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One of the basic rules of the universe
is that nothing is perfect. Perfection simply doesn’t exist..

Without imperfection, neither you nor I would exist.
Stephen Hawking
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Abstract

The aim of this work is to study the equation of motion of a scalar field, its
behavior as it propagates in the gravitational background of a Schwarzschild black
hole and the associated effect of the emission of Hawking radiation. First, we re-
view the useful mathematical tools of General Relativity, and then we derive the
Schwarzschild metric in an extended, spherically-symmetric n-dimensional space-
time. We study the equation of a scalar field in this background, and derive its
solution by using the approximated ′′far′′ and ′′near′′ the horizon solutions. We
compute the absorption coefficients and greybody factors, and present the radia-
tion spectra for the case of bulk scalar emission and brane-localized scalar emission
for all modes with l ≥ 0. Finally, we illustrate the conclusions via graphical repre-
sentations of our results, and present specific numerical calculations for the case of
primordial Schwarzschild black holes.
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Intoduction

Transitioning from Newtonian mechanics to General Relativity marks a significant
evolution in our understanding of gravity and the structure of the universe. Newtonian
Mechanics was developed by Sir Isaac Newton in the 17th century and provided a frame-
work for understanding the motion of objects under the influence of forces. Newton’s
law of universal gravitation stated that every point mass in the universe attracts every
other point mass with a force that is directly proportional to the product of their masses
and inversely proportional to the square of the distance between their centers. However,
while Newtonian Mechanics was extremely successful in describing the motion of objects
on Earth and in the solar system, it faced challenges in explaining certain phenomena,
such as the precession of Mercury’s perihelion and the bending of light by massive objects.

In the early 20th century, Albert Einstein developed Special Relativity, which rev-
olutionized our understanding of space and time. Special Relativity showed that space
and time are interconnected in a four-dimensional continuum called spacetime. Through
this theory, it introduced the concept of relativistic effects, such as time dilation and
length contraction, at high speeds. Building upon Special Relativity, Einstein formulated
General Relativity in 1915. General Relativity provides a more comprehensive theory of
gravity. According to General relativity, gravity arises due to the curvature of spacetime
caused by the presence of mass and energy. Massive objects distort the fabric of space-
time, causing other objects to move along curved paths. General Relativity successfully
explained the anomalous perihelion precession of Mercury and predicted the bending
of light by massive objects, which was confirmed during a solar eclipse in 1919. The
theory has been extensively tested and confirmed through various experiments and ob-
servations, including gravitational lensing, the existence of black holes, and the detection
of gravitational waves.

Three key concepts of General Relativity are spacetime curvature, the equivalence
principle, and the field equations. Spacetime curvature refers to the fact that mass and
energy deform spacetime, affecting the motion of objects within it. Additionally, the
equivalence principle states that the gravitational force experienced by an observer in
free fall is indistinguishable from the inertial force experienced by an observer in an
accelerating reference frame. Finally, Einstein’s field equations describe the relationship
between the curvature of spacetime and the distribution of matter and energy within
it. Transitioning from Newtonian mechanics to general relativity therefore, represents a
profound shift in our understanding of gravity, spacetime, and the fundamental nature
of the universe. General relativity remains a cornerstone of modern theoretical physics
and cosmology, providing the framework for understanding phenomena ranging from the
dynamics of galaxies to the behavior of black holes.

More specifically for the force of gravity, this is one of the four fundamental forces
of nature, along with electromagnetism, strong nuclear force, and weak force. Gravity
is the natural force that attracts two bodies towards each other. It is a fundamental
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force of nature that exists between any two objects with mass or energy. This force is
responsible for keeping planets in orbit around stars, and stars in orbit around the center
of their galaxies. However, despite the properties we know about gravity and its actions,
it remains for centuries a mysterious force, which theoretical physicists try to study and
understand. For instance, gravity proves to be particularly resistant when one tries to
unify it with the other three forces of nature.

Finally as pointed out according to General Relativity, gravity is not a force that is
transmitted between objects, but rather a result of the curvature of spacetime caused
by the presence of massive objects. This curvature of spacetime is what causes objects
to move on a curved path in the presence of gravity. Then, through General relativity,
the existence of black holes can be predicted, which are regions of spacetime where the
curvature becomes infinitely steep. Anything that falls into a black hole is trapped inside,
and can never escape. However, to better understand the theory of general relativity and,
by extension, what it creates, it is important to study its geometry and mathematical
formalism.

The purpose of this work is to understand the behavior of Schwarzschild black holes in
n-dimensional spacetime by computing Hawking radiation in the form of bulk and brane-
localized scalar emission. More specifically, in the first chapter we explain some useful
mathematical tools of general relativity, which concern the metric tensor, the connection
and covariant derivative, the Riemann tensor, the Ricci tensor, the Ricci scalar and the
Einstein tensor and the Lagrangian formalism leading to the Einstein equations. Then,
in the second chapter, the derivation of the Schwarzschild solution in n′-dimensions is
presented, followed by a discussion on extra dimension theories and the derivation of the
scalar field equation. Subsequently, in the third chapter we focus on the case of primordial
Schwarzschild black holes that may have been formed in the early universe and we discuss
then the concept of Hawking radiation via the bulk scalar field and brane-localized scalar
emission for l ≥ 0. In particular, we derive the radial equation in n-dimensions and
transform it to a hypergeometric equation that describes the behavior of the scalar field
′′near′′ and ′′far′′ from the black hole event horizon, both for bulk and brane-localized
scalar emission. Then, for these two emission channels, we calculate the absorption
coefficient as well as the greybody factor. Then, in the fourth chapter, we present the
results for the cases of the bulk scalar emission and the brane-localized scalar emission,
for the absorption coefficients the graybody factors and the energy emission rates. In the
fifth chapter, some calculations for early Schwarzschild black holes are presented, and in
the sixth chapter, we close with the conclusions.
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1 Mathematical tools of General Relativity

In this chapter we will present the basic mathematical quantities of the General
Theory of Relativity, which were first introduced by Einstein. For these purposes, we
rely on the following books of general relativity [1], [2], [3], [4] and [5].

1.1 The metric tensor

In general relativity, the metric tensor plays a fundamental role in describing the
geometry of spacetime. It characterizes the curvature and distances in the spacetime
manifold. The metric tensor is usually denoted by gµν , where µ and ν are indices running
from 0 to 3, representing the four dimensions of spacetime (three spatial dimensions and
one time dimension).

Consequently, to be able to measure distances on a manifold, it is important to define
the line-element ds2 by means of the metric, which is written as:

ds2 = gµνdx
µdxν , (1)

with µ, ν = 0, 1, 2, 3 and where the metric tensor gµν provides us with all the informa-
tion about the geometry of spacetime. Furthermore, the quantity ds2 helps us measure
distances in curved spacetimes and dxµ, dxν are the elements of length.

In addition, the metric must be a symmetric tensor gµν = gνµ and an important
property of metric that often helps us in practice is:

gµαgαν = δµν , (2)

where δµν is the Kronecker symbol:

δµν = { 1, if µ = ν,
0, if µ ̸= ν.

(3)

A simple example of a tensor is that of the three-dimensional (3D) Euclidean space
in spherical coordinates. In order to find the metric of this 3D space, we first express the
coordinates, in spherical form:

x1 = rsinθ cosϕ, x2 = rsinθ sinϕ, x3 = rcosθ. (4)

Thus, the line-element can be written as:

ds2 = dx2
1 + dx2

2 + dx2
3 = dr2 + r2dθ2 + r2sin2θdϕ2 = gµνdx

µ ⊗ dxν (5)

where: g11 = 1, g22 = r2 and g33 = r2sin2θ.
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It is also important to mention that the metric can always be written in the form of
a D ×D matrix with a non-zero determinant. So in the case of the above example, the
metric can be written as:

gµν =

1 0 0
0 r2 0
0 0 r2sin2θ

 . (6)

Finally, it is worth mentioning an important property of the metric, that of indexing up
and down, i.e. Aµ = gµνBν , Aµ = gµνB

ν , etc.

1.2 Connection and covariant derivatives

In General Relativity we are interested in spacetimes which do not have flat geometry,
but their geometry exhibits curvature. So, we need a tensor that gives us information
about the curvature of the manifold. The tensor we are interested in is called the Riemann
tensor or the curvature tensor, while another tensor, called the Ricci tensor, will play a
central role in the field equations. But before we define these quantities we will need the
concept of the covariant derivative.

Covariant derivatives ∇µ are a concept from differential geometry and differential
calculus, particularly in the context of smooth manifolds equipped with additional struc-
tures such as a connection. They provide a way to differentiate vector fields (or tensor
fields more generally) along curves or vector fields on the manifold while respecting the
geometric structure, such as the metric or other connections.

Let as consider a random differentiable manifold M with a map (x1, ..., xn) where at
each point of the manifold we define a vector xµ, thus creating a vector field. If in the
manifold we define a tensor of order m then correspondingly we create a tensor field.
Without loss of generality we can see that the differentiation of a tensor is not a tensor
in general, because the differential of a tensor dT µν...

κλ... will be equal to the difference of
two tensors valued at different points in space-time. However, the transformation of a
tensor is generally different from one point of space-time to another, and this is because
its transformation depends on the coordinate system (the position). So let us consider a
scalar field ϕ = ϕ(xµ) and consider its partial derivative as follows:

∂ϕ

∂xµ
=

∂xν

∂xµ

∂ϕ

∂xν
. (7)

Now, to create a tensor-transformed derivative, we define the covariant derivative as
follows:

∇µV
ν = ∂µV

ν + Γν
µσV

σ, (8)

were V µ is a vector field.

In the context of General Relativity, the coefficients Γν
µσ are called Christoffel symbols,

which in general are not tensors. The Christoffel symbols are given by the relation:

Γλ
µν =

1

2
gλσ(∂µgνσ + ∂νgσµ − ∂σgµν) (9)
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and have the property Γλ
µν = Γλ

νµ.

At this point it is important to define through the connection, the geodesic equation
for a curve xµ(λ):

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0. (10)

Geodesics are the free trajectories that particles and light follow in the presence of gravity,
and in the absence of any other force. They can be thought of as the shortest distance
between two points in spacetime.

For example, using Minkowski space with signature (−1,+1,+1,+1), we can write
the line element (metric):

ds2 = −dt2 + dx2
1 + dx2

2 + dx2
3. (11)

In this case, the Christoffel symbols are all zero since the metric is constant. Therefore,
the geodesic equation simplifies to:

d2xµ

dλ2
= 0. (12)

This equation states that the acceleration of the particle is zero, meaning that the object
moves in straight lines at constant velocity unless acted upon by external forces. This
is consistent with the principle of inertia in special relativity, where free objects move in
straight lines at constant velocity.

1.3 Riemann tensor, Ricci tensor, Ricci scalar and Einstein ten-
sor

The Riemann tensor, named after the German mathematician Bernhard Riemann,
is a fundamental concept in differential geometry and is particularly important in the
study of curved spaces, such as those encountered in general relativity. In general, the
Riemann tensor characterizes the curvature of a manifold. It’s a mathematical object
that encodes information about how geodesics (the paths of shortest distance) deviate
from being straight lines due to the curvature of the space.

The Riemann tensor is defined in terms of the metric tensor, which describes the
local geometry of a manifold, and its derivatives. For a manifold with n dimensions, the
Riemann tensor is a rank-4 tensor with n4 components, but due to symmetries, it has
n2(n2 − 1)/12 independent components in a general manifold.

In component notation, the Riemann tensor Rρ
σµν is given by:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ, (13)

where Γρ
νσ are the Christoffel symbols.

If we consider its fully covariant form Rρσµν = gρλR
λ
σµν , then we see the following

basic properties of it:
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• It is antisymmetric in the interchange of its first two or last two indices: Rρσµν =
−Rσρµν = −Rρσνµ.

• The sum of cyclic permutations of the last three indices vanishes:

Rρσµν +Rρµνσ +Rρνσµ = 0. (14)

• The Bianchi identity can also be extracted to hold:

∇[λRρσ]µν = 0. (15)

A useful observation is the fact that the given tensor completely determines whether
the manifold has curvature or not. If this tensor is zero, then we automatically get the
flatness of space. So, the Riemann tensor is a way of measuring the curvature of a space,
and plays a fundamental role in Einstein’s theory of general relativity, which describes
the behavior of gravity.

Furthermore, through the Riemann tensor we can make a contraction to form the
Ricci tensor:

Rµν = Rλ
µλν , (16)

where the Ricci tensor is a symmetric tensor:

Rµν = Rνµ, (17)

as a consequence of the symmetries of the Riemann tensor.

The trace of the Ricci tensor is the Ricci scalar:

R = Rµ
µ = gµνRµν . (18)

The Ricci scalar, denoted by R, is a scalar curvature quantity in differential geometry,
specifically in the context of Riemannian geometry. It’s a mathematical object used to
describe the curvature of a Riemannian manifold, which is a generalization of the concept
of curvature to higher dimensions.

The Ricci scalar is a fundamental quantity in Einstein’s theory of general relativity.
Together with the Ricci tensor, it appears in the Einstein field equations, which relate
the curvature of spacetime to the distribution of matter and energy. Specifically, the
Ricci tensor and Ricci scalar appear on the left-hand side of the Einstein field equations,
representing the curvature of spacetime, while the right-hand side contains the stress-
energy tensor, representing the distribution of matter and energy.

1.4 Lagrangian formulation and Einstein equations

As we pointed out, gravity can be described through Einstein’s theory of general
relativity. Then, we can look at gravity through two different perspectives: how the
gravitational field influences the behavior of matter, and how matter determines the
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gravitational field. We initially consider a mass density ρ. According to Newtonian
gravity, this mass density will create a gravitational potential which satisfies Poisson’s
equation:

∇2Φ = 4πGρ, (19)

where G is the gravitational constant, determining the strength of the gravitational force.
This equation describes how the gravitational potential Φ is related to the mass density
ρ. It essentially says that the Laplacian of the gravitational potential is proportional to
the mass density, with the constant of proportionality being 4πG.

Now, let’s contrast this with general relativity. In general relativity, the behavior of
particles and bodies under gravity is described by the curvature of spacetime rather than
a force acting at a distance. Instead of trajectories being governed by forces, they are
determined by the curvature of spacetime, which is in turn determined by the distribution
of mass and energy. The equivalent to trajectories in general relativity is the concept of
geodesics. A geodesic is the shortest path between two points in curved spacetime. In the
absence of any forces, objects follow geodesics. These geodesics are determined by the
geometry of spacetime, which is described by Einstein’s field equations. The connection
between Newton’s equation and general relativity is that in the limit of weak gravitational
fields and low velocities, general relativity reduces to Newtonian gravity. In this limit, the
trajectories of particles described by geodesics closely resemble the trajectories predicted
by Newtonian gravity.

Suppose now that we have a distribution of mass in space. Then, in order to find the
gravitational potential it creates, we should solve the differential equation which is given
by (19). In general relativity, the analogous statements will describe how the curvature
of spacetime acts on matter to manifest itself as gravity, and how energy and momentum
influence spacetime to create curvature.

In order at this point to be able to derive Einstein’s equation, we consider the action:

SEH =
1

16πG

∫
d4x

√
−gR =

1

16πG

∫
d4x

√
−ggµνRµν , (20)

where g is the determinant of the metric tensor, and R the Ricci scalar quantity. This
action is called Einstein-Hilbert action. Of course we can add the matter-energy dis-
tribution since we wrote the action only for the gravitational field in vacuum, so we
get:

S =
1

16πG

∫
d4x

√
−gR + Sm, (21)

where G is Newton’s gravitational constant, while Sm is the action associated with matter
and energy.

To obtain the equation of motion of the gravitational field we will consider the change
of action with respect to gµν as follows (in equation (20)):

δSEH =
1

16πG

∫
dnx[δ(

√
−g)gµνRµν +

√
−gRµνδg

µν +
√
−ggµνδRµν ] = 0. (22)

Let us consider the third term in equation (22). In order to analyze this term, the
following relations are derived:

∇λ(δΓ
ρ
νµ) = ∂λ(δΓ

ρ
νµ) + Γρ

λσδΓ
σ
νµ − Γσ

λνδΓ
ρ
σµ − Γσ

λµδΓ
ρ
νσ (23)
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δRρ
µλν = ∇λ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
λµ) (24)

δRµν = ∇ρ(δΓ
ρ
νµ)−∇ν(δΓ

ρ
ρµ) (25)

δΓσ
µν = −1

2
[gλµ∇ν(δg

λσ) + gλν∇µ(δg
λσ)− gµαgνβ∇σ(δgαβ)]. (26)

Then, we can write for the third term of equation (22):∫
dnx

√
−ggµνδRµν =

∫
dnx

√
−ggµν [∇ρ(δΓ

ρ
νµ)−∇ν(δΓ

ρ
ρµ)]

=

∫
dnx

√
−g∇σ[g

µν(δΓρ
µν)− gµσ(δΓρ

ρµ)] =

∫
dnx

√
−g∇σ[gµν∇σ(δgµν)−∇ρ(δg

σρ)].

(27)

The integral in relation (27), is an integral with respect to the natural volume element
of the covariant divergence of a vector. By Stokes theorem, this is equal to a boundary
contribution at infinity, which we can set to zero by making the variation vanish at
infinity.

The second term of equation (22) is in the desired form and therefore it remains for us
to deal with the first term. So for the first term, we will use the relation:

δ(
√
−g) = −1

2

√
−ggµνδg

µν (28)

and therefore: ∫
dnxδ(

√
−g)gµνRµν = −1

2

∫
dnx

√
−ggµν(g

µνRµν)δg
µν . (29)

Therefore, equation (22) takes the form:

δSEH =
1

16πG

∫
dnx

√
−g

(
Rµν −

1

2
gµνR

)
δgµν = 0, (30)

leading to the result

Rµν −
1

2
gµνR = 0, (31)

which is the Einstein’s equation in vacuum.

Furthermore, if we consider an action of the form:

S =
1

16πG
SH + Sm, (32)

where Sm is the action of the matter, we get:

1√
−g

δS

δgµν
=

1

16πG

(
Rµν −

1

2
Rgµν

)
+

1√
−g

δSM

δgµν
= 0. (33)

If we define the energy-momentum tensor to be:

Tµν = −2
1√
−g

δSM

δgµν
, (34)
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we obtain the complete Einstein’s equation:

Rµν −
1

2
Rgµν = 8πGTµν , (35)

where Rµν is the Ricci tensor, R the Ricci scalar, Tµν is the energy-momentum tensor
and gµν the metric tensor.

The above equation describes the way spacetime is curved, through which we explain a se-
ries of gravitational phenomena. It is a system of second-order differential equations with
respect to the spacetime metric, and its solution leads to various kinds of gravitational
phenomena and objects described by a metric.

14
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2 Black Holes in Four and Higher Dimensions

Black holes, their behavior and properties, are highly interesting objects of theoretical
physics and astrophysics. In classical general relativity, black holes are described as
regions of spacetime where gravitational forces are so intense that nothing, not even
light, can escape from within a certain boundary called the event horizon. In four-
dimensional spacetime (three spatial dimensions plus one time dimension), black holes
are characterized by their mass, electric charge, and angular momentum.

The most famous solution describing a black hole in four dimensions is the Schwarzschild
solution, which describes a non-rotating, uncharged black hole. This solution is charac-
terized by a single parameter, the mass of the black hole, and it predicts a spherical
event horizon. In addition to the Schwarzschild black hole, there are additional solutions
that describe rotating black holes (Kerr black holes) and charged black holes (Reissner-
Nordström black holes). These solutions introduce additional parameters to the metric
tensor such as angular momentum and electric charge. One of the most intriguing aspects
of black holes is their thermodynamics. In the 1970s, Stephen Hawking showed that black
holes are not entirely black but emit radiation, now known as Hawking radiation, due to
quantum effects near the event horizon. This discovery suggested a link between black
holes and thermodynamics, leading to the development of black hole thermodynamics.

Black hole thermodynamics treats black holes as thermodynamic systems with temper-
ature, entropy, and other thermodynamic properties. The laws of black hole mechanics,
analogous to the laws of thermodynamics, were proposed by Jacob Bekenstein [6] and
later refined by Hawking [7]. Recent research on black holes in four dimensions continues
to explore various aspects, including their formation, evolution, and interactions with
matter and other black holes.

Overall, the study of four-dimensional black holes remains a fascinating and active
area of research in theoretical physics, with implications for our understanding of gravity,
quantum mechanics, and the nature of spacetime itself.

In this chapter we will present the Schwarzschild solution in 4-dimensions as well as
in higher-dimensions. For these purposes, we rely on the following books and papers: [1],
[8], [9], [10], [11], [12], [13], [14], [15] [16] and [17].

2.1 The Schwarzschild solution

In this subsection, the most important and particularly simple solution will be pre-
sented, which is to consider a spherically symmetric curved space-time. In fact, to abstract
things more, we will assume that this space-time is empty, i.e. the energy-momentum
tensor is identically zero. Such spacetimes describe the outer region of a star, our planet,
etc. In fact, the solution of such spacetime also describes black holes.

15
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So we assume a metric of the form:

ds2 = −A(r) dt2 +B(r) dr2 + r2(dθ21 + sin2θ1dϕ). (36)

Since we have assumed empty spacetime, the field equations take the form:

Rµν −
1

2
gµνR = 0. (37)

In order to solve equation (37), we will first calculate the Christoffel symbols and the
Ricci tensor. We first calculate the Christoffel symbols, using equation (9):

Γ0
01 =

1

2

A′(r)

A(r)
, Γ1

11 =
1

2

B′(r)

B(r)
, Γ1

00 =
1

2

A′(r)

B(r)
, Γ1

22 = − r

B(r)
, Γ1

33 = − r

B(r)
sin2θ1,

Γ2
33 = −sinθ1 cosθ1, Γ2

21 = Γ3
31 =

1

r
, Γ3

23 =
cosθ1
sinθ1

, (38)

and then, from the equation (16) we can calculate the non-zero Ricci tensor components:

R00 = −A′′(r)

2B(r)
+

A′(r)

4B(r)

[
A′(r)

A(r)
+

B′(r)

B(r)

]
− A′(r)

rB(r)
, (39)

R11 =
A′′(r)

2A(r)
− A′(r)

4A(r)

[
A′(r)

A(r)
+

B′(r)

B(r)

]
− B′(r)

rB(r)
, (40)

R22 =
1

B(r)
− 1 +

r

2B(r)

[
A′(r)

A(r)
− B′(r)

B(r)

]
, (41)

R33 = sin2θ1R22. (42)

Then, using the Einstein’s equation (31), we get:

R00 +
A(r)

B(r)
R11 +

2A(r)

r2
R22 = 0, (43)

R11 +
B(r)

A(r)
R00 −

2B(r)

r2
R22 = 0 ⇒ A(r)

B(r)
R11 +R00 −

2A(r)

r2
R22 = 0. (44)

Then, by adding equations (43) and (44) and employing the expressions (39)-(42), we get
the equation:

2R00 +
2A(r)

B(r)
R11 = 0,

⇒ A′(r)B′(r)

4B2(r)
+

A′(r)A′(r)

4A(r)B(r)
− A′(r)

rB(r)
+

A(r)

B(r)

[
−A′(r)A′(r)

4A(r)A(r)
− A′(r)B′(r)

4A(r)B(r)
− B′(r)

rB(r)

]
= 0,

⇒ −A′(r)

A(r)
=

B′(r)

B(r)
.

(45)

Also, demanding that R22 = 0, we obtain:

1

B(r)
− 1 +

r

2B(r)

A′(r)

A(r)
− r

2B(r)

B′(r)

B(r)
= 0. (46)
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After integrating the equation (45), we find the relation:

−lnA(r) + k = lnB(r) ⇒ A(r)B(r) = ek ⇒ B(r) =
Λ

A(r)
, (47)

with ek ≡ Λ.

Now, substituting equation (47) into equation (46), we have:

A(r)

Λ
− 1 +

r

Λ
A′(r) = 0 ⇒ rA′(r) + A(r) = Λ ⇒ d

dr
(rA(r)) = Λ ⇒ A(r) = Λ

(
1 +

C

r

)
,

and then:

B(r) =

(
1 +

C

r

)−1

. (48)

Therefore, A(r) and B(r), have the form:

A(r) = 1 +
C

r
(49)

B(r) =

(
1 +

C

r

)−1

, (50)

where C is a constant and Λ has been absorbed in the time coordinate.

To calculate the constant C, we apply Gauss’s law:∫
g ds2 = −4πGM, (51)

where g is the intensity of the gravitational field and ds2 = r2sinθ1dθ1dϕ.

Therefore equation (51) becomes:

gr2
∫ π

0

sinθ1 dθ1

∫ 2π

0

dϕ = −4πGM ⇒ gr24π = −4πGM ⇒ g = −GM

r2
. (52)

In order, to find the potential and subsequently the constant C, we use the well-known
relation g = −∇Φ and then:

Φ =

∫
GM

r2
dr = −GM

r
. (53)

Taking as an approximation the limit of the weak gravitational field where A(r) = −1 +
2Φ, we have:

2Φ =
C

r
⇒ −2GM

r
=

C

r
⇒ C = −2GM. (54)

Thus, for equations (49) and (50), we have:

A(r) = 1− 2GM

r
≡
(
1− rH

r

)
, (55)
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B(r) =

(
1− 2GM

r

)−1

≡
(
1− rH

r

)−1

, (56)

where 2GM is the Schwarzschild radius, rH = 2GM , in 4-dimensions.

Thus, the metric takes the form:

ds2 = −
(
1− rH

r

)
dt2 +

(
1− rH

r

)−1

dr2 + r2(dθ21 + sin2θ1dϕ),

and describes the outer region of a spherically symmetric gravitational object of mass
M . This solution was named after the German physicist Karl Schwarzschild, who first
derived it in 1916, just a few months after Einstein formulated his field equations.

It is important to comment on some features of this metric:

• At the radial coordinate r = 2GM , the term 1− 2GM/r becomes zero, leading to
a coordinate singularity. This is the event horizon, beyond which nothing can escape the
gravitational pull of the black hole.

• The true physical singularity is at r = 0. As r → 0, the curvature invariants become
infinite and near r = 0, the tidal gravitational forces become infinitely strong, and no
object can survive such conditions. The singularity at r = 0 is hidden behind the event
horizon at r = rH . This means that no information about the singularity can escape
to an outside observer, preserving the cosmic censorship conjecture in classical General
Relativity. So, any observer outside the black hole, i.e., at r > rH , cannot detect or
be affected by the singularity directly, due to the presence of the event horizon. As a
consequence, the event horizon r = rH represents a one-way membrane. Any object or
signal crossing this horizon from outside cannot return, effectively trapping all matter
and information within. Furthermore, for an observer falling into the black hole, crossing
r = rH would seem uneventful (locally), but they would inevitably reach the singularity at
r = 0 in finite proper time. In summary, the real spacetime singularity at r = 0 is hidden
inside the black hole’s horizon and represents a region where classical General Relativity
ceases to be valid, necessitating a theory of quantum gravity to fully understand its
nature.

• The factor multiplying dt2 in the metric shows that time flows differently at different
distances from the black hole. Clocks near the black hole appear to run slower relative
to distant observers, a phenomenon known as gravitational time dilation. According to
the theory of General Relativity, this phenomenon is due to the gravity of the black hole
curving spacetime in a way that affects all measurements of time and space near the black
hole.

• The Schwarzschild solution describes a non-rotating, electrically neutral black hole.
It does not account for the effects of angular momentum or electric charge.

The Schwarzschild solution serves as a cornerstone of black hole physics and provides
the foundation for understanding many properties of black holes, including the event
horizon, gravitational lensing, and the formation of singularities.
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2.2 Theories with Extra Dimensions

The concept of dimensions has always fascinated both physicists and philosophers
alike. While our everyday experience is confined to three spatial dimensions and one time
dimension, theoretical physics has long entertained the possibility of additional spatial
dimensions beyond the familiar three. These extra dimensions, though hidden from our
direct perception, could fundamentally alter our understanding of the universe. But in
how many dimensions does a black hole live? The number of spacelike dimensions in
nature is a fundamental question that was first posed more than a century ago. Let us
make a brief review of the most important models with extra dimensions.

Kaluza-Klein (KK) theory [18], one of the earliest attempts to unify gravity and elec-
tromagnetism, extends general relativity to five dimensions. Black holes in this frame-
work, known as Kaluza-Klein black holes, can exhibit unique properties depending on the
compactification of the extra dimension. These black holes can have interesting struc-
tures like ring-shaped horizons or black strings, which are extended in the fifth dimension.
The stability and thermodynamic properties of these black holes depend on the nature
of the compactification and the presence of additional fields. Kaluza-Klein theory can
be extended to more than five dimensions, where black holes can have even more ex-
otic horizon topologies and stability properties, influenced by the geometry of the extra
dimensions [19], [20].

Also, string theory provides a framework where extra dimensions naturally arise.
Typically, these models involve six or seven additional compactified dimensions. In par-
ticular, Calabi-Yau compactifications involve six additional spacelike dimensions, or three
complex ones. In M theory, an eleventh spacelike dimension is assumed to be compact-
ified on a circle. The properties of black holes in string theory are deeply tied to the
underlying compactification geometry and the types of strings and branes present. D-
branes, which are dynamical objects in string theory, can form black holes when multiple
branes intersect and bind together. These configurations provide microscopic models of
black holes that allow for the calculation of entropy and radiation properties, matching
the predictions of Hawking radiation and the Bekenstein-Hawking entropy. String theory
also predicts higher-dimensional black holes, such as those in ten or eleven dimensions.
These higher-dimensional black holes can have unusual properties, such as non-spherical
horizons and stability issues not present in four-dimensional black holes [21], [22].

Antoniadis [23] was the first to suggest that some extra dimension can be decom-
pactified. Then, the ADD (Arkani-Hamed, Dimopoulos, Dvali) model [24], proposed in
1998, introduces large extra dimensions to address the hierarchy problem, specifically
why gravity is much weaker compared to other fundamental forces. The central idea is
that gravity propagates in all spatial dimensions, including the extra dimensions, while
the Standard Model forces are confined to the usual four-dimensional spacetime. In the
ADD model, extra dimensions are compactified, meaning they are curled up in such a way
that they are not observable at low energies. The presence of these large extra dimen-
sions modifies the gravitational potential at small distances, leading to deviations from
the inverse-square law of gravity. At high energies, such as those achievable in particle
colliders, black holes could form with much lower energy thresholds than traditionally
expected [8]. These high-energy collisions would create microscopic black holes that de-
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cay quickly via Hawking radiation, emitting a burst of particles that could be detected
experimentally.

Furthermore, the Randall-Sundrum (RS) models [25], proposed in 1999, offer another
solution to the hierarchy problem by using a warped extra dimension. There are two main
versions: RS1 and RS2. RS1 involves two branes: a visible (TeV) brane where our known
universe resides, and a hidden (Planck) brane. The extra dimension is warped, meaning
that the metric is not flat but exponentially decaying. This warping creates a significant
energy difference between the two branes, naturally explaining the hierarchy between
the weak force and gravity without requiring large extra dimensions. In the context of
black holes, the RS1 model predicts that small black holes could form and be detected
at TeV scales due to the localized gravity on the TeV brane. These black holes would
have unique signatures due to the warped geometry, influencing their production and
evaporation processes. RS2 eliminates the hidden brane and extends the extra dimension
infinitely. This model suggests that while gravity propagates into the extra dimension, it
remains localized near our four-dimensional universe due to the warping. The RS2 model
implies the existence of black holes with horizons extending into the extra dimension,
affecting their gravitational properties and Hawking radiation in observable ways [25].

Braneworld models, including ADD and RS models, predict that our universe is a
3-brane embedded in a higher-dimensional spacetime. Black holes in these models can
exhibit behaviors significantly different from their four-dimensional counterparts. At
scales near the extra dimension size, black holes could have extended ′′black string′′ or
′′black cigar′′ shapes. The localization of gravity on the brane means that black holes
could have quasi-stable states where part of the horizon extends into the extra dimen-
sion. For black holes much larger than the extra dimension scale, they behave similarly to
four-dimensional black holes, but with potential corrections from the higher-dimensional
gravity. The evaporation and stability properties of these black holes are subjects of
active research, particularly their potential detection via gravitational wave observato-
ries [26], [27].

Finally, it is important to note that in this work, we will focus on the ADD model,
where there exist analytical solutions for black holes. As a result, the extra dimensions
employed in the next paragraph will all be flat (i.e., without curvature) and share the same
size R. For the phenomenological constraints on the size R of the extra dimensions, from
experiments (like Cavendish type) aimed at testing the form of gravitational interactions,
no deviations from the usual Newtonian law have been found at distances up to the order
of 52µm. Therefore, if extra dimensions exist, they must be smaller than this scale. [28]

2.3 Schwarzschild solution in Higher-Dimensions

Higher-dimensional Schwarzschild black holes are theoretical objects described by so-
lutions to Einstein’s field equations in higher dimensions, extending beyond the standard
four dimensions of spacetime. When considering higher dimensions, the mathematical
analysis becomes more complex, but the concept and basic symmetries remain the same.
In these scenarios, spacetime is assumed to have more than the usual three spatial di-
mensions and one time dimension. The Schwarzschild solution can be generalized to
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higher dimensions, resulting in black holes with different properties than those in four
dimensions.

One key aspect of higher-dimensional Schwarzschild black holes is their event horizon,
which is the boundary beyond which nothing, not even light, can escape the gravitational
pull of the black hole. In higher dimensions, the structure of the event horizon and the
properties of the black hole can vary significantly compared to four-dimensional cases.

Understanding higher-dimensional black holes is not only important for theoretical
physics but also has implications for cosmology and the nature of spacetime at funda-
mental scales. However, it’s worth noting that experimental evidence for the existence
of higher-dimensional spacetime or higher-dimensional black holes remains elusive, and
these concepts largely exist within the realm of theoretical physics and mathematical
speculation.

We therefore model the metric of higher-dimensional black holes, according to the
following relation:

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2
2+n, (57)

where dΩ2
2+n = dθ2n+1 + sin2θn+1(dθ

2
n + sin2θn(...+ sin2θ2(dθ

2
1 + sin2θ1dϕ

2)...)).

Note that we consider the radius of the horizon to be much smaller than the size of
the extra dimensions rH ≪ R. Furthermore, (57) is the general form of the spherically
symmetric metric, where n stands for the number of extra, spacelike dimensions that
exist in nature (n′ = 4+n), and dΩ2

2+n is the area of the (2+n)-dimensional unit sphere.
As we expect, if in equation (57) we set n = 0, then we obtain the Schwarzschild metric
in 4-dimensions.

The given metric (57), describes a spherically symmetric spacetime in a (4+n)-dimensional
space, where n is the number of additional spatial dimensions beyond the usual four.
Both metric functions A and B depend only on r and not on t. This implies that the
spacetime is invariant under translations in time, t → t + constant. This symmetry
corresponds to the conservation of energy. The dependence of A and B only on r indi-
cates spherical symmetry. The spacetime is thus invariant under rotations. Furthermore,
the term r2dΩ2

2+n describes the geometry of an (n+2)-dimensional sphere. This term is
constructed from angular coordinates θ1, θ2, . . . , θn+1, ϕ. The dΩ2

2+n can be expanded as:
dΩ2

2+n = dθ2n+1 + sin2θn+1(dθ
2
n + sin2θn(...+ sin2θ2(dθ

2
1 + sin2θ1dϕ

2)...)). This structure
represents the metric on an (n+2)-dimensional sphere. The symmetries here are the
rotational symmetries of the sphere, described by the group SO(n + 3). Each angular
coordinate θi and ϕ describes rotations in a higher-dimensional generalization of spher-
ical coordinates. These symmetries imply that the spacetime described by this metric
is static (time-independent) and spherically symmetric in higher dimensions. This is a
generalization of the Schwarzschild solution to higher dimensions, where the spatial part
of the metric retains the spherical symmetry extended to higher-dimensional spheres.
It is important at this point to mention that the shape of spacetime will change if the
assumption of spherical symmetry changes.

At this point, we are interested in finding the form of the higher-dimensional metric -
equation (57). In the same way as before, we can arrive at the following general relations
for the Christoffel symbols and the Ricci tensor, respectively (detailed analyses for the
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cases where n = 1 and n = 2 are given in Appendix A):

Γ0
01 =

A′(r)

2A(r)
, Γ1

00 =
A′(r)

2B(r)
, Γ1

11 =
B′(r)

2B(r)
, Γ2

33 = Γ3
44 = ... = ΓN−1

NN = −sinθ1 cosθ1,

Γ4
43 = Γ5

53 = ... = ΓN
N3 =

cosθ2
sinθ2

, Γ3
23 = Γ4

24 = Γ5
25 = ... = ΓN

2N =
cosθ1
sinθ1

,

Γ2
21 = Γ3

31 = Γ4
41 = ... = ΓN−1

(N−1)1 =
1

r
, Γ2

44 = Γ3
55 = ... = ΓN−2

NN = −sinθ1 cosθ1 sin
2θ2,

Γ1
33 = − r

B(r)
sin2θ1, Γ1

44 = − r

B(r)
sin2θ1 sin

2θ2, Γ1
55 = − r

B(r)
sin2θ1 sin

2θ2 sin
2θ3,

..,Γ1
NN = − r

B(r)
sin2θ1 sin

2θ2 sin
2θ3...sin

2θN−2, Γ2
44 = −sinθ1 cosθ1 sin

2θ2,

Γ2
55 = −sinθ1 cosθ1 sin

2θ2 sin
2θ3, ..., Γ2

NN = −sinθ1 cosθ1 sin
2θ2 sin

2θ3 ... sin
2θN−2,

(58)

where N = n′ − 1 and n′ is the dimension of space (n′ = 4, 5, ..), and:

R00 = −A′′(r)

2B(r)
+

1

4

A′(r)

B(r)

[
A′(r)

A(r)
+

B′(r)

B(r)

]
−
(
n′ − 2

2

)
A′(r)

rB(r)
, (59)

R11 =
A′′(r)

2A(r)
− A′(r)

4A(r)

[
A′(r)

A(r)
+

B′(r)

B(r)

]
−
(
n′ − 2

2

)
B′(r)

rB(r)
, (60)

R22 = −n′′ +
n′′

B(r)
+

r

2B(r)

[
A′(r)

A(r)
− B′(r)

B(r)

]
, (61)

R33 = sin2θ1R22, (62)

R44 = sin2θ1 sin
2θ2R22, (63)

R55 = sin2θ1 sin
2θ2 sin

2θ3R22, (64)

..., (65)

RN ′N ′ = sin2θ1 sin
2θ2 sin

2θ3...sin
2θN ′−2R22, (66)

where n′′ = n+1 = 1, 2, 3, ... and N ′ is the last component of the Ricci tensor of the last
calculated dimension.

Then, from the (00) and (11) components of the Einstein equations, we get:

R00 −
1

2
g00
(
g00R00 + g11R11 + g22R22 + g33R33 + g44R44 + ...

)
= 0

⇒ R00 +
1

2
A(r)

[
− 1

A(r)
R00 +

1

B(r)
R11 +

1

r2
R22 +

1

r2sin2θ1
R33 +

1

r2sin2θ1sin2θ2
R44 + ...

]
= 0 ⇒ 1

2
R00 +

A(r)

2B(r)
R11 +

A(r)

2r2
R22 +

A(r)

2r2sin2θ1
R33 +

A(r)

2r2sin2θ1sin2θ2
R44 + ... = 0,

(67)
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R11 −
1

2
g11
(
g00R00 + g11R11 + g22R22 + g33R33 + g44R44 + ...

)
⇒ R11 −

1

2
B(r)

[
− 1

A(r)
R00 +

1

B(r)
R11 +

1

r2
R22 +

1

r2sin2θ1
R33 +

1

r2sin2θ1sin2θ2
R44 + ...

]
= 0 ⇒ 1

2

A(r)

B(r)
R11 +

1

2
R00 −

A(r)

2r2
R22 −

A(r)

2r2sin2θ1
R33 −

A(r)

2r2sin2θ1sin2θ2
R44 − ... = 0.

(68)

By adding these equations - equation (67) and equation (68), we get the constraint:

R00 +
A(r)

B(r)
R11 = 0. (69)

Substituting the components of the Ricci tensor, we have from equation (69):

− A′′(r)

2B(r)
+

1

4

A′(r)

B(r)

[
A′(r)

A(r)
+

B′(r)

B(r)

]
−
(
n′ − 2

2

)
A′(r)

rB(r)
+

A(r)

B(r)

[
A′′(r)

2A(r)

− A′(r)

4A(r)

(
A′(r)

A(r)
+

B′(r)

B(r)

)
−
(
n′ − 2

2

)
B′(r)

rB(r)

]
= 0

⇒ −
(
n′ − 2

2

)
1

2r B(r)

(
A′(r) +

A(r)B′(r)

B(r)

)
= 0 ⇒ A′(r) +

A(r)B′(r)

B(r)
= 0

⇒ A′(r)

A(r)
= −B′(r)

B(r)
,

(70)

and from the equation R22 = 0:

−n′′ +
n′′

B(r)
+

r

2B(r)

A′(r)

A(r)
− r

2B(r)

B′(r)

B(r)
= 0, (71)

where n′′ = n+ 1 = 1, 2, 3, ...

From equation (70) we get:

−A′(r)

A(r)
=

B′(r)

B(r)
⇒ −ln[A(r)] + k = ln[B(r)] ⇒ A(r)B(r) = ek ⇒ B(r) =

Λ

A(r)
,

where as before ek ≡ Λ and:

B′(r) =
−A′(r)Λ

A2(r)
. (72)

Then from (71) we can get:

−(n+ 1) +
(n+ 1)

Λ
A(r) +

r

Λ
A′(r) = 0 ⇒ −(n+ 1)Λ + (n+ 1)A(r) + rA′(r) = 0

⇒ d

dr

(
rn+1A(r)

)
= (n+ 1) rnΛ.

By integrating , we find that A(r) and B(r) have the form:

A(r) =

(
1 +

(
C

r

)n+1
)
, (73)
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B(r) =

(
1 +

(
C

r

)n+1
)−1

, (74)

where C is a constant.

To calculate the constant C, we apply Gauss law, as before:∫
g∗ dsn+2 = −4πG(4+n)

∗ M, (75)

where g∗ is the intensity of the gravitational field in the higher-dimensional spacetime
and G4+n

∗ the corresponding gravitational constant. Employing that
dsn+2 = rn+2sinθ1sin

2θ2...sin
nθndθ1...dθndϕ, equation (75) becomes:

g∗

∫
ds = −4πG(4+n)

∗ M ⇒ g∗

∫
rn+2

n+1∏
i=1

siniθidθidϕ = −4πG(4+n)
∗ M

⇒ g∗r
n+2(2π)

n+1∏
i=1

∫
siniθidθi = −4πG(4+n)

∗ M ⇒ g∗r
n+2 π(n+1)/2

Γ

(
n+ 3

2

) = −2G(4+n)
∗ M, (76)

and finally:

g∗ =
−2G

(4+n)
∗ M

rn+2π(n+1)/2
Γ

(
n+ 3

2

)
, (77)

where G
(4+n)
∗ =

1

Mn+2
∗

and M∗ is the fundamental gravitational scale.

Therefore, to find the potential and subsequently the constant C, we use again the relation
g∗ = −∇Φ∗ → Φ∗ = −

∫
g∗dr and obtain:

Φ∗ =
−2G

(4+n)
∗ M

π(n+1)/2

Γ

(
n+ 3

2

)
(n+ 1)rn+1

. (78)

Taking as an approximation the limit of the weak field and setting 2Φ∗ =
rn+1
H

rn+1
, where

C = rn+1
H , we have:

rn+1
H =

4G
(4+n)
∗ M

πn+1

Γ

(
n+ 3

2

)
(n+ 1)

=
4M

Mn+2
∗ π(n+1)/2

Γ

(
n+ 3

2

)
(n+ 1)

. (79)

Then:

A(r) =

(
1 +

(rH
r

)n+1
)
, (80)

B(r) =

(
1 +

(rH
r

)n+1
)−1

, (81)

with the above definition, relation (79), of rn+1
H .

24



Hawking Radiation from Primordial Black Holes Georgianna Charalampous

The above form of metric describes the outer region of a spherically symmetric (4 + n)-
dimensional black hole of mass M . It is important to note that while in 4-dimensions the
relation for the Schwarzschild radius rH is linear with respect to M , in higher-dimensions,
it is not. However, as can be seen from the metric of the higher-dimensions, in them we
have greater spherical symmetry, compared to the 4-dimensions.

Some interesting features and implications of the higher-dimensional Schwarzschild solu-
tion include:

• Brane-world Scenarios: The Schwarzschild solution in higher dimensions is rele-
vant for understanding how gravity behaves on branes (higher-dimensional analogs of
membranes) embedded in higher-dimensional spacetimes.

• Cosmological Implications: Higher-dimensional solutions can have implications for
cosmology, affecting our understanding of the early universe, inflation, and the large-scale
structure of spacetime.

• Gravitational Collapse: Understanding gravitational collapse in higher dimensions
is essential for predicting the final fate of massive stars and other astrophysical objects
in scenarios where extra dimensions might play a role.

In summary, the Schwarzschild solution in higher dimensions offers a rich framework
for exploring the gravitational dynamics and properties of spacetime in scenarios beyond
the traditional four-dimensional Einstein gravity.

2.4 A scalar field in a curved background

In physics, a scalar field in a curved background refers to a situation where a scalar
field, is defined in a spacetime with curvature. This typically arises in the context of
general relativity, where spacetime is curved due to the presence of mass and energy. In
general relativity, the curvature of spacetime is described by the metric tensor, which
encapsulates information about distances and angles in the curved spacetime. When a
scalar field is introduced into this curved spacetime, its behavior is influenced by the
curvature of spacetime itself.

The dynamics of a scalar field in a curved background can be described by its field
equation, which generalizes the usual scalar field equation to account for the curvature
of spacetime. Studying scalar fields in curved spacetimes is important in various areas of
theoretical physics, including cosmology (the study of the large-scale structure, inflation
and evolution of the universe) and particle physics (the study of elementary particles and
their interactions).

At this point, we will first derive the scalar field equation. We consider first the
Lagrangian of a free scalar field:

L =
1

2
gµν∂µΦ∂νΦ (82)

and we compute the variation δL induced by a small variation δΦ.
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So, let’s consider the variation Φ → Φ + δΦ. The corresponding variation of derivative,
is given by ∂µΦ → ∂µ(ϕ + δΦ) = ∂µΦ + ∂µ(δΦ) and then the corresponding variation in
the Lagrangian density is given by:

L → 1

2
gµν(∂µΦ + ∂µ(δΦ))(∂νΦ + ∂ν(δΦ))

L → 1

2
gµν(∂µΦ∂νΦ + ∂µΦ∂ν(δΦ) + ∂µ(δΦ)∂νΦ + ∂µ(δΦ)∂ν(δΦ))

L → L+
1

2
gµν(∂µΦ∂ν(δΦ) + ∂µ(δΦ)∂νΦ + ∂µ(δΦ)∂ν(δΦ))

and keeping only the 1st-order δΦ terms:

L+ δL ≃ L+ gµν∂µΦ∂ν(δΦ) ⇒ δL = gµν∂µΦ∂ν(δΦ).

The variation of the action S =
∫
L
√
−g d4x is then:

δS =

∫
δL

√
−g d4x =

∫
[gµν∂µΦ∂ν(δΦ)]

√
−g d4x = −

∫
[∂ν(

√
−ggµν∂µΦ)]δΦ d4x

= −
∫ √

−g√
−g

[∂ν(
√
−ggµν∂µΦ)]δΦ d4x,

where the boundary term becomes zero and we multiply and divide by
√
−g, to create

the invariant volume element.

For the action to be stationary (δS = 0) for arbitrary δΦ, the integrand must vanish:

1√
−g

∂ν(
√
−ggµν∂µΦ) = 0. (83)

This is the Euler-Lagrange equation for the scalar field Φ derived from the given La-
grangian density (relation (82)).

The given equation - equation (83) - is a fundamental result in the study of scalar fields
in curved spacetime, particularly in the context of general relativity and quantum field
theory. It is therefore important to highlight some features of the equation:

• The equation is written in a covariant form, which means it is valid in an arbitrary
coordinate system and in an arbitrary number of dimensions. This is essential in general
relativity where spacetime curvature is described by the metric tensor, and coordinate
transformations are allowed.

• The presence of the
√
−g factor ensures that the equation is invariant under general

coordinate transformations. This means that the physics described by this equation
remains unchanged even if we choose different coordinate systems to describe spacetime.

• In the context of quantum field theory, this equation governs the behavior of scalar
fields, such as the Higgs field, in curved spacetime.

• The equation has significant implications for cosmology and the study of black holes,
where spacetime curvature is prominent. Understanding how scalar fields behave in such
curved spacetime environments is essential for theoretical predictions and observational
tests.
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Overall, the equation represents a deep connection between the geometry of spacetime
described by general relativity and the dynamics of scalar fields described by quantum
field theory. Its solutions provide valuable insights into the nature of spacetime and the
fundamental forces of the universe. As we will see, this equation is used to study Hawking
radiation.
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3 Hawking Radiation from Higher-Dimensional Black

Holes

3.1 Hawking radiation

In 1975 Hawking [7] published a shocking result: if one takes quantum theory into
account, it seems that black holes are not quite black! Instead, they should ′′glow′′ by
emitting Hawking radiation, consisting of photons, neutrinos, and to a lesser extent all
sorts of massive particles. This has never been observed, since the only black holes we
have evidence for are those with lots of hot gas falling into them, whose radiation would
completely swamp this tiny effect. Indeed, if the mass of a black hole is M solar masses,
Hawking predicted it should glow like a blackbody of temperature 6 × 10−8/MKelvin,
so only for very small black holes would this radiation be significant. The most drastic
consequence is that a black hole, left alone and unfed, should radiate away its mass,
slowly at first but then faster and faster as it shrinks, finally dying in a blaze of glory like
a hydrogen bomb.

But, how does this work? Virtual particle pairs are constantly being created near
the horizon of the black hole, as they are everywhere. Normally, they are created as a
particle-antiparticle pair and they quickly annihilate each other. But near the horizon of
a black hole, it’s possible for one to fall in before the annihilation can happen, in which
case the other one escapes as Hawking radiation.

In more detail, this procedure is as follows:

• According to quantum field theory, empty space isn’t really empty. Pairs of virtual
particles and antiparticles continuously pop in and out.

• When this process occurs near the event horizon of a black hole, one of the particles
(the antiparticle) may fall into the black hole while the other escapes.

• The particle that escapes is asymptotically detected as Hawking radiation. This
process leads to a gradual loss of mass and energy by the black hole over time.

• The probability of a particle escaping or being absorbed by the black hole depends
on various factors, including the black hole’s mass and properties, as well as the energy
of the emitted particles.

In particular, studying the absorption probability involves complex calculations and
theories, often utilizing quantum field theory in curved spacetime. It’s a crucial aspect
of understanding the dynamics of black holes and the universe at large.

Although it has never been directly observed, Hawking radiation is a prediction sup-
ported by combined models of general relativity and quantum mechanics. If shown to be
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factual, Hawking radiation would mean black holes can emit energy and therefore shrink
in size, with the tiniest of these insanely dense objects exploding rapidly in a puff of heat
(and the largest slowly evaporating over trillions of years in a cold breeze).

3.2 Scalar emission in the Bulk

As explained in Chapter 2, in this thesis we will focus on the ADD model [24] which
predicts an arbitrary number of compact, flat, spacelike dimensions. In what follows, the
word bulk will refer to the higher-dimensional space in which our observable universe, or
brane, may be embedded. In theories like string theory and braneworld scenarios, the
universe we perceive is a brane within this higher-dimensional bulk. The bulk contains
additional dimensions beyond the familiar three spatial dimensions and one time dimen-
sion. These extra dimensions are compactified or curled up at very small scales, making
them effectively unobservable in everyday life. However, they can have profound effects
on the behavior of matter and energy at very high energies or small scales [8].

The equation (83) is the Klein-Gordon equation in curved spacetime, describing the
dynamics of a scalar field Φ. This equation is crucial in the study of quantum field theory
in curved spacetime, particularly in the context of black hole physics. Hawking radiation,
the theoretical prediction that black holes emit radiation due to quantum effects near the
event horizon, is derived by applying quantum field theory to the curved spacetime of a
black hole. Solving the Klein-Gordon equation in this context helps to understand how
particle-antiparticle pairs propagate near the event horizon, leading to the emission of
Hawking radiation. To solve equation (83), we will consider the separated ansatz solution.

The separated ansatz solution, is a common approach in solving partial differential
equations (PDEs) that exhibit some form of spherical symmetry. More specific, this
solution employs a technique called separation of variables. This technique assumes that
the solution to the PDE can be written as a product of functions, each depending on
only one of the variables involved (in this case, time, radial coordinate, and angular
coordinates). Thus, we write:

Φ(t, r, θi, ϕ) = e−iωtRωl(r) Ỹl(Ω), (84)

where Ỹl(Ω) is the (3 + n) spatial dimensional generalization of the usual spherical har-
monic functions depending on the angular coordinates. Furthermore, the term e−iωt

represents the time dependence of the solution. The exponential factor introduces oscil-
lations with frequency ω, which can have significant physical implications depending on
the system being studied. Moreover, the function Rωl captures the radial dependence of
the solution and the function Ỹl(Ω) represents the angular dependence of the solution. In
three-dimensional space, Ỹl(Ω) reduces to the usual spherical harmonics Y m

l (θ, ϕ), which
are solutions to the angular part of Laplace’s equation. In higher-dimensional spaces
(3+n dimensions in this case), more general functions are needed to describe the angular
dependence.

So, at this point, we are interested in deriving the radial equation for the scalar field.
To do this, we employ the metric of equation (57), the scalar field equation (83) and the
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ansatz solution (84). We start from the case of 4-dimensions where we have:

gµν(d=4) =


−1/h(r) 0 0 0

0 h(r) 0 0
0 0 1/r2 0
0 0 0 1/(r2sin2θ1)

 (85)

and from which we easily calculate that g = −r4sin2θ1 ⇒
√
−g = r2sinθ1. Furthermore,

−1/h(r) and h(r) are the coefficients in front of the dt2 and dr2 elements, of the metric.

Then, from equation (83), we have:

−∂t

(
1

h(r)
∂tΦ

)
+

1

r2
∂r
(
r2h(r)∂rΦ

)
+

1

r2sinθ1
∂θ1 (sinθ1∂θ1Φ)+

1

r2sin2θ1
∂2
ϕΦ = 0 (86)

and thus assuming the general solution of the form (84), we obtain for equation (86):

− 1

h(r)
∂t
(
∂te

−iωtY R
)
+

1

r2
∂r
[
r2h(r)∂r

(
e−iωtY R

)]
+

1

sinθ1
∂θ1

[
1

r2
sinθ1∂θ1

(
e−iωtY R

)]
+

1

r2sin2θ1
∂2
ϕ

(
e−iωtY R

)
= 0. (87)

Multiplying this equation by (r2e−iωt)/(RY ), we obtain the relation:

1

R

d

dr

(
r2h(r)

dR

dr

)
= −ω2r2

h(r)
− 1

Y

1

sinθ1

d

dθ1

(
sinθ1

d

dθ1
Y

)
− 1

Y

1

sin2θ1

d2Y

dϕ2
, (88)

where
1

sin2θ1

d2Y

dϕ2
+

1

sinθ1

d

dθ1

(
sinθ1

d

dθ1
Y

)
= −l(l + 1)Y, (89)

with l the angular momentum number.

Therefore, the radial equation takes the form:[
ω2 − h(r)

r2
l(l + 1)

]
R +

h(r)

r2
d

dr

(
h(r) r2

dR

dr

)
= 0. (90)

Continuing this process inductively, in an arbitary number of dimensions, we can finally
arrive at the following general form for the radial equation (the details for the case of 5
and 6 dimensions are given in the Appendix B):

h(r)

rn+2

d

dr

[
h(r) rn+2dR

dr

]
+

[
ω2 − h(r)

r2
l(l + n+ 1)

]
R = 0. (91)

In order to understand the physical implications of this equation, we can transform
it to a more convenient form by defining a new ′′tortoise′′ radial coordinate by [29]:

dr∗
dr

=
1

h(r)
. (92)

Defining also a new radial function through the relation R(r) = u(r)/r(n+2)/2, the scalar
field equation in the bulk (91) becomes:

30



Hawking Radiation from Primordial Black Holes Georgianna Charalampous

h′(r) r−(n+2)/2du(r)

dr∗
+ h2(r) r−(n+2)/2

[
− h′(r)

h2(r)

du(r)

dr∗
+

1

h2(r)

d2u(r)

dr2∗

]
−h(r)h′(r)

(n+ 2)

2
r−(n+4)/2 u(r)− h2(r)

4
n (n+ 2)u(r) r−(n+6)/2

+

[
ω2 − h(r)

r2
l(l + n+ 1)

]
u(r)

r(n+2)/2
= 0,

or in Schrödinger-like form:

−d2u(r)

dr2∗
+ h(r)

[
l(l + n+ 1)

r2
+

(n+ 2)h′(r)

2r
+

n (n+ 2)h(r)

4r2

]
u = ω2u. (93)

From the above equation, we may easily read the gravitational potential V (r) that a
scalar particle, feels while propagating in the bulk. The potential V (r) is therefore given
by the relation:

V (r) = h(r)

[
l(l + n+ 1)

r2
+

(n+ 2)h′(r)

2r
+

n (n+ 2)h(r)

4r2

]
, (94)

where h(r) = 1−
(rH

r

)n+1

and h′(r) =
(n+ 1)

r
[1−h(r)]. Substituting these into equation

(94) and considering rH = 1 1, we obtain the graphs shown in Figure 1. Regarding the
results shown in Figure 1, it is evident that the graphs take the form of a potential
barrier, which prevents the scalar field from entirely escaping to infinity. As a result, the
absorption (or transmission) coefficient will not be equal to 1. Additionally, from Figure
1, it is apparent that for a fixed l (n), the larger the n (l), is the higher the potential
barrier V (r) is. Additionally, from the two graphs in Figure 1, a symmetry between n and
l is observed (as the graph with fixed n and varying l has exactly the same behavior and
takes the same values as the graph with fixed l and varying n), which could be further
investigated in future work.

Now, we need to solve equation (91) and use the solution to determine the absorption
coefficient and the greybody factor. Due to its complexity, we will solve equation (91)
in the near − horizon and in the far − field regimes. Then, these two solutions must
smoothly connect at an intermediate zone for a viable complete solution to exist.

First, in the case of the near − horizon, we do the variable change r → h(r), where:

h(r) = 1−
(rH

r

)n+1

⇒ dh(r)

dr
=

n+ 1

r
(1− h(r)) (95)

and we get for (91):

1In this way, we essentially normalize the length scale in order to create indicative graphs: we require
the horizon to be at 1, and r represents a multiple of the horizon. For example, if we create a graph up
to r = 100, this means we are examining the specific function up to a distance one hundred times that
of the horizon. In this way, it is as if we are conducting the analysis for any black hole, which may have
a random mass and therefore a different horizon.
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Figure 1: The gravitational potential V (r) in scalar emission in the Bulk, where the left-hand
side shows its behaviour for a constant n (n = 1) and varying l, and the right-hand side shows
its behaviour for a constant l (l = 1) and varying n.

h(r)

rn+2

d

dr

[
h(r)rn+1dR

dh
(n+ 1)(1− h)

]
+

[
ω2 − h(r)

r2
l(l + n+ 1)

]
R = 0 ⇒

h2(r)

r2
(n+ 1)2(1− h)2

d2R

dh2
+

h(r)

r2
(n+ 1)2(1− h)2

dR

dh
+

[
ω2 − h(r)

r2
l(l + n+ 1)

]
R = 0,

(96)

where finally:

h(1− h)
d2R

dh2
+ (1− h)

dR

dh
+

[
(ωrH)

2

(n+ 1)2(1− h)h
− l(l + n+ 1)

(n+ 1)2(1− h)

]
R = 0, (97)

is the near − horizon form of the radial equation. Next, we redefine R(h), R(h) =
hα(1− h)βF (h) and obtain:

h(1− h)α (α− 1)hα−2(1− h)βF (h)− h(1− h)αhα−1β (1− h)β−1F (h)

+ h(1− h)αhα−1(1− h)β
dF (h)

dh
− h(1− h)αhα−1(1− h)β−1βF (h)

+ h(1− h)hα(β − 1)(1− h)β−2βF (h)− h(1− h)hα(1− h)β−1β
dF (h)

dh

+ h(1− h)αhα−1(1− h)β
dF (h)

dh
− h(1− h)β hα(1− h)β−1dF (h)

dh

+ h(1− h)hα(1− h)β
d2F (h)

dh2
+ (1− h)

[
αhα−1(1− h)βF (h)− hα(1− h)β−1βF (h)

+ hα(1− h)β
dF (h)

dh

]
+

[
(ωrH)

2

(n+ 1)2h (1− h)
− l(l + n+ 1)

(n+ 1)2(1− h)

]
hα(1− h)βF (h) = 0.

After several operations, we obtain the relation:

h(1− h)
d2F (h)

dh2
+

[
2α(1− h)− 2hβ + 1− h

]
dF (h)

dh
− (2αβ + β + α2)F (h)

+

[
α2

h
− β(β − 1) +

β

1− h
(β − 1) +

(ωrH)
2

(n+ 1)2h
+

(ωrH)
2

(n+ 1)2(1− h)

− l(l + n+ 1)

(n+ 1)2(1− h)

]
F (h) = 0. (98)
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The above differential equation hints to the form of a hypergeometric equation which is
given by [30]:

h(1− h)
d2F (h)

dh2
+ [c− (1 + a+ b)h]

dF (h)

dh
− abF (h) = 0. (99)

For a perfect match with the above, the terms 1/h and 1/(1 − h) in relation (98) must
be set to zero. Therefore:

α2

h
+

(ωrH)
2

(n+ 1)2h
= 0 ⇒ α2 = − (ωrH)

2

(n+ 1)2
⇒ α± = ± iωrH

n+ 1
, (100)

β

1− h
(β−1)+

(ωrH)
2

(n+ 1)2(1− h)
− l(l + n+ 1)

(n+ 1)2(1− h)
= 0 ⇒ β2−β+

(ωrH)
2

(n+ 1)2
− l(l + n+ 1)

(n+ 1)2
= 0.

(101)

From equation (101), we get the solutions:

β± =
1

2
± 1

n+ 1

√(
l +

n+ 1

2

)2

− (ωrH)2. (102)

Therefore, we have:

h(1− h)
d2F (h)

dh2
+

[
2α(1− h)− 2βh+ 1− h

]
dF (h)

dh
−
[
2αβ + α2 + β2

]
F (h) = 0.

By defining the constants:

a = b = α + β, (103)

c = 1 + 2α, (104)

the above equation takes the exact form of the hypergeometric equation (99) with the
constants given by the relations (101), (102), (103) and (104).

Equation (99) admits many pairs of partial solutions, which may expressed in different
forms. We choose the pair of solutions [30]:

W1(0) = F (a, b, c;h) = (1− h)c−a−bF (c− a, c− b, c;h) (105)

W2(0) = h1−c F (a−c+1, b−c+1, 2−c;h) = h1−c(1−h)c−a−bF (1−a, 1−b, 2−c;h) (106)

and thus we obtain the general solution for (99):

RNH(h) = A−hα±(1−h)βF (a, b, c;h)+A+h−α±(1−h)βF (a−c+1, b−c+1, 2−c;h). (107)

Let us investigate a bit more carefully the behaviour of this solution close to the

horizon. Choosing the solution α = α− where α− = − iωrH
n+ 1

, we can obtain the following

form, for (107):

RNH(h) = A−e
−iωrH ln(h)/(n+1)(1− h)βF (a, b, c;h)
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+A+e
iωrH ln(h)/(n+1)(1− h)βF (a− c+ 1, b− c+ 1, 2− c;h), (108)

where we may write

h−iωrH/(n+1) → e−iωrH ln(h)/(n+1), (109)

hiωrH/(n+1) → eiωrH ln(h)/(n+1). (110)

Additionally, from the fact that h → 0, we have (1− h) → 1. Also, using the property of
the hypergeometric function that F (a, b, c;h → 0) → 1 and F (a−c+1, b−c+1, 2−c, h →
0) → 1, we have:

RNH(h) = A−e
−iωrH ln(h)/(n+1) + A+e

iωrH ln(h)/(n+1). (111)

We employ the tortoise coordinate, defined as:

y =
ln[h(r)]

rn+1
H (n+ 1)

, (112)

with h(r) = 1−
(rH

r

)n+1

and we obtain the general solution near the black hole horizon:

RNH(h) ≃ A−e
−iωrn+2

H y + A+e
iωrn+2

H y. (113)

If we had chosen the solution α = α+, then we would have gotten the same form of
solution, with the only difference being that the coefficients A+ and A− would be inter-
changed. Having chosen the solution α = α−, we now require A+ = 0, since at the horizon
of the black hole we can have only incoming waves and no outgoing ones, according to
classical General Relativity.

We now turn to the far − field zone, where we may show that the limit r ≫ rH and

the redefinition R(r) =
f(r)

r(n+1)/2
reduce equation (91) to a Bessel differential equation of

the form:
d2f

dr2
+

1

r

df

dr
+

[
ω2 − 1

r2

(
l +

n+ 1

2

)2
]
f = 0. (114)

We start from equation (91) setting h(r) = 1. Then, we get:

1

rn+2

[
(n+ 2)rn+1 dR

dr
+ rn+2d

2R

dr2

]
+

[
ω2 − l(l + n+ 1)

r2

]
R = 0

⇒ f ′(r) (n+ 2)r(n+1)/2 − (n+ 1)(n+ 2)

2
f(r)r(n−1)/2 + f ′′(r)r(n+3)/2

− f(r)
(n+ 1)(n− 1)

4
r(n−1)/2 − (n+ 1)f ′(r)r(n+1)/2 +

(n+ 1)2

2
f(r)r(n−1)/2

+

[
ω2 − 1

r2
l(l + n+ 1)

]
f(r)r(n+3)/2 = 0 ⇒ f ′′(r) +

1

r
f ′(r)− (n+ 1)2

4r2
f(r)

+

[
ω2 − l(l + n+ 1)

r2

]
f(r) = 0

⇒ d2f(r)

dr2
+

1

r

df(r)

dr
+

[
ω2 − 1

r2

(
l +

n+ 1

2

)2
]
f(r) = 0.
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The general solution for the radial function R(r) is then given by:

RFF (r) =
B+

r(n+1)/2
Jl+(n+1)/2(ωr) +

B−

r(n+1)/2
Yl+(n+1)/2(ωr), (115)

where J and Y are the Bessel functions of the first and second kinds, respectively.

Therefore, we have found solutions in two different regions, one far from the black
hole’s horizon and one near. Now, through these two solutions, we must find the complete
solution that will describe the scalar field over the entire radial regime. What we need to
do is to stretch the near solution towards large values of r and take the small r limit of the
far solution. To construct a complete solution, we need to match these two asymptotic
solutions in an intermediate region.

To this end, we first shift the hypergeometric function to large values of r. This can
be done using a standard linear transformation formula [30]:

F (a, b, c;h) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a+ b− c+ 1; 1− h)

+(1− h)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b+ 1; 1− h). (116)

Near the horizon, we can have only one wave propagating, as nothing can escape from
the black hole (and its horizon), and therefore:

RNH(h) ≃ A−h
α(1− h)βF (a, b, c;h), (117)

with A+ = 0 and we choose β = β− and α = α−. So, from equation (117), we have:

RNH(h) ≃ A−h
α(1− h)βF (a, b, c;h)

= A−h
a(1− h)β

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
F (a, b, a+ b− c+ 1; 1− h)

+ A−h
α(1− h)β(1− h)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
F (c− a, c− b, c− a− b+ 1; 1− h)

= A−h
α(1− h)β

Γ(1 + 2α)Γ(1− 2β)

Γ(1 + α− β)Γ(1 + α− β)
F (a, b, a+ b− c+ 1; 1− h)

+ A−h
α(1− h)β(1− h)1−2βΓ(1 + 2α)Γ(2β − 1)

Γ(α + β)Γ(α + β)
F (c− a, c− b, c− a− b+ 1; 1− h)

= A−

[
1−

(rH
r

)n+1
]α [(rH

r

)n+1
]β

Γ(1 + α + β)Γ(2− α− β)

Γ(1 + α− β)Γ(1 + α− β)

F

(
a, b, a+ b− c+ 1;

(rH
r

)n+1
)

+ A−

[
1−

(rH
r

)n+1
]α [(rH

r

)n+1
]1−β

Γ(1 + α + β)Γ(α + β − 1)

Γ(α + β)Γ(α + β)

F

(
c− a, c− b, c− a− b+ 1;

(rH
r

)n+1
)
,

and as h → 1, we have
(rH

r

)n+1

→ 0, and thus:

F (a, b, a+ b− c+ 1; 0) → 1, (118)
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F (c− a, c− b, c− a− b+ 1; 0) → 1. (119)

Then, we have:

RNH(h) = A−

[
1−

(rH
r

)n+1
]α [(rH

r

)n+1
]β

Γ(1 + α + β)Γ(1− α− β)

Γ(1 + α− β)2

+ A−

[
1−

(rH
r

)n+1
]α [(rH

r

)n+1
]1−β

Γ(1 + α + β)Γ(α + β − 1)

Γ(α + β)2

= A−

[
1−

(rH
r

)n+1
]α [(rH

r

)n+1
]β

[
Γ(1 + 2α)Γ(1− 2β)

Γ(1 + α− β)2
+

[(rH
r

)n+1
]1−2β

Γ(1 + 2α)Γ(2β − 1)

Γ(1 + α− β)2

]

≃ A−Γ(1 + 2α)

[(
r

rH

)l
Γ(1− 2β)

Γ(1 + α− β)2
+
(rH

r

)l+n+1 Γ(2β − 1)

Γ(α + β)2

]
(120)

and as before, we chose α = α− and β = β−, with β− ≃ 1

2
− 1

n+ 1

(
l +

n+ 1

2

)
= − l

n+ 1
as ωrH → 0. The approximation ωrH → 0 corresponds to considering the low-energy
(or equivalently, the long-wavelength) limit of the scalar modes. In this regime, the
wavelength of the scalar field is much larger than the size of the black hole horizon. This
simplification is useful because it allows for a more tractable analytical treatment of the

scalar field. Furthermore, since r ≫ rH , then
(rH

r

)
→ 0, and thus

[
1−

(rH
r

)n+1
]α

→ 1.

Also: [(rH
r

)n+1
]β−

=

[(rH
r

)n+1
]−l/(n+1)

=

(
r

rH

)l

[(rH
r

)n+1
]1−β−

=

[(rH
r

)n+1
]1−l/(n+1)

=
(rH

r

)n+1+l
(121)

and therefore, the solution near the black hole horizon, which we have stretched towards
large r, is:

RNH(h) ≃ A−Γ(1 + 2α)

[(
r

rH

)l
Γ(1− 2β)

Γ(1 + α− β)2
+
(rH

r

)l+n+1 Γ(2β − 1)

Γ(α + β)2

]
. (122)

Now, concerning the process of approaching small distances starting from the large ones
and the process of pulling the far solution inwards, we will again consider in equation
(115) that ωrH ≪ 1. From the first and second kind order Bessel equations, we will have
for equation (115):

RFF (r) =
B+

r(n+1)/2

1

Γ

(
l +

n+ 3

2

) (ωr
2

)l+(n+1)/2

− B−

π r(n+1)/2
Γ

(
l +

n+ 1

2

)(ωr
2

)−l−(n+1)/2

⇒ RFF (r) =
B+r

l

Γ

(
l +

n+ 3

2

) (ω
2

)l+(n+1)/2

− B−

π rn+1+l

(
2

ω

)l+(n+1)/2

Γ

(
l +

n+ 1

2

)
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⇒ RFF (r) =
B+r

l

Γ(l +
n+ 3

2
)

(ω
2

)l+(n+1)/2

− B−

π rl+n+1

(
2

ω

)l+(n+1)/2

Γ

(
l +

n+ 1

2

)
. (123)

So, matching the two solutions (122) and (123), we obtain a relation between the two
integration constants at infinity and the one at the horizon:

A−
Γ(1 + 2α)

rlH

Γ(1− 2β)

Γ(1 + α− β)2
=

B+

Γ(l +
n+ 3

2
)

(ω
2

)l+(n+1)/2

(124)

A−Γ(1 + 2α) rl+n+1
H

Γ(2β − 1)

Γ(α + β)2
= −B−

π

(
2

ω

)l+(n+1)/2

Γ

(
l +

n+ 1

2

)
, (125)

or alternatively:

B+ =
A−

rlH

Γ(1 + 2α)Γ(1− 2β)Γ

(
l +

n+ 3

2

)
Γ(1 + α− β)2

(
2

ω

)l+(n+1)/2

(126)

B− = −A−π r
l+n+1
H

Γ(1 + 2α)Γ(2β − 1)

Γ(α + β)2Γ

(
l +

n+ 1

2

) (ω
2

)l+(n+1)/2

. (127)

Dividing the two relations, we get:

B+

B−
= −

Γ(1− 2β)Γ

(
l +

n+ 3

2

)
Γ(α + β)2Γ

(
l +

n+ 1

2

)(
2

ω

)l+(n+1)/2

π r2l+n+1
H Γ(1 + α− β)2Γ(2β − 1)

(ω
2

)l+(n+1)/2

⇒ B+

B−
= −

(
2

ωrH

)2l+n+1 Γ(1− 2β)Γ(α + β)2Γ

(
l +

n+ 1

2

)2 (
l +

n+ 1

2

)
π Γ(1 + α− β)2Γ(2β − 1)

.

(128)

Under the above constraint, the near-horizon and far-field solutions are smoothy
matched in the low-energy limit, thus completing the derivation of the solution for the
scalar field over the whole radial regime. After having completed the determination of the
solution for the radial function R(r) and in order to compute the absorption coefficient,
we turn our attention to the form of the scalar field at infinity. We need to determine
the amplitudes of the incoming and outgoing modes, thus, we expand equation (115) in
the limit r → ∞, and we find:

R(∞) =
B+

r(n+1)/2

e−iωr

√
2πωr

ei[(n+1)π/4+lπ/2+π/4] +
B+

r(n+1)/2

eiωr√
2πωr

e−i[(n+1)π/4+lπ/2+π/4]

− iB−

r(n+1)/2

eiωr√
2πωr

e−i[(n+1)π/4+lπ/2+π/4] +
iB−

r(n+1)/2

e−iωr

√
2πωr

ei[(n+1)π/4+lπ/2+π/4], (129)

or

R(∞) = A
(∞)
in

e−iωr

√
rn+2

+ A
(∞)
out

eiωr√
rn+2

, (130)
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where:

A
(∞)
in =

(B+ + iB−)√
2πω

eiπ(l+n/2+1)/2 (131)

A
(∞)
out =

(B+ − iB−)√
2πω

e−iπ(l+n/2+1)/2. (132)

The reflection coefficient Rl is defined as the ratio of the outgoing amplitude over the
incoming one at infinity. Then, the absorption coefficient Al is given by:

|Al|2 = 1− |Rl|2 = 1−
∣∣∣∣(B+ − iB−)e

−iπ(l+n/2+1)/2eiωr

(B+ + iB−)eiπ(l+n/2+1)/2e−iωr

∣∣∣∣2 = 1−
∣∣∣∣B+ − iB−

B+ + iB−

∣∣∣∣2
⇒ |Al|2 = 1−

[
(B+ − iB−)(B

∗
+ + iB∗

−)

(B+ + iB−)(B∗
+ − iB∗

−)

]
=

2i(B∗ −B)

BB∗ + i(B∗ −B) + 1
,

(133)

where B ≡ B+/B− is defined in equation (127).

The above analytic result can take a simplified form in the low-energy limit ωrH ≪ 1, in
which case BB∗ ≫ i(B∗ −B) ≫ 1, and we may write:

|Al|2 =
4π2

24l/(n+1)

(ωrH
2

)2l+n+2
Γ

(
1 +

l

n+ 1

)2

Γ

(
1

2
+

l

n+ 1

)2

Γ

(
l +

n+ 3

2

)2 + ... (134)

The Greybody factor, or the absorption cross-section, σl,n(ω), is given by the expres-
sion [8]:

σl,n(ω) =
2n

π
Γ

(
n+ 3

2

)2
AH

(ωrH)n+2
Nl|Al|2, (135)

where Nl is the multiplicity of states corresponding to the same partial wave l, given for
a (4 + n)-dimensional space-time by:

Nl =
(2l + n+ 1)(l + n)!

l!(n+ 1)!
(136)

and AH is the horizon area of the (4 + n)-dimensional black hole defined as:

AH = rn+2
H

∫ 2π

0

dϕ

n+1∏
k=1

∫ π

0

sinkθk+1dθk+1 = rn+2
H (2π)

n+1∏
k=1

√
π
Γ[(k + 1)/2]

Γ[(k + 2)/2]

→ AH = rn+2
H (2π)π(n+1)/2Γ

(
n+ 3

2

)−1

. (137)

Substituting the relation (134) into the equation (135), we arrive at the expression:

σl,n(ω) =
π

24l/(n+1)

(ωrH
2

)2l Γ

(
1 +

l

n+ 1

)2

Γ

(
n+ 3

2

)2

Γ

(
1

2
+

l

n+ 1

)2

Γ

(
l +

n+ 3

2

)2NlAH + ... (138)
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Since ωrH ≪ 1, the greybody factor decreases as l increases, therefore, the main
contribution to

∑
l σl,n comes from the lowest partial wave with l = 0. It is easy to see

that the above expression evaluated for l = 0 simply reduces to AH , thus, revealing the
fact that even in the higher-dimensional case, the greybody factor for scalar fields at the
low-energy regime is given by the area of the horizon. This behaviour is similar to the
one obtained in the four-dimensional case; here, however, the area of the horizon changes
as n varies.

As in the four-dimensional case, the contribution to the greybody factor from the
dominant partial wave comes out to be independent of the number of extra dimensions.
Looking at the dependence of the higher partial waves on n, we obtain a suppression
of the greybody factor as the dimensionality of the bulk increases. However, in order
to be absolutely certain about this behaviour we would have to include next-to-leading-
order corrections in the simplified expression of σl,n(ω) - (138), or simply deal with the
full analytic result derived from equation (133). In either case, however, the derived
dependence would only hold in the low-energy regime and no information could be derived
from these expressions for the dependence of the greybody factor, and thus of the emission
rates, in the high-energy regime [8].

3.3 Scalar emission on the brane

In string theory and related theories in theoretical physics, a brane (short for mem-
brane) is a spatially extended mathematical object that generalizes the notion of a
point particle to higher dimensions. Branes can have various dimensions, such as zero-
dimensional (point particles), one-dimensional (strings), two-dimensional (surfaces or
membranes), and higher-dimensional versions. Branes can be thought of as the bound-
aries or surfaces within a higher-dimensional space, which can host particles, strings, or
even entire universes. The brane is what we see and perceive as 4-dimensional observers.

So, we now turn to the study of the case where the scalar field is confined in a (4+n)-
dimensional Schwarzschild spacetime. The scalar field propagates in a four-dimensional
background whose metric tensor is given by the induced metric at the location of the
brane. The induced metric follows from the (4 + n)-dimensional one by fixing the values
of the extra angular coordinates: θn = π/2 for n ≥ 2, and it may be written as:

ds2 = −h(r)dt2 + h(r)−1dr2 + r2(dθ2 + sin2θdϕ2), (139)

where h(r) = 1−
(rH

r

)n+1

.

The scalar field equation may be separated in the same way as before. Then, the ansatz
solution (relation (84)), allows us to write the equation for the radial part as:

h(r)

r2
d

dr

[
h(r)r2

dR

dr

]
+

[
ω2 − h(r)

r2 l(l + 1)

]
R = 0. (140)

By using the definition R(r) = u(r)/r, and the same tortoise coordinate defined in
equation (92), the scalar field equation in the brane (140), takes the Schrodinger-like
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form [28]:

h′(r)
r

h(r)

du(r)

dr∗
+ h(r) r

(
− h′(r)

h2(r)

du(r)

dr∗
+

1

h2(r)

d2u(r)

dr2∗

)
− h′(r)u(r)

+

[
ω2r2

h(r)
− l(l + 1)

]
u(r)

r
= 0

⇒ −d2u(r)

dr2∗
+ h(r)

[
l(l + 1)

r2
+

h′(r)

r

]
u(r) = ω2u(r),

where the potential V (r) is given by the relation:

V (r) =

(
l(l + 1)

r2
+

h′(r)

r

)
h(r), (141)

where h(r) = 1 −
(rH

r

)n+1

and h′(r) =
(n+ 1)

r
[1 − h(r)]. Substituting these into

equation (141) and considering rH = 1 (as before), we obtain the graphs shown in Figure
2. Regarding the results shown in Figure 2, it is evident that the graphs take the form
of a potential barrier, which prevents the scalar field from entirely escaping to infinity.
As a result, the absorption (or transmission) coefficient will not be 1. Additionally, from
Figure 2, it is apparent that for a fixed l (n), the larger the n (l), is the higher the
potential barrier V (r) is. However, we observe that while in the case of the Bulk (Figure
1), the two graphs of V (r) for different n and fixed l, as well as for different l and fixed
n, exhibit almost identical behavior and the same V (r) value at the peak, this is not the
case for the Brane channel (Figure 2). Specifically, from Figure 2, it is apparent that for
a fixed n and varying l, the larger l is, the higher is the peak value of V (r) on the figure,
compared to the case of a fixed l and varying n. For example, when n = 1 and l = 3,
the potential V (r) has a peak at approximately V (r) ≃ 3.5, whereas for l = 1 and n = 3,
the potential peaks at approximately V (r) ≃ 1.5. Finally, it is important to comment
on the fact that the potential for propagation in the Bulk and on the Brane are not the
same (as shown in Figures 1 and 2). Specifically, in the case of the Bulk (for both fixed
l and varying n, as well as fixed n and varying l), the potential V (r) has higher values
compared to the Brane case, for the same values of n and l. As observed, the difference
is more pronounced for a fixed l and varying n, where in the Bulk case the potential
V (r) takes on significantly larger values compared to the Brane case. Consequently, the
absorption coefficient is expected to be higher in the Brane channel.

The presence of the metric function h(r) makes once again the derivation of the general
solution extremely difficult (in equation (140)). We will follow the same method as in
the previous section and compute the solution in the two radial domains, near − horizon
and far − field .

We start with the solution in the near − horizon (NH) region. Initially, we make the
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Figure 2: The gravitational potential V (r) in scalar emission on the Brane, where the left-hand
side shows its behaviour for a constant n (n = 1) and varying l, and the right-hand side shows
its behaviour for a constant l (l = 1) and varying n.

variable change r → h(r) where h(r) = 1−
(rH

r

)n+1

and
dh

dr
=

(n+ 1)

r
(1− h), thus:

h(r)

r2
d

dr

[
h(r)r

dR

dh
(n+ 1)(1− h)

]
+

[
ω2 − h(r)

r2
l(l + 1)

]
R = 0

⇒ h(1− h)
d2R

dh2

[
h

r2
(n+ 1)2 − h2

r2
(n+ 1)2

]
+

[
ω2 − h

r2
l(l + 1)

]
R

+
h

r2
(n+ 1)

[
(n+ 1)(1− h) + h− 2h(n+ 1)(1− h)− h2)

] dR
dh

= 0.

Then, we multiply by
r2

h(1− h)(n+ 1)2
, and thus:

h(1− h)
d2R

dh2
+

dR

dh

(
1− 2h+

h

(n+ 1)

)
r2

h

1

(n+ 1)2(1− h)

[
ω2 − h

r2
l(l + 1)

]
R = 0,

(142)
obtaining finally the equation:

h(1−h)
d2R

dh2
+

[
1− (2n+ 1)h

(n+ 1)

]
dR

dh
+

[
(ωrH)

2

h(1− h)(n+ 1)2
− l(l + 1)

(n+ 1)2(1− h)

]
R = 0. (143)

Then, we redefine, as before, R(h), R(h) = hα(1− h)βF (h) and obtain the equation:

hα+1(1− h)β+1d
2F (h)

dh2
+

[
2αhα(1− h)β+1 − αhα+1β(1− h)β + hα(1− h)β

− (2n+ 1)

(n+ 1)
hα+1(1− h)β

]
dF (h)

dh
+

[
α(α− 1)hα−1(1− h)β+1 − 2αβhα(1− h)β

+ hαβ(β − 1)(1− h)β−1 + αhα−1(1− h)β
]
F (h) +

[
− hαβ(1− h)β−1

− (2n+ 1)

(n+ 1)
αhα(1− h)β +

(2n+ 1)

(n+ 1)
hα+1β(1− h)β−1

]
F (h)

+

[
(ωrH)

2

h(1− h)(n+ 1)2
− l(l + 1)

(n+ 1)2(1− h)

]
hα(1− h)βF (h) = 0.
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If we divide by hα(1− h)β, we get:

h(1− h)
d2F (h)

dh2
+

[
2α(1− h)− 2hβ + 1− (2n+ 1)

(n+ 1)
h

]
dF (h)

dh

+ [α(α− 1)
(1− h)

h
− 2αβ +

h

(1− h)
β(β − 1) +

α

h
− β

1− h
− (2n+ 1)

(n+ 1)
α

+
(2n+ 1)

(n+ 1)
β

h

1− h
]F (h) +

[
(ωrH)

2

h(1− h)(n+ 1)2
− l(l + 1)

(1− h)(n+ 1)2

]
F (h) = 0.

The term in the form of
h

1− h
can be written as −

[
(1− h)− 1

(1− h)

]
= −1 +

1

1− h
. Fur-

thermore, for the term
1

h

1

1− h
, from the previous analysis, we have that it is equal to(

1

h
+

1

1− h

)
. Putting everything together, we obtain:

h(1− h)
d2F (h)

dh2
+

[
2α(1− h)− 2βh+ 1− 2n+ 1

n+ 1
h

]
dF (h)

dh
+

[
α2

h
− α2 + α− 2αβ

]
F (h)

+

[
−β(β − 1) + β

β − 1

1− h
− β

1− h
− 2n+ 1

n+ 1
α− 2n+ 1

n+ 1
β +

2n+ 1

n+ 1

β

1− h

]
F (h)

+

[
(ωrH)

2

(n+ 1)2

(
1

h
− 1

1− h

)
− l(l + 1)

(n+ 1)2
1

1− h

]
F (h) = 0.

As in the previous analysis, the terms of the form
1

h
and

1

1− h
should vanish in order to

obtain a hypergeometric equation. Thus, we obtain the equation:

h(1− h)
d2F (h)

dh2
+

[
2α(1− h)− 2βh+ 1− 2n+ 1

n+ 1
h

]
dF (h)

dh

+
[
−α2 + α− 2αβ − β(β − 1)

]
F (h) +

[
−2n+ 1

n+ 1
α− 2n+ 1

n+ 1
β

]
F (h) = 0, (144)

with:

α2 +
(ωrH)

2

(n+ 1)2
= 0 → α± = ±i

ω rH
n+ 1

, (145)

β(β − 1)− β +
2n+ 1

n+ 1
β +

(ωrH)
2

(n+ 1)2
− l(l + 1)

(n+ 1)2
= 0

⇒β± =
1

2(n+ 1)

[
1±

√
(2l + 1)2 − 4(ωrH)2

]
.

(146)

Then, from equation (144) we have:

h(1− h)
d2F (h)

dh2
+ [c− (1 + a+ b)h]

dF (h)

dh
− abF (h) = 0, (147)

where a = α + β +
n

n+ 1
, b = α + β and c = 1 + 2α.
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We choose again the pair of solutions [30]:

W1(0) = F (a, b, c;h) = (1− h)c−a−bF (c− a, c− b, c;h), (148)

W2(0) = h1−c F (a−c+1, b−c+1, 2−c;h) = h1−c(1−h)c−a−bF (1−a, 1−b, 2−c;h). (149)

As before this choice will be convenient because near the horizon where h → 0 (since
r → rH), the hypergeometric function goes to unity, F (a, b, c;h → 0) → 1.

Choosing the solution α = α− where α− = − iωrH
n+ 1

and from the fact that F (a, b, c;h →
0) → 1 very near the horizon, we can obtain the approximated form:

RNH(h) = A−h
α−(1−h)β−F (a, b, c; 0)+A+h

−α−(1−h)β−F (a− c+1, b− c+1, 2− c; 0)

= A−e
−iω rH ln(h)/(n+1) + A+e

iω rH ln(h)/(n+1), (150)

where:

h−iωrH/(n+1) → e−iωrH ln(h)/(n+1), (151)

hiωrH/(n+1) → eiωrH ln(h)/(n+1). (152)

We employ again the tortoise coordinate and we take the equation:

RNH(h) ≃ A−e
−iω rn+2

H y, (153)

where A+ = 0 as before, because near the horizon, we can have only one wave propagating
towards the black hole, as nothing can escape from the black hole (and its horizon).

As before, trying to stretch the near − horizon solution, we will use the relation:

RNH(h) ≃ A−h
α(1− h)βF (a, b, c;h) = A−h

α(1− h)β
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

F (a, b, a+ b− c+ 1; 1− h) + A−h
α(1− h)β(1− h)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)

F (c− a, c− b, c− a− b+ 1; 1− h).

(154)

In the limit r ≫ rH or h → 1 and from the fact that as h → 0 we have F (a, b, c;h →
0) → 1 and F (a− c+ 1, b− c+ 1, 2− c, h → 0) → 1 and then, we get:

RNH(h) = A−h
α(1−h)β

Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
+A−h

α(1−h)β(1−h)c−a−bΓ(c)Γ(a+ b− c)

Γ(a)Γ(b)
.

(155)

Furthermore, we know that a = α + β +
n

n+ 1
, b = α + β and c = 1 + 2α.

As we said, we choose α = α− and β = β−, with β− ≃ 1

2
− 1

n+ 1

(
l +

n+ 1

2

)
=

− l

n+ 1
as ωrH → 0. Then, we take:

RNH(h) = A−(1− h)β
Γ(1 + 2α)Γ

(
1− 2β − n

n+ 1

)
Γ

(
1 + a− β − n

n+ 1

)
Γ(1 + α− β)
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+A−(1− h)β(1− h)1−2β−n/(n+1)

Γ(a+ 2α)Γ

(
2β − 1 +

n

n+ 1

)
Γ

(
α + β +

n

n+ 1

)
Γ(α + β)

.

So, the solution near the black hole horizon, which we have stretched towards large r, is:

RNH(h) ≃ A−Γ(1 + 2α)

(
r

rH

)l Γ

(
1− 2β − n

n+ 1

)
Γ

(
1 + α− β − n

n+ 1

)
Γ(1 + α− β)

+ A−Γ(1 + 2α)
(rH

r

)l+1
Γ

(
2β − 1 +

n

n+ 1

)
Γ

(
α + β +

n

n+ 1

)
Γ(α + β)

.

(156)

The far − field solution can easily be found working in the limit r ≫ rH and has
the form:

RFF (r) =
B+

r1/2
Jl+1/2(ωr) +

B−

r1/2
Yl+1/2(ωr), (157)

which can also be derived from relation (116), if we set n = 0. As before, we will assume
again that ωrH ≪ 1. Then, from the first and second order Bessel equations, we will
have for equation (157):

RFF (r) =
B+ rl

Γ(l + 3/2)

(ω
2

)l+1/2

− B−

π rl+1

(
2

ω

)l+1/2

Γ(l + 1/2). (158)

So, matching the two solutions (156) and (158), we obtain a relation between the two
integration constants at infinity and then, dividing the two solutions, we get:

B+

B−
= −

(
2

ω rH

)2l+1 Γ

(
l +

1

2

)2(
l +

1

2

)
Γ

(
1− 2β − n

n+ 1

)
Γ(α + β) Γ

(
α + β +

n

n+ 1

)
π Γ(1 + α− β) Γ

(
1 + α− β − n

n+ 1

)
Γ

(
2β − 1 +

n

n+ 1

) .

(159)

Again, the above constraint completes the derivation of the analytic solution for the scalar
field on the brane. As before, we next turn our attention to the form of the scalar field
at infinity. We need to determine the amplitudes of the incoming and outgoing modes,
thus, we expand equation (157) in the limit r → ∞, and we find:

R(∞) = A
(∞)
in

e−iω r

r
+ A

(∞)
out

eiω r

r
, (160)

with

A
(∞)
in =

(B+ + iB−)√
2πω

eiπ(l+1)/2, (161)
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A
(∞)
out =

(B+ − iB−)√
2πω

e−iπ(l+1)/2. (162)

In addition, we already know that the reflection coefficient Rl is defined as the ratio of
the outgoing amplitude over the incoming one at infinity. Then, the absorption coefficient
Al is given by:

|Al|2 =
2i(B∗ −B)

BB∗ + i(B∗ −B) + 1
, (163)

where B ≡ B+/B− which is defined in equation (158).

The above analytic result can take a simplified form in the low-energy limit ωrH ≪ 1,
in which case we have:

|Al|2 =
16π

(n+ 1)2

(ωrH
2

)2l+2
Γ

(
l + 1

n+ 1

)2

Γ

(
1 +

l

n+ 1

)2

Γ

(
1

2
+ l

)2

Γ

(
1 +

2l + 1

n+ 1

)2 . (164)

Finally, the greybody factor σl,n(ω) is equal to:

σl(ω) =
4π2(2l + 1)

(n+ 1)2

(ωrH
2

)2l Γ( l + 1

n+ 1

)2

Γ

(
1 +

l

n+ 1

)2

Γ

(
1

2
+ l

)2

Γ

(
1 +

2l + 1

n+ 1

)2 r2H (165)

As can be seen from this relation, for every n when l = 0, the greybody factor for scalar
fields at the low-energy regime is given by the area of the horizon.

3.4 Energy Emission of black holes in the case of a bosonic field

An important quantity determined by the greybody factor and related to Hawking
radiation is the energy emitted per unit of time from the black hole, which is found by
combining the number of particles emitted with the amount of energy they carry. This
energy emission rate is given by the relation [8]:

dE(ω)

dt
=
∑
l

σl,n(ω)
ω3

exp(ω/TH)− 1

dω

2π2
(166)

where ′′-1′′ was chosen because we are referring to bosonic fields.

The equation provided describes the rate at which energy is emitted from a black
hole due to the Hawking radiation process [7]. This formula encapsulates several critical
aspects of the physical mechanisms at play, combining quantum field theory with general
relativity to describe a phenomenon that lies at the intersection of these two foundational
pillars of modern physics.

The equation for the energy emission rate dE(ω)/dt encompasses several important
variables and concepts. First of all, the summation over l, runs over different angular
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momentum quantum numbers l. The presence of this summation indicates that the
radiation emitted by the black hole can occur in different angular momentum modes.
Each mode represents a specific solution to the wave equation in the curved spacetime
around the black hole. Moreover, the absorption cross-section σl,n(ω), represents the
probability that a particle with frequency ω and angular momentum quantum number l
will be absorbed by the black hole. It is referred to as the greybody factor, modifying
the pure blackbody spectrum due to the curvature of spacetime near the black hole.

Furthermore, the energy term
ω3

exp(ω/TH)− 1
, is akin to the Planck distribution for

blackbody radiation, but adapted for a black hole. Here, ω is the frequency of the emitted
particle, and TH is the Hawking temperature of the black hole. The factor ω3 arises from
the density of states for the radiation. Furthermore, the differential dω suggests that
the equation sums contributions from all possible frequencies of the emitted radiation.
This integral is over the range of frequencies that the black hole can emit. Also, the

normalization factor
dω

2π2
ensures that the units and scaling of the equation are consistent,

particularly in the context of the chosen dimensional analysis.

The energy emission rate described by this equation is pivotal for understanding the
ultimate fate of black holes. As black holes emit Hawking radiation, they lose mass
and energy, leading to a gradual decrease in their size. Over astronomical timescales,
this radiation could cause black holes to evaporate completely, a process ending in a
burst of high-energy radiation as the black hole reaches extremely small sizes and high
temperatures.

From a theoretical perspective, Hawking radiation provides a unique window into the
quantum aspects of gravity. It challenges and enriches our understanding of fundamental
physics, suggesting that black holes are not entirely closed systems but instead interact
with their surroundings in subtle yet profound ways. This interaction bridges the gap
between classical descriptions of gravity and quantum mechanics, offering insights that
could pave the way toward a theory of quantum gravity.

In conclusion, equation (166) elegantly encapsulates the emission of energy from a
black hole via Hawking radiation. It synthesizes quantum field theory, statistical mechan-
ics, and general relativity into a single framework. This formulation not only highlights
the intricate dance of particles and energy near the event horizon but also underscores
the deep connections between the macroscopic and microscopic realms of physics.
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4 Evaluation of Results

In this chapter we will present the results for the cases of the bulk scalar emission and
the brane-localized scalar emission, for the absorption coefficients the graybody factors
and the energy emission rates. More specifically, the next two sections present detailed
plots for these two emission channels and analyzes the derived results in both cases.

4.1 Bulk scalar emission for l ≥ 0

In this section, we discuss the results obtained for the absorption coefficients, graybody
factors and energy emission rates in the case of Bulk scalar emission for l ≥ 0. The
graphs come from the analytical solutions of the expressions, with the approximation
that ω rH ≪ 1. Therefore, for bigger values of ω rH , we do not expect them to give us
the correct results.

For the absorption coefficients in the case of Bulk Scalar emission for l ≥ 0 given by
equation (134), we obtain the graphs of Figure 3. More specifically and as can be seen
from Figure 3, in the case where we have constant l and different n, the larger the n,
the smaller the value of the absorption coefficient. At the same time, we observe from
Figure 3 that the larger l is, the curve raises from the zero value at higher values on the
horizontal axis. Furthermore, it appears that the larger the l (or n) (for constant l and
variable j, and for constant n and variable l, respectively), the smaller the absorption
coefficient becomes. This happens because for larger values of l or n, ωrH takes on a
larger power value which decreases the value of the absorption coefficient. In contrast,
it is found that for small values of n and small values of l, the absorption coefficient has
larger values. In general, as can be seen from the relationship (134) as well as from the
graphs in Figure 3, as l increases, the absorption coefficient decreases, since as l increases,
the value of the denominator in the relationship (134) increases.

Furthermore, Figure 4 shows the graphs for the relation (138) for different l and n.
The greybody factor is given in units of the horizon area AH , since the quantity AH is
a purely geometric quantity and does not depend on ω. Since ω rH ≪ 1, the greybody
factor decreases as l increases, therefore, the main contribution comes from the lowest
partial wave with l = 0. As can be seen from both relation (138) and Figure 4, for l = 0
and n = 0 the greybody factor is equal to 1. Furthermore, the greybody factor is equal
to 1 for l = 0 and for arbitrary n. In addition, the larger l is, the smaller the greybody
factor is, since for large l the denominator becomes larger. At the same time, for constant
l and variable n, the greybody factor does not change much, except for large values of l
where the coefficient decreases.
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Figure 3: Absorption coefficients for Bulk Scalar emission with l ≥ 0, for different l and n,
respectively.
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Figure 4: Greybody factors for Bulk Scalar emission with l ≥ 0 for different l and n, respec-
tively.
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In Tables 1 and 2, the lowest-order values of the absorption coefficients and greybody
factors are calculated, in the case of the bulk scalar field, for different n and l. From the
results of these tables, the conclusions derived from Figures 3 and 4 are confirmed. More
specifically and as seen from Table 1, the absorption coefficient in the case of bulk scalar
field decreases by keeping n constant and increasing l, while the same also applies to the
greybody factor, given in the same table. Similarly, as can be seen from the results in
Table 2, the absorption coefficient decreases as we keep l constant and increase n, while
in the case of the greybody factor, it remains relatively constant for l constant and n
varying.

In more detail and with regard to the results of Table 1, it can be seen the increase
in the power of the term (ωrH), at each n, both in the case of the absorption coefficient
and the greybody factor. On the other hand and as can be seen from Table 2 and for
l constant, we see that while the power of the term (ωrH) increases in the case of the
absorption coefficient, in the case of the greybody factor, the power of the term (ωrH)
remains constant for fixed l.

Table 1. Absorption coefficients and greybody factor for a (4+n) bulk scalar field

n = 0

l = 0 |A|2 ≃ (ω rH)
2 σ ≃ AH

l = 1 |A|2 ≃ 1× 10−2(ω rH)
4 σ ≃ 1× 10−1(ω rH)

2AH

l = 2 |A|2 ≃ 1× 10−3(ω rH)
6 σ ≃ 1× 10−4(ω rH)

4AH

l = 5 |A|2 ≃ 1× 10−13(ω rH)
12 σ ≃ 1× 10−12(ω rH)

10AH

n = 1

l = 0 |A|2 ≃ (ω rH)
3 σ ≃ AH

l = 1 |A|2 ≃ 1× 10−1(ω rH)
5 σ ≃ 1× 10−1(ω rH)

2AH

l = 2 |A|2 ≃ 1× 10−4(ω rH)
7 σ ≃ 1× 10−3(ω rH)

4AH

l = 5 |A|2 ≃ 1× 10−11(ω rH)
13 σ ≃ 1× 10−11(ω rH)

10AH

n = 2

l = 0 |A|2 ≃ 1× 10−1(ω rH)
4 σ ≃ AH

l = 1 |A|2 ≃ 1× 10−2(ω rH)
6 σ ≃ 1× 10−1(ω rH)

2AH

l = 2 |A|2 ≃ 1× 10−4(ω rH)
8 σ ≃ 1× 10−3(ω rH)

4AH

l = 5 |A|2 ≃ 1× 10−10(ω rH)
14 σ ≃ 1× 10−9(ω rH)

10AH

n = 3

l = 0 |A|2 ≃ 1× 10−2(ω rH)
5 σ ≃ AH

l = 1 |A|2 ≃ 1× 10−3(ω rH)
7 σ ≃ 1× 10−1(ω rH)

2AH

l = 2 |A|2 ≃ 1× 10−5(ω rH)
9 σ ≃ 1× 10−3(ω rH)

4AH

l = 5 |A|2 ≃ 1× 10−12(ω rH)
15 σ ≃ 1× 10−9(ω rH)

10AH

n = 7

l = 0 |A|2 ≃ 1× 10−5(ω rH)
9 σ ≃ AH

l = 1 |A|2 ≃ 1× 10−7(ω rH)
11 σ ≃ 1× 10−2(ω rH)

2AH

l = 2 |A|2 ≃ 1× 10−9(ω rH)
13 σ ≃ 1× 10−5(ω rH)

4AH

l = 5 |A|2 ≃ 1× 10−21(ω rH)
19 σ ≃ 1× 10−12(ω rH)

10AH
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Figure 5: Energy emission rates of black holes in the case of Bulk Scalar emission with l ≥ 0
for different n.

Table 2. Absorption coefficients and greybody factor for a (4+n) bulk scalar field

l = 0

n = 0 |A|2 ≃ (ω rH)
2 σ ≃ AH

n = 2 |A|2 ≃ 1× 10−1(ω rH)
4 σ ≃ AH

n = 3 |A|2 ≃ 1× 10−2(ω rH)
5 σ ≃ AH

n = 7 |A|2 ≃ 1× 10−5(ω rH)
9 σ ≃ AH

l = 1

n = 0 |A|2 ≃ 1× 10−1(ω rH)
4 σ ≃ 1× 10−2(ω rH)

2AH

n = 2 |A|2 ≃ 1× 10−3(ω rH)
6 σ ≃ 1× 10−1(ω rH)

2AH

n = 3 |A|2 ≃ 1× 10−4(ω rH)
7 σ ≃ 1× 10−1(ω rH)

2AH

n = 7 |A|2 ≃ 1× 10−8(ω rH)
11 σ ≃ 1× 10−2(ω rH)

2AH

l = 2

n = 0 |A|2 ≃ 1× 10−4(ω rH)
6 σ ≃ 1× 10−4(ω rH)

4AH

n = 2 |A|2 ≃ 1× 10−4(ω rH)
8 σ ≃ 1× 10−3(ω rH)

4AH

n = 3 |A|2 ≃ 1× 10−5(ω rH)
9 σ ≃ 1× 10−3(ω rH)

4AH

n = 7 |A|2 ≃ 1× 10−9(ω rH)
13 σ ≃ 1× 10−2(ω rH)

4AH

l = 5

n = 0 |A|2 ≃ 1× 10−6(ω rH)
12 σ ≃ 1× 10−12(ω rH)

10AH

n = 2 |A|2 ≃ 1× 10−11(ω rH)
14 σ ≃ 1× 10−9(ω rH)

10AH

n = 3 |A|2 ≃ 1× 10−12(ω rH)
15 σ ≃ 1× 10−9(ω rH)

10AH

n = 7 |A|2 ≃ 1× 10−17(ω rH)
19 σ ≃ 1× 10−9(ω rH)

10AH

Finally, regarding the visualization of the graphical representations of energy emission
rates, relation (166) was used, with σl,n(ω) given by relation (138). To calculate the term∑

l σl,n(ω) the values of the greybody factor were added for the first 8 values of l (from
l = 0 to l = 7) and for constant n. There is not much variation with the number of
modes so here we present a general case, with 8 modes. In Figure 5, we observe that as n
increases the energy emission rate increases as ωrH increases. More specifically, for the
same value of ωrH , it can be seen that the larger n is, the higher the energy emission rate
is. This was to be anticipated, because the temperature of the black hole is given by the
relation TH = (n + 1)/4πrH , therefore, for fixed rH , the temperature of the black hole
increases as n increases. This simply means that the energy of the black hole available
for the emission of particles also increases, and this is reflected in the enhancement of the
power and flux rates.
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4.2 Brane-localized scalar emission for l ≥ 0

In this section, we discuss the results obtained for the absorption coefficients, graybody
factors and energy emssion rates in the case of Brane-localized scalar emission for l ≥ 0.
The graphs come from the analytical solutions of the expressions, with the approximation
that ωrH ≫ 1. Therefore, for bigger values of ωrH , we do not expect them to give us
the correct results. Initially, in Figures 6 and 7 we show the graphs of the absorption
coefficients and the greybody factors, in the case of the Brane-localized Scalar emission,
for different n and l.

As shown in Figure 6 and in the case of fixed l and different n, for l = 0 the absorption
coefficient has the same value for all n, while as l increases and n decreases, the absorption
coefficient decreases. At the same time and as shown in Figure 6 for constant n and
different l, the absorption coefficient is very small for large values of l, while in general
there are no large changes for different values of n. Additionally and regarding the results
of Figure 7 for the greybody factor, in the case where we have constant l and different
n, when l = 0 the greybody factor has a constant value for all n and as l increases, the
greybody factor decreases. At the same time, from the results of Figure 6 for constant n
and different l, in the case of l = 0 we always have (for every n) a constant non-zero value
of the absorption coefficient, while for larger l the absorption coefficient is very small.
Moreover, more generally with changes of n, the absorption coefficient does not change.

As before, in Tables 3 and 4, the lowest-order values of the absorption coefficients
and greybody factors are calculated, in the case of the brane-localized scalar emission,
for different n and l. From the results of these tables, the conclusions drawn from Figures
6 and 7 are confirmed. More specifically and as can be seen from Table 3, the absorp-
tion coefficient in the case of the brane-localized scalar emission, decreases by keeping
n constant and increasing l, while the same applies to the greybody factor, given in the
same table. On the other hand and as can be seen from the results in Table 4, both
the absorption coefficient and the greybody factor remain almost constant as we keep l
constant and increase n.
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Figure 6: Absorption coefficients for Brane-localized Scalar emission with l ≥ 0 for different l
and n, respectively.
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Figure 7: Greybody factors for Brane-localized Scalar emission with l ≥ 0 for different l and
n, respectively.
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Table 3. Absorption coefficients and greybody factor for a brane-localized scalar

n = 0

l = 0 |A|2 ≃ 4(ω rH)
2 σ ≃ 4π r2H

l = 1 |A|2 ≃ 0.11(ω rH)
4 σ ≃ (ω rH)

2 r2H
l = 2 |A|2 ≃ 0.0005(ω rH)

6 σ ≃ 1× 10−3(ω rH)
4 r2H

l = 4 |A|2 ≃ 9.14× 10−10(ω rH)
10 σ ≃ 1× 10−8(ω rH)

8 r2H

n = 1

l = 0 |A|2 ≃ 4(ω rH)
2 σ ≃ 4πr2H

l = 1 |A|2 ≃ 0.33(ω rH)
4 σ ≃ (ω rH)

2 r2H
l = 2 |A|2 ≃ 0.008(ω rH)

6 σ ≃ 1× 10−1(ω rH)
4 r2H

l = 4 |A|2 ≃ 2.34× 10−7(ω rH)
10 σ ≃ 1× 10−4(ω rH)

8 r2H

n = 2

l = 0 |A|2 ≃ 4.01(ω rH)
2 σ ≃ 4π r2H

l = 1 |A|2 ≃ 0.65(ω rH)
4 σ ≃ (ω rH)

2 r2H
l = 2 |A|2 ≃ 0.04(ω rH)

6 σ ≃ (ω rH)
4 r2H

l = 4 |A|2 ≃ 0.000001(ω rH)
10 σ ≃ 1× 10−5(ω rH)

8 r2H

n = 3

l = 0 |A|2 ≃ 4.01(ω rH)
2 σ ≃ 4πr2H

l = 1 |A|2 ≃ 0.2(ω rH)
4 σ ≃ (ω rH)

2 r2H
l = 2 |A|2 ≃ 0.02(ω rH)

6 σ ≃ 1× 10−1(ω rH)
4 r2H

l = 4 |A|2 ≃ 0.000003(ω rH)
10 σ ≃ 1× 10−5(ω rH)

8 r2H

n = 6

l = 0 |A|2 ≃ 4(ω rH)
2 σ ≃ 4πr2H

l = 1 |A|2 ≃ 0.90(ω rH)
4 σ ≃ (ω rH)

2 r2H
l = 2 |A|2 ≃ 0.005(ω rH)

6 σ ≃ 1× 10−1(ω rH)
4 r2H

l = 4 |A|2 ≃ 0.000007(ω rH)
10 σ ≃ 1× 10−4(ω rH)

8 r2H

Table 4. Absorption coefficients and greybody factor for a brane-localized scalar

l = 0

n = 0 |A|2 ≃ (ω rH)
2 σ ≃ 4πr2H

n = 1 |A|2 ≃ (ω rH)
2 σ ≃ 4πr2H

n = 2 |A|2 ≃ (ω rH)
2 σ ≃ 4πr2H

n = 3 |A|2 ≃ (ω rH)
2 σ ≃ 4πr2H

n = 6 |A|2 ≃ (ω rH)
2 σ ≃ 4πr2H

l = 1

n = 0 |A|2 ≃ 1× 10−1(ω rH)
4 σ ≃ (ω rH)

2 r2H
n = 1 |A|2 ≃ 1× 10−1(ω rH)

4 σ ≃ (ω rH)
2 r2H

n = 2 |A|2 ≃ 1× 10−1(ω rH)
4 σ ≃ (ω rH)

2 r2H
n = 3 |A|2 ≃ 1× 10−1(ω rH)

4 σ ≃ (ω rH)
2 r2H

n = 6 |A|2 ≃ 1× 10−1(ω rH)
4 σ ≃ (ω rH)

2 r2H

l = 2

n = 0 |A|2 ≃ 1× 10−4(ω rH)
6 σ ≃ 1× 10−3(ω rH)

4 r2H
n = 1 |A|2 ≃ 1× 10−2(ω rH)

6 σ ≃ 1× 10−1(ω rH)
4 r2H

n = 2 |A|2 ≃ 1× 10−2(ω rH)
6 σ ≃ 1× 10−1(ω rH)

4 r2H
n = 3 |A|2 ≃ 1× 10−2(ω rH)

6 σ ≃ 1× 10−1(ω rH)
4 r2H

n = 6 |A|2 ≃ 1× 10−2(ω rH)
6 σ ≃ 1× 10−1(ω rH)

4 r2H

l = 4

n = 0 |A|2 ≃ 1× 10−10(ω rH)
10 σ ≃ 1× 10−8(ω rH)

8 r2H
n = 1 |A|2 ≃ 1× 10−7(ω rH)

10 σ ≃ 1× 10−6(ω rH)
8 r2H

n = 2 |A|2 ≃ 1× 10−6(ω rH)
10 σ ≃ 1× 10−5(ω rH)

8 r2H
n = 3 |A|2 ≃ 1× 10−6(ω rH)

10 σ ≃ 1× 10−5(ω rH)
8 r2H

n = 6 |A|2 ≃ 1× 10−6(ω rH)
10 σ ≃ 1× 10−4(ω rH)

8 r2H
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Figure 8: Energy emission rates of black holes in the case of Brane-localized Scalar emission
with l ≥ 0 for different n.

Finally, regarding the visualization of the graphical representations of energy, relation
(166) was used, with σl,n(ω) given by relation (165). To calculate the term

∑
l σl,n(ω) the

values of the greybody factor were added for the first 8 values of l (from l = 0 to l = 7)
and for constant n. Like the bulk case, there is not much variation with the number of
modes, so in the case here we present a general case, with 8 modes.

More specifically, Figure 8 shows the behavior of energy emission rates for particles
with spin 0 in the low energy regime. As we can see, the corresponding power emission
rates, as well as the flux emission rates, exhibit a universal behaviour according to which
the energy, and the number of particles, emitted per unit time and energy interval is
strongly enhanced, as n increases. This occurs due to the temperature, for the same
reason it happens in the Bulk.
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5 An application to primordial black holes

About 50 years ago, Hawking proposed the formation of primordial black holes
(PBHs) [31], suggesting that black holes were electrically charged and, therefore, capable
of capturing charged particles to form neutral ′′atoms′′, which was ultimately proven to
be incorrect. And while later Zeldovich and Novikov (1967) [32] used a Newtonian argu-
ment to conclude that PBHs were unlikely to have formed, in 1974 a relativistic analysis
refuted this Newtonian argument [33].

Primordial black holes (PBHs) are expected to have a mass corresponding to the
cosmological horizon at their formation, which is significantly less than the mass of about
1 solar mass (M⊙) of the smallest astrophysical black holes. This lead Hawking to explore
the quantum effects of smaller black holes, resulting in his 1974 discovery that these
black holes emit particles like a black body with a temperature inversely proportional
to their mass (T ∝ M−1) and completely evaporate over a timescale proportional to
the cube of their mass (τ ∝ M3) [34]. Although Hawking’s prediction has not yet been
experimentally verified, it remains one of the most significant theoretical advancements
of the late 20th century, as it integrates aspects of general relativity, quantum theory,
and thermodynamics [35].

After Hawking’s discovery, there was a flurry of articles concerning primordial black
holes (PBHs). However, none of these articles could confirm their existence, and as
a result the subject remained of minor interest for many years. However, in recent
years the situation has changed radically and PBH publications have increased greatly.
There are several reasons for this, but the most significant are likely: (a) the increasing
interest in the possibility that primordial black holes (PBHs) larger than 1015 grams
could account for dark matter in galactic halos, (b) the detection of gravitational waves
by LIGO/Virgo/KAGRA (LVK) from merging binary black holes, some of which may be
primordial in origin and (c) the idea that very large PBHs could serve as the seeds for
the supermassive black holes (SMBHs) found in galactic centers [35].

In a black hole (here PBH), the Schwarzschild radius determines the size of the black
hole’s event horizon and is directly related to its mass (the greater the mass, the greater
the radius). At the same time, the Hawking temperature is inversely proportional to
the mass of the black hole, i.e. the lower the mass, the higher the temperature. This
means that smaller black holes radiate more strongly. As the black hole emits Hawking
radiation, it loses mass and shrinks. The rate of mass loss increases as its mass decreases.
Additionally, the finite lifetime of the black hole is due to the slow but gradual loss of
mass through Hawking radiation. When it loses all its mass, it disappears completely.
This time depends on the initial mass of the black hole: the greater the mass, the longer
its lifetimes.

Regarding Hawking radiation in the low-energy limit, the emissions are weak because
the black hole’s temperature is low. This means that for large black holes, which are in
the low-energy limit, Hawking radiation is produced in very small amounts. The black
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hole loses mass more slowly because the energy it emits through radiation is extremely
small. As a result, the rate of mass loss is very low, and the black hole requires much
more time to evaporate [35].

Concerning the numerical solution to the problem of scalar radiation, it leads to a total
radiation spectrum that takes the form of a Gaussian curve (for the radiation emission
rate on the brane, see Figure 4(a) in [8], and for the radiation emission rate on the bulk,
see Figure 6(b) in [8]), with the energy value at which the curve reaches its maximum
determined by the temperature of the black hole. However, how do the properties of
primordial black holes, whose mass range is currently considered to be very large (from
microscopic to supermassive), change as a function of the number of extra dimensions
and their mass?

In this chapter we give some numerical results for primordial black holes, of various
masses and in various dimensions. More specifically, for MPBH = 50TeV , MPBH = 10µg,
MPBH = 1M⊙, MPBH = 104M⊙, and MPBH = 108M⊙, the Schwarzschild radius rH , the
temperature TH , and the half-life τ of the primordial black hole are calculated for n = 0,
n = 1, n = 2, n = 3, n = 4, n = 5, n = 6 and n = 7. From equation (79), we observe that,
for n ̸= 0 the relation between rH and M ≡ MPBH is not linear anymore, and that it is
the fundamental Planck scale M∗ that appears in the expression of the horizon radius and
not the four dimensional one MP = 1.22× 1028eV . The latter feature is the main reason
for the fact that extra dimensions facilitate the creation of low-mass black holes, as we
will shortly see. Before elaborating on this last point, we need to make another comment
first: in order to be able to ignore quantum corrections in our calculations and study the
produced black holes by using semi-classical methods, the mass of the black hole must
be, at least, a few times larger than the scale of quantum gravity M∗. Therefore, if we
assume that M∗ = 10TeV , a safe limit for the mass of the produced black hole would be
MPBH = 50TeV .

The modified properties of a higher-dimensional, Schwarzschild-like black hole, com-
pared to those of a four-dimensional one with the same mass, were first studied in [36].
Now, we will discuss in detail the temperature of a PBH. The temperature of a black
hole in 4 + n dimensions is given by the expression: [8]

TH =
(n+ 1)

4πrH
,

where rH is given by (79) with M = MPBH . Finally, the timelife of black holes in 4 + n
dimensions is given by:

τ ∼ 1

M∗

(
MPBH

M∗

)(n+3)/(n+1)

,

where M = MP when n = 0 and M∗ = 10TeV when n ̸= 0.
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Table 5. Black hole rH , TH and τ values, for different values of n, for MPBH = 50TeV
n = 0 rH ≃ 1.33× 10−52km TH ≃ 1.40× 1045K τ ≃ 3.71× 10−87sec
n = 1 rH ≃ 3.52× 10−23km TH ≃ 1.06× 1016K τ ≃ 1.65× 10−27sec
n = 2 rH ≃ 2.30× 10−23km TH ≃ 2.42× 1016K τ ≃ 9.62× 10−28sec
n = 3 rH ≃ 1.98× 10−23km TH ≃ 3.77× 1016K τ ≃ 7.36× 10−28sec
n = 4 rH ≃ 1.86× 10−23km TH ≃ 4.99× 1016K τ ≃ 6.26× 10−28sec
n = 5 rH ≃ 1.83× 10−23km TH ≃ 6.10× 1016K τ ≃ 5.63× 10−28sec
n = 6 rH ≃ 1.83× 10−23km TH ≃ 7.11× 1016K τ ≃ 5.21× 10−28sec
n = 7 rH ≃ 1.86× 10−23km TH ≃ 8.03× 1016K τ ≃ 4.92× 10−28sec

Table 6. Black hole rH , TH and τ values, for different values of n, for MPBH = 10µg
n = 0 rH ≃ 1.48× 10−38km TH ≃ 1.26× 1031K τ ≃ 5.19× 10−45sec
n = 1 rH ≃ 3.72× 10−16km TH ≃ 9.99× 108K τ ≃ 20.56sec
n = 2 rH ≃ 1, 11× 10−18km TH ≃ 5.04× 1011K τ ≃ 0.0002sec
n = 3 rH ≃ 6.44× 10−20km TH ≃ 1.16× 1013K τ ≃ 8.69× 10−7sec
n = 4 rH ≃ 1.20× 10−20km TH ≃ 4.25× 1016K τ ≃ 2.91× 10−8sec
n = 5 rH ≃ 4.03× 10−21km TH ≃ 2.78× 1014K τ ≃ 3.03× 10−9sec
n = 6 rH ≃ 1.87× 10−21km TH ≃ 6.99× 1014K τ ≃ 6.01× 10−10sec
n = 7 rH ≃ 1.06× 10−21km TH ≃ 1.41× 1015K τ ≃ 1.79× 10−10sec

Table 7. Black hole rH , TH and τ values, for different values of n, for MPBH = 1M⊙
n = 0 rH ≃ 2.94km TH ≃ 6.34× 10−8K τ ≃ 4.06× 1070sec
n = 1 rH ≃ 5245km TH ≃ 7.09× 10−11K τ ≃ 8.11× 1077sec
n = 2 rH ≃ 6.47× 10−6km TH ≃ 0.086K τ ≃ 1.69× 1060sec
n = 3 rH ≃ 2.42× 10−10km TH ≃ 3086.1K τ ≃ 2.43× 1051sec
n = 4 rH ≃ 5.50× 10−13km TH ≃ 1.69× 106K τ ≃ 1.21× 1046sec
n = 5 rH ≃ 9.72× 10−15km TH ≃ 1.16× 108K τ ≃ 3.51× 1042sec
n = 6 rH ≃ 5.52× 10−16km TH ≃ 2.37× 109K τ ≃ 1.05× 1040sec
n = 7 rH ≃ 6.49× 10−17km TH ≃ 2.30× 1010K τ ≃ 1.33× 1038sec

Table 8. Black hole rH , TH and τ values, for different values of n, for MPBH = 104M⊙
n = 0 rH ≃ 29428km TH ≃ 5.15× 10−12K τ ≃ 4.06× 1082sec
n = 1 rH ≃ 524480km TH ≃ 7.09× 10−13K τ ≃ 8.11× 1085sec
n = 2 rH ≃ 0.00014km TH ≃ 0.004K τ ≃ 7.83× 1066sec
n = 3 rH ≃ 2.42× 10−9km TH ≃ 308.61K τ ≃ 2.43× 1057sec
n = 4 rH ≃ 3.47× 10−12km TH ≃ 262317K τ ≃ 4.80× 1051sec
n = 5 rH ≃ 4.51× 10−14km TH ≃ 2.46× 107K τ ≃ 7.56× 1047sec
n = 6 rH ≃ 2.06× 10−15km TH ≃ 6.61× 108K τ ≃ 1.45× 1045sec
n = 7 rH ≃ 2.05× 10−16km TH ≃ 7.27× 109K τ ≃ 1.33× 1043sec
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Table 9. Black hole rH , TH and τ values, for different values of n, for MPBH = 108M⊙
n = 0 rH ≃ 2.94× 108km TH ≃ 6.34× 10−16K τ ≃ 4.06× 1094sec
n = 1 rH ≃ 5.24× 107km TH ≃ 7.10× 10−15K τ ≃ 8.11× 1093sec
n = 2 rH ≃ 0.003km TH ≃ 0.00019K τ ≃ 3.63× 1073sec
n = 3 rH ≃ 2.42× 10−8km TH ≃ 30.086K τ ≃ 2.43× 1063sec
n = 4 rH ≃ 2.19× 10−11km TH ≃ 42967.8K τ ≃ 1.91× 1057sec
n = 5 rH ≃ 2.09× 10−13km TH ≃ 5.67× 106K τ ≃ 1.63× 1053sec
n = 6 rH ≃ 7.67× 10−15km TH ≃ 1.69× 108K τ ≃ 2.02× 1050sec
n = 7 rH ≃ 6.49× 10−16km TH ≃ 2.30× 109K τ ≃ 1.33× 1048sec

As can be seen from the results of Table 5, for the mass MPBH = 50TeV , the black
hole radius rH varies between 1.33× 10−52km and 1.83× 10−23km as n increases from 0
to 7. The temperature TH decreases from 1.40×1045K to 7.11×1016K, while the lifetime
(τ) increases from 3.71×10−87sec to 5.21×10−25sec. As n increases, the radius stabilizes
around 1.83 × 10−23km, while the temperature continues to decrease, and the lifetime
increases significantly. In this case, for MPBH = 50TeV , their properties resemble the
ones of the microscopic black holes that could in principle be created at ground-based
accelerators in the presence of extra dimensions. The higher dimensionality of spacetime
makes their creation easier as it increases their horizon radius but also renders them
cooler and thus longer-lived compared to their four-dimensional analogues.

Furthermore, forMPBH = 10µg, Table 6, the event horizon radius varies from 1.48×
10−38km to 1.06× 10−21km a much larger range compared to the MPBH = 50TeV case.
The temperature drops from 1.26 × 1031K to 1.41 × 1015K as n increases. The lifetime
changes significantly, starting at 5.19× 10−45sec and rising to 1.79× 10−10sec for n = 7.
The pattern shows rapid changes in the values, especially for the small n, compared to
the MPBH = 50TeV case. In this case, for MPBH = 10µg, the presence of the extra
dimensions favours the creation of black holes with their properties resembling a lot the
ones of the previous case. We note however that in this case it is the smaller values of the
number of extra dimensions that support black holes with the most realistic and likely
to observe properties.

Also, for MPBH = 1M⊙, Table 7, the event horizon radius starts from 2.94km for
n = 0 and decreases sharply to 6.49 × 10−17km for n = 7. The temperature shows a
similar trend, ranging from 6.34 × 10−8K to 2.30 × 1010K. The lifetime decreases from
4.06× 1070sec to 1.33× 1038sec. The variations for this mass are more extreme than the
smaller PBH masses, with much higher lifetimes and lower initial temperatures. Here,
it is only the case n = 1 that may lead more easily to the creation of cooler and thus
longer-lived black holes compared to the 4-dimensional case. The presence of more than
2 extra dimensions decreases in fact the possibility of black holes with a mass equal to
one solar mass to be created and even in the case they do, they evaporate rather quickly.

The table 8 for MPBH = 104M⊙ shows an event horizon radius that starts at 29428km
for n = 0 and reduces to 2.05 × 10−16km for n = 7. The temperature ranges from
5.15×10−12K to 7.27×109K. The lifetime, like in the other tables, decreases significantly
with increasing n, from 4.06 × 1082sec to 1.33 × 1043sec. This trend mirrors the other
tables, with larger masses exhibiting longer lifetimes and smaller radii as n increases.
The situation here resembles very much the one of the previous case.
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Finally, for the mass MPBH = 108M⊙, Table 9, the radius varies from 2.94×108km to
6.49×10−16km. The temperature starts from 6.34×10−16K and rises to 2.30×109K as n
increases. The lifetime shows significant reductions, from 4.06×1094sec to 1.33×1048sec.
This massive black hole follows a similar pattern as the other tables, with much larger
event horizons and longer lifetimes. As we can see, here, no values of n exist that enhances
the creation of black holes. On the contrary, the higher-dimensional spacetime supports
much smaller, hotter and thus shorter-lived supermassive black holes.

So from the above analysis, we can conclude that black holes with larger masses
have much larger event horizon radius (rH), lower temperatures (TH), and significantly
longer lifetimes (τ). This indicates that as the mass increases, the black hole becomes
cooler and more stable with a larger event horizon. Conversely, black holes with smaller
masses have very small event horizon radii, higher temperatures, and shorter lifetimes.
This suggests that smaller black holes are hotter and more short-lived due to their higher
Hawking radiation emission. Comparing the values across different mass scales, it is clear
that for each value of n, the trends are consistent: larger mass black holes have larger
event horizons, lower temperatures, and longer lifetimes. Additionally, it is important to
highlight that the results indicate that the presence of extra spatial dimensions helps in
the formation of black holes only in the case of small masses. For large black holes, there
is an improvement only for n = 1. However, this case has been excluded because the size
of the extra dimension would be equal to the Earth-Sun distance, and thus it would have
already been detected through changes in the intensity of gravitational forces.

More specifically, in the case of n = 1, we can derive some important conclusions.
From the following relation for R [37]:

R = 2× 1031/n−16mm×
(

1TeV

M(4+n)

)1+2/n

,

we can deduce that if M(4+n) = 1TeV , the resulting size is R = 1012m, while if M(4+n) =
10TeV , we have R = 109m, a value that would have been observed in Cavendish experi-
ments, if it existed. Therefore, if we ′′pushed′′ the value of M(4+n) to much higher values,
we could reduce the value of R close to the phenomenological limit. However, this would
likely also reduce the value of the horizon, making the formation of black holes-even those
with small mass-very difficult.
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6 Conclusions

The proposal of the existence of extra dimensions in the Universe has made sig-
nificant progress in theoretical physics, potentially revolutionizing our understanding of
four-dimensional cosmology, particle physics phenomenology, and black hole physics. By
extending beyond the conventional four-dimensional framework, extra-dimensional theo-
ries provide novel insights and predictive power, suggesting profound modifications in the
behavior of fundamental forces and particles, the structure and evolution of the cosmos,
and the nature of black holes.

The recent resurgence in the hypothesis of extra space-like dimensions, which may
be almost macroscopic in size or even non-compact, introduces a groundbreaking aspect
to theoretical physics: the scale at which gravity becomes strong could be significantly
lower than the traditional four-dimensional Planck mass MP . This exciting development
suggests that high-energy collisions between elementary particles, such as those antici-
pated at next-generation ground-based accelerators or occurring in Earth’s atmosphere,
might explore the energy regime of quantum gravity. Among the most remarkable impli-
cations is the potential formation of mini black holes from high-energy particle collisions
with center-of-mass energies only a few times greater than the new gravity scale M∗.
This prospect offers a unique opportunity to investigate quantum gravitational effects
directly [8].

The literature offers various findings on the possibility of creating mini black holes dur-
ing high-energy collisions. Traditional four-dimensional analyses have been expanded to
include scenarios where colliding particles move through higher-dimensional spacetimes.
Some new studies indicate that in head-on collisions, the mass of the resulting black
hole decreases as the number of extra dimensions increases. Additionally, recent findings
suggest that the emission of gravitational waves during these collisions diminishes with
an increasing number of dimensions. This discrepancy suggests that a significant portion
of the energy lost during the collision might be emitted in a form other than gravita-
tional radiation. Conversely, in collisions with a non-zero impact parameter, which are
more common, the likelihood of black hole production actually increases with more extra
dimensions. When these findings are applied to realistic collisions between composite
particles, the estimated black hole production cross-sections become significantly large
by new physics standards, whether at the LHC or in the Earth’s atmosphere [8]. These
mini black holes, when quantum effects are considered, emit Hawking radiation into
higher-dimensional spacetime in the form of both bulk and brane modes. Extending the
four-dimensional emission rate calculations to higher dimensions is straightforward, but
understanding the precise greybody factors for different fields in higher dimensions was
challenging until recent advancements clarified these factors.

The aim of this work was to understand understand the behavior of Schwarzschild
black holes in n-dimensional spacetime by computing Hawking radiation in the form
of bulk and brane-localized scalar emission. Initially, in the first chapter, the useful
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mathematical tools of General Relativity were presented, specifically focusing on the
concept and properties of the metric tensor, the connection, and the covariant derivatives,
as well as the Riemann, Ricci, and Einstein tensors and the Ricci scalar. Additionally, in
this first chapter, the Lagrangian formalism was introduced, and the Einstein equations
were derived. Next, in the second chapter, the Schwarzschild solution in 4-dimensional
space was derived, followed by a discussion on theories of extra dimensions. Then, the
Schwarzschild solution in n-dimensions was derived, along with the equation of a scalar
field in a curved background. It is important to mention again that, the spacetime will
change if the assumption about spherical symmetry changes. Then in the third chapter
we dealt with Hawking radiation from higher-dimensional black holes. We introduced
the concept of Hawking radiation and then derived the radial equation, the absorption
coefficient, and the greybody factor in n-dimensions, for the cases of bulk scalar field and
brane-localized scalar emission for l ≤ 0. These relationships were derived analytically in
the low-energy limit. Additionally, in this chapter, we presented the relationship of the
emission energy of black holes in the case of a bosonic field.

Then, in the fourth chapter, we presented the results for the cases of the bulk scalar
emission and the brane-localized scalar emission, for the absorption coefficients the gray-
body factors and the energy emission rates. For the absorption coefficients in the case
of Bulk Scalar emission for l ≥ 0, we found that when l = 0 we are dealing with the
simplest form of emission, resulting in higher absorption coefficients. This indicates that
the emission is more effective in this state. As l increases, the complexity of the emission
increases, leading to lower absorption coefficients. At the same time, in the case where
we have constant l and different n, the larger the n, the smaller the value of the absorp-
tion coefficient. Furthermore, regarding the greybody factor for the case of Bulk Scalar
emission for l ≥ 0 which is given in units of the horizon area AH (since the quantity AH

is a purely geometric quantity and does not depend on ω), we found that the dominant
contribution of the greybody factor from the lowest partial wave (with l = 0) indicates
that basic emission processes are more significant, while higher-order contributions (with
l > 0) provide less energy. Finally, we found that Increasing n enhances the energy
emission capabilities. As n rises, black holes become more ′′powerful′′ in their emission
processes, as indicated by rising temperatures. The increase in the energy emission rate
with rising n implies that black holes in higher dimensions have greater potential for
creating and releasing energy. This affects the physics of black holes and their behavior
in various cosmological scenarios.

For the absorption coefficients in the case of Brane-localized scalar emission for l ≥ 0,
we found that for l = 0, the absorption coefficient remains constant regardless of the
values of n. However, as l increases and n decreases, the absorption coefficient decreases,
indicating that higher-order emissions are less efficient. Also, for constant l and varying
n, the absorption coefficient is very small for high values of l. However, changes in n do
not significantly affect the absorption coefficient. Additionally, the greybody factor has a
constant value for l = 0 regardless of n and decreases as l increases. This indicates that the
basic emission processes are dominant for low values of l, while higher-order contributions
yield less energy. Finally, we observed that the energy emission rates and flux emission
rates exhibit universal behavior, where the energy and number of particles emitted per
unit time and energy interval are significantly enhanced as n increases. This occurs due
to the temperature, similar to the bulk case. The connection between increasing n and
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enhanced emission rates suggests that temperature plays a crucial role in energy emission.
As n increases, the black hole temperature also rises, leading to more pronounced emission
rates.

Finally, in Chapter 5, we presented some calculations for the early Schwarzschild
black holes. As we found, the black holes with lower mass (M = 50TeV ), have properties
resemble the ones of the microscopic black holes, where the higher dimensionality of
spacetime makes their creation easier as it increases their horizon radius but also renders
them cooler and thus longer-lived compared to their four-dimensional analogues. On the
other hand for supermassive black holes (M = 108M⊙), the higher-dimensional spacetime
supports much smaller, hotter and thus shorter-lived supermassive black holes.

In conclusion, greybody factors provide crucial information about the background
around the emitting black hole and depend on the energy of the emitted particle and
the dimensionality of spacetime. This implies that the greybody factor will alter the
low-energy emission rate compared to the high-energy one. Additionally, the number of
particles emitted is influenced by the number of extra dimensions, potentially allowing
for the determination of spacetime dimensionality through the detection of Hawking radi-
ation. The emission of brane-localized modes is undoubtly the most phenomenologically
interesting effect since it involves Standard Model particles that can be easily detected
during experiments. On the other hand, the emission of bulk modes will be only per-
ceived as a missing energy signal by the observer on the brane. Nevertheless, the amount
of energy lost in the bulk is crucially important as it determines the remaining available
energy for emission on the brane. Although the possibility of the production and evapo-
ration of mini black holes at the LHC is an exciting prospect, this will be possible only in
the case where the fundamental scale of gravity M∗ is indeed very close to 1TeV −10TeV .
Nevertheless, there is absolutely no guarantee for that, and the only argument in favour
of this particular value is the possible resolution of the hierarchy problem.

Finally, it is important at this point to mention that we do not take into account
the backreaction of the field on the metric (the metric is considered to be unaffected by
the emission of individual particles). In this work, we assume that the energy ω of the
particles is small, and with this assumption, we ensure that the energy of the particle is
much smaller than the mass of the black hole emitting it, and therefore the change in
the metric is negligible. However, as the energy of the emitted particle increases, this
approximation becomes less reliable. In this case, not only a numerical integration of
the particle’s equation of motion is required, but also a full simulation to describe the
phenomenon with the backreaction of the field on the metric taken into account (for
microscopic black holes, of course; in astrophysical or galactic cases, this need does not
exist due to their large mass).
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Appendix A

In the main text (in Section 2.1) we studied the case where n = 0 for the general form
of our metric, in relation (57). Now we will perform the case where n = 1. In this case
we can write the metric in the form:

ds2 = −A(r) dt2 +B(r) dr2 + r2
[
dθ21 + sin2θ1(dθ

2
2 + sin2θ2 dϕ

2)
]
. (167)

Then, from the equation (9) we can calculate again the non-zero Christoffel symbols:

Γ1
11 =

B′(r)

2B(r)
, Γ0

01 =
A′(r)

2A(r)
, Γ1

00 =
A′(r)

2B(r)
, Γ1

22 = − r

B(r)
, Γ1

33 = − r

B(r)
sin2θ1,

Γ1
44 = − r

B(r)
sin2θ2sin

2θ1, Γ2
33 = −sinθ1 cosθ1, Γ2

44 = −sinθ1 cosθ1 sin
2θ2,

Γ3
32 =

cosθ1
sinθ1

, Γ3
44 = −sinθ2 cosθ2, Γ4

42 =
cosθ1
sinθ1

, Γ4
43 =

cosθ2
sinθ2

, Γ2
21 = Γ3

31 = Γ4
41 =

1

r

and the non-zero components of the Ricci tensor:

R00 = −A′′(r)

2B(r)
+

A′(r)

4B(r)

[
A′(r)

A(r)
+

B′(r)

B(r)

]
− 3

2

A′(r)

rB(r)
(168)

R11 =
A′′(r)

2A(r)
− A′(r)

4A(r)

[
A′(r)

A(r)
+

B′(r)

B(r)

]
− 3

2

B′(r)

rB(r)
(169)

R22 =
2

B(r)
− 2 +

r

2B(r)

[
A′(r)

A(r)
− B′(r)

B(r)

]
(170)

R33 = sin2θ1 R22, R44 = sin2θ1 sin
2θ2 R22. (171)

Furthermore, from the Einstein equations, we get:

1

2
R00 +

A(r)

2B(r)
R11 +

3A(r)

2r2
R22 = 0 (172)

1

2
R00 +

A(r)

2B(r)
R11 −

3A(r)

2r2
R22 = 0. (173)

Then, by adding and subtracting these equations, we arrive at the relations, respectively:

A′(r) + A(r)
B′(r)

B(r)
= 0 (174)

R22 = 0. (175)

From equation (174), we obtain:

B(r) =
Λ

A(r)
→ B′(r) = −A′(r)Λ

A2(r)
(176)
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and from equation (175):

2

B(r)
−2+

r

2B(r)

[
A′(r)

A(r)
− B′(r)

B(r)

]
= 0 ⇒ r2A′(r)+2rA(r) = 2Λr → d

dr
[r2A(r)] = 2Λr

(177)

with solution:

A(r) = 1 +

(
C

r

)2

(178)

B(r) =

[
1 +

(
C

r

)2
]−1

. (179)

To find the constant, C we again use Gauss’s law:∫
g ds = −4πGM (180)

where g is the intensity of the gravitational field and ds = r3sin2θ1sinθ2dθ1dθ2dϕ.

Therefore we have:

gr3
∫ π

0

sin2θ1dθ1

∫ π

0

sinθ2dθ2

∫ 2π

0

dϕ = −4πGM → g = −2GM

πr3
. (181)

Now, to find the potential and subsequently the constant C, we use the well-known
relation g = −∇Φ and then:

Φ =

∫
2GM

πr3
dr = −GM

πr2
. (182)

Taking as an approximation the limit of the weak field A(r) → 1 + 2Φ, we have:

2Φ =
C2

r2
→ −2GM

πr2
=

C2

r2
→ C2 = −2GM

π
. (183)

Then, for the equations (178), (179) we get:

A(r) = 1− 2GM

πr2
≡
(
1− r2H

r2

)
(184)

B(r) =

(
1− 2GM

πr2

)−1

≡
(
1− r2H

r2

)−1

(185)

where r2H =
2GM

π
is the Schwarzschild radius in 5-dimensions.

So, the final form of the Schwarzschild metric in n = 1 is:

ds2 = −
(
1− r2H

r2

)
dt2 +

(
1− r2H

r2

)−1

dt2 + r2[dθ21 + sin2θ1(dθ
2
2 + sin2θ2dϕ

2)] (186)
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where r2H =
2GM

π
.

In the case now where n = 2, we can write the metric in the form:

ds2 = −A(r)dt2 +B(r)dr2 + r2
[
dθ21 + sin2θ1

(
dθ22 + sin2θ2(dθ

2
3 + sin2θ3dϕ

2)
)]

(187)

and then we can get the non-zero Christoffel symbols:

Γ1
11 =

B′(r)

2B(r)
, Γ0

01 =
A′(r)

2A(r)
, Γ1

00 =
A′(r)

2B(r)
, Γ1

22 = − r

B(r)
, Γ1

33 = − r

B(r)
sin2θ1,

Γ1
44 = − r

B(r)
sin2θ3sin

2θ2, Γ2
33 = −sinθ1 cosθ1, Γ2

44 = −sinθ2 cosθ2 sin
2θ3, Γ3

32 =
cosθ2
sinθ2

,

Γ3
44 = −sinθ3 cosθ3, Γ4

42 =
cosθ2
sinθ2

, Γ4
43 =

cosθ3
sinθ3

, Γ2
21 = Γ3

31 = Γ4
41 = Γ5

51 =
1

r
,

Γ5
52 =

cosθ1
sinθ1

, Γ5
53 =

cosθ2
sinθ2

, Γ5
54 =

cosθ3
sinθ3

Γ1
55 = − r

B(r)
sin2θ3sin

2θ2sin
2θ1,

Γ2
55 = −sinθ1 cosθ1 sin

2θ3 sin
2θ2, Γ3

55 = −sinθ2 cosθ2 sin
2θ3, Γ4

55 = −sinθ3 cosθ3
(188)

and the non-zero components of the Ricci tensor:

R00 = −A′′(r)

2B(r)
+

A′(r)

4B(r)

[
A′(r)

A(r)
+

B′(r)

B(r)

]
− 2A′(r)

rB(r)
(189)

R11 =
A′′(r)

2A(r)
− A′(r)

4A(r)

[
A′(r)

A(r)
+

B′(r)

B(r)

]
− 2B′(r)

rB(r)
(190)

R22 =
3

B(r)
− 3 +

r

2B(r)

[
A′(r)

A(r)
− B′(r)

B(r)

]
(191)

R33 = sin2θ1R22 (192)

R44 = sin2θ2sin
2θ1R22 (193)

R55 = sin2θ3sin
2θ2sin

2θ1R22. (194)

Then, from the Einstein equations, we get:

1

2
R00 +

A(r)

2B(r)
R11 +

4A(r)

2r2
R22 = 0 (195)

1

2
R00 +

A(r)

2B(r)
R11 −

4A(r)

2r2
R22 = 0. (196)

By adding and subtracting these equations, we arrive at the relations:

A′(r) + A(r)
B′(r)

B(r)
= 0 (197)

R22 = 0. (198)

As before, from relation (197) we have:

B(r) =
Λ

A(r)
→ B′(r) = −A′(r)Λ

A2(r)
(199)
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and from (198):

3

B(r)
− 3 +

r

2B(r)

[
A′(r)

A(r)
− B′(r)

B(r)

]
= 0 ⇒ r3A′(r) + 3A(r)r2 = 3Λr2

⇒ d

dr
[r3A(r)] = 3Λr2 ⇒ r3A(r) = Λ(r3 + C) (200)

Then:

A(r) = 1 +

(
C

r

)3

(201)

B(r) =

[
1 +

(
C

r

)3
]−1

. (202)

To find the constant, C we again use Gauss’s law:∫
g ds = −4πGM (203)

where g is the intensity of the gravitational field and ds = r4sin1θ3sin
2θ2 sin θ3dθ1dθ2dθ3dϕ.

Then, we have:

gr4
∫ π

0

sin3θ2dθ1

∫ π

0

sin2θ2dθ2

∫ π

0

sinθ3dθ3

∫ 2π

0

dϕ = −4πGM → g = −3GM

2πr4
. (204)

Therefore, to find the potential and subsequently the constant C, we use the well-known
relation Φ = −∇g and then:

Φ =

∫
3GM

2πr4
dr = −GM

2πr3
. (205)

Taking as an approximation the limit of the weak field A(r) → 1 + 2Φ, we have:

2Φ =
C3

r3
→ −2GM

2πr3
=

C3

r3
→ C3 = −GM

π
. (206)

Then, for equations (201) and (202), we have:

A(r) = 1− GM

πr3
≡
(
1− r3H

r3

)
(207)

B(r) =

(
1− GM

πr3

)−1

≡
(
1− r3H

r3

)−1

(208)

where r3H =
GM

π
is the Schwarzschild radius in 6-dimensions.

Then, the final form of the Schwarzschild metric in n = 2 is:

ds2 = −
(
1− r3H

r3

)
dt2+

(
1− r3H

r3

)−1

dt2+r2
[
dθ21 + sin2θ1

(
dθ22 + sin2θ2(dθ

2
3 + sin2θ3dϕ

2)
)]

(209)

where r3H =
GM

π
.
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Appendix B

In the main text (in Section 2.5) we studied the scalar field, for the case where we are
in 4-dimensions, with the metric given by matrix (85). In this appendix we will study
the behavior of the scalar field, for the cases where we are in 5 and 6 dimensions.

We start with the case of the 5-dimensional metric, where we have in matrix form:

gµν(d=5) =


−1/h(r) 0 0 0

0 h(r) 0 0
0 0 1/r2 0
0 0 0 1/(r2sin2θ1)
0 0 0 0 1/(r2sin2θ2sin

2θ1)

 . (210)

We easily calculate that g = −r6sin4θ1sin
2θ2 →

√
−g = r3sinθ2sin

2θ1 and the scalar
field has the form Φ = e−iωtRωl(r)Ỹl(Ω). Then from equation (83), we have:

1

h(r)
ω2Ỹ Rωl e

−iωt + e−iωt 1

r3
∂r

[
r3h(r)Ỹ ∂rRωl

]
+ e−iωt Rωl

sin2θ1
∂θ1

(
sin2θ1
r2

∂θ1Ỹ

)
+ e−iωt Rωl

r2sinθ2
∂θ2

(
sinθ2∂θ2Ỹ

)
+ e−iωt Rωl

r2sin2θ2sin2θ1
∂2
ϕỸ = 0. (211)

Multiplying this equation by (r3eiωt)/(RωlỸ ), we obtain the relation:

ω2

h(r)
r3+

2

Rωl

d

dr

(
r3h(r)

d

dR
Rωl

)
+

r

sin2θ1

1

Ỹ
∂θ1

(
sin2θ1∂θ1Ỹ

)
+

r

sinθ2

1

Ỹ
∂θ2

(
sinθ2∂θ2Ỹ

)
+

r

sin2θ2sin2θ1

1

Ỹ
∂2
ϕỸ = 0, (212)

where:

1

sin2θ1

1

Ỹ
∂θ1

(
sin2θ1∂θ1Ỹ

)
+

1

sinθ2

1

Ỹ
∂θ2

(
sinθ2∂θ2Ỹ

)
+

1

sin2θ2sin2θ1

1

Ỹ
∂2
ϕỸ = −l(l + 2).

(213)

Therefore, the radial equation takes the form:

h(r)

r3
d

dr

(
r3h(r)

d

dr
Rωl

)
+

[
ω2 − h(r)

r2
l(l + 2)

]
Rωl = 0. (214)

In the case of the 6-dimensional metric, we have the matrix form:

gµν(d=6) =


−1/h(r) 0 0 0

0 h(r) 0 0
0 0 1/r2 0
0 0 0 1/(r2sin2θ1)
0 0 0 0 1/(r2sin2θ2sin

2θ1)
0 0 0 0 0 1/(r2sin2θ3sin

2θ2sin
2θ1)

 .

(215)
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Again, we easily calculate that g = −r8sin6θ1sin
4θ2sin

2θ3 →
√
−g = r4sinθ31sin

2θ2sinθ3
and the scalar field has the form Φ = e−iωtRωl(r)Ỹl(Ω). Then from equation (83), we
have:

1

h(r)
ω2RωlỸ+

Ỹ

r4
∂r(r

4h(r) ∂rRωl)+
1

sin3θ1
∂θ1

(
sin3θ1

Rωl

r2
∂θ1Ỹ

)
+

Rωl

sin2θ2
∂θ2

(
sin2θ2
r2sin2θ1

∂θ2Ỹ

)
+

Rωl

sinθ3
∂θ3

(
1

r2sin2θ1sin2θ2
∂θ3Ỹ

)
+ ∂ϕ

(
Rωl

r2sin2θ1sin2θ2sin2θ3
∂ϕỸ

)
= 0. (216)

and multiplying this equation by (r4/RωlỸ ), we obtain the relation:

ω2r4

h(r)
+

1

R

d

dr

(
r4h(r)

d

dr
Rωl

)
+
r2

Ỹ

1

sin3θ1
∂θ1(sin

3θ1∂θ1Ỹ )+
r2

sin2θ1sin2θ2
∂θ2(sin

2θ2∂θ2Ỹ )

+
r2

sinθ3
∂θ3

(
sinθ3

sin2θ1sin2θ2
∂θ3Ỹ

)
+

1

r4sin2θ1sin2θ2sin2θ3

d2

dϕ2
Ỹ = 0 (217)

where:

r2

Ỹ

1

sin3θ1
∂θ1(sin

3θ1∂θ1Ỹ )+
r2

sin2θ1sin2θ2
∂θ2(sin

2θ2∂θ2Ỹ )+
r2

sinθ3
∂θ3

(
sinθ3

sin2θ1sin2θ2
∂θ3Ỹ

)
+

1

r4sin2θ1sin2θ2sin2θ3

d2

dϕ2
Ỹ = −l(l + 3). (218)

Therefore, the radial equation takes the form:

h(r)

r4
d

dr

(
r4h(r)

d

dr
Rωl

)
+

[
ω2 − h(r)

r2
l(l + 3)

]
Rωl = 0. (219)
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