
A Silhouette Based Deep Clustering Method

A Thesis

submitted to the designated

by the Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Ioannis Papakostas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN DATA AND COMPUTER

SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

School of Engineering

Ioannina 2025

Examining Committee:

• Aristidis Likas, Professor, Department of Computer Science and Engineering,
University of Ioannina (Advisor)

• Konstantinos Blekas, Professor, Department of Computer Science and Engi-
neering, University of Ioannina

• Kostas Vlachos, Assistant Professor, Department of Computer Science and En-
gineering, University of Ioannina

DEDICATION

Dedicated to my family for its unconditional support throughout all the years of my
studies.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Professor Aristidis Likas, for
for the valuable guidance, patience and trust he has shown me throughout our collab-
oration. He was more than eager to share his knowledge on the subject while making
helpful suggestions throughout this thesis. His guidance, support, and expertise were
only some of the ways in which he shaped my first steps in research.

I would also like to thank the PhD candidate Georgios Vardakas for his valuable
help in the implementation of this thesis and the experiments that should be done.
He was there for me when I needed help and he had some very good ideas about
my thesis topic.

I would also like to thank my family for their unconditional support and love
over the years. My mother, Maria, who has always supported me, my brother Vasilis,
and my father, Stathis, who taught me to try as hard as possible to achieve my
goals. Moreover, I wish to thank my girlfriend Angeliki-Maria and my close friends
Panagiotis and Aris for their support and understanding during my studies.

TABLE OF CONTENTS

List of Figures iv

List of Tables v

List of Algorithms vi

Glossary vii

Abstract ix

Εκτεταμένη Περίληψη x

1 Introduction 1
1.1 Machine Learning . 1
1.2 Clustering . 2

1.2.1 Hierarchical Clustering Algorithms 2
1.2.2 k-means Algorithm . 3
1.2.3 Fuzzy Clustering . 5

1.3 Distance Metrics . 7
1.4 Clustering Evaluation Metrics . 9

1.4.1 Internal Clustering Evaluation Metrics 9
1.4.2 External Clustering Evaluation Metrics 10

1.5 Artificial Neural Networks . 11
1.5.1 Backpropagation . 13
1.5.2 Stochastic Gradient Descent . 14
1.5.3 Adam . 15
1.5.4 LVQ . 15

1.6 Thesis Contribution . 16

i

2 Deep Clustering 17
2.1 Introduction . 17
2.2 Deep Neural Network Architectures . 18
2.3 Deep Features . 26
2.4 Non-Clustering Loss . 26
2.5 Clustering Loss . 27

2.5.1 Principal Clustering Loss . 28
2.5.2 Auxiliary Clustering Loss . 29

2.6 Synthesizing the Loss Functions . 30
2.7 Updating Clusters . 31
2.8 Autoencoders As DNNs In Clustering 31

3 Autoencoder‐Based Deep Clustering Methods 33
3.1 Dimensionality Reduction and Clustering 33
3.2 Deep Clustering Network . 35

3.2.1 Framework . 35
3.2.2 Formulation . 35
3.2.3 Optimization Procedure . 36

3.3 Deep Embedded Clustering . 39
3.3.1 Framework . 39
3.3.2 Formulation . 40
3.3.3 Optimization Procedure . 41
3.3.4 Parameter Initialization . 43

3.4 Improved Deep Embedded Clustering 44
3.4.1 Framework . 44
3.4.2 Formulation . 45
3.4.3 Optimization Procedure . 46

4 Deep Clustering using Soft Silhouette 49
4.1 Silhouette . 49
4.2 Soft Silhouette . 50
4.3 The DCSS method: Deep Clustering using Soft Silhouette 52

5 Experiments 56
5.1 Datasets . 56

ii

5.2 Neural Network Architectures . 57
5.3 Evaluation . 59
5.4 Experimental Setup . 59
5.5 Results . 60

5.5.1 EMNIST Balanced Digits . 61
5.5.2 EMNIST MNIST . 62
5.5.3 EMNIST Balanced Letters (A-J) 64
5.5.4 EMNIST Balanced Letters (K-T) 65
5.5.5 EMNIST Balanced Letters (U-Z) 67
5.5.6 HAR . 68
5.5.7 Pendigits . 70
5.5.8 Waveform-v1 . 71

5.6 Analysis of Experimental Results . 72

6 Afterword 74
6.1 Conclusion . 74
6.2 Suggestions for Future Work . 75

Bibliography 76

iii

LIST OF FIGURES

1.1 This figure shows the schema of a general Neural Network. 12

2.1 This figure shows the schema of a general AE. 20
2.2 This figure shows the schema of a general RBF network. 25

4.1 This figure shows the schema of the DCSS model architecture. 53

5.1 This figure illustrates the optimal clustering obtained by the DCSS al-
gorithm on the EMNIST Balanced Digits dataset. 62

5.2 This figure illustrates the optimal clustering obtained by the DCSS al-
gorithm on the EMNIST MNIST dataset. 63

5.3 This figure illustrates the optimal clustering obtained by the DCSS al-
gorithm on the EMNIST Balanced Letters (A-J) dataset. 65

5.4 This figure illustrates the optimal clustering obtained by the DCSS al-
gorithm on the EMNIST Balanced Letters (K-T) dataset. 66

5.5 This figure illustrates the optimal clustering obtained by the DCSS al-
gorithm on the EMNIST Balanced Letters (U-Z) dataset. 68

5.6 This figure illustrates the optimal clustering obtained by the DCSS al-
gorithm on the HAR dataset. 69

5.7 This figure illustrates the optimal clustering obtained by the DCSS al-
gorithm on the Pendigits dataset. 71

5.8 This figure illustrates the optimal clustering obtained by the DCSS al-
gorithm on the Waveform-v1 dataset. 72

iv

LIST OF TABLES

5.1 The datasets used in our experiments. N is the number of data in-
stances, d is the dimensionality, and k denotes the number of clusters. . 58

5.2 Statistical Analysis of the NMI on the EMNIST Balanced Digits dataset. 61
5.3 Statistical Analysis of the ARI on the EMNIST Balanced Digits dataset. 61
5.4 Statistical Analysis of the NMI on the EMNIST MNIST dataset. 62
5.5 Statistical Analysis of the ARI on the EMNIST MNIST dataset. 63
5.6 Statistical Analysis of the NMI on the EMNIST Balanced Letters (A-J)

dataset. 64
5.7 Statistical Analysis of the ARI on the EMNIST Balanced Letters (A-J)

dataset. 64
5.8 Statistical Analysis of the NMI on the EMNIST Balanced Letters (K-T)

dataset. 65
5.9 Statistical Analysis of the ARI on the EMNIST Balanced Letters (K-T)

dataset. 66
5.10 Statistical Analysis of the NMI on the EMNIST Balanced Letters (U-Z)

dataset. 67
5.11 Statistical Analysis of the ARI on the EMNIST Balanced Letters (U-Z)

dataset. 67
5.12 Statistical Analysis of the NMI on the HAR dataset. 68
5.13 Statistical Analysis of the ARI on the HAR dataset. 69
5.14 Statistical Analysis of the NMI on the Pendigits dataset. 70
5.15 Statistical Analysis of the ARI on the Pendigits dataset. 70
5.16 Statistical Analysis of the NMI on the Waveform-v1 dataset. 71
5.17 Statistical Analysis of the ARI on the Waveform-v1 dataset. 72

v

LIST OF ALGORITHMS

3.1 Alternating Stochastic Gradient Descent (SGD) 39
3.2 Improved Deep Embedded Clustering (IDEC) algorithm 48
4.1 Deep Clustering using Soft Silhouette (DCSS) algorithm 54

vi

GLOSSARY

AE Autoencoder

ANN Artificial Neural Network

ARI Adjusted Rand Index

BD EMNIST Balanced Digits

BL EMNIST Balanced Letters

CNN Convolutional Neural Network

DBN Deep Belief Network

DCN Deep Clustering Network

DCSS Deep Clustering using Soft Silhouette

DEC Deep Embedded Clustering

DL Deep Learning

DNN Deep Neural Network

DR Dimensionality Reduction

EMNIST EMNIST MNIST

GAN Generative Adversarial Network

HAR Human Activity Recognition with Smartphones

IDEC Improved Deep Embedded Clustering

KL Kullback-Leibler

vii

LapEig Laplacian Eigenmap

LLE Local Linear Embeddings

MLP Multilayer Perceptron

MSE Mean Squared Error

NMF Non-negative Matrix Factorization

NMI Normalized Mutual Information

PCA Principal Component Analysis

RBF Radial Basis Function

RBM Restricted Boltzmann Machines

ReLU Rectified Linear Unit

SAE Stacked Autoencoder

SGD Stochastic Gradient Descent

SVD Singular Value Decomposition

VAE Variational Autoencoder

WVF‐v1 Waveform-v1

viii

ABSTRACT

Ioannis Papakostas, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, 2025.
A Silhouette Based Deep Clustering Method.
Advisor: Aristidis Likas, Professor.

In the context of big data, unsupervised learning has emerged as a crucial field
of study, offering methodologies for the discovery of insights from datasets lacking
labels. Deep clustering has established itself as a prominent approach within the
domain of unsupervised learning, capitalizing on the nonlinear mapping capabilities
of neural networks to enhance clustering performance. A significant proportion of
existing literature on deep clustering is dedicated to the minimization of within-cluster
variability in an embedded space, while ensuring that the learned representation
remains faithful to the original high-dimensional dataset.

This thesis elaborates on a novel approach, designated as soft silhouette, which
presents a probabilistic formulation of the silhouette coefficient. As with the traditional
silhouette coefficient, the soft silhouette encourages the formation of compact and
well-separated clusters. When integrated into a deep clustering framework, the soft
silhouette approach guides the learning process towards the creation of compact and
distinct clusters.

The deep clustering method has been subjected to rigorous testing and compari-
son with several established deep clustering methods using a variety of benchmark
datasets. The results demonstrate that the silhouette based deep clustering approach
yields highly satisfactory clustering outcomes.

Keywords: machine learning, clustering, deep clustering, soft Silhouette score,
artificial neural network, loss function, autoencoder, convolutional-autoencoder, rep-
resentation learning

ix

ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Ιωάννης Παπακώστας, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστη-
μάτων, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο
Ιωαννίνων, 2025.
Μια Μέθοδος Βαθιάς Ομαδοποίησης Βασισμένη στο Silhouette.
Επιβλέπων: Αριστείδης Λύκας, Καθηγητής.

Στην εποχή των μεγάλων δεδομένων, η μάθηση χωρίς επίβλεψη γίνεται όλο και πιο
σημαντική, προσφέροντας έναν τρόπο εύρεσης πολύτιμων πληροφοριών σε σύνολα
δεδομένων που δεν έχουν ετικέτες, δηλαδή δεν συνοδεύονται από προκαθορισμένες
κατηγορίες. Η βαθιά ομαδοποίηση έχει αναδειχθεί ως μια σημαντική προσέγγιση
στο πλαίσιο της μάθησης χωρίς επίβλεψη, αξιοποιώντας τις δυνατότητες της μη
γραμμικής απεικόνισης που προσφέρουν τα νευρωνικά δίκτυα για τη βελτίωση της
απόδοσης της ομαδοποίησης. Μεγάλο μέρος της υπάρχουσας βιβλιογραφίας για τη
βαθιά ομαδοποίηση εστιάζει στην ελαχιστοποίηση της μεταβλητότητας εντός της
ομάδας - συστάδας σε έναν λανθάνον χώρο, σημαντικά μικρότερης διάστασης από
τον αρχικό, διασφαλίζοντας παράλληλα ότι η εκμάθηση της αναπαράστασης παρα-
μένει πιστή στο αρχικό σύνολο δεδομένων.

Η εργασία αυτή μελετά μια καινοτόμα προσέγγιση που βασίζεται στο κριτήριο
soft silhouette και αποτελεί μια πιθανολογική διατύπωση της μετρικής silhouette.
Παρόμοια με τον παραδοσιακό συντελεστή silhouette, ο soft silhouette ενθαρρύνει
το σχηματισμό συμπαγών και καλά διαχωρίσιμων συστάδων. Όταν ενσωματώνεται
σε ένα πλαίσιο βαθιάς ομαδοποίησης, ο soft silhouette καθοδηγεί τη διαδικασία
της μάθησης προς τη δημιουργία ομάδων που είναι πυκνές και διακριτές μεταξύ
τους. Επιπλέον, παρουσιάζεται μια αρχιτεκτονική βαθιάς μάθησης που βασίζεται
σε autoencoder και βελτιστοποιεί αποτελεσματικά τη λειτουργία της αντικειμενικής
συνάρτησης soft silhouette.

x

Η εξεταζόμενη μέθοδος βαθιάς ομαδοποίησης υποβλήθηκε σε εκτεταμένες δοκι-
μές και σύγκριση με διάφορες καθιερωμένες μεθόδους βαθιάς ομαδοποίησης μέσα
από την χρήση πολλών συνόλων δεδομένων αναφοράς. Τα αποτελέσματα δείχνουν
ότι η μέθοδος προσφέρει ιδιαίτερα ικανοποιητικά αποτελέσματα ομαδοποίησης.

Λέξεις‐κλειδιά: μηχανική μάθηση, ομαδοποίηση, βαθιά ομαδοποίηση, soft Silhou-
ette σκορ, τεχνητό νευρωνικό δίκτυο, συνάρτηση απώλειας, autoencoder, convolutional-
autoencoder, εκμάθηση αναπαράστασης

xi

CHAPTER 1

INTRODUCTION

1.1 Machine Learning

1.2 Clustering

1.3 Distance Metrics

1.4 Clustering Evaluation Metrics

1.5 Artificial Neural Networks

1.6 Thesis Contribution

1.1 Machine Learning

Machine learning is a subject that researches how to use computers to simulate human
learning activities and to study self-improvement methods of computers to acquire
new knowledge and skills, recognize existing knowledge, and continuously improve
performance and achievement.

Compared with human learning, machine learning learns faster, the accumulation
of knowledge is more facilitated and the results of learning spread easier. So, any
progress of humanity in the field of machine learning will enhance the capability of
computers, thus it will have an impact on human society [1].

It is the field of artificial intelligence that deals with the study of algorithms that
analyze data, recognize patterns in data, and improve their performance by interacting
with data. Thus, they make decisions without human intervention. Algorithms used
in machine learning should have good general performance. They must perform well

1

even for examples they have not trained for but follow the same distribution as the
training examples.

There are several categories of machine learning algorithms, but the most impor-
tant are:

• Supervised learning: Such algorithms are trained with data that include for
each data point an input vector x as well as the desired output y. Using these ex-
amples, they learn to predict the output y for any input x, usually by evaluating
the probability P (y|x). Common supervised learning problems are classification
and function approximation problems.

• Unsupervised learning: These algorithms are provided with training data that
contain for each data point only one input vector x. They discover patterns
and correlations that exist in the data. Usual unsupervised learning problems
are clustering, data dimensionality reduction (DR) etc. The main focus of this
master thesis focuses on this kind of machine learning problems.

• Reinforcement learning: Here the algorithm is trained by making decisions to
maximize some reward. The algorithm chooses the sequence that maximizes
the reward and thus composes its policy.

1.2 Clustering

Clustering is the distinction of data into groups so that data belonging to the same
group show great similarity to each other, while data belonging to different groups
show great dissimilarity. Depending on the information of data being clustered, var-
ious similarity measures could be used.

1.2.1 Hierarchical Clustering Algorithms

The hierarchical clustering algorithms produce a grouping structure in the form of a
tree, each node of which is a group. As a result, we have different numbers of groups
depending on the level of the tree structure. The root of the tree is a group to which
all data belong. Each node has two children which are the groups that result if we
split the parent group into two. The leaves of the tree are the non-clustered data.
There are two basic hierarchical algorithms:

2

• Divisive clustering: Starts with all examples in one group and starts dividing
the group with the largest internal distance into two groups until we have the
desired number of groups.

• Cumulative clustering: Starts with each instance as a different cluster and joins
the two clusters with the shortest distance until we have the desired number of
clusters.

Hierarchical algorithms typically use the following three distance metrics between
clusters:

• Single linkage: As distance between two groups is considered the minimum
of the intervals between the members of one group and the members of the
other. More specifically, it is the distance between the closest members of the
two groups.

• Complete linkage: As distance between two groups is considered the maximum
of the intervals between the members of one group and the members of the
other. More precisely, it is the distance between the most distant members of
the two groups. An algorithm that uses complete linkage tends to produce
more compact clusters than using the above one. However, single linkage could
achieve more complex clustering [2].

• Average linkage: As distance between two groups is considered the average
value of the intervals between the members of one group and the members of
the other.

1.2.2 k‐means Algorithm

Given a collection of data samples {xi}Ni=1, where xi ∈ RM , the objective of clustering
is to partition the N data samples into K categories. k-means, proposed by Lloyd in
1982 [3], stands as one of the most widely adopted algorithms for this task. k-means
seeks to minimize the following cost function:

min
M∈RM×K ,si∈RK

N∑
i=1

∥xi −Msi∥22 (1.1)

3

subject to sj,i ∈ {0, 1} and 1⊤si = 1 for ∀i, j, where si is the assignment vector of data
point i which has only one non-zero element, sj,i denotes the jth element of si, and
the kth column of M , i.e., mk, denotes the centroid of the kth cluster.

The algorithm is trained iteratively according to the following steps:

1. Initialization of k centers. k-means is highly dependent on the initialization of
the centers in whether it will converge to good clustering. Various initialization
techniques have been developed for solving this problem. Some common and
typical methods of initializing centers are [4, 5]:

• Select k random samples from the data as centers. Thus, it is more likely
to select examples that are in areas with high density. Such examples are a
good initial choice for group centers. But the selection of remote examples
could not be ruled out. As a result, a good technique is to repeat the
initialization several times.

• Assigning the data to k groups randomly and using the centers as the
initial means of the k groups.

• Picking the first center randomly from the data examples and then choosing
each subsequent center as the instance that is the furthest distance from
the selected center nearest to it.

• Picking the first center randomly from the data examples and then choosing
each subsequent center as the example xi with probability:

md(xi)
2

N∑
j=1

md(xj)2
, (1.2)

where md(x) is the distance of sample x from the nearest selected center.
This method is called k-means++.

2. For each data instance, we calculate its distance from k centers and assign it to
the group from whose center has the shortest distance.

3. We update the k centers as the mean value of the examples assigned to their
group according to the relation:

cj =
1

|Sj|
∑
xi∈Sj

xi, (1.3)

4

where cj is the new center of the jth group, and Sj is the set of examples
assigned to the jth group in this step.

4. Repeat steps 2 and 3 until convergence, meaning that the updated centroids do
not change positions.

k-means performs well, when data samples are evenly distributed around their cen-
troids in the feature space. However, high-dimensional data typically do not exhibit
characteristics that are conducive to k-means clustering [6]. Finally, k-means has a
very high dependence on its initialization and on examples that are a long distance
from the rest (outliers). These instances will be assigned to a group and will affect
its center [7].

1.2.3 Fuzzy Clustering

In fuzzy clustering, each example can belong to several groups and is labeled by its
degree of participation in each cluster. The degree of this participation takes values
between 0 and 1. It expresses how much the given example can be considered as
a group member. So, for example, an instance on the border between two groups
has equal participation scores close to 0.5 for both groups, but an example in the
center of a group has a very high participation score in that group and lower in the
others. The advantage of these algorithms is that they quantify and incorporate into
the output the doubt they have as to which group an example belongs.

Fuzzy C‐Μeans

The algorithm assigns a participation score to each example for each of the k groups.
The training for Fuzzy C-means is achieved according to the following steps [8]:

1. Initialize the matrix U whose elements cij are the degree of participation of
example i in the group j. This initialization is usually done with random values
in the interval [0, 1]. Also, there is here, as in k-means, a strong dependence on
the initialization, so the algorithm is often executed several times with different
initialization.

5

2. Calculation of the centers of k groups. The center of group j will be cj =

N∑
i=1

um
ijxi

N∑
i=1

um
ij

, (1.4)

where N is the number of examples and m ≥ 1 is a parameter that determines
how fuzzy the clustering will be. Larger values of the parameter cause more
fuzzy clustering, i.e. smaller values in the participation scores. For m = 1 the
participation scores only take values 0 or 1 and we no longer have fuzzy clus-
tering.

3. Renewal of participation scores uij according to the relation:

uij =
1

k∑
n=1

(
||xi−cj ||
||xi−cn||)

2
m−1

. (1.5)

4. As long as the termination criterion is not met, repeat steps 2 and 3. The most
common termination criterion is to hold in two consecutive iterations n and
n+ 1: ||Un+1 −Un|| < ε, where ε is a small real number, i.e. participation scores
do not change significantly.

And the Fuzzy C-means algorithm is very dependent on the initialization and on
examples that are far from the rest (outliers) [7].

EM (Expectation‐Maximization)

Mixed distribution models assume that our data come from a mixture of different
distributions. The probability that an example xi could produce a particular mixture

of k distributions, is given by the relation p(xi|ϑ) =
k∑

j=1

πjpj(xi|ϑ), where πj is the prior

probability that the distribution j is responsible for producing the example xi and
pj(xi|ϑ) is the probability that xi was generated by this distribution with parameters ϑ.
We may have a mixture of distributions of different types or a mixture of distributions
of the same type with different parameters. The most common case is the mixture of
k Gaussian distributions N with different means µ and covariance matrices Σ. In this

case, the above relation becomes p(xi|ϑ) =
k∑

j=1

πjNj(xi|µj,Σj).

If we consider that each distribution of the model represents a different group,
then from the above probabilities we can calculate the probability rij that the example

6

xi belongs to the group j according to the relation rij =
πjpj(xi|ϑ)
p(xi|ϑ) . Therefore we can use

these probabilities to group our data by calculating the probability that each instance
belongs to a group [9].

Training of the model is to find the parameters ϑ of the distributions that maxi-

mize l(ϑ) =
N∑
i=1

log p(xi|ϑ). The most common algorithm for this is EM (Expectation‐
Maximization) which has the following steps:

1. Initialize the parameters ϑ of the distributions to random values.

2. Step E (Expectation): Calculation of the posterior probabilities rij that the ex-
ample xi belongs to the group j ∀i, j according to the existing values of the
parameters ϑ.

3. Step M (Maximization): Calculation of the new πj =
1
N

∑
i

rij and use them to

update the values of the parameters ϑ in order to maximize l(ϑ).

4. Repeat steps 2 and 3 until the parameter values converge.

In the case where we have a mixture of k Gaussian distributions from the maxi-
mization of l(ϑ), the following relations for the parameters occur µj =

∑
i
rijxi∑

i
rij

and

Σj =

∑
i
rij(xi−µj)(xi−µj)

T∑
i
rij

. The EM algorithm has a strong dependence on the initializa-

tion of the ϑ parameters and the form of the covariance matrices [7].

1.3 Distance Metrics

A fundamental issue in the clustering problem is the selection of the appropriate
distance metric to use in all algorithms. The distance metric is the way to quantify
the similarity between two examples. Depending on the data format, algorithms are
more efficient using a different distance metric.

Each distance metric must have the properties:

• Be positive definite, i.e. for any pair xi, xj , d(xi, xj) ≥ 0.

• Be symmetrical, i.e. for any pair xi, xj , d(xi, xj) = d(xj, xi).

• Be identical, i.e. d(xi, xj) = 0⇔ xi = xj

7

• Have the triangular property, i.e. for any xi, xj , xk, d(xi, xj) ≤ d(xi, xk) +

d(xk, xj).

However, metrics often used, don’t meet all four criteria and don’t have the triangular
property.

Some of the most common distance metrics between numerical vectors are:

• Euclidean or l2 distance: For two vectors xi, xj of dimension m, Euclidean

distance is defined as d(xi, xj) =

√
m∑
k=1

(xk
i − xk

j)
2. It is the most classic distance

metric and satisfies all of the above properties. In the two dimensions, it is the
length of the straight segment that joins the points i, j. In more dimensions, it
is the generalization of this metric.

• Manhattan or l1 distance: For two vectors xi, xj of dimension m, Manhattan
distance is defined as d(xi, xj) =

m∑
k=1

|xk
i − xk

j |. It satisfies all of the above prop-
erties and expresses the distance from one vector to another by crossing along
each dimension separately.

• Chebyshev or l∞ distance: For two vectors xi, xj of dimension m, Chebyshev
distance is defined as d(xi, xj) = max

k
|xk

i − xk
j |. It satisfies all of the above prop-

erties.

• Minkowski distance: For two vectors xi, xj of dimensionm, Minkowski distance

is defined as d(xi, xj) = p

√
m∑
k=1

|xk
i − xk

j |p, where p is the order of the distance.

Obviously, Euclidean distance is a special case of Minkowski distance for p = 2,
Manhattan distance for p = 1, and Chebyshev distance for p = ∞. For p ≥ 1,
Minkowski distance satisfies all four properties. For p < 1, it does not satisfy
the triangular property. By changing the value of p, we change the geometric
locus of points that are equidistant from a point.

• Cosine distance: For two vectors xi, xj , cosine distance is defined as d(xi, xj) =

1− xixj

||xi||||xj || and shows us how much the two vectors differ in direction. It takes
values from 0, for vectors in the same direction, to 2, for vectors in the opposite
direction.

• Mahalanobis distance: For two vectors xi, xj of a common distribution, Maha-
lanobis distance is defined as d(xi, xj) =

√
(xi − xj)⊺Σ−1(xi − xj), where Σ is

8

the covariance matrix of the data. Depending on the form of the covariance
matrix, we can find the distance of the points by giving a different weight to
each dimension.

• Pearson correlation: Using the Pearson correlation of two vectors xi, xj , we can
calculate a distance metric as d(xi, xj) = 1−| (xi−x̄i)(xj−x̄j)

||(xi−x̄i)||||(xj−x̄j)|| |, which takes values
in the interval [0, 1].

Some of the most common distance metrics between boolean vectors are:

• Hamming distance: It is the number of positions in which the two boolean
vectors are different.

• Jaccard distance: Jaccard distance between two Boolean vectors xi, xj is defined
as d(xi, xj) =

CTF+CFT

CTT+CTF+CFT
with Cab the number of places k for which xi[k] = a

and xj[k] = b and a, b take values T, F.

• Dice distance: Dice distance between two Boolean vectors xi, xj is defined as
d(xi, xj) = CTF+CFT

2CTT+CTF+CFT
with Cab the number of places k for which xi[k] = a

and xj[k] = b and a, b take values T, F. We can calculate the Jaccard distance
from the Dice distance and vice versa. The Dice distance does not satisfy the
triangular inequality.

1.4 Clustering Evaluation Metrics

One of the most dominant and non-trivial issues is the evaluation of the cluster-
ing quality achieved by an algorithm. There are two categories of such indicators
according to whether they use external information to evaluate the data clustering.

1.4.1 Internal Clustering Evaluation Metrics

Clustering evaluation metrics that do not use any external information about how
we expect the data to get clustered are called internal. In general, these methods
evaluate the clustering in terms of how compact are the resulting clusters and how
well separated are the different clusters.

9

There can be used simple statistics such as within-group variance or the sum
of squared error of the group members regarding the group center. However, more
complex metrics have also been developed, with the following being commonly used:

• Calinski – Harabasz: This index is defined as s = trace(B)
trace(W)

× N−k
k−1

, where N is the

number of examples, k is the number of groups, B =
k∑

j=1

∑
xiεSj

(xi − cj)(xi − cj)
⊺

with cj the center of the group j and W =
k∑

j=1

|Σj|(cj − c)(cj − c)⊺ with c the

center of all data and |Σj| the number of members of group j. Also, it is called
variance ratio and takes values greater than 0. The higher this ratio is, the more
compact and well-separated the groups are [10].

• Davies – Bouldin: This index is defined as s = 1
k

k∑
i=1

max
j ̸=i

(
di+dj
dij

), where di is the
average distance of the members of group i from its center and dij the distance
between the centers of groups i and j. It expresses the average similarity shown
within groups and takes values greater than 0 with a lower value indicating
better clustering [10].

• Dunn: This index is defined as s =
min

i ̸=j,i,j=1···k
δij

max
i=1···k

∆i
with δij the distance between

groups i, j and ∆i the diameter of group i. There are many variations for the
calculation of these sizes, with the most common being the distance of two
groups to be considered as the minimum of the distances of the members of
one group to the members of the other, and as the diameter of a group, the
maximum of the distances between its members. A higher index value indicates
better clustering [10].

1.4.2 External Clustering Evaluation Metrics

External evaluation metrics require additional information to evaluate clustering. In
particular, they need the actual partitioning of the data into groups and compare it
with the one achieved by the algorithm. In the following, we will consider Ytrue as
the actual partitioning of the data and Y as that achieved by the evaluated algorithm.
Some of the most common external evaluation metrics are:

• F‐measure: It is defined as F = a
1
2
(c+d)

with a the number of examples that
belong to the same group in both partition Ytrue as in Y , c the number of
examples that belong to the same group in partition Ytrue and different ones

10

in Y and d is the number of examples which belong to different groups in the
partition Ytrue and the same group in Y . This index takes values in the interval
[0, 1]. A value of 1 indicates a partition that achieves perfect precision and recall.

• Purity: We consider that each group of Y corresponds to the group of Ytrue to
which most members of Y belong. The purity metric is defined as the percentage
of examples assigned to the correct group according to the previous assignment
and takes values in the interval [0, 1]. A value of 1 indicates perfect clustering.

• Jaccard and Dice: Jaccard and Dice distances, as defined above, can also be used
to calculate how similar Y and Ytrue are.

1.5 Artificial Neural Networks

In recent years, artificial neural networks (ANNs) have been used with great success to
solve problems that machine learning deals with. An ANN is a structured collection of
simple computing units called neurons. An ANN is organized in layers. It consists of
an input layer, one or more hidden layers, and an output layer. Usually, the neurons
of one layer are interconnected with all the neurons of the next layer and only with
them.

Each neuron is provided with an input vector x and characterized by a vector
of weights w. The two vectors have the same dimensions. It calculates the quantity
u = (wx + w0), where w0 is a number called neuron’s bias. The quantity u is called
neuron’s stimulation. Usually, as weights of a neuron, we consider not only its weights
and bias but also the extended weight vector W = (w0, w). So, when we use as an
input vector x = (1, x), neuron’s stimulation is calculated as u = Wx. Finally, the
output of the neuron y = f(u) is calculated by applying an activation function to the
stimulation u. The output of the neuron is provided as input to the neurons of the
next level. In general, we want the activation function to be non-linear so that the
network can approximate complex functions by making non-linear transformations
on its input.

11

Figure 1.1: This figure shows the schema of a general Neural Network.

The most common activation functions are [11]:

• The identity function: f(x) = x. It is generally only used at the entry level
because it’s linear. Also, its derivative is constant and independent of x.

• The step function: f(x) =

 0, x < 0

1, x ≥ 0
. It is generally not used because its

derivative is 0 and independent of x. Therefore, it makes it difficult to apply
optimization methods to update the values of the weights.

• The sigmoid or logistic function: σ(x) = 1
1+e−x . It behaves similarly to the step

function, taking values in the interval [0, 1]. However, it is differentiable with
a derivative depending on x. Thus, there could be used optimization methods,
but its derivatives often take very small values. As a result, the weights’ values
do not change enough and the convergence slows down during the training of
the network.

• The hyperbolic tangent (tanh) function: tanh (x) = ex−e−x

ex+e−x . It has similar be-
havior to the sigmoid function and the same problem with small values in the
derivatives. Finally, it takes values in the interval [−1, 1].

• The Rectified Linear Unit (ReLU) function: f(x) =

 0, x ≤ 0

x, x > 0
. It is differ-

entiable with derivatives that depend on x for x > 0 and does not have the

12

problem of small derivative values. So it is a widely used activation function.
Its only problem is that for x ≤ 0, the derivatives are 0, so it creates neurons
that can be permanently inactive.

• The Leaky ReLU function: f(x) =

 ax, x < 0

x, x ≥ 0
. A commonly used value for

parameter a is 0.01. This function tries to solve the problem of derivatives for
x ≤ 0 that ReLU function has.

• The Softplus function: f(x) = ln(1 + ex). It could be considered as a smoother
version of ReLU. Also, while it has no problems with its derivatives, because it
is a more complex function, it is not often used.

Moreover, the functions that are commonly used at the output level are:

• The Softmax function: f(xi) =
exi∑

j ̸=i
exj
, where i is a neuron and j are all the re-

maining neurons in the layer. This function shows us a probability distribution
regarding the neurons of the output layer, giving a greater probability to the
neurons with the largest output. It allows us to use the output layer to clas-
sify the data, assuming that each neuron in the output layer represents some
category.

• The Softmin function: f(xi) =
e−xi∑

j ̸=i

e−xj
. It is similar to Softmax but gives a higher

probability to the neurons with the smallest output.

Training of an ANN is the determination of the values of neurons’ weights and biases
to minimize the value of a loss function, i.e. a function that expresses the performance
of the network.

1.5.1 Backpropagation

The backpropagation algorithm is commonly used in the training of an ANN to
efficiently calculate the derivatives of the loss function for the neurons’ weights and
biases. Specifically, let a network with L levels, input x, W l the table with the weights
of level l, where wl

ij is the weight of edge from neuron j of level l − 1 to neuron i of
level l, f l the activation function of neurons of level l and L(x) the loss function.

Initially, network’s output is calculated as y = f l(W lf l−1(W l−1f l−2(· · ·W 2f 1(W 1x))))

and from this, the value of loss function L(y). We define the derivative of the loss

13

function over the stimulation of level l(ul) as δl = ∂L
∂ul . δl can be regarded as the loss

at level l. The quantities δl could be easily calculated, starting from level l and going
backward till level 1.

At level L, the calculation is done through the relation δL = fL′
(uL)∇yL with

∇yL the derivative of loss function over the network’s output. In the rest levels, we
use the recursive formula δL = f l′(uL)WL+1δl+1. Having calculated these quantities,
it is easy to calculate the derivatives of loss function over the neurons’ weights as
∂L
∂wl = δlf l−1(ul−1).

1.5.2 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is the most common method of finding the values
of weights that minimize the value of the loss function. According to this method, we
iteratively update the values of the weights with respect to the derivatives of the loss
function over them, following the steps below:

1. Initialize the weights to random values.

2. Split the data into small groups of fixed size called batches.

3. Choose the groups one by one. Insert each example of the group into the net-
work and calculate the derivatives of the loss function over the weights for each
example through the backpropagation algorithm. After all the examples of a
group have been inserted into the network, update the weights according to the
relation W new = W old− η

∑
xiεgroup

∂L
∂w
. The parameter η is called learning rate and

regulates how much the values of the weights will change at each update. After
this process for each group is completed, we say that an epoch has passed.

4. Repeat step 3 until the value of the loss function converges or repeat it for a
certain number of epochs.

We have a serial update if each batch contains only one instance. If we have only
one batch that includes all data, then we have the classic version of gradient descent.
It has been found that SGD with a relatively small batch size usually leads to faster
convergence than the classic one.

14

1.5.3 Adam

Adam is another commonly used algorithm for finding the values of the weights that
minimize the value of the loss function. It follows the same logic as that of SGD but
differs in how it updates the weights’ values. Specifically, it follows the steps below
to update weights [12]:

1. Defines the exponential moving average of the derivatives m. It initializes this
average to 0 and updates it after each instance as mnew = β1m

old + (1− β1)
∂L
∂w
.

2. Defines the exponential moving average of the squares of derivatives u. It ini-
tializes this average to 0 and updates it after each instance as unew = β2u

old +

(1− β2)(
∂L
∂w

)2.

3. The above two averages are tendentious towards 0 due to their initialization.
This is solved by calculating the non-tendentious averages as m̂ = m

1−βt
1
and

û = u
1−βt

2
with t the number of updates that have become in mean values.

4. Update the weights according to the relation W new = W old − η m̂√
u+ε

The parameters β1 and β2 control the rate at which the averages change. ε is a constant
for numerical stability reasons.

1.5.4 LVQ

LVQ algorithm is a competitive learning algorithm that can be used to cluster data
by finding the centers of k groups and assigning each example to the group with the
closest center to it [13]. Training of the algorithm is to find the k centers. It becomes
according to the following steps:

1. Initialize the centers with some of the known methods as described in k-means.

2. For each example xi find the winner-center cv, i.e. the center with the shortest
distance from the example. Refresh only the winning center according to the
relation cnewv = coldv + η(xi − coldv), where η is the learning rate.

3. Repeat this process until the centers converge.

The implementation of this algorithm can be done efficiently with a neural network
consisting of two layers. An input layer that is fully interconnected with an output

15

layer. The input layer consists of as many neurons as the data features, while the
output layer consists of k neurons representing the centers of the k groups. Each
example is provided to the network, and the weights of the winner-neuron (cv) are
updated according to the above steps.

1.6 Thesis Contribution

This thesis considers a novel expansion of the silhouette score [14], designated as the
“soft silhouette score” [15]. This score assesses the effectiveness of probabilistic clus-
tering solutions directly, thereby obviating the necessity for conversion into discrete
forms. In addition to this evident benefit, a noteworthy aspect of the soft silhouette
score is its differentiability with respect to the probabilities ascribed to cluster assign-
ments. In the event that such probabilities are provided by a parametric machine
learning model, the soft silhouette score has been employed as a clustering objective
function for training parametric probabilistic models through the use of conventional
gradient-based methods. In order to achieve this objective, a novel deep clustering
approach based on autoencoders (AEs) has been proposed. This methodology offers
cluster assignment probabilities directly through the network outputs and utilizes the
soft silhouette score as a clustering objective [15]. The training of the network with
the soft silhouette score allows for the achievement of two objectives: the minimiza-
tion of inter-cluster variance and the maximization of the margin between clusters
in the embedded space. We conducted an extensive evaluation of the deep clustering
method. The experimental results indicate that the utilization of the Soft Silhouette
loss function can facilitate the development of deep neural networks (DNNs) capable
of addressing a diverse array of clustering problems.

16

CHAPTER 2

DEEP CLUSTERING

2.1 Introduction

2.2 Deep Neural Network Architectures

2.3 Deep Features

2.4 Non‐Clustering Loss

2.5 Clustering Loss

2.6 Synthesizing the Loss Functions

2.7 Updating Clusters

2.8 Autoencoders As DNNs In Clustering

2.1 Introduction

Deep Learning (DL) is a powerful tool that can extract complex and valuable data
representations from large datasets, reducing the need for extensive human-crafted
features [16, 17]. A substantial proportion of DNN architectures place significant
emphasis on an initial unsupervised learning phase, commonly referred to as un-
supervised pretraining. AEs represent a prominent example of this approach. The
acquisition of more refined and profound representations or features of the underly-
ing data is enabled by this methodology, which has been widely acknowledged for
substantially enhancing the outcomes of subsequent supervised learning tasks.

Although initially applied primarily to supervised learning tasks, DL has recently
demonstrated considerable success in a range of unsupervised learning domains,

17

including clustering and DR. One of the principal advantages of utilizing DL for
clustering is its capacity to harness the representational capabilities of DNNs for pre-
processing clustering inputs, thereby improving the quality of clustering outcomes.
The utilization of DNNs in this manner enables the effective transformation of data
into spaces that are more conducive to clustering. This transformation exploits the
intrinsic capability of DNNs to perform highly nonlinear operations, enabling them to
discern intricate patterns and structures within the data. This differs from traditional
clustering methods, such as k-means or spectral clustering, which frequently rely on
raw or linearly transformed data. Nevertheless, these methods may prove inadequate
when dealing with datasets exhibiting intricate statistical properties.

In essence, integrating DL techniques into clustering processes enables the creation
of more adaptive and flexible representations of the data, thereby improving cluster-
ing performance, particularly in scenarios involving complex and high-dimensional
datasets.

Even though clustering has not historically been a primary focus of DL, the rich-
ness and robustness of the deep representations it provides make it a suitable choice
for application in the field of clustering [18, 19]. For the sake of simplicity, the term
“Deep Clustering” will be used throughout this thesis to refer to clustering methods
involving DL. Deep clustering can be defined as a set of clustering techniques that
employ DNNs to learn representations conducive to clustering, as discussed in [19].

2.2 Deep Neural Network Architectures

In the majority of deep clustering methods, the primary function of the DNN is
to encode the inputs into a latent representation that is subsequently utilized for
clustering purposes. In previous studies, a variety of DNN architectures have been
utilized to achieve this objective [20].

• Multilayer Perceptron (MLP): This type of feedforward network, described
in [21], typically consists of at least one hidden layer of neurons without a
linear activation function. In this architecture, the output of each layer serves
as the input to the next layer, creating a sequential flow of information through
the network.

18

• AEs: represent a specialized category of algorithms that are adept at learn-
ing efficient data representations without the necessity of labeled data. These
ANNs are designed for unsupervised learning, with the objective of compressing
and accurately representing input data. The fundamental principle of an AE is
based on its dual-component structure, comprising an encoder and a decoder.
The encoder transforms the input data into a condensed, lower-dimensional
representation, which is often termed the “latent space” or “encoding”. Sub-
sequently, the decoder reconstructs the original input from this representation.
Through this process of encoding and decoding, the network discerns meaning-
ful patterns within the data, facilitating the extraction of essential features [22].

Architecture of AE in DL

The general architecture of an AE comprises three principal layers: an encoder,
a decoder, and a bottleneck layer.

1. Encoder: In an AE, the encoder is the portion of the network responsi-
ble for transforming the raw input data into a compact and informative
representation. Its architecture typically consists of multiple hidden layers,
which progressively reduce the dimensionality of the input while captur-
ing crucial features and patterns. These hidden layers collectively form the
encoder.

The bottleneck layer, also known as the latent space, is situated at the core
of the encoder. This final hidden layer markedly reduces the dimensionality
of the input data, effectively compressing it into a condensed encoding.
The latent space serves as a compressed representation of the input data,
capturing its essential characteristics in a lower-dimensional form.

2. Decoder: The bottleneck layer receives the encoded representation and
expands it back to match the dimensionality of the original input. This
layer plays a pivotal role in ensuring that the compressed encoding is
translated into a format consistent with the original data’s dimensions.

Subsequently, the hidden layers assume the responsibility of incrementally
augmenting the dimensionality of the data, thereby striving to reconstruct
the original input. Their objective is to meticulously refine the encoded
representation, gradually expanding it to encompass the intricacies and
nuances of the input data.

19

The ultimate objective of the output layer is to generate a reconstructed out-
put that closely resembles the input data. In an ideal scenario, this output
would mirror the input data as closely as possible, thereby demonstrating
the success of the AE in faithfully reproducing the original data from its
compressed representation.

Figure 2.1: This figure shows the schema of a general AE.

Types of AEs

AEs are classified into various types, each of which possesses distinctive advan-
tages and disadvantages.

1. Denoising AE: Denoising AEs operate on partially corrupted inputs with
the objective of reconstructing the original undistorted data. This approach
effectively precludes the network from merely replicating the input, instead
prompting it to discern the intrinsic structure and salient characteristics of
the data.

Advantages:

(a) Feature Extraction: Denoising AEs are particularly adept at extract-
ing crucial features from data sets while simultaneously reducing the
influence of noise or irrelevant features. By focusing on the restoration
of the original, unadulterated input, the network is able to discern and
prioritize the most significant characteristics.

(b) Data Augmentation: They can be employed as a means of data aug-
mentation, whereby additional training samples are generated from

20

the restored images. This facilitates an improvement in the model’s
generalization ability and enhances its performance.

Disadvantages:

(a) Noise Selection: The determination of the optimal type and level of
noise to introduce can be a challenging process, and it may require the
input of domain experts. The selection of an appropriate noise source
can have a significant impact on the efficacy of the denoising process.

(b) Information Loss: It is possible that the denoising process may re-
sult in the inadvertent loss of information that is crucial for accurate
reconstruction. Such a loss may affect the fidelity of the output and,
consequently, the overall performance of the AE.

2. Sparse AE: This specific type of AE typically comprises a greater number
of hidden units than the input, yet only a limited subset is permitted to
be active at any given time. This property is known as the sparsity of
the network. The degree of sparsity can be adjusted through a number of
methods, including manually setting specific hidden units to 0, modifying
the activation functions employed, or incorporating a dedicated loss term
into the cost function during training. These strategies facilitate the precise
control of the network’s sparsity, thereby enabling the adjustment of its
behavior and the learned representations.

Advantages:

(a) Noise and Irrelevant Feature Filtering: The sparsity constraint in-
herent in sparse AEs serves to filter out noise and irrelevant features
during the encoding process. By prompting only a limited number of
neurons to be active, the AE prioritizes the capture of essential infor-
mation, while minimizing the influence of extraneous details.

(b) Learning Important Features: Sparse AEs frequently demonstrate
proficiency in discerning and retaining significant and pertinent fea-
tures, a capability that can be attributed to their emphasis on sparse
activations. This prioritization of key features enhances the model’s ca-
pacity to represent the underlying structure of the data in an efficient
manner.

Disadvantages:

21

(a) Hyperparameter Sensitivity: The efficacy of sparse AEs is contingent
upon the appropriate selection of hyperparameters. To achieve opti-
mal results, it is essential to conduct careful tuning, as different inputs
should ideally result in the activation of different nodes in the network.
Insufficiently optimal parameter settings may result in suboptimal per-
formance or ineffective feature extraction.

(b) Increased Computational Complexity: The incorporation of sparsity
constraints results in a notable increase in the computational complex-
ity of sparse AEs. The introduction of sparsity constraints during the
training phase introduces an additional computational burden, which
may impact the overall training time and the required resources. This
enhanced complexity may present challenges, particularly in circum-
stances where computational resources are constrained or when deal-
ing with extensive datasets.

3. Variational AE: This approach is predicated on certain assumptions re-
garding the distribution of latent variables and employs the Stochastic Gra-
dient Variational Bayes estimator during the training process. It operates
under the assumption that the data is generated by a directed graphical
model and aims to learn an approximation to qϕ(z|x), representing the
conditional property qθ(z|x) where ϕ and θ denote the parameters of the
encoder and the decoder, respectively.

Advantages:

(a) Data Generation: Variational AEs (VAEs) are highly effective at gener-
ating new data points that closely resemble the original training data.
The generation of these samples is based on the latent space, thus
enabling the model to produce novel yet realistic data instances.

(b) Probabilistic Framework: VAEs provide a probabilistic framework
for the learning of compressed representations of data, thereby cap-
turing both the underlying structure and the variations present within
the data set. This capability has proven invaluable for tasks such as
anomaly detection and data exploration, where an understanding of
the data’s inherent variability is essential.

Disadvantages:

22

(a) Approximation Error: VAEs are based on approximations that are
used to estimate the true distribution of latent variables. The approxi-
mation inherent within this process introduces a degree of error, which
may impact the quality of the generated samples and the fidelity of the
learned representations.

(b) Limited Coverage of Data Distribution: The samples generated by
VAEs may only span a restricted subset of the true data distribution.
This limitation may result in a lack of diversity in the generated sam-
ples, which could potentially limit the model’s ability to capture the
full range of variability present in the data.

4. Convolutional AE: Convolutional AEs utilize convolutional neural net-
works (CNNs) as their fundamental architectural component. The encoder
component comprises multiple layers that accept image or grid inputs and
process them through a series of convolutional layers. This process results
in the generation of a compressed representation of the input data. In con-
trast, the decoder component performs the inverse operation of the encoder.
The original image is then reconstructed by deconvolving the compressed
representation, which is achieved through the use of transposed convolu-
tional layers. The symmetrical design of convolutional AEs allows for the
effective capture of spatial relationships in the data, resulting in accurate
reconstructions.

Advantages:

(a) Efficient Compression: Convolutional AEs are particularly adept at
compressing high-dimensional image data into a lower-dimensional
format. This results in enhanced storage efficiency and facilitates the
transmission of image data, particularly in scenarios where bandwidth
or storage capacity is limited.

(b) Robust Reconstruction: Convolutional AEs are capable of reconstruct-
ing missing components of an image, rendering them particularly well-
suited for applications such as image inpainting. Furthermore, they
are capable of handling images with slight variations in object posi-
tion or orientation, thereby ensuring robust performance across diverse
datasets.

23

Disadvantages:

(a) Overfitting Risk: Convolutional AEs are prone to overfitting, particu-
larly when utilizing complex datasets. It is of vital importance to im-
plement appropriate regularization techniques in order to mitigate this
risk and guarantee that the model is capable of generalizing effectively
to data that has not been previously encountered.

(b) Data Loss and Quality Degradation: The compression of data inher-
ent in convolutional AEs has the potential to result in data loss, which
may in turn lead to the reconstruction of images of a lower quality.
It is essential to carefully consider the trade-off between compression
efficiency and reconstruction fidelity, particularly in applications where
the preservation of image quality is of paramount importance.

• Deep Belief Network (DBN): is a probabilistic generative graphical model,
designed with the purpose of extracting intricate hierarchical representations
from input data [23]. It comprises numerous layers of stochastic latent vari-
ables. These variables progressively uncover deeper insights into the underlying
structure of the data. The DBN architecture is constituted by the stacking of
multiple Restricted Boltzmann Machines (RBM) [24]. Each RBM is composed
of two distinct layers: a visible layer and a hidden layer. The distinctive config-
uration entails the utilization of the concealed layer of each RBM as the visible
layer for the subsequent RBM in the sequence. This interconnected structure
enables the learning of complex features through successive layers [20].

• Radial Basis Function (RBF) Networks: are frequently employed in the context
of ANNs for the task of approximating functions. These networks are distin-
guished by their universal approximation capability and faster learning rates in
comparison to other neural network architectures [25]. In the context of net-
work architecture, which is typically composed of three layers, the initial layer
represents the input nodes, which are followed by a hidden layer containing
several non-linear activation units based on RBFs. The final layer represents the
network’s output. In the majority of cases, Gaussian functions are employed as
the activation functions in RBF networks [26].

To illustrate the working flow of the RBF network, suppose we have a dataset
D which has N patterns of (x, y) where x is the input of the dataset and y is

24

Figure 2.2: This figure shows the schema of a general RBF network.

the actual output. The activation of the ith function ϕi in the hidden layer of
the network is computed using Eq. 2.1, which relies on the distance between
the input pattern x and the center ci:

ϕi(∥x− ci∥) = exp
(
−∥x− ci∥2

2σ2
i

)
. (2.1)

Here, ∥ · ∥ represents the Euclidean norm, ci and σi are the center and width of
the ith hidden neuron, respectively.

Then, the output of the kth node in the output layer of the network is calculated
using:

yk =
N∑
i=1

wkiϕi(x). (2.2)

The majority of classical approaches to training RBF networks in the literature
entail two stages. In the initial stage, the centers and widths are determined,
frequently through the utilization of unsupervised clustering algorithms. In the
subsequent stage, the connection weights between the hidden layer and the
output layer are adjusted with a view to minimizing an error criterion, such as
the Mean Squared Error (MSE), across the entire dataset.

The training process for the RBF model is terminated either when the calculated
error reaches a predetermined threshold (e.g., 0.01) or after a specified number

25

of training iterations (e.g., 500). A specific number of nodes, typically 10, are
selected for the hidden layer, and a Gaussian function is commonly employed
as the transfer function in the computational units. In practice, RBF networks
often demonstrate a more rapid convergence during training in comparison to
MLP networks [25].

2.3 Deep Features

The DNN architecture allows for the utilization of deep features for clustering pur-
poses, which can be sourced from one or multiple layers of the DNN:

• Single layer: In this configuration, a single layer of the DNN is employed for
the extraction of deep features. This approach is typically advantageous due to
its lower dimensionality.

• Multiple layers: This scenario entails the extraction of the deep features from a
fusion of outputs originating from multiple layers. Consequently, the represen-
tation becomes more intricate, thereby enabling the embedded space to depict
more complex semantic representations. This augmented capacity frequently
results in enhanced outcomes in similarity computation [27].

2.4 Non‐Clustering Loss

The non-clustering loss component is concerned exclusively with the learning of a
deep representation of the data through the application of DL techniques. It operates
independently of the clustering aspect of the process. A variety of non-clustering loss
functions are available for consideration [20]:

• Absence of non‐clustering loss: In this scenario, the network model is con-
strained only by the clustering loss. The absence of a non-clustering loss may
result in the generation of inferior representations or even the collapse of clus-
ters [6].

• Reconstruction loss: In the case of an AE being selected as the DNN archi-
tectural choice, the non-clustering loss is equivalent to the reconstruction loss.

26

Typically, it is defined as the distance measure dAE(xi, x̂i) between the input xi

to the AE and its corresponding reconstruction x̂i = f(xi). The most common
formulation of this loss is the MSE between the two variables:

L(xi, f(xi)) = dAE(xi, f(xi)) =
n∑

i=1

||xi − f(xi)||2, (2.3)

where n is the number of data points, xi represents the input, and f(xi) denotes
the AE reconstruction.

• Implicit maximum likelihood loss: The objective of this loss function is to
address the challenges associated with direct likelihood maximization, partic-
ularly when utilizing a DNN as the underlying machine learning model [28].
The implicit maximum likelihood loss is expressed as follows:

L(xi, xeθi) =
n∑

i=1

||xi − xeθi ||22. (2.4)

Here, n represents the number of data points, xi denotes the i-th data point,
and xeθi signifies the nearest sample (from m samples generated by the DNN
model) to the i-th data point, determined using a distance metric (typically the
Euclidean distance).

• The min‐max loss: In the case of a generative adversarial network (GAN)
being the optimal model, the min-max loss function is utilized [29]. This non-
clustering loss function is defined as:

L(D,G) = min
G
max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))].

(2.5)

• Additional Information: Non-clustering loss can leverage additional data infor-
mation to extract valuable features, even if this extra information isn’t conducive
to the clustering process.

2.5 Clustering Loss

The purpose of clustering loss functions is to direct neural networks towards the
acquisition of representations of the input data that are conducive to the formation of

27

clusters. Consequently, these functions are designated as clustering loss functions [18,
20, 19]. These can be classified into two categories: principal clustering loss and
auxiliary clustering loss [20].

• Principal clustering loss: Following DNN training with this category of cluster-
ing loss, the clusters can be obtained directly. This implies that such clustering
loss functions encompass both the cluster centroids and the process of data clus-
tering. Examples of these types of clustering losses include k-means loss [30],
cluster assignment hardening loss [31], agglomerative clustering loss [32], clus-
ter classification loss [33], non parametric maximum margin clustering [34], and
so forth.

• Auxiliary clustering loss: This category of clustering loss encourages the DNN
to learn a representation that is more suitable for clustering. However, it does
not directly provide clustering solutions. Consequently, deep clustering meth-
ods that employ auxiliary clustering loss require the execution of a clustering
method after DNN training in order to obtain the clusters. Examples of auxil-
iary clustering losses deployed in deep clustering include the locality-preserving
loss [35], which ensures that the DNN preserves the local properties of data
embedding, and the group sparsity loss [35], which utilizes a block diagonal
similarity matrix for representation learning.

2.5.1 Principal Clustering Loss

The following section presents a selection of principal clustering loss functions [19]:

• No clustering loss: Although a DNN trained exclusively with non-clustering
losses can still generate deep features suitable for clustering post-training, it
transforms the input data into a lower-dimensional representation, effectively
reducing the dimensionality. While this transformation may occasionally prove
beneficial for clustering, the incorporation of a clustering loss has been demon-
strated to yield superior results [6, 31].

• k‐means loss: The k-means loss, also referred to as clustering error, is designed
to promote the generation of a representation that is conducive to clustering, as
outlined in [6]. By minimizing this error with respect to the DNN parameters,

28

the distance between each data point and its assigned cluster center is reduced,
thus improving the quality of the clustering when applying k-means.

• Agglomerative clustering loss: In the context of agglomerative clustering, the
process involves the progressive combination of two clusters with the highest
affinity or similarity at each iteration until a predefined stopping criterion is
met, as outlined by [36].

• Cluster classification loss: During the updating of clusters, the assignments
may be employed as alternative class labels for a classification loss integrated
into an auxiliary network branch. This configuration encourages the extraction
of meaningful features across all layers of the network, as evidenced by the
findings of [33, 37].

2.5.2 Auxiliary Clustering Loss

The subsequent section enumerates a selection of potential auxiliary clustering loss
functions [19]:

• Locality‐preserving loss: The objective of the locality-preserving loss function
is to maintain the proximity of clusters by encouraging nearby data points to be
positioned in close proximity to each other [35]. The mathematical expression
is as follows:

Llp =
∑
i

∑
j∈Nk(i)

s(xi, xj)||f(xi)− f(xj)||2. (2.6)

Here, Nk(i) denotes the set of k nearest neighbors of the data point xi, s(xi, xj)

represents a similarity measure between the points xi and xj , and f(·) represents
the nonlinear transformation performed by a DNN.

• Group sparsity loss: It draws inspiration from spectral clustering, employing a
block diagonal similarity matrix for representation learning, as outlined by [38].
Group sparsity represents an effective technique for the selection of features.
For example, in [35], the hidden units were divided into G groups, where G

represents the assumed number of clusters. Given a data point xi, the resulting
representation takes the form fg(xi)

G
g=1. Accordingly, the loss function can be

formulated as follows:

Lgs =
N∑
i=1

G∑
g=1

λg||fg(xi)||. (2.7)

29

Here, λg represents the weights assigned to sparsity groups, defined as λg =

λ
√
ng, where ng denotes the group size and λ is a constant.

2.6 Synthesizing the Loss Functions

Let us consider a deep clustering process that employs both a clustering and a non-
clustering loss function. It is of great importance to effectively combine these two
losses. One common approach to achieve this is through the following formulation:

L(θ) = αLc(θ) + (1− α)Ln(θ), (2.8)

where Lc(θ) represents the clustering loss, Ln(θ) represents the non-clustering loss,
and α ∈ [0, 1] is a constant determining the balance between the two loss functions.
α is employed as an additional hyperparameter during the training of DNN, and its
value may be modified at various points throughout the training process in accordance
with a predefined schedule. The scheduling methods for adjusting α during training
are described in detail in [19]:

• Joint training: α remains constant within the range 0 < α < 1, and the DNN
training incorporates both loss functions simultaneously.

• Variable schedule: The value of α undergoes a change throughout the training
process in alignment with a predefined schedule. To illustrate, it may commence
at a relatively low level and then undergo a gradual increase with each training
epoch.

• Pretraining, fine‐tuning: In the initial stage, the parameter α is set to 0, and
the DNN undergoes training using only the non-clustering loss. Subsequently,
in the second stage, α is set to 1, and the DNN is retrained solely using the
clustering loss. This approach enables the DNN to be fine-tuned specifically for
clustering tasks. However, training the DNN exclusively with the clustering error
for an extended period may result in suboptimal clustering outcomes.

30

2.7 Updating Clusters

Clustering methods are typically divided into two main categories: hierarchical and
partitional (centroid-based) approaches [2]. In hierarchical clustering, a hierarchy of
clusters and data points is constructed. In contrast, partitional clustering involves the
organization of data into clusters with distinct centers. This is achieved through the
application of metric relations, which assign each data point to the cluster with the
most similar center [20].

In the field of deep clustering, two prominent methodologies have been widely
employed. The first is Agglomerative clustering integrated with DL [36], which rep-
resents a hierarchical clustering approach. The second is k-means coupled with
DL [31, 6, 33, 39], which falls under the category of partitional clustering methods.

In the context of DNN training, a centroid-based approach entails the updating of
both the clusters and the centroids. The prevailing methodologies for updating these
elements are delineated as follows [20]:

• Simultaneously updated with the network model: The incorporation of cluster
assignments as probabilities permits their representation as network parameters,
thereby facilitating optimization through backpropagation.

• Updated alternately with the network model: The process of adjusting clus-
tering assignments is conducted independently of the network model update
procedure, as outlined in [31, 36].

2.8 Autoencoders As DNNs In Clustering

In recent years, DNNs have seen an increase in applications within the domain of
DL, particularly in the area of clustering. DNNs are adept at learning intricate and
valuable data representations from datasets, reducing the reliance on extensively engi-
neered features by humans [40]. This versatility is owed to their exceptional nonlinear
mapping capability and adaptability [16, 41]. Although clustering was not initially a
primary focus of DL, numerous methods have emerged that leverage the represen-
tational power of neural networks, leading to the emergence of a new category of
deep clustering methods. These approaches aim to enhance clustering outcomes by
effectively training neural networks to transform input data and produce represen-

31

tations conducive to clustering. The ideal outcome is the formation of compact and
well-separated clusters in the latent space [20, 19, 18, 42, 43].

In the context of deep clustering, a range of DNN models have been utilized,
as evidenced in [43]. It is noteworthy that the most commonly used architectures
include GANs [29], VAEs [44], and Graph Neural Networks [45]. Moreover, conven-
tional DNNs have been integrated into methodologies like ClusterGan [37], VaDE [46],
JULE [36], and NIMLC [47, 48].

Nevertheless, the majority of methodologies employ AEs, which stand out as the
most prevalent DL model for clustering. AE-based deep clustering approaches seek to
capitalize on the nonlinear capabilities of the encoder and decoder models to facilitate
the shaping of the latent space [6]. To achieve this goal, novel objective functions have
been proposed that combine the traditional AE reconstruction error with a clustering
loss. This combination enables the training of the AE network in such a way that the
data forms more compact clusters in the learned embedded space. This is achieved
by simultaneously minimizing a clustering objective and the AE reconstruction error,
thus ensuring that the original data information is preserved while the clustering
objective is met.

32

CHAPTER 3

AUTOENCODER-BASED DEEP CLUSTERING
METHODS

3.1 Dimensionality Reduction and Clustering

3.2 Deep Clustering Network

3.3 Deep Embedded Clustering

3.4 Improved Deep Embedded Clustering

3.1 Dimensionality Reduction and Clustering

Many conventional learning methods traditionally treat DR and clustering as separate
processes. However, recent studies have revealed that optimizing these tasks jointly
can significantly enhance the performance of both. This novel approach operates
under the assumption that data samples stem from a linear transformation of latent
representations conducive to clustering [6].

In practice, the application of DR preprocessing techniques, such as Principal
Component Analysis (PCA) or Non-negative Matrix Factorization (NMF) [49, 50], to
reduce the dimensionality of xi to a lower-dimensional space frequently results in
enhanced outcomes when followed by k-means clustering. In addition to employing
DR as a preprocessing step, the literature has also explored the approach of jointly
performing DR and clustering [51, 52, 53].

33

Let’s now consider a generative model where a data sample is represented as
xi = Whi, with W ∈ RM×R and hi ∈ RR, where R ≪ M . It is assumed that the
data clusters are well-separated in the latent domain (i.e., where hi resides), but the
transformation introduced by W may result in distortion. In their work, Yang et al.
(2017) [53] presented a joint optimization problem formulated as follows:

min
M,{si},W,H

∥X −WH∥2F + λ

N∑
i=1

∥hi −Msi∥22 + r1(H) + r2(W) (3.1)

s.t. sj,i ∈ {0, 1} and 1⊤si = 1 ∀i, j, where X = [x1, . . . , xN], H = [h1, . . . , hN], and λ ≥ 0

serves as a parameter balancing the competing constraints of data fidelity and latent
cluster structure. This formulation addresses both DR and latent clustering, with the
regularization terms r1(·) and r2(·) serving to prevent trivial solutions. The data model
X ≈ WH as presented in the previously referenced work, may be overly simplified.
It is possible that the data generating process is more complex than a simple linear
transformation, and therefore, further investigation is required. Therefore, there is
justification in seeking powerful non-linear transformations, such as DNNs, to model
this data-generating process. Concurrently, the joint DR and clustering approach re-
mains a valuable technique.

Furthermore, the approach proposed by Xie et al. (2016) [31] and Yang et al.
(2016) [36] involves connecting a clustering module to the output layer of a DNN
and jointly learning the parameters of the DNN and the clusters. In particular, the
methodologies seek to address an optimization problem of the following form:

min
W,Θ
L̂ =

N∑
i=1

q(f(xi;W); Θ), (3.2)

where f(xi;W) represents the network output for the data sample xi, W collects
the network parameters, and Θ denotes parameters of some clustering model. For
example, Θ represents the centroids M and the assignments {si} when the k-means
clustering formulation 1.1 is used. The function q(·) in the equation 3.2 represents
some clustering loss, such as the Kullback-Leibler (KL) divergence loss in [31] or the
agglomerative clustering loss in [36].

The best possible solution to the problem 3.2 occurs when f(xi;W) = 0, and
achieving an optimal objective value of L̂ = 0 is always possible. Another kind of
trivial solution is to group random data points tightly, resulting in a low L̂ value.
However, this approach may not be ideal, since it doesn’t take into account the
individual data samples xi’s.

34

3.2 Deep Clustering Network

The study by Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos and Mingyi Hong [6],
proposes a joint DR and k-means clustering method that uses DNNs for DR. By
utilizing a DNN, they aim to retain the benefits of jointly optimizing both tasks while
taking advantage of the DNN’s ability to approximate complex nonlinear functions.
As a result, this approach is adaptable to a wide range of generative models.

To achieve this goal, they elaboratively designed the structure of the DNN and
formulated an optimization criterion that includes both DR and clustering objec-
tives. Moreover, a practical and scalable algorithm tailored to effectively handle the
optimization problem is introduced. Finally, this clustering method is called Deep
Clustering Network (DCN).

3.2.1 Framework

The DCN framework integrates DR and k-means clustering, where DR is performed
by using a DNN that deviates from conventional linear models. The goal of their
study is to improve the modeling of the data transformation process with a more
comprehensive model, which can result in a latent space that is much more compatible
with k-means clustering. Thus, they introduce an optimization criterion for the joint
DNN-based DR and k-means clustering, which consists of three components: DR, data
reconstruction, and cluster structure-promoting regularization. Lastly, they present
a comprehensive solution package that includes empirically effective initialization
methods and a novel alternating stochastic gradient algorithm.

3.2.2 Formulation

The objective of this work was to develop a model that could effectively represent
the relationship between the observable data xi and its clustering-friendly latent rep-
resentation hi. This was achieved by employing a nonlinear mapping, specifically,
hi = f(xi;W), where f(·;W) : RM → RR denotes the mapping function and W de-
notes the set of parameters. In this instance, the mapping function is a DNN, given
that DNNs possess the capacity to approximate any continuous mapping using a finite
number of parameters.

Nevertheless, the primary issue that arises in this methodology is the manner

35

by which trivial solutions can be avoided. The primary means of preventing them in
linear DR lies in the reconstruction phase, particularly in the term ∥X−WH∥2F within
equation 3.1. This component ensures that the learned hi’s can effectively reconstruct
the xi’s with the help of W .

Moreover, to prevent trivial low-dimensional representations such as all-zero vec-
tors, DCN employs a decoding network g(·;Z) to map the hi’s back to the data
domain. Additionally, it necessitates that g(hi;Z) and xi exhibit a high degree of
similarity under a specified metric, such as mutual information.

So, they built the below cost function:

min
W,Z,M,{si}

N∑
i=1

(
l (g (f(xi)) , xi) +

λ

2
∥f(xi)−Msi∥22

)
, (3.3)

s.t. sj,i ∈ {0, 1}, 1T si = 1 ∀i, j, where f(xi;W) = f(xi) and g(hi;Z) = g(hi), respec-
tively.

The function l(·) : RM → R represents a specific loss function that measures the
reconstruction error. In this study, the least squares loss function is employed, defined
as l(x, y) = ∥x− y∥22. The parameter λ ≥ 0 is a regularization parameter that balances
the trade off between the reconstruction error and the generation of k-means friendly
latent representations.

3.2.3 Optimization Procedure

This section presents the optimization strategy employed to enhance the performance
and efficiency of the clustering algorithm. The objective of this procedure is to achieve
an optimal balance between accurate feature representation and optimal clustering
results. This is accomplished by combining pretraining, alternate optimization, and
iterative parameter updates.

Layer‐wise Pretraining for Initialization

The authors propose to use the layer-wise pretraining method, as introduced by Ben-
gio et al. (2007) [54] for training AEs, to initialize the network parameters (W,Z).
While this pretraining technique may be unnecessary for large-scale supervised learn-
ing tasks, the authors highlight its significance for their proposed DCN, which operates
exclusively in an unsupervised manner. Regardless of the dataset size, the layer-wise
pretraining procedure has been demonstrated to be crucial. Following the pretraining

36

phase, the outputs of the bottleneck layer are subjected to k-means clustering, thereby
providing the initial values for M and {si}.

Alternating Stochastic Optimization

Even with good initialization, solving the problem 3.3 remains a significant challenge.
The commonly used SGD algorithm cannot be directly applied to the joint optimiza-
tion of W , Z , M , and {si} because the block variable {si} is restricted to a discrete
set. The idea is to to integrate the principles of alternating optimization and SGD. In
particular, the approach entails optimizing the subproblems with respect to one of
M , {si}, and (W,Z), while keeping the other two sets of variables fixed.

• Update Network Parameters

For fixed (M, {si}), the subproblem w.r.t. (W,Z) is analogous to training a sparse
AE, but with an additional penalty term on the clustering performance. It makes
use of the well-established tools for training DNNs, e.g., backpropagation based
SGD and its variants. To implement SGD for updating the network parameters,
the problem is considered w.r.t. the incoming data point xi:

min
W,Z
Li = ℓ(g(f(xi)), xi) +

λ

2
∥f(xi)−Msi∥22. (3.4)

The gradient of the above function with regard to the network parameters is
easily computable, i.e., ∇XLi = ∂ℓ(g(f(xi)),xi)

∂X
+ λ∂f(xi)

∂X
(f(xi) −Msi), where X =

(W,Z) is a collection of the network parameters. The gradients ∂ℓ
∂X

and ∂f(xi)
∂X

can be calculated by backpropagation (Rumelhart et al., 1988) [55] (it should be
noted that the aforementioned derivatives are actually subgradients with respect
to X , given that the ReLU function is not differentiable at 0). Subsequently, the
network parameters are updated as follows:

X ← X − α∇XLi, (3.5)

where α > 0 is a diminishing learning rate.

• Update Clustering Parameters

In the context of fixed network parameters and M , the assignment vector of
the current sample, i.e., si, can be updated in an online fashion in a natural

37

manner. Specifically, the update of si is conducted as follows:

sj,i =

1, if j = arg min

k={1,...,K}
∥f(xi)−mk∥2,

0, otherwise.
(3.6)

When fixing {si} and X , the update ofM is simple and may be done in a variety
of ways. For example, one may simply employ the formula mk =

1
|Ci

k|
∑
i∈Ci

k

f(xi),

where C i
k is the recorded index set of samples assigned to cluster k from the

first sample to the current sample i. Although the previously described update
is intuitive, it could be problematic for online algorithms. This is because the
historical data that has already been recorded (i.e., x1, . . . , xi) may not be suffi-
ciently representative enough to model the global cluster structure. Additionally,
the initial si’s values may be significantly inaccurate.

Therefore, simply averaging the current assigned samples may cause numer-
ical problems. Instead of doing the above, they employ the idea in (Sculley,
2010) [56] to adaptively modify the learning rate associated with the updat-
ing of m1, . . . ,mK . The underlying concept is straightforward: assume that the
clusters are approximately balanced in terms of the number of data samples
they contain. Then, following the updating of M for a number of samples, it is
recommended that the centroids of the clusters with a considerable number of
assigned members be updated in a more gradual manner, while those with a
lesser number of assigned members be updated in a more pronounced manner,
in order to maintain balance.

To implement this, let cik be defined as the count of the number of times the
algorithm assigned a sample to cluster k before handling the incoming sample
xi. Then, mk can be updated by a simple gradient step:

mk ← mk −
1

cik
(mk − f(xi))sk,i, (3.7)

where the gradient step size 1
cik
controls the learning rate. The previously de-

scribed update ofM can also be regarded as an SGD step, resulting in an overall
alternating block SGD procedure that is summarized in Algorithm 3.1. It should
be noted that an epoch represents a single pass of all data samples through the
network.

38

Algorithm 3.1 Alternating Stochastic Gradient Descent (SGD)
Require: Initialization {Perform T epochs over the data}.
1: for t = 1 : T do
2: Update network parameters by 3.5.
3: Update assignment by 3.6.
4: Update centroids by 3.7.
5: end for

Algorithm 3.1 exhibits a number of advantageous characteristics. Firstly, the al-
gorithm can be implemented in a completely online fashion, thereby ensuring scala-
bility. Secondly, numerous established techniques for optimizing the performance of
DNN training can be directly applied, including the mini-batch version of SGD and
batch-normalization [57].

3.3 Deep Embedded Clustering

In their study, Junyuan Xie, Ross Girshick, and Ali Farhadi propose an unsuper-
vised clustering method for jointly learning feature representations and cluster as-
signments [31]. This clustering algorithm is designated as Deep Embedded Clustering
(DEC). DEC draws inspiration from recent advancements in DL, particularly in com-
puter vision tasks, where DNNs have demonstrated success in learning more effective
features [16, 58, 59, 60].

However, in contrast to supervised learning methodologies, DEC is designed to
facilitate unsupervised clustering. It proposes a parameterized non-linear mapping
from the original data space to a lower-dimensional feature space, optimized based
on a clustering objective.

3.3.1 Framework

A number of variants of the k-means algorithm have been proposed, including joint
DR and clustering methods, which address issues associated with higher-dimensional
input spaces [61, 62]. However, these methods are constrained to linear embedding,
whereas the DEC approach employs DNNs for non-linear embedding, which is well-
suited to complex data.

39

Furthermore, the discussion includes an examination of spectral clustering and its
variants [63], which offer more flexible distance metrics and have been demonstrated
to outperform k-means in a number of cases. Techniques that combine spectral clus-
tering and embedding are explored in [64, 65], but they often suffer from scalability
issues due to the necessity of computing the full graph Laplacian matrix.

To address concerns regarding scalability, approximate algorithms for spectral
clustering have been developed; nevertheless, these algorithms may compromise per-
formance in favor of speed. In contrast, the DEC method exhibits linear growth in
relation to the number of data points and is designed to handle large datasets in a
manner that is both efficient and effective.

Additionally, the excerpt discusses the application of KL divergence for data visu-
alization and DR, with techniques such as t-SNE [66, 67]. Thus, drawing inspiration
from parametric t-SNE, the DEC method establishes a centroid-based probability
distribution and endeavors to minimize its KL divergence from an auxiliary target
distribution. This approach aims to enhance both the precision of clustering assign-
ments and the fidelity of feature representations.

In order to address the challenges inherent in clustering when there is a lack
of labeled data, the DΕC framework introduces an iterative refinement process. In
particular, it utilizes an auxiliary target distribution derived from the current soft
cluster assignments to incrementally enhance both clustering accuracy and feature
representation quality. In conclusion, the approach represents a promising avenue
for unsupervised clustering, as it enables the simultaneous learning of feature repre-
sentations and cluster assignments through the use of DL techniques.

3.3.2 Formulation

Consider the task of clustering a set of n points {xi ∈ X}ni=1 into k clusters, each of
which is characterized by a centroid µj , where j = 1, . . . , k. In contrast to the conven-
tional approach of directly clustering within the original data space X, DEC proposes
an initial step of transforming the data through a nonlinear mapping, specifically
fθ : X → Z, where θ denotes the learnable parameters and Z represents the latent
feature space. Typically, the dimensionality of Z is significantly smaller than that of
X [68]. DNNs are selected as the optimal choice for parameterizing fθ due to their
inherent capacity for function approximation [69] and their proven ability to learn

40

meaningful features [40].
The presented algorithm, DEC, operates by concurrently learning a set of k cluster

centers {µj ∈ Z}kj=1 within the feature space Z and the parameters θ governing the
DNN responsible for mapping data points into Z. DEC comprises two distinct phases:
(1) initialization of parameters using a deep AE [70] and (2) parameter optimization,
also known as clustering. In the optimization phase, the algorithm iterates between
computing an auxiliary target distribution and minimizing the KL divergence to it.

3.3.3 Optimization Procedure

The study presented in this section proposes an unsupervised algorithm to enhance
the clustering process, utilizing an initial estimate of the non-linear mapping fθ and
the initial cluster centroids, represented by the set of values {µj}kj=1. The algorithm
comprises two iterative steps. Initially, a soft assignment is computed between the
embedded points and the cluster centroids. Subsequently, the deep mapping function,
fθ, is updated and the cluster centroids are refined by leveraging the current highly
confident assignments through an auxiliary target distribution. This iterative process
continues until a convergence criterion is met.

Soft Assignment

In accordance with the methodology proposed by van der Maaten and Hinton (2008) [66],
the Student’s t-distribution is utilized as a kernel to assess the degree of similarity
between an embedded point zi and the centroid µj:

qij =
(1 + ∥zi − µj∥2/ν)−(ν+1)/2∑

j′
(1 + ∥zi − µj′∥2/ν)−(ν+1)/2

. (3.8)

In this context, zi = fθ(xi) ∈ Z represents the embedding of xi ∈ X, and ν represents
the degrees of freedom associated with the Student’s t-distribution. The quantity qij

signifies the probability of assigning sample i to cluster j, indicating a soft assignment.
In the absence of a validation set for cross-validation of the ν in the unsupervised
setting, and given the redundancy of its learning, they set ν = 1 [67].

KL Divergence Minimization

In DEC method, it is proposed the iterative refinement of clusters through the ex-
ploitation of their high-confidence assignments, facilitated by the use of an auxiliary

41

target distribution. In detail, the model is trained by aligning the soft assignment
with the target distribution. In order to achieve this, the objective is defined as the
KL divergence loss between the soft assignments qi and the auxiliary distribution pi.
This is expressed as follows:

L = KL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

. (3.9)

The selection of target distributions P is of critical importance in determining the
performance of DEC. A straightforward approach might entail setting each pi to a
delta distribution (pointing to the nearest centroid) for data points exceeding a con-
fidence threshold and disregarding the remainder. However, since qi represents soft
assignments, it is more natural and versatile to optimize for softer probabilistic targets.
More specifically, this method strives to achieve the following objectives with respect
to the target distribution: (1) enhanced prediction accuracy, (2) greater focus on data
points with higher confidence levels, and (3) normalization of loss contribution to
prevent large clusters from distorting the hidden feature space.

In this work, pi is computed by first squaring qi and then normalizing by the
frequency of occurrences within a given cluster:

pij =
q2ij/fj∑

j′
q2ij′/fj′

, (3.10)

where fj =
∑
i

qij represents the soft cluster frequencies.
The DEC training strategy may be regarded as a form of self-training [71]. Similar

to self-training, the process begins with an initial classifier and an unlabeled dataset,
which are then labeled with the classifier to train on its own high-confidence predic-
tions. Indeed, experimental evidence indicates that DEC enhances the initial estimate
in each iteration by learning from high-confidence predictions, thereby improving
low-confidence ones.

Optimization

The optimization process entails a joint optimization of the cluster centers {µj} and
DNN parameters θ through the application of SGD with momentum. The gradients of
L with respect to the feature-space embedding of each data point zi and each cluster
centroid µj are computed as follows:

∂L
∂zi

=
ν + 1

ν

∑
j

(
1 +
∥zi − µj∥2

ν

)−1

× (pij − qij)(zi − µj), (3.11)

42

∂L
∂µj

= −ν + 1

ν

∑
i

(
1 +
∥zi − µj∥2

ν

)−1

× (pij − qij)(zi − µj). (3.12)

Subsequently, the gradients ∂L
∂zi
are propagated to the DNN and employed in stan-

dard backpropagation to calculate the parameter gradient ∂L
∂θ
of the DNN. With regard

to the assignment of clusters, the process is terminated when the proportion of points
that alter their cluster assignment between two consecutive iterations is less than the
total percentage.

3.3.4 Parameter Initialization

The discussion will now turn to the initialization process of the DEC algorithm, which
involves the configuration of the DNN parameters θ and the cluster centroids {µj}. To
initiate this process, a stacked AE (SAE) is employed. SAEs are known for their ability
to consistently generate semantically meaningful and well-separated representations
in real-world datasets [70, 72, 73]. The unsupervised representations obtained from
the SAE facilitate the learning of clustering representations within DEC.

The SAE network is initialized layer by layer, with each layer comprising a de-
noising AE trained to reconstruct the output of the preceding layer after random
corruption [70]. This denoising AE is defined as follows:

x̃ ∼ Dropout(x),

h = g1(W1x̃+ b1),

h̃ ∼ Dropout(h),

y = g2(W2h̃+ b2).

In this context, Dropout(·) represents a stochastic mapping that randomly sets to 0
a portion of its input dimensions [74]. The functions g1 and g2 serve as activation
functions for the encoding and decoding layers, respectively. The model parameters
are represented by θ = {W1, b1,W2, b2}. The objective of the training process is to
minimize the least-squares loss ∥x− y∥2. Subsequent to the training of each layer, the
output h is employed as input for training the following layer. ReLUs are utilized in
all encoder/decoder pairs, with the exception of g2 in the first pair (which handles
input data that may include positive and negative values) and g1 in the last pair (to
ensure the preservation of complete information in the final data embedding [70]).

43

Once the layer-wise training phase has been completed, the encoder layers are
concatenated, followed by the decoder layers in reverse layer-wise training order. This
combination results in the formation of a multilayer deep AE, comprising a bottleneck
coding layer at its core. Further refinement through fine-tuning is employed with the
objective of minimizing the reconstruction loss. Following this process, the decoder
layers are discarded, leaving only the encoder layers to serve as the initial mapping
between the data space and the feature space.

Finally, for initializing the cluster centers, the data is passed through the initialized
DNN to obtain embedded data points. Standard k-means clustering is then performed
in the feature space Z to derive the initial centroids {µj}kj=1.

3.4 Improved Deep Embedded Clustering

The DEC algorithm establishes an efficient objective through self-learning. This ob-
jective (clustering loss) is employed to concurrently adjust the parameters of the
transformation network and the cluster centers. By incorporating cluster assignment
into soft labels, the algorithm attains implicit coordination. However, it is not possible
to rely on the clustering loss alone to guarantee the preservation of local structure.
Consequently, the feature transformation may become misguided, which could po-
tentially compromise the integrity of the embedded space.

To address this issue, the work of Xifeng Guo, Long Gao, Xinwang Liu, Jianping
Yin [75] posits that both the guidance of clustering-oriented loss and the preser-
vation of local structure are crucial for effective deep clustering. Taking inspiration
from Peng et al. (2016) [76], they employ an under-complete AE to learn embedded
features while preserving the local structure of the data distribution. This approach
involved integrating the AE into the DEC framework, which enabled their framework
to jointly conduct clustering and acquire representative features while maintaining lo-
cal structure integrity. This clustering method is called Improved Deep Embedded
Clustering (IDEC).

3.4.1 Framework

The IDEC algorithm is essentially a modified version of DEC, which integrates an
under-complete AE to preserve local structure. It distinguishes itself from Yang et

44

al. (2016) [36] through its simplicity, which eliminates the need for recurrence, and
it outperforms DEC in terms of both clustering accuracy and feature representative-
ness. In the IDEC algorithm, a denoising AE is employed for pretraining, and an
undercomplete AE is integrated into the DEC framework subsequent to initialization.

3.4.2 Formulation

The primary contribution of DEC [31] lies in its utilization of the clustering loss (or
target distribution P). This method relies on the use of highly confident samples as a
form of supervisory input, with the objective of encouraging a denser distribution of
samples within each cluster. Nevertheless, there is no guarantee that samples situated
at the boundaries will be correctly allocated to the corresponding cluster. To address
this challenge, IDEC explicitly preserves the local structure of the data. As a result,
the supervision provided by highly confident samples assists in guiding marginal
samples towards their correct clusters.

Let’s consider about a dataset X comprising n samples, where each sample xi

belongs to Rd, with d denoting the dimensionality of the space. The number of clusters
K is known a priori, and each cluster j is characterized by a center µj ∈ Rd. For each
sample xi, a cluster index si ∈ {1, 2, . . . , K} is assigned. Two mappings are defined: the
first, fW : xi → zi, represents a nonlinear transformation mapping xi to its embedded
point zi in a low-dimensional feature space; the second, gW ′ : zi → x′

i, maps zi back
to its reconstructed sample x′

i.
The objective is to identify a suitable fW that enhances the embedded points {zi}ni=1

for the clustering task. Two principal elements are of paramount importance: the AE
and the clustering loss. The AE is utilized to learn representations in an unsupervised
manner, thereby facilitating the preservation of the data’s intrinsic local structure.
The clustering loss function refines the embedded space to achieve a well-dispersed
distribution of embedded points. The objective is defined as

L = Lr + γLc, (3.13)

where Lr and Lc denote the reconstruction loss and clustering loss, respectively. In
this context, the parameter γ > 0 serves as a coefficient controlling the degree of
distortion in the embedded space. When γ = 1 and Lr ≡ 0, equation 3.13 simplifies
to the objective of DEC 3.9.

45

3.4.3 Optimization Procedure

This section delineates the methodology designed to improve DEC’s clustering perfor-
mance by effectively initializing the model, preserving local structure, and employing
an optimized training strategy. This approach balances precise feature representation
with robust clustering outcomes.

Clustering Loss and Initialization

The clustering loss which is used is already defined in 3.3.3. Additionally, in ac-
cordance with the recommendations proposed by Xie et al. (2016) [31], a stacked
denoising AE undergoes pretraining prior to commencing the clustering procedure.
Upon completion of the pretraining phase, the embedded points are deemed to be
valid feature representations for the input samples. Subsequently, the cluster centers
{µj}Kj=1 can be initialized by applying the k-means on {zi = fW (xi)}ni=1.

Local Structure Preservation

It is possible that the embedded points may not be inherently suited to the cluster-
ing task. In response, DEC [31] removes the decoder and refines the encoder using
the clustering loss Lc. However, this refinement process may result in distortion of
the embedded space, which could diminish the representativeness of embedded fea-
tures and potentially compromise clustering performance. Accordingly, in the IDEC
method, the decoder is maintained in its original form and the clustering loss is
directly applied to the embedded space.

In order to guarantee the efficacy of the clustering loss, it is inadvisable to employ
the stacked denoising AE for pretraining. This is because clustering should ideally
be performed on features extracted from clean data, rather than on data corrupted
by noise, as is the case with the denoising AE. Consequently, the noise is removed
directly. As a result, the stacked denoising AE is transformed into an undercomplete
AE. The reconstruction loss is quantified using the MSE:

Lr =
n∑

i=1

∥xi − gW ′(zi)∥22, (3.14)

where zi = fW (xi) and fW and gW ′ represent the encoder and decoder mappings,
respectively.

46

As demonstrated in prior research by [76] and [77], AEs are capable of preserving
the local structure of the data-generating distribution. In light of this observation, it
seems unlikely that making minor adjustments to the embedded space using the clus-
tering loss will result in corruption. It is therefore recommended that the coefficient
γ remains below 1.

Optimization

The optimization of Equation 3.13 is conducted using mini-batch SGD in conjunction
with backpropagation. This process entails updating three sets of parameters: the
weights of the AE, the cluster centers, and the target distribution P .

• Update AE’s weights and cluster centers

In the initial stage, the weights of the AE and the cluster centers are updated
while maintaining the target distribution P at a fixed value. This allows for the
computation of the gradients of Lc with respect to both the embedded point zi
and the cluster center µj. The following equations illustrate this:

∂Lc

∂zi
= 2

K∑
j=1

(
1

1 + ∥zi − µj∥2

)
(pij − qij)(zi − µj), (3.15)

∂Lc

∂µj

= 2
n∑

i=1

(
1

1 + ∥zi − µj∥2

)
(qij − pij)(zi − µj). (3.16)

Then, for a mini-batch comprising m samples and with a learning rate λ, the
update for µj is as follows:

µj = µj −
λ

m

m∑
i=1

∂Lc

∂µj

. (3.17)

The weights of the decoder are adjusted by:

W ′ = W ′ − λ

m

m∑
i=1

∂Lr

∂W ′ . (3.18)

The weights of the encoder are adjusted by:

W = W − λ

m

m∑
i=1

(
∂Lr

∂W
+ γ

∂Lc

∂W

)
. (3.19)

47

• Update target distribution

Updating the target distribution P is crucial as it serves as the “ground truth”
soft label, which is influenced by the predicted soft label. To ensure stability,
it is imperative that the target distribution P not be updated at every iteration
by using a mini-batch of samples. In contrast, the target distribution is up-
dated with all embedded points every T iterations. When updating the target
distribution, the label assigned to xi is obtained through the following equation:

si = argmax
j

qij, (3.20)

where qij is computed by Equation 3.8. The training process will be terminated
when the percentage change in label assignments between two consecutive up-
dates for the target distribution is less than a predefined threshold δ.

Algorithm 3.2 Improved Deep Embedded Clustering (IDEC) algorithm
Require: Input data: X; Number of clusters: K; Target distribution update interval:

T ; Stopping threshold: δ; Maximum iterations: MaxIter.
Ensure: AE’s weights W and W ′; Cluster centers µ and labels s.
1: Initialize µ, W ′, and W according to Section 3.4.3.
2: for iter ∈ {0, 1, . . . ,MaxIter} do
3: if iter%T == 0 then
4: Compute all embedded points {zi = fW (xi)}ni=1.
5: Update P using Eqs. 3.8, 3.10, and {zi}ni=1.
6: Save last label assignment: sold = s.
7: Compute new label assignments s via Eq. 3.20.
8: if sum(sold ̸=s)

n
< δ then

9: Stop training.
10: end if
11: end if
12: Choose a batch of samples S ∈ X.
13: Update µ, W ′, and W via Eqs. 3.17, 3.18, and 3.19 on S.
14: end for

Algorithm 3.2 summarizes the complete IDEC procedure.

48

CHAPTER 4

DEEP CLUSTERING USING SOFT SILHOUETTE

4.1 Silhouette

4.2 Soft Silhouette

4.3 The DCSS method: Deep Clustering using Soft Silhouette

4.1 Silhouette

The silhouette score, first proposed by [14], is a metric used to assess the quality
of clustering solutions. It presupposes that an effective clustering solution comprises
clusters that are both compact and well-separated. Given a dataset X = {x1, . . . , xN},
which has been partitioned into K clusters C = {C1, . . . , CK}, where d(xi, xj) denotes
the distance between xi and xj , the silhouette score can then be computed as follows:

The initial step is to calculate the individual silhouette score s(xi) for each data
point xi. Firstly, the average distance a(xi) is calculated for each data point with
respect to all other data points within its cluster CI :

a(xi) =
1

|CI | − 1

∑
xj∈CI ,i ̸=j

d(xi, xj), (4.1)

where |CI | represents the cardinality of cluster CI with |CI | > 1. The value of a(xi)

serves to quantify the degree of fit exhibited by the data point xi within its cluster. A
low value of a(xi) indicates that xi is similar to its cluster members, which suggests
that the data point is correctly grouped. Conversely, a higher value of a(xi) implies
that xi is distant from its cluster members.

49

In order to calculate the silhouette score, it is necessary to compute the minimum
average distance between a data point xi and data points in other clusters, which is
denoted as b(xi). This measure, b(xi), is expressed as follows:

b(xi) = min
J ̸=I

1

|CJ |
∑

xj∈CJ

d(xi, xj). (4.2)

A higher value of b(xi) signifies that the data point xi exhibits a notable divergence
from the data points in other clusters, which is regarded as a beneficial attribute.

The silhouette score, s(xi), for a data point xi is determined by considering two key
factors: firstly, the requirement for a small within-cluster distance a(xi), and secondly,
a large between-cluster distance b(xi). In mathematical terms, it is defined as:

s(xi) =
b(xi)− a(xi)

max {a(xi), b(xi)}
. (4.3)

It is crucial to acknowledge that −1 ≤ s(xi) ≤ 1. A value closer to 1 indicates that xi

is well-clustered within its assigned group, whereas a value near −1 suggests that xi

might have been incorrectly labeled as it displays a greater degree of similarity with
points in other clusters.

The overall silhouette score for the entire partition C of the dataset X is calculated
by averaging the individual silhouette values:

S(X) =
1

N

N∑
i=1

s(xi). (4.4)

The silhouette score, as proposed by [14], serves not only as an effective means for
internal clustering evaluation but also establishes an intuitive clustering objective that
favors compact and well-separated clusters. However, existing deep clustering objec-
tives are primarily concerned with achieving compact clustering solutions without
explicitly optimizing for cluster separability. To address this limitation, a probabilistic
variant of the silhouette score, termed the soft silhouette, has been introduced [15].
This variant enables optimization for both compactness and cluster separability.

4.2 Soft Silhouette

The soft silhouette score [15] considered in this work, represents an extension of
the conventional silhouette score. Rather than utilizing hard cluster assignments, it

50

considers probabilistic cluster assignments. In this context, suppose we have a dataset
X = {x1, . . . , xN} partitioned into K clusters C = {C1, . . . , CK}, and let d(xi, xj)

express the distance between data points xi and xj. Furthermore, let PCI
(xi) denote

the probability that xi belongs to cluster CI . It follows naturally that
K∑
i=1

PCI
(xi) = 1.

If it is assumed that xi belongs to cluster CI , then we define:

– aCI
(xi): the distance between the point xi and the cluster CI . This is essentially

a weighted average (expected value) of the distances from xi to all other points
xj ∈ X , where the weights are the probabilities PCI

(xj) indicating the likelihood
that xj belongs to the cluster CI .

aCI
(xi) =

N∑
j=1

PCI
(xj)d(xi, xj)

N∑
j=1,j ̸=i

PCI
(xj)

. (4.5)

– bCI
(xi): The minimum value of the expected distance of xi from the other clusters

CJ , which differ from CI .

bCI
(xi) = min

J ̸=I

N∑
j=1

PCJ
(xj)d(xi, xj)

N∑
j=1,j ̸=i

PCJ
(xj)

= min
J ̸=I

aCJ
(xi). (4.6)

– sCI
(xi): The conditional silhouette value for xi given that it belongs to cluster

CI .
sCI

(xi) =
bCI

(xi)− aCI
(xi)

max {aCI
(xi), bCI

(xi)}
. (4.7)

The soft silhouette value sf(xi) of data point xi is calculated as the expected value
of sCI

(xi) with respect to its cluster assignment probabilities PCI
(xi):

sf(xi) =
K∑
I=1

PCI
(xi)sCI

(xi), (4.8)

and the total soft silhouette score Sf(X) of the given partition is computed by aggre-
gating (or averaging) the individual scores sf(xi):

Sf(X) =
1

N

N∑
i=1

sf(xi). (4.9)

It is noteworthy that when dealing with hard clustering, where cluster assignment
probability vectors are essentially one-hot vectors, the equations for soft silhouette are
analogous to those of typical silhouette calculations.

51

As can be seen from the aforementioned equations, there is a clear differentia-
bility with respect to the cluster assignment probabilities in the soft silhouette score.
Consequently, it can be utilized as a viable clustering objective function within a DL
framework. The principal advantage of this objective is in its capacity to optimize
both cluster compactness and separation in a simultaneous manner. The following
section presents a deep clustering approach based on this concept.

4.3 The DCSS method: Deep Clustering using Soft Silhouette

This section presents the Deep Clustering using Soft Silhouette (DCSS) algorithm [15],
which falls under the category of AE-based deep clustering methods that utilize soft
silhouette as a clustering loss.

As previously outlined in chapter 3, a standard AE-based deep clustering method-
ology entails the utilization of an encoder network z = fw(x), where fw(·) : Rd → Rm,
providing latent representations (embeddings) z, and a decoder network x̂ = gθ(z),
where gθ(·) : Rm → Rd, reconstructing the outputs given the embeddings. These net-
works are trained to optimize a total loss, which is the sum of the reconstruction loss
and the clustering loss: LAE = Lrec + λLcl.

In the DCSS approach, the soft silhouette score is employed for the cluster-
ing loss, which requires the specification of cluster assignment probabilities p(x) =

(p1(x), . . . , pK(x)) for an input x. In order to satisfy this requirement, the AE-model is
enhanced with an additional network hr(z), designated as the clustering network. This
network receives as input the embedding of a data point x, z = fw(x), and produces
as output the cluster assignment probabilities pj(x) = hrj(x) for j = 1, . . . , K. Thus,
given the dataset X = {x1, . . . , xN}, we first compute the embeddings zi = fw(xi).
Subsequently, we specify the pairwise distances d(zi, zj) and the cluster assignment
probability vectors p(xi) = hr(zi), which are essential for the calculation of the soft
silhouette score.

The depicted architectural model is presented in Figure 4.1. It is noteworthy that
the clustering network operates in conjunction with the decoder network. Given an
input vector x, the model yields the embedding vector z, the reconstruction vector x̂,
and the probability vector p(x).

Following an investigation of a number of potential alternatives, an RBF model

52

X fw Z gθ X̂

RBF

So
ftm

ax

Cl
us
te
ri
ng

Autoencoder

Clustering Network (hr)

Figure 4.1: This figure shows the schema of the DCSS model architecture.

was selected as the clustering network, augmented with a softmax output unit to
provide the probability vector for cluster assignments. The number of RBF units is
set equal to the number of clusters K.

It is essential to maximize the soft silhouette criterion in order to obtain solutions
of optimal quality. Given that a clustering loss is a quantity to be minimized, it is
important to consider the constraint that Sf ≤ 1. Therefore, the clustering loss is
defined as:

Lcl = 1− Sf. (4.10)

It is important to note that Lcl is always positive and attains its minimum value
when Sf is at its maximum value (Sf = 1). Therefore, the total loss for model training
is specified as follows:

LAE =
1

N

N∑
i=1

||xi − gθ(fw(xi))||2 + λ(1− Sf(hr(X))), (4.11)

where hr(X) = {hr(x1), . . . , hr(xN)} represents the cluster assignment probability vec-
tors. It is crucial to highlight that the pairwise distances d(fw(xi), fw(xj)) between the
embeddings are also integral to the computation of Sf . In this work, the Euclidean
distance has been utilized. Since LAE is differentiable with respect to the model param-
eters w, θ, and r, it can be minimized using gradient-based optimization procedures

53

that are typical in this context.
A technical issue has been identified during the training of the model, whereby in

a significant number of cases, the model converges to a trivial solution. This solution
is characterized by output probabilities for many data points that tend to be uniform
(i.e., equal to 1

K
). In order to address this issue, an additional term has been inserted

to the objective function, which serves to penalize uniform solutions by minimizing
the entropy of the output probability vectors. Accordingly, the entropy regularization
term Lreg is defined as follows:

H(hr(X)) = −
N∑
i=1

K∑
j=1

hrj(xi) loghrj(xi). (4.12)

Algorithm 4.1 Deep Clustering using Soft Silhouette (DCSS) algorithm
Require: X (dataset)
Require: K (number of clusters)
Require: λ1, λ2 (regularization hyperparameters)
1: Randomly initialize the w and θ AE parameters.

Stage 1: Pretraining
2: Pretrain the encoder fw and decoder gθ by minimizing the reconstruction error
Lrec (eq. 3.14) through gradient-based optimization for Tpr epochs. ▷We employed
batch training using the Adam optimizer.

3: Apply k-means with K clusters to the learned representations z = fw(X).
4: Initialize the parameters of the clustering network hr using the k-means result.

Stage 2: Training
5: Update the parameters θ, w, and r by minimizing the total loss (eq. 4.13) until
convergence through gradient-based optimization to obtain θ⋆, w⋆, and r⋆. ▷ We
employed batch training using the Adam optimizer.
Stage 3: Inference

6: Compute the clustering solution C = argmax softmax(hr⋆(fw⋆(X))). ▷ Data clus-
tering.

7: return the clustering solution C and the learned parameters w⋆, θ⋆, r⋆.

The final total loss function, which is minimized during the training of our model,
is defined as:

LAE = Lrec + λ1Lcl + λ2Lreg, (4.13)

54

and in more detail:

LAE =
1

N

N∑
i=1

||xi − gθ(fw(xi))||2 + λ1(1− Sf(hr(X)))− λ2
1

N

N∑
i=1

K∑
j=1

hrj(xi) loghrj(xi).

(4.14)
The particulars of the methodology, designated as DCSS, are delineated in Algo-
rithm 4.1.

55

CHAPTER 5

EXPERIMENTS

5.1 Datasets

5.2 Neural Network Architectures

5.3 Evaluation

5.4 Experimental Setup

5.5 Results

5.6 Analysis of Experimental Results

This chapter presents the results of our experiments conducted on real-world datasets.
More specifically, the deep clustering performance of the DCSS approach is evaluated
with a comparison to the most prevalent AE-based deep clustering methods discussed
in chapter 3.

5.1 Datasets

Table 5.1 provides an overview of the benchmark datasets utilized for the experimen-
tal evaluation. The datasets exhibit a range of characteristics, including variations in
size (n), dimensions (d), number of clusters (k), complexity, data type, and domain of
origin. The following paragraphs provide a comprehensive overview of the datasets
utilized in our study, along with the preprocessing steps applied to them.

56

The datasets employed in this work are Pendigits, EMNIST MNIST (EMNIST),
and EMNIST Balanced Digits (BD). These datasets consist of handwritten digits cat-
egorized into ten classes, representing digits from 0 to 9. It is worth noting that
the EMNIST dataset is an extended and more challenging version of the MNIST
dataset [78]. Both the EMNIST and BD datasets consist of images with a resolu-
tion of 28 × 28 pixels. In contrast, the Pendigits data instances are represented by
16-dimensional vectors containing pixel coordinates. Additionally, the EMNIST Bal-
anced Letters (BL) dataset was incorporated, comprising handwritten letters in both
uppercase and lowercase forms, with a resolution of 28×28 pixels. The BL dataset is
divided into three mutually exclusive subsets. The first subset includes the letters A
to J, the second subset consists of the letters K to T, and the third subset contains
the remaining letters, U to Z. The initial two subsets encompass 28,000 data points
each, dispersed across 10 clusters. In contrast, the final subset comprises 16,800 data
points and 6 clusters.

Moreover, we examined the Human Activity Recognition with Smartphones (HAR)
dataset, which consists of data gathered from the accelerometer and gyroscope sensors
of smartphones during various human activities. Each record in the dataset is a 560-
feature vector with time and frequency domain variables. HAR comprises 6 classes
of human activities: walking, walking upstairs, walking downstairs, sitting, standing,
and laying.

Furthermore, the Waveform-v1 (WVF-v1) dataset was incorporated, consisting of
3 categories of generated waves with 5,000 data points each. Each class is generated
from a combination of 2 of 3 “base” waves.

All datasets were subjected to a preprocessing step involving min-max normal-
ization. This technique maps the attributes of each data point to the [0, 1] interval,
thereby preventing attributes with large ranges from dominating the distance calcu-
lations and avoiding numerical instabilities in the computations [4].

5.2 Neural Network Architectures

The process of identifying optimal architectures and hyperparameters through cross-
validation represents a significant challenge in the context of unsupervised learning
scenarios. Therefore, we rely on commonly used architectures for the employed neu-
ral network models, thereby obviating the necessity for dataset-specific tuning. In the

57

Table 5.1: The datasets used in our experiments. N is the number of data instances,
d is the dimensionality, and k denotes the number of clusters.

Dataset Type N d k Source

EMNIST Balanced Digits Image 28000 28× 28 10 [79]
EMNIST MNIST Image 70000 28× 28 10 [79]
EMNIST Balanced Letters (A-J) Image 28000 28× 28 10 [79]
EMNIST Balanced Letters (K-T) Image 28000 28× 28 10 [79]
EMNIST Balanced Letters (U-Z) Image 16800 28× 28 6 [79]
HAR Tabular 10299 560 6 [67]
Pendigits Tabular 10992 16 10 [80]
Waveform-v1 Tabular 5000 21 3 [80]

case of tabular data, our approach entails the adoption of a well-established archi-
tectural framework consisting of fully connected layers [31, 67]. Specifically, the AE
architecture we utilize is as follows:

xd → Fc500 → Fc500 → Fc2000 → Fcm → Fc2000 → Fc500 → Fc500 → x̂d,

where Fcm represents a fully connected layer with m neurons and xd denotes a
d-dimensional data vector.

In the context of image datasets, CNNs have been shown to be an effective tool
for the capture of semantic visual features. Accordingly, we employ a convolutional-
deconvolutional AE to learn embeddings for the image datasets. The AE architecture
comprises three convolutional layers (encoder), one fully connected layer (embedding
layer), and three deconvolutional layers (decoder) [81, 82, 83]. In particular, the
architecture is structured as follows:

x28×28 → Conv532 → Conv564 → Conv3128 → Fcm → Deconv3128 → Deconv564 → Deconv532 → x̂28×28,

where Convab (Deconvab) represents a convolutional (deconvolutional) layer with an
a× a kernel and b filters, with the stride always set to 2.

In the aforementioned encoder-decoder networks, the ReLU activation function is
leveraged [84], with the exception of the embedded layer of the AE, where the Hy-
perbolic Tangent (tanh) function is applied. The He initialization method is employed
for the initialization of weights and biases, as described in [85].

As previously stated, for the clustering network, we have selected a RBF model
with the number of hidden units equivalent to the number of clusters. Subsequently,
the outputs of the RBF units are then passed through a softmax activation function
with K outputs, thereby providing the cluster assignment probabilities. Following the

58

AE pretraining phase, the centers of the RBF layer are initialized using the k-means
algorithm in the embedded space, with the parameter σ set to a small positive value.
Additionally, the temperature parameter T of the softmax function is fixed at T = 20.

5.3 Evaluation

It is crucial to note that, as clustering is an unsupervised task, all algorithms were
designed in such a way that they were unaware of the true clustering of the data.
In order for us to evaluate the performance of the clustering methods, we employed
standard external evaluation measures, assuming the availability of ground truth
clustering information [86]. In all cases, the number of clusters was set to the number
of ground-truth categories, on the assumption that cluster labels and class labels are
identical.

One of the evaluation measures employed is the Normalized Mutual Information
(NMI) [87], which is defined as follows:

NMI(Y,C) =
2× I(Y,C)

H(Y) +H(C)
, (5.1)

where Y represents the ground-truth labels, C represents the cluster labels, I(·) rep-
resents the mutual information measure, and H(·) represents the entropy.

The second metric employed is the Adjusted Rand Index (ARI) [88, 89], which is
a corrected version of the Rand Index [90]. ARI is a metric that quantifies the degree
of overlap between two partitions and is defined as:

ARI(Y,C) =
RI(Y,C)− E[RI(Y,C)]

max{RI(Y,C)} − E[RI(Y,C)]
, (5.2)

where RI(·) represents the Rand Index, and E[·] represents the expected value.

5.4 Experimental Setup

An exhaustive performance analysis of the studied DCSS method has been conducted,
with a view to comparing it with well-established deep clustering methods, including
DCN [6], DEC [31], and IDEC [75]. These methods are all designed to learn a cluster-
friendly embedded space, similar to silhouette based deep clustering approach. Fur-
thermore, the performance of the k-means algorithm was assessed in both the original

59

data space and in the embedded space obtained from the AE (AE+k-means) [3]. A
comparison of DCSS method with the latter approach allows us to quantify the per-
formance enhancements achieved by incorporating an AE into the clustering process.
It is crucial to acknowledge that, in order to guarantee a fair and accurate comparison
between the deep clustering methods, we have utilized identical model architectures
for all methods. This approach yielded more favorable clustering results than those
reported in the original papers.

In experiments involving k-means, the algorithm was initialized 100 times, and
the clustering solution with the lowest mean sum of squares error was selected. For
the other methods that incorporate an AE in the clustering process, each experiment
was repeated 10 times. In the case of deep clustering methods, an AE pretraining
phase was conducted, and the clustering loss was disregarded. In the context of image
datasets, the AE was subjected to a 100-epoch pretraining process with a learning
rate of 1× 10−3. In contrast, for tabular datasets, the pretraining phase was extended
to 1,000 epochs with a learning rate of 5× 10−4. A slight L2 regularization of 1× 10−5

was applied during the pretraining procedure. Thereafter, during the training phase,
the deep clustering models were trained for 100 epochs with a learning rate of 5×10−4

and without any regularization penalty.
A fixed batch size of 256 was utilized, and the Adam optimizer [12] was employed

with default settings of β1 = 0.9 and β2 = 0.999 during both the pretraining and
training phases. Moreover, a number of methodologies are available for adjusting the
non-clustering loss (Eq. 4.11) in conjunction with the clustering loss (Eq. 4.10) [20]
during the training phase. The most simplified and representative approach was
selected by setting the hyperparameters to low values that achieve a balance between
the two losses. In particular, we set λ1 = 0.01 and λ2 = 0.01. Finally, in order to
initialize the centers of the RBF layer, we applied the k-means algorithm to the
embeddings of the pretrained AE, while σ was initialized to a small positive value.

5.5 Results

This section presents the experimental results for each dataset. They are organized
into two tables per dataset, with one table for each evaluation metric: NMI and
ARI. Each row in these tables reports the mean, standard deviation, minimum, and

60

maximum values of the respective metric for each examined deep clustering algorithm.
Additionally, we include some figures with the optimal clustering results achieved by
DCSS for each dataset. The t-SNE algorithm was applied to the latent data (output
of the latent space) [66] to reduce its dimensionality to two dimensions, where it was
necessary, in order to present the data in accordance with the clusters into which
DCSS’s RBF has grouped them. The data points within each cluster are represented
by the same color.

5.5.1 EMNIST Balanced Digits

Table 5.2: Statistical Analysis of the NMI on the EMNIST Balanced Digits dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.48 0.00 0.48 0.48

AE + k-means 0.72 0.03 0.66 0.75

DCN 0.78 0.03 0.73 0.83

DEC 0.82 0.03 0.76 0.88

IDEC 0.84 0.02 0.80 0.87

DCSS 0.87 0.03 0.83 0.94

Table 5.3: Statistical Analysis of the ARI on the EMNIST Balanced Digits dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.36 0.00 0.36 0.36

AE + k-means 0.64 0.05 0.53 0.69

DCN 0.70 0.05 0.61 0.79

DEC 0.78 0.05 0.68 0.86

IDEC 0.78 0.04 0.71 0.84

DCSS 0.82 0.06 0.71 0.95

61

Figure 5.1: This figure illustrates the optimal clustering obtained by the DCSS
algorithm on the EMNIST Balanced Digits dataset.

5.5.2 EMNIST MNIST

Table 5.4: Statistical Analysis of the NMI on the EMNIST MNIST dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.48 0.00 0.48 0.48

AE + k-means 0.76 0.01 0.73 0.78

DCN 0.83 0.02 0.80 0.83

DEC 0.85 0.03 0.80 0.90

IDEC 0.88 0.04 0.84 0.94

DCSS 0.90 0.02 0.87 0.91

62

Table 5.5: Statistical Analysis of the ARI on the EMNIST MNIST dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.35 0.00 0.35 0.35

AE + k-means 0.71 0.02 0.66 0.74

DCN 0.78 0.02 0.74 0.82

DEC 0.81 0.04 0.75 0.90

IDEC 0.85 0.06 0.79 0.95

DCSS 0.85 0.03 0.81 0.87

Figure 5.2: This figure illustrates the optimal clustering obtained by the DCSS
algorithm on the EMNIST MNIST dataset.

63

5.5.3 EMNIST Balanced Letters (A‐J)

Table 5.6: Statistical Analysis of the NMI on the EMNIST Balanced Letters (A-J)
dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.35 0.00 0.35 0.36

AE + k-means 0.62 0.03 0.56 0.68

DCN 0.71 0.03 0.65 0.75

DEC 0.76 0.04 0.70 0.80

IDEC 0.74 0.03 0.69 0.80

DCSS 0.79 0.03 0.74 0.83

Table 5.7: Statistical Analysis of the ARI on the EMNIST Balanced Letters (A-J)
dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.25 0.00 0.25 0.26

AE + k-means 0.50 0.04 0.43 0.57

DCN 0.61 0.05 0.50 0.66

DEC 0.68 0.05 0.62 0.75

IDEC 0.65 0.06 0.56 0.74

DCSS 0.69 0.06 0.59 0.77

64

Figure 5.3: This figure illustrates the optimal clustering obtained by the DCSS
algorithm on the EMNIST Balanced Letters (A-J) dataset.

5.5.4 EMNIST Balanced Letters (K‐T)

Table 5.8: Statistical Analysis of the NMI on the EMNIST Balanced Letters (K-T)
dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.51 0.00 0.51 0.51

AE + k-means 0.72 0.02 0.68 0.75

DCN 0.79 0.02 0.77 0.83

DEC 0.85 0.02 0.83 0.89

IDEC 0.84 0.03 0.77 0.87

DCSS 0.88 0.02 0.84 0.91

65

Table 5.9: Statistical Analysis of the ARI on the EMNIST Balanced Letters (K-T)
dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.43 0.00 0.43 0.43

AE + k-means 0.66 0.03 0.61 0.70

DCN 0.72 0.03 0.68 0.80

DEC 0.82 0.02 0.80 0.88

IDEC 0.81 0.04 0.70 0.85

DCSS 0.85 0.03 0.78 0.89

Figure 5.4: This figure illustrates the optimal clustering obtained by the DCSS
algorithm on the EMNIST Balanced Letters (K-T) dataset.

66

5.5.5 EMNIST Balanced Letters (U‐Z)

Table 5.10: Statistical Analysis of the NMI on the EMNIST Balanced Letters (U-Z)
dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.47 0.00 0.47 0.47

AE + k-means 0.62 0.02 0.60 0.65

DCN 0.67 0.02 0.64 0.71

DEC 0.69 0.04 0.61 0.75

IDEC 0.71 0.04 0.65 0.76

DCSS 0.74 0.03 0.71 0.78

Table 5.11: Statistical Analysis of the ARI on the EMNIST Balanced Letters (U-Z)
dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.41 0.00 0.41 0.41

AE + k-means 0.59 0.02 0.56 0.61

DCN 0.63 0.04 0.58 0.69

DEC 0.66 0.05 0.55 0.75

IDEC 0.67 0.05 0.62 0.76

DCSS 0.71 0.04 0.67 0.77

67

Figure 5.5: This figure illustrates the optimal clustering obtained by the DCSS
algorithm on the EMNIST Balanced Letters (U-Z) dataset.

5.5.6 HAR

Table 5.12: Statistical Analysis of the NMI on the HAR dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.59 0.00 0.59 0.59

AE + k-means 0.71 0.03 0.62 0.73

DCN 0.74 0.04 0.63 0.77

DEC 0.67 0.08 0.55 0.79

IDEC 0.75 0.05 0.65 0.80

DCSS 0.81 0.05 0.69 0.85

68

Table 5.13: Statistical Analysis of the ARI on the HAR dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.46 0.00 0.46 0.46

AE + k-means 0.64 0.05 0.53 0.69

DCN 0.67 0.06 0.52 0.72

DEC 0.57 0.10 0.45 0.71

IDEC 0.68 0.06 0.53 0.75

DCSS 0.73 0.07 0.56 0.80

Figure 5.6: This figure illustrates the optimal clustering obtained by the DCSS
algorithm on the HAR dataset.

69

5.5.7 Pendigits

Table 5.14: Statistical Analysis of the NMI on the Pendigits dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.69 0.01 0.68 0.69

AE + k-means 0.68 0.02 0.65 0.71

DCN 0.72 0.02 0.69 0.75

DEC 0.73 0.03 0.68 0.78

IDEC 0.77 0.02 0.74 0.81

DCSS 0.77 0.02 0.74 0.80

Table 5.15: Statistical Analysis of the ARI on the Pendigits dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.56 0.04 0.53 0.60

AE + k-means 0.57 0.04 0.51 0.64

DCN 0.62 0.04 0.54 0.67

DEC 0.61 0.05 0.55 0.71

IDEC 0.65 0.03 0.62 0.68

DCSS 0.67 0.03 0.62 0.71

70

Figure 5.7: This figure illustrates the optimal clustering obtained by the DCSS
algorithm on the Pendigits dataset.

5.5.8 Waveform‐v1

Table 5.16: Statistical Analysis of the NMI on the Waveform-v1 dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.74 0.00 0.74 0.74

AE + k-means 0.86 0.10 0.65 0.95

DCN 0.87 0.11 0.67 1.00

DEC 0.86 0.11 0.65 0.99

IDEC 0.98 0.05 0.83 1.00

DCSS 0.99 0.01 0.97 1.00

71

Table 5.17: Statistical Analysis of the ARI on the Waveform-v1 dataset.

Algorithm Mean St. Dev. Min Max

k-means 0.70 0.00 0.70 0.70

AE + k-means 0.90 0.09 0.70 0.98

DCN 0.89 0.11 0.66 1.00

DEC 0.88 0.11 0.64 0.99

IDEC 0.98 0.06 0.81 1.00

DCSS 1.00 0.01 0.98 1.00

Figure 5.8: This figure illustrates the optimal clustering obtained by the DCSS
algorithm on the Waveform-v1 dataset.

5.6 Analysis of Experimental Results

This section presents an analysis of the performance of the examined deep clustering
methods across the datasets utilized in this study. As predicted, the application of

72

k-means clustering to a low-dimensional embedded space yielded enhanced perfor-
mance, as evidenced by the outcomes of the AE+k-means approach in comparison
to the conventional k-means methodology.

In general, DEC outperforms DCN on all datasets, with the exception of HAR
and WVF-v1, where DCN demonstrates comparatively superior performance. It is
notable that IDEC achieves superior results to DEC in the majority of cases, with
some exhibiting a considerable advantage. This indicates that integrating the decoder
into the clustering optimization process can lead to enhanced performance outcomes.

Moreover, the findings illustrate the efficacy of the presented DCSS method across
all datasets. With regard to the NMI, the DCSS method demonstrates a notable en-
hancement, with values that range from 0.01 to 0.06 higher than those observed for
other methods. Similarly, with regard to ARI, DCSS displays superior performance rel-
ative to other methods, exhibiting an improvement range of 0.01 to 0.05. Finally, these
outcomes illustrate that soft silhouette represents a superior deep clustering function
objective, as it enables the generation of cluster-friendly representations through the
optimization of compact and well-separated clusters.

73

CHAPTER 6

AFTERWORD

6.1 Conclusion

6.2 Suggestions for Future Work

6.1 Conclusion

This thesis elaborates on the soft silhouette, an extension of the traditional silhouette
score that incorporates probabilistic clustering assignments and studies a deep clus-
tering methodology, DCSS [15], based on an AE architecture, to optimize this score.
The DCSS approach directs the learned latent representations to form clusters that are
both compact and well-separated. This dual focus on compactness and separability
is essential in real-world applications, as it ensures that the resulting clusters are not
only tightly grouped but also clearly distinct from one another.

The DCSS method has been subjected to rigorous testing and comparison against
established deep clustering methods across a variety of benchmark datasets, yielding
highly satisfactory results. The experimental findings indicate that the soft silhouette
represents a more effective deep clustering objective function, significantly enhanc-
ing the quality of the learned representations within the embedded space, thereby
improving clustering performance.

74

6.2 Suggestions for Future Work

There are several areas for future work, including the enhancement of clustering
results through data augmentation techniques, which have been demonstrated to
be effective for improving learned representations [81, 91]. Additionally, more so-
phisticated models and training methodologies, such as ensemble models [92] or
adversarial learning [93], could be utilized. Another potential avenue for exploration
is the modification of the learning procedure to incorporate self-paced learning [94],
as prioritizing the learning of “easier” data is expected to yield better clustering out-
comes [39, 95, 96]. However, our principal objective is to extend the DCSS algorithm
to estimate the number of clusters by employing unimodality tests, in a manner anal-
ogous to the approaches utilized in the dip-means algorithm [97] and DIPDECK [98].

75

BIBLIOGRAPHY

[1] H. Wang, C. Ma, and L. Zhou, “A brief review of machine learning and
its application,” 2009 International Conference on Information Engineering and
Computer Science, pp. 1–4, 2009. [Online]. Available: https://api.semanticscholar.
org/CorpusID:14271547

[2] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM Comput. Surv., vol. 31, pp. 264–323, 1999. [Online]. Available:
https://api.semanticscholar.org/CorpusID:12744045

[3] S. P. Lloyd, “Least squares quantization in pcm,” IEEE Trans. Inf. Theory,
vol. 28, pp. 129–136, 1982. [Online]. Available: https://api.semanticscholar.org/
CorpusID:10833328

[4] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of
efficient initialization methods for the k-means clustering algorithm,” ArXiv,
vol. abs/1209.1960, 2012. [Online]. Available: https://api.semanticscholar.org/
CorpusID:6954668

[5] G. Vardakas and A. C. Likas, “Global k-means++: an effective relaxation of
the global k-means clustering algorithm,” ArXiv, vol. abs/2211.12271, 2022.
[Online]. Available: https://api.semanticscholar.org/CorpusID:253761250

[6] B. Yang, X. Fu, N. Sidiropoulos, and M. Hong, “Towards k-means-friendly
spaces: Simultaneous deep learning and clustering,” in International Conference
on Machine Learning, 2016. [Online]. Available: https://api.semanticscholar.org/
CorpusID:6128905

[7] A. K. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari,
M. J. Er, W. Ding, and C.-T. Lin, “A review of clustering techniques

76

https://api.semanticscholar.org/CorpusID:14271547
https://api.semanticscholar.org/CorpusID:14271547
https://api.semanticscholar.org/CorpusID:12744045
https://api.semanticscholar.org/CorpusID:10833328
https://api.semanticscholar.org/CorpusID:10833328
https://api.semanticscholar.org/CorpusID:6954668
https://api.semanticscholar.org/CorpusID:6954668
https://api.semanticscholar.org/CorpusID:253761250
https://api.semanticscholar.org/CorpusID:6128905
https://api.semanticscholar.org/CorpusID:6128905

and developments,” Neurocomputing, vol. 267, pp. 664–681, 2017. [Online].
Available: https://api.semanticscholar.org/CorpusID:31832898

[8] R. Suganya and R. M. Shanthi, “Fuzzy c- means algorithm- a review,” 2012.
[Online]. Available: https://api.semanticscholar.org/CorpusID:17666771

[9] K. P. Murphy, “Machine learning - a probabilistic perspective,” in
Adaptive computation and machine learning series, 2012. [Online]. Available:
https://api.semanticscholar.org/CorpusID:17793133

[10] L. Vendramin, R. J. G. B. Campello, and E. R. Hruschka, “Relative
clustering validity criteria: A comparative overview,” Statistical Analysis and
Data Mining: The ASA Data Science Journal, vol. 3, 2010. [Online]. Available:
https://api.semanticscholar.org/CorpusID:17467072

[11] T. Szandała, “Review and comparison of commonly used activation functions for
deep neural networks,” ArXiv, vol. abs/2010.09458, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:224714035

[12] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
vol. abs/1412.6980, 2014. [Online]. Available: https://api.semanticscholar.org/
CorpusID:6628106

[13] K.-L. Du, “Clustering: A neural network approach,” Neural networks : the official
journal of the International Neural Network Society, vol. 23 1, pp. 89–107, 2010.
[Online]. Available: https://api.semanticscholar.org/CorpusID:15521864

[14] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20,
pp. 53–65, 1987. [Online]. Available: https://api.semanticscholar.org/CorpusID:
189900

[15] G. Vardakas, I. Papakostas, and A. Likas, “Deep clustering using the
soft silhouette score: Towards compact and well-separated clusters,” ArXiv,
vol. abs/2402.00608, 2024. [Online]. Available: https://api.semanticscholar.org/
CorpusID:267365548

77

https://api.semanticscholar.org/CorpusID:31832898
https://api.semanticscholar.org/CorpusID:17666771
https://api.semanticscholar.org/CorpusID:17793133
https://api.semanticscholar.org/CorpusID:17467072
https://api.semanticscholar.org/CorpusID:224714035
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:15521864
https://api.semanticscholar.org/CorpusID:189900
https://api.semanticscholar.org/CorpusID:189900
https://api.semanticscholar.org/CorpusID:267365548
https://api.semanticscholar.org/CorpusID:267365548

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, pp. 84 – 90,
2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:195908774

[17] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Con-
tractive auto-encoders: Explicit invariance during feature extraction,” in
International Conference on Machine Learning, 2011. [Online]. Available:
https://api.semanticscholar.org/CorpusID:8141422

[18] G. C. Nutakki, B. Abdollahi, W. Sun, and O. Nasraoui, “An introduction to deep
clustering,” Clustering Methods for Big Data Analytics, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:69919246

[19] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long, “A survey
of clustering with deep learning: From the perspective of network
architecture,” IEEE Access, vol. 6, pp. 39 501–39514, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:206491647

[20] E. Aljalbout, V. Golkov, Y. Siddiqui, and D. Cremers, “Clustering with deep
learning: Taxonomy and new methods,” ArXiv, vol. abs/1801.07648, 2018.
[Online]. Available: https://api.semanticscholar.org/CorpusID:8400105

[21] S. Haykin, Neural Networks and Learning Machines, ser. Neural networks
and learning machines. Prentice Hall, 2009, no. v. 10. [Online]. Available:
https://books.google.gr/books?id=K7P36lKzI_QC

[22] GeeksforGeeks, “Autoencoders,” https://www.geeksforgeeks.org/auto-encoders/,
accessed: April 10, 2024.

[23] H. Lee, R. B. Grosse, R. Ranganath, and A. Ng, “Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations,”
in International Conference on Machine Learning, 2009. [Online]. Available:
https://api.semanticscholar.org/CorpusID:12008458

[24] G. E. Hinton, “A practical guide to training restricted boltzmann machines,”
in Neural Networks, 2012. [Online]. Available: https://api.semanticscholar.org/
CorpusID:21145246

78

https://api.semanticscholar.org/CorpusID:195908774
https://api.semanticscholar.org/CorpusID:8141422
https://api.semanticscholar.org/CorpusID:69919246
https://api.semanticscholar.org/CorpusID:206491647
https://api.semanticscholar.org/CorpusID:8400105
https://books.google.gr/books?id=K7P36lKzI_QC
https://www.geeksforgeeks.org/auto-encoders/
https://api.semanticscholar.org/CorpusID:12008458
https://api.semanticscholar.org/CorpusID:21145246
https://api.semanticscholar.org/CorpusID:21145246

[25] A. Sharif Ahmadian, “Chapter 7 - numerical modeling and simulation,”
in Numerical Models for Submerged Breakwaters, A. Sharif Ahmadian, Ed.
Boston: Butterworth-Heinemann, 2016, pp. 109–126. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B9780128024133000079

[26] H. Faris, I. Aljarah, and S. Mirjalili, “Chapter 28 - evolving radial basis function
networks using moth–flame optimizer,” in Handbook of Neural Computation,
P. Samui, S. Sekhar, and V. E. Balas, Eds. Academic Press, 2017, pp.
537–550. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780128113189000284

[27] S. Saito and R. T. Tan, “Neural clustering: Concatenating layers for better
projections,” 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
108389883

[28] K. Li and J. Malik, “Implicit maximum likelihood estimation,” ArXiv,
vol. abs/1809.09087, 2018. [Online]. Available: https://api.semanticscholar.org/
CorpusID:52816401

[29] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. C. Courville, and Y. Bengio, “Generative adversarial nets,”
in Neural Information Processing Systems, 2014. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:261560300

[30] S. Theodoridis and K. Koutroumbas, “Chapter 11 - clustering: Basic
concepts,” in Pattern Recognition (Fourth Edition), fourth edition ed.,
S. Theodoridis and K. Koutroumbas, Eds. Boston: Academic Press, 2009, pp.
595–625. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B978159749272050013X

[31] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep embedding
for clustering analysis,” in International Conference on Machine Learning, 2015.
[Online]. Available: https://api.semanticscholar.org/CorpusID:6779105

[32] D. Beeferman and A. Berger, “Agglomerative clustering of a search engine
query log,” 07 2000. [Online]. Available: https://dl.acm.org/doi/pdf/10.1145/
347090.347176

79

https://www.sciencedirect.com/science/article/pii/B9780128024133000079
https://www.sciencedirect.com/science/article/pii/B9780128113189000284
https://www.sciencedirect.com/science/article/pii/B9780128113189000284
https://api.semanticscholar.org/CorpusID:108389883
https://api.semanticscholar.org/CorpusID:108389883
https://api.semanticscholar.org/CorpusID:52816401
https://api.semanticscholar.org/CorpusID:52816401
https://api.semanticscholar.org/CorpusID:261560300
https://api.semanticscholar.org/CorpusID:261560300
https://www.sciencedirect.com/science/article/pii/B978159749272050013X
https://www.sciencedirect.com/science/article/pii/B978159749272050013X
https://api.semanticscholar.org/CorpusID:6779105
https://dl.acm.org/doi/pdf/10.1145/347090.347176
https://dl.acm.org/doi/pdf/10.1145/347090.347176

[33] C.-C. Hsu and C.-W. Lin, “Cnn-based joint clustering and representation
learning with feature drift compensation for large-scale image data,” IEEE
Transactions on Multimedia, vol. 20, pp. 421–429, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:21780790

[34] G. Chen, “Deep learning with nonparametric clustering,” ArXiv, vol.
abs/1501.03084, 2015. [Online]. Available: https://api.semanticscholar.org/
CorpusID:18134251

[35] P. Huang, Y. Huang, W. Wang, and L. Wang, “Deep embedding network
for clustering,” 2014 22nd International Conference on Pattern Recognition, pp.
1532–1537, 2014. [Online]. Available: https://api.semanticscholar.org/CorpusID:
18509954

[36] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of deep
representations and image clusters,” 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 5147–5156, 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:8105340

[37] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, “Clustergan : Latent space
clustering in generative adversarial networks,” in AAAI Conference on Artificial
Intelligence, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:
52188737

[38] A. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an
algorithm,” in Neural Information Processing Systems, 2001. [Online]. Available:
https://api.semanticscholar.org/CorpusID:18764978

[39] F. Li, H. Qiao, B. Zhang, and X. Xi, “Discriminatively boosted image clustering
with fully convolutional auto-encoders,” Pattern Recognit., vol. 83, pp. 161–173,
2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:14958831

[40] Y. Bengio, A. C. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 35, pp. 1798–1828, 2012. [Online]. Available:
https://api.semanticscholar.org/CorpusID:393948

[41] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–
44, 05 2015.

80

https://api.semanticscholar.org/CorpusID:21780790
https://api.semanticscholar.org/CorpusID:18134251
https://api.semanticscholar.org/CorpusID:18134251
https://api.semanticscholar.org/CorpusID:18509954
https://api.semanticscholar.org/CorpusID:18509954
https://api.semanticscholar.org/CorpusID:8105340
https://api.semanticscholar.org/CorpusID:52188737
https://api.semanticscholar.org/CorpusID:52188737
https://api.semanticscholar.org/CorpusID:18764978
https://api.semanticscholar.org/CorpusID:14958831
https://api.semanticscholar.org/CorpusID:393948

[42] S. Zhou, H. Xu, Z. Zheng, J. Chen, Z. li, J. Bu, J. Wu, X. Wang, W. Zhu, and
M. Ester, “A comprehensive survey on deep clustering: Taxonomy, challenges,
and future directions,” ArXiv, vol. abs/2206.07579, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:249674426

[43] Y. Ren, J. Pu, Z. Yang, J. Xu, G. Li, X. Pu, P. S. Yu, and L. He, “Deep clustering:
A comprehensive survey,” ArXiv, vol. abs/2210.04142, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:252780393

[44] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR,
vol. abs/1312.6114, 2013. [Online]. Available: https://api.semanticscholar.org/
CorpusID:216078090

[45] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph neural
networks: A review of methods and applications,” ArXiv, vol. abs/1812.08434,
2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:56517517

[46] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou, “Variational deep
embedding: An unsupervised and generative approach to clustering,” in
International Joint Conference on Artificial Intelligence, 2016. [Online]. Available:
https://api.semanticscholar.org/CorpusID:2546662

[47] G. Vardakas and A. C. Likas, “Implicit maximum likelihood clustering,”
in Artificial Intelligence Applications and Innovations, 2022. [Online]. Available:
https://api.semanticscholar.org/CorpusID:249872450

[48] ——, “Neural clustering based on implicit maximum likelihood,” Neural
Computing and Applications, vol. 35, pp. 21 511–21 524, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:258045111

[49] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-negative
matrix factorization,” Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, 2003. [Online].
Available: https://api.semanticscholar.org/CorpusID:2237682

[50] D. Cai, X. He, and J. Han, “Locally consistent concept factorization for document
clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 23, pp.
902–913, 2011. [Online]. Available: https://api.semanticscholar.org/CorpusID:
10512564

81

https://api.semanticscholar.org/CorpusID:249674426
https://api.semanticscholar.org/CorpusID:252780393
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:56517517
https://api.semanticscholar.org/CorpusID:2546662
https://api.semanticscholar.org/CorpusID:249872450
https://api.semanticscholar.org/CorpusID:258045111
https://api.semanticscholar.org/CorpusID:2237682
https://api.semanticscholar.org/CorpusID:10512564
https://api.semanticscholar.org/CorpusID:10512564

[51] G. de Soete and J. D. Carroll, “K-means clustering in a low-dimensional euclidean
space,” 1994. [Online]. Available: https://api.semanticscholar.org/CorpusID:
124096286

[52] V. M. Patel, H. V. Nguyen, and R. Vidal, “Latent space sparse subspace
clustering,” 2013 IEEE International Conference on Computer Vision, pp. 225–232,
2013. [Online]. Available: https://api.semanticscholar.org/CorpusID:7094253

[53] B. Yang, X. Fu, and N. Sidiropoulos, “Learning from hidden traits: Joint factor
analysis and latent clustering,” IEEE Transactions on Signal Processing, vol. 65, pp.
256–269, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:
5104944

[54] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise
training of deep networks,” in Advances in Neural Information Processing Systems,
B. Schölkopf, J. Platt, and T. Hoffman, Eds., vol. 19. MIT Press, 2006.
[Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2006/file/
5da713a690c067105aeb2fae32403405-Paper.pdf

[55] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986. [Online].
Available: https://api.semanticscholar.org/CorpusID:205001834

[56] D. Sculley, “Web-scale k-means clustering,” in The Web Conference, 2010.
[Online]. Available: https://api.semanticscholar.org/CorpusID:6634147

[57] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” ArXiv, vol. abs/1502.03167, 2015.
[Online]. Available: https://api.semanticscholar.org/CorpusID:5808102

[58] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for
accurate object detection and semantic segmentation,” 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 580–587, 2013. [Online]. Available:
https://api.semanticscholar.org/CorpusID:215827080

[59] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” ArXiv, vol. abs/1311.2901, 2013. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:3960646

82

https://api.semanticscholar.org/CorpusID:124096286
https://api.semanticscholar.org/CorpusID:124096286
https://api.semanticscholar.org/CorpusID:7094253
https://api.semanticscholar.org/CorpusID:5104944
https://api.semanticscholar.org/CorpusID:5104944
https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://api.semanticscholar.org/CorpusID:205001834
https://api.semanticscholar.org/CorpusID:6634147
https://api.semanticscholar.org/CorpusID:5808102
https://api.semanticscholar.org/CorpusID:215827080
https://api.semanticscholar.org/CorpusID:3960646
https://api.semanticscholar.org/CorpusID:3960646

[60] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3431–3440, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:1629541

[61] F. D. la Torre and T. Kanade, “Discriminative cluster analysis,” Proceedings of
the 23rd international conference on Machine learning, 2006. [Online]. Available:
https://api.semanticscholar.org/CorpusID:5296934

[62] J. Ye, Z. Zhao, and M. Wu, “Discriminative k-means for clustering,”
in Neural Information Processing Systems, 2007. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:2366213

[63] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing,
vol. 17, pp. 395–416, 2007. [Online]. Available: https://api.semanticscholar.org/
CorpusID:3264198

[64] Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang, “Image clustering
using local discriminant models and global integration,” IEEE Transactions
on Image Processing, vol. 19, pp. 2761–2773, 2010. [Online]. Available:
https://api.semanticscholar.org/CorpusID:4523132

[65] F. Nie, Z. Zeng, I. W.-H. Tsang, D. Xu, and C. Zhang, “Spectral embedded
clustering: A framework for in-sample and out-of-sample spectral clustering,”
IEEE Transactions on Neural Networks, vol. 22, pp. 1796–1808, 2011. [Online].
Available: https://api.semanticscholar.org/CorpusID:8297836

[66] L. van der Maaten and G. E. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 2008. [Online]. Available:
https://api.semanticscholar.org/CorpusID:5855042

[67] L. van der Maaten, “Learning a parametric embedding by preserving local
structure,” in International Conference on Artificial Intelligence and Statistics, 2009.
[Online]. Available: https://api.semanticscholar.org/CorpusID:18203584

[68] M. L. Freimer and R. Bellman, “Adaptive control processes: A guided tour,”
The Mathematical Gazette, vol. 46, pp. 160 – 161, 1961. [Online]. Available:
https://api.semanticscholar.org/CorpusID:64832941

83

https://api.semanticscholar.org/CorpusID:1629541
https://api.semanticscholar.org/CorpusID:5296934
https://api.semanticscholar.org/CorpusID:2366213
https://api.semanticscholar.org/CorpusID:2366213
https://api.semanticscholar.org/CorpusID:3264198
https://api.semanticscholar.org/CorpusID:3264198
https://api.semanticscholar.org/CorpusID:4523132
https://api.semanticscholar.org/CorpusID:8297836
https://api.semanticscholar.org/CorpusID:5855042
https://api.semanticscholar.org/CorpusID:18203584
https://api.semanticscholar.org/CorpusID:64832941

[69] K. Hornik, “Approximation capabilities of multilayer feedforward networks,”
Neural Networks, vol. 4, pp. 251–257, 1991. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:7343126

[70] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked
denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion,” J. Mach. Learn. Res., vol. 11, pp. 3371–3408,
2010. [Online]. Available: https://api.semanticscholar.org/CorpusID:17804904

[71] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability of
co-training,” in International Conference on Information and Knowledge Management,
2000. [Online]. Available: https://api.semanticscholar.org/CorpusID:7464925

[72] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.1127647

[73] Q. V. Le, M. Ranzato, R. Monga, M. Devin, G. S. Corrado, K. Chen,
J. Dean, and A. Ng, “Building high-level features using large scale
unsupervised learning,” 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 8595–8598, 2011. [Online]. Available:
https://api.semanticscholar.org/CorpusID:206741597

[74] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014. [Online]. Available:
https://api.semanticscholar.org/CorpusID:6844431

[75] X. Guo, L. Gao, X. Liu, and J. Yin, “Improved deep embedded clustering
with local structure preservation,” in International Joint Conference on Artificial
Intelligence, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
39311659

[76] X. Peng, S. Xiao, J. Feng, W.-Y. Yau, and Z. Yi, “Deep subspace clustering with
sparsity prior,” in International Joint Conference on Artificial Intelligence, 2016.
[Online]. Available: https://api.semanticscholar.org/CorpusID:17770085

[77] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.
[Online]. Available: http://www.deeplearningbook.org

84

https://api.semanticscholar.org/CorpusID:7343126
https://api.semanticscholar.org/CorpusID:7343126
https://api.semanticscholar.org/CorpusID:17804904
https://api.semanticscholar.org/CorpusID:7464925
https://www.science.org/doi/abs/10.1126/science.1127647
https://api.semanticscholar.org/CorpusID:206741597
https://api.semanticscholar.org/CorpusID:6844431
https://api.semanticscholar.org/CorpusID:39311659
https://api.semanticscholar.org/CorpusID:39311659
https://api.semanticscholar.org/CorpusID:17770085
http://www.deeplearningbook.org

[78] Y. LeCun and C. Cortes, “The mnist database of handwritten digits,” 2005.
[Online]. Available: https://api.semanticscholar.org/CorpusID:60282629

[79] G. Cohen, S. Afshar, J. C. Tapson, and A. van Schaik, “Emnist:
Extending mnist to handwritten letters,” 2017 International Joint Conference
on Neural Networks (IJCNN), pp. 2921–2926, 2017. [Online]. Available:
https://api.semanticscholar.org/CorpusID:30587588

[80] A. U. Asuncion, “Uci machine learning repository, university of california,
irvine, school of information and computer sciences,” 2007. [Online]. Available:
https://api.semanticscholar.org/CorpusID:203706180

[81] X. Guo, E. Zhu, X. Liu, and J. Yin, “Deep embedded clustering with
data augmentation,” in Asian Conference on Machine Learning, 2018. [Online].
Available: https://api.semanticscholar.org/CorpusID:53415432

[82] Y. Ren, N. Wang, M. Li, and Z. Xu, “Deep density-based image
clustering,” Knowl. Based Syst., vol. 197, p. 105841, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:54486714

[83] W. Guo, K. Lin, and W. Ye, “Deep embedded k-means clustering,” 2021
International Conference on Data Mining Workshops (ICDMW), pp. 686–694, 2021.
[Online]. Available: https://api.semanticscholar.org/CorpusID:238227137

[84] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” in International Conference on Machine Learning, 2010. [Online].
Available: https://api.semanticscholar.org/CorpusID:15539264

[85] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 1026–1034, 2015. [Online]. Available:
https://api.semanticscholar.org/CorpusID:13740328

[86] E. Rendón, I. Abundez, A. Arizmendi, and E. M. Quiroz, “Internal
versus external cluster validation indexes,” 2011. [Online]. Available:
https://api.semanticscholar.org/CorpusID:16604539

[87] P. A. Estévez, M. Tesmer, C. A. Pérez, and J. M. Zurada, “Normalized mutual
information feature selection,” IEEE Transactions on Neural Networks, vol. 20, pp.

85

https://api.semanticscholar.org/CorpusID:60282629
https://api.semanticscholar.org/CorpusID:30587588
https://api.semanticscholar.org/CorpusID:203706180
https://api.semanticscholar.org/CorpusID:53415432
https://api.semanticscholar.org/CorpusID:54486714
https://api.semanticscholar.org/CorpusID:238227137
https://api.semanticscholar.org/CorpusID:15539264
https://api.semanticscholar.org/CorpusID:13740328
https://api.semanticscholar.org/CorpusID:16604539

189–201, 2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:
6340275

[88] L. J. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification,
vol. 2, pp. 193–218, 1985. [Online]. Available: https://api.semanticscholar.org/
CorpusID:189915041

[89] J. E. Chac’on and A. I. Rastrojo, “Minimum adjusted rand index for two
clusterings of a given size,” Advances in Data Analysis and Classification, vol. 17, pp.
125–133, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
211069524

[90] W. M. Rand, “Objective criteria for the evaluation of clustering methods,”
Journal of the American Statistical Association, vol. 66, no. 336, pp. 846–850, 1971.
[Online]. Available: http://www.jstor.org/stable/2284239

[91] X.-X. Deng, D. Huang, D. Chen, C. Wang, and J. Lai, “Strongly augmented
contrastive clustering,” Pattern Recognit., vol. 139, p. 109470, 2022. [Online].
Available: https://api.semanticscholar.org/CorpusID:249240508

[92] S. Affeldt, L. Labiod, and M. Nadif, “Spectral clustering via ensemble deep
autoencoder learning (sc-edae),” Pattern Recognit., vol. 108, p. 107522, 2019.
[Online]. Available: https://api.semanticscholar.org/CorpusID:57721329

[93] X. Yang, C. Deng, K.-J. Wei, J. Yan, and W. Liu, “Adversarial learning for
robust deep clustering,” in Neural Information Processing Systems, 2020. [Online].
Available: https://api.semanticscholar.org/CorpusID:227275327

[94] M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent variable
models,” in Neural Information Processing Systems, 2010. [Online]. Available:
https://api.semanticscholar.org/CorpusID:1977996

[95] X. Guo, X. Liu, E. Zhu, X. Zhu, M. Li, X. Xu, and J. Yin, “Adaptive self-paced
deep clustering with data augmentation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 32, pp. 1680–1693, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:145883156

86

https://api.semanticscholar.org/CorpusID:6340275
https://api.semanticscholar.org/CorpusID:6340275
https://api.semanticscholar.org/CorpusID:189915041
https://api.semanticscholar.org/CorpusID:189915041
https://api.semanticscholar.org/CorpusID:211069524
https://api.semanticscholar.org/CorpusID:211069524
http://www.jstor.org/stable/2284239
https://api.semanticscholar.org/CorpusID:249240508
https://api.semanticscholar.org/CorpusID:57721329
https://api.semanticscholar.org/CorpusID:227275327
https://api.semanticscholar.org/CorpusID:1977996
https://api.semanticscholar.org/CorpusID:145883156

[96] K. Zhang, C. Song, and L. Qiu, “Self-paced deep clustering with learning
loss,” Pattern Recognit. Lett., vol. 171, pp. 8–14, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:258504613

[97] A. Kalogeratos and A. C. Likas, “Dip-means: an incremental clustering method
for estimating the number of clusters,” in Neural Information Processing Systems,
2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:5695121

[98] C. Leiber, L. G. M. Bauer, B. Schelling, C. Böhm, and C. Plant, “Dip-based deep
embedded clustering with k-estimation,” Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 2021. [Online]. Available:
https://api.semanticscholar.org/CorpusID:236980202

87

https://api.semanticscholar.org/CorpusID:258504613
https://api.semanticscholar.org/CorpusID:5695121
https://api.semanticscholar.org/CorpusID:236980202

SHORT BIOGRAPHY

Ioannis Papakostas was born in Ioannina, Greece, in 1999. He commenced his aca-
demic career in 2017 by enrolling in the undergraduate program of Computer Science
and Engineering at the University of Ioannina, where he obtained his diploma in
2022. His diploma thesis, entitled ”Deep Clustering with the Soft Silhouette Index,”
demonstrated his early interest in machine learning, particularly in the domain of
clustering. He subsequently enrolled in the postgraduate program of the same de-
partment in 2023. His research interests are primarily focused on machine learning,
with a specific emphasis on clustering methods.

	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Glossary
	Abstract
	Εκτεταμένη Περίληψη
	Introduction
	Machine Learning
	Clustering
	Hierarchical Clustering Algorithms
	k-means Algorithm
	Fuzzy Clustering

	Distance Metrics
	Clustering Evaluation Metrics
	Internal Clustering Evaluation Metrics
	External Clustering Evaluation Metrics

	Artificial Neural Networks
	Backpropagation
	Stochastic Gradient Descent
	Adam
	LVQ

	Thesis Contribution

	Deep Clustering
	Introduction
	Deep Neural Network Architectures
	Deep Features
	Non-Clustering Loss
	Clustering Loss
	Principal Clustering Loss
	Auxiliary Clustering Loss

	Synthesizing the Loss Functions
	Updating Clusters
	Autoencoders As DNNs In Clustering

	Autoencoder-Based Deep Clustering Methods
	Dimensionality Reduction and Clustering
	Deep Clustering Network
	Framework
	Formulation
	Optimization Procedure

	Deep Embedded Clustering
	Framework
	Formulation
	Optimization Procedure
	Parameter Initialization

	Improved Deep Embedded Clustering
	Framework
	Formulation
	Optimization Procedure

	Deep Clustering using Soft Silhouette
	Silhouette
	Soft Silhouette
	The DCSS method: Deep Clustering using Soft Silhouette

	Experiments
	Datasets
	Neural Network Architectures
	Evaluation
	Experimental Setup
	Results
	EMNIST Balanced Digits
	EMNIST MNIST
	EMNIST Balanced Letters (A-J)
	EMNIST Balanced Letters (K-T)
	EMNIST Balanced Letters (U-Z)
	HAR
	Pendigits
	Waveform-v1

	Analysis of Experimental Results

	Afterword
	Conclusion
	Suggestions for Future Work

	Bibliography
	Short Biography

