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ABSTRACT

Georgia Bakagianni, M.Sc. in Data and Computer Systems Engineering, Department
of Computer Science and Engineering, School of Engineering, University of loannina,
Greece, 2024.

Text Clustering Based on Large Language Models.

Advisor: Aristidis Likas, Professor.

Text clustering is a fundamental task in Natural Language Processing (NLP),
aimed at organizing documents into groups based on their content. Traditional clus-
tering algorithms, such as k-means and AHC, have been widely used for this pur-
pose, but their performance in text is often limited by the inherent challenges in
language understanding and extracting meaningful representations from text. Recent
advancements in LLMs have opened new possibilities for improving text clustering, by
leveraging their powerful language understanding and generation capabilities. This
study explores the role of LLMs in enhancing the text clustering task, both through
pre-clustering interventions, where LLM-generated labels are applied to traditional
clustering methods, and through direct application of LLMs for text clustering.

We introduce a pre-clustering approach where LLMs generate cluster labels that
inform traditional clustering algorithms, significantly boosting performance. Our ex-
periments, conducted on 11 diverse datasets, demonstrate that this approach out-
performs all developed clustering methods, including those that rely on traditional
clustering algorithms with earlier text representations and more recent contextual
embeddings, as well as LLM-based methods that generate key phrases that inform
traditional clustering algorithms. Furthermore, we examine the direct clustering po-
tential of LLMs, which, although not always capable of producing the exact number
of required clusters, achieves the second-highest average NMI and provides human-

readable labels that enhance interpretability, particularly in domains requiring clarity.

viil



Our findings highlight the dual benefits of LLMs in text clustering: improving both
clustering performance and the interpretability of results, making LLMs valuable tools

for advancing the text clustering task.
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EXTETAMENH IIEPIAHWH

lewpyio Moaxoytavvy, A M.E. ot Myyovixn Aedopévwy xat YTOAOYLOTIXWY ZVOTY-
pwatwy, Tuquo Mnyavixoy H/Y ko ITAnpopopixng, [loAvtexvixy XyoAn, [laveriotiuto
Twovvivwy, 2024.

Opadomoinon Ketpévwy pe Bdon ta Meydho I'h\wooixd Movtéia.

EmiBAénwv: Aptoteidng Avxag, Kabnyntie.

H Opoadomoinon Ketpévwy amoteiel éva Baowxd medio tng EneEepyaoiog duot-
¢ Mwoooc (EOT), pe otdyo v opoadomoinoy dedopévwy pe Bdon Tig eyyeveic
OULOLOTNTES, YWELS ™ XENON TEOXXDOPLOUEVWY ETIXETWY xaTnYoploc. Xe avtifeon
ue ™y Katnyoptomoinon Ketpévwy, n omola ypnotp.omotel emomtevdpevy) Lébnon, n
opodoToinom eivort aveTiBAETTY KoL ATOXOAVTITEL XQUVUULEVES OOWUESG OE [L1] SOUNUEVOL
dedopéva, Bonbwvtoag oty eEorywyn TEOTHTTWY XOL TANEOPOPLWY OTtd UEYAAES OLA-
AoYEg xelpévwy. Ou epoppoyég tng meptAopBavouy 1t dnuLovpyio TeEQLANPEWY, TNV
awviyvevon Bepdtwy xow Ty xoTnyopLoToinoy.

[Mopadootoxd, 1 dradixooion vt TEPLAXLBAVEL VO TTASLA: TNV AVUTIOPACTAOY
TOU XELULEVOL WG XPLOUNTIXA SLOVOCUOTO TTOL ATTOTUTIWYOLY YAWOOLXE YOOPOXTNOL-
OTLXA, XAL TNV EQAPUOYN €VOS aAyopibuov opadomoinong yiow 1 SnuLovpyior TwY
opadwy. QoTtdHo0, oL TOPAYOUEVES ETIXETEG OEY ELVal XATOVONTES aTtd ToV dvbpwTo,
OTTOLTOVTOG ETULTAEOY TTPOOTADELO YLOL TNV EEQYWYN XONOLUWY TTANPOPOPLOY OTTO TLG
opA&oES.

Ou eEerielc ot peydho YAwoowxd povtéda (LLMs), 6ntwe to GPT-4, awvoiyouy
VEEG BLVATOTNTES YL TNV OLASOTIOLNOY XELULEVWLY, XSG aTA Tor LOVTEAQ Elvort
LXOVE O)L LOVO YO XOTOVOOUY, OAAGL XOlL Vor TTop&youy ouvextixd xelpevo. H exte-
VNG EXTTALOEVLOY] TOVG OE UEYCAN COUOTO XELUEVWY UE SLOEXATOUULDOLO TTOOAUETOOVG
TPOCEPEPEL TN SLVaTOTNTH BEATIWONG TNG ATTAS00MG XAL TNG EQUNVELOG TWY KTTOTEAE-

OUATWY TNG OUOOTTOIMONG.



XN LEAETN awvTy, €EEPELYOLUE TS PTTOPOVY vor aELomotnfody ol duvaTdTNTES
TopoyYwYNS xewévou twv LLMs yio tqy Opadomoinon Ketpévwy. Apyixd, diepev-
YOUUE TNV eVOWRATWwoY Twv LLMs oty mapadootoxn pebodoroyio opadomoinong,
ue otéyo ™ PBeAtiwon tng amddoong. LuyxexpLpéva, xabodnywvtag to LLMs pe
onNtég odnyieg, eEdyetor yior x&be xeipevo plow ETLXETA, TTOL OPOPE TO XELULEVO %Ol
elvoll OYETLXY UE TO XPLTYPLO KE TO OTOLO YIVETOL 1] OLASOTOLNOY, OTtWS N TTPOheon
Tov XENOTN, To ocvvalohnua, to BEpa. To emdpevo Pruo g peboddov eivar 1 avo-
TOPACTAOY TWY OPYLUWY XELUEVWLY XOL TWY ETLXETWY WS oPLOUNTIXA dtovbopota, Tow
oTola eLodyovToL o€ aAyopLipovg opadomolinorg, OTws 0 ZuoowEeLTxdg lepapytxdg
AAyopLbuoc Opoadomoinong AHC xot o k-mEANns. H vBpLduxn awtn pébodog 1 omoia
yonorpomotel xo tae LLMs xo tnv mapadootoxy Tpoxtixy oty Opadomoinon Ket-
wévwy otay exteAeltor pe tov AHC emituyydvel v xahdtepn Léon amddoorn ot
TIELOAUATOL TTOV OVATTTOENUE TTAVE O EVTEXO OWUOTO XELUEVWY XOL UE QDO UETOLUES
oELOAGYNOTC.

EmmAéov, mpoteivovpe ptor véor pébodo, oty omolor toe LLMs avaroufdavovy
omevbleiog ™y opadoToiney, ToEAXAUTTOVTOS TLE Topodootoxés pnebddovg Opo-
domoinone Kewpévwv. H pébodog exteAeiton oe dvo Pripato: Apyixd, xobodnyodpe
to0 LLM pe pntég odnyleg va eEdiyel yiow xdbe xelpevo plow eTLxéTar OYETLXY UE TO
XOLTNPLO OUaSOTOINOYG, OTTWG axPLBWg oty Tponyolueyn vBptdixy nébodo. Aivo-
vto 0to LLM ot 707 mapoybeioeg eTixéTeg amd TEONYOVUEVO KELUEVR, OTE VO TLG
A&PBel LTTOYT xow Vor TOPBAEEL VEEG LOVO OTOY OL LTIAPYOVOES OEV CLYASOLY LE TO XEL-
KEVO. XN ouveyeLla, To LLM xoAeitor vo opadomolnoet T Topoybeloeg eTixéteg e
Baom éva TpoxabopLopévo TANnHog opadwy. Autég oL eTixéTteg oxNUaT{OLY TLG OULAL-
JEC, TTPOGPEPOVTOG LEYAADTEPY SLoPAVELX XL XoAOTEEN gpunveia, xabwg oL opddeg
SLoLOPPWYOVTOL BACEL TOL TEPLEXOUEVOL XOAL TWY YOPOXTNOLOTIXWY TTOV OVAYYWOL-
Covtor amd tao LLMs. H epunvelor twv eTtxetedy amoteAel onuaytind TASOVEXTNUO
™G AUEDYG opadoTolnomg XELLEVWY e ypnon LLMs, mTouv amovotalel amd Tig xo-
Otepwpéveg pebddove. Tlopdra awta, avt) N Lébodog dev vTepPaivel oe amddoon
™Y LPELILXY TTPOGEYYLOY TToL GLYSLALEL Taw LLMs pe mopadootoxobsg adyopibpoug,
%o OEV ETUOTPEQPEL TTEAVTA TO OTALTOVUEVO TTANDOGC ETIXETWY. LUVETWG, amottelTon

TEPOLTEPW EPELVL YLo. T BEATiwon avtg TN pebddov.
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CHAPTER 1

INTRODUCTION

Text clustering is a core task in NLP, aimed at grouping textual data based on inherent
similarities without relying on predefined category labels [1]. Unlike text classification,
which relies on supervised learning and prior knowledge, text clustering is unsuper-
vised, revealing hidden structures within unstructured data. This exploratory process
seeks to identify meaningful patterns, making it a crucial tool for deriving insights
from large text corpora. Applications of text clustering include text summarization,
topic detection, and classification [2]. Traditionally, this task is comprised of two com-
ponents as depicted in Figure 1.1: the text representation module, which represents
text as numerical vectors capturing specific linguistic features, and the clustering mod-
ule, which takes the text representation as input and enables a clustering algorithm
to process and group the data. This long-established practice has been foundational
in text clustering and data clustering in general [1]. However, the cluster labels gen-
erated are not human-interpretable, and additional effort is required to examine the
clusters and gain insights [3].

In recent years, advances in NLP, particularly with the rise of LLMs such as GPT-
4 [4], have opened new opportunities for rethinking the text clustering task. These
models excel not only at understanding language but also at generating coherent text,
which significantly enhances NLP’s capabilities [5]. Since the introduction of ChatGPT
in November 2022, LLMs have demonstrated exceptional performance across vari-

ous NLP tasks and have evolved into versatile tools that can solve complex tasks in a

'https://openai.com/chatgpt/
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Figure 1.2: Direct LLM-based text clustering approach.

variety of domains [6].2. The capabilities of LLMs are enabled by extensive training
on vast text corpora using billions of parameters, offering new possibilities for ad-
dressing text clustering by improving performance and enhancing the interpretability
of clustering outputs.

In this study, we explore how the text generation capabilities of LLMs can enhance
text clustering. First, we investigate how LLMs can be integrated into the traditional
text clustering workflow to improve performance. Specifically, we examine how these
models can enhance traditional clustering methods by enriching the input text prior
to clustering. Building on the approach of [6], where key phrases were extracted from
LLMs to improve clustering performance, we propose a more targeted method that
extracts task-specific information from the texts. By guiding LLMs with explicit in-
structions about the clustering task and the key characteristics to focus on (e.g., topics,
sentiment, or other features relevant to the grouping), we extract task-dependent in-
formation that reflects the inherent qualities of the texts. This information is encoded
to generate enriched text representations that better capture the task-relevant features.

These enriched representations are then passed to traditional clustering algorithms,

2Examples of their utility include systems such as [https://Copilot.microsoft.comA and

https://notebooklm.google/, which leverage the models’ ability to follow human instructions, perform

multi-step reasoning, and generate accurate outputs across a wide range of tasks.



such as k-means and AHC. This method achieved superior performance across all
eleven datasets in our experiments, outperforming both conventional methods and
the approach proposed by [6].

Additionally, we introduce a novel method where LLMs directly cluster the texts,
bypassing traditional algorithms and eliminating the need for numerical vector trans-
formation. Instead, as depicted in Figure 1.2, the model performs clustering by gener-
ating descriptive, human-readable labels for each text. These labels form the clusters.
This process provides greater transparency and interpretability, as the clusters are
formed based on the content and characteristics identified by the LLMs. The inter-
pretability of labels is a significant advantage of direct LLM-based text clustering,
which is lacking in established methods. However, this method does not outperform
the hybrid method that combines LLMs with traditional algorithms and requires
further investigation to explore potential improvements.

In summary, our contributions are four-fold: (i) We propose a method that en-
hances traditional clustering by integrating LLMs as a pre-clustering step to provide
task-specific information that enriches the input text. This approach enables a more
nuanced capture of clustering-relevant features, resulting in well-defined clusters that
reflect the inherent qualities of the texts and achieves the best performance among
all methods in our benchmarking. (ii) We introduce a novel method where LLMs
directly perform text clustering, broadening the scope of clustering methodologies by
offering an LLM-based alternative to traditional, numerically-driven techniques. (iii)
This direct LLM-based method also addresses the longstanding challenge of inter-
pretability in clustering by generating human-readable labels, making clusters more
transparent and accessible, thus facilitating insights without additional analysis. (iv)
Finally, we provide a benchmark by comparing our proposed methods with both
LLM-based and conventional approaches across diverse datasets, offering a reference
for the performance and practical value of LLMs in text clustering and advancing
research in unsupervised NLP tasks.

The structure of this study is as follows: Chapter 2 provides the necessary back-
ground for text clustering, beginning with traditional methods (Section 2.1) and pro-
gressing to an LLM-based approach (Section 2.2). In this chapter we also discuss
the related works relevant to our study. Chapter 3 presents the clustering meth-
ods, including baselines and our proposed approaches to be assessed. Chapter 4

presents the empirical analysis conducted to assess the clustering methods, detailing



the datasets on which clustering is performed (Section 4.1), the evaluation metrics
used (Section 4.2), the experimental setup defining the details of the models and con-
figurations used in the experiments (Section 4.3), and the results of the experiments,
discussing the observations made (Section 4.4). Finally, Chapter 5 summarizes the

outcomes of our study and outlines future work.



CHAPTER 2

BACKGROUND

2.1 Traditional Text Clustering
2.2 LLMs for Text Clustering

2.3 Related Work

This chapter provides essential background on text clustering, beginning with tra-
ditional methods (Section 2.1), where clustering algorithms process numerical vec-
tor representations of textual data. The discussion then progresses to clustering ap-
proaches that integrate LLMs prior to clustering to enhance clustering outcomes (Sec-
tion 2.2). Finally, in Section 2.3 we discuss the related works relevant to our study,
providing a taxonomy of the clustering methods, the evolution of text clustering

methods, and the current research that performs text clustering using LLMs.

2.1 Traditional Text Clustering

Text clustering traditionally consists of two key components: the text representation
module, which transforms text into dense numerical vectors that capture specific lin-
guistic features, and the clustering module, which processes these representations
using a clustering algorithm to group the data. In Subsection 2.1.1, we explore the
evolution of text representation techniques over the past few decades. In Subsec-

tion 2.1.2, we discuss two of the most widely used clustering algorithms, AHC and

5



K-MEANS.

2.1.1 Text Representation

Text representation is a fundamental step in text clustering, as it transforms raw
text into numerical form, enabling clustering algorithms to process it. Traditional
clustering methods, such as AHC and k-MEANs, operate in a fixed feature space, where
each document is represented as a vector of real numbers. The approaches used
to achieve this transformation have evolved from simpler statistical methods, such
as Term Frequency - Inverse Document Frequency (TF-IDF), to more advanced
techniques such as general-purpose text embeddings, which capture semantic and
contextual nuances of texts and can address a multitude of downstream tasks. This
section explores three key text representation methods, illustrating the evolution of

text representation in NLP.

TE-1df

One of the earliest methods for text representation is TF-IDF, a statistical measure
that evaluates the importance of a word within a document relative to its prevalence
across the entire corpus. It combines two metrics: Term Frequency (TF), which mea-
sures how often a word appears in a document, and Inverse Document Frequency
(IDF), introduced by [7], which measures how rare a word is across the corpus. By
multiplying these metrics, TF-IDF highlights words that are frequent within specific
documents but rare across the corpus, making them particularly relevant to individual
documents.

TF-IDF improves clustering performance by emphasizing unique terms while
reducing the influence of common words, allowing clustering algorithms to better
differentiate between clusters based on thematic similarity [8]. However, a key lim-
itation of TF-IDF is that it does not capture semantic or contextual relationships
within a document. Each word is treated independently, so TF-IDF cannot recog-
nize synonyms or related terms. This limitation can cause it to overlook contextually
significant words— for instance, if a synonym is used instead of a common word, TF-
IDF would not identify its relevance, potentially affecting cluster quality and thematic

consistency [9].



Non-Contextual Word Embeddings

Unlike TF-IDF, static word embeddings capture the semantic relationships between
words. These embeddings were popularized by the work of [10] and produce dense
vector representations of words based on their co-occurrence contexts in large cor-
pora. Notable models include Word2Vec [10], FastText [11], and GloVe [12], which
represent each word in a vocabulary as a single, fixed-size vector that reflects the
word’s semantic properties.

By leveraging these embeddings, clustering algorithms can exploit deeper semantic
similarities between words, leading to more accurate text clustering. The key limita-
tion of static embeddings is their inability to capture context-specific meanings. Each
word is assigned a single vector representation, regardless of its different meanings
in various contexts. For example, the word “bank” in the phrases “river bank” and
“financial bank” would have the same representation, making it difficult for clustering

algorithms to distinguish between different contextual uses of the word.

Contextual Word and Document Embeddings

The introduction of the Transformer architecture marked a significant advancement
in text representation. Transformers [13] use self-attention mechanisms to compute
attention scores for each word in a sentence, capturing not only semantic relationships
but also the specific contextual relationships of words within their usage. This ability
to dynamically adjust word representations depending on the context is a major
strength of models built on Transformers.

The first and the most influential model using this architecture is BERT [14],
which generates contextualized word embeddings. Unlike static embeddings, each
word in BERT is represented in a context-dependent manner, meaning that the same
word can have different embeddings based on the sentence in which it appears.
This context-aware representation significantly improves performance in tasks such
as clustering, where word meanings shift based on usage.

Additionally, while in all previous methods the text is represented by aggregating
the embeddings of individual words, there are methods that focus on embedding the
entire text (being a phrase or an entire document). These text embeddings capture
the meaning of longer sequences (e.g., phrases, sentences, paragraphs, or entire doc-

uments) in their specific contexts. Furthermore, models such as iNsTrucTOR [15] take



this concept further by generating task-aware text embeddings. These models embed
each input alongside task instructions, allowing for tailored representations without
the need for domain-specific fine-tuning. This differs from other approaches, such as
BERT or Word2Vec, where fine-tuning is often required to adapt the embeddings to
specific downstream tasks and domains. In contrast, task-aware models inherently

incorporate such adjustments during the embedding process.

2.1.2 Clustering Algorithms

In the following, we survey two of the most popular clustering algorithms.

Agglomerative Clustering

AHC is one of the simplest and most intuitive approaches to clustering [16], following
a bottom-up hierarchical paradigm. The algorithm begins by assigning each data
point to its own cluster and then proceeds iteratively, merging the “closest” clusters of
the previous clustering at each step. This process reduces the number of clusters with
each iteration until all data points are combined into a single cluster. The outcome
is a dendrogram, a tree-like structure where individual data points form the leaves,
and the final, all-encompassing cluster forms the root. The number of clusters is
determined by cutting the dendrogram at a chosen level, allowing for flexible control
over the final grouping.

To fully specify the algorithm, three parameters must be determined. First, the
distance metric d, which measures the distance between individual points. Second,
the linkage criterion D, which defines the distance between clusters and governs
how they are merged. The most commonly used linkage criteria between two sets of

observations A and B and a distance d are:

* Single Linkage defines the distance between two clusters as the minimum dis-

tance between any pair of points from the two sets of observations A and B.

Dgingle(A, B) = min_d(a,b)

acA,beB

* Maximum or Complete Linkage measures the distance between two clusters as
the maximum distance between any pair of points from the two clusters. It

tends to create compact and spherical clusters.

Dcomplete(A7 B) = agA}%é(B d(a, b)

8



* Average Linkage calculates the distance between two clusters as the average of
all pairwise distances between points in the two clusters. It provides a balance

between single and complete linkage.

Daverage(A B |A|| ZZd a b

aEA beB

e Ward’s Linkage calculates the distance between two clusters based on the in-
crease in within-cluster variance when they are merged. This linkage minimizes
the variance between merged clusters.

_1AlBL

Doaral 4 B) = T 11

s — psll?
where p4 and pup are the centroids (means) of clusters A and B, respectively.

The third parameter is the stopping criterion, which dictates when to stop merging

clusters. Common stopping criteria include:

¢ A fixed number of clusters k: the algorithm stops merging once the number of

clusters reaches k,

e A linkage distance threshold r € R*: the algorithm stops merging when all the

between-clusters distances are larger than r.

K-Means

K-MEANs is the most popular algorithm in the partition-based family of clustering
methods [1]. Partition-based clustering methods aim to divide the dataset into a
predetermined number of clusters, where each data point is assigned to one cluster
based on its similarity to the cluster’s centre. Compared to hierarchical clustering
algorithms, partition-based clustering algorithms identify all clusters simultaneously
without imposing a hierarchical structure.

These algorithms define a cost function over a parametrized set of possible clus-
terings, and the goal is to find a partitioning (clustering) of minimal cost. Under this
paradigm, the clustering task becomes an optimization problem. The k-mEANs algo-
rithm finds a partition such that the squared error between the empirical mean of a
cluster and the points within that cluster is minimized. Let y; be the mean of cluster
cx. The error between p, and the points in cluster ¢, is defined using a distance

function d(x, uy) as:



TECK

The goal of kK-MEANs is to minimize the sum of the errors over all K clusters
C:{Ck,k’: 1,...,K}:

= Z Z d($7uk>

k=1 z€ck
Algorithm 2.1 K-Means
Require: Dataset X = {zy,x9,...,2,}, number of clusters K, cluster initialization
method, distance metric d
Ensure: Cluster assignments {«y, s, ..., ax} and centroids {1, fia, ..., px}
1: Initialize cluster centroids M = {1, pto,. .., ik} using the specified initialization

method
2: repeat
3:  Assignment step:
4:  for each point z; € X do
5 for j =1to K do
6 Calculate the distance: d;; < d(x;, ;)

end for

Assign z; to the cluster with the nearest centroid:
Q; < argmind;;
J

9: end for
10:  Update step:
11:  for each cluster j =1,..., K do

12: Update centroid p; as the mean of all points assigned to cluster j:
11 T
sz az—]}’xaz_]

13:  end for
14: until convergence criterion is met (e.g., centroids no longer change)

15: return Final cluster assignments {«y, as,...,ax} and centroids {p, pa, ..., tix }

Minimizing this objective function is known to be an NP-hard problem (even

10



for K = 2) [1]. As an alternative, the following simple iterative algorithm [17] is
often used, so frequently that the term “k-mEaNs clustering” refers to the outcome of
this algorithm rather than the clustering that minimizes the k-MEANs objective cost.
Algorithm 2.1 describes the main steps of the k-mEans clustering algorithm.

Even though k-MEANs was discovered independently in various scientific fields over
50 years ago by [18], [19] (proposed in 1957 but published in 1982), and [20, 21],
it remains one of the most widely used algorithms for clustering. The main reasons
behind the algorithm’s popularity are its linear complexity, simplicity of implemen-

tation, and empirical success [22].

2.2 LLMs for Text Clustering

With the rise of LLMs and their general-purpose language capabilities, new possibil-
ities for addressing the text clustering problem have emerged (see Subsection 2.3.3
for research papers on LLM-based text clustering). In this section, we introduce a
text clustering approach that combines traditional clustering algorithms with the text
generation capabilities of LLMs, laying the groundwork for one of our proposed

LLM-based clustering methods.

2.2.1 LLM-Based Pre-Clustering Approach for Text Clustering

This approach uses the text generation capabilities of LLMs to extract key infor-
mation from documents before applying a traditional clustering method. Instead of
relying solely on traditional algorithms to identify thematic clusters, LLMs can be
employed to uncover essential features, concepts, or latent themes within the text. By
extracting relevant aspects prior to clustering, LLLMs can enhance the overall clustering
process. This hybrid model integrates LLMs by generating task-relevant insights that
inform traditional clustering methods. By focusing on identifying topics, common
themes, or keywords, LLMs help facilitate a more efficient and accurate clustering
process. Algorithm 2.2 presents the main steps of this approach.

This method is particularly useful for large datasets or when documents exhibit
overlapping themes. By highlighting unique textual characteristics, LLMs help differ-
entiate between similar clusters, ensuring that the clusters reflect nuanced distinctions

that might otherwise be overlooked. The enriched representations generated by LLMs
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Algorithm 2.2 LLM-Based Pre-Clustering Approach

Require: Dataset X = {xy,29,...,2,}, LLM Model, Embedding Model, Clustering

Algorithm (e.g., AHC or K-MEANS)

Ensure: Cluster assignments for each text v € X

1:

10:
11:
12:
13:
14:
15:
16:

17:
18:

Pre-clustering step:

Initialize an empty list for task-specific information: LLM_Gen_Texts = []

for each text z € X do
Instruct the LLM Model to generate task-specific information ¢ from =z, such as
key topics, common themes, or relevant key phrases.

Append t to LLM_Gen_Texts

: end for

Text representation module:
Initialize an empty list for enriched text representations: Enriched_Representations

=[]

: for each pair (z,¢) from X and LLM_Gen_Texts do

Encode x using the Embedding Model to obtain Enc(z)
Encode t using the Embedding Model to obtain Enc(t)
Concatenate Enc(x) and Enc(t) to form Enriched_Rep(x)
Append Enriched_Rep(z) to Enriched_Representations
end for
Clustering module:
Apply the Clustering Algorithm to Enriched_Representations to generate cluster
assignments:

Cluster_Assignments = Clustering_Algorithm(Enriched_Representations)

return Cluster_Assignments

improve the performance of traditional clustering algorithms, such as AHC and k-

MEANS, by better capturing the inherent qualities of the text.
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2.3 Related Work

2.3.1 Clustering

Clustering is a fundamental task in Machine Learning (ML) and therefore is ap-
plied to various types of data, including text [23, 24, 25], image [26, 27, 28], audio
[29, 30, 31], video [31, 32], graph [33, 34], time series [35, 36], and geospatial data
[37, 38]. However, each data modality presents unique challenges that require special-
ized adaptations in data representation methods to effectively uncover the structure
inherent to the data [39].

In [39], the authors categorized clustering approaches based on the interaction
between the representation learning module and the clustering module. Multi-Stage
Clustering treats the two processes as distinct, where representation learning and
clustering are handled separately [33, 28]. Iterative Clustering refines both the repre-
sentation learning and clustering processes iteratively, improving the quality of both
in each iteration [26, 27]. Generative Clustering employs generative models to capture
the underlying data distribution, which helps the clustering algorithm form groups
based on data density [40, 41]. Lastly, Simultaneous Clustering jointly optimizes the
representation learning and clustering objectives in a unified process, aiming to im-

prove both tasks simultaneously [42, 25].

2.3.2 Text Clustering

Text clustering, in particular, presents challenges related to the high dimensionality,
sparsity, and semantic ambiguity of textual data. Natural language exhibits complexity,
where word meanings often change based on context, making it difficult for traditional
algorithms to accurately cluster texts solely based on content. Early methods for text
clustering relied on statistical techniques for text representation, including TF-IDF
[43, 9] and static word embeddings [44, 45], which provided fixed representations of
words, limiting their ability to capture nuanced meaning.

More recent approaches have leveraged context-sensitive, dynamic embeddings,
such as BERT, which can be fine-tuned specifically for clustering tasks [46] or used
without fine-tuning [47, 2]. Additionally, contextual text embeddings that are uni-
versal across tasks and domains, such as iNsTRucTOrR and E5, have emerged offering

strong performance on diverse clustering tasks [48, 49, 50, 51, 52].
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2.3.3 LLM-based Text Clustering

LLMs have revolutionized various NLP tasks, including text clustering. Their ability
to generate human-like text and understand complex language patterns offers new
opportunities for improving both the accuracy of clusters and the interpretability of
results.

LLMs have been integrated into text clustering in diverse ways. A pre-clustering
method for intent discovery was proposed by [53], which uses LLMs to generate short
summaries for utterances in dialogue systems. The process involves initial clustering
using a pre-trained encoder and k-MEANs. From each cluster, a prototype utterance is
selected based on its proximity to the centroid, representing the cluster’s latent intent.
The LLM then generates short summaries for these prototypes, which are used to
prompt the LLM in classifying non-prototypical utterances by matching them to one
of the descriptive labels. If none of the existing labels are appropriate, the LLM
generates new short summaries. These labels are combined with the utterances into
a single vector representation, and K-MEANs is applied again to refine the clustering
based on these enriched representations.

The study in [50] focused on clustering interpretability by incorporating user-
defined goals into the clustering process. Their algorithm takes a user-specified nat-
ural language goal (e.g., sentiment or genre) and clusters a text corpus accordingly.
First, samples from the dataset are provided to an LLM, which generates potential
cluster explanations based on the user’s goal. Next, another LLM evaluates whether
each sample from the corpus fits a given explanation by returning a “yes” or “no”
response. This generates an assignment matrix, indicating which samples correspond
to which candidate clusters. Finally, an Integer Linear Program (ILP) selects the opti-
mal set of explanations, ensuring that each sample is assigned to roughly one cluster
and minimizing overlap or missed assignments.

LLMs were used to understand user preferences in clustering, as described by
[51]. Their approach begins with an initial clustering using contextual embeddings
and then applies entropy-based sampling to retrieve triplets of samples with high
uncertainty. These triplets are used to prompt the LLM to make similarity judg-
ments, which refine the embedding space to better align with the user’s clustering
perspective. Further, pairwise queries sampled from a hierarchy of cluster levels are

used to determine the optimal granularity of clusters, with the level yielding the high-
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est consistency between the LLM’s predictions and actual cluster assignments being
selected.

In [52], the authors explored three stages where LLMs can enhance clustering: pre-
clustering (to improve input features), during clustering (providing constraints), and
post-clustering (correcting low-confidence cluster assignments). In their pre-clustering
method, they used LLMs to generate key phrases that enriched document represen-
tations, making them easier to cluster. During clustering, LLMs acted as a pseudo-
oracle, offering pairwise constraints that guided the clustering algorithm. Finally, after
clustering, LLMs were used to refine the clusters by correcting low-confidence assign-
ments. Their experiments revealed that pre-clustering method provided the strongest

performance boost.
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CHAPTER 3

Prorosep TeEXT CLUSTERING METHODS

3.1 Traditional NLP-Based Text Clustering Methods

3.2 LLM-Based Text Clustering Methods

This chapter builds upon the background knowledge of text clustering outlined in
Chapter 2 and presents the specific methods developed to address the research task.
The structure mirrors that of Chapter 2: we begin by discussing traditional NLP
methods that use established clustering algorithms (Section 3.1). We then explore
LLM-based clustering approaches that leverage the natural language generation ca-

pabilities of LLMs (Section 3.2).

3.1 Traditional NLP-Based Text Clustering Methods

As outlined in Section 2.1, traditional NLP clustering methods, which developed
prior to the emergence of LLMs, rely on converting text into numerical vectors. This
transformation enables clustering algorithms, such as k-means and AHC, to process
the data and perform clustering.

This study investigates the impact of various text representation techniques on
clustering performance, focusing on methods that reflect the evolution of text repre-
sentation. We start with the earlier statistical techniques, selecting TF-IDF, a method

that emphasizes term importance in a corpus, although it lacks the ability to capture

16



semantic or contextual relationships between words, which is a limitation. Next, we
turn to static word embedding models that capture semantic relationships, but gen-
erate a single embedding for each word, regardless of context, and fail to capture
contextual nuances. From this category, we use pre-trained embeddings from three
widely recognized embedding models - Word2Vec [10], FastText [11], and GloVe [12].

Finally, we explore recent advancements in text representation, which not only
capture both semantic and contextual similarities but also generate task-aware em-
beddings. We employ the iNnsTRucTOrR model, which uses task-aware prompts to gen-
erate text embeddings and, at the time of our experiments, achieved state-of-the-art
performance on the MTEB text embedding benchmark [54], a comprehensive evalua-
tion benchmark for measuring the performance of text embedding models on diverse
embedding tasks.

For clustering algorithms, we have narrowed our focus to the most commonly
used methods, specifically k-mEans and AHC. These algorithms belong to different
families of clustering techniques, providing a broader coverage for our analysis.

By combining these two algorithms with the five text representation methods, we

create ten distinct traditional NLP clustering approaches for our experiments.

3.2 LLM-Based Text Clustering Methods

The LLM-based clustering methods discussed in this section leverage the natural

language generation capabilities of LLMs, as outlined in Section 2.2.

3.2.1 Direct LLM-Based Text Clustering Method

LLMs have significantly expanded the range of tasks that can be addressed using
natural language, thanks to their general-purpose language understanding and gen-
eration capabilities [5]. By accessing LLMs through prompting interfaces (e.g., GPT-4
API), users can format their tasks as natural language instructions that the model
can follow, even for complex tasks [55]. One innovative approach to LLM-powered
clustering is to directly instruct the LLM to group similar documents, bypassing tra-
ditional clustering algorithms entirely.

This direct method eliminates the need for vectorized document representations

and instead leverages the LLM’s ability to understand and generate human-readable
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text. The LLM can generate both the clusters and their labels in a human-interpretable
manner, offering explanations for why certain documents are grouped together. This
capacity for providing meaningful, human-readable labels adds an extra layer of

interpretability that traditional algorithms often lack.

Framework

The direct LLM-based clustering framework can be summarized in the following key

steps:

1. Define Task Objectives: Clearly articulate the clustering task, specifying the goal

of grouping similar documents. This sets a clear direction for the LLM.

2. Prompt Engineering: Construct effective prompts that guide the LLM in per-
forming the clustering task. General design principles proposed by several ex-

isting papers [56, 57, 5] and websites [58, 59] include:
¢ (Clear task objectives: Define the task goal concisely.

* Decomposition of task: Break the task into detailed, manageable subtasks

¢ Few-shot demonstrations: Provide LLMs example outputs to improve ac-

curacy.

¢ Model-friendly format: Ensure prompts are structured in a way that aligns

with LLMs preferences.

* Role-playing strategies: Use techniques that prompt the LLM to assume a

role, improving its response consistency.

3. Execute Clustering: Using the constructed prompts, instruct the LLM to analyse
the documents and perform the clustering. The LLM processes the input text
and assigns cluster labels to each document based on its understanding. The

resulting set of label assignments forms the clusters.

4. Review and Interpret Results: The LLM produces both the clusters and their
corresponding human-readable labels. This interpretability is a significant ad-

vantage of using LLM for clustering.
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Challenges

While the direct clustering approach offers a novel and intuitive method for grouping
documents, it presents unique challenges that require careful prompt design and an

understanding of the model’s inherent limitations:

* Few-shot Demonstrations: Adapting prompt examples can be challenging, as
there may not be training material from the same distribution as the input text

to provide for few-shot demonstrations.

* Label Consistency: The contextual understanding of LLMs may introduce vari-
ability in grouping due to the use of synonyms or different phrasing structures
for the same cluster labels. This inconsistency can complicate the clustering
process and hinder scalability, as the model might generate a different number
of clusters than expected or use labels that, while semantically similar, are not

explicitly aligned.

* Cluster Number Constraints: Clustering tasks often require a predefined num-
ber of clusters; however, while LLMs can follow semantic patterns, they are
not inherently designed to optimize outcomes based on fixed constraints, such
as generating a specified number of clusters labels [60]. Their probabilistic na-
ture [6] allows for flexibility in response generation, making it challenging to

consistently produce the same number of clusters.

In summary, while direct LLM-powered clustering offers a novel and intuitive
approach to grouping documents, it presents unique challenges that require careful

prompt design and an understanding of the model’s inherent limitations.
Method Overview
Our proposed direct LLM-based clustering method approaches these issues through

a two—step process.

Label Generation Step In the first step, we set aside the requirement to group texts
to a predefined number of clusters and focus on generating cluster labels for batches of
text. The prompt engineering in this stage involves providing the LLM with batches

of data and requesting a cluster label for each instance, reflecting the aspect upon
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Table 3.1: Example prompts for each step in the direct LLM-based text clustering
method. The example uses a dataset of scientific publication titles, where clustering is
based on the scientific category of each title. The colors highlight key design principles
(see Section 3.2.1 for details). [Blue text indicates the task description, - text
represents the detailed breakdown into subtasks, and yellow text denotes the prompt

format style.

LaBEL GENERATION STEP - FirsT BATCH:

Generate a JSON dictionary where the keys are the provided IDs of the titles and the

values are the corresponding cluster labels.

LABEL GENERATION STEP - SUBSEQUENT BATCHES:

4. Generate a JSON dictionary where the keys are the provided IDs of the titles and

the values are the corresponding cluster labels.

CrLusTERING TuHrROUGH LABEL CONSOLIDATION STEP:

The output should be a JSON dictionary where the keys are the original category IDs,

and the values are the new, consolidated categories.




which the text should be grouped. For example, in a dataset of scientific publication
titles, the clustering may be based on the scientific category each title pertains to.
We randomly sample the batches and perform prompting with zero-shot demon-
strations. The first batch establishes an initial set of labels, while subsequent batches
refer to the pool of labels generated from all previous batches. Each new batch
matches its texts to one of these existing labels if appropriate or assigns a new la-
bel if none fit. This iterative matching strategy helps maintain label coherence across
batches and aims to reduce the issue of generating labels that exhibit synonyms or

slightly different phrasing for similar concepts.

Clustering Through Label Consolidation Step While the first step aids in main-
taining label consistency across the generated labels, it may also result in the model
producing more unique labels (and thus more clusters) than desired. To address
this, the second step introduces a constraint to consolidate the generated labels into a
specified number of broader human-readable groupings, merging similar labels based
on their thematic content or meaning. In this step, we provide the LLM with the set
of labels generated from the previous step and instruct it to merge these labels into
broader groupings until the required number of clusters is achieved. This merging
process assigns a cluster label to each document in the input datasets, thus completing
the clustering task.

It is essential to acknowledge, however, that while this step encourages label merg-
ing, it cannot fully overcome the challenge of adhering to a predefined number of
clusters. Despite stating the desired number of clusters in the prompt, LLMs may
not consistently achieve this due to their reliance on probabilistic text generation (see

Section 3.2.1 for more details).

Working Example An example of prompts for the proposed method across all steps
is presented in Table 3.1. This example uses a dataset of scientific publication titles,

where clustering is based on the scientific category of each title.

3.2.2 LLM-Based Pre-Clustering Methods for Text Clustering

The pre-clustering LLM-based methods use the text generation capabilities of LLMs
to extract task-specific information from text, enhancing the clustering process when

paired with traditional clustering methods (see Subsection 2.2.1). Specifically, the
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input text is enriched with task-relevant details, which is then transformed into a

numerical representation and fed into the clustering algorithms.

Baseline

As our baseline, we follow the pre-clustering approach proposed by [52], where
LLMs are employed to generate a comprehensive list of key phrases. However, in our
experiments, requesting comprehensive lists of key phrases resulted in issues such as
the LLMs reaching token length limits, generating repetitive outputs, and becoming
computationally intensive. To overcome these, we adapted the prompt to instruct the
LLM to generate a concise set of keyphrases, with nine demonstrations provided. An
example of the prompt for the baseline method is shown in Table 3.2. As in the direct
method (Subsection 3.2.1), this example uses a dataset of scientific publication titles,

where clustering is based on each title’s scientific category.

Table 3.2: Example prompt for the baseline pre-clustering LLM-based text clustering
method. The example uses a dataset of scientific publication titles, where clustering is
based on the scientific category of each title. The colors highlight key design principles
(see Section 3.2.1 for details). [Blue text indicates the task description, the yellow

text denotes the prompt format style, and the pink text denotes the demonstrations.

Generate the set of keyphrases as a python list.

Title: “*Neutrino Velocity and the Variability of Fundamental Constants

299

Key phrases: [“Neutrino velocity”, “Variability of fundamental constants”, “Particle
physics”, “Fundamental physics”, “Cosmology”]

<More demonstrations>

After extracting the key phrases, we encoded them using the iNsTRUCTOR model,
which generates task-aware embeddings (see Subsection 2.1.1) and had state-of-the-

art performance on the MTEB benchmark [54]. We then tested two approaches:

¢ Concatenation of Embeddings: Concatenating keyphrase embeddings with the
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original document embeddings (both encoded using the iNsTRUcTOR model).

¢ Keyphrase-Only Embeddings: Using only the keyphrase embeddings as input

to the clustering algorithms.

We used the k-means and AHC algorithms, resulting in four distinct baseline pre-

clustering methods.

Our Method

The pre-clustering method we propose involves extracting cluster labels that rep-
resent the aspect on which the text should be grouped. This step mirrors the first
phase of our direct LLM-based clustering method (see Subsection 3.2.1). Instead of
proceeding with the direct clustering method, we encode these labels and concatenate
the label embeddings with the original document embeddings (both encoded with
the insTrucTor model). This new representation serves as the input for k-means and
AHC algorithms. A working example of the prompt for this approach is presented in

Table 3.1, being the Label Generation step of the direct clustering method.
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CHAPTER 4

EMmPIRICAL ANALYSIS

4.1 Datasets
4.2 Evaluation Metrics
4.3 Experimental Setup

4.4 Experimental Results and Discussion

In this chapter, we evaluate the performance of various clustering methods across 11
datasets, which are detailed in Section 4.1. The evaluation is conducted using two
metrics, outlined in Section 4.2. We aim to assess the effectiveness of the clustering
approaches and draw insights based on empirical results. The experimental setup,
including the details of the models and configurations used in the experiments, is
presented in Section 4.3. The results of these experiments are discussed in Section 4.4,

where we highlight key observations and implications of our findings.

4.1 Datasets

We selected 11 short text datasets to capture a range of text clustering challenges.
Table 4.1 summarizes the key characteristics of these datasets. Each dataset includes
ground truth labels, which serve as benchmarks for evaluating the clustering perfor-

mance. To manage the computational cost associated with using LL.Ms, we performed
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stratified sampling for each dataset, selecting 100 instances evenly distributed across

five distinct categories according to the ground truth labels.

MTEB Clustering Datasets [54] The text embeddings evaluation framework MTEB
spans eight embedding tasks covering a total of 58 datasets and 112 languages. From
this framework we selected the English short text datasets that pertain to the cluster-

ing task. These datasets are:

e ArxivClusteringS2S (Arxiv), BiorxivClusteringS2S (Biorxiv), MedrxivClusteringS2S
(Medrxiv) [H4]: These datasets derived from arXiv! and bioRxiv/medRxiv.?2 The
input text is the title of the paper. The cluster labels were generated using

categories given to the papers by the authors.

e StackExchangeClustering (StackEx), RedditClustering (Reddit) [61]: StackEx con-
sists of question titles from multiple StackExchange forums,® while Reddit con-
sists of titles from different subreddit communities on the Reddit platform.*

Both are clustered based on the topic of discussion.

Clinc [62] This dataset consists of user queries categorized by their intent in a

task-oriented dialogue system.

Bank [63] This dataset comprises user queries related to different intent categories

in online banking.

Food Recall Incidents [64] This dataset consists of titles of food recall announce-
ments from public food safety authorities. Most of the texts have been authored
after 2010 and they describe recalls of specific food products due to specific hazards.
Experts manually classified each text to four distinct levels based on the products

involved and the hazards identified:
e Hazard: Specific hazards mentioned in the announcements,

e Hazard Category (Hazard_Cat): Broader categories of hazards,

"https://info.arxiv.org/help/api/
2https://api.biorxiv.org/
3https://archive.org/download/stackexchange
“https://www.reddit.com/subreddits/
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* Product: Fine-grained description of the products mentioned in the announce-

ments,
e Product Category (Product_Cat): Broader categories of products.

Each classification level forms a separate dataset, with different instances for each

dataset.

Table 4.1: Dataset statistics, including vocabulary size, average number of characters
and tokens per text, and the criterion used for grouping. All datasets are balanced,

with 100 instances distributed across five ground truth clusters.

Dataset Vocab Avg. Chars Avg. Toks Grouping Criterion
Medrxiv 915 115.71 15.18 scientific category
Bilorxiv 933 109.48 14.12 scientific category
Arxiv 658 71.40 9.52 scientific category
Reddit 846 68.95 11.54 topic

StackEx 623 58.74 10.14 topic

Clinc 239 41.19 8.72 intent

Bank 270 44.06 9.08 intent

Product 478 91.30 14.31 product
Product_Cat 600 75.62 10.76 product category
Hazard 486 83.37 12.22 hazard
Hazard_Cat 746 88.78 13.45 hazard category

The datasets can be categorized into three primary groups based on the nature of

the aspect on which the text should be grouped:

e Intent-based: This group includes datasets where the objective is to classify texts
according to user intent. Examples include Clinc and Bank, both of which consist

of user queries submitted to conversational agents.

* Topic-based: These datasets focus on grouping texts by their subject matter. For
instance, StackEx contains question titles from various StackExchange forums,

while Reddit comprises titles from multiple subreddit communities.

* Domain-specific categories: This group includes datasets where the texts are
clustered based on structured domain-related categories, such as scientific fields

or specific products and hazards. Datasets such as Medrxiv, Biorxiv, Arxiv are
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based on paper titles and their assigned scientific categories. Similarly, the Food
Recall Incidents dataset focuses on product and hazard categories derived from

food safety announcements.

4.2 Evaluation Metrics

To assess the quality of the clusters generated by different text clustering methods, we
employ extrinsic metrics, which compare the predicted clusters to the gold standard
labels provided by the datasets [65]. In line with previous studies [25, 52, 51], we
use ACC and NMI as our primary evaluation metrics.
ACC measures the alignment between predicted clusters and ground truth labels.
It is computed by finding the optimal alignment between the predicted and true labels
using the Hungarian algorithm [66]. Given a text xz;, let ¢; be the predicted cluster
label and ¢; the ground truth label. ACC is then defined as:
ACC = i 8t map(e) G

n

where:
e 7 is the total number of texts,
* (z,y) is the indicator function that equals 1 if + = y and 0 otherwise,

e map(c;) is the permutation mapping function that maps each cluster label c;
to the corresponding ground truth label from the dataset by the Hungarian

algorithm.

The NMI metric calculates the mutual information between the true and pre-
dicted label sets, normalized by their individual entropies. It evaluates how much

information is shared between the predicted clusters and the ground truth labels.

21(T;C)

NMI(T, C) = )+ HC

where:
* T represents the ground truth labels,

e ( represents the predicted cluster labels,,
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e [(T;C) is the mutual information between the two sets of labels,

e H(T) and H(C) are the are the entropy of the true labels and predicted clusters,

respectively.

While both ACC and NMI are widely used to evaluate clustering quality, they
assume that the number of clusters in the prediction matches the number of clus-
ters in the ground truth. ACC, relying on an optimal one-to-one mapping between
predicted clusters and true labels, presumes that the number of clusters is identical.
When the number of predicted clusters deviates from the ground truth, the Hungarian
algorithm used for mapping faces difficulties, penalizing methods that generate a dif-
ferent number of clusters. This can lead to lower accuracy scores when the clustering
solution over- or under-clusters the data relative to the ground truth [67].

While ACC penalizes both over- and under-clustering similarly, NMI is less sensi-
tive to over-clustering. NMI evaluates the shared information between the predicted
and true clusters without being heavily affected by the number of clusters. The mu-
tual information term in the numerator does not significantly penalize methods that
produce excessive clusters (over-clustering) because it measures the overall shared in-
formation, not the cluster cardinalities. Although the denominator includes entropy
terms that account for the individual cluster distributions, it does not completely
mitigate the effect of over-clustering. Therefore, NMI remains less sensitive to over-
clustering than accuracy [67]. For instance, if a method over-clusters but assigns
many correct labels to the right clusters, the mutual information might still be high,
indicating that the predicted clusters capture much of the true distribution, despite

the excessive number of clusters.

4.3 Experimental Setup

For the static word embeddings, we use pre-trained embeddings from the Gensim
data repository,” specifically from three widely recognized models: Word2Vec [10],
FastText [11], and GloVe [12]. For the Word2Vec model, we use the “word2vec-
google-news-300” embeddings, trained on Google News. The FastText model we use
is “fasttext-wiki-news-subwords-300”, which is trained on Wikipedia 2017, UMBC

Shttps://github.com/piskvorky/gensin-data
6https://dumps.wikimedia.org/enwiki/latest/
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webbase corpus,’” and the statmt.org news dataset.® For the GloVe model, we use
“glove-wiki-gigaword-300”, trained on the 2014 Wikipedia? and the Gigaword 5
dataset.!® All three models generate 300-dimensional embeddings.

For contextual text embeddings, we use the “hkunlp/instructor-large” model,'! a
transformer-based model that provides rich contextual embeddings by using instruc-
tions for the embedding process. This model is particularly suitable for generating
task-specific representations (see Subsection 2.1.1 for more details).

In our experiments, we performed clustering using the ground truth number of
clusters for each dataset. Regarding the clustering algorithms, for k-mEANs we use
the KMeans++ [68] algorithm which initializes cluster centres that are distant from
each other to improve the convergence of k-mEaNs. We use this method with standard
hyperparameters, including the ground truth number of clusters. For AHC, we per-
formed extensive hyperparameter tuning (the results are presented in Appendix A)
to select the best linkage criterion and distance metric. For the main experiments, we
use the Ward linkage with Euclidean distance, as these configurations consistently
outperformed others during tuning, producing compact and well-separated clusters.

Finally, we use OpenAl’s GPT-3.5 Turbo!? for text generation tasks related to
clustering. Specifically, GPT-3.5 Turbo is used to generate cluster labels and key
phrases for the pre-clustering approaches (see Subsection 3.2.2). For each approach,
we created prompt templates for all datasets, as depicted in Section 3.2, to ensure

consistency across datasets and experiments.

4.4 Experimental Results and Discussion

Table 4.2 presents the empirical results for text clustering using the ACC and NMI

metrics, respectively. We make the following observations:

"http://ebiquity.umbc.edu/resource/html/id/351
8https://data.statmt.org/news-crawl/
https://dumps.wikimedia.org/enwiki/latest/
Ohttps://doi.org/10.35111/wk4f-qt80
"https://huggingface.co/hkunlp/instructor-large
12https://platform.openai.com/docs/models/gpt-3-5-turbo
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Pre-clustering Approach Our proposed pre-clustering approach (see Section 3.2.2),
where the input text is the original text along with LLM-generated labels, shows
superior performance in both average ACC and NMI. While it does not achieve state-
of-the-art results for every dataset (falling short in five out of 11 datasets for both
metrics), it performs very close to the highest results in those cases. For the remaining
six datasets, it significantly outperforms the second-best method, achieving an average
ACC that is 9% higher and an average NMI that is 3% higher than the second-best

method.

Direct LLM-based Clustering Our direct LLM-based clustering method ranks sec-
ond when evaluated with the NMI metric, which is less sensitive to over-clustering
(achieving state-of-the-art results in four datasets). However, it drops to sixth place
in terms of the average ACC score. This suggests that when the number of clusters
is not a critical factor, the direct method is a strong option for clustering. Addition-
ally, the interpretability of the cluster labels offers a significant advantage. Table 4.3
presents the ground truth labels and the predicted labels from our proposed Direct
LLM-based clustering method for each dataset. By comparing the predicted labels
with the ground truth labels, we observe that in many cases, the labels align well
(e.g., in the Reddit dataset). However, in other cases, there is noticeable divergence.
In some cases, the LLM overpredicts by generating more general labels. For instance,
in the Arxiv dataset, the LLM does not distinguish between closely related scientific
fields. In other cases, the LLM overextends to labels that do not exist in the true
labels, as seen in the Biorxiv dataset.

One possible reason for the mismatches could be that, in the first step of the
method, the LLM generates cluster labels that are more fine-grained (see Subsec-
tion 3.2.1 for details). In the second step, where the number of clusters is constrained,
these fine-grained labels are merged into broader ones, resulting in more general la-
bels. Moreover, labels that do not exist in the ground truth remain unaligned.

While clustering is an unsupervised task and the ground truth is not always avail-
able, the human-readable labels generated by the LLM provide a valuable level of
interpretability. This ability to assign meaningful labels to clusters is a key advantage
of this method, particularly compared to traditional clustering algorithms that typ-
ically lack direct label assignment. Instead, those methods often require additional

steps such as word clouds, topic modelling, or summarization to achieve interpretabil-
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Table 4.3:

Comparison of true labels and predicted labels across different datasets.

Dataset True Labels Predicted Labels NMI
Arxiv Astrophysics, High Energy Physics, Math- Biology, Earth Science, Economics, Engi- | 0.58
ematics, Quantitative Finance, Quantum neering, Mathematics, Physics
Physics
Biorxiv Cancer Biology, Cell Biology, Genomics, Cell Biology, Genetics, Medicine, Microbi- | 0.60
Microbiology, Neuroscience ology, Neuroscience, Oncology, Plant Biol-
ogy, Toxicology, Virology
Medrxiv Cardiovascular Medicine, Infectious Dis- Cardiology, Immunology, Infectious Dis- | 0.76
eases, Neurology, Oncology, Pediatrics eases, Neurology, Neuroscience, Oncology,
Pediatrics, Pharmacology
StackEx Gaming, Graphic Design, Philosophy, Art and Design, Design and Creativity, | 0.80
Photo, User Experience Design Lifestyle, Science and Academia, Technol-
ogy, Video Games
Reddit Animals, Architecture, Atheism, Beer, Animals, Architecture, Food and Drink, | 0.74
Classical Music Music, Religion, Unknown
Clinc change_ai_name, distance, food_last, Food Inquiry, General Inquiry, Govern- | 0.95
oil_change_when, where_are_you_from ment Inquiry, Location Inquiry, Name
Change Request, Travel Inquiry, Vehicle
Inquiry
Bank card_delivery_estimate, card_not_working, ATM Issues, Account Verification, Card | 0.83
declined_cash_withdrawal, Delivery, Card Issue, Transaction Issue
unable_to_verity_identity,
why_verify_identity
Hazard Foreign Bodies, Lead, Nuts, Sesame Seeds Allergen Contamination, Contaminant | 0.61
and Products Thereof, Unauthorised Use Contamination, Foreign Matter Contami-
of Federal Inspection Mark nation, Health Risk, Inspection Violation,
Mislabeling
Hazard_Cat | Biological, Chemical, Food Additives and Allergen Contamination, Chemical Con- | 0.36
Flavourings, Foreign Bodies, Fraud tamination, Ingredient Issue, Labelling
Deficiency, Microbiological Contamination,
Other Contamination, Physical Contamina-
tion, Uninspected Import
Product Baby Food, Chocolate Bars, Cookies, Baby Food, Bakery Products, Chocolate | 0.83
Ground Beef, Onions Bars, Meat and Poultry Products, Vegeta-
bles
Product_Cat | Cocoa and Cocoa Preparations, Coffee and Cheese Dips, Chocolate Products, Con- | 0.66
Tea, Food Additives and Flavourings, fectionery, Food Additive, Food Coloring
Food Contact Materials, Nuts and Nut Products, Kitchen Tools, Nuts, Other Sup-
Products and Seeds, Poultry Meat and plements, Poultry Products
Poultry Meat Products
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ity, making the LLM-generated labels more efficient and intuitive for understanding

the clustering results.

Effect of Pre-clustering Methods Pre-clustering methods (see Subsection 3.2.2),
which add supplementary information to the clustering process, consistently outper-
form methods that rely solely on the original text. While our pre-clustering method
achieves state-of-the-art results, methods that provide LLM-generated key phrases as
input to clustering algorithms also perform well. In particular, the method inspired
by [52] (see Section 3.2.2), combined with AHC, ranks second in terms of ACC. This
highlights the value of key phrases, as even the method using only generated key

phrases as input ranks third in ACC performance.

Comparison of Text Representation Approaches Clustering methods that use ear-
lier text representation techniques, such as TF-IDF and static word embeddings,
perform worse across all datasets compared to those using contextual text represen-
tations such as Instructor embeddings. This confirms the superiority of contextual
embeddings over traditional approaches. However, TF-IDF representations outper-
form static word embeddings in specialized datasets (e.g., Biorxiv, Medrxiv, Bank,
Hazard, Hazard_Cat, Product, and Product_Cat), likely because the pre-trained embed-

dings were derived from different domain-specific datasets than the ones used here.

Comparison of Clustering Algorithms Clustering methods using AHC generally
achieve higher ACC and NMI scores than those using k-MEaNs, with some exceptions.'?
To validate this trend, we evaluated clustering quality with an intrinsic measure, the
silhouette score [69]. The silhouette score assesses the cohesion and separation of
clusters by measuring how similar an instance is to its own cluster compared to the
nearest neighbouring cluster. Scores range from -1 to 1, where higher values indicate

well-separated, cohesive clusters.

For a text instance ¢;, the silhouette score s(¢;) is calculated as:

ofts) = b(t;) — al(t;)
Y mazx(a(ty), b(t;))

where a(t;) is the mean intra-cluster distance, and b(¢;) is the minimum mean

(4.2)

distance to any other cluster.

3Specifically, methods using Word2Vec and FastText representations, as well as the pre-clustering

approach with key phrases, exhibit different trends as shown in Table 4.2.
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As shown in Table 4.4, the silhouette scores averaged across all 11 datasets reveal
that AHC consistently outperforms k-means, confirming the ACC and NMI trends.
This indicates that AHC produces more compact, well-separated clusters, effectively

capturing the underlying structure of the data.

Table 4.4: Average silhouette scores across all 11 datasets for the same clustering

methods, with variations in the clustering algorithm (AHC and k-MEANs).

Input Text Representation | Avg. Silhouette
AHC K-MEANS
TF-1DF 0.058 | 0.033
Word2Vec 0.106 | 0.088
text FastText 0.149 | 0.137
GloVe 0.145 | 0.144
Instructor 0.122 | 0.104
text + key phrases Instructor 0.130 | 0.111
key phrases Instructor 0.219 | 0.215
text + label Instructor 0.148 | 0.136
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CHAPTER DO

EPILOGUE

5.1 Conclusions

5.2 Future Work

5.1 Conclusions

In conclusion, this study highlights the crucial role of LLMs in improving the text
clustering task, both through pre-clustering interventions to the task with traditional
clustering methods and through direct clustering. Our pre-clustering approach, which
leverages LLM-generated labels, achieved superior results on average across evalu-
ation metrics. This method significantly enhances clustering performance and in-
terpretability. Another important contribution is the exploration of LLMs for direct
text clustering. Although this approach does not always generate the exact required
number of clusters, it is the second-best method on average in terms of NMI. Further-
more, the human-readable labels generated by the LLM add substantial interpretative
value, particularly in domains where clarity and understanding are essential. Overall,
our experimental findings highlight the dual advantages of LLMs in text clustering:

improved performance and enhanced interpretability.
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5.2 Future Work

Several directions can be explored in future work to further enhance the use of LLMs

in text clustering.

Scalability The scalability of the proposed methods can be addressed more rigor-
ously. While the current study explores clustering on small-sized datasets, testing
LLM-based clustering on larger datasets could provide insights into the practical ap-
plications and limitations in real-world scenarios. This would also help identity the

computational efficiency of LLMs in large-scale clustering tasks.

Smaller-Sized or Open-Source LL.Ms In this study, we experimented with the
closed-source GPT-3.5 turbo. Exploring how to effectively use smaller-sized or open-
source LLMs for clustering could address the cost limitation and make LLM-based

clustering more accessible.

Few-shot Demonstrations Our proposed methods incorporated LLMs in zero-shot
prompting. Providing few-shot demonstrations to LLMs instructions could potentially

leverage in-context learning.

Optimizing Label Propagation in Direct LLM-Based Clustering In our proposed
direct LLM-based clustering method, cluster labels are generated iteratively in ran-
domly sampled batches. The first batch establishes an initial set of labels, and sub-
sequent batches refer to the pool of labels generated from all previous batches: each
new batch matches its texts to one of these existing labels if appropriate, or assigns a
new label if none fit. Exploring different batch ordering strategies may improve label
consistency and clustering performance by optimizing how initial labels are applied

across batches.

Direct LLM-Based Clustering and Predefined Cluster Numbers A key limitation
in the current direct LLM-based clustering method is its inability to generate a pre-
defined number of clusters. Addressing this challenge can open several directions
for future work. One potential approach involves incorporating hierarchical cluster-
ing methods in combination with LLMs to allow for merging or splitting clusters

at different levels until the target number is reached. Additionally, improvements in
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prompt engineering could help explicitly instruct LLMs to align with fixed cluster-
ing goals, with few-shot learning that could train the model to generalize optimal
behaviours across cluster numbers. Post-clustering approaches, such as cluster merg-
ing or splitting, could also ensure that the final number of clusters aligns with the

predefined requirements, refining results without losing the LLMs’ semantic insights.
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APPENDIX A

HyPERPARAMETER TuUNING FOR AHC

Table A.1 presents the average ACC and average NMI metrics across all 11 datasets
from the hyperparameter tuning process for AHC. With the stopping criterion fixed
to the number of ground truth labels, the two remaining hyperparameters in AHC
are the linkage criterion and the distance metric (see Section 2.1.2 for details). The
best clustering performance of AHC is achieved using the combination of the ward
linkage criterion and the euclidean distance metric. These two hyperparameters were
selected for AHC in the main experiments, as they were the most suitable for our

datasets.
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Table A.1: Results showing the average ACC and average NMI metrics across all 11
datasets from the hyperparameter tuning process for AHC. Best results are highlighted
in bold.

Linkage Criterion Distance Metric | Avg. ACC Avg. NMI
single euclidean 0.320 0.217
single cosine 0.320 0.217
single manhattan 0.320 0.217
single 11 0.320 0.217
single 12 0.320 0.217
complete euclidean 0.593 0.515
complete cosine 0.320 0.217
average manhattan 0.447 0.401
complete 11 0.320 0.217
complete 12 0.320 0.217
average euclidean 0.437 0.386
average cosine 0.430 0.38
complete manhattan 0.320 0.217
average 11 0.447 0.401
average 12 0.437 0.386
ward euclidean 0.718 0.609
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