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Περίληψη

Στην παρούσα διατριβή εισάγουμε και μελετάμε μία νέα παραλλαγή γραμμικών

απεικονίσεων γραφημάτων σύμφωνα με την οποία οι κορυφές του γραφήματος δια-

τάσσονται κατά μήκος μιας ευθείας γραμμής, η οποία συχνά αναφέρεται ως ράχη,

ενώ οι ακμές του γραφήματος διαμερίζονται σε σύνολα, τα οποία ονομάζονται σε-

λίδες. Στην παραλλαγή που μελετάμε: (i) κάθε σελίδα αντιστοιχεί σε ένα διακριτό
επίπεδο που περιέχει τη ράχη, (ii) κάθε ακμή απεικονίζεται είτε ως ημικύκλιο άνω-
θεν ή κάτωθεν της ράχης είτε ως δύο ημικύκλια εκατέρωθεν της ράχης τα οποία

έχουν ένα κοινό σημείο που βρίσκεται στη ράχη και ανάμεσα στα δύο άκρα της

ακμής και (iii) κάθε δύο ακμές της ίδιας σελίδας δεν τέμνονται. Αναφερόμαστε σε
τέτοιες γραμμικές απεικονίσεις ως μονότονες με διπλοτόξα. Δοθέντος ενός γρα-

φήματος G, το ενδιαφέρον μας εστιάζει στον ελάχιστο αριθμό bn(G) σελίδων που
απαιτούνται για την ύπαρξη μίας γραμμικής απεικόνισης με μονότονα διπλοτόξα.

Αποδεικνύουμε ότι για το πλήρες γράφημα Kn ισχύει bn(Kn) ≤
⌈
n
4

⌉
. Το

αποτέλεσμα αυτό επιτυγχάνεται μέσω μίας γενικής κατασκευής που αποδίδει δια-

φορετικές γραμμικές απεικονίσεις με μονότονα διπλοτόξα, στα οποία ο αριθμός

των ακμών, που απεικονίζονται ως διπλοτόξα, μπορεί να κυμαίνεται από 0 έως
n2

8 − n
4+2. Για το πλήρες διμερές γράφημαKn,n δείχνουμε ότι bn(Kn,n) ≤

⌈
n
3

⌉
+1

στην περίπτωση που οι κορυφές του πρώτου μέρους του Kn,n προηγούνται των

κορυφών του δεύτερου του μέρους. Πέραν αυτών των αποτελεσμάτων, τα οποία

είναι θεωρητικής φύσης, αναπτύξαμε και μία διατύπωση SAT για το πρόβλημα
του ελέγχου εάν ένα δοθέν γράφημα επιδέχεται μιας γραμμικής απεικόνισης με

διπλοτόξα σε συγκεκριμένο αριθμό σελίδων. Τέλος, ενσωματώσαμε την υλοποίη-

σή μας σε ένα υπάρχον client-server λογισμικό, το οποίο υποστηρίζει διάφορους
τύπους γραμμικών απεικονίσεων, συμπεριλαμβανομένων και αυτών της στοίβας

και της ουράς.
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Abstract

In this thesis, we introduce and study on a new variant of linear layouts in
which the vertices are arranged along a straight line, commonly referred to
as spine, and the edges are partitioned into a certain number of parts, called
pages, such that: (i) each page is a distinct plane containing the spine, (ii) each
edge is drawn either as a half-circle above the spine or as a half-circle below
the spine, or as two half-circles on opposite sides of the spine with a single
common point located on the spine and inbetween the two endvertices of the
edge, and (iii) no two edges of the same page cross. We refer to such linear
layouts as monotone with biarcs. Given a graph, our interest is on its biarc
number, that is, the minimum number of pages that are required for a linear
layout with monotone biarcs to exist.

Our contribution is as follows: We prove that the biarc number of Kn is at
most ⌈n4 ⌉. This result is obtained via a general construction (of independent
interest) which yields different linear layouts with monotone biarcs, in which

the number of edges drawn as biarcs can be adjusted from 0 to n2

8 − n
4 + 2.

We further show that the biarc number of Kn,n is at most ⌈n3 ⌉ + 1 in the
separated setting, namely, when all vertices of one part of Kn,n precede those
of its second part. Besides these results, which are of theoretical nature,
we also developed a SAT formulation for the problem of testing whether a
given graph admits a linear layout with biarcs on a certain number of pages.
We integrated our implementation into an existing client-server tool, which
supports various types of linear layouts, including the well-known stack and
queue layouts.

ii
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CHAPTER1
Introduction

Linear layouts have a significant role in several aspects of Computer Science
and in particular in Topological Graph Theory. For a given a graph, a linear
layout of it consists of an ordering ≺ of its vertices and a partition of its edges
into parts, called pages. The set of edges that are allowed to coexist in a page
must avoid certain forbidden patterns and different forbidden patterns for the
edges coexisting in the same page result in different types of linear layouts.

In the following, we introduce two existing types of linear layouts, which are
relevant to our work; in particular, the well-studied stack and queue layouts.
We then introduce and motivate the variant that we studied in this thesis.

1.1 Stack Layouts

In the literature, stack layouts are also known as book embeddings. In this
type of linear layouts, the edges are partitioned into pages, called stacks, that
avoid the following forbidden pattern: Two distinct independent edges (u, v)
and (z, w), such that without loss of generality u ≺ v and z ≺ w, cannot be in
the same stack if and only if u ≺ z ≺ v ≺ w or z ≺ u ≺ w ≺ v. In other words,
one edge cannot cross the other. Given a graph G, the minimum number of
stacks that are required in order for G to admit a stack layout is called the
stack number of G and it is denoted as sn(G). Note that in the literature the
stack number of a graph is also referred to as book thickness and page number.

Since stack layouts form a deeply-studied topic in Topological Graph The-
ory, there exist a plethora of results proposed in the literature. Since our work
focuses mainly on complete and complete bipartite graphs, we mention here
two related results by Bernhart and Kainen [3] and by Enomoto et al. [5].
The former in 1979 proved that the stack number of the complete graph with

3



Chapter 1 1.2. Queue Layouts

n vertices is ⌈n2 ⌉, that is, sn(Kn) = ⌈n2 ⌉. The latter proved that the stack
number of the complete bipartite graph Kn,n is at most ⌊2n3 ⌋ + 1, that is,
sn(Kn) ≤ ⌊2n3 ⌋+ 1.

0

4 9

5

6 1

8 7

23

(a)

9 8 7 6 5 4 0 3 1 2

(b)

Figure 1.1: (a) The Petersen’s graph and (b) one of its possible stack layouts
with three stacks where edges of the same color are in the same stack.

Since the subgraphs induced by the edges of each page of a stack layout
form an outerplanar graph, it follows that the stack number of a graph is
lower bounded by its thickness, where the thickness of a graph is defined as the
minimum number of planar subgraphs in which the graph can be decomposed.

1.2 Queue Layouts

In a queue layout, the partition of the edges is done into pages, called queues,
that avoid the following forbidden pattern: Two distinct independent edges
(u, v) and (z, w) such that without loss of generality u ≺ v and z ≺ w cannot
be on the same queue if and only if u ≺ z ≺ w ≺ v or z ≺ u ≺ v ≺ w. In
other words, one edge cannot nest the other. Given a graph G, the minimum
number of queues that are required in order for G to admit a queue layout is
called the queue number of G and it is denoted as qn(G).

The queue number of the complete and the complete bipartite graphs have
been studied by Heath and Rosenberg [7]. More precisely, the queue number
of Kn is ⌊n2 ⌋, while the queue number of Kn,n is ⌈n2 ⌉, that is, qn(Kn) = ⌊n2 ⌋
and qn(Kn,n) = ⌈n2 ⌉ .
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Chapter 1 1.3. Linear Layouts with Biarcs

9 8 7 6 5 4 0 3 2 1

Figure 1.2: A queue layout of Petersen’s graph with two queues, where edges
of the same color are in the same queue.

1.3 Linear Layouts with Biarcs

A common approach to visualize a linear layout of a graph is by laying out
its vertices along a straight line, commonly refer to as spine, from left to
right according to ≺ and then draw its edges as half-circles connecting their
endpoints. Usually, the edges of each page (stack or queue) are drawn with
the same color in one of the two half planes bounded by the spine as seen in
Fig. 1.1b and Fig. 1.2. By definition, in a stack (queue) layout, the half-circles
corresponding to two edges of the same stack (queue) do not cross (nest).

In the model that we introduce and study in this thesis, each page in the lay-
out is a whole plane containing the spine (as opposed to stack and queue lay-
outs, in which their pages are half-planes). Under this assumption, an edge in
the layout can be drawn either as a half-circle above or as a half-circle below
the spine, or as two half-circles on opposite sides of the spine with a single
common point located on the spine and inbetween the two endvertices of the
edge. The later way of representing an edge is referred to as monotone biarcs
in the literature; see, e.g., [4]. Furthermore, representations of planar graphs
in which the edges are allowed to cross the spine are referred to as topological
book embeddings in the literature; see, e.g., [9]. In a linear layout with mono-
tone biarcs of a graph the task is to determine a linear order of its vertices and
a partition of its edges into pages such that the edges belonging to the same
page admit a planar representation under the restrictions described above.
The biarc number of a graph, denoted by bn(G), is the minimum number of
pages that are required for a linear layout with monotone biarcs to exist. The
next theorem provides a trivial upper bound on the biarc number of a graph.

5



Chapter 1 1.3. Linear Layouts with Biarcs

Theorem 1.3.1. The biarc number of a graph G is at most half of its stack
number, that is, bn(G) ≤ ⌈sn(G)/2⌉.

Proof. Let L be a stack layout of graph G with sn(G) stacks. By definition,
any two stacks s and s′ of G form a biarc page, since one can draw as half-
circles all edges of s above the spine and all edges of s′ below the spine. It
follows that no two edges of the resulting layout will cross with each other,
which by definition yields a biarc page without monotone biarcs. This implies
that bn(G) ≤ ⌈sn(G)/2⌉, as desired.

Theorem 1.3.1 provides an upper bound on the biarc number of a graph. A
lower bound can be derived by leveraging the thickness of the graph, which is
formally defined as the minimum number of planar graphs a given graph can
be decomposed to. Given a graph G, the thickness of G is commonly denoted
by t(G). The next theorem follows by the definitions of biarc number and
thickness.

Theorem 1.3.2. The biarc number of a graph G is lower bounded by its
thickness, that is, t(G) ≤ bn(G).

Proof. Since each page of a biarc layout L of graph G is a planar graph, it
follows that L cannot have less that t(G) pages, as otherwise one can decom-
pose G into less that t(G) planar graphs; a contradiction to the definition of
t(G). This implies that t(G) ≤ bn(G), as desired.

Our motivation for studying linear graph layouts with monotone biarcs
stems from the following observations that can be made for planar graphs.
More presicely, since the stack number of the class of planar graphs is 4 [11, 2]
(that is, every planar graph admits a stack layout with four stacks [11], while
there exist planar graphs that require four stacks [2]), Theorem 1.3.1 implies
that every planar graph admits a linear layout with biarcs on at most two
pages. On the other hand, it is known that each planar graph admits a linear
layout with biarcs on a single page with at most 15n

16 edges drawn as biarcs [4]
with n being the number of vertices of the graph.

A concrete example is the Goldner Harary graph [6], which is a maximum
planar graph consisting of 11 vertices and 27 edges; see Fig. 1.3a. Even though
this graph has stack number of 3 [6] (for a linear layout with three stacks, see
Fig. 1.3b), it requires only a single page for its biarc layout, as depicted in
Fig. 1.3c.

6



Chapter 1 1.3. Linear Layouts with Biarcs
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(a) The Goldner Harary graph.
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(b) A stack layout with three
stacks.
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(c) A single-page linear lay-
out with monotone biarcs.

Figure 1.3: (a) The Goldner Harary graph and (b)-(c) different linear layouts
of it, in which edges with the same col are of the same page.

The aforementioned observations imply that the upper bound of Theorem
Theorem 1.3.1 is not tight. Hence, it is tempting to study other graph classes
for which improved upper bounds can be obtained.

7



Chapter 1 1.4. Thesis Contribution

1.4 Thesis Contribution

Our research focused on bounds on the biarc number of the complete graphKn

and of the complete bipartite graph Kn,n (for definitions refer to Chapter 2).

• For the former, we present a construction that yields biarc layouts with
monotone biarcs on ⌈n4 ⌉ pages. Since the stack number of Kn is ⌈n2 ⌉, our
result does not improve the upper bound that one would obtain by an
application of Theorem 1.3.1. However, it forms a general construction
of independent interest, as it yields different layouts in which the number
of biarcs ranges from 0 to n2

8 − n
4 + 2.

• For the latter, since the best-known upper bound on the stack number
of Kn,n is ⌊2n3 ⌋ + 1 [5], the upper bound that one obtains on the biac

number of Kn,n by an application of Theorem 1.3.1 is ⌈ ⌊
2n
3
⌋+1

2 ⌉. In this
thesis, we show that the biarc number of Kn,n is ⌈n3 ⌉+1 in the separated
setting, namely, when all vertices of one part of Kn,n precede those of
its second part. It is worth noting that the two bounds are equal when
n is a multiple of 3; otherwise ours is by one worse than the one derived
by Theorem 1.3.1.

The upper bounds that we introduced above can be coupled by corresponding
lower bounds that one can derived from Theorem 1.3.2 and the thickness
of Kn and Kn,n. For the former, Mutzel et al. [10] proved that t(Kn) =⌊
n+7
6

⌋
, for n ̸= 9, 10 and t(K9) = t(K10) = 3, while for the latter Hu and

Chen [8] proved that t(Kn,n) = ⌈n4 ⌉. We summarize these results in the
following two theorems:

Theorem 1.4.1. For n > 10, the biarc number of the complete graph Kn is
at least

⌊
n+7
6

⌋
and at most ⌈n4 ⌉.

Theorem 1.4.2. The biarc number of the complete bipartite graph Kn,n (in
the separated setting) is at least

⌊
n
4

⌋
and at most ⌈n3 ⌉+ 1.

Besides the aforementioned results, which are of theoretical nature, we also
developed a SAT formulation for the problem of testing whether a given graph
admits a linear layout with biarcs on a certain number of pages. We integrated
our formulation into an existing client-server tool [1], which supports different
types of linear layouts (including stack and queue layouts).

8



Chapter 1 1.5. Thesis Structure

1.5 Thesis Structure

The rest of this thesis is structured as follows:

• Chapter 2 summarizes preliminary definitions and notions that are used
in the remaining parts of the thesis.

• In Chapter 3, we present our constructions for obtaining the linear lay-
outs that we described above for Kn and Kn,n.

• In Chapter 4, we present our SAT formulation for the problem of testing
whether a given graph admits a linear layout with biarcs on a certain
number of pages.

• The thesis is concluded in Chapter 5 by listing our future plans, appli-
cations and open problems raised by our work.

9
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CHAPTER2
Preliminaries

In this section, we present preliminary definitions and notions that are used
in the remaining parts of the thesis.

2.1 Complete and Complete Bipartite Graphs

Definition 2.1.1. A graph is called complete if and only if every two distinct
vertices of it are connected by an edge.

The complete graph on n vertices is commonly denoted by Kn. It is well
known that the number of edges of Kn is

(
n
2

)
= n(n−1)

2 .

Definition 2.1.2. A graph is called complete bipartite if its vertex set can be
partitioned into two independent sets A and B such that every vertex in A is
connected with every vertex in B.

If, in the aforementioned definition, |A| = a and |B| = b holds, then the
obtained complete bipartite graph is denoted by Ka,b. In this thesis, we focus
on complete bipartite graphs in which |A| = |B|.

2.2 A Method For Computing Stack Layouts for
Complete Graphs.

There exist several methods for obtaining a stack layout of the compete graph
Kn with ⌈n2 ⌉ stacks. In this section, we present the method by Bernhart and
Kainen [3], which is the earliest method yielding a stack layout L of Kn with
⌈n2 ⌉ stacks. Let v0, v1, . . . , vn−1 be the vertices of Kn and assume without loss

11



Chapter 2 2.3. A General SAT Formulation

of generality v0 ≺ v1 ≺ . . . ≺ vn−1 holds in L. Assuming that the indices are
taken mod n, for i ∈ [0, ⌈n2 ⌉ − 1], the edges assigned to the i-stack pi of L are
the following:

(
v⌈n

2
⌉+i−1−⌊ j

2⌋, v⌈n
2
⌉+i−1+⌈ j

2⌉
)
, 1 ≤ j ≤ n− 1

It is not difficult to see that each page in L contains exactly n−1 edges which
induce a path. Also, no edge of Kn is assigned to two distinct pages of L,
which implies that L is a valid stack layout of Kn, since the total number of
edges in L is n(n−1)

2 .

v0 vi−1 vi v⌈n
2 ⌉+i−1 vn

2 +i vn−1vn−2v2i−1

Figure 2.1: Illustration of the i-th stack pi of a stack layout of Kn with ⌈n2 ⌉
stacks computed using the method by Bernhart and Kainen [3].

2.3 A General SAT Formulation for Different Types
of Linear Layouts.

Let X a set of n boolean variables x1, x2, . . . , xn. A term over X is either
xi or its negation ¬xi and a clause is a disjunction of distinct terms e.g.,
(x2∨¬x6∨x1). A truth assignment for X is an assignment of either “true” or
“false” to each variable xi. A clause C is satisfied if at least on of the terms
in it has received the value “true”. For a collection of clauses C1, C2, . . . , Ck,
the assignment satisfies the collection if the conjunction of all the clauses
Φ = C1∧C2∧ . . .∧Ck evaluates to “true”. This problem is known as Boolean
satisfiability problem more commonly refereed as SAT.

As part of this thesis, we expanded a preexisting project introduced by
Bekos et al. [1], which formulates various types of linear layouts as SAT in-

12



Chapter 2 2.3. A General SAT Formulation

stances. In the following, we recall the most important aspects of this for-
mulation. Given a graph G, for every pair of distinct vertices u and v of G,
the formulation has a variable σ(u, v), which is true if and only if vertex u
has precedes v in the order of the layout, namely, u ≺ v. Further, for every
edge e of G, the formulation has a variable ϕp(e), which is true if and only
if e is assigned to page p. Finally, for every pair of two distinct edges e and
e′ of G, the formulation has a variable χ(e, e′), which is true if and only if
e and e′ are both assigned in the same page. If n and m are the number of
vertices and edges of G, respectively, a set of O(n3 +m2) clauses ensures that
the underlying order is indeed linear, and that no two edges of the same page
form a forbidden pattern (that is, cross in a stack or nest in a queue).

13
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CHAPTER3
Bounds on the
Biarc-Number of Complete
and Compete Bipartite
Graphs

This section is devoted on upper bounds on the biarc-number of the complete
graph Kn (Section 3.1) and of the compete bipartite graph Kn,n (Section 3.2).

3.1 The Upper Bound on the Biarc Number of Kn

In the following, we assume that n is a multiple of 4 and we prove that Kn

admits a linear layout with monotone biarcs in n
4 pages. This implies that

the biarc number of Kn is at most
⌈
n
4

⌉
and proves Theorem 1.4.1. In our

construction, we assume that there exist integers x and y, such that:

n = x+ y, x mod 2 = 0, n mod
x

2
= 0, n mod

y

2
= 0, x ≤ n

2
(3.1)

Since n is a multiple of 4, a feasible solution of Eq. (3.1) can be derived by,
e.g., setting x = y = n

2 . Another feasible solution can be derived by setting
x = 0 and y = n. To simplify the presentation, we assume the vertices of Kn

are denoted by v0, . . . , vx−1, u0, . . . , uy−1 (colored white and gray in Fig. 3.1,
respectively) and their order in the constructed layout L is:

v0 ≺ . . . ≺ vx
2
−1 ≺ u0 ≺ . . . ≺ uy−1 ≺ vx

2
≺ . . . ≺ vx−1

We further assume in the following that all indices at u−vertices are taken
mod y, while all indices at v−vertices are taken mod x. Under these as-
sumptions, we next describe how to assigned the edges of Kn to the n

4 pages

15



Chapter 3 3.1. The Upper Bound on the Biarc Number of Kn

p0, . . . , pn
4
−1 of L. We partition the available pages into two sets. The first set

consists of the pages p0, . . . , px
2
−1, while the second set consists of the remain-

ing available pages, namely, px
2
, . . . , pn

4
−1. In the following, we first describe

the edges in the first set of the partition. In particular, for each i ∈ [0, x2 − 1],
we describe which edges are assigned to page pi of L and their type (arc above
or arc below the spine or biarc).

Page pi, with i ∈ [0, x2 − 1], of L contains the following y+2i+3 edges, drawn
as arcs above the spine:

(u y
2
+i−1−⌊ j

2⌋, u y
2
+i−1+⌈ j

2⌉),
y
2 − 2i ≤ j ≤ y

2 − 1

(vi, uj) 2i− 1 ≤ j ≤ y
2 + i− 1

(u y
2
−1−j , vx−1−i) i ≤ j ≤ y

2

(vi, vx−1−j) 0 ≤ j ≤ i

(vj , vi) 0 ≤ j ≤ i− 1

Page pi, with i ∈ [0, x2 − 1], of L contains the following y
2 +2i edges, drawn as

arcs below the spine:

(u y
2
+i−1−⌊ j

2⌋, u y
2
+i−1+⌈ j

2⌉), 1 ≤ j ≤ y − 2i− 1

(uj , vx
2
−i−1) i− 1 ≤ j ≤ 2i− 1

(vi, uj) 0 ≤ j ≤ i− 1

(vj , vx−i−1) 0 ≤ j ≤ i− 1

(vx−i−1, vx−j) 1 ≤ j ≤ i

Page pi, with i ∈ [0, x2 − 1], of L contains the following y
2 − 1 edges, drawn as

biarcs starting above the spine and ending below the spine; in the following,
the former intersect the spine between the vertices u y

2
+2i−2+j and u y

2
+2i−2+j ,

while the latter between the vertices u2i−2−j and u2i−1−j .

(vi, u y
2
+j) i ≤ j ≤ y

2 − 1

(uj , vx−i−1) 0 ≤ j ≤ i− 2

Page pi, with i ∈ [0, x2 − 1], of L contains the following y
2 − 2 edges, drawn as

biarcs starting below the spine and ending above the spine; in the following,
the former intersect the spine between the vertices ui−2+j and ui−1+j , while

16



Chapter 3 3.1. The Upper Bound on the Biarc Number of Kn

the latter between the vertices uy+2i−2−j and uy+2i−1−j .

(vi, ui+j) 0 ≤ j ≤ i− 2

(uj , vx−i−1) 2i ≤ j ≤ y
2 + i− 2

The schemization of Fig. 3.1 shows that the edges assigned to page pi, with
i ∈ [0, x2 − 1], (as described above) do not cross in ≺. Furthermore, the total
number of edges that have been assigned to pages p0, . . . , px

2
−1 of L is:

x
2−1∑
i=0

(
(y + 2i+ 3) + (y + 2i) + (

y

2
− 1) + (

y

2
− 2)

)
=

x
2−1∑
i=0

(3y + 4i) =
1

2
x(x+ 3y − 2)

To complete the proof, we now turn our attention to the remaining pages in
L, namely, px

2
, . . . , pn

4
−1. More precisely, the edges of Kn that are assigned to

page pi, with i ∈ [x2 ,
n
4 − 1] are the following 2y − 2 ones; in the following, the

former are drawn above the spine, while the latter are drawn below the spine.

(u y
2
+2i−x

2
−1−⌊ j

2⌋, u y
2
+2i−x

2
−1+⌈ j

2⌉), 1 ≤ j ≤ y − 1

(u y
2
+2i−x

2
−⌊ j

2⌋, u y
2
+2i−x

2
+⌈ j

2⌉), 1 ≤ j ≤ y − 1

These edges do not cross paiwise, since the ones above the spine as well as
the ones below the spine in page pi, with i ∈ [x2 ,

n
4 − 1] follow the scheme

described in Section 2.2. In total, the edges assigned to pages px
2
, . . . , pn

4
−1

are
(
n
4 − x

2

)
· (2y − 2). Summing up with the number of edges assigned to

pages p0, . . . , pn
4
−1, we obtain that the total number of edges in L is 1

2(n(y −
1) + x(x + y)). By setting x + y = n (refer to Eq. (3.1)), we obtain that the
total number of edges in L is 1

2(n(n − 1)), which equals the number of edges
of Kn, as desired. Since no edge is assigned to two distinct pages in L, the
proof of Theorem 1.4.1 is completed.

Remark 1. The solution that one obtains combining Theorem 1.3.1 with the
construction provided in Section 2.2 which yields stack layouts of Kn with n

2
pages is derived from our scheme by setting x = 0 and y = n.

17



Chapter 3 3.1. The Upper Bound on the Biarc Number of Kn

v0

v1

vi

vi−1

vx
2

u0

vx−1

vx−2

vx−i

vx−i−1

vx
2

uy−1

u2i−1

uy
2
+i−1

ui

ui−1

uy
2
+i

u2i−2

A
b
ov
e

Figure 3.1: Page pi, with i ∈ [0, x2 − 1] of the linear layout of Kn with
monotone biarcs provided in Section 3.1.
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Chapter 3 3.2. The Upper Bound on the Biarc Number of Kn,n

3.2 The Upper Bound on the Biarc Number of Kn,n

In this section, we turn our attention to the complete bipartite graph Kn,n

and, assuming that n is a multiple of 3, we prove that Kn,n admits a linear
layout L with monotone biarcs in n

3 + 1 pages. This implies that the biarc-
number of Kn,n is at most

⌈
n
3

⌉
+ 1, proving Theorem 1.4.2. We denote by

u0, . . . , un−1 and by v0, . . . , vn−1 the vertices of the two parts of Kn,n. In the
constructed linear layout L, the order of the vertices is as follows:

u0 ≺ u1 ≺ . . . ≺ un−1 ≺ v0 ≺ v1 ≺ . . . ≺ vn−1

This immediately implies that L is separated, as desired. We next describe
how to assign the edges of Kn,n to the pages of L.

Page pi, with i ∈ [0, n3 − 1], of L contains the following edges that are drawn
as arcs above the spine. In particular, if i ∈ [0, n6 − 1], then the total number
of these edges is n− i−1; otherwise (that is, i ∈ [n6 ,

n
3 −1]), their total number

is n
3 + 3i+ 2.

(un
3
−i−1, v 2n

3
−1−j) 0 ≤ j ≤ n

3 + i

(un
3
−i+j , vn

3
−i−1) 0 ≤ j ≤ 2i

(u 2n
3
+i+2+j , vi) 0 ≤ j ≤ n

3 − 2i− 3

(u 2n
3
+i+1, vi+j) 0 ≤ j ≤ n

3 − 2i− 2

Page pi, with i ∈ [0, n3 − 1], of L contains the following edges that are drawn
as arcs below the spine. In particular, if i ∈ [0, n6 − 1], then the total number
of these edges is 5n

3 − 3i − 2; otherwise (that is, i ∈ [n6 ,
n
3 − 1]), their total

number is n+ i+ 1.

(ui, v 2n
3
+j) i ≤ j ≤ n

3 − 1

(ui+1+j , v 2n
3
+i) 0 ≤ j ≤ 2n

3 − 1

(u 2n
3
+i, v 2n

3
+i−1−j) 0 ≤ j ≤ 2i

(u 2n
3
+i+1+j , vn

3
−i−1) 0 ≤ j ≤ n

3 − 2i− 2

(un−i−1, vn
3
−i−2−j) 0 ≤ j ≤ n

3 − 2i− 3

Page pi, with i ∈ [0, n3 − 1], of L contains the following 2n
3 − 1 edges, drawn
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Chapter 3 3.2. The Upper Bound on the Biarc Number of Kn,n

as biarcs starting above the spine and ending below the spine; these edges
intersect the spine between the vertices u 2n

3
+i and u 2n

3
+i+1

(un
3
+i, vn

3
−i+j), 0 ≤ j ≤ n

3 − 1

(un
3
+i+1+j , v 2n

3
−i−1), 0 ≤ j ≤ n

3 − 2

We conclude the description of the edge-to-page assignment by describing the
edges of the last page pn

3
of L. More precisely, in this page, there exist n

3 edges
drawn as simple arcs above the spine:

(u 2n
3
−1, vj), 0 ≤ j ≤ n

3 − 1

The schemizations of Figs. 3.2 and 3.3 show that the edges assigned to page
pi, with i ∈ [0, n3 − 1], (as described above) do not cross in ≺. The same holds
in page pn

3
, since the edges assigned to this page form a star routed at u 2n

3
−1.

Furthermore, the total number of edges that have been assigned to L is:

n
6 −1∑
i=0

(
(n− i− 1) + (

5n

3
− 3i− 2) + (

2n

3
− 1)

)
+

n
3 −1∑
i=n

6

(
(
n

3
+ 3i+ 2) + (n+ i+ 1) + (

2n

3
− 1)

)
+

n

3

=

n
6 −1∑
i=0

(
10n

3
− 4i− 4

)
+

n
3 −1∑
i=n

6

(2n+ 4i+ 2) +
n

3
= n2

It follows that that the total number of edges in L equals the number of edges
of Kn,n, as desired. Since no edge is assigned to two distinct pages in L, the
proof of Theorem 1.4.2 is completed.
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un
3−i+1

ui+1
ui

u0

un
3−1

un
3

un
3−i+2

un
3+i

un
3+i+1

u2n
3 −1

u2n
3

u2n
3 +i

u2n
3 +i+1

un−i+1

un−i

un−1

v0

vn
3−1

vn
3

v2n
3 −1

v2n
3

vn−1

vi−1

vi

vn
3−i+1

vn
3−i

v2n
3 −i

v2n
3 −i+1

v2n
3 +i

v2n
3 +i−1

A
b
ov
e

Figure 3.2: Page pi, with i ∈ [0, n6 − 1], of the linear layout of Kn,n with
monotone biarcs provided in Section 3.2.
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un
3−i+1

ui+1
ui

u0

un
3−1

un
3

un
3−i+2

un
3+i

un
3+i+1

u2n
3 −1

u2n
3

u2n
3 +i

u2n
3 +i+1

un−i+1

un−i

un−1

v0

vn
3−1

vn
3

v2n
3 −1

v2n
3

vn−1

vi−1

vi

vn
3−i+1

vn
3−i

v2n
3 −i

v2n
3 −i+1

v2n
3 +i

v2n
3 +i−1

A
b
ov
e

Figure 3.3: Page pi, with i ∈ [n6 ,
n
3 − 1], of the linear layout of Kn,n with

monotone biarcs provided in Section 3.2.
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CHAPTER4
SAT Formulation

In this section, we present a SAT formulation for the problem of testing
whether a given graph admits a linear layout with monotone biarcs on a cer-
tain number of pages. It is worth noting that our implementation has been
integrated into an existing client-server tool [1], which supports various types
of linear layouts, including the well-known stack and queue layouts.

4.1 The Variables of the SAT Formulation

Consider a graph G with n vertices and m edges and let p be a positive
integer. For testing whether G admits a linear layout L with monotone biarcs
on p pages, we extend the SAT formulation that was described in Section 2.3
by introducing O(nmp) new variables. More precisely, for each vertex v of G,
for each edge e of G and for each page q with q ∈ [0, p−1] of L, our formulation
contains the following two variables:

• Variable tq(e, v) is true if and only if edge e is above the spine at vertex
v in page q.

• Variable bq(e, v) is true if and only if edge e is below the spine at vertex
v in page q.

4.2 The Clauses of the SAT formulation

In this section, we describe the clauses that our SAT formulation has in order
to guarantee that the solution of the constructed SAT instance corresponds to
a valid linear layout with monotone biarcs.
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Chapter 4 4.2. The Clauses of the SAT formulation

For each edge e = (u, v) of G, and for each page q, we first need to ensure
that if e is assigned to page q, then for each endpoint w of the edge e (i.e.,
w ∈ {u, v}), variables tq(e, w) and bq(e, w) cannot be simultaneously false. In
other words, the edge must leave each of its endpoints either above or below
the spine in the layout L. This is guaranteed by the following clauses:

ϕq(e) → tq(e, u) ∨ bq(e, u)

ϕq(e) → tq(e, v) ∨ bq(e, v)

For each edge e = (u, v) of G, for each vertex x with x /∈ {u, v} of G, and for
each page q, we need to ensure that variables tq(e, x) and bq(e, x) are defined
consistently, that is, (i) tq(e, x) and bq(e, x) cannot be simultaneously true,
(ii) if e is assigned to page q and vertex x precedes or follows both endpoints
of e in the order, then both variables tq(e, x) and bq(e, x) must be false, and
(iii) if e is assigned to page q and vertex x appears between the endpoints of
e in the order, then variables tq(e, x) and bq(e, x) cannot be simultaneously
false.

The first (i.e., point (i) above) is guaranteed by the following clause:

¬tq(e, x) ∨ ¬bq(e, x)

The second (i.e., point (ii) above) is guaranteed by the following clauses:

ϕq(e) ∧ σ(u, x) ∧ σ(v, x) → ¬tq(e, x) ∧ ¬bq(e, x)
ϕq(e) ∧ σ(v, x) ∧ σ(u, x) → ¬tq(e, x) ∧ ¬bq(e, x)

The third (i.e., point (iii) above) is guaranteed by the following clauses:

ϕq(e) ∧ σ(u, x) ∧ σ(x, v) → tq(e, x) ∨ bq(e, x)

ϕq(e) ∧ σ(v, x) ∧ σ(x, u) → tq(e, x) ∨ bq(e, x)

Note that point (i) above further guarantees that all biarcs are drawn mono-
tone. To see this observe that for a non-monotone biarc, say e, to exist, e.g., at
page q, there has to exist a vertex, say x, for which both variables tq(e, x) and
bq(e, x) have been assigned the value true, which is prevented by the clause
of point (i). So, in the following we turn our attention to the clauses that are
needed in order to guarantee that no edge crosses the spine more than once.
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Chapter 4 4.2. The Clauses of the SAT formulation

For each edge e = (u, v) of G, for each vertex x with x /∈ {u, v} of G, and for
each page q, if edge e is assigned to page q and vertex x appears between u
and v in the order, then edge e cannot leave its endpoints from the same side
of the spine, while for vertex x edge e resides on the other side of the spine,
as this would imply that e is crossing the spine at least twice. We avoid this
scenario by introducing the following clauses.

ϕq(e) ∧ σ(u, x) ∧ σ(x, v) → ¬(tq(e, u) ∧ bq(e, x) ∧ tq(e, v))

ϕq(e) ∧ σ(u, x) ∧ σ(x, v) → ¬(bq(e, u) ∧ tq(e, x) ∧ bq(e, v))

ϕq(e) ∧ σ(v, x) ∧ σ(x, u) → ¬(tq(e, v) ∧ bq(e, x) ∧ tq(e, u))

ϕq(e) ∧ σ(v, x) ∧ σ(x, u) → ¬(bq(e, v) ∧ tq(e, x) ∧ bq(e, u))

For each edge e = (u, v) of G, for each pair of distinct vertices x and y with
x, y /∈ {u, v} of G, and for each page q, if edge e is assigned to page q and
vertices x and y appear between u and v in the order, then edge e cannot cross
the spine between u and x, between x and y and also between y and v, as this
would imply that e is crossing the spine at least twice. Since the case in which
e leaves its endpoints from the same side of the spine is covered above, we
avoid the scenario that we just discussed by introducing the following clauses.

ϕq(e) ∧ σ(u, x) ∧ σ(x, y) ∧ σ(y, v) → ¬(tq(e, u) ∧ bq(e, x) ∧ tq(e, y) ∧ bq(e, v))

ϕq(e) ∧ σ(u, x) ∧ σ(x, y) ∧ σ(y, v) → ¬(bq(e, u) ∧ tq(e, x) ∧ bq(e, y) ∧ tq(e, v))

ϕq(e) ∧ σ(v, x) ∧ σ(x, y) ∧ σ(y, u) → ¬(tq(e, v) ∧ bq(e, x) ∧ tq(e, y) ∧ bq(e, u))

ϕq(e) ∧ σ(v, x) ∧ σ(x, y) ∧ σ(y, u) → ¬(bq(e, v) ∧ tq(e, x) ∧ bq(e, y) ∧ tq(e, u))

For each edge e = (u, v) of G, for each triplet of distinct vertices x, y and z
with x, y, z /∈ {u, v} of G, and for each page q, if edge e is assigned to page
q and vertices x, y and z appear between u and v in the order, then edge
e cannot cross the spine between x and y and also between y and z, as this
would imply that e is crossing the spine at least twice. We avoid this scenario
that we just discussed by introducing the following clauses.

ϕq(e) ∧ σ(u, x) ∧ σ(x, y) ∧ σ(y, z) ∧ σ(z, v) → ¬(tq(e, x) ∧ bq(e, y) ∧ tq(e, z))

ϕq(e) ∧ σ(u, x) ∧ σ(x, y) ∧ σ(y, z) ∧ σ(z, v) → ¬(bq(e, x) ∧ tq(e, y) ∧ bq(e, z))

ϕq(e) ∧ σ(v, x) ∧ σ(x, y) ∧ σ(y, z) ∧ σ(z, u) → ¬(tq(e, x) ∧ bq(e, y) ∧ tq(e, z))

ϕq(e) ∧ σ(v, x) ∧ σ(x, y) ∧ σ(y, z) ∧ σ(z, u) → ¬(bq(e, x) ∧ tq(e, y) ∧ bq(e, z))

So far, the clauses that we have introduced guarantee that no edge is crossing
the spine more than once; in particular, the three cases that we distinguished
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above suffice, as the edge e = (u, v) may cross the spine either between u and
a non-incident vertex, or between v and a non-incident vertex or between two
non-incident vertices.

It remains to guarantee that no two edges assigned to the same page of the
layout cross. We describe the case in which the two edges do not share an
endvertex; the case in which the two edges share an endvertex is handled
similarly. Under this assumption, consider a pair of distinct independent edges
e = (u, v) and e′ = (z, w) of G. Then, for each page q, if edges e and e′ are
assigned to page q and their endpoints alternate in the order, then e and e′

cannot reside on the same side of the spine at the two endvertices of e and
e′ that are neither the first or the last among these endvertices in the order.
This is guaranteed by the following clauses:

ϕq(e) ∧ ϕq(e
′) ∧ σ(u, z) ∧ σ(z, v) ∧ σ(v, w) → ¬(tq(e, z) ∧ tq(e

′, v))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, z) ∧ σ(z, u) ∧ σ(u,w) → ¬(tq(e, z) ∧ tq(e

′, u))

ϕq(e) ∧ ϕq(e
′) ∧ σ(u,w) ∧ σ(w, v) ∧ σ(v, z) → ¬(tq(e, w) ∧ tq(e

′, v))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, w) ∧ σ(w, u) ∧ σ(u, z) → ¬(tq(e, w) ∧ tq(e

′, u))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, u) ∧ σ(u,w) ∧ σ(w, v) → ¬(tq(e, u) ∧ tq(e

′, w))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, u) ∧ σ(u, z) ∧ σ(z, v) → ¬(tq(e, u) ∧ tq(e

′, z))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, v) ∧ σ(v, w) ∧ σ(w, u) → ¬(tq(e, v) ∧ tq(e

′, w))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, v) ∧ σ(v, z) ∧ σ(z, u) → ¬(tq(e, v) ∧ tq(e

′, z))

ϕq(e) ∧ ϕq(e
′) ∧ σ(u, z) ∧ σ(z, v) ∧ σ(v, w) → ¬(bq(e, z) ∧ bq(e

′, v))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, z) ∧ σ(z, u) ∧ σ(u,w) → ¬(bq(e, z) ∧ bq(e

′, u))

ϕq(e) ∧ ϕq(e
′) ∧ σ(u,w) ∧ σ(w, v) ∧ σ(v, z) → ¬(bq(e, w) ∧ bq(e

′, v))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, w) ∧ σ(w, u) ∧ σ(u, z) → ¬(bq(e, w) ∧ bq(e

′, u))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, u) ∧ σ(u,w) ∧ σ(w, v) → ¬(bq(e, u) ∧ bq(e

′, w))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, u) ∧ σ(u, z) ∧ σ(z, v) → ¬(bq(e, u) ∧ bq(e

′, z))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, v) ∧ σ(v, w) ∧ σ(w, u) → ¬(bq(e, v) ∧ bq(e

′, w))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, v) ∧ σ(v, z) ∧ σ(z, u) → ¬(bq(e, v) ∧ bq(e

′, z))
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In addition to the aforementioned case, when the endpoints of e and e′ alter-
nate in the order, a crossing may occur also in the presence of a vertex, say
x, that is inbetween the endpoints of each of the edges e and e′, such that the
edge incident to the first endvertex (among the endvertices of e and e′) crosses
the spine between u and x, while the other edge is on the opposite side of the
spine at vertex x. We avoid this case, by introducing the following clauses for
each page q and each vertex x with x /∈ {u, v, z, w}:

ϕq(e) ∧ ϕq(e
′) ∧ σ(u, z) ∧ σ(z, x) ∧ σ(x, v) ∧ σ(v, w) → ¬(tq(e, z) ∧ tq(e

′, x) ∧ bq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, z) ∧ σ(z, x) ∧ σ(x, u) ∧ σ(u,w) → ¬(tq(e, z) ∧ tq(e

′, x) ∧ bq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(u,w) ∧ σ(w, x) ∧ σ(x, v) ∧ σ(v, z) → ¬(tq(e, w) ∧ tq(e

′, x) ∧ bq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, w) ∧ σ(w, x) ∧ σ(x, u) ∧ σ(u, z) → ¬(tq(e, w) ∧ tq(e

′, x) ∧ bq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, u) ∧ σ(u, x) ∧ σ(x,w) ∧ σ(w, v) → ¬(tq(e, u) ∧ tq(e

′, x) ∧ bq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, u) ∧ σ(u, x) ∧ σ(x, z) ∧ σ(z, v) → ¬(tq(e, u) ∧ tq(e

′, x) ∧ bq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, v) ∧ σ(v, x) ∧ σ(x,w) ∧ σ(w, u) → ¬(tq(e, v) ∧ tq(e

′, x) ∧ bq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, v) ∧ σ(v, x) ∧ σ(x, z) ∧ σ(z, u) → ¬(tq(e, v) ∧ tq(e

′, x) ∧ bq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(u, z) ∧ σ(z, x) ∧ σ(x, v) ∧ σ(v, w) → ¬(bq(e, z) ∧ bq(e

′, x) ∧ tq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, z) ∧ σ(z, x) ∧ σ(x, u) ∧ σ(u,w) → ¬(bq(e, z) ∧ bq(e

′, x) ∧ tq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(u,w) ∧ σ(w, x) ∧ σ(x, v) ∧ σ(v, z) → ¬(bq(e, w) ∧ bq(e

′, x) ∧ tq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, w) ∧ σ(w, x) ∧ σ(x, u) ∧ σ(u, z) → ¬(bq(e, w) ∧ bq(e

′, x) ∧ tq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, u) ∧ σ(u, x) ∧ σ(x,w) ∧ σ(w, v) → ¬(bq(e, u) ∧ bq(e

′, x) ∧ tq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, u) ∧ σ(u, x) ∧ σ(x, z) ∧ σ(z, v) → ¬(bq(e, u) ∧ bq(e

′, x) ∧ tq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, v) ∧ σ(v, x) ∧ σ(x,w) ∧ σ(w, u) → ¬(bq(e, v) ∧ bq(e

′, x) ∧ tq(e, x))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, v) ∧ σ(v, x) ∧ σ(x, z) ∧ σ(z, u) → ¬(bq(e, v) ∧ bq(e

′, x) ∧ tq(e, x))
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Chapter 4 4.2. The Clauses of the SAT formulation

Note that edges e and e′ may cross, even if their endpoints do not alternate
in the order. To avoid this, we introduce the following clause for each page q:

ϕq(e) ∧ ϕq(e
′) ∧ σ(u, z) ∧ σ(z, w) ∧ σ(w, v) → ¬(tq(e, z) ∧ bq(e, w))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, z) ∧ σ(z, w) ∧ σ(w, u) → ¬(tq(e, z) ∧ bq(e, w))

ϕq(e) ∧ ϕq(e
′) ∧ σ(u,w) ∧ σ(w, z) ∧ σ(z, v) → ¬(tq(e, w) ∧ bq(e, z))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, w) ∧ σ(w, z) ∧ σ(z, u) → ¬(tq(e, w) ∧ bq(e, z))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, u) ∧ σ(u, v) ∧ σ(v, w) → ¬(tq(e, u) ∧ bq(e, v))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, u) ∧ σ(u, v) ∧ σ(v, z) → ¬(tq(e, u) ∧ bq(e, v))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, v) ∧ σ(v, u) ∧ σ(u,w) → ¬(tq(e, v) ∧ bq(e, u))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, v) ∧ σ(v, u) ∧ σ(u, z) → ¬(tq(e, v) ∧ bq(e, u))

ϕq(e) ∧ ϕq(e
′) ∧ σ(u, z) ∧ σ(z, w) ∧ σ(w, v) → ¬(bq(e, z) ∧ tq(e, w))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, z) ∧ σ(z, w) ∧ σ(w, u) → ¬(bq(e, z) ∧ tq(e, w))

ϕq(e) ∧ ϕq(e
′) ∧ σ(u,w) ∧ σ(w, z) ∧ σ(z, v) → ¬(bq(e, w) ∧ tq(e, z))

ϕq(e) ∧ ϕq(e
′) ∧ σ(v, w) ∧ σ(w, z) ∧ σ(z, u) → ¬(bq(e, w) ∧ tq(e, z))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, u) ∧ σ(u, v) ∧ σ(v, w) → ¬(bq(e, u) ∧ tq(e, v))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, u) ∧ σ(u, v) ∧ σ(v, z) → ¬(bq(e, u) ∧ tq(e, v))

ϕq(e) ∧ ϕq(e
′) ∧ σ(z, v) ∧ σ(v, u) ∧ σ(u,w) → ¬(bq(e, v) ∧ tq(e, u))

ϕq(e) ∧ ϕq(e
′) ∧ σ(w, v) ∧ σ(v, u) ∧ σ(u, z) → ¬(bq(e, v) ∧ tq(e, u))

This completes the description of our SAT formulation. Since each edge cannot
cross the spine more than once and since no two edges of the same page can
cross, the correctness of our SAT formulation follows. We conclude this section
by mentioning that the additional clauses that we introduced to the original
formulation as described in Section 2.3 is O(n5m2p).
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Conclusions

In this thesis, we introduced and studied a new variant of linear graph layouts.
The following research question directly follow from our findings.

• As we strongly believe that the upper bound on the biarc number of Kn

that we provided in Theorem 1.4.1 can be improved, the first question
that we pose is whether it is possible to develope a construction yielding
a linear layout with monotone biarcs of Kn using strictly less than ⌈n4 ⌉.

• We studied the biarc number of Kn,n in the separated setting. It would
be interesting to study whether it is possible to improve the upper bound
of Theorem 1.4.2 by relaxing the constraint of having the vertices of one
part of Kn,n to precede the ones of the second part, that is, by allowing
vertex orders in which the vertices of both parts mix?

• Another interesting direction is to extend the study to other meaningful
classes of graphs.
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