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Abstract

Tomographic reconstruction of three-dimensional (3D) objects via their rotation with respect
to a given axis and their subsequent projection on a given two-dimensional (2D) surface is nowadays
employed in a quite broad spectrum of applications, including medicine and science. It is presently
more and more frequently implicated in the study of atomic and molecular photoionization and in
conjunction with velocity map imaging (VMI) spectrometers. The latter provides projections of the
3D momentum distribution of the produced photoelectrons (or other charged particles) on a 2D
position sensitive detector whose surface is perpendicular to the spectrometer axis. The recovery of
the full 3D distribution is achieved via the rotation of this object with respect to an axis parallel to the
detector surface, and the recording of the resulting projections. The only other alternative technique
involves the, so-called, inverse Abel transform of a single projection, when the polarization of the
ionizing radiation is linear and perpendicular to the spectrometer axis. Thus, inverse Abel transform
cannot be employed with any other geometry and/or light polarization, a fact which is, of course,
quite restrictive.

Therefore, Tomography becomes a necessity when complex light-atom or -molecule
interactions come into play and such experiments are frequently performed in our Atomic &
Molecular Physics laboratory. In the present work a computational environment is developed, where
the user provides the object projections (each at a different angle of rotation) and the developed code
delivers the tomographic reconstruction of this object. The code benefits as much as possible from
build-in tomographic capabilities incorporated in the programming language. At this stage of testing,
the theoretical photoelectron angular distribution corresponding to two-photon ionization of hydrogen
atom is employed as the object and an auxiliary program computes its projections to the detector. For
linear light polarization, tomographic reconstruction is compared with inverse Abel transform and it
is found to be much more accurate. It is also verified that tomographic reconstruction works equally
well when circular or elliptical light polarization is employed. Finally, for any polarization,
Tomography is proved to be highly robust, even when noise up to 5% of the maximum signal level

is added to the projections before reconstruction.



[TepiAnyn

H topoypagin avoakatackevun tpiodidototov (3D) avikeywévov péocwm e TeEPIoTPOPNS
T0V¢ YOp® amd €vav doouévo dEova Kot 1 emakdAovOn mpofoAn Tovg TAVe o€ pio doouévn
dweodotatn (2D) empdvela, a&lomoteiton oTiC HEPEG GE €val OPKETO VPV PACUO EPAPLOYDV,
ocvumeprappavouévov g latpikng kot g Puoikng. Eni tov mapdvtog, ypnoiponoteitor OAo Kot To
OLYVA OTNV UEAETN TOV QMTOIOVICUOD ATOUMV Kol HOPI®V, GE GLVOVAGUO HE TO QOCUATOUETPO
ancwoviong tayvttov (VMI). Ta eacpatopetpa avtd mtapéyovv mpoPoréc TV TPIGOHCTATOV
KOTOVOLLMV 0OPUNG TV TOPAYOUEVOV POTONAEKTPOVIOV (1] BAL®V QOPTICUEVOV COUATIOIMV) TOVE®
o€ éva deddotato (2D) aviyyvevtn Béoewv, Tov omoiov N empdaveln eivon kdBetn otov dEova Tov
eacpatopeTpov. H avakmmon g mAfpovg Tpieoldototng KATOVOUNG EMITUYYAVETOL HECH TG
TEPLGTPOPNG TOV CVTIKEILEVOD YUP® OO Evav AEova TOPEAANAO GTNV EMPAVELN TOL OVIYVELTY KoL
™G KOTOYpaenS TV mpooidv mov mpokvmtovv. H udvn evarloaktikn texvikn meptloppdvel tov
Aeyouevo avtiotpogo petooynuotiond Abel piag pepovouévng tpoPoine, pe ™ mpobndbeomn ot N
noAwon ¢ ovilovoag aktvoPoAiag eival Ypopuukn kot KAOET) oTov A0V TOL PUGLATOUETPOV.
Emouévac, o avtiotpopoc petacynuotiopdg Abel dev pmopei va ypnowomombei o omoadnmote
GAAN yeopeTpia /Kot TOA®ON WTOS, YEYOVOS TOV TOV KaB1GTA, EDAOYO, OPKETH TEPLOPLOTIKO.

Yvovenwg, m  Topoypagio kobictaton avaykoio Otov  gumAékovionl  TEPITAOKES
OAANAETIOPAGELS PMTOC-ATONOV 1) @TOS-popiov. TéTola mepapata ,cUYVA, TPOYUOTOTOOVVIOL GTO
epYaoTpLo pog ™G Atopkng Kot Moplokng Quoikhg. Xtnv mopovoo EpYacio. AVATTUGGETAL £V
VIOAOYIOTIKO TTEPIPAAAOV, OTIOV O ¥PNOTNG TTAPEYEL TIG TPOPOAEG TOV avTIKEWEVOL (TTov 1| Kabepio
OVTIOTOKEL OE OPOPETIKN YOVIOL TEPICTPOPNG) KOl O KMIKAG TOL cuvTaydnke dnuovpyel v
TOUOYPOPIKT AVOKOTACKEVT TOV OVTIKEWEVOL. O KOOKOG 0E0TO1EL 6TO £TOKPO TIG EVOOUATOUEVES
TOHOYPUPIKEG SVVATOTNTEG TOV TEPAAUPAVOVTAL G YADCGTH TPOYPAUUATIGHOV. € 0VTO TO GTAS0
™G avAmTLENG, M BE®PNTIKY YOVIOKY] KOTAVOUY POTONAEKTPOVI®MV, TOV AVTIGTOLEL GE OPOTOVIKO
oVIopO ToL aTtOHoL Y Opoydvou, ¥PNCIUOTOLEITOL ™G TO avTIKEILEVO Kot €va Bondntikd mpdypappa
vroAoyiler Tig mpoPoiég Tov otov avyvevth. [ ™ ypopukn TOA®ON E®MTOS, 1 TOUOYPAPIKN
OVOKOTOGKEDT] CUYKPIVETOL HE TOV avTioTpoo upetaoynuatiopd Abel kot mpokvmel 6Tt givan
axpiéotepn avtov. EmPefordvetat, eniong, 6TL 1 TOHOYPOOIKY ovaKOTOCKELT Asttovpyel e&icov
KOAG 0TV YPNGLOTOIEITOL KUKAKT 1] EAAEWTTIKT TOAMOT| @OTOS. TEAOC, Yo OAa Ta €101 TOADGEW®V,
N Topoypapio amodeikvieTol apKeTd OMOTEAEGLOTIKY], oKOpa Kot 6tav 00pvPog péypt kot 5% g

LEYIOTNG TIUNG ONUATOG TPOGTIOETAL OTIS TPOPOAEG TPV OO TNV AVAKOTAGKEDT).

Vi



1.Introduction

Tomography is a method that allows for the reconstruction of an object through a series of
projections resulting in the study of its structure. The theoretical foundation of tomography dates back
to Radon, a mathematician who derived a method in 1917 to project a 2D object along parallel rays
[1]. This method now is referred to as the Radon Transform [2] and will be discussed thoroughly in
the next Section.

Tomography is a technique that has found wide applicability in various fields of medical and
natural sciences. In medical science it is preferred for its non-invasive approach aiding in diagnosis
and treatment. For example, it is applied to medical X-ray imaging [3], namely Computed
Tomography scan (CT scan) and Magnetic Resonance Imaging (MRI) and was recognized with the
Nobel Prize in Medicine in 1979.

The versatility of tomography is demonstrated by its use not only to the macrocosm of human
bodies but also to the microcosm of matter consisting of atoms and molecules.

A direct approach to investigate matter is to access its electronic structure by interacting with
light, with a process called photoionization [4]. In photoionization, matter absorbs a photon, thereby
creating a free electron, photoelectron, and a charged ion. The determination of both momentum and
angular distribution of electrons emitted in photoionization processes [5,6] is called photoelectron
imaging and constitutes an important part of experimental Atomic and Molecular and Optical Physics
(AMO). The basic idea behind the imaging method relies on projecting the produced charged particles
onto a planar detector using an external electric field [7]. When the laser light is linearly polarized it
produces a cylindrically symmetric distribution around the polarization axis. If, on the other hand,
the light has circular polarization a distribution with cylindrical symmetry appears around the laser
propagation axis. In both scenarios, a position-sensitive detector placed parallel to the previous axes
can capture an image of the charged particle impacts. A widely employed detection scheme of the
three-dimensional electron momentum distribution is the Velocity Map Imaging (VMI), which uses
electrostatic fields to guide the electrons to the detector [8 9]. A 4= collection angle is obtained by an
electrostatic lens with fields of several kV in strength, mapping the initial photoelectron momentum
distribution (PMD) onto the detector. However, in a VMI the information perpendicular to the
detector is lost [9].

Previous approaches in VMI experiments to derive the 3D (cylindrically symmetric)
momentum distribution used inverse Abel transforms [10,11,12,13]. This allows to transform the 2D
projection image on the detector into the 3D electron momentum distribution. This technique,

however, suffers from major limitations. By construction, the Inverse Abel transform is limited to
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distributions with cylindrical symmetry produced by linearly polarized light with the polarization axis
parallel to the detector plane. In a more general case where this requirement is not met or more
complex polarization is used, such as elliptically polarized light, Abel inversion does not apply. This
requires a more elaborate analysis, the Tomographic method [14,15,16,17].

Tomography requires the rotation of the 3D distribution by the propagation axis with a 2D
projection taken on each angle. These 2D projections can then be converted into images called
sinograms. A sinogram contains all the information sufficient to reconstruct the initial image. Parallel
ray tomography [2] which is used in our work is applied separately on each cross section of the 3D
distribution. This means that 2D projections are taken along parallel lines dividing the 3D distribution
into separate slices each representing a cross section of the 3D structure. From these projections,
sinograms for each slice are obtained, and from them, the corresponding cross sections of the
distribution can be reconstructed by applying the Backprojection method. The stacking of the
reconstructed cross sections produces the tomographically reconstructed 3D distribution.

The columns of a sinogram correspond to different 2D projection angles with values
representing the projected 2D slice after rotation. The values in each column correspond to a set of
parallel lines crossing through the 2D slice at an angle matching the column’s rotation angle.
Extending the value distribution of a column along these lines backwards onto a blank image at the
respective angle fills the image with the column’s values. Repeating this process for all columns in
the sinogram creates an image of cross sections composed of parallel lines at different angles. The
result is the recreation of the initial 2D slice of the 3D object [18]. However, this method often yields
blurry images. The blurriness occurs because Backprojection assumes that every point in a projection
contributes equally to all points along the backprojection path. Due to the overlapping of projection
lines especially at the center leads to an accumulation of intensity and as a result the fine details and
edges of the object are blurred. To overcome these issues an improved method is utilized the Filtered
Backprojection method [2]. In this method, each column is backprojected after being multiplied with
a weight function which essentially amplifies the high frequency components of the image, which
contain fine details and sharp edges, and reduce the contribution of lower frequency components,
broad, smooth features of the image. The weight function is called filter, and some examples are the
Ram-Lak (ramp) filter, Hann and Hamming filter which will be shown in the next Section.

First, Wollenhaupt et al [16] employed tomography in conjunction with a VMI spectrometer
to recreate, using Fourier transforms, the three-dimensional photoelectron angular distribution (PAD)
[16,56] produced through resonantly enhanced multiphoton photoionization of potassium. Then
Smeenk et al [9] used tomography with Filtered Backprojection to obtain the distribution of
photoelectrons produced through tunnel ionization of argon. Their work allowed the study of strong

field phenomena with non-linearly polarized light [5,19, 20, 21].



In this work, the objective was to develop an algorithm in the Mathematica environment that
employed the tomographic method and compare it with the existing program that utilizes the Abel
inversion method: Polar Onion Peeling (POP) [22,58]. Specifically, the 3D PAD that was tested was
produced by the theoretical calculation of a two-photon ionization of a hydrogen atom. Two scenarios
were considered, the generation of a symmetric and a non-symmetric distribution. In the first scenario,
a general symmetric PAD is produced from photoelectrons at only one energy group of w = 9eV
where an anti-resonance in the s-wave leaves only the d-wave to contribute. PADs were generated
for both linear and elliptical polarization, with the linear case specifically used to compare the
tomography program to the POP program. In the second scenario, only elliptical polarization was
used on a PAD where both the s-wave and the d-wave contributed, with the addition of an extra state
corresponding to electric quadrupole transition. This distribution does not represent a realistic
physical process and was included to test the tomography program on a non-symmetric distribution.
In both scenarios the program was tested with and without background noise added to the data.

The thesis is organized into three chapters. Chapter 1 provides the theoretical framework of
Tomography, the Radon transform, and the reconstruction process through the Filtered Back
projection method. Chapter 2 presents the results and discusses the assessment of tomographic and
POP (where applicable) methods in reconstructing 3D PADs generated by linear and elliptical
polarization for symmetric distributions, as well as elliptical polarization for non-symmetric
distributions. For all the distributions two cases were considered: with and without the presence of
background noise. Lastly, Chapter 3 presents the conclusions of this work and suggests possible

directions for future improvements.



2. Theoretical Background

This section provides a thorough exposition of the principles of tomographic image
reconstruction. Tomography is one of the available methods in creating a 2D representation of an
object’s cross section and it is widely used in different disciplines of Science and Technology such
as Physics Medicine Engineering and Archaeology. The purpose of this section is to first demonstrate
how a 2D object can be reconstructed using projections at different angles. Specifically, we will
explore the mathematical basis of tomography focusing on function transforms and an essential
theorem, the Fourier Slice theorem. A method of assessing the reconstructed image will be provided
along with a way to optimize the result. The theory will then be extended to 3D objects and their
reconstruction, forming the foundation for the analysis in the following sections where the

tomographic reconstruction of 3D objects is required.
2.1. Radon Transform

The normal form of a 2D straight line in Cartesian coordinates is given by the equation [18]:
p = xcos(0) + ysin(0) (2.1)

Y

\

-

Figure 2.1. Normal form of a 2D straight line, taken from [18].

In Figure 2.1, 0 is the angle subtended between the horizontal axis and the vertical line perpendicular
to the blue line and p is the length of the vertical line. The above expression is central to the line

integrals involved in what is known as the Radon transform [2,23,24]. In the coordinate system shown



in Figure 2.2, we have a 2D object defined by the function f(x,y) and a set of parallel lines
intersecting it.

A point g(p;, ;) in
L o Q the projection
Complete projection Pg,(p;)

for a fixed angle —g JA

Figure 2.2. Line integrals along parallel lines, taken from [18] and modified.

These equidistant lines have the same inclination angle 6, and different normal distances from the

origin p;. Then the Equation 2.1 of a line set to these parameters will be L(p;, 8y) = xcosOy +
ysinBy — p;. Along each line-path described by that equation we calculate the integral Py, , [18]

Py, (p;) = f(x, y)ds (2.2)
CIY2))

, Where s is a variable along the line over which the integral is calculated. By using a delta function

the previous line integral expression becomes,

+00 400
Po. (p)) = f_ f_ f(x,y)8(xcosBy, + ysinb, — p;)dxdy 23)

As mentioned before, from the definition of delta function [2525] the line integral (Equation 2.3) is
calculated only along the line L(pj, ek),since the right side of the Equation 2.3 is set to zero unless
the argument of the delta function is zero. If we consider all values of p; for an arbitrary angle 6, the

preceding equation generalizes to

Py(p) = f_ oof_ OOf(x, y)8(xcosb + ysin® — p)dxdy (2.4)

The line integral Py(p) is known as Radon transform, [2,18 ,26], of the function f (x, y). An example

of the Radon transform of a circle for an angle 6 is shown in Figure 2.3.



A projection is formed by combining a set of line integrals, in our case parallel to each other,
as is given by Pek(pj), Equation 2.3, for a constant 8,,. This is known as parallel projection [2,18,27].

In Figure 2.2, parallel projection is demonstrated by the parallel lines going through the object
resulting in a new function, the blue line, which is the projection of the object. Each individual

P

0 r
Figure 2.3. A circle (top) and its Radon transform (bottom). The circle is circumscribed by a square with a side M parallel to the

projection line p and a side N vertical to the projection line, which in this case are equal. The image is and taken from [18] and
modified.

line integral, Pek(pj), corresponds to a single point in the projection distribution, Pek (p), for a fixed

angle of rotation 6,. Any real 2D object does not possess an analytic expression for the Radon
transform so we must consider the discrete case of the Radon transform, where the projection of the

two-dimensional object f (x, y) is a discretized function. Then equation (2.4) becomes,

M-1N-1

Py(p) = z z f(x,y)6(xcosB + ysind — p) (2.5)

x=0 y=0
where x,y are now discrete variables and M, and N, are the dimensions of a rectangular area over
which the transform is applied. In the example of Figure 2.3, the 2D object is circumscribed by a
rectangle, where the length of the side parallel to p is the extension M and the perpendicular one is
the extension of N. In this case due to the symmetry of the circle the M and N sides are equal, making
the rectangle a square. We see Equation 2.5 sums the values of f(x,y) on the discrete (x,y)

coordinates along the line defined by the parameters (p,0), where setting 6=constant and
6



incrementing through all values of p required to spanthe M x N area yields one projection. Changing
6 and repeating this procedure yields another projection, Figure 2.4.
Obviously, the same procedure applies to the continuous case as well where instead the object

function £ (x, y) and projections Pg(p) are continuous.

P, (t)
8

P, (t) &
&

Figure 2.4. Changing 6 and running through all values of p yields another projection, taken from [2].

Fixing the angle 6 and for each value of p taking the line integral yields a projection,
incrementing the angle and repeating the procedure yields another projection, Figure 2.4. Repeating
this for each angle, i.e. taking the Radon transform of the object for each angle, produces an image,
called a sinogram. The sinogram has coordinates the parameters (6, p) and contains all the data
necessary to reconstruct the object. Figure 2.5 shows the image of a rectangle (2D object) and its
accompanying sinogram. In the image depicting the sinogram, each row corresponds to the distance
p, While each column corresponds to the angle 6 (or vice versa).

It is important to note that the value of the angle varies within a 1 range, due to line integral
symmetry (see Equation 2.4). So, if we start at 0 angle the range would be [0, t].Suppose, we take
the projection of the object at the angles 0 and m. calculating these two projections yield identical
data, as they are the same except for the direction of integration. Thus, every projection at an angle

0 + m yields the same result as the projection at an angle 6, thus just a m interval suffices.



Turning our attention back to Figure 2.5, there are some observations we can make to the
sinogram and deduce the characteristics of the object. For example, the bottom row is the projection
of the rectangle in the horizontal direction, 8 = 0° which means the lines of the line integrals are
parallel to the longest side of the rectangle. The middle row of the sinogram corresponds to a 90°
angle thus, the integral lines are vertical to the longest side. Comparing these two rows of the
sinogram we see the non-zero portion of the bottom row is smaller than the non-zero portion of the
middle row. This tells us that the object is narrower in the vertical direction. The fact that the sinogram
Is symmetric about the horizontal and vertical lines that goes through the middle of the image shows
the initial object is symmetric and parallel to the x and y axes. These observations are only possible
due to the simplicity of the rectangle. For a more complex object such observations are not possible

as we will see in the following sections.

180

90

0

Figure 2.5. An image of a rectangle (left). Sinogram of the rectangle (right), taken from [18].

In the remainder of this section, we will present the key ideas behind reconstructing the
function of the object f(x, y) from the sinogram, using the method of backprojection, [18]. Suppose
we are at a fixed angle 8, and we calculate the Radon transform (Equation 2.4) on the object f (x, y).
The result is the function of the projection Py, (p) from which we consider only one point Pek(p]-),
Equation 2.3. Backprojecting this single point means copying the line L(p]-, ek) = xcosBy +
ysinBy, — p; onto the image and assigning the value of Pek(Pj) on each point on the line, Figure 2.2.
This way we form part of the initial image. Repeating this procedure for each p value while keeping
fixed the value of the angle, 6y, produces a basic reconstruction of the initial image.

In Figure 2.6, we see this procedure applied to a simple object. We have an initial object, a
disk and take its projection at two angles with 90° increment. Then, for each corresponding angle we

backproject the signal, i.e. the values of the projected image, at each angle and thus the sum of both

backprojections is produced which is a basic reconstruction of the initial object. Using only two
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projections does not provide enough information to produce a valid reconstruction of the initial object.
Increasing the number of projections improves the resulting image. We can also observe the imprint
of backprojection on the background of the object, which in this case appears as two perpendicular
lines, each assigned values from the corresponding projections. In a later section, we will elaborate
on the artifacts produced by backprojections on both the background and the object.

The previous explanation of backprojection can be expressed mathematically [2,23]. For a
fixed value of 6y the initial object function can be expressed as the backprojection of the projected
object, for all values of p, Equation 2.3.

fo, (x,¥) = Py, (p) = Py, (xcosBy + ysinBy) (2.6)
where we replaced the parameter p with the expression of a line, Equation 2.1, at the specified angle
Bx.This equation holds for all angles, so we may generalize Equation 2.6 for an arbitrary value of

angle 6, and write the equation of an image by one backprojection at an angle 6,

fo(x,y) = Pg(xcos® + ysin®) 27)

Absorption profile (signal)

AR ARRAAARRAN
U

ARARRARARRAARANAL:

Figure 2.6. Backprojection method: A horizontal projection of an object is obtained and backprojected, then the process is repeated
for a vertical angle. The contribution of both backprojections provides a basic approximation of the initial object. Image taken from
[18].

The expression of the image formed by all the backprojections each at a different angle in the range



[0, ], is obtained by integrating with respect to & Equation 2.7,
T 2.8
Fun) = [ folxpao 9
0
As previously mentioned, continuous projections and backprojections of the initial object are not
realistically feasible, so we must adopt the discrete case where integrals are replaced by sums.

n (2.9)
Fy) = folxy)
6=0

where x,y and 6 are now discrete quantities. It is understood that the method of backprojection
approximates the initial image from which the projections were generated. This fact is illustrated in
the following example. In Figure 2.7, Equation 2.9 was used to create the backprojected

Figure 2.7. Back-projection of a rectangle shown in Figure 2.5, left image, using Equation 2.9, taken from [18].

image of the initial object, a rectangle, shown on the left side of Figure 2.5. Clearly the reconstructed
image is degraded in sharpness (a halo blurring effect) which makes this recovery method not very

useful. In a later section an improved method will be introduced.

2.2. Fourier slice theorem

The process described above involves taking projections of an initial 2D object using the
Radon transform, either in its continuous form (Equation 2.4), or discrete form (Equation 2.5), for
various angles 0 in the range [0, m]. The projection data are then compiled into a sinogram, from
which the initial 2D object can be reconstructed using the backprojection method (Equation 2.9). In

10



this section, we will present a mathematical theorem that forms the foundation of the tomographic
method, specifically the filtered backprojection method, which will be discussed later.

We will derive a mathematical equation that establishes the relationship between the 1-D
Fourier transform of a projection and the 2-D Fourier transform of the slice of the initial object from
which the projection was taken [2,18,24].

Suppose we have an object described by the function f(x, y). Its 2-D Fourier transform
[2,28] is given by,

too o . 2.10
F(u' U) = f f f(x, y)e—LZTE(ux+vy) dxdy ( )

where u and v are spatial frequencies in the frequency domain of the Fourier transform. Next, we
take a projection, Py (p), of the object at a fixed angle value,0,and define its 1-D Fourier transform,

So) = [ Polpremnap &)
Now, consider the Fourier transform of the object function f (x,y), Equation 2.10, along the line v =
0 in the frequency domain. The 2-D Fourier transform simplifies to

F(u,0) = .]-"'00 .]-+oof(x, y)e_iznjuxdxdy (222)

In this case, the phase factor is independent of the y variable, so the integral can be separated into
two parts,

+00 ] +00 (213)
F(u,0) = f e t2mux gy f flx,y)dy
We can recognize the term in brackets as the projection, Equation 2.4, of the object function f(x, y)
at an angle ® = 0,along lines of constant x = p,as shown in Figure 2.8,

oo 3.14
PocoC) = | fCy)ay o0

Substituting Equation 2.13 into Equation 2.12 yields,

+oo . (2.15)
F(u,0) =f Py_o(x)e 2mux dx

The right-hand side of Equation 2.15 represents the 1-D Fourier transform of the projection Py—, at
an angle 6 = 0. This illustrates the Fourier Slice Theorem [2,18,30] for the simplest case, where a
projection is taken at an angle 8 = 0. The theorem establishes the relationship between the 2-D
Fourier transform of the object function f(x, y) along the line v = 0 ,denoted as F(u, 0), and the 1-
D Fourier transform of the projection at angle 6 = 0,denoted as Sg—o (1),

F(u,0) = Sg—o(u) (2.16)
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A visual representation of this equation is shown in Figure 2.8. Figure 2.8(a) displays the Shepp and
Logan “head-phantom”, [29], which is a superposition of 10 ellipses. In this figure we observe a red
line at an angle of 6 = 0 with respect to the horizontal axis. This line is perpendicular to the straight
lines along which the projection of the “head phantom” is taken. At the top of the image the projection
is shown as a plot with the variable p on the horizontal axis. Figure 2.8(b) presents the 2-D Fourier
transform of the “head phantom in the frequency domain as a set of complex numbers. The horizontal
axis represents the u parameter and the vertical axis represents the v parameter. The data along the
red line correspond to the 1-D Fourier transform of the projection at an angle 6 = 0 as dictated by
the Fourier Slice Theorem.
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160 150 2(I)0 250 360 3:1;0 460 450 (a) (b)
Figure 2.8.(a)The projection of the Shepp and Logan "head-phantom" at an angle 8 = 0.(b)The 2-D Fourier transform of the “head

phantom” and the red line where the Theorem applies.

As mentioned, Equation 2.15 represents the simplest form of the Fourier Slice Theorem. This
theorem also extents to projections taken at an arbitrary angle 6. By rotating the coordinate system
(p, s), which is the coordinate system of the projected object, by an angle 6, the Fourier transform of
the projection, as defined in Equation 2.11, is equivalent to the 2-D Fourier transform of the object

along a line rotated by 6, illustrated in Figure 2.9. This means that the Fourier transform of a
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projection at an angle 6 can provide the values of the 2-D Fourier transform of the original object
along a line at an angle 6 matching the angle used to generate the projection. Thus, the Fourier Slice
Theorem, [30,31] for an arbitrary angle 6 can be stated as follows:

The 1-D Fourier Transform of a projection Sg(u) of an object with function f(x, y) taken at an angle
0 is a slice of the 2-D Fourier transform F(u,v) of the object function along a line oriented at the
same angle as the angle used in the projection.

In the following paragraphs, we will provide a more rigorous mathematical definition for the
Fourier Slice Theorem [2,18].

Let us begin by considering the (p, s) coordinate system of the projection as a rotated
version of the original (x, y) system:

[p] _ [ cos6 sinG] [x] (2.17)
—sin@ cos61 LY
In the (p, s) coordinate system, a projection along lines of constant p is given by,
+oo (2.18)
Py(p) = j f(p,s)ds
And from Equation 2.11, its Fourier transform is defined as,
(2.19)

+00
Se(w) = f Po(p)e=mp dp

» 2-D Fourier
Pioisctic 7 transform
rojection ~ F(u,v)

T .

X

1-D Fouricx\

transform \
Slice of F(u,v)

Figure 2.9.The Fourier Slice Theorem is independent of the of orientation between the object and the coordinate system (p, s).The

Fourier transform of a projection is equal to the Fourier transform of the object along a radial line of angle 6, taken from [18].

Substituting the definition of the projection in the (p, s) coordinate system, given by Equation 2.18,
into Equation 2.19 yields,
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(2.20)
Se(w) = f [ f f(p,s)ds|e 2™Pdp

This equation can be transformed into the (x, y) coordinate system using Equation 2.17. The Jacobian
of this matrix is 1 and so Equation 2.20 transforms to,

Se(w) = ] mf f (i, y)e~i2mv (xeoso+ysind) g gy @20
The right-hand side represents the 2-D Fourier transform of the object function, F(u,v), at a spatial
frequency or wavenumber of (u = wcos6, v = wsin®b).
Therefore, Equation 2.21 can be expressed as,

Se(w) = F(u,v) = F(wcosb, wsin0) (2.22)

This equation is the general form of the Fourier Slice Theorem. It essentially indicates that by taking
N projections of the initial object function at various angles 6,, 6, ..., 8 and taking the 1-D Fourier
transform of each of these, we can determine the values of the 2-D Fourier transform F (u, v) along
radial lines of corresponding angles 64, 6,, ..., 8. Therefore, the determination of the full F(u,v)
function is possible by taking an infinite number of projections. By knowing F (u, v), the initial object
function can be recovered by taking its 2-D inverse Fourier transform,

+00 ~400
Fly) = f f F (1, 0) e 2T gy (2.24)

However, this approach is not ideal because it is computationally demanding and introduces error to

the data through interpolation [32], which leads to image degradation.
2.3. Filtered Backprojection

In the previous section, we derived the Fourier Slice Theorem which establishes a relationship
between the Fourier transform of a projection and the 2-D Fourier transform of the object along a
radial line. Therefore, obtaining the Fourier transforms of projections from enough angles allows for
the compilation of these projections into a complete representation of the 2-D Fourier transform of
the object. An estimate of the initial object can then be obtained using a straightforward 2-D inverse
Fourier transform. However, this approach is not desirable for the reasons mentioned above, thus
requiring the use of a different method, filtered backprojection.

In Section 2.1 we provided a basic definition and explanation of the backprojection method,
Equations 2.6-2.9. Now, we will further expand on the backprojection method, focusing specifically
on the filtered backprojection method and establish its mathematical formulation. We will derive this

method using the Fourier Slice theorem and the inverse Fourier transform in polar coordinates.
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2.3.1 Basic idea

Before explaining the basics of filtered backprojection it is essential to address a key
characteristic of the projections, their independence from each other. This independence becomes
evident in the frequency domain, where performing the Fourier transform to the projection reveals,
according to the Fourier Slice theorem (Equation 2.22), that a projection corresponds to a line of angle
© with the horizontal axis that goes through the origin of the plane (u, v) [31].

Performing another projection in a different angle, its Fourier transform corresponds to a
different line of the same angle. These two lines are nearly independent where the only intersection
is at the origin of the axes (0,0),see Figure 2.10.[18]

Figure 2.10. Frequency domain where the lines correspond to both the Fourier transform of a projection and a segment of the Fourier
transform of the initial object, due to the Fourier Slice Theorem, taken from [18].

Thus, each projection contributes independently of each other to the reconstruction of the
initial object, making the backprojection method conceptually simple.

Filtered Backprojection can be broken down into two parts: the filtering part and the back
projection part. The filtering part can be visualized as the weighting of each projection in the
frequency domain. Consider Figure 2.10, where concentric circles of radius (or frequency) w,
represent points corresponding to projections taken at various angles. The distribution of points on
the circumference of a circle is denser for lower frequencies (or radii) and sparser for higher
frequencies (or radii). As a result, the contribution of lower frequencies is more significant than that
from the higher frequencies. To enhance higher frequencies and reduce the impact of lower
frequencies, each line in the frequency domain is multiplied by an appropriate weighting function |w|
[18]. This function is often multiplied by a more complex function that serves as a high pass filter
[18]. The product of the weight function and the high pass filter is often called filtering function.

Generally, lower frequencies are associated with broad, large-scale features of the reconstructed
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object such as its shape and structure, while high frequencies correspond to fine details and image
clarity. However, high frequencies are more susceptible to noise making necessary the use of a
sophisticated filter to reduce noise while preserving essential details in the reconstructed images.

The second part of filtered backprojection process is backprojection. After applying the
filtering function to each Fourier transformed projection,Sg(w), we obtain the filtered Fourier
transformed projection. We then apply the inverse Fourier transform to retrieve the filtered projection
and subsequently backproject it. The backprojection of the filtered projections is performed in the
same manner as described in Figure 2.6 of Section 2.1. In essence, each point in the filtered projection
corresponds to a line along which the projection was calculated. This line traverses the image at an
angle corresponding to the point from the filtered projection, thereby filling the image with that
specific value along the entire line.

Repeating this procedure for each point in the filtered projection and its corresponding line
assembles an estimate of the initial object. As the number of projections and thus filtered
backprojections increases the reconstructed object more accurately resembles the original, as shown
in Figure 2.11.

Schematically, filtered back projection can be summarized as follows.

Projection of object at an angle 6

Fourier transform of projection

Multiply Fourier transform
of projection with filtering function

Inverse Fourier transform
it yealding filtered projection

Backproject filtered projection

Repeat for each angle in the range
[0.11]
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2.3.2 Mathematical Formulation

In this section we will derive the filtered backprojection using the Fourier Slice Theorem. The
inverse Fourier transform of the 2-D Fourier transform of the object function f(x,y), as given by
Equation 2.10, can be expressed as,

+oo +00
flx,y) =f f F(u, v)e2mwx+vy) dy dy (2.25)

We transform the rectangular coordinate system of the frequency domain (u,v) into a polar

coordinate system (w, 6) using the relations,

(a) 1 projection (b) 4 projections
J_ A, L
X <
W 2

c) 64 projections (d) 512 projections

Figure 2.11. Result of filtered backprojection of an ellipse for, (a) a single angle, (b),4 angles, (c),64 angles, (d)512 angles.]

u = wcosb (2.26)
v = wsin0 (2.27)

and changing the differential using the fact that the Jacobian is w,
dudv = wdwd® (2.28)

Equation 2.24, can be written in polar coordinates using Equations 2.25-2.27 and making the
appropriate changes in the integral limits,
2T 00
f(X, y) = f f F(w, e)ei21'rw(xcose+ysin9)wdwde (2'29)
0 0
The integral can be split into two parts one for 6 in the range 0 to 1 and the other for 6 in the range

Tt to 2T,
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T oo
f(x' y) — f f F(W, e)eiZTrw(xcosG+ysin6) wdwdo +
0 0

f‘r[ wa(W' 0+ T[)eiznw(xcos(6+1'[)+ysin(9+1T))dede (2210)
0 Yo

Then using the property of F(w, 6),
F(w,0+ 1) = F(—w, 0) (12)
which is evident by considering the Fourier Slice Theorem for an arbitrary angle Equation 2.22.

By applying Equation 2.30, Equation 2.29 can be written as,

e . (12)
fen = [ || Fon@wlermraw|as
0 —00
where we have simplified the expression by setting,
p = xcosb + ysin® (13)

Using the Fourier Slice theorem, Equation 2.22, F (w, 0) is substituted with the Fourier transform of

a projection at an angle 6,5¢(w). Therefore Equation 2.31 becomes,

Tt . (14)
fen = | Sotwlwlemraw| av
0 —0o0
Defining the following expressions,
e . 15a
Qe(P)=f Sew)|wle??™Pdw (152)
e . 16b
Q'e(P)=f So(W)h(w)|w|e??™Pdw (160)
Equation 33, simplifies to
(17)

flx,y) = f Q'¢(xcosB + ysinB)do
0

This equation encapsulates the essence of the Filtered Backprojection method. Given the projections
at various angles , S (w), these are filtered using the weight |w| and an additional function h(w).
The result of this process is Q'g(p),the filtered projections, Equation 2.34b. The backprojection of
these filtered projections over the range of angles [0, ], as described in Equation 2.35, assembles an
approximation of the original object function.

Figure 2.13(a) shows the |w| weighting function in the frequency domain. This filter is called
ramp filter or Ram-Lak [33]. As mentioned, an additional function, called window function, is usually
applied to the weight |w|, limiting it to a defined frequency interval. This process known as band-
limiting ensures that the weighting function becomes zero outside this interval. A simple window

function would be the box function,
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hw) ={=,|w| = (2.318)

On the left of Figure 2.12 we observe the graph of the box function in the frequency domain
and on the right, we observe it in the spatial domain after applying the inverse Fourier transform. We
can observe that the Fourier transform of the box function is highly oscillatory. Figure 13(b) displays
the result of multiplying the box function with the weight |w|, which effectively bandlimits it.
However, when the inverse Fourier transform is applied to this product the oscillatory nature of the
box function becomes evident, as shown in Figure 2.13(c). This can lead to unwanted artifacts in the
reconstructed image artifacts which can manifest as halos around the edges of the image [18].

1.0,
I

05 - L L -1

09— — e : I

Y P T S S B S ko
15 10 05 00 05 10 15 e

Figure 2.12.Graph of a Box function (left), Graph of the Fourier transform of a box function (right) taken from[18].

To reduce the occurrence of such artifacts, smoother window functions are applied [18], such as:

h(w) = c+(c—1) cosZRTW, O<w<M-1) (19)

0 otherwise
Hamming window [34] is the function when ¢ = 0.54,as shown in Figure 2.13(d) and Hann window

[35] when ¢ = 0.5 and M is the number of points.

The difference between these two filters is that the end points are zero in the Hann window,
Figure 2.13(e) shows the product between the Hamming window and the |w/| filter in the frequency
domain. Applying the inverse Fourier transform to their product, thus transferring it to the spatial
domain, we observe a reduction in ringing artifacts, see Figure 2.13(f). However, the wider central
lobe may result in slightly more blurring [18]. In our work the reconstruction is performed by applying

the ramp filter multiplied by a Hann window, which is particularly effective for noisy data [ 36]
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Frequency Domain Frequency Domain Spatial Domain

V\\j VJVSpatial Domain

Frequency Domain Frequency Domain
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Figure 2.13.(a) Weight function |w| in the frequency domain, (b) Product of weight function with box function in the frequency
domain, (c) Product of weight function with box function in the spatial domain, (d) Hamming window function in the frequency
domain, (e) Product of weight function with Hamming window function on the frequency domain, (f) Product of Hamming window
function with weight function in the spatial domain, (g) Hann window function in the frequency domain, (h) Product of Hann
window with weight function in the frequency domain, (i) Product of Hann window with weight function in the spatial domain

Two main factors should be considered to minimize unwanted artifacts in the reconstructed
image. The first factor is the number of rays used in each projection, which refers to the number of
samples or points considered in each projection. The second factor is the number of projections, or
the number of rotation angles used in the reconstruction of the image. Undersampling a projection or
using too few rotation angles (or projections) can lead to unwanted artifacts and distortions in the
reconstructed image, as demonstrated in Figure 2.14.

Undersampling a projection meaning computing the line integrals at only a few points leads
to aliasing artifacts [37] such as streaks. This is demonstrated in Figure 2.14, where the first row
shows that for 64 samples per projection these artifacts persist, even when increasing the number of
projections. On the other hand, an inadequate number of projections can lead to aliasing artifacts such
as Moiré patterns [18], which are a type of interference patterns. These are shown in the first column

for 64 projections and remain even with considerable sampling. Backprojection from a limited
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number of projections can also introduce a star shaped pattern [38] which is relatively more visible
in the last row of the first column.

Number of projections
128 256 512

64

256

512

Number of samples per projection
®

Figure 2.14.Reconstruction of an ellipse is shown for a varying number of projections (columns of image) and a varying number of
samples or rays user per projection (rows of image).

The reconstructed image with seemingly no artifacts is produced using 512 projections and
512 samples per projection. A reasonable question that may arise is what the ideal number of
projections and samples is, to accurately reconstruct an image without the appearance of artifacts. It
is well established [18,39] that for an N x N reconstructed image, the number of samples should be
approximately N, and the number of projections should also be roughly N. In practice, however,
satisfactory results can be achieved with fewer projections, while maintaining the level of sampling
approximately to N.

The theory introduced until now applies to 2D image. This process can also be used to
reconstruct a 3D object by dividing it into 2D slices and reconstructing each slice. The stacking of
these slices forms the initial 3D object.

The tomographic reconstruction of a 3D photofragment distribution is shown in Figure 2.15.
By rotating the distribution in increments of a specified angle a, a 2D projection is taken at each

respective angle. These projections can then be converted into a set of sinograms, each corresponding
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to a slice of the distribution that is parallel to the (x,y) plane. By performing the filtered
backprojection method on each sinogram, the initial slices are recovered. When these slices are
combined, they reconstruct the full 3D distribution.

00 02 04 08 08 10

I’:("'" )

Figure 2.15. Reconstruction of a 3D distribution by dividing it into slices and applying the tomographic process to each slice
individually. Image taken from [40].

This process will be used in the next section to tomographically reconstruct the 3D PADs

produced by our data.
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3. Results and Discussion

3.1. Description of “Experimental Setup”

3.1.1. Basics

The hypothetical configuration of the apparatus consists of a jet of matter interacting with an
appropriately polarized beam of laser within a VMI spectrometer. The photoproducts of this light
matter interaction are accelerated by the VMI and impinged onto a detector screen which is connected
to a computer where the projected images are saved. The basic components of a Velocity Map
Imaging experiment are shown schematically in Figure 3.1.1. A laser beam of specified polarization,
in this case linear, interacts with matter which produces charged particles that are projected with the
use of an inhomogeneous electric field into the 2D plane of a detector. The electric field acts as a lens
which integrates the PAD parallel to the electric field.

3

x
A/,
”

Figure 3.15.1. Experimental setup for VMI, original picture taken from [9] but modified.

Pa(x', 2')

We will use the VMI spectrometer [7] to reconstruct the projected images on the detector by
applying tomography and the POP method where it is applicable (linear polarization). For both
methods to apply the experimental arrangement should satisfy both of their requirements. Starting
with the Abel inversion method it is well known [8] that the rudimentary requirement is that the laser

polarization must be linear and parallel to the detector plane.
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Figure 3.1.2 shows the coordinate system of the 3D distribution (x,y,z) and the 2D plane of
the detector (X,Z). This configuration will be assumed for all subsequent experiments where the only
variant is the polarization of light.

(1) Position the detector parallel to the (x,z) plane on a distance L from the origin.
(2) Set the light propagation vector k to be along the Oz axis.
(3) The electric field of the VMI is along the negative y-axis.

Under these conditions the Abel method can only be applied if the polarization is along the x axis.

Z
l\ X

Figure 3.1.16.Coordinate system of the 3D distribution (X, y, z) and the detector plane (X, Z), original picture taken from [9], but
modified.

A linear polarization of the laser field along the x-axis leads to a PAD that is cylindrically
symmetric around the x-axis. Consequently, the PAD obtained on the detector is also symmetric about
the X-axis. Using Abel-inversion on the projected image the y=0 slice of the initial PAD is retrieved.
The y component of the distribution is not observable due to the integration along that axis. Therefore,
cylindrical symmetry is required to obtain the full 47 angle distribution.

Given the three characteristics of the apparatus listed above, tomography is applicable with
the addition of a half wave plate. The tomographic method involves rotating the 3D distribution
around the propagation axis thereby reconstructing slices perpendicular to this axis, specifically the
z-slices of the PAD. This is possible by employing a half wave plate as shown in Figure 3.1.1, which
rotates the 3D distribution about the z-axis. Tomography has no limitations regarding the polarization
of light and can be applied to any type: linear, elliptical, and circular polarization. Tomography is
applicable to a wide range of physical processes, including both, low intensity laser fields [16] and
high intensity laser fields [9]. It should be noted that an essential requirement applies to both
reconstruction methods. For these methods to be feasible, the influence of the electric field of the

VMI spectrometer must be completely neglected during the ionization process that produces the
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PADs [41]. Consequently, the electric field should only serve as the means to project the PADs onto
the detector.

The key difference between the Abel and tomography inversion methods when both apply is
that the Abel method requires only one projection,i.e. one detector image. Meanwhile, for
tomography to obtain the full 3D distribution information, projections of the PAD are requried from

various angles (see Theory), Figure 3.1.3,demonstrates this principle of tomography.

Figure 3.1.17 Detector images from 1+2 REMPI of potassium atoms with linearly polarized laser pulses at the angles 6 =
0°(a), 15°(b),30°(c),45°(d), 60°(e) and 70°(f) obtained by rotation of a A/2 waveplate by 6/2, original picture taken from [16].

For each rotation of the of the linearly polarized laser field, the produced 3D distribution
rotates by the same value and is projected onto the detector. This is equivalent to keeping the
polarization axis fixed, along with the 3D distribution, and projecting it from various angles. In the
case of Figure 3.1.3, if the integration takes place along the y-axis then the PAD rotates around the x

axis to obtain its full information in every direction.

3.1.2. CCD DETECTOR

A Charge coupled device (CCD) is used at VMI spectrometer experiments as the detector of
the projected 3D PAD. The CCD consists of a grid of dots or pixels, namely flat surfaces, that act as
the detecting elements. In our simulation we have simplified the function of the CCD by assuming
that detection occurs at the center of the rectangular surfaces (pixels), as seen in Figure 3.1.4.
According to the coordinate system defined above, see Figure 3.1.2, the CCD will be on the (x, z)

plane at the coordinate y = y,.: = L. The rows of the CCD are horizontal strips parallel to the x-axis
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and stacking along the z-axis while the columns of the CCD are vertical strips parallel to the z-axis
and stacking along the x-axis. We set the number of pixels N,;..;s = 201 in each row and each
column resulting in a total of 40401 pixels on the CCD. Choosing a different number of detector
pixels does not inhibit the inversion method. The CCD grid should be a rectangle with dimensions at
least equal to 27,4, Where 73,4, IS the distance of the furthest point of the distribution from the origin
on the (x, z) plane. That distance varies and depends each time on the initial distribution.

Horizontal rows

Vertical columns

AN

e \
Pixel width Pixel Center

Figure 3.1.18. Grid of pixels of the CCD detector. We assume the detection occurs at the pixel center.

It is mentioned above that the projection of the PAD is performed on the pixel centers. Below,
we will derive an expression to determine the pixel centers on the detector allowing us to establish
the coordinate grid of these pixel centers.

First, we have to identify the maximum point of the distribution r,,,, which determines the
length of the grid. The PAD is centered at the origin of the coordinate system. Suppose the cross
section between the y = 0 plane and the PAD which lies on a plane parallel to the (x, z) plane of the
detector. If r;,,,, IS the greatest distance that the cross section of the distribution reaches from the
origin, then the square that circumscribes the 2D cross section of the distribution will have a side
length of d = 27,,,, and will span the interval [—7;,4,, Timax ), @ Shown in Figure 3.1.5. This applies
in symmetric distributions where the furthest point lies on the (x, z) plane. In a non-symmetric case,

the method remains the same, but the maximum point may lie on another plane.
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The pixels in a row on the CCD are 201 which have to cover the interval [—7;,4x, Tinax)- 1T We
call the distance between two consecutive pixel centers Ax then the 201 centers span a distance of

200 Ax, and we also have 0.5 Ax distance from the first pixel center to the left border and another 0.5

z

0.04

0.02 - 1

d e 27}71&9('

0.00

-0.02 -

-0.04 L1 L n L 1 " 1 " L L PR " " ™ il
0.04 0.02 0.00 0.02 0.04

Figure 3.1.5 A z=0 cross section of the linear 3D PAD, with its maximum value r,,,, tracing a circle which is

circumscribed within a square of length d = 27,

Ax distance from the last pixel center to the right border. Overall, we divided the d distance
to 201 equal parts and the inter-pixel spacing is

d 2T,
Ax = == (3.1)

Npixels Npixels

Where steps refer to the number of regions into which the interval d is divided. Let’s expand on this

idea on an arbitrary row of the 2D pixel grid of the CCD and try to calculate the pixel centers.

The position of the first pixel center according to Figure 3.1.6 is
1% pixel: — £ + &
2 2

The second pixel center is the position of the first pixel center plus the inter pixel spacing Ax,

2 pixel: — L+ 2 ax = 24322
2 2 2 2
Continuing this process the center position of the nth pixel can be expressed as

2n—-1
2

nth pixel: —g + 2 Ax (3.2)

and by substituting Expression (3.1) into (3.2) we get:
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2n-1

nth pixel: — % + d (3.3)

2 Npixels

This is an expression that yields the position of a pixel center that depends only on the width d and

the number of Npyeis-

d = 2Nnax
- Tmax Npixels=201 Tmax
> - - X
(] & ® | ... o o
Ax
Ax 200Ax Ax
2 2

Figure 3.1.6. Positions of pixel centers in a row(x-axis) of the 2D grid of pixels of CCD.

The range of values that apply on the integer n is easily shown to be
1<n< Npixels
From this expression the x;-positions can be written explicitly,

! d+ ! d ! d+ 3 d ! d !
2 2 Npixels ’ 2 2 Npixels Y 2 2 Npixels

d

This method can be similarly applied to a column of the 2D grid of pixels where instead of x
we have z coordinates. Thus, it is possible to identify the (x;, z;) positions of all pixel centers of the
2D planar grid. Expression (3.3) can also be used to discretize any plane, dividing a region into equal
parts and finding the positions of the center of each interval
This grid of points allows for the evaluation of any function at these locations, resulting in its

discretization, which is essential on computational analysis and is extensively used.

3.2 Projection of the PAD on the detector

In this section we are going to simulate the VMI spectrometer and the integration effect it
produces on the distribution.
In our two-state system approximation, the initial PAD is defined by the general analytic

function, given in Equation (A30). Our goal is to project this distribution by integrating it along the
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y-axis, similar to the action of the inhomogeneous electric field in a VMI spectrometer. As seen from
this equation, it is apparent that we are dealing with a linear combination of products of spherical
harmonics expressed in polar coordinates.

First, we transform the distribution from polar coordinates into Cartesian coordinates,
described by A’(x, y, z). Then we integrate the Cartesian distribution along the y-axis where the limits
of integration are the maximum y-point , y,,,,, for the POP method and the maximum distance from

the origin 7, for tomography.

The integration is performed numerically

max point

f ' A'(x,y,z)dy = B(x,z)

—max point
and the result is the function B (x, z) which is the projection of the initial PAD written in terms of x
and z coordinates.

The next step is the discretization of this function through the method outlined above. This
involves evaluating B(x, z) at the grid points on the (x, z) plane calculated by Expression (3.3)
B(x,z) - Bi(x;, z;)

Where B;(x;, z;) is the discretized version of B(x,z) with i ranging from 1 to Ny;,.s = 201. The
next step is the normalization of B;(x;,z;) value to unity, enabling the valid comparison between
different sets of grid points depicted as matrices or images. Figure 3.2.1 shows B;(x;,z;) ,the
projected distribution discretized and normalized to unity for linear polarization. In this
representation, black denotes a zero value to the pixel, while white color denotes the
maximum value of 1. The maximum value can be found at the midpoint of the lobes which

is expected considering the shape of the 3D distribution and the direction of integration.
3.2.1 Noise and masks

In a realistic experiment the data collected are not pure but contain an inevitable percentage
of noise attached to them. To accurately assess the credibility of the inversion methods of POP and
tomography, the simulated data used in our analysis should match realistic conditions.

This is achieved by adding noise to the data with the characteristic of being statistically
random, which means the mean value is zero. The percentage of noise is chosen to be 1% and 5% of
the maximum data value [42]. Higher levels would disproportionately represent realistic background

noise in experiments.
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Noise is added to the data in the form of a noise matrix resulting in the final data to be inverted,
which consists of both PAD and noise data. The noise data have two characteristics. First is that the
mean value has to be is zero. This means the noise values fluctuate randomly around zero, with the
maximum amplitude derived from the data matrix. In the POP method, the data matrix is the
projection of the PAD along the y-axis, whereas in tomography, the data matrix is produced by the
projections of each rotated z-slice of the PAD. The second characteristic is that the noise matrix must
have the same dimensions as the noise matrix for their addition to be possible. After these two steps,
the noise matrix is multiplied by a noise factor of 0.001 or 0.005, corresponding to 1% and 5%

respectively. This is then added to the data matrix and their sum is normalized to unity.

Figure 3.2.1. Projected image of the PAD for linear polarization, normalized to unity. Black corresponds to zero value and white to 1.

The maximum value is found in the lobes.

In the image reconstruction process a specific type of mask is applied to enhance the

comparison results with the corresponding analytical image. This mask is a disk with a radius equal

pixels

to half the number of pixels, al ; ,and is centered at the midpoint of the image. This radius was

chosen to retain only the data of the reconstructed images contained within the circle of radius r =
Npixels

and thus ignoring the contribution from the background signal. This is related to the

tomographic method. By rotating the PAD around the z-axis its maximum point r,,,, traces a circle
on the z-plane which contains all possible rotations of its z-cross sections. The diameter of this circle

corresponds to a line on the detector of length 2r,,,, which according to Section 3.1.2 is the total
length of a detector row. Therefore, 13,4, = % An additional advantage of applying the disk mask

is that noise is added only to the projected data.
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The disk mask is shown in Figure 3.2.2. for the reconstruction of the z=0 slice at 1% noise

level using POP (a) and tomography (b).

(a) (b)

Figure 3.2.2. Reconstruction of the central z=0 slice of the PAD at 1% noise using (a) the POP method, (b) the tomographic method

for 70 projections.

3.3. 3D PAD reconstruction: Linear light polarization

The general 3D angular distribution where only the d-wave contributes (Equation A30) is

transformed to a simpler expression when the light is linearly polarized.

] o _nzeZiS +f2 + Zifnei‘s v N 772621'6 _|_f2 - _n262i8 +f2 _ Zifneié‘ y
r 2-2 - = 120 22
V30 3v5 V30

The polarization vector is given by the expression €= f £ + n e'®y and for linear polarization
[43] along the x-axis we must set f = 1 and n = 0.

In Figure 3.3.1, Expression (A30) for linear polarization is graphed in polar coordinates and
centered at the origin. This is the 3D distribution we are going to reconstruct using Polar Onion
Peeling an Abel inversion method and tomography.

The coordinate system shown in Figure 3.3.1 is in accordance with the convention of Figure
3.1.2 and the requirement mentioned above in Section 3.1.1. Thus, the 3D object is cylindrically
symmetric around the x-axis. The integration is along the y-axis and the detector will be parallel to

the (X, z) plane, at a distance L from the y=0 plane.
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Figure 3.3.1. The PAD for linear polarization is displayed in polar coordinates. The CCD detector is shown on the left side and the

propagation axis with a vector.

3.3.1 Abel Inversion (Polar Onion Peeling) of the projected image and its assessment

We are going to use the discretized projection of the PAD, B;(x;,z;) , as an image and apply
the Abel inversion method, specifically the Polar Onion Peeling method, to reconstruct the initial
PAD. This is accomplished with a Mathematica program already developed by Mr. Sotiris Danakas,
which is currently in use in our department. Feeding the data matrix of the function B;(x;, z;) as an
image to this program the Abel inversed initial distribution is produced.

Only the central y=0 slice of the initial distribution is produced, which is nonetheless sufficient
to reconstruct the 3D PAD by rotating this slice around the x-axis. This is possible due to the
cylindrical symmetry of the distribution

Now we will evaluate the accuracy of the POP method in producing a credible reconstruction
of the 3D PAD. This is achieved by comparing it to the initial theoretical distribution. As mentioned,
the POP method produces the y=0 slice of the distribution. Therefore, we will calculate the y=0 slice
of the initial distribution using the analytical Cartesian function A’(x,y, 2)ineqr- This function is
A'(x,0, 2)inear » Which is then discretized, creating a 2D data matrix of dimensions 201x201. This

data matrix is also normalized to unity so that comparison with other matrices will be valid.
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The comparison between the y=0 of the 3D distribution obtained by the POP method and the

analytical function A’(x, 0, z)ineqr 1S achieved by introducing the error function
E= (o= x0)? (35)
i

Where, in this case, x; ; are the data matrix values of the function A'(x, 0, z) ;ipeqr, Whereas x,; are
the data matrix values of the y=0 slice of the PAD obtained by the POP method. The use of the error
function in Expression (3.5), involves subtracting the corresponding points of the matrices from each
other and squaring the result (x; j ;mage1 — Xij1mage2)?, Where i is the row and j is the column. The
sum of squares of the subtractions for each point of the 201x201 matrices of the images is calculated
to be 5081, which is the error for the POP method.

The retrieval of the 3D PAD by reconstructing the central slice (z=0) applies to symmetric
distributions, where both POP and tomography methods can be compared using the 2D error, because
only a single 2D slice of the distribution is assessed, the central slice. If the full 3D symmetric
distribution were reconstructed, a different error function would be required for its assessment, the
3D error function. In the case of non-symmetric distributions there is no central slice, so only the 3D
error can be calculated. This scenario of 3D volume error will be addressed later in the tomographic

reconstruction of multiple slices of symmetric and non-symmetric distributions.

3.3.2 Tomographic method of the projected image and its assessment

In this section, similarly to the previous one, we will reconstruct the PAD using the
tomographic method described in the Theory. Generally, a 3D object can be tomographically
reconstructed by considering it as a finite stack of 2D cross sections with each cross section treated
separately. The cross sections should be perpendicular to the polarization axis (z-axis); therefore z-
slices will be reconstructed, parallel to the (x, y) plane. Due to the cylindrical symmetry of the PAD,
the POP method reconstructed the central y=0 slice. For the comparison of the two methods to be
valid the same slice of the 3D object should be reconstructed by tomography. This issue is easily
resolved by acknowledging that the y=0 slice obtained by POP and the z=0 slice obtained by
tomography are identical due to the cylindrical symmetry around the x-axis of the 3D distribution.
Thus, we will proceed with the reconstruction of the z=0 slice, which will then be compared to the

y=0 slice obtained by the function A’ (x, 0, 2) ;ineqr as Was done with the POP method.

The z=0 slice will be reconstructed using a specific set of projection numbers (angular
sampling), Ny jections = 10,14,15,18,19,20,23,26,30,35,40,50,55,60,65,70,80 and 90. The purpose
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of this is to determine the number of projections needed to match the accuracy of the POP method in
reconstructing the 2D slice of the object.

Consider a slice of the PAD, specifically the z=0 slice, projected onto the detector. The
number of points evaluated on the pixels constitutes the spatial sampling. In our analysis, the number
of points is fixed at 201. The spatial sampling is shown in Figure 3.1.6.

Fixing the spatial sampling while varying the angular sampling allows us to examine the
relationship between the accuracy of the number of projection angles and the accuracy of the
reconstruction.

Now we will describe the tomographic method on the z=0 slice of the PAD by first expressing

it in Cartesian coordinates as A'(x,y, 0)jineqr- FOr €ach number of projections Ny, jections, the z=0

180°

slice is rotated by an increment 6 = . Furthermore, for each rotation ,the rotated function

projections
A'(x(0),y(0),0)inear i integrated with respect to y, with the limits of integration being
(—Tmax Tmax)- This is because by rotating the slice around the z-axis its maximum point traces a
circle with radius equal to that point. This circle can be seen in Figure 3.1.5, which is enclosed by a
square with length equal to the circle’s diameter. Every possible rotation of the slice on the (x, y)
plane should fit within that square. Thus, the integration of the rotated function A’ (x(8), y(6),0) iinear
at points given by Equation (3.3) is mapped to the corresponding pixel centers of the CCD. For each
projection number Ny, jections @nd for each projection angle at a given projection number, 201 data
point values are collected. As a result,18 matrices are assembled each with dimensions:
(Nprojections X 201).

Appropriately modifying these matrices will result in a sinogram corresponding to a specific
projection number.

The sinogram, as introduced in the Theory, is a matrix assembled such that each projection of
a given projection number forms a column, arranged in ascending order of rotation angles. So, the
sinogram has as many columns as the projections recorded with the detector, where each projection
represents one angle of rotation.

The number of sinogram rows must equal the length of the diagonal of the square image,
which has a side length of N,,;,..;s. The diagonal is the maximum possible length a projection line can
have in a rotation of the image. To ensure all points in an image contribute at all projection angles,
the length of the projection line increases to span the diagonal of the image (the extra cyan line on

each side of the CCD line), as shown in Figure 3.3.2.
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Therefore, the diagonal parameter, is defined as
diag = NyiyersV2 = 284 (3.6)
where Npyeis = 201 is the number of pixels on the CCD screen. The dimensions of a matrix

sinogram are:(diag X Npyojections)-

Figure 3.3.2 The length of the projection line (red blurry CCD line) is equal to the side length of the Np, ;5 X

N,

pixels SQuUare while the cyan line equals the length of the diagonal of the matrix.

The 18 data matrices produced in the previous Section have dimensions (Np,jections, 201).
The rows are equal t0 Ny, jections, and the columns are 201. There are two steps to convert the 18
data matrices into 18 sinograms. The first step is to transpose the matrices by switching the rows and
columns. As a result, the dimensions of the matrices will be (201, Ny jections), The second step, is

for the rows to be equal to the diagonal diag = 284. Rows padded with zero values should be added
to the matrices (extra cyan lines in Figure 3.3.2). Therefore, on top and below the data matrix, an

N,-,ws NUMber of rows should be added,

diag — N,;
Nrows :| 9 5 pLxelsl (3.7)

With the completion of these two steps, the 18 data matrices have the appropriate

dimensions: (diag, Npyqjections) and can be considered sinograms.

Applying this process to the 18 matrices we get 18 sinograms. Some indicative examples of
the sinograms are shown in Figure 3.3.3 for number of projections Ny, jections =40 and 70
The sinograms are derived from the corresponding matrices, which are normalized to unity.

Thus, in their depiction as images, black represents zero value and white represents one, as usual. The
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dimensions of the sinograms for different projection numbers are illustrated in Figure 3.3.3 For 40
projections the dimensions are (285, 40) as seen in the narrower sinogram of Figure 3.3.3(a). In
contrast, with 70 projections and sinogram dimensions of (285, 70) the sinogram shown in Figure
3.3.3(b) appears wider. Both sinograms have the same height because they share the same number of
rows, 285

(a) ,(b)

Figure 3.3.3. Sinograms corresponding to number of projections, () Npyojections=40, (0) Nprojections=70

The sinograms are inverted using a built-in function in the Mathematica environment, which
employs the Filtered Backprojection method.

The inversion function in Mathematica allows the selection of the number of pixels in the
final image. The selectin of the number of pixels is convenient since each sinogram image has a
different dimension. Thus, we select the final image to have dimensions 201x201, equal to the
dimensions of the y=0 slice of the PAD, produced by the analytical function A’(x, 0, z) ;jeqr and by
the POP method. This way all of their matrixes have the same dimension, and their comparison is
possible

In Figure 3.3.4, the reconstructed z=0 slices are presented for the number of projections
Nprojections =10 and 20. In Figure 3.3.4(a) for 10 projections there are unwanted artifacts, such as
lines, and overall inaccurate results, as discussed in the Theory, due to insufficient angular sampling.

Increasing the number of projections lessens the effect of these artifacts, specifically lines originating
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from filtered back projection, and reconstructs the z=0 slice more clearly and accurately, as shown in
Figure 3.3.4 (b) for 70 projections.

(a) (b)

Figure 3.3.4. Inverted images of the sinograms corresponding to number of projections, () Npyojections =20, (B) Nprojections= 10,
To evaluate the tomographic method in reconstructing the z=0 slice of the PAD we compare
the inverted images obtained by tomography to the theoretical z=0 slice obtained by the function
A'(x,0,2)inear- The comparison is carried out with the use of the error function defined in Equation

(3.5), where, similar to the POP method, the two images are compared pixel by pixel. The

eIrors,Erpeoretical-Tomography.0EtWeEN tomography-reconstructed slices and the theoretical initial
slice for each number of projections, Npojections: aré plotted with respect to the projection number,

as shown in Figure 3.3.5. Generally, the error values decrease as the number of projections increases

although fluctuations are observed across all projections.

Approximately, for 19 projections tomography matches the error and thus the accuracy of the
POP method. There are some observations that should be noted. First, the tomography error matches
the POP error for 14 projections as well. However, due to the small number of projections, or angular
sampling, tomography is inaccurate, and the result cannot be trusted. Second, the error of tomography
generally decreases with great increase in the number of projections, resulting in a much larger
difference from the POP error. Lastly, as mentioned before, the error fluctuations remain throughout

the plot even for large projection numbers.
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The comparison between the POP and the tomographic method is also carried out in the
presence of background noise with the method described in Section 3.2.1. The noise levels as

mentioned are 1% and 5%.
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Figure 3.3.5. Graph depicting the errors between tomography and analytically obtained slice in relation to the number of projections.
The red line depicts the POP error.

The methodology of reconstructing the y=0 slice of the 3D distribution with the POP method
in the presence of noise remains similar to that without noise. The distinction is that the final matrix
includes the noise matrix and the comparison with y=0 slice obtained by the function A’(x, 0, 2) jinear
is performed using an appropriate mask. The results of the comparison between the POP-
reconstructed noisy y=0 slice and the noiseless analytical y=0 slice of the initial PAD is 4155 for 1%
and 4305 for 5% noise level.

The first observation is that as the noise increases, the error increases, which is expected
behavior. The second observation is that both errors are smaller than the error without noise,
(5081.04) ,which is counter intuitive. The reason for this is that the noiseless POP error was
calculated without adding the mask. Thus, the whole image contributes to the error making it larger
than the errors with noise. Adding the mask to the POP-reconstructed noiseless y=0 slice of the PAD
would result in an error of 4102.49, which is smaller than both POP noise errors.

The reconstructed y=0 slice of the PAD at 5% noise level using POP is shown in Figure 3.3.6(a).

Now, the tomographic method will be tested in the presence of noise and compared with the
POP method. Similar to the noise-free distribution, the tomographic reconstruction of the noisy z=0
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slice is performed by adding the noise matrix to the data matrix, converting them into sinograms and
then inverting them to produce the reconstructed slice. The number of projections remains
10,14,15,18,19,20,23,26,30,35,40,50,55,60,65,70,80 and 90 for 1% noise level but we increase it to
10,14,15,18,19,20,23,26,30,35,40,50,55,60,65,70,80,90,100,110,120,130,140,150 and 160 for 5%
noise level to match the corresponding POP error. For each data matrix, two noisy data matrices are
generated corresponding to 1% and 5% noise levels, resulting in twice as many reconstructed slices.
In the inverted images, a mask has been applied, which improves the comparison between the
tomographically reconstructed slices and the analytically obtained z=0 slice.

(a) (b)
Figure 3.3.6. Reconstruction of the z=0 slice at 5% noise levels using (a) the POP method and (b) tomography with 70

projections.

Figure 3.3.6(b) shows the tomographically reconstructed z=0 slice with 70 projections at a
5% noise level. This slice appears grainy making its details less clear and harder to discern.

In contrast, the Abel-inverted slice is much clearer at the same noise level. The comparison
results between the tomographically reconstructed noisy z=0 slices and the noise-free analytic slice

obtained from the function A’(x, 0, z);.qr are plotted against the number of projections for both

noise levels, as shown in Figure 3.3.7.

For 1% noise, the number of projections needed for tomography to match the accuracy of the
POP method is approximately 20-22 projections, slightly more than the noiseless case. For 5% noise,
at least 140 projections are needed for tomography and POP to yield the same error.

This is a significant difference compared to the noiseless and the 1% noise cases, where only
around 20 projections are needed.
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This highlights the efficacy of the POP method in dealing with noisy data as well as the adaptability

of tomography to match the POP method simply by increasing the number of projections.
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Figure 3.3.7, Graph of the errors in relation to the number of projections, comparing tomography and the theoretical z=0 slice in the

presence of noise :(a) 1% noise and (b) 5% noise. The red line depicts the error between the POP method and the theoretical y=0

slice.
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It should also be noted that both plots in Figure 3.3.7 exhibit fluctuations, especially the 5% noise
level plot, which shows values higher than those at the 1% noise level. This indicates that tomography

is less accurate at higher noise levels.

Now will be presented the full scope of the tomographic method which involves
reconstructing multiple z-slices of the distribution, and then assembling these slices to recreate the
original distribution. In this case, the assessment of the reconstruction will involve using the 3D error
volume function, which accounts for the full distribution.

First, we will determine the z-cross sections of the PAD that will be tomographically
reconstructed. The number of z-slices is not fixed in the program and thus, is selected by the user.
Considering the symmetry of the distribution and the speed of the overall process five slices are
deemed sufficient. This means that the z-region corresponding to the distribution will be divided into
four equal segments. However, due to cylindrical symmetry, the PAD is symmetric around the z=0
plane, as shown in Figure 3.3.1, and so, only one of the z-subregions, either z>0 or z<0, needs to be
divided. For our analysis the z<0 region is chosen. The slices begin from the maximum z point of the
z<0 region, —z,,4,, Which is a plane tangent to the distribution and end at the z=0 point, the midpoint
of the z range [—Zmax » Zmax]- The cross section of the distribution with the z=0 plane as well as with
other z-slices is shown in Figure 3.3.8(a). The method we will follow is the same as in the previous
section for the z=0 slice, but instead of one slice now we have five slices. In Figure 3.3.8(b) the
tomographically reconstructed 3D PAD is shown for 100 slices and 70 projections.

The tomographic process yields 18x5=90 matrices, where there are 18 sets of projection
numbers and 5 cross sections. The dimensions of each matrix are (Npy jections, 201) and the number
of projections remains the same as in the previous section for the noiseless z=0 slice. Using the data
from the 90 matrices, we can construct the corresponding sinograms, which are then used to obtain
the reconstructed slices.

Using the error function, Expression (3.5), the reconstructed z-slices are compared pixel by
pixel with the analytical z-slices of the function A’'(x, 0, z;) jinear

For all the following plots, in both symmetric and non-symmetric distributions, a mask was
applied to the reconstructed images in both the noisy and the noiseless data. In the noiseless case
applying a mask, results in an almost vertical downward shift of the plot, with errors for fewer
projection numbers decreasing slightly more than for larger projection numbers, while the overall
shape of the plot remains unchanged. In the case of nose, using a mask is necessary to ensure that the
noise affects only the projection data.

The plots of the 2D and the 3D errors are shown with respect to the number of projections in

Figure 3.3.9 (a) and (b), respectively.
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() (b)

Figure.3.3.8. The cross section between the z=0 slice and the initial PAD.

The plot of the 2D error is similar to the plot in Figure 3.3.5 for the z=0 slice, with the only
significant difference being in the error values. In this case, less than 20 projections are needed for
tomography to match the POP error, while nearly 19 projections are required without using the mask.
Both the 3D and the 2D errors generally decrease with the number of projections, however the 3D
error decreases in a smoother manner with seemingly less fluctuations. Both errors fluctuate across

the plot for all projection numbers.

2D Error
: T T T l T :
60005'"" 0000 080008 S o e {
50005....... R ——————————— ........................................... _E
4000} ....... T ........................................... :
3000:_......5.... .:
2000;. ......................... B L S S Sy T o T e S e S e e S ,E
1000_ ............................ .......................... s A S T :
0_— L Il Il Il I I Il Il L Il Il Il I L]

20 40 60 80
Nprojections

42



()

3D Error
N T T T T T ]
25000 :_ ................................................................................................................... :
20000 | 3
15000 :. .................................................................................................................... .:
10000 :_ ................................................................................................................ :
5000 F |
0 4 Il Il 1 1 Il Il L 1 Il Il 1 1 1 Il 1 1 .
20 40 60 80
Nprojections
(b)

Figure 3.3.9(a)Plot of 2D Error in relation to the number of projections,(b) Plot of 3D Error in relation to the number of projections,
both for noiseless data. The red line represents the POP error for the z=0 slice: 5081.

The 2D and 3D errors are also plotted against the number of projections in noisy conditions.
These plots are shown in Figure 3.3.10 and 3.3.11 for 1% and 5% noise level, respectively.
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Figure 3.3.10. (a) Plot of 2D errors at 1% noise with respect to the number of projections. The red line represents the POP
error for the z=0 slice: 4155 with the use of a mask. (b)Plot of 3D errors with respect to the number of projections
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Figure 3.3.11 (a) Plot of 2D errors at 5% noise with respect to the number of projections where the red line represents the POP error
for the z=0 slice: 4305.28 with the use of a mask. (b)Plot of 3D errors with respect to the number of projections.

The 2D errors at 1% noise (Figure 3.3.10a) generally fluctuate throughout the plot but
decrease as the number of projections increases. In contrast, the 3D error plot at 1% noise (Figure
3.3.10b), follows a smoother line with fewer fluctuations. In Figure 3.3.11(a) at 5% noise level the
2D error plot is highly oscillatory for all projection numbers, while showing a decrease in value with
the number of projections. At least 140 projections are needed for tomography to match the POP
error. There is a significant discrepancy between the plot for 5% noise shown in this figure and Figure
3.3.7(b). This indicates a high sensitivity of the tomographic method to elevated background noise
levels.

An attempt to reduce the oscillations caused by background noise involves lowering the cutoff
frequency to smaller values. This leads to fewer fluctuations and smaller error values for both noise
levels. However, the drawback is that the reconstructed images will display blurriness and a loss of
detail (see Theory).

It is worth noting that lowering the cutoff frequency in the noiseless case does not reduce
fluctuations in the 2D error plot but does lower the error values. However, the 3D error plot shows
both a reduction in overall oscillations and a decrease in values.

Lastly, comparing the plots in Figures 3.3.9, 3.3.11 and 3.3.10 it is evident that the 2D and
3D errors are higher at 5% noise compared to 1% noise and the noiseless case, indicating that

tomography produces more accurate results with lower background noise. This is further emphasized
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by the increased number and intensity of fluctuations in 5% noise case compared to the 1% noise

case.

3.4. Tomographic PAD Reconstruction: Elliptical light polarization —

Symmetric Case

For elliptical polarization [43] the parameters in the general polarization vector are chosen to
bef=1,n=2and é§ = g Under these parameter values the 3D PAD (Equation A30) is analytically

determined and is shown in Figure 3.4.1(a). It is evident the 3D PAD is no longer cylindrically
symmetric around the x-axis. However, since it is a symmetric distribution, it will be tested to
determine if the POP method can be applied for its reconstruction.

First, the distribution is integrated along the y-axis, with integration limits [—Ymax, Ymax]:
resulting in its projection, as shown in Figure 3.4.2(b). Next, we apply the POP method to this
projection image, producing the result shown in Figure 3.4.2(c). The POP method allows us to retrieve
the y=0 slice of the original distribution, so we compare the output of the POP method with the y=0
slice of the PAD, shown in Figure 3.4.2(a). Comparing these two images shows that the POP inverted
does not match the initial slice. This proves that the POP method is incompatible with elliptical light
polarization and cannot reconstruct a distribution that does not to meet its requirements, even if the

distribution is symmetric.
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(b)

Figure 3.4.19.(a) Plot of the 3D PAD for elliptical polarization in polar coordinates from the analytical expression and (b)
the tomographic reconstruction of the PAD.

Now that POP failed to reconstruct this PAD for elliptical light polarization it is time to
employ the tomographic method. The assessment of the reconstructed images will be performed using
the 3D error volume function. In Figure 3.4.3(a) the reconstruction of a z-slice of the PAD is shown
for 70 projections and no background noise and in Figure 3.4.3(b) the same slice is reconstructed for
70 projections and 1% noise level. For both images a mask was applied. In Figure 3.4.1(b) the full

3D reconstruction is shown for 70 projections and 100 z-slices.

(@) (b) (c)

Figure 3.4.20. Shown (a) the initial slice y=0 slice of the PAD, (b) the projected image (c) the reconstructed y=0 slice

In Figure 3.4.4 the 3D error is plotted against the number of projections for noiseless data,
while Figure 3.4.5 shows the 3D error plots at 1% (a) and 5% (b) noise levels. A disk mask is applied
in all the reconstructed images both noisy and noiseless.
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(a) (b)
Figure 3.4.3 Reconstruction of a z-slice of the PAD for 70 projections at (a) no background noise and (b) at 1% background

noise.

The plot in Figure 3.4.4 generally follows a smooth trajectory with a few fluctuations that
persist across all projections. The 3D error decreases rapidly with the number of projections, but it
appears to stabilize at a constant value.

The 3D error plot for the 1% noise level shows similar characteristics as the noiseless case
with a generally smooth curve that almost stabilizes at the final projections. In contrast, the 3D error

plot at the 5% noise level is highly oscillatory across all projections.
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Figure 3.4.4. 3D error plot against the projection numbers for noiseless data in the elliptical case for symmetric distribution.
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Figure 3.4.5 3D error plot against the projection numbers for (a) 1% noise level, (b) 5% noise level, in the elliptical case for

symmetric distribution.

When comparing the 3D error values across all three noise levels it appears that they all start

at approximately the same value. However, both the noiseless and 1% noise cases decrease to a similar

value at 90 projections while the 5% noise case consistently shows higher values. Even at 130

projections the 3D error for the 5% case is three times greater than the other two cases. This indicates
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that tomography is susceptible to high levels of noise but remains sufficiently accurate for lower
background noise levels.

For both noisy and noiseless data, lowering the cutoff frequency of the filter reduces the
fluctuations and lowers the error values, but the reconstructed images appear blurrier with less sharp
edges.

A special case of elliptical polarization is circular polarization. A light is circularly polarized
when it is composed of two plane waves of equal amplitude but with a phase difference of 90 degrees

[43]. Therefore, the parameters of the polarization vector will be, f =1,n=1,and § = % The 3D

PAD distribution for circular polarization is shown in Figure 3.4.6.
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Figure 3.4.6 3D PAD distribution for circular polarization (a) from analytical expression and (b) from tomographic
reconstruction.

Due to the relative simplicity of the distribution tomography yields results that outperform all
other distributions examined in this project, indicating that the tomographic method is particularly

effective when dealing with simpler distributions.

3.5 Tomographic PAD Reconstruction: Elliptical light polarization —

Asymmetric Case

In this section we are dealing with a non-symmetric distribution produced by elliptical

polarization with the same polarization parameters as in Section 3.4. This distribution is produced by
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assigning a value of 1 to the A —parameter (Equation A28), resulting in the contribution of the term
Yo0(6, @) in the distribution, Equation A27. An extra state is included to the expression of the
distribution, Y,_, (8, ¢), which is related to electric quadrupole transitions [44]. This distribution does
not correspond to a realistic physical process and is included to assess the ability of tomography to
reconstruct non-symmetric distributions. The PAD is shown in polar coordinates in Figure 3.5.1 (a).

The tomographic reconstruction of this PAD is shown in Figure 3.5.1 (b) for 100 z-slices and 70

projections.

CCD Detector B

(a)

(b)

Figure 3.5.1 PAD of non-symmetric distribution for elliptical polarization (a) from the analytical expression and (b) from

tomographic reconstruction.

We will use the tomographic method to reconstruct this distribution. The assessment of the
reconstructed images will be performed using the 3D error function as the distribution lacks symmetry

and has no central slice to examine. Consequently, the z-slices that will be reconstructed will span
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the entire z-region starting from the maximum z-point on the negative axis and ending at the

maximum z-point on the positive axis.

(@) (b)

Figure 3.5.2 Reconstructed z-slice for 70 projections at (a) zero background noise, (b) 1% background noise

In Figure 3.5.2 a reconstructed z-slice of the PAD is shown for 70 projections with no
background noise (a) and at a 5% noise level (b).
In Figure 3.5.3 the 3D error values are plotted against the projection numbers for noiseless data.
Figure 3.5.4 shows the 3D error plots for a 1% noise level (a) and a 5% noise level (b). A mask was

applied to the generation of all the following plots.
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Figure 3.5.3 Plot of the 3D errors values for noiseless data in relation to the projection numbers for non-symmetric PAD.
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Figure 3.5.4 Plot of the 3D errors in relation to the projection numbers for (a) 1% noise level and (b) 5% noise level, for

non-symmetric PAD.

The plot of the 3D errors for the noiseless case resembles the plot for the symmetric elliptical
case, showing fluctuations across all projections and seeming to stabilize at an almost constant value
at the later projections. The 3D errors decrease rapidly with the number of projections.
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The plots for the noise cases both exhibit fluctuations that are particularly pronounced at the
5% noise level. Both plots display a rapid decrease in error. Additionally, similar to the symmetric
case the 3D error values for the noiseless and 1% noise case are generally smaller than those for the
5% noise level.
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4. Conclusions

The present work aimed to develop a computer program that employs the tomographic method
to reconstruct 3D PADs produced from light-matter interactions. Specifically, these distributions
were produced by a two-photon ionization of a Hydrogen atom by laser light with various
polarizations. By simulating a VMI spectrometer the 3D PADs were projected onto a plane to
generate 2D images. These projected images were analyzed both with and without the presence of
noise to more accurately assess the program's performance under realistic conditions.

In the case of linear polarization tomography was compared to the POP method for
reconstructing the 3D PAD from the projected images. Our findings indicate that applying an
appropriate mask to the reconstructed images less than 20 projections are required for tomography to
achieve the same accuracy as the POP method for noiseless data. By removing the mask, around 20
projections are needed to achieve the same accuracy as POP for both noiseless data and data with
minimal noise level. However, as background noise increases more than 140 projections are required
for tomography to match the accuracy of the POP method. This result, though, is unreliable due to
the high sensitivity of tomography to elevated noise levels. This phenomenon is observed in all the
following PADs generated at these noise levels, specifically, in both symmetric and non-symmetric
distributions produced by elliptical polarization. A straightforward solution was to further bandlimit
the filter used in the reconstruction process. This approach, though, can lead to blurry images with
reduced detail.

Overall, our code successfully reconstructed the 3D PADs in all cases with the potential to
surpass the existing Abel inversion method. Nonetheless, there is room for improvement. First, further
investigation of tomography with noisy data is needed to assess its ability to produce accurate and
stable results, particularly at higher noise levels. One possible approach is a more in-depth
examination of the filtering process, using a specialized filtering function that better suppresses high
noise signal. Another potential improvement is refining the masking process, where the concealment
of the background noise precisely fits the outline of the reconstructed distribution, maximizing the
data signal contribution. Second, to better address these challenges and achieve superior results, the
utilization of modern and sophisticated data processing methods, such as artificial neural networks
[45], is required. Lastly, since the tested images were simulations of experimental data, it is essential
to validate our findings with real data to determine if the results hold in practice.

Although tomography has some setbacks, such as sensitivity to high noise levels, is
established as a powerful method capable of accurately reconstructing 3D objects. In atomic physics

tomography is especially valuable because it enables the retrieval of 3D distributions produced by

55



complex light-matter interactions, without limitations on the polarization of light, the symmetry of
the distribution or the nature of the physical process. Therefore, developing this program was essential

as it expands the range of physical phenomena that can be examined.
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Appendix A: Derivation of 3D photoelectron momentum distributions

from two-photon ionization out of an s-state.

The physical system consists of a gas of hydrogenic atoms interacting with a laser field of
specified polarization in the presence of a uniform electric field. This interaction results in a three-
dimensional flux of electrons ejected during photoionization which are then imaged by a position
sensitive detector, revealing a particular spatial distribution. The 3D photoelectron angular
distribution (PAD) is determined by considering a two-photon ionization of the atom, where the atom
initially in the ground state ionizes to an unbound state via an intermediate virtual state, as illustrated
in Figure A.1. The 3D PAD is calculated by employing a two-state model approximation of the
ionization process along with first order time dependent perturbation theory, while ignoring the

electron spin contribution. All equations are written in atomic units (7=e=me=1).

E, ¢g

w

T o g o i T, g v e

Eg 4 l,ng

Figure A.1. The two-photon transition model, out of the ground state to a virtual state and from the virtual state to the final

continuum state.

Al. Time Dependent Schrodinger Equation and “Schrodinger equation with a

source”: Spinless case

Consider either the Hydrogen atom or a single valence electron atom outside closed
(sub)shells (as for example the Alkali atoms). In either case the interaction of the valence electron
with the ionic core may be described by a spherically symmetric potential U(r). Then, the

Hamiltonian writes,
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H(r) = —%Vz + U(). (A1)

Let us now examine the simpler case of single-photon ionization out of an initial state y; of
energy E; to a continuum state iy of energy E, both solutions of the Schrédinger equation H(r)y =
E. The outgoing flux of photoelectrons is described by the electron Probability Current Density.
The latter depends on an outgoing wave ¥, (which is complex and should not be confused with the
real wavefunction Y, but they both refer to the same energy E). The relevant differential equation

satisfied by . is derived from the Time Dependent Schrodinger Equation (TDSE):

A Y
| — = HWY A2
i H (A2)
where the total Hamiltonian H
H =H(r)+V(rt) (A3)

consists of the time independent part of Eqg. (Al), and the time dependent part, which describes the
dipole light-matter interaction term [46],
V(ir,t) =—-d-E =
=& ‘1T E,F(t) (et + e~ @)

where d is the dipole moment operator, E the electric filed of the laser, € the light polarization vector,

(A4)

E, the real field amplitude, F(t) the time envelope of the pulse and w the laser field circular
frequency. We now adopt a two-state model for the atom [47,48,49] where the wavefunction ¥ of
the system is decomposed in two terms, one referring to the initial state y; and one to the final

outgoing wave state Y, i.€.
lp(r' t) =Cj (t)l/)i(r)e_Eit + Cout(t)l/)out(r)e_iEt (A5)
As mentioned above, we assume that y; is an eigenstate of the time-independent Hamiltonian H,

H(r)l/)i = Eil/)i (A6)

and the resonant excitation implies
w=FE—E. (A7)
Inserting Equations Al and A3-A7 into Equation A2, using first order time dependent perturbation

theory [50] to obtain approximate expressions for the coefficients c; (= 1) and c,,; (= EoCoye ™ (1)),
and keeping terms up to linear with respect to E,we get

dc...(D j
(i a +c0ut<”’5)wout=cout(“Hwout+s-rf<t)(e2‘°”+1)¢i (A8)

Introducing the “rotating wave approximation” [49] into Equation A17, the term e?'“t is dropped

because it rapidly oscillates with time and its net effect is negligible. Then we arrive at,
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(_i% + H(l‘) - E) Cout(l)lpout =—€&'T T(t)lpi (Ag)

If we further assume the Electric Field has constant amplitude, i.e. F(t) = 1, c," becomes
independent of time, its time derivative is zero, and the coefficient can be absorbed into the outgoing

wavefunction ;. Therefore, Equation A9 can be written as,

(H(l‘) - E)lpout =—&'r 1!’1' (Alo)
which is known as “Schrodinger equation with a source” [49]. For solving this equation, we express

Youe 1IN the form,

Your =771 Z Pﬁ%,yrlr{,- (A11)

rmr

where Y;}, denotes spherical harmonics and the functions P"”t need to be determined. It turns out

[51] that in the r — oo Imit these functions are written as,

:j;(r) dlm e )]1/ el@i1(M+é) (A12)

with d,,, the dipole transition matrix elements connecting states y; = r‘1PiY,£{i and Yy = 1Py YL,
dlm = .]-r_ZPElY,ln €T Perlr;l dV, (A13)

and where the continuum wavefunction Pg at large distances and in it semiclassical (WKB) form is

written as [51],

c
P (r) = WSID[GI () + &1 (A20)
with C, a normalization constant and k(r) the wavenumber function,
1 +1/2)2\] 2
k() = [2(E-ve) - (A15)
Finally, the function 6,(r) is given by,
r
0,(r) = f k(r)dr’ (A16)
T

o

and ¢; is a constant phase depending on 7. It is important to note that the matrix elements (A44)

incorporate dipole transition selection rules.

AZ2. Electron Probability Current Density
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Once the outgoing wave ¥,,,,; is known the probability current density can be calculated from
the definition [44],

Znaw

] = [lpoutv(lpout) (lpout)*vwout] (A17)

Since ionization proceeds solely via the r-coordinate, we need the projection of J in the r-direction,
2maw 0(Wour)” 61,[)

Jr=)e =— llpout o (wout) — (A18)

where e, is the relevant unit vector. Inserting Equations A11-Al6 in Equation Al8, we obtain,

Z el @+o0y,

which encompasses the angular distribution of the 3D photoelectron flux. Finally, by integrating over

dntaw

(A21)

]Tr—>oo -

the whole sphere we get the total cross section a,,;,
f]rdS = 47'[26{(1) Zldlml2 = Otot (A22)
ILm

where dS = r?sinf d@ de = r?dQ is the sphere’s surface element.
A3 Two-photon ionization PADs with arbitrary light polarization

Two-photon ionization may be perturbatively described as a single-photon ionization process
out of a virtual initial state ¥; = ,, entering in the Schrédinger equation with a source, Eg. (10). In
turn, the virtual state obeys itself the following Dalgarno-Lewis equation [52],53],

(H(r) —E)Y, = —€ 1)y (A21)
with i, = r‘ngYOO denoting the ground (truly initial) s-state (of Hydrogen or an Alkali atom) of
energy Eg. E, = (E + Eg)/z is the virtual state energy. To find all possible solutions of Eq. 21, we
expand the virtual state as,

=r1 Z Py Vi (A22)
inm
The harmonics Y;¥, are referenced to the quantization axis z that here we choose to be the propagation
axis of the ionizing laser beam (perpendicular to the VMI spectrometer axis and parallel to the charged
particle detector). We allow for arbitrary light polarization by writing the dipole operator as,
€1 = fx +ne'y. (A23)
Thus, the dipole operator is decomposed into two linear polarization terms of amplitudes f and n

along the x- and y-axes, respectively, and a relative phase 6 between them. In practice the amplitude
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f is set equal to either O or 1, while the amplitude n can take any real value. In terms of the spherical
harmonics the dipole operator writes,

21 )
gr=r f? [f (YL — Y1) + neld (Y2 + Y] (A24)
and it evidently leads to the selection rules
Al =+1and Am = +1 (A25)

for each transition, 1, — v, and ¥,, > . Indeed, the virtual state is finally written as,

~ 1 ; .
Yo =17 Pos i [(f +me®)¥t = (f —ne®)r!] (A26)
where the radial part P, , exhibits no angular dependence, and where angular factors are explicitly
calculated.

We now need to compute the matrix elements d,,, = (yg|€ - r|y,) entering the current probability

density Eq. A19. After some manipulations we finally arrive at the following PAD expression:

1 .
]Tr—wo e r_z (fz + nZeZLé)YOO
AeiAH;O '
* W{—(f 2 +ne??)r; (A27)
3\ /2 . | :
+ (§> [(f2 —n?e0) (Y + Y5 %) — 2fnie’d (Y} + Y;Z)]}
where,
drr Pg,P
= f T FEp v (A28)
[drrPgP,,

is the relative strength of the radial integrals connecting the radial wavefunction P, ; of the virtual
state and the [=2 (P, ) and [=0 (Pg,) continuum wavefunctions, while,

Ae;o =0, — 0y + ¢ — . (A29)

The excitation and ionization pathways described by Eq. A25 are shown schematically in Figure A.2.
Parameters A and 46, depend on the specific atom that a calculation refers and need to be computed
separately. As a propensity rule A>1 [54], while there are cases, depending on the photon energy w,
where either A = 0 or A > 1 [54,55]. In this latter case that we are about to use more frequently in
the present work, the spherically symmetric term proportional to Yy can be neglected and the
probability current density simplifies to the below expression, which is independent of both A and
A63,.
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]TA>> e r_z _(fz + leezié‘)yzo
3\1/2 . . ? (A30)
+ (E) [(f2 —n%e?8) (Y2 + Y5 2) — 2fnie® (Y2 + Y, 2)]
s—wave d—wave

A \
[ | |

[00 >

Figure A.2. Transition pathways of a two-photon excitation and ionization of a Hydrogen atom out of its s-ground state via a virtual
state obeying the selection rules Al = 1 and Am = +1. The virtual state is a linear combination of |Im >=]1 -1 >and |11 >
states. The final state can be expressed as a sum of an s-wave and a d-wave. The s-wave is represented by the |00 > state, while the
d-wave is represented by the |2 — 2 >, |20 > and |22 > states.

The total cross section a;,, is equal to the sum of the partial cross sections a; from the s and
d state contributions. This is expressed as

Otot = Os + 0g (A31)

However, based on Equation A20 for linear polarization, the total cross section a;,; IS given by,

~ 2 ~ 2
(f drr PgoPy 1) " (f drr Pg, Py, 1)
9 45 (A32)

Oror = 4m2aw(

_ 2
(fdrr PgoPy1)

Comparing the Equations A31 and A32 we get, o, = 4m%aw and o, =

S 2
w (fdrr PgaPyq) _
45

At
For a two-photon ionization process below the threshold, a Hydrogen atom at energy of w =
9eV exhibits an anti-resonance for the [ = 0 state [54]. Consequently, the partial cross sections are
o, ~ 1073 and o, ~ 102 ,respectively, with units of 10752 cm*s
From the ratio of the partial cross sections, we get an order of magnitude for the A —parameter

(Equation A28), A = 400, which satisfies the A > 1 condition and therefore the use of Equation A30
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at this energy level is valid. The A —parameter depends solely on integrals of radial wavefunctions,
therefore it the calculated value applies to all polarizations.
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Appendix B: Polar Onion Peeling

In experiments using linearly polarized light, the produced momentum distribution is
cylindrically symmetric about the polarization axis. The Abel transform exploits this symmetry and
allows the extraction of the 3D distribution from one single measurement of its projection on the
detector [10-12].

Suppose a momentum distribution f(z,r) in cylindrical coordinates with cylindrical
symmetry about the z-axis. The lab frame of reference is (x, y,z) and in relation to this the linearly
polarized light is along the z-axis while the projection of the distribution is carried out along the y-

axis. The image on the detector is therefore,

rdr

P(x,z) = j f(z, r)dy—ZJf(z r) — — (B23)
|z|

using a simple change of variables with r = \/x2 + y2.This is the Abel transform [56] of the f (z,7)
function. The quantity of interest in Equation B1 is the 3D distribution f(z, r) which can be obtained
by evaluating the inverse Abel transform [56]

dP(x,z) dx
f(”)__Ef dx Vx?—72

r

The direct numerical estimation of this equation is generally avoided primarily due to the singularity

(B24)

and sensitivity to noise in realistic data. A few methods have been proposed to circumvent these
challenges and accurately approximate the 3D distribution. One such method is the pBasex approach
[57] which uses a set of basis functions that are analytical solution to Equation B1. The data are then
fitted to the basis set using a least squares method. Another method is the Vrakking approach [10],
which is an iterative process to determine the solution to Equation B2. Both methods yield accurate
results and handle noisy data effectively by accumulating the noise at the center of the reconstructed
image. Comparable to these methods is the Polar Onion Peeling (POP) [22,58] method, an

improvement to the Onion Peeling method [8], which will be presented below.

B1. Basic idea

The basic premise of the Onion Peeling method is that each point on the detector has a
contribution from the ¢-dependence of the original 3D PAD, as shown in Figure B1. Using Cartesian
coordinates this dependence can be calculated and removed by starting from the outermost pixel on

each row of the detector image and moving along the x-axis towards the central z-axis. This method
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is fast and particularly effective when the kinetic energy of the photoproducts is much less than the
energy gained from the electric field in the detection [8]. However, the main drawback is noise
accumulation to the central z-axis. The solution of this problem is onion peeling in polar coordinates
[22,58] in which the error is reduced at large radii and accumulated to a spot at the center of the
inverted image. The basics of the method will be presented below.

Suppose a 3D radial distribution F(r, 8, ¢) that has cylindrical symmetry around the z-axis,
as shown in Figure B.1. The z-axis corresponds to the polarization vector which is linear for an inverse
Abel transform to apply. In a VMI spectrometer the 3D momentum distribution is projected along an
axis (y-axis) onto the 2D plane parallel to the (x, z) plane,

(2]
-

2D

3D

Figure B.1. 3D distribution with cylindrical symmetry about the laser polarization axis and its projection on the detector plane,
original image taken from [22]

producing the measured 2D distribution G (R, a). This distribution is also in polar coordinates where
R is the radius and « the angle in relation to the z-axis of the detector.

If we consider F(r, 6, @) a cylindrically symmetric distribution of constant r = R, then due
to its p-dependence the measured distribution G (R, a) will have signal at radii R < R,. This signal
can be calculated and subtracted away from G (R, a) for all R < R, resulting in a distribution that is
equivalent to a slice though the original distribution: F(r, 8,9 = 0). The full distribution can be
recovered by rotation of F(r, 8, ¢ = 0). about the polarization axis.

This process can be generalized for a PAD with varying r. In this case, each r of the PAD
corresponds to a projection g(r; R, a) that has signal due to the ¢-dependence at all radii R < r.
Consequently, the measured projection,G(R,a), can be expressed as the sum of the individual

projections, g(r; R, a), for all r values of the PAD,
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Tmax

G(R,a) = f g(r; R, a)dr (B3)

0

where, as mentioned, R < r and the semicolon in g(r; R, @) indicates that the projections correspond
to specific radii r. The POP method exploits the principle described by Equation B3, which indicates
that for each radial distance r, the slice of the 3D PAD,F(r, 8, = 0), corresponds to a circle of
radius R = r in the projected distribution. Beginning with the outermost radius of the PAD r = 75,44
its projection g(r = nyax; R, @) is subtracted for all radii R < 1,,4,.1€aving only the circle with R =
Tmax- VIS process removes the g-dependence from the 2D measured distribution for all R < 7;,,,, at
this specific 73,4y

By repeating this process for incrementally decreasing steps of dr down to r = 0 ,the
projection g(r; R, a) is subtracted from G (R, a)at each radius r. This effectively “peels away” the ¢-
dependence from the projection at each r, resulting in a slice though the polarization plane of the 3D
PAD.

This process was described using polar coordinates [22] for both the 3D PAD and the 2D
measured projection but can also be employed in Cartesian coordinates [58].

B2. Computation

The extraction of the deconvoluted image from the 2D measured projection is achieved by
determining the 2D projection g(r; R, a) at each radius r. One approach to calculation this is by
simulating the 3D PAD at each radial increment [58]. However, this approach is computationally
demanding. Therefore, an alternative faster yet equivalent method is presented in which basis
functions are used to fit the experimental 2D projections [22].

As mentioned in section Bl the outermost circle of the 2D projection contains no ¢-

dependence, thus at » = R it can be expressed as

g(r;R,a) = h(r,0) (B4)
By substituting 7 = 1,4x, A(Tmax 0)can be fitted to the angular distribution [46]:
10) = N() ) () Bulcos(6)] (85)
n

where P,[cos(8)] is the nt" order Legendre polynomial, N(r) is an intensity factor and f3,,(r) the
anisotropy parameters. The fitting is performed by standard linear least-squares method. The integer
n is even [59] and depends on the physics, where in our case 0f-a two-photon process an order of n=2
is sufficient [22].
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The fit provides the N(r) and B, (r) from which the distribution gg;¢(7inqx; R, @) may be

calculated. This distribution is then subtracted from the image G (R, a) forall R < 13,44

Gs(R,a) = G(R,a) — gric(T; R, a) (B6)
G¢(R,a) is a modified detector image containing no ¢-dependence from the 7;,,, radius projection
of the 3D distribution. This process is repeated for r = r,,,, — dr downtor = 0. Attheend, G;(R, a)
represents the 2D slice F(r, 8, ¢ = 0) of the 3D PAD, which can also be provided by retaining h(r, )
in Equation B4 at each increment.

The distribution gg;¢(1; R, a) is generated using basis functions. These basis functions are
radial distribution functions b,.(R) obtained by angular integration of isotropic images at all possible
radii r. Importantly, the basis set is computed only once and then utilized throughout the
reconstruction process. The overall size of the basis set is determined by the number of pixels on the
CCD.

An idealized isotropic projection image g;4.q:(7; R, @) is constructed from the basis function
b,-(R) using:

Gigea1(r; R, a) = p(r,R) by (R) (B7)
where the factor p(r, R) indicates the number of pixels with their associated intensities. The image

9rie(r; R, @) is then generated through:

9rie (T3 R, @) = Giaear (1 R, )N (1) T B (r) P[> cos()] (B8)
The factors N(r) and B, (r) were obtained from the fitting of the outer ring h(r, 8) at each r

to Equation B5. The factor R/r accounts for the transformation between the coordinate system

(r,0,9) and the (R, a) ,as shown in Figure B1.
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