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ABSTRACT

Dimitris Tsitsigkos, Ph.D., Department of Computer Science and Engineering, School
of Engineering, University of Ioannina, Greece, 2024.
In-Memory Indexing for Parallel Processing of Single and Multi-Dimensional Queries.
Advisor: Nikos Mamoulis, Professor.

Database Systems are essential for modern applications, providing structured, ef-
ficient, and reliable ways to manage data in fields like banking, healthcare, and sci-
entific research. They are designed to handle large amounts of data and answer
queries quickly. A key factor in making queries fast is the use of indices. Efficient
indexing can significantly improve the speed, credibility, and overall performance of
a database. A good index supports fast searches and updates, while having low space
requirements. With the advancements in hardware, we can redesign index structures
to be faster and more efficient. For example, larger memory capacities allow us to
move computations from disk storage to faster in-memory processing. Additionally,
the latest processors offer significantly more cores, enhancing parallel computing by
distributing tasks across multiple cores to improve performance. These modern hard-
ware components are affordable and found in commodity computers, making them
accessible for a wide range of applications.

This dissertation examines how in-memory indexing combined with parallel pro-
cessing techniques can enhance the performance of relational, temporal, and spatial
databases. It addresses challenges like managing large-scale data and running com-
plex queries on modern systems.

Interval joins are crucial for temporal databases and are also useful in many ap-
plications. However, a major challenge in parallel implementations of interval joins
is dividing the workload effectively across processor cores. A simple approach is to
split the data domain into disjoint partitions and assign the data in each partition
to a different core. However, this creates a new problem: when an interval spans

ix



multiple stripes, it must be processed by multiple cores, possibly generating dupli-
cate join results. One way to handle duplicates is by using a data structure like a
set to store unique results. However, this increases memory usage and slows down
query performance because of the extra checks for duplicates. Domain-based parti-
tioning approach divides the data into partitions that can be processed independently
and in parallel, maximizing multi-core hardware capabilities. This study introduces
three distinct strategies for parallel partitioning applicable to both hash-based and
domain-based methods, significantly accelerating partitioning operations by reducing
computational overhead and improving scalability.

Indexing spatial data is challenging due to their shape and dimensionality. This
complexity affects query performance, particularly for spatial intersection joins, which
are the most resource-intensive. Like temporal databases, spatial databases also face
duplication issues. For example, in a 2D grid, duplicates can occur when spatial
objects overlap multiple grid tiles. The most common technique to avoid duplicates
is the reference point approach, which reports a result in only one tile of the grid
but requires additional computations. This dissertation primarily focuses on non-
point data, where duplication issues arise. Our first study focuses on improving the
Partition-Based Spatial Join (PBSM) algorithm for in-memory and parallel evaluation
of spatial joins. We show how to choose the best partitioning settings based on data
statistics to fine-tune the algorithm for specific join inputs. In our second study,
we introduce a new secondary partitioning technique for space-oriented partitioning
(SOP) indices, such as grids. This technique removes duplicate results during spatial
queries by organizing objects within each partition and only accessing classes that
do not produce duplicates. This innovation greatly improves the efficiency of grid-
based spatial indices for range (disk and rectangle) and intersection joins. Finally, we
propose a parallel method that boosts the performance of range queries.

Relational databases also face challenges in creating efficient indices. This disser-
tation focuses only on tree-like indices. One of the most well-known and efficient
indexing structures in this domain is the B+-tree, particularly suited for skewed
workloads with dynamic data and for supporting range queries. With the rise of
machine learning, many learned indices have been introduced. A learned index uses
ML models to “learn” the data distribution and predict the location of the search key
within a dataset aiming to reduce the space requirements and the memory accesses.
The main difference between a traditional B+-tree and a learned index is that learned



indices replace inner nodes with machine learning models. We believe that B+-tree
are more efficient than learned indices because their query performance is stable and
not affected by the data distribution. We also believe that advancements in hardware
technology create new opportunities to further improve B-tree performance. Build-
ing on the foundational B+-tree structure, this research introduces BS-tree, a new
indexing structure designed for main memory and modern hardware. The BS-tree
leverages data parallelism and integrates innovative optimizations, offering signifi-
cant advancements over both traditional B+-tree and emerging learned indices. Key
features include a data-parallel branching mechanism implemented using SIMD in-
structions, a gap management strategy employing duplicate keys to delay splits and
reduce data-shifting overhead, and a node compression scheme that minimizes mem-
ory usage while maintaining high throughput.

In summary, this dissertation provides a comprehensive framework for enhancing
the performance of relational, temporal, and spatial databases. Through the integra-
tion of in-memory indexing, parallel processing techniques and duplicate avoidance
techniques, this dissertation delivers robust, scalable, and efficient solutions for the
evolving needs of modern data-intensive applications.



ΕΚΤΈΤΆμΈΝΉ ΠΈΡΊΛΉΨΉ

Δημήτρης Τσιτσίγκος, Δ.Δ., Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική
Σχολή, Πανεπιστήμιο Ιωαννίνων, 2024.
Ευρετηρίαση στη Μνήμη για Παράλληλη Επεξεργασία Ερωτημάτων Μονοδιάστατων
και Πολυδιάστατων Δεδομένων.
Επιβλέπων: Νίκος Μαμουλής, Καθηγητής.

Οι βάσεις δεδομένων είναι απαραίτητες για τις σύγχρονες εφαρμογές, προσφέ-
ροντας δομημένους, αποδοτικούς και αξιόπιστους τρόπους διαχείρισης δεδομένων
σε τομείς όπως οι τραπεζικές συναλλαγές, η υγειονομική περίθαλψη και η επιστη-
μονική έρευνα. Έχουν σχεδιαστεί για να διαχειρίζονται μεγάλους όγκους δεδομένων
και να απαντούν αποδοτικά σε ερωτήματα. Βασικός παράγοντας που επηρεάζει την
ταχύτητα των ερωτημάτων είναι η χρήση ευρετηρίων, τα οποία μπορούν να βελτιώ-
σουν σημαντικά την ταχύτητα, την αξιοπιστία και τη συνολική απόδοση μιας βάσης
δεδομένων. Ένα αποδοτικό ευρετήριο θα πρέπει να υποστηρίζει γρήγορες αναζητή-
σεις και ενημερώσεις, ενώ ταυτόχρονα θα πρέπει να διατηρεί χαμηλές απαιτήσεις
σε αποθηκευτικό χώρο. Με τις τεχνολογικές εξελίξεις στο υλικό (hardware) των
υπολογιστών, μπορούμε να ανασχεδιάσουμε τις δομές των ευρετηρίων, ώστε να
γίνουν ταχύτερα και πιο αποδοτικά. Για παράδειγμα, η αυξημένη χωρητικότητα
της κύριας μνήμης επιτρέπει τη μεταφορά υπολογισμών από τον δίσκο, ένα αργό
αποθηκευτικό μέσο, στη μνήμη, όπου οι υπολογισμοί μπορούν να εκτελούνται τα-
χύτερα. Παράλληλα, οι σύγχρονοι επεξεργαστές διαθέτουν περισσότερους πυρήνες,
ενισχύοντας την παράλληλη εκτέλεση των εργασιών σε πολλαπλούς πυρήνες, βελ-
τιώνοντας έτσι την απόδοση. Επιπλέον, αυτές οι σύγχρονες τεχνολογίες υλικού είναι
πλέον οικονομικά προσιτές και διαθέσιμες ακόμα και σε συμβατικούς υπολογιστές,
καθιστώντας τες ιδανικούς για πληθώρα εφαρμογών.

Αυτή η διατριβή εξετάζει πώς οι τεχνικές παράλληλης δεικτοδότησης στη κύρια
μνήμη μπορούν να βελτιώσουν την απόδοση των σχεσιακών, χρονικών και χωρικών
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βάσεων δεδομένων. Αντιμετωπίζει προκλήσεις όπως η διαχείριση δεδομένων μεγά-
λης κλίμακας και η εκτέλεση πολύπλοκων ερωτημάτων σε σύγχρονα συστήματα.

Οι συνενώσεις διαστημάτων (interval joins) αποτελούν σημαντικό κομμάτι των
χρονικών βάσεων δεδομένων και είναι χρήσιμες σε πολλές εφαρμογές. Ωστόσο, μια
σημαντική πρόκληση στις παράλληλες υλοποιήσεις της συνένωσης διαστημάτων εί-
ναι η αποτελεσματική κατάτμηση του χώρου, με στόχο την καλύτερη κατανομή του
φόρτου εργασίας στους πυρήνες του επεξεργαστή. Μια απλή προσέγγιση είναι η
διαίρεση του χώρου δεδομένων σε μη επικαλυπτόμενες περιοχές και η ανάθεση των
δεδομένων κάθε περιοχής σε διαφορετικό πυρήνα. Ωστόσο, αυτό δημιουργεί ένα
νέο πρόβλημα: όταν ένα διάστημα εκτείνεται σε πολλές περιοχές, η επεξεργασία
των διαστημάτων αυτών από διαφορετικούς πυρήνες, μπορεί να οδηγήσει σε δι-
πλότυπα αποτελέσματα. Ένας τρόπος διαχείρισης των διπλοτύπων είναι η χρήση
μιας δομής δεδομένων, όπως ένα σύνολο (set), για την αποθήκευση μοναδικών απο-
τελεσμάτων. Ωστόσο, αυτό αυξάνει τη χρήση μνήμης και επιβραδύνει την απόδοση
των ερωτημάτων λόγω των επιπλέον ελέγχων για διπλότυπα. Μια αποδοτική τε-
χνική για τον διαχωρισμό των δεδομένων, που επιλύει τα παραπάνω προβλήματα,
είναι η προσέγγιση κατανομής του χώρου δεδομένων (Domain-based partitioning).
Αυτή η μέθοδος διαιρεί τα δεδομένα σε τμήματα που μπορούν να υποστούν επεξερ-
γασία ανεξάρτητα και παράλληλα, αξιοποιώντας στο έπακρο τις δυνατότητες των
πολυπύρηνων επεξεργαστών. Σε αυτή την διατριβή προτείνονται τρεις παράλληλες
στρατηγικές, οι οποίες είναι εφαρμόσιμες τόσο σε μεθόδους βασισμένες σε κατακερ-
ματισμό (hash-based) όσο και σε κατανομές του χώρου δεδομένων (domain-based).
Αυτές οι στρατηγικές επιταχύνουν σημαντικά τις λειτουργίες συνένωσης διαστημά-
των, ελαχιστοποιώντας το υπολογιστικό κόστος και βελτιώνοντας την κλιμακωσι-
μότητα.

Η ευρετηρίαση χωρικών δεδομένων είναι απαιτητική λόγω της πολυπλοκότητας
του σχήματος και της πολυδιάστατης φύσης τους. Αυτή η πολυπλοκότητα επηρε-
άζει την απόδοση των ερωτημάτων, ιδιαίτερα των χωρικών συνενώσεων (spatial
intersection joins), οι οποίες απαιτούν πολλούς υπολογιστικούς πόρους. Όπως και
οι χρονικές βάσεις δεδομένων, οι χωρικές βάσεις δεδομένων αντιμετωπίζουν επίσης
προβλήματα διπλότυπων. Για παράδειγμα, σε ένα δισδιάστατο πλέγμα (grid), δι-
πλότυπα μπορεί να εμφανιστούν όταν χωρικά αντικείμενα επικαλύπτουν πολλαπλές
διαμερίσεις του πλέγματος. Η πιο κοινή τεχνική για την αποφυγή διπλοτύπων είναι
η προσέγγιση σημείου αναφοράς (reference point approach), η οποία αναφέρει ένα



αποτέλεσμα μόνο σε μία διαμέριση του πλέγματος, αλλά απαιτεί επιπλέον υπολογι-
σμούς. Αυτή η διατριβή επικεντρώνεται κυρίως σε μη σημειακά δεδομένα, όπου προ-
κύπτουν ζητήματα διπλοτύπων αποτελεσμάτων. Η πρώτη μας μελέτη εστιάζει στη
βελτίωση του αλγορίθμου Partition-Based Spatial Join (PBSM) για την αξιολόγηση
ερωτημάτων συνένωσης στην κύρια μνήμη με παραλληλοποίηση. Επίσης, προτεί-
νουμε τρόπους για την επιλογή των παραμέτρων του αλγορίθμου, χρησιμοποιώντας
στατιστικά δεδομένα του συνόλου δεδομένων. Στη δεύτερη μελέτη μας, εισάγουμε
μια νέα τεχνική κατανομής για ευρετήρια κατανομής χώρου (space-oriented par-
titioning - SOP), όπως τα πλέγματα. Αυτή η τεχνική δημιουργεί μια καινούργια
κατανομή πάνω από το πλέγμα και κατηγοριοποιεί τα αντικείμενα σε κλάσεις. Η
αποφυγή των διπλοτύπων αποτελεσμάτων γίνεται κατά την εκτέλεση του χωρικού
ερωτήματος, όπου ο αλγόριθμος μας προσπελαύνει μόνο τις κλάσεις που δεν πα-
ράγουν διπλότυπα. Αυτή η καινοτομία βελτιώνει σημαντικά την αποδοτικότητα των
ευρετηρίων πλέγματος για ερωτήματα εύρους και συνενώσεων. Τέλος, προτείνουμε
μια παράλληλη μέθοδο που ενισχύει την απόδοση των ερωτημάτων εύρους.

Οι σχεσιακές βάσεις δεδομένων αντιμετωπίζουν επίσης προκλήσεις στη δημιουρ-
γία αποδοτικών ευρετηρίων. Αυτή η διατριβή επικεντρώνεται αποκλειστικά σε δεν-
δρικές δομές ευρετηρίων. Μία από τις πιο γνωστές και αποδοτικές δομές ευρετη-
ρίου σε αυτόν τον τομέα είναι το B+-δέντρο, το οποίο είναι ιδιαίτερα κατάλληλο για
άνισα φορτία εργασίας με δυναμικά δεδομένα και για την υποστήριξη ερωτημάτων
εύρους. Με την εξέλιξη της μηχανικής μάθησης (machine learning), έχουν προταθεί
πολλά ευρετήρια (learned indices) που χρησιμοποιούν μοντέλα μηχανικής μάθησης
για να κατανοήσουν την κατανομή των δεδομένων και να προβλέψουν τη θέση του
κλειδιού αναζήτησης μέσα σε ένα σύνολο δεδομένων. Τα ευρετήρια αυτά στοχεύ-
ουν στη μείωση των απαιτήσεων χώρου και των προσβάσεων στη μνήμη. Η κύρια
διαφορά μεταξύ ενός παραδοσιακού B+-δέντρου και ενός learned index είναι ότι
τα learned indices αντικαθιστούν τους εσωτερικούς κόμβους με μοντέλα μηχανικής
μάθησης. Πιστεύουμε ότι τα B+-δέντρα είναι πιο αποδοτικά από τα learned indices,
επειδή η απόδοση των ερωτημάτων τους είναι σταθερή και δεν επηρεάζεται από την
κατανομή των δεδομένων. Πιστεύουμε επίσης ότι οι σύγχρονες τεχνολογίες υλικού
δημιουργούν νέες ευκαιρίες για περαιτέρω βελτίωση της απόδοσης του B+-δέντρου.
Βασισμένη στη βασική δομή του B+-δέντρο, η έρευνά μας εισάγει το BS-δέντρο,
ένα νέο ευρετήριο σχεδιασμένο για την κύρια μνήμη, το οποίο αξιοποιεί σύγχρο-
νες τεχνολογίες. Το BS-δέντρο εκμεταλλεύεται την παραλληλία δεδομένων και εν-



σωματώνει καινοτόμες βελτιστοποιήσεις, προσφέροντας σημαντικές βελτιώσεις σε
σχέση τόσο με τα παραδοσιακά B+-δέντρα όσο και με learned indices. Τα κύρια
χαρακτηριστικά του, περιλαμβάνουν έναν παράλληλο μηχανισμό διακλάδωσης με
χρήση εντολών SIMD, μια στρατηγική διαχείρισης άδειων θέσεων που χρησιμοποιεί
διπλότυπα κλειδιά για να καθυστερήσει τον διαχωρισμό κόμβων και να μειώσει
το κόστος αναδιάταξης δεδομένων. Τέλος, προτείνουμε έναν αλγόριθμο συμπίεσης
κόμβων που ελαχιστοποιεί τη χρήση μνήμης, ενώ διατηρεί υψηλή απόδοση.

Συνοψίζοντας, η παρούσα διατριβή προσφέρει ένα ολοκληρωμένο πλαίσιο για
τη βελτίωση της απόδοσης στις σχεσιακές, χρονικές και χωρικές βάσεις δεδομένων.
Εστιάζει στη δημιουργία ευρετηρίων για την κύρια μνήμη, στη χρήση τεχνικών πα-
ράλληλης επεξεργασίας και στην αποφυγή διπλοτύπων, προσφέροντας αποδοτικές
λύσεις για τις συνεχώς εξελισσόμενες ανάγκες των σύγχρονων εφαρμογών.



CHAPTER 1

INTRODUCTION

1.1 Parallel Partitioning In‐Memory for Interval Joins

1.2 Parallel In‐Memory Evaluation of Spatial Queries

1.3 BS‐tree: A data‐parallel B+‐tree for main memory

1.4 Dissertation Outline

Databases [1, 2] are designed to store, organize, and manage large amounts of data. In
today’s world, they play a central role in nearly every application, ranging from online
banking systems to social media platforms, healthcare records, and scientific research.
They allow data to be stored in a structured, efficient way, making it easy to retrieve
and manipulate when needed. The core idea of a database is that it helps users and
applications to interact with data in a consistent and reliable manner, ensuring that
the information is organized, accessible, and up to date.

Data management lies at the core of databases, which are categorized into various
types based on their structure, functionality, and approaches to storing and accessing
data. Relational databases organize data into structured tables of rows and columns,
making them ideal for structured data management. Temporal databases focus on
tracking data changes over time, providing a history of records with time-related
attributes. Spatial databases handle geographic and spatial data, storing information
like coordinates and shapes for geographic information systems. Document databases
store semi-structured data in formats like JSON or XML, offering management of
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schema-less information. Graph databases are designed to model and analyze rela-
tionships between entities using nodes and edges, while key-value databases store
data as simple key-value pairs, optimized for fast lookups and updates. Column-
family databases, another type of non-relational database, organize data into flexible
rows and dynamic columns, making them ideal for distributed systems handling
large-scale data. On the other hand, relational databases rely on structured tables
with fixed schemas. This dissertation focuses on relational, temporal, and spatial
databases.

Relational Databases. The most common and traditional type of database is the
relational database. In relational databases, data is stored in tables that consist of rows
and columns. Each row represents an individual record, and each column holds a
specific type of data related to that record. For instance, in a database used for
managing customer information, one table might store customer names and contact
details, and yet another might store transaction records. The strength of relational
databases lies in their ability to represent complex relationships between different data
sets by using foreign keys, enabling data to be linked across multiple tables. Users
interact with relational databases using structured query language (SQL), a powerful
tool for querying and manipulating data.

Temporal Databases. Temporal databases are designed to manage data that changes
over time. They extend the functionality of relational systems by adding time-related
attributes to records. This allows users to query past states of data, track changes
over time, and plan for future states. For example, a temporal database could store
information about a person’s address history, tracking the changes over time along
with the effective dates. Temporal data is essential in systems such as financial trans-
actions, medical records, and historical data analysis, where knowing not just the
current state of information but also its history is crucial.

Spatial Databases. Spatial databases, are designed to handle data related to geo-
graphic locations, such as coordinates, maps, and geometric shapes. Spatial databases
are commonly utilized in applications that involve geographic information systems
(GIS), location-based services, and mapping technologies. These databases allow users
to store, query, and analyze spatial data, such as the location of buildings, roads, or
natural features. The data in spatial databases is often stored in forms that can rep-
resent points, lines, and polygons, making it particularly useful for any application



that needs to process and interpret spatial relationships and patterns.

In‐Memory Indexing.While relational, temporal, and spatial databases each focus on
different kinds of data, they all share the common challenge of efficiently storing and
retrieving data. One key element that significantly impacts the performance of any
database system is how quickly data can be located and retrieved from storage. This
is where indexing becomes important. Indexing is a technique used to speed up the
retrieval of data by creating data structures that allow for fast searches. Indices also
help with other tasks in the database, like sorting data, combining information from
different tables, and making sure that certain data, like unique IDs, does not repeat.
Indexing is especially helpful when a query is searching for specific information or
organizing large sets of data.

In recent years, a growing focus has been placed on in-memory indexing, which
takes advantage of the computer’s RAM rather than relying solely on slower disk
storage. By storing indices in memory, the database can achieve much faster query
response times, making it a critical aspect of performance for modern applications. In-
memory databases and indexing methods have been especially useful in scenarios that
require real-time data processing, such as high-frequency trading, gaming, and online
recommendation systems. In-memory indexing is supported by efficient algorithms
and data structures that optimize memory usage and access speed.

In relational databases, in-memory indexing can greatly improve performance
by reducing the time needed to find and retrieve specific rows or values. Methods
like hash indexing, bitmap indexing, and tree-based indexing (such as B+-tree) are
commonly used to build fast, in-memory search structures that speed up queries.

Temporal databases, must handle data that changes over time. This means they
need indexing methods that can manage time-related queries efficiently, such as find-
ing records valid at a specific time or retrieving historical data over a period. Tech-
niques like time-based partitioning and versioned indexing help make these time-
based queries faster and more efficient.

Spatial databases face unique challenges due to the nature of spatial data, which in-
cludes multidimensional points (such as latitude and longitude) and complex shapes.
Unlike regular data, spatial data need specialized indexing methods like R-trees[3].
These structures organize data hierarchically to quickly filter out irrelevant informa-
tion. They are especially useful for tasks like range queries (e.g., finding all locations
within a certain distance) or spatial joins (e.g., combining data from different regions



based on their locations).

Parallelism. As the demand for faster data retrieval grows, especially in large-scale
database systems, traditional indexing techniques alone are often not sufficient to
meet the performance requirements of modern applications. In-memory indexing
significantly improves query response times by minimizing dependence on slower
disk storage. However, even in-memory systems face challenges with handling large
datasets or complex queries.

To address these challenges, parallel programming models are being used in in-
dexing algorithms to improve performance. There are many parallel programming
models, such as shared memory, distributed memory, data parallelism, task paral-
lelism, MapReduce, and others. In this study, we focus on the shared memory model
and data parallelism.

The shared memory model allows multiple threads or processes to share the same
memory space, making data sharing more efficient. Tools like mutexes or semaphores
are needed to prevent conflicts and ensure safety when accessing shared data. This
model is commonly used for parallel computing on multicore processors and is
supported by frameworks like OpenMP and POSIX Threads. In this study, we use
OpenMP [4] as the primary framework for implementing the shared memory model.
OpenMP offers a simple and flexible interface for managing thread-level parallelism,
making it an excellent choice for optimizing indexing operations on multicore sys-
tems. The data parallelism model performs the same operation on different parts
of a dataset simultaneously, distributing the workload across multiple processors or
threads. It is ideal for tasks like numerical computations, matrix operations, and vector
processing. Data parallelism relies on multiple mechanisms, including SIMD (Single
Instruction, Multiple Data), multithreading, distributed systems, GPUs, FPGAs, and
big data frameworks. In this study, we focus on utilizing SIMD [5] instructions, which
enable the simultaneous processing of multiple data elements with a single opera-
tion. By leveraging SIMD, we aim to optimize computational tasks such as vector
processing, array operations, and other parallel workloads critical to our indexing al-
gorithms. By distributing indexing tasks across multiple cores, OpenMP enables the
efficient use of multi-core systems, significantly speeding up operations such as index
construction and search queries. SIMD, on the other hand, allows for simultaneous
processing of multiple data elements in a single instruction, optimizing computational
tasks like comparisons or sorting within an index.



Combining the above parallel programming models with in-memory indexing, we
can create faster and more efficient indexing structures that help databases scale better
and handle larger datasets with reduced latency.

This dissertation focuses on in-memory parallel indexing techniques for temporal
(Section 1.1), spatial (Section 1.2), and relational (Section 1.3) databases. In more
detail, Section 1.1 introduces three different strategies for parallel partitioning of in-
terval data, applicable to both hash-based and domain-based methods, which im-
prove partitioning speed by reducing computation time and increasing scalability.
Section 1.2 discusses challenges in spatial databases. First, we look at improving
the Partition-Based Spatial Join (PBSM) algorithm for parallel in-memory spatial in-
tersection joins. Then, we explore how different partitioning parameters affect the
performance of spatial joins. We also focus on how to divide spatial space into a grid
where the partitions can be processed in parallel without duplication, particularly
for spatial intersection joins and range queries (rectangle-shaped and disk-shaped).
Finally, Section 1.3 presents the problem of improving the performance of a B+-tree
in relational databases by applying parallelism and other techniques.

1.1 Parallel Partitioning In‐Memory for Interval Joins

Generally speaking, temporal databases store relations of explicit attributes that con-
form to a schema and each tuple carries a validity interval. The interval join is one of
the most widely used operations in temporal databases [6]. In this context, an interval
join would find pairs of tuples from two relations which have intersecting validity.
For example, assume that the employees of a company may be employed at different
departments during different time periods. Given the employees in Figure 1.1 who
have worked in departments A (red), B (blue), the interval join would find pairs of
employees, whose periods of work in A and B, respectively, overlap.

Given a 1D discrete or continuous domain, an interval is defined by a starting
and an ending point in this domain. Consider for example the domain of all non-
negative integers N; two integers start, end ∈ N, with start ≤ end define an interval
i = [start, end] as the subset of N, which includes all integers x with start ≤ x ≤ end.1

Let R, S be two collections of intervals. Formally the interval join R 1 S is defined
1Note that the intervals in this work are closed. Yet, our techniques and discussions apply on generic

intervals where the begin and end sides are either open or closed.
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Figure 1.1: Motivation example in temporal databases

by all pairs of intervals r ∈ R, s ∈ S that intersect, i.e., r.start ≤ s.start ≤ r.end or
s.start ≤ r.start ≤ s.end. My work focuses on data partitioning, such that the join
can be processes in parallel and independently at each partition.

Contributions. The current state of the commodity hardware, having relatively large
memory and the ability of parallel multi-core processing, motivated us to design novel
techniques for partitioning the data. We investigate three different parallel strategies
for the partitioning phase (applicable on both the hash-based and the domain-based
partitioning), showing how it can benefit from modern hardware. These three strate-
gies are implemented and tested.

1.2 Parallel In‐Memory Evaluation of Spatial Queries

In this section, we introduce the concept of spatial queries and their importance in
modern data processing. In Section 1.2.1, we present our contributions in spatial joins
by improving the well-known Partition-Based Spatial Join (PBSM) algorithm. We ex-
plore how adjusting partitioning parameters can lead to significant improvements in
the efficiency and speed of join queries, providing a more effective approach for han-
dling large-scale spatial data. In Section 1.2.2, we focus on the challenge of indexing
non-point data, aiming to enhance the performance and efficiency of spatial queries.
By optimizing the indexing process, we seek to reduce computational overhead. Ad-
ditionally, we focus on preventing the creation of duplicate results, which can slow
down query execution.



1.2.1 Parallel In‐Memory Evaluation of Spatial Joins

The spatial join is a well-studied fundamental operation, that finds application in
spatial database systems [7] and Geographic Information Systems (GIS) [8]. GIS, for
example, typically store multiple thematic layers (e.g., road network, hydrography),
which are spatially joined in order to find object pairs (e.g., roads and rivers) that
intersect. Besides, spatial joins are also used to support data mining operations such
as clustering [9] and pattern detection [10].

Given two collections of spatial objects R and S, the spatial intersection join returns
all (r, s) pairs, such that r ∈ R, s ∈ S and r and s have at least one common point.
Due to the potentially complex geometry of the objects, intersection joins are typically
processed in two steps. The filter step applies on spatial approximations of the objects,
typically their minimum bounding rectangle (MBR). For each pair of object MBRs that
intersect, the object geometries are fetched and compared in a refinement step. Similar
to the vast majority of previous work [11], we focus on the filter step.

A wide range of spatial join algorithms have been proposed in the literature
[12]. Most of them assume that the input data are disk-based and their objective is to
minimize I/O accesses during the join. Given the fact that main memory chips become
bigger and faster, in-memory join processing has recently received a lot of attendance
[13]. In addition, given that commodity hardware supports parallel processing, multi-
core join evaluation has also been the focus of recent research. Hence, we target the
parallel in-memory evaluation of spatial joins on modern hardware.

Our focus is the optimization of the simple, but powerful partitioning-based spatial
join (PBSM) algorithm [14]. PBSM is shown to perform well in previous studies [13]
and used by most distributed spatial data management systems [15, 16, 17]. In a
nutshell, both datasets are first partitioned using a regular grid; each tile (cell) of the
grid gets all rectangles that intersect it. The (possibly very large number of) tiles are
grouped into a smaller number of partitions in a round-robin fashion according to
their z-ordering [15]. Each tile defines a smaller spatial join task. These tasks are
independent and can be executed in parallel, assigned to different threads or even to
different machines in distributed evaluation. Typically a plane sweep algorithm based
on forward scans [18] is used to process each task. For example, consider the two
sets of MBRs of Figure 1.2a. Partitioning the rectangles using a 3 × 3 grid creates 9
independent spatial join tasks, one for each tile. Note that some rectangles may be



replicated to multiple tiles. Because of this, some pairs of rectangles may be found to
intersect in multiple tiles; e.g., r1 intersects s1 in tiles (0,0) and (0,1).

The classic approach to eliminate duplicates is to hash the query results and
identify duplicates at each bucket. This method is very expensive, especially when
the number of results is large. An improved hashing technique for spatial data that
limits the size of the hash table was proposed in [19]. The state-of-the-art technique
for duplicate elimination, used in most big spatial data management systems [20], is
the reference point approach [21]. Using the reference point approach, duplicate join
results can be avoided by reporting a pair of rectangles only if a pre-determined
reference point (typically, the top-left corner) of the intersection region is in the tile
[21]; e.g., (r1, s1) is only reported by tile (0,0).

Contributions. Currently, there is no comprehensive study so far on how the number
and type of partitions should be defined. We observed, by experimentation, that
changing the type and the number of partitions can make a big difference. At first,
we evaluate a 1D partitioning that divides the space into stripes (see Figure 1.2b), as
opposed to the classic 2D partitioning, which uses a grid. Further, we investigate, for
each partition, the best direction of the sweep line. Finally, we show how both the
partitioning and the joining phases of the algorithm can be parallelized. Based on our
experimental findings, the 1D partitioning results in a more efficient algorithm. Also,
increasing the number of partitions improves the performance of the algorithm, up
to a point where adding more partitions starts having a negative effect. We present
a number of empirical rules driven from data statistics (globally and locally for each
partition) that can guide the selection of the algorithm’s parameters. Finally, we
evaluate the performance of the parallel version of the algorithm and show that it
scales gracefully with the number of cores.
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Figure 1.2: Example of PBSM: (a) 2D and (b) 1D partitioning



1.2.2 A Two‐layer Partitioning for Non‐point Spatial Data

Spatial data management has been studied for decades [22]. With modern, affordable
large memories and multi-core processors enabling parallel query processing, spatial
object collections can now fit in the memory of commodity machines. However, despite
advancements in distributed systems for spatial data [16, 17, 23, 24, 20], in-memory
management of large-scale spatial data remains under-explored.

We investigate the problem of indexing non-point spatial objects (e.g., polygons,
linestrings, etc.) in memory, for the efficient single- and multi-threaded evaluation
of spatial range queries. Large volumes of non-point data are ubiquitous, hence,
their effective management is always timely. Besides Geographic Information Systems,
domains that manage big volumes of such data include graphics (e.g., management
of huge meshes [25]), neuroscience (e.g., building and indexing a spatial model of
the brain [26]), and location-based analytics (e.g., managing spatial influence regions
of mobile users in order to facilitate effective POI recommendations [27]).

Motivation. Spatial access methods can be divided into two categories; space-oriented
partitioning (SOP) and data-oriented partitioning (DOP) approaches. Indices of the first
category divide the space into spatially disjoint partitions. As a result, objects that
overlap with multiple partitions need to be replicated (or clipped) in each of them.
DOP methods allow the extents of the partitions to overlap and ensure that their
contents are disjoint (i.e., each object is assigned to exactly one partition). For disk-
resident data, DOP approaches (such as the R-tree [3] and its variants) are considered
to be the best, because they avoid data replication and they have a balanced structure.
However, SOP approaches (especially grids) are gaining ground due to their efficiency
in search and updates in main memory [28, 29, 30, 31, 32, 33]. In addition, query
evaluation over grids is embarrassingly parallelizable and SOP is widely used in
distributed spatial data management systems [17, 23, 24].

We focus on improving SOP indices by addressing an inherent problem they have:
potential duplicate query results. In particular, a range query may overlap multiple
partitions which may include multiple replicas of the same object. For example, con-
sider the six rectangular objects depicted in Figure 1.3, partitioned using a 4×4 grid.
Some objects are assigned to multiple tiles. Given a query range (e.g., W ), a replicated
object (e.g., r2) may be identified as query result multiple times (e.g., at tiles T0, T1, T4,
and T5). Using the state-of-the-art reference point approach for duplicate elimination,
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Figure 1.3: Example of partitioning and object classes

we can avoid duplicates in range queries. More specifically, for each query result ri,
found in a tile T , this approach computes a reference point of the intersection between
ri and the query window W (e.g., the upper-left corner in Fig. 1.3). If the reference
point is inside T , then ri is reported, otherwise it is ignored. Since the reference point
can only be inside one tile, no duplicate results are reported. Although this method
avoids hashing, we still have to bear the cost of retrieving duplicate copies of the
same object and computing the reference point for each copy.

We propose a secondary partitioning technique for SOP indices, which improves
their performance significantly, by avoiding the generation and elimination of dupli-
cate results. Our approach is novel and of a high impact, as (i) it is extremely easy
to implement, (ii) it can be used by any SOP index, and (iii) it can be directly im-
plemented in big spatial data management systems [20]. In a nutshell, we divide the
objects which are assigned to each partition T into four classes A,B,C,D. Objects in
class A begin inside T in both dimensions, objects in class B start inside T in dimen-
sion x only, objects in class C start inside T in dimension y only, and objects in class
D start before T in both dimensions. Fig. 1.3 exemplifies how the objects are divided
into classes. For example, in tile T1, object r2 belongs to class C , because r2 starts
before T1 in the x dimension and starts inside T in the y dimension. During query
evaluation, for each partition T which intersects the query range, we access only the
object classes in T that are guaranteed not to produce duplicate results. For example,
in tile T1 of Fig. 1.3, we will not access class C , because query W starts before T1 in
dimension x; i.e., any object in class C of T1 that intersects W should also intersect
W in the previous tile T0. Hence, we avoid verifying whether r2 intersects W before
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Figure 1.4: Comparison between our approach and previous work

realizing that it is a duplicate result. Object r2 will only be accessed in tile T0 and
reported as result there without any duplicate check.

Then, we explain in detail how range queries are evaluated by our scheme and
show how redundant computations and duplicate checks can be avoided overall. Fig.
1.4 illustrates the difference between our approach and the deduplication process
followed by previous work [21, 19]; while all previous approaches evaluate queries
on all objects of each partition and then eliminate possible duplicates, we process only
a subset of objects in each partition that cannot be duplicates and we do not perform
any deduplication.

Besides proposing a secondary partitioning technique for duplicate avoidance in
range queries, we show how to reduce the number of required comparisons per
rectangle to at most one per dimension. Furthermore, we propose a data decomposi-
tion approach which further reduces the number of comparisons We also study the
evaluation of circular range (i.e., disk) queries and, in general, queries with convex
range shapes. Next, we focus on non-rectangular objects, which are approximated
and indexed using their minimum bounding rectangles (MBRs). Moreober, we show
that for such objects, the expensive query refinement step in query evaluation can be
avoided in most cases by a simple post-filtering test on the object MBRs. Additionally,
we investigate the evaluation of multiple range queries in batch and in parallel, using
our secondary partitioning approach.

Afterward, we turn our focus to spatial intersection joins. We first discuss join
evaluation for two datasets that are primarily indexed by identical grids. To avoid
duplicate results, we show that, for each tile, it suffices to evaluate 9 out of the 16
possible joins between the pairs of secondary partitions in the tile. We also show



how to optimize the join phase of PBSM, by specialized plane-sweep routines for
the different cases of joined sub-partitions (classes) and by avoidance of redundant
comparisons. Finally, we investigate join evaluation when one or both joined inputs
have already been indexed and how to process joins of datasets that have been
partitioned using a different grid.

Finally, we evaluate our proposal experimentally using large publicly available
real datasets and synthetic ones of the same scale as those used in recent work
[20, 34, 35]. Our experiments (with workloads of queries and updates) show that
main-memory grids are superior to alternative SOP and state-of-the-art DOP indices,
which justifies our focus to improve SOP indexing. More importantly, we show that
when we replace the state-of-the-art duplicate elimination technique [21] by our
secondary partitioning technique, the performance of grid-based indexing is improved
by up to a few times. Overall, a grid index equipped with our secondary partitioning
technique is up to one order of magnitude faster compared to the best performing
DOP index (an in-memory R-tree implementation from boost.org) for range queries
of varying sizes, achieving an impressive throughput of tens of thousands of queries
per second. We also show that our (directly parallelizable) approach scales gracefully
with the number of cores (i.e., threads in a multi-core machine), making it especially
suitable for shared-nothing parallel environments where tree-based indices are hard
to deploy. Finally, we demonstrate that in-memory spatial indexing can be orders of
magnitude faster compared to distributed spatial data management systems for the
scale of data used in our experiments.

Contributions. In summary, we make the following contributions to spatial indexing
and query evaluation. We design a novel second-layer partitioning approach designed
for space-oriented partitioning (SOP) indices, such as grids. Our approach enhances
SOP indices by avoiding redundant object comparisons and the generation of du-
plicate results, while also minimizing the cost of intersection tests. Additionally, we
propose an efficient filtering mechanism that largely eliminates the need for refine-
ment steps, significantly improving the performance of range queries. We extend this
methodology to support the evaluation of multiple range queries in both batch and
parallel processing scenarios. Furthermore, we adapt the second-layer partitioning
approach for spatial joins, presenting new joining strategies and performance opti-
mizations. An extensive experimental evaluation demonstrates the superiority of SOP
indices over direction-oriented partitioning (DOP) indices, as well as the advantages



of our partitioning approach over the state-of-the-art duplicate elimination technique
[21].

1.3 BS‐tree: A data‐parallel B+‐tree for main memory

Building on our previous work in parallel indexing for in-memory spatial and interval
data, we decided to focus on a more traditional indexing structure for relational data.
Specifically, we explored the B+-tree structure to enhance it using modern hardware
capabilities and new techniques, aiming to improve its performance and efficiency.
Another reason for this choice is the recent development of learned indices, which use
machine learning models to “learn” the data distribution. These indices are claimed to
be more efficient in terms of performance and memory usage compared to traditional
B+-trees. However, we believe that an optimized B+-tree, designed to leverage mod-
ern hardware, can outperform learned indices while offering greater stability. Unlike
learned indices, which can vary in performance depending on the data distribution,
B+-trees deliver consistent behavior regardless of the dataset.

B+-trees have already proven highly effective for various types of data, including
temporal and spatial. Their design, which keeps data sorted, makes them particularly
suitable for different types of queries. For example, range queries in temporal data,
such as “Find all events that occurred within a specific time range,” can benefit from
using timestamps as keys in a B+-tree. Similarly, for spatial data, queries like “Retrieve
all points within a specific rectangular region” can also be supported efficiently. To
handle multi-dimensional spatial data, techniques like Z-ordering or Hilbert curves
can be used to transform multi-dimensional points into a single-dimensional space,
making them compatible with B+-tree indexing. Moreover, for spatio-temporal data,
such as trajectories, indexing the time dimension alongside spatial data can further
enhance query performance, demonstrating the B+-tree ’s versatility and effectiveness.

The B+-tree has been the dominant indexing method for DBMSs, due to its low
and guaranteed cost for query processing and updates and due to its support of
range queries (in addition to equality searches, which are also well-supported by
hash indices). It has been designed for disk-based storage, where the objective is to
minimize the I/O cost of operations. As memories become larger and cheaper, main-
memory and hardware-specific implementations of the B+-tree [36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47], as well as alternative access methods for in-memory data



[48, 49, 50, 51, 52, 53, 54, 55, 56] have been proposed. The optimization objective
in all these methods is minimizing the computational cost and cache misses during
search. More recently, learned indices [57, 58, 59, 60, 61, 62, 63, 64, 65, 66], which
replace the inner nodes of the B+-tree by ML models have been suggested as a way
for reducing the memory footprint of indexing and accelerating search at the same
time. Cache conscious B-trees and other data structures have also been developed.

We propose BS-tree, a B+-tree for main memory data, which is optimized for mod-
ern commodity hardware and data parallelism. BS-tree adopts the structure of the
disk-based B+-tree (i.e., a balanced, multiway tree), setting the node size to a mem-
ory block that can be processed fast. At the heart of our proposal lies a data-parallel
successor operator (succ), implemented using SIMD, which is applied at each tree level
for branching during search and updates and for locating the search key position at
the leaf level. To facilitate fast updates, we propose a novel implementation for gaps
(unused positions) by duplicating keys, that does not affect the excellent search per-
formance of the tree. The B+-tree construction algorithm initializes sparse leaf nodes
with intentional gaps in them, in order to (i) delay possible splits and (ii) reduce data
shifting at insertions. The splitting algorithm also adds gaps proactively. Finally, we
propose a compression method that allows nodes that use fixed-size memory blocks
to have varying capacities, which saves space and increases data parallelism. The
computational cost of search and update operations in BS-tree is O(logf n), where f

is the capacity of the nodes, assuming that f is selected such that each node can be
processed by a (small) constant number of SIMD instructions.

Contributions. There already exist several SIMD-based implementations of B-trees
and k-ary search [67, 41, 45, 46, 47]. In addition, several indices (especially learned
ones [60]) use gaps to facilitate fast updates. Finally, key compression in B-trees has
also been studied in previous work [40]. To our knowledge, our proposed BS-tree is
the first structure that gracefully combines all these features, achieving at the same
time minimal storage and high throughput. All these thanks to (i) our simple but
efficient data-parallel implementation of branching; (ii) its integration with a novel
implementation of gaps using duplicate keys that does not affect correctness and
performance; and (iii) our compression scheme that allows for direct application of
operations on compressed nodes. We extensively compare our BS-tree implementa-
tion with open-source implementations of state-of-the-art non-learned and learned
indices on widely used real datasets, to find that BS-tree and its compressed version



consistently prevails in different query and update workloads, typically achieving
1.5x-2x higher throughput than the best competitor from previous work.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter 2, we review related
work and present in detail the characteristics and weaknesses of existing methods.

In Chapter 3, we present our parallel strategies, designed specifically for efficiently
partitioning intervals. These strategies are applicable to both hash-based and domain-
based partitioning algorithms. Our goal was to identify the most optimal approach
based on performance metrics, ensuring that the proposed methods are both practical
and scalable for real-world applications.

In Chapter 4 we present our contribution to spatial indexing and query evaluation.
Our first study focused on the in-memory and parallel evaluation of spatial joins
by improving the classic PBSM algorithm using one-dimensional (stripes) and two-
dimensional (grid) partitioning methods. We also explain how to choose the right
partitioning parameters based on data statistics to optimize the algorithm for specific
join inputs. Next, we introduce a new secondary partitioning technique for space-
based partitioning indices (e.g., grids). This technique greatly improves performance
by avoiding duplicate results and can be used for range queries (such as rectangles
and disks) and spatial intersection join queries. Finally, we conducted a wide range
of experiments using both real and synthetic datasets to validate our techniques

In Chapter 5, we propose BS-tree, an in-memory B+-tree optimized for fast, par-
allel processing using SIMD instructions. When compared to existing main-memory
and learned indices, our approach demonstrates superior performance across a range
of query and update workloads.

In conclusion, Chapter 6 summarizes the contributions of this dissertation and
provides a discussion about future work.



CHAPTER 2

RELATED WORK

2.1 Interval Joins

2.2 Management of Spatial Data

2.3 Tree‐like Structures for Relational Data

In this chapter, we will discuss the related work for this dissertation, focusing on
previous research in interval joins (Section 2.1), spatial data management (Section
2.2), and relational data, particularly tree-like structures (Section 2.3).

2.1 Interval Joins

Recall that the objective of the interval join is to find pairs of intervals that overlap
each other. The majority of interval join algorithms assume that the input data reside
on disk and so, their focus is to minimize I/O accesses.

In this section, we classify the algorithms of previous works based on the data
structures they use and based on the underlying architecture.

Nested loops and merge join. Early work on interval joins [68, 69] studied a temporal
join problem, where two relations are equi-joined on a non-temporal attribute and the
temporal overlaps of joined tuple pairs should also be identified. Techniques based on
nested-loops (for unordered inputs) and on sort-merge join (for ordered inputs) were
proposed, as well as specialized data structures for append-only databases. Similar to

16



plane sweep, merge join algorithms require the two input collections to be sorted, but
join computation is sub-optimal compared to FS, which guarantees at most |R|+ |S|
endpoint comparisons that do not produce results.

Index‐based algorithms. Enderle et al. [70] propose interval join algorithms, which
operate on two RI-trees [71] that index the input collections. Zhang et al. [72] focus
on finding pairs of records in a temporal database that intersect in the (key, time)
space (i.e., a problem similar to that studied in [68, 69]), proposing an extension of
the multi-version B-tree [73].

Partitioning‐based algorithms. A partitioning-based approach for interval joins was
proposed in [74]. The domain is split into disjoint ranges. Each interval is assigned
to the partition corresponding to the last domain range it overlaps. The domain
ranges are processed sequentially from last to first; after the last pair of partitions
are processed, the intervals which overlap the previous domain range are migrated
to the next join. This way data replication is avoided. Histogram-based techniques
for defining good partition boundaries were proposed in [75]. A more sophisticated
partitioning approach, called Overlap Interval Partitioning (OIP) Join [76], divides
the domain into equal-sized granules and consecutive granules define the ranges of
the partitions. Each interval is assigned to the partition corresponding to the smallest
sequence of granules that contains it. In the join phase, partitions of one collection are
joined with their overlapping partitions from the other collection. OIP was shown to be
superior compared to index-based approaches [70] and sort-merge join. These results
are consistent with the comparative study of [6], which shows that partitioning-based
methods are superior to nested loops and merge join approaches.

Disjoint Interval Partitioning (DIP) [77] was recently proposed for temporal joins
and other sort-based operations on interval data (e.g, temporal aggregation). The
main idea behind DIP is to divide each of the two input relations into partitions, such
that each partition contains only disjoint intervals. Every partition of one input is
then joined with all of the other. Since intervals in the same partition do not overlap,
sort-merge computations are performed without backtracking. Prior to this work,
temporal aggregation was studied in [78]. Given a large collection of intervals (possibly
associated with values), the objective is to compute an aggregate (e.g., count the valid
intervals) at all points in time. An algorithm was proposed in [78] which divides the
domain into partitions (buckets), assigns the intervals to the first and last bucket they



overlap and maintains a meta-array structure for the aggregates of buckets entirely
covered by intervals. The aggregation can then be processed independently for each
bucket (e.g., using a sort-merge based approach) and the algorithm can be parallelized
in a shared-nothing architecture. We also propose a domain-partitioning approach
for parallel processing (Section 3.1), but the details differ due to the different natures
of temporal join and aggregation. Yet another partitioning approach [79] models each
interval r as a 2D point (r.start,r.end) and divides the points into spatial regions.
Again, a partition of one collection should be joined with multiple partitions of the
other collection.

Methods based on plane sweep. The Endpoint-Based Interval (EBI) Join [80] is the
most recent approach and we consider it to be the state-of-the-art. EBI is an efficient
implementation of plane sweep, which is based on a specialized gapless hash map data
structure for managing the active sets of intervals. EBI and its lazy version LEBI were
shown to significantly outperform OIP [76] and to also be superior to another plane
sweep implementation [81]. An approach similar to EBI is used in SAP HANA [82].
To our knowledge, no previous work was compared to FS [18]. Last, extensions and
applications of the plane sweep approach has been discussed in [83, 84], but in the
context of temporal aggregation and SPARQL query processing, respectively.

Parallel algorithms. A domain-based partitioning strategy for interval joins on multi-
processor machines was proposed in [85]. An interval is assigned to the partition
corresponding to the domain interval where its start endpoint belongs. Each partition
is assigned to a processor and intervals are replicated to the partitions they overlap,
to allow join results being produced independently at each processor. At the end, a
merge phase with duplicate elimination is required as the same join result can be
produced by different processors. Duplicates can be avoided using the reference test
from [21] but, this approach incurs extra comparisons.

Distributed algorithms. Distributed interval joins evaluation was studied in [86].
The goal is to join sets of intervals, which are located at different clients. The clients
iteratively exchange statistics with the server, which help the latter to compute a
coarse-level approximate join; exact results are refined by on-demand communication
with the clients. Chawda et al. [87] implement the partitioning algorithm of [85]
in the MapReduce framework and extend it to operate for other (non-overlap) join
predicates. The main goal of distributed algorithms is to minimize the communication



cost between the machines that hold the data and compute the join.

2.2 Management of Spatial Data

2.2.1 Indexing Non‐point Spatial Objects

The goal of spatial indices (memory resident or disk-based) is to group closely located
objects in space, into the same index nodes or blocks. These blocks are then organized
in a (single-level or hierarchical) data structure. The first spatial indices were designed
for point data, which are easier to manage. Later, the focus shifted to non-point data,
which are harder to manage. Spatial queries are typically processed in two steps [22],
following a filtering-and-refinement framework. During filtering, the query is applied on
the MBRs, which approximate the objects. During refinement, the exact representations
of the candidates are accessed and tested against the query predicate. Spatial indices
are applied in the filtering step; hence, they manage MBRs instead of exact geometries.

Depending on the nature of the partitioning, spatial indices are classified into two
classes [88]. Indices based on Space-oriented partitioning (SOP) divide the space into
disjoint partitions and were originally designed for point data. A grid [89], which
divides the space into cells (partitions) using axis-parallel lines, is the simplest SOP
index. Hierarchical indices that fall in this category are the kd-tree [90] and the quad-
tree [91],[92]. A bitmap-based index for point data was recently proposed in [93].
SIDI [94] is another spatial index for point data, which learns the characteristics of
the dataset before construction and its layout is designed to fit the data well. SOP can
also be used for non-point objects; in this case, objects whose extent overlaps with
multiple partitions are replicated (or clipped) in each of them [95].

Due to object replication, the same query results may be detected in multiple par-
titions and deduplication techniques should be applied. Aref and Samet [19] improve
the baseline hash-based duplicate elimination technique by processing the partitions
in a specific order, which guarantees that duplicates may appear only in a subset of
partitions (called active border). The size of the active border determines the space
requirements of the hash table. The state-of-the-art deduplication technique by Dit-
trich and Seeger [21] avoids the use of a hash table and performs a simple check for
each produced result. It computes a reference point of the intersection area between
each result and the query range. If the reference point is inside the partition, then



the result is reported, otherwise it is eliminated as a duplicate.
Indices based on data-oriented partitioning (DOP) allow the extents of the partitions

to overlap and ensure that their contents are disjoint (i.e., each object is assigned
to exactly one partition); hence, there is no need for result deduplication. Variants
of the R-tree [3] (e.g., the R*-tree [96]) are the most popular methods in this class.
The R-tree is a height-balanced tree, which generalizes the B+-tree in the multi-
dimensional space and hierarchically groups object MBRs to blocks. Each block is
also approximated by an MBR, hence the tree defines a hierarchy of MBR groups.
Some R-tree variants use circles (or spheres in the 3D space) instead of MBRs, i.e.,
the SS-tree [97], or a combination of circles and rectangles, i.e., the SR-tree [98]. The
R-tree was originally proposed for disk-resident data and the key focus is minimizing
the I/O cost during query processing. The CR-tree [99] is an optimized R-tree for the
memory hierarchy. BLOCK [88] is a recently proposed main-memory DOP index,
which uses a hierarchy of grids. R*-Grove [100] is a spatial partitioning, which builds
on the split algorithm of R*-tree to define full blocks and balanced partitions for
distributed big data.

Recently, following the trend for relational data, learned indices for spatial data
have been proposed [101, 34, 35]. The main idea is to learn the spatial distribution
of the objects, and then define a lightweight index, where search is guided by models
instead of a sparse index. Based on this idea, Wang et al. [101] first map the data to a
1D space, using their Z-order, and then construct a multi-staged learned index for 1D
data. In LISA [34], is a learned spatial index that focuses on disk-resident data; the
data are organized using a grid; the 1D order of the cells and the data distribution
determines the grouping of cells and the corresponding learned models. RSMI [35]
suggests a rank space based ordering for point data, which becomes scalable by a
recursive partitioning and learning strategy. These indices are not directly comparable
to our work, because they are designed for point data (with no obvious extension to
non-point data) and their primary goal is to minimize the I/O cost.

2.2.2 Range Queries

We now provide a more detailed explanation of how a range query can be evaluated
using a simple grid.

Recall that each MBR r can be represented by an interval of values at each di-
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Figure 2.1: Example of tiling and query evaluation

mension. Let r[i] = [r[i][0], r[i][1]] be the projection of rectangle r on the i-th axis. For
example, in the 2D space, r[0][1] denotes the upper bound of rectangle r on dimension
0 (i.e., the x-axis). Similarly, we use T [i] = [T [i][0], T [i][1]] to denote the projection of
a tile T to the i-th dimension. Given a tile T and a dimension i, we use prev(T, i) to
denote the tile T ′ which is right before T in dimension i and has exactly the same
projection as T in the other dimension(s). For example, in Figure 2.1, Tb = prev(Ta, 0).
prev(T, i) is not defined for tiles T which are in the first column (for i = 0) or row
(for i = 1) of the grid.

Given a range query windowW , a tile that does not intersectW does not contribute
any results to the query. Specifically, the only tiles T that may contain query results
are those for which T [i][1] ≥ W [i][0] and T [i][0] ≤ W [i][1] at every dimension i and
can easily be enumerated after finding the tiles Ts and Te, which contain W [0][0] and
W [1][1], respectively.1 Figure 2.1 illustrates a window query W in lightgrey color and
its four corner points W [0][0], W [0][1], W [1][0], W [1][1]. The tiles which are relevant
to W are between (in both dimensions) the two tiles Ts and Te.2

For each tile which is totally covered by the query range in at least one dimension
(e.g., Ta in dimension 0), we know that the objects in it certainly intersect W in that
dimension. For a tile T that partially overlaps with W in both dimensions (e.g., Tb),
we need to iterate through its objects list to verify their intersection with W . We first
check whether the MBR of the object intersects W and then we might have to verify

1Ts and Te can be found in O(1) by algebraic calculations if the grid is uniform.
2We conventionally assume that the x = 0 dimension is from left to right and the y = 1 dimension

is from top to bottom.



with the exact geometry of the object at a refinement step.
An important issue is that neighboring tiles may intersect W and also contain

the same object o. In this case, o will be reported more than once, so we need an
approach for handling these duplicates. For example, in Figure 2.1, object o1 could
be reported both by Ta and by Tb. A solution to this problem is to report an object
o only at the tile which is before all tiles (in both dimensions) where o is found to
intersect W . For example, in Figure 2.1, o1 is reported by Tb only, which is before
Ta. An easy approach to perform this test is to compute the intersection between the
query window and the rectangle and report the result only if a reference point of the
intersection (e.g., the smallest values of the intersection in all dimensions) is included
in the tile [21]. While this solution prevents reporting duplicates, it requires extra
computations and comparisons and it is unclear how to apply it for non-rectangular
range queries. An alternative and more general (but more expensive) approach is to
add the results from all tiles in a hash table, which would prevent the same rectangle
from being added multiple times.

2.2.3 Spatial Joins

In this section, we review classic spatial join evaluation approaches and more recent
work for in-memory. In general, in order to join spatially two large object collections
R and S, we first divide them into partitions which are small enough and then join
the partitions. We may also exploit an existing partitioning or index. In either case,
the join is broken down into numerous small problems that can be solved fast in
memory. We first discuss how a (small) join problem can be processed in memory,
using a plane sweep algorithm. Then, we review how data partitioning and indexing
approaches can be used to process bigger spatial join problems.

2.2.3.1 Evaluating Small Joins

For in-memory processing of small spatial joins, a typical approach is to use adap-
tations of a plane sweep algorithm that compute rectangle intersections [102]. The
most commonly used adaptation was suggested by Brinkhoff et al. [18]. Algorithm
2.1 describes this method. The join inputs R and S are first sorted based on their
lowest value in one dimension (e.g., xl of the x-dimension). Then, the sorted inputs
are scanned concurrently and merged as in a merge-join. This resembles a line that



(is perpendicular to and) sweeps along the sorting dimension. For every value that
the line encounters, say the lower x-endpoint r.xl of a rectangle r ∈ R, the other
input, i.e., S, is forwardly scanned from the current rectangle s′ = s, while s′.xl is not
greater than the upper x-endpoint r.xu of r. All s′ ∈ S found in this scan are guar-
anteed to x-intersect r, so for each of them a y-intersection test is applied (Line 8)
to confirm whether r and s′ intersect. Arge et al. [81] studied more classic (but less
simple to implement) versions of plane sweep based on maintenance of active lists at
every position of the sweep line, which have insignificant performance differences to
Algorithm 2.1.

2.2.3.2 Data Partitioning

Spatially joining large inputs directly using Algorithm 2.1, without any preprocessing
can be quite expensive. Some 20 years ago, the memories were too small to entirely fit
the input data; hence, expensive sorting and sweeping would have to be performed
in external memory. Given this, data partitioning has been considered as a divide-and-
conquer approach which splits the two inputs into smaller subsets that can then be
spatially joined fast in memory. In a nutshell, each object collection is divided into
a number of partitions, such that objects that are spatially close to each other fall in
the same partition. A partition from R is then joined with a partition from S if their
MBRs intersect.

A large number of spatial join algorithms that follow this paradigm have been
proposed. They can be classified into single-assignment, multi-join (SAMJ) methods
and multi-assignment, single-join (MASJ) approaches [103]. SAMJ methods assign each
object to exactly one partition; the partitions are determined by spatial clustering
heuristics. A partition from one dataset (e.g., R) may have to be joined with multiple
partitions of the other dataset (e.g., S). In MASJ, the borders of the partitions are pre-
determined, and an object is assigned to every partition it spatially intersects. Each
partition from R is then joined with exactly one partition from S (which has exactly
the same MBR). Figure 2.2 shows the differences between these two partitioning
schemes. In SAMJ, illustrated in Figure 2.2(a), the (dark grey) rectangles of dataset
R are divided to partitions R1 and R2, while the (hollow) rectangles of S are divided
into groups S1 and S2. Partition R1 only needs to be joined with S1 because the MBR
of R1 does not intersect the MBR of S2. However, R2 should be joined with both S1

and S2. In MASJ, illustrated in Figure 2.2(a), the datasets are partitioned based on



the space division defined by tiles T1 and T2. The rectangles from R that intersect a
tile (e.g., T1) only have to be joined with the rectangles from S that are assigned to
the same tile. Note that objects {r4, s2, s3}, which intersect both tiles, are replicated.

s3

R1 R2

S1

S2

T1 T2

(a) multi-assignment, single-join (MASJ)

(b) single-assignment, multi-join (SAMJ) 

r1

r2

r3
r4

r5

r6

r1

r2

r3
r4

r5

r6

s1

s2
s4

s5

s6

s1

s2

s3

s4

s5

s6

(a) SAMJ

s3

R1 R2

S1

S2

T1 T2

(a) multi-assignment, single-join (MASJ)

(b) single-assignment, multi-join (SAMJ) 

r1

r2

r3
r4

r5

r6

r1

r2

r3
r4

r5

r6

s1

s2
s4

s5

s6

s1

s2

s3

s4

s5

s6

(b) MASJ

Figure 2.2: Two classes of partitioning techniques

A classic SAMJ approach, used when the two inputs are indexed by R-trees [3],
is the R-tree join (RJ) algorithm of [18]. RJ finds all pairs of entries (eR, eS) one from
each root node of the trees that intersect. For each such pair, it recursively applies the
same procedure for the nodes pointed by eR and eS , until pairs of leaf node entries
(which correspond to intersecting object MBRs) are found. For example, if R1 and
R2 (S1 and S2, respectively) in Figure 2.2(a) are the two children of an R-tree root
that indexes R (S, respectively), then RJ would use their MBRs to determine that R1

only needs to be joined with S1. To join each pair of nodes, plane-sweep is used.
RJ was later extended to a multiway join processing algorithm [104] that applies to
multiple R-trees. Another SAMJ approach that does not rely on pre-defined indexes



is Size Separation Spatial Join [105].
The most popular MASJ approach is Partition-based Spatial Merge Join (PBSM)

[14]. PBSM divides the space by a regular grid and objects from both join inputs are
assigned to all tiles which spatially overlap them. For example, in Figure 2.2(b), T1

and T2 could be tiles in a large rectangular grid that can be used to partition both R

and S. For each partition, PBSM accesses the objects from R, the objects from S and
performs their join in memory (e.g., using plane-sweep). Since two replicated objects
may intersect in multiple tiles (e.g., see r4 and s2 in Figure 2.2(b)), duplicate results
may be produced. In order to avoid duplicates, a join result is reported by a tile only
a pre-specified reference point (e.g., the top-left corner) of the intersection region is
in the tile [21]. Other MASJ approaches include Spatial Hash Join [103] and Scalable
Sweeping-Based Spatial Join [81].

More recent spatial join algorithms consider the potential differences between the
joined datasets in the distribution and density. Motivated by a neuroscience appli-
cation, which requires joining datasets of contrasting density, Pavlovic et al. [106]
design a spatial join algorithm that partitions the dense dataset and ‘crawls’ through
the partitions guided by the object locations in the sparse dataset, skipping partitions
that do produce any results. Based on the same motivation, a more sophisticated ap-
proach was proposed in [107], which adapts the type of partitioning (MASJ or SAMJ)
and the join technique used locally, depending on differences in the densities of the
two inputs.

2.2.3.3 In‐Memory Evaluation

Even with a large main memory that can accommodate the data, plane sweep can be
too expensive if directly applied. The main reason behind this is that on a large map
containing relatively small rectangles, the chances that two rectangles with intersecting
x-projections also intersect in the y-dimension are low. Hence, plane sweep finds too
many candidate pairs that x-intersect but do not materialize to actual results.

As a result, in-memory join approaches also consider data partitioning or indexing
to accelerate processing. For example, as in PBSM, a grid can be used to break the
problem into numerous small instances that can be solved fast. Algorithm TOUCH
[108] is an effort in this direction, designed for scientific applications that join huge
datasets that have different density and skew. TOUCH first bulk-loads an R-tree for
one of the inputs using the STR technique [109]. Then, all objects from the second



input are assigned to buckets corresponding to the non-leaf nodes of the tree. Each
object is hashed to the lowest tree node, whose MBR overlaps it, but no other nodes
at the same tree level do. Finally, each bucket is joined with the subtree rooted at
the corresponding node with the help of a dynamically created grid data structure
for the subtree. A recent comparison of spatial join algorithms for in-memory data
[13] shows that PBSM and TOUCH perform best and that the join cost depends on
the data density and distribution. Tauheed et al. [110] suggest an analytical model
for configuring the grid of PBSM-like join processing in main memory; however, this
model (i) assumes a nested loops evaluation of each partition-partition join and (ii)
does not consider using the duplicate avoidance approach of [21].

2.2.4 Parallel and Distributed Data Management

Early efforts in parallel and distributed spatial query evaluation have mainly focused
on spatial joins, which are more expensive than range queries and they can benefit
more from parallelism. The R-tree join (RJ) algorithm [18] and PBSM [14] were
parallelized in [111] and [112, 113], respectively.

With the advent of Hadoop, research on spatial data management has shifted to
developing distributed systems for spatial data [114, 16, 17, 115, 23, 24]. Spatial data
in Hadoop-GIS [16] are partitioned using a hierarchical grid, wherein high density
tiles are split to smaller ones, in order to handle data skew. The nodes of the cluster
share a global tile index which can be used to find the HDFS files where the contents
of the tiles are stored. For query evaluation, an implicit parallelization approach is
followed, which leverages MapReduce. That is, the partitioned objects are given IDs
based on the tiles they reside and finding the objects in each tile can be done by
a map operation. Spatial queries are implemented as MapReduce workloads. In the
SpatialHadoop [17], data are also spatially partitioned, but offers different options for
partitioning, based on different spatial indices (i.e., grid based, R-tree based, quad-
tree based, etc.). The Master node holds a global spatial index for the MBRs of each
of the HDFS file blocks. A local index is built at each physical partition and used by
map tasks.

Spark-based implementations of spatial data management systems [115, 23, 24]
apply similar partitioning approaches. The main difference to Hadoop-based imple-
mentations is that data, indices, and intermediate results are shared in the memories



of all nodes in the cluster as resilient distributed datasets (RDDs) and can be made per-
sistent on disk. Unlike SpatialSpark [115] and GeoSpark [24] which are built on top
of Spark, Simba [23] has its own native query engine and query optimizer, however,
Simba does not support non-point geometries. Pandey et al. [20] conduct a compar-
ison between in-memory spatial analytics systems and find that they scale well in
general, although each one has its own limitations. Similar conclusions are drawn in
another study [116].

Distributed spatial data management systems focus on data partitioning and not
on query evaluation at each partition. In other words, emphasis is given on scaling
out (i.e., making the cost anti-proportional to the number of nodes), rather than on
per-node scalability (i.e., reducing the computational cost per node) and multi-core
parallelism.

2.3 Tree‐like Structures for Relational Data

2.3.1 B‐tree

The B+-tree is considered the de-facto access method for relational data, having
substantial advantages over hash-based indexing with respect to construction cost,
support of range queries, sorted data access, concurrency control, etc. [117, 118]. It
was firstly introduced as B-tree [119, 120] and it was disk based index. Their main
difference was that B+-tree have keys only in the leafs nodes, while B-tree can have
keys in both inners and leafs nodes. Then, red black trees [121, 122] are introduced,
which are self-balancing binary search trees in main memory, designed to maintain
efficient in search insertions and delete operations. O’Neil et al. [123] proposed Log-
Structured Merge-tree (LSM-tree), a disk-based data structure that effectively supports
a vast number of inserts and deletes over an extended period. To achieve this, employs
an algorithm that postpones and groups index updates, efficiently cascading these
changes from an in-memory component through one or more disk components, in a
way similar to the merge sort process. To support range queries efficiently, the B-tree
evolved to a B+-tree, where all keys appear sorted in the (linked) leaf nodes and
some keys are replicated in the non-leaf nodes acting as domain separators.

As memory sizes grow, the interest has shifted to in-memory access methods
[124]. A set of rebalancing operations leading to significantly more efficient updates



for red black trees was proposed in [36]. One of the first in-memory indices was
the T-tree [37], which combines the intrinsics of binary search trees with the storage
characteristics of B-trees and it is very effective when the tree and the data are keept
in main memory. Rao and Ross [38] were the first to consider the impact of cache
misses in memory-based data structures; they proposed Cache-Sensitive Search Trees
(CSS-trees), in which every node has the same size as the cache-line of the machine
and does not need to keep pointers for the links between nodes, but offsets that
can be calculated by arithmentic operations. Based on previous technique, Rao and
Ross [39] also proposed the Cache Sensitive B+-tree (CSB+tree), which achieves cache
performance close to CSS-Trees, while having the advantages of a B+-tree. Chen et al.
[125] highlighted how prefetching can significantly improve the performance of index
structures by reducing memory access latency. The same authors later proposed a
fractal prefetching technique that bulk-reads B+-tree nodes in a hierarchical manner,
minimizing both cache and disk accesses [126]. Hankins et al. [127] proved that
the optimal index performance in a CSB+tree, can be achieved by balancing the
cache misses, instruction count and TLB misses; they include an extended analysis
of how the size of the node affects performance. PkT-trees and pkB-trees [40] are
in-memory variants of the T-tree and the B-tree, respectively, that use partial-keys
(fixed-size parts of keys), which slightly increase the space overhead, but reduce cache
misses and improve search performance. Zhou and Ross [128] investigated buffering
techniques, based on fixed-size or variable-sized buffers, for memory index structures,
aiming to avoid cache trashing and to improve the performance of bulk lookup in
relation to a sequence of single lookups. Graefe and Larson [129] provided a survey of
all the available techniques that can improve the perfomance of B+-tree by exploting
CPU caches. Interpolation search techniques on a B+-tree were studied in [130].

2.3.2 (Data) parallelism in B‐trees

Modern CPUs, where multiple comparisons can be performed by a single SIMD in-
struction and the evolution of GPUs opened new perspectives for in-memory index
structures. In an early work, Zhou and Ross [131] explored how SIMD instructions
can be used to optimize key database operations, like scans, joins, and filtering. The
inherent parallelism of SIMD and the avoidance of branch misprediction can greatly
improve the performance of an index. Schlegel et al. [67] present two k-ary search



algorithms (find which partition of sorted data out of k contains a search key), one
for sorted arrays and one using linearized k-ary search trees, using SIMD instruc-
tions. FAST [41], designed for modern CPUs and GPUs, optimizes k-ary tree search
by leveraging architecture-specific features like cache locality, SIMD parallelism on
CPUs, and massive parallelism on GPUs. It organizes binary sub-trees in the memory
to decrease cache misses and memory latency. [42] introduced a “braided” B+-tree
structure optimized for parallel searches on GPUs, enabling lock-free traversal us-
ing additional pointers. By leveraging CUDA for parallelism and optimizing memory
access, the approach significantly improves search performance over traditional CPU-
based methods, especially for large datasets. Kaczmarski [44] proposed the GPU
B+-tree, a bottom-up B+-tree construction and maintenance technique using CPU
and GPU for bulk-loading and updates. Bw-Tree [43] is a highly scalable and latch-
free B+-tree variant optimized for modern hardware platforms, including multi-core
processors and flash storage. Bw-Tree uses a mapping table for indirection and delta
updates for efficient modifications. It also does not use locks, so it can achieve high
throughput and is particularly suited for workloads, that require high concurrency
and efficient write handling. Hybrid B+-tree [45] leverages both CPU and GPU re-
sources to optimize in-memory indexing on heterogeneous computing platforms. It
dynamically balances the workload between the CPU and GPU and exploits high
GPU parallelization. Hybrid B+-tree delivers improved performance for search and
indexing tasks, particularly in environments with high concurrency and large data
volumes. Yan et al. [46] proposed a B+-tree tailored for GPU and SIMD architec-
tures. This structure decouples the “key region”, which contains keys of the B+-tree
with the “child region”, which is organized as a prefix-sum array and stores only each
node’s first child index in the key region. They also provided two optimizations: first,
they partially sort queries to enable coalesced memory access, and second, they group
queries to decrease unnecessary comparisons within a warp, thereby reducing warp
execution time. Kwon et al. [47] recently proposed DB+-tree, a B+-tree with partial
keys, that utilizes SIMD and other sequential instructions for fast branching. PALM
[132] is a parallel latch-free variant of the B+-tree, that is optimized for multi-core
processors, enabling concurrent search and update operations. Several other papers
explore the implementation of B-trees on newer hardware platforms, including flash
memory, [133, 134, 135, 136, 137, 138, 139, 140], Non-Volatile Memory [141, 142]
and Hardware Transactional Memory [143].



2.3.3 Other in‐memory access methods

Besides B-trees, other data structures have also been used for in-memory indexing,
especially trie-based ones. The trie [144, 48, 145] was originally used for storing and
searching strings, aiming at path compression. The internal node representation in
the first generation of tries uses lists [146] and arrays [144]. Morrison [48] was the first
that introduced path compression and proposed Patricia algorithm, which optimizes
the trie data structure by compressing long paths, making it more memory-efficient
and faster for certain types of searches. HAT-trie [147, 49] is an in-memory, cache-
conscious data structure designed for efficient string storage and retrieval. It combines
aspects of both tries and hashing to optimize performance, particularly in terms of
memory access patterns. Aktipis and Zobel [148] proposed new update techniques
for string processing, which are implemented aiming for disk-based applications. The
generalized prefix tree (trie) [50] is an in-memory index structure for arbitrary data
types, which uses a variable prefix length. This method attempts to overcome the
common problems of tries, such as large trie height and memory requirements. To
address these flaws, they introduced four techniques,bypass jumper array (the core
concept of the technique bypass jumper array is to bypass trie nodes for leading zeros
of a key), trie expansion (tuples can be at any level rather than only in leaves), memory
preallocation, and reduced pointers (store only the offset within the preallocated
memory instead of the pointer to a certain memory position itself). Kissinger at al.
[51] proposed KISS-TREE, a latch-free in-memory index, based on the generalized
prefix tree [50], which uses memory management functionalities (like MMU) provided
by the operating system and compression mechanisms to minimize the number of
memory accesses. The techniques that they introduced to achieve that are direct
addressing, on-demand allocation, compact pointers, and compression. Masstree [52]
is a persistent data structure that combines aspects of B+-tree and trie. It keeps all the
data in memory and shares them with all cores to preserve load balance, maintains
high concurrency using optimistic concurrency control, and can support keys with
shared prefixes efficiently. The fanout of the tree was chosen to minimize total DRAM
delay when descending the tree with prefetching.

Leis et al. [53] proposed a fast and space-efficient in-memory trie indexing struc-
ture using modern hardware, called ART. ART dynamically adjusts its node sizes (4,
16, 48, or 256 bytes), based on the number of children, providing a compact and



cache-efficient representation. It uses lazy expansion (inner nodes are only created if
they are required to distinguish at least two leaf nodes) and path compression (re-
moves all inner nodes that have only a single child) to improve space utilization and
search performance. Leis et al. proposed two synchronization protocols for ART in
[149], which have good scalability despite relying on locks: optimistic lock coupling
and the read-optimized write exclusion (ROWEX) protocol. Height Optimized Trie
(HOT) [55] is an in-memory trie-based index that reduces tree height through path
compression and node merging. It combines several nodes from a binary Patricia
trie [62] into compound nodes with a maximum fanout, to reduce the height of the
structure. Additionally, it uses partial keys for each original key, determined by the
bit divisions at each node, to conserve memory. Each node’s layout is designed for
efficiency, ensuring compactness and enabling fast searches with the use of SIMD
instructions. Zhang et al. [54] presented a hybrid index, that uses two different data
structures, aiming to achieve memory efficiency and high-performance. Their key
idea is that certain data items are accessed more often than others and thus are more
likely to be accessed again in the near future. The first structure is dynamic and
provides fast insertions and accesses and the second structure is more compact and
read-optimized to serve reads for colder data. SuRF (Succinct Range Filter) [56] uses
ideas behind the bloom filter to support range queries efficiently. It leverages succinct
tries to provide a space-efficient solution for range query filtering.

2.3.4 Learned Indexing

The advent of fast and accurate machine learning techniques inspired the design of
a new type of index structure, called learned index [57]. Learned index uses ML mod-
els to ”learn” the data distribution and predict the location of data within a dataset
aiming to compress the size of the index and reduce the number of memory accesses.
The main idea is to learn a cumulative distribution function (CDF) of the keys and
define a Recursive Model Index (RMI) [57] that replaces the inner nodes of a B+-tree
by a hierarchy of models that can predict very fast the position of the search key.
Local search is used to identify the true position of a key if the prediction of RMI has
an error. At the top level of RMI, a model provides a prediction for the model to use
at the next level, until a model above the sorted key array predicts the position of
the search key. This prediction is refined through subsequent levels of models, each



focusing on specific data regions. The lower-level models become more precise until
the final level, where a traditional binary search or another simple search mechanism
can be used. Galakatos et al [58] propoosed FITing tree, a data-aware index struc-
ture, based on RMI, that adjusts its structure based on how the data is spread out.
FITing tree maintains a hierarchical structure similar to that of B+-tree, but instead of
rigidly dividing data into blocks, it uses the learned interpolation function to predict
a key’s location within each block. FITing uses linear interpolation models that learn
a piecewise linear approximation of the cumulative distribution of the keys, allowing
the index to estimate the position of a search key more accurately than fixed, rule-
based methods. PGM-index [59] is a fully-dynamic, compressed learned index that
uses a piecewise geometric model to efficiently index and query large datasets, Its
major contribution is its provable worst-case bounds on query time and space usage.
The RadixSpline (RS) [63] learned index can be constructed in a single traversal of
sorted data.

ALEX [60] is a learned index structure, based on RMI, designed to efficiently
handle updates, using exponential search. It retains a hierarchical structure, like a
B+-tree, where inner nodes use linear regression models. ALEX utilizes a gapped array
layout that gracefully distributes extra space between elements based on the model’s
predictions, enabling faster insertions and lookups. In comparison, a conventional
B+-tree stores all the empty space at the end of the array, which can be less efficient
for inserts. CARMI [61] incorporates data partitioning into the construction of RMI
and allows for data updates. NFL [62] is a two-stage Normalizing-Flow-Learned
index framework that, instead of directly segmenting the CDF curve, initially utilizes
the Numerical Normalizing Flow to convert the original keys into nearly uniformly
distributed keys, resulting in a CDF curve that is approximately linear. Subsequently,
the transformed keys effectively approximate the transformed CDF. LIPP [64] is an
updatable learned index that also uses gaps to facilitate updates. One of the major
challenges of learned indices is the approximation error when predicting the position
of a key. LIPP proposed methods to improve the precision of key predictions, reducing
the need for local search after model predictions, leading to faster lookups. The
authors introduce a new metric for determining the layout of tree nodes and propose
a dynamic adjustment strategy to keep the tree height tightly constrained. DILI [65],
is a yet another distribution-driven learned tree for main memory that uses linear
regression models for each node to map keys to corresponding children or records.



Learning is done during DILI’s bulk loading construction, which is performed in two
phases. In the first phase, a balanced bottom-up tree is created using linear regression
models that account for both global and local key distributions. In the second phase,
DILI is constructed in a top-down approach based on previous constructed bottom-
up tree, customizing the fanout of internal nodes based on the local key distributions.
Zhang et al. [66] proposed Hyper, an in-memory and multi-threaded learned index,
that uses hybrid construction and runtime adjustment techniques to improve query
performance and memory footprint. Their core idea, is that leaf nodes need more
memory space than inner nodes, but non-leaf nodes are very important, because they
should be more accurate. So, they create a hybrid construction, where the leaf nodes
are created bottom-up to reduce the overall memory overhead and the inner nodes
are conctructed top-down, allowing more memory consumption to achieve better and
more accurate predictions. Other learned indices have also been proposed to support
concurrency [150, 151, 152, 153], for bloom filters [154], and for persistent memory
[155]. [156, 157] and [158] provide comprehensive evaluations on updatable learned
indices and traditional indices including many important findings, based on tests on
several real-world datasets.



Algorithm 2.1 Forward Scan based Plane Sweep for Spatial Join
Input : collections of rectangles R and S

Output : set J of all intersecting rectangles (r, s) ∈ R× S

1: sort R and S by lower x-endpoint xl

2: r ← first rectangle in R

3: s← first rectangle in S

4: while R and S not depleted do
5: if r.xl < s.xl then
6: s′ ← s

7: while s′ ̸= null and r.xu ≥ s′.xl do
8: if r.y intersects s′.y then
9: output (r, s′); ▷ update result

10: end if
11: s′ ← next rectangle in S; ▷ scan forward

12: end while
13: r ← next rectangle in R

14: else
15: r′ ← r

16: while r′ ̸= null and s.xu ≥ r′.xl do
17: if r′.y intersects s.y then
18: output (r′, s); ▷ update result

19: end if
20: r′ ← next rectangle in R; ▷ scan forward

21: end while
22: s← next rectangle in S

23: end if
24: end while



CHAPTER 3

PARALLEL STRATEGIES FOR IN-MEMORY
PARTITIONING ON INTERVAL JOINS

3.1 Domain‐based Partitioning

3.2 Strategies for Parallel Partitioning

3.3 Plane Sweep for Interval Joins

3.4 Experiments

3.5 Conclusions

In this chapter, we discuss our study on the problem of interval joins. Our focus
is on implementing parallel strategies that can be used in both domain-based and
hash-based partitioning to improve the performance of the partitioning phase. We
do not go into detail about the join algorithm for each partition but briefly mention
a traditional join algorithm that we use.

Outline In Section 3.1, we explain domain-based partitioning. Strategies for parallel
partitioning are introduced in Section 3.2 and the plane sweep algorithm is presented
in Section 3.3. Section 3.4 presents our experimental results, and Section 3.5 provides
the conclusion.
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Figure 3.1: Intervals Example.
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Figure 3.2: Domain-based partitioning of the intervals in Figure 3.1; the case of 4
domain stripes t1 . . . t4.

3.1 Domain‐based Partitioning

Domain-based partitioning algorithm [159, 87, 85] for parallel interval joins (Al-
gorithm 3.1) involves two phases. The first phase (Lines 1–17) splits the domain
uniformly into k equally-sized and non-overlapping stripes; a partition Rj (resp. Sj)
is created for each domain stripe tj. Let tstart, tend denote the stripes that cover r.start,
r.end of an interval r ∈ R, respectively. Interval r is first assigned to partition Rstart

created for stripe tstart. Then, r is replicated across stripes tstart+1…tend. During the sec-
ond phase (Lines 18–20), the domain-based paradigm computes Rj ▷◁ Sj for every
domain stripe tj , independently. To avoid producing duplicate results, a join result
(r, s) is reported if at least one of the involved intervals is not a replica. We can easily
prove that if for both r and s the start endpoint is not in tj , then r and s should
also intersect in the previous stripe tj−1, therefore (r, s) will be reported by another
partition-join.

We assume that we are allocating 4 CPU threads for computing R ▷◁ S. To fully
take advantage of parallelism, we assign each partition-join to a separate thread. The
domain-based paradigm will first split the domain into the 4 disjoint stripes pictured



Algorithm 3.1 Domain-based Partitioning
Input: collections of intervals R and S, number of partitions k
Output : all intersecting interval pairs (r, s) ∈ R×S

1: split domain into k stripes
2: for all interval r ∈ R do ▷ partition R

3: tstart ← domain stripe covering r.start
4: tend ← domain stripe covering r.end
5: add r to partition Rstart

6: for all stripe tj inside (tstart, tend] do
7: replicate r to partition Rj

8: end for
9: end for
10: for all interval s ∈ S do ▷ partition S

11: tstart ← domain stripe covering s.start
12: tend ← domain stripe covering s.end
13: add s to partition Sstart

14: for all stripe tj inside (tstart, tend] do
15: replicate s to partition Sj

16: end for
17: end for
18: for all domain stripe tj do
19: compute Rj ▷◁ Sj ▷ FS and variants
20: end for

in Figure 3.2, and then assign and replicate (if needed) the intervals into 4 partitions
for each collection; R1 = {r1}, R2 = {r̂1, r2}, R3 = {r̂1, r̂2}, R4 = {r̂1} for R and
S1 = {s1}, S2 = {s2, s3}, S3 = {ŝ3}, S4 = {ŝ3, s4, s5} for S, where r̂j (resp. ŝj) denotes
the replica of an interval ri ∈ R (resp. si ∈ S) inside stripe tj. Last, the paradigm will
compute partition-joins R1 ▷◁ S1, R2 ▷◁ S2, R3 ▷◁ S3 and R4 ▷◁ S4. Note that R3 ▷◁ S3

will produce no results because all contents of R3 and S3 are replicas, while R4 ▷◁ S4

will only produce (r1, s4) but not (r1, s3) which will be found in R2 ▷◁ S2.
Also, as opposed to previous work that also applies domain-based partitioning

(e.g., [87, 85]), this technique avoids the production and elimination of duplicate join
results.



3.2 Strategies for Parallel Partitioning

We next elaborate on how the partitioning process can benefit from modern parallel
hardware. We discuss three strategies applicable on the domain-based partitioning;
in the next section, we carefully evaluate these strategies for each partitioning type.
As a common feature, all strategies operate in three phases. During the first phase, all
available CPU cores or threads are employed to calculate the cardinality of each |Rj|
and |Sj| partition. During the second phase, the threads are employed to allocate the
space required to store every partition in main memory and then physically partition
the input collections. Finally, again all available threads are used to sort and index (if
needed) the input partitions, depending on the interval join algorithm to be used.1

In the following, we detail the first two phases for each partitioning strategy.

One2One. The first strategy was used in [80] for hash-based partitioning but can
be straightforwardly applied for the domain-based as well. The idea is to exclusively
assign every Rj (resp. Sj) partition to a single thread.2 Under this, the thread executes
all phases of the partitioning process for Rj. As every partition of the collection is as-
signed to exactly one thread, the entire partitioning process is essentially divided into
smaller independent tasks which run in parallel without the need of synchroniza-
tion. Strategy 3.2 illustrates a high-level pseudo-code of One2One. After initiating c

parallel threads in Line 1, every thread executes the first and the second phase of the
partitioning independently in Lines 3–8. Consider thread j. During the first phase in
Lines 3–5, thread j is assigned k

c
partitions for the input collection R, where k is the

number of requested partitions and c is the number of available threads. Specifically,
the thread gets all partitions in the range from

(
(j − 1) · k

c
+ 1

)
to

(
j · k

c

)
Then, it

scans collection R to count how many intervals will be contained inside its assigned
partitions. Last, during the second phase in Lines 6–8, every thread allocates the
space needed to store their assigned partitions and then, scans for the second time
the input collection to fill these partitions.

Despite its simplicity, the One2One strategy has two important drawbacks. First,
it requires multiple scans over the input; to be precise, the collection is scanned 2 · c
times. Second, the strategy cannot cope with skewed data distributions; essentially,

1Recall that every partition may take part in multiple joining tasks. Hence, we choose to introduce
a separate sorting/indexing phase instead of having this step integrated inside the join algorithm.

2In general, the number of partitions per input may exceed the number of available threads in
which case, every thread is responsible for multiple partitions.



Algorithm 3.2 One2One
Input : collection of intervals R, number of partitions k, number of threads c
Output : partitions {R1, . . . , Rk}
Variables: counters {|R1|, . . . , |Rk|}

1: create c parallel threads
2: for all thread j do ▷ executed in parallel

3: assign the j-th set of k
c
partitions to the thread

4: read intervals from R

5: calculate counters {|R((j−1)·kc+1)|, . . . , |R(j· kc )|}

6: allocate memory space for assigned partitions
7: read intervals from R

8: fill partitions {R((j−1)· k
c
+1), . . . , R(j· kc )

}
9: end for
10: return {R1, . . . , Rk}

the cost of the entire partitioning process is dominated by the cost of processing the
largest partition. In what follows, we discuss two partitioning strategies that address
these issues.

Temps. The key idea for fast partitioning is to assign parts of the input collection
to the available threads instead of entire partitions. Under this, every thread reads
a chunk from the input containing |R|

c
intervals, and builds a temporary local parti-

tioning. The input chunks should be disjoint such that the parallel threads operate
completely independently. Every thread performs a first scan of its assigned intervals
to count how large its local partitions will be, then allocates the required space in
main memory and reads again the intervals to fill the partitions. Finally, after all
threads have finished, the local partitionings are unified into the final result as the
last step.

Strategy 3.3 illustrates a high-level pseudo-code of Temps. In Lines 2–7, every
thread scans (two times) its assigned chunk of the input collection to create a lo-
cal partitioning. Specifically, thread j gets the j-th chunk of |R|

c
input intervals and

produces local partitioning {Rj
1, . . . , R

j
k}; notice that local partitionings contain the

same number of partitions as the final result. To count the cardinality of its local
partitions, the thread maintains private local counters {|Rj

1|, . . . , |R
j
k|}. After all local



Algorithm 3.3 Temps
Input : collection of intervals R, number of partitions k, number of threads c
Output : partitions {R1, . . . , Rk}
Variables: global counters {|R1|, . . . , |Rk|}, local partitions {Rj

1, . . . , R
j
k} and local

counters {|Rj
1|, . . . , |R

j
k|} for every parallel thread j

1: create c parallel threads
2: for all thread j do ▷ executed in parallel

3: read the j-th chunk of |R|
c
intervals from R

4: calculate local counters {|Rj
1|, . . . , |R

j
k|}

5: allocate memory space for {Rj
1, . . . , R

j
k}

6: read the j-th chunk of |R|
c
intervals from R

7: fill local partitions {Rj
1, . . . , R

j
k}

8: end for
9: wait until all threads finished ▷ synchronization
10: for all partition Ri do ▷ executed in parallel

11: calculate global counter |Ri| =
∑c

j=1 |R
j
i |

12: allocate memory space
13: Ri ←

∪c
j=1R

j
i ▷ unify local partitions

14: end for
15: return {R1, . . . , Rk}

partitionings are built (synchronization barrier in Line 9), Temps unifies them by
copying local partitions to a contiguous space allocated in main memory for the final
partitions, in Lines 10–14. The domain-based partitioning assign every interval to
exactly one local partition; the same holds for the replicas in case of domain-based.
Under this, the cardinality for each final partition Ri is calculated as |Ri| =

∑c
j=1 |R

j
i |

and the partition is defined as R1
i

∪
. . .

∪
Rc

i , where c is the total number of parallel
threads and local partitionings. Last, to accelerate this unification step, the Temps
strategy assigns the computation of every partition Ri to the next available thread in
a round robin fashion.

Compared to One2One, the Temps strategy scans the entire input collection R

only twice as every thread now operates on a different chunk of R. In addition,
as R’s chunks are equi-sized, i.e., all contain at most |R|

c
intervals, the partitioning

load is better distributed to the available threads. But, Temps still exhibits important



Algorithm 3.4 Divs
Input : collection of intervals R, number of partitions k, number of threads c
Output : partitions {R1, . . . , Rk}
Variables: global counters {|R1|, . . . , |Rk|}, and local counters {Rj

1, . . . , R
j
k} and

local counters {|Rj
1|, . . . , |R

j
k|} for every parallel thread j

1: create c parallel threads
2: for all thread j do ▷ executed in parallel

3: read the j-th chunk of |R|
c
intervals from R

4: calculate local counters {|Rj
1|, . . . , |R

j
k|}

5: end for
6: wait until all threads finished ▷ synchronization
7: for all partition Ri do ▷ executed in parallel

8: calculate global counter |Ri| =
∑c

j=1 |R
j
i |

9: allocate memory space
10: divide partition into c logical parts
11: end for
12: wait until all threads finished ▷ synchronization
13: for all thread j do ▷ executed in parallel

14: read the j-th chunk of |R|
c
intervals from R

15: fill j-th part of each partition in {R1, . . . , Rk}
16: end for
17: return {R1, . . . , Rk}

shortcomings. First, for every partition Ri, the strategy allocates twice the required
space in main memory, i.e., to store both its corresponding local partitions and Ri

itself. Second, the strategy introduces an extra costly step, i.e., the unification of local
partitioning. Also, the cost of this last step is dominated by the largest partition which
is again computed by a single thread.

Divs. To address these shortcomings, we next discuss our last strategy. Strategy Divs
shares the same key idea to Temps, i.e., every thread j processes independently the j-
th chunk of |R|

c
input intervals. But, instead of building a temporary local partitioning,

the thread directly updates the final partitions. For this purpose, the strategy logically
divides every final partition Ri into c parts, i.e., one for each available thread. The
extent of each Rj

i part is determined by local counters |R
j
i |, which are computed similar



to strategy Temps. With this division, each thread independently fills a dedicated
part of Ri’s data structure in memory without the need of locking or any type of
synchronization.

Strategy 3.4 illustrates a high-level pseudo-code of Divs. Lines 2 and 3 are iden-
tical to Strategy 3.3, i.e., a first scan of the input collection determines local counters
{|Rj

1|, . . . , |R
j
k|} for each thread j. After local counters are computed (synchronization

barrier in Line 6), Divs allocates the necessary space in main memory to build ev-
ery Ri partition (Lines 8–9) and also, logically divides Ri into c parts using its local
counters (Line 10). Finally after this preparation step is finished for all partitions
(synchronization barrier in Line 12), every thread scans for the second time its as-
signed input intervals and fills its dedicated part inside the data structure of every
partition, in Lines 13–16.

Compared to Temps, the Divs strategy does not allocate extra space for every
partition; at the same time, the costly unification step of Temps is entirely avoided.
In addition, the largest partition which could become the bottleneck for both strategies
One2One and Temps is now filled by multiple threads in parallel achieving a better
load balancing.

3.3 Plane Sweep for Interval Joins

This section presents the plane sweep algorithm, which is used at each partition-
to-partition join. In [18], Brinkhoff et al. presented a different implementation of plane
sweep, which performs a forward scan directly on the input collections and hence, (i)
there is no need to keep track of active sets in a special data structure and (ii) data
scans are conducted sequentially. 3 Algorithm 3.5 illustrates the pseudo-code of this
method, denoted by FS. First, both inputs are sorted by the start endpoint of each
interval. Then, FS sweeps a line, which stops at the start endpoint of all intervals
of R, S in order. For each position of the sweep line, corresponding to the start of
an interval, say r ∈ R, the algorithm produces join results by combining r with all
intervals from the opposite collection, that start (i) after the sweep line and (ii) before
r.end, i.e., all s′ ∈ S with r.start ≤ s′.start ≤ r.end (internal while-loops on Lines 7–11
and 14–18). Excluding the cost of sorting R and S, FS conducts |R|+|S|+ |R▷◁S| point

3The algorithm originally targets intersection join of 2D rectangles, but it is straightforward to
apply for interval joins.



Algorithm 3.5 Forward Scan based Plane Sweep for Interval Join (FS)
Input : collections of intervals R and S

Output : all intersecting pairs (r, s) ∈ R× S

1: sort R and S by start endpoint
2: r ← first interval in R

3: s← first interval in S

4: while R and S not depleted do
5: if r.start < s.start then
6: s′ ← s

7: while s′ ̸= null and r.end ≥ s′.start do
8: output (r, s′) ▷ update result

9: s′ ← next interval in S ▷ scan forward
10: end while
11: r ← next interval in R

12: else
13: r′ ← r

14: while r′ ̸= null and s.end ≥ r′.start do
15: output (r′, s) ▷ update result

16: r′ ← next interval in R ▷ scan forward
17: end while
18: s← next interval in S

19: end if
20: end while

comparisons, in total. Specifically, each interval r ∈ R (the case for S is symmetric) is
compared to just one s′ ∈ S which does not intersect r in the loop at Lines 8–10.

3.4 Experiments

Last, we present the second part of our experimental evaluation, which focuses on
the parallel computation of interval joins.



Table 3.1: Characteristics of experimental datasets
BOOKS FLIGHTS GREEND INFECTIOUS TAXIS WEBKIT

Cardinality 2,312,602 445,827 110,115,441 415,912 172,668,003 2,347,346

Domain duration (secs) 31,507,200 2,750,280 283,356,410 6,946,360 31,768,287 461,829,284

Distinct endpoints 5,330 41,975 182,028,123 81,514 29,873,023 174,471

Shortest interval (secs) 1 1,260 1 20 1 1

Avg. interval duration (secs) 2,201,320 8,790 15 20 758 33,206,300

Longest interval (secs) 31,406,400 42,300 59,468,008 20 2,148,385 461,815,512

3.4.1 Setup

Our parallel-threaded analysis was conducted on a machine with 384 GBs of RAM
and a dual Intel(R) Xeon(R) CPU E5-2630 v4 clocked at 2.20GHz, with 20 threads,
running CentOS Linux 7.3.1611. All methods were implemented in C++, compiled
using gcc (v4.8.5) with flags -O3, -mavx and -march=native.

Datasets. We experimented with 6 real datasets, the majority of which was used in
recent literature on interval joins; Table 3.1 details the characteristics of the datasets.
BOOKS [159] records all transactions at Aarhus public libraries in 2013
(https://www.odaa.dk); valid times indicate the periods when a book is lent out.
FLIGHTS [83] records domestic flights in USA during January 2016
(https://www.bts.gov); valid times indicate the duration of a flight. GREEND [77, 160]
records power usage data from households in Austria and Italy from January 2010
to October 2014; valid times indicate the period of a measurement. INFECTIOUS
[77, 161] stores visiting information from the “INFECTIOUS: stay Away!” exhibition
at Science Gallery in Dublin, Ireland, from May to July 2009; valid times indicate when
a contact between visitors occurred. TAXIS records taxi trips (pick-up, drop-off times-
tamp) from New York City (https://www1.nyc.gov/site/tlc/index.page) in 2013; valid
times indicate the duration of each ride. WEBKIT [159, 83, 76] records the file his-
tory in the git repository of the Webkit project from 2001 to 2016 (https://webkit.org);
valid times indicate the periods when a file did not change.

3.4.2 Partitioning Strategies

Figure 3.3 reports the domain-based partitioning time for strategiesOne2One, Temps
and Divs while varying the number of partitions; for the tests, we set again |R| = |S|
and used up to 20 parallel threads. We observe that Divs is the most efficient and



most robust strategy for parallel partitioning; on the largest datasets GREEND and
TAXIS, Temps is competitive to Divs but still slower. However, One2One is clearly
the slowest strategy in all cases; its time is severely affected by the increase in the num-
ber of partitions exhibiting also a “staircase” pattern (more obvious in Figures 3.3(c)
and (e)). For domain-based partitioning we also need to replicate an interval to all
overlapping stripes; the replication cost naturally increases with the number of parti-
tions. Regarding the “staircase” pattern, notice that One2One’s time essentially goes
up every 20 partitions. Consider for example the increase from 20 to 40 partitions.
At first, every thread builds exactly one partition. When we increase the number of
partitions to 21, this extra partition will be assigned as a second task to one of the
available threads. The total time of this thread will increase and dominate the overall
partitioning time. Adding more partitions will not change this overall time because
there still threads assigned one partition unless the total number of partitions grows
higher than 40.

3.5 Conclusions

We explored the problem of parallel interval joins and proposed three partitioning
strategies, applicable to both hash-based and domain-based partitioning, which utilize
parallelism to improve join performance. These strategies are One2One, Temps, and
Divs, with Divs delivering the best results.
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Figure 3.3: Tuning domain-based partitioning: strategies, |R| = |S| and 20 threads.



CHAPTER 4

IN‐MEMORY AND PARALLEL EVALUATION OF
SPATIAL QUERIES

4.1 Parallel In‐Memory Evaluation of Spatial Joins

4.2 A Two‐layer Partitioning for Non‐point Spatial Data

4.3 Conclusions

Non-point spatial objects (e.g., polygons, linestrings, etc.) are ubiquitous and their
effective management is always timely. We study the classic problem of indexing
non-point objects, considering the current state of commodity hardware, having rel-
atively large memory and the ability of parallel multi-core processing. In view of
this, In Section 4.1 we study the in-memory and parallel evaluation of spatial joins,
by tuning a classic partitioning based algorithm. Our study shows that, compared
to a straightforward implementation of the algorithm, performance can be improved
significantly. We also show how to select appropriate partitioning parameters based
on data statistics, in order to tune the algorithm for the given join inputs. Our parallel
implementation scales gracefully with the number of threads reducing the cost of the
join to at most one second even for join inputs with tens of millions of rectangles.
We also propose (Section 4.2) a secondary partitioning technique for space-oriented
partitioning indices (e.g., grids), which improves their performance significantly, by
avoiding the generation and elimination of duplicate results. Our approach is novel
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and of a high impact, as (i) it is extremely easy to implement and (ii) it can seamlessly
be applied as part of any space-partitioning index, (iii) it can directly be used by
distributed spatial data management systems. We show how our approach can be
used to boost the performance of range queries and spatial intersection joins. We also
show how we can avoid performing the expensive refinement step of a range query
for the majority of objects and study the efficient processing of numerous queries in
batch and in parallel. Extensive experiments on real datasets confirm the superiority of
space-oriented partitioning over data-oriented partitioning and the advantage of our
approach against alternative duplicate elimination techniques. We also show that our
partitioning technique, paired with optimized partition-to-partition join algorithms,
typically reduces the cost of spatial joins by around 50%.

Outline The rest of the Chapter is organized as follows. Section 4.1.1 presents the
PBSM directions along which we tune the performance of the algorithm. Section 4.1.2
presents our parallel implementation of the algorithm. In Section 4.1.3, we provide a
detailed experimental evaluation. Section 4.2.1 introduces our secondary partitioning
scheme and its application to grid-based spatial indexing. Section 4.2.2 shows how
spatial range query evaluation can benefit from our indexing scheme. In Section 4.2.3,
we present a filtering condition that applies on the MBRs of the objects and can be
used to confirm the inclusion of an object to a range query result, without the need
of a refinement step. Section 4.2.4 discusses how numerous range queries that may
need to be handled can be processed efficiently and in parallel. In Section 4.2.5, we
explain how our secondary partitioning scheme can be applied to spatial joins and
its optimizations. An experimental evaluation is presented in Section 4.2.6. Finally,
in Section 4.3, we summarize our conclusions.

4.1 Parallel In‐Memory Evaluation of Spatial Joins

4.1.1 Tuning PBSM

As discussed in the introduction (Section 1.2), the most popular spatial join frame-
work follows the multi-assignment, single-join (MASJ) [103] paradigm of PBSM. The
reasons behind this can be summarized as follows:

• PBSM assumes no preprocessing or indexing of the data, so it can be applied on
dynamically generated spatial data.



• The partitions define independent join tasks that can easily be distributed and/or
parallelized.

• The number of join tasks is the same as the number of partitions(as opposed to
the number of join tasks of SAMJ approaches which can be much higher).

• Producing duplicate results can be easily avoided.

• Implementing this approach is fairly easy.

• Previous studies [13] have shown that the performance of PBSM can hardly be
beaten by more sophisticated approaches based on indexing or adaptive partition-
ing.

In the following, we explore the directions along which we can tune PBSM to improve
its performance. These include determining the number and type of partitions (tiles
or stripes), duplicate elimination, and choosing the axis along which we perform
plane sweep in each partition. We assume that PBSM uses the plane sweep algorithm
of [18] for each partition-partition join.

4.1.1.1 One‐dimensional Partitioning

The default partitioning approach for PBSM is a 2D grid, as shown in Figure 1.2a.
Still, the same algorithm can be applied if we partition the data space in 1D stripes, as
shown in Figure 1.2b. The stripes can be horizontal or vertical. Such a partitioning
was considered by an external memory plane sweep join algorithm [81]; however, the
objective of the partitioning there was to define the stripes in a way such that the
“horizon” of the sweep line (which runs along the axis of the stripes) fits in memory.
Since in this study, we deal with in-memory joins, we do not consider this factor, but
we study how the number of partitions affects the cost of the join.

4.1.1.2 Duplicate Elimination

Dittrich and Seeger [21] presented a simple but effective approach for eliminating
duplicate results in PBSM. A rectangle pair is reported by a partition-partition join
only if the top-left corner of their intersection area is inside the spatial extent of the
partition. The pair of intersecting rectangles (r1, s1) in Figure 1.2a can be found in
both tiles (0,0) and (0,1). However, this result will only be reported in tile (0,0), which
contains the top-left corner of the intersection. In other words, the join result will
be computed in tile (0,1) but not reported. Hence, for each rectangle pair found to



intersect, a duplicate test is performed. Let [r.xl, r.xu] and [r.yl, r.yu] be the projections
of rectangle r on the x and y axis, respectively. Let [T.xl, T.xu] and [T.yl, T.yu] be the
corresponding projections of a tile. The duplicate test for pair (r, s), found to intersect
in tile T , is the condition:

max{r.xl, s.xl} ≥ T.xl ∧max{r.yl, s.yl} ≥ T.yl (4.1)

Application to 1D partitioning. For the 1D partitioning, the duplicate test needs
to apply a single comparison (as opposed to the two comparisons of Eq. 4.1). For
example, if the stripes are vertical (as in Figure 1.2b), a join result is reported only if
max{r.xl, s.xl} ≥ T.xl.

4.1.1.3 Choosing the Sweeping Axis

When applying plane sweep for a tile (or stripe) T , we have to decide along which
axis we will sort the rectangles and then sweep them. We devise a model which, given
the sets of rectangles RT , ST inside a tile T , determines the sweeping axis to be used.
The key idea is to estimate, for each axis, how many candidate pairs of rectangles
from RT × ST intersect along this axis. For this purpose, to estimate the number of
intersecting projections per axis, we compute histogram statistics. In specific, we sub-
divide the x and y projections of the tile T into a predefined number of partitions
k. Then, we count how many rectangles from R and how many from S, x-intersect
each x-division of the tile; the procedure for y partitions is symmetric. In this manner,
we construct four histograms Hx

R, H
y
R, Hx

S , H
y
S of k buckets each. The number IxT of

rectangles in RT ×ST that x-intersect can then be approximated by accumulating the
product of the corresponding histogram buckets, i.e.,

IxT =
k∑

i=0

{Hx
R[i] ·Hx

S [i]} (4.2)

The smallest of IxT and IyT determines the chosen sweeping axis (i.e., x or y). For large
tiles (compared to the size of the rectangles), we set k = 1000, while for small tiles
k is the number of times the tile’s extent is larger than the average rectangle extent.
In practice, using all rectangles of T in the histogram construction is too expensive.
So, we use a sample of rectangles from RT and ST for this purpose. Specifically, for
every ϕ rectangles that are assigned to tile T , we use one for histogram construction.
We set ϕ = 100 by default because it can produce good enough estimates at a low
overhead.



Application to 1D partitioning. Our model can be straightforwardly applied in case
of a 1D partitioning; histogram statistics are now computed for the contents of the
vertical or horizontal stripes and the entire domain on the other dimension.

4.1.2 Parallel Processing

We parallelize evaluation by splitting its partitioning and joining phases into parallel
and independent tasks, while trying to minimize the synchronization requirements
between the threads. While the parallel algorithm that we outline here is designed for
a single, multi-core machine, it can also be applied (with minor changes) to a cluster
of machines. The steps for parallelizing the spatial join to m threads are as follows:

Partitioning phase

(1) Determine a division of each input R and S into m equi-sized parts arbitrarily.

(2) Initiate m threads. Thread i reads the i-th part of input R and counts how many
rectangles should be assigned to each of the space partitions (tiles or stripes).
Thread i repeats the same process for the i-th part of input S. Let |Ri

T |, |Si
T | be

the numbers of rectangles counted by thread i for tile T and R, S, respectively.

(3) Compute |RT | =
∑m

i |Ri
T | and |ST | =

∑m
i |Si

T | for each tile T . Allocate two memory
segments for |RT | and |ST | rectangles of each partition T .

(4) Initiate m threads. Thread i reads the i-th parts of inputs R and S and partitions
them. The memory allocated for each of |RT | and |ST | is logically divided into
m segments based on the |Ri

T |’s and |Si
T |’s. Hence, thread 1 will write to the first

|R1
T | positions of |RT |, thread 2 to the next |R2

T | positions, etc. After all threads
complete partitioning, we will have the entire set of rectangles that fall in each
tile continuously in memory.

Joining phase

(5) Construct two sorting tasks for each tile T (one for RT and one for ST ). Assign
the sorting tasks to the m threads.

(6) Construct a join task for each tile T (one for RT and one for ST ). Assign the join
tasks to the m threads.



Table 4.1: Datasets used in the experiments

source dataset alias cardinality avg. x‐extent avg. y‐extent

Tiger 2015

AREAWATER T2 2.3M 0.000007230 0.000022958

EDGES T4 70M 0.000006103 0.00001982

LINEARWATER T5 5.8M 0.000022243 0.000073195

ROADS T8 20M 0.000012538 0.000040672

OSM

Buildings O3 115M 0.00000056 0.000000782

Lakes O5 8.4M 0.000021017 0.000028236

Parks O6 10M 0.000016544 0.000022294

Roads O9 72M 0.000010549 0.000016281

Step 2 is applied in order to make proper memory allocation and prevent expensive
dynamic allocations. It also facilitates the output of parallel partitioning for each tile
T to be continuous in memory during Step 4. When the model of Section 4.1.1.3 is
used, the histograms are computed while loading input data (i.e., in either of Steps 2
and 4).

4.1.3 Experimental Analysis

4.1.3.1 Setup

We experimented with Tiger 2015 and OpenStreetMap (OSM) datasets from [17].1 For
each dataset, we computed the MBRs of the objects and came up with a corresponding
collection of rectangles. The datasets are normalized so that the coordinates in each
dimension take values in [0, 1]. Table 4.1 details the datasets we used. The first three
datasets are from the collection Tiger 2015 and the last three from the collection
OpenStreetMap (OSM). Next to each dataset name we put a short alias indicating
its order in the Tiger or OSM collection (i.e., O3 means the 3rd dataset from OSM).
Dataset cardinality ranges from 2.3M to 115M objects and we tested joins having
inputs from the same collection, with similar or various scales. The last two columns
of the tables are the relative (over the entire space) average length of the rectangle
projections at each axis.

We implemented the spatial join algorithm (all different versions) in C++ and
compiled it using gcc (v4.8.5). For multi-threading, we used OpenMP. All experiments

1http://spatialhadoop.cs.umn.edu/datasets.html



Table 4.2: Sweeping axis effect; queries ordered by runtime

query
sweeping axis adaptive model
x y Ix Iy

T2 ▷◁ T5 8.94s 16.96s 8,376 19,232

T2 ▷◁ T8 24.52s 40.72s 8,895 18,660

O5 ▷◁ O6 24.92s 66.06s 2,692 12,279

O6 ▷◁ O9 216.88s 444.19s 3,989 11,510

T4 ▷◁ T8 674.50s 1,360.92s 8,135 19,406

O9 ▷◁ O3 926.14s 1,681.30s 4,535 11,529

were run on a machine with 384 GBs of RAM and a dual 10-core Intel(R) Xeon(R)
CPU E5-2630 v4 clocked at 2.20GHz running CentOS Linux 7.3.1611; with hyper-
threading, we were able to run up to 40 threads. The reported runtimes include the
costs of partitioning both datasets and then joining them.

4.1.3.2 Selecting the Sweeping Axis

We first test the effect that the sweeping axis selection (either x or y) has on the
performance of the algorithm. For this purpose, we chose not to partition the data,
but ran the single-threaded plane-sweep join from [18] in the entire dataspace (i.e.,
modeling the case of a single tile). Table 4.2 reports the execution times per query. We
observe that sweeping along the wrong axis may even double the cost of the join. The
last column of the table reports the result of running our model (Eq. 4.2). Our model
was able to accurately determine the proper sweeping axis in all cases. Note that the
cost of this decision-making process is negligible compared to the partitioning and
joining cost; even for the largest queries, our model needs less than 10 milliseconds.

4.1.3.3 Evaluation of Partitioning

Next, we investigate the impact of partitioning to the performance of the algorithm.
We tune 1D and 2D-based PBSM and then compare the two partitioning approaches
to each other.

Tuning 1D Partitioning. In the next experiment, we evaluate the performance of the
algorithm when 1D partitioning is used. Figure 4.1 reports the cost of two spatial
join queries while varying the number K of (uniform) 1D partitions. We tested all
combinations of partitioning and sweeping axes. For example, xy denotes partitioning
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Figure 7: Tuning 1D partitioning: time breakdown

tiles). Again, we used the GDT approach for duplicate avoidance.
Figure 8 plots the performance of the three join variants. The obser-
vations regarding the choice of the sweeping axis and the number
of partitions are similar to the cases of 1D partitioning. Speci�cally,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500 and there are no
signi�cant di�erences between them after this point.

Figure 9 shows the cost breakdown for the partitioning and
joining phases of the 2D spatial join, when our model is used for
picking the sweeping axis x . As in the case of 1D joins, we observe
that the cost of partitioning increases with K and becomes too
high when the tiles become too many and very small (i.e., when
K > 2,000). On the other hand, the join cost drops, but stabilizes
afterK > 2,000. After this point, the numberK⇥K of tiles (that have
to be managed) becomes extremely high and replication becomes
excessive. The joining phase does not bene�t; due to replication,
the join inputs at each tile do not reduce in size and the same join
results are computed in neighboring tiles.

The best grid con�guration is around K = 2,000, which is con-
sistent with the best option in 1D partitioning. Hence, the rule of
the thumb is to select K (in both 1D and 2D partitioning) such
that the extents of the resulting partitions are about one order of
magnitude larger than the extents of the rectangles (in one or both
dimensions, respectively). In the rest of the experiments, we use this
rule to select K as the default number of divisions in the splitting

dimension(s). Also, we always use our adaptive model to select the
sweeping axis.

4.5 Duplicate Avoidance
We now test the

4.6 Parallel Evaluation
++ compare join-only cost, assuming that data are already parti-
tioned as in a data management system (e.g. SpatialHadoop) which
uses the grid as an index for queries. See if mj could beat ditt in
this case.

5 CONCLUSIONS
In this paper, we have investigated directions towards tuning a
classic and popular partitioning-based spatial join algorithm, which
is typically used for in-memory and parallel/distributed join evalu-
ation. [nikos: to be completed]

Directions for future work include consideration of the re�ne-
ment step of the join, which can be signi�cantly more expensive
than the �lter step. In addition, we plan to adapt our techniques
and investigate their performance in a distributed environment and
for the case of NUMA architectures.
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Figure 7: Tuning 1D partitioning: time breakdown

tiles). Again, we used the GDT approach for duplicate avoidance.
Figure 8 plots the performance of the three join variants. The obser-
vations regarding the choice of the sweeping axis and the number
of partitions are similar to the cases of 1D partitioning. Speci�cally,
when the number of partitions is small K  20, the choice of the
sweeping axis makes a di�erence and choosing x is better. In these
con�gurations, our model can be even better than always choosing
x . The three options converge at about K = 500 and there are no
signi�cant di�erences between them after this point.

Figure 9 shows the cost breakdown for the partitioning and
joining phases of the 2D spatial join, when our model is used for
picking the sweeping axis x . As in the case of 1D joins, we observe
that the cost of partitioning increases with K and becomes too
high when the tiles become too many and very small (i.e., when
K > 2,000). On the other hand, the join cost drops, but stabilizes
afterK > 2,000. After this point, the numberK⇥K of tiles (that have
to be managed) becomes extremely high and replication becomes
excessive. The joining phase does not bene�t; due to replication,
the join inputs at each tile do not reduce in size and the same join
results are computed in neighboring tiles.

The best grid con�guration is around K = 2,000, which is con-
sistent with the best option in 1D partitioning. Hence, the rule of
the thumb is to select K (in both 1D and 2D partitioning) such
that the extents of the resulting partitions are about one order of
magnitude larger than the extents of the rectangles (in one or both
dimensions, respectively). In the rest of the experiments, we use this
rule to select K as the default number of divisions in the splitting

dimension(s). Also, we always use our adaptive model to select the
sweeping axis.

4.5 Duplicate Avoidance
We now test the

4.6 Parallel Evaluation
++ compare join-only cost, assuming that data are already parti-
tioned as in a data management system (e.g. SpatialHadoop) which
uses the grid as an index for queries. See if mj could beat ditt in
this case.

5 CONCLUSIONS
In this paper, we have investigated directions towards tuning a
classic and popular partitioning-based spatial join algorithm, which
is typically used for in-memory and parallel/distributed join evalu-
ation. [nikos: to be completed]

Directions for future work include consideration of the re�ne-
ment step of the join, which can be signi�cantly more expensive
than the �lter step. In addition, we plan to adapt our techniques
and investigate their performance in a distributed environment and
for the case of NUMA architectures.
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along the x axis (to vertical stripes) and sweeping along the y axis. Note that if the
sweeping axis is the same as the partitioning axis (i.e., cases xx and yy), the join
cost does not drop when we increase the number of partitions K. This is expected
because, regardless the number of partitions, case xx or yy is equivalent to having no
partitions at all and sweeping along the x or y axis in the entire space. When K is too
large, the costs of xx and yy increase because the partitions become very narrow and
replication becomes excessive. On the other hand, the performance of cases xy and
yx improves with K and, after some point, i.e., K = 2,000, they converge to the same
(very low) cost. The costs of both xy and yx start to increase again when K > 10,000,
at which point we start having significant replication (observe the average x- and
y-extent statistics in Table 4.1). Figure 4.2 breaks down the total cost to partitioning
and joining for the xy case. The joining cost includes the cost of sorting the partitions.
As expected, the cost of partitioning increases with K and the joining cost drops. After
K = 10,000 partitioning becomes very expensive without offering improvement in the
join. The lowest runtime is achieved when the x-extent of the partitions (i.e., the
narrow side of the stripes) is about 10 times larger than the average x-extent of the
rectangles. In this case, the chances that a rectangle is replicated to neighboring stripes
are small and at the same time, the stripes are narrow enough for plane sweep to be
effective (i.e., the chance that a candidate pair that x-intersects also y-intersects is not
low). For the rest of our analysis we use xy as the default setup for 1D partitioning.

Tuning 2D Partitioning. We now repeat the same set of experiments from the pre-
vious section, but this time using a 2D partitioning. We vary the granularity K ×K

of the grid and measure for each value of K the runtime cost of the algorithm, when
the sweeping axis is always set to x, always set to y, or when our adaptive model
is used to select the sweeping axis at each tile (which could be different at differ-
ent tiles). Figure 4.3 depicts the performance of the three join variants. Similarly to
1D partitioning, when the number of partitions is small K ≤ 20, the choice of the
sweeping axis makes a difference and choosing x is better. In these configurations,
our model can be even better than always choosing x. The three options converge at
about K = 500. Figure 4.4 shows the cost breakdown for the partitioning and joining
phases of the 2D spatial join, when our model is used for picking the sweeping axis x.
The observations are similar the corresponding ones for 1D partitioning. We observe
that the cost of partitioning increases with K and becomes too high when the tiles
become too many and very small (i.e., when K > 2,000). On the other hand, the



x

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

y

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]
# partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

adaptive model

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0
 5

 10
 15
 20
 25
 30
 35

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 5

 10

 15

 20

 25

 30

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

y
x
a

T 2 ./ T 5 T 2 ./ T 8 O5 ./ O6 O6 ./ O9

Figure 8: Tuning 2D partitioning.

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 1

 2

 3

 4

 5

 6

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

(a) T 2 ./ T 5 (b) T 2 ./ T 8 (c) O5 ./ O6 (d) O6 ./ O9

Figure 9: Tuning 2D partitioning: time breakdown

[5] Thomas Brinkho�, Hans-Peter Kriegel, and Bernhard Seeger. 1993. E�cient
Processing of Spatial Joins Using R-Trees. In SIGMOD Conference. 237–246.

[6] Huiping Cao, Nikos Mamoulis, and DavidW. Cheung. 2007. Discovery of Periodic
Patterns in Spatiotemporal Sequences. IEEE Trans. Knowl. Data Eng. 19, 4 (2007),
453–467.

[7] Jens-Peter Dittrich and Bernhard Seeger. 2000. Data Redundancy and Duplicate
Detection in Spatial Join Processing. In ICDE. 535–546.

[8] Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce
framework for spatial data. In ICDE. 1352–1363.

[9] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD-96), Portland, Oregon, USA. 226–231.

[10] Ralf Hartmut Güting. 1994. An Introduction to Spatial Database Systems. VLDB
Journal 3, 4 (1994), 357–399.

[11] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In SIGMOD Conference. 47–57.

[12] EdwinH. Jacox andHanan Samet. 2007. Spatial join techniques. ACMTransactions
on Database Systems 32, 1 (2007), 7.

[13] Andreas Kipf, Harald Lang, Varun Pandey, Raul Alexandru Persa, Peter A. Boncz,
Thomas Neumann, and Alfons Kemper. 2018. Adaptive Geospatial Joins for
Modern Hardware. CoRR abs/1802.09488 (2018). http://arxiv.org/abs/1802.09488

[14] Nick Koudas and Kenneth C. Sevcik. 1997. Size Separation Spatial Join. In SIGMOD
Conference. 324–335.

[15] Scott T. Leutenegger, J. M. Edgington, and Mario A. López. 1997. STR: A Simple
and E�cient Algorithm for R-Tree Packing. In ICDE. 497–506.

[16] Ming-Ling Lo and Chinya V. Ravishankar. 1996. Spatial Hash-Joins. In SIGMOD
Conference. 247–258.

[17] Paul A. Longley, Mike Goodchild, David J. Maguire, and David W. Rhind. 2010.
Geographic Information Systems and Science (3rd ed.). Wiley Publishing.

[18] Sadegh Nobari, Qiang Qu, and Christian S. Jensen. 2017. In-Memory Spatial Join:
The Data Matters!. In EDBT. 462–465.

[19] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras, Stéphane
Bressan, and Anastasia Ailamaki. 2013. TOUCH: in-memory spatial join by
hierarchical data-oriented partitioning. In SIGMOD Conference. 701–712.

[20] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper. 2018. How
Good Are Modern Spatial Analytics Systems? PVLDB 11, 11 (2018), 1661–1673.

[21] Jignesh M. Patel and David J. DeWitt. 1996. Partition Based Spatial-Merge Join.
In SIGMOD Conference. 259–270.

[22] Mirjana Pavlovic, Thomas Heinis, Farhan Tauheed, Panagiotis Karras, and Anas-
tasia Ailamaki. 2016. TRANSFORMERS: Robust spatial joins on non-uniform
data distributions. In ICDE. 673–684.

[23] Mirjana Pavlovic, Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2013.
GIPSY: joining spatial datasets with contrasting density. In SSDBM.

[24] Franco P. Preparata and Michael Ian Shamos. 1985. Computational Geometry -
An Introduction. Springer.

[25] Suprio Ray, Bogdan Simion, Angela Demke Brown, and Ryan Johnson. 2014.
Skew-resistant parallel in-memory spatial join. In SSDBM. 6:1–6:12.

[26] Ibrahim Sabek and Mohamed F. Mokbel. 2017. On Spatial Joins in MapReduce.
In SIGSPATIAL/GIS.

[27] Farhan Tauheed, Thomas Heinis, and Anastasia Ailamaki. 2015. Con�guring
Spatial Grids for E�cient Main Memory Joins. In BICOD.

[28] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Zhongpu Chen, Liang Zhou, and Minyi Guo.
2016. Simba: spatial in-memory big data analysis. In SIGSPATIAL/GIS. 86:1–86:4.

[29] Simin You, Jianting Zhang, and Le Gruenwald. 2015. Large-scale spatial join
query processing in Cloud. In CloudDB, ICDE Workshops. 34–41.

[30] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. 2015. GeoSpark: a cluster computing
framework for processing large-scale spatial data. In SIGSPATIAL/GIS. 70:1–70:4.

[31] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu. 2009.
SJMR: Parallelizing spatial join with MapReduce on clusters. In CLUSTER. 1–8.

[32] Xiaofang Zhou, David J. Abel, and David Tru�et. 1997. Data Partitioning for
Parallel Spatial Join Processing. In SSD. 178–196.

 0
 2
 4
 6
 8

 10
 12
 14
 16

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x

ec
u

ti
o

n
 t

im
e 

[s
ec

s]

# partitions K per dimension

 0

 50

 100

 150

 200

 250

 300

5 10 50 10
0

50
0

10
00

50
00

10
00

0

E
x
ec

u
ti

o
n
 t

im
e 

[s
ec

s]

# partitions K per dimension

(a) T2 ▷◁ T5 (b) O6 ▷◁ O9

Figure 4.3: Tuning 2D partitioning: total execution time

partitioning joining

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

T
im

e 
[s

ec
s]

# partitions K per dimension

 0

 5

 10

 15

 20

 25

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00

0

T
im

e 
[s

ec
s]

# partitions K per dimension

(a) T2 ▷◁ T5 (b) O6 ▷◁ O9

Figure 4.4: Tuning 2D partitioning: time breakdown



Table 4.3: 1D vs. 2D partitioning: speedup

query
1D 2D

K speedup K ×K speedup

T2 ▷◁ T5 3000 9.6x 1000× 1000 8.16x

T2 ▷◁ T8 7000 10.67x 2000× 2000 8.98x

O5 ▷◁ O6 3000 8.62x 1000× 1000 6.82x

O6 ▷◁ O9 7000 16.56x 2000× 2000 12.58x

join cost drops, but stabilizes after K > 2,000. After this point, the number K ×K of
tiles (that have to be managed) becomes significantly high and replication becomes
excessive. The joining phase does not benefit; due to replication, the join inputs at
each tile do not reduce in size and the same join results are computed in neighboring
tiles. In addition, our tests show that the 2D partitioning version of the algorithm
should always use our adaptive model to select the sweeping axis.

1D vs. 2D Partitioning. There are two main findings from the PBSM tuning exper-
iments. First, the rule of the thumb is to select K (in both 1D and 2D partitioning)
such that the extents of the resulting partitions are about one order of magnitude
larger than the extents of the rectangles (in one or both dimensions, respectively).
Second, 1D partitioning achieves better performance compared to 2D partitioning,
due to less replication and the fact that all tiles in a row or a column can be swept
by a single line (along the row or column) with the same effect as processing all tiles
independently with sweeping along the same direction. Table 4.3 summarizes, for
the four join queries, the best speedups achieved by 1D and 2D partitioning, com-
pared to the best corresponding performance of the plane sweep algorithm without
partitioning. 1D partitioning is up to 32% faster compared to 2D partitioning.

4.1.3.4 Parallel Evaluation

Last, we test the parallel version of the algorithm using 1D partitioning. Table 4.4
summarizes, for the four join queries, the runtime and the speedup achieved by our
parallel evaluation of the spatial join. The performance scales gracefully with the
number of threads, until it stabilizes over 20 threads, which equals the number of
physical cores in our machine. As a general conclusion, our parallel design takes full
advantage of the system resources to greatly reduce the join cost.



Table 4.4: Parallel evaluation: runtime (1D partitioning)

# threads
queries

O5 ▷◁ O6 O6 ▷◁ O9 T4 ▷◁ T8 O9 ▷◁ O3

1 2.98s 14.4s 20.1s 43.0s

5 0.75s 3.32s 4.34s 10.6s

10 0.46s 1.91s 2.47s 6.11s

15 0.38s 1.45s 1.85s 4.54s

20 0.32s 1.21s 1.64s 3.54s

25 0.29s 1.07s 1.42s 3.09s

30 0.28s 0.99s 1.36s 2.89s

35 0.27s 0.96s 1.27s 2.72s

40 0.27s 0.91s 1.21s 2.72s

4.2 A Two‐layer Partitioning for Non‐point Spatial Data

4.2.1 Two‐layer Spatial Partitioning

In this section, we present our secondary partitioning approach for (in-memory)
SOP spatial indices. We consider non-point spatial objects, indexed using their MBR
approximations. Even though our approach can be used in any SOP index, we will
present it in the context of a grid index, Consider a regular N × M regular grid,
which primarily divides the space into N ·M disjoint spatial partitions, called tiles.
An object o is assigned to a tile T iff MBR(o) and T intersect (i.e., they have at least
one common point); in this case, o is assigned to tile T . Since MBR(o) can intersect
with multiple tiles, o can be assigned to more than one tiles. For example, Figure 2.1
shows a grid and a spatial object o1, (colored darkgrey), whose MBR intersects tiles Ta

and Tb; o1 is assigned to both tiles. For each tile T , we keep a list of (MBR, object-id)
pairs that are assigned to T . This means that while the MBRs and ids of the objects
can be replicated to multiple tiles, the actual geometry of an object is stored only once
in a separate data structure (e.g., an array or a hash-map) in order to be retrieved
fast, given the object’s id.

Since the spatial distribution of objects may not be uniform, there could be empty
tiles. If the percentage of empty tiles is very large, to save memory, we can use a hash-
table to map each non-empty tile to the set of rectangles assigned to it. The above
storage scheme is quite effective for main-memory data because it supports queries



and updates quite fast, while it is straightforward to parallelize popular spatial queries
and operations.

Secondary Partitioning. We propose that the set of MBRs at each tile is further
divided into four classes A, B, C , and D (which are physically stored separately in
memory). Recall that each MBR r can be represented by an interval of values at each
dimension. Let r.x = [r.xl, r.xu] be the projection of rectangle r on the x axis and
r.y = [r.yl, r.yu] r’s y-projection. Now, consider a rectangle r which is assigned to tile
T .

• r belongs to class A, if for every dimension d ∈ {x, y}, the begin value r.dl of r
falls into projection T.d, i.e., if T.dl ≤ r.dl.

• r belongs to class B if r.x begins inside T.x and r.y begins before T.y, i.e., if
T.xl ≤ r.xu and T.yl > r.yl.

• r belongs to class C if r.x begins before T.x and r.y begins inside T.y, i.e., if
T.xl > r.xl and T.yl ≤ r.yl.

• r belongs to class D if both its x- and y-projections begin before T , i.e., if
T.xl > r.xl and T.yl > r.yl.

Figure 4.5 illustrates examples of rectangles in a tile T that belong to the four
different classes.2 During data partitioning, for each tile T a rectangle r is assigned to,
we identify its class and place it to the corresponding division. Note that a rectangle
can belong to class A of just one tile, while it can belong to other classes (in other
tiles) an arbitrary number of times. We denote the secondary partitions of tile T

which store the MBRs of classes A, B, C , and D, by TA, TB , TC , and TD, respectively.

4.2.2 Range Query Evaluation

In this section, we show how the secondary partitions at each tile T can be used
to evaluate spatial range queries efficiently and at the same avoid generating and
identifying duplicate query results. We first consider rectangular range queries W

(window queries). The cases of other query shapes will be discussed later on. For
now, we focus on the filtering step of the query, i.e., the objective is to just find the

2We conventionally assume that the x dimension is from left to right and the y dimension is from
top to bottom.
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a) Define an order (direction) for each axis, for example x: left-to-right, y: top-to-bottom
b) Given a cell (tile) c, the rectangles which are assigned to c are divided to 4 classes:

• A: their x.start and y.start points are contained in the x-projection of c
• B: their x.start pt is contained in the x-projection of c, but their y.start is before c
• C: their y.start pt is contained in the y-projection of c, but their x.start is before c
• D: their x.start and y.start points are both before c

x

y

rectangles of type A rectangles of type B rectangles of type C rectangle of type D

T T

Figure 4.5: The four classes of rectangles assigned to a tile T .

object MBRs which intersect W . The refinement step will be discussed in Section
4.2.3.

First, the tiles in a N×M grid, which intersect W can be easily found by algebraic
operations. Specifically, assuming that tile Ti,j is at the i-th row and at the j-th
column of the grid, the tiles which intersect W are all tiles Ti,j , for which ⌊W.xl/N⌋ ≤
i ≤ ⌊W.xu/N⌋ and ⌊W.yl/M⌋ ≤ j ≤ ⌊W.yu/M⌋. We now explain in detail, for each
tile T that intersects W , which classes of rectangles should be accessed and which
computations are necessary for determining whether each rectangle r intersects W .
Our goal is not only to avoid accessing irrelevant secondary partitions, but also to
minimize the computational cost for finding the query results in the relevant partitions
of T .

4.2.2.1 Selecting relevant classes

For a tile T , let prev(T, d) denote the tile which is right before T in dimension d and
has exactly the same projection as T in the other dimension. For example, in Figure
4.6, prev(T, x) (resp. prev(T, y)) is the tile right before T in dimension x (resp. y).
Given a window query W , the following lemmas determine the classes of rectangles
in T which should be disregarded, because they can only produce duplicate results.

Lemma 4.1. If the query range W intersects tile T and W starts before T in dimension
x, then secondary partitions TC and TD should be disregarded.

Proof. Consider a rectangle r in class C or class D of tile T , i.e., r ∈ TC or r ∈ TD.
Rectangle r should also be assigned to the previous tile prev(T, x) to T in dimension
x, because it belongs to class C or D of T . If r intersects W in T , then r should
also intersect W in prev(T, x), because W also starts before T in dimension x. Hence,



examining and reporting r in tile T would produce a duplicate, since the same result
can also be identified in tile prev(T, x). □

Lemma 4.2. If W intersects tile T and W starts before T in dimension y, then secondary
partitions TB and TD should be disregarded.

Lemma 4.2 can be proved by replacing x by y and C by B in the proof of Lemma
4.1. The two lemmas are combined to exclude all classes B, C , and D if W starts
before T in both dimensions. To illustrate the lemmas, consider tile T in Figure 4.6.

Consider the MBRs of objects o1 and o2, which belong to secondary partitions
TB and TC , respectively. MBR(o1) should be ignored when processing T because
it belongs to class B and W starts before T in dimension y (Lemma 4.2). Indeed,
MBR(o1) also intersects W also in tile prev(T, y) which is right above W . On the
other hand, W does not start before T in dimension x, i.e., Lemma 4.1 does not
apply for tile T . This means that MBR(o2) ∈ TC will be found to intersect W . Figure
4.6 shows, in the top-left corner of each tile T intersected by W , the object classes in
T that should be examined (the remaining classes can be disregarded). Observe that
we have to consider all objects in just one tile (the one containing point (W.xl,W.yl)).
For the majority of tiles, we only have to examine secondary partition TA.

4.2.2.2 Minimizing the comparisons

We now turn our attention to minimizing the comparisons needed for each secondary
partition that has to be checked (i.e., those not eliminated by Lemmas 4.1 and 4.2).
Recall that for a rectangle r in a tile T to intersect the query window W , r should
intersect W in all dimensions. To verify this, we need at most four comparisons (i.e.,
if r.xu < W.xl or r.xl > W.xu or r.yu < W.yl or r.yl > W.yu, then r and W do not
intersect).

A direct observation that saves comparisons is that, if a tile T is covered by the
window W in a dimension d, then we do not have to perform intersection tests in
dimension d for all rectangles in the relevant secondary partitions in T . In the example
of Figure 4.6, we need to examine partitions TA and TC of tile T (Lemma 4.2). For
each rectangle r in these partitions, we only have to verify if projections r.x and W.x

intersect, because r.y and W.y definitely intersect (since T.y is covered by W.y).
For the dimension(s) where T is not covered by W , the following lemmas can be

used to further reduce the necessary comparisons.
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r.xl ≤ W.xu

r.xl ≤ W.xu

r.xl ≤ W.xu

r.yl ≤ W.yur.yl ≤ W.yur.yl ≤ W.yur.yl ≤ W.yu

r.xu ≥ W.xl

r.xu ≥ W.xl

r.xu ≥ W.xl

r.yu ≥ W.yl
r.yu ≥ W.yl r.yu ≥ W.yl

no comparisons no comparisons

r.yu ≥ W.yl

Tprev(T, x)

prev(T, y)

Figure 4.6: Examples of object classes and comparisons

Lemma 4.3. If W ends in tile T and starts before T in dimension d, then for a rectangle
r ∈ T , r intersects W in dimension d iff r.dl ≤ W.du.

Symmetrically, we can show:

Lemma 4.4. If W starts in tile T and ends after T in dimension d, then for a rectangle
r ∈ T , r intersects W in dimension d iff r.du ≥ W.dl.

For example, in tile T of Figure 4.6, we only have to test intersection in dimension
x, as already explained. The intersection test can be reduced to a simple comparison,
i.e., r intersects W iff r.xu ≥ W.xl, due to Lemma 4.4.

To demonstrate the impact of Lemmas 4.3 and 4.4, in each tile of the figure,
we show the necessary comparisons. For the two tiles in the center, no comparisons
are required because all MBRs (in class A) are guaranteed to intersect W . For the
remaining two tiles, which intersect the border of W , we only have to perform at
most one comparison per dimension, because W either starts or ends at these tiles
(and some of these tiles are totally covered by W in one dimension). Contrast this to
the four comparisons required in the general case for testing whether two rectangles
(e.g., r and W ) intersect. Therefore, for range queries that cover multiple tiles, we
have:



Corollary 4.1. For a window query W that intersects more than one tile per dimension,
the number of required comparisons per rectangle in each relevant tile is at most two.

4.2.2.3 Storage decomposition

In order to further reduce the number of comparisons and improve the data access
locality, we suggest to store the MBRs of each one of the secondary partitions {TA, TB ,
TC , TD} in decomposed tables, following the Decomposition Storage Model (DSM) [162],
adopted by column-oriented database systems (e.g., [163]). Specifically, each rectan-
gle r = ⟨id, r.xl, r.xu, r.yl, r.yu⟩ is decomposed to four tuples, i.e., ⟨r.xl, id⟩, ⟨r.xu, id⟩,
⟨r.yl, id⟩, ⟨r.yu, id⟩, and each tuple is stored in a dedicated table, i.e., Lxl

, Lxu , Lyl , Lyu.
The tables are sorted by their first column and used to evaluate fast queries on tiles,
where just one endpoint of each MBR needs to be compared (according to Lemmas
4.3 and 4.4). We can take advantage of the sorted decomposed tables to reduce the
information that has to be accessed and the number of comparisons.

In particular, for each tile T satisfying Lemma 4.3 in dimension d, we can perform
binary search on the table Ldl which stores the ⟨r.dl, i⟩ tuples to find the largest r.dl,
which satisfies r.dl ≤ W.du. All rectangles in the table up to this value are guaranteed
to satisfy the condition and can be reported without any comparison.3 Symmetrically,
we can reduce the comparisons for rectangles in a tile T , which satisfies Lemma 4.4,
by taking advantage of the sorted table Ldu. For example, for the tile T in Figure
4.6, we only have to access and perform binary search to tables LA

xu
and LC

xu
, which

store the ⟨r.dl, i⟩ decompositions of the rectangles in secondary partitions TA and TC ,
respectively. If we have to perform two comparisons in a tile (e.g., r.xu ≥ W.xl and
r.yu ≥ W.yl), we choose one of the two relevant decomposed tables (e.g., Lxu or Lyu)
to perform the search; then, for each qualifying rectangle according to the selected
comparison, we verify the other comparison by accessing the entire MBR. We select
the table in the dimension which is covered the least by W , in order to minimize the
necessary verifications.

Finally, we observe that, for some object classes, it is not necessary to store all
decompositions. For example, the only possible comparisons that can be applied to
rectangles of class D are r.xu ≥ W.xl and r.yu ≥ W.yl, because all MBRs of class D

start before the tile in both dimensions and they are only compared with W in the
3Alternatively, we can scan from the beginning of the table until the condition is violated.



tile that includes the start point of W in both dimensions (Lemma 4.4). Hence, we
only need to keep tables LD

xu
and LD

yu for each secondary partition TD. Overall, we
can reduce the storage requirements for the decomposed tables as shown in Table
4.5.

Table 4.5: Required decomposed tables for each secondary partition

partition required tables

TA LA
xl
, LA

xu
, LA

yl
, LA

yu

TB LB
xl
, LB

xu
, LB

yu

TC LC
xu
, LC

yl
, LC

yu

TD LD
xu
, LD

yu

The decomposed data representation not only reduces the number of comparisons
but also accesses only the necessary data for each verified comparison. In particu-
lar, rectangle coordinates which are not relevant to the required verification are not
accessed at all, while in a record-based representation irrelevant data are fethed to
the memory cache. On the other hand, the decomposed representation requires ad-
ditional storage and is more expensive to update (unless a batch update strategy is
employed); hence, it is mostly appropriate for indexing static spatial object collections.

4.2.2.4 Overall approach

Algorithm 4.1 describes the steps of window query evaluation. Given a window W ,
we first identify the range of tiles that intersect W by simple algebraic operations, as
discussed in the beginning of this section. We then pass the control to each relevant
tile T , which accesses the relevant secondary partitions and performs the necessary
computations for the rectangles in them, potentially using the decomposed tables
presented in Section 4.2.2.3. Note that the operations at each tile T (and each sec-
ondary partition in T ) are totally independent to each other and they can be parallelized
without the need of any synchronization.

4.2.2.5 Non‐rectangular ranges

Window queries are the most popular range queries. Still, not all query ranges are
rectangular. We now discuss the evaluation of non-rectangular range queries. A char-



Algorithm 4.1 Window query evaluation (filtering step)
Require: grid G, query window W

1: T = tiles in G that intersect W
2: for each tile T ∈ T do
3: PT = secondary partitions of T relevant to W

4: for each partition TX ∈ PT do
5: find all r ∈ TX that intersect W
6: end for
7: end for

acteristic non-rectangular range query is the disk (or distance) range query, where the
objective is to find all objects with (minimum) distance to a given query point q at
most ϵ. To evaluate a disk query on our two-layer partitioned dataset, we apply a
similar method to Algorithm 4.1; we first find the set of tiles T that intersect with the
disk (using algebraic/trigonometric operations) and then find the objects in them that
satisfy the query predicate. We now discuss how our secondary partitioning can be
used to reduce the number of considered rectangles by tile and avoid duplicates at the
same time. As in window queries, for each tile T ∈ T , we check whether prev(T, d)
in each dimension d is also in T . If yes, then we disregard the corresponding class
of rectangles in T . Hence, if prev(T, x) ∈ T , then classes B and D are disregarded,
whereas if prev(T, y) ∈ S, then classes C and D are disregarded. Figure 4.7 shows an
example of a disk query centered at q. The tiles which intersect the disk are shown
by different patterns depending on the classes of rectangles in them that have to
be checked. For example, in tile T5 all four classes will be examined (we call T5 an
ABCD tile, in the context of the disk query). Note that for the majority of tiles which
intersect the disk range, we only have to examine rectangles in class A.

A subtle point here is that if we simply examine all rectangles in the classes that
correspond to each tile, we may end up examining duplicates. For example, consider
rectangle r1, which will be examined in both tiles T1 (in class B) and T2 (in class C).
To avoid such duplicates, for each rectangle in an ABCD tile T , if the tile is closer to
q in the y-dimension compared to the x-dimension, we ignore rectangles r in classes
C and D, for which r.yu > T.yu (these will be handled in another tile). The case
where T is closer to q in the x-dimension is handled symmetrically.

For tiles which are totally covered by the disk range, we do not verify any dis-
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Figure 4.7: Example of disk query evaluation

tances between the objects assigned to them and q, as these are guaranteed to be
query results. Distance verification only has to be performed for objects in tiles which
partially intersect the disk.

The method described above for disk queries can be generalized for any non-
rectangular query. We first find the set of tiles T which intersect the query range.
Then, for each tile T ∈ S, we determine which classes of objects need to be examined
(i.e., exclude classes that would produce duplicates). For each tile which is totally
covered by the query region, we just report its contents in the relevant classes as
results and for the remaining tiles we conduct an intersection test for each rectangle
before determining whether it is a result.

4.2.3 Refinement Step

We now discuss the evaluation of the refinement step of range queries using our
secondary partitioning scheme. We show how we can drastically reduce the number
of objects for which a refinement step is necessary and at the same time unveil that
the refinement step is not the bottleneck in range query evaluation. This justifies
why our focus is on the filter step. We begin by a general and important lemma,
which is independent to our approach and then show how our secondary partitioning
can further accelerate the identification of objects for which a refinement step is not



necessary.

Lemma 4.5 (Secondary filtering). Given a candidate object whose MBR r intersects the
query range, if at least one side of r is inside the query range, then the object is guaranteed
to intersect the range and no refinement step for the object is necessary.

The lemma is trivial to prove, based on the definition of MBR. Recall that the
MBR of an object is defined by the minimum and maximum values of the object in
every dimension. Hence, at each side of the MBR, there is at least one point which
is part of the object’s geometry. If one side of the MBR is inside the query range,
then there should be at least one point of the object inside the query range, i.e., the
object and the range intersect. The lemma generalizes to more than two dimensions.
In a d-dimensional space, we test if at least one of the (d − 1)-dimensional faces
of the minimum hypercube that bounds the object is inside the query range. For
rectangular query ranges W , we can simplify the test by checking whether at least
one of the projections r.x or r.y of r is covered by the corresponding projection W.x

or W.y of W . If this is true, given that r intersects W , at least one point of the object
corresponding to r should be inside W . This test costs at most four comparisons.

For example, in Figure 4.8a, either one side of r is inside the window W and
Lemma 4.5 applies (see ra in Figure 4.8a) or r splits W along th e coverage axis (see
rb in Figure 4.8a). In this case an edge of the rectangle is not contained in W , but W
splits the MBR along the coverage axis; it is not possible that the object in the MBR
does not intersect W , unless the area that forms the object is not connected. In both
cases, whatever the geometry of the object is, the object definitely intersects W .

For a disk query range, we can check whether there are at least two corners of r
whose distances to the disk center are smaller than or equal to the disk radius (in
this case at least one side of r should be inside the disk). This test costs at most four
distance computations.

For example, in Figure 4.8b, rectangle r1 has at least two corners in the disk
range, which means that at least one side of the rectangle is in the range and Lemma
4.5 applies. On the other hand, only one corner of r2 is inside the disk, hence the
refinement step for the corresponding object cannot be avoided.

Efficient secondary filtering. We now show how we can use our two-layer parti-
tioning approach to reduce the cost of applying the post-filtering tests (Lemma 4.5).
The main idea is to study the refinement avoidance test at the tile level, in order to



W
ra rb

(a) window query

Evaluation of refinement

W

W W

No need
(general case)

No need
(special case)
(only for narrow
windows)

General corner case: Two sides of MBR outside W 
One part of object definitely outside W
Object is hit only if one part of it is inside W

W
Case A: one corner of polygon inside W
(cost linear to number of corners)

Case B: one side of polygon intersects W
(cost linear to number of corners)

W

q
r r

r1 r2

(b) disk query

Figure 4.8: Secondary filtering for range queries

limit the comparisons required for each class of objects in the tiles. Specifically, for
each T that intersects a query range W and for each dimension d, we consider two
cases: (i) W starts before T in dimension d, i.e., W.dl < T.dl and (ii) W.dl ≥ T.dl. In
the first case, due to Lemmas 4.1 and 4.2, only classes of rectangles that start inside
T in dimension d are considered, which means for each rectangle r ∈ T which is
found to intersect W , we already know that W.dl < r.dl. Hence, we only have to test
if r.du ≤ W.du to confirm whether r is covered by W in dimension d. On the contrary,
for the case where W.dl ≥ T.dl, we should apply the complete coverage test (i.e.,
W.dl ≤ r.dl ∧ r.du ≤ W.du) in dimension d.

For example, in Figure 4.6, we only have to perform the complete coverage test
for all rectangles that intersect W in the top-left tile (prev(T, y)). In the tiles, where
we access classes A and B, we save one comparison in the x dimension, in the tiles,
where we access classes A and C , we save one comparison in the y dimension, and in
all other tiles (where we access only class A), we save one comparison per dimension.

4.2.4 Batch Query Processing

In the previous sections, we presented how our two-layer index handles single query
requests. Real systems however receive and need to evaluate a large number of con-
current queries. Under this, we next discuss how to efficiently process batches of
spatial range queries. Although our focus is primarily in a single-threaded process-
ing environment, parallel query processing in modern multi-core hardware can also
benefit from the ideas discussed in this section. To this end, our experimental analysis



includes both single-threaded and multi-threaded experiments.

Queries‐based approach. A straightforward approach for processing a workload of
concurrent spatial range queries is to directly evaluate every query independently.

In a parallel processing environment, we can easily adopt this approach by as-
signing the queries to the available threads in a round robin fashion. We call this
simple approach queries-based. Its main shortcoming is that it is cache agnostic;
as every issued query q typically overlaps multiple tiles of the grid, the computation
of q requires accessing data structures in different parts of the main memory, i.e.,
the memory access pattern is prone to cache misses. The problem is present also in
parallel query processing, as every thread goes through multiple rounds of content
switching.

Tiles‐based approach. To address this shortcoming of queries-based, we design a
cache-conscious two-step approach. Given a large batch of queries Q, for each tile,
accumulate the subtasks of all queries in Q that intersect the tile. Each subtask cor-
responds to accessing and processing (the relevant to the query) secondary partitions
in the tile. Then, in a second step, we initiate one process at each tile, which evaluates
the corresponding subtasks. Essentially, query processing is no longer driven by the
queries, but from the grid tiles and therefore, we call this approach tiles-based. This
method is favored by parallel processing, since each thread (corresponding to a tile)
can benefit from the processor’s cache while processing the subtasks assigned to it.
As we demonstrate in Section 4.2.6 the tiles-based approach scales better with the
number of parallel threads compared to queries-based.

4.2.5 Spatial Join Evaluation

We now turn our focus to the evaluation of spatial intersection joins. First, we dis-
cuss how our two-layer partitioning can be adopted to natively compute a spatial
join, while avoiding the generation and elimination of duplicate results. To this end,
we consider the basic variant of our partitioning, described in Section 4.2.1 without
the storage decomposition in Section 4.2.2.3. Then, we elaborate on possible join
strategies for a query optimizer perspective, which use two-layer partitioning in dif-
ferent fashions. For illustration purposes, we discuss the above for regular grids; in
Section 4.2.5.3, we consider other SOPs, e.g., the quad-tree.



4.2.5.1 Two‐layer Partitioning Join

Assume that both join input datasets R, S are indexed by our two-layer partitioning
scheme, specifically 2-layer and that the two grids used for the partitioning are
identical. In the next subsection, we discuss the origins and details of such a setting,
i.e., whether both or one of R, S are (re)-indexed online. Under this setting, we
can build upon the join phase of the PBSM algorithm [14] and apply a partition-
to-partition join for each pair of partitions from R, S from the same tile. Assuming
that two partitions of size n, m are joined, the join cost using plane-sweep is O((n+

m) log(n+m)), based on [18, 81].

4.2.5.1.1 The Mini‐joins Breakdown

Given a tile T , let RT and ST be the partitions containing the object rectangles from
datasets R and S, respectively, that are assigned to T . RT is divided into rectangle
classes RA

T , RB
T , RC

T , and RD
T , according to our two-layer partitioning scheme discussed

in Section 4.2.1. Similarly, ST is divided into SA
T , SB

T , SC
T , and SD

T . Hence, the spatial
join RT ▷◁ ST can now be decomposed into 4·4 = 16 joins between classes of rectangles,
i.e., RA

T ▷◁ SA
T , R

B
T ▷◁ SB

T , R
B
T ▷◁ SC

T , . . . , R
B
T ▷◁ SA

T , . . . . We call these class-to-class joins,
mini-joins. Figure 4.9 exemplifies the decomposition of the partition-to-partition join
inside a tile T into the 16 mini-joins.

Looking deeper into these 16 cases, we can easily show that 7 out of these mini-
joins (the shaded cases in the figure) produce only duplicate results, i.e., join results
that will also be reported in another tile. For example, if two rectangles of class B in
tile T intersect (i.e., the pair is contained in the result of RB

T ▷◁ SB
T ), then they will

definitely intersect also in another tile above T . We can also show that the remaining
9 mini-joins produce only results that cannot be reported in any previous tile (in the
x or y dimension or in both), but could be produced as duplicates in some of the 7
shaded joins in a tile after T in one or both dimensions. Hence, we never evaluate the
7 shaded mini-joins and only evaluate the 9 remaining without the need of duplicate
elimination.

4.2.5.1.2 Optimizations

Any spatial join algorithm can be utilized to evaluate the set of 9 mini-joins on
each tile T ; even a nested-loops approach. Following previous work on spatial joins
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[164, 14, 81], we adopt a plane-sweep join approach which is shown to perform
significantly faster than nested-loops; specifically we adopt the plane-sweep algorithm
in [18]. Algorithm 4.2 illustrates our plane-sweep mini-join. To apply the plane-
sweep approach, the contents of each class are sorted on the sweeping dimension
(Line 1). Without loss of generality, we consider x as the sweeping dimension for
the rest of this section, and so rectangles are sorted by r.xl and s.xl. Note that this
sorting can take place also during the construction of the two-layer scheme, if an
input dataset is partitioned online. For every pair (r, s) determined by the sweeping
process (i.e., rectangles whose projections on x intersect), we test in Lines 6 and 14,



Algorithm 4.2 Plane-sweep mini-join
Require: classes of rectangles RT and ST

1: sort RT and ST by r.xl ▷ if not already sorted

2: while RT and ST not depleted do
3: if r.xl < s.xl then
4: s′ ← s

5: while s′ ̸= null and r.xu ≥ s′.xl do
6: if r.yl≤s′.yl≤r.yu or s′.yl≤r.yl≤s′.yu then
7: output (r, s′) ▷ update result

8: end if
9: s′ ← next rectangle in ST ▷ scan forward

10: end while
11: else
12: r′ ← r

13: while r′ ̸= null and s.xu ≥ r′.xl do
14: if r′.yl≤s.yl≤r′.yu or s.yl≤r′.yl≤s.yu then
15: output (r′, s) ▷ update result

16: end if
17: r′ ← next rectangle in RT ▷ scan forward

18: end while
19: end if
20: end while

if the rectangles also intersect in the second dimension y; i.e., if r.yl ≤ s.yl ≤ r.yu or
s.yl ≤ r.yl ≤ s.yu. To boost the computation of mini-joins, we next discuss how we
can save on the comparisons performed for (r, s) pairs, capitalizing on our second
layer of partitioning.

Avoid unnecessary comparisons.
There exist two ways to utilize the A, B, C , D classes in each tile T for avoiding

unnecessary rectangle comparisons. To understand the first, consider the RA
T ▷◁ SC

T

mini-join. By definition, all objects rectangles in SC
T precede the rectangles in RA

T . In
practice, this means that we can apply a simplified version of plane-sweep for RA

T ▷◁ SC
T

which performs forward scans on RA
T for each rectangle in SC

T , as the r.xl > s.xl

holds by definition. This modification will save on unnecessary comparisons between



Algorithm 4.3 Reduced plane-sweep mini-join
Require: classes of rectangles RT and ST

1: sort RT by r.xl ▷ if not already sorted

2: while ST not depleted do
3: r′ ← r

4: while r′ ̸= null and s.xu ≥ r′.xl do
5: if r′.yl≤s.yl≤r′.yu or s.yl≤r′.yl≤s.yu then
6: output (r′, s) ▷ update result

7: end if
8: r′ ← next rectangle in RT ▷ scan forward

9: end while
10: end while

r ∈ RA
T and s ∈ SC

T objects and further will allow us to avoid sorting the SC
T class.

Algorithm 4.3 presents this reduced version of the plane-sweep mini-join. We can
apply the same principle also for RA

T ▷◁ SC
T , RC

T ▷◁ SA
T , RA

T ▷◁ SD
T , RD

T ▷◁ SA
T , RB

T ▷◁ SC
T

and RC
T ▷◁ SB

T . Overall, we do not need to sort the RC
T , RD

T , SC
T , SD

T classes.
Besides the plane-sweep process, we can also avoid unnecessary comparisons

when considering the second dimension (i.e., y). The idea is similar to Lemmas 4.3
and 4.4. Take as example, the RA

T ▷◁ SB
T mini-join. For every pair (r, s) of intersecting

object rectangles in x, determined by plane-sweep, the s.yl < r.yl condition holds by
definition. Hence, to determine whether r, s intersect also in dimension y we only
need to check the r.yl < s.yu condition. The same principle can be used for the
RA

T ▷◁ SD
T , RB

T ▷◁ SA
T , RD

T ▷◁ SA
T , RB

T ▷◁ SC
T and RC

T ▷◁ SB
T mini-joins. The following

lemma summarizes this optimization for every object rectangle r in classes RB
T , RD

T

with s in classes SA
T and SC

T ; the other case is symmetric.

Lemma 4.6. If an object rectangle r in tile T starts before the tile in the y dimension, i.e.,
T.yl > r.yl, then r intersects all s rectangles in T that start after T.yl with r.yu > s.yl.

Avoid redundant comparisons. To illustrate this optimization, consider the RA
T ▷◁ SC

T

mini-join and the rectangles in Figure 4.10(a). As already discussed, the reduced
plane-sweep approach (Algorithm 4.3) does not sort the SC

T class, to evaluate this
mini-join; by definition, the start s.xl for their contents precede the r.xl start of all
rectangles in RA

T . Hence, assume that the SC
T rectangles are examined in the s1, s2, s3

order. Rectangles s1 and r intersect in the x dimension as s1.xu > r.xl holds and so,
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they are next compared in the y dimension. Algorithm 4.3 will similarly determine
that both s2 and s3 also intersect r in x by checking s2.xu > r.xl and s3.xu > r.xl,
respectively. However, since s2.xu > s1.xu and s3.xu > s1.xu hold, the s1.xu > r.xl

check for s1 automatically implies that s2.xu > r.xl and s3.xu > r.xl also hold. In other
words, we conducted two extra comparisons to determine the intersecting (r, s2) and
(r, s3) pairs. To avoid such redundant comparisons, we can sort SC

T by s.xu which
will essentially allow us to determine intersecting rectangles in batches. Figure 4.10(b)
illustrates this idea; all three intersecting pairs can be determined after checking only
s1 against r. Algorithm 4.4 modifies Algorithm 4.3 accordingly. After identifying the
first rectangle s that intersects current r′ in the x dimension (Line 5), the algorithm
pairs r′ with every rectangle s′ that follows s in ST (Line 6).

4.2.5.2 Join Strategies

We last discuss different join strategies depending on the (pre)-existence of two-
layer partitioning in the input. Following the classification in [22], we consider three
settings.

4.2.5.2.1 Both Inputs Indexed

Under this setting, a two-layer partitioning already exists on each input dataset R, S
to answer other types of spatial queries, e.g., range queries. We distinguish between
two cases with respect to the granularity of the pre-existing grids. If the two grids
are identical, we can directly apply the mini-joins approach and its optimizations in



Algorithm 4.4 Reduced plane-sweep mini-join with batch outputting
Require: classes of rectangles RT and ST

1: sort RT by r.xl ▷ if not already sorted

2: sort ST by r.xu ▷ if not already sorted

3: while ST not depleted do
4: r′ ← r

5: while r′ ̸= null and s.xu ≥ r′.xl do
6: for each rectangle s′ after s in ST do
7: if r′.yl≤s′.yl≤r′.yu or s′.yl≤r′.yl≤s′.yu then
8: output (r′, s′) ▷ update result

9: end if
10: r′ ← next rectangle in RT ▷ scan forward

11: end for
12: end while
13: end while

Section 4.2.5.1.
If the pre-existing grids have different granularities, then the mini-joins approach

is not directly applicable. A straightforward solution is to re-index one of the input
datasets, e.g. R, by creating a temporary two-layer partitioning with a grid granularity
that matches the grid on S, similar to [165].

In this context, a key question that naturally arises is which input we should re-
index. Typically, we could select the dataset with either the smallest cardinality or the
smallest average object extent, because such a decision is expected to incur the lowest
online indexing cost. We elaborate on this decision in our experimental analysis.

As an alternative, we also devise a new solution which completely eliminates the
need to decide which input should be re-indexed and also significantly reduces the
online indexing costs. For this purpose, the granularity of the pre-existing grids must
be in a power of 2. If so, we can always define an online transformation of the
finer grid to the coarser, by means of standard window range queries. Figure 4.11
exemplifies this transformation when R is partitioned by a 2×2 grid (colored in blue),
and S by a 8×8 grid (in black). After overlaying the two grids, we observe that every
tile T in the R grid overlaps a collection of exactly 16 adjacent tiles from the S grid.
Therefore, to re-partition S to the 2× 2 grid of R, it suffices to compute the window
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Figure 4.11: Online grid transformation; R partitioned by a 2× 2 grid, highlighted in
blue, S partitioned a 8× 8 grid, in black.

queries defined by all tiles in the R grid; the key idea is to determine the contents of
the new SA

T , SB
T , SC

T and SD
T classes based on the results of every T window query.

For this purpose, we can utilize the original two-layer partitioning on S. Specifically,
consider the shaded tile T from the R grid in Figure 4.11. Similar to Figure 4.6, we
mark the relevant classes for each tile from the original S grid that overlaps with
the window query based on T , as discussed in Section 4.2.2. We can now construct
SA
T by unifying the objects contained in the A class of all overlapping tiles. For SB

T ,
we consider only the contents of the B class inside the top border overlapping tiles,
while for SC

T , the left border overlapping ones. Finally, SD
T is identical to the D class

inside the top left corner overlapping tile. The above process can be generalized for
any two pre-existing grids of granularity n × n and m ×m, where n > m and n, m
are powers of 2. Every tile in the second, coarser grid defines a window query that
overlaps with exactly (n/m)2 tiles from the first, finer one.

We developed two variants for the above transformation. The first constructs a
temporary two-layer partitioning on input S by matelializing the contents of each
new SA

T , SB
T , SC

T and SD
T classes. After this, we can directly utilize the mini-joins

approach in Section 4.2.5.1 to compute the R ▷◁ S spatial join. In contrast, the second
variant never actually constructs this new two-layer scheme on input S. Instead, we



adjust the joining process in Section 4.2.5.1 to determine on-the-fly which tiles from
the original grid on S should be used in the mini-joins. Specifically, the RA

T ▷◁ SA
T

is further decomposed to (n/m)2 mini-joins, i.e., RA
T ▷◁ SA

T =
∪

i R
A
T ▷◁ SA

Ti
, where

Ti denotes one of the (n/m)2 tiles from the original S grid overlapping with tile T

from the R grid. In the same spirit, RA
T ▷◁ SB

T , RA
T ▷◁ SB

T , RB
T ▷◁ SC

T and RC
T ▷◁ SB

T

are decomposed into (n/m) mini-joins, while RB
T ▷◁ SA

T , RC
T ▷◁ SA

T and RD
T ▷◁ SA

T into
(n/m)2. In Section 4.2.6, we compare the two variants and break down their total
execution time.

4.2.5.2.2 One Input Indexed

Under this setting, a two-layer partitioning already exists only for one of the input
datasets; without loss of generality, assume for S. In this case, there exist two alter-
native approaches for computing the R ▷◁ S spatial join. The first is to construct a
temporary two-layer partitioning on R with a grid of identical granularity to the grid
on S, such that we can directly apply the joining process in Section 4.2.5.1. Despite
its simplicity, this approach may exhibit high total execution times because of the
online indexing cost.

Alternatively, we can adopt an index-based join approach. According to this, we
scan the contents of the R input and probe the index on S. Specifically, we issue a
window range query for each object rectangle r in R which is evaluated using the
two-layer partitioning on S. To further enhance the performance of this approach, we
can examine the objects in R according to their position in space, instead in a random
order, e.g., by first partitioning them online with a grid or using a space filling curve.
This way, window queries for objects in R that overlap neighboring parts of the S

grid are evaluated in nearby timestamps, improving the cache locality.

4.2.5.2.3 No Input Indexed

Under this setting, none of the input datasets R, S is indexed by our two-layer par-
titioning. In this case, we can partition both inputs under identical grids to construct
two temporary two-layer partitioning schemes and then directly apply the mini-joins
approach from Section 4.2.5.1.

Since both inputs are indexed online, we can further enhance the join process by
adopting a specialized storage optimization. Note that such an optimization cannot be



utilized for the settings discussed in the previous sections, as at least one of the two-
layer schemes used for the join, pre-exists in order to evaluate other types of queries.
Essentially, if we enforce this optimization, the resulting two-layer partitioning will
no longer be able to fulfil its original purpose.

Conventionally, each rectangle r is stored as a quintuple ⟨id, r.xl, r.xu, r.yl, r.yu⟩.
Assuming x as the sweeping dimension (the other case is symmetric), r.yl is never
needed for classes B and D when we check whether two rectangles intersect also in
the y dimension, i.e., in Lines 6 and 14 of Algorithm 4.2, Line 5 of Algorithm 4.3
and in Line 7 of Algorithm 4.4. This is because all contained rectangles start before
the start of the tile in y. In fact, for class D, we do not need r.xl either, since D is
only joined to an A class from the other input S and its contents always precede
those S rectangles in both dimensions. Hence, a temporary two-layer partitioning
stores all information for rectangles in classes A, C but ⟨id, r.xl, r.xu, r.yu⟩ for B and
⟨id, r.xu, r.yu⟩ for C , which reduces the online partitioning costs.

4.2.5.3 Extension to other SOPs

The two-layer partitioning join in Section 4.2.5.1 is directly applicable to any SOP,
provided that identical partitions of the space (defined either offline or online) are
considered for both inputs. Similarly, the index-based join approach can be applied
when one of the inputs is indexed any SOP, enhanced with our two-layer partitioning.
Lastly, when both inputs are indexed by the same SOP but under a different set of
partitions, the re-partitioning approach in Section 4.2.5.2.1 can be applied when there
exists an alignment among the partitions; e.g., in quad-trees, for each a quadrant (of
a coarse granularity) in one input that entirely covers a set of finer quadrants from
the other.

4.2.6 Experimental Evaluation

In this section we present our experimental analysis. We first describe our setup
and then present our experiments, which evaluate the effectiveness of our secondary
partitioning approach by comparing a SOP index that employs it with a number of
SOP and DOP indices.



Table 4.6: Real-world datasets used in the experiments

dataset type cardinality
avg. relative [%]
x‐extent y‐extent

ROADS linestrings 19M 0.007 0.013

EDGES polygons 69M 0.003 0.005

ZCTA5 polygons 33K 1.7 2.052

TIGER mixed 97M 0.004 0.008

Table 4.7: Synthetic datasets (MBRs) used in the experiments

parameter values default

cardinality 1M, 5M, 10M, 50M, 100M 10M

area 10−14, 10−12, 10−10, 10−8, 10−6 10−10

distribution Uniform or Zipfian (a = 1) —

4.2.6.1 Setup

Our analysis was conducted on a machine with 384 GBs of RAM and a dual Intel(R)
Xeon(R) CPU E5-2630 v4 clocked at 2.20GHz running CentOS Linux 7.6.1810. All
methods were implemented in C++, compiled using gcc (v4.8.5) with flags -O3, -mavx
and -march=native. For our parallel processing tests, we used OpenMP and activated
hyper-threading, allowing us to run up to 40 threads.

Datasets. We experimented with publicly available Tiger 2015 datasets [17], summa-
rized in Table 4.6. The third dataset resulted by merging all polygon and linestring
Tiger 2015 objects, excluding zips, counties and states. The objects in each dataset
were normalized so that the coordinates in each dimension take values inside [0, 1].
The last two columns of the table are the relative (over the entire space) average
length for every object’s MBR at each axis. In order to test the robustness of our
index, we also experimented with synthetically generated datasets with rectangles of
uniform and zipfian spatial distribution. Table 4.7 shows the parameters used in data
generation. The coordinates in each dimension take values inside [0, 1] and all gen-
erated rectangles in a dataset have the same area. The width to height ratio of each
rectangle was generated randomly in the range [0.25, 4] in order to avoid unnaturally
narrow rectangles.

Methods. We implemented our secondary partitioning approach as part of a main-



Table 4.8: Compared methods and their throughput (window queries)

type index
throughput [queries/sec]

ROADS

SOP

2-layer
+

42856

2-layer 36730

1-layer 15068

quad-tree 13420

quad-tree, 2-layer 19354

DOP

R-tree 10359

R*-tree 8886

BLOCK <1

MXCIF quad-tree 8

type index
throughput [queries/sec]
ROADS EDGES

SOP

2-layer
+

42856 14803

2-layer 36730 12942

1-layer 15068 5327

quad-tree 13420 4564

quad-tree, 2-layer 19354 6755

DOP

R-tree 10359 2935

R*-tree 8886 2534

BLOCK <1 <1

MXCIF quad-tree 8 2

2

memory regular grid spatial index. We designed two variants of the index. In the first
variant, termed 2-layer, for each tile T of the grid, we divide the (MBR, id) pairs
assigned to T into four secondary partitions (TA, TB , TC , TD), such that there is no
particular order of the contents of each table (i.e., as in a heap file). This organization
has low space requirements and supports updates efficiently as the MBRs of new
objects are simply appended to the tables of the tiles. This variant discussed in Section
4.2.1.

In the second variant, termed 2-layer+, each secondary partition TX is further
divided into decomposed tables, as discussed in Section 4.2.2.3. 2-layer+ takes ad-
vantage of the sorted decomposed tables to reduce the information that has to be
accessed and the number of comparisons.

We considered both SOP and DOP competitors to our 2-layer and 2-layer+,
summarized in Table 4.8. First regarding SOPs, the 1-layer index is an in-memory
grid with identical primary partitioning as our 2-layer, but uses the reference point
approach [21] to perform duplicate elimination. Comparing 1-layer to 2-layer and
2-layer+ shows the benefit of our secondary partitioning scheme and the techniques
we propose in Section 4.2.2 for duplicate avoidance and minimization of compar-
isons. The second SOP competitor is a quad-tree implementation, which assigns
each object MBR to all quadrants it intersects. As soon as the contents of a quadrant
exceed a predefined maximum capacity (set to 1000, after tuning), the quadrant is
split to four; the rectangles are then re-distributed in the four generated children and



replicated if they span the division borders. In order to avoid extensive splitting of
quad-tree nodes in the case of extremely skewed data, a maximum tree depth (=12)
is set. The reference point approach [21] is also used for duplicate elimination. We
also implemented a version of quad-tree that uses our approach instead of [21]. Re-
garding DOPs, we used two implementations of in-memory R-trees from the highly
optimized Boost. Geometry library (boost.org)4; an STR-bulkloaded [109] (denoted
for simplicity as R-tree) and an R*-tree [96]. Both trees have a fanout of 16 for
inner and leaf nodes; this configuration is reported to perform the best (we also
confirmed this by testing). The next DOP competitor is BLOCK; the implementation
was kindly provided by the authors of [88]. Finally, we also implemented and tested
the MXCIF quad-tree for non-point data [167], which does not replicate objects that
span quadrants, but stores each object at the lowest-level quadrant which covers the
object. All compared methods are listed in Table 4.8.

Queries. We experimented with both window and disk queries which apply on non-
empty areas of the map (i.e., they always return results). We vary (1) their relative area
as a percentage of the entire data space, inside the {0.01, 0.05, 0.1, 0.5, 1} value range
(default value 0.1% of the area of the map) and (2) their selectivity as a percentage of
the returned objects over the cardinality of the dataset, inside the [0, 0.001], (0.001, 0.01],
(0.01, 0.1], (0.1, 1] and (1, 100] intervals. Queries on synthetic data follow the same
spatial distribution as the data.

4.2.6.2 Filtering vs. Refinement

We first justify our decision to focus on and optimize the filtering step of range query
evaluation, which in fact has been the primary target of previous works as well. We
used our 2-layer index to execute both the filtering and refinement steps. We consider
three variants of query evaluation depending on the way refinement is performed (see
Section 4.2.3); filtering is identical in all three variants. Specifically, under Simple, all
candidates identified by the filtering step are passed to the refinement step; RefAvoid
employs Lemma 4.5 as an extra pre-refinement filter to reduce the number of can-
didates to be refined; last, RefAvoid+ enhances RefAvoid by using our secondary
partitioning to reduce the number of comparisons required for testing Lemma 4.5,

4Recent benchmarks [166] showed the superiority of Boost.Geometry R-tree implementations over
the ones in libspatialindex.org



as discussed in Section 4.2.3.
Figure 4.12 breaks down the average execution time for 10000 window and disk

queries; note that for disk queries RefAvoid+ is not applicable. The pre-refinement
filter is very effective; both RefAvoid and RefAvoid+ significantly reduce the number
of candidates to be refined by over 90%. To achieve this however, they apply extra
comparisons using the MBRs; these comparisons are more expensive in the case
of disk queries because they involve costly distance computations between the disk
center and the corners of object MBRs. Observe that, when our secondary filtering
technique is used, not only the queries run faster but also the filtering step (including
the pre-refinement filter) is now the most expensive step, instead of refinement in
case with Simple. Therefore in the subsequent experiments, we focus on the filtering
step of spatial query processing.

4.2.6.3 Indexing and Tuning

We next investigate the index building cost and the tuning of two-layer indexing. The
first four plots of Figure 4.13 compare the indexing times and the sizes of the three
grid-based indices on ROADS and EDGES datasets, while varying the granularity
of the grid partitioning. Naturally, the indexing cost for all three indices grows as
we increase the granularity of the grid. As expected, 1-layer and 2-layer have the
same space requirements; regardless of employing secondary partitioning or not, both
indices store exactly the same number of object MBRs (originals and replicas). Note
that the index sizes do not grow too much with the grid granularity, which means that
MBR replication is not excessive. In terms of indexing time, 2-layer is only slightly
more expensive than 1-layer, as it needs to first determine the class for each rectangle
and then store it accordingly. On the other hand, the indexing cost of 2-layer+ is
higher than both 1-layer and 2-layer indices, because 2-layer+ essentially stores a
second (decomposed) copy of the rectangles inside every tile. The construction costs
for the two quadtrees (not shown) are 7s and 28.2s, respectively, and their sizes
are similar to those of the corresponding 1-layer indices. The sizes of the packed
R-trees (not shown) are about the same as the sizes of the corresponding 1-layer
(and 2-layer) indices, indicating that the replication ratio of our indices is low. In
addition, the bulk loading costs of the R-trees are 5.2s and 19.5s for the two datasets,
respectively, i.e., about 20% lower compared to the construction cost of 2-layer+.

The last two plots of Figure 4.13 compare the window query throughputs of
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Figure 4.12: Time breakdown in two-layer indexing

1-layer, 2-layer, and 2-layer+ for different grid granularities. The three methods
achieve their best throughputs when several thousands of partitions per dimension
are used. Under this configuration, the number of tiles is not excessive and the indices
do not have a large overhead in accessing and managing tiles. A key observation is
that employing our secondary partitioning significantly enhances query processing;
2-layer and 2-layer+ always outperform 1-layer by a wide margin (2x–3x). It is
worth noting that 1-layer uses the comparisons reduction optimization described
in Section 4.2.2.2, meaning that the performance gap is due to our secondary par-
titioning and the storage decomposition (by 2-layer+). Specifically, our approach
outperforms the state-of-the-art reference point method for result deduplication [21]
used by 1-layer by a factor of at least 2. For a wide range of granularities (i.e., 1000
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Figure 4.13: Building and tuning grid-based indices (window queries)



Table 4.9: Best granularities (partitions per dimension); in parenthesis, the power of
2 used for the transformation-based methods in Figure 13.

index ROADS EDGES ZTCA5 TIGER Uniform Zipfian

1-layer 1000 3000 not used 1000 500 3000
2-layer 3000 (211) 5000 (212) 400 (28) 5300 450 3000
2-layer+ 1800 2000 not used 2300 450 3000

to 10000 partitions per dimension), the throughput of all three methods does not
change significantly meaning that finding the best granularity is not crucial to query
performance. The fastest index is 2-layer+ as it trades the extra used space for better
query performance We observed similar trends on the TIGER and on the synthetic
datasets (not shown due to lack of space). For the rest of our analysis, we used the
best granularity for 1-layer, 2-layer and 2-layer+, see Table 4.9.

4.2.6.4 Query and Update Performance

We now compare all indices in terms of query throughput (window and disk queries),
evaluate batch and parallel query processing, and finally measure their update costs.

Window queries. First, we report in Table 4.8 the throughput (queries/sec) achieved
by each index for 10K window queries (of average relative area 0.1% of the map) on
ROADS and EDGES. 2-layer and 2-layer+ outperform the competition by a wide
margin. R-tree is the most efficient DOP competitor, outperforming R*-tree (from
the same library). BLOCK takes seconds to evaluate range queries on our datasets,
which can be attributed to the fact that it is implemented for 3D objects. Similar,
MXCIF quad-tree is orders of magnitude slower than the R-tree. Under these, in
the rest of the experiments we only include 1-layer, R-tree and quad-tree indices
as the key competitors to our 2-layer and 2-layer+.

The first two columns of Figure 4.14 show the throughput of the five competitors
for window queries of varying relative area and selectivity on the three real datasets.
For the experiments of the second column, we collected the runtimes of all queries
(regardless of their areas) and averaged them after grouping them by selectivity. Nat-
urally, query processing is negatively affected by both factors. As the window extent
increases or the query becomes less selective, a larger number of objects overlaps the
query area,rendering the range queries more expensive. We also observe that 2-layer
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Figure 4.14: Query processing: real data



and 2-layer+ are consistently much faster than the competition on all datasets and
query areas; in addition, the relative difference between 2-layer and 2-layer+ is
stable. For each query, 2-layer and 2-layer+ access the relevant partitions very fast
(without the need of traversing a hierarchical index) and manage to drastically re-
duce the required number of computations. Figure 4.15 compares all methods for
window queries on the synthetic datasets. In these experiments, we additionally vary
the database size and the areas of the data objects. In terms of query throughput
w.r.t. query area and selectivity, the trends are similar as those for the real data. In
addition, the data cardinality does not affect the relative performance of the meth-
ods. Finally, we observe that 2-layer and 2-layer+ are more robust to the area of
the data objects compared to the competition. As the area grows, the replication to
tiles increases and 1-layer and the quad-tree have to compute and eliminate more
duplicate results. On the other hand, 2-layer and 2-layer+, with the help of our
secondary partitioning, avoid the generation and elimination of duplicate results.

Disk range queries. We now turn our focus to disk range queries. For the interest
of space, we only report results on the real data in the last two columns of plots
in Figure 4.14. 2-layer+ is not included in the comparison, because its storage de-
composition does not give any benefit compared to 2-layer, as all coordinates are
needed in distance computations. Since, for disk queries on 1-layer and quad-tree,
we cannot use the reference point technique to eliminate duplicate results (and du-
plicate elimination using hashing is too expensive), we implemented disk queries on
them as follows. We executed a window query using the MBR of the query range
and eliminated any duplicates intersecting the window. For all tiles/quadrants inside
the disk range, we just reported all window query results there as disk query results.
For all other tiles and quadrants we performed distance tests before confirming and
reporting the results. The plots show once again the superiority of the 2-layer index.

Batch and Parallel Query Processing. Figure 4.16 compares the two approaches
(queries-based and tiles-based), discussed in Section 4.2.4, for batch window
query processing (10K queries or 1% relative area, per batch) on ROADS and EDGES.5

A general observation from the plots is that tiles-based is superior to queries-based
when the dataset is large (i.e., dense) and the queries are relatively large. In this case,
the sizes of the dedicated tables for each class per tile are large and cache conscious

5Similar findings are observed for TIGER, but the results are omitted due to lack of space.



Table 4.10: Total update cost (sec)

dataset R-tree quad-tree 1-layer 2-layer

ROADS 5.34 0.76 0.059 0.068
EDGES 19.8 2.89 0.267 0.382
TIGER 33.91 4.63 0.459 0.634

tiles-based approach makes a difference. On the other hand, the overhead of finding
and accumulating the subtasks per tile does not pay off when the number of queries
on each tile is too small or when the tiles do not contain many rectangles. The
advantage of tiles-based becomes more prominent in parallel query processing.
Figure 4.17 shows the speedup of batch query evaluation on the two largest datasets
(again, 10K queries per batch) as a function of the number of parallel threads. Note
that tiles-based scales gracefully with the number of threads (up to about 25 threads,
where it starts being affected by hyperthreading). On the other hand, queries-based
scales poorly due to the numerous cache misses.

Updates. To confirm the superiority of grid indices in updates, we conducted an
experiment using the real datasets, where we first constructed the index by loading
90% of the data in batch and then measuring the cost of incrementally inserting the
last 10% of the data. Table 4.10 compares the total update costs of the competitor
indices. R-tree is two orders of magnitude slower than the baseline 1-layer index
and the cost of updates on 2-layer is only a bit higher compared to the update
cost on 1-layer. Updates on quad-tree are also slower compared to 1-layer and
2-layer, due to the tree traversal.

4.2.6.5 Comparison with GeoSpark

Finally, we compare our proposed 2-layer grid index with GeoSpark [24], one of
the best-performing distributed spatial data management systems according to [20].
Our goal is to show that, for the scale of benchmarking data [17] that we and recent
papers [20, 34, 35] use, in-memory indexing in a multi-core processing machine is
superior to using a system designed for cluster computing. As our implementation
is designed to run on a single machine, we run GeoSpark in client mode, meaning
that the driver and Spark applications are both on the same machine. In addition,
we used R-tree indexing in GeoSpark, which performs best in query evaluation. We



compared GeoSpark with 2-layer that uses a grid granularity of 1000x1000 and
tested both single and multi-threaded versions for range queries. The experiments
were conducted using the ROADS dataset on a machine with 64 GBs of RAM and a
Intel(R) Core i7-4930K CPU clocked at 3.40GHz.6 For each method, we average the
cost of 100 (end-to-end) window queries, where the area of each query is 0.1% of
the area of the map. Figure 4.18 shows that 2-layer always outperforms GeoSpark
in terms of query performance by at least three orders of magnitude. These results
are consistent with the findings of [20], where distributed spatial data management
systems are shown to have a throughput of at most several hundred range queries
per minute on data of similar scale. In order to compare the two methods in a multi-
threaded scenario on equal terms, our approach evaluates the queries independently
(i.e., not in batch). We observe the same trend as the number of cores increases.

4.2.6.6 Spatial Join Performance

Two‐layer Partitioning Join. For the spatial intersection join, we use only 2-layer,
because 2-layer+ is more complex. We first study the impact of our second layer
of partitioning to the join computation. As discussed in Section 4.2.5.1, we assume
that both input datasets are already indexed and that identical grids exist as the first
layer of partitioning. We implemented the mj, base method on top of our 2-layer
scheme, as our basic mini-joins solution which adopts the mini-joins breakdown
from Section 4.2.5.1.1 and the plane-sweep join approach from Section 4.2.5.1.2. To
demonstrate the effect of the comparison-saving optimizations from Section 4.2.5.1.2,
we also developed the mj, sans unecessary and mj, sans redundant variants, which
extend mj, base. Last, we implemented a mini-joins solution with all optimizations
activated, denoted by mj, all opts and 1-layer, a PBSM baseline solution that solely
employs the first layer of partitioning.

Figure 4.19 reports the breakdown of the total execution time while varying the
number of partitions per dimension for the ROADS ▷◁ ZCTA5 and EDGES ▷◁ ZCTA5
queries. Note that we excluded the offline partitioning time but included the sorting
time needed for adopting plane-sweep and saving on redundant comparisons.7 The

6We do not own the platform where we ran the previous experiments, so we could not install
GeoSpark on that machine.

7Note that 1-layer employs the plane-sweep approach in [18] for partition-to-partition joins,
similar to our 2-layer based methods.



results clearly show the benefit of employing our second layer of partitioning and
the mini-joins breakdown compared to 1-layer. We also observe that employing all
comparison-saving optimizations can further accelerate the join computation; the mj,
all opts always outperforms the rest tested methods.

Both Inputs Indexed. We then experiment with the three join strategies discussed
in Section 4.2.5.2, starting with the setting where both input datasets are indexed
by a 2-layer scheme. The granularity of each first layer grid is set according to our
analysis in Section 4.2.6.3 as powers of 2 (see Table 4.9); i.e., the pre-existing 2-layer
schemes are optimized for range queries. We consider again the ROADS ▷◁ ZCTA5
and EDGES ▷◁ ZCTA5 queries.

Figure 12 reports the time breakdown of the tested approaches; as a baseline, we
also included a traditional R-tree join method [18]. We tested the straightforward
approach of re-indexing one of the inputs using a temporary 2-layer so that both
indices employ identical grids and being able to use the mj, all opts join method
from the previous section. The figure shows the results for re-indexing ROADS and
EDGES, while re-indexing ZCTA5 is omitted. As ZCTA5 contains significantly larger
rectangles than ROADS and EDGES (see Table 4.6), indexing these rectangles under
the very fine grids used by 2-layer for ROADS and EDGES incurs a high replication
ratio and hence, high partitioning costs (over 300 secs). The figure also includes the
two variants for the online transformation of the 2-layer scheme in ROADS and
EDGES to the grid of ZCTA5, proposed in Section 4.2.5.2.1. The results clearly show
the benefit the online transformation compared to re-indexing one of the inputs and
in particular, the variant when the new 2-layer scheme is not materialized as such
an approach completely eliminates the partitioning costs.

One Input Indexed. We consider once again the ROADS ▷◁ ZCTA5 and EDGES ▷◁

ZCTA5 queries when only one input is indexed by our 2-layer scheme. We tested
three solutions in this context. The first is a classic index-based join; we denote this
approach as for-loop, probe. The second approach grid 10× 10, probe extends this idea
by partitioning the unindexed input with a coarse grid (we used a 10× 10 one) and
then executing the window range queries per grid cell. Finally, we also employed the
‘Both Inputs Indexed’ approach by indexing the unindexed input online.

Figure 13 reports the breakdown of the execution time; we distinguish between
two cases for each query, depending on which input is already indexed. Note that we



omit the ‘Both Inputs Indexed’ approach when ZCTA5 has to be indexed, similarly
to previous section. We discuss the ROADS ▷◁ ZCTA5 query as the findings are the
same for EDGES ▷◁ ZCTA5. When ZCTA5 is indexed, we observe that building online
a temporary 2-layer scheme on ROADS with an identical grid to ZCTA5 is in fact the
best solution. This is mainly because mj, all opts used to compute the join drastically
reduces the joining time. In contrast, when ROADS is pre-indexed, the best approach
is grid 10 × 10, probe which improves the cache locality when probing the index on
ROADS. As ZCTA5 contains significantly fewer rectangles than ROAD, the cost of
constructing such a grid is negligible compared to applying the same idea on ROADS
when ZCTA5 is pre-indexed. To sum up, when one of the inputs is pre-indexed by
our 2-layer scheme, an R ▷◁ S spatial join can be efficiently computed using the
‘Both Inputs Indexed’ strategy if the cost of indexing the second input is expected to
be low (due to containing small rectangles or using a coarse first layer grid) or the
grid-based probe approach otherwise.

No Input Indexed. Lastly, we consider the setting when none of the inputs is indexed.
As discussed in Section 4.2.5.2.3, we directly construct in this case, two temporary
2-layer schemes under an identical first layer grid and then use mj, all opts to
compute the join. Figure 4.22 shows the effect of further optimizing this approach
with the space reduction optimization proposed at the end of Section 4.2.5.2.3, while
varying the number of partitions per dimension. We denote this method as mj, all
opts + s-opt. We observe that the space optimization enhances the join computation,
especially when a very fine grid is used.

4.3 Conclusions

In this chapter, we investigated directions towards tuning a classic and popular
partitioning-based spatial join algorithm, which is typically used for in-memory and
parallel/distributed join evaluation. We experimented with varying the number and
type of partitions and the sweeping axis choice in plane sweep. We also designed an
efficient parallel version of the algorithm. Our experimental findings show that 1D
partitioning performs better than 2D and that the correct sweeping axis choice does
matter. In addition, we showed that the parallel version of the algorithm scales well
with the number of threads.

We also presented a secondary partitioning approach that can be applied to SOP



indices, such as grids, and divides the MBRs within each spatial partition to four
classes. Our approach reduces the number of comparisons during range query evalu-
ation and avoids the generation (and elimination) of duplicate results. In addition, we
proposed a secondary filtering technique for spatial range queries that avoids a refine-
ment step for the majority of query results. Moreover, we investigated techniques for
evaluating numerous range query requests in batch and in parallel. Finally, we show
how our approach can also be used for duplicate result avoidance in spatial inter-
section joins that are evaluated using the state-of-the-art PBSM algorithm. For both
range queries and joins, we show how redundant computations can also be avoided.
Our experimental findings confirm the superiority of our approach compared to the
state-of-the-art duplicate result elimination method [21]. We also show that a grid
equipped with our method outperforms other indices (such as the quad-tree and
R-tree) by up to one order of magnitude. The cost of spatial intersection joins is also
reduced by a significant factor (about 50%) with the help of our secondary partition-
ing technique and the use of our optimized partition-to-partition join algorithms.
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Figure 4.15: Query processing: synthetic data (window queries)
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Figure 4.16: Batch query processing (window queries)
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Figure 4.17: Batch query parallel processing (window queries)
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Figure 4.19: Two-layer partitioning join on real datasets: mini-joins breakdown and
optimizations.
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Figure 4.20: ‘Both Inputs Indexed’ setting on real datasets; re-indexing ZCTA5 omit-
ted due to high online partitioning costs.
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Figure 4.21: ‘One Input Indexed’ setting on real datasets; indexing ZCTA5 omitted
due to high online partitioning costs.
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Figure 4.22: ‘No Input Indexed’ setting on real datasets



CHAPTER 5

BS-TREE: A DATA-PARALLEL B+-TREE FOR
MAIN MEMORY

5.1 The BS‐tree

5.2 Updates

5.3 Key Compression

5.4 Implementation Details

5.5 Concurrency control

5.6 Experiments

5.7 Conclusions

As memories become cheaper and larger, main memory databases are becoming the
standard approach for handling data, even in commodity machines. We propose BS-
tree, an in-memory implementation of the B+-tree that adopts the structure of the
disk-based index (i.e., a balanced, multiway tree), setting the node size to a memory
block that can be processed fast and in parallel using SIMD instructions. Our proposal
includes a parallelizable successor search operation that applies at each tree level to
locate a key position or its successor. We propose a novel implementation for gaps
(unused positions) within nodes by duplicating keys that facilitates fast operations
(searches, insertions, deletions). We also present a compression mechanism, which can
greatly decrease its size in memory without imposing a large performance overhead.
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We compare our approach to existing main-memory indices and learned indices
under different workloads of queries and updates and demonstrate its robustness
and superiority compared to previous work.

Outline The BS-tree is described in Section 5.1 and its updates and construction in
Section 5.2. Section 5.3 describes BS-tree compression. Implementation details and
concurrency control are discussed in Section 5.4 and 5.5, respectively. Section 5.6
includes our experimental evaluation and we conclude in Section 5.7.

5.1 The BS‐tree

The BS-tree that we propose follows the structure of the B+-tree. Each internal node
of the tree fits up to N references to nodes at the lower level. We first present the
data structure in Section 5.1.1. Then, Section 5.1.2 describes the implementation of
the successor operator applied to each node for branching and key location during
search and updates. Finally, Section 5.1.3 presents the algorithms for equality and
range search.

5.1.1 The structure

BS-tree follows the structure of the B+-tree. Each internal node of the tree fits up to
N references to nodes at the lower level and up to N − 1 keys. Leaf nodes contain
rid-key pairs, where a record-id (rid) is the address (potentially on the disk) of the
record that has the corresponding key value. We assume that keys are unique (if not,
rid is replaced by a pointer to a block that keeps the rid’s of all records having the
corresponding search key). The storage of the rid’s is decoupled from the storage
of the keys, i.e., they are stored in two different arrays, such that the rid array is
accessed only if necessary (i.e., only if the key is found and we need access to the
corresponding record). Similarly, the storage of keys in an internal node is decoupled
from the storage of node (memory) pointers, to facilitate fast search, as we explain
later. Each leaf node hosts a node pointer to the next leaf; i.e., the leaves of the tree
are chained based on the total order of the keys. Chaining is used for the efficient
support of range queries as the results of such queries should be in consecutive tree
leaves. For the BS-tree nodes we use a value of N that facilitates fast and parallel
search, as we will explain later. For the efficient handling of updates, we allow gaps



(i.e., unused slots) in nodes, similarly to previous work [60, 64, 65].
Figure 5.1 shows an example of a BS-tree, where each node holds up to N−1 = 4

keys. Each non-leaf node is shown as an array of N node pointers (bottom) and N−1
keys (top) that work as separators. All keys in the subtree pointed by the i-th pointer
are strictly smaller than the i-th key and greater than or equal to the (i−1)-th key (if
i > 0). Any unused key slots at the end of each node carry a special ∞ value, which
is a MAXKEY value, larger than the maximum possible value in the key domain.

Basic Structure

52 104

11 20 31 ∞ …

2 5 8 ∞ 11 13 14 18

61 75 81 96

164 ∞

232 245 258 ∞

258 260 261 ∞…

Figure 5.1: Example of BS-tree

5.1.2 Search within a BS‐tree node

So far, besides the use of MAXKEY (i.e.,∞) values for unused slots at the end of each
node, there are no differences between the BS-tree and the B+-tree. We now elaborate
on the first major difference, which is the implementation of branching at each node
of the BS-tree, i.e., selecting the next node to visit. Traditionally, at each visited node,
starting from the root, finding the smallest key which is strictly greater that the query
key k is done either by binary search or by linearly scanning the entries until we find
the first key greater than k. Both these approaches incur significant CPU cost due to
branch mispredictions.

We propose an efficient implementation of the successor operator applied to each
node along the search path, which does not involve search decisions. We denote by
succ> the operator that finds the smallest key position which is strictly greater that
the query key k (used in non-leaf nodes) and by succ≥ the finding of the smallest
key position which is greater than or equal to k (used in leaf nodes). For example,
in Figure 5.1, succ>124(root) = 2, as the smallest key which is greater than 124 is at
position 2. This means that if we are looking for key 124, we should follow the node
pointer at position 2 of the root. In general, succ> is the most frequently applied



operation during search, as we use it on each non-leaf node along the path from the
root to the (first) leaf node that includes the search result.

Node operations We first define and outline the operations that need to be applied
at tree nodes during search:

• least greater than, denoted by succ>: find the position of the smallest key which
is strictly greater that the query key (for equality search) or the first qualifying
key in the query key range such as klow < x ≤ khigh.

This operation is applied to non-leaf nodes during search and possibly to the
first visited leaf by a range query.

• least greater than or equal to, denoted by succ≥: find the position of the smallest
key which is greater than or equal to the query key (for equality search) or the
first qualifying key in the query key range. This operation is applied to the leaf
node visited by the search.

Our approach exploits data parallelism (i.e., SIMD instructions) and does not
include if-statements or while statements with an uncertain number of loops. The
implementation of succ> is based on the following lemma:

Lemma 5.1. Let v be a node and k be the search key. Then, succ>k(v) = |{x : x ∈
v.keys ∧ k ≥ x}|, where |S| denotes cardinality of S.

Lemma 5.1 basically states that the position in node v that corresponds to the first
key greater than k equals the number of keys in v which are smaller than or equal
to k. The proof is straightforward given that (i) they keys in v are sorted and (ii)
the unused keys at the end of the node all have value MAXKEY, which is always
greater than k. Based on Lemma 5.1, succ>k(v) can be implemented by each of the
code Snippets 5.1 and 5.2 (the second one parallelized with SIMD instructions).

The code snippets do not include if-statements and do not incur branch mispre-
dictions. CAPACITY is the (fixed) capacity of the node, so the number of iterations
of the for-loop is hardwired; all these favoring data parallelism.

Similarly, the implementation of succ≥k(v) is based on the following lemma:

Lemma 5.2. Let v be a node and k be a search key. Then, succ≥k(v) = |{x : x ∈
v.keys ∧ k > x}|, where |S| denotes cardinality of S.



Algorithm 5.1 Counting search

1 int succG (Node *v, int skey) {

2 int count = 0;

3 for(int i=0; i<CAPACITY; i++)

4 count += (skey >= v->keys[i]);

5 return count;

6 }

Algorithm 5.2 SIMD-based counting search (AVX-512)

1 int succG_SIMD(Node *v, int skey) {

2 int count = 0;

3 __mmask8 cmp_mask = 0;

4 __512i vec,Vskey = _mm512_set1_epi64(skey);

5 for(int i = 0; i < CAPACITY; i += 8) {

6 vec = _mm512_loadu_epi64((__512i*)(v->keys+i));

7 cmp_mask = _mm512_cmpge_epu64_mask(Vskey, vec);

8 count += _mm_popcnt_u32((uint32_t) cmp_mask);

9 }

10 return count;

11 }



and the same code snippets can be used, by replacing comparison (skey >= v->keys[i])

by (skey > v->keys[i]) and _mm512_cmpge_epu64_mask by _mm512_cmpgt_epu64_mask.
The experiment of Figure 5.2 illustrates the efficiency of our data-parallel succ>

compared to traditional ways for branching in multiway trees. We created a random
array of 64-bit unsigned integers that simulate the array of keys in a full BS-tree
node, with values selected uniformly at random from the entire range [0, 264 − 1].
Then, we performed 1 million random successor (i.e., branching) operations to the
array and measured the throughput (in millions operations per second) of four im-
plementations1 of the operation:

• Binary: use of (non-recursive) binary search

• Linear: scan data from the beginning until successor is found

• Counting: count-based successor in a for-loop (Snippet 5.1)

• SIMD‐based: count-based successor using SIMD (Snippet 5.2)

We tested various sizes of the array, modeling different key-array sizes in a BS-
tree node. We used array sizes that are multiples of 8, which allows us to take
full advantage of SIMD-parallelism. Based on the results, binary search significantly
outperforms linear scan in large arrays, but the difference is marginal in small arrays.
This is expected as the number of comparisons by linear scan is linear to the array
size, whereas binary search incurs a logarithmic number of comparisons. While being
faster than linear scan, counting search (Snippet 5.1) also does not benefit from the
increase of the array size. Still, it outperforms binary search for array sizes up to 64.
This performance is due to the absence of branch instructions, as previously discussed.
Additionally, the design of this technique allows the compiler to make optimizations
at the assembly level, enhancing the search process through autovectorization and
substituting certain instructions by SIMD operations.

Observe the excellent performance of SIMD-based search (Snippet 5.2) for all array
sizes, with the exception of 256. Compared to all other methods with black-box com-
pilation, it becomes clear that custom vectorization can offer significant advantages.
By tuning the capacity of BS-tree nodes, we can achieve the maximum throughput
increase via vectorization compared to traditional implementations. Specifically, for
64-bit keys, the optimal key-array capacity is 16, which achieves 4x performance

1See Section 5.6 for our experimental setup.



improvement over binary search, in line with the theoretical expectation (log16 16 vs.
log2 16). As a final note, Snippet 5.2 has double throughput for array sizes 8 to 32
compared to the code produced by compiling Snippet 5.1.
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Figure 5.2: Successor search techniques

5.1.3 BS‐tree search

Algorithms 5.3 and 5.4 show how the BS-tree is searched for (i) equality queries and
(ii) range queries. For equality, we traverse the tree by applying a succ>k(v) operation
at each non-leaf node v. At the reached leaf v we apply a succ≥k(v) operation to find
the first position r in the leaf having a key greater than or equal to k. If v.keys[r]
equals k, then the record at position r is returned; otherwise, k does not exist. Equality
search requires one succ> or succ≥ operation per node along the search path.

For range queries, assume that we are looking for all keys x, such that k1 ≤ x ≤ k2.
We traverse the tree using succ>k1 operations to find the first leaf that may contain a
query result. In that leaf, we apply a succ≥k1 operation to locate the position r1 of the
first qualifying key. To find the end position r2 of the query results, starting from the
current leaf v, we search for the leaf which includes the first key greater than k2, by
performing one succ>k2 operation per leaf. Hence, range searches require one succ>

operation per node along the search path in search for k1 plus one succ> operation
for each leaf that includes range query results. For large query ranges whose results



Algorithm 5.3 Equality Search
Input : search key k, BS-tree root node v

Output : record-id corresponding to key k

1: while n is non leaf do
2: v ← node pointed by entry at position v[succ>k(v)]

3: end while
4: r ← succ≥k(v) ▷ leaf node
5: if v.keys[r] == k then
6: return record-id in v at positon r

7: else ▷ k does not exist
8: return NULL
9: end if

appear in numerous leaves, we apply an alternative implementation of range queries,
where one equality search is used to locate r1 and another equality search is then
applied to locate r2.

This is expected to be faster than Algorithm 5.4 if the height of the tree is smaller
compared to the number of leaves that include the query results.

As an example, consider searching for key 13 in the tree of Figure 5.1. A succ>13

operation on the root will give position 0, as there are 0 keys smaller than or equal
to 13, so the first pointer of the root will be followed. Then, the succ>13 operation on
the visited node will return 1, which means that we then visit the 2nd leaf, where
succ≥13 is applied that returns 1, i.e., the position of 13 in the leaf. A range search
for keys in [13, 17] first locates 13 and then finds the upper bound 18 in the same
leaf after applying succ>17. Another example about range query, find records with
keys in [13, 22), we apply the same search (i.e., find the smallest key larger than 13 at
non-leaf nodes, find the smallest key greater than or equal to 13 at the leaf node) to
locate the first query result. From thereon, we scan the node and its siblings (using
the chain pointers) and output results as long as they are within the query range. To
minimize comparisons, at each leaf we can search for the first key which is greater
than the end of the query range.



Algorithm 5.4 Range Search
Input : search keys k1, k2, BS-tree root node v

Output : record-ids of keys x, where k1 ≤ x ≤ k2

1: while n is non leaf do
2: v ← node pointed by entry at position v[succ>k1(v)]

3: end while
4: r1 ← succ≥k1(v)]

5: while (r2 ← v.keys[succ>k2(v)]) == N do
6: v ← nextleaf(v) ▷ next to v leaf

7: if v == NULL then
8: break ▷ last leaf reached
9: end if
10: end while
11: return record-ids of keys from position r1 to position r2 (excl.)

5.2 Updates

Another important novelty of BS-tree is the handling of updates. As discussed, unused
key slots at the end of each node are filled with MAXKEY values; hence, uniqueness
is not a requirement for unused key positions. In addition, BS-tree does not require
the used key slots to be continuous from the beginning of the node. This means
that ‘gaps’ with unused key slots are allowed in a node. The key in a gap is the
same as the first subsequent non-gap key. By managing auxiliary information at each
node (i.e., number of used slots, bitmap indicating used slots), we can efficiently track
unused slots regardless of the data distribution within the node (see Figure 5.3 for
an example). In the rest of this section, we will show how deletions and insertions are
handled in the BS-tree. We will explain how our approaches minimize the overhead
of node modifications while maintaining high search performance.

5.2.1 Deletions

To delete a key, we first locate its position i in a leaf node, using the equality search
algorithm (discussed in Section 5.1.3). To conduct the deletion, we copy the key value
from position i+1 to position i and propagate it backwards to previous gap positions
in the node. If i is the last position in the leaf, we set v → keys[i]=MAXKEY. One



5 22 47 47 53 56 56 67 67 78 92 104 104 123 ∞ ∞Keys Array:
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Basic structure of leaf node m

Auxiliary information for leaf node m

Slot use:   10

Bitmap: 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 0

nextLeaf:   m+1

Figure 5.3: BS-tree leaf node structure

subtle point to note is that succ≥ may not give us the real position of the key k to be
deleted but may give us the first of a sequence of gaps that have key value equal to
k. For example, for deleting k = 56 in Figure 5.3, we apply succ≥(56) which gives us
position 5. Then, we find the range of all positions having 56 (i.e., [5,6]) and copy
into them the next value (i.e., 67). Finding all the positions can be done very fast
using bitwise operations. Figure 5.4 (top) shows the leaf node of Figure 5.3 after
deleting key 56. Algorithm 5.5 is a pseudocode for deletions to the BS-tree.

As in previous work [64, 39], we do not handle underflows and allow nodes with
fewer than 50% occupied slots. The reason is that insertions are anticipated to be
more frequent than deletions in workloads, so node merges or key redistributions are
not expected to pay-off in the long run. If a node becomes empty after a deletion, the
node is removed and the corresponding separator entry at its parent is also ‘deleted’
by copying the next key into it.

5.2.2 Insertions

Inserting a new key k to the BS-tree entails searching for the leaf node and the
position in it to place it. Search is conducted by applying succ>k operations starting
from the root and following the corresponding pointers. When we reach the leaf v
where in k should be inserted, we apply a succ≥k operation which finds the proper
slot in v to insert k. Then, we verify whether the slot i returned by succ≥k is occupied
by another key. This is done by a simple test. If v → keys[i] = v → keys[i + 1], then
we are sure that position i is free, so we can place k there and finish. For example,
assume that we want to insert key 55 to the leaf node of Figure 5.3. We apply a



5 22 47 47 53 67 67 67 67 78 92 104 104 123 ∞ ∞Keys Array:

References:

After deletion of 56

Slot use:   9

Bitmap: 1 1 0 1 1 0 0 0 1 1 1 0 1 1 0 0

nextLeaf:   m+1

r5 r22 r47 r47 r53 r67 r67 r67 r67 r78 r92 r104 r104 r123 - -

5 22 47 47 53 67 67 67 67 78 92 104 104 123 ∞ ∞Keys Array:

References:

After insertion of 52

Slot use:   10

Bitmap: 1 1 0 1 1 1 0 0 1 1 1 0 1 1 0 0

nextLeaf:   m+1

5 22 47 47 52 53 67 67 67 78 92 104 104 123 ∞ ∞Keys Array:

References:

r5 r22 r47 r47 r53 r67 r67 r67 r67 r78 r92 r104 r104 r123 - -

r5 r22 r47 r47 r52 r53 r67 r67 r67 r78 r92 r104 r104 r123 - -

Figure 5.4: Updates to BS-tree leaf node

succ≥k operation to the leaf, which will give us position 5. Since the next position (6)
has the same key, position 5 corresponds to a free slot (gap), hence, we have directly
put the inserted key 55 there. On the other hand, if the key at position i is different
compared to the key at position i + 1, this means that the position is occupied. In
this case, we first find the first position j after i, which is unused (i.e., a gap), and
right-shift all keys (and the corresponding record pointers) from position i to position
j − 1, to make space, so that key k can be inserted at position i. If there is no free
position after i, then we move one position to the left (left-shift) all keys and record
ids from position i until the first free position to the left of i. Figure 5.4 (bottom)
shows an example of inserting key 52. As the slot where 52 should go is occupied
by 53 and it is not a gap (the key following 53 is not equal to 53), we search for the
next gap, which is the position next to 53, right-shift 53 there and make space for
the new key 52. Algorithm 5.6 describes the insertion procedure to a BS-tree.

In case leaf v is full, then we conduct a split of v and introduce a new leaf node.



The existing keys in v together with k are split in half and distributed between the
two leaves. Instead of placing the distributed keys to the first half of each of the two
leaves, we interleave each key with a gap to facilitate fast insertion of future keys.
Proactive gapping is described in the next subsection.

5.2.3 Construction

We now describe the algorithm for building a BS-tree from a set of keys (bulk load-
ing). Like typical B+-tree construction algorithms, we first sort the keys to construct
the leaf level of the index. To facilitate fast future insertions, we do not pack the nodes
with keys, that is we leave free space to accomodate future insertions. Specifically,
if N is the capacity of a leaf node, we construct all leaf nodes by adding to them
the keys in sorted order; each leaf node takes α · N (key, record-id) pairs, where α

ranges from 0.5 (half-full nodes) to 1 (full nodes). We typically set α = 0.75. For
each leaf, instead of placing all keys at the beginning of the leaf and leaving (1−α)N

consecutive empty slots at the end of the node, we spread the entries in the leaf by
placing one gap (empty slot) after every 1

1−a
− 1 entries.2 For each leaf node (except

the first one) a separator key, equal to the first key of the leaf, is added to an array. For
each separator key, a node pointer to the previous leaf is associated to the separator.
Finally, a node pointer to the last leaf is introduced at the end of the array (without a
key value). After constructing the leaves, the (already sorted) array of separator keys
is used to construct the next level of BS-tree (above the leaves), recursively.

5.3 Key Compression

In real-world database applications that rely on in-memory indexing, minimizing
resource utilization is crucial for supporting large-scale addresses. Taking into con-
sideration this challenge, we propose a variant of BS-tree that focuses on reducing
the memory footprint while aiming to have as little impact as possible on search effi-
ciency. Previous work [40] has introduced a novel approach to optimizing B-trees in
main-memory databases through key compression using fixed-size partial keys. This
method specifically aims to mitigate cache misses, which are a common bottleneck
in tree traversal operations, while simultaneously achieving a significant reduction in

2Gaps between consecutive key values (for integer keys) are not introduced.



memory consumption. However, reliance on partial keys necessitates a decompression
mechanism when their bit representations lack uniqueness, potentially introducing
overhead during search operations. To avoid the trade-off between memory efficiency
and performance, we propose a novel method - to our knowledge - that eliminates
issues related to reconstruction. For BS-tree, we opt for a simpler key compression
technique, which incurs minimal search overhead.

For each node v, we store in the node’s auxiliary information (see Figure 5.3)
the first key v.k0 of the node and replace the v’s key array (of size N) by an array
where each original key k is replaced by the difference k − k0. This allows us to
potentially double or quadruple the size of the array if the differences occupy much
less space than the original keys. If N = 16 and the original array stores 64 bits, it
may potentially be replaced by an array of N = 32 32-bit differences or N = 64 16-bit
differences. Since the keys in a node are ordered, we expect the differences to be small,
especially in leaf nodes, so the space savings due to the reduction in the number of
nodes are expected to be significant. To achieve optimal performance of our data-
parallel succ> implementation, we set the key array size to 1024 bits, so N can be
16, 32, or 64. Another benefit of compression is that a potentially radical decrease in
the number of (leaf) nodes may reduce the number of tree levels, rendering the tree
faster.

The variability in the capacity of nodes necessitates some modifications to the
auxiliary information at each node. Previously, 8 bytes were sufficient to store all
relevant details about slot use, the bitmap of a node, and the next leaf reference. While
the number of bits for slot use and the next leaf reference can still be represented as
before, this is not the case for the bitmap. Since the bitmap corresponds to the total
number of entries in a node, we have opted to allocate 64 bits for this purpose, which
is sufficient for any type of leaf. We now discuss the impact of this scheme in the tree
operations.

Tree construction Our goal is to construct the tree in one pass over the sorted keys
and to result in leaf nodes having 75% occupancy (except when we are dealing with
regions of sequential key values), while achieving the best possible compression. For
this, we begin by checking whether the leaf can be filled with 16-bit differences for
the keys. If this is not feasible, we reattempt the process by checking if half of the
keys can be stored as 32-bit differences. If this attempt also fails, we conclude by
storing the exact 64-bit keys.



Search To apply succ>k at a node v we first compute k′ = k − v.k0, where v.k0 is
the first key value of v, stored explicitly in v’s meta-data. Then, we apply succ>k′ to
the node to find the position of the node pointer to follow. The same procedure is
applied at the leaf nodes for succ≥k; the position of k′ = k − v.k0 corresponds to the
position of k, or if succ≥k′ returns NULL, k does not exist.

Insert We can directly use the BS-tree insertion algorithm to insert a new key k, by
first running the search algorithm discussed above to find the leaf v and the position
in v whereto insert k and then store the difference k− v.k0 there. Keys can be stored
exactly only as first keys in new nodes that are constructed after a split. The new
nodes after a node v is split can be of the same type as v, or they can be further
compressed as they include fewer entries than v with the first and the last one having
smaller differences.

Delete Deletion is not affected by key compression. When the key to be deleted is
found (represented exactly or by its difference to k0) at the corresponding leaf node,
we simply copy into it the value of the next key, or MAXKEY if the deleted key is
the last one in the leaf node. In compressed nodes, MAXKEY is the maximum value
that can be represented using all available bits. If the first key of a node is deleted,
we do not change k0 (as it is not stored in a slot of the array) and keep in the slots
the differences to k0.

5.4 Implementation Details

This section presents some implementation details of the BS-tree that have a signifi-
cant impact in its performance in practice.

Node size and structure. As in previous work [67, 43, 45, 46, 54, 47, 53, 55, 56, 60,
64, 66], we aim at indexing large keys, each being a 64-bit unsigned integer. To take
full advantage of our SIMD succ> implementation, each node stores a maximum of 16
entries (see the experiment of Figure 5.2); based on this, we allocate 16× 64 = 1024

bits for the keys of each node. Hence, the keys of each node (internal or leaf) fill
two cache lines (each cache line can store 64 bytes). This means that for succ>, we
perform 2 SIMD instructions per node by loading the keys at 2 registers of 512 bits (8
keys at each register). 1024 bits are also allocated for keys in the compressed CBS-tree
nodes, so a compressed key array may have 32 32-bit entries (key differences) or 64



16-bit entries. For gap management, we use a 32-bit variable which keeps the slot
use and bitmap of each node. For the leaves, we have an additional 32-bit field for
the next leaf address. As discussed in Section 5.2.3, gaps are added to the tree nodes
proactively at construction time, to allow efficient ingestion of insertions. Since we
anticipate insertions to affect mainly the leaves, in practice, we use a much smaller
percentage of gaps at inner nodes (one), to keep the height of the tree small.

Memory management. In this section, we will describe the structure of our BS-
tree. The BS-tree is an implicit structure that uses only keys (no key-value store)
with the goal of improving memory consumption, operation performance, and cache
efficiency. As we have already determined, the optimal block size for our index is 16.
To store the BS-tree in memory, we utilize two main structures: one to store the inner
nodes and another for the leaf nodes. Each inner node consists of two arrays with 16
entries. The first array holds 64-bit keys, while the second contains 32-bit references
to nodes. 32 bits are sufficient for the references because they are in fact offsets to
fixed-length slots in memory arrays allocated for nodes (one for inner nodes and
one for leaf nodes). The auxiliary data for each node are put in a separate dedicated
array aligned with the node arrays. Hence, each inner node has a size of 192 bytes,
which fits into 3 cache lines. Our tested BS-tree implementation only has keys and
not values (i.e., record-ids) in its leaves, so a leaf node contains a single array of 16
64-bit keys, with each leaf node occupying 128 bytes, fitting into 2 cache lines. The
inner nodes are stored in a contiguous array, aligned to Transparent Huge Pages (2
MB) for efficiency. The leaf nodes are also stored in a contiguous array, but their
alignment depends on the array size. If the array is smaller than 3 GB, we align it
using huge pages. Otherwise, it is aligned per cache line (64 bytes). Alignment plays
a crucial role in optimizing both cache efficiency and the use of SIMD operations,
making it a key factor in the performance of BS-tree. By aligning data to cache lines,
we minimize cache misses and ensure that the CPU can retrieve entire nodes in a
single memory access, significantly speeding up operations. By aligning inner nodes
to huge pages (2 MB), we reduce translation lookaside buffer (TLB) misses. For larger
datasets, aligning leaf nodes per cache line helps manage memory effectively without
sacrificing access speed. We also make use of __builtin_prefetch, a compiler intrinsic
that allows us to pre-load data into the cache before it is needed, reducing latency. By
prefetching data in anticipation of future operations, we ensure that memory access
is even more efficient, further boosting the performance of key operations such as



searches and inserts. By combining cache-line and SIMD-friendly alignment, along
with appropriate use of __builtin_prefetch, BS-tree allows for SIMD acceleration, and
reduces memory access latency, leading to significantly better overall performance.

Compress or not? The compressed version of BS-tree with variable-capacity nodes
(Section 5.3) may reduce the memory footprint of the index and improve its per-
formance, but also comes with the overhead of explicitly keeping the first key of
a node, which does not pay off for nodes having 64-bit differences that cannot be
compressed.3 Hence, we employ a decision mechanism for choosing between the con-
struction of a BS-tree or a compressed BS-tree, based on the input data. The key
idea is to quickly and easily assess whether a dataset can be stored using compressed
information (i.e., keys smaller than 64 bits). This mechanism operates during the
construction phase, before the leaf nodes are created. Before bulk-loading the tree,
we virtually split the sorted keys input into segments of 13 keys each, subtract the
smallest key from the largest key in each bucket, and calculate the number of lead-
ing zeros. After performing these calculations for all segments, we take the average
number of leading zeroes. If this average is greater or equal to 32 bits, we conclude
that the dataset can benefit from a compact BS-tree compression, and we go ahead
with its construction. Otherwise, we create a standard (uncompressed) BS-tree. The
selection of 13 keys is not arbitrary, as we put 25% gaps at each leaf, and the 13th key
serves as the separator for the node. By using this mechanism, we avoid manually
choosing which version of the BS-tree to implement, instead allowing our algorithm
to automatically select the appropriate We found out that compression is not effective
for inner nodes, so our final compressed B+-tree implementation has uncompressed
inner nodes and compressed leaves.

5.5 Concurrency control

A wide array of concurrency control techniques has been proposed for the B+-tree
and similar indices. Lock coupling [168, 117] is among the earliest techniques en-
abling concurrent operations in a multi-threaded environment. The core principle of
this technique is to hold a lock on the current node only long enough to ensure a safe
transition to the next node, at which point the lock is acquired for the next node and

3As we want all leaf nodes to have the same fixed size (for alignment purposes), we do not allow
the same BS-tree to have both uncompressed and compressed leaves.



released for the previous one. However, a key drawback is that locks must be contin-
ually acquired and released at each step, which can impair performance. The B-link
tree [169] introduces right-sibling pointers at each node, connecting to neighboring
nodes on the same level. This pointer mechanism ensures that traversals proceed ac-
curately even when the tree is being modified, though it introduces increased memory
overhead and requires additional operations during node splits. Bronson et al. [170]
proposed a concurrency technique for binary search trees that combines fine-grained
locking with lock coupling and logical deletions. This approach allows for efficient
concurrent operations, including search, insertion, and deletion, while minimizing
contention. The Bw-tree’s concurrency control mechanism [43, 171] is lock-free, em-
ploying a mapping table that provides an indirection layer for atomic, non-blocking
updates. Delta records allow for incremental modifications without locking. Despite
these advantages, this technique’s drawbacks include delta chain overhead, complex-
ity, and increased memory usage. Read-Optimized Write Exclusion (ROWEX) [149]
is another concurrency protocol, employed in ART [53] and HOT [55]. It supports
non-blocking reads, requiring locks only for writes. Writers must ensure consistency
by using atomic operations. While promising, this approach can be challenging to
implement across various data structures and often demands significant code adjust-
ments. Leis et al. [172, 149] introduced the Optimistic Lock Coupling (OLC) technique
for B-trees and B+-trees, which is straightforward to implement, highly efficient, and
delivers strong performance. In OLC, when a thread seeks to read or modify a node,
it first acquires an optimistic read lock, allowing it to traverse the tree while maintain-
ing a local copy of the node’s state. For updates, the thread verifies whether the node
has been modified by another thread since it was read. If not, it applies the update
and commits atomically. If a conflict arises (i.e., another thread modified the node),
the thread discards its changes and restarts the operation from the root. Our current
implementation of BS-tree does not include a concurrency control mechanism. Since
our BS-tree is essentially a B+-tree, OLC is the most suitable and efficient concurrency
technique for it and we plan to implement it in the future.

5.6 Experiments

In this section, we experimentally compare BS-tree and its compressed version to
alternative main-memory indices (learned and non-learned). As in previous work [55,



53], we have built and compared indices for key data only; record ids or references are
not stored in each index, but the objective of each method is to locate the position(s) of
the searched key(s). The implementation of all methods is in C++ and compiled with
gcc (v13) using the flags -O3 and -march=native. The experiments were conducted
on a system with an 11th Gen Intel® Core™ i7-11700K processor running at 3.60
GHz, 128 GB of RAM, and AVX 512 support. The operating system used was Ubuntu
20.04.

5.6.1 Setup

Datasets. We ran our tests on standard benchmarking real datasets used in previous
work [156, 157, 158]; each on consists of unsigned 64-bit integer keys (potentially
reduced to 63-bit, as HOT cannot handle 64-bit keys). In Amazon BOOKS [156, 157],
each key represents the popularity of a specific book. In FB [156, 157, 173], each key
is a Facebook user-id. OSM [156, 157]

contains unique integer-encoded locations from OpenStreetMap. GENOME [158,
174] includes loci pairs from human chromosomes. PLANET [158, 175], a planet-wide
collection of integer-encoded geographic locations compiled by OpenStreetMap. We
preprocessed the datasets to eliminate any duplicates. According to [158, 66], OSM,
FB, GENOME, and PLANET are complex real-world datasets that can pose challenges
for learned indices. In contrast, the key distribution of BOOKS is easy to learn. We
did not conduct experiments using synthetic datasets with common distributions, as,
according to [156], it would be trivial for a learned index to model such distributions.

Competitors. We compare our proposed BS‐tree and its compressed version, denoted
by CBS‐tree, with five updatable learned and non-learned indices, for which the code
was publicly available by the authors (we thank them!). The selection was done based
on the superiority of these indices compared to alternative methods (e.g., ART [53]
and other updatable learned indices).

Non‐learned Indices. STX library [176] is a fully optimized C++ implementation of a
main-memory B+-tree. We use the set-based implementation from STX, which does
not store values in the leaf nodes. For its construction, we used its fast bulk-loading
method. We used the default block size of STX (256 bytes), so each leaf node holds
32 keys (32 × 8 = 256 bytes), and each inner node holds 16 keys and 16 pointers
(16 × 8 + 16 × 8 = 256 bytes). We used two versions of the STX tree: the first is the



original code, referred to as B+‐tree, while the second version creates 25% empty
space at the end of each leaf node, denoted by Sparse B+‐tree (for fairness, as our
BS-tree also proactively introduces gaps at its construction to support fast insertions).
STX supports 264−1 values in keys. The implementation of HOT [177, 55] stores only
keys and does not support bulk-loading. However, we observed that by pre-sorting
the data, HOT’s construction time improves and we also get a more efficient trie.
The HOT code release does not include a built-in range query implementation, so we
implemented one, following BS-tree’s logic. HOT cannot handle keys greater than
263 − 1, so we removed values exceeding this limit from certain datasets.

Learned Indices. ALEX [178, 60], LIPP [179, 64], and DILI [180, 65] are all learned
indices for key-values. To use them, for each dataset we used as value of each key the
key itself, during construction and insertions (writes). They all support bulk-loading.
ALEX and LIPP can handle 64-bit keys, i.e., (unsigned) integers up to 264 − 1. DILI
could not run on two of our five datasets.

Workloads. We used several different workloads used to measure throughput. First,
we randomly selected 150 million entries from each dataset for the construction phase.
where we sorted the data and applied bulk-loading (except for HOT, which, however,
benefits from sorting). For our workloads, we used 50 million keys, that are selected
randomly (i.e., queries and updates hit a random region of the space). Our workloads
are:

• Read‐Only (Workload A): 100% reads (equality searches).

• Write‐Only (Workload B): 100% writes (insertions).

• Read‐Write (Workload C): 50% reads, 50% writes.

• Range‐Write (Workload D): 95% range searches, 5% writes.

• Mixed (Workload E): 60% reads, 35% writes, 5% deletions.

5.6.2 Construction Time and Memory Footprint

In this section, we compare all tested methods with respect to their construction cost
and memory footprint. From each dataset, we used 150 million keys to construct
each index. For the evaluation of the experiments we use datasets consisting of 150
million keys from Amazon Books, OSM, Facebook, Genome, and Planet datasets.



Most of our competitors support bulk loading (ALEX, LIPP, DILI, B+-tree), with
HOT being the only exception. However, we observed that if we first sort the dataset
before insertion, HOT achieves better construction times and creates a more efficient
index. Since all indices require the data to be sorted (or benefit from sorting), we
exclude sorting from the construction cost. Table 1 presents the construction times,
while Table 2 shows the memory footprints. The construction time of our BS-tree
also includes the decision-making mechanism (roughly takes 0.03 sec) on whether
we will construct a BS-tree or a CBS-tree (see Section 5.4). To calculate the memory
usage of each method, we utilize the C function getrusage4. Since all learned indices
essentially store 64-bit values together with the keys, we report half of their measured
memory requirements, to approximate the memory required just for the keys and the
models (and inner structure) that they use.

As expected, non-learned indices (except from the CBS-tree) have a stable con-
struction time and memory footprint, which is expected since their construction and
memory does not depend on data distribution. On the other hand, the construc-
tion time of learned indices can vary significantly, as different data distributions can
greatly affect them. As expected, the construction cost of the Sparse B+-tree is higher
compared to that of the B+-tree and the two versions of B+-tree there is also a similar-
scale difference in their memory footprints. As we will show later, Sparse B+-tree has
a performance advantage over B+-tree for any workload that includes write opera-
tions. Our BS-tree (and its compressed CBS-tree version) is faster to build compared
to B+-tree and Sparse B+-tree mainly due to our better memory management (static
pre-allocation vs. dynamic allocation) and because we use offset addressing instead
of memory pointers (see Section 5.4).

CBS-tree has the smallest memory footprint than all methods for FB, GENOME,
and PLANET because of its high compression effectiveness, which also has a positive
impact to the construction time. On the other hand, CBS-tree occupies more space
than BS-tree on BOOKS because the distribution of keys there does not provide many
compression opportunities; in this case, most leaf nodes store 64-bit differences and
also need to explicitly store the 64-bit key of the first key, which renders the size
of the index even larger than that of BS-tree. Note that for BOOKS and OSM, our
decision mechanism (see Section 5.4) chooses to construct a BS-tree while for FB,
GENOME, and PLANET it decides to construct a CBS-tree.

4https://man7.org/linux/man-pages/man2/getrusage.2.html



HOT, requires significantly more time to build compared to our methods and
B+-tree. The main issue with HOT is that it is a top-down trie and lacks a bulk-
loading mechanism, requiring keys to be inserted one at a time. HOT uses slightly
less memory than BS-tree; however, our CBS-tree has a significantly smaller memory
footprint than HOT in three out of the five datasets.

Regarding learned indices, DILI’s offline construction time is significant, as the
algorithm first needs to build a BU-tree on disk and then read it to construct DILI.
ALEX and LIPP also have high construction time compared to the versions of B+-tree
and BS-tree, due to the overhead of training models that predict key positions. Note
that all versions of B+-tree and BS-tree have smaller memory footprints compared
to the learned indices. Among learned indices, LIPP is the fastest one to construct,
because it does not readjust the models when conflicts occur (two or more keys are
mapped to the same position). To address conflicts, LIPP creates new nodes, speeding
up bulk-loading. ALEX has higher construction time because it frequently adjusts its
learned models to preserve key prediction accuracy. This results in computationally
expensive node splits and reorganizations. LIPP’s downside is its large memory foot-
print, caused by creating new nodes during conflicts. Node reorganization in ALEX
requires less memory. The significant memory overhead of LIPP has also been coined
in other experimental studies [158, 66].

In conclusion, the BS-tree has low construction cost, with the B+-tree exhibiting
comparable performance alongside a very small memory footprint. Additionally, the
CBS-tree achieves the fastest construction time and consumes from 56% to 94% less
memory than all methods in FB, GENOME, and PLANET. Our results align with
the findings [158], indicating that memory efficiency is not a distinct advantage of
updatable learned indices.

5.6.3 Throughput
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Figure 5.5: Workload A : Read Only (100%)
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Figure 5.6: Workload B : Write Only (100%)
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Figure 5.7: Workload C : Read (50%) - Write (50%)
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Figure 5.8: Workload D : Range (95%) - Write (5%)

Next, we evaluate the throughput of all methods on the five workloads described
in Section 5.6.1. As mentioned, DILI cannot run on BOOKS and OSM datasets, so we
include an empty bar labeled “DILI: Not Running” to denote its unknown through-
put.

Figure 5.5 presents the throughput (millions of operations per second) of all
methods for Workload A (read-only). BS-tree and CBS-tree outperform all com-
petitors across the board except for BOOKS, where ALEX is marginally faster than
BS-tree. The excellent performance of ALEX on BOOKS is due to its smooth distri-
bution which is easy for ALEX to learn. In general, learned indices are known to
perform well when applied on easy-to-learn CDFs. On average, our methods have a
significant performance gap compared to the nearest competitor. Specifically, BS-tree
is roughly 2x faster than HOT on OSM, 1.5x faster than LIPP on FB and GENOME,
and 1.5x faster than DILI on PLANET. CBS-tree is about 14% slower than ALEX on
BOOKS, but much faster than previous work on all other datasets and even faster
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Figure 5.9: Workload E : Read (60%) - Write (35%) - Deletions (5%)

than BS-tree on FB, GENOME, and PLANET, while having a much smaller mem-
ory footprint. CBS-tree exploits the highly compressible keys of FB, GENOME, and
PLANET to drastically reduce the capacity of leaf nodes and the overall space re-
quired for the index. This increases the likelihood that multiple searches hit the same
leaves, exploiting the memory cache, as we will also show in the next set of exper-
iments. LIPP and DILI outperform ALEX on datasets other than BOOKS because
their models are precise (i.e., ALEX applies exponential search at the last mile, when
its prediction is imprecise).

For Workload B (write-only), as Figure 5.6 shows, BS-tree outperforms all meth-
ods, while CBS-tree loses to ALEX only on BOOKS. Compared to LIPP and DILI,
ALEX performs worse on the other four datasets because It frequently needs to
readjust its learned models to sustain key prediction accuracy, resulting in compu-
tationally expensive node splits and reorganizations. LIPP is more robust than other
learned indices due to its accurate prediction mechanism, which reduces the need for
frequent node splits or rebalancing due to the more appropriate placement of keys
during its construction. Observe that the Sparse B+-tree is faster than the B+-tree
because it requires much fewer splits. CBS-tree is slower than BS-tree, because splits
are more costly for compressed nodes.

The results on Workload C (read-write) are presented in Figure 5.7. In this work-
load, our algorithms outperformed all competitors across all datasets. In general,
the performance of all methods stands between that of Workload A (read-only) and
Workload B (write-only), which is expected.

For the results of Workload D (range-write), see Figure 5.8. The results are similar
compared to Workload A (read-only) since Workload D is read-heavy. Range queries
retrieve 153 keys on average. ALEX has a better performance compared to other
learned indices for range queries, as the structures of LIPP and DILI are not optimized
for range scans. ALEX can have large nodes with more sequential keys, allowing



it to avoid jumping to sibling nodes. HOT is also not optimized for range scans,
therefore its low compared to other workloads. On the compressible datasets (FB,
GENOME, PLANET), CBS-tree outperforms BS-tree due to the smallest number of
memory accesses it requires to obtain the results of range queries, as it reads numerous
consecutive compressed leaf nodes.

Figure 5.9 shows the results using Workload E (read-write-delete). The results
are similar to those for Workloads A and B. BS-tree and CBS-tree outperform all
competitors across all datasets except for BOOKS, where CBS-tree is slightly inferior
to ALEX. Deletions do not impose an overhead to BS-tree and all other methods.

5.6.4 Performance Counters

Besides throughput, we also compared all methods with respect to various perfor-
mance counters. The metrics used for comparison include instructions executed, cy-
cles, mispredicted branches, and misses in L1, LLC (Last Level Cache), and TLB
(Translation Lookaside Buffer) misses. As representative datasets, we selected BOOKS
and FB; ALEX exhibits best on BOOKS, while on FB our methods (BS-tree and CBS-
tree) have the best throughput compared to the competitors. We chose to measure
Workload C, as it is update-heavy and the unpredictable nature of writes can lead to
numerous splits, stressing the indices. To calculate these metrics, we utilized Leis’s
perf_event code [181]. As mentioned, DILI cannot run on BOOKS. The average per-
formance measures per operation for all methods are presented in Tables 5.3 and
Table 5.4 for BOOKS and FB, respectively.

BS-tree needs the smallest number of instructions and cycles, with CBS-tree be-
ing closed to the runner up. This demonstrates that our algorithms are simple and
efficient, benefiting from the use of SIMD instructions and alignment, which reduce
the number of cycles and instructions required for each task. In terms of mispre-
dicted branches, our algorithms also have the lowest values for both datasets, which
is expected since our search code is branchless. All mispredicted branches in BS-tree
arise from the insertions. Regarding L1 and LLC, on average, our algorithms incur
16 cache misses, which is consistent with our expectation. Specifically, the height of
our trees is 6 and their fanout is 16; we encounter 2 cache misses per tree level and
2 cache misses at the leaf level (2× 6 + 2 = 14 misses), with the remaining 2 misses
caused by insertions. For BOOKS, LIPP achieves the best performance in terms of



L1 and LLC cache misses, though our algorithms are close in comparison. For the
FB, DILI performs the best for L1 misses, while CBS-tree achieves the best overall
performance. Overall, we expected to have slightly higher L1 and LLC misses due
to our tree’s greater height compared to learned indices. Lastly, in terms of TLB
misses, our algorithms exhibit outstanding performance relative to our competitors.
This can be attributed to our use of huge pages (see Sec. 5.4). Overall, the perfor-
mance counters show that our BS-tree and CBS-tree are fully optimized via the use of
SIMD instructions, huge pages, and branchless code, aimed at creating an updatable,
efficient, and cache-friendly index.

5.6.5 Summary of Experimental Findings

In summary, BS-tree and CBS-tree exhibit excellent and robust performance for dif-
ferent workloads and different datasets of varying distribution, being superior than
all competitors in most cases. Note that our decision mechanism, which imposes a
small overhead in the construction (up to 10% of the construction cost) decides au-
tomatically which of BS-tree or CBS-tree to build for a given dataset. The decision
is BS-tree for BOOKS and OSM and CBS-tree for FB, GENOME, and PLANET. Al-
though CBS-tree is not superior to BS-tree on all workloads over FB, GENOME, and
PLANET, their difference of the two is not high on these datasets, while CBS-tree is
much faster to build and has a much lower memory footprint.

Regarding updatable learned indices, our study shows that they can be outper-
formed by data-parallel non-learned indices optimized for main-memory, such as our
BS-tree. From the tested methods, LIPP appears to be superior and more robust than
ALEX and DILI, except for range workloads, where ALEX performs best. In addi-
tion, their construction cost is high and they have large memory footprint (except for
ALEX) compared to non-learned indices. Even on the BOOKS, which has a easy-to-
learn key distribution, our BS-tree demonstrates competitive performance in searches
and range scans compared to ALEX and outperforms it in all other workloads.

5.7 Conclusions

We proposed BS-tree, an efficient main-memory implementation of the B+-tree that
uses a simple and intuitive data-parallel implementation for branching at each level



during search and update operations. We propose a novel way for implementing
gaps (unused slots) at nodes by copying into them the next used key, which does
not affect the functionality and efficiency of our branching operator. Finally, we pro-
pose a compression mechanism for BS-tree nodes that allows them to have variable
capacity based on the allowed room for compression. Our experimental evaluation
demonstrates the superiority of BS-tree compared to open-source state-of-the-art non-
learned and learned indices, with respect to construction time, memory footprint, and
throughput for various workloads that include queries and updates.



Algorithm 5.5 Deletion in BS-tree
Require: key k, BS-tree root node v

1: find leaf v and position r by running lines 1-3 of Alg 5.3
2: if v.keys[r] ̸= k then
3: return FAIL
4: end if
5: bitmap← v.bitmap

6: if r == N − 1 then ▷ last key in node
7: bitmap← bitmap⊕ 0x0001

8: replicasOfKey ← _tzcnt(bitmap)

9: for i← 0 to replicasOfKey − 1 do ▷ propagate backwards

10: v.keys[r − i]←MAXKEY

11: end for
12: else ▷ r is not the last position in the leaf

13: bitmap← bitmap⊕ (0x8000 ≪ r)

14: replicasOfKey ← _lzcnt(bitmap)

15: nextV alidKey ← v.keys[r + replicasOfKey + 1]

16: for i← 0 to replicasOfKey do ▷ propagate backwards

17: v.keys[r + i]← nextV alidKey

18: end for
19: bitmap← bitmap⊕ (0x8000≫ (r + replicasOfKey))

20: end if
21: v.slotuse← v.slotuse− 1

22: v.bitmap← bitmap

23: return SUCCESS



Algorithm 5.6 Insertion in BS-tree
Require: key k, BS-tree root node v

1: compute leaf v and position r by running lines 1-3 of Alg 5.3
2: if v.slotuse < N then
3: bitmap← ¬v.bitmap

4: if v.keys[r] == v.keys[r + 1] then ▷ r is an empty slot

5: v.keys[r]← k

6: bitmap← bitmap⊕ (0x8000≫ r)

7: else
8: keysForShift← _lzcnt(bitmap≪ r)

9: if keysForShift < N then ▷ empty slot to the right

10: shift right keysForShift keys of node v

11: v.keys[r]← k

12: bitmap← bitmap⊕ (0x8000≫ (r + keysForShift))

13: else ▷ empty slot to the left

14: keysForShift← _tzcnt(bitmap≫ (N − r − 1))− 1

15: shift left keysForShift keys of node v

16: v.keys[r − 1]← k

17: bitmap← bitmap⊕ (0x8000≫ (r − (keysForShift+ 1)))

18: end if
19: v.slotuse← slotuse+ 1

20: v.bitmap← ¬bitmap

21: end if
22: else
23: split leaf node v

24: end if



Table 5.1: Construction time (for 150 million keys)

Construction Time (sec)
Indices / Datasets BOOKS OSM FB GENOME PLANET

BS-tree 0.33 0.33 0.33 0.33 0.33
CBS-tree 0.35 0.32 0.18 0.20 0.18
B+-tree 0.39 0.39 0.39 0.39 0.39

Sparse B+-tree 0.50 0.50 0.50 0.50 0.50
HOT 15.61 16.65 16.56 16.23 15.33
ALEX 25.43 41.60 45.46 30.74 30.06
LIPP 9.58 9.31 6.98 7.01 7.05
DILI N/R N/R 1020 973 967

Table 5.2: Memory footprint (for 150 million keys)

Memory Footprint (GB)
Indices / Datasets BOOKS OSM FB GENOME PLANET

BS-tree 1.84 1.84 1.84 1.84 1.84
CBS-tree 2.03 1.75 0.55 0.80 0.51
B+-tree 1.41 1.41 1.41 1.41 1.41

Sparse-B+-tree 1.88 1.88 1.88 1.88 1.88
HOT 1.78 1.79 1.83 1.92 1.71
ALEX 2.73 2.77 2.77 2.73 2.73
LIPP 13.51 14.69 10.89 11.66 11.62
DILI N/R N/R 8.62 9.73 7.66



Table 5.3: Performance counters for BOOKS, Workload C

Workload C ‐ Dataset: BOOKS
Index Instr. Cycles Misp. Branches L1 Misses LLC Misses TLB Misses

BS-tree 204.97 836.28 1.03 16.27 16.12 0.6

CBS-tree 364.51 1182.3 1.02 16.59 18.6 0.06

ALEX 639.23 1211.55 5.21 21.48 23.11 2.53

LIPP 316.62 1061.88 1.66 13.98 15.69 3.53

HOT 816.32 1838.75 3.16 27.38 32.06 3.65

B+-tree 581.63 2534.51 11.21 33.62 38.26 4.13

B+-tree-gaps 539.17 2056.22 10.13 29.72 31.76 3.21

Table 5.4: Performance counters for FB, Workload C

Workload C ‐ Dataset: FB
Index Instr. Cycles Misp. Branches L1 Misses LLC Misses TLB Misses

BS-tree 205.27 841.82 1.03 16.32 16.16 0.6

CBS-tree 356.05 957.96 1.07 14.4 13.42 0.00
ALEX 1013.27 2704.73 7.06 38.21 57.67 4.17

LIPP 349.68 1197.82 1.52 16.23 17.68 4.28

DILI 326.99 1437.36 1.87 12.41 15.4 3.37

HOT 882.93 2019.86 4.09 29.35 33.68 3.99

B+-tree 584.45 2542.76 11.1 33.35 37.88 4.17

B+-tree-gaps 539.34 2047.34 10.16 28.74 30.89 3.24



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary of Contributions

6.2 Directions for Future Work

In conclusion, we present a summary of our significant contributions, along with
outlining potential paths for future research.

6.1 Summary of Contributions

In this dissertation, we studied parallel and in-memory indexing for temporal, spatial,
and relational datasets. Our goal was to design new indexing techniques using modern
parallel technologies to improve query efficiency and performance. Another primary
objective was to develop simple and effective methods for avoiding duplicate data
during partitioning. Avoiding duplicates is crucial as it enhances query performance
without requiring complex data structures or inefficient techniques.

Parallel Partitioning In‐Memory for Interval Joins. In the first part of this thesis,
we address the problem of interval joins. We proposed three partitioning strategies:
One2One, Temps, and Divs. These strategies use parallelism to improve the perfor-
mance of interval joins and can enhance both domain-based and hash-based par-
titioning techniques. We also performed experiments using real datasets to identify
the best strategy. The results showed that the Divs strategy is the most efficient and
makes the best use of the processor’s available cores.
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Parallel In‐Memory Evaluation of Spatial Queries. In the second part of this thesis,
we deal with challenges in managing spatial data. First, we focus on the spatial
intersection join, which is one of the most time-consuming and resource-intensive
queries. A well-known method for handling these queries is the partitioning-based
spatial join (PBSM) algorithm. We propose several optimizations to improve the PBSM
algorithm and highlight key parameters that greatly affect its efficiency. The first
important parameter is the number of partitions, which should be chosen so that
the extents of the resulting partitions are approximately one order of magnitude
larger than the extents of the rectangles. Another crucial parameter is the choice of
the sweeping axis (x or y), as selecting the wrong axis can effectively double the
cost of the join. Additionally, we suggest a parallel implementation of the algorithm,
which showed excellent scalability in our experiments. This confirms that parallelism
significantly improves the performance of spatial joins.

Next, we focus on creating a spatial index optimized for the most common queries,
such as range queries and spatial intersection joins. The goal is to design an index
that is highly efficient, minimizes the number of comparisons, and avoids generating
duplicate results. So, we introduced a secondary partitioning method specifically de-
signed for SOP indices, like grids. This method categorizes MBRs (Minimum Bound-
ing Rectangles) within each spatial partition into four distinct groups. By doing so,
it significantly reduces the number of comparisons required for spatial query evalu-
ations and completely avoids generating duplicate results that need to be eliminated
later. Additionally, we investigated methods to handle multiple range queries simulta-
neously, processing them in batches and leveraging parallel execution to improve per-
formance. Our approach is not limited to range queries, as it also effectively eliminates
duplicate results during spatial intersection joins. For both range queries and joins,
our techniques help avoid redundant computations, saving both time and resources.
The experimental results strongly validate our methods. Compared to the best-known
duplicate elimination techniques [21], our approach achieves superior performance.
Specifically, grids equipped with our method outperform other spatial indices, such as
quadtrees and R-trees, by up to one order of magnitude. Finally, spatial intersection
join costs were reduced by approximately 50%, thanks to our secondary partitioning
strategy and the optimized algorithms we designed for partition-to-partition joins.

BS‐tree: A data‐parallel B+‐tree for main memory. In the third part of this the-
sis, we focus in the optimization of a traditional relational data indexing, B+-tree. we



introduced the BS-tree, an efficient main-memory version of the B+-tree. By incorpo-
rating data-parallel branching, innovative gap-handling strategies, and node compres-
sion techniques. This work highlights how rethinking indexing structures can address
the demands of modern database workloads. We thoroughly compared our BS-tree
implementation with open-source versions of leading non-learned and learned indices
using popular real-world datasets. The results demonstrate that BS-tree, along with
its compressed version (CBS-tree), consistently delivers superior performance across
different query and update workloads, achieving throughput that is 1.5 to 2 times
higher than the best-performing alternatives from previous research. Our experiments
show that, in terms of construction time and memory footprint, BS-tree has a low
construction cost, with B+-tree demonstrating comparable performance and a very
small memory footprint. Additionally, CBS-tree achieves the fastest construction time
and uses 56% to 94% less memory than all other methods on compressible datasets.
Finally, performance counter experiments show that our BS-tree and CBS-tree are
fully optimized via the use of SIMD instructions, huge pages, and branchless code,
aimed at creating an updatable, efficient, and cache-friendly index.

In summary, this dissertation demonstrates how parallel and in-memory indexing
can enhance the performance of temporal, spatial, and relational queries. By focus-
ing on efficient partitioning, duplicate avoidance, and innovative data structures, we
achieved significant performance improvements across different domains. These con-
tributions highlight the value of combining parallel technologies with straightforward,
efficient approaches to address the complexities of modern data management.

6.2 Directions for Future Work

In this section, we outline ideas for additional research. For future work, there are
several directions, on which we elaborate below:

Parallel and Distributed Spatial Data Management Systems. Numerous distributed
and parallel spatial data management systems [16, 17, 115, 182, 183, 184] have been
developed, primarily implemented in Java and utilizing traditional spatial indices like
quad-trees, R-trees, and R*-trees. Our goal is to integrate our novel 2-layer indexing
approach for popular spatial queries into a distributed spatial database system. This
system will be implemented in C++ and will use OpenMP and MPI for parallel
and distributed processing. It will support various data types, such as points and



rectangles, and handle a wide range of queries, including range, k-NN, and join
queries.

BS‐tree future works. Building on the concepts introduced in [45], we plan to
implement a hybrid implementation of BS-tree that maximizes the strengths of both
GPUs and CPUs. In this setup, the upper levels of the tree, which are updated less
frequently, will be handled by the GPU. This allows us to take full advantage of
the GPU’s exceptional data parallelism capabilities, enabling faster processing for
these less dynamic parts of the structure. The lower levels of the tree, which require
frequent updates due to their dynamic nature, will be managed by the CPU. This
approach ensures that updates remain fast and efficient while maintaining overall
performance balance. Additionally, we plan to incorporate Optimistic Lock Coupling
(OLC) [172, 149]. OLC is a technique designed to enable efficient parallel processing of
read and write operations, allowing multiple threads to access the data simultaneously
without unnecessary delays. This feature will significantly enhance the system’s ability
to handle workloads that involve a mix of reading and writing operations. Finally, we
aim to extend the capabilities of BS-tree by adding support for additional data types,
such as strings, which are essential in many applications. We plan to use encoding
schemes like Binary, ASCII, or Base64 to store and process string data efficiently.
These methods will ensure compatibility with existing systems while maintaining
high performance. Together, these improvements will make BS-tree a more powerful,
versatile, and efficient data structure for diverse use cases.
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