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[IEPIAHTYH

Oa dourédoupe xuplwe ye tov Hardy-Littlewood yeyiotind tehecth o onolog
oplletan w¢ e&hc:

Mi(x) = sup@ /Q @)l dy

omou Q elvon ®VBog o omolog mepiéyel to . ‘Eva amo 1o xuptdtepa epyahela
pog Yo elvon 0 ywplopdg tou yweou R™ ce éva unocivolo {2 mou amoteheiton
amo Eévoug ava 500 xUBoug Tve GTouC oToloug 0 UEGOSC 6POC TNG CUVEETNONG
| f| eivan petald ¢ xou 2™t, xou oo cuunApwud tou F 6mou |f(z)| < t oyedov
movToL. Oo amodeiloupe xdnoleg LP avioOTNTES Yiot qUTOHV TOV PEYLOTIXG TEAECTH
o o Bovue TNV oyéon Tou ue Tov sharp peylotind teheoth f7. Metd amo Ty
eloay WY pog otny Yewplo Bopdv, Yo uelethioouue eva TpoBAnua yia duadixd Aq
Bden, yio To omoio Yo amodel€ouye wia avtiotpogn Holder LP avicotnro.






ABSTRACT

We will work mostly with the Hardy-Littlewood maximal function which is
defined as

Mf(z) = sup@ /Q F@)ldy

where Q is a cube containing x. One of the tools of constant use in our
work will be the splitting of the space R™ into a subset 2 made up of non-
overlapping cubes @; over each of which the average of an integrable function
|f| is between t and 2"¢, and a complementary subset F where |f(z)| <t a.e.
We will obtain some LP inequalities for this maximal function and we will
see the relation with the sharp maximal function f#. After our introduction
in weights and A, theory we will study an interesting problem for dyadic A;
weights from which we will get a sharp reverse Holder type LP-inequality.
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INTRODUCTION

In 1952, A.P. Calderon and A.Zygmund invented a simple but powerful
method to split the space R™ into a subset {2 made up of non-overlapping
cubes Q; over each of which the average of an integrable function |f] is be-
tween t and 2"t, and a complementary subset F where |f(z)| < t for a.e.
x € F. This method has become widely known as the Calderon-Zygmund
decomposition. We aim to describe here this method together with some of
its most immediate and interesting applications.

The first two sections of chapter one give a description of the method in
connection with the (very closely related) Hardy-Littlewood maximal opera-
tor. Apart from the usual estimates for this maximal function, we also obtain
some weighted inequalities which anticipate the A, theory to be developed in
chapter two, and we study some variants of the Hardy-Littlewood operator
when Lebesgue measure is replaced by a more general measure. This leads us
in a natural way to the definition and study of the Carleson measures.

This is not the only maximal operator to appear in the first chapter. The
so-called sharp maximal function shares enough properties with the Hardy-
Littlewood operator, but behaves in a different way in L°°, which is somehow
replaced by our friend, the space B.M.O, which will be further exploited in
chapter two. This relation comes to light after proving the John-Nirenberg in-
equality for BMO functions, which is yet another application of the Calderon-
Zygmund decomposition.

As we will see in chapter two, the LP inequalities that will be obtained for
several kinds of operators remain true when Lebesgue measure dx is replaced
by certain measures w(z)dz.

We will devote chapter two to a systematic study of this type (L) of inequal-
ities. We will see that for the maximal function Mf ( which will be defined in
chapter one), it is possible to give a very precise and satisfactory answer to



the question of finding those w for which either

ﬂmemmmgmw/mmwmw (+)

or the corresponding weak type inequality (for which, the definition will be
given in chapter one) hold. The same problem for two weights will be also
considered.

Why should one be interested in inequalities like (*)? We shall briefly sketch
some answers

(1) Conjugate functions, HP spaces etc. can be defined in domains of complex
plane with a ”resonable” boundary 0D. When estimating the LP norms of
operators appearing in this context, some of the problems that arise can be
reduced, by change of variables, to estimates for known operators on the line
or on the torus, but with respect to a measure w(z)dz for certain w.

(2) Inequalities like (*) imply (as we will show), when the structure of weights
satisfying them, the following

/Wﬂ@&mwxsc/uwwwaw ()

for arbitrary w(xz) > 0, where N is (in the most desirable case) some kind
of "maximal operator” which we can control. An inequality like (**) will
be proved in chapter one for the Hardy-Littlewood maximal operator. Such
inequalities are very easy to handle, and contain essentially all the relevant
information about the boundedness properties of T.

In the end, we will determine the exact best possible range of p which de-
pends (as we will see) on the dimension n and the corresponding A; constant
of w, for which any dyadic A; weight on R" satisfies a reverse Hélder inequal-
ity for p. The proof will be based on an effective linearization of the dyadic
maximal operator applied to dyadic step functions.

vi
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CHAPTER

CALDERON-ZYGMUND
THEORY

1.1 THE HARDY-LITTLEWOOD MAXIMAL FUNC-
TION AND THE CALDERON-ZYGMUND DE-
COMPOSITION

Let f be locally integrable function in R™. For x € R™ we define

1
Mf(z) = iggM/QIf(y)ldy

where the sup is taken over all cubes Q containing x (cube will always mean
a compact cube with sides parallel to the axes and non empty interior), and
|@Q| stands for the Lebesgue measure of Q.

M f will be called (Hardy-Littlewood) maximal function of f, and the oper-
ator M sending f to M f,(Hardy-Littlewood) maximal operator.

Observe that we obtain the same value M f(z), which can be +oo, if we allow
in the definition only those cubes @) for wich x is an interior point. It follows
from this remark that the function M f is lower semicontinuous,i.e, for every
t > 0, the set By = {z € R" : M f(z) > t} is open.

In order to study the size of M f, we shall look at its distribution function
A(t) = |E¢|. It will be instructive to start with the case n = 1 , which is
particularly simple.Let f € L'(R). The open set E; is a disjoint union of
open intervals I; : its connected components. Let us look at one of the I;’s,
and let us call it I. Take any compact set K C I. For each x € K, there
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is (by definition of F}) a compact interval @), containing x in its interior and
satisfying
1

Q| Jo,
Since ), C Ei, it follows that (), C I. Since K is compact, we can cover it with
the interior of just finitely many of the Q,’s, say {Q;}. We can even assume

that this finite covering is minimal in the sence that no @; is superfluous.
Then, no point is in more that two of the interiors of the @;’s. It follows that:

K<< 3 [ i<t [ vlrs? [,

G«

[f(y)ldy > .

Since this is true for every compact K C I, we obtain:

an < [ il

This implies, in particular, that I is bounded. Let I = (a,b). Then, since
belandb¢ E (E is open and I is one of its open components), we can
write:

|}| /I F)ldy < MAb) <t

Finally (1.1) implies:

ZEDLE iz/l Sy = [ 1wy

We have obtained the following result:

Theorem 1.1.1. Let f € L*(R). then, for everyt > 0, the set By, = {z € R:
M f(x) >t} can be written as a disjoint union of bounded open intervals I;,
such that, for every j =1,2,....

t 1
a8 Sy /I F(y)ldy < ¢

and as a consequence:

B1< 5 [ 1w
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Now we seek an analogue of the previous theorem in dimension n > 1. The
extension is not straightforward.

Let f € L'(R"), n > 1, and let ¢t > 0. Instead of looking at the maximal
function M f, we shall try to obtain directly a family of cubes {Q;} such that
the average of |f| over each is comparable to ¢ in the sense that a relation
like (1.3) holds. This is quite easy and it will be done most effectively by
considering only dyadic cubes. For k € Z, we consider the lattice A, = 27*Z"
formed by those points of R” whose coordinates are integral multiples of 27*.
Let Dy, be the collection of the cubes determined by Ag, that is, those cubes
with side lenght 27% and vertices in Aj. The cubes belonging to D = Ufg Dy,
are called dyadic cubes. Observe that if Q,Q" € D and |Q'| < |Q|, then either
Q' C Q or else @ and @’ do not overlap (by which we mean that their interiors
are disjoint). Each Q) € Dy is the union of 2" non-overlapping cubes belonging
to Dyy1. We shall call Cy the family formed by the cubes @) € D which satisfy

the condition: .

(14) t</ﬁﬂ@um
1Ql Jg
and are maximal among those which satisfy it. Every @ € D satisfying (1.4) is
contained in some Q' € C;. The cubes in C; are, by definition, non overlapping.
Also, if Q € Dy is in C; and @' is the only cube in Di_; containing Q, we

shall have: )

|f(z)ldz <t
Q'] /Q’
but, since |Q'| = 2"|Q), we get:

1 on )
M/Q|f(:r)|d$§ 7] /Q,|f($)|dw§2 ¢

we have achieved our purpose by obtaining a family C; = {Q;} of cubes such
that, for every j:

(1.5) t |f(x)|dx < 2"t

1
<
‘QJ‘ Qj

Next, we shall investigate the relation with the maximal function M f. Suppose
x € R™ is such that M f(z) > ¢. There will be some cube R containing x in
its interior and satisfying

t< ug,/}{’f(:n)]dx

5
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We look for a dyadic cube of comparable size over which the average of |f| is
comparably big. Let k£ be the only integer such that

27(k+1)n < ‘R’ < 2fkn_

For this k there is at most one point of Ay interior to R and there are at most
2™ cubes in Dy, meeting the interior of R. Consequently, there is some cube
in Dy, meeting the interior of R satisfying:

[ 1wy >4
RNQ

and that is because if we had

tIR
[ 1wy < 40
RNQ

for every such cube, then we get:

B B Al _
/R @)y = /W;Q y)ldy = Z / y)ldy <Z R

which is not valid (for the first equality we used that there are at most 2"
cubes in Dy, meeting the interior of R) .

Now, since |R| < |Q] < 2"|R|, we have :

tIR|  |Q
[ 1wy > 4> 1
RNQ

1 t
o . 1y >

it follows that Q C @Q); € Cy—n; for some j.

and therefore:

In general for any cube @ and any a > 0, we shall denote by Q¢ the cube with
the same center as ) but with side lenght a times that of Q). In our particular
situation, since R and @ meet and |R| < |Q|, it follows that R C Q3 C Q?.
We conclude that if Cy-ny = {Q;}, then E; C |J; Q;’ and this leads to the

estimate

1 < L0 =5 D0l < 5 X i < [ 17t
J
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For those @;’s we also have that:

t 1

2"t t
R S R —
4 = Q4 Jg,

on on
dy < — dy < 2—- = =
‘Q“/Qj\f(y)\ y < |Q;|/Q;_ fWldy < 7 = 50

where Q;» is the unique cube in Dy (if Q; € D) containing @);, and we know
that @);’s are in Cy—n;, so they are maximal. We have obtained the following
result:

[f(y)ldy =

Theorem 1.1.2. Let f € LY(R™). Then ,for every t > 0, the set By, = {x €
R™ : M f(z) > t} is contained in the union of a family of cubes {Q?} which
result from expanding by a factor of 3 the non overlapping mazimal cubes {Q;}

which satisfy:
t 1

t
< 1@l Jo, |f (@)|de < o~

(1.7) =

it follows that :

C
(1.8) |Ey| < t/n |f(z)|dx

where the constant C depends only on the dimension n. []

We shall derive some consequences of the basic inequality (1.8) which il-
lustrate the role played by the maximal operator M. The importance of the
operator M stems from the fact that it controls many operators arising nat-
urally in Analysis. As an example, we are going to prove an extension of
Lebesgue’s differentiation theorem.

Theorem 1.1.3. Let f € L}, (R™). Forx € R" and r > 0, let Q(x;7) = {y €

loc
R" : |y — x|oo = maxjly; — x| < r}. Then, for almost every x € R":

1
(1.10) M/@(x;r) |f(y) — f(x)|dy -0 as r— 0.

Proof. We may assume f € L'(R"). It will be enough to show that, for every
t > 0, the set

A ={z eR": limsupM/Q( . |f(y) — f(x)|dy >t}

r—0

has zero measure. Indeed, the set where (1.10) does not hold, is precisely
U;')i1 Al /3



1.1. THE HARDY-LITTLEWOOD MAXIMAL FUNCTION AND THE
Chapter 1 CALDERON-ZYGMUND DECOMPOSITION

Given ¢ > 0, we can write f = g + h, where g is continuous with compact

support and [ |h| < e (we can do that because of the density of continuous
functions in L'). For g we clearly have:

1
_ — d 0 0
|Q(l’77”)| /CjZ(x;r) ’g(y) g(x)| v @ =

for every x € R". Therefore, we get that:

. 1 . 1
fimsup oo /Q Sy < s e /Q ) h@)dy

r—0 r—0

< Mh(z) + |h(z)|

and
Ay C{x e R": Mh(x) >t/2} U{x € R" : |h(z)| > t/2}.
But
(1) {x € R": Mh(z) > t/2} < C|h|1/t < Ce/t
and
(2) {x € R" : |h(z)| > t/2}] g/ 2|ht($)|dl‘§2€/t.
Rn

Thus A; is contained in a set of measure < (C' 4 2)¢. Since this can be done
for any € > 0, we get |A¢| = 0. The second inequality is obvious, so lets proof
the first one:

It is enough to show that for the set A, = {z € R™ : Mh(z) > t}, there
is a constant C' such that |A; N K| < |||, for every bounded K C R™. Let
x € A N K, then there will be r; > 0:

=
- h(y)|dy > t
|Q(‘T7rw)‘ Q(z;re) ’ ( ’

Now for the collection {Q(z;7%)}rea,nx We recall the Besicovitch theorem,
so there is a sub collection {Qf }ren such that:

o AN K CUpQy
o >, Xo.(y) <0, forevery ycR"
It is clear that: )
— |h| >t
Qx| Jq,

8
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so we get:

1 1
ankl <l YRl <Y [ W=7 [ Ko
% % g k "

using the Beppo-Levi theorem we get:

1 1 0,
S hl X, = h Xp, < = h|0y, = —||h
P e, = [ WS Xa <7 [ Ihiow= 2kl
k k

and the proof is complete. ]

The points z for which (1.10) holds are called Lebesgue points for f. We
can rephrase the previous theorem by saying that almost every point x € R”
is a Lebesgue point.

Proposition 1.1.1. Let f € L (R"). Then, for every Lebesque point x for f

loc
and, therefore, for a.e point x € N™:

1. f(x) =lim,—0 m fQ(a:;r) f(y)dy
2. |f(x)] < M f(x).

Proof. In order to prove 1), just note that:

1
‘, e /Q RO

whilst 2) is an immediate consequence of 1). O

1
< m 0w |f(y) — f(z)|dy

Now if x is a Lebesgue point for f and we have a sequence of cubes (1 D
Q2 D .... with ﬂij = {x}, then:

. 1
fl@) = lim = [ f(y)dy
J—00 |Q]| Qj
Indeed if @; has side length r;, we have Q; C Q(x;2r;) and
lim; o0 7 = im0 Q5] = | N; Q] = 0, so that r; — 0. Therefore
1 1
o | fWdy—f@)| <= [ [fy) = f(2)ldy <
’QJ‘ Qj ‘Q]| Qj

9
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o o

as j — oo

Let f € LY(R") and let C; = Ci(f) = {Q;} be the collection formed by those
maximal dyadic cubes over which the average of |f| is > t (called Calderon-
Zygmund cubes for f corresponding to t) .Let z ¢ U;Q;. Then the average of
| f| over any dyadic cube will be < t. Let {Rx} be a sequence of dyadic cubes
of decreasing size such that Nz Ry = {z}. Then for each of them we have

1

|Ri| Jr,

If, besides, z is a Lebesgue point for f (and hence for |f|) we get, by passing
to the limit :| f(x)| < t. Thus |f(z)| <t for a.e x ¢ U;Q;.

[f(y)ldy <t

The splitting of the space R™ into a subset {2 made up of non overlapping
cubes @); over each of which the average of |f| is between ¢ and 2"t and a
complementary subset F' where |f(z)| <t a.e., is the first step of the so-called
Calderon-Zygmund decomposition which will be a tool of constant use here.
Let us record the following:

Theorem 1.1.4. Given f € LY(R") and t > 0, there is a family of non
overlapping cubes Cy = Cy(f) consisting of those maximal dyadic cubes over
which the average of |f| is > t. This family satisfies:

1. for every Q € Cy: t < @1' fQ |f(x)|dx <27t
2. for a.e x ¢ UQ, where Q ranges over Cy, is |f(x)| < t.

Besides, for everyt >0, By = {x € R" : M f(z) >t} C UQ? where Q ranges
over Cy—ny.

]

Next we are going to study a usefull generalization of the maximal function.
Let i be a positive Borel measure on R", finite on compact sets and satisfying
that following ”doubling” condition :

(1.13) 1(Q%) < Cu(Q)

for every cube Q, with C' > 0 independent of (). We shall often say simply that
1 is a doubling measure. This implies, of course, that for every a > 0, there is a

10
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constant C' = Cy, > 0, depending only on «, such that p(Q%) < Cu(Q) for ev-
ery cube @ (that is because there is n, € N such that o < 2" so Q® C Q™).
Since we are in R", the finiteness of y on compact subsets implies that u is
regular. Notice that for every cube @, p(Q) > 0. Indeed, if we had u(Q) =0
for some cube @, we would have p(Q*) < Cpu(Q) = 0, from which pu(R") = 0,
which is excluded as trivial.

Now, for p as above, f € L} (n) and = € R", define:

loc

1
My f@) = sup o /Q F@)lduy)

where the sup is taken over all cubes Q containing x. As before, we obtain
the same value M, f(x) if we just take in the definition, those cubes Q con-
taining x in their interior. This is a consequence of the regularity of pu.

Let f € L'(u) and t > 0. We want to obtain a Calderon-Zygmund decom-
position for f and t relative to the measure u and, at the same time, we want
to estimate the p-measure of the set £y = {x € R" : M, f(x) > t}, which is, of
course, open. We are going to apply the same ideas that led to the previous
theorem. We need to make two observations.

First, we are going to see that there is a constant K > 1 such that, every
time we have dyadic cubes Q' C @, it follows that u(Q) > Ku(Q'). To see
this, let Q" be a dyadic cube contained in @, contiguous to @’ and with the
same diameter. Then @’ C Q"3 and consequently, for C' = C3 we have:

u@) < Cu(Q") < C(WQ) — 1(@")

This implies that (1 + C)u(Q') < Cu(Q), which gives u(Q) > Ku(Q') with
K = (1+C)/C > 1, and our claim is justified. As a consequence, if we have
a strictly increasing sequence dyadic cubes Qo C Q1 € Q2 < ...., we have the

k
inequality p(Qr) > <1'5§3) 1(Qo) — oo as k — oo. The conclusion is that if

a chain of dyadic cubes is such that the p—measure of the cubes is bounded
above, then their diameter is also bounded above or, what is the same, the
chain terminates at a given cube containing all the others.

The second observation we need is the following: for every A > 0 there is

11
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B > 0 such that every time we have cubes ) and R which meet and satisfy
|Q| < A|R|, then they also satisfy |u(Q)| < B|u(R)|, lets prove that: Let
A > 0 such that |Q| < A|R|, but A|R| = A""|R| = |AY"R| = |[R*""], so
the side length of Q is smaller than A/ —times the side length of R and also
Q and R meet, which leads to:

/n /n
QC R = (@) < w(R*™) < Cypiynp(R)

and for B = (U3 41/» our claim is justified.

Now we go back to our problem. Denote by C; = Cy(f;u) the collection
formed by the maximal dyadic cubes Q satisfying the condition

1
< /Q F@)lduy).

Since this condition forces u(Q) to be bounded by ¢~ [o. [ f(y)|du(y) < oo,
our first observation implies that every dyadic cube satisfying our condition is
contained in some member of C;. Take Q € C;, then Q € D, for some k and
if @’ is the only cube in Dj_; containing Q, we have

1
Q)

But Q' C Q3, so that u(Q’) < Cu(Q). Therefore

/ F@)lduty) <t
y

1 C
M(Q)/Q|f(x)|du(x) < D) /Q/ |f(2)|du(z) < Ct

Thus, for every @Q € C}:

1
te) /Q F(@)ldulz) < Ct.

Let now = € E;, that is :M,f(x) > t. Then there will be some cube
containing x in its interior such that

1
i /R F@)duly) >t

12
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As we did for the case u =Lebesgue measure, let (Q be a dyadic cube which
overlaps with R and satisfies |R| < |Q| < 2"|R| and

/ Fldu > 27" tu(R).
RNQ

Let B be the constant corresponding to A = 2™ in our second observation.
Then

/ fldu > B2 0(Q)
RNQ

and hence 1

t
— fldu >
n(Q) /Q d 2"B
it follows that @ C @; for some Q; € Cy-np-1; and R C Q3 C Q?.

If now Cy-np-1; = {Q;}, then E; C Uj Q? and thus, we get the estimate:

c2n c2"
u(B) < D (@) < C ) u@)) < iB}j/Q Fldu < 2tB/Rn|f|du
i J i

C

S o | fldp

This basic estimate can be used to extend theorem (1.9) and its corollary,
obtaining:

Theorem 1.1.5. With p as above, let f € Llloc(,u). Then, for almost every
x € R™ (with respect to u):

1. 1m0 yigiyy Jogen 1 W) — f@)ldu(y) =0

2. flx) = limro sty Jogn fW)dn©)

9. |f(@)| < My f () U

In particular, if Cy(f,p) = {Qj}, we have |f(z)| < t for ae. z ¢ Uj Qj
(with respect to ). We can finally state the following:

Theorem 1.1.6. For u as above, letf € L'(u) and t > 0. Then, there is a
family of non overlapping cubes Cy = Cy(f, 1), consisting of those mazximal
dyadic cubes over which the average of | f| relative to p is > t, which satisfies

13
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1. for evererCt:t<ﬁfQ]f\d,u§Ct

2. for a.e. x ¢ UQ where Q ranges over Cy (a.e is with respect to ), we
have :|f(z)| < t. Besides, for every t > 0, the set By = {x € R" :
M, f(x) >t} is contained in |JQ> where Q ranges over Cycr, and we
have an estimate:

u(B) < ot [ i

Here C represents an absolute constant, possibly different at each occur-
rence.

1.2 NORM ESTIMATES FOR THE MAXIMAL
FUNCTION

Theorem 1.2.1. Let f be a measurable function on R™ and let t > 0. Then
we have the following estimates for the Lebesgue measure of the set By = {x €
R™: Mf(x)>t}:

C

(2.2) |Ey < —

3 7 (a)ld
{zeR™|f(z)|>t/2}

/
(2.3) |Ey| > ¢

- F(a)ld
{zeR™:|f(z)|>t}

with constants C and C’ which do not depend on f ort.

Proof. Write f = f1 + fa, where fi(x) = f(x) if |f(x)| > t/2, and fi(z) =0
otherwise. Then M f(z) < M fi(x)+ M fa(x) < M fi(x)+1t/2, since |fa| < t/2
implies that M fo < t/2 also. Thus

Bl < Ko R MA@ > /2 < T [ @)

C
- f@)dz
{zeR™:[f(2)|>t/2}

which gives (2.2)

14
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As for (2.3), we may assume that f € L'(R") (otherwise we truncate and
apply a limiting process). Then we use the Calderon-Zygmund decomposition
for f and t, so we have non overlapping cubes @)}, such that

1
t< — |f(z)|dz < 2"t
Q] Jo,

for every j, and |f(z)| <t for a.e. x ¢ U;Q;. Now, since z € (); implies that
M f(x) > t, we can write:

1 1
B> Qi > - / f@)ldr > - F(@)|de
Zj: T2 tZ]: Q; 2 Jwl @)1>1)

so, for C" = 27" we get (2.3). O

The next result is proved in exactly the same way.

Theorem 1.2.2. Suppose p is a reqular positive Borel measure in R™ satis-
fying a 7doubling” condition like (1.13). Then, there are constants C,C" such
that, for any Borel function f and anyt > 0:

Cl
t Sl f (@) >t}
C

<< F@)dp(z)
{weR™:|f(z)|>t/2}

[f(@)dp(z) < p({z = My f(z) > t}) <

From theorem (1.2.1) we easily derive several norm estimates for the maxi-
mal function.

Theorem 1.2.3. For every p with 1 < p < oo, there is a constant C, > 0
such that, for every f € LP(R"):

([ rsera)” <o ([ wre)”

Proof. By Layer Cake representation we get:
| ts@yrde= [ o dpap > i -
n 0

15
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:/ool{x s Mf(x) > tl/p}|dt:p/ootp_1]{x s M f(z) > t}dt <
0

0

2/ ()|
<cp/ ﬁZ/ (z)|dxdt = Cp/‘</ ﬁ2a>u@mm
z:| f(x) |>t/2} 0
D— 1
_ o2 / f(2)|Pdz _c/ )Pz,
p—

In exact same way we obtain the following

Theorem 1.2.4. Let pu be a reqular positive Borel measure in R™ satisfying a
“doubling” condition like (1.13). Then, for each p with 1 < p < oo, there is a
constant C, > 0 such that for every f € LY (p):

We have seen that the operator M is bounded in LP(R"™) for 1 < p < oo
(since M f(z) < ||f|lso for every x). However, is not bounded in L*(R").

Theorem 1.2.5. Let f be integrable function supported in a ball B C R™.
Then M f is integrable over B if and only if :

(2.8) / (@) llog™ | f(2)|dz < .
B
Proof. 1f (2.8) holds, then

/Mf(x)da:—/oo|{a;€B:Mf(a:)>t}]dt—2/oo]{x€B:Mf(w)>2t}\dt
B 0 0

1 o]
<2 (/ |B|dt+/ |E2t|dt>
0 1

and using (2.2), we get

]
< 2|B| + C/ / )| dadt =
z: |f<w)|>t}

|f (@)
2\B|—|—C/Rnf(a:)]/l dtdat—2|B]+C/ z)|log™|f(x)|dz.

16
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observe that for this part of the proof we do not need to use the fact that f is
supported in B. Indeed, the same proof shows that if [, |f(z)[log™|f(z)|dz <
00, which we shall indicate by saying that f € LlogL(R™), then M f is locally
integrable.

Going back to the proof of the theorem, suppose that fB Mf(x)dx < oc.
If we denote by B’ the ball concentric with B but with radius 3/2 as big, we
can easily see that [, M f(z)dx < oo and that is because there is a constant
C > 0 such that for z € B'\B we get M f(x) < CM f(z*) where z* is the
point symmetric to x with respect to the boundary of B. Lets prove that:

Let x € B'\B and let @ be a cube containing x in its interior such that
ﬁ fQ |f(y)|dy > 0 (so |Q N B| > 0). Let d = d(x,0B). It is obvious that the

side length of @ is bigger than d. Let now y = JE) N 0B. We can see that
d(y,Q) <d.

( Let us note that the shape above stands for B’ with radius twice as big
compered with the one of B, but the proof is still valid.) Thus, y is in Q" = 3Q
and now z* is in Q" = 3Q" = 9Q, so for C' = 9" we get that

1 1 on *
@/Q!f(y)!dys M/@ﬁ\f(y)\dy— m/@ﬁ!f(yﬂdyg(j]\/[f(x)

Mf(z) < CMf(z")

17
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Now

M f(z)dx = Mf(:):)dx—i—/ Mf(z)de =1, + I»
B B'\B B

where I < oo and for I; we have
I = Mf(x)dx = / M f(x)dx

B\B g(b)

where g : b — B\ B with g(y) = 2r¥:
is the radius of B), so

o — Y and b={x € B: |z|| >r/2} (x

nee | s @ = [ Mg
9
we can easily see that |Jg| is bounded in b so:
I < CK [ M)y < CK [ M)y < oo
b B

We conclude that f B M f(z)dz < oo where B" is a ball with radius as big as
we want. Now we see that

1 1
ol /Q f@)lde < 1l

thus, M f(z) — 0 as ||z|| — oo, so, for any fixed t, > 0, we get that
{r:Mf(z)>t,} CB

for some ball B and thus, f{m:Mf(m)>to} M f(z)dr < oco. Now for t, = 1 and
using theorem (1.2.1), we get

/1 |{Mf>t}|dt>/ C'/{|f>t} )| dadt = / \/f fdtdx

1

=5 [ f@liog I f@ldz (€' =1/27)
-

/OO {MF > 1)|dt :/ M f(2)dz
1 {Mf>1}

which is < oo as we said before, so (2.8) holds and the proof is complete. [J

18
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The theorem extends clearly to M, for a measure p satisfying a doubling
condition. There is no need to write a new statement.

Suppose now that we have two measure spaces with respective measures p
and v , and that T is an operator bounded from LP(u) to L%(v), that is:

eo (f rTf\qdu)l/q <c([imra) "

v({a : |Tf(2)| > t}) < /{ vy (TT@I 0

1 ol p/q
<o [irsear< S ( [1svan)

i\
(210)  v({z: |Tf(@)| > 1)) < (W)

Then,

and we obtain

When T satisfies (2.10) we say that the operator T is of weak type (p,q) with
respect to the pair of measures (v, ). For example (1.8) is read by saying that
M is of weak type (1,1)(with respect to the Lebesgue measure). However, we
know that M fails to be bounded in L' (see proposition 3.0.1 in appendix).
In general, (2.10) may hold whereas (2.9) does not hold for a given operator
T. Tt is convenient to see (2.10) as a substitute or a weakening of (2.9). With
this in mind, when (2.9) holds, we say that 7" is of strong type (p,q) with
respect to the pair of measures (v, u). Sometimes it is convenient to indicate
that (2.10) holds by saying that 7" sends LP(u) boundedly into Li(v) (called
weak-L1(v)).

Weak type inequalities such as (2.10) can be used to obtain strong type
inequalities. This is what we have done to prove theorem (1.2.3). We are
going to present a result, which is a particular case of the Marcinkiewicz
interpolation theorem and is based upon the same idea as our proof of (1.2.3).

Theorem 1.2.6. Suppose we have two measure spaces with respective mea-
sures p and v. Let T be an operator sending functions in LPo(u) + LP*(u) to
v - measurable functions,1 < p, < p1 < 0o. Suppose that :

19
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1. T is subadditive, that is, for fi, fo € L¥o(u) 4 LP' (),

T(fr+ f2) (@) < T fi(@)] + [T fo(z)|, v — ae.

2. T is of weak type (po,po),that is:

Co [ |fIPodp

v({z : [Tf(x)] > t}) < tPo

with C, independent of f € LP°(u) and t > 0.

3. T is of weak type (p1,p1) which means the same as above if p; < o0,
while if p1 = oo, weak type and strong type coincide by definition:

1T fll ooy < Cullfll oo u)

Then, for every p such that p, < p < p1, T is of strong type (p,p),
that is :[ [T fPd(v) < Cp [ |fPd(p).

Proof. Fix p with p, < p < p; and let f € LP(u) C Lo (u) + LP1(u).For every

t > 0 write f(z) = ft(x)+ fi(x) where f(x) = f(x)if |f(z)] >t and fi(z) =0
otherwise. Clearly f! € LPe(u), and that is because:

(e 1
Jutpman= [r-erian< Gh [itpan <o
and since |fi(x)| <t we get also

/|ft|p1dH:/|ft|p+(p1_p)dﬂStm_p/’ft|pdﬂ< 50

Suppose now p; < oo. Then, since |T'f(z)| < |T(f')(z)| + |T(f:)(x)], we can
write:

v(z  [Tf(2)| > t) <v(e: [T(f) (@) > t/2) + v(IT(fo)(2)] > /2) <

< Co [|ffPdp  Cy [ |filPrdp
o (t/2)pe (t/2)p

Thus -
/|Tfypdy :p/ (T f > t)dt <
0
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§p2p"00/ tp_p"_l/ |f(z)[Pedp(x)dt
0 [fI>t

+mmx/tww{/ F(@)P du)dt =
0 [fI<t

|f(x)]
=mwz/mmw/ v dtdp(z)
0

e / ()P / 121 ()
7@

_ p2eC, » p2P1CY ) B ,
P Do /'f(”r)' W)+ T /"f(%)| dp(w) = Cp/|f(w)| dp()

For the case p; = 0o we just have to observe (as we will see in the end of this
proof), that
v(ITf] > t) < v(IT(f*)| > t/2) (1)

where a = 1/2C7 where C] = Cy + € and, consequently
o0
0

[1rs@pava) = [ ﬁlwu7:>mﬁSpAww1%uw%>tQMng

<p fye G [ 1 @) Podp() dt =
= p2p°Co/ tPPo—l / |f(x)|Pedp(z)dt =
0 |fI>at
= Cop2?e [ |f(x)|Pe [i/ OV roatap(z) =

=G, [ 11@)Pdu(z)
Lets prove (I): We already know that

T =1T(f" + fa)| < T+ T (far)l

Let now ¢t > 0 such that
v({|Tf| >t}) > 0.

If we had
v({|Tfu] >t/2}) >0
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then, from the definition of L*°(v) norm, we would have

t
ST fatll) < Cillfatlloewy < Cill fatll o) < Crat = 5

DN |

which is not valid, thus
v({[T far > t/2[}) = 0
which implies that
v(ITf] > 8) <v(IT(f*)] > t/2)

and the proof is complete

O]

Next we shall establish a general inequality for the maximal function.This
inequality involves a weight function ¢(z).

Theorem 1.2.7. For every p with 1 < p < oo there is a constant C,, such that
for any measurable functions on R™, ¢ >0 and f, we have the inequality

(2.13) / (M [ (2)Pé(z)dz < C, / )P (M) (x)dx

Proof. Except when M¢(z) = oo a.e in which (2.13) holds trivially, M ¢ is the
density of a positive measure p ( just define u(A) = [, Mo(x)dA(x) where A
is the Lebesgue measure and then du(x) = M¢(z)dx ) and in the same way
¢ is the density of another positive measure v (dv(z) = ¢(x)dx), consequently
by this observation (2.13) means that M is bounded operator from LP(u) to
LP(v). Now if p = oo then clearly M is bounded from L*(u) to L*(v),
indeed if M¢(x) = 0 for some x then ¢(z) = 0 a.e and so (2.13) holds, now if
M¢(z) > 0 for every x and || f|| o (,) < a for some a (because if || f || g0 ()= o0
then (2.13) holds again), we get that:

/ M(a)de = / dyu(x) = p(|f] > @) = 0
{lf|>a} {If|>a}

and consequently |{|f| > a}| = 0 or, what is the same |f(z)] < a a.e
from which we get that M f(z) < a a.e.Thus || Mf [few)< a. So we
have shown that if || f ||gec(< @ then || M f |[f@)< a which means that
| Mf |lpoe )< f [lzee “)(We Can choose a =|| f || 1o u) + ¢ and then e — 0).
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Having the (00, 00) result, if we are able to show that M is of weak type (1,1)
with respect to the pair of measures (v, 1), the previous theorem (interpola-
tion) will give (2.13).Thus, all we need to show is that :

V({Mf > t}) = /{ ba)dz <

< [ ir@lnt) = ¢

Rn t Rn

[f(@)[(M¢)(x)dx  (2.14)

We can obviously assume that f > 0 and we can also assume that f € L'(R").
Indeed, we can find integrable functions f; such that f; < fo < ... 7 f a.e.
and observe that

{z: Mf(x) >t} = U{x M f;(x) > t}

So, let f € LY(R™) and f > 0. Given ¢t > 0, we know that there is a family of
non-overlapping cubes {@Q;} such that, for each j :

t 1 t .
<y o (@< O
and also
{e: Mf@) >ty < @/
J
Then

519
d dx
Joupoy e <5 [ oo =310 JRC

. 3nqn B
@33\@]\/ e dx<Z‘Q?,t/ij<x>da: RELS

For the last inequality we used (7).

34" 1
= t;/j <|Q§’| /Q? ¢(y)dy> f(x)dr = a

1
Q51 Jas

But
o(y)dy < Mo(y)
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for every y € @; and so we get

05X [ s@moan < 55 [ o =
g 8
C C
= smswyir =S [ f@)n()
RTL RTL

The theorem we just proved identifies a whole class of weight functions ¢ for
which the operator M is bounded in LP(¢) for every p € (1, 00| and of weak
type (1,1) with respect to ¢, namely, then class, customarily denoted by 4; ,
of those ¢ > 0 satisfying M¢(x) < C¢(x) a.e for some constant C.

O]

There is an interesting extension of the previous theorem whose proof is
but a repetition of the arguments which led to 1.6, 2.5 and 2.12. In order to
present this result we make several definitions:

Given a function f in R", we define a function M f in Rﬁ“ ={(x,t) : x €
R™ t > 0} by setting

Mf(x,t):sup{@/Q|f(y)|dy:;1:€Q and side length of QZt}

Given a positive Borel measure p in R7*!, we define a function N(u) in R*
by setting

— oup 1@
N(w)(@) = sup 75

where the sup is taken over all cubes Q containing x and for a cube Q
Q= {(z,1) € R 2 €@ and 0 <t <side lenght of Q},

that is,Q is the cube in RTFI having Q as a face. With the above definitions
we can state the following;:

Theorem 1.2.8. For every p with 1 < p < oo, there is a constant C,, such
that, for every f and every u:

2.16) ( /W{Mﬂ:c,t)}pdu(x,t)) Yo ([ 1swpNuma)
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Proof. Before we start the proof, let us note that this result includes the
previous one. We know that if v(A) = [, ¢(x)dx then dv(x) = ¢(x)dx and
v is a measure in R" let also & be the unit mass consertrated at the origin
in the ¢ axis (Dirac measure on 0 € R) which is a measure on R, then there
exist a unique measure y in R™*! such that pu(A x B) = v(A) x §(B) where
A € B(R") and B € B(R). We can see now that:

Mg(x)

W) Q). Q)
Niu(w) = sup =ap = sup oy 00, side lenght of Q]) = sup 747 =

also M f(x,0) = M f(z) and

1/p 1/p
( / {Mf<x7t>}pdu<x,t>) > ( / {Mf(x,o»f’du(x,t)) -
R =Rrx Ry Rmx {0}

1/p
= </ Mf(x)pdy(a:)d5($)> =
{0y Jrn

1/p 1/p
_ ( [ M) /{ ., 1d5(x)> _ < N Mf(x)pdu(x)>

so this observation combined with (2.16) gives (2.13).

Now we prove the theorem. As in the proof of the preceding result, if we
exclude the trivial case when Npu(x) = co a.e, we have in the same way that (
for the case p = 00) M is bounded operator from L>*(R"™, v) to LOO(R:LLH,/L)
where v is defined as before. So all we need to prove is that M is of weak type
(1,1) and then use interpolation (theorem(2.11)). So if we call E, = {(x,t) €
R M f(x,t) > a} we have to show that there is a constant C' such that
for every a > 0:

w(Ea) < [ 1f@lavtz) - ¢ /R 7(@) N () de

a a

Fix a > 0 and suppose that (x,t) € E,, then there is a cube R containing x
with side length R > t and such that:

,;‘/R\f(y)\dy >a
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Let now k be the only integer such that : 2= +Un < |R| < 2752 As in the
proof of theorem (1.6) there is some ) € Dy which meets the interior of R

and satisfies
alR| _ a|Q|

d> > —
[ iy > 40>

1 a
o1 L 1l > 5

It follows that Q@ C Q; € Cyy—n for some j and z € R C Q* C Q;’. On the
other hand ¢ < side length of R < side length of Q3 so that (z,t) € Q?. Thus

we have seen that:
FocUJas
J

so that

where  Cyy—n = {Q;}. Then

;1 Jo, 1 W)ldy

<Zu (@) <Y n(@) =2
J

(Q3) 3ngn
3y V= T3 | a1

For the 3rd inequality we used the definition of Ny .

In particular, if the measure p is such that:

(2.17) w@) < C|Q|

for every cube @ C R™ with C' independent of @, then Nu(z) < C and (2.16)
implies that f — Mf is an operator bounded from LP(R") to LP(R™, )
for every p with 1 < p < co. Actually, given any p with 1 < p < oo, (2.17)
is not only sufficient but also necessary for M to be bounded from LP(R™)
to LP(RTY, 1), Indeed, since M(Xg)(z,t) > 1 for every (z,t) € Q, the
boundedness of M implies that:

u(0) = /Q dn < /Q M(X) (. t)Pdu(x, 1) < Cl| X oz = CIQ)

26
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The importance of M stems from the fact that M f controls the Poisson inte-
gral of f, P(f), defined by:

P(f)(l‘a t) =Chp ntl f(y)dy

for x € R™ and t > 0, where

Indeed:
[P(f)(z,t)] <

t
<c, / )yt
—yl<t (Jo — y|? +12) "7

o0

t

o / | F()ldy <
! kZO 2kt<|y—z|<2k+1t (|x — y|? + 152)%1

1 ¢
Chn d - dy b <
= {tn Aﬁ-ylﬁt S+ kgo (2Ft)n /x—y|§2k+1t @)l y} =

1 > t
<G, / f(y)|dy + / fy)ldy ¢ =
{tn Q(m)! ()l kzzo@kt)nﬂ Q(mmt)\ ()|

2" o t(22)n+1
= Cn d JR S A— d
{(Qt)n /Q(th) |f(y)|dy + kzo (2F2g)ntl /Q(x,2k+2t) [f (W)l y}

(e e

<c, {2an<x,t> )M ()Y Qlt}

k=0

= O {2"M f(x,t) + A"M f(z,t) - 1} := OM f(z, 1)
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Actually, for f >0

t C
P l’,t :C n+1 l d y \@
D) =Cn | Sy 2 [y (@)

In particular if f = X¢ and (z,t) € Q, we get P(Xg)(x,t) > a, > 0, where
a, depends only on the dimension n , and that is because by (a) we get that:

Ch C,
Xo(y)dy > tn/ dy = —=—:=a,

Cn
PPt = o =

lz—y|<t

where @’ is a cube with side lenght equal to f And so for (z,t) € Q, we get
that ZXQEH > 4
Consequently, using the same argument that we used for M (M (Xq)(z,t) > 1)

shows that if the operator f — P(f) is bounded from L (R™) to LP(R", ),
then p satisfies (2.17). The measures u satisfying (2.17) are called Carleson
measures. We can state the following:

Theorem 1.2.9. Let p be a positive Borel measure on @ and let 1 <p <
o0o.Then f — P(f) is bounded operator from LP(R™) to Lp(@, w) if and
only if p is a Carleson measure, that is, if and only if (2.17) holds for some
constant C. L]

Observe that the condition obtained does not depend on p and is also equiv-
alent to the fact that f — P(f) sends L'(R") boundedly into LL(R", p).

1.3 THE SHARP MAXIMAL FUNCTION AND
THE SPACE OF BOUNDED MEAN OSCILA-
TION

For a real locally integrable function f in R"™, the sharp maximal function
f7# is defined at « € R™ by setting

#(z) = d
= 0 - sl
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where fg stands for the average of f over @, that is:

1
fo= 15 /Q f(a)da.

The sharp maximal operator f — f# is an analogue of the Hardy-Littlewood
maximal operator M, but it has certain advantages over it which we shall
presently see. Of course, f#(z) < 2M f(x). It is also clear that in the definition
of f#(z) one can take only those cubes @ containing  in its interior. Actually

(31)  f*(@)=supinf @ /Q F@) — aldy

reQ a€R

where = is used to indicate that each side is bounded by the other times an
absolute constant. It is clear that the right hand side of (3.1) is < f#(z). For
the opposite inequality we see that

1 1
m/Q!f(w) ~ foldx < m/Q!f(x) aldz+ |fg — ] <

< é' /Q F(z) — alda

for every a € R. It follows that f#(x) is bounded by twice the right hand side
of (3.1). We also note that:

(3.2) (/D)7 () < 2f* ()
Indeed by (3.1) we get that

79 < 2s0p int oo [ 17— aldy < 250 0 [ 1150 ~ ol <

z€Q ac

< 2sup22| /Q ) — foldy = 21# ().

If f is such that f# is bounded, we say that f is a function of bounded mean
oscillation, and we denote by the initials B.M.O. the space formed by these
functions. Thus

B.M.O.={f € L, .(R") : f# € L™}

We write B.M.O.(R™) when we need to specify the underlying space. For
f € B.M.O we write

L — s L B
51l = 157 = sup /Q (@) — folde.
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Of course we get after (3.1):

Sl <supinf o / (@) — aldz < | £

Thus, in order to be able to say that f € B.M.O., it suffices to make sure that
there exists C' < oo and, for each @), a constant ag such that

1
ol /Q (z) - agldz < C.

Then || f||« < 2C. This is the usual way to see that a certain f € B.M.O.

Clearly, f — || f]|« is a seminorm and || f||. = 0 if and only if f is constant.
It is natural to consider the quotient space of B.M.O. modulo constants, which
is a normed space and, actually a Banach space. This space of equivalence
classes modulo constants will also be called B.M.O. The ambiguity does not
cause any problem.

Of course L>® C B.M.O. (because ||f|l« < 2|/f|ls). However, there are
unbounded B.M.O. functions as we shall soon see. We shall give two results
which provide many examples of B.M.O functions.

Theorem 1.3.1. If w is an Ay weight, that is, if Mw(z) < Cw(z) a.e., then
logw is in B.M.O. with a norm depending only on the Ay constant for w i.e.
the smallest C' such that the above inequality is true.

Proof. Call logw = ¢, that is w = e®. We have for every cube Q

) dx < Cef®)
i

for a.e.x € Q) or, equivalently

(1/ e‘b(x)dx) -esssup(e @) < ¢
|Q’ Q T€Q

But ess supzeQ(e*qs(‘”)) = exp(—essinf,cq ¢(z)), and Jensen’s inequality im-
plies

\Q! / ) dy > exp(¢qQ)
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Thus, exp(¢g — essinfyeg ¢(z)) < C and consequently, ¢ satisfies, for some
other constant C' independent of ), the property

_ ; <
$g — ess ;IGlg(b(a?) <C

We express this by saying that ¢ is of bounded lower oscillation, and denote
by B.L.O. the class formed by all the functions of bounded lower oscilation.
Now, we see that B.L.O. C B.M.O. Indeed

6(2) — b0 < (6(x) — ess inf G(z) + (9 — ess inf o(x))
for almost every x. Averaging over () we obtain
7,
— o(x) — poldxr < 2(¢po — ess inf ¢(x)).
@1 190 — dalde < 2000 — ess nf 6(2)
and the inclusion B.L.O. C B.M.O. follows readily O

Observe that the class B.L.O. introduced above fails to be a vector space
even though it is stable under the sum and the product by a non negative
number. Actually B.L.O.N (—=B.L.0.) = L. Indeed, if both ¢ and —¢ are
in B.L.O., we have at the same time

¢pg —essinf ¢p(z) < C  and — ¢pg+esssupp(z) <C
zeQ z€Q

Adding up we get: esssup,eq ¢(v) — essinfyeq ¢(r) < 2C with C' indepen-
dent of the cube Q). This is only possible if ¢ is essentially bounded.

The previous theorem gives us B.M.O. functions from A; weights. We shall
presently see a nice way to produse A; weights by using the Hardy-Littlewood
maximal operator M.

Let © be a positive Borel measure on R”, finite on compact sets, and hence
regular. It makes sense to consider the maximal function

1
Mu(x)—sup/ dp
TEQ ’Q‘ Q

where the sup is taken over all cubes containing z. Exactly as in the case of
integrable functions, one obtains for measures the fundamental estimate

\{xeanMu<x>>t}|sf/ i

n
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with C' depending only on the dimension. We can state the following:

Theorem 1.3.2. Let u be a positive Borel measure such that Mu(x) < oo for
a.e. x € R", and let 0 < v < 1. Then the function w(x) = (Mu(zx))? is an
Ay weight with a constant depending only on v and the dimension n.

Proof. Let @ be a fixed cube, we shall see that
1/ w(z)dr < Cw(x)
@l Jg B

for a.e. x € Q with C independent of Q. Let Q = Q3, we write u = 1 + 1o
with p11 = Xp, the restriction of s to Q. Then Mu(z) < Mpi(x) + Mus(z)
and, since 0 < v < 1, also (M u(x))? < (Muy(z))Y + (Mpuz(x))?. Therefore, it
will be enough to see that the averages of (Mpi(x))” and (Mus(x))” over @
are both bounded by Cw(z) for any = €  with C' depending only on v and
the dimension. We carry out these two estimates separately:

L x x:i > v—1 o X " _
Q| /Q(M”l( ) |Q|/o Wz € Q: My () > t}|dt

“a(L )

(we split the integral by using an arbitrary R). Near to 0 we use the trivial
estimate for the distribution function, which is, clearly, < |@Q|. From R to oo
we use the weak type estimate

C

o e Q: M) > 1} < & (&) =

Thus
1

L v i Y > v—2 >
5 /Q (M) < |<\Q|R e /R 2020t 1]

Cy HM1||)
< 1 -7 R|Q|

Taking R = || [||Q|™" we get:

g Jymras < (T8)" (1+725) - (M(\%)ﬁny (1+:%5)
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= <H|(QQ!)> < C'w(w)

for every z € Q C Q.

Comment: What we have just done is to realize that every operator of weak
type (1,1) in a finite measure space, actually takes L' boundedly into LP, if
p < 1. This fact is known as Kolmogorov’s inequality.

Let us explain this comment before we continue with the proof : Let (X, u)

be a finite measure space and let 7' be an operator of weak type (1,1) (with
respect to p) then :

/X\Tfl”duz/ooow—lu({wﬂ > 1))dt = /OR+/:g

Since T is of weak type (1,1)
<RuX)+C [ arta gl =
R

CyRY1
1—7

= () + L)

=R'pu(X)+ 1l =

Thus, for R = || f||1 we get that

1/
(/ rTdeu) < 'Ifl
X

Lets continue with the proof:

To deal now with M s is even simpler. It is enough to see that, because of
the fact that uo lives far from @ (outside of Q), for any two points x,y € Q,
we have Mpug(z) < CMps(y), with C an absolute constant. Indeed if Q' is a
cube containing x and meeting R”\@, then Q C Q", so we get:

1 3™ 3™ n
|Q’\ /Q/ dpz = ’Q/3‘ /Q/ dpg < "Q/:;’ /62’3 dps <3 MMQ(Z/)
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which leads to Mug(z) < 3"Mus(y) for any =,y € Q. Thus

9l g Mg < 3" ()

1 Y 1lvl
ol /Q (Mreat)dy < 5

Q
Q
for every x € (Q and the proof is complete O

For example,take p = dp, the Dirac delta or unit mass at the origin in R”.
Then Mé(z) = ||z||5)* where ||z||oc = maz|z;| and that is because, in order
to have Md(z) > 0 for some z, we need to look at the cubes containing both

zero and x, and the smallest cubes which include those points is of side length
equal to ||z]|eo. Thus Md(x) = |z|~™ (because | | and | | are equivalent)

It follows that for any v with 0 <~ < 1, |z|™™ is an A; weight, or, in other
words |z|* is an A; weight for any a with —n < a < 0 and only for these a’s
actually, since w has to be locally integrable, let as explain this :

1
/ 1ad95:/ / 1adxdt:
B(0,1) |z| 0 JOB(0,t) 2]
1

L | 1
:/ a|OB(O,t)dt:/ Lt B(0, 1) dt =
ot ot

1

tTL—a

= alB(0, 1) |-

0

which is < oo if @ < n. However, our main concern here is the fact that log|z|
is an example of an unbounded B.M.O. function. Note that (we will see it
later) log % is actually in B.L.O. In general we have:

Corollary 1.3.1. 1. For any positive Borel measure pi such that Mu(x) <
oo for a.e. x € R™, log Mu(x) is a B.M.O. function with norm depend-
ing only on the dimension.

2. log |z| is in B.M.O.

Proof. 1t is clear from the definition of B.M.O. functions, that, f € B.M.O.
implies that ¢f € B.M.O. for any constant c.
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Since (|f))* < 2f#(x), we know that f € B.M.O. implies |f| € B.M.O.

Consequently B.M.O. is a lattice (if f,g € B.M.O., then the functions max(f, g) =

(If —gl+ f+g)/2 and min(f,g) = (f +9—|f —g|)/2 will also be in B.M.O.).
However, we may have |f| € B.M.O. without having f € B.M.O. For example
if :
0 for |z|>1
flx)=< —loglz|] if O<ax<l1
log|z| if —-1<z<0

It is clear that |f(z)| = maxz(log %,0) is in B.M.O. However, f is not in
B.M.O. Since f is odd and, consequently, has average 0 on every interval
[—a, a], we just need to observe that

1 /@ 1 [ 1
— |f(:v)|dx:/ log —dz =1 —loga — o0
0 X

2a J_, a

for a — 0.

There is an intimate relation between the operator f — f# and the Hardy-
Littlewood maximal operator M. It is contained in the following statement:

Theorem 1.3.3. If f is such that M f € LP° for some p, with 0 < p, < 00,
then for every p such that p, < p < 0o, we have:

/ (Mf(@)Pdz<C | ( [ (x))Pdx

R”

with C independent of f.

Proof. We may assume that f > 0 since M f = M(|f|) and (|f|)* < 2f%.

The proof is based upon the Calderon-Zygmund decomposition. First we
see that this decomposition can be carried our for oun function f. Let ¢ > 0
and suppose that () is a cube such that fg > t. Then, for every x in @

1
1< g1 L F0 < M5
and thus tPe < (M f(z))Pe so,
Po i Po i Po — g
T Q(Mf(fv)) dr < ] Rn(Mf(ﬂi)) da : ]
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It follows that if @1 € @2 C .... is an increasing family of dyadic cubes for

each of which is .

10l Jo. !

then the family is necessarily finite since |Qy| is bounded independently of k.
Thus, each dyadic cube @ satisfying fg > ¢ will be contained in a maximal
one. If {Q;} is the family consisting of these maximal dyadic cubes, for each
of them will be

(y)dy > t,

1
t< [ [fly)dy<2"t
Q| Jo,

In order to indicate the dependence on t, we shall denote this family by {Q;}.
For a.e. x ¢ U;Qy; is f(x) <t.

Observe that if ¢ < s, then each Qs ; is C Q1 for some k. Given ¢ > 0 we
fix Qo = Q2-n-1;, and take A > 0. There are two possibilities: either

Qo C{a: fF(2) > t/A} or Qo & {x: f#(x) > t/A}.
In the first case
> 1Qusl <z f# () > t/A}Y]
{7:Q¢,;CQo}

In the second case .

|Qo‘ Qo

(that is because there is x in @, such that f#(z) < t/A). Now taking into
account that fo, < 2m27"71t =1/2 we can write:

S -l Y o, - fe)l@ul =

|f(y) — fo.ldy <t/A

{7:Qt,;CQo} {7:Q1,;CQ0}
- ¥ / Uo) - fo)dy< Y / W) — fouldy <
{5:Qe,;CQ0} 7 @t (5:Q1,,CQo} T @t

< [ 15t~ fo,ly < 1%L

o

and so

2/Q,
> ieul< 2%
{3:Qt,;CQo}
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Let us note that the sum (:Q1.;CQo} has meaning because of the fact that
each @y ; is subset of some ) on+1 ) for some k due to the observation we
made earlier. Adding up now in all the possoble Q,’s, we get

> 1Qusl =

J

— Z |Qr5]+

{3:Q1,;CQp—n—1, for some k and Quy—n—1 ,C{z:f#(x)>t/A}}

+ > Q1] <

{3:Q1,jCQp—n—1, for some k and Quy—n—1 ,Z{z:f#(x)>t/A}}

and by (I) and because of the fact that @);; are non overlapping, we get
2
<[z fF @) > t/AH+ ) 1 |Qr2n-1 4]
k

Call
alt) =) |Qul
J

and
pt) =z : Mf(x) > t}]
We know that a(t) < B(t), and using theorem (1.1.2) we get

BE) <Y 1Q w1 = 3" 1Quan 4| = Cra(t/Cy)
J J
where C] = 3" and Cy = 4". In terms of a we have got the following inequality:

alt) < {z: f7(x) > t/AY + 247 (27 1) (1)

Now, for N > 0 we consider

N N N P
IN:/ ptp—la(t)dtg/ ptp—lﬁ(t)dt:/ p2tPPotPo=l B(1)dt <
0 0 0

o

N o)
< p(po)~ NP /O pot? "L B(8)dt < plpo)~ NP /0 pot? LB (t)dt =
- p(pg)lep"/ (M f(z))Podx < oo

n
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since we are assuming that M f € LPe. Also, using (/1) we get:

N N
Iy < / ptP Wz f#(z) > t/A}|dt + jl/ ptPLa(t/2" ) dt =
0 0

we set t/2"F! = y in the second integral an we get

N 9 N/2ntl
= / ptP s fF(x) > t/A}|dt + 22”“2("“)@_1) / ptPLa(t)dt
0 0

N c [y
= [ @ s Ay [ e
0 0

from which:

N
Iy < / ptP~ Wz f#(2) > t/A}|dt + %IN
0

with C' depending only on n and p. Take now A = 2C and obtain:
N
In < 2/ ptP s f#(2) > t/AY|dt.
0
Letting N — oo, we arrive at
/ ptPta(t)dt < 2/ ptP Yz f#(x) > t/A}|dt  (I11)
0 0
and then

| ar@ya= [ LBt < Oy / " Lt/ Co)dt =

010205‘1/ ptPLa(t)dt ::C/ ptPLa(t)dt <
0 0

and using (I11) we get
o0
< 20/ ptP H{z : f7(2) > t/A}|dt := C/ (f#(z))Pda
0 R™
and the proof is complete O
We have seen that the maximal function M f and f# are closely related.

We have the trivial pointwise estimate f#(z) < 2M f(z), but we also have an
estimate going in the opposite direction, this time an LP estimate.
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Theorem 1.3.4. Let T' be a linear operator bounded in LP° for some p, with
1 < p, < 00. Assume also that T carries L™ to B.M.O. boundedly. Then, for
every p with p, < p < oo, T is bounded in LP.

Proof. We consider the operator f — (T'f)#, which is a sublinear operator
(subadditive), bounded in LP°, and that is because:

(T f)# (| < 2|M(Tf)]| Lro

also (T'f) € LPe for f € LP°, so there is a constant Cp, (from theorem (1.2.3))
such that:
2 M(Tf)Lro < 2Cp, 1T fllLro < 2Cp,C|| ] Lro

where C’ comes from the boundness of 7. Thus :
(T £)#||Lro < 2CR,C' || fllLro := C||f| Lro

Also this operator is bounded in L>: for every f € L, we have, |[(Tf)% s =
ITflls« < C|flloo-(where || - ||« is by definition, the norm in the B.M.O. space).
With other words, the new operator is of strong type (po,p,) and (oo, 00),
consequently, is of weak type (po,po) and (oo, 00). By Marcinkiewicz’s inter-
polation theorem, it will also be bounded in L (of strong type (p, p) ) for every
p > po. Let f € LPNLPo. Then Tf € LP° (because T is bounded in LP°), and
consequently M (T f) € LPe (since p, > 1 and we know that M is of strong
type (p,p) for p > 1). On the other hand (T f)# € LP and

Jwnty<c [
The preceding theorem gives:
Jowepy <e [(anty<ce [

Thus (since M f > f a.e.), we get that

TP <C'C [ IfIP=C [ |fI
Jusrseefur=c|

and this inequality extends to every f € LP because of the fact that the set S
of all simple functions with finite support is dense in LP for 1 < p < oo and
clearly S c L9 for all ¢ > 0, so we can conclude that L” N L9 is dense in LP
simply because S is dense in L and S C LP N LY. O
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The most important result regarding B.M.O. is the following theorem of F.
John and L. Nirenberg.

Theorem 1.3.5. There exist constants C1,Cy depending only on the dimen-
sion n, such that for every f € B.M.O. = B.M.O.(R"), every cube Q and
every t > 0:

(3.5) {z € Q:|f(z) — fol > t}] < Cre (/I

Q

Proof. It is again an application of the Calderon-Zygmund decomposition.
Observe, first of all, that we can assume ||f||. = 1, because the inequality
(3.5) does not change if we replace f by a constant times it. Fix @ and take
a > 1. We know that

1
/ |f(z) — foldz <1 < a.
1Ql Jg
We make the C-Z decomposition of @ for the function f — fg relative to «,
obtaining cubes @1 ; (dyadic subcubes of @) for each of which:
1
Q] Jau,
Besides, for a.e.x ¢ (J; Q1,5 is [f(z) — fo| < a. So by (I) we get:

a< |f(z) — foldz < 2" (I)

< 2"«

1
|fQ1,j_fQ|: Ivam (f(y)_fQ)dy
’QLJ‘ Q1,5

Also: 1
; |Q1,5] < 0‘;/621,]- |f(z) = foldr <

1 Q|
< = — foldx < — I
<o [ 1@ falr < T )
We make now the Calderon-Zygmund decomposition on each @ ; for the

function f — fq, ; relative to a. Thus we obtain for each j, a family {Q1}x
of dyadic subcubes of @ ; for each of which, (like earlier):

’le,j,k - le,j’ <2

and also for a.e. x € Q1;\(UrQ1,jx) is [f(z) — fo, ;| < a. Also with the same
way we got (I1), we have:

1
< = .
> a|Q17J

> Q1
k
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Now we put together all the families {Q1 ; x }r corresponding to different @1 ;’s
and call the resulting family {Q2 1 }r =: {Q1,%}; k- Then, outside of the union
of the Q2 1’s, we have:

|f(z) = fol < 1f(x) = fou;l +1fa, — fol <
<a+2"a<2 2"

and also
1 1\?2
SEAESHWEHES W LHE (3) e

Subsequently, we obtain for each natural number N, a family on non overlap-
ping cubes {Qn;}; in such a way that outside of their union is |f(z) — fgo| <
N - 2™« and such that:

> RNl <a M@l
J

Now if N -2"a<t<(N+1)-2"a with N =1,2,...., then
{ze:1f(w) = fol >t} c (JQw, | uA
J

where |A| = 0, and that is because, for a.e.x € Q"\(U;Qn,;), we have:
[f(z) — fol < N2"a

where @’ is some subcube of @ produced in the N — 1 step of the process, so
we get:

oz € Q:|f(@) — fol >t} <D 1Qnyl +141 =3 1Qn,l <
J J

N
< (1> Q] = e VosayQ)

(07

But
—2"a(N+1) < -t < —-N2"a = —2"a(N +1)Nloga < —tN log«

—N1
2By — Ot

— —N1 2 08a .
%8S Jna(N + 1)
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so we get:

{z € Q:1f(z) — fol >t} < e™“¥|Q) (I11)

which is (3.5) since ||f||« = 1. On the other hand, if ¢ < 2"«, then Cayt <
(92"« and we use the trivial majorization

{z € Q:|f(x) — fol > t}] <|Q| < ("= N|Q| =
— 6022”(1670215‘6”

we can also (since Co2"a > 0, so e~ 2t < ¢C22"@e=C2t) bring (I11) into the
same form as above. Thus, we get (3.5) for every ¢ by choosing Cs as above
and C; = €“22"®, Finally, a can be chosen in order to get an optimal value of
the constant Cy (o = e). O

Corollary 1.3.2. If f € B.M.O. then:

1. For every p with 0 < p < oo:

Flop=sup (L [ ] rar)” <oyl
u !*,p—sgp<@|/Qf(x) fa x) < Gyl fll

with C)p independent of f, in such a way that, for1 <p < oo, f — || fll«p
is a norm equivalent to f — || f||« on B.M.O.

2. For every X\ such that 0 < X\ < Cy/||f||«, where Cy is the same constant
appearing in (3.5), we have:

1
sup —— / M@ =fal g < oo
o 1QlJg

Proof. [, |f(x) = folPdz = [ ptr~ [{z € Q : | f(x) — fo| > t}|dt <
< / T prleCa/ ISt gy
0

After a change of variables (H?ﬁ*t = s) we get:

p o0
/Q|f($)—fQ|pde§C1p<Hé!*> /0 sPle8ds =

= ()G P f1IE = CRIFIE
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which gives (1) with C), = (C1pI'(p)C5 7)'/7.

If 1 < p, using Holder’s inequality, we get

1/p
| 15@) = salds < ( / |f<x>—prdx) QY =
Q Q

L p
o = atae < ([ 1760 oar) il -

— (/Q |f(z) —fQ\pdx) 1/p’Q‘,1/p _ (a/Q F@) - nypdx> 1/p

Thus

FH@) < W fllep = 1l = 15 lloo < N fllep < Coll £l
so that the norms || - ||« and [ - ||+, are equivalent over B.M.O.

(2):
/Q Ol = [T o € Q: 1f(@) = ol > tat <
< /Oo AeMCye (©/ 1)t g Q| = Cl)\/oo eX=C2/If1)t gy Q| =
0 0
= CNCo/ [ fll =2 7HQ)

if 0 < XA < Ca/||fl+, and the proof is complete O
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CHAPTER

WEIGHTED NORM
INEQUALITIES

2.1 THE CONDITION A4,

By a weight on a given measure space, we shall always mean a measurable
function w with values in [0, co]. Our main problem is going to be the follow-
ing :

PROBLEM 1. Given p, 1 < p < o0, determine those weights w on R™ for
which the maximal operator M is of strong type (p,p) with respect to the
measure w(z)dx, that is, for which we have an inequality:

([ rsapruw) e (] |f(a:)|”w(:r)dm>1/p 1)

We can also pose this more general
PROBLEM 2. Given p, 1 < p < oo, determine those pairs of weights (u,w) on

R™, for which M is of strong type (p,p) with respect to the pair of measures
(u(x)dz, w(z)dz), that is, for which we have an inequality:

(/ n(Mf(m))%(x)dx)l/p <c([ |f(x)|pw(x)da:>1/p (12)

We can pose similar problems substituting weak type for strong type in the
two problems above. For example:

PROBLEM 3. Given p, 1 < p < oo determine those pairs of weights (u,w) on
R™, for which M is of weak type (p,p) with respect to the pair of measures
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(u(x)dz,w(z)dz), that is, for which we have the inequality:

u{z e R" : M f(z) > t}) < Ctp/n |f(z)Pw(x)dx  (1.3)

For a set E, u(E) stands for [, u(z)dz. This notation has been used in (1.3)
and it will be used systematically.

We shall keep the usual conventions for multiplication in [0, co], namely co-t =
t-co=occfor0<t<ooand 0-co=00-0=0. Also co ! =0 and 07! = o
when we consider w™! for a weight w.

Let us start by analyzing problem 3, Suppose that the pair of weights (u,w)
is such that (1.3) holds for a given p, 1 < p < oo, every function f and every
t > 0. Let f be a function > 0. Let @ be a cube such that the average
fo= ﬁ Jo f(a)dz > 0.

Observe that fo < M(fXg)(x) for every z € @ (sincefg = ﬁ
ﬁf@ [Xg(x)de < M(fXq)(z)). Then, for every ¢t with 0
QCE = {zeR": M(fXg)(z) > t} so that, by (1.3):

AS
-~ =
&8
QL
=
I

U Cct™P )Pw(x)dx
Q) < Ct 4ﬂ)()
It follows that: (let ¢ — fg)
MﬁM@sc/ﬂwwmm (1.4)
Q

We can actually write this inequality in seemingly stronger form. If S is a
measurable subset of @), we can replace f in (1.4) by fXg, obtaining

(g [1@as) w@ = [ swrotas s

Of course (1.5) is just equivalent to (1.4), but (1.5) is more readily applicable
sometimes. For f =1, (1.5) yields:

(IS1/1QNPu(Q) < Cw(S) (1.6)

From (1.6) we draw some relevant information about the pair (u,w):
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a) w(x) > 0 for a.e. x € R™ (unless u(z) = 0 for a.e. = € R”, trivial
case which we shall exclude).
b) u is locally integrable (unless w(z) = oo for a.e. z € R™, again trivial case
which we shall also exclude).

Let as proof a) and b): If w(x) = 0 on a set S with |S| > 0, a set which
we could assume to be bounded, (1.6) would imply that u(Q) = 0 for every
cube @ containing S, and consequently u(z) = 0 for a.e. x € R™. Now if u is
not locally integrable, then u(Q) = oo for some cube @ and, consequently, for
any cube containing @), this implies that w(S) = oo for any set S C @ with
|S] > 0, which implies w(z) = oo for a.e.x € R™.

We are about to derive a necessary condition on the pair (u,w) for (1.3)
to hold for every f and ¢. If p =1, (1.6) can be written in the form:

1 1
M/Cgu(x)dx < C”S‘/Sw(ib‘)d% (1.7)

the inequality being valid for every cube @ and every set S C @ with |S| > 0.
Fix @ and let a > ess.ginf.(w), the essential infimum of w over @, which is
defined as the

inf{t >0:|{z € Q:w(x) <t} >0}

Then, the set S, = {z € Q : w(x) < a} has |S,| > 0 and (1.7) holds for
S = S, from which we get:
u(@)

—= < C(Ca.

Q]

Since this is true for every a > ess.inf.(w), we arrive finally at:
1 .
@‘/ u(z)dz < Cess.ginf.(w) < Cw(x) (1.8)
Q

for a.e.x € Q.
Observe that the fact that (1.8) holds for every @ is equivalent to :
M (u)(z) < Cw(x) (1.9)

for a.e.x € R™. Indeed, it is clear that (1.9) implies (1.8) for every cube Q.
Conversely if (1.8) holds for every @, let us show (1.9) holds, that is, the
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set {z € R" : M(u)(z) > Cw(x)} has measure equal to zero. If M(u)(x) >
Cw(z), it will be

1
@’/Qu(a:)da: > Cw(x) (1)

for some cube ) containing z, and we can assume that ) has vertices with
all coordinates rational, the cardinality of those cubes is at most Q™ which is
countable, so, we can denote all those cubes as {Q, }nexcn. Now, by (I) and
having in mind that (1.8) holds for every cube @, we can see that = belongs
to a subset Ng of @ with |[Ng| = 0. Thus we get:

{z e R": M(u)(z) > Cw(z)} C UnexNg,
and we get the equivalence between (1.8) and (1.9).

Condition (1.9) is known as condition A; for the pair (u,w). When it holds,
we also say that the pair (u,w) belongs to the class Aj, viewing A; as a col-
lection of pairs of weights (u,w). We often speak of the A; constant for the
pair (u, w) which is the smallest C for which (1.8), or equivalently (1.9), holds.

We have just seen that (u,w) € Aj is a necessary condition for M to be
of weak type (1,1) with respect to the pair (u,w). It is very satisfactory to
realize that this condition is actually sufficient. Indeed, let (u,w) € Aj, so
that (1.9) holds. Then, using the inequality (2.14) in chapter I, we get:

w({z €R™: Mf(z) > 1}) = /{ sy M <

< Ct_l/n ()| Mu(z)ds < Ct—l/ () () dv.

n

Now we shall treat the case 1 < p < co. We start by looking for a necessary
condition. So far we know that if M is of weak type (p,p) with respect to
(u,w), then (1.5) holds for every function f > 0, every cube @ and every
measurable set S C (). Let us choose f such that f(z) = f(z)Pw(z). This
gives f(z) = w(z)~Y®=1, A priori this function needs not to be locally
integrable. Fix a cube @ and take S = S; = {z € Q : w(x) > j~!} for
Jj = 1,2,.... On every S; our f is bounded, so that fsj f < oco. With our
choice for f, (1.5) gives:

P
(@ /S]- w(m)_l/(p_l)dx> u(Q) < C/S]- w(z) VP Ny =
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1 V-1, | “UQ) ~1/(p-1)
<IQ|/ v dm) Q =¢ |@/ o

or, since the integrals are finite,

@ (!Q\ / w(”_l/(p_l))pl =

Now S1 C Sp C ... and U321 S; = {z € Q : w(x) > 0}, whose complement
in @ has measure zero, as we previously observed (w > 0 a.e.). Thus, letting
J — oo, we get finally

\QI/ (yQ| / w(””)_l/(p_l))p_l <C (1.10)

We shall say that the pair (u,w) satisfies the condition A,, if and only if
there is a constant C' such that (1.10) holds for every cube (. The smallest
such constant will be called the A, constant for the pair (u,w). We have
proved that (u,w) € A, is necessary for M to be of weak type (p.p) with
respect to the pair (u,w). Observe that (u,w) € A, implies that both u and
w1/ (P=1) are locally integrable. Indeed if one of the integrals in (1.10) were
00, the same would happen for any cube containing @), and that would force
the other factor to be zero. This would imply either u(x) = 0 for a.e.x € R”
or w(z) = oo for a.e.x € R". Both trivial situations that have been excluded
beforehand. Another observation that has to be made is that the condition
Aq can be viewed as a limit case of the condition A, for p | 1. Indeed (1.8)
can be written as

\Q| / z)dz)ess.qsup.(w) < C (1.11)

while

/ T gyt ”wilHLl/(Pfl)(QJQﬁldx) -
|Q\

= [Jw ™ oo (@@ tdwimdp) = W Lo (@,dz) = lw™ | zoo(q)
as p — 1 where p(A) = [, Q| 'dx = % that is why we have

™ | poo (@@ Ldwrmdp) = 107 | 100 ()
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(1(A) > 0 if and only if |A| > 0).

Let us also explain the convergence above: Let

N
ess.sup(f)

then ess.sup(g) =1 and :

1/p 1/10
(/ |9!de) = (/ \glp+/ W’) >
Q {lg|>1—¢} {lg|<1—¢}

> ((1—e)Pu{lgl >1-e}) +0)'/P =
=1 —ea)u{lg >1-eP)¥? — (1 —¢)

as p — oo. On the other hand

1/p
(/ Iglp> <pu@VP —1<1+4e
Q

Thus ||g[|zr() — 1 as p — oo, which implies that

1f 1l Le () — ess.sup(f) = [ fll Lo ()

Thus (1.11) is the right companion for (1.10) when p = 1. Also note that
(u,w) € A; (that is (u,w) satisfy (1.9)) implies that u is locally integrable and
w™! is locally bounded.

Our task will be now to show that, exactly as in the case p = 1, when
1 < p < oo, (u,w) € Ay, is not only necessary, but also sufficient for M
to be of weak type (p,p) with respect to the pair (u,w). We have obtained
condition A, from (1.4). The first step will be to show that, conversely, if
(u,w) € Ap, then (1.4) holds for every f > 0 and every cube (). This is actu-
ally true for 1 <p < oo. If p=1 and (u,w) € A, we have, for every cube Q
and every f > 0:

o) o3
/f daz<0/f
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which is (1.4) for p = 1. If now 1 < p < oo and (u,w) € A,, we have, for every
cube @ and every f > 0, using Holder’s inequality with p and its conjugate
exponent pf = p/(p — 1),

p—1

< % /Q f<x>pw<x>)l/p- (@2 /Q w<x>—1/<p—1>dx) i

zﬁg)/(’?f(x)l’w(m)dx. (|Ql|/Qw(x)_1/(p_1)dgg>p_l

and using (1.10) we get
< C/ f(z)Pw(x)dx
Q

so that (1.4) holds. We have established the equivalence between (1.4) and
A,. Now, suppose that (1.4) holds for every cube @ and every f > 0. We
shall obtain (1.3) with a possibly bigger C. Of course, we have (1.5) for every
f >0, every cube @ and every set S C Q. Let f € LP(w). We can obviously
assume that f > 0. Observe that L} (w) C L} (R") as follows from (1.4)
using @ such that u(Q) > 0. Now we can also assume that f € LY(R").
Indeed, we can always write f = limy o0 fr where fr = f - Xgox) and if
now, we have (1.3) for every fi in place of f, passing to the limit we obtain
(1.3) for f. Thus, assuming f integrable, we want to estimate u(FE;) where
E,={z € R": M f(z) > t}. We use theorem (1.1.2) from chapter I, to write
E, C UjQ?, where the ();’s are non overlapping cubes for which

Thus

(fQ)Pu(@) <

t 1 t
<Tai o fle)de < = (a)

277,
u(Ey) SZ

j
and applying (1.5) with Q = Q? and S = @}, we get

1 P )
< c; (,Q, /Q j f(x)d:v> /Q Sy =

o1

Then,
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1 o )
= C; (3"\62]'\ 0. f(a:)da:) o f(@)Pw(z)dx <

and using (a) we get

< O34T Z f(@)Pw(z)de < C't7P [ f(z)Pw(z)dz.
i T e

where C" = C3"4™". We have a complete proof of the fact that the solution
to Problem 3 is precisely the class A, of pairs of weights. We can collect our
findings in the following

Theorem 2.1.1. Let u and w be weights on R™ and let 1 < p < co. Then,
the following conditions are equivalent:

1. M is of weak type (p,p) with respect to (u,w), that is:M takes LP(w) to
LE(u) boundedly or, in other words, there is a constant C such that for
every function f € L} (R™) and every t >0

loc

u{z e R": M f(z) > t}) < Ctp/ |f(z)[Pw(x)dx.

R

2. There is a constant C' such that for every function f > 0 in R™ and for
every cube Q)

(g7 | s@te) w@ < [ plaputoyas

3. (u,w) € Ay, that is, there is a constant C' such that for every cube QQ we
have, in case 1 < p < 00,

(@Lu(@dm) (@/Qw(w)”(p”dx)pl <C

and in case p =1,
1 -1
(= [ u(z)dx)ess.gsup.(w™ ") <C
1Ql Jo
Besides, the constant C appearing in 1), 2) and 3) are of the same order.
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Corollary 2.1.1. Let (u,w) € A,. Then, for every q with p < q < oo,
the mazimal operator M is bounded from Li(w) to Li(u), that is, there is a
constant C such that for every f € L}OC(R”):

/n |M f(x)|u(x)dx < C . | f ()| %w(x)da

Proof. We already know that M is of weak type (p,p) with respect to (u,w),
that is, M takes LP(w) boundedly to LY(u). We shall see presently that M is
also bounded from L*°(w) to L*(u). Lets prove that: Since

| M flloou = sup{a >0:u({z € R" : M f(z) >a}) >0}

let @ > 0 such that : u({x € R® : Mf(x) > a}) > 0, then, there exists
x € R": M f(x) > a, and so, there is cube @) containing = such that (we can
assume f > 0):

1
/ f(z)dz >a= f(x)>a for ae. z€Q =
Ql Jg
= |z eR": f(z) >a}| >0
and since w(z) > 0 for a.e. x € R", we get:
w({r € R () > a}) > 0= | foow > a
for each such a, which leads to:

1M flloo,u < [ flloow

so, indeed M is bounded from L*>(w) to L*°(u). Once we know that M is
bounded from LP(w) to L (u) and from L*(w) to L> (u), we use Marcinkiewicz
interpolation theorem to conclude that M is bounded from L%(w) to L9(u)
provided p < ¢ < oo. O

A particular instance of the previous corollary is the inequality
| vs@Putaas <, [ |fratuts
R" R
valid for 1 < p < oo, which appeared in chapter 1,(2.13). It is contained in our

corollary because (u, Mu) € A; and p > 1. The following theorem contains
some simple basic facts about the classes A,,.
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Theorem 2.1.2. 1. Let 1 <p<gq<oo. Then Ay C A, C Ay
2. Let1<p<oo,0<e<1and (u,w) € A,. Then (u°,w®) € Acpti—c.
3. Let 1 <p < oo. Then (u,w) € Ay if and only if
(w1 =1/ (1) ¢ Ay

where p’ is, as usual, the exponent conjugate to p, that is p' = p/(p—1).

Proof. 1) We just need to observe that

—1 -1
<|22|/ w(m)—l/(q_l)dx>q < <|22|/ w(ff)_l/(p_l)d‘r)p <
) Q

< ess.gsup.(w™t)

lets prove the first inequality (the second is obvious): Since (¢—1)/(p—1) > 1
we can use Jensen’s inequality getting

/ w(:c)—l/(q—l)d (= 1/(p=1) </ w(x)~ 1/ P=1)
—__ iz —__ o
Q Q) ~Jo Q|

-1 —1
(L612|/ w@)l/(ql)dx)q < (@/ w@)l/(pl)dx)p
Q Q

2) Forr =ep+1—¢, wehave r—1=¢(p—1). Then

@/Qu(x)ed:c <|22|/Q(w(:n)5)_1/(7"_1)dx>r_1 <

again we use, just for the first integral, the Jensen’s inequality for 1/e > 1 and

we get:
1 € 1 e(p—1)
R d = —l/(p—l)d > Ce
< (jg Jyree) (g fywor o) <

where C'is the A, constant for the pair (u,w). For the case p =1 we have

@/@u(m)fdx < (Lclg‘/Qu(av)d:JOE =

= M(u®)(z) < (M(u)(z))” < (Cw(z))” = Cow(z)”
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Thus, (uf,w®) € A} = Ajcr1--

3) Suppose that (u,w) € A,. Thus:

1 o (g fwioe-van)” <

Since (p — 1)(p’ — 1) = 1, we can write the previous inequality as:

“dx / w(x) /P~ d:c) <C
|Q| Q[ Jg

=

Q Q

and we conclude that (w=Y/®=1 =1/P=1)) € A, Actually we see that
(u,w) € A, is equivalent to (w= Y/ P=1) 41/ (p=1)) € Ay O

EXAMPLE: We shall give here an example which shows that corollary
2.1.1. can not be improved so as to include also the case ¢ = p. We shall
give weights u,w such that (u, w) € A, and, however, M is not bounded from
LP(w) to LP(u). If p = 1, we just need to take u = w = 1 because we know
that M is not bounded in L'(R") = L' (u) = L'(w). We already know that if
g > 0 is integrable and is not 0 at a.e. x, then Mg is never integrable (see the
remark after theorem 1.2.4. in chapter I). This same fact leads to an example
for p > 1. Let g > 0, integrable and non trivial, in such a way that Mg ¢ L.
Take g bounded so that you can guarantee that Mg(z) is always finite. Then
(9,Mg) € Ay C Ay, and hence (from the previous theorem 3),

(Mg) M/ #1, g7 VW=D) = (Mg)' 7,9 7) € 4,

If we take u = (Mg)'™? and w = ¢'7P, we have a pair (u,w) € A, for which
the inequality

/ M f(2)Pu(z)dz < C / (@) Poo(z)de

can not hold, since for f = g we have : [|MfPu = [Mg = oo and
J1f[Pw = [ g < o0.

In this way, we have seen that the condition (u,w) € A, does not solve prob-

lem 2. It is though, necessary conditions for (1.2) to hold, since (1.2) implies
(1.3) which implies the condition A4, i.e. (1.10). However, it is not sufficient.
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2.2 THE REVERSE HOLDER’S INEQUALITY
& THE CONDITION A,

The theory developed in section 1 becomes particularly interesting for the
case u = w. First of all, theorem 2.1.1. reads as follows in this situation:

Theorem 2.2.1. Let w be a weight on R, and le 1 < p < oco. Then, the
following conditions are equivalent:

1. M s of weak type (p,p) with respect to w, i.e.

w{zx eR" : M f(x) >t}) < Ct_p/ |f(x)|Pw(x)dx

Rn

2. There is a constant C such that, for every function f > 0 and for every
cube Q

(fo)Puw(Q) < C /Q f(@)Pw(z)dz

3. (w,w) € Ay, that is, in case 1 <p < o0

1l 1 ~1/p-1) )pl
|Q|/Q (x)dm(w‘/(gw(x) dx <C

for every cube Q, and, in case p =1, Mw(z) < Cw(x) a.e.
The constants C' appearing in 1), 2) and 3) are of the same order.

When w satisfies 3), we say that w satisfies the condition A,, and write
w € Ap. We also speak of the A, constant for w, with the natural meaning.
Notice that that the class A; is the same which appeared in chapter I.

We saw in the example we gave earlier, that a pair of weights (u,w) may
be in A, and yet M may not be bounded from LP(w) to LP(u). In contrast to
this situation, for p > 1, it suffices that w € A, for M to be bounded in LP(w).

This fact depends on a basic property enjoyed by the A, weights: the re-
verse Holder’s inequality (R.H.I.) appearing in the third lemma below. First

we present a couple of simple properties of the A, weights.

We start with an estimate for the w-measure of the dilated Q* of a cube

Q.
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Lemma 2.1. Let w be an Ay, weight in R™. Then, for every cube Q) and every
A>1
w(QY) < CA™w(Q)

where C' is of the same order as the A, constant for w.

Proof. In 2) of the previous theorem, take f = Xg with S C @, and @ a cube.
Then

(1S1/1QD)Fw(Q) < Cw(S) (1.1)
using (1.1) with @ in place of S and @Q* in place of Q we get:

w(Q) < CA"Pw(Q).
O

In particular the lemma implies that for an A, weight w, the measure g
given by du(z) = w(x)dx is a doubling measure.

Actually, what we have shown is that the second property in theorem 2.2.1.
implies that u is a doubling measure. Observe that the same property (prop-
erty 2) implies that

fo <M (w(lQ) /Q f(x)%(x)dx) "

for every cube (), which implies
Mf(x) < CYP (M (fP) ()" ae. =
= Mf(z) < CY? (M, (|fIP)(2))"/" a.e.

where the operator M, is the one introduced in the previous chapter. We
showed there that, for 4 doubling, M), is of weak type (1,1) with respect to
p. We can rely upon this fact to prove that 2) implies 1) in theorem 2.2.1.
Indeed

w{zr e R" : Mf(x) > t}) <w({x e R" : CM,(|f|P)(x) > tP}) =
=w({zx e R": M,(C|f|P)(z) > t'}) < C/C't_p/n |f(z)Pw(x)dx

where C” is the doubling constant, therefore 2) implies 1).

The next lemma is a comparison between the measure w(z)dx and Lebesgue
measure
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Lemma 2.2. Let w € Ay,. Then, for every positive a < 1, there exists f < 1
depending on a such that, whenever A is a measurable set contained in a cube
Q and satisfying |A| < a|Q)|, it follows that w(A) < fw(Q).

Proof. We start from (1.1) where, of course, it is always C' > 1 (set S=Q). If
we use in (1.1) S = Q\ A where |A| < a|Q|, we get :

(1 -a)Pw(@) < (1 -[A]/1Q) w(Q) =

p
_ <'QK\2‘|‘”> (@) < Cu(Q\A) = Cw(@Q) - w(4))
Thus

w(4) < C7HC ~ (1 - a)")w(Q) = fuw(Q)

We shall use the previous lemma to establish our basic inequality

Lemma 2.3. Let w € Ay,. Then, there exists € > 0, depending only on p and
on the A, constant for w, such that, for every cube Q

1/(1+e)
<@/¢2w(x)1+6dx> SC@/Qw(w)d:U

with a constant C' not depending on Q.

The opposite inequality holds, with C = 1, for every function w and is a
particular case of Holder’s inequality. This is why the lemma is called the
reverse Holder’s inequality (R.H.I.).

Proof. We shall fix cube () and we shall get the inequality with ¢ and C
independent of ). We take an increasing sequence A\, < A1 < ..... <A < .
with A, = wg = ﬁwi(a:)dx and, for each \;, we make the Calderdn-
Zygmund decomposition of @) for the function w and the value Ag; that is, we
consider those maximal dyadic subcubes of () over which the average of w is
> A\ ( the dyadic subcubes of @ are the cubes resulting from dividing each
side of @ in 2V equal parts N = 0,1,2,...). Let them be {Qrjtj=12,.. It
follows that, for each j is

1
|Ql€,j| Qk,j

Ap < WQ, w(z)dr < 2"\
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while for a.e. x not belonging to U;Q ; = Dy is w(x) < Ag. Since App1 > Ag,
each Q41 ; is contained in Qj; for some i, in such a way that Dy C Dj.
Let us see what portion of Q) ; can be covered by Dy1. We know that:

1

‘Qkﬂ| Qk,iNDypy1

/Qk+l N

2"\ > w(z)dr =

’Qk z| Qk+1 Qs
1 1
0.1 Z |Qr+1,5] - W w(z)dz >
" Qk41,jCQk i k+1.51 JQry1,5

>\k+1 |Qk,i N Dyy1]
> 1Qkrigl= )\k+1ﬁ
Qr+1,;CQk,i +1

Thus
|Qr,i N Diy1| 2"k

|Qrt1] Not1

Let as take this ratio equal to a < 1 (2 ’\’“ = a), that is A\ = 2"%a '\,

M = (27a71)*),. If we consider the 3 assomated to a according to the previous
lemma, we shall have

W(Qk,i N Dyy1) < pw(Qk.i)

and, summing over i, we get : w(Dg41) < Pw(Dy), which leads to w(Dy) <
Bkw(D,). Of course, we also have |Dy11| < a|Dy| ( see that |Qg; N Dgy1| <
alQg;|) and |Dy| < a¥|D,|, which implies that

| 020:0 Dk‘ = lim |Dk’ = 0.
k—o0

Then:
/ w(z) e de =
Q

:/ w(z) Tedr + Z/ w(z) Tede

Q\Do Di\Dgy1

= / w(z)w(z) dr + Z/ w(z)w(zr)*dr <
Q\Do k=0 Dk\Dk+1

k=0
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<A /Q\D w(x)dxr + Z )‘i+1/ w(z)dr =

k=0 Di\Dy11

Sw(@Q\Do) + 3 AL w(D\ D) <
k=0

and since w > 0

< Aw(Q\Do) + > A w(Dy) <
k=0

Q\D +Z My -1 k+1€)\€ﬁk ( )
k=0

= {w(Q\Do) +(2"a™h)° Z((Q”a_l)gﬂ)kw(l?o)}

k=0

If we take £ small enough to have (2"a~1)3 < 1, the series will have a finite
sum and we shall get :

/Q%)l*fdx < A{w(Q\Dy) + (2"a™") Chw(D,)} ==

= C"N5(w(Q\D,) + w(Dy)) = C"Aow(Q) = C"wpuw(Q)

1 1+ ", 1+ 1 e
— [ w fde < C"wie :=C /wxdw) .
al v v=c (g A

Lemma 3 has far reaching consequences which we shall presently see

Thus

Theorem 2.2.2. Let w € A, with 1 < p < 0o, then there is some q < p such
that w € Ay, that is, for every p, 1 < p < oo, we have

Ap — Uq<pAq .

Proof. Theorem 2.1.2. (3) for the special case v = w tells us that w € A,
implies w=/®-1 ¢ Ap. On the other hand, from lemma 3 for the weight
w1/ 1) we know that there exist ¢ > 0, C' > 0 such that, for every cube Q:

1 —asar-ngg) D < © =
— [ w(x) dx < — [ w(x) dx
QI Jo QI Jg
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But 11:? > Zﬁ implies zlii - qul for some 1 < ¢ < p. Then

@/@w(w)dm (@/@w(m)_l/(q_l)da:)q_l =

1 / (z)d ( 1 / ()~ (/-1 g >(p_1)/(1+6)
= — w(x)dr | — w(x)™ “Hdx <
Q[ Jo QI Jo

o (i) (3 o)

and since w € 4,
<cric'.=C

O]

Actually, since w itself satisfies a R.H.I., we obtain the following stronger
result.

Theorem 2.2.3. If w € A, with 1 < p < oo, then, there exists € > 0 such
that w'™e € A,.

Proof. If p =1, from lemma 3, there exists € > 0 such that:

1+e
@/Qw(x)lﬁd:c < (C@ Qw(x)dx> <

< (Ccl’w(x))l-l-e — Cw($)1+£

where C is the A; constant for the w € Ay, so, w'*® € A;. If now p > 1, it
suffices to take € > 0 small enough to have, at the same time

@/Qw(x)usdx < (C’1|Ql‘/Qw(ac)d;z:>1+5

and e
~(4e)/(p=D gy < (02 / A 1)d:c>
IQ!/ Q)
and then
1 1+ 1 101 g, )
— | w(x) "dx </ w(z) &)/p da:> <
Q1 Jg 1Ql Jo
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1+
L L 1) )pl
< <0102]Q| /Qw(:v)dm<|Q| /Qw(x) dx <

< Cll+5cél+€)(p—1)cl+6

where C is the A, constant for w. O

Of course theorem 2.2.3. combined with part 2 of theorem 2.1.2., gives the-
orem 2.2.2.

Now with the help of theorem 2.2.2.. we can improve theorem 2.2.1. as
anticipated, obtaining

Theorem 2.2.4. Let w be weight on R"™ and let 1 < p < oco. Then, the
following conditions are equivalent:

1. M is of weak type (p,p) with respect to w, that is, there is a constant C
such that for every function f € Li, (R™) and everyt >0

w({z € R : Mf(z) > t}) < C+P / 1 (2)[Po () d

Rn

2. There is a constant C such that for every function f > 0 in R™ and
every cube Q)

(22|/Qf(ac)d:c>pw(Q) SC/Qf(m)pw(QU)dx

3. w € A,, that is, there is a constant C' such that for every cube Q

1 1 —1/(p-1) )p_l
’Q‘/Qw(ac)d:cQQ‘/Qw(x) dx <C

4. M is bounded in LT (w), that is, there is a constant C' such that for every
feLP(w):

[ sy <o [ i@,

R

Proof. All that remains to be proved is that 3) implies 4). Here is the proof.
We have w € A,. Since 1 < p < oo, theorem 2.2.2. tells us that w € A, for
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some ¢ < p. Then M is of weak type (q,q) with respect to w and, since M
is also bounded in L*(w) = L (this inequality follows from the fact that
0 < w(z) < oo for a.e. x), the Marcinkiewicz interpolation theorem allows us
to conclude that M is bounded in LP(w). O

Also, the reverse Holder’s inequality allows us to give a more precise version
of lemma 2.

Theorem 2.2.5. Ifw € A, for some p € [1,00), then there exist § > 0, C > 0
such that, every time we have a measurable set A contained in a cube QQ, the
following inequality holds:

w(A) 141\’
w(@) =° (IQ) (2.10)

Proof. The key fact is that w satisfies an inequality like the one appearing in
lemma 3 for some £ > 0 (R.H.I.). We start by using Hélder’s inequality with
exponents 1+ ¢ and its conjugate (1+¢)/e, and then we apply the R.H.I.. We
get:

w(A):/w(x)dx:/XA(x)w(:v)dmg
A A
1/(1+4€) e/(14€)
< </ w(:n)1+€dx> (/ XA(IL‘)(1+6)/€dI‘> =
A A
1/(14¢)
_ (/ w(x)l-i-edx) ‘A‘a/(l-‘ra) _
A

1 1/(1+e)
(/ w(@lﬁdm) |Q1/1Fe) 4/ (Fe) <
Q[ Ja

C
~ d 1/(14¢) A 1/(14¢) —C <
<5 /Q w(@)de| QY0+ w(Q)

which is (2.10) with 6 = /(1 + ).

|A| e/(1+¢)
)

O]

Condition (2.10) is known as A, for reasons which will appear very soon.
We also speak of the class A, which is, naturally, the class formed by those
locally integrable weights w satisfying the A., condition.

For the next result, 1 and po are going to be doubling measures, that is,
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both satisfy a doubling condition like (1.13) in chapter I . For these measures,
we give the following definition:

Definition : puyp is comparable to ps when there exist a,8 < 1 such that,
every time we have a measurable subset A of a cube Q with ua(A4)/u2(Q) < a,
it follows that 1 (A)/pu1(Q) < 5.

With this definition we can write

Theorem 2.2.6. The following conditions are equivalent

1. There exist 6 > 0, C > 0 such that for every measurable set A contained

i a cube QQ 5
p2(A) p1(A)
12(Q) =C (m(@))

2. g is comparable to p

8. p1 is comparable to o

4. dus(z) = w(z)dp (z) with:

1 lte 1/(1+¢€) 1
<u1<Q>/Qw<‘”) @) <Oy | wdn @) < o0

for some € >0

Proof. 1) = 2) is clear. Indeed, if p1(A)/p1(Q) < a, it will be pa(A)/u2(Q) <
Ca’. Tt suffices to start with some a > 0 such that Ca® < 1 and we obtain ps
comparable to 1 with constants a and § = Ca®.

2) = 3). To say that pui(A)/pi(Q) < a implies pa(A)/pu2(Q) < 5 is equiva-
lent to saying that ps(A)/u2(Q) > [ implies that puq(A)/p1(Q) > a. Then if
p2(A)/pe(Q) < d, where o’ = (1 —5)/2 < 1— 3, we get

pa(A)/p2(Q) <1 =B = pa(Q) — pa(A) > Bua(Q) =

p2(Q\A)
M 7
which implies \
p1(Q\A)
m(@
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and consequently
f1(A)
1 (Q)
Thus, we have seen that u is comparable to ps with constants a’ = (1—3)/2
and 8/ =1 — a. It becomes clear that 2) and 3) are equivalent.

<1-—a.

Let us see now that 2) = 4). We start from the fact that us is compara-
ble to p1 with constants a and 5. We see, first of all, that uo is absolutely
continuous with respect to 1, that is : p1(E) = 0 = p2(E) = 0. Once this
is proved, the Radon-Nikodym theorem guarantees that dus(z) = w(x)du (z)
with w locally integrable with respect to u;. Let pi(E) = 0 and suppose that
p2(E) > 0. Since the measure is regular, there will be an open set € such
that Q D E and us(Q) < B ua(E). Let Q = U;Q; where the Qs are non
overlapping cubes. Since for each jis 0 = 11 (Q;NE) < api(Q;), we shall have
p2(Q;NE) < Bus(Q;) and, adding in j, we get : pa(E) < Buz(£2), which con-
tradicts the election of €. Let us note, that for this part of the proof we used
the fact that the faces or edges of the cubes have measure pg (or p; for that
matter) equal to 0. This follows easily from the doubling condition. Indeed,
if p is doubling, there is a constant K < 1 such that if @ is a cube and R is a
half of @, that is, if @ = [a1,b1] X [ag, b2] X ... X [an, by], the half of the @ (one
of the many half’s) is R = [a1, b1] X [ag,b2] X ... X [an, (an + by)/2], then (as
will be shown) u(R) < Ku(Q). Let’s prove that: let Q' be a dyadic subcube
of @ with side length equal the half the side length of ), and contiguous to
R.

Then: RcQ@®=
u(R) < C3p(Q") < C3u(Q\R) = C3(u(Q) — n(R)) =

HR)(1+C) < Cu(Q) = p(R) < - n(Q) = Kn(Q)
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Now if R is the half of R, with the same argument, we get that:
p(Ri) < Kp(R) < K2p(Q).

Viewing now,the face of @ as an intersection of the R;’s resulting from repeat-
edly dividing by 2 a side of @), we see that a face has p measure equal to zero
for u doubling. So, let

dpis() = w()dpu (z).

It remains to see that the inequality in 4) holds. All we have to do is to repeat
the proof of lemma 3 with p; in place of Lebesgue measure. Observe that in
the proof of lemma 3 we just used these two facts: w(x)dx is comparable to
Lebesgue measure and Lebesgue measure is doubling. These hypotheses still
hold for dus(x) = w(x)duy(x) and dug(z). Thus, we obtain the inequality in
4).

Finally we have to see that 4) implies 1). But this is done exactly as in
the proof of the previous theorem 2.2.5. O

Corollary 2.2.1. The comparability of measures ia an equivalence relation.

Proof. The equivalence between 2) and 3) in the previous theorem tells us that
comparability is a symmetric relation. Transitivity is proved very simply by
using the characterization given by 1) in theorem 2.2.6., lets see that: Let py
be comparable to pe and pe comparable to pz. First of all there exist a,b < 1

such that: 4) ()
M2 M1
12(Q) =0 m(Q)

we know also (previous theorem) that s is also comparable to po which implies
the existence of a’,b’ < 1 such that

<b

So, if
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we get that
p2(A) p1(A)
<a= <b
pe(Q) — m(Q) T
Thus, p is comparable to p3 with constants (a/C)"® and b O

Corollary 2.2.2. Let w(x) > 0 be locally integrable in R™. The following
conditions are equivalent

1. we A, for some p € [1,00)

2. There exist a,3 < 1 such that |E| < a|Q| implies w(E) < pw(Q) when-
ever F is measurable subset of the cube )

3. There exist € > 0 and C > 0 such that for every cube Q)

(i / w@+) " < | wies

4. w€ Ay

Proof. All the implications 1) = 2) = 3) = 4) have already been proved.
Observe that the proof of lemma 3 actually yields the fact that 2) = 3). It
only remains to see that 4) = 1). Let us see it. We know from theorem 2.2.6.
that w € Ay is equivalent to saying that the measures dr and w(z)dz are
comparable and, taking into account that

dus(x) =: de = w(z)  w(z)dr == w(z)  du (x)

Thus (11(Q) = w(Q)), the following R.H.I. must hold:

L w(z)”Fw(z)dx e L w(z) tw(z)de = M
(o fywtoroutne) ™ < oo [ wte tuterae = o

=

(Zl}(l@/Qw(x)—de> 1/(1+e) - Cw?g)

Hence, setting e = 1/(p—1) for some p > 1, we have that 1/(1+¢) = (p—1)/p
and the inequality above comes to the form
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1 / —1/(p-1) )p_l Q)
— [ w(z dx <CP—r =
(1@ fy w(Q)
1 p-l
wQ </ w(x)_l/(p_l)d:c> <CP:=C
Q[ Jo
which means that w € A4, O

Thus, we have shown that Ao = Ui<p<ooAp, which explains the name A
given to condition (2.10).

Actually, the name A is just perfect, since, as we shall presently show, A
coincides with the formal limit of condition A, as p tends to oo

im (L -0 ) "~ lim (- _
i (1 ey 0} = i o a1 =

— exp <L612| /Q log(w(z)_l)dm‘>

where the last identity is a simple exercise in measure theory.

Thus, the condition obtained by passing to the limit as p tends to oo in
condition A, is:

(@Lw(w)dx) exp <@/Cglog(w(x)_1)d$> <c

or, equivalently

@/Qw(m)dm < Cexp (@A)logw(x)dm) (2.14)

The exponential in the right hand side of (2.14) is the geometric mean of w
on @, which is, of course, dominated by the arithmetic mean wg (Jensen’s
inequality). Thus (2.14) implies that the arithmetic and the geometric means
of w on every cube, are equivalent. The equivalence between this condition
and A is contained in the following

Theorem 2.2.7. Let w > 0 be locally integrable in R™. Then, the following
conditions are equivalent:
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1. There exist a, B € (0,1) such that, for every cube Q:

{z € @:w(x) <awg}| < B|Q)

2. we Ay

3. There exists C, such that, for every cube Q:

|é’/Qw(aj)dangexp (@/q)logw(m)dm)

Proof. Suppose 1) holds. Let us prove 2). After the proof of theorem 2.2.6.,
especially from corollary 2.2.2 and 2.2.1., it will be enough to see that, for
appropriately chosen 7,6 € (0,1), the following property holds: If E is a
subset of a cube @ such that w(E)/w(Q) < 7, then |E|/|Q| < §. To prove
this property, assume w(FE)/w(Q) < 7, to be chosen later. Then we split
E = E1 U Es, where

Ei={zecEF:w(x)>awg} and Ey ={z € E:w(z) < awg}

For Es, 1) gives the estimate |Es| < §|Q|. For E; we use Chebichev’s inequal-
ity to get:

1 1
|Eh| < — | w(z)dr < / w(x)dr =
awg E1 awg JE

_ @l w(B)
a w(Q)

Adding up the two estimates, we have

-
< -Q|
a

Bl < (8+ D)0l

If we choose 7 so small that § + v/a < 1, we get what we wanted with
§=pB+(/a)

To see now that 2) implies 3) is quite easy. Indeed, if w € A, it follows
from corollary 2.2.2. that w € A, for some 1 < p < oo, which in turn, implies
that there is a constant C' such that

(i )y ) s
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But from the proof of theorem 2.1.2. 1), we can see that for every ¢ > p the
conditions A, holds with the A, constant C'. Thus. for every ¢ > p we have

(o) )2

Letting q tend to co we obtain 3).

Finally, assuming 3), we are going to see that 1) holds. Take a cube Q.
Dividing w by an appropriate constant (we can do that because it does not
affect us on what we want to prove), we can assume that fQ logw(x)dx < ¢
for € as close to zero as we want, so, without loss of generality we cam assume
that fQ logw(x)dz = 0 and, consequently, wg < C. Then, with A > 0 still
undetermined, we have:

o € Q:w(@) <A} =|{r e Q:log(l+w(z)™") > log(l + A7)} <

1 Mgy L 1w,
< oy o8 e e = oy [ o =
1
- T /Qlog(l + w(z))dz

since by assumption [, 0 log w(x)dx = 0. By using the simple inequality log(1+
w) < w and the hypothesis wg < C, we get:

1
Hre @ :w(z) <A} < 1@5(1—|-)\1)/Qw($)dx <

<Y
~ log(1+ A1)
if A\ is small enough. In particular

{z € Q:w(z) <awg}| < {z € @:w(x) < Ca}| < (1/2)|Q|

if a is small enough. We have obtained 1) with g = 1/2. O

1
Q| < §|Q’

In chapter I we gave examples of A; weights, namely those those functions
w of the form w(x) = (M, (x))” where p is a positive Borel measure such that
M, (xz) < oo for a.e. x € R" and 0 < v < 1. We used this result to show that
|z|* is an A; weight in R™ if and only if —n < a < 0.
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Starting with A; weights one can easily generate A, weights for 1 < p < 0.
Let wy, w1 € A7 in R, and let 1 < p < oo. Then w(x) = w,(z)w(z) 77 is an
A, weight. Indeed, since wy € Ay we have for every x € @ for some cube @,
that

@/le(x)dx < Mwl(x) < Cwl(x)

and since 1 — p < 0 we get that

wi@) Lo (@ /Q wl(m)dx>1_p =C (@ /Q wl(m)dz>1_p

using the same argument for w, we get:

p—1

(% / wnoyur(a) s ) (1 / (woliun(0)' 7 0V} <
el i) G o)
(i) i)

We shall show in the next section that every A, weight w is actually of the
form w(x) = w,(z)w(z)!7P for some w,, w1 € A; (factorization theorem).
For the time being, we shall content ourselves with giving examples of A,
weights. If —n < a < 0 and —n < 8 < 0, |2|*z|’0~P) is an A, weight in
R”™. Thus, for a = 0 we get that |z[?(=P) is an A, weight with —n < § <0,
which implies that |:c\5(p_1) is an A, weight, but now, with 0 < 8 < n. Hence,
|z|* is an A, weight in R™ if and only if —n < a < n(p — 1) since |z|* and
(Jz|*)~Y®=1) have to be locally integrable.

By using the R.H.I. we get a converse of theorem 1.3.2. in chapter I, giving
the following characterization of A; weights:

Theorem 2.2.8. Let w(z) be > 0 and finite a.e. Then, w € Ay if and only if
w(z) = k(z)(M f(z))”

where k(x) > 0 is such that k, k= € L™, fis locally integrable and 0 < v < 1.
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Proof. Theorem 1.3.2. of chapter I implies that every function of the given
form is an A; weight. Lets see this: Since k, k= € L>, there exist C;,C; > 0
such that C; < k(z) < Cy for a.e. x € R™. Thus:

Muw(x) < CoM((Mf(x))") < CoC(Mf(a)) <

< C'gckéx)(Mf(x))'y =C—=w(z) = Cw(x)
1

Conversely, let w € A;. We know that w satisfies a R.H.I. :
1 - 1/(1+4¢) 1
— [ w(x) €> <Ci= | w(z)dr < Cw(z) a.e.
<|Q| /Q QI Jg

Thus
w(z)' < (Muw(z))'e <

using Jensen’s inequality
< M(w't®)(z) =

= w(z) < (M(w'*)(@))/19) < Cw().

We can write now, w(z) = k(z)(M(w'+e)(z))Y/1+9) with ¢~ < k(z) < 1
and we obtain the representation required with f(z) = w(z)'™® and v =
1/(1+¢) O

There is a relation between weights and B.M.O. functions. We have already
seen in chapter I that the logarithm of an A; weight is a B.M.O. function. We
shall see presently that the same is true for any Ay, weight. Of course this
follows trivially after the factorization theorem, but a simple proof can be
given without appealing to that result which we have not proved yet. First of
all, we give a characterization of A, weights in terms of of their logarithms.

Theorem 2.2.9. 1. Let ¢ be a real locally integrable function on R™ and
let1 <p<oo. Thene? € Ay if and only if the following conditions are
satisfied:

(a) ﬁ fQ e@)=0Q)dr < O with C independent of the cube Q
(b) ﬁ fQ e~ (@@)=0Q)/ (=D dx < C', with C independent of the cube Q

2. For ¢ as in 1), e® € Ay if and only if (a) holds. Note that for p = oo,
condition (b) becomes empty, so that 2) is just an extension of 1) to
p=00
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3. It follows from 1) and 2) that w is in A, if and only if both w and
w VP gre in A.

Proof. Tt is clear the the two conditions (a) and (b) imply together that e? €

Ap, since
L[ @ (L [ om0,
— ewdx/expdac> =
a Lo (g e

—1
6¢Q*¢QL RICIP <1/(e¢(m))1/(p1)dx>p _
1Ql Jg @l Jq

_ 1 / 0@ ~60 gy <1 / e—(¢<x)—¢Q>/<p—1)dx>p
1Ql Jg QI Jg

Conversely, suppose that e? € Ap. Then

1/ €¢(w)—¢de:€—d>Qi @) dp —
QI Jg @l Jq

_ (ewg/(pfl))p‘l <1 / e¢><x>dx) <
Q| Jo N

using jensen’s inequality

1 =l
< < / e—qs(x)/(p—l)) < / e¢(x)dx> <C
1Ql Jg QI Jg
Also

1 / o~ (6@)—00)/(—1) g _ <1 / e—¢<w>/<P—1>dm> (e90)1/-1) <
1Ql Jo 1Ql Jg

again using Jensen’s inequality

1 1 1/(p—1)
< ( / €—¢<x>/<p—1>dx) ( / e¢<x>dg;) < VoD
Q[ Jo Ql Jg

2): theorem 2.2.7. implies that e? € A, if and only if
1/ ?@) dp < Cefa
QI Jg

which is equivalent to condition a).

3): It follows from 2) that, for w = e?, condition a) is equivalent to saying that
w € A and condition b) is equivalent to saying that w=/®=1) ¢ A, O

73



2.2. THE REVERSE HOLDER’S INEQUALITY
Chapter 2 & THE CONDITION A,

In case p = 2, conditions a) and b) become:
L [ @0 L [ ~6@-s0)
— e Qdx < C and — e QLdr < C
QI Jo QI Jg
These two inequalities together are equivalent to
L[ Jo@)-sql

— [ e elde < C
1Ql Jq

We can write:

Corollary 2.2.3. Let ¢ be a real locally integrable function on R™. Then
e® € Ay if and only if there is a constant C' such that for every cube Q C R"

1 / (@00l gy < ¢
1Ql Jo

The relation between weights and B.M.O. functions is now clear.

Corollary 2.2.4. w € Ay = logw € B.M.O.

Proof. Let w € Ao and write w = e® that is: ¢ = logw. If w € As, we know
from the previous corollary that

1]l = sup = / 6(z) — doldz < sup - / o) ~dal 4 < ¢
o 1QlJg o 1QlJg

so that ¢ =logw € B.M.O.

In general w € Ay = w € A, fro some p € [1,00). Thus, if p < 2, we have
w € Ay C Ay and, as we have just seen, logw € B.M.O.. If p > 2, we look at
w1/ =1 ¢ Ay C Ay, It follows that log(w=Y/®P=1)) = —p%l logw € B.M.O.
Thus, in any case, logw € B.M.O 0

Observe that, if w € Ay, || logw||,« depends only on p and on the A, constant
for w.

If $ € B.M.O., we know from corollary 1.3.1 (2) in chapter I, that

1/ Now)—dal g < ¢
Q| Jg
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for every cube @, thus, using corollary 2.2.3., we see that e*® € A, for \ small
enough (0 < A < C9/||4||« with the notation used in corollary 1.3.1.). If we
set e’ = w, we get ¢ = A\~ logw. Thus

B.M.O.={alogw :a > 0,w € As}

and the reason why we have ¢ > 0 is that f € B.M.O.= Cf € B.M.O.

Actually, the same is true for any p with 1 < p < oo, i.e.
B.M.O.={alogw:a>0,we A,}

We already know that this is true for p > 2 since Ay C A,. For 1 < p < 2,
if ¢ € B.M.O., we can write ¢ = alogw with ¢ > 0 and w € As. But
o=wPt € A, since 2(p—1)+1— (p—1) = p ( see theorem 2.1.2 part 2 ).
Therefore,

6 = alogw = alog(c"/*V) = (a/ (p — 1)) log 0.
In contrast to this situation, we have (as we will prove), that:
{alogw:a >0, we A1} = B.L.O.S B.M.O.

let’s prove it: In fact, we already know that alogw € B.L.O. when a > 0 and
w € A (see the proof of theorem 1.3.1). Conversely, let ¢ € B.L.O. Then,
according to corollary 1.3.1. (2), we have for € > 0 small enough, every cube
@ and given C, that:

c>/ el () ¢de>/

which implies

dr < Cexp(ep
@ L @) <
we use that ¢ € B.L.O. (i.e. g —essginf¢ < C’, for some C’)
< Cexp(e(C' + essqinfo)) = Ces® exple - essqinf¢) =

= C’eeclessQinf(ew) = Cessginf(e¥?) =
= M(e**®)) < Ce*@)  for a.e.x € R"
It follows that e*® € A;. Thus ¢ = e 'logw with w = e°? € A;.
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Combining this with theorem 2.2.8.; which tells us that every w € A; can
be written as w(z) = k(z)(M f(x))7, with k(x) > 0 such that logk € L* and
0 <~v <1, we are led to:

B.L.O.={h+ Blog(Mf):he L>®, fecL., B>0}

We finish this section by observing that the LP inequality established in
chapter I (theorem 1.3.3.) between the Hardy-Littlewood maximal function
M f and the sharp maximal function f#, also holds when Lebesgue measure
dx is replaced by the measure w(z)dz, where w is any A, weight.

The concrete statement without proof is as follows

Theorem 2.2.10. Let w € Ay, in R™ and let f be such that M f € LP°(w) for
some p, with 0 < p, < co. Then, for every p such that p, < p < oo

/ (M f@@)Pw@)de <C | ( f#(x)Pw(z)de.

Rn
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2.3 FACTORIZATION THEOREM

We have already seen that if we have two A; weights w, and wy and if
1 < p < o0, then w(z) = wy(z)w; ()P is an A, weight. Now we are going to
show that, conversely, every A, weight w can be written in this form for certain
Wo, w1 € Ajp. This factorization theorem will have important consequences.
The proof will be based on a single lemma, which, as we shall see, provides a
strikingly powerful method to deal with several problems about weights.

Lemma 2.4. Let S be a sublinear operator bounded in LP(u), where p > 1
and p is an arbitrary positive measure on some measurable space. Suppose
that Sf > 0 for every f € LP(u). Then, for every u > 0 in LP(u) there is
v >0 in LP(u) such that:

1. u(z) <wv(z) for a.e. x
2 ol < 2[lullp

3. Sv(z) < Cv(x) for a.e. z (C =2||S|| is enough).

Proof. It suffices to take
v="> (2[S])7 5 (u).
j=0

where S/ = S0 So...0S j-times. Indeed, since, (we start with 2)
ISl = inf{C > 0:||Svll, < C|lvlly, for all ve L"(n)}

we get that

lolly < YIS ISP ull, =

J=0

oo
= Jlully Y 277 =2ull,

J=0

On the other hand, since S°(u) = u and since Sf > 0 for every f € LP(u), we
get that, all the partial sums in the definition of v, are > wu, thus u < v a.e.
(actually everywhere)
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Finally, since S is sublinear, we have:

S0.< SIS IS ) -
i=0

=2|5]1 Y (2SI~ () = 2|18 (v — (2IIS11)°S°(w) =

§=0
=2[5[|(v —u) < 2[|S]v.

O

Actually with the help of this lemma, we can give a general factorization
theorem which includes the one we were seeking for A, weights

Theorem 2.3.1. Let T be a positive symmetric sublinear operator acting on
measurable functions on some measure space (X,dx) (this means that |T(f +
D <I|T(f)|+|T(g9)| and also that |f| < g implies |Tf| <Tg). Forl < p < oo,
let us call

Wy, ={w:0<w(z) <oco ae. and T is bounded in LP(w)= LP(w(z)dz)}
Also, we call
Wi ={w:0<wx) < ocoa.e. and Tw(z) < Cw(zx),a.e}
for some C' independent of x
Then, for every 1 < p < oo, we have:
W, NW, P C Wi, P

that is: If w € W, and also w1/ (=) ¢ Wy, then, there exist wo, w1 €

Wi such that w = wowifp. Besides, the constants C for w, and wi in the

class W1 depend only upon the constants for w and w=®=1) Wy and Wy
respectively, that is, on the respective norms of T on LP(w) and LV (w=/®=1),

Proof. We just need to consider the case 1 < p < 2 since :

W, N WP C WAWP = (W, nWLP) P (W w7y
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which implies that:
Wy NWy P € WaW,! P <= Wy n W7 c waiw %
and also
p>2<=yp =p/p—1)<2

So, let 1 < p < 2, and suppose that w € W, N W;,fp, ie. w e W, and
w1 ¢ W, We want to see that w = wowifp with w,,w; € Wy. After

1 p

writing v™ = wif , we see that this is equivalent to finding v such that:

1. vw(= w,) € Wy, that is: T'(vw) < Cvw and also
2. oV/P=1) € Wy, that is T(v"/®=1) < CoY/®=1) or equivalently

(T(v"/ =Dyt < Cw

Suppose now that for every u in some L? space we can find Su so that:
T (uw)| < S(uyw

and

(T =)" < Sw)

If the operator S satisfies the hypotheses of lemma 4, we shall be able to find
v > 0 such that S(v) < Cv. This would be suffice, because then we should
have:

T(vw) < S(v)w < Cow

and

(T(U1/(p—1)))p_1 < S(v) < Cwo

All we have to do is to look for S and make sure that it satisfies the hypotheses
of the lemma. The natural candidate for S is the operator sending the function
u into Swu given by

p—1
S(u) = [T(ww)|w™" + (T(|u/~1))
First of all, we observe that S is sublinear : For the first term of the sum, sub-
linearity is clear, lets prove it and for the second term. Let f,g be measurable
functions, we write

f=(-NF, g=Xa
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then
|(1 = NF + AGYP=D < (1= \)|FIYP=D 4 NG|/ e-D

since |z|* is convex for a > 1, and being 1 < p < 2, we have 1/(p — 1) > 1.
Now, combining that 7" is a positive sublinear operator with the comment in
the statement of the theorem, we get that:

—1 -1
(701 +910)" " < (T = NIFMED £ NG <

-1
< (1= NT(FMYED) 4 2T(G1H D))" <

sincep—1<1
—1 -1
< (=N (TEED))T e (16 o)) =
p—1 p—1
= (7o) (T )
= S is sublinear. Besides, S is bounded in L” (w). Indeed:
/ T (ww)w™ [Pw :/ I (ww) |7

But w! " = V-1 ¢ Wy, thus, T' is bounded in LP' (w'=P"), which implies
that:

/

/ )P <0 [ JuwP o =c [ jufe )
and also
Tl ) 70 — / T (D) Pw <
we W,

<o (o) w= c/ WPw. (1)
Rn Rn

Using now (I),(II) and Minkowski’s inequality, we get that S is bounded in
LY (w).

From the definition of S, it is clear that Su > 0 for every u € L¥ (w). Thus,
S satisfies all the conditions required in lemma 4. Note that C in lemma 4
(iit) depends only on the norm of S in L” (w), and the norm of S in L¥ (w)
depends only on the norms for 7 in LP(w) and in L?' (w=/®=1). This finishes
the proof.

O
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Corollary 2.3.1. (P.Jones' factorization theorem) For 1 < p < oo,

A, = A1 AP

that is : w € A, if and only if there exist w,, w1 € Ay such that w = wowifp

Proof. If we take T' = M = the Hardy-Littlewood maximal operator in theo-
rem 2.3.1. (previous theorem), we know that W, = A, and W; = A;. Besides

plfp = A}Dfp = A, because w € A, if and only if w1/ P~Y) € A,. Therefore,
applying the previous theorem we get that

A, C A AP
The inclusion AlAifp C A, has been already established in section 2. O

By combining the factorization theorem with the characterization of A;
weights given by theorem 2.2.8., we obtain a general expression for A, weights
in terms of maximal functions. This is the natural extension to p > 1 of
theorem 2.2.8. Then, by using the John-Nirenberg theorem, this yields an
expression for B.M.O. functions in terms of maximal functions:

Corollary 2.3.2. 1. Let w be a weight in R™ such that w(z) < oo a.e.
Then, w € Ay if and only if, it can be written as

w(z) = k() (M f(2))*(Mg(x)) 7

with f,g € Lt (R™), k bounded away from zero and oo, and 0 < a and

loc
B < 1. In this representation, k can be taken between two positive bounds
which depend only on the A, constant for w.

2. There are constants C1 and Cy depending only on the dimension n, such
that every ¢ € B.M.O. in R™ can be written as :

¢(z) = b(z) + ylog M f(z) — hlog Mg(z)
with f,g € L', v,h >0 and
1blloc + 7 + b < C1|8]|«
Conversely, every ¢ which can be written as above, belongs to B.M.O.

with
@[l < Co[[blloc + v+ h)
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3. We can write a statement like (2) with B.L.O. in place of B.M.O. and
h=0

4. As a consequence of 2) and 3), every B.M.O. function can be written as
a difference of two B.L.O. functions. In short:

B.M.O.C B.L.O.—- B.L.O.

Proof. 1):(<=) It follows from theorem 2.2.8. that both (M f(x))® and (M g(z))”
are A; weights, thus (M f(z))*(Mg(x))?1~P) € AjA]™P = A,, which implies
that w € A, since kA, = A, for any such k.

Conversely if w € A, the previous corollary implies that w = wow%_p with
We, w1 € A1. Then we just need to apply theorem 2.2.8. to obtain the desired
representation:

w(x) = ko(@) (M f () k1 ()P (Mg ()P =

= ko(a)ky () 7P (M f (2))*(Mg())? 7P =
= k() (M f ()" (Mg(x)) ).

Observe that, in the proof of theorem 2.2.8., the lower bound obtained for the
function k depends only upon the constant C' in the reverse Holder’s inequal-
ity for the A; weight, and this, in turn, depends only upon its A; constant.
The upper bound obtained for k in the proof of theorem 2.2.8. is just 1. In
our present situation, the factorization theorem tells us that the A; constants
for w, and w; depend only upon the A, constant for w. Therefore in our
representation for the A, weight w, the function k = kok% P is bounded away
from zero and oo with bounds depending only upon the A, constant for w.

(2):(<=)We have f, g € L' which implies that M f(x) and Mg(z) are < oo a.e.
Then, according to corollary in chapter I, log M f(x) and log M g(x) are both
in B.M.O. with norms independent of f and g respectively. Consequently, if ¢
has the representation exhibited in 2), we have ¢ € B.M.O. with

[0l < Ca(l[blloc + v +n)

for some absolute constant Co. Indeed, since b(x)# < 2Mb(x) < 2||b||oo, We
get that:
18]l < [[b]l« + I/ log M f ||« + n||log Mgl|. <

< 21blloe +7C" 4+ nC" < Co(||blloc + 7 + 1)
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where Cy = max{2,C’,C"}

(=) Conversely, if ¢ € B.M.O., it follows from corollary 1.3.1. that, taking
A = C2/2||p]|«, where C5 is the constant appearing in corollary 1.3.1., and
using the proof of the second part of the same corollary, we get that:

1/ A 0aldz < CLACo/ 8]l — N) ' = Cy
@ Jo

where (' is again, the one appearing in the end of the proof of corollary 1.3.1.,
which in turn, is the same one appearing in theorem 1.3.5.(from where we can
see that C] depends only on the dimension n). Consequently, from corollary
2.2.3., we get that the function w(z) = e*®) is in Ay with an Ay constant
(= C?) independent of ¢. Applying part 1) to our w, we obtain:

logw(x) = logk(x) + alog(M f(x)) — B(p — 1) log(Mg(z)) =
¢(x) = A logk(z) + A alog(M f(z)) = A7 B(p — 1) log(Mg(x))
and we get the desired decomposition with
b=Xllogk, y=X"1a, h=X"18(p—1)=X\"13 since p=2

Observe that the L norm of log k does not depend on ¢. Then, since A\~ =
C Y|« (C:=Cy/2) and 0 < a < 1,0 < B <1, we have

[Blloc +7 + = [|¢|l+ (| log klloo +a + B(p —1))C™" <

< C'll¢lls

for some constant C’ since, as we said before, the L> norm of k is independent

of ¢.

3) As we observed in the proof of theorem 1.3.1., log M f(z) is actually in
B.L.O., so that any ¢ = b+ vylog M f with ||b||cc < oo and v a real number
> 0, will also belong to B.L.O.

For the converse, the proof is very much like the one in part 2). The dif-
ference is that, as we noted in the second remark following corollary 2.2.4., if
¢ € B.L.O., the weight w(z) = @) is actually in A;, not in Ay. Then we
can use part 1) as before, but now p = 1. so that we obtain the representation
with h = 0.

Finally 4) follows obviously from 2) and 3). O
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2.4 A SHARP LY INEQUALITY FOR DYADIC A4,
WEIGHTS IN R”

Lets remind some definitions. A locally non-negative function w on R" is
called a dyadic A; weight if it satisfies the condition

@ / w(z)de < Cessinfoequ(x)
Q

for any dyadic cube @ in R”, which is equivalent to the inequality
Maw(z) < Cw(x)

for almost every x € R™. Here M is the dyadic maximal operator defined by
1
Maw(x) = sup{’@/ w(z)dr :z € Q,Q CR" is a dyadic cube}.
Q

The smallest C' > 1 for which the above inequalities hold is called the dyadic
Aj constant of w and is denoted by [w];.

It is well known that such weights satisfy reverse Holder inequalities for certain
real numbers p greater that 1 depending on the dimension n and the A; con-
stant [w]y. The purpose of this section is to determine the exact best possible
range of p for which the reverse Holder inequalities hold. Our main result is
the following.

Theorem 2.4.1. Let w be a dyadic Ay weight on R™. Then for every p such
that

log(2")
1<p< ) (@
log <2n _ 2[w]11>

and for every dyadic cube (Q we have

@/Q(de(x))i’dx < (2n _22;}__1;1, . <@/€2w(x)dx>p (b)

wi1

Moreover both the range of p and the corresponding constants in (b) are best
possible.

Clearly for such weights the inequality (b) is equivalent to a reverse Holder
inequality for w (with different sharp constant) so it gives the best possible

84



2.4. A SHARP L INEQUALITY FOR DYADIC A,
Chapter 2 WEIGHTS IN R”

range of p for such an equality to hold. Note that for any fixed n we have
p(n,\) — oo as A — 17 as expected. Moreover for fixed A > 1 we have
p(n,A) — 1 as n — oo which implies that the range of p shrinks to {1} as
the dimension increases. In proving that the range is best possible we will
produce for any A > 1 a dyadic A; weight w on [0, 1]” such that [w]; = A and
f[O,l]” w(z)PNdr = co.

We remark that by using a standard dilation and approximation argument
it suffices to prove (b) for @ = [0,1]" and for all functions w defined only
on [0,1]™ and satisfying the A; condition only for dyadic cubes contained in
[0,1]™. Actually we will work on more general non-atomic probability spaces
(X, p) equipped with a structure 7" similar to the dyadic one.

The analogous question of finding the best range of good p for the full Ay
condition,that is, for w satisfying

@/ w(z)dr < Cessin frequw(x)
Q

for all cubes, has been studied for dimension n = 1 and it was proved that in
this case the best possible range of p is 1 < p < [w];/([w]; — 1) where [w];
denotes the corresponding full A; constant. It is easy to see that p(1,\) <
A/(A—1) for any A > 1 and this reflects the fact that the dyadic A; condition
is much weaker than the full one.

Lets start now by giving the precise structure of the family T" we will work
on: We fix a non atomic probability space (X, u) and a positive integer k > 2.
We also suppose that we are given a family 7" of measurable subsets of X
satisfying the following properties

1. For every I € T there corresponds a subset C(I) C T containing exactly
k pairwise disjoint subsets of I such that

I=uC(I)
and each element of C'(I) has measure (1/k)u(1).

2. T = UmZO T(m) where TO = {X} and T(m+1) = UIGT(m) C(I)

EXAMPLE : If @), is the unit cube in R™ we let £ be the union of all the
boundaries of all dyadic cubes in Q,. Let X = Q,\E and let T be the set of
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all open dyadic cubes Q C @Q,. Here k = 2" and each C(Q) is the set of 2"
subcubes of ) obtained by bisecting its sides. More generally for any integer

m > 1 we may consider all m-adic cubes @ C @, with C'(Q) being the set of the
m' open subcubes of () obtained by dividing each side of it into m equal parts.

It is clear that each T'(m) consists of k™ pairwise disjoint sets each having
measure £k~ whose union is X; moreover, if I, J € T and I N J is non empty
then I C JorJ ClI.

For this family T" we define the corresponding maximal operator Mr as

MT(f)(a:)zsup{lL(lI)/l|fd/L:$€I€T} (4.1)

for any f € L'(X, ) and we will say that a non negative integrable function
w is an Ay weight with respect to T if

Mr(w)(z) < Cw(x) (4.2)

for almost every z € X. The smallest constant C for which (4.2) holds will be
called the A; constant of w and will be denoted by [w];.

Now we will describe an effective linearization for the operator My valid for
certain good functions w. This will be important for proving the theorem
4.1. Let w be a positive non-constant T-step function; that is, there exist an
integer m > 0 and positive Ap for each P € T'(m) such that

w = )\po (4.3)
PeT(m)

(where Xp denotes the characteristic function of P). It is clear that w is an
Ay weight (with respect to T) since, for each I € T' we have

1 1
M(I)/IWWM ) Z App(P) <

PET(m),PCI
ma; m) A
PeT(m) minper(m) AP
= Mr(w) < Cw
Let 06 =1/[w]1, 0 < d <1 and for any I € T write
1

Avy(w) = M(I)/lwdu.
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Now for every x € X let I,(x) be the largest element of the set
{IeT:xzel Mrw(x)=Avr(w)}

(which is non-empty since Av;(w) = Avp(w) whenever P € T'(m) and J C P).
Next for any I € T we define the set

Ar=Aw,I)={z e X : I,(z) =1}
and we let S = 5, be the set of all I € T" such that A; is non-empty.

Let © € Ay, then Mpw(x) = Avy(w) and © € P for some P € T(m) with
P C I. Now for any other y € P with y # x we get that

Mrw(y) = Avy, ()

but I,(y) D P for every such y, which implies (since x € P) that: Mrw(z) >
Mpw(y). On the other hand each y € P belongs also in I, which implies in
turn, that Mrw(z) = Avr(w) < Mrw(y) for every such y. Consequently, we
get that:

Mpw(zx) = Avr(w) = Mpw(y)
for every y € P, and since x € Ay we get that I,(y) = I,(z) =1 = P C Aj.

It is now clear that each Aj is a union of certain P from 7'(m).

It is also clear that each z € X belongs also in Ay, (,) and that is because
Mrw(z) = Avy, (2)(w)

for every x. Thus, we can conclude that

X = U Aj.

IES:Sw

Now if there is x € Ay N Ay for some I,J € S, then
Mrw(z) = Avr(w) = Avy(w)

and since I, J are the biggest elements for which the average of w on each of
them respectively is equal to Mrw(z), we get that I = J. Thus for I,J € S
with I # J, we get that A; and A; are disjoint. We can write now Mpw in
the following form :
Mrw = Z Avp(w) X4,
IeS
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We also define the correspondence I — I* with respect to S as follows: I* is
the smallest element of {J € S, : I C J}. This is defined for every I in S that
is not maximal with respect to C.

The main properties of these sets are given in the following two lemmas which
can be viewed as a version of Calderon-Zygmund decomposition in a more
general setting

Lemma 2.5. 1. For every I € S we have

I= |J 4

S>JCI

2. For every I € S we have
Ar=1\Ujes.j=1 J

and so

wAD)=p) = 3w, (5.1

JeS:J*=I

3. For all I € T we have I € S if and only if Avg(w) < Avi(w) whenever
I1CcQQeT, I+#Q. Inparticular X € S and so I — I* is defined for all
I €S such that I # X.

Proof. (1) clearly we have
Ussacrdy C 1

Let now x € I. Since I € S we have that A; # &, so there will be y € X such
that I = I,,(y) which means that Mrw(y) = Avr(w)

Suppose now that I,(x) # J for each J C I ( which is equivalent to x ¢
UssgcrAy ), then, it will be I,,(x) = I’ for some I' € S with I C I’ but y € I
since I,(y) = I, thus, we get that

Avp(w) < Mrw(y) = Avr(w)
also ¢ € I which implies in turn that
Avp(w) < Mrw(z) = Avp (w).

Consequently we get that Avy(w) = Avp(w) = Mpw(x) with I’ 2 I, thus,
I ¢ S which is contradiction to our assumption.
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(2) Let = € Ay, then I,,(x) = I which implies that = ¢ UgsjcrA;. Thus,
z ¢ UssycsAy

for each J such that J* = I which is equivalent ( using (1)) to x ¢ J for each
J such that J* = I, consequently:

z e I\Ussyge=r J

For the opposite direction let = € I\ Ugss.s«=s J, then it will clearly be
I,(z) D1
but I = I,,(y) for some y (since I € 5), thus (y € I C I,,(x)), we get that
Mrw(y) = Avi(w) > Avg, o) (w) = Mru(z)
we also have (since x € I ) that
Myw(y) = Avi(w) < Avy, (o) (w) = Myw(z)

and since I € S we get that I,,(x) = I which implies that x € A

(3) (=) Let I € S then I,(z) = I for some z € X. Let also Q € T
such that I S Q. Then, since x € I C Q, we get that

Avg(w) < Mpw(z) = Avy, (o) (w) = Avr(w)

actually it is Avg(w) < Mpw(z) (otherwise it would be I D @ since I, (z) = I,
which is not valid)

(<=) Suppose now that Avg(w) < Avi(w) whenever I G Q.

Clearly I € T(m — k) where k > 0 because if we had I € T(m + k') for
some k' > 0 then Avg(w) = Avy(w) for every Q@ 2 I with Q € T(m + k' — 1)
which is contradiction.

Now, since every Av;(w) can be written in the form:

_ ZFGC(J) p(F)Avp(w)

Ao (w) > rec(y) MF)
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we conclude that for each J € T there exists F' € C(J) such that Avp(w) <
Avy(w). Starting from I and applying the above k times, we get a chain
Io =121 D ... D I such that I, € T(m — k + r) for each r and moreover

Avy, (w) < Avy, () < ... < Avg, (w) = Avp(w).

Now from this and the assumption on I and also from the fact that for every
J € T(n) there is a unique J' € T'(n — 1) such that J' D J , it is clear that
I,(z) = I for every = € I}, and therefore I € S.

O
Next we write y; = Avr(w) for every I € S and with § = 1/[w]; we have
the following
Lemma 2.6. Let [ € S. Then:

1. If J € S is such that J* = I then
yr <y < (k= (k—=1)0)yr (6.1)

2. we have

> () < ((1 — oI +5 > u(J)> yr- (6.2)

JeS:J*=I JeS:J*=I

Proof. (1) The inequality y; < ys follows from the third result of lemma 2.5.
Now consider the unique F' € T such that J € C(F). Clearly (since J* = I)
J ; F C I. We claim that:

Avp(w) < yr = Avr(w)

Indeed, if F = I then Avp(w) = Avr(w). Let now F be & I. Of course
I € T(s) for somesand F € T(s+m). If m =1 (that is F € T(s+ 1)) and if
we had

Avp(w) > y1 (1)

Let @ € T such that F C Q and F' # Q. Since F € T'(s+1)and FF C I € T(s),
we get that
Ice

If @ = I, then using (I) we get :
Avp(w) > Avg(w) (7)
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If Q # I then I S @ and since I € S we get that:
Avg(w) < yr (i)

and
Avp(w) > Avg(w) (i41)

For (ii) we used the previous lemma and for (iii) if there was Avg(w) >
Avp(w), then, combining (ii) and (I) we lead ourselves in contradiction. There-
fore we get that

Avp(w) > Avg(w)

whenever Q O F with F # @ and according to the previous lemma, this
implies that F' € S which is again contradiction to our assumption J* = I
(because J G F G I). Thus, in case m = 1 we get that

Avp(w) < yr
which is what we want.
If now F' € T'(s +m) with m > 1, then, suppose again that
Avp(w) > yr (I1)

There will be unique F; such that F, = F C F} C F5 C ... C F,,,_1 C I where
F; € T(s+m —1i) for each i € {0,1,2,...,m — 1}. Consider now

Ing = max{i : Avg,(w) > yr}

(I is well defined since we have assumed (II)).
Let now @ in T such that Fy,, C Q with Q # FJ,,.
If Q € {F1,,+1,..., Fm—1}, then, using the definition of Ij;, we get that

Avp, > yr 2 Avg(w).
If @ = I then using again the definition of I, we get that

A’UFIM > Yo = Y1

IfQ 2 1, then, using the fact that I € S and the definition of I5;, we get that

AUFIM >yr > AUQ(w).
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Consequently Fr,, € S which is not valid (contradiction) since J G F' C Fy,, &
I and J* = I. Thus, our claim is justified. Let us note that the case m > 1

covers the case m = 1 but the case m = 1 is the first and easier thought that
someone does in order to prove this claim.

Now note that for every x € F\J C I we have
[whw(z) > Mrw(z) > yr =
= w(w) = yr/[wh = ypy =
[wh

hence using the claim we get

yr > Avp(w) = p

1(J) p(FNJ) yr
WD) T TuE) Tl
W) () — ()
WY T T uE) wh

1 1
== §— =6
s+ (0= 20y

which implies that
1 kE—(k—1)6

Y7 < i yr

and this proves (1).
(2) Note that for every x € A; we have
[whw(z) > Mrw(z) = y;

hence, integrating this over A; we get :

/ o]y dpu(z) > / yrdu(x) = yru(Ar) =
A

A

we use lemma 5 (ii)

- (u(I) -3 M(J)> yr —

Jes:J¥=I
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/A w(z)dp(z) > 6 (u([) — Z ,u(J)> yr

JeS T =T
But
A =1\Ujeg.ge=1 J

/deu— > /deu25<u(f)— > M(J))y1=>

JeS:JJ*=I JeS:J*=I

pDyr = Y wlJ)ys > dyr (u(f) - > M(J)> —

JeS:Jx=I Jes:J*=I

> M(J)yJ§<M(I)(1—5)+5 > M(J)>y1

Jes:J*=I JeS:J*=I

and the proof is complete.

Then defining the function

logk

Py = log(k — (k — 1)\)

>1

for 0 < A < 1, we have the following.

Lemma 2.7. Let w be a T-step function as above. Then

Jmeran < </X “’d”)p

whenever 1 < p < Py(9).

Proof. Fix p > 1 and use the previous lemma and the convexity of the function
F(t) =tP to get

vy —yr (k= (k= 1)y’ -y
yr—yr — (k—=(k=1)0)yr —yr

Yy —yp < (& <_k (f 5(11)6_)1)5)_ Ly - yr )y (7.1)
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whenever I,J € S are such that J* = I.

Now, using (5.1) on (6.2) we get

> yJu(J)S{(1—5)<M(AI)+ > N(J)>+5 > M(J)}y1=>

JeS:J*=I JeS:J*=I Jes:J*=I

> wr—yop() <A -8)u(ADyr.  (72)
JesS:J*=I

Multiplying (7.1) by u(J) and, with I fixed, adding for all J with J* = I we
get using (7.2) that :
(k—(k—1)5)P -1

S W —hu) < - 1(Ar)yy (7.3)
Jes:J*=I

for every I € S that is not minimal with respect to C (otherwise we do not
sum anything)

Let us before we continue, remind that

Mrw = Zy[XAI = ZAU[(’U))XAI
IesS IesS
so that

(Mrw)P = Z yII)XAI
IesS

and therefore

/X (Mrw)Pdp =y u(Ar)

IeS

Next we sum all the inequalities (7.3) for all I € S’ where S’ consists of all
elements of S that are not minimal. On the right hand side we have the
estimate

> nldnsf < [ (ropds (14

Ies’

On the other hand , using that

pAD) =p)— Y ul])

Jes:J*=I
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and the fact that X is the only I € S for which I* is not defined, we have

YooY Wh-vhu) =

IeS" JeS:J*=I

S ) =D D i) =

IesS’ JeS:J*=I IeS’ JeS:Jx=I
oot => 0 D ul) =
1eS,I#X IesS’ JeS:J*=I
I - I - 1)) =
yyu(I) Yy (u(I) — p(Arg))
I€S,I#£X Ies'

(u(I) = u(Ay) for I minimal)

= >y =D yhud) - u(Ar) =

1€S 14X Tes
S fud@) =D yud) + > viu(Ar) =
1€ST4X 7S Ies
> (A — ok =
IeS

Z/X(MTw)pdu— </X wdu)p-

Hence, assuming that 1 < p < Py(J) which gives (kK — (k — 1)0)? < k and
consequently (k — (k —1)d)? —1 < k — 1 and since [y (M7w)Pdp is obviously
finite, we get

Jomoran= ([ win) + ¥ ¥ 04-iu) <

1eS' JjeS:J*=I

use (7.3)
< ( /. wdu) I
Ies’
= ( / wdu)p ks (kk__lié)p - > wAnyy <
X Ies’
use (7.4)
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the above implies that

J o < </X wd“)p

which is what we want.

O]

Next we show that the previous result holds for general w and that it is
actually best possible.

Theorem 2.4.2. For any A; weight (with respect to T) w and any p such
that 1 < p < Py(1/[w]1) we have

/X(MTw)Pd,u < 4T ¢ ﬁzkl— oy </X wdu)p (7.5)

and both the range of p and the constant in (7.5) are sharp (best possible).

Proof. For the general non-negative A; weight w we consider the sequence
(wy,) where
Wy, = Avp(w)Xp
PeT(m)
and set
Om = Z mazx{Avi(w): P C I €T} Xp = Mrwy,
PeT(m)

(since Avr(w) = Avr(wy,) whenever P € T(m) and P C I € T)

/wmd,u:/ wdp
X X

for all m and ¢,, converges monotonically to Mrw. Since each w,, is a positive
T- step function, from the previous lemma we get that:

I (/X “’d“>p

and so letting m — oo we get (7.5) for the general w.

Then

Now to complete the proof of the theorem we choose an infinite chain X =
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I, O O .2 Iy O Iy O ...such that I; € T(s) for all s > 0 (and so
wu(Is) = k=*) and for v > 1 consider the function

o0

w = Z IYSXIS\]Sle (76)
s=0

Then it is easy to see that for all s > 0

Av ()= =Ly

provided v < k. Indeed:

1
Avr, (w) = / wdp =
S Is

p(ls)
s ZVN T\IT+1 _kSZ’y (lj W>:kSZVTZ;11:
r>s r>s r2s
S @) e (SR -2 ) -
r>s r>0 r=0

We next claim that
Mpw(z) = Avr, (w)

whenever © € I;\Isy; and s > 0. Indeed suppose that x € I \Is+1 and let
J be the unique element of T'(s + 1) such that = € J (clearly J € C(Is) and
J # I5). Then the set of all T in T containing x consists of I,, I, ...., Iy and
J and certain subintervals of it (of J), but since v > 1, (7.7) implies that
Avr, (w) > Avr, (w) for all 0 < r < s and since w is constant on J (and every
sub interval of it) equal to v* < k 1 v® = Avr, (w), we get

Mpw(z) = Avr, (w)

for every x € I \Isy1. This combined with (7.6) and (7.7) implies that

Mrw(z) = ——w(x)
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so that w is an A; weight with [w]; = ,’z_;}y and so
k—1
=k- 7.8
gl l, (7.8)

Now for any p > 1 we have

o (2 o
_ (E)pgﬂ(“(m ) = (52 ) o (- ) =
(=) EE-H5))-
(=) 5 () -

E—1\’k—-1 &k k—1
() 5 s - 5 oy =

Jmeran = </X “’d”)p

and it is finite if and only if v» < k

The above gives us the sharpness and the proof is complete.

O

Now theorem 2.4.2. applied to the special case of dyadic cubes given in
example before and combined with standard dilation and approximation ar-
guments completes the proof of theorem 2.4.1.
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APPENDIX

Here we will not present that much of info, just a couple of lemmas that
will help us solve an exercise in measure theory that we used somewhere in
the previous chapters. To be precise we will show that if we have a finite
positive Borel measure p on a space X with p(X) = 1 and a function f for
which || f]|; < oo for at least one ¢ > 0 then :

11— cap ( [ toalolanto))
as p tends to zero.

Lemma 3.1. If0 <r < s(< 1), then

LF 1l < (£ 1ls

which implies of course that L°(X) C L"(X)

Proof. Since the function ¢(x) = 2%/" is convex, we can apply Jensen’s in-
equality to [ |f|"du to get

{ / Ifl’”du}S/TS [ e

Hence [ f[|» < [[f]]s- H

Lemma 3.2. If0 < p < 1, then

/X log|fldp < log|fl, (D)
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Proof. We know that log(x) is a concave function so we can use again Jensen’s
inequality to [y |f[Pdu to obtain

log (/lel”du> Zp/Xlogfldu

which is what we want. O

From lemmas 8 and 9, it follows that the sequence log || f|1/,, is decreasing
and bounded from below. Therefore, it converges as n — oo.

To find the limit, use the inequality logx < x — 1 or equivalently the in-
equality loga < n(a'/" — 1) with a = (fx |f|1/”du)n to get (since pu(X) =1)

!
1 < —d
ogllflyn < [ H—Lan
/n_
The sequence a, = Wi/inl is increasing. Thus, we can apply the the

monotone convergence theorem in the integral above to get

: M=
Jim log|flliyn < | lim = —dy

n—00 1/7’L

— [toglsidn (D)
X

since
M -1
lim ————

n—00 1/n

= log||f|
From (I) and (IT) we get that
i Log 70 = [ ol
n—oo X

and since the logarithm is continuous function we get

ti 11, = e ([ toolldn(o) )

Proposition 3.0.1. For f € L', M f is not bounded in L'. Actually M f is
never integrable in L' unless f is almost everywhere equal to zero.
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Proof. Suppose f € L' with |f| > 0 in a set of a positive measure, then, we
choose cube Q" = [y, lyll] % --- x [=|lyll; l|lyll]] for some fixed y € R™ such
that:

0<C:/ |f(z)|dx < oo.

Q/

Consequently for every z € R" with [|z|| > ||y|| := M, and for
Q = [=llzll, Izl > .. < [=ll[], [|[]

we get that:
1 1 c’
il dz — —— d .
MI@) 2 g |10 = g [ e 2

where €' = £ and we know that

= o)
1
/ —dx = o0.
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