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Abstract

The term “photoionization microscopy” (PM) refers to an experimental tech-
nique that images the outgoing flux of slow (meV) electrons produced during atomic
photoionization in the presence of a homogeneous static electric field. The energy
region of interest lies near the ionization threshold, where continuum Stark states co-
exist with quasibound ones (resonances). The main purpose of PM is to record and
unveil the features of resonances. Particularly for the quasibound states of the hy-
drogen atom, the excited electron is ionized solely via tunneling, in contrast to the
continuum states, where the electron escapes freely. However, in non-hydrogenic
atoms, resonances and continua are coupled, making the recording of the former
more challenging. To overcome these difficulties, we theoretically examine a scheme
of simultaneous one- and two-photon excitation of the final Stark states using two
coherent laser beams with frequencies 2ω and ω, respectively, and an experimen-
tally controlled phase difference ∆Φ between them. Specifically, by applying the
Harmin-Fano Stark theory, the aforementioned technique is modeled for the sodium
(Na) atom and by adopting as initial states either the 3s ground state or the 3p
first excited one. The necessary input Na data for the model (energy levels, one
and two photon matrix elements) is computed using a parametric potential that
is available in the literature. The results of our study show that, indeed, with an
optimal selection of the energy range, the intensities and the phase difference ∆Φ
of the light beams, the calculated images (current probability density) reveal the
resonant characteristics, while those corresponding to exclusive one- or two-photon
transitions simply display only the features of the degenerate continua. Finally,
the form of the images is also studied in the vicinity of avoided crossings between
interacting quasibound states.



Περίληψη

Ο όρος «μικροσκοπία φωτοϊονισμού» (ΜΦ) αναφέρεται στην πειραματική απεικονι-

στική τεχνική καταγραφής της εξερχόμενης ροής των αργών (meV) ηλεκτρονίων που
παράγονται κατά τον φωτοϊονισμό των ατόμων υπό την παρουσία ομογενούς στατικού

ηλεκτρικού πεδίου. Η ενεργειακή περιοχή ενδιαφέροντος της τεχνικής είναι κοντά στο

κατώφλι ιονισμού, όπου συνυπάρχουν καταστάσεις Stark του συνεχούς και ημιδέσμιες
(συντονισμοί). Κύριος σκοπός της ΜΦ είναι να καταγράψει και να αναδείξει τα χαρακτη-

ριστικά των συντονισμών. Σε αυτές τις ημιδέσμιες καταστάσεις, και ειδικά για το άτομο

του υδρογόνου, το διεγερμένο ηλεκτρόνιο ιονίζεται αποκλειστικά μέσω του φαινομένου

σήραγγας, σε αντίθεση με το συνεχές όπου το ηλεκτρόνιο διαφεύγει ανεμπόδιστα. Ω-

στόσο, στα μη-υδρογονικά άτομα, οι συντονισμοί είναι συζευγμένοι με τα συνεχή και

η καταγραφή τους είναι δυσκολότερη. Για να ξεπεραστούν αυτές οι δυσκολίες, στη

παρούσα εργασία εξετάζεται θεωρητικά ένα σχήμα ταυτόχρονης μονοφωτονικής και

διφωτονικής διέγερσης των τελικών καταστάσεων Stark από δύο σύμφωνες φωτεινές
δέσμες laser με συχνότητες 2ω και ω, αντίστοιχα, και πειραματικά ελεγχόμενη με-
ταξύ τους διαφορά φάσης ∆Φ. Συγκεκριμένα, χρησιμοποιώντας τη θεωρία Stark των
Harmin και Fano, η παραπάνω τεχνική μοντελοποιείται στο άτομο του νατρίου (Na) για
διέγερση από δύο αρχικές καταστάσεις, τη θεμελιώδη 3s και την πρώτη διεγερμένη 3p.
Τα απαραίτητα στοιχεία εισόδου στο μοντέλο που αφορούν στο Na (ενεργειακά επίπε-
δα, μονοφωτονικά και διφωτονικά στοιχεία πίνακα), υπολογίζονται με τη χρήση ενός

διαθέσιμου στη βιβλιογραφία παραμετρικού δυναμικού. Τα αποτελέσματα της μελέτης

δείχνουν ότι, πράγματι, με κατάλληλη επιλογή της ενεργειακής περιοχής, των εντάσεων

των φωτεινών δεσμών και της ∆Φ οι καταγραφόμενες εικόνες (ρεύμα πυκνότητας πι-
θανότητας) εμφανίζουν τον χαρακτήρα των συντονισμών, ενώ αυτές που αντιστοιχούν

σε αποκλειστική μονοφωτονική ή διφωτονική μετάβαση εμφανίζουν μόνον τον χαρα-

κτήρα των ενεργειακά εκφυλισμένων συνεχών. Τέλος, στη εργασία διερευνήθηκαν οι

καταγραφόμενες εικόνες στη γειτονιά αλληλεπιδρόντων ημιδέσμιων καταστάσεων.
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1 | Introduction

Our comprehension of systems at the atomic scale leans on quantum mechanics
and the concept of the wave function, which provides insight into predicting a sys-
tem’s properties. However, until recently the wave function itself was not measured
directly in an experiment, but the information about it was inferred through the
comparison of experimentally obtained observables, such as absorption or emission
spectra, with the corresponding theoretical predictions.

Over the years, significant advancements have been made in developing exper-
imental techniques aimed at determining the wave function itself. One prominent
example is photoionization microscopy (PM), which involves the near-threshold ion-
ization of atoms under the presence of a static electric field. These experiments
utilize charged-particle imaging spectrometers, such as the velocity map imaging
(VMI) ones, which mainly consist of a laser-atom interaction region−where the
electric field is applied−and a two-dimensional position sensitive detector (PSD)
placed perpendicular to the field axis. These spectrometers capture the electron
current probability density resulting from photoionization and whose study enables
(when the energy of the produced electrons is sufficiently low, i.e., in the meV range)
the visualization of quantum interference patterns in the recorded images. It turns
out that these interference phenomena reflect the squared modulus of the projec-
tion of the electron’s wave function to the detector’s plane. The term “microscopy”
is particularly fitting in this context, as the outgoing photoelectron wave function
extends over macroscopically large distances along the direction of the field, while
remaining confined transversely to it.

PM was first theoretically proposed in the 1980s, and thoroughly analyzed by
Kondratovitch and Ostrovsky [1–4] within the framework of the hydrogenic Stark
effect theory, which utilized semi-classical descriptions based on parabolic wave func-
tions [5, 6]. It was shown that the presence of the external electric field lowers the
ionization limit and allows for the near-threshold coexistence of continua, where
the electron can escape freely, and quasi-bound Stark states, also called resonances,
where the electron is initially bound but can escape via tunneling. Although PM has
the potential to provide insights into the wave functions of both types of states, the
primary focus was on imaging the wave functions associated with resonant states.
While the measurement of continuum wave functions have been successfully realised
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in studies dealing with photodetachment [7], the accurate measurement of resonant
features remains a relatively recent and significant accomplishment.

Early PM experiments were conducted on xenon (atomic number Z = 54), a
non-hydrogenic atom with a large ionic core [8–10]. In such multi-electron systems,
short-range interactions arise due to the interaction between the excited electron and
the residual ionic core. These interactions result in Stark states that are expressed
as mixtures of hydrogenic quasi-bound and continuum parabolic states. This mixing
causes a significant portion of the initial resonant state population to spread across
multiple degenerate continua, leading to comparable excitation amplitudes of both
resonant and continuum states. This strong resonance-continuum coupling, driven
by the ionic core size, significantly weakens the visibility of the resonant structures,
making them challenging to record.

The findings from xenon experiments highlighted that for resolving resonant
features it is necessary to minimize the coupling between the resonances and continua
(whuch depends on the ion’s size and atomic number Z), as well as to reduce the
number of continua present and, if possible, diminish their excitation. To address
these challenges, the most straightforward approach was to shift towards lighter
atoms, which led to PM studies on lithium (Li, Z = 3) [11, 12], helium (He, Z = 2)
[13], along with those on the hydrogen (H) atom itself [14], where the simpler atomic
structure and the absence of coupling between resonances and continua allowed for
a clearer observation of resonant features.

The results of the hydrogen experiments [14] not only validated theoretical pre-
dictions [1–4, 15–17] but were also recognized as one of the most significant dis-
coveries in Physics in 2013. In Li, resonant features were clearly detected, albeit
noticeably weaker than those observed in the H experiments. In contrast, He experi-
ments demonstrated resonant characteristics nearly as prominent as those in H. This
was attributed to measurements conducted near avoided crossings between pairs of
interacting resonances [18], with the resonance of interest being effectively decoupled
from the continua. Finally more recent experiments extended this research to the
medium-sized magnesium atom (Mg, Z=12), where several resonant manifestations
were recorded. However, these features were relatively weak compared to those seen
in lighter atoms [19].

In parallel with experimental progress, a series of theoretical studies proposed
that resonances in multi-electron systems could be effectively depicted under specific
conditions (spatial and spectral resolution, optimal choice of field strength etc.) [20–
22]. For example, other investigations of non-hydrogenic atoms−particularly Alkali
metal atoms such as sodium (Na)−showed that the prominence of resonances in
PM images depends heavily on the field strength, which should be carefully chosen
[23]. All these studies emphasized that focusing on energy regions just above the
ionization threshold−where the number of continua remains low−could substantially
enhance the resonant characteristics in PM images [11, 12].

Moreover, earlier as well as recent theoretical PM studies for the hydrogen atom
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demonstrated the weakening of the excitation of the continua, via the interference
between two excitation amplitudes describing the population transfer from an initial
state to the final Stark states. These amplitudes are induced by the interaction of
a bichromatic laser field composed of a fundamental frequency laser beam and one
of its mutually coherent harmonics. Each beam corresponds to a distinct excitation
pathway, coupling the same initial and final states but through different photon
absorption processes. As a result, quantum interference occurs between these two
pathways. By externally adjusting the relative phase between the two fields, phase-
sensitive coherent-control (PSCC) can be achieved [24, 25]. Carefully selecting the
intensities of the two beams and tuning the relative phase allows the manipulations
of the targeted observables. The method of two-pathway quantum interference,
along with PSCC, has been successfully used in the past to manipulate population
transfer between two bound states [26], as well as control of energy and angular
distributions of photoionization products [27].

Building on previous theoretical proposals and experimental findings, in this
work we examine a PSCC scheme that utilizes two coherent laser fields with frequen-
cies ω1 = ω and ω2 = 2ω, along with an experimentally controlled phase difference
∆Φ between them. In contrast, however, with the earlier study which was devoted
to hydrogen atom, here we focus on the more realistic and significant problem of
non-hydrogenic atoms. To this end we employ the Fano-Harmin Frame Transforma-
tion Theory (FTT) for the Stark effect, as it may be applied to the Alkali atoms.
The choice of ω, 2ω bichromatic laser field was motivated by its straightforward
implementation in an setup.

Our calculations are mainly focused on the energy range near the Stark-downshifted
ionization threshold, where the number of continua is limited. Our results for the
atom of sodium (Na) demonstrate that by carefully selecting the laser intensities
and ∆Φ, excitation to the continuum can be indeed minimized, enabling nearly ex-
clusive excitation of resonances. Additionally, motivated by the He study [13], the
present work focused in energy ranges near avoided crossings between interacting
quasi-bound states.

The necessary input data for the aforementioned Na atom (energy levels, one- and
two-photon transition matrix elements) were computed using a spherically symmet-
ric parametric model potential, that depends on the angular momentum quantum
number ℓ of the valence electron. This required parametric potential was obtained
from the literatute [28], with certain adjustments made to ensure the desired stabil-
ity and level of precision.

We believe that the perspectives opened by this study enable the extension of
PM to more complex quantum systems, broadening the scope of applications in
atomic and molecular physics.
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2 | Theory

2.1 Hydrogenic Stark Effect and Photoionization
Microscopy

The principles of photoionization microscopy (PM) are rooted in the quantum
description of the hydrogen atom under the influence of a static electric field, a
phenomenon known as the hydrogenic Stark effect [15]. In hydrogen, the interaction
of the electron with the external field augments the spherically symmetric Coulomb
attraction of the nucleus. As a result, the total interaction lacks spherical symmetry,
causing the orbital angular momentum of the electron to cease being a constant of
motion. However, the projection of the angular momentum along the direction of
the field remains conserved.

The quantum mechanical framework for describing this system is based on the
solution of the relevant time-independent Schrödinger equation. For the hydrogen
atom in the presence of a homogeneous static electric field F = Fz, and neglecting
spin-orbit effects, the Coulomb-Stark potential is expressed in atomic units (a.u.,
e = me = ℏ = (4πϵ0)−1 = 1)−which are used throughout this study unless stated
otherwise−as,

Ucs(r) = −Z

r
+ Fz (2.1)

with r = [x2 + y2 + z2]1/2 the radial spherical coordinate, and Z the nuclear charge,
Z = 1 for the hydrogen atom. The Ucs is depicted in Figure 2.1(a), in which it
can be observed that the static electric field “opens” the Coulomb trap towards the
negative z region. A cut of the two dimensional potential surface along the z-axis
is presented in Figure 2.1(b), in which two characteristic energies are highlighted.

4
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Figure 2.1: (a) Coulomb-Stark potential for the hydrogen atom. (b) Two dimen-
sional potential UCS(z) along the z-axis, Esp is represented by the horizontal yellow
line.

The first is the zero-field ionization threshold, corresponding to E = 0 in the
absence of the static field (F = 0), and the second is the field induced ionization
limit, defined by the saddle point energy Esp, which is given by,

Esp = −2
√
ZF. (2.2)

In this study, we are interested in the energy range near Esp, that is −|Esp| <
E < 0. Additionally, it would be convenient for the following discussion to introduce
the reduced energy variable

ε ≡ E/|Esp|. (2.3)

The aforementioned Schrödinger equation, incorporating the Coulomb-Stark po-
tential of Eq.(2.1) takes the form:[

− 1
2∇2 − Z

r
+ Fz − E

]
ψ(r) = 0 (2.4)

with E the energy of the system. Notably, the above equation is separable in semi-
parabolic coordinates [29]

χ = [r + z]1/2 ≥ 0, υ = [r − z]1/2 ≥ 0, φ = tan−1(y/x) (2.5)

allowing the wave function to be expressed in the form

ψ(r) = [2πχυ]−1/2X(χ)Y (υ)eimφ (2.6)

where m = 0,±1,±2, ... is the magnetic quantum number with respect to the static
field axis [29]. Substituting ψ(r) into the Schrödinger equation, we obtain two
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decoupled differential equations for the wave functions X and Y , which are written
as follows [30, 31],[

− 1
2
d2

dχ2 + UX,eff (χ) − 2Z1

]
X(χ) = 0, UX,eff (χ) = 4m2 − 1

8χ2 + Fχ4

2 − Eχ2

(2.7)[
− 1

2
d2

dυ2 + UY,eff (υ) − 2Z2

]
Y (υ) = 0, UY,eff (υ) = 4m2 − 1

8υ2 − Fυ4

2 − Eυ2.

(2.8)

These equations include the separation constants Z1 and Z2, which are related
by Z1 + Z2 = Z and act as eigenvalues to the respective differential equations. The
electron’s motion in the χ coordinate is bound, whereas ionization occurs only along
the υ coordinate. Therefore, this constitutes a scattering problem that can be solved
for specified values of m, F , and energy E.

The bound nature of the electron’s motion along the χ coordinate imposes the
asymptotic condition X(χ → ∞) → 0, leading to the quantization of Z1. This
results in a set of values of Zn1,|m|

1 , with n1 = 0, 1, 2, ... being the number of nodes
of the wave function Xn1,|m|(χ). Each given eigenvalue Zn1,|m|

1 also determines the
corresponding value of Zn1,|m|

2 = Z − Z
n1,|m|
1 . On the other hand, at small values of

χ (χ → 0), the wave function satisfies the condition X(χ → 0) = 0.
For the υ coordinate, the behavior is analogous for small values (υ → 0), where

Y (υ → 0) = 0. However, as υ → ∞ the wave function Y (υ) transitions to a WKB
(Wentzel-Kramers-Brillouin) form [32],

Y (υ → ∞) = CY

k1/2(υ) sin [θ(υ) + ϕ0] (2.9)

signaling electron ionization. In Eq.(2.9), k2(υ) = 2[2Zn1,|m|
2 − UY,eff (υ)] is the

electron’s wavenumber function and the function θ(υ) is given by,

θ(υ) =
∫ υ

k(υ′)dυ′. (2.10)

The experimentally recorded quantity of interest is the outgoing flux of ionized
electrons out of an initial state ψi, given by the probability current density,

J = − 1
2i [ψ

+
out∇(ψ+

out)∗ − (ψ+
out)∗∇(ψ+

out)]. (2.11)

As previously mentioned, the electron can escape to infinity solely via the υ-coordinate,
so we are interested in the projection,

Jυ

∣∣∣∣
υ=υdet

= J · êυ = − 1
2i

1√
χ2 + υ2

[
ψ+

out

∂(ψ+
out)∗

∂υ
− (ψ+

out)∗∂ψ
+
out

∂υ

]∣∣∣∣∣∣
υ=υdet

(2.12)
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along a paraboloid defined by constant υ = υdet [17]. For sufficiently large υdet, and
within the relevant range of electron impact radius values ρ = χυdet, this paraboloid
approximates the plane of the PSD. The latter is oriented perpendicularly to the
z-axis and positioned at zdet = −υ2

det/2.
The outgoing wave function ψ+

out can be determined by solving the time-dependent
Schrödinger equation using first-order perturbation theory. This leads to the so-
called “Schrödinger equation with a source” [15],[

− 1
2∇2 − Z

r
+ Fz − E

]
ψ+

out = −T̂ψi, (2.13)

where ψi is the initial state out of which ionization takes place, and T̂ denotes the
relevant transition operator.

Based on [15, 17], the asymptotic electron probability current density can be
written as,

Jυ(χ, φ)
∣∣∣∣
υ=υdet

∝ 1
2πχυ

√
χ2 + υ2

∣∣∣∣ ∑
n1,m

ei(θn1,|m|(υ)+ϕn1,|m|)Xn1,|m|(χ)eimφdn1,m

∣∣∣∣2∣∣∣∣
∣∣∣∣∣∣
υ=υdet

(2.14)
The quantities dn1,m = ⟨ψE,F

n1,m|T̂ |ψi⟩ in equation (2.16) denote the transition matrix
elements between the initial state ψi and the final Stark states ψE,F

n1,m, induced by a
number of laser beams. The summation over n1 formally extends from n1 = 0 to
infinity; although, beyond a certain maximum value, the terms in the summation
become negligibly small. It turns out that the surviving terms are those satisfying
the 0 ≤ Zn1,|m| ≤ Z inequalities. The m-sum includes all possible values of m, both
positive and negative, as permitted by the selection rules.

By integrating Jυ(χ, φ) over the surface of the υ = υdet paraboloid (where the
surface element along the χ and φ coordinates is dS = χυ

√
χ2 + υ2dχdφ) [30], we

obtain the total ionization rate, wtot,

wtot =
∫
Jυdet

dS ∝
∑

n1,m

|dn1,m|2 (2.15)

which is proportional to the incoherent sum over the squared modulus of the exci-
tation matrix elements. The latter contain the laser field amplitudes.

Furthermore, as υdet → ∞ we can make the approximation
√
χ2 + υ2

det ≈ υdet

and we arrive at,

Jυ(χ, φ)
∣∣∣∣
υ=υdet

∝ 1
χ

∣∣∣∣ ∑
n1,m

ei(θn1,|m|(υ)+ϕn1,|m|)Xn1,|m|(χ)eimφdn1,m

∣∣∣∣2
∣∣∣∣∣∣
υ=υdet

. (2.16)

as the final form of the current probability density.
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2.2 Multielectron atoms

It is essential to extend our discussion to multi-electron atoms, dealing particu-
larly with a highly excited Rydberg electron outside an ionic core. Rydberg atoms
are characterized by a valence electron excited to a high n orbital, exhibiting proper-
ties that resemble those of hydrogen. This similarity becomes increasingly accurate
as the principal quantum number n increases [6]. For the hydrogen atom, the energy
levels of the Rydberg states are given by

En = IH − RydH

n2 (2.17)

where IH and RydH are the ionization potential and the Rydberg constant of hydro-
gen atom, respectively. After ignoring spin-orbit coupling, the energy of the valence
electron for high-n Rydberg states, is transformed as,

Enℓ = IA − RydA

(n− µℓ)2 (2.18)

with IA and RydA the ionization potential and mass-corrected Rydberg constant of
the specific atom. The distinction lies in the presence of the parameter µℓ, known as
quantum defect, which arises from the interaction between the excited electron and
the ionic core. This interaction is induced either by the penetration of the excited
low-ℓ electron wave functions into the ionic core, or by the polarization of the core
due to the presence of the high-ℓ Rydberg electrons. Consequently, this interaction
causes the Rydberg energy levels to shift relative to their hydrogenic counterparts.
The ℓ subscript in µℓ signifies that the quantum defect is strongly dependent on the
orbital angular momentum quantum number ℓ while it becomes nearly independent
of n close to the ionization limit.

In this work, we are interested in the Rydberg states of Alkali atoms with a
single valence electron outside closed (sub)shells. As a result, the Rydberg electron
interacts with a spherically symmetric core. It can be demonstrated that for these
atoms, the probability current density retains the same form as in Eq.(2.16). How-
ever, in regards to the transition matrix elements dn1,m, there are quite important
differences from the hydrogenic case. According to the Fano-Harmin Frame Trans-
formation Theory (FTT) [33–35], these matrix elements are modified as follows,

dn1,m =
∑

ℓ

dm
ℓ α

m
ℓ,n1 (2.19)

with dm
ℓ the zero-static-field excitation matrix elements that can be evaluated in

spherical coordinates. In equation (2.19), the ℓ-sum runs over all the final state
values allowed by the selection rule ∆ℓ = ±1 per absorbed photon. Regarding the
factors αm

ℓ,n1 , they are defined by

αm
ℓ,n1 ≡

∑
n′

1

Wm
ℓ,n′

1
B

|m|
n′

1,n1
(2.20)

8
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and their values are contingent upon the elements of the matrices W and B [20, 36]
that are written as:

B|m| ≡
[
I − iR|m|

]−1
(2.21)

Wm ≡ cosδ−1[Um]T
[
I − cotγ|m|K|m|

]−1
, W−|m| = (−1)|m|W|m| (2.22)

In equations (2.21) and (2.22), I is the identity matrix and R is the reaction
matrix,

R|m| = K|m|
[
I − cotγ|m|K|m|

]−1
(2.23)

which depends on the matrix K,

K|m| = Umtanδ[Um]T. (2.24)

The T superscript in Eq.(2.22) indicates transposition. The connection between the
Stark parabolic channels and the spherical, zero-static-field ones is established by
the frame transformation matrix U, which satisfies the symmetry property U−|m| =
(−1)|m|U|m|. Furthermore, the origin of the diagonal matrix cotγ|m| is hydrogenic
and reflects the n1-specific relative phase γ|m|

n1 between the hydrogenic regular and
irregular Y -wavefuntions for large υ [35]. Lastly, the diagonal matrices, cosδ and
tanδ, consists of the phases δℓ = π · µℓ, where µℓ are the zero-field quantum defects
associated with the relevant Rydberg series [34, 37, 38].

For the purely hydrogenic case, the quantum defects are zero, leading to R =
K = 0, and Eq.(2.21) translates to B = I. In this case, the absence of non-zero
off-diagonal elements of the matrix B indicates no channel mixing. On the other
hand, non-zero quantum defects result in non-zero off-diagonal elements in the B
matrix, leading to coupling among the n1 channels. This channel mixing is evident
in Eq.(2.20), and as a result the quantities αm

ℓ,n1 can be broken down into ‘mixing
amplitudes’ between a given n1 channel and all of the n′

1 channels [31].

2.3 Matrix Elements in a bichromatic field

The calculation of Jυ(χ, φ) in Eq.(2.16) necessitates the evaluation of the corre-
sponding transition matrix elements dn1,m. As outlined in Eq.(2.19), this involves
computing the zero-field excitation matrix elements in spherical coordinates. More
specifically, in this work, we examine the interaction of non-hydrogenic atoms with
a fundamental frequency (ω) laser beam and its mutually coherent second harmonic
(2ω), which induces two- and one-photon transitions, respectively, to the final Stark
states ψℓ,m. The wave functions and the energy levels of the initial and final states
of the specific Alkali atom employed, are calculated using the Schrödinger equation,[

− 1
2∇2 + U(aℓ; r) − E

]
ψ(r) = 0. (2.25)
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where U(aℓ; r) is a spherically symmetric, atom dependent parametric model poten-
tial that is obtained from the literature [28].

In the above problem at hand, the transition operator can be described as

T̂ = T̂
(1)
2ω + T̂ (2)

ω (2.26)

with T̂ (1)
2ω and T̂ (2)

ω being the one- and two-photon transition operators, respectively,
of the two light beams [30]. The two-photon transitions can be described by one-
photon ones between the final states ψℓ,m and a virtual state ψν . The latter is
calculated using the Dalgarno-Lewis method [39]. The corresponding differential
equation is written as,

[
− 1

2∇2 + U(aℓ; r) − Eν

]
ψν = −T̂ (1)

ω ψi, (2.27)

with Eν = Ei + ω = (E + Ei)/2 the virtual state energy, and U(aℓ; r) is the same
parametric potential used in Eq.(2.25). With the same reasoning, we may replace
⟨ψℓ,m|T̂ (2)

ω |ψi⟩ by ⟨ψℓ,m|T̂ (1)
ω |ψν⟩, and finally the zero-field transition matrix elements

from the initial or virtual state to the final Stark states ψℓ,m can be expressed as

d
m(1)
ℓ = ⟨ψℓ,m|T̂ (1)

2ω |ψi⟩ d
m(2)
ℓ = ⟨ψℓ,m|T̂ (1)

ω |ψν⟩. (2.28)

In Eqs.(2.28) the single-photon dipole transition operators of the two light beams
can be expressed as,

T̂ (1)
ω = Eωe

iΦωεω · r (2.29)

T̂
(1)
2ω = E2ωe

iΦ2ωε2ω · r (2.30)
where εω and ε2ω are linear polarization vectors, Eω and E2ω denote real time-
independent amplitudes and Φω, Φ2ω are fixed but controllable phases.

Using Eq.(2.19) for non-hydrogenic atoms we obtain the total transition matrix
elements,

dn1,m =
∑

ℓ

d
(1)m
ℓ αm

ℓ,n1 +
∑
ℓ′
d

(2)m
ℓ′ αm

ℓ′,n1 (2.31)

where ℓ and ℓ′ refer to the allowed final states angular momentum quantum numbers
for the one- and two-photon transitions, respectively. Then, by writing the virtual
state in the form,

ψν = Eωe
iΦω ψ̃ν , (2.32)

and introducing

η ≡ E2
ω

E2ω

∆Φ ≡ 2Φω − Φ2ω (2.33)

further manipulation of Eq.(2.31) leads to,

dn1,m = E2ωe
iΦ2ω

[ ∑
ℓ

D
(1)m
ℓ αm

ℓ,n1 + ηei∆Φ ∑
ℓ′
D

(2)m
ℓ′ αm

ℓ′,n1

]
(2.34)

10
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where,

D
(1)m
ℓ = ⟨ψℓ,m|ε2ω · r|ψi⟩ D

(2)m
ℓ′ = ⟨ψℓ′,m|εω · r|ψ̃ν⟩ (2.35)

are the single- and two-photon transition matrix elements independent of the laser
field amplitudes and phases.

The method for calculating the initial, virtual and final state wave functions, as
well as the matrix elements D(1)m

ℓ and D(2)m
ℓ′ is presented in detail in the Appendix.

2.4 Excitation schemes

We consider first an excitation scheme where the initial state ψi is the ground
|ngs⟩ state of an Alkali metal atom (where ng = 2, 3, 4, 5, 6 refers to Li, Na, K,
Rb, and Cs, respectively), characterized by ℓ = 0 and m = 0, as illustrated in
Figure (2.3). This is a standard bichromatic ω/2ω excitation scheme that has been
repeatedly analyzed in previous studies [30, 40, 41], due to its relative simplicity.
This scheme may be implemented via the experimental arrangement depicted in
Figure 2.2, and includes a photoionization microscope [13, 42]. The latter consists of
the repeller, the extractor, and ground electrodes, along with an Einzel lens for image
magnification and a two-dimensional PSD. The laser-atom interaction is confined
between the repeller and extractor electrodes, where the laser beam(s) intercept an
atomic beam consisting of ground state Alkali atoms. The linear polarization of both
laser fields (propagating along the x-axis) are aligned parallel to the field direction
(z-axis, π-polarization). This configuration imposes the selection rule ∆m = 0
per photon, resulting in m = 0 final states. Additionally, the dipole selection rule
∆ℓ = ±1 permits ℓ = 1 final states for single-photon transitions and ℓ = 0, 2 ones
for two-photon transitions.

Despite being apparently simple, the PSCC scheme of Figures 2.2 and 2.3 presents
certain limitations. Specifically, assuming gaussian laser beams, we may use the
relation w(x) = w0

√
1 + (x/x0)2 for the beam radius, where w0 = fλ/πD and

x0 = πw2
0/λ, are the beam waist and confocal parameter, respectively. In these

expressions, f is the focal length of the mirror focusing the two laser beams in the
laser-atom interaction region [43], D the beam diameter in this mirror and λ the
laser wavelength [44].

11
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Figure 2.2: Schematic view of the suggested experimental setup, using a photoion-
ization microscope consisting of a VMI spectrometer with the repeller (a), extractor
(b), and ground (c) electrodes, a three-element Einzel lens (d), and a PSD (e), along
with the atomic beam (f ), and control laser beams (ω/2ω) (g).

Figure 2.3: One- and two-photon excitation from the m = 0, ℓ = 0 ground state.

Based on this laser beam profile, and assuming a common diameter D for the two
light beams at the focusing mirror, a region is formed between the ω and 2ω (high-
lighted in blue of Figure 2.4) where these beams do not overlap. This non-overlap
leads to the formation of parasitic charges (ions and electrons). The parasitic ions
deteriorate the PSCC efficiency of the total signal, while parasitic electrons compro-
mise the control capabilities of the recorded images (differential cross section).
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Figure 2.4: Non-overlap region (blue area) using the ω, 2ω laser beams on the
excitation scheme of Figure 2.3.

Nevertheless, under these conditions, following from Eq.(2.34) the transition
matrix elements are expressed as,

dn1,0 = E2ωe
iΦ2ωD

(1)0
1

[
α0

1,n1 + ηei∆ΦΛ(1)(α0
0,n1 + Λ(2)α0

2,n1)
]
, (2.36)

where we have defined the Λ-parameters as,

Λ(2) ≡ D
(2)0
2

D
(2)0
0

Λ(1) ≡ D
(2)0
0

D
(1)0
1

. (2.37)

With the matrix elements now defined, the electron probability current density, as
defined in Eq.(2.16), in written as,

Jυdet
(χ) ∝ 1

χ

∣∣∣∣∣∣
∑
n1

[
α0

1,n1 +ηei∆ΦΛ(1)(α0
0,n1 +Λ(2)α0

2,n1)
]
ei(θn1,0+ϕn1,0)Xn1,0(χ)

∣∣∣∣∣∣
2

. (2.38)

In order to overcome the limitations discussed above, we have examined another
bichromatic excitation scheme where the initial state ψi is the lower excited state
of an Alkali metal atom. Thus, the initial ψi = |ngp⟩ state is characterized by
quantum numbers ℓ = 1 and |m| = 1, as shown in Figure 2.5. To prepare the
system in this initial state, we use an excitation laser beam which propagates along
the negative z-axis and whose linear polarization is perpendicular to the static field
direction (σ-polarization). This is implemented as shown in Figure 2.6. This enforces
the selection rule |∆m| = 1. Further, the ∆m = 0 dipole selection rule for the
bichromatic laser fields (linear polarizations aligned parallel to F), results in final
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states that are restricted to |m| = 1 and ℓ = 2 for the single-photon transition, while
for the two-photon transition the final states have ℓ = 1, 3.

Figure 2.5: One- and two-photon excitation from the initial state with ℓ = 1 and
|m| = 1.

Figure 2.6: Schematic view of the suggested experimental setup, using a photoion-
ization microscope consisting of a VMI spectrometer with the repeller (a), extractor
(b), and ground (c) electrodes, a three-element Einzel lens (d), and a PSD (e), along
with the excitation laser (f ), the atomic beam (g) and control laser beams (ω/2ω)
(h).

This excitation scheme addresses the drawbacks of the one analyzed previously
by restricting the laser-atom interaction to a smaller region where all three laser

14
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beams overlap (gray area in Figure 2.7), thus preventing the formation of charged
particle signals. Additionally, the small overlap region is compatible with the VMI
spectrometer operation. This excitation scheme probes m > 0 final Stark states,
which are less core penetrating and consequently closer to the hydrogenic case.

Figure 2.7: Interaction region (gray area) of the excitation scheme of Figures 2.5
and 2.6.

In this case, the transition matrix elements of Eq.(2.34) are expressed as

dn1,±1 = E2ωe
iΦ2ωD

(1)1
2

[
α±1

2,n1 + ηei∆ΦΛ(1)(α±1
1,n1 + Λ(2)α±1

3,n1)
]
, (2.39)

where the Λ parameters are defined as,

Λ(1) ≡ D
(2)1
1

D
(1)1
2

Λ(2) ≡ D
(2)1
3

D
(2)1
1

. (2.40)

Note that, the electron probability current density from Eq.(2.16) includes only
two terms in the m-summation, corresponding to m = 1 and m = −1. The matrix
elements dn1,−1 and dn1,1 are related by dn1,−1 = −dn1,1, following the definition of the
alpha factors in Eq.(2.20). The latter depend on the W matrix which exhibits the
property W−|m| = (−1)|m|W |m|, as outlined in Eq.(2.22). This affects the summation
over the possible m values, resulting in the following expression for the probability
current density,

Jυdet
(χ, φ) ∝ sin2 φ

χ

∣∣∣∣∣∣
∑
n1

dn1,1e
i(θn1,1+ϕn1,1)Xn1,1(χ)

∣∣∣∣∣∣
2

. (2.41)

Then, substituting the definition of dn1,1 from Eq.(2.39) we derive the final form for
the electron probability current density in the excitation of Figure 2.5,

Jυdet
(χ, φ) ∝ sin2 φ

χ

∣∣∣∣∣∣
∑
n1

[
α1

2,n1 + ηei∆ΦΛ(1)(α1
1,n1 + Λ(2)α1

3,n1)
]
ei(θn1,1+ϕn1,1)Xn1,1(χ)

∣∣∣∣∣∣
2

(2.42)
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The above equation explicitly shows the sin2 φ angular distribution of Jυdet
(while

the radial distribution is given by its χ-dependence). This angular distribution is
anticipated to exhibit a nodal line along the horizontal χ-axis as a distinct feature.

2.5 Contrast and Optimization

Assuming perfect overlap between the two light beams, the efficiency of the
PSCC approach for a given observable Ω is determined by the achieved contrast
V Ω,

V Ω = Ω+ − Ω−

1
2(Ω+ + Ω−) (2.43)

where Ω+ and Ω− represent the values of the observable when the phase difference is
∆Φ = 0 and ∆Φ = π, respectively. According to this definition the maximum value
of the contrast, |V Ω|, is 2. This maximum occurs when either Ω+ or Ω− equals zero
[30].

To achieve the optimum absolute contrast value, |V Ω
opt|, we apply the condition

dV Ω/dη = 0 which provides the value of ηopt for the given observable. Substituting
ηopt into Eq.(2.43) yields the optimum contrast, V Ω

opt. This condition turns out to
be Ω(1) = Ω(2) [17, 40, 41], indicating that optimum contrast is achieved when the
individual one-photon and two-photon excitation contributions to the observable Ω
are equal [30, 41]. However, if either Ω(1) or Ω(2) is equal to zero, the observable
cannot be controlled.

Applying the above considerations, and using the total excitation rate, Ω = wtot,
as the observable, we focus on excitations that lead to the same (and preferably
single) m final states values, as described in Section 2.4. Using Eqs.(2.15) and
(2.34) we derive the following expression for the ionization rate

wtot ∝
∑
n1

∣∣∣∣ ∑
ℓ

D
(1)m
ℓ αm

ℓ,n1 + ηei∆Φ ∑
ℓ′
D

(2)m
ℓ′ αm

ℓ′,n1

∣∣∣∣2 (2.44)

Note that, the implementation of a PSCC scheme for the total ionization rate,
wtot, achieved via simultaneous one- and two-photon atomic excitation, requires the
presence of a static electric field (which is not the case for the total cross section) [40,
41]. Setting ∆Φ = 0 and ∆Φ = π we obtain w+

tot and w−
tot, respectively. Substituting

these into the contrast definition provided in Eq.(2.43) and applying the optimization
condition, dV wtot/dη = 0, we determine the optimum contrast value:

V wtot
opt = 2

∑
n1

Re
[ ∑

ℓ
D

(1)
ℓ αm

ℓ,n1(∑
ℓ′
D

(2)
ℓ′ αm

ℓ′,n1)∗
]

[ ∑
n1

∣∣∣D(1)
ℓ αm

ℓ,n1

∣∣∣2 ∑
n1

∣∣∣ ∑
ℓ′
D

(2)
ℓ′ αm

ℓ′,n1

∣∣∣2]1/2 (2.45)
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However, as indicated by the above equation, although the equality w
(1)
tot = w

(2)
tot

can be used as a guideline for attaining the highest possible contrast, it does not
necessarily result in the aforementioned maximum contrast value of 2.

Following the same computational steps and using the probability current density
as the observable, Ω = Jυdet

, along with Eqs.(2.16) and (2.34), we derive the following
expression for Vopt,

V
Jυdet

opt (χ) = 2Re[A(χ)B∗(χ)]
|A(χ)||B(χ)| (2.46)

with A(χ) and B(χ) defined here as,

A(χ) ≡
∑

n1,m

ei(θn1,|m|(υdet)+ϕn1,|m|)Xn1,|m|(χ)eimφ
∑
ℓ′
D

(2)m
ℓ′ αm

ℓ′,n1 (2.47)

B(χ) ≡
∑

n1,m

ei(θn1,|m|(υdet)+ϕn1,|m|)Xn1,|m|(χ)eimφ
∑

ℓ

D
(1)m
ℓ αm

ℓ,n1 (2.48)

The above equations reveal that, for a given energy E and field strength F , both
the magnitude and sign of the optimum contrast, Vopt, can vary along the radial
coordinate ρ (as ρ ∝ χ). Consequently, each radial position within Jυdet

may exhibit
different Vopt values, making it challenging to achieve uniform control across the
entire image.
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3 | Results and Discussion

3.1 PSCC just above the saddle point energy

For both excitation schemes outlined in Section 2.4, we conducted a compre-
hensive analysis of PSCC using sodium (Na) target atoms under different electric
field strengths. Sodium was chosen due to its atomic number (Z = 11), which is
close to that of Mg, a system previously investigated in experiments that revealed
faint resonant features with considerable difficulty [19]. Our study dealt with field
strengths ranging from 900 V/cm to 1 kV/cm, and just above the saddle point en-
ergy, Esp. The choice on the energy range was motivated by the reduced number of
continua in this vicinity, facilitating the easier elimination of continuum excitation
via PSCC [41]. Within this energy range, interesting avoided crossings were spotted,
further supporting the reasoning of decoupling the resonance from the degenerate
continua in their neighborhood [13]. Within this energy range and field strengths,
we evaluated the total cross section for one-photon ionization, σ(1) = w(1)/Ĩ (Ĩ de-
noting the intensity per photon energy) where interactions between resonances are
evident. Note that, the resonant line shapes for one- and two-photon ionization
may differ but the locations of avoided crossings remain practically the same. Of
course, control over the total cross section requires the knowledge of the two-photon
counterpart as well.

3.1.1 m = 0 final Stark states

For the excitation scheme illustrated in Figure 2.3, our analysis focused on the
energy range from −182.5 cm−1 to −177.0 cm−1, with electric field strengths span-
ning from 915 V/cm to 980 V/cm with 5 V/cm intervals. Within this energy range,
we evaluated the total cross-section for one-photon transitions, σ(1)

tot , as shown in
Figure 3.1. Three resonances are clearly visible in this Figure, with the two promi-
nent ones coming into close proximity at around 940–950 V/cm, before diverging
again as the electric field increases. This intricate behavior is further highlighted in
Figure 3.2, where the energy of each resonance, corresponding to the maximum of
the spectral line, is plotted as a function of the electric field strength.
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Figure 3.1: Total cross section σ(1)
tot evaluated for one-photon ionization out of the

ground state in the energy range (−182.5,−177.0) cm−1 for electric field strengths
varying from 915 V/cm to 980 V/cm for the m = 0 scenario of Figure 2.3.19
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Figure 3.2: Energy of the spectral line maxima of the three resonances at each field
of Figure 3.1. The two resonances under study are marked with hollow symbols.

In Figure 3.2, it is evident that the third resonance appears to approach the
other two as the field increases. Visual inspection of this Figure supports the claim
that, at 980 V/cm the last two resonances have merged with each other, and thus
it is not possible to extract the energy of the spectral line maximum for the last
resonance. This is indicated by a missing value at 980 V/cm of the blue line in
Figure 3.2.

We extended our evaluations to the two resonances at 940 V/cm, with energies
−180.232 cm−1 and −179.969 cm−1, which translates to the reduced energy values
based on Eq.(2.3), ε = −0.96023 and ε = −0.95884, respectively. These energies
are also highlighted in Figure 3.2 for this specific field. Utilizing the analysis of
Chapter 2, with the optimization condition of Eq.(2.5), we evaluated Vopt(χ) in this
field strength for the energies of these two resonances, depicted in Figure 3.3. This
figure clearly demonstrates that, for these energies, Vopt(χ) shows no sign changes,
thereby making control over the images viable.
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(a) ε = −0.96023 or E = −180.232 cm−1 (b) ε = −0.95884 or E = −179.969 cm−1

Figure 3.3: Optimum contrast Vopt as a function of χ for the resonances at 940
V/cm in the m = 0 scenario of Figures 2.3 and 2.2.

Specifically, for the resonance with energy ε = −0.96023 we calculated the prob-
ability current density, defined in Eq.(2.16), for one- and two-photon transitions,
separately, depicted in Figure 3.4. Then using the ω/2ω excitation scheme for
∆Φ = 0 and ∆Φ = π, we applied the optimization condition to determine the op-
timum value of η at a specific χ-radius, which for this resonance was calculated at
χ = 6.81 a.u., to enhance the resonant feature of the images. The relevant images
are depicted in Figure 3.5.

(a) One-photon. (b) Two-photon.

Figure 3.4: m = 0: Ionization for the resonance with ε = −0.96023 at 940 V/cm.
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(a) ∆Φ = 0. (b) ∆Φ = π.

Figure 3.5: m = 0: ω/2ω control for the resonance with ε = −0.96023 at 940
V/cm.

The respective images for the resonance with ε = −0.95884 are presented in
Figure 3.6 and 3.7.

(a) One-photon. (b) Two-photon.

Figure 3.6: m = 0: Ionization for the resonance with ε = −0.95884 at 940 V/cm.
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(a) ∆Φ = 0. (b) ∆Φ = π.

Figure 3.7: m = 0: ω/2ω control at χ = 3.96 a.u. for the resonance with ε =
−0.95884 at 940 V/cm.

It is evident, particularly for the resonance at ε = −0.95884, that while the
single and two photon transitions individually showed no differences, the ω/2ω did.
However, in these cases it was not possible to enhance the resonant features. This
may be attributed to the fact that for both of these resonances the interacting
continuum states are two, one with n1 = 0 and one with n1 = 1.

3.1.2 |m| = 1 final Stark states

Continuing our study of the excitation scheme described in Section 2.4 and illus-
trated in Figure 2.5, we performed a detailed analysis for the same target atom (Na)
under electric fields ranging from 920 V/cm to 990 V/cm. Our study focused on an
avoided crossing within the energy range of -184.5 cm−1 to -178.0 cm−1, a region se-
lected just above the Esp. In this range, we evaluated the total cross-section for one
photon transitions, σ(1)

tot , as shown in Figure 3.8, revealing intricate resonance inter-
actions. Notably, three distinct resonances were identified in this avoided crossing,
with the third one traversing the other two as the electric field increases. This be-
havior becomes particularly pronounced beyond 960 V/cm, with the third resonance
overlapping the second one and cannot be distinguished separately, as highlighted
in the magnified section of Figure 3.8. Figure 3.9 illustrates the energy correspond-
ing to the maximum of the spectral lines of each of the three resonances, with the
exception of the resonance at 970 V/cm (indicated by a gap in the blue line). It
can be observed from Figures 3.8 and 3.9 that the first two resonances exhibit their
closest separation at 935 V/cm.
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Figure 3.8: Total cross section σ
(1)
tot evaluated for one photon transitions in the

energy range (−184.5,−178.0) cm−1 for electric field strengths varying from 920
V/cm to 990 V/cm for the m = 1 case.
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Figure 3.9: Energy of the spectral line maxima of the three resonances at each
field for the |m| = 1 scenario of Figure 2.5.

Our study particularly focused on two specific electric field strengths: 935 V/cm,
where the two resonances exhibit their closest approach, and 950 V/cm, where these
resonances are fairly distant. For each resonance at these fields, we calculated the
probability current density, as defined in Eq.(2.42), separately for single- and two-
photon transitions. Then using the ω/2ω excitation scheme for ∆Φ = 0 and ∆Φ = π,
we applied the optimization condition to determine the optimum value of η at specific
radius χ to enhance the depiction of resonant features.

We evaluated Vopt as a function of χ, as it was defined in Eq.(2.46), for these
two electric field strengths and resonant energies to study its behavior. Our analysis
revealed that Vopt(χ) remains relatively stable and consistent, exhibiting no sign
changes and maintaining nearly constant values in the vicinity of the resonances,
approaching the maximum theoretical value of 2. This stability is presented in
Figure 3.10, which demonstrates the behavior of Vopt(χ) for two resonances at their
respective fields.
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(a) ε = −0.96881 or −181.358 cm−1. (b) ε = −0.96541 or −182.165 cm−1.

Figure 3.10: Optimum contrast Vopt as a function of χ in the m = 1 case at (a)
935 and (b) 950 V/cm.

Specifically, at 935 V/cm the energies of the first two resonances are −181.412
cm−1 (ε = −0.9691) and −181.358 cm−1 (ε = −0.96881). For this resonance, we
evaluated J (1) and J (2) for one- and two-photon transitions separately and then
applied the optimization condition J (1) = J (2). This condition was met precisely at
two radii, as seen in Figure 3.11, but we applied our evaluations at χ = 9.91 a.u as
marked in Figure 3.11(a).

Figure 3.11: (a) Optimization condition along the radius for χ = 9.91. (b) The
target state with n1 = 2. (c) The continuum state with n1 = 0.
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For the resonance with ε = −0.9691, the images corresponding to the one- and
two-photon transitions evaluated separately, are presented in Figure 3.12.

(a) One-photon. (b) Two-photon.

Figure 3.12: Ionization for the resonance with ε = −0.9691 at 935 V/cm.

The relative ω/2ω images, evaluated for ∆Φ = 0 and ∆Φ = π are shown in Figure
3.13. For ε = −0.9691, two nodes are observed in the images below, indicating that
the targeted state has n1 = 2, which is only evident with ∆Φ = 0. For this energy,
there is only one continuum state, with n1 = 0, interacting with this resonance.

(a) ∆Φ = 0. (b) ΔΦ=π.

Figure 3.13: Control for the resonance with ε = −0.9691 at 935 V/cm.

It is clear that by applying the optimization condition and adjusting the relative

27



3.1. PSCC just above the saddle point energy Chapter 3. Results and Discussion3.1. PSCC just above the saddle point energy Chapter 3. Results and Discussion3.1. PSCC just above the saddle point energy Chapter 3. Results and Discussion

phase between the two laser fields, the resonant characteristics can be effectively
revealed.

The same process was applied for the resonance with ε = −0.96881 using the
optimization condition at χ = 6.81 a.u. (Figure 3.14).

Figure 3.14: (a) Optimization condition at χ = 6.81 a.u. along with the (b) target
(n1 = 1) and (c) continuum (n1 = 0) state.

The evaluated images corresponding to the one- and two-photon transitions, are
depicted in Figure 3.15 and , the relative ω/2ω evaluated images can be seen in
Figure 3.16. At this energy, based on the number of nodes, it is evident that the
target state has n1 = 1, while the only continuum state has n1 = 0.
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(a) One-photon. (b) Two-photon.

Figure 3.15: Ionization for the resonance with energy ε = −0.96881 at 935 V/cm.

(a) ∆Φ = 0. (b) ΔΦ=π.

Figure 3.16: Control at χ = 6.81 a.u. for the resonance with ε = −0.96881 at 935
V/cm.

The same process was applied to the three resonances at 950 V/cm with energies
ε = −0.96541, ε = −0.96429 and ε = −0.96073. For the first resonance it is evident
that the target state has n1 = 2, while for the other resonances the target state has
n1 = 1. For all three resonances at this field there is only one continuum state n1 = 0
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As in the previous field, the images for separate one- and two-photon transition of
the first two energies are shown in Figures 3.17 and 3.19, while the ω/2ω ones are
presented in Figures 3.18 and 3.20.

(a) One-photon. (b) Two-photon.

Figure 3.17: Ionization for the resonance with ε = −0.96541 at 950 V/cm.

(a) ∆Φ = 0. (b) ΔΦ=π.

Figure 3.18: Control at χ = 3.56 a.u. for the resonance with ε = −0.96541 at 950
V/cm.
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(a) One-photon. (b) Two-photon.

Figure 3.19: Ionization for the resonance with ε = −0.96429 at 950 V/cm.

(a) ∆Φ = 0. (b) ΔΦ=π.

Figure 3.20: Control at χ = 7.16 a.u. for the resonance with ε = −0.96429 at 950
V/cm.

For the ε = −0.96073, the resonant features could be distinctly identified us-
ing either single- or two-photon transitions independently, as well as in the ω/2ω
configuration with ∆Φ = π. This behavior was not observed for the other energy
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values at this field. However, as shown in Figure 3.22, the ω/2ω with ∆Φ = 0 the
resonance of interest appears more intense.

(a) One-photon. (b) Two-photon.

Figure 3.21: Ionization for the resonance with ε = −0.96073 at 950 V/cm.

(a) ∆Φ = 0. (b) ΔΦ=π.

Figure 3.22: Control at χ = 7.46 a.u. for the resonance with ε = −0.96073 at 950
V/cm.

These evaluations clearly demonstrate that by employing the PSCC scheme with
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an appropriate selection of energy, field strength, laser intensities, and the phase
difference between the two fields, it is possible to selectively extract the resonant
features of a specific target state while minimizing the contribution from the con-
tinuum.

3.2 PSCC with many continuum channels

An intriguing feature of slow photoelectron imaging is the appearance of two
distinct concentric patterns in the recorded images [45, 46]. The outer structure is
related to electron trajectories that follow a classical description from the source to
the detector. These trajectories are intricate and cross the negative z axis at least
once during their route, this contribution is called indirect. The inner structure,
known as the direct contribution, emerges only for E ⩾ Edir ≈ 0.775Esp, which
translates to εdir = −0.775, and originates from simple quasi-parabolic trajectories
that do not meet the z axis. These contributions are categorized based on the
electron’s launch angle β relative to the electric field (with β = 0 denoting the
ejection along the field direction +z while β = π denotes the ejection opposite to
the field direction −z and towards the PSD plane). For all escaping trajectories,
the launch angles satisfies β ⩾ βc ≡ 2 arcsin [E/Esp](E ⩽ 0), whereas for β ⩽ βc

the electron remains classically bound. Direct trajectories are differentiated from
indirect ones by the angle β0, where the corresponding trajectory intersects the z
axis at infinity. Indirect trajectories are associated with launch angles within the
range [βc, β0], while direct ones correspond to angles in [β0, π] [12, 47].

For both excitation schemes, our calculations concentrate on two specific, near
εdir energy values, ε = −0.78 and ε = −0.7, to investigate the contributions from
both direct and indirect trajectories.

(a) m = 0 (b) m = 1

Figure 3.23: Optimum contrast Vopt as a function of χ for ε = −0.7 and field
strength 1 kV/cm.
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For the fields analyzed in the previous section, we examined the contributions
from both direct and indirect trajectories. Specifically, for the m = 0 scenario at
940 V/cm, Vopt as a function of χ is shown in Figure 3.24 and 3.25 for ε = −0.78
and ε = −0.7, respectively. At these energies, numerous open continuum channels
are available: specifically, for ε = −0.78, channels range from n1 = 0 to n1 = 9,
while for ε = −0.7, channels extend from n1 = 0 to n1 = 13.

Figure 3.24: Vopt(χ) for the m = 0 scenario, ε = −0.78, and field strength 940
V/cm

Figure 3.25: Vopt(χ) for the m = 0 scenario, ε = −0.7, and field strength 940
V/cm
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The results indicate that control over the entire image is not feasible, due to the
sign changes exhibited by Vopt(χ) across the entire χ radius. However, as it can be
seen from Figure 3.24, for ε = −0.78, control may still be possible for small values
of χ ≤ 5, where it remains relatively stable. In contrast, for ε = −0.7, such control
is not achievable, as Vopt(χ) shows sign changes across the entire χ range.

The corresponding evaluation for the m = 1 scenario is presented in Figures 3.26
and 3.27 at 935 V/cm. In this case, the open continuum channels range from n1 = 0
to n1 = 9 for ε = −0.78, while for ε = −0.7, they extend from n1 = 0 to n1 = 12.

Figure 3.26: Vopt m = 1 F=935 ε = −0.78

Figure 3.27: Vopt m = 1 F=935 ε = −0.7

35



3.2. PSCC with many continuum channels Chapter 3. Results and Discussion3.2. PSCC with many continuum channels Chapter 3. Results and Discussion3.2. PSCC with many continuum channels Chapter 3. Results and Discussion

The results for Vopt, in the |m| = 1 scenario, did not demonstrate any sign
changes, suggesting the possibility to achieve control in certain χ ranges. Nonethe-
less, the values of Vopt were not relatively constant, indicating that manipulation of
the image remains challenging.

Consequently, as we explored higher energy regions deeper within the continuum
the number of coupling channels increases significantly. An important consequence
is that Vopt(χ) begins to exhibit sign changes, as depicted in the previous figures.
This shift introduces significant difficulties in achieving control across the entire
image, as the interference patterns become more complex.
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Conclusions

This work presents the theoretical investigation of a scheme of simultaneous
one- and two-photon excitation of the Stark states using two coherent laser beams
with frequencies 2ω and ω, respectively, and an experimentally controlled phase dif-
ference ∆Φ between them. This phase-sensitive coherent excitation approach was
designed to effectively record and accentuate resonant features on the photoioniza-
tion microscopy images. As opposed to earlier studies dealing with the application
of coherent control in the photoionization microscopy of hydrogen atoms [30], here
we have applied the Harmin-Fano Stark theory to a non-hydrogenic atom, specifi-
cally sodium (Na) atom, in order to address the mixing of resonant and continuum
channels charasteristic of these atoms. Moreover, we have considered two excitation
schemes, one with the 3s ground state as the initial state (leading to m = 0 final
Stark states), and the other where the initial state is the 3p first excited one (lead-
ing to |m| = 1 final Stark states). The latter exhibits certain important advantages
from an experimental point of view and in conjunction with the VMI spectrometer-
s/microscopes employed for these studies so far.

The choice of an Alkali metal atom, is guided by the fact that the employed frame
transformation theory, as formulated by Harmin, is better adapted for the study of
the Stark effect of these atoms. Furthermore, Na atom (Z = 11) is selected among
the Alkalies because it is almost isoelectronic to Mg (Z = 12) which has been studied
experimentally [19] and where the resonance features in the recorded images were
quite difficult to observe without applying any phase-sensitive coherent excitation
scheme. In fact, our calculations have shown that photoionization microscopy images
corresponding to solely single- or solely two-photon excitation of Na, rarely show
any resonant features. This is, however, indeed achieved when the phase-sensitive
bichromatic excitation is employed. Of course, this accomplishment requires careful
selection of all the relevant parameters. Particularly, the selected energy range
needs to lie just above the saddle point energy where the number of continua is
small (since it is proved that a large number of them is detrimental). Second, the
|m| = 1 results are far more promising than the m = 0 ones. This fact can not
as of yet be generalized, but the greater difficulty with which resonant features can
be uncovered in this case may be attributed to the highly core-penetrating m = 0
states. Finally, since the phase sensitive coherent control over the images exhibits a
generally strong dependence on the image radius ρ (or χ), control optimization at
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specific ρ values that bring out the resonant features is absolutely necessary. Thus,
uniform optimization across a given resonant image is fairly complex.

To further enhance our understanding on the proposed theoretical method, sev-
eral actions and improvements can be considered. First, the conditions under which
the resonant features are more evident need to be examined in more detail and in
conjunction with the n1-channel admixture coefficients, and particularly with the
evolution of these coefficients across the Stark-level avoided crossings. Second, the
electron spin and fine structure effects can be included for expanding the presently
proposed method to even heavier Alkali atoms. To this end the refinements of
Harmin-Fano Stark theory proposed in [36, 48] could be incorporated, improving
the computational accuracy. This, in turn, could guide the design of near-future
experimental campaigns and the development of more precise photoionization mi-
croscopy techniques in atomic, as well as in molecular systems.

In conclusion, the proposed theoretical framework for the phase sensitive coher-
ent control scheme offers a promising approach investigating resonant behaviors in
photoionization microscopy of non-hydrogenic atoms and lays the groundwork for
more accurate, experimentally verifiable studies in multi-photon excitation under
the presence of an electric field.

38



Appendix A

Alkali atoms: Energy levels and
Wave functions

To calculate the required wave functions and energy levels of a specific atom,
it is essential to solve the corresponding Schrödinger equation. In many occasions,
the focus is on the wave functions and (ground as well as excited) energy levels of
a valence electron interacting with the residual ionic core. In such cases, the inter-
action can be adequately modeled with a valence electron in an effective potential.
For the free (i.e. without any external perturbations) Alkali atoms, a single valence
electron outside closed (sub)shells, this potential is spherically symmetric and the
Schrödinger equation writes,[

− 1
2∇2 + U(aℓ; r) − E

]
ψ(r) = 0. (A.1)

In Eq.(A.1), the spherically symmetric potential U(aℓ; r) is atom-specific and de-
pends on the parameter set aℓ that, in turn, depends on the angular momentum
quantum number ℓ of the valence electron. This potential is subject to key con-
straints at specific limits. Near the nucleus, r → 0, the potential must asymptoti-
cally approach −Z/r, reflecting the full nuclear charge. At large distances, r → ∞,
it transitions to −Zeff/r, where Zeff denotes the effective charge experienced by
the valence electron, accounting for the screening effects of inner-shell electrons.
Furthermore, when multi-photon transitions are of interest, one needs to pertur-
batively compute the relevant virtual states. The virtual state wavefunctions are
determined by solving the Dalgarno-Lewis equation, which, for the aforementioned
Alkali atoms, is expressed as,[

− 1
2∇2 + U(aℓ; r) − Eν

]
ψν = −T̂ψi. (A.2)

where Eν = (E + Ei)/2 is the virtual state energy, U(aℓ; r) is the same parametric
potential used in Eq.(A.1) and T̂ is a transition operator. In the present work, the
required parametric potential is obtained from the literature [28] and has the form,

U(aℓ; r) = −1
r

[
Zeff + (Z − 1)ea1r − r(a3 + a4r)ea2r

]
− ac

2r4fc(rℓ
c; r) (A.3)
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where ac is the static dipole polarizability of the positive-ion core and fc(rℓ
c; r) is a

cut-off function dealing with the inappropriate behavior of the −ac/2r4 term at short
distances (r → 0). The optimized parameters, ai, i = 1, 2, 3, 4 and ac, are listed in
Table A.1 as they were presented in [28]. The cut-off function originally proposed
in [49] and subsequently utilized in [28] was found to be numerical unstable. As a
result, an alternative function was adopted to achieve the desired stability and level
of precision, expressed in the following form,

fc(rℓ
c; r) = r6√

r12 + (rℓ
c)12

. (A.4)

The cut-off radii values rℓ
c were adjusted to match the experimental energy levels

for each specific Alkali metal atom of interest, within the range 25 ≤ n ≤ 45.
However, the remaining parameters in the parametric potential, as outlined in [28],
were preserved without modification. The results for the cut-off radii for the Alkali
atom employed in the present work are summarized in Table A.2.

Table A.1: Static dipole polarizability ac and alpha parameters for the ℓ-dependent
model potential U(aℓ; r) for the sodium (Na) atom, as taken from [28].

Alkali Atom Na (Z=11)
ac 0.9448

ℓ = 0 a1 4.82223117
a2 2.45449865
a3 -1.12255048
a4 -1.42631393

ℓ = 1 a1 5.08382502
a2 2.18226881
a3 -1.19534623
a4 -1.03142861

ℓ = 2 a1 3.53324124
a2 2.48697936
a3 -0.75688448
a4 -1.27852357

ℓ ≥ 3 a1 1.11056646
a2 1.05458759
a3 1.73203428
a4 -0.09265696
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Table A.2: Presently evaluated cut-off radii rℓ
c for Na atom. For rℓ≥3

c the value is
directly taken from [28].

Alkali Atom rℓ=0
c rℓ=1

c rℓ=2
c rℓ≥3

c

Na 0.46489422 0.46662 0.61455312 28.6735059

Our calculations provided all the wave functions and energy levels of interest
here. Particular attention was paid to the determination of the near-threshold Ryd-
berg series quantum defects that enter as inputs to the Harmin-Fano Frame Trans-
formation Stark effect Theory. These near-threshold quantum defects are listed in
Table A.3. However, Harmin-Fano Stark theory requires that quantum defects to
be transformed as [34],

µ̃ℓ →
(
µℓ + 1

2

)
(mod1) − 1

2 . (A.5)

in order to be confined within the −1/2 < µ̃ℓ < 1/2 branch. The transformed
quantum defects for Na are given in Table A.4.

Table A.3: Quantum Defects of Na.

Alkali Atom µℓ=0 µℓ=1 µℓ=2 µℓ=3

Na 1.34796 0.855 0.01554 0.00145

Table A.4: Quantum Defects of Na based on Harmin’s transformation.

Alkali Atom µ̃ℓ=0 µ̃ℓ=1 µ̃ℓ=2 µ̃ℓ=3

Na 0.34796 -0.145 0.01554 0.00145

Let us now describe the evaluation of the transition matrix elements from an
initial ψi to a final ψℓ,m state, both expressed in spherical coordinates,

Dm
ℓ = ⟨ψℓ,m|T̂ |ψi⟩ (A.6)

where T̂ = ε · r. Using linearly polarized laser fields, with polarization vectors par-
allel to the static electric field along the z-direction (π-polarization), the transition
operator is expressed as,

T̂ = z = r cos θ = r

√
4π
3 Y 0

1 (A.7)

with Y m
ℓ a spherical harmonic function. Furthermore, the form of the parametric

potential in Eq.(A.3) leads to a change in the radial part of the operator T̂ , which
is given as [49–51],

r → reff = r
[
1 − ad(ω)

r3

√
fc(rc; r)

]
. (A.8)
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Here ad(ω) represents the dynamic dipole polarizability of the atom evaluated at
the transition frequency ω. In our case, ad(ω) can be set equal to the static dipole
polarizability ac, as proposed in [49–51]. The form of the cut-off function follows the
same structure as in Eq.(A.4), with the appropriate definition of the cut-off radius,
as it was outlined in [49],

rc =
√
r

(i)ℓ
c r

(f)ℓ′
c (A.9)

where r(i)ℓ
c , r(f)ℓ′

c are the cut-off radii of the initial and final states, respectively.
Regarding the two-photon transitions, though, the cut-off function that was used
had the form,

rℓ
c = (r(i)ℓi

c r(f)ℓf
c )1/4(r(ν)ℓν

c )1/2. (A.10)

The terms r(i)ℓi
c , r(f)ℓf

c , r(ν)ℓν
c denote the calculated cut-off radii corresponding to the

initial, final and virtual states, respectively. This methodology enabled an accurate
evaluation of the virtual state wave functions, ensuring consistency with the chosen
model parameters.

The subsequent step involves calculating the zero-field transition matrix elements
for the one- and two-photon excitation processes. Then, the parameters Λ(2) and
Λ(1) defined in Section 2.4 are given as,

Λ(2) ≡ A
(2)
ℓ′m′R

(2)
ℓ′m′

A
(2)
ℓmR

(2)
ℓm

Λ(1) ≡ A
(2)
ℓmR

(2)
ℓm

A
(1)
ℓmR

(1)
ℓm

(A.11)

where now the matrix elements of Eq.(A.6) are decomposed into an angular factor
and a radial transition matrix element R(1)

ℓm and R
(2)
ℓm for single- and two-photon

transitions, respectively. The latter are given by,

R
(2)
ℓ,m =

∫
P (1)

ν reffPf,ℓdr R
(1)
ℓm =

∫
PireffPfdr. (A.12)

The angular factors are defined as,

Aℓm =
√

4π
3

∫
Y ∗mi

ℓi
Y 0

1 Y
m

ℓ dΩ (A.13)

where ℓ, m correspond to the final state, while ℓi, mi refer to the initial state of
the transition, which may also denote a virtual state in the case of a two-photon
excitation. In the equation above, we utilized the definition of the transition operator
from Eq.(A.7). The values of the angular factors are summarized in Table A.5, based
on the quantum numbers ℓ and m permitted by the selection rules for each excitation
scheme analyzed in Section 2.4.

Table A.5: Angular factors for the transitions analyzed in Section 2.4.

A00 A10 A20 A11 A21 A31

1/
√

3 1/
√

3 2/
√

15 −1/
√

5 −1/
√

5 −2
√

2/35
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Finally, for the scheme illustrated in Figure 2.3, the computed values of Eq.(A.11)
are Λ(2) = −1.65 and Λ(1) = −2341.1, while for the one presented in Figure 2.5, the
corresponding values are Λ(2) = −160.1 and Λ(1) = 1542.9.
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9C. Bordas, F. Lépine, C. Nicole, and M. J. J. Vrakking, “Semiclassical description
of photoionization microscopy”, Phys. Rev. A 68, 012709 (2003).
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