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Abstract

The main topic of this thesis is the study of Standard Model (SM) extensions within the
framework of Effective Field Theory (EFT), where it is assumed that undiscovered particles
exist at energies higher than those accessible to current experiments. There are two ways to
utilize EFTs for making meaningful predictions. The first is the top-down approach, where
the ultraviolet (UV) physics model is known, and our goal is to determine the effects of
heavy particles in the low-energy (infrared, or IR) regime via a process known as matching.
In contrast, the bottom-up approach is agnostic about the UV model; our starting point is
the EFT Lagrangian, and our main concern is to constrain the free parameters in the low-
energy EFT as much as possible using experimental data, thereby extracting hints about the
dynamics that may describe the processes in the UV. Both approaches have their advantages
and disadvantages, and this thesis aims to highlight their complementarity.

Specifically, there is a certain class of hypothetical particles called leptoquarks, which,
as their name suggests, couple the leptonic doublet and the quark doublet to form new inter-
actions. We have developed a universal formula for one-loop matching of all types of scalar
leptoquarks onto the Standard Model Effective Field Theory (SMEFT) and have applied it to
decouple an SU(2) doublet and a triplet within this formalism. The effects of these new par-
ticles are studied in the IR regime, leading to phenomena such as the generation of neutrino
masses and a sizeable contribution to the muon magnetic moment.

Additionally, following the first-ever evidence of the Higgs boson decaying into a Z-
boson and a photon—and noting a mild discrepancy with the SM prediction—we study the
Higgs sector observables using the bottom-up approach. We pinpoint the size of the Wilson
coefficients (WCs) needed to account for the observed deviation. Moreover, we explore
several single- and two-field scalar and fermionic extensions of the SM that could match the
size of the WCs found in the model-independent analysis, highlighting the importance of the
complementarity of both approaches.

In a similar vein, another discrepancy that had long persisted—but has recently dimin-
ished—lies in the lepton flavor universality ratios RK and RK∗ . Our main task was to calcu-
late the maximum deviation obtainable within the Minimal Supersymmetric Standard Model
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(MSSM) by matching it onto the Low Energy Effective Field Theory (LEFT). This approach
allowed us to analyze these lepton flavor universality ratios within a consistent EFT frame-
work.
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Περίληψη

Το κύριο θέμα αυτής της διατριβής είναι η μελέτη επεκτάσεων του Καθιερωμένου Μοντέλου

(ΚΠ) στο πλαίσιο των Ενεργών Θεωριών Πεδίου (ΕΘΠ), που έχει ως κύρια παραδοχή ότι

τα σωματίδια που δεν έχουν ακόμη ανακαλυφθεί υπάρχουν σε ενέργειες υψηλότερες από

αυτές που είναι προσβάσιμες από τα τρέχοντα πειράματα. Υπάρχουν δύο τρόποι να χρη-

σιμοποιηθούν οι ΕΘΠ για την παραγωγή ουσιαστικών προβλέψεων. Ο πρώτος είναι η

προσέγγιση από πάνω προς τα κάτω, όπου το υπεριώδες μοντέλο φυσικής είναι γνωστό

και στόχος μας είναι να καθορίσουμε τις επιδράσεις των βαρέων σωματιδίων στο χαμηλής

ενέργειας (υπέρυθρο) καθεστώς μέσω μιας διαδικασίας γνωστής ως αντιστοίχιση. Αντι-

θέτως, η προσέγγιση από κάτω προς τα πάνω είναι αγνωστικιστική της προηγούμενης· το

σημείο εκκίνησής μας είναι η Λαγκρανζιανή της ΕΘΠ, και ο κύριος στόχος μας είναι να

περιορίσουμε όσο το δυνατόν περισσότερο τις ελεύθερες παραμέτρους στην ΕΘΠ χαμηλής

ενέργειας χρησιμοποιώντας πειραματικά δεδομένα, εξάγοντας έτσι ενδείξεις για τη δυνα-

μική που μπορεί να περιγράφει τις διαδικασίες στο υπεριώδες. Και οι δύο προσεγγίσεις

έχουν τα πλεονεκτήματα και τα μειονεκτήματά τους, και αυτή η διατριβή υπογραμμίζει τη

συμπληρωματικότητά τους.

Συγκεκριμένα, υπάρχει μια κατηγορία σωματιδίων που ονομάζονται λεπτοκουάρκς, τα

οποία, όπως υποδηλώνει το όνομά τους, συζεύγουν την λεπτονική διπλέτα με τη διπλέτα των

κουάρκ σχηματίζοντας έτσι νέες αλληλεπιδράσεις. Αναπτύξαμε μια καθολική φόρμουλα για

την αντιστοίχιση σε επίπεδο ενός βρόχου όλων των βαθμωτών λεπτοκουάρκς στη ΕΘΠ του

Καθιερωμένου Προτύπου και την εφαρμόσαμε για να αποσυζεύξουμε μια διπλέτα και μια

τριπλέτα λεπτοκουάρκ, κάτω απο την συμμετρία βαθμίδος SU(2), εντός αυτού του πλαισίου.
Οι επιδράσεις αυτών των νέων σωματιδίων μελετώνται στο υπέρυθρο καθεστώς, οδηγώντας

σε φαινόμενα όπως η δημιουργία μαζών για τα νετρίνα καθώς και μια σημαντική συμβολή

στη μαγνητική ροπή του μιονίου.

Επιπλέον, μετά τα πρόσφατα δεδομένα για την πρώτη πειραματική ανακάλυψη της δι-

άσπασης του μποζονίου Higgs σε ένα μποζόνιο Z και ένα φωτόνιο—και σημειώνοντας μια
ήπια απόκλιση από την πρόβλεψη του ΚΠ—μελετούμε τον τομέα του Higgs χρησιμοποι-
ώντας την προσέγγιση από κάτω προς τα πάνω. Προσδιορίζουμε το μέγεθος των συντε-
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λεστών Wilson (WCs) που απαιτούνται για να εξηγηθεί η παρατηρούμενη απόκλιση και
επιπλέον, εξερευνούμε βαθμωτές και φερμιονικές επεκτάσεις του ΚΠ με ένα ή δύο πεδία

που θα μπορούσαν να αντιστοιχούν στο μέγεθος των WCs που βρέθηκαν στην παραπάνω
ανάλυση, αναδεικνύωντας έτσι τη σημασία της συμπληρωματικότητας των δύο προσεγγίσε-

ων.

Με παρόμοιο τρόπο, μια άλλη απόκλιση που είχε παραμείνει για μεγάλο χρονικό διάστη-

μα—αλλά πρόσφατα μειώθηκε—αφορά τους λόγους καθολικότητας λεπτονικής γεύσης RK

και RK∗ . Υπολογίσαμε τη μέγιστη απόκλιση που μπορεί να επιτευχθεί εντός του Απλού

Υπερσυμμετρικού Καθιερωμένου Προτύπου με την αντιστοίχισή του στην ΕΘΠ Χαμηλής

Ενέργειας. Αυτή η προσέγγιση μας επέτρεψε να αναλύσουμε αυτούς τους λόγους καθολι-

κότητας λεπτονικής γεύσης εντός ενός συνεπούς πλαισίου ενεργών θεωριών πεδίου.
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Preface

I can vividly trace my interest in theoretical physics back to my undergraduate years, specif-
ically to my first course in Quantum Mechanics, where I was introduced to this peculiar yet
fascinating subject. It made a great impact on me—discovering how tiny particles, unseen by
the naked eye, could possess such intriguing properties and behave in the most bizarre ways.
My curiosity about the microcosmos was sparked. The study of quantum fields soon followed,
and by that time, I was fully invested in the challenges this topic entails. The quantum theory
of fields is vast; it not only serves as a framework for explaining a plethora of phenomena
found in nature but also carries the foundational principles for building elegant theories about
what our world is and could be.

The study of elementary particle physics began with the discovery of the electron, and
since then, physics has come a long way. Over more than 100 years, the physics community
has developed a theory to describe almost all known fundamental forces: the Standard Model
(SM) of particle physics. The SM was consolidated in 2012 with the discovery of the Higgs
boson, whose mechanism explains the generation of masses for all elementary particles. The
SM has withstood the test of time through meticulous experimental verification and is capable
of explaining physical phenomena in the microcosmos with remarkable accuracy. However, the
persistence of the SM, coupled with a lack of recent evidence for deviations from it, presents a
challenge for physicists seeking new discoveries. The SM cannot be the end of the story; there
are unresolved topics that it cannot fully incorporate, such as dark matter, neutrino masses,
and the unification of forces. Even though there is no clear way forward, the endeavor for a
more complete theory of nature continues unabated.

This thesis explores what lies beyond the Standard Model, where it is believed that un-
known force carriers and new particles reside, waiting to be discovered at energy scales that
exceed the reach of our current experiments. The SM can be extended in multiple ways:
augmenting the particle content directly, imposing new symmetries, or even postulating that
particles are composed of tiny vibrating strings. However, in this thesis, we follow a different
approach to systematically parameterize new physics through the separation of scales. This
framework is known as Effective Field Theory (EFT).

Effective Field Theory leverages the principle of scale separation, where the influence of
high-energy physics on low-energy phenomena is suppressed. This allows us to focus on low-
energy processes by incorporating the effects of unknown high-energy physics into a set of free
parameters in our theory. Consequently, we can make accurate predictions without detailed
knowledge of the ultraviolet (UV) sector. There are two ways to approach EFT: either we hy-
pothesize the underlying UV physics and work out the details of its effects at low-energy scales,
or we acknowledge an unknown UV sector and construct a low-energy theory with several free
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parameters that encode the effects of the UV physics. Although these two approaches seem
separate, in reality, they are complementary to each other. Studying this modern approach in
physics is invaluable; it provides great insight into the dynamics of the UV phenomena we aim
to explain and offers a systematic framework to enhance the accuracy of established theoretical
calculations.

This thesis is organized into five chapters. In the first chapter, we provide a brief overview
of elementary particle physics and the Standard Model, introducing the concept of effective
field theories and highlighting the machinery of the two approaches outlined previously. The
second chapter focuses on the extraction of Wilson coefficients (WCs) using the functional
approach and delves deeper by considering a two-leptoquark model and its effect on observ-
ables at low-energy scales. In the third chapter, we investigate a timely issue regarding the
observed deviation in the decay of the Higgs boson into a Z-boson and a photon. We conduct
a model-independent statistical analysis within the framework of the Standard Model EFT,
gauging the magnitude of the WCs capable of explaining this discrepancy. We also examine
the phenomenon from a model-dependent perspective, considering several SM extensions that
could provide a viable explanation for the observed deviation in the Higgs sector. Chapter 4
aims to provide an upper limit on the lepton flavor universality ratios RK and RK∗ within the
Minimal Supersymmetric Standard Model (MSSM) by considering several constraints from
well-measured observables. Finally, in chapter five, we conclude and discuss the implications
of these findings and suggest avenues for further research.
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Chapter 1

Introduction

1.1 Elementary Particle Physics

Elementary particle physics is the field of study that seeks to understand the most fundamental
constituents of the universe, those entities that are indivisible and govern the behavior of
all matter and forces. At this scale, the principles of Quantum Mechanics (QM) dominate,
rendering the classical mechanics of our everyday experiences obsolete. In the quantum realm,
where particles exhibit wave-like behavior, the deterministic laws of classical physics give way
to the probabilistic nature of quantum phenomena.

Given the minuscule size of elementary particles, they frequently travel at velocities ap-
proaching the speed of light, necessitating the incorporation of Special Relativity into their
description. The union of Quantum Mechanics and Special Relativity leads to the framework
of Quantum Field Theory (QFT), which provides a comprehensive description of the behav-
ior of the fastest and smallest particles in nature. QFT is the theoretical bedrock of modern
particle physics, allowing for the unification of particle and wave descriptions and offering
profound insights into the fundamental interactions of particles.

Nature, as we currently understand it, is governed by four fundamental forces: the strong,
electromagnetic, weak, and gravitational interactions. The advent of Quantum Mechanics
revolutionized our understanding of these forces, particularly through the concept of force
mediators. Each fundamental force is now associated with a specific type of particle that acts
as its mediator, facilitating the interactions between other elementary particles. The Strong
Force is mediated by gluons and is responsible for binding quarks together to form protons,
neutrons, and other hadrons. It operates at the scale of atomic nuclei and is the most powerful
of the fundamental forces. The Electromagnetic Force is mediated by photons and governs the
interactions between charged particles. This force is responsible for the structure of atoms and
molecules, as well as the behavior of electromagnetic waves, including light. The Weak Force
is mediated by the W± and Z bosons and is responsible for processes such as radioactive decay
and neutrino interactions. It plays a crucial role in the fusion reactions that power stars.

The Gravitational Force, described by General Relativity, is mediated by the hypothetical
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graviton (which has yet to be discovered). While gravity is the most familiar force at macro-
scopic scales, in the microscopic realm of particle physics, it is exceedingly weak compared to
the other forces. For example, the electromagnetic force between two elementary particles can
exceed the gravitational force by nearly 40 orders of magnitude. Given its relative weakness,
gravity is often neglected in particle physics. However, it is widely believed that at sufficiently
high energy scales, approaching the so-called Planck scale (MP = 1016 TeV), gravitational
interactions can no longer be ignored, and a quantum theory of gravity becomes essential.

The foundations of particle physics were laid with the discovery of the electron by J.J.
Thomson in 1897, marking the first identification of a fundamental particle. This breakthrough
was soon followed by Max Planck’s work on blackbody radiation, where he introduced the
revolutionary idea that electromagnetic energy is quantized, being emitted and absorbed in
discrete packets called quanta. This was the first step in the quantization of electromagnetic in-
teractions, leading to the birth of Quantum Mechanics. As experimental techniques advanced,
a multitude of other particles were discovered, both fundamental, such as quarks and leptons,
and composite, such as protons and neutrons. Over time, physicists meticulously tabulated
the properties of these particles, including their mass, charge, and spin.

The culmination of decades of theoretical and experimental progress in elementary par-
ticle physics is the Standard Model (SM). The Standard Model is the most successful theory
to date, describing the fundamental particles and their interactions (excluding gravity) with
remarkable accuracy. The particle spectrum of the Standard Model can be divided into several
categories.

• Matter Particles: These include quarks and leptons, which are the building blocks of
matter. Quarks combine to form hadrons, such as protons and neutrons, while leptons
include electrons, muons, taus, and neutrinos.

• Force Carriers: These are the mediators of the fundamental forces, including the gluon
(for the strong force), the photon (for the electromagnetic force), and the W and Z
bosons (for the weak force).

• The Higgs Boson: The only scalar boson in the Standard Model. The Higgs boson is a
result of the mechanism called the Higgs mechanism of spontaneous electroweak sym-
metry breaking, which endows elementary particles with mass.

The Standard Model has been extraordinarily successful in explaining a wide range of
experimental results and has withstood numerous experimental tests. However, it is widely
acknowledged that the Standard Model is not the complete theory of fundamental interactions,
as it does not incorporate gravity, nor does it account for neutrino masses, dark matter or dark
energy. These limitations suggest that new physics lies beyond the Standard Model, waiting
to be discovered as experiments probe ever higher energy scales and as theoretical advances
continue to push the boundaries of our understanding.

1.2 The Standard Model of Particle Physics

Spacetime symmetries are fundamental to the way we understand the behavior of particles and
fields within the framework of relativistic quantum field theory, the foundation upon which the
Standard Model is built. At the heart of spacetime symmetries in the Standard Model is Lorentz
symmetry, which is a cornerstone of Einstein’s theory of special relativity. Lorentz symmetry
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1.2. The Standard Model of Particle Physics

dictates that the laws of physics are the same for all observers, regardless of their relative
motion, provided they are in inertial (non-accelerating) frames of reference. This symmetry
implies that physical phenomena do not depend on the orientation or the uniform motion of
the observer in spacetime.

Lorentz symmetry can be mathematically described by the Lorentz group, which includes
rotations in space and boosts (transformations related to changes in velocity). The Standard
Model respects Lorentz symmetry, ensuring that the equations describing particles and their
interactions are invariant under these transformations. This invariance leads to important
physical consequences, such as the fact that the speed of light is constant in all inertial frames
and that the mass of a particle is invariant, regardless of its velocity.

The Poincaré group extends the Lorentz group to include translations in space and time,
reflecting the fact that the laws of physics are also invariant under shifts in position or time.
This means that the physics described by the Standard Model does not depend on where or
when an experiment is conducted, as long as the experiment is isolated from external influ-
ences. The Poincaré group encapsulates the full symmetry of flat spacetime in the context of
special relativity, and it is this group that underlies the relativistic quantum field theories that
describe the behavior of particles in the Standard Model [1–3].

Apart from the symmetries discussed above, which constitute external symmetries of the
SM, there exist also internal symmetries that govern the particular interactions and the particle
content of the SM. The SM from the standpoint of QFT is built upon the so called non-Abelian
gauge symmetries, which are a type of local symmetry that applies to the fields associated with
fundamental forces. The gauge group associated to the SM is,

GSM = SU(3)c × SU(2)L × U(1)Y , (1.1)

where each component corresponds to one of the fundamental forces.

The group of SU(3)c describes the mathematical framework which Quantum Chromo-
dynamics (QCD) depends on, while the letter c stands for color which is a type of charge
associated with quarks and gluons specific to strong interactions. The symmetry group reflects
the invariance of QCD under rotations in the abstract space of color.

The rest of the SM gauge group, SU(2)L × U(1)Y , embodies the theory of electroweak
interactions, which unifies the electromagnetic and the weak nuclear force into a single force.
The letter “L” stands for left, denoting that the symmetry applies only to left-handed particles,
reflecting that chirality in the SM plays an important role. Lastly, the group U(1)Y refers to
hypercharge, a quantum number related to the electric charge and the weak force.

A critical aspect of the Standard Model is spontaneous symmetry breaking, particularly as
it relates to the Higgs mechanism. Although the underlying electroweak symmetry SU(2)L ×
U(1)Y would suggest that all these bosons should be massless, just like the photon, in nature,
the W and Z bosons are massive, while the photon is not. This apparent discrepancy is resolved
through the Higgs mechanism, where the Higgs field, a scalar field with its own dynamics,
acquires a non-zero vacuum expectation value, spontaneously breaking the SU(2)L × U(1)Y
symmetry down to the electromagnetic symmetry U(1)EM. This symmetry breaking imparts
mass to the W and Z bosons, while the photon remains massless. The Higgs boson, discovered
in 2012, is the quantum excitation of this field and serves as a direct confirmation of this
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Fig. 1.1: The building blocks of nature.

mechanism. There are several textbooks covering the material of this chapter in more depth,
the interested reader is referred to [4–6].

This concept of symmetry breaking is also pivotal in explaining the masses of the fermions
(quarks and leptons) through their interactions with the Higgs field. The strength of these
interactions (Yukawa couplings) determines the masses of the fermions, leading to the wide
range of masses observed in nature, from the light electron to the much heavier top quark.

In defining the SM Lagrangian the local symmetry group GSM dictates that we introduce
the following gauge bosons representations,

Ga
µ ∼ (8,1, 0) W I

µ ∼ (1,3, 0) Bµ ∼ (1,1, 0) . (1.2)

As for the matter particles we introduce the following sets of fields under the GSM representa-
tion group,

qi
L ∼

�

3,2,
1
6

�

, ℓi
L ∼

�

1, 2,−
1
2

�

, ui
R ∼

�

3,1,
2
3

�

, d i
R ∼

�

3,1,−
1
3

�

, ei
R ∼ (1, 1,−1) ,

(1.3)
where i = 1, 2,3 denotes that there are three distinct generations for each field introduced
above each of which the above representation is assigned. Lastly, the representation of the
Higgs field under the SM gauge group reads,

φ ∼
�

1, 2,
1
2

�

. (1.4)

Another important ingredient stemming from the SM gauge group is the covariant deriva-
tive defined as,

Dµ = ∂µ − i g ′Bµ − i gτIW I
µ − i gsλ

aGa
µ, (1.5)

where g, g ′ and gs, denote the couplings of each individual group of GSM, while τI and λa

correspond to the generators of SU(2) and SU(3) respectively.
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Having set all the necessary pieces we can now present the most general renormalizable
Lagrangian that respects both the Poincaré group and the SM gauge group. We suppress chi-
rality indices L and R of the fermionic fields for brevity,

LSM =−
1
4

F (i)µνFµν(i) − |Dµφ|
2 +µ2φ†φ −

λ

2

�

φ†φ
�2

+ iψ̄(i) /Dψ(i) −
�

ℓ̄yeeφ + q̄ yuuφ̃ + q̄ yd dφ
�

+ h.c. , (1.6)

The first term in eq. (1.6) corresponds to the sum, denoted by (i) of the kinetic terms of the
three distinct field strength tensors of the gauge boson introduced in the paragraph above,
while the second is the kinetic term of the Higgs boson. The rest of the expression constitutes
the scalar potential which leads to the spontaneous symmetry breaking of the electroweak
sector. On the second line the first terms implies the summation of the kinetic terms of all
matter fields, while the rest denote the Yukawa sector which leads to the acquisition of mass for
the matter particles upon symmetry breaking. Matrices y(e,u,d) are called the Yukawa couplings
and are general 3× 3 matrices in flavor space.

This elegant model of spontaneous symmetry breaking of the gauge group SU(3)c×SU(2)L×
U(1) can accommodate for almost all observed interactions and experimental data observed in
elementary particle physics.

Despite its successes, the SM is known to have significant limitations, both theoretical
and experimental, which strongly suggest the existence of physics beyond the Standard Model
(BSM). The remainder of this introduction will be devoted to a systematic exploration of the
foundational concepts and theoretical frameworks that we will employ to address the known
inconsistencies of the Standard Model (SM). By laying out these fundamental principles, we
aim to establish a comprehensive understanding of the tools and methodologies that are pivotal
in advancing beyond the current limitations of the SM.

Following this, we will introduce supersymmetry (SUSY), one of the most prominent the-
oretical extensions of the SM, which addresses several of the model’s most pressing issues,
such as the hierarchy problem. In parallel, we will explore the framework of effective field
theory (EFT), a powerful tool that allows for the systematic study of new physics beyond the
SM, even in the absence of a fully developed high-energy theory.

1.3 The Minimal Supersymmetric Standard Model

The following section serves as a brief introduction to the concept of Supersymmetry (SUSY),
the interested reader may refer to ref. [7] for a detailed and robust review of SUSY.

Supersymmetry is one of the most compelling theoretical frameworks proposed as an ex-
tension of the Standard Model (SM) of particle physics. SUSY postulates a fundamental sym-
metry between fermions and bosons, two distinct classes of particles in quantum field theory.
In a supersymmetric theory, every known particle in the SM has a corresponding superpart-
ner: fermions are paired with bosons, and vice versa. These superpartners differ by half a
unit of spin, meaning that a fermion has a bosonic superpartner and a boson has a fermionic
superpartner.

The most widely studied and phenomenologically viable SUSY model is the Minimal Su-
persymmetric Standard Model (MSSM). It is a crucial framework for exploring the potential
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validity of SUSY in nature and serves as a cornerstone for many extensions and variations
in high-energy physics. The MSSM’s particle spectrum is significantly richer than that of the
SM. It includes superpartners for each of the SM particles, as well as additional Higgs bosons
necessary to maintain consistency within the SUSY framework. The main components of the
MSSM particle spectrum are:

Sfermions (squarks and sleptons):

• Squarks are the scalar superpartners of the SM quarks. Each quark flavor q has two
squarks associated with it q̃L and q̃R.

• Sleptons are the scalar superpartners of the SM leptons. Each charged lepton flavor
(electron, muon, tau) has two sleptons ℓ̃L and ℓ̃R. Neutrinos also have corresponding
sneutrinos ν̃.

Gauginos and Higgsinos:

• Gauginos are the fermionic superpartners of the SM gauge bosons. They include the
gluino g̃ (superpartner of the gluon, which depending on the SUSY-breaking mechanism,
could be one of the heaviest superpartners in the MSSM), the Bino B̃ (superpartner of the
U(1) gauge boson) and the winos W̃±, W̃ 0 (superpartners of the SU(2) gauge bosons).

• Higgsinos are the fermionic superpartners of the Higgs bosons. In the MSSM, there
are two Higgs doublets, leading to four Higgsino states H̃0

u , H̃0
d (neutral Higgsinos) and

H̃+u , H̃−d (charged Higgsinos).

These gauginos and Higgsinos mix to form the mass eigenstates known as neutralinos
(four neutral particles, often denoted as χ̃0

1 , χ̃0
2 , χ̃0

3 , χ̃0
4 ) and charginos (two charged particles

χ̃±1 , χ̃±2 ). The lightest neutralino χ̃0
1 is often considered the lightest supersymmetric particle

(LSP) and a prime candidate for dark matter.

The MSSM also necessitates two Higgs doublets, resulting in five physical Higgs bosons.
Two CP-even neutral Higgs bosons h (lighter) and H (heavier). One CP-odd neutral Higgs
boson, A0 and two charged Higgs bosons H±. The introduction of an additional Higgs doublet
allows the MSSM to address the hierarchy problem by maintaining SUSY and ensuring that
the Higgs sector remains consistent with electroweak symmetry breaking.

In some SUSY models, the gravitino, the superpartner of the graviton, could be the LSP. It is
an extremely weakly interacting particle, making it another dark matter candidate in scenarios
where it is the LSP.

To name a few, the advantages of the MSSM are

• Resolution of the Hierarchy Problem: The hierarchy problem refers to the large discrep-
ancy between the electroweak scale (∼ 100 GeV) and the Planck scale (∼ 1019 GeV),
at which gravitational interactions become significant. In the SM, the Higgs boson mass
is extremely sensitive to quantum corrections, potentially driving it to very large val-
ues. SUSY provides a natural solution to this problem by introducing superpartners
that cancel out the quadratic divergences in the Higgs mass, thereby stabilizing it at the
electroweak scale.

• Gauge Coupling Unification: The MSSM predicts that the three gauge couplings of the
SM—corresponding to the electromagnetic, weak, and strong forces—can unify at a
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single energy scale (∼ 1016 GeV) in a grand unified theory (GUT). This unification is not
exact in the SM but is remarkably close in the MSSM, providing indirect evidence for
the existence of SUSY at high energies.

• Dark Matter Candidate: In the MSSM, the lightest supersymmetric particle (LSP) is often
stable due to a conserved quantum number called R-parity. If the LSP is electrically
neutral, as is the case for the neutralino (a mixture of the superpartners of the photon,
Z boson, and neutral Higgs bosons), it can serve as a viable dark matter candidate. This
offers a potential explanation for the dark matter observed in the universe.

Despite its strengths, the MSSM also has limitations:

• Fine-Tuning: The MSSM still requires some degree of fine-tuning to explain the observed
Higgs boson mass of 125 GeV. This has led to the exploration of alternative SUSY models
or extensions of the MSSM.

• Lack of Direct Evidence: So far, no superpartners have been observed at the LHC, lead-
ing to increasingly stringent bounds on their masses and casting doubt on the simplest
versions of the MSSM.

• Flavor and CP Problems: The MSSM introduces new sources of flavor and CP violation,
which must be tightly constrained to avoid conflict with experimental observations, lead-
ing to additional model-building challenges.

The MSSM remains one of the most well-motivated extensions of the Standard Model,
offering solutions to critical problems, we will explore the implications of the MSSM and flavor
observables, in particular the contributions to the RK , in Chapter 4.

1.4 Effective Field Theories

In this section, we introduce Effective Field Theory (EFT), a framework that plays an essential
role in modern quantum field theory, particularly in addressing physics at different energy
scales. The exposition closely follows the excellent review by A.V. Manohar [8], with additional
references such as [9, 10]. Quantum field theories, in general, can be categorized into two
large classes according to the renormalizability 1 of their interactions. These two classes are,

• Renormalizable Field Theories.

Theories, such as the SM, fall into this category, where only need a finite number of
counterterms are required to cancel their UV divergences arising from loop graphs. The
Lagrangian of these theories include operators of mass dimension D ≤ 4, hence their
interactions are renormalizable. In principle, renormalizable theories allow for calcula-
tions of observable quantities to infinite precision.

• Non-Renormalizable Field Theories.

In these theories an infinite number of counterterms are needed to cancel the divergences
from loop diagrams. The Lagrangian contains operators of higher mass dimension, D >
4, adding up to the renormalizable ones. Although non-renormalizable theories require

1In this chapter we will assume the that the reader is familiar with renormalization theory. A good review on
renormalization and effective field theories can be found in [11].
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more complex treatment, they still allow for meaningful predictions within a specific
energy scale.

Effective Field Theories (EFTs) fall into the second category. Although non-renormalizable,
they are full fledged QFTs with both a regularization procedure and a renormalization scheme,
just like ordinary QFTs. They, can make meaningful predictions up to some finite order defined
by a power counting parameter δ. Suppose we compute an observable to some order δn, the
error of our calculation would be of order δn+1. Hence, within the EFT framework we can
compute experimental quantities to finite precision.

In many cases the EFT is an approximation of a more complete theory, which is often
called the full theory. There are two approaches to derive an EFT,

• Top-down EFT.

In this method we “integrate out” the heavy degrees of freedom, related to the high
energy scale Λ of the full theory. As a result we obtain a set of local operators ODi
of dimension D > 4 built from the fields of the low energy theory. The information
of the full theory is encoded in a set of coefficients called the Wilson coefficients, CDi ,
multiplying their respective operators. These Wilson coefficients encode the impact of
the high-energy physics on the low-energy observables.

• Bottom-up EFT.

In this approach we add to a renormalizable theory higher dimensional operators, which
respect gauge invariance and locality, promoting it to an EFT. The main difference with
the top-down approach is that the Wilson coefficients of the theory and the UV scaleΛ are
not known. This constitutes a model independent way to parametrize the effects of new
physics arising from the scale Λ. By computing observables within the EFT comparing
them against experimental data we can fix the values of a set of Wilson coefficients, thus
providing indirect evidence for the nature of the high-energy physics.

Whether we use the top-down or bottom-up approach, both are constructed with a univer-
sal view, to reproduce the same S-matrix element as the full theory, this procedure is known as
matching. In the first approach the matching is explicit while in the second one implicit, since
the full theory is not known. In any case, this doesn’t mean that the fields and parameters
characterizing the full theory remain the same when going down to the EFT. On the contrary
when computing in the EFT the fields and parameters are redefined according to redefinitions
imposed by the decoupling of the heavy modes. This has also consequences in the RG flows,
which are inherently different since the scale of the full theory and the EFT are not the same.
One may then ask, “How does this reproduce the same S-matrix, since the fields are different?”.
The answer to this question lies in an important property of quantum field theory, invariance
of observables under field redefinitions.

EFTs are not merely theoretical constructs but have proven invaluable in the study of a
wide range of physical phenomena. Historically, the concept of EFTs emerged from the need to
describe physical processes occurring at different energy scales. An EFT serves as a low-energy
approximation to a more fundamental, high-energy theory, often referred to as the "full theory."
The necessity of EFT arises in situations where it is either impractical or impossible to access
the high-energy regime directly in experiments. This notion was first developed in low-energy
QCD, leading to the creation of chiral perturbation theory, an EFT for QCD at low energies.
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One of the major successes of EFTs in particle physics is the Fermi theory of weak interac-
tions, which described an EFT valid at low energies before the electroweak theory emerged as
a more fundamental theory. Similarly, Standard Model Effective Field Theory (SMEFT), which
extends the Standard Model by including higher-dimensional operators, is an essential tool
to study possible new physics beyond the current experimental reach. In SMEFT, the effects
of new high-energy physics are suppressed by powers of the energy scale Λ, representing the
scale at which new physics becomes important.

1.4.1 The EFT Lagrangian

Having established the foundational principles of effective field theory, we now turn to the
technical construction of the EFT Lagrangian. In order to construct a Lagrangian we first have
to identify the relevant degrees of freedom in the theory and impose symmetry constraints on
the operators. We will begin by working out the dimensionality of the fields in d dimensions.

The action of a theory must be dimensionless2, in d dimensions,

[S] =
�∫

dd x L(x)
�

= 0 . (1.7)

Given that
�

dd x
�

= −d the Lagrangian has mass dimension,

[L(x)] = d . (1.8)

Consider a Lagrangian built out of a scalar field φ(x), a spinor field ψ(x) and a vector
field Aµ(x) along with the partial derivative, ∂µ. The dimensionality of these fields can be
worked out from their kinetic terms since

�

∂µ
�

= 1. The dimensions of the relevant fields are,

[ψ] =
d − 1

2
, [φ] =

d − 2
2

,
�

Aµ
�

=
d − 2

2
. (1.9)

The gauge coupling’s dimension [g] is given by,

[g] =
4− d

2
, such that

�

Dµ
�

= 1 . (1.10)

A Lagrangian of any theory is composed as the sum of all Lorentz and gauge invariant
operators,

L=
∑

i

ciOi(x) . (1.11)

The renormalizable part contains all operators with dimension 0< D ≤ d, while the non-
renormalizable part consists of operators with D > d. In the context of EFT, the Lagrangian
can be organized as a formal expansion in powers of the operator dimension,

LEFT =
∑

D>d, i

c(D)i O(D)i (x)

ΛD−d
, (1.12)

where Λ is a high-energy scale characterizing the onset of new physics, and it is introduced
to render the Wilson coefficients c(D)i dimensionless. For example, in d = 4, the general La-
grangian takes the form,

L= LD≤4 +
L5

Λ
+

L6

Λ2
+ . . . (1.13)

2We work in the natural system where ħh= c = 1
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The Lagrangian of eq. 1.13 should be treated as an expansion in powers of 1/Λ and should
not be summed over to all orders as this would violate the EFT power counting rules. This
expansion helps us organize the calculation of amplitudes in a systematic way.

The calculation of physical observables, such as scattering amplitudes, can be organized
using a power counting scheme. Consider a general amplitude in d dimensions. By dimen-
sional analysis the contribution of an operator of dimension D to the amplitude will scale
as,

A∝
�

E
Λ

�D−d

, (1.14)

where E is the typical energy of the process. This corresponds to an insertion of a single
operator of dimension D > d. Multiple insertions of such operators lead to an amplitude of
the form,

A∝
∏

i

�

E
Λ

�Di−d

. (1.15)

It is then convenient to define the power counting formula,

n=
∑

i

(Di − d) , (1.16)

with the sum running to all insertions of higher dimensional operators. Thus the amplitude
turns out to be a power of n,

A∝
�

E
Λ

�n

.

This formula illustrates the distinction between renormalizable and non-renormalizable the-
ories. In renormalizable theories, only a finite number of operators contribute to physical
amplitudes, while in EFTs, higher-dimensional operators provide corrections suppressed by
powers of E/Λ.

To further illustrate the difference between renormalizable and EFT operators, consider a
specific case in d = 4. Consider a graph with a single insertion of a D = 5 operator. This will
generate an amplitude of the form,

A∝ E
Λ

. (1.17)

Inserting another operator of the same dimension we get an amplitude of the form,

A∝
�

E
Λ

�2

, (1.18)

which corresponds to the contribution of a dimension-D = 6 operator. If these insertions oc-
cur in loop diagrams, the resulting amplitudes will be divergent, requiring counterterms from
higher-dimensional operators, such as those in L6. This exemplifies how we can generate arbi-
trarily high dimension operators that require an infinite amount of counterterms to cancel the UV
divergences. While the presence of an infinite number of higher-dimensional operators might
seem problematic, it does not pose a practical issue for calculations. In an EFT, calculations
are performed to a fixed order in n, meaning that only a finite number of operators contribute
within a desired level of precision.
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1.4.2 The Standard Model Effective Field Theory

We now turn to a particularly important example used in the precision calculation of observ-
ables: the Standard Model Effective Field Theory (SMEFT). The SMEFT framework extends
the Standard Model (SM) by introducing higher-dimensional operators that encapsulate the
effects of new physics beyond the SM. These operators respect the gauge symmetries of the
SM but allow for interactions that arise at energy scales beyond the electroweak scale. It is
expressed as:

LSMEFT = LSM +
∑

n≥5

∑

i

C (n)i

Λn
Q(n)i = LSM +

∑

i

C (5)i

Λ
Q(5)i +

∑

i

C (6)i

Λ2
Q(6)i +O

�

1
Λ3

�

, (1.19)

where n indicates the dimension of the operator and i runs to account for every operator of the
respective dimension. This expansion organizes the effects of new physics in a power series of
Λ−1.

The construction of the SMEFT involves systematically listing all possible operators at each
dimension that are consistent with the symmetries of the SM. This process requires careful
consideration to avoid redundancies arising from equations of motion, integration by parts,
and Fierz identities. The initial cataloging was performed in ref [12]. However, it was later
realized that some operators in their basis were redundant due to equations of motion or could
be eliminated through field redefinitions. This led to the development of the Warsaw basis in
ref. [13], which provides a complete and non-redundant set of operators up to dimension six.
The classification of operators of dimension seven and higher has been further explored in
subsequent works, such as [14, 15].

At dimension five, there is a unique gauge-invariant operator that violates lepton number
conservation by two units (∆L = 2). This operator is known as the Weinberg operator [16]
and is responsible for generating Majorana masses for neutrinos after electroweak symmetry
breaking. It is expressed as:

Q(5) = ε jkεmnH jHm
�

lk
Lp

�T
C
�

ln
Lr

�

, (1.20)

where C= iγ2γ0 the charge conjugation matrix. Indices j, k, m, n are SU(2) indices while p, r
are flavour indices. Upon spontaneous symmetry breaking, the Higgs field acquires a vacuum
expectation value, and the Weinberg operator generates Majorana mass terms for neutrinos:

Lν mass = −
υ2

2Λ
C (5)pr

�

νp

�T Cνr + h.c., (1.21)

where υ≈ 246GeV is the Higgs vev. Therefore, SMEFT provides us with tiny neutrino masses
originated at the scale Λ.

At dimension six, the number of independent operators increases significantly. Assuming
baryon number conservation and not counting flavor indices or Hermitian conjugates, there
are 59 independent operators in the Warsaw basis. These operators modify various aspects of
the SM. We write the Lagrangian of dim-6 operators as,

L(6)SMEFT =
∑

X

CXQ(6)X +
∑

f

C f Q(6)f , (1.22)
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�
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�
�

lpγ
µlr

�

QH eG H†H eGA
µνGAµν QeB

�

lpσ
µνer

�

HBµν Q(3)Hl

�

H†i
↔
D

I

µH
�

�

lpτ
Iγµlr

�

QHW H†HW I
µνW

Iµν QuG

�

qpσ
µνTAur

�

eHGA
µν QHe

�

H†i
↔
DµH

�

�

epγ
µer

�

QHfW H†HfW I
µνW

Iµν QuW

�

qpσ
µνut

�

τI
eHW I

µν Q(1)Hq

�

H†i
↔
DµH

�

�

qpγ
µqr

�

QHB H†HBµνBµν QuB

�

qqσ
µνur

�

eHBµν Q(3)Hq

�

H†i
↔
D

I

µH
�

�

qpτ
Iγµqr

�

QHeB H†HeBµνBµν QdG

�

qpσ
µνTAdr

�

HGA
µν QHu

�

H†i
↔
DµH

�

�

upγ
µur

�

QHW B H†τI HW I
µνBµν QdW

�

qpσ
µνdr

�

τI HW I
µν QHd

�
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�

qpσ
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�
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�

eH†iDµH
� �
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�

Table 1.1: Dimension-6 operators except four-fermions as classified in [13].

where X =
¦

GA
µν, W I

µν, Bµν
©

accounts for the bosonic only operators, while Q f denotes opera-
tors containing fermion fields. The results of the independent operators excluding 4-fermions
are shown in Table 1.1 as presented in [13]. Four-fermion operators are shown in Table 1.2

Many of the operators above change the standard definitions of the SM. For example, the
operator QH shifts the vev of the Higgs field. The operator class X 2H2 is phenomenologically
important since it contributes to processes such as h → γ γ and h → Z γ, which will eb
the topic of Chapter 3. Operators of the class ψ2H2 redefine the Yukawa couplings of the
SM interactions. These are only some changes imposed by dim-6 operators. The Feynman
rules as well as the implications of spontaneous symmetry breaking in Rξ-gauges have been
worked out in Ref.[17]. The running of the Wilson coefficients have been calculated in a series
of papers [18–20] and an extensive review of the SMEFT is given in Ref.[21]. As the oper-
ator dimension increases, the number of possible operators grows rapidly. The classification
of dimension-7 operators has been explored in [14, 22], and dimension-8 operators in [15,
23]. The construction of these higher-dimensional operators involves advanced mathematical
techniques (such as Hilbert series) due to the combinatorial complexity and the need to ensure
operator independence.

1.5 Top-down EFTs

In the previous section we analyzed the structure of the Lagrangian of an EFT. In this section
we will talk about the top-down approach of constructing the EFT by decoupling (or integrating
out) a heavy particle with mass M from the full theory. Schematically we may say that the
particle exists in our theory when µ > M and at scales µ < M the particle doesn’t have any
dynamical degrees of freedom in our theory, where µ is the renormalization scale. The effects
of this particle are encoded in the Lagrangian, where higher dimensional operators come into
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�
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�
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j
pσµνer)ε jk(q

k
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Table 1.2: Four-fermion operators, chiral indices are assumed in the operator class.

play suppressed by the mass M of the heavy particle. Another effect of the decoupling is the
difference in the beta functions of the full and the effective theory, hence the couplings are
affected as well. All of the above corrections, coming from the decoupling at some scale M
are referred as threshold corrections.

In constructing an EFT via to top-down approach one begins with a well defined UV model
that describes physics at energy scales higher than a certain energy threshold. In order to
systematically derive the EFT in the IR regime we follow the process of integrating out heavy
degrees of freedom from the UV theory, this process is known as matching. The goal of this
procedure is to obtain and effective theory that describes the dynamics of the light degrees
of freedom in energy scales much lower than the mass scale of the full theory. Overall, the
matching process boils down to the following statement, the low-energy EFT and the full theory
have to reproduce the same S-matrix elements.

There are two methods for performing the matching, diagrammatic matching, through
Feynman diagrams and functional matching, which directly deals with the path integral. Both
methods aim for the same outcome but use different techniques to achieve it. Below, we will
highlight how both approaches work and discuss their respective advantages.

In diagrammatic matching one calculates Green’s functions in both the full theory and in
the EFT using Feynman diagrams and by comparing the resulting computations the Wilson
coefficients of the EFT are extracted that reproduce the same predictions as the low energy
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behavior of the UV theory. This can be done at any order in perturbation theory, our focus
lies mainly in one loop matching. In order to achieve this one has to follow the steps outlined
below.

• Draw all relevant Feynman diagrams up to one loop that do not contain any heavy de-
grees of freedom in the external legs. All heavy particles must circulate inside the loop
and may be combined with light degrees of freedom also running in the loop.

• Calculate all relevant diagrams expanding the denominators in powers of 1/M , where
M is the off-shell mass of the heavy particle, keeping the expansion up to the desired
order. For example, if we want to include up to dimension 6 operators one has to cut-off
the expansion to 1/M2 neglecting all other contributions suppressed by higher powers.

• Draw and calculate the corresponding diagrams in the EFT, which would include local
operators without any heavy fields. Only light fields are allowed inside the loops. Note
that Wilson coefficients are treated as unknown quantities in the EFT.

• Equate the amplitude at some desired scale µ, and solve the system of equations for the
Wilson coefficients.

Diagrammatic matching makes it easy to identify which diagrams contribute to a particular
operator in the EFT and how different interactions affect observables. However, matching must
be redone for each process or class of processes, which can be inefficient if one is interested in
many observables or in extracting all WCs of the UV model.

In functional matching, one employs the path integral machinery along with the back-
ground field method to directly compute the effective action including the effects of heavy
degrees of freedom. More specifically, we require the one-particle-irreducible (1PI) effective
action to be the same as the one-light-particle-irreducible (1LPI) effective action stemming for
the UV,

Γ 1PI
EFT[φ] = Γ

1LPI
UV [φ] , (1.23)

where with φ we denote light degrees of freedom. At tree level one has to simply substitute
in the UV Lagrangian, LUV[Φ,φ], the equations of motion of the heavy particle Φ, that is,

Ltree
EFT[φ] = L[Φc ,φ], (1.24)

where Φc is the solution of the EOMs. At one-loop the computations are more involved but an
elegant result arises in the end,

S1-loop
EFT =

i
2

STr log

�

−
δ2SUV

δφ2

�

�

�

�

Φ=Φc

�

�

�

�

�

�

hard

, (1.25)

where by “hard” we denote that all integrals in dimension regularization (DR) arising in the
specific computations should be expanded in the region where q ∼ MΦ ≫ mφ . The second
variations of the actions can be further decomposed in the following way as,

−
δ2SUV

δφ2

�

�

�

�

Φ=Φc

= K−X , (1.26)

where K constitutes the inverse propagator while X denotes the interaction part. This lead to
the following result,

S1-loop
EFT =

i
2

STr logK

�

�

�

�

hard
−

i
2

∞
∑

n=1

1
n

STr
��

K−1 X
�n��
�

hard , (1.27)
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these two terms are known as “log-type” and “power-type” supertraces respectively. These
can be systematically organized graphically. The method provides the complete set of effec-
tive operators and their coefficients without the need to consider specific processes. Although
more general than diagrammatic matching functional methods involve sophisticated mathe-
matical techniques that may be less intuitive than diagrammatic methods. The application of
functional matching and its details is postponed until Chapter 2 of this thesis.

Since the results of functional matching are process independent they are universal in the
sense that some part of the matching procedure can be calculated once and for all for many
classes of UV model because they share common forms of K and X matrices. By assuming for
example that any number of heavy scalar particles run in the loop one arrives at the so-called
Universal One Loop Effective Action or UOLEA [24, 25]. Several other universal results have
surfaced since then. The first graphical organization of function techniques is called covariant
diagrams [26] which led to the extension of the UOLEA to include heavy-light contributions
in the loop [27, 28]. Other results include the fermionic UOLEA [29, 30] and several other
computations [31–34]. The go to workflow for functional matching is clearly described in
[35].

However, if one follows the aforementioned prescription for one loop matching even for a
simple SM extension the complexity of the calculations quickly rises and a by hand approach
becomes tedious. For this reason there have been developed several automated packages to
facilitate parts of the process of matching such as tree level matching [36], encoding the UOLEA
to speed up calculations [37], calculating supertraces by applying the CDE technique [38, 39]
all the way up to extracting the WCs through matching automatically [40, 41].

W+
µ−

νµ

νe

e−

Fig. 1.2: Tree level process µ → νµ e νe

1.5.1 Fermi Theory

As a warm up example of a diagrammatic matching calculation we will introduce an EFT
known as the 4-Fermi theory, which is a low-energy description of the weak interactions. The
Fermi theory was used for calculations of amplitudes well before the SM was discovered, the
parameters of the SM were not essential to apply the theory. It gave a very accurate description
of the phenomenology of weak interactions and by precision measurements at low energies,
it gave constraints on the masses of the W and Z bosons.

We will derive the 4-Fermi theory from the weak interactions, by means of decoupling the
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W-boson from the Green functions, i.e. Feynman diagrams. The weak charged current is,

J+µ =
1
p

2

�

νi
Lγµei

L + Vi ju
i
Lγµd j

L

�

. (1.28)

The muon decay can be produced by this current and at tree-level it is described by the diagram
in Fig.1.2. The amplitude, in unitary gauge, reads,

iA= − g2

2
(eLγ

µνeL)
−i
�

gµν −
pµpν
M2

w

�

p2 −M2
w

�

νµLγ
νµL

�

. (1.29)

At low energies, p2≪ M2
w, we can expand the propagator,

gµν −
pµpν
M2

W

p2 −M2
W

= −
1

M2
W

�

gµν +

�

1+
p2

M2
W

�

p2 gµν − pµpν
M2

W

+ . . .

�

,

keeping only the leading term we get the amplitude,

iA= −i
g2

2M2
W

(eLγ
µνeL)

�

νµLγµµL

�

. (1.30)

The Lagrangian describing this interaction is,

L4F = −
4GFp

2

�

νµγ
µPLµ

� �

e γµPLνe

�

, (1.31)

where we have defined,
4GFp

2
≡

g2

2M2
W

=
2
υ2

. (1.32)

The procedure we have just used is known as integrating out a particle from the theory. The
Lagrangian now describes a 4-fermion vertex as shown in Fig.1.3. We note that this Lagrangian
does not mediate any heavy degrees of freedom such as the W -boson, and it only contains 4-
fermion interactions. The muon decay lifetime in the limit mµ ≪ me in the Fermi theory is

µ−

νµ

νe

e−

Fig. 1.3: The muon decay in the 4-Fermi theory.

easy to calculate and is given by,

Γ
�

µ → νµeνe

�

= G2
F

m5
µ

192π3
. (1.33)

The experimental value of the muon lifetime is τµ = 2.197 µs, this let us calculate GF ,

GF = 1.166× 10−5 GeV−2 , (1.34)

which, if we consider it to be the scale 1/Λ2 we get approximately the value Λ ∼ 300 GeV,
which indicates the scale at which the EFT admits a UV completion.
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1.6. Bottom-up EFTs

1.6 Bottom-up EFTs

Contrary to the top-down approach where the WCs are known in terms of couplings of the UV
theory, in the bottom-up approach the WCs are treated as free parameters. In this approach
we first construct a low energy EFT, without referring to any UV model of physics, and the
values of the WCs are determined numerically by experimental data. To extract or constrain
these WCs we employ statistical methods that compare theoretical predictions of observables
with experimental data.

C(1)

HQ

C(3)

HQ

CHdC(1)

HqC(3)

Hq CHu

CHD

CHe C(1)

HlC(3)

Hl

CHW B Cll

CHt

C3,1
Qq

CtB

CtW
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C8
QdC1,8

Qq C3,8
Qq C8

Qu

C8
td

C8
tqC8

tu

CG

CtG

CbH

CHB

CH⇤

CHG

CHW

C⌧H

CtH

CµH

Higgs tt̄ Diboson EWPO tt̄V top EW

Higgs tt̄ Diboson EWPO tt̄V top EW

Higgs tt̄ Diboson EWPO tt̄V top EW

Higgs tt̄ Diboson EWPO tt̄V top EW

Higgs tt̄ Diboson EWPO tt̄V top EW
Higgs tt̄ Diboson EWPO tt̄V top EW

Fig. 1.4: Different sectors of physical observables, related to the top-quark, and their corresponding
dependence on WCs, taken from [42].

The starting point is to postulate a Lagrangian, as our example EFT we will use the SMEFT,
which part of it is also used in Chapter 3 to disentangle the Higgs sector. A very nice depiction
of the various sectors and their dependence on the specific WCs can be seen in Fig.1.4. In
order to constrain the WCs, we need precise theoretical predictions, calculated through the
effective Lagrangian, for observables that are sensitive to higher dimensional operators. These
observables may include, production and decay rates, cross sections, asymmetries and any
other measurable quantity. Thus any set of observables O in principle can be written in the
following form,

Otheory =OSM +δOSMEFT , (1.35)

where OSM contains the SM prediction while δOSMEFT corresponds to the sum of WCs that
affects the corresponding observable in the EFT. The next step is to collect a set of observables
capable of constraining the aforementioned WCs, as an example, SMEFT, including flavor,
consists of 2499 operators. The parameter space of dimension-6 WCs is huge and if we are
to fairly bound each WCs an equal or larger amount of observables is required. The task is
daunting but the effort has started through the use of computer packages such as smelli
[43]. The set of observables Oexp is collected along with their associated uncertainties and
correlations.
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The chi-squared statistic is defined to quantify the discrepancy between the theoretical
predictions and the experimental data,

χ2 =
�

Oexp −Otheory

�T
V−1

�

Oexp −Otheory

�

, (1.36)

where Otheory,exp are vectors denoting the set of theoretical predictions and experimental mea-
surements respectively, while the covariance matrix V contains the relevant uncertainties and
correlations of the measurements.

The main objective is to find the set of WCs, {Ci}, that minimize the χ2 function, thus
providing the best fit to experimental data. The minimization is usually done by numeri-
cal optimization techniques, such as gradient descent and in some instances it can also be
solved analytically, using matrix decomposition techniques such as Singular Value Decompo-
sition (SVD), in the case where the theoretical predictions linearly depend on WCs, which is
the case up until dimension-6 operators.

After obtaining the best-fit values of the Wilson coefficients, the next step is to assess the
goodness of fit. This involves the examination of the minimum value the χ2 function has
reached compared to the degrees of freedom relevant to the fit. In general the degrees of
freedom are defined as the difference between the number of data points and the number of
fitted parameters,

ν= Ndata − Nparameters , (1.37)

To assess the goodness-of-fit we calculate the reduced chi-squared, χ2
ν = χ

2
min/ν. A value close

to one, χν ∼ 1, indicates that the theoretical model adopted can provide an acceptable fit to
the data within uncertainties. A significantly larger value suggests that the model may not be
able to accurately describe the data, potentially indicating the need for additional BSM physics
to account for the discrepancies, or we may have underestimated the error variance of our data
points. If on the other hand χν < 1, the model overfits the data, indicating that the collection
of data is too small and a larger set of observables is needed.

An important quantity to also consider is the covariance matrix of the fitted parameters,
which provides information about the uncertainties and correlations of the WCs, defined as
the inverse of the Hessian matrix of the χ2 function evaluated at it’s minimum values,

(Cov)i j =

�

1
2
∂ 2χ2

∂ Ci ∂ C j

�

�

�

�

Cbest-fit

�−1

, (1.38)

where Ci, j represent the various WCs of the chosen set. The diagonal elements of this ma-
trix represent the variances of each individual WC, while the off-diagonal elements give the
correlations between different WCs. These correlations deem important since they give in-
formation on how changes in one coefficient affects another when fitting the data. A neat
graphical representation that shows the confidence regions of fitted parameters are contour
plots, particularly useful when dealing with two or three parameters. They provide visual in-
sight into the uncertainties and correlations between parameters, by showing levels of constant
χ2 in the parameter space.

To create contour plots we chose two WCs out of the set of parameters to depict, e.g. C1

and C2 and fix the other to their best-fit values obtained by the χ2 minimization. Then, create
a grid of data points around the best fit values of Cbest-fit

1 and Cbest-fit
2 and calculate the values
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of χ2(C1, C2) for each grid point generated above keeping other parameters fixed. Lastly, de-
termine the confidence intervals that you wish to show, e.g. when we draw 1σ contours this
corresponds to 68.3% chance that a random point will land inside the contour plot region. To
draw these values, evaluate the chi-squared distribution (inverse of the cumulative distribu-
tion) with two degrees of freedom, ∆χ2 = χ2 − χ2

min to determine contours of constant χ2.
For example, all points within 1σ will be inside the region defined by,

χ2(C1, C2)−χ2
min ≤∆χ

2(1σ)⇒ χ2(C1, C2)−χ2
min ≤ 2.3 . (1.39)

Where the value of∆χ2(1σ) can be found in tables or software for the chi-square distribution
of two degrees of freedom.

Contour plots reveal crucial information about the parameters in a statistical analysis. The
spread of the contours along each axis indicates the uncertainty in each parameter; narrow
contours imply tight constraints, while wide contours suggest larger uncertainties. The orien-
tation and shape of the contours show the correlations between parameters. If the contours
are elongated along a diagonal, this indicates a strong correlation, meaning that changes in
one parameter can be compensated by changes in the other without significantly affecting the
χ2. Additionally, the regions enclosed by the contours represent parameter values consistent
with the data at the specified confidence levels. Points outside these regions are excluded with
a certain degree of confidence.

In effective field theories, contour plots are invaluable for several reasons. They provide
insight into how the data constrain the parameters and reveal regions of parameter space con-
sistent with experimental observations. By showing how parameters are correlated, contour
plots help us understand the interplay between different operators in the EFT. Recognizing
areas of parameter space with large uncertainties or strong correlations can motivate new
measurements aimed at improving constraints. Additionally, contour plots facilitate the com-
parison of different theoretical models or scenarios by visually displaying how the allowed
parameter regions change under different assumptions. All of these techniques outlined pre-
viously will be used to study a specific set of observables and WCs related to the Higgs sector
in Chapter 3.
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Chapter 2

Functional Matching of Scalar
Leptoquarks

In this study we present a universal effective action for one-loop matching of all scalar lepto-
quarks. We use both the Universal One-Loop Effective Action (UOLEA) and covariant diagrams
to evaluate the Wilson coefficients directly in the Green basis for up-to dimension-6 operators.
On the technical side, we use the newly developed method of evaluating supertraces, to fur-
ther validate the results stemming from the use of covariant diagrams. As an application, we
perform a fully functional matching onto Standard Model Effective Field Theory (SMEFT) of
a model with two scalar leptoquark fields: a weak isospin singlet and a doublet. We demon-
strate its use by calculating several observables, such as lepton magnetic and electric dipole
moments, neutrino masses, proton decay rate, while we comment upon fine tuning issues in
this model. Apart from its phenomenological interest, this model generates the majority of
dimension-6 operators and provides an EFT benchmark towards future matching automation.
This chapter is based on ref [44].
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2. FUNCTIONAL MATCHING OF SCALAR LEPTOQUARKS

2.1 Introduction

Effective field theory (EFT) [45–47] is an important part of our understanding of nature, it
constitutes a robust way of dealing with new physics phenomena for Beyond the Standard
Model (BSM) physics. One can obtain a low energy EFT action by integrating out heavy de-
grees of freedom from a, more general than the SM, UV-theory. At the end of the process we
obtain an EFT Lagrangian with modified SM couplings and masses augmented by higher di-
mensional operators whose associated Wilson coefficients (Wcs) encode the information about
the UV-theory [48]. The main technique to perform this kind of calculation has been Feynman
diagrams. However, during the last decade, functional matching has seen a renewed interest.

The first steps were taken with the application of the covariant derivative expansion (CDE)
in [49–51], while the revival of these techniques and methods was recently made in [32, 52].
A first universal result named UOLEA (Universal One Loop Effective Action) was developed
in [24, 27, 28]. However, this result is not truly universal since it does not account for mixed
statistics and open covariant derivatives, it can be used to decouple scalar particles only i.e.
involving both heavy-heavy loops as well as heavy-light loops with the scalar particles running
inside. Very recently the fermionic UOLEA was also constructed [29, 30] and the completion
of the fermionic and scalar UOLEA was also developed [53] taking also mixed statistics into
account.

Another approach to functional matching, which was used to derive the heavy-light part
of the UOLEA, are the covariant diagrams [26], which mimic the usual Feynman diagrams
but are at all steps gauge-covariant. This relatively new tool makes use of the expansion by
regions [54, 55] and a simpler matching framework [33], which builds upon refs. [56, 57],
to further simplify the matching procedure. An example application can be found in [25,
26]. The logic of these diagrams was taken a step forward with the development of supertrace
functional-technique [35] which establishes a cleaner way to make up diagrammatic traces.
Soon after that, an automated application of the CDE followed [38, 39] easing further match-
ing calculations. Although aiming at a different direction, similar effective actions based on
supertrace and Grassmannian techniques were derived in ref. [58] using a field-space super-
manifold.

Briefly, the idea behind functional matching is to equate the generating functionals,

ΓEFT[φ] = ΓL, UV[φ] , (2.1)

for the EFT and UV-theory with light fields (φ) respectively. If S is a heavy field, say a lep-
toquark field, with mass MS ≫ mφ , then the matching conditions at tree and one-loop level
read:

L(tree)
EFT [φ] = LUV[S,φ]

�

�

�

S=Sc[φ]
, (2.2)

∫

dd x L(1−loop)
EFT [φ] = ΓL,UV[φ]

�

�

�

hard
. (2.3)

Here Sc[φ] is the classical heavy field which solves the classical equations of motion (EOMs),

δSUV[S,φ]
δS

�

�

�

�

S=Sc[φ]
= 0 . (2.4)
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Moreover, the evaluation of the loop-integral in the rhs of eq. (2.3) is performed in the (hard)
region assuming momenta q ∼ MS ≫ mφ and has the form

∫

dd x L(1−loop)
EFT [φ] =

i
2

STr logK
�

�

�

hard
−

i
2

∞
∑

n=1

1
n

STr
�

(K−1X)n
�

�

�

�

hard
. (2.5)

Therefore, the EFT Lagrangian is a sum of functional Supertraces through the log-function of
the propagator K in field space and a power expansion of the operator (K−1X), where X is a
field operator - an interaction matrix - evaluated at S = Sc[φ]. Basically, finding the X-matrix,
and evaluating the Supertrace functional at the desired order in the EFT Lagrangian is what is
required for the master formula of eq. (2.5) to work. This is the functional approach mainly
of refs. [26, 35] that we use in our work here in order to

1. derive a universal one-loop effective action up-to dimension-6 operators for all scalar
leptoquark (LQ) extensions of the Standard Model (SM) [59].

2. apply the formalism in the decoupling of two heavy LQ fields, a coloured weak isospin
singlet (S1) and a coloured weak isospin doublet (S̃2) and derive the full set of d ≤ 6
operators, not resorting to Baryon or Lepton number conservation.

3. support the usefulness and clarity of functional matching over traditional Feynman di-
agrammatic methods or within functional methods, by comparing both supertrace and
covariant diagrammatic techniques.

There are, various worked out examples functionally integrating out non-degenerate fields in
refs. [24, 30, 53], however, with an exception of ref. [25] and to our knowledge, there is no
other functional calculation with two-field decoupling and more general Yukawa interactions
in the literature as the one we present here.1 The renormalization scheme in our calculation
is a (modified) mass independent one (MS) and we regulate the integrals with dimensional
regularization. We match on to SMEFT operators within a redundant basis, referred to as
Green (or General) basis, which consists of operators written before equations of motion for
the light-fields are taken into account [63, 64]. Expressions for translating Wcs from Green to
Warsaw basis [13] are given in ref. [64].

However, before taking up the above analysis, we first validated calculations performed
with Feynman diagrammatic techniques. We started from matching a single charged singlet,
the model of ref. [65] in SMEFT. We found full agreement apart from a missing operator [66].
Next, we applied functional covariant diagrams to a benchmark leptoquark model S1 + S3

of ref. [64], where we found perfect agreement with v4 of ref. [64]. Part of our functional
calculation in this Chapter addresses this model too but now with the inclusion of Baryon
number violating terms in the UV-Lagrangian. Finally, regarding the tree-level part of our
calculation we found agreement with ref. [67].

We have chosen to study the decoupling of heavy scalar leptoquark fields for two main
reasons: first, there is a plethora of interesting BSM phenomena associated to them, i.e. from
neutrino masses and proton decay [68], to possible interpretation of recent flavour anomalies

1A complete one-loop functional matching of the singlet scalar extension of the SM exists in ref. [35] and very
recently, there have also been two complete one loop, but one-field-type, matching calculations using functional
methods, where ref. [60]matches the Type-I neutrino seesaw onto SMEFT, while ref. [61]matches the Higgs triplet
extension of the electroweak gauge sector. Also recently, one-field heavy scalar decoupling has been classified in
ref. [62] by using the code of ref. [37].
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2. FUNCTIONAL MATCHING OF SCALAR LEPTOQUARKS

and enhanced anomalous magnetic moment of the muon [69–74], and second, leptoquark
fields are naturally embedded in Grand Unified Theories (GUTs) which may be in turn linked
to even more fundamental theories.

2.2 Universal One Loop Functional Matching for Scalar Leptoquarks

Leptoquarks (S) are hypothetical fields defined by their Yukawa interactions to both SM quarks
and leptons via the Lagrangian,

LS−f = F̄ cλλλL
i FSi + f̄ cλλλR

i f Si + f̄ λ̃λλi FSi + h.c. , (2.6)

where fermion F = {q,ℓ} is a Left handed quark or lepton weak doublet field, while f =
{u, d, e} is a Right-handed fermion weak singlet field. F c , f c denote charge-conjugated fermion
fields. Gauge and flavour indices are all suppressed in (2.6), or otherwise encoded in the
Yukawa couplings, λλλL ,λλλR and, λ̃λλ. Therefore, there are five different scalar leptoquark field
representations in weak isospin space: three singlets, two doublets and one triplet. Their
gauge quantum numbers under the SM gauge group, are shown in Table 2.1.2 The LQ-flavour
index i in (2.6) takes the values i = {1, 1̃, 2, 2̃, 3}. 3 Obviously, by picking up only quarks from

LQ-fields (S) SU(3) SU(2) U(1)

S1 3̄ 1 1
3

S̃1 3̄ 1 4
3

S2 3 2 7
6

S̃2 3 2 1
6

S3 3̄ 3 1
3

Table 2.1: All possible representations of leptoquark fields under the SM gauge group.

F− (or from f −) fields we arrive at Baryon (B) and Lepton (L) number non-conservation
LQ-interactions.

All five scalar LQs can interact with the SM Higgs-field4 (H) through trilinear and quadratic
terms of the form:

LS−H = (Ai jH
†SiS j + h.c.) + λHi(S

†
i Si)(H

†H) + (λ3SSiS jSkH† + h.c.) + . . . , (2.7)

where “. . . " mean other gauge invariant terms of the form (SSHH) and (SSSH). Their exact
form is irrelevant for drawing the supertrace functional diagrams since their explicit details
entered only at the end in X-matrices of (2.5). Note that the A-term of (2.7) has mass dimen-
sion one, there are only two options HS1S̃2 and HS3S̃2, and it plays an important role in the
effective Lagrangian at d ≥ 5 level as we shall see in the next section.

Furthermore, self-interactions among LQs read in general as

LS = −M2
i |Si|2 + A′i jk(S

†
i S jSk) + ci jkl(S

†
i S j)(S

†
kSl) + · · · , (2.8)

2In notation of (2.6) some leptoquark fields from Table 2.1 may be their charge-conjugated fields.
3With apologies to the reader, the LQ-flavour indices-i, j, k used throughout this section should not be confused

with the colour indices-i, j, k introduced in section 2.3.
4The hypercharge of the SM Higgs doublet is defined so that YH = 1/2.
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2.2. UOLFM of Scalar Leptoquarks

where again “· · · ” refer to different internal gauge group invariant structure of terms not in
our immediate interest in constructing the effective action. Again A′ is a mass dimension one
parameter but break baryon and lepton numbers. Among the fields arranged in Table 2.1, there
are three choices of A′-terms: S†

1S̃2S̃2, S†
3S̃2S̃2 and S̃†

1S2S̃2. Masses Mi in (2.8) are assumed
much heavier than the electroweak scale mW but the dimension-full parameters introduced
above could in general range within

0 ≤
�

A/Mi , A′/Mi

	

≲ 1 . (2.9)

In total, the BSM Lagrangian is

LBSM = LS−f +LS−H +LS . (2.10)

This “universal" way of writing down leptoquark interactions will be the stepping stone for
the calculation of the effective action at tree and one-loop levels using eqs. (2.2),(2.3) and
(2.5), respectively, since these will determine the dimensionality of the X-matrices that we
will introduce shortly. Otherwise, the explicit form of LBSM is given in Appendix A.

2.2.1 Tree level EFT, L(tree)
EFT

We start out with the UV-Lagrangian LUV[S,φ] = LSM[φ] +LBSM[S,φ] and derive the EOMs
(2.4) for the heavy fields Si in Table 2.1. We solve EOMs and substitute the solutions for the
classical fields Si,c[φ] back into LUV in order to obtain the tree-level EFT from eq. (2.2). By
expanding the classical field in inverse powers of heavy masses Mi

Si,c[φ] = S(3)i,c + S(4)i,c + . . . , (2.11)

we find

(S(3)i,c )
† =

1

M2
i

�

F̄ cλλλL
i F + f̄ cλλλR

i f + f̄ λ̃λλi F
�

, (2.12)

(S(4)i,c )
† =

1

M2
i

Ai j H† S(3)j,c . (2.13)

The solutions S(n)i,c contain operators with mass dimension n which are suppressed by factors
that scale like M n−1

i . Plugging in this back to eqs. (2.6)-(2.8) we obtain the tree-level effective
Lagrangian containing d ≤ 7 operators

L(tree)
EFT [φ] = M2

i (S
(3)
i,c )

† (S(3)i,c ) + (Ai jH
†S(3)i,c S(3)j,c + h.c.) , (2.14)

where S(3)i,c is the hermitian conjugate of (2.12). Therefore, the tree-level EFT contains only
four-fermion dimension-6 operators proportional to the product of couplings from the set
{λ{λ{λL ,λλλR, λ̃}λ̃}λ̃}. On the other hand, all tree-level dimension-7 operators are proportional to the
dimension-full combination of parameters A×λλλ2. From eq. (2.7) we see that the parameters
λHi and λ3S appear first to multiplying operators with dimensions-8 and 10, respectively, while
from eq. (2.8), the parameters A′ and c are associated with dimension-9 and 12, respectively.
Although our main focus in this chapter is on operators with dimensions less or equal to six
it is obvious that dimension-7 operators at tree-level may become equally important in the
parameter region where A≈ Mi and one other leptoquark mass is M j ≈

p

vMi , with v being
the electroweak vev.
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2. FUNCTIONAL MATCHING OF SCALAR LEPTOQUARKS

2.2.2 K- and X-matrices

The neccessary steps for one loop matching are neatly outlined in [35] and are followed closely
here. In performing the matching, the method of functional supertraces will be used as intro-
duced in [35]. After collecting and constructing the supertraces, the application of the CDE
(Covariant Derivative Expansion) is carried out automatically through two recently developed
packages [38, 39]. We will be using mainly the package, STrEAM of [38].

The rationale of these diagrams comes from an earlier diagrammatic approach to matching
which uses the so called covariant diagrams [26]. In Appendix B we make this comparison
more explicit by presenting the equivalent covariant diagrams that match to the diagrammatic
supertraces.

We begin by creating field multiplets, where we denote the five (heavy) leptoquark fields,
listed in Table 2.1, as {Si} =

�

S1, S̃1, S2, S̃2, S3

	

. Additionally, to treat chiral fermions we in-
troduce fictitious fields promoting Weyl fermions into Dirac and properly inserting projections
operators to single-out the correct chirality of the fields in the end. For simplicity these pro-
jection operators are left implicit throughout the text. The field multiplets then read,

ϕS =
�

ϕSi

	

=

��

Si

S∗i

��

, (2.15)

ϕH =

��

H
H∗

��

, (2.16)

ϕ f =
�

ϕℓ, ϕq, ϕu,ϕe, ϕd

	

=

��

ℓ

ℓc

�

,

�

q
qc

�

,

�

u
uc

�

,

�

e
ec

�

,

�

d
d c

��

, (2.17)

ϕV = {B, W, G} . (2.18)

We also introduce the conjugate field multiplets,

ϕ̄S =
�

ϕ̄Si

	

=
��

S†
i ST

i

�	

, (2.19)

ϕ̄H =
��

H† HT
�	

, (2.20)

ϕ̄ f =
�

ϕ̄ℓ, ϕ̄q, ϕ̄u, ϕ̄e, ϕ̄d

	

=
��

ℓ̄ ℓ̄c
�

,
�

q̄ q̄c
�

,
�

ū ūc
�

,
�

ē ēc
�

,
�

d̄ d̄ c
�	

, (2.21)

ϕ̄V = {B, W, G} . (2.22)

These field multiplets are connected to the inverse propagator matrix-K and to interaction
matrix-X, both needed for master formula (2.5), via the second variation of the action as

+
1
2
δϕ̄Kδϕ −

1
2

�

δϕ̄S δϕ̄L

�

�

XSS XSL

X LS X LL

��

δϕS

δϕL

�

. (2.23)

We have gathered all light multiplets in ϕL and we denote the whole field multiplet with ϕ for
brevity, while with δϕ we denote the variation of each respective multiplet. Matrix-K is block-
diagonal with (P2 −m2) for spin-0 fields, (/P −m) for spin-1/2 and −ηµν(P2 −m2) for spin-1
fields in Feynman gauge. Here Pµ ≡ iDµ is basically the (Hermitian) covariant derivative. The
X-matrix may contain potential-only interactions and/or terms with open covariant derivatives
as well. It is evaluated with Si = Si,c[φ]. Moreover, in the most general case,

X = U + PκZκ + Z̄κPκ + . . . (2.24)

where the dots contain terms with two or more open covariant derivatives, however these
higher derivative terms do not appear in any renormalizable UV-model, such as the LQ-models
under consideration and can be ignored.
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2.2. UOLFM of Scalar Leptoquarks

The X-interaction matrix structure in (2.23) is split into heavy-heavy, XSS , light-light, XLL

and heavy-light (light-heavy), XSL (XLS) sub-blocks. In terms of the expansion matrices of
(2.24) these sub-blocks are organized in the following way,

(XSS)10×10 =
��

USiS j

�

10×10

�

, (2.25)

(XSL)10×15 =
��

USi f

�

10×10

�

USi H

�

10×2

�

XSi V

�

10×3

�

, (2.26)

(XLS)15×10 =





�

U f Si

�

10×10
�

UHSi

�

2×10
�

XVSi

�

3×10



 , (2.27)

(XLL)15×15 =





�

U f f

�

10×10

�

U f H

�

10×2

�

U f V

�

10×3
�

UH f

�

2×10 (UHH)2×2 (UHV )2×3
�

UV f

�

3×10 (UV H)3×2 (UV V )3×3



 , (2.28)

where with subscript we denote the respective matrix dimensionality for each generation of
light fermions.

From the general interactions, eqs. (2.6),(2.7) and (2.8), of the scalar leptoquarks out-
lined in the previous subsection, we can now read the mass dimensions of the correspond-
ing elements of U-matrices. By schematically performing a second variation, for example on
S( f̄ f )-terms,

δ2
�

S f̄ f
�

∝ (δS)(δ f̄ ) f + (δS) f̄ (δ f ) + S(δ f̄ )(δ f )

= (δ f̄ )U f̄ S(δS) + (δST )UST f (δ f ) + (δ f̄ )U f̄ f (δ f ) , (2.29)

we can obtain the mass dimensions of the X-matrices. Adding the h.c. of this interaction
and doing again the exact calculation for the conjugate fermion fields, namely S f̄ c f c + h.c.,
we can get the mass dimension of the matrices [U f f ] = 3, [USi f ] = 3/2 and [U f Si

] = 3/2.
Consequently, we arrive at the following mass dimensions for all involved matrices in notation
of eqs. (2.25)-(2.28),

[XSS] =
�

(1,2, 3,4, 6)
�

, (2.30)

[XSL] = [XLS] =
�

3/2 (3, 4,6) (3,4)
�

, (2.31)

[XLL] = [XLL]SM + [XLL]BSM =





1 3/2 3/2
3/2 2 2
3/2 2 2



+





3 0 0
0 6 0
0 0 6



 , (2.32)

where in parenthesis we denote all possible mass dimensions with d ≤ 6 (starting from the
lowest) of the X-matrices.

For all scalar leptoquark interactions we need to calculate the explicit form of the X-
matrices in eqs. (2.25)-(2.28). This is done in Appendix A. As an application, we shall de-
ploy those matrices in section 2.3, for a detailed functional matching procedure in a particular
model for decoupling together two heavy LQ fields, the S1 and the S̃2.

2.2.3 Enumerating: UOLEA and supertraces

There are two contributions in the rhs of one-loop effective action [eq. (2.5)]: the log-type
term, STr logK, and the power-type, STr

�

(K−1X)n
�

. However, a great deal of contributions

27



2. FUNCTIONAL MATCHING OF SCALAR LEPTOQUARKS

in eq. (2.5) are encoded in 19-UOLEA-terms [c.f. eq. (2.49)] for only-heavy scalars. These
UOLEA terms include the full expressions of log-type terms and all power-type diagrams with
only heavy scalars in the loop.

What remains to be added is all heavy-light diagrams. For those we use the technique
of functional supertraces of ref. [35] and, as a cross check, the technique of covariant dia-
grams of ref. [26]. In fact, a detailed diagrammatic comparison of both techniques is given in
Appendix B.

The X-matrices are the building blocks for the functional supertraces. In most of the cases
only the U-matrices appear in the expansion (2.24). Different combinations of these matrices
are inserted into diagrams and make up operators of up-to mass dimension-6. In what follows
we list all diagrammatic supertraces along with the equivalent expressions that arise through
this process (see [35] for details). Our notation in functional diagrams below is the following:
heavy leptoquark fields Si with masses Mi (double-dashed lines), f , f ′, f

′′
, f
′′′
= q, u, d,ℓ, e

are the SM fermion fields (solid lines), H is the SM Higgs-doublet (single dashed-lines), and
V = G, W, B are the SM gauge fields (wavy lines). Every circle indicates an insertion from
U(or in general X )-matrices and Pµ is the covariant derivative. Furthermore, all SM fields are
taken to be massless and ηµν = (1,−1,−1,−1) is the metric tensor. With these definitions we
obtain:

H

Si

= −
i
2

STr

�

1

P2 −M2
i

USi H
1
P2

UHSi

�

�

�

�

�

�

hard

, (2.33)

Si

f

= −
i
2

STr

�

1

P2 −M2
i

USi f
1
/P

U f Si

�

�

�

�

�

�

hard

, (2.34)

S jSi

f

= −
i
2

STr

�

1

P2 −M2
i

USiS j

1

P2 −M2
j

US j f
1
/P

U f Si

�

�

�

�

�

�

hard

, (2.35)

f

Si f ′

= −
i
2

STr

�

1

P2 −M2
i

USi f
1
/P

U f f ′
1
/P

U f ′Si

�

�

�

�

�

�

hard

, (2.36)

Hf

Si f ′

= −
i
2

STr

�

1

P2 −M2
i

USi f
1
/P

U f H
1
P2

UH f ′
1
/P

U f ′Si

�

�

�

�

�

�

hard

, (2.37)
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S jf

Si f ′

= −
i
4

STr

�

1

P2 −M2
i

USi f
1
/P

U f S j

1

P2 −M2
j

US j f ′
1
/P

U f ′Si

�

�

�

�

�

�

hard

, (2.38)

fS j

Si f ′

= −
i
2

STr

�

1

P2 −M2
i

USiS j

1

P2 −M2
j

US j f
1
/P

U f f ′
1
/P

U f ′Si

�

�

�

�

�

�

hard

, (2.39)

Vf

Si f ′

= −
i
2

STr

�

1

P2 −M2
i

USi f
1
/P

Uµf V

−ηµν
P2

UνV f ′
1
/P

U f ′Si

�

�

�

�

�

�

hard

, (2.40)

f ′f

Si f ′′

= −
i
2

STr

�

1

P2 −M2
i

USi f
1
/P

U f f ′
1
/P

U f ′ f ′′
1
/P

U f ′′Si

�

�

�

�

�

�

hard

, (2.41)

fSk

S j Si

= −
i
2

STr

�

1

P2 −M2
i

USiS j

1

P2 −M2
j

US jSk

1

P2 −M2
k

USk f
1
/P

U f Si

�

�

�

�

�

�

hard

, (2.42)

f ′′
f ′

f

Si
f ′′′
= −

i
2

STr

�

1

P2 −M2
i

USi f
1
/P

U f f ′
1
/P

U f ′ f ′′
1
/P

U f ′′ f ′′′
1
/P

U f ′′′Si

�

�

�

�

�

�

hard

, (2.43)

Si
f ′

f

Sk

S j

= −
i
2

STr

�

1

P2 −M2
i

USiS j

1

P2 −M2
j

US jSk

1

P2 −M2
k

USk f
1
/P

U f f ′
1
/P

U f ′Si

�

�

�

�

�

�

hard

,

(2.44)

fV

Si

= −
i
2

STr

�

1

P2 −M2
i

XµSi V

−ηµν
P2

X νV f
1
/P

U f Si

�

�

�

�

�

�

hard

, (2.45)

Vf

Si

= −
i
2

STr

�

1

P2 −M2
i

USi f
1
/P

Xµf V

−ηµν
P2

X νVSi

�

�

�

�

�

�

hard

, (2.46)
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Si

V

= −
i
2

STr

�

1

P2 −M2
i

XµSi V

−ηµν
P2

X νVSi

�

�

�

�

�

�

hard

. (2.47)

The total amount of heavy-light supertrace diagrams adds up to number 15.

In Appendix B one can find the explicit comparison between the number of covariant
diagrams that match to a single Supertrace diagram. There the advantage of Supertraces is
more evident.

2.2.4 Evaluating L(1−loop)
EFT

The full 1-loop effective action is the sum of UOLEA for heavy-heavy loops and functional
supertrace diagrams for heavy-light loops

L(1−loop)
EFT = LUOLEA + LSTr , (2.48)

respectively. The UOLEA for only-heavy particles circulating in the loop, derived in Ref. [24]
and then re-derived in Ref. [26], reads:

LUOLEA = −ics tr
¦

f Si
2 USiSi

+ f Si
3 G′µνSi

G′µν,Si
+ f

SiS j

4 USiS j
US jSi

+ f Si
5

�

PµG′µν,Si

��

PρG′ρνSi

�

+ f Si
6 G′µν,Si

G′νρ,Si
G′ρµ,Si

+ f
SiS j

7 (PµUSiS j
)(PµUS jSi

)

+ f
SiS jSk

8 USiS j
US jSk

USkSi
+ f Si

9 USiSi
G′µνSi

G′µν,Si

+ f
SiS jSkSl

10 USiS j
US jSk

USkSl
SSlSi

+ f
SiS jSk

11 USiS j
(PµUS jSk

)(PµUSkSi
)

+ f
SiS j

12 (P2USiS j
)(P2US jSi

) + f
SiS j

13 USiS j
US jSi

G′µνSi
G′µν,Si

+ f
SiS j

14 (PµUSiS j
)(PνUS jSi

)G′νµSi

+ f
SiS j

15

�

USiS j
(PµUS jSi

)− (PµUSiS j
)US jSi

�

(PνG′νµ,Si
)

+ f
SiS jSkSlSm

16 USiS j
US jSk

USkSl
USlSm

USmSi

+ f
SiS jSkSl

17 USiS j
US jSk

(PµUSkSl
)(PµUSlSi

)

+ f
SiS jSkSl

18 USiS j
(PµUS jSk

)USkSl
(PµUSlSi

)

+ f
SiS jSkSlSmSn

19 USiS j
US jSk

USkSl
USlSm

USmSn
USnSi

©

, (2.49)

where G′ = −[Pµ, Pν] = −i gGµν and g is the coupling of the corresponding field strength
tensor Gµν. Pµ is the covariant derivative that act to the right in every parenthesis. To get
the correct contribution for Wilson coefficients we multiply these terms with (−ics). Since we
separate each complex scalar into a two component field multiplet, each component counts
as a real degree of freedom, thus the correct value is, cs = 1/2. We should note that after the
term f9 only the non-diagonal terms in USS contribute and exclusively the mass dimension-1
terms of the Lagrangian. In this formula a summation over leptoquark fields Si from Table 2.1 is
implied. The expressions for the coefficients, f1, . . . , f19, can be found in ref. [26]. Appropriate
limits of these expressions must be taken in case of degeneracies (i.e. more than one single
S-field in the loop). Note that only U-matrices, calculated with Si = Si,c[φ], appear in (2.49).
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2.2. UOLFM of Scalar Leptoquarks

We now need to calculate LSTr in (2.48). For this purpose we use the package STrEAM
[38] in order to calculate the relevant supertraces in (2.33)-(2.47). The main function of
this package is the automation of the CDE application. As a result it computes local traces for
further calculation inserting the explicit expressions of the X-matrices. We note that the option
NoγinU removes all spinor indices from all matrices. However, in some instances the outer
matrices contain spinor indices while the internal ones do not, or if they do, these matrices
(anti)commute with γ-matrices. Therefore some manual intervention is necessary to obtain
the final result.

The result of this procedure is given below. The traces are categorized depending on the
number of U ’s and Z ’s involved in the respective diagram. The single term from the heavy-light
UOLEA [(2.33)], derived in Refs. [27, 28], is also included here. The prefactor −ics is omitted,
cs = 1/2 for complex scalars, and note that the matrix U f f contains only chirality projection
operators P(L,R), which have been taken into account while anti-commuting γ-matrices. At the
end, LSTr in (2.48) is obtained from the equation,

LSTr = (−ics)× (sum of all contributions below[c.f. (2.51)− (2.77)]) . (2.50)
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. (2.77)

In eqs. (2.51)-(2.77) above, the trace (tr) stands for a normal trace over the product of matrices-
(U , Z) that are direct products of spinor, gauge or flavour matrices. Also, with eG we denote the
usual dual tensor eG′µν =

1
2ε
µνρσG′ρσ. The µ-parameter denotes the renormalization scale and

the MS-renormalization scheme with dimensional regularization is used throughout. Finally,
the expressions for few integrals appearing before traces are (∆2

i j ≡ M2
i −M2

j ),
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Following this general procedure, the operators extracted from L(1−loop)
EFT in (2.48) are

given in a general operator basis, usually referred to as Green basis, which does not involve
field EOMs in reducing the number operators, but only integration-by-parts. There is however,
one more complication in writing down the Wilson coefficients even in Green basis. This is the
appearance of the so-called evanescent operators [75, 76] that vanish in d = 4 but do not vanish
in general for d ̸= 4 in certain four-fermion interactions. The effect of evanescent operators
in SM EFT [64, 77, 78] is taken into account in the application we present in the next section.

It is easy to make the connection between eqs. (2.51)-(2.77) and the functional supertrace
diagrams in eqs. (2.33)-(2.47). For example, say we want to find a diagram candidate for
neutrino-mass generation operator ℓℓHH. We need four interaction vertices, i.e. four U-
matrices but no derivative (P) operators or γ-matrices. Looking at O(U4) terms we see that
only (2.68) satisfies this condition. Following the subscripts of U-matrices, in this case Si −
S j − f − f ′ − Si , we trivially see the corresponding diagram is that of (2.39). What is very
nice in this approach is the fact that strict correlations between observables are now obvious,
i.e., the operator resulting from (2.68) may be correlated with those containing the insertions
USiS j

, USi f and U f f ′ .

2.2.5 Summary

Our main formulae for the full 1-loop matching up-to dimension-6 order in EFT expansion for
all scalar leptoquarks are:

1. Tree level matching: eq. (2.14),

2. One loop matching: eq. (2.48) = eq. (2.49) + eq. (2.50).
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From now on we have to choose a specific model with heavy particles taken from Table 2.1,
plug in the explicit X(U , Z)-matrices and operators will pop-out of the traces. The general
form of interaction X(U , Z)-matrices is presented in Appendix A.

2.3 Application: The leptoquark model S1 + S̃2

In this section, we apply the machinery of functional matching onto a particular scalar lep-
toquark model. Consequently, we consider an extension of the SM consisting of two scalar
colored leptoquarks, an isospin singlet and a doublet, S1 and S̃2, with masses M1 and M̃2,
respectively. Their charges under the SM gauge group are shown in Table 2.2.

Field/Group SU(3) SU(2) U(1)

S1 3̄ 1 1
3

S̃2 3 2 1
6

Table 2.2: Leptoquark charges under the SM gauge group for the S1 + S̃2 model.

Interestingly, S1 and S̃2 belong to irreducible representations of an SU(5) [or SO(10)]
Grand Unified Theory (GUT). For example, S1 may belong to 5̄,45,50 and S̃2 to 10,15 irreps
of minimal SU(5), respectively. From the SM EFT operator content we derive below, we see
that this model predicts fast proton decay and neutrino masses (and related B- and L-violating
phenomena). Then it is natural for the two fields to have heavy masses Mi ≈ 1012 GeV which
at the same time control the proton decay rate and generate neutrino masses consistent with
experimental constraints [79–82].

On the other hand, one may apply a baryon parity where lepton, quark and therefore
leptoquark fields, transform differently under a symmetry in order to protect the model from
proton decay (although such a symmetry is not in general natural in GUTs as we argue below).
In this case, M1 and M̃2 may be within the few-TeV range. Again, one may be able to account for
radiative neutrino masses [83, 84], or current anomalous events such as the muon anomalous
magentic moment [69, 84–86] and certain B-meson decays [69, 70].

In either cases, this S1 + S̃2-model seems to attract a certain phenomenological interest
which motivates us for studying its effective operators and their matching onto the SM EFT
Lagrangian. However, further than a functional matching demonstration, such as a detailed
phenomenological consideration, are beyond the scope of this chapter.

2.3.1 Lagrangian and symmetries

We split the leptoquark Lagrangian into three parts,

LBSM = LS-f + LS-H + LS . (2.80)

The first part refers to leptoquark-fermion interactions, the second one to leptoquark-Higgs
interactions, while the last part contains self and mixed terms between the two leptoquarks.
Explicitly the first part reads [64, 67],

LS-f =
��

λ1L
pr

�

q̄c
pi · ε · ℓr +

�

λ1R
pr

�

ūc
i er

�

S1i + h.c.
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2.3. The leptoquark model S1 + S̃2

+ (λ/BL
pr )S1i ε

i jk q̄p j · ε · qc
rk + (λ

/BR
pr )S1i ε

i jk d̄p j uc
rk + h.c.

+ (λ̃pr) d̄pi S̃
T
2i · ε · ℓr + h.c. , (2.81)

where ℓ and q are the lepton and quark field SU(2)L-doublets while the singlets are denoted by
u, d, e in gauge basis5 and ε is the antisymmetric tensor with SU(2)L indices. The matrix λ/BL

pr
is complex symmetric in flavor space while all other matrices in (2.81) are in general complex
ones. From now on, we use the indices p, r, s, t to denote flavor without making any distinction
between quark and lepton flavors. We also use i, j, k, l to label SU(3) fundamental indices,
while the dot-product denotes SU(2) contractions in the fundamental representation. Later
we will also use the letters α,β ,γ,δ for SU(2) fundamental and I , J , K , L for SU(2) adjoint
representation. Lastly, we use A, B, C , D for the SU(3) adjoint representation and suppress
spinor-indices throughout.

The next part of the Lagrangian, namely leptoquark-Higgs interactions, reads [71],

LS-H =−
�

M2
1 +λH1|H|2

�

|S1|2 −
�

M̃2
2 + λ̃H2|H|2

�

|S̃2|2 +λ2̃2̃ (S̃
†
2i ·H) (H

† · S̃2i)

− A2̃1

�

S̃†
2i ·H

�

S†
1i +

1
3
λ3ε

i jk
�

S̃T
2i · ε · S̃2 j

� �

H† · S̃2k

�

+ h.c. (2.82)

The last part containing leptoquark self-interactions is,

−LS =
c1

2
(S†

1S1)
2 +

c̃2

2
(S̃†

2 · S̃2)
2 + c(1)

12̃
(S†

1S1)(S̃
†
2 · S̃2) + c(2)

12̃
(S̃†

2αS1)(S
†
1S̃2α)

+ c(8)
2̃
(S̃†

2i · S̃2 j) (S̃
†
2 j · S̃2i) +

�

A′S†
1i ε

i jk
�

S̃T
2 j · ε · S̃2k

�

+ h.c.
�

. (2.83)

Our convention for the covariant derivative is,

Dµ = ∂µ − i g ′Y Bµ − i gT IW I
µ − i gsT

AGA
µ , (2.84)

where each T represents the gauge-group generators of the corresponding representation of
a generic field and Y is its hypercharge. The field strength tensors for U(1)Y , SU(2)L and
SU(3)c gauge-fields are respectively,

Bµν = ∂µBν − ∂νBµ , (2.85)

W I
µν = ∂µWν − ∂νWµ + gεI JKW J

µW K
ν , (2.86)

GA
µν = ∂µGν − ∂νGµ + gs f ABC GB

µGC
ν . (2.87)

Finally, the SM Yukawa couplings are defined as,

−LY = (yE)pr ℓ̄p ·H er + (yU)pr q̄pi · ε ·H∗ uri + (yD)pr q̄pi ·H dri + h.c. , (2.88)

while the Higgs potential is,

VH = −m2(H† ·H) +
λ

2
(H†H)2 . (2.89)

It is always instructive in a given Lagrangian to check upon global symmetries such as
Baryon (B) and Lepton (L) number, which may be broken by certain interaction parameters.
For the S1 + S̃2 model these are given in Table 2.3.

5Field redefinitions and flavour rotations to mass-basis are performed following ref. [17] after running the SM
EFT parameters down to the EW scale.
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LQ-fields B L B − L

S1 -1/3 -1 2/3

S̃2 +1/3 -1 4/3

Parameters

λ/BL +1 +1 0

λ/BR +1 +1 0

A2̃1 0 -2 2

A′ -1 1 -2

λ3 -1 3 -4

Table 2.3: B, L and B − L quantum numbers for the fields S1 and S̃2 and parameters (pro-
moted to fields). For normalization we take B(q) = 1/3 and L(ℓ) = 1. All other parameters in
eqs. (2.81),(2.82) and (2.83) which are not quoted here, have zero B and L quantum numbers.

Obviously, by assuming baryon and/or lepton number conservation we can eliminate all
terms proportional to couplings (λ/BL ,λ/BR, A′,λ3) and/or A2̃1, respectively. However, baryon
and lepton symmetries cannot be well-defined gauge symmetries of a GUT model since they
lead to chiral anomalies. On the other hand however, in SO(10)-GUTs for example (and also
in the SM), B− L is an anomaly free gauge symmetry and therefore we search for linear combi-
nations of B− L-quantum numbers [87]. In this case, a Z2-symmetry exp(2πi(B− L)/2), does
not exclude any of couplings above, a Z3-symmetry exp(2πi(B− L)/3), excludes A2̃1, A′,λ3, a
Z4-symmetry exp(2πi(B− L)/4), excludes A2̃1, A′, which is not desirable if we want to gener-
ate neutrino masses by loop-corrections. Therefore, there is no B − L discrete symmetry that
rejects terms proportional to λ/BL (and λ/BR) which lead to proton decay. We conclude that in
general, an extra (and possibly ad-hoc) symmetry should be in order if we are about to pick
a combination of leptoquark fields with masses nearby the TeV scale. For a recent discussion
the reader is referred to ref. [88].

2.3.2 Tree Level Matching

As is the case in EFTs, we assume that both leptoquarks masses, Mi = {M1, M̃2}, are heavier
than any other scale in the theory. Moreover, the parameters A2̃1, and A′ should lay in region
(2.9). To match at tree level we need the equations of motion (2.4), in order to derive the
classical fields,

S1i,c =
1

M2
1

�

−(λ1L
pr)

†ℓ̄p · ε · qc
ri + (λ

1R
pr )

† ēpuc
ri + (λ
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pr )

†εi jkq̄c
p j · ε · qri − (λ
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pr )

†εi jkūc
p jdrk

�

,

(2.90)

S̃2iα,c =
1

M̃2
2

�

−(λ̃pr)
†
�

ℓ̄p · ε
�

α
dri

�

. (2.91)

Substituting back into the Lagrangian [see (2.14)] we obtain the following Wilson coefficients
that accompany d = 6-operators. In what follows, we split the Wilson coefficients to tree and
loop contributions as G = G(0)+ 1

(4π)2 G(1). The symbol G denotes Wilson coefficients in Green
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2.3. The leptoquark model S1 + S̃2

basis, and we use exactly the same naming for operators as in ref. [64] that we append in
Appendix C for complementarity purposes.

In summary, we find the following twelve B-number conserving tree-level coefficients

�

G(1)
ℓq

�(0)

prst
=
(λ1L

sp )
∗(λ1L

t r )
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and four B-number violating ones
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As we see all tree-level dimension-six operators are four-fermion operators in the effective La-
grangian. Besides Mi , their strength is governed by products of leptoquark Yukawa couplings.

Finally for completeness, we present the five tree-level d = 7 Wilson coefficients in the
basis of ref. [14]. They are,
h
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st )
∗(λ̃pr)
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As noted in the paragraph below eq. (2.14), coefficients associated with d = 7 operators in
eqs. (2.100)-(2.102) can be competitive to d = 6 ones in (2.98)-(2.99) if there is a certain
hierarchy between the two scales involved, e.g., M1≫ M̃2 and A2̃1v/M̃2

2 ≃ 1.

The appearance of products only λ·λ′ with |∆(B−L)|= 0 and A2̃1λ·λ
′ with |∆(B−L)|= 2

in coefficients for d = 6 and d = 7 tree-level EFT operators respectively, is not accidental. It
follows from the B, L-numbers for the parameters quoted in Table 2.3, and an interesting
connection [89, 90] between ∆B and ∆L with the minimum and possible dimensionality of
operators

dmin ≥
9
2
|∆B|+

3
2
|∆L| , (2.103)
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|∆(B − L)| = 0,4, 8,12, 16, . . . (d − even) , (2.104)

|∆(B − L)| = 2,6, 10,14, 18, . . . (d − odd) . (2.105)

For example, a coefficient proportional to A2̃1×(|∆(B− L)|= 0 couplings)must necessarily be
associated to odd-dimensional d = 3,5, 7, . . . case which is confirmed here at tree and below
at one-loop level. Similarly, the dimension-full parameter A′ × (|∆(B− L)|= 0 couplings) will
be associated for the first time with d = 7-operators in EFT at 1-loop and at d = 9 at tree level;
the dimensionless parameter λ3 × (|∆(B − L)| = 0 couplings) will appear first at d = 10 and
so on.

2.3.3 One Loop Matching in the Green basis

As we explained in section 2.2.3, one loop matching is carried out in two steps. First, the
original heavy-only UOLEA in eq. (2.49) is used to derive operators with heavy leptoquark
fields (for this model S1 and S̃2) circulating in the loop. Second, we use the general results
from evaluating functional Supertraces in (2.50) to calculate Wilson coefficients involving both
heavy and light fields in the loop.

We list all one-loop Wilson coefficients produced both from the UOLEA and the Super-
traces. As before, we split them in tree and loop level coefficients as Gi = G(0)i + 1

(4π)2 G(1)i .

Furthermore, for the quantities that renormalize d = 4 operators we write, λ′ = λ+ 1
(4π)2δλ,

m′2 = m2 + 1
(4π)2δm2, y ′n = yn +

1
(4π)2δ yn, where n = E, U , D and the wave function renor-

malization is Zk = 1+ 1
(4π)2δZk with k = q, u, d,ℓ, e. For gauge bosons, we factor out of the

resulting trace calculation the whole canonical kinetic term −1/4FµνFµν, with Fµν being a
generic field strength tensor. Following an analogous naming scheme as in ref. [64] we define,

Li = log
µ2

M2
i

, with i = 1, 2 , (2.106)

and the general 3× 3 matrices,

Λℓ = (λ
1L)†λ1L , Λq = (λ

1L)∗(λ1L)T , Λu = (λ
1R)∗(λ1R)T , (2.107)

Λe = (λ
1R)†λ1R , Λ̃ℓ = λ̃

†λ̃ , Λ̃d = λ̃λ̃
† , (2.108)

Λ/Bq = λ
/BL(λ/BL)† , Λ/Bu = (λ

/BR)T (λ/BR)∗ , Λ
/B
d = λ

/BR(λ/BR)† , (2.109)

Y 1L
1U = (λ

1L)† y∗Uλ
1R , Y 1L

1E =
�

λ1R y†
E(λ

1L)†
�T

, (2.110)

Y 1L
2U = (λ

1L)† y∗U y T
Uλ

1L , Y 1L
2D = (λ

1L)† y∗D y T
Dλ

1L , (2.111)

Y 1R
2U = (λ

1R)† y T
U y∗Uλ

1R , Y 1R
2E = (λ

1R)∗ y T
E y∗E(λ

1R)T , (2.112)

Y 1L
3E =

�

λ1R y†
E yE y†

E(λ
1L)†

�T
Y 1L

3U = (λ
1L)† y∗U y T

U y∗Uλ
1R , (2.113)

Ỹ2E = λ̃yE y†
Eλ̃

† , Ỹ2D = λ̃
† y†

D yDλ̃ , (2.114)

Y /BL
1D = λ

/BL y∗D(λ
/BR)∗ , Y /BL

1U = λ
/BL y∗U(λ

/BR)† , (2.115)

Y /BR
2U =

�

(λ/BR)† y†
U yUλ

/BR
�T

, Y /BR
2D =

�

(λ/BR)† y†
D yDλ

/BR
�T

, (2.116)

Y /BL
2U =

�

(λ/BL)† yU y†
Uλ

/BL
�T

, Y /BL
2D =

�

(λ/BL)† yD y†
Dλ

/BL
�T

, (2.117)

Y /BL
3D =

�

(λ/BR)† y†
D yD y†

Dλ
/BL
�T

, Y /BL
3U = (λ

/BR)∗ y†
U yU y†

Uλ
/BL . (2.118)

38



2.3. The leptoquark model S1 + S̃2

Armed with those definitions we can now write the, lengthy but complete, one-loop Wilson
coefficients associated to d = 4 (renormalizable operators) all the way up-to d = 6 opera-
tors in Green basis. All d = 5 and 6 operators and the categories they belong to are given in
Appendix C. The hypercharges of S1 and S̃2 leptoquark fields are denoted as YS1

and YS̃2
re-

spectively, and can be read from Table 2.1. Nc is the number of colours and CG
F is the quadratic

Casimir of fundamental representation of group G. Finally, we define the squared mass differ-
ence quantity ∆2

12 ≡ M2
1 − M̃2

2 .

Renormalizable Operators

(δZB) =
Nc

3
g ′2
�

Y 2
S1

L1 + 2Y 2
S̃2

L2

�

, (2.119)

(δZW ) =
Nc

6
g2 L2 , (2.120)

(δZG) =
Nc

6
g2

s [L1 + 2L2] , (2.121)

(δZℓ)pr =
Nc

2

��

1
2
+ L1

�

(Λℓ)pr +
�

1
2
+ L2

�

(Λ̃ℓ)pr

�

, (2.122)

(δZe)pr =
Nc

2

�

1
2
+ L1

�

(Λe)pr , (2.123)

�

δZq

�

pr =
1
2

�

1
2
+ L1

�

(Λq − 8Λ/Bq )pr , (2.124)

(δZu)pr =
1
2

�

1
2
+ L1

�

(Λu + 2Λ/Bu )pr , (2.125)

(δZd)pr =
�

1
2
+ L2

�

(Λ̃d)pr +
�

1
2
+ L1

�

(Λ/Bd )pr , (2.126)

(δZH) = Nc

�

�A2̃1

�

�

2
�

M2
1 + M̃2

2

2(∆2
12)2

+
M2

1 M̃2
2 log M2

1/M̃2
2

(∆2
12)3

�

, (2.127)

(δ yE)pr = −Nc(1+ L1) (Y
1L

1U )pr , (2.128)

(δ yU)pr = −Nc(1+ L1) (Y
1L

1E )pr − 4(Y /BL
1D )pr(1+ L1) , (2.129)

(δ yD)pr = −4(Y /BL
1U )pr(1+ L1) , (2.130)

(δλ) = Nc

�

λ2
H1 L1 +

�

λ̃2
H2 + (λ̃H2 −λ2̃2̃)

2
�

L2 − |A2̃1|
2λH1

∆2
12 + M̃2

2 log M̃2
2/M2

1

(∆2
12)2

+|A2̃1|
2(λ̃H2 −λ2̃2̃)

∆2
12 +M2

1 log M̃2
2/M2

1

(∆2
12)2

−
1
2
|A2̃1|

4 2∆2
12 + (M

2
1 + M̃2

2 ) log M̃2
2/M2

1

(∆2
12)3

�

,

(2.131)
�

δm2
�

= Nc

�

λH1M2
1 (1+ L1) + (2λ̃H2 −λ2̃2̃)M̃

2
2 (1+ L2)

+|A2̃1|
2

�

1+
M2

1 logµ2/M2
1 − M̃2

2 logµ2/M̃2
2

∆2
12

��

. (2.132)

Dimension-5 Operator

[Gνν]
(1)
pr = Nc A2̃1

�

(λ1L)T yDλ̃
�

pr

log M2
1/M̃2

2

M2
1 − M̃2

2

. (2.133)
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Vector Bosons-Scalar Operators

X 3

G(1)3G =
g3

s

360

�

1

M2
1

+
2

M̃2
2

�

, (2.134)

G(1)3W =
g3Nc

360
1

M̃2
2

. (2.135)

X 2D2

G(1)2B =
Nc

30
g ′2
 

Y 2
S1

M2
1

+ 2
Y 2

S̃2

M̃2
2

!

, (2.136)

G(1)2W =
Nc

60
g2 1

M̃2
2

, (2.137)

G(1)2G =
1
60

g2
s

�

1

M2
1

+
2

M̃2
2

�

. (2.138)

X 2H2

G(1)HB = Nc g ′2
�

Y 2
S1

�

λH1

12M2
1

− |A2̃1|
2 f̃ S1S̃2

13

�

+ Y 2
S̃2

�

(2λ̃H2 −λ2̃2̃)

12M̃2
2

− |A2̃1|
2 f̃ S̃2S1

13

��

, (2.139)

G(1)HW = Nc
g2

4

�

(λ̃H2 −λ2̃2̃)

6M̃2
2

− |A2̃1|
2 f̃ S̃2S1

13

�

, (2.140)

G(1)HG =
g2

s

2

�

λH1

12M2
1

+
(2λ̃H2 −λ2̃2̃)

12M̃2
2

− |A2̃1|
2
�

f̃ S1S̃2
13 + f̃ S̃2S1

13

�

�

, (2.141)

G(1)HW B = −Nc g g ′
�

|A2̃1|
2 f̃ S̃2S1

13 + YS̃2

λ2̃2̃

12M̃2
2

�

. (2.142)

H2X 2D2

G(1)BDH = Nc|A2̃1|
2 g ′

�

YS1
+ YS̃2

�

f̃ S1S̃2
14 , (2.143)

G(1)W DH = Nc|A2̃1|
2 g

2
f̃ S̃2S1
14 . (2.144)

H2D4

G(1)DH = 2Nc|A2̃1|
2 f̃ S1S̃2

12 . (2.145)

H4D2

G(1)H□ = −
Nc

12

�

λ2
H1

M2
1

+
λ̃2

H2

M̃2
2

�

, (2.146)

G(1)HD = −Nc
λ2̃2̃

6M̃2
2

+ Ncλ2̃2̃|A2̃1|
2 ( f̃ S̃2S̃2S1

11 − 2 f̃ S1S̃2S̃2
11 )− Nc|A2̃1|

4
�

f̃ S̃2S1
17 − 2 f̃ S1S̃2

18

�

, (2.147)

G′(1)HD = −Nc|A2̃1|
2
�

λH1 f̃ S1S1S̃2
11 + λ̃H2 f̃ S̃2S̃2S1

11 − 2λ2̃2̃ f̃ S1S̃2S̃2
11

�

− Nc|A2̃1|
4 f̃ S1S̃2

17 , (2.148)

G′′(1)HD = −iNc|A2̃1|
2
�

λH1 f̃ S1S̃2S1
11 + λ̃H2 f̃ S̃2S1S̃2

11 −λ2̃2̃ f̃ S1S̃2S̃2
11

�

− iNc|A2̃1|
4 f̃ S1S̃2

18

−
iNc

12M̃2
2

�

2λ̃H2λ2̃2̃ −λ
2
2̃2̃

�

. (2.149)
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H6

G(1)H = −
Nc

6

�

λ3
H1

M2
1

+ 2
λ̃3

H2

M̃2
2

�

+ 2Nc|A2̃1|
6 f̃ S1S̃2

19 . (2.150)

Two Fermion Operators

ψ2D3

[GℓD]
(1)
pr = −

Nc

6

�

(Λℓ)pr

M2
1

+
(Λ̃ℓ)pr

M̃2
2

�

, (2.151)

[GeD]
(1)
pr = −

Nc

6

(Λe)pr

M2
1

, (2.152)

�

GqD

�(1)
pr = −

1

6M2
1

�

(Λq)pr − 8(Λ/Bq )pr

�

, (2.153)

[GuD]
(1)
pr = −

1

6M2
1

�

2(Λ/Bu )pr + (Λu)pr

�

, (2.154)

[GdD]
(1)
pr =

(Λ̃d)pr

3M̃2
2

−
(Λ/Bd )pr

3M2
1

. (2.155)

ψ2X D

[GWℓ]
(1)
pr = −

Nc

6
g

�

�

7
12
+ L1

� (Λℓ)pr

M2
1

+
(Λ̃ℓ)pr

6M̃2
2

�

, (2.156)

�

G′
fWℓ

�(1)

pr
=

Nc

4
g
(Λℓ)pr

M2
1

, (2.157)

[GBℓ]
(1)
pr =

Nc

3
g ′
��

7Yq − 2YS1

12
+ Yq L1

�

(Λℓ)pr

M2
1

−
�

7Yd + 2YS̃2

12
+ Yd L2

�

(Λ̃ℓ)pr

M̃2
2

�

, (2.158)

�

G′
eBℓ

�(1)

pr
= −

Nc

2
g ′
�

Yq
(Λℓ)pr

M2
1

− Yd
(Λ̃ℓ)pr

M̃2
2

�

, (2.159)

[GBe]
(1)
pr =

Nc

3
g ′
�

7Yu − 2YS1

12
+ Yu L1

�

(Λe)pr

M2
1

, (2.160)

�

G′
eBe

�(1)

pr
=

Nc

2
g ′ Yu

(Λe)pr

M2
1

, (2.161)

�

GGq

�(1)
pr =

1
18

gs
(Λq)pr

M2
1

−
4
3

gs

(Λ/Bq )pr

M2
1

�

3
4
+ L1

�

, (2.162)

h

G′
eGq

i(1)

pr
= −2 gs

(Λ/Bq )pr

M2
1

, (2.163)

�

GWq

�(1)
pr = −

1
6

g
�

7
12
+ L1

� (Λq)pr + 8(Λ/Bq )pr

M2
1

, (2.164)

h

G′
fWq

i(1)

pr
=

1
4

g
(Λq)pr − 8(Λ/Bq )pr

M2
1

, (2.165)

�

GBq

�(1)
pr =

1
3

g ′





�

7Yℓ − 2YS1

12
+ YℓL1

�

(Λq)pr

M2
1

+

�

7Yq + 2YS1

12
+ Yq L1

� 8(Λ/Bq )pr

M2
1



 , (2.166)
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h

G′
eBq

i(1)

pr
= −

1
2

g ′



Yℓ
(Λℓ)pr

M2
1

+ Yq

8(Λ/Bq )pr

M2
1



 , (2.167)

[GGu]
(1)
pr =

1
18

gs
(Λu)pr

M2
1

−
1
3

gs

�

3
4
+ L1

� (Λ/Bu )pr

M2
1

, (2.168)

�

G′
eGu

�(1)

pr
= −

1
2

gs
(Λ/Bu )pr

M2
1

, (2.169)

[GBu]
(1)
pr =

1
3

g ′
�

�

7Ye − 2YS1

12
+ Ye L1

�

(Λu)pr

M2
1

+

�

7Yd + 2YS1

12
+ Yd L1

�

2(Λ/Bu )pr

M2
1

�

, (2.170)

�

G′
eBu

�(1)

pr
=

1
2

g ′
�

Ye
(Λu)pr

M2
1

+ Yd
2(Λ/Bu )pr

M2
1

�

, (2.171)

[GGd]
(1)
pr =

1
9

gs
(Λ̃d)pr

M̃2
2

−
1
3

gs

�

3
4
+ L1

� (Λ/Bd )pr

M2
1

, (2.172)

�

G′
eGd

�(1)

pr
= −

1
2

gs

(Λ/Bd )pr

M2
1

, (2.173)

[GBd]
(1)
pr = −

2
3

g ′





�

7Yℓ − 2YS1

12
+ YℓL1

�

(Λ̃d)pr

M̃2
2

−
�

7Yu + 2YS1

12
+ Yu L1

�

(Λ/Bd )pr

M2
1



 , (2.174)

�

G′
eBd

�(1)

pr
= g ′



2Yℓ
(Λ̃d)pr

M̃2
2

+ Yu

(Λ/Bd )pr

M2
1



 , (2.175)

�

G′Gq

�(1)

pr
=
�

G′Wq

�(1)

pr
=
�

G′Bq

�(1)

pr
= 0 , (2.176)

�

G′Gu

�(1)
pr =

�

G′Bu

�(1)
pr = 0 , (2.177)

�

G′Gd

�(1)
pr =

�

G′Bd

�(1)
pr = 0 , (2.178)

�

G′Wℓ
�(1)

pr =
�

G′Bℓ
�(1)

pr =
�

G′Be

�(1)
pr = 0 . (2.179)

ψ2HD2

[GeHD1]
(1)
pr =

Nc

2

�

1
2
+ L1

� (Y 1L
1U )pr

M2
1

, (2.180)

[GeHD2]
(1)
pr = +

Nc

2

(Y 1L
1U )pr

M2
1

, (2.181)

[GeHD3]
(1)
pr = −

Nc

2

(Y 1L
1U )pr

M2
1

, (2.182)

�

GeHD4

�(1)
pr = −

Nc

2

(Y 1L
1U )pr

M2
1

, (2.183)

[GuHD1]
(1)
pr =

1
2

�

1
2
+ L1

� (Y 1L
1E )pr − 4(Y /BL

1D )pr

M2
1

, (2.184)
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[GuHD2]
(1)
pr =

(Y 1L
1E )pr − 4(Y /BL

1D )pr

2M2
1

, (2.185)

[GuHD3]
(1)
pr = −

(Y 1L
1E )pr − 4(Y /BL

1D )pr

2M2
1

, (2.186)

�

GuHD4

�(1)
pr = −

(Y 1L
1E )pr − 4(Y /BL

1D )pr

2M2
1

, (2.187)

[GdHD1]
(1)
pr = −

2

M2
1

�

1
2
+ L1

�

(Y /BL
1U )pr , (2.188)

[GdHD2]
(1)
pr = −

2

M2
1

(Y /BL
1U )pr , (2.189)

[GdHD3]
(1)
pr =

2

M2
1

(Y /BL
1U )pr , (2.190)

�

GdHD4

�(1)
pr =

2

M2
1

(Y /BL
1U )pr . (2.191)

ψ2X H

[GeW ]
(1)
pr = −

Nc

8
g
�

1
2
+ L1

� (Y 1L
1U )pr

M2
1

, (2.192)

[GeB]
(1)
pr =

Nc

4
g ′
�

(Yq + Yu)L1 +
1
2

Yq +
3
2

Yu

� (Y 1L
1U )pr

M2
1

, (2.193)

[GuG]
(1)
pr = gs (1+ L1)

(Y /BL
1D )pr

M2
1

, (2.194)

[GuW ]
(1)
pr = −

1
8

g





�

1
2
+ L1

� (Y 1L
1E )pr − 4(Y /BL

1D )pr

M2
1



 , (2.195)

[GuB]
(1)
pr =

1
4

g ′
�

(Yℓ + Ye)L1 +
1
2

Yℓ +
3
2

Ye

� (Y 1L
1E )pr

M2
1

(2.196)

− g ′
�

(Yq + Yd)L1 +
1
2

Yq +
3
2

Yd

� (Y /BL
1D )pr

M2
1

, (2.197)

[GdG]
(1)
pr = +gs (1+ L1)

(Y /BL
1U )pr

M2
1

, (2.198)

[GdW ]
(1)
pr =

1
2

g
�

1
2
+ L1

� (Y /BL
1U )pr

M2
1

(2.199)

[GdB]
(1)
pr = −g ′

�

(Yu + Yq)L1 +
1
2

Yq +
3
2

Yu

� (Y /BL
1U )pr

M2
1

. (2.200)

ψ2DH2

�
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In total, 109 out of 139 operators are generated in the Green basis which translates into 53 out
of 59 operators in the Warsaw basis. The only operators not generated by the S1+ S̃2-model in
the Warsaw basis are the CP violating ones, namely Q3(G̃,W̃ ),H(B̃,W̃ ,G̃),HW̃ B, which are of course
absent in the Green basis as well.

The UOLEA parameters f̃11 − f̃19 appearing in Vector-Bosons-Scalar operators are given
separately in Appendix D. The hypercharges of the SM chiral fermions and the Higgs are,

Yℓ = −
1
2

, Ye = −1 , Yq =
1
6

, Yu =
2
3

, Yd = −
1
3

, and YH =
1
2

, (2.248)

respectively, while YS1
= 1/3 and YS̃2

= 1/6 for leptoquarks.

2.3.4 Theoretical Remarks

Further remarks on our findings for the complete set of d ≤ 6 Wilson coefficients in Green
basis at one-loop are in order.

Evanescent Operators

Evanescent operators appear in 4-point functions involving fermions. Treating the integrals in
d-dimensions while using Fierz identities, that hold only in d = 4 or encountering higher order
of γ-matrices products, give rise to evanescent operators that in general vanish in d = 4. The
scheme we will be using for this type of structures is the introduction of local counterterms
aev , . . . , fev . For details the reader is referred to refs. [75–78, 91].

Although, strictly-speaking, not part of the actual matching calculation, in translating the
raw results of the traces after substituting the U matrices, one needs to choose a definite
scheme to reduce the γ-matrix structure appearing in the subsequent equations and match
it to a certain basis, such as the Green basis. In the model under consideration evanescent
operators make their appearance in the Supertrace of (2.40) where both left and right pro-
jection operators appear in the same trace. We keep a general parameter aev not resorting
to any particular scheme. The usual scheme choice for evanescent operators, however, is
aev = . . . = fev = 1. The relevant Dirac-structures appearing in the model at hand are (in the
NDR scheme d = 4− ε),

PLγµγνPL ⊗ PLγ
µγνPL = 4

�

1−
ε

4

�

PL ⊗ PL − PLσµνPL ⊗ PLσ
µνPL , (2.249)

PLγµγνPL ⊗ PLγ
νγµPL = 4

�

1−
ε

4

�

PL ⊗ PL + PLσµνPL ⊗ PLσ
µνPL , (2.250)

PLγ
µγνPL ⊗ PRγ

µγνPR = 4
�

1+ aev
ε

2

�

PL ⊗ PR + E(2)LR , (2.251)

PLγ
µγνPL ⊗ PRγ

νγµPR = 4
h

1−
ε

2
(1+ aev)

i

PL ⊗ PR + E(2)LR . (2.252)

Plugging in a specific value for the coefficient aev , in our case, defines the evanescent operators
E(2)LR .

RGE checks

As a further cross check of our results for Wilson coefficients we have calculated the Renor-
malization Group Equations (RGEs) for a certain set. For purely one-loop generated operators
one has to just take the derivative with respect to the renormalization scale µ and extract the
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relevant β-function. For instance explicitly taking the derivative with respect to µ on [CeW ]pr

we find,

d[CeW ]pr

d lnµ
= −Nc

g
4

(Y 1L
1U )pr

M2
1

. (2.253)

Comparing with the β-functions from [18–20, 92],

[βeW ]pr = 6 g (yU)
∗
st

�

C (3)
ℓequ

�

prst
, (2.254)

after plugging in the value of the relevant Wc [eq. (2.93)], we get,

[βeW ]pr = −
3g
4

(Y 1L
1U )pr

M2
1

, (2.255)

which is in complete agreement, for Nc = 3, with the direct application of the derivative. The
same procedure has been followed for every other purely one-loop generated Wcs and we have
found no discrepancies in the comparison.

For operators generated at tree-level as well the picture is a bit different because at tree-
level the coupling of the respective Wcs must be considered as running parameters due to shifts
of the corresponding fields. However these exact shifts will cancel with the RG running due
to wavefunction renormalization. For example, to bring back the lepton and quark doublet
kinetic term we must make the following shift,

ℓp −→ ℓp −
1
2
(δZℓ)pp1

ℓp1
, (2.256)

qp −→ qp −
1
2
(δZq)pp1

qp1
, (2.257)

where δZ(ℓ,q) correspond to eqs. (2.122) and (2.124), respectively. We have also suppressed
all other indices apart from generation indices. In turn this produces a shift in the coupling
λ1L

pr . To absorb this shift we redefine the coupling as,

(λ1L
pr)

eff. = λ1L
pr −

1
2
λ1L

pw (δZℓ)wr −
1
2
λ1L

wr (δZq)wp . (2.258)

Taking the derivative w.r.t µ-parameter we find the β-function for the effective running cou-
pling,

[βλ1L]pr =
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�
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pr
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1
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The same of course can be done for the complex conjugate coupling,

[β(λ1L)†]pr = [βλ1L]†pr . (2.260)

These two will contribute, for instance, in the RG evolution of the operator C (1)
ℓq . Ignoring

finite parts, and for the clarity of the cancellation considering only the part produced by the
shifts in the fermion fields, we find

[C (1)
ℓq ]prst ∝ [C
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ℓq ]
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¦
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ℓq ]

(0)
pwst
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Schematically for the operator above we have,
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On the other hand the derivative of the tree-level operator reads,

d[C (1)
ℓq ]

(0)
prst

d lnµ
=
(λ1L

ps )
†

4M2
1

(βλ1L)t r +
(λ1L)t r

4M2
1

(β(λ1L)†)ps −
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ps )
†(λ1L)t r

4M2
1

γM2
1

, (2.263)

where γM2
1
= d ln M2

1/d lnµ is the anomalous dimension of the leptoquark mass. The last term
in (2.263) will cancel with the last line of (2.262). In contrast to the coupling, this cancellation
is not captured by the matching procedure, where we have assumed no heavy-external-field
legs.

The remaining terms inside the curly brackets in (2.262), due to the redefintion of the
fermion fields, exactly cancel the contributions to the β-function from the tree-level result
(2.263). Cancellations aside, by taking the explicit derivative of the whole set of Wcs we can
cross-check the logarithmic part of our results. Comparing the β-functions produced by our
model, with the relevant parts of [18–20, 92], we find complete agreement.

2.3.5 Phenomenological Aspects

In this section we present some interesting phenomenological aspects arising from the S1+ S̃2

LQ-model whose one-loop effective Lagrangian derived previously in this section.

Lepton magnetic and electric dipole moments

There is some evidence for a deviation of the muon anomalous magnetic moment. FNAL
experiment [93] confirmed previous results by BNL experiment [94] and found a 4.2σ excess
w.r.t the SM,∆aµ = aexp

µ −aSM
µ = (251±59)×10−11 [93]. As a demonstration of our one-loop

effective Lagrangian we work out the contribution to ∆aµ from the decoupling of S1 + S̃2-
leptoquarks, and compare it with the fixed order one-loop calculation.

Within functional approach, contributions to magnetic moments of fermions arise from
eqs. (2.63) and (2.64). The corresponding functional supertrace diagram and its expression
is displayed in (2.36). The above contributions along with the insertion of the tree-level oper-
ator [O(3)

ℓequ], associated with [C (3)
ℓequ] given in eq. (2.93), in a one-loop diagram computed for

example in ref. [95] constitute the full EFT formula in this model. The dominant new physics
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contributions to the anomalous magnetic moment of the ℓ-generation lepton are thus
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4mℓvp
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©

,

(2.264)
where v is the vev, mℓ is the ℓ = e,µ,τ lepton mass and mq is the quark mass running in the
loop with q = t, c, u. We note for later, that when evolving down to the top quark mass, mt , the
dominant part of the last term vanishes, hence we can neglect all other sub-leading terms in
the sum. Therefore, we are left with the first two terms in the square bracket. The coefficients
CeB and CeW are defined at low energies in mass basis of ref. [17]. They are related to the
Warsaw gauge basis coefficients, CeB and CeW , through the expressions,

CeB = U†
eL

CeBUeR
, CeW = U†

eL
CeW UeR

, (2.265)

where the unitary matrices UeL,R
diagonalize the lepton mass matrices, U†

eL
yEUeR

= ŷE =
diag(ye, yµ, yτ). Since our results are given in Green basis we need a translation from Green
to Warsaw basis. This translation is nicely given in ref. [64]. After a little algebra, we find the
coefficients at renormalization scale µ (still gauge basis in 3× 3 matrix notation) to be
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, (2.266)
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, (2.267)

where “ · ” means matrix multiplication. These results are in agreement with ref. [95]. The
parameters Y 1L

1U ,Λe, Λ̃ℓ and Λℓ are defined in eqs. (2.110),(2.108) and (2.107), respectively.
We then use the RGE running of the coefficients CeB, CeW from the heavy leptoquark mass scale
M1 down to the top-quark mass scale mt and plug the result into (2.264) to find at leading-log
approximation (for Nc = 3):6

∆a(S1+S̃2)
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=
∑
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mq
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1
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32π2M2
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λ̂1L∗
qℓ λ̂

1L
qℓ + λ̂

1R∗
qℓ λ̂

1R
qℓ

�

, (2.268)

where all parameters and masses are to be evaluated at mt and the “hatted” couplings are
defined in mass basis as,

λ̂1L = U T
uL
λ1LUeL

, λ̂1R = U T
uR
λ1RUeR

, ˆ̃λ= U†
dR
λ̃UeL , (2.269)

with U†
uL

yU UuR
= ŷU = diag(yu, ys, yt) being the up-quark fermion Yukawa couplings. Note

that, as it should, the one-loop expression (2.268) agrees with the fixed order calculation of
ref. [69] for the S1-leptoquark decoupling. Also obvious from (2.268) is a natural enhancement
of O(mt/mℓ) due to S1-decoupling, while there is no effect from the S̃2-particle decoupling.
However, a similar enhancement is shown in eq. (2.128), for the one-loop corrections to the
Yukawa coupling of the leptons, and subsequently to the lepton mass itself.

6To leading-log order the result is the same by setting µ= mt in (2.266) and (2.267) and then take the difference
in (2.264), and neglecting the contribution from light quark masses.
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Moreover, a bound on electron Electric Dipole Moment (eEDM), |de|< 1.1×10−29e · cm at
90% CL, anounced by ACME collaboration [96] in year 2018. Our complete 1-loop functional
matching LQs renders the calculation of eEDM very easy. As mentioned previously, in the
model at hand (S1+S̃2), bosonic operators of the form H2F F̃ and F3 are not induced, therefore
the only effect at one-loop arises from the Warsaw-basis operators QeB, QeW and Q(3)

ℓequ as
before. Basically, the calculation is the same with the lepton magnetic moments we performed
above. Again, neglecting the contribution from C (3)

ℓequ since the evaluation is at µ = mt , the
eEDM reads,

de

e
(mt) =

p
2 v

�

1
g ′
ℑm[CeB(mt)] −

1
g
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�

11
. (2.270)

Plugging into (2.270) the imaginary parts of eqs. (2.266) and (2.267) after substituting µ =
mt , we find
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4
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This result agrees with the fixed order 1-loop calculation, up to O(m2
t /M

4
1 )-terms, obtained by

applying the general one-loop formula for lepton EDMs from ref. [97] onto the particular S1+S̃2

LQ-model. The leading-log term of (2.271) also agrees with the one obtained in refs. [68, 98].

The reader should note that this is a SMEFT calculation, i.e. we have chosen µ = mt .
Ideally it’s more appropriate to match onto Low Energy Effective Field Theory (LEFT) and
perform the calculation of dipole moments at lower scales, which is beyond the scope of this
chapter. For a thorough EFT analysis of leptonic magnetic and electric dipole moments along
these lines the reader is referred to refs. [95, 99].

Radiative Neutrino masses

A nice feature of the S1 + S̃2 model is that neutrino masses are induced radiatively at one-
loop. The single dimension-5 operator Qνν, defined in Appendix C, arises in the effective
Lagrangian from the supertrace functional diagram (2.39) which after calculation provides us
the associated Wilson coefficient Gνν = Cνν (2.133) in both Green and Warsaw basis. The
result is finite and agrees with ref. [71]. Then going to the mass basis SMEFT Lagrangian of
ref. [17] we have for the diagonal neutrino mass matrix

mν = −v2 U T
νL

Cνν UνL
. (2.272)

By using the tree level definitions of CKM and MNS matrices7, as KCKM = U†
uL

UdL
and UMNS =

U†
eL

UνL
and eq. (2.269) we obtain
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, (2.273)

where md is the diagonal down quark mass matrix. The neutrino masses clearly follow a

“down-quark” mass hierarchy with the couplings λ̂1L , ˆ̃λ and the CKM matrix defining off-
diagonal transitions. Obviously, depending on the value of the parameter A2̃1 that mixes both
leptoquarks with the Higgs boson, we can probe two different mass scales: (i) A2̃1/max(M1, M2)≃
1, and (ii) A2̃1/max(M1, M2) → 0. In case (i) correct order of magnitude of neutrino mass,

7There is no "pollution" to CKM or MNS matrices from other tree level operators in this model.
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mν ≲ 0.1 eV, and λ∼ O(1) requires M1 ≈ M2 ≳ 1013 GeV and this is currently consistent with
proton decay bounds (see below), whereas in case (ii) M1 ≈ M2 ≃ 1 TeV requires A2̃1 ≈ 10−7

GeV which is technically natural in terms of a Z3 (or Z4) softly broken discrete symmetry dis-
cussed in section 2.3 (but still baryon number violating couplings, λ/BL and λ/BR, are allowed
and have to be set to zero by another symmetry in order to avoid fast proton decay).

Proton decay

Baryon number is violated in the S1 + S̃2 model. All d = 6 baryon number violating (BNV)
operators appear already at tree level in the effective Lagrangian [eqs. (2.98),(2.99)], after
the decoupling of S1-field. From these expressions and Table 2.3 we easily see they have
∆B =∆L = 1 consistent with eqs. (2.103) and (2.104). Rotating fermion fields into the mass
basis of ref. [17] we find for the tree-level Wilson-coefficients

[Cqqu](0)f1 f2 f3 f4
=

1

M2
1

[K T
CKM (

ˆλ/BL)∗] f1 f2 (λ̂
1R) f3 f4 , (2.274)

�

Cduq
�(0)

f1 f2 f3 f4
=

1

M2
1

( ˆλ/BR)∗f1 f2
[K T

CKM λ̂
1L] f3 f4 , (2.275)

�

Cduu
�(0)

f1 f2 f3 f4
=

1

M2
1

( ˆλ/BR)∗f1 f2
(λ̂1R) f3 f4 , (2.276)

[Cqqq](0)f1 f2 f3 f4
= −

2

M2
1

[K T
CKM (

ˆλ/BL)∗] f1 f2 [K
T
CKMλ̂

1L] f3 f4 , (2.277)

where the “hatted" couplings are given in eq. (2.269) in addition to

ˆλ/BL = U†
uL
λ/BLU∗dL

, ˆλ/BR = U†
dR
λ/BRU∗uR

. (2.278)

Obviously, due to lepton and baryon quantum numbers arranged in Table 2.3, only one BNV-
coupling, λ/BL or λ/BR, appear for ∆L = ∆B = 1. Plugging these into the Feynman Rules of
ref. [17] we derive decay rates for general nucleon decay processes.

To date, proton decay has not been observed and Super Kamiokande has increased the
proton lifetime limits up to ∼ 1034 years with bounds [100, 101]

τ(p→ e+π0)> 1.6× 1034 yrs , τ(p→ ν̄K+)> 0.59× 1034 yrs , (2.279)

being the most sensitive ones to BSM physics [102]. Based on the first of these bounds we
derive constraints on the following products of couplings:

2( ˆλ/BR)∗11λ̂
1R
11 , 2( ˆλ/BR)∗11λ̂

1L
11 , 2( ˆλ/BL)∗11λ̂

1R
11 , 4( ˆλ/BL)∗11λ̂

1L
11 ≲ 10−6

�

M1

3× 1012

�2

.

(2.280)
Note that although the CKM-matrix, KCKM, appears explicitly in tree expressions (2.274)-
(2.277), it disappears completely from the relevant BNV vertices of ref. [17] for physical fields.
In summary, M1 ≳ 3 × 1012 GeV and first generation λ̂1L,1R ∼ O(1) and λ/BL and λ/BR of the
order of electron yukawa coupling is, currently, a safe combination.

At tree level, the proton decay constraints in eq. (2.280) apply on the 11 entries of λ-
matrices. This changes by going to higher orders where in principle all flavour structure of
those matrices are getting involved through the CKM-matrix. One loop contributions to BNV
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2.3. The leptoquark model S1 + S̃2

Wilson coefficients are given in eqs. (2.244)-(2.247). For example, by just looking at [Gqqq](1)

and the term proportional to the strong QCD coupling, g2
s (λ

/BL
ps )
∗ (λ1L

st ) we find a contribution

to the p → e+π0 amplitude of the form g2
s (

ˆλ/BLK†
CKM)11 (K T

CKM λ̂
1L)11 which, although CKM-

suppressed, displays a certain sensitivity in the off-diagonal λ1i entries under the strong proton
decay bounds of (2.279). A partial list of dedicated studies on proton decay in leptoquark-like
models are given in refs. [81, 103–105] and related reviews in refs. [82, 102].

In summary, unless there is a symmetry to prohibit BNV-couplings, the mass M1 must be
bigger than the “intermediate" scale ∼ 1012 GeV. As we discuss in the next paragraph, this will
bring every other leptoquark masses e.g. M̃2, at around that scale unless unnatural fine tuning
is called upon in the Higgs sector.

Perturbativity and Fine Tuning

An interesting interplay between the LQ masses can be explored in some operators that contain
the ratio of the two masses. We can thus put some bounds on the ratio M1/M̃2 so that per-
turbation theory is not violated. For example, for the operator Gℓd adding the tree, eq.(2.94),
and one-loop level, eq.(2.240) that depends on the LQ mass ratio, we have,

[Gℓd]prst ∝−
λ̃∗t pλ̃sr

2M̃2
2

�

1+
1

16π2

M2
1

M̃2
2

(Ncc
(1)
12̃
+ c(2)

12̃
)(1+ L1)

�

. (2.281)

Other operators depend on the inverse mass ratio M̃2/M1. For instance, adding eq.(2.95) and
eq.(2.219), we have,

�

G(1)
ℓq

�

prst
∝
(λ1L)∗sp(λ

1L
t r )

4M2
1

�

1+
2

16π2

M̃2
2

M2
1

(Nc c(1)
12̃
+ c(2)

12̃
)(1+ L2)

�

. (2.282)

For perturbation theory to work, loop level contributions have to be way smaller than tree
level ones. Then we can get a combined constrain for the ratio of the masses,

2
Ncc

(1)
12̃
+ c(2)

12̃

16π2
(1+ L2)<

M2
1

M̃2
2

<
16π2

(1+ L1)(Nc c(1)
12̃
+ c(2)

12̃
)

, (2.283)

which depends explicitly on parameters of the self interactions of the leptoquarks. Next, we
define the following quantities,

r2 ≡
M2

1

M̃2
2

, α≡
Nc c(1)

12̃
+ c(2)

12̃

16π2
. (2.284)

The inequality then becomes,

2α(1+ L2)< r2 <
1

α(1+ L1)
. (2.285)

Which can be written in the following form,

µ2

M̃2
2

exp
�

1−
1
αr2

�

< r2 <
M2

1

µ2
exp

�

r2

2α
− 1

�

. (2.286)

From here on we will pick up a renormalization scale, first we will pick µ = M1 and then
µ= M̃2. As for the parameters c(1,2)

12̃
we will take them first of order unity and second to a fine

tuned value of the order of 10−4. Plugging these numbers into eq.(2.284) we get α = 1/4π2

and α = 10−4/4π2 for each respective value of c’s. Both these values will be used for both
cases of the renormalization scale and extract some bounds for the masses.
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• For the first case, µ= M1. In this case the combined inequality reads, for Nc = 3,

r2 exp
�

1−
1
αr2

�

< r2 < exp

�

r2

2α
− 1

�

. (2.287)

The right inequality is always satisfied, while from the left one we can get that,

r2 <
1
α

. (2.288)

Considering the two distinct values of α, we can get M1 < (2π, 2π× 102) M̃2.

• For the second case µ= M̃2. The inequality becomes,

exp
�

1−
1
αr2

�

< r2 < r2 exp

�

r2

2α
− 1

�

. (2.289)

The right part gives, r2 > 2α, while the left part is always true.

If we combine the two results we can get the following bound,

2α < r2 <
1
α

. (2.290)

Plugging the values of α we get,

1
p

2π
(1, 10−2)<

M1

M̃2
< 2π (1, 102) . (2.291)

Therefore, we can conclude that when couplings c(1,2)
12̃

are of O(1) the masses can be taken to
be of similar magnitude without violating perturbation theory. If we fine tune the couplings
to even smaller values we can further increase the mass ratio giving us more room to tune the
numerical values of the masses.

Noteworthy, the situation we just described for the Wcs, G(1)
ℓd and G(1)

ℓq , share the same
characteristics with the Higgs mass hierarchy problem which is of course evident in LQ-models.
Indeed, by performing the matching procedure we have assumed that the Higgs mass m is zero
i.e., the Higgs field is part of the low energy EFT. Therefore, one-loop contributions to the Higgs
mass found in (2.132) have to be of the order of the EW scale. For this to happen there are
two cases (i) LQ-masses are of the order of the TeV-scale and Higgs couplings naturally of
order O(1) or (ii) LQ-masses are heavier but Higgs couplings e.g. λH1, λ̃H2,λ2̃2̃ together with
A2̃1/M1 are small enough, although there is no known symmetry to naturally accommodate
all these limits.

2.4 Conclusions

The resurgence of functional techniques to matching has led to a fair amount of universal
results and compact formulae over the last few years. In this chapter we explored the matching
of all scalar leptoquark representations that can be constructed under the SM gauge group. We
have extracted through the use of Supertrace functional techniques [35] a universal formula,
eq. (2.14) for tree level and eq. (2.48) for one-loop matching plus all X-matrices in Appendix A,
for the decoupling of all scalar leptoquarks and put it to use in two distinct models. First we
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cross-tested it with the Feynman diagrammatic approach of the S1 + S3 model [64]. Then
we applied it to the, phenomenologically richer, S1 + S̃2 model taking also baryon number
violating couplings into account. In total, the latter model generates the single dimension-5
Weinberg operator at one loop, which gives rise to radiative neutrino masses. At dimension-6,
109 operators are generated in the Green basis while in the translation to Warsaw basis we
are left with 53 (out of 59) operators thus covering almost the entire spectrum of dimension-6
operators, the only exception being the set of 6 bosonic CP-violating ones. Our results of the
given Wilson coefficients, derived in section 2.3, have been also cross checked with the one
loop RGEs finding complete agreement.

On the phenomenological side, we have briefly explored several distinct observables. First,
we studied the implications to the lepton magnetic and electric dipole moments where there
has been recent experimental advances. With this example we demonstrated the use of the
matching in arriving at known results from fixed order calculations. Secondly, we have inves-
tigated possible regions of leptoquark masses, at the scale of a few TeV and at a high scale,
as well as their coupling with the Higgs field, to generate radiatively the order of magnitude
of neutrino masses through the Weinberg operator. Furthermore, we were able to put cer-
tain bounds in the combinations of BNV and non-BNV couplings, through the investigation of
proton decay at tree level and one-loop. Last but not least, we have constructed a combined
inequality for the ratio of the two LQ masses so that perturbation theory is not violated and
briefly discussed the hierarchy problem in LQ-models.

As a concluding remark we would like to point out that models covering almost the entirety
of the given operator basis spectrum, can serve as excellent benchmarks for various codes that
will perform the matching automatically. The main reason for this argument is that within
matching one needs to apply a fair amount of identities ranging from group theoretic, to Fierz
identities and also accounting for evanescent operators arising from higher number of γ-matrix
structures. All of the above have been encountered in the models that have been investigated
in this chapter, ultimately, adding up to the number of fully worked out examples of one loop
matching.
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Chapter 3

Disentagling SMEFT and UV
contributions in h→ Zγ and h→ γγ

decays

LHC searches have revealed that the Higgs boson decay to a photon pair is nearly consistent
with the Standard Model (SM), whereas recently, there is evidence for the decay of the Higgs
boson to a Z-boson and a photon. These observables are governed by the same set of Wilson-
coefficients at the tree level in Standard Model Effective Field Theory (SMEFT). In this study,
we attempt to explain a potential discrepancy between the decays h → γγ and h → Zγ. We
conduct a model-independent analysis in SMEFT to determine the magnitude and features
of the Wilson coefficients needed to explain a distinction between the two signal strengths.
These assumptions are then considered at a top-down approach where we consider all single
and two field extensions of the SM, including scalars and fermions, as candidates for novel
interactions. We perform the matching of these models to one loop using automated packages
and compare the models’ predictions about h→ Zγ. This chapter is based on ref [106].
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3.1 Introduction

Building upon the foundations established in the previous chapters, we now turn our attention
to exploring how new physics can manifest in the properties and decays of the Higgs boson.
In Chapter 1, more specifically in Sections 1.4 through 1.6, we introduced the concept of
Effective Field Theories (EFTs) and discussed both the top-down and bottom-up approaches
to constructing them. The top-down approach involves starting from a well-defined ultraviolet
(UV) model and systematically integrating out heavy degrees of freedom to derive an EFT that
captures the low-energy dynamics. This process, known as matching, ensures that the low-
energy EFT reproduces the same S-matrix elements as the full theory. We highlighted how
matching can be performed either diagrammatically, using Feynman diagrams, or through
functional matching, which directly utilizes the path integral formalism.

In Chapter 2, we delved deeper into functional matching techniques, emphasizing their
advantages over diagrammatic methods. Functional matching provides a process-independent
way to derive the complete set of effective operators and their Wilson coefficients (WCs) with-
out the need to consider specific processes. We applied these techniques to the decoupling of
heavy scalar leptoquark fields, demonstrating how functional methods can efficiently handle
complex interactions and generate universal results. This set the stage for understanding how
new heavy particles can influence low-energy observables through their contributions to the
WCs in the Standard Model Effective Field Theory (SMEFT).

With this theoretical groundwork in place, Chapter 3 aims to investigate the impact of
new physics on the Higgs boson’s properties and decay channels, specifically focusing on the
recent observations in the h→ Zγ decay mode.

Since the discovery of the Higgs particle by the LHC [107, 108] and the absence of any
new smoking gun event our attention is increasingly turning to studying in detail the properties
and the couplings of the Higgs particle. Its decay and production can be affected by particles
that have not yet been discovered or hinted at, and are thus elusive. If these new particles are
heavy the Standard Model Effective Field Theory (SMEFT) (for reviews we refer the reader
to Refs. [21, 52, 109]) provides a framework to study the effects of particles that are found
above the electroweak (EW) scale, namely v ∼ 245 GeV. The constituents of this framework
are higher dimensional operators that respect the SM gauge group, thus we add to the SM
Lagrangian the sum of terms with mass dimension greater than 4,

L= LSM +
C5O5

Λ
+

C6O6

Λ2
+ . . . , (3.1)

where as a superscript the mass dimension of each respective operator is denoted and Λ serves
as the scale of new (UV) physics. Each operator is accompanied by its respective coefficient
known as Wilson coefficient (Wc) which encodes the effects of UV physics.

Deviations from the SM values of decay and production channels are encoded in the so
called signal strength. These are calculated as the ratio,

µh→X =
Γ (SMEFT, h→ X )
Γ (SM, h→ X )

= 1+
Γ (BSM, h→ X )
Γ (SM, h→ X )

, (3.2)

where with Γ (BSM) we denote the decay rate that is affected only by physics beyond the SM
(BSM). The signal strengths are split in the following manner µh→X = 1 + δRh→X , where
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δRh→X = Γ (BSM, h → X )/Γ (SM, h → X ). Hence new physics that contributes to each re-
spective channel would shift µh→X to values different than one. The decays of the Higgs into
two gauge bosons have been measured with high precision and in agreement with the SM are
WW ∗, Z Z∗,γγ [110–116]. A detailed analysis of the properties, the decay and production as
well as future directions for Higgs physics can be found in [117, 118]. Although most of the
aforementioned decays are in agreement with the SM a recent analysis by the ATLAS and the
CMS collaboration [119] found evidence for the decay of h→ Zγ, which was an elusive decay
up to now. Additionally, they reported a mild excess of around ∼ 2σ with respect to the SM
value, the measured signal strength is,

µh→Zγ = 2.2± 0.7 . (3.3)

Subtracting the SM value of the signal strength µSM
h→Zγ = 1, this implies that contributions from

new physics must account for µBSM
h→Zγ = 1.2± 0.7, under the assumption that all uncertainties

originate from the UV sector. This study aims to answer this question, which UV model could
account for such an excess in the h→ Zγ decay?

To address this question, we explore both the top-down and bottom-up approaches within
the SMEFT framework, building upon the methodologies discussed in Chapter 1, more specif-
ically in Sections 1.4 to 1.6 and on Chapter 2, Section 2.2. The values of the WCs that affect
the Higgs boson’s properties can be calculated through the matching process in the top-down
approach. In this procedure, WCs are derived from a complete UV model, and their analytic
expressions depend on the couplings and scales of the model. This matching can be performed
either diagrammatically or directly through the path integral, as detailed in Chapter 2. Func-
tional matching, in particular, has gained renewed interest due to new techniques [26, 35]
and the emergence of universal results [24, 27–31, 33, 53, 120], even at two-loop order [34].
The automation of these techniques has evolved to encompass a broad spectrum of methods,
from SuperTrace calculations [38, 39] to the efficient computation of WCs directly from the
Lagrangian [37, 40, 41, 44, 121].

Alternatively, the bottom-up approach offers a model-agnostic method where the WCs
remain unknown and their values are determined by fitting a set of observables to these co-
efficients. Throughout this chapter, we will use the Warsaw basis [13] to study the effects of
UV-independent WCs on the relevant decays of the Higgs boson. We will consider operators
up to dimension-6, as the only dimension-5 operator in the Warsaw basis (found in Table C.1)
relates to neutrino masses and is irrelevant to the observables considered here. This approach
allows us to gauge the magnitude of new physics that may affect each WC individually and
may provide hints about the structure of the UV model.

However, a downside of the bottom-up approach is the unknown correlations between
WCs that may arise from specific UV models. As discussed in Chapters 1, sections 1.4-1.6 and
Chapter 2, the bottom-up and top-down approaches should be seen as complementary. While
the bottom-up approach can highlight which WCs are most relevant for explaining the observed
excess in h→ Zγ, the top-down approach can provide the correlations and constraints among
WCs imposed by the UV theory, since the number of couplings in the UV model is typically fewer
than the number of independent WCs in the Warsaw basis. Moreover, the SMEFT predicts that
the h→ γγ decay receives contributions from almost the same set of operators as h→ Zγ, with
similar governing expressions, as explored in Section 3.2. Therefore, it is crucial to investigate
these two decays under the same scope and attempt to disentangle the contributions that could
lead to an excess in h→ Zγ without conflicting with the precise measurements of h→ γγ.
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Several recent studies have addressed this question by varying the field content or ex-
tending the gauge group of the SM [122–125]. Other works have explored enhancements of
h→ Zγ through renormalization group effects of tree-level generated dimension-8 operators,
including massive vector-boson fields [126], which are not considered in this chapter. Contri-
butions from the Minimal Supersymmetric Standard Model (MSSM) to h→ Zγ can be found
in Ref. [127], and the decay h→ Zγ has been proposed as a probe to test the compositeness
of the Higgs boson within the EFT framework [128].

The structure of this chapter is as follows. In Section 3.2, we study the Higgs decays
h → γγ at one-loop order within the SMEFT, using the bottom-up approach. We make sev-
eral rescalings of WCs to account for their tree-level and one-loop-level contributions. After
identifying the major contributions to their signal strengths, we fit all relevant WCs to a set
of observables related to the Higgs sector and compare the values of WCs needed to account
for the observed data. In Section 3.3, we shift our focus to possible UV-complete models that
could account for the values of WCs found in the fit. We consider all colorless single-field
extensions of the SM that respect the gauge group, as tabulated in the tree-level dictionary
[67]. We assess their ability to generate the necessary WCs through matching procedures. In
Section 3.4, we categorize interactions based on their loop functions and devise a scheme to
tabulate two-field models that generate WCs relevant to the Higgs decays. We match all mod-
els to the Warsaw basis using automated packages and perform a constrained minimization to
find the best values for the couplings and masses of each respective model. We leave the signal
strength of the decay h → Zγ as a prediction of each model and compare the results to the
h → γγ decay. Finally, in Section 3.5, we summarize our findings, discuss their implications
for new physics scenarios, and suggest directions for future research.

3.2 Model independent analysis in SMEFT

There are two Higgs decays in SMEFT that are of interest to us currently, namely, h→ γγ and
h → Zγ. Their semi-numerical expressions, at one-loop order, of the signal strengths, in the
input scheme {GF , MW , MZ}, and in units of TeV−2, are [129–131],
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(3.5)

where the dots denote terms whose contributions are lower than 0.01 × C and µ is the
renormalization scale. We are restricting ourselves to contributions without CP-violation.
These operators are heavily constrained by Electric Dipole Moments (EDMs), and would con-
tribute with tiny corrections to the observables and the problem we are trying to tackle in this
chapter.

At a first glance we can naively say that the main contributions in these two observables
originate from the same three operators,

�

CφB, CφW , CφW B
	

, however in the tree-level dictio-
nary [67] these operators arise only from one-loop processes, assuming that the UV-Lagrangian
contains terms only up to dimension 4, and restrict ourselves to UV models containing only
scalars and/or fermions. If we consider the presence of operators with dimension greater than
4 in the UV Lagrangian, or if we incorporate vector fields into the analysis, these operators can
also be generated at tree level.

One way to disentangle the tree and loop level contributions is to split the coefficients
into their tree and loop level parts as follows, C = C [0] + 1

16π2 C [1] ≃ C [0] + 0.6 × 10−2C [1].
From what was discussed in the previous paragraph, we shall set C [0]φB , C [0]φW and C [0]φW B

to zero. This re-scales all coefficients so that we can easily compare between contributions
of different operators. Apart from the tree-loop split, for the case of the three Wilson coef-
ficients mentioned above, we can do another re-scaling, CφB → g ′2ĈφB, CφW → g2ĈφW ,
CφW B → g ′gĈφW B. We immediately see that in both expressions the operators C (e,u,d)(B,W ),
CW , are small since they occur at one-loop in the SMEFT. We can also observe that the com-
bination of the three Wcs Cℓℓ1221, Cφℓ(3)11,22 constitutes the correction of SMEFT to the Fermi
constant, which is known to high accuracy. The corrections of the Fermi constant in the
SMEFT read [17, 132], GSMEFT

F = GF + δGF , where GF = 1.1663787(6) × 10−5 GeV−2 and

δGF = −
1p
2
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. So, we re-write the formulas with the re-scaled contri-
butions, setting the renormalization scale to µ= Λ= 1 TeV and the Fermi constant correction,
in order to compare the coefficients again,
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Disentangling the formulas in such a way provides us with more insight on the values of the
couplings that we can expect in the UV. With this procedure we have also narrowed down a
multitude of contributing operators to just a handful of them making the study of these two
observables easier.

A few remarks are in order.

• The largest contribution to δRh→γγ no longer originates from the operator CφB even

though initially that was the case. The most dominant Wcs are Cℓℓ1221, Cφℓ(3)11 , Cφℓ(3)22 ,
while next in magnitude are the Wcs CφD and Cφ□. Incidentally, these five operators
contribute maximally to δRh→Zγ as well.

• The model in question must not generate large corrections to the Fermi constant, whose
SMEFT expression depends on Cℓℓ1221, Cφℓ(3)11 , Cφℓ(3)22 , which is excluded, unless we tune
down its couplings to minuscule values to reach a correction of the order of 10−6. Ad-
ditionally, Wilson coefficients Cφ□ and CφD could cancel each other out in h → γγ if
Cφ□ = 2CφD and that could boost h→ Zγ, unless they are not generated at tree level
and are suppressed by a loop factor. However, in the case of a cancellation both CφD and
Cφ□ would be heavily constrained by the T -parameter, since the coefficients are directly
related to each other.

• What values of Wcs would it take to boost h → Zγ while simultaneously these Wcs
would destructively contribute in h → γγ? Ideally we would like to avoid generating
the dominant tree level Wcs mentioned in the two previous bullets because they equally
contribute to both observables and there is no apparent way to cancel each other out.
Our main goal is to restore the dominance of Cφ(B,W,W B) Wcs.

• For both signal strengths their expressions are almost identical with the only difference
being the Wc C eφ

pp which contributes only to δRh→γγ, however operators of such kind
arising from the tree level are usually suppressed by the Yukawa coupling of the cor-
responding fermion and are thus suppressed for the most part. For this reason we will
keep from now on only contributions from the third generation of quarks.

• In the expressions in eq.(3.4) and eq.(3.5) for the signal strengths all Wcs are considered
at the renormalization scale µ, C(µ). Since we have split the operators in the tree and
loop counterparts the RG mixing of loop level operators constitutes a two loop effect and
is neglected. Since we have set µ = Λ = 1 TeV, all Wcs are from now on considered at
C(µ) = C(Λ).

We construct a chi-square function to explore further the correlations and the required
numerical values that these three coefficients need to take to accommodate an excess in one
over the other observable. The observables that we choose to add are the decay and produc-
tion signal strengths of the Higgs boson which can fairly constrain all Wcs in our study. We
consider the decays of the Higgs boson tabulated in the first column of Table 3.1 and the for
the production modes we include gluon fusion (ggF), vector boson fusion (VBF), associated
production with a vector boson (Wh, Zh) and lastly, associated production with a pair of top
quakrs (tth). Apart from these we also add the oblique parameters S and T , since they highly
constrain CφW B and CφD respectively. In the {GF , MW , MZ} scheme, these two expressions
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read,

∆S =
2π

G2
F MW

q

M2
Z −M2

W

CφW B

Λ2
, (3.8)

∆T =
π

4G2
F

M2
Z

M2
W (M

2
Z −M2

W )
CφD

Λ2
(3.9)

Substituting the relevant values and setting Λ= 1 TeV, we get the semi-numerical expression,

∆S = 0.0199 Ĉ [1]φW B , (3.10)

∆T = −4.0083 CφD . (3.11)

The experimental values of decay and production channels that we are using to construct
the χ2 function are shown in Table 3.1. For S and T parameters we have the following two
experimental values and corresponding uncertainties, Sexp = −0.02± 0.07 and Texp = 0.04±
0.06 [133].

Decay Experiment Production Experiment
δRh→γγ 0.10± 0.07 δRg gF −0.03± 0.08
δRh→Zγ 1.20± 0.70 [119] δRV BF −0.20± 0.12
δRh→Z Z∗ 0.02± 0.08 δRWh 0.44± 0.26
δRh→WW ∗ 0.00± 0.08 δRZh 0.29± 0.25
δRh→µ+µ− 0.21± 0.35 δRt th −0.06± 0.20
δRh→τ+τ− −0.09± 0.09
δRh→bb̄ 0.01± 0.12

Table 3.1: Numerical values used to construct the χ2 function to be minimized. The decay channel
values were taken from [133], except for the h→ Zγ decay. The production channel experimental
values were taken from CMS[117].

We define the χ2,

χ2 =
�

OSMEFT −Oexp
�T �
σ2
�−1 �

OSMEFT −Oexp
�

, (3.12)

where Oexp is the column vector that contains the central values of the experimental measure-
ments of the corresponding signal strengths of Table 3.1, while in this case σ2 is a Nobs×Nobs

diagonal matrix containing the relevant uncertainties, where we have neglected theory un-
certainties and assumed that all measurements are uncorrelated. The quantity OSMEFT can be
decomposed into two pieces, a purely SM piece, OSM and a purely BSM piece, OBSM. Since
the SM piece is a pure number we subtract it from the experimental values and we define
Oδ = OSM − Oexp. We use Singular Values Decomposition (SVD) technique as described in
[134] to solve this least squares problem and we cross-check the results by also minimizing
the chi-square function. The set of Wcs we consider here are

¦

CφB, CφW , CφW B, Cφ□, CφD, Cuφ
33 , Cdφ

33

©

, (3.13)

where we neglect the Wcs that affect corrections to the Fermi constant.

The best-fit values for the Wilson coefficients that we obtain, for Λ= 1TeV are,

Ĉ [1]φB = 23.75± 3.03 , (3.14)
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Fig. 3.1: Error ellipses drawn by setting each respective coefficient to its best-fit value while varying
the other two. Green and light blue contours represent, 1σ and 2σ respectively.

Ĉ [1]φW = −26.26± 2.68 , (3.15)

Ĉ [1]φW B = −1.07± 3.63 , (3.16)

Cφ□ = −0.18± 0.40 , (3.17)

CφD = 0.01± 0.01 , (3.18)

Cuφ
33 = −0.83± 1.21 , (3.19)

Cdφ
33 = 0.001± 0.03 . (3.20)

We also note the values of the first three Wcs before rescalings to be, CφB = 0.018± 0.002,
CφW = −0.071± 0.007 and CφW B = −0.0015± 0.005. Comparing the results of our SMEFT
analysis it can be seen that within the marginalised values reported in refs. [42, 135] our own
values fall within the ranges given in the aforementioned references. However, if we consider
the individual cases where only one Wc contributes to observables the values that we obtain
fall short of the ranges obtained in the global fits. This deviation could be justified by the
amount of observables contained in the global fits, while in this study we focus dominantly on
the Higgs sector observables.

The correlation matrix for these coefficients, is,

Wcs CφB CφW CφW B Cφ□ CφD Cuφ
33 Cdφ

33

CφB 1. 0.268 0.633 0.073 −0.013 0.192 0.032
CφW 1. 0.613 0.539 −0.007 0.335 0.205
CφW B 1. 0.003 0 0.001 0.001
Cφ□ 1. 0.03 0.33 0.374
CφD 1. 0.006 0.007

Cuφ
33 1. 0.157

Cdφ
33 1.

(3.21)

From the covariance matrix of the coefficients we can also draw the error ellipses, as
shown in Figure 3.1. In each of the plots we have set each respective coefficient that is not
drawn to its best-fit values and have drawn error ellipses of the other two. For example, in the
first plot we have set every coefficient but CφW and CφW B to is best-fit value and have plotted
the error ellipses of the other two.

Let us now establish the criteria that UV models must meet in order to be considered viable
for further study:
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1. The most important relation that needs to hold is that CφB and CφW need to have a def-
inite sign difference. This means that the UV model has to generate both. It alone could
accommodate for an excess in h → Zγ if no other Wc that affects the two observables
equally is generated.

2. We also notice that if CφW B is generated it’s value would need to be small, even account-
ing for uncertainties because of the direct relation to the S-parameter.

3. Some models could also generate a pair of Cφ□ and CφD, if they are generated together
at tree level they are proportional to each other. From the fit we see that including
uncertainties it could be possible to accommodate this possibility.

3.3 Single field UV models

In the following sections we examine the single field extensions of the tree level dictionary
[67, 136] as well as some potential two field cases. To get all the expressions of the relevant
generated operators we use the package SOLD [121], which contains all information on Wcs
exclusively generated at one-loop order from scalar and vector like fermion extensions, while
for tree-level generated operators we use the package MatchMakerEFT [40] and cross-check
with the expressions found in ref. [67]. We refrain from including or discussing massive vector
bosons for several reasons. First, no automated package exists up to date that could give us
immediately Wcs and facilitate our study. Second and most important, we would need to ac-
count for the gauge boson mass, which would require the inclusion of a spontaneous symmetry
breaking mechanism able to explain the origin of the mass. Additionally, if we consider vector
bosons the Wcs that are of interest, namely Cφ(B,W,W B), are generated at tree level and are
either coming from already non renormalizable interactions of dimension greater than four, or
in some cases even if these operators are coming from interactions of dimension less or equal
to four there is never a sign difference between Wcs CφB and CφW [67]. The inclusion of
vector boson extensions is outside the scope of this study. Additionally, barring vector boson
extensions, CP-violating operators come from interactions of already non-renormalizable op-
erators in the models that we investigate, we restrict ourselves to interactions of the original
Lagrangian up to mass dimension four.

3.3.1 The case for BSM scalars

To examine some viable scenarios we list in Table 3.2 all scalar fields that serve as extensions
of the SM, that also have a linear coupling with the SM particle content. We also list the
tree level operators that they generate as well as the subset of loop level operators that are
interesting for our case study. We exclude colored fields, as they induce the operator OφG ,
which significantly impacts the production rate of g gF . Given that this production channel
is precisely measured, we aim to avoid constraints associated with this bound. In the follow-
ing bullets all cases of Table 3.2 will be investigated if they could account for the values of
the Wcs obtained in the SMEFT analysis. In the matching calculations only the necessary op-
erators for our discussion are provided, all other operators not presented are either zero or
generated at loop-level and their contributions is deemed too small as has been discussed in
Section 3.2. In the results presented below the notation of the tree-level dictionary [67] is
being followed, the Lagrangian used for scalars can be found in Appendix A.2 of the afore-
mentioned reference. For clarity however, the subset of the Lagrangian where the operator is
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3. SMEFT AND UV CONTRIBUTIONS IN h→ Zγ AND h→ γγ DECAYS

being induced from is also presented. The mass terms of the new scalars are denoted by Mi ,
where i = {S, S1, S2, ϕ, Ξ, Ξ1, Θ1, Θ3}.

Fields Irrep Tree level operators Loop level operators

S (1, 1)0 Oφ□ OφB, OφW , OφW B

S1 (1, 1)1 Oℓℓ OφB

S2 (1, 1)2 Oee OφB

ϕ (1, 2)1/2 O(e,u,d)φ OφB, OφW , OφW B

Ξ (1, 3)0 OφD, Oφ□, O(e,u,d)φ OφB, OφW

Ξ1 (1,3)1 OφD, Oφ□, O(e,u,d)φ OφB, OφW , OφW B

Θ1 (1, 4)1/2 Oφ OφB, OφW , OφW B

Θ3 (1, 4)3/2 Oφ OφB, OφW , OφW B

Table 3.2: Tree and relevant loop level operators generated by new scalar field extensions of the
SM. The first column follows the naming convention of ref. [67], while in the second one the
representation of each field is denoted as (SU(3), SU(2))U(1).

• Field S, a neutral scalar generates all the necessary operators. The subset Lagrangian
reads,

∆L ⊃ (κS)Sφ†φ . (3.22)

The expressions of the Wcs are,

Cφ□ = −
(κS)2

2M4
S

, (3.23)

Ĉ [1]φW B = 2 Ĉ [1]φB = 2 Ĉ [1]φW =
(κS)2

6M4
S

. (3.24)

This set of Wcs would be impossible to explain a possible deviation because of the uni-
versal contribution to Cφ□ and additionally CφB = CφW .

• Fields S1,2, charged singlets do no generate the required set of operators necessary for
our purposes. Additionally, S1, gives Cℓℓ which would potentially contribute strongly to
Fermi constant. For completeness, the expressions of the Wcs are

S1 :
�

Cℓℓ
�

i jkl =
(yS1
)∗jl(yS1

)ik

M2
S1

, (3.25)

Ĉ [1]φB = −
λS1

12M2
S1

, (3.26)

S2 : (C ee)i jkl =
(yS2
)∗l j(yS2

)ki

2M2
S2

, (3.27)

Ĉ [1]φB = −
λS2

3M2
S2

, (3.28)

where the Lagrangian for the relevant couplings reads,

∆L ⊃ λS1
(S†

1S1)(φ
†φ) +λS2

(S†
2S2)(φ

†φ)
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(yS1
)i jS†

1 l̄Li iσ
2l c

L j + (yS2
)i jS†

2 ēRie
c
R j + h.c. , (3.29)

where i, j are flavor indices. So, we exclude these two single fields as well.

• Next is the 2HDM, where a recent work [137] also explores the matching of this model
and fits to relevant Higgs observables. Field ϕ generates the correct set. The interaction
Lagrangian is presented below along with terms not contained in the tree-level dictionary
(as were generated by SOLD),

∆L ⊃κϕ2φ2 φ†
αϕ

†
β
φγϕδC (1)

αβγδ
+λϕ2φ2 φ†

αϕ
†
β
φγϕδC (2)

αβγδ

(yeϕ)i jϕ
† ēRi lL j + (ydϕ)i jϕ

†d̄RiqL j + h.c. (3.30)

(yuϕ)i jϕ
†iσ2q̄T

LiuRj +λϕ(ϕ
†φ)(φ†φ) + h.c. , (3.31)

where a summation of the indices α,β ,γ,δ is implied, which represent SU(2) indices
ranging α,β ,γ,δ = 1, 2, while C ’s are the Clebsh-Gordan (CG) tensors of the coupling.
The superscript T denotes transposition in SU(2) space. The non-zero elements of the
corresponding CG tensors are,

C (1)1111 = C (1)2222 = 2 , (3.32)

C (1)1212 = C (1)1221 = C (1)2121 = C (1)2112 = 1 , (3.33)

C (2)1212 = C (2)2121 = −C (2)1221 = −C (2)2112 = 1 . (3.34)

The expressions of the Wcs are,

Ĉ [1]φB = Ĉ [1]φW = −
3κϕ2φ2 + 2λϕ2φ2

96 M2
ϕ

, (3.35)

Ĉ [1]φW B = −
κϕ2φ2 − 2λϕ2φ2

48 M2
ϕ

, (3.36)

�

C eφ
�

i j =
λϕ (yeϕ)∗ji

M2
ϕ

(3.37)

�

Cdφ
�

i j =
λϕ (ydϕ)∗ji

M2
ϕ

(3.38)

�

Cuφ
�

i j = −
λ∗ϕ (yuϕ) ji

M2
ϕ

. (3.39)

The Higgs-gauge boson operators are generated but the two most important ones are
equal. For this reason we exclude this model.

• Next we consider electroweak triplets. First Ξ generates the following operators,

Cφ□ = −
1
4

CφD =
κ2
Ξ

2M4
Ξ

, (3.40)

Ĉ [1]φB =
κ2
Ξ

16M4
Ξ

, (3.41)

Ĉ [1]φW = −
1
4

Ĉ [1]φB +
λΞ

6
p

6M2
Ξ

, (3.42)

�

C eφ
�

i j =
κ2
Ξ (ye)∗ji

M4
Ξ

(3.43)
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�

Cdφ
�

i j =
κ2
Ξ (yd)∗ji

M4
Ξ

(3.44)

�

Cuφ
�

i j = −
κ2
Ξ (yu)∗ji

M4
Ξ

, (3.45)

where y(e,u,d) are the Yukawa coupling of the SM defined in eq.(A.1) of ref [67]. The
corresponding Lagrangian for the rest of the couplings reads,

∆L ⊃ (κΞ)φ†Ξaσaφ +λΞΞ
aΞa (φ†φ) , (3.46)

where a summation of the index a is implied. The index denotes SU(2) triplets tak-
ing values a = 1,2, 3. Although the model appears promising as it generates all the
necessary Wilson coefficients (Wcs), these Wcs are strongly correlated. We can ex-
press these correlations through the following relations:, Cφ□ = −CφD/4 = 8 CφB,
(C (e,d)φ)i j = 2(y(e,d))∗ji Cφ□ and (Cuφ)i j = −2(yu)∗ji Cφ□. The most stringent constraint

for this model comes from the T -parameter which is proportional to CφD and forces us
to a small value for this Wc which is related to CφB which needs to have a large value.
To provide a clearer picture, we can express the following observables, where we retain
only the top Yukawa coupling and neglect other contributions due to their insignificance:

∆T = −8.016
κ2
Ξ

M4
Ξ

, (3.47)

δRh→γγ = 0.508
κ2
Ξ

M4
Ξ

− 0.0025
λΞ

M2
Ξ

, (3.48)

δRh→Zγ = 0.2912
κ2
Ξ

M4
Ξ

− 0.0026
λΞ

M2
Ξ

. (3.49)

In order to satisfy the bound for the T -parameter, which in our case needs to be negative
and by taking the lower bound of the experimental value at Texp ≥ −0.02, we get the
bound for the coupling to mass ratio κ2

Ξ/M4
Ξ ≥ 25× 10−4, substituting these values into

eqs. (3.48) and (3.49) we get,

δRh→γγ = 0.0013− 0.0025
λΞ

M2
Ξ

, (3.50)

δRh→Zγ = 0.0007− 0.0026
λΞ

M2
Ξ

. (3.51)

These contributions are insufficient, leaving only the universal effect of the triplet’s quar-
tic coupling with the Higgs, which cannot serve the purpose of splitting apart the two
observables. We rule this model out as well.

• The next triplet, Ξ1 is charged and the corresponding Wcs are,

Cφ□ =
1
2

CφD =
2|κΞ1

|2

M4
Ξ1

, (3.52)

Ĉ [1]φW B = −
5|κΞ1

|2

12M4
Ξ1

−
λ′Ξ1

6
p

3M2
Ξ1

, (3.53)

Ĉ [1]φB = −
|κΞ1
|2

4M4
Ξ1

+
λΞ1

4
p

6M2
Ξ1

, (3.54)
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Ĉ [1]φW = −
|κΞ1
|2

12M4
Ξ1

+
λΞ1

6
p

6M2
Ξ1

, (3.55)

�

C eφ
�

i j =
2|κΞ1

|2 (ye)∗ji
M4
Ξ1

, (3.56)

�

Cdφ
�

i j =
2|κΞ1

|2 (yd)∗ji
M4
Ξ1

(3.57)

�

Cuφ
�

i j = −
2|κΞ1

|2 (yu)∗ji
M4
Ξ1

. (3.58)

The Lagrangian is,

∆L ⊃λΞ1
(Ξa†

1 Ξ
a)(φ†φ) +λ′Ξ1

fabc (Ξ
a†
1 Ξ

b)(φ†σcφ)

(κΞ1
)Ξa†

1 (iσ
2φ∗σaφ) + h.c. , (3.59)

where fabc = i/
p

2ϵabc and ϵabc is the totally antisymmetric tensor.

In this case, the operators are directly related to each other, we can rewrite CφW as

follows, Ĉ [1]φW = Ĉ [1]φB/3+
λΞ1

12
p

6M2
Ξ1

, this relation shows that we cannot easily change

the sign of these two operators since they are directly related. Also strong constraints
for the coupling κΞ1

come from the T -parameter. Substituting the values of the Wcs we
have,

∆T = 16.033
|κΞ1
|2

M4
Ξ1

, (3.60)

∆S = −0.008
|κΞ1
|2

M4
Ξ1

− 0.0019
λ′Ξ1

M2
Ξ1

, (3.61)

δRh→γγ = 0.720
|κΞ1
|2

M4
Ξ1

−
0.0067λΞ1

+ 0.0033λ′Ξ1

M2
Ξ1

, (3.62)

δRh→Zγ = 0.244
|κΞ1
|2

M4
Ξ1

−
0.0015λΞ1

+ 0.0011λ′Ξ1

M2
Ξ1

. (3.63)

Setting the T-parameter to be of the order of T ∼ 10−2, we can get a bound for the ratio
|κΞ1
|2/M4

Ξ ∼ 0.6× 10−3 and we rewrite the rest,

∆S ≃ −0.19× 10−2
λ′Ξ1

M2
Ξ1

, (3.64)

δRh→γγ ≃ −10−2
0.67λΞ1

+ 0.33λ′Ξ1

M2
Ξ1

, (3.65)

δRh→Zγ ≃ −10−2
0.15λΞ1

+ 0.11λ′Ξ1

M2
Ξ1

. (3.66)
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From these relation we can see that the two signal strengths cannot be separated. This
model is also explored in ref [126]. The same conclusion is reached and can be seen in
their Figure 6 panel (c), where the difference δRh→γγ −δRh→Zγ is plotted.

• Moving on the last two scalar fields we have a charged field labeledΘ1 in the 4-representation
of SU(2). The Wc expressions read,

Ĉ [1]φB =
λΘ1

16 M2
Θ1

, Ĉ [1]φW = 4 Ĉ [1]φB , (3.67)

Ĉ [1]φW B = −
λ′
Θ2

1φ
2

6 M2
Θ1

. (3.68)

It is evident that we cannot under any circumstance get opposite signs for CφB and CφW .
Apart from the Lagrangian found in eq.(A.7) of ref. [67] we also have the additional
interaction term,

∆L ⊃ λ′
Θ2

1φ
2 φ

†
αΘ

†
1IφβΘ1J C (3)

αIβJ , (3.69)

where summation of the indices is implied. Indices range is for α,β = 1,2 while for
I , J = 1,2, 3. The only non-zero values of the CG tensor read

C (3)1112 = C (3)1223 = C (3)2213 = C (3)2221 = i , (3.70)

C (3)1123 = C (3)2311 = −C (3)1321 = −C (3)2113 = −1 , (3.71)

C (3)1211 = C (3)1322 = C (3)2122 = C (3)2312 = −i . (3.72)

• The same situation stands for the other charged field labeled, Θ3, but we list here the
generated operators for completeness. Part of the Lagrangian can be found on eq.(A.7)
of ref. [67] and the additional part is the same as in the previous bullet, but with the
substitution Θ1 → Θ3 and C (3)

αIβJ → C (4)
αIβJ . The same relations hold for C (4)

αIβJ too. The
Wcs read,

Ĉ [1]φB =
9λΘ3

16 M2
Θ3

, Ĉ [1]φW =
8
27

Ĉ [1]φB , (3.73)

Ĉ [1]φW B = −
λ′
Θ2

3φ
2

4 M2
Θ3

. (3.74)

3.3.2 The case for vector-like fermions

Barring chiral fermions, where constraints from multiple Higgs observables have ruled out this
scenario [125], we can extend the fermion content of the SM by the fields shown in Table 3.3.

The case here is clearer than the scalars because we will always need two fermions to
make up interactions with the Higgs and this saturates the dimension of the corresponding
operator fast. For completeness we list the generated Wcs for each fermion listed in Table 3.3
although none of them can accommodate to the splitting of the observables because their Wcs
are proportional and the dominant ones i.e. CφB and CφW come also with the same sign:

N : Ĉ [1]φB = Ĉ [1]φW =
1
2

Ĉ [1]φW B =
|λN |2

24M2
N

, (3.75)
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Fields Irrep Tree level operators Loop level operators

N (1, 1)0 O5, O(1,3)
φℓ

OφB, OφW , OφW B

E (1,1)−1 Oeφ , O(1,3)
φℓ

OφB, OφW , OφW B

∆1 (1,2)−1/2 Oeφ , Oφe OφB, OφW B

∆3 (1,2)−3/2 Oeφ , Oφe OφB, OφW B

Σ (1, 3)0 O5, Oeφ , O(1,3)
φℓ

OφB, OφW , OφW B

Σ1 (1,3)−1 Oeφ , O(1,3)
φℓ

OφB, OφW , OφW B

Table 3.3: Tree level operators generated by new vector-like fermions.

E : Ĉ [1]φB = 3 Ĉ [1]φW = −
3
4

Ĉ [1]φW B =
|λE |2

8M2
E

, (3.76)

∆1 : Ĉ [1]φB = −3 Ĉ [1]φW B =
|λ∆1
|2

4M2
∆1

, Ĉ [1]φW = 0 , (3.77)

∆3 : Ĉ [1]φB = 5 Ĉ [1]φW B =
5 |λ∆3

|2

12M2
∆3

, Ĉ [1]φW = 0 , (3.78)

Σ : Ĉ [1]φB =
3
7

Ĉ [1]φW = −
1
2

Ĉ [1]φW B =
|λΣ|2

32M2
Σ

, (3.79)

Σ1 : Ĉ [1]φB =
9
7

Ĉ [1]φW =
9
8

Ĉ [1]φW B =
3|λΣ1

|2

32M2
Σ1

. (3.80)

The Lagrangian used to obtain the Wcs for all fermions can be found in eq.(A.12) of ref.
[67], where all relevant coupling are defined. The masses of the heavy fermions are denoted
by Mi , where i = {N , E, ∆1, ∆3, Σ, Σ1}

Summing up, we presented all relevant Wcs, both tree and loop level, of single field exten-
sions, of scalars and fermions, that primarily affect the signal strengths δRh→γγ and δRh→Zγ.
We have found that no single field can accommodate a potential excess in one observable over
the other. We must also mention that we can extend this list of fields with particles that do
not have any linear coupling with the SM and leave the hypercharge as a general parameter
that can be fit to find a suitable value. However, these contributions arise from the quartic
interactions with the Higgs and cannot yield values that align with the single-field framework
previously discussed. They become relevant when considering two-field extensions, as will be
addressed in Section 3.4.

As a general observation, it is important to note that the value of the Wc we aim to achieve
is significantly higher than what is produced in the single-field scenarios. The coefficients that
scale with the coupling-to-mass ratio vary from ideally 10−1 to 10−3, these values need to
be increased by one or two orders of magnitude to satisfy the requirements established in
the SMEFT analysis. Addressing this challenge is complex, as the mass of the heavy field
cannot be reduced significantly without compromising the convergence of the EFT, and the
coupling cannot exceed 4π due to perturbativity constraints. Consequently, we are constrained
to consider models involving additional fields, with the hope that their contributions may
accumulate to achieve the desired effect.
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3.4 Two-field models

In the two field case scenarios we have a plethora of combinations to work with. We can
combine scalars (fermions) with scalars (fermions) and scalars with fermions and analyze
each model that shows some promising characteristics on Wcs. In order to tackle the number
of models that arise from these combinations we can rely on the single field results and add
on top of that new scalar and/or fermion fields that could amend the situation.

In disentangling the two-field models we will aim to categorize the interactions and their
corresponding Wcs systematically, by borrowing results from functional matching techniques
which directly deal with the path integral and contain a form of universality in the results,
independent of the specific interaction of UV physics. In particular, when the matching at
one loop is performed, and only heavy scalars run in the loop the resulting effective action is
called Universal One Loop Effective Action (UOLEA) first introduced in ref. [24]. Functional
matching results have also been expanded to include heavy-light particles in the loop as well as
fermions [27–31, 35, 44, 53, 120]. For our purposes we will resort to results from the original
UOLEA and the heavy-light UOLEA.

In order to generate the operators Cφ(B,W,W B), we need the functional traces to contain
G′µν G′µν, where G′µν = −i gGµν where g is the corresponding coupling of the field strength
tensor Gµν, which directly relates to the gauge group representations of the field. If the fields
have representations under several groups a summation over the different strength tensors
is understood. There are two such traces in the heavy-only UOLEA and another two in the
heavy-light UOLEA for scalar fields. The first two terms have also been presented in Chapter
2, eq. (2.49), while the last two terms can be found in [28],

f̃ 9
i tr

¦

UH
ii G′i,µν G′i,µν

©

, (3.81)

f̃ 13
i j tr

¦

UH
i j UH

ji G′i,µν G′i,µν
©

, (3.82)

f̃ 13A
i tr

¦

UH L
ii′ U LH

i′ i G′i,µν G′i,µν
©

, (3.83)

f̃ 13B
i tr

¦

U LH
i′ i UH L

ii′ G′i′,µν G′i′,µν
©

, (3.84)

where the coefficients f̃ read,

f̃ 9
i = −

1

12M2
i

, (3.85)

f̃ 13
i j =

2M4
i + 5M2

i M2
j −M4

j

12M2
i (∆

2
i j)

3
−

M2
i M2

j

2(∆2
i j)

4
log

�

M2
i

M2
j

�

, (3.86)

f̃ 13A
i =

1

6M4
i

, (3.87)

f̃ 13B
i = −

1

4M4
i

, (3.88)

where Mi denotes the mass of the heavy scalar field. The coefficients are defined as
f̃ = 16π2 f and are obtained through integration of Feynman integrals over momentum. They
are labelled as universal coefficients because they factor out the mass dependence of the UV
physics. The unprimed indices of the U-matrices denote the set of heavy fields, while the
primed indices denote the set of light fields. We have also labeled the mass difference of the
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heavy fields as ∆2
i j = M2

i −M2
j for brevity. The U-matrices are nothing more than differentia-

tion of the Lagrangian with respect to the fields that the subscript indices denote, hence they
contain both fields and couplings which in the end need to be traced throughout all available
spaces of the fields (i.e. flavor, SU(2), Lorentz etc.).

We can now categorize the interactions needed to produce our Wcs of interest through
the terms in eqs. (3.81-3.84). For example, in the first term (3.81) the mass dimension of U
is [UH

ii ] = 2, which must contain two Higgs fields to produce the desired operators, and it has
been differentiated two times with respect to the heavy field, thus we can schematically write
down the Lagrangian term as, ∆L ∼ X iX iH

†H. Following the same line of thought for the
other two terms we can then write the correspondence,

f̃ 9
i tr

¦

UH
ii G′i,µν G′i,µν

©

−→∆L∼ X iX iH
†H , (3.89)

f̃ 13
i j tr

¦

UH
i j UH

ji G′i,µν G′i,µν
©

−→∆L∼ X iX jH + h.c. , (3.90)

f̃ 13A
i tr

¦

UH L
ii′ U LH

i′ i G′i,µν G′i,µν
©

f̃ 13B
i tr

¦

U LH
i′ i UH L

ii′ G′i′,µν G′i′,µν
©







−→∆L∼ X iX i′H + h.c. . (3.91)

We note that for (3.91), the only light scalar in the SM is the Higgs thus X i′ = H and the
interaction becomes ∆L ∼ X iH

†H and the only suitable fields have hypercharge Yi = 0 and
correspond to the neutral singlet S and the triplet Ξ, which were previously discussed. We
can then pair up these two fields with any other one to give us the desired operators. Next,
eq.(3.89) conserves the hypercharge universally, that is this term is going to be present even
if the value of the hypercharge is arbitrary. Lastly, eq.(3.90) is a linear coupling of the Higgs
and the heavy fields so the hypercharge of the corresponding new fields have to obey the
following rule, if we suppose that we leave Yi free, the hyperchage of X j is going to take the
value Yj = Yi + YH with YH = 1/2. In Table 3.4 we present the two-field models that could
generate the operators Cφ(B,W,W B). We split the table depending on the field content, either
we have two scalars labelled as (SS), a scalar and a fermion labeled as (SF) or two fermions
labeled as (F F).

Our strategy to determine the most we can get in the decay h→ Zγ will be to construct a
χ2 with all observables mentioned in Table 3.1, excluding h→ Zγ and leaving it as prediction
for each model. The main reason for substituting the decay h→ Zγ from a constraint to a pre-
diction is that we want more freedom in the parameter space of each model, and leaving this
specific decay as a models’ prediction is more suitable for our purpose. Meanwhile, it yields
slightly better results than having it as a constraint. Seeking a sign difference in the fashion
of Section 3.3 is not an option for this procedure in certain models that we are going to inves-
tigate. The reason behind this, is that Wcs expressions in specific cases become much more
complex and an automated procedure is deemed more useful. Also, Wcs serve as a medium
for the couplings of each UV model. Since we are now considering UV physics with definite
couplings it is more appropriate to discuss couplings directly related to physical observables
instead of Wcs.

We set bounds to the relevant couplings and masses and perform a constrained minimiza-
tion of the χ2 for each model. In the minimization we bound the couplings of each model to
a range of λ∼ [−2,2] so as to account for perturbativity and for the masses we set the lowest
values to be MS(F) ≥ 0.7TeV to avoid issues with the EFT validity, since the lowest scale is the
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Model # Field 1 Field 2 Tree Level

SS101Y2
Sa→ (1,1, 0) Sb→ (1, 1, Y2) Oφ□

SS102Y2
Sa→ (1,1, 0) Sb→ (1, 2, Y2) Oφ□

SS103Y2
Sa→ (1,1, 0) Sb→ (1, 3, Y2) Oφ□

SS302Y2
Sa→ (1,3, 0) Sb→ (1, 2, Y2) Oφ□, OφD, O(e,u,d)φ

SS303Y2
Sa→ (1,3, 0) Sb→ (1, 3, Y2) Oφ□, OφD, O(e,u,d)φ

SS1Y12Y2
Sa→ (1,1, Y1) Sb→ (1, 2, Y1 + 1/2) -

SS2Y11Y2
Sa→ (1,2, Y1) Sb→ (1, 1, Y1 + 1/2) -

SS2Y13Y2
Sa→ (1,2, Y1) Sb→ (1, 3, Y1 + 1/2) -

SS3Y12Y2
Sa→ (1,3, Y1) Sb→ (1, 2, Y1 + 1/2) -

SF101Y2
Sa→ (1,1, 0) Fb→ (1,1, Y2) Oφ□

SF102Y2
Sa→ (1,1, 0) Fb→ (1,2, Y2) Oφ□

SF103Y2
Sa→ (1,1, 0) Fb→ (1,3, Y2) Oφ□

SF302Y2
Sa→ (1,3, 0) Fb→ (1,2, Y2) Oφ□, OφD, O(e,u,d)φ

SF303Y2
Sa→ (1,3, 0) Fb→ (1,3, Y2) Oφ□, OφD, O(e,u,d)φ

F F1Y12Y2
Fa→ (1, 1, Y1) Fb→ (1, 2, Y1 + 1/2) -

F F2Y11Y2
Fa→ (1, 2, Y1) Fb→ (1, 1, Y1 + 1/2) -

F F2Y13Y2
Fa→ (1, 2, Y1) Fb→ (1, 3, Y1 + 1/2) -

F F3Y12Y2
Fa→ (1, 3, Y1) Fb→ (1, 2, Y1 + 1/2) -

Table 3.4: Two field models, all singlets under SU(3), that can generate Cφ(B,W,W B). We have
established the following naming convention for the models. Capital letters denote field content
as described in the text. The first two subscript indices denote gauge quantum numbers under
SU(2)× U(1) for the first field shown in column 2 (Field 1), while the last two denote the gauge
quantum numbers under SU(2)× U(1) for the field in column 3 (Field 2). In the subscripts we
refrain from denoting SU(3) since all field under consideration are singlets under this gauge group.
In columns 2 and 3, the full representation of the gauge group, under SU(3)× SU(2)× U(1) is
shown for the fields considered in the model of column 1. In total there are 18 candidate models.
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Fig. 3.2: The orange color represents the prediction of h→ Zγ for each model while blue represents
the values of h → γγ obtained from the minimization of the couplings and masses (in the non-
degenerate limit).

Higgs vev. In the models where the hypercharge relation obeys Yj = Yi+1/2, the minimization
with respect to the masses is more involved since there is also the degenerate mass limit that
needs to be accounted for. In the non-degenerate case we restrict the mass difference to be
greater than 0.1 TeV keeping of course the lowest bound of 0.7 TeV for both masses. We have
also explored the degenerate mass limit, where in some cases we saw a slight improvement
while in other cases we saw the gap between the two observables widen. Finally, we substitute
the best fit values into δRh→Zγ to get the models’ prediction. The values of the corresponding
Wcs at both tree and loop-level are matched with MatchMakerEFT [40] and, for exclusively
loop generated operators, the expressions from MatchMakerEFT are also cross-checked with
the package SOLD [121].

In Figure 3.2 we present the results of the minimization procedure along with the predic-
tion of h→ Zγ of each respective model and the value of h→ γγ obtained by this minimization.
We observe that only one model predicts the value of δRh→Zγ to be greater than that of δRh→γγ.
The only model capable to boost the one over the other observable, albeit with a negligible
difference is SF103Y2

, containing a neutral scalar singlet and a fermion triplet. The masses of
the particles provided by the minimization subject to the constrains mentioned previously are
for the scalar MS = 1.62 TeV and for the fermion MF = 0.7 TeV, with a hypercharge Y2 = 0.
The exact values of the prediction is δRh→γγ = 0.099 and δRh→Zγ = 0.104. Their difference
is of the order ∼ 0.5% with respect to the SM signal strength µ= 1 and with the assumptions
we have made on the models it can never reach the observed difference of the two signal
strengths.
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3.5 Conclusions

Following the first evidence of the Higgs boson decaying into a photon and a Z-boson by the
ATLAS and CMS collaborations, we addressed the reported excess of ∼ 2σ [119]. We con-
ducted a model-independent analysis in the SMEFT, incorporating various observables in both
the decay and production channels of the Higgs boson. By performing a χ2-minimization, we
found the best-fit values for each Wilson coefficient. This procedure reveals the most general
relations among the Wcs to account for any discrepancy. Our main finding is that the Wilson
coefficients CφB and CφW need to have opposite signs and have comparable magnitudes, while
CφW B needs to be small since it’s heavily constrained by the S-parameter.

Using a model-independent approach, we identified the necessary characteristics that UV
models must possess to account for the excess in h→ Zγ. We considered all scalar and fermion
single-field extensions of the SM that respect the SM gauge group but found that none could ac-
commodate the data. Subsequently, we examined two-field models combining scalars and/or
fermions. The candidate models were categorized based on their content and their universal
loop-integral coefficient using the UOLEA.

We matched all UV models using automated packages and constructed a new χ2 function,
which we minimized with respect to model parameters. As shown in Figure 3.2, out of the 18
model families, only one specific model, which includes a neutral scalar singlet and a neutral
fermion triplet, can boost h → Zγ while preserving the h → γγ decay. However, this model
still cannot fully accommodate the observed discrepancy in the data.

While our analysis primarily focused on scenarios where new physics can be integrated
out and treated within the SMEFT framework, it is insightful to consider the possibility of
going beyond the EFT approach. If the new particles are light, with masses comparable to the
electroweak scale, they cannot be integrated out, and their effects must be treated explicitly
in the theory. For instance, introducing a light scalar and a light fermion triplet directly into
the SM would require us to consider their direct contributions to Higgs decays at the loop
level. These particles could potentially contribute significantly to the h → Zγ while keeping
the h → γγ decay within experimental bounds. This approach necessitates extending the
SM to include these particles explicitly and performing a detailed analysis of their impact on
Higgs observables and other precision measurements, ensuring consistency with experimental
constraints such as electroweak precision tests and flavor physics. While this is beyond the
scope of the present study, it represents a promising avenue for future research that could
potentially explain the observed excess in h→ Zγ decay.

In summary, this study is valuable for providing the values and characteristics of Wcs
capable of generating an enhancement in the decay channel h→ Zγ over h→ γγ. Moreover,
the exploration of various two-field model families, surpassing the limitations of single-field
models, provides insightful perspectives into potential UV physics behind this mild excess in
h→ Zγ. If future data confirm this excess, our attention can pivot towards the investigation
of alternative UV physics as the source of the discrepancy.

In the following chapter, we shift our focus to the flavor sector. Specifically, we investigate
how the Minimal Supersymmetric Standard Model, can impact lepton flavor universality ratios
like RK and RK∗ in an exact manner making approximations only in the full 1-loop expansion
of the theory. We aim to determine whether the MSSM can produce significant deviations in
these ratios without conflicting with existing experimental constraints.
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Chapter 4

The RK in the MSSM

We examine if the MSSM with a general flavour structure is capable of explaining the long-
standing anomalies in b→ sℓ+ℓ− transitions, considering the latest LHCb measurements from
2022 where previous anomalies in the lepton flavor universality (LFU) ratios RK and RK∗ have
diminished. After carefully analyzing the potentially important supersymmetric contributions,
we find that large effects can arise in the region of parameter space with a light wino, a light
muon sneutrino, a relatively light left stop, and sizable mixing among left-handed squarks of
the 2nd and 3rd generation. It is shown that even though the constraints from Bs−B̄s mixing and
B→ Xsγ can be avoided, the maximal effect in R(K(∗)), taking into account LHC constraints, is
below 5%. This chapter is based on unpublished work in collaboration with Andreas Crivellin,
Athanasios Dedes and Janusz Rosiek.
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4.1 Introduction

Building upon the methods and insights of previous Chapters, Chapter 4 shifts focus to another
area where new physics may manifest: flavor-changing neutral currents (FCNCs) in semilep-
tonic b→ sℓ+ℓ− transitions. These processes are highly sensitive to contributions from physics
beyond the SM, making them excellent probes for new particles and interactions at the TeV
scale. In particular, we examine the potential of the Minimal Supersymmetric Standard Model
(MSSM) to account for observed anomalies in these transitions.

In the SM, FCNCs are highly suppressed due to the Glashow–Iliopoulos–Maiani (GIM)
mechanism [138]. The GIM mechanism arises from the unitarity of the Cabibbo Kobayashi
Maskawa (CKM) matrix and the specific structure of quark couplings to the weak interaction.
It ensures that flavor-changing processes occur only at the loop level, with significant can-
cellations among contributions from different quark generations. Specifically, in the SM, the
absence of tree-level FCNCs is a consequence of the universality of the weak interaction and
the alignment of flavor eigenstates.

For the b → sℓ+ℓ− transitions, the dominant SM contributions come from electroweak
penguin and box diagrams involving the exchange of virtual W and Z gauge bosons as well
as photons. The leading-order diagrams are loop-induced and involve internal top quarks and
W gauge bosons. Due to the GIM mechanism, contributions from different quark generations
interfere destructively, leading to a suppression of the overall amplitude.

Importantly, these SM contributions are lepton flavor universal. This means that the in-
teraction strength is the same for all three lepton flavors (electron, muon, and tau), aside from
negligible effects due to differences in lepton masses. As a result, the SM predicts that the ra-
tios should be very close to unity. The experimental measurements of these ratios thus provide
a sensitive test of lepton flavor universality (LFU). Any significant deviation from RK = RK∗ = 1
would indicate new physics that violates LFU.

Semileptonic b → sℓ+ℓ− transitions have garnered significant attention in recent years
due to observed tensions between experimental measurements and SM predictions. Notably,
anomalies have been reported in observables such as the angular observable P ′5 [139–142]
and the branching ratios of B → Kµ+µ− and Bs → φµ+µ− [143–146]. These discrepancies
suggest potential violations of lepton flavor universality (LFU), which is a key feature of the
SM.

Previously, hints of LFU violation were also observed in the ratios R(K) and R(K∗), defined
as:

RK =
Br(B→ Kµ+µ−)
Br(B→ Ke+e−)

, (4.1)

RK∗ =
Br(B→ K∗µ+µ−)
Br(B→ K∗e+e−)

, (4.2)

which were measured to deviate from the SM predictions. However, the latest measurements
by the LHCb collaboration [147, 148] have shown these ratios to be consistent with the SM:

RLHCb
K = 0.949+0.042+0.022

−0.041−0.022 , (4.3)

RLHCb
K∗ = 1.027+0.072+0.027

−0.068−0.026 , (4.4)
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reducing the significance of LFU violation in these observables. Additionally, the latest mea-
surement of Bs → φµ+µ− from CMS [149] is in agreement with the SM prediction [150].
Despite this, global fits still indicate tensions in the b→ sµ+µ− sector, particularly in observ-
ables sensitive to the Wilson coefficient C9 [151–154]. A multitude of studies have attempted
to explain these anomalies through various extensions of the SM, including new gauge bosons
(Z ′) [155–160], leptoquarks [161–163], and loop effects from generic new physics [164–167].
Extensions of the MSSM have also been considered, such as the R-parity violating MSSM [168–
170], gauge group extended MSSM [171–175], and the MSSM with right-handed neutrinos
[176].

The discovery of the Higgs boson in 2012 at the Large Hadron Collider (LHC) [177, 178]
provided a crucial confirmation of the SM but also raised questions about the stability of the
electroweak scale against radiative corrections from higher energy scales. Supersymmetry,
and specifically the MSSM [7, 179, 180], offers a solution by stabilizing the Higgs boson mass
through the introduction of superpartners for each SM particle. Each superpartner has been
introduced in Chapter 1, and more specifically Section 1.3. However, supersymmetric par-
ticles can introduce new sources of flavor violation that are not aligned with the SM flavor
structure, potentially affecting FCNC processes. If these supersymmetric particles are not too
heavy, they can be produced directly at the LHC and can lead to observable effects in precision
measurements.

However, the question remains whether the minimal R-parity conserving MSSM, with a
general flavor structure, can account for the observed anomalies in b → sℓ+ℓ− transitions.
Previous analyses have yielded conflicting conclusions: Ref.[181] suggested that no sizable
effect is possible within the MSSM, while the more recent study in Ref.[182] claimed that
substantial modifications of RK and RK∗ can be achieved.

In this chapter, we aim to clarify the maximal possible size of new physics contributions
to b→ sℓ+ℓ− transitions within the R-parity conserving MSSM. By employing the techniques
discussed in previous chapters, we will analyze how the MSSM’s additional particles and inter-
actions can affect LFU observables, such as RK and RK∗ , as well as LFU-conserving observables
sensitive to FCNCs.

We begin by introducing the operator basis of the Low Energy Effective Field Theory
(LEFT) in Section 4.2, which is appropriate for energies below the electroweak scale. We
review the extraction of the key observables RK and RK∗ and discuss the relevant WCs within
this framework. In Section 4.3, we perform a detailed phenomenological analysis using the
SUSY_FLAVOR package [183–185]. We explore the parameter space of the MSSM, considering
general sources of flavor violation, and evaluate the impact on b→ sℓ+ℓ− observables. We pay
special attention to the constraints from other flavor processes and precision measurements
to ensure the viability of the scenarios considered. Finally, in Section 4.4, we summarize our
findings and discuss their implications for the MSSM and potential extensions. Appendix F
provides the analytic formulas derived using the Flavour Expansion Theorem [186], support-
ing the calculations performed in the main text.

By applying the methods of EFT and matching procedures from earlier chapters, we extend
our investigation of new physics effects beyond the Higgs sector to the flavor sector. The tech-
niques of integrating out heavy particles and determining their contributions to low-energy ob-
servables through WCs are equally applicable here. This approach allows us to systematically
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assess the MSSM’s capacity to account for the observed anomalies in b → sℓ+ℓ− transitions
and to identify the key parameters and interactions responsible for any potential effects.

Moreover, the complementary use of both top-down and bottom-up perspectives, as em-
phasized in previous chapters, enables us to explore the MSSM both as a UV-complete theory
and through its low-energy effective interactions. This dual approach provides a comprehen-
sive understanding of how supersymmetric particles might influence flavor observables and
helps to elucidate the potential for discovering new physics in upcoming experiments.

This chapter thus serves as a continuation of our exploration into the ways in which EFTs
and matching techniques can be utilized to probe physics beyond the SM, as were exemplified
in Chapters 2 and 3. By focusing on the flavor sector and the MSSM, we aim to shed light on
one of the most intriguing areas in particle physics, where hints of new physics continue to
emerge and challenge our understanding of fundamental interactions.

4.2 Results

4.2.1 Operator Bases

Taking into account the LHC constraints [187], we can safely assume that the sparticles are
much heavier than the B-meson mass and use an effective Lagrangian for b→ sℓK+ℓK− (ℓK =
e,µ,τ for K = 1, 2,3) transitions, which is usually written as [188],

Leff =
4GFp

2
V ∗tsVt b

e2

16π2

∑

i,K

CK(′)
i OK(′)

i . (4.5)

Here Vi j are the CKM matrix elements, GF = 1/(
p

2v2) is the Fermi coupling constant (with

v ≈ 246 GeV), e the electric charge and C (′)i (µ) the Wilson coefficients of the corresponding

dimension-6 operators O(′)i (µ). We will match the MSSM on this effective theory at the scale
µ = MW (thus neglecting RGE effects from the SUSY to the EW scale) and then evolve the
coefficients down to the scale µ ∼ mb of the processes. Since we are focusing primarily on
RK ,K∗0 observables, the relevant operators in Eq. (4.5) are [189–191]

OK(′)
9 =

�

s̄γµPL(R)b
� �

ℓ̄KγµℓK
�

, OK(′)
10 =

�

s̄γµPL(R)b
� �

ℓ̄Kγµγ5ℓ
K
�

. (4.6)

Note that we did not consider scalar operators here, which, due to their enhanced effect
in Bs→ µ+µ− [192–195] are not capable of given a sizable effect in RK ,K∗0 [196]. This means
that we will also disregard the Higgs effects in the MSSM and thus work in the low tanβ limit.

Most MSSM calculations have been carried out with the use of chiral basis of Ref. [197]

Leff = −
1

16π2

∑

X ,Y=L,R

CV X Y OV X Y , (4.7)

more natural for this model. Writing down explicitly the flavour indices (I , J for quarks and
K , L for leptons), one has

OI JK L
V X Y =

�

q̄JγµPX qI
� �

ℓ̄LγµPY ℓ
K
�

. (4.8)

Exemplifying the notation, the coefficient C3222
V LL multiplies the operator (s̄γµPL b)(µ̄γµPLµ)

and so on. By comparing Eq. (4.7) to Eq. (4.5) we obtain the respective relation of Wilson
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coefficients in both bases (with λ= −4GF e2V ∗tsVt b/
p

2),
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, (4.9)
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CK
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1
2λ

�

C32KK
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, (4.11)

CK′
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C32KK
VRR − C32KK
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�

. (4.12)

Note that numerically 1/(2λ)≈ 3.7×106 GeV−2. For example, a quick estimate for |C9| ∼ O(1)
with |C3222

V LL | ∼ e4δ23/M2
SUSY results in soft SUSY breaking masses of about MSUSY ≲ 300 GeV,

with maximal flavour squark mixing (defined as the ratio of off-diagonal to diagonal entries in
squark mass matrix) δ23 ∼ O(1). This naive estimate shows that there is a need for a careful
examination of the size of one-loop MSSM contributions, as well as of the current experimental
constraints from indirect and direct SUSY searches on MSSM parameter space.

4.2.2 Observables

Following Ref. [189], the contributions to RK and RK∗ can be (approximately) captured by the
interference terms between SM and the MSSM contributions (∆±) as well as by pure MSSM
ones (Σ±),

RK ≃ 1+∆+ +Σ+ , (4.13)

RK∗0 ≃ 1+ p(∆− −∆+ +Σ− −Σ+) +∆+ +Σ+ , (4.14)

where

∆± = 2 Re

�

CµV LL ± CµVRL

CSM
V LL

− (µ→ e)

�

, (4.15)

Σ± =
|CµV LL ± CµVRL|

2 + |CµV LR ± CµVRR|
2

|CSM
V LL|2

− (µ→ e) . (4.16)

Some remarks regarding the simplification of our notation are in order. The Wilson co-
efficient CSM

V LL refers to the SM contribution C3222
V LL (in the SM this is equal to C3211

V LL ) while

coefficients like CµV LL are pure supersymmetric contributions, e.g. CµV LL ≡ C3222 (SUSY)
V LL . The

parameter p in Eq. (4.14) is the polarization fraction of transverse parallel and longitudinal
contributions to B → K∗ℓ+ℓ− and its value is close to unity - for our numerical analysis, we
will use p ≃ 0.86 [198]. As from Eq. (4.15) it is clear that any CP-violating effects will only
maginally affect the MSSM predictions for RK and RK0∗ , we will assume real SUSY parameters
throughout this chapter.1

1Although in our numerical analysis we shall use the full expressions of Eqs. (4.13) and (4.14), a less precise
(up to 10% error) approximation is to assume that NP contributions are much smaller w.r.t. SM ones and ignore
Σ±, further set p = 1 and therefore get RK ≈ 1+∆+ and RK∗0 ≈ 1+∆−.
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4.2.3 Analytical SUSY contributions

In the MSSM, contributions to RK ,K∗0 arise at one-loop level, like in the SM. The full expres-
sions for the coefficients CV X Y , using exact diagonalization of the mass matrices, have been pre-
sented in Ref. [197] (except for the photon-mediated diagram FγL,R listed here in Appendix F).
These contributions can be decomposed as

C I JK L
V LL = B I JK L

V LL −
e(1− 4s2

W )

2sW cW M2
Z

δK L

�

F J I
Z L −

e(1− 2s2
W/3)

2sW cW

�

ΣJ I
dV −Σ

J I
dA

�

�

+ e2F J I
γLδ

K L , (4.17)

C I JK L
V LR = B I JK L

V LR +
e s2

W

sW cW M2
Z

δK L

�

F J I
Z L −

e(1− 2s2
W/3)

2sW cW

�

ΣJ I
dV −Σ

J I
dA

�

�

+ e2F J I
γL δ

K L , (4.18)

C I JK L
VRR = B I JK L

VRR +
e s2

W

sW cW M2
Z

δK L
�

F J I
ZR +

esW

3cW

�

ΣJ I
dV +Σ

J I
dA

�

�

+ e2F J I
γRδ

K L , (4.19)

C I JK L
VRL = B I JK L

VRL −
e (1− 2s2

W )

2sW cW M2
Z

δK L
�

F J I
ZR +

esW

3cW

�

ΣJ I
dV +Σ

J I
dA

�

�

+ e2F J I
γRδ

K L , (4.20)

containing the contributions from box-diagrams (BV X Y ), Z-penguins (FZ L(R)), and off-shell
photon-penguins (FγL(R)). Note that while the Z− and photon-contributions affect in general
b→ sℓ+ℓ− transitions, their effect in RK ,K∗0 drops out, in eqs. (4.15), as they are lepton flavour
universal.

Chargino box contributions

The box diagram containing chargino-squark-sneutrino in the loop gives

(B I JK L
V LL )C =

e2

4s2
W

Z1n
+ Z1m∗

+ Z LN
ν̃ ZKN∗

ν̃ V J ln∗
dUC ,L V I lm

dUC ,L D2(m
2
Cm

, m2
Cn

, m2
Ul

, m2
ν̃N
) , (4.21)

where the quark-chargino-up-squark vertices are defined in Appendix F, Eq. (F.6), with Z+, Zν̃, ZU

being the rotation matrices diagonalizing the chargino, sneutrino, and up-squark mass matri-
ces, respectively. We consistently follow the notation for vertices from Refs. [199, 200] where
K is defined to be the CKM-matrix and D2 is a loop function, defined in Appendix G, eq. (G.2),
with the arguments, mCn

, mUl
, mν̃N

being the physical masses of charginos, up-squarks and
sneutrinos, respectively.

However, from Eq. (4.21) it is difficult to understand the origin and importance of the
effects. To that end, a very useful method, called Flavour Expansion Theorem (FET), has been
developed in Ref. [186] which algebraically connects the amplitudes calculated in the mass
basis of a Lagrangian to the corresponding expressions in the gauge-basis without performing
any diagrammatic calculations. We note here that, especially for the chargino box diagrams,
after expanding each term in mass-Insertions (MIs) in first order using FET we are only left
with the (BV LL)C terms. The other terms, (BV LR)C , (BVRL)C , and (BVRR)C , in the expansion are
suppressed by higher powers of quark masses or are of higher MI order. Therefore, we will
use (BV LR)C ≈ 0 below.

By expanding (4.21) using the FET to the first order in MI approximation we obtain (sum-
mation over repeating generation indices is always assumed in all subsequent formulae, even

88



4.2. Results

if they repeat more than two times)

(B I JK L
V LL )C =

e4

4s4
W

KNJ∗ KN I δK L D2( |M2|2, |M2|2, (M2
U)

N
LL , (M2

ν)
K ) (4.22)

+
e4

4s4
W

KNJ∗ K M I δK L (cM2
U)

N M
LL E2(|M2|2, |M2|2, (M2

U)
N
LL , (M2

U)
M
LL , (M2

ν)
K) (4.23)

+
e4

4s4
W

KNJ∗KN I (cM2
ν)

K L E2(|M2|2, |M2|2, (M2
U)

N
LL , (M2

ν)
K , (M2

ν)
L) , (4.24)

where M2 is the wino mass, (M2
U)LL the left-handed 3×3 up-squark squared mass matrix2 and

(M2
ν) the sneutrino squared mass matrix.3 Following the notation of Ref. [186], in (4.24) and

throughout the rest of chapter the hatted mass-matrices contain only off-diagonal elements,
i.e. have zeros in the diagonal. Finally, D2 and E2 are loop functions defined in (G.2) and
(G.3), respectively.

The first line in Eq. (4.22), contains only CKM effects which is typical in mSUGRA scenarios
leading to so-called Minimal Flavor Violating (MFV) version of the MSSM. The second line
of Eq. (4.23) contain squark-mass mixing effects, which is typical in a general flavour MSSM
scenario. The last line, Eq. (4.24), contains only Lepton-Flavour Violating (LFV) effects, absent
for RK or RK∗0 but certainly contributing to decays like B → µe or B → µτ [201] – they
have been written here just for complimentary reasons, connecting to the idea of correlations
between lepton flavor conserving and flavor violating decays [202].

In order to have sizable deviations of RK or RK∗0 from unity we need to have a large
mismatch of contributions between the electrons and muons in the final state, i.e. B3222

V LL −
B3211

V LL ≈ B3222
V LL , as an effect with opposite sign is not possible, and non-universal sneutrino

masses are required (also due to the bounds from µ → eγ [203]). This is a non-common
situation and is associated with the supersymmetry breaking scenario at hand. It can certainly
not be a gauge-mediated or an anomaly mediated soft susy-breaking scenario, i.e., (M2

ν)
1 >>

(M2
ν)

2 or (M2
ν)

2 >> (M2
ν)

1.

In order to grasp the effect, let’s assume, without loss of generality regarding the maximal
effect on RK , the former limit together with the case (forbidden by Tevatron and LHC) of light
squarks, (MU)KLL ∼ v, where v is the Higgs vev. The SUSY contributions are normally small
(they are loop induced) therefore it is enough to keep the linear term in RK , i.e, RK ≈ 1+∆+.
By plugging into the result for B3222

V LL from (4.22), and set the SM value for CSM
9 = 4.2, for

the chargino contribution we get in the MFV-like scenario, i.e. for the vanishing squark flavor
mass insertions

RK ,K∗0(χ
±)
�

�

MFV ≈ 1− 0.02
�

v
MSUSY

�2

, (4.25)

where we took, just for estimate purposes, equal masses for particles in the loop,
D2(x , x , x , x) = 1/(3x2). Even in the hypothetical scenario of SUSY masses at the EW scale,
the chargino loop with only CKM flavour effects and large hierarchy of sleptons (or squarks)
are similar to the theoretical error [204] from just the SM QED corrections! Concluding, squark
flavour blind MSSM gives, to a good approximation, ignorable contributions to RK and RK0∗ .

2The subscript "LL" in (M2
U)LL is part of its name, not summed indices.

3As long as the neutrinos are massless, M2
ν

equals M2
L appearing later, c.f. Eq. (4.30), in neutralino expansion.
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bL W̃ µL

t̃L

c̃L

ν̃µ

W̃ µL

B

sL

K∗

Fig. 4.1: The main supersymmetric diagram contributing to RK and RK∗0 .

Let’s now examine the contributions of (4.23) and take heavy (say few TeV) and common
diagonal up squark mass matrix elements, (M2

U)
K
LL = M2

SUSY but at the same time a comparably
large off-diagonal (M2

U)
23
LL matrix element. In such case, all but one eigenvalues stay heavy

while the smallest one (we call it light stop mass2, m2
t̃ ) can become very small. Of course

in this case one has to resume higher order corrections in FET until convergence reached.
In practice, one can prove4 that this can be easily achieved by replacing the diagonal squark
masses in gauge basis, (MU)KLL , by their physical (mass-basis) eigenvalues, m t̃ i

. For m t̃ ∼
M2 ∼ (Mν)22≪ (M2

U)
K
LL ∼ (Mν̃)11, we find,

RK ,K∗0(χ
±)
�

�

MSSM ≈ 1−
παem

6s4
W

δ23
LL

|K∗tsKt b|
v2

m2
t̃

1

CSM
9

≈ 1− 0.4

�

v2

m2
t̃

�

δ23
LL , (4.26)

where we have defined the squark mixing parameter as

(δU)
23
LL = δ

23
LL =

(M2
U)

23
LL

(M2
U)

K
LL

. (4.27)

In (4.26) we used the fact that E2(x , x , y, x , x) ≃ 1/(3x2 y2) for y ≫ x . Now the corrections
are by a factor of 200 bigger than before for δ23

LL ∼ 1. The real reason behind this enhancement
is that now the squark mixing parameter δ23

LL in (4.26) is divided by the small product of CKM
matrices |K∗tsKtd | ≈ 0.04. The value δ23

LL ≈ 1, is of course a maximal limit (otherwise we have a
tachyonic squark!). In fact, as we shall see next, eq. (4.26), the chargino-stop-muon sneutrino
box diagram shown in Fig. 4.1, is the dominant contribution to RK .

Neutralino box contributions

The neutralino - down squark - slepton box diagram gives for CV LL in (4.17) [197]:

(B I JK L
V LL )N =+

1
4

V J ln∗
dDN ,LV I lm

dDN ,L V Lom∗
l LN ,L V Kon

l LN ,L D2(m
2
Nm

, m2
Nn

, m2
Dl

, m2
Lo
)

+
1
2

V J ln∗
dDN ,LV I lm

dDN ,L V Lon∗
l LN ,LV Kom

l LN ,L mNm
mNn

D0(m
2
Nm

, m2
Nn

, m2
Dl

, m2
Lo
) , (4.28)

where D0 and D2 are loop functions defined in (G.1) and (G.2) with arguments physical masses,
mNm

, mDl
, mLo

for neutralinos, down-squarks and sleptons, respectively. The corresponding
interaction vertex VdDN ,L is defined in (F.8) and

V I i j
l LN ,L =

e
p

2sW cW
Z I i

L

�

Z1 j
N sW + Z2 j

N cW

�

+ Y I
l Z (I+3)i

L Z3 j
N , (4.29)

4In the case of Hermitian matrix that contains 2×2 block diagonal sub-matrices one can resume MI to all orders
and arrive at this result. A. Dedes, unpublished notes.
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with ZN , ZD, ZL being rotation matrices from flavour to mass basis as given in Ref. [199, 200].
By neglecting the terms proportional to small down quark masses and terms diagonal in squark
flavour (which are negligible following our discussion that led to eq. (4.25)) the FET expanded
result is5,

(B I JK L
V LL )N =

e4

48c4
W s4

W

δK L(cM2
D)

I J
LL

§

9c4
W

�

E2(|M2|2, |M2|2, (M2
D)

I
LL , (M2

D)
J
LL , (M2

L)
K
LL)

−
2
3

D0(|M2|2, (M2
D)

I
LL , (M2

D)
J
LL , (M2

L)
K
LL)
�

+ s4
W

�

E2(|M1|2, |M1|2, (M2
D)

I
LL , (M2

D)
J
LL , (M2

L)
K
LL)

−
2
3

D0(|M1|2, (M2
D)

I
LL , (M2

D)
J
LL , (M2

L)
K
LL)
�

− 2s2
W c2

W

�

2Re(M1M∗2)E0(|M1|2, |M2|2, (M2
D)

I
LL , (M2

D)
J
LL , (M2

L)
K
LL)

+ E2(|M1|2, |M2|2, (M2
D)

I
LL , (M2

D)
J
LL , (M2

L)
K
LL)
�ª

. (4.30)

Notice that for neutralinos, it is down-squark off-diagonal matrix elements (cM2
D)

32
LL that matter.

Out of the terms in the square brackets in (4.30), the first one seems to be the dominant because
of the prefactor 9c4

W relative to the others that have the suppression of s2
W c2

W (or even worse,
s4
W ). However, there is a leading order cancellation between the PV-functions when we replace

their arguments with physical squark masses as we did before, that is

E2(x , x , x , y, x)−
2
3

D0(x , x , y, x)≃
1

3y4

�

5
2
− log(

y2

x2
)

�

, y ≫ x . (4.31)

This 1/y4 behaviour is effectively of a higher order than the chargino one which scales like
∼ 1/(x2 y2). Therefore, neutralino box-diagrams are not really enhanced even for extreme squark
mass mixing. We shall check this conclusion numerically below (c.f. Fig. 4.2).

Moreover, in the case of neutralinos there are also contributions from BVRL even at first
order in FET expansion. These enter at the leading order in the expressions for RK and RK∗0 ,
(4.13) and (4.14) respectively, and have to be analyzed. We find (neglecting terms suppressed
by down quark masses) that,

B I JK L
VRL = −

e4δK L

12c4
W s2

W

(cM2
D)

I J
RR

�

E2(|M1|2, |M1|2, (M2
D)

I
RR, (M2

D)
J
RR, (M2

L)
K
LL)

−
2
3

D0(|M1|2, (M2
D)

I
RR, (M2

D)
J
RR, (M2

L)
K
LL)
�

. (4.32)

The relevant to RK contribution is now proportional to RH squark mixing, (cM2
D)

23
RR but its

contribution to B I JK L
VRL are again naturally tiny because of the cancellation (4.31). Additionally,

there is now a division of loop functions by a factor of, 12s2
W whereas the chargino diagram is

divided by 4s4
W .

This smallness of LR terms is important for the correlation between observables RK and
RK0∗: since CVRL ≈ 0 we conclude from (4.15) that ∆+ ≈∆−. Furthermore, from Eqs. (4.13)

5We used the code MassToMI [205] in applying FET to all analytical formulae of [197]. We are only focusing
on potentially large effects here and avoid displaying long expressions with subdominant contributions.
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and (4.14) we conclude that the observables RK and RK0∗ in MSSM are predicted to be equal to a
good approximation (in EFT language, we could say up-to dimension 8 contributions). Therefore,
from now on, we only focus on the results for the RK .

Charged-Higgs box contributions

There are no box diagram contributions with charged-Higgs and u-quark to BV LL and BVRL and
therefore to RK in leading approximation (4.15). There are however, universal contributions
to BV LR and BVRR contributing to C (

′)
9 and C (

′)
10 . All these contributions are suppressed by small

lepton Yukawa couplings.

Summary of SUSY contributions to RK

Out of all complicated box diagrams relevant to RK observables in the MSSM, only the chargino
one, shown in Fig. 4.1, is qualified to produce significant effects (i.e. more than few percent)
and only to CV LL coefficient. Although eq. (4.26) is an extreme limit, the seemingly large con-
tribution to RK (perhaps also to C9 via eq. (4.10)) encourages us to proceed further by checking
its compatibility with direct and indirect searches. Before going to the exact numerical results
lets summarize our strategy in getting maximal RK (≈ RK∗0):

• Large mass hierachy between the muon sneutrino and the electron sneutrino,

• Large left up-squark mixing, δ23
LL , of order O(1),

• Wino, stop and a muon sneutrino masses as close as allowed by the experimental searches
to the EW scale.

4.3 Phenomenological analysis

4.3.1 Direct SUSY searches

It is important to note that the dominant SUSY effect in RK∗ , see Eq. (4.26), does not depend
on the Higgsino mixing parameter µ, nor the Bino mass M1. Therefore, one can use these
parameters as “jockers" in evading some experimental constraints, such as searches for elec-
troweak SUSY particles. Moreover, the parameters of the Higgs sector, such as the CP-odd
Higgs mass MA, the ratio of the two vevs tanβ , the holomorphic or non-holomorphic trilinear
soft breaking couplings At and A′t , do not enter in MSSM’s RK at leading order: they can be
used however to set the light Higgs boson mass to the experimental value, mh ≈ 125 GeV. For
the figures below, we have chosen, tanβ = 5, MA = 2 TeV as reference values.

Recent ATLAS searches [206] for long-lived charginos based on disappearing track signa-
tures reveal that chargino masses up to 660 (210) GeV are excluded in scenarios where the
chargino is a pure wino (higgsino). In addition, the same analysis excludes chargino masses
below 300 GeV for a gluino mass below 2.1 TeV. These two suggest heavy gluino and bino LSP.
However, the process most important to us is the Wino/Bino like case where there is a direct
production of χ±1 χ

0
2 where χ±1 and χ0

2 are mass-degenerate (pure) Winos and χ0
1 is a pure

bino state. Then they further decay as χ±1 → W±χ0
1 and χ0

2 → Zχ0
1 . This decay pattern has

been studied in Ref. [207]. We adopt the mass parameters, for M1 = 0.1 TeV, M2 = 0.2 TeV
which are allowed in this compressed spectrum. For M2 ≳ 350 GeV, this area is easily allowed

92



4.3. Phenomenological analysis

but the predicted RK turns out to be 2-3% smaller than the case of M2 = 200 GeV which we
adopt as a eference value in the figures below.

Furthermore, the gluino mass is taken to be m g̃ = 2.5 TeV, consistent with ATLAS and CMS
searches [208]. The Higgsino mass parameter is crucial for b → sγ as we shall see below in
section 4.3.2. We choose two cases: µ= 0.5 TeV [c.f. Fig. 4.2] and µ= 3 TeV [c.f. Fig. 4.3].

Another parameter of interest for RK is the left-handed muon sneutrino mass (to a good
approximation equal to the left-handed smuon mass). This is constrained from early LHC
studies [209] from µ̃−L → µ−χ0

1 decay to be approximately above 300 GeV. First generation
sleptons, the selectrons, must be much heavier in order to obtain appreciable impact on RK ̸= 1.
Therefore, in our numerics below, we choose large mass hierarchy between first and second
generation of sleptons, (Mν)K=1,3 = 3 TeV and (Mν)K=2 = 0.3 TeV, respectively.

As we showed before in (4.26), big effects on RK arise because of large δ23
LL ∼ 1 and

because at this limit the light stop runs quickly towards a zero mass. Direct production of the
light top squark through gluon exchange is not affected by the mixing. The most relevant to
us here is the decay mode of the light top-squark to chargino and bottom quark, t̃1→ b+χ+1 .
The chargino then decays to the neutralino LSP and an off-shell W -boson, χ+1 →W+(∗) + χ0

1 .
Within pMSSM assumptions used in the ATLAS analysis [210] and mχ0

1
= mχ±1 , it is highly

unlikely there is a (left) top-squark mass below 550 GeV. A CMS analysis [211], goes even
higher in top-squark masses. In this study, the flavour changing stop decay, t̃ → c + χ0

1 has
been also searched for. The bounds this time are in the vicinity of 1.2 TeV or so. However, in
a very recent complementary analysis, ATLAS searches for top squark pair production exclude
top squark masses up to 1.25 TeV, considering different decay channels, which can be seen
from Fig. 2 in ref. [212]. We must however note that, to the best of our knowledge, there
are no dedicated top squark mass bound analyses in terms of the MSSM with O(1)-mixing
between 2nd and 3rd generation. We therefore, choose a common scale for the left-up squark
masses at 2.5 TeV and vary the squark mixing parameter, δ23

LL of (4.27) in the region [-1:1]
while forbidding light stop masses with m t̃ ≲ 1.25 TeV.

When δ23
LL ≈ 1 the left sbottom mass is also running to small values, as the light stop

mass does. LHC searches [213, 214] on direct bottom squark production and subsequent
decays b̃→ b+χ0

1 reveal a bound of approximately 1.4 TeV. However, the light stop bound is
saturated first, and therefore we plot exclusion area only from stop searches in our figures.

The MSSM prediction6 for RK when varying the squark mixing parameter δ23
LL and other

parameters optimized as discussed above is given in Fig. 4.2. As displayed in this figure, the
neutralino loop contribution is small (as we analytically proved before), never exceeding a
few percent. The dominant contribution comes from the chargino-up squark loop and the
effect on RK can be as large as ±25% for the aforementioned input set of parameters and
before experimental constraints on top-squark. RK is very sensitive to the value of M2: for
example, taken a wino-LSP with the bound of 660 GeV we observe negligible deviations from
RK = 1. Similar effects arise when varying the smuon mass parameter. The choice of the MSSM
parameter space we adopt here should be regarded as an optimum for large SUSY effects on
the RK observable.

The increase of squark mixing |δ23
LL| in (4.27), increases the (23) element of the left-squark

6We use SUSY_FLAVOR (v2.54)-code [183–185] throughout. This code takes carefully into account the con-
vergence and ressumation effects in b→ sγ due to large squark mixing.
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Fig. 4.2: RK vs. left-squark mass mixing, δ23
LL defined in eq. (4.27), with M2 = 200 GeV and

µ= 0.5 TeV. The blue line is the full MSSM prediction to RK whereas the black line indicates
only the neutralino contribution. The light red area corresponds to m t̃ ≳ 1.25 TeV whereas the
light-grey area to the allowed area by ∆MNP

Bs ≤ 20% constraint. The area drawn with green is
allowed by the by B→ Xsγ constraint at 3σ.

mass matrix and therefore reduces its lightest eigenvalue as |δ23
LL| becomes bigger and bigger.

The LHC bound denoted in Fig. 4.2 reduces the available effect on |RK |which cannot be bigger
than ±4% (note that it is almost symmetric under δ23

LL →−δ
23
LL).

4.3.2 ∆Ms and B→ X sγ

The variation of δ23
LL has a moderate impact on ∆Ms but a great impact on B→ Xsγ (or equiv-

alently on C7, see below). In calculating those and all other observables in our analysis, we
include all chirally enhanced effects in Yukawa couplings and CKM by following Ref. [215]. All
these effects have been implemented in SUSY_FLAVOR v2.54 program, where our numerical
outcomes result from.

By taking the 2σ bound from the experimental observation on∆Ms = 1.1688(14)×10−11

GeV [216] we see from Figs. 4.2, 4.3 that effects on |RK | cannot be bigger than ±5% for both
µ= 0.5 TeV and µ= 3 TeV,

|∆RK |
∆Ms
(MSSM) ≲ 5% . (4.33)

Supersymmetric effects on B→ Xsγ are very well known [217–220]. The operators dom-
inating the B→ Xsγ process are the dipole operators

O(′)7 =
mb

e

�

s̄σµν PR (L) b
�

Fµν . (4.34)

The associated Wilson coefficient to O7 is7

C7 =
e2

mb

�

F32
7γ +msF

32
7γR +mbF32

7γ L

�

, (4.35)

7Similarly for C ′7 by changing L↔ R.
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4.3. Phenomenological analysis

Fig. 4.3: Similar with Fig. 4.2 but with µ = 3 TeV. The allowed (green) region from b → sγ
now reaches large values of δ23

LL .

where F J I
7γ are the relevant one-loop contributions. The function F32

γL contains exactly the same
vertices as the one appear in (4.21) for (BV LL)C and subsequently for RK in eq. (4.13). We
have expanded by using FET the chargino/neutralino/gluino corrections to C7 in (4.35) and
nailed down the dominant contribution (when the RK is enhanced of course) to B→ Xsγ. This
arises from the chargino-squark loop. It reads,

(C7)C ∝ (ÒM2
U)

32
LL

�

F(|M2|2, {(M2
U)

22
LL , (M2

U)
33
LL})

+|µ|2
�

1+
M2µ

|µ|2
tanβ

�

F({|µ|2, |M2|2}, (M2
U)

22
LL , (M2

U)
33
LL})

�

. (4.36)

The function F(x , y, z) is a combination of Passarino-Veltman functions [221], details of which
are not important for our qualitative discussion here.8 Curly brackets denote divided differ-
ences of first order, e.g. F(x , {y, z}) ≡ F(x ,y)−F(x ,z)

y−z or second order, e.g F({x , y}, {z, w}) =
F(x ,{z,w})−F(y,{z,w})

x−y and so on. One can read definitions and properties of divided differences
from Refs. [186, 203]. As we obtain from (4.36), for similar values of M2 and µ the effect
from δ32

LL = δ
23
LL = O(1) onto b→ sγ, grows even larger with tanβ .

The 3σ allowed region from B(B→ Xsγ)when varying δ23
LL with µ= 500 GeV is presented

in Fig. 4.2 – it is denoted in green colored area. Even within 3σ of the experimental observation
for B(B→ Xsγ) = (3.32±0.15)×10−4 [216], the squark mixing is constrained to be between
−0.2≲ δ23

LL ≲ 0.7. By setting this bound in Fig. 4.2 we obtain

|∆RK |
b→sγ
(MSSM) ≲ 3% , for |µ|= 500 GeV . (4.37)

There is however a cancellation/suppression mechanism that takes place in (4.36) for large
values of Higgsino mass |µ|. In this case and because of the limit
limx−>∞F({x , y}, {z, w}) = −F(y,{z,w})

x we get

(C7)C ∝ (ÒM2
U)

32
LL

�

M2

µ
tanβ

�

F(|M2|2, {(M2
U)

22
LL , (M2

U)
33
LL})→ 0 , |µ| ≫ M2 tanβ . (4.38)

8Of course in our numerical results and in figures, exact formulae are taken into account in SUSY_FLAVOR
program.
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Hence there is more room for RK now. For example, for µ = 3 TeV and keeping tanβ = 5
throughout we obtain from Fig. 4.3 that the LL squark mixing lies in the region −0.7≲ δ23

LL ≲
0.9 and this translates in9

|∆RK |
b→sγ
(MSSM) ≲ 10% , for |µ|= 3 TeV . (4.39)

Other cancellation mechanisms [222] may result from varying δ23
RR and δ23

LR which affect F7γR

and F7γ functions respectively. As a consequence, fine cancellation between these and δ23
LL

effects on b→ sγmay occur. One can switch on effects from other squark mixings, in particular
δ23

LR, But since δ23
LL ≈ 1, we need to have an exceedingly fine tuned situation with other squark

mixings, δ23
LR,δ23

RR, of order one. Even though such a case could occur in multi-parametric
scans, it is unlikely to survive due to other B-observable constraints, such as Bs − B̄s mixing,
and Bs→ µ+µ−. Therefore, we believe that the limit of large µ is the only solution in relaxing
the b→ sγ constraint when δ23

LL = O(1) allowing for more room in RK MSSM predictions [see
eq. (4.39)].

Muon anomalous magnetic moment

Because the muon slepton and the Wino/Bino masses are nearby the EW scale, it is tempting
to discuss here another anomaly, the muon (g−2) anomaly. Recent BNL measurements [223]
show a 4.2σ deviation from the SM if data driven dispersion relations are adopted: ∆aµ =
aexp
µ − aSM

µ = (251± 59)× 10−11. The FET expansion to various contributions has been per-
formed in App. E.1 of Ref. [203]. The fact that we need large µ≫ M2 tanβ for RK in order to
avoid the b→ sγ constrain, amusingly results to completely analogous suppression for ∆aµ!
For the input parameters of Fig. 4.4 we obtain ∆aµ ≈ 14 × 10−11 which is far too small to
explain the current deviation.

MSSM C9 and C10 in our analysis

It is customary to present the global fits from all possibly relevant observables in terms of the
low energy Wilson coefficients C9 and C10 defined in eqs. (4.10) and (4.12). A partial list of
recent reference analyses is given in our introduction section. Although RK is entirely driven
by the box MSSM diagram in Fig. 4.1, for b→ sµ+µ−, the MSSM predictions for C9 may not
be large due to cancellations between penguin and box diagrams. In fact, this is what exactly
happens here for the RK -optimized parameter space we studied and displayed in Fig. 4.4:
There is a partial cancellation between the photon penguin10, and the box-diagrams. The Z-
penguin turns out to be numerically subdominant for C9 since it is proportional to, (1− 4s2

W )
as it is obvious from eq. (4.17).

After applying the FET in relevant box and photon penguin diagrams, we find the dom-
inant contribution that again arises from the chargino-up-squark loop. For equal masses of
M2 = Mµ̃ = m t̃ ≪ mq̃ we find for the Wilson coefficients of C9 and C10 contributing to the
process b→ sµ+µ−

C (MSSM)
9 ≃ −

�

παem

12s4
W

�

�

v2

m2
t̃

�

�

δ23
LL

|K∗tsKt b|

�

�

1−
7
3

s2
W

�

,

9Note that for µ = −3 TeV we obtain a bound −0.9 ≲ δ23
LL ≲ 0.7 and hence the bound in (4.39) is for absolute

RK and µ values.
10The photon-penguin is calculated and expanded with FET in App. F.
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Fig. 4.4: MSSM contributions to C9 and C10 for the same inputs as in Fig. 4.3.

C (MSSM)
10 ≃

�

παem

12s4
W

�

�

v2

m2
t̃

�

�

δ23
LL

|K∗tsKt b|

�

.

Obviously, C9 and C10 are not equal in absolute values. The partial cancellation in C9 cannot
be mitigated by varying the parameters within the MSSM. It is important to emphasize that
the parameter space we have explored is specifically chosen to optimize the observables RK

and RK0∗; it is not a comprehensive or general scan of the entire parameter space of the MSSM.
Within this parameter space, even the maximum values for C9 and C10 shown in Fig. 4.4 are
not able to explain all B-anomalies combined but RK and RK0∗ can be brought not further off
than current experimental values. Combined analyses are useful but require careful attention.

Another Interesting Scenario

In the recent summarizing plot by ATLAS, see Fig. 2 of [212], instead of bounding the stop to
be above 1.25 TeV, one may consider the region where the stop mass is around 600 GeV and
the neutralino mass is around 400 GeV. In this section, we will try to extract the maximum
effect in the RK from this region, which for brevity we call the ‘ATLAS gap’. To achieve this,
we will resort to scanning the m

et1
−m

eχ0
1

plane and draw contours of the values of RK on this
plane, since this will be more illuminating on the points that fall into this region.

Our initial strategy is to find optimal values for δ23
LL , i.e. that give the largest contribution

to the RK , while simultaneously avoiding constraints from direct searches and the experimental
observables, b→ sγ and ∆Ms. More specifically, for the scan we set all diagonal squark mass
matrices to take equal values inside the range [1,13] TeV, with a step of 0.1 TeV, and we co-vary
the Bino and Wino masses, with an increment of 10 GeV, always keeping a 50 GeV mass gap
from each other. Finally, we scan for large values of δ23

LL , in the range δ23
LL = [0.90, 0.99] in

0.01 bins. The rest details of the scan as well as the numerical values of the other parameters
are shown in the table below. The code SUSY_FLAVOR outputs the mass eigenstates, of the
stop, the neutralino and the values of the RK during the scan. Then the allowed values of
the RK , by experimental bounds, are plotted on top of the ATLAS exclusion region, for each
specific δ23

LL in Fig. 4.5.
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4. THE RK IN THE MSSM

Parameter Value

MA 2 TeV

tanβ 4

µ 3 TeV

M1 [300,600] GeV

M2 600 GeV

M3 6 TeV

(ML)22
LL 600 GeV

(ML)I I
LL , I = 1,3 3 TeV

(ML)I I
RR, I = 1, . . . 3, 3 TeV

(MU ,D)I I
X X , I = 1, . . . 3, X = L, R [1,10] TeV

(δU)33
LR 0.35

δ23
LL 0.99

Table 4.1: Initialized parameters for scanning the stop-neutralino plane.

One of the most stringent constraint comes from Bs − B̄s mixing. For that reason we first
plot the allowed regions from that bound. The largest value of δ23

LL to open up the region into
the ATLAS ‘gap’ is found at δ23

LL = 0.96. Since we can safely land Bs − B̄s mixing in the ATLAS
‘gap’ we turn our attention to the second most stringent constraint, which comes from b→ sγ.
Motivated by the need to allow as much parameter space as possible we fix the value of the
off-diagonal element at δ23

LL = 0.96 and instead, scan for a range of (δD)23
LR values, where a

known enhancement of b→ sγ exists [224]. The range of the scan is (δD)23
LR = [−0.99, 0.99]

with an increment of 0.01, which from now on we denote as (δD)23
LR = δ

32
LR. The rest of the

parameters are left the same as in the table above. Again, we plot the, allowed by b → sγ
bound, RK regions in the the calculated neutralino-stop plane on top of the ATLAS exclusion
regions, for various δ23

LR. We find that this bound can be safely avoided and a large region in
the parameter space opens up, including the ATLAS gap.

In the contour plot below Fig. 4.5 we show how the parameter space in the stop-neutralino
plane opens up into the ATLAS gap before and after allowing for LR-mixing between the
squarks. We find that the RK deviates more for LR mixing values in the region δ23

LR = [0.3, 0.4].
Even though this specific region in the parameter space is fully allowed the difference doesn’t
exceed the value shown below,

|∆RK |
gap
(MSSM) ≲ 5% , (4.40)

which is what we have achieved in the previous scenario as well, enforcing the case of just a
5% difference even more.

4.4 Conclusions

After clearing up analytically the complicated form of several SUSY contributions by using the
Flavour Expansion Theorem (FET) we find that large RK happens when the stop, chargino
and muon-sneutrino are close to the electroweak scale and the left-squark mixing of second
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4.4. Conclusions

Fig. 4.5: The final result of our last scenario is presented here for δ23
LL = 0.96. On the left plot

we have δ23
LR = 0, while on the right a stark difference can be seen for δ23

LR = 0.30. By allowing
LR squark mixing we have opened up a considerable amount of points in the parameter space
inside the allowed gap of the ATLAS exclusion region.

and third generation is close to unity. In principle, MSSM can result in up-to 45% corrections
on RK as it is shown analytically in (4.26). However, this is a heavily constrained region by
direct LHC SUSY searches. Moreover, RK is further constrained by flavour observables too,
mainly from the B → Xsγ process since B(B → Xsγ) is affected by similar Feynman diagrams
as RK does. The conclusion is that, in the region of heavy Higgsino mass parameter µ where
B(B→ Xsγ) is suppressed, MSSM effects on RK and RK0∗ , in both scenarios that we examined,
can reach a ±5%. Therefore, the MSSM prediction, RK = RK0∗ = 1± 0.05, closes down within
current experimental values, (4.3) and (4.4).
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Chapter 5

Conclusions and future directions

This thesis aimed to investigate the effects of new interactions in the low-energy regime
through the lens of Effective Field Theory (EFT). Specifically, we sought to demonstrate the
complementarity of employing both the top-down and bottom-up approaches in EFTs. We
leveraged statistical techniques by utilizing both experimental data and theoretical calcula-
tions, while also developing methods and universal results through the abstract mathematical
structures in the functional matching formalism using the path integral. From a physics stand-
point, we addressed timely issues such as neutrino masses, signal strength deviations in Higgs
boson decays, as well as lepton flavor universality ratios.

In Chapter 2, we derived a universal one-loop matching formula for all scalar leptoquark
extensions using functional methods. We successfully decoupled heavy modes from a non-
trivial model within SMEFT, comprising an SU(2) doublet and a triplet, both carrying color
charge under SU(3). This enabled us to analyze their contributions to low-energy observables,
revealing notable effects on neutrino mass generation through the dimension-five Weinberg
operator, the anomalous magnetic moment of the muon, and electric dipole moments. Further-
more, we placed strict bounds on baryon number-violating couplings to avoid proton decay
and explored the perturbativity and EFT validity of the model. Lastly, this procedure gener-
ates the majority of the operators in SMEFT, serving as an excellent benchmark for several
automated packages that perform the matching.

In Chapter 3, utilizing the bottom-up approach, we conducted a model-independent sta-
tistical analysis within SMEFT to pinpoint the values of the Wilson coefficients required to
explain the observed deviation in the decay h→ Zγ. We constructed a chi-squared, χ2, statis-
tical framework incorporating covariance matrices and contour plots to analyze the parameter
space of the Wilson coefficients. Our analysis revealed that certain dimension-six operators,
specifically those modifying the Higgs-gauge boson couplings, must have Wilson coefficients of
particular magnitudes to reconcile the experimental data with theoretical predictions. We ex-
plored several single- and two-field scalar and fermionic extensions of the SM, such as adding
new scalar singlets or doublets and vector-like fermions, to assess their viability in matching
the required Wilson coefficients. These models were analyzed using both the top-down ap-
proach, through explicit matching onto SMEFT, and the bottom-up approach, by comparing
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their predictions with experimental constraints. Only a two-field model was able to produce an
excess in the data; however, it still did not fully match the experimentally observed deviation.

In Chapter 4, We investigated the lepton flavor universality ratios RK and RK∗ , which had
previously exhibited deviations from SM predictions but have recently shown diminished dis-
crepancies. By matching the MSSM onto LEFT, we calculated the maximum deviations in these
ratios that the MSSM could accommodate without conflicting with existing experimental con-
straints. Our findings indicated that, within the parameter space allowed by current data, the
MSSM can produce only minimal deviations in these ratios. This suggests that the MSSM, in its
minimal form, is unlikely to fully account for significant deviations in lepton flavor universality
ratios, highlighting the need to consider extended models or alternative explanations.

This thesis makes several contributions to the field of particle physics. The development of
a universal one-loop matching formula for scalar leptoquarks enhances the theoretical toolkit
available for studying new physics scenarios. It allows for systematic and consistent incorpo-
ration of leptoquark effects into SMEFT analyses, facilitating comparisons between different
models and experimental data, and adds to the collection of fully worked-out matching ex-
amples in SMEFT. Our work on Higgs boson decays provides valuable insights into how de-
viations from SM predictions can be interpreted within the EFT framework. By constraining
the Wilson coefficients and exploring viable SM extensions, we contribute to the understand-
ing of possible new physics in the Higgs sector and provide guidance for model-building. The
analysis of lepton flavor universality ratios within the MSSM offers important perspectives on
the model’s capabilities and limitations. It underscores the challenges in explaining flavor
anomalies within minimal supersymmetric frameworks and highlights the need for alterna-
tive models or mechanisms. By employing both the top-down and bottom-up approaches,
this thesis demonstrates their complementarity in exploring new physics. The top-down ap-
proach allows for detailed model-specific predictions, while the bottom-up approach provides
model-independent constraints essential for guiding theoretical developments.

While this research advances our understanding, several limitations should be acknowl-
edged. The conclusions drawn from specific SM extensions are inherently dependent on the
chosen models and their parameter spaces; other viable models or parameter choices not ex-
plored in this thesis could offer alternative explanations. The EFT approach relies on the as-
sumption that new physics effects can be captured by higher-dimensional operators suppressed
by a high-energy scale Λ. If new physics lies at energy scales close to current experimental
reach, or if the operator expansion does not converge rapidly, the EFT framework may be less
effective. The analyses involve uncertainties from both experimental measurements and the-
oretical calculations. Statistical uncertainties in experimental data, as well as approximations
made in theoretical computations (e.g., neglecting higher-loop corrections), can impact the
precision of the results.

In conclusion, this thesis contributes to the ongoing effort to uncover physics beyond the
Standard Model by providing new methods, analyses, and insights. The development of a
universal matching formula for scalar leptoquarks and the application of both top-down and
bottom-up approaches enrich the theoretical landscape and offer pathways for interpreting
experimental observations. Our work underscores the importance of EFT as a powerful frame-
work for bridging the gap between high-energy theories and low-energy phenomenology.

The findings presented here not only enhance our understanding of specific phenomena,
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such as Higgs boson decays and lepton flavor universality ratios, but also illustrate the broader
utility of combining different theoretical approaches. As experimental precision continues to
improve and new data become available, the methods and results of this thesis will serve as
valuable resources for further investigations into the fundamental laws governing the universe.

Building on the research conducted in this thesis, several avenues for future work are
proposed. Investigate the impact of two-loop and higher-order corrections in the matching
procedures for leptoquarks and other new particles. This would improve the precision of the-
oretical predictions and potentially reveal subtle effects not captured at one-loop order. Extend
the analysis to include other beyond-the-Standard-Model scenarios, such as models with vec-
tor leptoquarks. This could provide a more comprehensive understanding of possible new
physics effects. Utilize new data from the Large Hadron Collider (LHC) and future colliders
to refine the constraints on Wilson coefficients and test the viability of proposed models. Im-
proved measurements of Higgs boson properties, flavor observables, and rare decays will be
particularly valuable. Create computational tools and software packages that implement the
universal matching formulas and statistical analysis frameworks developed in this thesis. This
would facilitate broader use by the research community and enable more efficient exploration
of parameter spaces. Incorporate advanced statistical methods, such as Bayesian inference or
machine learning algorithms, to improve the analysis of experimental data and the extraction
of constraints on theoretical models.

The pursuit of physics beyond the Standard Model remains one of the most exciting and
challenging endeavors in modern science. This thesis contributes to this quest by offering new
tools and perspectives that aid in the interpretation of experimental results and the develop-
ment of theoretical frameworks. As we continue to probe the frontiers of particle physics, the
synergy between theoretical innovation and experimental exploration will be essential. It is
our hope that the work presented here will inspire further research and ultimately contribute
to a deeper understanding of the fundamental constituents of matter and their interactions.
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Appendix A

Lagrangian and X-matrices for scalar
leptoquarks

We append here the general Lagrangian for all scalar leptoquarks and the relevant X-matrices
needed to construct the EFT Lagrangian at one-loop. It can be split into three parts, in
eqs. (2.6),(2.7) and (2.8). The notation for LQs is given in Table 2.1.

The LQ-SM fermion interactions are,

LLQ-f =
��

λ1L
pr

�

q̄c
pi · ε · ℓr +

�

λ1R
pr

�

ūc
i er

�

S1i + h.c.

+
�

(λ/BL
pr )ε

i jk q̄p j · ε · qc
rk + (λ

/BR
pr )ε

i jk d̄p j uc
rk

�

S1i + h.c.

+
�

(λ̃1
pr) d̄

c
pi er + (λ̃

1/B
pr )ε

i jk ūp j uc
rk

�

S̃1i + h.c.

+
�

(λ2LR
pr ) q̄piαer − (λ2RL

pr ) ūpi ℓrβ ε
βα
�

S2iα + h.c.

+ (λ̃pr) d̄pi S̃
T
2i · ε · ℓr + h.c.

+
�

(λ3L
pr ) q̄

c
pi · ε ·σ

I · ℓr + (λ
3/B
pr )ε

i jk q̄p j ·σI · ε · qc
rk

�

S I
3i + h.c. . (A.1)

The LQ-Higgs interactions read,

LLQ-H = −
∑

n

�

M2
n +λHn |Sn|2

�

|H|2 +
∑

n=2,2̃

λnn (S
†
ni ·H) (H

† · Sni)

�

−A2̃1 S†
1i (S̃

†
2i ·H) + A2̃3 S I†

3i (S̃
†
2i ·σ

I ·H)

+ λ22̃ (S
†
2i ·H) (H

T · ε · S̃2i) +λ31̃ S̃†
1i (H

T · ε ·σI ·H)S I
3i

+ λH13 (H
† ·σI ·H)S I†

3i S1i + h.c.
�

− iλεH3 ε
I JK (H† ·σI ·H)SJ†

3i SK†
3i . (A.2)

Where the index n runs through, n = 1, 1̃, 2, 2̃, 3 in one to one correspondence to the sets
�

S1, S̃1, S2, S̃2, S3

	

,
�

M1, M̃1, M2, M̃2, M3

	

and
�

λH1, λ̃H1,λH2, λ̃H2,λH3

	

.

Finally, self-interactions among scalar leptoquarks are

LS = −V (S) , (A.3)

107



A. INTERACTIONS OF SCALAR LEPTOQUARKS

where V (S) is the tree-level potential that is built from gauge group invariant combinations
among LQ fields. In general V (S) for all LQs is quite lengthy. For combinations S1 + S̃2, the
potential V (S1, S̃2) can be read from (2.83), for S1 + S3 from eq. (2.3) of ref. [64] while the
most general one in eqs. (46) and (49) of ref. [225]. Note that X (U)-matrices are constructed
solely from simple second field derivatives of V (S) and there is no need to be written down
explicitly.

In what follows we reserve letters i,α, p,µ, A and I to denote the respective field indices in
the left hand side multiplet ϕ̄ = (ϕ̄S , ϕ̄L), while the letters j,β , r,ν, B, J are used for the right
hand side multiplet ϕ = (ϕS , ϕL) and we suppress spinor indices. Each letter represents the
respective gauge group representation given in Table 2.1. Additionally, the chirality projection
operators regarding the Weyl to Dirac conversion of fermions mentioned in the main text, are
left implicit.

A.1 XSS

US1S1

US†
1S1
= λH1|H|2δi j +

∂ 2V

∂ S†
1i ∂ S1 j

, (A.4)

US1S†
1
= λH1|H|2δi j +

∂ 2V

∂ S1i ∂ S†
1 j

. (A.5)

US1S̃2

US1S̃2
= A∗

2̃1
H∗βδi j +

∂ 2V

∂ S1i ∂ S̃2 jβ
, (A.6)

US†
1S̃∗2
= A2̃1Hβδi j +

∂ 2V

∂ S†
1i ∂ S̃∗2 jβ

. (A.7)

US1S3

US†
1S3
= λ∗H13δi j (H

†σJ H) +
∂ 2V

∂ S†
1i ∂ SJ

3 j

, (A.8)

US1S∗3
= λH13δi j (H

†σJ H) +
∂ 2V

∂ S1i ∂ S I∗
3 j

. (A.9)

US̃1S̃1

US̃†
1S̃1
= λ̃H1|H|2δi j +

∂ 2V

∂ S̃†
1i ∂ S̃1 j

, (A.10)

US̃1S̃†
1
= λ̃H1|H|2δi j +

∂ 2V

∂ S̃1i ∂ S̃†
1 j

. (A.11)

US̃1S3
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US̃†
1S3
= −λ31̃δi j (H

T · ε ·σJ ·H) +
∂ 2V

∂ S̃†
1i ∂ SJ

3 j

, (A.12)

US̃1S∗3
= λ∗

31̃
δi j (H

† ·σJ · ε ·H∗) +
∂ 2V

∂ S̃1i ∂ SJ∗
3 j

. (A.13)

US2S2

US†
2S2
= δi jδαβλH2|H|2 −λ22δi j HαH∗β +

∂ 2V

∂ S†
2iα ∂ S2 jβ

, (A.14)

UST
2 S∗2
= δi jδαβλH2|H|2 −λ22δi j H∗αHβ +

∂ 2V
∂ ST

2iα ∂ S∗2 jβ

. (A.15)

US2S̃2

US†
2S̃2
= λ22̃δi j Hα (ε ·H)Tβ +

∂ 2V

∂ S†
2iα ∂ S̃2 jβ

, (A.16)

UST
2 S̃∗2
= λ22̃δi j H∗α (ε ·H

∗)β +
∂ 2V

∂ ST
2iα ∂ S̃∗2 jβ

. (A.17)

US̃2S̃2

US̃†
2S̃2
= δi jδαβ λ̃H2|H|2 −λ2̃2̃δi j HαH∗β +

∂ 2V

∂ S̃†
2iα ∂ S̃2 jβ

, (A.18)

US̃T
2 S̃2
=

2
3
λ5ε

i jk
�

εαα1 S̃2 jα1
H∗β + S̃2kα1

εα1βH∗α − ε
αβ(H† · S̃2k)

�

+
∂ 2V

∂ S̃T
2iα ∂ S̃2 jβ

, (A.19)

US̃†
2S̃∗2
=

2
3
λ5ε

i jk
�

εαα1 S̃2kα1
Hβ + S̃2kα1

εα1βHα − εαβ(S̃
†
2k ·H)

�

+
∂ 2V

∂ S̃†
2iα ∂ S̃∗2 jβ

, (A.20)

US̃T
2 S̃∗2
= δi jδαβ λ̃H2|H|2 −λ2̃2̃δi j H∗αHβ +

∂ 2V

∂ S̃T
2iα ∂ S̃∗2 jβ

. (A.21)

US̃2S1

US̃T
2 S1
= A∗

2̃1
H∗αδi j +

∂ 2V

∂ S̃T
2iα ∂ S1 j

, (A.22)

US̃†
2S†

1
= A2̃1Hαδi j +

∂ 2V

∂ S̃†
2iα ∂ S†

1 j

. (A.23)

US̃2S2

US̃†
2S2
= λ22̃δi j H∗β (ε ·H

∗)α +
∂ 2V

∂ S̃∗2iα ∂ S2 jβ
, (A.24)

US̃T
2 S∗2
= λ22̃δi j Hβ (ε ·H)Tα +

∂ 2V

∂ S̃2iα ∂ S∗2 jβ

. (A.25)

US̃2S3
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US̃†
2S∗3
= A2̃3δi j (σ

J ·H)α +
∂ 2V

∂ S̃∗2iα ∂ SJ∗
3 j

, (A.26)

US̃T
2 S3
= A∗

2̃3
δi j (σ

J ·H∗)Tα +
∂ 2V

∂ S̃2iα ∂ SJ
3 j

. (A.27)

US3S3

US†
3S3
= λH3δi j δ

I J |H|2 + iλεH3 ε
I JK (H†σK H)δi j +

∂ 2V
∂ S I∗

3i ∂ SJ
3 j

, (A.28)

UST
3 S3
= λH3δi j δ

I J |H|2 − iλεH3 ε
I JK (H†σK H)δi j +

∂ 2V
∂ S I

3i ∂ SJ∗
3 j

. (A.29)

US3S1

US†
3S1
= λH13δi j (H

†σI H) +
∂ 2V

∂ S I∗
3i ∂ S1 j

, (A.30)

UST
3 S∗1
= λ∗H13δi j (H

†σI H) +
∂ 2V

∂ S I
3i ∂ S∗1 j

. (A.31)

US3S̃1

US†
3S̃1
= λ∗

31̃
δi j (H

† ·σI · ε ·H∗) +
∂ 2V

∂ S I∗
3i ∂ S̃1 j

, (A.32)

UST
3 S̃∗1
= −λ31̃δi j (H

T · ε ·σI ·H∗) +
∂ 2V

∂ S I
3i ∂ S̃∗1 j

. (A.33)

US3S̃2

US†
3S̃∗2
= −A2̃3δi j (σ

I ·H)β +
∂ 2V

∂ S I∗
3i ∂ S̃∗2 jβ

, (A.34)

UST
3 S̃2
= −A∗

2̃3
δi j (σ

I ·H∗)Tβ +
∂ 2V

∂ S I
3i ∂ S̃2 jβ

. (A.35)

Matrix Structure

USnSm
=

�

US†
nSm

US†
nS∗m

UST
n Sm

UST
n S∗m

�

, (A.36)

with n, m = 1, 1̃, 2, 2̃, 3. All combinations make up the whole matrix structure of the heavy-
only USS. Here we have listed all terms involving the Higgs field as well. There are also terms
coming from the potential of all leptoquarks which are found by the general formula,

US†
nSm
=

∂ V

∂ S†
n ∂ Sm

, US†
nS∗m
=

∂ V

∂ S†
n ∂ S∗m

, UST
n Sm
=

∂ V
∂ ST

n ∂ Sm
, UST

n S∗m
=

∂ V
∂ ST

n ∂ S∗m
. (A.37)

110
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A.2 XSL

USnf

US1ℓ
= −(λ1L

pr) q̄
c
piαε

αβ , US†
1ℓ

c = −(λ1L
pr)
∗ q̄piαε

αβ , (A.38)

US†
1q = 2(λ/BL)∗q̄c

pkαε
αβεi jk , US†

1qc = (λ1L
pr)

†δi j ℓ̄pαε
αβ , (A.39)

US1q = (λ
1L
pr)

T δi j ℓ̄
c
pαε

αβ , US1qc = 2(λ/BL
pr )ε

i jkq̄pkαε
αβ , (A.40)

US†
1u = (λ

/BR
pr )
∗ d̄ c

pk ε
i jk , US†

1uc = −(λ1R
pr )

† ēp δi j , (A.41)

US1u = −(λ1R
pr )

T ēc
p δi j , US1uc = (λ/BR

pr )ε
i jk d̄pk , (A.42)

US1e = −(λ1R
pr )ū

c
pi , US†

1ec = −(λ1R
pr )
∗ ūpi , (A.43)

US†
1d = −(λ

/BR
pr )

† ūc
pkε

i jk , US1d c = −(λ/BR
pr )

T εi jkūpk , (A.44)

US̃†
1u = −2(λ̃1/B

pr )
† ūc

pk ε
i jk , US̃1uc = 2(λ̃1/B

pr ) ūpk ε
i jk , (A.45)

US̃1e = −(λ̃
1
pr) d̄

c
pi , US̃†

1ec = −(λ̃1
pr)
∗ d̄pi , (A.46)

US̃1d = −(λ̃
1
pr)

T ēc
p δi j , US̃†

1d c = −(λ̃1
pr)

† ēp δi j , (A.47)

UST
2 ℓ
= −(λ2RL

pr ) ūpi ε
αβ , US†

2ℓ
c = −(λ2RL

pr )
∗ εαβ ūc

pi , (A.48)

US†
2q = −(λ

2LR
pr )

†δαβδi j ēp , UST
2 qc = −(λ2LR

pr )
T δαβδi j ēc

p , (A.49)

US†
2u = (λ

2RL
pr )

†δi j ℓ̄pβε
βα , UST

2 uc = (λ2RL
pr )

T δi j ℓ̄
c
pβ ε

βα , (A.50)

UST
2 e = −(λ

2LR
pr ) q̄piα , US†

2ec = −(λ2LR
pr )

∗ q̄c
piα , (A.51)

US̃T
2 ℓ
= −(λ̃pr) d̄pi ε

αβ , US̃†
2ℓ

c = −(λ̃pr)
∗ d̄ c

pi ε
αβ , (A.52)

US̃†
2d = (λ̃pr)

†δi j ℓ̄pβ ε
βα , US̃T

2 d c = (λ̃pr)
Tδi j ℓ̄

c
pβ ε

βα , (A.53)

UST
3 ℓ
= −(λ3L

pr ) q̄
c
piαε

αγσI
γβ , US†

3ℓ
c = (λ3L

pr )
∗ q̄piαε

γασI
βγ , (A.54)

UST
3 q = −(λ

3L
pr )

T ℓ̄c
pασ

I
γα ε

βγδi j , US†
3qc = (λ3L

pr )
† ℓ̄pασ

I
αγ ε

γβδi j , (A.55)

US†
3q = 2(λ3/B

pr )
† εi jk (q̄c

pk · ε ·σ
I)β , UST

3 qc = 2(λ3/B
pr )ε

i jk (q̄pk ·σI · ε)β . (A.56)

Matrix Structure

US1ℓ
=

�

0 US†
1ℓ

c

US1ℓ
0

�

, US1q =

�

US†
1q US†

1qc

US1q US1qc

�

, (A.57)

US1u =

�

US†
1u US†

1uc

US1u US1uc

�

, US1d =

�

US†
1d 0

0 US1d c

�

, US1e =

�

0 US†
1ec

US1e 0

�

, (A.58)

111



A. INTERACTIONS OF SCALAR LEPTOQUARKS

US̃1u =

�

US̃†
1u 0

0 US̃1uc

�

, US̃1e =

�

0 US̃†
1ec

US̃1e 0

�

, US̃1d =

�

0 US̃†
1d c

US̃1d

�

, (A.59)

US2ℓ
=

�

0 US†
2ℓ

c

UST
2 ℓ

0

�

, US2d =

�

US†
2q 0

0 UST
2 qc

�

, (A.60)

US2u =

�

US†
2u 0

0 UST
2 uc

�

, US2e =

�

0 US†
2ec

UST
2 e 0

�

, (A.61)

US̃2ℓ
=

�

0 US̃†
2ℓ

c

US̃T
2 ℓ

0

�

, US̃2d =

�

US̃†
2d 0

0 US̃T
2 d c

�

, (A.62)

US3ℓ
=

�

0 US†
3ℓ

c

UST
3 ℓ

0

�

, US3q =

�

US†
3q US†

3qc

UST
3 q UST

3 qc

�

. (A.63)

USnH

US†
1H = λH1H∗βS1i + A2̃1 S̃∗2iβ +λ

∗
H13 S I

3i (H
† ·σI)β , (A.64)

US†
1H∗ = λH1HβS†

1i +λ
∗
H13 S I

3i (σ
I ·H)Tβ , (A.65)

US1H = λH1H∗βS1i +λH13 S I†
3i (H

† ·σI)β , (A.66)

US1H∗ = λH1HβS†
1i + A∗

2̃1
S̃2iβ +λH13 S I†

3i (σ
I ·H)Tβ . (A.67)

US̃†
1H = λH1̃ H∗β S̃1i −λ31̃

�

(HT · ε ·σI)β − (ε ·σI ·H)Tβ
�

S I
3i , (A.68)

US̃†
1H∗ = λH1̃ Hβ S̃1i , (A.69)

US̃1H = λH1̃ H∗β S̃†
1i , (A.70)

US̃1H∗ = λH1̃ Hβ S̃†
1i −λ

∗
31̃

S I†
3i

�

(σI · ε ·H∗)Tβ − (H
† ·σI · ε)β

�

. (A.71)

US†
2H = λH2 H∗β S∗2iα −λ22̃δαβ(H

T · ε · S̃∗2i)−λ22̃Hα(ε · S̃∗2i)
T
β −λ22 (ε · S∗2i)

T
β (ε ·H

∗)Tα ,

(A.72)

US†
2H∗ = λH2 Hβ S∗2iα −λ22 (H

T · ε · S∗2i)ε
αβ , (A.73)

UST
2 H = λH2H∗β S2iα −λ22 ε

βα (ST
2i · ε ·H

∗) , (A.74)

UST
2 H∗ = λH2 Hβ S2iα +λ

∗
22̃
δαβ (S̃2i · ε ·H∗) +λ∗22̃

H∗α (S̃
T
2i · ε)β −λ22 (H

T · ε)α (ST
2i · ε)β .

(A.75)

US̃†
2H = λ̃H2H∗β S̃2iα + A2̃1S†

1iδαβ − A2̃3 S I†
3i σ

I
αβ −λ2̃2̃δαβ(H

† · S̃2i)

+
1
3
λ5ε

i jk
�

−2εαα1 S̃2 jα1
S̃2kβ + S̃T

2k · ε · S̃2 jδαβ
�

, (A.76)

US̃†
2H∗ = λ̃H2Hβ S̃2iα +λ

∗
22̃
εαβ (H† · S∗2i) +λ

∗
22̃

S∗2iβ (ε ·H
∗)Tα −λ2̃2̃ ε

αβ (HT · ε · S̃∗2i) , (A.77)
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US̃T
2 H = λ̃H2H∗β S̃∗2iα −λ22̃ (S

T
2i ·H)ε

βα −λ22̃ S2iβ (H
T · ε)α −λ2̃2̃ ε

βα (S̃T
2i · ε ·H

∗) , (A.78)

US̃T
2 H∗ = λ̃H2Hβ S̃∗2iα + A∗

2̃1
δαβS1i − A∗

2̃3
σI
βα S I

3i −λ2̃2̃ (S̃
†
2i ·H)

+
1
3
λ5ε

i jk
�

−2εαα1 S̃∗2 jα1
S̃∗2kβ + S̃†

2k · ε · S̃
∗
2 jδαβ

�

. (A.79)

US†
3H = λH3 H∗β S I

3i +λH13 (H
† ·σI)β S1i − iλεH3 ε

I JK (H† ·σJ )β SK
3i , (A.80)

US†
3H∗ = λH3 Hβ S I

3i +λH13 (σ
I ·H)Tβ S1i − iλεH3 ε

I JK (σJ ·H)Tβ SK
3i

+λ31̃ S̃1i

�

(H† ·σI · ε)− (σI · ε ·H∗)T
�

β
, (A.81)

UST
3 H = λH3 H∗β S I∗

3i +λ
∗
H13 (H

† ·σI)β S†
1i − iλεH3 ε

I JK (H† ·σK)β SJ∗
3i

−λ31̃ S̃†
1i

�

(HT · ε ·σI)− (ε ·σI ·H)T
�

β
, (A.82)

UST
3 H∗ = λH3 Hβ S I∗

3i +λ
∗
H13 S†

1i (σ
I ·H)Tβ − iλεH3 ε

I JK (σK ·H)Tβ SJ∗
3i (A.83)

Matrix Structure

USnH =

�

US†
nH US†

nH∗

UST
n H UST

n H∗

�

. (A.84)

A.3 XLS

UfSn

Uℓ̄cS1
= (λ1L

pr)
Tεαβqr jβ , Uℓ̄S†

1
= (λ1L

pr)
†εαβqc

r jβ , (A.85)

Uq̄S1
= 2(λ/BL

pr )ε
i jkεαβqc

r jβ , Uq̄S†
1
= −(λ1L

pr)
∗εαβℓc

rβδi j , (A.86)

Uq̄cS1
= −(λ1L

pr)ε
αβℓrβδi j , Uq̄cS†

1
= 2(λ/BL

pr )
∗εi jkεαβqrkβ , (A.87)

UūS1
= −(λ/BR

pr )
Tεi jkd c

rk , UūS†
1
= −(λ1R

pr )
∗ec

rδi j , (A.88)

UūcS1
= −(λ1R

pr )erδi j , UūcS†
1
= −(λ/BR

pr )
†εi jkdrk , (A.89)

UēcS1
= −(λ1R

pr )
T ur j , UēS†

1
= −(λ1R

pr )
†uc

r j , (A.90)

Ud̄S1
= (λ/BR

pr )ε
i jkuc

rk , Ud̄ cS†
1
= (λ/BR

pr )
∗εi jkurk , (A.91)

UūS̃1
= 2(λ̃1/B

pr )ε
i jk uc

rk , Uūc S̃†
1
= −2(λ̃1/B

pr )
† εi jk urk , (A.92)

Uēc S̃1
= −(λ̃1

pr)
T dr j , UēS̃†

1
= −(λ̃1

pr)
† d c

r j , (A.93)

Ud̄ c S̃1
= −(λ̃1

pr) er δi j , Ud̄S̃†
1
= −(λ̃1

pr)
∗ ec

r δi j , (A.94)

Uℓ̄cS2
= −(λ2RL

pr )
T εβα uc

r j , Uℓ̄S∗2 = (λ
2RL
pr )

† εαβ ur j , (A.95)

Uq̄S2
= −(λ2LR

pr )δαβ δi j er , Uq̄cS∗2
= −(λ2LR

pr )
∗δαβ δi j ec

r , (A.96)

UūS2
= −(λ2RL

pr )δi j ε
βα ℓrαα , UūcS∗2

= (λ2RL
pr )

∗δi j ℓ
c
rα ε

αβ , (A.97)
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UēcS2
= −(λ2LR

pr )
T qc

p jβ , UēS∗2
= −(λ2LR

pr )
† qr jβ , (A.98)

Uℓ̄c S̃2
= (λ̃pr)

T d c
riε
αβ , Uℓ̄S̃∗2 = (λ̃pr)†dr jε

αβ , (A.99)

Ud̄S̃2
= −(λ̃pr)δi jε

βαℓrα , Ud̄ c S̃∗2
= (λ̃pr)

∗δi jℓ
c
rαε

αβ , (A.100)

Uℓ̄cS3
= −(λ3L

pr )
T (qr j · ε ·σJ )α , Uℓ̄S∗3 = (λ

3L
pr )

†σJ
αα1
εα1α2 qc

r jα2
, (A.101)

Uq̄cS3
= −(λ3L

pr )δi j ε
αα1σI

α1α2
ℓrα2

, Uq̄S∗3
= (λ3L

pr )
∗ (ℓc

r ·σ
J · ε)α , (A.102)

Uq̄S3
= 2(λ3/B

pr )ε
i jkσJ

αα1
εα1α2 qc

rkα2
, Uq̄cS∗3

= 2(λ3/B
pr )

† εi jk εαα1 σJ
α1α2

qrkα2
. (A.103)

Matrix Structure

UℓS1
=

�

0 Uℓ̄S†
1

Uℓ̄cS1
0

�

, UqS1
=

�

Uq̄S1
Uq̄S†

1

Uq̄cS1
Uq̄cS†

1

�

, (A.104)

UuS1
=

�

UūS1
UūS†

1

UūcS1
UūcS†

1

�

, UdS1
=

�

Ud̄S1
0

0 Ud̄ cS†
1

�

, UeS1
=

�

0 UēS†
1

UēcS1
0

�

, (A.105)

UuS̃1
=

�

UūS̃1
0

0 Uℓ̄c S̃†
1

�

, UeS̃1
=

�

0 UēS̃†
1

Uēc S̃1
0

�

, UdS̃1
=

�

0 Ud̄S̃†
1

Ud̄ c S̃1
0

�

, (A.106)

UℓS2
=

�

0 Uℓ̄S∗2
Uℓ̄cS2

0

�

, UqS2
=

�

Uq̄S2
0

0 Uq̄cS∗2

�

, (A.107)

UuS2
=

�

UūS2
0

0 UūcS∗2

�

, UeS2
=

�

0 UēS∗2
UēcS2

0

�

, (A.108)

UℓS̃2
=

�

0 Uℓ̄S̃∗2
Uℓ̄c S̃2

0

�

, UdS̃2
=

�

Ud̄S̃2
0

0 Ud̄ c S̃∗2

�

, (A.109)

UℓS3
=

�

0 Uℓ̄S∗3
Uℓ̄cS3

0

�

, UqS3
=

�

Uq̄S3
Uq̄S∗3

Uq̄cS3
Uq̄cS∗3

�

. (A.110)

UHSn

UH†S1
= λH1HαS†

1 j + A∗
2̃1

S̃2 jα +λH13 SJ†
3 j (σ

J ·H)Tα , (A.111)

UH†S†
1
= λH1HαS1 j +λ

∗
H13 SJ

3 j (σ
J ·H)Tα , (A.112)

UHT S1
= λH1H∗αS†

1 j +λH13 SJ†
3 j (H

† ·σJ )α , (A.113)

UHT S†
1
= λH1H∗αS1 j + A2̃1S̃∗2 jα +λ

∗
H13 (H

† ·σJ )SJ
3 j , (A.114)

UH†S̃1
= λH1̃ Hα S̃†

1 j +λ
∗
31̃

�

(σI · ε ·H∗)− (H† ·σI · ε)T
�

α
S I†

3 j , (A.115)
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UH†S̃†
1
= λH1̃ Hα S̃1 j , (A.116)

UHT S̃1
= λH1̃ H∗α S̃†

1 j , (A.117)

UHT S̃†
1
= λH1̃ H∗α S̃1 j −λ31̃

�

(HT · ε ·σI)− (ε ·σI ·H)T
�

α
S I

3 j . (A.118)

UH†S2
= λH2 Hα S2 jβ −λ∗22̃

�

H∗β (S̃
T
2 j · ε)α −δαβ(S̃

T
2 j · ε ·H

∗)
�

−λ22 (S2 j · ε)Tα (H
T · ε)Tβ ,

(A.119)

UH†S∗2
= λH2 Hα S∗2 jβ −λ22 ε

βα (HT · ε · S∗2 j) , (A.120)

UHT S2
= λH2 H∗α S2 jβ −λ22 ε

αβ (ST
2 j · ε ·H

∗) , (A.121)

UHT S∗2
= λH2 Hα S∗2 jβ −λ22̃

�

Hβ (ε · S̃∗2i)α + (H
T · ε · S̃∗2 j)δαβ

�

−λ22 (ε · S∗2 j)α (ε ·H
∗)β .

(A.122)

UH†S̃2
= λ̃H2HαS̃∗2 jβ + A∗

2̃1
δαβS1 j − A∗

2̃3
S I

3 jσ
I
αβ −λ2̃2̃ (S̃

†
2i ·H)

+
1
3
λ5ε

i jk
�

−2S̃2iα1
εα1β S̃2kα +

�

S̃2i · ε · S̃2k

�

δαβ
�

, (A.123)

UH†S̃∗2
= λ̃H2HαS̃2 jβ +λ

∗
22̃

�

S∗2 jα (ε ·H
∗)β − εαβ (H† · S∗2 j)

�

+λ2̃2̃ ε
αβ (HT · ε · S̃∗2 j) , (A.124)

UHT S̃2
= λ̃H2H∗αS̃∗2 jβ −λ22̃

�

εαβ (ST
2 j ·H)− S2 jα (H

T · ε)Tβ
�

−λ2̃2̃ ε
αβ (S̃2 j · ε ·H∗) , (A.125)

UHT S̃∗2
= λ̃H2H∗αS̃2iβ + A2̃1S†

1 jδαβ − A2̃3 S I†
3 j σ

I
βα −λ2̃2̃ (H

† · S̃2i)

+
1
3
λ5ε

i jk
�

−2S̃∗2iα1
εα1β S̃∗2kα +

�

S̃†
2i · ε · S̃

∗
2k

�

δαβ

�

. (A.126)

UH†S3
= λH3 Hα SJ†

3 j +λ
∗
H13 (σ

J ·H)α S†
1 j − iλεH3 ε

I JK (H† ·σI)Tα SK†
3 j , (A.127)

UH†S∗3
= λH3 Hα SJ

3 j +λH13 (σ
J ·H)α S1 j + iλεH3 ε

I JK (σI ·H)α SK
3 j

+λ∗
31̃

S̃1 j

�

(σJ · ε ·H∗)− (H† ·σJ · ε)T
�

α
, (A.128)

UHT S3
= λH3 H∗α SJ†

3 j +λ
∗
H13 (σ

I ·H∗)α S†
1 j − iλεH3 ε

I JK (H† ·σI)Tα SK†
3 j

−λ31̃ S̃†
1 j

�

(ε ·σJ ·H)− (HT · ε ·σJ )T
�

α
, (A.129)

UHT S∗3
= λH3 H∗α SJ

3 j +λH13 (H
† ·σJ )Tα S1 j + iλεH3 ε

I JK (H† ·σI)α SK
3 j . (A.130)

Matrix Structure

UHSn
=

�

UH†Sn
UH†S∗n

UHT Sn
UHT S∗n

�

. (A.131)

A.4 XLL

Uff

Uℓ̄qc = (λ1L
pr)

†S†
1 jε

αβ + (λ3L
pr )

† SJ
3 jσ

J
αγ ε

γβ , Uℓ̄cq = −(λ
1L
pr)

T S1 jε
αβ + (λ3L

pr )
T SJ

3 j ε
βγσJ

γα ,

(A.132)
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Uℓ̄u = (λ
2RL
pr )

† (ε · S∗2i)α , Uℓ̄cuc = (λ2RL
pr )

T (ε · S2 j)
T
α , (A.133)

Uℓ̄e = (yE)pr Hα , Uℓ̄c ec = (yE)
∗
pr H∗α , (A.134)

Uℓ̄d = (λ̃pr)
†εαβ S̃∗2iβ , Uℓ̄c d c = (λ̃pr)

Tεαβ S̃2 jβ , (A.135)

Uq̄ℓc = −(λ1L
pr)
∗S†

1iε
αβ + (λ3L

pr )
∗S I

3iσ
I
βγ ε

γα , Uq̄cℓ = −(λ1L
pr)ε

αβS1i − (λ3L
pr )S

I
3i σ

I
αγε

γβ ,

(A.136)

Uq̄qc = −2(λ/BL
pr )ε

αβεi jkS1k , Uq̄c q̄ = −2(λ/BL
pr )
∗εαβεi jkS†

1k ,

− 2(λ3/B
pr )ε

i jkSK
3kσ

K
αγε

γβ , − (λ3/B
pr )

†εi jk εαγσK
γβSK†

3k (A.137)

Uq̄u = (yU)prδi jε
αβH∗β , Uq̄cuc = (yU)

∗
prδi jε

αβHβ , (A.138)

Uq̄e = −(λ2LR
pr )S2iα , Uq̄c ec = −(λ2LR

pr )
∗ S∗2iα , (A.139)

Uq̄d = (yD)pr Hαδi j , Uq̄c d c = (yD)
∗
prδi jH

∗
α , (A.140)

Uūℓ = −(λ2RL
pr )S2iγε

γβ , Uūcℓc = (λ2RL
pr )

∗ εβγ S∗2iγ , (A.141)

Uūq = −(yU)
†
prε

αβHαδi j , Uūc q̄c = −(yU)
T
prε

βαH∗αδi j , (A.142)

Uūuc = −2(λ̃1/B
pr )ε

i jk S̃1k , Uūcu = 2(λ̃1/B
pr )

† εi jk S̃†
1k , (A.143)

Uūec = −(λ1R
pr )
∗S†

1i , Uūc e = −(λ1R
pr )S1i , (A.144)

Uūd c = −(λ/BR
pr )

Tεi jkS1k , Uūc d = −(λ
/BR
pr )

†εi jkS†
1k , (A.145)

Uēℓ = (yE)
†
pr H∗β , Uēcℓc = (yE)

T
pr Hβ , (A.146)

Uēq = −(λ2LR
pr )

† S†
2 jα , Uēcqc = −(λ2LR

pr )
T S2 jβ , (A.147)

Uēuc = (λ1R
pr )

†S†
1 j , Uēcu = −(λ1R

pr )
T S1 j , (A.148)

Uēd c = −(λ̃pr)
† S̃1 j , Uēc d = −(λ̃pr)

T S̃1 j , (A.149)

Ud̄ℓ = −(λ̃pr)S̃2iαε
αβ , Ud̄ cℓc = (λ̃pr)

∗εβαS̃∗2iα , (A.150)

Ud̄q = (yD)
†
pr H∗βδi j , Ud̄ cqc = (yD)

T
pr Hαδi j , (A.151)

Ud̄uc = (λ/BR
pr )ε

i jkS1k , Ud̄ cu = (λ
/BR
pr )
∗εi jkS†

1k , (A.152)

Ud̄ec = −(λ̃pr)
∗ S̃†

1i , Ud̄ c e = −(λ̃pr) S̃1i . (A.153)

Matrix Structure

116



A.4. XLL

Uℓq =

�

0 Uℓ̄qc

Uℓ̄cq 0

�

, Uℓu =

�

Uℓ̄u 0
0 Uℓ̄cuc

�

, (A.154)

Uℓe =

�

Uℓ̄e 0
0 Uℓ̄c ec

�

, Uℓd =

�

Uℓ̄d 0
0 Uℓ̄c d c

�

, (A.155)

Uqℓ =

�

0 Uq̄ℓc

Uq̄cℓ 0

�

, Uqq =

�

0 Uq̄qc

Uq̄cq 0

�

, Uqu =

�

Uq̄u 0
0 Uq̄cuc

�

, (A.156)

Uqe =

�

Uq̄e 0
0 Uq̄c ec

�

, Uqd =

�

Uq̄d 0
0 Uq̄c d c

�

, (A.157)

Uuℓ =

�

Uūℓ 0
0 Uūcℓc

�

, Uuq =

�

Uūq 0
0 Uūcqc

�

, Uuu =

�

0 Uūuc

Uūcu 0

�

, (A.158)

Uue =

�

0 Uūec

Uūc e 0

�

, Uud =

�

0 Uūd c

Uūc d 0

�

, (A.159)

Udℓ =

�

Ud̄ℓ 0
0 Ud̄ cℓc

�

, Udq =

�

Ud̄q 0
0 Ud̄ cqc

�

, (A.160)

Udu =

�

0 Ud̄uc

Ud̄ cu 0

�

, Ude =

�

0 Ud̄ec

Ud̄ c e 0

�

, (A.161)

Ueℓ =

�

Uēℓ 0
0 Uēcℓc

�

, Ueq =

�

Uēq 0
0 Uēcqc

�

, (A.162)

Ueu =

�

0 Uēuc

Uēcu 0

�

, Ued =

�

0 Uēd c

Uēc d 0

�

. (A.163)

Uℓu = Uℓℓ = Uqe = Uuℓ = Uuu = Udd = Ude = Uee = Ueq = Ued = 0 (A.164)

UHf

UH†ℓ = (yE)
†
pr ēpδαβ , UHT ℓc = (yE)

T
pr ēc

pδαβ , (A.165)

UH†q = (yD)
†
pr d̄p jδαβ , UH†qc = (yU)

T
pr ū

c
p jε

βα , (A.166)

UHT q = (yU)
†
prε

αβ ūp j , UHT qc = (yD)
T
pr d̄ c

p jδαβ , (A.167)

UH†u = (yU)pr q̄p jβε
βα , UHT uc = (yU)

∗
pr q̄

c
p jβε

αβ , (A.168)

UHT e = (yE)pr ℓ̄pα , UH†ec = (yE)
∗
pr ℓ̄

c
pα , (A.169)

UHT d = (yD)pr q̄p jα , UH†d c = (yD)
∗
pr q̄

c
p jα . (A.170)

(A.171)
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Matrix Structure

UHℓ =

�

UH†ℓ 0
0 UHT ℓc

�

, UHq =

�

UH†q UH†qc

UHT q UHT qc

�

, (A.172)

UHu =

�

UH†u 0
0 UHT uc

�

, UHd =

�

0 UH†d c

UHT d 0

�

, UHe =

�

0 UH†ec

UHT e 0

�

. (A.173)

UfH

Uℓ̄H = (yE)pr erδαβ , Uℓ̄c H∗ = (yE)
∗
pr ec

rδαβ , (A.174)

Uq̄H = (yD)pr driδαβ , Uq̄H∗ = (yU)pruriε
αβ , (A.175)

Uq̄c H = (yU)
∗
prε

αβuc
ri , Uq̄c H∗ = (yD)

∗
pr d c

riδαβ , (A.176)

UūH = (yU)
†
prε

βαqriα , Uūc H∗ = (yU)
T
prε

αβqc
riα , (A.177)

Ud̄ c H = (yD)
T
prq

c
riβ , Ud̄H∗ = (yD)

†
prqriβ , (A.178)

Uēc H = (yE)
T
prℓ

c
rβ , UēH∗ = (yE)

†
prℓrβ . (A.179)

Matrix Structure

UℓH =

�

Uℓ̄H 0
0 Uℓ̄c H∗

�

, UqH =

�

Uq̄H Uq̄H∗

Uq̄c H Uq̄c H∗

�

, (A.180)

UuH =

�

UūH 0
0 Uūc H∗

�

, UdH =

�

0 Ud̄H∗

Ud̄ c H 0

�

, UeH =

�

0 UēH∗

Uēc H 0

�

. (A.181)

UVf

UBℓ = −ℓ̄rβ g ′Yℓγ
µ , UBℓc = ℓ̄c

rβ g ′Yℓγ
µ , (A.182)

UWℓ = −
g
2
ℓ̄rα1

σI
α1β
γµ , UWℓc =

g
2
ℓ̄rα1

σI
βα1
γµ , (A.183)

UBq = −q̄r jβ g ′Yqγ
µ , UBqc = q̄c

r jβ g ′Yqγ
µ , (A.184)

UWq = −
g
2

q̄r jα1
σI
α1β
γµ , UWqc =

g
2
ℓ̄r jα1

σI
βα1
γµ , (A.185)

UGq = −gsq̄riβTA
i jγ
µ , UGqc = gsq̄

c
riβTA

jiγ
µ , (A.186)

UBu = −ūr j g
′Yuγ

µ , UBuc = ūc
ri g
′Yuγ

µ , (A.187)

UGu = −gsūri T
A
i jγ
µ , UGuc = gsūri T

A
jiγ
µ , (A.188)

UBd = −d̄r j g
′Ydγ

µ , UBd c = d̄ c
r j g
′Ydγ

µ , (A.189)

UGd = −gs d̄ri T
A
i jγ
µ , UGd c = gs d̄

c
ri T

A
jiγ
µ , (A.190)
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A.4. XLL

UBe = −ēr g ′Yeγ
µ , UBec = ēc

r g ′Yeγ
µ . (A.191)

Matrix Structure

UVℓ =





UBℓ UBℓc

UWℓ UWℓc

0 0



 , UVq =





UBq UBqc

UWq UWqc

UGq UGqc



 , (A.192)

UVu =





UBu UBuc

0 0
UGu UGuc



 , UVd =





UBd UBd c

0 0
UGd UGd c



 , UVe =





UBe UBec

0 0
0 0



 . (A.193)

UfV

Uℓ̄B = −g ′Yℓγ
νℓpα , Uℓ̄c B = g ′Yℓγ

νℓc
pα , (A.194)

Uℓ̄W = −
g
2
σI
αα1
γνℓpα1

, Uℓ̄cW =
g
2
σI
α1α
γνℓc

pα1
, (A.195)

Uq̄B = −g ′Yqγ
νqpiα , Uq̄c B = g ′Yqγ

νqc
piα , (A.196)

Uq̄W = −
g
2
σI
αα1
γνqpiα1

, Uq̄cW =
g
2
σI
α1α
γνqpiα1

, (A.197)

Uq̄G = −gsγ
µT B

i jqp jα , Uq̄c G = gsγ
µT B

jiq
c
p jα , (A.198)

UūB = −g ′Yuγ
νupi , Uūc B = g ′Yqγ

νuc
pi , (A.199)

UūG = −gsγ
µT B

i jup j , Uūc G = gsγ
µT B

jiq
c
p j , (A.200)

Ud̄B = −g ′Ydγ
νdpi , Ud̄ c B = g ′Ydγ

νd c
pi , (A.201)

Ud̄G = −gsγ
µT B

i j dp j , Ud̄ c G = gsγ
µT B

ji d
c
p j , (A.202)

UēB = −g ′Yeγ
νep , Uēc B = g ′Yeγ

νep . (A.203)

Matrix Structure

UℓV =

�

Uℓ̄B Uℓ̄W 0
Uℓ̄c B Uℓ̄cW 0

�

, UqV =

�

Uq̄B Uq̄W Uq̄G

Uq̄c B Uq̄cW Uq̄c G

�

, (A.204)

UuV =

�

UūB 0 UūG

UūB 0 Uūc G

�

, UdV =

�

Ud̄B 0 Ud̄G

Ud̄ c B 0 Ud̄ c G

�

, UeV =

�

UēB 0 0
Uēc B 0 0

�

. (A.205)

ZSnV
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ZρνS(1,1̃)B
= −gρνg ′YS(1,1̃)

S†
(1,1̃)i

, Z̄µκBS(1,1̃)
= −gµκg ′YS(1,1̃)

S†
(1,1̃) j

, (A.206)

Zρν
S†
(1,1̃)

B
= −gρνg ′YS(1,1̃)

S(1,1̃)i , Z̄µκ
BS†
(1,1̃)

= −gµκg ′YS(1,1̃)
S(1,1̃) j , (A.207)

ZρνS(1,1̃)G
= −gρνgsS

†
(1,1̃)k

T B
ik , Z̄µκGS(1,1̃)

= −gµκgsS
†
(1,1̃)k

T B
k j , (A.208)

Zρν
S†
(1,1̃)

G
= −gρνgsT

B
ikS(1,1̃)k , Z̄µκ

GS†
(1,1̃)

= −gµκgsT
B
k jS(1,1̃)k , (A.209)

Zρν
ST
(2,2̃)

B
= −gρνg ′YS(2,2̃)

S∗
(2,2̃)iα

, Z̄µκ
BST
(2,2̃)

= −gµκg ′YS(2,2̃)
S(2,2̃) jβ , (A.210)

Zρν
S†
(2,2̃)

B
= −gρνg ′YS(2,2̃)

S(2,2̃)iα , Z̄µκ
BS†
(2,2̃)

= −gµκg ′YS(2,2̃)
S∗
(2,2̃) jβ

, (A.211)

Zρν
ST
(2,2̃)

W
= −gρν

g
2
σJ
αα1

S∗
(2,2̃)iα1

, Z̄µκ
WST

(2,2̃)

= −gµκ
g
2
σI
α1β

S(2,2̃) jα1
, (A.212)

Zρν
S†
(2,2̃)

W
= −gρν

g
2
σJ
αα1

S(2,2̃)iα1
, Z̄µκ

WS†
(2,2̃)

= −gµκ
g
2
σI
α1β

S∗
(2,2̃) jα1

, (A.213)

Zρν
ST
(2,2̃)

G
= −gρνgsT

B
ikS∗
(2,2̃)kα

, Z̄µκ
GST
(2,2̃)

= −gµκgsT
B
k jS(2,2̃)kβ , (A.214)

Zµν
S†
(2,2̃)

G
= −gµνgsT

B
ikS(2,2̃)kα , Z̄µκ

GS†
(2,2̃)

= −gµκgsT
B
k jS
∗
(2,2̃)kβ

, (A.215)

Zρν
ST

3 B
= −gρνg ′YS3

S I∗
3i , Z̄µκ

BST
3
= −gµκg ′YS3

SJ
3 j , (A.216)

Zρν
S†

3B
= −gρνg ′YS3

S I
3i , Z̄µκ

BS†
3

= −gµκg ′YS3
SJ∗

3 j , (A.217)

Zρν
ST

3 W
= i gρνgεLKJSK∗

3l , Z̄µκ
WST

3
= −i gµκgεLK ISK

3l , (A.218)

Zρν
S†

3W
= i gρνgεLKJSK

3l , Z̄µκ
WS†

3

= −i gµκgεLK ISK∗
3 j , (A.219)

Zρν
ST

3 G
= −gρνgsT

B
ikS∗3kα , Z̄µκ

GST
3
= −gµκgsT

B
k jS3kβ , (A.220)

Zµν
S†

3G
= −gµνgsT

B
ikS3kα , Z̄µκ

GS†
3

= −gµκgsT
B
k jS
∗
3kβ . (A.221)
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Appendix B

Supertraces vs covariant diagrams

The construction of covariant diagrams precedes chronologically the method of Supertraces.
The essential difference between these two techniques is the point at which the CDE is applied.
In Supertraces one first makes superdiagrams from the distinct components of the interaction
matrix X and then applies the CDE in the resulting Supertrace. In the Covariant diagrams
approach the components of the interaction matrix are split explicitly into, heavy-only, heavy-
light and light-only contributions. In the resulting trace the CDE is applied and the log-function
is ultimately Taylor expanded. Finally, from the expanded formula one reads the components
of the covariant diagrams in the same manner one would read of Feynman rules and the
covariant diagrams are drawn. All in all Supertraces are a more compact way to present
Covariant diagrams. One can also look at [35] for a more elaborate comparison between the
two approaches.

In Tables B.1 and B.2 we present the relevant covariant diagrams for the Leptoquark Scalar
Action. We have made combinations of matrices, and momentum insertions following the rules
for constructing covariant diagrams in [26]. We have classified them in terms of U , P and Z
insertions. In total we count 60 covariant diagrams.
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B. SUPERTRACES VS COVARIANT DIAGRAMS

O
�

U2
�

H

Si

O
�

U3
�

f

Si f ′

O
�

U4
�

Hf

Si f ′

S jf

Si f ′

fS j

Si f ′

Vf

Si f ′

O
�

U5
�

f ′′
f ′

f

Si
f ′′′

f ′′
f ′

f

Si
f ′′′

f ′′
f ′

f

Si
f ′′′

Si
f ′

f

Sk

S j

O
�

Z1
�

fV

Si

Vf

Si

O
�

Z2
�

V

Si

Table B.1: U and Z only, heavy-light, covariant diagrams contributing to the construction of
operators up to dimension 6. Where Si = S1, S̃2, f = ℓ, q, u, e, d and V = B, W, G. In total we
count 13 diagrams.

O
�

U2P
�

O
�

U3P
�

f

Si Si

f S j

Si

f

S j

Si

f

S j

Si

f
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O
�

U4P
�

O
�

U3P2
�

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

f ′f

Si f ′′

fSk

S j Si

fSk

S j Si

fSk

S j Si

fSk

S j Si

f ′f

Si

f ′f

Si

f ′f

Si

f ′f

Si

f ′f

Si

f ′f

Si

f ′f

Si

f ′f

Si

f ′f

Si

f ′f

Si

f ′f

Si

Sif ′

f

Sif ′

f

Sif ′

f
fSi

f ′

fSi

f ′

fSi

f ′

O
�

U2P3
�

f

Si Si

f

Si

f Si

f

Si

f

Si

f
Si

f

Si

f

Si

f

Table B.2: Covariant diagrams containing powers of both U and P contributing to operators up
to dimension 6. In total we have 47 diagrams.

To summarize one can now clearly see the advantage of using the method of Supertraces.
From 60 Covariant Diagrams we ended up with 15 Supertrace Diagrams calculated in Sec-
tion 2.2.3.
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Appendix C

Green Basis Operators

The Green basis has been initially developed in ref. [64] and serves as a middle result before
the transition to the Warsaw basis by using the equations of motion of the SM fields. It is useful
because in the Feynman diagrammatic approach it is this basis that the initial calculations are
matched upon. The transition from Green to Warsaw has been also worked out in ref. [64].

In the tables that follow flavor indices are suppressed, greek letters α,β ,γ denote SU(2)L
fundamental indices while I , J , K denote the SU(2)L adjoint representation. Small latin letters
i, j, k denote SU(3)c fundamental indices, while capital latin letters A, B, C denote the adjoint
representation of SU(3).

The dimension-5 operator has the same definition in both Green and Warsaw basis:

H2ψ2

Oνν εαβεα1β1 HαHα1 ℓ̄c
pβ ℓrβ1

Table C.1: Single dimension-5 operator giving rise to neutrino masses after EW symmetry break-
ing.

The dimension-6 operators in Green basis are listed below. Shaded ones are included in
Warsaw basis too presented in Tables 1.1 and 1.2 in the Introduction of this thesis.
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C. GREEN BASIS OPERATORS

X3 X2H2 H2D4

O3G f ABC GAν
µ GBρ

ν GCµ
ρ OHG GA

µνGAµν(H†H) ODH (DµDµH)†(DνDνH)
O
Ý3G f ABC

eGAν
µ GBρ

ν GCµ
ρ OH eG

eGA
µνGAµν(H†H) H4D2

O3W εI JKW Iν
µ W Jρ

ν W Kµ
ρ OHW W I

µνW
Iµν(H†H) OH□ (H†H)□(H†H)

O
g3W εI JK

fW Iν
µ W Jρ

ν W Kµ
ρ OHfW

fW I
µνW

Iµν(H†H) OHD (H†DµH)†(H†DµH)
X2D2 OHB BµνBµν(H†H) O′HD (H†H)(DµH)†(DµH)

O2G −1
2(DµGAµν)(DρGA

ρν) OHeB
eBµνBµν(H†H) O′′HD (H†H)Dµ(H†i

←→
D µH)

O2W −1
2(DµW Iµν)(DρW I

ρν) OHW B W I
µνBµν(H†σI H) H6

O2B −1
2(∂µBµν)(∂ ρBρν) OHfW B

fW I
µνBµν(H†σI H) OH (H†H)3

H2XD2

OW DH DνW
Iµν(H†i

←→
D I
µH)

OBDH ∂νBµν(H†i
←→
D µH)

Table C.2: Bosonic operators in the Green’s basis.

Four-quark Four-lepton Semileptonic
O(1)qq (qγµq)(qγµq) Oℓℓ (ℓγµℓ)(ℓγµℓ) O(1)

ℓq (ℓγµℓ)(qγµq)

O(3)qq (qγµσIq)(qγµσIq) Oee (eγµe)(eγµe) O(3)
ℓq (ℓγµσIℓ)(qγµσIq)

Ouu (uγµu)(uγµu) Oℓe (ℓγµℓ)(eγµe) Oeu (eγµe)(uγµu)
Odd (dγµd)(dγµd) Oed (eγµe)(dγµd)
O(1)ud (uγµu)(dγµd) Oqe (qγµq)(eγµe)
O(8)ud (uγµTAu)(dγµTAd) Oℓu (ℓγµℓ)(uγµu)
O(1)qu (qγµq)(uγµu) Oℓd (ℓγµℓ)(dγµd)
O(8)qu (qγµTAq)(uγµTAu) Oℓedq (ℓe)(dq)

O(1)qd (qγµq)(dγµd) O(1)
ℓequ (ℓ

α
e)εαβ(q

βu)

O(8)qd (qγµTAq)(dγµTAd) O(3)
ℓequ (ℓ

α
σµνe)εαβ(q

βσµνu)

O(1)quqd (qαu)εαβ(q
βd)

O(8)quqd (qαTAu)εαβ(q
βTAd)

Table C.3: Four-fermion operators. Generation indices are suppressed.

B and L violating
Oduq ϵi jkεαβ

�

(d i)T Cu j
� �

(qkα)T Cℓβ
�

Oqqu ϵi jkεαβ
�

(qiα)T Cq jβ
� �

(uk)T Ce
�

Oqqq ϵi jkεαβεγδ
�

(qiα)T Cq jγ
� �

(qkδ)T Cℓβ
�

Oduu ϵi jk

�

(d i)T Cu j
� �

(uk)T Ce
�

Table C.4: Baryon and lepton number violating four-fermion operators. Generation indices are
suppressed and C = iγ2γ0 is the Dirac charge conjugation matrix.
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ψ2D3 ψ2XD ψ2DH2

OqD
i
2q
�

DµDµ, /D
	

q OGq (qTAγµq)DνGA
µν O(1)Hq (qγµq)(H†i

←→
D µH)

OuD
i
2u
�

DµDµ, /D
	

u O′Gq
1
2(qTAγµi

←→
D νq)GA

µν O′(1)Hq (qi
←→
/D q)(H†H)

OdD
i
2 d
�

DµDµ, /D
	

d O′
eGq

1
2(qTAγµi

←→
D νq)eGA

µν O′′(1)Hq (qγµq)∂µ(H†H)

OℓD i
2ℓ
�

DµDµ, /D
	

ℓ OWq (qσIγµq)DνW I
µν O(3)Hq (qσIγµq)(H†i

←→
D I
µH)

OeD
i
2 e
�

DµDµ, /D
	

e O′Wq
1
2(qσ

Iγµi
←→
D νq)W I

µν O′(3)Hq (qi
←→
/D Iq)(H†σI H)

ψ2HD2 + h.c. O′
fWq

1
2(qσ

Iγµi
←→
D νq)fW I

µν O′′(3)Hq (qσIγµq)Dµ(H†σI H)

OuHD1 (qu)DµDµ eH OBq (qγµq)∂ νBµν OHu (uγµu)(H†i
←→
D µH)

OuHD2 (qiσµνDµu)Dν eH O′Bq
1
2(qγ

µi
←→
D νq)Bµν O′Hu (ui

←→
/D u)(H†H)

OuHD3 (qDµDµu) eH O′
eBq

1
2(qγ

µi
←→
D νq)eBµν O′′Hu (uγµu)∂µ(H†H)

OuHD4 (qDµu)Dµ eH OGu (uTAγµu)DνGA
µν OHd (dγµd)(H†i

←→
D µH)

OdHD1 (qd)DµDµH O′Gu
1
2(uTAγµi

←→
D νu)GA

µν O′Hd (di
←→
/D d)(H†H)

OdHD2 (qiσµνDµd)DνH O′
eGu

1
2(uTAγµi

←→
D νu)eGA

µν O′′Hd (dγµd)∂µ(H†H)
OdHD3 (qDµDµd)H OBu (uγµu)∂ νBµν OHud (uγµd)( eH†iDµH)

OdHD4 (qDµd)DµH O′Bu
1
2(uγ

µi
←→
D νu)Bµν O(1)Hℓ (ℓγµℓ)(H†i

←→
D µH)

OeHD1 (ℓe)DµDµH O′
eBu

1
2(uγ

µi
←→
D νu)eBµν O′(1)Hℓ (ℓi

←→
/D ℓ)(H†H)

OeHD2 (ℓiσµνDµe)DνH OGd (dTAγµd)DνGA
µν O′′(1)Hℓ (ℓγµℓ)∂µ(H†H)

OeHD3 (ℓDµDµe)H O′Gd
1
2(dTAγµi

←→
D νd)GA

µν O(3)Hℓ (ℓσIγµℓ)(H†i
←→
D I
µH)

OeHD4 (ℓDµe)DµH O′
eGd

1
2(dTAγµi

←→
D νd)eGA

µν O′(3)Hℓ (ℓi
←→
/D Iℓ)(H†σI H)

ψ2XH + h.c. OBd (dγµd)∂ νBµν O′′(3)Hℓ (ℓσIγµℓ)Dµ(H†σI H)

OuG (qTAσµνu) eHGA
µν O′Bd

1
2(dγ

µi
←→
D νd)Bµν OHe (eγµe)(H†i

←→
D µH)

OuW (qσµνu)σI
eHW I

µν O′
eBd

1
2(dγ

µi
←→
D νd)eBµν O′He (ei

←→
/D e)(H†H)

OuB (qσµνu) eHBµν OWℓ (ℓσIγµℓ)DνW I
µν O′′He (eγµe)∂µ(H†H)

OdG (qTAσµνd)HGA
µν O′Wℓ

1
2(ℓσ

Iγµi
←→
D νℓ)W I

µν ψ2H3 + h.c.

OdW (qσµνd)σI HW I
µν O′

fWℓ
1
2(ℓσ

Iγµi
←→
D νℓ)fW I

µν OuH (H†H)q eHu

OdB (qσµνd)HBµν OBℓ (ℓγµℓ)∂ νBµν OdH (H†H)qHd

OeW (ℓσµνe)σI HW I
µν O′Bℓ

1
2(ℓγ

µi
←→
D νℓ)Bµν OeH (H†H)ℓHe

OeB (ℓσµνe)HBµν O′
eBℓ

1
2(ℓγ

µi
←→
D νℓ)eBµν

OBe (eγµe)∂ νBµν
O′Be

1
2(eγ

µi
←→
D νe)Bµν

O′
eBe

1
2(eγ

µi
←→
D νe)eBµν

Table C.5: Two-fermion operators in the Green’s basis. Generation indices are suppressed.
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Appendix D

Auxiliary expressions from the UOLEA

We append here expressions for the UOLEA coefficients found in eq. (2.49) that arise in case of
possible LQs mass degeneracies. In the mass degeneracy limit, Mi = M j , these are well defined
functions, whose degenerate expressions can be found in the original UOLEA, ref. [24]. We
split them as fn =

i
16π2 f̃n listing only f̃n. We also adopt the notation ∆2

i j = M2
i − M2

j and
wherever Si = {S1, S̃2}. The coefficients then read,

f̃
SiS jSi

11 =
2M6

i +M6
j + 3M2

i M2
j (M

2
i − 2M2

j ) +M4
i M2

j log M2
j /M2

i

6M2
i (∆i j)4

, (D.1)

f̃
SiSiS j

11 =
M4

i + 4M2
i M2

j (1+ log M2
j /M2

i ) + 2M4
j (log M2

j /M2
i − 5/2)

2(∆i j)4
, (D.2)

f̃
SiS j

12 =
M4

i + 10M2
i M2

j +M4
j

12(∆2
i j)

4
−

M2
i M2

j (M
2
i +M2

j ) log M2
i /M2

j

2(∆2
i j)

5
, (D.3)

f̃
SiS j

13 =
2M4

i + 5M2
i M2

j −M4
j

12M2
i (∆

2
i j)

3
−

M2
i M2

j log M2
i /M2

j

(∆2
i j)

5
(D.4)

f̃
SiS j

14 = −
M4

i + 10M2
i M2

j M4
j

6(∆2
i j)

4
+

M2
i M2

j (M
2
i M2

j ) log M2
i /M

2
j

(∆2
i j)

5
, (D.5)

f̃
SiS jSiS j

17 = f̃
SiS j

17 =
18M2

j (M
4
i +M2

i M2
j )− 2M6

i − 34M6
j

12M2
j (∆

2
i j)

5
+
(M4

j + 3M2
i M2

j )

M2
j (∆

2
i j)

5
log

M2
j

M2
i

, (D.6)

f̃
SiS jSiS j

18 = f̃
SiS j

18 =
M2

i +M2
j

6(∆2
i j)

4
+

M8
j −M8

i

12M2
i M2

j (∆
2
i j)

5
+

M2
i M2

j log M2
j /M

2
i

(∆2
i j)

5
, (D.7)

f̃
SiS jSiS jSiS j

19 = f̃
SiS j

19 =
(M6

i −M6
j ) + 9M2

i M2
j (∆

2
i j) + 6M2

i M2
j (M

2
i +M2

j ) log M2
j /M2

i

12M2
i M2

j (∆
2
i j)

5
(D.8)
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Appendix E

Semi-numerical expressions of signal
strengths

Here we provide the semi-numerical expressions of the signal strength corrections to the SM, in
the decays and production channels of the Higgs boson, that we have used in this study. Apart
from δRh→Zγ and δRh→γγ, which their one loop expressions are considered, found in [129,
130], all other formulas are taken to leading order from [137] and are computed in TeV−2

units. All expressions are given in the input scheme {GF , MW , MZ}, the numerical values used
throughout Chapter 3 are,

GF = 1.1663787× 10−5 GeV−2 , (E.1)

MW = 80.385 GeV , (E.2)

MZ = 91.1876 GeV , (E.3)

MH = 125.25 GeV , (E.4)

Mt = 172.57 GeV . (E.5)

E.1 Decay channels

δRh→bb̄ = −5.050 Cdφ
33 + 0.121 (Cφ□ −

1
4

CφD) + 0.0606 (Cℓℓ1221 − Cφℓ(3)11 − Cφℓ(3)22 ) , (E.6)

δRh→WW ∗ = −0.0895 CφW + 0.121 (Cφ□ −
1
4

CφD) + 0.0606 (Cℓℓ1221 − Cφℓ(3)11 − Cφℓ(3)22 ) , (E.7)

δRh→ττ̄ = −11.88 C eφ
33 + 0.121 (Cφ□ −

1
4

CφD) + 0.0606 (Cℓℓ1221 − Cφℓ(3)11 − Cφℓ(3)22 ) , (E.8)

δRh→Z Z∗ = 0.296 (CφW B − CφW )− 0.197 CφB + 0.119 Cφ□ + 0.005CφD + 0.181 Cℓℓ1221

− 0.117 (Cφℓ(3)11 + Cφℓ(3)22 ) , (E.9)

δRh→µµ = −199.79 C eφ
22 + 0.121 (Cφ□ −

1
4

CφD) , (E.10)
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E. SEMI-NUMERICAL EXPRESSIONS OF SIGNAL STRENGTHS

δRh→Zγ ≃ 0.18
�

Cℓℓ1221 − Cφℓ(3)11 − Cφℓ(3)22

�

+ 0.12
�

Cφ□ − CφD
�

− 0.01
�

Cdφ
33 − Cuφ

33

�

+ 0.02
�

Cφu
33 + Cφq(1)

33 − Cφq(3)
33

�

+

�

14.99− 0.35 log
µ2

M2
W

�

CφB −
�

14.88− 0.15 log
µ2

M2
W

�

CφW +

�

9.44− 0.26 log
µ2

M2
W

�

CφW B

+

�

0.10− 0.20 log
µ2

M2
W

�

CW −
�

0.11− 0.04 log
µ2

M2
W

�

CuB
33 +

�

0.71− 0.28 log
µ2

M2
W

�

CuW
33

− 0.01 CuW
22 − 0.01 CdW

33 + . . . , (E.11)

δRh→γγ ≃ 0.18
�

Cℓℓ1221 − Cφℓ(3)11 − Cφℓ(3)22

�

+ 0.12
�

Cφ□ − 2CφD
�

− 0.01
�

C eφ
22 + 4C eφ

33 + 5Cuφ
22 + 2Cdφ

33 − 3Cuφ
33

�

−
�

48.04− 1.07 log
µ2

M2
W

�

CφB −
�

14.29− 0.12 log
µ2

M2
W

�

CφW +

�

26.17− 0.52 log
µ2

M2
W

�

CφW B

+

�

0.16− 0.22 log
µ2

M2
W

�

CW +

�

2.11− 0.84 log
µ2

M2
W

�

CuB
33 +

�

1.13− 0.45 log
µ2

M2
W

�

CuW
33

−
�

0.03− 0.01 log
µ2

M2
W

�

CuB
22 −

�

0.01− 0.00 log
µ2

M2
W

�

CuW
22 +

�

0.03− 0.01 log
µ2

M2
W

�

CdB
33

−
�

0.02− 0.01 log
µ2

M2
W

�

CdW
33 +

�

0.02− 0.00 log
µ2

M2
W

�

C eB
33 −

�

0.01− 0.00 log
µ2

M2
W

�

C eW
33 + . . . .

(E.12)

E.2 Production channels

δRggF = 0.249 Cdφ
33 + 0.121 Cφ□ − 0.303 CφD − 0.129 Cuφ

33 − 0.0606(Cφℓ(3)11 + Cφℓ(3)22 − Cℓℓ1221) ,
(E.13)

δRVBF = −0.423 Cφq(3)
11 − 0.347 Cφq(1)

11 + 0.1005Cφ□ + 0.0826 Cℓℓ1221 − 0.0670 CφW

− 0.0150 CφD + 0.0126CφW B − 0.0107CφB , (E.14)

δRWh = 1.950 Cφq(3)
11 + 0.887 CφW + 0.127 Cφ□ + 0.0606 Cℓℓ1221 − 0.0303 CφD , (E.15)

δRZh = 1.716 Cφq(3)
11 + 0.721 CφW + 0.426 Cφu

11 − 0.173 Cφq(1)
11 − 0.142 Cφd

11 + 0.121 Cφ□

+ 0.0865 CφB + 0.0375 CφD + 0.314 CφW B + 0.06045 Cℓℓ1221 , (E.16)

δRt t̄h = 0.121 Cφ□ − 0.122 Cuφ
33 − 0.0606(Cφℓ(3)11 + Cφℓ(3)22 − Cℓℓ1221)− 0.0303 CφD . (E.17)
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Appendix F

MSSM Photon-Penguin anatomy

The photon penguin MSSM contributions to the Wilson coefficients, CV LL , CV LR, CVRL and
CVRR, defined in (4.7) are

C I JK L
γ ,V LL = C I JK L

γ ,V LR = e2F J I
γL δ

K L , (F.1)

C I JK L
γ ,VRR = C I JK L

γ ,VRL = e2F J I
γR δ

K L . (F.2)

These are the last terms in the rhs of eqs. (4.17) - (4.20). Of course the photon penguin does
not contribute to C10 and only gives a lepton flavour universal contribution to C9 through
eqs. (4.10)

λC I JK L(′)
9γ = e2F J I

γL(R) δ
K L , λC I JK L(′)

10γ = 0 , (F.3)

where in mass-basis

F J I
γL = − V J i j∗

dUC ,LV I i j
dUC ,L

�

C01(m
2
C j

, m2
Ui
) +

2
3

C02(m
2
C j

, m2
Ui
)
�

+
1
3

V J i j∗
dDN ,LV I i j

dDN ,LC02(m
2
N j

, m2
Di
) +

2g2
3

3
CF V J i∗

dD,LV I i
dD,LC02(m

2
G , m2

Di
)

−
1
6

Y I∗
d Y I

dδ
I J
n

Z1i∗
1R Z1i

1RC01(m
2
dI

, m2
H0

i
) + Z1i∗

1H Z1i
1H C01(m

2
dI

, m2
A0

i
)
o

− Y J∗
d Y I

d KNJ KN I∗Z1i∗
H Z1i

H

�

C02(m
2
uN

, m2
H−i
)−

2
3

C01(m
2
uN

, m2
H−i
)
�

, (F.4)

F J I
γR = − V J i j∗

dUC ,RV I i j
dUC ,R

�

C01(m
2
C j

, m2
Ui
) +

2
3

C02(m
2
C j

, m2
Ui
)
�

+
1
3

V J i j∗
dDN ,RV I i j

dDN ,RC02(m
2
N j

, m2
Di
) +

2g2
3

3
CF V J i∗

dD,RV I i
dD,RC02(m

2
G , m2

Di
) ,

−
1
6

Y J∗
d Y I

dδ
I J
h

Z1i∗
1R Z1i

1RC01(m
2
dI

, m2
H0

i
) + Z1i∗

1H Z1i
1H C01(m

2
dI

, m2
A0

i
)
i

− Y N∗
u Y N

u KNJ KN I∗Z2i∗
H Z2i

H

�

C02(m
2
uN

, m2
H−i
)−

2
3

C01(m
2
uN

, m2
H−i
)
�

, (F.5)

and CF = 4/3. The corresponding Feynman rules in the MSSM are [200]:

V I i j
dUC ,L =

−e
sW

K J I Z J i∗
U Z1 j

+ + K J I Y J
u Z (J+3)i∗

U Z2 j
+ , (F.6)
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F. MSSM PHOTON-PENGUIN ANATOMY

V I i j
dUC ,R = −K J I Y I

d Z J i∗
U Z2 j∗

− , (F.7)

V I i j
dDN ,L =

−e
p

2sW cW
Z I i

D

�

1
3

Z1 j
N sW − Z2 j

N cW

�

+ Y I
d Z (I+3)i

D Z3 j
N , (F.8)

V I i j
dDN ,R =

−e
p

2
3cW

Z (I+3)i
D Z1 j∗

N + Y I
d Z I i

D Z3 j∗
N , (F.9)

V I i
dD,L = −Z I i

D , (F.10)

V I i
dD,R = Z (I+3)i

D . (F.11)

The loop functions C01 and C02 are defined as,

C01(m
2
1, m2

2) =
7m4

1 − 29m2
1m2

2 + 16m4
2

36(m2
1 −m2

2)3
+

m4
2(2m2

2 − 3m2
1)

6(m2
1 −m2

2)4
log

m2
2

m2
1

, (F.12)

C02(m
2
1, m2

2) =
11m4

1 − 7m2
1m2

2 + 2m4
2

36(m2
1 −m2

2)3
+

m6
1

6(m2
1 −m2

2)4
log

m2
2

m2
1

. (F.13)

Our result when translated from external quarks to external leptons agrees with the result of
Ref. [203]. Furthermore, it has been added in the current working version of SUSY_FLAVOR
code. It is very useful to exploit the FET in eqs. (F.4)-(F.5) in order to understand the dominant
contributions.

F.1 FET in chargino diagrams

Expanding the chargino-up squark contribution and keeping terms up to 1/M2
SUSY, and single

powers of quark masses as well as single powers of MW we get,

�

F J I
γL

�

C
= −

e2

s2
W

KNJ∗K M I(M2
U)

N M
LL

�

C01(|M2|2, {(M2
U)

N
LL , (M2

U)
M
LL})

+
2
3

C02(|M2|2, {(M2
U)

N
LL , (M2

U)
M
LL})

�

, (F.14)

while the right-handed (F J I
γR)C part is of higher order. The abbreviation {x , y} inside a function

denotes a first order divided difference e.g. f (x , {y, z}) = f (x ,y)− f (x ,z)
y−z (see Refs. [186, 203]

for further details and properties).

F.2 FET in neutralino diagrams

Expanding the neutralino-down squark diagram to leading order we obtain,

�

F J I
γL

�

N
=

e2

6s2
W c2

W

(cM2
D)

I J
LL

�

c2
W C02(|M2|2, {(M2

D)
I
LL , (M2

D)
J
LL})

+
s2
W

9
C02(|M1|2, {(M2

D)
I
LL , (M2

D)
J
LL})

�

, (F.15)

�

F J I
γR

�

N
=

2e2

27c2
W

(cM2
D)

I J
RR C02(|M1|2, {(M2

D)
I
RR, (M2

D)
J
RR}) . (F.16)
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F.3 FET in gluino diagrams

Finally, expanding the gluino-down squark amplitude to leading order we get,

�

F J I
γL

�

G
=

2
3

g2
3 CF (cM2

D)
I J
LL C02(m

2
G , {(M2

D)
I
LL , (M2

D)
J
LL}) , (F.17)

�

F J I
γR

�

G
=

2
3

g2
3 CF (ÒM

2
D)

I J
RR C02(m

2
G , (M2

D)
I
RR, (M2

D)
J
RR}) . (F.18)

where CF = 4/3.

F.4 Charged Higgs diagrams

Substituting the rotation matrices into the charged Higgs contributions, which are the last
terms in (F.4) and (F.5), respectively, we get,

(F J I
γL)H− = −

e2 mI
d mJ

d

2s2
W M2

W

KNJ KN I∗ tan2 β

�

C02(m
2
uN

, m2
H−1
)−

2
3

C01(m
2
uN

, m2
H−1
)
�

, (F.19)

(F J I
γR)H− = −

e2 mN
u mN

u

2s2
W M2

W

KNJ KN I∗ cot2 β

�

C02(m
2
uN

, m2
H−1
)−

2
3

C01(m
2
uN

, m2
H−1
)
�

, (F.20)

where, m2
H−1
= M2

W +m2
H1
+m2

H2
+ 2|µ|2.
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Appendix G

Auxiliary Functions

We append here relevant loop functions appeared in the text:

D0(m1, m2, m3, m4) = −
4
∑

j=2

m2
j log

m2
j

m2
1

∏4
k=1,k ̸= j(m

2
j −m2

k)
, (G.1)

D2(m1, m2, m3, m4) =
4
∑

j=2

m4
j log

m2
j

m2
1

∏4
k=1,k ̸= j(m

2
j −m2

k)
, (G.2)

E2(m1, m2, m3, m4, m5) =
5
∑

j=2

m4
j log

m2
j

m2
1

∏5
k=1,k ̸= j(m

2
j −m2

k)
. (G.3)
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