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Περίληψη

Θα δουλέψουμε κυρίως με τον Hardy-Littlewood μεγιστικό τελεστή ο οποίος
ορίζεται ως εξής:

Mf(x) = sup
1

|Q|

∫
Q
|f(y)| dy

όπου Q είναι κύβος ο οποίος περιέχει το x. ΄Ενα απο τα κυριότερα εργαλεία
μας θα είναι ο χωρισμός του χώρου Rn

σε ένα υποσύνολο Ω που αποτελείται

απο ξένους ανα δύο κύβους πάνω στους οποίους ο μέσος όρος της συνάρτησης

|f | είναι μεταξύ t και 2nt, και στο συμπλήρωμά του F όπου |f(x)| ≤ t σχεδόν
παντού. Θα αποδείξουμε κάποιες Lp

ανισότητες για αυτόν τον μεγιστικό τελεστή

και θα δούμε την σχέση του με τον sharp μεγιστικό τελεστή f#. Μετά απο την
εισαγωγή μας στην θεωρία βαρών, θα μελετήσουμε ενα πρόβλημα για δυαδικά A1

βάρη, για το οποίο θα αποδείξουμε μια αντίστροφη Hölder Lp
ανισότητα.
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Abstract

We will work mostly with the Hardy-Littlewood maximal function which is
defined as

Mf(x) = sup
1

|Q|

∫
Q
|f(y)|dy

where Q is a cube containing x. One of the tools of constant use in our
work will be the splitting of the space Rn into a subset Ω made up of non-
overlapping cubes Qj over each of which the average of an integrable function
|f | is between t and 2nt, and a complementary subset F where |f(x)| ≤ t a.e.
We will obtain some Lp inequalities for this maximal function and we will
see the relation with the sharp maximal function f#. After our introduction
in weights and Ap theory we will study an interesting problem for dyadic A1

weights from which we will get a sharp reverse Hölder type Lp-inequality.
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Introduction

In 1952, A.P. Calderon and A.Zygmund invented a simple but powerful
method to split the space Rn into a subset Ω made up of non-overlapping
cubes Qj over each of which the average of an integrable function |f | is be-
tween t and 2nt, and a complementary subset F where |f(x)| ≤ t for a.e.
x ∈ F . This method has become widely known as the Calderon-Zygmund
decomposition. We aim to describe here this method together with some of
its most immediate and interesting applications.

The first two sections of chapter one give a description of the method in
connection with the (very closely related) Hardy-Littlewood maximal opera-
tor. Apart from the usual estimates for this maximal function, we also obtain
some weighted inequalities which anticipate the Ap theory to be developed in
chapter two, and we study some variants of the Hardy-Littlewood operator
when Lebesgue measure is replaced by a more general measure. This leads us
in a natural way to the definition and study of the Carleson measures.

This is not the only maximal operator to appear in the first chapter. The
so-called sharp maximal function shares enough properties with the Hardy-
Littlewood operator, but behaves in a different way in L∞, which is somehow
replaced by our friend, the space B.M.O, which will be further exploited in
chapter two. This relation comes to light after proving the John-Nirenberg in-
equality for BMO functions, which is yet another application of the Calderon-
Zygmund decomposition.

As we will see in chapter two, the Lp inequalities that will be obtained for
several kinds of operators remain true when Lebesgue measure dx is replaced
by certain measures w(x)dx.

We will devote chapter two to a systematic study of this type (Lp) of inequal-
ities. We will see that for the maximal function Mf ( which will be defined in
chapter one), it is possible to give a very precise and satisfactory answer to
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the question of finding those w for which either∫
|Mf(x)|pw(x)dx ≤ Cp(w)

∫
|f(x)|pw(x)dx (∗)

or the corresponding weak type inequality (for which, the definition will be
given in chapter one) hold. The same problem for two weights will be also
considered.

Why should one be interested in inequalities like (*)? We shall briefly sketch
some answers

(1) Conjugate functions, Hp spaces etc. can be defined in domains of complex
plane with a ”resonable” boundary ∂D. When estimating the Lp norms of
operators appearing in this context, some of the problems that arise can be
reduced, by change of variables, to estimates for known operators on the line
or on the torus, but with respect to a measure w(x)dx for certain w.

(2) Inequalities like (*) imply (as we will show), when the structure of weights
satisfying them, the following∫

|Tf(x)|2u(x)dx ≤ C

∫
|f(x)|2Nu(x)dx (∗∗)

for arbitrary u(x) ≥ 0, where N is (in the most desirable case) some kind
of ”maximal operator” which we can control. An inequality like (**) will
be proved in chapter one for the Hardy-Littlewood maximal operator. Such
inequalities are very easy to handle, and contain essentially all the relevant
information about the boundedness properties of T.

In the end, we will determine the exact best possible range of p which de-
pends (as we will see) on the dimension n and the corresponding A1 constant
of w, for which any dyadic A1 weight on Rn satisfies a reverse Hölder inequal-
ity for p. The proof will be based on an effective linearization of the dyadic
maximal operator applied to dyadic step functions.
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CHAPTER1
CALDERON-ZYGMUND
THEORY

1.1 THE HARDY-LITTLEWOODMAXIMAL FUNC-
TION AND THE CALDERON-ZYGMUNDDE-
COMPOSITION

Let f be locally integrable function in Rn. For x ∈ Rn we define

Mf(x) = sup
x∈Q

1

|Q|

∫
Q
|f(y)|dy

where the sup is taken over all cubes Q containing x (cube will always mean
a compact cube with sides parallel to the axes and non empty interior), and
|Q| stands for the Lebesgue measure of Q.

Mf will be called (Hardy-Littlewood) maximal function of f, and the oper-
ator M sending f to Mf ,(Hardy-Littlewood) maximal operator.

Observe that we obtain the same value Mf(x), which can be +∞, if we allow
in the definition only those cubes Q for wich x is an interior point. It follows
from this remark that the function Mf is lower semicontinuous,i.e, for every
t > 0, the set Et = {x ∈ Rn : Mf(x) > t} is open.

In order to study the size of Mf , we shall look at its distribution function
λ(t) = |Et|. It will be instructive to start with the case n = 1 , which is
particularly simple.Let f ∈ L1(R). The open set Et is a disjoint union of
open intervals Ij : its connected components. Let us look at one of the Ij ’s,
and let us call it I. Take any compact set K ⊂ I. For each x ∈ K, there
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Chapter 1
1.1. THE HARDY-LITTLEWOOD MAXIMAL FUNCTION AND THE

CALDERON-ZYGMUND DECOMPOSITION

is (by definition of Et) a compact interval Qx containing x in its interior and
satisfying

1

|Qx|

∫
Qx

|f(y)|dy > t.

SinceQx ⊂ Et, it follows thatQx ⊂ I. SinceK is compact, we can cover it with
the interior of just finitely many of the Qx’s, say {Qj}. We can even assume
that this finite covering is minimal in the sence that no Qj is superfluous.
Then, no point is in more that two of the interiors of the Qj ’s. It follows that:

|K| ≤
∑
j

|Qj | <
1

t

∑
j

∫
Qj

|f(y)|dy ≤ 2

t

∫
⋃

j Qj

|f(y)|dy ≤ 2

t

∫
I
|f(y)|dy.

Since this is true for every compact K ⊂ I, we obtain:

(1.1) |I| ≤ 2

t

∫
I
|f(y)|dy

This implies, in particular, that I is bounded. Let I = (a, b). Then, since
b ∈ I and b /∈ Et (Et is open and I is one of its open components), we can
write:

1

|I|

∫
I
|f(y)|dy ≤ Mf(b) ≤ t

Finally (1.1) implies:

|Et| =
∑
j

|Ij | ≤
2

t

∑
j

∫
Ij

|f(y)|dy =
2

t

∫
Et

|f(y)|dy

We have obtained the following result:

Theorem 1.1.1. Let f ∈ L1(R). then, for every t > 0, the set Et = {x ∈ R :
Mf(x) > t} can be written as a disjoint union of bounded open intervals Ij,
such that, for every j = 1, 2, ....

(1.3)
t

2
≤ 1

|Ij |

∫
Ij

|f(y)|dy ≤ t

and as a consequence:

|Et| ≤
2

t

∫
Et

|f(y)|dy.

□
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CALDERON-ZYGMUND DECOMPOSITION

Now we seek an analogue of the previous theorem in dimension n > 1. The
extension is not straightforward.

Let f ∈ L1(Rn), n > 1, and let t > 0. Instead of looking at the maximal
function Mf , we shall try to obtain directly a family of cubes {Qj} such that
the average of |f | over each is comparable to t in the sense that a relation
like (1.3) holds. This is quite easy and it will be done most effectively by
considering only dyadic cubes. For k ∈ Z, we consider the lattice Λk = 2−kZn

formed by those points of Rn whose coordinates are integral multiples of 2−k.
Let Dk be the collection of the cubes determined by Λk, that is, those cubes
with side lenght 2−k and vertices in Λk. The cubes belonging to D =

⋃+∞
−∞Dk

are called dyadic cubes. Observe that if Q,Q′ ∈ D and |Q′| ≤ |Q|, then either
Q′ ⊂ Q or else Q and Q′ do not overlap (by which we mean that their interiors
are disjoint). Each Q ∈ Dk is the union of 2n non-overlapping cubes belonging
to Dk+1. We shall call Ct the family formed by the cubes Q ∈ D which satisfy
the condition:

(1.4) t <
1

|Q|

∫
Q
|f(x)|dx

and are maximal among those which satisfy it. Every Q ∈ D satisfying (1.4) is
contained in someQ′ ∈ Ct. The cubes in Ct are, by definition, non overlapping.
Also, if Q ∈ Dk is in Ct and Q′ is the only cube in Dk−1 containing Q, we
shall have:

1

|Q′|

∫
Q′

|f(x)|dx ≤ t

but, since |Q′| = 2n|Q|, we get:

1

|Q|

∫
Q
|f(x)|dx ≤ 2n

|Q′|

∫
Q′

|f(x)|dx ≤ 2nt

we have achieved our purpose by obtaining a family Ct = {Qj} of cubes such
that, for every j:

(1.5) t ≤ 1

|Qj |

∫
Qj

|f(x)|dx ≤ 2nt

Next, we shall investigate the relation with the maximal functionMf . Suppose
x ∈ Rn is such that Mf(x) > t. There will be some cube R containing x in
its interior and satisfying

t <
1

|R|

∫
R
|f(x)|dx.
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CALDERON-ZYGMUND DECOMPOSITION

We look for a dyadic cube of comparable size over which the average of |f | is
comparably big. Let k be the only integer such that

2−(k+1)n < |R| ≤ 2−kn.

For this k there is at most one point of Λk interior to R and there are at most
2n cubes in Dk meeting the interior of R. Consequently, there is some cube
in Dk meeting the interior of R satisfying:∫

R∩Q
|f(y)|dy >

t|R|
2n

and that is because if we had∫
R∩Q

|f(y)|dy ≤ t|R|
2n

for every such cube, then we get:∫
R

|f(y)|dy =

∫
R∩(∪2n

i=1Qi)

|f(y)|dy =
2n∑
i=1

∫
(R∩Qi)◦

|f(y)|dy ≤
2n∑
i=1

t|R|
2n

= t|R|

which is not valid (for the first equality we used that there are at most 2n

cubes in Dk meeting the interior of R) .

Now, since |R| ≤ |Q| < 2n|R|, we have :∫
R∩Q

|f(y)|dy >
t|R|
2n

>
t|Q|
4n

and therefore:
1

|Q|

∫
Q
|f(y)|dy >

t

4n

it follows that Q ⊂ Qj ∈ C4−nt for some j.

In general for any cube Q and any a > 0, we shall denote by Qa the cube with
the same center as Q but with side lenght a times that of Q. In our particular
situation, since R and Q meet and |R| ≤ |Q|, it follows that R ⊂ Q3 ⊂ Q3

j .

We conclude that if C4−nt = {Qj}, then Et ⊂
⋃

j Q
3
j and this leads to the

estimate

|Et| ≤
∑
j

|Q3
j | = 3n

∑
j

|Qj | <
3n4n

t

∑
j

∫
Qj

|f(y)|dy ≤ C

t

∫
Rn

|f(y)|dy.
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For those Qj ’s we also have that:

t

4n
≤ 1

|Qj |

∫
Qj

|f(y)|dy =
2n

|Q′
j |

∫
Qj

|f(y)|dy ≤ 2n

|Q′
j |

∫
Q′

j

|f(y)|dy ≤ 2nt

4n
=

t

2n

where Q′
j is the unique cube in Dk−1 (if Qj ∈ Dk) containing Qj , and we know

that Qj ’s are in C4−nt, so they are maximal. We have obtained the following
result:

Theorem 1.1.2. Let f ∈ L1(Rn). Then ,for every t > 0, the set Et = {x ∈
Rn : Mf(x) > t} is contained in the union of a family of cubes {Q3

j} which
result from expanding by a factor of 3 the non overlapping maximal cubes {Qj}
which satisfy:

(1.7)
t

4n
<

1

|Qj |

∫
Qj

|f(x)|dx ≤ t

2n

it follows that :

(1.8) |Et| ≤
C

t

∫
Rn

|f(x)|dx

where the constant C depends only on the dimension n. □

We shall derive some consequences of the basic inequality (1.8) which il-
lustrate the role played by the maximal operator M . The importance of the
operator M stems from the fact that it controls many operators arising nat-
urally in Analysis. As an example, we are going to prove an extension of
Lebesgue’s differentiation theorem.

Theorem 1.1.3. Let f ∈ L1
loc(Rn). For x ∈ Rn and r > 0, let Q(x; r) = {y ∈

Rn : |y − x|∞ = maxj |yj − xj | ≤ r}. Then, for almost every x ∈ Rn:

(1.10)
1

|Q(x; r)|

∫
Q(x;r)

|f(y)− f(x)|dy → 0 as r → 0.

Proof. We may assume f ∈ L1(Rn). It will be enough to show that, for every
t > 0, the set

At = {x ∈ Rn : lim sup
r→0

1

|Q(x; r)|

∫
Q(x;r)

|f(y)− f(x)|dy > t}

has zero measure. Indeed, the set where (1.10) does not hold, is precisely⋃∞
j=1A1/j .
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Given ϵ > 0, we can write f = g + h, where g is continuous with compact
support and

∫
|h| < ϵ (we can do that because of the density of continuous

functions in L1). For g we clearly have:

1

|Q(x; r)|

∫
Q(x;r)

|g(y)− g(x)|dy → 0 as r → 0

for every x ∈ Rn. Therefore, we get that:

lim sup
r→0

1

|Q(x; r)|

∫
Q(x;r)

|f(y)−f(x)|dy ≤ lim sup
r→0

1

|Q(x; r)|

∫
Q(x;r)

|h(y)−h(x)|dy

≤ Mh(x) + |h(x)|

and
At ⊂ {x ∈ Rn : Mh(x) > t/2} ∪ {x ∈ Rn : |h(x)| > t/2}.

But
(1) |{x ∈ Rn : Mh(x) > t/2}| ≤ C∥h∥1/t < Cϵ/t

and

(2) |{x ∈ Rn : |h(x)| > t/2}| ≤
∫
Rn

2|h(x)|
t

dx ≤ 2ϵ/t.

Thus At is contained in a set of measure ≤ (C + 2) ϵt . Since this can be done
for any ϵ > 0, we get |At| = 0. The second inequality is obvious, so lets proof
the first one:

It is enough to show that for the set At = {x ∈ Rn : Mh(x) > t}, there
is a constant C such that |At ∩K| ≤ C

t ∥h∥1 for every bounded K ⊂ Rn. Let
x ∈ At ∩K, then there will be rx > 0:

1

|Q(x; rx)|

∫
Q(x;rx)

|h(y)|dy > t

Now for the collection {Q(x; rx)}x∈At∩K we recall the Besicovitch theorem,
so there is a sub collection {Qk}k∈N such that:

• At ∩K ⊂ ∪kQk

•
∑

k XQk
(y) ≤ θn for every y ∈ Rn

It is clear that:
1

|Qk|

∫
Qk

|h| > t

8
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so we get:

|At ∩K| ≤ | ∪Qk| ≤
∑
k

|Qk| ≤
∑
k

1

t

∫
Qk

|h| =
∑
k

1

t

∫
Rn

XQk
|h|

using the Beppo-Levi theorem we get:

=
1

t

∫
Rn

∑
k

|h|XQk
=

∫
Rn

|h|
∑
k

XQk
≤ 1

t

∫
Rn

|h|θn =
θn
t
∥h∥1

and the proof is complete.

The points x for which (1.10) holds are called Lebesgue points for f. We
can rephrase the previous theorem by saying that almost every point x ∈ Rn

is a Lebesgue point.

Proposition 1.1.1. Let f ∈ L1
loc(Rn). Then, for every Lebesgue point x for f

and, therefore, for a.e point x ∈ Nn:

1. f(x) = limr→0
1

|Q(x;r)|
∫
Q(x;r) f(y)dy

2. |f(x)| ≤ Mf(x).

Proof. In order to prove 1), just note that:∣∣∣∣∣ 1

|Q(x; r)|

∫
Q(x;r)

f(y)dy − f(x)

∣∣∣∣∣ ≤ 1

|Q(x; r)|

∫
Q(x;r)

|f(y)− f(x)|dy

whilst 2) is an immediate consequence of 1).

Now if x is a Lebesgue point for f and we have a sequence of cubes Q1 ⊃
Q2 ⊃ .... with ∩jQj = {x}, then:

f(x) = lim
j→∞

1

|Qj |

∫
Qj

f(y)dy

Indeed if Qj has side length rj , we have Qj ⊂ Q(x; 2rj) and
limj→∞ rnj = limj→∞ |Qj | = | ∩j Qj | = 0, so that rj → 0. Therefore∣∣∣∣∣ 1

|Qj |

∫
Qj

f(y)dy − f(x)

∣∣∣∣∣ ≤ 1

|Qj |

∫
Qj

|f(y)− f(x)|dy ≤

9
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2n

2n|Q(x; rj)|

∫
Qj

|f(y)−f(x)|dy ≤ 2n

|Q(x; 2rj)|

∫
Q(x;2rj)

|f(y)−f(x)|dy → 0

as j → ∞

Let f ∈ L1(Rn) and let Ct = Ct(f) = {Qj} be the collection formed by those
maximal dyadic cubes over which the average of |f | is > t (called Calderon-
Zygmund cubes for f corresponding to t) .Let x /∈ ∪jQj . Then the average of
|f | over any dyadic cube will be ≤ t. Let {Rk} be a sequence of dyadic cubes
of decreasing size such that ∩kRk = {x}. Then for each of them we have

1

|Rk|

∫
Rk

|f(y)|dy ≤ t

If, besides, x is a Lebesgue point for f (and hence for |f |) we get, by passing
to the limit :|f(x)| ≤ t. Thus |f(x)| ≤ t for a.e x /∈ ∪jQj .

The splitting of the space Rn into a subset Ω made up of non overlapping
cubes Qj over each of which the average of |f | is between t and 2nt and a
complementary subset F where |f(x)| ≤ t a.e., is the first step of the so-called
Calderon-Zygmund decomposition which will be a tool of constant use here.
Let us record the following:

Theorem 1.1.4. Given f ∈ L1(Rn) and t > 0, there is a family of non
overlapping cubes Ct = Ct(f) consisting of those maximal dyadic cubes over
which the average of |f | is > t. This family satisfies:

1. for every Q ∈ Ct : t <
1
|Q|
∫
Q |f(x)|dx ≤ 2nt

2. for a.e x /∈ ∪Q, where Q ranges over Ct, is |f(x)| ≤ t.

Besides, for every t > 0, Et = {x ∈ Rn : Mf(x) > t} ⊂ ∪Q3 where Q ranges
over C4−nt.

□
Next we are going to study a usefull generalization of the maximal function.
Let µ be a positive Borel measure on Rn, finite on compact sets and satisfying
that following ”doubling” condition :

(1.13) µ(Q2) ≤ Cµ(Q)

for every cube Q, with C > 0 independent of Q. We shall often say simply that
µ is a doubling measure. This implies, of course, that for every α > 0, there is a

10
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constant C = Cα > 0, depending only on α, such that µ(Qα) ≤ Cµ(Q) for ev-
ery cube Q (that is because there is na ∈ N such that α < 2na so Qα ⊂ Q2na

).
Since we are in Rn, the finiteness of µ on compact subsets implies that µ is
regular. Notice that for every cube Q, µ(Q) > 0. Indeed, if we had µ(Q) = 0
for some cube Q, we would have µ(Qk) ≤ Ckµ(Q) = 0, from which µ(Rn) = 0,
which is excluded as trivial.

Now, for µ as above, f ∈ L1
loc(µ) and x ∈ Rn, define:

Mµf(x) = sup
x∈Q

1

µ(Q)

∫
Q
|f(y)|dµ(y)

where the sup is taken over all cubes Q containing x. As before, we obtain
the same value Mµf(x) if we just take in the definition, those cubes Q con-
taining x in their interior. This is a consequence of the regularity of µ.

Let f ∈ L1(µ) and t > 0. We want to obtain a Calderon-Zygmund decom-
position for f and t relative to the measure µ and, at the same time, we want
to estimate the µ-measure of the set Et = {x ∈ Rn : Mµf(x) > t}, which is, of
course, open. We are going to apply the same ideas that led to the previous
theorem. We need to make two observations.

First, we are going to see that there is a constant K > 1 such that, every
time we have dyadic cubes Q′ ⊊ Q, it follows that µ(Q) ≥ Kµ(Q′). To see
this, let Q′′ be a dyadic cube contained in Q, contiguous to Q′ and with the
same diameter. Then Q′ ⊂ Q′′3 and consequently, for C = C3 we have:

µ(Q′) ≤ Cµ(Q′′) ≤ C(µ(Q)− µ(Q′))

This implies that (1 + C)µ(Q′) ≤ Cµ(Q), which gives µ(Q) ≥ Kµ(Q′) with
K = (1 + C)/C > 1, and our claim is justified. As a consequence, if we have
a strictly increasing sequence dyadic cubes Q0 ⊊ Q1 ⊊ Q2 ⊊ ...., we have the

inequality µ(Qk) >
(
1+C3
C3

)k
µ(Q0) → ∞ as k → ∞. The conclusion is that if

a chain of dyadic cubes is such that the µ−measure of the cubes is bounded
above, then their diameter is also bounded above or, what is the same, the
chain terminates at a given cube containing all the others.

The second observation we need is the following: for every A > 0 there is

11
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B > 0 such that every time we have cubes Q and R which meet and satisfy
|Q| < A|R|, then they also satisfy |µ(Q)| < B|µ(R)|, lets prove that: Let

A > 0 such that |Q| < A|R|, but A|R| = An/n|R| = |A1/nR| = |RA1/n|, so
the side length of Q is smaller than A1/n−times the side length of R and also
Q and R meet, which leads to:

Q ⊂ R3A1/n ⇒ µ(Q) < µ(R3A1/n
) ≤ C3A1/nµ(R)

and for B = C3A1/n our claim is justified.

Now we go back to our problem. Denote by Ct = Ct(f ;µ) the collection
formed by the maximal dyadic cubes Q satisfying the condition

t <
1

µ(Q)

∫
Q
|f(y)|dµ(y).

Since this condition forces µ(Q) to be bounded by t−1
∫
Rn |f(y)|dµ(y) < ∞,

our first observation implies that every dyadic cube satisfying our condition is
contained in some member of Ct. Take Q ∈ Ct, then Q ∈ Dk for some k and
if Q′ is the only cube in Dk−1 containing Q, we have

1

µ(Q′)

∫
Q′

|f(y)|dµ(y) ≤ t

But Q′ ⊂ Q3, so that µ(Q′) ≤ Cµ(Q). Therefore

1

µ(Q)

∫
Q
|f(x)|dµ(x) ≤ C

µ(Q′)

∫
Q′

|f(x)|dµ(x) ≤ Ct

Thus, for every Q ∈ Ct:

1

µ(Q)

∫
Q
|f(x)|dµ(x) ≤ Ct.

Let now x ∈ Et, that is :Mµf(x) > t. Then there will be some cube
containing x in its interior such that

1

µ(R)

∫
R
|f(y)|dµ(y) > t.

12
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As we did for the case µ =Lebesgue measure, let Q be a dyadic cube which
overlaps with R and satisfies |R| ≤ |Q| < 2n|R| and∫

R∩Q
|f |dµ > 2−ntµ(R).

Let B be the constant corresponding to A = 2n in our second observation.
Then ∫

R∩Q
|f |dµ > B−12−ntµ(Q)

and hence
1

µ(Q)

∫
Q
|f |dµ >

t

2nB

it follows that Q ⊂ Qj for some Qj ∈ C2−nB−1t and R ⊂ Q3 ⊂ Q3
j .

If now C2−nB−1t = {Qj}, then Et ⊂
⋃

j Q
3
j and thus, we get the estimate:

µ(Et) ≤
∑
j

µ(Q3
j ) ≤ C

∑
j

µ(Qj) ≤
C2nB

t

∑
j

∫
Qj

|f |dµ ≤ C2nB

t

∫
Rn

|f |dµ

:=
C

t

∫
Rn

|f |dµ

This basic estimate can be used to extend theorem (1.9) and its corollary,
obtaining:

Theorem 1.1.5. With µ as above, let f ∈ L1
loc(µ). Then, for almost every

x ∈ Rn (with respect to µ):

1. limr→0
1

µ(Q(x;r))

∫
Q(x;r) |f(y)− f(x)|dµ(y) = 0

2. f(x) = limr→0
1

µ(Q(x;r))

∫
Q(x;r) f(y)dµ(y)

3. |f(x)| ≤ Mµf(x) □

In particular, if Ct(f, µ) = {Qj}, we have |f(x)| ≤ t for a.e. x /∈
⋃

j Qj

(with respect to µ). We can finally state the following:

Theorem 1.1.6. For µ as above, letf ∈ L1(µ) and t > 0. Then, there is a
family of non overlapping cubes Ct = Ct(f, µ), consisting of those maximal
dyadic cubes over which the average of |f | relative to µ is > t, which satisfies

13
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1. for every Q ∈ Ct : t <
1

µ(Q)

∫
Q |f |dµ ≤ Ct

2. for a.e. x /∈ ∪Q where Q ranges over Ct (a.e is with respect to µ), we
have :|f(x)| ≤ t. Besides, for every t > 0, the set Et = {x ∈ Rn :
Mµf(x) > t} is contained in

⋃
Q3 where Q ranges over Ct/C′, and we

have an estimate:

µ(Et) ≤ Ct−1

∫
Rn

|f |dµ.

Here C represents an absolute constant, possibly different at each occur-
rence.

□

1.2 NORM ESTIMATES FOR THE MAXIMAL
FUNCTION

Theorem 1.2.1. Let f be a measurable function on Rn and let t > 0. Then
we have the following estimates for the Lebesgue measure of the set Et = {x ∈
Rn : Mf(x) > t} :

(2.2) |Et| ≤
C

t

∫
{x∈Rn:|f(x)|>t/2}

|f(x)|dx

(2.3) |Et| ≥
C ′

t

∫
{x∈Rn:|f(x)|>t}

|f(x)|dx

with constants C and C’ which do not depend on f or t.

Proof. Write f = f1 + f2, where f1(x) = f(x) if |f(x)| > t/2, and f1(x) = 0
otherwise. Then Mf(x) ≤ Mf1(x)+Mf2(x) ≤ Mf1(x)+ t/2, since |f2| ≤ t/2
implies that Mf2 ≤ t/2 also. Thus

|Et| ≤ |{x ∈ Rn : Mf1(x) > t/2}| ≤ 3n4n

t/2

∫
Rn

|f1(x)|dx

:=
C

t

∫
{x∈Rn:|f(x)|>t/2}

|f(x)|dx

which gives (2.2)

14
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As for (2.3), we may assume that f ∈ L1(Rn) (otherwise we truncate and
apply a limiting process). Then we use the Calderon-Zygmund decomposition
for f and t, so we have non overlapping cubes Qj , such that

t <
1

|Qj |

∫
Qj

|f(x)|dx ≤ 2nt

for every j, and |f(x)| ≤ t for a.e. x /∈ ∪jQj . Now, since x ∈ Qj implies that
Mf(x) > t, we can write:

|Et| ≥
∑
j

|Qj | ≥
1

2nt

∑
j

∫
Qj

|f(x)|dx ≥ 1

2nt

∫
{x:|f(x)|>t}

|f(x)|dx

so, for C ′ = 2−n we get (2.3).

The next result is proved in exactly the same way.

Theorem 1.2.2. Suppose µ is a regular positive Borel measure in Rn satis-
fying a ”doubling” condition like (1.13). Then, there are constants C,C ′ such
that, for any Borel function f and any t > 0:

C ′

t

∫
{x:|f(x)|>t}

|f(x)|dµ(x) ≤ µ({x : Mµf(x) > t}) ≤

≤ C

t

∫
{x∈Rn:|f(x)|>t/2}

|f(x)|dµ(x)

□

From theorem (1.2.1) we easily derive several norm estimates for the maxi-
mal function.

Theorem 1.2.3. For every p with 1 < p < ∞, there is a constant Cp > 0
such that, for every f ∈ Lp(Rn):(∫

Rn

(Mf(x))pdx

)1/p

≤ Cp

(∫
Rn

|f(x)|pdx
)1/p

Proof. By Layer Cake representation we get:∫
Rn

(Mf(x))pdx =

∫ ∞

0
|{x : Mf(x)p > t}|dt =

15
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=

∫ ∞

0
|{x : Mf(x) > t1/p}|dt = p

∫ ∞

0
tp−1|{x : Mf(x) > t}|dt ≤

≤ C ·p
∫ ∞

0
tp−2

∫
{x:|f(x)|>t/2}

|f(x)|dxdt = C ·p
∫
Rn

(∫ 2|f(x)|

0
tp−2dt

)
|f(x)|dx

=
C · 2p−1p

p− 1

∫
Rn

|f(x)|pdx := Cp

∫
Rn

|f(x)|pdx.

In exact same way we obtain the following

Theorem 1.2.4. Let µ be a regular positive Borel measure in Rn satisfying a
”doubling” condition like (1.13). Then, for each p with 1 < p < ∞, there is a
constant Cp > 0 such that for every f ∈ LP (µ):(∫

Rn

(Mµf(x))
pdµ(x)

)1/p

≤ Cp

(∫
Rn

|f(x)|pdµ(x)
)1/p

□

We have seen that the operator M is bounded in Lp(Rn) for 1 < p ≤ ∞
(since Mf(x) ≤ ∥f∥∞ for every x). However, is not bounded in L1(Rn).

Theorem 1.2.5. Let f be integrable function supported in a ball B ⊂ Rn.
Then Mf is integrable over B if and only if :

(2.8)

∫
B
|f(x)|log+|f(x)|dx < ∞.

Proof. If (2.8) holds, then∫
B
Mf(x)dx =

∫ ∞

0
|{x ∈ B : Mf(x) > t}|dt = 2

∫ ∞

0
|{x ∈ B : Mf(x) > 2t}|dt

≤ 2

(∫ 1

0
|B|dt+

∫ ∞

1
|E2t|dt

)
and using (2.2), we get

≤ 2|B|+ C

∫ ∞

1

1

t

∫
{x:|f(x)|>t}

|f(x)|dxdt =

2|B|+ C

∫
Rn

|f(x)|
∫ |f(x)|

1

1

t
dtdx = 2|B|+ C

∫
Rn

|f(x)|log+|f(x)|dx.

16
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observe that for this part of the proof we do not need to use the fact that f is
supported in B. Indeed, the same proof shows that if

∫
Rn |f(x)|log+|f(x)|dx <

∞, which we shall indicate by saying that f ∈ LlogL(Rn), then Mf is locally
integrable.

Going back to the proof of the theorem, suppose that
∫
B Mf(x)dx < ∞.

If we denote by B′ the ball concentric with B but with radius 3/2 as big, we
can easily see that

∫
B′ Mf(x)dx < ∞ and that is because there is a constant

C > 0 such that for x ∈ B′\B we get Mf(x) ≤ CMf(x∗) where x∗ is the
point symmetric to x with respect to the boundary of B. Lets prove that:

Let x ∈ B′\B and let Q be a cube containing x in its interior such that
1
|Q|
∫
Q |f(y)|dy > 0 (so |Q ∩ B| > 0). Let d = d(x, ∂B). It is obvious that the

side length of Q is bigger than d. Let now y =
−−→
x∗x ∩ ∂B. We can see that

d(y,Q) < d.

( Let us note that the shape above stands for B′ with radius twice as big
compered with the one of B, but the proof is still valid.) Thus, y is in Q′ = 3Q
and now x∗ is in Q′′ = 3Q′ = 9Q, so for C = 9n we get that

1

|Q|

∫
Q
|f(y)|dy ≤ 1

|Q|

∫
Q′′

|f(y)|dy =
9n

|Q′′|

∫
Q′′

|f(y)|dy ≤ CMf(x∗)

so

Mf(x) ≤ CMf(x∗)

17
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Now ∫
B′

Mf(x)dx =

∫
B′\B

Mf(x)dx+

∫
B
Mf(x)dx = I1 + I2

where I2 < ∞ and for I1 we have

I1 =

∫
B′\B

Mf(x)dx =

∫
g(b)

Mf(x)dx

where g : b −→ B′\B with g(y) = 2r y
∥y∥ − y and b = {x ∈ B : ∥x∥ ≥ r/2} (r

is the radius of B), so

I1 ≤ C

∫
g(b)

Mf(g−1(x))dx = C

∫
b
Mf(y)|Jg(y)|dy

we can easily see that |Jg| is bounded in b so:

I1 ≤ CK

∫
b
Mf(y)dy ≤ CK

∫
B
Mf(y)dy < ∞

We conclude that
∫
B′′ Mf(x)dx < ∞ where B′′ is a ball with radius as big as

we want. Now we see that

1

|Q|

∫
Q
|f(x)|dx ≤ 1

|Q|
∥f∥1

thus, Mf(x) → 0 as ∥x∥ → ∞, so, for any fixed to > 0, we get that

{x : Mf(x) > to} ⊂ B

for some ball B and thus,
∫
{x:Mf(x)>to}Mf(x)dx < ∞. Now for to = 1 and

using theorem (1.2.1), we get∫ ∞

1
|{Mf > t}|dt ≥

∫ ∞

1

C ′

t

∫
{|f |>t}

|f(x)|dxdt = C ′
∫
Rn

|f(x)|
∫ |f(x)|

1

1

t
dtdx

=
1

2n

∫
Rn

|f(x)|log+|f(x)|dx (C ′ = 1/2n)

But ∫ ∞

1
|{Mf > t}|dt =

∫
{Mf>1}

Mf(x)dx

which is < ∞ as we said before, so (2.8) holds and the proof is complete.
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The theorem extends clearly to Mµ for a measure µ satisfying a doubling
condition. There is no need to write a new statement.

Suppose now that we have two measure spaces with respective measures µ
and ν , and that T is an operator bounded from Lp(µ) to Lq(ν), that is:

(2.9)

(∫
|Tf |qdν

)1/q

≤ C

(∫
|f |pdµ

)1/p

Then,

ν({x : |Tf(x)| > t}) ≤
∫
{x:|Tf(x)|>t}

(|Tf(x)|/t)qdν

≤ 1

tq

∫
|Tf |qdν ≤ Cq

tq

(∫
|f |pdµ

)p/q

and we obtain

(2.10) ν({x : |Tf(x)| > t}) ≤
(
C∥f∥Lp(µ)

t

)q

When T satisfies (2.10) we say that the operator T is of weak type (p,q) with
respect to the pair of measures (ν, µ). For example (1.8) is read by saying that
M is of weak type (1,1)(with respect to the Lebesgue measure). However, we
know that M fails to be bounded in L1 (see proposition 3.0.1 in appendix).
In general, (2.10) may hold whereas (2.9) does not hold for a given operator
T . It is convenient to see (2.10) as a substitute or a weakening of (2.9). With
this in mind, when (2.9) holds, we say that T is of strong type (p,q) with
respect to the pair of measures (ν, µ). Sometimes it is convenient to indicate
that (2.10) holds by saying that T sends Lp(µ) boundedly into Lq

∗(ν) (called
weak-Lq(ν)).

Weak type inequalities such as (2.10) can be used to obtain strong type
inequalities. This is what we have done to prove theorem (1.2.3). We are
going to present a result, which is a particular case of the Marcinkiewicz
interpolation theorem and is based upon the same idea as our proof of (1.2.3).

Theorem 1.2.6. Suppose we have two measure spaces with respective mea-
sures µ and ν. Let T be an operator sending functions in Lpo(µ) + Lp1(µ) to
ν - measurable functions,1 ≤ po < p1 ≤ ∞. Suppose that :
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1. T is subadditive, that is, for f1, f2 ∈ LPo(µ) + Lp1(µ),

|T (f1 + f2)(x)| ≤ |Tf1(x)|+ |Tf2(x)|, ν − a.e.

2. T is of weak type (po, po),that is:

ν({x : |Tf(x)| > t}) ≤
Co

∫
|f |podµ
tpo

with Co independent of f ∈ Lpo(µ) and t > 0.

3. T is of weak type (p1, p1) which means the same as above if p1 < ∞,
while if p1 = ∞, weak type and strong type coincide by definition:

∥Tf∥L∞(ν) ≤ C1∥f∥L∞(µ)

Then, for every p such that po < p < p1, T is of strong type (p, p),
that is :

∫
|Tf |pd(ν) ≤ Cp

∫
|f |pd(µ).

Proof. Fix p with po < p < p1 and let f ∈ Lp(µ) ⊂ LPo(µ) +Lp1(µ).For every
t > 0 write f(x) = f t(x)+ft(x) where f

t(x) = f(x) if |f(x)| > t and f t(x) = 0
otherwise. Clearly f t ∈ Lpo(µ), and that is because:∫

(f t)podµ =

∫
(f t)p−(p−po)dµ ≤ 1

tp−po

∫
(f t)pdµ < ∞

and since |ft(x)| ≤ t we get also∫
|ft|p1dµ =

∫
|ft|p+(p1−p)dµ ≤ tp1−p

∫
|ft|pdµ < ∞

Suppose now p1 < ∞. Then, since |Tf(x)| ≤ |T (f t)(x)| + |T (ft)(x)|, we can
write:

ν(x : |Tf(x)| > t) ≤ ν(x : |T (f t)(x)| > t/2) + ν(|T (ft)(x)| > t/2) ≤

≤
Co

∫
|f t|pdµ

(t/2)po
+

C1

∫
|ft|p1dµ

(t/2)p1

Thus ∫
|Tf |Pdν = p

∫ ∞

0
tp−1ν(Tf > t)dt ≤
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≤ p2poCo

∫ ∞

0
tp−po−1

∫
|f |>t

|f(x)|podµ(x)dt

+ p2p1C1

∫ ∞

0
tp−p1−1

∫
|f |≤t

|f(x)|p1dµ(x)dt =

= p2poCo

∫
|f(x)|po

∫ |f(x)|

0
tp−po−1dtdµ(x)

+ p2p1C1

∫
|f(x)|p1

∫ ∞

|f(x)|
tp−p1−1dtdµ(x)

=
p2poCo

p− po

∫
|f(x)|pdµ(x) +

p2p1C1

p1 − p

∫
|f(x)|pdµ(x) := Cp

∫
|f(x)|pdµ(x)

For the case p1 = ∞ we just have to observe (as we will see in the end of this
proof), that

ν(|Tf | > t) ≤ ν(|T (fat)| > t/2) (I)

where a = 1/2C ′
1 where C ′

1 = C1 + ε and, consequently∫
|Tf(x)|pdν(x) = p

∫ ∞

0
tp−1ν(|Tf | > t)dt ≤ p

∫ ∞

0
tp−1ν(|Tfat| > t/2)dt ≤

≤ p
∫∞
0 tp−1 Co

(t/2)po

∫
|fat(x)|podµ(x)dt =

= p2poCo

∫ ∞

0
tp−po−1

∫
|f |>at

|f(x)|podµ(x)dt =

= Cop2
po
∫
|f(x)|po

∫ |f(x)|/a
0 tp−po−1dtdµ(x) :=

:= Cp

∫
|f(x)|pdµ(x)

Lets prove (I): We already know that

|Tf | = |T (fat + fat)| ≤ |T (fat)|+ |T (fat)|

Let now t > 0 such that

ν({|Tf | > t}) > 0.

If we had

ν({|Tfat| ≥ t/2}) > 0
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then, from the definition of L∞(ν) norm, we would have

t

2
≤ ∥Tfat∥L∞(ν) ≤ C1∥fat∥L∞(ν) < C ′

1∥fat∥L∞(ν) ≤ C ′
1at =

t

2

which is not valid, thus

ν({|Tfat ≥ t/2|}) = 0

which implies that

ν(|Tf | > t) ≤ ν(|T (fat)| > t/2)

and the proof is complete

Next we shall establish a general inequality for the maximal function.This
inequality involves a weight function ϕ(x).

Theorem 1.2.7. For every p with 1 < p < ∞ there is a constant Cp such that
for any measurable functions on Rn, ϕ ≥ 0 and f, we have the inequality

(2.13)

∫
Rn

(Mf(x))pϕ(x)dx ≤ Cp

∫
Rn

|f(x)|p(Mϕ)(x)dx

Proof. Except when Mϕ(x) = ∞ a.e in which (2.13) holds trivially, Mϕ is the
density of a positive measure µ ( just define µ(A) =

∫
AMϕ(x)dλ(x) where λ

is the Lebesgue measure and then dµ(x) = Mϕ(x)dx ) and in the same way
ϕ is the density of another positive measure ν (dν(x) = ϕ(x)dx), consequently
by this observation (2.13) means that M is bounded operator from Lp(µ) to
Lp(ν). Now if p = ∞ then clearly M is bounded from L∞(µ) to L∞(ν),
indeed if Mϕ(x) = 0 for some x then ϕ(x) = 0 a.e and so (2.13) holds, now if
Mϕ(x) > 0 for every x and ∥f∥L∞(µ) < a for some a (because if ∥ f ∥L∞(µ)= ∞
then (2.13) holds again), we get that:∫

{|f |>a}
Mϕ(x)dx =

∫
{|f |>a}

dµ(x) = µ(|f | > a) = 0

and consequently |{|f | > a}| = 0 or, what is the same |f(x)| ≤ a a.e
from which we get that Mf(x) ≤ a a.e.Thus ∥ Mf ∥L∞(ν)≤ a. So we
have shown that if ∥ f ∥L∞(µ)< a then ∥ Mf ∥L∞(ν)≤ a which means that
∥ Mf ∥L∞(ν)≤∥ f ∥L∞(µ)(we can choose a =∥ f ∥L∞(µ) + ε and then ε → 0).
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Having the (∞,∞) result, if we are able to show that M is of weak type (1, 1)
with respect to the pair of measures (ν, µ), the previous theorem (interpola-
tion) will give (2.13).Thus, all we need to show is that :

ν({Mf > t}) =
∫
{Mf>t}

ϕ(x)dx ≤

≤ C

t

∫
Rn

|f(x)|dµ(x) = C

t

∫
Rn

|f(x)|(Mϕ)(x)dx (2.14)

We can obviously assume that f ≥ 0 and we can also assume that f ∈ L1(Rn).
Indeed, we can find integrable functions fj such that f1 ≤ f2 ≤ . . . ↗ f a.e.
and observe that

{x : Mf(x) > t} =
⋃
j

{x : Mfj(x) > t}

So, let f ∈ L1(Rn) and f ≥ 0. Given t > 0, we know that there is a family of
non-overlapping cubes {Qj} such that, for each j :

t

4n
<

1

|Qj |

∫
Qj

f(x)dx ≤ t

2n
(i)

and also
{x : Mf(x) > t} ⊆

⋃
j

Qj
3

Then ∫
{Mf>t}

ϕ(x)dx ≤
∑
j

∫
Qj

3
ϕ(x)dx =

∑
j

|Q3
j |

|Q3
j |

∫
Qj

3
ϕ(x)dx =

=
∑
j

1

|Q3
j |
3n|Qj |

∫
Q3

j

ϕ(x)dx ≤
∑
j

3n4n

|Q3
j |t

∫
Qj

f(x)dx

∫
Q3

j

ϕ(x)dx =

For the last inequality we used (i).

=
3n4n

t

∑
j

∫
Qj

(
1

|Q3
j |

∫
Q3

j

ϕ(y)dy

)
f(x)dx := a

But
1

|Q3
j |

∫
Q3

j

ϕ(y)dy ≤ Mϕ(y)
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for every y ∈ Qj and so we get

a ≤ 3n4n

t

∑
j

∫
Qj

f(x)Mϕ(x)dx ≤ 3n4n

t

∫
Rn

f(x)Mϕ(x)dx :=

:=
C

t

∫
Rn

f(x)Mϕ(x)dx =
C

t

∫
Rn

f(x)dµ(x)

The theorem we just proved identifies a whole class of weight functions ϕ for
which the operator M is bounded in Lp(ϕ) for every p ∈ (1,∞] and of weak
type (1, 1) with respect to ϕ, namely, then class, customarily denoted by A1 ,
of those ϕ ≥ 0 satisfying Mϕ(x) ≤ Cϕ(x) a.e for some constant C.

There is an interesting extension of the previous theorem whose proof is
but a repetition of the arguments which led to 1.6, 2.5 and 2.12. In order to
present this result we make several definitions:

Given a function f in Rn, we define a function Mf in Rn+1
+ = {(x, t) : x ∈

Rn, t ≥ 0} by setting

Mf(x, t) = sup

{
1

|Q|

∫
Q
|f(y)|dy : x ∈ Q and side length of Q ≥ t

}
Given a positive Borel measure µ in Rn+1

+ , we define a function N(µ) in Rn

by setting

N(µ)(x) = sup
x∈Q

µ(Q̃)

|Q|

where the sup is taken over all cubes Q containing x and for a cube Q

Q̃ = {(x, t) ∈ Rn+1
+ : x ∈ Q and 0 ≤ t ≤ side lenght of Q},

that is,Q̃ is the cube in Rn+1
+ having Q as a face. With the above definitions

we can state the following:

Theorem 1.2.8. For every p with 1 < p < ∞, there is a constant Cp such
that, for every f and every µ:

(2.16)

(∫
Rn+1
+

{Mf(x, t)}pdµ(x, t)

)1/p

≤ Cp

(∫
Rn

|f(x)|pNµ(x)dx

)1/p
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Proof. Before we start the proof, let us note that this result includes the
previous one. We know that if ν(A) =

∫
A ϕ(x)dx then dν(x) = ϕ(x)dx and

ν is a measure in Rn,let also δ be the unit mass consertrated at the origin
in the t axis (Dirac measure on 0 ∈ R) which is a measure on R, then there
exist a unique measure µ in Rn+1 such that µ(A × B) = ν(A) × δ(B) where
A ∈ B(Rn) and B ∈ B(R). We can see now that:

Nµ(x) = sup
x∈Q

µ(Q̃)

|Q|
= sup

x∈Q

ν(Q)

|Q|
δ([0, side lenght of Q]) = sup

x∈Q

ν(Q)

|Q|
= Mϕ(x)

also Mf(x, 0) = Mf(x) and(∫
Rn+1
+ =Rn× R+

{Mf(x, t)}pdµ(x, t)

)1/p

≥

(∫
Rn× {0}

{Mf(x, 0)}pdµ(x, t)

)1/p

=

=

(∫
{0}

∫
Rn

Mf(x)pdν(x)dδ(x)

)1/p

=

=

(∫
Rn

Mf(x)pdν(x)

∫
{0}

1dδ(x)

)1/p

=

(∫
Rn

Mf(x)pdν(x)

)1/p

so this observation combined with (2.16) gives (2.13).

Now we prove the theorem. As in the proof of the preceding result, if we
exclude the trivial case when Nµ(x) = ∞ a.e, we have in the same way that (

for the case p = ∞) M is bounded operator from L∞(Rn, ν) to L∞(Rn+1
+ , µ)

where ν is defined as before. So all we need to prove is that M is of weak type
(1, 1) and then use interpolation (theorem(2.11)). So if we call Ea = {(x, t) ∈
Rn+1
+ : Mf(x, t) > a} we have to show that there is a constant C such that

for every a > 0:

µ(Ea) ≤
C

a

∫
Rn

|f(x)|dν(x) = C

a

∫
Rn

|f(x)|Nµ(x)dx.

Fix a > 0 and suppose that (x, t) ∈ Ea, then there is a cube R containing x
with side length R ≥ t and such that:

1

|R|

∫
R
|f(y)|dy ≥ a
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Let now k be the only integer such that : 2−(k+1)n < |R| ≤ 2−kn. As in the
proof of theorem (1.6) there is some Q ∈ Dk which meets the interior of R
and satisfies ∫

R∩Q
|f(y)|dy >

a|R|
2n

>
a|Q|
4n

so that
1

|Q|

∫
Q
|f(y)|dy >

a

4n
.

It follows that Q ⊂ Qj ∈ Ca4−n for some j and x ∈ R ⊂ Q3 ⊂ Q3
j . On the

other hand t ≤ side length of R ≤ side length of Q3
j , so that (x, t) ∈ Q̃3

j . Thus
we have seen that:

Ea ⊂
⋃
j

Q̃3
j

where Ca4−n = {Qj}. Then

µ(Ea) ≤
∑
j

µ(Q̃3
j ) ≤

∑
j

µ(Q̃3
j ) ·

1
|Qj |

∫
Qj

|f(y)|dy
a4−n

=

=
∑
j

µ(Q̃3
j )

|Q3
j |

3n4n

a

∫
Qj

|f(y)|dy ≤ C

a

∑
j

∫
Qj

|f(y)|Nµ(y)dy ≤ C

a

∫
Rn

|f(x)|Nµ(x)dx.

For the 3rd inequality we used the definition of Nµ .

In particular, if the measure µ is such that:

(2.17) µ(Q̃) ≤ C|Q|

for every cube Q ⊂ Rn with C independent of Q, then Nµ(x) ≤ C and (2.16)
implies that f → Mf is an operator bounded from Lp(Rn) to Lp(Rn+1

+ , µ)
for every p with 1 < p < ∞. Actually, given any p with 1 < p < ∞, (2.17)
is not only sufficient but also necessary for M to be bounded from Lp(Rn)
to Lp(Rn+1

+ , µ). Indeed, since M(XQ)(x, t) ≥ 1 for every (x, t) ∈ Q̃, the
boundedness of M implies that:

µ(Q̃) =

∫
Q̃
dµ ≤

∫
Q̃
M(XQ)(x, t)

pdµ(x, t) ≤ C∥XQ∥Lp(Rn) = C|Q|
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The importance of M stems from the fact that Mf controls the Poisson inte-
gral of f , P (f), defined by:

P (f)(x, t) = Cn

∫
Rn

t

(|x− y|2 + t2)
n+1
2

f(y)dy

for x ∈ Rn and t > 0, where

Cn =

(∫
Rn

1

(|x|2 + 1)
n+1
2

dx

)−1

Indeed:

|P (f)(x, t)| ≤

≤ Cn

∫
|x−y|≤t

t

(|x− y|2 + t2)
n+1
2

|f(y)|dy+

+Cn

∞∑
k=0

∫
2kt<|y−x|≤2k+1t

t

(|x− y|2 + t2)
n+1
2

|f(y)|dy ≤

≤ Cn

{
1

tn

∫
|x−y|≤t

|f(y)|dy +
∞∑
k=0

t

(2kt)n+1

∫
|x−y|≤2k+1t

|f(y)|dy

}
≤

≤ Cn

{
1

tn

∫
Q(x,2t)

|f(y)|dy +
∞∑
k=0

t

(2kt)n+1

∫
Q(x,2k+2t)

|f(y)|dy

}
=

= Cn

{
2n

(2t)n

∫
Q(x,2t)

|f(y)|dy +
∞∑
k=0

t(22)n+1

(2k+2t)n+1

∫
Q(x,2k+2t)

|f(y)|dy

}

≤ Cn

{
2nMf(x, t) + t(22)n+1Mf(x, t)

∞∑
k=0

1

2k+2t

}

= Cn {2nMf(x, t) + 4nMf(x, t) · 1} := CMf(x, t)
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Actually, for f ≥ 0

P (f)(x, t) = Cn

∫
Rn

t

(|x− y|2 + t2)
n+1
2

f(y)dy ≥ Cn

tn

∫
|x−y|≤t

f(y)dy , (a)

In particular if f = XQ and (x, t) ∈ Q̃, we get P (XQ)(x, t) ≥ an > 0, where
an depends only on the dimension n , and that is because by (a) we get that:

P (f)(x, t) ≥ Cn

tn

∫
|x−y|≤t

XQ(y)dy ≥ Cn

tn

∫
Q′

dy =
Cn

(
√
2)n

:= an

where Q′ is a cube with side lenght equal to t√
2
. And so for (x, t) ∈ Q̃, we get

that
P (XQ)(x,t)

an
≥ 1.

Consequently, using the same argument that we used forM (M(XQ)(x, t) ≥ 1)

shows that if the operator f → P (f) is bounded from LP (Rn) to Lp(Rn+1
+ , µ),

then µ satisfies (2.17). The measures µ satisfying (2.17) are called Carleson
measures. We can state the following:

Theorem 1.2.9. Let µ be a positive Borel measure on Rn+1
+ and let 1 < p <

∞.Then f → P (f) is bounded operator from Lp(Rn) to Lp(Rn+1
+ , µ) if and

only if µ is a Carleson measure, that is, if and only if (2.17) holds for some

constant C. □

Observe that the condition obtained does not depend on p and is also equiv-

alent to the fact that f → P (f) sends L1(Rn) boundedly into L1
∗(Rn+1

+ , µ).

1.3 THE SHARP MAXIMAL FUNCTION AND
THE SPACE OF BOUNDED MEAN OSCILA-
TION

For a real locally integrable function f in Rn, the sharp maximal function
f# is defined at x ∈ Rn by setting

f#(x) = sup
x∈Q

1

|Q|

∫
Q
|f(y)− fQ|dy
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where fQ stands for the average of f over Q, that is:

fQ =
1

|Q|

∫
Q
f(x)dx.

The sharp maximal operator f → f# is an analogue of the Hardy-Littlewood
maximal operator M, but it has certain advantages over it which we shall
presently see. Of course, f#(x) ≤ 2Mf(x). It is also clear that in the definition
of f#(x) one can take only those cubes Q containing x in its interior.Actually

(3.1) f#(x) ∼= sup
x∈Q

inf
a∈R

1

|Q|

∫
Q
|f(y)− a|dy

where ∼= is used to indicate that each side is bounded by the other times an
absolute constant. It is clear that the right hand side of (3.1) is ≤ f#(x). For
the opposite inequality we see that

1

|Q|

∫
Q
|f(x)− fQ|dx ≤ 1

|Q|

∫
Q
|f(x)− a|dx+ |fQ − a| ≤

≤ 2

|Q|

∫
Q
|f(x)− a|dx

for every a ∈ R. It follows that f#(x) is bounded by twice the right hand side
of (3.1). We also note that:

(3.2) (|f |)#(x) ≤ 2f#(x)

Indeed by (3.1) we get that

|f |#(x) ≤ 2 sup
x∈Q

inf
a∈R

1

|Q|

∫
Q
||f(y)| − a|dy ≤ 2 sup

1

|Q|

∫
Q
||f(y)| − |fQ||dy ≤

≤ 2 sup
1

|Q|

∫
Q
|f(y)− fQ|dy = 2f#(x).

If f is such that f# is bounded, we say that f is a function of bounded mean
oscillation, and we denote by the initials B.M.O. the space formed by these
functions. Thus

B.M.O. = {f ∈ L1
loc(Rn) : f# ∈ L∞}

We write B.M.O.(Rn) when we need to specify the underlying space. For
f ∈ B.M.O we write

∥f∥∗ = ∥f#∥∞ = sup
Q

1

|Q|

∫
Q
|f(x)− fQ|dx.
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Of course we get after (3.1):

1

2
∥f∥∗ ≤ sup

Q
. inf
a∈R

1

|Q|

∫
Q
|f(x)− a|dx ≤ ∥f∥∗

Thus, in order to be able to say that f ∈ B.M.O., it suffices to make sure that
there exists C < ∞ and, for each Q, a constant aQ such that

1

|Q|

∫
Q
|f(x)− aQ|dx ≤ C.

Then ∥f∥∗ ≤ 2C. This is the usual way to see that a certain f ∈ B.M.O.

Clearly, f → ∥f∥∗ is a seminorm and ∥f∥∗ = 0 if and only if f is constant.
It is natural to consider the quotient space of B.M.O. modulo constants, which
is a normed space and, actually a Banach space. This space of equivalence
classes modulo constants will also be called B.M.O. The ambiguity does not
cause any problem.

Of course L∞ ⊂ B.M.O. (because ∥f∥∗ ≤ 2∥f∥∞). However, there are
unbounded B.M.O. functions as we shall soon see. We shall give two results
which provide many examples of B.M.O functions.

Theorem 1.3.1. If w is an A1 weight, that is, if Mw(x) ≤ Cw(x) a.e., then
logw is in B.M.O. with a norm depending only on the A1 constant for w i.e.
the smallest C such that the above inequality is true.

Proof. Call logw = ϕ, that is w = eϕ. We have for every cube Q

1

|Q|

∫
Q
eϕ(x)dx ≤ Ceϕ(x)

for a.e.x ∈ Q or, equivalently(
1

|Q|

∫
Q
eϕ(x)dx

)
· ess sup

x∈Q
(e−ϕ(x)) ≤ C

But ess supx∈Q(e
−ϕ(x)) = exp(−ess infx∈Q ϕ(x)), and Jensen’s inequality im-

plies
1

|Q|

∫
Q
eϕ(x)dx ≥ exp(ϕQ)
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Thus, exp(ϕQ − ess infx∈Q ϕ(x)) ≤ C and consequently, ϕ satisfies, for some
other constant C independent of Q, the property

ϕQ − ess inf
x∈Q

ϕ(x) ≤ C

We express this by saying that ϕ is of bounded lower oscillation, and denote
by B.L.O. the class formed by all the functions of bounded lower oscilation.
Now, we see that B.L.O. ⊂ B.M.O. Indeed

|ϕ(x)− ϕQ| ≤ (ϕ(x)− ess inf
x∈Q

ϕ(x)) + (ϕQ − ess inf
x∈Q

ϕ(x))

for almost every x. Averaging over Q we obtain

1

|Q|

∫
Q
|ϕ(x)− ϕQ|dx ≤ 2(ϕQ − ess inf

x∈Q
ϕ(x)).

and the inclusion B.L.O. ⊂ B.M.O. follows readily

Observe that the class B.L.O. introduced above fails to be a vector space
even though it is stable under the sum and the product by a non negative
number. Actually B.L.O. ∩ (−B.L.O.) = L∞. Indeed, if both ϕ and −ϕ are
in B.L.O., we have at the same time

ϕQ − ess inf
x∈Q

ϕ(x) ≤ C and − ϕQ + ess sup
x∈Q

ϕ(x) ≤ C

Adding up we get: ess supx∈Q ϕ(x) − ess infx∈Q ϕ(x) ≤ 2C with C indepen-
dent of the cube Q. This is only possible if ϕ is essentially bounded.

The previous theorem gives us B.M.O. functions from A1 weights. We shall
presently see a nice way to produse A1 weights by using the Hardy-Littlewood
maximal operator M .

Let µ be a positive Borel measure on Rn, finite on compact sets, and hence
regular. It makes sense to consider the maximal function

Mµ(x) = sup
x∈Q

1

|Q|

∫
Q
dµ

where the sup is taken over all cubes containing x. Exactly as in the case of
integrable functions, one obtains for measures the fundamental estimate

|{x ∈ Rn : Mµ(x) > t}| ≤ C

t

∫
Rn

dµ
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with C depending only on the dimension. We can state the following:

Theorem 1.3.2. Let µ be a positive Borel measure such that Mµ(x) < ∞ for
a.e. x ∈ Rn, and let 0 < γ < 1. Then the function w(x) = (Mµ(x))γ is an
A1 weight with a constant depending only on γ and the dimension n.

Proof. Let Q be a fixed cube, we shall see that

1

|Q|

∫
Q
w(x)dx ≤ Cw(x)

for a.e. x ∈ Q with C independent of Q. Let Q̃ = Q3, we write µ = µ1 + µ2

with µ1 = XQ̃µ, the restriction of µ to Q̃. Then Mµ(x) ≤ Mµ1(x) +Mµ2(x)
and, since 0 < γ < 1, also (Mµ(x))γ ≤ (Mµ1(x))

γ +(Mµ2(x))
γ . Therefore, it

will be enough to see that the averages of (Mµ1(x))
γ and (Mµ2(x))

γ over Q
are both bounded by Cw(x) for any x ∈ Q with C depending only on γ and
the dimension. We carry out these two estimates separately:

1

|Q|

∫
Q
(Mµ1(x))

γdx =
1

|Q|

∫ ∞

0
γtγ−1|{x ∈ Q : Mµ1(x) > t}|dt =

=
1

|Q|

(∫ R

0
+

∫ ∞

R

)
(we split the integral by using an arbitrary R). Near to 0 we use the trivial
estimate for the distribution function, which is, clearly, ≤ |Q|. From R to ∞
we use the weak type estimate

|{x ∈ Q : Mµ1(x) > t}| ≤ C

t
µ1(Rn) :=

C

t
∥µ1∥

Thus

1

|Q|

∫
Q
(Mµ1(x))

γdx ≤ 1

|Q|

(
|Q|Rγ + C

∫ ∞

R
γtγ−2dt∥µ1∥

)

= Rγ

(
1 +

Cγ

1− γ

∥µ1∥
R|Q|

)
Taking R = ∥µ1∥|Q|−1 we get:

1

|Q|

∫
Q
(Mµ1(x))

γdx ≤
(
∥µ1∥
|Q|

)γ (
1 +

Cγ

1− γ

)
=

(
µ(Q̃)3n

|Q̃|

)γ (
1 +

Cγ

1− γ

)
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:= C ′

(
µ(Q̃)

|Q̃|

)γ

≤ C ′w(x)

for every x ∈ Q ⊂ Q̃.

Comment: What we have just done is to realize that every operator of weak
type (1,1) in a finite measure space, actually takes L1 boundedly into Lp, if
p < 1. This fact is known as Kolmogorov’s inequality.

Let us explain this comment before we continue with the proof : Let (X,µ)
be a finite measure space and let T be an operator of weak type (1,1) (with
respect to µ) then :∫

X
|Tf |γdµ =

∫ ∞

0
γtγ−1µ({|Tf | > t})dt :=

∫ R

0
+

∫ ∞

R
≤

Since T is of weak type (1,1)

≤ Rγµ(X) + C

∫ ∞

R
γtγ−2dt∥f∥1 =

= Rγµ(X) +
CγRγ−1

1− γ
∥f∥1 =

= Rγ

(
µ(X) +

Cγ

(1− γ)R
∥f∥1

)
Thus, for R = ∥f∥1 we get that(∫

X
|Tf |γdµ

)1/γ

≤ C ′∥f∥1

Lets continue with the proof:

To deal now with Mµ2 is even simpler. It is enough to see that, because of
the fact that µ2 lives far from Q (outside of Q̃), for any two points x, y ∈ Q,
we have Mµ2(x) ≤ CMµ2(y), with C an absolute constant. Indeed if Q′ is a
cube containing x and meeting Rn\Q̃, then Q ⊂ Q′3, so we get:

1

|Q′|

∫
Q′

dµ2 =
3n

|Q′3|

∫
Q′

dµ2 ≤
3n

|Q′3|

∫
Q′3

dµ2 ≤ 3nMµ2(y)
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which leads to Mµ2(x) ≤ 3nMµ2(y) for any x, y ∈ Q. Thus

1

|Q|

∫
Q
(Mµ2(y))

γdy ≤ |Q|
|Q|

3nγ(Mµ2(x))
γ ≤ 3nγw(x)

for every x ∈ Q and the proof is complete

For example,take µ = δ0, the Dirac delta or unit mass at the origin in Rn.
Then Mδ(x) = ∥x∥−n

∞ where ∥x∥∞ = max|xj | and that is because, in order
to have Mδ(x) > 0 for some x, we need to look at the cubes containing both
zero and x, and the smallest cubes which include those points is of side length
equal to ∥x∥∞. Thus Mδ(x) ∼= |x|−n (because | |∞ and | | are equivalent)

It follows that for any γ with 0 ≤ γ < 1, |x|−nγ is an A1 weight, or, in other
words |x|a is an A1 weight for any a with −n < a ≤ 0 and only for these a’s
actually, since w has to be locally integrable, let as explain this :∫

B(0,1)

1

|x|a
dx =

∫ 1

0

∫
∂B(0,t)

1

|x|a
dxdt =

=

∫ 1

0

1

ta
|∂B(0, t)|dt =

∫ 1

0

1

ta
ntn−1|B(0, 1)|dt =

= n|B(0, 1)|
∣∣∣∣ tn−a

n− a

∣∣∣∣1
0

which is < ∞ if a < n. However, our main concern here is the fact that log |x|
is an example of an unbounded B.M.O. function. Note that (we will see it
later) log 1

|x| is actually in B.L.O. In general we have:

Corollary 1.3.1. 1. For any positive Borel measure µ such that Mµ(x) <
∞ for a.e. x ∈ Rn, logMµ(x) is a B.M.O. function with norm depend-
ing only on the dimension.

2. log |x| is in B.M.O.

Proof. It is clear from the definition of B.M.O. functions, that, f ∈ B.M.O.
implies that cf ∈ B.M.O. for any constant c.
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Since (|f |)# ≤ 2f#(x), we know that f ∈ B.M.O. implies |f | ∈ B.M.O.
Consequently B.M.O. is a lattice (if f, g ∈ B.M.O., then the functionsmax(f, g) =
(|f − g|+ f + g)/2 and min(f, g) = (f + g−|f − g|)/2 will also be in B.M.O.).
However, we may have |f | ∈ B.M.O. without having f ∈ B.M.O. For example
if :

f(x) =


0 for |x| > 1

− log |x| if 0 < x < 1
log |x| if −1 < x < 0

It is clear that |f(x)| = max(log 1
|x| , 0) is in B.M.O. However, f is not in

B.M.O. Since f is odd and, consequently, has average 0 on every interval
[−a, a], we just need to observe that

1

2a

∫ a

−a
|f(x)|dx =

1

a

∫ a

0
log

1

x
dx = 1− log a −→ ∞

for a → 0.

There is an intimate relation between the operator f → f# and the Hardy-
Littlewood maximal operator M . It is contained in the following statement:

Theorem 1.3.3. If f is such that Mf ∈ Lpo for some po with 0 < po < ∞,
then for every p such that po ≤ p < ∞, we have:∫

Rn

(Mf(x))pdx ≤ C

∫
Rn

(f#(x))pdx

with C independent of f .

Proof. We may assume that f ≥ 0 since Mf = M(|f |) and (|f |)# ≤ 2f#.

The proof is based upon the Calderon-Zygmund decomposition. First we
see that this decomposition can be carried our for oun function f . Let t > 0
and suppose that Q is a cube such that fQ > t. Then, for every x in Q

t <
1

|Q|

∫
Q
f(y)dy ≤ Mf(x)

and thus tpo < (Mf(x))po so,

tpo ≤ 1

|Q|

∫
Q
(Mf(x))podx ≤ 1

|Q|

∫
Rn

(Mf(x))podx :=
C

|Q|
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It follows that if Q1 ⊊ Q2 ⊊ .... is an increasing family of dyadic cubes for
each of which is

1

|Qk|

∫
Qk

f(y)dy > t,

then the family is necessarily finite since |Qk| is bounded independently of k.
Thus, each dyadic cube Q satisfying fQ > t will be contained in a maximal
one. If {Qj} is the family consisting of these maximal dyadic cubes, for each
of them will be

t <
1

|Qj |

∫
Qj

f(y)dy ≤ 2nt

In order to indicate the dependence on t, we shall denote this family by {Qj,t}.
For a.e. x /∈ ∪jQt,j is f(x) ≤ t.

Observe that if t < s, then each Qs,j is ⊂ Qt,k for some k. Given t > 0 we
fix Qo = Q2−n−1t,jo and take A > 0. There are two possibilities: either

Qo ⊂ {x : f#(x) > t/A} or Qo ̸⊂ {x : f#(x) > t/A}.

In the first case ∑
{j:Qt,j⊂Qo}

|Qt,j | ≤ |{x : f#(x) > t/A}|

In the second case
1

|Qo|

∫
Qo

|f(y)− fQo |dy ≤ t/A

(that is because there is x in Qo such that f#(x) ≤ t/A). Now taking into
account that fQo ≤ 2n2−n−1t = t/2, we can write:∑

{j:Qt,j⊂Qo}

(t− t

2
)|Qt,j | ≤

∑
{j:Qt,j⊂Qo}

(fQt,j − fQo)|Qt,j | =

=
∑

{j:Qt,j⊂Qo}

∫
Qt,j

(f(y)− fQo)dy ≤
∑

{j:Qt,j⊂Qo}

∫
Qt,j

|f(y)− fQo |dy ≤

≤
∫
Qo

|f(y)− fQo |dy ≤ t|Qo|
A

.

and so ∑
{j:Qt,j⊂Qo}

|Qt,j | ≤
2|Qo|
A

(I)
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Let us note that the sum
∑

{j:Qt,j⊂Qo} has meaning because of the fact that
each Qt,j is subset of some Qt/2n+1,k for some k due to the observation we
made earlier. Adding up now in all the possoble Qo’s, we get∑

j

|Qt,j | =

=
∑

{j:Qt,j⊂Qt2−n−1,k for some k and Qt2−n−1,k⊂{x:f#(x)>t/A}}

|Qt,j |+

+
∑

{j:Qt,j⊂Qt2−n−1,k for some k and Qt2−n−1,k ̸⊂{x:f#(x)>t/A}}

|Qt,j | ≤

and by (I) and because of the fact that Qt,j are non overlapping, we get

≤ |{x : f#(x) > t/A}|+
∑
k

2

A
|Qt2−n−1,k|

Call

α(t) =
∑
j

|Qt,j |

and

β(t) = |{x : Mf(x) > t}|

We know that α(t) ≤ β(t), and using theorem (1.1.2) we get

β(t) ≤
∑
j

|Q3
4−nt,j | = 3n

∑
j

|Qt/4n,j | := C1α(t/C2)

where C1 = 3n and C2 = 4n. In terms of α we have got the following inequality:

α(t) ≤ |{x : f#(x) > t/A}|+ 2A−1α(2−n−1t) (II)

Now, for N > 0 we consider

IN =

∫ N

0
ptp−1α(t)dt ≤

∫ N

0
ptp−1β(t)dt =

∫ N

0
p
po
po

tp−potpo−1β(t)dt ≤

≤ p(po)
−1Np−po

∫ N

0
pot

po−1β(t)dt ≤ p(po)
−1Np−po

∫ ∞

0
pot

po−1β(t)dt =

= p(po)
−1Np−po

∫
Rn

(Mf(x))podx < ∞
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since we are assuming that Mf ∈ Lpo . Also, using (II) we get:

IN ≤
∫ N

0
ptp−1|{x : f#(x) > t/A}|dt+ 2

A

∫ N

0
ptp−1α(t/2n+1)dt =

we set t/2n+1 = y in the second integral an we get

=

∫ N

0
ptp−1|{x : f#(x) > t/A}|dt+ 2

A
2n+12(n+1)(p−1)

∫ N/2n+1

0
ptp−1α(t)dt

:=

∫ N

0
ptp−1|{x : f#(x) > t/A}|dt+ C

A

∫ N/2n+1

0
ptp−1α(t)dt

from which:

IN ≤
∫ N

0
ptp−1|{x : f#(x) > t/A}|dt+ C

A
IN

with C depending only on n and p. Take now A = 2C and obtain:

IN ≤ 2

∫ N

0
ptp−1|{x : f#(x) > t/A}|dt.

Letting N → ∞, we arrive at∫ ∞

0
ptp−1α(t)dt ≤ 2

∫ ∞

0
ptp−1|{x : f#(x) > t/A}|dt (III)

and then∫
Rn

(Mf(x))pdx =

∫ ∞

0
ptp−1β(t)dt ≤ C1

∫ ∞

0
ptp−1α(t/C2)dt =

C1C2C
p−1
2

∫ ∞

0
ptp−1α(t)dt := C

∫ ∞

0
ptp−1α(t)dt ≤

and using (III) we get

≤ 2C

∫ ∞

0
ptp−1|{x : f#(x) > t/A}|dt := C

∫
Rn

(f#(x))pdx

and the proof is complete

We have seen that the maximal function Mf and f# are closely related.
We have the trivial pointwise estimate f#(x) ≤ 2Mf(x), but we also have an
estimate going in the opposite direction, this time an Lp estimate.
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Theorem 1.3.4. Let T be a linear operator bounded in Lpo for some po with
1 < po < ∞. Assume also that T carries L∞ to B.M.O. boundedly. Then, for
every p with po < p < ∞, T is bounded in Lp.

Proof. We consider the operator f → (Tf)#, which is a sublinear operator
(subadditive), bounded in Lpo , and that is because:

∥(Tf)#∥Lpo ≤ 2∥M(Tf)∥Lpo

also (Tf) ∈ Lpo for f ∈ Lpo , so there is a constant Cpo (from theorem (1.2.3))
such that:

2∥M(Tf)∥Lpo ≤ 2Cpo∥Tf∥Lpo ≤ 2CpoC
′∥f∥Lpo

where C ′ comes from the boundness of T . Thus :

∥(Tf)#∥Lpo ≤ 2CPoC
′∥f∥Lpo := C∥f∥Lpo

Also this operator is bounded in L∞: for every f ∈ L∞, we have, ∥(Tf)#∥∞ =
∥Tf∥∗ ≤ C∥f∥∞.(where ∥ ·∥∗ is by definition, the norm in the B.M.O. space).
With other words, the new operator is of strong type (po, po) and (∞,∞),
consequently, is of weak type (po, po) and (∞,∞). By Marcinkiewicz’s inter-
polation theorem, it will also be bounded in Lp(of strong type (p, p) ) for every
p ≥ po. Let f ∈ Lp ∩Lpo . Then Tf ∈ Lpo (because T is bounded in Lpo), and
consequently M(Tf) ∈ Lpo (since po > 1 and we know that M is of strong
type (p,p) for p > 1). On the other hand (Tf)# ∈ Lp and∫

((Tf)#)p ≤ C

∫
|f |p.

The preceding theorem gives:∫
(M(Tf))p ≤ C ′

∫
((Tf)#)p ≤ C ′C

∫
|f |p

Thus (since Mf ≥ f a.e.), we get that∫
|Tf |p ≤ C ′C

∫
|f |p := C

∫
|f |p

and this inequality extends to every f ∈ Lp because of the fact that the set S
of all simple functions with finite support is dense in Lp for 1 ≤ p < ∞ and
clearly S ⊂ Lq for all q > 0, so we can conclude that LP ∩ Lq is dense in Lp

simply because S is dense in Lp and S ⊂ Lp ∩ Lq.
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The most important result regarding B.M.O. is the following theorem of F.
John and L. Nirenberg.

Theorem 1.3.5. There exist constants C1, C2 depending only on the dimen-
sion n, such that for every f ∈ B.M.O. = B.M.O.(Rn), every cube Q and
every t > 0:

(3.5) |{x ∈ Q : |f(x)− fQ| > t}| ≤ C1e
−(C2/∥f∥∗)t|Q|

Proof. It is again an application of the Calderon-Zygmund decomposition.
Observe, first of all, that we can assume ∥f∥∗ = 1, because the inequality
(3.5) does not change if we replace f by a constant times it. Fix Q and take
α > 1. We know that

1

|Q|

∫
Q
|f(x)− fQ|dx ≤ 1 < α.

We make the C-Z decomposition of Q for the function f − fQ relative to α,
obtaining cubes Q1,j (dyadic subcubes of Q) for each of which:

α <
1

|Q1,j |

∫
Q1,j

|f(x)− fQ|dx ≤ 2nα (I)

Besides, for a.e.x /∈
⋃

j Q1,j is |f(x)− fQ| ≤ α. So by (I) we get:

|fQ1,j − fQ| =

∣∣∣∣∣ 1

|Q1,j |

∫
Q1,j

(f(y)− fQ)dy

∣∣∣∣∣ ≤ 2nα

Also: ∑
j

|Q1,j | ≤
1

α

∑
j

∫
Q1,j

|f(x)− fQ|dx ≤

≤ 1

α

∫
Q
|f(x)− fQ|dx ≤ |Q|

α
(II)

We make now the Calderon-Zygmund decomposition on each Q1,j for the
function f − fQ1,j relative to α. Thus we obtain for each j, a family {Q1,j,k}k
of dyadic subcubes of Q1,j for each of which, (like earlier):

|fQ1,j,k
− fQ1,j | ≤ 2nα

and also for a.e. x ∈ Q1,j\(∪kQ1,j,k) is |f(x)− fQ1,j | ≤ α. Also with the same
way we got (II), we have: ∑

k

|Q1,j,k| ≤
1

α
|Q1,j |.
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Now we put together all the families {Q1,j,k}k corresponding to different Q1,j ’s
and call the resulting family {Q2,k}k =: {Q1,j,k}j,k. Then, outside of the union
of the Q2,k’s, we have:

|f(x)− fQ| ≤ |f(x)− fQ1,j |+ |fQ1,j − fQ| ≤

≤ α+ 2nα ≤ 2 · 2nα

and also ∑
k

|Q2,k| =
∑
j

∑
k

|Q1,j,k| ≤
∑
j

1

α
|Q1,j | ≤

(
1

α

)2

|Q|

Subsequently, we obtain for each natural number N, a family on non overlap-
ping cubes {QN,j}j in such a way that outside of their union is |f(x)− fQ| ≤
N · 2nα and such that: ∑

j

|QN,j | ≤ α−N |Q|.

Now if N · 2nα ≤ t < (N + 1) · 2nα with N = 1, 2, ...., then

{x ∈ Q : |f(x)− fQ| > t} ⊂

⋃
j

QN,j

 ∪A

where |A| = 0, and that is because, for a.e.x ∈ Q′\(∪jQN,j), we have:

|f(x)− fQ| ≤ N2nα

where Q′ is some subcube of Q produced in the N − 1 step of the process, so
we get:

|{x ∈ Q : |f(x)− fQ| > t}| ≤
∑
j

|QN,j |+ |A| =
∑
j

|QN,j | ≤

≤
(
1

α

)N

|Q| = e−N logα|Q|

But

−2nα(N + 1) < −t ≤ −N2nα =⇒ −2nα(N + 1)N logα < −tN logα

=⇒ −N logα <
−N logα

2nα(N + 1)
t := −C2t
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so we get:

|{x ∈ Q : |f(x)− fQ| > t}| ≤ e−C2t|Q| (III)

which is (3.5) since ∥f∥∗ = 1. On the other hand, if t < 2nα, then C2t <
C22

nα and we use the trivial majorization

|{x ∈ Q : |f(x)− fQ| > t}| ≤ |Q| < e(C22nα−C2t)|Q| =

= eC22nαe−C2t|Q|

we can also (since C22
nα > 0, so e−C2t < eC22nαe−C2t) bring (III) into the

same form as above. Thus, we get (3.5) for every t by choosing C2 as above
and C1 = eC22nα. Finally, α can be chosen in order to get an optimal value of
the constant C2 (α = e).

Corollary 1.3.2. If f ∈ B.M.O. then:

1. For every p with 0 < p < ∞:

∥f∥∗,p ≡ sup
Q

(
1

|Q|

∫
Q
|f(x)− fQ|pdx

)1/p

≤ Cp∥f∥∗

with Cp independent of f , in such a way that, for 1 < p < ∞, f → ∥f∥∗,p
is a norm equivalent to f → ∥f∥∗ on B.M.O.

2. For every λ such that 0 < λ < C2/∥f∥∗, where C2 is the same constant
appearing in (3.5), we have:

sup
Q

1

|Q|

∫
Q
eλ|f(x)−fQ|dx < ∞

Proof.
∫
Q |f(x)− fQ|pdx =

∫∞
0 ptp−1|{x ∈ Q : |f(x)− fQ| > t}|dt ≤

≤ C1

∫ ∞

0
ptp−1e−C2/∥f∥∗tdt|Q|

After a change of variables ( C2
∥f∥∗ t = s) we get:∫

Q
|f(x)− fQ|pdx ≤ C1p

(
∥f∥∗
C2

)p ∫ ∞

0
sp−1e−sds =

= C1pΓ(p)C
−p
2 ∥f∥p∗ = Cp

p∥f∥p∗
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which gives (1) with Cp = (C1pΓ(p)C
−p
2 )1/p.

If 1 < p, using Hölder’s inequality, we get∫
Q
|f(x)− fQ|dx ≤

(∫
Q
|f(x)− fQ|pdx

)1/p

· |Q|1/q ⇒

1

|Q|

∫
Q
|f(x)− fQ|dx ≤

(∫
Q
|f(x)− fQ|pdx

)1/p

|Q|
1
q
−1

=

=

(∫
Q
|f(x)− fQ|pdx

)1/p

|Q|−1/p =

(
1

|Q|

∫
Q
|f(x)− fQ|pdx

)1/p

Thus
f#(x) ≤ ∥f∥∗,p ⇒ ∥f∥∗ = ∥f#∥∞ ≤ ∥f∥∗,p ≤ Cp∥f∥∗

so that the norms ∥ · ∥∗ and ∥ · ∥∗,p are equivalent over B.M.O.

(2): ∫
Q
eλ|f(x)−fQ|dx =

∫ ∞

0
λeλt|{x ∈ Q : |f(x)− fQ| > t}|dt ≤

≤
∫ ∞

0
λeλtC1e

−(C2/∥f∥∗)tdt|Q| = C1λ

∫ ∞

0
e(λ−C2/∥f∥∗)tdt|Q| =

= C1λ(C2/∥f∥∗ − λ)−1|Q|

if 0 < λ < C2/∥f∥∗, and the proof is complete
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CHAPTER2
WEIGHTED NORM
INEQUALITIES

2.1 THE CONDITION Ap

By a weight on a given measure space, we shall always mean a measurable
function w with values in [0,∞]. Our main problem is going to be the follow-
ing :

PROBLEM 1. Given p, 1 < p < ∞, determine those weights w on Rn for
which the maximal operator M is of strong type (p, p) with respect to the
measure w(x)dx, that is, for which we have an inequality:(∫

Rn

(Mf(x))pw(x)dx

)1/p

≤ C

(∫
Rn

|f(x)|pw(x)dx
)1/p

(1.1)

We can also pose this more general

PROBLEM 2. Given p, 1 < p < ∞, determine those pairs of weights (u,w) on
Rn, for which M is of strong type (p, p) with respect to the pair of measures
(u(x)dx,w(x)dx), that is, for which we have an inequality:(∫

Rn

(Mf(x))pu(x)dx

)1/p

≤ C

(∫
Rn

|f(x)|pw(x)dx
)1/p

(1.2)

We can pose similar problems substituting weak type for strong type in the
two problems above. For example:

PROBLEM 3. Given p, 1 ≤ p < ∞ determine those pairs of weights (u,w) on
Rn, for which M is of weak type (p, p) with respect to the pair of measures
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(u(x)dx,w(x)dx), that is, for which we have the inequality:

u({x ∈ Rn : Mf(x) > t}) ≤ Ct−p

∫
Rn

|f(x)|pw(x)dx (1.3)

For a set E, u(E) stands for
∫
E u(x)dx. This notation has been used in (1.3)

and it will be used systematically.

We shall keep the usual conventions for multiplication in [0,∞], namely ∞·t =
t · ∞ = ∞ for 0 < t ≤ ∞ and 0 · ∞ = ∞ · 0 = 0. Also ∞−1 = 0 and 0−1 = ∞
when we consider w−1 for a weight w.

Let us start by analyzing problem 3, Suppose that the pair of weights (u,w)
is such that (1.3) holds for a given p, 1 ≤ p < ∞, every function f and every
t > 0. Let f be a function ≥ 0. Let Q be a cube such that the average
fQ = 1

|Q|
∫
Q f(x)dx > 0.

Observe that fQ ≤ M(fXQ)(x) for every x ∈ Q (sincefQ = 1
|Q|
∫
Q f(x)dx =

1
|Q|
∫
Q fXQ(x)dx ≤ M(fXQ)(x)). Then, for every t with 0 < t < fQ,

Q ⊂ Et = {x ∈ Rn : M(fXQ)(x) > t} so that, by (1.3):

u(Q) ≤ Ct−p

∫
Q
f(x)pw(x)dx

It follows that: (let t → fQ)

(fQ)
pu(Q) ≤ C

∫
Q
f(x)pw(x)dx (1.4)

We can actually write this inequality in seemingly stronger form. If S is a
measurable subset of Q, we can replace f in (1.4) by fXS , obtaining(

1

|Q|

∫
S
f(x)dx

)p

u(Q) ≤ C

∫
S
f(x)pw(x)dx (1.5)

Of course (1.5) is just equivalent to (1.4), but (1.5) is more readily applicable
sometimes. For f ≡ 1, (1.5) yields:

(|S|/|Q|)pu(Q) ≤ Cw(S) (1.6)

From (1.6) we draw some relevant information about the pair (u,w):
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a) w(x) > 0 for a.e. x ∈ Rn (unless u(x) = 0 for a.e. x ∈ Rn, trivial
case which we shall exclude).
b) u is locally integrable (unless w(x) = ∞ for a.e. x ∈ Rn, again trivial case
which we shall also exclude).

Let as proof a) and b): If w(x) = 0 on a set S with |S| > 0, a set which
we could assume to be bounded, (1.6) would imply that u(Q) = 0 for every
cube Q containing S, and consequently u(x) = 0 for a.e. x ∈ Rn. Now if u is
not locally integrable, then u(Q) = ∞ for some cube Q and, consequently, for
any cube containing Q, this implies that w(S) = ∞ for any set S ⊂ Q with
|S| > 0, which implies w(x) = ∞ for a.e.x ∈ Rn.

We are about to derive a necessary condition on the pair (u,w) for (1.3)
to hold for every f and t. If p = 1, (1.6) can be written in the form:

1

|Q|

∫
Q
u(x)dx ≤ C

1

|S|

∫
S
w(x)dx (1.7)

the inequality being valid for every cube Q and every set S ⊂ Q with |S| > 0.
Fix Q and let a > ess.Qinf.(w), the essential infimum of w over Q, which is
defined as the

inf{t > 0 : |{x ∈ Q : w(x) < t}| > 0}

Then, the set Sa = {x ∈ Q : w(x) < a} has |Sa| > 0 and (1.7) holds for
S = Sa, from which we get:

u(Q)

|Q|
≤ Ca.

Since this is true for every a > ess.inf.(w), we arrive finally at:

1

|Q|

∫
Q
u(x)dx ≤ Cess.Qinf.(w) ≤ Cw(x) (1.8)

for a.e.x ∈ Q.

Observe that the fact that (1.8) holds for every Q is equivalent to :

M(u)(x) ≤ Cw(x) (1.9)

for a.e.x ∈ Rn. Indeed, it is clear that (1.9) implies (1.8) for every cube Q.
Conversely if (1.8) holds for every Q, let us show (1.9) holds, that is, the
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set {x ∈ Rn : M(u)(x) > Cw(x)} has measure equal to zero. If M(u)(x) >
Cw(x), it will be

1

|Q|

∫
Q
u(x)dx > Cw(x) (I)

for some cube Q containing x, and we can assume that Q has vertices with
all coordinates rational, the cardinality of those cubes is at most Qn which is
countable, so, we can denote all those cubes as {Qn}n∈K⊂N. Now, by (I) and
having in mind that (1.8) holds for every cube Q, we can see that x belongs
to a subset NQ of Q with |NQ| = 0. Thus we get:

{x ∈ Rn : M(u)(x) > Cw(x)} ⊂ ∪n∈KNQn

and we get the equivalence between (1.8) and (1.9).

Condition (1.9) is known as condition A1 for the pair (u,w). When it holds,
we also say that the pair (u,w) belongs to the class A1, viewing A1 as a col-
lection of pairs of weights (u,w). We often speak of the A1 constant for the
pair (u,w) which is the smallest C for which (1.8), or equivalently (1.9), holds.

We have just seen that (u,w) ∈ A1 is a necessary condition for M to be
of weak type (1, 1) with respect to the pair (u,w). It is very satisfactory to
realize that this condition is actually sufficient. Indeed, let (u,w) ∈ A1, so
that (1.9) holds. Then, using the inequality (2.14) in chapter I, we get:

u({x ∈ Rn : Mf(x) > t}) =
∫
{x∈Rn:Mf(x)>t}

u(x)dx ≤

≤ Ct−1

∫
Rn

|f(x)|Mu(x)dx ≤ Ct−1

∫
Rn

|f(x)|w(x)dx.

Now we shall treat the case 1 < p < ∞. We start by looking for a necessary
condition. So far we know that if M is of weak type (p, p) with respect to
(u,w), then (1.5) holds for every function f ≥ 0, every cube Q and every
measurable set S ⊂ Q. Let us choose f such that f(x) = f(x)pw(x). This
gives f(x) = w(x)−1/(p−1). A priori this function needs not to be locally
integrable. Fix a cube Q and take S = Sj = {x ∈ Q : w(x) > j−1} for
j = 1, 2, .... On every Sj our f is bounded, so that

∫
Sj

f < ∞. With our

choice for f , (1.5) gives:(
1

|Q|

∫
Sj

w(x)−1/(p−1)dx

)p

u(Q) ≤ C

∫
Sj

w(x)−1/(p−1)dx =⇒
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(
1

|Q|

∫
Sj

w(x)−1/(p−1)dx

)p
u(Q)

|Q|
≤ C

1

|Q|

∫
Sj

w(x)−1/(p−1)dx

or, since the integrals are finite,

(
1

|Q|

∫
Q
u(x)dx)

(
1

|Q|

∫
Sj

w(x)−1/(p−1)

)p−1

≤ C

Now S1 ⊂ S2 ⊂ .... and ∪∞
j=1Sj = {x ∈ Q : w(x) > 0}, whose complement

in Q has measure zero, as we previously observed (w > 0 a.e.). Thus, letting
j → ∞, we get finally

(
1

|Q|

∫
Q
u(x)dx)

(
1

|Q|

∫
Q
w(x)−1/(p−1)

)p−1

≤ C (1.10)

We shall say that the pair (u,w) satisfies the condition Ap, if and only if
there is a constant C such that (1.10) holds for every cube Q. The smallest
such constant will be called the Ap constant for the pair (u,w). We have
proved that (u,w) ∈ Ap is necessary for M to be of weak type (p.p) with
respect to the pair (u,w). Observe that (u,w) ∈ Ap implies that both u and
w−1/(p−1) are locally integrable. Indeed if one of the integrals in (1.10) were
∞, the same would happen for any cube containing Q, and that would force
the other factor to be zero. This would imply either u(x) = 0 for a.e.x ∈ Rn

or w(x) = ∞ for a.e.x ∈ Rn. Both trivial situations that have been excluded
beforehand. Another observation that has to be made is that the condition
A1 can be viewed as a limit case of the condition Ap for p ↓ 1. Indeed (1.8)
can be written as

(
1

|Q|

∫
Q
u(x)dx)ess.Qsup.(w

−1) ≤ C (1.11)

while

(
1

|Q|

∫
Q
w(x)−1/(p−1)dx)p−1 = ∥w−1∥L1/(p−1)(Q,|Q|−1dx) →

→ ∥w−1∥L∞(Q,|Q|−1dx:=dµ) = ∥w−1∥L∞(Q,dx) := ∥w−1∥L∞(Q)

as p → 1 where µ(A) =
∫
A |Q|−1dx = |A|

|Q| , that is why we have

∥w−1∥L∞(Q,|Q|−1dx:=dµ) = ∥w−1∥L∞(Q,dx)
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(µ(A) > 0 if and only if |A| > 0).

Let us also explain the convergence above: Let

g =
f

ess.sup(f)

then ess.sup(g) = 1 and :

(∫
Q
|g|pdµ

)1/p

=

(∫
{|g|>1−ε}

|g|p +
∫
{|g|≤1−ε}

|g|p
)1/p

≥

≥ ((1− ε)pµ({|g| > 1− ε}) + 0)1/p =

= (1− ε)µ({|g| > 1− ε})1/p −→ (1− ε)

as p → ∞. On the other hand(∫
Q
|g|p
)1/p

≤ µ(Q)1/p −→ 1 < 1 + ε

Thus ∥g∥Lp(µ) −→ 1 as p → ∞, which implies that

∥f∥Lp(µ) −→ ess.sup(f) = ∥f∥L∞(µ)

Thus (1.11) is the right companion for (1.10) when p = 1. Also note that
(u,w) ∈ A1 (that is (u,w) satisfy (1.9)) implies that u is locally integrable and
w−1 is locally bounded.

Our task will be now to show that, exactly as in the case p = 1, when
1 < p < ∞, (u,w) ∈ Ap is not only necessary, but also sufficient for M
to be of weak type (p,p) with respect to the pair (u,w). We have obtained
condition Ap from (1.4). The first step will be to show that, conversely, if
(u,w) ∈ Ap, then (1.4) holds for every f ≥ 0 and every cube Q. This is actu-
ally true for 1 ≤ p < ∞. If p = 1 and (u,w) ∈ A1, we have, for every cube Q
and every f ≥ 0:(

1

|Q|

∫
Q
f(x)dx

)
u(Q) =

∫
Q
f(x)dx

u(Q)

|Q|
≤

≤
∫
Q
f(x)M(u)(x)dx ≤ C

∫
Q
f(x)w(x)dx
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which is (1.4) for p = 1. If now 1 < p < ∞ and (u,w) ∈ Ap, we have, for every
cube Q and every f ≥ 0, using Hölder’s inequality with p and its conjugate
exponent p′ = p/(p− 1),

fQ =
1

|Q|

∫
Q
f(x)w(x)1/pw(x)−1/pdx ≤

≤
(

1

|Q|

∫
Q
f(x)pw(x)

)1/p

·
(

1

|Q|

∫
Q
w(x)−1/(p−1)dx

) p−1
p

.

Thus

(fQ)
pu(Q) ≤ u(Q)

|Q|

∫
Q
f(x)pw(x)dx ·

(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

and using (1.10) we get

≤ C

∫
Q
f(x)pw(x)dx

so that (1.4) holds. We have established the equivalence between (1.4) and
Ap. Now, suppose that (1.4) holds for every cube Q and every f ≥ 0. We
shall obtain (1.3) with a possibly bigger C. Of course, we have (1.5) for every
f ≥ 0, every cube Q and every set S ⊂ Q. Let f ∈ Lp(w). We can obviously
assume that f ≥ 0. Observe that Lp

loc(w) ⊂ L1
loc(Rn) as follows from (1.4)

using Q such that u(Q) > 0. Now we can also assume that f ∈ L1(Rn).
Indeed, we can always write f = limk→∞ fk where fk = f · XQ(0,k) and if
now, we have (1.3) for every fk in place of f , passing to the limit we obtain
(1.3) for f . Thus, assuming f integrable, we want to estimate u(Et) where
Et = {x ∈ Rn : Mf(x) > t}. We use theorem (1.1.2) from chapter I, to write
Et ⊂ ∪jQ

3
j , where the Qj ’s are non overlapping cubes for which

t

4n
<

1

|Qj |

∫
Qj

f(x)dx ≤ t

2n
(a)

Then,

u(Et) ≤
∑
j

u(Q3
j ) ≤

and applying (1.5) with Q = Q3
j and S = Qj , we get

≤ C
∑
j

(
1

|Q3
j |

∫
Qj

f(x)dx

)−p ∫
Qj

f(x)pw(x)dx =
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= C
∑
j

(
1

3n|Qj |

∫
Qj

f(x)dx

)−p ∫
Qj

f(x)pw(x)dx ≤

and using (a) we get

≤ C3np4npt−p
∑
j

∫
Qj

f(x)pw(x)dx ≤ C ′t−p

∫
Rn

f(x)pw(x)dx.

where C ′ = C3np4np. We have a complete proof of the fact that the solution
to Problem 3 is precisely the class Ap of pairs of weights. We can collect our
findings in the following

Theorem 2.1.1. Let u and w be weights on Rn and let 1 ≤ p < ∞. Then,
the following conditions are equivalent:

1. M is of weak type (p, p) with respect to (u,w), that is:M takes Lp(w) to
Lp
∗(u) boundedly or, in other words, there is a constant C such that for

every function f ∈ L1
loc(Rn) and every t > 0

u({x ∈ Rn : Mf(x) > t}) ≤ Ct−p

∫
Rn

|f(x)|pw(x)dx.

2. There is a constant C such that for every function f ≥ 0 in Rn and for
every cube Q(

1

|Q|

∫
Q
f(x)dx

)p

u(Q) ≤ C

∫
Q
f(x)pw(x)dx

3. (u,w) ∈ Ap, that is, there is a constant C such that for every cube Q we
have, in case 1 < p < ∞,(

1

|Q|

∫
Q
u(x)dx

)(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

≤ C

and in case p = 1,

(
1

|Q|

∫
Q
u(x)dx)ess.Qsup.(w

−1) ≤ C

Besides, the constant C appearing in 1), 2) and 3) are of the same order.
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Corollary 2.1.1. Let (u,w) ∈ Ap. Then, for every q with p < q < ∞,
the maximal operator M is bounded from Lq(w) to Lq(u), that is, there is a
constant C such that for every f ∈ L1

loc(Rn):∫
Rn

|Mf(x)|qu(x)dx ≤ C

∫
Rn

|f(x)|qw(x)dx

Proof. We already know that M is of weak type (p,p) with respect to (u,w),
that is, M takes Lp(w) boundedly to Lp

∗(u). We shall see presently that M is
also bounded from L∞(w) to L∞(u). Lets prove that: Since

∥Mf∥∞,u = sup{a ≥ 0 : u({x ∈ Rn : Mf(x) > a}) > 0}

let a > 0 such that : u({x ∈ Rn : Mf(x) > a}) > 0, then, there exists
x ∈ Rn : Mf(x) > a, and so, there is cube Q containing x such that (we can
assume f ≥ 0):

1

|Q|

∫
Q
f(x)dx > a ⇒ f(x) > a for a.e. x ∈ Q ⇒

⇒ |{x ∈ Rn : f(x) > a}| > 0

and since w(x) > 0 for a.e. x ∈ Rn, we get:

w({x ∈ Rn : f(x) > a}) > 0 ⇒ ∥f∥∞,w ≥ a

for each such a, which leads to:

∥Mf∥∞,u ≤ ∥f∥∞,w

so, indeed M is bounded from L∞(w) to L∞(u). Once we know that M is
bounded from Lp(w) to Lp

∗(u) and from L∞(w) to L∞(u), we use Marcinkiewicz
interpolation theorem to conclude that M is bounded from Lq(w) to Lq(u)
provided p < q < ∞.

A particular instance of the previous corollary is the inequality∫
Rn

|Mf(x)|pu(x)dx ≤ Cp

∫
Rn

|f(x)|pMu(x)dx

valid for 1 < p < ∞, which appeared in chapter I,(2.13). It is contained in our
corollary because (u,Mu) ∈ A1 and p > 1. The following theorem contains
some simple basic facts about the classes Ap.
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Theorem 2.1.2. 1. Let 1 < p < q < ∞. Then A1 ⊂ Ap ⊂ Aq

2. Let 1 ≤ p < ∞, 0 < ε < 1 and (u,w) ∈ Ap. Then (uε, wε) ∈ Aεp+1−ε.

3. Let 1 < p < ∞. Then (u,w) ∈ Ap if and only if

(w−1/(p−1), u−1/(p−1)) ∈ Ap′

where p’ is, as usual, the exponent conjugate to p, that is p′ = p/(p− 1).

Proof. 1) We just need to observe that(
1

|Q|

∫
Q
w(x)−1/(q−1)dx

)q−1

≤
(

1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

≤

≤ ess.Qsup.(w
−1)

lets prove the first inequality (the second is obvious): Since (q−1)/(p−1) > 1
we can use Jensen’s inequality getting(∫

Q

w(x)−1/(q−1)

|Q|
dx

)(q−1)/(p−1)

≤
∫
Q

w(x)−1/(p−1)

|Q|
⇒

(
1

|Q|

∫
Q
w(x)−1/(q−1)dx

)q−1

≤
(

1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

2) For r = εp+ 1− ε, we have r − 1 = ε(p− 1). Then

1

|Q|

∫
Q
u(x)εdx

(
1

|Q|

∫
Q
(w(x)ε)−1/(r−1)dx

)r−1

≤

again we use, just for the first integral, the Jensen’s inequality for 1/ε > 1 and
we get:

≤
(

1

|Q|

∫
Q
u(x)dx

)ε( 1

|Q|

∫
Q
w(x)−1/(p−1)dx

)ε(p−1)

≤ Cε

where C is the Ap constant for the pair (u,w). For the case p = 1 we have

1

|Q|

∫
Q
u(x)εdx ≤

(
1

|Q|

∫
Q
u(x)dx

)ε

⇒

⇒ M(uε)(x) ≤ (M(u)(x))ε ≤ (Cw(x))ε = Cεw(x)ε
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Thus, (uε, wε) ∈ A1 = A1ε+1−ε

3) Suppose that (u,w) ∈ Ap. Thus:

1

|Q|

∫
Q
u(x)dx

(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

≤ C

Since (p− 1)(p′ − 1) = 1, we can write the previous inequality as:

1

|Q|

∫
Q
(u(x)−1/(p−1))−1/(p′−1)dx

(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)1/(p′−1)

≤ C

⇒(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)(
1

|Q|

∫
Q
(u(x)−1/(p−1))−1/(p′−1)dx

)p′−1

≤ Cp′−1

and we conclude that (w−1/(p−1), u−1/(p−1)) ∈ Ap′ . Actually we see that
(u,w) ∈ Ap is equivalent to (w−1/(p−1), u−1/(p−1)) ∈ Ap′ .

EXAMPLE: We shall give here an example which shows that corollary
2.1.1. can not be improved so as to include also the case q = p. We shall
give weights u,w such that (u,w) ∈ Ap and, however, M is not bounded from
Lp(w) to Lp(u). If p = 1, we just need to take u = w ≡ 1 because we know
that M is not bounded in L1(Rn) = L1(u) = L1(w). We already know that if
g ≥ 0 is integrable and is not 0 at a.e. x, then Mg is never integrable (see the
remark after theorem 1.2.4. in chapter I). This same fact leads to an example
for p > 1. Let g ≥ 0, integrable and non trivial, in such a way that Mg /∈ L1.
Take g bounded so that you can guarantee that Mg(x) is always finite. Then
(g,Mg) ∈ A1 ⊂ Ap′ , and hence (from the previous theorem 3),

((Mg)−1/(p′−1), g−1/(p′−1)) = ((Mg)1−p, g1−p) ∈ Ap.

If we take u = (Mg)1−p and w = g1−p, we have a pair (u,w) ∈ Ap for which
the inequality ∫

|Mf(x)|pu(x)dx ≤ C

∫
|f(x)|pw(x)dx

can not hold, since for f = g we have :
∫
|Mf |pu =

∫
Mg = ∞ and∫

|f |pw =
∫
g < ∞.

In this way, we have seen that the condition (u,w) ∈ Ap does not solve prob-
lem 2. It is though, necessary conditions for (1.2) to hold, since (1.2) implies
(1.3) which implies the condition Ap i.e. (1.10). However, it is not sufficient.
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2.2 THE REVERSE HÖLDER’S INEQUALITY
& THE CONDITION A∞

The theory developed in section 1 becomes particularly interesting for the
case u = w. First of all, theorem 2.1.1. reads as follows in this situation:

Theorem 2.2.1. Let w be a weight on Rn, and le 1 ≤ p < ∞. Then, the
following conditions are equivalent:

1. M is of weak type (p,p) with respect to w, i.e.

w({x ∈ Rn : Mf(x) > t}) ≤ Ct−p

∫
Rn

|f(x)|pw(x)dx

2. There is a constant C such that, for every function f ≥ 0 and for every
cube Q

(fQ)
pw(Q) ≤ C

∫
Q
f(x)pw(x)dx

3. (w,w) ∈ Ap, that is, in case 1 < p < ∞

1

|Q|

∫
Q
w(x)dx

(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

≤ C

for every cube Q, and, in case p = 1, Mw(x) ≤ Cw(x) a.e.

The constants C appearing in 1), 2) and 3) are of the same order.

When w satisfies 3), we say that w satisfies the condition Ap, and write
w ∈ Ap. We also speak of the Ap constant for w, with the natural meaning.
Notice that that the class A1 is the same which appeared in chapter I.

We saw in the example we gave earlier, that a pair of weights (u,w) may
be in Ap and yet M may not be bounded from Lp(w) to Lp(u). In contrast to
this situation, for p > 1, it suffices that w ∈ Ap for M to be bounded in Lp(w).

This fact depends on a basic property enjoyed by the Ap weights: the re-
verse Hölder’s inequality (R.H.I.) appearing in the third lemma below. First
we present a couple of simple properties of the Ap weights.

We start with an estimate for the w-measure of the dilated Qλ of a cube
Q.
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Lemma 2.1. Let w be an Ap weight in Rn. Then, for every cube Q and every
λ > 1

w(Qλ) ≤ Cλnpw(Q)

where C is of the same order as the Ap constant for w.

Proof. In 2) of the previous theorem, take f = XS with S ⊂ Q, and Q a cube.
Then

(|S|/|Q|)pw(Q) ≤ Cw(S) (1.1)

using (1.1) with Q in place of S and Qλ in place of Q we get:

w(Qλ) ≤ Cλnpw(Q).

In particular the lemma implies that for an Ap weight w, the measure µ
given by dµ(x) = w(x)dx is a doubling measure.

Actually, what we have shown is that the second property in theorem 2.2.1.
implies that µ is a doubling measure. Observe that the same property (prop-
erty 2) implies that

fQ ≤ C1/p

(
1

w(Q)

∫
Q
f(x)pw(x)dx

)1/p

for every cube Q, which implies

Mf(x) ≤ C1/p (Mµ(f
p)(x))1/p a.e. ⇒

⇒ Mf(x) ≤ C1/p (Mµ(|f |p)(x))1/p a.e.

where the operator Mµ is the one introduced in the previous chapter. We
showed there that, for µ doubling, Mµ is of weak type (1,1) with respect to
µ. We can rely upon this fact to prove that 2) implies 1) in theorem 2.2.1.
Indeed

w({x ∈ Rn : Mf(x) > t}) ≤ w({x ∈ Rn : CMµ(|f |p)(x) > tp}) =

= w({x ∈ Rn : Mµ(C|f |p)(x) > tp}) ≤ C ′Ct−p

∫
Rn

|f(x)|pw(x)dx

where C ′ is the doubling constant, therefore 2) implies 1).

The next lemma is a comparison between the measure w(x)dx and Lebesgue
measure
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Lemma 2.2. Let w ∈ Ap. Then, for every positive a < 1, there exists β < 1
depending on a such that, whenever A is a measurable set contained in a cube
Q and satisfying |A| ≤ a|Q|, it follows that w(A) ≤ βw(Q).

Proof. We start from (1.1) where, of course, it is always C ≥ 1 (set S=Q). If
we use in (1.1) S = Q\A where |A| ≤ a|Q|, we get :

(1− a)pw(Q) ≤ (1− |A|/|Q|)pw(Q) =

=

(
|Q\A|
|Q|

)p

w(Q) ≤ Cw(Q\A) = C(w(Q)− w(A))

Thus
w(A) ≤ C−1(C − (1− a)p)w(Q) := βw(Q)

We shall use the previous lemma to establish our basic inequality

Lemma 2.3. Let w ∈ Ap. Then, there exists ε > 0, depending only on p and
on the Ap constant for w, such that, for every cube Q(

1

|Q|

∫
Q
w(x)1+εdx

)1/(1+ε)

≤ C
1

|Q|

∫
Q
w(x)dx

with a constant C not depending on Q.

The opposite inequality holds, with C = 1, for every function w and is a
particular case of Hölder’s inequality. This is why the lemma is called the
reverse Hölder’s inequality (R.H.I.).

Proof. We shall fix cube Q and we shall get the inequality with ε and C
independent of Q. We take an increasing sequence λo < λ1 < ..... < λk < ..
with λo = wQ = 1

|Q|
∫
Qw(x)dx and, for each λk, we make the Calderón-

Zygmund decomposition of Q for the function w and the value λk; that is, we
consider those maximal dyadic subcubes of Q over which the average of w is
> λk ( the dyadic subcubes of Q are the cubes resulting from dividing each
side of Q in 2N equal parts N = 0, 1, 2, ...). Let them be {Qk,j}j=1,2,... It
follows that, for each j is

λk < wQk,j
=

1

|Qk,j |

∫
Qk,j

w(x)dx ≤ 2nλk
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while for a.e. x not belonging to ∪jQk,j = Dk is w(x) ≤ λk. Since λk+1 > λk,
each Qk+1,j is contained in Qk,i for some i, in such a way that Dk+1 ⊂ Dk.
Let us see what portion of Qk,i can be covered by Dk+1. We know that:

2nλk ≥ 1

|Qk,i|

∫
Qk,i∩Dk+1

w(x)dx =

=
1

|Qk,i|
∑

Qk+1,j⊂Qk,i

∫
Qk+1,j

w(x)dx =

=
1

|Qk,i|
∑

Qk+1,j⊂Qk,i

|Qk+1,j | ·
1

|Qk+1,j |

∫
Qk+1,j

w(x)dx >

>
λk+1

|Qk,i|
∑

Qk+1,j⊂Qk,i

|Qk+1,j | = λk+1
|Qk,i ∩Dk+1|

|Qk+1|

Thus
|Qk,i ∩Dk+1|

|Qk+1|
<

2nλk

λk+1
.

Let as take this ratio equal to a < 1 (2
nλk

λk+1
= a), that is λk+1 = 2na−1λk,

λk = (2na−1)kλo. If we consider the β associated to a according to the previous
lemma, we shall have

w(Qk,i ∩Dk+1) ≤ βw(Qk,i)

and, summing over i, we get : w(Dk+1) ≤ βw(Dk), which leads to w(Dk) ≤
βkw(Do). Of course, we also have |Dk+1| ≤ a|Dk| ( see that |Qk,i ∩Dk+1| <
a|Qk,i|) and |Dk| ≤ ak|Do|, which implies that

| ∩∞
k=0 Dk| = lim

k→∞
|Dk| = 0.

Then: ∫
Q
w(x)1+εdx =

=

∫
Q\Do

w(x)1+εdx+

∞∑
k=0

∫
Dk\Dk+1

w(x)1+εdx

=

∫
Q\Do

w(x)w(x)εdx+

∞∑
k=0

∫
Dk\Dk+1

w(x)w(x)εdx ≤
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≤ λε
o

∫
Q\Do

w(x)dx+

∞∑
k=0

λε
k+1

∫
Dk\Dk+1

w(x)dx =

= λε
ow(Q\Do) +

∞∑
k=0

λε
k+1w(Dk\Dk+1) ≤

and since w ≥ 0

≤ λε
ow(Q\Do) +

∞∑
k=0

λε
k+1w(Dk) ≤

≤ λε
ow(Q\Do) +

∞∑
k=0

(2na−1)(k+1)ελε
oβ

kw(Do) =

= λε
o

{
w(Q\Do) + (2na−1)ε

∞∑
k=0

((2na−1)εβ)kw(Do)

}
If we take ε small enough to have (2na−1)εβ < 1, the series will have a finite
sum and we shall get :∫

Q
w(x)1+εdx ≤ λε

o{w(Q\Do) + (2na−1)εC ′w(Do)} :=

:= C ′′λε
o(w(Q\Do) + w(Do)) = C ′′λε

ow(Q) = C ′′wε
Qw(Q)

Thus
1

|Q|

∫
Q
w(x)1+εdx ≤ C ′′w1+ε

Q := C

(
1

|Q|

∫
Q
w(x)dx

)1+ε

.

Lemma 3 has far reaching consequences which we shall presently see

Theorem 2.2.2. Let w ∈ Ap with 1 < p < ∞, then there is some q < p such
that w ∈ Aq, that is, for every p, 1 < p < ∞, we have

Ap = ∪q<pAq.

Proof. Theorem 2.1.2. (3) for the special case u = w tells us that w ∈ Ap

implies w−1/(p−1) ∈ Ap′ . On the other hand, from lemma 3 for the weight
w−1/(p−1) we know that there exist ε > 0, C > 0 such that, for every cube Q:(

1

|Q|

∫
Q
w(x)−(1+ε)/(p−1)dx

)1/(1+ε)

≤ C

|Q|

∫
Q
w(x)−1/(p−1)dx
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But 1+ε
p−1 > 1

p−1 implies 1+ε
p−1 = 1

q−1 for some 1 < q < p. Then

1

|Q|

∫
Q
w(x)dx

(
1

|Q|

∫
Q
w(x)−1/(q−1)dx

)q−1

=

=
1

|Q|

∫
Q
w(x)dx

(
1

|Q|

∫
Q
w(x)−(1+ε)/(p−1)dx

)(p−1)/(1+ε)

≤

Cp−1

(
1

|Q|

∫
Q
w(x)dx

)(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)(p−1)

≤

and since w ∈ Ap

≤ Cp−1C ′ := C

Actually, since w itself satisfies a R.H.I., we obtain the following stronger
result.

Theorem 2.2.3. If w ∈ Ap with 1 ≤ p < ∞, then, there exists ε > 0 such
that w1+ε ∈ Ap.

Proof. If p = 1, from lemma 3, there exists ε > 0 such that:

1

|Q|

∫
Q
w(x)1+εdx ≤

(
C

1

|Q|

∫
Q
w(x)dx

)1+ε

≤

≤ (CC1w(x))
1+ε := Cw(x)1+ε

where C1 is the A1 constant for the w ∈ A1, so, w
1+ε ∈ A1. If now p > 1, it

suffices to take ε > 0 small enough to have, at the same time

1

|Q|

∫
Q
w(x)1+εdx ≤

(
C1

1

|Q|

∫
Q
w(x)dx

)1+ε

and
1

|Q|

∫
Q
w(x)−(1+ε)/(p−1)dx ≤

(
C2

1

|Q|

∫
Q
w(x)−1/(p−1)dx

)1+ε

and then

1

|Q|

∫
Q
w(x)1+εdx

(
1

|Q|

∫
Q
w(x)−(1+ε)/(p−1)dx

)p−1

≤
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≤

(
C1C2

1

|Q|

∫
Q
w(x)dx

(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1
)1+ε

≤

≤ C1+ε
1 C

(1+ε)(p−1)
2 C1+ε

where C is the Ap constant for w.

Of course theorem 2.2.3. combined with part 2 of theorem 2.1.2., gives the-
orem 2.2.2.

Now with the help of theorem 2.2.2.. we can improve theorem 2.2.1. as
anticipated, obtaining

Theorem 2.2.4. Let w be weight on Rn and let 1 < p < ∞. Then, the
following conditions are equivalent:

1. M is of weak type (p,p) with respect to w, that is, there is a constant C
such that for every function f ∈ L1

loc(Rn) and every t > 0

w({x ∈ Rn : Mf(x) > t}) ≤ Ct−p

∫
Rn

|f(x)|pw(x)dx

2. There is a constant C such that for every function f ≥ 0 in Rn and
every cube Q(

1

|Q|

∫
Q
f(x)dx

)p

w(Q) ≤ C

∫
Q
f(x)pw(x)dx

3. w ∈ Ap, that is, there is a constant C such that for every cube Q

1

|Q|

∫
Q
w(x)dx

(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

≤ C

4. M is bounded in LP (w), that is, there is a constant C such that for every
f ∈ Lp(w): ∫

Rn

(Mf(x))pw(x)dx ≤ C

∫
Rn

|f(x)|pw(x)dx.

Proof. All that remains to be proved is that 3) implies 4). Here is the proof.
We have w ∈ Ap. Since 1 < p < ∞, theorem 2.2.2. tells us that w ∈ Aq for
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some q < p. Then M is of weak type (q,q) with respect to w and, since M
is also bounded in L∞(w) = L∞ (this inequality follows from the fact that
0 < w(x) < ∞ for a.e. x), the Marcinkiewicz interpolation theorem allows us
to conclude that M is bounded in Lp(w).

Also, the reverse Hölder’s inequality allows us to give a more precise version
of lemma 2.

Theorem 2.2.5. If w ∈ Ap for some p ∈ [1,∞), then there exist δ > 0, C > 0
such that, every time we have a measurable set A contained in a cube Q, the
following inequality holds:

w(A)

w(Q)
≤ C

(
|A|
|Q|

)δ

(2.10)

Proof. The key fact is that w satisfies an inequality like the one appearing in
lemma 3 for some ε > 0 (R.H.I.). We start by using Hölder’s inequality with
exponents 1+ε and its conjugate (1+ε)/ε, and then we apply the R.H.I.. We
get:

w(A) =

∫
A
w(x)dx =

∫
A
XA(x)w(x)dx ≤

≤
(∫

A
w(x)1+εdx

)1/(1+ε)(∫
A
XA(x)

(1+ε)/εdx

)ε/(1+ε)

=

=

(∫
A
w(x)1+εdx

)1/(1+ε)

|A|ε/(1+ε) =

=

(
1

|Q|

∫
A
w(x)1+εdx

)1/(1+ε)

|Q|1/(1+ε)|A|1/(1+ε) ≤

≤ C

|Q|

∫
Q
w(x)dx|Q|1/(1+ε)|A|1/(1+ε) = Cw(Q)

(
|A|
|Q|

)ε/(1+ε)

which is (2.10) with δ = ε/(1 + ε).

Condition (2.10) is known as A∞ for reasons which will appear very soon.
We also speak of the class A∞ which is, naturally, the class formed by those
locally integrable weights w satisfying the A∞ condition.

For the next result, µ1 and µ2 are going to be doubling measures, that is,
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both satisfy a doubling condition like (1.13) in chapter I . For these measures,
we give the following definition:

Definition : µ1 is comparable to µ2 when there exist a, β < 1 such that,
every time we have a measurable subset A of a cube Q with µ2(A)/µ2(Q) ≤ a,
it follows that µ1(A)/µ1(Q) ≤ β.

With this definition we can write

Theorem 2.2.6. The following conditions are equivalent

1. There exist δ > 0, C > 0 such that for every measurable set A contained
in a cube Q

µ2(A)

µ2(Q)
≤ C

(
µ1(A)

µ1(Q)

)δ

2. µ2 is comparable to µ1

3. µ1 is comparable to µ2

4. dµ2(x) = w(x)dµ1(x) with:(
1

µ1(Q)

∫
Q
w(x)1+εdµ1(x)

)1/(1+ε)

≤ C
1

µ1(Q)

∫
Q
w(x)dµ1(x) < ∞

for some ε > 0

Proof. 1) ⇒ 2) is clear. Indeed, if µ1(A)/µ1(Q) ≤ a, it will be µ2(A)/µ2(Q) ≤
Caδ. It suffices to start with some a > 0 such that Caδ < 1 and we obtain µ2

comparable to µ1 with constants a and β = Caδ.

2) ⇒ 3). To say that µ1(A)/µ1(Q) ≤ a implies µ2(A)/µ2(Q) ≤ β is equiva-
lent to saying that µ2(A)/µ2(Q) > β implies that µ1(A)/µ1(Q) > a. Then if
µ2(A)/µ2(Q) ≤ a′, where a′ = (1− β)/2 < 1− β, we get

µ2(A)/µ2(Q) < 1− β ⇒ µ2(Q)− µ2(A) > βµ2(Q) ⇒

⇒ µ2(Q\A)
µ2(Q)

> β

which implies
µ1(Q\A)

µ1(Q)
> a
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and consequently
µ1(A)

µ1(Q)
< 1− a.

Thus, we have seen that µ1 is comparable to µ2 with constants a′ = (1− β)/2
and β′ = 1− a. It becomes clear that 2) and 3) are equivalent.

Let us see now that 2) ⇒ 4). We start from the fact that µ2 is compara-
ble to µ1 with constants a and β. We see, first of all, that µ2 is absolutely
continuous with respect to µ1, that is : µ1(E) = 0 ⇒ µ2(E) = 0. Once this
is proved, the Radon-Nikodym theorem guarantees that dµ2(x) = w(x)dµ1(x)
with w locally integrable with respect to µ1. Let µ1(E) = 0 and suppose that
µ2(E) > 0. Since the measure is regular, there will be an open set Ω such
that Ω ⊃ E and µ2(Ω) < β−1µ2(E). Let Ω = ∪jQj where the Qj ’s are non
overlapping cubes. Since for each j is 0 = µ1(Qj∩E) ≤ aµ1(Qj), we shall have
µ2(Qj ∩E) ≤ βµ2(Qj) and, adding in j, we get : µ2(E) ≤ βµ2(Ω), which con-
tradicts the election of Ω. Let us note, that for this part of the proof we used
the fact that the faces or edges of the cubes have measure µ2 (or µ1 for that
matter) equal to 0. This follows easily from the doubling condition. Indeed,
if µ is doubling, there is a constant K < 1 such that if Q is a cube and R is a
half of Q, that is, if Q = [a1, b1]× [a2, b2]× ...× [an, bn], the half of the Q (one
of the many half’s) is R = [a1, b1] × [a2, b2] × ... × [an, (an + bn)/2], then (as
will be shown) µ(R) ≤ Kµ(Q). Let’s prove that: let Q′ be a dyadic subcube
of Q with side length equal the half the side length of Q, and contiguous to
R.

Then: R ⊂ Q′3 ⇒

µ(R) ≤ C3µ(Q
′) ≤ C3µ(Q\R) = C3(µ(Q)− µ(R)) ⇒

µ(R)(1 + C) ≤ Cµ(Q) ⇒ µ(R) ≤ C

1 + C
µ(Q) := Kµ(Q)
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Now if R1 is the half of R, with the same argument, we get that:

µ(R1) ≤ Kµ(R) ≤ K2µ(Q).

Viewing now,the face of Q as an intersection of the Rj ’s resulting from repeat-
edly dividing by 2 a side of Q, we see that a face has µ measure equal to zero
for µ doubling. So, let

dµ2(x) = w(x)dµ1(x).

It remains to see that the inequality in 4) holds. All we have to do is to repeat
the proof of lemma 3 with µ1 in place of Lebesgue measure. Observe that in
the proof of lemma 3 we just used these two facts: w(x)dx is comparable to
Lebesgue measure and Lebesgue measure is doubling. These hypotheses still
hold for dµ2(x) = w(x)dµ1(x) and dµ1(x). Thus, we obtain the inequality in
4).

Finally we have to see that 4) implies 1). But this is done exactly as in
the proof of the previous theorem 2.2.5.

Corollary 2.2.1. The comparability of measures ia an equivalence relation.

Proof. The equivalence between 2) and 3) in the previous theorem tells us that
comparability is a symmetric relation. Transitivity is proved very simply by
using the characterization given by 1) in theorem 2.2.6., lets see that: Let µ1

be comparable to µ2 and µ2 comparable to µ3. First of all there exist a, b < 1
such that:

µ2(A)

µ2(Q)
≤ a ⇒ µ1(A)

µ1(Q)
≤ b

we know also (previous theorem) that µ3 is also comparable to µ2 which implies
the existence of a′, b′ < 1 such that

µ2(A)

µ2(Q)
≤ a′ ⇒ µ3(A)

µ3(Q)
≤ b′

There exists also δ > 0, C > 0 such that

µ2(A)

µ2(Q)
≤ C

(
µ3(A)

µ3(Q)

)δ

So, if
µ3(A)

µ3(Q)
≤
( a

C

)1/δ
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we get that
µ2(A)

µ2(Q)
≤ a ⇒ µ1(A)

µ1(Q)
≤ b

Thus, µ1 is comparable to µ3 with constants (a/C)1/δ and b

Corollary 2.2.2. Let w(x) ≥ 0 be locally integrable in Rn. The following
conditions are equivalent

1. w ∈ Ap for some p ∈ [1,∞)

2. There exist a, β < 1 such that |E| ≤ a|Q| implies w(E) ≤ βw(Q) when-
ever E is measurable subset of the cube Q

3. There exist ε > 0 and C > 0 such that for every cube Q(
1

|Q|

∫
Q
w(x)1+ε

) 1
1+ε

≤ C

|Q|

∫
Q
w(x)dx

4. w ∈ A∞

Proof. All the implications 1) ⇒ 2) ⇒ 3) ⇒ 4) have already been proved.
Observe that the proof of lemma 3 actually yields the fact that 2) ⇒ 3). It
only remains to see that 4) ⇒ 1). Let us see it. We know from theorem 2.2.6.
that w ∈ A∞ is equivalent to saying that the measures dx and w(x)dx are
comparable and, taking into account that

dµ2(x) =: dx = w(x)−1w(x)dx := w(x)−1dµ1(x)

Thus (µ1(Q) = w(Q)), the following R.H.I. must hold:(
1

w(Q)

∫
Q
w(x)−(1+ε)w(x)dx

)1/(1+ε)

≤ C

w(Q)

∫
Q
w(x)−1w(x)dx = C

|Q|
w(Q)

⇒(
1

w(Q)

∫
Q
w(x)−εdx

)1/(1+ε)

≤ C
|Q|
w(Q)

Hence, setting ε = 1/(p−1) for some p > 1, we have that 1/(1+ε) = (p−1)/p
and the inequality above comes to the form(

1

w(Q)

∫
Q
w(x)−1/(p−1)dx

)p−1

≤ Cp

(
|Q|
w(Q)

)p

⇒
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1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

≤ Cp |Q|
w(Q)

⇒

wQ

(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

≤ Cp := C

which means that w ∈ Ap

Thus, we have shown that A∞ = ∪1≤p<∞Ap, which explains the name A∞
given to condition (2.10).

Actually, the name A∞ is just perfect, since, as we shall presently show, A∞
coincides with the formal limit of condition Ap as p tends to ∞

lim
p→∞

(
1

|Q|

∫
Q
w(x)−1/(p−1)dx

)p−1

= lim
q→0

∥w−1∥Lq(|Q|−1dx) =

= exp

(
1

|Q|

∫
Q
log(w(x)−1)dx

)
where the last identity is a simple exercise in measure theory.

Thus, the condition obtained by passing to the limit as p tends to ∞ in
condition Ap is:(

1

|Q|

∫
Q
w(x)dx

)
exp

(
1

|Q|

∫
Q
log(w(x)−1)dx

)
≤ C

or, equivalently

1

|Q|

∫
Q
w(x)dx ≤ C exp

(
1

|Q|

∫
Q
logw(x)dx

)
(2.14)

The exponential in the right hand side of (2.14) is the geometric mean of w
on Q, which is, of course, dominated by the arithmetic mean wQ (Jensen’s
inequality). Thus (2.14) implies that the arithmetic and the geometric means
of w on every cube, are equivalent. The equivalence between this condition
and A∞ is contained in the following

Theorem 2.2.7. Let w ≥ 0 be locally integrable in Rn. Then, the following
conditions are equivalent:
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1. There exist a, β ∈ (0, 1) such that, for every cube Q:

|{x ∈ Q : w(x) ≤ awQ}| ≤ β|Q|

2. w ∈ A∞

3. There exists C, such that, for every cube Q:

1

|Q|

∫
Q
w(x)dx ≤ C exp

(
1

|Q|

∫
Q
logw(x)dx

)

Proof. Suppose 1) holds. Let us prove 2). After the proof of theorem 2.2.6.,
especially from corollary 2.2.2 and 2.2.1., it will be enough to see that, for
appropriately chosen γ, δ ∈ (0, 1), the following property holds: If E is a
subset of a cube Q such that w(E)/w(Q) ≤ γ, then |E|/|Q| ≤ δ. To prove
this property, assume w(E)/w(Q) ≤ γ, to be chosen later. Then we split
E = E1 ∪ E2, where

E1 = {x ∈ E : w(x) > awQ} and E2 = {x ∈ E : w(x) ≤ awQ}

For E2, 1) gives the estimate |E2| ≤ β|Q|. For E1 we use Chebichev’s inequal-
ity to get:

|E1| ≤
1

awQ

∫
E1

w(x)dx ≤ 1

awQ

∫
E
w(x)dx =

=
|Q|
a

w(E)

w(Q)
≤ γ

a
|Q|

Adding up the two estimates, we have

|E| ≤ (β +
γ

a
)|Q|

If we choose γ so small that β + γ/a < 1, we get what we wanted with
δ = β + (γ/a).

To see now that 2) implies 3) is quite easy. Indeed, if w ∈ A∞, it follows
from corollary 2.2.2. that w ∈ Ap for some 1 ≤ p < ∞, which in turn, implies
that there is a constant C such that(

1

|Q|

∫
Q
w(x)dx

)(
1

|Q|

∫
Q
w(x)−1/(p−1)

)p−1

≤ C
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But from the proof of theorem 2.1.2. 1), we can see that for every q > p the
conditions Aq holds with the Ap constant C. Thus. for every q > p we have(

1

|Q|

∫
Q
w(x)dx

)(
1

|Q|

∫
Q
w(x)−1/(q−1)

)q−1

≤ C

Letting q tend to ∞ we obtain 3).

Finally, assuming 3), we are going to see that 1) holds. Take a cube Q.
Dividing w by an appropriate constant (we can do that because it does not
affect us on what we want to prove), we can assume that

∫
Q logw(x)dx < ε

for ε as close to zero as we want, so, without loss of generality we cam assume
that

∫
Q logw(x)dx = 0 and, consequently, wQ ≤ C. Then, with λ > 0 still

undetermined, we have:

|{x ∈ Q : w(x) ≤ λ}| = |{x ∈ Q : log(1 + w(x)−1) ≥ log(1 + λ−1)}| ≤

≤ 1

log(1 + λ−1)

∫
Q
log(1 + w(x)−1)dx =

1

log(1 + λ−1)

∫
Q
log

1 + w(x)

w(x)
dx =

=
1

log(1 + λ−1)

∫
Q
log(1 + w(x))dx

since by assumption
∫
Q logw(x)dx = 0. By using the simple inequality log(1+

w) ≤ w and the hypothesis wQ ≤ C, we get:

|{x ∈ Q : w(x) ≤ λ}| ≤ 1

log(1 + λ−1)

∫
Q
w(x)dx ≤

≤ C

log(1 + λ−1)
|Q| ≤ 1

2
|Q|

if λ is small enough. In particular

|{x ∈ Q : w(x) ≤ awQ}| ≤ |{x ∈ Q : w(x) ≤ Ca}| ≤ (1/2)|Q|

if a is small enough. We have obtained 1) with β = 1/2.

In chapter I we gave examples of A1 weights, namely those those functions
w of the form w(x) = (Mµ(x))

γ where µ is a positive Borel measure such that
Mµ(x) < ∞ for a.e. x ∈ Rn and 0 < γ < 1. We used this result to show that
|x|a is an A1 weight in Rn if and only if −n < a ≤ 0.
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Starting with A1 weights one can easily generate Ap weights for 1 < p < ∞.
Let wo, w1 ∈ A1 in Rn, and let 1 < p < ∞. Then w(x) = wo(x)w1(x)

1−p is an
Ap weight. Indeed, since w1 ∈ A1 we have for every x ∈ Q for some cube Q,
that

1

|Q|

∫
Q
w1(x)dx ≤ Mw1(x) ≤ Cw1(x)

and since 1− p < 0 we get that

w1(x)
1−p ≤ Cp−1

(
1

|Q|

∫
Q
w1(x)dx

)1−p

:= C

(
1

|Q|

∫
Q
w1(x)dx

)1−p

using the same argument for wo we get:(
1

|Q|

∫
Q
wo(x)w1(x)

1−pdx

)(
1

|Q|

∫
Q
(wo(x)w1(x)

1−p)−1/(p−1)dx

)p−1

≤

≤ C

(
1

|Q|

∫
Q
w1(x)dx

)1−p( 1

|Q|

∫
Q
wo(x)dx

)
·

·
(

1

|Q|

∫
Q
wo(x)dx

)−1( 1

|Q|

∫
Q
w1(x)dx

)p−1

= C.

We shall show in the next section that every Ap weight w is actually of the
form w(x) = wo(x)w1(x)

1−p for some wo, w1 ∈ A1 (factorization theorem).
For the time being, we shall content ourselves with giving examples of Ap

weights. If −n < a ≤ 0 and −n < β ≤ 0, |x|a|x|β(1−p) is an Ap weight in
Rn. Thus, for a = 0 we get that |x|β(1−p) is an Ap weight with −n < β ≤ 0,
which implies that |x|β(p−1) is an Ap weight, but now, with 0 ≤ β < n. Hence,
|x|a is an Ap weight in Rn if and only if −n < a < n(p − 1) since |x|a and
(|x|a)−1/(p−1) have to be locally integrable.

By using the R.H.I. we get a converse of theorem 1.3.2. in chapter I, giving
the following characterization of A1 weights:

Theorem 2.2.8. Let w(x) be ≥ 0 and finite a.e. Then, w ∈ A1 if and only if

w(x) = k(x)(Mf(x))γ

where k(x) ≥ 0 is such that k, k−1 ∈ L∞, f is locally integrable and 0 < γ < 1.
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Proof. Theorem 1.3.2. of chapter I implies that every function of the given
form is an A1 weight. Lets see this: Since k, k−1 ∈ L∞, there exist C1, C1 ≥ 0
such that C1 ≤ k(x) ≤ C2 for a.e. x ∈ Rn. Thus:

Mw(x) ≤ C2M((Mf(x))γ) ≤ C2C(Mf(x))γ ≤

≤ C2C
k(x)

C1
(Mf(x))γ = C

C2

C1
w(x) := Cw(x)

Conversely, let w ∈ A1. We know that w satisfies a R.H.I. :(
1

|Q|

∫
Q
w(x)1+ε

)1/(1+ε)

≤ C
1

|Q|

∫
Q
w(x)dx ≤ Cw(x) a.e.

Thus

w(x)1+ε ≤ (Mw(x))1+ε ≤

using Jensen’s inequality

≤ M(w1+ε)(x) ⇒

⇒ w(x) ≤ (M(w1+ε)(x))1/(1+ε) ≤ Cw(x).

We can write now, w(x) = k(x)(M(w1+ε)(x))1/(1+ε) with C−1 ≤ k(x) ≤ 1
and we obtain the representation required with f(x) = w(x)1+ε and γ =
1/(1 + ε)

There is a relation between weights and B.M.O. functions. We have already
seen in chapter I that the logarithm of an A1 weight is a B.M.O. function. We
shall see presently that the same is true for any A∞ weight. Of course this
follows trivially after the factorization theorem, but a simple proof can be
given without appealing to that result which we have not proved yet. First of
all, we give a characterization of Ap weights in terms of of their logarithms.

Theorem 2.2.9. 1. Let ϕ be a real locally integrable function on Rn and
let 1 < p < ∞. Then eϕ ∈ Ap if and only if the following conditions are
satisfied:

(a) 1
|Q|
∫
Q e(ϕ(x)−ϕQ)dx ≤ C, with C independent of the cube Q

(b) 1
|Q|
∫
Q e−(ϕ(x)−ϕQ)/(p−1)dx ≤ C, with C independent of the cube Q

2. For ϕ as in 1), eϕ ∈ A∞ if and only if (a) holds. Note that for p = ∞,
condition (b) becomes empty, so that 2) is just an extension of 1) to
p = ∞
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3. It follows from 1) and 2) that w is in Ap if and only if both w and
w−1/(p−1) are in A∞.

Proof. It is clear the the two conditions (a) and (b) imply together that eϕ ∈
Ap, since

1

|Q|

∫
Q
eϕ(x)dx

(
1

|Q|

∫
Q
(eϕ(x))−1/(p−1)dx

)p−1

=

eϕQ−ϕQ
1

|Q|

∫
Q
eϕ(x)dx

(
1

|Q|

∫
Q
(eϕ(x))−1/(p−1)dx

)p−1

=

=
1

|Q|

∫
Q
eϕ(x)−ϕQdx

(
1

|Q|

∫
Q
e−(ϕ(x)−ϕQ)/(p−1)dx

)p−1

.

Conversely, suppose that eϕ ∈ Ap. Then

1

|Q|

∫
Q
eϕ(x)−ϕQdx = e−ϕQ

1

|Q|

∫
Q
eϕ(x)dx =

=
(
e−ϕQ/(p−1)

)p−1
(

1

|Q|

∫
Q
eϕ(x)dx

)
≤

using jensen’s inequality

≤
(

1

|Q|

∫
Q
e−ϕ(x)/(p−1)

)p−1( 1

|Q|

∫
Q
eϕ(x)dx

)
≤ C

Also

1

|Q|

∫
Q
e−(ϕ(x)−ϕQ)/(p−1)dx =

(
1

|Q|

∫
Q
e−ϕ(x)/(p−1)dx

)
(eϕQ)1/(p−1) ≤

again using Jensen’s inequality

≤
(

1

|Q|

∫
Q
e−ϕ(x)/(p−1)dx

)(
1

|Q|

∫
Q
eϕ(x)dx

)1/(p−1)

≤ C1/(p−1)

2): theorem 2.2.7. implies that eϕ ∈ A∞ if and only if

1

|Q|

∫
Q
eϕ(x)dx ≤ CeϕQ

which is equivalent to condition a).

3): It follows from 2) that, for w = eϕ, condition a) is equivalent to saying that
w ∈ A∞ and condition b) is equivalent to saying that w−1/(p−1) ∈ A∞.
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In case p = 2, conditions a) and b) become:

1

|Q|

∫
Q
eϕ(x)−ϕQdx ≤ C and

1

|Q|

∫
Q
e−(ϕ(x)−ϕQ)dx ≤ C

These two inequalities together are equivalent to

1

|Q|

∫
Q
e|ϕ(x)−ϕQ|dx ≤ C

We can write:

Corollary 2.2.3. Let ϕ be a real locally integrable function on Rn. Then
eϕ ∈ A2 if and only if there is a constant C such that for every cube Q ⊂ Rn

1

|Q|

∫
Q
e|ϕ(x)−ϕQ|dx ≤ C

The relation between weights and B.M.O. functions is now clear.

Corollary 2.2.4. w ∈ A∞ ⇒ logw ∈ B.M.O.

Proof. Let w ∈ A∞ and write w = eϕ that is: ϕ = logw. If w ∈ A2, we know
from the previous corollary that

∥ϕ∥∗ = sup
Q

1

|Q|

∫
Q
|ϕ(x)− ϕQ|dx ≤ sup

Q

1

|Q|

∫
Q
e|ϕ(x)−ϕQ|dx ≤ C

so that ϕ = logw ∈ B.M.O.

In general w ∈ A∞ ⇒ w ∈ Ap fro some p ∈ [1,∞). Thus, if p ≤ 2, we have
w ∈ Ap ⊂ A2 and, as we have just seen, logw ∈ B.M.O.. If p > 2, we look at
w−1/(p−1) ∈ Ap′ ⊂ A2. It follows that log(w−1/(p−1)) = − 1

p−1 logw ∈ B.M.O.
Thus, in any case, logw ∈ B.M.O

Observe that, if w ∈ Ap, ∥ logw∥∗ depends only on p and on the Ap constant
for w.

If ϕ ∈ B.M.O., we know from corollary 1.3.1 (2) in chapter I, that

1

|Q|

∫
Q
eλ|ϕ(x)−ϕQ|dx ≤ C
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for every cube Q, thus, using corollary 2.2.3., we see that eλϕ ∈ A2 for λ small
enough (0 < λ < C2/∥ϕ∥∗ with the notation used in corollary 1.3.1.). If we
set eλϕ = w, we get ϕ = λ−1 logw. Thus

B.M.O. = {a logw : a ≥ 0, w ∈ A2}

and the reason why we have a ≥ 0 is that f ∈ B.M.O. ⇒ Cf ∈ B.M.O.

Actually, the same is true for any p with 1 < p ≤ ∞, i.e.

B.M.O. = {a logw : a ≥ 0, w ∈ Ap}

We already know that this is true for p ≥ 2 since A2 ⊂ Ap. For 1 < p < 2,
if ϕ ∈ B.M.O., we can write ϕ = a logw with a ≥ 0 and w ∈ A2. But
σ = wp−1 ∈ Ap since 2(p − 1) + 1 − (p − 1) = p ( see theorem 2.1.2 part 2 ).
Therefore,

ϕ = a logw = a log(σ1/(p−1)) = (a/(p− 1)) log σ.

In contrast to this situation, we have (as we will prove), that:

{a logw : a ≥ 0, w ∈ A1} = B.L.O. ⫋ B.M.O.

let’s prove it: In fact, we already know that a logw ∈ B.L.O. when a ≥ 0 and
w ∈ A1 (see the proof of theorem 1.3.1). Conversely, let ϕ ∈ B.L.O. Then,
according to corollary 1.3.1. (2), we have for ε > 0 small enough, every cube
Q and given C, that:

C ≥ 1

|Q|

∫
Q
eε|ϕ(x)−ϕQ|dx ≥ 1

|Q|

∫
Q
eε(ϕ(x)−ϕQ)dx

which implies
1

|Q|

∫
Q
eεϕ(x)dx ≤ C exp(εϕQ) ≤

we use that ϕ ∈ B.L.O. (i.e. ϕQ − essQinfϕ ≤ C ′, for some C ′)

≤ C exp(ε(C ′ + essQinfϕ)) = CeεC
′
exp(ε · essQinfϕ) =

= CeεC
′
essQinf(e

εϕ) := CessQinf(e
εϕ) ⇒

⇒ M(eεϕ(x)) ≤ Ceεϕ(x) for a.e.x ∈ Rn

It follows that eεϕ ∈ A1. Thus ϕ = ε−1 logw with w = eεϕ ∈ A1.

75



Chapter 2
2.2. THE REVERSE HÖLDER’S INEQUALITY
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Combining this with theorem 2.2.8., which tells us that every w ∈ A1 can
be written as w(x) = k(x)(Mf(x))γ , with k(x) ≥ 0 such that log k ∈ L∞ and
0 < γ < 1, we are led to:

B.L.O. = {h+ β log(Mf) : h ∈ L∞, f ∈ L1
loc, β ≥ 0}

We finish this section by observing that the Lp inequality established in
chapter I (theorem 1.3.3.) between the Hardy-Littlewood maximal function
Mf and the sharp maximal function f#, also holds when Lebesgue measure
dx is replaced by the measure w(x)dx, where w is any A∞ weight.

The concrete statement without proof is as follows

Theorem 2.2.10. Let w ∈ A∞ in Rn and let f be such that Mf ∈ Lpo(w) for
some po with 0 < po < ∞. Then, for every p such that po ≤ p < ∞∫

Rn

(Mf(x))pw(x)dx ≤ C

∫
Rn

(f#(x))pw(x)dx.

□
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2.3 FACTORIZATION THEOREM

We have already seen that if we have two A1 weights wo and w1 and if
1 < p < ∞, then w(x) = wo(x)w1(x)

1−p is an Ap weight. Now we are going to
show that, conversely, every Ap weight w can be written in this form for certain
wo, w1 ∈ A1. This factorization theorem will have important consequences.
The proof will be based on a single lemma, which, as we shall see, provides a
strikingly powerful method to deal with several problems about weights.

Lemma 2.4. Let S be a sublinear operator bounded in Lp(µ), where p ≥ 1
and µ is an arbitrary positive measure on some measurable space. Suppose
that Sf ≥ 0 for every f ∈ Lp(µ). Then, for every u ≥ 0 in Lp(µ) there is
v ≥ 0 in Lp(µ) such that:

1. u(x) ≤ v(x) for a.e. x

2. ∥v∥p ≤ 2∥u∥p

3. Sv(x) ≤ Cv(x) for a.e. x (C = 2∥S∥ is enough).

Proof. It suffices to take

v =

∞∑
j=0

(2∥S∥)−jSj(u).

where Sj = S ◦ S ◦ ... ◦ S j-times. Indeed, since, (we start with 2)

∥S∥ = inf{C > 0 : ∥Sv∥p ≤ C∥v∥p, for all v ∈ LP (µ)}

we get that

∥v∥p ≤
∞∑
j=0

(2∥S∥)−j∥S∥j∥u∥p =

= ∥u∥p
∞∑
j=0

2−j = 2∥u∥p

On the other hand, since So(u) = u and since Sf ≥ 0 for every f ∈ Lp(µ), we
get that, all the partial sums in the definition of v, are ≥ u, thus u ≤ v a.e.
(actually everywhere)
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Finally, since S is sublinear, we have:

Sv ≤
∞∑
j=0

(2∥S∥)−jSj+1(u) =

= 2∥S∥
∞∑
j=0

(2∥S∥)−(j+1)Sj+1(u) = 2∥S∥(v − (2∥S∥)0S0(u)) =

= 2∥S∥(v − u) ≤ 2∥S∥v.

Actually with the help of this lemma, we can give a general factorization
theorem which includes the one we were seeking for Ap weights

Theorem 2.3.1. Let T be a positive symmetric sublinear operator acting on
measurable functions on some measure space (X, dx) (this means that |T (f +
g)| ≤ |T (f)|+|T (g)| and also that |f | ≤ g implies |Tf | ≤ Tg). For 1 < p < ∞,
let us call

Wp = {w : 0 ≤ w(x) < ∞ a.e. and T is bounded in Lp(w) = Lp(w(x)dx)}

Also, we call

W1 = {w : 0 ≤ w(x) < ∞ a.e. and Tw(x) ≤ Cw(x), a.e}

for some C independent of x

Then, for every 1 < p < ∞, we have:

Wp ∩W 1−p
p′ ⊂ W1W

1−p
1

that is: If w ∈ Wp and also w−1/(p−1) ∈ Wp′, then, there exist wo, w1 ∈
W1 such that w = wow

1−p
1 . Besides, the constants C for wo and w1 in the

class W1 depend only upon the constants for w and w−1/(p−1) in Wp and Wp′

respectively, that is, on the respective norms of T on Lp(w) and Lp′(w−1/(p−1)).

Proof. We just need to consider the case 1 < p ≤ 2 since :

Wp ∩W 1−p
p′ ⊂ W1W

1−p
1 ⇐⇒ (Wp ∩W 1−p

p′ )1−p′ ⊂ (W1W
1−p
1 )1−p′
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which implies that:

Wp ∩W 1−p
p′ ⊂ W1W

1−p
1 ⇐⇒ Wp′ ∩W 1−p′

p ⊂ W1W
1−p′

1

and also
p ≥ 2 ⇐⇒ p′ = p/(p− 1) ≤ 2

So, let 1 < p ≤ 2, and suppose that w ∈ Wp ∩ W 1−p
p′ , i.e. w ∈ Wp and

w−1/(p−1) ∈ Wp′ . We want to see that w = wow
1−p
1 with wo, w1 ∈ W1. After

writing v−1 = w1−p
1 , we see that this is equivalent to finding v such that:

1. vw(= wo) ∈ W1, that is: T (vw) ≤ Cvw and also

2. v1/(p−1) ∈ W1, that is T (v
1/(p−1)) ≤ Cv1/(p−1), or equivalently

(T (v1/(p−1)))p−1 ≤ Cv

Suppose now that for every u in some Lq space we can find Su so that:

|T (uw)| ≤ S(u)w

and (
T (|u|1/(p−1))

)p−1
≤ S(u)

If the operator S satisfies the hypotheses of lemma 4, we shall be able to find
v ≥ 0 such that S(v) ≤ Cv. This would be suffice, because then we should
have:

T (vw) ≤ S(v)w ≤ Cvw

and (
T (v1/(p−1))

)p−1
≤ S(v) ≤ Cv

All we have to do is to look for S and make sure that it satisfies the hypotheses
of the lemma. The natural candidate for S is the operator sending the function
u into Su given by

S(u) = |T (uw)|w−1 +
(
T (|u|1/(p−1))

)p−1

First of all, we observe that S is sublinear : For the first term of the sum, sub-
linearity is clear, lets prove it and for the second term. Let f,g be measurable
functions, we write

f = (1− λ)F, g = λG
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then
|(1− λ)F + λG|1/(p−1) ≤ (1− λ)|F |1/(p−1) + λ|G|1/(p−1)

since |x|a is convex for a ≥ 1, and being 1 < p ≤ 2, we have 1/(p − 1) ≥ 1.
Now, combining that T is a positive sublinear operator with the comment in
the statement of the theorem, we get that:(

T (|f + g|1/(p−1))
)p−1

≤
(
T ((1− λ)|F |1/(p−1) + λ|G|1/(p−1))

)p−1
≤

≤
(
(1− λ)T (|F |1/(p−1)) + λT (|G|1/(p−1))

)p−1
≤

since p− 1 ≤ 1

≤ (1− λ)p−1
(
T (|F |1/(p−1))

)p−1
+ λp−1

(
T (|G|1/(p−1))

)p−1
=

=
(
T (|f |1/(p−1))

)p−1
+

(
T (|g|1/(p−1))

)p−1

⇒ S is sublinear. Besides, S is bounded in Lp′(w). Indeed:∫
Rn

|T (uw)w−1|p′w =

∫
Rn

|T (uw)|p′w1−p′

But w1−p′ = w−1/(p−1) ∈ Wp′ , thus, T is bounded in Lp′(w1−p′), which implies
that: ∫

Rn

|T (uw)|p′w1−p′ ≤ C

∫
Rn

|uw|p′w1−p′ = C

∫
Rn

|u|p′w (I)

and also ∫
Rn

|T (|u|1/(p−1))|(p−1)p′w =

∫
Rn

|T (|u|1/(p−1))|pw ≤

w ∈ Wp

≤ C

∫
Rn

(
|u|1/(p−1)

)p
w = C

∫
Rn

|u|p′w. (II)

Using now (I),(II) and Minkowski’s inequality, we get that S is bounded in
Lp′(w).

From the definition of S, it is clear that Su ≥ 0 for every u ∈ Lp′(w). Thus,
S satisfies all the conditions required in lemma 4. Note that C in lemma 4
(iii) depends only on the norm of S in Lp′(w), and the norm of S in Lp′(w)
depends only on the norms for T in Lp(w) and in Lp′(w−1/(p−1)). This finishes
the proof.
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Corollary 2.3.1. (P.Jones′ factorization theorem) For 1 < p < ∞,

Ap = A1A
1−p
1

that is : w ∈ Ap if and only if there exist wo, w1 ∈ A1 such that w = wow
1−p
1

Proof. If we take T = M = the Hardy-Littlewood maximal operator in theo-
rem 2.3.1. (previous theorem), we know that Wp = Ap and W1 = A1. Besides

W 1−p
p′ = A1−p

p′ = Ap because w ∈ Ap if and only if w−1/(p−1) ∈ Ap′ . Therefore,
applying the previous theorem we get that

Ap ⊂ A1A
1−p
1

The inclusion A1A
1−p
1 ⊂ Ap has been already established in section 2.

By combining the factorization theorem with the characterization of A1

weights given by theorem 2.2.8., we obtain a general expression for Ap weights
in terms of maximal functions. This is the natural extension to p > 1 of
theorem 2.2.8. Then, by using the John-Nirenberg theorem, this yields an
expression for B.M.O. functions in terms of maximal functions:

Corollary 2.3.2. 1. Let w be a weight in Rn such that w(x) < ∞ a.e.
Then, w ∈ Ap if and only if, it can be written as

w(x) = k(x)(Mf(x))a(Mg(x))β(1−p)

with f, g ∈ L1
loc(Rn), k bounded away from zero and ∞, and 0 < a and

β < 1. In this representation, k can be taken between two positive bounds
which depend only on the Ap constant for w.

2. There are constants C1 and C2 depending only on the dimension n, such
that every ϕ ∈ B.M.O. in Rn can be written as :

ϕ(x) = b(x) + γ logMf(x)− h logMg(x)

with f, g ∈ L1, γ, h ≥ 0 and

∥b∥∞ + γ + h ≤ C1∥ϕ∥∗

Conversely, every ϕ which can be written as above, belongs to B.M.O.
with

∥ϕ∥∗ ≤ C2(∥b∥∞ + γ + h)
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3. We can write a statement like (2) with B.L.O. in place of B.M.O. and
h = 0

4. As a consequence of 2) and 3), every B.M.O. function can be written as
a difference of two B.L.O. functions. In short:

B.M.O. ⊂ B.L.O.−B.L.O.

Proof. 1):(⇐=) It follows from theorem 2.2.8. that both (Mf(x))a and (Mg(x))β

are A1 weights, thus (Mf(x))a(Mg(x))β(1−p) ∈ A1A
1−p
1 = Ap, which implies

that w ∈ Ap since kAp = Ap for any such k.

Conversely if w ∈ Ap, the previous corollary implies that w = wow
1−p
1 with

wo, w1 ∈ A1. Then we just need to apply theorem 2.2.8. to obtain the desired
representation:

w(x) = ko(x)(Mf(x))ak1(x)
(1−p)(Mg(x))β(1−p) =

= ko(x)k1(x)
(1−p)(Mf(x))a(Mg(x))β(1−p) :=

:= k(x)(Mf(x))a(Mg(x))β(1−p).

Observe that, in the proof of theorem 2.2.8., the lower bound obtained for the
function k depends only upon the constant C in the reverse Hölder’s inequal-
ity for the A1 weight, and this, in turn, depends only upon its A1 constant.
The upper bound obtained for k in the proof of theorem 2.2.8. is just 1. In
our present situation, the factorization theorem tells us that the A1 constants
for wo and w1 depend only upon the Ap constant for w. Therefore in our

representation for the Ap weight w, the function k = kok
1−p
1 is bounded away

from zero and ∞ with bounds depending only upon the Ap constant for w.

(2):(⇐=)We have f, g ∈ L1 which implies that Mf(x) andMg(x) are < ∞ a.e.
Then, according to corollary in chapter I, logMf(x) and logMg(x) are both
in B.M.O. with norms independent of f and g respectively. Consequently, if ϕ
has the representation exhibited in 2), we have ϕ ∈ B.M.O. with

∥ϕ∥∗ ≤ C2(∥b∥∞ + γ + n)

for some absolute constant C2. Indeed, since b(x)# ≤ 2Mb(x) ≤ 2∥b∥∞, we
get that:

∥ϕ∥∗ ≤ ∥b∥∗ + γ∥ logMf∥∗ + n∥ logMg∥∗ ≤

≤ 2∥b∥∞ + γC ′ + nC ′′ ≤ C2(∥b∥∞ + γ + n)
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where C2 = max{2, C ′, C ′′}

(=⇒) Conversely, if ϕ ∈ B.M.O., it follows from corollary 1.3.1. that, taking
λ = C2/2∥ϕ∥∗, where C2 is the constant appearing in corollary 1.3.1., and
using the proof of the second part of the same corollary, we get that:

1

|Q|

∫
Q
eλ|ϕ(x)−ϕQ|dx ≤ C1λ(C2/∥ϕ∥∗ − λ)−1 = C1

where C1 is again, the one appearing in the end of the proof of corollary 1.3.1.,
which in turn, is the same one appearing in theorem 1.3.5.(from where we can
see that C1 depends only on the dimension n). Consequently, from corollary
2.2.3., we get that the function w(x) = eλϕ(x) is in A2 with an A2 constant
(= C2

1 ) independent of ϕ. Applying part 1) to our w, we obtain:

logw(x) = log k(x) + a log(Mf(x))− β(p− 1) log(Mg(x)) =⇒

ϕ(x) = λ−1 log k(x) + λ−1a log(Mf(x))− λ−1β(p− 1) log(Mg(x))

and we get the desired decomposition with

b = λ−1 log k, γ = λ−1a, h = λ−1β(p− 1) = λ−1β since p = 2

Observe that the L∞ norm of log k does not depend on ϕ. Then, since λ−1 =
C−1∥ϕ∥∗ (C := C2/2) and 0 ≤ a < 1, 0 ≤ β < 1, we have

∥b∥∞ + γ + h = ∥ϕ∥∗(∥ log k∥∞ + a+ β(p− 1))C−1 ≤

≤ C ′∥ϕ∥∗
for some constant C ′ since, as we said before, the L∞ norm of k is independent
of ϕ.

3) As we observed in the proof of theorem 1.3.1., logMf(x) is actually in
B.L.O., so that any ϕ = b + γ logMf with ∥b∥∞ < ∞ and γ a real number
≥ 0, will also belong to B.L.O.

For the converse, the proof is very much like the one in part 2). The dif-
ference is that, as we noted in the second remark following corollary 2.2.4., if
ϕ ∈ B.L.O., the weight w(x) = eλϕ(x) is actually in A1, not in A2. Then we
can use part 1) as before, but now p = 1. so that we obtain the representation
with h = 0.

Finally 4) follows obviously from 2) and 3).
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Lets remind some definitions. A locally non-negative function w on Rn is
called a dyadic A1 weight if it satisfies the condition

1

|Q|

∫
Q
w(x)dx ≤ Cessinfx∈Qw(x)

for any dyadic cube Q in Rn, which is equivalent to the inequality

Mdw(x) ≤ Cw(x)

for almost every x ∈ Rn. Here Md is the dyadic maximal operator defined by

Mdw(x) = sup{ 1

|Q|

∫
Q
w(x)dx : x ∈ Q,Q ⊆ Rn is a dyadic cube}.

The smallest C ≥ 1 for which the above inequalities hold is called the dyadic
A1 constant of w and is denoted by [w]1.

It is well known that such weights satisfy reverse Hölder inequalities for certain
real numbers p greater that 1 depending on the dimension n and the A1 con-
stant [w]1. The purpose of this section is to determine the exact best possible
range of p for which the reverse Hölder inequalities hold. Our main result is
the following.

Theorem 2.4.1. Let w be a dyadic A1 weight on Rn. Then for every p such
that

1 ≤ p <
log(2n)

log
(
2n − 2n−1

[w]1

) = p(n, [w]1) (a)

and for every dyadic cube Q we have

1

|Q|

∫
Q
(Mdw(x))

pdx ≤ 2n − 1(
2n − 2n−1

[w]1

)p
− 2n

(
1

|Q|

∫
Q
w(x)dx

)p

(b)

Moreover both the range of p and the corresponding constants in (b) are best
possible.

Clearly for such weights the inequality (b) is equivalent to a reverse Hölder
inequality for w (with different sharp constant) so it gives the best possible
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range of p for such an equality to hold. Note that for any fixed n we have
p(n, λ) → ∞ as λ → 1+ as expected. Moreover for fixed λ > 1 we have
p(n, λ) → 1 as n → ∞ which implies that the range of p shrinks to {1} as
the dimension increases. In proving that the range is best possible we will
produce for any λ > 1 a dyadic A1 weight w on [0, 1]n such that [w]1 = λ and∫
[0,1]n w(x)

p(n,λ)dx = ∞.

We remark that by using a standard dilation and approximation argument
it suffices to prove (b) for Q = [0, 1]n and for all functions w defined only
on [0, 1]n and satisfying the A1 condition only for dyadic cubes contained in
[0, 1]n. Actually we will work on more general non-atomic probability spaces
(X,µ) equipped with a structure T similar to the dyadic one.

The analogous question of finding the best range of good p for the full A1

condition,that is, for w satisfying

1

|Q|

∫
Q
w(x)dx ≤ Cessinfx∈Qw(x)

for all cubes, has been studied for dimension n = 1 and it was proved that in
this case the best possible range of p is 1 ≤ p < [w]1/([w]1 − 1) where [w]1
denotes the corresponding full A1 constant. It is easy to see that p(1, λ) <
λ/(λ− 1) for any λ > 1 and this reflects the fact that the dyadic A1 condition
is much weaker than the full one.

Lets start now by giving the precise structure of the family T we will work
on: We fix a non atomic probability space (X,µ) and a positive integer k ≥ 2.
We also suppose that we are given a family T of measurable subsets of X
satisfying the following properties

1. For every I ∈ T there corresponds a subset C(I) ⊂ T containing exactly
k pairwise disjoint subsets of I such that

I = ∪C(I)

and each element of C(I) has measure (1/k)µ(I).

2. T =
⋃

m≥0 T(m) where T0 = {X} and T(m+1) =
⋃

I∈T(m)
C(I).

EXAMPLE : If Qo is the unit cube in Rn we let E be the union of all the
boundaries of all dyadic cubes in Qo. Let X = Qo\E and let T be the set of
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all open dyadic cubes Q ⊂ Qo. Here k = 2n and each C(Q) is the set of 2n

subcubes of Q obtained by bisecting its sides. More generally for any integer
m > 1 we may consider all m-adic cubesQ ⊂ Qo with C(Q) being the set of the
mn open subcubes of Q obtained by dividing each side of it into m equal parts.

It is clear that each T (m) consists of km pairwise disjoint sets each having
measure k−m whose union is X; moreover, if I, J ∈ T and I ∩ J is non empty
then I ⊂ J or J ⊂ I.

For this family T we define the corresponding maximal operator MT as

MT (f)(x) = sup

{
1

µ(I)

∫
I
|f |dµ : x ∈ I ∈ T

}
(4.1)

for any f ∈ L1(X,µ) and we will say that a non negative integrable function
w is an A1 weight with respect to T if

MT (w)(x) ≤ Cw(x) (4.2)

for almost every x ∈ X. The smallest constant C for which (4.2) holds will be
called the A1 constant of w and will be denoted by [w]1.

Now we will describe an effective linearization for the operator MT valid for
certain good functions w. This will be important for proving the theorem
4.1. Let w be a positive non-constant T-step function; that is, there exist an
integer m > 0 and positive λP for each P ∈ T (m) such that

w =
∑

P∈T (m)

λPXP (4.3)

(where XP denotes the characteristic function of P). It is clear that w is an
A1 weight (with respect to T) since, for each I ∈ T we have

1

µ(I)

∫
I
|w|dµ =

1

µ(I)

∑
P∈T (m),P⊂I

λPµ(P ) ≤

≤ max
P∈T (m)

λP ≤
maxP∈T (m) λP

minP∈T (m) λP
· w := Cw ⇒

⇒ MT (w) ≤ Cw

Let δ = 1/[w]1, 0 < δ < 1 and for any I ∈ T write

AvI(w) =
1

µ(I)

∫
I
wdµ.
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Now for every x ∈ X let Iw(x) be the largest element of the set

{I ∈ T : x ∈ I,MTw(x) = AvI(w)}

(which is non-empty since AvJ(w) = AvP (w) whenever P ∈ T (m) and J ⊂ P ).
Next for any I ∈ T we define the set

AI = A(w, I) = {x ∈ X : Iw(x) = I}

and we let S = Sw be the set of all I ∈ T such that AI is non-empty.

Let x ∈ AI , then MTw(x) = AvI(w) and x ∈ P for some P ∈ T (m) with
P ⊂ I. Now for any other y ∈ P with y ̸= x we get that

MTw(y) = AvIw(y)

but Iw(y) ⊃ P for every such y, which implies (since x ∈ P ) that: MTw(x) ≥
MTw(y). On the other hand each y ∈ P belongs also in I, which implies in
turn, that MTw(x) = AvI(w) ≤ MTw(y) for every such y. Consequently, we
get that:

MTw(x) = AvI(w) = MTw(y)

for every y ∈ P , and since x ∈ AI we get that Iw(y) = Iw(x) = I ⇒ P ⊂ AI .
It is now clear that each AI is a union of certain P from T (m).

It is also clear that each x ∈ X belongs also in AIw(x) and that is because

MTw(x) = AvIw(x)(w)

for every x. Thus, we can conclude that

X =
⋃

I∈S=Sw

AI .

Now if there is x ∈ AI ∩AJ for some I, J ∈ S, then

MTw(x) = AvI(w) = AvJ(w)

and since I, J are the biggest elements for which the average of w on each of
them respectively is equal to MTw(x), we get that I = J . Thus for I, J ∈ S
with I ̸= J , we get that AI and AJ are disjoint. We can write now MTw in
the following form :

MTw =
∑
I∈S

AvI(w)XAI
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We also define the correspondence I → I∗ with respect to S as follows: I∗ is
the smallest element of {J ∈ Sw : I ⊊ J}. This is defined for every I in S that
is not maximal with respect to ⊆.

The main properties of these sets are given in the following two lemmas which
can be viewed as a version of Calderon-Zygmund decomposition in a more
general setting

Lemma 2.5. 1. For every I ∈ S we have

I =
⋃

S∋J⊆I

AJ

2. For every I ∈ S we have

AI = I\ ∪J∈S:J∗=I J

and so
µ(AI) = µ(I)−

∑
J∈S:J∗=I

µ(J). (5.1)

3. For all I ∈ T we have I ∈ S if and only if AvQ(w) < AvI(w) whenever
I ⊂ Q ∈ T , I ̸= Q. In particular X ∈ S and so I → I∗ is defined for all
I ∈ S such that I ̸= X.

Proof. (1) clearly we have
∪S∋J⊂IAJ ⊂ I

Let now x ∈ I. Since I ∈ S we have that AI ̸= ∅, so there will be y ∈ X such
that I = Iw(y) which means that MTw(y) = AvI(w)

Suppose now that Iw(x) ̸= J for each J ⊂ I ( which is equivalent to x /∈
∪S∋J⊂IAJ ), then, it will be Iw(x) = I ′ for some I ′ ∈ S with I ⊊ I ′, but y ∈ I ′

since Iw(y) = I, thus, we get that

AvI′(w) ≤ MTw(y) = AvI(w)

also x ∈ I which implies in turn that

AvI(w) ≤ MTw(x) = AvI′(w).

Consequently we get that AvI(w) = AvI′(w) = MTw(x) with I ′ ⊋ I, thus,
I /∈ S which is contradiction to our assumption.

88



Chapter 2
2.4. A SHARP LP INEQUALITY FOR DYADIC A1

WEIGHTS IN Rn

(2) Let x ∈ AI , then Iw(x) = I which implies that x /∈ ∪S∋J⊊IAJ . Thus,

x /∈ ∪S∋J ′⊂JAJ ′

for each J such that J∗ = I which is equivalent ( using (1)) to x /∈ J for each
J such that J∗ = I, consequently:

x ∈ I\ ∪S∋J :J∗=I J

For the opposite direction let x ∈ I\ ∪S∋J :J∗=I J , then it will clearly be

Iw(x) ⊇ I

but I = Iw(y) for some y (since I ∈ S), thus (y ∈ I ⊆ Iw(x)), we get that

MTw(y) = AvI(w) ≥ AvIw(x)(w) = MTw(x)

we also have (since x ∈ I ) that

MTw(y) = AvI(w) ≤ AvIw(x)(w) = MTw(x)

and since I ∈ S we get that Iw(x) = I which implies that x ∈ AI

(3) (=⇒) Let I ∈ S then Iw(x) = I for some x ∈ X. Let also Q ∈ T
such that I ⫋ Q. Then, since x ∈ I ⊂ Q, we get that

AvQ(w) < MTw(x) = AvIw(x)(w) = AvI(w)

actually it is AvQ(w) < MTw(x) (otherwise it would be I ⊃ Q since Iw(x) = I,
which is not valid)

(⇐=) Suppose now that AvQ(w) < AvI(w) whenever I ⫋ Q.

Clearly I ∈ T (m − k) where k ≥ 0 because if we had I ∈ T (m + k′) for
some k′ > 0 then AvQ(w) = AvI(w) for every Q ⫌ I with Q ∈ T (m+ k′ − 1)
which is contradiction.

Now, since every AvJ(w) can be written in the form:

AvJ(w) =

∑
F∈C(J) µ(F )AvF (w)∑

F∈C(J) µ(F )
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we conclude that for each J ∈ T there exists F ∈ C(J) such that AvF (w) ≤
AvJ(w). Starting from I and applying the above k times, we get a chain
IO = I ⊇ I1 ⊇ .... ⊇ Ik such that Ir ∈ T (m− k + r) for each r and moreover

AvIk(w) ≤ AvIk+1
(w) ≤ ... ≤ AvIo(w) = AvI(w).

Now from this and the assumption on I and also from the fact that for every
J ∈ T (n) there is a unique J ′ ∈ T (n − 1) such that J ′ ⊃ J , it is clear that
Iw(x) = I for every x ∈ Ik and therefore I ∈ S.

Next we write yI = AvI(w) for every I ∈ S and with δ = 1/[w]1 we have
the following

Lemma 2.6. Let I ∈ S. Then:

1. If J ∈ S is such that J∗ = I then

yI < yJ ≤ (k − (k − 1)δ)yI (6.1)

2. we have∑
J∈S:J∗=I

yJµ(J) ≤

(
(1− δ)µ(I) + δ

∑
J∈S:J∗=I

µ(J)

)
yI . (6.2)

Proof. (1) The inequality yI < yJ follows from the third result of lemma 2.5.
Now consider the unique F ∈ T such that J ∈ C(F ). Clearly (since J∗ = I)
J ⫋ F ⊆ I. We claim that:

AvF (w) ≤ yI = AvI(w)

Indeed, if F = I then AvF (w) = AvI(w). Let now F be ⫋ I. Of course
I ∈ T (s) for some s and F ∈ T (s+m). If m = 1 (that is F ∈ T (s+1)) and if
we had

AvF (w) > yI (I)

Let Q ∈ T such that F ⊂ Q and F ̸= Q. Since F ∈ T (s+1) and F ⊂ I ∈ T (s),
we get that

I ⊆ Q

If Q = I, then using (I) we get :

AvF (w) > AvQ(w) (i)
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If Q ̸= I then I ⫋ Q and since I ∈ S we get that:

AvQ(w) < yI (ii)

and
AvF (w) > AvQ(w) (iii)

For (ii) we used the previous lemma and for (iii) if there was AvQ(w) ≥
AvF (w), then, combining (ii) and (I) we lead ourselves in contradiction. There-
fore we get that

AvF (w) > AvQ(w)

whenever Q ⊇ F with F ̸= Q and according to the previous lemma, this
implies that F ∈ S which is again contradiction to our assumption J∗ = I
(because J ⫋ F ⫋ I). Thus, in case m = 1 we get that

AvF (w) ≤ yI

which is what we want.

If now F ∈ T (s+m) with m > 1, then, suppose again that

AvF (w) > yI (II)

There will be unique Fi such that Fo = F ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fm−1 ⊂ I where
Fi ∈ T (s+m− i) for each i ∈ {0, 1, 2, ...,m− 1}. Consider now

IM = max{i : AvFi(w) > yI}

(IM is well defined since we have assumed (II)).

Let now Q in T such that FIM ⊂ Q with Q ̸= FIM .

If Q ∈ {FIM+1, ..., Fm−1}, then, using the definition of IM , we get that

AvFIM
> yI ≥ AvQ(w).

If Q = I then using again the definition of IM , we get that

AvFIM
> yQ = yI .

If Q ⫌ I, then, using the fact that I ∈ S and the definition of IM , we get that

AvFIM
> yI > AvQ(w).
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Consequently FIM ∈ S which is not valid (contradiction) since J ⫋ F ⊆ FIM ⫋
I and J∗ = I. Thus, our claim is justified. Let us note that the case m > 1
covers the case m = 1 but the case m = 1 is the first and easier thought that
someone does in order to prove this claim.

Now note that for every x ∈ F\J ⊂ I we have

[w]1w(x) ≥ MTw(x) ≥ yI ⇒

⇒ w(x) ≥ yI/[w]1 ⇒ yF\J ≥ yI
[w]1

hence using the claim we get

yI ≥ AvF (w) =
µ(J)

µ(F )
yJ +

µ(F\J)
µ(F )

yF\J ≥

µ(J)

µ(F )
yJ +

µ(F\J)
µ(F )

yI
[w]1

=

µ(J)

µ(F )
yJ +

µ(F )− µ(J)

µ(F )

yI
[w]1

=

=
1

k
yJ + (δ − 1

k
δ)yI

which implies that
1

k
yJ ≤ k − (k − 1)δ

k
yI

and this proves (1).

(2) Note that for every x ∈ AI we have

[w]1w(x) ≥ MTw(x) = yI

hence, integrating this over AI we get :∫
AI

[w]1w(x)dµ(x) ≥
∫
AI

yIdµ(x) = yIµ(AI) =

we use lemma 5 (ii)

=

(
µ(I)−

∑
J∈S:J∗=I

µ(J)

)
yI =⇒
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∫
AI

w(x)dµ(x) ≥ δ

(
µ(I)−

∑
J∈S:J∗=I

µ(J)

)
yI

But

AI = I\ ∪J∈S:J∗=I J

So ∫
I
wdµ−

∑
J∈S:J∗=I

∫
J
wdµ ≥ δ

(
µ(I)−

∑
J∈S:J∗=I

µ(J)

)
yI =⇒

µ(I)yI −
∑

J∈S:J∗=I

µ(J)yJ ≥ δyI

(
µ(I)−

∑
J∈S:J∗=I

µ(J)

)
=⇒

∑
J∈S:J∗=I

µ(J)yJ ≤

(
µ(I)(1− δ) + δ

∑
J∈S:J∗=I

µ(J)

)
yI

and the proof is complete.

Then defining the function

Pk(λ) =
logk

log(k − (k − 1)λ)
> 1

for 0 < λ < 1, we have the following.

Lemma 2.7. Let w be a T-step function as above. Then∫
X
(MTw)

pdµ ≤ k − 1

k − (k − (k − 1)δ)p

(∫
X
wdµ

)p

whenever 1 ≤ p < Pk(δ).

Proof. Fix p > 1 and use the previous lemma and the convexity of the function
F (t) = tp to get

ypJ − ypI
yJ − yI

≤
((k − (k − 1)δ)yI)

p − ypI
(k − (k − 1)δ)yI − yI

=⇒

ypJ − ypI ≤ (k − (k − 1)δ)p − 1

(k − 1)(1− δ)
(yJ − yI)y

p−1
I (7.1)
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whenever I, J ∈ S are such that J∗ = I.

Now, using (5.1) on (6.2) we get

∑
J∈S:J∗=I

yJµ(J) ≤

{
(1− δ)

(
µ(AI) +

∑
J∈S:J∗=I

µ(J)

)
+ δ

∑
J∈S:J∗=I

µ(J)

}
yI =⇒

∑
J∈S:J∗=I

(yJ − yI)µ(J) ≤ (1− δ)µ(AI)yI . (7.2)

Multiplying (7.1) by µ(J) and, with I fixed, adding for all J with J∗ = I we
get using (7.2) that :

∑
J∈S:J∗=I

(ypI − ypJ)µ(J) ≤
(k − (k − 1)δ)p − 1

k − 1
µ(AI)y

p
I (7.3)

for every I ∈ S that is not minimal with respect to ⊆ (otherwise we do not
sum anything)

Let us before we continue, remind that

MTw =
∑
I∈S

yIXAI
=
∑
I∈S

AvI(w)XAI

so that

(MTw)
p =

∑
I∈S

ypIXAI

and therefore ∫
X
(MTw)

pdµ =
∑
I∈S

ypIµ(AI)

Next we sum all the inequalities (7.3) for all I ∈ S′ where S′ consists of all
elements of S that are not minimal. On the right hand side we have the
estimate ∑

I∈S′

µ(AI)y
p
I ≤

∫
X
(MTw)

pdµ (7.4)

On the other hand , using that

µ(AI) = µ(I)−
∑

J∈S:J∗=I

µ(J)
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and the fact that X is the only I ∈ S for which I∗ is not defined, we have∑
I∈S′

∑
J∈S:J∗=I

(ypJ − ypI )µ(J) =

∑
I∈S′

∑
J∈S:J∗=I

ypJµ(J)−
∑
I∈S′

∑
J∈S:J∗=I

ypIµ(J) =∑
I∈S,I ̸=X

ypIµ(I)−
∑
I∈S′

ypI

∑
J∈S:J∗=I

µ(J) =

∑
I∈S,I ̸=X

ypIµ(I)−
∑
I∈S′

ypI (µ(I)− µ(AI)) =

(µ(I) = µ(AI) for I minimal)

=
∑

I∈S,I ̸=X

ypIµ(I)−
∑
I∈S

ypI (µ(I)− µ(AI)) =

∑
I∈S,I ̸=X

ypIµ(I)−
∑
I∈S

ypIµ(I) +
∑
I∈S

ypIµ(AI) =

∑
I∈S

ypIµ(AI)− ypX =

=

∫
X
(MTw)

pdµ−
(∫

X
wdµ

)p

.

Hence, assuming that 1 < p < Pk(δ) which gives (k − (k − 1)δ)p < k and
consequently (k − (k − 1)δ)p − 1 < k − 1 and since

∫
X(MTw)

pdµ is obviously
finite, we get∫

X
(MTw)

pdµ =

(∫
X
wdµ

)p

+
∑
I∈S′

∑
J∈S:J∗=I

(ypJ − ypI )µ(J) ≤

use (7.3)

≤
(∫

X
wdµ

)p

+
∑
I∈S′

(k − (k − 1)δ)p − 1

k − 1
µ(AI)y

p
I =

=

(∫
X
wdµ

)p

+
(k − (k − 1)δ)p − 1

k − 1

∑
I∈S′

µ(AI)y
p
I ≤

use (7.4)

≤
(∫

X
wdµ

)p

+
(k − (k − 1)δ)p − 1

k − 1

∫
X
(MTw)

pdµ
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the above implies that∫
X
(MTw)

pdµ ≤ k − 1

k − (k − (k − 1)δ)p

(∫
X
wdµ

)p

which is what we want.

Next we show that the previous result holds for general w and that it is
actually best possible.

Theorem 2.4.2. For any A1 weight (with respect to T) w and any p such
that 1 ≤ p < Pk(1/[w]1) we have∫

X
(MTw)

pdµ ≤ k − 1

k − (k − (k − 1)δ)p

(∫
X
wdµ

)p

(7.5)

and both the range of p and the constant in (7.5) are sharp (best possible).

Proof. For the general non-negative A1 weight w we consider the sequence
(wn) where

wm =
∑

P∈T (m)

AvP (w)XP

and set

ϕm =
∑

P∈T (m)

max{AvI(w) : P ⊆ I ∈ T}XP = MTwm

(since AvI(w) = AvI(wm) whenever P ∈ T (m) and P ⊆ I ∈ T )

Then ∫
X
wmdµ =

∫
X
wdµ

for all m and ϕm converges monotonically to MTw. Since each wm is a positive
T - step function, from the previous lemma we get that:∫

X
ϕp
mdµ ≤ k − 1

k − (k − (k − 1)δ)p

(∫
X
wdµ

)p

and so letting m → ∞ we get (7.5) for the general w.

Now to complete the proof of the theorem we choose an infinite chain X =
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Io ⊇ I1 ⊇ ... ⊇ Is ⊇ Is+1 ⊇ ...such that Is ∈ T (s) for all s ≥ 0 (and so
µ(Is) = k−s) and for γ > 1 consider the function

w =
∞∑
s=0

γsXIs\Is+1
(7.6)

Then it is easy to see that for all s ≥ 0

AvIs(w) =
k − 1

k − γ
γs (7.7)

provided γ < k. Indeed:

AvIs(w) =
1

µ(Is)

∫
Is

wdµ =

1

µ(Is)

∑
r≥s

γrµ(Ir\Ir+1) = ks
∑
r≥s

γr
(

1

kr
− 1

kr+1

)
= ks

∑
r≥s

γr
k − 1

kr+1
=

= ks−1(k − 1)
∑
r≥s

(γ
k

)r
= ks−1(k − 1)

∑
r≥0

(γ
k

)r
−

s−1∑
r=0

(γ
k

)r =

= ks−1(k − 1)

(
1

1−
(γ
k

) − (γk )s − 1
γ
k − 1

)
=

=
ks−1(k − 1)

(γ
k

)s
1− γ

k

=
k − 1

k − γ
γs.

We next claim that
MTw(x) = AvIs(w)

whenever x ∈ Is\Is+1 and s ≥ 0. Indeed suppose that x ∈ Is\Is+1 and let
J be the unique element of T (s + 1) such that x ∈ J (clearly J ∈ C(Is) and
J ̸= Is). Then the set of all I in T containing x consists of Io, I1, ...., Is and
J and certain subintervals of it (of J), but since γ > 1, (7.7) implies that
AvIs(w) > AvIr(w) for all 0 ≤ r < s and since w is constant on J (and every
sub interval of it) equal to γs < k−1

k−γγ
s = AvIs(w), we get

MTw(x) = AvIs(w)

for every x ∈ Is\Is+1. This combined with (7.6) and (7.7) implies that

MTw(x) =
k − 1

k − γ
w(x)
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so that w is an A1 weight with [w]1 =
k−1
k−γ and so

γ = k − k − 1

[w]1
(7.8)

Now for any p > 1 we have∫
X
(MTw)

pdµ =

(
k − 1

k − γ

)p ∫
X
wpdµ =

=

(
k − 1

k − γ

)p ∞∑
s=0

γsp(µ(Is)− µ(Is+1)) =

(
k − 1

k − γ

)p ∞∑
s=0

γsp
(

1

ks
− 1

ks+1

)
=

(
k − 1

k − γ

)p
( ∞∑

s=0

(
γp

k

)s

− 1

k

∞∑
s=0

(
γp

k

)s
)

=

(
k − 1

k − γ

)p k − 1

k

∞∑
s=0

(
γp

k

)s

=

(
k − 1

k − γ

)p k − 1

k

k

k − γp
=

k − 1

k − γp
(AvIo(w))

p =⇒∫
X
(MTw)

pdµ =
k − 1

k − (k − (k − 1)δ)p

(∫
X
wdµ

)p

and it is finite if and only if γp < k

The above gives us the sharpness and the proof is complete.

Now theorem 2.4.2. applied to the special case of dyadic cubes given in
example before and combined with standard dilation and approximation ar-
guments completes the proof of theorem 2.4.1.
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APPENDIX

Here we will not present that much of info, just a couple of lemmas that
will help us solve an exercise in measure theory that we used somewhere in
the previous chapters. To be precise we will show that if we have a finite
positive Borel measure µ on a space X with µ(X) = 1 and a function f for
which ∥f∥q < ∞ for at least one q > 0 then :

∥f∥p −→ exp

(∫
X
log|f(x)|dµ(x)

)
as p tends to zero.

Lemma 3.1. If 0 < r < s(< 1), then

∥f∥r ≤ ∥f∥s

which implies of course that Ls(X) ⊂ Lr(X)

Proof. Since the function ϕ(x) = xs/r is convex, we can apply Jensen’s in-
equality to

∫
X |f |rdµ to get

{∫
X
|f |rdµ

}s/r

≤
∫
X
|f |sdµ.

Hence ∥f∥r ≤ ∥f∥s.

Lemma 3.2. If 0 < p < 1, then∫
X
log|f |dµ ≤ log∥f∥p (I)
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Proof. We know that log(x) is a concave function so we can use again Jensen’s
inequality to

∫
X |f |pdµ to obtain

log

(∫
X
|f |pdµ

)
≥ p

∫
X
log|f |dµ

which is what we want.

From lemmas 8 and 9, it follows that the sequence log ∥f∥1/n is decreasing
and bounded from below. Therefore, it converges as n → ∞.

To find the limit, use the inequality log x ≤ x − 1 or equivalently the in-
equality log a ≤ n(a1/n − 1) with a =

(∫
X |f |1/ndµ

)n
to get (since µ(X) = 1)

:

log ∥f∥1/n ≤
∫
X

|f |1/n − 1

1/n
dµ

The sequence an = |f |1/n−1
1/n is increasing. Thus, we can apply the the

monotone convergence theorem in the integral above to get

lim
n→∞

log ∥f∥1/n ≤
∫
X

lim
n→∞

|f |1/n − 1

1/n
dµ

=

∫
X
log |f |dµ (II)

since

lim
n→∞

|f |1/n − 1

1/n
= log |f |

From (I) and (II) we get that

lim
n→∞

log ∥f∥1/n =

∫
X
log |f |dµ

and since the logarithm is continuous function we get

lim
p→0

∥f∥p = exp

(∫
X
log|f(x)|dµ(x)

)
Proposition 3.0.1. For f ∈ L1, Mf is not bounded in L1. Actually Mf is
never integrable in L1 unless f is almost everywhere equal to zero.
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Proof. Suppose f ∈ L1 with |f | > 0 in a set of a positive measure, then, we
choose cube Q′ = [−∥y∥, ∥y∥] × ... × [−∥y∥, ∥y∥] for some fixed y ∈ Rn such
that:

0 < C =

∫
Q′

|f(x)|dx < ∞.

Consequently for every x ∈ Rn with ∥x∥ > ∥y∥ := M , and for

Q = [−∥x∥, ∥x∥]× ...× [−∥x∥, ∥x∥]

we get that:

Mf(x) ≥ 1

|Q|

∫
Q
|f(z)|dz =

1

2n∥x∥n

∫
Q
|f(z)|dz ≥ C ′

∥x∥n

where C ′ = C
2n , and we know that∫

{x:∥x∥>M}

1

∥x∥n
dx = ∞.
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