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Abstract

This doctoral dissertation’s center is on investigating various aspects of particle physics and cosmol-
ogy, initially through the lens of supersymmetry and subsequently through F-theory. Throughout
this study, we construct and analyze various models, aiming to provide solutions to a range of
experimental data in both the fields of inflation and particle physics.

Initially, a realistic SO(10) supersymmetric model is constructed within the context of super-
symmetry. In this model, fermion families are organized into three 16-plets. Remarkably, this
model successfully reproduces the low-energy effective Standard Model and effectively implements
inflation. The superpotential, which can undergo renormalization, possesses a U(1)g symmetry, al-
beit with violations introduced by non-renormalizable terms. The SO(10) symmetry spontaneously
breaks down to the Standard Model through the combined action of 165 + 165 and two adjoints
(455,45%,). By utilizing vacuum expectation values from two ten-plets, namely 105 and 107,
we provide masses upon all fermions, including the right-handed neutrinos, while simultaneously
inducing the required CKM mixings. This model also inherently incorporates a doublet-triplets
mechanism, preventing the Higgs doublets from acquiring excessive mass. In addition, the model
predicts a scalar spectral index and an approximate tensor-to-scalar ratio with agreement to the
experimental bounds. The investigation of the reheating process is finally examined, which results
in the production of two heavy right-handed neutrinos from the inflaton field’s dominant decay,
yielding an explanation for the observed baryon asymmetry through non-thermal leptogenesis.

Going beyond supersymmetry, we investigate the cosmological implications of an effective field
theory model derived from a configuration of D7 brane stacks within the framework of type-11B
string theory. Our examination revolves around a well-suited geometric arrangement where the
Kahler moduli fields are stabilized, and we carefully constrain the parametric space to ensure the
existence of a de Sitter vacuum. In addition to the moduli fields, we consider the customary Higgs
and matter fields included in the effective field theory. Within this framework, we implement
the standard hybrid inflation scenario, featuring a singlet scalar field as the inflaton and utilizing
the Higgs states as waterfall fields. The realization of a successful inflationary scenario relies on
radiative corrections and soft supersymmetry breaking terms, aligning it with current cosmological
data. Notably, our model predicts small tensor-to-scalar ratio values that hold promise for future
experimental verification. Furthermore, we subject the model’s parameters to additional constraints
derived from limitations on dark radiation, quantified as a contribution to the effective number of
neutrino species, denoted as Nyg. Specifically, our analysis reveals an excess of AN, < 0.95 at a
20 confidence level, with naturally aligned values for the involved couplings.

We now turn our attention to the phenomenology aspect of F-theory models. We delve into the
low-energy implications of F-theory Grand Unified Theory models rooted in an extended SU(5)
gauge group, augmented by a non-universal U(1)" symmetry that selectively couples to the three
distinct families of quarks and leptons. This gauge group naturally emerges from the maximal
exceptional gauge symmetry found within an elliptically fibred internal space, specifically at a
single point of enhancement, denoted as Fg D SU(5) x SU(5) D SU(5) x U(1)*. Within this
framework, we guarantee the presence of rank-one fermion mass textures and a tree-level top quark
coupling through the imposition of a Z5 monodromy group, which effectively identifies two abelian
factors within the previously mentioned breaking sequence. The U(1)’ factor of the gauge symmetry
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seamlessly combines with the three remaining abelian symmetries, left unaltered by Z,, all without
introducing any anomalies. This study yields various classes of models, each distinguished by the
U(1)" charges associated with their representations, potentially accommodating extra zero modes
in vector-like representations. We conduct in-depth research on these models and evaluate whether
their predictions correspond with the results of the Large Hadron Collider (LHC) and other relevant
experiments. Additionally, we explore specific scenarios that offer interpretations of the B-meson
anomalies observed in experiments such as LHCb and BaBar.

In the final step, we extend our previous work by introducing a vector-like complete fermion
family into our models. These extensions are motivated by experimental measurements that re-
veal deviations from Standard Model predictions. Our analysis is grounded in the framework of
SU(5) x U(1)" Grand Unified Theory, embedded within an Eg covering group associated with the
highest geometric singularity of the elliptic fibration. Within this framework, the U(1)" component
emerges as a linear combination of four abelian factors, satisfying the necessary anomaly cancellation
conditions. We require universal U(1)’ charges for the three chiral families while assigning distinct
charges to the fields within the vector-like representations. Under these assumptions, our explo-
ration yields a total of 192 models, categorized into five distinct groups based on their specific GUT
properties. We provide representative examples for each category, elucidating the superpotential
couplings and fermion mass matrices. Our investigation extends to the low-energy phenomenology
of these models, where we delve into predictions related to B-meson anomalies. Additionally, we
discuss the role of R-parity violating terms within selected models from this construction.
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H guou ebvar o emotnuovindg xhddog mou dnuovpyinxe otny mpoomdielor Tou avlpdmou Vo xo-
TavoY|oEL ToV TEOTO e Tov omoio Acttoupyel o xdopog. H mpdodog mou €yel onueiwidel oto mépaocua
TOU YpEOVou uéypl xou ofuepa etvor tepdotia. To 1900, o Max Planck eletdlovtac tnv axtivoBoiia
UEROVOC OOUOTOS TROTEVEL TNV Evvola TwV XPAVTKY eVERYELIS YLor Vo Teptypdipel T Sloxpity| @Oom g
EVEPYELOC, XAVOVTOS TO TRt To B YL 0wt mou ovopdloupe KBovtixs Oewpia Ilediov (Quantum Field
Theory - QFT). H dwtinwor tng €yive otic dexoetieg Tou 1930 xon 1940 and guoixoie émwe o Paul
Dirac, o Wolfgang Pauli xau o Richard Feynman xou napetye epunvela yia tig SUVEUELC TOU BLETOLY
TOL CWHATIOW GTOV UTOUTOUIXO XOGUO.

And v dhhn Thevpd, Aiyo vwpitepa, To 1915, o Albert Einstein, dnuooctedet tn dlaonun tréov ota
ypovd I'evint| Ocwpla tng Lyetixdtnrag. Ileprypdgel Toug vopoug Tou BLETOLY TOV UUXEOXOCUO Xl
amoBeEwYVEL TN OYEom UETAEY UAog xon XOUTUAOTNTAS TOU Y MEOU-YEOVOUL.

Yty mopela, Tic dexaetieg Tou 1960 xou 1970, Sapoppidvetan to ‘Kathepwuévo Hpdtuno’ (Standard
Model), éva onuavtix enitevypa oty tpootddeto vo evomondoly aAANAETUSPACELS TWV UTOUTOMXMY
cwuatdioy. H dewpio auth tpocépepe uio Yewentinr Bdomn yio v xBovtounyovixr| Teplypapy| Tov
CWUATOIY %o TWV CAANAETUOPUCEMY TOUG XAl PEYEL CHUEPX ATOTEAEL TNV THO axELBT| TEpLY PopY| TOU
TEOTOL TOL AELTOURYEL O UToUTOUXOG xOoUoC. Evo onuoavtind napdderyua yio Ty emtuyio tng Yewplog
arotehel 1 avoxdiun tou umoloviov Higgs to 2012 and tov Meydho Emtayuvty Adpoviov (LHC)
tou CERN, mapéyovtag epunveio yioo TNy TpoéAeuot) Twv paloy TV QEQUIOVIKY Xal TO TGO NG
Hhextpacievoic Yuyuetplog.

To 2015, AaufBdver yopa Yo TOTH oEd 1 ovaxdALPn TV BapuVTIXGY XUPATWY, €Vo ATOTENECUN
ouvepyaoiauc 600 netpopdtwy LIGO (Laser Interferometer Gravitational-Wave Observatory), to ono-
for xatéypaday TIC TEMOTES AmOBElEEIC BUpUVTIXDY XUPATWY OPELNOUUEVKDY G GUYXEOUCT] 800 Uodpwy
Teunwy. O 800 autég Pewpleg yio TOUg VOUOUS TG QUONEC TOCO GTOV HAXEOXOCHO OGO XAl OTOV
UXEOXOCUO, EYOLY EUPAVIOEL TPOUERESC EMITUYIES, KO TOGO Tapauévouy acuuBiBucteg uetalld Toug. H
EVOOT OAOY TV BUVAUEWY elvol pia dtadacio Tou 6ev umopet vo amovtriel uéypl xon orucpa. ITlopdhin-
Ao, o Kadepwpévo Ilpdtumo aduvatel vo dwoet e€RyNnoT 0 dpxeTd EpOTAUNTO OTWS OTNV ALEAVOUEVT
OLG TOAT) TOU GUUTAVTOC XAl T1) GXOTEWT EVEQYELX, GTO TEOBANUN TNG LEPUPYELNS TV BUVAUEWY, ONAAdN
TNV amOCTUOY) HETUE) TWY EVERYELUXMY XAUAXWY TOU TUPATNEELTOL, %ol Goy amdppold TNV EVOTonaoT)
OV TV duvdpewy. Toautdypova, aduvatel va dwoel gpunvelor yioo Ty Yala Twv VeTpivev To onola
€youv mapatnendel xan 1 Yewpla Tor avtiwetonilel we dpao. Autd xon dhha TeoBARuNTA 0B YNoUY TNV
ETUC TNUOVIXY| XOWVOTNTA OTNV TEOTUOY) TNG UTEQCUUUETELG.

H vrepouypetpla (SUSY) elvon évar povtého mou evidver ta unolovia ye ta pepuiovior oe Lelym
ue Toug {Broug xBavtixolg apripols, Tpocpépovtag wio duvat Bdon Yo T Ao Tou TEOPBAAUATOC
e tepapylac. Eniong, péow tne dewplioc authc, dnuoupyinxe n Yewpio unepPfopitntoc (SUGRA),
utar ETEXTAOT) TG UTEpOoUPPETEloG, we éva utodrplo Thaloto yio TV eprypapr Tne Popvtntoac. H 10éa
NG UTEROUPKETELOS EBWOE TO évauapa yio Tn dnuoupyia twv Meyaho-evonotnuévmy Oemptwy (GUTS),
HOVTEAWY amOTEAOVUEVWY amd UEYAAITERES oupPETElES amd oty Tou Kathepwuevou Hpotimou, £yovtdc
TO OUWS WG UTO-0Bd UECA OTY) CUUUETELO AUTY OTIC YUUNAES EVERYELES.

Av xou nurepouupeTeio xon 1 uTEEBUETNTA ATOTEAOLY EAXUCTIXES LOEEC Xl TROGPEPOLY UTAVTY|OELC
o€ Sudpopa Yéuato Tou BEV umopolcay Vo amavTnUoly UEypL TOR, 1) TEWRUUATIXT ATOOEIE)| ToUg Elvor
éva avolxtd {rTnuoL.
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Kdnoe étol gtdvouue otn Ocwpla Xopdov 1 onola mpoopépel Evar eVoAoXTIXd TAGIO Yol TN GU-
volut| xotavonor tou counoavtog. Hpotn eugdvion tou dpou “yoedn’ yiveton Tn dexactior Tou 1970 and
Toug Yoichiro Nambu, Holger Bech Nielsen, xou Leonard Susskind, ot onofol napousiacay tig muprn-
VIXEC DUVIUELS WG TUAXVTOUUEVES, HOVODIACTATES Y0pDOES. Lougpuva pe T Yewpla autr, To cwpotida
oev etvan omuelo, ahhd amoTeAolVTOL Amd YOEOES TOU TUAUVTWOVOVTAL OE ETUTAEOV OLUC TUCELS ONULOUE-
YOVTOG UE QUTOV TO TEOTO T TURUTNEYOLIN CWUATIOW AN o TG AAANAETORAOELS TOUS, CUUPWVIL UE
TNV ouyvoTnTa ToAdvTwone Touc. H dewplo amoutel emmiéov Blaotdoec tépa amd T YVOOTES TEE(S
YWPEES XAl TOV YPOVO, XYTL ToU ONULOURYEL TOAAES BUVATOTNTES XL TEOXAACELS OTT) LoIMUOTLXT OVEAU-
on. Emniéov, oto mAalotd tng mepthau3dvel i peyaho-evononuévee Ocmpleg xan Ty utepouppeTpla,
#xNoTOVTAC TNV UEXETA EAXUCTIXY 0¢ Vewplar yiol Tdpar TOAOUS ETIUC TAHUOVES.

H SwteBr auth exmoviinxe oto miaicto Wiag e€epebvnong Tou GUUTOVTOS, TO6O Yid TOV TEOTO
mou Bl téhhetan (inflation), 6oo xou v ™) awvoyevohoyy| epunvela TelpoPATIXGY BedoPEVLY UTH
T0 Tplopa TNG cwuaTdXAG PuoKAc uEow TNg BOcwplag Xopdnv. Kotd tn dudpxeio autrg tng Je-
AETNG, XUTAOHEVEG TNV XAl VOOV BLdpopa LOVTERX, UE GTOYO TNV ooy AUGEWY GE ULl GELRd
TELQUHATIXWY OEBOUEVKY OTOUG TOUE(S TNG XOOUOROYIUS X0t TNG PUOIXAC UTOATOUIXOY CWUATIOIV.

Apynd, xataoxeudoTnxe éva peahloTixd UTEPOUUUETEWS wovtélo SO(10) oto mhaloto tng unep-
OLUMETElOG. XE UTO TO JOVTEAOD, OL OLXOYEVELEC TWV PEQUIOVILY 0pYavmVOVTUL O TEES 16-TAETEC.
Anodewvietar 6T T0 Yovtého autéd avarapdyet pe emtuyia to Kohepwuévo Hpdtuno (KII) otic youn-
Mc evépyeleg xan e@opuolel anoteleoyatind tov tAndoplopd. H ovuueteio SO(10) ondel auvdopunta
oto KII péow tre ouvduaotixdc dpdone twv 16y + 165 xou dlo mopoxelyeveoy (45, 45). Xenot-
UOTIOLOVTAC TIC OVUUEVOUEVES THIEC TOU %EVoL amd 800 Sexa-mAétee, 105 xou 10%, mopéyovton pdlec
0E OAUL TOL PEPULOVLAL, CUUTEQLAIUPAVOUEVLY TOV BECLOYELWY VETRIVGY, EVE TOUTOYEOVA ELCAYOVTAL Ol
amawtolpeveg piZewc yio tov mivaxa CKM (Cabibbo-Kobayashi-Maskawa matrix). To povtélo nept-
hopPdver enong éva unyavioud doublet-triplet splitting, mtou anotpénel Tic dinAgteg Tou Higgs and to
var anoxthoouy unepBoiut| udla. To povtého emtuyydver xan otov TANdweloud, xodoe o tpofiédelc
Tou Yl Ta mopatneolueva dedopéva and to Planck etvan péoa oto edpog amodextdv Ty, Télog,
e€etdleton 1) dradixaoto e enavodépupaonc (reheating), 6mou 1 xuplapyn anocivieon tou nediov Tou
mindwpetopol (inflaton field) mapdyer évor Ledyoc Bop€wv Oelldyelowy VETEIVGDY, TOREYOVTAG UE olU-
TV TN Swdwaotion pior €A YNOT YL TNV TUEATNEOVUUEVT Bapudvixn avicoppoTior UEcw TNg Un-Uepuixric
AETTOYEVEDTC.

H e&epelvnon otnv nopeia enexteiveton otn Ocwpior Xopd®yv, 6ToU EEETACTNXAY Ol XOOUONOYIXES
OUVETELEC EVOC AmOTEAEOUATIXO) HOVTENOL Vewplag medlou mou mpoxUmTtel amd Wi didtaln twv D7
Beavav (branes) oto mhaicto ¢ Yewplog TOmoL-1IB g Ocwplag Xopdwy. H épeuva neplotpépe-
ot YOpw omd Wiol XATEAANAY YewpeTex didtodn, étou ta medio xoutaotdoewy (moduli fields) Kéah-
ler otadepomolotvian xon TEPLOPIlETOL TEOCEXTING O TUQUUETEXOC YWPOS, WOTE Vo ECACPUACTEL 1)
Umoegn evoc xevol tumou de Sitter. Extoc and to medio moduli, AauBdvovton umddn xou ta cuvndi-
ouéva medlor Higgs xan OAng. Méooa oe autd t0 mAloto, epopudletar TO xavovixd cevdplo LoD
mAndwplopol (standard hybrid inflation), yenowwonowdvtog évor Barduwmtd nedio umeviuvo yio Tov
mindwpetopd(inflaton) xou tic xotaotdoeg Higgs we nedio xotoppdxtee (waterfall fields). H épeuva
OMOXATPOVETAL PE TNV ETETEVEN EVOG emTUYNUEVOL oevapiou TAndwplopol ue T Pordela twy radiative
corrections, émwe eniong xan pohoxdv 6pwv (soft-tems) onaciyatoc tne unepouuueTpioc.

H mpocoyt| yog otpépetar 0T GUVEYELL GTY QouvouEVOroYio LovTEAWY Tng Ocwplog Xopdwy, xou
ouyxexpévo tne F-theory. E&etdlovtar oe autd T0 TAKUCIO Ol EMTTOOES OTIC YUUNAEC EVERYELEC
v povtéhwv GUT F-theory mou Bactlovtaw otny oudda SU(5), emextopévn and uio U(1)" (singlet)
ouueTpla, 1 omola €yel un xardohnr| oUCELEN UE TIC TEEIC BLUPOPETIXES OIXOYEVELESC TWY XOUUEX Xl TWV
Aemtoviwy. Auth 1 oudda TeoxUTTEL PE PUOIXS TEOTO amd TN €Yo TN cuUHeTpla Baduldoc (maximal
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exeptional gauge group), Fs D SU(5) x SU(5)" D SU(5) x U(1)*. Emnpdodeta pe tnv emBord
utag Zy povodpopiac (monodromy group) emtuyydveton un datapoxtixd (tree-level) n o0levén yio
0 top quark (top quark coupling). H pelétn auth xotodfyer oe Sidgpopa yovtého tor omolo xotn-
YoplomoloUvTaL BACEL GUYXEXQUIEVLY YUPUXTNPIOTIXWY GE OUAOES o Yivetan EEYmELoTd 1 avdAuoT)
Toug. Oloxhnpdvovtog, yivetar yior avohutixy| oCloAOYNOT TRV LOVTEAWY UT®V Yio Voo EASYVEl Ear
ot TpofBrédelc Toug avtamoxpivovton ota amotehéopoto tou Large Hadron Collider (LHC) xou dAAwv
OYETOVY TEWUUATOY. Emimhéov, SlepeuvmvTon CUYKEXQWEVA CEVAPLY TOU TPOGPEPOLY EPUNVELES Yia
TIC avwuaiieg Twv B-pecoviwy tou napatnpolvta oe tewpduota 6tewe To LHCb xou to BaBar.

Y10 tehxd PBriua g datelPrc, yivetaw eméxtact Trng mpoavagepeicag epyaciog v TNV xota-
OXEVY] LOVTEAWY, ELOAYOVTOS o ETLTPOCUETT OAOXANEWUEYY]) OXOYEVELL PEPULOVILY BLOYUOUATIXOD
tOnou(vector-like family) ota povtéla autd. Autéc o enextdoelg evioppivovton and TIC TELRUUATIXES
UeTENoEG oL amoxoAUTTOUY amoxiioelg and Tig TeoPAédeg Tou KII. H avdhuon tng epyaciag autric
Buoileton oto mAaicto tne ueyoho-evonomuévne Yewplag SU(5) x U(1)', evowpotwuévne otnv opddo
Eg. Evtéc autol tou mhaustou, n ouppetplo U(1)', avadieton ¢ Yeoumxos cuvBUIoUoS TEGGERWY o-
BEAAVOY TRy OVTOY, IXAVOTOLOYTIS TIC ATAURALTNTEG CUVIHXES YLt TNV 0XDPMOT) TWV AVOUIALDY. LT
ouvéyeta, xoopilovton xoohxd goptior U(1) yio Tic Tpelc oxoyévelee pepuiovimy, Ve 1 emmAéov
OLXOYEVELX DLUYUOUATIXOU TUTOU EYEL DLUPORETIXG PopTIO XdTw amd auTh TN oupueteln. Me auteg Tig
unolEoelg, 1 €peuva odNYel o cuvolxd 192 HOVTEAN, XAUTTYOPLOTIONUEVY OE TEVTE OLUXPLTEC XATNYO-
oleg Bdoetl Twv WBOTATWY Toug. AVTITEOOWTELTIXG TopadelyUaTo yior xde xatrnyopio epeuvvTon poli
UE Toug avTioTolyoug Tivaxeg Yo Ti¢ Udlec Twv gepptoviwy. H éoeuva ohoxhnpdveton ye tny e&étaon
Eavd TNG POUVOUEVOROYIUC AUTOY TWV LOVTEAWY OE YUUNAES EVERYELEC, OTIOU BLEPELVOVTAL OL TEOPAEELC
oyeTllOUEVeES e TIC avwuaiieg Twv B-pecoviwv and to neipdpota LHCb xow 1o BaBar.
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Chapter 1

Expanding the Frontiers: Theories
Beyond the Standard Model

In this preliminary chapter, we will lay out the basics of the Standard Model (SM) which is the
fundamental theory of particle physics and through the years has been tested extensively, exhibiting
exceptional agreement with the experimental observations. We will provide its main attributes
and set the need to go beyond to explain unanswered questions. This search will lead us to the
incorporation of Grand Unified Theories (GUTs). Our main focus will be on the inflationary era
of the universe and how these theories explain the recent experimental data. Finally, we will take
it a step forward with the introduction of string theory and more precisely with the introduction
of F—Theory, which is a geometric version of type II-B superstring theory. In this scheme, we will
illustrate how GUT models can be perceived and study their intriguing properties.

1.1 The beginning: The Standard Model

Over the past decades, the Standard Model of particle physics [7—9] has undergone throw meticulous
scrutiny with various experiments and still, this day provides precision and quality descriptions of
low-energy particle physics. It encloses the realization of Quantum Field Theory in its theoretical
framework and with the combination of quantum mechanics and special relativity provides the
properties as well as the interactions of the elementary particles. The SM encompasses all the
non—gravitational forces: the Strong, the Weak, and the electromagnetic. So far, no such theory
can unify gravity under a gauged quantum field theory framework.

1.1.1 Gauge group and matter fields

The particle content of the SM and its interactions can be described with a set of few straight-
forward gauge symmetry groups. These are SU(3), SU(2), and U(1), representing strong, weak,
and electromagnetic forces, respectively. The basic principle under the gauge symmetries is the in-
variance of the theory under local transformations which ensures that the physics stays unchanged
whenever the fields undergo a transformation. The full gauge symmetry of the SM is the direct
product of the described symmetries and has the following form
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Name Field Particle SM representation

G g G(8,1,0)
Gauge Bosons | W2, W3 w20 W(1,3,0)
B, v B(1,1,0)

Qi () () (), Q(3,2,1/6)

Quarks UR, u%,c%,t% uc(3,1,-2/3)

dp, di, st b d°(3,1,1/3)

Lo | (2),(%), (), | La2-1/2)

Leptons

IR, el gty e“(1,1,1)
Higgs field ) H (1,2,1/2)

Table 1.1: Depiction of all the particles under the gauge group SU(3). x SU(2), x U(1)y of the
SM.

The SU(3)¢ gauge group encloses Quantum Chromodynamics (QCD) which is the theory describing
the strong force and its interactions. A key ingredient to a theory is the conservation of charge.
In QCD, the associated charge is the color charge and comes in three colors: red, green, and blue.
The interaction particles mediating this force are the 8 massless gluons (G®) which carry color
charge. Quarks also carry color charge so they interact with gluons and this exchange results in the
formation of composite particles known as hadrons, such as protons and neutrons.

The unified SU(2);, x U(1l)y gauge symmetry group describes the electroweak force and its
mediated by three massless gauge bosons, namely, W13 and one massless gauge boson B correlated
with the hypercharge. More analytically, the SU(2), is acting with the left-handed fermions and
describes the weak isospin interactions, whereas the U(1)y regards the weak hypercharge. The
SU(2), x U(1)y symmetry undergoes spontaneous breaking below the electroweak scale (~100
GeV), via the Higgs mechanism [10-13], and during this process, the Higgs field acquires a non-zero
vacuum expectation value. As a consequence, three of the four gauge bosons (W* and Z) acquire
mass, while the remaining boson, the photon, remains massless. This leads to the preservation of
the unbroken U(1).,, symmetry, which is associated with Quantum Electrodynamics.

At the core of the SM are the fermions, the fundamental particles that compose all known
matter. There are two separate classes of fermions, quarks, and leptons. Quarks are color triplets
and as so they interact with the strong force, whereas leptons, considered to be color singlets, do
not interact. Both quarks and leptons have left-handed and right-handed pairs. The left-handed
fermions transform as doublets under the SU(2); gauge symmetry and interact with the weak
force, while, right-handed fermions are singlets under the SU(2);, and so they don’t participate in
weak interactions. Neutrinos, the neutral leptons, come only as left-handed in the theory and are
considered massless. Another property of fermions is that they come in three copies better known
as generations or families. These generations only differ from each other in their mass with the
third generation being the heaviest. In Table (1.1) we present all the particle content of SM where
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the last column, depicts each field dimensionality under the gauge groups SU(3)¢, SU(2),, and also
their hypercharge under U(1)y, respectively.

1.1.2 Langragian and mass terms

The theory of SM is renormalizable. This means that any divergences occurring in loop diagrams
can be removed by introducing counterterms that adjust the theory’s parameters. In this way,
the theory is finite and can provide consistent predictions in its framework. An important role in
the renormalization of the SM is gauge invariance. This property ensures that the theory remains
unchanged under the gauge transformations. It is also the property that forbids fermions to obtain
mass terms. The solution to this issue is the introduction of Yukawa couplings, where each fermion’s
mass is directly related to its corresponding Yukawa coupling.

The Lagrangian density encompasses the fundamental interactions and fields of the SM. It incor-
porates the kinetic terms for the gauge fields, fermions, and scalar fields, as well as the interaction
terms such as gauge interactions, Yukawa couplings, and the Higgs potential. Compactly the La-

grangian has lhe fOHOWiDg fOI'Hl .
3 ———G G V——[/L LL V——B BV
SM 4 W 4 Y 4 nv

+i (@po + uplPug + dglpdp + LIDL + éRlpeR)
B [<@YUUR) H+ (@YddR) H + (ZYeeR) H+ h.c.]
+ (D, H)' (D"H) =V (H)

(1.2)

where we have used the Dirac notation ) = 4*D,, and the conjugate Higgs doublet H = iooH*.
Here, the covariant derivative is given by the following formula :

D, = 0, 4 igsGLT +igyWeS* +ig1Y B, (1.3)

where T4 and S® are the generators of SU(3) and SU(2), respectively, and Y is the hypercharge.
The field-strength tensors for the gauge fields are defined as :

G;‘V =0,G2 — ayGﬁ — gngBCGfGS ,

W, = 0,Ws — ,W — gac™WIWS | (1.4)

B, =90,B, —0,B,.
for the SU(3), SU(2) and U(1) respectively. The expression (1.2) consists of four lines. The first
line represents the kinetic term for the gauge bosons. The second line corresponds to the kinetic
term for the fermionic fields. The third line pertains to the Yukawa sector, which encompasses
the interactions between fermions and the Higgs field facilitating the acquisition of masses by the
fermions. Lastly, the final line includes the kinetic term of the Higgs boson and additionally,

it incorporates the scalar potential of the Higgs field, which is responsible for the spontaneous
symmetry breaking.

1.1.3 Higgs Mechanism

The necessity to provide masses to the gauge bosons motivated the introduction of the concept of
Spontaneous Symmetry Breaking (SSB). This notion resulted in the development of what is widely
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Figure 1.1: Plots of the Higgs potential, as a function of |H| = vV HTH, are presented for two cases:
—pu? > 0 (red line) and —p? < 0 (blue line).

known as the Higgs mechanism. To obtain mass terms in the Lagrangian, the Higgs potential is
introduced. This potential is invariant under the SU(2);, x U(1)y transformations, but its minima,
when the Higgs field acquires a non-vanishing vacuum expectation value (VEV), breaks sponta-
neously the symmetry to the unbroken U(1).,,. The W and Z bosons, the mediators of the weak
force, acquire masses through their interactions with the Higgs field, while the photon, associated
with the electromagnetic force, remains massless. The Higgs potential has the following form :

V(H) = (2H H + \(H'H)? (1.5)

where p is the mass parameter , and A is a dimensionless coupling constant. The shape of the
potential depends on the signs of these parameters. In the case where \ takes a negative value, the
potential energy, denoted as V, becomes unbounded from below. Consequently, the existence of a
stable vacuum state is precluded. On the other hand, when both —pu? and \ assume positive values,
the potential energy function exhibits a minimum at a magnitude of |H| = vV HTH = 0, as observed
with the red line of Figure (1.1). Within this scenario, the electroweak symmetry remains unbroken
within the vacuum state. This is attributed to the fact that performing a gauge transformation
on the vacuum state H = 0 does not yield any alteration to the vacuum state. Conversely, when
—pu? is negative and ) is positive, the potential energy function attains a minimum away from
|H| = 0, as depicted in Figure (1.1) with the blue line. In this particular case, the vacuum state,
representing the state of minimum energy, lacks invariance under SU(2), x U(1)y transformations.
Thus, the gauge symmetry undergoes spontaneous breaking within the vacuum state. The values
for the parameters used in these plots are chosen as | — p?| = (88.4GeV)? and A =~ 0.129, which
were derived from the measured values of m;, = 125 GeV and v = 246 GeV. Notably, for the case
where —z% < 0 (blue line), the minimum of the potential occurs at |H| = v/v/2 = (246/v/2) GeV.

More analytically, in the latter case, the natural component of the Higgs doublet will develop a
vacuum expectation value as :

() = % (g) o= “; (1.6)
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Expanding now the Higgs field around v gives :

1=(5)- 5.8 )

where h is the SM Higgs field and G and G° are the Goldstone modes [1/1—16] which will give
masses to the W and Z° bosons, respectively. The minimalization of the Higgs potential gives the
tree-level relation for the mass of the Higgs field

my, = v?A (1.8)

and the interactions of the Higgs field with the massless fields, give the tree-level relations for the
masses of the gauge bosons :

/2 2
szgﬂ,ﬁbzﬁi%i@,ﬂhza (1.9)
It becomes evident that a disparity exists between the masses of the Z boson and the W gauge
bosons. This inequality in the masses of the bosons can be expressed by employing the weak
mixing angle (also known as the Weinberg angle). The Weinberg angle can be expressed in terms

of the electric charge as :

e = gosinfy = g1 cos by <> tan by = 9 (1.10)

92

In terms of the gauge bosons masses, the Weinberg angle characterizes the relationship between Wj
and B, and the physical mass eigenstates as follows :

cos Oy = —. (1.11)

Utilizing the same Higgs doublet, it becomes also possible to generate masses for fermions.
This is achieved by incorporating gauge-invariant Yukawa interactions within the framework of
SU(2), xU(1)y. These interactions are established between the Higgs field and the fermions, which
can either be singlets or doublets under SU(2). Through the process of spontaneous symmetry
breaking of the electroweak symmetry, these Yukawa interactions grant mass terms m? = Y;j v/ V2
to all fermions, with f = u,d,e.! These mass terms are 3 x 3 matrices and consequently, there is
mixing between the generations. They can be diagonalized by bi-unitary transformations

Vim, V= diag (Mg, M, 114)
VemaVe = diag (Mg, ms, mp) (1.12)
Velm Ve = diag (me,m,, m;)

respecting the property of unitary matrices

Vs Viv=r

'Within the Standard Model (SM) framework, Y;j are considered free parameters. Consequently, the model
does not impose specific values or constraints on these masses, making it impossible to predict them solely based
on theoretical considerations. Instead, we must turn to experimental data to ascertain the actual values of fermion
masses, relying on empirical observations to inform our understanding.
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Switching from the weak eigenbasis to the mass eigenbasis, one can notice that V* and V¢ are
not identical since they are not required to be the same. This discrepancy is confronted with the
introduction of the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix [17—19]

Voxn = V'V, (1.13)

The CKM matrix is needed to account for the observed flavor mixing and CP (charge conjugation
parity symmetry? violation in weak decays of quarks. The magnitude of the elements V;; determines
the probability of a transition from one quark flavor to another, while the phase of the elements
introduces a source of CP violation in the SM. It is often described in terms of three angles and
a phase. Initially, we start with a 3 x 3 complex matrix V, which consists of 9 complex numbers,
equivalent to 18 independent real parameters. However, the unitarity condition of V imposes 9
constraints of the form VJbVaC = e, effectively reducing the number of independent real parameters
to 9. Additionally, we have the freedom to absorb a phase into each left-handed field by redefining
qr — € qr, where q represents either u (up) or d (down) quarks from each of the three generations.
This phase absorption allows us to eliminate an arbitrary phase from each row or column of V.
However, a common phase redefinition of all the ¢ does not affect V, removing only 6 — 1 = 5
unphysical phases. This leaves us with 9 — 5 = 4 physically meaningful parameters in V. To
understand that these four parameters consist of three angles and a phase, we can observe that a
3x 3 real unitary matrix, or an orthogonal matrix, can be described by three independent parameters
known as Euler angles. Therefore, since 4 — 3 = 1, one of the CKM parameters must be a complex
phase. This phase is responsible for generating CP violation in the weak interactions of the SM.
The standard parametrization of the CKM matrix is as follows:

0

C12C13 S12C13 S13€
_ ) 6
V = | —si2c23 — c12523513€" C12C23 — S12523513€" 523C13 (1-14)
i6 6
512523 — C12C€23513€ —C12523 — 512€23513€ C23C13

where s;; = sinf;; and ¢;; = cos0;;, with 012, 63, and 0,3 representing the three mixing angles,
and 0 denoting the CP-violating phase. For the lepton sector, there is no equivalent to the CKM
matrix since the SM originally treats neutrinos as massless particles. This problem is solved by the
introduction of right-handed neutrinos in theories beyond the SM as we will see later.

1.2 Going beyond the Standard Model

The SM has proven to be a remarkable achievement, successfully describing the interactions of
elementary particles and their fundamental forces with great precision. However, as our under-
standing of the universe deepens through groundbreaking experimental discoveries, several critical
shortcomings of the SM have emerged. These unresolved phenomena, call for the exploration of
physics beyond the SM.

One of the major problems of the theory lies in neutrino physics. While the SM initially consid-
ered neutrinos as massless particles, extensive experimental evidence has established that neutrinos
possess non-zero masses. As discussed earlier, incorporating neutrino masses by introducing right-
handed neutrino fields v has become imperative to reconcile the theoretical predictions to agree

2Charge conjugation parity symmetry states that the laws of physics should remain the same if a particle is
interchanged with its antiparticle, while spatial coordinates are inverted ("mirror” or P-symmetry).
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with experimental observations. Nevertheless, the SM fails to explain their masses’ origin and the
intriguing phenomenon of neutrino oscillations [20-26]. These problems can be addressed by the
introduction of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix [27], an equivalent to the
CKM matrix, which describes the mixing between neutrino flavor eigenstates (v, v,, ;) and the
mass eigenstates (1, 19, v3), as follows:

Ve %41
V| = Upmns |12] - (1.15)
Uy V3

The PMNS matrix is parametrized by three mixing angles (015, 613, f23) and a CP-violating phase
(0) that are responsible for neutrino oscillations and CP violation. In addition to these parameters,
the matrix also includes two Majorana phases (aq,a3) when considering Majorana neutrinos®. A
representation of the matrix is given as follows :

0 eial /2 0 0

C12C13 512C13 S13€
_ i i o /2
Upnmns = | —S12023 — C12523513€"°  Ci2C23 — S12523513€" $23C13 0 e@/2 0. (1.16)
i i
S12823 — C12C23813€ —C12823 — $12C23513€"°  C23C13 0 0 1

where the mixing angles 0;; € [0, 7] , ¢;; = cosby; ,5;5 = sinf;;, and 6 € [0, 27, known as the Dirac
CP violation phase. The matrix includes two Majorana CP violation (CPV) phases a; and as.
These Majorana phases are represented as a separate diagonal matrix and play a crucial role in
understanding the nature of neutrinos as Majorana particles and the violation of lepton number
conservation. However, it is essential to note that the Majorana phases do not affect the observable
neutrino oscillation phenomena, as they only contribute to the overall phases of the neutrino mass
eigenstates. As a result, their values are not directly measurable through neutrino oscillation
experiments, and their inclusion in the PMNS matrix emphasizes their theoretical significance
rather than their experimental observability.

When constructing a model to describe neutrinos, the key parameters that we focus on are the
neutrino masses (my, ms, mgs), the neutrino mixing angles (65, 03, f23), and the CP-violating
phase 6. These parameters are obtained by a global fit of neutrino oscillations and are depicted
in Table 1.2. The Table displays two distinct orderings of the neutrino mass eigenstates, termed
“normal hierarchy” and “inverted hierarchy,” which are determined by the mass differences Am3,
and Am3;. These orderings arise due to the absence of direct measurements for the absolute masses
of the three neutrino mass eigenstates through neutrino oscillation experiments. For the case of
normal hierarchy, we have Am32, > 0 and Am32, > 0, indicating the ordering m; < my < ms.
Conversely, for inverted hierarchy, we observe Am3; > 0 and Am3, < 0, corresponding to the mass
ordering ms < my < mo.

Neutrino masses have emerged as a pivotal subject of investigation also in cosmology, and are
recognized to possess masses in the eV range. According to the latest Planck data [29], the bound
for the neutrino masses is given by :

> m; <0.12eV (1.17)

3Majorana particles are a type of elementary particle that are their own antiparticles. A Majorana particle is
identical to its antiparticle in all respects, including mass, electric charge, and other quantum numbers.
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Parameter Normal Ordering (Best Fit) Inverted Ordering (Ax? = 2.7)
BFP £1o 30 Range BFP £lo 30 Range
sin’ 0, 0.304 13913 0.269 — 0.343 0.304 13913 0.269 — 0.343
615 (°) 33.447578 31.27 — 35.86 33.4570°12 31.27 — 35.87
sin? a3 0.5701005% 0.407 — 0.618 0.575 0051 0.411 — 0.621
O3 (°) 49.0M11 39.6 — 51.8 49.3%19 39.9 — 52.0
sin® 63 0.0222175:00068  (0.02034 — 0.02430  0.0224070:005¢2  0.02053 — 0.02436
015 (°) 8.57T013 8.20 — 8.97 8.617013 8.24 — 8.98
Scp (°) 195152 107 — 403 286127 192 — 360
Am2, x 107%eV? 7.421020 6.82 — 8.04 7.421030 6.82 — 8.04
AmZ, x 107%eV?  +2.514700%8 42431 — +2.598 —2.497100%8 9583 — —2.412

Table 1.2: Best-fit values and allowed ranges of neutrino oscillation parameters obtained from
a global fit of current neutrino oscillation data [28]. The table displays the differences in squared
masses, denoted as Am?j = mf—m?, for different neutrino mass eigenstates ¢ and j, for two potential
mass hierarchies: normal hierarchy (m; < ms < m3) and inverted hierarchy (ms < my < may).

exerting considerable influence on the power spectrum of large-scale structures in the universe,
and the perturbations observed in the cosmic microwave background (CMB). The CMB, which
provides crucial insights into the early universe, can be notably altered by the presence of massive
neutrinos. Similarly, the distribution of matter in the cosmos, as captured by the power spectrum
of large-scale structures, is intricately intertwined with neutrino masses. Through the incorporation
of right-handed neutrinos vr into the particle spectrum, we open up the potential for two distinct
neutrino mass terms within the system:

< :mDﬂLVR—i‘MRDRV%—Fh.C. (118)

Here, the matrices mp and Mg are of size 3 x 3, representing the possible mixing and mass terms,
respectively. The first term in the Lagrangian emerges from the conventional Dirac-type coupling,
involving the left-handed and right-handed neutrino fields. In contrast, the second term embodies
the Majorana mass contribution, taking into account the right-handed neutrinos’ inherent Majorana
nature. Note that the Yukawa couplings required to generate neutrino masses are exceptionally
small. For instance, for a neutrino mass m, ~ 0.1 eV, the corresponding neutrino Yukawa coupling
would be approximately v, ~ 4 x 10713, The other possibility is that neutrinos have a Majorana
mass. We can construct a Majorana mass for the neutrinos due to their electrically neutral nature,
which ensures that this term does not violate electric charge conservation. However, such a mass
term is not gauge invariant under SU(2);, X U(1)y. We can generate it after electroweak symmetry
breaking by introducing a term involving the Higgs field:

(L:H)(HL;)

A )
where A indicates the cutoff scale beyond which a more comprehensive theory must reveal itself, and
A9 are constant couplings coefficients. The dimensionality of the field operator in the numerator

gMajorana = )\f}j (119)
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Figure 1.2: Examination of the one-loop level running of the inverse gauge couplings 1/a(Q) in the
context of the SM. The input scale @y is set at my,, ~ 173.4 GeV and the gauge couplings are
initially defined at this energy scale.

of eq.(1.19) is recognized to be 5, making it a nonrenormalizable interaction with a coefficient of
1/A. At tree level, one can introduce such a term through what is known as the see-saw mechanism
[30-32]. The Type-I seesaw mechanism introduces right-handed neutrinos (vg), also known as sterile
neutrinos, to the SM. These right-handed neutrinos are singlets under the SM gauge group and do
not participate in the usual weak interactions. In other words, they only interact through gravity
and do not have a left-handed counterpart. The neutrino masses are obtained by diagonalizing the
combined mass matrix, which is the sum of the Dirac and Majorana mass terms:

. 0 mp
M, = (mg MR) (1.20)

Diagonalizing M,,, leads to three light-mass eigenstates, corresponding to the observed neutrinos,
and three heavy-mass eigenstates, corresponding to the right-handed neutrinos. The light neutrino
masses are then suppressed by the inverse of the heavy neutrino masses, through the relation:

m, & _mDMing’ (1.21)
where Mpg is a high scale referred to new physics, resulting in small neutrino masses that are
consistent with experimental observations.

Additionally, the concept of dark matter poses another significant challenge to SM [33—10].
Experimental data suggest that dark matter constitutes a substantial portion of the universe’s
mass but eludes detection through electromagnetic interactions. One can conclude its existence
from gravitational effects, yet it remains undetectable within the SM framework. Understanding
the nature of dark matter is crucial in realizing the mechanisms of the universe and requires exploring
physics beyond the SM to account for this unknown form of matter.

Moreover, SM does not incorporate the force of gravity, described by Einstein’s General Theory
of Relativity in the early 90’s. The inability to incorporate gravity with the other forces leaves
a significant gap in the theory, necessitating the exploration of new theoretical frameworks that
incorporate these phenomena and surpass current limitations. Efforts to unify the electromagnetic,
weak, and strong forces into a grand unified theory, addressing the unification of gauge couplings,
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have not been successful within the SM, as shown in Figure 1.2. Modifications are needed to obtain
a theory in which the gauge couplings are unified around the GUT scale (Mgyr ~ 106 GeV).
Moreover, the SM’s description of CP violation leaves unanswered the mystery of why the universe
contains more matter than antimatter without fine-tuning, known as the baryon asymmetry problem
or ”Strong CP problem” [35,11-13].

The hierarchy problem [11-10] raises questions about the vast difference between the Planck
scale Mp, which characterizes gravity, and the electroweak scale My, which relates to the Higgs
boson mass. In particular, the mass of the Higgs boson lacks protection from any inherent symmetry,
making it vulnerable to radiative corrections that can drive its value toward high-energy scales. The
flavor problem [12,17-19], on the other hand, pertains to the hierarchy of fermion masses and the
observed pattern of flavor mixing within the quark and lepton sectors. Despite the SM’s ability
to accurately predict the masses of these elementary particles, the underlying reasons for the vast
differences in their masses remain unsolved. Furthermore, the SM fails to explain the observed
flavor-mixing phenomenon, where quarks and leptons change from one type to another through
weak interactions.

Charge quantization [50-52] is a fundamental problem in the context of the SM. The theory
describes the electromagnetic interactions through the U(1) gauge symmetry, which is associated
with the electromagnetic force mediated by photons. According to the SM, particles interact via
their electric charges, and these charges are believed to be quantized, meaning they come in discrete
units. The charge quantization problem arises because the SM does not provide a theoretical
explanation for why all observed elementary particles have electric charges that are quantized in
specific integer or fractional multiples of the elementary charge (e). In the SM, the electric charge
(Q) is related to the U(1) gauge coupling constant (g) through the formula @) = n - e, where n is
an integer or fractional number. This equation implies that all charged particles must have electric
charges that are integer or fractional multiples of e. While the SM’s charge quantization is consistent
with experimental observations, its underlying theoretical origin remains unexplained within the
framework of the theory. To address this issue, we must seek a more fundamental theory beyond
the SM, such as Grand Unified Theories (GUTS) or theories that incorporate supersymmetry.

Finally, cosmic inflation, a rapid expansion phase that shaped the early universe, lacks an
explanation within the confines of the SM in which the cosmological constant, responsible for the
rapid expansion of the universe, is predicted to be way off the experimental data, known as the
”cosmological constant problem” [53-55]. The aforementioned issues and the quest to comprehend
the universe on a deeper level motivated physicists and researchers to explore physics beyond the
SM.

This exploration encompasses diverse theoretical frameworks, including supersymmetry, Grand
Unified Theories (GUTSs), and string theory. Advancements in experimental technologies also play a
crucial role in probing particles” unknown interactions and behaviors, providing critical insights into
phenomena that elude the SM’s description. Such insights, guide the development of new theories,
aimed at adapting and offering natural explanations for these enigmatic phenomena.

1.3 Supersymmetry

Supersymmetry, known as SUSY [56-(65], presents a captivating concept in theoretical physics,
although it lacks substantial empirical evidence. Symmetry in physical systems finds representation
through specific operators. Within this context, the supercharge operator, represented by @, takes
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on the essential role of transforming bosons into fermions and vice versa when it acts upon a state
as demonstrated below:

Qlboson) = |fermion), @|fermion) = |boson). (1.22)

This fundamental principle implies the existence of superpartners for each known particle, sharing
identical quantum numbers except for a half-unit difference in spin. Crucially, within the framework
of SUSY, superpartners are endowed with identical mass, momentum, electric charge, color charge,
and weak isospin as their corresponding ordinary particles. However, they distinguish themselves
by their spin and the latest defined quantum characteristic known as R-parity [66-69], denoted by:

R = (_1)3(BfL)+2S (123)

Moreover, SUSY stands as a fundamental prediction of String Theory. From a phenomenological
standpoint, SUSY elegantly addresses the hierarchy problem under specific conditions and predicts
gauge coupling unification. Furthermore, the expanded spectrum of SUSY models offers potential
candidates for dark matter. The generators @ hold a pivotal role in the mathematical foundation
of this remarkable symmetry.

The supersymmetric algebra can be expressed through anticommutators of the supercharges, as
follows:

{Qaa Qﬁ} = 2U:BPM7
{Qa, Qs} = {Q4,Q4} =0, (1.24)
[Qas P] = [QB’ P, =0.

Here, a, 8 = 1,..., N denote spinor indices, P, represents the momentum operator, and o, stands
for the Pauli matrices. Additional terms involving other generators, like R-symmetry charges,
can also be included in the supersymmetric algebra. The structure and representations of the
supersymmetric algebra are contingent on spacetime’s dimensionality, signature, and the value of
N. In this context, N corresponds to the number of symmetry’s supercharges or independent spinor
generators. It can take any positive integer value, leading to different types of supersymmetric
theories. For instance:

e N = 1: The simplest and most realistic case with a single supercharge and one superpartner
for each particle, famously known as the Minimal Supersymmetric Standard Model (MSSM).

e N = 2: A special scenario featuring two supercharges and two superpartners for each particle,
with additional symmetries and properties.

e N = 4: The most symmetric case in four dimensions, boasting four supercharges and four
superpartners for each particle, resulting in a theory that is finite to all orders of perturbation
theory.

In the forthcoming section, we will illustrate the fundamental principles and structure of the simplest
case (N = 1), renowned as the MSSM. As an extension of the well-established SM, the MSSM
presents a profound framework that incorporates supersymmetry and offers a promising resolution
to certain unresolved issues encountered within the SM.
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1.3.1 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) [36, 70-73] stands as one of the most ex-
tensively studied frameworks in theoretical physics, serving as the simplest extension of SM where
SUSY is incorporated. Within this framework, every elementary particle from the SM acquires
a superpartner, forming supermultiplets where bosons and fermions coexist harmoniously. These
superpartners, known as sparticles, possess identical quantum numbers to their ordinary counter-
parts, except for a half-unit difference in spin. There are two types of supermultiplets in MSSM:
chiral supermultiplets and vector supermultiplets. Chiral supermultiplets contain both fermionic
(spin-1/2) and bosonic (spin-0) particles, encompassing quarks (squarks), leptons (sleptons), and
Higgs bosons (higginos), alongside their corresponding supersymmetric partners. Similarly, vec-
tor supermultiplets consist of bosonic (gauge bosons~ spin-1)and fermionic (gauginos~ spin 1/2)
elements, representing the force-transmitting particles and their supersymmetric counterparts. A
detailed particle content of the model is presented in Table 1.3.

Super- Super- Bosonic Fermionic
multiplets field Fields Partners SU@) Su@) u@)
gluon/gluino @a Gy éa 8 1 0
gauge boson/ W, w*, wo wE, wo 1 3 0
gaugino B B B 1 1 0
suark/ Q (g, dy) (u,d)r, 3 2 1/3
quark e uh u$ 3 1 -2/3
de dy, ds 3 1 1/3
slepton L (vp,e1”) (v,e7)g 1 2 -1/2
lepton/ é° er es 1 1 1
Higgs boson H, (H}, H?) (H;, H°) 1 2 1/2
higgsino d (HY, H}) (HY, H) 1 2 -1/2

Table 1.3: Field content of the MSSM

Adding these additional particles is crucial to maintain quantum consistency and stability in the
MSSM. To achieve this, anomaly cancellation conditions must be carefully chosen. Gauge anomalies
arise from quantum effects when chiral supermultiplets interact with gauge bosons. A significant
aspect of the MSSM is that gauginos possess zero hypercharge (Y=0), indicating they lack any
hypercharge quantum number under the U(1) gauge group. This crucial property guarantees the
automatic cancellation of gauge anomalies. In addition to gauge anomalies, the Higgs sector of the
MSSM can also be subject to various anomalies. There are two Higgs chiral superfields [71,71], with
the two Higgs doublets denoted as H, and H;. These doublets are crucial in spontaneous electroweak
symmetry breaking, providing mass to gauge bosons (W*, W=, and Z°) and fermions through
Yukawa interactions. Remarkably, two Higgs doublets ensure anomaly cancellation, preserving
the theory’s renormalizability by carefully arranging hypercharge assignments. The necessity for
a second Higgs doublet becomes evident from an alternative perspective. In SM, a single Higgs
doublet is sufficed to give masses upon both up and down-type quarks by employing both H and its

conjugate (H) in the Lagrangian. Nonetheless, in SUSY theories, the superpotential, which governs
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Figure 1.3: The unification of the inverse gauge couplings a~! at the one-loop level in the MSSM,
considering a SUSY scale in the TeV range (Msysy = 1 TeV). The three gauge couplings converge

at an energy scale with Mgyt ~ 106 GeV. For comparison, the evolution of the gauge couplings is
also depicted in the case of the SM using dashed lines.

the Yukawa interactions between matter fields and their partners, must be a holomorphic function
of the fields. Consequently, the simultaneous inclusion of both H and H in the superpotential is
prohibited. As a result, there arises a demand for two Higgs doublets.

In MSSM, the stabilization of the Higgs boson mass relies on a crucial phenomenon known as
supersymmetric cancellation [75—77]. This cancellation predominantly originates from the contribu-
tions of scalar partners, including higgsinos and Higgs scalars, to the Higgs boson mass correction.
Remarkably, these scalar partners intervene in the quantum corrections in a manner that partially
offsets the quadratic divergences arising from the SM fermions and bosons. This partial cancellation
effectively resolves the hierarchy problem, which reduces the Higgs boson mass’s sensitivity to high
energy scales. If SUSY were an exact symmetry of nature, with particle masses being precisely
equal to the masses of their superpartners, then the quadratic divergences in the Higgs boson mass
would vanish entirely through what is called exact SUSY cancellation. Nonetheless, it is essential
to emphasize that exact SUSY cancellation does not manifest in reality, as this scenario would
necessitate supersymmetric particles to possess masses very close to those of their Standard Model
counterparts. As of now, no evidence supporting such supersymmetric particles has been detected
at the energy levels accessible to present-day particle colliders, leading to the conclusion that SUSY
must be a broken symmetry in nature.

The incorporation of supersymmetry breaking into the model is achieved through the introduc-
tion of soft SUSY-breaking terms into the Lagrangian [57,75,78,79]. These terms are carefully added
to avoid the reintroduction of the hierarchy problem and preserve the naturalness. It is important
to note that these soft terms are manually inserted and do not stem from any specific underlying
mechanism of the theory. However, these terms play a crucial role in regulating the masses of su-
persymmetric particles, guaranteeing this way deviations from their Standard Model counterparts.
Through meticulous control of these masses, the soft terms additionally aid in stabilizing the Higgs
boson mass, effectively protecting it from substantial quantum corrections.

Remarkably, these soft terms also intersect with another intriguing aspect of the MSSM, the
unification of gauge couplings [78,30,81,83]. With the introduction of superpartners, the evolution of
gauge couplings is altered from the non-supersymmetric case, and the theory exhibits a remarkable



CHAPTER 1. EXPANDING THE FRONTIERS: THEORIES BEYOND THE STANDARD MODEL14

convergence of these couplings at the GUT scale. The gauge couplings of each fundamental force
evolve differently with energy. However, the three gauge couplings converge to a common value
when the energy scale is raised to a certain point known as the GUT scale (M¢). Such unification
of couplings suggests the potential convergence of fundamental forces at high energy scales, serving
as indirect evidence for the presence of supersymmetry at the TeV scale. A depiction of the evolution
of the inverse gauge couplings in the MSSM is showcased in Figure 1.3. From the figure, it is evident
that a convergence of the three gauge couplings occurs at the GUT scale (Mg ~ 2 x 10'6), while
SUSY decouples at a scale of Mgygy ~ 1 TeV.

For a chiral field, the fundamental expression for the general form of the superpotential stands
as follows:

where, M;; embodies the mass matrix, with indices i and j symbolizing the components of the chiral
superfields, and y;;; captures the Yukawa couplings, with i, j, and k corresponding to the chiral
superfields engaged in the interaction. The first term signifies an interaction influenced by the mass
matrix, contributing to how masses combine within these fields. The second term is related to an
interaction governed by Yukawa coupling, explaining how these fields can link together. The factor
% is used to account for the different permutations of the three fields, as the order of multiplication
does not matter for identical particles. Yukawa couplings are responsible for generating fermion
masses. Considering now the tree-level scalar potential within the MSSM, this potential emerges
as an interplay between F-terms and D-terms, both springing from the scalar components of chiral
superfields. The scalar potential V is given by the sum of F-term and D-term contributions:

V =Vp+ Vp. (1.26)

Let’s investigate these two contributions more analytically. The F-term of a chiral superfield & is
given by Fg = %—g, where W is the superpotential. The F-term contribution to the scalar potential
is obtained by squaring the F-terms and summing over all scalar field components of the chiral

superfields:

ow |?
Vi = F, 2 _ - 1.27
P= IR = |5, (121
On the other hand, the D-term contribution arises from the interaction between the scalar compo-
nents of chiral superfields and the gauge fields associated with the gauge group symmetries in the
theory. In general, the D-term corresponding to a chiral superfield ®; reads as

D" =g"y BT, (1.28)

where g, are the gauge coupling corresponding to the gauge group, T are the generators of the
group, and the sum covers all scalar field components of the chiral fields charged under the gauge
group. The D-term’s impact on the scalar potential emerges through summation across all gauge
group factors:

2
Vp = %Z DD, = %Z (Z g“(PZT“QJi) (1.29)

a
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The tree-level scalar potential V is the sum of Vi and Vp:

owlr 1 N
V:Z‘£ —i-é;(;g o7 <1>i> (1.30)

i
(2
and provides valuable insights into symmetry breaking, which emerges as a consequence of the
vacuum structure obtained by the potential.
In the context of the MSSM, the superpotential is formulated as follows :

Wussm = Y, ufQ; Hy — Y, diQ i Hy — Y7 € LjHy + puH, Hy. (1.31)

The terms involving the Higgs doublet superfields (H, and H,) provide masses to up-type and down-
type quarks, respectively, and generate the masses of charged leptons through their interactions
with left-handed lepton doublet. The Higgs mixing term, denoted as p (also referred to as the
p-term), plays a significant role in electroweak symmetry breaking and contributes to the masses
of gauge bosons and fermions. It is worth noting that the MSSM itself does not provide a natural
explanation for the origin of the u-term in its superpotential. This has led to the consideration of
extensions and mechanisms that could give rise to the p-term. One such extension is the Next-
to-Minimal Supersymmetric Standard Model (NMSSM) [87-91], which incorporates an additional
singlet scalar field (S). In the NMSSM, the p-term can be dynamically generated through the VEV
of the singlet field (u = As, where X is a dimensionless coupling constant), thus providing a solution
to the p problem [34,86,276] of the MSSM.

In the formula above, Y, Y;, and Y, represent the Yukawa couplings for up-type, down-type
quarks, and charged leptons, respectively. These couplings are related to the masses of quarks and
leptons through the following relations :

v V2mu o V2me o V2me

“Tusind Y weosB ¢ weosf

(1.32)

where the mixing angle [ represents the ratio of the VEVs of the two Higgs doublets, v, and
vg respectively, and it is defined as tan 8 = v, /vy, with a range of [0,7/2). Also, the relation
v = \/v2 + 03 connects these VEVs, where v is the vacuum expectation value responsible for
breaking the electroweak symmetry.

R-parity in the MSSM

R-parity stands as a fundamental discrete symmetry that exerts a defining influence over interac-
tions within the framework of the MSSM. It embodies a multiplicative quantum attribute, assigning
a value of either +1 or -1 to each constituent particle in the theory. Within this context, R-parity’s
role becomes prominent, serving to differentiate standard particles (with even R-parity) from their
supersymmetric counterparts (with odd R-parity). In the realm of the MSSM, R-parity maintains
its significance by stipulating that interactions involve an even number of supersymmetric partici-
pants. The motivation behind upholding R-parity is driven by empirical considerations, prominently
addressing the non-observation of proton decay from the experiments so far. Violation of R-parity
would introduce processes contradicting baryon and lepton numbers, inevitably leading to rapid
proton decay. Moreover, by maintaining R-parity conservation, an interesting possibility emerges,
the identification of a potential dark matter candidate in the shape of the lightest supersymmetric
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particle (LSP). Matter parity, a concept intertwined with R-parity, parallels its principles. Matter
parity is encapsulated by the expression

Py = —13B-D) (1.33)

where B and L denote the baryon and lepton numbers, respectively. Notably, within the confines
of the MSSM, conserving matter parity seamlessly aligns with the preservation of R-parity. This
interrelation holds promise, as matter parity could evolve into an inviolable and essential symmetry,
in contrast to the potential vulnerabilities of B and L in the face of non-perturbative electroweak
influences. The MSSM Lagrangian incorporates terms that respect the conservation of R-parity, a
quantum number defined for each particle as :

R, = (—1)’P-Dt2 (1.34)

where B represents baryon number, L is lepton number, and s denotes the particle’s spin. The R-
parity conserving terms ensure that the net R-parity of any interaction remains unchanged, resulting
in stable particles and prohibiting processes that violate baryon or lepton numbers. The MSSM
Lagrangian terms we’ve introduced so far all respect R-parity. In addition to these terms, there
are gauge invariant terms that violate this symmetry, leading to unique phenomena and offering
potential solutions to certain puzzles in particle physics. Two kinds of terms can violate R-parity
(RPV) [68,92-05] and these are :

e Bilinear RPV Terms:
1

These terms introduce interactions between lepton doublets (L;), with up-type Higgs (H,,),
and mixing of lepton with quark fields. All of these terms contribute to the lepton number
violation.

e Trilinear RPV Terms:

1 C _Jjc jc
Wiy = 5Nt d;d; (1.36)
These terms induce interactions involving down-type singlet quarks (df) and up-type sin-
glet antiquarks (u$). The coupling )\;’]k contributes to baryon number violation, and when

combined with A}, allows processes that convert quarks into leptons.

The violation of baryon and lepton number conservation, induced by the RPV terms in the MSSM,
introduces the intriguing possibility of proton decay, a process not allowed in the SM. Specifically,
one example of such decay is p* — e*7", where a proton transforms into a positron and a neutral
pion. This decay pathway arises from the interplay of the \};, and A];, couplings in the RPV
terms. However, experimental observations have set stringent limits on the rate of proton decay.
Current experimental data require that the A" or A" couplings associated with proton decay must
be extremely small, pushing the proton’s lifetime to be exceedingly long (~ 103! years).
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Figure 1.4: Proton decay p — 7° + e™ with both lepton and baryon violation.

1.4 Unifying Forces: Grand Unified Theories (GUTs)

Although remarkably successful, the SM leaves certain questions unanswered and intriguing features
unexplained. In light of this, the emergence of GUTSs gains clarity. GUTs arise as a response to the
compelling need to unify the fundamental forces of nature into a cohesive framework. While the
SM elegantly describes the electromagnetic, weak, and strong forces, it retains a structure of three
distinct descriptions rather than embodying a singular unifying principle.

GUTs set out with the aim to construct a grand theoretical structure where these forces are
facets of a single, profound entity. This vision extends to energy levels far beyond the reach of
current particle accelerators, where GUTs propose the compelling possibility that these forces might
harmoniously merge, revealing a previously hidden unity.

GUTs find their motivation rooted in two key objectives. Firstly, they offer a mean to address
lingering issues within the SM. This includes resolving aspects such as the seemingly arbitrary values
of specific parameters, which currently lack a clear explanation. Secondly, GUTs tackle the SM’s
limitation in incorporating gravity, a fundamental force not accounted for in the SM. In aiming to
unite all forces, GUTs offer a potential framework to connect these forces and incorporate gravity
into a comprehensive unified theory.

Central to the GUT framework lies an intricate web of symmetries. They elaborately intertwine
the familiar SM gauge group, denoted as SU(3) x SU(2) x U(1), within a broader structural context
represented by the group G. The investigation of GUTs addresses symmetries, with the SM group
as a subgroup. The group Ggy, is a semisimple Lie Group of rank 4, indicating that G must possess
an equal or higher rank. Additionally, group G should honor the chiral structure of the SM, where
left-handed and right-handed particles reside in distinct representations of the group.

Among the rank 4 simple groups, only the unitary group SU(5) satisfies these stipulations. While
other possibilities like SO(8), SO(9), Sp(8), or F} exist, none of them offer complex representations.
The SU(5) unified group was first introduced by H. Georgi and S. Glashow [96] and marks the
initial effort to construct a GUT. No other rank 4 candidate group, whether simple or non-simple,
fulfill the criteria.

Expanding to rank 5, a few potential candidates emerge. However, most of them fail to meet
the prerequisite of having complex representations. For instance, SO(11) or Sp(10) are not valid
candidates, while SU(6) introduces exotic fields in the same representations as the SM fermions,
making decoupling challenging. Consequently, a solitary simple group candidate, Consequently,
a solitary simple group candidate, SO(10), remains. Despite being an orthogonal group, it has
complex representations, as is the case for groups of the form SO(4k + 2) with £ > 0. SO(10),
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initially introduced by H. Fritzsch and P. Minkowski [97] and independently by H. Georgi [98], holds
strong appeal as it unifies all SM fermions, including right-handed neutrinos, under a single group
representation.

Another enticing approach is the Pati-Salam model [99], known as SU(4)¢ x SU(2) x SU(2)g,
which elegantly unifies the fermion content of the SM and explains charge quantization. Conversely,
the left-right symmetry group (SU(3)cxSU(2),xSU(2)gxU(1)y) provides a structure where right-
handed fields engage with right-handed gauge bosons, mirroring the coupling mechanism observed
in the SM for left-handed fields and gauge bosons. Remarkably, SO(10) encompasses both SU(5) x
U(1l) and SU(4)c x SU(2), x SU(2)r as maximal subgroups, thus merging the benefits of both
scenarios. Incorporating larger groups as potential unification candidates results in extensions of the
aforementioned models. For instance, a rank 6 unified theory with Fjy as the gauge group contains
SO(10) x U(1) as a maximal subgroup.

1.4.1 SU(5): Georgi-Glashow Model

Georgi and Glashow were the first to pursue the unification of all forces in one single group. We
begin with the SM gauge group SU(3) x SU(2) x U(1), encompassing 15 Weyl left-handed fermions
distributed across 5 distinct representations. The goal is to identify a group that includes the SM
group as a subgroup while incorporating irreducible representations for fermions, aligning with the
correct behavior under SM group transformations. Notably, the SM involves a total of 84+-3+1 = 12
generators*, with four of them being Cartan generators °. This implies that the desired group should
possess a rank of at least 4 to accommodate more than 12 generators. The minimal group satisfying
these criteria is SU(5), having a rank of 4.
The fundamental SU(5) representation, denoted as 5, is given by:

1 1
5— (3,1,—= 1,2,= . 1.37
%<” 3>+(”2> ( )
55 (3.0,2) + (12, -2 (1.38)
773 772 *

Similarly,

Alternatively, as a column matrix:

[@2]
I1l
wa

(1.39)

It’s notable that d¢ and L are placed within 5, while u¢ is absent due to the requirement of a
traceless hypercharge generator. The remaining SM representations for @), u¢, and e® neatly fit into

4The property N2 — 1 is used to determine the number of generators for the SU(N) group.

SCartan generators of a Lie algebra are defined by the maximal set of mutually commuting generators within
the algebra. They form a basis for the Cartan subalgebra (maximal Abelian subalgebra), and they correspond to
conserved quantities (electric charge, hypercharge, or angular momentum components like the third component of
isospin in the case of the SM).
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the antisymmetric 10 multiplet:

1 2
10 — (3,2, 6> + (3, 1,—§> +(1,1,1). (1.40)

This arrangement accommodates a single generation of quark and lepton fields in the 5 @ 10 repre-
sentation of SU(5). Represented as a matrix, the antisymmetric 10 takes the form:

0 ug  —u§  up dy
—us 0 uf  uy  dy
0= us —uf 0 uz ds. (1.41)

—u; —uy —uz 0 €

—d1 _d2 —d3 —e¢ 0

The gauge bosons within the SU(5) model are represented by the adjoint 24-dimensional represen-
tation. This representation breaks down under SU(3) x SU(2) x U(1) as follows:

24 — (1,1,0) + (8,1,0) + (1,3,0) + (3,2, -5/6) + (3,2,5/6) (1.42)

The first three terms pertain to the familiar SM gauge bosons. However, the model introduces two
new gauge bosons through the terms (3,2, —5/6) and (3,2,5/6). These components represent the
X and Y bosons, exclusive to the SU(5) model and distinct from SM particles. Their unique role
in GUT predictions and high-energy particle behavior is essential.

Regarding the model’s Higgs sector, there’s a need for a scalar field ¥. This field is responsible
for the shift from SU(5) to Ggp and in supersymmetric models, one or perhaps two scalar fields
come into play. These fields are responsible for the process of electroweak symmetry breaking.
Specifically, the X scalar field has to be in the SU(5) model’s 24 representation, also known as
the adjoint representation. This choice is really important because it keeps the group’s rank intact
during the breaking phase, making sure the transition to the SM stays consistent. Regarding the
Higgs field(s) responsible for the breakdown of electroweak symmetry, a straightforward approach
involves utilizing the 5 (and 5) representations as depicted below:

oy — (Hu,D), 5H — (Hd, Dc) (143)

where D and D¢ are vector exotic color triplets [92, 100, 101]. It’s important to note that in the
context of the MSSM or the 2 Higgs Doublet Model (2HDM), two Higgs fields are required for the
process of electroweak symmetry breaking.

For the Yukawa sector, we have two types of independent renormalizable interactions and these
are :

Yu = 1021()]5[-[ and Y:i/e = 1025]5]{ (144)
These interactions encompass the corresponding SM interactions:
Yu(QiujHy) + Yaye(Qid;Ha + Ljei Ha) (1.45)

where i and j (varying from 1 to 3) denote family indices. Consequently, as one can notice, a
direct correlation manifests between the Yukawa coupling constants associated with the masses of



CHAPTER 1. EXPANDING THE FRONTIERS: THEORIES BEYOND THE STANDARD MODEL20

charged leptons and down-type quarks, resulting in the relation Y; = Y7 at GUT scale. While this
correlation holds for the third generation, the lightest two fail. This problem can be overcome by
introducing gauge invariant 5-dimensional operators. A different approach to address the issue was

proposed by Georgi and Jarlskog [17]. They suggested expanding the Higgs sector by introducing
a 45 representation, resulting in the operator 10;5;45, and lead to the mass relations :
1
m; =mp, M, =3ms, M= §md' (1.46)

In the pursuit of a unified understanding of fundamental forces, the exploration of GUTs aims to
integrate the electromagnetic, weak, and strong forces. Among these, the SU(5) gauge group offers a
framework to investigate the unification of interactions within the SM. However, the minimal form
of SU(5) GUT, whether with or without SUSY, presents a range of technical challenges. These
include incorrect Yukawa relations, an outcome of placing leptons and quarks within the same
irreducible representation of the GUT gauge group. This alignment implies interactions between
these particles that can lead to undesired phenomena.

One of the most prominent issue is the prediction of rapid proton decay [102, 103], a topic
of paramount importance in GUT construction. In non-SUSY SU(5), rapid proton decay arises
mainly from effective dimension-6 operators originating from the exchange of additional SU(5)
gauge bosons X and Y. To curb these effects, the X and Y gauge bosons must possess substantial
masses, approximately 10'6 GeV, a value intriguingly close to the predicted unification scale in SUSY
models. Yet, even the combination of SUSY and GUTs doesn’t eliminate rapid proton decay. In
minimal SUSY SU(5), fast proton decay persists through dimension-5 operators generated by exotic
colored triplet Higgs supermultiplets (D and D¢). To mitigate these effects, these Higgs triplets
must attain substantial mass values [101, , 105], on the order of the GUT scale, introducing
another technical quandary: the doublet-triplet splitting problem.

Moreover, the minimal SU(5) models fail to incorporate right-handed neutrinos. To account for
small neutrino masses, separate additions of SU(5) singlets 1z or other suitable SU(5) representa-
tions become necessary [31, 106-108]. Addressing this, a unification approach that encompasses all
fermions, including right-handed neutrinos, within a common representation while encompassing
SU(5) and Pati-Salam as subgroups, emerges in the form of the special orthogonal group SO(10).

1.4.2 SO(10) model

The SO(10) group [109-113] exhibits greater structural complexity compared to SU(5) due to its
larger size ®. There exist several ways to break down SO(10) into subgroups, such as SU(5) x U(1),
known as the flipped SU(5) group [114=117], or SO(4) x SO(6), forming the Pati-Salam group.
Notably, unification can be achieved both with and without consideration of supersymmetry. As a
minimal grand unified theory, SO(10) integrates all fundamental particles and the forces that govern
their interactions, while naturally producing small neutrino masses through the seesaw mechanism.
Moreover, the 16-dimensional spinorial representation of SO(10), when decomposed under SU(5),
reveals 10 @ 5 @ 1, providing unification of a single family’s SM matter content alongside the
prediction of right-handed neutrinos.

Let’s delve into the model building within the SO(10) framework. In SU(5), we aggregated all
fermions into two irreducible representations, 5 & 10. However, with SO(10), we can encompass a

6The special orthogonal groups SO(N) exhibit N(N - 1)/2 generators, yielding 45 gauge bosons in the context of
SO(10) GUT.
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complete family of SM fermions neatly within a single 16-dimensional irreducible representation.
This 16-plet breaks down under SU(5) in the following manner:

16p =10+5+ 1. (1.47)

This property yields various constraints on SM Yukawa couplings. Specifically, in the context of
SO(10), there exist only three possible Yukawa types: those corresponding to the 10, 120, and
126-dimensional Higgs representations. This arises due to the decomposition of 16 ® 16:

16 ® 16 — 10 & 120 & 126 (1.48)

In the context of minimal SO(10) constructions, the origins of the two Higgs multiplets within the
MSSM are traced back to the fundamental representation of SO(10):

105 = 55 + 5p. (1.49)

This transition mirrors our comprehension derived from SU(5) theory, yet introduces a distinction:
SO(10) discerns Higgs from matter representations, marking a divergence between the Higgs and
the rest.

In order for the SM fermions to obtain masses within a renormalizable framework, the inclusion of
a 10y Higgs field is essential. When considering a lone 10y, the structure of the Yukawa Lagrangian
takes the form:

This configuration straightforwardly yields a notable outcome: all Yukawa interactions originate
from a singular term, leading to the unification of Yukawa couplings at the GUT scale. While
this argument applies well to the heaviest generations [118-125], modifications are necessary for
the lighter generations. The remedy involves introducing an additional 105 or 120y to break the
symmetry between the down-quark and charged-lepton sectors.

Turning to neutrinos, the introduction of a Majorana mass to the right-handed (RH) neutrinos
necessitates B — L, which is the difference between baryon number (B) and lepton number (L), to
be broken by two units. This mandates the coupling of the bilinear 167,163, with 16p16r. The
emergence of this coupling arises radiatively, facilitated by the exchange of states within the GUT.

Finally, the breaking of SO(10) down to the SM, can be accomplished in various ways, involving
the incorporation of scalar fields from the 45 or 54 representations, coupled with a pair of either 16
and 16 representations or 126 and 126 representations. Introducing a non-zero vev for a Higgs field
within the 45 representation leads to the breaking of SO(10) into various subgroups such as SU(5),
flipped SU(5), SU(4) x SU(2) x U(1), SU(3) x SU(2)r x SU(2)r, or SU(3) x SU(2) x U(1)2.
On the other hand, the 54 representation leads to the breaking of SO(10) into the Pati-Salam
subgroup. Employing a combination of both the 45 or 54 representations and the 16+16 or
126+126 representations leads to the reduction of SO(10) to the structure of SM.

1.4.3 Exceptional groups : EFg to Ejg

Es is a gauge group that encompasses both SO(10) and SU(5), constituting an exceptional Lie
algebra with complex representations [126—-130]. It serves as the minimal embedding of SO(10) ®
U(1) and incorporates one 78y representation along with two pairs of 27 @ 27y chiral superfields.
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The exceptional Lie groups, namely G, Fy, Eg, Er, and Eg, stand apart from the classical Lie groups
due to their unique mathematical properties and profound implications for physics. Among these
exceptional groups, the embedding of SO(10) from Eg exemplifies the potential to unify a wider
range of particle content and interactions within a single comprehensive framework. To realize the
embedding of SO(10) into Ej, we consider the following breaking pattern:

Es — SO(10) x U(1)y — SU(5) x U(1)y x U(1),. (1.51)

In the Eg model, bosons are associated with the adjoint representation 78, while fermions are
attributed to the fundamental representation 27. These representations further break down within
the context of SO(10) as follows:

27 =16, + 10_o + 14,

_ (1.52)
78 - 450 + 16_3 + 163 + ]_0,

where the subscripts denote the charge under the U(1),. Expanding on this, the subsequent breaking
of SO(10) yields the following decomposition:

27 — 1011+ 513+ 1154+ 5_22+5_5_o+ Lyy. (1.53)

The second subscript in the equation denotes the charge under the U(1),. It is worth noting
that both charges above are un-normalized. In the conventional description, the first three terms
accommodate the ordinary quarks, the right-handed electron, the lepton doublets, and the right-
handed neutrino. Next, the pair of 5-plets accommodates the Higgs doublets (or exotic doublets)
and a pair of exotic color triplets. Finally, there are SO(10) singlets, which serve the purpose of
generating large Majorana masses and providing a mechanism for explaining neutrino oscillations
and the small masses of the known neutrinos.

In E models, a notable feature emerges, the introduction of an array of novel particles, including
extra scalar singlets and exotic vector-like pairs [131]. These newfound constituents exert substantial
influence on the model’s behavior at lower energy scales. The specific composition of the low-energy
particle spectrum in Fg models hinges significantly on the chosen route of symmetry reduction
leading to the SM gauge group. Consequently, it depends on the inherent structure of the model’s
symmetry-breaking sector. Within the broad range of potential outcomes as the Eg gauge group
evolves into lower energy states, the emergence of U(1) extensions to the MSSM, commonly denoted
as UMSSM, presents intriguing theoretical and low-energy implications [132-131]. It’s worth noting
that the SU(5) subgroup within Eg, already encompasses the entirety of the SM gauge group. A
plausible scenario unfolds when Ej directly breaks down into Gy, along with two additional U(1)
components (U(1), and U(1)y). These U(1) groups can then be combined into a single U(1),
expressed as a linear combination of the two U(1)s:

U(l), = ClU(l)X—i—CQU(l)w (154)

where the condition ¢;+c = 1 must be satisfied. This U(1)’ can be linked to a heavy Z’ gauge boson,
as we will see in the upcoming chapters, the presence of which can hold significant ramifications in
both particle physics and cosmology [102, 132, 135].

Applying the same logic thus far, we arrive at Eg as the maximal singularity, serving as the
parent symmetry for all GUT groups so far :

Es D E; D Eg D SO(10) D SU(5) D G- (1.55)
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Given the complexities involved in constructing a four-dimensional GUT model starting from FEj,
our focus shifts towards the non-perturbative version of IIB superstring theory, commonly known
as F-theory. In this framework, at low energy levels, we can develop models based on SU(5)
extended by a U(1)" symmetry, featuring non-universal couplings to the three families of quarks
and leptons. This gauge group naturally arises from the maximal exceptional gauge symmetry
within an elliptically fibred internal space, particularly at a single point of enhancement described
as:

E8 D SU(5) x SU(5) D SU(5) x U(1)™. (1.56)

This sequence of symmetry breaking guarantees the presence of rank-one fermion mass patterns
and a tree-level top quark coupling. This is achieved by imposing a Z; monodromy group, which
identifies two abelian factors within the aforementioned breakdown. Furthermore, the U (1)’ compo-
nent of the gauge symmetry represents an anomaly-free linear combination of the three remaining
abelian symmetries preserved by Z,, as we will see in the upcoming sections.

1.5 The concept of Strings

In the pursuit of a unified theory that encompasses elementary particles, various extensions of
the successful SM have been explored. GUTSs, as discussed earlier, offer certain advantages such as
charge quantization, gauge coupling unification, and the possibility of accommodating right-handed
neutrino candidates. However, these models often grapple with issues like proton decay effects
and the doublet-triplet splitting problem, which conflict with the requirement for gauge coupling
unification. To address these challenges, an approach involves extending the GUT group with an
additional symmetry, which can be either a continuous U(1) or a discrete symmetry. Many GUT
models, accompanied by both continuous and discrete symmetries, have been proposed as realistic
extensions of the MSSM. Given the multitude of choices in constructing a GUT model, a coherent
and well-informed guide is needed. String Theories provide a compelling solution in this context,
showcasing a robust group structure that encompasses both continuous and discrete symmetries
simultaneously. Over the past decades, String Theory has demonstrated its potency in describing
gravity, which in turn places constraints on particle physics theories. Within the framework of String
Theory, we depart from the notion of fundamental point-like particles and instead introduce one-
dimensional strings. These strings, whether open or closed, occupy ten space-time dimensions, with
six of them compactified to exceedingly small scales. Just as a point particle traces a worldline in
Minkowski space, a string sweeps out a “worldsheet”, parameterized by timelike (7) and spacelike
(o) coordinates. This worldsheet defines a mapping from the worldsheet to Minkowski space,
represented as X* (o, 7). Strings manifest in two forms, “open strings” and “closed strings”, based
on whether the o coordinate is periodic. The strength of interactions between these strings is
determined by the string coupling constant, gs. In this context, Type IIB superstring theory,
which encompasses both open and closed strings, becomes relevant, particularly when g, < 1.
When dealing with open strings, we must account for boundary conditions at their endpoints. Two
consistent boundary conditions emerge: Neumann boundary conditions, allowing free movement
of string endpoints, and Dirichlet boundary conditions, fixing the endpoints at a specific position
X# = ¢*T. By choosing suitable boundary conditions, a Dp-brane, a (p+1)-dimensional hypersurface

"For the Neumann boundary conditions: p = 0,...,p, and for the Dirichlet boundary conditions: p = p +
1,...,D—1.
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Figure 1.5: Realization of the fibre bundle. The total space E (torus)is constructed from the base
space X (gray circle) and the continuously connected fibers (blue circles).

in spacetime, can be defined. In the context of F-Theory, D7-branes are particularly relevant.
Particles in our four-dimensional spacetime correspond to strings stretched between these D-branes,
with their mass related to the tension T and the distance (d) between the branes in the internal
dimensions. This relationship is expressed as M =T X d.

Since all SM particles are effectively massless, the situation corresponds to d = 0, which means
we're focusing on scenarios where the endpoints of open strings can overlap in the internal dimen-
sions. When we have N D7 branes occupying the same dimensions, forming a stack of branes, it
gives rise to a U(N) gauge theory. In this scenario, the gauge bosons represent strings that start and
finish on any of the D7 branes within the same stack. For example, if we have a stack of three D7
branes alongside another stack of two, their intersection occurs in two of the internal dimensions.
For this situation, a U(3) x U(2) gauge group emerges, and massless open strings can originate
from the U(3) stack and terminate on the U(2) stack. These strings correspond to states that carry
charges under both gauge groups.

These states, often referred to as 'bifundamental’ states, constitute the matter fields within the
theory. In a simple illustration, these matter fields can be arranged in a 5 x 5 matrix under a
U(5) group, where the gauge fields occupy the 3 x 3 and 2 x 2 diagonal blocks, while the matter
fields are positioned in the off-diagonal positions. At the intersection of these stacks of branes, we
can incorporate all these states into a U(5) group, implying that we can interpret this setup as a
U(5) gauge group at the intersection. However, as we move away from the intersection, this U(5)
symmetry breaks down into U(3) x U(2). In cases where there is a triple intersection of D7 branes,
further enhancements of the gauge group can occur.

Applying this fundamental logic, we can integrate the SM framework by utilizing perturbative
intersecting D-branes within GUT configurations. This leads us to the realization that to manifest
the top quarks operator, working within the framework of F-theory is imperative. In doing so,
exceptional groups naturally emerge, providing the necessary structural foundation.

1.5.1 GUTs setting from F-theory

F-theory [136-138], a 12-dimensional theoretical framework, emerges as a geometric reinterpretation
of type II-B string theory, which is inherently 10-dimensional. Formally, F-theory can be defined on
a background spacetime R3! x X, where R*! denotes the familiar 4-dimensional spacetime, and X
corresponds to a Calabi-Yau (CY) complex fourfold. To understand this theory better, let’s delve
into some fundamental properties of type II-B superstring theory [139—149].

Type II-B supergravity describes the effective theory and features two primary bosonic field
sectors: Ramond-Ramond (R-R fields) and Neveu-Schwarz (NS-NS fields) [161-164]. The NS-NS
sector comprises essential elements such as the metric (ga/n), the dilaton (¢), and a 2-form potential
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(By). In contrast, the R-R sector includes p-form potentials (C},) with p values of 0, 2, and 4.

Now, shifting our focus to the geometric aspect of F-theory, consider a Calabi-Yau (CY) fourfold
that is elliptically fibered over a three-fold base, denoted as Bs. To understand this concept, let’s
consider a simple example: the fiber bundle. This bundle incorporates various topological spaces.
We have the base space B, which can be any space. At each point K in B (K € B), there is another
space (any space) situated above it, known as the fibers over K, which are spread across B. It’s
important to note that these fibers do not intersect but are continuously connected to form the
total space E, thus defining the fiber bundle. This becomes clearer when examining the case of a
torus, as depicted in Figure 1.5.

In the context of F-theory, the fibers transform from line segments to two-tori. Each point on
the base Bj is associated with a two-torus, and this base effectively occupies the 6 compactified
dimensions of type IIB String Theory. Moreover, the complex modulus of the torus fiber encodes
information regarding the axion (Cj) and dilaton (¢), two scalar components present in the bosonic
spectrum, at every point on the base. This complex modulus, denoted as 7, is defined as

T=Cy+ie®=Cy+— (1.57)
s
What adds complexity to the scenario is the presence of D7-branes, which extend across 7 spatial
dimensions and 1 time dimension. These D7-branes have a significant impact on the complex scalar
axio-dilaton field, 7, underscoring the reason F-theory is regarded as a 12-dimensional framework.
It achieves this by incorporating two additional geometric dimensions that allow us to track 7’s
variations across the other ten dimensions.
In our mathematical description of the elliptic fibration, we consider three complex coordinates:
(x, ¥, z), which correspond to the three spatial dimensions of the base space, denoted as Bs. The
representation of the elliptic fibration follows a specific equation known as the Weierstrass form:

v =2+ f(2)r + g(2) (1.58)

(1))

Here, “f(z)” and “g(z)” are polynomials of the eighth and twelfth degrees in “z”. Each point
within the base space, Bs, corresponds to a torus defined by the “z” coordinate. Two essential
mathematical quantities characterize this elliptic fibration. The first is the discriminant (A) of the

Weierstrass equation, given by:
A(z) = 4f(2)% + 27¢g(2)*. (1.59)

When A does not equal zero (A # 0), the elliptic curve described by our equation remains smooth
and non-singular. However, when the A vanishes (A = 0), it signifies the presence of D7-branes.
At these points, the elliptic curve becomes singular, and a two-dimensional subspace within Bjs is
affected. The equation A = 0 can further break down into irreducible polynomials,A = A;...A,, = 0,
where each A; = 0 describes the location of a D7-brane. In the context of the torus fiber, it means
that the torus degenerates or pinches off at these specific points.

1.5.2 Gauge Groups and Tate’s Algorithm

Within the setting of F-theory, the realization of the GUT group occurs through the presence
of a 7-brane that wraps a two-complex-dimensional surface known as “S”. An interesting aspect
of studying the fibration lies in our ability not only to identify the locations of these 7-branes
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when the discriminant A vanishes but also to gain insights into the specific gauge groups they
support. This depends on the order in which the discriminant vanishes. Considerable mathematical
research has been dedicated to this subject, leading to a systematic classification of singularities
connected to gauge groups. Kodaira’s work has been instrumental in achieving this classification,
relying on the vanishing order of the discriminant A and the polynomials “f” and “g” within the
Weierstrass equation [150-153]. To describe these singularities, a method called Tate’s algorithm is

employed [165]. By introducing a coordinate, “z”, where “S” is defined as “z = 0", we can expand

(13000

the coefficients “t” and “g” from Equation 1.58 as power series in “z”:

FE) =12 g(2) =) gma™ (1.60)

4

The general Tate form of the Weierstrass equation then takes the following form:
Y2+ a1y + asy = 2° + asx® + aux + ag. (1.61)

Here, the functions a;, which depend on the complex coordinate 'z’ of the base Bj, are connected to
the ’f” and ’g’ polynomials found in the original Weierstrass equation. Specifically, the polynomials
'f” and ’g,” and consequently, the discriminant A, can be represented as functions of the coefficients
a;. To accomplish this, we need to transform Tate’s equation (1.61) into the Weierstrass form (1.58).
This transformation involves completing the square on the left-hand side and cubing the right-hand
side of the equation (1.61), allowing us to compare it with the Weierstrass equation. This process
reveals the following relationships:

L 1 3
= —— — 24 = —— (- 36 — 216 1.62
f 48 (52 54) y 9 364 ( By + 365254 56) ) ( )
When we replace 'f” and ’g’ in (1.59), the discriminant takes on the following form:
1
A= 3 (BsB3 — 9B2BubBs + 855 + 2755 (1.63)
Here, for brevity, we've introduced the redefined variables:
62 = (Z% + 4&2,
fs = araz + 2ay,
Bs = a3 + 4as, (1.64)

Bs = 3(Bafls — B))

Now, all the symmetry properties of the singularities within the elliptic fibration are encoded in the
degree to which the polynomials a; ~ b;z" vanish, alongside the discriminant A. The discriminant
factorizes, with each factor describing the location of a 7-brane on a divisor “S” in Bs. The
summarized results can be found in Table 1.4. As an example, we present the SU(5) case, where
the singularity is obtained by the following choice of parameters :

a1 = —by, ay=0byz, a3 = —bsz®, ays =02, ag= by’ (1.65)

where the b;’s are the fibration coefficients and are independent of z. These coefficients, are typically
non-zero and can be thought of as sections of line bundles on S. Their homology classes are expressed
as

[bx] = n — ke, (1.66)
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Group a1 | as | ag | ay ag A
SU2n) | 0|1 |n| n 2n 2n
SU2n+1) | 0 | 1 | n | n+1 | 2n+1 | 2n+1
SO(10) 11112 3 5 7
E6 1122 3 5 8
E7 11213 3 5 9
ES8 1123 4 5) 10

Table 1.4: Classification of singularities obtained from Tate’s algorithm. For a more detailed de-
scription see [150].

"

Figure 1.6: Intersecting branes. Matter is located along these intersections and the matter curves
are formed.

where ¢; represents the first Chern class of the tangent bundle® to S, and -k corresponds to the first
Chern class of the normal bundle? to S.
This choice for the a;’s leads to the Tate’s equation of the form

Y = 23 4 b2 + box2® + byyz? + byx?z + byxy. (1.67)

By referring to Table 1.4, we can observe that this choice indeed corresponds to an SU(5) singularity.

As we've seen so far, the structure of the GUT is elucidated through the reliance of the b;’s
on the base coordinates. This dependence characterizes the structure of global F-theory. However,
we can work within a framework called semi-local F-theory, where in these models, the intricacies
of global F-theory are circumvented by concentrating on regions proximate to the GUT surface,
denoted as S.

1.5.3 The semi-local approach

In the context of local F-theory, the primary focus is on the submanifold S, where the GUT symmetry
becomes localized. We can examine the intersections between the GUT brane, which wraps around
S, and other 7-branes that wrap surfaces 5; and support gauge groups G;. These intersections serve

8A collection of tangent vectors on the manifold S. These vectors describe the direction of possible curves on S at

each point.
9A collection of vectors at each point on the surface or manifold S. These vectors are perpendicular to S and

describe the directions away from the surface.
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as the locations where matter resides and are referred to as 'matter curves,” denoted as ¥; = SN.S;.
An example is depicted in Figure 1.6. Along these matter curves, the local symmetry group is
enhanced to Gy, D Gg x G;.

Taking a step further, we can explore the intersections between matter curves at points within S.
When matter curves intersect, they induce Yukawa couplings, leading to an additional enhancement
of the local symmetry to Gy D Gx,Gy; x Gy,. To study Yukawa couplings within the local
framework, we can gain valuable insights by focusing on the local vicinity around the point where
these curves intersect on the surface S.

The semi-local approach to F-theory is built upon the assumption of a parent Eg gauge theory,
which undergoes breaking due to a position-dependent VEV for an adjoint Higgs field. In this
scenario, all interactions in the theory are assumed to originate from a single point of Eg enhance-
ment. At this point, all matter curves within the theory converge, and the local symmetry group
experiences a complete enhancement to FEg.

1.5.4 Monodromy and the Spectral cover

Among the GUT groups included inside Eg, we are especially drawn to scenarios in which Gg is
one of the renowned GUT groups Fs, SO(10), or SU(5). The format in which these groups are
embedded within Eg takes the following form

Eg D) GS X SU(N)J_ (168)

where the commutant group is indicated by the subscript “1L” and referred to as the perpendicular

group.
Let’s consider the case of S(5) as an example (Gg = SU(5)). The breaking of Fs to the GUT
group takes place as

Eg — SU<5)GUT X SU(5)J_ — SU(5)GUT X U(1)4 (169)

The characterization of the matter curves within the theory is determined through the decomposi-
tion of Eg’s adjoint representation as follows

248 — (24,1) + (1,24) + (5,10) + (5,10) + (10,5) + (10, 5) (1.70)

From this equation, we can determine that we have 24 singlet curves (denoted as 6;;), five 10 curves,
and ten 5 curves.

The equations describing these curves can be expressed in terms of the weights ¢; (withi =1,...,5
and Y t; = 0) belonging to the 5 representation of SU(5), as follows:

Elozti:()
Y5:—t;—t; =0, fori#]j (1.71)
lej:(ti—tj):(), fOI‘l?éJ

The coefficients by in eq.(1.67) are determined by elementary symmetric polynomials'® of degree k
in these weights. These relations are inherently nonlinear, often resulting in connections between

10The term “elementary symmetric polynomials of degree i” refers to mathematical expressions that are constructed
by taking the sum of all possible products of k distinct elements from a set of variables, which in this case are the ¢;
weights.
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some of the t;. The specific identification of ¢; is contingent upon the “monodromy group” choice
since, in our semi-local context, the full Calabi-Yau geometry has been decoupled, necessitating
manual selection of the monodromy group.

To ensure the existence of a tree-level top quark Yukawa coupling, a minimum requirement is a
Zy monodromy, associating two of the weights. This stems from the need for the 10y, X 105 X 5y
coupling to remain invariant under perpendicular U(1) symmetries. Since both the top and anti-
top quarks originate from the same 10 representation, they share a charge t;, and the up-type
Higgs carries a charge of —t; — t;. To balance these charges, we must satisfy 2¢; —t; — ¢, = 0.
This condition is only met when j = k£ = i, necessitating the identification of at least two of the
weights. Henceforth, we will assume this minimal Z, case as a consistent requirement, making the
interchange t; <> ts.

The spectral cover equation to this configuration is derived by defining the homogeneous coor-
dinates

2=U, 2=V, y=>V3 (1.72)
leading to the following Tate equation
0 = boU® + by VAU + b3V3U? + byv*U + bsV®. (1.73)

Ultimately, by introducing the parameter s = U/V| the equation transforms into the following
expression:

5
Cs = Z b % = bs + bys + b3s® + bys® + bys* + bys®. (1.74)
k=0

This equation constitutes a fifth-degree polynomial and is referred to as the spectral cover equation.
Moreover, the solutions to the spectral cover equation correspond to the weights associated with
the SU(5), group [166]. These weights are represented as t;, where i ranges from 1 to 5. We can
express this as follows

5
0 = by + bys + b3s® + bys® + bys® o H(s—l—ti). (1.75)
i=1
Using the above relation, it becomes a straightforward task to express the coefficients by, as functions
of the roots t;. Notably, the coefficient b; is set to zero since it represents the sum of the roots,
which, for SU(N) groups, always equals zero, i.e., Y t; = 0. Additionally, we observe that the s = 0
part of the spectral cover polynomial is equal to the product of the roots, b5 = titotststs. The
locations of the corresponding matter multiplets on the ;7 matter curves are defined by the five
ZEros

5
S, Po=bs=[[ti=0—t=0, i=1,234,5 (1.76)
=1

Similarly, we can obtain for the fiveplets of SU(5)

Zgij , P5= H(ti+tj) =0, (177)
tiF#t;
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and for the 24 singlets curves X, ;

S, Po=]J(£—t)) =0. (1.78)

Imposing the Z monodromy [167] as stated earlier, corresponds to the splitting of the spectral
cover equation in the following manner

0 = (ay + azs + azs®)(ay + ass)(ag + ars)(as + ags) (1.79)

where the coefficients denoted as “a;” are unspecified constants. The initial bracket encompasses
the polynomial factor related to the Z; monodromy, while the subsequent monomials maintain
the integrity of three U(1) symmetries. Expanding this expression now, allows us to establish
the homology class for each of the coefficients a;, which can then be compared with the b;’s.
Consequently, we obtain the following results

by = azasaray
b1 = azasarag + azasagay + azasarag + azasaeay

bg = (3050608 + G2050807 + Q205090 + A1A5A9A7 + A3Q40708 + A3A40609 + Q2040709

(1.80)
b3 = A304080¢ + A205080¢ + Q2040807 + Q1070805 + A2G4G609 + 1050609 + A10A40709
by = asasagag + a1a5a806 + A1040807 + A1A40609
bs = arasapas
To begin, we address the b; = 0 constraint by introducing the following Ansatz:
as = —c(asarag + agagar + asagay)
(1.81)
a3 = Ccaszarag
Upon substitution into the expressions for the coefficients b;’s, we obtain
2.2 2
by = cazazag
2 2 2 2 2 2 2y 2
by = ayasarag — (azazag + asar(asas + asar)agas + (azag + asasazas + ajaz)ag)c
b3 = (CL5CL7U,8 + asagag + a4a7a9) - (CL5CL6 + CL4CL7) (CL5CL8 + a4a9)(a7a8 + CLea,g)C (182)

by = ai(asagag + agazas + asagag) — agasag(asaras + asagag + asazag)c

bs = ajasasas

Subsequently, we need to establish the homology classes [a;] for nine variables, a; through ag, in
relation to the [bg] classes [by, ..., b5]. By examining eq.(1.80), we can deduce that the latter classes
satisfy the general equation [by] = [a;] + @] + [an] + [a,) for k + 14+ m + n + p = 24. Three classes
remain undetermined, and we opt to designate them as [¢;] = x; for | = 5, 7, 9. The remaining
classes can be straightforwardly calculated and are summarized in Table 1.5.

The X1 curves are obtained by setting s = 0 in the polynomial, resulting in

b5 = H5(0) = 1040506 = 0. (183)

This condition results in a; = 0,a4 = 0,a5 = 0, and ag = 0. Consequently, after applying the
monodromy operation, we are left with four curves (one less due to the monodromy) to accommodate
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ay asg as ay as ag ary as ag
n—2c—x|n—a—x|n—X|—a+25 | Xs| —a+2Trxr | Xxr| —C+Xo | Xo

Table 1.5: Homology classes associated with the coefficients a; in the context of a Z monodromy
in the SU(5) scenario.

Field | U(1); Homology | U(1)y-flux | U(1)-flux
104 12 n—2l—x —N M,
10, i3 —cl + x7 Ny M,
103 2} —cl + xs Ng Mo,
104 ts —cl + xo Ny M,
5Hu —2t172 —cl + X N M5Hu
51 | —tipg—1t3 | n—2l—x —N Ms,
52 | —tip—1ts | n—2cl—x —N Ms,
53 | —tip—1t5 | n—2cl —x —N Ms,
D4 —t3—tly | —ci+x—Xxo| N —Ng Ms,
95 —t3—1ts | —c1+x—xs| N —Ng Ms,,
6 —ty—ts | —aa+x—x7r| N —N; Ms,

Table 1.6: Representation content of fields within the framework of SU(5) x U(1),,, along with
their respective homology classes and flux restrictions. It’s important to highlight that the 10 and 5
representations feature opposite values of ¢; (t; — —t;). Furthermore, we should take note that the
fluxes adhere to the conditions N = N7+ Ng+Ng and ) . MlOﬂLZj Ms, = 0, while x = x7+Xxs+Xo-

the necessary components of the three families. The handling of the X5 curves follows a similar
approach. The corresponding spectral cover for the fiveplets is a 10-degree polynomial and has the
following form

10

Pro(s) = s =bo[[(s—ti—t;), i<j, ij=1,..5 (1.84)
il

n=1

We express the coefficients ¢, = ¢,(t;), into functions of ¢,(b;), and by utilizing the equations for
br(a;) and the provided Ansatz, we can partition this equation into seven distinct factors, each
corresponding to one of the remaining seven fiveplets following the Z, monodromy as follows

P5 = ((11 — CCL4(CL7CL8 + CLGCLQ)) X (a1 — C<G5CL6 + CL4CL7)CL8) X (CLl — CCL6<(I5CL8 + a4a9))

1.85
X (a4a7a9 + a5(a7a8 + a6a9)) X (a5a6 + a4a7) X (CL5CZ8 + CL4CL9) X (a7a8 + a6a9) ( )

Their homologies can be specified using those of a;. Notice that in the first line of eq.(1.85), the
three factors correspond to three fiveplets of the same homology class [a;] = n — 2¢; — x. In Table
1.6, we present the complete spectrum.

1.5.5 GUT symmetry breaking

In F-theory constructions, breaking the GUT symmetry often involves introducing fluxes on the
worldvolume of the seven-brane supporting the unified gauge group. In scenarios where SU(5) sym-
metry is present, the symmetry breaking is achieved by introducing a non-trivial hypercharge flux.
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This flux leads to the splitting of SU(5) multiplets along certain curves where the flux imposes non-
trivial restrictions. Consequently, some components of the SU(5) representation, can be removed
due to the flux-induced effects. This mechanism is particularly relevant for eliminating unwanted
triplet states within the Higgs fiveplets.

To put this concept into practice within a particular scenario, let’s start by how SU(5) fits
into Fg. In eq.(1.69) we saw that Eg breaks to SU(5)qur x U(1)%. The chiral matter fields and
Higgs particles associated with SU(5) originate from the adjoint representation of the Eg symmetry
and are distributed across various curves known as Yo, and ¥j5,. In a given construction, we
represent the numbers of 10 and 5 representations as integers, denoted by Mg, and Ms,, respectively.
Additionally, we consider the U(1) fluxes (those not part of SU(5)gur) and apply the tracelessness
condition [168]. This condition imposes constraints on the numbers of these multiplets

S OMI+> M =0 (1.86)
i J

Now, let’s explore a specific scenario where all chiral matter of the 10-type is exclusively located
on a single ¥, curve, while all chiral states of the 5-type are confined to a single Y5 curve. In this
particular setup, eq.(1.86) leads to the relationship My = —M; = M. We use Ny, and Ny, to
represent the respective units of Y flux, which results in the splitting of SU(5) multiplets as follows

7”L(3 216 Nz = MlO
_ 14)1/6 (3:2)—1/6
s Jren s TGy, = Ms D — My~ N
5 - B B 10 . (3.1)_a/3 (3:1)2/3 10 Y10
N2 ~ M2, = Ms + Ny
N1y, — (1,1, = Mo + Ny,

These formulas essentially quantify the difference between the number of 5-components and the
number of 5-components, as well as the difference between the number of 10-components and the
number of 10-components. To ensure that the families are present within the 5’s, we need to satisfy
the condition where NE1), 5 > B s which implies that M5 < 0. Similarly, since the remaining
components of fermion generations are hosted within the 10’s, we aim to have 10-components
remaining after symmetry breaking. This means M;y > 0. For instance, if we want exactly three
generations, we would require My = —Ms5 = 3 and Ny, = 0. In practice, different curves belong
to distinct homology classes, and flux imposes non-trivial constraints on some of them, leading to
Ny, # 0 for at least some values of j.

1.6 Inflation: Basics to Grand Unification

1.6.1 Brief History

The foundations of inflationary cosmology began to take shape in the early 1970s with the discov-
ery of several key elements [169-173]. One pivotal realization was the role of the energy density
associated with a scalar field, serving as the equivalent of vacuum energy or a cosmological con-
stant. This energy density was observed to change during cosmological phase transitions, often
undergoing abrupt alterations through first-order phase transitions from a supercooled vacuum
state, known as the false vacuum. In 1978, Gennady Chibisov and Andrei Linde [171] attempted
to construct a cosmological model based on the concept of exponential expansion in a supercooled
vacuum, intending to provide a source for the universe’s entropy. However, they encountered the
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issue of significant inhomogeneity resulting from collisions between bubble walls. In 1980, Alexei
Starobinsky proposed a semi-realistic inflationary model based on conformal anomalies in quantum
gravity [175]. This model, though rather intricate, made significant contributions, including the
prediction of gravitational waves with a flat spectrum. Alan Guth’s “old inflation” model, intro-
duced in 1981, simplified the concept by addressing supercooling during phase transitions. While
the original version faced challenges, it laid the groundwork for solving major cosmological issues.
New insights emerged in 1981 with the invention of the “new inflationary theory”, providing solu-
tions to problems associated with earlier models. It introduced the idea that inflation could begin
in an unstable state at the top of the effective potential, with the inflaton field gradually rolling
down to the potential’s minimum. This marked a significant departure from the false vacuum state
and contributed to the homogeneity of the universe. A breakthrough came in 1983 with the chaotic
inflation scenario [176], which fundamentally altered the perspective on inflation. It demonstrated
that inflation could commence without the necessity of thermal equilibrium in the early universe,
even in theories with simple potential functions. Chaotic inflation, underpinned by the existence of
a sufficiently flat potential region allowing for the slow-roll regime, offered a more versatile frame-
work for inflationary cosmology. This paradigm shift, occurring decades ago, has since become the
dominant perspective, while the outdated idea of exponential expansion during high-temperature
phase transitions in grand unified theories has largely been abandoned by many, though it continues
to persist in some astrophysics textbooks. The progression of chaotic inflation marked a turning
point, redefining the trajectory of cosmology as a theory.

1.6.2 Dynamics of Inflation

Following the formulation of Einstein’s General Relativity, the exploration of its applications in
understanding the dynamic structure of the entire universe became a focal point for researchers.
To delve into the universe’s large-scale structure effectively, it proves valuable to conceptualize the
cosmos as a fluid, with galaxies serving as the constituent particles.

Beyond this foundational premise, cosmology rests on some core principles. General Relativity
alone stands as a comprehensive framework for describing the vast-scale characteristics of the uni-
verse. The motion of galaxies finds its sole governance in gravitational forces generated by these
galaxies themselves. This principle, often referred to as Weyl’s Principle [177], translates into the
idea that the world lines of galaxies form a spacetime-filling network of non-intersecting paths, akin
to “fluid lines”, all converging toward the past. The universe exhibits homogeneity, meaning it is
the same at every point in space, and isotropy, indicating symmetry from any vantage point within
space. These combined attributes form the basis of the cosmological principle.

Of particular significance, the cosmological principle implies that there exists no privileged
observational standpoint within the universe. It further suggests that the universe’s structure
adheres to a constant curvature space. These foundational ideas lay the groundwork for deriving

the line element ds? that characterizes an expanding universe, ultimately leading to the renowned
Friedmann-Robertson-Walker (FRW) metric [178]:

dr?

2 2 2
ds® = dt —a(t) m

+ 72(d6* + sin” 0d¢p*) (1.87)

Within this metric, (r,6, ¢) represent radial coordinates, while the parameter k encapsulates the
geometry associated with constant curvature space (where k = 0 corresponds to flat space, k = 1
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to spherical space, and k = —1 to hyperbolic space). The function a(t) stands for the scale factor,
offering insights into the evolution of spatial components as a function of cosmic time ¢.

The dynamics of the scale factor can be obtained by solving Einstein’s equations under the
assumptions of homogeneity and isotropy. The system of equations obtained is given by

3a = —4nG(p+ 3p)a
e 1.88
o+ k= it pa’ ( )
3
where p is the pressure term and p is the energy density. The Friedmann equation can be derived
by combining these equations:
8rG
W+ k= %paz. (1.89)
Observational evidence suggests that our universe is spatially flat on large scales and can be well
described by the Friedmann-Robertson-Walker (FRW) metric with & = 0. To better understand the
causal structure of the FRW spacetime, it is convenient to write the metric in terms of conformal
time T

ds® = a®(7)(d7* — dz?) (1.90)

where |dx| = dr represents the comoving distance that a particle can travel in A7 .

In standard Big Bang cosmology, we introduce the concept of cosmological horizon [179—-181].
Imagine a signal emitted at the moment of the Big Bang (¢ = 0) that travels at the speed of light
since then. We can ask what is the distance [y (¢) that such signal covers from the point of its
emission after a time ¢ > 0, where [ (t) represents the size of the region causally connected by time
t. This means that an observer living at time ¢ cannot know in principle what has happened outside
the sphere of radius ly(t), and therefore this sphere represents the observable part of the universe
at time ¢. This sphere is called the cosmological horizon, and it increases in time as the horizon
opens up.

If we choose coordinates such that we have an initial singularity at ¢ = 0, then the maximum
comoving distance that a particle can travel at ¢ > 0 since that moment, is given by

to dt a(t) da’
A — — = 1.91
! /0 a(t’) /a(O) a?H (a') (1.91)

where H(a') = d'/d’ is the Hubble parameter, and it is commonly used to describe a characteristic
scale within the expanding universe.
1.6.2.1 Field equations

To grasp the evolution of the metric that characterizes the universe, we turn to the fundamental
equations governing it, famously known as the Einstein field equations. These equations stem from
the variation of the Einstein-Hilbert action concerning the metric tensor, yielding the expression:

G,y = 87GT,,. (1.92)

Here, G, represents the Einstein tensor, 7),, is the energy-momentum tensor of the universe, and
G denotes Newton’s gravitational constant (Mp; = (87G)~/2). For simplicity, we’ll set Mp to
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unity, hence Mp = 1. Given the universe’s inherent homogeneity and isotropy, the form of the
energy-momentum tensor is considerably constrained, taking on the general structure:

T/ux = (p + p)u,uuu + PIuv- (193>

Here, u, = d;—: stands for the timelike 4-vector velocity, particularly in a frame that co-moves
with the perfect fluid described by T},,. In this co-moving frame, we can conveniently select u, =
{1,0,0,0}. The terms p and p correspond to the (rest) energy density and (principal) pressure
of the system, respectively. The conservation of the energy-momentum tensor, often referred to
through the Bianchi identity V,G*” = 0, leads to a fundamental equation known as the continuity

equation for the fluid:
dp
— +3H = 0.
7 +3H(p+p)

This equation signifies the change in energy density p with respect to cosmic time ¢ along with
the influence of the Hubble parameter H in connection with the total energy density p 4+ p. The
conservation of energy-momentum is a critical aspect of understanding the dynamics of the universe.

We now introduce a final equation that establishes a connection between the energy density and
the pressure within the perfect fluid. This equation is known as the equation of state:

p = wp. (1.94)

It’s important to note that, in general, the proportionality factor w can be a function of time. Using
this equation, we can express the conservation of energy in the following manner:

p @
- =-3(1 —. 1.95
"= 31w (1.95)
Solving this equation yields:
_ __Po
p(t) - a3(1+w)a (196)

where py represents an integration constant.
Let’s further explore this concept by examining the time derivative of the Hubble parameter,
which we’ll denote as e:
H
CH?

€ — (1.97)
This equation provides valuable insights. If € < 1, it indicates that the universe’s expansion rate
is accelerating. Conversely, if € > 1, the expansion rate decreases, signifying that the universe’s
expansion is decelerating.

We can also express Einstein’s equations, assuming a flat space (k = 0), using equation (1.97):

H? = %;) (1.98)

and

(1—e)H? = —?(p—l— 3p). (1.99)
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If we substitute equation (1.96) into equation (1.98), after some calculations we end up with the
expression

o ~ 30T, (1.100)

Now, if we substitute this equation into equation (1.97), we find that € remains constant:
3
€= 5(1+w). (1.101)

From this equation, we can deduce the following results:

e In the case of a radiation-dominated universe (w = %), e = 2, indicating decelerated expansion.

e For a matter-dominated universe (w = 0), € = %, also signifying decelerated expansion.

e In the general case of an inflationary universe, where w ~ —1 and ¢ < 1, the expansion is
accelerating.

1.6.3 Slow Roll conditions

As demonstrated in the Appendix, in a universe dominated by a homogeneous scalar field, we have
the acceleration equation (A.34) :

21— €)= % = —<(p+30)

where we’ve simplified the equation by setting 87G' = 1. Additionally, when considering the dy-
namics of this field within the FRW geometry, we obtain the relation (A.33) :

H? = -
Sp
which combined with eq.(A.79), we obtain :
21 (14
H* = 3 5@15 + V(o) ). (1.103)

Regarding the quantity € (A.36), we can express it differently by using the relationship (1.103) and
(A.81), like :

3 3 $? 3| ¢?

Swarl) =S| -2 | =2 2

pw ) =3 rv| 2 [31{2 —

_ 1

€ (1.104)

C2H?
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This is referred to as the slow-roll parameter e. We’ve observed how it can be connected to the
Hubble parameter in eq.(A.32). We can reformulate this relationship by introducing the variable
dN = Hdt, which leads to:

 H LdinH _
‘T T H &
dln H
=— . 1.1
€ N (1.105)

We observe that for an accelerated expansion to take place, the value of ¢ must adhere to the
condition € < 1. In the de Sitter limit, where ¢ tends towards —p, the value of € approaches
zero. This implies that the potential energy surpasses the kinetic energy. However, there’s another
crucial factor to consider. Sustaining the accelerated expansion over an extended period requires
the second time derivative of ¢ to be sufficiently small, expressed as :

|6 |<[3HO |, |Vl (1.106)
In this point we differentiate eq.(A.77) with respect to time t :
O+3Hp= -V,
we obtain

.. . d d

we ignore the part 3H gzﬁ and we take

BHG = —gV,pp =

3H?¢
- H; = Vi (1.107)
Now we introduce a second slow-roll parameter :
(ﬁ 1 de
N S 1.108
TT TS T 2edN (1.108)

so eq.(1.107) takes the final form (including the unit Mpy, in order to be dimensionless) :
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Vige

I (1.109)

m(p) = M3

With the same way we can re-write eq.(1.104) expressed in terms of the inflationary potential :

e, () = MT’fl (g)z . (1.110)

The background evolution that we used to arrive at the above relations is

b~ —% (1.111)
H? ~ %V(Qﬁ) ~ constant. (1.112)

Recapitulating, in the slow-roll regime
€, | M | 1 (1.113)

The initial condition is vital to guarantee an accelerated expansion, while the second condition is
essential to maintain a minimal fractional change in € per e-fold!!. These parameters, denoted as €,
and 7, are referred to as potential slow-roll parameters, while € and 1 are known as Hubble slow-roll
parameters. The relationship between Hubble and potential slow-roll parameters can be expressed
as follows :

ERNE, NRN, — €. (1.114)

Moreover, the inflation ends when we have a violation of the slow-roll conditions :

(Pend) =1, €(Pena) = 1. (1.115)

Finally, we write down the number of e-folds before the end of inflation :

1 An e-fold is defined as the amount of time over which the universe expands by a factor of e (natural logarithm).
In other words, if the scale factor of the universe increases by e, it has undergone one e-fold of expansion.
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tend

N(¢) = In Zend = Hdt

a t

d
We change the variable of integration : dt = f and using eq.(1.111) and eq.(1.112), we obtain

bend FJ I V4
N(¢):/¢ gd¢ ¢endV_a¢d¢ (1.116)

This relation can be written in terms of € and ¢, as :

d¢
Pend \/_ ¢end \ 26’/

It’s important to emphasize that the total number of e-folds needed to address the horizon and
flatness problems should exceed 50, meaning that we require N to be greater than or approximately
equal to 60. The specific value of N is influenced by the details of reheating after inflation and the
energy scale of inflation.

In cosmology, slow-roll parameters play a crucial role in understanding the scalar field dynamics
during inflation. They are instrumental in calculating two significant observables: the scalar-to-
tensor ratio (r) and the spectral index (ny). These observables are essential for comparing theoret-
ical models with observational data. The scalar-to-tensor ratio r is a parameter that quantifies the
amplitude of tensor perturbations (primordial gravitational waves) relative to the density fluctua-
tions (scalar perturbations) in the early universe, particularly in the cosmic microwave background
(CMB). The formula for calculating r is as follows:

Ay

(1.117)

r= e (1.118)
It is closely connected to the slow-roll parameters through the relation:

r = 16e. (1.119)
Typical values for the scalar-to-tensor ratio are constrained by observational data [29], and current

measurements indicate that 7 < 0.044, and A% = A, ~ 2.1 x 107, The spectral index is another
crucial parameter that characterizes the primordial density fluctuations in the cosmic microwave
background radiation. It describes the scale dependence of the amplitude of these fluctuations. The
formula for calculating ng is as follows:

dln A,
dink’
where k = aH is a reference scale (at horizon exit) and is typically set at 0.02Mpc~t. Tt is linked
to the slow-roll parameters through the relation:

ns =1 — 6e 4 2n. (1.121)

ny =1+ (1.120)

Typical values for the spectral index are very close to 1, with only small deviations. Observations
from the Planck mission, have measured n, to be approximately 0.96 to 0.97. This indicates a
nearly scale-invariant spectrum of density perturbations, with a value of ny, = 1 corresponding to
perfect scale invariance.
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1.6.4 Reheating

During cosmic expansion driven by inflation, the universe’s energy is mostly stored as potential
energy within a scalar field. To shift from this state to the familiar hot Big Bang cosmology we
observe today, a conversion of this potential energy into particles and subsequent thermalization
becomes necessary. This transformation, taking the universe from an inflationary phase to a hot
and radiation-filled one, is termed as reheating [182-184].

Despite its name, reheating doesn’t imply a prior thermal state but rather refers to the process of
converting potential energy into thermalized particles. Reheating typically occurs as the scalar field
responsible for inflation moves towards the minimum of its potential energy. This journey involves
a dynamic interplay between potential and kinetic energy. Initially, the field releases its potential
energy, converting it into kinetic energy. This sets the stage for the birth of various particles and
the eventual thermalization of the universe.

The mechanisms driving reheating can differ based on the specific inflationary model at play. In
single-field models, reheating may arise due to the breakdown of the slow-roll condition, signaling
a shift in the field’s behavior. In multi-field models, like hybrid inflation models, reheating can be
triggered when the inflaton field reaches a critical value. This critical point sparks an instability,
kickstarting the reheating process.

During reheating, the inflaton field decays into various particles, and the specific particles in-
volved depend on the inflationary model, making reheating inherently model-dependent. A key
parameter in this process is the reheating temperature (Tgy), and its general form is given by:

Tr ~ 0(0.1)y/MpD (1.122)

where Mp ~ 2.4 x 10®GeV/c* stands for the reduced Planck mass, and T' denotes the decay rate
of the inflaton field, quantifying how quickly the inflaton converts its energy into other particles
during reheating. In the forthcoming chapters, we will delve deeper into the analytical calculations
and deductions related to this crucial process.

1.6.5 SUGRA vs. SUSY in Inflation

The scalar portion of the SUGRA [185-190] Lagrangian relies on three functions, all of which
are functions of chiral superfields. The first of these functions is known as the Kéhler potential,
denoted as K(®;, ®;). It is composed of real functions of scalar fields and their conjugates but lacks
holomorphicity. The second function is the superpotential, represented as W (®;), while the third
function is the gauge kinetic function f(®;). Both the superpotential and the gauge kinetic function
are holomorphic functions of complex scalar fields. The action for complex scalar fields minimally
coupled to gravity encompasses both kinetic and potential terms:

S = / d*z\/—g (\/L__ngmetic - V(@i,éj)) : (1.123)

Similar to the previous section on SUSY models, we encounter a potential composed of both an
F-term and a D-term, denoted as V = Vg + Vp. However, in this case, the F-term is influenced by
the superpotential W and the Kahler potential K:

V($,9") = Ve + Vp = € [Gi(G1)5G;5 — 3] + Vi[9, ¢%), (1.124)
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where G = K + In(WW?), and G; is given by:

0 0
Gij(9,9") = 95 8¢*5K(¢’ ¢"). (1.125)

By substituting GG into the above expression, we obtain:
V(9,¢") =" [(K™")5(DiW)(D;W*) = SWW*] + Vp (¢, ¢"), (1.126)

where D;W represents the Kahler covariant derivative of the superpotential W and is defined as:

loJox
Finally, we define K in its canonical form as:
Q
K=-3n <—§), (1.128)
where () is the frame function:
Q=0¢;0i — 3. (1.129)

It’s worth noting that the Kahler potential determines the kinetic term of the inflaton field (¢),
given by —K 44-000¢*, while the superpotential W governs the interactions in the model.



Chapter 2

Inflation with Supersymmetric SO(10)

2.1 Introduction

Supersymmetric models endowed with minimal renormalizable superpotentials and canonical Kahler
potentials emerge as viable candidates to realize the successful framework of Hybrid Inflation [154]-
[159]. In particular, these models allow for the implementation of an inflationary scenario using a
minimal superpotential given by # = kS(¢¢ — M?), where ¢ and ¢ represent superfields conjugate
to each other, and S is a singlet scalar field. Here, x stands as a small dimensionless parameter,
while M denotes a high mass scale.

In the conventional hybrid inflationary scenario, the scalar field S assumes the role of the inflaton,
gradually descending along a suitable scalar potential valley, with the fields ¢ and ¢ responsible
for terminating the inflationary phase. Moreover, a specific choice of the Kahler potential enables
the implementation of quartic inflation with non-minimal coupling to gravity [160]. Despite the
success of such an inflationary paradigm, a central challenge remains: integrating cosmology with
the Standard Model of particle physics into a predictive unified theory. To address this issue,
substantial efforts have been devoted to unifying various types of inflationary scenarios with particle
physics theories [191]- [208]. In this work, we explore the incorporation of inflation within a realistic
SO(10) model, where the roles of ¢ and ¢ are assumed by the Higgs fields in the representations
16, and 165. This setup successfully reproduces the MSSM at low energies. The SO(10) GUT
boasts several appealing features. Each of the three generations naturally includes the right-handed
neutrino within the 16-representation of SO(10), leading to the automatic realization of the seesaw
mechanism. The model facilitates the generation of baryon asymmetry through leptogenesis [209,

|, and it effortlessly implements a doublet-triplet splitting mechanism without requiring fine-
tuning [211]. The incorporation of a Zs matter parity occurs automatically, and the proton decay
rate is naturally suppressed beyond current experimental limits [212,213]. Additionally, intriguing
features such as Yukawa unification have been explored in the literature [214,215].

In the course of this exploration, we introduce an inflationary framework into a viable SO(10)
supersymmetric GUT, which reproduces the effective low-energy theory of the MSSM. The tree-level
superpotential is endowed with an #Z-symmetry that can eventually be broken by non-renormalizable
terms. In our construction, a pair of 16, + 165 representations and the 45 adjoint representation
break SO(10) GUT spontaneously down to the SM. Furthermore, the VEVs of a pair of 10, and
10 representations, along with a second 45’ representation, generate masses for all fermions, includ-
ing the right-handed neutrinos, and induce the necessary CKM mixing. A doublet-triplet splitting

42
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mechanism safeguards the Higgs doublets from acquiring large masses, and the proton decay rate
is sufficiently suppressed.

2.2 The Model

We commence by outlining a promising supersymmetric SO(10) model that incorporates an %-
symmetry. This symmetry remains intact for renormalizable terms but is assumed to be broken
by non-renormalizable interactions. The model accommodates particle content in 10,16, and 45
dimensional representations. Although higher-dimensional representations, such as 120 and 126,
offer intriguing features, we opt to exclude them for two main reasons. First, we wish to maintain
the possibility of embedding the model within a string theory framework, where generating large
SO(10) representations can be challenging. Second, a renormalization group analysis involving
larger representations leads to large values of the gauge coupling constant at the unification scale
(Meur), causing the breakdown of the perturbative approach [216].

The matter and Higgs content of the model is structured as follows: The fifteen fermions, which
fit into 10 + 5 representations of SU(5), along with the right-handed neutrino in each generation,
are accommodated in the 16 representation of SO(10). The SM Higgs fields, found in 5y + 55
representations of SU(5), constitute the 10 representation of SO(10). The breaking of SO(10) to
SU(5) and subsequently to the SM is achieved through a pair of 16, + 16, representations and
the 45 adjoint representation. Additionally, we introduce a 10" representation of SO(10), an extra
adjoint represented by 45', and an SO(10) singlet denoted as S. To describe the decomposition of
SO(10) representations under SU(5) x U(1),, we employ the following charge assignments:

— 10,1 + 53 + 1,5, (21)

— 52+5_2,
— 240+ 19+ 104 + 10_4.

gl ==

Subsequently, we ensure that the renormalizable superpotential maintains its invariance under an
R-symmetry by assigning to the fields the &#-charges as presented in Table 2.1. These charges are
essential for preserving the symmetry of the theory and are a fundamental aspect of our model. It
is noteworthy that the superpotential itself carries an &#-charge of 1. Table 2.1 provides a compre-

Representation: 16, 10, 105 16, 165 45 45 S

R-symmetry: _% 0 1 0 0 1 _0 1

Table 2.1: SO(10) superfields along with their corresponding charges under the #-symmetry.

hensive overview of the %-charges assigned to the different SO(10) superfields. Each superfield’s
F-charge is carefully chosen to ensure the consistency and integrity of the #-symmetry within the
model. This symmetry plays a crucial role in governing the dynamics and interactions of the fields,
ultimately shaping the physical properties and behavior of the system.

2.2.1 The Superpotential

Within this section, our focus shifts to an in-depth examination of the superpotential terms. A
critical element to consider is the tree-level term denoted as 16, - 16, - 10, notable for its invariance
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under both #-symmetry and SO(10). This term plays a pivotal role as it confers mass upon the
three families of charged fermion fields. Additionally, it introduces Dirac masses for the neutrinos,
specifically vi. However, to achieve suitably substantial Majorana masses for vj and effectively
implement the seesaw mechanism, additional terms are deemed necessary. It is essential to highlight
that relying solely on the vacuum expectation value (VEV) of a solitary 10-plet proves insufficient
for generating the requisite CKM mixing, a point underscored in [216]. To address these challenges
effectively, the incorporation of a second 10-plet (10") and two instances of the SO(10) adjoint fields,
denoted as 455 and 45', becomes imperative. These additions prove instrumental in overcoming the
previously mentioned issues. The relevant renormalizable and fourth-order superpotential terms are
outlined below:

W Dyl6,;-16; - 105 + mi-ﬁj-m}{'(clél_fmﬂ%zél_ﬁ)’)
* (2.4)

1 .
+M161.-&-(ANmH-mH+A§VmH-mH).

*

In the above equation, the symbols y, ¢12, An, and Xy represent dimensionless coupling constant
coefficients, while M, signifies the cutoff scale of the theory. It is vital to acknowledge that the
terms associated with 10% contribute to the charged sector at higher orders and are subject to
suppression, typically by a factor of <;‘4—i> ~ M]@—ZT, generally on the order of ©(107!). These contri-
butions, although subleading concerning fermion masses hold substantial importance due to their
introduction of a second 10-plet, a critical element in generating the desired CKM mixings. The
relevance of the product 10, - 45, is analogous to that of the 120, which has been omitted in this
work due to previously discussed perturbativity concerns. When this term is decomposed within
the framework of the SM gauge symmetry, the ensuing mass terms can be expressed as follows:

16; - 16; - 107 - 45, — (Qiuj — 305 hy + (Qid; — 3lief)hg + - .

Of note is the introduction of a numeric factor of —3 into the charged lepton and neutrino mass
terms, originating from the 45, VEV along the B — L direction. This factor assumes paramount
importance as it serves to differentiate the down quark mass matrix from the charged leptons,
thereby establishing the Georgi-Jarlskog mass relation and ensuring the correct mass relations

at low energy scales. Furthermore, the term EZEJEHEH /M, takes center stage by providing
(1657)* MZyr

Majorana masses for the right-handed neutrinos at an order approximately equal to ~—7= ~ =g,

The additional term, 16,16,16,16, /M., plays a crucial role in shaping the CKM matrix. More
specifically, in the context of the SU(5) group, the first term leads to the following expressions:

AN

A o _ -
MN&' 16, - 165 - 16 — - (10;10,55 1y + 1,1, Ty Ty) + -+ - . (2.5)

*

In this context, the singlets 1;, 1; are identified as the right-handed neutrinos, v ;, while the singlets
1y, 1y correspond to v, V%, thus, the second term on the right-hand side yields Majorana masses

approximately given by:

(vir)? -~ Méyr ‘
M, M,

Throughout the remainder of this work, we adopt the notation v{ = N;, and we assume a “natural”

hierarchy with My, being smaller than My, and My, (My, < My, < My,). Consequently, the
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light Majorana masses can be estimated as:

m2 m2
My, ~ —2 ~ A\ 2 M, - (2.7)
My, N My

In this equation, m,,, denotes the Dirac mass of the neutrino, arising from the coupling between
the left- and right-handed neutrino fields through interactions with Higgs fields. The light neu-
trino masses, m,,, are inversely proportional to My, illustrating the “seesaw” effect: as the heavy
right-handed neutrino masses increase, the resulting masses for the left-handed neutrinos become
correspondingly small. This expression, forms the basis for the subsequent analysis of the heavy
fields within the model.

Deriving Heavy Majorana Neutrino Masses

To uncover insights into the heavy Majorana neutrino masses, we turn to neutrino oscillation
experiments and a chosen neutrino mass spectrum. Latest analyses [217] of experimental data,
assuming normal hierarchy, yield the following mass-squared differences for the physical neutrino
states:

Am3, ~ 2.5 x 107%eV? 2.8)
Am3, ~ 7.39 x 10 %eV2. '

Leveraging equation (2.7) and assuming m,, > m,, > m,,, we can deduce:

m2 2

m
to
My, ~ —2 ~ P_ ~ 10™GeV,

My, \/ Am§2

which represents the mass of the heaviest right-handed neutrino. This estimation is predicated on
the assumption that Dirac neutrino masses are roughly equivalent to the corresponding up-type
quark masses (m,,,, &~ m,,). Similarly, we can determine the ratio between My, and My, based on
equation (2.7):

2 2
MN2 M eharm A7/n’32 10—4
2 2 )
My, Miop Amg,

leading to My, ~ 10" GeV. The coupling 16,16,16 16, /M, yields the following terms:

Y Y _ .
A}V 16, - 16, - 16, - 16, — MN (105,55 1 + 105555;1;) .

*

This term’s significance lies in its contribution to the down quark mass matrix, effectively distin-
guishing up and down quark contributions [213]. Thus, it serves as a secondary source of CKM
mixing within the present model. Shifting our focus to the Higgs sector, we encounter #-symmetry
preserving renormalizable terms:

Wy O 10y - 45" - 107 + My10y - 105 + My545 - 45

R — — 2.9
+(1_61{'EH_EH'EH)E}I"‘)\AEH'@'EH- 29)
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It is important to note that tree-level mass terms of the form Mj(10 - 10 and My416,16, are
incompatible with the imposed Z#-symmetry on the superpotential. Additionally, the term 10, -45-
10, does not contribute due to antisymmetry. Furthermore, there exist terms involving the singlet
field S, which plays a pivotal role in inflation and will be subject to analysis in upcoming sections.
We now delve into the dynamics of the additional heavy fields introduced within the framework of
this model.

2.2.2 Masses of Color Triplets and Doublet-Triplet Splitting

In the context of the SO(10) representations outlined earlier, it’s crucial to account for various fields
that go beyond the MSSM spectrum, particularly those involving color triplets. These triplets have
interactions with SM matter and must possess sufficient mass to prevent undesirable processes that
violate baryon numbers. Before we proceed, it’s necessary to ensure that the low-energy effective
model does not contain undesired states. The components 10, 10z, 5y, and 55 within 165 and
16, in SU(5) receive masses from the trilinear term:

Aal6yy 4516, = Aa(10g + 55 + 15) (240 + 1o + 104 + 10_4) (105 + 55 + 15).

This term involves VEVs, such as (7§;) and (45), which break SO(10) down to the SM. There’s also
an additional bilinear gauge-invariant mass term for the 10-plets of SU(5):

My545 - 45" — My5(10_y - 10' + 10, - 10).
In the basis defined by the SU(5) 10-plet fields 10/, 104, and 10, we obtain the mass matrix:
0 My 0
Mo = Mys 0 )\A<qu> )
0 AaZh)  Aaf4)

where (249 4 19) = (A). The eigenmasses Mg, are of order:

Mg, =~ Aa(A) and £ \/M425 + A% (V%)%

The masses of (10,10) SU(5)-pairs depend on the dimensionless parameter A4 and the mass scale
Mys, which will be crucial for the subsequent inflationary analysis. The issue of doublet-triplet
splitting in the 55,5, € 104 of SO(10) is elegantly addressed by implementing the mechanism
from [212]. In this construction, it’s realized using the terms 10-45- 10"+ M;010-10" and a 45-VEV
along a specific direction:

(45) =

oo oo
oo oL o
oo Q0 oo
oo oo

oo OO

0 1
o( % o)
s

To protect the doublets and keep them light down to the electroweak scale, we must fine-tune the
parameter 3 to be roughly of the same order as M;y. Given that My is on the order of Mgy,
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the colored triplets acquire superheavy masses, sufficiently suppressing baryon decay-violating pro-
cesses. As we conclude this section, it’s worth noting that the threshold effects associated with
the extra color triplets, which attain masses near the GUT scale, have minimal impact on the
renormalization group running of the gauge couplings. Thus, after the SO(10) breaking, the gauge
coupling running is primarily determined by the MSSM spectrum, achieving unification at a scale
around Mgy ~ 106 GeV. One specific threshold effect is related to the masses of the right-handed
neutrinos, which, as previously observed, lie in the intermediate range of ~ 10'2-10'* GeV. These
right-handed neutrino thresholds have implications for b-7 unification, particularly the prediction
of mj) = m? at the GUT scale, a well-known feature of SO(10) models. This prediction aligns with
the experimentally observed low-energy masses my; and m.. It has been shown that maintaining
my-m, unification at the GUT scale is possible, provided there is sufficient mixing between the
second and third generations in the charged lepton mass matrix. This requirement also aligns with
the explanation of atmospheric neutrino mixing.

2.3 Inflation

The SO(10) model developed in the previous sections successfully reproduces the MSSM spectrum
in the low-energy limit. Moreover, the incorporation of an &#-symmetry and the implementation
of the doublet-triplet mechanism address several well-known issues of low-energy effective theories
derived from GUTs. In this section, we explore how this supersymmetric SO(10) model provides all
the essential components for realizing a successful inflationary scenario. The tree-level terms that
preserve the #-symmetry and involve the singlet field S, playing a crucial role in inflation, are as
follows:
WS = KS(EH EH + )\4_5/4_5/ + AIOEH mH - MQ)

In this model, inflation is driven by the conjugate pair of Higgs fields 16, and 1657, which we denote
as:

16y — ¢ and 165, — ¢, (2.10)

respectively. Similarly, for the corresponding fields in 45 and 45’, we use the notation:

45 — a, and 45 —b. (2.11)
To implement non-minimal quartic inflation, following references [160,218], we introduce the Kéahler
potential:
1 - 1+6& -
¢=1-3 (J¢” + [° + |S|* + |a> + |b°) + 3 (pp + hoc+--+), (2.12)

where the fields are measured in Planck units, Mp; ~ 2.44 x 10'® GeV, and ¢ is a dimensionless
parameter.

2.3.1 Slow Roll Parameters

To assess the compatibility of the proposed inflationary model with cosmological data [219], we
need to compute key inflationary observables, including the slow roll parameters n and e. Here,
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we provide a brief overview of the fundamental components, following the notation of [220]. The
action in the Jordan frame is given by:

4 1 v )‘0 4 ¢2
5= [ atoy=a (1) R+ KO3 9,000 - 126" ~ M NN )

where the last term arises from (2.5). For simplicity, we include only one neutrino species for now,
which is sufficient to describe the desired inflationary effects. Regarding the functions f and k, in
this case, we take:

F(6) = —3(1+£6%), k(6) = 1.

This choice corresponds to the Lagrangian of quartic inflation with a non-minimal gravitational
coupling in the Jordan frame [221]. To obtain canonical kinetic energy in the Einstein frame, we
introduce a new field o related to ¢ by:

(da>2 _ ko), 3 <f’(¢>))2 _ 1+ 46897

o) — f(@) 2\ f(9) (1+€02)

The action in the Einstein frame is expressed as:

5o = [ dov=gs (~ 3R + 5007~ Vilo(e))).

with the potential given by:

o ¢

=—— 2.13
P16 (14 £¢2)2 (2:13)
This particular setup has been successfully realized in supersymmetric SO(10) GUTs [160]. Any
modifications due to quantum corrections have also been studied [221]. The slow-roll parameters,

expressed in terms of the original scalar field ¢, are as follows:

1/ Vi
V// V/ O_//

n(¢) . 0 (2.14)

- Vie(o')2 - Vi(a')3’

B V];ﬁ VLICH B V]gO'H VL:(U”)Q B VéO'm
0= (75) (oo~ Staior Vel ~ ety

In the context of slow-roll inflation, the conditions € < 1, n < 1, and ¢? < 1 must be satisfied.
These conditions ensure that inflation occurs smoothly. Key inflationary observables include the

__ dng

scalar spectral index ng, the tensor-to-scalar ratio r, and the running of the spectral index a, = 7.
They are calculated as follows:

ng =1 — 6e + 2n,
r = 16¢, (2.15)
o, = 16en — 24€* — 2C.
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Additionally, we consider the number of e-folds N and the amplitude of the curvature perturbation
A%

v L % dé do
- —~ 13
V2 br Vedo (2.16)
AZ = B
R — 2 ’
247m%e ko

where ¢q represents the inflaton value at the horizon exit of the scale corresponding to the pivot
scale ko, and ¢y is the value of ¢ at the end of inflation (i.e., when € = 1). The pivot scale is set
to ko = 0.002 Mpc~!, and the number of e-folds is taken to be approximately N ~ 55 — 60. By
satisfying the constraint A% = (2.0989 & 0.101) x 1079 [219], we can express the predictions of the
model in terms of its various parameters.

2.3.2 The Effective Potential

Now, let’s delve into the predictions of our model, specifically focusing on the effective potential.
We'll begin with the canonical Kéhler potential mentioned in (2.12). Using the notation introduced
in equations (2.10) and (2.11), and setting ¢ = ¢ = ¢ /2, the relevant tree-level superpotential terms
for inflation can be expressed as:

A
W = ks(Gp/4+ \b* — M?) + Mysab + f@w. (2.17)

To calculate the scalar potential, we require the Kahler matrix, denoted as .4, which is given by:

3(1+&p )—3a —b%—s _§ 6@ 590 _% _g
—3 - 0 0 0 0
0 -+ 0 0 0
M =3 i 3
Ep 0 0 -1 0 o0
—4 0 0 0 —3 0
b o 0 o o0 -i
3 3

For convenience, we also define a “vector” involving the corresponding derivatives of the superpo-

tential:
oW OW OW OW OW

ds’ 0o’ Op’ da’ Ob b
The effective potential, denoted as Vg, is then defined as:

i = {3,

Vg = —0L M7, (2.18)
where Vi = Z;gf, and ® is defined in (2.12). In the subsequent section, we will derive the analytical
form of the potential based on (2.18) and explore the conditions on the model’s parameters and
spectrum to ensure a successful inflationary scenario.
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2.4 Analysis

The effective potential, denoted as Vg, relies on the fields ¢, s, a,b within the parameter space
defined by &, k, Aa, M, Mys. 1t is conceivable that this potential possesses numerous minima. In a
more general context, the non-zero VEVs of the two SO(10) adjoints, namely a and b, are typically
expected to align with the GUT scale. To maintain generality, we consider a scenario where these
adjoint VEVs are related by an order-one constant, denoted as v = ©(1), which can be absorbed
into the unknown coefficients. If the adjoint field a (and, consequently, b) attains GUT-scale values
during inflation, it effectively mitigates the monopole problem. Although the exact potential is
complex, we can make a reasonable approximation based on the observation that the GUT scale is
two orders of magnitude smaller than the Planck mass, allowing us to assume that a < 1. In this
limit, particularly when s = 0, the potential can be approximated as follows:

V() ~ A2t + K2 (AM2 — p?)? A Mysp? a
16 (1 + £¢?)° 2v/2 (1 + £p?)?

~ M p* A Mysp* a

I (14602  2V2(1+&2)

The first term mirrors the potential in Eq (2.13) with A\g = A%, while the second term represents
the contribution arising from the adjoint fields. This approximation holds when A4p? >> 4v/2M5a.
It’s important to note that both My and a are significantly smaller than the Planck scale, given
their association with the SO(10) breaking scale, where My; < 1 and @ < 1. Therefore, this
approximation is valid, especially in the vicinity of the potential maximum where ¢ assumes rel-
atively large values. We proceed to employ equations (2.15) and (2.16) to compute the slow-roll
parameters and investigate their effects on various model parameters, while considering the latest
Planck constraints [219]. To evaluate the inflationary predictions of the model, we focus on the
s = 0 trajectory at ¢ = pg. This involves a systematic procedure: First, we enforce the constraint
arising from the amplitude of the curvature perturbation, A% = (2.0989 + 0.101) x 107°. Then,
while keeping the number of e-folds constant, we express the observables in terms of the model
parameters, including A4, &, k, and the mass scales a, M, Mys. Notably, the model’s predictions
are relatively insensitive to variations in k and M. Therefore, we simplify the parameter space by
setting k ~ 107% and M ~ (107%)Mpy. Consequently, we vary £, a, Mys, and the coupling constant
Aa. In the scenario discussed previously, the coupling A4 is the square of the coupling in Eq (2.13),
i.e., \o = \%. In comparison to the highly constrained minimal ¢* model, this particular case offers
increased flexibility due to the presence of new degrees of freedom, such as the adjoint VEV denoted
as a = (45) and the mass parameter Mys.

+ 0 (a?)
(2.19)

Inflationary Predictions and Constraints

The inflationary predictions of our model are visually presented in Figure 2.1. This plot showcases
solutions for the tensor-to-scalar ratio r and the spectral index n,, along with Planck’s 1-o (dark
blue) and 2-o (light blue) data contours. We provide two curves: one on the left in red, corresponding
to N = 55 e-folds, and the other on the right in orange, representing N = 60 e-folds. Each curve fea-
tures data points for various values of £, specifically ¢ = 0,1073,1072,0.02,0.05,0.3, 0.6, 1, 10, 100, 280,
arranged from top to bottom. For £ = 0, our predictions naturally fall outside the realm of observa-
tional data. However, with N = 55 e-folds and & > 1072, we notice the results converging with the
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Figure 2.1: Solutions in the (ns-r) plane for varying £ values. The number of e-folds was taken
as N = 55 (red curve) and N = 60 (orange). The dots on the curves correspond to & =
0,1073,1072,0.02,0.05,0.3,0.6, 1, 10, 100, 280, top to bottom. The blue solid (dashed) contours correspond
to 1-0 (2-0) Planck’s data based on TT, TE, EE4+lowE-+lensing+BK14+BAO in [219]. For £ = 280, the
tensor to scalar ratio is 7., =~ 0.0034 and 7, &~ 0.0030 for N = 55 and N = 60 accordingly.

N=55
£ op/Mp ¢o/Mp N r —arg /1071 Aa a = (45)/Mp;  Mys/Mp
1 0.98 8.1 0.9649  0.0041 2.488 4.56-107° 1.8-1073 1.56-10~%

10 0.33 2.74 0.96497  0.0036 5.578 4.26-1074 1.39-1073 2.53-107*
100 0.106 0.875 0.9649  0.0035 1.614 4.25-1073 1.24-10~* 2.02:1073
280 0.06 0.51 0.9650  0.0034 2.760 1.18-1072 1.01-1072 8.66-107°
N=60
19 (/bf/Mpl (bO/MPl Ng r —045/10_4 A4 a = <45>/Mpl M45/Mpl
1 0.99 8.47 0.968 0.0035 2.002 4.20-107° 1.35-1073 1.24-10~*
10 0.32 2.78 0.968 0.0031 4.659 3.91-10~* 1.96-10~* 5.1-1073
100 0.11 0.91 0.968 0.0030 1.325 3.89-1073 1.24-10~* 2.03-1073
280 0.06 0.53 0.968  0.00297 2.263 1.09-102 1.01-1072 8.59-107°

Table 2.2: A collection of characteristic values of the parameters involved in the analysis along with the
corresponding output for the spectral index ng, the tensor to scalar ratio » and the running of the spectral
index as.

Planck contours. Furthermore, when & 2 0.3, the solutions primarily cluster around a region char-
acterized by r ~ 0.0035 and ns = 0.965. Similar trends emerge for N = 60, with solutions shifting
towards the lower right. Precisely, for £ < 1073, our results deviate from the Planck data, but for
1 < € < 280, we obtain consistent solutions featuring r ~ 0.003 and ns ~ 0.968. This is depicted in
the zoom-in plot added to the upper-right corner of Figure 2.1. 1In this analysis, we maintain cer-
tain parameter values: Ay ~ (107° — 1072), a ~ (107 — 1072), and My5 ~ (1075 — 1073). Within
this parameter space, the running of the spectral index is estimated to be |ay| ~ 107, Table 2.2
provides a detailed collection of parameter values and corresponding outcomes for spectral index
ns, tensor-to-scalar ratio r, and the running of the spectral index —a,/10~* for both N = 55 and
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Figure 2.2: Predictions of the model in the (nsH;,r) plane, superimposed on
TT, TE,EE+lowE+lensing+BK14+BAO 1-0 and 2-0 regions taken from [219]. The description of

the plot is the same as in Figure 2.1.

N = 60. The next aspect we investigate is the VEV of a = (45). Since SO(10) symmetry breaking
through the 45 representation can lead to monopole production, it’s crucial to ascertain if the value
of a = (45) is significantly higher than the inflation scale. The inflation scale is characterized by
the Hubble parameter H;,¢, as expressed by:

7 V(o)
7:2n g .
I 3M2,

Here, V(¢) is the potential outlined in Equation (2.19), and ¢ represents the value of the inflaton field
at the pivot scale. Figure 2.2 displays the model’s predictions in the ng, — H;,¢ plane, with Planck’s
1-0 and 2-0 bounds also included. In most scenarios, we observe that H;,; is lower than a = (45)
and tends towards a value of approximately ~ 1.5 x 10 GeV as ¢ increases. Simultaneously, n
consistently adheres to the Planck data. Since H;,y < a, this implies that GUT monopoles are
inflated away. With these results in mind, we proceed with the study of the reheating process and
the gravitino mass, two intriguing topics that establish a significant connection between particle
physics and cosmology.

2.5 Reheating, Non-thermal Leptogenesis, and Gravitino
Mass

In our proposed model, we offer a plausible explanation for the observed baryon asymmetry of the
universe within the framework of leptogenesis [209,210]. The reheating mechanism in our model pro-
ceeds via the dominant decay of the inflaton field into a pair of right-handed neutrinos [210] through
the SO(10) superpotential term (2.5). Subsequently, the out-of-equilibrium decay of these right-
handed neutrinos into Higgs and leptons results in a lepton asymmetry. This lepton asymmetry is
then partially converted into the observed baryon asymmetry through non-perturbative electroweak
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N=55

g a = <45>/Mpl M45/Mpl m¢(GeV) >\N2 MN(GQV) my, (GV)

1 1.80-1073 1.56-10~*  7.34-10*2  4.57-107* 7.49-10'° 1.36-1072
10 1.39-1073 2.53-107%  2.51-10% 2.47-107*  4.05-10'° 2.51-1072
100 1.24-1074 2.02:107%  6.71-10"®  1.51-107*  2.48-10'° 4.04-1072
280 1.01-1072 8.66-107° 2.08-10* 8.55-107° 1.40-10'° 7.19-1072

N=60

§ a=(45)/Mp; Mys/Mp; my(GeV) AN, My (GeV)  m,,(eV)

1 1.35-1073 1.24-10~* 5.44-10*2 5.31-10~* 8.70-10'° 1.17-1072
10 1.96-1074 5.1.107%  4.06-10% 1.94.10~* 3.19-10'° 3.16-1072
100 1.24-1074 2.03-107%  6.42-10"® 1.55-107*  2.54-10'° 3.97-1072
280 1.01-1072 8.59-107° 1.99-10 8.77-107° 1.44-10° 6.97-102

Table 2.3: Inflaton mass and neutrino masses for Try = 109 GeV.
processes [209]. For scenarios where k < 1 and M < 1, the inflaton mass is well-approximated by:
mj ~ % Mys a. (2.20)

Remarkably, this expression is independent of the parameter £. To ensure successful leptogenesis,
a necessary condition is that my 2 2My, implying that at least one of the right-handed neutrinos
must have a mass less than half that of the inflaton. We can calculate the reheating temperature
using the following formula [222]:

90
TRH%( 3
™™g

Here, the decay rate I'y is determined by:

b LMy
"~ 16r \ Mg ¢

The mass of the right-handed neutrino, My, is derived from Eq (2.6). In our analysis, we aim to
avoid the gravitino cosmological problem' [223,224], which places an upper bound on the reheating
temperature Try < 10° — 107 GeV, resulting in a gravitino mass range of 100 GeVS my0 S 10
TeV [225]. To accomplish this, we identify My with the mass of the second-generation right-
handed neutrino, My = My,, which, as discussed in the previous section, is expected to be around
~ 10'° GeV. With Eq (2.20) and the results from Table 2.2, we find that the kinematic condition
mg > 2Ms is consistently met. It is important to note that with Try below My;,, we are dealing with
non-thermal leptogenesis [210]. Table 2.3 presents representative results regarding the reheating

temperature and the mass of the second-generation heavy right-handed neutrinos. In this table,

1/4
) Fd)Mpl.

*

1 Cosmological problems with gravitinos: the existence of gravitinos in the early universe raises issues with possible
overproduction, interruption of nucleosynthesis, and implications for dark matter models.
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we have optimized the Majorana neutrino mass M, to adhere to the constraints imposed by the
reheating temperature and the bounds set by cosmological measurements (Y m, < 0.12 eV) [219].
For analytical simplicity, we have set the reheating temperature to the upper bound of Try = 10°
GeV and the Dirac neutrino mass m,, = 1.0 GeV (approximately equal to the charm quark mass)
for both N = 60 and N = 55 e-folds. An interesting observation is that the VEV a = (45) of the
SO(10) adjoint, related to the GUT breaking scale, consistently exceeds the mass of the inflaton.
After the reheating process, we can compute the lepton asymmetry generated by the right-handed
neutrino decays using the formula [220]:

nr, STRH
s 22:6 ' 2my

Here, Br represents the branching ratio into the right-handed neutrino channel, s is the entropy den-
sity, and e denotes the lepton asymmetry per right-handed neutrino decay. However, it’s important
to note that at this stage, the lepton asymmetry is susceptible to washout due to lepton-number-
violating processes [227]. These processes can occur through My, , which is the lightest right-handed
neutrino and could be in thermal equilibrium following the disappearance of My, and Mpy,. To
avoid such washout processes, we ensure that the reheating temperatures adhere to the relation:

TRH < MN1-

This ensures that My, is not part of the thermal bath?, preserving the lepton asymmetry.
The lepton asymmetry in our model is connected to the baryon asymmetry through the relation

[228]:

L, _Mns (2.21)
s 28 s ’

By combining the relationship above with Eq (2.21), we derive:

7

In this expression, we can safely neglect the contribution of the lightest right-handed neutrino (/Vy)
as it is negligible. The dominant contribution comes from N5. Assuming the maximal value for the
branching ratio Bry = 1/2 and the upper bound for the reheating temperature (Trg ~ 10? GeV),
we find:

np _ 2.65 x 108

S m¢

€9.

To satisfy the Planck constraints on the baryon-number-to-entropy density ratio, ng/s ~ 8.7x10719,
and considering the values of the inflaton mass from Table 2.3, we conclude that €5 must fall within
the range 107% < e, < 107 in order to explain the observed baryon asymmetry of the universe.

~

Moving on to the gravitino mass, it can be calculated using the formula [72]:

, KiF;F*
Myg = ————5—.
3/2 3M?2,

2A state of thermal equilibrium where the particles frequently interact and share a common temperature.



CHAPTER 2. INFLATION WITH SUPERSYMMETRIC SO(10) 5)

10 10

8h 8+ 1

S o S o f

- -

N N

£ 4 £ 4 ]
ol 1 ol N=60 1
0 1 1 1 1 ] O 1 1 1 1 ]
0 2x10°  4x10°  6x10°  8x10° 108 0 2105 4x10°  6x10°  8x10° 100

A A

Figure 2.3: Gravitino mass as a function of the Yukawa parameter X of (2.17), for £ = 1 (left) and £ = 280
(right). The values of My obtained from Table 2. In the left panel M = 10'° GeV for both curves. For
the plot in the right panel M = 10'° GeV (blue) and M = 1.5 x 10'° GeV (orange).

Here, F}; is determined by the flatness conditions of the superpotential®>. The gravitino mass can

then be expressed as:
M M,

m = .
3/2 VAL,

This mass depends on the parameter A found in (2.17), which cannot exceed the value of 10°.
This upper bound is established by considering that the product s\ defines a typical Yukawa
coupling in (2.17), which should remain perturbative, thus leading to A < 1/k. Unlike the reheating
temperature and the slow-roll observables, which exhibit less sensitivity to the mass scale M, the
gravitino mass shows a clear dependence on this parameter. Consequently, assuming values for
M5 that align with the inflationary analysis conducted in the previous section, we can employ the
constraints on the gravitino mass to derive limitations on both the mass parameter M and the
Yukawa coefficient A\. The results of this analysis are depicted in Figure 2.3, where we illustrate the
gravitino mass as a function of the parameter A for £ =1 (left) and £ = 280 (right). The values of
M5 are taken from Table 2.2. In the left panel, both curves correspond to M = 10'° GeV, while in
the right panel, we show results for M = 10'° GeV (blue) and M = 1.5 x 10'® GeV (orange). The
findings suggest that in order to maintain A within the K\ < 1 bound, the mass scale M should be
on the order of ~ 10! GeV for both £ =1 and & = 280.

2.6 Gauge Coupling Unification

In the previous sections, we discussed the constraints on various heavy particles originating from
the SO(10) symmetry breaking and cosmological inflation. These heavy states decouple at scales
below the GUT scale, and they affect the renormalization group running of the SM gauge couplings.
In this section, we explore the implications of these threshold effects on gauge coupling unification.
Recapping the essential elements of the previous analysis, in addition to the spinor 16 representation
that houses all the MSSM supermultiplets (including the singlets for RH-neutrinos), the model

3These conditions ensure that the scalar potential remains flat along certain directions preventing this way, terms
that destabilize the potential or large mass terms which can break supersymmetry.
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Figure 2.4: Running of the inverse gauge couplings ai_l(Q) at one-loop for a SUSY scale at the TeV range
with Mgysy = 3 TeV (left panel) and Mgysy = 5 TeV (right panel). The intermediate decouple scale was
received at M; ~ x10'* GeV (left panel) and M; ~ 4 x 101 GeV (right panel). The three gauge couplings
unify at an energy scale with Mgy ~ 1016 GeV. As input scale we took Qg = Miop = 173.4 GeV and the
values of the gauge couplings at this scale was received from [229].

possesses an extended Higgs sector. This sector includes a pair of 16, — 165, two adjoints 45,
and 45%, and a pair of 10, and 10}, within SO(10). As mentioned earlier, the Higgs MSSM
doublets arise from the 10, representations, and the color triplets, which belong to 10, and 10%,
acquire masses at the GUT scale (as discussed previously). Additionally, there are three pairs of
SU(5) tenplets. One pair descends from 16, — 165, and the other two pairs originate from the
decomposition of the two 45, representations. According to the mass spectrum analysis in Section
2.2.2, the eigenmasses of these states depend on the parameters (v§;), (A), Mys, and A4. The VEVs
(v§;) and (A) are of O(GUT), while the values of the parameters My; and A4 have been determined
by the inflationary analysis (see Table 2.2). For large &, the derived values of My; and A4 suggest
that the eigenmasses of the SU(5) tenplets are on the order of ~ 6(10'* GeV). All other heavy
states from the SO(10) Higgs content acquire masses at a decoupling scale M; below the GUT
scale. From the previous sections, we infer that M; is related to the mass scale My, which has
been fixed by the inflationary analysis (see Table 2.2). Below My, only the MSSM states contribute
to the gauge coupling running. Next, we study the evolution of the SM gauge couplings at the
one-loop level, accounting for the appropriate contributions to the beta functions at the following
scales: the SUSY scale Mgysy, the intermediate scale M; ~ My, and the GUT scale Mgy ~ 106,
The beta coefficients for the running from M; — Mgy include those of the MSSM, along with
contributions from the additional matter below the GUT scale:

by = b"*5M 41035
by = bAI95M 4 91
by = by"* M + 20

Here, (bMSSM pMSSM pMSSMY — (33 /5 1, —3) represent the beta coefficients of the MSSM spec-
trum. Figure 2.4 illustrates the evolution of the inverse gauge couplings a; ! as a function of the
energy scale @ at the one-loop level. The left panel shows the case for M; ~ 10 GeV and
Mgysy = 3 TeV, while the right panel corresponds to Mgysy = 5 TeV with M; ~ 4 x 104 GeV.
In both scenarios, the three gauge couplings merge at Mgy ~ 106 GeV.



Chapter 3

Hybrid Inflation, Reheating and Dark
Radiation in a IIB perturbative moduli
stabilization scenario

3.1 Introduction

Cosmological inflation stands out as one of the most successful theoretical frameworks for explaining
the evolution of the Universe and its observed large-scale structure today. Over the years, numerous
effective quantum field theory models have been developed to bridge the gap between cosmic infla-
tion and particle physics, particularly in describing low-energy observables. An essential criterion
for these models is their ability to provide an ultraviolet (UV) completion within a quantum theory
of gravity, valid up to the Planck scale (denoted as Mp).

In the current landscape of theoretical physics, String Theory emerges as the most promising
candidate for a consistent quantum theory at such high energy scales, while also incorporating
the SM and its minimal supersymmetric extension (MSSM). However, string theory operates in a
ten-dimensional spacetime framework, necessitating the compactification of six extra dimensions to
match the familiar four-dimensional spacetime observed in our universe. This process of reducing
higher-dimensional string action to four dimensions results in a vast array of possible string vacua,
collectively known as the string landscape. It’s important to note that not every successful effective
field theory model can seamlessly fit into the framework of string theory [see reviews [233-235] and
references therein].

On a parallel note, effective field theory models arising from compactification must meet certain
criteria. Among these, they should predict a tiny positive cosmological constant denoted as A,
approximately on the order of A ~ 107!#2 M}, which can account for dark energy, as indicated by
cosmological observations. One way to realize such a scenario is by employing an effective model
involving a scalar field ¢ with a potential V(¢) that exhibits a (potentially metastable) positive
minimum equal to the cosmological constant A.

In fact, effective field theory models stemming from String Theory compactified on Calabi-Yau
(CY) manifolds introduce numerous moduli fields, some of which could potentially serve as the
inflaton ¢. Consequently, the cosmological challenges become intertwined with the well-known
problem of moduli stabilization. Moduli stabilization and the presence of (metastable) de Sitter
vacua play a pivotal role in successfully implementing the cosmological inflationary scenario in

o7
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effective field theory (EFT) models with a string origin. Therefore, reconciling these two aspects
is crucial in the quest for an appropriate non-vanishing effective potential for a scalar field acting
as the inflaton ¢, enabling the necessary exponential expansion of the universe, given a sufficiently
long trajectory length ~ A¢ for the field ¢ to reach its minimum and trigger inflation.

A specific category of models focuses on constructions involving large volume compactification
scenarios (LVS) [236-211]. These models incorporate inflatons associated with Kéhler moduli fields
Ty = Tk + iag. In earlier scenarios [242-245], particularly in the context of type-IIB theory, it was
demonstrated that the internal volume modulus 7° expressed in terms of the real components of
Kahler moduli, ReT; = 74, could serve as a suitable candidate for the inflaton role (¢ o log 7).
Radiative corrections, stemming from intersecting space-filling D7 branes, offer a mechanism for
stabilizing Kéhler moduli and uplifting their scalar potential through universal abelian factors, re-
sulting in a positive cosmological constant [see [210,217] for more approaches|. Notably, Kéhler
moduli stabilization is achieved through a non-zero potential generated by ' and radiative (log-
arithmic) corrections that occur when closed string loops traverse codimension-two bulk regions
towards localized gravity sources. Furthermore, the de Sitter vacuum is attained due to positive
D-term contributions, as initially proposed in [215].

In the large volume limit, the effective potential induced for the Kéhler moduli exhibits a
straightforward structure, featuring two local extrema (a minimum and a maximum) and ap-
proaching zero as ¢ tends to infinity. The separation between these two local extrema, denoted
as Ap = Gmazr — Omin, 18 proportional to log(Zmazr/Pmin). In the simplest effective model solely
comprising moduli fields, this separation can be parametrized with a single non-negative parame-
ter. The largest possible separation A¢ occurs at a critical value of this parameter, beyond which
only Anti-de Sitter (AdS) solutions emerge. There exists a non-zero value of this parameter at
which a new inflationary small-field scenario is successfully realized. In this novel scenario, the
majority of the necessary e-folds Ny (approximately Ny ~ 60) accumulate in the vicinity of the po-
tential’s minimum, resulting in a prediction for the tensor-to-scalar ratio of density fluctuations in
the early universe, namely r ~ 4 x 10~%. Despite the successes of this model, it remains incomplete,
requiring a waterfall mechanism to terminate inflation and shift the de Sitter vacuum to a lower
value consistent with the observed cosmological constant.

It has been demonstrated that when open string states arising in the intersections of D7 branes
exhibit appropriate magnetic fluxes and specific brane separations, a charged open string scalar
can become tachyonic for certain values of 7” less than a critical threshold . This state can serve
as a waterfall field [219,250]. In potential extensions of this scenario, multiple such fields may be
included to conclude inflation and establish a deeper vacuum in alignment with the current value
of A.

In this study, we introduce an alternative scenario that considers not only moduli fields but also
ordinary fermion matter and Higgs fields in the effective field theory model. In this variation of
the previously described scenario, the Higgs field rolls down a potential hill toward a new, lower
minimum. [ts initial condition is set in the vicinity of the metastable vacuum of the moduli potential,
which is primarily determined by the Kahler moduli and the associated compactification volume 7.
In this construction, we implement standard hybrid inflation [251] with a singlet scalar field acting
as the inflaton and Higgs fields serving as waterfall fields. In this scenario, the vacuum energy is
determined by the scalar field and the waterfall fields, with radiative corrections playing a crucial
role in shaping the inflationary trajectory. Given the breaking of SUSY during inflation, SUSY soft
terms are also incorporated, which are instrumental in achieving spectral index (ns) values consistent
with current experimental constraints. We find small tensor-to-scalar values, which could be tested
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in future experiments. Additionally, we discuss dark radiation and demonstrate that the changes
in the effective number of neutrinos align with a 0.95% confidence level, with natural values for the
relevant couplings.

3.2 Description of the model and its constituents

In this study, we delve into the realm of a type-1IB string framework existing in ten dimensions,
wherein six of these dimensions are compactified onto a Calabi-Yau threefold denoted as &'. Our
primary focus centers around the moduli spectrum, which we represent using the following notation:
¢ signifies the dilaton field, while 7; and z, refer to the Kéhler and complex structure (CS) moduli,
respectively. Additionally, we introduce the conventional axion-dilaton combination as follows:

r=Cotie?=Cot—, (3.0)
S

Here, g4 stands for the string coupling, and Cj represents a O-form potential, often referred to as
an RR-scalar. We assume the presence of a perturbative superpotential Wy, induced by fluxes and
following the form proposed in [253]. At the classical level, W} takes on the role of a holomorphic
function that depends on the axion-dilaton modulus 7 and the CS moduli 2, . Stabilization of
7 and z, occurs in the standard supersymmetric manner, by solving D, Wy = 0 and D, Wy = 0,
where D; = O;W + W0; K represents the covariant derivatives.

Our examination involves a geometric configuration of three intersecting D7-brane stacks equipped
with magnetic fluxes. Concerning the Kéhler potential, we account for o/ corrections and the influ-
ence of a novel four-dimensional Einstein-Hilbert (EH) term, which is localized within the internal
space. This EH term is generated by higher derivative terms in the ten-dimensional string effective
action [243]. This setup leads to logarithmic corrections in the scalar potential through loop effects.
When these corrections are taken into account, the relevant part of the Kahler potential assumes
the following form [213]:

K = —-2M2log(¥ + & +nolog ) + - - -, (3.1)

Here, the ellipsis denotes terms dependent on the complex structure, z,, and the Kéhler moduli,
Ty, = T +iay. The general expression for the volume is given by 7° = £r;j,t't/t*, where ' represents
the two-cycle Kéahler moduli fields, and x;;;, denotes the triple intersection numbers on X'

In our investigation, we consider a specific scenario where three Kahler moduli contribute equally
to the volume and are stabilized through perturbative logarithmic loop corrections [254]. Following
the framework outlined in [255], we base our model on a Calabi-Yau (CY) threefold corresponding to
polytope Id: 249 in the Kreuzer-Skarke CY database [256,257]. This particular CY manifold features
three Kahler moduli fields satisfying the simple relation 7; = at/t*, where a is a positive constant
associated with the intersection number. Consequently, the volume is succinctly represented as [255]:

1
7 = a, t1t2t3 = Tltl = Tgt2 = 73t3 = 7\/7'17'27'3 . (32)
a

I'Non-perturbative corrections, which would also introduce the Kihler moduli through terms like #yp ox e~ 2T,

are omitted here. As explained in the subsequent analysis, T} can be perturbatively stabilized through one-loop
corrected Kahler potential.
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Upon dimensional reduction, the effective field theory (EFT) model derived from this setup can
manifest as either a Grand Unified Theory (GUT) or directly as the Minimal Supersymmetric Stan-
dard Model (MSSM). In these models, the ordinary low-energy (super)-fields appear in appropriate
representations of the EFT gauge group. To provide a comprehensive analysis, we also include mat-
ter fields in the Kahler potential alongside the previously mentioned quantum corrections. These
contributions are crucial for investigating soft supersymmetry breaking effects and cosmological
inflation.

In particular, our focus is on the Higgs sector, which plays a pivotal role in scenarios of hybrid
inflation and the potential production of dark radiation. For this purpose, we consider a generic set
of Higgs pairs, denoted as ®; and ®;, which are assumed to break the gauge group at a GUT scale
significantly lower than the Planck scale, Mp. Additionally, we introduce a field S, representing
a gauge singlet superfield responsible for realizing trilinear superpotential couplings of the form
SP;P,y. Such singlet fields are ubiquitous in effective string theory models. The relevant terms of
the superpotential in this setup can be generically expressed as:

W =Wy + kS(®,Py — M?) +--- | (3.3)

Here, k is a coupling constant, M is a high-scale mass parameter whose value is below the string
scale, contingent upon the scale at which the Higgs field acquires a VEV, and W, represents the
flux-induced part introduced earlier. The ellipsis denotes possible additional terms that are not
immediately relevant to our current discussion.

Our study of the Kahler metric and the inclusion of matter fields can be compared to the work by
Blumenhagen et al. [258], particularly in the examination of chiral matter localized on magnetized
D7-branes and the more comprehensively understood fractional D3-branes found at singularities.
For the second term within our Kéhler metric, we explore soft terms linked to massless open
strings concentrated at the intersections between D3 and D7 branes. However, the presence of such
massless string states cannot be derived from the Dirac-Born-Infeld (DBI) or Chern-Simons (CS)
actions alone.

In the context of hybrid inflation, our framework necessitates incorporating the effects of scalar
fields and their fermionic superpartners into the Kahler potential. Typically, these contributions
are expressed in a form such as f(ijq)ﬂ) 7, where Kij depends on moduli like 7, = T’“%Tk and S. The
detailed form of Kij becomes clear when examining the origin of zero modes, and various scenarios
within type IIB theory are possible [259].

In realistic constructions, chiral matter emerges on the world volume of D7-brane stacks or
at their intersections with other D7-branes. This is where gauge and scalar fields, such as ¢
and ®, manifest on the world volume by configuring D7 branes to wrap suitable divisors. The
supermultiplets involving these scalar fields, ® and ®, exhibit a scaling dependence, with the leading
contribution taking the form [260]:

P; P; D,
Ty + Ty, R

Additionally, there are next-to-leading order o/ contributions [255] of the form Re(S)/(Ty + T}),
which are deemed negligible for our analysis and are thus excluded.

Incorporating these matter fields into the Kéhler potential (3.2), we obtain the following generic

(3.4)
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form:
3 B 3 3 an B
H = —2M?3:log (;H T, +Tk)> +% +; T +kak(<1>i,<1>2,...,5, )

Here, € is defined as a function with logarithmic dependence on the moduli fields 77 5 3:

3
€ = & + nolog (H Tk + Ty ) . (3.5)
k=1

The parameter &, accounts for o/ corrections [261] and is proportional to the Euler characteristic
xcy of the Calabi-Yau manifold:
3
50 = _€<4)XCY77 (36)
with 1o being a coefficient of order one [243]. The functions f; in Eq. (3.2) describe the Higgs

sector contributions. For simplicity, we assume a uniform form for all f;:
f(®,D,5) = ad & + fB,®) + 55T + A\(®, Dy + hec.) | (3.7)

where «a, 3,7, and A are dimensionless couplings. Furthermore, following the approach used
in Blumenhagen et al. [258], we express the matter contribution term in (3.2) in terms of the
compactification volume (note that 7' oc 7°%3). Regarding the origin of these fields, we focus
on matter fields residing on magnetized D7-branes, as well as chiral fields generated at D7-brane
intersections. The general analysis also applies to states associated with the excitations of open
strings stretching between D7 and D3 branes or having both ends on the same D3 brane. The
choice of the configuration dictates the modular weights in the Kahler potential. For our purposes,
we consider the modular weights to be 1 [259]. Thus, in large volume compactifications, the Kéahler
potential in Eq.(3.2) takes the form [259,262,263] %:

H = —2log [V + & + nolog(7)] + [a@quT + BD,®h + 7SSt + N@,Dy + hec. )] (3.8)

3a
2/3
where @ is a dimensionless constant and 7 is defined as in (3.2). Note that in Eq. (3.8) and
from this point onward, we will use Mp = 1 units.

At this stage, we have outlined the minimum number of moduli and matter fields that are nec-
essary for our subsequent analysis. We will now proceed to compute the scalar potential, which
is crucial for exploring the properties of the model and determining various cosmological and phe-
nomenological observables.

2Notice that in our case this formula is identified with the expansion of the warped form of the Kihler potential

K = —2log ((T + T2 & +nlog? — g(T + T)l/%pi@) = —2log (% +E+nlog? — g%”%m)
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Figure 3.1: Plots of the potential along the volume direction. The left panel shows the F-term potential,
while in the right panel, the D-term potential has also been included. We choose £y = 10, ng = —0.92,
S=0,p10=v20=M,r=0.1and yv=1. Here x represents the volume, z = 7.

3.3 The effective potential

The scalar potential of the effective field theory model consists of various contributions. As we will

soon discuss, in the current framework, there are F-terms and D-terms associated with the moduli

sector, along with contributions from the EFT matter fields and supersymmetry-breaking terms.
Let’s begin with the F-term potential, which is expressed by the generic formula:

VF = GG (GlGl_JlGj* — 3) s (39)
where
G=%X +log|W|> =K +logW +log W*

and the indices 7, j in the equation above represent derivatives with respect to various moduli and
other fields.

When we compute the derivatives and substitute them into Eq (3.9) while retaining only the
leading-order terms, the F-term potential simplifies to the following form 3

KB (M? — p1p2)” 4+ K252 (p? + ) | 3WE(2mlog 7 — 8 + &)

Vi =~ , 3.10
r 3aa YT 43 273 (3.10)
where ¢ and @5 are the bosonic components of the superfields ®; and .
At the extrema of the F-term potential, the fields assume the following values *
9 13_ %o
So = 07 P1,092,0 = M ) Vo =1e3% 20, (311>

3The complex field S is generally represented as S =| S | €, and we choose § = 0 to align it with the real axis.
So, in Eq. (3.10) and the subsequent analysis, S refers to the real part of the field.
4In more general EFT backgrounds, it’s possible that minimization with respect to the fields S, ®; leads to a

potential of the form V ~ =%~ + %Hy@g%. In this case, it’s possible to have a dS minimum with the volume

1 b

5/3
acquiring a value %5/3 = (Z—Z) VA (32 (ei_ﬁ) ), where 7" is the product-log (Lambert) function.
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Substituting the solution (3.11) into (3.10), we obtain

3|Wol?n0(21log 7, — 8 + & Wal2

Vea:tr _ | | ( i 770) =1 | O’ (312)
293 73

A Simple analysis reveals that this is a minimum of the potential as long as 1y < 0. However, since

IM;%' > 0, the potential (3.12) at the minimum acquires a negative value. Therefore, the F-term

potentlal predicts an anti-de Sitter (AdS) vacuum.

In the left panel of Fig. 3.1, the F-term potential with an AdS minimum is plotted for a specific
choice of the parameters &y, 19, Wo.

Despite the preceding negative F-term contribution, the potential can be elevated to a de Sitter
minimum by considering the inclusion of D-term contributions associated with the U(1) symmetries
linked to the D7-branes [218,261] as discussed in [2412]. In this scenario, the D-term potential orig-
inates from hidden sectors, generated by D7-branes wrapping the 3 divisors with volumes denoted
as 7;. More specifically, in the current geometric configuration, D-term contributions arise from the
universal U (1) factors linked to the D7 brane stacks. These terms exhibit a general form [212,26]:

3 2 2
V=) gg“ <QjaTjK + Zqﬂ@gﬁ) : (3.13)

i=1 J#£i

where gp7;, = (ReT;)™! and Qj,qf denote “charges”. We acknowledge that @{ represent matter
fields charged under the U(1) gauge factors. Some aspects regarding strings at D7 intersections, in
particular, have been recently discussed in [219]. The fields @{ carry charges under the U(1) factors
associated with the D-branes. The question arises about the potential contributions of these fields in
the D-term and, consequently, in the scalar potential. One plausible scenario is that non-zero field
vevs are chosen to nullify the D-term. In this case, the uplift should be realized through a suitable
modification (see footnote 4) or the standard procedure of introducing D3 branes (see [265]). Here,
we simplify the assumption that these singlets have vanishing vevs. Whether the vevs of these fields
are zero depends on the specific details of the effective model. One possibility is to assume that in
the effective field theory limit, all these fields © are minimized at (©7) = 0. Alternatively, even
in the case of non-zero vevs, there might be accidental cancellations that reduce the significance of
their contributions. Some related discussions on these issues can be found in [266].

Here, since the D-term potential is solely employed to uplift the non-supersymmetric AdS
vacuum of the F-term potential, following previous works closely (see, for example, [242], [248],
and [261]), we reasonably assume that moduli fields dominate over other fields’ vevs. Therefore, it
is adequate for our purposes to assume that the flux-induced D-term piece oc Q;0r, K dominates,
and therefore we minimize the potential by setting (©7) vevs to zero.

When (0;) = 0 ( [264] for a more extensive discussion related to D-terms), the second term
within the parentheses vanishes. In this case, each component of the D-term takes on a straight-
forward, model-independent form Vp. ~ Q?/77. Consequently, the total D-term potential, which is
the sum of three components, is approximated by [212]:

3 2 3

d dl d d3 d2T137'§)
V. :§ ~§ e s 3.14
5 (a) BEnt Ty (3.14)

i=1
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Here, d; are positive constants associated with the charges, satisfying d; ~ Q? > 0. For our com-
putations, we simplified the scenario by focusing on the diagonal terms of the potential. Nonethe-
less, in more comprehensive models, cross-terms also appear. Our observations indicate that these
cross-terms have a similar order of magnitude relative to the expressions involving 7;. Numerical
investigations show that, even with these cross-terms, the potential does exhibit minima in de Sitter
(dS) space, albeit with slightly varied coefficient values d;.

To simplify the calculations, we used the volume formula 72 = 7, 7573. By substituting 7 with
T = 7?/(1173), we were able to express the total effective potential Vg as the sum of Vp and
Vp. This effective potential can then be minimized with respect to the total volume 7” and the
remaining Kahler moduli 7, and 3.

We assumed that the F-term of the potential depends on the total volume 7°, meaning that
the explicit dependence of Vg on 71 and 73 arises solely through the Vp component. It turns
out that minimizing with respect to 71 and 73 determines the ratios between these moduli, i.e.,

3
<ﬂ> = % [267]. In terms of the stabilized total volume %, the conditions for the two 7; can be

T dj
d? \?
3 ) 772
K (dkdj) 7

expressed as:
where ¢ = 1,3. In this case, the D-term potential assumes the simplified form:

wl—=

Vp ~ % Cowith  d=3(dydads) (3.15)
At tree level, the potential exhibits two flat directions when the variable S is set to zero. In
this situation, one can adjust the values of the variables ¢; and ¢, to create different minima in
the potential. However, this principle is valid only when considering the F-term potential alone.
The total potential at tree level is composed of both F-term and D-term components. The D-term
potential consists of two parts: one arising from the moduli and the other from the matter fields.
To cancel the contribution from the matter fields in the D-term potential, we use D-flat directions
where ¢ = @9 = ¢ and a = 3. In this case, the effective potential can be expressed as

2
wa (M2 = 9*) + 2k 3WG(2m0log(7) =8 +&)  d (3.16)

Vg =~
g 3aay Y 4/3 273 V2

The right panel of Figure 3.1 exhibits the shape of the potential along the volume modulus 7
when both F- and D-terms are incorporated. It is evident that a positive D-term is adequate to
raise the potential along the volume direction, resulting in the attainment of a de Sitter minimum.

To locate the extrema of the potential along the ¢ and S directions, we must set the correspond-
ing derivatives to zero. Consequently, for ¢, we impose the condition:

dVg k% (dap?® — daM?@ + 4vS5%p)
— = 0=
dp 3aoy 43

=0 (3.17)

which yields three solutions for ¢:

0=0, pr==4 M2—Tg2 (3.18)
(6%
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Similarly, along the S direction:

A 425 ?
g = 0= 300 A 0 (3.19)

which leads to:
S =0. (3.20)
Combining equations (3.18) and (3.20), in the large volume limit, we obtain the following solutions:
(S=0,0=0), (S=0,0p==1M). (3.21)

We have previously addressed the minimization of Vi with respect to the volume modulus. However,
in the presence of D-terms, the minima along the volume direction experience shifts. Therefore, by
requiring the vanishing of the derivative of (3.16) with respect to 7°, we derive the equation:

dVeg 0 = AR? (ap* + aM*t = 2aMP@? + 295%¢%) 2d
v YaayZ /3 VA
9 (2nWi log(7) — 8noW5 + &Ws) | 3§
_ =0. .22
557 + 71 0 (3.22)

In the large volume limit, as a good approximation, the above equation yields the solution:

W2 [ 2de 2
Y, ~ O : (3.23)

where 7" represents the product-log (Lambert) function. The shape of the scalar potential Vig in
the -5 plane is visualized in Figure 3.2. As previously discussed, the D-term contribution in the
effective potential guarantees the existence of de Sitter vacua as S approaches zero.

3.3.1 Inflationary phase

We have conducted a comprehensive analysis of the scalar potential within the effective theory and
elucidated the roles played by various fields in shaping its form. With this groundwork, we are now
well-prepared to explore whether cosmological inflation can be realized in the current model.

In a prior approach, employing the same type-IIB framework and the geometric configuration of
intersecting D7-brane stacks, the inflaton field was associated with the logarithm of the compact-
ification volume modulus. Achieving the requisite 60 e-folds for slow-roll inflation led to a lower
bound on the minimum vacuum energy [2067], although it remained considerably larger than the
cosmological constant. Subsequently, a new ”waterfall” field was introduced, introducing an addi-
tional direction in the potential. This field rolled down to the new lower minimum, simultaneously
ending inflation. This role was demonstrated [249] to be fulfilled by oscillating open string states
near the intersections of the D7 stacks.

In the current scenario, where we have incorporated physical states from the effective theory
model, new possibilities have emerged. At the minimum along the compactification volume mod-
ulus 77, the Higgs field ¢ and the singlet S introduce new directions (perpendicular to that of
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Figure 3.2: The shape of the effective potential in the ¢-S plane for the chosen parameters & = 10,
no = —0.92, 75 = 32000, k = 0.1, y =1, and d = 10452,

7'), potentially leading to new lower minima in the scalar potential. Consequently, they can be
considered as potential candidates for waterfall fields.

In this particular setup, inflation proceeds along the local minimum with ¢ = 0 (the inflationary
track), starting from large values of S. An instability occurs at the waterfall point S? = M?, where
S, = ?;T‘g |s= 0. At this point, the field naturally transitions to one of the two SUSY minima at
@ = =M. For large values of S, the scalar potential is approximately quadratic in ¢, whereas at
S =0, equation (3.16) transforms into a Higgs potential. Along the inflationary track, a constant

term V°! is present at the tree level:

K2M? n 3W§ (210 1og(75) — 8no + &o)
307,13 273 )
indicating that SUSY is broken during inflation. This breaking of SUSY results in a splitting

between fermionic and bosonic mass multiplets and introduces contributions to radiative corrections.
Following the work by [205,269], the soft terms are given by”

vol __
‘/0 =

2/3

W02 4. M2y2_% = Migf , (3.24)
3ary

2

AVio, = (m§/2 + V) 3972
0

2/3
®Note that the factor % originates from the transition to the canonically normalized field s = S \/3a7/%1/ 3

See also Appendix B.1.
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where y denotes the ratio y = s/M, and

2

Msc - (mg/Z + %) 3%2
0

W+ -, (3.25)
represents the soft mass parameter for the canonically normalized field y, with V[ being the minimum
of the potential (3.16).5 For an appropriate set of parameters, Vj is equivalent to the cosmological
constant. The first extremum (s = 0, = 0) represents a maximum of the potential. For ¢ =
0, the trajectory corresponds to the standard hybrid inflation, where {¢ = 0,s > M}. When
the inflaton reaches s = M, the waterfall field takes over, and the inflaton moves towards the
minimum at ¢ = £M. Moreover, SUSY is broken along the inflationary track, and the radiative
corrections, along with the soft SUSY-breaking potential Vg, can lift the flatness of the potential
while also providing the necessary slope for driving inflation. The effective contribution of the
one-loop radiative corrections can be calculated using the Coleman-Weinberg formula [271]:

4M4 4 1 3
A‘/l—loop - " y |:F(y) - (— %8/3):| ) (326)

144720227 bda’a’y?  2°°
where 23
2M2 2 2M2 2%
F(y) = W 10g P y 2/3 — %8/3 10g % . (327)
8laay 2702027, 3avQ

Note that the Coleman-Weinberg correction is computed along the inflationary trajectory, where
the field s takes a non-zero value while the field ¢ remains fixed at zero. Furthermore, we set
Vo = 3.2x10* for the volume field”, and the mass spectrum depends solely on s. Detailed calculations
are provided in Appendix B.2.

Including the various contributions computed above, we can write the scalar potential along the
inflationary trajectory (i.e., p; = @9 = 0) as:

V ~ VF + VD + A‘/I—loop + A‘/;ofta

OPESV A A ) N Kyt L 3o\ | Moy (3.28)
- 2 )[4 2,2~254/3 2,2~ 204/3 0 202 )
K 144720227, 144720227, K

bda?a?y? 2

where M, is the soft mass parameter of the field s, and Vj ~ 0 due to its extremely small
magnitude compared to m3 /2
To predict various inflationary observables, we employ standard slow-roll parameters:

LN v (v
“Tao\m) \v) " ap\v )
52_L V/v///
_M4 V2 ’

where prime denotes the derivative with respect to y. Note that the presence of the mass parameter
M in the above equations arises from the definition of the field y as the ratio y = s/M. In the

6The soft mass parameter M, depends on both the gravitino mass ms 2 and the constant parameter Wy. By
choosing Wy to be very small, the dominant term of the soft masses becomes dependent on the gravitino mass [270].
"For a discussion on multifield inflation scenarios in these types of models, see [272].
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Figure 3.3: Variations of r and M in k — M, plane. The upper line has M fixed at a value equal to
Mtring. The other two lines correspond to lower M values, as indicated in the plot.

slow-roll approximation, the scalar spectral index ng, the tensor-to-scalar ratio r, and the running
of the scalar spectral index a5 = dng/dInk are given by:

ns~1+2n—=6e, r~106e€,
g~ 16€en —24¢* — 2%
The scalar spectral index ng in the ACDM model is observed to be n, = 0.9665 4 0.0038 at the

pivot scale ko = 0.05Mpc ™! [273].
The amplitude of the scalar power spectrum is given by:

Adlln) = 57 (T2,

2472\ €(yo)

where A, (ko) = 2.137x 107 at the pivot scale kg = 0.05 Mpc ™' as measured by Planck 2018 [273].
The number of e-folds Ny before the end of inflation is defined as:

Yo V
Ny = 2M2/ <W) dy,
Ye

where yo = y(ko) is the field value at the pivot scale kg, and y,. is the field value at the end
of inflation. The value of 3, is determined either by the breakdown of the slow-roll approximation
(n(ye) = —1) or by a ‘waterfall’ destabilization occurring at y. = 1.

3.3.2 Numerical results

The outcomes of our numerical computations are depicted in Fig. 3.3, illustrating the ranges of
r, M in the K — M, plane. We consider up to the second-order approximation on the slow-roll
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parameters, setting v = 1, a = 1077, 75 = 32000, and y. = 1. Additionally, we fix the spectral
index ns to the central value (ns = 0.96655) from Planck’s data.

Further constraints are imposed, requiring x < 0.1, the Higgs mass parameter 10 < M <
Miring ~ 1/‘%1/2 = 5.5 x 1073M,, = 1.36 x 10'® GeV, and F'T (defined as the difference of field
value at the pivot scale at the end of inflation) to be FT = yy — y. < 0.1. These constraints are
illustrated in Fig. 3.3 as the boundaries of the allowed region in the k — M, plane. In our analysis,
the dominant role in obtaining a parametric space consistent with experimental bounds is played
by the soft SUSY contributions, along with the radiative corrections, parametrized by M, and a.
Additionally, in the entire parameter space, a remains close to the value of 1.

Careful parameter selection in our analysis aims to suppress the contribution of the logarithmic
terms in (3.27). However, when x > 0.1, the logarithmic terms progressively become more dominant
compared to the other components of the potential in (3.28). This dominance leads to a deviation
of the spectral index (ng) from the Planck bound.

For the scalar spectral index ng fixed at Planck’s central value (ns = 0.96655), our numerical
analysis indicates the following exact range of parameters for acceptable solutions:

1.6 x107° <k <0.1,

(1x 10" <M < 1.3 x 10'%) GeV,
(4.6 x 10° < M,, <1 x10') GeV,
1L9x 107" <r <14 x107%,
086 <asS 1.

Examining these exact solution ranges, our calculations predict a low tensor-to-scalar ratio (r)
compared to current experimental bounds. However, ongoing and future gravity waves experiments
are expected to reach much smaller ranges of tensor-to-scalar ratio, comparable to our numerical
predictions. Note that Fig. 3.3 shows the parametric space where 0.86 < a < 1, aligning with the
conditions for dark radiation, as discussed in the following section.

3.4 Reheating and dark radiation

Following the conclusion of inflation, the lightest moduli fields initiate oscillations around their
respective minima, accumulating substantial energy density in the process. These modulus fields
undergo decay, leading to two distinct categories of decay products. The first category involves
decays into the visible sector, specifically particles within the Standard Model (SM) or its extensions,
such as the Minimal Supersymmetric Standard Model (MSSM). These decays into visible matter
induce a period of reheating, subsequently giving rise to the standard hot Big Bang cosmological
evolution.

Additionally, there may be decays into states within the hidden sector. The hidden sector
encompasses various candidates for dark radiation, including massless axions or light hidden gauge
bosons. Let’s consider the case of three Kahler moduli, denoted as T}, = 73, +tay, and 7" = /717373,
where a; represents the RR-axion.

The decay of the light axion a primarily occurs through the supergravity kinetic terms associ-
ated with the Kéahler moduli, given by:

&L D Ki50,T'o"TY. (3.29)
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The tree-level Kahler potential is expressed as:

K=-2 IOg \/(Tl + Tl)(TQ + TQ)(T?) —+ Tg) = — 10g(7'17'27'3> + - (330)

In this equation, the ellipsis represents constant terms that can be disregarded. Consequently, the
Kahler matrix is determined as:

1 1 1 1
K- = —di — . 3.31
R () 33

As a result, Eq (3.29) can be reformulated as [271],

11

[ g
- 472

(9,@8“71

It’s important to note that we have set the reduced Planck mass M, = 1. To bring this into
canonical form, we need to find the transformation 7;(u;) that satisfies:

1
< D 5 ;(%uﬁ“uz

This implies:

T — eﬁ“i

The moduli fields for canonical kinetic terms adopt the following expressions:

1
Up = —=
Ve

The corresponding volume modulus is:

u1 + us + ug 1 1 \/5
t———————g logm, =1/ =log?
\/g \/g\/i . & Tk 3 &

The transverse directions are:

log 71,

U1 — U9 1 T1 Uy + Uy — QU3 1 T1T2
=—log— v=—"—"—-

v =
2 2% NG /3T

We can reverse these relations as follows:

u =

I 1
u | =1 V3 v2 Ve u
1 2
us 7§ 0 —1\/3 v
For the Lagrangian involving the axions, we have [27]:
11 1 o
<D —Zﬁﬁﬂaﬁ“ai = —16 2v2 Zﬁuaﬁ“ai . (332)
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Expanding this, we obtain:
1
) _Z_l Guai(‘)“ai — 2\/§ (ulﬁualﬁ“al + u28ua28"a2 + U38MCL38“CL3) s (333)
where the first term represents the pure kinetic energy for the axions, while the second term rep-

resents the interaction terms. For the interaction part, expressing u,, us, and ugz in terms of u, v,
and t, we have:

1
) %t (@Lal@”al + Guagﬁ“ag + 5’”a38"a3)
1
+ EU (0ua18”a1 — 8Ma28“a2)
1

+ —= (@al@“al + 8ua28“a2 — 28Ha38“a3) .

2V/3

The decay rate of the lightest modulus u into axions can be expressed as follows:

L3

— 3.34
U (3.34)

INu — ajay) =
Here, m, represents the mass of the modulus. In the context of the large volume scenario, a notable
hierarchy of mass scales emerges (for further details, refer to [275]). After diagonalization with the
Planck mass set to unity, the mass eigenstates can be expressed as:
1 a7 2/3 1 1 1

~Y

My = My = My ~~ 3/27 My, € y  Msoft ™~ 2/37 mgso ~ ?7 Mstm‘ng ~ 12"

o o o o

In a similar vein, the primary decay channel in the visible sector is the decay into Higgs bosons.
In the case of the Minimal Supersymmetric Standard Model (MSSM), we can make the following
identifications: ®; = H, and &, = H,;. Each of these fields consists of two complex components,
resulting in eight degrees of freedom. The decay rate can be derived by including the matter
contribution to the Kéahler potential:

30\
75 o HOu+ he+ - (3.35)

V2
The dominant contribution to the decay of the light moduli u arises from the Giudice-Masiero
coupling [270], specifically 3aAH, Hyu, as all other couplings are suppressed by mass [277]. Con-

sidering that each field is a complex doublet, the partial widths from each of the four decay channels
contribute, yielding:

9a2)\2 3
m>.
&r v

The present-day radiation content of the Universe can be characterized by the energy density
associated with each relativistic particle species at present. This radiation includes photons and
neutrinos, as well as any additional hidden components referred to as dark radiation (DR):

I'(u—s H,Hy) = (3.36)

Pradiation = pphotzm + Preutrino + PDR (337)
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Figure 3.4: Variations of the reheating temperature (7)) with respect to coefficient a consistent with dark
radiation constraint (ANeg < 0.95) at 95% confidence level.

This can be expressed in terms of an effective number of neutrino species, denoted as Ng:

7 A 4/3
Pradiation = Pphoton 1+ g (ﬁ) Neff . (338)

Any excess radiation can be attributed to the presence of dark radiation (DR), described by:

74\
PDR = Pphoton g (ﬁ) ANeff ) (339)

Here, AN.g = Neg — 3.046 quantifies the change in the effective number of neutrino species. The
value of Neg under the absence of dark radiation is expected to be approximately 3.046, slightly
greater than 3 to account for partial reheating due to e*e™ annihilation. AN can also be expressed
in terms of decay rate channels:

1 1
43 (10.75\? Trpr 43 (1075 \% 1
ANe = — - — : 3.40

T (9*(Tr)) Trsm 7 (g*(Tr)) 72022 (3.40)

Where g,(Tgrh) represents the effective degree of freedom at the time of reheating the Universe.

The measured values of Neg imply a constraint of ANy < 0.95 at the 95% confidence level.
This translates into a bound on the model’s parameters, specifically a- A 2 0.1688. In Fig. 3.3, the
parameter space anticipated by the inflationary analysis falls within the range 0.86 < a < 1. This
interval is consistent with the values predicted by AN.g < 0.95 and aligns with the conditions for
dark radiation. Within this parameter range, we derive tensor-to-scalar ratio values of < 1.4x 1074,
1 x10% < M < 1.3 x 101 GeV, and a soft mass parameter 4.6 x 10° < M,, <1 x 10! GeV.
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The isotropy of the Cosmic Microwave Background (CMB) on large scales can be attributed to
inflation, followed by a reheating period. During this phase, the Universe’s expansion slows down,
and energy is transferred to Standard Model (SM) particles, bringing them into local thermal
equilibrium. In this scenario, the Universe is reheated by a modulus u decaying into SM particles.
The reheating temperature T, as determined by Eq. (3.34) and Eq. (3.40), is defined as:

1/2
T, = /T, = \/344 *(T)) a?\2m3. (3.41)

10.75

For a SUSY scale within the TeV range, the limitation on the reheating temperature is 7, < 1
GeV, corresponding to ¢.(7,) = 224/7, as discussed in Ref [262,271]. In the current model, where
7, ~ 3.2 x 10* implies a SUSY scale of msope > 10 TeV. Consequently, the restriction on the
reheating temperature becomes less stringent in this scenario. For a SUSY scale exceeding 10 TeV,
we observe g,(T,) = 106.75, indicating a reheating temperature of approximately 7, ~ 107 GeV, as
shown in Fig. 3.4.



Chapter 4

On the LHC signatures of SU(5) x U(1)’
F-theory motivated models

4.1 Introduction

Despite its remarkable success, the SM of strong and electroweak interactions leaves numerous
theoretical questions unanswered. Over the past few decades, accumulating evidence has indicated
the need for new theoretical ingredients to account for various phenomena in particle physics and
cosmology. Among its limitations, the minimal SM spectrum lacks a viable candidate for dark
matter, and the exceedingly small neutrino masses present a naturalness challenge. Addressing this
latter issue elegantly, the seesaw mechanism [32] introduces right-handed neutrinos and a new high-
energy scale, offering an explanation for the tiny masses of the three neutrinos and their observed
oscillations.

Notably, this framework aligns neatly with the paradigm of (supersymmetric) GUTSs, which
unify the three fundamental forces at a high GUT scale. Moreover, ongoing neutrino experiments
have hinted at the possible existence of a ’sterile’ neutrino, which could also serve as a viable dark
matter candidate [278,279]. Many other unresolved questions, such as the presence of remnants of
an overarching theory, including leptoquarks, vector-like families, signatures of supersymmetry, and
neutral gauge bosons, are anticipated to find answers through experiments conducted at the Large
Hadron Collider (LHC).

Remarkably, numerous field theory GUTs incorporate most of these novel fields into larger
representations. Furthermore, after spontaneous symmetry breaking occurs, scenarios often emerge
in which additional U(1) factors survive down to low energies, implying the existence of neutral
gauge bosons with masses accessible to ongoing experiments. However, while GUTs featuring these
new characteristics hold significant appeal, they come with trade-offs. Various extra fields, including
heavy gauge bosons and other colored states, contribute to phenomena like fast proton decay and
other rare processes.

In contrast to conventional field theory GUTSs, string theory alternatives are subject to stringent
selection rules and other restrictions. However, they also introduce new mechanisms that, under
specific conditions, have the potential to mitigate many of the problematic states and undesired
features encountered in field theory models. In particular, F-theory models [1306, , 280] have
gained attention for their ability to naturally incorporate such attractive features. These attributes
are attributed to the intrinsic geometry of the compactification manifold and the fluxes that traverse

74
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matter curves, where various supermultiplets are localized.

To elaborate, the geometric properties and the configuration of fluxes can be chosen in a way
that accomplishes several goals simultaneously. They can determine the desired symmetry-breaking
patterns, reproduce the known multiplicity of chiral fermion families, and eliminate the presence of
colored triplets in Higgs representations. Moreover, in F-theory constructions, the gauge symmetry
of the resulting effective field theory model is intricately tied to the geometric structure of the
elliptically fibred internal compactification space. Specifically, the non-abelian part of the gauge
symmetry is associated with the codimension-one singular fibers, while possible abelian and discrete
symmetries are identified in terms of the Mordell-Weil (MW) and Tate-Shafarevish (TS) groups .

In the context of elliptically fibred manifolds, the non-abelian gauge symmetry is described by
a simply laced algebra, typically belonging to Lie groups of type A, D, or E. Notably, the highest
rank corresponds to the exceptional group Eg. Singularities in the fibration correspond to certain
divisors wrapped with 7-branes, which are associated with subgroups of Eg and serve as the GUT
group of the effective theory. Additionally, U(1) symmetries may coexist with the non-abelian
group. The origin of these U(1) symmetries can either arise from the commutant of the GUT group
within Eg or be rooted in the MW and TS groups mentioned earlier.

Among the myriad possibilities, one particularly intriguing scenario involves the existence of
a neutral gauge boson denoted as Z’. This gauge boson is associated with an abelian factor and
exhibits non-universal couplings to quarks and leptons. Importantly, this Z’ boson acquires mass
at the TeV scale. Given that the SM gauge bosons couple universally to quarks and leptons across
the three families, the presence of non-universal couplings would introduce deviations from SM
predictions. Such deviations could be interpreted as compelling evidence for new physics beyond
the SM.

In the context described above, a comprehensive study was introduced in [287], focusing on a
generic class of F-theory semi-local models founded upon the Eg subgroup, specifically SU(5)xU(1)".
Notably, this U(1)" symmetry was chosen to be anomaly-free, allowing for non-universal couplings
to the three chiral families of particles, and leading to a low-energy gauge boson with a mass in the
range of a few TeV. The work also delved into specific properties of representative models within
this framework, particularly concerning new flavor phenomena and, in particular, B-meson physics
as explored by the LHCb experiment [290-292].

The current work extends the previous analysis by conducting a systematic investigation into the
diverse predictions and constraints that apply to all conceivable classes of viable models emerging
from this framework. Initially, models are categorized based on their low-energy spectra and their
behavior with respect to the U(1)" symmetry. Two main classes are identified:

e Minimal MSSM Spectrum Models: This class comprises models with the minimum possible
MSSM spectrum at low energies. Models within this category are further distinguished by
their respective charges under the additional U(1)" symmetry.

e Models with Extra Vector-Like Multiplets: In contrast, this class encompasses effective low-
energy models that include additional MSSM multiplets appearing in vector-like pairs.

The current work primarily focuses on analyzing the constraints imposed by various physical pro-
cesses on the models falling within the first class (i.e., the minimal models). The phenomenological

IFor a recent survey, see, for example, [119]. For earlier F-theory reviews, refer to [144, 146, 147]. For models
involving Mordell-Weil U(1)’s and other related topics, consult references [231]- [286].
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examination of a representative example that includes extra vector-like states is also presented,
while a comprehensive analysis of these models is reserved for future publication.

Within the first category of minimal models, the conditions required for anomaly cancellation
lead to non-universal Z’ couplings to the three families of fermion fields. Consequently, in most
instances, stringent constraints arising from kaon decays suggest a relatively large Z’ gauge boson
mass, rendering it beyond the reach of present-day experiments. Conversely, models that incor-
porate extra vector-like pairs provide a spectrum of possibilities. Viable scenarios exist where the
fermions of the first two generations share identical Z’ couplings. In such cases, the stringent bounds
associated with the Kaon oscillation (K — K0) system can be circumvented, allowing for a Z’ mass
as low as a few TeV.

4.2 Non-universal 7' interactions

In the Standard Model, the neutral gauge boson couplings to fermions with the same electric
charge are equal, resulting in flavor-diagonal tree-level interactions. However, this universality is
not always applicable in models incorporating additional Z’ bosons associated with extra U(1)
factors originating from higher symmetries. When the U(1)" charges of some or all of the three
fermion families differ, it can give rise to significant flavor mixing effects, even at the tree level.
This section delves into the fundamentals of non-universal U(1) symmetries and establishes the
necessary formalism for subsequent discussions.

4.2.1 Generalities and Formalism

To lay the foundation, we start by examining the neutral segment of the Lagrangian, which encom-
passes the interactions of Z’ with fermions in the gauge eigenstates basis [135,293]:

~Zne D ey A+ %J(O) 04 g I (4.1)

Here, A,, denotes the massless photon field, Z° is the neutral gauge boson of the SM, and Z’ is the
novel boson associated with the additional U(1)" gauge symmetry. Furthermore, g and ¢’ represent
the gauge couplings of the weak SU(2) gauge symmetry and the new U(1)" symmetry, respectively.
In a compact notation, cosfy, and sin 6y, are denoted as cy and sy, where 6y, signifies the weak
mixing angle with g = e/ tan y,. The neutral current linked to the Z’ boson can be expressed as:

I = frgs, 1L+ ot IR (4.2)

In this equation, f? (%) signifies a column vector of left (right) chiral fermions of a specific type
(u, d, e, or v) in the gauge basis, and q}L’R are diagonal 3 x 3 matrices representing U(1)" charges.
The chiral fermions in the mass eigenstate basis are denoted as f;, related to gauge eigenstates
through unitary transformations:

f=vif, =Vl fr- (4.3)

The unitary matrices Vy, ,, are responsible for diagonalizing the Yukawa matrices Y}:

Y = v, Y,V (4.4)
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and they contribute to the CKM matrix:
Vera = Va, Vi (4.5)
In the mass eigenbasis, the neutral current (4.2) takes the form:

JH = fiy"Qy, fr + [rRY QSR (4.6)

where @, and @}, are defined as:

Q}L = Vqu}LVJJLL ’ Q}R = Vqu./fRV;R : (47)

In cases where the U(1)" charges in the ¢}, matrix are equal, ¢, effectively becomes the unit
matrix up to a common charge factor. Due to the unitarity of V}’s, the current in (4.6) remains
flavor diagonal. In models featuring family non-universal U(1)" charges, the mixing matrix @}, is
non-diagonal, leading to flavor-violating terms in the effective theory.

4.2.2 Quark sector flavor violation

4.2.2.1 b— sl and Rx anomalies

The potential presence of non-universal Z’ couplings to different fermion families can result in
deviations from SM predictions, potentially leaving discernible signatures in current or upcoming
experiments. The extent of these contributions hinges on several key factors, including the mass
My of the Z' gauge boson, the U(1)" gauge coupling ¢, the U(1)" fermion charges, and the mixing
matrices Vy.

An intriguing case brought to attention by LHCb [292] and BaBar [291] collaborations involves
anomalies observed in B-meson decays, specifically those related to the transition b — sl™l~, where
Il = e, pu,7. Current LHCb measurements of b decays to different lepton pairs indicate possible
deviations from lepton universality. For instance, the analysis of the ¢ invariant mass of the
lepton pairs in the range 1.1 GeV? < ¢? < 6 GeV? for the ratio of the branching ratios Br(B —
K®0+07),0 = p, e yields [292]:

_ Br(B— Kp*tu) ~ (.84 0016 (stat) (4.8)

RK = BT‘(B—>K€+€_) —0.014 (syst)

Similar results for B — K*(892)¢(*¢~ (where K* — Kw), for the same ratio (4.8), are found
to be approximately Ry~ =~ 0.69. Since the SM strictly predicts ng}ﬁ{) = 1, these results strongly
suggest the need to explore scenarios of New Physics (NP) where lepton universality is violated. In
particular, in the case of [ = u, both experimental and theoretical arguments suggest a potential
connection to the muon channel [295-297].

In the SM, the process B — K®[*]~ can only occur at the one-loop level, involving W#* flavor-
changing interactions (see the left panel of Figure 4.1. However, the presence of a Z’ (neutral) gauge
boson with non-universal couplings to fermions can lead to tree-level contributions (right panel of
Figure 4.1), which might explain the observed anomalies.

The effective Hamiltonian that describes this interaction is given by [297]:

A4Gp € * 1 Al 11 1l
- —— (Vi) Z (CYor + Ciloy) (4.9)

Fbsil
v V2 162 k=9,10
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Figure 4.1: Left panel: Example of a Feynman diagram contributing to B® — K*I*[~ in the SM context.
Right panel: Tree level contribution in models with non-universal Z”’s.

Here, OF* represents dimension-6 operators, defined as

Ol = (57" Ppb)(Iul), 6 = (57" Prb)(Iv,l)
05" = (37" Prb)(Iysl), 05" = (57" Pab) (Pyust)

and C} are Wilson coefficients that quantify the interaction strength. Additionally, G denotes the
Fermi coupling constant, and V};, and V}} are elements of the CKM matrix.

The most recent data on Ry ratios can be explained by assuming a negative contribution to
the Wilson coefficient C§** while treating all other Wilson coefficients as negligible or vanishing [295]-
[302]. The current best-fit value is approximately C§* ~ —0.95 £ 0.15.

In the presence of a non-universal Z’ gauge boson, the C§* Wilson coefficient is given by:

V2 1672 ( g )2 (Qa,)23(Qe, )22 (4.10)

O — _
9 AGp €2 \ My Vi Vi

Achieving the desired value for the Cy coeflicient may involve appropriate tuning of the ratio
g'/Mz. However, substantial suppressions can arise from the matrices Q. In any case, the predic-
tions must not conflict with well-known constraints stemming from rare processes, such as mixing
effects in neutral meson systems.

4.2.2.2 Meson mixing

Flavor-changing Z’ interactions within the quark sector can lead to substantial contributions to the
mass splitting in a neutral meson system. A representative illustration is provided in Figure 4.2,
depicting contributions to BY[sb] mixing both in the Standard Model (SM) on the left and at the
tree level in non-universal Z’ models on the right.

For a meson P characterized by quark structure [¢;g;], the impact of Z’ interactions on mass
splitting is described by [293]:

My \>/ ¢ \*1
AMp24\/§GFMpFI2D( _W) (]\32/) gRe[(Q;L)fj] (4.11)
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Figure 4.2: Left figure: Representative box diagram contribute to (B? — B?) mixing in the SM. Right
figure: Tree level contribution in models with non-universal Z’ gauge bosons.

Here, My represents the mass of the W+ gauge bosons, while Mp and Fp denote the mass and
decay constant of the meson P, respectively. Additionally, ¢, is defined as cos 8y, where 0y is the
Weinberg angle.

It’s worth noting that there exist significant uncertainties in the SM calculations of AMp,
primarily stemming from QCD factors and the CKM matrix elements. Nevertheless, experimental
findings suggest that there might still be room for contributions from New Physics (NP).

We will now proceed to examine both theoretical and experimental constraints on P°— P9 meson
systems, which will be crucial for our subsequent analysis.

e BY — BY mixing:

B, mixing can be effectively described by the Lagrangian:

AG R

gNP - _W(vatzy[clfsj:(gL'VubL)Q + h.C.] ) (4'12)

In this equation, CEF represents a Wilson coefficient that alters the Standard Model (SM)
prediction, as indicated by the equation below [303]:

AMP™ = |1+ Cpt JRGEIAMM (4.13)

where RS% = 1.3397 x 1073,
In the context of models featuring non-universal Z’ couplings to fermions, the Wilson coefficient

CEL is expressed as follows:
LL /o 2 Q' )2
oL = < g > dp /23 (4.14)
YAV \ Mz ) (VaVi)?

Here, n'L = ntt(Myz) represents a constant that accounts for renormalization group effects.
This constant has a weak dependency on the My scale, and for our analysis, we assume n** = 0.79
corresponding to My =1 TeV.

For the Standard Model contribution AMSM | we utilize the result obtained in Ref. [305]:

AMZM = (185115) ps™

When compared to the experimental limit [306], AM™P = (17.75710551) ps~!, this demonstrates
that a small positive CLF is permissible according to Eq (4.13).
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o K% — K9 mixing :
Standard Model computations for the mass splitting in the neutral Kaon system encompass a
blend of short-distance and long-distance effects, expressed as [307]:

AMM = (0.8 £ 0.1)AM ™ (4.15)

where experimental data are given by [300]:

AME? ~3.482 x 107 GeV.

This slight deviation between SM computations and experimental observations can be accounted
for by introducing New Physics (NP) effects into the analysis. Therefore, following (4.15), the
contribution of a non-universal Z’' boson to AMg must satisfy the following constraint [308]:

AMRPPY <02 x AMZ? (4.16)

where AMEYY can be calculated directly using the formula (4.11).

e D’ — DO mixing:

Neutral D mesons are composed of up-type quarks, DY :— [cui]. Experimental measurements
for D° — DO oscillations are sensitive to the ratio:

AM
ap=—2 (4.17)
I'p
with the observed value for the ratio being xp ~ 0.32 [309]. Given the substantial theoretical

and experimental uncertainties in this process, we will consider NP contributions to xp less than
or equal to the experimental value.

4.2.2.3 Leptonic Meson Decays : P’ — [;];

In the SM, the decay of a neutral meson P into a lepton (I;) and its anti-lepton (I;) occurs at the
one-loop level. In the SM, these processes are suppressed due to the Glashow-Iliopoulos-Maiani
(GIM) cancellation mechanism [310]. However, in non-universal Z’ models, significantly larger tree-
level contributions may be permitted. The decay width induced by Z’ interactions can be expressed
in terms of the SM decay P~ — [;i; as [293]:

o MM —am? 4
P(P° 5 1) ~ gD > ) WPV m“<g ) (M> (@ )@ )il s (415)

|V’5KM|2 (‘]\412D _ mi)z MZ’ g qr er

Here, the indices j, k refer to the quark structure [g;gy| of the meson P~ involved in the SM
interaction. Similarly, the indices m,n are used to denote the quark structure of the neutral meson
PY. For all relevant experimental constraints related to these interactions, you can refer to [300].

4.2.3 Lepton flavour violation

The lepton flavor violation processes involving decays of neutral mesons and radiative lepton decays
can be significantly affected by non-universal Z’ interactions. Here are the expressions for various
processes and their associated constraints:
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Figure 4.3: Left side: Contribution of a non-universal Z’' boson into the magnetic moment of (anti)muon.
Right side: Contribution to the decay, u~ — e~ . Any of the three (anti)leptons (j = e, u,7) could run
into the loop due to the non-universal charges under the extra U(1) symmetry.

4.2.3.1 P’ — i

The decay width due to tree-level Z’ contributions is given by:

_ L, =Lz (¢ \'(Mz\", ,
(P 1) = 4T (57) (*2) 1@l (4.19)

As previously mentioned, the indices k, r denotes the quark structure [g.gx] of the meson involved
in the SM interaction, while generation indices m,n refer to the quark structure of P°.

4.2.3.2 (9—-2),

The muon’s anomalous magnetic moment, represented as a,, is a meticulously measured physical
parameter. Nevertheless, an intriguing inconsistency arises when comparing experimental measure-
ments to the precise computations of the Standard Model (SM), as documented in [306]:

Aay, = af™ — a7 = 261(63)(48) x 107", (4.20)

I

where a3 = 116591830(1)(40)(26) x 10~'". This dissimilarity, referred to as Aay, hints at the
potential influence of New Physics (NP). When considering a neutral Z’ boson, loop diagrams akin
to the one depicted on the left side of Figure 4.3 contribute to the anomalous magnetic moment of
the muon, Aq,. Collectively, the 1-loop contribution originating from non-universal Z’ bosons is
articulated in [311] as:

) m2 g/ 2 3 ,
s == () QLI PFGE) (1.21)

J=1

where xi' = (my,/Mz/)?, and the loop function F(z) is characterized by:

 bat — 142 4 392® — 38z — 1827 In(z) + 8
B 12(1 — x)* '

F(z) (4.22)
In our analysis, it is imperative to ensure that Aai " remains less than or equal to the experimental
value Aa,. This comparison’s imposed constraints aid in defining the parameter space of the non-
universal Z’ model while considering its compatibility with experimental observations. For visual
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reference, Figure 4.3 illustrates the contributions of a non-universal Z’ boson to the muon’s magnetic
moment and the radiative decay u~ — e~ 7y, emphasizing that any of the three leptons (j = e, u, 7)
could engage in the loop due to non-universal charges under the extra U(1) symmetry.

A flavor-violating Z’ boson also contributes to radiative decays of the form [; — [;y. Figure 4.3
(right) displays the 1-loop diagram for the strongly constrained decay pu~ — e~y. When we solely
consider contributions from the Z’ boson, the branching ratio for these interactions can be expressed
using [312]:

2

Br(l; — ) = — <mli—m’f> @) [12(QL)1(QL)gi] (4.23)

167 Fli my, 7
Here, the index f = 1,2, 3 corresponds to the lepton circulating within the loop, I';, represents the
total decay width of the lepton [;, and ys is a loop function that can be found in [312]. The most

recent experimental constraints on these processes are:
Br(u —ey) <42x 107" Br(r = ey) <33 x107® and Br(r — puy) <44 x107% .

It is expected that the most influential constraints will emerge from the muon decay process.

A lepton-flavor-violating Z " boson facilitates tree-level three-body leptonic decays, characterized by
the form l; — [;l;l;. The branching ratio for these decays is described by the following expression

[313]:

_ mp 7 \!
Br(l; — Lil;ly) = 7687TI§F1. ( My) Q)i (QL il (4.24)

Here, it is important to note that the masses of the produced leptons have been omitted. For decays
of the form l; — [;l;l; with k # j, the branching ratio is given by the following equation:

B m5, g/ 4
Bl 1) = Jogoa (17 ) Q@)+ @@l (429

The primary constraint in this context arises from the muon decay process u~ — e“e~et. The
branching ratio for this decay is constrained to be less than 107! at a 90% confidence level [314].

4.3 Non-universal U(1)" models from F-theory

We now shift our focus to the realm of F-theory constructions that accommodate abelian factors
bearing non-universal couplings with the three families of the Standard Model. Specifically, we
center our attention on constructions based on an elliptically fibred compact space, with Fg serv-
ing as the maximal singularity. Within this framework, we introduce a divisor in the internal
manifold where the associated non-abelian gauge symmetry is SU(5). Under this choice, the Eg
decomposition takes the form:
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Es > SU(5) x SU(5), . (4.26)

In our analysis, we will focus on local constructions and describe the resultant effective theory
utilizing the Higgs bundle picture. This approach relies on adjoint scalars, with only the Cartan
generators acquiring non-vanishing vacuum expectation values (VEVs). It’s worth noting that for
non-diagonal generalizations, known as “T-branes,” you can refer to [315].

In the local picture, we work with spectral data, including eigenvalues and eigenvectors. For the
SU(5) case, this data corresponds to a fifth-degree polynomial:

5
Gs = bpt" " =bot® + byt + byt + bst® + byt + b5 =0 . (4.27)
k=0

This polynomial defines the spectral cover for the fundamental representation of SU(5). Fur-
thermore, as a general property of SU(n) groups, the five roots:

Q = {t17t27t37t4a tS} 5 (428)

must sum to zero:
5
~b = t;=0. (4.29)
i=1

The remaining coefficients, generically denoted as b for k = 0,2, 3,4, 5, are typically non-zero and
carry information about the geometric properties of the internal manifold. The zero-mode spectrum
of the effective low-energy theory arises from the decomposition of the Fg adjoint with respect to
the breaking pattern (4.26), which decomposes as follows:

248 — (24,1) +(1,24) + (10,5) + (5,10) + (5,10) |+ (10,5) . (4.30)

The ordinary matter and Higgs fields, including the potential presence of singlets in the spec-
trum, are contained within the box on the right-hand side of (4.30). These fields transform as
bi-fundamental representations with respect to the two SU(5) groups.

For our analysis, we work within the limit where the perpendicular symmetry SU(5), reduces
down to the Cartan subalgebra following the breaking pattern SU(5), — U(1)4. In this simplified
scenario, the GUT representations are characterized by specific combinations of the five weights
given in (4.28). The five 10-plets, in particular, are described by the parameters ¢;, 5, while
the five-plets, originally transforming as decuplets under the second SU(5), , are represented by the
combinations t;+t;. In the geometric context, these SU(5) GUT representations reside on Riemann
surfaces known as "matter curves,” denoted as ¥, formed by the intersections of the SU(5) GUT
divisor with ”perpendicular” 7-branes. These properties are summarized in the following notation:

Eloti : 10ti71_0*ti7 25ti+t]‘ : Sti+tj 75*ti7t]‘7 Elti—t]- : 1ti7tj ' (431>

As established earlier, the weights ;-1 2345 associated with the SU(5), group are the roots of the
polynomial (4.27). Consequently, they can be expressed as functions of the coefficients by, which
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encode the geometric properties of the compactification manifold. In our subsequent analysis, we
will leverage topological invariant quantities and flux data to determine the spectrum and parameter
space of the effective low-energy models under consideration.

We commence our exploration by identifying the zero-mode spectrum within the context we’ve
outlined. Utilizing the spectral cover description as outlined in equations (4.27-4.31), we can deter-
mine the various matter curves within the theory that accommodate the SU(5) GUT multiplets.
These matter curves are governed by the following equations:

For Yy,

5
P10 = b5NHt1:O s (432)

1=1

For %5, iyt

P5 = b3by — bobsbs + bob2 ~ [ [ (t: + ;) =0 . (4.33)
i#j

In scenarios where all five roots t; of the polynomial (4.27) are distinct and can be expressed
as holomorphic functions of the coefficients b, we observe that there can be five matter curves
accommodating the tenplets (decuplets) and ten matter curves for the fiveplets (quintuplets). This
implies that the polynomial (4.27) could be factored as a product [[7_, (ast;+5;), with the coefficients
a; and f3; carrying the topological properties of the manifolds while remaining in the same field as
the original by.

However, in the generic case, not all five solutions t;(b;) belong to the same field as by. Con-
sequently, there exist monodromy relations among subsets of the roots t¢;, reducing the number of
independent matter curves. Depending on the specific geometric properties of the compactification
manifold, various factorizations of the spectral cover polynomial &5 can occur. These factorizations
are parametrized by the Cartan subalgebra modulo the Weyl group W (SU(5), ). In essence, generic
solutions involve branch cuts, and some roots become indistinguishable.

The simplest case arises when two of these roots are subject to a Zs monodromy, given by:

ZQ : tl = tg . (434)

Remarkably, the Z; monodromy has immediate implications in the effective field theory model.
It allows for the tree-level coupling in the superpotential:

104, 10,5, 1, 22 104,104,5_0, , (4.35)

which can induce a heavy top-quark mass in line with the requirements of low-energy phe-
nomenology.

Returning to the spectral cover description under the Z; monodromy, the polynomial (4.27)
factorizes as follows:

%5 = (Cll + CLgt + a3t2)(a4 + CL7t) ((15 + agt) (CL6 + Clgt) > (436)
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ay as as ay as ag ay as Qg C
n—20—x n-—G-=-x N=X ~Gtxr —Gatxs —CGtxe |[xr Xs Xo n—2x

Table 4.1: Homology classes of the coefficients a; and ¢. Note that x = x5 + x7 + x9 where x7, xs, X9 are
the unspecified homologies of the coefficients a5, a7 and ag respectively.

where the existence of the second-degree polynomial is not factorizable as presented earlier,
indicating that the corresponding roots t; and ¢, are indeed connected by the Z; monodromy.

We can establish the relationships between the coefficients b, and a; by comparing the spectral
polynomial in (4.27). Consequently, we obtain the following relations:

by = aszaragay ,
bl = azagarasg + a3a409ag + A2a70A9A8 + asasa7ag ,

by = azasagar + asagagar + as05a9a7 + a108G9a7 + A3G4aA608 + A3G4A509 + A2Q40809 ,

(4.37)
by = asasasas + axasa7a6 + a204a306 + a107a806 + Q2040509 + A1A50709 + A1A408a9 |
b4 = A204050¢ —+ a1a5070¢ -+ a1a40a80¢ + a1a40a5ag9 ,
bs = ajaqasag .
We impose the SU(5) constraint b; = 0 under the assumption [167]:
as = —c(agarag + asarag + asagag), az = caragag, (4.38)

where we introduce a new holomorphic section ¢. Substituting these into (4.37), we obtain:
bo = c azazag
by = ag (a1a7as — (a2a3 + asasasar + a3a3) agc) — cagajag — cagar (asar + asas) agas
bz = ay (agaras + (asar + agag) ag) — (asar + asas) (agar + agag) (agas + asag) ¢ , (4.39)
by = ay (agagas + as (agar + agag)) — agasag (agaras + (asay + asag) ag) ¢
bs = ai1aqasa6 .

The equations for the tenplets and fiveplets can now be expressed in terms of the holomorphic
sections a; and c. For the tenplets, we end up with four factors:

P10 =a; X a4 X as X g, (440)

which correspond to four matter curves accommodating the tenplets of SU(5). Substituting (4.39)
into Ps factorizes the equation into seven factors, corresponding to seven distinct fiveplets:
Ps = (asar + agag) X (agar + asag) X (agag + asag)
X (agarag + asagas + asarag) X (a; — asagarCc — a4agasC) (4.41)
X (a1 — a5a6a7¢ — a4a5a9¢) X (a1 — A4a6a8C — A4a509C) .

Finally, we compute the homologies of the sections a;’s and ¢, as well as the homologies of each
matter curve, by using the known homologies of the by coefficients:

b = (6 — k)er —t =1 — ke, (4.42)
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Matter Curve Y10, 10, 10, Y10, s, s, s, s, s 56 s,
Weights +t; +to E=2 =7 +2t +(t + t3) +(t + ta) +(ty + t5) +(ts +t4) +(t3 + t5) +(ty + t5)
Def. equation a ay as ag agarag + ... a; — ... a; — ... a; — ... asar + ... agar + ... agag + ...
Homology N—2C0—X X7—C Xs—C X9—Cp X —C n—2c—X N—200—XxX N—2c0—X Xr+Xs—C Xrt+Xo—C Xs+Xo—Ci

Table 4.2: Matter curves along with their U(1), weights (+ refer to 10/10 and 5/5 respectively), their
defining equation and the corresponding homology class.

where c; is the first Chern class of the tangent bundle to Sgyr, —t is the first Chern class of
the normal bundle to Sgyr, and n = 6¢; — t. There are more a’s than b’s, so three homologies,
la7] = x7, [as] = xs, and [ag] = X9, remain unspecified, as presented in Table 4.1.

4.3.1 SU(5) x U(1) in the spectral cover description

Our objective is to investigate models based on SU(5) x U(1)’, with a particular focus on the role
of the non-universal U(1)" symmetry, which needs to be consistently incorporated into the covering
group Eg. Naturally, the U(1)" symmetry should be a linear combination of the abelian factors
present in SU(5),. A convenient abelian basis for expressing the desired U(1)" symmetry arises
through the following sequence of symmetry breaking:

Es D EgxSU(3)L D EsxU(l)L x U(1)}
S SO(10) x U(1)y x U(1), x U(1),
D SUB)gur x U(1)y xU(1)y x U(1)L x U(1)',.

Subsequently, the Cartan generators corresponding to the four U(1) factors are expressed as:

1
Q| = §diag(1, —1,0,0,0),

1
= ——diag(1,1,-2,0,0),
QL W g( )
1
= —_diag(1,1,1,-3,0),
Qd) 2\/6 g( )
Q L (1,1,1,1,—4)
= 13 )by by by T X
AT

The monodromy t; <> t5 imposed in the previous section eliminates the abelian factor corre-
sponding to ', when t; # to. As a result, we are left with the remaining three SU(5), generators:

Qur, Qu, Oy, (4.43)

as given in the above relations. Subsequently, we assume that a low-energy U(1)’ is generated by a
linear combination of the unbroken U(1)’s:

Q' =c1Q1 + 2Qy + c3Qy (4.44)

Concerning the coefficients ¢y, ¢, c3, we adopt the following normalization condition:
atcta=1, (4.45)

while further constraints will be imposed through the application of anomaly cancellation conditions.
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Matter Curve Q' Ny M SM Content
2101 1, 10\/§Cl+5*ég02+3mc3 —N my | miQ + (my + N)u + (my — N)e¢
I —20\/§c1+5%{)6@+3\/ﬁc;3 N, My | maQ + (mg — No)u + (mg + Ny)e
2103 44, W N3 ms | mg@ + (m3 — Ng)u® + (mg3 + Ng)e®
2104 215 —\/gc;g Ny my | maQ + (my — No)u® + (myg + Ny)e®
251,(i2t1) _\C/_lg - \C/_% — \;%0 N My M;de + (M, + N)Z
52,£(t1+13) 5\/&1_5\/?,652_3@% —N My M2§ + (M — N@
E53,i(t1+t4) _Qf}g + \C/_% - \;%0 —N M; Msde + (Mg — N)L
S —10\/§cl—5g{)6c2+9\/ﬁc3 -N M, ]\_@ﬁ + (My; — N)L B
Z55,:t(t3+t4) \C/_lg + \C/_% - \;}%0 N7+ Ng | M5 Msde + (M5 + N7+ Ng)L
256,i(t3+t5) 20\/§clf5\ég@+9\/ﬁc;3 Nz + Ny | M Mﬁﬁ—i— (Mg + N+ + Ng)f
57,4 (t4+15) W Ng + No | My Myde + (M7 + Ng + Ny)L

Table 4.3: Matter curves along with their U(1)" charges, flux data and the corresponding SM content.
Note that N = Ny + Ng + Ny.

4.3.2 The Flux mechanism

Let’s now delve into the process of symmetry breaking. In F-theory, the generation of observed
chirality in the massless spectrum is achieved through the use of fluxes. More specifically, we can
consider two distinct categories of fluxes. Initially, a flux is introduced along a U(1),, and its
geometric constraint along a particular matter curve X, is parameterized by an integer value.
Consequently, the chiralities of the SU(5) representations are defined as follows:

These integers M; and m; are subject to the chirality condition:
> omi=-) M;=3 (4.48)
i J

This condition aligns with the anomaly conditions of the SM [316,317].

Next, we introduce a flux in the hypercharge direction, denoted as Fy, to break SU(5)gyr down
to the SM gauge group. This“hyperflux” is also responsible for splitting SU(5) representations. If
we use integers IV; ; to represent hyperfluxes penetrating certain matter curves, the combined effect
of these two types of fluxes on the 10-plets and 5-plets is described as follows

10tj = n(371)7% — 7”L(371)% = mj; — Nj , (449)

N — Ny, = mj+ N
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= M,

5 . n(svl),% - n(371)+
" raay,, — e

N= W=

It’s worth noting that the Higgs field resides on a matter curve of the type described in (4.50).
This arrangement elegantly resolves the doublet-triplet splitting problem. By imposing M; = 0, we
eliminate the color triplet, and by selecting N; # 0, we ensure the existence of massless doublets in
the low-energy spectrum.

The U(1)y flux is subject to specific conditions to prevent a heavy Green-Schwarz mass for the
corresponding gauge boson. These conditions are expressed as:

9y-n:%y-c1:(],

Additionally, we assume that Fy - x; = N; (with ¢ = 7,8,9) and correspondingly Fy - x = N,
where N = N7; 4+ Ng + Ny. These conditions allow us to determine the effect of hyperflux on each
matter curve. While m; and M; are constrained by the chirality condition (4.48), the hyperflux
integers N7gg9 remain as free parameters of the theory since they are related to the undetermined
homologies x7.3.9-

Table 5.1 summarizes the flux data and the SM content of each matter curve. It also includes
the charges of the remaining U(1)" symmetry, which are functions of the coefficients ¢ 23 and can
be computed by applying anomaly cancellation conditions.

Additionally, there are singlet fields, as defined in (4.31), which play a crucial role in constructing
realistic F-theory models. In this framework, these singlet states are parameterized by the vanishing
combination +(t; —t;) = 0,4 # j, due to the Z; monodromy. This results in twelve sing

lets denoted as 6;;. Their U(1)" charges and multiplicities are collectively presented in the
following table:

Singlet Fields  Weights (@) Multiplicity
013, (031) +(t1 —t3) i@ Mz, (Ms31)
014, (041) +(t1 —ta) i% My, (M)
015, (051) +(t1 —t5) £ (2v3c1 + V6ea +3v10c3)  Mis, (Ms1)
034, (043) *(t3 — t4) i% M3y, (My3)
035, (053) +(ts —t5) +75 (—4v3cr + V6ea + 3v10c3)  Mss, (Ms3)
045, (054) +(ts —ts5) +1 (V10c3 — V6es) Mys, (Msy)

Table 4.4: Singlet fields 6;; along with their corresponding U(1)" charges and multiplicities M;j. The
”(—)” sign on the weights and charges refers to the singlets in the parentheses.

4.3.3 Anomaly cancellation conditions

In the preceding sections, we provided a comprehensive exposition of the F-SU(5) GUT augmented
with a flavor-dependent U(1)" extension. This additional abelian factor is intricately embedded
within the framework of SU(5), D Es. For the effective theory to maintain renormalizability and
UV completeness, it is imperative that the U(1)" extension adheres to anomaly-free constraints.
These constraints exert considerable influence on the U(1)’ charges present in the particle spectrum
and consequently on the coefficients ¢; defining the linear combination in (4.44).
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This section is dedicated to the rigorous derivation of the anomaly cancellation conditions,
which will help us ascertain the suitable linear combinations (4.44). These conditions will not only
specify the permissible U(1)" charge assignments for the zero-mode spectrum but also distinguish
various low-energy models, each capable of making distinct predictions that can be tested against
experimental data.

While the well-established MSSM anomaly cancellation conditions align with the chirality condi-
tion (4.48), enforced by the fluxes, we must also consider additional contributions to gauge anoma-
lies stemming from the new U(1)’ factor. To seamlessly integrate this novel abelian factor into the
effective theory, we need to address six distinct anomaly conditions:

331 SU(3)cSU(3)cU(1) (4.51)

oy SU(2)LSU2) U1 (4.52)

Hyyv1 U)yU)yU(1) (4.53)
gy - UQ)yUQ)U) (4.54)
i 2 UQ)'U@)'U@) (4.55)

de  Gauge Gravity Anomaly . (4.56)

With the data from Table 5.1, we can straightforwardly compute the anomaly conditions (4.51-
4.56). Analytical expressions for these conditions are provided in Appendix D.1. Notably, we find
that oo = 331 = dyy1 = &, where & is contingent upon M;, m;, Ny, and linearly depends on
¢123. On the other hand, the mixed &y, anomaly does not exhibit linearity with respect to ¢j23
and relies solely on the hyperflux integers Nj.

The cubic anomaly (/117) and gravitational anomaly (/) hinge exclusively on the U(1)" charges
(and flux integers), prompting the involvement of singlet fields. The final terms in (D.3) and (D.2)
reveal the contribution stemming from these singlets. To ensure that their contribution to the
anomalies consistently cancels out, we can operate under the assumption that singlet fields always
manifest in pairs (M;; = Mj;) due to the property Q}; = —Q’;.

4.3.4 Solution Strategy

The anomaly conditions presented above involve intricate dependencies on the ¢; coefficients, as well
as the flux integers m,, M;, and Nj. To determine the ¢; values, our first task is to address the flux
integers. The precise configuration of the particle spectrum in this framework hinges on the specific
choices made for these flux parameters. While there is some flexibility in selecting and distributing
generations across different matter curves, certain phenomenological considerations can guide our
decisions.

For instance, ensuring a tree-level top Yukawa coupling implies that the top quark should be
localized on the 10; matter curve (as indicated in Table 5.1), and the MSSM up-Higgs doublet
should be placed at 5;. This is due to the Zs monodromy, which allows for the only renormalizable
top-like operator of the form: 10105 _9;, = 10,10:5;. Consequently, we arrive at the following
conditions for some of the flux integers:

Furthermore, resolving the doublet-triplet splitting problem necessitates that:

[N7| + [Ns| + [No| # 0. (4.58)
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We can introduce additional constraints by demanding specific properties within the effective
model and a predefined zero-mode spectrum. In the ensuing exploration, we will divide our search
into two primary directions: minimal models that exclusively encompass the MSSM spectrum
(without exotics) and models featuring vector-like pairs.

For each of these scenarios, we will impose constraints on the fluxes and subsequently search for
all potential combinations of flux integers that satisfy these constraints. Subsequently, each set of
flux solutions will be subjected to the anomaly conditions (D.1-D.3), and we will verify whether a
viable solution for the ¢; coefficients exists. Furthermore, each solution for the ¢; coefficients must
adhere to the normalization condition (4.45).

4.4 Models with MSSM spectrum

Our exploration begins with a straightforward scenario, focusing on models that incorporate the
MSSM spectrum alongside pairs of conjugate singlet fields. It is important to underscore that we
ensure the inclusion of three chiral families in the quarks and leptons of the MSSM spectrum by
upholding the chirality condition (4.48).

In addition to the conditions (4.57) and (4.58), we introduce the following assumption:

M; =0, N =1. (4.59)

This strategic choice prevents the introduction of exotic states, as only H, remains as an MSSM
state within the 5; matter curve. Furthermore, ensuring the absence of exotics imposes the following
conditions:

Subsequently, we delve into the flux parameter space to identify combinations of m;, M;, and
Ny that comply with the conditions (4.48), (4.57), (4.58), (4.59), and (4.60). We allow the flux
parameters to vary within the range of [—3, 3].

Our comprehensive search reveals fifty-four sets of integer flux values that conform to all the
criteria outlined for the MSSM spectrum, including the tree-level top term. Out of these fifty-four
flux solutions, only six yield a solution for the coefficients ¢; with equal pairs of singlets denoted as
M;; = Mj,;. This specific category of solutions is elaborated upon in Table 4.5, and the corresponding
spectrum of models is presented in Table 4.6. These models are identified as Class A.

Model | mqy mg m3g myg | My My Mg My M; Mg M;| N7 Ng Ng | 1 Co c3
At 1 2 0 0|0 a4 0 0o -1 1 0|1 0 0|0 -3/ L/
A2 |1 0 2 0,0 0 -1 0 -1 0 1|0 1 0|5 -5z -3
A3 |1 0 0 2|0 0 0 -1 0 -1 1|0 0 1] _@ 0
A4 |1 0 0 2[0 0 0 0o 1 4 a0 0 1|k /2 o0
A5 |1 0 2 0,0 0 0 0 -1 -1 1|0 1 0|5 -5z -3
A6 |1 2 o0 OO0 0O O 0 -1 -1 1|1 0 0|0 -—1/3

Table 4.5: MSSM flux solutions along with the resulting ¢; ’s. For this class of models (Class A), singlets
come in pairs (M;; = Mj;).
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Model A1 Model A2 Model A3 Model A4 Model A5 Model A6

Q' SM Q' SM Q' SM Q SM Q' SM Q' SM

0 Q + 2u° 0 Q + 2u° 0 Q + 2u¢ 0 Q + 2u° 0 Q + 2u° 0 Q + 2u°

0 2Q+wu+3e || -1/2 - -1/2 - -1/2 - -1/2 - 0 2Q + u®+ 3e°
1/2 - 0 2Q+u+3e | 1/2 - 1/2 - 0 2Q+u+3e | 1/2 -
-1/2 - 1/2 - 0 2Q + u®+ 3e° 0  2Q+u+3e | 1/2 - -1/2 -

0 H, 0 H, 0 H, 0 H, 0 H, 0 H,

0 d°+2L -1/2 L -1/2 L -1/2 L -1/2 L 0 L
1/2 L 0 d° + 2L 1/2 L 1/2 L 0 L 1/2 L
-1/2 L 1/2 L 0 d°+2L 0 L 1/2 L -1/2 L
1/2 d° -1/2 d° 0 - 0 d°+ L -1/2 d° 1/2 d°
-1/2 de 0 - -1/2 d° -1/2 d° 0 d°+ L -1/2 d°

0 1/2 de 1/2 d° 1/2 d° 1/2 de 0 d°+ L

Table 4.6: Models with MSSM spectrum plus pairs of singlet fields (M;; = M;;).

It’s important to note that in all the models discussed above, the SM states share identical
charges under the additional U(1)’, differing only in how these SM states are distributed across
various matter curves. Across all scenarios, we anticipate similar implications at low energy levels.

However, if we relax the constraint of M;; = Mj; and allow for more general multiplicities for
the singlets, we encounter solutions for an additional forty-eight sets of fluxes. This expansion
leads to the emergence of three new classes, designated as Class B, Class C, and Class D, each
offering consistent solutions. Notably, each class encompasses various flux and ¢; solutions that
yield identical Q)" charges. The specific models within a class vary in terms of how the SM fields
are distributed across the matter curves.

A selection of representative solutions from each class is presented in Table 4.7, while the corre-
sponding models can be found in Table 4.8. For a comprehensive inventory of all the flux solutions,
along with their associated charges and singlet spectrum, please refer to Appendix D.2.

Model | mqy mo m3 myg | My My Mg My Ms; Mg M; | N7 Ng Ny cl Co c3
B7 |1 0 1 1[0 -1 0 0 -1 0 -1|0 1 o]-¥% 1/s _1/3
c8 (1 0 0 20 0 -1 0 0 -1 -1[0 0 1]|-=¥% %@ =
D9 |1 1 0o 1/0 0 0 0 -1 -1 1|0 0 1 %\/g g\@ -3

Table 4.7: MSSM flux solutions along with the corresponding ¢; ’s for a general singlet spectrum.
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Crurve Model B7 Model C8 Model D9
V15Q' SM V15Q SM V10Q SM

104 -1 Q + 2u° 1/4 Q + 2u° 3/4 Q + 2u°
109 3/2 - 3/2 - -1/2 Q+ut+ef
105 -1 Q + 2e° -9/4 - -7/4 -
104 3/2 Q + u’ + €° /4 2Q + u® + 3e° 3/4 Q + 2e°
51 2 H, -1/2 H, -3/2 H,
52 1/2 d°+2L 7/4 L 1/4 L
53 -2 L -2 d®+ 2L -1 L
54 1/2 L 1/2 L 3/2 L
55 1/2 d° -3/4 - -9/4 d°+ L
56 3 d° 7/4 d° 1/4 d°
57 1/2 - -2 d° -1 d°

Table 4.8: MSSM like models accompanied by a general singlet spectrum.

Turning our attention to the observed patterns in the previously discussed models, a notable
trend emerges. In all these models, one of the tenplets, specifically 105, 103, or 104, consistently
acquires an equivalent U(1)" charge as the 10; matter curve, which is home to the top quark.
Consequently, at least one of the lightest left-handed quarks shares an identical ()’ charge with the
top quark. This alignment suggests that flavor processes associated with these two quark families
are likely to be suppressed.

Moving forward, we explore various aspects of the models’ phenomenology. Initially, we list all
possible SU(5) x U(1)" invariant tree-level Yukawa terms:

e For the renormalizable top-Yukawa type operator:

1011045 (4.61)

This represents the sole allowable tree-level operator for the top quark, as dictated by the t;
weights (see Tables 4.7 and 4.8), thanks to the presence of the Z; monodromy.
e For renormalizable bottom-type quarks operators:

1015257, 10153567 1015455, 1025354, 1035254, 1045253. (462)

The presence of tree-level bottom and/or R-parity violation (RPV) terms in the models hinges
on the specific distribution of SM states among the various matter curves.

4.4.1 Phenomenological Analysis

Thus far, we have identified a limited number of models that exhibit promising low-energy predic-
tions. In the subsequent part of this section, our focus will be directed toward Model D9. The
detailed implications of the remaining models will be explored in the Appendix.

For Model D9, the specifics regarding the fermion sectors can be found in Table 4.8, while
additional information about the singlet sector is available in Appendix D.2. In our pursuit of
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realistic fermion hierarchies, we adopt the following distribution of the MSSM spectrum across
various matter curves:

10 — Q3 +uy3, 100 — Q1 +uj +ef, 104 — Qo+ €53,

51—>Hu, 52—>Hd, 53%[/3, 54—>L2, 55—)d§+L1, 56—>d§, 57—>d§,

where the indices (1, 2, 3) on the SM states denote generation.
Top Sector
The primary contributions to the up-type quarks arise from the following superpotential terms:

W D yt10110151 + %10110251@13 + %10110451915 + %
Ya

15102105,6%; + %10110251915953 + %10210251915953913 ,

102 10451‘913915
+

where y;’s are coefficients of coupling constants, and A represents a characteristic high-energy
scale of the theory. These operators result in the following mass texture:

Y1935 + Y6¥15953013  ysthsths v1vhs + ystisUss
M, = vy Y1ths + ys¥150Us3 YoU1s EYy , (4.63)
y1U13 + ysU15053 Y215 Yt

where v, = (H,), ¥;; = (0;;)/A, and € < 1 serves as a suppression factor. This factor captures
local effects of Yukawa couplings stemming from a common tree-level operator [318-320]. The
matrix exhibits the appropriate structure to account for the hierarchy observed in the top sector.
Bottom Sector

The down-type quarks in this model receive contributions from both tree-level and non-renormalizable
operators. The dominant terms are as follows:

I K [ — K R — [ K. R —
W D 10,5759 + Kl1015552953 + f1015652943 + %1025752913 + A—‘;1025652913943

5 6 s L8 10,56520146%, +

A2 A? A3 A3
K _ K _ K _ K _
+ %1045552913 + ﬁ1045652913945 + ﬁ1045552915953 + £1045652015045953

Rg

1095759015055 + A

where x; and g, represent the coefficients of coupling constants. These operators contribute to
the following down quark mass matrix:

ksUs3013 + ff7191519§3 K1oUh3 + Ki2¥15U53 K1Us3
My =vq | kaV1303 + k14035 K11013045 + k1301505053 Kalas , (4.64)
k313 + KeU15Us53 KoU1s5 Yo

where vy = (Hy) represents the vacuum expectation value of the down-type MSSM Higgs. It’s
important to note that this matrix is subject to corrections from higher-order terms, and due to
the contribution of numerous operators, we anticipate significant mixing effects.
Charged Lepton Sector
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In the current model, when flux penetrates the various matter curves, the SM generations are
distributed across different matter curves. Consequently, down-type quarks and the charged lepton
sectors typically arise from different couplings.

However, in this model, the shared operators between the bottom and charged lepton sectors
are those previously listed in (4.64) with couplings ks, K7, K19, and ki2. All other contributions
originate from the operators:

_ A _ A - A -
W D y;1045352 + KI1025452943 + KZ1025352953 + Kg1045452945 ; (4.65)

where y, represents a tree-level Yukawa coefficient, \; denotes coupling constants, and n < 1
encapsulates the effects of local tree-level Yukawa couplings. Collectively, these operators contribute
to the following mass texture for the charged leptons in the model:

KsUs3013 + 57791575%3 AMUaz AoUss
M, = vq Koz + k12015053 As¥as  Nyr . (4.66)
KU1z + k12015053 As¥as Y-

The p-term
The bilinear term 5,5, does not possess invariance under the additional U(1)" symmetry. How-
ever, the pu-term is generated dynamically through the renormalizable operator:

l€5153013 — KJ<(913>H“HC[ = uHqu . (467)

There are no specific constraints imposed on the VEV of the singlet field 6,5. Therefore, proper
tuning of the values of  and (f;3) can lead to an acceptable p-parameter, typically around the TeV
scale. Consequently, the singlet field 63, which also contributes to the quarks and charged lepton
sectors, must acquire a VEV at an energy scale near the TeV region.

It’s also worth noting that some of the singlet fields couple to the left-handed neutrinos and
can potentially serve as their right-handed partners. In particular, as suggested in [280], the six-
dimensional massive KK-modes corresponding to the neutral singlets identified by the Z5 symmetry
015 = 05 can be associated with 615 — v¢ and 6y; — v¢, allowing for a Majorana mass term
Myvev¢. While further exploration of this concept is beyond the scope of this discussion, related
phenomenological analyses can be found in [321].

CKM matrix

The fermion mass matrices obtained thus far can be diagonalized through unitary matrices
V%,. The various coupling constants and VEVs can be adjusted to ensure that the diagonal mass
matrices satisfy the appropriate mass relations at the GUT scale. For this analysis, we utilize the
Renormalization Group Equation (RGE) results for a large tan = v, /vy scenario as provided in
Ref. [322]. Additionally, the combination V,,, VdTL must closely resemble the CKM matrix.

Using a set of natural numerical values:

ki~ 1, Y1 =ys =ys =y = 25yo = 25y3 ~ 0.5, e = 107*, 3 = 0.5, y, = 0.36 ,
we fit the singlet VEVs 9;; to the following values:

Y3 ~ 3.16 x 10712, 091, ~ 3.98 x 1072, Y15 ~ 107!, D3 ~ 1.9 x 1072, 53 ~ 6.94 x 1073, 45 ~ 1072 .
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As a result, for the up and down quark diagonalization matrices, we obtain:

-1 —0.000694 0.000694 —0.9738 0.2273  0.00674
Vi, = 0.000694 -1 0.000116 |, Vg, = | —0.2266 —0.9726 0.0519 - (4.68)
0.0006939  0.000116 1 0.0183  0.04908  0.9986

The resulting CKM matrix aligns with experimentally measured values:

0.973659 0.227932 0.00601329
\Vor | =~ 0.227325 0.972437 0.0518632 | . (4.69)
0.0176688 0.04913  0.998636

Notably, the CKM matrix is primarily influenced by the bottom sector, while V,,, is nearly
diagonal and unimodular.

Furthermore, the unitary matrix V., that diagonalizes the charged lepton mass matrix can be
computed. The correct Yukawa relations and the charged lepton mass spectrum are achieved with:

—0.801463  0.597943 0.0110641
Ve, = | —0.597877 —0.801539 0.00888511 , (4.70)
0.0141811 0.000506117  0.999899

where the remaining parameters are fitted as follows: A\, = 0.4,)\y = A3 = 1,7 = 107, and
yr ==~ 0.51.
R-parity violating terms

In the model we are examining, there are several tree-level as well as bilinear operators that can
lead to RPV effects while remaining invariant under all the symmetries of the theory. To be more
specific, the following tree-level operators violate both lepton and baryon number:

1025354 — >\L3L26§ s (472)

It is important to note, however, that there is an absence of u“u°d® type RPV terms, which, in
combination with () Ld¢ terms, could potentially destabilize the proton.
Additionally, there exist bilinear RPV terms stemming from tree-level operators in the present
model:
5153914 , 5154915 . (473)

The impact of these terms heavily depends on the dynamics of the singlets, but it is desirable
to completely eliminate such operators.

One approach to address this is by introducing an R-symmetry manually [167], or by investi-
gating the geometric origin of discrete Zy symmetries that can effectively eliminate such opera-
tors [323]- [326]. Furthermore, a study of these Yukawa coefficients at a local level shows that they
can be suppressed for broad regions of the flux parameter space [327].

Given that the primary focus of this work revolves around Z’ flavor-changing effects, we will

assume that one of the mechanisms mentioned above safeguards the models against undesirable
RPV terms.
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Figure 4.4: Bounds to the neutral gauge boson mass My of Model D9 due to Ky — K, mixing effects.
The vertical axis displays Z’ contributions (AM I%/) to the mass split of the neutral Kaon system. Dotted,
dashed and solid black curves correspond to gauge coupling values: ¢’ = 0.1, 0.5, and 1 respectively. The
shaded region is excluded due the constrain AMYT < 0.2AM 7.

4.4.2 7' bounds for Model D9

Having successfully obtained the V; matrices for both the top/bottom quark and charged lepton
sectors, the next step is to straightforwardly calculate the flavor mixing matrices @, as defined in
equation (4.7). These matrices, in conjunction with the Z’ mass (M ) and gauge coupling (¢'), play
a pivotal role in computing various flavor-violating observables, as elucidated in previous a section
Consequently, we can utilize the constraints imposed on these observables to establish limits on the
Z'" mass and gauge coupling, or more precisely, the ratio g'/My:.

It is essential to ensure that these derived constraints align with the limitations imposed by
the Large Hadron Collider (LHC) findings stemming from dilepton and diquark channels [334-330],
especially in the context of heavy Z’ searches. It is worth noting that LHC constraints on the masses
of neutral gauge bosons vary considerably depending on the specific model. For the majority of
GUT-inspired Z’ models, masses in the vicinity of ~ 2 — 3 TeV have been excluded.

In the model we are exploring, it is evident that the lightest generations of left-handed quarks
possess distinct U(1)" charges. Consequently, we anticipate stringent limitations on the Z’' mass,
particularly arising from constraints associated with K — K mixing. Therefore, our initial focus
will be on investigating the neutral Kaon system.

K° — K° mixing

By utilizing equation (4.11), we can determine the mass split associated with Kaon oscillations:
g\
AME ~3.967 x 107 —=—) -
K My

Our results for the Kaon system are visualized in Figure 4.4. As anticipated, the Kaon system
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imposes stringent constraints on Mz. To provide an estimate, if ¢’ ~ 0.5, the constraint from
the above equation implies that Mz = 120 TeV, significantly surpassing the bounds set by recent
collider searches.

0 __0 oo
B — BY mixing

From equation (4.14), we can approximate:

' TeV)”
CLL 2 1.9 % 107° (&>

My

This value is too small to have a substantial impact on AM,, primarily due to the equality in
U(1) charges for by and sp.

D — DO mixing

For Mp ~ 1.86483 GeV [300], and adopting a decay constant value of fp ~ 212 MeV as determined
in [337], equation (4.11) yields:

: ' TV’
AMZ ~2.71 x 10718 (M) .

MZ’
Consequently, for T'p = 1/7p ~ 2.43843 (ps)~! [300], we have:
AM " TeV\?
tp = =2~ 0.0017 (g ev)
D z

This value consistently satisfies the bound zp < 0.32.

P° — ;l; decays

Our findings indicate that all Z’ contributions are significantly suppressed when compared to ex-
perimental bounds. For instance, let’s consider the decay BS — puTp~. Using equation (4.18), we
derive:
0 o (g TeV 4
Br(By — utp™) =534 x 1077 [ Z——
Z/

This result consistently complies with the experimental bound Br(BY — utu~) < 1.6775x 10710,
provided that ¢’ < 1 and Mz ~ O(TeV). Similar outcomes were obtained for lepton flavor-violating
decays of the form P° — [1;.

Muon anomalous magnetic moment and p — ey

Our results indicate that Z’' contributions to Aa, are consistently smaller than the observed dis-
crepancy. Even in the extreme case where ¢ = 1 and My = 1 TeV, our computations yield
Aaf' ~ 3 x 107, This suggests that for small Z’ masses, the model may account for the observed
(9 — 2), anomaly. However, for larger M, values as implied by the Kaon system, the results are
significantly suppressed.
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In LFV radiative decays of the form [; — [;v, the muon channel is expected to provide the
strongest bounds. For ¢’ = 1, the model predicts that Mz = 1.3 TeV in order for the predicted
1 — e7y branching ratio to remain consistent with experimental bounds. Conversely, tau decays
(T — ey, T — py) are highly suppressed due to the short lifetime of the tau lepton.

uwo —eeet

Although all three-body lepton decays of the form [; — ljljl;C are heavily suppressed for the tau
channel, the model faces stringent constraints from the muon decay = — e e~ et. Specifically, the
model predicts that

MZ’

These predictions are compared with experimental bounds in Figure 4.5. It is apparent that,
for ¢ = 0.5 (indicated by the dashed line in the plot), the model necessitates Mz 2 42 TeV to
conform to the existing experimental constraint, Br(u~ — e"e"e™) < 107!2. While the constraints
stemming from this decay are more stringent than those from other lepton flavor-violating processes
discussed previously, they remain incompatible with the restrictions imposed by the Kaon system.

However, it’s important to note that future lepton flavor violation-related experiments, such as
the MuS3e experiment at PSI, are expected to significantly improve sensitivity. The Mu3e experiment
aims to reach experimental sensitivities of ~ 1071%. In the absence of a signal, three-body LFV
muon decays can then be excluded for Br(u~ — e~e~e™) < 1071¢. In Figure 4.5, the red horizontal
line represents the estimated reach of future yu — 3e experiments. For ¢’ = 0.5, we find that
Mz 2 420 TeV to satisfy the projected Mude experimental bounds. Therefore, for this model,
the currently dominant constraints from the Kaon system are expected to be surpassed in the near
future by the limits of upcoming p~ — e” e~ e™ experiments.

’ 4
Br(p~ — e e et)~492x107° <g TeV> :

Ry anomalies

The constraints derived from the Kaon oscillation system and the three-body decay u — e" e e™
effectively rule out the possibility of explaining the observed Ry anomalies within this model.
Specifically, for the relevant Wilson coefficient, the model predicts:

g TeV\”
MZ/ )

This coefficient has the desired sign (Cy < 0), but for Mz ~ 200 TeV and ¢’ ~ 1, the resulting
value is too small to account for the observed B-meson anomalies.

Similar phenomenological analyses have been conducted for the other models presented earlier,
and their flavor violation bounds are discussed in Appendix D.3. In general, the results align closely
with those of Model D9. For all the U (1)’ models with an MSSM spectrum, the dominant constraints
on My originate from the effects of K* — K0 oscillations and the muon decay u — e e~et.

The analysis conducted thus far highlights that successfully explaining the LHCb anomalies
within the present F-theory framework would require the incorporation of a different mechanism.
A commonly explored approach involves addressing the LHCb anomalies through the mixing of
conventional SM matter with extra vector-like fermions [310]- [348]. In the next section, we introduce
an F-theory model that utilizes such vector-like fermions to potentially account for the LHCb

Cy =~ —0.079 (
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Figure 4.5: Bounds to the neutral gauge boson mass My as predicted in Model D9 from Z’ contributions
to the lepton flavour violation decay p~ — e~ e~e™. The plot shows the branching ratio of the decay as
a function of the Z’ mass for various values of the gauge coupling ¢’. Both axes are in logarithmic scale.
Dotted, dashed and solid black curves correspond to U (1)’ gauge couplings: ¢’ = 0.1, 0.5 and 1 respectively.
The shaded region is excluded due to the current experimental bound: Br(u~ — e~e~e™) < 107!2. The
red horizontal line represents the estimated reach of future u — 3e experiments.

anomalies. However, it’s worth noting that a comprehensive classification of various F-theory models
featuring a complete family of vector-like fermions will be presented in a forthcoming work.

4.5 Models with vector-like exotics

We extend our analysis to models featuring the MSSM spectrum augmented with vector-like (VL)
states that form complete (10 4+ 10), (5 + 5) pairs under the SU(5) GUT symmetry. As in our
previous investigation, we select suitable fluxes, address the anomaly cancellation conditions, and
deduce the U(1)’ charges for all models with additional vector-like families.

Particular attention is directed towards models where the VL states possess distinct U(1)
charges while maintaining universal U(1)" charges for the SM fermion families. This approach
allows us to account for the observed B-meson anomalies arising from the mixing of SM fermions
with VL exotics while simultaneously managing other flavor violation observables. A model with
these characteristics (initially formulated in [287]) is realized using the following set of fluxes:

m1:2, mgzmgz—m4:1, M1:M2:M3:M7:0, M4:—M6:]_, M5:—3,

This choice of fluxes, satisfying the anomaly cancellation conditions, yields the solution (¢, ¢, ¢3) =
(\/75, —%1\/% : }L\/g) Consequently, the U(1)" charges for the various matter curves are as follows:
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1 1 1 1
10 : =, 109:—=, 103: =, 104: —-
1 ) 2 9 ) 3 ) 4 4 )
1 1 1 1 3
51:_5752.1753 _§a5420a55:1756:1757:0'

Assuming the following distribution of fermion generations and Higgs fields across matter curves:

100 — Qo T ufszt+es, 100 — Qutuj+ef, 105 — Qutef,y, 100 — Qutuf+ef,

51—>Hu, 52—>L1, 53—>Hd, 54 —)d_fl, 55—>d‘i7273+L273, 56—>dZ+L4, 57 —)L_4,

we arrive at the desired U(1)" charge assignment. In this assignment, all SM families exhibit a
common charge (Q} ,3 = 1/4), while those of the VL states are non-uniform.

For clarity, we denote the components of SM doublets as @; = (u;, d;) and extend this notation
to lepton doublets as well, represented as L;. The components of exotic doublets are expressed as
Q4= (U,D') and Q, = (D’,U"). Similarly, we use u§ = U, uy = U, ¢§ = E, ¢ = E, d$ = D, and
d = D to denote the components of the exotic singlets.

The various mass terms can be expressed in a 5x 5 notation as FgMgF,, where Fr = (f¢, F, F")
and Fp = (f;, F', F)T, with f = u,d,e and F = U, D, E. Our focus will be on the down-type quark
sector, although the up-quark sector can be treated similarly by adjusting parameters to ensure the
CKM mixing. These invariant operators result in a mass matrix of the form:

ko014U54v4 1%37954% ]%27954% k401405300 k3014053
ko¥1405404 k€2195411d ke¥savg  ka¥14U5304 k31914053

My =1 koVi4Ussvq keOsqvg  kOs50vq  ka¥1405304 k314053 , (4.74)
kab14v4 k1§vq kivg k91304 k10613
k605404 k5051 k5051 ksOs3 k70149530,

Here, the k’s are coupling constant coefficients, and ¢ and & are small constant parameters
encoding local Yukawa effects. The singlet VEVSs are represented as 6,; = (6;;), while 9;; represents
the ratio (6;;)/A.

To simplify the matrix, we consider that some terms are negligible and approximately vanish.
Specifically, we assume that ky = k3 = k5051 = kg = k71914053 =~ 0. Furthermore, we introduce the
following simplifications:

kUs4va = m , koUsathava = am , kadulss =8, kothsva = B, kiobhs = ksblss =M , e = & .
With these modifications, the matrix takes on the following simplified form:

am mé mé vy 0
am mé mé vy 0
My~ | am m{ m ~Evg O : (4.75)
0 kiéva kvg pu M
0 0 0 M 0

In this modified matrix, the local Yukawa parameter £ establishes a connection between the VL
sector and the physics at the electroweak scale. We will use this small parameter to quantify the
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mixing between the two sectors. To diagonalize the down square mass matrix (M?) perturbatively,
we assume k; ~ 0 and k., vy = cu while retaining terms up to 0(¢). This results in the mass square
matrix being represented as M? ~ A + ¢ B, where:

a’m?  o®m? a’*m? 0 0 0 0 0  cBu? cuM

a’m?  o’m? a’m? 0 0 0 0 m?  cBu® cuM

A=| a?m? o*m? (*+1)m* 0 0 , B= 0 m?> 0 cfu? cuM
0 0 0 M?  BuM cfu® cpu? cBu®: 0 0
0 0 0 BuM  M?> cuM cuM  cuM 0O 0

The block-diagonal matrix A constitutes the leading-order component of the mass square matrix
and can be diagonalized using a unitary matrix V;) as V;) AV’". Its mass square eigenvalues are
as follows:

2

m 2 m2 2
21 =0, x2:7<1—|—3a —\/1—2a2+9oz4> , x3:7(1+3a +\/1—2a2+9a4>
x4 =M(M — Bu), x5=MM+ pu),

Here, x1 93 corresponds to the mass squares of the three down-type quark generations d; 3,
respectively. At this stage, we disregard the small mass of the first-generation down quark, which
can be generated by high-order corrections. For the second and third generations, we observe that
the ratio y/xs/x3 depends solely on the parameter . Thus, using the known strange-bottom quark
mass ratio (m,/my), we estimate that o ~ 1072,

The corresponding normalized eigenvectors, which form the columns of the diagonalizing matrix,
are given by:

—1 q 1
1 q 1
Ul(z)l - L 0 ) 1(7]2 ; 1 y Upg = ! _2q )

V2| Vit2g | g 20+240) |
0 0 0

0 0

getl o | wot]o

b4 \/5 o ) b5 \/5 ) )
1 1

Here, g =1 — 7;—; depends solely on the parameter o since x5 ~ m?.

The corrections to the above eigenvectors due to the perturbative part £B can be expressed as
follows: . OT
VOBV
Uy R VY, +gz — (4.76)
J#i A
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Here, the second term in the equation represents the ©(§) corrections to the fundamental eigen-
vectors of the leading-order matrix A. The adjusted diagonalizing matrices take on the schematic
form V;,, = VbOL +£ VblL, and through these matrices, the mixing parameter £ enters into the compu-
tation of various flavor violation observables.

For explaining the LHCb anomalies, we will consider that perturbative corrections are significant
for the corresponding bs coupling but almost negligible for other flavor mixing coefficients. In this
manner, due to the universal U (1)’ charges of the SM matter, most of the flavor violation processes
are suppressed.

Assuming that the corresponding lepton contribution is (@7, )22 ~ 1 and for a = 0.016, we find
that for the b — s transition matrix element:

(@)~ Qraat® 0708 (1) (L) e (.77

Where Q' , 3 = 1/4 is the common charge of the MSSM fermions, and @} = —1/2 is the charge
of the extra matter originating from the 10, matter curve. Note that the corresponding U (1) charge
of the states originating from the 5, matter curve is zero and therefore does not contribute to the
above formula.

It is evident from equation (4.77) that the first term dominates, as the second term is suppressed
due to the large VL mass scale characterized by the parameter M. Therefore, considering only the
first term, we have from equation (4.10) that:

/

2
Cy ~ —963 ( Aj ) Q' 556" (4.78)
Zl

For ¢ <1, My 2 4 TeV, and €2 ~ 6(1071), this predicts Cy ~ —1, which is the desired value
for explaining the LHCb anomalies. It is worth noting that this approach is valid in the regime
where ¢ is small, i.e., £ < 1. If £ were large, perturbation theory would break down, and a more
general treatment would be necessary.



Chapter 5

SU(5) x U(1) models with a vector-like
fermion family

5.1 Introduction

The pursuit of New Physics (NP) phenomena that go beyond the predictions of the SM is a central
and intriguing matter. Many extensions, such as GUTs and effective models derived from String
Theory, introduce novel elements into their spectra. These elements could potentially lead to
exotic interactions and unique predictions. Among the most eagerly anticipated phenomena is the
emergence of additional neutral gauge bosons, leptoquark states that interact with both quarks and
leptons, extra neutral states like sterile neutrinos, and vector-like families of particles.

However, the current experimental data from the Large Hadron Collider (LHC) and other sources
offer substantial indications of possible new interactions mediated by these exotic states. It’s im-
portant to note that nothing has been definitively confirmed yet. Notably, some persistent LHCb
data discrepancies with SM predictions involve various decay channels of B-mesons. One specific
measurement, the ratio of branching ratios Br(B — Ku™u~)/Br(B — Ke'e™), connected to semi-
leptonic transitions b — syt~ and b — sete™, suggests a violation of lepton flavor universality.
Several potential explanations for this effect involve leptoquark states, neutral bosons denoted as
7', with different couplings to the three fermion families, and vector-like generations.

In a prior investigation (see [355], also [287]), we systematically analyzed a class of semi-local
F-theory models possessing an SU(5) x U(1) gauge symmetry. These models are derived from a
covering Fg gauge group through a series of steps, as expressed by the chain:

By > SU(5) x SU(5Y D SU(5) x U(1)* > SU(5) x U(1). (5.0)

Here, U(1)’ can represent any linear combination of the four abelian factors present in SU(5). In
this context, we identified all feasible solutions for anomaly-free U(1)" factors and demonstrated
that many of these cases lead to non-universal couplings with the three chiral fermion families. We
also considered scenarios where the spontaneous breaking of the U(1)" symmetry occurs at a few
TeV scale, investigating the implications for low-energy phenomena by calculating observables for
various exotic processes in the effective theory.

Despite the intricate structure and diverse non-universal U(1)’ factors, stringent lower bounds,
primarily from the K — K system [350], on the mass of the associated Z’ boson greatly outweigh
any observable effects in B-meson anomalies. Consequently, the non-universal contributions to

103
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Br(B — Kutu™)/Br(B — Kete™) are entirely depleted. It was demonstrated that in these
effective F-theory models, only the presence of additional vector-like families could explain the
LHCb data [355].

In this present study, we expand upon previous work [287,355] concerning F-theory-inspired
models with SU(5) x U(1)" by incorporating vector-like fermion generations into the low-energy
spectrum. Specifically, we are interested in models that permit the existence of an entire family of
extra fermions in addition to the MSSM particle content. To circumvent severe constraints related
to the Kaon system, we seek models where the regular MSSM fermion matter fields acquire universal
charges under the additional U(1)" symmetry and are distinct from the corresponding states within
the vector-like family. This way, non-universality effects are exclusively induced by the considered
vector-like states [311,316,357,358].

5.2 Flux constraints for a spectrum with a complete vector-
like family

In this section, we will provide a concise overview of the GUT model, with our primary focus on
delineating its fundamental constraints and features stemming from its incorporation within F-
theory. For a more comprehensive exposition of the technical intricacies, we refer readers to [355].

Our current investigation revolves around the (semi-local) F-theory construction, which we
assume originates from an FEjg singularity following the reduction process outlined in (5.0). At
the core of this construction are the Cartan generators denoted as Qp = diag{ti,ts,t3,14,t5} for
k = 1,2,3,4. These generators correspond to the four U(1) factors elucidated in (5.0). It is
imperative to note that they adhere to the constraint of SU(5) tracelessness, which mandates that
Z?Zl t; = 0. These generators are characterized as follows:

1 1
a = ~dia 17 _1707070 ) = dia 17 17 _27070 )
Qa = 5diag( ) Qo= g pdiag( )
1 1
— —_diag(1,1,1,-3,0), — —_diag(1,1,1,1, —4). 5.1

In order to establish a tree-level top-quark mass, we introduce a Z; monodromy operation, de-
noted as t; <> ty. This operation effectively “breaks” the U(1), symmetry while keeping the other
three abelian factors unaltered. Moreover, we have the flexibility to introduce specific fluxes [280]
along the remaining U(1) factors, allowing us to retain a linear combination known as U(1)" among
the abelian factors, which remains unbroken at lower energy scales. Consequently, the gauge sym-
metry characterizing the effective model under consideration can be expressed as:

Gs = SU®5) x U(1) . (5.2)

The U(1)" factor, which is assumed to persist unbroken in the effective model, can be defined as
a linear combination of the symmetries that withstand the monodromy operation. Mathematically,
this is represented as:

Q = c1Qp + 2Qy + 30y (5.3)

where the coefficients c1, o, c3 must adhere to a normalization constraint:

A+ca+a=1. (5.4)
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These coefficients are also subject to further scrutiny due to anomaly cancellation conditions,
which have been exhaustively analyzed in previous research [287,355].

Once the Z, monodromy has been incorporated, the massless fields accommodating the 10,10
and 5, 5 representations are distributed across four matter curves, denoted as Yo, for 7 =1,2,3,4,
and seven X5, for i =1,2,...,7 [167].

The U(1) fluxes previously mentioned also have a direct impact on determining the chiralities
of the SU(5) representations. These effects on the representations of the various matter curves
denoted as Y0, and Y5, can be expressed in terms of integers M; and m; as follows:

nloj - nTOj =my Ny, — Ny, = Mz (55)

K3

Additionally, to accommodate the three fermion families, a chirality condition must be imposed,
stipulating that:

> omp=-> M;=3
J %

Furthermore, by introducing a hypercharge flux denoted as %y, the SU(5)gur symmetry un-
dergoes spontaneous breaking to yield SU(3) x SU(2) x U(1)y. The various multiplicities of the
Standard Model (SM) representations can be parametrized with integers N; and N; as follows:

n — N3 = m;
o (?”2)% (3:2)_¢ Y N o5 =) e TReN, T M, (56)
tj - n(3,1)_% n(371)% - m] J ) ti - n(172)+l - ’]’L(172)7l — ]\4Z + NZ ) .
N, — Ny, = my+ N ’ :

Our starting point involves the flux data and the SM content associated with each matter curve.
For a more detailed account of these aspects, we refer readers to our previous work [355]. Here, we
present the properties of the complete spectrum as summarized in Table 5.1. To achieve the desired
spectrum, the following constraints have been taken into account:

The spectrum of a local F-theory model is determined by selecting a set of integers that satisfy
the previously mentioned constraints. To illustrate this, we begin by placing the Higgs doublet H,
on the ¥5, matter curve. We choose the associated flux integers to be M; = 0 and N = 1. This
choice ensures that H, remains in the massless spectrum while eliminating the down-type color
triplet. This mechanism, as discussed in [280], effectively suppresses proton decay.

Moving forward, we focus on the Xy, matter curve and allow m; to vary within the range
0 < my < 3. Thanks to the previously mentioned Z; monodromy [167,359], at least one diagonal
tree-level up-quark Yukawa coupling, A\;,10110;5, is generated in the superpotential 7. Further-
more, to ensure the presence of exactly one extra family of vector-like fermions, in addition to the
constraint Y | jmy == > M; = 3, which fixes the number of chiral families to three, we impose the
following conditions on the various flux integers [287,355]:

Syl = > 1M =5 (5.7

[my + 1| + [mg — Ne| + [m3 — Ng| + |my — No| =5, (5.8)
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Matter Curve Q' Ny M SM Content
2101 1, 10\/§Cl+5*ég02+3mc3 —N my | miQ + (my + N)u + (my — N)e¢
I —20\/§c1+5%{)6@+3\/ﬁc;3 N, My | maQ + (mg — No)u + (mg + Ny)e
2103 44, W N3 ms | mg@ + (m3 — Ng)u® + (mg3 + Ng)e®
2104 215 —\/%03 Ny my | maQ + (my — No)u® + (myg + Ny)e®
251,(i2t1) _\C/_lg - \C/_% — \;_%0 N My M;de + (M, + N)Z
52,£(t1+13) 5\/561_5@52_3@% —N My M2§ + (M — N@
E53,i(t1+t4) _Qf}g + \C/_% - \;%0 —N M; Msde + (Mg — N)L
S —10\/§cl—5g{)6c2+9\/ﬁc3 -N M, ]\_@ﬁ + (My; — N)L B
Z55,:t(t3+t4) \C/_lg + \C/_% - \;}%0 N7+ Ng | M5 Msde + (M5 + N7+ Ng)L
256,i(t3+t5) 20\/§clf5\ég@+9\/ﬁc;; Nz + Ny | M Mﬁﬁ—i— (Mg + N+ + Ng)f
57,4 (t4+15) W Ng+ Ny | M Myde + (M7 + Ng + Ny)L

Table 5.1: Matter curves along with their U(1)" charges, flux data and the corresponding SM content.
Note that the flux integers satisfy N = Ny + Ng + Ny.

|mq — 1] + |mg + N7| 4+ |m3 + Ng| + |my + No| =5, (5.9)

1+ |My—1|+|Mz—1|+ |My — 1|+ |Ms+ N7+ Ng| + | Mg+ N7+ Ng| + | M7+ Ng+ Ng| =7 . (5.10)

Apart from mq, My, and N = N; + Ng + Ny, which are subject to the aforementioned conditions,
the remaining flux parameters have the following limitations:
The flux integers msy 34, which characterize the number of @ and @ states in the spectrum, are
restricted to the range [—1,2]. Since the X5, matter curve always hosts at least two u®’s (due to
the conditions M; =0, N =1, and 0 < m; < 3), we limit the other u® multiplicities (m; — Nj with
j=2,3,4and k =7,8,9) to be in the range [—1, 1]. Similarly, for the multiplicities of the e¢ and
e states, we impose —1 < (m; + N;,) <3 for j =2,3,4and k =7,8,9.
Likewise, for the d° states, we set the values of the corresponding multiplicities M;’s (i = 2,3,4,5,6,7)
to vary in the range [—3,1], while for the multiplicities of L states (see Table 5.1), the relations
are set to vary in the range [—2, 1]. It’s worth noting that, in general, we could allow for values in
the range [—3, 1], but this would lead to the mixing of the vector-like states with the MSSM ones,
which is not in line with our intention to search for models with vector-like U(1)" charges different
from the MSSM ones.

By implementing all the restrictions described above, we obtain a total of 1728 flux solutions
that satisfy the conditions and include one vector-like family in addition to the three standard chiral
families of quarks and leptons.

5.3 Classification of the Models

To determine the ¢; coefficients and, consequently, the associated U(1)" charges for each model
defined by the aforementioned set of fluxes, we employ a systematic approach. We start by applying
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anomaly cancellation conditions, specifically focusing on the mixed anomalies between the Standard
Model (MSSM) particles and the U(1)" gauge boson. These anomalies are denoted as o331, 01,
Ayy1, and dyq;.

The cubic anomalies associated solely with the U(1)" gauge boson (&f111) and gravitational
anomalies (&) are not addressed at this stage. Instead, they will be resolved later by considering
the dynamics of the singlet fields typically present in F-theory models.

Furthermore, to focus our search on constructing models that are of potential interest for phe-
nomenology, we impose a constraint. Specifically, we restrict our investigation to scenarios where
the three families of particles in the MSSM possess uniform U(1)’ charges. In contrast, the charges
of the vector-like fields are allowed to differ.

By applying this constraint, we filter down the initial set of 1728 models to a subset of 192
models that exhibit this particular property. These 192 models can be categorized into five distinct
classes based on their properties under the SU(5) x U(1)" symmetry. Each class comprises models
that share identical charges under the additional U(1)’, differing only in how the Standard Model
particles are distributed among various matter curves.

To illustrate the diversity of these classes and to provide a representative example from each,
we present one model from each class in Tables 5.2 and 5.3.

Model | miy mo msg my | My My Ms My Ms; Mg M; | N; Ng Ny c1 C c3
A 1 2 1 -1/0 -1 0 0 -1 -2 1|1 0 0 0 Y15 ~1
B |1 2 -1 1/0 0 0 0 -1 3 1|1 0 0| 0 4/ I
c |2 1 1 -1l0o 0o 0o 1 3 -1 0|0 1 0| ¥ _Ng i\/%
D |2 1 1 1]0 -1 0 1 -1 =2 0|0 0 1 _;@ —g\@ 3
E |1 -1 2 1/0 0 1 0 0 1 30 1 0|2/ /& L

Table 5.2: Representative flux solutions along with the corresponding ¢;’ s for the five classes of models
A, B, C,D and E.

Model A Model B Model C Model D Model E
V10Q' SM V85Q SM Q' SM V10Q' SM V/310Q’ SM

1/2 Q + 2u° -2 Q + 2u° 1/4 2Q+43u+ef| -3/4 2Q + 3u‘+e° 9/2 Q + 2u°
1/2 20 +uf + 3¢ 22 2Q4ut+3et || -1/2 Q4 ut+ef -1/2 Q+uc+el 11/2 Q+ut+ef
-2 Q +uc + e -1/2 Q+ut+e° 1/4 Q + 2e° 7/4 Q+u + e 9/2 20Q + uf + 3e¢
-1/2 Q+uc+el 11/2 Q+ut+et || 1/4 Q+u+ef -3/4 Q + 2¢° -8 Q+u +e
-1 H, 4 H, -1/2 H, 3/2 H, -9 H,

1 d®+ 2L -4 L -1/4 L -1/4 d°+ 2L -1 L
-3/2 L -3/2 L 1/2 L 1 L 9 de

1 L 7/2 L 0 de 3/2 de -7/2 L
-3/2 de -3/2 de -1/4 3de+2L 9/4 d°+ L 1 L

1 2d° + L 7/2 3d° + 2L -3/4 d°+ L -1/4 2d° + L -27/2 d°+L
3/2 e+ L -6 de+ L 0 L -1 L -7/2 3d°+ 2L

Table 5.3: The particle content of models A, B, C, D, and E using the data from Table 5.2.

Table 5.2 displays the flux data alongside the corresponding solution! for the coefficients ¢; for

'Tt’s worth noting that a corresponding “mirror” solution can be obtained by applying the transformation ¢; —
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each model. You can find the respective U(1)" charges and the particle spectrum for each model
in Table 5.3. Notably, models B and C coincide with models 5 and 7, respectively, as previously
derived in [287].

In addition to the fields listed in Table 5.3, there are singlet fields with weights corresponding to
(t; — t;) present in this F-theory construction®. For the subsequent analysis, we will refer to these
singlet fields using the notation 6y, ;;, which we will denote as 6;;.

5.4 Analysis of the Models

In the preceding section, we formulated five distinct classes of models, all of which share a common
characteristic. Namely, the U(1)" charges attributed to the vector-like states deviate from the
uniform U(1)" charges assigned to the SM chiral families. This particular feature in the models
holds the potential to elucidate the observed B-meson anomalies, contingent upon significant mixing
between the SM fermions and the vector-like exotics.

Simultaneously, these models uphold lepton universality among the three chiral families and
remain within the stringent constraints imposed by the Kaon system and other flavor-violating
processes. In the subsequent analysis, we will delve into the models presented in Table 5.3 and
formulate the mass matrices for each model.

5.4.1 Model A

In this particular scenario, we have opted for the following set of fluxes:
mlzmgz—m4:1, m2:2, M1:M3:M4:O, M2:M6:—2, M7:—M5:1.

The corresponding U(1)" charges assigned to various representations are as follows:

10'1 10'1 103 : =2, 104: L
1'27 2‘27 3 ) 4 - 27

3 3 3
51:_1752:_1753:5754:_1755:5756:_1757:_57

while the 10 and 5 representations come with the opposite U(1)’ charge. We allocate the fermion
generations and Higgs fields into matter curves as follows:

10 — Qs +uS s, 100 — Qro+uf+ €y, 105 — Qu+uf+ei, 104 — Qu+ uf + 5 ,
51 — Hu, 52 — dg +L273, 53 — L4, 54 — Hd, 55 — dZa 56 — diz +L1, 57 — d_i+L_4 .
Now, we can proceed to formulate the superpotential and, in particular, the various terms con-
tributing to the fermion mass matrices.
We commence with the up-quark sector. The primary contributions to the up-type quark masses
stem from the following superpotential terms:
W D yt10110151 + %10110251613 + %102102516%3 + %10310151914 + %10310251013914
4431031055103, + y6102104053 + y7101104051 + y3103104654 + 9210410454651 , (5.11)

—C;.
2For a comprehensive definition of the singlet spectrum within the theory, please refer to [355].
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where y; represents the coupling constant coefficients, and A stands for a characteristic high-energy
scale within the theory. These operators yield the following mass texture:

3/279%3% 920%3% Y1130y YaV130140y  Yebas

Y1013y Y1013y €YUy, Y3140y Y7051
M, = Y1913V, Y1013V, YtUy, Y3140y Y7051 , (5.12)
Ya0130140y  Ya¥130140, Y3014y 3/519%4% Y4
Y653 Y6053 Y7051 Y4 YoUs104

where v, = (Hy), va = (Ha), 0ij = (6i5), ¥i; = (0i;)/A, and ¢ < 1 serves as a suppression
factor introduced to account for the local effects of Yukawa couplings stemming from a common
operator [31%,360]. We will now examine the interactions in the down-quark and charged lepton
sectors.

Within the vector-like portion of the model, there are some common superpotential operators
shared between the up and down quark sectors, which are outlined in (5.11) and characterized
by the coupling constants g, y7, and yg. The remaining influential terms that contribute to the
down-type quarks are as follows:

W D %1015254941 + %1015654045 + %1025254943 + %1025654913945 + %1025654€43915
+I€51035254 + %1035654915 + I€71015554 + %1025554913 + %1035554‘914
+ 805759041053 + H25759051043 + K125756043 + 135755053 + 441045751053, (5.13)

where k; represents the coupling constant coefficients.

Turning to the charged lepton sector, we find common operators shared between the bottom
quark and charged leptons, which are described in (5.13) and involve the couplings ko, k3, K4, K3,
and kg. Additionally, there are common operators connecting the up quark and the charged lepton
sector as outlined in (5.11) with couplings ys and ys. All other contributions to the charged lepton
mass matrix are derived from the operators:

_ A - _ M = As _ — _ A7 —
A11025354 + K21035354034 + A35756043 + f5752941953 + KE)5752951943 + AD7D3051 + K71045751953 .

(5.14)
In this scenario, when the various singlet fields 6;; acquire VEV, denoted as (0;;) # 0, they
induce hierarchical non-zero entries in the mass matrices of quarks and charged leptons. However,
these VEVs must adhere to certain phenomenological constraints. Notably, the pu-term, which can
potentially originate from the coupling 655,54, necessitates that (f15) ~ 0 to avoid disconnecting
the Higgs doublets from the light spectrum. As a result, we can disregard the mass terms involving
0,5 for the down quarks and charged leptons.
The down quark mass matrix is expressed as follows:

k301304504 K3U13Vasvq  K1Uasvq 0 k12043
k301394504  K3U13Va5v9  K1U4a504 0 k12043

Mg = KoU4304 koUazvg  Ko¥a1vg  Ksvqg  Kioba1Us3 + k11051043 | - (5.15)
Kg13Vg kg130g K7vq  KoU14vq k13053

Y6053 Y6053 Y7051 ys0s4 K14U530y
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The mass matrix for the charged leptons is characterized by the following structure:

k30130450 ko304 Ko 4304 A1Vq YeUs3
k3394504 KoW43Vq KoW430q A1Vq Y6053

M, = k31304504 KoW43Vq Kol430q A1Vq Y6053 (5-16)
0 K5V K5Ud A2U340q  Yslsa

3043 M041053 + A5051043  Aa041053 + As051043  Nebs1 A7Us304

5.4.2 Model B

The second model is generated by employing the following set of flux parameters:
mlz—m3:m4:1, m2:2, M1:M2:M3:M4:0, M7:—M5:]_, M6:—3

The corresponding U(1)" charges associated with the various matter curves are as follows:

1 11
10 : =2, 109: -2, 103:—=, 104: —
01 9 02 9 03 27 04 27
3 7 3 7
51:4,52:4,53:5,54:—5,55:5,56:—5,57:6.

To effectively allocate fermion generations and Higgs fields into matter curves, we propose the
following distribution:

10, — Qs +uSs, 100 — Qro+uf+efy5, 105 — Qu+uf+ef, 10, — Qs+ uf + 5 ,

51 — Hu, 52 — Hd, 53 — L4, 54 — L3, 55 — di, 56 — di273 + Ll’g, 57 — d_i+L_4 .
In this model, the u-term is realized through the coupling 6135,5, necessitating that (6;3) is very
small compared to the other singlet VEVs. This constraint obliges us to consider high-order terms
in some couplings. Let’s outline the various terms that contribute to the fermion mass matrices,
starting with the up-quark sector.

The dominant contributions to the up-type quark masses arise from the following superpotential
terms:
W D 41011015y + 4510;10251014043 4+ 4210,1055,07,0%5 + 2210110451015 + 4510210451613615
+%10410451¢9f5 + y6101m3941 + y7102m3043 + y81041_03‘945 + %1_031_0352941943 . (517)

These operators give rise to the following mass texture:

y219%41942131)u yzﬁfﬂﬁg% Y10140430y, 0 Y7053
Y1V1404300  Y19140430, €YUy, Y3150y (L
M, = | 114430, y1V140430, Yt Uy Y3150y Y601 (5.18)
0 0 Y3150y Y5150y Ygtys
Y7043 Y7043 Vel Ysbas  YoUa1¥azvp

We now delve into the bottom sector of this model. There are shared operators between the
top and bottom sectors, as elucidated in (5.17), featuring couplings denoted by g, y7, and ys. The
remaining paramount terms contributing to the down-type quarks are presented as follows:

W > %1015652043 + %102365201494%3 + %1015552953 + %1025552014023054 + %1045532014934
+851045659043015 + 165756043 + k75755053 + 521035751643 - (5.19)
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From these operators, we derive the subsequent mass matrix that characterizes the down-quark
sector:

K1191419?13@d /€1191419igvd 62/{0% k5043015 Kela3
’4311914194213Ud K1191419?;3@d €ROVd k5043015 k6043
Md = 51191419?13'051 /1119141912131%[ RoUgq /4,519437915 56643 . (520)
531914794213?954% ﬂ3791419?;31954vd KoUs3Vq  KaU140340q  Krls3
Y7043 Y7043 YeOa Yslys Kgl430y

Concerning the charged lepton sector, there exist shared operators between the bottom sector and
charged leptons, as outlined in (5.19), involving couplings k1, k5, kg, and k7. Additionally, common
operators between the top and charged lepton sectors are delineated in (5.17) with couplings y; and
ys. The exclusive contributions for the charged leptons can be attributed to the operators presented
below:

A R A - A - R _ _ A
X11025452943 + X21045452945 + X31025352953 + A41045352 + A55754041 + AD753051 + X71035751943 :

(5.21)
Collectively, these contributions culminate in the ensuing mass matrix:
f‘i1791479421321d 517914794213% MU43vq A3Us3vg  yrlas
511914?94213% 51?914194213’% AMy3vq A3¥s3va  yrlas
M, = k101403504 k101403504 AM43vq  A3¥s3vq  Yrlas
K5U130450a + KeWazU15va  K5U1304504 + kappag¥astisvg Ao¥asvg A4Uq Y8lys
K043 Krla3 As041 Aels1  Aria3vy
(5.22)

5.4.3 Model C

Next, we will examine a representative model from class C. In this analysis, we focus on a particular
model from this class, which involves flux integers and corresponding ¢; coefficients, as detailed in
Table 1. The resulting U(1)" charges assigned to various matter curves are as follows:

1 1 1 1
100 : =, 109:—=, 103: -, 104: —-
1 ) 2 27 3 ) 4 47
5) L 5'1 O3 : L 94 :0 5'1 5'3 57 :0
1 27 2'47 3 - 2) 4 3 5'47 6'47 7 .

Additionally, we distribute the various fermion and Higgs fields into different matter curves as
follows:

10, — Qo+ ufss+¢5, 100 — Qu+uf+ef, 105 — Qr+ef,, 104 — Qu + uf + €5 ,

51 — Hu, 52 — Ll, 53 — Hd, 54 — Cl_ﬁ, 55 — di7273 + L273, 56 — di -+ L4, 57 — L_4 .

In this model, the p-term arises through the coupling 645,53, so we require (f14) to be approx-
imately zero. Furthermore, we will consider high-order terms for certain couplings.
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Now, let’s describe the various superpotential terms that contribute to the mass matrices for the
up, down, and charged lepton sectors. Starting with the up-type quarks, the dominant contributions
are given by:

W 5 31011015, + 251011035, 01505 + 210110551015 + 21051045, 015015 + L510,1055,6,
+15101104051 + y6102104053 + 37103104054 + 4510410453051054 (5.23)

These terms result in the following mass texture for the up quarks:

y1U139340, 773%% n2ytvu Y2130y, Y5051
101303400 Pyt Ve Y2130y Y5051

M, = ?/119131934% NYi Uy, YUy, y21913% y5951 ) (5-24)
0 YoU130u  YoU130n  YaUi50y Y6053
Y7054 Y5051 Y5051 Yebss  YsUs1U540

where 7 is a small constant parameter describing local Yukawa effects.
There are common operators between the top and bottom sectors with couplings ys, ys, and y;
in Eq (5.23). The remaining operators contributing to the down-type quarks are:

W D £1045553054 + 281035553613034054 + k11015655 + 221055653014 + 2254556014053

Combining all these terms results in the following mass matrix describing the down-quark sector:

k01913193419541)d k€319541)d k€219541)d 0 0
]{?01913193419541)d ]C8219541)d k8’19541)d 0 0
Md = k07.913’t934’l954’0d k€19547)d k19541)d 0 0 s (526)
0 k1&va k1va ko13v4 k10613
Y054 Y5E051 YsOs1 Yebss k140530,

where € and £ are small constant parameters describing local Yukawa effects.

Moving on to the charged lepton sector, some contributions also descend from terms in Eq
(5.25) with couplings ys, ys, and y7. The other leptonic contributions originate from the following
operators:

A - A - A _
|74 DKl1035253954 + K21015253951 + K31025253953

M = _ _ N7 -
+ f5752941953 + A55755053 + AgD7D6043 + K71045751053 :

As a result, the mass texture for the charged leptons has the following form:

MUsavq  ko01393405404  koU1303405404 0 y7954

MUsavq  koU1303405404  ko1303405404 0 97954
Me = )\219512}(1 k‘1954’0d ]{31954Ud k:lvd y5951 . (527)
A3Us5304 0 0 kg¥130q Y6053

)\41941953 >\5953 >\5953 )\6643 )\71953Uu
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5.4.4 Model D

We will now select a model from the fourth class. In this particular model, the U(1)" charges
assigned to different matter curves are as follows:

3 1 7 3
100 =5, W0p:—5, 10557, 104 -7,
3 1 3 9 1
o1 : D9 1=, D3:— 54:—=, bg:——, Dg: 57 :1
1 27 2 47 3 ) 4 27 5 47 6 47 7

A promising arrangement of fermion generations and Higgs fields among these matter curves is
as follows:

10; — Qo+ ufs5+€5, 100 — Qu+uf+ef, 105 — Qu+uf+e5, 10, — Q1+, ,
51—)Hu, 52—>d‘i+L172, 53—>Hd, 54—>d_fl, 55—>di—|—L4, 56—)d573+L3, 57—)[4_4

In this configuration, the p-term arises from the coupling 645,53, and it is essential that we have
(014) at approximately zero, as in previous models.

Now, let’s outline the various superpotential terms in this model that contribute to the mass
matrices for the top and bottom sectors.

The primary contributions to the up-type quarks originate from the following superpotential
operators:

W D 5,10,10:5; + 41011045615 + 2105101510130 + 2310510,5,614615 + 441051045,6%,62,
+15101102031 + 6104102035 + 37105105054 + %1_02m253931934 . (5.28)

These operators result in the following mass texture for the up quarks:

Y1015V, €3ytvu 62.%% Y2013U340y, Y5031
Y1015V, 62%% €YUy, Y2U130340y, Y5031
M, = | y1disvy €Yty Yty Y2U130340y, Y5031 . (5.29)
0 YoU13U340y  Y2U13U340, 940%31934% Y7034
Y6035 Y5031 Y5031 Y7034 YsU310340p

Just as in previous models, the operators with couplings ys, ys, and y7 in Eq 5.28 also contribute
to the bottom sector. The remaining dominant terms contributing to the down-type quarks are:

w D) yb1015653 + %1015253951 + %1045653915 + /131045253 + %1035653‘913934
+521055253054 + 581015553054 + 521045555613 + 551055553013034054 + k95452053
+r105456013 + 5455013054 + 551025451 613034 (5.30)

When we collect all these terms, we obtain the following mass matrix for the down-quark sector of
this model:

K3Vq  K1Us5104 K1U5104 k505404 k9053
2
koU15Vq  €“YpVa €YU k41303404 k10613
Mg = | rk2U15v4  €ypvg YpVd k491393404 k10613 . (5.31)

Kk7013Vq  KeUs4¥q  kKeUs4vq Ke¥13U34U5409  K11013054
Y6035 Y5031 Y5031 Y7034 k120130340,
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Now, let’s shift our focus to the charged lepton sector of the model. The operators with couplings
K1, Ko, K3, K4, K5, Ke, K7, and kg from Eq (5.30) also contribute to the charged lepton mass matrix.
Additionally, there are common operators between the top and charged lepton sectors outlined in
Eq (5.28) with couplings ys, ys, and y7. We also have contributions from the operators:

)\15732941953 + )\25752951943 + )\35756043 + )\45755953 + )\51_025751 . (532)

Taking all these contributions into account, we can write down the mass matrix for the charged
leptons in the model as follows:

K3Uq K3Ud KoU1504 K7U130q Y6035
K3Ug K3Vq KaU1504 K7U130g Y6035
M, = k105104 k105104 YrUq KeUs404 Y5031 . (5-33)
K5Us404 k505404 KaU1avq  Kg¥13U340540a Y7034
M041053 + Aabls51043  A1041053 + Aols1043  A30s3 4053 A5 Uy

5.4.5 Model E

For our fifth and final Model, we assign U(1)’ charges to the different matter curves as follows:

9 9
101257 1022—, 10325, 1041—8,

To achieve realistic mass hierarchies, we distribute the fermion generations and Higgs fields among
these matter curves in the following manner:

10, — Qs +uSs, 100 — Qu+uf+ef, 103 — Qo+ uf+efys, 104 — Qs+ uf + 5,

51 — Hu, 52 — Hd, 53 — d_ch 5_4 — Lg, 55 — L_4, 56 — di + L4, 57 — di273 + LLQ .
In this configuration, the p-term is generated through the coupling 035,52, which implies that
(013) ~ 0. With this constraint, we can derive the various superpotential operators for the top and

bottom quark sectors.
We begin with the dominant contributions to the up-type quarks, given by:

W D yt10110151 + %10110351614 + %103103516%4 + %10310451614915 + %10110451‘915
—}—%104104519%5 + y6103m2934 + y71011_02931 + y8104m2935 + %1_02@252951 (534)

These operators lead to the following mass texture for the up-type quarks:

Y30y Y2ty 10140, YsPaisvy  Yebaa

Y1014, Y10140,, €YUy, Ya¥150y, Y7031
M, = 3/11914% 3/1?914% YtUy y419150u y7931 . (5-35)
y319141915vu y47915% y41915vu y519f5vu y8935

Y6034 Y6034 Y7031 ysO3s ygﬁ?ﬂvb
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Some of the operators in Eq (5.34), specifically those with couplings ys, y7, and ys, also contribute to
the bottom quark sector. Additionally, the bottom sector receives contributions from the following
superpotential terms:

W S 110,575, + %1035752914 n %1045752915 i %1035652913 n %1015652943

+ k5753015 + %5653913945 + %1_025351915 + %1045652013645 :

When we compile all these contributions, we obtain the following mass matrix for the down-
quark sector:

k10140 K1U140g €2ybUd KoU1504 k5015
k10140 K1¥1avg  €YpUq KoU15Vq k5015
My = | riYvg k191404 YpUg KoU1504 k5015 (5.36)
k3U13vq  KaUh3vg Ka¥azvg KeUsz¥isvq  KeU130s5
Yetsa Y6034 Y7031 Yglss k70150,

The bottom sector also shares common operators with the charged lepton sector of the model,
specifically those with couplings k1, ko, and kg. Furthermore, there are common operators between
the top and charged lepton sectors as shown in Eq (5.34), involving couplings ys and ys. All other
contributions descend from the operators

S VN o _ i -
W D y-1035455 + K11045452945 + X21035652913 + A35557655 + X45554945931
_ e ——
+ As5sBe0as + X61025551935 .

Finally, combining the various contributions described so far we end up with the following mass
matrix for the charged lepton sector of the model :

k101404 K1U1404 EQyTUd AaU13 Ye034
k101404 K1U1404 €YrUq AaU13 Y6034
M, = K1U140g  K1U1404 YrUq Aot Ye034 . (5-37)

KoU15Uq  KaU150q AMUssUq  KsU15Ua3 98935
335 Aslss  Ayl31045 5045 A6Us50y,

5.5 Flavor violation observables

As the Z' gauge boson interacts differently with the vector-like fields, the introduction of these fields
may lead to novel flavor violation phenomena and potentially enhance rare processes, particularly
when there is significant mixing between the vector-like fields and the Standard Model matter fields,
as discussed in references [341] and [340].

To assess whether the models presented here can explain the observed anomalies at LHCb, we
must calculate the unitary transformations required to diagonalize the mass matrices derived in the
preceding section. Given the intricate nature of these matrices, we adopt a perturbative approach
to diagonalize them, focusing initially on model A. It is worth noting that the analysis for the
remaining models closely parallels the one presented here.
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5.5.1 Some phenomenological predictions of model A

To proceed with our analysis and explore its phenomenological implications, we begin by deriving
the mass matrices and mixing parameters for both quarks and leptons.

Quarks: We initiate our examination with the quark sector of Model A, specifically focusing
on the down quark mass matrix. To simplify this matrix (5.15), we assume that certain terms are
negligibly small and can be approximated as zero. Specifically, we consider that k5 = k19 = k11 =
K12 = k14 = Y = y7 ~ 0. We further make the following simplifications

KoUa1Vq = K1Uas0q = M, Kolygvg = am , Kg¥i304500 = Om, KoUavg = cp, Ksbizvg = bm

k13053 ~ Yslsa = M,

In these approximations, the mass parameters are represented by m, M, and u, while «, 0, ¢, b,
and £ are dimensionless coefficients. With these assumptions, the mass matrix takes on a simplified
form:

Ome* OmE me* 0 0

OméE  Om meE: 0 0

My=| amé am m 0 0
bm bm¢ 0 cu M

0 0 0 M 0

(5.38)

In summary, we have introduced mass parameters m, M, and p, and dimensionless coefficients «,
0, c, b, and €. By retaining terms up to first order in &, the mass matrix MyM7 can be approximated
as:

0 6?m?2¢ afm?2¢ 0 0
2m2¢  0°m? afm? 2b0m2¢ 0
MM, ~ | adm?¢  afm?  o?m? + m? abm?€ 0 : (5.39)
0 200m%¢  abm?¢  V*m? 4 Epd 4+ M? cuM
0 0 0 cuM M?

Remarkably, we can express (5.39) in the form M? ~ A + ¢ B, where:

0 0 0 0 0 0 >°m? afm? 0

0 6°m? afm? 0 0 6%m? 0 0 260m?
A=1| 0 adm? o®>m?+m? 0 0 , B=| afm? 0 0 abm?

0 0 0 b’m? + Pu? + M?  cuM 0  2b0m? abm? 0

0 0 0 cuM M? 0 0 0 0

It is important to note that the parameter ¢ characterizes the coupling between the electroweak
sector and the heavy vector-like component and serves as a perturbative mixing parameter. The
leading order part of the matrix, A, can be diagonalized by a unitary matrix V;} to yield V;2 AVT
for small values of the parameter a. The eigenvalues of this matrix are given by:

11 =0, 2y~ 0%(m? —a’m?), x3~a?0?’m?®+a’m? +m?, x4y~ M? x5~ b>m? + M?(5.40)

S OO OO



CHAPTER 5. SU(5) x U(1)) MODELS WITH A VECTOR-LIKE FERMION FAMILY 117

We observe here that the eigenvalues appear with the desired hierarchy. The corresponding unitary
matrix that diagonalizes matrix A and yields the eigenvalues (5.40) is:

10 0 0 0
0 <% -1 af 0 0
VW=l0 a8 1-92 0
0 0 0 —adl
0 0 0 1 M

b2m?

These columns of this matrix correspond to the unperturbed eigenvectors v,?i of the initial matrix.
Now, we consider the corrections to the eigenvectors due to the perturbative part {B using the
relation given by the relation :

BV, )i

_xj

V
Up, va +£Z oL

J#

2}, : (5.41)

where the second term displays the O(&) corrections to the basic eigenvectors of the leading order
matrix A. The corrected diagonalizing matrices schematically receive the form V;, = V;? +£V;} and
similarly for the up quarks and leptons. This way the mixing parameter £ enters in the expressions
associated with the various flavor violation observables.

Computing the eigenvectors using the formula (5.41), the 0(&) corrected unitary matrix is :

1 = 0 0 0
o262 1 2b0m2¢ 2b09um 13
S - at 2 3
Vi 0 2 0 1 262 o%[m2§ abcj\;{m2§
by, ~ Q 5 04 D) T M2 Ve
0 _ 2cOug acpé _cuM 1
b bM. b2m?2
0 2b0m=¢ abm?¢ 1 cuM
M?2 M? b2m?2

We assume here that the mixing in the top sector is small and that the main mixing descends from
the bottom quark sector.

Charged Leptons: Moving on to the charged lepton mass matrix (5.16), we note that certain
parameters from the top and bottom sectors also contribute to this matrix. Consequently, we apply
the same assumptions to these parameters. Additionally, we assume that Ay = A3 = Ay = A5 =
A7 = 0 and introduce the following simplifications:

AoU340q = ¢ 1, AsUs1043 = qm , Aels1 = yglsa = M,

Here, the mass parameter M characterizes the scale of the vector-like particles, while ¢ and ¢
are dimensionless parameters.

With these approximations, the matrix takes the following form:

Om amé* amé* 0 0

Omed amé amé® 0 0

M, ~ Omé amé® am 0 0
0 0 0 cp M

0 mq mé&g M 0
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We proceed by perturbatively diagonalizing the lepton square mass matrix M M (M? for
short), employing £ as the expansion parameter. Keeping terms up to 0(§), we express the mass
square matrix in the form M? =~ A + ¢ B, where:

>m? 0 0 0 0
0 0 0 0 0
A= 0 0 o’m? 0 0 ,
0 0 0 Au?+ M? cuM
0 0 0 cuM  mPq* + M?
0 0 m% 0 0
0 0 0 0 am?&q
B=| ®m%* 0 0 0 am?éq
0 0 0 0 0
0 am?q am?¢q 0 0

The eigenvalues of the dominant part are:
11 =0, To=0a’m? x3=0*m% x4=M? x5=M?+m?¢ (5.42)

The unitary matrix VeOL that diagonalizes the dominant matrix A is given by:

010 0 0
001 0 0
ve=[100 0 0
000 —1 4%
000 &% 1

To find the O() corrections to the eigenvectors due to the perturbative part (B, we apply the
relation (5.41). Subsequently, we derive the final unitary matrix:

2 2,2 2
0 10 e o (-op o me)
_ 5(a22+92) 0 1 acumféq _ am22€q
0 M M
Ve, = 1 0 ¢ 0 0
0 acu§  acpf 1 culM
Mg Mg m2g?
0 am?¢q  am?éq cuM 1
M?2 M?2 m2q?

It’s worth noting that, for the sake of simplification, we have assumed series expansions for small
a, 0, and ¢, retaining only the dominant terms in the final result.

B-meson anomalies at LHCb

In the context of a fourth generation, where the U(1)" charge assignments for its constituents
differ from those of the SM families, we anticipate the enhancement of several intriguing rare
flavor processes. A thorough investigation of these phenomena will be presented in a forthcoming
publication. For now, our focus is solely on the B-meson anomaly, specifically the b — sé¢ decay,
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particularly the ratio Ry = BR(B — K®puu)/BR(K™ee). This focus arises from the non-
universal coupling of the Z’ gauge boson with the vector-like fermions, which leads to the Wilson
coefficient C§* contributing to the flavor-violating transition b — sll, as expressed by:

2 1 2 / 2 / !
C’S’;“ _ V2 167 g (QdL)ZS(QeL)QQ ’ (5.43)
41(::1? (22 ]»4151 ‘/;b‘/;:
Here, the matrices @, and @, are defined as per [293], using:
Qr, = Vi, VE | (5.44)

where ¢}, represents 5 x 5 diagonal matrices of U(1)" charges.” The elements (Q}, )23 and (QL, )22
that contribute to the C§* coefficient can be derived from (5.44), using the diagonalization matrices

Vs, computed earlier. This leads to the following approximations:

(Qy, )23 = —3008 and (QF, )2 = —1— &2, (5.45)

Finally, incorporating the values G ~ 11.66 TeV =2, e ~ 0.303, Vi, ~ 0.99, and V,, ~ 0.0404,
we can estimate:

/ /

2 2 4
Ol x5 —652.5 abE> ( ]\jz/) + 5220 ab?0e? (Mg—z) (%) (5.46)

In this equation, the mass parameters m, M, and My are expressed in units of TeV. When
using sample values such as a =~ 0.06, 8 ~ 0.27, £ = 0.5, m~ 0.1, b~ 0.1, M =~ 1.2, we obtain:

2
g/
Ot ~ —2.64 : 5.47
; () (5.47)
According to the most recent global fits [302], explaining the current experimental data requires

Ci" ~ —0.82. Consequently, in this model, the ratio of the Z’ gauge coupling to its mass, (szgw ~
%, must be at the order of magnitude necessary to account for the observed Ry anomalies. This
implies that the Z’ mass should be relatively small [363], unless ¢’ is associated with some strong
coupling regime. Please note that while we have presented these calculations, a comprehensive
analysis encompassing a range of models is required to determine whether the mixing effects can

predict the various observed deviations in B-meson decays, which is beyond the scope of this work.

5.6 R-parity violation terms

A noteworthy observation is that certain R-parity violating (RPV) terms, such as Aj;;, L;Q;dj, have
the potential to account for the anomalies associated with the b — sf¢ flavor-violating process
[ ) a ]

In this section, our focus is on identifying possible R-parity violating terms (RPV) within the
tree-level superpotential (referred to here as WEEV) for the models A, B, C, D, E outlined in Ta-

tree

ble 5.3. We’ll briefly discuss their implications. We differentiate between RPV terms that couple

3For insights into the effects of complex-valued contributions to the Wilson coefficients, arising from significant
CP-violation effects, please refer to [361].
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only to the MSSM fields and those that share Yukawa couplings with extra vector-like families.
RPV terms in the former category, if present in WEY lead to problematic violations of baryon
and/or lepton numbers and must be suppressed. In F-theory constructions, this suppression can be
achieved through careful flux restrictions that intersect various matter curves [327], or through addi-
tional (discrete) symmetries arising from the background geometry of the theory [286,323,367,368].
Section 4 of [323] provides examples of how such R-parity conservation can be incorporated. How-
ever, under certain conditions and restrictions [364], these couplings can contribute to intriguing
phenomena such as the B-meson anomalies and other effects like the (g — 2),, anomaly [332, 333]
without exceeding baryon and/or lepton number-violating bounds.

For each of the five classes of models, we identify the RPV terms among all possible superpo-
tential couplings. Given that in all the models presented so far, the up-Higgs doublet is isolated at
the 5; matter curve, the possible RPV operators in the form of 10 -5 -5 are as follows:

10,(5257 + 5356 + 5455), 1025354, 103555, 1045553 . (5.48)

Now, let’s discuss each model individually:
Model A. Referring to Table 5.3 and taking into consideration (5.48), we find that the sole RPV
term in this model is:

1015336 — L4Q3d(1:72 . (549)

We observe that R-parity violation occurs only in terms involving the vector-like family, and there
are no terms that solely involve the three quark and lepton families of the MSSM. Nonetheless, as
recently demonstrated in [331,360], the coupling L,Q3d5 can make significant contributions to the
b — suu process via photonic penguin diagrams.

Model B. Following a similar procedure, we find that this model contains the following RPV terms:

tree

WY 51015455 4 105535, — LyQsd; + LyLae§ 55 - (5.50)

The first operator here does not contribute to the b — sll process due to the absence of the
second-generation quark in the coupling. However, the term LsL,e$, derived from the second
operator, leads to non-negligible contributions to the anomalous magnetic moment of the muon
[332]. Combining this with non-zero Z’ contributions may offer a satisfactory explanation for the
(9 — 2), anomaly.

Model C, D, and E. None of these models contain renormalizable RPV terms. Therefore, an
explanation for the observed experimental discrepancies is expected to arise from Z’ interactions
and the mixing of SM fermions with the extra vector-like states.



Chapter 6

Summary and conclusions

In this comprehensive exploration, we’ve embarked on a journey through various Grand Unified
Models (GUTSs) and string theory-inspired frameworks, unearthing profound insights into particle
physics and cosmology. Each model we've examined offers a distinct lens through which to view the
fundamental forces of the universe. Our quest has yielded a rich tapestry of knowledge, connecting
theoretical concepts to empirical observations. In this concluding chapter, we will recap our findings
and emphasize the significance of each model’s contributions.

Chapter 2

Unified models with SO(10) gauge symmetry encompass various compelling features and have
garnered substantial attention in both field theory and string theory contexts. In this study, we
have developed a straightforward SO(10) model, featuring matter and Higgs fields accommodated
within lower-dimensional representations. We have conducted a comprehensive analysis of the
model’s implications, both phenomenological and cosmological in nature.

The Higgs fields, specifically residing in 16, + 16, and in two Adjoints 45,,45 5, undergo
spontaneous symmetry breaking of the SO(10) gauge group, ultimately leading to the Standard
Model. Furthermore, the appropriate vacuum expectation values (VEVs) of a pair of tenplets
10, + 10, are responsible for fermion masses and the generation of CKM mixing. Consequently,
after the SO(10) symmetry breaking, the emergent low-energy effective theory aligns with the
minimal supersymmetric standard model.

We have also delved into the cosmological implications of this effective theory, particularly
those linked to primordial inflation. Employing the canonical form of the Kahler potential, we have
derived the effective scalar potential governing inflation dynamics. Our findings indicate that, for
a wide range of parameter values, the slow-roll observables align with observed data.

More broadly, within this model, the effective potential is expressed as a function of an SO(10)
singlet S and the Higgs field ¢, associated with the 16, + 16, and 45,45, representations. We
present scenarios where inflation is driven by the pair of fields 16, + 165, causing the transition
from SO(10) to SU(5) and imparting masses to the right-handed neutrinos through a fourth-order
non-renormalizable term. The reheating process is considered through the decay of the inflaton field
into a pair of heavy right-handed neutrinos, while the observed baryon asymmetry of the universe
is accounted for through non-thermal leptogenesis within our model. We have set the reheating
temperature at Try = 10° GeV and utilized this value to estimate the masses of the heavy Majorana

121
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neutrinos, while also considering gravitino constraints to constrain various involved parameters.
In conclusion, our analysis suggests that a scalar spectral index in the range of 0.96-0.97 can be
readily accommodated, with a tensor-to-scalar ratio r ~ 1073,

Chapter 3

We have conducted a thorough investigation into the cosmological and low-energy supersymmetry
implications of an effective model originating from the geometric arrangement of intersecting three
D7-brane stacks within the framework of type-1IB string theory, as detailed in [242]. Within this
model, perturbative string loop corrections, which exhibit a logarithmic dependence on the com-
pactification volume 7, along with D-terms associated with the universal U(1) factors of D7-brane
stacks, collectively generate an effective scalar potential that yields a de Sitter vacuum. This po-
tential also effectively stabilizes all three Kahler moduli fields inherent to the specific geometric
configuration.

In our current work, we extended our analysis to account for the effects of ordinary matter con-
tributions within the Kahler potential of the effective model. Specifically, we focused on the pivotal
role played by a generic pair of Higgs fields, denoted as ®; and ®5 and linked to the gauge group of
the effective theory, in shaping low-energy phenomenological predictions and various cosmological
observables. This included the incorporation of matter field content, soft-term contributions, and
Coleman-Weinberg corrections to the previously derived potential.

We explored the implementation of the standard hybrid inflationary scenario, where a singlet
gauge field, sharing common couplings with the Higgs fields in the superpotential, serves as the
inflaton, while the Higgs states act as waterfall fields.

With the spectral index fixed at the central value of n, = 0.96655, we presented predictions
for the remaining cosmological observables in accordance with the latest Planck data. Notably, we
estimated the value of the tensor-to-scalar ratio to be r ~ 2 x 10~*—significantly below current
experimental bounds but still within the potential reach of future experiments.

Additionally, we delved into the decay of the lighter Kahler moduli after the conclusion of infla-
tion, including modes that lead to both visible and invisible particles. In the context of an MSSM
effective theory and with the presence of a Giudice-Masiero coupling, our calculations indicated
that the dominant decay of the lightest modulus is directed towards the Higgs fields, consistent
with previous analyses [202].

Furthermore, our investigation extended to predictions regarding dark radiation production. We
found that AN.g < 0.95 at a 20 confidence level, which necessitated that model parameters a and
A (associated with couplings proportional to aA(®1Py + h.c) in the Kéahler potential) satisfy the
bound aX 2 0.1688. For A ~ 1, this bound translates into a constraint on a within the perturbative
regime.

Concerning other crucial low-energy predictions with a fixed volume at 7, ~ 3.2 x 10*, ensuring
a de Sitter minimum, our findings indicate a SUSY scale exceeding 10 TeV. Consequently, the
constraint on the reheating temperature is alleviated in this scenario. For a SUSY scale (>10 TeV),
we calculate g.(7,) = 106.75 [262], yielding a reheating temperature of approximately T, ~ 107
GeV. These results advance our understanding of the model’s implications for both particle physics
and cosmology.
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Chapter 4

In our current research, we have undertaken a comprehensive examination of the low-energy im-
plications arising from F-theory models with SU(5) x U(1)’ GUT symmetry, embedded within the
larger structure of SU(5) x SU(5) D SU(5) x U(1)*. This particular gauge symmetry naturally
emerges from a single point of Eg enhancement, closely associated with the maximal geometric
singularity found in the elliptic fibration of the internal manifold.

To ensure realistic fermion mass textures and a tree-level top quark Yukawa coupling, we have
imposed a Zs monodromy group, which acts on the geometric configuration of 7-branes and identifies
two out of the four abelian factors stemming from the SU(5)" reduction. The U(1)" symmetry in
the resulting effective field theory models is a linear combination of the three remaining abelian
symmetries originating from SU(5)". Enforcing anomaly cancellation conditions, we systematically
constructed all possible U(1)" combinations and discovered a common feature: the appearance of
non-universal Z’ couplings to the three families of quarks and leptons.

By introducing fluxes consistent with anomaly cancellation conditions and allowing various
neutral singlet-fields to acquire non-zero vacuum expectation values, we derived several effective
models, each distinguished by its unique low-energy spectrum. Our focus was primarily on exploring
viable classes of models emerging from this framework.

We subsequently delved into predictions regarding flavor-changing currents and other processes
mediated by the Z’ neutral gauge boson associated with the U(1)" symmetry, expected to break
at some low energy scale. Using bounds from ongoing investigations at the LHC and related
experiments, we converted these predictions into lower bounds on various parameters within the
effective theory, notably including the Z’ mass.

Our work represents a comprehensive classification of semi-local effective F-theory constructions
that reproduce the MSSM spectrum, both with and without vector-like fields. On the phenomeno-
logical side, our emphasis lies in the exploration of models featuring the MSSM fields alongside
multiple neutral singlets. We have obtained a total of fifty-four (54) MSSM models and classified
them based on their predictions regarding the U(1)" charges of the MSSM matter content. In most
instances, the U(1)" coupling exhibits non-universal behavior toward the first two fermion families,
and the K, — K, oscillation system imposes the most stringent constraint on the Z’ mass.

For reasonable values of the U(1)" gauge coupling ¢, we have established lower bounds on My
in the few hundred TeV range, significantly surpassing recent LHC searches. Additionally, we have
explored various flavor-violation processes that could be tested in ongoing or future experiments.
One notable process is the lepton flavor-violating 1 — eee decay, with the potential for increasing
experimental sensitivity by four orders of magnitude compared to current bounds. Such models may
provide valuable insights in the event of a positive experimental outcome. Moreover, even in the
absence of a signal, anticipated bounds from p — eee searches will remain compatible with, if not
dominant compared to, the current bounds obtained in our models from neutral Kaon oscillation
effects.

However, we have also observed that models with non-universal Z’ couplings solely to the MSSM
spectrum are unable to explain the recently observed LHCb B-meson anomalies. Nevertheless,
our classification encompasses a class of models featuring vector-like families with non-trivial Z'-
couplings that can account for these effects. These models exhibit a universal nature of the Z’
couplings to the first two families, with negligible contributions to K, — K, oscillations. Their
distinguishing feature lies in the U(1)" charges of the vector-like fields, which differ from those of
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the first two generations, leading to non-trivial mixing effects. As an illustrative example, we briefly
describe such a model, which includes a complete family of vector-like fields capable of explaining
the observed LHCb B-meson anomalies through the mixing of these additional fermions with the
three generations of the SM.

Chapter 5

In this chapter, we have built upon our prior research on F-theory motivated models, extending
our exploration to encompass a comprehensive scan of all potential SU(5) x U(1)" semi-local con-
structions that predict a full family of vector-like exotic particles. Our approach leverages U(1)
hypercharge flux to facilitate the symmetry breaking of the non-abelian sector, coupled with a Z
monodromy mechanism ensuring the presence of a tree-level top Yukawa coupling.

Moreover, we've imposed stringent phenomenological constraints on the various flux parameters,
a crucial step in achieving a model that predicts precisely three chiral generations alongside a
complete family of vector-like quarks and leptons. By rigorously enforcing anomaly cancellation
requirements, we’ve unveiled a fascinating result: the existence of 192 distinct models where the
U(1)" charges are universal for the MSSM families but non-universal for the vector-like states.

These 192 models naturally fall into five well-defined classes, denoted as A, B, C, D, andFE in our
analysis. For each class, we've presented one illustrative model, providing a detailed exploration
of their fundamental characteristics. This exploration encompasses computations of superpotential
terms and the construction of fermion mass matrices.

Notably, we’ve delved into the potential of class A models to explain the observed Ry anomalies.
We’ve showcased how these models achieve this feat through the mixing of vector-like states while
simultaneously avoiding violations of other flavor observables. This is made possible by the universal
nature of the three Standard Model families within this class.

Furthermore, we’ve discussed the presence of R-parity violating (RPV) couplings in these models
and their potential contributions to observed experimental deviations from Standard Model pre-
dictions. It’s worth noting that due to the inherent flux restrictions and symmetries of the theory,
only a limited set of possible RPV terms appear in these models. This selective inclusion allows us
to interpret deviation effects while sidestepping significant contributions to potentially problematic
proton decay effects.

In sum, our research represents a comprehensive exploration of F-theory models within the
SU(5) x U(1) framework, offering a valuable and structured perspective on potential extensions to
the Standard Model and their implications for particle physics phenomenology.

Conclusions

We have embarked on an extensive journey through the fascinating realm of unified theoretical
frameworks, both within the realm of particle physics and cosmology. We began our exploration
by delving into Grand Unified Models with SO(10) gauge symmetry, highlighting their intriguing
features and their extensive study in both field theory and string theory contexts. The development
of a simplified SO(10) model, featuring lower-dimensional matter and Higgs fields, served as a
foundation for our analysis. Through this model, we unveiled profound implications, both in the
realm of particle physics and cosmology.
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Our examination of the SO(10) model revealed the intricate process of spontaneous symmetry
breaking within the SO(10) gauge group, culminating in the emergence of the Standard Model. We
explored the role of Higgs fields, specifically those residing in 16, + 16, and two Adjoints 45,45 5,
and their vital contributions to this symmetry-breaking mechanism. Additionally, we uncovered how
a pair of tenplets 10, 4+ 10;, played a pivotal role in conferring masses to fermions and generating the
CKM mixing, ultimately leading to the realization of the minimal supersymmetric standard model
in the low-energy effective theory.

Our foray into cosmological implications guided us through the complexities of primordial infla-
tion. Employing the canonical form of the Kahler potential, we derived the effective scalar potential
governing the dynamics of inflation. The compatibility of our findings with observed data showcased
the richness of our model’s predictions.

Expanding our horizons, we delved into a broader perspective, where the effective potential
emerged as a function of an SO(10) singlet S and the Higgs field ¢. This perspective led us to
scenarios where inflation was driven by specific fields, prompting a transition from SO(10) to SU(5)
and contributing to the generation of right-handed neutrino masses through non-renormalizable
terms. Furthermore, we scrutinized the cosmological implications of our model, addressing critical
aspects such as reheating and the observed baryon asymmetry, all while adhering to constraints
such as those imposed by gravitinos.

In a broader context, our journey continued into the realm of string theory, where we explored the
cosmological and low-energy supersymmetry implications of effective models originating from the
intricate geometry of intersecting D7-brane stacks. Our analysis accounted for perturbative string
loop corrections, D-terms, and the presence of ordinary matter contributions in the Kéhler potential.
We investigated the role of Higgs fields in shaping low-energy phenomenology and cosmological
observables, including the predictions of the standard hybrid inflationary scenario.

As we ventured further, the decay of Kahler moduli, dark radiation production, and constraints
on the reheating temperature became focal points of our inquiry. Theoretical predictions and bounds
from ongoing experiments began to shape our understanding of these complex models.

Transitioning to F-theory models, we embarked on a comprehensive examination of the im-
plications stemming from SU(5) x U(1)) GUT symmetry embedded within SU(5) x SU(5) D
SU(5) x U(1)*. We uncovered the natural emergence of this gauge symmetry from geometric sin-
gularities, underscoring the profound interplay between mathematics and physics.

Our investigation led to the imposition of a Zy monodromy group, which played a pivotal role
in achieving realistic fermion mass textures and a tree-level top quark Yukawa coupling. Anomaly
cancellation conditions guided us in constructing various U(1)’ combinations, revealing the appear-
ance of non-universal Z’ couplings to quarks and leptons. We introduced fluxes and neutral singlet
fields, which, together, shaped an array of effective models, each distinguished by its low-energy
spectrum.

Our focus extended to the predictions regarding flavor-changing currents and other processes
mediated by the Z’ gauge boson. Bounds from ongoing experiments provided crucial insights,
constraining various parameters and paving the way for future discoveries.

In the final phase of our journey, we embarked on an exhaustive scan of SU(5) x U(1)" semi-
local constructions, predicting complete families of vector-like exotics. The interplay between U(1)’
hypercharge flux and a Zs monodromy mechanism was at the heart of our approach. Phenomeno-
logical constraints and anomaly cancellation criteria guided us in selecting models that exhibited
precisely three chiral generations and a full complement of vector-like quarks and leptons.

Our analysis unveiled 192 distinct models falling into five distinct classes, each characterized
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by its SU(5) x U(1)" properties. For each class, we presented illustrative models, diving deep into
their fundamental properties, superpotential terms, and fermion mass matrices. Class A models, in
particular, held the potential to explain the observed Rg anomalies through the mixing of vector-like
states, all while maintaining consistency with other flavor observables.

Intriguingly, we explored the presence of R-parity violating (RPV) couplings within these models
and their potential impact on experimental deviations from Standard Model predictions. The
selective inclusion of RPV terms, guided by the theory’s inherent symmetries and constraints,
offered a path to interpret deviation effects while avoiding contributions to proton decay.

In closing, our extensive journey through these unified models, string theory, and F-theory
constructions has illuminated a diverse landscape of theoretical possibilities and their consequences.
The intricate interplay between mathematics and physics has been a constant theme, and the pursuit
of answers to fundamental questions in particle physics and cosmology continues unabated. Our
exploration serves as a testament to the rich tapestry of ideas and concepts that drive the forefront
of scientific research, and it is our hope that this work has contributed meaningfully to this ongoing
intellectual journey.

A Cosmic Odyssey Complete

In closing, our cosmic odyssey through diverse GUT models and string theory-inspired frameworks
has expanded our understanding of the fundamental forces that shape the universe. The symphonies
of particle physics and cosmology resonate deeply within these cosmic narratives, offering pathways
to uncharted realms and the promise of groundbreaking discoveries. As we conclude this cosmic
odyssey, we stand on the precipice of new frontiers, ready to explore the mysteries that the universe
has yet to reveal.

This concluding chapter synthesizes the essence of our journey, highlighting the pivotal discov-
eries and cosmic revelations made along the way. Each model we've explored has contributed to
our understanding of the cosmos, and together, they form a rich tapestry of knowledge that propels
us into a future filled with promise and discovery.
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Appendix A

Inflation

A.1 Energy-momentum Tensor

In the realm of General Relativity, a crucial aspect involves accurately portraying the uniform
distribution of matter and energy on a large scale. This becomes clearer when we delve into the
concept of the scale factor, denoted as a(t), which governs the universe’s evolution over time. It’s
worth noting that the scale factor is the sole component in the metric that depends on time and
is derived from FEinstein’s equations. Consequently, the scale factor is intricately linked to the
distribution of energy within the universe.

This representation can be achieved by assuming that all the matter within the universe behaves
akin to particles within a perfect fluid. The initial formulation of this hypothesis dates back to 1923
when Herman Weyl was pioneering research in this field. In his investigations, he embraced the
foundational tenets of the Cosmological Principle and introduced a perfect fluid characterized by
its matter-energy density p and pressure p. This fluid was envisioned to move while preserving
its uniformity. To make this concept applicable, it was necessary for the relative motions between
particles to be negligible, and the fluid’s motion could be characterized by a single velocity described
by the four-vector v*. Interestingly, even though galaxies do not precisely conform to this model,
the deviations from it proved to be quite minor.

In General Relativity, the distribution of matter and energy is described by a tensor. The
simplest form of this tensor, which upholds the uniform motion of a perfect fluid within a curved
gravitational framework, is as follows:

T;W = (P +p)vuvu — PYuv- (Al)

This expression finds extensive application in the field of Cosmology and is commonly referred to
as the energy-momentum tensor. We can simplify this expression further by assuming that there is
no preferred reference point within the universe. Consequently, we select a reference point situated
on a particle within the fluid. This choice effectively immobilizes not only the particle but also
the entire fluid in a spatial sense. Moreover, under this condition, only the time component of the
four-vector velocity remains non-zero, and with a unit normalization, it adopts the following form:
v* = (1,0,0,0). Consequently, the energy-momentum tensor can be expressed as follows:

T = (P + 1) 9up?’ 9oV’ — PG = (P + D) 9090 — PYpuu- (A.2)
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We can re-write the energy-momentum tensor in the form of a 4 x 4 matrix using the metric tensor

P 0 0 0
_ 0 —gup 0 0
=10 0 —gup o0 (A.3)
0 0 0 —gssp

The conservation of energy, momentum, and matter holds significant significance in theory. As
anticipated, a conservation law, such as the conservation of energy, typically takes the following
form:

T,
ox?

This concept is accurate in the context of flat space-time, but in the framework of General Relativity,
which involves the study of curved space-time, a distinction arises. In general, when differentiating
a vector in a non-flat space, it yields two components. One component arises from the vector’s
shift, and the other from the change in the coordinate system. Therefore, we introduce the concept
of covariant derivative, which possesses this specific property, and we can express the conservation
of energy as follows:

—0. (A4)

™, =0. (A.5)
We can write the expression (A.5) in detail and take :
9, T" +T¥ T +T%, T =0 (A.6)

Here, it’s important to emphasize that Equation (A.6) does not represent a conservation law. We
can refer to it as a form of local conservation, but it doesn’t hold universally. Locally, nearly all the
Christoffel symbols are close to zero, allowing us to approximate it as a conservation law. However,
in the context of General Relativity, conservation doesn’t hold as a general rule.

A.1.1 Riemann Tensor

The second covariant derivative of a scalar can be written straightly as :

¢;uu5(¢;u>;u = az/¢;u - Fauu¢;a = 8N8V¢ - Foztzpaa¢' (A7)

The presence of the I' term arises because the first derivative is a vector. When dealing with
the second covariant derivative of a scalar, it exhibits symmetry when each term to the right of
Equation (A.7) remains unchanged, alternating between u and v. However, when calculating the
second covariant derivative of a vector, the situation becomes more complex : o po=(p).0 =

A A A
= 05 (0pa,, — T, 00\) — Fip(aﬁau —T,00) — Fﬁw((‘?pag — I, 5000)
= (symmetric terms in p and o) — aA80F>H + F*BWFApﬁoz,\.
In this scenario, the second covariant derivative need not be symmetric. The antisymmetric com-

ponent arises from the difference between the two terms :

_ A
Qpspe — Quiap = OV, (A.8)
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in which as we can see the Riemann tensor is involved :

R, = 0,0, —0,1%, + 3,7 —T7%,I° (A.9)
The Riemann tensor requires careful attention. In flat space, the second covariant derivative must
exhibit symmetry. Symmetry is an invariant characteristic that persists even when the coordinate
system is altered. Therefore, whenever the Riemann tensor has a non-zero value, it signifies that
space is not flat, and some information about its curvature is encoded within the non-zero Riemann
tensor. Consequently, the Riemann tensor provides insights into the inherent curvature of space.
Any additional curvatures resulting from the embedding of the system into a higher-dimensional
space are considered and treated as extraneous and are disregarded by the Riemann tensor.

A.1.2 Ricci Tensor and Ricci Scalar

The contraction of Riemann tensor eq.(A.9) leads to a tensor of second order which is called Ricci
Tensor :

Rop = Rgm = g™ Ryaps- (A.10)
Re-writing it in a more analytical form we take :
Rog = 0,1 5 — 0T, + T 51", — TR, T, (A.11)
Now if we apply one more contraction in the Ricci tensor, we take the Ricci Scalar :
R =R% = ¢"°Rag = g°° 9" Ry (A.12)

Einstein aimed to establish a connection between the geometry of space-time and the distribution
of matter and energy within it. The equation he sought needed to involve tensors of the same order
to maintain its invariance under arbitrary transformations, aligning with the expectations for any
fundamental natural law.

Drawing inspiration from Newton’s theory, which his theory should naturally reduce to in the
limit of a very weak gravitational field, and also taking into account Poisson’s law, represented as
V2® = 47Gp, Einstein formulated the fundamental concept of the Einstein Tensor :

1
G =R, — ig,“,R. (A.13)
Furthermore, he demonstrated that this tensor obeys an equation identical to the one satisfied
by the energy-momentum tensor, namely G**, = 0. Since this equation is a first-order differential
equation, the two quantities are directly related to each other, ultimately leading to the final
equation :

1
G = R, — ég,ﬂ,R = 87GT),. (A.14)

These are the so-called Einstein’s equations of the gravitational field.
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A.2 Robertson-Walker space-time

The space-time of Robertson-Walker describes generally a homogeneous and isotropic universe in
which the invariant interval has the form :

dr?

2 _ 23,2 2
ds® = c“dt” — a“(t) T

+ 1r%(df* + sin*0dp?) | . (A.15)

The unknown time-dependent factor a(t) in the expression is referred to as the “scale factor”
of the universe, and its precise form is derived from Einstein’s equations. The parameter k plays
a crucial role in determining the geometry of three-dimensional space. It can assume one of three
possible values: k= 0, —1, 41, corresponding to three distinct types of three-dimensional space.

When k£ = 0, we are dealing with a flat space, and the measurement of distances within this
space is described as follows :

ds® = dr® + r2d6* + r’sin*0dp*. (A.16)

The spatial coordinates take values 0 < r < 00, 0 < < m and 0 < ¢ < 27, and the three-
dimensional space is infinite.

For the case of k = +1, the three-dimensional space is characterized by positive curvature. Imple-
menting a new coordinate r = siny the element length takes the form :

ds* = dx* + sin*x(d6® + sin*0dp?). (A.17)

The spatial coordinate take values 0 < y, 6 < m and 0 < ¢ < 27, the three-dimensional space is
finite and is called “ closed ”.

Finally, for the case of k = —1 space is characterized by negative curvature. Implementing a new
coordinate r = sinhy the element length takes the form :

ds® = dx* + sinh®x(d0* + sin*0dp?). (A.18)

The spatial coordinates take values 0 < x < 00, 0 < # < 7 and 0 < ¢ < 2, the tree-dimensional
space infinite and is called “ open ”.

A.3 The expanding universe-Friedmann equations

In this section, we will explore the scenario of an evolving universe over time. By beginning with
Einstein’s equations, we will derive the well-known Friedmann Equations, which govern the
dynamic evolution of the universe through the solution for the scale factor a(t. We will specifically
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refer to the simple case of Robertson-Walker space-time, as the procedure remains the same in
general.
To start, we will compute the nonzero elements of the metric tensor g,

2

a .
go =1, gu= I 92 —a?r?,  g33 = —a*r?sin®e, (A.19)
as well as the inverse, g"":
1 — kr? 1 1
00 11 22 33
=1 S S — = - A.20
g > 9 o 9 aZr?’ a2r2sin26 ( )

Having calculated the elements of the metric tensor we are in the position to calculate the Cristoffel
symbols, so we take :

[0 =25, % = adr?®, T%; = adr’sin’f,

ry, = 1_k]:r2, Ly =—r(1—kr?), TL;=—r(1—kr?)sin0, (A.21)
Iy, =T%,=0%, = %, %, =0%;= %, [%; = —sinfcosh, T3, = z;’sz

Moreover, we calculate the non zero components of the Ricci tensor :

ROO - _357 Rll - %ﬁ;%’
(A.22)
Rgo = r*(acv + 262 + 2k), Raz = r*(ad + 262 + 2k)sin?6.
and finally, we take the expression for the Ricci scalar :
3 a &k

Now, we can utilize the findings we’ve discussed so far to compute the nonzero components of
Einstein’s equations based on the equation (A.14). Beginning with the (00)-component, we obtain

&k 8nG
T A.24
&2 + a2 3 Ps ( )

while all the spatial components lead to the same equation :

2 .. . 2 k-
e e (A.25)

o a? a2
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These two equations are the Friedmann equations of the universe. We can re-write the second
equation substituting the first in it to eliminate the a?/a? term and take :

o ArG
o —T(p + 3p). (A.26)

This is referred to as the Raychaudhuri equation or the acceleration equation. When examining
these two equations, a challenge in solving them becomes apparent. We indeed require one more
equation to resolve this issue. This problem can be addressed by incorporating the fluid equation,
which can be readily derived from the energy conservation equation by setting g = 0 in equation

(A.5) :

T% = 0=
T?z,// = FOOOTOO + FOHTH + P022T22 + F033T33 + TOO(F(lJl + ng + Fg:&)

p+3%(p+p) =0. (A.27)

Upon closer examination, it becomes evident that these three equations are not mutually inde-
pendent. To resolve this issue, we can introduce one final equation that establishes a connection
between the energy density and the pressure of the perfect fluid. This equation is known as the
equation of state :

p = wp. (A.28)

It’s worth noting that in general, the proportionality factor, denoted as , can be a function of
time. Utilizing the previous equation, we can express the conservation of energy in the following
manner: :

P &
- =-3(1 — A.29
£ (1) (4.29)
which lead to the solution :
___Po
p(t) = pEE=E (A.30)

where py is an integration constant. Continuing a little more our thinking, we introduce the Hubble
parameter :
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a

which determines the expansion rate of the universe. Also, we take the time derivative of the Hubble
parameter and write it as the quantity ¢ :

H

e (A.32)

€ =
We can deduce certain characteristics from this equation. If € < 1, it signifies that the universe’s
expansion rate is accelerating. Conversely, if € > 1, then the expansion rate diminishes, resulting
in a decelerating universe expansion. Additionally, we can express Einstein’s equations (A.24) and
(A.25) in terms of H? by utilizing equation (A.32) and assuming k = 0 (representing flat space): :

H? = ¥p (A.33)
and
4rG
(1—e)H* = —T(p + 3p) (A.34)

Now, we substitute eq.(A.30) in eq.(A.33) and we take :

-2 -2
a 8tG _ po = Z_2a3(1+w) — 87TG’p0 =

a — __pPo___ 3

a2 3 ¢3(1+w)
a, S(14+w) _ /817G dal 2(1+w) _ /8nG
202 =\ 3 P07 g P =\ 3 P
3
%ai“*’“’) _ /%podt

After integration, we obtain :

a3 (1+w) — 21+ w)/EE pot

So

4 ~ $5 (A.35)
If we plug this equation into eq.(A.32), we see that € is a constant :

e=3(1+w) (A.36)
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We can derive the following conclusions from this equation: In the case of a universe dominated by

radiation (w = g), € = 2.
In the case of a universe dominated by matter (w = 0), e = 3.

In both of these scenarios, the expansion of the universe is decelerating. For a more general case,
such as an inflationary universe, where w ~ —1 and € < 1, we can solve eq.(A.32) for H(t) and a(t)
to obtain:

- 1 —f- EH()t

1
€

H(t) and |a(t) = (1 + eHot) (A.37)

where a(t = 0) is chosen to be ag =1 and Hy = H(t = 0).

Now, let’s examine the form of these equations when we work with conformal time. To make
this transition, we can substitute dt = a(n)dn into our metric (ds?* = g,,dz"dz”). This gives
us ds* = a?(n)nudrtdz”, where 7 is the conformal time, and 7,, = (—1,1,1,1) represents the
Minkowski metric. Using these transformations, we can easily derive the solutions for the scale
factor and the Hubble rate in conformal time while considering a constant ¢. Keeping in mind the
relations a = %’, H(n) = Z—;, and H = HT/, where the prime denotes differentiation with respect to
7, we obtain the following differential equation for a(n):

a’a

€ = _W —|- 2 (A38)
By following the same procedure as before and applying the boundary conditions a(ny) = 1 and
H(no) = Hy, we arrive at the following equations :

1 Hy
a(n) = — 1, |H(n) = — A.39
D= T o= | T Ca ot (459

We can observe that the universe is expanding either when € < 1 and —oo < 7 < 0 or when € > 1
and 0 < n < oo, with both a and H being positive. Additionally, when ¢ = 0, the equations simplify
to H(n) = Hy and a(n) = _H+m’ representing the conformal scale factor in de Sitter space. Finally,
we can utilize the following relation :

1
to write the expression :
1
a(n) = T (A.41)

regarding the scale factor. It’s worth mentioning that when € is significantly smaller than 1, we
find ourselves in a scenario known as quasi de Sitter space. Furthermore, if we approach the limit
of ¢ — 0, we transition into de Sitter space.
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A.4 Equations from Action

In this section, we will derive Einstein’s filed equations from an action. First, we take the Einstein-
Hilbert action :

I6rGy’

where R is the Ricci scalar, and g=det(g,,).Let’s now perform the variation of this action with
respect to the metric g,,. To do this, we need to carry out some calculations. First, let’s consider
the quantity dg, which can be expressed as :

og = 0(det(g"")) = 99" 09, (A.43)

and
1 V=9
(5 — — ——(5 = —_— uy(s v :>
Vo =m0 =5 49" 0,

1
0V=9 = 5V =99""0gu (A.44)

We know that g,,.g™ = 0", so :
(59/M)QHV + g/m((sgmj> =0= <5g/w>gm/ = _guf-c((ng) =

og™ = _glm(ég;w)gny =

59" = —g"*(6gas)g”™” (A.43)

and :

909" = —Guwg"*(09ap)g” = —6%,(0948)9" = —(69p.)9"" =

909" = —g""0g,. (A.44)

So equation (A.44) from (A.44) becomes :

0v/=g = %\/—_g(g“”égw) = _%\/—_g(gmg’”) (A.45)

Now for our variations, we will need the following relations :

ViAie = Aig — Apily — A1y

ViA® = A% 4T AR 4 T AT
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So, from the above relations, we obtain :

VA%, ) = 8\oT%, + %, T, —T9,01% —I7,0T" (A.46)

We have the definition of the Riemann curvature tensor :

R, =0I%, -0, +I"1, —T%,I" (A.47)

ouy no

and from the above equation, we take the variation of the Riemann tensor :

ORY,,, = 0,007, — 8,617, + 00% \ T, + ¥ 61, — 61" 1%, — T* 6T%,, (A.48)

At this point, we calculate the quantities :
v#<5rpucr) = aﬂ(5Fp1m'> + Fp)\u(sF)\ua - Féuérga - F)\U;LCSFPVA <A49>
and

V. (6T%,,) = 8,(6T%,,) + T%,6T%,, — [,6T%5 — T 61", (A.50)

We take equation (A.49) minus equation (A.50) and we obtain :

aﬂ(érpya) + Fp)\,uér)\ua - M - F)\Uuérpu)\ - aV((SFP[AO') - Fp)u/é]‘—‘/\ua + % + F)\UV(SFp,u)\
This result we can see that it is equal to the dR” , from equation (A.48), so :

ouy

OR..,, =V, (6T%,) — V,(6T", ) (A.51)

opy

We continue with the variation of the Ricei curvature tensor. To do this we contract two indices of
the variation of the Riemann tensor :

0R,, = 0R?,,, = 6R?, , =

ppv

and we obtain :

SRy = V,(6T%, ) — V, (017 ) (A.52)

Now we take the variation of the Ricci scalar R = g""R,,, :

0R = 6(g" Ryy) = (69" )Ry + 9" 0 Ry =
RHV((;gNV) + gw/ [vp(arpl/,u) - vl/((srpp,u,)] =
Ruy(éguy) + Vp(guv(srpw) - VV(guV(SFppu) =

RMV((ngV) + Vp(gHV(SFPVM) - Vp(gupg[ww) =

SR = R,,(69"™) + Y, [¢"oT%,, — 6T, ] (A.53)
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where we used the property : V,g"” = 0.
For the Christoffel symbols first, we use the equation :

V(0ag) = 050905 — I',00905 — I'%,50as

and from the definition of the Christoffel symbols :

(o} 1 g
[0 = 597" (Os9ra + 0agys — 9sa)

we take the variation which is :

1 1
0% = 5(097") (98010 + Oagns — 01980) + 5977 [05(001a) + Da(0:8) — Dy(0gsa))]

We calculate the identities :

V5(091a) = 05(697a) — 1'%, 0900 — I'%a0948
Va(0gy5) = 0a(0gy5) — %0908 — I'%,30040

V,(698a) = 04(0gsa) — Fayﬁégaa - Fawégﬁc

The second term of equation (A.56) from equations (A.57)-(A.59), becomes :

1
597 1V58(0950) + L7807 + T5a00ys + Val09ys) + Dordoiop +

I%.50970 = V4(0980) — 1% 58950 — 1'% <6953, ] =

1

= 397 (V5(09,0) + Val09,) = ¥, (330) + 2% 500,0] =

1
= 597 [V5(6910) + Va(0935) = V+(3950)] + ¢ T750050

(A.54)

(A.55)

(A.56)

(A.57)
(A.58)
(A.59)
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Eventually equation (A.56) becomes :

1
=97V 5(09ya) + Val(0gy8) — V4 (0984)] =

1 (o g
0%, = E(ég“W)ZQWF“ﬁQ + 977 (0g,5)T %5 + 5

1
6T%q, = (69") g g0 + 97 (= Gy Guod g™ )T %5 + 59‘”[%@%) + Va(0gy8) — V4 (098a)] =
1
= (09") G50 — 07900 (0g"") + 59‘”[%(59%) + Valdgy8) — V1 (098a)] =

1
= (00" Vg "5 — gul09* 05 + 507V 5(0g50) + Va(0938) — V4 (0g50)] =

1
ol'%, = 59”[%@%) + Val(dgy8) — V4(095a)] (A.60)

Furthermore, easily we can show that :

1
0% = 597 Val(090y) + Vokdgza) — Vokdgoa)] =

1
T, = 507 Val(d90,) (A.61)

We can write the above equation (A.60) as

1 g v v 4
00 = 597" V6 (=01u90a09"") + Va (=91490809"") = V5 (= 95490a99™)]

1
=597 =990V 5 (09") = 911905V 0 (09™) + 95,900V (69™)]

2
1
= 5 [(szguavﬁ (59/“/) + 5Ugllﬁv (5gMV) - gﬁuguagg’yv'y ((sg,uu)}
1
= =519 V5 (097) + 9,6V (097") = 9u90a V7 (99™)] (A.62)

At this point, we will calculate the identities :

9°?(6I'g,) and  g*?(éT7,)
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Using eq.(A.61) and eq.(A.62) we obtain :

1
9a6<5rgo) =" {_5 900V 5 (69°") + 95V 0 (697") = 98u9va V' (59W)]}

1
__ [gaﬁgyavﬁ ((ng/) + gaﬁgyﬁva ((ngj) o gaﬁgﬁﬂgyava (59“11)]

2
1 14 « ov « g v
=5 [0V (397) + 05Va (097) = 519,V (59")]
1
IV (0g7) + V. (307) ~ 997 (30
1
—3 2V, (69°") — g, V7 (6g"")] (A.63)
and

ao ~y 1 ao N 1 o %

g (5F a'y) = _59 g,ul/va<5g ) - —EQWV (59 ) (A64)

Now we compute the relation (A.63)-(A.64) :
gaﬁ(drga) - gag(él—wa'y) =

1
= —52V0(097) = 9w V7 (09") = 9 V" (59")] =

1
_5[

2V, (09°") — 29,, V7 (69")]
So the variation of the Ricci scalar becomes :

OR = R, 09" + Vg[gaﬂ(éfaﬁa — ga"(éFVaV)] =

1
— Ruyég/“’ + VU {_5[2vy(6901’) o 29;4uvo(5g’w)]}

= R,,0g" + [-VsV,(097") + 9,V ,V(6g")] =

— [0R = R69" — V,V,09"™ + g, VoV (5g™) (A.65)

It’s worth noting that there are no fields coupled to R in the action, which means that the covariant
derivatives vanish. Consequently, we arrive at the following expression :

1

5 p—
Sen 167Gy

1
/de\/—g(RW — §ng,)(5g“”. (A.66)
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Thus, we obtain :

167G N 0S EH
V=g g
These equations are essentially the vacuum Einstein equations. Our next step is to incorporate

matter into these equations. This can be achieved by introducing matter fields into the action, like
SO :

1
= R,uy — §Rguy =0. (A67)

S = Sen + Swu, (AGS)

where S); is the action for the matter :

Sy = / dPx/ g%, (A.69)

and & represents the Lagrangian density for matter, which encompasses the matter fields. When
we vary the matter action with respect to the metric, we obtain the following result :

0SSy = /d4x—5(' _ggM)ég’”’
dgHv

= / d'z/=g \/1__95(@:%”)59#” (A.70)

At this point if we set :

Mg g

We obtain
1
30 =~ / /=G5 (A.72)

So from eq.(A.68), combining eq.(A.66) and eq.(A.72) we take

1 1 1
= d*e/—g |—=T,, + ——— ( R,, — =Rg., v
05 0:>/ x g[ 5 Lu + 167Cin (Ru 2Rgu )] 0g

1
87N T = Ry — 5 Rg (A.73)

These correspond to the Einstein equations (A.14). In the present low-energy state of the universe,
the matter action corresponds to the Standard Model action. However, in the early universe with
its extreme conditions, this is not the case. The matter action serves as an effective matter action
at low temperatures, and the complete action is expected to differ significantly from our Standard
Model description.
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Now, let’s provide a straightforward example of an action involving a real scalar field ¢(z) to
facilitate our discussion. The action takes the following form :

s = [ dov=gzu = [ doy=a (300000 - V(o). (A.74)

We note that our metric sign convention is (4, —, —, —). First, we write the Lagrangian density

Z = 50.00"¢ — V(¢) = 50,09 0,0 — V(0) (A.75)

2 2

Our Lagrangian then is:

L ==9% = 5\/=90,00"¢ — \/=gV (9)

We assume a Robertson—Walker metric so we have:

-1 0 0 0
0 -2 0 0
gMV = 0 17(])67‘2 7"2@2 O (A76)
0 0 0 7r2a%sin’6

The determinant of this matrix is:

r4a’sin? 6
det(g,,) = —————
et(gu) 1 — kr?
and so we have:
r4absin? 6
T ] k2

Now we obtain the field equation using the Euler—Lagrange equation:

o0 (45
R ANCIC)

The LHS is:

oL dV(p)
0= a VY

and for the RHS we have:
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0 3V 1006 + 0,090, } =
0.{1v=9120"0,9) | =

0V =99 0,0 } =
(au\/__g) g oud + \/—_gg“’j@“ay(b =

(Dov/=9) g0 + /—g9™° 00 =

(B0v/=9) &+ /=90

From Mathematica, we find:

3ra® sin’ 04

R S N

Finally, we have:

3rta® sin? 04

(1= kr2)v=g d¢
e
326+ 6=~ |=
$+3H¢ = —Z—‘;

a
where we have set H=—.

a
At this point, we take the stress—energy tensor for this scalar field:

(T = 0"$0" ¢+ Lg"

b+ v=gp =T =g,

(A.77)

(A.78)
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First, we obtain the energy density p:

~T°, =T =p=
p0°¢ + B@oqbaogb - V(gb)] g0 =p=

1
P:¢2—§¢2+V(¢):>

p= 5+ V() (A.79)

and then, the pressure p:

p="T"(nosum) =

p:gHT11 or 922T22 or g33T33

So we have:

p=guT" = g110'¢d'¢ — gu&Lg' =

1.
p=2 =5~ V(9) (A.80)
and the resulting equation of state is :
172
so° =V
w=">_ —?qb (A.81)
P 5P +V

This equation reveals that a scalar field with a value of w < 0 (indicating negative pressure) can
result in an accelerated expansion if the kinetic energy %¢2 is less than the potential energy V.
By combining equations (A.77) and (A.79), we arrive at the continuity equation :

dp .- dV .
%—qﬁqﬂ—%gbi

L= db+ (b —3H)d =

dp 12
i 3H¢" | (A.82)
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There are three equations in total: two are obtained by varying the action with respect to the
metric ¢", and the third is the equation of motion for ¢. It’s worth noting that the equation of
motion connects the other two equations, making only two of them independent. We will utilize
this insight in a subsequent chapter when we tackle the field equations for a specific matter action.

In a more comprehensive theory where multiple types of matter may exist (such as photons,
baryons, neutrinos, dark energy, etc.), and these components make significant contributions to both
the energy density p and the pressure p, we consider the summation of all these components: :

P=D P PED b (A.83)

For each component denoted as ’i,” we introduce the quantity €2;, representing the current ratio of
energy density to the critical energy density, defined as p..;; = 3HZ :

7

0= (A.84)
Perit
and also we write the corresponding equations of state for each component :
w; = b (A.85)
Pi

We should take note that the subscript '0” indicates the evaluation of a quantity at the present
time, denoted as ty. Utilizing this information and the scale factor’s normalization, which is ag =
a(ty) = 1, we can express the Friedmann equation (A.24) as follows :

H? ko 8nG

+
Perit a2pc7‘it 3

Z Qia—?;(l—i-wi) —

H? k 87@
SHZ T aBBHE 3 Z ¢

We set 87G = 1 and we obtain :

kS e —
H§  a*Hi &~
H\?2
(F) = Qa0 4 Qra (A.86)
0 X
Here, we define the parameters as follows: H = % and Q = —ﬁg to parameterize curvature.
0°40

When we evaluate eq(A.86) at the present time, we obtain the consistency relation::
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Qi+ =1 (A.87)

From the second Friedmann equation (A.26) we obtain at ¢ = ¢ :

1 d2a0 47G
—— = = Qiperit(1 + 3w;) =
L da o (1 + 3w;) =
— 5y = 4G per; i
aHZ dt? Perit
1 d2a0 1

T 201 4 3w, A88
agHZ dt? 2 (1+ 3wi) ( )
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Soft Terms and CW Corrections

B.1 Soft Term Potential
In general, the soft term scalar Lagrangian can be written as
£ > m2eeC” (B.1)
where the soft mass m?2 of the field C' defined as
mp = (m3y + Vo) — F7F" 0,0, log K. (B.2)

Here, F™ is defined as F™ = ¢“/2K™9G /On. Utilizing the superpotential and Kihler metric as
given in Eq.(2.4) and Eq.(2.9), we find that the soft mass of the canonically normalized field s is

2
W24 (B.3)

mi ~ (m§/2 + %) - 3%2 o

where V{ represents the minima of the potential. Hence the soft-term potential is

AV = m2S? — {mg ot Vi) Si%ng o } g2 (B.4)
Taking into account the relation s> = (;0273? S? between canonically normalized field s and non-
canonically normalized field S we have
2/3
AViopt = [(mi/2 + Vo) — SLWOQW,? + - } ?a;) s2. (B.5)
If we further define the ratio y = s/M, then B.1 takes the form
2 7/
AViop, = {(mém + Vo) — 777 W2+ - } MQyQB‘;l—,y =M. y*, (B.6)
where o203
M= [y 4 V6) = oWt 2T

147
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B.2 Coleman-Weinberg Corrections

In this Appendix we present analytically the computation of the CW corrections. Using the effective
potential

K2 | (M2 — ®,®,) |2 +274252(a®, D! + BP,B1) N 3WE(2n0 log(7") — 8no + &o) n d (B.7)

Vi —
off 3aafy Y43 273 72

the scalar mass matrix along the inflationary track read as,

K252 K2 M?
6aB71/3 20 , T 3ay7A/3 20 , 0 0 0
0 S 0 00 o
H2M2 HZSQ
) T 3an7 A3 20 ) 6aa 7 4/3 20 ) 00 0
T I k' 33)
0 0 0 0 0 0 0
0 0 0 0 00 0
0 0 0 0 0 0 ZMo
27aY7 3
After diagonalization and choosing a = [ the scalar mass spectrum is
2072 (22 _ 20\ 272 (02 _ 2a) 2272 (.20 22 2272 (.2 4 2a
A OOF@M(y 7)Fc]W(y 7)fiM(y—Fv)fiM(y—F7> 282 M4 L
o T 6a743a 6a7 430 6a7 430 6a7 430 2Tay710/3
(B.9)
where y? = s*/M?. Similarly, the generic fermionic mass matrix is defined as
Mg, = */? (WU + H W+ HW; + HW+ HHW — %kf%ijkw) . (B.10)
Using the superpotential (3.2) and the Kahler potential in (3.2) we obtain
arvr M2 a2~252 2 2ayS(kM?S—4
=S ;2%S+97’Z/:§ +o 0 0 %;V[ - (cys/s )
0 0 kS 0
Mg, = 0 kS 0 0 (B.11)
K M2 2a~S(kM?S—4 8/3
2SS 0 0 Byt (1)
After diagonalization, the fermionic masses are
36(1252M6y2’)/2 36&2H2M6y272
2 | 272,2 2072,2
Mg, = |k"M7y", k" My, 713 cee 773 + . (B.12)
The fermionic mass W and the bosonic mass % are small compared to other masses,

so their contribution to the Coleman-Weinberg potential is suppressed. Additionally, we focus on
the region where (y? > 2a/7). The relation between canonically and non-canonically normalised
field is s = Sy/3ay/ Vol/ ?. The effective contribution of the one-loop radiative corrections can be
calculated using the Coleman-Weinberg formula

1 M? M? 3
AVitoop = o= {Mé log (Q—ﬁ) — 2M}# log (Q—QF) -3 (Mg —2Mp) (B.13)
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KAMAy! 1 3
AV loop = Fy)— | ————s — =78/3 B.14
‘/11 P 14471_2&272%4/3 |: (y) <546L2Oé2’}/2 9o ; ( )

1 2 1242 22 2%2/3
F(y) = ———log nEY — 783 10g e R (B.15)
8la*a?y? 27@20472@2%2/3 3ayQ?

where




Appendix C

Beta functions

C.1 Beta functions and GRE’s

C.1.1 SU(5) case

The whole idea behind RGE’s is that the renormalization scale M in the theories is arbitrary, so we
don’t want the physical quantities to depend on it. The first step to achieve this is by taking into
consideration the Callan-Symanzik equation which states that if we shift M in a theory then we
should also shift the coupling constant g and the scalar field in a way that the bare n-point function

G™ (x4, ..., ;) remains fixed. So, we take :

0 9, . B
Ma—M —l—ﬁa—g +ny| G™(x1, ..., xn, M, g) = 0.

where § and ~ are

M

M
5— g, 7=—m5ﬁ-

From this point, we can easily end up with the renormalization equation :

ag,

= Bi(9)-

(C.3)

It is straightforward from this equation that once we have the tree beta functions (for SU(5)) in
hand, we can then solve the renormalization equation to find the tree running coupling constants

g:(M). In the limit d — 4 after some work we obtain :

3
g.
= ———=0b;
b 1672

so our results can be summarized as follows:

2 3 1 3
P DI
bgg——CQ ——ZCT’f ——ZCT1,>.

150

(C.4)

(C.5)

(C.6)
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Analytical Calculations :
e For b; we have (n, =3,n, =1) :

Q de u ) "
2 1+1+4+1+1 1:>
I T N — —
5\6 3 3 2 710
4 1 41
b= -2 Xmy— — = —
3 10 10
e For by we have (n, =3,n, =1) :
b 11><2 2 1><3+1 X 1>< 22 4>< 1>< =
= — —= = | XMy —=XNp=——=XNg—=Xn
73 3|2 2177 6" T3 3T g
19
e For b3 we have (n, =3,n, =1) :
11 201 1 1 4
b3:§x3—§[§x2+§+§}Xngzll—gxng:>
b3 =17 (C.9)

Threshold effects : When we make these calculations it is crucial to realize that below M, the top
quark does not contribute to the various sums of the above expressions as Higgs boson below M ;445
(in this case at 120 GeV). Having said that, the various calculations are modified to be consistent
with our statement, so we obtain:

e For b, we have (ng =3,n;, =1 and ny, = 2) and Mpjges < M < My, -

+n, + 3 X 1\ 1
n — —_ —
g 6 10
_ 2 +1+8+3+3+ L
5 1\3 32 12 10

(C.10)

(C.7)
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e For b, we have (ng =3,n, =1 and ny = 2) and Mpyjges < M < My, -

/ 11 211 1 1 1 1
b2—§><2—§{éx?)xn;—i-éng—i—éx?)xﬂ—6:>
/ 11

e For b, we have (ny =3 and ny = 2) and Mpyjges < M < My, -

/ 211 1 1
b3:11—§{§x2xn;+§xn9+§xng1:>

by = =2 (C.12)

" 103 v 23 v 23
bl - —% y b2 - — 5 b3 - — (Clg)

C.1.2 MSSM case

In the MSSM case we will see those sparticles in the supersymmetric model contribute significantly
to the beta functions which in turn dictate the running of the couplings constants.

Analytical Calculations :

e For b; we have (n, = 3,n, = 2) :

2 20 1\? 1 1\? 20
by =—< — X ny F2x (=) Xnp| == |2%X | 5] Xnp+— Xng| =
) 6 2 ) 2 6
—— g , ——
SM fermionic fields Higginos sfermions
33
b= —22 (C.14)
)
e For by we have (n, = 3,n;, = 2)* :
b 22 24><1>< +1>< + 2 14><1>< +1>< =
=——c —XNg+ = Xn - = —XNg+=Xn
733 9 9T g T | 3 9 " 9Ty
N———  gauginos N —r
SM part Higgsinos sfermions

lwe note that gauginos are in the adjoint representation so C' = N which in this case is 2. The gauginos here are

Winos and Zino.
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e For b3 we have (n, = 3) :

11 2 1 1 1
b3 = — X3— 5 [4X zXng+ 3 - 4 X - Xng, =
3 3 2 o~ 3 2
N——~———" gluino contribution S———
SM part sfermion contribution

Threshold effects :

We have to take the supersymmetric approach to consider the threshold effects of this tie. The beta
functions are unchanged above the universal sfermion mass (4500 GeV). In the rage Mo gev <
M < M,,; we rule out the sfermionic contributions from the beta functions. In the range Msyy gey <
M < Mzoo ey We freeze out the contribution of the second Higgs boson doublet and finally in the
range M < Mg ey We rule out the contributions of gauginos and Higgsinos leading us this way
to the SM beta functions. So, analytically we have:

Range Mooo ey < M < Myp; -

e For b, we have (n, = 3,n; = 2) :

b, = 2 20>< +2 % 12>< 1 2 X 1 2>< =
1= 5 6 2 R 2 "
——

N g
SM fermionic fields

g

Higginos
/ 23
)
e For b, we have (n, = 3,n; = 2) :
b, 22 24><1>< +1>< + 2 11>< =
= — — = - n - n — = |= n
273 3 ARl BN DR
N—— gauginos
SM part Higgsinos
T
b, = = C.18
=1 (€13
e For b, we have (n, = 3)
/ 11 2 1
b3—€><3—§ 4><§><ng+ | 3 | =
gluino contribution
SM part

’

by =5 (C.19)
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Range Maoo gev < M < Moo gev -
e For b, we have (n, = 3,0, = 1) :

. 2 20 1\? 1 1\?
by =—= — X 1Ny +2x (=) Xnp| —=12%x | =) xnu| =
5 6 2 5 2

SM fermionic fields ™.

Higginos
/ 43
by = —— C.20
=5 (20
e For b, we have (n, = 3,0, = 1) :
b 22 2 4 1 1 5 11
2= 3 73 ><2><ng—|—2><nh+ ' —32><nh:>
~—— gauginos
SM part Higgsinos
P
o3 C.21
=3 1)
e For by we have (n, = 3) :
by = by (C.22)

C.1.2.1 Extensions of the MSSM

In this section, we will extend the MSSM spectrum by introducing extra vector-like pairs (VP) like
5 —5’s. We already know that a 5 contains (d°, L) or (if it’s a Higgs 5 then (D, H;)) and the 5
contains (d, L) or (if it’s a Higgs 5 then (D, H,). Our work is to find how these VP contribute to
the beta functions. Let us first consider the scenario of an extra 5y :

e For b; we have :

2 1\° 1\° 1 1\’ 1\’
bl:lewSSM__g [3x<§) an/—|—2><<§) th’]_§[3x(§) XnD/—f—2><<§> X np | =

(& / (& /

— -~
fermionic cotribution bosonic cotribution

3 /(1 1
bl = biMSSM — g (g X Npr + 5 X nh/> (C23)

and for complete 5’s we have nj, = np = ns, so we obtain :

by = bMSSM 4 % (C.24)
Similarly for the rest beta functions we obtain the:
by = BMSSM | % (C.25)
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and

Ny

bg — bé\/[SSM+ 5

(C.26)

Now, we consider the contribution from the 5. We easily can see that it contributes to each beta

n
function a term —. So, in the case of one VP, we take :

by = b M 4 1| by = by M 1) by = by 41 (C.27)

In this point we generalize:
When we have complete 5 and 5’s in vector pairs, the beta coefficients receive a common shift

by = bMSSM 4 (C.28)

where n, is the number of extra vector pairs.
An interesting case occurs when we consider 3 VP. Using the above relations we obtain :

33 48

We notice that bs vanish!.

C.2 Yukawa couplings

First, we write down the fields of the theory, so we have :

d -
B R W/
(h+) ) Q — Uz d2 ) (h(}) ) (Z)
us d3

u‘3172,3, ’317273, e, S (C.30)
color color

Let us now write the invariant terms of the Lagrangian with the Yukawa couplings. We have :

AN HAQVu§ — Ny (hWOuus , hdug)
NH QY ds — Ny (ROd;d | h™w;df)
A\ HOLPe® — N\ (l_loeec , ]_Z_Vec)

NSHH — )\, (Shoﬁo , Sh*h*) (C.31)
To keep up with the calculations we number all the fields, so we obtain :

R, R R~ RO uy, us, us, dy, do, d us ds v, e , e S
) ) ) , Wy, U2, W3, U, U2, U3, 1,2,3 ) 1,2,3 I\ 2\ )\ 2\ ,

(1,2) (3,4) (5,6,7) (8,9,10) (11?157/13) (14,15, 16) (17) (18) (19) (20)

-~
i

0]
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The potential is of the form :
W o~ i j k' " (C.32)
and we have the relation :
Having said this, we take the equation for the calculation of the Yukawa couplings :
d 1 y ” ,
a)\i]‘k = W { (Al )\z"jk + Ag )\ij’k + A]g )\ijk:’) - )\z‘jkz (Gauge Part)} (C34)
We write down all the possible terms for \’s :
At = A1s11| A 6,12 A 7,13| A2,8,11] A2,0,12| A2, 10,13 (C.35)
Ab — A38.14|A3,0.15/A3.10,16| Aa.5,14| A16.15| e 7,16 (C.36)
Ar = A3.18,19| A17,19 (C.37)
As — >\1,3,20’)\2,4,20 (C.38)
e For the top Yukawa we have :
d\; 1
— =5 {(A" My + A Nse + AN 1)}
We calculate each term individual :
A11 =MjsMje= (N5 11)2 + (M6 12)2 + (A7 13)2 + (M1 10)2 = 3)\§ + )\%*
A55 = NiskNisk = (/\1511)2 + ()\4514)2 = )\? +>\§
Alh =NjnAijn = (A1s 11)2 + (A2 11)2 = 2/\%
So
dM 2 2 2
o (6A7 + A& + A} 4+ Gauge Part) \, (C.39)
e For the bottom Yukawa we have :
dp 1
= 353 LA+ A% s+ AN 1) }

We calculate each term individually:

A3y = A3 jirAs ik = (A39 152+ (M31016)2 + (M31819)% + (M1320)% = 3A2 + A2 + )%
Asg = NigkNigk = (>\2811)2 + <)\3814)2 = )\§+)\§

Alliﬁl - )\’Lj 14>\ij 14 — <)\38 14)2 + ()\45 14)2 = 2)\%
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So
dAp 2 2 2 2
o & (6A; + A + A2 + A% + Gauge Part) \, (C.40)
e For the tau Yukawa we have :
TA 1
d_tb ~ 3272 {(A33)‘3J k+ AsAiis s+ A 19)}

We calculate each term individual :

A3y =3A + N2+ )%
Al%g = >\z 18 k)\z 18k = (>\3 18 19)2 = )\72-

A1%9 = Xij19Nij19 = (Az1s 19)2 + (Ag17 19)2 = 2/\3

So

dX\;
dt

o (4A2 + 3A] + A% + Gauge Part) A, (C.41)

e For the S Yukawa we have :

dA\ 1
d_tb = 353 LA g+ A Aig i+ A% 20) }

We calculate each term individual :

A3y =3A2 4+ N2+ )%

A% =N j20Nijo0 = (A1320)% + (Maa20)? = 2)%

So

dhs

o & (4\% + 3\ + 3A7 + A2 + Gauge Part) Ag (C.42)

For the sake of completeness, we should also include the contributions from D.D and L, L fields. To
do so, we first need to know the couplings. For the term A\pSDD we have :

S(DiDi)i:LQ,S — S(Dlljl -+ DQBQ + Dgljg)

and for L,L we have A\ SL and A SL respectively. We note that these fields are numbered as
follows:

Dios , Dips , L—(vper) and L — g, er
~—~— ~—~— — ——

(21,22,23) (24,25,26)  (27,28) (29, 30)
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Having said these, we take all the possible terms for the D and D :
A20,21,24| A20,22,25| A20,23,26 (C.43)
and for the L and L :
A20,27,28] A20,29,30 (C.44)
e For the D Yukawa we have :
d\ 1
d_tD = 39,2 { (A% X201 + N5 Nior i + A% j24) }
We calculate each term individual :
A2(2)[) = A0 kA20jk = (A2021 24)2 + (A20 22 25)2 + (A2023 26)2 + (A201 3)2 + (A2 24)2
+()\20 27 28)2 + ()\20 29 30)2 = 3/\% + 2)\% + 2)\%
A2 =Nk dione = (Mao2124)? = A
A% =N joa = (Mag2124)? = A
So
dAp 2 2 2
i (55 + 2X% + 2A7 4+ Gauge Part) Ap (C.45)
e Finally for the L Yukawa we have :
d\ 1
d_tL = 3002 {(A220A20j k+ A2§7)\z' 27 k 1 A2§8>\¢j 28)}
We calculate each term individual :
A%, = 20 kA20 5k = (A20 21 21)? + (M202225)% + (A202326)% + (A2013)* + (M2024)?
+(A202728)% + (A202930)2 = 3A%, + 2A% + 2A3
A% = NorrNiork = (Man2728)? = A3
A% = Nijoshijos = (Nao2ras)? = A7
So
dAr 2 2 2
5 (3AD 4 205 + 4X7 + Gauge Part) Ay, (C.46)
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C.2.1 Gauge Part for the Top Yukawa

When we plot the RGE’s we are also interested to see the running of the top Yukawa since it has
the biggest contribution among the other Yukawas. Having said these we write down the general
equations for the gauge part of the beta functions in the MSSM case :

Gauge Part = —4g2C,(i)0} (C.47)
where
| 4/3 for &, = Quc,d"
Csli) = { 0 for ®; = L, H,,H, (C48)
. (3/4 for® =QL,H,H,
G(0) = { 0 for ®; = u,d€,e” (C.49)
C1(i) = 3Y;?/5 for each ®; with weak hypercharge Y;. (C.50)

Using the above we obtain the Gauge Part for the top Yukawa in the MSSM :

@ [_4gica(i)5§] =

. 31 /1N [1\* [2\°
s § ~80Q) ~ 1530t - 3@~ asicatt 167 | (5) + (5) + (5) | ¢ -
——

Y2 Yj Y
1 32, 5 26 ,
il S
3072 ( 3 93 92 1591)

Hy, u®
Taking in account these results we have the final form of the top Yukawa in 1-loop in the MSSM
case :

dX 1 2 26
t — (6A;? + A%+ A — 3—g§ — 695 2) A\t (C.51)

it 32m 3 15

C.3 NMSSM case-Plots

Making use of the Mathematica package we obtained the various plots for the case of the NMSSM.
First, we run the RGE’s in the range (m; = 173,34 GeV -1 TeV) :
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-93\

\ﬂ\

.
g2

! L p/GeV
200 400 600 800 1000

and then we plot them in the range (1 TeV - Mgyr ~ 1 x 10'%), so we obtain :

L L L L
10° 108 10' 101

Finally, we can merge the two plots to have the whole picture of the running of the couplings
in the NMSSM case. The graph takes the final form :
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C.4 The Case of SU(5)x U(1)

The spectrum of the model is defined as :

16, — 1041 + 53 + 1_5
Q c 1(', L c

109 = 959+ 5_9
~——
2 Higgs
~—~
%

Plus, we have a pair of ¢,¢ coming from the 126,126 representations of SO(10).
For the RGEs of the model, we have :

SU(B) x U(1)y
—— N —
b1,b2,b3 by

where by, by, by are the usual RGE’s of SM and b, is an extra RGE which we have to calculate.
First, we make use of the relation :

Tr (Q2) =3 (C.53)

combined with the relation :

Qy = cQy (C.54)
to find the renormalization constant c. Having said these, we obtain :

Al0x (1) 4+5x3+1x (=5 +5x2°+5x (=2)>+0] =3 =

A120 =3 =

(C.55)

8-
=)

So, the beta function of y is :

by =cY2=c*{ [2x3x (=1’ +3x (3)?+3x (1> +2x (3> + 1 x (=5)*+1 x (—1)*| x3
—_—— e N N— N ~ /N ~ 4
Q de u¢ L ve e

2x (22 +2x(=2)%+2x(10)*} =

~ ~ ——
2 Higgs o,0
b, = L 456 =
X 40
57
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To run the plots we have to take into consideration 2 regions. In the first region GUT — M cutrino-

the beta functions are unchanged. In the region M, cu-Msysy ~ 1TeV b, is changed in a way :

57 3 x25 200 57 275

540 40 5 40

by = — (C.57)

For the top Yukawa we have also a contribution coming from the U(1),. So, equation (C.51) takes
the form :

a1 32 26 , T2
—t = (6A? + G+ N — g5 — 695 — —gf — —g§> A (C.58)

dt — 3272 3 27 15 5

Now, we run in Mathematica the Plot of RGE’s for the various regions and we obtain:
In the range Mauyr-Myeut -

0.4
0.2

10 10 10' ey

and then we plot them in the range M,c;-Msysy, so we obtain :

10\
vt

08 @

922
06 gH—

M
0.4

0.2

p/GeV
109 108 10"

2 M yeutrino =~ 1 x 1013 is the energy scale where we throw out the neutrinos and the ¢ and d_)
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Finally, we can merge the two plots to have the whole picture of the running of the couplings
in the NMSSM case. The graph takes the final form :
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Appendix D
Model Building

D.1 Anomaly Conditions: Analytic expressions

Regarding the overall factors, in our calculations, we find that @90 = 331 = Syy1 = A.

ad = (30\/501 + 15\/602 + 9\/1_003> my + (—60\/501 + 15\/602 + 9\/1_003> me + (9\/1_003 — 45\/602) ms
— 36v/T0cymy + (-20@@ —10V6es — 6\/Ec3> M, + (10\/§c1 — 10V6es — 6\/Ec3) M,
+ (~10v3e; +10vBes — 6v/10¢ ) My + (—~10v/3e, — 5/, + 9v/T0c3) M, (D.1)
+ (20\/5(:1 +10v6e, — 6\/Ec3> M + (20\/§c1 — 5v/6cs + 9\/Ecg) M + (15\/6(:2 + 9\/1_oc3) M,
+ 30V3e Ny + (10\/§c1 + 20\/6c2> N + (10\/§c1 +5v/6cs + 15x/ﬁc3> N, .

Regarding the mixed &/y1; anomaly, we can express it as follows:

3 /3 1
dyn = 5\/%¢§N7 + 30 (\/ 150? + 4v/30cc; + 8V 1503) Ng

1
+ 50 (2\/1_50% + 2\/%0201 + 30\/§c3cl + \/ﬁcg + 15\/ﬁc§ + 300203> Ny

The expression arising from the U(1)-gravity anomaly is as follows:

Ao = (20\/§c1 +10v/6es + 6\/Ec3) mi + <—40\/§01 +10v/6es + 6\/Ec3) ma + (6\/ﬁc3 - 30\/6c2) "
— 24V/T0cmy + (—20\/3(;1 — 10v/6es — 6\/Ec3) M, + (10\/§c1 —10v/6es — 6\/1_003> My
+ (—10\@01 + 10\/602 — 6\/%0;;) Ms; + <—10\/§cl — 5\/602 + 9@0;:,) M,
+ (20\/§c1 +10v/6c; — 6\/1_ch> M+ (zox/éc1 — 5V6es + 9\/Ec3) M + (15\/6(:2 + 9\/1_003> M,
+ 2436 Ny + (8\/§c1 + 16\/6(:2) Ne + (8\/§c1 + 46, + 12\/Ec3> N+ 3 M@, (D.:

G

and the pure cubic U(1)" anomaly is:
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A1 =

_l’_

(20\/§c§ 16 (5\/6@ n 3\/1063) 246 (5\/5(:3 +6v/Beser + 3\/§c§) a
2
5\/60% + 9\/?0% + 9\/6020§ + 9V 100%03) mq

(—160\/§c§’ +24 (5\/6‘(:2 + 3\@(:3) 212 (5\/§c§ +6v/5escn + 3\/§c§> e

2
5\/60% + 9\/?0% + 9\/6@0% +9v 100%03) ma

2 2
9 (15\/&3 — 9V 10c3¢3 + 3v/6c3ca — \@@) 576\/;03m4

(80\/50‘? + 24 (5\/602 + 3V 1063) C% + 24 (5\/50% + 6\/50362 + 3\/§c§> c1
20v/6¢3 + 91063 + 36v/6cac? + 36\/10c§C3) Moy
(10\/50‘;’ —6 (5\/662 + 3V 1003) C% + 12 (5\/36% + 6\/50302 + 3\/5052))) cl

20V/6¢3 — 36v/10¢3¢3 — 36v/6c2co — 36\/?:3) M,

(10V3¢} +6 (5v6e2 — 3v/T0cs ) & — 12 (5v/3¢3 — 6v/Beaca +3v3c3) e
2063 — 36\/§c§ + 36v/6c2c3 — 36\Eoc303> M,

(10\/§c§’ 3 (5%6@ - 9\@%) 23 (5\/3(:3 — 18v/Beses + 27\/§c§) e

24
\/7 ﬁ — 81\/7@03 + 27\/7c203> M3

2
(80\/§c§’ +20v6c5 — 36\/;03 + 36v/6¢2¢3 — 36v/10c3c3
24 (5\/6c2 - 3\/1003) 2424 (5\/3.:3 — 6vBesea + 3\/§c§) 01) M,y

(80\/301{’ —12 (5\/6@ - 9\/1063) 16 (5\/§c§ —18v5esen + 27\/§c§) ¢

243
\/7 cy + 03 — 81\/76263 + 27\/70203> Ms

(25f 3 + 45v/10c3¢2 + 45v/6c2cs + 9v/10 cg) Mg+ > MyQ?
i#j

The sums in (D.2) and (D.3) represents the contribution from the singlets.

D.2 List of models

In this appendix, we provide an overview of all the flux solutions that meet the criteria for an MSSM
spectrum, including the corresponding U(1)’ charges and information about the singlet spectrum.
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For each presented solution with a specific value of ¢;, there is a corresponding solution obtained
by replacing ¢; with —¢; while maintaining the anomaly cancellation conditions. Therefore, there
are also models with charges that undergo Q' — —@Q'.

As mentioned in the main text, there are a total of fifty-four solutions, categorized into four
classes: Class A, B, C, and D.

Class A

This class encompasses six models, and the flux data solutions, along with the resulting ¢; coef-
ficients, are detailed in Table 4.5 in the main text. The corresponding models defined by these
solutions, along with their U(1)’ charges, are provided in Table 4.6.

In this section, we exclusively present the singlet spectrum for Class A models. It is noteworthy
that in this particular class, singlets are arranged in pairs, meaning that M;; = M;;. Consequently,
a minimal singlet spectrum scenario implies M;; = Mj; = 1. The singlet charges @, for each model
can be found in Table D.1 below.

Class A Charges

Models 13 14 15 s 5 Qus
T T T T

ALAG 01— ]

A3, A4 | —5 5 0 1 )

Table D.1: Singlets charges of Class A models.

Class B

This Class of models consists of twenty-four solutions. All the relevant data characterized the
models organized in three tables. In particular, Table D.2 contains the flux data of the models
along with the corresponding c;-solutions, as those have been extracted from the solution of the
anomaly cancellation conditions. In Table D.3, the U(1)" charges of the matter curves are given.
Finally, details about the singlet spectrum are presented in Table D.4.
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Table D.2: Class B models, flux data and the corresponding ¢;-solutions.
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Table D.3: U(1)' charges of Class B models.
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Class B Multiplicities Chargesxv/15

Models Mz My My My My Mys Mz My Msy Mys Mss My | Qs Ql Qs Qb Qs Qs
B1, B2, B6,

B8, B9, B11, $r 2 2 1 1r 1 1 1 1 1 1 1 |-% -3 0o o 35 3
B15, B16

B3, B4, B5,

B7.B17B2, | 1 2 2 1 1 1 1 1 1 1 1 1% o 2 -2 o 3
B22, B24

B10, B12, B13,

Bi4B18B19, | 1 2 2 1 1 1 1 1 1 1 1 1|0 -2 -2 -3 -5 9
B21, B23

Table D.4: Singlets spectrum of Class B models.

Class C

This class is defined by twelve models, each with specific gauge anomaly cancellation solutions
detailed in Table D.5. Additionally, the U(1)" charges of the matter curves for these models are
provided in Table D.6. Further information about the singlet spectrum properties can be found in

Table D.7.

Class C Flux data ¢; coefficients
Model my Mo M3 My M1 Mg M3 M4 M5 MG M7 N7 Ng Ng C1 Co C3
N
C1 1 0 0 2 0 -1 0 0 0 -1 -1 0 0 1/|—¢ ¥ L
Vs 53 1
C2 1 0 2 0 0 0 0 0 -2 -1 0 0 1 |-%¥ B L
Vi TV
C3 1 0 0 2 0 0 0 0 0 -1 2 0 0 1|-¥ 2z L
5 3
C4 1 0 2 0 0 -1 0 0 -1 0 -1 0 1 0] f% 74
5 3
C5 1 0 2 0 0 0 0 -1 -1 0 -1 0 1 0¥ ¥z
3 3
C6 1 0 2 0 0 0 0 0 -2 0 -1 0 1 0]|¥% M2 V2
C7 1 0 2 0 0 0 0 0 -1 0 -2 0 1 0¥ ¥z N
NAYA 1
C8 1 0 0 2 0 0 -1 0 0 -1 -1 0 0 1|=¥ 2z -1
5 3
C9 1 2 0 0 0O 0 -1 0 -1 -1 0 1 0 0] 0 \2[ _4
5 3 /3
C10 1 2 0 0 0 0 O -1 -1 -1 0 1 0 0/ 0 A REA
5 3
C11 1 2 0 0 0 0O 0O O -2 -1 0 1 0 0| o0 M2 M2
Vi o _3/3
C12 1 2 0 0 0 0O O O -1 -2 0 1 0 0] 0 Mz V2

Table D.5: Class C models, flux data along with the corresponding c;-coefficients.
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Class C Chargesx/15

Models o, Quo, Qo Qo | @5 @5, @5 @5, Q5 QO

C1, C2 -1/4 0 9/4 -3/2 -1/41/2 -2 7/4 1/2 -3/4 -2 T/4

C3, C8 /4 3/2 -9/4 1/4 |-1/2 -7/4 2 -1/2 3/4 -T/4 2

C4, C6 /4 -9/4 1/4 3/2 |-1/2 2 -1/2 -7/4 2 3/4 -T7/4

C5, C7 -1/4 -3/2 -1/4 9/4 | 1/2 7/4 1/2 -2 7/4 -3/4 -2

C9,C11 | 1/4 1/4 -9/4 3/2 |-1/2 -1/2 2 -7/4 2 -7/4 3/4

C10,C12 | -1/4 -1/4 -3/2 9/4 | 1/2 1/2 7/4 -2 7/4 -2 -3/4

Table D.6: U(1)" charges of Class C models. The charges are multiplied with 1/15.
Class C Multiplicities Chargesx /15
Models Mz My Mz Msy Mz Mys Mz My Msy Myg Msy Msy | @y Qu @y Qp Qs Qs
C1, C2 1 1 1 1 1 1 1 1 2 1 1 [-2 2 o 2z -2
C3, C8 $1 1 1 2 1 1 1 1 1 1 1 1 |- 5 0o L 2 2
C4, C6 1 1 1 1 1 1 1 1 1 1 2 1% o -2 -2 B _=
Cs, C7 $1 1 1 1 2 1 1 1 1 1 1 1|2 o -2 -2 L 2
C9, C11 1 1 1 1 1 1 1 1 1 1 1 2|0 & = & &2 _DB
Cio,C12 11 1 1 1 2 1 1 1 1 1 1]o0 &% 5 5 & D1
Table D.7: Singlets spectrum of Class C models.

Class D

Within this class, twelve distinct models are identified. The flux data, including the corresponding
ci-coefficients solutions, can be found in Table D.8. Table D.9 provides information about the
U(1)' charges associated with the matter curves in these models. For details regarding the singlet
spectrum, including multiplicities and Q;j charges, please refer to Table D.10.
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Class D Flux data ¢; coeflicients
Model myp Mo Mg My M1 MQ M3 M4 M5 Mﬁ M7 N7 Ng Ng C1 Co C3

H 2
D1 1 0 1 1 0 0 -1 O -1 0 -1 0 1 0 ‘ég -2 1
5 5 .
D2 1 0 1 1 0 0 0 4 0 -1 -1 0 o0 1|Yi Wi s
5
D3 1 0 1 1 0 0 0 0 -1 -1 -1 0 0 1] —/2 —% g
D4 1 0 1 1 0 0 0 -1 -1 -1 0 1 0 2 —\f i
D5 1 1.0 1 0 -1 0 0 -1 -1 0 1 0 0] 0 -—¥B& _I
D6 1 1 0 1 0 0 -1 0 -1 -1 0 0 1 |—/2 —¥3i 3
D7 1 1 0 1 0 0 0 O -1 -1 -1 1 0 0| 0 =¥B& 1
D8 1 11 0 0 -1 0 0 -1 -1 0 1 0 0] 0o -¥Y5 I
5 5./2
D9 1 1 0 1 0 0 0 0 -1 -1 -1 0 o 1|Yi Wi s
5
D10 L1 1 0 0 0 10 1 0 1 0 1 0|,/ VR
5 5
D11 1 1 1 0 0 0 0 0 1 1 1 0 1 o YE Vi T
D12 1 1. 1 0 o0 0 0 0 -1 -1 -1 1 0 0] 0 -—¥B T
Table D.8: Class D models flux data.
Class D Chargesx+/10
Models | Qlo, Qho, @ioy Qo | Q5 @5, @ QF, Qb Qb Q%
D1,D11 | 3/4 -1/2 3/4 -7/4|-3/2 -1/4 -3/2 1 -1/4 9/4 1
D2, D9 | 3/4 -1/2 -7/4 3/4|-3/2 -1/4 1 -3/2 9/4 -1/4 1
D3, D6 |-3/4 7/4 1/2 -3/4|3/2 -1 1/4 3/2 -9/4 -1 1/4
D4,D10 | 3/4 -7/4 3/4 -1/2|-3/2 1 -3/2 -1/4 1 9/4 -1/4
D5 D12 | -3/4 -3/4 1/2 7/4 | 3/2 3/2 1/4 -1 1/4 -1 -9/4
D7,D8 | -3/4 -3/4 7/4 1/2 |3/2 3/2 -1 1/4 -1 1/4 -9/4
Table D.9: U(1)’ charges of Class D models.

Class D Multiplicities Chargesx+/10
I\’IOdQIS ]\/[13 A/fl4 ]\115 ]\/[34 A135 A/[45 Afgl ]V[41 A[;l ]LLB ]\/{53 ]\/154 Q/B /14 /15 /34 Qés 215
pyp1it{ 1 1 3 4 1 2 2 2 1 1 4 1|3 o0 % -3 2 3
p2p9 | 1 1 1 1 4 1 3 1 2 3 1 4, 5 -2 o 2 2 2
pgp6 (3 1 1 3 1 3 1 1 1 1 3 1 |- -2 0 & 5 2
pgpwo| 3 1 1 1 3 1 1 1 1 3 1 3,3 o0 2 -5 2> =2
psD12| 1 1 2 1 3 1 1 4 1 3 1 3,0 -2 -2 = 5 2
p7rpg | 1 2 1 2 1 4 3 1 3 1 3 1,0 -2 -2 -5 =2 =2

Table D.10: Singlets spectrum of Class D models.

The main body of this text already contains a detailed phenomenological analysis of Model D9.
Concerning the singlet sector of these models, their superpotential takes the following form:

WD,uf‘f@

ij 7 Ji

@07 4\

*Brge gl gy (D.4)

ijk Yij kj ki
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In the above expression, u%ﬁ represents the mass parameters, and )\?ji"’ stands for dimensionless
coupling constants. The Greek indices span from 1 to the multiplicity denoted as M;; for the
respective singlet. The minimization of the superpotential, achieved by setting dW/ 007 equal to
zero, results in the F-flatness conditions.

D.3 Flavour violation bounds for the various models

In the main text, we extensively examined the low-energy implications of Model D9. A similar
comprehensive analysis was conducted for all the MSSM spectrum models discussed previously.
Due to the numerous models, we won’t delve into the detailed analysis of each one here. Instead,
we will focus on the main results concerning flavor violation for the four classes of MSSM models
introduced in the preceding sections.

Models within the same class share common U(1)" properties, resulting in quite similar phe-
nomenological analyses. Below, we discuss the fundamental flavor violation constraints for each
class of models, with the primary outcomes summarized in Table D.11.

Class A: Class A comprises six models, characterized by very similar U(1)’ charges. Specifically,
they exhibit only two possible values for the absolute values of )" charges: 0 and 1/2. The matter
fields stemming from the SU(5) tenplets have zero charge, leading to significantly suppressed flavor
violation processes. While the @' charges exhibit some (semi) non-universality in the lepton sector,
the corresponding LF'V processes remain notably suppressed when compared to experimental re-
sults. In summary, flavor violation processes in Class A models appear highly suppressed, making
it challenging to extract meaningful Mz bounds for this class.

Class B: Out of the twenty-four models in this class, we analyzed eighteen in detail. Specifically,
models B4, B5, B8, B13, B15, and B16 exhibited improper mass hierarchies and were subsequently
excluded from further analysis. For the remaining viable models, the dominant constraints emanate
from the Kaon oscillation system. Approximately, the Z’ contribution to the K°— K0 mass difference
is estimated as:

(D.5)

Comparing this with experimental bounds, for ¢ = 0.5, we obtain the constraint: My = 190
TeV.

Class C: In this class of models, the flux integers (as presented in Table D.5) lead to identical
U(1)" charges for all matter fields stemming from the SU(5) tenplets. Consequently, flavor violation
processes such as semi-leptonic meson decays and meson mixing effects are heavily suppressed.
However, in the lepton sector, U(1)" charges are non-universal, leading to lepton flavor violation
phenomena at low energies. The dominant constraint arises from the three-body decay pu~ —
e~e~et. Approximately for all Class C models, we find that the Z’ contribution to the branching
ratio of this decay is:

" Tev\*
Br(u~ —eee)~72x107° (g ¢ )
Z/
Comparing this with the current experimental bound implies that Mz 2> (51.8 x ¢') TeV, where
¢ is the U(1)" gauge coupling. In the absence of any signal in future u~ — e~ e~ e’ searches, this

bound is expected to increase by an order of magnitude to My 2 (518 x ¢') TeV.
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Class D: For models in this class, the dominant constraints stem from the Kaon system. In
some cases, strong bounds will also be imposed by future u~ — e~ e~ e™ searches. Specifically, for
models D1, D2, D5, D6, D8, and D10, the constraints from Z’ contributions to the K% — K9 mass
difference are as follows: My 2 (475 x ¢') TeV. For the remaining D-models (D3, D4, D7, D9,

D11, D12), the results are similar to those of model D9, which was thoroughly analyzed in the main
body of this text.

Models Dominant Process (Mz/g') bound (TeV)
Class-B K° — K0 mixing Mz /g 2 380
(excluded: B4, B5, B8, B13, B15, B16)
W —e e et My /g 2 51.8
Class-C
Future = — e~ e~ e searches My /g 2 518
D1, D2, D5, D6, D8, D10 K9 — K9 mixing My /g > 475
KY — K9 mixing My /g > 238
D3, D4, D7, D9, D11, D12
Future p~ — e~ e e’ searches Mz /g 2 420

Table D.11: Dominant flavour violation process for each model along with the corresponding bounds on
the mass of the flavour mixing Z’ boson.
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