 denotes the Kähler metric

K𝑖 𝑗 =

©­­­­­­«
1

4𝜏2
1

− 𝜉+2𝜂 log(V)
8𝜏1𝜏2V −𝜏2 (𝜉+2𝜂 log(V))

8V3

− 𝜉+2𝜂 log(V)
8𝜏1𝜏2V

1
4𝜏2

2
−𝜏1 (𝜉+2𝜂 log(V))

8V3

−𝜏2 (𝜉+2𝜂 log(V))
8V3 −𝜏1 (𝜉+2𝜂 log(V))

8V3
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1𝜏
2
2

4V4

ª®®®®®®¬
+ O( 1

V𝑛
, 𝜂𝑛) . (2.2.20)

Is is important to highlight the fact that we have exchanged the 𝜏3 modulus in term of the overall
volume V , which means that the new moduli space is consisted by the (𝜏1,𝜏2,V). Another one
thing is that we have kept the leading order terms (∼ O(𝜂, 𝜉)) in the off diagonal entries, which
parametrize the quantum corrections to the kinetic terms. Our main interest is to see in what
extent these corrections could modify the mixing in the parameter space. The next step would be
to compute the mass matrix and the corresponding eigenvalues and eigenvectors. The definition
of the mass matrix is given by:

𝑀2
𝑖 𝑗 =

1
2
(K)−1

𝑖𝑘
𝑉𝑘 𝑗 , (2.2.21)

where 𝑉𝑘 𝑗 , 𝑖, 𝑗 = (𝜏1, 𝜏2,V) are the second derivatives of the effective potential computed at the
global minimum, while the inverse Kähler matrix K is given by:

K−1
𝑖 𝑗 =

©­­­­­­«
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, 𝜂𝑛) , (2.2.22)
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𝑉𝑖 𝑗 =

©­­­­­­«
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V11/3
9𝜂W2

0 (2𝑞−1)
V5

ª®®®®®®¬
+ O( 1

V𝑛
, 𝜂𝑛) . (2.2.23)

Combining all the above ingredients, we can compute the mass matrix in the following basis
(𝜏1, 𝜏2,V), where we have expanded in terms of the 𝜂 parameter and kept only leading terms in
terms of 𝜉

V𝑛 . Observing the mass matrix, we could clearly deduce that the quantum corrections
are not affecting the scaling of the eigenvalues at a significant level. Nevertheless, the parameter
𝑞 defined in equation (2.2.18) appears at the 33 entry of the matrix, denoting that one eigenvalue
will be correlated to the new effects. This fact may have been neglected in other works, but it is of
crucial importance since the 𝑞 parameter not only satisfies the bounds for a dS vacuum, but also
contains the integer fluxesW0 whose effect is to adjust the scale of the potential at the minimum.

𝑀2
𝑖 𝑗 �

©­­­­­­«
36𝑑
V2

18𝑑2

V2 −36𝑑5/3

V7/3

18
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36𝑑
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− 36
(𝑑V7)1/3 −36𝑑2/3

V7/3
18𝜂W2
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𝑑2/3V11/3

ª®®®®®®¬
+ O( 1

V𝑛
, 𝜂𝑛) . (2.2.24)

In the above matrices, we are obliged to use the minimal values of the all the moduli fields
(𝜏1, 𝜏2,V) (2.2.13), but to make the formulas more readable we do not substitute the V𝑚𝑖𝑛 . In
order to avoid the reader’s confusion, in this section and for the rest of the paper V is denoting
its minimum value V𝑚𝑖𝑛 . In order to compute the scaling of the mass eigenvalues, we are going
to use the trace and the determinant of the mass matrix𝑀2:

𝑇𝑟 [𝑀2] =𝑚2
1 +𝑚2

2 +𝑚2
3,

𝐷𝑒𝑡 [𝑀2]
𝑇𝑟 [𝑀2]2 =

𝑚2
1𝑚

2
2𝑚

2
3

(𝑚2
1 +𝑚2

2 +𝑚2
3)2 . (2.2.25)

A straightforward computation of the above quantities lead to effectively describe the spectrum’s
masses as:

𝑇𝑟 [𝑀2] �72𝑑
V2 ,

𝐷𝑒𝑡 [𝑀2]
𝑇𝑟 [𝑀2]2 � −

27𝜂W2
0

( 2
3𝑞 + 1

)
8(𝑑2V10)1/3 . (2.2.26)
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As stated before, the quantum correction 𝜂 acts as a key player in the masses eigenvalues, where
in addition the scale of the fluxes W0 will also modify the hierarchy in the spectrum. Before
attributing these masses to the normalized fields, we would like to derive some useful bounds
for the parameters of the theory. So, in an inflationary scenario the inflaton field would be more
natural to be identified by the lightest field of the spectrum. The first eigenvalue scales as ∼ 1

V2

making it much larger than the second one scaling as ∼ 1
V3 . Nevertheless, our computation

reveals that the uplift parameter and the fluxes have the potential to invert this hierarchy even in
large fluxes regime. Having that in mind, Figure 2. shows the exact bound of the product between
the uplift parameter and the fluxes with respect to the quantum corrections of the theory, namely
the 𝑞 parameter and the 𝜂 parameter.

𝑇𝑟 [𝑀2]
𝐷𝑒𝑡 [𝑀2]
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3
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( 2

3𝑞 + 1)
= −64𝑑1/3

3
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0 )1/3

( 2
3𝑞 + 1)

, (2.2.27)
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64
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3𝑞 + 1)
𝑞(𝜂𝑞)1/3 ⇒ 𝑑W2

0 < −33

49

( 2
3𝑞 + 1)3

𝜂𝑞4 ≪ 1 . (2.2.28)
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Figure 2.9: Plot of 𝑑W2
0 in terms of 𝜂 and q.

A crucial difference between the work of [172], it is that we cannot know a priori which normal-
ized field better describes the compactified volume V or the transverse directions 𝜏1, 𝜏2. Addi-
tionally, two different regimes will be investigated, the first one will scan the exponentially small
fluxes W0 ≪ 1 while the second will search for order one fluxes W0 ∼ 1. These two vastly
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divergent parametric regions have been studied before [141], while recent studies point towards
to dS vacua with small fluxes [91; 118].
In the appendix A.1, we explicitly derive the canonical normalization transformation for the two
cases discussed above. The overall scaling of the moduli in terms of the normalized fields (𝜙𝑖 ) and
the correspondence of the fields to the mass eigenvalues are displayed below:

• 𝛼) Having exponentially suppressed fluxes, the mass hierarchy and the field’s mixing is
defined by:

𝑚2
𝜙3
�
𝐷𝑒𝑡 [𝑀2]
𝑇𝑟 [𝑀2]2 ≫𝑚2

𝜙1
� 𝑚2

𝜙2
� 𝑇𝑟 [𝑀2] . (2.2.29)

𝜏1 � 𝑃
𝛼)
11𝜙1, 𝜏2 � 𝑃

𝛼)
22𝜙2, V � 𝑃𝛼)33𝜙3 . (2.2.30)

• 𝛽) Fluxes of order one will result in having 𝜙1 as the heaviest field and the masses are given
by:

𝑚2
𝜙1
� 𝑇𝑟 [𝑀2] ≫𝑚2

𝜙2
� 𝑚2

𝜙3
�
𝐷𝑒𝑡 [𝑀2]
𝑇𝑟 [𝑀2]2 . (2.2.31)

𝜏1 � 𝑃
𝛽)
12𝜙2, 𝜏2 � 𝑃

𝛽)
22𝜙2, V � 𝑃𝛽)33𝜙3 . (2.2.32)

It is evident that the above results have a geometric explanation. The moduli, since they are
parametrizing the world volume of distinct stack of branes, are given mainly by different nor-
malized fields. This result leads us to deduce that despite the simple form of the compactified
volume, there exists a geometric separation between the different sectors of the theory. In ad-
dition, the most natural candidate for an inflationary trajectory is the direction of the overall
volume V , since it contains a flat direction (as depicted in Figure 1.) and a stable minimum
described by equation (2.2.13). The exponentially suppressed W0 case could be regarded as an
non-standard inflationary scenario, since the𝜙3 is the heaviest field and the dynamics of the mod-
uli’s during inflation have to be carefully studied due to destabilization effects. Although, given
the three intersecting branes setup, the visible sector’s branes could be separated from the hidden
sector’s branes placed on the perpendicular directions making plausible a string embedding of
an inflationary evolution. This regime could easily capsulate the dynamics of a multi-fields infla-
tion, based on the arguments given above, with many similar examples existing in the literature
[123; 127]. On the contrary, the case of having order one fluxes renders a scenario where the
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inflaton behaves as the lightest field in the mass spectrum, making the approach of the effective
theory valid. Consequently, this scenario could be characterized as a natural single field inflation
case. However, inflation is not our main object of study in this work but we retain our mission
for a consistent string embedding in a future work.
Interestingly, if we would like to compare our toy model’s structure with the literature, the geom-
etry discussed in [152] and in references therein, shares some interesting features with the above
analysis. In their volume form, the visible sector is completely decoupled by the rest moduli and
they separate two cases regarding the identification of the inflaton field. In the Kähler inflation
case, the inflaton is denoted by the heaviest field and the transverse mode specifies the dark ra-
diation predictions. Compared to our cases, the case 𝛼) shares the same features, where due to
the newly quantum dynamics the heaviest field is represented by the inflaton, while a transverse
field will be the longest lived and eventually will specify the late time universe’s energy density
(see discussion in section 4.). Now, in the fibre inflation scenario of [152], the inflaton is identified
by the lightest particle, just like our case 𝛽). In addition to the above, an early matter domination
epoch could be included in the Kähler inflation case, which fact is also evident in our case 𝛼),
since the mass hierarchy is inverted and large non-gaussianities. This paragraph had an aim to
place this model in comparison with the known examples with related dynamics in the literature,
where the two distinct inflationary paradigms are discriminated by a matter of choice for the in-
flaton field. Now, this discrimination between the different inflation scenarios could be elucidated
through a more natural explanation, in particular the choice of fluxes, even if they are stemming
from an alike geometry.

2.2.3 Reheating and dark radiation predictions

After the end of inflation, the inflaton will begin to oscillate around their minima, acquiring a
large energy density in the process. Now, this energy density has to be transferred through a
specific mechanism to the other fields of the theory, either to the visible sector or to the dark sec-
tor. Among this plethora of fields, there is a possibility that the universe’s late time cosmological
dynamics are going to be addressed not by the inflaton, but by a different field whose decay rate is
much smaller. Thus, the final reheating temperature and the effective number of neutrino species
will be determined by the decay rate of the aforementioned longest lived particle. Regarding the
decay products of the moduli, they fall into two categories. The first are the decays that produce
the visible sector’s particles, where these particles could be identified as either Higgs boson or
other Minimal Supersymmetric Standard model’s (MSSM) fields. Among several suggestions to
this problem we are going to employ a Giuduce-Masiero mechanism for describing the relevant
dynamics of the decays to the visible sector. In addition, there may also be decays to hidden sector

78



states, which is a generic feature shared by string compactifications. The hidden sector contains
several candidates for dark radiation, such as the axionic partner of the Kähler moduli fields or
light hidden gauge bosons. Based on the analysis of the previous sections, we will identify the
longest lived particle in each case study (𝛼 and 𝛽), by explicitly compute the couplings of the
moduli fields to the Higgs field and to the axions. In spite of the criticism receiving these type of
stringy constructions regarding the complex dynamics and the uncertainty with respect to the
effective theory approximation, interesting proposals point towards the direction, where cosmo-
logical solutions could play a bilateral role. Firstly, these solutions provide a stringy origin for
the reheating mechanism but also contribute to the identification of various dark matter particles
[151; 173; 174; 175], correlating this way the dark sector dynamics to the reheating temperature.

As consequence of above, we are going to start from the Lagrangian’s kinetic terms, they can be
expanded as:

L = K11𝜕𝜇𝜏1𝜕
𝜇𝜏1 + K12𝜕𝜇𝜏1𝜕

𝜇𝜏2 + K13𝜕𝜇𝜏1𝜕
𝜇V +K21𝜕𝜇𝜏2𝜕

𝜇𝜏1 + K22𝜕𝜇𝜏2𝜕
𝜇𝜏2

+ K23𝜕𝜇𝜏2𝜕
𝜇V +K31𝜕𝜇V𝜕𝜇𝜏1 + K32𝜕𝜇V𝜕𝜇𝜏2 + K33𝜕𝜇V𝜕𝜇V +𝑉 + O( 𝜕

2𝑉

𝜕𝜏𝑖 𝜕𝜏 𝑗
)𝜏𝑖𝜏 𝑗 . (2.2.33)

Since we would like to highlight the effect of the quantum corrected kinetic terms, we would
like to include to the above Lagrangian, terms that contain cubic order interactions and more
specifically, the interactions between moduli and their corresponding axionic partners 𝑐𝑖 . These
trilinear interaction terms have the following structure:

L = (𝜕𝜏𝑖K𝑗𝑘) 𝜏𝑖𝜕𝜇𝑐 𝑗 𝜕𝜇𝑐𝑘 = (𝜕𝜏𝑖K𝑗𝑘)
1
2
(𝑚2

𝑖 −𝑚2
𝑗 −𝑚2

𝑘
)𝜏𝑖𝑐 𝑗𝑐𝑘 , (2.2.34)

where in the last step we have used the Dirac equation, after integration by parts, to recast the
terms in their equivalent form containing their respective masses. As pointed out in [151], the
cubic terms obtained by the derivatives of the potential are subleading compared to the ones
originated from the kinetic terms. This fact can be addressed to the suppression due to the large
volume expansion, where we expect a similar behavior in our geometry. We can take for granted
that the masses of the axions are negligible compared to moduli’s masses, concluding that only
𝑚𝑖 will contribute in the above interaction term. The most crucial point in the above computation
is the derivative of the Kähler metric with respect to each modulus of the parameter space, where
the corresponding matrices are displayed below.
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𝜕𝜏1K𝑖 𝑗 =

©­­­­­­«
− 1

2𝑑2V2
𝜂 (6−𝑞)
4𝑑V3

𝜂 (6−𝑞)
4𝑑V3

𝜂 (6−𝑞)
4𝑑V3 0 −𝜂 (𝑞−5)

12V3

𝜂 (6−𝑞)
4𝑑V3 −𝜂 (𝑞−5)

12V3 0

ª®®®®®®¬
, (2.2.35)

𝜕𝜏2K𝑖 𝑗 =

©­­­­­­«
0 𝜂 (6−𝑞)

4𝑑V3 −𝜂 (𝑞−5)
12V3

𝜂 (6−𝑞)
4𝑑V3 − 𝑑

2V2 −𝑑𝜂 (𝑞−6)
4𝑑V3

−𝜂 (𝑞−5)
12V3 −𝑑𝜂 (𝑞−6)

4𝑑V3 0

ª®®®®®®¬
, 𝜕VK𝑖 𝑗 =

©­­­­­­«
0 𝜂 (−𝑞+5)

6(𝑑V10)1/3
𝜂 (−𝑞+6)

2(𝑑V10)1/3

𝜂 (−𝑞+5)
6(𝑑V10)1/3 0 −𝑑

2/3𝜂 (𝑞−6)
2V10/3

𝜂 (−𝑞+6)
6(𝑑V10)1/3 −𝑑

2/3𝜂 (𝑞−6)
2V10/3 − 𝑑2/3

V7/3

ª®®®®®®¬
.

(2.2.36)

To all the above matrices, the minimal values of the moduli 𝜏1, 𝜏2,V have to be applied. So,
every coupling will be expressed only in terms of the free parameters of the theory. Using all
the above ingredients, we could compute for example all the relevant coupling constants needed
for the various decay rates. In doing so, the formulas in Appendix A.2 will be used. Before
proceeding further, it is crucial to rethink which is the longest lived particle on this model, since
this will determine the energy’s composition of the universe at late-times. The most dominant
contribution to the visible sector’s energy will come from the decay a the normalized field to
Higgses. We focus on the Giudice-Masiero mechanism, where for the MSSM the relevant fields
are the Higgses 𝐻𝑢 and 𝐻𝑑 . Starting from an extended Kähler potential with the Higgses fields
included, we will conclude to the formula of the process’s decay rate.

K = −3 ln
[
(𝑇𝑖 +𝑇𝑖) +

1
3
(𝐻𝑢𝐻𝑢 + 𝐻𝑑𝐻𝑑 + 𝑍𝐻𝑢𝐻𝑑)

]
, (2.2.37)

where expanded to leading order, the final term will be the most dominant one [153; 176; 177].
Thus, the relevant decay rate for the various moduli fields is given by:

Γ𝜏𝑖→𝐻𝐻 ∼ 2𝑍 2

48𝜋

𝑚3
𝜙

𝑀2
𝑝

. (2.2.38)

Returning to our initial question, which is the determination of the longest lived particle, it is
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important to recast the moduli fields 𝜏𝑖 to the normalized ones 𝜙𝑖 , where this transition will
contribute an additional factor (mixing factor) to the above decay rate. This factor can be retrieved
from the Appendix A.1. This is the point where the analysis of the previous section comes in
handy.

Let us start from the case 𝛼) of having exponentially suppressed fluxes, and we should compute
the relevant decay rates of every normalized field to Higgses:

Γ𝜙1→𝐻𝐻 =
5184 𝑍 2√2𝑑19/6𝑞2𝜉

𝜋𝑤2V2 , Γ𝜙2→𝐻𝐻 =
432 𝑍 2√2𝑑5/6

𝜋𝑠V10/3 , Γ𝜙3→𝐻𝐻 =
27 𝑍 2(−𝜂W2

0 )3/2(2𝑞 + 3)3/2

16
√

2𝜋𝑠 𝑑5/3V16/3
,

(2.2.39)

Γ𝜙1→𝐻𝐻

Γ𝜙3→𝐻𝐻

=
6144𝑑29/6𝜉𝑞2𝑠V7/3

𝑤2 (
−𝜂 (2𝑞 + 3)W2

0
) 3/2 ≪ 1,

Γ𝜙1→𝐻𝐻

Γ𝜙2→𝐻𝐻

=
24
√

2𝑞2𝜉 (𝑑7V)1/3

𝑤2 ≪ 1. (2.2.40)

The parameters 𝑤, 𝑠 have been properly defined in the Appendix, where they are expressed in
terms of the V , 𝑑 and 𝑞. Based on the above fractions between the decay rates, we observe that
the smallest one is represented by the Γ𝜙1 , making 𝜙1 the longest lived particle. This conclusion
has important consequences in the late-time cosmology’s dynamics, since the energy density
will be determined by the 𝜙1 instead of 𝜙3 which represents a plausible inflaton. The mixing
has added the uplift parameter 𝑑 and the fluxes W0 in the computation, suppressing the decay
rate sufficiently in order to have a new long lived particle. So sketching up our geometric setup,
we have to place the visible sector on the stack of branes represented by the 𝜏3 world-volume,
making this way the 𝜏1, 𝜏2 spaces the dark sectors of the geometry. Additionally, as pointed out in
[178], any non-perturbative corrections along the cycles supporting the visible sector can not be
allowed, since they will intersect with the chiral matter. A solution to this stabilization problem
is solved by our proposal of logarithmic loop correction. Rephrasing the above argument, this
type of construction could only possible allow axionic degrees of freedom from the transverse
space of 𝜏3. We have to make this particular choice, taking into account the fact that the lightest
and longest lived particle could in principle not only solve the dark radiation problem, but also
their decays could produce the correct abundance of non-thermal dark matter. Thus, 𝜙1 (i.e. the
𝜏1 modulus) cannot be identified with the visible sector.

For the case 𝛽) of having order one fluxes, a similar discussion could lead to the following results
for the decay rates of the normalized fields to Higgses.
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Γ𝜙2 (𝜏1)→𝐻𝐻 =
54𝑍 2√2𝑠2𝑑5/6

𝜋V17/3 , Γ𝜙2 (𝜏2)→𝐻𝐻 =
81
√

2𝑑2/3𝜉𝑞2(2𝑞 + 3)3/2𝑍 2 (
−𝜂W2

0
) 3/2

𝜋V5𝑤2 , (2.2.41)

Γ𝜙3→𝐻𝐻 =
729𝑑2/3𝜉𝑞2(2𝑞 + 3)3/2𝑍 2 (

−𝜂W2
0
) 3/2

4
√

2𝜋V5𝑤2
. (2.2.42)

Γ𝜙2 (𝜏1)→𝐻𝐻

Γ𝜙3→𝐻𝐻

=
16 6√

𝑑𝑠2𝑤2

27𝜉𝑞2V2/3 (
−𝜂 (+2𝑞 + 3)W2

0
) 3/2 ,

Γ𝜙2 (𝜏2)→𝐻𝐻

Γ𝜙3→𝐻𝐻

< 1 . (2.2.43)

From the above, we can conclude that the normalized field 𝜙3 corresponds to the longest lived
particle in this setup. This case can be considered as more natural, since the longest lived particle
is identified with the inflaton and eventually will specify the energy density after inflation. Again,
as previously, we have to specify the visible and the hidden sector of the internal geometry. In
this case, the visible sector will be identified with the 𝜏1 stack of branes, while the 𝜙3 field will be
important to both the discussions of dark radiation and dark matter.
Returning to our main purpose, which is to calculate the dark radiation predictions of this model,
we have to think which are the important decay channels relevant to our purpose. The decay
rates of the longest lived particle to axions have to be scrutinized and the first thing to do is to
write the interaction terms associated to these processes.

L ⊃ (𝜕𝜏𝑚K𝑛𝑝) 𝜏𝑚𝜕𝜇𝑐𝑛𝜕𝜇𝑐𝑚 = 𝜕𝜏𝑚K𝑛𝑝𝑃
𝜏
𝑚𝑖𝑃

𝑐
𝑛 𝑗𝑃

𝑐
𝑝𝑘
𝜙𝑖𝜕𝜇𝛼 𝑗 𝜕

𝜇𝛼𝑘 = K𝑚𝑛𝑝𝑃
𝜏
𝑚𝑖𝑃

𝑐
𝑛 𝑗𝑃

𝑐
𝑝𝑘
𝑚2
𝜙𝑖
𝜙𝑖𝛼 𝑗𝛼𝑘 , (2.2.44)

where in the last stepwe have also transformed the axionic partner 𝑐𝑖 of the Kähler modulus to the
normalized axion 𝛼𝑖 . The 𝑃𝑖 𝑗 matrices represent elements of the mixing matrix, when we apply
the basis transformation. The mixing between the axions will be determined by studying the
induced scalar potential, when non-perturbative corrections are included in the superpotential
W. Geometric constructions, where all type of corrections are turned on, have constructed in
the past [142; 143] and the problem of moduli stabilization is not affected. The large volume limit
is necessary to ensure the validity of the effective theory and to keep the exponential factor the
non perturbative corrections W ⊃ 𝐴𝑒−𝑎𝜏𝑖 relatively small. Since we focus on the impact of the
quantum corrections, we could parametrize this matrix as follows and focus on the qualitative
behavior of the decay rates 14.

14For an extended discussion in a bottom-up string derived model, follow Appendix B in [151]
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©­­­­­­«
𝑐1

𝑐2

𝑐3

ª®®®®®®¬
=

©­­­­­­«
𝜆11 𝜆12 𝜆13

𝜆21 𝜆22 𝜆23

𝜆31 𝜆32 𝜆33

ª®®®®®®¬
©­­­­­­«
𝛼1

𝛼2

𝛼3

ª®®®®®®¬
. (2.2.45)

For our first case study 𝛼), the longest lived particle is 𝜙1, which descends from the 𝜏1 modulus.
Comparing with the Lagrangian terms of equation (2.2.44), the𝑚, 𝑖 indices are determined from
our previous analysis, so 𝑚 = 1, 𝑖 = 1. As for 𝑗, 𝑘 indices, these can only span ( 𝑗, 𝑘) = (1, 2)
since the visible sector is represented by the third modulus. The relevant Lagrangian part for this
process can be written, after summing all the contributions, as:

𝜙1 → 𝛼1𝛼1 : K1𝑛𝑝𝑃
𝜏
11𝑃

𝑐
𝑛1𝑃

𝑐
𝑝1𝑚

2
𝜙1
𝜙1𝛼1𝛼1 = −

144
√

3𝜂𝑑5/6𝜆11
√︁
𝜉𝑞

(
𝜆11V
𝑑𝜂

+ 𝜆21(𝑞 − 6)
)

V5𝑤
𝜙1𝛼1𝛼1 .

(2.2.46)

As for the decay rate, we can use the decay formulas in the Appendix and it is computed to be:

Γ𝜙1→𝛼1𝛼1 =
1296

√
2𝜆2

11𝜉𝑞
2 (𝑑𝜂𝜆21(𝑞 − 6) + 𝜆11V) 2

𝜋𝑑5/6V9𝑤2 𝑀𝑝 . (2.2.47)

The second process to study is the 𝜙1 → 𝛼2𝛼2 and the relevant Lagrangian terms are written as:

𝜙1 → 𝛼2𝛼2 : K1𝑛𝑝𝑃
𝜏
11𝑃

𝑐
𝑛2𝑃

𝑐
𝑝2𝑚

2
𝜙1
𝜙2𝛼2𝛼1 = −

144
√

3𝑑5/6𝜂𝜆12
√︁
𝜉𝑞

(
𝜆12V
𝑑𝜂

+ 𝜆22(𝑞 − 6)
)

V5𝑤
𝜙1𝛼2𝛼2 ,

(2.2.48)

Γ𝜙1→𝛼2𝛼2 =
1296

√
2𝜆2

12𝜉𝑞
2 (𝑑𝜂𝜆22(𝑞 − 6) + 𝜆12V) 2

𝜋𝑑5/6V9𝑤2 𝑀𝑝 . (2.2.49)

The final process, which is only present since we have included the off diagonal terms in the
Kähler metric, is the following 𝜙1 → 𝛼1𝛼2:
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𝜙1 → 𝛼1𝛼2 : K1𝑛𝑝𝑃
𝜏
11𝑃

𝑐
𝑛1𝑃

𝑐
𝑝2𝑚

2
𝜙1
𝜙1𝛼1𝛼2 = −

72
√

3𝑑5/6𝜂
√︁
𝜉𝑞

(
𝐴(𝑞 − 6) + 2𝜆11𝜆12V

𝑑𝜂

)
V5𝑤

𝜙1𝛼1𝛼2 , (2.2.50)

where we have defined 𝐴 = 𝜆12𝜆21 + 𝜆11𝜆22 for simplicity. The corresponding decay rate is sum-
marized to:

Γ𝜙1→𝛼1𝛼2 =
324

√
2𝜉𝑞2 (𝐴𝑑𝜂 (𝑞 − 6) + 2𝜆11𝜆12V) 2

𝜋𝑑5/6V9𝑤2 𝑀𝑝 . (2.2.51)

Now, we have to compare the processes, in order to find the leading contributions to dark ra-
diation, and a good approximation would be to completely forget about the first terms in the
parentheses of the numerators. This is justified by the fact that they are suppressed by the uplift
parameter and the quantum correction 𝜂. So, dividing the two decay rates some simple and self
explanatory formulas are derived.

Γ𝜙1→𝛼1𝛼1

Γ𝜙1→𝛼2𝛼2

=
𝜆2

11 (𝑑𝜂𝜆21(𝑞 − 6) + 𝜆11V) 2

𝜆2
12 (𝑑𝜂𝜆22(𝑞 − 6) + 𝜆12V) 2 ,

Γ𝜙1→𝛼1𝛼1

Γ𝜙1→𝛼1𝛼2

=
4𝜆2

11 (𝑑𝜂𝜆21(𝑞 − 6) + 𝜆11V) 2

(𝐴𝑑𝜂 (𝑞 − 6) + 2𝜆11𝜆12V) 2 . (2.2.52)

Γ𝜙1→𝛼1𝛼1

Γ𝜙1→𝛼2𝛼2

�
𝜆4

11

𝜆4
12
,

Γ𝜙1→𝛼1𝛼1

Γ𝜙1→𝛼1𝛼2

�
𝜆2

11

𝜆2
12
. (2.2.53)

One could see that previous works had omitted the mixed decay channel’s contribution to dark
radiation and only included in their analysis the first process. As for the relevant scale between
the diagonal and the off diagonal entries of matrix (2.2.45), it is expected that 𝜆11 > 𝜆12 since
we assume a normal ordering in the mass hierarchy. So, we have to take into account the con-
tributions from the off diagonal decays of the moduli to axions. This a novel feature due to the
quantum corrected kinetic terms, which was underestimated in previous studies.

Γ𝑡𝑜𝑡 = Γ𝜙1→𝛼1𝛼1 + Γ𝜙1→𝛼1𝛼2 �
1296

√
2𝜆2

11
(
𝜆2

11 + 𝜆2
12
)
𝜉𝑞2

𝜋𝑑5/6V7𝑤2 𝑀𝑝 . (2.2.54)

Based on the above, we are in a point where we need to connect our theoretical computations
to the observable quantities such as the effective number of neutrino species and the reheating.
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Recall that, the standard definition of the effective number of neutrino species is given by:

Δ𝑁𝑒 𝑓 𝑓 =
43
7
( 10.75
𝑔∗(𝑇𝑟ℎ)

)1/3 Γ𝑡𝑜𝑡
Γ𝜙1→𝐻𝐻

=
43
7
( 10.75
𝑔∗(𝑇𝑟ℎ)

)1/3𝜆
2
11

(
𝜆2

11 + 𝜆2
12
)

4𝑑4V4𝑍 2 =
43
7
( 10.75
𝑔∗(𝑇𝑟ℎ)

)1/3 𝜆′2

4𝑑4V4𝑍 2 ,

(2.2.55)

where in the last step we have defined for brevity 𝜆′2 = 𝜆2
11

(
𝜆2

11 + 𝜆2
12
)
and 𝑔∗(𝑇𝑟ℎ) denotes is the

number of relativistic degrees of freedom at𝑇𝑟ℎ . The astrophysical and cosmological observations
put a constraint on theΔ𝑁𝑒 𝑓 𝑓 < 0.4, which fact will be translated to stringent bound on themixing
angles in the axionic sector.

𝜆′ < 0.5(𝑔∗(𝑇𝑟ℎ)
10.75

)1/6𝑍𝑑2V2 = 0.5(𝑔∗(𝑇𝑟ℎ)
10.75

)1/6𝑍𝑞2𝜂2W2
0 . (2.2.56)

Additonally, we are going to define a new quantity for the complete decay rate (both to visible
and dark sector):

Γ′ = Γ𝜙1→𝐻𝐻 + Γ𝑡𝑜𝑡 . (2.2.57)

Using this quantity, we can compute straightforward the reheating temperature of this model.
This is given by:

𝑇𝑟ℎ = ( 90
𝜋𝑔∗(𝑇𝑟ℎ)

Γ𝜙1→𝐻𝐻

Γ′
)1/4√︁Γ′𝑀𝑝 . (2.2.58)

Since the decays of the moduli to axions are heavily suppressed compared to the ones on Higgses,
the complete decay rate can be effectively described by the decay rate to the visible sector. The
reheating temperature is, then, described by:

𝑇𝑟ℎ � ( 90
𝜋𝑔∗(𝑇𝑟ℎ)

)1/4
√︃
Γ𝜙1→𝐻𝐻𝑀𝑝 = −( 90

𝜋𝑔∗(𝑇𝑟ℎ)
)1/4 72 21/4𝑑19/12

√︁
𝜉𝑞𝑍

√
𝜋V3/2𝑤

𝑀𝑝 . (2.2.59)

Another one important bound for our model is referred as the cosmological moduli problem
[179; 180]. The lightest modulus is bounded from below to lay at scales O(10)TeV:
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𝑚𝜙1 =
3
√

2𝑑1/2

V 𝑀𝑝 > 10 TeV ⇒ W2
0 >

10 TeV
3
√

2 𝜂𝑞𝑀𝑝

V3 . (2.2.60)

Given this very restrictive bound, we would like to comment on that regarding the geometry of
the compactified space. Our case study suggests that we are exploring exponentially suppressed
integer fluxes. But, the toroidal structure of the volume form seems to not favor a solution for
arbitrary small fluxes. Moreover, we expect that our results will not change significantly by
preserving higher order terms in the effective potential, since they are subleading due to the
suppression because of 𝜂𝑛 and 𝜉

V𝑛 . This fact could also provide a bottop-up proof of why this
geometry, studied before in [113], accommodates more easily stabilized solution with order one
fluxes. In addition, only moderate values of volume is accepted in this case, since the masses of
the moduli would be below the bound presented above. It is imperative to mention that these
cosmological implications of stringy constructions could, also, be used as testing ground in order
to clarify the properties of the background geometry and the discussion on the smallness of W0

[91; 181]. Below, we illustrate three numerical examples (Table 1.) for various scales of reheat-
ing temperature of our case study 𝛼). In addition, the moduli masses at the stable vacuum are
presented in Table 2.

W0 𝜂 𝜉 𝑑 𝑇𝑟ℎ (GeV) Δ𝑁𝑒 𝑓 𝑓 (𝜆11, 𝜆12) 𝑍

V � 2425 1 × 10−3 -0.9 5 3.8 × 10−10 10 0.25 (8 × 10−4, 3 × 10−4) 1

V � 2425 1 × 10−4 -0.9 7 3.8 × 10−12 8 × 10−3 0.25 (8 × 10−5, 3 × 10−5) 1

V � 2900 1 × 10−2 -0.9 5 4 × 10−8 33 × 103 0.1 (8 × 10−3, 3 × 10−3) 1

Table 2.5: Different reheating temperatures for various set of parameters. Obviously, exponentially small
fluxes tend to reproduce a low reheating scenario.

𝑚2
𝜙𝑖
(TeV) 𝑚2

𝜙1
𝑚2

𝜙2
𝑚2

𝜙3

W0 = 1 × 10−3 4 × 108 8 × 108 3 × 1010

W0 = 1 × 10−4 4 × 107 8 × 107 1 × 1010

W0 = 1 × 10−2 4 × 109 7 × 109 4 × 1010

Table 2.6: The moduli masses along the two numerical examples presented above.

Following the above discussion, we are going to discuss the scenario of having fluxes of order
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W0 ∼ O(1). The longest lived particle in this case (case 𝛽)) is the 𝜙3. The relevant Lagrangian
part is written as:

L ⊃ K3𝑛𝑝𝑃
𝜏
𝑚𝑖𝑃

𝑐
𝑛 𝑗𝑃

𝑐
𝑝𝑘
𝑚2
𝜙3
𝜙3𝛼 𝑗𝛼𝑘 , (2.2.61)

where we inserted 𝑖 = 3 for the 𝜙3 normalized field and𝑚 = 3, since this field descends from the
volumeV modulus. The first coupling constant is computed as:

𝜙3 → 𝛼3𝛼3 : K3𝑛𝑝𝑃
𝜏
33𝑃

𝑐
𝑛3𝑃

𝑐
𝑝3𝑚

2
𝜙3
𝜙3𝛼3𝛼3 =

9
√

3𝑑5/6𝜂𝜆33
√︁
𝜉𝑞(2𝑞 + 3)W2

0 (𝜂𝜆23(𝑞 − 6) + 𝜆33V)
2V20/3𝑤

𝜙3𝛼3𝛼3 .

(2.2.62)

The decay rate for this process is computed to be:

Γ𝜙3→𝛼3𝛼3 =
81𝑑2𝜆2

33𝜉𝑞
2 (
−𝜂 (2𝑞 + 3)W2

0
) 3/2 (𝜂𝜆23(𝑞 − 6) + 𝜆33V) 2

4
√

2𝜋V35/3𝑤2
𝑀𝑝 . (2.2.63)

The second process we need to inspect is the 𝜙3 → 𝛼2𝛼2. The Lagrangian terms for the above
process are summarized to the following expression:

𝜙3 → 𝛼2𝛼2 : K3𝑛𝑝𝑃
𝜏
33𝑃

𝑐
𝑛2𝑃

𝑐
𝑝2𝑚

2
𝜙3
𝜙3𝛼2𝛼2 =

9
√

3𝑑5/6𝜂
√︁
𝜉𝑞(2𝑞 + 3)W2

0
(
𝜂𝜆23𝜆33(𝑞 − 6) + 𝜆2

32V
)

2V20/3𝑤
𝜙3𝛼2𝛼2 .

(2.2.64)

There is obviously a similarity of the coupling constant with the previous process’ coupling con-
stant. This fact leads to a similar form for the decay constant.

Γ𝜙3→𝛼2𝛼2 =
81𝑑2𝜉𝑞2 (

−𝜂 (2𝑞 + 3)W2
0
) 3/2 (

𝜂𝜆23𝜆33(𝑞 − 6) + 𝜆2
32V

) 2

4
√

2𝜋V35/3𝑤2
𝑀𝑝 . (2.2.65)

The latter process we have to compute its decay rate refers to the 𝜙3 → 𝛼2𝛼3. Firstly, we have to
write down the Lagrangian:
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𝜙3 → 𝛼2𝛼3 : K3𝑛𝑝𝑃
𝜏
33𝑃

𝑐
𝑛2𝑃

𝑐
𝑝3𝑚

2
𝜙3
𝜙3𝛼2𝛼2 =

9
√

3𝑑5/6𝜂
√︁
𝜉𝑞(2𝑞 + 3)W2

0 (𝜂𝜆23 (𝜆32 + 𝜆33) (𝑞 − 6) + 2𝜆32𝜆33V)
4V20/3𝑤

𝜙3𝛼2𝛼3 ,

(2.2.66)

Γ𝜙3→𝛼2𝛼3 =
81𝑑2𝜉𝑞2 (

−𝜂 (2𝑞 + 3)W2
0
) 3/2 (𝜂𝜆23 (𝜆32 + 𝜆33) (𝑞 − 6) + 2𝜆32𝜆33V) 2

4
√

2𝜋V35/3𝑤2
𝑀𝑝 . (2.2.67)

Now, as in the previous analysis, we have to compare the decay rates in order to find the most
dominant contribution to the dark radiation abundance. Following the argument used before
regarding the first term in the parentheses of the above equations, we can observe the scaling
between the decay rates.

Γ𝜙3→𝛼3𝛼3

Γ𝜙3→𝛼2𝛼2

=
𝜆2

33 (𝜂𝜆23(𝑞 − 6) + 𝜆33V) 2(
𝜂𝜆23𝜆33(𝑞 − 6) + 𝜆2

32V
) 2 �

𝜆4
33

𝜆4
32
,

Γ𝜙3→𝛼3𝛼3

Γ𝜙3→𝛼2𝛼3

=
4𝜆2

33 (𝜂𝜆23(𝑞 − 6) + 𝜆33V) 2

(𝜂𝜆23 (𝜆32 + 𝜆33) (𝑞 − 6) + 2𝜆32𝜆33V) 2 �
𝜆2

33

𝜆2
32
.

(2.2.68)

It is evident, again, as to the former case, that the off diagonal entries give rise to new decay rates
that were previously underestimated. Based on the above, we have to sum the two contributions
Γ𝜙3→𝛼3𝛼3, Γ𝜙3→𝛼2𝛼3 , which fact results into:

Γ𝑡𝑜𝑡 = Γ𝜙3→𝛼3𝛼3 + Γ𝜙3→𝛼2𝛼3 �
81𝑑2𝜆2

33
(
𝜆2

32 + 𝜆2
33
)
𝜉𝑞2 (

𝜂 (−(2𝑞 + 3))W2
0
) 3/2

4
√

2𝜋V29/3𝑤2
𝑀𝑝 . (2.2.69)

In this case, the standard definition of the effective number of neutrino species is given by:

Δ𝑁𝑒 𝑓 𝑓 =
43
7
( 10.75
𝑔∗(𝑇𝑟ℎ)

)1/3 Γ𝜙3→𝛼3𝛼3

Γ𝜙3→𝐻𝐻

=
43
7
( 10.75
𝑔∗(𝑇𝑟ℎ)

)1/3 𝑑4/3𝜆′′2

9V14/3𝑍 2 , (2.2.70)

where in the last step we have define for brevity 𝜆′′2 = 𝜆2
33

(
𝜆2

32 + 𝜆2
33
)
. A similar bound as before

can be derived by the requirement of Δ𝑁𝑒 𝑓 𝑓 < 0.4.

𝜆′′ <
0.765537V7/3𝑍

𝑑2/3 ( 10.75
𝑔∗(𝑇𝑟ℎ)

)−1/6 . (2.2.71)
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Now, the reheating temperature is computed as:

𝑇𝑟ℎ � ( 90
𝜋𝑔∗(𝑇𝑟ℎ)

)1/4 27 3√
𝑑
√︁
𝜉𝑞(2𝑞 + 3)3/4𝑍

(
−𝜂W2

0
) 3/4

2 4√2
√
𝜋V5/2𝑤

𝑀𝑝 . (2.2.72)

Finally, we will show below some numerical examples (Table 3. and Table 4.) for the case of
having order one fluxes in this particular toy model. This scenario renders high scale reheating
temperatures, while the effective number of neutrinos species is very suppressed even for order
one coupling constants. This means that, since the Δ𝑁𝑒 𝑓 𝑓 → 0 is very close to the Standard
model’s value.

W0 𝜂 𝜉 𝑑 𝑇𝑟ℎ (GeV) 𝑍

V � 2425 1 -0.9 5 3.8 × 10−4 1011 1

V � 8200 10 -0.9 7 1.3 × 10−2 1010 1

Table 2.7: Different reheating temperatures for various set of parameters. Obviously, exponentially small
fluxes tend to reproduce a high scale reheating scenario. The effective number of neutrino species Δ𝑁𝑒 𝑓 𝑓

is well below the allowed upper bound even for order O(0.1) coupling 𝜆′′.

𝑚2
𝜙𝑖
(TeV) 𝑚2

𝜙1
𝑚2

𝜙2
𝑚2

𝜙3

W0 = 1 5 × 107 1 × 107 2 × 106

W0 = 10 2 × 108 1 × 106 3 × 105

Table 2.8: The moduli masses along the two numerical examples presented above.

2.2.4 Dark matter scenario in the presence of qantum effects

In various string models, cosmological predictions tend to point towards non-thermal dark mat-
ter, produced by decays of heavy scalars. The most common production process would need the
decays of the lightest modulus to provide a large amount of entropy, diluting any previous DM
abundance, and then its byproducts would yield the necessary relic density. The potential dark
matter particles span two categories regarding their thermodynamic origin and more specifically
the freeze out temperature 𝑇𝑓 ∼𝑚𝐷𝑀/20.

• (𝑇𝑟ℎ > 𝑇𝑓 ) : in this case dark matter particles are in a thermodynamical equilibrium and
annihilations between themselves favor the thermal origin of dark matter.

89



• (𝑇𝑟ℎ < 𝑇𝑓 ) : Here, a discrimination with respect to the dark matter annihilations is needed
to be stated: the efficiency of the aforementioned annihilations is quantified in the criti-
cal abundance 𝑌 𝑐

𝐷𝑀
of dark matter particles, which quantity is obtained by the Boltzmann

equations.

𝑌 𝑐𝐷𝑀 �
𝐻

⟨𝜎𝑎𝑛𝑛𝑣⟩𝑠
|𝑇𝑟ℎ . (2.2.73)

In the first sub-case, there is a possibility of having the produced abundance exceeds the critical
value 𝑌𝐷𝑀 > 𝑌 𝑐

𝐷𝑀
. Consequently, there exists some further time for annihilations until the two

quantities match, a scenario labeled as "Annihilation scenario". The final relic abundance in this
case is computed to be:

𝑌 𝑐𝐷𝑀 ∼ (𝑛𝐷𝑀
𝑠

)𝑜𝑏𝑠
⟨𝜎𝑎𝑛𝑛𝑣⟩𝑡ℎ𝑓
⟨𝜎𝑎𝑛𝑛𝑣⟩𝑓

𝑇𝑓

𝑇𝑟ℎ
, (2.2.74)

where 𝑛𝐷𝑀 represents the number density and ⟨𝜎𝑎𝑛𝑛𝑣⟩𝑡ℎ𝑓 ∼ 3 × 10−26 cm3𝑠−1 stands for the ther-
mal’s case cross section as a requirement to produce the observed value of dark matter abundance
[182]

(𝑛𝐷𝑀
𝑠

)𝑜𝑏𝑠 � 5 × 10−10( GeV
𝑚𝐷𝑀

) . (2.2.75)

Readily, processes of this type are enhanced by a factor of
𝑇𝑓

𝑇𝑟ℎ
as opposed to the thermal pro-

duction, where possible dark matter particles could be thermally underproduced Higgsino-like
or Wino-like particles. In second sub-case, the dark matter abundance is lower compared to the
critical value, making the annihilations more sparse. This scenario is labeled as "Branching sce-
nario", where the produced abundance is simply given by:

𝑌𝐷𝑀 = 𝑌𝜙Br𝐷𝑀 , 𝑌𝜙 =
3𝑇𝑟ℎ
4𝑚𝜙

, (2.2.76)

where the 𝑌𝜙 calculates the abundance of the normalized fields and 𝐵𝑟𝐷𝑀 quantifies the decays
ratio. In this case, Bino-like particles are favored for lower values of 𝐵𝑟𝐷𝑀 . Following the anal-
ysis of the previous section, we are going to use the computed reheating temperature to scan
the viability of both scenarios along the presence of the newly introduced quantum effects. Ac-
cording to [174], the branching scenario would better describe the regime of low scale reheating
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temperatures. This regime spans the region between:

O(𝑀𝑒𝑉 ) < 𝑇𝑟ℎ ≤ O(𝐺𝑒𝑉 ) . (2.2.77)

We can easily compute the abundance of the normalized fields, using the reheating temperature
of equation (2.2.59):

𝑌𝜙 = −
18
√

3 51/4𝑑13/12
√︁
𝜉𝑞𝑍

𝜋3/4𝑔1/4
√
V𝑤

. (2.2.78)

For consistency reasons, we are going to use the values of Table 2., while various plots will be
presented to show the bounds on the parameters and the dark matter mass. In the branching
scenario, the dark matter abundance has to be equal to the observed value (2.2.75), where the
dark matter mass is bounded from below scaling as:

𝑇𝑓 > 𝑇𝑟ℎ ⇒𝑚𝐷𝑀 > −
1440 51/4√6𝑑19/12

√︁
𝜉𝑞𝑍

𝜋3/4𝑔1/4V3/2𝑤
𝑀𝑝 , (2.2.79)

𝑌𝜙 = 𝑌𝐷𝑀 ⇒𝑚𝐷𝑀 = − 𝜋3/4𝑔1/4√V𝑤
√

3 51/4𝑑13/12
√︁
𝜉𝑞𝑍

𝐺𝑒𝑉

36 × 109 Br𝐷𝑀
. (2.2.80)

In the following Figure 3., the required dark matter mass is depicted in order to satisfy the observ-
able dark matter abundance. The values of Table 1. will be used to scan the region of reheating
temperatures from a scale of a few MeV up to a few GeV. While in previous works, the branching
scenario was promoted only for small dark matter masses, we will show that it can also attribute
large values once the branching ratio is lower than 𝐵𝑟𝐷𝑀 ≤ O(10−3) [183; 184]. Recent proposals
tend to that direction to obtain superheavy dark matter that could contribute effectively in the
relic density. A possible explanation on that can be credited to higher order moduli decay or to
non-standard cosmological evolution with a period of early matter domination [173; 185; 186].
As it previously discussed our case study 𝛼) resembles the Kähler inflation paradigm, where an
early matter domination period could be established. A special attention should be devoted to
the third case of Figure 3., where a bizarre coincidence can be addressed. As stated in a past work
[156], a Cladogenesis scenario was suggested where the dilution factor due to entropy release
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by modulus decay 𝑌𝜙 can both solve the dark matter mystery, but also provide a solution for the
Baryon-Dark Matter Coincidence. This can be characterized as a late time baryogenesis scenario
where the moduli decay could decay naturally in some N species with C- and CP- violation cou-
pling with the visible sector’s dofs. To quantify the above statement, the baryon asymmetry of
the universe is given by:

𝜂𝐵 ≡ 𝜂𝐵 − 𝜂𝐵
𝑠

= 𝑌𝜙𝐵𝑟𝑁𝜖, (2.2.81)

where 𝜖 is the generated asymmetry during the N particles decay and 𝐵𝑟𝑁 denotes the branching
ratio of decays to the observable sector particles. Applying the observed value of the asymmetry
and our result for the modulus decay, we derive:

𝜂𝐵 � 9 × 10−11 ⇒ 𝐵𝑟𝑁𝜖 � 1 × 10−2 . (2.2.82)

Since the generated asymmetry 𝜖 is created at one loop level, the parameter could easily accom-
modate a factor of order ∼ 10−1. Thus, a very specific bound for the branching ratio of the N
particles can be derived, where in contrast to previous studies, 𝐵𝑟𝐷𝑀 and 𝐵𝑟𝑁 are not of the same
order. Additionally, we naturally expect 𝐵𝑟𝑁 to lay between O(10−1, 1), since concrete models
[157] of this type of baryogenesis have been constructed that service this argument. Bringing at-
tention to the coincidence problem, we can compute the two (dark matter and baryon) densities
by:

Ω𝐵

Ω𝐷𝑀

�
GeV
𝑚𝐷𝑀

𝜖𝐵𝑟𝑁

𝐵𝑟𝐷𝑀
� 6 ⇒ 𝜖𝐵𝑟𝑁 � 4.8 × 10−2, 𝐵𝑟𝐷𝑀 � 10−8, 𝑚𝐷𝑀 ∼ 800 TeV . (2.2.83)

Remarkably, the problem is solved and an explanation is given in accordance with the scenario
described in [156]. Our main difference is that the our dark matter branching ratio is considerably
lower than computed in [156], where studies have shown that this is possible once possible higher
order corrections are added to the decay rates. These corrections could descend from three or
four-bodymoduli decays to final states with additional darkmatter particles, where the branching
ratio could lay lower than 𝐵𝑟𝐷𝑀 ≪ 10−4.
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Figure 2.10: Plots for the different cases of Table 1. The shaded region represents the allowed masses
for the dark matter particles, where the horizontal line represents the lower bound on 𝑚𝐷𝑀 set by the
requirement 𝑇𝑓 > 𝑇𝑟ℎ .

As for the annihilation scenario, it would fit better to the case of having high scale reheating
temperatures 𝑇𝑟ℎ ≫ GeV. So, our case of order one fluxes could be embedded in this scenario.
The reheating temperature, using equation (2.2.72), in this case is given by:

𝑇𝑟ℎ =
27
√

3 51/4𝑑1/3
√︁
𝜉𝑞(2𝑞 + 3)3/4𝑍

(
−𝜂W2

0
) 3/4

2𝑔1/4𝜋3/4V5/2𝑤
𝑀𝑝 . (2.2.84)

From equation (2.2.74), we can see that the final relic abundance is given in terms of the number
density and the freeze-out temperature 𝑇𝑓 . A lower bound for the dark matter’s mass can be
derived by requiring the freeze-out temperature to exceed the 𝑇𝑟ℎ ,

𝑇𝑓 > 𝑇𝑟ℎ ⇒𝑚𝐷𝑀 >
270

√
3 51/4𝑑1/3

√︁
𝜉𝑞(2𝑞 + 3)3/4𝑍

(
−𝜂W2

0
) 3/4

𝑔1/4𝜋3/4V5/2𝑤
𝑀𝑝 . (2.2.85)

In the following plots (Figure 4.), the bounds on the darkmatter mass are depicted based on two of
the cases studied in Table 3. The horizontal lines represent two characteristic values for different
number densities ⟨𝜎𝑎𝑛𝑛𝑣⟩𝑓 , while the curve sketches the observed value of DM abundance 𝑌𝑜𝑏𝑠

𝐷𝑀
�

(𝑛𝐷𝑀
𝑠

)𝑜𝑏𝑠 . The two examples of the plots are, also, summarized in the equation below, where the
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relic abundance is computed along with the fluxes and the lower bound on the dark matter mass.

𝑌 𝑐𝐷𝑀 ∼ (𝑛𝐷𝑀
𝑠

)𝑜𝑏𝑠
⟨𝜎𝑎𝑛𝑛𝑣⟩𝑡ℎ𝑓
⟨𝜎𝑎𝑛𝑛𝑣⟩𝑓

𝑇𝑓

𝑇𝑟ℎ
∼


6.8 × 10−47

⟨𝜎𝑎𝑛𝑛𝑣⟩𝑓
, W0 = 1, 𝑚𝐷𝑀 > 1012 𝐺𝑒𝑉 ,

1.4 × 10−48

⟨𝜎𝑎𝑛𝑛𝑣⟩𝑓
, W0 = 10, 𝑚𝐷𝑀 > 1011 𝐺𝑒𝑉 .

(2.2.86)
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Figure 2.11: Left: The shaded region between the horizontal lines represent the allowed region on
the dark matter mass. The horizontal lines depict the dark matter mass on the region between
(2⟨𝜎𝑎𝑛𝑛𝑣⟩𝑓 , 40⟨𝜎𝑎𝑛𝑛𝑣⟩𝑓 ). The vertical line represents the lower allowed bound for the 𝑇𝑓 > 𝑇𝑟ℎ .

Thus, we see that the annihilation scenario in the case of order one fluxes renders some super-
heavy dark matter particles with mass𝑚𝐷𝑀 > 1011 GeV. Some future interesting investigations
would be to extend this analysis on more complex Calabi-Yau spaces and observe the overall dy-
namics in Kähler moduli sector. Additionally, a possible embedding of an inflationary model in
accordance with the above analysis would be beneficial in order to clarify some ambiguities in
the early universe, like the connection of dark sector’s dynamics to the inflationary observable
quantities. From a phenomenological point of view, it would be interesting to understand the
implications and the experimental signatures of a potential superheavy dark matter candidate,
since various existing and future experiments, like Ice Cube [187] and RNO-G [188], are search-
ing for state of the art methods to probe the nature of dark matter. We retain all these questions
for a future work.
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3 | Phenomenological aspects of local
F-theory GUTs

In this chapter, we are going to explore the low energy implications of F-theory GUTs, more
specifically by revisiting the flipped 𝑆𝑈 (5) in the spectral cover approach. Secondly, the newly
introduced modular flavor symmetry is going to be embedded in the context of local F-theory.
In the present study, an 𝑆𝑂 (10) divisor is considered augmented by internal fluxes along the
𝑈 (1)𝜒 direction, whose effect is to perform the symmetry breaking. This results exactly to a
flipped 𝑆𝑈 (5) model, after carefully define the hypercharge generator as a combination of the
𝑈 (1)𝜒 and the Abelian factor of 𝑆𝑈 (5). The phenomenological signatures of this model include
the seesaw mechanism as the origin for the neutrino masses, the study of the main decay chan-
nels of proton decay and the corresponding bound of the Higgs triplets, the study of the 0𝜈𝛽𝛽
decay and its lepton flavor violation effects in the determination of mixing between the neu-
trino states. Furthermore, a consistent gauge coupling unification is performed at very high
energies along with the F-theoretic singlet’s vevs provided by the flatness conditions. Regard-
ing the modular family symmetry, in the framework of type IIB string theory with D-branes the
𝑆𝐿(2, 𝑍 ) symmetry is playing a prominent role in the determination of the residual symmetries.
We now discuss the origins of finite modular symmetries in Type IIB string theory. To this ef-
fect, we will study, expanding on [189] Type IIB orientifold compactifications, where one can
stabilise the moduli in a vacuum that is invariant to finite modular symmetries. The starting
point is Type IIB, which exhibits an explicit modular invariance for the axio-dilaton irrespective
of the details of the compact space. Upon choosing a factorisable toroidal orientifold for the com-
pactification, 𝑇 6/Z2 = (𝑇 2

1 × 𝑇 2
2 × 𝑇 2

3 )/Z2 the theory will also manifest the modular invariance
associated with the complex structure moduli of each of the tori, in other words we will have
𝑆𝐿(2,Z)𝜏 ⊗ (⊗3

𝑖=1𝑆𝐿(2,Z)𝑖) before the complex structure moduli are stabilised by Type IIB flux
configurations. Once the fluxes acquire nonvanishing VEVs, we will show that the supersymme-
try preserving vacuum transforms non-trivially under a congruence subgroup of order 𝑁 , Γ̄(𝑁 ),
of the original modular symmetries, therefore breaking the preserved symmetry to Γ𝑁 .
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3.1 Flipped 𝑆𝑈 (5) and sterile neutrinos in F-theory

3.1.1 Geometric construction

We would like to investigate the flipped 𝑆𝑈 (5) × 𝑈 (1) model in a generic F-theory framework.
Within the proposed framework we implement the spectral cover approach and turn on fluxes
along 𝑈 (1)’s to determine the geometric properties of the matter curves and the massless spec-
trum residing on them. At this stage we end up with the flipped 𝑆𝑈 (5) which we envisage it
contains the three generations of the chiral matter fields, and the necessary Higgs representa-
tions to break the symmetry.Before we attempt to derive this model from F-theory, we give a
brief account of the field theory version. The chiral matter fields of each family constitute a
complete 16 spinorial representation of 𝑆𝑂 (10) which admits the 𝑆𝑈 (5) ×𝑈 (1)𝜒 decomposition

16 = 10−1 + 5̄3 + 1−5 . (3.1.1)

Denoting with 𝑥 the ‘charge’ under 𝑈 (1)𝜒 and 𝑦 under the 𝑈 (1) of the familiar Standard Model
symmetry group, the hypercharge definition for flipped 𝑆𝑈 (5) is 𝑌 = 1

5
(
𝑥 + 1

6𝑦
)
. This implies the

following embedding of the Standard Model representations

10−1 ⇒ 𝐹𝑖 = (𝑄𝑖, 𝑑𝑐𝑖 , 𝜈𝑐𝑖 ) (3.1.2)

5̄+3 ⇒ 𝑓𝑖 = (𝑢𝑐𝑖 , ℓ𝑖) (3.1.3)

1−5 ⇒ ℓ𝑐𝑖 = 𝑒𝑐𝑖 . (3.1.4)

As already pointed out, the spontaneous symmetry breaking of the flipped 𝑆𝑈 (5) symmetry oc-
curs with a pair of Higgs fields accommodated in

𝐻 ≡ 10−1 = (𝑄𝐻 , 𝑑𝑐𝐻 , 𝜈
𝑐
𝐻 ), 𝐻 ≡ 10+1 = (𝑄𝐻 , 𝑑𝑐𝐻 , 𝜈

𝑐
𝐻 ) . (3.1.5)

The MSSM Higgs doublets are found in the fiveplets descending from the 10 of 𝑆𝑂 (10)

ℎ ≡ 5+2 = (𝐷ℎ, ℎ𝑑), ℎ̄ ≡ 5̄−2 = (𝐷̄ℎ, ℎ𝑢) . (3.1.6)

A remarkable fact in the case of the flipped model is that the 𝑈 (1)𝜒 charge assignment distin-
guishes the Higgs 5̄−2 fields from matter anti-fiveplets 5̄3. In particular, the former contain down-
quark type triplets 𝐷̄ℎ while the latter accommodate the 𝑢𝑐 quarks.
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The fermion masses arise from the following 𝑆𝑈 (5) ×𝑈 (1)𝜒 invariant couplings

W ⊃ 𝜆𝑑 10−1 · 10−1 · 5ℎ2 + 𝜆𝑢 10−1 · 5̄3 · 5̄ℎ̄−2 + 𝜆ℓ 1−5 · 5̄3 · 5ℎ2 (3.1.7)

⊃ 𝜆𝑑 𝑄 𝑑
𝑐 ℎ𝑑 + 𝜆𝑢 (𝑄 𝑢𝑐 ℎ𝑢 + ℓ𝜈𝑐 ℎ𝑢) + 𝜆ℓ 𝑒𝑐 ℓ ℎ𝑑 . (3.1.8)

It should be observed that the flipped model at the GUT scale predicts that up-quark and neutrino
Dirac mass matrices are linked to each other and in particular, 𝑚𝑡 = 𝑚𝜈𝜏 . However, in stark
contrast to the standard 𝑆𝑈 (5) model, down quarks and lepton mass matrices are unrelated, since
in the flipped model they originate from different Yukawa couplings.

Proceeding with the Higgs sector, as 𝐻,𝐻 acquire large VEVs of the order 𝑀𝐺𝑈𝑇 , they break
𝑆𝑈 (5) × 𝑈 (1)𝜒 down to Standard Model gauge group and at the same time they provide heavy
masses to the color triplets. Indeed, the following mass terms are obtained

𝐻𝐻ℎ + 𝐻𝐻ℎ̄ ⇒ ⟨𝜈𝑐𝐻 ⟩𝑑
𝑐
𝐻𝐷 + ⟨𝜈𝑐

𝐻
⟩𝑑𝑐𝐻 𝐷̄ . (3.1.9)

Moreover, a higher order term providing right-handed neutrinos with Majorana masses is of the
form

W𝜈𝑐 =
1
𝑀𝑆

10𝐻10𝐻 10−1 10−1

=
1
𝑀𝑆

𝐻𝐻𝐹𝑖𝐹 𝑗 ⇒ 1
𝑀𝑆

⟨𝜈𝑐
𝐻
⟩2𝜈𝑐𝑖 𝜈

𝑐
𝑗 .

(3.1.10)

It should be noted that possible couplings with additional neutral singlets 𝜈𝑠 may extend the
seesaw mechanism to type II. As we will see, this is exactly the case of the F-theory version.

In the context of local F-theory constructions we may assume an 𝐸8 point of enhancement where
the flipped 𝑆𝑈 (5) emerges through the following symmetry reduction

𝐸8 ⊃ 𝑆𝑂 (10) × 𝑆𝑈 (4)⊥ ⊃ [𝑆𝑈 (5) ×𝑈 (1)] × 𝑆𝑈 (4)⊥ , (3.1.11)

where 𝑆𝑈 (4)⊥ incorporates the symmetries of the spectral cover. Matter fields are accommodated
in irreducible representations emerging from the decomposition of the 𝐸8 adjoint under 𝑆𝑂 (10) ×
𝑆𝑈 (4)

248 → (45, 1) + (1, 15) + (10, 6) + (16, 4) + (16, 4) , (3.1.12)

followed by the familiar reduction of 𝑆𝑂 (10) representations given in (3.1.1) and (3.1.6), accord-
ing to the second stage of breaking 𝑆𝑂 (10) → 𝑆𝑈 (5) ×𝑈 (1) as shown in (3.1.11). The following
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invariant trilinear couplings provide with masses up and down quarks, charged leptons and neu-
trinos

W𝑑𝑜𝑤𝑛 ∈ (10, 4)−1 · (10, 4)−1 · (5, 6)2 (3.1.13)

W𝑢𝑝/𝜈 ∈ (10, 4)−1 · (5̄, 4)3 · (5̄, 6̄)−2 (3.1.14)

Wℓ ∈ (1, 4)−5 · (5̄, 4)3 · (5, 6)2 . (3.1.15)

As opposed to the plain field theory model, the corresponding trilinear couplings transform non-
trivially under the spectral cover 𝑆𝑈 (4)⊥ group. However, the matter fields reside on 7-branes
whose positions are located at the singularities of the fibration. In the geometric language of
F-theory constructions, the matter fields of the effective model are found on the matter curves
where the gauge 𝑆𝑈 (5)×𝑈 (1) symmetry is appropriately enhanced. Moreover, their correspond-
ing trilinear Yukawa couplings are formed at the intersections of three matter curves where the
symmetry is further enhanced. In the spectral cover picture the symmetry enhancement of each
representation can be described by the appropriate element of the 𝑆𝑈 (4)⊥ Cartan subalgebra
which is parametrized by four weights 𝑡𝑖 satisfying

∑4
𝑖=1 𝑡𝑖 = 0. The latter are associated with the

roots of a fourth degree polynomial related to the 𝑆𝑈 (4)⊥ spectral cover. The coefficients of this
polynomial equation convey information related to the geometric properties of the fibred man-
ifold to the effective theory. Usually, there are non-trivial monodromies [55] identifying roots
of the fourth degree polynomial equation associated with 𝑆𝑈 (4)⊥. In the present case the iden-
tification of matter curves occurs through a discrete group which is a subgroup of the maximal
discrete (Weyl) group 𝑆4 of 𝑆𝑈 (4)⊥.

To proceed, first we identify the weights of matter field representations. At the 𝑆𝑂 (10) level, the
16 transforms in 4 ∈ 𝑆𝑈 (4)⊥ and 10 in 6 ∈ 𝑆𝑈 (4)⊥ so we make the following identifications In
principle, there are four matter curves to accommodate 16 + 16 representations and six for the
10’s of 𝑆𝑂 (10). We will focus on the phenomenologically viable case of the minimal 𝑍2 mon-
odromy. This choice implies rank-one mass matrices where only the third family of quarks are
present at tree-level ensuring a heavy top-quark mass in accordance with the experiments. Thus,
implementing the 𝑍2 monodromy by imposing the identification of the two weights 𝑡1 ↔ 𝑡2, the
matter curves of (3.1.1) reduce to

Information regarding the geometric properties of the matter curves and the representations ac-
commodated on them can be extracted from the polynomial equation for the 𝑆𝑈 (4) spectral cover.
This equation is

4∑︁
𝑘=0

𝑏𝑘𝑠
4−𝑘 = 𝑏0𝑠

4 + 𝑏1𝑠
3 + 𝑏2𝑠

2 + 𝑏1𝑠
3 + 𝑏4 = 0 . (3.1.16)
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The coefficients 𝑏𝑘 are sections of [𝑏𝑘] = 𝜂 − 𝑘𝑐1 while we have defined 𝜂 = 5𝑐1 − 𝑡 with 𝑐1 (−𝑡 )
being the 1𝑠𝑡 Chern class of the tangent (normal) bundle to the GUT ‘surface’. Under the assumed
𝑍2 monodromy the spectral cover equation is factorized as follows

C4 = (𝑎1 + 𝑎2𝑠 + 𝑎3𝑠
2) (𝑎4 + 𝑎5𝑠) (𝑎6 + 𝑎7𝑠)

= 𝑎1𝑎4𝑎6 + (𝑎1𝑎5𝑎6 + 𝑎2𝑎4𝑎6 + 𝑎1𝑎4𝑎7)𝑠
+ (𝑎1𝑎5𝑎7 + 𝑎2𝑎5𝑎6 + 𝑎3𝑎4𝑎6)𝑠2 + (𝑎3𝑎5𝑎6 + 𝑎2𝑎5𝑎7)𝑠3 + 𝑎3𝑎5𝑎7𝑠

4 .

(3.1.17)

Comparing this to (3.1.16) we extract equations of the form 𝑏𝑘 = 𝑏𝑘 (𝑎𝑖)

𝑏4 = 𝑎1𝑎4𝑎6

𝑏3 = 𝑎1𝑎5𝑎6 + 𝑎2𝑎4𝑎6 + 𝑎1𝑎4𝑎7

𝑏2 = 𝑎1𝑎5𝑎7 + 𝑎2𝑎5𝑎6 + 𝑎3𝑎4𝑎6

𝑏1 = 𝑎3𝑎5𝑎6 + 𝑎3𝑎4𝑎7 + 𝑎2𝑎5𝑎7

𝑏0 = 𝑎3𝑎5𝑎7,

(3.1.18)

and use them to derive the relations for the homologies [𝑎𝑖] of the coefficients 𝑎𝑖 . There are five
equations relating 𝑏𝑘 ’s with products of 𝑎𝑖 coefficients and all five of them can be cast in the form

𝜂 − 𝑘 𝑐1 = [𝑎𝑙 ] + [𝑎𝑚] + [𝑎𝑛], where 𝑘 + 𝑙 +𝑚 + 𝑛 = 15 , (3.1.19)

with 𝑘 = 0, 1, 2, 3, 4 and 𝑙,𝑚, 𝑛 take the values 1, 2, . . . , 7. For example, the term 𝑎3𝑎4𝑎6𝑠
2 in (3.1.17)

gives [𝑎3] + [𝑎4] + [𝑎6] + 2[𝑠] = (𝜂 − 2𝑐1) − 2𝑐1 = 𝑐1 − 𝑡 and analogously for the other terms. The
system (3.1.19) consists of five linear equations involving products of the coefficients 𝑎𝑖 with yet
unspecified homologies [𝑎𝑖] which must be determined in terms of the known [𝑏𝑘]. Since there
are five linear equations with seven unknowns we can express [𝑎𝑖] in terms of two arbitrary
parameters defined as follows:

𝜒5 = [𝑎5], 𝜒7 = [𝑎7], 𝜒 = 𝜒5 + 𝜒7 .

Then, we find that

[𝛼𝑖] = 𝜂 − (3 − 𝑖)𝑐1 − 𝜒, 𝑖 = 1, 2, 3 ; [𝑎5] = [𝑎4] + 𝑐1 = 𝜒 − 𝜒7 ; [𝑎7] = [𝑎6] + 𝑐1 = 𝜒7 .

Note that because of the vanishing of the coefficient 𝑏1 = 0, we also need to solve the constraint
𝑏1(𝑎𝑖) = 0. It can be readily seen that a possible solution is achieved by defining a new section 𝑘
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Matter 𝑡𝑖 charges Section Homology 𝑈 (1)𝜒
16 𝑡1 𝑎1 𝜂 − 2𝑐1 − 𝜒 𝑀 − 𝑃

16 𝑡3 𝑎4 −𝑐1 + 𝜒5 𝑃5

16 𝑡4 𝑎6 −𝑐1 + 𝜒7 𝑃7

10 𝑡1 + 𝑡3 𝑎1 − 𝜅𝑎4𝑎6 𝜂 − 2𝑐1 − 𝜒 𝑀 − 𝑃

10 𝑡1 + 𝑡4 𝑎1 − 𝜅𝑎4𝑎6 𝜂 − 2𝑐1 − 𝜒 𝑀 − 𝑃

10 2𝑡1 𝑎5𝑎6 + 𝑎4𝑎7 −𝑐1 + 𝜒 𝑃

10 𝑡3 + 𝑡4 𝑎5𝑎6 + 𝑎4𝑎7 −𝑐1 + 𝜒 𝑃

Table 3.1: Properties of 𝑆𝑂 (10) representations in theZ2 monodromy.

with [𝜅] = 𝜂 − 2𝜒 such that

𝑎3 = 𝜅𝑎5𝑎7, 𝑎2 = −𝜅 (𝑎5𝑎6 + 𝑎4𝑎7) . (3.1.20)

Using the above topological data we can now specify the flux restrictions on the matter curves
and determine the multiplicities of the zero mode spectrum and other properties of the effective
field theory model.
From the first of equations (3.1.18), the condition 𝑏4 = 0 becomes 𝑎1𝑎4𝑎6 = 0, which defines three
16’s localized at

𝑎1 = 0, 𝑎4 = 0, 𝑎6 = 0 .

Similarly, the equation 𝑏2
3 (𝑎𝑖) = 0 determines the topological properties and the multiplicity of

10’s. Substituting (3.1.20) into 𝑏3, we obtain

(𝑎5𝑎6 + 𝑎4𝑎7) (𝑎1 − 𝜅𝑎4𝑎6) = 0 .

Knowing the homologies of the individual 𝑎𝑖 ’s we can compute those of the variousmatter curves.
The results are shown in the fifth column of Table 3.1 where for convenience homologies are
parametrized with respect to the free parameters 𝜒5, 𝜒7, 𝜒 = 𝜒5 + 𝜒7.
As already noted, the 𝑆𝑂 (10) → 𝑆𝑈 (5) ×𝑈 (1)𝜒 breaking is achieved by turning on a𝑈 (1)𝜒 flux.
At the same time this flux will have implications on the gauge couplings unification 1 and the

1For such effects see for example [190; 191; 192].
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zero-mode multiplicities of the spectrum on the various matter curves. To quantify these effects
we introduce the symbol F1 for the 𝑈 (1)𝜒 flux parameter and consider the flux restrictions on
the matter curves

𝑃 = F1 · (𝜒 − 𝑐1); 𝑃𝑛 = F1 · (𝜒𝑛 − 𝑐1); 𝑛 = 5, 7; 𝑀 = F1 · (𝜂 − 3𝑐1); 𝐶 = −F1 · 𝑐1 . (3.1.21)

In this way we obtain the results shown in the last column of Table 3.1. We should mention that
if we wish to protect the 𝑈 (1)𝜒 boson from receiving a Green-Schwarz (GS) mass we need to
impose

F1 · 𝜂 = 0 & F1 · 𝑐1 = 0 ,

which automatically imply 𝑀 = 𝐶 = 0. In this case, the sum 𝑃 = 𝑃5 + 𝑃7 stands for the to-
tal flux permeating matter curves while one can observe form Table 3.1 that the flux vanishes
independently on the Σ16 and Σ10 matter curves (Table 3.2).
Assuming that 𝑀𝑎

10 is the number of 10
𝑡1+𝑡3 ∈ 𝑆𝑂 (10), after the 𝑆𝑂 (10) breaking we obtain the

multiplicities for flipped representations:

161 =


10𝑡1, 𝑀1

5̄𝑡1, 𝑀1 + 𝑃
1𝑡1, 𝑀1 − 𝑃

, 162 =


10𝑡3, 𝑀3

5̄𝑡3, 𝑀3 − 𝑃5

1𝑡3, 𝑀3 + 𝑃5

, 163 =


10𝑡4, 𝑀4

5̄𝑡4, 𝑀4 − 𝑃7

1𝑡4, 𝑀4 + 𝑃7

(3.1.22)

101 =


5(1)−𝑡2−𝑡4, 𝑀

2
10

5̄(1)𝑡1+𝑡3, 𝑀
1
10 + 𝑃

, 102 =


5(2)−2𝑡1, 𝑀

1
10

5̄(2)𝑡3+𝑡4, 𝑀
1
10 − 𝑃

(3.1.23)

𝑀1 𝑀3 𝑀4 𝑃 𝑃5 𝑃7 𝑀1
10 𝑀2

10

3 1 −1 0 1 −1 1 0

Table 3.2: Model 1

10𝑡1 : 3 × (𝑄𝑖, 𝑑𝑐𝑖 , 𝜈𝑐𝑖 ), 10𝑡3 : 1 × (𝐻 ), 10𝑡4 : −1 × (𝐻 )
5̄𝑡1 : 3 × (𝑢𝑐𝑖 , 𝐿𝑖), 1𝑡3 : 2 × (𝐸𝑐𝑖 ), 1𝑡4 : −2 × (𝐸𝑐𝑖 ), 1𝑡1 : 3 × 𝑒𝑐𝑖
5̄𝑡4+𝑡3 : 1 × (ℎ̄), 5−2𝑡1 : 1 × (ℎ) , (3.1.24)
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where 𝑀10𝑖 , 𝑀5𝑗 stand for the numbers of 10 ∈ 𝑆𝑈 (5) and 5 ∈ 𝑆𝑈 (5) representations (a negative
value corresponds to the conjugate representation). 𝑀𝑆𝑖 𝑗 denote the multiplicities of the singlet
fields. In fact, as for any other representation, this means that

𝑀𝑖 𝑗 = #1𝑡𝑖−𝑡 𝑗 − #1𝑡 𝑗−𝑡𝑖 , (3.1.25)

thus, if𝑀𝑖 𝑗 > 0 then there is an excess of𝑀𝑖 𝑗 singlets 1𝑡𝑖−𝑡 𝑗 = 𝜃𝑖 𝑗 and vice versa.

3.1.2 Low energy superpotential

We will construct a model with all three families residing on the same matter curve. Later on, we
will explain how in this case the masses to lighter families can be generated by non-commutative
fluxes [193] or non perturbative effects [48; 194].

Taking into account the transformation properties of the various 𝑆𝑈 (5) ×𝑈 (1)𝜒 representations
presented in the previous section, we can readily write down the superpotential of the model. Re-
garding the field content transforming non-trivially under 𝑆𝑈 (5) ×𝑈 (1)𝜒 , we make the following
identifications

10𝑡1 → 𝐹𝑖, 5̄𝑡1 → 𝑓𝑖, 1𝑡1 → 𝑒𝑐𝑗 , 1𝑡3 → 𝐸𝑐𝑚, 1−𝑡4 → 𝐸𝑐𝑛, (3.1.26)

10𝑡3 → 𝐻, 10−𝑡4 → 𝐻, 5−2𝑡1 → ℎ, 5̄𝑡3+𝑡4 → ℎ̄ . (3.1.27)

Here the indices 𝑖, 𝑗 run over the number of families, i.e., 𝑖, 𝑗 = 1, 2, 3. All the representations
emerging from the first matter curve labeled with 𝑡1, share the same symbols as those of the field
theory version of flipped 𝑆𝑈 (5) of the previous section. The two extra pairs with the quantum
numbers of the right-handed electron and its complex conjugate are denoted with 𝐸𝑐, 𝐸𝑐 .

Regarding the singlets 𝜃𝑝𝑞, 𝑝, 𝑞 = 1, 2, 3, 4, taking into account the 𝑍2 monodromy 𝑡1𝑡2 we intro-
duce the following naming:

𝜃12 ≡ 𝜃21 = 𝑠, 𝜃13 = 𝜒, 𝜃31 = 𝜒, 𝜃14 → 𝜓, 𝜃41 = 𝜓, 𝜃34 → 𝜁 , 𝜃43 → 𝜁 . (3.1.28)

The new symbols assigned to the 𝑆𝑈 (5) massless spectrum of the flipped model are collected in
Table 3.3. A standard matter parity has also been assumed for all fields.
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Matter Matter

Fields Symbol Parity Fields Parity

10−1 𝐹𝑖 − 𝜒 + 𝑀 − 𝑃

5̄3 𝑓𝑖 − 𝜒 + 𝑃5

1−5 𝑒𝑐𝑖 − 𝜓 + 𝑃7

10 𝑠 − 𝜓 + 𝑀 − 𝑃

15 𝐸𝑐𝑛 − 𝜁 + 𝑃

1−5 𝐸𝑐𝑚 − 𝜁 + 𝑃

52 ℎ + 𝐻 + 𝑃

5̄−2 ℎ̄ + 𝐻 + 𝑃

Table 3.3: The 𝑆𝑈 (5) × 𝑈 (1)𝜒 representations with their 𝑅-parity assignment. Their multiplicities are
counted by the integers𝑀, 𝑃, 𝑃5,7 in the last column.

Note that due to 𝑡1𝑡2 identification after the monodromy action, both types of singlets, 𝜃12 and 𝜃21,
are identified with the same one denoted with 𝑠 𝑗 , with a multiplicity 𝑗 = 1, 2, . . . , 𝑛𝑠 determined
by (3.1.25). For 𝑀𝑖 𝑗 = 0 there is an equal number of 𝜃12 and 𝜃21 fields and large mass terms of
the form 𝑀𝑠𝑖 𝑗𝑠𝑖𝑠 𝑗 for all 𝑠𝑖 are normally expected. However, for 𝑀𝑖 𝑗 ≠ 0 some singlets are not
expected to receive tree-level masses. Such ‘sterile’ singlets 𝑠 𝑗 , (denoted collectively with 𝑠 in the
following) will play a significant role in relation to neutrino sector. Clearly, in addition to this,
several other identifications will take place among the various flipped representations and the
Yukawa couplings. As an example, implementing the 𝑍2 monodromy and the above definitions,
the following gauge invariant terms are rewritten as

10𝑡1 5̄𝑡2 5̄𝑡3+𝑡4
𝑍2−−→ 10𝑡1 5̄𝑡1 5̄𝑡3+𝑡4 → 𝐹𝑖 𝑓 𝑗ℎ̄ (3.1.29)

10−𝑡410𝑡1𝜃21𝜃42
𝑍2−−→ 10−𝑡410𝑡1𝜃21𝜃41 → 𝐻𝐹𝑖𝑠𝜓 . (3.1.30)

With this notation the superpotential terms are written in the familiar field theory notation as
follows:

W = 𝜆𝑢𝑖 𝑗𝐹𝑖 𝑓 𝑗ℎ̄ + 𝜆𝑑𝑖 𝑗𝐹𝑖𝐹 𝑗ℎ + 𝜆𝑒𝑖 𝑗𝑒𝑐𝑖 𝑓 𝑗ℎ + 𝜅𝑖𝐻𝐹𝑖𝑠 𝜓 (3.1.31)

+ 𝛼𝑚𝑗𝐸𝑐𝑚𝑒𝑐𝑗 𝜓 + 𝛽𝑚𝑛𝐸𝑐𝑚𝐸𝑐𝑛 𝜁 + 𝛾𝑛𝑗𝐸𝑐𝑛 𝑓 𝑗ℎ𝜒 . (3.1.32)
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The first three terms provide Dirac masses to the charged fermions and the neutrinos. It can be
observed that the up-quark Yukawa coupling (∝ 𝐹 𝑓 ℎ̄) appears at tree-level, as well as the bottom
and charged lepton Yukawa couplings. Because in this construction 𝑈 (1)𝑌 fluxes are not turned
on, there is no splitting of the 𝑆𝑈 (5) representations and thus, their corresponding content of the
three generations resides on the same matter curve. Using the geometric structure of the theory
it is possible to generate the fermion mass hierarchies and the Kobayashi-Maskawa mixing. Here
we give a brief account of themechanism, while the details are described in a considerable amount
of work devoted to this issue [47; 49; 195; 196; 197; 198].

We first recall that chiral matter fields reside on matter-curves at the intersections of the GUT
surface with other 7-branes, while the corresponding wavefunctions, dubbed here Ψ𝑖 , can be
determined by solving the appropriate equations [196] where it is found that they have a gaussian
profile along the directions transverse to the matter-curve. The tree-level superpotential terms of
matter fields are formed at triple intersections and each Yukawa coupling coefficient is determined
by integrating over the overlapping wavefuctions

𝜆𝑖 𝑗 ∝
∫
𝑀

Ψ𝑖Ψ𝑗Φ𝐻𝑑𝑧1 ∧ 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧2 ,

where Φ𝐻 is the wavefucntion of the Higgs field. Detailed computations of the Yukawa couplings
withmatter curves supporting the three generations, have shown that hierarchical Yukawamatri-
ces -reminiscent of the Froggatt-Nielsen mechanism- are naturally obtained [47; 49; 195; 197; 198]
with eigenmasses and mixing in agreement with the experimental values.

Returning to the superpotential terms (3.1.32), when the Higgs fields 𝐻 and the singlet𝜓 acquire
non-vanishing VEVs, the last term of the first line in particular, generates a mass term coupling
the right-handed neutrino with the singlet field 𝑠 2 :

𝜅𝑖 ⟨𝐻 ⟩⟨𝜓 ⟩𝐹𝑖𝑠 = 𝑀𝜈𝑐
𝑖
𝑠𝜈
𝑐𝑠 ,

where𝑀𝜈𝑐
𝑖
𝑠 = 𝜅𝑖 ⟨𝐻 ⟩⟨𝜓 ⟩. Bearing in mind that the top Yukawa coupling also implies a 3× 3 Dirac

mass for the neutrino 𝑚𝜈𝐷 = 𝜆𝑢𝑖 𝑗 ⟨ℎ̄⟩, and taking into account a mass term 𝑀𝑠𝑠𝑠 allowed by the

2In order to simplify the notation, occasionally the powers of 1/𝑀𝑛
𝑠𝑡𝑟 (where 𝑀𝑠𝑡𝑟 is of the order of the string

scale) in the non-renormalizable terms will be omitted. Hence we will write𝜓 instead of𝜓/𝑀𝑠𝑡𝑟 and so on.
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𝜒 𝜒 𝜓 𝜓 𝜁 𝜁

5.6 × 1010 7.7 × 1015 2.2 × 107 89.3× 103 7.8 × 1015 4.4 × 1015

Table 3.4: Masses in GeV scale. 𝑀𝑠𝑡𝑟 = 𝑀𝐺𝑈𝑇 = 1.4 × 1016 GeV.

symmetries of the model, the following neutrino mass matrix emerges

M𝜈 =

©­­­­­­«
0 𝑚𝜈𝐷 0

𝑚𝑇
𝜈𝐷

0 𝑀𝑇
𝜈𝑐𝑠

0 𝑀𝜈𝑐𝑠 𝑀𝑠

ª®®®®®®¬
, (3.1.33)

whereas additional non-renormalizable terms are also possible. The low energy implications
on various lepton flavor and lepton number violating processes will be analysed in section 6.
Furthermore, the following terms are also consistent with the symmetries of the model:

W ⊃ 𝜆𝜇 𝜒

(
𝜓 + 𝐻𝐻𝜒

)
ℎ̄ ℎ + 𝜆𝐻𝐻𝐻ℎ̄𝜁 + 𝜆𝐻𝐻𝐻ℎ(𝜒2 + 𝜁 2𝜓 2) . (3.1.34)

When the various singlets acquire non-zero VEVs the following fields receive masses. The term
proportional to 𝜆𝜇 contains a non-renormalizable term proportional to 𝜒𝜓 and a higher order
one generated by the VEVs of Higges 𝐻𝐻 . The terms proportional to 𝜆𝐻 , 𝜆𝐻 must provide heavy
masses to the extra color triplet pairs

𝜆𝐻 ⟨𝐻 ⟩
⟨𝜁 ⟩
𝑀𝑠𝑡𝑟

𝐷𝑐
𝐻
𝐷ℎ + 𝜆𝐻 ⟨𝐻 ⟩

(
⟨𝜒2⟩
𝑀2
𝑠𝑡𝑟

+ ⟨𝜁 2𝜓 2⟩
𝑀4
𝑠𝑡𝑟

)
𝐷𝑐
𝐻
𝐷ℎ .

Since the magnitude of ⟨𝜒⟩ is constrained from the size of the 𝜇 term, large mass for the second
triplet pair requires a large VEV for ⟨𝜓𝜁 ⟩. The solution of the flatness conditions in the appendix
show that this is possible 3. According to the solution for flatness conditions problem obtained in
the appendix, the useful singlets 𝜁 ,𝜓, 𝜒 acquire the desirable VEVs shown at Table 3.4, generating
this way an acceptable 𝜇-term for the Standard Model Higgs fields.
Continuingwith the color triplet fields, we now collect all mass terms derived fromnon-renormalizable
contributions to the superpotential. They generate a 2×2massmatrix which is shown in Table 3.5.

3One might think that it would be possible to eliminate the term 𝜒ℎ̄ℎ while keeping the 𝐻𝐻ℎ̄ and 𝐻𝐻ℎ𝜁 𝜒 terms,
by choosing appropriate 𝑍2 parity assignments for 𝜒 and the other fields. It can be easily shown, however, that there
is no such 𝑍2 assignment and possibly generalized 𝑍𝑁 or more involved symmetries are required. Such discrete
symmetries are available either from the spectral cover [199], or from the torsion part of the Mordell-Weil group.
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𝑀2
𝐷ℎ

𝐷𝑐
𝐻

𝐷𝑐
𝐻

𝐷ℎ ⟨𝐻 ⟩( 𝜒2

𝑀2
𝑠𝑡𝑟

+ 𝜓
2𝜁 2

𝑀4
𝑠𝑡𝑟

) ⟨𝐻𝐻 ⟩( 𝜒2

𝑀3
𝑠𝑡𝑟

)

𝐷ℎ ⟨𝐻𝐻 ⟩( 𝜒2

𝑀3
𝑠𝑡𝑟

) ⟨𝐻 ⟩ 𝜁

𝑀𝑠𝑡𝑟

Table 3.5: The mass matrix for the down-type colour triplets.

TheHiggs color triplets mediate baryon decay processes through dimension-four, and dimension-
five operators, thus their mass scale is of crucial importance. Their eigenmasses are

𝑚𝐷𝑐
𝐻
= ⟨𝐻 ⟩( 𝜒

2

𝑀2
𝑠𝑡𝑟

+ 𝜓
2𝜁 2

𝑀4
𝑠𝑡𝑟

) cos2(𝜃 ) − ⟨𝐻𝐻 ⟩( 𝜒
2

𝑀3
𝑠𝑡𝑟

) sin(2𝜃 ) + ⟨𝐻 ⟩ 𝜁

𝑀𝑠𝑡𝑟

sin2(𝜃 )

𝑚
𝐷𝑐
𝐻

= ⟨𝐻 ⟩ 𝜁

𝑀𝑠𝑡𝑟

cos2(𝜃 ) + ⟨𝐻𝐻 ⟩( 𝜒
2

𝑀3
𝑠𝑡𝑟

) sin(2𝜃 ) + ⟨𝐻 ⟩( 𝜒
2

𝑀2
𝑠𝑡𝑟

+ 𝜓
2𝜁 2

𝑀4
𝑠𝑡𝑟

) sin2(𝜃 ) ,

where the mixing angle 𝜃 is determined by

tan(2𝜃 ) = 2⟨𝐻 ⟩⟨𝜒2⟩𝑀𝑠𝑡𝑟

⟨𝜒2⟩𝑀2
𝑠𝑡𝑟 + ⟨𝜓 2𝜁 2⟩

. (3.1.35)

For singlets VEVs of the order 10−1𝑀𝐺𝑈𝑇 , the triplets acquire heavy masses in the range 1014-1015

GeV, (𝜃 ∼ 𝜋
6 ), protecting this way the proton from fast decays. For completeness, we summarize

the possible proton decay processes in the next section.

3.1.3 Proton decay and neutrino sector

Having determined the masses of the color triplet fields 𝐷, 𝐷̄ , we are now able to examine possi-
ble bounds on the parameter space from proton decay processes. After the spontaneous breaking
of the flipped 𝑆𝑈 (5) gauge group, the resulting MSSM Yukawa Lagrangian contains 𝐵 and 𝐿 vio-
lating operators giving rise to proton decay channels[200] such as 𝑝 → (𝜋0, 𝐾0)𝑒+. Focusing our
attention on the dangerous dimension five operators, in particular, the main contribution comes
from the two relevant couplings 𝐹𝑖𝐹 𝑗ℎ, 𝐹𝑖 𝑓 𝑗ℎ̄ in the superpotential (3.1.32). Also, it is important
to mention that color triplets can contribute through chirality flipping (LLLL and RRRR) opera-
tors and chirality non-flipping (LLRR) ones. Following [201; 202; 203], these operators could be
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expressed in the mass eigenstate basis:

10𝑡1 : (𝑄,𝑉𝑃𝑑𝑐,𝑈𝜈𝑐𝜈𝑐), 𝑄 = (𝑢,𝑉𝑃𝑑)
5̄𝑡1 : (𝑢𝑐,𝑈𝐿𝐿), 𝐿 = (𝑈𝑃𝑀𝑁𝑆𝜈, 𝑒)
1𝑡1 : (𝑈𝑒𝑒𝑐) . (3.1.36)

Therefore, the color triplets couplings to ordinary MSSM matter fields are expressed as

𝜆𝑢𝑖 𝑗 : 𝑄 (𝑉 ∗𝜆(𝑑
𝑐 )𝑉 †)𝑄𝐷𝑐𝐻

𝜆𝑒𝑖 𝑗 : 𝑢𝑐 (𝑈 †
𝐿
𝜆(𝑒

𝑐 ))𝑒𝑐𝐷𝑐𝐻
𝜆𝑢𝑖 𝑗 : 𝐿(𝑈𝐿𝜆(𝑄,𝜈))𝑄𝐷𝑐𝐻
𝜆𝑢𝑖 𝑗 : 𝑢𝑐 (𝜆(𝑄,𝜈)𝑉 )𝑑𝑐𝐷𝑐

𝐻
, (3.1.37)

where 𝑉 is the Cabbibo-Kobayashi-Maskawa (CKM) matrix with the corresponding phases and
𝑈𝐿 is the leptonic part of the 𝑃𝑀𝑁𝑆-matrix 𝑈𝑃𝑀𝑁𝑆 = 𝑈 ∗

𝐿
𝑈

†
𝜈 , plus the CP-phases 𝑃 = diag(𝑒𝑖𝜙𝑖 ).

The dominant effects on proton decay originate from LLRR channels, where after integrating out
theHiggs triplets (recall that in this diagram chirality flipped dressingwith a higgsino is required),
are discussed below. These operators, also, should respect the 𝑆𝑈 (4)⊥ charge conservation, so
for each operator the appropriate singlet fields must be introduced. Since the masses of these
singlets are substantially lower that the string scale, further suppression of the anticipated baryon
violating operators is expected. The relevant operators take the form

𝛿1
10𝑡110𝑡110𝑡1 5̄𝑡1

𝑀𝑠𝑡𝑟

(𝜃31𝜃41

𝑀2
𝑠𝑡𝑟

+
𝜃 2

31𝜃43

𝑀3
𝑠𝑡𝑟

) → 𝛿1
⟨𝜒2𝜁 ⟩ + ⟨𝜒𝜁 ⟩𝑀𝑠𝑡𝑟

𝑀4
𝑠𝑡𝑟

(𝑄𝑖𝑄 𝑗𝑄𝑘𝐿𝑚)

𝛿2
10𝑡15̄𝑡1 5̄𝑡11𝑡1

𝑀𝑠𝑡𝑟

(𝜃31𝜃41

𝑀2
𝑠𝑡𝑟

+
𝜃 2

31𝜃43

𝑀3
𝑠𝑡𝑟

) → 𝛿2
⟨𝜒2𝜁 ⟩ + ⟨𝜒𝜁 ⟩𝑀𝑠𝑡𝑟

𝑀4
𝑠𝑡𝑟

(𝑑𝑐𝑖𝑢𝑐𝑗𝑢𝑐𝑘𝑒
𝑐
𝑚),

(3.1.38)

where 𝛿1,2 are

𝛿1 ∼
⟨ℎ⟩

𝑚𝐷𝑐
𝐻
𝑚
𝐷𝑐
𝐻

[
(𝑉 ∗𝜆(𝑑

𝑐 )𝑉 †) (𝜆(𝑄,𝜈)𝑈 ∗
𝐿 )

]
, 𝛿2 ∼

⟨ℎ⟩
𝑚𝐷𝑐

𝐻
𝑚
𝐷𝑐
𝐻

[
(𝑈 ∗

𝐿𝜆
(𝑒𝑐 )) (𝜆(𝑄,𝜈)𝑉 )

]
. (3.1.39)

Given the scale difference between the bidoublet ⟨ℎ⟩ and the triplet 𝑀𝑐
𝐷𝐻

, these operators are
highly suppressed. The novelty of F-theory model building constructions compared to GUT-
model building [202; 203], is that the 𝑡𝑖-charge conservation implies additional suppression. Re-
garding the chirality flipping diagrams, as it is pointed out in [202], they are severely constrained
in the flipped 𝑆𝑈 (5) model, as opposed to their behavior in the standard 𝑆𝑈 (5) [204].
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We investigate now the implications of the various dimension-6 operators. In this case, baryon
violating decays are mediated by both 𝑆𝑈 (5) vector gauge fields and color Higgs triplets. The cor-
responding diagrams differ from dimension five operators, since chirality flipping is not needed
in this case, so the extra suppression factor ⟨ℎ⟩

𝑀𝐷
is absent. From the low energy superpoten-

tial (3.1.32), the relevant to proton decay couplings are:

𝜆𝑢𝑖 𝑗𝐹𝑖 𝑓 𝑗ℎ̄ + 𝜆𝑑𝑖 𝑗𝐹𝑖𝐹 𝑗ℎ𝜓 + 𝜆𝑒𝑖 𝑗𝑒𝑐𝑖 𝑓 𝑗ℎ𝜓 , (3.1.40)

whereas, the effective operators corresponding to dimension-6 operators are:

10 5̄ 10† 5̄†, 10 10 5̄† 1† .

The gauge interactions inducing the dimension six operators can be summarized as:

L ∼ 𝑔5

(
𝜖𝑖 𝑗𝑢

𝑐𝑋 𝑖𝑈 ∗
𝐿𝐿

𝑗 + 𝜖𝑎𝑏𝑐𝑄†𝑎𝑋𝑏𝑉𝑃∗𝑑𝑐 + 𝜖𝛼𝛽𝜈†𝑐𝑋𝛼𝑄𝛽 + ℎ.𝑐.
)
, (3.1.41)

and

L(6) ∼ 𝐶𝑖 𝑗𝑘𝑚(6)𝛼

(
𝑢
†𝑐
𝑖
𝑑
†𝑐
𝑗
(𝑢𝑘𝑒𝑚 + 𝑑𝑘𝜈𝑚)

)
+𝐶𝑖 𝑗𝑘𝑚(6)𝛽

(
𝑢𝑖 (𝑉𝑃∗𝑑 𝑗 ) + (𝑉 ∗𝑃𝑑𝑖)𝑢 𝑗

)
𝑢
†𝑐
𝑘
𝑒†𝑐𝑚 . (3.1.42)

The coefficients 𝐶𝑖 𝑗𝑘𝑚(6)𝛼,𝛽 are given by [202; 203]

𝐶
𝑖 𝑗𝑘𝑚

(6)𝛼 =

( (𝑈𝐿)𝑘𝑚𝑉 ∗
𝑖 𝑗

𝑀2
𝐺

+
(𝑉 †𝜆(𝑄,𝜈))𝑖 𝑗 (𝑈𝐿𝜆(𝑄,𝜈)𝑘𝑚

)
𝑚2
𝐷𝑐
𝐻

)
𝐶
𝑖 𝑗𝑘𝑚

(6)𝛽 =

( (𝑉 ∗𝑃𝜆(𝑑
𝑐 )𝑉 )𝑘𝑚 (𝑈 †

𝐿
𝜆(𝑒

𝑐 ))𝑖 𝑗
𝑚2
𝐷𝑐
𝐻

)
, (3.1.43)

where𝑀𝐺 is themass of the gauge boson and the Yukawa couplings 𝜆 are the diagonal matrices. It
is important to emphasize that the flipped 𝑆𝑈 (5) gauge bosons do not couple to the right-handed
leptons, in contrast to the standard 𝑆𝑈 (5). The final state is different in these two cases and their
experimental implication makes the flipped version much more phenomenologically attainable
(see also [201]). As an illustrative example, we present the charged lepton decay channels 𝑝 →
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(𝐾0, 𝜋0)𝑙+(𝑒,𝜇) . First of all the mixing factors, for the two Wilson coefficients stated above, are:

𝑝 → 𝜋0𝑙+𝑖 : (𝑈𝐿)𝑖1𝑉 ∗
𝑢𝑑
(𝑒𝜙𝑢 , 𝑒𝜙𝑑 )

𝑝 → 𝐾0𝑙+𝑖 : (𝑈𝐿)𝑖1𝑉 ∗
𝑢𝑠 (𝑒𝜙𝑢 , 𝑒𝜙𝑠 ), (3.1.44)

where the index 𝑖 denotes the generation of the lepton involved in the proton decay. The decay
rates can be computed as:

Γ𝑝→𝜋0𝑒+ = | (𝑈𝐿)11𝑉
∗
𝑢𝑑
(𝑒𝜙𝑢 , 𝑒𝜙𝑑 ) |2K(𝑚𝜋 ,𝑚𝑝)M2(𝜋0, 𝑒+)

[
𝐴2
𝛼 (

1
𝑀2
𝐺

+ 𝑓 2(𝑢)
𝑚2
𝐷𝑐
𝐻

)2 +𝐴2
𝛽
(𝑔

2(𝑑, 𝑒+)
𝑚2
𝐷𝑐
𝐻

)2
]
,

Γ𝑝→𝐾0𝑒+ = | (𝑈𝐿)11𝑉
∗
𝑢𝑠 (𝑒𝜙𝑢 , 𝑒𝜙𝑠 ) |2K(𝑚𝐾0,𝑚𝑝)M2(𝐾0, 𝑒+)

[
𝐴2
𝛼 (

1
𝑀2
𝐺

+ 𝑓 2(𝑢)
𝑚2
𝐷𝑐
𝐻

)2 +𝐴2
𝛽
(𝑔

2(𝑠, 𝑒+)
𝑚2
𝐷𝑐
𝐻

)2
]
,

(3.1.45)

where𝐴𝛼 , 𝐴𝛽 are the renormalization factors obtained from the RGE equations (in one-loop level)
for the Wilson coefficients contributing to the proton decay processes [201; 202; 203]. Since there
are some additional states in the low energy spectrum (namely the vector-like singlets 𝐸𝑐 ), we do
not expect a significant deviation for the gauge coupling unification regarding the supersymmetry
(susy) breaking scale around TeV, as obtained by similar analysis [205]. The rest of the parameters
used in the decay rates are summarized below:

K(𝑚𝜋 ,𝑚𝑝) =
𝑚𝑝

32𝜋
(
1 −

𝑚2
𝜋0

𝑚2
𝑝

)2
, M(𝜋0, (𝑒+, 𝜇+)) = ⟨𝜋0 | (𝑢𝑑)𝑅𝑢𝐿 |𝑝⟩𝑙+ = (−0.131,−0.118) GeV2,

K(𝑚𝐾0,𝑚𝑝) =
𝑚𝑝

32𝜋
(
1 −

𝑚2
𝐾0

𝑚2
𝑝

)2
, M(𝐾0, (𝑒+, 𝜇+)) = ⟨𝜋0 | (𝑢𝑠)𝑅𝑢𝐿 |𝑝⟩𝑙+ = (0.103, 0.099) GeV2,

𝑓 2(𝑢) = 𝑚2
𝑢

⟨ℎ𝑢⟩2 , 𝑔
2(𝑑, 𝑒+) = 𝑚𝑢𝑚𝑒+

⟨ℎ𝑑⟩2 , 𝑔
2(𝑠, 𝑒+) = 𝑚𝑠𝑚𝑒+

⟨ℎ𝑑⟩2 , tan(𝛽) = ⟨ℎ𝑢⟩
⟨ℎ𝑑⟩

. (3.1.46)

In figure 3.1 we plot the proton lifetime of the above decay channels, as a function of the triplet
mass𝑚𝐷𝐻

for assuming various values of tan 𝛽 , where the horizontal lines represent the current
Super-K [206] and Hyper-K [207] bounds. Regarding the formulas for the proton decay through
the muon’s channel, they can be easily derived if we trade the 𝑒+ → 𝜇+.
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β=tan-1(5)

β=tan-1(10)
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1.×1035
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β=tan-1(5)
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Super-K

1.×109 1.×1011 1.×1015
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1.×1037

τp(yr)

p -> K0e+

β=tan-1(5)

β=tan-1(10)

Super-K

Hyper-K

1.×109 1.×1011 1.×1013 1.×1015
MDH(GeV)1.×1031

1.×1037

1.×1035

τp(yr)

p -> π0μ+

β=tan-1(5)

β=tan-1(10)

Super-K

1.×109 1.×1012 1.×1015
MDH(GeV)1.×1031

1.×1037

τp(yr)

p -> K0μ+

Figure 3.1: The lifetime of the proton along the two decay channels (𝑝 → 𝜋0(𝑒+, 𝜇+), 𝑝 → 𝐾0(𝑒+𝜇+)) for
different values of tan(𝛽). It is deduced that the triplets mass is bounded at𝑚

𝐷𝑐
𝐻

=𝑚𝐷𝑐
𝐻
≥ 1011 GeV, 𝑀𝐺 =

1016 GeV. The asymptotic value of the lifetime is controlled by the masses of the Higgs triplets.

In this section we are going to examine in some detail the mass matrix (3.1.33) involving the
neutrinos and the neutral singlet fields 𝑠 . Recall that the latter are identified with the singlets
𝜃12, 𝜃21 and that their number is determined by global dynamics of the model. In the present
semi-local construction we will treat them as a free parameter. The following Yukawa couplings

𝑚𝜈𝐷 = 𝜆𝑢𝑖 𝑗 ⟨ℎ̄⟩, 𝑀𝜈𝑐
𝑖
𝑠 =

𝜅𝑖 ⟨𝐻 ⟩⟨𝜓 ⟩
𝑀𝑠𝑡𝑟

, (3.1.47)

define the Dirac neutrino mass submatrix and the mixing between the right-handed neutrinos
and the singlet fields. Additional non-renormalizable terms may also generate masses for the
right-handed neutrinos 𝜈𝑐𝑖 due to a coupling of the form :

W ∼
𝜆𝑖 𝑗

𝑀3
𝑠𝑡𝑟

𝐻𝐻𝐹𝑖𝐹 𝑗

(
⟨𝜓 2⟩ + ⟨𝜁 ⟩2⟨𝜒⟩2

𝑀2
𝑠𝑡𝑟

)
⇒

𝑀𝜈𝑐
𝑖

=
𝜆𝑖 𝑗 ⟨𝜈𝑐𝐻 ⟩

2

𝑀3
𝑠𝑡𝑟

(
⟨𝜓 2⟩ + ⟨𝜁 ⟩2⟨𝜒⟩2

𝑀2
𝑠𝑡𝑟

)
. (3.1.48)
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Hence, the final structure of the neutrino mass sector is

M𝜈 =

©­­­­­­«
0 𝑚𝜈𝐷 0

𝑚𝑇
𝜈𝐷

𝑀𝜈𝑐
𝑖

𝑀𝑇
𝜈𝑐𝑠

0 𝑀𝜈𝑐𝑠 𝑀𝑠

ª®®®®®®¬
. (3.1.49)

This matrix involves vastly different scales. We assume (also justified by the singlet VEVs) the
hierarchy𝑚𝜈𝐷 ≪ 𝑀𝑠 ≪ 𝑀𝜈𝑐

𝑖
𝑠, 𝑀𝜈𝑐

𝑖
and implement a double inverse seesaw mechanism to deter-

mine the eigenvalues of the light spectrum. Below we sketch the procedure for obtaining the
normal-order mass hierarchy in the light neutrinos sector. We define:

𝑀𝜈𝐷 =
©­­«
𝑚𝜈𝐷

0

ª®®¬ , 𝑀𝑅
′ =

©­­«
𝑀𝜈𝑐

𝑖
𝑀𝑇
𝜈𝑐𝑠

𝑀𝜈𝑐𝑠 𝑀𝑠

ª®®¬ , (3.1.50)

and

𝑀𝜈 =
©­­«

0 𝑀𝑇
𝐷

𝑀𝐷 𝑀𝑅
′

ª®®¬ . (3.1.51)

Then, implementing the double inverse seesaw formula (see for example [208]) we obtain

𝑚𝜈𝑖 = −𝑚𝜈𝐷 (𝑀𝜈𝑐
𝑖
−𝑀𝜈𝑐𝑠𝑀

−1
𝑠 𝑀𝑇

𝜈𝑐𝑠)−1𝑚𝑇
𝜈𝐷

𝑚𝜈𝐷 ≪ (𝑀𝜈𝑐
𝑖
−𝑀𝜈𝑐𝑠𝑀

−1
𝑠 𝑀𝑇

𝜈𝑐𝑠) . (3.1.52)

Depending on the scale of the neutral singlets 𝑠 , there are two basic limits of the previous equation,
which yield different parametric regions for the right-handed neutrinos and the singlets. In the
subsequent sections we would like to implement a leptogenesis scenario, hence it is of crucial
importance to pursue an intermediate mass scale (∼ TeV) in the heavy neutrinos sector and to
characterize the properties of the extra singlets. Having this inmind, we proceedwith the analysis
of the limiting cases.

𝛼) We assume the hierarchies𝑀𝜈𝑐
𝑖
≪ 𝑀𝜈𝑐𝑠 and𝑀𝑠 ≪ 𝑀𝜈𝑐𝑠 .

In this case, the {22}-entry in the neutrino mass matrix is less significant and the model reduces
to the standard double seesaw:
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𝑚𝜈𝑖 =𝑚𝜈𝐷 (𝑀𝑇
𝜈𝑐𝑠)

−1
𝑀𝑠𝑀

−1
𝜈𝑐𝑠𝑚

𝑇
𝜈𝐷
. (3.1.53)

This scenario accommodates effectively the light neutrino masses, where for example requiring
light neutrinos at sub-eV scale 𝑚𝜈𝑖 ≲ 0.1 𝑒𝑉 and sterile masses around 𝑀𝑠 ∼ 5 𝑘𝑒𝑉 (𝑚𝜈𝐷 ∼
100 𝐺𝑒𝑉 ), the seesaw scale for the right-handed neutrinos is set at 𝑀𝜈𝑐𝑠 ∼ 𝑇𝑒𝑉 . A much more
interesting and testable prediction from such a case would be the calculation of unitarity violation
𝜂 in the leptonic mixing matrix [209]:

𝑉 = (1 + 𝜂)𝑈0, (3.1.54)

where the𝑉 matrix diagonalizes the light neutrinos and𝑈0 represents the unitary matrix (identi-
fied with𝑈𝑃𝑀𝑁𝑆 in the lepton sector), while the 𝜂 matrix can in principle be hermitian. Deviations
from the unitary form of the PMNS mixing matrix are displayed into the rare leptonic decays
(𝑙𝑎 → 𝑙𝑏𝛾 ). These decays put stringent bounds on the discrepancies in the mixing matrix, whose
origin can be traced back to the seesaw mechanism. In order the explain how deviations can be
expressed, it is important to recall the GIM mechanism [210] . Flavor changing neutral currents
are induced at loop level in the Standard Model, where their decay rate is parametrized in terms
of the mixing matrix in 1-loop as [211]:

Γ(𝑙𝑎 → 𝑙𝑏𝛾)
Γ(𝑙𝑎 → 𝜈𝑎𝑙𝑏𝜈𝑏)

∼
|∑𝑘 𝑉𝑎𝑘𝑉

†
𝑘𝑏
𝐹 ( 𝑚

2
𝜈

𝑚2
𝑊

) |2

(𝑉𝑉 †)𝑎𝑎 (𝑉𝑉 †)𝑏𝑏
,

𝐹 (𝑥) = 10 − 43𝑥 + 78𝑥2 − 49𝑥3 + 4𝑥4 + 18𝑥3 log(𝑥)
3(𝑥 − 1)4 , (3.1.55)

where for unitary mixing matrix 𝑈 the GIM mechanism implies a vanishing contribution for
𝑎 ≠ 𝑏 [212]. In the case of non-unitary mixing matrix, a typical process 𝜇 → 𝑒𝛾 results in the
experimental bound (𝑈𝑒𝜇𝑈 †

𝜇𝑒) < 10−4,which represents the typical condition needed to be met
by seesaw scenarios. Regarding the computation of the unitary violating effects 𝜂, they can be
computed by the neutrino matrix (3.1.51), using the matrix (3.1.54), as:

𝜂 � −1
2
𝑀

†
𝐷
(𝑀∗

𝑅)−1(𝑀𝑅)−1𝑀𝐷 . (3.1.56)

Regarding the unitarity violation in the seesaw mechanism analysed here, an estimate of the 𝜂
can be computed after the scales of the seesaw matrix are set. Nevertheless, in both of the two
limits of the seesaw mechanism analyzed here, the 𝜂 parameter is of order:
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𝜂 ∼ O(
𝑚2
𝜈𝐷

𝑀2
𝜈𝑐𝑠

) ∼ 10−6, (3.1.57)

i.e., two orders below the present bound.

𝛽) 𝑀𝑠 ≪ 𝑀𝜈𝑐𝑠 ≪ 𝑀𝜈𝑐 . In this limit, the two heavy states are

𝑚̂𝑠 = 𝑀𝑠 −𝑀𝑇
𝜈𝑐𝑠𝑀

−1
𝜈𝑐 𝑀𝜈𝑐𝑠,

𝑚̂𝜈𝑐 = 𝑀𝜈𝑐 . (3.1.58)

Regarding the light neutrino states, depending on the heavy mass hierarchies, we distinguish two
cases. For𝑀𝜈𝑐 ≪ 𝑀𝜈𝑐𝑠𝑀

−1
𝑠 𝑀𝑇

𝜈𝑐𝑠 ,

𝑚𝜈 =𝑚𝜈𝐷 (𝑀𝑇
𝜈𝑐𝑠)

−1
𝑀𝑠𝑀

−1
𝜈𝑐𝑠𝑚

𝑇
𝜈𝐷
, (3.1.59)

and for𝑀𝜈𝑐 ≫ 𝑀𝜈𝑐𝑠𝑀
−1
𝑠 𝑀𝑇

𝜈𝑐𝑠 ,

𝑚𝜈 = −𝑚𝜈𝐷𝑀
−1
𝜈𝑐 𝑚

𝑇
𝜈𝐷
. (3.1.60)

In the first case, the paradigm (𝛼) is reproduced and in the second one the typical seesaw is
obtained. Here, the new intermediate scale 𝑚̃𝑠 could be useful for a dark matter particle, since
the mixing angle between the active and the sterile neutrino is highly suppressed. This angle
could be obtained after integrating out the heavy right-handed neutrino scale𝑀𝜈𝑐 , leading to:

tan(2𝜃𝜈𝑠) �
2𝑚𝜈𝐷

𝑀𝜈𝑐𝑠

, (𝑀𝜈𝑐
𝑖
, 𝑀𝑠 ≪ 𝑀𝜈𝑐𝑠) & (𝑀𝜈𝑐 ≪ 𝑀𝜈𝑐𝑠𝑀

−1
𝑠 𝑀𝑇

𝜈𝑐𝑠), (3.1.61)

tan(2𝜃𝜈𝑠) �
𝑚𝜈𝐷𝑀𝜈𝑐𝑠

2𝑀𝑠𝑀𝜈𝑐
, 𝑀𝜈𝑐 ≫ 𝑀𝜈𝑐𝑠𝑀

−1
𝑠 𝑀𝑇

𝜈𝑐𝑠 . (3.1.62)

The mixing angle of the active-sterile neutrinos are of crucial importance, since this angle char-
acterizes the sterile neutrinos’ properties regarding its nature as a dark matter particle. Astro-
physical data have already opened two “windows” for sterile dark matter particles, the first one
at keV scale with the mixing angle 𝜃𝜈𝑠 ∼ (10−6, 10−4) and the second one at 𝑀𝑒𝑉 scale with
𝜃𝜈𝑠 ∼ (10−9, 10−6).

Next we examine the leptogenesis scenario in the context of the flipped 𝑆𝑈 (5) model presented in
this work. Our analysis shows that a possible implementation of the leptogenesis scenario can be
realized in the second case (i.e., case 𝛽). As is well known, right-handed neutrinos can decay to a
lepton and a Higgs field, producing this way lepton asymmetry. The relevant Yukawa couplings
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are

W = 𝜆𝑢𝑖 𝑗𝐹𝑖 𝑓 𝑗ℎ̄ + 𝜅′𝑖𝐻𝐹𝑖𝑠 𝜓, 𝜅′𝑖 = 𝜅𝑖
⟨𝜓 ⟩
𝑀𝑠𝑡𝑟

. (3.1.63)

Figure 2 shows the relevant vertex of the right-handed neutrino and the standard one-loop graph
contributing to the lepton asymmetry. There are also two wavefucntion self-energy one-loop
correction graphs depicted in figure 3 which also contribute.

𝜈𝑐1

ℎ̄

𝑙𝑖

𝜈𝑐1

ℎ̄

𝑙𝑖

ℎ̄

𝑙 𝑗

𝜈𝑐𝑗

Figure 3.2: Standard contributions to the generated lepton asymmetry.

𝜈𝑐1

𝐻

𝑠

𝜈𝑐𝑖

ℎ̄

𝑙𝑖

𝜈𝑐1

ℎ̄

𝑙𝑖

𝜈𝑐𝑖

ℎ̄

𝑙𝑖

Figure 3.3: Loop diagrams contributions to the generated lepton asymmetry.

The decay rate is given by

Γ(𝜈𝑐𝑖 ) =
1

4𝜋

(
𝜆𝜈𝑖 𝑗 (𝜆𝜈𝑖 𝑗 )† + 𝜅′(𝜅′)†

)
𝑖𝑖

𝑀𝜈𝑐
𝑖
, (3.1.64)

where 𝜆 and 𝜅′ are the relevant Yukawa couplings in the equation (3.1.32) for the neutrino sector.
The lepton asymmetry factor is summarized to the following contributions:

𝜖1 = −
∑︁
𝑖

Γ1(𝜈𝑐1 → 𝑙𝑖ℎ̄) − Γ2(𝜈𝑐1 → 𝑙𝑖ℎ)
Γ12(𝜈𝑐1)

, (3.1.65)
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where Γ12 = Γ1(𝜈𝑐1 → 𝑙𝑖ℎ̄) + Γ2(𝜈𝑐1 → 𝑙𝑖ℎ) indicates the overall decay rates. The lepton asymmetry
in such a scenario can be written as [213]:

𝜖1 =
1

8𝜋

∑︁
𝑗≠1

(
(𝑓1(𝑥 𝑗 ) + 𝑓2(𝑥 𝑗 ))𝐺 𝑗1 + 𝑓2(𝑥 𝑗 )𝐺′

𝑗1

)
, (3.1.66)

𝑓1(𝑥 𝑗 ) =
√
𝑥 (1 − (1 + 𝑥) ln( 1 + 𝑥

𝑥
)), 𝑓2(𝑥) =

√
𝑥 𝑗

1 − 𝑥 𝑗
, 𝑥 𝑗 =

𝑀2
𝜈𝑐
𝑗

𝑀2
𝜈𝑐1

, (3.1.67)

where the 𝑓 -factors are the vertex contributions of the Feynman diagrams. Now, the 𝐺-factors
contain the Yukawa couplings as:

𝐺 =
𝐼𝑚

[
(𝜆𝜈
𝑖 𝑗
(𝜆𝜈
𝑖 𝑗
)†)2]

(𝜆𝜈 (𝜆𝜈 )† + 𝜅′(𝜅′)†)11
, 𝐺′ =

𝐼𝑚
[
(𝜆𝜈
𝑖 𝑗
(𝜆𝜈
𝑖 𝑗
)†) (𝜅′(𝜅′)†)

]
(𝜆𝜈 (𝜆𝜈 )† + 𝜅′(𝜅′)†)11

. (3.1.68)

With regard to the impact of the loop corrections of the second graph in figure 3, the lepton
asymmetry factor can be divided into two cases with respect to the right-handed neutrino mass

hierarchy 𝑥 𝑗 =
𝑀2

𝜈𝑐
𝑗

𝑀2
𝜈𝑐1

. For the case of large hierarchy, 𝑥 𝑗 ≫ 1, the contribution from the loops is

negligible resulting in [214]:

𝜖1 � −
3𝑀𝜈𝑐1

16𝜋 ⟨𝑣⟩2

𝐼𝑚
[
(𝜆𝜈
𝑖 𝑗
)∗𝑚𝜈 (𝜆𝜈𝑖 𝑗 )†

]
(𝜆𝜈 (𝜆𝜈 )† + 𝜅′(𝜅′)†)11

⇒

|𝜖1 | ≲
3𝑀𝜈𝑐1

16𝜋 ⟨𝑚𝜈𝐷 ⟩2 (𝑚𝜈3 −𝑚𝜈1) . (3.1.69)

From the above, it is obvious that in order to obtain the observed lepton asymmetry 𝜖1 ∼ [10−6, 10−5],
the scale for the right-handed neutrinos should lay close to:

𝑀𝜈𝑐1
≳

16𝜖1𝜋 ⟨𝑚𝜈𝐷 ⟩2

3(𝑚𝜈3 −𝑚𝜈1)
≳ 109 𝐺𝑒𝑉 . (3.1.70)

The case 𝑥 𝑗 � 1 describes the enhancement due to the loop diagrams (resonant procedure), where
the asymmetry factor is:

𝜖1 � − 1
16𝜋

{
𝑀𝜈𝑐2

⟨𝑚𝜈𝐷 ⟩2

Im[(𝜆𝜈
𝑖 𝑗
)∗𝑚𝜈 (𝜆𝜈𝑖 𝑗 )†]

(𝜆𝜈 (𝜆𝜈 )† + 𝜅′(𝜅′)†)11
+

∑
𝑗≠1 Im[(𝜆𝜈

𝑖 𝑗
(𝜆𝜈
𝑖 𝑗
)†) (𝜅′(𝜅′)†)]

(𝜆𝜈 (𝜆𝜈 )† + 𝜅′(𝜅′)†)11

}
𝑀𝜈𝑐2

𝑀𝜈𝑐2
−𝑀𝜈𝑐1

. (3.1.71)
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It is worth emphasizing that if the first term dominates, fine tuning is required due to the depen-
dence of the mass splitting in the right-handed neutrino sector. Despite the fact that thermal low
scale leptogenesis in most cases requires a tiny mass gap in the heavy states, the second term
(first diagram in figure 3), could accommodate a less constrained mass gap through the suppres-
sion due to the existence of Yukawa couplings 𝜆, 𝜅′ [215; 216; 217]. However, due to the heavy
Higgs 𝐻 mass included in the loop, this contribution is expected to be suppressed. Simplifying
the contributions of the two terms in the above equation, the results are summarized to:

i) |𝜖1 | ∼
𝑀𝜈𝑐2

16𝜋 ⟨𝑚𝜈𝐷 ⟩2

√︃
Δ𝑚2

𝜈31

𝑀𝜈𝑐2

𝑀𝜈𝑐2
−𝑀𝜈𝑐1

(3.1.72)

ii) |𝜖1 | ∼
𝑀𝜈𝑐2

16𝜋 ⟨𝑚𝜈𝐷 ⟩2

√︃
Δ𝑚2

𝜈31

𝑀𝜈𝑐2

𝑀𝜈𝑐2
−𝑀𝜈𝑐1

× |𝜆𝜈𝑖 𝑗 |2 |𝜅′|2 . (3.1.73)

These couplings are referring not to the first generation, since the lightest of the sterile neutrino’s
coupling is bounded by the thermodynamic condition Γ(𝜈𝑐1) < 𝐻 (𝑇 = 𝑀𝜈𝑐1

), where H stands for
the Hubble expansion. The novelty of the F-theory implementation of the leptogenesis scenario is
that fine tuning is not a problem, since the singlets can acquire appropriate VEVs regulating this
way the scale of the produced asymmetry, without the requirement of Δ𝑚𝜈𝑐21

→ 0. The coupling
𝜅′ is suppressed by the string scale, an effect which is absent in the standard field theory GUT
framework.

3.1.4 0𝛽𝛽𝜈 decay and the W-boson mass anomaly

We have already observed in the analysis of the neutrino mass matrix the involvement of new
neutral states 𝑠 which act as sterile neutrinos. Furthermore, the Majorana nature of neutrino
states implies violation of lepton number by two units Δ𝐿 = 2. The presence of these ingredients
could potentially provide low energy signals which are worth investigating. Amongst those im-
plications, neutrinoless double beta decay (for a review see [218]) seems a suitable experimental
process, where the presence of additional sterile neutrinos could enhance the decay’s amplitude
and shed some light on the mixing between the active and sterile sectors. Clearly, within the
context of the inverse seesaw mechanism of the present model, the described scenarios of lep-
togenesis, unitarity violation and double beta decay are entangled and the goal of this section is
to extract some bounds for the mass splitting of the right-handed neutrinos and their Majorana
phases.
As can be inferred even a simple extension of the SM with a Majorana mass term could predict
the occurrence of the 𝛽𝛽-decay process through a Lagrangian term of the form
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L ⊃
3∑︁
𝑖=1

𝑔2
𝐹𝑈

2
𝑒𝑖
𝛾𝜇𝑃𝑅

/𝑝 +𝑚𝑖

𝑝2 −𝑚2
𝑖

𝛾𝜈𝑃𝐿, (3.1.74)

where the𝑚𝑖 represent the masses of the neutrinos and 𝑝 is the momentum of the virtual particle
in the decaying process 4.

The neutrinoless double beta decay, 0𝜈𝛽𝛽 , in the presence of the light neutrinos is described by
the effective mass:

𝑚𝑒𝑒 = |
3∑︁
𝑖=1

𝑈 2
𝑒𝑖𝑚𝑖 | (3.1.75)

In this model, the summation in the above formula is modified in order to accommodate the
extended neutrino sector [220]:

𝑚𝑒𝑒 =

3+𝑛∑︁
𝑖=1

𝑈 2
𝑒 𝑗
𝑝2 𝑚𝑖

𝑝2 −𝑚2
𝑖

, (3.1.76)

where 𝑈 2
𝑒 𝑗

stands for the mixing of the electron neutrino with the other states and the decay
width is proportional to Γ0𝜈2𝛽 ∼ 𝑚𝑒𝑒 . Recent experimental constraints put a stringent bound on
the allowed region [219; 221; 222], which is:

|𝑚𝑒𝑒 | ∈ [10−3, 10−1] eV . (3.1.77)

It is obvious that for high scale masses of the right-handed neutrinos (𝑚𝜈𝑐 ≫ TeV) and interme-
diate scale sterile singlets (𝑚𝑠 ∼ keV), sizable effects on the 0𝜈𝛽𝛽 decay could be attributed to
the mass of heavy neutrinos and the mixing of the various sectors. From (3.1.76), there exist two
important limits concerning the mass of the extra neutrinos [220; 223], where the propagator is
modified as:

4As a matter of fact, this propagator is related to the Nuclear Matrix Element (NME), which is being used to
capture the nucleus dynamics - see for example eq. (3) in [219].
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i) 𝑚𝑖 ≪ 𝑝2 :
1

𝑝2 −𝑚2
𝑖

=
1
𝑝2+

𝑚2
𝑖

𝑝4 + O(
𝑚4
𝑖

𝑝6 ) , (3.1.78)

𝑚𝑒𝑒 =

3+𝑛∑︁
𝑖=1

𝑈 2
𝑒𝑖
𝑚𝑖 , (3.1.79)

ii) 𝑚𝑖 ≫ 𝑝2 :
1

𝑝2 −𝑚2
𝑖

= − 1
𝑚2
𝑖

+ O(
𝑚4
𝑖

𝑝6 ) , (3.1.80)

𝑚𝑒𝑒 = −
3+𝑛∑︁
𝑖=1

𝑈 2
𝑒𝑖
𝑚𝑖

𝑝2

𝑚2
𝑖

. (3.1.81)

𝑈 (𝜈𝑒, 𝜈𝑐1, 𝜈𝑐2, 𝑠) =

©­­­­­­­­­«

1 0 0 0

0 𝑐12 𝑠12 0

0 −𝑠12 𝑐12 0

0 0 0 1

ª®®®®®®®®®¬

©­­­­­­­­­«

𝑐e2 0 𝑒−𝑖𝛿𝑠e2 0

0 1 0 0

−𝑒𝑖𝛿𝑠e2 0 𝑐e2 0

0 0 0 1

ª®®®®®®®®®¬

©­­­­­­­­­«

𝑐e1 𝑠e1 0 0

−𝑠e1 𝑐e1 0 0

0 0 1 0

0 0 0 1

ª®®®®®®®®®¬©­­­­­­­­­«

𝑐es 0 0 𝑠es

0 1 0 0

0 0 1 0

−𝑠es 0 0 𝑐es

ª®®®®®®®®®¬

©­­­­­­­­­«

1 0 0 0

0 𝑐s1 0 𝑠s1

0 0 1 0

0 −𝑠s1 0 𝑐s1

ª®®®®®®®®®¬

©­­­­­­­­­«

1 0 0 0

0 1 0 0

0 0 𝑐s2 𝑠s2

0 0 −𝑠s2 𝑐s2

ª®®®®®®®®®¬
·𝛷, (3.1.82)

We are going to analyze the neutrinoless double beta decay in both of these limits. The case ii,
in particular, represents the seesaw mechanism presented above, but the “light” neutrinos (case
i ) could also be interesting for experiments searching low energy sterile neutrinos. In order to
get an insight for the neutrinos sector and reach some representative conclusion, we adopt a tan-
gible strategy and work in a simplified effective scenario. Thus, for the light neutrinos, it would
be reasonable to consider a single neutrino (e.g. the electron neutrino), whilst for the heavier
sector we will assume a case of three neutrinos (two right-handed ones and one sterile). Similar
approach has been considered in previous literature ( for a few representative papers, see for
example relatable examples with 3+1 or 3+2 neutrinos in [220; 224; 225; 226; 227]). In [225], a
similar model was considered, however the present analysis considers three different scales (eV-
keV-TeV) and as stated above it would be ideal to derive a bound for the mass splitting of the
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heavy neutrinos, since this fraction is used in leptogenesis. In addition, we are going to sketch
the production mechanism of the sterile neutrinos, if they were to be identified as a dark matter
particle, through their coupling with the right-handed neutrinos. Consequently, the mixing ma-
trix would be 4× 4, which can be parameterized as shown in equation (3.1.82). The last matrix in
(3.1.82) represents the Majorana phases𝛷 = diag(1, 𝑒𝑖𝜑1, 𝑒𝑖𝜑2, 𝑒𝑖𝜑𝑠 ), where 𝜙 ∈ (0, 𝜋) and 𝛿 is the
Dirac phase (this will not play a crucial role, since we treat light neutrinos as a single state) and
𝑠𝑖 𝑗 , 𝑐𝑖 𝑗 , (𝑖, 𝑗 = 𝑒, 1, 2, 𝑠), 𝜃 ∈ (0, 𝜋2 ) are the mixing angles between the neutrinos. Now, denoting
with 𝑀̂ (𝑚̂𝜈 , 𝑚̂𝜈𝑐

𝑖
, 𝑚̂𝑠) the diagonalized neutrino mass matrix the following equation holds:

𝑈𝑀̂ (𝑚̂𝜈 , 𝑚̂𝜈𝑐
𝑖
, 𝑚̂𝑠)𝑈𝑇 = M𝜈 . (3.1.83)

where,

M𝜈 =

©­­­­­­­­­«

0 𝑚𝜈𝐷 0 0

𝑚𝜈𝐷 𝑀11 𝑀12 𝑀1𝑠

0 𝑀21 𝑀22 𝑀2𝑠

0 𝑀1𝑠 𝑀2𝑠 𝑀𝑠

ª®®®®®®®®®¬
. (3.1.84)

where 𝑀𝑖 𝑗 denote the elements of the 2 × 2 right-handed neutrino matrix 𝑀𝜈𝑐
𝑖
in this exam-

ple. Comparing particular elements of the mass matrix M𝜈 with the mass eigenbasis matrix
𝑀̂ (𝑚̂𝜈 , 𝑚̂𝜈𝑐

𝑖
, 𝑚̂𝑠) we can extract some useful bounds. First of all, a few assumptions need to be

taken into account in order to simplify the calculations. Hence, we will assume that the mixing
angles between the active neutrinos 𝜈𝑒 and the sterile ones 𝜈𝑐1,2, 𝜈𝑠 are small, plus that the masses
of the heavy states are much heavier compared to the light and the sterile states:

𝜃𝑒1, 𝜃𝑒2, 𝜃𝑒𝑠 ≪ 1 ⇒ 𝑐𝑜𝑠 (𝜃 ) � 1, 𝑠𝑖𝑛(𝜃 ) � 𝜃,
𝑚̂𝜈

𝑚̂1,2
,
𝑚̂𝑠

𝑚̂1,2
≪ 1 . (3.1.85)

Under these assumptions, the sines (𝑠𝑒1, 𝑠𝑒2, 𝑠𝑒𝑠) represent small angles, but we are not going to
change their symbols in the calculations below. Observing the structure of the neutrino mass
matrix M𝜈 given in (3.1.84), we compare the two zero entries {11},{13} and the {33} element
𝑀𝑠 → 𝜇 with the corresponding ones of 𝑀̂ (𝑚̂𝜈 , 𝑚̂𝜈𝑐

𝑖
, 𝑚̂𝑠). These yield the following equations
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M11
𝜈 = (𝑈𝑀̂ (𝑚̂𝜈 , 𝑚̂𝜈𝑐

𝑖
, 𝑚̂𝑠)𝑈𝑇 )11 = 0, (3.1.86)

M13
𝜈 = (𝑈𝑀̂ (𝑚̂𝜈 , 𝑚̂𝜈𝑐

𝑖
, 𝑚̂𝑠)𝑈𝑇 )13 = 0, (3.1.87)

M33
𝜈 = (𝑈𝑀̂ (𝑚̂𝜈 , 𝑚̂𝜈𝑐

𝑖
, 𝑚̂𝑠)𝑈𝑇 )33 = 𝜇 . (3.1.88)

For (3.1.86) we obtain:

M11
𝜈 =

𝑚̂𝜈

𝑚̂1
𝑒−𝑖 (𝛿+2𝜙2) − 2𝑒−𝑖𝛿𝑐𝑠1𝑠𝑒𝑠

[
(𝑒𝑖2Δ𝜙21 + 𝑐2

𝑠2𝑧 −
𝑚̂2

𝑚̂1
)𝑠𝑒1𝑠𝑠1 + 𝑒−𝑖𝛿𝑧𝑐𝑠2𝑠𝑒2𝑠𝑠2

]
= 0,

(3.1.89)

where we have introduced the definitions

𝑧 =
𝑚̂2

𝑚̂1
− 𝑚̂𝑠

𝑚̂1
𝑒𝑖2Δ𝜙21 �

𝑚̂2

𝑚̂1
; and Δ𝜙21 = 𝜙2 − 𝜙1 .

Then,

𝑠𝑒1

𝑠𝑒2
= −𝑒−𝑖𝛿 𝑚̂2𝑐𝑠2𝑠𝑠2

𝑠𝑠1(𝑚̂1𝑒𝑖2Δ𝜙21 − 𝑚̂2𝑠
2
𝑠2)

. (3.1.90)

Since we have assumed only a single light neutrino, the Dirac phase from this point on is taken
𝛿 = 0. In this limit, for small active-sterile angles, we expect the fraction between them to be
positive, which can be translated using the denominator of (3.1.90) to:

𝑠2
𝑠2 >

𝑚̂1

𝑚̂2
cos(2Δ𝜙21) . (3.1.91)

It is readily seen, that, the mixing between the left and right-handed neutrinos are fully deter-
mined by the “dark" sector i.e. the right-handed neutrinos and the sterile singlet. Proceeding to
the {33} element, a similar analysis leads to the following bounds:

M33
𝜈 = 𝑒𝑖2𝜙1𝑚̂1𝑠

2
𝑠1 + 𝑐2

𝑠1
[
𝑒𝑖2Δ𝜙𝑠1𝑐2

𝑠2𝑚𝑠 + 𝑒𝑖2𝜙2𝑚̂2𝑠
2
𝑠2
]
= 𝜇,

𝜇

𝑚̂1
𝑒−𝑖2𝜙1 = 𝑠2

𝑠1 + 𝑐2
𝑠1

[
𝑒𝑖2Δ𝜙𝑠1𝑐2

𝑠2
𝑚̂𝑠

𝑚̂1
+ 𝑒𝑖2𝜙2

𝑚̂2

𝑚̂1
𝑠2
𝑠2
]
. (3.1.92)

Now, implementing the Cauchy-Schwarz theorem for the {33} element we obtain:
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𝜇

𝑚̂1
≤ 𝑠2

𝑠1 + 𝑐2
𝑠1

(𝑚̂𝑚̂2
𝑠

𝑚̂2
1
𝑐4
𝑠2 +

𝑚̂2
2

𝑚̂2
1
𝑠4
𝑠2 +

𝑚̂𝑠𝑚̂2

𝑚̂2
1

sin(2𝜃𝑠2) cos(2Δ𝜙𝑠2)
)1/2 ⇒

𝑐2
𝑠1 ≤ 𝑚̂1 − 𝜇

𝑚̂1 − 𝑚̂2𝑠
2
𝑠2
, 𝑠2

𝑠2 <
𝑚̂1

𝑚̂2
, (3.1.93)

where the last inequality has been derived under the assumptions that 𝑚̂1 > 𝜇 and 𝑐2
𝑠1 > 0.

Remarkably, using (3.1.91), a very narrow bound can be derived:

𝑚̂1

𝑚̂2
cos(2Δ𝜙21) < 𝑠2

𝑠2 <
𝑚̂1

𝑚̂2
. (3.1.94)

The inequality (3.1.93) which describes themixing of the sterile sector, can bewritten equivalently
as:

𝑐2
𝑠1 ≤

𝑚̂1
𝑚̂2

− 𝜇

𝑚̂2
𝑚̂1
𝑚̂2

− 𝑠2
𝑠2

. (3.1.95)

Proceeding as previously the equality (3.1.90) yields:

𝑚̂1

𝑚̂2
≥ 𝑠𝑠2

(
1 − 𝑠𝑒2𝑐𝑠2

𝑠𝑠1𝑠𝑒1

)
. (3.1.96)

Regarding the Majorana phases from the (3.1.92), the imaginary part of the equation implies:

sin(2𝜙1)
sin(2Δ𝜙21)

= −𝑚̂2

𝜇
𝑐2
𝑠1𝑠

2
𝑠2, (3.1.97)

where this equation is valid only for specific regions for 𝜙 ∈ (0, 𝜋). In figure 4, we plot the
left hand side of equation (3.1.97). In the lower right square the two heavy neutrinos have the
same (negative) CP charge and represent Majorana fermions. In the upper left square, the heave
neutrinos have opposite CP charge and they can form a pseudo-Dirac pair. Considering the case,
where the mass scale 𝜇 → 0, we expect that lepton number violation is absent and Δ𝐿 = 2
processes are suppressed.
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Figure 3.4: The left hand side of the equation (3.1.97) where we see that that the right-handed neutrinos
can have opposite CP charge (upper left square) or the same (lower right square), which would yield
interesting phenomenological implications. See main text.

The third and last constraint to be imposed is associated with the {13} element. This can be used
to constrain the mixing 𝑠𝑒𝑠 between the active neutrino and the singlet 𝑠 . Thus,M13

𝜈 = 0 yields

𝑠𝑒𝑠

𝑠𝑒2
=
𝑠𝑒1

𝑠𝑒2
𝑠𝑠1𝑐𝑠1

−Δ𝑚̂21 + 𝑚̂1𝑒
𝑖4Δ𝜙21 − 𝑚̂2𝑒

𝑖2Δ𝜙21

𝑚̂1 − 𝑐2
𝑠1(𝑚̂1 − 𝑚̂2𝑠

2
𝑠2𝑒

𝑖2Δ𝜙21)
+ O(𝑚̂𝜈,𝑠

𝑚̂1,2
), (3.1.98)

where Δ𝑚̂21 = 𝑚̂2 − 𝑚̂1, while for a controllable calculation we have neglected terms suppressed
by the heavy neutrinos. After the parametrization of the different mixing angles and the phases,
we are in a position to estimate their impact on the neutrinoless double beta decay. Following
the discussion around equations (3.1.78,3.1.80), two distinct regimes can be defined:

i) 𝑚𝑒𝑒 = 𝑚̂𝜈𝐿 +𝑈 2
𝑒1𝑚̂1 +𝑈 2

𝑒2𝑚̂2 +𝑈 2
𝑒𝑠𝑚̂𝑠, 𝑚̂𝑖 ≪ 𝑝2

𝑚𝑒𝑒 = 𝑈
2
𝑒2

(𝑚̂𝜈𝐿

𝑈 2
𝑒2

+
𝑈 2
𝑒1

𝑈 2
𝑒2
𝑚̂1 + 𝑚̂2 +

𝑈 2
𝑠𝑒

𝑈 2
𝑒2
𝑚̂𝑠

)
,

ii) 𝑚𝑒𝑒 = 𝑚̂𝜈𝐿 −𝑈 2
𝑒1
𝑝2

𝑚̂1
−𝑈 2

𝑒2
𝑝2

𝑚̂2
+𝑈 2

𝑠𝑒𝑚̂𝑠, 𝑚̂𝑖 ≫ 𝑝2

𝑚𝑒𝑒 = 𝑈
2
𝑒2

(𝑚̂𝜈𝐿

𝑈 2
𝑒2

−
𝑈 2
𝑒1

𝑈 2
𝑒2

𝑝2

𝑚̂1
− 𝑝2

𝑚̂2
+ 𝑈

2
𝑒𝑠

𝑈 2
𝑒2
𝑚̂𝑠

)
, (3.1.99)

where in both regimes the amplitude is defined up to an overall factor, but the terms in the
parentheses are in principle responsible for the process. The mixing matrices𝑈 2

𝑒𝑖 for small angles
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can be represented by the sines (𝑈 2
𝑒𝑖 → 𝑠𝑒𝑖 ) computed before, so from the previous analysis we

know every fraction (see equations (3.1.90,3.1.98) appearing in the formulas. We have neglected
the mixing of the left handed neutrinos, since we have used only the electron neutrino. Conse-
quently, the whole process is parametrized up to an overall factor 𝑈 2

𝑒2. It is worth noticing that
𝑈 2
𝑒𝑠

𝑈 2
𝑒2
= 𝛾

𝑈 2
𝑒1

𝑈 2
𝑒2
,

𝛾 = 𝑠𝑠1𝑐𝑠1
−Δ𝑚̂21 + 𝑚̂1𝑒

𝑖4Δ𝜙21 − 𝑚̂2𝑒
𝑖2Δ𝜙21

𝑚̂1 − 𝑐2
𝑠1(𝑚̂1 − 𝑚̂2𝑠

2
𝑠2𝑒

𝑖2Δ𝜙21)
, (3.1.100)

simplifying both of the parentheses in equation (3.1.99) as:

i) 𝑚𝑒𝑒 = 𝑈
2
𝑒2

(𝑚̂𝜈𝐿

𝑈 2
𝑒2

+ 𝑚̂2 +
𝑈 2
𝑒1

𝑈 2
𝑒2
(𝑚̂1 + 𝛾𝑚̂𝑠)

)
> 0

ii) 𝑚𝑒𝑒 = 𝑈
2
𝑒2

(𝑚̂𝜈𝐿

𝑈 2
𝑒2

− 𝑝2

𝑚̂2
+
𝑈 2
𝑒1

𝑈 2
𝑒2
(− 𝑝

2

𝑚̂1
+ 𝛾𝑚̂𝑠)

)
> 0 (3.1.101)

The requirement of having positive mass for the𝑚𝑒𝑒 leads the quantities in the parentheses to be
bounded as:

i)
𝑚̂𝜈𝐿

𝑈 2
𝑒2

+ 𝑚̂2 > −
𝑈 2
𝑒1

𝑈 2
𝑒2
(𝑚̂1 + 𝛾𝑚̂𝑠) ⇒ 𝛾 < −𝑚̂1

𝑚̂𝑠

ii)
𝑚̂𝜈𝐿

𝑈 2
𝑒2

− 𝑝2

𝑚̂2
>
𝑈 2
𝑒1

𝑈 2
𝑒2
( 𝑝

2

𝑚̂1
− 𝛾𝑚̂𝑠) ⇒ 𝛾 >

𝑝2

𝑚̂1𝑚̂𝑠

. (3.1.102)

Since we expect a positive fraction (3.1.98) for the mixing angles, we must also have 𝛾 > 0. Hence
the first case above is incompatible, since the assumptions stated in (3.1.85) imply 𝛾 < 0. In
the second case a bound for the 𝛾 variable is extracted, which is going to be used to define the
allowed parametric region for the neutrinoless double beta decay. In order to get an insight for
the leptogenesis scenario regarding the nature of right-handed neutrinos participating in it, we
need to check the asymptotic region of the fraction 𝑚̂1

𝑚̂2
→ (0, 1). In the vanishing mass limit, the

𝑠𝑒1
𝑠𝑒2
𝛾 variable reduces to:

𝑠𝑒1

𝑠𝑒2
𝛾 = −2

cos2 (Δ𝜙21)
cos(2Δ𝜙21)

𝑐𝑠2

𝑐𝑠1𝑠
3
𝑠2

⇒ Δ𝜙21 ∈ (𝜋
4
,
𝜋

2
) ∪ (𝜋

2
,
3𝜋
4
) . (3.1.103)

In this limit, neutrinoless double beta decay scans the Majorana nature of the right-handed neu-
trinos and if baryon asymmetry is explained through leptogenesis, it is expected to happen due
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to the lightest heavy neutrino as in equation (3.1.70). Inversely stated, if two sterile neutrinos are
observed, the mass fraction and their relative CP-charge difference can be used in order to extract
the scale of neutrinoless double beta decay and the scale of possible sterile singlet through the
analysis above. In the degenerate mass limit 𝑚̂1

𝑚̂2
→ 1, some useful conclusions can be extracted

with respect to the mixing of the sterile neutrinos with the two heavy states. In this case the 𝑠𝑒1
𝑠𝑒2
𝛾

variable is written as

𝑠𝑒1

𝑠𝑒2
𝛾 =

𝑐s1𝑐s2 (cos (2Δ𝜙21) − cos (4Δ𝜙21)) 𝑠s2(
cos (2Δ𝜙21) − 𝑠2

s2
) (
𝑐2
s1

(
cos (2Δ𝜙21) 𝑠2

s2 − 1
)
+ 1

) . (3.1.104)

As it can be observed in the numerator above, there is a sign flip in the region of Δ𝜙21 ∈ ( 𝜋3 ,
2𝜋
3 ),

where in this region the sterile singlet couples stronger with the second sterile neutrino 𝜃𝑠1 > 𝜃𝑠2.
Hence, in this limit if the two sterile neutrinos are observed with Δ𝜙21 ∈ (0, 𝜋2 ), the neutrinoless
double beta decay is expected to be suppressed due to the Pseudo-Dirac pair, while in the Δ𝜙21 ∈
( 𝜋2 , 𝜋) they represent two Majorana fermions with degenerate mass.

We are going to present the masses of the neutrinos for the singlet VEVs, whose values are shown
in Table (3.4). For these particular VEVs, the neutrinos are computed through the case 𝛽) (3.1.60)
of section 6., the leptogenesis through the case 𝑖𝑖) (3.1.73) and the neutrinoless double beta decay
is expected at the degenerate mass limit (Table 3.6).

𝑚̂𝜈𝑖 (eV) 𝑚̂𝜈𝑐 (GeV) 𝑚̂𝑠 (keV) 𝜖1 𝜂 𝜃𝜈𝑠

0.1 4.3 × 1014 0.55 2.3 × 10−6 2.1 × 10−3 4.7 × 10−4

Table 3.6: Masses computed for the following scales:𝑚𝜈𝐷 = 174 GeV,𝑀𝜈𝑐 = 4.3×1014 GeV,𝑀𝑠 = 19.1 keV,
𝑀𝜈𝑐𝑠 = 89.3 × 103 GeV, Δ𝑚2

31 = 2.2 × 10−3 eV2, and the first and second generation of heavy neutrinos at(
1.8× 1010, 3× 1010) GeV. Regarding the neutrinoless double beta decay, the model probes the blue region
of 𝑚̂1

𝑚̂2
→ 0.6.

Also, in the two plots of figure 3.5 a couple of solutions of the equation (3.1.99) are depicted for
various values of𝑈 2

𝑒2 and the effective electron neutrino mass𝑚𝑒𝑒 .

124



mee=0.05 eV, Ue22 =5×10-3

mee=0.05 eV, Ue22 =1×10-2

m 1/m

2=0.1

m 1/m

2=0.6

m 1/m

2=1

0 π

8
π

4
3 π
8

π

2

0

π

8

π

4

3 π
8

π

2

0
π

8
π

4
3 π
8

π

2

0

π

8

π

4

3 π
8

π

2

θs1

θ s
2

μ~ keV, m νc≫TeV, Δφ21=
3 π

8

mee=0.05 eV, Ue22 =5×10-3

mee=0.05 eV, Ue22 =1×10-2

m 1/m

2=0.1

m 1/m

2=0.6

m 1/m

2=1

0 π

8
π

4
3 π
8

π

2

0

π

8

π

4

3 π
8

π

2

0
π

8
π

4
3 π
8

π

2

0

π

8

π

4

3 π
8

π

2

θs1

θ s
2

μ~ keV, m νc≫TeV, Δφ21=
5 π

8

Figure 3.5: The shaded region depicts the allowed parameter space defined by the inequalities
(3.1.94),(3.1.95),(3.1.102) and the curves represent the solutions for the neutrinoless double beta decay
from the equation (3.1.99).

The extra vector-like states appearing in the zero-mode spectrum of the F-theory flipped 𝑆𝑈 (5)
are a possible source of the 𝑔𝜇 − 2 enhancement [228; 229]. The relevant couplings are

W = 𝜆′ℎ̄ℎ
⟨𝜒𝜓 2⟩
𝑀3
𝑆

𝜓 + 𝜆𝑒𝑖 𝑗𝑒𝑐𝑖 𝑓 𝑗ℎ + 𝛼𝑚𝑗𝐸𝑐𝑚𝑒𝑐𝑗 𝜓 + 𝛽𝑚𝑛𝐸𝑐𝑚𝐸𝑐𝑛 𝜁 + 𝛾𝑛𝑗𝐸𝑐𝑛 𝑓 𝑗ℎ𝜒 . (3.1.105)

which give rise to the one-loop graph shown in figure 6.

𝑙𝑖 𝑒𝑐

⟨𝜓 2⟩⟨𝜒⟩
⟨𝐻𝑢⟩

𝐻𝑑

𝑀𝐸𝑐𝐸𝑐

𝜓

Figure 3.6: Feynman diagram for the contribution of the vector-like pair in the 𝑔𝜇 − 2 process

Its contribution to 𝑔𝜇−2 is highly dependent on the mass of the additional vector-like lepton-type
charged singlets 𝐸𝑐, 𝐸𝑐 , since the latter participate in the loop. In the model under consideration
their mass is given in terms of the VEV of the singlet 𝜁 , i.e.,𝑀𝐸𝑐𝐸 = ⟨𝜁 2⟩. It is also worth mention-
ing that, the very same VEV appears in the proton decay process, where the masses of the Higgs
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triplets are assigned a high scale mass due to this singlet. Consequently, low scale supersym-
metry could not be a viable choice, in the case we would like to have a substantial contribution
to Δ𝛼𝜇 ∼ 𝑚𝜇 ⟨ℎ⟩

⟨𝜁 2⟩ . Split susy fits better in such a scenario, where the mass of vector-like singlets
can be lowered down to TeV scale and sufficiently explain the 𝑔𝜇 − 2 discrepancy. Although, due
to the mixing of the vector like leptons with the leptonic sector of the model, a mass matrix is
constructed as it is shown in Table 3.7.

𝑀2
𝐸𝑒

𝐸𝑐 𝑒𝑐𝑗

𝐿𝑖
⟨ℎ⟩𝜒
𝑀𝑠𝑡𝑟

⟨ℎ⟩

𝐸
𝑐

𝜁 𝜓

Table 3.7: Mixing between the vector like leptons and the electrons.

In this case, the resulting mass of the states, which contribute in the above process could in
principle be around TeV scale.

𝑚1 =
⟨ℎ⟩𝜒
𝑀𝑠𝑡𝑟

cos2(𝜃 ) − ⟨ℎ⟩ + 𝜁
2

sin(2𝜃 ) +𝜓 sin2(𝜃 )

𝑚2 = 𝜓 cos2(𝜃 ) + ⟨ℎ⟩ + 𝜁
2

sin(2𝜃 ) + ⟨ℎ⟩𝜒
𝑀𝑠𝑡𝑟

sin2(𝜃 ) . (3.1.106)

For the singlet VEVs mentioned at the previous sections, there are in principle light states af-
ter the mixing between the electrons and the vector-like singlets. Consequently, the heaviest of
these singlets will lay at TeV scale, contributing to the 𝑔𝜇 − 2 sufficiently to explain the discrep-
ancy. Using the vevs of the model described before, the contribution to the 𝑔 − 2 anomaly can be
summarized to the following calculation as:

Δ𝛼𝜇 ∼
𝑚𝜇 ⟨ℎ⟩
𝑚2

2
∼ 105 × 10−3 174 GeV2

(89.3 × 103)2GeV2 ∼ 23 × 10−10 (3.1.107)

Recently, the CDF II collaboration [230] using data collected in proton-antiproton collisions at the
Fermilab Tevatron collider, has measured the W-boson mass to be𝑚𝑊 = 80, 433.5 ± 9.4 MeV/𝑐2.
This value is in glaring discrepancy with the SM prediction, and the LEP-Tevatron combination
which is 𝑀𝑊 = 80, 385 ± 15 MeV/𝑐2. Since then several SM and MSSM extensions with the in-
clusion of new particles have been proposed to explain theoretically the experimental prediction
of the W-mass. Taking the CDF result at face value, in the following we will show how the
new ingredients in the present flipped 𝑆𝑈 (5) construction may predict this W-mass enhance-
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ment. We first recall that the neutrino mass matrix formed by the three left- and right-handed
neutrinos, as well as the sterile ones, is diagonalized by a unitary transformation. However, the
mixing matrix diagonalizing the effective 3 × 3 light neutrino mass matrix obtained after the im-
plementation of the inverse seesaw mechanism, need not be unitary. Consequently, this can in
principle lead to a non-unitary leptonic mixing matrix which in section 6 has been parametrized
as 𝑉ℓ = (1 + 𝜂)𝑈𝑃𝑀𝑁𝑆 . We will see that such effects can in principle modify the mass of the
W-boson. In the context of the Standard Model, the mass of the W-boson can be inferred by
comparing the muon decay prediction with the Fermi model [231]

𝑀2
𝑊

(
1 −

𝑀2
𝑊

𝑀2
𝑍

)
=
𝜋𝛼𝑒𝑚√

2𝐺𝐹
(1 + Δ𝑟 ) , (3.1.108)

where 𝛼𝑒𝑚 and 𝐺𝐹 are the fine structure and Fermi constants respectively, and Δ𝑟 stands for all
possible radiative corrections [232; 233]. Once Δ𝑟 is known, the SM prediction of the W-boson
mass is obtained by solving the formula (3.1.108). However, in the present case the non-unitarity
in the PMNS matrix affects drastically the muon decays and consequently the measurement of
the muon lifetime. The precise knowledge of these effects are essential since they determine the
Fermi constant 𝐺𝐹 which is involved in the determination of the𝑊 and 𝑍 boson masses. Thus,
one might expect possible deviations from the𝐺𝐹 value when measured (𝐺𝜇) in muon decay. The
non-unitary corrections are connecting them according to [234; 235]:

𝐺𝐹 = 𝐺𝜇 (1 + 𝜂𝑒𝑒 + 𝜂𝜇𝜇), (3.1.109)

where 𝜂𝑒𝑒, 𝜂𝜇𝜇 are the {11}, {22} elements of the unitarity violation matrix 𝜂. Implementing the
above formula for the Fermi constant, and solving (3.1.108), the mass of the W-boson is given by

𝑀2
𝑊 =

1
2

(
𝑀2
𝑍 +

√︄
1 −

4𝜋𝛼𝑒𝑚 (1 − 𝜂𝜇𝜇 − 𝜂𝑒𝑒)√
2𝐺𝜇𝑀2

𝑍

(1 + Δ𝑟 )
)
, (3.1.110)

Clearly, a possible increment of the W-mass may arise either due to non-unitarity inducing pos-
itive 𝜂𝑒𝑒,𝜇𝜇 contributions, or from possible suppression of the radiative corrections Δ𝑟 . Notice
that Δ𝑟 can also receive additional corrections due to the pair 𝐸𝑐 + 𝐸𝑐 appearing in the flipped
𝑆𝑈 (5) spectrum. Their couplings in the superpotential induce a Wilson coefficient (𝐶ℎℓ)𝑖 𝑗 =

−𝜆𝑖𝜆∗𝑗 /(4𝑚2
𝐸
) which gives a sufficient contribution to the𝑊 -mass for𝑀𝐸 ∼ 5 GeV [236; 237]. Us-

ing the bounds for the mixing angles and the 𝜂𝛼𝛽 elements from Table IV of [234], we can plot the
mass of theW-boson in terms of the non-unitary effects, where it is clearly seen that for small de-
viations from the unitary form of the leptonic mixing matrix can explain the experimental result.
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From the diagonalization of the neutrino matrix (3.1.49), we expect two forms for the unitarity
violation, corresponding to the two cases mentioned there. These two cases are

𝛼) 𝜂 � O( 1
2
𝑚2
𝜈𝐷

𝑀2
𝜈𝑐𝑠

), 𝛽) 𝜂 � O( 1
2
𝑚2
𝜈𝐷
(𝑀2

𝜈𝑐𝑠 +𝑀2
𝑠 )

(𝑀2
𝜈𝑐𝑠

−𝑀𝜈𝑐𝑀𝑠)2 ) . (3.1.111)

Since we are interested in the second case, it is obvious that the scale 𝑀𝑠 , which is responsible
for the lepton number violation will play a crucial role. The specific form (texture) of the fermion
mass matrices, of course, can in principle produce different -model dependent- scenarios of the
unitarity violation. Despite this, we can derive the scale of the 𝜂 matrix and extract some pre-
liminary insights for the experimental signal. In figure 7, we plot the mass of the W-boson for
different values of the lepton number violating scale𝑀𝑠 . As it is pointed out in [235], the insertion
of right-handed neutrinos in the model produces a positive definite 𝜂 matrix which is a necessary
condition to explain the CDF-measurement of the W-boson mass. In fact a small lepton num-
ber violation can accommodate the W-mass discrepancy. Notably, at the same time, the sterile
states can explain the Cabibbo angle anomaly [238] through the mixing term 𝜅𝑖𝐻𝐹𝑖𝑠 𝜓 , although,
the Cabibbo angle anomaly is not completely related to neutrinos, but to the inert singlet states
involved in the seesaw mechanism.
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Figure 3.7: Plot of case 𝛽) 𝜂 (3.1.111) (black dots under the assumption 𝜂𝑒𝑒 ∼ 𝜂𝜇𝜇), using𝑚𝜈𝐷 = 174 GeV,
𝑀𝜈𝑐 = 4.3 × 1014 GeV,𝑀𝑠 = 19.1 keV,𝑀𝜈𝑐𝑠 = 89.3 × 103 GeV. Blue shaded region is the previous W-boson
mass and green is the current measurement.

It is readily seen from the above that unitarity violation plays a crucial role in the mass of the
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W-boson. The main characteristic of the inverse seesaw mechanism 5 is the small violation in
the lepton number by the scale𝑀𝑠 . Large deviations from the PMNS-matrix can occur in the case
where the sterile neutrinos lay at an intermediate scale (keV − MeV), since there is significant
mixing between those states with the active neutrinos. In conclusion, one could conjecture that
the neutrinomasses, ormore specifically the violation in the lepton number, play a significant role
in the LFV physics, where sterile states allow this type of processes to evade the GIM suppression
of SM. In conclusion, under the abovementioned circumstances, the rich structure of the F-theory
flipped 𝑆𝑈 (5) may suggest a viable interpretation of the W-mass increment 6.

As for the oblique parameters, which parameterize the effects of new physics in the electroweak
observables, they have a direct implication on the recently observed mass shift of the W boson.
Following the work of [241] with respect to the mass of W boson and [242] for the recently
obtained fit on the oblique parameters, we could test our model and the unitary violation as a
proposed solution.

𝑀𝑛𝑒𝑤
𝑊

𝑀𝑊
= −

𝑎

(
−𝑈 (𝑐

2
𝑊
−𝑠2

𝑊 )
2𝑠2
𝑊

− 2𝑐2
𝑊
𝑇 + 𝑆

)
4
(
𝑐2
𝑊

− 𝑠2
𝑊

) −
Δ𝐺𝑠2

𝑊

2
(
𝑐2
𝑊

− 𝑠2
𝑊

) + 1, (3.1.112)

where 𝑠2
𝑊

= 1− 𝑀2
𝑊

𝑀2
𝑍

and the Δ𝐺 is the modification of the Fermi constant𝐺𝐹 = 𝐺𝜇 (1+Δ𝐺). So, in
our scenario, Δ𝐺 can be identified with the unitarity violation terms Δ𝐺 = 𝜂𝑒𝑒 + 𝜂𝜇𝜇 . In the two
figures below, we plot equation (3.1.112) for various values of the 𝑆,𝑇 parameters with a fixed
𝑈 . So, after inserting Δ𝐺 = 2 × 2.1 × 10−3 and the masses of the W, Z bosons, the solutions are
depicted below (Fig. 3.8).

𝑆 ∈ (−0.04, 0.16), 𝑇 ∈ (−0.01, 0.23), 𝑈 ∈ (0.04, 0.22)
𝑆 ∈ (0.06, 0.22), 𝑇 ∈ (0.2, 0.32),𝑈 = 0 (3.1.113)

5We note that another solution with Type III seesaw with the presence of an 𝑆𝑈 (2) Higgs triplet has been also
suggested [239].

6In the context of F-theory, a different explanation with D3 branes has been suggested in [240].
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Figure 3.8: Left: Solution for S,T parameters with fixed parameter U, where the blue shaded region covers
the bounds, as obtained by fit taking into account the new mass of W boson. Right: No solutions found
when U is vanishing.

3.1.5 Gauge coupling unification

For the RGE’s analysis of our model, we consider a low energy spectrum of the MSSM model
accompanied by the presence of the vector-like singlets 𝐸𝑐 . Starting with the beta function con-
cerning the MSSM and the flipped 𝑆𝑈 (5) particle content (for beta functions of flipped see for
example [243; 244]), we summarize the formulas below:

𝑏1 =
3
5

(
3𝑛
10

+ 1
2
𝑛𝐻

)
+ 𝑛𝑣

𝑏2 = −6 + 2𝑛 + 1
2
𝑛𝐻 + 𝑛𝑣

𝑏3 = −9 + 2𝑛 + 𝑛𝑣 ,

𝑏5 =
3𝑛10

2
+ 𝑛5

2
+ 2𝑛 − 15

𝑏1𝜒 =
𝑛10

4
+ 𝑛5

2
+ 2𝑛 (3.1.114)

where 𝑛 is the number of generations and 𝑛𝑣 is the number of vector-like families. We can easily
deduce that for 𝑛 = 3, 𝑛𝑣 = 0 we get the usual beta functions of the MSSM:

{𝑏1, 𝑏2, 𝑏3} = {33
5
, 1,−3} (3.1.115)
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After inserting a vector-like pair in the low energy spectrum, we can plot the running of the
coupling constants at 1-loop level and we can, eventually, spot the unification point. After the
insertion of the parameter 𝑎 =

𝑔2

4𝜋 , we get

𝑎−1
𝑖 (𝑄) = 𝑎−1

𝑖 (𝑄0) −
𝑏𝑖

2𝜋
log( 𝑄

𝑄0
), (3.1.116)

where the effect of a vector-like singlet family in the model in the beta functions is Δ𝑏𝑀𝑆𝑆𝑀𝑖 =

{1, 1, 1}. There are two energy regions: from 0 < 𝜇 < 𝑀𝑍 , we run the beta functions of the SM,
from𝑀𝑍 < 𝜇 < 𝑀𝐸𝑐 we run the MSSM plus the vector like particles and finally we run the flipped
𝑆𝑈 (5) till a unification point. Plotting the running parameters of the model, we can see in the
following plot that the unification scale is about𝑀𝐺𝑈𝑇 ∼ 1017 GeV.
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The unification scale is at𝑀𝑈 � 1017GeV, where the couplings constants are

𝛼−1
1 (𝑀𝑍 ) = 59.38, 𝛼−1

2 (𝑀𝑍 ) = 29.74, 𝛼−1
3 (𝑀𝑍 ) = 8.44, 𝛼−1

𝑈 = 22.5 (3.1.117)

As for the Yukawa couplings, we only consider the third generation (where the for the top, bottom
quarks and the 𝜏 lepton are denoted as ℎ𝑡 , ℎ𝑏, ℎ𝜏 respectively) and the mixing effects of the abelian
𝑈 (1) symmetries ,during the evolution down to the low energy values, are being neglected. For
the computation, the Mathematica code SARAH-4.15.0 [245] was used and the following plot
depicts with thick lines the running of the spectrumwith the vector-like family, where the dashed
line contains the same information without the additional particles. During the computation, we
have taken into account that the largest correction due to loops of sparticles is affecting the
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bottom Yukawa coupling as:

𝛿ℎ𝑏 �
𝑔2

3
12𝜋2

𝜇𝑚𝑔 tan 𝛽
𝑚2
𝑏

+
ℎ2
𝑡

32𝜋2
𝜇𝐴𝑡 tan 𝛽
𝑚2
𝑡

, (3.1.118)

where𝑚𝑏 =
𝑚𝑏1+𝑚𝑏2

2 , 𝑚𝑡 =
𝑚𝑡1+𝑚𝑡2

2 are the average masses of the top and bottom squark. Con-
sequently, we could safely extract the conclusion that even at high energies, Yukawa couplings
stay under control at a perturbative regime (Fig. 3.9).
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Figure 3.9: Yukawa evolution for the following parameters SUSY parameters 𝑚𝑔 = 2 TeV, 𝜇 =

0.5 TeV, tan 𝛽 = 58,mt = 3 TeV, ht(0) = 0.94, hb(0) = 0.8, h𝜏 (0) = 0.48. The dashed lines are the Yukawa
without the vector like families where they deviate for tan 𝛽 > 50 as expected. The thick lines present the
Yukawa couplings evolution with the insertion of a vector like family.

3.2 Modular Family Symmetry from the Bottom-up

3.2.1 Geometric origin of discrete finite modular symmetries

We now discuss how the finite modular symmetry can arise in F-Theory constructions. We first
revisit Type IIB (the perturbative limit of F-Theory) vacua with discrete finite modular symmetry
and explicitly obtain an 𝑆4 invariant vacuum. We then turn to F-Theory, which inherits the S-
duality from Type IIB, to identify the axio-dilaton modular symmetry, which endows the matter
Yukawa couplings with modular symmetry transformation properties. Finally, we present our
conjecture that F-Theory matter curves can carry a geometric modular symmetry, which will
manifest itself in the Yukawa couplings, endowing F-Theory fluxed GUTs with a discrete modular
family symmetry.
We now discuss the origins of finite modular symmetries in Type IIB string theory. To this effect,
we will study, expanding on [189] Type IIB orientifold compactifications, where one can stabilise
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the moduli in a vacuum that is invariant to finite modular symmetries. The starting point is Type
IIB, which exhibits an explicit modular invariance for the axio-dilaton irrespective of the details
of the compact space. Upon choosing a factorisable toroidal orientifold for the compactification,
𝑇 6/Z2 = (𝑇 2

1 × 𝑇 2
2 × 𝑇 2

3 )/Z2 the theory will also manifest the modular invariance associated
with the complex structure moduli of each of the tori, in other words we will have 𝑆𝐿(2,Z)𝜏 ⊗
(⊗3

𝑖=1𝑆𝐿(2,Z)𝑖) before the complex structure moduli are stabilised by Type IIB flux configurations.
Once the fluxes acquire nonvanishing VEVs, we will show that the supersymmetry preserving
vacuum transforms non-trivially under a congruence subgroup of order 𝑁 , Γ̄(𝑁 ), of the original
modular symmetries, therefore breaking the preserved symmetry to Γ𝑁 . As mentioned, we start
with the Type IIB string theory, which is characterised by the strong-weak coupling duality (S-
duality for short) which relates the theory with string coupling 𝑔𝑠 to that with 𝑔−1

𝑠 . S-duality is
a non-perturbative symmetry based on the 𝑆𝐿(2,Z) modular group and is realised by the axio-
dilaton modulus 𝜏 whose imaginary component is identified with the inverse string coupling

𝜏 = 𝐶0 + 𝑖𝑒−𝜙 ≡ 𝐶0 + 𝑖
1
𝑔𝑠

≡ 𝐶0 + 𝑖𝑠 , (3.2.1)

where 𝜙 is the dilaton, and for convenience the definition 𝑠 = 𝑔−1
𝑠 has been introduced. The

four-dimensional (4d) effective action of the string moduli is described by the Kähler potential
and the superpotential, both dependent on the complex structure moduli. The Kähler potential
is parametrised in terms of the moduli and the axio-dilaton

𝐾 = − ln(−𝑖 (𝜏 − 𝜏)) − 2 ln(V) − 2 ln
(
𝑒−

3
2𝜙

∫
𝐽 ∧ 𝐽 ∧ 𝐽

)
, (3.2.2)

where 𝜙 is the dilaton, 𝜏 is the axio-dilaton defined in (3.2.1),V is the volume of the compactified
space, and 𝐽 its Kähler form 𝑑 𝐽 = 0 which depends on the complex coordinates 𝑧𝑖 and 𝑔𝑖 𝑗 the
Kähler metric, and in its most general form is given by

𝐽 = 𝑖𝑔𝑖 𝑗𝑑𝑧
𝑖 ∧ 𝑑𝑧 𝑗 .

The superpotential for the moduli fields is given by the standard Gukov-Vafa-Witten formula

𝑊 =

∫
𝐺3 ∧ Ω, (3.2.3)

133



where the three form flux 𝐺3 and the holomorphic three form Ω are given by:

𝐺3 = 𝐹3 − 𝜏𝐻3 (3.2.4)

Ω = 𝑑𝑧1 ∧ 𝑑𝑧2 ∧ 𝑑𝑧3 . (3.2.5)

Finally, for the toroidal case we define 𝑧𝑖 = 𝑥𝑖 + 𝜏𝑖𝑦𝑖 so that,

𝑑𝑧𝑖 = 𝑑𝑥𝑖 + 𝜏𝑖𝑑𝑦𝑖 ,

where 𝑧𝑖 corresponds to the three complex coordinates of the compactified space, and 𝜏𝑖 are
the complex structure moduli of the orientifold. In general, the complex structure moduli form
a matrix, 𝜏𝑖 𝑗 , parameterising the 3-cycles of the compactification, but here we take it to be a
diagonal matrix, as we will be considering factorisable toroidal orientifolds.

Let now the basis for 3-forms be (𝛼𝑖, 𝛽 𝑗 )

𝛼0 = 𝑑𝑥
1 ∧ 𝑑𝑥2 ∧ 𝑑𝑥3, 𝛼𝑖 =

1
2
𝜖𝑖𝑙𝑚 𝑑𝑥

𝑙 ∧ 𝑑𝑥𝑚 ∧ 𝑑𝑦𝑖

𝛽0 = 𝑑𝑦1 ∧ 𝑑𝑦2 ∧ 𝑑𝑦3, 𝛽𝑖 = −1
2
𝜖𝑖𝑙𝑚𝑑𝑦

𝑙 ∧ 𝑑𝑦𝑚 ∧ 𝑑𝑥𝑖 , (3.2.6)

where we notice that there is no sum in 𝑖 = 1, 2, 3, and we have∫
𝛼𝑖 ∧ 𝛽 𝑗 = 𝛿 𝑗𝑖 , (3.2.7)

where the integral is over the compact space. The 3-form field strengths are expanded in terms
of the basis as

𝐹3 =𝑚
0𝛼0 +𝑚𝑖𝛼𝑖 + 𝑛𝑖𝛽𝑖 + 𝑛0𝛽

0

𝐻3 = 𝑝
0𝛼0 + 𝑝𝑖𝛼𝑖 + 𝑞𝑖𝛽𝑖 + 𝑞0𝛽

0 , (3.2.8)

where𝑚, 𝑛, 𝑝 , and 𝑞 are quantised flux components, and are therefore integer valued. In fact, in
the absence of exotic O3-planes, these are all even integers. The 3-form fluxes induce a D3-brane
charge which has to fulfill a tadpole cancellation condition

𝑁𝐷3 +
1
2
𝑁flux =

1
4
𝑁𝑂3 , (3.2.9)

where 𝑁𝐷3 is the number of D3-branes, 𝑁𝑂3 the number of O3-planes to be set by the details of
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the compactified space, and

𝑁flux =

∫
𝐻3 ∧ 𝐹3 , (3.2.10)

which can be explicitly evaluated to obtain

𝑝0𝑛0 − 𝑞0𝑚
0 +

∑︁
𝑖

(𝑝𝑖𝑛𝑖 − 𝑞𝑖𝑚𝑖) = 2
(
1
4
𝑁𝑂3 − 𝑁𝐷3

)
. (3.2.11)

The most general form of the superpotential for the moduli fields in the basis presented above is
then

𝑊 = (𝑚0 − 𝜏𝑝0) (Π 𝑗𝜏 𝑗 ) − (𝑚𝑖 − 𝜏𝑝𝑖) (Π 𝑗≠𝑖𝜏 𝑗 ) − (𝑛𝑖 − 𝜏𝑞𝑖)𝜏𝑖 − (𝑛0 − 𝜏𝑞0)
= 𝜏1𝜏3𝜏2(𝑚0 − 𝑝0𝜏) − 𝜏3𝜏2(𝑚1 − 𝑝1𝜏) − 𝜏1𝜏3(𝑚2 − 𝑝2𝜏) − 𝜏1𝜏2(𝑚3 − 𝑝3𝜏)−
− 𝜏1(𝑛1 − 𝜏𝑞1) − 𝜏2(𝑛2 − 𝜏𝑞2) − 𝜏3(𝑛3 − 𝜏𝑞3) − (𝑛0 − 𝜏𝑞0) . (3.2.12)

The non-vanishing flux components will fix the moduli along flat directions, where the potential
is minimised, 𝐷𝜏𝑊 = 𝐷𝜏𝑘𝑊 = 0, without breaking supersymmetry. Along these flat directions,
the invariance of the fluxes under the modular symmetries of the axio-dilaton, 𝜏 , and the complex
structure moduli, 𝜏𝑖 , will lead to vacua which are invariant under a finite modular subgroup. To
see this, we focus on factorisable toroidal orientifold compactification𝑇 6/Z2 = (𝑇 2

1 ×𝑇 2
2 ×𝑇 2

3 )/Z2.

The Type IIB action and the superpotential, (3.2.3), are invariant under the axio-dilaton modu-
lar symmetry, 𝑆𝐿(2,Z)𝜏 , according to which the axio-dilaton and the 3-forms 𝐹3, 𝐻3 transform
as [246]

𝜏′ = 𝑅(𝜏) = 𝑎𝜏 + 𝑏
𝑐𝜏 + 𝑑 (3.2.13)

©­­«
𝐹 ′3

𝐻 ′
3

ª®®¬ =
©­­«
𝑎 𝑏

𝑐 𝑑

ª®®¬
©­­«
𝐹3

𝐻3

ª®®¬ , 𝑅 ∈ 𝑆𝐿(2,Z)𝜏 . (3.2.14)

Furthermore, since the compactified space is a factorised torus, we can identity three complex
moduli 𝜏𝑖 , where each has its own modular symmetry for vanishing fluxes. Each torus 𝑇𝑖 , is
defined as the quotient of the complex planeC/Λ𝑖 , whereΛ𝑖 is a lattice spanned by the vectors e𝑖 =
(𝑒𝑦𝑖 , 𝑒𝑥𝑖 )𝑇 = (𝜏𝑖, 1)𝑇 . One can further define 𝜉𝑖 = (𝑦𝑖, 𝑥𝑖)𝑇 where the coordinates 𝑥𝑖 ∈ [0, 1), 𝑦∈ [0, 1]
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and 𝑧𝑖 are introduced according to [247]

𝑧𝑖 = 𝜉
𝑇
𝑖 e𝑖 ≡ (𝑦𝑖, 𝑥𝑖)

©­­«
𝑒𝑦𝑖

𝑒𝑥𝑖

ª®®¬ (3.2.15)

and for (𝑒𝑦𝑖 , 𝑒𝑥𝑖 )𝑇 = (𝜏𝑖, 1)𝑇 in particular,

𝑧𝑖 = (𝑦𝑖, 𝑥𝑖)
©­­«
𝜏𝑖

1

ª®®¬ ≡ 𝑥𝑖 + 𝜏𝑖𝑦𝑖𝑧 . (3.2.16)

Under modular symmetry 𝑆𝐿(2,Z)

𝑅𝑖 =
©­­«
𝑎𝑖 𝑏𝑖

𝑐𝑖 𝑑𝑖

ª®®¬ , 𝑅𝑖 ∈ 𝑆𝐿(2,Z) (3.2.17)

the vectors e𝑖 transform according to

e′𝑖 = 𝑅𝑖e𝑖 . (3.2.18)

Both vectors, e′ and e𝑖 , span the same lattice, and, since 𝑅𝑖𝑅−1
𝑖 = 𝐼 ,

𝑧 = (𝑦𝑖, 𝑥𝑖)𝑅𝑖𝑅−1
𝑖

©­­«
𝑒𝑦𝑖

𝑒𝑥𝑖

ª®®¬ = 𝑒′𝑥𝑖 (𝑥
′
𝑖 + 𝜏′𝑖𝑦′𝑖 ),

where the modulus 𝜏𝑖 describes the shape of the torus transforms as

𝜏𝑖 =
𝑒𝑦𝑖

𝑒𝑥𝑖
↦→ 𝜏′𝑖 =

𝑒′𝑦𝑖
𝑒′𝑥𝑖

=
𝑎𝑖𝜏𝑖 + 𝑏𝑖
𝑐𝑖𝜏𝑖 + 𝑑𝑖

. (3.2.19)

Thus, we recover the modular symmetry transformation presented in the previous section. This
transformation also affects the real coordinates

𝑧𝑖 = (𝑦𝑖, 𝑥𝑖)e𝑖 ↦→ 𝑧′𝑖 = (𝑦′𝑖 , 𝑥′𝑖 )e′𝑖 = (𝑦′𝑖 , 𝑥′𝑖 )𝑅𝑖e𝑖 , (3.2.20)
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therefore, modular invariance implies that (𝑦𝑖, 𝑥𝑖) transform under 𝑆𝐿(2,Z)𝑖 as

©­­«
𝑦′𝑖

𝑥′𝑖

ª®®¬ = (𝑅−1
𝑖 )𝑇

©­­«
𝑦𝑖

𝑥𝑖

ª®®¬ . (3.2.21)

For the remaining of the analysis, it is useful to consider the transformation properties of the
1-forms. Thus, for the torus 𝑇 2

𝑖 , according to the above reasoning, we have [247]

𝜔 = 𝜔𝑙𝑑𝜉
𝑙
𝑖 , 𝑑𝜉

𝑘
𝑖 =

©­­«
𝑑𝑦𝑘𝑖

𝑑𝑥𝑘𝑖

ª®®¬ , 𝜔′
𝑘
= 𝑅𝑘𝑙𝜔𝑙 . (3.2.22)

As can be readily checked, an immediate consequence of the above setup is that the holomorphic
3-form Ω, defined in (3.2.5), transforms as

Ω ↦→ Ω

Π3
𝑖=1(𝑐𝑖𝜏𝑖 + 𝑑𝑖)

. (3.2.23)

Furthermore, for a factorisable orientifold, in the large volume limit, the last term of the Kähler
potential, (3.2.2), takes the explicit form

−2 ln
(
𝑒−

3
2𝜙

∫
𝐽 ∧ 𝐽 ∧ 𝐽

)
= − ln (𝑖 (𝜏1 − 𝜏1) (𝜏2 − 𝜏2) (𝜏3 − 𝜏3)) , (3.2.24)

and under ⊗3
𝑖=1𝑆𝐿(2,Z)𝑖 transforms as

− ln (𝑖 (𝜏1 − 𝜏1) (𝜏2 − 𝜏2) (𝜏3 − 𝜏3)) ↦→ − ln (𝑖 (𝜏1 − 𝜏1) (𝜏2 − 𝜏2) (𝜏3 − 𝜏3))
+ ln

(
Π3
𝑖=1 |𝑐𝑖𝜏𝑖 + 𝑑𝑖 |2

)
, (3.2.25)

where we notice that the extra term cancels exactly the factor from (3.2.23) in the supergravity
action, which implies that 𝐺3 needs to be invariant under the tori modular symmetries. There-
fore, under the axio-dilaton and the three tori modular symmetries, both 3-forms 𝐻3, 𝐹3, and the
real coordinates pairs (𝑥𝑖, 𝑦𝑖) on which the 3-form basis is defined transform non-trivially, while
𝐺3 itself remains invariant under the tori modular symmetries. This will imprint non-trivial con-
straints on the flux data. Furthermore, along flat directions of the superpotential, the flux data
allowed by modular invariance will fix the moduli. To see this, we first introduce the following
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configuration for the fluxes

𝑝3 = −𝑓𝑚0, 𝑞1 = 𝑓𝑚
2, 𝑞2 = 𝑓𝑚

1, 𝑞0 = 𝑓 𝑛3, (3.2.26)

where 𝑓 is an integer. For this set of fluxes, the superpotential is given by

𝑊 = (𝑓 𝜏 − 𝜏3)
(
𝜏1

(
𝑚2 −𝑚0𝜏2

)
+𝑚1𝜏2 + 𝑛3

)
. (3.2.27)

Using the definition (3.2.22), the 3-forms can now be written as [247]

𝐹3 = 𝐴𝑖 𝑗𝑑𝜉
𝑖
1 ∧ 𝑑𝜉

𝑗

2 ∧ 𝑑𝑥3 , (3.2.28)

𝐻3 = 𝐵𝑖 𝑗𝑑𝜉
𝑖
1 ∧ 𝑑𝜉

𝑗

2 ∧ 𝑑𝑦3 , (3.2.29)

where 𝐵𝑖 𝑗 = −𝑓 𝐴𝑖 𝑗 with

𝐴 =
©­­«
−𝑛3 𝑚1

𝑚2 𝑚0

ª®®¬ . (3.2.30)

Under the transformation of themodular symmetries associatedwith the tori 𝑖 = 1, 2, i.e. 𝑆𝐿(2,Z)1×
𝑆𝐿(2,Z)2, the 3-forms 𝐹3, 𝐻3 transform as

𝐹3 ↦→ (𝑅−1
1 𝐴(𝑅−1

2 )𝑇 )𝑖 𝑗𝑑𝜉𝑖1 ∧ 𝑑𝜉
𝑗

2 ∧ 𝑑𝑥3 (3.2.31)

𝐻3 ↦→ (𝑅−1
1 𝐴(𝑅−1

2 )𝑇 )𝑖 𝑗𝑑𝜉𝑖1 ∧ 𝑑𝜉
𝑗

2 ∧ 𝑑𝑥3 , (3.2.32)

and in order for 𝐺3 to remain invariant the following relation must hold true

𝑅−1
1 𝐴(𝑅−1

2 )𝑇 = 𝐴 . (3.2.33)

This imposes non-trivial constraints on the values of the flux data. We now consider the super-
potential in (3.2.27) and its flat supersymmetric directions, 𝜕𝜏𝑊 = 𝜕𝜏𝑖𝑊 =𝑊 = 0, which yield

𝜏3 = 𝑓 𝜏 (3.2.34)

𝜏1 =
−𝑛3 −𝑚1𝜏2

𝑚2 −𝑚0𝜏2
. (3.2.35)

From (3.2.34), we see that for 𝑓 = 1 the axio-dilaton 𝜏 and the complex structure 𝜏3 are identified,
𝜏 = 𝜏3. This implies that the diagonal 𝑆𝐿(2,Z) ⊂ 𝑆𝐿(2,Z)𝜏 × 𝑆𝐿(2,Z)𝜏3 remains unbroken by the

138



vacuum

𝜏′3 = 𝑅3(𝜏3) = 𝑅(𝜏) = 𝜏′ , (3.2.36)

and therefore we have 𝑅 = 𝑅3, effectively connecting the axio-dilaton modular symmetry with
that of the torus𝑇 2

3 . We now focus on the symmetries associated with the tori with labels 𝑖 = 1, 2.
Following the above discussion, we first solve (3.2.33) with respect to 𝑅2

𝑅2 = 𝐴
𝑇 (𝑅−1

1 )𝑇 (𝐴−1)𝑇 . (3.2.37)

Next from (3.2.30) we have

𝐴𝑇 =
©­­«
−𝑛3 𝑚2

𝑚1 𝑚0

ª®®¬ , (𝐴−1)𝑇 =
1

𝑚1𝑚2 +𝑚0𝑛3

©­­«
−𝑚0 𝑚2

𝑚1 𝑛3

ª®®¬ , (3.2.38)

from which we finally get7

𝑅2 =

©­­­­­«
𝑚1𝑚2𝑎1 +𝑚0𝑚2𝑏1 +𝑚1𝑛3𝑐1 +𝑚0𝑛3𝑑1

𝑚1𝑚2 +𝑚0𝑛3

−(𝑚2)2𝑏1 + (𝑛3)2𝑐1 +𝑚2𝑛3(𝑎1 − 𝑑1)
𝑚1𝑚2 +𝑚0𝑛3

(𝑚0)2𝑏1 − (𝑚1)2𝑐1 +𝑚0𝑚1(𝑎1 − 𝑑1)
𝑚1𝑚2 +𝑚0𝑛3

𝑚0𝑛3𝑏1 −𝑚0𝑚2𝑏1 −𝑚1𝑛3𝑐1 +𝑚1𝑚2𝑑1

𝑚1𝑚2 +𝑚0𝑛3

ª®®®®®¬
. (3.2.39)

The above result generalises that of [189], which can be reproduced in the limit (𝑛3,𝑚
0) → 0.

Furthermore, one can show that the vacuum direction set by (3.2.35) is invariant under 𝜏1 ↦→ 𝜏′1 =

𝑅1(𝜏1) and 𝜏2 ↦→ 𝜏′2 = 𝑅2(𝜏2) with 𝑅2 given by eq:R2. Being an element of 𝑆𝐿(2,Z)2, the entries of
𝑅2 are integers, and the determinant equals unity. This is not a trivial requirement, as the entries
are now parametrically defined by the entries of an 𝑅1 element and flux data. However, we can
find which congruence subgroup, Γ(𝑁 ), of 𝑆𝐿(2,Z)2 the matrix 𝑅2 belongs to. To do this, we first
consider the case where the following relations hold

𝑚1 = −2𝑚0, 𝑚0 = 𝑛3, 𝑛3 = 𝑥𝑚
2 . (3.2.40)

7Here we make use of det(𝑅1) = 1 to simplify the denominator in eq:ATranspose arising from (𝑅1)−1.
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With these, 𝑅2 can be expressed as

𝑅2 =
©­­«
𝑥 (−𝑏1 + 2𝑐1 + 𝑑1𝑥) − 2𝑎1

𝑥2 − 2
𝑏1 − 𝑥 (−𝑎1 + 𝑐1𝑥 + 𝑑1)

𝑥2 − 2
4𝑐1 − 𝑥 (2𝑎1 + 𝑏1𝑥 − 2𝑑1)

𝑥2 − 2
𝑥 (𝑎1𝑥 + 𝑏1 − 2𝑐1) − 2𝑑1

𝑥2 − 2

ª®®¬ . (3.2.41)

We can now find the explicit congruence subgroup of level 𝑁 to which 𝑅2 corresponds to, once
the fluxes are fixed. To do so, we first inspect the off-diagonal terms in (3.2.41). The requirement
that 𝑅2 ∈ 𝑆𝐿(2,Z)2 readily suggests that 𝑞1 is proportional to 𝑥2 − 2 while 𝑠1 is proportional to
(𝑥2 − 2)/4. Therefore, we can identify Γ

(
4/(𝑥2 − 2)2) as the principal congruence subgroup of

𝑆𝐿(2,Z)1 of level 𝑁 = 4/(𝑥2 − 2)2. Since 𝑁 needs to be an integer, it can take only two possible
values

𝑁 =


1 , 𝑥 = −2, 0, 2

4 , 𝑥 = −1, 1
. (3.2.42)

We observe that the values 𝑥 = −2, 0, 2 lead to 𝑁 = 1, i.e., a trivial finite modular group, hence
we focus on the second solution, 𝑥2 = 1 with 𝑁 = 4. In this case, (3.2.41) takes the form

𝑅2 =
©­­«

𝑥 (−𝑏1+2𝑐1+𝑑1𝑥)−2𝑎1
𝑥2−2 𝑏1 − 𝑥 (𝑎1 + 𝑐1𝑥 + 𝑑1)

𝑐1 − 1
4𝑥 (2𝑎1 + 𝑏1𝑥 − 2𝑑1) 𝑥 (𝑎1𝑥+𝑏1−2𝑐1)−2𝑑1

𝑥2−2

ª®®¬ . (3.2.43)

Additionally, if 𝑅1 ∈ Γ
(
4/(𝑥2 − 2)2) , we have

𝑏1 = 𝑐1 = 0 mod 4/(𝑥2 − 2)2 (3.2.44)

𝑎1 = 𝑑1 = 1 mod 4/(𝑥2 − 2)2 , (3.2.45)

which leads to

𝑅2 mod 4/(𝑥2 − 2)2 =
©­­«
1 0

0 1

ª®®¬ mod 4/(𝑥2 − 2)2 , (3.2.46)

regardless of the sign of 𝑥 . Therefore, we have encountered the principal congruence subgroup
of level 𝑁 = 4/(𝑥2 − 2)2 = 4 of the homogeneous modular groups associated with the moduli
with labels 𝑖 = 1, 2, which will lead to a finite modular group Γ4 ≃ Γ̄/Γ̄(4) ≃ 𝑆4. An explicit choice
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of fluxes that produces a vacuum that breaks the full modular group to Γ4 is

{𝑚1 = −4, 𝑚2 = 2, 𝑚0 = 2, 𝑛3 = 2} , (3.2.47)

which produces the total flux, c.f. (3.2.11), 𝑁flux = 8. To check if this is a valid Type IIB solution,
we first notice that the factorisable toroidal orientifold 𝑇 6/Z2 = (𝑇 2

1 × 𝑇 2
2 × 𝑇 2

3 )/Z2 has 64 fixed
points, each associated with an O3-plane. To preserve N = 1 SUSY in 4d, there cannot be anti-
D3-branes, for which 𝑁𝐷3 ≥ 0. Therefore, 𝑁flux = 8 is consistent with the tadpole cancellation
condition eq:tadpole

𝑁flux = 2
(
1
4
𝑁𝑂3 − 𝑁𝐷3

)
= 2(16 − 𝑁𝐷3) ≤ 32 . (3.2.48)

In summary, in this section, we have derived the supersymmetric conditions on the fluxes of
the moduli superpotential which predict an 𝑆4 finite modular group from Type IIB orientifold
compactification. However, this result pertains only to the Type IIB supergravity action and does
not include matter fields and their interactions. To address this, we now move towards F-Theory
constructions.

3.2.2 The axio-dilaton in Type IIB and F-Theory

The axio-dilaton is related to the string coupling 𝑔𝑠 as 𝜏 = 𝐶0+𝑖/𝑔𝑠 . In Type IIB (and its geometric
counterpart, F-Theory which inherits S-duality from Type IIB) the Yukawa coupling is expected
to depend on the string coupling 𝑔𝑠 as

𝜆(𝑔𝑠, 𝑧𝑖) = 𝑔𝛼𝑠 𝜆(𝑧𝑖) , (3.2.49)

but it is also expected to depend on the complex structure moduli through 𝑧𝑖 = 𝑥𝑖 + 𝜏𝑖𝑦𝑖 , and
possible flux parameters. These moduli fields will each transform under their respective 𝑆𝐿(2,Z)
symmetries. In this subsection we shall be concerned with the axio-dilaton which is common to
both Type IIB and F-Theory.

The Yukawa coupling 𝜆 will then be transformed under the 𝑆𝐿(2,Z)𝜏 , modular group associated
with the axio-dilaton. From (3.2.1)

𝜏 − 𝜏 = 2𝑖𝑠 → Im𝜏 ≡ 𝑠 = 𝜏 − 𝜏
2𝑖

=
1
𝑔𝑠
, (3.2.50)
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and therefore

1
𝑔𝑠

≡ Im𝜏 → Im𝜏′ =
𝑎𝑑 − 𝑏𝑐
|𝑐𝜏 + 𝑑 |2 Im𝜏 =

1
|𝑐𝜏 + 𝑑 |2 Im𝜏 ≡ 1

|𝑐𝜏 + 𝑑 |2
1
𝑔𝑠
, (3.2.51)

where the fact that 𝑎𝑑 − 𝑏𝑐 = 1 has been utilised. Hence, for an arbitrary power of 𝑔𝑠 , we have

𝛾𝑔−𝛼𝑠 =
𝑔−𝛼𝑠

|𝑐𝜏 + 𝑑 |2𝛼 . (3.2.52)

Focusing on 𝛼 = 1, for the 𝑇 generator we have 𝑎 = 𝑏 = 1, 𝑐 = 0, 𝑑 = 1, and hence

𝜏 → 𝜏 + 1 : 𝐶0 → 𝐶0 + 1, 𝑠 → 𝑠 . (3.2.53)

On the other hand, for the 𝑆 generator we take 𝑎 = 0, 𝑏 = 1, 𝑐 = −1, 𝑑 = 0, and so the denominator
in (3.2.52) becomes

|𝑐𝜏 + 𝑑 |2 = 𝜏𝜏 = 𝐶2
0 + 𝑠2 , (3.2.54)

and therefore the transformation acquires a specific structure given only in terms of the axion𝐶0

and the inverse string coupling 𝑔−1
𝑠 = 𝑠

𝜏 → −1
𝜏

: 𝐶0 → − 𝐶0

𝐶2
0 + 𝑠2 , 𝑠 →

𝑠

𝐶2
0 + 𝑠2 . (3.2.55)

This case is known as strong-weak duality or S-duality since it transforms the string coupling 𝑔𝑠
to its inverse 𝑔−1

𝑠 . Recall now that the axio-dilaton part of the tree-level Kähler potential is

𝐾 = − log(−𝑖 (𝜏 − 𝜏)) + · · · = − log
(
𝜏 − 𝜏

2𝑖

)
− log(2) + · · · = − log(𝑠) + · · · , (3.2.56)

so that the 𝑆𝐿(2,Z)𝜏 transformation implies that − log(𝑠) → − log 𝑠
|𝑐𝜏+𝑑 |2 and thus the exponential

𝑒𝐾 transforms as
𝑒𝐾 → |𝑐𝜏 + 𝑑 |2𝑒𝐾 . (3.2.57)

On the other hand, the gravitino mass is

𝑚2
3/2 = 𝑒

𝐾 |𝑊 |2 , (3.2.58)

and since it must stay invariant we must have

𝑊 → 𝑊

𝑐𝜏 + 𝑑 ⇒ |𝑊 |2 → |𝑊 |2
|𝑐𝜏 + 𝑑 |2 . (3.2.59)
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It is now apparent that if S-duality is to be maintained by the perturbative superpotential Yukawa
couplings [248], then the fields must have transformation properties with respect to it. A generic
trilinear term with a tree-level Yukawa coupling of MSSM fields has the form

𝑊 ⊃ 𝜆𝑖 𝑗 (𝑔𝑠) 𝑓𝑖 𝑓 𝑗ℎ . (3.2.60)

In the simplest context, the Yukawa coupling could simply be taken 𝜆𝑖 𝑗 (𝑔𝑠) → 𝜆𝑖 𝑗 (𝑧𝑘)𝑔−1/2
𝑠 where

the parameters 𝜆𝑖 𝑗 (𝑧𝑘) may depend on other moduli fields. Then, the 𝜏 → −1/𝜏 transformation
discussed above entails

𝜆 ∝ 𝑔−1/2
𝑠

𝜏→− 1
𝜏−−−−−→ 𝑔

−1/2
𝑠

|𝐶2
0 + 𝑔−2

𝑠 |1/2 , (3.2.61)

which matches exactly the transformation property of the tree-level superpotential𝑊 w.r.t. axio-
dilaton 𝜏 . In a more general context, as we will see, the dependence of the Yukawa couplings
on moduli fields is more involved and non-zero modular weights for the matter fields 𝑓𝑖, 𝑓 𝑗 , ℎ
should also be considered. Furthermore, the Yukawa couplings, which are 3 × 3 matrices in
the flavour space, could transform non-trivially under the congruence group left over from the
supersymmetric conditions imposed on fluxes of the moduli superpotential part. The specific
choice of fluxes of the previous section indicates that the underlying flavour symmetry governing
the Yukawa lagangian is Γ4 ≃ Γ/Γ̄(4) ≃ 𝑆4 with Yukawa matrices being certain modular forms
which belong to specific representations of the 𝑆4 group. Additional restrictions are expected
to be derived from the geometric structure of the compactification manifold to further suggest
a specific implementation of the above scenario. In the following, we continue with F-Theory,
where some of these hints become more transparent.

3.2.3 Yukawa Couplings and Fermion Mass Matrices in F-Theory

We now turn our attention to the Yukawa couplings in F-Theory. Our starting point is an effective
F-Theory GUTmodel, which is derived from an ADE-type singularity with the world-volume of a
7-brane that wraps the space 𝑅3,1 × 𝑆 with 𝑆 being a Kähler manifold of two complex dimensions
𝑧1, 𝑧2. At low energies, F-Theory is described by an eight-dimensional YM theory on 𝑅3,1 × S
which must be topologically twisted to preserve 𝑁 = 1 supersymmetry.
The compactification space is a fibred eight-dimensional space (CY fourfold𝐶𝑌4) where the fibre
over the base 𝐵3 = 𝐶𝑌3 associated with the six-dimensional compact space is described by a two-
dimensional torus whose modulus is the axio-dilaton 𝜏 = 𝐶0 + 𝑖𝑒−𝜙 = 𝐶0 + 𝑖/𝑔𝑠 . Therefore, the
𝑆𝐿(2,Z)𝜏 S-duality describes the variation of the modulus 𝜏 of the 2-torus over the compactifica-
tion manifold. The geometric configuration consists of 7-branes filling the Minkowski 4D-space
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whilewrapping a 4D ‘surface’ 𝑆 – associatedwith someGUT symmetry –which is a complex Käh-
ler manifold so that supersymmetry is preserved. The four-dimensional effective F-Theory model
arises upon compactification of the eight-dimensional theory on 𝑆 . The possible GUT groups, in
particular, are associated with specific types of geometric singularities where the modulus 𝜏 ac-
quires certain values. The massless fields of the low energy spectrum reside on Riemann surfaces,
called matter curves, formed by 7-branes intersecting the GUT surface, while Yukawa couplings
are formed at specific points where triple intersections of matter curves occur. 8

Within this framework, the corresponding gauge theory is that of the eight-dimensional 𝑁 = 1
supersymmetric YM theory with minimal field content. The bosonic spectrum, in particular,
includes the gauge field 𝐴 and a holomorphic two-form scalar Φ. Both fields are found in the
adjoint representation and descend from the decomposition of the 10-dimensional gauge fieldA.
Since 7-branes are wrapped on a curved 𝑅 (3,1)×𝑆 space, unbrokenN = 1 supersymmetry requires
Φ to be a holomorphic (2,0)-form as a result of the topological twisting [249]. 9The superpotential
𝑊8𝑑 of the eight-dimensional fields and an associated D-term take the form

𝑊8𝑑 =𝑚
4
∗

∫
𝑆

Tr(𝐹 ∧ Φ), 𝐷 =

∫
𝑆

𝜔 ∧ 𝐹 + 1
2
[Φ, Φ̄] , (3.2.62)

where 𝐹 = 𝑑𝐴 − 𝑖𝐴 ∧𝐴 and 𝜔 = 𝑖𝑔/2(𝑑𝑧1 ∧ 𝑑𝑧1 + 𝑑𝑧2 ∧ 𝑑𝑧2) is the Kähler form on 𝑆 .
The eight-dimensional fields can be organised as one N = 1 vector multiplet, V, and two N = 1
chiral supermultiplets, A𝑚̄ and Φ𝑚𝑛 ,

V = (𝐴𝜇, 𝜂𝛼 ,D) (3.2.63)

A𝑚̄ = (𝐴𝑚̄,𝜓𝛼𝑚̄,G𝑚̄)) (3.2.64)

Φ𝑚𝑛 = (𝜑𝑚𝑛, 𝜒𝛼𝑚𝑛,H𝑚𝑛) , (3.2.65)

where G𝑚̄,H𝑚̄𝑛 are 𝐹 -term components, and D represents the 𝐷-term, whilst, 𝜂 ¤𝛼 ,𝜓𝛼𝑚̄, 𝜒
¤𝛼
𝑚𝑛 are

the fermionic components, which, in the twisted YM theory are associated with a zero, one- and
two-form respectively [251],

𝜂 ¤𝛼 , 𝜓𝛼 = 𝜓𝛼𝑚̄𝑑𝑧
𝑚̄, 𝜒 ¤𝛼 = 𝜒 ¤𝛼

𝑚̄𝑛𝑑𝑧
𝑚̄ ∧ 𝑑𝑧𝑛 .

8Equivalently, the torus over 𝐵3 can be described by the Weierstraśs equation𝑦2 = 𝑥3 + 𝑓 (𝑧)𝑥2 +𝑔(𝑧), where 𝑧 is a
coordinate of the complex projective space𝐶𝑃1 (Riemann sphere). Then 𝜏 = 𝜏 (𝑧) = 𝐶0 (𝑧) + 𝑖𝑒−𝜙 (𝑧 ) and singularities
occur at Δ(𝑧𝑖 ) = 0. The torus is associated with the invariant 𝑗 (𝜏 (𝑧)), which, together with the vanishing of Δ
determines 𝜏 ∼ 1

2𝜋𝑖 log(𝑧 − 𝑧𝑖 ). Hence, for given 𝑧, 𝜏 is fixed. Also, going around the singularity, there is a shift to
the real part of the modulus 𝐶0 → 𝐶0 + 1 that corresponds to 𝜏 → 𝜏 + 1 of 𝑆𝐿(2,Z)𝜏 .

9Within such an F-Theory framework it is well known that there are many complex structure moduli, associated
with the positions of the 7-branes. The positions of the 7-branes are determined by tuning the complex structure
moduli and can produce additional structure in the elliptic fibration [250].

144



The indices𝑚,𝑛 take the values 1,2, the complex scalars𝐴𝑚̄, 𝜑𝑚𝑛 have dimensions of mass𝑀 and
G,H ,D of squared mass𝑀2.
To preserve the supersymmetric vacuum, all variations of the eight-dimensional fields must van-
ish. In the context of the four-dimensional theory, this corresponds to imposing the F- and D-
flantess of the superpotential. Minimising the superpotential (3.2.62) and imposing D-flatness,
one arrives at the following equations

𝜕𝐴Φ = 0 (3.2.66)

𝐹 (2,0) = 0 (3.2.67)

𝜔 ∧ 𝐹 + 1
2
[Φ†,Φ] = 0 . (3.2.68)

The above equations have long been derived in reference [249] and are the basic ingredients for
studying the properties of fields in generic 7-brane configurations. Here, we are interested in
solutions for massless fields residing on 7-brane configurations. The equations can be solved by
expanding the fields 𝐴,Φ assuming linear fluctuations around the background:

𝐴𝑚̄ → ⟨𝐴𝑚̄⟩ + 𝑎𝑚̄, Φ → ⟨Φ⟩ + 𝜑 , (3.2.69)

with the definitions

𝑎 = 𝑎𝑧1𝑑𝑧1 + 𝑎𝑧2𝑑𝑧2, 𝜑 = 𝜑𝑧1𝑧2𝑑𝑧1 ∧ 𝑑𝑧2 . (3.2.70)

Then, keeping only linear terms regarding the fluctuations 𝜑, 𝑎, in the holomorphic gauge the
EoM take the form

𝜕⟨𝐴⟩𝑎 = 0 (3.2.71)

𝜕⟨𝐴⟩𝜑 − 𝑖 [𝑎, ⟨Φ̄⟩] = 0 (3.2.72)

𝜔 ∧ 𝜕⟨𝐴⟩𝑎 −
1
2
[⟨Φ̄⟩, 𝜑] = 0 . (3.2.73)

Substituting the expansions of the fields into (3.2.62) it is found that the holomorphic trilinear
Yukawa coupling is written in terms of 𝜙 and 𝑎 as follows

𝑊Yuk = −𝑖𝑚4
∗

∫
𝑆

Tr(𝜑 ∧ 𝑎 ∧ 𝑎) , (3.2.74)

where𝑚∗ is the scale associated with the supergravity limit of F-Theory.
The fluctuations𝜑 and 𝑎 can be determined by solving the equations (3.2.71-3.2.73) for a variety of
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diagonal or non-diagonal backgrounds [48; 193], the latter being known as T-branes [193]. They
are associated with the zero-modes residing on the matter curves and when three of the latter
define triple intersection a Yukawa coupling is formed. Depending on the details of the model, it
is often the case that multiple zero-modes are accommodated on the same matter curve.
It can be shown that the general form of the solution for zero modes localised on a specific matter
curve, say 𝑧2 , takes the generic form

𝜑 = 𝑅𝑎𝜒𝑎 = 𝑅𝑎 𝑓 (𝑧2)𝑔(𝑧1, 𝑧1, 𝑞)𝑒−
√
𝑀4

𝑧1+𝑚4𝑧1𝑧1𝑒
±2𝑀2

𝑧2𝑧2𝑧2 , (3.2.75)

where𝑀𝑧𝑖 appear when fluxes are also introduced 10. It can be observed that locally the solution
is described by a Gaussian profile, with its peak along the matter curve and waning out along the
transverse direction 𝑧1. The function 𝑓 (𝑧2) is a holomorphic function of 𝑧2 left undetermined from
the equations of motion and 𝑅𝑎 encodes the group structure [48] associated with the background.
Analogous solutions can be written for the other intersecting matter curves in the vicinity of the
triple intersection. The integration (3.2.74) 11 is performed over the three overlapping wavefunc-
tions where all of them are peaked at the triple intersection and since they are strongly localised,
the integral can be restricted to a small region near the intersection point. At every triple in-
tersection the gauge symmetry is enhanced and generically zero-mode states are assembled into
representations of the higher symmetry. At the same time, multiple states accommodated on a
certain matter curve may be organised into representations of the underlying symmetry of the
complex structure of the matter curve.
Furthermore, assuming for example toroidal compactifications, the function 𝑓 may depend explic-
itly on the complex structure moduli of the curve, and thus it is conceivable that they may trans-
form as modular forms, as we argue in the next section. We discuss now the overall dependence
of the Yukawa coupings on the mass scales of the theory, and their relation to the axio-dilaton
modulus [253]. In string frame, the overall scale 𝑚∗ in (3.2.74), is given by 𝑚8

∗ = 𝑚8
𝑠𝑔

−2
𝑠 [253],

hence, the resulting dependence of the Yukawa coupling on 𝑔𝑠 is (see details in section 4 of [253])

𝜆 ∝ 𝑚4
∗

𝑚4
𝑠

=
1
𝑔𝑠
. (3.2.76)

The string coupling is related to the GUT scale. Indeed, let V𝑆 ∼ 𝑅4
𝑆
∼ 1/𝑚4

𝐺𝑈𝑇
be the volume

10For example, in a 𝑈 (3) model the flux assumes the form ⟨𝐹 ⟩ = −(2𝑖/3)𝑀2 (𝑧1 ∧ 𝑑𝑧1 − 𝑧2 ∧ 𝑑𝑧2)diag(1,−2, 1). In
a generic context, however, when non-Abelian T-branes are considered, a non-primitive flux is required 𝜔 ∧ 𝐹 ≠ 0
to satisfy the D-term [48]. For a comprehensive presentation, see review [252].

11In section 3 eq (3.28) of [193]- using the notion of twisted one-forms, the connection 𝜓 = 𝑎 + 𝜅̂ ∧ 𝜑, 𝜅̂ =

𝑔1𝑖𝑔2𝑗 Ω̄𝑖 𝑗𝑧𝑑𝑧 is implemented - and the Yukawa coupling receives a symmetric form. See the appendix for the relevant
computation.
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of the GUT surface and V𝐵 ∼ 𝑅6 that of the base 𝐵3 of the fibration. Compactification to four
dimensions implies 𝑀2

𝑃𝑙
≈ 𝑚8

∗V𝐵 while from the kinetic term of the field strength it follows
𝛼−1
𝐺𝑈𝑇

≈𝑚4
∗V𝑆 . Combining these relations we obtain a rough estimate

1
𝛼𝐺𝑈𝑇

∼𝑚∗
4V𝑆 =

𝑚4
∗

𝑚4
𝑠

𝑚4
𝑠

𝑚4
𝐺𝑈𝑇

=
𝑚4
𝑠

𝑚4
𝐺𝑈𝑇

1
𝑔𝑠
, (3.2.77)

Taking into account the various normalisation effects, the dependence on 𝑔𝑠 is more involved.
One finds [47; 48]

𝜆 = 𝐶 𝑎
3/4
𝐺𝑈𝑇

, (3.2.78)

where 𝐶 may depend on other moduli fields via the wavefunctions of the form (3.2.75) involved
in the triple intersections. This implies that S-duality symmetry is preserved only if the unde-
termined parts of the wavefunctions associated with the Yukawa coupling under consideration
exhibit the appropriate dependence on 𝑔𝑠 .

3.2.4 Yukawa matrices in a 𝑆𝑈 (5) × 𝑆4 model

Hitherto, we described a basic F-Theory approach to Yukawa couplings and presented a generic
solution for the EoM. From the above analysis we inferred that the Yukawa coupling inherits
group properties encoded in the matter wavefunctions. The latter depend on the complex struc-
ture moduli through holomorphic functions of the complex coordinates 𝑧𝑖 left unspecified by the
EoM. Nevertheless, from the preceding sections and more particularly from Section 3.1, we know
that the fluxed superpotential of the moduli fields is subject to modular restrictions. Therefore,
if the Yukawa sector for the ordinary matter of the superpotential is required to retain the same
modular symmetry or a subgroup thereof, its origin is expected to come from the yet unspecified
part of that solution. We are then given the opportunity to consider the wavefunctions trans-
formed as modular forms. For example,

𝑓 (𝜏𝑖) → (𝑐𝜏𝑖 + 𝑑)−𝑘𝑖 𝑓 (𝜏𝑖) , (3.2.79)

where 𝜏𝑖 is a complex structure modulus associated with the complex coordinate 𝑧𝑖 . Addition-
ally, the holomorphic Yukawa coupling, being formed at the intersection of three matter curves,
would be naturally transformed in a non-trivial representation of the congruence subgroup of the
modular group. To illustrate the main idea of the bottom-up approach to F-Theory fluxed GUTs
with modular symmetry, we give a simple example of an 𝑆𝑈 (5) GUT embedded in 𝐸6 which has
been derived in an F-Theory framework [254]. The novel feature of this example is the inclusion
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of an 𝑆4 finite modular family symmetry. As has already been pointed out, in this context matter
fields reside on curves which are formed at the intersections of 7-branes with the GUT surface
𝑆 , itself wrapped with 7-branes. We consider a divisor with an 𝐸6 geometric singularity which,
according to the F-Theory prescription, corresponds to an 𝐸6 gauge symmetry of the effective
theory. In the present setup, there are three matter curves accommodating three 27𝑡 ′

𝑖
represen-

tations of 𝐸6. These are distinguished from each other by the weights 𝑡 ′𝑖 of the 𝑆𝑈 (3) Cartan
sublagebra (𝑡 ′1 + 𝑡 ′2 + 𝑡 ′3 = 0). We impose a Z2 monodromy 𝑡 ′1 ↔ 𝑡 ′2, and hence only two distinct
matter curves remain, e.g. Σ27𝑡 ′1,3

, and use 𝑈 (1) fluxes to reduce the gauge symmetry down to
𝑆𝑈 (5). Alternatively, one may derive this model starting from the maximum admissible (well
behaved) singularity that corresponds to a 𝐸8 gauge symmetry subsequently decomposed to

𝐸8 ⊃ 𝑆𝑈 (5) × 𝑆𝑈 (5)⊥ ⊃ 𝑆𝑈 (5) ×𝑈 (1)4
𝑡𝑖
,

5∑︁
𝑖=1

𝑡𝑖 = 0 , (3.2.80)

where now 𝑡𝑖 correspond to the Cartan subalgebra of 𝑆𝑈 (5)⊥. The 𝐸6 and 𝑆𝑈 (5)×𝑆𝑈 (5)⊥ proper-
ties of the matter and Higgs multiplets are given in Table 3.8. Due to the aforementioned restric-
tions on 𝑡 ′𝑖 and the monodromy imposed, the only allowed trilinear 𝐸6 term in the superpotential
is𝑊 ⊃ 27𝑡 ′127𝑡 ′127𝑡 ′3 . We then assign the fermion supermultiplets to 27𝑡 ′1 and the Higgs fields to
27𝑡 ′3 .

We break the 𝑆𝑈 (5) gauge symmetry by turning on a flux along 𝑈 (1)𝑌 ∈ 𝑆𝑈 (5), which also
splits the 10 and 5̄ representations of 𝑆𝑈 (5). However, anomaly cancellation conditions impose
constraints on the multiplicities of the latter which are as follows:

𝑀10𝑀 = 𝑀51 = −𝑀52 = −𝑀53, 𝑀102 = −𝑀54 = −𝑀55 = 𝑀5𝐻𝑢 . (3.2.81)

Furthermore, to eliminate extraneous and exotic matter derived from the decomposition of the
78-dimensional representation, we impose the conditions

𝑀103 = 𝑀104 = 𝑀56 = 𝑁8 = 𝑁9 = 0, (3.2.82)

These imply that [254]

𝑁̃ ≡ 𝑁7 . (3.2.83)

The SM zero mode states derived from the complete 27𝑡 ′
𝑖
representations after various successive

symmetry-breaking stages with the 𝑈 (1) fluxes shown in the last column of Table 3.9. Their
multiplicities are expressed in terms of the flux integers which have remained undetermined by
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𝐸6 𝑆𝑂 (10) 𝑆𝑈 (5) Weight
27𝑡 ′1 16 53 𝑡1 + 𝑡5
27𝑡 ′1 16 10𝑀 𝑡1

27𝑡 ′1 16 𝜃15 𝑡1 − 𝑡5
27𝑡 ′1 10 51 −𝑡1 − 𝑡3
27𝑡 ′1 10 52 𝑡1 + 𝑡4
27𝑡 ′1 1 𝜃14 𝑡1 − 𝑡4
27𝑡 ′3 16 55 𝑡3 + 𝑡5
27𝑡 ′3 16 102 𝑡3

27𝑡 ′3 16 𝜃35 𝑡3 − 𝑡5
27𝑡 ′3 10 5𝐻𝑢

−2𝑡1
27𝑡 ′3 10 54 𝑡3 + 𝑡4
27𝑡 ′3 1 𝜃34 𝑡3 − 𝑡4

Table 3.8: 𝑆𝑂 (10) and 𝑆𝑈 (5) decompositions of 27 ∈ 𝐸6. The 𝑆𝑈 (5) indices in 5𝑖 , 10𝑗 representations
designate their origin of the corresponding matter curve (Σ5𝑖 and Σ10𝑗 ), and 10𝑀 accommodates ordinary
matter fields.

the consistency conditions mentioned above.

In the present work, an explicit model is constructed by choosing the fluxes given in tab:fluxes.
This choice leads to the spectrum given in tab:f-theory-spectrum where both the down quarks
and leptons originate from 27𝑡 ′1 . As we have argued in the previous section, the states supported
on a matter curve will inherit modular symmetry properties related to the complex structure
moduli parametrising that curve. Therefore, states supported on a given curve are expected to
have the same modular weights and to furnish full representations of the discrete modular group
that survives the compactification. Imposing these modular symmetry properties in the above
representations, a version of the model presented above with non-trivial discrete modular group
𝑆4 can be written as

W = 𝛼 (𝑢𝑐1,2𝑄1,2𝑌
(4)

1 )1𝐻𝑢 + 𝛽 (𝑢𝑐1,2𝑄1,2𝑌
(4)

2 )1𝐻𝑢 + 𝛾 (𝑢𝑐3𝑄3𝑌
(4)

1 )1𝐻𝑢 + 𝛿 (𝑢𝑐1,2𝑄3𝑌
(4)

2 )1𝐻𝑢

+
(
𝛼′ (𝑑𝑐1,2𝑄1,2𝑌

(6)
1 )1𝐻𝑑 + 𝛽′ (𝑑𝑐1,2𝑄1,2𝑌

(6)
2 )1𝐻𝑑 + 𝛾 ′1 (𝑑𝑐3𝑄1,2𝑌

(8)
2,1 )1𝐻𝑑

+ 𝛾 ′ (𝑑𝑐3𝑄1,2𝑌
(8)

2,2 )1𝐻𝑑 + +𝛿′ (𝑑𝑐1,2𝑄3𝑌
(6)

2 )1𝐻𝑑 + 𝜖′ (𝑑𝑐3𝑄3𝑌
(8)

1 )1𝐻𝑑
)
𝜃31

𝑀
, (3.2.84)
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𝐸6 𝑆𝑂 (10) 𝑆𝑈 (5) Weight vector 𝑁𝑌 𝑀𝑈 (1) SM particle content
27𝑡 ′1 16 53 𝑡1 + 𝑡5 𝑁̃ −𝑀53 −𝑀53𝑑

𝑐 + (−𝑀53 + 𝑁̃ )𝐿
27𝑡 ′1 16 10𝑀 𝑡1 −𝑁̃ −𝑀53 −𝑀53𝑄 + (−𝑀53 + 𝑁̃ )𝑢𝑐 + (−𝑀53 − 𝑁̃ )𝑒𝑐

27𝑡 ′1 16 𝜃15 𝑡1 − 𝑡5 0 −𝑀53 −𝑀53𝜈
𝑐

27𝑡 ′1 10 51 −𝑡1 − 𝑡3 −𝑁̃ −𝑀53 −𝑀53𝐷 + (−𝑀53 − 𝑁̃ )𝐻𝑢
27𝑡 ′1 10 52 𝑡1 + 𝑡4 𝑁̃ −𝑀53 −𝑀53𝐷 + (−𝑀53 + 𝑁̃ )𝐻𝑑
27𝑡 ′1 1 𝜃14 𝑡1 − 𝑡4 0 −𝑀53 −𝑀53𝑆

27𝑡 ′3 16 55 𝑡3 + 𝑡5 −𝑁̃ 𝑀5𝐻𝑢 𝑀5𝐻𝑢𝑑
𝑐 + (𝑀5𝐻𝑢 − 𝑁̃ )𝐿

27𝑡 ′3 16 102 𝑡3 𝑁̃ 𝑀5𝐻𝑢 𝑀5𝐻𝑢𝑄 + (𝑀5𝐻𝑢 − 𝑁̃ )𝑢𝑐 + (𝑀5𝐻𝑢 + 𝑁̃ )𝑒𝑐

27𝑡 ′3 16 𝜃35 𝑡3 − 𝑡5 0 𝑀5𝐻𝑢 𝑀5𝐻𝑢𝜈
𝑐

27𝑡 ′3 10 5𝐻𝑢
−2𝑡1 𝑁̃ 𝑀5𝐻𝑢 𝑀5𝐻𝑢𝐷 + (𝑀5𝐻𝑢 + 𝑁̃ )𝐻𝑢

27𝑡 ′3 10 54 𝑡3 + 𝑡4 −𝑁̃ 𝑀5𝐻𝑢 𝑀5𝐻𝑢𝐷 + (𝑀5𝐻𝑢 − 𝑁̃ )𝐻𝑑
27𝑡 ′3 1 𝜃34 𝑡3 − 𝑡4 0 𝑀5𝐻𝑢 𝑀5𝐻𝑢𝑆

Table 3.9: Complete 27s of 𝐸6 and their 𝑆𝑂 (10) and 𝑆𝑈 (5) decompositions. The indices of the 𝑆𝑈 (5) non-
trivial states 10, 5 refer to the labelling of the corresponding matter curve (we use the notation of [56]).
We impose the extra conditions on the integers 𝑁𝑌 and 𝑀𝑈 (1) from the requirement of having complete
27s of 𝐸6 and no 78 matter. The 𝑆𝑈 (5) matter states decompose into SM states as 5 → 𝑑𝑐 , 𝐿 and 10 →
𝑄,𝑢𝑐 , 𝑒𝑐 with right-handed neutrinos 1 → 𝜈𝑐 , while the 𝑆𝑈 (5) Higgs states decompose as 5 → 𝐷,𝐻𝑢 and
5 → 𝐷,𝐻𝑑 , where 𝐷, 𝐷 are exotic colour triplets and antitriplets. We identify RH neutrinos as 𝜈𝑐 = 𝜃15,35
and extra singlets from the 27 as 𝑆 = 𝜃14,34.

where 𝑀 is the F-Theory characteristic compacfication scale and we will set, for simplicity,
𝜃31/𝑀 ≃ 1 as we expect the VEVs of the singlets to be close to the scale 𝑀 and this quantity
can be reabsorbed into the definition of the primed coefficients.

According to the superpotential (3.2.84), the up-type quarks Yukawa matrix is given by

𝜆𝑢 =

©­­­­­­«
𝛼

(
𝑌 2

1 + 𝑌 2
2
)
− 𝛽

(
𝑌 2

2 − 𝑌 2
1
)

2𝛽𝑌1𝑌2 𝛿
(
𝑌 2

2 − 𝑌 2
1
)

2𝛽𝑌1𝑌2 𝛼
(
𝑌 2

1 + 𝑌 2
2
)
+ 𝛽

(
𝑌 2

2 − 𝑌 2
1
)

2𝛿𝑌1𝑌2

0 0 𝛾
(
𝑌 2

1 + 𝑌 2
2
)
ª®®®®®®¬
, (3.2.85)

and for the down-type quarks, the relevant Yukawa matrix is written as

𝜆𝑑 =

(
𝛼 ′𝑌1(3𝑌 2

2 −𝑌 2
1 )−𝛽′𝑌1(𝑌 2

1 +𝑌 2
2 ) 𝛽′𝑌2(𝑌 2

1 +𝑌 2
2 ) 𝛿 ′𝑌1(𝑌 2

1 +𝑌 2
2 )

𝛽′𝑌2(𝑌 2
1 +𝑌 2

2 ) 𝛼 ′𝑌1(3𝑌 2
2 −𝑌 2

1 )+𝛽′𝑌1(𝑌 2
1 +𝑌 2

2 ) 𝛿 ′𝑌2(𝑌 2
1 +𝑌 2

2 )
𝛾 ′(𝑌 2

1 −3𝑌 2
2 )𝑌 2

1 +𝛾 ′1(𝑌 2
2 −𝑌 2

1 ) (𝑌 2
1 +𝑌 2

2 ) 𝛾 ′𝑌1𝑌2(𝑌 2
1 −3𝑌 2

2 )+2𝛾 ′1𝑌1𝑌2(𝑌 2
1 +𝑌 2

2 ) 𝜖′(𝑌 2
1 +𝑌 2

2 )2

)
. (3.2.86)
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𝑀10𝑀 𝑀53 𝑀51 𝑀52 𝑀102 𝑀55 𝑀54 𝑀𝐻𝑢
𝑀𝜃15 𝑁̃

4 −4 3 −3 −1 1 0 0 2 1

Table 3.10: The choice of Fluxes used in this model.

𝐸6 𝑆𝑂 (10) 𝑆𝑈 (5) Weight vector 𝑁𝑌 𝑀𝑈 (1) SM particle content Low energy spectrum
27𝑡 ′1 16 53 𝑡1 + 𝑡5 1 4 4𝑑𝑐 + 5𝐿 3𝑑𝑐 + 3𝐿
27𝑡 ′1 16 10𝑀 𝑡1 −1 4 4𝑄 + 5𝑢𝑐 + 3𝑒𝑐 3𝑄 + 3𝑢𝑐 + 3𝑒𝑐

27𝑡 ′1 16 𝜃15 𝑡1 − 𝑡5 0 3 3𝜈𝑐 -
27𝑡 ′1 10 51 −𝑡1 − 𝑡3 −1 3 3𝐷 + 2𝐻𝑢 -
27𝑡 ′1 10 52 𝑡1 + 𝑡4 1 3 3𝐷 + 4𝐻𝑑 𝐻𝑑

27𝑡 ′3 16 55 𝑡3 + 𝑡5 −1 −1 𝑑𝑐 + 2𝐿 -
27𝑡 ′3 16 102 𝑡3 1 −1 𝑄 + 2𝑢𝑐 -
27𝑡 ′3 16 𝜃35 𝑡3 − 𝑡5 0 0 − -
27𝑡 ′3 10 5𝐻𝑢

−2𝑡1 1 0 𝐻𝑢 𝐻𝑢

27𝑡 ′3 10 54 𝑡3 + 𝑡4 −1 0 𝐻𝑑 -
27𝑡 ′3 1 𝜃34 𝑡3 − 𝑡4 0 1 𝜃34 -
- 1 𝜃31 𝑡3 − 𝑡1 0 4 𝜃31 -
- 1 𝜃53 𝑡5 − 𝑡3 0 1 𝜃53 -
- 1 𝜃14 𝑡1 − 𝑡4 0 3 𝜃14 -
- 1 𝜃45 𝑡4 − 𝑡5 0 2 𝜃45 -

Table 3.11: Complete 27s of 𝐸6 and their 𝑆𝑂 (10) and 𝑆𝑈 (5) decompositions. We use the notation of
ref [56] for the indices of the 𝑆𝑈 (5) states and impose the extra conditions on the integers 𝑁𝑌 and𝑀𝑈 (1)
from the requirement of having complete 27s of 𝐸6 and no 78 matter. The 𝑆𝑈 (5) matter states decompose
into SM states as 5 → 𝑑𝑐 , 𝐿 and 10 → 𝑄,𝑢𝑐 , 𝑒𝑐 with right-handed neutrinos 1 → 𝜈𝑐 , while the 𝑆𝑈 (5) Higgs
states decompose as 5 → 𝐷,𝐻𝑢 and 5 → 𝐷,𝐻𝑑 , where 𝐷,𝐷 are exotic colour triplets and antitriplets. We
identify RH neutrinos as 𝜈𝑐 = 𝜃15. Extra singlets are needed to given mass to neutrinos and exotics and to
ensure F- and D- flatness.

The charged leptons have the same Yukawa matrix structure as the down-type quarks. However,
inspecting the spectrum of F-Theory zero modes in tab:f-theory-spectrum, we see that the three
families of 𝐿,𝑄 , 𝑒𝑐 , and 𝑑𝑐 descend from different linear combinations of UV states from F-Theory
zero modes. Therefore, the superpotential coefficients for the down-type quarks and the charged
leptons are not the same, leading to a realisation of a Georgi-Jarlskog mechanism [255]. We then
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MSSM fields Matter Curves Charge 𝑆4 k
𝑄1,2, 𝑢

𝑐
1,2, 𝑒

𝑐
1,2 10𝑀 𝑡1 2 2

𝑄3, 𝑢
𝑐
3, 𝑒

𝑐
3 10𝑀 𝑡1 1 2

𝑑𝑐1,2, 𝐿1,2 5̄3 𝑡1 + 𝑡5 2 4
𝑑𝑐3, 𝐿3 5̄3 𝑡1 + 𝑡5 1 6
𝐻𝑢 5𝐻𝑢

−2𝑡1 1 0
𝐻𝑑 52 𝑡1 + 𝑡4 1 0
𝜈𝑐 𝜃15 𝑡1 − 𝑡5 3 0

Table 3.12: Perpendicular charges, modular weights, and 𝑆4 discrete modular group representations as-
sociated with the matter curves hosting the model from tab:f-theory-spectrum.

write down the charged leptons Yukawa matrix as

𝜆𝐿 =

(
𝛼 ′′𝑌1(3𝑌 2

2 −𝑌 2
1 )−𝛽′′𝑌1(𝑌 2

1 +𝑌 2
2 ) 𝛽′′𝑌2(𝑌 2

1 +𝑌 2
2 ) 𝛿 ′′𝑌1(𝑌 2

1 +𝑌 2
2 )

𝛽′′𝑌2(𝑌 2
1 +𝑌 2

2 ) 𝛼 ′′𝑌1(3𝑌 2
2 −𝑌 2

1 )+𝛽′′𝑌1(𝑌 2
1 +𝑌 2

2 ) 𝛿 ′′𝑌2(𝑌 2
1 +𝑌 2

2 )
𝛾 ′′(𝑌 2

1 −3𝑌 2
2 )𝑌 2

1 +𝛾 ′′1 (𝑌 2
2 −𝑌 2

1 ) (𝑌 2
1 +𝑌 2

2 ) 𝛾 ′′𝑌1𝑌2(𝑌 2
1 −3𝑌 2

2 )+2𝛾 ′′1 𝑌1𝑌2(𝑌 2
1 +𝑌 2

2 ) 𝜖′′(𝑌 2
1 +𝑌 2

2 )2

)
, (3.2.87)

where the modular form components have the same dependence on 𝜏𝑑 as those appearing in the
down-type quark Yukawa matrix.

In the following discussion, we are going to sketch a scenario in which conjugate right-handed
neutrinos are identified with the singlets 𝜃15, which are included in the particle spectrum of the
F-Theory model. Since these fields are considered as degrees of freedom that lie in the transverse
space of the matter curves [256], this fact leads us to consider the case that they do not carry any
modular weight. However, a simple model is presented here in which the singlets transform as a
triplet under the 𝑆4 modular symmetry. In addition to the singletsmentioned before, more degrees
of freedom are needed to give a Majorana mass to 𝜃15, leading to the implementation of a (type-
I) seesaw scenario for the light neutrino masses. An important condition is that the additional
singlets of the model have to cancel the perpendicular charges of coupling. The superpotential,
following the transformation properties of Table (3.12), is written as:

W𝜈 = 𝜁 (𝜈𝑐𝐿1,2𝑌
(4)

3 )1𝐻𝑢 + 𝜂 (𝜈𝑐𝐿3𝑌
(6)

3 )1𝐻𝑢 + 𝜆 (𝜈𝑐𝜈𝑐)1
𝜃 2

53𝜃
2
31

𝑀3 , (3.2.88)

where in the last coupling stands for the Majorana mass term of the conjugate right-handed
neutrinos. Given the first two couplings the Yukawa matrix responsible for the neutrino Dirac
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mass can be written as:

𝜆𝜈 =

©­­­­­­«
−2𝜁𝑌2𝑌3 0 𝜂𝑌1(𝑌 2

4 − 𝑌 2
5 )

−1
2
𝜁 (
√

3𝑌1𝑌4 + 𝑌2𝑌5)
√

3
2
𝜁 (
√

3𝑌1𝑌5 + 𝑌2𝑌4) −𝜂𝑌3(𝑌1𝑌4 +
√

3𝑌2𝑌5)

−1
2
𝜁 (
√

3𝑌1𝑌5 + 𝑌2𝑌4)
√

3
2
𝜁 (
√

3𝑌1𝑌4 + 𝑌2𝑌5) 𝜂𝑌3(𝑌1𝑌5 +
√

3𝑌2𝑌4)

ª®®®®®®¬
, (3.2.89)

where the modular form components depend on the same modulus of the up-type quark, 𝜏𝑢 , and
the conjugate right-handed neutrino Majorana mass matrix can be easily read out as

𝑀𝑅 =

©­­­­­­«
1 0 0

0 0 1

0 1 0

ª®®®®®®¬
𝜆
𝜃 2

53𝜃
2
31

𝑀3 , (3.2.90)

where we will take 𝜆𝜃 2
53𝜃

2
31/𝑀3 = 𝜆̃𝑀𝐺𝑈𝑇 .

Given the abovematrices, we could implement a type-I seesawmechanism in ourmodel to explain
the neutrino masses. The light neutrino mass matrix is given by:

𝑀𝜈 = −𝑀𝑇
𝐷𝑀

−1
𝑅 𝑀𝐷 , (3.2.91)

where𝑀𝐷 = 𝑣𝜆𝜈 , with 𝑣 = 173 GeV being the Standard Model Higgs vacuum expectation value.

3.2.5 Numerical study

Wenow perform a brief numerical study to findwhether themodel presented above and explicitly
stated by the superpotential in superpot1 can provide a good fit to quark masses and mixing. To
do so, we will compare the model predictions against the values of the quark masses and mixing
data at the GUT scale, which, for tan 𝛽 = 5, can be found in tab:quarkdata. The neutrino data
are taken from the latest NuFit 5.3, [257] and is shown in tab:leptondata alongside the charged
lepton Yukawa eigenvalues.
We use the effective Yukawa coupling matrices for the quarks, eq:Lambdau,eq:Lambdad, as well
as for the neutrinos, eq:lambdan,eq:majorana, to compute the predictions and compare them to
the data in tab:quarkdata,tab:leptondata. Although the coefficients of the superpotential are in
principle calculable in F-Theory (see, for example, [47; 48; 195] for Yukawa couplings and [52] for
R-Parity violating terms), in this work we will consider these coefficients as free parameters and
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Quark and CKM Data
𝑦𝑑 (4.81 ± 1.06) × 10−6 𝜃12 13.027◦ ± 0.0814◦

𝑦𝑠 (9.52 ± 1.03) × 10−5 𝜃23 2.054◦ ± 0.384◦

𝑦𝑏 (6.95 ± 0.175) × 10−3 𝜃13 0.1802◦ ± 0.0281◦

𝑦𝑢 (2.92 ± 1.81) × 10−6 𝛿𝐶𝑃 69.21◦ ± 6.19◦

𝑦𝑐 (1.43 ± 0.100) × 10−3

𝑦𝑡 0.534 ± 0.0341

Table 3.13: Quark and CKM data [258; 259; 260].

Lepton and PMNS Data
𝑦𝑒 (1.97 ± 0.024) × 10−6 sin2 𝜃𝐿12 0.307 ± 0.012
𝑦𝜇 (4.16 ± 0.05) × 10−4 sin2 𝜃𝐿23 0.572 ± 0.023
𝑦𝜏 (7.07 ± 0.073) × 10−3 sin2 𝜃𝐿13 (2.203 ± 0.58) × 10−2

Δ𝑚2
12 (7.41 ± 0.21) × 10−5 eV2 𝛿𝐿

𝐶𝑃
197◦ ± 41◦

Δ𝑚2
13 (2.511 ± 0.027) × 10−3 eV2

Table 3.14: Lepton and PMNS data. Neutrino masses are given in normal ordering [257; 258; 259; 260].
When the uncertainty interval is asymmetric, the larger values was taken in the analysis for the Gaussian
likelihood profile.

leave the study of their computation for future work. Additionally, we also have the dependency
on the complex structure moduli fields parametrising the geometry of the matter curves, from
which the matter fields inherit their discrete modular symmetry properties. Since up- and down-
type quark Yukawas emerge at different intersection points in the internal geometry between
different curves, the geometry describing each Yukawa coupling is in general different from each
other and parametrised by its own modulus, i.e. the components of the modular forms appearing
in the up- and down-type Yukawas can depend on different moduli fields, 𝜏𝑢 and 𝜏𝑑 , respectively.
However, the charged leptons (neutrino) Yukawa matrix arises from the same intersection as
the down-type (up-type) quark Yukawas and should therefore depend on the same modulus.
Therefore, our (effective) parametric freedom encompasses:

• Four complex coefficients (𝛼 , 𝛽 , 𝛿 , 𝛾 ) and a complex modulus (𝜏𝑢) for the up-type Yukawa
matrix,

• three complex coefficients (𝜁 , 𝜂, 𝜆̃) for the neutrino sector (as well as a dependency on 𝜏𝑢),

• six coefficients (𝛼′, 𝛽′, 𝛾 ′, 𝛾 ′1, 𝜖
′) and one complex modulus (𝜏𝑑 ) for the down-type Yukawa

matrix,
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• six coefficients (𝛼′′, 𝛽′′, 𝛾 ′′, 𝛾 ′′1 , 𝜖
′′) for the charged lepton Yukawa matrix (as well as a

dependency on 𝜏𝑑 ).

This sums up to a total of 19 complex parameters, or 38 real parameters. Although this seems to
over-parameterise our problem, as we only have 19 observables in tab:quarkdata,tab:leptondata,
we must reiterate that the complex coefficients are in principle calculable in F-Theory and that
the analysis present here simplifies this step.
To find whether we can jointly fit all observables, we employ an artificial intelligence search al-
gorithm called Covariant Matrix Approximation Evolutionary Strategy (CMAES) [263], which
was first proposed in [261] to simplify the task of finding valid points in highly constrained mul-
tidimensional BSM parameter spaces.12 CMAES can be seen as a population-based optimisation
algorithm that can find minima of any arbitrary function, irrespective of its continuity and dif-
ferentiability. Therefore, we will use CMAES to minimise the minus log-likelihood of the data,
𝐷 , given a point of the parameter space, 𝜃 ,13

−𝑙𝑙ℎ(𝐷 |𝜃 ) =
∑︁
𝑖

(𝜇𝑖 − 𝜇𝑖 (𝜃 ))2

2𝜎2
𝑖

, (3.2.92)

where 𝑖 runs over the observables, 𝜇𝑖 (𝜃 ) is the prediction for the observable 𝑖 given a parameter
space point 𝜃 , the data, 𝐷 , are comprised of the set of tuples {(𝜇𝑖, 𝜎𝑖)}, where 𝜇𝑖 , 𝜎𝑖 are, respec-
tively, the central and 1-𝜎 uncertainty values of the observables and are listed in (3.13) (3.14), and
we have assumed a Gaussian profile likelihood for the data. We implemented CMAES using the
python package cmaes [263], and we performed 1000 independent runs, each running until con-
verged to a minimum of (3.2.92), and kept all points whose observable predictions were within
3-𝜎 .14. The parameters of our model were bounded, so that the superpotential coefficients remain
perturbative and the moduli take values in their fundamental domain with an upper bound on
the imaginary part{

𝜏𝑖 ∈ C, 𝑠 .𝑡 . |ℜ(𝜏𝑖) | ≤ 0.5 ∧
√︃

1 −ℜ(𝜏𝑖)2 ≤ ℑ(𝜏𝑖) ≤ 10
}
, 𝑖 = 𝑢, 𝑑 . (3.2.93)

Multiple successful runs converged, generating 18× 106 points that fit all observables within 3-𝜎 .
The best point across all runs, that minimises the eq:llh at a value 1.15 × 10−15 (i.e., effectively

12See also [262] for a recent application to the 𝑍3 3HDM, where CMAES was shown to have up to nine orders of
magnitude improvement in sampling efficiency over random sampling.

13Or, equivalently, to minimise the sum of the 𝜒2.
14This methodology is justified by the fact that our goal is not to draw a complete portrait of the parameter space,

but rather to find examples of viable points.
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with vanishing 𝜒2 or likelihood of 1), is given by the set of parameters (to up to one decimal digit)

(𝛼, 𝛽, 𝛿,𝛾) =(−1.8 × 10−3 + 1.8 × 10−5𝑖, 4.5 × 10−5 − 1.4 × 10−4𝑖,

3.2 × 10−4 + 1.8 × 10−3𝑖, 1.8 × 10−1 + 4.0 × 10−2𝑖)(
𝜆′, 𝛽′, 𝛾 ′, 𝛾 ′1, 𝜖

′) =(2.1 × 10−5 − 8.8 × 10−8𝑖,−3.3 × 10−5 + 3.2 × 10−8𝑖,

− 4.4 × 10−5 + 7.2 × 10−5𝑖,−2.3 × 10−4 − 2.3 × 10−4𝑖,

− 7.7 × 10−5 + 1.4 × 10−4𝑖, 1.3 × 10−4 − 4.6 × 10−3𝑖)
(𝜁 , 𝜂, 𝜆̃) =(−6.1 × 10−2 + 9.1 × 10−1𝑖,−1.5 × 10−1 + 7.2 × 10−3𝑖,

1.8 × 10−1 + 5.3 × 10−2𝑖)(
𝜆′′, 𝛽′′, 𝛾 ′′, 𝛾 ′′1 , 𝜖

′′) =(7.5 × 10−5 + 1.4 × 10−7𝑖, 2.7 × 10−4 − 7.3 × 10−7𝑖,

− 1.0 × 10−3 + 1.9 × 10−3𝑖, 1.2 × 10−4 + 2.6 × 10−8𝑖,

− 2.9 × 10−3 + 4.1 × 10−5𝑖, 4.2 × 10−4 − 1.7 × 10−3𝑖)
𝜏𝑢 = − 4.1 × 10−1 + 9.1 × 10−1𝑖

𝜏𝑑 = − 5.0 × 10−1 + 1.2𝑖 ,

(3.2.94)

where we organised the parameters by mass sector. We notice that the point above requires
some hierarchy between superpotential coefficients which should be around the same order, e.g.
|𝛾 | ∼ O(1) whereas |𝛼 | ∼ O(10−3). This hierarchy between coefficients of operators arising from
the intersection of the same matter curves at the same intersection point is at odds with our F-
Theory expectations, which requires further study involving their explicit computation. In (3.10)
we show the values of the moduli field that were obtained by CMAES, where we see that lower
values of the imaginary part of the moduli are preferred, and most points have ℑ(𝜏𝑖) ≲ 2. We
omit scatter plots for the remaining parameters as these are, in principle, computable in F-Theory,
and the details of their numerical realisation are left to future study. We also note that one should
not attempt to make statistical interpretations of the results of CMAES, as it is not an algorithm
designed to populate a posterior (as Monte Carlo Markov Chains do in Bayesian inference) as
it produces points through the path of quickest descent of the loss function (and therefore the
points should also not be used for frequentist interpretations as one usually does with random
sampling). However, all points are within 3-𝜎 of all observables and therefore have a very high
likelihood, or, conversely, a very small 𝜒2.
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Figure 3.10: 𝜏𝑢 and 𝜏𝑑 values for the CMAES scan. All the points hold predictions within 3-𝜎 . The red
star point represents the best fit point, (3.2.94). Dashed line represents the boundary of the fundamental
domain.
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Figure 3.11: Up-type quark Yukawa eigenvalues obtained for the CMAES scan. All the points hold predic-
tions within 3-𝜎 . The red star point represents the best fit point, (3.2.94). The dashed (full) lines represent
the central value (3-𝜎 bounds) from (3.13).
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We first look at the results pertaining to the quark data. In (3.11) we can observe the resulting
values for the up-type quark Yukawa eigenvalues of points obtained, and in (3.12) we present the
equivalent plots for the down-type quarks. We see that many points can be arbitrarly close to the
central value, but also span the region within the 3-𝜎 limits, showing that the model produces
a good fit to the data. The same can be observed in (3.13) for the CKM mixing angle and CP
violating phase.
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Figure 3.12: Down-type quark Yukawa eigenvalues obtained for the CMAES scan. All the points hold
predictions within 3-𝜎 . The red star point represents the best fit point, (3.2.94). The dashed (full) lines
represent the central value (3-𝜎 bounds) from (3.13).
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Figure 3.13: CKM angles and CP phase obtained for the CMAES scan. All the points hold predictions
within 3-𝜎 . The red star point represents the best fit point, (3.2.94). The dashed (full) lines represent the
central value (3-𝜎 bounds) from (3.13).

In (3.14) we can arrive at similar conclusions regarding the charged lepton Yukawa eigenvalues,
neutrinos squared mass differences, PMNS mixing angles, and CP violating phase.
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Figure 3.14: Charged leptons Yukawa eigenvalues obtained for the CMAES scan. All the points hold
predictions within 3-𝜎 . The red star point represents the best fit point, (3.2.94). The dashed (full) lines
represent the central value (3-𝜎 bounds) from (3.14).

7.0 7.5 8.0
∆m2

21/10−5 (eV2)

2.45

2.50

2.55

2.60

∆
m

2 31
/1

0−
3

(e
V

2 )

Figure 3.15: Neutrino squared mass differences obtained for the CMAES scan. All the points hold predic-
tions within 3-𝜎 . The red star point represents the best fit point, (3.2.94). The dashed (full) lines represent
the central value (3-𝜎 bounds) from (3.14).
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Figure 3.16: PMNS angles and CP phase obtained for the CMAES scan. All the points hold predictions
within 3-𝜎 . The red star point represents the best fit point, (3.2.94). The dashed (full) lines represent the
central value (3-𝜎 bounds) from (3.14).

The above results show that our model can fit the data very well, with the best point having a
likelihood close to unity or, conversely, a vanishingly small 𝜒2. However, the problem is over-
parametrised by the number of superpotential coefficients, which, although in principle calculable
in F-Theory, are considered free parameters in this analysis. To assess whether we can reduce
the parametric freedom, we considered alternative scenarios with reduced parametric freedom
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with respect to the moduli. In our first alternative scenario, we fixed the moduli to take the
same values (i.e. 𝜏𝑢 = 𝜏𝑑 but otherwise allowed the moduli to take values in the fundamental
domain (3.2.93)) even though our F-Theory construction naturally provides distinct moduli for
each Yukawa type. The scans converged successfully as before, from which we can conclude that
our model does not require two independent moduli to fit the data. For the second case, we fixed
the moduli to special values 𝜏𝑢, 𝜏𝑑 ∈ {𝑖, 𝑖∞, 𝜔 = exp (2𝜋𝑖/3)} (but not necessarily equal). In
this scenario, CMAES failed to find points that fit the data. To further study this scenario, we
restricted the problem to only fit the quark data, and even then the best-case scenario was for
the configuration 𝜏𝑢 = 𝑖∞, 𝜏𝑑 = 𝑖 , for which we were able to fit all the observables within 3-𝜎
except for the 𝜃12 angle of the CKM matrix. The fact that the best-case scenario relies on 𝜏𝑢 = 𝑖∞
suggests that it is indeed not possible to find good points that fit all the data with the moduli
stabilised at special values, as we have seen in (3.10) that the scans showed a preference for small
values of ℑ(𝜏𝑖). Therefore, we conclude that, despite being over-parameterised, the model works
with fewer parameters although we lack F-Theoretical motivations to restrict their number.
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4 | Conclusion

In this thesis, we presented some recent progress on modern topics of string phenomenology.
From the more formal point of view, the problem of moduli stabilization in type IIB compacti-
fications was scrutinized based on the recently introduced perturbative loop corrections, where
different aspects of the stability and uplifting conditions were studied along with the possible
connection between those quantum corrections with the dark sector of the stringy geometries.
At the phenomenological frontier, two local F-theory GUTs were constructed providing some ex-
planations on the various low-energy phenomena, like neutrino masses and the origin of flavor
symmetry.

Chapter 2 features the perturbative moduli stabilization procedure followed to ensure the at-
tainability of dS vacua in four dimensional effective string theories. The new ingredient in this
approach has to dowith the inclusion of string loop correction to the Kähler potential, where their
origin can be traced by to graviton scattering in the bulk. In the current geometric framework
of intersecting 𝐷7 branes, the transverse space could accommodate the aforementioned string
effects as corrections of logarithmic scaling parametrizing the localization width of the wavefuc-
tions in an orbifold limit. Upon the insertion of those types of corrections to the Kähler potential,
their combined effects with the non-perturbative effects in the superpotential lead to various
AdS vacua for the scalar potential. In the large volume limit, i.e. in the regime where the moduli
take large values, the asymptotic behavior of the scalar potential along the volume direction is
largely modified by the loop effects. In addition, the supersymmetric flatness conditions could
fix the value of the moduli, appearing in the superpotential, at large values by properly choosing
the values of the integer fluxes W0 ∼ O(1), since the solution is given in terms of the Lambert
function. Additionally, the stability conditions of the moduli ratios and the compactified volume
V admit the allowed parameter space for the free parameters of the theory, pointing towards
the relative sign of the logarithmic correction to the Kähler potential. The uplifting mechanism
utilized are the magnetically induced D-terms, which could uplfting the previous vacua up to
Minkowski or dS space. Through this mechanism, despite acquiring the desired result, the pa-
rameter space is very stringent, since the Lambert function implies the correlation between the
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uplift parameter 𝑑 , the 𝑎′ correction 𝜉 and the perturbative one 𝜂. In a more complex scenario
compared to the symmetric form of the compactified volume, the fibred or "Swiss-cheese" like
CY spaces are also given a similar treatment, where the logarithmic corrections could provide a
glimpse to the internal geometry by determining the branes setup and the orientifold involution.
Finally, a model of dark radiation and dark matter is presented where the non-diagonal entries
of the Kähler metric, endowed by the logarithmic effects, modify the decays of the moduli to ax-
ions. The new contributions could not be underestimated, since axion can be overproduced and
saturate the bounds provide by the BBN and the effective neutrino number of species. Moreover,
two limiting cases (high and low scale) regarding the reheating temperatures are studied, where
WIMP dark matter candidates are found after moduli decays to degrees of freedom of the dark
sector.

In chapter 3, the phenomenology of local F-theory GUTs is presented. In the first subsection, a
flipped 𝐹 -𝑆𝑈 (5) is studied focusing in the implications to the neutrino sector and the W-boson
mass anomaly. The complete model building is providing, where the spectral cover approach is
used attributing to the matter curves and to the corresponding matter representations their ho-
mological indeces. The multiplicity of the representations are given according to the symmetry
breaking pattern and the anomaly cancellation is performed through the Green–Schwarz mech-
anism. The low energy superpotential terms allow an inverse seesaw mechanism, where the new
scale𝑀𝑠 is introduced due to the presence of singlet states. The novelty of F-theory constructions
is that the weights of the perpendicular symmetry modify the couplings in the superpotential,
since singlet states have to be augmented and their vevs will characterize the scale of the Yukawa
terms. Proton decay is safely stable as long as the masses of the dangerous Higgs triplets are ac-
quiringmasses at𝑀𝐺𝑈𝑇 scale, while neutrinoless double beta decay is used as probe formeasuring
the lepton number violating effects in the presence of the sterile states. The model;s spectrum
contains an additional electron-like pair of neutral singlets, whose vevs can be connected to an
explanation for the 𝑔𝜇 − 2 anomaly since these vector-like singlets mix with the leptonic sector.
In the last part of this thesis, we argue that the different patterns of quarks and leptons could be
understood through imposing a flavor symmetry. An F-theory derived 𝑆𝑈 (5) model is presented
where internal fluxes break the modular group down to 𝑆4 due to stabilized complex structure
moduli. This discrete modular family group along with the assigned different modular weights
for the matter fields lead to Yukawamatrices, whose textures are parametrized by modular forms’
components. Despite lacking the string framework that would provide additional constraints to
the free parameters of the model, this approach on model building provides insights on the po-
tential embedding of the families into the representations, especially on how they are seperated
in the superpotential level due to their modular weight. To support our arguments and justify
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the existence of correct prediction for the CKM and the PMNS matrix, a numerical 𝜒2 analysis is
performed scanning the parameter space for available solutions, which also indicate the values of
the complex structure moduli which should lay on the plane shaped by the residual congruence
modular group.
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5 | Appendix

5.1 Mixing matrix for dark radiation section

Given the case studies discussed in section 3., we are going to characterize the mixing between
the moduli and the normalized fields 𝜙𝑖 , based on the mass matrix in equation (2.2.24). In the
following form and tracking the procedure given in [151; 172], the mixing matrix 𝑃𝑖 𝑗 for the two
cases can be written as:

©­­­­­­«
𝜏1

𝜏2

V

ª®®®®®®¬
=

©­­­­­­«
®𝑢1

ª®®®®®®¬
𝜙1 +

©­­­­­­«
®𝑢2

ª®®®®®®¬
𝜙2 +

©­­­­­­«
®𝑢3

ª®®®®®®¬
𝜙3, 𝑃𝑖 𝑗 =

©­­­­­­«
®𝑢1

®𝑢2

®𝑢3

ª®®®®®®¬

𝑇

. (5.1.1)

For the derivation of the corresponding eigenvectors can be derived by following the recipe:

𝑀2
𝑖 𝑗 ®𝑢𝑖 =𝑚2

𝑖 ®𝑢𝑖, ®𝑢𝑇𝑖 · K · ®𝑢 𝑗 = 𝛿𝑖 𝑗 , (5.1.2)

where the two components of the each eigenvector will be defined by the first relation, while the
normalization condition will fix the latter component. Consequently, for each case discussed in
section 3., the mixing of the moduli can be approximated to:
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(5.1.3)
where the variables 𝑠,𝑤 are defined as:

𝑠 =
√︁
(𝑑V)2/3 + 8, 𝑤 = 48𝑞 3√

𝑑2V + 2𝑞 + 3 . (5.1.4)

The corresponding eigenvalues for both cases are given below:

𝑚
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𝑇𝑟 [𝑀2]2 ,

𝐷𝑒𝑡 [𝑀2]
4𝑇𝑟 [𝑀2]2

)
. (5.1.5)

Now, the crucial next step is to define which normalized field mainly describes each one of the
geometric moduli. Starting from the first case 𝛼), one can easily observe the dependence of
the textures on the uplift parameter 𝑑 . This observation is important since, in this case, the uplift
parameter is exponentially small due to the smallness of the integer fluxes. Thus, the denominator
of the fractions containing the parameter 𝑑 turns to be extremely small and the mixing between
the fields is rendered trivial.

𝜏1 � O( 𝑑
5/6

3 + 2𝑞
)𝜙1 + O( 𝑑7/6

(3 + 2𝑞)2 )𝜙2 + O( 𝑑13/6

(3 + 2𝑞)2 )𝜙3 � 𝑃
𝛼)
11𝜙1,

𝜏2 � O(𝑑1/3V1/6)𝜙1 + O(𝑑−1/3V−1/6)𝜙2 + O(V1/2)𝜙3 � 𝑃
𝛼)
22𝜙2,

V � O(V1/2)𝜙1 + O(𝑑1/3V1/6)𝜙2 + O(𝑑−1/3V−1/6)𝜙3 � 𝑃
𝛼)
33𝜙3 . (5.1.6)

From the above, it is remarkable that in the regime of exponentially small fluxes |W0 | ≪ 1, there
exists a geometric separation between the world volumes. The overall volume is given by 𝜙3,
while the transverse directions are approximately independent of this field. Additionally, one
could also observe the correlation of the uplift parameter and the value of V at the minimum.
Even in the case ofV ≫ 1, the uplift parameter d will compensate the suppression of the mixing,
providing this nice geometric result.
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The second case 𝛽) of mixing following the same reasoning results in a qualitatively samemixing:
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Again, in this case the overall volumeV is given by a single normalized field 𝜙3. It is remarkable
that geometric separation is a generic feature shared by this compactified space, where this fact
is unraveled only after the process of finding the correct eigenvectors of the system. This feature
was not given much attention on previous works [101], where the inflation scenario was studied
as a multi-field system. This could be avoided after picking the appropriate scale for the fluxes
W0. A final remark is that the computations given in this appendix will also be used in section
4., where the coupling of the normalized fields to the axions and Higgses will be calculated.

5.2 Decay rate formulas

For the derivation of the decay rates given in the main body of this paper, we used the standard
formula:

Γ =
1
𝑆

∫ |𝑀 |2
2𝐸

𝑑𝐿𝐼𝑃𝑆, (5.2.1)

where the 𝑑𝐿𝐼𝑃𝑆 is the element of the Lorentz invariant phase space and 𝑆 is the symmetry factor.
The decaying particle’s energy is parametrized by 𝐸. There are two possible decay channels,
which can be written as:

L ⊃ 𝑔𝜙𝑖𝜓 2 + 𝑔𝜙𝑖𝜓 𝜒 . (5.2.2)

In the above equation, we have assumed that the mass of 𝜙𝑖 is much heavier than 𝜓, 𝜒 . The
symmetry factor and the matrix element for the first case is given 𝑆 = 2 and |𝑀 |2 = 4𝑔2, while for
the latter one is summarized to 𝑆 = 1, |𝑀 |2 = 𝑔2. The corresponding coupling 𝑔 in each process
will be read by the Lagrangian terms, so the two decay rates are evaluated to be:
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Γ𝜙𝑖→𝜓𝜓 =
𝑔2

8𝜋𝑚𝜙𝑖

, Γ𝜙𝑖→𝜓 𝜒 =
𝑔2

16𝜋𝑚𝜙𝑖

. (5.2.3)

5.3 General form of D-terms

In this appendix, we provide a detailed stabilization using the generic D-terms formula, following
the work of [141; 159; 160], and we focus on finding the relevance of the derived vacuum with
our approximation in equation (2.2.9). Starting from the generic formula of the D-terms (2.2.7), it
can be expanded to:

𝑉𝐷 �
3∑︁
𝑖=3

[ 1
𝜏𝑖

(∑︁
𝑖≠ 𝑗

𝑄𝑖 𝑗 𝜕𝑇𝑗K
)2] = 𝑑1

𝜏1

(
𝑄12

𝜏2
+ 𝑄13

𝜏3

)
2 + 𝑑2

𝜏2

(
𝑄21

𝜏1
+ 𝑄23

𝜏3

)
2 + 𝑑3

𝜏3

(
𝑄31

𝜏1
+ 𝑄32

𝜏2

)
2 .

(5.3.1)

The global embedding of this toy model has been analyzed in [159]. In this work, we need to
stabilize two moduli by the D-terms, which fact is of particular importance for embedding con-
sistent inflationary paradigms in such string scenarios [141; 159; 160]. In order to do so, we are
going to assume that the charges 𝑄𝑖 𝑗 obey to the following relations:

𝑄12 = 𝑄23 = 𝑄31, 𝑄21 = 𝑄13 = 𝑄32, 𝑄12 ≠ 𝑄21 . (5.3.2)

In addition to that, we could in general assume that𝑄12 = 1, 𝑄21 = 0, since this could significantly
simplify the form of themoduli’s eigenvalues and eigenvectors, helping us to study the qualitative
behavior of dark radiation in a stabilized dS vacuum. Also, since we would like to compare this
new vacuum with the vacuum presented in the main body of the paper, we are going to redefine
the 𝜏1, 𝜏2 moduli as 𝜏′1, 𝜏

′
2.

𝑉𝐷 =
𝑑1

𝜏′22 𝜏
′
1
+
𝑑2𝜏

′
2𝜏

′2
1

V4 +
𝑑3𝜏

′
2

𝜏′1V2 . (5.3.3)

Minimizing with respect to 𝜏′1, 𝜏
′
2 and V , we have the following minima:
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𝜏′1 =(
𝑑3

𝑑2
)1/3V2/3, 𝜏′2 = (𝑑1

𝑑3
)1/3V2/3,

V𝑚𝑖𝑛 =

3𝜂W2
0𝑊0/−1

(
2𝑑𝑒

13
3 − 𝜉

2𝜂

3𝜂W2
0

)
2𝑑

. (5.3.4)

After applying the minimal values of 𝜏′1, 𝜏
′
2 at the D-terms, we get the expected formula:

𝑉𝐷 =
3𝑑
V2 , 𝑑 = (𝑑1𝑑2𝑑3)1/3 . (5.3.5)

Readily, one can see that we haved arrived to the exact same minimal value for the volume mod-
ulus V𝑚𝑖𝑛 . Taking into account the derived minima in equation (2.2.13) and the minima derived
from the generic form (5.3.4), it readily found that they are related up to a scaling in the uplifting
parameter 𝑑 .

𝜏1 = 𝜏
′
1
(𝑑1𝑑2)2/9

𝑑
4/9
3

, 𝜏2 = 𝜏
′
2
(𝑑2𝑑3)2/9

𝑑
4/9
1

,

𝜏1 = 𝑑
2/3𝜏′1, 𝜏2 =

𝜏′2
𝑑4/3 . (5.3.6)

In the last step we have used 𝑑1 = 𝑑3/(𝑑2𝑑3), 𝑑2 = 1, 𝑑3 = 1. Consequently, we can deduce that
this equivalence of the vacua does not spoil the analysis with respect to the observable quantities
in this model, since the scaling (and the minimal value) with respect to the compactified volume
V is the same.

5.4 Supersymmetric conditions for the flipped 𝑆𝑈 (5)

Consistency with supersymmetry and anomaly cancellation requires that the singlet VEVs are
subject to F- and D-flatness conditions. The following hierarchy of scales is assumed ⟨𝐻 ⟩ ∼
⟨𝐻 ⟩ ∼ 𝑀𝐺𝑈𝑇 � 𝑀𝑠𝑡𝑟 . The singlet VEVs are also assumed to be smaller than the string scale𝑀𝑠𝑡𝑟 .
Using the identification (3.1.28) and 𝑍2 monodromy, the Yukawa lagrangian for the singlet fields
is WS = 𝜆1𝜒𝜁𝜓 + 𝜆2𝜓𝜁 𝜒 +𝑀𝑠𝑠

2 +𝑀𝜒 𝜒 𝜒 +𝑀𝜓𝜓𝜓 +𝑀𝜁𝜁𝜁 .𝑇ℎ𝑒𝑚𝑎𝑠𝑠𝑠𝑐𝑎𝑙𝑒𝑠M𝜁 , 𝑀𝜒 etc are assumed
to be arbitrary and will be fixed through the flatness conditions. The F-flatness equations are
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𝜕𝑊S
𝜕𝜒

= 0 ⇒ 𝜆2𝜓𝜁 +𝑀𝜒 𝜒 = 0

𝜕𝑊S
𝜕𝜓

= 0 ⇒ 𝜆1𝜒𝜁 +𝑀𝜓𝜓 = 0

𝜕𝑊S
𝜕𝜁

= 0 ⇒ 𝜆2𝜓 𝜒 +𝑀𝜁𝜁 = 0

𝜕𝑊S
𝜕𝜒

= 0 ⇒ 𝜆1𝜁𝜓 +𝑀𝜒 𝜒 = 0

𝜕𝑊S

𝜕𝜓
= 0 ⇒ 𝜆2𝜒𝜁 +𝑀𝜓𝜓 = 0

𝜕𝑊S

𝜕𝜁
= 0 ⇒ 𝜆1𝜒𝜓 +𝑀𝜁𝜁 = 0 . (5.4.1)

The D-term flatness constraint needs, also, to be imposed which has the following form:

∑︁
𝑖≠ 𝑗

𝑞𝑖 (𝜃 2
𝑖 𝑗 − 𝜃 2

𝑗𝑖) = −𝑐𝑀2
𝑠𝑡𝑟 ⇒

𝑞𝜒 (𝜒2 − 𝜒2) + 𝑞𝜓 (𝜓 2 −𝜓 2) + 𝑞𝜁 (𝜁 2 − 𝜁 2) = −𝑐𝑀2
𝑠𝑡𝑟 . (5.4.2)

In order to derive a solution to the flatness condition, we need to impose the following conditions

𝑀𝜒 = −𝜆1𝑀𝜓 , 𝑞𝑖 = 1 . (5.4.3)

Then, we obtain

𝜒 =
𝑀𝜁 𝜌

𝜆1𝜆2𝜎
, 𝜒 =

𝑀𝜓𝜎

𝜌

𝜓 = −
𝑀𝜁

𝜆1
, 𝜓 =

𝑀𝜓𝜆1

𝜆2

𝜁 =
𝑀𝜓𝜎

𝜌
, 𝜁 = −

𝑀𝜓𝜌

𝜎

𝜌 =
(
(𝑀2

𝜁
+ 𝑐𝑀2

𝑠𝑡𝑟𝜆
2
1)𝜆2

2 − 𝜆4
1𝑀

2
𝜓

)1/2
, 𝜎 =

(
𝜆2

1𝑀
2
𝜓
−𝑀2

𝜁

)1/2
. (5.4.4)

Demanding the 𝜇-term (𝜒 singlet) and 𝜓 to lay at the TeV scale, we are going to derive some
bounds on the parameters above.
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𝜒

𝜁
= 1,

𝜒

𝜓𝜁
=

1
𝑀𝜓

, 𝜓 =
𝑀𝜓𝜆1

𝜆2
, 𝑀𝜓 ≫ 1 . (5.4.5)

So, the corresponding bounds for the parameters are:

𝜆2

𝜆1
≪

𝑀𝜓

𝜓 ∼ 𝑇𝑒𝑉
, 𝑀2

𝜁
< 𝑀2

𝜓
𝜆2

1, 𝑐 >
𝑀2
𝜓
𝜆4

1 −𝑀2
𝜁
𝜆2

2

𝜆2
1𝑀

2
𝑠𝑡𝑟

. (5.4.6)

5.5 Additional Models for the flipped 𝐹 − 𝑆𝑈 (5)

In this paper we have explored a flipped 𝑆𝑈 (5) model based on a specific choice of fluxes and
choosing a particular matter curve to accommodate the Higgs fields. However, there are other
choices which may lead to somewhat modified phenomenological implications. Here we present
two possible modifications.

We may change the Higgs doublets of the model, discussed in the main text by choosing the
fluxes𝑀1

10 → 𝑀2
10 = 1, so the new Higgs fields are

ℎ−𝑡1−𝑡4, ℎ̄𝑡1+𝑡3, (5.5.1)

𝑊𝑚𝑎𝑡𝑡𝑒𝑟 =𝜆
𝑢
𝑖 𝑗𝐹𝑖 𝑓 𝑗ℎ̄𝜓 + 𝜆𝑑𝑖 𝑗𝐹𝑖𝐹 𝑗ℎ𝜓 + 𝜆𝑒𝑖 𝑗𝑒𝑐𝑖 𝑓 𝑗ℎ𝜓 + 𝑘𝑖𝐻𝐹𝑖𝑠𝜓
+ 𝑎𝑚𝑗𝐸𝑐𝑚𝑒𝑐𝑗𝜓 + 𝛽𝑚𝑛𝐸𝑐𝑚𝐸𝑐𝑛𝜁 + 𝛾𝑛𝑗𝐸𝑐𝑛 𝑓 𝑗ℎ𝜁 , (5.5.2)

𝑊ℎ𝑖𝑔𝑔𝑠 =𝜆𝜇𝜁 (1 + 𝜆
′
𝜇𝐻𝐻𝜁 )ℎ̄ℎ + 𝜆𝐻𝐻𝐻ℎ̄𝜓𝜁 + 𝜆𝐻𝐻𝐻ℎ(𝜒𝜁 + 𝜁 2𝜓 ) . (5.5.3)

An alternative model with non-zero flux 𝑃 is the following:

𝑀1 𝑀3 𝑀4 𝑃 𝑃5 𝑃7 𝑀1
10 𝑀2

10

3 −1 1 −1 −2 1 1 −1
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This leads to the matter field assignment:

10𝑡1 (𝐹𝑖) : 3 × (𝑄,𝑑𝑐𝑖 , 𝜈𝑐𝑖 ), 5̄𝑡1 (𝑓 ) : 2 × (𝑢𝑐𝑖 , 𝐿𝑖), 5̄𝑡3 (𝑓
′) : 1 × (𝑢𝑐3, 𝐿3)

1𝑡1 : 4 × (𝑒𝑐𝑖 ), 1𝑡4 : 2 × (𝐸𝑐), 1−𝑡3 : −3 × (𝐸𝑐), 5−2𝑡1 : 1 × ℎ, 5̄𝑡1+𝑡4 : 1 × ℎ̄, (5.5.4)

The superpotential for the matter fields is

𝑊𝑚𝑎𝑡𝑡𝑒𝑟 =𝜆
𝑢
𝑖 𝑗𝐹𝑖 𝑓 𝑗ℎ̄𝜒 + 𝜆

′𝑢
𝑖 𝑗 𝐹𝑖 𝑓

′
𝑗
ℎ̄ + 𝜆𝑑𝑖 𝑗𝐹𝑖𝐹 𝑗ℎ + 𝜆𝑒𝑖 𝑗𝑒𝑐𝑖 𝑓 𝑗ℎ + 𝜆

′𝑒
𝑖 𝑗 𝑒

𝑐
𝑖 𝑓

′
𝑗
ℎ𝜒+

+ 𝑘𝑖𝐻𝐹𝑖𝑠 𝜒 + 𝑎𝑚𝑗𝐸𝑐𝑚𝑒𝑐𝑗 𝜒 + 𝛽𝑚𝑛𝐸𝑐𝑚𝐸𝑐𝑛𝜁 + 𝛾𝑛𝑗𝐸𝑐𝑛 𝑓 𝑗ℎ𝜓
+ 𝛾 ′

𝑛𝑗𝐸
𝑐
𝑛 𝑓

′
𝑗
ℎ𝜒𝜓, (5.5.5)

and for the Higgs

𝑊ℎ𝑖𝑔𝑔𝑠 = 𝜆𝜇𝜓 (1 + 𝜆
′
𝜇𝐻𝐻𝜁 )ℎ̄ℎ + 𝜆𝐻𝐻𝐻ℎ(𝜓 2 + 𝜒2𝜁 2) + 𝜆𝐻𝐻𝐻ℎ̄𝜒𝜁 . (5.5.6)
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