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Abstract

In this thesis we present a study quark and gluon jets, as a measurement of
gluon-jet fraction in the inclusive multi-jet sample. First, we measure the
double-differential inclusive-jet cross section, as a means to validate our jet
data. Subsequently we measure the gluon-jet fraction in this data. We use
integrated luminosity of 36.31 fb−1, from the 2016 run of the LHC accelerator,
collected by the CMS experiment.

1



Contents

1 Introduction 4
1.1 Overview of the SM . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . 5
1.3 Color Confinement . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Hadronic Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Hard Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Showering and Hadronization . . . . . . . . . . . . . . . . . . 7
1.7 Importance of Simulation . . . . . . . . . . . . . . . . . . . . . 9

1.7.1 Madgraph . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7.2 Pythia and Herwig . . . . . . . . . . . . . . . . . . . . 10
1.7.3 Geant4 Detector simulation . . . . . . . . . . . . . . . 10

1.8 The CMS Detector . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 CMS Coordinate System . . . . . . . . . . . . . . . . . . . . . 12
1.10 Jet Reconstruction Algorithm . . . . . . . . . . . . . . . . . . 12
1.11 Partonic Origin of Jets . . . . . . . . . . . . . . . . . . . . . . 13

2 Analysis Strategy 15
2.1 Purpose of the Study . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Discriminating Variables . . . . . . . . . . . . . . . . . . . . . 15
2.3 QGL calculation . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Data and Simulation samples 21
3.1 Data Samples and Requirements . . . . . . . . . . . . . . . . . 21

3.1.1 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Jet Identification Requirements . . . . . . . . . . . . . 23
3.1.3 MET filters . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Prefire weights . . . . . . . . . . . . . . . . . . . . . . 24
3.1.5 Hot/Cold-channels . . . . . . . . . . . . . . . . . . . . 25

3.2 Merging of data . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Use of Prescales to Merge the Data . . . . . . . . . . . 25
3.2.2 Use of Effective Luminosities to Merge the Data . . . . 26
3.2.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 MC Selection and Requirements . . . . . . . . . . . . . . . . . 29
3.3.1 HT-bins . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Data-MC comparison . . . . . . . . . . . . . . . . . . . . . . . 30

2



4 Double-Differential Inclusive Jet Cross Section Measurement 31
4.1 Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Gluon-Jet Fraction Measurement 35
5.1 Discriminating Variables . . . . . . . . . . . . . . . . . . . . . 35
5.2 Gluon-Jet Fraction Measurement . . . . . . . . . . . . . . . . 38
5.3 Unfolding of Gluon-Jet Fraction . . . . . . . . . . . . . . . . . 39
5.4 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . 41
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6 Discussion 46



Chapter 1

Introduction

1.1 Overview of the SM

The Standard Model (SM) is our current best theory for the microcosm [1].
It describes three of the fundamental forces: the electromagnetic, the weak
and the strong interactions. It consists of 12 fermions (six leptons and six
quarks), four gauge bosons and one scalar boson. The scalar boson is the
Higgs boson and the four gauge bosons are the photon, which carries the
electromagnetic interaction, the W± and Z bosons, which carry the weak
interaction, and the gluons, which carry the strong interaction. The charged
particles interact electromagnetically, the leptons and quarks also interact
weakly, and the quarks also interact strongly. Massive particles interact with
the Higgs boson. In extensions of the SM there is also the graviton, the
carrier of the gravitational force, which has not been detected. In this thesis,
we will concentrate on the quarks and the gluon, which are described by the
Quantum Chromodynamics (QCD) [2], the part of the SM that covers the
strong interactions. Fig. 1.1 shows a graphical overview of the SM.
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Figure 1.1: Graphical Representation of the SM.

1.2 Quantum Chromodynamics

Within the framework of QCD, particles interact strongly if they possess the
quantum property of color. There are 3 basic colors: red, green and blue. A
particle can also have different linear combinations of these colors. White,
or colorless, is the combination of all three colors or the combination of color
with the corresponding anti-color.

Quarks are fermions with a fractional spin of 1
2
. They come in three

generations with an increasing order of quark mass. Each generation has two
quarks one with a charge of +2

3
and one with −1

3
. Another major property of

quarks is their flavor: each one has a different flavor named after the quark
itself. The strong and electromagnetic interactions conserve every flavor.
On the contrary, weak interactions do not conserve them. The names of
the quarks are down (d), up (u), strange (s), charm (c), bottom (b) and
top (t). Each one could come in different colors. Quarks are combined in
order to make other particles, named ”hadrons”. In addition to the quarks,
the hadrons contain gluons that hold the quarks together. There are two
categories of hadrons: the mesons (quark-antiquark pairs) and the baryons
(triplets of quarks or antiquarks). There is also evidence [3] of the existence
of tetraquarks made of 2 quarks and 2 anti-quarks and pentaquarks made
up of 4 quarks and 1 anti-quark or 4 anti-quarks and 1 quark. The most
common baryons in nature are the proton (uud) and the neutron (udd). Of
course everything applies to the anti-quarks as well, and their antiparticles.
In Fig. 1.2 we present the different quarks in their respective generation with
their charge and flavor.



Figure 1.2: Quarks properties.

The gluons are massless, neutral, spin-0 bosons. They only interact with
colored particles, which are the quarks and themselves. They come in eight
colors and have never been observed as free particles, so they cannot be
white/colorless. In addition to flavor, strong interactions also preserve color.
The strong interactions could be derived from the QCD Lagrangian.

L =
[
ih̄cψγµ∂µψ −mc2ψψ

]
− 1

16π
Gµν ·Gµν −

(
qψγµλ ψ

)
· Aµ (1.1)

Where ψ is the quark field, γµ are the Dirac matrices, Gµν is the asymmetric
field tensor and Aµ is a gauge field associated with the gluons.

1.3 Color Confinement

Because free quarks or gluons have never been observed, the concept of color
confinement was introduced, according to which, the quarks and gluons are
always confined within hadrons and can never be observed as free particles.
When a quark or gluon tries to get separated from its hadron new quarks and
gluons are produced making new hadrons. This actually converts part of the
kinetic and potential energy of the particle into its the new hadrons’ mass.
Color confinement does not prevent us from studying quarks and gluons. We
can still perform experiments, such as hadron collisions, in order to reveal
their inner structure and internal interactions.

1.4 Hadronic Jets

Hadronic jets are showers of particles, mostly hadrons, photons and leptons,
usually forming a narrow cone. The most important thing about hadronic
jets is that they are a direct result of QCD and by studying them we learn
about the underling physics that creates them [4]. In this thesis we study jets
that are generated from proton-proton collisions at the Large Hadron Collider
(LHC) at CERN. In this chapter we will discuss the very basic concepts of
the creation of hadronic jets through proton-proton interactions.



1.5 Hard Process

In particle physics, one way to gain information about the smallest scales
is by colliding particles. The higher the energy of the collision, the deeper
we can probe inside the colliding particles. When we collide protons at
high energies, interactions take place between the protons’ constituents, the
quarks and gluons, also known as partons. The interaction between the
partons of different protons is called ”hard process”. Most of the times we
only care about the strong interaction since it has a much higher coupling
constant than the electromagnetic and the weak interactions. Nevertheless,
sometimes we may include the other interactions, depending on the process
and the desirable precision. The parton interactions give us an insight to the
inner workings of QCD, with corrections coming from electroweak processes.
The hard process can be represented by a simple Feynman diagram and
calculated by using perturbation theory. We keep in mind that any outgoing
partons in the Feynman diagram are not detected as such, but as hadronic
jets, as we will describe below. In Fig. 1.3 we show an illustration of an
example of the hard process.

Figure 1.3: Illustration of the hard process.

1.6 Showering and Hadronization

The outgoing partons from the hard process eventually develop to hadronic
jets through two sequential processes. First, we have the parton shower [5],
where a lot of new partons are created. These particles are colored and
cannot be free. Instead, they are combined to form bound hadronic states
during the next process of hadronization. During the parton shower, new
partons are created in two major ways. Through radiation of gluons from
already existing partons and through quark-antiquark creation. The former
can be initiated both from quarks and gluons, since gluons couple with both



of them, and the latter only from gluons splitting. The quark-antiquark pair
can come into existence due to a particular property of the strong interaction,
according to which the potential energy between two quarks is proportional
to their distance, for small distances. As a result, when the distance between
them and the potential energy is large enough, a quark-antiquark pair can
be generated out of vacuum, converting the potential energy into its mass
equivalent. Alternatively, a radiated gluon can spontaneously turn into a
quark anti-quark pair. These processes turn some of the initial kinetic and
potential energy into its equivalent of mass by making new partons.

After the parton showering, and during the hadronization stage, all the
generated partons are grouped into pairs and triplets to produce mesons
and baryons, respectively. These hadrons are white in color and thus free
particles. Moreover electromagnetic and weak interactions also take place at
this stage, which produce photons and leptons. From the leptons, neutrinos
are impossible to detect with our detector and thus contribute to missing
energy and momentum. Furthermore, the produced hadrons can potentially
be highly unstable and quickly decay to other particles or be excited and
emit photons by de-exciting. All of these particles, when detected, appear in
the form of hadronic jets. The complexity of the aforementioned processes
can be illustrated in Fig. 1.4.

Figure 1.4: Illustration of the complexity of parton showering.

An important fact to mention is that the initial outgoing partons generally
have high momentum with respect to the lab’s inertial frame of reference.



The final-state hadrons that are generated will have a combined momentum
that will be close to that of the original partons. As a result, the jets of
hadrons will have a particular direction in space as opposed to having a
spherical symmetry, this is why we say hadronic jets form narrow cones.

1.7 Importance of Simulation

Simulations are an integral part of modern physics since they can offer im-
portant insight on future experiments, provide experimental observables for
theories, help understand the performance of detector systems, and facilitate
their design. Most simulations are based on the Monte Carlo (MC) method.
In High Energy Physics, we also use MC event generators to simulate the
interaction between particles. Moreover some physical processes may not be
possible to be calculated analytically and this is another benefit of MC sim-
ulations. Moreover, the simulations can help us understand the kinematics
of signal and background processes in order to optimize our event selection.

1.7.1 Madgraph

Madgraph [6] can generate events for any high energy physics process by
integrating matrix elements through adaptive integration (VEGAS [7]). We
are not going to expand on the technical side of how one can use Madgraph.
We discuss here the use of Madgraph in proton-proton collisions with jet
final states. Generally, a proton-proton collision can result in a hard process
with any number of final-state quarks or/and gluons. Different final states
have different production cross sections and, due to the perturbative nature
of jet production, we do not have to include all possible partonic final states.
Madgraph only generates a partonic final state and not the free final-state
hadrons or the reconstructed hadronic jets. The cross section pp→partons
is determined by integration of the partonic matrix elements with the par-
ton distribution functions (PDF), which correspond to the probability for an
incoming colliding parton to have a particular fraction of its parent proton
momentum. Because the integration is adaptive, it concentrates on kine-
matic phase-space regions where the integrand is larger, so it can be used as
a particle generator. The production of partons (jets) in proton-proton colli-
sions follows a steeply falling distribution as a function of the partons (jets)
transverse momentum (pT). As a result, it is more efficient to generate jets
in bins of outgoing particles pT, so that we maintain comparable statistics
throughout the spectrum. The final merging of these separate MC datasets
is done by applying weights on the events that are equal to the Madgraph-
calculated cross section divided by the number of produced events (i.e., the
inverse of luminosity).



1.7.2 Pythia and Herwig

Pythia [8] and Herwig [9] are programs for the event generation of high-energy
collisions. We use it for the simulation of showering and hadronization be-
cause Madgraph deals only with the hard process. More specifically they
take the partonic output of the hard process from Madgraph and by using
MC methods implement the complete showering and hadronization. The re-
sult of this whole process is randomly generated events containing observable
final-state particles. These particles are also called generated particles. Each
event has its own weight, which is propagated from the Madgraph weight.
The reason to have two different simulators for showering and hadronization
is their different internal model. Pythia uses pT-ordered showering of out-
going partons, and subsequent hadronization using the Lund string model
[10] while Herwig uses angular-ordered showering and hadronization based
on the cluster model [11]. Since there are certain aspects of these processes
that are non-perturbative, in contrast to the hard process which is pertur-
bative, having two models is necessary for calculating the respective model
systematic error.

1.7.3 Geant4 Detector simulation

The output of Pythia’s or Herwig’s showering and hadronization is final-state
particles, not all of, which will be observed. To complete the simulation of
what we expect to see in the laboratory, we need to include a simulation of
a detector. This is simulated by Geant4 which is a full material-radiation
simulation which is the most accurate simulation for the CMS [12] available.

1.8 The CMS Detector

The CMS detector consists of five different layers. Listed from the inside (col-
lision point) to the outside they are the Silicon Tracker, the Electromagnetic
Calorimeter, the Hadronic Calorimeter, the Magnet and the Muon Detectors.
Each of these layers plays its own part in the process of detecting a particle.
Different categories of particles leave different trails in the detector and thus
can be identified. Photons interact with the electromagnetic calorimeter but
do not curve due to the magnetic field, while electrons both interact with
the electromagnetic calorimeter and curve due to the magnetic field. Muons,
on the other hand, being much heavier than electrons, are more penetra-
tive and reach the outer part the Muon detectors. Similarly, charged and
neutral hadrons interact with the hadronic calorimeter but the charged ones
also curve due to the magnetic field. Charged particles also interact with
the silicon tracker which can reconstruct their trajectories with high preci-
sion. All other particles are reconstructed from the above. Fig. 1.5 shows
an overview of the CMS detector, while Fig. 1.6 demonstrates how different
particles interact with the detector.



Figure 1.5: The CMS Detector.

Figure 1.6: Representation of particle interactions at CMS.

The detector is able to detect stable particles that reach its layers and
interact. Any highly unstable particle will decay before interacting and neu-
trinos will almost never interact, thus will not be detected. In this thesis we
are going to consider only particles that can be detected by CMS.

The detector is not a perfect instrument. It has limited resolution, which
naturally causes deviations between the detected and actual properties of
particles. The differences between truth and observation can be studied with
MC-generated events that are passed through a detector simulator.



1.9 CMS Coordinate System

Each detected particle has at least three parameters to define its momen-
tum. These are the transverse momentum pT, the azimuth angle ϕ and the
pseudorapidity

η = −ln[tan(θ/2)] (1.2)

where θ is the polar angle, with the z-axis being towards the counterclockwise-
beam direction. Sometimes, instead of the pseudorapidity η we use the ra-
pidity

y =
1

2
ln[

E + pz
E − pz

] (1.3)

where E is the energy of the particle and pz is the component of its momen-
tum on the z-axis. The benefit of using the rapidity instead of the pseudora-
pidity is that the difference in rapidities ∆y remains invariant under boosts
along the z-axis. But the rapidity is harder and less accurate to define since
it requires knowledge of the energy E of the particle. The difference between
the rapidity y and the pseudorapidity η diminishes when the mass of the
particle is a much smaller compared to its energy; for zero mass or infinite
energy the two are identical. Fig. 1.7 shows the CMS coordinate system.

Figure 1.7: The CMS coordinate system.

1.10 Jet Reconstruction Algorithm

Unlike the individual detected particles that are very well defined, the defi-
nition of the hadronic jets, as a group of particles, depends on the algorithm
used to cluster them. If particles are added or removed from a particular
jet, the shape, direction and momentum of the jet alters. One of the most
popular jet-reconstruction algorithms is the anti-kT algorithm [13].



This algorithm treats all particle as pseudo-jets and when certain criteria
are met it merges two pseudo-jets in one. More specifically, for all pairs of
pseudo-jets the following quantities are calculated:

dij = min(1/p2T,i, 1/p
2
T,j)∆R

2
ij/R

2 (1.4)

∆R2
ij = (yi − yj)

2 + (ϕi − ϕj)
2 (1.5)

where pT, y and ϕ have already been discussed, R is a user-defined pa-
rameter, which indirectly determines how wide the jets are going to be, and
i and j are the indices of two pseudo-jets. Then it compares dij with

diB = 1/p2t,i (1.6)

and if dij < diB then the i and j pseudo-jets are merged, otherwise they
stay separated. Usually we will sum the 4-momenta of the two pseudo-jets
to perform the merge (but other options are available). The result of the
algorithm is that the highest-pT particles group their lower-pT neighbors
around them to form a jet. This characteristic makes the anti-kT algorithm
preferable compared to the other algorithms, since it provides a better corre-
spondence with the originating parton and also gives jets with more regular
y − ϕ shape, as shown in Fig. 1.8.

Figure 1.8: Comparison of different jet reconstruction algorithms.

1.11 Partonic Origin of Jets

To determine the partonic origin of jets, in the context of the MC simulation,
we use the “Ghost Particles Method”. In this method we make use of the
generated partons in the simulation to determine the origin of a jet. We
include all generated partons as particles with infinitesimal momentum in
the list of particles used in the anti-kT algorithm. The parton of the highest
original momentum that is clustered in a jet defines the jet’s flavor. If no



parton is clustered in a jet, the jet’s flavor is undetermined. In this thesis we
want to discriminate between gluon or quark origin thus we will name them
gluon-jets or quark-jets, in the context of MC. On the other hand, we don’t
have any parton information from data because of color confinement (free
partons are not observed) and, as a result, we can not use the same method
for data. This is why we use the Quark Gluon Likelihood (QGL) method
[14], which is an assigned probability of a jet to have originated from a
quark. To calculate the QGL value for each jet we use certain discriminating
variables which have different distributions for quark-jets and gluon-jets. We
can create quark-jet and gluon-jet distributions from our MC simulation
where we have used the Ghost Particles Method to assign flavor to our jets.
Then by comparing the values of a real jet with these distributions we can
calculate the QGL. We will expand further on this topic later on.



Chapter 2

Analysis Strategy

2.1 Purpose of the Study

Our goal is to do jet-based physics using quark-jets and gluon-jets. The par-
tonic origin of these jets is not an observable value but, as discussed, it can
be determined in the MC simulation and correlated with certain observable
values. One of the first measurements that we can do is to determine the
gluon-jet fraction for detector-level jet as well as particle-level jets. To de-
termine the detector-level gluon-jet fraction we can take a straight forward
approach of using a maximum-likelihood fit on the QGL or discriminating
variable distributions. In order to calculate the particle-level gluon-jet frac-
tion we have to unfold the result from detector-level. By unfolding separately
the differential cross section for quark-jets and gluon-jets, we calculate the
particle-level gluon-jet fraction. After establishing the gluon-jet fraction ex-
pected by the SM, we will be able to expand the studies in he future and
search for new physics using signatures that include gluon and quark-jets in
the final states. Next sections present the discriminating variables distribu-
tions for MC and the extracted QGL using these variables.

2.2 Discriminating Variables

As discussed in section 1.11, we use certain discriminating variables in order
to calculate the QGL value for jets. There are many such variables but we
use a set of three which has been shown to have good performance. These are
experimentally measurable and, based on MC, have a different distribution
when separating for quark-jets and gluon-jets. First we have the jet particle
multiplicity (QGMul). Next we have the negative logarithm of the minor
axis of the ellipse defined by the jet (QGAx2) which is calculated as follows.
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We make a 2x2 matrix M with the elements being

M11 =
∑
i

p2T,i∆η
2
i (2.1)

M22 =
∑
i

p2T,i∆ϕ
2
i (2.2)

M12 =M21 = −
∑
i

p2T,i∆ηi∆ϕi (2.3)

which has the eigenvalues λ1,2 where λ1 > λ2. The quantity σ2 is defined to
be

σ2 = (λ2/
∑
i

p2T,i)
1/2 (2.4)

Finally, we have a measure of how evenly the pT is distributed between
jet particles (QGPtD), defined as

ptD =

√∑
i p

2
T,i∑

i pT,i
(2.5)

If a particle has significantly more pT than all of the rest combined then
QGPtD is close to 1 and if all particle have the same pT then QGPtD has
the value of 1/

√
QGMul. In Fig. 2.1 we present an example of the three

discriminating variables
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Figure 2.1: The quark-jet (blue) and gluon-jet (red) distributions of particle
multiplicity (a), measure of jet width −ln(σ2) (b), and fragmentation func-
tion pTD (c) for different pT bins.

It is clear from these plots that there is separation between quark-jet and
gluon-jet distributions and thus we can use them to discriminate between



the two kinds of partons. In Fig. 2.2 we present how the separation between
these variables changes as a function of pT.
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Figure 2.2: The quark-jet (blue) and gluon-jet (red) distributions of particle
multiplicity, measure of jet width −ln(σ2), and fragmentation function pTD
for different pT bins.

In Fig. 2.3 we present how the separation changes as a function of η.
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Figure 2.3: The quark-jet (blue) and gluon-jet (red) distributions of particle
multiplicity, measure of jet width −ln(σ2), and fragmentation function pTD
for different η bins.

From all of those plots it is clear that the MC predicts different distribu-
tions for these three variables between quark and gluon jets.

2.3 QGL calculation

The QGL [14] is the assigned probability that a jet has originated from a
quark. We calculate it by using the probability density plots, denoted as
P , of each discriminating variable shown above. The QGL is calculated as
follows

QGL = Pquark/(Pquark + Pgluon) (2.6)

Pquark = PQGMul,quark × PQGAx2,quark × PQGPtD,quark (2.7)

Pgluon = PQGMul,gluon × PQGAx2,gluon × PQGPtD,gluon (2.8)

Meaning that the probability for the jet to have originated from a quark is
the probability density of quark-jets over the sum of the probability densities
of quark and gluon jets. In Fig. 2.4 we present the QGL for different pT and
y bins.
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Figure 2.4: QGL discriminant for different pT and y bins. Discrimination is
better for higher pT and lower η.

A common method to measure the efficiency of discrimination between
quark-jets and gluon-jets is the use of the Receiver Operating Characteristic
Curve (ROC) and particularly its integral, which gives the Area Under Curve
(AUC). We calculate these quantities for different pT and η bins to get plots
similar to Fig. 2.5
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Figure 2.5: The ROC curves for different pT bins and |η| < 1.3 or different
η bins and 159 < pT < 200(GeV ). AUC is larger (discrimination is better)
for higher pT and lower η.

Finally, in Fig. 2.6 we present a 2D plot of the AUC for a grid of pT and
|η| bins. We observe that we are more efficient at discriminating quark-jets
from gluon-jets at low |η| and high pT of the jets.
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Figure 2.6: AUC of ROC curves as a function of pT and |η|. Larger AUC
corresponds to better discrimination between gluon-jets and quark-jets.



Chapter 3

Data and Simulation samples

3.1 Data Samples and Requirements

In this section we present the data used for our studies. They are the so-
called 2016 Ultra Legacy (UL) data, collected by the CMS experiment in 2016
and corresponding to integrated luminosity of 36.31 fb−1. This dataset is
composed of different eras, each era having different luminosity and different
settings of the detector denoted by the abbreviations APV and nonAPV. We
present this in Table 3.1. Because we are interested in jet production, we are
using data collected with single-jet triggers described in section 3.1.1. We
analyze jets that pass the jet identification requirements presented in section
3.1.2. Corrections and cleaning of the data are described in sections 3.1.3,
3.1.4, 3.1.5.

Era Luminosity (pb−1) Settings
B 5825.7 APV
C 2601.6 APV
D 4286.0 APV
E 4065.9 APV
Fe 2733.6 APV
Fl 403.5 nonAPV
G 7653.2 nonAPV
H 8740.1 nonAPV

Table 3.1: Different Eras with luminosity and settings of the UL16 dataset.

3.1.1 Triggers

Triggers are essential pieces of equipment enabling the experimentalists to
automatically decide which events to record for further analysis. Given the
immense amount of data produced by particle collisions we would be unable
to store them all and thus we have to decide in real time which events to keep.
Triggers operate at multiple levels, subsequently stricter. The first level (L1)
trigger, which is hardware-based, rapidly assesses basic event characteristics,
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like energy deposits, to make real time decisions, significantly reducing the
data flow to a rate of around 100 kHz by discarding uninteresting events. The
High Level Trigger (HLT), which is software-based, performs a thorougher
analysis on the events that passed the L1 trigger, further filtering events to
achieve a rate of about 1 kHz, suitable for data storage. These triggers store
data in buffers to provide time to analyze the incoming data and some of them
are active only a fraction of the time (”prescaled” triggers). Different triggers
fire at a preset energy deposition limit and for different limits the fraction of
active time is different. This feature of our hardware gives us another problem
to solve: how to correctly weight each event to counteract the trigger effects.
This will be discussed in the analysis chapter. All in all, these triggers ensure
that only the most promising events are recorded and stored for in depth
analysis, thus optimizing the use of storage and computational resources
while enabling the discovery of rare events. In Table 3.2 we show the used
triggers with their respective effective luminosity and turn-on pT which is
the point at which they have reached almost 100% efficiency.

Trigger Effective Luminosity (pb−1) Turn-on pT (GeV)
HLT PFJet40 0.266973 64
HLT PFJet60 0.726088 84
HLT PFJet80 2.75846 114
HLT PFJet140 24.1886 174
HLT PFJet200 103.798 245
HLT PFJet260 593.634 300
HLT PFJet320 1772.11 362
HLT PFJet400 5193.14 468
HLT PFJet450 36310 507

Table 3.2: Effective luminosity for different jet triggers.



3.1.2 Jet Identification Requirements

There are three versions of Jet Identification (ID), each been progressively
more strict: Loose, Tight, and TightLepVeto. These IDs are designed to
balance between signal efficiency and background rejection. The Loose ID is
the least strict, allowing a broader selection of jets with lower requirements,
making it useful for preliminary analysis stages or when high signal efficiency
is needed, even at the cost of higher background levels. The Tight ID is more
strict, selecting higher quality jets with better isolation and identification,
reducing background contamination. The TightLepVeto ID combines the
strict criteria of the Tight ID with additional requirements to veto events
with high lepton content, focusing on analyses where excluding leptons is
necessary to reduce background from certain processes. For our analysis we
are using the TightLepVeto cut (the Tight cut is applied to regions where
TightLepVeto is not defined). In Table 3.3 we show each ID definition for
different η ranges.

−2.7 ≤ η ≤ 2.7
Jet ID Loose Tight TightLepVeto

Neutral Hadron Fraction < 0.99 < 0.90 < 0.90
Neutral EM Fraction < 0.99 < 0.90 < 0.90

Number of Constituents > 1 > 1 > 1
Muon Fraction - - < 0.8

−2.4 ≤ η ≤ 2.4
Charged Hadron Fraction > 0 > 0 > 0

Charged Multiplicity > 0 > 0 > 0
Charged EM Fraction < 0.99 < 0.99 < 0.90

2.7 < |η| ≤ 3.0
Jet ID Loose Tight

Neutral EM Fraction > 0.01 > 0.01
Neutral Hadron Fraction < 0.98 < 0.98

Number of Neutral Particles > 2 > 2
|η| > 3.0

Jet ID Loose Tight
Neutral EM Fraction < 0.90 < 0.90

Number of Neutral Particles > 10 > 10

Table 3.3: Jet ID criteria for different η ranges.



3.1.3 MET filters

Missing Transverse Energy (MET) is the imbalance of transverse momen-
tum in an event. This imbalance occurs because of undetectable produced
particles, such as neutrinos, or from cosmic rays, mismeasured energy de-
posits or detector noise. Filters on MET are used to enhance the quality of
experimental data by identifying and excluding events with outlying MET
values. Even though we are not doing a MET-related study MET filters are
mandatory for assuring the quality of data and reducing background noise.
The used cut-off to accept an event is:

MET/Sum ET < 0.3 (3.1)

with Sum ET being the sum of the transverse energy.

3.1.4 Prefire weights

Prefire weights are correction factors applied to data to account for the pre-
firing of detector components. This can occur when the detector records a
signal from a particle slightly before the event of interest, due to timing mis-
matches or early triggering by unrelated particles. Prefiring can lead to the
loss of energy measurements and affect the reconstructed event characteris-
tics. Prefire weights are calculated based on detailed studies of the detector’s
performance. This ensures more accurate energy measurements and reduces
systematic uncertainties leading to more precise results. In Fig. 3.1 we have
the two prefire maps used which represent the prefire frequency for two dif-
ferent eras of UL16 data.
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Figure 3.1: Two different prefire maps for different eras of UL16, (a) is
preVFP or APV (b) is postVFP or nonAPV.

The prefire weight is calculated by the product of the inverse of the prob-
ability of each jet of the event not to have prefired:

W =
Jets∏
i

1

1− ci
(3.2)

Where ci is the prefire probability stored in the prefire maps.



3.1.5 Hot/Cold-channels

Hot/Cold-channels refer to specific regions of the detector that produce ab-
normally high or low rates of signals. This can occur due to electronic noise,
cross-talk between channels or even hardware malfunctions thus the corre-
sponding signals are unrelated to the actual events we want to study. These
channels can degrade data quality by introducing false signals and increas-
ing background noise. To mitigate these effects, hot-channels are identified
through calibration and monitoring. Our study does not focus on correct-
ing signals from these regions and we rather exclude these data during our
analysis. In Fig. 3.2 we have the two hot-channel maps used one from data
and one from MC. We apply both data and MC maps on both data and MC
data sets.
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Figure 3.2: Hot/Cold-channels from data (a) and MC (b).

3.2 Merging of data

The use of triggers introduces effects that we have to account for. We have
to figure out what is the correct weight for each event in order to counteract
the effect of the trigger. We know that each trigger has a preset pT limit but
its effectiveness at correctly identifying a jet of that pT is not 100% for jets
that exceed that pT. As a result, we have a higher minimum pT requirement
(Table 3.2) where the effectiveness is reaching 100% and so we can define
the fully efficient window of each trigger as being the transverse momentum
region where it has reached almost 100% efficiency up until the next trigger
reached full efficiency. Having now defined the fully efficient window of each
trigger there are two methods for accounting for the trigger effects and merge
our data: the Prescales method and the Effective Luminosity method.

3.2.1 Use of Prescales to Merge the Data

In this method, we construct the pT spectrum by weighting each jet in an
event by a prescales weight. This weight accounts for the fact that the trigger
that recorded this event was not always active. The prescale value used is
that of a trigger that fired during the event, with the requirement that the
leading jet in the event falls into its full-efficiency pT window. Note that
the highest-pT trigger (HLT PFJet450) is not prescaled and always active to



record events. In Fig. 3.3 we present each individual part of the spectrum
for each trigger as was defined for different rapidity bins, as well as the total
spectrum resulted from the merging.
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Figure 3.3: Individual parts of pT spectrum for each trigger and the total
spectrum for different |Y | ranges (a): 0 to 0.5, (b): 0.5 to 1, (c): 1 to 1.5,
(d): 1.5 to 2, (e): 0 to 2.

3.2.2 Use of Effective Luminosities to Merge the Data

In this method we treat the data collected by each trigger as an independent
experiment. For each such experiment, we create a separate jet pT spec-
trum. We subsequently build the entire pT spectrum by concatenating only
the fully efficient window of each trigger spectrum. By keeping only the fully
efficient windows, which by definition do not overlap, we ensure that there
is no double-counting. The way to weight the sub-spectra that correspond
to these windows is by introducing the effective luminosity (Table 3.2). The



effective luminosity is calculated for each trigger and accounts for the fact
that the trigger was not always active during data taking. In other words,
it incorporates the prescales into it. For the highest-pT trigger, which is
not prescaled, the effective luminosity is the same as the total luminosity
of the 2016 data taking. In Fig. 3.4 we show for all rapidity bins the spec-
trum for each trigger as well as the merged spectrum which is the result of
concatenation of the fully efficient window of each trigger.
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Figure 3.4: Trigger pT spectra as if they were independent and the total
spectrum for different |Y | ranges (a): 0 to 0.5, (b): 0.5 to 1, (c): 1 to 1.5,
(d): 1.5 to 2, (e): 0 to 2.

3.2.3 Comparison

Each method has each own advantages and disadvantages. For example
the prescales method keeps about twice as many jets but since the effective
luminosity method has more similar weights between different jets (on each



trigger) it has about 5% smaller statistical uncertainty. Moreover by using
the prescales method if we keep an event we keep it in it’s entirety and thus
we can define event wide properties such as for example an event been dijet.
We present here the results for the pT spectra for data for different rapidity
bins with the two different methods applied Fig. 3.5.
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Figure 3.5: Prescale and effective luminosity pT spectra (upper panel) and
the ratio between them (bottom panel) for different |Y | ranges (a): 0 to 0.5,
(b): 0.5 to 1, (c): 1 to 1.5, (d): 1.5 to 2, (e): 0 to 2.

We can see that there is an agreement between these two methods. We
observe that for pT > 507 GeV, the two methods give identical results, as
expected, because the data there are collected by a non-prescaled trigger.
From this point onward we will keep using the effective luminosity method,
for correcting for the trigger effects, except if specified otherwise.



3.3 MC Selection and Requirements

In this work the SM predictions come primarily from Madgraph+Pythia
and secondarily from Madgraph+Herwig UL16 samples. Similarly to data
selection, MC event selection is also very important for improving the quality
of the dataset. First of all, we apply MET filters, hot-channels and Jet ID
cut in the same way as we apply them for data. Prefire weights and trigger
effects do not apply to MC, even if we could simulate these effects they are
not relevant to our study. We utilize HT-binned samples as presented in the
next section.

3.3.1 HT-bins

HT refers to the scalar sum of the transverse momentum pT of all outgoing
particles in an event. It is often the case that we produce MC simulation
events in different bins of HT, in order to improve the statistics in higher
HT values. This is necessary because the production cross section reduces
several orders of magnitude as a function of outgoing particle pT. If we had
used a single MC sample with all possible HT values (”flat sample”) it would
have been very unlikely to produce events with jets with high transverse
momentum thus making it impossible to achieve ”good” statistics at high jet
pT. Instead, we separate event generation based on HT-bins with each one
having a reasonable span of cross-section and then merging them by using
the luminosity of each bin, which is calculated as number of events generated
in that bin over the cross-section in that bin. The cross-section is calculated
by MC integration over the phase-space of possibilities. This HT binning of
course only applies to MC. In Table 3.4 we have each HT-bin used with their
respective luminosity weight. The merging of APV and nonAPV MC is done
by weighting each one by the ratio of APV or nonAPV luminosity to the
total luminosity, as determined in the data.

HT-bin (GeV)
APV Luminosity-
Based Weight (pb)

nonAPV Luminosity-
Based Weight (pb)

50 - 100 4.87653 4.7819
100 - 200 0.326296 0.313335
200 - 300 0.030827 0.0376868
300 - 500 0.00624473 0.00624755
500 - 700 0.000639486 0.000590487
700 - 1000 0.000167105 0.000158555
1000 - 1500 7.9396e-05 8.8306e-05
1500 - 2000 1.40622e-05 1.27823e-05
> 2000 1.63078e-05 5.01464e-06

Table 3.4: HT-bins used with their respective luminosity-based weight in
(pb) for APV and nonAPV settings of the detector. This luminosity weight
doesn’t include the relative APV-nonAPV merging weight, which reflects the
ratio APV/nonAPV in the data.



3.4 Data-MC comparison

In Fig. 3.6 we present the comparison between the data pT spectra and the
Pythia MC pT spectra for the same rapidity bins. For MC there is no need
to account for any trigger effects but the HT-bin samples are merged as
discussed in Section 3.3.1.
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Figure 3.6: Comparison of Data and Pythia MC pT spectra (upper panel)
and the ratio between them (bottom panel) for different |Y | ranges (a): 0 to
0.5, (b): 0.5 to 1, (c): 1 to 1.5, (d): 1.5 to 2, (e): 0 to 2.

We notice the disagreement between the measured detector-level jet spec-
trum and the predicted one by the MC. The reason is that our MC is a lead-
ing order (LO) generator and it doesn’t fully describe the QCD effects that
we observe in the data. The proper comparison is that of the unfolded ex-
perimental spectra (e.g., with the detector effects removed) and the spectra
predicted by the perturbative QCD at next leading order (NLO) or next-to-
NLO.



Chapter 4

Double-Differential Inclusive
Jet Cross Section Measurement

In order to measure the particle-level unfolded gluon-jet fraction we need to
unfold the jet pT spectra for quark-jets and gluon-jets separately. Before
doing it separately we would like to unfold the non-parton-specific inclusive
jet cross section and compare it to the published one by CMS [12]. This
comparison will confirm the validity of our data set and the robustness of
our analysis tools.

4.1 Unfolding

To unfold our spectra we are using the TUnfold [15] method, which imple-
ments a least-square minimization of the following:

χ2 = (Ax− y)TV−1
yy (Ax− y) (4.1)

whereA is the response matrix, x is the resulting particle-level spectrum, y is
the detector-level spectrum, and Vyy is the covariance matrix. The response
matrix that describes how detector-level jets correspond to particle-level jets
in the simulation and a covariance matrix which captures the covariance
of the different bins of the data spectrum. We are going to perform the
unfolding simultaneously in pT and y (2D unfolding). We have seen the data
spectrum and how the simulation compares to it in the previous chapter so
we will continue with the response matrix. In Fig. 4.1 we present the 2D
response matrix for unfolding from detector-level to particle-level jets.
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Figure 4.1: Response Matrix.

The bins of the response matrix do not show pT or y values, as in a typical
spectrum, but rather the index of the matrix. In Table 4.1 we present the pT

and y bins used. The particle-level pT bins are larger as a form of implicit
regularization (smoothing) of the unfolded result.

Detector-Level pT bins (GeV)

64, 74, 84, 97, 114, 133, 153, 174, 196, 220,
245, 272, 300, 330, 362, 395, 430, 468, 507,
548, 592, 638, 686, 737, 790, 846, 905, 967,
1032, 1101, 1172, 1248, 1327

Particle-Level pT bins (GeV)
64, 84, 114, 153, 196, 245, 300, 362, 430,
507, 592, 686, 790, 905, 1032, 1172, 1327

Absolute Rapidity bins |y| 0.0, 0.5, 1.0, 1.5, 2.0

Table 4.1: pT and y bins used for detector-level and particle-level bins, y bins
are the same for both levels.

The response matrix is composed of 4 by 4 sub-matrices where each sub-
matrix corresponds to a y bin. The detector-level is presented in the x-axis
and the particle-level in the y-axis. Inside each sub-matrix the pT bins are
represented by the index. As a result, the diagonal sub-matrices correspond
to jets that enter the same detector-level and particle-level y bin whereas
the off-diagonal sub-matrices correspond to jets with a detector/particle-
level y-bin mismatch. Because the generator-to-detector-level jet-matching
algorithm requires that the difference in pseudorapidity should be less than
0.2, and because the pseudorapidity is highly correlated to the rapidity, there
is no y migration further than one bin and, as a result, the second to off-
diagonal sub-matrices have no content. This algorithm also has a limit on
the allowed pT migration but we ignore it because the response matrix is
capturing these pT migrations. Finally, the response matrix is normalized
for each row which means that it gives the probability of the origin of each
particle-level bin to different detector-level bins. Similarly to the response
matrix the covariance matrix in Fig. 4.2 follows the same structure.
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Figure 4.2: Covariance Matrix.

The first difference is that it tracks between detector-level bins i and j
where i and j are the possible indices of the spectrum. The second being
that all sub-matrices have values since we don’t track between generator and
corresponding detector-level jets but rather between different jets of the same
event which can have any difference in y. And the last difference is the block
diagonal form of each sub-matrix which correspond to each trigger’s fully
efficient window.

4.2 Result

In Fig. 4.3 we show the comparison between our unfolded double differential
inclusive cross section measurement and the published one. Our spectra do
not reach very high pT values, due to statistics, because we analyze 2016
data, but also include two bins at lower transverse momenta, not published
before.



(a) (b)

(c) (d)

Figure 4.3: Comparison of our differential inclusive cross section to publicized
for different |Y | ranges (a): 0 to 0.5, (b): 0.5 to 1, (c): 1 to 1.5, (d): 1.5 to 2.

Even though we are using different pT binning we can see the we have a
good agreement, meaning that our method works well for unfolding the pT

spectra from detector to particle-level. This comparison also demonstrates
that our event selection, data corrections and trigger-based sample merging
were properly done.



Chapter 5

Gluon-Jet Fraction
Measurement

5.1 Discriminating Variables

For the measurment of the gluon-jet fraction we are not going to use the
QGL as done in the past [16] but instead we will use the discriminating
variables directly. In Fig. 5.1 we show the comparison between the quark-
jet and gluon-jet normalized distributions and that of the data for the three
discriminating variables for different pT bins, where all three distributions are
normalized to unity. In Fig. 5.2 we see these distributions as a function of y.
We notice that the data lies between the quark and gluon distributions. For
that reason, we can extract the gluon jet fraction by maximizing a likelihood
for all pT and y bins.
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Figure 5.1: Discriminating variable for data and MC for 0 <= |y| < 0.5 as a
function of pT, (a) QGMul for 64 <= pT < 74, (b) QGMul for 153 <= pT <
174, (c) QGMul for 507 <= pT < 548, (d) QGAx2 for 64 <= pT < 74, (e)
QGAx2 for 153 <= pT < 174, (f) QGAx2 for 507 <= pT < 548, (g) QGPtD
for 64 <= pT < 74, (h) QGPtD for 153 <= pT < 174, (i) QGPtD for 507
<= pT < 548.
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Figure 5.2: Discriminating variable for data and MC for 153 <= pT < 174
as a function of rapidity, (a) QGMul for 0 <= |y| < 0.5, (b) QGAx2 for 0
<= |y| < 0.5, (c) QGPtD for 0 <= |y| < 0.5, (d) QGMul for 1.5 <= |y| <
2, (e) QGAx2 for 1.5 <= |y| < 2, (f) QGPtD for 1.5 <= |y| < 2.

In Fig. 5.3 we show a comparison between Herwig and Pythia MC
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Figure 5.3: Comparison between Herwig and Pythia for 0 <= |y| < 0.5
and 153 <= pT < 174, (a) QGMul for Pythia, (b) QGAx2 for Pythia, (c)
for QGPtD Pythia, (d) QGMul for Herwig, (e) QGAx2 for Herwig, (f) for
QGPtD Herwig.



5.2 Gluon-Jet Fraction Measurement

To make the measurement we perform a maximum likelihood fit of the three
discriminating variable histograms, from data, with a combination of the
quark-jet and gluon-jet distributions form MC. This can be written as:

HQGMul,data = g ∗HQGMul,gluon−jets + (1− g) ∗HQGMul,quark−jets (5.1)

HQGAx2,data = g ∗HQGAx2,gluon−jets + (1− g) ∗HQGAx2,quark−jets (5.2)

HQGPtD,data = g ∗HQGPtD,gluon−jets + (1− g) ∗HQGPtD,quark−jets (5.3)

where g is the gluon-jet fraction of data. We separate jets based on pT and
y bins and for each bin we maximize the following likelihood.

L =
∑

−ln(
√
2πσi)−

1

2

(Hdata,i −HMC,i)
2

σ2
i

(5.4)

HMC,i = g ∗Hgluon−jets,i + (1− g) ∗Hquark−jets,i (5.5)

Here the index i runs through all three of the discriminating variables bins.
From the maximization of this likelihood we extract the detector-level gluon-
jet fraction for a single pT and y bin. We concatenate pT bins to extract the
entire gluon-jet fraction spectrum as a function of pT for different y bins. In
Fig. 5.4 we have used the two different MC templates, Pythia and Herwig, to
extract the experimental gluon-jet fraction but also using the average of the
two. The theoretical value is produced by weighting gluon-jets and quark-jets
separately and taking the fraction of gluon-jets to the total.
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Figure 5.4: Detector-level gluon-jet fraction for different |Y | ranges (a): 0
to 0.5, (b): 0.5 to 1, (c): 1 to 1.5, (d): 1.5 to 2, (e): 0 to 2 (red using
Pythia templates, green using Herwig templates, orange using Pythia/Herwig
average templates) as a function of pT compared to the MC prediction (blue
Pythia, black Herwig, dark blue average) predicted one. The band around
average corresponds to model systematic error and the band around the MC
corresponds to the difference between Pythia and Herwig.

This result shows a discrepancy between data result and MC prediction.
The biggest factor for this is the fact that the MC does not fully describe the
kinematics and the number of gluon-jets, compared to the data.

5.3 Unfolding of Gluon-Jet Fraction

Since we have demonstrated our ability to unfold a pT spectrum we can
apply it to calculate the particle-level gluon-jet fraction. We take the data
pT spectrum and multiply in by the measured gluon-jet fraction to get a



gluon-jet pT spectrum and multiply in by one minus the gluon fraction to
get a quark-jet pT spectrum. Then, we can create two response matrices,
one using gluon-jets and one using quark-jets. Here we are ignoring flavor
migration between particle-level and detector-level in our simulation because
it is very rare. In Fig. 5.5 we have the two different response matrices for
unfolding gluon-jets or quark-jets.
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Figure 5.5: (a): Quark-jet response matrix, (b): Gluon-jet response matrix

This side by side comparison doesn’t indicate the differences between the
two matrices. This is why we are going to define two different matrices just
for a side by side comparison. One is quark-jet minus gluon-jet truncated at
zero and the other gluon-jet minus quark-jet truncated at zero (if negative
it is set at 0). The first we are going to call quark advantage and the other
gluon advantage. In Fig. 5.6 we have this comparison.
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Figure 5.6: (a): Quark-jet advantage, (b): Gluon-jet advantage

Now it is clear that there is a difference in the migration patterns of quark-
jets and gluon-jets. When there is no y bin migration quark-jets seem to
migrate further than gluon-jets in terms of pT, as demonstrate by the higher
probability in the off diagonal regions of the diagonal sub-matrices. Moreover
we notice that the pattern favors a higher detector-level pT more than a lower
one, compared to the particle-level pT. The migration pattern changes when
there is y bin migration with gluon-jets having a higher probability than
quark-jets of migrating at lower detector-level pT compared to their particle-
level pT.

Regarding the covariance matrix for unfolding gluon-jet we are going to
multiply it by gi ∗ gj where i and j are the bin indices and for quark-jet
unfolding we multiply by (1− gi) ∗ (1− gj) where gi,j are the experimentally
extracted detector-level gluon-jet fraction. Finally to get the particle-level



gluon-jet fraction we divide the unfolded gluon-jet spectrum by the sum of
the unfolded gluon-jet and quark-jet spectra.

5.4 Systematic Uncertainties

To calculate the systematic uncertainties we only focus on jet energy correc-
tion systematic (JEC), jet energy resolution systematic (JER) and method
systematic. This is because we are calculating a ratio and there are cancella-
tions between the numerator and the denominator. First the JEC systematic
is produced by making use of the JEC uncertainty in data. We repeat the
measurement three times, one for the nominal value of the JEC, one for the
+1 uncertainty and one for the −1 uncertainty. The systematic error, in gen-
eral, is asymmetric and is defined by the band around the nominal result and
the ±1 uncertainty results. This band can be expressed as a percent fraction
of the nominal value and combined as independent errors to the rest of the
systematic and statistical errors. Similarly the JER systematic is produced
by making use of the JER uncertainty in MC. The method of calculating it is
the same as for the JEC systematic. The method systematic is defined by the
band around the measurement using average Pythia/Herwig templates and
the measurements using Pythia or Herwig templates separately. Similarly to
the rest of the systematic uncertainties, it is expressed as a percent fraction of
the average value. In Fig. 5.7 we present the systematic uncertainty sources
and the total uncertainty as percentages of the unfolded cross-section, for all
pT and y bins.
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Figure 5.7: Different sources of uncertainty as a percentage for different |Y |
ranges (a): 0 to 0.5, (b): 0.5 to 1, (c): 1 to 1.5, (d): 1.5 to 2, (e): 0 to 2.

5.5 Results

The measured and MC-predicted particle-level spectra for quark-jets and
gluon-jets are shown in Fig. 5.8 and Fig. 5.9 respectively.
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Figure 5.8: Measured and MC-predicted particle-level spectra (upper) and
their ratio (bottom) for quark-jets and for different |Y | ranges (a): 0 to 0.5,
(b): 0.5 to 1, (c): 1 to 1.5, (d): 1.5 to 2, (e): 0 to 2.
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Figure 5.9: Measured and MC-predicted particle-level spectra (upper) and
their ratio (bottom) for gluon-jets and for different |Y | ranges (a): 0 to 0.5,
(b): 0.5 to 1, (c): 1 to 1.5, (d): 1.5 to 2, (e): 0 to 2.

Finally Fig. 5.10 shows the final measurement of the unfolded gluon-jet
fraction, calculated as the ratio of the unfolded gluon-jet spectrum over the
sum of the unfolded gluon-jet and quark-jet spectra, with the yellow band
representing the total uncertainty.
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Figure 5.10: Theoretical and best fit gluon-fraction for different |Y | ranges
(a): 0 to 0.5, (b): 0.5 to 1, (c): 1 to 1.5, (d): 1.5 to 2, (e): 0 to 2.



Chapter 6

Discussion

We have successfully analyzed the UL16 dataset along with two correspond-
ing MC samples and performed multiple parts of the analysis using various
methods to ensure consistency in our results. While we have measured the
unfolded gluon-jet fraction in inclusive multi-jet data, further work is re-
quired to refine this measurement. A more accurate result will be essential for
future gluon-jet based physics explorations. Our results differ from Monte-
Carlo simulation predictions, which could be due to several factors. The main
potential reason for the discrepancy is the fact that our simulations are LO
in QCD, so they don’t capture the complexity of the gluon-jet production.
For example, higher order or more outgoing partons could alter the gluon-jet
content in our data. Future analyses at NLO and NNLO could provide a
clearer understanding, as could addressing potential discrepancies between
data and the models used in current simulations. Furthermore, our jet re-
construction or jet flavor attribution algorithms might introduce differences
between data and simulation. Future improvements could include an infrared
and collinear-safe definition, which would allow for direct comparison with
NLO and NNLO QCD after they are corrected for non-perturbative effects.
Finally, our studies showed differences between the Pythia and Herwig gluon-
jet content, which originate from the different showering and hadronization
algorithms. These differences become much smaller at larger rapidity bins.
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