
 

 

 

 

 

 

Postgraduate Studies Programme in Physics  

Department of Physics 

School of Sciences  

University of Ioannina 

 

 

 

Master’s Thesis (M.T): 

 

Tomographic reconstruction of three-dimensional 

photoelectron momentum distributions from their two-

dimensional projections on a position sensitive detector 

 

 

 

Konstantinos Filippou 

817 

 

 

 

Supervisor: Samuel Cohen 

 

 

Ioannina 

2024 



i 

 

  



ii 

 

Acknowledgments 

 

I would like to thank my advisor, Samuel Cohen, for his years of continued support, guidance 

and patience. His mentorship has brought this work to fruition and introduced me to the significance 

and process of scientific research. Looking back, I cannot imagine a more suitable person to have 

worked with. 

I would like to further thank the other members of the committee, Emmanuel Benis and 

Sotirios Danakas, for their valuable time and input into this work. Without their participation this 

work could never reach the final polished form. I would, particularly, like to thank Sotirios Danakas 

for his collaboration and assistance in developing the tomography algorithm used in this work. 

I am forever grateful to my friends and family whose unwavering support and encouragement 

have brought me to where I am today.  

 



iii 

 

Contents page 
Abstract .......................................................................................................................................... v 

Περίληψη ....................................................................................................................................... vi 

1.Introduction ................................................................................................................................. 1 

2. Theoretical Background .............................................................................................................. 4 

2.1. Radon Transform .................................................................................................................. 4 

2.2. Fourier slice theorem .......................................................................................................... 10 

2.3. Filtered Backprojection ....................................................................................................... 14 

2.3.1 Basic idea ...................................................................................................................... 15 

2.3.2 Mathematical Formulation............................................................................................. 17 

3. Results and Discussion .............................................................................................................. 23 

3.1. Description of “Experimental Setup” .................................................................................. 23 

3.1.1. Basics ........................................................................................................................... 23 

3.1.2. CCD DETECTOR ........................................................................................................ 25 

3.2 Projection of the PAD on the detector .................................................................................. 28 

3.2.1 Noise and masks ............................................................................................................ 29 

3.3. 3D PAD reconstruction: Linear light polarization ............................................................... 31 

3.3.1 Abel Inversion (Polar Onion Peeling) of the projected image and its assessment ........... 32 

3.3.2 Tomographic method of the projected image and its assessment .................................... 33 

3.4. Tomographic PAD Reconstruction: Elliptical light polarization – Symmetric Case ............. 46 

3.5 Tomographic PAD Reconstruction: Elliptical light polarization – Asymmetric Case ............ 50 

4. Conclusions............................................................................................................................... 55 

Appendix A: Derivation of 3D photoelectron momentum distributions from two-photon 

ionization out of an s-state. ........................................................................................................ 57 

A1. Time Dependent Schrödinger Equation and “Schrödinger equation with a source”: Spinless 

case ........................................................................................................................................ 57 

A2. Electron Probability Current Density ............................................................................... 59 

A3 Two-photon ionization PADs with arbitrary light polarization .......................................... 60 

Appendix B: Polar Onion Peeling .............................................................................................. 64 

B1. Basic idea ........................................................................................................................ 64 

B2. Computation .................................................................................................................... 66 

Bibliography ................................................................................................................................. 68 

 

 

  



iv 

 

 

 



v 

 

Abstract 

 

Tomographic reconstruction of three-dimensional (3D) objects via their rotation with respect 

to a given axis and their subsequent projection on a given two-dimensional (2D) surface is nowadays 

employed in a quite broad spectrum of applications, including medicine and science. It is presently 

more and more frequently implicated in the study of atomic and molecular photoionization and in 

conjunction with velocity map imaging (VMI) spectrometers. The latter provides projections of the 

3D momentum distribution of the produced photoelectrons (or other charged particles) on a 2D 

position sensitive detector whose surface is perpendicular to the spectrometer axis. The recovery of 

the full 3D distribution is achieved via the rotation of this object with respect to an axis parallel to the 

detector surface, and the recording of the resulting projections. The only other alternative technique 

involves the, so-called, inverse Abel transform of a single projection, when the polarization of the 

ionizing radiation is linear and perpendicular to the spectrometer axis. Thus, inverse Abel transform 

cannot be employed with any other geometry and/or light polarization, a fact which is, of course, 

quite restrictive. 

Therefore, Tomography becomes a necessity when complex light-atom or -molecule 

interactions come into play and such experiments are frequently performed in our Atomic & 

Molecular Physics laboratory. In the present work a computational environment is developed, where 

the user provides the object projections (each at a different angle of rotation) and the developed code 

delivers the tomographic reconstruction of this object. The code benefits as much as possible from 

build-in tomographic capabilities incorporated in the programming language. At this stage of testing, 

the theoretical photoelectron angular distribution corresponding to two-photon ionization of hydrogen 

atom is employed as the object and an auxiliary program computes its projections to the detector. For 

linear light polarization, tomographic reconstruction is compared with inverse Abel transform and it 

is found to be much more accurate. It is also verified that tomographic reconstruction works equally 

well when circular or elliptical light polarization is employed. Finally, for any polarization, 

Tomography is proved to be highly robust, even when noise up to 5% of the maximum signal level 

is added to the projections before reconstruction. 
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Περίληψη 

 

Η τομογραφική ανακατασκευή τρισδιάστατων (3D) αντικειμένων μέσω της περιστροφής 

τους γύρω από έναν δοσμένο άξονα και η επακόλουθη προβολή τους πάνω σε μία δοσμένη 

δισδιάστατη (2D) επιφάνεια, αξιοποιείται στις μέρες σε ένα αρκετά ευρύ φάσμα εφαρμογών, 

συμπεριλαμβανομένου της Ιατρικής και της Φυσικής. Επί του παρόντος, χρησιμοποιείται όλο και πιο 

συχνά στην μελέτη του φωτοϊονισμού ατόμων και μορίων, σε συνδυασμό με τα φασματόμετρα 

απεικόνισης ταχυτήτων (VMI). Τα φασματόμετρα αυτά παρέχουν προβολές των τρισδιάστατων 

κατανομών ορμής των παραγόμενων φωτοηλεκτρονίων (ή άλλων φορτισμένων σωματιδίων) πάνω 

σε ένα δισδιάστατο (2D) ανιχνευτή θέσεων, του οποίου η επιφάνεια είναι κάθετη στον άξονα του 

φασματόμετρου. Η ανάκτηση της πλήρους τρισδιάστατης κατανομής επιτυγχάνεται μέσω της 

περιστροφής του αντικειμένου γύρω από έναν άξονα παράλληλο στην επιφάνεια του ανιχνευτή και 

της καταγραφής των προβολών που προκύπτουν. Η μόνη εναλλακτική τεχνική περιλαμβάνει τον 

λεγόμενο αντίστροφο μετασχηματισμό Abel μιας μεμονωμένης προβολής, με τη προϋπόθεση ότι η 

πόλωση της ιονίζουσας ακτινοβολίας είναι γραμμική και κάθετη στον άξονα του φασματόμετρου. 

Επομένως, ο αντίστροφος μετασχηματισμός Abel δεν μπορεί να χρησιμοποιηθεί σε οποιαδήποτε 

άλλη γεωμετρία ή/και πόλωση φωτός, γεγονός που τον καθιστά, εύλογα, αρκετά περιοριστικό. 

Συνεπώς, η Τομογραφία καθίσταται αναγκαία όταν εμπλέκονται περίπλοκες 

αλληλεπιδράσεις φωτός-ατόμου ή φωτός-μορίου. Τέτοια πειράματα ,συχνά, πραγματοποιούνται στο 

εργαστήριο μας της Ατομικής και Μοριακής Φυσικής. Στην παρούσα εργασία αναπτύσσεται ένα 

υπολογιστικό περιβάλλον, όπου ο χρήστης παρέχει τις προβολές του αντικειμένου (που η καθεμία 

αντιστοιχεί σε διαφορετική γωνία περιστροφής) και ο κώδικας που συντάχθηκε δημιουργεί την 

τομογραφική ανακατασκευή του αντικειμένου. Ο κώδικας αξιοποιεί στο έπακρο τις ενσωματωμένες 

τομογραφικές δυνατότητες που περιλαμβάνονται στη γλώσσα προγραμματισμού. Σε αυτό το στάδιο 

της ανάπτυξης, η θεωρητική γωνιακή κατανομή φωτοηλεκτρονίων, που αντιστοιχεί σε διφωτονικό 

ιονισμό του ατόμου Υδρογόνου, χρησιμοποιείται ως το αντικείμενο και ένα βοηθητικό πρόγραμμα 

υπολογίζει τις προβολές του στον ανιχνευτή. Για τη γραμμική πόλωση φωτός, η τομογραφική 

ανακατασκευή συγκρίνεται με τον αντίστροφο μετασχηματισμό Abel και προκύπτει ότι είναι 

ακριβέστερη αυτού. Επιβεβαιώνεται, επίσης, ότι η τομογραφική ανακατασκευή λειτουργεί εξίσου 

καλά όταν χρησιμοποιείται κυκλική ή ελλειπτική πόλωση φωτός. Τέλος, για όλα τα είδη πολώσεων, 

η Τομογραφία αποδεικνύεται αρκετά αποτελεσματική, ακόμα και όταν θόρυβος μέχρι και 5% της 

μέγιστης τιμής σήματος προστίθεται στις προβολές πριν από την ανακατασκευή. 
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1.Introduction 

 

Tomography is a method that allows for the reconstruction of an object through a series of 

projections resulting in the study of its structure. The theoretical foundation of tomography dates back 

to Radon, a mathematician who derived a method in 1917 to project a 2D object along parallel rays 

[1]. This method now is referred to as the Radon Transform [2] and will be discussed thoroughly in 

the next Section. 

Tomography is a technique that has found wide applicability in various fields of medical and 

natural sciences. In medical science it is preferred for its non-invasive approach aiding in diagnosis 

and treatment. For example, it is applied to medical X-ray imaging [3], namely Computed 

Tomography scan (CT scan) and Magnetic Resonance Imaging (MRI) and was recognized with the 

Nobel Prize in Medicine in 1979. 

The versatility of tomography is demonstrated by its use not only to the macrocosm of human 

bodies but also to the microcosm of matter consisting of atoms and molecules. 

A direct approach to investigate matter is to access its electronic structure by interacting with 

light, with a process called photoionization [4]. In photoionization, matter absorbs a photon, thereby 

creating a free electron, photoelectron, and a charged ion. The determination of both momentum and 

angular distribution of electrons emitted in photoionization processes [5,6] is called photoelectron 

imaging and constitutes an important part of experimental Atomic and Molecular and Optical Physics 

(AMO). The basic idea behind the imaging method relies on projecting the produced charged particles 

onto a planar detector using an external electric field [7]. When the laser light is linearly polarized it 

produces a cylindrically symmetric distribution around the polarization axis. If, on the other hand, 

the light has circular polarization a distribution with cylindrical symmetry appears around the laser 

propagation axis. In both scenarios, a position-sensitive detector placed parallel to the previous axes 

can capture an image of the charged particle impacts. A widely employed detection scheme of the 

three-dimensional electron momentum distribution is the Velocity Map Imaging (VMI), which uses 

electrostatic fields to guide the electrons to the detector [8 9]. A 4π collection angle is obtained by an 

electrostatic lens with fields of several kV in strength, mapping the initial photoelectron momentum 

distribution (PMD) onto the detector. However, in a VMI the information perpendicular to the 

detector is lost [9].  

Previous approaches in VMI experiments to derive the 3D (cylindrically symmetric) 

momentum distribution used inverse Abel transforms [10,11,12,13]. This allows to transform the 2D 

projection image on the detector into the 3D electron momentum distribution. This technique, 

however, suffers from major limitations. By construction, the Inverse Abel transform is limited to 
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distributions with cylindrical symmetry produced by linearly polarized light with the polarization axis 

parallel to the detector plane. In a more general case where this requirement is not met or more 

complex polarization is used, such as elliptically polarized light, Abel inversion does not apply. This 

requires a more elaborate analysis, the Tomographic method [14,15,16,17].  

Tomography requires the rotation of the 3D distribution by the propagation axis with a 2D 

projection taken on each angle. These 2D projections can then be converted into images called 

sinograms. A sinogram contains all the information sufficient to reconstruct the initial image. Parallel 

ray tomography [2] which is used in our work is applied separately on each cross section of the 3D 

distribution. This means that 2D projections are taken along parallel lines dividing the 3D distribution 

into separate slices each representing a cross section of the 3D structure. From these projections, 

sinograms for each slice are obtained, and from them, the corresponding cross sections of the 

distribution can be reconstructed by applying the Backprojection method. The stacking of the 

reconstructed cross sections produces the tomographically reconstructed 3D distribution.  

The columns of a sinogram correspond to different 2D projection angles with values 

representing the projected 2D slice after rotation. The values in each column correspond to a set of 

parallel lines crossing through the 2D slice at an angle matching the column’s rotation angle. 

Extending the value distribution of a column along these lines backwards onto a blank image at the 

respective angle fills the image with the column’s values. Repeating this process for all columns in 

the sinogram creates an image of cross sections composed of parallel lines at different angles. The 

result is the recreation of the initial 2D slice of the 3D object [18]. However, this method often yields 

blurry images. The blurriness occurs because Backprojection assumes that every point in a projection 

contributes equally to all points along the backprojection path. Due to the overlapping of projection 

lines especially at the center leads to an accumulation of intensity and as a result the fine details and 

edges of the object are blurred. To overcome these issues an improved method is utilized the Filtered 

Backprojection method [2]. In this method, each column is backprojected after being multiplied with 

a weight function which essentially amplifies the high frequency components of the image, which 

contain fine details and sharp edges, and reduce the contribution of lower frequency components, 

broad, smooth features of the image. The weight function is called filter, and some examples are the 

Ram-Lak (ramp) filter, Hann and Hamming filter which will be shown in the next Section. 

First, Wollenhaupt et al [16] employed tomography in conjunction with a VMI spectrometer 

to recreate, using Fourier transforms, the three-dimensional photoelectron angular distribution (PAD) 

[16,56] produced through resonantly enhanced multiphoton photoionization of potassium. Then 

Smeenk et al [9] used tomography with Filtered Backprojection to obtain the distribution of 

photoelectrons produced through tunnel ionization of argon. Their work allowed the study of strong 

field phenomena with non-linearly polarized light [5,19, 20, 21]. 
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In this work, the objective was to develop an algorithm in the Mathematica environment that 

employed the tomographic method and compare it with the existing program that utilizes the Abel 

inversion method: Polar Onion Peeling (POP) [22,58]. Specifically, the 3D PAD that was tested was 

produced by the theoretical calculation of a two-photon ionization of a hydrogen atom. Two scenarios 

were considered, the generation of a symmetric and a non-symmetric distribution. In the first scenario, 

a general symmetric PAD is produced from photoelectrons at only one energy group of 𝜔 ≈ 9𝑒𝑉 

where an anti-resonance in the s-wave leaves only the d-wave to contribute. PADs were generated 

for both linear and elliptical polarization, with the linear case specifically used to compare the 

tomography program to the POP program. In the second scenario, only elliptical polarization was 

used on a PAD where both the s-wave and the d-wave contributed, with the addition of an extra state 

corresponding to electric quadrupole transition. This distribution does not represent a realistic 

physical process and was included to test the tomography program on a non-symmetric distribution. 

In both scenarios the program was tested with and without background noise added to the data. 

The thesis is organized into three chapters. Chapter 1 provides the theoretical framework of 

Tomography, the Radon transform, and the reconstruction process through the Filtered Back 

projection method. Chapter 2 presents the results and discusses the assessment of tomographic and 

POP (where applicable) methods in reconstructing 3D PADs generated by linear and elliptical 

polarization for symmetric distributions, as well as elliptical polarization for non-symmetric 

distributions. For all the distributions two cases were considered: with and without the presence of 

background noise. Lastly, Chapter 3 presents the conclusions of this work and suggests possible 

directions for future improvements.
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2. Theoretical Background  

 

This section provides a thorough exposition of the principles of tomographic image 

reconstruction. Tomography is one of the available methods in creating a 2D representation of an 

object’s cross section and it is widely used in different disciplines of Science and Technology such 

as Physics Medicine Engineering and Archaeology. The purpose of this section is to first demonstrate 

how a 2D object can be reconstructed using projections at different angles. Specifically, we will 

explore the mathematical basis of tomography focusing on function transforms and an essential 

theorem, the Fourier Slice theorem. A method of assessing the reconstructed image will be provided 

along with a way to optimize the result. The theory will then be extended to 3D objects and their 

reconstruction, forming the foundation for the analysis in the following sections where the 

tomographic reconstruction of 3D objects is required. 

 

2.1. Radon Transform 

 

The normal form of a 2D straight line in Cartesian coordinates is given by the equation [18]: 

 𝜌 = 𝑥𝑐𝑜𝑠(θ) + 𝑦𝑠𝑖𝑛(θ) (2.1) 

 

Figure 2.1. Normal form of a 2D straight line, taken from [18]. 

 

In Figure 2.1, θ is the angle subtended between the horizontal axis and the vertical line perpendicular 

to the blue line and 𝜌 is the length of the vertical line. The above expression is central to the line 

integrals involved in what is known as the Radon transform [2,23,24]. In the coordinate system shown 
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in Figure 2.2, we have a 2D object defined by the function 𝑓(𝑥, 𝑦) and a set of parallel lines 

intersecting it. 

 

 

Figure 2.2. Line integrals along parallel lines, taken from [18] and modified.  

 

These equidistant lines have the same inclination angle θk and different normal distances from the 

origin 𝜌𝑗. Then the Equation 2.1 of a line set to these parameters will be 𝐿(𝜌𝑗 , θk) = 𝑥cosθk +

𝑦sinθk − 𝜌𝑗. Along each line-path described by that equation we calculate the integral Pθk, [18] 

 
𝑃θ𝑘(𝜌𝑗) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑠

(θ𝑘,𝜌𝑗)

 (2.2) 

, where s is a variable along the line over which the integral is calculated. By using a delta function 

the previous line integral expression becomes, 

 
𝑃θ𝑘(𝜌𝑗) = ∫ ∫ 𝑓(𝑥, 𝑦)δ(

+∞

−∞

+∞

−∞

𝑥cosθ𝑘 + 𝑦sinθ𝑘 − 𝜌𝑗)𝑑𝑥𝑑𝑦 

 

(2.3) 

As mentioned before, from the definition of delta function [2525] the line integral (Equation 2.3) is 

calculated only along the line 𝐿(𝜌𝑗 , θ𝑘),since the right side of the Equation 2.3 is set to zero unless 

the argument of the delta function is zero. If we consider all values of 𝜌𝑗 for an arbitrary angle θ, the 

preceding equation generalizes to 

 
𝑃θ(𝜌) = ∫ ∫ 𝑓(𝑥, 𝑦)𝛿(

+∞

−∞

+∞

−∞

𝑥𝑐𝑜𝑠θ + 𝑦𝑠𝑖𝑛θ − 𝜌)𝑑𝑥𝑑𝑦 (2.4) 

The line integral 𝑃θ(𝜌) is known as Radon transform, [2,18 ,26], of the function 𝑓(𝑥, 𝑦). An example 

of the Radon transform of a circle for an angle θ is shown in Figure 2.3. 
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A projection is formed by combining a set of line integrals, in our case parallel to each other, 

as is given by 𝑃θ𝑘(𝜌𝑗), Equation 2.3, for a constant θ𝑘 . This is known as parallel projection [2,18,27]. 

In Figure 2.2, parallel projection is demonstrated by the parallel lines going through the object 

resulting in a new function, the blue line, which is the projection of the object. Each individual  

 

 

Figure 2.3. A circle (top) and its Radon transform (bottom). The circle is circumscribed by a square with a side 𝑀 parallel to the 

projection line 𝜌 and a side 𝑁 vertical to the projection line, which in this case are equal. The image is and taken from [18] and 
modified. 

 

line integral, 𝑃θ𝑘(𝜌𝑗), corresponds to a single point in the projection distribution, 𝑃
θ𝑘
(𝜌), for a fixed 

angle of rotation θ𝑘 . Any real 2D object does not possess an analytic expression for the Radon 

transform so we must consider the discrete case of the Radon transform, where the projection of the 

two-dimensional object 𝑓(𝑥, 𝑦) is a discretized function. Then equation (2.4) becomes, 

 

𝑃θ(𝜌) = ∑ ∑𝑓(𝑥, 𝑦)𝛿(𝑥𝑐𝑜𝑠θ + 𝑦𝑠𝑖𝑛θ − 𝜌)

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 (2.5) 

where 𝑥, 𝑦 are now discrete variables and 𝑀, and 𝑁, are the dimensions of a rectangular area over 

which the transform is applied. In the example of Figure 2.3, the 2D object is circumscribed by a 

rectangle, where the length of the side parallel to 𝜌 is the extension 𝑀 and the perpendicular one is 

the extension of 𝑁. In this case due to the symmetry of the circle the M and N sides are equal, making 

the rectangle a square. We see Equation 2.5 sums the values of 𝑓(𝑥, 𝑦) on the discrete (𝑥, 𝑦) 

coordinates along the line defined by the parameters (𝜌, θ), where setting θ=constant and 
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incrementing through all values of 𝜌 required to span the 𝑀 ×𝑁 area yields one projection. Changing 

θ and repeating this procedure yields another projection, Figure 2.4. 

Obviously, the same procedure applies to the continuous case as well where instead the object 

function 𝑓(𝑥, 𝑦) and projections 𝑃θ(𝜌) are continuous.  

 

 

Figure 2.4. Changing 𝜃 and running through all values of 𝜌 yields another projection, taken from [2]. 

 

Fixing the angle θ and for each value of 𝜌 taking the line integral yields a projection, 

incrementing the angle and repeating the procedure yields another projection, Figure 2.4. Repeating 

this for each angle, i.e. taking the Radon transform of the object for each angle, produces an image, 

called a sinogram. The sinogram has coordinates the parameters (θ, 𝜌) and contains all the data 

necessary to reconstruct the object. Figure 2.5 shows the image of a rectangle (2D object) and its 

accompanying sinogram. In the image depicting the sinogram, each row corresponds to the distance 

𝜌, while each column corresponds to the angle θ (or vice versa). 

It is important to note that the value of the angle varies within a π range, due to line integral 

symmetry (see Equation 2.4). So, if we start at 0 angle the range would be [0, π].Suppose, we take 

the projection of the object at the angles 0 and π. calculating these two projections yield identical 

data, as they are the same except for the direction of integration. Thus, every projection at an angle 

θ + π yields the same result as the projection at an angle θ, thus just a π interval suffices. 
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Turning our attention back to Figure 2.5, there are some observations we can make to the 

sinogram and deduce the characteristics of the object. For example, the bottom row is the projection 

of the rectangle in the horizontal direction, θ = 0° which means the lines of the line integrals are 

parallel to the longest side of the rectangle. The middle row of the sinogram corresponds to a 90° 

angle thus, the integral lines are vertical to the longest side. Comparing these two rows of the 

sinogram we see the non-zero portion of the bottom row is smaller than the non-zero portion of the 

middle row. This tells us that the object is narrower in the vertical direction. The fact that the sinogram 

is symmetric about the horizontal and vertical lines that goes through the middle of the image shows 

the initial object is symmetric and parallel to the x and y axes. These observations are only possible 

due to the simplicity of the rectangle. For a more complex object such observations are not possible 

as we will see in the following sections. 

 

 

Figure 2.5. An image of a rectangle (left). Sinogram of the rectangle (right), taken from [18]. 

 

In the remainder of this section, we will present the key ideas behind reconstructing the 

function of the object 𝑓(𝑥, 𝑦) from the sinogram, using the method of backprojection, [18]. Suppose 

we are at a fixed angle θk and we calculate the Radon transform (Equation 2.4) on the object 𝑓(𝑥, 𝑦). 

The result is the function of the projection 𝑃θk(𝜌) from which we consider only one point 𝑃θk(𝜌j), 

Equation 2.3. Backprojecting this single point means copying the line 𝐿(𝜌j , θk) = 𝑥cosθk +

𝑦sinθk − 𝜌j onto the image and assigning the value of 𝑃θk(𝜌j) on each point on the line, Figure 2.2. 

This way we form part of the initial image. Repeating this procedure for each 𝜌 value while keeping 

fixed the value of the angle, θk, produces a basic reconstruction of the initial image. 

In Figure 2.6, we see this procedure applied to a simple object. We have an initial object, a 

disk and take its projection at two angles with 90° increment. Then, for each corresponding angle we 

backproject the signal, i.e. the values of the projected image, at each angle and thus the sum of both 

backprojections is produced which is a basic reconstruction of the initial object. Using only two 
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projections does not provide enough information to produce a valid reconstruction of the initial object. 

Increasing the number of projections improves the resulting image. We can also observe the imprint 

of backprojection on the background of the object, which in this case appears as two perpendicular 

lines, each assigned values from the corresponding projections. In a later section, we will elaborate 

on the artifacts produced by backprojections on both the background and the object. 

The previous explanation of backprojection can be expressed mathematically [2,23]. For a 

fixed value of θk the initial object function can be expressed as the backprojection of the projected 

object, for all values of 𝜌, Equation 2.3. 

 𝑓θ𝑘(𝑥, 𝑦) = 𝑃θ𝑘(𝜌) = 𝑃θ𝑘(𝑥cosθ𝑘 + 𝑦sinθ𝑘) (2.6) 

where we replaced the parameter ρ with the expression of a line, Equation 2.1, at the specified angle 

θk.This equation holds for all angles, so we may generalize Equation 2.6 for an arbitrary value of 

angle θk and write the equation of an image by one backprojection at an angle θ, 

 𝑓θ(𝑥, 𝑦) = 𝑃θ(𝑥cosθ + 𝑦sinθ) (2.7) 

 

 

Figure 2.6. Backprojection method: A horizontal projection of an object is obtained and backprojected, then the process is repeated 

for a vertical angle. The contribution of both backprojections provides a basic approximation of the initial object. Image taken from 

[18]. 

 

The expression of the image formed by all the backprojections each at a different angle in the range  
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[0, π], is obtained by integrating with respect to θ Equation 2.7, 

 
𝑓(𝑥, 𝑦) = ∫ 𝑓θ(𝑥, 𝑦)𝑑θ

𝜋

0

 
(2.8) 

As previously mentioned, continuous projections and backprojections of the initial object are not 

realistically feasible, so we must adopt the discrete case where integrals are replaced by sums. 

 
𝑓(𝑥, 𝑦) = ∑𝑓θ(𝑥, 𝑦) 

𝜋

θ=0

 
(2.9) 

where 𝑥, 𝑦 and θ are now discrete quantities. It is understood that the method of backprojection 

approximates the initial image from which the projections were generated. This fact is illustrated in 

the following example. In Figure 2.7, Equation 2.9 was used to create the backprojected 

 

 

Figure 2.7. Back-projection of a rectangle shown in Figure 2.5, left image, using Equation 2.9, taken from [18]. 

 

image of the initial object, a rectangle, shown on the left side of Figure 2.5. Clearly the reconstructed 

image is degraded in sharpness (a halo blurring effect) which makes this recovery method not very 

useful. In a later section an improved method will be introduced. 

 

2.2. Fourier slice theorem 

 

The process described above involves taking projections of an initial 2D object using the 

Radon transform, either in its continuous form (Equation 2.4), or discrete form (Equation 2.5), for 

various angles θ in the range [0, π]. The projection data are then compiled into a sinogram, from 

which the initial 2D object can be reconstructed using the backprojection method (Equation 2.9). In 
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this section, we will present a mathematical theorem that forms the foundation of the tomographic 

method, specifically the filtered backprojection method, which will be discussed later. 

We will derive a mathematical equation that establishes the relationship between the 1-D 

Fourier transform of a projection and the 2-D Fourier transform of the slice of the initial object from 

which the projection was taken [2,18,24]. 

Suppose we have an object described by the function 𝑓(𝑥, 𝑦). Its 2-D Fourier transform 

[2,28] is given by, 

 
𝐹(𝑢, 𝜐) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−𝑖2π(𝑢𝑥+𝜐𝑦)𝑑𝑥𝑑𝑦

+∞

−∞

+∞

−∞

 
(2.10) 

where 𝑢 and 𝜐 are spatial frequencies in the frequency domain of the Fourier transform. Next, we 

take a projection,𝑃θ(𝜌), of the object at a fixed angle value,θ,and define its 1-D Fourier transform, 

 
𝑆θ(𝑤) = ∫ 𝑃θ(𝜌)𝑒

−𝑖2π𝑤𝜌𝑑𝜌
+∞

−∞

 
(2.11) 

Now, consider the Fourier transform of the object function 𝑓(𝑥, 𝑦), Equation 2.10, along the line 𝜐 =

0 in the frequency domain. The 2-D Fourier transform simplifies to 

 
𝐹(𝑢, 0) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−𝑖2π𝑢𝑥𝑑𝑥𝑑𝑦

+∞

−∞

+∞

−∞

 
(2.22) 

In this case, the phase factor is independent of the y variable, so the integral can be separated into 

two parts, 

 
𝐹(𝑢, 0) = ∫ 𝑒−𝑖2π𝑢𝑥𝑑𝑥 [∫ 𝑓(𝑥, 𝑦)

+∞

−∞

𝑑𝑦]
+∞

−∞

 
(2.13) 

We can recognize the term in brackets as the projection, Equation 2.4, of the object function 𝑓(𝑥, 𝑦) 

at an angle θ = 0,along lines of constant 𝑥 = 𝜌,as shown in Figure 2.8, 

 
𝑃θ=0(𝑥) = ∫ 𝑓(𝑥, 𝑦)𝑑𝑦

+∞

−∞

 
(3.14) 

Substituting Equation 2.13 into Equation 2.12 yields, 

 
𝐹(𝑢, 0) = ∫ 𝑃θ=0(𝑥)𝑒

−𝑖2π𝑢𝑥𝑑𝑥
+∞

−∞

 
(2.15) 

The right-hand side of Equation 2.15 represents the 1-D Fourier transform of the projection 𝑃θ=0 at 

an angle θ = 0. This illustrates the Fourier Slice Theorem [2,18,30] for the simplest case, where a 

projection is taken at an angle θ = 0. The theorem establishes the relationship between the 2-D 

Fourier transform of the object function 𝑓(𝑥, 𝑦) along the line 𝜐 = 0 ,denoted as 𝐹(𝑢, 0), and the 1-

D Fourier transform of the projection at angle θ = 0,denoted as 𝑆θ=0(𝑢), 

 𝐹(𝑢, 0) = 𝑆θ=0(𝑢) (2.16) 
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A visual representation of this equation is shown in Figure 2.8. Figure 2.8(a) displays the Shepp and 

Logan “head-phantom”, [29], which is a superposition of 10 ellipses. In this figure we observe a red 

line at an angle of θ = 0 with respect to the horizontal axis. This line is perpendicular to the straight 

lines along which the projection of the “head phantom” is taken. At the top of the image the projection 

is shown as a plot with the variable 𝜌 on the horizontal axis. Figure 2.8(b) presents the 2-D Fourier 

transform of the “head phantom in the frequency domain as a set of complex numbers. The horizontal 

axis represents the 𝑢 parameter and the vertical axis represents the 𝜐 parameter. The data along the 

red line correspond to the 1-D Fourier transform of the projection at an angle θ = 0 as dictated by 

the Fourier Slice Theorem. 

 

(a) (b) 

Figure 2.8.(a)The projection of the Shepp and Logan "head-phantom" at an angle 𝜃 = 0.(b)The 2-D Fourier transform of the “head 

phantom” and the red line where the Theorem applies. 

 

As mentioned, Equation 2.15 represents the simplest form of the Fourier Slice Theorem. This 

theorem also extents to projections taken at an arbitrary angle θ. By rotating the coordinate system 

(𝜌, 𝑠), which is the coordinate system of the projected object, by an angle θ, the Fourier transform of 

the projection, as defined in Equation 2.11, is equivalent to the 2-D Fourier transform of the object 

along a line rotated by θ, illustrated in Figure 2.9. This means that the Fourier transform of a 
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projection at an angle θ can provide the values of the 2-D Fourier transform of the original object 

along a line at an angle θ matching the angle used to generate the projection. Thus, the Fourier Slice 

Theorem, [30,31] for an arbitrary angle θ can be stated as follows: 

The 1-D Fourier Transform of a projection 𝑆θ(𝑢) of an object with function 𝑓(𝑥, 𝑦) taken at an angle 

θ is a slice of the 2-D Fourier transform 𝐹(𝑢, 𝜐) of the object function along a line oriented at the 

same angle as the angle used in the projection. 

In the following paragraphs, we will provide a more rigorous mathematical definition for the 

Fourier Slice Theorem [2,18]. 

Let us begin by considering the (𝜌, 𝑠) coordinate system of the projection as a rotated 

version of the original (𝑥, 𝑦) system: 

 [
𝜌
𝑠
] = [

cosθ sinθ
−sinθ cosθ

] [
𝑥
𝑦] 

(2.17) 

In the (𝜌, 𝑠) coordinate system, a projection along lines of constant 𝜌 is given by, 

 
𝑃θ(𝜌) = ∫ 𝑓(𝜌, 𝑠)𝑑𝑠

+∞

−∞

 
(2.18) 

And from Equation 2.11, its Fourier transform is defined as, 

 
𝑆θ(𝑤) = ∫ 𝑃θ(𝜌)𝑒

−𝑖2π𝑤𝜌𝑑𝜌
+∞

−∞

 
(2.19) 

 

 

Figure 2.9.The Fourier Slice Theorem is independent of the of orientation between the object and the coordinate system (𝜌, 𝑠).The 

Fourier transform of a projection is equal to the Fourier transform of the object along a radial line of angle 𝜃, taken from [18]. 

 

Substituting the definition of the projection in the (𝜌, 𝑠) coordinate system, given by Equation 2.18, 

into Equation 2.19 yields, 
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𝑆θ(𝑤) = ∫ [ ∫ 𝑓(𝜌, 𝑠)𝑑𝑠

+∞

−∞

] 𝑒−𝑖2π𝑤𝜌𝑑𝜌

+∞

−∞

 

(2.20) 

This equation can be transformed into the (𝑥, 𝑦) coordinate system using Equation 2.17. The Jacobian 

of this matrix is 1 and so Equation 2.20 transforms to, 

 
𝑆θ(𝑤) = ∫ ∫ 𝑓(𝑥, 𝑦)𝑒−𝑖2π𝑤(𝑥cosθ+𝑦sinθ)𝑑𝑥𝑑𝑦

+∞

−∞

+∞

−∞

 
(2.21) 

The right-hand side represents the 2-D Fourier transform of the object function, 𝐹(𝑢, 𝜐), at a spatial 

frequency or wavenumber of (𝑢 = 𝑤cosθ, 𝜐 = 𝑤sinθ). 

Therefore, Equation 2.21 can be expressed as, 

 𝑆θ(𝑤) = 𝐹(𝑢, 𝜐) = 𝐹(𝑤cosθ,𝑤sinθ) (2.22) 

This equation is the general form of the Fourier Slice Theorem. It essentially indicates that by taking 

N projections of the initial object function at various angles θ1, θ2, … , θ𝑁 and taking the 1-D Fourier 

transform of each of these, we can determine the values of the 2-D Fourier transform 𝐹(𝑢, υ) along 

radial lines of corresponding angles θ1, θ2, … , θ𝑁. Therefore, the determination of the full 𝐹(𝑢, υ) 

function is possible by taking an infinite number of projections. By knowing 𝐹(𝑢, υ), the initial object 

function can be recovered by taking its 2-D inverse Fourier transform, 

 
𝑓(𝑥, 𝑦) = ∫ ∫ 𝐹(𝑢, υ)𝑒𝑖2π(𝑢𝑥+𝜐𝑦)𝑑𝑢𝑑𝜐

+∞

−∞

+∞

−∞

 
(2.24) 

However, this approach is not ideal because it is computationally demanding and introduces error to 

the data through interpolation [32], which leads to image degradation. 

 

2.3. Filtered Backprojection 

 

In the previous section, we derived the Fourier Slice Theorem which establishes a relationship 

between the Fourier transform of a projection and the 2-D Fourier transform of the object along a 

radial line. Therefore, obtaining the Fourier transforms of projections from enough angles allows for 

the compilation of these projections into a complete representation of the 2-D Fourier transform of 

the object. An estimate of the initial object can then be obtained using a straightforward 2-D inverse 

Fourier transform. However, this approach is not desirable for the reasons mentioned above, thus 

requiring the use of a different method, filtered backprojection. 

In Section 2.1 we provided a basic definition and explanation of the backprojection method, 

Equations 2.6-2.9. Now, we will further expand on the backprojection method, focusing specifically 

on the filtered backprojection method and establish its mathematical formulation. We will derive this 

method using the Fourier Slice theorem and the inverse Fourier transform in polar coordinates. 
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2.3.1 Basic idea 

 

Before explaining the basics of filtered backprojection it is essential to address a key 

characteristic of the projections, their independence from each other. This independence becomes 

evident in the frequency domain, where performing the Fourier transform to the projection reveals, 

according to the Fourier Slice theorem (Equation 2.22), that a projection corresponds to a line of angle 

θ with the horizontal axis that goes through the origin of the plane (𝑢, 𝜐) [31].  

Performing another projection in a different angle, its Fourier transform corresponds to a 

different line of the same angle. These two lines are nearly independent where the only intersection 

is at the origin of the axes (0,0),see Figure 2.10.[18] 

 

 

Figure 2.10. Frequency domain where the lines correspond to both the Fourier transform of a projection and a segment of the Fourier 

transform of the initial object, due to the Fourier Slice Theorem, taken from [18]. 

 

Thus, each projection contributes independently of each other to the reconstruction of the 

initial object, making the backprojection method conceptually simple. 

Filtered Backprojection can be broken down into two parts: the filtering part and the back 

projection part. The filtering part can be visualized as the weighting of each projection in the 

frequency domain. Consider Figure 2.10, where concentric circles of radius (or frequency) w, 

represent points corresponding to projections taken at various angles. The distribution of points on 

the circumference of a circle is denser for lower frequencies (or radii) and sparser for higher 

frequencies (or radii). As a result, the contribution of lower frequencies is more significant than that 

from the higher frequencies. To enhance higher frequencies and reduce the impact of lower 

frequencies, each line in the frequency domain is multiplied by an appropriate weighting function |𝑤| 

[18]. This function is often multiplied by a more complex function that serves as a high pass filter 

[18]. The product of the weight function and the high pass filter is often called filtering function. 

Generally, lower frequencies are associated with broad, large-scale features of the reconstructed 
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object such as its shape and structure, while high frequencies correspond to fine details and image 

clarity. However, high frequencies are more susceptible to noise making necessary the use of a 

sophisticated filter to reduce noise while preserving essential details in the reconstructed images. 

The second part of filtered backprojection process is backprojection. After applying the 

filtering function to each Fourier transformed projection,𝑆θ(𝑤), we obtain the filtered Fourier 

transformed projection. We then apply the inverse Fourier transform to retrieve the filtered projection 

and subsequently backproject it. The backprojection of the filtered projections is performed in the 

same manner as described in Figure 2.6 of Section 2.1. In essence, each point in the filtered projection 

corresponds to a line along which the projection was calculated. This line traverses the image at an 

angle corresponding to the point from the filtered projection, thereby filling the image with that 

specific value along the entire line.  

Repeating this procedure for each point in the filtered projection and its corresponding line 

assembles an estimate of the initial object. As the number of projections and thus filtered 

backprojections increases the reconstructed object more accurately resembles the original, as shown 

in Figure 2.11. 

Schematically, filtered back projection can be summarized as follows. 
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2.3.2 Mathematical Formulation 

 

In this section we will derive the filtered backprojection using the Fourier Slice Theorem. The 

inverse Fourier transform of the 2-D Fourier transform of the object function 𝑓(𝑥, 𝑦), as given by 

Equation 2.10, can be expressed as, 

 
𝑓(𝑥, 𝑦) = ∫ ∫ 𝐹(𝑢, 𝜐)𝑒𝑖2π(𝑢𝑥+𝜐𝑦)𝑑𝑢𝑑𝜐

+∞

−∞

+∞

−∞

 
(2.25) 

We transform the rectangular coordinate system of the frequency domain (𝑢, 𝜐) into a polar 

coordinate system (𝑤, θ) using the relations, 

 

 

Figure 2.11. Result of filtered backprojection of an ellipse for, (a) a single angle, (b),4 angles, (c),64 angles, (d)512 angles.] 

 

 𝑢 = 𝑤cosθ (2.26) 

 𝜐 = 𝑤sinθ (2.27) 

and changing the differential using the fact that the Jacobian is w, 

 𝑑𝑢𝑑𝜐 = 𝑤𝑑𝑤𝑑θ (2.28) 

Equation 2.24, can be written in polar coordinates using Equations 2.25-2.27 and making the 

appropriate changes in the integral limits, 

 
𝑓(𝑥, 𝑦) = ∫ ∫ 𝐹(𝑤, θ)𝑒𝑖2π𝑤(𝑥cosθ+𝑦sinθ)𝑤𝑑𝑤𝑑θ

∞

0

2π

0

 
(2.29) 

The integral can be split into two parts one for θ in the range 0 to π and the other for θ in the range 

π to 2π, 
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𝑓(𝑥, 𝑦) = ∫ ∫ 𝐹(𝑤, θ)𝑒𝑖2π𝑤(𝑥cosθ+𝑦sinθ)𝑤𝑑𝑤𝑑θ +
∞

0

π

0

 

 
∫ ∫ 𝐹(𝑤, θ + π)𝑒𝑖2π𝑤(𝑥cos(θ+π)+𝑦sin(θ+π))𝑤𝑑𝑤𝑑θ

∞

0

π

0

 
(2.210) 

Then using the property of 𝐹(𝑤, θ), 

 𝐹(𝑤, θ + π) = 𝐹(−𝑤, θ) (11) 

which is evident by considering the Fourier Slice Theorem for an arbitrary angle Equation 2.22. 

By applying Equation 2.30, Equation 2.29 can be written as, 

 
𝑓(𝑥, 𝑦) = ∫ [∫ 𝐹(𝑤, θ)|𝑤|𝑒𝑖2π𝑤𝜌𝑑𝑤

+∞

−∞

] 𝑑θ
π

0

 
(12) 

where we have simplified the expression by setting, 

 𝜌 = 𝑥cosθ + 𝑦sinθ (13) 

Using the Fourier Slice theorem, Equation 2.22, 𝐹(𝑤, θ) is substituted with the Fourier transform of 

a projection at an angle θ,𝑆θ(𝑤). Therefore Equation 2.31 becomes, 

 
𝑓(𝑥, 𝑦) = ∫ [∫ 𝑆 θ(𝑤)|𝑤|𝑒

𝑖2π𝑤𝜌𝑑𝑤
+∞

−∞

] 𝑑θ
π

0

 
(14) 

Defining the following expressions, 

 
𝑄θ(𝜌) = ∫ 𝑆 θ(𝑤)|𝑤|𝑒

𝑖2π𝑤𝜌𝑑𝑤
+∞

−∞

 
(15a) 

 
𝑄′θ(𝜌) = ∫ 𝑆 θ(𝑤)ℎ(𝑤)|𝑤|𝑒

𝑖2π𝑤𝜌𝑑𝑤
+∞

−∞

 
(16b) 

Equation 33, simplifies to 

 
𝑓(𝑥, 𝑦) = ∫ 𝑄′θ(𝑥cosθ + 𝑦sinθ)𝑑θ

π

0

 
(17) 

This equation encapsulates the essence of the Filtered Backprojection method. Given the projections 

at various angles , 𝑆 θ(𝑤), these are filtered using the weight |𝑤| and an additional function ℎ(𝑤). 

The result of this process is 𝑄′θ(𝜌),the filtered projections, Equation 2.34b. The backprojection of 

these filtered projections over the range of angles [0,π], as described in Equation 2.35, assembles an 

approximation of the original object function. 

Figure 2.13(a) shows the |𝑤| weighting function in the frequency domain. This filter is called 

ramp filter or Ram-Lak [33]. As mentioned, an additional function, called window function, is usually 

applied to the weight |𝑤|, limiting it to a defined frequency interval. This process known as band-

limiting ensures that the weighting function becomes zero outside this interval. A simple window 

function would be the box function, 



19 

 

 

ℎ(𝑤) =

{
 
 

 
 0, |𝑤| >

1

2
1

2
, |𝑤| =

1

2

1, |𝑤| <
1

2

 (2.318) 

On the left of Figure 2.12 we observe the graph of the box function in the frequency domain 

and on the right, we observe it in the spatial domain after applying the inverse Fourier transform. We 

can observe that the Fourier transform of the box function is highly oscillatory. Figure 13(b) displays 

the result of multiplying the box function with the weight |𝑤|, which effectively bandlimits it. 

However, when the inverse Fourier transform is applied to this product the oscillatory nature of the 

box function becomes evident, as shown in Figure 2.13(c). This can lead to unwanted artifacts in the 

reconstructed image artifacts which can manifest as halos around the edges of the image [18]. 

 

 

Figure 2.12.Graph of a Box function (left), Graph of the Fourier transform of a box function (right) taken from[18]. 

 

To reduce the occurrence of such artifacts, smoother window functions are applied [18], such as: 

 
ℎ(𝑤) = {𝑐 + (𝑐 − 1) 𝑐𝑜𝑠

2π𝑤

𝑀
, 0 ≤ 𝑤 ≤ (𝑀 − 1)

0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(19) 

Hamming window [34] is the function when 𝑐 = 0.54,as shown in Figure 2.13(d) and Hann window 

[35] when 𝑐 = 0.5 and M is the number of points. 

The difference between these two filters is that the end points are zero in the Hann window, 

Figure 2.13(e) shows the product between the Hamming window and the |𝑤| filter in the frequency 

domain. Applying the inverse Fourier transform to their product, thus transferring it to the spatial 

domain, we observe a reduction in ringing artifacts, see Figure 2.13(f). However, the wider central 

lobe may result in slightly more blurring [18]. In our work the reconstruction is performed by applying 

the ramp filter multiplied by a Hann window, which is particularly effective for noisy data [36] 
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Figure 2.13.(a) Weight function |w| in the frequency domain, (b) Product of weight function with box function in the frequency 

domain, (c) Product of weight function with box function in the spatial domain, (d) Hamming window function in the frequency 

domain, (e) Product of weight function with Hamming window function on the frequency domain, (f) Product of Hamming window 

function with weight function in the spatial domain, (g) Hann window function in the frequency domain, (h) Product of Hann 

window with weight function in the frequency domain, (i) Product of Hann window with weight function in the spatial domain 

 

Two main factors should be considered to minimize unwanted artifacts in the reconstructed 

image. The first factor is the number of rays used in each projection, which refers to the number of 

samples or points considered in each projection. The second factor is the number of projections, or 

the number of rotation angles used in the reconstruction of the image. Undersampling a projection or 

using too few rotation angles (or projections) can lead to unwanted artifacts and distortions in the 

reconstructed image, as demonstrated in Figure 2.14. 

Undersampling a projection meaning computing the line integrals at only a few points leads 

to aliasing artifacts [37] such as streaks. This is demonstrated in Figure 2.14, where the first row 

shows that for 64 samples per projection these artifacts persist, even when increasing the number of 

projections. On the other hand, an inadequate number of projections can lead to aliasing artifacts such 

as Moiré patterns [18], which are a type of interference patterns. These are shown in the first column 

for 64 projections and remain even with considerable sampling. Backprojection from a limited 
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number of projections can also introduce a star shaped pattern [38] which is relatively more visible 

in the last row of the first column. 

 

 

Figure 2.14.Reconstruction of an ellipse is shown for a varying number of projections (columns of image) and a varying number of 

samples or rays user per projection (rows of image). 

 

The reconstructed image with seemingly no artifacts is produced using 512 projections and 

512 samples per projection. A reasonable question that may arise is what the ideal number of 

projections and samples is, to accurately reconstruct an image without the appearance of artifacts. It 

is well established [18,39] that for an 𝑁 𝗑 𝑁 reconstructed image, the number of samples should be 

approximately N, and the number of projections should also be roughly N. In practice, however, 

satisfactory results can be achieved with fewer projections, while maintaining the level of sampling 

approximately to N. 

The theory introduced until now applies to 2D image. This process can also be used to 

reconstruct a 3D object by dividing it into 2D slices and reconstructing each slice. The stacking of 

these slices forms the initial 3D object. 

The tomographic reconstruction of a 3D photofragment distribution is shown in Figure 2.15. 

By rotating the distribution in increments of a specified angle 𝑎, a 2D projection is taken at each 

respective angle. These projections can then be converted into a set of sinograms, each corresponding 
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to a slice of the distribution that is parallel to the (𝑥, 𝑦) plane. By performing the filtered 

backprojection method on each sinogram, the initial slices are recovered. When these slices are 

combined, they reconstruct the full 3D distribution. 

 

 

Figure 2.15. Reconstruction of a 3D distribution by dividing it into slices and applying the tomographic process to each slice 

individually. Image taken from [40]. 

  

This process will be used in the next section to tomographically reconstruct the 3D PADs 

produced by our data. 

.
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3. Results and Discussion 

 

3.1. Description of “Experimental Setup” 

 

3.1.1. Basics 

 

The hypothetical configuration of the apparatus consists of a jet of matter interacting with an 

appropriately polarized beam of laser within a VMI spectrometer. The photoproducts of this light 

matter interaction are accelerated by the VMI and impinged onto a detector screen which is connected 

to a computer where the projected images are saved. The basic components of a Velocity Map 

Imaging experiment are shown schematically in Figure 3.1.1. A laser beam of specified polarization, 

in this case linear, interacts with matter which produces charged particles that are projected with the 

use of an inhomogeneous electric field into the 2D plane of a detector. The electric field acts as a lens 

which integrates the PAD parallel to the electric field. 

 

  

Figure 3.15.1. Experimental setup for VMI, original picture taken from [9] but modified. 

 

We will use the VMI spectrometer [7] to reconstruct the projected images on the detector by 

applying tomography and the POP method where it is applicable (linear polarization). For both 

methods to apply the experimental arrangement should satisfy both of their requirements. Starting 

with the Abel inversion method it is well known [8] that the rudimentary requirement is that the laser 

polarization must be linear and parallel to the detector plane.  
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Figure 3.1.2 shows the coordinate system of the 3D distribution (x,y,z) and the 2D plane of 

the detector (X,Z). This configuration will be assumed for all subsequent experiments where the only 

variant is the polarization of light. 

   (1) Position the detector parallel to the (x,z) plane on a distance L from the origin.  

   (2) Set the light propagation vector �̂� to be along the Oz axis. 

   (3) The electric field of the VMI is along the negative y-axis. 

Under these conditions the Abel method can only be applied if the polarization is along the x axis. 

 

 

Figure 3.1.16.Coordinate system of the 3D distribution (x, y, z) and the detector plane (X, Z), original picture taken from [9], but 

modified. 

 

A linear polarization of the laser field along the x-axis leads to a PAD that is cylindrically 

symmetric around the x-axis. Consequently, the PAD obtained on the detector is also symmetric about 

the X-axis. Using Abel-inversion on the projected image the y=0 slice of the initial PAD is retrieved. 

The y component of the distribution is not observable due to the integration along that axis. Therefore, 

cylindrical symmetry is required to obtain the full 4𝜋 angle distribution. 

Given the three characteristics of the apparatus listed above, tomography is applicable with 

the addition of a half wave plate. The tomographic method involves rotating the 3D distribution 

around the propagation axis thereby reconstructing slices perpendicular to this axis, specifically the 

z-slices of the PAD. This is possible by employing a half wave plate as shown in Figure 3.1.1, which 

rotates the 3D distribution about the z-axis. Tomography has no limitations regarding the polarization 

of light and can be applied to any type: linear, elliptical, and circular polarization. Tomography is 

applicable to a wide range of physical processes, including both, low intensity laser fields [16] and 

high intensity laser fields [9]. It should be noted that an essential requirement applies to both 

reconstruction methods. For these methods to be feasible, the influence of the electric field of the 

VMI spectrometer must be completely neglected during the ionization process that produces the 
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PADs [41]. Consequently, the electric field should only serve as the means to project the PADs onto 

the detector.  

The key difference between the Abel and tomography inversion methods when both apply is 

that the Abel method requires only one projection,i.e. one detector image. Meanwhile, for 

tomography to obtain the full 3D distribution information, projections of the PAD are requried from 

various angles (see Theory), Figure 3.1.3,demonstrates this principle of tomography.  

 

 

Figure 3.1.17 Detector images from 1+2 REMPI of potassium atoms with linearly polarized laser pulses at the angles θ =

0°(a), 15°(b), 30°(c), 45°(d), 60°(e) and  70°(f) obtained by rotation of a λ/2 waveplate by θ/2, original picture taken from [16]. 

 

For each rotation of the of the linearly polarized laser field, the produced 3D distribution 

rotates by the same value and is projected onto the detector. This is equivalent to keeping the 

polarization axis fixed, along with the 3D distribution, and projecting it from various angles. In the 

case of Figure 3.1.3, if the integration takes place along the y-axis then the PAD rotates around the x 

axis to obtain its full information in every direction. 

 

3.1.2. CCD DETECTOR 

 

A Charge coupled device (CCD) is used at VMI spectrometer experiments as the detector of 

the projected 3D PAD. The CCD consists of a grid of dots or pixels, namely flat surfaces, that act as 

the detecting elements. In our simulation we have simplified the function of the CCD by assuming 

that detection occurs at the center of the rectangular surfaces (pixels), as seen in Figure 3.1.4. 

According to the coordinate system defined above, see Figure 3.1.2, the CCD will be on the (𝑥, 𝑧) 

plane at the coordinate 𝑦 = 𝑦𝑑𝑒𝑡 = 𝐿. The rows of the CCD are horizontal strips parallel to the x-axis 
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and stacking along the z-axis while the columns of the CCD are vertical strips parallel to the z-axis 

and stacking along the x-axis. We set the number of pixels 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 = 201 in each row and each 

column resulting in a total of 40401 pixels on the CCD. Choosing a different number of detector 

pixels does not inhibit the inversion method. The CCD grid should be a rectangle with dimensions at 

least equal to 2𝑟𝑚𝑎𝑥,where 𝑟𝑚𝑎𝑥 is the distance of the furthest point of the distribution from the origin 

on the (x, z) plane. That distance varies and depends each time on the initial distribution.  

 

 

Figure 3.1.18. Grid of pixels of the CCD detector. We assume the detection occurs at the pixel center. 

 

It is mentioned above that the projection of the PAD is performed on the pixel centers. Below, 

we will derive an expression to determine the pixel centers on the detector allowing us to establish 

the coordinate grid of these pixel centers. 

First, we have to identify the maximum point of the distribution 𝑟𝑚𝑎𝑥 which determines the 

length of the grid. The PAD is centered at the origin of the coordinate system. Suppose the cross 

section between the 𝑦 = 0 plane and the PAD which lies on a plane parallel to the (𝑥, 𝑧) plane of the 

detector. If 𝑟𝑚𝑎𝑥 is the greatest distance that the cross section of the distribution reaches from the 

origin, then the square that circumscribes the 2D cross section of the distribution will have a side 

length of 𝑑 = 2𝑟𝑚𝑎𝑥 and will span the interval [−𝑟𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥], as shown in Figure 3.1.5. This applies 

in symmetric distributions where the furthest point lies on the (𝑥, 𝑧) plane. In a non-symmetric case, 

the method remains the same, but the maximum point may lie on another plane.  
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The pixels in a row on the CCD are 201 which have to cover the interval [−𝑟𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥]. If we 

call the distance between two consecutive pixel centers Δx then the 201 centers span a distance of 

200 Δ𝑥, and we also have 0.5 Δ𝑥 distance from the first pixel center to the left border and another 0.5  

 

Figure 3.1.5 A z=0 cross section of the linear 3D PAD, with its maximum value 𝑟𝑚𝑎𝑥 tracing a circle which is 

circumscribed within a square of length 𝑑 = 2𝑟𝑚𝑎𝑥. 

 

Δ𝑥 distance from the last pixel center to the right border. Overall, we divided the d distance 

to 201 equal parts and the inter-pixel spacing is 

 
Δ𝑥 =

𝑑

 𝑁𝑝𝑖𝑥𝑒𝑙𝑠
=
2𝑟𝑚𝑎𝑥
 𝑁𝑝𝑖𝑥𝑒𝑙𝑠

 (3.1) 

Where 𝑠𝑡𝑒𝑝𝑠 refer to the number of regions into which the interval d is divided. Let’s expand on this 

idea on an arbitrary row of the 2D pixel grid of the CCD and try to calculate the pixel centers. 

 

The position of the first pixel center according to Figure 3.1.6 is  

1st pixel: −
𝑑

2
+

Δ𝑥

2
 

The second pixel center is the position of the first pixel center plus the inter pixel spacing Δ𝑥, 

2nd pixel: −
𝑑

2
+

Δ𝑥

2
+ Δ𝑥 = −

𝑑

2
+

3Δ𝑥

2
 

Continuing this process the center position of the nth pixel can be expressed as 

 nth pixel: −
𝑑

2
+

2n−1

2
Δ𝑥 (3.2) 

and by substituting Expression (3.1) into (3.2) we get: 
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 nth pixel: −
𝑑

2
+

2n−1

2 𝑁𝑝𝑖𝑥𝑒𝑙𝑠
𝑑 (3.3) 

This is an expression that yields the position of a pixel center that depends only on the width 𝑑 and 

the number of  𝑁𝑝𝑖𝑥𝑒𝑙𝑠 . 

 

 

Figure 3.1.6. Positions of pixel centers in a row(x-axis) of the 2D grid of pixels of CCD. 

 

The range of values that apply on the integer 𝑛 is easily shown to be 

1 ≤ 𝑛 ≤  𝑁𝑝𝑖𝑥𝑒𝑙𝑠  

From this expression the 𝑥𝑖-positions can be written explicitly,  

−
1

2
𝑑 +

1

2 𝑁𝑝𝑖𝑥𝑒𝑙𝑠
𝑑, −

1

2
𝑑 +

3

2 𝑁𝑝𝑖𝑥𝑒𝑙𝑠
𝑑,… . ,

1

2
𝑑 − 

1

2 𝑁𝑝𝑖𝑥𝑒𝑙𝑠
𝑑 

This method can be similarly applied to a column of the 2D grid of pixels where instead of x 

we have z coordinates. Thus, it is possible to identify the (𝑥𝑖, 𝑧𝑖) positions of all pixel centers of the 

2D planar grid. Expression (3.3) can also be used to discretize any plane, dividing a region into equal 

parts and finding the positions of the center of each interval  

This grid of points allows for the evaluation of any function at these locations, resulting in its 

discretization, which is essential on computational analysis and is extensively used. 

 

3.2 Projection of the PAD on the detector 

 

In this section we are going to simulate the VMI spectrometer and the integration effect it 

produces on the distribution. 

In our two-state system approximation, the initial PAD is defined by the general analytic 

function, given in Equation (A30). Our goal is to project this distribution by integrating it along the 
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y-axis, similar to the action of the inhomogeneous electric field in a VMI spectrometer. As seen from 

this equation, it is apparent that we are dealing with a linear combination of products of spherical 

harmonics expressed in polar coordinates.  

First, we transform the distribution from polar coordinates into Cartesian coordinates, 

described by 𝐴′(𝑥, 𝑦, 𝑧). Then we integrate the Cartesian distribution along the y-axis where the limits 

of integration are the maximum y-point , 𝑦𝑚𝑎𝑥 , for the POP method and the maximum distance from 

the origin 𝑟𝑚𝑎𝑥 for tomography.  

 

The integration is performed numerically 

∫ 𝐴′(𝑥, 𝑦, 𝑧)𝑑𝑦 = 𝐵(𝑥, 𝑧)
𝑚𝑎𝑥 𝑝𝑜𝑖𝑛𝑡

−𝑚𝑎𝑥 𝑝𝑜𝑖𝑛𝑡

 

and the result is the function 𝐵(𝑥, 𝑧) which is the projection of the initial PAD written in terms of x 

and z coordinates. 

The next step is the discretization of this function through the method outlined above. This 

involves evaluating 𝐵(𝑥, 𝑧) at the grid points on the (𝑥, 𝑧) plane calculated by Expression (3.3)  

𝐵(𝑥, 𝑧) → 𝐵𝑖(𝑥𝑖, 𝑧𝑖) 

Where 𝐵𝑖(𝑥𝑖, 𝑧𝑖) is the discretized version of 𝐵(𝑥, 𝑧) with 𝑖 ranging from 1 to 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 = 201. The 

next step is the normalization of 𝐵𝑖(𝑥𝑖, 𝑧𝑖) value to unity, enabling the valid comparison between 

different sets of grid points depicted as matrices or images. Figure 3.2.1 shows 𝐵𝑖(𝑥𝑖, 𝑧𝑖) ,the 

projected distribution discretized and normalized to unity for linear polarization. In this 

representation, black denotes a zero value to the pixel, while white color denotes the 

maximum value of 1. The maximum value can be found at the midpoint of the lobes which 

is expected considering the shape of the 3D distribution and the direction of integration. 

 

3.2.1 Noise and masks 

 

In a realistic experiment the data collected are not pure but contain an inevitable percentage 

of noise attached to them. To accurately assess the credibility of the inversion methods of POP and 

tomography, the simulated data used in our analysis should match realistic conditions.  

This is achieved by adding noise to the data with the characteristic of being statistically 

random, which means the mean value is zero. The percentage of noise is chosen to be 1% and 5% of 

the maximum data value [42]. Higher levels would disproportionately represent realistic background 

noise in experiments. 
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Noise is added to the data in the form of a noise matrix resulting in the final data to be inverted, 

which consists of both PAD and noise data. The noise data have two characteristics. First is that the 

mean value has to be is zero. This means the noise values fluctuate randomly around zero, with the 

maximum amplitude derived from the data matrix. In the POP method, the data matrix is the 

projection of the PAD along the y-axis, whereas in tomography, the data matrix is produced by the 

projections of each rotated z-slice of the PAD. The second characteristic is that the noise matrix must 

have the same dimensions as the noise matrix for their addition to be possible. After these two steps, 

the noise matrix is multiplied by a noise factor of 0.001 or 0.005, corresponding to 1% and 5% 

respectively. This is then added to the data matrix and their sum is normalized to unity. 

 

 

Figure 3.2.1. Projected image of the PAD for linear polarization, normalized to unity. Black corresponds to zero value and white to 1. 

The maximum value is found in the lobes. 

 

In the image reconstruction process a specific type of mask is applied to enhance the 

comparison results with the corresponding analytical image. This mask is a disk with a radius equal 

to half the number of pixels, 
𝑁𝑝𝑖𝑥𝑒𝑙𝑠

2
 ,and is centered at the midpoint of the image. This radius was 

chosen to retain only the data of the reconstructed images contained within the circle of radius 𝑟 =

𝑁𝑝𝑖𝑥𝑒𝑙𝑠

2
  and thus ignoring the contribution from the background signal. This is related to the 

tomographic method. By rotating the PAD around the z-axis its maximum point 𝑟𝑚𝑎𝑥 traces a circle 

on the z-plane which contains all possible rotations of its z-cross sections. The diameter of this circle 

corresponds to a line on the detector of length 2𝑟𝑚𝑎𝑥 which according to Section 3.1.2 is the total 

length of a detector row. Therefore, 𝑟𝑚𝑎𝑥 =
𝑁𝑝𝑖𝑥𝑒𝑙𝑠

2
. An additional advantage of applying the disk mask 

is that noise is added only to the projected data.  
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The disk mask is shown in Figure 3.2.2. for the reconstruction of the z=0 slice at 1% noise 

level using POP (a) and tomography (b). 

 

 

 (a) (b) 

Figure 3.2.2. Reconstruction of the central z=0 slice of the PAD at 1% noise using (a) the POP method, (b) the tomographic method 

for 70 projections. 

 

 

3.3. 3D PAD reconstruction: Linear light polarization 

 

The general 3D angular distribution where only the d-wave contributes (Equation A30) is 

transformed to a simpler expression when the light is linearly polarized. 

𝐽𝑟 ∝ |
−𝜂2𝑒2𝑖𝛿 + 𝑓2 + 2𝑖𝑓𝜂𝑒𝑖𝛿

√30
𝑌2−2 + −

𝜂2𝑒2𝑖𝛿 + 𝑓2

3√5
𝑌20 +

−𝜂2𝑒2𝑖𝛿 + 𝑓2 − 2𝑖𝑓𝜂𝑒𝑖𝛿

√30
𝑌22|

2

 

The polarization vector is given by the expression 𝜖= 𝑓 �̂� + 𝜂 𝑒𝑖𝛿�̂� and for linear polarization 

[43] along the x-axis we must set 𝑓 = 1 and 𝜂 = 0. 

In Figure 3.3.1, Expression (A30) for linear polarization is graphed in polar coordinates and 

centered at the origin. This is the 3D distribution we are going to reconstruct using Polar Onion 

Peeling an Abel inversion method and tomography.  

The coordinate system shown in Figure 3.3.1 is in accordance with the convention of Figure 

3.1.2 and the requirement mentioned above in Section 3.1.1. Thus, the 3D object is cylindrically 

symmetric around the x-axis. The integration is along the y-axis and the detector will be parallel to 

the (x, z) plane, at a distance L from the y=0 plane. 
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Figure 3.3.1. The PAD for linear polarization is displayed in polar coordinates. The CCD detector is shown on the left side and the 

propagation axis with a vector. 

 

3.3.1 Abel Inversion (Polar Onion Peeling) of the projected image and its assessment 

 

We are going to use the discretized projection of the PAD, 𝐵𝑖(𝑥𝑖, 𝑧𝑖) , as an image and apply 

the Abel inversion method, specifically the Polar Onion Peeling method, to reconstruct the initial 

PAD. This is accomplished with a Mathematica program already developed by Mr. Sotiris Danakas, 

which is currently in use in our department. Feeding the data matrix of the function 𝐵𝑖(𝑥𝑖, 𝑧𝑖) as an 

image to this program the Abel inversed initial distribution is produced. 

Only the central y=0 slice of the initial distribution is produced, which is nonetheless sufficient 

to reconstruct the 3D PAD by rotating this slice around the x-axis. This is possible due to the 

cylindrical symmetry of the distribution 

Now we will evaluate the accuracy of the POP method in producing a credible reconstruction 

of the 3D PAD. This is achieved by comparing it to the initial theoretical distribution. As mentioned, 

the POP method produces the y=0 slice of the distribution. Therefore, we will calculate the y=0 slice 

of the initial distribution using the analytical Cartesian function 𝐴′(𝑥, 𝑦, 𝑧)𝑙𝑖𝑛𝑒𝑎𝑟 . This function is 

𝐴′(𝑥, 0, 𝑧)𝑙𝑖𝑛𝑒𝑎𝑟  , which is then discretized, creating a 2D data matrix of dimensions 201x201. This 

data matrix is also normalized to unity so that comparison with other matrices will be valid. 
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The comparison between the y=0 of the 3D distribution obtained by the POP method and the 

analytical function 𝐴′(𝑥, 0, 𝑧)𝑙𝑖𝑛𝑒𝑎𝑟  is achieved by introducing the error function 

 𝐸 =∑(𝑥1,𝑖 − 𝑥2,𝑖)
2

𝑖

  (3.5) 

Where, in this case, 𝑥1,𝑖 are the data matrix values of the function 𝐴′(𝑥, 0, 𝑧)𝑙𝑖𝑛𝑒𝑎𝑟 , whereas 𝑥2,𝑖 are 

the data matrix values of the y=0 slice of the PAD obtained by the POP method. The use of the error 

function in Expression (3.5), involves subtracting the corresponding points of the matrices from each 

other and squaring the result (𝑥𝑖,𝑗,𝐼𝑚𝑎𝑔𝑒1 − 𝑥𝑖,𝑗,𝐼𝑚𝑎𝑔𝑒2)
2, where 𝑖 is the row and 𝑗 is the column. The 

sum of squares of the subtractions for each point of the 201x201 matrices of the images is calculated 

to be 5081, which is the error for the POP method.  

The retrieval of the 3D PAD by reconstructing the central slice (z=0) applies to symmetric 

distributions, where both POP and tomography methods can be compared using the 2D error, because 

only a single 2D slice of the distribution is assessed, the central slice. If the full 3D symmetric 

distribution were reconstructed, a different error function would be required for its assessment, the 

3D error function. In the case of non-symmetric distributions there is no central slice, so only the 3D 

error can be calculated. This scenario of 3D volume error will be addressed later in the tomographic 

reconstruction of multiple slices of symmetric and non-symmetric distributions. 

 

3.3.2 Tomographic method of the projected image and its assessment 

 

In this section, similarly to the previous one, we will reconstruct the PAD using the 

tomographic method described in the Theory. Generally, a 3D object can be tomographically 

reconstructed by considering it as a finite stack of 2D cross sections with each cross section treated 

separately. The cross sections should be perpendicular to the polarization axis (z-axis); therefore z-

slices will be reconstructed, parallel to the (𝑥, 𝑦) plane. Due to the cylindrical symmetry of the PAD, 

the POP method reconstructed the central y=0 slice. For the comparison of the two methods to be 

valid the same slice of the 3D object should be reconstructed by tomography. This issue is easily 

resolved by acknowledging that the y=0 slice obtained by POP and the z=0 slice obtained by 

tomography are identical due to the cylindrical symmetry around the x-axis of the 3D distribution. 

Thus, we will proceed with the reconstruction of the z=0 slice, which will then be compared to the 

y=0 slice obtained by the function 𝐴′(𝑥, 0, 𝑧)𝑙𝑖𝑛𝑒𝑎𝑟  as was done with the POP method.  

 

The z=0 slice will be reconstructed using a specific set of projection numbers (angular 

sampling), 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 = 10,14,15,18,19,20,23,26,30,35,40,50,55,60,65,70,80 and 90. The purpose 
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of this is to determine the number of projections needed to match the accuracy of the POP method in 

reconstructing the 2D slice of the object. 

Consider a slice of the PAD, specifically the z=0 slice, projected onto the detector. The 

number of points evaluated on the pixels constitutes the spatial sampling. In our analysis, the number 

of points is fixed at 201. The spatial sampling is shown in Figure 3.1.6. 

Fixing the spatial sampling while varying the angular sampling allows us to examine the 

relationship between the accuracy of the number of projection angles and the accuracy of the 

reconstruction. 

Now we will describe the tomographic method on the z=0 slice of the PAD by first expressing 

it in Cartesian coordinates as 𝐴′(𝑥, 𝑦, 0)𝑙𝑖𝑛𝑒𝑎𝑟. For each number of projections 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , the z=0 

slice is rotated by an increment 𝜃 =
180°

𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠
 . Furthermore, for each rotation ,the rotated function 

𝐴′(𝑥(𝜃), 𝑦(𝜃),0)𝑙𝑖𝑛𝑒𝑎𝑟 ,is integrated with respect to y, with the limits of integration being 

(−𝑟𝑚𝑎𝑥 , 𝑟𝑚𝑎𝑥). This is because by rotating the slice around the z-axis its maximum point traces a 

circle with radius equal to that point. This circle can be seen in Figure 3.1.5, which is enclosed by a 

square with length equal to the circle’s diameter. Every possible rotation of the slice on the (x, y) 

plane should fit within that square. Thus, the integration of the rotated function 𝐴′(𝑥(𝜃), 𝑦(𝜃),0)𝑙𝑖𝑛𝑒𝑎𝑟  

at points given by Equation (3.3) is mapped to the corresponding pixel centers of the CCD. For each 

projection number 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 and for each projection angle at a given projection number, 201 data 

point values are collected. As a result,18 matrices are assembled each with dimensions: 

(𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 × 201). 

Appropriately modifying these matrices will result in a sinogram corresponding to a specific 

projection number. 

The sinogram, as introduced in the Theory, is a matrix assembled such that each projection of 

a given projection number forms a column, arranged in ascending order of rotation angles. So, the 

sinogram has as many columns as the projections recorded with the detector, where each projection 

represents one angle of rotation. 

The number of sinogram rows must equal the length of the diagonal of the square image, 

which has a side length of 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 . The diagonal is the maximum possible length a projection line can 

have in a rotation of the image. To ensure all points in an image contribute at all projection angles, 

the length of the projection line increases to span the diagonal of the image (the extra cyan line on 

each side of the CCD line), as shown in Figure 3.3.2. 
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Therefore, the diagonal parameter, is defined as 

 𝑑𝑖𝑎𝑔 = 𝑁𝑝𝑖𝑥𝑒𝑙𝑠√2 = 284 (3.6) 

where 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 = 201 is the number of pixels on the CCD screen. The dimensions of a matrix 

sinogram are:(𝑑𝑖𝑎𝑔 × 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠). 

 

 

Figure 3.3.2 The length of the projection line (red blurry CCD line) is equal to the side length of the 𝑁𝑝𝑖𝑥𝑒𝑙𝑠 ×

𝑁𝑝𝑖𝑥𝑒𝑙𝑠 square while the cyan line equals the length of the diagonal of the matrix. 

 

The 18 data matrices produced in the previous Section have dimensions (𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , 201). 

The rows are equal to 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , and the columns are 201. There are two steps to convert the 18 

data matrices into 18 sinograms. The first step is to transpose the matrices by switching the rows and 

columns. As a result, the dimensions of the matrices will be (201,𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠), The second step, is 

for the rows to be equal to the diagonal 𝑑𝑖𝑎𝑔 = 284. Rows padded with zero values should be added 

to the matrices (extra cyan lines in Figure 3.3.2). Therefore, on top and below the data matrix, an 

𝑁𝑟𝑜𝑤𝑠 number of rows should be added, 

 
𝑁𝑟𝑜𝑤𝑠 =

|𝑑𝑖𝑎𝑔 − 𝑁𝑝𝑖𝑥𝑒𝑙𝑠|

2
  (3.7) 

With the completion of these two steps, the 18 data matrices have the appropriate 

dimensions: (𝑑𝑖𝑎𝑔, 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠) and can be considered sinograms.  

 

Applying this process to the 18 matrices we get 18 sinograms. Some indicative examples of 

the sinograms are shown in Figure 3.3.3 for number of projections 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠=40 and 70 

The sinograms are derived from the corresponding matrices, which are normalized to unity. 

Thus, in their depiction as images, black represents zero value and white represents one, as usual. The 
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dimensions of the sinograms for different projection numbers are illustrated in Figure 3.3.3 For 40 

projections the dimensions are (285, 40) as seen in the narrower sinogram of Figure 3.3.3(a). In 

contrast, with 70 projections and sinogram dimensions of (285, 70) the sinogram shown in Figure 

3.3.3(b) appears wider. Both sinograms have the same height because they share the same number of 

rows, 285 

 

(a) ,(b)  

Figure 3.3.3. Sinograms corresponding to number of projections, (a) 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠=40, (b) 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠=70 

 

The sinograms are inverted using a built-in function in the Mathematica environment, which 

employs the Filtered Backprojection method. 

The inversion function in Mathematica allows the selection of the number of pixels in the 

final image. The selectin of the number of pixels is convenient since each sinogram image has a 

different dimension. Thus, we select the final image to have dimensions 201x201, equal to the 

dimensions of the y=0 slice of the PAD, produced by the analytical function 𝐴′(𝑥, 0, 𝑧)𝑙𝑖𝑛𝑒𝑎𝑟  and by 

the POP method. This way all of their matrixes have the same dimension, and their comparison is 

possible  

In Figure 3.3.4, the reconstructed z=0 slices are presented for the number of projections 

Nprojections=10 and 20. In Figure 3.3.4(a) for 10 projections there are unwanted artifacts, such as 

lines, and overall inaccurate results, as discussed in the Theory, due to insufficient angular sampling. 

Increasing the number of projections lessens the effect of these artifacts, specifically lines originating 
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from filtered back projection, and reconstructs the z=0 slice more clearly and accurately, as shown in 

Figure 3.3.4 (b) for 70 projections. 

 

    

 (a) (b) 
Figure 3.3.4. Inverted images of the sinograms corresponding to number of projections, (a) 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠=20, (b) 𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠=70, 

 

To evaluate the tomographic method in reconstructing the z=0 slice of the PAD we compare 

the inverted images obtained by tomography to the theoretical z=0 slice obtained by the function 

𝐴′(𝑥, 0, 𝑧)𝑙𝑖𝑛𝑒𝑎𝑟 . The comparison is carried out with the use of the error function defined in Equation 

(3.5), where, similar to the POP method, the two images are compared pixel by pixel. The 

errors,𝐸𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙−𝑇𝑜𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦,between tomography-reconstructed slices and the theoretical initial 

slice for each number of projections, Nprojections , are plotted with respect to the projection number, 

as shown in Figure 3.3.5. Generally, the error values decrease as the number of projections increases 

although fluctuations are observed across all projections. 

 

Approximately, for 19 projections tomography matches the error and thus the accuracy of the 

POP method. There are some observations that should be noted. First, the tomography error matches 

the POP error for 14 projections as well. However, due to the small number of projections, or angular 

sampling, tomography is inaccurate, and the result cannot be trusted. Second, the error of tomography 

generally decreases with great increase in the number of projections, resulting in a much larger 

difference from the POP error. Lastly, as mentioned before, the error fluctuations remain throughout 

the plot even for large projection numbers.  
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The comparison between the POP and the tomographic method is also carried out in the 

presence of background noise with the method described in Section 3.2.1. The noise levels as 

mentioned are 1% and 5%. 

 

 

Figure 3.3.5. Graph depicting the errors between tomography and analytically obtained slice in relation to the number of projections. 

The red line depicts the POP error. 

 

The methodology of reconstructing the y=0 slice of the 3D distribution with the POP method 

in the presence of noise remains similar to that without noise. The distinction is that the final matrix 

includes the noise matrix and the comparison with y=0 slice obtained by the function 𝐴′(𝑥, 0, 𝑧)𝑙𝑖𝑛𝑒𝑎𝑟  

is performed using an appropriate mask. The results of the comparison between the POP-

reconstructed noisy y=0 slice and the noiseless analytical y=0 slice of the initial PAD is 4155 for 1% 

and 4305 for 5% noise level. 

The first observation is that as the noise increases, the error increases, which is expected 

behavior. The second observation is that both errors are smaller than the error without noise,  

(5081.04) ,which is counter intuitive. The reason for this is that the noiseless POP error was 

calculated without adding the mask. Thus, the whole image contributes to the error making it larger 

than the errors with noise. Adding the mask to the POP-reconstructed noiseless y=0 slice of the PAD 

would result in an error of 4102.49, which is smaller than both POP noise errors. 

The reconstructed y=0 slice of the PAD at 5% noise level using POP is shown in Figure 3.3.6(a). 

Now, the tomographic method will be tested in the presence of noise and compared with the 

POP method. Similar to the noise-free distribution, the tomographic reconstruction of the noisy z=0 
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slice is performed by adding the noise matrix to the data matrix, converting them into sinograms and 

then inverting them to produce the reconstructed slice. The number of projections remains 

10,14,15,18,19,20,23,26,30,35,40,50,55,60,65,70,80 and 90 for 1% noise level but we increase it to 

10,14,15,18,19,20,23,26,30,35,40,50,55,60,65,70,80,90,100,110,120,130,140,150 and 160 for 5% 

noise level to match the corresponding POP error. For each data matrix, two noisy data matrices are 

generated corresponding to 1% and 5% noise levels, resulting in twice as many reconstructed slices. 

In the inverted images, a mask has been applied, which improves the comparison between the 

tomographically reconstructed slices and the analytically obtained z=0 slice. 

 

    

 (a) (b) 
Figure 3.3.6. Reconstruction of the z=0 slice at 5% noise levels using (a) the POP method and (b) tomography with 70 

projections. 

 

Figure 3.3.6(b) shows the tomographically reconstructed z=0 slice with 70 projections at a 

5% noise level. This slice appears grainy making its details less clear and harder to discern. 

 In contrast, the Abel-inverted slice is much clearer at the same noise level. The comparison 

results between the tomographically reconstructed noisy z=0 slices and the noise-free analytic slice 

obtained from the function 𝐴′(𝑥, 0, 𝑧)𝑙𝑖𝑛𝑒𝑎𝑟  are plotted against the number of projections for both 

noise levels, as shown in Figure 3.3.7. 

 

For 1% noise, the number of projections needed for tomography to match the accuracy of the 

POP method is approximately 20-22 projections, slightly more than the noiseless case. For 5% noise, 

at least 140 projections are needed for tomography and POP to yield the same error. 

This is a significant difference compared to the noiseless and the 1% noise cases, where only 

around 20 projections are needed.  
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This highlights the efficacy of the POP method in dealing with noisy data as well as the adaptability 

of tomography to match the POP method simply by increasing the number of projections. 

 

 
  (a) 

 
 (b) 

Figure 3.3.7, Graph of the errors in relation to the number of projections, comparing tomography and the theoretical z=0 slice in the 

presence of noise :(a) 1% noise and (b) 5% noise. The red line depicts the error between the POP method and the theoretical y=0 

slice. 
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It should also be noted that both plots in Figure 3.3.7 exhibit fluctuations, especially the 5% noise 

level plot, which shows values higher than those at the 1% noise level. This indicates that tomography 

is less accurate at higher noise levels. 

 

Now will be presented the full scope of the tomographic method which involves 

reconstructing multiple z-slices of the distribution, and then assembling these slices to recreate the 

original distribution. In this case, the assessment of the reconstruction will involve using the 3D error 

volume function, which accounts for the full distribution. 

First, we will determine the z-cross sections of the PAD that will be tomographically 

reconstructed. The number of z-slices is not fixed in the program and thus, is selected by the user. 

Considering the symmetry of the distribution and the speed of the overall process five slices are 

deemed sufficient. This means that the z-region corresponding to the distribution will be divided into 

four equal segments. However, due to cylindrical symmetry, the PAD is symmetric around the z=0 

plane, as shown in Figure 3.3.1, and so, only one of the z-subregions, either z>0 or z<0, needs to be 

divided. For our analysis the z<0 region is chosen. The slices begin from the maximum z point of the 

z<0 region , −𝑧𝑚𝑎𝑥 , which is a plane tangent to the distribution and end at the z=0 point, the midpoint 

of the z range [−𝑧𝑚𝑎𝑥  , 𝑧𝑚𝑎𝑥]. The cross section of the distribution with the z=0 plane as well as with 

other z-slices is shown in Figure 3.3.8(a). The method we will follow is the same as in the previous 

section for the z=0 slice, but instead of one slice now we have five slices. In Figure 3.3.8(b) the 

tomographically reconstructed 3D PAD is shown for 100 slices and 70 projections. 

The tomographic process yields 18x5=90 matrices, where there are 18 sets of projection 

numbers and 5 cross sections. The dimensions of each matrix are (𝑁𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠 , 201) and the number 

of projections remains the same as in the previous section for the noiseless z=0 slice. Using the data 

from the 90 matrices, we can construct the corresponding sinograms, which are then used to obtain 

the reconstructed slices. 

Using the error function, Expression (3.5), the reconstructed z-slices are compared pixel by 

pixel with the analytical z-slices of the function 𝐴′(𝑥, 0, 𝑧𝑖)𝑙𝑖𝑛𝑒𝑎𝑟   

For all the following plots, in both symmetric and non-symmetric distributions, a mask was 

applied to the reconstructed images in both the noisy and the noiseless data. In the noiseless case 

applying a mask, results in an almost vertical downward shift of the plot, with errors for fewer 

projection numbers decreasing slightly more than for larger projection numbers, while the overall 

shape of the plot remains unchanged. In the case of nose, using a mask is necessary to ensure that the 

noise affects only the projection data. 

The plots of the 2D and the 3D errors are shown with respect to the number of projections in 

Figure 3.3.9 (a) and (b), respectively. 
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  (a) (b) 

Figure.3.3.8. The cross section between the z=0 slice and the initial PAD. 

 

The plot of the 2D error is similar to the plot in Figure 3.3.5 for the z=0 slice, with the only 

significant difference being in the error values. In this case, less than 20 projections are needed for 

tomography to match the POP error, while nearly 19 projections are required without using the mask. 

Both the 3D and the 2D errors generally decrease with the number of projections, however the 3D 

error decreases in a smoother manner with seemingly less fluctuations. Both errors fluctuate across 

the plot for all projection numbers.  
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 (a) 

 

 

 (b) 
Figure 3.3.9(a)Plot of 2D Error in relation to the number of projections,(b) Plot of 3D Error in relation to the number of projections, 

both for noiseless data. The red line represents the POP error for the z=0 slice: 5081. 

 

The 2D and 3D errors are also plotted against the number of projections in noisy conditions. 

These plots are shown in Figure 3.3.10 and 3.3.11 for 1% and 5% noise level, respectively. 

 

 

 (a) 
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 (b) 

Figure 3.3.10. (a) Plot of 2D errors at 1% noise with respect to the number of projections. The red line represents the POP 

error for the z=0 slice: 4155 with the use of a mask. (b)Plot of 3D errors with respect to the number of projections 

 

 

 (a) 
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 (b) 

Figure 3.3.11 (a) Plot of 2D errors at 5% noise with respect to the number of projections where the red line represents the POP error 

for the z=0 slice: 4305.28 with the use of a mask. (b)Plot of 3D errors with respect to the number of projections. 

 

The 2D errors at 1% noise (Figure 3.3.10a) generally fluctuate throughout the plot but 

decrease as the number of projections increases. In contrast, the 3D error plot at 1% noise (Figure 

3.3.10b), follows a smoother line with fewer fluctuations. In Figure 3.3.11(a) at 5% noise level the 

2D error plot is highly oscillatory for all projection numbers, while showing a decrease in value with 

the number of projections. At least 140 projections are needed for tomography to match the POP 

error. There is a significant discrepancy between the plot for 5% noise shown in this figure and Figure 

3.3.7(b). This indicates a high sensitivity of the tomographic method to elevated background noise 

levels.  

An attempt to reduce the oscillations caused by background noise involves lowering the cutoff 

frequency to smaller values. This leads to fewer fluctuations and smaller error values for both noise 

levels. However, the drawback is that the reconstructed images will display blurriness and a loss of 

detail (see Theory).  

It is worth noting that lowering the cutoff frequency in the noiseless case does not reduce 

fluctuations in the 2D error plot but does lower the error values. However, the 3D error plot shows 

both a reduction in overall oscillations and a decrease in values. 

Lastly, comparing the plots in Figures 3.3.9, 3.3.11 and 3.3.10 it is evident that the 2D and 

3D errors are higher at 5% noise compared to 1% noise and the noiseless case, indicating that 

tomography produces more accurate results with lower background noise. This is further emphasized 
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by the increased number and intensity of fluctuations in 5% noise case compared to the 1% noise 

case. 

 

 

3.4. Tomographic PAD Reconstruction: Elliptical light polarization – 

Symmetric Case 

 

For elliptical polarization [43] the parameters in the general polarization vector are chosen to 

be 𝑓 = 1, 𝜂=2 and 𝛿 =
𝜋

2
. Under these parameter values the 3D PAD (Equation A30) is analytically 

determined and is shown in Figure 3.4.1(a). It is evident the 3D PAD is no longer cylindrically 

symmetric around the x-axis. However, since it is a symmetric distribution, it will be tested to 

determine if the POP method can be applied for its reconstruction. 

First, the distribution is integrated along the y-axis, with integration limits [−𝑦𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥], 

resulting in its projection, as shown in Figure 3.4.2(b). Next, we apply the POP method to this 

projection image, producing the result shown in Figure 3.4.2(c). The POP method allows us to retrieve 

the y=0 slice of the original distribution, so we compare the output of the POP method with the y=0 

slice of the PAD, shown in Figure 3.4.2(a). Comparing these two images shows that the POP inverted 

does not match the initial slice. This proves that the POP method is incompatible with elliptical light 

polarization and cannot reconstruct a distribution that does not to meet its requirements, even if the 

distribution is symmetric. 

 

(a) 
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  (b) 

Figure 3.4.19.(a) Plot of the 3D PAD for elliptical polarization in polar coordinates from the analytical expression and (b) 

the tomographic reconstruction of the PAD. 

 

Now that POP failed to reconstruct this PAD for elliptical light polarization it is time to 

employ the tomographic method. The assessment of the reconstructed images will be performed using 

the 3D error volume function. In Figure 3.4.3(a) the reconstruction of a z-slice of the PAD is shown 

for 70 projections and no background noise and in Figure 3.4.3(b) the same slice is reconstructed for 

70 projections and 1% noise level. For both images a mask was applied. In Figure 3.4.1(b) the full 

3D reconstruction is shown for 70 projections and 100 z-slices. 

 

   

 (a) (b) (c) 

Figure 3.4.20. Shown (a) the initial slice y=0 slice of the PAD, (b) the projected image (c) the reconstructed y=0 slice  

 

In Figure 3.4.4 the 3D error is plotted against the number of projections for noiseless data, 

while Figure 3.4.5 shows the 3D error plots at 1% (a) and 5% (b) noise levels. A disk mask is applied 

in all the reconstructed images both noisy and noiseless. 

 



48 

 

  

 (a) (b) 

Figure 3.4.3 Reconstruction of a z-slice of the PAD for 70 projections at (a) no background noise and (b) at 1% background 

noise. 

 

The plot in Figure 3.4.4 generally follows a smooth trajectory with a few fluctuations that 

persist across all projections. The 3D error decreases rapidly with the number of projections, but it 

appears to stabilize at a constant value. 

The 3D error plot for the 1% noise level shows similar characteristics as the noiseless case 

with a generally smooth curve that almost stabilizes at the final projections. In contrast, the 3D error 

plot at the 5% noise level is highly oscillatory across all projections. 

 

 

Figure 3.4.4. 3D error plot against the projection numbers for noiseless data in the elliptical case for symmetric distribution. 
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 (a) 

 

 (b) 

Figure 3.4.5 3D error plot against the projection numbers for (a) 1% noise level, (b) 5% noise level, in the elliptical case for 

symmetric distribution. 

 

When comparing the 3D error values across all three noise levels it appears that they all start 

at approximately the same value. However, both the noiseless and 1% noise cases decrease to a similar 

value at 90 projections while the 5% noise case consistently shows higher values. Even at 130 

projections the 3D error for the 5% case is three times greater than the other two cases. This indicates 
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that tomography is susceptible to high levels of noise but remains sufficiently accurate for lower 

background noise levels. 

For both noisy and noiseless data, lowering the cutoff frequency of the filter reduces the 

fluctuations and lowers the error values, but the reconstructed images appear blurrier with less sharp 

edges. 

A special case of elliptical polarization is circular polarization. A light is circularly polarized 

when it is composed of two plane waves of equal amplitude but with a phase difference of 90 degrees 

[43]. Therefore, the parameters of the polarization vector will be, 𝑓 = 1, 𝜂 = 1, and 𝛿 =
𝜋

2
. The 3D 

PAD distribution for circular polarization is shown in Figure 3.4.6.  

 

(a) (b) 

Figure 3.4.6 3D PAD distribution for circular polarization (a) from analytical expression and (b) from tomographic 

reconstruction. 

 

Due to the relative simplicity of the distribution tomography yields results that outperform all 

other distributions examined in this project, indicating that the tomographic method is particularly 

effective when dealing with simpler distributions. 

 

 

3.5 Tomographic PAD Reconstruction: Elliptical light polarization – 

Asymmetric Case 

 

In this section we are dealing with a non-symmetric distribution produced by elliptical 

polarization with the same polarization parameters as in Section 3.4. This distribution is produced by 
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assigning a value of 1 to the Λ −parameter (Equation A28), resulting in the contribution of the term 

𝑌00(𝜃, 𝜑) in the distribution, Equation A27. An extra state is included to the expression of the 

distribution, 𝑌2−1(𝜃, 𝜑), which is related to electric quadrupole transitions [44]. This distribution does 

not correspond to a realistic physical process and is included to assess the ability of tomography to 

reconstruct non-symmetric distributions. The PAD is shown in polar coordinates in Figure 3.5.1 (a). 

The tomographic reconstruction of this PAD is shown in Figure 3.5.1 (b) for 100 z-slices and 70 

projections. 

(a)

(b) 

Figure 3.5.1 PAD of non-symmetric distribution for elliptical polarization (a) from the analytical expression and (b) from 

tomographic reconstruction. 

 

We will use the tomographic method to reconstruct this distribution. The assessment of the 

reconstructed images will be performed using the 3D error function as the distribution lacks symmetry 

and has no central slice to examine. Consequently, the z-slices that will be reconstructed will span 
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the entire z-region starting from the maximum z-point on the negative axis and ending at the 

maximum z-point on the positive axis. 

 

 

 (a) (b) 

Figure 3.5.2 Reconstructed z-slice for 70 projections at (a) zero background noise, (b) 1% background noise 

 

In Figure 3.5.2 a reconstructed z-slice of the PAD is shown for 70 projections with no 

background noise (a) and at a 5% noise level (b). 

In Figure 3.5.3 the 3D error values are plotted against the projection numbers for noiseless data. 

Figure 3.5.4 shows the 3D error plots for a 1% noise level (a) and a 5% noise level (b). A mask was 

applied to the generation of all the following plots. 

 

 

Figure 3.5.3 Plot of the 3D errors values for noiseless data in relation to the projection numbers for non-symmetric PAD. 

 



53 

 

 

(a) 

 

(b) 

Figure 3.5.4 Plot of the 3D errors in relation to the projection numbers for (a) 1% noise level and (b) 5% noise level, for 

non-symmetric PAD. 

 

The plot of the 3D errors for the noiseless case resembles the plot for the symmetric elliptical 

case, showing fluctuations across all projections and seeming to stabilize at an almost constant value 

at the later projections. The 3D errors decrease rapidly with the number of projections. 
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The plots for the noise cases both exhibit fluctuations that are particularly pronounced at the 

5% noise level. Both plots display a rapid decrease in error. Additionally, similar to the symmetric 

case the 3D error values for the noiseless and 1% noise case are generally smaller than those for the 

5% noise level. 
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4. Conclusions 

 

The present work aimed to develop a computer program that employs the tomographic method 

to reconstruct 3D PADs produced from light-matter interactions. Specifically, these distributions 

were produced by a two-photon ionization of a Hydrogen atom by laser light with various 

polarizations. By simulating a VMI spectrometer the 3D PADs were projected onto a plane to 

generate 2D images. These projected images were analyzed both with and without the presence of 

noise to more accurately assess the program's performance under realistic conditions.  

In the case of linear polarization tomography was compared to the POP method for 

reconstructing the 3D PAD from the projected images. Our findings indicate that applying an 

appropriate mask to the reconstructed images less than 20 projections are required for tomography to 

achieve the same accuracy as the POP method for noiseless data. By removing the mask, around 20 

projections are needed to achieve the same accuracy as POP for both noiseless data and data with 

minimal noise level. However, as background noise increases more than 140 projections are required 

for tomography to match the accuracy of the POP method. This result, though, is unreliable due to 

the high sensitivity of tomography to elevated noise levels. This phenomenon is observed in all the 

following PADs generated at these noise levels, specifically, in both symmetric and non-symmetric 

distributions produced by elliptical polarization. A straightforward solution was to further bandlimit 

the filter used in the reconstruction process. This approach, though, can lead to blurry images with 

reduced detail. 

Overall, our code successfully reconstructed the 3D PADs in all cases with the potential to 

surpass the existing Abel inversion method. Nonetheless, there is room for improvement. First, further 

investigation of tomography with noisy data is needed to assess its ability to produce accurate and 

stable results, particularly at higher noise levels. One possible approach is a more in-depth 

examination of the filtering process, using a specialized filtering function that better suppresses high 

noise signal. Another potential improvement is refining the masking process, where the concealment 

of the background noise precisely fits the outline of the reconstructed distribution, maximizing the 

data signal contribution. Second, to better address these challenges and achieve superior results, the 

utilization of modern and sophisticated data processing methods, such as artificial neural networks 

[45], is required. Lastly, since the tested images were simulations of experimental data, it is essential 

to validate our findings with real data to determine if the results hold in practice.  

Although tomography has some setbacks, such as sensitivity to high noise levels, is 

established as a powerful method capable of accurately reconstructing 3D objects. In atomic physics 

tomography is especially valuable because it enables the retrieval of 3D distributions produced by 
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complex light-matter interactions, without limitations on the polarization of light, the symmetry of 

the distribution or the nature of the physical process. Therefore, developing this program was essential 

as it expands the range of physical phenomena that can be examined.  
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Appendix A: Derivation of 3D photoelectron momentum distributions 

from two-photon ionization out of an s-state. 

 

The physical system consists of a gas of hydrogenic atoms interacting with a laser field of 

specified polarization in the presence of a uniform electric field. This interaction results in a three-

dimensional flux of electrons ejected during photoionization which are then imaged by a position 

sensitive detector, revealing a particular spatial distribution. The 3D photoelectron angular 

distribution (PAD) is determined by considering a two-photon ionization of the atom, where the atom 

initially in the ground state ionizes to an unbound state via an intermediate virtual state, as illustrated 

in Figure A.1. The 3D PAD is calculated by employing a two-state model approximation of the 

ionization process along with first order time dependent perturbation theory, while ignoring the 

electron spin contribution. All equations are written in atomic units (=e=me=1). 

 

Figure A.1. The two-photon transition model, out of the ground state to a virtual state and from the virtual state to the final 

continuum state. 

 

A1. Time Dependent Schrödinger Equation and “Schrödinger equation with a 

source”: Spinless case 

 

Consider either the Hydrogen atom or a single valence electron atom outside closed 

(sub)shells (as for example the Alkali atoms). In either case the interaction of the valence electron 

with the ionic core may be described by a spherically symmetric potential 𝑈(𝑟). Then, the 

Hamiltonian writes, 
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𝐻(𝐫) = −

1

2
∇2 +𝑈(𝑟). (A1) 

Let us now examine the simpler case of single-photon ionization out of an initial state 𝜓𝑖 of 

energy 𝐸𝑖 to a continuum state 𝜓𝐸  of energy 𝐸, both solutions of the Schrödinger equation 𝐻(𝐫)𝜓 =

𝐸𝜓. The outgoing flux of photoelectrons is described by the electron Probability Current Density. 

The latter depends on an outgoing wave 𝜓𝑜𝑢𝑡 (which is complex and should not be confused with the 

real wavefunction 𝜓𝐸, but they both refer to the same energy 𝐸). The relevant differential equation 

satisfied by 𝜓𝑜𝑢𝑡 is derived from the Time Dependent Schrodinger Equation (TDSE): 

 
𝑖
𝜕Ψ

𝜕𝑡
=  ℋΨ (A2) 

where the total Hamiltonian ℋ 

 ℋ = 𝐻(𝐫) + 𝑉(𝐫, 𝑡)   (A3) 

consists of the time independent part of Eq. (A1), and the time dependent part, which describes the 

dipole light-matter interaction term [46], 

 𝑉(𝐫, 𝑡) = −𝐝 ∙ 𝐄 = 

= 𝛆 ∙ 𝐫 𝐸0ℱ(𝑡)(𝒆
𝒊𝝎𝒕 + 𝒆−𝒊𝝎𝒕)  

(A4) 

where 𝐝 is the dipole moment operator, 𝐄 the electric filed of the laser, 𝛆 the light polarization vector, 

𝐸0 the real field amplitude, ℱ(𝑡) the time envelope of the pulse and 𝜔 the laser field circular 

frequency. We now adopt a two-state model for the atom [47,48,49] where the wavefunction Ψ of 

the system is decomposed in two terms, one referring to the initial state 𝜓𝑖 and one to the final 

outgoing wave state 𝜓𝑜𝑢𝑡, i.e. 

 Ψ(𝐫, t) = 𝑐𝑖(𝑡)𝜓𝑖(𝐫)𝑒
−𝐸𝑖𝑡 + 𝑐𝑜𝑢𝑡(𝑡)𝜓𝑜𝑢𝑡(𝐫)𝑒

−𝑖𝐸𝑡 (A5) 

As mentioned above, we assume that 𝜓𝑖 is an eigenstate of the time-independent Hamiltonian 𝐻, 

 𝐻(𝐫)𝜓𝑖 = 𝐸𝑖𝜓𝑖 (A6) 

and the resonant excitation implies 

 𝜔 = 𝐸 − 𝐸𝑖 . (A7) 

Inserting Equations A1 and A3-A7 into Equation A2, using first order time dependent perturbation 

theory [50] to obtain approximate expressions for the coefficients 𝑐𝑖 (≈ 1) and 𝑐𝑜𝑢𝑡 (≈ 𝐸0𝑐𝑜𝑢𝑡
(1)(𝑡)), 

and keeping terms up to linear with respect to 𝐸0we get 

 
(𝑖
𝜕𝑐𝑜𝑢𝑡

(1)

𝜕𝑡
+ 𝑐𝑜𝑢𝑡

(1)𝐸)𝜓𝑜𝑢𝑡 = 𝑐𝑜𝑢𝑡
(1)𝐻𝜓𝑜𝑢𝑡 + 𝛆 ∙ 𝐫 ℱ(𝑡)(𝑒

2𝑖𝜔𝑡 + 1)𝜓𝑖    (A8) 

Introducing the “rotating wave approximation” [49] into Equation A17, the term 𝑒2𝑖𝜔𝑡  is dropped 

because it rapidly oscillates with time and its net effect is negligible. Then we arrive at, 
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(−𝑖

𝜕

𝜕𝑡
+ 𝐻(𝐫) − 𝐸) 𝑐𝑜𝑢𝑡

(1)𝜓𝑜𝑢𝑡 = −𝛆 ∙ 𝐫 ℱ(𝑡)𝜓𝑖 (A9) 

If we further assume the Electric Field has constant amplitude, i.e. ℱ(𝑡) = 1, 𝑐𝑜𝑢𝑡
(1) becomes 

independent of time, its time derivative is zero, and the coefficient can be absorbed into the outgoing 

wavefunction 𝜓𝑜𝑢𝑡. Therefore, Equation A9 can be written as, 

 (𝐻(𝐫) − 𝐸)𝜓𝑜𝑢𝑡 = −𝛆 ∙ 𝐫  𝜓𝑖 (A10) 

which is known as “Schrödinger equation with a source” [49]. For solving this equation, we express 

𝜓𝑜𝑢𝑡 in the form, 

 𝜓𝑜𝑢𝑡 = 𝑟
−1 ∑𝑃𝑙′,𝑚′

𝑜𝑢𝑡 𝑌𝑚′
𝑙′

𝑙′,𝑚′

. (A11) 

where 𝑌𝑚
𝑙  denotes spherical harmonics and the functions 𝑃𝑙′,𝑚′

𝑜𝑢𝑡  need to be determined. It turns out 

[51] that in the 𝑟 → ∞ lmit these functions are written as,  

 
𝑃 𝑙,𝑚
𝑟→∞

𝑜𝑢𝑡 (𝑟) = −
2

𝐶𝑟
𝑑𝑙𝑚

1

[𝑘(𝑟)]1/2
𝑒𝑖(𝜃𝑙(𝑟)+𝜙𝑙) (A12) 

with 𝑑𝑙𝑚 the dipole transition matrix elements connecting states 𝜓𝑖 = 𝑟
−1𝑃𝑖𝑌𝑚𝑖

𝑙𝑖  and 𝜓𝐸 = 𝑟
−1𝑃𝐸𝑙𝑌𝑚

𝑙 , 

 
𝑑𝑙𝑚 = ∫𝑟−2𝑃𝐸𝑙𝑌𝑚

𝑙  𝛆 ∙  𝐫 𝑃𝑖𝑌𝑚𝑖

𝑙𝑖 𝑑𝑉, (A13) 

and where the continuum wavefunction  𝑃𝐸 at large distances and in it semiclassical (WKB) form is 

written as [51], 

 
𝑃𝐸𝑙(𝑟) =

𝐶𝑟
[𝑘(𝑟)]1/2

sin[𝜃𝑙(𝑟) + 𝜙𝑙] (A20) 

with 𝐶𝑟 a normalization constant and 𝑘(𝑟) the wavenumber function, 

 

𝑘(𝑟) = [2 (𝐸 − 𝑈(𝑟) −
(𝑙 + 1/2)2

𝑟2
)]

1
2⁄

 (A15) 

Finally, the function 𝜃𝑙(𝑟) is given by, 

𝜃𝑙(𝑟)  = ∫ 𝑘(𝑟)𝑑𝑟
𝑟

𝑟𝑜

 (A16) 

and 𝜙𝑙 is a constant phase depending on 𝑟𝑜. It is important to note that the matrix elements (A44) 

incorporate dipole transition selection rules. 

 

 

 

A2. Electron Probability Current Density  
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Once the outgoing wave 𝜓𝑜𝑢𝑡 is known the probability current density can be calculated from 

the definition [44], 

 
𝐉 = −

2𝜋𝛼𝜔

2𝑖
[𝜓𝑜𝑢𝑡∇(𝜓𝑜𝑢𝑡)

∗ − (𝜓𝑜𝑢𝑡)
∗∇𝜓𝑜𝑢𝑡] (A17) 

Since ionization proceeds solely via the 𝑟-coordinate, we need the projection of 𝐉 in the 𝑟-direction, 

 
 𝐽𝑟  = 𝐉 ∙ 𝐞𝐫  = −

2𝜋𝛼𝜔

2𝑖
[𝜓𝑜𝑢𝑡

𝜕(𝜓𝑜𝑢𝑡)
∗

𝜕𝑟
− (𝜓𝑜𝑢𝑡)

∗
𝜕𝜓𝑜𝑢𝑡
𝜕𝑟

] (A18) 

where 𝐞𝐫 is the relevant unit vector. Inserting Equations A11-A16 in Equation A18, we obtain, 

 

𝐽𝑟𝑟→∞ =
4𝜋𝛼𝜔

𝑟2𝐶𝑟
2 |∑𝑑𝑙𝑚𝑒

𝑖(𝜃𝑙(𝑟)+𝜙𝑙)𝑌𝑙,𝑚
𝑙,𝑚

|

2

 (A21) 

which encompasses the angular distribution of the 3D photoelectron flux. Finally, by integrating over 

the whole sphere we get the total cross section 𝜎𝑡𝑜𝑡, 

 
∫𝐽𝑟𝑑𝑆 = 4𝜋

2𝛼𝜔∑|𝑑𝑙𝑚|
2 = 𝜎𝑡𝑜𝑡

𝑙,𝑚

 (A22) 

where 𝑑𝑆 = 𝑟2𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜑 = 𝑟2𝑑Ω is the sphere’s surface element. 

 

A3 Two-photon ionization PADs with arbitrary light polarization 

 

Two-photon ionization may be perturbatively described as a single-photon ionization process 

out of a virtual initial state 𝜓𝑖 = 𝜓𝑣 entering in the Schrödinger equation with a source, Eq. (10). In 

turn, the virtual state obeys itself the following Dalgarno-Lewis equation [52],53], 

(𝐻(𝐫) − 𝐸𝑣)𝜓𝑣 = −𝛆 ∙ 𝐫 𝜓𝑔 (A21) 

with 𝜓𝑔 = 𝑟
−1𝑃𝑔𝑌0

0 denoting the ground (truly initial) s-state (of Hydrogen or an Alkali atom) of 

energy 𝐸𝑔 . 𝐸𝑣 = (𝐸 + 𝐸𝑔)/2 is the virtual state energy. To find all possible solutions of Eq. 21, we 

expand the virtual state as, 

 𝜓𝑣 = 𝑟
−1 ∑ 𝑃𝑣,𝑙′,𝑚′𝑌𝑚′

𝑙′

𝑙′,𝑚′

. (A22) 

The harmonics 𝑌𝑚′
𝑙′  are referenced to the quantization axis 𝑧 that here we choose to be the propagation 

axis of the ionizing laser beam (perpendicular to the VMI spectrometer axis and parallel to the charged 

particle detector). We allow for arbitrary light polarization by writing the dipole operator as, 

 𝛆 ∙ 𝐫 = 𝑓𝑥 + 𝜂𝑒𝑖𝛿𝑦. (A23) 

Thus, the dipole operator is decomposed into two linear polarization terms of amplitudes 𝑓 and 𝜂 

along the x- and y-axes, respectively, and a relative phase 𝛿 between them. In practice the amplitude 
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𝑓 is set equal to either 0 or 1, while the amplitude 𝜂 can take any real value. In terms of the spherical 

harmonics the dipole operator writes, 

 

𝛆 ∙ 𝐫 = 𝑟√
2𝜋

3
[𝑓 (𝑌−1

1 − 𝑌1
1) + 𝜂𝑒𝑖𝛿(𝑌−1

1 + 𝑌1
1)] (A24) 

and it evidently leads to the selection rules 

 Δ𝑙 = ±1 and Δ𝑚 = ±1 (A25) 

for each transition, 𝜓𝑔 → 𝜓𝑣 and 𝜓𝑣 → 𝜓𝐸. Indeed, the virtual state is finally written as, 

 
𝜓𝑣 = 𝑟

−1�̃�𝑣,1
1

61/2
[(𝑓 + 𝜂𝑒𝑖𝛿)𝑌1

−1 − (𝑓 − 𝜂𝑒𝑖𝛿)𝑌1
1]  (A26) 

where the radial part �̃�𝑣,1 exhibits no angular dependence, and where angular factors are explicitly 

calculated. 

We now need to compute the matrix elements 𝑑𝑙𝑚 = 〈𝜓𝐸|𝛆 ∙ 𝐫|𝜓𝑣〉 entering the current probability 

density Eq. A19. After some manipulations we finally arrive at the following PAD expression: 

𝐽𝑟𝑟→∞ ∝
1

𝑟2
|(𝑓2 + 𝜂2𝑒2𝑖𝛿)𝑌0

0

+
𝛬𝑒𝑖𝛥𝜃20

∗

51/2
{−(𝑓2 + 𝜂2𝑒2𝑖𝛿)𝑌2

0

+ (
3

2
)
1/2

[(𝑓2 − 𝜂2𝑒2𝑖𝛿)(𝑌2
2 + 𝑌2

−2) − 2𝑓𝜂𝑖𝑒𝑖𝛿(𝑌2
2 + 𝑌2

−2)]}|

2

 

(A27) 

where, 

𝛬 ≡
∫𝑑𝑟 𝑟 𝑃𝐸2�̃�𝑣,1 

∫ 𝑑𝑟 𝑟 𝑃𝐸0�̃�𝑣,1
 (A28) 

is the relative strength of the radial integrals connecting the radial wavefunction �̃�𝑣,1 of the virtual 

state and the 𝑙=2 (𝑃𝐸2) and 𝑙=0 (𝑃𝐸0) continuum wavefunctions, while, 

𝛥𝜃20
∗ = 𝜃2 − 𝜃0 + 𝜙2 −𝜙0. (A29) 

The excitation and ionization pathways described by Eq. A25 are shown schematically in Figure A.2. 

Parameters 𝛬 and 𝛥𝜃20
∗  depend on the specific atom that a calculation refers and need to be computed 

separately. As a propensity rule 𝛬>1 [54], while there are cases, depending on the photon energy 𝜔, 

where either 𝛬 ≈ 0 or 𝛬 ≫ 1 [54,55]. In this latter case that we are about to use more frequently in 

the present work, the spherically symmetric term proportional to 𝑌0
0 can be neglected and the 

probability current density simplifies to the below expression, which is independent of both 𝛬 and 

𝛥𝜃20
∗ . 
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Figure A.2. Transition pathways of a two-photon excitation and ionization of a Hydrogen atom out of its s-ground state via a virtual 

state obeying the selection rules Δ𝑙 = 1 𝑎𝑛𝑑 Δ𝑚 = ±1. The virtual state is a linear combination of |𝑙𝑚 >= |1 − 1 > and |11 > 

states. The final state can be expressed as a sum of an s-wave and a d-wave. The s-wave is represented by the |00 > state, while the 

d-wave is represented by the |2 − 2 >, |20 > and |22 > states. 

 

The total cross section 𝜎𝑡𝑜𝑡 is equal to the sum of the partial cross sections 𝜎𝑙 from the s and 

d state contributions. This is expressed as 

 𝜎𝑡𝑜𝑡 = 𝜎𝑠 + 𝜎𝑑 

 
(A31) 

However, based on Equation A20 for linear polarization, the total cross section 𝜎𝑡𝑜𝑡 is given by, 

 
𝜎𝑡𝑜𝑡 = 4𝜋2𝛼𝜔(

(∫𝑑𝑟 𝑟 𝑃𝐸0�̃�𝑣,1)
2

9
+
(∫𝑑𝑟 𝑟 𝑃𝐸2�̃�𝑣,1) 

2

45
) 

 

(A32) 

Comparing the Equations A31 and A32 we get, 𝜎𝑠 = 4𝜋2𝛼𝜔
(∫𝑑𝑟 𝑟 𝑃𝐸0�̃�𝑣,1)

2

9
 and 𝜎𝑑 =

4𝜋2𝛼𝜔
(∫ 𝑑𝑟 𝑟 𝑃𝐸2�̃�𝑣,1) 

2

45
. 

For a two-photon ionization process below the threshold, a Hydrogen atom at energy of 𝜔 ≈

9𝑒𝑉 exhibits an anti-resonance for the 𝑙 = 0 state [54]. Consequently, the partial cross sections are 

𝜎𝑠 ≈ 10
−3 and 𝜎𝑑 ≈ 10

2 ,respectively, with units of 10−52 𝑐𝑚4𝑠 

From the ratio of the partial cross sections, we get an order of magnitude for the Λ −parameter 

(Equation A28), Λ ≈ 400, which satisfies the 𝛬 ≫ 1 condition and therefore the use of Equation A30 

 
𝐽𝑟𝛬≫ ∝

1

𝑟2
|−(𝑓2 + 𝜂2𝑒2𝑖𝛿)𝑌2

0

+ (
3

2
)
1/2

[(𝑓2 − 𝜂2𝑒2𝑖𝛿)(𝑌2
2 + 𝑌2

−2) − 2𝑓𝜂𝑖𝑒𝑖𝛿(𝑌2
2 + 𝑌2

−2)]|

2

 

 

(A30) 
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at this energy level is valid. The Λ −parameter depends solely on integrals of radial wavefunctions, 

therefore it the calculated value applies to all polarizations. 
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Appendix B: Polar Onion Peeling  

 

In experiments using linearly polarized light, the produced momentum distribution is 

cylindrically symmetric about the polarization axis. The Abel transform exploits this symmetry and 

allows the extraction of the 3D distribution from one single measurement of its projection on the 

detector [10-12]. 

Suppose a momentum distribution 𝑓(𝑧, 𝑟) in cylindrical coordinates with cylindrical 

symmetry about the z-axis. The lab frame of reference is (𝑥, 𝑦, 𝑧) and in relation to this the linearly 

polarized light is along the z-axis while the projection of the distribution is carried out along the y-

axis. The image on the detector is therefore, 

 

𝑃(𝑥, 𝑧) = ∫ 𝑓(𝑧, 𝑟)𝑑

+∞

−∞

𝑦 = 2 ∫ 𝑓(𝑧, 𝑟)
𝑟 𝑑𝑟

√𝑟2 − 𝑥2

∞

|𝑧|

 (B23) 

using a simple change of variables with 𝑟 = √𝑥2 + 𝑦2.This is the Abel transform [56] of the 𝑓(𝑧, 𝑟) 

function. The quantity of interest in Equation B1 is the 3D distribution 𝑓(𝑧, 𝑟) which can be obtained 

by evaluating the inverse Abel transform [56] 

 

𝑓(𝑧, 𝑟) = −
1

𝜋
∫
𝑑𝑃(𝑥, 𝑧)

𝑑 𝑥

𝑑 𝑥

√𝑥2 − 𝑟2

∞

𝑟

 (B24) 

The direct numerical estimation of this equation is generally avoided primarily due to the singularity 

and sensitivity to noise in realistic data. A few methods have been proposed to circumvent these 

challenges and accurately approximate the 3D distribution. One such method is the pBasex approach 

[57] which uses a set of basis functions that are analytical solution to Equation B1. The data are then 

fitted to the basis set using a least squares method. Another method is the Vrakking approach [10], 

which is an iterative process to determine the solution to Equation B2. Both methods yield accurate 

results and handle noisy data effectively by accumulating the noise at the center of the reconstructed 

image. Comparable to these methods is the Polar Onion Peeling (POP) [22,58] method, an 

improvement to the Onion Peeling method [8], which will be presented below. 

 

B1. Basic idea 

 

The basic premise of the Onion Peeling method is that each point on the detector has a 

contribution from the φ-dependence of the original 3D PAD, as shown in Figure B1. Using Cartesian 

coordinates this dependence can be calculated and removed by starting from the outermost pixel on 

each row of the detector image and moving along the x-axis towards the central z-axis. This method 
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is fast and particularly effective when the kinetic energy of the photoproducts is much less than the 

energy gained from the electric field in the detection [8]. However, the main drawback is noise 

accumulation to the central z-axis. The solution of this problem is onion peeling in polar coordinates 

[22,58] in which the error is reduced at large radii and accumulated to a spot at the center of the 

inverted image. The basics of the method will be presented below. 

Suppose a 3D radial distribution 𝐹(𝑟, 𝜃, 𝜑) that has cylindrical symmetry around the z-axis, 

as shown in Figure B.1. The z-axis corresponds to the polarization vector which is linear for an inverse 

Abel transform to apply. In a VMI spectrometer the 3D momentum distribution is projected along an 

axis (y-axis) onto the 2D plane parallel to the (x, z) plane, 

 

 

Figure B.1. 3D distribution with cylindrical symmetry about the laser polarization axis and its projection on the detector plane, 

original image taken from [22] 

 

producing the measured 2D distribution 𝐺(𝑅, 𝑎). This distribution is also in polar coordinates where 

R is the radius and α the angle in relation to the z-axis of the detector. 

If we consider 𝐹(𝑟, 𝜃, 𝜑) a cylindrically symmetric distribution of constant 𝑟 = 𝑅0, then due 

to its φ-dependence the measured distribution 𝐺(𝑅, 𝑎) will have signal at radii 𝑅 < 𝑅0. This signal 

can be calculated and subtracted away from 𝐺(𝑅, 𝑎) for all 𝑅 < 𝑅0 resulting in a distribution that is 

equivalent to a slice though the original distribution: 𝐹(𝑟, 𝜃, 𝜑 = 0). The full distribution can be 

recovered by rotation of 𝐹(𝑟, 𝜃, 𝜑 = 0). about the polarization axis.  

This process can be generalized for a PAD with varying r. In this case, each 𝑟 of the PAD 

corresponds to a projection 𝑔(𝑟; 𝑅, 𝑎) that has signal due to the φ-dependence at all radii 𝑅 ≤ 𝑟. 

Consequently, the measured projection,𝐺(𝑅, 𝑎), can be expressed as the sum of the individual 

projections, 𝑔(𝑟; 𝑅, 𝑎), for all 𝑟 values of the PAD, 
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𝐺(𝑅, 𝑎) = ∫ 𝑔(𝑟; 𝑅, 𝑎)𝑑𝑟

𝑟𝑚𝑎𝑥

0

 (B3) 

where, as mentioned, 𝑅 ≤ 𝑟 and the semicolon in 𝑔(𝑟; 𝑅, 𝑎) indicates that the projections correspond 

to specific radii 𝑟. The POP method exploits the principle described by Equation B3, which indicates 

that for each radial distance 𝑟, the slice of the 3D PAD,𝐹(𝑟, 𝜃, 𝜑 = 0), corresponds to a circle of 

radius 𝑅 = 𝑟 in the projected distribution. Beginning with the outermost radius of the PAD 𝑟 = 𝑟𝑚𝑎𝑥 

its projection 𝑔(𝑟 = 𝑟𝑚𝑎𝑥; 𝑅, 𝑎) is subtracted for all radii 𝑅 < 𝑟𝑚𝑎𝑥.leaving only the circle with 𝑅 =

𝑟𝑚𝑎𝑥. This process removes the φ-dependence from the 2D measured distribution for all 𝑅 < 𝑟𝑚𝑎𝑥 at 

this specific 𝑟𝑚𝑎𝑥 . 

By repeating this process for incrementally decreasing steps of 𝑑𝑟 down to 𝑟 = 0 ,the 

projection 𝑔(𝑟; 𝑅, 𝑎) is subtracted from 𝐺(𝑅, 𝑎)at each radius 𝑟. This effectively “peels away” the φ-

dependence from the projection at each 𝑟, resulting in a slice though the polarization plane of the 3D 

PAD.  

This process was described using polar coordinates [22] for both the 3D PAD and the 2D 

measured projection but can also be employed in Cartesian coordinates [58].  

 

B2. Computation  

 

The extraction of the deconvoluted image from the 2D measured projection is achieved by 

determining the 2D projection 𝑔(𝑟; 𝑅, 𝑎) at each radius 𝑟. One approach to calculation this is by 

simulating the 3D PAD at each radial increment [58]. However, this approach is computationally 

demanding. Therefore, an alternative faster yet equivalent method is presented in which basis 

functions are used to fit the experimental 2D projections [22]. 

As mentioned in section B1 the outermost circle of the 2D projection contains no φ-

dependence, thus at 𝑟 = 𝑅 it can be expressed as 

 𝑔(𝑟; 𝑅, 𝑎) = ℎ(𝑟, 𝜃) (B4) 

By substituting 𝑟 = 𝑟𝑚𝑎𝑥, ℎ(𝑟𝑚𝑎𝑥 , 𝜃)can be fitted to the angular distribution [46]: 

 𝐼(𝜃) = 𝑁(𝑟)∑𝛽𝑛(𝑟) 𝑃𝑛[𝑐𝑜𝑠(𝜃)]

𝑛

 (B5) 

where 𝑃𝑛[𝑐𝑜𝑠(𝜃)] is the 𝑛𝑡ℎ order Legendre polynomial, 𝑁(𝑟) is an intensity factor and 𝛽𝑛(𝑟) the 

anisotropy parameters. The fitting is performed by standard linear least-squares method. The integer 

𝑛 is even [59] and depends on the physics, where in our case of-a two-photon process an order of n=2 

is sufficient [22].  
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The fit provides the 𝑁(𝑟) and 𝛽𝑛(𝑟) from which the distribution 𝑔𝑓𝑖𝑡(𝑟𝑚𝑎𝑥; 𝑅, 𝑎) may be 

calculated. This distribution is then subtracted from the image 𝐺(𝑅, 𝑎) for all       𝑅 ≤ 𝑟𝑚𝑎𝑥: 

 𝐺𝑠(𝑅, 𝑎) = 𝐺(𝑅, 𝑎) − 𝑔𝑓𝑖𝑡(𝑟; 𝑅, 𝑎) (B6) 

𝐺𝑠(𝑅, 𝑎) is a modified detector image containing no 𝜑-dependence from the 𝑟𝑚𝑎𝑥 radius projection 

of the 3D distribution. This process is repeated for 𝑟 = 𝑟𝑚𝑎𝑥 − 𝑑𝑟 down to 𝑟 = 0. At the end, 𝐺𝑠(𝑅, 𝑎) 

represents the 2D slice 𝐹(𝑟, 𝜃, 𝜑 = 0) of the 3D PAD, which can also be provided by retaining ℎ(𝑟, 𝜃) 

in Equation B4 at each increment. 

The distribution 𝑔𝑓𝑖𝑡(𝑟; 𝑅, 𝑎) is generated using basis functions. These basis functions are 

radial distribution functions 𝑏𝑟(𝑅) obtained by angular integration of isotropic images at all possible 

radii 𝑟. Importantly, the basis set is computed only once and then utilized throughout the 

reconstruction process. The overall size of the basis set is determined by the number of pixels on the 

CCD. 

An idealized isotropic projection image 𝑔𝑖𝑑𝑒𝑎𝑙(𝑟; 𝑅, 𝑎) is constructed from the basis function 

𝑏𝑟(𝑅) using: 

 𝑔𝑖𝑑𝑒𝑎𝑙(𝑟; 𝑅, 𝑎) = 𝜌(𝑟, 𝑅) 𝑏𝑟(𝑅) (B7) 

where the factor 𝜌(𝑟, 𝑅) indicates the number of pixels with their associated intensities. The image 

𝑔𝑓𝑖𝑡(𝑟; 𝑅, 𝑎) is then generated through: 

 𝑔𝑓𝑖𝑡(𝑟; 𝑅, 𝑎) = 𝑔𝑖𝑑𝑒𝑎𝑙(𝑟; 𝑅, 𝑎)𝑁(𝑟)∑ 𝛽𝑛(𝑟) 𝑃𝑛[
𝑅

𝑟
cos(𝑎)] 𝑛  (B8) 

The factors 𝑁(𝑟) and 𝛽𝑛(𝑟) were obtained from the fitting of the outer ring ℎ(𝑟, 𝜃) at each 𝑟 

to Equation B5. The factor 𝑅 𝑟⁄  accounts for the transformation between the coordinate system 

(𝑟, 𝜃, 𝜑) and the (𝑅, 𝑎) ,as shown in Figure B1.  
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