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Abstract

The subject of this master thesis is the study of magnetic flux emergence in the solar atmosphere using
numerical simulations.

It is well known that various phenomena in the Sun such as solar flares, jets, coronal mass ejections
(CME), are linked to magnetic structures beneath the photosphere. These structures transport magnetic
flux from the deep convection zone to the photosphere and then expand in the corona. In this thesis
we focus on the interaction between the emerging magnetic field and the external ambient field leading
to standard jet formation and more intense eruptions known as blowout jets. To quantify the amount
of energy and magnetic field transported into the solar atmosphere we conduct three-dimensional (3D),
resistive magnetohydrodynamic (MHD) numerical simulations using Lare3D code. This allows us to model
the emergence process and the eruptive phenomena produced in our simulations. The magnetic flux is
concentrated along rigid structures located in the convection zone and we examine different topologies of
those structures to understand how their characteristics affect the amount of energy that can emerge and
produce transient phenomena. Given the importance of the twist of the field lines in a flux tube, we compare
cases with higher (α = 0.4) and lower (α = 0.1) twists.

For the high twist case (α = 0.4) we find that both tubes produce multiple jets and blowout jets. The
horizontal tube releases a significant amount of energy in the corona as compared to the toroidal tube
however the toroidal tube maintains an eruptive behavior for longer time albeit with less intensity. We find
that the reasons behind these behavior is that the toroidal tube maintains and increases the amount of axial
flux located at the upper atmosphere whereas the horizontal tube after the first two intense eruptions can no
longer create and maintain axial flux which is an important factor since it is linked to the twisted magnetic
field lines that lead to eruptions. For the less twisted case (α = 0.1) the toroidal tube cannot produce any
eruptions given that the field lines emergence with almost no twist and there is no further shearing motion.
The horizontal tube, due to its undulation produces one eruption.

Overall, the geometrical structure of real magnetic flux tubes in the Sun is not well established therefore
numerical simulations can help identify these structures by comparing them with observational data from
eruptive phenomena on the Sun.
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Introduction

1.1 General Characteristics of the Sun

The Sun is the star that is in the center of our solar system and it has an age of ∼ 4.5 × 109 years.
Its spectral type is G2V and it belongs in the main sequence of the Hertzsprung-Russell diagram. From
measurements of the total flux of radiation emitted in all wavelengths, we can use the Stefan-Boltzmann
law F = σT 4

eff to estimate the effective temperature of the Sun’s surface. This is calculated to be roughly
Teff = 5800 K. Such high temperature means that the Sun consists of hot highly ionized plasma. We can
divide the Sun in roughly two areas, the interior and its atmosphere. The interior consists of several layers
such as the core, the radiation zone and the convection zone. Where the atmosphere is stratified in the
following consecutive layers. The photosphere, the chromosphere, the transition region and the outer layer
being the corona.

Moving from the inner to the outer layers, the core is in the center of the Sun and it is there that the
Sun’s energy is produced via nuclear fusion. As the temperature in the core can reach up to ∼ 15×106 K and
has a density of ∼ 150 g/cm3 , the environment in the core is suitable for hydrogen atoms to combine and
produce heavier helium atoms as well as to release large amounts of energy. That energy radiates outward
to the radiation zone. The temperature in the radiation zone, which is outside the core, decreases to roughly
∼ 5 × 106 K . Here the emitted photons scatter with the free particles. Because this layer is so dense,
photons scatter frequently and need thousands of years to reach the end of the radiation zone. After the
end of the radiation zone there is the convection zone, where energy transfer takes place through convection.
This layer is much less thick than the previous ones and the temperature now drops dramatically from a
few million degrees Kelvin to 5800 K. According to the Schwarzschild criterion (−dT/dr)ad < (−dT/dr)rad
we understand that when the local temperature gradient is bigger than the adiabatic temperature gradient
instability will cause plasma to move upwards through convective currents.

Moving outwards to the solar atmosphere we have the photosphere, the chromosphere the transition
region and the corona. The photosphere is where solar temperature reaches it’s minimum of ∼ 4300 K. The
average temperature of the photosphere is ∼ 5800 K and it gradually diminishes to higher altitudes. It has a
low density of average ∼ 2× 10−4 kg/m3. This layer is responsible for emitting almost all of solar radiation,
mainly at optical wavelengths. After the photosphere there is the chromosphere which is an area of density
that reaches as low as ∼ 1.6× 10−11 kg/m3. Even though at the base of the chromosphere the temperature
can be at ∼4300 K, in it’s end it can reach up to ∼ 250000 K. The next layer is the transition region, which is
a very thin layer of ∼ 100 km. The main characteristic of this region is that the temperature steeply increases
about two orders of magnitude, from ∼ 104 K to ∼ 106 K. Lastly, the outermost layer of the solar atmosphere
is the corona. Here the average electron density is ∼ 1014m−3, and it decreases as we move outwards. The
temperature of the coronal plasma is in the order of 106 K. Unlike the other layers of the Sun, the corona
doesn’t have definite boundaries. That can be seen on the left side of figure(1.1) (Aλυσανδράκης, Nίντoς,
and Πατσoυράκoς 2016) as the corona appears to be defused in the interplanetary space. The right side of
figure(1.1) (Eric Priest 2014) shows the temperature and density change throughout the solar atmosphere in
regard to height. This picture shows the mean variation of the quantities since in practice the atmosphere
is dynamic and highly inhomogeneous (Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016).
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Figure 1.1: Left side is the solar corona during a total eclipse (Aλυσανδράκης, Nίντoς, and Πατσoυράκoς
2016). Right side shows the temperature and density at different heights of the Sun (Eric Priest 2014).

1.2 Solar Active Regions

Another way of separating regions of the Sun, much like the different layers of it, is the classification of the
solar surface in quiet Sun and active regions. Active regions (AR) are areas of the solar atmosphere where
strong and complex magnetic fields are observed, as well as highly concentrated magnetic flux. Regions
outside those comprise the quiet Sun. Active regions play a significant role in solar observations since a
wide range of interesting phenomena take place there. Active regions are themselves further separated in a
positive and a negative polarity region. These two opposite polarity regions are separated by a curve called
neutral line or polarity-inversion line (PIL). The main observational signature in the photosphere are the
solar sunspots. Sunspots are temporal structures that appear darker than the surrounding environment.
They are also much colder than the rest of the photosphere because of their large magnetic field (∼ 3000G)
that represses upward convective flows that would otherwise transport hotter plasma from lower layers to
the photosphere. The sunspots morphology consists of two regions the umbra that is very dark and the
penumbra which is outside of the umbra and is less dark. The different dark shades can be seen very
clearly in Figure(1.2) (Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016). The temperature in the umbra
is ∼ 3700K which justifies the darker color as the material is colder than it is in the rest of the photosphere.
The magnetic field is almost normal to the surface in the umbra and as we move to the penumbra the field
deviates from being vertical until it becomes almost horizontal to the photosphere. The typical length of the
umbra can reach up to 20 Mkm, while the penumbra up to 50 Mkm.

At the solar corona, the magnetic field above an active region forms structures that resemble loops. In
the corona as well as the photosphere, plasma movement is determined by the magnetic field and as a result,
hot plasma runs along the length of the magnetic field lines that form the coronal loops. Coronal loops are
large structures that connect regions of opposite polarity and at the same time extend upwards for thousands
of kilometers (Aschwanden 2006).

1.3 Plasma β parameter

To further investigate the underlying physics of the solar atmosphere, we first introduce the plasma beta
parameter, symbolized by β, as the ratio of plasma and magnetic pressure.

β =
p

pmag
=

p

B2/8π
=

8πp

B2
(1.1)
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Figure 1.2: Image of a sunspot from Solar Optical Telescope of the Hinode mission (Aλυσανδράκης, Nίντoς,
and Πατσoυράκoς 2016).

A common assumption for the function that describes gas pressure is the ideal gas law, p = nkBT , that
changes the β parameter equation (1.1) to,

β =
8πnkBT

B2
(1.2)

If β >> 1 it means that gas pressure prevails over plasma pressure so the plasma behaves like a hydrodynamic
system. This suggests that as the plasma moves the magnetic field moves with it.
If β << 1 the magnetic pressure dominates so the dynamical movement of the plasma is determined by the
magnetic field.
In the solar atmosphere for the most part the magnetic field dictates the plasma movement. However, this
is not the case in the photosphere. This is illustrated in Figure(1.3) (Gary 2001).

1.4 Magnetic Flux Emergence

The term magnetic flux emergence refers to a fundamental process in the Sun since it describes the
mechanism that magnetic fields are transported from the solar interior to the Sun’s atmosphere. As discussed
previously Active regions (ARs) are areas where there is a large concentration of magnetic field. Deep beneath
these areas plasma flows emerge locally from the convection zone reaching up to the photosphere where the
Active Region is formed. In order to better understand magnetic flux emergence we focus on a structure
called magnetic flux tube. A magnetic flux tube is a cylindrical region of space where a magnetic field is
contained in a way that the sides of the tube are always parallel to the magnetic field lines. The magnetic
field lines are usually twisted and the tube could be bent in a toroidal shape. It is worth mentioning that
when we refer to magnetic flux tubes we imply structures that are underneath the photosphere. In contrary
twisted cylindrical or toroidal structures that are located above the photosphere are called flux ropes. This
is because flux tubes are created in the solar convection zone, whereas flux ropes are created in the solar
atmosphere mainly through the completely different process of magnetic reconnection.

Assuming a magnetic flux tube has been formed in the convection zone, it becomes susceptible to the
buoyancy instability which allows the tube to rise through the photosphere and to appear as a bipolar
region with each region being the footpoints of the tube. Suppose that the plasma pressure dominates over
the magnetic pressure, B2/8π ≪ p, so the equation that describes the equilibrium between the magnetic
structure and the surrounding plasma is,

pin +
B2

8π
= pout (1.3)

where pin and pout denotes the gas pressure inside and outside the magnetic tube respectively. If we make a
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Figure 1.3: Plasma β parameter stratification above an active region (Gary 2001).

further assumption that the magnetic tube is in thermal equilibrium with its environment (Tin = Tout = T ),
then using the ideal gas law p = ρkBT/µm , we have,

ρout = ρin +
µmB2

8πkBT
⇒ ρout − ρin

ρ
=

mumB2

8πkBTρ
=

B2

8πp
(1.4)

∆ρ

ρ
=

B2

8πp
⇒ ∆ρ

ρ
=

1

β
(1.5)

This implies, that the magnetic flux tube will be less dense than its surrounding environment. In that case
buoyant forces will make the magnetic tube move upwards.

If we don’t wish to make the assumption that the magnetic tube is in thermal equilibrium with its
environment, but at the same time assume that the plasma inside and outside the magnetic tube have the
same specific entropy, then the density deficit would be,

∆ρ

ρ
= − 1

γ1β
(1.6)

where γ1 =

(
∂ ln p
∂ ln ρ

)
s

is Chandrasekhar’s first adiabatic index. (Chandrasekhar and Chandrasekhar 1957)

Much like in the case of thermal equilibrium, in this case the magnetic flux tube will also rise due to buoyant
forces. In order to determine if a flux tube is susceptible to buoyancy forces we can examine the stability of
the atmosphere with respect to perturbations.

1.4.1 Stability of the atmosphere to perturbations

As a first example we take the case were the fluid displacement is adiabatic and we also ignore the
magnetic field. If the fluid is displaced in an environment with higher pressure the fluid will compress, if on
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the other hand the environment has a lower pressure it will expand. Using Chandrasekhar’s first adiabatic
index γ1 as well as equation (1.5) we can express the change in density of the fluid with the following equation.

dρad =
ρ

p
γ1

dp

dz
dz (1.7)

However, the density change in the environment will simply be,

dρ =
dρ

dz
dz (1.8)

This leads us to categorize the different scenarios based on the following relations between the density
differentials.

If we have ∂ρad

∂z > ∂ρ
∂z , the buoyancy force will try to cancel the displacement of the fluid, leading it back to

its original position. In that case the atmosphere stratification would be considered stable to perturbations.
This is the case in the solar photosphere and it can explain why convective currents from the convection
zone don’t penetrate to higher layers.

If we have ∂ρad

∂z < ∂ρ
∂z , the buoyancy force accelerates the fluid and it moves away from its original position.

The two cases that the fluid can move is either to be displaced downward where it would have higher density
than the environment or it can be displaced upward where its density would be smaller than that of the
surrounding environment. In either case the atmosphere stratification is unstable to perturbations. Such an
environment is the solar convection zone and it is the reason why in this layer convective current flows are
created.

There is also the marginal case where ∂ρad

∂z = ∂ρ
∂z that the atmosphere is neutral to perturbations, which

implies that any displacement would lead to a new position of equilibrium.
In conclusion, for the solar atmosphere it is very difficult for a fluid element to emerge from the convection

zone, which is unstable, to the stable environment of the photosphere. Since the fluid would become much
denser than its surrounding, the buoyancy force will make it return to its original position in the convection
zone. However when we describe the solar atmosphere more realistically, by adding a magnetic field that
interacts with the fluid particles, it becomes possible for the plasma to emerge through the photosphere (M.
Cheung and Isobe 2014), (Nordlund, Stein, and Asplund 2009).

1.4.2 Magnetic buoyancy instability

As we mentioned in the previous section, the stability of the photosphere in hydrodynamic perturbations
is a major barrier for flux emergence. However when a magnetic field is present, the difficulty with which a
plasma element can penetrate the solar atmosphere can improve drastically. Magnetic buoyancy instability
is an effective mechanism that allows flux to rise through the photosphere and into the corona.

We can assume the simplest case of horizontal non magnetized tube that is described by the following
hydrostatic equation,

d

dz
p = −gρ (1.9)

In the case of a magnetized flux tube the equation is modified to include the magnetic pressure. The following
equation describes a fluid element that is also supported by the magnetic pressure.

d

dz

(
p+

B2

8π

)
= −gρ (1.10)

Since the magnetic field interacts with the fluid element, the magnetic buoyancy can also act as a mechanism
for instability. The different types of instabilities are determined according to the direction of the magnetic
field B in relation to the wave vector of the perturbation k. For the purposes of this work we will consider
the cases where the magnetic field and the wave vector are either parallel, B ∥ k or perpendicular, B ⊥ k to
each other.

The first scenario where the magnetic field and the wave vector are perpendicular B ⊥ k, produce the
interchange mode. Assuming that the flux sheet before the perturbation is similar to that of Figure(1.4),
at the interchange mode in Figure(1.5) the magnetic lines remain straight. The interchange mode can have
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observational signatures such as sunspots at the solar surface since it is considered a mechanism that can
effectively break large magnetic flux sheets, that are formed in the convection zone, into buoyant flux tube
that can eventually rise through the photosphere. For the interchange mode the instability criterion as defined
by (Acheson 1979) is given by equation (1.11) where there is the assumption of adiabatic perturbations.

d

dz
ln

(
B

ρ

)
< −C2

s

g

N2

V 2
A

(1.11)

In this expression we have the Alfvén speed VA = B/
√
4πρ, the adiabatic sound speed Cs =

√
γ1p/ρ

and the Brunt-Väisälä frequency N . If we focus on the convection zone where the Brunt-Väisälä frequency
is N = 0, we end up with the following criterion for instability.

d

dz
ln

(
B

ρ

)
< 0 (1.12)

The other case is when the magnetic field and the wave vector are parallel to each other B ∥ k, which
is called the undular mode. As it is shown in Figure(1.6) the field lines ripple, and since the plasma moves
along the magnetic field lines it is forced to move away from the high point, making the cavity lighter which
allows it to rise higher. The lower points on the other hand where the plasma concentrates get heavier forcing
them to sink lower. This kind of plasma flow can amplify the perturbation making the structure unstable.
The undular mode is also refereed to, in bibliography, as Parker instability (Parker 1955). The instability
criterion for this mode is given by (Acheson 1979).

d

dz
lnB < −C2

s

g

(
k2∥(1 +

k2z
k2⊥

) +
N2

V 2
A

)
(1.13)

Figure 1.4: Schematic illustration of an undisturbed magnetic flux sheet (Matsumoto et al. 1993).

Figure 1.5: Illustration of the flux sheet due to
the interchange mode of the magnetic buoyancy
instability (Matsumoto et al. 1993).

Figure 1.6: Illustration of the flux sheet due to
the undular mode of the magnetic buoyancy in-
stability (Matsumoto et al. 1993).

In this expression we have kz which is the wave number in the vertical direction and k∥, k⊥ which are
the wave numbers in direction parallel and perpendicular to magnetic field. For N = 0 we have,

d

dz
lnB < −C2

s

g
k2∥(1 +

k2z
k2⊥

) (1.14)
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which suggests that,

−C2
s

g
k2∥(1 +

k2z
k2⊥

) ≤ 0 (1.15)

therefore leaving us with the following inequality for the undular instability.

dB

dz
< 0 (1.16)

At last, by comparing equations (1.11) and (1.15), we conclude that for the undular mode, B ∥ k, the
instability criterion depends on how fast the field strength decreases with height. This is in contrary to the
interchange mode, B ⊥ k, where the decrease of the fraction B/ρ with height is relevant for the instability.
Near the photosphere, B/ρ drops slower than the rate of decrease of the magnetic field B. Therefore the
undular mode of the instability (B ∥ k) dominates this region of the photosphere, and can either be referred
to as magnetic buoyancy instability or Parker instability (Matsumoto et al. 1993), (M. Cheung and Isobe
2014).

1.4.3 Magnetic twist

An important physical characteristic of a flux rope is the twist of its magnetic field. Magnetic twist in
an emerging flux rope is associated with the free magnetic energy that is responsible for the solar eruptions
and flares, so it plays a vital role in flux emergence through the photosphere.
We can assume that we have a cylindrical flux tube, with its magnetic field oriented in the y-axis. We exploit
the axial symmetry of the tube to express the magnetic field with the following equations.

By(r) = B0e
−r2/R2

(1.17)

Bϕ(r) = αrB0e
−r2/R2

(1.18)

The dimensionless parameter α , measures the number of twists divided by length, r is the distance from
the center of the tube and R the tubes radius.
However the twist cannot take any value. If α > 0.5 , then the tube will be prone to the kink instability.
This is because a twist of α = 0.5 means that there is a 45 degree angle between By and Bϕ , that will twist
the tube in a loop position. If this happens in the deeper areas of the convection zone then the tube will not
be able to emerge, unlike the area close to the photosphere where part of the tube will be able to come up.
A useful measure for determining whether a flux tube will be coherent throughout the process of emergence
is the magnetic Weber number We , an analog of the Weber number in fluid mechanics. This dimensionless
number is defined as,

We =
u2ρ

B2/4π
(1.19)

where u is the velocity with which the tube rises. For the flux tube to maintain coherence, the magnetic
Weber number should be We ≲ 1 .
Even though the magnetic twist is an important characteristic of flux tubes, it is very difficult to use it
to effectively describe a real emerging flux tube. The main reason for that is because it is impossible to
observationally measure the distribution of the magnetic field from the photosphere to the corona. So,
without the field distribution, we cannot measure the quantities that are related to the twist of an active
region. Also solar active regions do not form a simple bipole, and there morphology is often more complex.
Because of that a well-defined axis, that is required for the concept of magnetic twist, is not distinguishable.
In the following chapter we illustrate a way to deal with these problems with the concept of a force free
magnetic field.

1.4.4 Force free magnetic field

A common method that is used to overcome those difficulties is to construct the full 3D coronal field
using measurements from vector magnetograms. Afterwards, the magnetic field can be used to calculate the
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twist of the field lines.
A force free field is defined as a field where the Lorentz force vanishes everywhere,

1

c
j ×B = 0 (1.20)

Along with equation (1.19) we can use the electric current density, taken from Ampere’s law,

j =
1

µ0
∇×B (1.21)

and end up with the following equation,
(∇×B)×B = 0 (1.22)

Equation (1.21) can be fulfilled either when,

∇×B = 0 (1.23)

which is called a current free (potential) magnetic field or when,

B ∥ ∇ ×B (1.24)

The simplest assumption for the coronal magnetic field is the current free field. Using magnetograms the
photospheric magnetic field can easily be measured and be used as a boundary condition to solve the Laplace
equation for the scalar potential ϕ ,

∇2ϕ = 0 (1.25)

so the following condition is satisfied,
B = −∇ϕ (1.26)

A potential field, due to its simplicity, provides a rough view of a magnetic field in the solar corona. However,
the magnetic field at an active region needs to contain free magnetic energy to drive eruptions, a property
that a potential field does not have. Hence the condition of force free field can more easily be satisfied.

The B ∥ ∇ ×B condition implies that,
∇×B = αB (1.27)

which if we use Gauss’s law for magnetism, ∇B = 0, can be further expanded to,

B · ∇α = 0 (1.28)

Here, α is called the force free parameter where it is constant along magnetic field lines as well as the measure
of field line twist. When α = 0 it is the current free condition and the field is potential. If α is nonzero, it
can either be a a constant or function of position. When α is constant the field is called linear force free field,
and when it is a function of position it’s called non-linear force free field. In order to accurately quantify the
amount of twist of the magnetic field, different values for α have been fitted for different layers of the solar
atmosphere. This implies that non-linear force free fields are a better match for consistent modeling of the
solar atmosphere.

1.5 Solar eruptive phenomena

In order to better understand the interaction between the solar plasma and the heliosphere, whe have
to look at the physical processes which drive powerful solar eruptions. Solar eruptive phenomena like flares
and coronal mass ejection (CMEs) which have a great impact on space weather have their origin in the
turbulent plasma flows at the solar convection zone that shape the structure and dynamics of the solar
atmosphere. Solar active regions (ARs) are the areas of origin of those eruptions that are dynamically and
complex (Vasilis Archontis and Vlahos 2019).
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1.5.1 Flares

A solar flare is an intense, localized emission of electromagnetic radiation in the Sun’s atmosphere. They
were first observed in 1959 as localized, minute-long brightening in the continuum of white light (Curto 2020).
The energy that is released appears in many forms, such as increase in plasma temperature, acceleration
of charged particles, shock waves as well as ejection of material, albeit of significant less quantity than in
the case of a CME. Part of the energy causes an increase of electromagnetic radiation in the full spectrum,
from gamma rays to radio waves. Typical values of the energy released are at the range of 1029 − 1032erg
with each flare event lasting from a few minutes to hours (Steinhilber and Beer 2011). Flares are usually
classified based on their flux of X-ray radiation (1−8 Å ) as it is measured by GOES satellites (Geostationary
Orbiting Environmental Satellites). The following table shows the classes (X, M, C, B, A) along with their
corresponding approximate peak flux in power per unit square (W/m2).

W/m2

X10 10−3

X 10−4

M 10−5

C 10−6

B 10−7

A < 10−7

Flares usually appear in active regions (ARs) where there is a high concentration of photospheric magnetic
field. Those areas in an active region are where there is an inversion of the polarity of the photospheric field’s
vertical component. The more complex a photospheric magnetic field is, the higher the likelihood of a flare
event. The rate of flare occurrence in an active region generally follows the evolution of the active region, so
when the AR first appears the chances of a flare increase, especially when the polarity of the emerging flux
is opposite to the pre-existing magnetic field. On the other hand during the active region’s decay phase, the
chance of an eruption decreases.

Figure 1.7: Left picture shows the eruptive phase of the SOL2002-04-21 flare observed in the Fexii line at
195 Å by the TRACE satellite (Benz 2017). Right side picture shows a different flare during its decay phase
that develops a cusp shape on the top of the loop. It is observed in soft X-rays by the Yohkoh satellite
(Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016).

The electromagnetic radiation released during a flare can either come from heated plasma (thermal
emissions) or from accelerated particles (non-thermal emissions). The time scale of non-thermal emissions is
much smaller than that of thermal. This is because accelerated electrons lose their energy through radiation
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or collision with plasma faster, while heated plasma cools with a slower rate. Either way the flare energy is
released in the corona by reconnecting magnetic fields. The energy then propagates from the corona into the
dense chromosphere along a magnetic loop. The chromospheric material is heated to an order of 107 K and
expands into the corona. Before the flaring event occurs, energy is concentrated, which results in an increase
of temperature and magnetic field. Afterwards the eruptive phase begins, which allows for the sudden energy
release lasting about one minute. Eventually, after the the eruption the flare enters a phase of decay where
the solar atmosphere move towards a state of equilibrium. This phase lasts around 20-30 minutes with the
temperature of loops steadily decreasing (Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016), (Sigalotti and
Cruz 2023), (Tandberg-Hanssen and A Gordon Emslie 1988).

An image of a flare during its eruptive phase can be seen in the left side of Figure(1.7). The luminosity
peaks when a sheet-like structure appears above the initial brightening. The flare was observed in the Fe xii
line at 195 Å by the TRACE satellite. After the time of this image the flare undergoes a long decay phase
with post-flare loops growing in height (Benz 2017). Also, it is common for loops to develop a cusp shape
on the top side of the loop during the flare’s decay phase as seen in the right side of Figure(1.7). In that
image, the observation of the flare loop is made in soft X-rays by Yohkoh satellite during its decay phase
(Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016).

1.5.2 Coronal mass ejection (CME)

The term, coronal mass ejection (CME) refers to the removal of a considerable quantity of coronal
plasma, which along with its magnetic field moves away from the Sun and travels through the interplanetary
space. CMEs have mass of around 1011 − 1013 kg while reaching speeds of 200 up to 2000 km/sec. CMEs
are detected with a coronagraph due to Thomson scattering of photospheric light from the ejected mass
electrons.

Figure(1.8) shows a series of pictures of the morphology of a CME. These types of CMEs occur near
the solar limb while they exhibit a bright arc-shaped front. Beneath the front there is a dark cavity which
is believed to be a magnetic flux rope. There is also a bright core inside this cavity which is plasma from
prominence trapped beneath the magnetic field lines and pushed outside during the explosion. Emissions
from a CME are optically thin and the dynamic aspects of the phenomenon make it difficult to observe its
shape even when two satellites could theoretically create a 3D picture. Assuming a model for the geometry
of the CME in 3D as well as a way that it propagates, is the most popular way to recover information about
the shape of a CME. When a CME propagates with a speed larger than the local Alfvén speed it creates a
shock wave. The shock wave will compress the material in front of it which will appear in a picture from a
coronagraph. However, due to low intensity of the brightenings, it is difficult to detect a shock wave that
way, so type II radio bursts are a better way for shock detection in front of a CME. On the other hand type
II radio bursts do not give any information about the shape of the area where shock waves originate.

When CMEs have their origin near the solar limb, we can categorize them in two different types. The
first is a CME that is related with eruptive prominences and isn’t accompanied by a flare. They have
typical speeds of ≈ 400 - 600 km/sec and appear to accelerate in a coronagraph. There are also CMEs
that are associated with flares and have speeds larger than 750 km/sec while they seem to decelerate in a
coronagraph’s optical field. The later type of CME usually has three stages for their speed evolution. Before
the beginning of the flare, the CME rises slowly for minutes. Then during the eruptive stage where a CME
experiences rapid acceleration, for a maximum of 10 minutes, while it is also at the same time that the flare’s
flux peaks. This apparent coincident can be explained by the fact that magnetic reconnection that happens
in a current sheet behind the CME, can add new flux that will accelerate it. This means that the bigger the
magnetic reconnection rate is, the more energy the flare will release, which will also have an impact on the
acceleration of the CME. In the end the CME moves with an either steady or slightly decreasing speed.

Since coronagraphs hide the solar disk, the area of origin of the CMEs has to be identified with other
instruments. For this reason space telescopes observe the corona in far infrared and soft X-rays, along with
telescopes from earth that observe in the chromospheric Hα line and radio telescopes, can provide important
information about CMEs. We have already established that flares occur exclusively on active regions (ARs),
this however is not the case for CMEs. So CMEs may or may not be related to flares, even though there is
a corelation between strong flares such as X-type and CME events. More than half of the CMEs are related
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with filament eruptions. Filaments are not necessarily in an AR and when they erupt they almost always
create a CME. Filament eruptions outside of ARs have characteristics that are similar to those of flares
such as loops. However, from an observational point of view filament eruptions outside of ARs do not emit
radiation in the soft X-rays regime because those areas have a weaker magnetic field than that of the active
region’s. Nevertheless, observations at the EUV shows dark regions that are due to the density deficit from
the ejected mass. Regardless of which area CMEs originate, the magnetic field must always be twisted.

Figure 1.8: CME observation (Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016).

This is evident in the case of a CME being accompanied by a flare since flares occur near the polarity
inversion line of the magnetic field, where on top of it there is a high concentration of electric currents. On
the other hand, along the axis of filaments the orientation of small structures also points towards a twisted
magnetic field (Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016),(Chen 2011), (Jacobs and Poedts 2011).

1.5.3 Flare - CME standard model

In order to explain the observations of large flares that are accompanied by CMEs, the Flare - CME
standard model was developed (Carmichael 1964), (P. Sturrock 1966), (Hirayama 1974), (Kopp and Pneuman
1976). This model assumes a twisted magnetic field such as a magnetic flux rope, which is part of a structure
containing arch-like loops. Due to instability, the flux rope ascents causing the surrounding field lines to
stretch and become antiparallel to each other. The more the field lines stretch the closer they come eventually
creating a current sheet. Instabilities inside the current sheet trigger magnetic reconnection which then
creates a flare at the bottom part of the reconnection region. The topology of the magnetic field lines is
rearranged which allows the flux rope to escape the main structure. In observations the height increase of
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the reconnection region is shown by the apparent upward movement of the hot loops. In Figure(1.9) there
is a cartoon of that model (Lin and Forbes 2000).

The success of this model is reflected in the fact that it can explain observations of flares with long decay
state. It also accounts for the timing between the acceleration of a CME and the flux variations of the
accompanied flare. The hard X-ray emission above the hot loops can also be explained by the model. The
main downside of this model is the fact that it is two dimensional, which means that its magnetic topology
is that of a dipole, while it is known that in the Sun most flare occur in regions with complex magnetic
topology.

Figure 1.9: Cartoon of the Flare-CME model (Lin and Forbes 2000).

Another important drawback is the size of the current sheet. For the model to be realistic in providing
the right amount of accelerated particle, the main dimensions of the current sheet has to be in the orders of
magnitude of thousands of Mm and at the same time to be stable for many minutes. It is very to difficult
to maintain such a large structure inside an already unstable magnetic topology and it is more likely that
the current sheet will be fragmented into smaller structures (Aλυσανδράκης, Nίντoς, and Πατσoυράκoς
2016).
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Magnetohydrodynamics

2.1 Introduction

In this chapter we will make an introduction and description of Magnetohydrodynamics (MHD). This
is very important because in the present thesis every calculation and analysis has been done under the
assumptions of MHD. Magnetohydrodynamics is a model that treats the plasma as a continuous electrically
conducting fluid. As the name suggests a pure hydrodynamical treatment of the fluid is not enough and
the electromagnetic interactions between the fluid particles have to be taken into account. That is why we
will mention Maxwell’s equations as well as fluid mechanics equations in order to adequately describe the
dynamics of solar plasma.

2.2 Maxwell’s equations

Electromagnetic fields are described by Maxwell’s equations which are presented in the following section.
Gauss’s law,

∇ · E =
ρ

ϵ0
(2.1)

Gauss’s law of magnetism,
∇ ·B = 0 (2.2)

Faraday’s law,

∇× E = −∂B

∂t
(2.3)

Ampére’s law,

∇×B = µ0j + ϵ0µ0
∂E

∂t
. (2.4)

As well as Ohm’s law,
j = σ( E + u×B ) (2.5)

Here, ρ is the density charge, σ the electrical conductivity and u is the plasma speed. While ϵ0 and µ0

are vacuum’s permittivity and vacuum’s magnetic permeability respectively. Those last two parameter are
associated with the speed of light as, c = 1√

ϵ0µ0
.

A crucial assumption in MHD is that the plasma fluid moves as a whole with a single velocity u. This speed
is considered to be much smaller than the speed of light u << c. Hence, Ampére’s law takes the simpler
form,

∇×B = µ0j (2.6)

Also, Gauss’s law from equation (2.1) has zero density charge because plasma is considered to be quasi-
neutral in scales larger than Debye length. Meaning that the number of electrons ne is approximately equal
to the number of ions ni , and since they have equal charge of opposite signs, charge density is approximately
zero ρ ≃ 0. Debye length is expressed by the following equation,

λD =

√
ϵ0kT

ne2
(2.7)
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For solar plasma Debye length is roughly λD ≃ 0, 2 cm.

An assumption that simplifies the analysis would be that the plasma is a perfect conductor with zero
resistivity. This is known as ideal MHD where the magnetic field looks like it’s ”frozen” in the plasma. For
ideal MHD to hold, the plasma particles have to be collisional and follow a Maxwellian distribution. Even
if the plasma has a finite resistivity we can still apply MHD to describe important astrophysical phenomena
such as magnetic reconnection. Under the assumption of ideal MHD where electric conductivity is σ → ∞ ,
Ohm’s law takes the form of equation (2.8).

j = σ( E + u×B ) ⇒ ( E + u×B ) =
j

σ
= 0

E = −u×B (2.8)

Electric conductivity σ relates to magnetic resistivity η as,

η =
1

µ0σ
(2.9)

So, for ideal MHD instead of electric conductivity σ → ∞ equivalently we can use the magnetic resistivity
η = 0 .

2.3 Induction equation

In order to fully plasma motion we combine Maxwell’s equations and Ohm’s law, and derive the induction
equation,

∂B

∂t
= ∇× (u×B)−∇× (η∇×B) (2.10)

This equation shows that the evolution of the magnetic field is a result of both the fluid motion as well
as it’s diffusion. The terms of the induction equation (2.10) that are responsible for plasma motion and
diffusion are shown as,

∇× (u×B) [ Kinetic term ]

∇× (η∇×B) [ Diffusion term ]

The ratio of those two terms define the magnetic Reynolds number which is an important dimensionless
quantity that indicates whether diffusion or kinetic effects dominate the time evolution of the magnetic field.
The definition of the magnetic Reynolds number is,

Rm =
L0u0

η
(2.11)

where L0 is the characteristic length scale and u0 the plasma velocity. We can distinguish two common
scenarios for Rm

If Rm << 1 then the magnetic resistivity η in the denominator of equation (2.11) is large relative to the
length scale and the plasma velocity so the evolution of the magnetic field is dominated by the diffusion of
the field. This leads to the induction equation being rewritten as,

∂B

∂t
= −∇× (η∇×B) (2.12)

we can further simplify this equation by using the vector identity,

∇× (∇×B) = ∇(∇ ·B)− (∇ · ∇)B (2.13)

At last, the induction equation when the diffusion term dominates ( Rm << 1 ) is,

∂B

∂t
= η∇2B (2.14)
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If Rm >> 1 then this means that the length scale is much larger than the value of magnetic diffusion η ,
so the kinetic term dominates, and the induction equation is simplified as,

∂B

∂t
= ∇× (u×B) (2.15)

This is largely the case for plasma at the solar corona where the magnetic Reynolds number has values in
the range of Rm ≈ 108 − 1012 .

2.4 Magnetic flux

Firstly, we should describe an important quantity for energy transfer in the electromagnetic field which
is the Poynting flux. The Poynting flux is defined as the flux of electromagnetic energy that passes through
a unit area per unit time,

S =
1

µ0
E ×B (2.16)

The units are [ W/m2 ] . If we use Ohm’s law from equation (2.5) then the Poynting flux can be written as,

S = η(j ×B)− 1

µ0
(u×B)×B (2.17)

The two different terms on this equation express the interaction of currents and plasma with the magnetic
field as shown,

j ×B [Interaction of currents with magnetic field] (2.18)

(u×B)×B [Interaction of plasma flows with magnetic field] (2.19)

Another important quantity is the magnetic energy density that is defined as,

εm =
B2

2µ0
(2.20)

In order to describe how magnetic energy changes form we take the time derivative of the magnetic energy
density (2.20)

∂εm
∂t

=
1

µ0
B · ∂

∂t
B (2.21)

From that, the term ∂B/∂t is substituted with the induction equation ( 2.10),

∂εm
∂t

=
1

µ0
B

[
∇× (u×B)−∇× (η∇×B)

]
(2.22)

The definition of Poynting flux ( 2.16) as well as Ampére’s law ( 2.4) are substituted in equation ( 2.22) to
obtain the final result.

∂εm
∂t

+∇ · S = −ηµ0j
2 − u · (j ×B) (2.23)

When the right hand side of this equation is zero, it would mean that the magnetic energy is conserved
and there is no loss of energy. In the more general case we have two more terms on the right hand side of
equation ( 2.23) that describes the conversion of magnetic energy into other forms of energy as shown,

ηµ0j
2 [Magnetic energy converts to thermal energy] (2.24)

u · (j ×B) [Magnetic energy converts to kinetic energy] (2.25)

In the case of a large magnetic Reynolds number (Rm >> 1) , we can consider a closed loop that
encompasses a small fluid element. This loop will move along the fluid while it changes it’s shape and size.
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Now, the magnetic flux of this loop can be defined as as the total number of field lines that pass through it.
So, if we consider the surface α that is enclosed by the loop, the magnetic flux would be,

Φ =

∫
α

B · dA (2.26)

where we denote, dA = n · dα , with dα an element of surface α and n a vector perpendicular to α.
According to Alfvéns theorem for a perfectly conducting fluid where equation (2.15) holds due to a large
magnetic Reynolds number, the magnetic flux of equation ( 2.26) remains constant over time.

dΦ

dt
= 0 (2.27)

This is called ”frozen in” condition. This condition implies that a plasma element that is on a magnetic field
line, will remain on that line over time. So, for (Rm >> 1) the amount of energy that is transported is much
larger than that being diffused meaning that the magnetic field will dominate and plasma will move along
the magnetic field lines. This condition is of major significance since it explains why a plasma element that
moves along a magnetic loop will stay on that loop. In the case of magnetic reconnection, which is common
during eruptions, the ”frozen in” condition does not hold and the diffusion term in the induction equation
( 2.10 ) dominates.

In the solar corona the magnetic Reynolds number is very large, so we can apply the ”frozen in” condition.
However if two magnetic structures come very close to each other, then strong current sheets will be created
where the magnetic field will diffuse. In that case the induction equation will include the diffusion term
∇× (η∇×B) as it is shown in equation ( 2.10).

2.5 Fluid equations

In order to describe the dynamical evolution of the plasma we can use Newton’s second law of motion,
modified specifically for a conducting fluid that the Lorentz force acts on it. For the general case we have to
take into account other forces such as gravity and the viscosity. So we can write the general expression for
all the forces that act on a fluid element as,

ρ
Du

Dt
=
∑
i

fi (2.28)

where ρ is the plasma density, fi are all the forces and D/Dt is the Lagrangian derivative,

D

Dt
≡ ∂

∂t
+ u · ∇ (2.29)

More precisely the equation that describes the motion of plasma under forces that are common in the solar
atmosphere is:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇P + j ×B + ρ∇Φg + Fν (2.30)

Here, the forces are on the right hand side of the equation and. For this study we ignore forces that arise from
the rotation of the Sun such as centrifugal and Coriolis forces and we only take into account the following:

−∇P (2.31)

This is the pressure gradient and it describes the force that arises from pressure difference.

j ×B (2.32)

The Lorentz force. This force can be expanded into two terms that describe the magnetic pressure (2.31)
and the magnetic tension (2.32)

∇
(

B2

2µ0

)
[ Magnetic pressure ] (2.33)
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(
B · ∇

)
B/µ0 [ Magnetic tension ] (2.34)

The magnetic pressure on one hand tries to balance the different pressure forces inside the plasma, while
the magnetic tension tends to minimize the curvature of the magnetic field lines.

ρ∇Φg (2.35)

This is the gravity force that is described by the gravity potential Φg . A common expression used for the
potential is ∇Φg = gẑ .

Fν (2.36)

Lastly we have the viscous force. In non ideal fluids, due to friction a fluid element that moves with higher
velocity than the element next to it will transfer an amount of its momentum to the area with the smaller
velocity fluid. The viscous force has a general expression of,

Fν = 2νS∇ρ (2.37)

where ν is the viscosity and S the strain tensor.

Another important equation is the continuity equation. For the MHD model plasma is considered to be
a quasi-neutral magnetised fluid. So like any fluid the mass density is a conserved quantity that is described
by the continuity equation.

∂ρ

∂t
+∇ · (ρu) = 0 (2.38)

Here ρ is the mass density and u the plasma velocity. An equivalent definition can be obtained using the
Lagrangian derivative.

Dρ

Dt
+ ρ∇ · u = 0 (2.39)

From equation (2.37) we can understand that a density increase in a region of space is accompanied by a
flow that leads plasma away from that region. Identically a density decrease means that plasma will flow
into the region. If we assume an incompressible flow (∇ · u = 0) then

Dρ

Dt
= 0 ⇒ ∂ρ

∂t
+ u∇ · ρ = 0 (2.40)

To fully describe plasma, since it’s ionized gas, we need an equation of state. For the description of
astrophysical plasma with MHD it is common to use the equation of state of ideal an gas.

p =
kB
µm

ρT (2.41)

In this equation that links pressure (p) with temperature (T) we denote kB the Boltzmann constant and
µm = m̄mp the reduced mass. mp is the proton’s mass and m̄ the degree of ionization. In the solar corona
we have a fully ionized hydrogen plasma so there is the same amount of protons and electrons. So we have
m̄ = 0.5 . For the density ρ we have

ρ = npmp + neme ≈ nemp

where
n = np + ne = 2ne

Finally, we need one more equation to accurately describe the plasma evolution in MHD. The energy equation.
For solar corona plasma, which is fully ionized, the energy equation is,

ϵ =
p

ρ(γ − 1)
=

kBT

µm(γ − 1)
(2.42)
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The above equation is adequate for the current work. However if we would like to have a complete description
of the energy balance in the solar atmosphere, we can write the energy equation as the change of energy in
the system along with energy terms that represents loss or transfer of energy.

ρ
Dϵ

Dt
+ p∇ · u = Qheating +Qviscous +Qconduction +Qradiation (2.43)

The terms on the right hand side of equation (2.42) describe,

Qheating = ηµ0j
2 [ Ohmic heating term ]

the Ohmic heating of plasma (Joule heating) which happens due to its electrical resistance.

Qviscous = 2νρS2 [ Viscous term ]

Here, the viscosity of the plasma creates friction which in turn converts kinetic energy into heat.

Qconduction = −∇ · q [ Conduction term ]

This term represents the energy loss due to thermal conduction. Heat flux because of thermal conductivity
is denoted by q = −κ∇T where κ is the thermal conduction tensor.

Qradiation = nenHQ(T ) [ Radiative cooling term ]

At last we have losses due to radiative cooling. The above equation hold only for optically thin emissions
like in the solar corona. The Q(T ) function expresses the plasma emissivity which is the ability of a plasma
element to emit radiation due to its temperature. A common choice for the Q(T ) function is

Q(T ) = n2
e χ Tα

where χ and α are constants with different values at different temperature ranges. If the solar environment
is not optically thin then Q(T ) takes a different form and is obtained by solving the equation of radiative
transfer. Radiative cooling is of significant importance at the lower and denser parts of the corona and
transition region (Goedbloed and Poedts 2004).

2.6 Magnetic reconnection

A very common process in the solar atmosphere is that of magnetic reconnection. By that we refer to
a change in the topology of the magnetic field configuration when field lines interact at a small distance.
Magnetic reconnection occurs in almost ideal plasma where the magnetic Reynolds number is much larger
than unity, Rm ≫ 1. Plasma elements maintain their configurations under ideal magnetohydrodynamics.
However, when diffusion exist in a small region, this can affect the way plasma elements are connected.
Magnetic reconnection has many results such as converting magnetic energy into heat by the means of
Ohmic dissipation, convert magnetic energy to kinetic energy which results in the acceleration of plasma or
create shock waves which are associated with strong electric fields and produce accelerated fast particles.
Overall the field configuration changes and the newly formed magnetic field lines redirect plasma at different
paths. In the Sun, magnetic reconnection plays an important role in the creation of solar flares and can
potentially contribute in the heating of the corona.

Since ideal MHD do not apply during reconnection, the plasma must have a nonzero magnetic resistivity
η ̸= 0, which will result in the diffusion of the magnetic field to be considerable. We can provide an adequate
description of reconnection in 2D with Figure(2.1) showing how magnetic field lines reconnect and how the
topology of the field changes.
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Figure 2.1: Progression of magnetic reconnection as the field lines move closer to each other (Aλυσανδράκης,
Nίντoς, and Πατσoυράκoς 2016).

We can see in the picture we have field lines of opposite direction. As plasma flows pushes the field lines
towards the neutral line, which divides regions of magnetic fields with opposite polarities, a topology that
looks like an x−point is formed. The more the field lines move closer to each other, current density increases
which makes the resistivity to have a finite value. In that region the field lines are no longer ”frozen in” and
the plasma diffuses. When the field lines eventually touch, the magnetic tension will pull the newly connected
lines away from the diffusion region. In the case of 2D reconnection the only place where the magnetic field
lines can be directed is on the sides of the diffusion region as shown in Figure(2.1). So, magnetic energy that
flows into the diffusion region is transformed to kinetic energy that flows out of the region.

2.6.1 Sweet-Parker model

We will present two different approaches to magnetic reconnection. The first one is the Sweet-Parker model
which describes slow reconnection. An illustration of the diffusion region of this model is shown in Figure(2.2).
We see that the region has a length of 2L and width of 2δ were L ≫ δ.

First, we have to assume that the flow is incompressable, which means that ρin = ρout = ρ , and by also
assuming steady state we get from mass conservation,

uinL = uoutδ (2.44)

Afterwards, we equate the kinetic energy that plasma gains with the electromagnetic energy that flows
into the region, which is the Poynting vector.

1

2
ρuin(u

2
out − u2

in) =
uinB

2
in

4π
(2.45)

Then, since L ≫ δ, by using equation (2.44) we have uout ≫ uin , which in turns gives us the following
relation for outflow speed,

u2
out = 2u2

A,in (2.46)

where uA,in is the Alfvén speed in the inflow region.
In order to calculate the inflow speed we first need to obtain a relation for the thickness of the outflow

region δ. By combining Ohm’s and Amperé’s laws we get,

δ =
ηc2

4πuin
(2.47)

which in turn is used alongside equations (2.44) and (2.46) to get the inflow speed,

u2
in =

√
2ηc2

4πL
uA,in (2.48)

Now, we can see that the magnetic Reynolds number that is associated with the Alfvén speed at the
inflow region is,

Rm,A,in =
4πuA,inL

ηc2
(2.49)
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and we have the inflow speed expressed as,

uin = uA,in

√ √
2

Rm,A,in
(2.50)

Figure 2.2: Diffusion region at the Sweet-Parker model (Ji et al. 1999).

We can quantify how fast reconnection occurs with reconnection rate r which is generally expressed as,

r =
inflow speed

outflow speed
(2.51)

for the Sweet-Parker model, equations (2.46) and (2.50) gives as a reconnection rate of,

r ∼ 1√
Rm,A,in

(2.52)

The reason why the Sweet-Parker model describes slow reconnection is because if we use realistic values
of the magnetic Reynolds number for the solar corona, which is in a range of Rm ≈ 108−1012, we will have a
reconnection rate of r ≈ 10−4 − 10−6. This is in fact very slow for phenomena that are due to reconnection.
For example solar flares would have a timescale of days while in reality they have a timescale of a few minutes
(Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016) , (Shibata and Magara 2011).

2.6.2 Petschek model

Since the previously discussed model is not consistent with observations we have to find a way to increase
the reconnection rate. In order to achieve that we have to take a closer look at equation (2.49) which the
reconnection rate r depends on. To achieve that we can decrease the scale of the reconnection region L which
will reduce the magnetic Reynolds number Rm,A,in. Other solutions are also possible such as increasing the
plasma resistivity. This incident is called anomalous resistivity and can occur when there are ion-acoustic
waves on the plasma, however we will not discuss it more extensively.

A popular model that reduces the scale of the reconnection region is the Petschek model and its smaller
diffusion region is illustrated on Figure(2.3). In reality the decrease of scale L happens due to shock waves
that are developed between the inflow and the outflow region. Because of the shock waves, the inflow speed
can increase significantly compared to the Sweet-Parker model, allowing for a faster reconnection rate. For
the Petschek model the reconnection rate is given by,

r ≈ π

8 lnRm
(2.53)
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Using a typical value of the magnetic Reynolds number for the solar corona Rm ≈ 108 − 1012, we get
values in the range of r ≈ 0.01 − 0.02 for the reconnection rate according to the Petschek model. This is a
significant improvement regarding observations of dynamic phenomena.

Figure 2.3: Diffusion region at the Petschek model (Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016)

2.6.3 3D reconnection

The analysis we presented earlier holds for 3D configurations only under the assumption that the magnetic
field is symmetric in the third direction. Since this is not the general case, by adding a third dimension
we also introduce certain characteristics that are different from the two dimension case. Some of the most
distinctive aspects of the new magnetic configuration are null point, separatrix surfaces and separators. Null
points are the points where the magnetic field is zero. Field lines that pierce through an area such as the
photosphere enclose a volume. Different volumes may exist since filed lines enter and exit the photosphere
at different areas. The boundary that separates those different volumes is called separatrix surface. This
means that a separatrix surface connects places where the magnetic field penetrates the photosphere and a
null point. Separators are field lines that connect two different null points and are the intersection between
two separatrix surfaces.

These characteristics are illustrated in Figure(2.4) where we have the field lines of a quadrupole magnetic
field. This is a realistic scenario that can happen when a bipolar region emerges next to an already existing
bipolar region.

Figure 2.4: Magnetic field topology of a quadrupole region with null points, separators and separatrix surfaces
(Aλυσανδράκης, Nίντoς, and Πατσoυράκoς 2016).
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Just like in the 2D case, the presence of currents is also necessary for reconnection in 3D. This can be
explained by the necessary and sufficient condition for magnetic reconnection which is given by the following
equation. ∫

dl

E∥ dl ̸= 0 (2.54)

where dl is the path through a filed line’s length, and E∥ is the component of the electric field that is
parallel to the magnetic field line. In 3-dimensions, reconnection doesn’t only occur when the magnetic field
develops an x-point as it does in 2D, instead there are several other types of 3D magnetic reconnection.

A convenient example is that of separator reconnection that is the 3D analogue of x-point reconnection in
2D. A section perpendicular to the separator will reveal an x-point type structure, where the main component
of the magnetic field is parallel to the separator.

In any case where there is 3D reconnection, magnetic field lines diffuse throughout the whole volume of
the diffusion region, so any part of the line that goes through that volume will reconnect with some other
field line. Due to that behavior it is difficult to find pairs of field lines that after reconnection form other
pairs such as in 2D reconnection. Instead we can have pairs of field line volumes that create new volumes
after reconnection. The difference between the lines in 2D and the volumes in 3D can be seen in the left and
right side of Figure(2.5) respectively.

Figure 2.5: Sketches of magnetic reconnection in 2D (left) and 3D (right). Colored tubes correspond to
magnetic flux tubes and the purple sphere is the volume of the diffusion region (Aλυσανδράκης, Nίντoς,
and Πατσoυράκoς 2016).
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Lare3D Code

3.1 Introduction

The analysis we present in the current work is done by using numerical simulations. To do so we use
LareXd which are Lagrangian remap codes for solving MHD equations in 3 dimensions (3D). This LareXd
code solves the nonlinear MHD equations for know known viscosity and resistivity. Extensions may include
gravity term, a partially ionized hydrogen equation of state, Cowling resistivity, parallel thermal conductivity
and optically thin radiative losses.

To solve the set of equations it splits each time step into a Lagrangian step followed by a remap onto the
original grid. This is the reason why adding additional physical properties is very convenient since it allows
all properties into a single Lagrangian step. The remap step has gradient limiters for the correct inclusion
of shocks.

The code uses an evenly spaced grid to built conservation laws into the finite difference scheme. The
program can be implemented to execute in parallel and it can scale linearly. A more detailed explanation
about the equation that it solves and how it solves them will be expanded in the following sections (TD
Arber, Longbottom, et al. 2001).

3.2 MHD Equations

Here we concentrate on the standard resistive MHD equations in S.I. units.

∂ρ

∂t
= −∇ · (ρu) (3.1)

Du

Dt
=

1

ρ
j ×B − 1

ρ
−∇p (3.2)

∂B

∂t
= −∇× E (3.3)

∂ε

∂t
= −p

ρ
∇u+

η

ρ
j2 (3.4)

E + u×B = ηj (3.5)

∇×B = µ0j (3.6)

The symbols in the above equations have the following meaning. E and B are the electric and magnetic
field respectively. ρ the plasma density, p the pressure, j the current density and u the plasma velocity. We
also note the meaning of η which is the resistivity, which is linked with the conductivity as, η = 1

σ . By
setting the resistivity to zero, η = 0 , we have ideal MHD. Equation (3.4) is expressed in terms of the specific
internal energy density ε. Even though in numerical calculations this is a more useful definition, it might be
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easier to understand the physical properties of the system if instead of ε we use the temperature (T ) and
pressure (p). Those quantities are connected with the following equations.

ε =
p

ρ(γ − 1)
=

kBT

µm(γ − 1)
(3.7)

p =
ρkBT

µm
(3.8)

Since µm is the reduced mass, for neutral hydrogen atoms we have µm = mp and for fully ionized hydrogen
µm = 1

2mp , with mp being the proton mass (Brown 1973), (TD Arber, Haynes, and Leake 2007).

3.3 Normalization

When we input the variables of the code we do so in dimensionless form. Of course, this can be done
by choosing the most convenient normalization. When the numerical simulation includes additional physics
like thermal conduction, partial ionization or optically thin radiative losses, we must specify the numerical
values of the normalized length, magnetic field and density. This however is not needed when we run resistive
MHD. The three basic quantities that we normalize are the length, magnetic field and density, so we end up
with the following normalized ones.

x = L0x̂ (3.9)

B = B0B̂ (3.10)

ρ = ρ0ρ̂ (3.11)

From these basic normalized quantities the rest of important quantities in MHD can arise. They are
defined by the symbols we have used throughout this work.

u0 =
B0√
µ0ρ0

(3.12)

t =
L0

u0
(3.13)

p0 =
B2

0

µ0
(3.14)

j0 =
B0

L0µ0
(3.15)

E0 = u0B0 (3.16)

ε0 = u2
0 (3.17)

T0 =
ε0m̄

kB
(3.18)

µm0 = m̄ (3.19)

From these we get,
u = u0û (3.20)

j = j0ĵ (3.21)

p = p0p̂ (3.22)

Like before, m̄ is the average mass of ions so for example if we plasma with pure hydrogen it would be
m̄ = mp . For the solar corona the typical value is m̄ = 1.2mp. If we use the previous normalization to
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ideal MHD it would remove the vacuum permeability µ0. For resistive MHD all we have to do is combine
equations (3.3) and (3.5) and use the normalization to get,

∂B̂

∂t̂
= ∇̂ × (û× B̂) − 1

µ0L0u0
∇̂ × (η∇̂ × B̂) (3.23)

The normalization of resistivity is shown below since in the LareXd code resistivity is not assumed to be
spatially uniform.

η̂ =
η

µ0L0u0
(3.24)

The resistivity can however be uniformly applied or programmed to work only when the current density
exceeds some value. Whether or not resistive diffusion takes place it can be controlled by the Lundquist
number (S) so η̂ is,

η̂ =
1

S
(3.25)

Dropping the hats from the normalized variables using the Lagrangian derivative the normalized resistive
MHD equations are,

Dρ

Dt
= −ρ∇ · u (3.26)

Du

Dt
=

1

ρ

[
(∇×B)×B −∇p

]
(3.27)

DB

Dt
= (B · ∇)u−B(∇ · u)−∇× (η∇×B) (3.28)

Dϵ

Dt
=

1

ρ

[
− p∇ · u+ ηj2

]
(3.29)

p = ϵρ(γ − 1) (3.30)

This code makes no reference to the plasma β parameter since plasma pressure is normalized to the
magnetic pressure. It is possible to set the initial conditions of the magnetic field to zero B = 0 as this
fixes B̂ and does not affect B0 which is the normalizing field. The LareXd code, when in 3D, assumes that
gravity is in the z direction. So after normalization the momentum equation (3.27) for the z component is
given by,

Du

Dt
=

1

ρ

[
(∇×B)×B −∇p

]
− ĝ (3.31)

where ĝ is defined by,

ĝ =
L0g

u2
0

(3.32)

3.4 Uniform viscosity

Under normal circumstances the code includes shock viscosity. However for practical purposes we can
either increase dumping effects near the boundaries or apply a uniform non-shock viscosity. This is done by
adding the following incompressible viscosity term to the momentum equation.

∂u

∂t
= ν∇2u (3.33)

We can choose the function ν which represents the spatially dependent viscosity function ν = ν(r) . The form
of ν is specified as an initial condition whether it adds dumping to boundary conditions or as background
viscosity and it does not affect heating.
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3.5 Open boundaries

The different processes of the code have to be able to swap information so this is done by each process
having ghost cells. Ghost cells are defined around the real cells in order to create a buffer for the exchange of
boundary information. Because we want to limit the number of times that processes have to communicate,
we implement two ghost cells in the buffer zone and this is how the real boundary conditions are applied.

Open boundaries are applied in LareXd using far-field Riemann characteristics. This is done so the
Alfvén speed can be calculated and then use the result to project 1D Riemann invariants into ghost cells.
In the case that the wave is outgoing the values are propagating from inside the domain into the ghost cells.
In the opposite case where the waves are propagated inwards, values are carried in from the far-field. This
of course demands a fixed far-field which means we have to specify the values of density ρ, internal energy
ϵ, velocity and magnetic field components ux, uy, Bx, By, Bz . To avoid the open boundary conditions
affecting the initial equilibrium these are set to the ghost cell values. In fact this puts a constrain on the
magnetic field forcing it to not change a lot from the initial field so it would keep the open boundaries as
accurate as possible. In order to avoid having the far-field problem for MHD ill posed, the far-field of the
initial conditions at t = 0 must remain valid throughout the later stages of the simulation.

Reflection in the the boundaries is typically a few percent but can be as large as 10% in extreme cases.
To cure that a stretched grid with a damping layer can be used. Most of the problems have to do with the
fact that the open boundary problem for MHD might not be well posed which can significantly alter the
result of the simulation.

3.6 The grid

In this section we will explain the way the computational grid correlates with the output arrays in physical
space. Let’s first examine the easiest case for 1D. We would have nx computational cells that are labeled
from ix = 1 to ix = nx. However, the variables used in the code are not defined at the same point in
a cell. Therefore, xbi is the position of the right hand boundary of a cell and xci the position of the cell
centre. This means that the left hand boundary of the computational domain is at xb0. Each cell has a
width of dxbi and the distance between cell centres is dxci. In this coordinate system all quantities such
as density ρ, pressure p, specific internal energy density ε are defined at cell centres, while velocities u are
all defined at the cell boundaries. This is shown in Figure(3.1). Each component of the magnetic field is
defined at different location. Bx is defined at cell boundary xbi, while By and Bz at the cell center xci. A
disadvantage of this is that in order to define the initial conditions inside the computational domain more
points are needed for velocities u and Bx than for other quantities and the other magnetic field components.
For example we would have to define ux from ix = 1 to ix = nx.

Figure 3.1: 1D staggered grid and the place each quantity is defined ( Tony Arber, Brady, and Haynes 2018).

Moving on to a 2D grid where the velocities are defined at cell corners, other quantities and one direction
of the magnetic field at cell centres. The other two magnetic field components are defined at cell edges
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as shown in Figure(3.2). In Figure(3.2) the mass density at the vertex ρuij is also shown, and if we define

the kinetic energy density at 0.5ρiju
2
ij , we have 0.5ρuiju

2
ij . After that, to obtain the vertex density we must

average the densities in the cells that surround it. A more careful way to calculate these averages, which is
the way it is frequently performed in the code, is by adding the total mass in the surrounding four cells and
then dividing by the total area.

Finally, the realistic 3D grid which we use for this work is a simple extension of the 2D case. All quantities
such as density ρ, pressure p, specific internal energy density ε are defined in the center of the cells, while
velocities at the cell vertices. Since it’s a function of z, gravity is also defined at cell vertices. On the other
hand all magnetic field components are defined at the center of each surface of the volume. An illustration
of the 3D case is shown in Figure(3.3).

Figure 3.2: 2D staggered grid and the place each quantity is defined ( Tony Arber, Brady, and Haynes 2018).

Figure 3.3: 3D staggered grid and the place each quantity is defined ( Tony Arber, Brady, and Haynes 2018).
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Model Setup

4.1 Initial Conditions

In this study, we used the Lare3D code to simulate the flux emergence process of a magnetic flux tube
from the convection zone to the upper solar atmosphere. We set up the initial conditions using a plane
parallel stratification and there is no convection in our code.

We use a computational domain of 420×420×420 uniform grid. This means that the computational box
describes a physical space of 64.6 × 64.6 × 64.6 Mm. In the z-direction, the solar interior extends from
−4.8 Mm to 0 Mm, the photosphere from 0 to 1.8 Mm, the chromosphere/transition region from 1.8 to
3.2 Mm and the corona from 3.2 to 59.8 Mm. Both the x and y axis extend from −32.3 Mm to 32.3 Mm.
Below, we present the initial profiles of important quantities that describe the physical characteristics of the
plasma throughout each layer of the stratified environment. Those plots are temperature, density, pressure
and magnetic pressure over height. To obtain them we focus on the center of the computational box at x = 0
and y = 0, and then plot each quantity through height z in the beginning of the simulation at t = 0.

Figure 4.1: Temperature T profile for both horizontal and toroidal flux tubes, as it is imposed for the initial
conditions.

Figure(4.1) show the temperature profile of the atmosphere, which is set up in a way that it resembles
the temperature throughout the solar atmospheric layers. As we approach the photosphere from the interior
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the temperature decreases, then it reaches a minimum at the photosphere until it rapidly increases in the
transition region, to reach a maximum plateau in the isothermal corona. The photosphere starts from z = 0
Mm up to z = 1.4 Mm. Then, the small and steep area where the temperature rises about two orders of
magnitude is the transition region which extends from 1.4 to 3.2 Mm. From there and all the way up to
z = 59.8 Mm we have the corona. Collectively all those layers are considered to be the solar atmosphere
that incorporates heights of z > 0 Mm.

In order to set up the stratification below the atmosphere at z < 0, we first have to calculate the specific
internal energy. We start by using the ideal gas law,

p =
ρkBT

µm
(4.1)

where µm the reduced mass µm = m̄
2−ξn

and m̄ the average mass of ions.
To fully describe the specific internal energy we take into account ionization energy and we obtain the

following expression,

ϵ =
p

ρ(γ − 1)
+ (1− ξn)

Xi

m̄
(4.2)

with the adiabatic index being γ = 5/3 and the first ionization energy of hydrogen Xi = 13.6 eV. Since we
don’t include effects of partial ionization we set ξn = 0 and simplify the energy equation even further by
completely disregarding the second term of equation(4.2). Afterwards, we choose this specific temperature
profile so we can have a convectively stable interior. The temperature profile of the flux tube is given by
equation, (

dT

dz

)
adiabatic

= −µmg

kB

γ − 1

γ
(4.3)

In the atmosphere, z > 0, the temperature profile is due to a tangential function that takes the form of,

T (z) = Tph +
Tc − Tph

2

(
tanh

z − zc
wtr

+ 1
)

(4.4)

where zc is the height of the base of the corona and Tc the temperature at that height. Also, Tph is the
temperature at the base of the photosphere which is Tph = 6300 K. wtr is the width of the transition region
which we set up at wtr = 0.18 Mm (Nozawa et al. 1992).

We assume that the plasma in the computational box is in hydrostatic equilibrium. So in order to find
the initial profiles of pressure and density, we numerically solve the hydrostatic equation,

dp

dz
= −gz (4.5)

Figure(4.2) shows the pressure and the density against height in the same plot. In accordance with the
observed stratification of the solar atmosphere, we have set up the gas pressure and density to decrease
slowly as we move outwards in the solar interior, and drop by many orders of magnitude as we approach the
photosphere. Above the photosphere pressure and density are relatively constant.
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Figure 4.2: Profile of pressure P and density ρ.

Since there is an initial pressure profile in the interior even in the absence of the flux tube, by adding
it we introduce additional pressure because of its magnetic field. Later on when we place the tube we will
impose an axial magnetic field By that decreases from the tube’s axis, so the surplus pressure should be in
accordance to that. We use the following form to calculate the additional pressure (M. Murray et al. 2006)
(Chouliaras, Petros Syntelis, and Vasileios Archontis 2023).

padd =
B2

y

2µ

(
α2

(
R2

2
− r2

)
− 1

)
(4.6)

Now, the pressure in the solar interior becomes,

pi + padd = p0 (4.7)

which describes the new pressure equilibrium.
If the tube was completely uniform it would mean that it is in an environment of thermodynamic equilib-

rium, therefore it wouldn’t be able to rise. For that reason we will introduce a density deficit in the middle
of the tube’s length. This density deficit in the initial conditions acts as a perturbation that will make the
tube buoyant and allow it to emerge. We also assume that in the solar interior the plasma would be in
thermal equilibrium with the already existing environment. This is given by, Ti = T0. It also suggests that
the density deficit inside the flux tube is,

∆ρ = −ρ0
padd
p0

(4.8)

However, we expect the emergence of the tube to create an Ω-loop shape, so in order to avoid the uniform
emergence of the whole tube, we enforce the density deficit to have a higher value at the center of the tube
and to reduce drastically towards its edges. The density deficit is then modified and given as a function
of the tube’s axis by the following expression (Chouliaras, Petros Syntelis, and Vasileios Archontis 2023)
(Syntelis, Archontis, and Tsinganos 2017).

∆ρ = −ρ0
padd
p0

e−y2/λ2

(4.9)
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Here, the parameter λ measures the length of only the buoyant part of the tube. Our choice for the
length scale is λ = 5 that incorporates a physical space of z = 0.9 Mm.

Figure 4.3: Magnetic pressure Pm indicating the location of the flux tube beneath the photosphere.

In Figure(4.3) we have plotted the magnetic pressure Pm. Specifically we focused on the center of the
x-axis. Then, we plotted the magnetic pressure throughout all heights at t = 0 before any buoyant force acts
on the tube. Since the flux tube we use, is placed at −2.1 Mm below the photosphere, evidently we see large
values of magnetic pressure gathered around the center of the flux tube. Magnetic pressure is calculated
using the following equation.

pm =
1

8π
(B2

x +B2
y +B2

z ) (4.10)

In all simulations, the flux tube is oriented along the y-axis, and the magnetic field for the horizontal
tube is defined by (Fan 2001), (MacTaggart and Alan W Hood 2009) and given in cylindrical coordinates
as,

B = By ŷ +Bϕϕ̂ (4.11)

where,

By = B0e
−r2/R2

(4.12)

Bϕ = αrBy (4.13)

where ϕ is the azimuthal direction in the tube cross-section, R is the tube’s radius set at R = 0.45 Mm and
r the radial distance from the tube’s axis for both horizontal and toroidal flux tubes.

After introducing the initial stratification, we use the Lare3D code to numerically solve the following
MHD equations in Cartesian geometry (TD Arber, Longbottom, et al. 2001). Those equations have been
presented in Chapter 3 and are repeated here in dimensionless form.

∂ρ

∂t
+∇ · (ρu) = 0 (4.14)

∂(ρu)

∂t
= −∇ · (ρ uu) + (∇×B)×B −∇p+ ρg +∇ · S (4.15)
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∂(ρϵ)

∂t
= −∇ · (uρϵ)− p∇ · u+Qjoule +Qvisc (4.16)

∂B

∂t
= ∇× (u×B) + η∇2B (4.17)

ϵ =
p

ρ(γ − 1)
(4.18)

where all the symbols have their usual meaning and in the perfect gas assumption the specific heat is set
at γ = 5/3.

4.2 Emergence above the photosphere

We start by explaining the emergence process of the flux tube. In Figure(4.4) we illustrate the contour
lines of the axial magnetic field By. The background represents the density distribution of plasma in the
interior. We focus on the early stages of the simulation as well as at heights beneath the photosphere, to
illustrate how a cylindrical tube expands due to the pressure difference of itself and the environment while
rising at the photosphere. As the tube moves upwards the pressure inside the tube increases, while the
pressure on the surrounding environment decreases. This lead to the expansion of the tube in the radial
direction due to pressure difference. The four snapshots of Figure(4.4) cover a time frame of the first 11
minutes of the simulation and during that period the tube’s axis has traveled upwards at a distance of 2
Mm.

Figure 4.4: Contour lines of the By of the highly twisted (α = 0.4) horizontal tube as it expands when
it reaches the photosphere. t = 0, 11.4, 17.1, 22.8 minutes respectively. On the background we have the
logarithm of the density.

The photosphere is isothermal and stable against the convective instability. This means that when dense
plasma reaches the photosphere, in order for it to rise even further, it would have to overcome the force of
gravity. A way for this to happen is if the buoyancy instability acts upon the plasma in the area above the
photosphere. Above z > 0, the stratification is sub-adiabatic, so for the plasma to eventually emerge above
the photosphere, the buoyancy instability criterion given bellow has to be satisfied (Newcomb 1961)(Acheson
1979)(Archontis, Moreno-Insertis, et al. 2004)(Moreno-Insertis 2006).

−Hp
∂

∂z
(logB) > −γ

2
βδ + k2∥

(
1 +

k2⊥
k2z

)
(4.19)

The variables expressed are, δ the super-adiabatic excess δ = ∇ − ∇adiabatic where ∇ the logarithmic
temperature gradient and ∇adiabatic its adiabatic value. For an isothermal stratification like ours the super-
adiabatic excess is δ = −0.4 k∥ and k⊥ the wave numbers of the perturbations in the direction parallel and
vertical to the magnetic field, while kz in the z− direction. Hp the pressure scale and β the plasma beta
parameter.
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The second term on the right hand side of equation(4.19) can be neglected because it has an order of
magnitude around ∼ 10−15 which is much smaller than the minimum value of β ≈ 10−12 on the first term
on the right. Equation(4.19) can be rearranged as,

2Hp

γδβ

∂

∂z
(logB) > 1 (4.20)

This equation gives a clear picture of the instability, and when it is satisfied the buoyancy force will allow
the plasma of the flux tube to penetrate beyond the photosphere.

As the flux tube crosses the photosphere the magnetic pressure increases an surpasses the local gas
pressure which means that their ratio will also increase. However since their ratio β is on the denominator
of equation(4.20), the fraction as a whole will increase. As a consequence of the field compressing on the
sides of the tube in the y− direction, the gradient of the magnetic field also decreases. At some point the
decrease of β will surpass the decline of B which will increase the value of the fraction of equation(4.20), and
when it is greater than one the criterion will be satisfied, allowing for the flux tube to penetrate the whole
photosphere.

The expansion of the emerging field forms an envelope that surrounds the flux tube (Moore, Alphonse C
Sterling, Hudson, et al. 2001), (Vasilis Archontis and Alan William Hood 2012). The envelope field can be
seen in our own simulations in Figure(4.5) where the flux tube has penetrated the photosphere and expands
as it rises. Figure(4.5) shows the contour lines of the magnetic field in the y direction with plasma density
on the background. For the moment the envelope field expands and presses the surrounding plasma, until
later when the an ejective explosion will blow out the envelope with the twisted flux tube inside it.

Figure 4.5: Envelop field expansion in the early stages of the highly twisted (α = 0.4) horizontal flux tube
emergence. The background colors correspond to the density logarithm.

4.3 Standard jet

The emergence phase is an important process for bringing magnetic field from the convection zone to the
upper atmosphere. However it is not enough to produce the eruptive events observed in the Sun. In this
study we focus on the interaction between the emergent field and an external ambient field that results in
jet formation and eruption-driven jets.

The ambient field has a strength of 10 G in a direction that points upwards, but not entirely perpendicular
to the surface. It forms an θ = 11◦ degree angle with the z−axis, and a ϕ = 183◦ with the y−axis. This
setup ensures that the ambient magnetic field lines and the emerging field lines are antiparallel, which will
trigger reconnection once they converge (Galsgaard et al. 2007). This creates a current sheet where free
magnetic energy is released and converted, via Joule heating, into thermal energy heating the plasma. A
portion of this magnetic energy is also converted into kinetic energy that accelerates the plasma through the
outflow regions. Evidence of this is the standard jet formation that is visible after the flux tube emerges
in the corona and throughout the whole simulation (Heyvaerts, Eric R Priest, and Rust 1977), (Forbes and
Priest 1984), (Isobe et al. 2005).
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A schematic representation of jet formation is illustrated in Figure(4.6). We see that magnetic fields
emerge from beneath the photosphere due to buoyancy. Afterwards it expands further creating the Ω−like
loop, and when the magnetic field lines of the loop come close enough with the coronal field to create a
current sheet, they reconnect at the neutral point. On both sides of the reconnection we see the formation
of two jets at opposite directions. The upwards reconnection jet is the main mechanism with which energy
leaves the main structure and is transported to higher altitudes, while the downwards jet ejects the plasma
on the base of the newly formed smaller arcade in the lower right side of the third panel of Figure(4.6),
(Shibata, Ishido, et al. 1993).

Figure 4.6: From panel left to right we have a schematic representation of how the structure of the flux
tube interacts with the ambient coronal magnetic field. On the right side panel we have the neutral point
marked with ”X” where reconnection takes place, as well as the jets that are subsequently created (Shibata
and Magara 2011).

This cartoon of the standard jet bares a close resemblance to actual jets formed in the solar atmosphere,
with many observations revealing that similarity (Patsourakos et al. 2008), (Shen 2021), (Schmieder 2022),
(Li et al. 2012). Figure(4.7) shows a jet observed with IRIS, taken from the work of (Joshi et al. 2020). In
panel(a) we can see the structure resembling the standard jet formation, along with a cool bright dome in
the northern side of the null point. Panel(b) shows a similar picture of the jet, this time with the arrow
covering the width of the cool jet. In panel(c) we have the collimated narrow hot jet. In this panel, the
southern loop is shown to be a bright and hot structure, and the same is true for the point at the base
of the jet. Panel(d) is obtained through differential emission measure (DEM) analysis, and the null point
along with the long bright current sheet is also shown with a white arrow. The black points in all panels are
produced by extreme saturation and are not part of the observed structures (Joshi et al. 2020).
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Figure 4.7: Solar jet observed with IRIS at 11:45 UT in panel (a) and (b). In panel(c) there is the same
jet observed with AIA at 193 Å, while in panel(d) a DEM map at a fixed temperature log T = 6.3 . Image
reproduced from (Joshi et al. 2020).

A similar behavior is observed in our own simulations. Figure(4.8) has three panels in sequence showing
the temperature logarithm during the formation of the standard jet from a horizontal flux tube. We can see
that when reconnection takes place as the flux tube compresses along the ambient magnetic field. The two
jets that formed from the reconnection, eject hot plasma which is reflected in the temperature increase at
the spine of the jet well into the corona.

On Figure(4.9) we have the same sequence, but this time with the logarithm of the density on the
background. We can clearly see the difference in density between the emerging flux tube, which is denser
than the corona. As the magnetic field of the flux tube reconnects with the ambient field, we can also expect
dense plasma to be ejected from the outflow regions. An increase in the density can be seen both in the
spine of the standard jet, where the plasma moves upwards following the ”open” field lines, as well as in the
opposite jet that moves downwards towards the base of the corona.

On Figure(4.10), we plotted the z−component of the velocity at the same time as the other quantities
which is right after the formation of the standard jet. Once again the reconnection process ejects material
that are subsequently accelerated out of the main structure. The signature of this process is very clearly
shown in the plot where there is an increase in the vertical speed of plasma as it leaves the area of reconnection
and moves upward. A similar behavior can be observed at the jet that flows downwards where we have the
vertical component of velocity take negative values as the plasma moves downwards. All these plots only
help to further establish the similarity of the phenomena observed in our own simulations with pre existing
theoretical work (Shibata, Ishido, et al. 1993), (Yokoyama and Shibata 1996), (Shibata and Magara 2011).
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Figure 4.8: Temperature distribution during the formation of the standard jet.

Figure 4.9: Density distribution during the formation of the standard jet.

Figure 4.10: z-component of the velocity during the formation of the standard jet.

4.4 Blowout jet

The standard jet, as we discussed before, is formed from the reconnection of the emerging field with
an external ambient field. This process will eject plasma upwards along the open ambient magnetic field
lines but also downwards forming the post-flare hot coronal loop. However, this is not the only way to have
ejection of plasma. Plasma can be also ejected in an eruptive manner in a process known as an eruption-
driven jets or “blowout jets”. Unlike the standard jet, cooler plasma is ejected from a blowout jet where this
cool plasma most likely comes from the jet’s base arch. So, the main difference between a standard and a
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blowout jet is whether the base arch remains closed, as in standard jets, or erupts open like in blowout jets
(Moore, Cirtain, et al. 2010).

As the standard jet phase evolves, there is a definite formation of a sigmoid shaped bipolar region. The
opposite polarity feet of the field lines in the sheared arcade get close to each other, so fast reconnection can
start (Ballegooijen and Martens 1989), (Archontis and Török 2008), (Adams et al. 2014). This reconnection
leads to new field lines at the two ends of the current sheet which is created at the feet of the sheared arcade.
The arcade field lines on one of the sides of the current sheet become fully reconnected, while there is still flux
residue on the other side. This imbalance results in reconnection between field lines of the original hot loop
of the standard jet with the remnant field lines from the arcade. The new emerging field is strongly sheared
and twisted with enough free energy to drive an ejective eruption (S. Antiochos, C. DeVore, and Klimchuk
1999), (C Richard DeVore and Spiro K Antiochos 2008), (Wyper, Spiro K Antiochos, and C Richard DeVore
2017). The erupting material is ejected onto the overlying open field with high velocity. Therefore the
eruption is guided along the field lines where the original jet was propagating. The eruption will be seen not
only to disturb a large part of the emerged structure but also, to propagate as a temporary impulsive jet
with a complex structure roughly in the same direction as the standard jet, eventually reaching the top of
the computational box (Moreno-Insertis, Galsgaard, and Ugarte-Urra 2008; Fernando Moreno-Insertis and
Klaus Galsgaard 2013), (C. Liu et al. 2011), (Micheal J Murray, Driel-Gesztelyi, and Baker 2009).

A schematic representation of a blowout jet can be seen in the four cartoons of Figure(4.11). In panel (a)
we have the initial set up which is similar to that of the standard jet case. The emergent bipolar field which
creates a loop, along with the ambient coronal magnetic field which is the open vertical lines. The current
sheet is shown as a black line. The structure evolves into that of panel (b) where magnetic reconnection
occurs at the location of the neutral point (”X”), and a narrow jet spire forms along the new open field
lines. The bipolar field is then destabilized which leads to a full eruption as shown in panel (c) with various
reconnection points (Manchester IV et al. 2004). Since this bipole originally contained cold material, the
eruption forces them upwards and we have a mixture of heated field lines from the reconnection along with
cooler ones from the blowout eruption. In the end panel (d) shows the late stages of the eruption where the
newly reconnection-produced loops sustain a standard jet formation (Raouafi et al. 2016), (Moore, Cirtain,
et al. 2010), (Moore, Alphonse C Sterling, Falconer, et al. 2013), (Shen et al. 2012).
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Figure 4.11: Blowout jet cartoon (Moore, Cirtain, et al. 2010)

The above sketch provides a picture that is very similar to observations of blowout jets in the Sun, along
with many other observations (Peter R Young and Muglach 2014), (Gou et al. 2024), (Tang et al. 2021),
(Chandra et al. 2017). On Figure(4.12) we see the progression of a blowout jet observed in coronal X-ray
images from Hinode/XRT. The sequence of those pictures starts just before the outbreak of the jet and
continues up until its decay. The jet is viewed mainly from the side, while its length scale is in the order
of tens of thousands of kilometers. The downwards white arrows point to the lower leg of the jet’s spine
which shows as a bright point in the arcade. The upwards white arrows on the other hand point to the
brightening in the interior of the base arch. In the third frame, the brightening in the interior of the base
arch has spread towards the other end of the arch, and the jet spire is visible. The spire has an additional
strand that begins from the bright point end of the base arch. Since the foot of the strand is in front of the
bright point, it means that that the strand’s field lines have not been heated by the reconnection yet. So,
because in X-ray observations the the interior of the base arch brightens at the same time the jet appears,
we understand that in this type of jet the interior of the base arch is involved in the eruption unlike the
standard jet where it remains static. In the later stages, the the non-standard strand and the bright interior
of the base arch starts to disappear. During the last frames, the front strand has faded away with only a
single-strand spire rooted at the end of the base arch opposite to the bright point, which is the standard jet
structure remaining.
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Figure 4.12: Observation of a blowout jet (Moore, Cirtain, et al. 2010)

Just like in the case of the standard jet, our own simulation is in agreement with blowout jets observations.
Figure(4.13), (4.14) and (4.15) show the morphology of a blowout jet created by a horizontal flux tube.
On Figure(4.13) we have the temperature logarithm during the eruption. As expected from theoretical
investigations (Moore, Cirtain, et al. 2010) it starts with a picture very similar to that of the standard jet,
and magnetic reconnection between the loop and the ambient magnetic field takes place at the current sheet
where the temperature increases.

The eruption of cool material from a destabilized bipolar field can be seen better in Figure(4.14) where
a series of plots of the density logarithm are shown. The cooler material is ejected from the main structure
and follows the path of the new field lines created from the reconnection.

Furthermore, Figure(4.15) shows the increase in vertical velocity in the reconnection region which is
consistent with the ejection of material. Particularly in the forth panel, we have a significant increase in
the upwards speed through the jet spine and not so much in the loop which suggests that a big portion of
material is separated, accelerated and leave the main structure.

Figure 4.13: Temperature distribution during the blowout jet phase.

55



Figure 4.14: Density distribution during the blowout jet phase.

Figure 4.15: Distribution of the z-component of the velocity during the blowout jet phase.

4.5 Toroidal tube setup

Since we have described the way we implement a horizontal flux tube for our simulations, we should
also present an alternative to that which is a toroidal flux tube. The reason behind this is that a different
geometry of the flux tube, having distinct characteristics, may prove to be more accurate to describe the
emergence process as we observe it in the Sun. The equations that govern a toroidal flux tube and how it is
set up in our experiments are derived in this segment.

To set up a toroidal magnetic field, we transform our original cartesian coordinate to cylindrical (R,ϕ,−x).
The transformation used is,

R2 = y2 + (z − z0)
2 (4.21)

y = R cosϕ (4.22)

z − z0 = R sinϕ (4.23)

where the tube is placed in the y−direction, z being the height and z0 the value of the base of the
computational box, in our own experiment it is −4.7 Mm.

Afterwards, we express the magnetic field in terms of a flux function A = A(R, x) as,

BR = − 1

R

∂A

∂x
(4.24)

RBϕ = R0F (A) (4.25)

Bx =
1

R

∂A

∂R
(4.26)

where R0 is the major radius of the torus. The Grad-Shafranov equation takes the form,

R
∂

∂R

(
1

R

∂A

∂R

)
+

∂2A

∂x2
+R2

0F
dF

dA
+R2 dP

dA
= 0 (4.27)
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where RBϕ = R0F (A) and µp = P (A) are expressed in terms of the flux function A. In the above
equation(4.27) we define a local toroidal coordinate system that transforms the equation to,

∂2A

∂r2
+

1

r

∂A

∂r
+

1

r2
∂A

∂θ
− 1

R0 + r cos θ

(
cos θ

∂A

∂r
− sin θ

r

∂A

∂θ

)
+R2

0F
dF

dA
+

(
R0 + r cos θ

)2
dP

dA
= 0 (4.28)

where the transformations are,
r2 = x2 + (R−R0)

2 (4.29)

R−R0 = r cos θ (4.30)

x = r sin θ (4.31)

Assuming that the minor radius of the flux tube a is significantly smaller than the radius of the torus,
a ≫ R0 as well as that P (A) = P̃ (A)/R2

0 we can expand the solution in powers of a/R0.

A = R0

(
A0(r) +

a

R0
A1(r, θ) +

(
a

R0

)2

A2(r, θ) + ...

)
(4.32)

By keeping terms of zero-order we get a cylindrically symmetric solution that satisfies,

1

r

∂

∂r

(
r
∂A0

∂r

)
+

1

2

dF 2

dA0
+

dP

dA0
= 0 (4.33)

Multiplying the above equation with Bθ = ∂A0

∂r nd switching derivatives to dr we get,

Bθ

r

d

dr

(
rBθ

)
+

1

2

dB2
ϕ

dr
+

dP

dr
= 0 (4.34)

From this standard cylindrical equation we can choose the same solution as in the case of a horizontal flux
tube which is,

Bϕ = B0e
−r2/a2

(4.35)

Bθ =
∂A

∂r
= arBϕ = arB0e

−r2/a2

(4.36)

Finally those solutions will be expressed in terms of cartesian coordinates. To do that we give Bθ in
terms of cylindrical components BR and BX ,

BR = −Bθ(r) sin θ = −Bθ(r)
x

r
(4.37)

Bx = Bθ(r) cos θ = Bθ(r)
R−R0

r
(4.38)

Afterwards we express BR and Bϕ in terms of By and Bz as,

Bx = Bθ(r)
R−R0

r
(4.39)

By = −Bϕ(r)
z − z0
R

+BR
y

R
(4.40)

Bz = Bϕ(r)
y

R
+BR

z − z0
R

(4.41)

At last we have the full expression of each component of the toroidal tube’s magnetic field in cartesian
coordinates (Alan William Hood et al. 2009), (MacTaggart and Alan W Hood 2009).

Bx = Bθ(r)
R−R0

r
(4.42)

By = −Bϕ(r)
z − z0
R

−Bθ(r)
x

r

y

R
(4.43)

Bz = Bϕ(r)
y

R
−Bθ(r)

x

r

z − z0
R

(4.44)
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4.6 Characteristics of the flux tubes

The main purpose of this work is to compare the two different tube setups. So, the environment in which
the flux tubes are placed must be the same in order to draw reliable conclusions. However, the tubes have
some small differences that are consequences of their geometry. The main difference is the length of each
tube. In the case of the horizontal flux tube, we have a cylindrical tube with infinite length, obviously with
only a small portion of it contributing to the emergence process. The toroidal tube on the other hand, has
a fixed length with its feet anchored at the bottom of the computational domain. This of course puts a
constraint on the tube’s length which is Ltor = 2.7 Mm. Both tubes have a radius of R = 0.45 Mm and a
magnetic field of Btube = 6300 G.

The normalization we use is based on the values of density, length and magnetic field at the photosphere.
So we have ρ = 1.67 · 10−4 kg/m3, L0 = 0.18 Mm and Bph = 300 G respectively. From those we can
calculate, the pressure p0 = 713.2 Pa, the temperature T0 = 5100 K, the velocity u = 2.1 km/sec and the
time of each step of the simulation at t0 = 85.7 sec.

An overall picture of the flux tubes before the simulation starts, is given at Figure (4.16) where we see
the y−component of the magnetic field from the front. This means that we see the y − z surface at t = 0.
Since the magnetic field is constructed in a way that it is contained inside the tube, we can still use that
to distinguish each tube’s scale and shape. Even though the plot for the horizontal tube on the right side
is zoomed in and does not include the box’s boundaries, we can see how the tube is placed as a straight
cylinder with no footpoints on the solar surface.

Figure 4.16: On the left side we see the By of the horizontal flux tube at t = 0, while on the right side the
By of the toroidal at the same time. These two plots show how the flux tubes’s magnetic field looks like
when we first place them on the computational box.

Another important difference, which is also a subject we examine in this work, is the twist parameter
α. We chose to examine only two different values of the α parameter to capture the cases of highly twisted
(α = 0.4) and weakly twisted (α = 0.1) field lines. This parameter is inputted as an initial condition in each
simulation.

In the next chapter we make a comparison between the two different flux tube geometries, to further
investigate whether a horizontal or a toroidal flux tube carries more axial flux in the solar atmosphere. At
the same time we also distinguish two cases with different amount of field line twist, highly twisted (α = 0.4)
and weakly twisted (α = 0.1), and we contrast the amount of axial flux they are able to transport upwards.
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Results for α = 0.4

5.1 Introduction

In this chapter we present the results from the horizontal and the toroidal flux tube experiments. The
initial conditions are the same for both experiments and the twist is set to α = 0.4. The weakly twisted case
(i.e. α = 0.1) will be presented in the next chapter.

5.2 Twist α = 0.4

The emergence phase was extensively discussed in the previous chapter. In this chapter we analyze the
results when the magnetic flux has already emerged in both experiments. We first show a top view of the
z component of the magnetic field at the photospheric level. Similar observations of the Sun’s photospheric
magnetic field are made using magnetograms, such as those produced by HMI instrument onboard of the
Solar Dynamics Observatory (SDO) (Jørgen Schou et al. 2012), (Wachter et al. 2012), (P H Scherrer, Jesper
Schou, et al. 2012; P H Scherrer, R S Bogart, et al. 1995). During the flux emergence for both simulations
a bipolar region is formed as shown in Figure(5.1) and (5.2) respectively. The black and white areas shown
in those plots are regions of opposite polarity where magnetic flux either penetrates the surface upwards
or downwards allowing for plasma to flow. This make the simulation pictures very similar to those of real
sunspots in the solar surface. Those plots have a series of snapshots that are taken throughout the whole
simulation. This is deliberate to illustrate the dynamics of the footpoints of each tube. As we can see
comparing the two figures, in the case of the horizontal flux tube, its footpoints seem to drift apart as time
goes on and they continue to do so even towards the end. This however is not the case for the toroidal flux
tube. In the beginning, the footpoints drift apart at the same rate as the ones of the horizontal tube. When
the footpoints reach a maximum distance, they maintain that distance through the rest of the simulation.
This apparent difference between horizontal and toroidal flux tubes is due to the fact that we set up the
toroidal tube in a way that its footpoints are anchored at the bottom boundary, contrary to the horizontal
tube which is parallel to the surface and its length is infinite. As we can also see through the simulation
each sunspot exhibits a rotating motion which forms a sigmoid shape along the polarity inversion line (PIL).
The sigmoid that is created here is common feature of observations (McKenzie and Canfield 2008). This
structure maintains roughly its shape even during the later stages of the simulation.
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Figure 5.1: Sunspot formation from the horizontal flux tube with twist α = 0.4. Bz viewed from the top of
the computational box. We can see that the sunspots drift apart indefinitely.

Figure 5.2: Sunspot formation from the toroidal flux tube with twist α = 0.4. Bz viewed from the top of
the computational box. The sunspots start drifting apart at the beginning of the emergence, but they later
stop at a fixed distance.

To illustrate better the footpoint separation we plot in Figure(5.3) the footpoint distance with time.
By observing the behavior of the footpoint separation distance we see the that in the horizontal case the
footpoints get separated indefinitely while in the toroidal tube case the footpoint separation distance reaches
a plateau. The red dashed vertical line on the second plot of Figure(5.3) signifies the maximum distance
between the footpoints. As we expect this distance is twice the tube’s length d = 2L (Alan William Hood
et al. 2009). At each point in time the footpoint distance is calculated with equation,

d =
√

(x2 − x1)2 + (y2 − y1)2 (5.1)

where the two footpoints of opposite polarity are at coordinates (x1, y1) and (x2, y2).

Figure 5.3: Footpoint separation for both horizontal and toroidal flux tubes. The maximum separation
distance for the toroidal is shown in the dashed blue line at dmax = 5.4 Mm.
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As we described in chapter 4 the inclusion of an ambient field will cause a jet formation for both experi-
ments. Therefore we now focus on the thermodynamic properties of the jets. More specifically we take a 2D
cut at the x and z directions and zoomed in a surface that spans for 60 Mm in the x-axis and more than 60
Mm in the z-axis, which represents the vertical height. What is shown in the both Figure(5.4) and (5.5) is
the temperature before and throughout an eruption-driven jet known as blowout jet. In both horizontal and
toroidal case we distinguish the formation of a flux-rope structure which is blown away during the eruptive
phase. This is also clearly indicated by the magnetic field lines surrounding the plasma. The jet that can
be seen is formed in the early stages of flux emergence and is present throughout the simulation. After both
tubes emerge and create a standard jet, the horizontal tube experiences two blowout eruptions while the
toroidal five. Here we only show one from each since it is indicative of all the eruptions that occur after
the blowout jet is formed. This apparent difference in the quantity of eruptions however is important in
understanding the amount of flux that each tube is able to transport upwards.

Figure 5.4: Logarithm of temperature viewed from the side of the computational box in a cut at the x − z
sub-plane. This sequence is taken during the first eruption of the horizontal tube with α = 0.4 twist. The
black streamlines show the magnetic field lines at the same time as the temperature in the background. We
can see that during the eruption there is an increase in the temperature at the jet’s spire due to the violent
eruption of hot plasma, as well as a distinct structure that leaves from the top of the flare loop.

Figure 5.5: Logarithm of temperature viewed from the side of the computational box in a cut at the x − z
sub-plane. This sequence is taken during the first eruption of the toroidal tube with α = 0.4 twist. The
black streamlines show the magnetic field lines at the same time as the temperature in the background. We
can see that during the eruption there is an increase in the temperature at the jet’s spire due to the violent
eruption of hot plasma, accompanied by a distinct structure leaving from the flare loop.

Using similar techniques we present the same plots (i.e. x − z cut, same axis limits) in Figure(5.6) and
(5.7) that show the density as it evolves during an eruption. In comparison with the plots for the temperature,
the density seems to be higher in the same areas that the plasma is hot, as well as the areas where plasma is
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ejected from the main structure. Once the eruption is finished plasma continuous to move upwards this time
however along the spine of the standard jet. Then, a new flux rope is formed which explodes leading to a
second blowout. Of course the plasma density that the standard jet is able to transport is much smaller than
that of an eruptive event. This process stops for the horizontal after two eruptions while for the toroidal
after five.

Figure 5.6: Logarithm of density viewed from the side of the computational box in a cut at the x − z
sub-plane. This sequence is taken during the first eruption of the horizontal tube with α = 0.4 twist. The
white streamlines show the magnetic field lines at the same time as the density in the background. We can
see that during the eruption there is an increase in the density at the jet’s spire due to the violent eruption
of dense plasma, along with an increase of density above the flare loop which is the plasma that leaves the
main structure.

Figure 5.7: Logarithm of density viewed from the side of the computational box in a cut at the x − z sub-
plane. This sequence is taken during the first eruption of the toroidal tube with α = 0.4 twist. The white
streamlines show the magnetic field lines at the same time as the density in the background. We can see
that during the eruption there is an increase in the density at the jet’s spire due to the violent eruption of
dense plasma, along with an increase of density above the flare loop which is the plasma that leaves the main
structure.

Finally, in Figure(5.8) and (5.9) we plot the vertical velocity at the x−z mid-plane to illustrate the violent
ejection of plasma during eruptions. Both the plots for the horizontal and the toroidal tubes are centered
around the time of a blow out. Before the eruptive-driven jet a standard jet is formed as we explained in
chapter 4. During the interaction between the emerging field and the ambient field a current sheet is formed
leading to reconnection which accelerate particles upwards along the open field lines of the ambient field
with velocities on the order of 100 km/s. During the blowout phase plasma is expelled along the whole body
of the jet increasing the width of the jet. These series of plots might be even more helpful in showcasing
an eruption since during a blowout particles are accelerated and their much larger speed can be compared
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more clearly with the surrounding plasma velocity. We can clearly see an increase in the velocity at the tube
areas that erupt as well as throughout the whole length of the jet as plasma travels trough the corona.

Figure 5.8: Vz viewed from the side of the computational box at a x − z sub-plane cut. This sequence is
taken during the first eruption of the horizontal flux tube with α = 0.4 twist. We can see that during the
eruption there is an increase in the velocity throughout the jet’s spire since material is accelerated while
leaving the main structure.

Figure 5.9: Vz viewed from the side of the computational box at a x − z sub-plane cut. This sequence is
taken during the first eruption of the toroidal flux tube with α = 0.4 twist. We can see that during the
eruption there is an increase in the velocity throughout the jet’s spire since material is accelerated while
leaving the main structure.

To showcase the number of eruptive events in our experiments we calculate the total kinetic energy above
the corona using the expression below,

Ekinetic =

∫
1

2
ρu2 dxdydz (5.2)

with limits for the z component from z = 3 Mm until the end of the box at z = 60 Mm. In Figure(5.10) we
plot the total kinetic energy on the left side and maximum Vz for z > 0 on the right side for both cases.

We start by analyzing the kinetic energy. We see that the horizontal flux tube releases a higher amount
of kinetic energy by an order of magnitude as compared to the toroidal flux tube. In addition, the horizontal
case results in only two major eruptive events as indicated by the two peaks in the kinetic energy while the
toroidal tube results in five major eruptive events as indicated by the five peaks in the kinetic energy.

64



Figure 5.10: On the left panel kinetic energy for horizontal and toroidal flux tubes, where the y axis for
the horizontal flux tube is at the left of the plot, while for the toroidal on the right, indicating an order of
magnitude difference between their kinetic energy. Right panel shows the maximum Vz through time with
peaks corresponding with eruptions where plasma is accelerated upwards.

If we integrate the kinetic energy with time we calculate that the horizontal tube releases is Ekinetic =
1.74·1029 ergs for the whole simulations while the toroidal tube releases Ekinetic = 1.22·1028 ergs. Regardless
of the fact that the toroidal has three more eruptions, the total kinetic energy released by the horizontal is
an order of magnitude higher. Both those values are comparable to that of an observed solar flare (Kontar
et al. 2017), (Benz 2017), (A. Emslie et al. 2012).

Even though the kinetic energy identifies which case releases more energy its not very effective to clearly
identify the eruptions for the horizontal case. For that reason we also depict the maximum vertical velocity
in Figure(5.10). For the horizontal case we see more clearly a variety of events. The first peak at a time of
t = 25 minutes reaching velocity of 1200 km/s is associated with the creation and acceleration of plasmoids
that are being violently ejected from the current sheet created between the emerging field and the ambient
field. This particular phenomena and its mechanism is outside the scope of this thesis. The second peak at
roughly t = 55 minutes corresponds to the standard jet formation and the next two distinct peaks at t = 60
minutes and t = 95 minutes correspond to the two eruptive driven jets. The toroidal tube case exhibit a
behavior similar to the kinetic energy with all major peaks in the maximum velocity corresponding with
peaks of the kinetic energy.

Figure 5.11: Temporal evolution of the emergence and Shearing terms of the Poynting flux for horizontal
and toroidal flux tubes at a height of z = 0.92 Mm, deep in the photosphere.
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Poynting flux is the amount of electromagnetic flux that passes through a surface. In flux emergence
experiments it can be used also to identify eruptive events. A way we can visualize that is by isolating the
emergence and shearing terms of the Poynting flux and plot the against time. The emergence term can be
written as follows,

Sem =
1

4π

∫∫
uz(B

2
x +B2

y) dxdy (5.3)

and the shearing term expressed as,

Ssh = − 1

4π

∫∫
Bz(uxBx + uyBy) dxdy (5.4)

Figure(5.11) shows time series of the emergence and shearing terms for both horizontal and toroidal flux
tubes deep in the photosphere at a height of z = 0.92 Mm. On the left side we have the emergence term
which is the part of flux representing the direct emergence of the magnetic field. As the emergence process
begins we see that for both flux tubes the term increases. Then for the rest of the simulation, flux is no
longer transported as a result of the magnetic field’s emergence and so the term slowly diminishes. The
emergence term of both tubes have the same order of magnitude, however in the horizontal case the term
has higher values. On the right side of Figure(5.11) we have the shearing term which represents the flux due
to horizontal motions. Again there is an increase at the beginning of the simulation of both tubes which
is expected since the emerging flux tube also expands in the direction the polarity inversion line (PIL), so
part of the flux is redirected towards the shearing motion since plasma is pushed sideways along the PIL
and towards the x-direction. Afterwards the term for both tubes start to decrease due to the fact that the
expansion of the field becomes less prominent at the later stage of the simulation. Once again the values the
shearing term takes are larger for the horizontal case than the toroidal.

If we focus on the right panel of Figure(5.11) we can that the shearing term, especially in the toroidal
case, has some spikes. This rise and fall of the shearing term can be associated with the eruptions of the
flux tube. Specifically, at the term’s local minima is when an eruption takes place because Poynting flux is
no longer used for the tube’s shearing motion, instead it takes part in the eruption. So in the beginning,
after the shearing term has increased it drops as a result of the standard jet formation. For the toroidal
tube the next five local minima coincide with an eruption. The horizontal case has only two local minima
on the shearing term, corresponding to both eruptions. Eruptions can also be pinpointed at the plot of the
emergence term. Unlike the shearing term, during an eruption the emergence term peaks momentarily since
the upwards movement of plasma reflects on the emergence term. On the left side of Figure(5.11) we see
that the toroidal again has five local maxima while the horizontal has two faint surges at the time of its
eruptions.

Figure 5.12: Unsigned vertical magnetic flux Φ at the photosphere in 0.92 Mm and at the corona in 3.7 Mm
respectively.
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In this Figure(5.12) we can see the total vertical flux that runs through a specific height (i.e. 0.92 Mm
and 3.7 Mm) throughout the whole simulation. In order to calculate the unsigned magnetic flux that passes
through a specific x− y surface we evaluate the following integral and plot it against time for two different
heights.

Φz=0.92,3.7Mm =

∫∫
|Bz|dxdy (5.5)

Inside the photosphere the vertical flux increases rapidly for both tubes until it reaches a maximum
around t = 65 minutes and t = 85 minutes for horizontal and toroidal case respectively. For the horizontal
tube the flux starts to drop afterwards possibly due to the eruptions. However other proposals explain the
decrease due to flux cancellation on the photospheric level (Petros Syntelis et al. 2015). The toroidal tube
on the other hand is able to maintain its flux throughout its evolution. Nevertheless it doesn’t transport as
much flux as the horizontal in the photosphere. Obviously as we examine higher altitudes the total flux that
runs through a surface decreases, since the flux that emerges does not exclusively move upwards but also
diffuses at different directions. This can be seen in the right side of Figure(5.12) where it shows the vertical
flux that runs through a surface in the lower corona at z = 3.7 Mm. In comparison to the left picture both
tubes have a smaller maximum of vertical flux as well as the toroidal transporting less flux in the corona
than the horizontal.

Magnetic flux emergence is commonly associated with strong magnetic field concentrations at the photo-
sphere, particularly in regions known as active regions (ARs). These regions, depending on the characteristics
of the magnetic field lines, can give rise to flaring events or even more violent eruptions, such as coronal
mass ejections (CMEs). A key feature of these eruptive phenomena is their dependence on twisted magnetic
field lines. Twist is a crucial precondition for many of these events, as it facilitates magnetic reconnection,
a process that converts magnetic energy into kinetic and thermal energy. One way to quantify the flux of
the twisted magnetic field is by measuring the axial flux (Φy) in the upper atmosphere using the following
expression.

Φy =

∫∫
By dx dz (5.6)

The axial flux represents the amount of the y-component of the magnetic field passing through a plane
perpendicular to the solar surface. Since not all of the initial axial flux will emerge, determining the per-
centage that does emerge can help identify which of the two cases under study exhibits a higher degree
of twisted field lines. This, in turn, provides insight into the connection between magnetic twist and the
observed eruptions.

To analyze this, we first plot the axial flux (Φy) as a function of time. Two distinct curves are generated:
one representing the flux that emerges through the photosphere (”atm”), and the other representing the flux
that remains below the surface (”int”). This process is applied to both a horizontal and a toroidal flux tube.
In Figure(5.13), the black lines correspond to the horizontal flux tube, while the red lines correspond to the
toroidal flux tube.

More specifically, for the flux that remains beneath the photosphere, denoted as ”int” for both the
horizontal and toroidal flux tubes, we calculate the relative flux over time. At each time step, the flux value
is normalized by dividing it by the initial flux value at time t = 0. This normalization explains why the
flux values for both tubes start at 100% on the y-axis, since no flux has emerged at the beginning of the
simulation.

In the case of the flux that successfully emerges beyond the photosphere, denoted by ”atm”, we calculated
it in a similar way but also subtracted from each value the flux at the photospheric level at time t = 0 and
then divide it with the value of the flux at the beginning of the simulation. Of course all those values are
normalized at 100%.
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As shown in Figure(5.13), the black solid line represents the flux that emerges through the photosphere
into the solar atmosphere for the horizontal flux tube. The flux peaks early in the simulation, after which
the rate of emergence slows down. Over time, the emergence stabilizes, reaching approximately 60% of the
initial axial flux.

In contrast, the toroidal flux tube begins to emerge at a slower rate and peaks much later than the
horizontal tube. However, while the flux emergence rate for the horizontal tube decreases, the toroidal tube
continues to increase its axial flux budget into the upper atmosphere. By the end of the simulation, the
toroidal flux tube reaches a plateau at approximately 80% of the initial axial flux.

Figure 5.13: Percentage of axial flux Φy , that passes through the x− z surface for horizontal and toroidal
flux tubes with α = 0.4 twists. Denoted by ”int” is the total axial flux calculated beneath the photosphere
through time, while ”atm” refers to the total axial flux above the photosphere.

Now, we focus on the two dashed lines of Figure(5.13). Both dashed lines represent the flux that remains
beneath the photosphere. Initially, both lines start at 100% of the flux, as this is where the flux tubes are
located at the beginning of the simulation. As time progresses and both the horizontal and toroidal flux
tubes emerge through the photosphere, the percentage of flux beneath the surface decreases. The horizontal
tube ends with only about 10% of its original flux remaining below the photosphere, while the toroidal tube
retains approximately 30%.

By looking at Figure(5.13) one would naively expect the total flux beneath and above the photosphere
to add up to 100% for both cases. This however is not the case since the percentage of flux we measure is
merely the flux that goes through the surface created along the y axis and not the total flux Φ. So during
the emergence process part of Φ might be transported through a different surface which will eventually show
up in the total percentage. Equivalently, flux from a different surface can be injected into our calculation
creating the illusion that more flux is carried through the photosphere than what it was originally beneath
it.

Overall the importance of axial flux emerging in the solar atmosphere is a prerequisite for eruptive events.
The percentage of axial flux that does emerge, impacts the ability of the flux tube to create erupting flux
ropes. For the horizontal flux tube the axial flux decreases after each eruption and without further flux
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emergence and no other mechanism to twist the field lines any further, no more eruption-driven jets can
be produced. The toroidal flux tube on the other hand creates axial flux with a different mechanism even
after the end of its emergence. The reason behind this could be the rotational motion of the sunspots.
The toroidal tube’s footpoints rotate causing the magnetic field to untwist which in turn forces part of the
azimuthal flux to be redirected in the axial direction (Z. Sturrock et al. 2015). This could also explain why
we were able to observe three more eruptions from the toroidal while at the same time it maintains a high
percentage of axial flux even at the end of the simulation.

Figure 5.14: The logarithm of density plotted over height, at , which shows that the horizontal tube is less
dense than the toroidal in the early stages of emergence, at a time of t = 28 minutes.

The horizontal tube transports overall more energy in the solar atmosphere, even with fewer energetic
phenomena than the toroidal. This difference has its roots in the geometry of each tube and the subsequent
forces that act upon the plasma that they enclose. Regarding the rates at which each tube emerges, the left
panel of Figure(5.14) can provide an answer. We have plotted the logarithm of the density at the center of
each flux tube over height. What we see is that even though both flux tubes start with the same density
deficit, the horizontal soon becomes lighter as it moves upwards. So when the buoyancy force acts upon it,
the tube rises faster than the toroidal which has denser plasma.

Another important point is the discrepancy regarding the transported axial flux which can be explained
by considering the magnetic tension of each tube’s field lines. The expression of the Lorentz force in equation
(5.7) can be split into two terms, one being the magnetic pressure (5.8) and the other the tension force (5.9).

FL = −∇
(

B2

2µ0

)
+

(B · ∇)

µ0
B (5.7)

Pm = ∇
(

B2

2µ0

)
(5.8)

Tm =
(B · ∇)

µ0
B (5.9)

Tm,z =
1

µ0

(
Bx∂x +By∂y +Bz∂z

)
Bz (5.10)

Since for our analysis we want the upward force we focus on the z component of the magnetic tension
force. We can calculate it using the equation(5.10) and plot it over height in the beginning of the simulation
at t = 4 minutes, as shown at the left side of Figure(5.15). However, these forces evolve through time, so we
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also calculated the difference between the maximum and minimum values of the z component at every point
in time. Right panel of Figure(5.15) shows that difference through time for both cases. Magnetic tension is
the force that tries to straighten curved field lines. Below the center of the tube the force points upwards,
thus it is positive, and above the center it is negative. Initially the negative part is stronger not allowing the
tube to rise easily. However as it rises the magnetic field expands making the upper part less curved which
decreases the negative component of the tension.

Figure 5.15: Left panel shows the magnetic tension on the z-axis through height for both tubes, in the
beginning of the simulation at around t = 4 minutes. The negative values are due to the tension force on the
top of the flux tube pointing downwards, while the positive values represent the tension that supports the
bottom part of the flux tube. Right panel shows the net magnetic tension of the field lines of each tube as it
evolves through time. The fact that magnetic tension difference is higher in the horizontal case, illustrates
the horizontal tube’s ability to hold more plasma and transport it upwards.

So over time the net tension approaches zero and making the tube easier to rise. As shown in the plot,
for the horizontal case magnetic tension approaches and reaches zero much faster than the toroidal, which
explains why the horizontal tube carries more axial flux in the upper atmosphere. The different magnetic
tension of each flux tube is a consequence of its geometry. In the toroidal case, the tube will be heavily
curved, and so will the field lines that wrap around it. These twisted field lines put more tension on the
tube than the field lines in the horizontal case.

In conclusion, it seems that the multitude eruptions exhibited by the toroidal flux tube cannot overshadow
the less frequent, yet more energetic eruptions of the horizontal tube. This means that since eruptive events
such as flares and CMEs require huge amounts of energy, a geometry of a horizontal flux tube is more able
to provide that energy than a toroidal geometry.
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Results for α = 0.1

6.1 Twist α = 0.1

As we mentioned in Chapter 4, this work will be repeated for a different value of the twist parameter
α. This time we assign the value of α = 0.1 while maintaining the same values for the magnetic field, the
atmosphere stratification and every other parameter for both the horizontal and the toroidal flux tubes. It
is known in the bibliography that a weakly twisted flux tube (α = 0.1) will not emerge as efficiently as a
strongly twisted one (α = 0.4). This is mainly due to the fact that high twist helps the emergence process
by making the flux tube more coherent ( M. Murray et al. 2006), ( P. Syntelis, V. Archontis, and A. Hood
2019), (Mart́ınez-Sykora, Hansteen, and Carlsson 2008). This is confirmed in the following results of this
chapter.

In contrast to the highly twisted flux tubes, where we had two and five eruptions for the horizontal and
the toroidal respectively, in the case of the weakly twisted tubes we observe one eruption for the horizontal
while the toroidal flux tube does not erupt. This is expected since the flux tube is deformed as it tries to
penetrate the lower photosphere and is flattened out without being able to create twisted flux ropes that
can lead to efficient eruption-driven jets as in the high twisted case.

First, we begin by showing the evolution of the emergence process as viewed from the top of the com-
putational box. This is done by plotting a series of snapshots of the z component of the magnetic field and
focusing on the x − y plane vertically from above. Figure(6.1) has three pictures of the Bz from the top
throughout a part of the simulation. Even though the simulation has run for a little longer, we chose to not
show any plots from later times since the flux tube effectively breaks down, and the emergence process no
longer has any significance. Nevertheless, in Figure(6.1) we can see the separation of the tubes footpoints
and the bipolar region that is created.

Figure 6.1: z component of the magnetic field viewed from the top that shows the evolution of the horizontal
flux tube with α = 0.1 twist, throughout the simulation. We can see that as time passes the sunspots drift
apart indefinitely.
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The evolution of the emergence process of those two tube geometries also differ significantly from each
other. As we saw in the previous figure, the footpoints of the horizontal tube spread indefinitely since the tube
is placed parallel to the solar surface with both of its ends extending on either side of the computational box.
On the contrary, the toroidal tube is initially placed with its two footpoints anchored in the solar interior.
This means that the footpoints cannot spread at all and throughout the simulation they do not move from
the two points where they were initially placed. This is shown very clearly in Figure(6.2) where after the
emergence in the early stages of the simulation, the bipolar region seems to remain unchanged as time goes
by. Just like in the case of the flux tube with twist α = 0.4, we also have the maximum distance of the
footpoints at two times the length of the flux tube, d = 2L.

Figure 6.2: z component of the magnetic field viewed from the top that shows the evolution of the toroidal
flux tube with α = 0.1 twist, throughout the simulation. In this case the sunspots drift apart in the beginning
of the emergence and then stop at a fixed point for the rest of the magnetic structure’s evolution.

Then, we show four snapshots throughout the only eruption of the horizontal flux tube in Figure(6.3).
These plots show the temperature gradient as we view it from the side of the computational box. This means
that we see the x − z surface. These four consecutive snapshots show the eruption process as hot plasma
seems to depart from the main structure and follows the path of the blowout jet into the corona.

On the other hand, since there is no eruption in the toroidal tube, we can only show a series of snapshots
in Figure(6.4) on the late stages of the simulation where the jet has already formed and the flux tube
maintains its structure without erupting. What we see in those snapshots is that after the standard jet is
formed due to the original emergence of the tube in the corona, no twisted flux rope can be formed which
explains the lack of eruptions in the system.

Figure 6.3: Logarithm of temperature viewed from the side of the computational box in a cut at the x − z
sub-plane. This sequence is taken during the horizontal tube’s only eruption with α = 0.1 twist. The black
streamlines show the magnetic field lines at the same time as the temperature in the background. We can
see that during the eruption there is an increase in the temperature at the jet’s spire due to the violent
eruption of hot plasma.
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Figure 6.4: Logarithm of temperature viewed from the side of the computational box in a cut at the x−z sub-
plane. This sequence is taken in the middle of the simulation and it shows that after the original emergence
of the weakly twisted (α = 0.1) toroidal tube, it remains inactive without an increase in the temperature at
the jet’s spire, which would signify an eruption. The black streamlines show the magnetic field lines at the
same time as the temperature in the background.

This is done first for the temperature and then in Figure(6.5) and (6.6) for the plasma density. In those
figures, we have plotted the logarithm of the values to highlight the difference in magnitude between the
surrounding plasma and the flux tube. Similar to the temperature, we view the side of the computational box
which is the x− z surface. We can observe a change in the density above the main flux tube structure at the
middle picture of Figure(6.5) which is the plasma that blows out of the tube. However when it comes to the
toroidal, since there is no eruption, the structure seems to remain unchanged through the whole simulation,
and there is no density increase above the tube.

Figure 6.5: Logarithm of density viewed from the side of the computational box in a cut at the x − z sub-
plane. This sequence is taken during the horizontal tube’s only eruption with α = 0.1 twist. The white
streamlines show the magnetic field lines at the same time as the density in the background. We can see
that during the eruption there is an increase in the density at the jet’s spire due to the violent eruption of
dense plasma.

Figure 6.6: Logarithm of density viewed from the side of the computational box in a cut at the x − z sub-
plane. This sequence is taken in the middle of the simulation and it shows that after the original emergence
of the weakly twisted α = 0.1 toroidal tube, it remains inactive without a substantial increase of the density,
which would have been evidence for an eruption.
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When we look at the z−component of velocity in the x − z plane we can see the same features as in
the 2D plots of temperature and density. That is the fact that in the case of the horizontal flux tube
Figure(6.7) shows how the vertical velocity increases during the tube’s only eruption. In Figure(6.8), which
shows the emergence of the toroidal flux tube, the standard jet forms the exact way we expect it to by an
increase in the vertical velocity around the area of the reconnection with the ambient field. Also the velocity
increases through the jet’s spire and maintains that formation throughout the simulation without being able
to produce a blowout jet.

Figure 6.7: Vz viewed from te side of the computational box at a x− z sub-plane cut. The sequence is taken
during the only eruption of the horizontal tube with α = 0.1 twist. We can see an increase at the velocity
through the length of the jet’s spire.

Figure 6.8: Vz viewed from te side of the computational box at a x − z sub-plane cut. This sequence is
taken in the middle of the simulation and it shows that after the original emergence of the weakly twisted
(α = 0.1) toroidal tube, it remains inactive without an increase in the velocity at the jet’s spire, which would
indicate an eruption.

When we take a closer look at the emergence of the horizontal tube, we see that in the convectively
unstable sub-photospheric environment, the magnetic field develops a number of undulations, due to Parker
instability, and takes a serpentine-like shape (Strous, Scharmer, and Tarbell 1996), (Etienne Pariat, Masson,
and Aulanier 2009). Because of that the flux tube is unstable and rises. The magnetic field then meets
the photosphere forming an Ω-loop shape that rises into the corona. Since the flux tube does not emerge
as a rigid structure but breaks into smaller parts that emerge independently as separate magnetic lobes,
we see the creation of serpentine-like structure. Those smaller structures can come into contact leading to
reconnection and eruption. From the contour lines of Figure(6.9) we see how the undulation of the magnetic
field creates two distinct lobes that will eventually reconnect and produce the only eruption tha we observe
in this case. This however is different to the previous cases where a twisted flux rope created by shearing
erupts due to tether cutting or other mechanisms. This behavior of the magnetic field developing undulation
is a characteristic of the emergence of a weakly twisted flux tube. In this case, a twist of α = 0.1 is small
enough to allow the flux tube to develop a serpentine-like shape (Vasilis Archontis and Alan William Hood
2010; Vasilis Archontis and Alan William Hood 2009), (K. Harvey and J. Harvey 1973), (Knizhnik et al.
2021), (Toriumi, Katsukawa, and M. C. Cheung 2017), (Watanabe et al. 2008).
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Figure 6.9: Contour lines show the undulation of the magnetic field that creates two opposite magnetic lobes
that emerge and reconnect with each other producing an eruption.

Even though the simulation visualizes the whole emergence process along with any possible eruptions,
there are still other ways to distinguish eruptive phenomena from unrelated processes that the flux tube
may undergo. By calculating the Poynting flux that the magnetic field carries above the photosphere we can
capture the ability of each tube to transport energy much clearly. The unsigned vertical flux is the magnetic
flux that runs through a horizontal cut of the computational box. In this case we have calculated, using the
following equation, the total flux that runs through the x−y plane at the height of the photosphere in z = 0
Mm.

Φz=0.92 =

∫∫
|Bz| dxdy (6.1)

As we see on the left panel of Figure(6.10), we have the plot of the unsigned magnetic flux through the
photosphere. The most striking difference is the dominance of the horizontal tube in the total amount of
unsigned vertical flux that transports. Of course the emergence of the toroidal tube comes later, and even
though the magnitude of vertical flux is the same, it is approximately half of the horizontal at any time.
This difference in total amount of vertical flux can provide further evidence as to the toroidal’s inactivity.

Figure 6.10: Left side of the figure is the unsigned vertical flux for horizontal and toroidal flux tubes,
calculated from the middle of the photosphere and above, which means from a height of z = 0.92 Mm. On
the right side is the temporal evolution of the maximum Vz above the photosphere for both horizontal and
toroidal flux tubes
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A way to pinpoint eruptions is to show the maximum velocity in the z− axis through time. This is done
on the right side of Figure(6.10) for both flux tubes. Starting by focusing on the horizontal tube we see an
increase in the maximum Vz at around t = 30 minutes into the simulation. This increase corresponds to the
plasmoids being violently ejected from the current sheet during reconnection, reaching speeds up to 1200
km/sec. At around t = 55 minutes the second spike is due to the only eruption that violently ejects plasma
upwards. On the other hand the toroidal case has a relatively stable maximum velocity profile were the
values of the speed of the material which moves upwards don’t exceed a few hundred kilometers per second.
These velocities are nowhere near those of the horizontal and are not fast enough to be in the regime of an
eruption.

Figure 6.11: Percentage of flux Φy that goes through the y surface for horizontal and toroidal flux tubes
with α = 0.1 twists. Denoted by ”int” is the total flux calculated beneath the photosphere through time,
while ”atm” refers to the total flux above the photosphere.

Figure(6.11) is of significant importance to this work. Much like the equivalent plot for the case of the
highly twisted (α = 0.4) flux tube, this plot also tells us about the relative percentage of flux that successfully
emerges through the photosphere, this time for a weakly twisted (α = 0.1) flux tube.

In the same Figure(6.11), we plot two sets of lines. Denoted with black color we have the flux that is
due to the y component of the horizontal tube’s magnetic field, Φy. We calculated Φy using the following
integral,

Φy =

∫∫
By dxdz (6.2)

In order to differentiate between the areas of interest, we calculated the integral of equation(6.2) for two
different surfaces, one above the photosphere and one below. The photosphere starts at z = 0 Mm. Those
two results of Φy are plotted and denoted by ”int” which corresponds to the flux that exists below the
photosphere and by ”atm” the flux that rises above it.

The same process is repeated for the toroidal flux tube and this time the quantities plotted in Figure(6.11)
are illustrated with black color.
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To be more precise we should mention that the dashed black and red lines, that correspond to the flux
that stays beneath the photosphere, are created by taking every time of the simulation and dividing its value
with the initial value at t = 0. A similar procedure is followed for the solid lines that correspond to the flux
that emerges above the photosphere. To express the quantities at different time as a percentage of the total
flux throughout the whole simulation, we normalize all the values at 100%.

From Figure(6.11) we understand some major differences between the horizontal and the toroidal tube’s
geometry. Just like in the case of highly twisted flux tubes, the weakly twisted (α = 0.1) the horizontal tube
also starts the emergence process faster than the toroidal. The flux that emerges above the photosphere
reaches a peak of about 70% of the whole flux and it decreases at a slow rate as time goes by, until the end
of the simulation where it reaches around 60%.

The weakly twisted toroidal tube has a completely different behavior that the highly twisted. Though it
does start emerging at much later than the horizontal, the rate with which flux appears in the photosphere is
very slow. Furthermore, after 45 minutes in the simulation the rate of flux emergence decreases even further.
Eventually it reaches a peak of around 40% of the total flux and maintains a plateau through the end of
the simulation. This behavior is expected since we know that a small twist does not allow the structure to
emerge in a uniform and rigid way that will produce eruptive phenomena.

For the emergence of the flux tube it’s not only important the flux that is in the photosphere, but also we
want to have as little flux as possible to stay behind. If we observe the dashed lines, particularly the black
one that describes the magnetic flux that is beneath the photosphere for the horizontal flux tube, we see a
few important things. First, the dashed line starts from the highest point in the y-axis. This means that in
the beginning the solar interior contains all of the magnetic flux which is reasonable since this is where we
initially placed the flux tube. As the horizontal tube emerges, the flux leaving the interior is reflected in the
black dashed line that tells us that the percentage of flux decreases beneath the photosphere. At 25 minutes
in the simulation, the decrease of the percentage of flux in the interior slows down until reaches around 35%
of the original flux by the end of the simulation.

If we now focus on the toroidal flux tube, we observe that the dashed red line starts from 100% of the
total flux and the as the toroidal tube emerges, the flux beneath the photosphere decreases. However, since
a weakly twisted toroidal tube is unable to fully emerge, as we see from the solid red line it only reaches
40%, we don’t expect the flux on the interior to diminished substantially. This is indeed the case as the
percentage of total flux that is in beneath the photosphere by the end of the simulation is around 60%. This
inadequate emergence of a weakly twisted toroidal tube doesn’t allow any further shearing motion of it, and
as a consequence there are no eruptions.
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Conclusions

In this work we studied the emergence process in the solar atmosphere, as well as the evolution of that
flux related to eruptions. Flux emergence is one of the ways that plasma can be transported from the deeper
layers of the Sun to its atmosphere. Flux concentration in areas around the Sun is an important part of the
mechanism that describes various eruptive phenomena we observe, such as flares and CMEs. This is why
effective transport of magnetic flux is of vital importance in our understanding of the dynamics that shape
the Sun.

We investigated the emergence process using numerical simulations, and in particular the Lare3D code,
which allowed us to model the stratified solar atmosphere. In particular we used two different geometries
for the magnetic flux tubes that are initially placed inside the convection zone, one being horizontal and the
other toroidal. Also given the fact that a realistic emerging field is twisted we experimented with different
twists. In one case the the field lines wrap around the flux tube by a ratio of α = 0.4 and the other by
α = 0.1.

Among the transient and energetic phenomena observed on the Sun, we focus on studying solar jets.
To model this, our numerical simulations include an oblique ambient magnetic field. As the emerging
magnetic flux interacts with this ambient field reconnection occurs at their interface, resulting in a standard
jet formation, similar to the work of (Yokoyama and Shibata 1996). Additionally, converging and shearing
motions along the polarity inversion line lead to the formation of pre-eruptive flux ropes, which can be
destabilized and erupt, generating eruption-driven jets. Both of these processes were analyzed in detail for
the horizontal and toroidal flux tube configurations. It is worth noting that standard jets were observed in
both horizontal and toroidal flux tubes as well as in highly and low twisted field lines, α = 0.4 and α = 0.1
respectively. However, even though the blowout jet was observed extensively in highly twisted case, when
the twist parameter was small, neither flux tube was unable to exhibit an abundance of eruptive blowout
jets. In particular the horizontal tube’s with α = 0.1 only eruption was due to the undulation of the flux
tube and serpentine-like emergence, while the toroidal did not erupt at all.

The most important result of this work is the percentage of axial flux of each tube that manages to emerge
in comparison to to the percentage that stays beneath the photosphere. In the case of the flux tubes being
highly twisted (α = 0.4) we see that the horizontal flux tube emerges before the toroidal with its rate of flux
transport above the photosphere also reaching a peak faster. This is due to the fact that the horizontal tube
becomes lighter faster in the beginning and the buoyancy force allows it to emerge quicker than the toroidal.
After the eruptions, the rate with which the horizontal tube transports magnetic flux in the atmosphere is
steadily decreasing until eventually it reaches a plateau at around 60% of the total flux. The toroidal emerges
later, and the percentage of its axial flux grows slower. However it reaches a higher peak, more than 80% , in
comparison with the horizontal that peaks just below that, and it maintains that amount of relative axial flux
that is above the photosphere even after its eruptions. A possible explanation for this could be the fact that
the toroidal tube’s footpoint rotate while simultaneously untwisting its magnetic field line, which produces
more axial flux. This kind of untwisting is not observed in the horizontal case so that tube decreases its
axial flux after each eruption. Nevertheless, the full mechanism that compensates the toroidal tube’s axial
flux remains unknown. On the other hand, the percentage of axial flux that stays beneath the photosphere
starts to decrease at the same time the emergence begins for each tube. The decrease continuous steadily
for both flux tubes with the horizontal one experiencing a much faster loss. Furthermore, after some time
the axial flux of the horizontal tube that stays behind doesn’t decrease any further and has around 10% of
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the total flux beneath the photosphere. The toroidal flux tube has a slower decrease rate, and it also has a
bigger percentage of axial flux that stays behind even during the later stages of the simulation. The toroidal
flux tube’s emergence ends with 30% of the total flux staying at the photosphere. The fact that at any given
point in time for both flux tubes the sum of the axial flux percentage that stays behind with the one that
emerges in the atmosphere doesn’t add to 100% is because flux along the y axis may be redirected towards
other spacial dimensions and vice versa.

Regarding the low twisted (α = 0.1) flux tubes, the difficulty of the horizontal tube and the inability of
the toroidal tube to emerge are key points in understanding the amount of axial flux they were able to carry
into the atmosphere. More specifically, the horizontal tube started its emergence process before the toroidal
and while the rate of axial flux above the photosphere grew fast, it eventually reached a maximum at around
70% of the total flux and dropped slightly at 60% during the late stage of the simulation. The toroidal tube
on the other hand not only started emerging much later but also the rate of axial flux that is transported
grew much slower than the horizontal and reached a steady rate later on, managing to transport only 40%
of the total flux upwards. Concerning the percentage of axial flux that stays behind the photosphere, both
flux tubes have loses that appear to increase steadily with the horizontal tube having its percentage of axial
flux decrease much more rapidly. Eventually the simulation of the horizontal tube ends with around 35% of
the total axial flux at that moment staying beneath the photosphere. On the contrary, 60% of the toroidal’s
total axial flux didn’t emerge. So throughout the simulation at no time did the flux that was transported
to the atmosphere exceed the amount of that which stayed behind. In conclusion, when comparing the two
different twists, it is clear that the highly twisted flux tube of any kind would be more efficient in transporting
magnetic flux in the solar atmosphere as well as exhibiting the kind of eruptive phenomena we observe in
the Sun.
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