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Abstract

This thesis presents a measurement of specific branching functions for the decay of
the 𝐵0 meson. The blinded measurement of the relative branching ratio 𝑅𝐾0

𝑆
(𝜇) of the

𝐵0 → 𝜇𝜇𝐾0
𝑆

Flavor Changing Neutral Current (FCNC) decay with respect to the tree-
level resonant decay 𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
, as well as the tree-level decay 𝐵0 → 𝜓(2𝑆) (𝜇𝜇)𝐾0

𝑆

relative to the tree-level decay 𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0
𝑆

is also measured. FCNC processes are
forbidden at tree-level in the Standard Model with branching functions at the order of
magnitude of 10−7 compared to resonant tree-level processes at the order of magnitude
of 10−4. FCNC decays are an important aspect in searching for New Physics beyond
the Standard Model whose effects can affect the value of the 𝑅𝐾0

𝑆
(𝜇) observable that

is measured in this thesis. The data provided for the analysis of this thesis have been
recorded by the CMS experiment at CERN LHC during Run 3 at 2022 with center of mass
energy √

𝑠 = 13.4TeV and nominal integrated luminosity of L = 39.7 𝑓 𝑏−1. This analysis
is part of a bigger ongoing project which aims to probe Lepton Flavor Universality by
studying 𝑏 → 𝑠𝑋 transitions at the CMS experiment at CERN LHC.
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1 The Large Hadron Collider

1 The Large Hadron Collider

1.1 Overview
The Large Hadron Collider (LHC)[1], built by the European Organization for Nuclear
Research (CERN)[2], is a two-pipe ring 27km long superconducting collider designed
to study proton-proton event collisions at extremely high luminosity at the center of
mass energy of 14TeV, operating at a very low temperature of 1.9K assisted by superfluid
helium coolant. Its main purpose is the exploration of electroweak symmetry breaking
via the Higgs mechanism and the search of new physics past the Standard Model, e.g.
Supersymmetry. CERN was founded in 1954 and is currently comprised of 24 member
states and is receiving contributions from other nations around the world in its research
programmes.

Construction of the LHC was authorized by the CERN Council in 1994 and between
1996 and 1998 the four detectors were approved for construction, ALICE, LHCb, ATLAS
and CMS. The LHC’s operation is not perpetual but includes long scheduled stops (shut-
downs) for the machine’s maintenance and upgrades. The first lengthy operation of data
collection, Run 1, started in November 2009 and lasted until 2012, where afterwards the
first shutdown took place. Run 2 lasted from 2015 to 2018 followed by another shutdown.
The LHC operated again in 2022 and is expected to stop at 2024. These three runs
constitute Phase 1 of the LHC, where a shutdown will commence between 2024 and 2027
which will mark the beginning for the first Run of Phase 2. Phase 2 of the LHC is planned
to have a major upgrade to the beam’s luminosity, and is called the High Luminosity
LHC (HL-LHC) upgrade.

The two rings of the LHC are responsible for transporting the two beams throughout
the machine, conveniently named Ring 1 and Ring 2[3]. The beams in the two rings, Ring
1 and Ring 2 are named Beam 1 and Beam 2 and circulate clockwise and counterclockwise
respectively. The two rings are spanned by pipes at ultrahigh vacuum. Particles travelling
inside the beam pipes are controlled by superconducting electromagnets, operating at
-271.3◦C[4] using liquid helium coolant. Different types of magnets are used to guide the
beams of particles throughout the LHC. Specifically, the 1232 dipole magnets 15m long
each are tasked with bending the beam to follow the circular track of the Rings and the
392 quadrupole magnets, each 5-7m long are tasked with focusing the beams. Throughout
the two circular rings of the LHC, there are four Interaction Points (IPs) where the beam
collisions take place. Around these IPs, the aforementioned particle detectors operate.
ALICE and LHCb are referred to as low luminosity experiments, whereas ATLAS and
CMS are referred to as high luminosity experiments.

1.2 Accelerator Complex
This thesis is within the context of the CMS experiment and therefore a small brief
history and description of a proton’s journey throughout the accelerator complex until the
CMS detector is provided. In order for the particles to reach the high energies required for
the experiment, particles are injected in a series of accelerators before they are inserted
into the two rings of the LHC. Before their final injection into the LHC rings, the protons
journey through four accelerators.

The first accelerator that prepares the two final beams in the LHC is the 86m long
Linear Accelerator 4 (Linac4)[5] that boosts negative hydrogen (H−) ions to 160MeV.
Specifically, there are four stages of acceleration throughout Linac4. First, particles from
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1.2 Accelerator Complex

Figure 1.1: Graphic of the CERN Accelerator Complex. Each accelerator may serve multiples
purposes and experiments.

the H− source are accelerated to 3MeV by a RF quadrupole, then to 50MeV via drift tube
linear accelerators, followed by coupled-cavity drift tube linear accelerators to 100MeV
and finally Pi-mode structures accelerate the ions to 160MeV. Before the beam of H−

enters the next accelerator, the Proton Synchrotron Booster, the electrons are stripped
away from the proton nucleus in order to ensure better control of the beam. The Linac4
accelerator replaced its previous iteration, the Linac2 in 2020, which had a source of
hydrogen gas instead of hydrogen ions and a maximum acceleration of 50MeV for the
accelerated protons. Linac4 is a key element in the increase of beam luminosity during
the next LHC upgrades.

The second accelerator tasked with the preparation of the beams is the Proton Syn-
chrotron Booster (PSB)[6]. Constituted from four superimposed synchrotron rings, it
accelerates Protons to 2GeV and prepares the particles for injection into the next acceler-
ator, the Proton Synchrotron (PS)[7]. The PS has a circumference of 628m and accelerates
protons up to 26GeV. A number of 277 conventional room-temperature electromagnets
are used by the machine, including 100 dipoles to bend the beams around its rings.
The final accelerator in the accelerator complex prior the main LHC rings is the Super
Proton Synchrotron (SPS). It is a machine[8] that resembles its predecessor, the Proton
Synchrotron. Constituted by 1317 conventional room-temperature electromagnets and
744 dipoles that bend the ring, it can accelerate protons to energies up to 450GeV. Then
the beams are injected into the LHC two ring pipes and are accelerated to 7TeV.

The radiofrequency (RF) cavities of the LHC are discrete chambers that house oscil-
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1.3 LHC Beam Parameters

lating electromagnetic fields that are used to accelerate charged particles[9]. The LHC
has 16 RF cavities, eight for each ring. The electric field inside a cavity oscillates in
tandem with the incoming charged beam in order to accelerate the beam. Once the beam
reaches the required energy, protons that are ideally focused will no longer accelerate or
decelerate. Protons with energies slightly off the desired energy value eventually stabilize
to the desired value at earlier or later times. At this stage, the protons are grouped into
bunches, forming a discrete but well-focused beam. The beam is characterized by 2808

bunches of protons, with each bunch composed of about 1.64 · 1011 protons, separated by a
time interval of 25ns per bunch. This time interval is referred to as the bunch crossing
time and describes the time interval between two consecutive bunches in a proton beam.
The beam is characterized by its beam parameters, which will change after the Phase
Two upgrade. The maximum beam energy is reached in around 20 minutes of operation
where the bunches have passed through the RF cavities more than 10 million times.

1.3 LHC Beam Parameters
The LHC was designed to discover the Higgs particle which at the time was expected to be
lighter than 1 - 2TeV. The LHC uses two colliding beams each with a 6.7TeV proton energy.
This results to a proton-proton cross section of about 100mb. The beam particles are
chosen to be protons due to their composite structure and their reduced energy loss due
to radiation. The radiation loss of a relativistic particle is given by Lienard’s formula[10]
in SI units:

𝑃 =
𝜇0𝑐𝑞

2𝛾6

6𝜋

(��� ¤®𝛽���2 − ��� ®𝛽 × ¤®𝛽
���2) (1.1)

where 𝛾 is the Lorentz factor and 𝛽 = 𝑣/𝑐. The power radiated perpendicular to the
direction of acceleration is equal to:

𝑃 =
𝜇0𝑐𝑞

2

6𝜋

𝛾2

𝑚2𝑐2

(
d ®𝑝
d𝑡

)2
For a particle performing circular motion of radius 𝑅, the magnitude of the force that is
acted upon it is equal to:

d𝑝

d𝑡
=
𝛾𝛽2𝑚𝑐2

𝑅

which yields the synchrotron radiation loss:

𝑃 =
𝜇0𝑐

5𝑞2

6𝜋

𝐸4

𝑅2

1

𝑚4

where 𝐸 is the energy of the particle. Lienard’s formula for relativistic particles in circular
motion establishes that the radiative power is proportional to 1/𝑚4. This means that
more power is radiated for lighter particles compared to heavier particles with the same
energy, charge and trajectory radius. Massive particles cannot exceed the speed of light
𝑐, therefore a light particle must have increased radiative power loss, dissipating more
energy compared to a heavier particle. The proton beam is mainly characterized by its
instantaneous luminosity L (in SI units 𝑚−2𝑠−1), which is in turn defined by the beam
parameters as shown in table 1.2. Luminosity describes the strength of the beam and
determines the number of events per unit time. The chance of recording rare processes is
increased as the beam luminosity strengthens. Phase 2 of the LHC regards an upgrade
to the beam’s luminosity for this very reason. The instantaneous luminosity is given by:

L =
𝛾 𝑓 𝑛𝑏𝑁

2
𝑝

4𝜋𝜖𝑛𝛽∗
𝐹
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1.4 The Compact Muon Solenoid Detector

Parameter Name Symbol Value
Center of Mass Energy √

𝑠 14𝑇𝑒𝑉

Instantaneous Luminosity L 1034𝑐𝑚−2𝑠−1

Lorenz factor 𝛾 7461

Revolution frequency 𝑓 11245𝐻𝑧

Bunches per beam 𝑛𝑏 2808

Protons per bunch 𝑁𝑝 1.15 · 1011
Normalized transverse emittance 𝜖𝑛 3.75𝜇𝑚

Betatron value at IP 𝛽∗ 0.55𝑚

Reduction Factor 𝐹 0.81

Bunch crossing time 𝜏𝑏 25𝑛𝑠

Figure 1.2: Some of the proton-proton beam parameters of the LHC beam[11][12].

The number of events per second 𝑑𝑁/𝑑𝑡 generated in the LHC collisions in the IPs is
related to the instantaneous luminosity L and is given by:

d𝑁

d𝑡
= L𝜎

where 𝜎 is the cross section of the event, which is nominally equal to as 100mb. The high
luminosity creates a problem. Among the interesting hard collisions and reactions, there’s
always the presence of soft, low energy collisions. This presence of the soft collisions is
called a pileup (PU) and is responsible for data contamination and further introduction
of measurement uncertainty. Furthermore, pileup makes the identification and recon-
struction of various physics objects (like trajectories and physical quantities) tedious.
In the LHC, the beams collide every Δ𝑡 = 25𝑛𝑠, which for the aforementioned nominal
instantaneous luminosity and cross section, the number of collisions Δ𝑁 is nominally
equal to:

Δ𝑁

Δ𝑡
= L𝜎 ⇒ Δ𝑁 = 25 events every 25ns

The total amount of data collected is associated with the integrated luminosity:

𝐿 =

∫
L 𝑑𝑡

with associated units fb−1 = 10−39cm−2. The luminosity of the LHC is not constant over
time. During the operation of the machine in a Run, the luminosity slowly increases to its
maximum value. This is done in order to carefully monitor the experiment and identify
any signs of damage or component misconfigurement in the machine. The highest value
of luminosity achieved in CMS during Run 3 in 2022 was 39.7fb−1. During Run 3 in
2024, the LHC machine has provided CMS with a record-breaking luminosity of 88.9fb−1.
The general discussion of the LHC is now over and discussion on one of the four main
detectors, the CMS, will now commence.

1.4 The Compact Muon Solenoid Detector
The Compact Muon Solenoid (CMS) detector[13][14] operated by the CMS Collaboration
has been commissioned at IP5. It is a general-purpose detector and is used for studying
the Standard Model as well as for providing additional searches for physics beyond the
Standard Model, such as signatures that predict dark matter particle candidates and
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1.4 The Compact Muon Solenoid Detector

extra dimensions. The detector is built around the usefulness of the muon, an elementary
lepton. Due to their higher mass than the electrons, are highly penetrating particles and
therefore can be detected easily. Muons originate from decays of heavy particles as well
as other exotic particles and therefore can be used as signatures of new physics. Due
to the construction of the detector, muon identification is excellent. In this section an
overview of the detector’s geometry and its main components will be given.

Figures 1.3 and 1.4 show a visual description of the detector. The CMS detector
is of hermetic cylindrical geometry and is 21.6m long, with a maximum diameter of
14.6m. Surrounding the IP, in the heart of the detector, lies the Pixel Detector, a primary
component of the Silicon Tracker. These detectors provide the appropriate precision for
particle detection and aid the measurement of the position of secondary vertices and
the impact parameter 𝑏 of charged particle tracks, two important quantities for analysis.
Extending outwards, immediately follows the compact Electromagnetic Calorimeter
(ECAL) along with the Preshower Detector (shown in figure 1.3), which surrounds the
silicon tracker, tasked with the detection of electrons and photons, spanning a thickness
greater than 25 radiations lengths. The Hadronic Calorimeter (HCAL) engulfs the ECAL
and is solely responsible for the detection and halt of hadrons. These two calorimeters
are encased within the solenoid magnet, which generates a high magnetic field strength.
Lastly, the Muon Detectors are part of the Muon System which is tasked with the detection
of muons, the experiment’s primary point of interest. The Very Forward Calorimeter is
an additional detector that succeeds the Muon chambers and detects particles for very
large 𝜂.

Figure 1.3: Mechanical Geometry of the CMS detector including key parts in perspective view.
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1.4 The Compact Muon Solenoid Detector

Figure 1.4: Cross-sectional radial view of the CMS detector showcasing each major subsystem.

1.4.1 Superconducting Solenoid Magnet

CMS uses a 4T magnetic field which results to the momentum resolution of Δ𝑝/𝑝 of 1%
at momenta of 200𝐺𝑒𝑉/𝑐. The superconducting solenoid magnet is comprised of Niobium-
Titanium (NbTi) superconducting strands, a high purity Aluminum (Al) stabilizer and
an aluminum alloy reinforcement[15]. The superconducting stands (SC strands) have a
critical current of 55kA at 4.2K and 5T, and a rated current of 19.14kA. The high purity
Al stabilizer surrounds a Rutherford-type cable comprised of 32 SC strands. The choice
of Al to serve as the stabilizer is due to the low compacting ratio to ensure small critical
current degradation. The Al alloy AA 6082 mechanically reinforces the structure into a
cold mass[14] (figure 1.5a) weighing 220t and radiation length 3.9𝑋0 which provides a
uniform magnetic field strength of 3.8T and stored energy per unit cold mass 11.6kJ/kg
within the solenoid.

The CMS solenoid is powered by a bipolar thyristor power converter at 520kW with
the aid of passive L-C filters, covering a range of voltages between -23V to +26V and a
nominal electrical current of 19.1kA. The high value of the stored energy per unit of cold
mass results in high hoop strain 𝜖 of 0.15%. This magnetic field strength is achieved by a
four layer winding of Rutherford-type cable which corresponds to a total magnetomotive
force of 41.7MA-turns and constitutes the cold mass of the solenoid magnet. The solenoid
has a diameter of 6.3m and a length of 12.5m and weighs 220 tons, parallel to the beam
pipe.

A 10000 ton iron yoke comprised of two endcaps and a barrel weighing 2000t and
6000t each is installed to support the detector outside the Hadronic Calorimeter and to
return the field back in the opposite direction according to Maxwell’s equation ®∇ · ®𝐵 = 0.
The yoke is the frame of the magnet and is responsible for the support of the entire
apparatus of the CMS and includes the coil and the cryostat. Each endcap is composed
of three endcap disks and the barrel is composed of five barrel wheels (Fig. 1.5b). This
choice of layered structure allows the insertion of muon chambers which are supported
by the return yoke.
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1.4 The Compact Muon Solenoid Detector

The solenoid also houses other mechanical geometries such as a vacuum system for
the insulation of the cryostat and transportation of the liquid helium cooling, a grounding
circuit, a cryogenic plant which prepares the coolant and a quench detection system,
responsible to combat the quench back effect. The quench back effect describes induced
surface eddy currents that form at the trigger of a current fast discharge which can heat
up the coil above the superconducting critical temperature, removing the superconducting
properties of the magnet for an extended period of time. Electrical protection circuits have
been installed in order to prevent local overheating near the superconducting wirings.

(a) Cross section of the cold mass with the
details of the 4-layer winding with reinforced
conductor.

(b) 3D Model of the five wheels of the cold
mass barrel inside the iron return yoke.

Figure 1.5: Two components of the Superconducting Solenoid Magnet.

1.4.2 Inner tracking system

The inner tracking system[14][16] covers the interaction point with a diameter of 2.5m
and longitudinal length of 5.8m and is primarily responsible for the precise measurement
of charged particle trajectories and the reconstruction of secondary vertices, as well as the
primary proton-proton interaction point of each event. The high magnetic field strength
of the solenoid and the high luminosity of the LHC impose stringent constraints on
detector electronics. Furthermore, due to the high flux of particles per bunch crossing, the
tracking system must be able of resolving and identifying events and trajectories with high
resolution. Additionally, the design of the tracker must use as little material as possible,
so that particles cannot further damage the tracking system. All these requirements led
to the choice of silicon detector technology for the tracker. The tracker is composed of a
pixel detector with four barrel layers and a silicon strip tracker with ten barrel layers.
Two endcaps complete each of the two subsystems, providing a pseudorapidity range of
|𝜂 | < 2.5. The active detector area is 200m2.

The Pixel Detector The pixel detector provides high accuracy for particle path tracking
and path reconstruction and is the part of the tracking system closest to the Interaction
Point of the detector, covering 1.06m2 for a total of 66 million pixels. A pixel’s composition
includes a common silicon detector imbued with readout electronics, resulting in a very
thin layout. Charged particles passing through the silicon pixels are identified by an
electric signal which is created by electron-hole pairs created in the pixel’s material
resulting into currents which are processed by the electronics to measure the position
that each particle crosses the silicon detector. The presence of the silicon pixels throughout
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1.4 The Compact Muon Solenoid Detector

Figure 1.6: Schematic cross section through the inner tracking system. Each line represents a
detector module.

the tracker provide precise information for particle trajectory reconstruction. In figure 1.6,
at radii 4.4, 7.3 and 10.2cm, three cylindrical layers of hybrid pixel modules containing
48 million pixels spanning a total area of 0.78m2 surround the IP, complemented by two
disks of pixel modules on each side, at z=±34.5cm and z=±46.5cm, containing 18 million
pixels spanning a total area of 0.28m2.

Figure 1.7: Coverage of the Pixel Detector in 𝜂. The three cylindrical layers and the two disks are
shown.

The Silicon Strip Tracker Following the pixel detector, ten layers of n-doped silicon
strip trackers are installed in the experimental apparatus in the barrel region. At this
point, the outermost radius reaches about 20-116cm. The strip trackers are placed in four
different regions as shown in the schematic of Fig. 1.6, namely, the tracker inner barrel
(TIB), the tracker disks (TID), the tracker outer barrel (TOD) and the tracker endcaps
(TEC). These four distinct areas packed with the strip detectors enclose the pixel system
and the interaction point. The silicon strip tracker has a total of 9.3 million strips and
198 m2 of silicon area.

The TIB and TID regions have a maximum radius of 55cm and are composed by 4
barrel layers and three supplemental disks respectively. Due to the 4 barrel layers, they
are able to provide up to 4 measurements in radius r and azimuthial angle 𝜙 (r-𝜙) using
silicon micro-strip sensors parallel to the beam axis. The strip pitch in he TIB region is
different between the first and last two layers, leading to a single point resolution of 35𝜇m
and 23𝜇m respectively. The TOB region extends from 55cm to 116cm and up to ±118cm
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on the beam axis and consists of 6 barrel layers providing up to 6 r-𝜙 measurements with
single point resolution of 35𝜇m and 53𝜇m for the first two innermost layers and the four
outermost layers respectively. The two TEC regions enclose the aforementioned geometry
with two endcaps with 𝑧 ∈ [124, 282]cm and 𝑟 ∈ [22.5, 113.5]cm. Each TEC is composed of
9 disks, providing up to 9 measurements of 𝜙.

The first two layers and rings of TIB, TID and TOB and three disks in the TEC regions
carry a second micro-strip detector module to measure the second coordinate, which is
𝑧 for the barrel regions and 𝑟 in the disks. In TIB and TOB, the single point resolution
varies between 230-530𝜇m. This layout of the tracker ensures about 9 hits within |𝜂 | < 2.4

with about 4 of them being two dimensional measurements due to the second coordinate
measurement. The tracker sensors are cooled to protect them from radiation damage and
other harmful effects.

1.4.3 Electromagnetic Calorimeter

The Electromagnetic Calorimeter (ECAL)[17][11] is a homogenous, hermetic and fine-
grained calorimeter, composed of lead tungstate 𝑃𝑏𝑊𝑂4 scintillation crystals in both of
its barrel part and the two endcaps. The ECAL encloses the silicon tracker extending
outwards. The high mass density (8.28 g/cm3), radiation hardness, short radiation length1

𝑋0 (0.89cm) and the Moliere radius2 of the scintillation crystals 𝑅𝑀 (2.19cm), constitute
the crystals as a perfect fit for the CMS detector, making the ECAL so compact that it
can fit inside the superconducting solenoid. Furthermore, the scintillation decay time
is in the same order of magnitude as the bunch crossing time of 25ns (40MHz), with
80% of the photons emitted within 25ns. The energy resolution of the barrel region’s
supermodules for energies below about 500𝐺𝑒𝑉 , is given by the relation:(𝜎

𝐸

)2
=

(
2.8%
√
𝐸

)2
+

(
12.4%

𝐸

)2
+ (0.26%)2

The relation is due to fitted incident electron data from 3×3 arrays centered on a EB
crystal with beam hodoscope cuts of 4×4 mm2[18]. The first term is the stochastic term,
where photostatistics, event-to-event fluctuations and measurements in the preshower
detector contribute. As for the second term represents the contributions of noise from
the electronics and digitization, as well as particle pileups. The last term represents the
non-uniformity of different detector elements.

The Barrel Region The composition in the barrel region (EB) covers the pseudorapid-
ity range |𝜂 | < 1.479 and is characterized by the 36 crystal supermodules, with each
supermodule containing about 1700 crystals bringing the crystal total to 61200. This
categorization of modules allows stability, weight control and enables flexible handling
in cases of various moderation services, like cooling and maintenance. Each crystal has a
front face cross section of about 22×22mm2, a rear face cross section of 26×26mm2 and a
radiation length of 25.8X0 (which corresponds to a length of 230mm). The granularity in
𝜙, 𝜂 is 360-fold and 2×85-fold respectively. These crystals are purposefully misaligned by
3◦ with respect to the line segment between the cross sectional face center and IP.

The Endcap Region The endcaps (EE) cover the region of pseudorapidity between
the EB region to |𝜂 | < 3.0 and are placed 315cm from the IP along the beam axis. Each

1defined as the mean length at which the energy of an electron is reduced to a factor 1/e of its energy
2defined as the radius of a cylinder containing on average 90% of the shower’s energy deposition
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Figure 1.8: Detailed schematic of the ECAL. The three primary regions (not explicitly denoted
in this figure) are the barrel region (EB), endcap region (EE) and the preshower detector (ES).
Components across these regions are shown in the schematic.

of the two endcaps is divided into two halves, the Dees, in which the supercrystals,
an arrangement of 5 × 5 crystals and have a front face cross section of 28.6×28.6mm2,
radiation length 24.7𝑋0 (length 220mm) and are placed in a rectangular grid (x-y) as
opposed to a radial grid (𝜂-𝜙) as constructed in the EB. Each Dee is comprised of 3,662
crystals, summing to a total of 14,648 crystals across all four Dees. The two regions
combined bring the total amount of crystals to 75,848. The ECAL’s outer radius reaches
177𝑐𝑚 from the central interaction point at this stage.

The Preshower Detector Lastly, the preshower detector (ES), preceding the endcaps
inward, aims to identify light neutral pions in the endcaps of the ECAL in the pseu-
dorapidity range 1.653 < |𝜂 | < 2.6 as well as aiding the identification of electrons against
minimum ionizing particles. Since the most common decay mode of a 𝜋0 is to 𝛾𝛾 (98.823 ±
0.034 %)[19], this detector aims to distinguish whether the incoming photons came from
the neutral pions or some other event. With a thickness of 20𝑐𝑚, this sampling calorimeter
is characterized by a layer of lead radiator and a layer of silicon sensors. The first layer
is responsible for causing electromagnetic showers from incident photons or electrons
throughout the ES. The latter layer is composed of silicon strip sensors that measure the
energy deposited along with transverse shower profiles. Each silicon sensor has an active
area of 61×61mm2, thickness of 320𝜇m and is divided into 32 strips of 1.9mm pitch each.
A normal incident minimum ionizing particle will deposit ∼3.6fC in the sensor.

The 𝑃𝑏𝑊𝑂4 crystals The 𝑃𝑏𝑊𝑂4 crystals emit blue-green light (420nm) when scintil-
lated and its intensity varies with temperature at a rate of -1.9%/◦C at the operational
temperature 18◦C, the 𝑃𝑏𝑊𝑂4 crystals are maintained at a constant temperature of 18◦

to high precision (within ±0.05◦C), with minimal fluctuation from that value. Due to
the conditions of the experiment, the crystals are subject to radiation damage. Ionizing
radiation produces absorption bands in the lattice, causing wavelength-dependent losses
of light transmission due to those absorption bands. This damage is investigated via
monitoring the optical transparency through injected laser light.
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Figure 1.9: Transverse geometry of the ECAL, including the pseudorapidity ranges for the three
regions (EB, EE, ES). A quarter of the transverse cross sectional view is shown.

The Photodetectors The presence of photodetectors with intrinsic gain which operate
within a magnetic field are necessary since the scintillators previously described output
a low light yield signal of about 30𝛾/MeV. Therefore, appropriate photodetectors must be
used depending on the geometry of the experiment in order to amplify, and eventually
digitize the signal. The EB and EE regions are equipped with photodetectors but of
different types. A pair of avalanche photodiodes (APDs, figure Fig. 1.10, left) is attached
on each crystal of a supermodule in the EB, whereas in the crystals in the EE, vacuum
phototriodes (VPTs, figure Fig. 1.10, right) are used instead and a single one is attached
at the back of each crystal as opposed to a pair of APDs in the EB. The APDs have an
active area of 5×5mm2, quantum efficiency of 75 ± 2% at 430nm and a mean gain of 50 at
the operating temperature of 18◦. The choice of the single gain stage VPTs is due to the
high radiation close to the endcaps, where APDs can not operate and were specifically
designed for the CMS experiment and its harsh operating conditions. Each VPT is 25mm
in diameter, has a mean quantum efficiency 22% at 430nm and a mean gain of 10.2 at 0T.
The magnitude of the magnetic field of the CMS at 4T negatively affects the response of
the VPT along the EE region. For a VPT with its axis 15◦ with respect to the ®𝐵 direction,
the mean response is 94.5% of the zero magnetic field.

Figure 1.10: Left, Hamamatsu type S8148 reverse structure APD for the EB region and type PMT188
from JNC NRI Electron VPT for the EE region. The socket for the APD is also shown on the left
side of the figure.

The ECAL is subjected to a cooling system that extracts the dissipated heat by the
electronics. In the barrel of the calorimeter, each supermodule is directly supplied with
water at the aforementioned temperature through a thermal screen between the crystals
and the outer part of the silicon tracker. What’s more, a thick layer of insulating foam
is placed between the crystals and the electronics which carry the signals to prevent
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overheating from high power consumption.

1.4.4 Hadronic Calorimeter

The Hadronic Calorimeter (HCAL) is a sampling calorimeter and can identify and measure
the energy and direction of particle jets and provide data on missing transverse energy in
events, in conjunction with the ECAL. The HCAL, akin to the ECAL, is also separated into
specialized geometrical regions[11], namely the Hadron Barrel (HB), Hadron Endcaps
(HE), Hadron Outer (HO) and Hadron Forward (HF). All but one of the HCAL regions (the
HO) are placed inside the Superconducting solenoid. The mechanical design of the HCAL
is determined by the need to absorb hadrons between within the limited region inside the
Superconducting Solenoid. For this reason, the HCAL is designed to have an absorber
thickness of 5.82 interaction lengths3 at 𝜃 = 90◦ and increased to 10.6 interaction lengths
at |𝜂 | = 1.3[21]. The increase in the interaction length leads to less interactions between
particles and the material and therefore the reduction of the tails of the energy resolution
function[11]. The active material is Kuraray SCSN81 plastic scintillator, chosen for its
long-term stability and moderate radiation hardness. There are two types of absorber
material used in the HCAL. The first absorber material is a flat brass alloy (known as
C26000/cartridge brass[22], nominally 70%Cu and 30&Zn with mass density 8.53g/cm3)
due to its short interaction length4 and its non-magnetic property. The second material
is stainless steel and is primarily used for structural support.

Figure 1.11: Longitudinal cross-sectional view of the HCAL and its four components. The range in
𝜂 is shown. The purple regions are the Muon Chambers.

The Hadron Barrel The Hadron Barrel (HB) region consists of two equal face-cut
halves covering the pseudorapidity region |𝜂 | <1.4 and extends from 177.7cm to 287.65cm
outwards. Each half barrel is composed of 18 identical 20◦ brass alloy absorber plate
wedges in 𝜙. The combination of the two barrel halves results in 18×20◦=360◦ in 𝜙. Sev-
enteen layers (labeled as Layers 0-16), encompass the plastic scintillator active material

3defined as the mean free path between two inelastic interactions[20]
4the absorber must have a short interaction length in order to stop particles.
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and are interspersed between the absorber material plates with variable thickness per
barrel half. The Scintillator Layer 0 follows directly after the ECAL and has a scintillator
thickness of 9mm and is separated by a 61mm stainless steel absorber, Layers 1-8 are
3.7mm thick, separated by 50.5mm thick brass absorber, Layers 9-14 are 3.7mm thick,
separated by 56.5mm thick brass absorber, Layer 15 is 3.7mm thick, separated by a
75mm stainless steel absorber, followed by the last layer, Layer 16 which is 9mm thick.
The innermost and outermost absorber layers are made of stainless steel and not brass
for structural strength. Furthermore, the increased thickness of the scintillator Layers 0
and 16 is to actively sample low energy showering particles from the support material
between the ECAL and HCAL[11] and correct for late developing showers leaking out
from the HB[22]. Lastly, the active material of Layer 0 is Bicron BC408 instead of the de-
fault choice Kuraray SCSN81[22]. Scintillator tiles are made from 10mm active material
plates. Wavelength Shifting Fibres (WLS) are intertwined inside the tile and lead the
light captured from the scintillator active material to hybrid photodiodes (HPD) with a
gain of ≈2000 to prepare the signal for the readout electronics. All tiles in a 𝜙 sector are
grouped together and form a mechanical unit called a tray. Trays can be replaced without
disassembly of the absorber of an HCAL region for maintenance. Trays are inserted in
the absorber geometries of each region, except for the HF. The energy resolution of the
ECAL+HCAL is expressed by the following relation[23]:

Figure 1.12: Face cross-sectional view of the HCAL, showcasing the 18 wedges.

(𝜎𝐸
𝐸

)2
=

(
84.7%
√
𝐸

)2
+ (7.4%)2

where the terms have been described in the section regarding the ECAL’s energy res-
olution. The electronic noise is negligible and is not taken into account. The relation
for energy resolution comes from the combined efforts of the ECAL and HCAL and not
using the HCAL individually, as the hadronization process can start before the radial
geometrical coverage of the HCAL. The above relation describes the energy resolution
for pions after non-linearity corrections (the stochastic term is reduced from 110.7% to
84.7%)[23].
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The Hadron Endcaps The Hadron Endcaps (HE), composed of the same brass absorber
as of the two HB regions[22], cover the pseudorapidity range 1.3< |𝜂 | <3.0 and must
withstand tough conditions to operate, such as high particle counting rates and high
radiation tolerance and are attached to the muon endcap yoke. At the front face of the
HE, two ECAL components, the EE and ES are attached. The HE is composed of 79mm
thick brass plate disks with 9mm gaps in between them to house plastic scintillators
trays of the same material as in the HB region. The WLS fibres inside the scintillator
tiles shift the wavelength of the captured light and optical cables transfer signals from
the trays to multipixel hybrid photodiodes (HPDs) in order to digitize the signal for the
readout electronics. The choice of HPDs as photodetectors is due to their low sensitivity
to magnetic fields and large dynamical range. The granularity of the HB calorimeters is
variable, Δ𝜂 × Δ𝜙 = 0.087×0.087 for |𝜂 | <1.6 and Δ𝜂 × Δ𝜙 ≈0.17×0.17 for 1.6< |𝜂 | <3.0.

The Hadron Outer Detector The Hadron Outer (HO) detector comprises of scintil-
lators and its purpose is to detect charged particles that leak out of the HCAL. For this
reason, it is placed outside of the Superconducting Solenoid and inside the Barrel Muon
System, covering the pseudorapidity range |𝜂 | < 1.26. The HO is divided into 5 sections
along the beam axis, called rings with labels -2, -1, 0, 1, 2 at positions in 𝑧 -5.342, -2.686m,
0m, +2.686m, +5.342m respectively[22]. Each ring has a single layer of scintillators at
a radial distance of 409.7cm and a beam axis length of 2.5m, except for Ring 0, which
has an additional scintillator layer at a radial distance 385.0cm. These two layers are
separated by an iron absorber with an approximate thickness of 18cm. The 10mm thick
scintillators sample the energy from penetrating hadron showers leaking through the
rear of the calorimeters and increase the effective thickness of the hadron calorimetry to
over 10 interaction lengths.

The Hadron Forward Detector The Hadron Forward (HF) calorimeters cover the
pseudorapidity range of 3.0< |𝜂 | <5. The faces of the HF detectors are located at ±11.2m
from the IP and the depth of the steel absorbers is 1.65m (about 10 interaction lengths).
Fibres are inserted inside the absorber. Two sets of fibres are placed within this detector
one set covering the full depth, and the other set covering half the depth, starting 22cm
from the face of the HF. These two sets, which are readout separately, is to distinguish
showers between electrons and photons (first set, labeled L for long) and hadrons (second
set, labeled S for short). The former particle showers deposit a large part of their energy
at the first 22cm of the detector, where the L set is responsible for their measurement,
whereas the latter produce nearly equal signals throughout the absorber material depth,
and therefore the S set is used. Both HF regions are also divided to 36 total 20◦ wedges.
The task of the two HF detectors is to measure energetic forward jet profile and increase
the hermeticity of the missing transverse energy measurement. The active material of
this calorimeter is composed of steel/quartz fibre. It is very radiation-hard and therefore
can survive in the extreme conditions at high 4.5< |𝑒𝑡𝑎 | <5. A 10cm thick lead plate,
located in front of HF around the detector reduces exposure to radiation from the absorber.
The signal is collected from Cerenkov light emitted in the fibres and then processed by
photomultipliers. The diameter of the fibres is 0.6mm and they are placed in a square
grid 5mm apart, parallel to the beam line.
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1.4.5 Muon System

The engineering of the CMS experiment has been specifically designed so that the Muon
System will measure muons with extreme precision through their trajectory curvature.
While the ECAL can measure photons and electrons, which are very lightweight particles,
muons are the most penetrating particles and are measured in this detector which
succeeds the HCAL after the solenoid. Furthermore, over the high background rate at
the nominal operational luminosity of the LHC, muon detection is a powerful tool for
the recognition of signatures of interesting processes, such as 𝐻0 → 𝑍0𝑍0 → 𝑙+1 𝑙

−
1 𝑙

+
2 𝑙

−
2 or

Supersymmetry (SUSY) signatures. Three types of gaseous particle detectors for the
identification of muons are used, namely Drift Tubes (DTs), Cathode Strip Chambers
(CSCs) and Resistive Plate Chambers (RPCs). More information on the geometry and
schematics of the components can also be found in [11] and [24].

The Barrel Region The barrel detector geometry is composed of four muon stations[11]
that extend outwards of the magnet solenoid, built-in within the iron return yoke. The
return magnetic field of the yoke provides for an additional momentum measurement for
the muons. The drift tubes (DTs), exclusive to this geometrical region of the Muon System,
and the RPCs, are responsible for the measurement due to the uniform magnetic field
and low muon rates. Electrons originating from excitations of the atoms of the Ar/CO2

gas mixture inside the tube start an avalanche. The position of the incident muon can be
calculated using the drift velocity and the time that electrons take to reach the anode
wire[25]. The curvature of the path of the muons is measured by the hits on the four
station detectors, thanks to the return ®𝐵, where the momentum of a muon is inferred.
The pseudorapidity range in this sector is up to |𝜂 | < 1.2.

The four muon stations of 250 chambers are divided into five wheels (labeled as YB+2,
YB+1, YB+0, YB-1, YB-2) across the beam axis 𝑧, similar to the rings of the Hadron
Outer (HO) system. Each wheel, in turn, is divided into 12 sectors, covering a 30◦ 𝜙
angle. All chambers are 40cm shorter along the beam direction in wheels YB+1 and YB-1
as these wheels host the chimneys for the magnet cryogenic lines. In each wheel, the
two innermost stations, labeled MB1 and MB2 are constructed of a DT chamber placed
between 2 RPCs. For the two outermost stations, MB3 and MB4, a DT chamber is coupled
to a layer made of one, two or four RPCs, depending on the wheel and station. See figure
1.13 for a schematic.

The Endcap Region The Endcap Region is exposed to high particle flux and a non-
uniform magnetic field. 468 Cathode strip chambers (CSCs)[11], exclusive to this geomet-
rical region of the Muon System due to the high radiation, non-uniform magnetic field
and high muon rates are used in conjunction with RPCs in this detector which covers
a pseudorapidity range of 0.9 < |𝜂 | < 2.4. A CSC is constituted by an array of anode
wires perpendicularly crossed against an array of cathode strips within a gas mixture of
Ar/CO2/CF4 (nominally 30%/50%/20%). Muons passing through the CSC detach electrons
from the gas which in turn are attracted towards the positively charged anode wires.
The positive charged ions of the gas move towards the cathode strips[26]. An RPC is
made from two parallel plates of high resistivity material, the anode and the cathode,
separated by a a thin volume of gas mixture of C2H2F4/i-C4H10 (nominally 95.5%/4.5%).
A travelling muon ejects electrons from the gaseous material. The electrons start an
avalanche of electrons, which in turn give hits to the external metallic strips behind the
resistive plates. The identification of electrons forms a pattern and the momentum of the
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muon is inferred. The RPCs have excellent time resolution of 1ns[27]. Like the Barrel
Region, four stations (labeled ME1, ME2, ME3, ME4 in order of increasing distance in
the beam axis) of chambers are mounted on the disks which enclose the CMS magnet.
Each disk is divided into 2 concentric rings around the beam axis, with the exception of
chambers ME1 which is divided into 3 rings.

The Gas Electron Multiplier (GEM) chamber[28] is a new addition installed in Run 2
in the Muon System. The role of the new GEM detector in the first muon station in the
endcap region is to maintain and improve the forward muon triggering and reconstruction
in the region 1.6 < |𝜂 | < 2.2 in the face of high luminosity[29]. GEMs are gaseous detectors,
using a gas mixture of Ar/CO2. A 50𝜇m thick insulating polymer with microscopic holes
is etched in a regular hexagonal pattern and is surrounded by copper conductors. The
GEM chambers consist of foils along with the gas mixture. A voltage is applied at the
copper conductors, generating sharp electric fields in the holes. Travelling muons eject
electrons from the gas which are then drifted to the foils and multiplied at the holes. The
induced electron avalanche is read out by electronics.

Figure 1.13: Longitudinal cross sectional view of the Muon System. Each region is color coded. In
the endcap region, the components that are expressed in the form X/Y denote the disk muon station
number (X) and the ring muon station number (Y). The chambers GEM1/1, GEM2/1, ME0 and
the iRPCs (improved RPCs) are upcoming LHC Phase-2 upgrades.[30]

Momentum Measurement The Muon System is optimized for measurement of 100GeV
𝑝𝑇 muons. The momentum measurement accuracy using the Muon System is limited by
several factors[24].

• Multiple scattering in the calorimeters and in the thick steel plates separating the
muon stations

• The intrinsic resolution of the detectors

• Extreme energy loss, e.g. hard photon Bremsstrahlung
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• Extra detector hits generated by muon radiation, 𝛿-rays and various background
types

• Chamber and component misalignment

• ®𝐵 field uncertainty

Low 𝑝𝑇 muons have greater track curvature due to the magnetic field which improves
the momentum estimate. However, the mean multiple scattering angle (a non-Gaussian
effect) is inversely proportional to momentum, increasing the deflection of the trajectory
for small 𝑝𝑇 as the particle passes through absorber material[24]. The momentum error
is said to be multiple scattering limited if this effect dominates. Muon tracks at 10GeV are
used to explore this effect. By increasing the track momentum above this effect, the error
is labeled measurement limited and increases linearly with 𝑝𝑇 . High momentum muons
lose energy via secondary radiation more often, skewing the 𝑝𝑇 measurement towards
lower 𝑝𝑇 . This radiation creates background effects along with the muon measurement,
worsening the measurement. This secondary radiation effect has larger errors than the
multiple scattering effect and position measurement in the chambers. The momentum
measurement can be studied via the momentum 𝑝𝑇 residual

Δ𝑝𝑇

𝑝𝑇
=
1/𝑝meas

𝑇
− 1/𝑝gen

𝑇

1/𝑝gen
𝑇

and fitting a Gaussian to this event distribution. The width of the fitted Gaussian distri-
bution is the residual error estimate[24].

Figure 1.14: 1/𝑝𝑇 residual distributions for 1TeV muons. a) The distribution is fitted by an un-
constrained Gaussian. b) The distribution is fitted by a constrained Gaussian, where its mean
parameter is zero. The presence of events on the right of the fitted constrained Gaussian tail denotes
the catastrophic energy loss due to underestimating the value of a 𝑝𝑇 track[24].
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1.4.6 Trigger System

The trigger system is tasked to reduce the high number of data intake before offline
storage[11]. A large amount of the proton beam collision event data is of mundane interest
to the experiment and since data storage speed and capacity is technologically limited,
a mechanism that is responsible for the rejection of data online is imperative to the
experiment. This event selection process, the CMS Trigger System[31], is divided into
two main steps, the Level-1 (L1T) Trigger which reduces the event rate from 40MHz to
about 100kHz, and the High-Level Trigger (HLT) which reduces the event rate further
down to about 1kHz during Run 2.

The L1 Trigger The L1 Trigger system is based on FPGA technology which allows to
reprogram its algorithms according to the needs of the experiment. The data from the two
main calorimeters (ECAL, HCAL) and the Muon System are fed into this system. In order
to process and decide how to reject incoming data, low resolution objects that describe
physical quantities and particles called L1 candidates, such as photons, electrons, muons
and jets satisfying requirements and thresholds are formed. Typical thresholds are the
𝐸𝑇 and 𝑝𝑇 quantities. The L1 Trigger also constructs global sums of 𝐸𝑇 and 𝐸miss

𝑇
(referred

to as Missing Energy Transverse - MET). The L1 Trigger limits the data output rate
according to the upper limit imposed by the CMS readout electronics at about 100kHz,
before the data is passed into the next level in the Trigger system. The hardware system
collects the information from the calorimeters and the muon detectors (figure 1.15) and
decides whether to roughly accept or reject track candidates or events using quality factor
criteria.

The Calorimeter Trigger consists of two Layers (figure 1.15, right). Inputs to Layer 1
are Trigger Primitives (TPs) from the ECAL and HCAL detectors, which are the measured
energy deposits, which are calibrated and sorted by Layer 1. Layer 2 reconstructs and
calibrates physics objects such as electrons, tau leptons, jets and energy sums from the
calibrated TPs from its previous Layer as input. A demultiplexer (DeMux) board reformats
the data of the event in such a way that the Global Trigger can process them.

The Muon Trigger architecture is shown in the left of figure1.15. The TPs consist
of coordinates, timing and quality information from the Muon System detector. The
TwinMux layer merges and refines barrel muon detector TPs into superprimitives, which
are assigned a quality factor and sends them as input to the Barrel Muon Track Finder
(BMTF). The TwinMux also sends the original TPs into the Overlap Muon Track Finder
(OMTF). The CPPF[31] (figure 1.15, left) clusters RPC hits in the endcap detector and
computes the 𝜃 and 𝜙 coordinates and passes its output to the Endcap Muon Track Finder
(EMTF). The BMTF, EMTF and OMTF take processed inputs from components in the
barrel detector (RPCs, DTs), the endcap detector (RPCs, CSCs) and from all components
respectively. Each track finder builds muon track candidates, assign a quality factor to
the track, measure the charge and 𝑝𝑇 of each candidate muon. The Global Muon Trigger
(𝜇GMT) receives input from the aforementioned track finders. It sorts the candidate
muons, removes possible duplicates and corrects the spatial coordinates of each muon
candidate by extrapolation. It provides a track quality to the Global Trigger (𝜇GT) for
specific trigger paths for data analyses and takes the processed information from the
Calorimeter Trigger and the Muon Trigger.

The High Level Trigger Unlike the L1 Trigger, the HLT is a software system primarily
composed of algorithms running on commercial processors. These algorithms run on an
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Figure 1.15: Diagram of the upgraded CMS L1 Trigger system during Run 2[31]. The abbreviations
correspond to: Trigger Primitive (TP), Cathode Strip Chamber (CSC), Drift Tube (DT), Resistive
Plate Chambers (RPC), Concentration Preprocessing & Fan-out (CPPF), Hadron Barrel (HB),
Hadron Endcap (HE), Hadron Forward (HF), Demultiplexing card (DeMux).

event filter farm, located on a single machine running the Scientific Linux OS which is
composed of at least 13000 CPU cores[32]. The data output rate from the previous level is
reduced to just about 1𝑘𝐻𝑧 for offline storage. The modular structure of trigger paths,
which are sequences of reconstruction and filtering blocks of increasing complexity, aim
to optimize the processing time. If an event does not pass the filter, subsequent filters are
not checked and the event along with its physics objects is rejected. A Physics object can
be reconstructed with different methods, sometimes with two methods. The Particle Flow
(PF)[33] algorithm is used to reconstruct hadronic 𝜏, jets and MET. Jets, MET, electrons
and photons as well as muons are reconstructed from clusters of ECAL and HCAL energy
deposits. Other methods of reconstruction or identification include a neural network
based classifier (Deep Combined Secondary Vertex) for 𝑏 tagged jets[34]. Disks contain
the processed data after the reconstruction in their final format and can be distributed
to various groups of scientists for analysis. Data Scouting is a method where a small
summary of the reconstructed event quantities is saved, reducing the event size, which
allows recording events with a higher rate, allowing loosened filters. Another method that
increases the amount of data throughout a Run is Data Parking, where data is ”parked”
(saved) on a disk where physics objects are not reconstructed. The reconstruction can be
performed whenever the LHC is on a Shutdown period. The HLT algorithm software is
similar to the software used for offline analysis.
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2 The Standard Model

2 The Standard Model

2.1 Overview
The Standard Model of Particle Physics is the currently accepted model that describes the
fundamental constituents of the Universe[35] and their interactions excluding Gravity. It
is the result of the accumulation of years of theoretical and experimental work and marks
the baseline for current research in High Energy Physics. According to the Standard
Model, there are 17 elementary particles responsible for making up the more composite
systems, ranging from the commonplace atoms and molecules to extremely short-lived
baryons and mesons. The particles are divided into two main categories, fermions and
bosons, according by their spin.

Fermions are particles that have half odd integer spin in multiples of ℏ. All 12 ele-
mentary fermions have a spin of ℏ/2 and are further separated into two more categories,
quarks and leptons. These twelve particles constitute all of matter, as combinations of
quarks and leptons make up atoms and molecules, which are present in organic and
inorganic matter. What’s more, leptons and quarks are also divided into three generations
each, showcased in table 2.1.

Particle Mass (𝑀𝑒𝑉) Charge (𝑒) Particle Mass (𝑀𝑒𝑉) Charge (𝑒)
Leptons

Electron 𝑒 0.511 −1 𝑒-neutrino 𝜈𝑒 < 1.1 · 10−6 0

Muon 𝜇 105.658 −1 𝜇-neutrino 𝜈𝜇 < 0.19 0

Tauon 𝜏 1776.86 −1 𝜏-neutrino 𝜈𝜏 < 18.2 0

Quarks
Up 𝑢 2.16 2/3 Down 𝑑 4.67 −1/3

Charm 𝑐 1.27 · 103 2/3 Strange 𝑠 93 −1/3
Top 𝑡 172.76 · 103 2/3 Bottom 𝑏 4.18 · 103 −1/3

Table 2.1: Fermions with mass and electric charge. Each row represents each of the three genera-
tions[19].

Bosons are characterized by their integer spin in multiples of ℏ. All spin-1 elementary
bosons are mediators of interactions, responsible for describing the force of their respective
interaction. The Strong, Weak and Electromagnetic Interactions are described this way
by the Standard Model. The photon 𝛾 is the mediator of the Electromagnetic Interaction,
the gluons 𝑔 are the mediator of the Strong Interaction and the 𝑊±, 𝑍 bosons are the
mediators of the Weak Interaction. The Higgs Boson 𝐻0 is the particle that grants mass
to other particles through Spontaneous Symmetry Breaking. As of yet, Gravity has not
been successfully incorporated in the Standard Model. The hypothetical boson responsible
for mediating information about Gravity is the graviton. Gravitational forces between
two elementary and composite particles are negligible.

Composite particles are created when two or more elementary particles form a bound
state. A bound state of two or more particles is a stable system with definite energy.
Hadrons are bound states of two or more quarks and are separated into two categories,
mesons and baryons. Mesons are bound systems containing two quarks whereas baryons
are bound systems containing an odd number of quarks. Atoms are bound states between
electrons, neutrons 𝑛 (𝑑𝑑𝑢) and protons 𝑝+ (𝑑𝑢𝑢), which in turn are baryonic bound states
of up and down quarks. Molecules are bound states of two or more atoms. Composite
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Particle Mass (𝑀𝑒𝑉) Charge (𝑒) Spin (ℏ)
Gauge Bosons

Photon 𝛾 0 0 1

Gluon 𝑔 0 0 1

𝑊 80.37 · 103 ±1 1

𝑍 91.188 · 103 0 1

Higgs 𝐻 125.25 · 103 0 0

Table 2.2: Gauge bosons with mass, electric charge and spin. [19].

particles make up ordinary matter and are the object of study of numerous fields of
Science.

What’s more, much like every other field in Physics, a special system of units is chosen
as preference in High Energy Physics. The International System (SI) of Units and the
CGS (Centimetre-Gram-Second) are not very applicable due to the order of magnitude
of physical quantities (energies, masses, wavelengths, time constants, etc). The Natural
System is therefore attained for High Energy Physics. The Natural System does not
simply define the scale of the order of magnitude for the quantities of interest, but it also
changes their respective dimensions for faster theoretical calculations. Dimension setting
is performed via:

ℏ = 𝑐 = 𝜖0 = 𝜇0 = 1

The Natural System of Units forces length and time dimensions to be inversely propor-
tional to energy and mass dimensions. This process of dimension setting is reversible
through the Buckingham Pi Theorem and it is used when experimental data is required
to be expressed and showcased. Throughout this thesis from this point on, the Natural
System is applied, unless stated otherwise. Typical atomic processes such as electron
ionization take place at energies of about 1eV (=1.6×10−19J), nuclear processes such as
alpha or beta decays have energies of about several MeV, quark related processes have
energies in the GeV regime.

2.2 Theoretical Framework
This section regards a short review of the theoretical mathematical framework of Particle
Physics of the Standard Model. It includes the Lagrangian Formalism, necessary formal-
ism in Symmetries and Group Theory, as well as description for various mathematical
technicalities such as Lorentz four-vectors and Dirac spinors to complement the underly-
ing framework.

2.2.1 Lagrangian Formulation

The Lagrangian formulation is the foundation of the Standard Model. In order to produce
equations that describe the allowed interactions within a theory, ones needs to start
from a Classical Field Theory (CFT) and then introduce the first quantization into a
Quantum Field Theory (QFT). Special Relativity is inherently included, as opposed to
simple Classical Newtonian due to the nature and energy range of phenomena that
need to be properly described. Both CFTs and QFTs use the concept of the field 𝜙(𝑥𝜇), a
functional that assigns a value in each spacetime5 point 𝑥𝜇 = (𝑡, ®𝑥) instead of the concept

5𝜇 ∈ {0, 1, 2, 3}. For 𝜇 = 0, 𝑥0 = 𝑡 and for 𝜇 = 𝑖 ∈ {1, 2, 3} 𝑥𝑖 is the 𝑖th component of the ®𝑥 vector. Typically,
Greek letters denote all four possible components of spacetime, whereas Latin letters denote the spatial
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of the particle itself. QFTs have the advantage of resolving several inconsistencies such
as negative energies in the Klein-Gordon equation and the Causality violation. The spin
of the particle is attributed to this functional, and depending on its value, a different kind
of mathematical object describes it (e.g. scalar, spinor). To start, the minimization of the
Action functional S yields the equations that describe the correct possible interactions as
predicted by the Standard Model. The starting point is the functional itself[36]:

S =

∫
𝐿 𝑑𝑡

where 𝐿 is the Lagrange function. The functional typically used is the Lagrangian density
L and not the Lagrange function as 𝐿 denoted above. The Lagrangian density is given by:

𝐿 =

∫
L

(
𝜙(𝑥𝜇), 𝜕𝜇𝜙(𝑥𝜇)

)
𝑑3𝑥

where 𝜕𝜇 = (𝜕/𝜕𝑡, ®∇). The Action is then written as:

S =

∫
L

(
𝜙(𝑥𝜇), 𝜕𝜇𝜙(𝑥𝜇)

)
𝑑4𝑥

It is common practice to drop the Lorentz four-vector index 𝜇 since it prevents unnecessary
clutter while reading and writing equations. The field is then simply written as 𝜙(𝑥) and
not 𝜙(𝑥𝜇) where the reader is always aware that 𝑥 denotes a Lorentz four-vector. When
the need for a three-dimensional vector arises, ®𝑥 is used instead. All four-vector notation
is used throughout Particle Physics from formulating Lagrangians to calculating cross
sections and decay rates of particles. What’s more, the presence of Lorentz Invariant
quantities are realized via the notion of 𝑥𝜇𝑥𝜇 or 𝑝𝜇𝑝𝜇, an inner product operation between
a four-vector and its dual four-vector. These Lorentz invariants are scalar quantities that
are independent of reference frame choices. In order to extract the equations of motion for
a given Lagrangian density to find the solutions of the fields 𝜙(𝑥), minimization of S is
performed (𝛿S = 0) with respect to 𝜙(𝑥) and 𝜕𝜇𝜙(𝑥). The result attained is the well known
Euler-Lagrange equations from Classical Mechanics, now upgraded for a Classical Field
Theory:

𝜕L
(
𝜙(𝑥), 𝜕𝜇𝜙(𝑥)

)
𝜕𝜙(𝑥) = 𝜕𝜇

𝜕L
(
𝜙(𝑥), 𝜕𝜇𝜙(𝑥)

)
𝜕𝜇𝜙(𝑥)

(2.1)

An alternative to the Lagrangian formalism is the Hamiltonian formalism. As a final
step before introducing the first quantization, the conjugate momentum 𝜋(𝑥) to the field
𝜙(𝑥) is defined:

𝜋(𝑥) = 𝜕L
𝜕 (𝜕0𝜙(𝑥))

(2.2)

and then the Hamiltonian 𝐻 as well as the Hamiltonian density H is acquired, via a
Legendre transformation:

𝐻 =

∫
𝜋(𝑥) ¤𝜙(𝑥) − L 𝑑3𝑥 =

∫
H 𝑑3𝑥

It is from this point on that the quantization is required to promote the Field Theory
from a Classical formulation into a Quantum one. This is done by upgrading the Poisson
Brackets into commutators, and the two canonical variables 𝜙(𝑥), 𝜋(𝑥) into operators:

[𝜙(𝑥), 𝜋(𝑦)] = 𝑖𝛿(𝑥 − 𝑦), [𝜙(𝑥), 𝜙(𝑦)] = [𝜋(𝑥), 𝜋(𝑦)] = 0

component of a four-vector. This notation is followed throughout this thesis, unless stated otherwise.
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where the commutators above are expressed in the Heisenberg picture. With the form-
alism established, what remains is the addition of mathematical constructs that allow
operations to take place. This means that in order to make use of the formalism, one
needs to supply the required rules and technicalities that will eventually become the
interactions with the particles that the Standard Model describes.

2.2.2 Symmetries

The mathematical forms that the Symmetries that the Lagrangians take are described
with Group Theory. What’s more, there is no preceding step; all Lagrangian terms are
entered by hand provided that they satisfy the given Symmetries. This means that the
construction of a Lagrangian term by term is not a definite process as it is the equivalent
of the theorist’s experimental apparatus. The primary tool for a Lagrangian’s construction
are Symmetries. Symmetries are an integral part of the theoretical formulation and it’s
the physicist’s job to be fluent in that language, as they set the groundwork of a theory
and how that theory reflects and interacts in the world that it is tested on. As for Group
Theory, the language where Symmetries are based on, require a method that can express
those symmetries. This is done through the group generators, which are responsible for
generating the elements of a group, a set of elements combined with a binary operation
which follow specific axioms. Symmetries are also understood as topological defects in
recent developments, however for the mathematical formulation of the Standard Model in
this thesis, the descriptions given here are satisfactory. Furthermore, a Lie Group is group
which is also a differentiable manifold, meaning that the group itself has continuous
elements.

Definition 2.1 For a Lie Group G, the Lie algebra 𝔤 of G in the matrix representation
form is given by the elements 𝑋: 𝑒𝑡𝑋 ∈ G ∀ 𝑡 ∈ R, together with a binary operation [•, •],
called the Lie bracket.

Group generators obey specific algebras, where in the scope of the Standard Model
they are given within a commutator or anticommutator relation. Lie groups allow for
the establishment of fields once strong conditions are required, for example Local Gauge
Invariance, which will be explained later. The Standard Model makes use of three simple
continuous Lie groups in its entirety to formulate the elementary interactions:𝑈 (1), 𝑆𝑈 (2)
and 𝑆𝑈 (3). The group 𝑆𝑈 (𝑛) has 𝑛2−1 generators. This is because of the relationship𝑈 (𝑛) =
𝑆𝑈 (𝑛) ×𝑈 (1). where 𝑈 (𝑛) has 𝑛2 generators, and the condition that det[𝑈] = +1 for the
group elements of 𝑆𝑈 (𝑛) elements eliminates one generator. The Lorentz Lie group (and
by extension, the Poincare Group) is used to connect coordinate system transformations
and translations within the Standard Model. Despite continuous symmetries, discrete
groups are also present within the theory in order to explain more symmetries, such as
parity, time and charge conjugation.

Noether’s Theorem Noether’s theorem states that for a differentiable symmetry in the
Lagrangian there is a corresponding conserved charge or current. In the case of internal
symmetries, which are important for interacting field theories, the invariance of the
Lagrangian 𝛿L = 0 under an infinitesimal transformation of a field Φ𝑖 itself, Φ′

𝑖
= Φ𝑖 + 𝛿Φ𝑖

is written as:
𝛿L = L(Φ𝑖, 𝜕𝜇Φ

𝑖) − L(Φ𝑖 + 𝛿Φ𝑖, 𝜕𝜇
(
Φ𝑖 + 𝛿Φ𝑖)

)
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Since the transformation is infinitesimal, the Taylor expansion of the above expression to
first order is enough to determine the conserved current:

𝛿L = −
𝜕L(Φ𝑖, 𝜕𝜇Φ

𝑖)
𝜕Φ𝑖

𝛿Φ𝑖 −
𝜕L(Φ𝑖, 𝜕𝜇Φ

𝑖)
𝜕 (𝜕𝜇Φ𝑖) 𝜕𝜇𝛿Φ

𝑖 = 0

The Euler-Lagrange equation for fields (eq. 2.1) can be used to replace the first term of
the above expression:

𝛿L = −𝜕𝜇
(
𝜕
L(Φ𝑖, 𝜕𝜇Φ

𝑖)
𝜕 (𝜕𝜇Φ𝑖)

)
𝛿Φ𝑖 −

𝜕L(Φ𝑖, 𝜕𝜇Φ
𝑖)

𝜕 (𝜕𝜇Φ𝑖) 𝜕𝜇𝛿Φ
𝑖 = 0

Finally, by using the product rule:

𝜕𝜇

(
𝜕L(Φ𝑖, 𝜕𝜇Φ

𝑖)
𝜕 (𝜕𝜇Φ𝑖) 𝛿Φ𝑖

)
= 0

Therefore, if the Lagrangian is invariant under the field transformation Φ′
𝑖
= Φ𝑖 + 𝛿Φ𝑖,

the following quantity 𝐽𝜇, called Noether current which fullfills the continuity equation:

𝐽𝜇 =
L(Φ𝑖, 𝜕𝜇Φ

𝑖)
𝜕 (𝜕𝜇Φ𝑖) 𝛿Φ𝑖, 𝜕𝜇𝐽

𝜇 = 0

Furthermore, it can be shown that the following equation is also true by using the
continuity equation:

𝜕𝑡

∫
𝐽0 𝑑3𝑥 = 0

which implies that an associated quantity is also conserved in time. Specifically, invariance
under displacements of the field itself leads to the conservation of conjugate momentum
density 𝐽0 = 𝜋(𝑥) (eq. 2.2). Other applications of Noether’s Theorem on non-internal
symmetry cases include that the physical momentum, angular momentum and energy of
a particle are invariant under spatial, rotational6 and temporal transformations. The link
between the physical momentum and spatial translations is given by the transformation
Φ(𝑥′) = Φ(𝑥 + 𝜖).

Group 𝑈 (1) The trivial group 𝑈 (1) describes the set of all elements of the field C with
modulus equal to 1. Each transformation describes rotations in the complex plane C.
The label of the group stands for Unitary. The trivial 𝑈 (1) group is the only connected
Abelian Lie group which implies that particles described by 𝑈 (1) do not interact with
themselves. What’s more, it has no finite set of generators and is not described in a matrix
representation.

Group 𝑆𝑈 (2) The group 𝑆𝑈 (2), abbreviated from Special Unitary, describes the set of
2 × 2 unitary complex Hermitian (𝑈†𝑈, [𝑈] ∈ 𝑆𝑈 (2)) matrices in matrix representation
form [𝑈]. The label Special indicates that all group elements in matrix representation
det[𝑈] = 1. If the element 𝑈 ∈ 𝑆𝑈 (2) is referred to a matrix, it is correct to state it as
[𝑈] although this notation is dropped throughout discussion in the Standard Model of
Physics. The three generators for this group are:

𝐽𝑖 =
1

2
𝜎𝑖

6Rotations must be two-dimensional or above so that the group associated with the transformations can
be continuous (and therefore a Lie group).
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where 𝜎𝑖, 𝑖 = {1, 2, 3} are the three Pauli matrices:

𝜎1 =

(
0 1

1 0

)
, 𝜎2 =

(
0 −𝑖
𝑖 0

)
, 𝜎3 =

(
1 0

0 −1

)
following the Lie algebra:

[𝐽𝑖, 𝐽 𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝐽𝑘
The traceless property of the Pauli matrices enforces them as the generators of the group
𝑆𝑈 (2) up to a multiplicative factor 1/2. The group elements all obey the relation:

𝑈 (𝜃𝑖) = 𝑒−𝑖𝜃𝑖𝜎𝑖/2

where 𝜃𝑖𝜎𝑖 is a dot product shorthand for:

𝜃𝑖𝜎𝑖 = 𝜃1𝜎1 + 𝜃2𝜎2 + 𝜃3𝜎3 = ®𝜃 · ®𝜎

these types of dot product shorthands will have the indices of the two objects in the same
origin in order to differentiate between Lorentz four-vector dot products, or be expressed
as dot products in vector notation.

Group 𝑆𝑈 (3) The 𝑆𝑈 (3) group describes the set of 3 × 3 unitary matrices of det{𝑈} = 1.
The group elements are generated similarly to the 𝑆𝑈 (2) group:

𝑈 (𝜃𝑖) = 𝑒−𝑖𝜃𝛼𝜆𝛼/2

In 𝑆𝑈 (3) there are eight generators 𝑇𝛼 𝛼 ∈ {𝑙}81:

𝑇𝛼 = 𝜆𝛼/2

where 𝜆𝛼 are the Gell-Mann matrices:

𝜆1 =
©­«
0 1 0

1 0 0

0 0 0

ª®¬ , 𝜆2 =
©­«
0 −𝑖 0

𝑖 0 0

0 0 0

ª®¬ , 𝜆3 =
©­«
1 0 0

0 −1 0

0 0 0

ª®¬ , 𝜆4 =
©­«
0 0 1

0 0 0

1 0 0

ª®¬
𝜆5 =

©­«
0 0 −𝑖
0 0 0

𝑖 0 0

ª®¬ , 𝜆6 =
©­«
0 0 0

0 0 1

0 1 0

ª®¬ , 𝜆7 =
©­«
0 0 0

0 0 −𝑖
0 𝑖 0

ª®¬ , 𝜆8 =
1
√
3

©­«
1 0 0

0 1 0

0 0 −2

ª®¬
These eight generators follow the Lie bracket algebra:

[𝑇𝛼, 𝑇𝑏] = 𝑖 𝑓𝛼𝑏𝑐𝑇𝑐

where 𝑓𝛼𝑏𝑐 are the structure constants of the group. The structure constants are antisym-
metric under the interchange of any pair of indices and equal to zero for any repetition of
the same value of two or more indices (e.g. 𝑓113). Moreover:

𝑓123 = 1, 𝑓458 = 𝑓678 =

√
3

2
, 𝑓147 = 𝑓165 = 𝑓246 = 𝑓257 = 𝑓345 = 𝑓376 =

1

2
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Lorentz Group 𝑆𝑂 (1, 3) The 𝑆𝑂 (1, 3) group is the set of all transformations that pre-
serve the inner product of Minkowski space 𝑥𝜇𝑥𝜇 = 𝑥𝜇𝑔𝜈𝜇𝑥𝜈. The label (1, 3) refers to the
structure of the Minknowski metric diagonal in the matrix representation form7:

[𝑔] = 𝑑𝑖𝑎𝑔(1,−1,−1,−1)

The elements of the Lorentz Group are the Lorentz Transformations of Special Relativity.
Particularly, the transformations are special (proper, detΛ = +1) and have Λ0

0 = +1
(orthochronous). The six group generators 𝐽𝑖, 𝐾𝑖 𝑖 ∈ {𝑙}31 of the Lorentz group obey the
following relations:

[𝐽𝑖, 𝐽 𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝐽𝑘 , [𝐽𝑖, 𝐾 𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝐾𝑘 , [𝐾𝑖, 𝐾 𝑗 ] = −𝑖𝜖𝑖 𝑗 𝑘𝐽𝑘 ,

where 𝐽𝑖, 𝐾𝑖 are regarded as the generators of rotations and boosts respectively. The
rotation generator is Hermitian 𝐽†

𝑖
= 𝐽𝑖 and the boost generator is Anti-Hermitian 𝐾†

𝑖
= −𝐾𝑖.

The explicit form of the generators is given by:

𝐽𝑖 =
1

2
𝜖𝑖 𝑗 𝑘𝑀 𝑗 𝑘 , 𝐾𝑖 = 𝑀0𝑖

where 𝑀𝜇𝜈:
(𝑀𝜇𝜈)𝛼𝛽 = 𝑔𝜇𝛼𝑔𝜈𝛽 − 𝑔

𝜇

𝛽
𝑔𝜈𝛼, 𝑀𝜇𝜈 = [(𝑀𝜇𝜈)𝛼𝛽 ]

The group elements are expressed via:

Λ( ®𝜃, ®𝜙) = 𝑒𝑖 ®𝐽· ®𝜃+𝑖 ®𝐾 · ®𝜙

Using the generators 𝐽𝑖, 𝐾𝑖, a new set of six generators 𝑁±
𝑖

equivalent to the former can
be defined,

𝑁±
𝑖 =

1

2
(𝐽𝑖 ± 𝑖𝐾𝑖)

showcasing that the Algebra of 𝑆𝑂 (1, 3) described above consists of two copies of the 𝑆𝑈 (2)
algebra:

[𝑁+
𝑖 , 𝑁

+
𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝑁+

𝑘 , [𝑁−
𝑖 , 𝑁

−
𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝑁−

𝑘 , [𝑁+
𝑖 , 𝑁

−
𝑗 ] = 0

Poincare Group 𝐼𝑆𝑂 (1, 3) The Poincare Group is a semidirect product 𝑆𝑂 (1, 3) ⋊ R4

between the Lorentz group and translations in Minkowski space respectively. A Poincare
group element (Λ, 𝛼) is equivalent to the transformation 𝑥 → Λ𝑥 + 𝛼. The generators
of the Poincare group include the generators of the Lorentz group plus four additional
generators 𝑃𝜇. These generators in position space take the familiar form 𝑃𝜇 = 𝑖𝜕𝜇. The
Poincare group algebra is described by:

[𝐽𝑖, 𝐽 𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝐽𝑘 , [𝐽𝑖, 𝐾 𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝐾𝑘 , [𝐾𝑖, 𝐾 𝑗 ] = −𝑖𝜖𝑖 𝑗 𝑘𝐽𝑘 , (= Lorentz algebra)

[𝐽𝑖, 𝑃 𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝑃𝑘 , [𝐽𝑖, 𝑃0] = 0, [𝐾𝑖, 𝑃 𝑗 ] = −𝑖𝛿𝑖 𝑗𝑃0, [𝐾𝑖, 𝑃0] = −𝑖𝑃𝑖
Using the definition of 𝑀𝜇𝜈 described above, the Poincare Algebra simplifies to:

[𝑃𝜇, 𝑃𝜈] = 0, [𝑀𝜇𝜈, 𝑃𝜌] = 𝑖
(
𝑔𝜇𝜌𝑃𝜈 − 𝑔𝜈𝜌𝑃𝜇

)
7The group 𝑂 (4) would use the identity metric 𝑑𝑖𝑎𝑔(1, 1, 1, 1).
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2.3 The Dirac Equation

2.3 The Dirac Equation
This section is appropriate in introducing the behavior of fermions inside the Standard
Model, as all of them have spin-1/2. In addition, the existence of antiparticles is predicted
by the Dirac Equation. The free Dirac Lagrangian showcases the existence of spin-1/2
particles and implies the existence of anti-particles. In order to fully interpret the free
Dirac Lagrangian, one needs to supply some additional mathematical framework. A
Clifford algebra8 obeying the anti-commutation relation, in matrix representation:

{𝛾𝜇, 𝛾𝜈} = 2𝑔𝜇𝜈

where 𝛾𝜇 are the well-known Dirac Gamma matrices, are crucial in order to arrive into
a proper expression of an equation that is not second order in 𝑥 for spin-1/2 particles.
They are given here for reference in the Weyl (or Chiral) representation, along with 𝛾5, a
matrix that will be referred to later:

𝛾𝜇 =

(
0 𝜎𝜇

𝜎̄𝜇 0

)
, 𝛾5 =

(
−1 0

0 1

)
, 𝜎𝜇 = {1̂, 𝜎𝑖}, 𝜎̄𝜇 = {1̂,−𝜎𝑖} (2.3)

Naturally, this implies the presence of the Gamma matrices throughout the mathem-
atical background of the Electromagnetic Interaction that is being formulated, or any
other formulation that by extension requires spin-1/2 particles. The Dirac Lagrangian is
expressed as:

L = 𝜓
(
𝑖𝛾𝜇𝜕𝜇 − 𝑚

)
𝜓

where 𝜓 = 𝜓(𝑥) is the the Dirac Field, a four component vector referred to as a Dirac
spinor, not to be confused with a Lorentz four-vector. The Dirac field is Lorenz invariant
only as billinear forms 𝜓𝜓 where 𝜓 = 𝜓†𝛾0. Applying the Euler-Lagrange equations (2.1),
the Dirac equation is acquired: (

𝑖𝛾𝜇𝜕𝜇 − 𝑚
)
𝜓 = 0 (2.4)

2.4 Electromagnetic Interaction
It is worth nothing that the Dirac Lagrangian is globally gauge invariant. A global gauge
transformation for the field 𝜓 is simply described as:

𝜓(𝑥) → 𝑒𝑖𝑔𝑎𝜓(𝑥)

where 𝑎, 𝑔 are constants that do not depend on 𝑥. In this case, 𝑎 is referred to as a phase
constant and 𝑔 as the coupling strength of the interaction, whose magnitude meaningful
when at least an additional interaction is added to the Lagrangian which is a measure of
relative interaction strength. According to Noether’s theorem, there must be a conserved
current with this internal symmetry. The infinitesimal transformation 𝜓′ → 𝜓 + 𝛿𝜓 for
the global gauge transformation 𝜓′ = 𝑒𝑖𝑔𝑎𝜓 expanded to first order yields:

𝜓′ = 𝜓 + 𝑖𝑔𝑎𝜓

this leads to a conserved current:

𝐽𝜇 = −𝑎𝑔𝜓𝛾0𝜓
8Fermion algebras are described with anticommutators, whereas boson algebras are described with

commutators.
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2.5 Quantum Chromodynamics

for the continuity equation:
𝜕𝜇𝐽

𝜇 = 0

The zeroth component 𝜇 = 0 of the conserved charge corresponds to the electric charge
density 𝜌 and integrating this quantity in R3 yields the conserved Noether charge:

𝑄 =

∫
𝜌 𝑑3𝑥 = 𝑄 =

∫
𝑗0 𝑑3𝑥 =

∫
−𝑔𝑎𝜓𝛾0𝜓 𝑑3𝑥 = −𝑔𝑎

∫
𝜓𝛾0𝜓 𝑑3𝑥

This conserved charge is the electrical charge. Therefore, the global 𝑈 (1) symmetry leads
to the conservation of the electric charge. However, one needs to demand Local Gauge
Invariance, which prevents the group’s parameters from being constant in spacetime 𝑥
by allowing the 𝑎 phase to have a dependence on 𝑥. The following transformation denotes
Local Gauge Invariance:

𝜓(𝑥) → 𝑒𝑖𝑔𝑎(𝑥)𝜓(𝑥)

This transformation does not guarantee that a given Lagrangian will be invariant under
Local Gauge Invariance. In order to circumvent this issue, the introduction of the covariant
derivative 𝐷𝜇 is introduced:

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝐵𝜇
This is equivalent to treating the factor 𝑒𝑖𝑎(𝑥) as a constant when taking the covariant
derivative 𝐷𝜇. However, this comes with a cost of the introduction of a new quantity, 𝐵𝜇
which transforms as:

𝐵𝜇 → 𝐵𝜇 − 𝜕𝜇𝑎(𝑥)

The field 𝐵𝜇, which is a Lorentz four-vector, is eventually given the role of the photon
field, and the Dirac Equation describes charged particles of spin-1/2. The process above
fully incorporates Local Gauge Invariance. Finally, before writing out the full form of
the Lagrangian, a Lorentz invariant kinetic term for the new field 𝐵𝜇 is required in
order for the new field to propagate, which means that it can transport information
throughout spacetime. This term takes the form of 𝐹𝜇𝜈𝐹𝜇𝜈, where 𝐹𝜇𝜈 is the well known
Electromagnetic tensor:

𝐹𝜇𝜈 = 𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇
Finally, the Lagrangian that describes the Electromagnetic Interaction, or better yet,
Quantum Electrodynamics (QED) under Local Gauge Invariance is expressed through
the Lagrangian density:

L = 𝜓
(
𝑖𝛾𝜇𝐷𝜇 − 𝑚

)
𝜓 − 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈

It’s worth noting here, that should one add a photon mass term by hand, the Local Gauge
Invariance would be violated. What’s more, a mass term also introduces unrenormalizable
divergences when calculating Feynman diagrams. This is an adequate description of
QED, provided that no other interaction is present in the theory. This formulation is
eventually re-formulated together with the Weak Interaction, which will be discussed
later.

2.5 Quantum Chromodynamics
The formulation of the Strong Interaction, Quantum Chromodynamics (QCD) is similar
to that of Quantum Electrodynamics, apart from a few changes due to the non-Abelian
property of 𝑆𝑈 (3). The 𝑆𝑈 (3) group takes the role of facilitating the framework for QCD.
Three color fields are required so that the theory is in line with experimental data, hence
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2.6 Electroweak Interaction

the choice of the group. To impose Local Gauge Invariance, the following transformation
is applied9:

𝑄(𝑥) → 𝑒𝑖𝑔𝑎𝛼 (𝑥)𝑇𝛼𝑄(𝑥), 𝑄 = (𝑞1 𝑞2 𝑞3)𝑇

One needs to start with a free Dirac field Lagrangian density for a triplet field 𝑄:

L = 𝑄
(
𝑖𝛾𝜇𝜕𝜇 − 𝑚

)
𝑄

For the justification of the three color fields, eight traceless Hermitian generators 𝑇𝛼 are
required from the symmetry group 𝑆𝑈 (3). The imposition of Local Gauge Invariance is
not as trivial as in QED due to the fact that the group 𝑆𝑈 (3) is non-Abelian. Despite this,
the process is the same, where a covariant derivative is once again defined:

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔G𝜇, G𝜇 = 𝑇𝛼𝐺𝛼
𝜇

and the new fields transform as:

𝐺𝛼
𝜇 → 𝐺𝛼

𝜇 −
1

𝑔
𝜕𝜇𝑎

𝛼 (𝑥) + 𝐺𝑏
𝜇 𝑓

𝛼𝑏𝑐𝑎𝑐 (𝑥)

where 𝑔 is the coupling strength of the interaction. Once again, a kinetic term for the
new color fields must be included in the form of 𝐺𝛼

𝜇𝜈𝐺
𝜇𝜈
𝛼 . It is remarked that since 𝑆𝑈 (3)

is non-Abelian, the eight aforementioned strength tensors 𝐺𝛼
𝜇𝜈 also take a different form:

𝐺𝛼
𝜇𝜈 = 𝜕𝜇𝐺

𝛼
𝜈 − 𝜕𝜈𝐺𝛼

𝜇 − 𝑔 𝑓𝛼𝑏𝑐𝐺𝑏
𝜇𝐺

𝑐
𝜈

Color is an exclusive property of the Strong Interaction and all the particles that can
interact with gluons. According to Noether’s theorem, the conserved charge is color. The
final Lagrangian reads:

L = 𝑄
(
𝑖𝛾𝜇𝐷𝜇 − 𝑚

)
𝑄 − 1

4
𝐺𝛼
𝜇𝜈𝐺

𝜇𝜈
𝛼

A mass term for the mediators, which are the eight gluons, is prohibited by Local Gauge
Invariance. The mediators are once again massless and this result is determined ex-
perimentally and the interactions between the quarks and gluons can be read from the
Lagrangian density. Gluon interactions carrying different color charge are allowed and
enabled by the fact that 𝑆𝑈 (3) is non-Abelian. This is reflected to the new form of the
field strength tensor compared to QED.

2.6 Electroweak Interaction
Following the formulation of the 𝑈 (1) symmetry, one asks how to repeat the process for
the 𝑆𝑈 (2) symmetry. As previously discussed, 𝑆𝑈 (2) has three generators, and a global
gauge transformation summing on the three generators for a doublet field 𝜓 would be:

𝜓′ = 𝑒𝑖𝑔𝑎𝑖
𝜎𝑖
2 𝜓, 𝜓 =

(
𝜓1

𝜓2

)
The conserved charge of the Global Gauge Invariant 𝑆𝑈 (2) is the isospin. The same
process is done to upgrade into a local gauge symmetry by letting 𝑎 → 𝑎(𝑥). In the case of
the 𝑈 (1) symmetry, where the change from global to local was performed, a new spin 1

9Once again, a distinct factor of 𝑔 is present to denote the coupling strength of the interaction.
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2.6 Electroweak Interaction

field was introduced. In this case, three new spin 1 fields need to be introduced with the
same method. The covariant derivative in this case is:

𝐷𝜇 = 𝜕𝜇 − 𝑖𝑔𝜎
𝑗

2
𝑊
𝜇

𝑗
, 𝑗 ∈ {1, 2, 3}

The locally 𝑆𝑈 (2) invariant Lagrangian is:

L = 𝑖𝜓𝛾𝜇𝐷
𝜇𝜓 − 1

2
Tr

(
W𝜇𝜈W𝜇𝜈

)
where:

W𝜇𝜈 = 𝜕𝜇W𝜈 − 𝜕𝜈W𝜇 − 𝑖𝑔 [W𝜇,W𝜈] , W𝜇 = 𝑊
𝜇

𝑖

𝜎𝑖

2

The fields W𝜇 need to transform as:

W𝜇 → U(𝑥)W𝜇U−1(𝑥) + 𝑖

𝑔
(𝜕𝜇U(𝑥)) U−1(𝑥), U(𝑥) = 𝑒𝑖𝑎𝑖

𝜎𝑖
2

However, this is not the case with the 𝑆𝑈 (2) symmetry as its gauge bosons, the three spin
1 fields, must be massive, as experiments have shown[37][38]. The inclusion of a mass
term for the gauge bosons breaks Local Gauge Invariance, therefore the aforementioned
Lagrangian cannot be used to describe interactions with three massive bosons as medi-
ators. It wouldn’t be ideal to show the formulation of a pure 𝑆𝑈 (2) theory, but instead
the unification between the Weak and Electromagnetic Interactions into the Electroweak
Interaction. In order to do so, it is required to give a description of Glashow-Weinberg-
Salam’s Electroweak model and the more accurate form of the Weak Interaction as is
present in the Standard Model will be mentioned in this section (section 2.7). However,
the notion of chirality will be explained in this section. Since the experimental evidence
shows that three mediator bosons of the Weak Interaction exist, the 𝑆𝑈 (2) symmetry can
be picked as a base to describe this interaction. A four component spinor 𝜓 can be written
as:

𝜓 =

(
𝜓𝐿

𝜓𝑅

)
What’s more, the Hermitian Parity operator 𝑃 is a transformation[35] that reverses
the spatial and time component of a Lorentz four-vector. Three component vectors are
classified in two categories, vector and axial vector. Under the Parity transformation,
vector quantities, such as position and momentum obey ®𝑣 → −®𝑣 and axial vector quantities,
such as angular momentum obey ®𝑣 → ®𝑣. The most general Lorentz-invariant form for
the interaction between a fermion and a spin-1 boson is a linear combination of bilinear
covariants. This general form is required in the case of the Weak Interaction as it has
been proven to violate Parity[39]. The interaction current 𝑗 𝜇 is proportional to:

𝑗 𝜇 ∝ 𝜓
(
𝑔𝑉𝛾

𝜇 + 𝑔𝐴𝛾𝜇𝛾5
)
𝜓 = 𝑔𝑉 𝑗

𝜇

𝑉
+ 𝑔𝐴 𝑗 𝜇𝐴

where 𝑗
𝜇

𝑉
and 𝑗

𝜇

𝐴
are the vector and axial vector currents respectively. The absence of

the proper factor is irrelevant to the discussion, as only the labels of 𝑗𝑉 , 𝑗𝐴 are required
for the description of the Parity transformation. The Weak Interaction violates Parity
maximally, satisfying when |𝑔𝑉 | = |𝑔𝐴 |. Experimental measurements show that 𝑔𝑉 = −𝑔𝐴,
leading to:

𝑗 𝜇 ∝ 𝜓𝛾𝜇
(
1 − 𝛾5

)
𝜓 (2.5)

30



2.6 Electroweak Interaction

which is known as the vector minus axial vector (V-A) interaction. Furthermore, it is
seen that the 𝜓𝐿 and 𝜓𝑅 of components 𝜓 yield the eigenvalues −1, +1 on the matrix 𝛾5
respectively. It is convenient to define the projection operators 𝑃𝐿 , 𝑃𝑅:

𝑃𝐿 =
1 − 𝛾5

2
, 𝑃𝑅 =

1 + 𝛾5
2

so that, when acting on the spinor 𝜓:

𝑃𝐿𝜓 =

(
𝜓𝐿

0

)
, 𝑃𝑅𝜓 =

(
0

𝜓𝑅

)
or more conveniently, 𝑃𝐿𝜓 = 𝜓𝐿 and 𝑃𝑅𝜓 = 𝜓𝑅. The Weak Interaction couples only to
”left-handed” particles and ”right-handed” antiparticles. This notion of ”left” and ”right”
is attributed to chirality, a distinction that only the Weak Interaction is able to interpret,
similar to the color charge of the Strong Interaction. Therefore, from the expression in
2.5, the current interaction includes the projection operator 𝑃𝐿. Hence, only left-handed
chiral particle states and right-handed chiral antiparticle sates participate in the Weak
Interaction.

2.6.1 Cabibbo-Kobayashi-Maskawa Matrix

The unitary Cabibbo-Kobayashi-Maskawa Matrix (CKM) 𝑉CKM is a component of the
Lagrangian that regards transitions from up-type quarks to down-type quarks and vice
versa in the Weak Interaction. The mass eigenstates of the three generations of quarks
are not equivalent in the Weak Interaction unlike the lepton mass eigenstates [40]. This
matrix arises from the Yukawa interactions with the Higgs condensate (see section 2.7.1.It
can be shown that for charged current interactions using the 𝑊± boson, terms such as
𝑢
†
𝐿
(𝑖𝜎̄𝜇)𝑉CKM𝑑𝐿 appear, where:

𝑉CKM =
©­«
𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏

𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏

𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

ª®¬ , 𝑑𝐿 =
©­«
𝑑𝐿

𝑠𝐿

𝑏𝐿

ª®¬ , 𝑢𝐿 =
©­«
𝑢𝐿

𝑐𝐿

𝑡𝐿

ª®¬
Ideally, to prevent this differentiation between the mass eigenstates in the Weak Interac-
tion, 𝑉CKM = 𝐼. The CKM Matrix has four independent components that can be measured
experimentally. The CKM matrix can be parametrized with four independent parameters,
one of which can be denoted as:

𝑉CKM =
©­«

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒
−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒𝑖𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒𝑖𝛿 𝑠23𝑐13

𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒𝑖𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒𝑖𝛿 𝑐23𝑐13

ª®¬
where 𝑠𝑖 𝑗 = sin 𝜃𝑖 𝑗 , 𝑐𝑖 𝑗 = cos 𝜃𝑖 𝑗 for {𝑖, 𝑗} ∈ {𝑘}31, 𝑖 ≠ 𝑗 and 𝛿 is the phase responsible for all
CP-violating phenomena in flavor changing processes. The three Euler anglers 𝜃𝑖 𝑗 along
with the phase 𝛿 form the set of four independent parameters of the above representation
of the CKM matrix. The values of these four parameters have been determined[19]:

𝑠12 = 0.22500 ± 0.00067 𝑠13 = 0.00369 ± 0.00011

𝑠23 = 0.04182 ± 0.00085 𝛿 = 1.444 ± 0.027

Let 𝑈CKM be defined through 𝑈CKM 𝑖 𝑗 =
��𝑉CKM 𝑖 𝑗

��, which expresses the moduli of the
nine entries according to the aforementioned values of the four parameters of the CKM
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2.7 Spontaneous Symmetry Breaking and the Higgs Mechanism

matrix10[19]. Then:

𝑈CKM =
©­«
0.97401 ± 0.00011 0.22650 ± 0.00048 0.00361 ± 0.00011

0.22636 ± 0.00048 0.97320 ± 0.00011 0.04053 ± 0.00083

0.00854 ± 0.00023 0.03978 ± 0.00082 0.999172 ± 0.000035

ª®¬
The 𝑉CKM matrix is an important probe of New Physics.

2.7 Spontaneous Symmetry Breaking and the Higgs Mechanism
The mass of the spin 1 mediators of the Electromagnetic and Strong interactions is zero,
as demanded by Local Gauge Invariance. However, in the case of the Weak Interaction the
three mediators are massive, as determined by experiments[37][38]. Since the addition
of a mass term is forbidden, a different process must be responsible for the acquisition of
mass for the mediators. This process is realized thanks to two concepts: Spontaneous
Symmetry Breaking and the Higgs Mechanism. The former introduces a new spin 0
particle potential under a local Gauge Invariant 𝑆𝑈 (2) ×𝑈 (1) symmetry, and the latter
breaks this symmetry by choosing a specific minimum for the Higgs Potential. This
process allows three of the four particles of the 𝑆𝑈 (2) ×𝑈 (1) symmetry to acquire mass
thanks to the form of the Higgs Potential, namely its parameters 𝜇, 𝜆 and the choice
of its minimum. Specifically, in Spontaneous 𝑆𝑈 (2) ×𝑈 (1) Symmetry Breaking, Local
Gauge Invariance yields three gauge fields 𝑊 𝑖

𝜇 from 𝑆𝑈 (2) and one 𝐵𝜇 from 𝑈 (1). Out of
the complex 𝑆𝑈 (2) × 𝑈 (1) doublet, three fields become Goldstone bosons, whereas the
remaining one, the Higgs boson, gains mass after the symmetry is spontaneously broken,
and the symmetry becomes hidden from the choice of the ground state. What remains
is to relocate those three Goldstone bosons as degrees of freedom into the three fields
𝑊 𝑖
𝜇 that arose through Local Gauge Invariance and its infinitesimal transformations on

the fields 𝜙. By substituting the new pertrubative about the minimum field, the three
𝑊 𝑖
𝜇 fields acquire mass and longitudinal polarization by eliminating the three massless

Goldstone bosons. A massive scalar boson remains which is the Higgs Boson. The process
of the elimination of the Goldstone bosons and the mass acquisition of the 𝑊 𝑖

𝜇 fields is
referred to as the Higgs Mechanism and allows the avoidance of massless particles. The
Lagrangian for a free spin zero complex field 𝜙 is globally 𝑈 (1) invariant:

L =
1

2

(
𝜕𝜇𝜙

†𝜕𝜇𝜙 − 𝜇2𝜙†𝜙
)

By introducing a self-interaction quadratic term for the 𝜙 field, −𝜆
(
𝜙†𝜙

)2, gauging this
Lagrangian and introducing 4 spin-1 fields, the following Lagrangian is obtained:

L =

( (
𝜕𝜇 + 𝑖𝑔′W𝜇 + 𝑖𝑔𝐵𝜇

)
Φ†

) (
(𝜕𝜇 − 𝑖𝑔′W𝜇 − 𝑖𝑔𝐵𝜇)Φ

)
+ 𝜇2Φ†Φ − 𝜆

(
Φ†Φ

)2
where Φ = (𝜙1, 𝜙2)𝑇 The Higgs potential is defined as 𝑉 (Φ) = −𝜇2Φ†Φ + 𝜆

(
Φ†Φ

)2. Let
𝜙1, 𝜙2 be the two complex component fields so that Φ = (𝜙1 𝜙2)𝑇 . A scalar field with a
negative mass term ∼ −𝑚2𝜙2 has a minimum at 𝜙 = 0[41]. For a positive mass term
this isn’t the case. It can be seen from the Higgs potential that it is separable additively
𝑉 (Φ) = 𝑉 (𝜙1) + 𝑉 (𝜙2). The minima of the potential 𝑉 (Φ) can be calculated through
𝜕𝑉 (Φ)/𝜕𝜙111. This leads to the condition:

|𝜙|1min =

√︂
𝜇2

2𝜆
⇔ 𝜙1min = 𝑒𝑖𝜃

√︂
𝜇2

2𝜆
𝜃 ∈ R

10where the larger error is kept from the reference.
11since the potential is separable in the two complex field components, one component, let 𝜙1 can be

chosen. Let, for simplicity, 𝜙2 = 0
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These minima 𝜙1min represent a circular curve in the C plane with radius
√︁
𝜇2/2𝜆. The

process of Symmetry Breaking picks one of the possible minima, therefore, let Φmin:

Φmin =

(
0√︃
𝜇2

2𝜆

)
=

(
0
𝑣√
2

)
, 𝑣 =

√︂
𝜇2

𝜆

In such scenarios, calculations are performed by expanding around the minimum as no
exact solutions are available. It is to be remarked that expanding about a stable minimum
is the proper technique in Perturbation Theory. This is done by picking a vacuum for the
theory by minimizing the Lagrangian with respect to that field and performing perturbat-
ive calculations around that new vacuum, without affecting the conservation of currents
so that Noether’s Theorem isn’t violated. If the calculation is performed on the pre-
transformed Lagrangian, the calculation would not converge. Since this transformation
of fields does not change the rules and interactions, the pre-transformation and post-
transformation Lagrangians are identical. By this field transformation to a petrurbative
minimum, the mass term of the Lagrangian is revealed at the cost of manually choosing
one of the many possible minima which gives the name of the mechanism, Spontaneous
Symmetry Breaking. It will now be demonstrated how the choice of an appropriate gauge
eliminates three of the four real valued field components due to the 𝑆𝑈 (2)×𝑈 (1) symmetry.
From the two complex components 𝜙1, 𝜙2, let, around the minimum:

Φmin, expand =

(
𝜙1expand

𝑣√
2
+ 𝜙2expand

)
=

(
𝜙1𝑟 + 𝑖𝜙1𝑐

𝑣√
2
+ 𝜙2𝑟 + 𝑖𝜙2𝑐

)
= 𝑒𝑖𝜃𝑖𝜎𝑖/2𝑒𝑖𝛽𝐼/2

(
0
𝑣√
2

)
=

(
1 + 𝑖

2𝜃3 + 𝑖
𝛽

2 𝑖 12𝜃1 +
1
2𝜃2

𝑖 12𝜃1 −
1
2𝜃2 1 − 𝑖 12𝜃3 + 𝑖

𝛽

2

) (
0
𝑣√
2

)
where 𝜃1 = 𝜃2 = 0 and 𝜃3 = 𝛽. Out of the four parameters under a 𝑆𝑈 (2) ×𝑈 (1) transform-
ation, the vacuum is invariant if there exists one massless gauge boson. The other three
are eliminated from this process and instead gain mass by using the expanded vacuum.
To make the masses apparent, the covariant derivative 𝐷𝜇 is written for the 𝑆𝑈 (2) ×𝑈 (1)
symmetry acting on the chosen minimum (where 𝑌 is the hypercharge):

𝐷𝜇Φmin = 𝜕𝜇 − 𝑖𝑔
𝜏𝛼

2
𝑊𝛼
𝜇 − 𝑖𝑔′𝐵𝜇𝑌

(
0

𝑣/
√
2

)
The masses of the remaining three mediators come from the kinetic term

��𝐷𝜇Φmin

��2. The
evaluation of the expression yields:

1

2

(𝑔𝑣
2

)2 ((
𝑊1
𝜇

)2
+

(
𝑊2
𝜇

)2)
=

(𝑔𝑣
2

)2
𝑊+
𝜇𝑊

𝜇− = 𝑚2
𝑊𝑊

+
𝜇𝑊

𝜇−, 𝑊± =
1
√
2

(
𝑊1
𝜇 ±𝑊2

𝜇

)
and

𝑣2

8

(
−𝑔𝑊3

𝜇 + 𝑔′𝐵𝜇
)2

=
(𝑔2 + 𝑔′2)𝑣2

4
(𝑍 𝜇)2 + 0 · (𝐴𝜇)2

where 𝑍𝜇 and 𝐴𝜇 are the orthogonal fields:

𝑍𝜇 =
𝑔√︁

𝑔2 + 𝑔′2
𝑊3
𝜇 −

𝑔′√︁
𝑔2 + 𝑔′2

𝐵𝜇, 𝐴𝜇 =
𝑔′√︁

𝑔2 + 𝑔′2
𝐴3𝜇 +

𝑔√︁
𝑔2 + 𝑔′2

𝐵𝜇

It has become evident that in place of the 𝑆𝑈 (2) ×𝑈 (1) symmetry, the four spin 1 mediator
fields mix into a new linear combination of the aforementioned mediators. During this
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2.8 The Standard Model

process, given the choice of the minimum, which was necessary for the evaluation of the
expressions, three of these fields acquire mass. All left chiral fermions are grouped into
doublets, each containing the two members of each generation, for a total of six doublets,
three for the leptons and three for the quarks. 𝑇3 follows the conventional isospin choice
of +1/2 for the first entry of the doublet, and −1/2 for the second.(

𝑒𝑖

𝜈𝑒𝑖

)
𝐿

,

(
𝑢𝑖

𝑑𝑖

)
𝐿

The right chiral fermions are grouped into singlets, since they are unaffected by the Weak
Interaction and all have 𝑇3 = 0: (

𝑒𝑖

)
𝑅
,

(
𝑢𝑖

)
𝑅
,

(
𝑑𝑖

)
𝑅

Only the first generation was shown in the cases regarding the chiral charge above. The
following relation between electric charge 𝑄, the third weak isospin component 𝑇3 and
hypercharge 𝑌 is introduced:

𝑄 = 𝑇3 + 1

2
𝑌

The Hypercharge 𝑌 describes the current interactions given the values of the charges
and weak isospins of the particles participating in the interaction. This description of
Electroweak theory is known as the Glashow-Weinberg-Salam model.

2.7.1 Fermion Mass Acquisition

In the Glashow-Weinberg-Salam model, the masses in the Lagrangian are of the form
−𝑚 𝑓

(
𝑓
†
𝑅
𝑓𝐿 + 𝑓

†
𝐿
𝑓𝑅

)
, linking the two chiral components of a fermion field. However, the

inclusion of such terms without the process of Symmetry breaking is forbidden due to
the gauge group. The correct, general choice is the expression12:

−𝑦𝑖 𝑗𝑒 𝐿𝑎†𝑖𝜙𝛼𝑒 𝑗𝑅 + 𝑦
𝑖 𝑗

𝑑
𝑄†𝑖
𝛼 𝜙𝛼𝑑

𝑗

𝑅
− 𝑦𝑖 𝑗𝑢 𝑄†𝑖

𝛼 𝜖𝛼𝑏𝜙
∗
𝑏𝑢

𝑗

𝑅
+ h.c.

where the complex 3 × 3 matrices are called the Yukawa matrices. The 𝐿,𝑄 doublets are
the left chiral lepton and quark doublets, 𝑒, 𝑑, 𝑢 are the right chiral lepton and quark
doublets 𝜙 is the Higgs field doublet and 𝜖𝛼𝛽 is the two-dimensional antisymmetric symbol
with 𝜖12 = −𝜖21 = −1 and 0 otherwise. It is important to note that Gauge Invariance
requires that the gauge couplings of the fermions of the three generations are absolutely
identical. This leads to the concept of Lepton Flavor Universality, which is discussed
in section 3.4. This structure is simplified by diagonalizing the non-Hermitian Yukawa
matrices and making changes of variables. It should be noted that in the up and down
quark fields, the Yukawa couplings combine into a unitary matrix that cannot be canceled
in the 𝑊± interaction terms. This unitary matrix is the 𝑉CKM matrix, described in section
2.6.1.

2.8 The Standard Model
The Lagrangian[40] obeying the 𝑆𝑈 (3)×𝑆𝑈 (2)×𝑈 (1) Gauge Symmetry after Spontaneous
Symmetry breaking is reduced to:

L = −1
4

∑︁
𝛼

𝐹𝛼𝜇𝜈𝐹
𝛼 𝜇𝜈+𝑚2

𝑊𝑊
+
𝜇𝑊

−𝜇+ 1

2
𝑚2
𝑍𝑍𝜇𝑍

𝜇+
∑︁
𝑓

𝜓 𝑓 (𝑖𝛾𝑚𝑢𝐷 𝑓 𝜇−𝑚 𝑓 )𝜓 𝑓 +
1

2
(𝜕𝜇ℎ)2−𝑉 (ℎ) (2.6)

12h.c. refers to the Hermitian Conjugate terms. An expression 𝐴 + 𝐵 + h.c. is equivalent to 𝐴 + 𝐵 + 𝐴† + 𝐵†.
Hermitian Conjugate terms are often not written explicitly to prevent visual clutter.
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2.8 The Standard Model

where the sum over 𝛼 runs over the generators of 𝑆𝑈 (3) × 𝑆𝑈 (2) ×𝑈 (1) and the sum over
𝑓 runs over quark and lepton flavors. The covariant derivatives 𝐷 𝑓 𝜇:

𝐷 𝑓 𝜇 = 𝜕𝜇 − 𝑖𝑒𝑄 𝑓 𝐴𝜇 − 𝑖
𝑔

𝑐𝑜𝑠𝜃𝑊
𝑄𝑍 𝑓 𝑍𝜇 − 𝑖𝑔𝑠𝐴𝛼𝜇𝑡𝛼

where 𝑄 𝑓 is the charge of the fermion particle in units of 𝑒. The interactions of the Higgs
boson field ℎ(𝑥) are generated by replacing 𝑣 → 𝑣+ℎ(𝑥) in the mass terms for the𝑊±, 𝑍 and
fermions. This Lagrangian describes the Standard Model of Particle Physics. All terms
except for the couplings of the 𝑊±, 𝑍 conserve the Charge Conjugation 𝐶, Parity 𝑃 and
Time Reversal 𝑇 symmetries. Moreover, QED and QCD conserve all three individually.
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3 Elements of b-Physics Theory

3 Elements of b-Physics Theory
This section contains the necessary theoretical elements for the analysis of this thesis.
The object of study is the 𝐾0

𝑆
strange meson, under the decay 𝑏 → 𝑠𝜇𝜇. Specifically, the

decays:

𝐵0 → 𝜇+𝜇−𝐾0
𝑆 Rare Mode

𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0
𝑆 Resonant Mode

𝐵0 → 𝜓(2𝑆) (𝜇𝜇)𝐾0
𝑆 Second Resonant Mode

are of primary interest in the analysis. Next to the decays, their associations are showcased.
Each of the aforementioned decays fall under the process 𝑏 → 𝑠𝑙+𝑙−, where 𝑙 = 𝜇 only. The
referenced Rare Mode is the decay under study. The former of the two will be used in
order to validate results in the analysis.

Particle 𝐵0 𝐾0
𝑆

𝐽/𝜓 𝜓(2𝑆) 𝜇

Mass (MeV) 5279.72 497.611 3096.900 3686.097 105.6583755
Uncertainty (MeV) 0.08 0.013 0.006 0.011 0.0000023

Table 3.1: Masses of important particles in the analysis[19]. Uncertainties are symmetrical.

The field of 𝑏-physics regards decays and searches for New Physics (NP) using the
𝑏 quark. Searches include decays induced by QCD, QED and the Weak Interaction.
Flavor changing processes refer to decay processes where a quark flavor is changed
by emitting some additional particles, for example 𝑏 → 𝑠𝑋. Flavor Changing Charged
Current (FCCC) processes are permitted in first order (tree-level Feynman diagrams,
figure 3.2), whereas Flavor Changing Neutral Current (FCNC) processes are forbidden
in the Standard Model as there is no photon/𝑍0 coupling between, for example, the 𝑏
and the 𝑠 quark. FCNC processes can be described by an approximate Effective Field
Theory as point-like interactions by integrating out heavy particle degrees of freedom
such as 𝑡,𝑊±, 𝑍 in the one-order loop penguin Feynman diagrams (figure 3.1). This thesis
considers FCNCs in the Weak Interaction and focus on this section on 𝑏-physics. The
penguin-induced FCNC transition 𝑏 → 𝑠𝑋 is among the most valuable probe of New
Physics in flavor physics due to the presence of very massive particles (𝑡,𝑊±, 𝑍) within the
loop, making these processes very sensitive to non-SM extensions. Therefore, a detailed
theoretical description will be in section 3.2.

Electroweak Penguin Diagrams Penguin diagrams describe processes where a quark
emits and re-absorbs a 𝑊± boson changing flavor two times, typically 𝑏 → 𝑡 → 𝑞2, where
𝑞2 ∈ {𝑠, 𝑑}. 𝑏 → 𝑠𝑙+𝑙− proceeds via three penguin diagrams: 𝑏 → 𝑠𝛾∗(𝑙+𝑙−), 𝑏 → 𝑠𝑍∗(𝑙+𝑙−),
and the box diagram as shown in figure 3.1. The 𝑊∗±, 𝑍∗, 𝛾∗ are intermediate virtual
states that cannot be measured by the experiment. In the penguin diagrams, they are
denoted with dashed lines. This process is sensitive to the sign of the 𝐶7, 𝐶9 and 𝐶10

Wilson coefficients, which will be discussed later. Depending on how New Physics interacts
with the Wilson coefficients, their magnitude and sign change, leading to the change of
the rate of 𝑏 → 𝑠𝑙+𝑙−. The motivations of studying 𝑏-physics by using an Effective Field
Theory will now be discussed.
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3.1 Motivation

Figure 3.1: (a) photonic penguin (b) Z penguin and (c) box diagrams for the FCNC electroweak
decay 𝑏 → 𝑠𝑙+𝑙−. The penguins are true for any 𝑙, not just 𝑒. If 𝑙 = 𝜈𝑙, penguin diagram (a) does not
contribute[42].

Figure 3.2: Tree level Feynman Diagram for the FCCC process 𝑏 → 𝑠𝑐𝑐. The 𝑐𝑐 bounded meson
system can most commonly be the particle 𝐽/𝜓 and 𝜓(2𝑆). This is a tree level diagram of 𝑏 → 𝑠𝑐𝑐.

3.1 Motivation
As has been mentioned, penguin diagrams can give hints of New Physics at high energies
since loops are very sensitive to heavy particles, such as 𝑡, 𝐻,𝑊±, 𝑍 in the Standard
Model. New contributions from new hypothetical particles from non-SM extensions can be
present, such as charged Higgs, Supersymmetric (SUSY) particles or fourth generation
leptons and quarks[42]. More specifically, effects from New Physics may come from:

• Models with 𝑍0 mediated FCNC can enhance various decay channels such as 𝐵0 →
𝑙+𝑙− by two orders of magnitude over the SM value and 𝐵0𝑠 → 𝑙+𝑙− by one order of
magnitude. Furthermore, the electro-weak penguin dominated decays 𝐵+ → 𝜙𝜋+

and 𝐵0𝑠 → 𝜙𝜋0 are increased by two and one order of magnitude respectively without
violating the current limits on 𝑏 → 𝑠𝑙+𝑙−[42]. In such models, one introduces an
additional exotic vector singlet charge -1/3 quark and allows it to mix with the
ordinary down-type quarks[43]. FCNCs involving the 𝑍 are induced due to the
different weak isospin of the exotic quark. The CKM matrix ceases to become
unitary, affecting 𝐵0 − 𝐵0 and 𝐵0𝑠 − 𝐵0𝑠 mixing, allowing the study of the mixing also
explore New Physics.

• Multi-Higgs doublet models can enhance the rates of di-lepton processes such as
𝐵0 → 𝑙+𝑙− without considerably affecting 𝑏 → 𝑠𝑙+𝑙− where in this case 𝑙 = {𝑒, 𝜇}.
These models can be classified into two types[43]: models in which there are no
FCNC and models in which FC interactions can be mediated by neutral scalars. In
the former type of models, the phase of 𝐵0 − 𝐵0 and 𝐵0𝑠 − 𝐵0𝑠 mixing is unaffected, the
CKM matrix continues to be unitary. In the latter type of models, 𝐵0−𝐵0 and 𝐵0𝑠 −𝐵0𝑠
mixing is affected from tree-level neutral Higgs exchange amplitudes carrying new
phases.

• In Supersymmetric models, one of which was studied in my Undergraduate thesis[44],
contributions from charged Higgs sparticles can be cancelled by contributions from

37



3.2 Penguin Diagram EFT

charginos and gluinos, leaving the process 𝑏 → 𝑠𝛾 unaffected, but increasing the
rate of 𝑏 → 𝑠𝑙+𝑙−. Supersymmetric Standard Models (SSMs) leave the gauge group
unchanged but introduce and assign new particle partners to each existing Stand-
ard Model one. There are multiple frameworks of Supersymmetry (SUSY), and the
simplest and most commonly known one is the Minimal Supersymmetric Standard
Model (MSSM). Supersymmetry introduces many heavy particles in order to solve
the Hierarchy problem, Grand Unification and dark matter. Such particles may
appear and contribute in the penguin loops.

• Left-right symmetric models[43] typically assign a new gauge group to the SM,
𝑆𝑈 (3)C × 𝑆𝑈 (2)L × 𝑆𝑈 (2)R × 𝑈 (1)𝑌 along with a discrete 𝐿 ↔ 𝑅 symmetry. The
consequence of this change in the group gauge is to introduce the right-handed
neutrinos and a different definition of hypercharge. The new right-handed𝑊𝑅 boson
participates in weak processes in the same way as the Standard Model 𝑊±, can
contribute to 𝐵0 − 𝐵0 and 𝐵0𝑠 − 𝐵0𝑠 mixing. Limits from the mass difference between
𝐾0
𝐿

and 𝐾0
𝑆

constrain the new hypothetical particle 𝑊𝑅 to be heavier than 1.4TeV,
potentially rendering its effects in the mixing negligible. The 𝐿 ↔ 𝑅 symmetry
relates a right-handed CKM matrix to a left-handed counterpart. Removing this
symmetry can lead to the 𝐾0

𝐿
and 𝐾0

𝑆
mass difference constraints to vanish. Then,

the effect of the 𝐵0 and 𝐵0𝑠 lifetime can be attributed to heaviness of the 𝑊𝑅 and not
through the CKM matrix.

Each theoretically proposed model affects 𝑏 → 𝑋 processes differently and measurements
of multiple decay channels is an integral part for search of New Physics. What’s more,
apart from the search of New Physics, penguin diagrams can measure the parameters of
the CKM matrix and are important in measuring the CP violation[45].

3.2 Penguin Diagram EFT
Flavor changing processes, such as decays of the form 𝑏 → 𝑠𝜇+𝜇−, occur at low energies,
at scales 𝜇 ≪ 𝑀𝑊 . Such decays provide an important test of possible new physics at
the electroweak scale[46]. It is convenient to pass from the full theory of Electroweak
Interactions to an Effective Field Theory (EFT) to perform theoretical calculations with
ease, in order to compare with experimental data at those scales.

At the energy scales of 𝜇 ∼ 𝑀𝑊 ∼ 80𝐺𝑒𝑉 , 𝑏 → 𝑠 quark decays are governed by the
aforementioned penguin Feynman Diagrams. To obtain an EFT at the scale 𝜇 ∼ 𝑚𝑏 ∼
5𝐺𝑒𝑉 , the heavy particle degrees of freedom (𝑡,𝑊±, 𝑍) must be integrated out to reduce
the loops into point-like interactions. The EFT for this energy scale is a generalization
of the Fermi EFT for beta decays[42]. After the integration, the particle degrees of
freedom do not appear explicitly in the theory but are incorporated in the effective gauge
coupling constants, running masses and the Wilson Coefficients 𝐶𝑖. The generalized EFT
Lagrangian has the following form[46]:

Leff = LQCD×QED(𝑢, 𝑑, 𝑠, 𝑐, 𝑏, 𝑒, 𝜇, 𝜏)

+ 4𝐺𝐹√
2

(
𝑉∗
𝑢𝑠𝑉𝑢𝑏

(
𝐶𝑐1𝑃

𝑢
1 + 𝐶

𝑐
2𝑃

𝑢
2

)
+𝑉∗

𝑐𝑠𝑉𝑐𝑏
(
𝐶𝑐1𝑃

𝑐
1 + 𝐶

𝑐
2𝑃

𝑐
2

) )
+ 4𝐺𝐹√

2

10∑︁
𝑖=3

( (
𝑉∗
𝑢𝑠𝑉𝑢𝑏 +𝑉∗

𝑐𝑠𝑉𝑐𝑏
)
𝐶𝑐𝑖 +𝑉∗

𝑡𝑠𝑉𝑡𝑏𝐶
𝑡
𝑖

)
𝑃𝑖

where𝑉𝑖 𝑗 are elements of the𝑉CKM matrix,𝐺𝐹 = 1.166379 ·10−5𝐺𝑒𝑉−2 is the Fermi constant
and LQCD×QED consists of kinetic terms of light fermions plus QED and QCD interactions.
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3.2 Penguin Diagram EFT

This Lagrangian density has been described in sections 2.4 and 2.5 respectively. The
remaining terms represent Δ𝐵 = −Δ𝑆 = 1 transitions and consist of local operators of
dimension ≤ 6. The form of the operators is:

𝑃𝑢1 = ( 𝑠̄𝐿𝛾𝜇𝑇𝛼𝑢𝐿) (𝑢𝐿𝛾𝜇𝑇𝛼𝑏𝐿) 𝑃𝑢2 = ( 𝑠̄𝐿𝛾𝜇𝑢𝐿) (𝑢𝐿𝛾𝜇𝑏𝐿)
𝑃𝑐1 = ( 𝑠̄𝐿𝛾𝜇𝑇𝛼𝑐𝐿) (𝑐𝐿𝛾𝜇𝑇𝛼𝑏𝐿) 𝑃𝑐2 = ( 𝑠̄𝐿𝛾𝜇𝑐𝐿) (𝑐𝐿𝛾𝜇𝑏𝐿)
𝑃3 = ( 𝑠̄𝐿𝛾𝜇𝑐𝐿)

∑︁
𝑞

(𝑞𝛾𝜇𝑞)

𝑃4 =
(
𝑠̄𝐿𝛾𝜇𝑇

𝛼𝑐𝐿
) ∑︁

𝑞

(𝑞𝛾𝜇𝑇𝛼𝑞)

𝑃5 =
(
𝑠̄𝐿𝛾𝜇1𝛾𝜇2𝛾𝜇3𝑏𝐿

) ∑︁
𝑞

(
𝑞𝛾𝜇1𝛾𝜇2𝛾𝜇3𝑞

)
𝑃6 =

(
𝑠̄𝐿𝛾𝜇1𝛾𝜇2𝛾𝜇3𝑇

𝛼𝑏𝐿
) ∑︁

𝑞

(
𝑞𝛾𝜇1𝛾𝜇2𝛾𝜇3𝑇𝛼𝑞

)
𝑃7 =

𝑒

𝑔2
𝑚𝑏 ( 𝑠̄𝐿𝜎𝜇𝜈𝑏𝑅)𝐹𝜇𝜈 𝑃8 =

1

𝑔
𝑚𝑏 ( 𝑠̄𝐿𝜎𝜇𝜈𝑇𝛼𝑏𝑅)𝐺𝛼

𝜇𝜈

𝑃9 =
𝑒2

𝑔2

(
𝑠̄𝐿𝛾𝜇𝑏𝐿

) ∑︁
𝑙

(𝑙𝛾𝜇𝑙) 𝑃10 =
𝑒2

𝑔2

(
𝑠̄𝐿𝛾𝜇𝑏𝐿

) ∑︁
𝑙

(𝑙𝛾𝜇𝛾5𝑙)

where the sums over 𝑞 and 𝑙 denote sums over all the light quarks (𝑢, 𝑑, 𝑠, 𝑐, 𝑏) and
leptons (𝑒, 𝜇, 𝑡) respectively. The opposite chirality 𝐿 ↔ 𝑅 local light operators exist and
are denoted in primed notation13. 𝐹𝜇𝜈 and 𝐺𝛼

𝜇𝜈 are the QED and QCD field strength
tensors respectively and 𝑇𝛼 are the eight generators of the symmetry group of QCD.
𝑚𝑏, 𝑒 and 𝑔 = 4𝜋𝑎𝑠 are the mass of the 𝑏 quark, electron charge and QCD coupling
strength respectively. The light (with respect to the 𝑏 quark mass fermions and the 𝑊
boson mass) operators is due to the fact that Effective Field Theories are first expressed
in an energy scale energy renormalization limit 𝜇, in this case, 𝜇 ∼ 𝑚𝑊 , then evolved
down to 𝜇 ∼ 𝑚𝑏 using Renormalization Theory techniques. The Wilson coefficients are
essentially the coupling strengths of the local light field operators and encode information
about New Physics (NP) as well as heavy particle degrees of freedom. They are expanded
pertrubatively as[46][47]:

𝐶
𝑄

𝑖
= 𝐶

𝑄(0)
𝑖

+ 𝑎𝑠

4𝜋
𝐶
𝑄(1)
𝑖

( 𝑎𝑠
4𝜋

)2
𝐶
𝑄(2)
𝑖

+ O(𝑎3𝑠 ), 𝑄 ∈ {𝑐, 𝑡}

where 16𝜋2/𝑔2 = 4𝜋/𝑎𝑠 (𝑚𝑊 ). At tree level, all zero-th order Wilson Coefficients𝐶𝑄(0)
𝑖

vanish,
except for 𝐶𝑐(0)2 = −1. For more information about the procedure, as well the expression of
higher-order terms, see[46]. An alternative formulation using Hamiltonians can be found
in[47]. From the forms of the local light operators 𝑃𝑖, it can be seen due to the form of
the operators 𝑃9, 𝑃10 containing light lepton fields, that these two operators contribute in
𝑏 → 𝑠𝑙+𝑙− decays. 𝑃9 is a vector current operator, whereas 𝑃10 is an axial vector current
operator due to the presence of the 𝛾5 matrix14. Once the matching renormalization scale
has been evolved from 𝜇 ∼ 𝑚𝑊 down to the effective region 𝜇 ∼ 𝑚𝑏, the Wilson coefficients
mix with each other[47]. It is of importance to note the new effective form of 𝐶9:

𝐶eff
9 =

4𝜋

𝑎𝑠
𝐶9 + 𝑌 (𝑞2)

13See[47] for more details.
14Some authors follow the 𝑃9𝑉 and 𝑃10𝐴 notation to denote this. The field operators are also sometimes

written as O𝑖 in literature.
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3.2 Penguin Diagram EFT

where 𝑌 (𝑞2):

𝑌 (𝑞2) = ℎ(𝑞2, 𝑚𝑐)
(4
3
𝐶1 + 𝐶2 + 6𝐶3 + 60𝐶5

)
− 1

2
ℎ(𝑞2, 𝑚𝑏)

(
7𝐶3 +

4

3
𝐶4 + 76𝐶5 +

64

3
𝐶6

)
− 1

2
ℎ(𝑞2, 0)

(
𝐶3 +

4

3
𝐶4 + 16𝐶5 +

64

3
𝐶6

)
+ 4

3
𝐶3 +

64

9
𝐶5 +

64

27
𝐶6

and ℎ(𝑞2, 𝑚𝑞):

ℎ(𝑞2, 𝑚𝑞) = −4
9

(
ln
𝑚2
𝑞

𝜇2
− 2

3
− 𝑧

)
− 4

9
(2 + 𝑧)

√︁
|𝑧 − 1| atan 1

√
𝑧 − 1

, 𝑧 > 1

ℎ(𝑞2, 𝑚𝑞) = −4
9

(
ln
𝑚2
𝑞

𝜇2
− 2

3
− 𝑧

)
− 4

9
(2 + 𝑧)

√︁
|𝑧 − 1| ln 1 +

√
1 − 𝑧

√
𝑧

𝑧 ≤ 1

where 𝑧 = 4𝑚2
𝑞/𝑞2, related to the basic fermion loop and 𝜇 is the matching scale of the

interaction. The function ℎ is discontinuous for 𝑧 = 1 or equivalently 𝑞2 = 4𝑚2
𝑞. Such

discontinuities can cause issues in the analysis[48] but corrections are not taken into
account in Monte Carlo simulations and ad-hoc models are not included in this thesis.
The operators 𝑃𝑖 are used to extract the form factors, or matrix elements of a particular
decay.

Effective Hamiltonian for 𝑏 → 𝑠𝑙𝑙 The Effective Hamiltonian for 𝑏 → 𝑠 penguin
decays has the following form:

Heff = −4𝐺𝐹√
2
𝑉𝑡𝑏𝑉

∗
𝑡𝑠

10∑︁
𝑖=1

𝐶𝑖 (𝜇)𝑃𝑖 (𝜇)

where 𝜇 is the energy scale. Calculations are performed at a high energy scale 𝜇 ∼ 𝑀𝑊

and then evolved to a low energy scale 𝜇 ∼ 𝑚𝑏 using renormalization group equations. The
evolution to the low energy scale mixes the operators and the dependence on the 𝜇 energy
scale is canceled between the Wilson coefficients 𝐶𝑖 and the light operators 𝑃𝑖, making
any observable quantity independent of the normalization energy scale parameter 𝜇15.
Since the calculations are performed perturbatively, however, the theoretical predictions
depend on the renormalization scale 𝜇 and can sometimes dominate over the theoretical
uncertainty. To minimize this effect, calculations must be performed in higher orders.
Wilson coefficients represent short distance (high-energy) Electroweak and Strong In-
teractions. The operator elements, on the other hand, are influenced by long distance
(low energy) effects therefore they cannot be obtained pertrubatively due to the quark
confinement phenomenon of QCD. The operator elements ⟨𝑋 | 𝑃𝑖 |𝐵⟩ where 𝑋 denote the
final state products (e.g. 𝜇𝜇𝐾0

𝑆
) can be approximated to ⟨𝑋 | 𝑃𝑖 |𝐵⟩ ≈ ⟨𝑠 | 𝑃𝑖 |𝑏⟩ to leading

order using expansions of powers of 1/𝑚𝑏 when 𝑋 is an inclusive16 final state[42]. When
𝑋 is an exclusive final state, the calculation of the operator elements is difficult from first
principles, however some methods can succeed depending on the presence of hadrons,
leptons and the number of particles in the final state[42]. The simplest allowed final
states are 𝐵 → 𝐾𝑙+𝑙− and 𝐵 → 𝐾∗𝑙+𝑙−, where 𝐵, 𝐾, 𝐾∗ can be either charged or neutral.
These final states constitute about ∼ 10% of the total rate of 𝑏 → 𝑠𝑙+𝑙−.

15Any physical observable does not depend on the renormalization scale which is a number which allows
theoretical simplifications in Renormalization Theory

16An exclusive/inclusive final state denotes that the momentum 4-vector of all/some of the decay products
has been determined.
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3.3 𝐾0 − 𝐾0 Mixing

Figure 3.3: Differential decay rate in 𝑞2 = 𝑚(𝜇𝜇) for 𝑏 → 𝑠𝜇+𝜇− decays. The figure qualitatively
shows the two predominant resonances as well as the dominant contributions of the effective
(primed) Wilson coefficients in different 𝑞2 regions.

3.3 𝐾0 − 𝐾0 Mixing
Some mesons, like the 𝐾0, 𝐾0 can convert into each other respectively [49] due to the
lack of a conserved quantum number17. The 𝐾0, 𝐾0 have definite quark content 𝑑𝑠̄, 𝑠𝑑
which have strangeness 𝑆 = +1, 𝑆 = −1 respectively, constituting them as definite particles
participating in QCD interactions. Moreover, the pair has spin 0 and negative parity
𝑃 = −1. Flavor Changing Weak Interactions do not conserve the Strangeness quantum
number, allowing the particle pair to mix with itself. This phenomenon is called 𝐾0 − 𝐾0

mixing. The charge conjugation operator 𝐶 and the parity operator 𝑃 can change the
particles of the pair into each other, and the parity operator introduces an eigenvalue of
−1 since the particles in the pair have negative parity.

𝐶
��𝐾0

〉
=

��𝐾0
〉
, 𝐶

��𝐾0
〉
=

��𝐾0
〉

𝑃
��𝐾0

〉
= −

��𝐾0
〉
, 𝑃

��𝐾0
〉
= −

��𝐾0
〉

Applying the two operators 𝐶 and 𝑃, one sees:

𝐶𝑃
��𝐾0

〉
= −

��𝐾0
〉
, 𝐶𝑃

��𝐾0
〉
= −

��𝐾0
〉

demonstrating that the pair 𝐾0, 𝐾0 is not a CP eigenstate pair. Moreover, two types
of neutral kaons 𝐾𝑆 and 𝐾𝐿

18, different from the aforementioned 𝐾0, 𝐾0 are measured
experimentally, with approximately the same mass of 498𝑀𝑒𝑉 but different decay modes
and lifetimes of ∼ 9 · 10−11𝑠 and ∼ 5 · 10−8𝑠 respectively. The 𝐾𝑆 decay modes are primarily:

𝐾0
𝑆 → 𝜋0𝜋0 (𝐵 = 31)%, 𝐾0

𝑆 → 𝜋+𝜋− (𝐵 = 69)%

containing two particles in the final state. For the 𝐾0
𝐿
, three particles are identified:

𝐾0
𝐿 → 𝜋0𝜋0𝜋0 (𝐵 = 20)%, 𝐾0

𝐿 → 𝜋0𝜋+𝜋− (𝐵 = 13)% 𝐾0
𝐿 → 𝜋±𝑙∓𝜈𝑙 (𝜈𝑙) (𝐵 = 67)%

17For example, a 𝜋+ cannot turn into a 𝜋− due to the conservation of charge, a 𝑝+ cannot turn into a 𝑛0
due to the conservation of charge and baryon number and the 𝜋0 is a Majorana particle.

18Pronounced K-short and K-Long respectively. This naming convention is due to the magnitude of their
lifetimes, where the 𝐾𝐿 ’s lifetime is larger.
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3.4 Lepton Flavor Universality

However, it has been discovered[50] that the 𝐾0
𝐿

can decay into 𝜋+𝜋− with a 𝐵 ∼ 0.1%,
which is another experimental evidence of CP violation of the Weak Interaction. Therefore,
the 𝐾0

𝑆
and 𝐾0

𝐿
particles are definitely not the definite QCD particles 𝐾0, 𝐾0, or the 𝐶𝑃

eigenstates 𝐾0
1 , 𝐾

0
2 but a specific mixture[49]. The mixture is defined with the help of the

𝐶𝑃 eigenstates 𝐾0
1 , 𝐾

0
2 of the 𝐾0, 𝐾0:

Figure 3.4: Feynman Diagram demonstrating 𝐾0 − 𝐾0 mixing.
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=

1
√
2

(��𝐾0
〉
−

��𝐾0
〉)
, 𝐶𝑃

��𝐾0
1

〉
=
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1
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��𝐾0

2

〉
=

1
√
2
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〉
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, 𝐶𝑃

��𝐾0
2

〉
= −

��𝐾0
2

〉
where the 𝐾0

𝑆
and 𝐾0

𝐿
are expressed via a complex parameter 𝜖 , which can be determined

experimentally |𝜖 | ≈ (2.232 ± 0.007) · 10−3[50]:��𝐾0
𝑆

〉
=

1√︃
1 + |𝜖 |2

(��𝐾0
1

〉
− 𝜖

��𝐾0
2

〉)
��𝐾0
𝐿

〉
=

1√︃
1 + |𝜖 |2

(
𝜖
��𝐾0

1

〉
+

��𝐾0
2

〉)
Other mesons mix the way the neutral kaons do, for example the 𝐵0, 𝐵0 pair with quark
content 𝑑𝑏, 𝑏𝑑, the 𝐵0𝑠 , 𝐵0𝑠 pair with quark content 𝑠𝑏, 𝑠𝑑, as well as the 𝐷0, 𝐷̄0 pair.

3.4 Lepton Flavor Universality
Lepton Flavor Universality (LFU) refers to the assumption that all three lepton flavors
have identical couplings to the three massive Electroweak bosons (𝑍0, 𝑊±)[51]. Testing
the validity of the LFU is a direct test on the validity of the Standard model, as well
as hint towards new NP scenarios as LFU can be violated in such scenarios, due to the
higher mass of the third generation of leptons (𝜏, 𝜈𝜏) coupling to NP heavier particles
much easier than lighter leptons. The LFU in the Standard Model comes from the absence
of proportional matrices (such is the 𝑉CKM for the quarks) in the Weak Interaction bosons
between the fermions, see section 2.7.1.

3.4.1 The 𝑅𝐾 Observable

In 𝑏 → 𝑠𝑙+𝑙− processes, an observable that may hint towards LFU violation is the 𝑅𝐾
family of ratios:

𝑅𝐾 =
BR(𝐵 → 𝜇+𝜇−𝐾)
BR(𝐵 → 𝑒+𝑒−𝐾)
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3.4 Lepton Flavor Universality

where:
𝐵 ∈ {𝐵±, 𝐵0, 𝐵0𝑆}, 𝐾 ∈ {𝐾±, 𝐾∗±, 𝐾0

𝑆 , 𝐾
0
𝐿 , 𝐾

∗0}

In order to prevent experimental uncertainties stemming from the different nature of
measuring 𝜇 and 𝑒 within the CMS experiment, such as bremstrahlung radiation and
trigger reconstruction efficiencies, the above measurable is modified in such a way that
expresses a double ratio of the two leptonic modes by including a resonant channel for
the leptons, in this case the 𝐽/𝜓, so that 𝐵 → 𝐽/𝜓𝐾. The aforementioned uncertainties in
the lepton pairs largely cancel and the measurement of the 𝑅𝐾 ratio is not dominated by
large uncertainties. The double ratio is expressed by:

𝑅𝐾 =
BR(𝐵 → 𝜇+𝜇−𝐾)

BR(𝐵 → 𝐽/𝜓(𝜇+𝜇−)𝐾)

/ BR(𝐵 → 𝑒+𝑒−𝐾)
BR(𝐵 → 𝐽/𝜓(𝑒+𝑒−)𝐾)

It is convenient to write the above as:

𝑅𝐾 = 𝑅𝐾 (𝜇)/𝑅𝐾 (𝑒)

The decay channel of 𝐽/𝜓 → 𝑙+𝑙−, where 𝑙 ∈ {𝑒, 𝜇} is largely studied. In this thesis, the
choice of the 𝐾 particle is 𝐾0

𝑆
. Furthermore, since the reconstruction efficiency of electrons

is a rather complicated task, in this thesis only the ratio 𝑅𝐾 (𝜇) is calculated. Therefore,
the object of study within the scope of this thesis is explicitly:

𝑅𝐾0
𝑆
(𝜇) =

BR(𝐵0 → 𝜇+𝜇−𝐾0
𝑆
)

BR(𝐵0 → 𝐽/𝜓(𝜇+𝜇−)𝐾0
𝑆
)

To determine the 𝑅𝐾0
𝑆
(𝜇) observable experimentally, one needs to account for detector

geometry and particle reconstruction effects. The yield of the decay channel 𝐵0 → 𝑋

𝑁 (𝐵0 → 𝑋)exp is determined as:

𝑁 (𝐵0 → 𝑋)exp = 𝑁 (𝐵0) · 𝐵𝑅(𝐵0 → 𝑋) · 𝛼(𝐵0 → 𝑋) · 𝜖 (𝐵0 → 𝑋) (3.1)

where 𝑁 (𝐵0) is the total number of 𝐵0 particles and 𝛼(𝐵0 → 𝑋), 𝜖 (𝐵0 → 𝑋) is the accept-
ance and efficiency factors, accounting for detector geometry and particle reconstruction,
thoroughly explained in section 4.3.

𝑁 (𝐵0) · BR(𝐵0 → 𝑋) =
𝑁 (𝐵0 → 𝑋)exp

𝛼(𝐵0 → 𝑋) · 𝜖 (𝐵0 → 𝑋)

Taking the expression above and then dividing it by a similar expression but with a decay
channel with the same mother particle 𝐵0 so that the total number of mother particles,
or total yield 𝑁 (𝐵0) can cancel, one can arrive into the experimental determination
of the 𝑅𝐾0

𝑆
(𝜇) ratio. By taking equation 3.1 for 𝑋 = 𝜇+𝜇−𝐾0

𝑆
and the resonant channel

𝑋 = 𝐽/𝜓(𝜇𝜇)𝐾0
𝑆
, where 𝐽/𝜓(𝜇𝜇) is an abbreviation of the decay channel 𝐽/𝜓 → 𝜇+𝜇− and

dividing by parts:

𝑅𝐾0
𝑆
(𝜇) =

𝑁 (𝐵0 → 𝜇+𝜇−𝐾0
𝑆
)exp

𝛼(𝐵0 → 𝜇+𝜇−𝐾0
𝑆
) · 𝜖 (𝐵0 → 𝜇+𝜇−𝐾0

𝑆
)

/ 𝑁 (𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0
𝑆
)exp

𝛼(𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0
𝑆
) · 𝜖 (𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
)

Or equivalently, by re-arranging:

𝑅𝐾0
𝑆
(𝜇) =

𝑁 (𝐵0 → 𝜇+𝜇−𝐾0
𝑆
)exp · 𝛼(𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
) · 𝜖 (𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
)

𝑁 (𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0
𝑆
)exp · 𝛼(𝐵0 → 𝜇+𝜇−𝐾0

𝑆
) · 𝜖 (𝐵0 → 𝜇+𝜇−𝐾0

𝑆
)

(3.2)
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Later on, as a cross-check the determination of the same observable for the Second
Resonant mode 𝐵0 → 𝜓(2𝑆)𝐾0

𝑆
in place of the Rare Mode will also be calculated.:

𝑅𝐾0
𝑆
(𝜓(2𝑆)) =

𝑁 (𝐵0 → 𝜓(2𝑆) (𝜇𝜇)𝐾0
𝑆
)exp · 𝛼(𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
) · 𝜖 (𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
)

𝑁 (𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0
𝑆
)exp · 𝛼(𝐵0 → 𝜓(2𝑆) (𝜇𝜇)𝐾0

𝑆
) · 𝜖 (𝐵0 → 𝜓(2𝑆) (𝜇𝜇)𝐾0

𝑆
)
(3.3)

The quantities above can be determined experimentally.

3.4.2 The Differential Branching Function 𝑑𝐵/𝑑𝑞2

The differential Branching function for a specific decay process relative to another can
also be determined experimentally by taking equation 3.1 for two modes and dividing
them by parts as done in equations 3.2 and 3.3. However, in one of the decay channels,
the Branching ratio can be expressed in terms of 𝑞2 as:

BR(𝐵0 → 𝑠𝑋) = ΔBR(𝐵0 → 𝑠𝑋)
Δ𝑞2

Δ𝑞2

Instead of measuring the 𝑅𝐾0
𝑆
(𝜇) observable, the differential branching function of the

Rare Mode may be measured instead for various 𝑞2 regions. The differential branching
function is given by:

𝑑BR(𝐵0 → 𝜇+𝜇−𝐾0
𝑆
)

𝑑𝑞2
=
𝑁 (𝐵0 → 𝜇+𝜇−𝐾0

𝑆
)exp · 𝛼(𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
) · 𝜖 (𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
)

𝑁 (𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0
𝑆
)exp · 𝛼(𝐵0 → 𝜇+𝜇−𝐾0

𝑆
) · 𝜖 (𝐵0 → 𝜇+𝜇−𝐾0

𝑆
)

·
BR(𝐵0 → 𝐽/𝜓(𝜇+𝜇−)𝐾0

𝑆
)

Δ𝑞2

or equivalently:

𝑑BR(𝐵0 → 𝜇+𝜇−𝐾0
𝑆
)

𝑑𝑞2
= 𝑅𝐾0

𝑆
(𝜇) ·

BR(𝐵0 → 𝐽/𝜓(𝜇+𝜇−)𝐾0
𝑆
)

Δ𝑞2
(3.4)

The switch 𝑑𝑞2 → Δ𝑞2 affects the quality of this analysis. Ideally, the bin sizes Δ𝑞2 used
in the analysis should be as small as possible in order to differentiate effects such as
different decays spanning across a 𝑞2 bin. However, the problem lies in the low number of
statistics available. This requires the use of broader 𝑞2 bins.
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4 Analysis

4 Analysis
This section of this thesis describes the Analysis procedure as a whole. Firstly, a descrip-
tion of the software and datasets are given in section 4.1 for the reader to familiarize with
the framework used in the analysis. The analysis was mainly performed by using the
ROOT framework, provided by CERN, to analyze both synthetic datasets from physics
process generators as well as real data acquired from the CMS experiment. Following
the aforementioned description, section 4.2.3 describes various physics objects that are
present in the data samples which are essential for interpretation. Section 4.3 is the first
essential step in determining the two observables of this analysis, which were described
in section 3.4. Sections 4.4 and 4.5 give a thorough description of the BDT Machine
Learning model and its training procedure for the analysis, which is also very essential
in the analysis. Section 4.6 explains the procedure of the 𝐵0 mass fits on the low-𝑞2
region after the BDT is trained in order to determine the value of the BDT cut which
favors background rejection. Section 4.7 explains a technique which can extract variable
distributions from a specific fit component of a fitted distribution, allowing the generated
samples to be compared with the Signal search in the Data samples. Finally, section
4.8 describes the simultaneous fit on the 𝐵0 mass across the Rare Mode bins in table
4.1, making use of increased statistics in order to determine the differential branching
function observable. The results and summary of this analysis are in section 5. Figure
4.1 shows a qualitative graphic of the analysis strategy.

Figure 4.1: Qualitative analysis strategy graphic. The rectangular shapes in dark blue signify
techniques and processes using various frameworks in the analysis. The green shapes signify
refinement processes in order to improve the analysis. The light blue shapes signify results that are
essential to the analysis. The final pink shape is the end result of this analysis.

4.1 Analysis Software
The analysis is done using software on an Linux CentOS able to run ROOT and various
python packages. The aforementioned operating systems are hosted on the lxplus7,
lxplus8 and lxplus9 nodes of the LXPLUS (Linux Public Login User Service) machine
cluster. It is a collection of machines running Linux distributions where the analysis can
be performed with considerable computing power while also providing a large amount of
storage space. Each machine on the LXPLUS cluster runs on different versions of the
operating system, with different versions of software. One limitation of the analysis was
running the same software on different versions, therefore the software had to be adjusted
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to prevent bugs and unpredictable behaviors. By the end of June 2024, lxplus7 nodes
were discontinued from operation, requiring further technical software maintenance so
as to keep up with newer nodes.

4.1.1 Datasets

The available datasets19 for analysis are separated into two distinct categories, Monte
Carlo samples and Data samples. Monte Carlo samples are simulated samples that
involve simulated physics processes, usually incorporating realistic detector simulation
and measurement boundaries and created by generator software according to a set of
Physics rules or theory (for example the Standard Model, or the MSSM). Within this
thesis, if the Monte Carlo dataset incorporates detector simulation and/or includes a
biased amount of a specific physics process or decay, it will be referred to as a biased
Monte Carlo sample. These data samples must be requested and are not publicly available.
The Monte Carlo samples for this thesis involve the following processes:

• Unbiased samples with 𝐵0 → 𝜇𝜇𝐾0
𝑆
, 𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
and 𝐵0 → 𝜓(2𝑆) (𝜇𝜇)𝐾0

𝑆
pro-

cesses, as well as 𝐵 → 𝜇𝜇𝐾∗(𝜋𝐾0
𝑆
) background processes.

• Biased20 samples with 𝐵0 → 𝜇𝜇𝐾0
𝑆
, 𝐵0 → 𝐽/𝜓(𝜇𝜇)𝐾0

𝑆
, 𝐵0 → 𝜓(2𝑆) (𝜇𝜇)𝐾0

𝑆
, 𝐵0 →

𝜇𝜇𝐾∗(𝐾0
𝑆
𝜋) processes, as well as 𝐵 → 𝜇𝜇𝐾∗(𝜋𝐾0

𝑆
) background processes.

Data samples are experimental measurements acquired through the CMS detector, after
some elementary preprocessing. This thesis regards and uses CMS Run 3 2022 Data
samples. Specifically among the whole dataset, eras C, Dv1, Dv2, E, F, G and parts 0 to
7 were used. Each entry in the MC and Data samples corresponds to an event with a
𝐵0 decay. These processed samples that are used in this analysis are also referred to as
tuples.

4.1.2 PYTHIA

PYTHIA[52][53] has been used for the generation of events in high energy collisions.
Version 8.2 of the program is written in C++ and covers a wide range of hard processes,
models for parton showers and particle interactions and decays. It describes Physics
that is derived from theory, based on phenomenological models, or options from yet to be
confirmed models, like Supersymmetry.

The physics models of PYTHIA regard high-energy particle collisions with √
𝑠 >

10𝐺𝑒𝑉 , corresponding to a proton-proton fixed target beam energy of 𝐸 ≥ 50𝐺𝑒𝑉 . This
choice of energy cutoff is picked because PYTHIA incorporates the approximation of a
continuum of final states to make cross section calculations easier. However, for √

𝑠 <

10𝐺𝑒𝑉 , hadron-hadron cross section calculations become unreliable as the aforementioned
approximation no longer holds. Furthermore, PYTHIA’s models can be verified for √

𝑠 ∼
100𝑇𝑒𝑉 , or otherwise 𝐸 < 1010𝐺𝑒𝑉 . Two limitations that are worth mentioning are the
types of collisions between leptons and hadrons present in the program and the absence
of detector material. PYTHIA works with hadron-hadron or lepton-lepton collisions at its
newest version. There are no current plans to incorporate mixed hadron-lepton collisions,
however, collisions including nuclei are not going to be programmed into PYTHIA in the

19The terms datasets and samples are used interchangeably. However, the term sample is more common
within the Experimental High Energy Physics community.

20A biased MC sample is also referred to as a Filtered MC sample due to passing filters to the physics
event generator that creates these samples.
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foreseeable future. The second issue is the absence of detector material in the program’s
code. Luckily, an external interface can be created by a third party to simulate the desired
detector material. PYTHIA event generation is also supported by other modules, such as
MadGraph5. PYTHIA includes a large number of processes. The majority of processes
included are reactions and scatterings of type 2 → 1, 2 → 2 and a few 2 → 3 and above.
Processes that are widely known include:

• QCD soft and hard processes, for example jets.

• Electroweak processes, with photon production, production of the 𝛾/𝑍 and𝑊± bosons.
Inelastic scattering 𝛾𝛾 → 𝑓 𝑓 is also allowed.

• Top production in pairs or as a single final state.

• Various Higgs processes, including the SM production of the Higgs boson, as well
as production of Higgs from Higgs-doublet models.

• SUSY processes, for example the pair production of SUSY particles.

The total proton-proton beam cross section is given by the Regge fitting to data as a
function of the Mandelstam variable 𝑠 in units of TeV2:

𝜎
𝑝𝑝

tot (𝑠) = (21.70𝑠0.0808 + 56.08𝑠−0.4525)𝑚𝑏

for 𝑠 = 13.52𝑇𝑒𝑉2, one gets the value for the proton-proton total cross section:

𝜎
𝑝𝑝

tot (13.5
2𝑇𝑒𝑉2) = 100.917𝑚𝑏

which is consistent with the 𝑝𝑝 cross section of the LHC during Run 3 2022. Since PYTHIA
runs in the C++ programming language, an object oriented programming language, it
makes use of classes. Each event is generated and is described by the Event class, which
is a wrapper for a vector of Particles, which is an array of all the particles of the event,
where their properties can be accessed for analysis. For the Particle class, some of its
key properties include:

• An assigned identification number (id), which is unique per particle type,

• its mother(s) particle(s),

• its color charge and electrical charge, Breit-Wigner width,

• its four-momentum, mass, spin, and lifetime on its CM frame,

• a four-vector representing the production vertex,

• whether the particle decay, or different types of statuses which describe the state of
the particle.

Using this information, one can essentially perform analysis by hand-picking which
particles are important, including their properties. This level of data access is referred to
as the Generated (GEN) Level, where no attempts of a simulated physical detector to
record and reconstruct particle tracks have been made. It is briefly reminded that this
level does not represent the experimental reconstructed data that one gets from collision
experiments such those that happen in the detectors of the LHC, as explained by the
two dataset types in section 4.1.1. In short, the GEN level of the Monte Carlo sample is a
dataset that corresponds to generated data by the PYTHIA software.
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4.1.3 ROOT

ROOT[54] is an object oriented data analysis framework. It is used primarily for analyses
in high-energy physics. The main components that will be discussed in this section
include:

• a machine-independent, highly-compressed object-oriented database along with a
C++ interpreter,

• advanced statistical analysis tools, namely fitting and minimization techniques
(RooFit), multi-dimensional histogramming,

• visualization tools for 2D and 3D graphics,

• query mechanisms to select information in very large data sets, which are called
ROOT Trees,

• GUI elements, in case the user wants to avoid cumbersome coding to extract results
about their analysis (histogram styling, fitting, etc).

The ROOT framework has about 460 classes grouped by functionality into shared
libraries. The libraries are designed in such a way that dependencies are minimized, so
the user does not have to include a lot of unnecessary classes from an inefficient organized
system of libraries, which would increase file size and computation time. The core and
CINT libraries include the bare minimum necessities and the interpreting classes for the
C++ interpreter respectively. There are also classes that communicate with PYTHIA via
an interface for event generation. The C++ interpreter is used because of its efficiency
over other interpreters like Perl and Python.

ROOT offers an easy overall handling of histograms. Apart from the standard ma-
nipulation of a histogram, which includes the bin size, minimum and maximum values
of an axis and style, it provides operations between histograms: addition, division, nor-
malization, integration, as well as providing various statistical quantities via the use of
fitting and minimization functions. Since this is one of the main purposes of ROOT, the
framework is simple, but can also become very extensive. There are various histogram
classes for 1D, 2D and 3D histograms whose classes depend on the byte size (precision
and type) of the data. Visualization tools allow for interactively communicating with the
histogram, changing parameters and finally saving the result in various file forms.

A ROOT file contains directories and objects in the form of a UNIX file directory. The
ROOT file can also be accessed graphically for easier navigation. For example, histograms
and various calculations can be saved within a root file, which is machine-independent,
and be read on any machine. For large quantities of the same class objects, it is advised
to use the TTree class, which is specifically designed for this purpose. It can handle all
sorts of data in various structures, like objects and arrays while effectively reducing disk
storage and increasing access speed. Standard analysis practice is to fill a TTree with
events of interest and write the TTree to a file for further analysis A TTree is composed of
branches, described by the class TBranch, which can be read independently from other
branches. In practice, a TBranch contains information about a multitude of physics objects,
for example the coordinates of a four-vector or the particle mass 𝑚, or even non-physics
objects. Each variable is called a leaf, described by the class TLeaf. In analogy and context
with other data science frameworks, such as pandas in the python programming language,
a TLeaf is a column of a TTree dataframe. If desired, often due to speed processing reason,
some variables can be nested together to be read from the computer memory for analysis.

48



4.2 Quantity Definitions

This nesting can be done with the help of a TBranch. By nesting variables within a TBranch

instead of keeping all variables unnested, the computation time is considerably affected.

4.1.4 Other Analysis Frameworks

The CMSSW (CMS Offline WorkBook) is an open-source collection of software that
CMS uses to acquire, produce, process and analyze data on a specific architecture. It
is written on the C++ programming language, but configuration is performed by the
python programming language. The choice of architecture is primarily tied to the version
of the operating system of the LXPLUS service. Further updates of the software on a
specific architecture are also available. Connecting to an LXPLUS node with unsuitable
architecture for a given project may cause bugs and unpredictable behavior, therefore good
knowledge and features of the CMSSW version used in the project must be established.

The framework for analysis is hosted on private GitHub repositories. The analysis
framework is a culmination of the work done by the previous scientists working on the
analysis[55] and is not available publicly. Two private repositories exist: One repository
responsible for processing raw CMS Run 3 2022 Data into the required format for analysis,
a fork of CMG-Tools and the post-processing analysis framework itself. The former, written
in C++, running on CMSSW 12 4 8 (lxplus7-8 architecture) makes use of the CRAB (CMS
Remote Analysis Builder) tool, a tool which enables the user to hide their job processes21.
The latter is written in a mixture of C++ and python programming languages, running
on CMSSW 10 4 0 (lxplus7 architecture, later adapted to lxplus8) which both are high-level
general purpose languages, and is the framework in which the analyst spends most time
on. This framework largely uses the ROOT computational software to process events,
perform analysis and extract results either visual or in the form of numerical data. What’s
more, the use of ROOT library RooFit, a statistical software that is primarily used for
fitting functions to data is also used in the analysis. The portion of this framework that
isn’t related to ROOT is the use of Machine Learning algorithms and related functions,
such as the Boosted Decision Tree, as ROOT does not include such functions as of yet.

4.2 Quantity Definitions
In this section, a brief familiarization with various quantities, either physical or technical
used throughout the analysis is carried. A description of the coordinate basis is important
in order to adapt to the conditions of the experiment. Furthermore, the notion of tracks,
vertices and various track-related parameters can render some choices of preselection cuts
in the analysis understandable. What’s more, a clear reference of the present variables
in analysis is crucial in understanding the implications of the conclusions.

4.2.1 Detector Coordinate System

The coordinate system that is primarily used in collider experiments such as CMS is
described in figure Fig. 4.2.

21Often for private research reasons and security.
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Figure 4.2: Definition of the coordinate system.

The plane normal to the beam axis is the transverse plane 𝑇 . The azimuthial angle 𝜙 is
defined from the positive 𝑥 axis on the transverse plane 𝑇 . The polar angle 𝜃 is defined with
respect to the positive 𝑧 axis. The components of the Lorentz 4-vector 𝑝𝜇 = (𝐸, 𝑝𝑥 , 𝑝𝑦, 𝑝𝑧)
are difficult to measure. Therefore, a different description of the aforementioned Cartesian
coordinates 𝐸 and 𝑝𝑖 𝑖 ∈ { 𝑗}31 is attained depending on the required functionality:

𝑝𝜇 = (𝑝𝑡 , 𝜌, 𝜃, 𝜙)

where 𝜌 is the distance in the transverse plane from the beam axis. It is important to
understand an alternative and more experiment friendly description of the coordinate
system. From the 4-product of the momentum of a particle 𝑝𝜇𝑝𝜇 of mass 𝑚, expanded on
the Cartesian coordinates in the Lab Frame, the transverse mass 𝑚𝑡 can be defined:

𝐸2 = 𝑝2𝑥 + 𝑝2𝑦 + 𝑝2𝑧 + 𝑚2 ⇒ 𝑚2
𝑡 = 𝑝

2
𝑥 + 𝑝2𝑦 + 𝑚2

or alternatively 𝑚2
𝑡 = 𝐸

2 − 𝑝2𝑧 . The Lab Frame boosts regarded in this analysis are on the
𝑧-axis only, therefore the transverse mass 𝑚𝑡 is a Lorentz invariant. A useful quantity is
the rapidity[56][57] 𝑦, defined as:

𝑦 =
1

2
ln

(
𝐸 + 𝑝𝑧
𝐸 − 𝑝𝑧

)
(4.1)

An analogous definition of 𝑦 is:
𝑦 = tanh−1

𝑝𝑧

𝐸

With this expression, one can show that a Lorentz boost 𝛽 = 𝑢𝑧𝑐 parallel to the beam
axis 𝑧, transforms the rapidity 𝑦 into 𝑦′ via the transformation 𝑦′ = 𝑦 − tanh−1 𝛽. The
difference between two rapidities 𝑦1, 𝑦2 is a Lorentz invariant, 𝑦′2 − 𝑦′1 = 𝑦2 − 𝑦1. For a
highly relativistic particle, the condition 𝐸 ≈ 𝑝𝑧 ≫ 𝑚 is approximately true, then from
the definition of rapidity 𝑦 (eq Eq. (4.1)), one yields an approximate form of 𝑦 called the
pseudorapidity 𝜂:

𝑦 ≈ 𝜂 = − ln tan
𝜃

2

where 𝜃 is defined via cos 𝜃 = 𝑝𝑧/| ®𝑝 |, analogous to the definition of 𝜃. Due to the challenging
measurement of 𝑝𝑧, 𝜂 replaces the measurement of 𝑦 in highly energetic particles, for
example in muons, as 𝜂 is easier to measure due to the singular dependence on the polar
angle 𝜃. What’s more, a new form of distance metric, the Angular Distance Δ𝑅 between
two points (𝑦1, 𝜙1) and (𝑦2, 𝜙2) is defined:

Δ𝑅 =

√︃
(𝑦2 − 𝑦1)2 + (𝜙2 − 𝜙1)2 (4.2)
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The Angular Distance is a Lorentz Invariant only for boosts in the direction of the beam
axis 𝑧, as the difference in rapidities is a Lorentz Invariant and 𝜙 lies in the transverse
plane 𝑇 . For highly energetic particles, 𝑦 ≈ 𝜂, therefore Δ𝑅 is approximately Lorentz
invariant to a given precision of significant digits.

4.2.2 Tracks

In this thesis no focus was given in creating and fitting tracks to vertices, as the fitting
software was already available. However, a brief explanation of some key concepts will be
given. A vertex is a spatial component and is characterized by three coordinates 𝑥, 𝑦, 𝑧 in
the Lab Frame. Apart from 𝑧, these coordinates are of no much use to analysis, however
they are important for performing kinematic fits to tracks and vertices. A track is a
particle path with direction within the CMS geometry, characterized by a vertex at its
beginning but no ending. When a kinematic fit is performed on a track, a quality value
is assigned to it. Important vertices that are used in post-kinematic fit analysis are
the Primary, Secondary and Tertiary Vertices. For this analysis, the Primary Vertex
(PV) describes the genesis of a 𝐵0 particle. The Secondary Vertex (SV) is the vertex
where the 𝐵0 decays and the genesis of the 𝐾0

𝑆
is extrapolated, (the 𝐾0

𝑆
is chargeless, and

the kinematic fit on a chargeless track is difficult to accomplish without extrapolation
methods) along with either the dimuon pair 𝜇𝜇 or the intermediate states 𝐽/𝜓 and 𝜓(2𝑆).
Sometimes, it is possible that the Dimuon 𝜇𝜇 Vertex (DV) does not correspond to the
Secondary Vertex. The Tertiary Vertex corresponds to the decay of the 𝐾0

𝑆
pseudotrack

and the genesis of the 𝜋𝜋 tracks.
It should be noted however, that in contrast to the strongly decaying intermediate

states 𝐽/𝜓 and 𝜓(2𝑆), the 𝐾0
𝑆

decays weakly. Lifetimes mediated by the Weak Interaction
are orders of magnitude greater than interactions mediated by the Strong and Electro-
magnetic Interaction. This causes the 𝐾0

𝑆
to be displaced, complicating the kinematic fit

of the track as the vertex of the genesis of the decay products of the 𝐾0
𝑆
, the dipion pair

𝜋+𝜋− are not in the same vertex as other 𝐵0 decay products.

4.2.3 Sample Quantities

In this section, the commonplace variables within the available samples of any type are
showcased. Understanding these variables is necessary for future reference and physical
intuition as they come up in analysis, especially during the Machine Learning stage.

• 𝑝𝑡, 𝜂, 𝜙, 𝑚, charge are the transverse momentum after refitting to the 𝐵0 vertex,
pseudorapidity, azimuthial angle, mass and charge of the corresponding particle re-
spectively. For the two muons, 𝜇1 and 𝜇2, the former and latter are labeled as leading
and subleading according to the higher and lower value of their 𝑝𝑇 respectively.

• 𝑚(𝜇𝜇) refers to the dimuon mass system. In the context of the analysis, it is defined
as 𝑞2 = 𝑚(𝜇𝜇) due to the common usage of this quantity.

• 𝑚MC(𝐵) is the mass of the reconstructed 𝐵0 with additional requirements that the
mass resolution (𝑚(𝜇𝜇) is fixed around the mass of the 𝐽/𝜓 at 3.097GeV. The same
applies for the 𝜓(2𝑆) particle at 3.686GeV). The label MC stands for Mass Constraint
while referring to the mass quantity.

• cos2D 𝛼 is the cosine of the angle in the 𝑇 plane between the line segment connecting
the beamspot and the Primary Vertex of the 𝐵0 and the momentum vector of the
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𝐵0. Equivalently, it is the value of the cosine between the angle of the momentum
vector of the 𝐵0 candidate and its position vector.

• 𝑝(𝐵0) or Bprob is a statistic of kinematic fit quality for the 𝐵0 vertex and is derived
from the normalized 𝜒2 of the vertex. Values of 0 denote poorest quality, whereas
values of 1 denote best quality.

• 𝐿𝑥𝑦 is the decay length in the Lab Frame of the 𝐵0 in the transverse plane 𝑇 .

• 𝜏𝑥𝑦 is the mean lifetime in the Lab Frame of the 𝐵0 in the 𝑇 plane, given by the
relation: 𝜏𝑥𝑦 = 𝐿𝑥𝑦𝑚(𝐵)/𝑝𝑡𝑐.

• 𝐼𝑃(𝐾0
𝑆
, 2D) and 𝐼𝑃(𝐾0

𝑆
, 3D) are the 2D and 3D impact parameters of the Secondary

Vertex.

• sig(𝐿𝑥𝑦) is the decay length significance of the 𝐵0 meson and is given by the ratio
𝐿𝑥𝑦/𝐿𝑥𝑦 unc.

• sig(𝐷𝑥𝑦) is the absolute value of the 2D Impact Parameter of the dimuon Vertex and
is given by the ratio 𝐷𝑥𝑦/𝐷𝑥𝑦 unc.

• Δ𝑅(𝐾0
𝑆
, 𝜇) refers to the minimum Δ𝑅 between the 𝐾0

𝑆
particle and the leading or

subleading 𝜇.

• Δ𝜂(𝜇1, 𝜇2) = 𝜂2 − 𝜂1 and Δ𝑅(𝜇1, 𝜇2) are the difference in pseudorapidity and angular
distance between the leading and subleading muon as described in eq. Eq. (4.2).

• MediumID and SoftID are Particle Flow with additional track quality requirements
and non-PF low-𝑝𝑇 muons respectively. isTrg refers to whether the muon has fired
the DoubleMu4 3 LowMass trigger. All three variables are binary, with 0 corresponding
to false and 1 to true.

• Iso(𝜇) refers to the PF relative isolation of the 𝜇. The Particle Flow isolation is
calculated as the sum of charged hadron, neutral components within Δ𝑅 < 0.4 and
it is the standard PF relative isolation.

• Δ𝑧 is the absolute value of the difference of the 𝑧 coordinate between the dimuon
Vertex and the 𝑧 coordinate of the distance of closest approach (DCA) of the 𝐾0

𝑆

pseudotrack. The notion of pseudotrack is attributed to the neural 𝐾0
𝑆
. Noncompactly:

Δ𝑧 =

���𝑧 (vtx(𝜇𝜇)
)
− 𝑧

(
dca(𝐾0

𝑆
)
)���.

• AP (Armenteros-Podolanski) 𝑞𝑇 is the transverse momentum to the flight direction
of the 𝐵0[58].

4.3 Acceptance and Efficiency of the MC Samples
The analysis starts with the determination of the acceptance and efficiency for the
Unbiased and Biased MC samples respectively, quantities that are essential in the
measurement of the 𝑅𝐾𝑆 observables. As has been explained, the MC samples include
one process each, therefore each data sample can be studied extensively so that its
behavior is well known. The aim of this study of examining the MC dataset well is to
acquire a set of variable preselection cuts to be applied on the CMS Run 3 2022 Data
samples because in these data samples the search for the 𝐵0 → 𝜇+𝜇−𝐾0

𝑆
signal and its
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resonances will be performed. By cutting a lot of events unrelated to this signal search by
predetermined selection of variable ranges, the analysis becomes more efficient in both
terms of computing time and fitting techniques. Therefore, it is imperative to search for
a set of cuts that mimic the MC signals as much as possible.

The MC samples contain GEN and RECO level quantities. GEN level quantities
correspond to quantities of particles as have been generated by the generator. The RECO
level quantities correspond to quantities of particles that have been reconstructed by
the simulated detector. Naturally, the RECO level quantities generally differ from the
GEN level quantities due to the limited detector resolution, efficiency and geometric
acceptance. It is the RECO level quantities that are measured by the CMS detector in
the Data samples, therefore the analysis cannot be done with GEN level quantities, but
they are useful in determining the acceptance 𝛼.

First of all, the dimuon mass 𝑚(𝜇𝜇) is binned into 9 bins, described in table 4.1. The
bins are not all joined continuously and the reason for this is to set a clear distinction
between the rare mode region and other resonances. The space between bins 1-2 is to
avoid low-𝑞2 𝜂 and 𝜙 particle resonances. The space between bins 3-4-5 is to distinct
the 𝐽/𝜓 resonance in bin 4. The same applies to the spacing in bins 5-6-7 for the 𝜓(2𝑆)
resonance, which is for the distinction of that particle in bin 6. The two resonant decay
channel data samples are used in their respective bins.

𝑞2-bins (GeV2)
1 [0, 0.98) 6 [12.60, 14.44)
2 [1.1,4.0) 7 [15.0,17.0)
3 [4.0,8.0) 8 [17.0,19.0)
4 [8.41,10.24) 9 [19.0, 23.0)
5 [11.0, 12.50)

Table 4.1: Bins in 𝑚2(𝜇𝜇) = 𝑞2. The bins in bold text correspond to the two resonant mode bins.
The bins are left-inclusive and right-exclusive in 𝑞2.

The calculation of acceptance 𝛼 in Unbiased MC samples and efficiency 𝜖 in Biased
MC samples are performed after a collection of variable cuts is performed. Since there are
different collections of variable cuts across different bins, the acceptances and efficiencies
for a specific bin-dependent collection of variable cuts will be denoted as 𝛼 𝑗

𝑖
and 𝜖 𝑗

𝑖
where

𝑖 refers to the collection of variable cuts 𝑖 and 𝑗 refers to the bin in table 4.1 and should
not be confused with an exponent. The calculation for these quantities is retrospective,
defined as:

𝛼
𝑗

𝑖
=
𝑀

𝑗

𝑖

𝑀
𝑗

𝑖−1
, 𝑖 ∈ {1, 2} 𝜖

𝑗

𝑖
=
𝑁
𝑗

𝑖

𝑁
𝑗

𝑖−1
𝑖 ∈ {3, 4, 5, 6, 7} (4.3)

where 𝑀 𝑗

𝑖
, 𝑁

𝑗

𝑖
is the number of events passing the Collection of variable cuts 𝑖 in the 𝑗th

bin in the Unbiased and Biased MC samples respectively, with 𝑀
𝑗

0 , 𝑁 𝑗

0 being the total
events within their respective MC samples. In order to calculate these quantities, the
collections of variable cuts must first be determined. They are shown in tables 4.2, 4.3,
4.4, 4.5, 4.6 and 4.7. In these tables, 𝜇1, 𝜇2 correspond to the leading and subleading
muon respectively, and 𝜇 corresponds to both muons. For simplicity, the acceptance or
efficiency at a particular Collection of variable cuts 𝑖 for all bins will also be denoted as 𝛼𝑖
and 𝜖𝑖 respectively. The uncertainty of either acceptance 𝜎(𝛼 𝑗

𝑖
) or efficiency 𝜎(𝜖 𝑗

𝑖
) on any
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Collection 𝑖 and bin 𝑗 are calculated via the binomial uncertainty:

𝜎(𝛼 𝑗
𝑖
) =

√√√√
𝛼
𝑗

𝑖

(
1 − 𝛼 𝑗

𝑖

)
𝑀

𝑗

𝑖−1
𝜎(𝜖 𝑗

𝑖
) =

√√√√
𝜖
𝑗

𝑖

(
1 − 𝜖 𝑗

𝑖

)
𝑁
𝑗

𝑖−1
(4.4)

The following tables show the description of Collection of variable cuts. There are six
Collections in total across the two MC sample types.

Collection 1: GEN-𝜇 Cuts
𝑝𝑇 (GEN 𝜇1) > 3.5 GeV
𝑝𝑇 (GEN 𝜇2) > 2.5 GeV

|𝜂(GEN 𝜇) | < 2.5

Table 4.2: GEN level cuts for the two muons. These muons come directly from the 𝐵0 decay, except
in the resonant regions (bins 8 & 12), where they come from the two resonances 𝐽/𝜓 → 𝜇𝜇 and
𝜓(2𝑆) → 𝜇𝜇.

Collection 2: GEN-𝜋 Cuts
𝑝𝑇 (GEN 𝜋) > 0.7 GeV

|𝜂(GEN 𝜋) | < 3.0

Table 4.3: GEN level cuts for the two pions. These pions come from the decay of the 𝐾0
𝑆
→ 𝜋𝜋.

The use of the Unbiased sample is purely to determine the acceptance after these
two GEN level Collection of variable cuts. The reason for this is purely to measure the
reduction of the Phase Space due to the geometry of the detector. As it can be seen from
the plots in figure 4.4, the acceptance in each bin is less than 1% signifying that the Phase
Space before reconstruction is on the order of magnitude of < 1%. Therefore, if analysis
were to continue with the Unbiased sample, it would require a tremendous amount of file
size, complicating technical matters such as memory availability and sample production.
Instead, the Biased MC sample contains an even larger amount of events while also
effectively taking into account the Collections 1 & 2 when they have been artificially
generated. This is the reason for the choice of 𝑖 ∈ {1, 2} in 𝛼𝑖 and 𝑖 ≥ 3 in 𝜖𝑖.

Collection 3: RECO-𝜇 Cuts
Δ𝑅(GEN, RECO)𝜇 < 0.03

mediumId RECO (𝜇)
𝑝𝑇 (RECO 𝜇1) > 4 GeV
𝑝𝑇 (RECO 𝜇2) > 3 GeV
|𝜂(RECO 𝜇) | < 2.4

Table 4.4: RECO level for the two muons. The Δ𝑅 variable matches the GEN level muon with the
RECO level muon to a good degree in order to avoid bad reconstructions.

Collection 4: HLT Cuts
𝜇1, 𝜇2 trigger HLT DoubleMu4 3 LowMass

Table 4.5: The trigger used is a double muon trigger. The label 4 3 label corresponds to the minimum
𝑝𝑇 of the two muons.
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4.3 Acceptance and Efficiency of the MC Samples

The choice of having a Collection of variable cuts representing the reconstruction
of the muons and the Collection of a single cut with the Muon Trigger is to denote the
proper approach for handling muons within the CMS experiment, as the muon trigger
allows extremely good quality muons to be used in the analysis.

Collection 5: RECO-𝐾0
𝑆

Cuts
Δ𝑅(GEN, RECO)𝐾0

𝑆
< 0.1

𝑝𝑇 (RECO 𝐾0
𝑆
) > 1 GeV

|𝜂(RECO 𝐾0
𝑆
) | < 2.4

Table 4.6: RECO level for the 𝐾0
𝑆
.

Collection 6: Preselection Cuts
𝑚(RECO 𝐵0) ∈ (5, 5.6) GeV

cos2D(𝛼) > 0.90

𝑝(𝐵0) > 0.00001

Δ𝑧(𝜇𝜇, 𝐾0
𝑆
) < 1𝑐𝑚

IP SV3D(RECO 𝐾0
𝑆
) < 0.045𝑐𝑚

AP 𝑞𝑇 > 0.105𝐺𝑒𝑉

Table 4.7: Preselection Cuts for the next stage of the analysis. Descriptions for these variables are
found in section 4.2.3.

The reconstruction of the neutral 𝐾0
𝑆

pseudotrack is followed by further specific preselec-
tion cuts for the analysis, given that the muons have been properly reconstructed and
identified by the trigger. The MC and Data samples following these cuts are used in the
BDT training procedure, described in section 4.5. Collection 7 includes a variable cut on
the BDT prediction score 𝑥 > 𝑐𝑏 as described in section 4.4 which is necessary in order to
differentiate unwanted processes from the signal search in the Data samples. This means
that this Collection cannot be used in the BDT training procedure as it presupposes
that it has been formulated. Furthermore, this collection also contains cuts that were
introduced later in the analysis, but are incorporated in determining the 𝑅𝐾0

𝑆
observables.

Collection 7: BDT & Background Cuts
𝑥 > 𝑐𝑏, to be determined

| (𝑚(𝐵0) − 5.27925𝐺𝑒𝑉) − (𝑚(𝜇𝜇) − 3.096900𝐺𝑒𝑉) | > 0.19𝐺𝑒𝑉 , bin 4 only
| (𝑚(𝐵0) − 5.27925𝐺𝑒𝑉) − (𝑚(𝜇𝜇) − 3.686097𝐺𝑒𝑉) | > 0.08𝐺𝑒𝑉 , bin 6 only

𝑚(𝐾0
𝑆
𝜇2) > 2𝐺𝑒𝑉 , bins 1-3 only

Δ𝑅(𝜇, 𝜋) > 0.03, bins 1-3 only

Table 4.8: BDT & Background Cuts for the next stage of the analysis. The variable cut 𝑥 > 𝑐𝑏

corresponds to a cut on the BDT prediction value. The value of 𝑐𝑏 is determined as explained in
section 4.6.2.

The second and third cuts are referred to as bin leakages. Specifically, they regard the
background leakage from the left tail of the two resonant mode 𝐵0 mass peaks into the
left 𝑚(𝐵0) sideband, 𝑚(𝐵0) ∈ (4.85, 5.05)𝐺𝑒𝑉 . The fourth cut on the mass of the subleading
𝜇 and 𝐾0

𝑆
system is to reject more semileptonic decay background in the Data samples due

to the left sideband. Lastly, the final cut exists to prevent events from using 𝜇1, 𝜇2, 𝜋1, 𝜋2
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tracks twice in order to create the 𝐵0 candidates. Now that the Collections have been
fully determined, the values of 𝛼 𝑗

𝑖
and 𝜖 𝑗

𝑖
are shown in figures 4.3, 4.4, 4.5 and 4.6.

(a) Mass Distribution of 𝑚(𝜇𝜇), no collection
of variable cuts applied.

(b) Normalized Mass Distribution of dimuon
mass 𝑛(𝜇𝜇), no collection of variable cuts
applied.

Figure 4.3: Plots of Mass and Normalized Mass Distributions of the Unbiased MC sample of
𝐵0 → 𝜇+𝜇−𝐾0

𝑆
across all 17 𝑞2 bins.

The Normalized Mass Distribution 𝑛𝑘 (𝜇𝜇) at bin 𝑘 in figure 4.3b is calculated using
the following expression:

𝑛𝑘 (𝜇𝜇) =
𝑚𝑘 (𝜇𝜇)∑1000
𝑖=1 𝑚𝑖 (𝜇𝜇)

as it is binned in a histogram with 1000 bins. For the remainder of this thesis, thinly-
binned smooth22 distributions, with number of bins greater than 1000 will not be referred
to by bin but as a continuous distribution. Therefore, the Normalized Mass Distribution
will be referred to as 𝑛(𝜇𝜇).

22with enough statistics to justify the large number of bins.
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(a) Plot of acceptance 𝛼 𝑗1. (b) Plot of acceptance 𝛼 𝑗2.

Figure 4.4: Plots of acceptances 𝛼 𝑗1 and 𝛼
𝑗

2 across all 9 𝑞2 bins for the Unbiased MC sample of
𝐵0 → 𝜇+𝜇−𝐾0

𝑆
.

(a) Plot of efficiency 𝑒 𝑗3. (b) Plot of efficiency 𝑒 𝑗4.

Figure 4.5: Plots of acceptances 𝑒 𝑗3 and 𝑒
𝑗

4 across all 9 𝑞2 bins for the Biased MC sample of
𝐵0 → 𝜇+𝜇−𝐾0

𝑆
.
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(a) Plot of efficiency 𝑒 𝑗5. (b) Plot of efficiency 𝑒 𝑗6.

Figure 4.6: Plots of acceptances 𝑒 𝑗5 and 𝑒
𝑗

6 across all 9 𝑞2 bins for the Biased MC sample of
𝐵0 → 𝜇+𝜇−𝐾0

𝑆
.

Figure 4.7: Plot of efficiency 𝑒 𝑗7 across all 9 𝑞2 bins for the Biased MC sample of 𝐵0 → 𝜇+𝜇−𝐾0
𝑆
,

along with the optimal BDT value 𝑥 > 4.5.

The large variations in figure 4.7 can be attributed to the BDT cut chosen for this
analysis, according to section 4.6.2. The acceptance and efficiency values used in equations
3.3 and 3.4 are determined from the individual values of 𝛼 𝑗

𝑖
and 𝜖 𝑗

𝑖
. The acceptance and

efficiency used are equal to:
𝛼 𝑗 = 𝛼

𝑗

1 𝛼
𝑗

2, 𝜖 𝑗 = 𝜖
𝑗

3 𝜖
𝑗

4 𝜖
𝑗

5 𝜖
𝑗

6 𝜖
𝑗

7

Table 4.9 shows the values of 𝛼 𝑗 and 𝜖 𝑗 . Table 4.10 shows the values of 𝛼4 and 𝜖4 of the
𝐽/𝜓 resonance and 𝛼6 and 𝜖6 of the 𝜓(2𝑆) second resonance respectively.
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Quantity Bin 1 Bin 2 Bin 3 Bin 5 Bin 7 Bin 8 Bin 9
Acceptance (10−4) 442 ± 2 414 ± 1 430 ± 1 492 ± 2 564 ± 2 593 ± 2 606 ± 2

Efficiency (10−5) 1520 ± 9 2077 ± 6 2077 ± 5 2406 ± 9 2676 ± 8 2814 ± 9 2892 ± 9

Table 4.9: 𝛼 𝑗 and 𝜖 𝑗 values for 7 out of the 9 bins in table 4.1 of the Rare Mode. The resonant mode
bins 4 & 6 are irrelevant in further analysis and are not given.

Quantity Value
𝐽/𝜓 Resonance

Acceptance (10−5) 4648 ± 5

Efficiency (10−5) 2450 ± 5

𝜓(2𝑆) Resonance
Acceptance (10−5) 5231 ± 6

Efficiency (10−5) 2615 ± 6

Table 4.10: 𝛼 𝑗 and 𝜖 𝑗 for bin 4 & 6 in table 4.1 of the 𝐽/𝜓 Resonant and 𝜓(2𝑆) Second Resonant
mode MC samples. Each value corresponds to the respective bin of the resonant mode MC sample.

4.4 Decision Trees
Once Collection 6 has been applied to the Biased sample, the sample is then prepared
for training a Boosted Decision Trees (BDTs) Machine Learning (ML) model, built on
the principle of a simpler ML model, Decision Trees (DTs). The python package xgboost

version 0.80 is used, along with the scikit-learn wrapper version 0.19.1. BDTs are used
to provide a differentiation of the rare signal versus the background in the Data samples
by assigning a score in each event in that Data samples. But first, a brief introduction to
Decision Trees (DTs) and their correlation to BDTs will be given.

Decision Trees[59], first developed by Breiman et al[60] in the CART (Classification
And Regression Trees) algorithm, are a ML technique first developed for non-HEP ap-
plications, such as data mining, pattern recognition, later adapted in medical diagnosis,
insurance and recognition of handwritten text. In the context of this thesis, the trees
are binary, meaning that two classes are considered, namely the signal, which is the
Rare Mode, and background, which describes events failing the classification as signal.
DTs classify events between these two classes in a node 𝑡 using a selection criterion or
impurity measure 𝑖(𝑡). This measure often must satisfy some properties in order for the
DT algorithm to work:

• 𝑖(𝑡) should have a maximum value for an equal presence of the two classes (signal
and background)

• 𝑖(𝑡) should have a minimum value for the absence of a class (presence of a single
class)

• 𝑖(𝑡) should be symmetric in each of the two classes

• 𝑖(𝑡) should be strictly concave in order to avoid trapping the algorithm into states
separating the two classes in local minima. This means that if 𝑖(𝑡) has local minima,
the DT could make boolean statements starting from the root node leading into
leaves with worse separation of the two classes.
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4.4 Decision Trees

The goal is to find the best boolean statement 𝑆 among the set of different variables and
different splitting values S that maximizes the decrease of impurity23 Δ𝑖(𝑆, 𝑡) on the node
𝑡 𝑗 :

Δ𝑖(𝑆, 𝑡 𝑗 ) = 𝑖(𝑡 𝑗 ) − 𝑝𝑖(𝑡 𝑗 , 𝑝) − (1 − 𝑝)𝑖(𝑡 𝑗 , 1−𝑝)

where 𝑝 is the fraction of events that pass the boolean statement and 1 − 𝑝 = 𝑞 is the
fraction of events that fail the boolean statement. It can be written:

Δ𝑖(𝑆∗, 𝑡 𝑗 ) = max
𝑆∈S

Δ𝑖(𝑆, 𝑡 𝑗 )

Common impurity measures 𝑖(𝑡) that satisfy the criteria mentioned above are:

• The misclassification error 𝑀 (𝑝) = 1 −max(𝑝, 1 − 𝑝)

• Entropy 𝑆(𝑝) = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝)

• The Gini Index 𝐺 (𝑝) = 1 − 𝑝2 − (1 − 𝑝)2

The description of a DT is rather simple and is showcased in figure 4.8.

Figure 4.8: Graphical representation of a DT. The blue rectangles denote nodes, the directional
black arrows denote branches, and the red-blue color-mapped leaves denote the terminal nodes
along with their impurity measure. The root node is at the bottom of the figure, where a tree stump
is drawn on the bottom side of the node. Each node assigns a boolean test on an arbitrary variable
𝑥, 𝑦, 𝑧[59].

The root node is the initial node. Each node is split up to two other branches, each
leading to a new node until the splitting condition is not satisfied. The splitting condition
can be partially controlled by the person or machine tuning the DT as well as by the
algorithm itself. Nodes that do not lead to further branches are referred to as terminal
nodes or leaves. The collection of nodes and branches constitutes the DT. The initialization
of the algorithm happens at the root node. The algorithm can be summarized in the
following steps.

1. If this node satisfies a stopping criterion, declare it as terminal and exit the algorithm
23Essentially the subtraction between the impurity measure of the node 𝑡 𝑗 and the child nodes.
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2. For each variable (e.g. 𝑝𝑇 , 𝜂 of a particle) find the splitting value that separates
events into the two classes (signal and background) the best. If the separation
cannot be improved with respect to the previous node along the branch connecting
to it, turn this node into a terminal node.

3. Select the variable and its splitting value leading to the best separation of the two
classes. Turn this choice into a boolean statement and split the node into two new
nodes, the nodes satisfying and failing this criterion.

4. Go back to step 1 and apply the steps for a new node (until all are turned into
terminal nodes).

Once this processes has finished, the DT is said to be trained and ready for use. New
samples of events, unknown to the tree can be now parsed into the DT, and the tree will
now make a prediction based on its structure, where the event will be classified as one of
the two classes by being tested on the boolean statements that constitute its structure.
Lastly, it is imperative to note a few things regarding training DTs. First of all, CPU
consumption scales as 𝑛𝑁𝑙𝑜𝑔𝑁 where 𝑛 is the number of variables and 𝑁 is the number
of training events. Therefore, eliminating variables that would not contribute to the
training of a BDT will make the training procedure faster. What’s more, it is possible for
a particular training variable to be particularly noisy. This means that it can inherently
damage and complicate training and should be removed, however, this is not as common.

4.4.1 Boosted Decision Trees

Boosted Decision Trees are made by multiple trained individual DTs, grouped and
combined in specific ways depending on the BDT algorithm chosen. BDTs come with a
lot of benefits:

• they are trained fast and also predict very fast unlike other typical ML models in
this area of study. In this thesis, all each BDT was trained with a maximum training
time of about twenty five minutes.

• they are easy to tune in order to improve the quality of the training procedure and
the prediction quality.

• they are not scale sensitive. The features that a BDT is trained on can be continuous
data as well as categorical/non-number data encoded in the form of numbers.

• there is little need for data pre-processing. Variables do not need to be scaled (linearly
or non-linearly) before a BDT is trained.

• they have good performance, meaning that training on the residuals gives very good
accuracy in predicting.

• they are incorporated in numerous software across different programming languages
(e.g. python, R) which have been widely used and tested in the past.

In this thesis, the BDT algorithm is gbtree which is a Gradient Boosting algorithm for
training a BDT model. Using this algorithm, the BDT model 𝐹 is expanded iteratively to
cover for its imperfections. If at step 𝑘 the model has the form 𝐹𝑘 , a new component ℎ𝑘 is
added to the model in such a way that aims to improve at the imperfections:

𝐹𝑘+1(𝑥) = 𝐹𝑘 (𝑥) + ℎ𝑘 (𝑥)
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where 𝑥 denotes the events of the training sample. The guidance to improve the im-
perfections comes from the Loss function 𝐿 (𝑥, 𝑦), 𝑦 denoting the class label (signal or
background), an element of ML models where it aims to minimize the error made in
predictions. By minimizing the Loss function across all trees in the model:

𝜕𝐿 (𝑥, 𝑦)
𝜕𝐹𝑘 (𝑥)

one can express the new residuals to the model ℎ𝑘 (𝑥) as a function of the Loss function in
the form of negative gradients of the Loss function:

ℎ𝑘 (𝑥) = ℎ𝑘
(
− 𝜕𝐿 (𝑥)
𝜕𝐹𝑘 (𝑥, 𝑦)

)
hence the name of the algorithm. One major issue with BDTs is that they are susceptible
to a phenomenon called overfitting. An overfitted ML model such as the BDT is very often
a bad predictor due to having learned the training dataset very well and expecting each
testing or predicting dataset to be extremely similar to it in terms of behavior, yielding
bad predictions. This is equivalent of the BDT model lacking any predicting power, relying
solely on the behavior of the distributions supplied in the training dataset. Therefore,
it is imperative that the BDT is properly tuned and measures to prevent overfitting are
taken.

4.4.2 Complementary Methods for Training

BDT Training is a stochastic processes. The main element of randomness comes from
the composition of the training sample.

Cross Validation Techniques Cross Validation (CV) is a technique that is a counter to
overfitting. The training dataset T of the two classes is split into 𝑘 folds of equal size and
a BDT classifier 𝑇𝑖 is trained on all folds except the 𝑖th fold, which is used for testing[59]
during the training process in order to get a model exclusive error estimate:

T =

𝑘⋃
𝑖=1

T𝑖

This procedure produces 𝑘 different BDT classifiers. CV techniques give an estimate of
the variability of the performance of the output. There are three CV techniques that have
been used in this thesis for various processes and tasks. They are described shortly:

• simple 𝑘-fold Cross Validation (CV), as described above.

• 𝑛-Repeated 𝑘-fold Cross Validation (RCV), repeating the CV process 𝑛 times, treating
all 𝑘 folds across all 𝑛 repetitions equally to a total of 𝑛 · 𝑘 folds.

• Stratified 𝑛-Repeated 𝑘-fold Cross Validation (SRCV), performing RCV but taking
a balanced ratio of the two classes across each fold and repetition instead of a
completely random sample.

This method can reveal large or nonexistent variations in the output of the training
procedure, serving as a guide to counter overfitting.
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Feature Selection Feature Selection is a technique that determines and ranks the
features (variables) in a dataset given a non-qualitative criterion as well as choosing
a subset of the initial features that can replicate the results of a trained model with
minimal information loss. Feature selection methods provide

• data interpretability,

• the removal of redundant, noisy and highly-correlated features

There are two main kinds of feature selection methods[61], filter and wrapper methods.
Filter methods assign each selected feature an importance criterion based on its contri-
bution to the class labels while not evaluating the performance metric of the classifier’s
model on the selected features, effectively allowing the distributions of the features in the
dataset in a given model to be characterized by their individual connections to the class
labels. Filter methods therefore explore the relevance between a feature and the class
labels. This makes filter methods independent of the model used, reducing systematic
errors and are very time effective due to the lack of the computational complexity supplied
by evaluation of the performance metric of the underlying ML model. However, they are
susceptible to the stopping criterion of the method itself. Wrapper methods employ a
performance metric based on the model to evaluate a candidate feature subset. Based on
the results of the evaluation metric, the optimal subset is chosen based on the results of
the evaluation process. The evaluation is performed by using a distinct testing dataset
in conjunction to the training dataset in which the performance metric is evaluated on.
Wrapper methods can model the dependencies of feature distributions, be able to interact
with the underlying model but consume a lot of computational resources and rely on the
underlying models’ training procedure, introducing a risk of overfitting.

4.5 Training the BDT
The Data samples are split so that a part of them may be used in training a BDT. Only
𝐵0 → 𝜇+𝜇−𝐾0

𝑆
MC Biased samples are used in the BDT training procedure in order

to define the signal class, as no background is present in the MC samples, completely
removing the risk of damaging the efficiency of the trained BDT. In order to provide
as many background processes as possible, by eradicating the risk of various 𝐵0 or
other 𝐵 meson decays present in the Run 3 2022 Data samples to be characterized
as signal, a variable cut for the mass of the 𝐵0 candidate is applied, namely: 𝑚(𝐵0) ∈
(4.85, 5.05) ∪ (5.48, 5.65)𝐺𝑒𝑉 . As explained, the area between the aforementioned cut
(5.05, 5.48)𝐺𝑒𝑉 contains various 𝐵0 decay processes which can be characterized as signal
while searching in the Data samples. This region of the Data sample is called the Sideband
region (figure 4.9) and is only used in the training of the BDT Model throughout this
thesis. What’s more, during BDT training an important question is also posed regarding
the training 𝑞2 of the BDTs. The 17 bins in table 4.1 are adjusted in the following four
unique 𝑞2 regions, plus an additional 𝑞2 region made up from two unique ones:
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Region Label 𝑞2 Range (GeV2)
low-𝑞2 [1.10, 6.00]
𝐽/𝜓-𝑞2 [8.41, 10.24]
𝜓(2𝑆)-𝑞2 [12.60, 14.44]
high-𝑞2 [16.00, 23.04]

low+high-𝑞2 [1.10, 6.00]∪[16.00, 23.04]

Table 4.11: The five 𝑞2 bins that are used for the BDT training and measurement analysis, as well
as 𝐵0 mass fitting (section 4.6). The low+high-𝑞2 bin is a combination of the low-𝑞2 and high-𝑞2
bins.

The reason for choosing these five regions is rather simple. The first and core reason
is to test whether the BDT performs best in a particular 𝑞2 region. To increase the
statistics of the samples, some of the bins of table 4.1 were merged into 4 unique 𝑞2
regions. The dimuon mass in the low-𝑞2 region does not come from unwanted background
meson decays, except from 𝜂, 𝜙 meson decays at the lower 𝑞2 at about 0-1GeV2, so these
values of 𝑞2 have been omitted deliberately. In contrast to this, the high-𝑞2 region, there
are more intermediate 𝑐𝑐 meson decays present which can contaminate the training
of the BDT. The two resonant intermediate regions favor the identification of the two
resonant states 𝐽/𝜓 and 𝜓(2𝑆). Lastly, the low+high-𝑞2 region is a combination of the two
aforementioned regions, as an additional test for BDT training. The reason for including
this 𝑞2 region is to increase the statistics of the samples even more compared to just the
low-𝑞2 and high-𝑞2 regions in case these regions alone could not train the BDT classifier
to a satisfying degree.

Figure 4.9: Training region for the BDT model. The Biased MC 𝐵0 → 𝜇+𝜇−𝐾0
𝑆

samples as well as
the Data samples are trained in the low-𝑞2 region. The Data samples are subjected to the sidebands
of the 𝐵0 mass, 𝑚(𝐵0) ∈ (4.85, 5.05) ∪ (5.48, 5.65)𝐺𝑒𝑉 . Both distributions are normalized to the sum
of their bin content.
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4.5.1 Choosing the 𝑞2 Training Region

The plot of 𝑚2(𝜇𝜇) = 𝑞2 mass spectra for the Biased MC Signal and Sideband Background
along with the four unique 𝑞2 regions can be found in figure 4.10.

Figure 4.10: 𝑚(𝜇𝜇) distribution spectra for the two samples, normalized to the sum of the bin
contents. The plot also shows the regions of the four unique 𝑞2 regions. Left to the boundary of the
𝑞2 region, the 𝜂, 𝜙 meson resonances can be seen.

Since it is imperative to distinguish the Biased MC 𝐵0 → 𝜇+𝜇−𝐾0
𝑆

sample in real data
acquired in the CMS experiment, the only possible training regions in 𝑞2 for any BDT are
the two unique low-𝑞2 and high-𝑞2 as well as the composite region low+high-𝑞2. Initially,
three BDTs with the same hyperparameters (table 4.12) were trained on the same training
samples and predictions were made on the same evaluation samples. Furthermore, the
two class labels have had been weighted in order to improve the training procedure.
Each of the two class labels has been assigned a weight 𝑤𝑖 𝑖 = {1, 2} according to the
compute sample weight() function of sklearn wrapper:

𝑤𝑖 =
𝑌1 + 𝑌2
2𝑌𝑖

𝑖 = {1, 2}

where 𝑌𝑖 is the total number of events belonging to a class, 𝑖 = 1 for the Biased MC
𝐵0 → 𝜇+𝜇−𝐾0

𝑆
signal and 𝑖 = 2 for the Run 3 Data 2022 Sideband Background.
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Hyperparameter Value
gamma 3

learning rate 0.1
max depth 6

n estimators 750
min child weight 1.0
scale pos weight 1.0

objective binary:logitraw
subsample 1

Table 4.12: Initial parameters for BDT training on the low-𝑞2, high-𝑞2 and low+high-𝑞2 training
regions.

The correlation between two variable distributions 𝑋 and 𝑌 is performed using Pear-
son’s coefficients:

𝜌𝑋,𝑌 =
cov(𝑋,𝑌 )
𝜎(𝑋)𝜎(𝑌 ) =

𝐸
(
(𝑋 − 𝜇(𝑋) (𝑌 − 𝜇(𝑌 )

)
𝜎(𝑋)𝜎(𝑌 )

where cov(𝑋,𝑌 ) is the covariance between the variable distributions 𝑋 and 𝑌 and 𝜎(𝑋),
𝐸 (𝑋) and 𝜇(𝑋) is the standard deviation and the mean value of the variable distribution
𝑋. The correlation matrix 𝜌 plots for the BDT input variables are shown in figure 4.11.

(a) Correlation matrix for all the MC Signal
BDT input variables.

(b) Correlation matrix for all the Data BDT
input variables in the Sideband region.

Figure 4.11: Visual representation of the correlation matrices for the input variables for the two
BDT classes.

The correlation matrices show the linear correlations between two variable distri-
butions. In training a BDT, it is important to reduce correlations as much as possible,
in order to prevent non-explainability in the nodes of the model. What’s more, the im-
portance between variable distributions increase when they are highly correlated or
anti-correlated, complicating the training process as two correlated variables have higher
weights than uncorrelated variables in the training process, weakening the bonds between
other uncorrelated variables which leads to less explainability. The variables that were
used in training the BDT model are shown in table 4.13.
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Number Variable Number Variable
1 𝑝(𝐵0) 6 Iso(𝜇1)
2 𝑐𝑜𝑠2D𝛼 7 Iso(𝜇2)
3 𝜂(𝐵0) 8 𝑝𝑇 (𝐾0

𝑆
)

4 sig(𝐿𝑥𝑦) 9 𝜂(𝐾0
𝑆
)

5 Δ𝑧 10 IP(𝐾0
𝑆
, 3D)

Table 4.13: BDT training variables. Brief explanations of the variables are found in section 4.2.3

Tables 4.14 and 4.15 show information of sample sizes depending on the training 𝑞2
region. The MC samples used from now on throughout this thesis are always Biased
unless stated otherwise, therefore that label will be dropped. Furthermore, from the Run
3 Data 2022 samples only parts 0 and 1 were used across all eras, and for prediction
parts 2 to 7 were used.

Type Training
Sample Label MC 𝜇𝜇𝐾0

𝑆
Data 2022

pre-Collection 6 10,989K 6,344K
post-Collection 6 575K 1,216K

BDT Region low-𝑞2 SB low-𝑞2
Entries 117K 75K

BDT Region high-𝑞2 SB high-𝑞2
Entries 158K 22K

BDT Region low+high-𝑞2 SB low+high-𝑞2
Entries 274K 98K

Table 4.14: Various sample information regarding the BDT training procedure. SB refers to the
Sideband region.

Type Prediction
Sample Label MC 𝜇𝜇𝐾0

𝑆
MC 𝐽/𝜓𝐾0

𝑆
MC 𝜓(2𝑆)𝐾0

𝑆
Data 2022

pre-Collection 6 38,479K 11,190K 6,786K 19,021K
post-Collection 6 2,027K 574K 372K 3,644K

BDT Region low-𝑞2 𝐽/𝜓-𝑞2 𝜓(2𝑆)-𝑞2 SB low-𝑞2
Entries 411K 564K 359K 224K

BDT Region high-𝑞2 𝐽/𝜓-𝑞2 𝜓(2𝑆)-𝑞2 SB high-𝑞2
Entries 554K 564K 359K 67K

BDT Region low+high-𝑞2 𝐽/𝜓-𝑞2 𝜓(2𝑆)-𝑞2 SB low+high-𝑞2
Entries 965K 564K 359K 292K

Table 4.15: Various sample information regarding the BDT prediction procedure. SB refers to the
Sideband region.

The output of the prediction is the 𝑜(𝑥) BDT Output Distribution, where 𝑥 is the value
of the BDT score assigned to predicted values. Such distributions are shown in figures
4.12, 4.13a and 4.13b
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Figure 4.12: BDT Output plot for the low-𝑞2 trained BDT featuring the low-𝑞2 Sideband Background
as well as all regions from table 4.11. This region was selected in the scope of this analysis.

(a) BDT Output Distributions for the high-𝑞2
trained BDT featuring the high-𝑞2 Sideband
Background as well as all regions from table
4.11.

(b) BDT Output Distributions for the
low+high-𝑞2 trained BDT featuring the
low+high-𝑞2 Sideband Background as well
as all regions from table 4.11.

Figure 4.13: BDT Output plots for the high-𝑞2 and the low+high-𝑞2 regions. These training regions
were rejected from being used in this analysis.

The analysis to pick the proper 𝑞2 region continues via the use of the BDT Efficiency
plots in figures 4.14, 4.15a and 4.15b.The efficiency of any of the two class labels 𝑖 in the
𝑞2 region 𝑟 given a BDT cut 𝑐 is calculated as:

𝜖𝑖, 𝑟 (𝑐) =
∫ 𝑐

−∞ 𝑜𝑖, 𝑟 (𝑥) 𝑑𝑥∫ ∞
−∞ 𝑜𝑖, 𝑟 (𝑥) 𝑑𝑥

𝑖 ∈ {1, 2} � {𝑆, 𝐵}
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The BDT Efficiency plots show the relationship between 𝜖𝑆,𝑟 (𝑐) versus 1 − 𝜖𝐵,𝑟 (𝑐), the
former being Signal Efficiency and the latter being Background Rejection in the Sideband
Region of the 𝐵0 mass spectrum. They are crucial in determining how much Signal is
preserved and how much Background is rejected given a BDT Output cut 𝑥 > 𝑐. The
ideal BDT would have a maximum of 1 − 𝜖𝐵,𝑟 especially for the non-resonant regions
at values of 𝜖𝑆,𝑟 ≈ 1. However, in practice, the curves describing the efficiency plots are
strictly decreasing. Studying these curves along with the BDT Output distributions for
all training regions is important to picking the optimal 𝑞2 region.

Figure 4.14: Efficiency plots for the low-𝑞2 region. This region was selected in the scope of this
analysis.

(a) Efficiency plots for the high-𝑞2 region. (b) Efficiency plots for the low+high-𝑞2 re-
gion.

Figure 4.15: Efficiency plots for the high-𝑞2 and the low+high-𝑞2 regions. These training regions
were rejected from being used in this analysis.
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As it can be seen from the BDT Output Distributions in figures 4.12, 4.13a, 4.13b and
the BDT Efficiency plots in figures 4.14, 4.15a and 4.15b, four aspects can be denoted:

• The region 𝑟 the BDT is trained on also has the best predicting value as seen from
the efficiency plots.

• The resonant regions underperform in background rejection. This is not an issue as
no resonant decays were taken into account in the BDT training procedure, and the
BDT predicts these resonant decays as background to the decay mode even in the
Sideband region of the 𝐵0 mass spectrum.

• The high-𝑞2 BDT Output Distribution has a different shape than the low-𝑞2 BDT
Output Distribution when trained on the high-𝑞2 and low-𝑞2 regions respectively.
While the MC samples do not include any high 𝑐𝑐 resonances with low amplitudes,
the Sideband Background region does which could affect the prediction of the MC
Samples of the Rare Mode and the two resonant modes.

• The low+high-𝑞2 region is predictive between the low-𝑞2 and high-𝑞2 region when
the BDT is not trained on the low+high-𝑞2 region. This means that this region can be
treated like an average - low-𝑞2 trained BDTs make the high-𝑞2 region underperform
and vice versa. The combination region low+high-𝑞2 includes information about
the high 𝑐𝑐 resonances and its increased statistics do not make a better prediction
across all three different training regions for the BDT.

Now that some analysis was done in order to pick a proper 𝑞2 region, the best choice
would be the low-𝑞2 region due to the lack of low amplitude resonances in the dimuon 𝑞2
mass spectrum. Furthermore, preliminary analysis in 𝐵0 mass fits show that the 224K
Data sample entries (table 4.15) of the low-𝑞2 BDT suffice. The 67K entries of the high-𝑞2
BDT do not increase the statistics of the Data samples by a large margin and induce
further complications into the training procedure, prediction and the mass fit of the 𝐵0
meson. Therefore, the high-𝑞2 and low+high-𝑞2 BDTs are dropped from this analysis
going forward. The effect of applying a BDT cut to the Data samples is demonstrated in
figures 4.16, 4.17 and 4.18.
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(a) 𝑚(𝐵0) Distribution using 𝑥 > −∞. (b) 𝑚(𝐵0) Distribution using 𝑥 > 4.5.

Figure 4.16: 𝑚(𝐵0) Mass Distribution in the Data Samples for 𝑥 > −∞ and 𝑥 > −4.5 in the low-𝑞2
region.

(a) 𝑚(𝐵0) Distribution using 𝑥 > −∞. (b) 𝑚(𝐵0) Distribution using 𝑥 > 4.5.

Figure 4.17: 𝑚(𝐵0) Mass Distribution in the Data Samples for 𝑥 > −∞ and 𝑥 > −4.5 in the 𝐽/𝜓-𝑞2
region.
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(a) 𝑚(𝐵0) Distribution using 𝑥 > −∞. (b) 𝑚(𝐵0) Distribution using 𝑥 > 4.5.

Figure 4.18: 𝑚(𝐵0) Mass Distribution in the Data Samples for 𝑥 > −∞ and 𝑥 > −4.5 in the 𝜓(2𝑆)-𝑞2
region.

4.6 𝐵0 Mass Fits
The Data samples described in table 4.15 have had a prediction score given a BDT
describing their class. These Data samples were used to fit on the 𝐵0 mass in various
𝑞2 regions: low-𝑞2, 𝐽/𝜓-𝑞2 and 𝜓(2𝑆)-𝑞2. The former of the three regions is to search
for the Rare Mode decay 𝐵0 → 𝜇+𝜇−𝐾0

𝑆
and the other two regions are fits for the two

resonant regions. The yields that will be acquired from the fits 𝑁exp are required in the
determination of the differential branching function 𝑑𝐵/𝑑𝑞2 of the Rare Mode (eq. 3.2) as
well as the 𝑅𝐾0

𝑆
(𝜓(2𝑆)) ratio, (eq. 3.3). The 𝐽/𝜓 resonance has a large number of statistics

in its 𝑞2 region, as shown in figure 4.10. The 𝜓(2𝑆) resonance includes a lesser number of
statistics relative to the First Resonant mode but more compared to the Rare Mode. The
fits on the 𝐵0 mass windows of the two resonant regions mass are performed as a sanity
check to check the validity of the results, given that the decays of these two intermediate
decays are well known. The Fitting procedure is described by the following steps:

1. Fit the 𝐵0 Mass Distribution in the MC samples of the Rare Mode and the two
resonant regions. Save the distributions for the next step.

2. Slightly adjust the fitting range of the fitting parameters of 𝐵0 each mass distribu-
tion as determined in step 1 and refit on the Data samples along with additional
distributions for other background processes.

3. Perform the sPlot technique (section 4.7) to extract the yields of the decays.

Before showcasing the values of the parameters of the distributions used in the fits, it is
important to denote different background types:

• Partially Reconstructed Background are background processes whose decay products
are captured by the analysis. This analysis requests three different tracks in the
final state, being the two 𝜇+, 𝜇− and a neutral pseudotrack 𝐾0

𝑆
under the Collection 6

variable cuts. Some processes, like the 𝐵0 → 𝐾∗(𝐾0
𝑆
𝜋)𝜇𝜇 decay produce four or more
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tracks. Not reconstructing all of the decay products but three has a consequence on
the distribution of the 𝐵0 mass and particularly its mean for that decay mode; it is
shifted to the left of the expected 𝐵0 mass due to the missing particles. A notable
example in this analysis is the 𝐾∗ decay mode of the 𝐵0.

• Combinatorial Background is a type of background that regards misclassification
of tracks. The CMS experiment does not measure particles but tracks. If the track
fit is appropriate with some mass and momentum, a particle may be associated
with it. However, tracks of bad quality allow for a larger range of values for both
mass and momentum even after passing the corresponding trigger. For example,
a charged pion could be classified as a muon and therefore become evident in the
Data samples for the analysis.

4.6.1 𝐵0 Mass Distributions

The elementary distributions and combinations thereof used in the 𝐵0 mass fits using the
RooFit library of ROOT are shortly explained in this section. The elementary distributions
are the Exponential Decay, 𝐸 (𝑥; 𝜏) Gaussian, 𝐺 (𝑥; 𝜇, 𝜎) Crystal Ball (CB) and Double
Sided Crystal Ball (DSCB). The last two distributions share the non-fittable parameters
which are used at the tails of the distributions, 𝐴𝑖 and 𝐵𝑖:

𝐴𝑖 =

(
𝑛𝑖

|𝛼𝑖 |

)𝑛𝑖
exp

(
−
𝛼2
𝑖

2

)
, 𝐵𝑖 =

𝑛𝑖

|𝛼𝑖 |
− |𝛼𝑖 | 𝑖 ∈ {1, 2}

The Crystal Ball function 𝐶 (𝑥;𝛼1, 𝑛1, 𝜇, 𝜎) is defined as:

𝐶 (𝑥;𝛼1, 𝑛1, 𝜇, 𝜎) = 𝐴1
(
𝐵1 −

𝑥 − 𝜇
𝜎

)−𝑛1
−∞ <

𝑥 − 𝜇
𝜎

≤ −𝛼1

𝐶 (𝑥; 𝜇, 𝜎) = exp

(
−1
2

(𝑥 − 𝜇
𝜎

)2)
−𝛼1 <

𝑥 − 𝜇
𝜎

< +∞

And the Double Sided Crystal Ball function 𝐷 (𝑥;𝛼1, 𝑛1, 𝛼2, 𝑛2, 𝜇, 𝜎) is defined as:

𝐷 (𝑥;𝛼1, 𝑛1, 𝜇, 𝜎) = 𝐴1
(
𝐵1 −

𝑥 − 𝜇
𝜎

)−𝑛1
−∞ <

𝑥 − 𝜇
𝜎

< −𝛼1

𝐷 (𝑥; 𝜇, 𝜎) = exp

(
−1
2

(𝑥 − 𝜇
𝜎

)2)
−𝛼1 <

𝑥 − 𝜇
𝜎

< 𝑎2

𝐷 (𝑥;𝛼2, 𝑛2, 𝜇, 𝜎) = 𝐴2
(
𝐵2 +

𝑥 − 𝜇
𝜎

)−𝑛2
𝑎2 <

𝑥 − 𝜇
𝜎

< +∞

The CB and DSCB functions are continuous at the piece-wise points 𝑥 = {−𝛼1, 𝛼2} as
well differentiable, making them able to be used as a fitting function. The use case of
these functions is to give more freedom to the fitting region of the tails of ”Gaussian-like”
distributions, taking into effect various detector effects. The CB function has a Gaussian
core and right tail for 𝑥−𝜇

𝜎
> −𝛼1 and the DSCB function has a Gaussian core between the

bounds −𝑎1 and 𝑎2. The CB and DSCB functions have the additional advantage of being
very customizable. This is attributed to the form of their corresponding expressions at the
tail regions due to the parameters 𝑛𝑖 and 𝛼𝑖. Each distribution, including the Gaussian
and Exponential Decay is normalized after it is fitted to range of the 𝐵0 mass window. In
general, the mass fits are performed by adding distributions together using the total fit
function 𝑇 (𝑥; ®𝜃) using any of the elementary fit functions 𝐹𝑖 (𝑥; ®𝜙𝑖) or combinations thereof
described previously:

𝑇 (𝑥; ®𝜃) =
𝑁∑︁
𝑖

𝑟𝑖𝐹𝑖 (𝑥; ®𝜙𝑖) (4.5)
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where 𝑟𝑖 is the relative yield of the fit component distribution 𝐹𝑖 (𝑥; ®𝜙𝑖), which limits the
yield number of a distribution relative to another. The choice of the relative yield value
leads to fit convergence as long as the range of the fitting parameters 𝜙𝑖 of each elementary
distribution allow the parameters to converge to a stable value. Therefore, the relative
yield values are initially picked and then the fitting ranges for the fitting parameters
are optimized. These relative yields are converted into total yields for a fit component
distribution once the total fit distribution 𝑇 (𝑥; ®𝜃) is normalized after the fit. In order
to find optimal parameter ranges for various BDT output cuts, an extensive analysis
was performed. By taking the values of the parameters of a 𝐵0 mass fit of a particular
distribution across different values of a BDT output cut 𝑥 > 𝑐, a linear fit24 𝑎1𝑥 + 𝑎0 was
performed in order to determine their ranges as [𝑎1𝑐 + 𝑎0 − 𝜎(𝑎0), 𝑎1𝑐 + 𝑎0 − 𝜎(𝑎0)] at the
BDT Output cut 𝑥 = 𝑐. Then, the fitting process on the 𝐵0 mass was performed again and
the parameter range was re-optimized until the 𝐵0 mass fits converged to a satisfying
degree, with 𝜒2/𝑁DOF ∼ 1.

(a) Example of parameter range optimiza-
tion.

(b) Example of parameter range optimiza-
tion.

Figure 4.19: Examples of parameter range optimization for two different parameters. The green
points were only used in determining the new fitting parameter ranges. The choice for whether a
point should be used or rejected was due to large deviations or extremely small errors in the fitting
parameter, often a sign of a bad fit. The legend in the bottom left corner shows the values of the
linear fit 𝑎0 + 𝑎1𝑥.

4.6.2 Figures of Merit

The choice of the appropriate set of mass fits given a cut 𝑥 > 𝑐 on the BDT Output value is
given by a figure of merit. The two figures of merit used in this analysis are the Significance
𝑆/
√
𝑆 + 𝐵 and 𝑆/𝐵 where 𝑆, 𝐵 are the yields corresponding to two 𝜎 away from the 𝜇 of

the DSCB fit function. The maximum value of the Significance 𝑆/
√
𝑆 + 𝐵 determines the

appropriate set of mass fits to be used in extracting the yields. If no maximum value
of the Significance exists, the choice is then determined using the maximum value of
𝑆/𝐵. This Figure of Merit (FoM) is only applied to the Rare Mode mass fits. The plots

24This fit was not performed by RooFit but using the core built-in ROOT library Minuit.
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showcasing the two FoMs are shown in figure 4.20.

(a) Significance 𝑆/
√
𝑆 + 𝐵 FoM. (b) 𝑆/𝐵 FoM.

Figure 4.20: The Significance (left) and 𝑆/𝐵 (right) FoMs for the Rare Mode Data sample. The 𝑆/𝐵
FoM has no maximum. MVA is the BDT cut.

In figure 4.20a, the Significance figure of merit has large errors for 1 ≤ 𝑥 ≤ 2. This
is due to the existence of large background and little signal presence. Thankfully, that
area of BDT cuts contains a lot of background and fit parameter optimization in these
regions was not given as much of a weight as higher BDT cuts. In figure 4.20b, The error
is increasing for 𝑥 ≥ 4, and this is attributed to the low number of statistics present in the
Data samples, as these BDT cuts are very tight in rejecting events. This leads to lower
signal and background yields with large errors provided by the fit which carry over in
the calculation of 𝑆/𝐵.

4.6.3 Strategy and Results

The strategy of the fitting procedure in order to determine the best cut for the BDT
prediction score 𝑥 > 𝑐𝑏 will now be briefly described:

1. Pick a BDT Output cut 𝑥 > 𝑐 and use the MC samples for the Rare Mode and the
two Resonances, along with an additional MC Sample of 𝐵0 → 𝐾∗(𝐾0

𝑆
𝜋)𝜇𝜇 decays.

2. Fit on the 𝐵0 mass window. This window is different in each sample (Rare Mode
and the two resonant 𝑞2 regions). Each fit uses two distributions: a DSCB plus a
Gaussian, except in the case of the 𝐾∗ MC sample, where a DSCB plus a CB is used.
The role of this fit is to acquire approximate values of the fitting parameters in order
to be used in the Data sample fitting. The Rare Mode 𝑞2 region is the low-𝑞2, and
the two resonances 𝐽/𝜓 and 𝜓(2𝑆) correspond to their labeled 𝑞2 regions.

3. Take the width parameter values as determined in step 1 and allow deviations up
to 5% of their initial value (the means of the distributions have a deviation limit up
to 1%) for the two resonant modes and the 𝐾∗ MC sample and 30% for the widths of
the two distributions in the Rare Mode.
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4. Fit the 𝐵0 mass window in the Rare Mode Data samples.

5. Use the parameters of the peak in the fitted 𝐵0 mass window in the Rare Mode Data
samples to fit a 𝐵0

𝑆
→ 𝜇𝜇𝐾0

𝑆
background process as well as the rest of the mass fit in

the resonant modes, which is composed of their corresponding MC sample plus the
𝐾∗ MC sample.

6. Perform the sPlot technique (section 4.7).

7. Save the yields and values of parameters in each step. Identify bad fits (𝜒2/𝑁DOF ≫ 1)
and tweak the fit parameters as explained (figure 4.19) and repeat the process to a
satisfactory degree.

8. Repeat this process for a range of BDT Output cuts 𝑥 > 𝑐, close to the MC Signal
Distribution (minimum cut is at 𝑥 > 0, right distribution in figure 4.12).

9. Pick the best value of the BDT Output cut 𝑐𝑏 using the Figures of Merit, described
in section 4.6.2 according to the Rare Mode 𝐵0 mass fit on the Data samples.

According to the values of the FoMs in figure 4.20, there is a maximum 𝑐𝑏 BDT cut
determined in the last step in the enumeration above, which is equal to 𝑐𝑏 = 4.5. This
value is picked to determine the appropriate choice of the 𝐵0 mass fits across all three
modes, as well as determining the efficiency 𝜖7 of the Collection 7 of variable cuts, which
is used in determining the differential branching function, as well as the 𝑅𝐾0

𝑆
(𝜓(2𝑆))

observables.

(a) MC sample 𝐵0 mass fit in the low-𝑞2 re-
gion of the Rare Mode 𝐵0 → 𝐾0

𝑆
𝜇𝜇.

(b) Data sample 𝐵0 mass fit in the low-𝑞2
region of the 𝐵0 → 𝐾0

𝑆
𝜇𝜇.

Figure 4.21: MC and Data sample 𝐵0 mass fits for the Rare Mode in the low-𝑞2 region.
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4.6 𝐵0 Mass Fits

(a) MC sample 𝐵0 mass fit in the 𝐽𝜓-𝑞2 region
of the Resonant Mode 𝐵0 → 𝐽/𝜓𝐾0

𝑆
.

(b) Data sample 𝐵0 mass fit in the 𝐽𝜓-𝑞2 re-
gion of the Resonant Mode 𝐵0 → 𝐽/𝜓𝐾0

𝑆
.

Figure 4.22: MC and Data sample 𝐵0 mass fits for the Resonant Mode in the 𝐽𝜓-𝑞2 region

(a) MC sample 𝐵0 mass fit in the 𝜓(2𝑆)-𝑞2
region of the Second Resonant Mode 𝐵0 →
𝜓(2𝑆)𝐾0

𝑆
.

(b) Data sample 𝐵0 mass fit in the 𝜓(2𝑆)-𝑞2
region of the Second Resonant Mode 𝐵0 →
𝜓(2𝑆)𝐾0

𝑆
.

Figure 4.23: Data sample 𝐵0 mass fits for the two resonant modes in their corresponding 𝑞2 regions.
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4.6 𝐵0 Mass Fits

(a) MC sample 𝐵0 mass fit in the low-𝑞2 re-
gion of the 𝐵0 → 𝐾∗ (𝐾0

𝑆
𝜋)𝜇𝜇 partially recon-

structed background process.

(b) MC sample 𝐵0 mass fit in the 𝐽/𝜓-𝑞2 re-
gion of the 𝐵0 → 𝐾∗ (𝐾0

𝑆
𝜋)𝐽/𝜓 partially re-

constructed background process.

Figure 4.24: Data sample 𝐵0 mass fits for the two resonant modes in their corresponding 𝑞2 regions.

Therefore, according to equation 4.5, the MC sample 𝐵0 mass fits are all fitted on the
composite fit function 𝑃, which is composed by a Gaussian and a Double Sided Crystal
Ball function:

𝑃(𝑥; ®𝜙𝑚) = 𝐺 (𝑥; 𝜇𝐺𝑚, 𝜎𝐺𝑚) + 𝑟𝑖𝐷 (𝑥;𝛼1𝑚, 𝛼2𝑚, 𝑛1𝑚, 𝑛2𝑚, 𝜇𝐷𝑚, 𝜎𝐷𝑚)

where 𝑚 ∈ {1, 2, 3} corresponds to the fit function of the Rare Mode, Resonance and Second
Resonance respectively. In the case of the MC samples of the partially reconstructed 𝐾∗

background, the fit function is composed by a Crystal Ball and Double Sided Crystal Ball:

𝐿 (𝑥; ®𝜙𝑚) = 𝐶 (𝑥;𝛼𝑚, 𝑛𝑖, 𝜇𝐶𝑚, 𝜎𝐶𝑚) + 𝑟𝑖𝐷 (𝑥;𝛼1𝑚, 𝛼2𝑚, 𝑛1𝑚, 𝑛2𝑚, 𝜇𝐷𝑚, 𝜎𝐷𝑚)

where 𝑚 = {4, 5, 6} regards the corresponding 𝐾∗ background to the Rare Mode, Resonant
and Second Resonant final states. Finally, for the Data fits, the total fit functions are
composed of an exponential decay function 𝐸 for the combinatorial background, the
𝐿 composite function of the partially 𝐾∗ background, and two terms of the composite
function 𝑃, one for the signal and one for an additional 𝐵0

𝑆
background in the Resonant

Regions only:

𝑇 (𝑥; ®𝜃𝑚) = 𝑁𝑃𝑚𝑃(𝑥; ®𝜙𝑚) + 𝑁𝐿 𝑚+3𝐿 (𝑥, ®𝜙𝑚+3) + 𝑁𝐸𝑚𝐸 (𝑥; 𝜏𝑚) + (1 − 𝛿1𝑚)𝑁𝑃𝑚𝑃(𝑥; ®𝜙′𝑚) (4.6)

where 𝛿𝑖 𝑗 is the Kronecker delta and the last term in the total fit function, 𝑃(𝑥; ®𝜙′𝑚)
corresponds to distinct background process not seen in the Rare Mode, the 𝐵0

𝑆
background

process. The fit function of this process is identical to the MC of the corresponding mode,
with two changes. The mean of the Gaussian is set at the right of the signal peak, and
the width of the Gaussian may vary between 50% and 130% of the fitted value of the MC
sample fit function 𝑃(𝑥; ®𝜙𝑚). The 𝑁𝑃, 𝑁𝐿 , 𝑁𝐸 , 𝑁𝐵 factors are the yields of each fit component.
The reason for the absence of the 𝐵0

𝑆
background process in the Rare Mode 𝐵0 mass fit on

the Data samples is Physics related, promoted by the small number of statistics; its yield
must be constrained to 1% of the value of the yield of the Rare Mode. This is due to quark
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fragmentation when hadronizing the 𝐵0 and 𝐵0
𝑆

mesons. This constraint is given by the
ratio of fragmentation factors times the ratio of the branching ratios25 of the two decay
modes. The constraint 𝜆 is equal to:

𝜆 =
𝑓𝑠

𝑓𝑑
·

BR(𝐵0
𝑆
→ 𝜇𝜇𝐾0

𝑆
)

BR(𝐵0 → 𝜇𝜇𝐾0
𝑆
)
= 0.009 ≈ 1%

where 𝑓𝑠 = 0.100± 0.008, 𝑓𝑑 = 0.408± 0.007 are the quark fragmentation factors for strange
type 𝐵 mesons: it is a measure of the probability of collecting a strange or down quark
given a 𝑏 quark is available to form a 𝐵0

𝑆
or 𝐵0 respectively. The ratio of branching ratios

computes to a value of 0.04. This constraint on the yield of the 𝐵0
𝑆

effectively hides it into
the combinatorial background. To avoid fit convergence issues and errors in the sPlot
technique due to this small value of the yield, it is not included in the Rare Mode mass
fit. In the case of the two resonant mode 𝐵0 mass fits, the yield of the 𝐵0

𝑆
is floating; it is

not constrained to a value.
Lastly, the pull distribution 𝑝(𝑚) at bin 𝑘 at the bottom of the mass fits is calculated as:

𝑝𝑘 (𝑚) =
𝑁𝑘 − 𝑇 (𝑚; ®𝜃)
𝜎(𝑁𝑘 )

where 𝑁𝑘 is the number of entries in the𝑚(𝐵0) distribution at bin 𝑘, 𝜎(𝑁𝑘 ) is the statistical
uncertainty at bin 𝑘 and 𝑇 (𝑚; ®𝜃) is the value of the total fitted mass distribution. The ideal
distribution would be a uniform distribution across the 𝐵0 fitted mass range with a value
of 0 and as small statistical uncertainties as possible. In the legend of any fitted mass of
a Data sample, the Significance FoM is calculated through the measured yields. In the
Rare Mode mass fits legends, the signal yield S(tot) is written as blinded, which means
that the total signal yield is multiplied by a random number. The reason for doing this is
to prevent known published results (such as known variable cuts) from other analyses
determining the result of this analysis.

4.7 The sPlot Technique
sPlot[62] is a statistical tool dedicated to the exploration of datasets. This technique
assigns a weight to each event in the Data samples according to the fit components
𝐹𝑖 (𝑥; ®𝜙𝑖) of the total fit function 𝑇 (𝑥; ®𝜃) used on the 𝐵0 mass fit, instead of labelling each
event as being signal-like or background-like. While the labeling would be effective for
events falling many means way from the distribution of the signal region, events that fall
a few means away instead would be incredibly ambiguous to be labeled. This means that
the whole Data sample can be used in plotting various physics quantity distributions that
describe the signal and each entry will be weighted accordingly. sPlot also introduces the
notion of discriminating and control variables.

The set of discriminating variables 𝑦 is assumed to have their physics quantity dis-
tributions (such as 𝜂, 𝑝𝑇 ) known, whereas the set of control variables 𝑧 does not, or at
least is assumed not to be. It is convenient to write that the total variable set 𝑥 (which
is described in section 4.2.3) is equal to 𝑦 ∪ 𝑧. The foundation of the sPlot technique is
attributed to the Maximum Likelihood method which extracts parameters from a data
sample, along with the knowledge of the behavior of the discriminating variable set 𝑦
only, which is uncorrelated to the control variable set 𝑧. The log-Likelihood is expressed

25which is also referred to as Cabbibo suppression.
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as:

L =

𝑁∑︁
𝑒=1

ln
( 𝑁𝑠∑︁
𝑖=1

𝑁𝑖𝐹𝑖 (𝑦𝑒)
)
−

𝑁𝑠∑︁
𝑖=1

𝑁𝑖

where

• 𝑁 is the total number of events in the Data samples.

• 𝑁𝑠 is the number of fit components.

• 𝑁𝑖 is the yield of the 𝑖th component. Proper normalization of the fit components 𝐹𝑖
in the fitting state (section 4.6.1) converts the relative yield 𝑟𝑖 into the yield of the
𝑖𝑡ℎ component.

• 𝑦 is the set of discriminating variables. Not to be confused with the total variable
set 𝑥 and control variable set 𝑧 which are absent explicitly.

• 𝑓𝑖 is the Probability Density Function (PDF) or fit component of the discriminating
variables for the 𝑖th species. The value 𝐹𝑖 (𝑦𝑒) is the value of the PDF 𝐹𝑖 for the set
of discriminating variables 𝑦 at event 𝑒.

The weights 𝑤𝑖 (𝑦𝑒) of the event 𝑒 for the fit component 𝑖 in this case are calculated by[62]:

𝑤𝑖 (𝑦𝑒) =
∑𝑁𝑠
𝑗=1𝑉𝑖 𝑗𝐹𝑗 (𝑦𝑒)∑𝑁𝑠
𝑗=1 𝑁 𝑗𝐹𝑗 (𝑦𝑒)

where 𝑉𝑖 𝑗 is the covariance matrix. The elements of the inverse covariance matrix 𝑉−1
𝑖 𝑗

are
given by:

𝑉−1
𝑖 𝑗 =

𝜕2 (−L)
𝜕𝑁𝑖𝜕𝑁 𝑗

=

𝑁∑︁
𝑒=1

𝐹𝑖 (𝑦𝑒)𝐹𝑗 (𝑦𝑒)(∑𝑁𝑠
𝑘=1 𝑁𝑘𝐹𝑘 (𝑦𝑒)

)2
Using these weights, one can fill a weighted histogram of a control variable. The sPlot
technique also assigns uncertainties to binned histograms. The uncertainty 𝜎𝑙

𝑖
of the set

of control variable distributions 𝑧 on the bin 𝑙 is given by:

𝜎𝑙𝑖 =

√︄ ∑︁
𝑒 in bin 𝑙

(
𝑤𝑖 (𝑦𝑒)

)2
(4.7)

In this analysis, the set of discriminating variables 𝑦 includes the 𝐵0 mass 𝑚(𝐵0) only,
making the the control variable set 𝑧 equal to 𝑥/{𝑚(𝐵0)}. sPlot will be an effective technique
only if 𝑚(𝐵0) is uncorrelated with the rest of the control variables 𝑧. Figure 4.25 shows
correlation of several variables in the Data samples that are used in the 𝐵0 mass fits. It
can be seen that all variables but one are uncorrelated. Therefore, the sPlot technique will
be performed for these variables using the signal fit component function. The distributions
for some of these variables can be seen in Appendix A. From this point on, if a reference
to the Data samples using sPlot has to be made, those samples will be referred to as
Weighted Data samples.
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Figure 4.25: Pearson correlation coefficients between two variable distributions for the Data samples
used in the 𝐵0 mass fits. The 𝑚(𝐵) correlation coefficients are highlighted. No BDT cuts have been
applied.

It is important to denote some differences in some variable distributions that become
evident due to the sPlot technique; namely the 𝑝(𝐵0) distribution, which is a measure of
candidate quality of a reconstructed 𝐵0 meson. Figure 4.26 showcases the difference for
two different arbitrary BDT value cuts, 𝑥 > −5 and 𝑥 > 5 in the 𝐽/𝜓-𝑞2 Resonant Mode
𝐵0 → 𝐽/𝜓𝐾0

𝑆
region. The differences in the distributions from the Weighted Data samples

are easier to distinguish in the Resonant region due to the increased statistics.
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(a) 𝑝(𝐵0) sPlot of the Resonant Mode 𝐵0 →
𝐽/𝜓𝐾0

𝑆
for 𝐵𝐷𝑇 > −5.

(b) 𝑝(𝐵0) sPlot of the Resonant Mode 𝐵0 →
𝐽/𝜓𝐾0

𝑆
for 𝐵𝐷𝑇 > 5.

Figure 4.26: Weighted Data sample 𝑝(𝐵0) sPlot in the 𝐽/𝜓-𝑞2 region of the Resonant Mode
𝐵0 → 𝐽/𝜓𝐾0

𝑆
. The ratio plot in the bottom is the division between the weighted Data sample

and corresponding MC sample bin contents.

An extensive analysis has been made to see the divergence of the signal search in the
Weighted Data samples acquired from the CMS experiment in contrast to the synthetically
generated MC samples. Analysis shows that the distribution of 𝑝(𝐵0) as well as all other
variables in the Data samples under the 𝑥 > −5 cut and under no imposition of such
cut (𝑥 > −∞) is very similar. Furthermore, the 𝑥 > −5 cut marks the minimum value
on the BDT value of the MC samples, therefore including lower values than -5 for the
BDT cut would also theoretically introduce certain unwanted background processes,
contaminating the results. It can be inferred from the sPlots in 4.26 and 4.27 that bad
quality 𝐵0 candidates are removed after the BDT is applied. The 𝑝(𝐵0) distribution has
shown to be the most different, showcasing that the MC data samples are different to
the Data samples, imposing difficulties in the analysis, such as systematic errors which
are hard to measure. It is to be reminded that the 𝑝(𝐵0) distribution is one of the BDT
training variables (table 4.13), which could also impose further systematics in the BDT
scoring metric.
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(a) 2D plot of 𝑚(𝐵0) vs 𝑝(𝐵0) of the Resonant
Mode 𝐵0 → 𝐽/𝜓𝐾0

𝑆
for BDT> −5.

(b) 2D plot of 𝑚(𝐵0) vs 𝑝(𝐵0) of the Resonant
Mode 𝐵0 → 𝐽/𝜓𝐾0

𝑆
for BDT> 5.

Figure 4.27: Data sample 2D plot of 𝑚(𝐵0) vs 𝑝(𝐵0) in the 𝐽/𝜓-𝑞2 region of the Resonant Mode
𝐵0 → 𝐽/𝜓𝐾0

𝑆
. The application of the BDT model clearly shows the rejection of zero bad quality

combinatorial background 𝐵0 candidates.

Half of the Weighted Data sample distributions on the 𝐽/𝜓 Resonant Region show
complete divergence from the expected unitary ratio, such as the aforementioned 𝑝(𝐵0),
BDT Output 𝑜(𝑥), IP(𝐾0

𝑆
, 2D), Iso(𝜇1), Iso(𝜇2), Δ𝑅 and the muon sig(𝐷𝑥𝑦) distributions

while other distributions such as sig(𝐿𝑥𝑦) and 𝑝𝑇 (𝐾0
𝑆
) show divergences from the unitary

ratio distribution in specific regions (see Appendix A.2). The same trend also applies to the
𝜓(2𝑆) Second Resonant Region (see Appendix A.3). The sPlots of the Rare mode (Appendix
A.1) suffer from large uncertainties due to the low number of statistics, making the
comparison between the Weighted Data samples and MC samples difficult. Improvements
of this sector of the analysis are discussed in section 5.3.

4.8 Simultaneous 𝐵0 Mass Fits
The 𝐵0 mass fits explained in section 4.6 are also performed in all 𝑞2 bins (table 4.1)
to increase the Data sample statistics in order to determine the differential branching
function 𝑑𝐵/𝑑𝑞2. The result of this analysis is blinded, meaning that a random number 𝛾
multiplies the signal yields in each bin. This is to hide the true result and prevent the
analysis from being affected by the measured values, as this thesis is also part of an
ongoing project. Once the analysis is complete, the analysis unblinds, and the random
number factor is removed. The simultaneous mass fit plots are showcased in Appendix B.
The term Simultaneous refers to the existence of parameters that are shared by multiple
fitting functions when the fitting procedure is performed. Specifically, there are 7 different
fit functions for 7 distinct 𝐵0 mass fits with three common shared parameters. There are
three differences introduced in the Simultaneous 𝐵0 mass fits in contrast to the 𝐵0 mass
fit in the low-𝑞2 region as performed previously in section 4.6.1:

1. The MC & Data Samples are subjected in the Collection 7 of variable cuts (table
4.8) instead of Collection 6 (table 4.7). This is primarily due to these cuts introduced
later in the analysis that do not considerably affect the 𝐵0 mass fits on the low-𝑞2
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region that can reject a lot of background processes across the 7 Rare Mode bins in
the Data samples (table 4.1).

2. The Rare Mode signal search in the Data Samples has a constraint on the 𝐵0 →
𝐾∗(𝐾0

𝑆
𝜋)𝜇𝜇 partially reconstructed Background to control its yield based on the

PDG values. The yield factor takes into account the relative branching ratio of the
Rare Mode over the branching ratio of the aforementioned partially reconstructed
background, as well as their 𝛼 · 𝜖 ratios up to Collection 7. This is a better practice
than leaving the 𝐾∗ yield relative to the Rare Mode and the two Resonances floating.

3. The three common shared parameters is a single Gaussian width 𝜎𝐺1 and a linear
dependence of the Gaussian mean 𝜇𝐺1 with respect to the mean value of the 𝑞2
region in the Rare Mode Data 𝐵0 mass fit. The fit function is the same as in equation
4.6, including a constraint factor multiplying the relative yield as explained in the
previous point. The fit parameter vector ®𝜙1 across all 𝑞2 regions is changed so that
the 𝜎𝐺1 parameter to be commonly shared across all 7 fits. Furthermore the 𝜇𝐺1
parameter is modified as:

𝜇𝐺1 = 𝑎
𝑞2high + 𝑞2low

2
+ 𝑏

where 𝑎, 𝑏 are commonly shared across all 7 fits establishing a linear dependence
between 𝑚(𝐵0) and 𝑚(𝜇𝜇) = 𝑞2. The reason for doing this is to further impose
constraints of the fitting procedure, in order to eliminate some independence across
the 𝑞2 regions. The errors have been calculated using the propagation formula (eq.
5.1).

Figure 4.28 shows the values of the DSCB and Gauss means as well as the DSCB widths
and Gauss width in the Simultaneous Mass Fit. Tables 4.16 and 4.17 show the measured
yields of the modes in the Data samples.

(a) DSCB and Gauss values of the means
𝜇𝐷1, 𝜇𝐺1 for BDT> 4.5.

(b) DSCB and Gauss values of the widths
𝑤𝐷1, 𝑤𝐺1 for BDT> 4.5.

Figure 4.28: DSCB and Gauss value mean and width fit parameters along with their errors as
computed by the fitting procedure for BDT> 4.5. The orange dotted lines show the limits of the
DSCB fit parameter ranges.
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Quantity Bin 1 Bin 2 Bin 3 Bin 5 Bin 7 Bin 8 Bin 9
Yields 16 ± 5 81 ± 9 88 ± 12 37 ± 5 34 ± 6 40 ± 6 9 ± 3

Table 4.16: 𝑁 𝑗 Yield values for 7 out of the 9 bins in table 4.1 of the Rare Mode in the Data samples.

Quantity Value
𝐽/𝜓 Resonance

Yield 115277 ± 357

𝜓(2𝑆) Resonance
Yield 11565 ± 110

Table 4.17: 𝑁 𝑗 Yield values for bin 4 & 6 in table 4.1 of the 𝐽/𝜓 Resonant and 𝜓(2𝑆) Second Resonant
𝑞2 regions in the Data samples.
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5 Summary & Conclusion
In this section the results of this analysis are shown and discussed. Throughout this
analysis, no systematic errors are calculated, as the work required for their estimation
is time consuming and is out of the scope of this thesis. The statistical uncertainties 𝜎𝑞
of a quantity 𝑞( ®𝜙) depending on the parameters, measurements and other quantities
®𝜙 = (𝜙1, 𝜙2, ..., 𝜙𝑛)𝑇 with each 𝜙𝑖 having an error 𝜎𝜙𝑖 are always calculated via the error
propagation formula:

𝜎𝑞 =

√√
𝑛∑︁
𝑖=1

(
𝜕𝑞

𝜕𝜙𝑖
𝜎𝜙𝑖

)2
(5.1)

except in the case of the 𝛼, 𝜖 factors (binomial errors, eq. 4.4), sPlot (eq. 4.7) and the bin
contents of quantity distributions, where the error provided by the ROOT framework
plotter is equal to 𝜎𝑗 =

√︁
𝑁 𝑗 where 𝑁 𝑗 are the entries in the 𝑗th bin.

5.1 Results
The culmination of this analysis and its end result is the determination of the two
observables, the differential branching function for the Rare Mode (section 3.4.2, which
expresses the 𝑅𝐾0

𝑆
(𝜇) observable (section 3.4.1) in the 7 Rare Mode binds of table 4.1. The

computation of 𝑅𝐾0
𝑆
(𝜓(2𝑆)) is also performed as a sanity check the validity of the analysis

strategy (fig. 4.1). The values in tables 4.9, 4.10, 4.16 and 4.17 are used in determining the
measurements of the observables. The list of statistical errors that have been propagated
to these results is shown as follows:

• Yield errors provided by the 𝐵0 mass fits for all three modes (Rare, Resonant and
Second Resonant). These errors are given by the fitting procedure.

• The binomial errors of the 𝛼, 𝜖 factors.

Systematic errors that are present in these results but are not estimated come from the
following effects:

• BDT training related systematics, such as randomness from the shuffling of the
training data and randomness from the procedure (section 4.5). Re-training a BDT
with no particular seed for a random number generator (RNG) will affect the training
procedure slightly, which in turn changes the prediction score.

• The fitting procedure of the 𝐵0 mass fits, such as 𝐵0 mass window calculations
(integrals, normalizations, range), the algorithm (Log Likelihood minimizer) and
sensitivity of using binned (MC) versus unbinned (Data) versions of the samples.
This effect is prominent in the trails of the MC sample distributions. The separation
is performed in order for sPlot to be optimized.

• Differences between the MC and Data samples, as shown in figures 4.26 and 4.27.
These differences are beyond the control of this analysis.

• Physics objects values and characteristics from the software that creates these
values from raw data from the CMS experiment (trigger and selections). This affects
the quality of the tracks which are then processed and attributed to a particle
candidate. Muons are exceptionally immune to misvaluement in contrast to all other
candidate tracks (𝐵0, 𝐾0

𝑆
, etc) due to the nature of the experiment. These effects are

also beyond the control of this analysis.
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It should be noted however, due to the experimental determination of the form of the
observables (eqs. 3.3, 3.4), systematic errors due physics background processes and
trigger reconstruction efficiencies cancel out for two different decay modes as previously
explained in section 3.4.1.

5.1.1 Measurement of the 𝐵0 → 𝐾0
𝑆
𝜇+𝜇− Differential Branching Function

In order to provide a comparison measure for the differential branching function, it needs
to be compared to another quantity. The flavio[63] python package was used, which
provides Standard Model theoretical calculations for various flavor physics and other tests.
flavio can provide a calculation of the differential branching function as the theoretical
uncertainty to this calculation. Figure 5.1 shows the 𝑑𝐵/𝑑𝑞2 quantity. The blinding nature
of the result prohibits the complete comparison of the measurement and its deviation of
the theoretical calculation.

Figure 5.1: Measurement of the Differential Branching Function (blue) versus the theoretical
calculation (yellow). The measurement is performed on the 7 Rare Mode bins of table 4.1.

5.1.2 Measurement of the 𝑅𝐾0
𝑆
(𝜓(2𝑆)) Ratio

The experimental measurement of the 𝑅𝐾0
𝑆
(𝜓(2𝑆)) ratio (eq. 3.3 is performed as a sanity

check of the analysis. As per the differential branching function, the 𝑅𝐾0
𝑆
(𝜓(2𝑆)) ratio is

compared to the value provided by the PDG[19]. The values acquired from that resource
are the branching ratios for 𝐵0 → 𝐽/𝜓𝐾0

𝑆
and 𝐵0 → 𝜓(2𝑆)𝐾0

𝑆
, as well as the muonic decay

channels of the resonant particles 𝐽/𝜓 → 𝜇𝜇 and 𝜓(2𝑆) → 𝜇𝜇, multiplied to get the
branching ratios in equation 3.3 respectively. PDG also provides experimental errors
which include systematic errors from their respective analyses. Table 5.1 shows the values
for this ratio.

Type 𝑅𝐾0
𝑆
(𝜓(2𝑆)) Value

Measurement (8.35 ± 0.09) · 10−2
PDG (8.74 ± 1.02) · 10−2

Table 5.1: Measurement of the 𝑅𝐾0
𝑆
(𝜓(2𝑆)) ratio and the value provided by PDG.
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5.2 Discussion

5.2 Discussion
The results provided in sections 5.1.1 and 5.1.2 spark a lot of points for discussion, as
well as possible refinement techniques to improve the nature of the result. Both of these
results will be discussed.

Differential Branching Function By looking at figure 5.1, discussion of the 𝑞2 bins
1, 4 and 6 (table 4.1) will be made, as these bins show divergence from the trend provided
by the theoretical calculation.

• bin 1 [0.1, 0.98]𝐺𝑒𝑉2 is shown to diverge from the trend provided by the theoretical
calculation by flavio, and this can be attributed to the low available statistics in
the simultaneous 𝐵0 mass fit bins (Appendix B). What’s more, the Data samples
are contaminated with low 𝑐𝑐 resonances in that bin (figure 4.10).

• There is no bin 4 theoretical calculation given. However, it should be noted that this
bin is between the two resonant modes (figure 4.10) where event leakages from the
tails of the two distributions can still have an undetermined effect.

• According to the trend provided by the theoretical calculation, the 𝑑𝐵/𝑑𝑞2 given in
bin 6 should be between its two adjacent bins. However, it should be noted that
this is the high-𝑞2 region as described and studied with the BDT performance in
section 4.5, where the training region considerably affects the shape of the 𝑜(𝑥)
distributions (figures 4.12, 4.13a). What’s more, there is a small difference between
the shape of the low-𝑞2 and high-𝑞2 𝑜(𝑥) distributions on the low-𝑞2 trained BDT. In
the case of the simultaneous 𝐵0 mass fits, the high-𝑞2 range is broken down to three
bins, each containing less statistics than the previous one, as the 𝑞2 distribution is
monotonically decreasing in the high-𝑞2 region (figure 4.10).

It is evident by these observations on the differential branching function that two attempts
should be made to improve on these shortcomings. Firstly, the statistics of the Data Sample
should be increased in order to reduce statistical errors and divergences. An attempt to
increase the available statistics using the CMS Run 3 2023 Data in conjunction with
the CMS Run 3 2022 Data is explained in section 5.3.1. What’s more, the differences
between the MC and Data Samples that became evident in section 4.7 thanks to the
sPlot technique should be addressed by the groups providing these samples, as well as
possible errors in the software. Further analysis of the Collection cuts could also be
proven fruitful.
Secondly, an extensive sensitivity analysis of the BDT training procedure as well as the
training 𝑞2 regions should be performed to see the effect of improving the ML aspect of
this analysis. The BDT is not only responsible for eliminating unwanted background
processes, but also is crucial in determining the optimal BDT cut 𝑥 > 𝑐𝑏 via a FoM
metric. Different FoMs as well as lesser step sizes in the BDT cut than 0.5 would lead to
a sensitivity analysis for the BDT cut value. It should also be noted that the BDT has
been trained in the Collection 6 of variable cuts and not Collection 7, which has little
but measurable effect on the low-𝑞2 training region. Discussion about the BDT tuning
process, is furthered in section 5.3.2.

𝑅𝐾0
𝑆
(𝜓(2𝑆)) Sanity Check Table 5.1 provides the measurement of this thesis and com-

pares it to the value of the PDG. Comparing the experimental measurement of this
analysis to the PDG value, the experimental result lies within 1𝜎 of the PDG value,
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where 𝜎 is the uncertainty provided by the PDG. This analysis does not aim to find
deviations from the SM by looking at the two resonant modes but uses this measurement
in order to facilitate a sanity check which can validate the procedure of the analysis as
described in figure 4.1 at the beginning of section 4. The equation:

𝑅𝐾0
𝑆
(𝜓(2𝑆))exp = 𝑅𝐾0

𝑆
(𝜓(2𝑆))PDG + 𝑛𝜎

is satisfied for 𝑛 = −0.38. A possible reason for the value of the measurement being lower
than that provided from PDG can be attributed to the calculation of the yields from the 𝐵0
mass fits, as the yields are calculated within ±2𝜎𝐷 of the DSCB distribution fit parameter
and not from the whole integration range of the 𝐵0 mass.

5.3 Analysis Refinement
In this section, discussion on what the analysis can be improved upon is contained. Firstly,
two features are discussed, an attempt to increase the sample sizes by incorporating the
CMS Run 3 2023 Data samples into the analysis in section 5.3.1 and the BDT Tuning
process in section 5.3.2. Ideas for possible further refinement after the submission of this
thesis can be found in section 5.4.

5.3.1 Increasing the Sample Sizes

As mentioned in section 5.2, the increase of the Sample Sizes of both MC and Data
samples from year 2022 has been attempted. In order to incorporate this size increase
using the Run 3 2023 samples in conjunction with the Run 3 2022 samples, both samples
across the two years must have identical distributions, with the only uncertainty allowed
to show the deviation being the statistical uncertainty of the bin contents. In order to
check if this process is possible, one needs to check the Pileup distribution in the Data
Samples of the two years. It is known that the 2023 year’s Pileup distribution has a higher
mean and median, which allows more processes to happen per beam collision. During
the duration of a Run in a year in the LHC, some of the beam parameters vary, yielding
different measurements as the machine ramps up and down of operation. This inherently
requires different trigger strategies, which in turn affects the processed samples that are
used in the analysis.

Unfortunately, the Pileup Distribution of the Data 2023 samples was unavailable for
comparison. A direct comparison between the Data 2022 and Data 2023 samples requires
these two distributions. The next step in determining whether these samples can be
merged was to look at the BDT Output distribution 𝑜(𝑥) of the two year Data samples.
Fortunately, the scale factors 𝑢1, 𝑢2 were available in order to reweight the 2022 Data
into the 2023 Data, using the Pileup distributions as shown in figure 5.2. From these
two scale factors, 𝑢1 corresponds to the scale of MC 2022 to Data 2022 samples based on
the total number of Primary Vertices in each collision and 𝑢2 corresponds to the scale of
Data 2022 to Data 2023 samples based on the total number of Primary Vertices in each
collision. From this point on, if a sample is rewighted based on this method, it will be
abbreviated as (W), for example the Weighted Data 2022 will be referenced as Data (W)
2022. A second unfortunate problem was the complete absence of the MC 2023 samples.
If no issues between the 2022 (W) and 2023 Data samples arose, the events in the MC
2023 samples were to be weighted via the scale factor 𝑢1 · 𝑢2, and an extensive analysis in
training a hybrid BDT using weighted entries had to be performed.
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(a) Pileup Distributions in
the low-𝑞2 Sideband Re-
gion.

(b) Pileup Distributions in
the high-𝑞2 Sideband Re-
gion.

(c) Pileup Distributions in
the low+high-𝑞2 Sideband
Region.

Figure 5.2: Pileup Distributions in the low-𝑞2, high-𝑞2 and low+high-𝑞2 Sideband Region 𝑚(𝐵0) ∈
(4.85, 5.05) ∪ (5.48, 5.65)GeV of the Data samples 2022 and (W) 2022.

In the process of checking if the BDT Output 𝑜(𝑥) distributions between Data (W) 2022
and Data 2023 were different, the training of the three initial BDTs (low-𝑞2, high-𝑞2 and
low+high-𝑞2) was not changed to incorporate any of the 2023 year samples. The result is
shown in figure 5.3. However, the deviation between the Data (W) 2022 and Data 2023
samples 𝑜(𝑥) distributions show a distinction that merging these samples together is not
possible due to the difference. This also implies that the MC 2022 samples should not be
reweighted according to the 𝑢1 · 𝑢2 scale factors. The large distinction between the Data
2022 and MC 2022 also became evident later in the analysis due to the 𝑝(𝐵0) Distribution
thanks to the sPlot technique (figures 4.26, 4.27). Therefore the sample size expansion
was abandoned.

(a) 𝑜(𝑥) Distributions in the
low-𝑞2 of the low-𝑞2 trained
BDT.

(b) 𝑜(𝑥) Distributions in
the high-𝑞2 of the high-𝑞2
trained BDT.

(c) 𝑜(𝑥) Distributions in
the low+high-𝑞2 of the
low+high-𝑞2 trained BDT.

Figure 5.3: BDT Output 𝑜(𝑥) Distributions of low-𝑞2, high-𝑞2 and low+high-𝑞2 trained BDTs in
their corresponding high-performing 𝑞2 regions of the Sideband Region 𝑚(𝐵0) ∈ (4.85, 5.05) ∪
(5.48, 5.65)GeV of the Data samples 2022, (W) 2022 and 2023.

5.3.2 Tuning the BDT

In section 5.2, a discussion arose regarding the tuning of the BDT. The BDTs used
throughout this thesis have already been given as working optimally and no further
exploration in a feasibility study regarding the optimization was made in the initial stage
of the training procedure. During the revision process of this thesis, a small feasibility
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study regarding the behavior of the training procedure was made and is presented in
this section.
It is to be noted that this feasibility study is a very preliminary analysis and no focus
was given throughout this thesis and its purpose is to set the stone for a possible future
project.

Parameter Tuning The training procedure was augmented with testing additional
parameters to those of table 4.12, as well as an early stopping method for adding ad-
ditional estimators (hyperparameter n estimators) to the training model. The early
stopping method prevents the model from overfitting to the training data and requires an
evaluation metric and sample to evaluate a possible saturation in the predictive power of
the model. The evaluation metric was chosen to be AUC (Area Under the Curve) between
the true positive rate and false positive rate. If the training score does not improve in
over 35 estimators, the training procedure stops prematurely. Furthermore, the training
procedure was subjected to the Stratified 𝑛-Repeated 𝑘-fold Cross Validation (SRCV)
technique in order to repeat the training procedure for a given set of hyperparameters in
order to reduce statistical fluctuations across the evaluation metric results. Each iteration
of the tuning process was supplied with a hyperparameter grid which lists all possible
combinations of values for the BDT hyperparameters as well as a list of training features.

A measure was needed in order to compare BDTs and their efficiency in evaluating
the models’ predictive power. Two scatter plots were essential in determining good sets of
hyperparameters. The first plot is a set of points of the mean training score 𝑚𝑇 versus
the mean testing (evaluation) 𝑚𝐸 score of the trained BDTs. These scores come from
averaging the corresponding scores across folds and repetitions in the SRCV method.
The latter plot is a variation of the former, showing the model ranking across all models
versus the mean testing score 𝑚𝐸 . The BDT ranking is defined as a decreasing integer
scale of mean testing scores, where rank 1 refers to the model with the highest testing
score, constituting this plots as a decreasing function of 𝑚𝐸 versus the ranking. This
combination of plots are essential in recognizing patterns in hyperparameter behavior
and providing a sense of fluctuation in the distribution of the mean testing score.

Figures 5.4 and 5.5 show examples of this method using the an extensive list of training
variables cos2D 𝛼, sig(𝐿𝑥𝑦), 𝑝(𝐵0), Iso(𝜇1), Iso(𝜇2), 𝑝𝑇 (𝐾0

𝑆
), 𝜂(𝜇1), 𝜂(𝜇2), 𝜂(𝐾0

𝑆
),Δ𝜂(𝜇1, 𝜇2),

sig(𝐷𝑥𝑦, 𝜇1), sig(𝐷𝑥𝑦, 𝜇2). The BDT version in these figures refers to an internal code
assigned to each tuning procedure which trains the BDT models with the same hyper-
parameter grid and features.
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Figure 5.4: Mean training score versus mean testing score. Three of the values of the hyperparameters
are shown in the figure. Each point corresponds to a distinct model.

Figure 5.5: Ranking score versus mean testing score. Three of the values of the hyperparameters
are shown in the figure. Each point corresponds to a distinct model.

From figures 5.4 and 5.5 it can be seen how a set of hyperparameters displays patterns
in these plots and how these patterns provide insight in repeating the tuning process. If
two mean training scores 𝑚𝑇1 and 𝑚𝑇2 satisfy 𝑚𝑇1 < 𝑚𝑇2 and are equal to a mean testing
score 𝑚𝐸 , then the models with mean training score 𝑚𝑇2 are rejected as candidates of
overfitting. Ideally, areas containing points with high 𝑚𝑇 and low 𝑚𝐸 are very bad BDT
candidates to be used in the analysis as they are subject to overfitting. These candidates
typically fall at high ranks and their combinations of hyperparameters are rejected from
further iterations of hyperparameter grid searches across the BDT training feature list.
It should also be noted, in order to reduce correlations, the correlation matrices (figure
5.6b) of the training variables in the BDT training samples is a crucial metric in order to
minimize correlations in the training procedure:
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(a) Correlation matrix for a set of non-
correlated the MC Signal samples variables.

(b) Correlation matrix for a set of non-
correlated the Sideband Region in the Data
samples variables.

Figure 5.6: Visual representation of the correlation matrices for the a set of uncorrelated variables
for the two BDT classes in the training samples.

It is to be reminded that the difference in the values of the correlations between figures
5.6a and 5.6b are not a sign of data incompatibility across the samples as the training
datasets are not subjected to background removal methods. This feasibility study has
shown some basic behaviors of the hyperparameters in the BDT training procedure.

• The mean test score𝑚𝐸 improves when the subsample hyperparameter is set between
the values of 0.85-0.95 relative to the default value of 1. This value corresponds
to the percentage of the training dataset that is used in the training procedure
for each new estimator added to the model. Rejecting a small portion is a counter
to overfitting in the tuning procedure, allowing for high values of the evaluation
metric.

• The hyperparameters reg alpha and reg lambda are also a counter to overfitting
by applying a penalty to the loss function. Specifically, they regards L1 and L2
regularization respectively. The former has an optimal region between 0-10, with 0
denoting its default value and best performing value being at around 4.5 with no
definite deviation and the latter provides best results if left to its default value of 1.

• The number of estimators n estimators increases the computation time a lot and the
early stopping technique yields satisfactory results in decreasing the computation
time for this feasibility study. However, it has little effect outside the default optimal
range of 700-1000.

• The hyperparameter learning rate offers best results in the range of values 0.06-0.1.
Slower values have higher computation times and yield slightly better results.

Due to limited resources while working on this project, this feasibility study was not
expanded upon in order to measure any of the observables, as more effort had to be put
upon in order to sanity check these results further. Due to the time constraints of this
thesis, this was deemed unnecessary.

93



5.4 Future Developments & Closing Remarks

5.4 Future Developments & Closing Remarks
In this section, a brief discussion on future developments on this analysis will be given
by the perspective of the whole procedure, separated into core analysis improvements
and sensitivity analyses. The former category of improvements would change the results
by a considerable amount, whereas the latter may or may not contribute to the analysis
procedure and should be investigated after core analysis improvements have been made.
Such improvements are:

1. The calculation of systematic errors found in section 5.1.

2. The introduction of more Data and MC samples into the analysis in order to increase
the available statistics. In order to do this, the Pileup Distribution in the 2023 Data
samples is required, as explained in 5.3.1.

3. The correction of data incompatibilities between the Data and MC samples, as
demonstrated by figure 4.26.

4. A further analysis on the Collection of variable cuts, by looking to reject even more
background processes and to increase the signal yields before applying a BDT cut
𝑥 > 𝑐. Strong cuts will change the fitting parameters of the 𝐵0 mass distributions.

5. A re-iteration of the 𝑞2 bins in table 4.1 and the five 𝑞2 regions in table 4.11. A
further understanding of the limits in these bins and regions can lead into rejecting
or including more statistics that are appropriate for analysis. The spaces between
Rare Mode bins and the two Resonant regions can be adjusted and their effects and
background leakages measured. The three high-𝑞2 bins in table 4.1 can be combined
into one or two bins.

6. The low-𝑞2 training region of the BDT can be adjusted to include all cuts in Collection
7 (table 4.8, sans the BDT cut, in order to measure a possible improvement of the
BDT efficiency and shape of the 𝑜(𝑥) Distribution. Furthermore, the upper boundary
of the BDT training region can also be increased from 6.0GeV2 to a value conservative
relative to the lower boundary of the 𝐽/𝜓-𝑞2 region to prevent accidental leakage
and increase the 𝐵0 mass fit statistics of the already established samples.

7. A re-evaluation of the calculation of the fitting yields as mentioned in section 4.6.2
and discussed in 5.2, to see whether the change of the calculation of measured yields
of the modes affects the values of the observables.

Examples of sensitivity analyses for this analysis include:
1. An extensive analysis of the BDT training procedure by including complete hyper-

parameter tuning, feature selection methods, dataset and class label weighting
and their effects on the measurement of the differential branching function as well
as the 𝑅𝐾0

𝑆
(𝜓(2𝑆)) observable. Furthermore, other modern data science methods

can be used in order to explore the data sets, such as Dimensionality Reduction
techniques to observe data patterns which could help in identifying more cuts for
the Collections of variable cuts.

2. The application of different ML models or Artificial Intelligence models will provide
a layer of robustness into the analysis. Using additional ML models in the analysis
in order to determine the two observable will hint at possible shortcomings and
systematic errors of the BDT procedure that are currently unknown. Furthermore,
a different approach may be more suitable for the samples used in this thesis.

94



5.4 Future Developments & Closing Remarks

3. An analysis on the parameter grid of the 𝐵0 mass fits, as shown in section 4.6.1
and 4.8. The aim of such a procedure is to reduce the yield errors, as well as model
the behavior of the 𝑚(𝐵0) distribution given a 𝑞2 selection criterion. One way to do
this is to use a ML model or even a Deep Neural Network (DNN). The procedure
would start by initializing the fit function 𝑇 (𝑥; ®𝜃) (eq. 4.5) along with an initial set
of parameters ®𝜃𝑖, for 𝑖 ∈ {𝑘}𝑁1 generating 𝑁 different fit functions. By grouping these
initial functions into a training dataset which would include the parameters ®𝜃𝑖
as well as a goodness of fit measure like 𝜒2/𝑁DOF, the performance metric can be
chosen accordingly in order to minimize the goodness of fit measure as close to 1 as
possible. A new testing dataset can be made using slight variations of the training
dataset, which will allow an easy and simple analysis of the parameter grid of the
fitting function 𝑇 (𝑥; ®𝜃). Furthermore, testing the boundaries of the extrapolation
predictive power of this model would assist in identifying distributions of fitting
parameters given the goodness of fit measure or another parameter subgrid but is
an individual analysis of its own.

4. The application of different fit functions applied in the 𝐵0 mass fits would simplify
the interpretability of the 𝑚(𝐵0) distribution. Different pairs of the elementary
functions given in section 4.6.1 as well as new fit functions entirely.

The analysis shown in this thesis can also be done for other 𝑏 → 𝑠𝑙𝑙 processes with different
mediators. It is imperative to note that the 𝑅𝐾0

𝑆
(𝜇) observable has been determined within

the procedures of the scope in this analysis and the next step is to determine 𝑅𝐾0
𝑆
(𝑒)

in order to present the 𝑅𝐾0
𝑆

ratio as described in section 3.4.1 and compare with the
Standard Model prediction. However, determining 𝑅𝐾0

𝑆
(𝑒) is not as simple as presented

in this thesis, due to the electrons being harder to measure in the CMS trigger. This
section marks the end of this project. A new project aiming to improve the aforementioned
inconsistencies and rough areas is of extreme interest, particularly the BDT tuning for
the training procedure and the optimization of the 𝐵0 mass fits.
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A sPlot Variable Distributions for the Signal Search
This appendix includes the sPlots in the Weighted Data samples for 𝑥 > 4.5 as determined
by the analysis across all three modes of interest. Each sPlot corresponds to a distribu-
tion of the control variable from the Weighted Data samples as well as its MC sample
distribution. A brief explanation of the variable quantities can be found in section 4.2.3.

A.1 Rare Mode 𝐵0 → 𝜇+𝜇−𝐾0
𝑆

(a) sPlot of the cos2D 𝛼 variable distribution. (b) sPlot of the BDT Output score 𝑜(𝑥) vari-
able distribution.

(a) sPlot of the 𝜂(𝐵0) variable distribution. (b) sPlot of the 𝑝(𝐵0) variable distribution.
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A.1 Rare Mode 𝐵0 → 𝜇+𝜇−𝐾0
𝑆

(a) sPlot of the 𝑝𝑇 (𝐵0) variable distribution. (b) sPlot of the sig(𝐿𝑥𝑦) variable distribu-
tion.

(a) sPlot of the 𝜂(𝐾0
𝑆
) variable distribution. (b) sPlot of the IP(𝐾0

𝑆
, 2D) variable distribu-

tion.

(a) sPlot of the 𝑝𝑇 (𝐾0
𝑆
) variable distribution. (b) sPlot of the IP(𝐾0

𝑆
, 3D) variable distribu-

tion.
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A.1 Rare Mode 𝐵0 → 𝜇+𝜇−𝐾0
𝑆

(a) sPlot of the 𝜂(𝜇1) variable distribution. (b) sPlot of the 𝜂(𝜇2) variable distribution.

(a) sPlot of the Iso(𝜇1) variable distribution. (b) sPlot of the Iso(𝜇2) variable distribution.

(a) sPlot of the 𝑝𝑇 (𝜇1) variable distribution. (b) sPlot of the 𝑝𝑇 (𝜇2) variable distribution.
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A.2 Resonant Mode 𝐵0 → 𝐽/𝜓𝐾0
𝑆

(a) sPlot of the sig(𝐷𝑥𝑦) leading muon vari-
able distribution.

(b) sPlot of the sig(𝐷𝑥𝑦) subleading muon
variable distribution.

(a) sPlot of the Δ𝑅(𝜇, 𝐾0
𝑆
) variable distribu-

tion.
(b) sPlot of the Δ𝑧 variable distribution.

A.2 Resonant Mode 𝐵0 → 𝐽/𝜓𝐾0
𝑆

(a) sPlot of the cos2D 𝛼 variable distribution. (b) sPlot of the BDT Output score 𝑜(𝑥) vari-
able distribution.
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A.2 Resonant Mode 𝐵0 → 𝐽/𝜓𝐾0
𝑆

(a) sPlot of the 𝜂(𝐵0) variable distribution. (b) sPlot of the 𝑝(𝐵0) variable distribution.

(a) sPlot of the 𝑝𝑇 (𝐵0) variable distribution. (b) sPlot of the sig(𝐿𝑥𝑦) variable distribu-
tion.

(a) sPlot of the 𝜂(𝐾0
𝑆
) variable distribution. (b) sPlot of the IP(𝐾0

𝑆
, 2D) variable distribu-

tion.
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A.2 Resonant Mode 𝐵0 → 𝐽/𝜓𝐾0
𝑆

(a) sPlot of the 𝑝𝑇 (𝐾0
𝑆
) variable distribution. (b) sPlot of the IP(𝐾0

𝑆
, 3D) variable distribu-

tion.

(a) sPlot of the 𝜂(𝜇1) variable distribution. (b) sPlot of the 𝜂(𝜇2) variable distribution.

(a) sPlot of the Iso(𝜇1) variable distribution. (b) sPlot of the Iso(𝜇2) variable distribution.
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A.2 Resonant Mode 𝐵0 → 𝐽/𝜓𝐾0
𝑆

(a) sPlot of the 𝑝𝑇 (𝜇1) variable distribution. (b) sPlot of the 𝑝𝑇 (𝜇2) variable distribution.

(a) sPlot of the sig(𝐷𝑥𝑦) leading muon vari-
able distribution.

(b) sPlot of the sig(𝐷𝑥𝑦) subleading muon
variable distribution.

(a) sPlot of the Δ𝑅(𝜇, 𝐾0
𝑆
) variable distribu-

tion.
(b) sPlot of the Δ𝑧 variable distribution.
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A.3 Resonant Mode 𝐵0 → 𝜓(2𝑆)𝐾0
𝑆

A.3 Resonant Mode 𝐵0 → 𝜓(2𝑆)𝐾0
𝑆

(a) sPlot of the cos2D 𝛼 variable distribution. (b) sPlot of the BDT Output score 𝑜(𝑥) vari-
able distribution.

(a) sPlot of the 𝜂(𝐵0) variable distribution. (b) sPlot of the 𝑝(𝐵0) variable distribution.

(a) sPlot of the 𝑝𝑇 (𝐵0) variable distribution. (b) sPlot of the sig(𝐿𝑥𝑦) variable distribu-
tion.
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A.3 Resonant Mode 𝐵0 → 𝜓(2𝑆)𝐾0
𝑆

(a) sPlot of the 𝜂(𝐾0
𝑆
) variable distribution. (b) sPlot of the IP(𝐾0

𝑆
, 2D) variable distribu-

tion.

(a) sPlot of the 𝑝𝑇 (𝐾0
𝑆
) variable distribution. (b) sPlot of the IP(𝐾0

𝑆
, 3D) variable distribu-

tion.

(a) sPlot of the 𝜂(𝜇1) variable distribution. (b) sPlot of the 𝜂(𝜇2) variable distribution.
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A.3 Resonant Mode 𝐵0 → 𝜓(2𝑆)𝐾0
𝑆

(a) sPlot of the Iso(𝜇1) variable distribution. (b) sPlot of the Iso(𝜇2) variable distribution.

(a) sPlot of the 𝑝𝑇 (𝜇1) variable distribution. (b) sPlot of the 𝑝𝑇 (𝜇2) variable distribution.

(a) sPlot of the sig(𝐷𝑥𝑦) leading muon vari-
able distribution.

(b) sPlot of the sig(𝐷𝑥𝑦) subleading muon
variable distribution.

105



B Simultaneous 𝐵0 Mass Fits for the Rare Mode Signal Search

(a) sPlot of the Δ𝑅(𝜇, 𝐾0
𝑆
) variable distribu-

tion.
(b) sPlot of the Δ𝑧 variable distribution.

B Simultaneous 𝐵0 Mass Fits for the Rare Mode Signal
Search

This section includes the Simultaneous 𝐵0 mass fits for the Rare Mode in the Data
Samples. The 7 bins of the search of the Rare Mode are found in table 4.1, where the bins
in bold are excluded due to the dominant presence of the Resonant modes.

(a) Rare Mode 𝐵0 mass fit in the [0.1, 0.98]
GeV2 𝑞2 bin.

(b) Rare Mode 𝐵0 mass fit in the [1.0, 4.0]
GeV2 𝑞2 bin.
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B Simultaneous 𝐵0 Mass Fits for the Rare Mode Signal Search

(a) Rare Mode 𝐵0 mass fit in the [4.0, 8.0]
GeV2 𝑞2 bin.

(b) Rare Mode 𝐵0 mass fit in the [11.0, 12.5]
GeV2 𝑞2 bin.

(a) Rare Mode 𝐵0 mass fit in the [15.0, 17.0]
GeV2 𝑞2 bin.

(b) Rare Mode 𝐵0 mass fit in the [17.0, 19.0]
GeV2 𝑞2 bin.

Figure B.4: Rare Mode 𝐵0 mass fit in the [19.0, 23.0] GeV2 𝑞2 bin.
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