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Περίληψη

Στην παρούσα εργασία, εξετάζουμε την ύπαρξη ενός γραφήματος με βάση δι-
αφορετικούς περιορισμούς στους βαθμούς και στις αποστάσεις μεταξύ των κο-

ρυφών. Αυτό που μας ενδιαφέρει κυρίως είναι να μελετήσουμε την υπολογιστική
πολυπλοκότητα του κάθε προβλήματος και να εξετάσουμε περιπτώσεις όπου το

πρόβλημα λύνεται σε πολυωνυμικό χρόνο ή αποδεικνύεται NP-πληρότητα.

Τα προβλήματα που μελετάμε κατά βάση σε αυτή την εργασία αποτελούν παρ-

αλαγές ενός πολύ γνωστού προβλήματος στην θεωρία γραφημάτων. Δοθέντος
μιας ακολουθίας βαθμών (d1, . . . , dn), το πρόβλημα μας ζητάει να αποδείξουμε την
ύπαρξη ή μη ένος γραφήματος που να ικανοποιεί την ακολουθία. Είναι γνωστό ότι
το θεμελειώδες αυτό πρόβλημα επιδέχεται πολυωνυμικό αλγόριθμο. Οι παραλαγές
που εξετάζουμε σχετίζονται με τους βαθμούς των κορύφων. Για παράδειγμα
βλέπουμε το πρόβλημα πραγματοποίησης ενός απλού γραφήματος με v1, . . . , vn
κορυφές, και πρέπει να ελέγξουμε εάν υπάρχει γράφημα τέτοιο ώστε για κάθε
i ∈ [1, n], ο μέγιστος βαθμός στην γειτονία της vi να είναι di. ΄Ενα διαφορετικό,
αλλά αντίστοιχης λογικής, πρόβλημα είναι όταν ελέγχουμε τον ελάχιστο βαθμό
στην γειτονία μιας κορυφής.

Τέλος, αυτό που διαφέρει από τις προηγούμενες περιπτώσεις είναι το πρόβλημα
πραγματοποίησης με βάση την απόσταση των κορυφών. Η διαφορά εδώ είναι ότι
δεν έχουμε μια ακολουθία βαθμών, αλλά έναν ολόκληρο n×n πίνακα μη αρνητικών
ακεραίων που αντιπρωσοπεύουν επιθυμητές αποστάσεις μεταξύ κορυφών, και πάλι
σκοπός είναι να βρούμε ένα γράφημα που να ικανοποιέι τους περιορισμούς που

περιγράφονται από τον πίνακα.

Σε όλες τις παραλλαγές των προβλημάτων παραθέτουμε και αναλύουμε την υπ-

ολογιστική πολυπλοκότητα και που υπάρχει στη πρόσφατη βιβλιογραφία. Αναδει-
κνύουμε διαφορετικούς περιορισμούς που τα προβλήματα παρουσιάζουν υπολο-

γιστική διχοτόμιση και παρουσιάζουμε αλγορίθμους που έχουν προταθεί για να

αντιμετωπιστούν.
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Abstract

In this paper, we consider the existence of a graph under different constraints
on degrees and distances between vertices. What we are mainly interested in,
is to study the computational complexity of each problem and to consider
cases where the problem is solved in polynomial time or is proved to be NP-
complete.

The problems we basically study in this paper are variations of a well-
known problem in graph theory. Given a degree sequence (d1, . . . , dn), the
problem asks us to prove the existence or non-existence of a graph satisfying
the sequence. This fundamental problem is known to be polynomial-time
solvable. The variations we consider are related to the degrees of the vertices.
For example we see the problem of realizing a simple graph with v1, . . . , vn
vertices, and we need to check if there exists a graph such that for each i ∈
[1, n], the maximum degree in the neighborhood of vi to be di. A different but
similar problem is when we check the minimum degree in the neighborhood of
a vertex.

Finally, what differs from the previous cases is the realization problem based
on vertex distance. The difference here is that we don’t have a sequence of
degrees, but a whole n×n matrix of non negative integers, and again the goal
is to find a graph that satisfies the matrix.

In all variations of the considered problems we present and analyze their
computational complexity that has been suggested in the recent related lit-
erature. We expose different restrictions under which the problems admit
computational dichotomy and we present algorithms that have been proposed
to deal with such constraints.
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CHAPTER1
Introduction

1.1 Graph theory

In mathematics, graph theory is the study of graphs, which are mathe-
matical structures used to model pairwise relations between objects. A graph
in this context is made up of vertices (also called nodes or points) which are
connected by edges (also called arcs, links or lines).

The main definition of a graph is given below.

Definition 1.1. A graph is an ordered pair G = (V,E), where V is a set of
vertices (also called nodes or points) and E ⊆ {{x, y}|x, y ∈ V, x ̸= y} is a set
of edges (also called links or lines), which are unordered pairs of vertices (that
is, an edge is associated with two distinct vertices).

In general, graph theory is used to solve problems that can be represented
by a graph. One of the oldest and best-known problems in graph theory is the
seven Bridges of Königsberg problem which was published in 1736 by Leonard
Euler and actually was the first paper in the history of graph theory. Since
then, everyday problems have been modeled in graphs in order to be solved
afterwards. Graph theory is now used in many sciences, such as chemistry,
physics or biology. Graph theory is also widely used in sociology as a way, for
example, to measure actors’ prestige or to explore rumor spreading, notably
through the use of social network analysis software. Under the umbrella of
social networks are many different types of graphs. Acquaintanceship and
friendship graphs describe whether people know each other. Influence graphs
model whether certain people can influence the behavior of others. Finally,
collaboration graphs model whether two people work together in a particular
way, such as acting in a movie together, etc.

Definition 1.2. Two vertices, let x and y, of a graph G are called adjacent
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Chapter 1 1.1. Graph theory

when the edge that joins them exists.

The edge of a graph is denoted by e = (x, y), where x and y are the vertices
it connects and are called endpoints. The edges can be directed (asymmetric)
or undirected (symmetric). A distinction is made between undirected graphs,
where edges link two vertices symmetrically, and directed graphs, where edges
link two vertices asymmetrically. The definitions are given for greater preci-
sion.

Definition 1.3. A graph G = (V,E) is called directed if the set of edges E is
ordered, i.e. the edges have an orientation.

Definition 1.4. A graph G = (V,E) is called undirected if the edges have no
orientation. The edge (a, b) is identical to the edge (b, a), that is, there are no
ordered pairs.

Figure 1.1: Example of a directed graph and an undirected graph
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Chapter 1 1.2. Computational complexity

1.2 Computational complexity

The Complexity Theory is a key building block of algorithm analysis and
central domain of computer science. Historically, the English mathematician
Alan Turing is considered the ”father of computer science”, thanks to his
enormous contribution to the field of the theory of computation during the
1930s, but also or artificial intelligence, thanks to the test Turing, which he
proposed in 1950. One way to experimentally determine whether one machine
has authentic cognitive abilities and can think. Ηe finally gave the previously
informal concept of an algorithm a formal, mathematical formulation through
the Turing Machine.

As we said in the previous section, graph theory is used to solve problems
that can be represented by a graph. To solve these problems it is important to
have efficient algorithms. In computer science, the computational complexity
or simply complexity of an algorithm is the amount of resources required to
run it. Particular focus is given to computation time (generally measured by
the number of needed elementary operations) and memory storage require-
ments. The complexity of a problem is the complexity of the best algorithms
that allow solving the problem.

Definition 1.5. In mathematics and computer science, an algorithm is a finite
sequence of rigorous instructions, typically used to solve a class of specific
problems or to perform a computation.

We are mainly interested in the efficiency of the algorithm in terms of its
execution time. More simply we are interested in algorithms running fast.

Definition 1.6. The computational complexity or running time of a deter-
ministic turing machine M is the function f : N → N, where f(n) is the
maximum number of steps that M can take, when given an input size n.

So the running time directly depends on the number of iterations of the
algorithm and on the size of the input. According to the asymptotic analysis
to calculate the computational complexity the fastest time is polynomial for
each size of the input O(nc), for some c. In the diagram below we can see
different forms of algorithm running times, noting that an algorithm is effi-
cient when it has polynomial time andO(1) is the best, since has constant time.

7



Chapter 1 1.3. Graph realization problem

Figure 1.2: Running time complexity

1.3 Graph realization problem

In order to be able to study the problem, it is necessary to give some useful
definitions that exist in graph theory. So we have that the degree of a vertex
of a graph is the number of edges that are incident to the vertex. The degree
of a vertex v is denoted deg(v) or degv. The maximum degree of a graph G
denoted by D(G), and the minimum degree of a graph, denoted by d(G), are
the maximum and minimum of its vertices’ degrees. The degree sequence of a
graph is a non-increasing degree sequence and is denoted (d1, . . . , dn), where
d1 > · · · > dn.

8



Chapter 1 1.3. Graph realization problem

Figure 1.3: Vertex degrees example

In Figure 1.3 we can see an example of a simple, undirected graph G, in
which holds that deg(1) = 2, deg(2) = 3, deg(3) = 2, deg(4) = 1 and deg(5) =
2. This means that the maximum degree of the graph is 3, i.e. D(G) =
deg(2) = 3. Respectively, the minimum degree of the graph is 1, i.e. d(G) =
deg(4) = 1.

One of the oldest problems in graph theory is the Degree Sequence
Realizability, where it is a decision problem.This problem has received a
great deal of attention in recent years, due to its importance in applications
such as wireless sensor networks and structural biology. Given a degree se-
quence (d1, . . . , dn) of positive integers, the problem asks whether there is an
undirected simple graph such that (d1, . . . , dn) is the degree sequence of this
graph. A decision problem is a computational problem that can be posed as
a yes–no question and therefore in this case, we are asked to answer whether
there is one or more graphs that have the sequence of degrees given in the
problem.

The problem can be solved in polynomial time. One method to show this
uses the Havel-Hakimi algorithm [23, 26], constructing a special solution with
the use of a recursive algorithm. Alternatively, following the characterization
given by the Erdös-Gallai theorem [19], the problem can be solved by testing

9



Chapter 1 1.3. Graph realization problem

the validity of n inequalities.

Figure 1.4: Example of graph realization problem

An example is given in Figure 1.4 for convenience. Given a sequence of
positive integer degrees, we need to decide whether there is a simple undirected
graph that has this degree sequence. In the example there is indeed such a
graph as shown in the figure. The data we have from the sequence is that
we must have 3 vertices with degree 2. This graph is the complete K3 graph.
Obviously there are also sequences that we cannot represent with a graph.
If we had, for example, the sequence (4, 3, 2), then there would be no graph,
since the sequence requires that we have only 3 vertices and one of them must
have degree 4. This is impossible since there are not that many vertices to
connect with the one that needs degree 4.
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CHAPTER2
Extensions of Graph
Realization Problem

While the realizability problem of degree sequences has been studied for
different classes of graphs, there has been relatively work concerning the realiz-
ability of others types of information profiles, such as the vertex neighborhood
profiles. There are now many extensions and variations of this problem, such
as restrictions on degrees and distances between vertices. More specifically,
we have studied problems where we choose the maximum degree in vertex
neighborhood or the minimum degree and problems where we have a whole
n×n matrix, instead of a sequence of degrees. This paper focuses on studying
these problems.

2.1 Graph Realization of Distance Sets

In this chapter we study a different case of graph realization, called Distance
realization problem and defined as follows.

Definition 2.1. Given a n × n matrix D of non negative integers, find an
n-vertex weighted or unweighted graph G realizing D, i.e., whose inter vertex
distances satisfy distG(i, j) = Di,j for every 1 ≤ i < j ≤ n (where distG(i, j)
is the distance of vertices i and j in G), or decide that no such realizing graph
exists.

What is the difference between weighted and unweighted graph?

• A weighted graph is a graph in which a number (the weight) is assigned
to each edge. Such weights might represent for example costs, lengths
or capacities, depending on the problem at hand.

11



Chapter 2
2.2. Maximum Neighborhood Degree Realization

Problem

• In an unweighted graph, all edges are equal and there’s no specific cost
associated with moving from one vertex to another.

The problem was studied for general weighted and unweighted graphs, as
well as for cases where the realizing graph is restricted to a specific family
of graphs such as trees, paths, bipartite graphs, cycles and others. Even
in this problem there are extensions and variations that have been studied.
More specifically when each entry in the matrix D can contain a range of
allowed values. We refer to this extension as Range Distance Realization (or
Range-DR). Limiting each range to at most k values results the problem k-
Range Distance Realization (or k-Range-DR). One more extension of Distance
Realization is when each entry Di,j of the matrix may contain an arbitrary set
of acceptable values for the distance between i and j, for every 1 ≤ i < j ≤ n.
We refer to this extension as Set Distance Realization (or Set-DR). Limiting
each entry to at most k values, the problem k-Set Distance Realization (or
k-Set-DR) arises. [11]

The difference with the previous problems is that here the given profile is
an n × n matrix D such that each entry Di,j ∈ N ∪ {∞}, for 1 ≤ i < j ≤ n,
and Di,i = {0} for every 1 ≤ i ≤ n. A graph G = (V,E) is a realization of
D if distG(i, j) = Di,j , for every 1 ≤ i < j ≤ n, where distG(i, j) denotes
the distance between i and j in G. Here, we are interested in two types
of realizing graphs, the unweighted Distance Realization and the weighted
Distance Realization.

Observe that an unweighted realizing graph is fully determined by D. The
edge (i, j) exists in the graph if and only if Di,j = 1. This means that every
edge of the realizing graph is of length 1. On the contrary in weighted Distance
Realization the edges of the realizing graph may have any positive integral
lengths.

2.2 Maximum Neighborhood Degree Realization
Problem

In this section we study a special case of information profiles, concerning
neighborhood degree. Such profiles are of theoretical interest in context of
social networks. The natural problem in this direction concern the maximum
degrees in the vertex neighborhoods. More specifically for each vertex i, let
di denote the maximum vertex degree in i’s neighborhood. So we have that

12



Chapter 2
2.2. Maximum Neighborhood Degree Realization

Problem

MaxNDeg(G) = (d1, . . . , dn) is the maximum neighborhood degree profile of
G.

As before, so here too, we are concerned with the following central question.

Question 1. Given a sequence D = (d1, . . . , dn) of non-negative integers, is
there a simple graph with vertices v1, . . . , vn such that for every i ∈ [1, n], the
maximum degree in the neighborhood of vi is exactly di?

To be able to study this problem and for simplicity, we will represent the
input vector D in a more compact form as σ = (dnl

l , . . . , dn1
1 ), where ni is a

non-negative integer for each 1 ≤ i ≤ l and

l∑
i=1

ni = n

The graph G must contain exactly ni vertices whose maximum degree in
their neighborhood is di. Moreover, we assume that dl > dl−1 > · · · > d1 ≥ 1.
Note that d1 cannot be zero because then we would have n1 vertices with
maximum neighborhood degree equal to zero, i.e. we would have n1 isolated
vertices, but then the graph would not be connected and we would treat them
separately.

There are two scenarios we study regarding the neighborhood of vertices.

• The first is the scenario of the closed neighborhoods, wherein a vertex
belongs to its own neighborhood.

• The second is the scenario of the open neighborhoods, wherein a vertex
is not counted in its own neighborhood.

13



Chapter 2
2.2. Maximum Neighborhood Degree Realization

Problem

Figure 2.1: Max-neighboring-degree realization of profile:(i) σ = (34, 21) with
respect to closed neighborhood, and (ii) σ = (33, 22) with respect to open
neighborhood.

The graph in the Figure 2.1 depicts a MaxNDeg realization of (34, 21)
as MaxNDeg(a), MaxNDeg(b), MaxNDeg(c) and MaxNDeg(d) are all
equal to deg(a) = 3 and MaxNDeg(e) = deg(d) = 2. However, it is a
MaxNDeg− realization of (33, 22) because MaxNDeg−(b), MaxNDeg−(c)
and MaxNDeg−(d) are all equal to deg(a) which is 3 and MaxNDeg−(a) =
MaxNDeg−(e) = deg(d) = 2.

For greater convenience and understanding we will now give some defini-
tions, which we will also need in our work.

2.2.1 Definitions and Notation

Let H be a simple undirected graph. We define all of the following.

• Denote by V (H) (respectively, E(H)) the vertex (respectively, edge) set
of H.

• For a vertex v ∈ V (H), let degH(v) denote the degree of v in H.

• For a set W ⊆ V (H), denote by H[W ] the subgraph of H induced by
the vertices of W .

• For a set W ⊆ V (H) and a vertex v ∈ V (H), denote by W ∪v and W \v,
respectively, the sets W ∪ {v} and W \ {v}.

14



Chapter 2
2.2. Maximum Neighborhood Degree Realization

Problem

• Let NH(v) = {u|(v, u) ∈ E(H)} be the open neighborhood of v in H
and let NH [v] = {v} ∪ {u|(v, u) ∈ E(H)} be the closed neighborhood of
v in H.

• For a vertex v ∈ H, let MaxNDegH(v) denote the maximum de-
gree among all the vertices in the closed neighborhood of v, and let
MaxNDegH

−(v) denote the maximum degree among all the vertices in
the open neighborhood of v.

We are now in a position to formally define the concept of realizable profiles.

Definition 2.2. Let σ = (dnl
l , . . . , dn1

1 ) be a profile satisfying dl > dl−1 >
· · · > d1 > 0 and let n = n1 + · · ·+ nl.

Definition 2.3. The profile σ is said to be MaxNDeg realizable if there exists
an n-vertex graph G that for each i ∈ [1, l] contains exactly ni vertices whose
MaxNDeg is di. Equivalently, |{v ∈ V (G) : MaxNDeg(v) = di}| = ni.

Definition 2.4. The profile σ is said to be MaxNDeg− realizable if there
exists an n-vertex graph G that for each i ∈ [1, l] contains exactly ni vertices
whose MaxNDeg− is di. Equivalently, |{v ∈ V (G) : MaxNDeg−(v) =
di}| = ni.
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2.3. Minimum Neighborhood Degree Realization

Problem

2.3 Minimum Neighborhood Degree Realization
Problem

In this unit we introduce and study the minimum degree in vertex neigh-
borhood profile as it is one of the most common extensions of the classi-
cal degree profile to vertex neighboring degree profiles. Given a graph G =
(V,E), the min-degree of a vertex v ∈ V , namely MinNDeg(v), is given by
min{deg(w)|w ∈ N [v]}. Our input is again a sequence σ = (dnl

l , . . . , dn1
1 ),

where di+1 > di and each ni is a non-negative integer. For each vertex i,
we again define di as the minimum vertex degree in i’s neighborhood. The
same realizability questions asked above for degree sequences can be posed for
minimum neighborhood degree profiles as well. This brings us to the following
central question of our work.

Question 2. Given a sequence D = (d1, . . . , dn) of positive integers. Is there
a graph G of size n such that the minimum degree in the neighborhood of the
i-th vertex in G is exactly equal to di?

As in the maximum neighborhood degree, here too we will denote the
input D in a more compact form as σ = (dnl

l , . . . , dn1
1 ), where ni’s are positive

integers with
∑l

i=1 ni = n. The profile σ is said to be MinNDeg realizable
if there exists an n-vertex graph G such that |{v ∈ V (G) : MinNDeg(v) =
di}| = ni, namely, G contains exactly ni vertices whose MinNDeg is di, for
every i ∈ [1, l].

We again define two types of neighborhood, the closed neighborhood and
the open neighborhood, with the difference that now we choose the minimum
degree of the vertices in the neighborhood. An example is given for better
understanding.

But first we note that as before, for the maximum degree, so here, the same
definitions and notations apply respectively.
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Chapter 2 2.4. Related Work

Figure 2.2: Min-neighboring-degree realization of profile:(i) σ = (23, 12) with
respect to closed neighborhood, and (ii) σ = (24, 11) with respect to open
neighborhood.

The graph in the Figure 2.2 depicts a MinNDeg realization of (23, 12) as
MinNDeg(a),MinNDeg(b) and MinNDeg(c) are all equal to deg(b) = 2 and
MinNDeg(d) = MinNDeg(e) = deg(e) = 1. However, it is a MinNDeg−

realization of (24, 11) because MinNDeg−(b),MinNDeg−(c),MinNDeg−(a)
and MinNDeg−(e) are all equal to deg(c) which is 2 and MinNDeg−(d) =
deg(e) = 1.

2.4 Related Work

Variations of these problems have been studied over the years, so it makes
sense that there are many works related to this work in the literature. So in
this section we mention a few similar works.

2.4.1 Graph Realization of Distance Sets

For example, an optimization variant of Distance Realization problem was
introduced in [24]. In this problem, a distance matrix D is given over a set
S of n vertices and the goal is to find a graph G including S, with possibly
auxiliary vertices, that realizes the given distance matrix of S. It is also shown
in [18] that an optimal realization can have at most n4 vertices, and therefore
there is a finite time algorithm to find an optimal realization. In [3] it is shown
that finding optimal realizations of distance matrices with integral entries is
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NP-complete.

Over the years, various heuristics for optimal realizations were considered
[31, 33]. Since optimal realization seems hard even to approximate, special
cases and other variations have been studied[21, 16]. Also special attention
has been given to the optimal distance realization problem where the realiz-
ing graph is a tree. An O(n2) time algorithm for optimal tree-realization is
described in [17].

2.4.2 Maximum and Minimum Neighborhood Degree Realiza-
tion Problems

For both problems there is a large number of related questions, were consid-
ered in the literature, e.g., finding all the non -isomorphic graphs that realize
a given degree sequence D, counting all non-isomorphic realizing graphs of D,
sampling a random realization of D as uniformly as possible and determin-
ing the conditions under which a given D defines a unique realizing graph[10].
These realization questions are well-studied. Also degree realization with given
constraints on some vertex was studied in [27]. For parallel and distributed
realizations of degree sequences see [4, 5].

Graphic sequences were studied also on specific graph families, such as
trees (see [22]), bipartite graphs [14, 34], planar graphs [1, 30], split graphs
[25, 32], chordal, interval and perfect graphs [15].

The MaxNDeg and the MinNDeg realization problems have not been
explored so far. Neighborhood lists and neighborhood degree lists were con-
sidered in [2, 13]. In these profiles, each vertex i is associated with the
list of degrees of all vertices in its neighborhood. A related problem is the
shotgun assembly problem [28], where the characteristic associated with the
vertex i is some description of its neighborhood up to radius r. Several other
realization problems are mentioned in [8, 9].
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CHAPTER3
Graph Realization of
Distance Sets

In this chapter we study a well-known problem in graph theory, called graph
realization of distance sets. We are interested in studying two types of realizing
graphs. More specifically the unweighted and weighted graphs. In unweighted
Distance Realization it is assumed that each edge of the realizing graphs is of
length 1. In weighted Distance Realization the edges of the realizing graph
may have any positive integer lengths.

Observe that an unweighted realizing graph is fully determined by D,
because the edge (i, j) exists in the graph if and only if Di,j = 1. Is is
obvious that there is only one graph that can be the realizing graph. This
was observed by Hakimi and Yau [24], who provided a characterization for
distance realization by unweighted graphs, implying also a polynomial-time
algorithm for unweighted DR.

Hakimi and Yau [24] also studied weighted DR. They proved that the
necessary and sufficient condition for the realizability of a given matrix D
is that D is a metric. Moreover, they gave a polynomial time algorithm that
computes a realization for any given metric distance matrix. More specifically,
their algorithm constructs a minimum edge realizing graph whose edges are
necessary in every realization of D.

A natural extension of Distance Realization is when each entry in the dis-
tance matrix may contain a range of consecutive values instead of a single
value. Tamura et al. obtained necessary and sufficient conditions for the real-
izability of a range distance matrix by weighted graphs, generalizing the results
of [24] from precise to range specifications. A polynomial time algorithm for
weighted Range-DR was given in [29]. The unweighted version of Range-DR
was shown to be NP-hard in [12], where it was also shown that if the realizing

19



Chapter 3

graph is required to be a tree, then both the unweighted and weighted versions
of Range-DR are NP-hard.

One of the main questions studied in this chapter involves the effect of
limiting the number of values in each entry of the matrix D. This question is
equally interesting for Set-DR and Range-DR. Given an integer k, we say that
the matrix D is a k-set distance matrix if |Di,j | ≤ k for every 1 ≤ i < j ≤ n. A
distance matrix D is a k-range distance matrix if Di,j is a range that contains
at most k consecutive values for every 1 ≤ i < j ≤ n.

In this chapter we study the computational complexity of k-Set-DR and
k-Range-DR, as a function of k, in various graph families.

First of all, in [12] it is proved the hardness results for Range-DR by trees
and unweighted graphs reveals that 3-Range-DR is NP-hard over these graph
families, implying that 3-Set-DR is NP-hard as well. We modify the reductions
from [12] to show that 2-Range-DR is NP-hard for general unweighted graphs,
where precise realization is known to be polynomial [24]. For general weighted
graphs, it is already known that Range-DR is computationally easy[29]. On
the hardness side, we show that Set-DR is NP-hard for weighted stars already
with 6-set distance profiles. We obtain slightly tighter results for paths and
cycles, for which both unweighted and weighted Set-DR are NP-hard already
with 5-set distance profiles. Our hardness results are based on reduction from
the 3−Colorability problem [11]. However, the reductions are not similar.
More specifically, in the case of weighted stars, the possible colors of a vertex
are encoded in the distance matrix by possible edge weights. Also, in the case
of weighted and unweighted paths, the colors are encoded by vertices and their
location on the path. Finally, the hardness result for 5-Set-DR on the cycle is
obtained by a reduction from 5-Set-DR on the path.[11]

Definition 3.1. Suppose we have a graph G with n vertices, where there is at
most one edge between any two vertices. The goal is to color the graph so that
no two adjacent vertices are colored with the same color.

We also show that 2-Set-DR is polynomial time solvable for stars and paths.
Our realization algorithms are based on a reduction of the 2-SAT problem,
which can be solved in linear time[20]. The idea is to use one vertex i0 as a
point of reference for all other vertices. A Boolean variable bj is associated
with each vertex j and determines which of the two values of Di0,j should be
used. The 2-SAT problem is constructed according to the rest of the entries of
D. Applying this approach for stars is rather straightforward, but it becomes
more complicated for paths.
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3.1 Realizations by Unweighted General Graphs

For general graphs, recall that the range realization problem in weighted
graphs has a polynomial time algorithm. We show an NP-hardness result for
Range-DR by unweighted graphs, even for 2-range distance profiles.

Theorem 3.1. [11] 2-Range-DR is NP-hard in unweighted general graphs

Proof. To be able to prove this theorem, we will use a reduction from the
3-coloring problem.

Figure 3.1: An example of the reduction for n = 4. White, purple and green
correspond to nodes n+ 1, n+ 2 and n+ 3, respectively

To begin with, we will consider a random graph G that is 3-colorable and
then we will try to construct a 2-range distance matrix D for n+3 vertices, i.e.
for the vertex set {u1, . . . , un+3}. For greater convenience, we will consider
for the initial n vertices the set Vorig = {u1, . . . , un}, as representing the
original vertices of the given graph G, and for the 3 additional vertices we will
consider the set Vcol = {un+1, un+2, un+3}, as representing the three colors.
So the matrix can take the following values.

Di,j =


{1}, i = n+ 1, . . . , n+ 3, j = n+ 1, . . . , n+ 3
{1, 2}, i = 1, . . . , n, j = n+ 1, . . . , n+ 3
{2, 3}, 1 ≤ i < j ≤ n, (vi, vj) /∈ E(G)
{3}, 1 ≤ i < j ≤ n, (vi, vj) ∈ E(G)
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Now we will show that the input G is 3-colorable if and only if D is realized
by an unweighted graph.

We first assume that G is 3-colorable. So we define the coloring function
as follows, x : V (G) 7→ {1, . . . , 3}. For the matrix D defined by G, we will
construct a realizing graph G′ as follows. We will start by creating a triangle
containing the color vertices i.e., un+1, un+2, un+3. Connect each original ver-
tex ui to the color vertex un+x(i). It is easily proved that G′ realizes D (see
Figure for an example).

For the other direction, we assume that there is an unweighted graph G′

which realizes the matrix D. For every two original vertices ui and uj , since
1 /∈ Di,j , it follows that these two vertices ui and uj are not connected by an
edge. Therefore, certainly, every original vertex ui must be connected to at
least one of the three colored vertices. We define the color function of G as
follows. For every original vertex ui, let n + c, i.e. vcol, be some color vertex
connected to ui, and also let x(vi) = c. Since 1, 2 /∈ Di,j , if any two vertices
vi and vj are connected by an edge in G, then their distance in G′ must be
at least 3. This makes us sure that none of the color vertices are connected
to both ui and uj (as this would make their distance 2). It follows that if
(vi, vj) ∈ E(G), then vi and vj are assigned different colors.

In the next theorem we generalize the idea of theorem 3.1 from the 3-
coloring to the k-coloring and prove the NP-hardness of the Range-DR in
unweighted graphs. Also, it is proved that 2-Set-DR is NP-hard in unweighted
and weighted trees[11].

Theorem 3.2. [12] The unweighted distance-range realization problem DIST([
],U) is NP-hard.

Proof. We will prove that the problem is NP-hard using a reduction from the
coloring problem.
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Chapter 3 3.1. Realizations by Unweighted General Graphs

Figure 3.2: An example of the reduction for n = 4. White, purple and green
correspond to nodes n+ 1, n+ 2 and n+ 3, respectively.

Consider an instance (G, k) of the coloring problem, namely, an unweighted
undirected graph G and an integer k, where it is required to decide whether
G can be colored with k or fewer colors. Let D be a distance matrix for
n+ k + 1 vertices, i.e., {1, . . . , n+ k + 1}. We define the first n vertices of D
Vorig = {1, . . . , n}, as representing the original n vertices of the graph G, and
also we define the k vertices of D, Vcol = {n + 1, . . . , n + k}, as representing
the colors, and we defined the last vertex n+ k + 1 as coordinator.

First we will set some requirements on the colored vertices and the coor-
dinator. More specifically, let Dn+l,n+k+1 = 1 (i.e., all colored vertices with
the coordinator) for every 1 ≤ l ≤ k and Dn+l,n+r = 2 (i.e., all the color
vertices between them) for every 1 ≤ l < r ≤ k. This allows only one possible
realization for the subgraph induced by the vertices Vcol ∪ {n+ k + 1}, i.e., a
star rooted at n+ k + 1 and there are no edges between the leaves.

Then for the connection between the original vertices and the star, we
define the distance constraints as follows. Let Di,n+k+1 = 2 (i.e., all the orig
vertices with the coordinator) for every 1 ≤ i ≤ n and Di,n+l = [1, 3] (i.e., the
orig with the colored vertices) for every 1 ≤ l ≤ k. This forces each of the
original vertices to be connected to one (or more) of the color vertices, but
not to the coordinator.

Finally, we define the distance for every two original vertices 1 ≤ i < j ≤ n,
as follows
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Figure 3.3: An example of the realization graph satisfying the distance con-
straints, i.e. Dn+l,n+k+1 = 1 and Dn+l,n+r = 2.

Di,j =

{
{4}, (vi, vj) ∈ E(G)
{2, 4}, (vi, vj) /∈ E(G)

Now it suffices to prove that the input G is k-colorable if and only if the
distance matrix D is realizable.

The first direction is when G is k-colorable. We define the colors as 1, . . . , k
and let x : V (G) 7→ {1, . . . , k} be the coloring function. Now for the matrix
D defined from G, construct a realizing graph G′ as follows. Start with a star
rooted at n+k+1 with the k color vertices n+1, . . . , n+k as leaves. Connect
each original vertex i to the color vertex x(i). It is easy to verify that G′ is a
realization for the matrix D.

In the other direction, we assume that D has a realization G′. It is im-
portant to note that the constraints of D force the color vertices to form a
star rooted at n+ k + 1. Note also that each of the original vertices must be
connected to at least one of the leaves of the star. We will define a coloring
function for G′ as follows. For every original vertex i, let l be some color vertex
connected to i, and let x(i) = l. Also the distance constraints defined for the
original vertices specify that if two original vertices i and j are connected by
an edge in G, then their distance must be 4. This makes us sure that none
of the color vertices are connected to both i and j, because this would make
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their distance 2, so i and j would not be connected in G. It is easy to verify
that if (i, j) ∈ E then i and j get different colors.

3.2 Star Realizations

In this section we study Set-DR in stars. We show that there exists a
polynomial time algorithm that solves 2-Set-DR in stars and we present a
polynomial time algorithm that solves k-Range-DR on weighted stars, for any
k. We also show that 6-Set-DR on weighted stars is NP-hard.[11]

We note that 2-Set-DR can be solved efficiently.

Theorem 3.3. [11] There exists a polynomial time algorithm for 2-Set-DR
on stars.

Proof. Assume that i is the center of the star. It follows that the weight of
any edge (i, j), for every i ̸= j can be either d0i,j or d1i,j . Now we define a

Boolean variable xj , where xj=False if the weight of the edge (i, j) is d0i,j and

xj=True if the weight is d1i,j . The rest of the entries of D are used to create
a 2-SAT that is efficient if and only if there exists a star realization of D in
which i is the center.

Consider two vertices j, k ̸= i. Since there are two possible weights for the
edges (i, j) and (i, k) it is clear that there are 4 possible distances from j to k.

• d0i,j + d0i,k

• d0i,j + d1i,k

• d1i,j + d0i,k

• d1i,j + d1i,k

For each one of the above 4 options, check whether it equals d0j,k or d1j,k.
This induces a truth table on the variable xj and xk that can be represented
by at most two 2-SAT. Doing this for all pairs of vertices creates a 2-SAT that
contains at most O(n2) clauses by merging all the above mentioned clauses.

Suppose that there exists a star realization P of D with i as a center. This
induces an assignment to the variables Boolean that satisfies the 2-SAT. On
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the other side, assume that the 2-SAT that is obtained by assuming that i is
the center is satisfiable. A satisfying assignment induces a star, which complies
with the profile.

Of course, since there are n candidates for the center vertex, we need to
run the above process n times. It is easy to verify that the total running time
is O(n3).

We note here that the running time for unweighted case can be improved
to O(n2).[11]

Theorem 3.4. [11] There exists a polynomial time algorithm for k-Set-DR
on unweighted stars, for any k.

Proof. It is obvious that all distances in an unweighted star are either 1 or 2,
one may assume that Di,j ⊆ {1, 2}, for every i ̸= j.

Figure 3.4

The theorem follows due to the Theorem 3.3.
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Now we show that the star realization problem is NP-hard for 6-Set-DR.[11]

Theorem 3.5. [11] 6-Set-DR is NP-hard on weighted stars.

Proof. To be able to prove thε theorem, we will use a reduction from the
3-coloring problem.

Figure 3.5: An example of the reduction in the proof of Theorem for n = 4.
White, purple and green corresponds to the weights of the edges of the star.
Edges without a label are of weight 1.

First of all, we will consider a graph G, where V (G) = {v1, . . . , vn}. We
construct a distance matrix D on n + 3 vertices, denoted by {u1, . . . , un+3}.
Informally, the distance matrix is defined to force the vertex un+1 to be the
center of the star, while the other two vertices un+2 and un+3 must be two of
the leaves whose distance from the center is exactly 1. The rest of the vertices,
u1, . . . , un that are associated with the n vertices v1, . . . , vn of G, are leaves
whose distance from the center is either 1,2 or 4. The idea is that distance 2c

is associated with the color c (i.e., 0,1 or 2). The distances between these n
leaves is defined so as to assure us that the two endpoints of any edge of G are
associated with different colors, if a realization exists. More specifically, the 6-
set distance matrixD is defined as follows for any two indices 1 ≤ i < j ≤ n+3.
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Di,j =



{3, 5, 6}, i, j ≤ n, (vi, vj) ∈ E(G)
{2, 3, 4, 5, 6, 8}, i, j ≤ n, (vi, vj) /∈ E(G)
{1, 2, 4}, i ≤ n, j = n+ 1
{2, 3, 5}, i ≤ n, j = n+ 2, n+ 3
{1}, i = n+ 1, j = n+ 2, n+ 3
{2}, i = n+ 2, j = n+ 3

We will show that G is 3-colorable if and only if D is realizable by weighted
star.

We first suppose that G is 3-colorable and let x : V (G) 7→ {0, 1, 2} is the
coloring function of G. We will describe a star realization G′. First of all,
let un+1 be the center of the star. The two vertices un+2 and un+3 are leaves
such that w(un+1, un+2) = w(un+1, un+3) = 1. Next, for every i ∈ {1, . . . , n},
if x(vi) = c, then w(un+1, ui) = 2x(vi). It is easy to verify that G′ realizes D.
Moreover, we observe that the first requirement of D is satisfied, since x is a
3-coloring.

In the opposite direction, we consider that G′ is a star realization of D.
We notice that the above distance matrix makes sure that un+2, un+1, un+3

form a path with two edges of weight 1. So, un+1 must be the center of the
star. We define a coloring x of V (G) according to the weights of the edges to
the center: x(vi) = log2w(un+1, ui). Hence, x is a proper 3-coloring, since the
firste requirement of D ensures that W (un+1, ui) ̸= w(un+1, uj) if (vi, vj) ∈ E.
This is true because 2 = 1 + 1, 4 = 2 + 2 and 8 = 4 + 4 are not members of
3, 5, 6 which are the possible distances between ui and uj . (See Figure 3.5)

In [12] it was shown that there exists a polynomial time algorithm that
solves the Range-DR on a given fixed weighted tree, assuming that non-integral
edges weights are allowed.

3.3 Path Realizations

In this section we study the realization of distance profiles by paths. We
first show that Range-DR is NP-hard in weighted and unweighted paths and
also show that Set-DR on paths is NP-hard, even on 5-set distance profiles.[11]

Before looking at the first theorem, it would be good to give a basic def-
inition that is used. In the mathematical field of graph theory, the term
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Hamiltonian path means that in a graph there is a path that passes through
each vertex exactly once. Μore formally the definition is given below.

Definition 3.2. A Hamiltonian path or traceable path is a path that visits
each vertex of the graph exactly once. A graph that contains a Hamiltonian
path is called a traceable graph. A graph is Hamiltonian-connected if for every
pair of vertices there is a Hamiltonian path between the two vertices.

Figure 3.6: An example of a traceable graph, as it contains a Hamiltonian
path, i.e. for instance the path 1 → 2 → 8 → 7 → 6 → 5 → 4 → 3.

Range-DR in weighted paths was shown to be NP-hard in [12] using a
reduction from the Linear Arrangement problem. However, this result also
applies to unweighted paths. It is important to note that the reduction con-
structs a matrix with unlimited ranges.[11]

Theorem 3.6. [11] Range-DR is NP-hard in both weighted and unweighted
paths

Proof. We will prove the theorem using a reduction from Hamiltonian Path.
Given a graph G, construct the following distance matrix

Di,j =

{
{1, . . . , n− 1}, (vi, vj) ∈ E(G)
{2, . . . , n− 1}, (vi, vj) /∈ E(G)

So, if G has a Hamiltonian path, then this path induces a realization of D.
On the other hand, a realization of D corresponds to a Hamiltonian path in
G.

29



Chapter 3 3.3. Path Realizations

Next it turns out that the 5-Set-DR is NP-hard on paths.

Theorem 3.7. [11] 5-Set-DR is NP-hard in unweighted and weighted paths

Proof. To be able to prove thε theorem, we will use a reduction from the
3-coloring problem.

Figure 3.7: An example of the reduction in the proof of Theorem 3.5. White,
purple and green are colors 0,1 and 2, respectively. The location of full nodes
correspond of the full nodes correspond to the chosen colors.

First of all, we will consider a G where V (G) = {v1, . . . , vn}. We construct
a matrix D on 3n + 2 vertices , which we will denoted {u0, . . . , u3n+1}. We
consider that the vertices u3i−2, u3i−1, u3i represent the vertex vi in the original
graph and also the location of u3i−2 encoded the color of vi. Moreover the
vertices u0 and u3n+1 are the end-points of the path.
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More formally, for every x, we define x ≜ ⌈x/3⌉. The matrix is defined as
follows for any two vertices 0 ≤ i < j ≤ 3n+ 1.

Di,j =



{3n+ 1}, i = 0, j = 3n+ 1
{3j̄ − 2, 3j̄ − 1, 3j̄}, i = 0, j̄ ∈ {1, . . . , n}
{3n− 3̄i+ 1, 3n− 3̄i+ 2, 3n− 3̄i+ 3}, ī ∈ {1, . . . , n}, j = 3n+ 1
{1, 2}, ī = j̄
{3(j̄ − ī) + ∆ : ∆ ∈ {−2,−1, 0, 1, 2}}, ī < j̄, imod 3 ̸= 1

or j mod 3 ̸= 1
or (vī, vj̄) /∈ E(G)

{3(j̄ − ī) + ∆ : ∆ ∈ {−2,−1, 1, 2}}, ī < j̄, i, j mod 3 = 1,
(vī, vj̄) ∈ E(G)

We will show that the G is 3-colorable if and only if D is realizable using
an unweighted path.

Firstly, assume that G is 3-colorable and let x : V (G) 7→ {1, . . . , 3} be the
coloring function of G. We will consider a path realization as a placement of
the vertices on integral points from 0 to 3n + 1. Intuitively, u0 is placed on
0 and u3n+1 is placed on 3n + 1. Now, for every i ∈ {1, . . . , n}, if x(vi) = c
then u3i−2 is placed at location 3i − 2 + c. So, the vertices u3i−1 and u3i are
placed at the two remaining free locations from {3i− 2, 3i− 1, 3i}. It is easy
to verify that P realizes D.

Now in the opposite direction, we consider that P is a path realization of
D. First of all, we must be sure that the distance between u0 and u3n+1 is
exactly 3n+1. Obviously, all the other distances are strictly less than 3n+1.
So, if a path realization exists, then we may assume without loss of generality
that u0 is placed on 0 and u3n+1 is placed on 3n+ 1. In the weighted case, it
follows that all other vertices are located at {1, . . . , 3n}, which means that all
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edges are of unit length. Since the distances between u3i−2, u3i−1 and u3i are 1
or 2, for every i ∈ {1, . . . , n}, these three nodes are forced to appear as a sub-
path of P consisting of two edges. Moreover, the required distances from u0
and u3n+1 forces u3i−2, u3i−1 and u3i to be assigned to the three consecutive
positions 3i-2,3i-1,3i on the path. We will define a coloring x according to
the positions of {u3i−2 : i ∈ {1, . . . , n}}, i.e., x(vi) = c if u3i−2 is located at
3i− 2+ c. Then x is a 3 coloring, since the last requirement of D ensures that
x(vi) ̸= x(vj) if (vi, vj) ∈ E.

3.4 Cycle Realizations

Theorem 3.8. [11] There exists a polynomial time algorithm for 2-Set-DR
on weighted and unweighted cycles.

We start the section with a hardness proof that requires unlimited ranges.

But first we must note that the term Hamilton cycle means that in the
graph there is a cycle that visits each vertex once. More formally we will give
the definition as follows.

Definition 3.3. A Hamiltonian cycle, Hamiltonian circuit, vertex tour or
graph cycle is a cycle that visits each vertex exactly once. A graph that contains
a Hamiltonian cycle is called a Hamiltonian graph.

Theorem 3.9. [11] Range-DR is NP-hard in both weighted and unweighted
cycles

Proof. We will prove the theorem using a reduction from Hamiltonian Cycle.
Given a graph G, construct the following distance matrix.

Di,j =

{
{1, . . . , ⌊n/2⌋}, (vi, vj) ∈ E(G)
{2, . . . , ⌊n/2⌋}, (vi, vj) /∈ E(G)

If G has a Hamiltonian cycle, then this cycle induces a realization of D.
On the other side, a realization of D corresponds to a Hamiltonian cycle in G.
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Figure 3.8: An example of a Hamiltonian graph, as it contains a Hamiltonian
cycle, i.e. for instance the cycle 2 → 3 → 4 → 5 → 6 → 7 → 8 → 1 → 2.

Now we show that 5-Set-DR on cycles is NP-hard, using the reduction from
the problem on paths, where the required end points of the paths are given in
the input.[11]

Theorem 3.10. [11] 5-Set-DR is NP-hard in unweighted and weighted cycles

Proof. To be able to prove the theorem we will use a reduction from the
Set-DR in unweighted paths.

Let D be a 5-set distance matrix and the required end-points of the path
are given in the input. We will add 3n vertices n+1, . . . , 4n, unit weight edges
between i and i+ 1, for i ∈ {n, . . . , 4n− 1} and the unit weight edge (4n, 1).
Now, given a matrix D with dimensions n×n, we construct a matrix D′ with
dimensions 4n× 4n, as follows.

D′
i,j =


Di,j , 1 ≤ i, j ≤ n
min{(j − i), (4n− j + i)}, n < i < j ≤ 4n
{min{(j − δ − 1), (4n+ 1− j + δ)} : δ ∈ Di,1, 1 ≤ i ≤ n,

n < j ≤ 4n

We assume without loss of generality that δ ∈ Di,1 if and only if n−1− δ ∈
Di,n.
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Chapter 3 3.4. Cycle Realizations

Figure 3.9: Realization of the reduction from the path realization to cycle. The
line between u1 and un corresponds to the location of the original vertices.

The first direction is that D is realizable. Then, D′ is realizable by using a
cycle of total length 4n, where the vertices u1, . . . , un are placed at positions
1, . . . , n as they are placed in the path realization. And each vertex ui, for
every i > n is placed at location i.

The other direction is that D′ is realizable, and assume that u1 and un are
placed at locations 1 and n on the cycle. It follows that each vertex ui, for
every i > n is located at i. In this case, D can be realized by the arc from 1
to n.
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CHAPTER4
Maximum Degree in Vertex
Neighborhoods

In many application domains involving networks, it is common to view
vertex degrees as a central parameter, providing useful information concerning
the relative significance of each vertex with respect to the rest of the network.
Given an n-vertex graph G with adjacency Adj(G), its degree sequence is a
sequence consisting of its vertex degrees, Deg(G) = (d1, . . . , dn). So, given a
graph G or its adjacency matrix, it is easy to extract the degree sequence. A
sequence for which there exists a realization is called a graphic sequence[10].
Havel and Hakimi [23, 26] designed an efficient algorithm that given a sequence
of integers computes a realizing graph, if such a graph exists.

4.1 Realizing maximum closed neighborhood degree
profiles

In this section we provide a characterization of MaxNDeg profiles. For
example, we discuss the uniform scenario of σ = (dk). We can easily observe
that a star graph K1,d is MaxNDeg realization of the profile (dd+1). By the
term K1,d we mean the bipartite graph defined as follows.

Definition 4.1. In the mathematical field of graph theory, a bipartite graph
(or bigraph) is a graph whose vertices can be divided into two disjoint and
independent sets U and V , that is, every edge connects a vertex in U to one in
V . Vertex sets U and V are usually called the parts of the graph. Equivalently,
a bipartite graph is a graph that does not contain any odd-length cycles.

Now, we will show in the following lemma that, by identifying together
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Chapter 4 4.1. Realizing maximum closed neighborhood degree profiles

vertices in different copies of K1,d, it is possible to realize the profile (dk),
whenever k ≥ d+ 1.

Lemma 4.1. [10] For any positive integers d, k > 1, the profile σ = (dk) is
MaxNDeg realizable whenever k ≥ d + 1. Also, we can always compute in
O(k) time a connected realization that has an independent set, let S, of size d
such that all vertices in S have degree at most 2, and at least two vertices in
S have degree 1.

Proof. Let a be the smallest integer such that k ≤ 2 + a(d − 1). We con-
struct a caterpillar (A caterpillar is a tree in which all the vertices are within
distance one of a central path) T as follows. Firstly, take a path P =
(s0, s1, . . . , sa, sa+1) of length a+1. Connect each internal vertex si, i ∈ [1, a],
with a set of d− 2 new vertices, so that the degree of si is d. It is important
to note that the MaxNDeg of each vertex v ∈ T is d.

Figure 4.1: A caterpillar for d = 5 and a = 3. If k = 12, then r = 2 and we
merge (i)s11, s

1
2 and (ii)s21, s

2
2.

If k = 2 + a(d − 1), then T is our required realizing graph. Now, if
k < 2 + a(d − 1), then a ≥ 2 since k ≥ d + 1. The ”problem” now is that T
has too many vertices. Let r = 2 + a(d− 1)− k denote the number of excess
vertices in T that need to be removed. Observe that r ≤ d − 2 as otherwise
we could decrease a by 1. Now, the r vertices can be removed, if we take
any two distinct internal vertices si and sj on P and let (s1i , . . . , s

d−2
i ) and

(s1j , . . . , s
d−2
j ), respectively denote the neighbors of si and sj not lying on P .

Now let G be the graph obtained by merging vertices sli and slj into a single
vertex for l ∈ [1, r]. Since the number of vertices was decreased by r, then G
contains exactly n vertices. The degree of vertices s1, s2, . . . , sa remains d and
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Chapter 4 4.1. Realizing maximum closed neighborhood degree profiles

the degree of all other vertices is at most 2, therefore MaxNDeg(v) = d for
every v ∈ G. So G is a realizing graph of the profile σ.

Finally, in the graph G, the end points of P , i.e. s0 and sa+1, have degree 1
and there are d−2 other vertices, let (s1i , . . . , s

d−2
i ), that have degree bounded

by 2. So we set S to these d vertices. It is easy to observe that S is an
independent set and indeed the total time to compute it, is O(k).

4.1.1 An incremental procedure for computing MaxNDeg re-
alizations

Algorithm 1: AddLayer (H,L, k, d).

1 Let the list L be (a1, a2, . . . , ad−1).
2 Add to H a set W = w1, . . . , wk of k new vertices.
3 case (k < d) do
4 Set count = k and i = d− 1.
5 while (count > 0) do
6 Let r = min{d− deg(ai), count}.
7 Add edges (ai, wcount−t) to H for t ∈ [0, r − 1].
8 Decrement i by 1 and count by r.

9 end
10 foreach j ∈ [d− 1, . . . , 2, 1] do
11 If deg(ai) = d then break them for loop.
12 If (j < i) then add edge (aj , a− i) to H.
13 If (j > i) then add an edge between ai and an arbitrary vertex

in N(aj) ∩W .

14 end
15 Set L to be prefix of (w1, w2, . . . , wk, a1, a2, . . . , ai−1 of size d− 2.

16 end
17 case (k ≥ d) do
18 Use Lemma 4.1 to compute over independent set (W ∪ {a1}) the

graph, say H̄, realizing the profile (dk+1) such that degH̄(a1) = 1.
19 Add edges between a1 and arbitrary d− deg(a1) vertices in

{a2, . . . , ad−1}.
20 Let b1, . . . , bd−1 ∈ H̄ \ a1 be such that

1 = degH̄(b1) ≤ · · · ≤ degH̄(bd−1) ≤ 2.
21 Set L = (b1, b2, . . . , bd−2).

22 end
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Below we analyze the procedure AddLayer, that is very useful in building
graph realizations in a decreasing order of maximum degrees. Given a con-
nected graph H and integers d and k satisfying d ≤ 2 and k ≤ 1, the procedure
adds to H a set W of k new vertices such that MaxNDeg(w) = d for each
w ∈ W . The pseudocode is given above for the procedure AddLayer.

• Procedure AddLayer[10]:
The input to procedure AddLayer(H,L, k, d) is a connected graph H
and a list L = (a1, . . . , ad−1) of vertices in H whose degree is bounded
above by d−1. First of all, to algorithm adds to H a set of k new vertices
W = w1, . . . , wk. So, the new vertices are connected to the vertices of
L and to themselves so as to ensure that MaxNDeg(w) = d for every
w ∈ W . Now there are two different cases.

Firstly, we take the case k < d. In this case we add edges from ver-
tices in W to a subset of vertices from L such that those vertices in
L will have degree d and so will imply MaxNDeg(w) = d, ∀w ∈
W . We consider two variables, count and i, respectively to k and
d − 1. The variable count holds the number of vertices in W that
still need to be connected to vertices in L. While count > 0 the
procedure does the following steps. Firstly, compute r = min{d −
deg(ai), count}, the maximum number of vertices in W that can be con-
nected to vertex ai. Secondly, connect ai to following r vertices in W ,
i.e. wcount−(r−1), wcount−(r−2), . . . , wcount−1, wcount. And finally, decrease
count by r and i by 1.

Now, when count = 0 the vertices ai, ai+1, . . . , ad−1 are connected to at
least one vertex in W . It is clear that deg(ad−1) = deg(ad−2) = · · · =
deg(ai+1) = d and deg(ai) ≤ d. Since the input graph H was connected,
in the beginning of the execution deg(ai) ≥ 1 and by connecting ai to
at least one vertex in W , more specifically to w1, its degree is increased
at least by one. Therefore, at most d − 2 edges need to be added to
ai to ensure us that its degree is exactly d. The procedure does the
following operation for each j ∈ [d− 1, d− 2, . . . , 2, 1] until deg(ai) = d.
If j < i then add edge (aj , ai) to H and if j > i then add an edge
between ai and an arbitrary neighbor of aj lying in W . Since deg(ai) =
deg(ai+1) = · · · = deg(ad−1) = d and deg(w) ≤ 2, ∀w ∈ W , it follows
thatMaxNDeg(w) = d,∀w ∈ W . Finally, we set a new list L containing
the first d − 2 vertices in the sequence (w1, w2, . . . , wk, a1, a2, . . . , ai−1).
This can become since k + i− 1 ≥ d− 2 because d− i ≤ k.

Now we take the case k ≥ d. The procedure uses Lemma 4.1 to compute
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over the independent set W ∪ {a1} a graph realizing the profile (dk+1)
(denoted H̄ ), such that degH̄(a1) = 1. We note that in the beginning of
the execution, deg(a1) ∈ [1, d−1] and it is increased by one by adding H̄
over the set W ∪{a1}. Therefore deg(a1) ∈ [2, d]. To ensure deg(a1) = d,
at most d − 2 more edges need to be added to a1. Edges are added
between a1 and any d − deg(a1) vertices in set {a2, a3, . . . , ad−1}. This
makes us sure that every w ∈ W hasMaxNDeg(w) = d. By Lemma 4.1,
H̄\{a1} contains an independent set of d−1 vertices, say b1, ..., bd−1 such
that 1 = degH̄(b1) ≤ · · · ≤ degH̄(bd−1) ≤ 2. In the end, the procedure
creates a new list L = (b1, b2, . . . , bd−2).

It is obvious that the running time of procedure AddLayer is O(k+d).[10]

For greater understanding and convenience, we denote by Hold, Lold, Hnew

and Lnew respectively the graph and the list before and after the execution of
procedure AddLayer.

The next two lemmas result from the description of the algorithm.

Lemma 4.2. [10] Each w ∈ W satisfies MaxNDeg(w) = d and N(w) ⊆
W ∪ Lold.

Lemma 4.3. [10] Each a ∈ Lold \ Lnew satisfies degHnew(a) ≤ d and each
a ∈ Lold ∩ Lnew satisfies degHnew(a) ≤ degHold

(a) + 1.

The inheritance property We have shown above that given an independent
list of d− 1 vertices of degree at most d− 1 in a graph H, we can add k ≥ 1
vertices to H such that the MaxNDeg of these k vertices is d. In order to use
this algorithm to add vertices of smaller MaxNDeg values we require that the
list Lnew, computed by procedure AddLayer, should satisfy the next three
constraints. First, the size of Lnew should be d − 2. Second, the vertices of
Lnew should form an independent set and third, the vertices in Lnew should
have degree at most d− 2.

In order to make sure these constraints on Lnew, we impose the constraint
that the list Lold is a valid list. Given formally the definition.

Definition 4.2. A list L = (a1, a2, . . . , at) in a graph G is said to be valid
with respect to G if the following two conditions hold.

1. For each i ∈ [1, t], deg(ai) ≤ i.

2. The vertices of L form an independent set in G.
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Lemma 4.4. [10] If the input list Lold in procedure AddLayer is valid, then
the output list Lnew is valid as well.

Proof. First of all, we take the case k ≤ d−1. Let i be the smallest index such
that vertices ai, ai+1, . . . , ad−1 are adjacent to some vertex of W in Hnew. Note
that in the graph Hnew, w1 ∈ W is a neighbor of ai. Moreover, to increase
the degree of ai to d, we connect ai to some or all vertices in a1, . . . , ai−1

and some or all neighbors of ai+1, . . . , ad−1 lying in W . So the vertex set
W ∪ {a1, . . . , ai−1} is independent in Hnew. Also its size is at least d − 1,
since we showed that k ≥ d− i. Since the list Lold = (a1, a2, . . . , ad−1) is valid
in the beginning of the execution of procedure Addlayer, it results that in
Hold, deg(aj) ≤ j,∀j ∈ [1, d−1]. So by Lemma 4.3, in Hnew we have deg(aj) ≤
j+1,∀j ∈ [1, i− 1]. Also by construction we have deg(w1) = 1 and the degree
of every vertex in W \w1 is at most 2. Since deg(aj) ≤ j+1,∀j ∈ [1, i−1], the
list (w1, . . . , wk, a1, . . . , ai−1) is valid and has length at least d−1. Truncating
this to length d− 2 again gives us a valid list.

We now take the case k ≥ d. Note again that we use Lemma 4.1 to
compute over the independent setW∪{a1} a graph realizing the profile (dk+1).
Graph H[W ∪{a1}] contains an independent set {b1, . . . , bd−1} ⊆ W such that
deg(b1) = 1 and for j ∈ [2, d−1], deg(bj) ≤ 2. So, (b1, . . . , bd−2) is the required
valid list in Hnew.

In the next sentence, we summarize what we have said so far.

Proposition 4.1. For every integers d ≥ 2, k ≥ 1, and every connected graph
H containing a valid list L of size d− 1, procedure AddLayer adds to H in
O(k + d) time, a set W of k new vertices such that MaxNDeg(w) = d,∀w ∈
W . All the edges added to H lie in L × (W ∪ L). Also degH(a) ≤ d,∀a ∈ L
and the updated graph remains connected and contains a new valid list of size
d− 2.

4.1.2 The main algorithm

We will present the main algorithm for computing the realizing graph using
procedure AddLayer.[10]

Let σ = (dnl
l , . . . , dn1

1 ) be any profile satisfying dl ≤ nl − 1 and d1 ≥ 2.
The construction of a connected graph realizing σ is as follows. We need the
Lemma 4.1 to set G to be the graph realizing the profile (dnl

l . Note that G
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contains an independent set, let W = {w1, w2, . . . , wdl}, which satisfies the
condition that the degree of the first two vertices is 1. Also the degree of the
other vertices is at most 2. Now, holds that Ll−1 = (w1, w2, . . . , wdl−1−1) and
recall that dl−1 − 1 ≤ dl. It is obvious that this list is valid.

Now, we note that ∀i = l − 1 to 1, make the following steps.

1. Execute procedure AddLayer (G,Li, ni, di) on the valid list Li of size
di − 1 to add a set of ni new vertices to G. The procedure returns a
valid list Li−1 if size di − 2.

2. Truncate the list Li−1 to contain only the first di−1−1 vertices. The list
remains valid since any prefix of a valid list is always valid.

Algorithm 2: MaxNDeg realization of σ = (dnl
l , . . . , dn1

1 ).

input : A sequence σ = (dnl
l , . . . , dn1

1 ) satisfying dl ≤ nl − 1 and
d1 ≥ 2.

1 Initialize G to be the graph obtained from Lemma 4.1 that realizes the
profile (dnl

l ).
2 Let Ll−1 be a valid list in G of size dl−1 − 1.
3 for (i = l − 1 to 1) do
4 Li−1 → AddLayer(G,Li, ni, di).
5 Truncate list Li−1 to contain only the first di−1 − 1 vertices.

6 end
output: G.

Now, we will prove the correctness.[10]

Let Vl be the set of vertices in graph initialized i step 1. For every i ∈
[1, l−1] let Vi be the set of ni new vertices added to the graph in iteration i of
the for loop. Moreover ∀i ∈ [1, l] let Gi denote the graph induced by vertices
Vi ∪ · · · ∪ Vl. The lemma below finally proves the correctness.

Lemma 4.5. [10] For every i ∈ [1, l], Gi is a MaxNDeg realization of profile
(dnl

l , . . . , dni
i ) and for every j ∈ [i, l] and v ∈ Vj , degGi(v) ≤ MaxNDegGi(v) =

dj .

Proof. In order to prove the claim, we use the inductions on the iterations of
the for loop. The main case is for index l, and using Lemma 4.1, we have that
degGl

(v) ≤ MaxNDegGl
(v) = dl,∀v ∈ Vl. For the step which is inductive, we
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consider that the claim holds for i + 1 and we prove the claim for i. Let any
vertex v in Gi. So, we have two different cases.

1. ∀v ∈ Vi In this case we have that degGi(v) ≤ MaxNDegGi(v) = di by
using Proposition 4.1.

2. ∀v ∈ Vj , where j > i For every vertex w ∈ NGi [v], degGi(w) ≤ dj .
If w ∈ Vi, then we have already proved that degGi(w) ≤ di. There-
fore, we assume the case w ∈ Vi+1 ∪ · · · ∪ Vl. So, if w ∈ Li partic-
ipates in procedure AddLayer (G,Li, ni, di), and by Proposition 4.1,
in the updated graph degGi(w) ≤ di ≤ dj . Now, if w /∈ Li, the de-
gree of w is fixed in the ith iteration and degGi(w) = degGi+1(w) ≤
MaxNDegGi+1(v) = dj . So, MaxNDeg(v) remains fixed thanks to
iteration i and MaxNDegGi(v) = MaxNDegGi+1(v) = dj .

Since, for every j ∈ [i, l],MaxNDegGi(v) = dj , we take that Gi is a
MaxNDeg realization of profile (dnl

l , . . . , dni
i ).

The running time of the algorithm isO(
∑l

i=1(ni+di)) and this is optimal.[10]

Indeed, every connected graph realizing σ must contain Ω(n1+n2+· · ·+nl)
edges, since the degrees of all vertices must not be zero. Moreover, the graph
must contain at least one vertex of each of the degrees d1, d2, . . . , dl and must
also have Ω(d1 + d2 + · · · + dl) edges. Any realizing graph must contain
Ω(

∑l
i=1(ni + di)) edges and the running time must be at least Ω(

∑l
i=1(ni +

di)).

From what we have mentioned so far the following theorem follows.

Theorem 4.1. [10] There exists an algorithm where;
Given any profile σ = (dnl

l , . . . , dn1
1 ) satisfying dl ≤ nl−1 and d1 ≥ 2 computes

in optimal time a connected MaxNDeg realization of σ.

4.1.3 A full characterization for MaxNDeg realizable profiles

In this subsection we will first see the necessary conditions for MaxNDeg
realizability.

Lemma 4.6. [10] A necessary condition for a profile σ = (dnl
l , . . . , dn1

1 ) to
be MaxNDeg realizable is dl ≤ nl − 1.
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Proof. We consider that σ is MaxNDeg realizable by a graph G. So, G
must contain a vertex, let w, of degree dl. Since, dl is the maximum degree
in G, the MaxNDeg of all the dl + 1 vertices in N [w] must be dl. Therefore,
nl ≥ dl + 1.

Now if we consider a profile σ = (dnl
l , . . . , dn1

1 ) realizable by a connected
graph. If we take the case d1 = 1, then the graph must contain a vertex, let w,
of degree 1. And also the vertices in his closed neighborhood, i.e. N [v], must
have degree 1. It is easy to verify that the only realizable graph is a single
edge graph on two vertices, i.e. σ = (12). Now, for d1 ≥ 2, then by Lemma
4.6, for any σ to be realizable in this case we need that nl ≥ dl+1. Moreover,
using the Theorem 4.1, under these two conditions σ is always realizable.

Theorem 4.2. [10] A profile σ = (dnl
l , . . . , dn1

1 ) is MaxNDeg realizable by
a connected graph if and only if one of the following holds.

1. dl ≤ nl − 1 and d1 ≥ 2 or

2. σ = (12), i.e. d1 = 1.

Note that in the case where d1 = 1, then n1 must be even, since the vertices
v with MaxNDeg(v) = 1 must form a disjoint union of exactly n1/2 edges.

Theorem 4.3. [10] A profile σ = (dnl
l , . . . , dn1

1 ) is MaxNDeg realizable by
a general graph if and only if dl ≤ nl − 1 and holds one of the following.

I. n1 is even or

II. d1 ≥ 2.

4.2 Realizing maximum open neighborhood degree
profiles

This problem of open neighborhoods is not too different from the previous
problem of the closed neighborhoods and we can deal with it with similar
techniques. However, open neighborhoods have some technical issues. Note
that in the incremental algorithm we saw in the previous section, we use
both degree one as well as higher degree vertices of the partially constructed
graph to obtain a MaxNDeg realization. The number of degree one vertices
available to work with is smaller for a MaxNDeg profile. To handle this, we
modify our approach and introduce the pseudo-valid lists.[10]
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4.2.1 Pseudo-valid list

In this section we will first give some lemmas which are an extension of
Lemma 4.1 and Proposition 4.1 presented in the previous section forMaxNDeg
profiles.

Lemma 4.7. [10] For every positive integers d and k, the profile σ = (dk)
is MaxNDeg− realizable whenever k ≥ d+ 2. Also, we can compute in O(k)
time a connected realization that contains an independent set having, first, two
vertices of degree 1, and second, d− 2 other vertices of degree at most 2.

Proposition 4.2. For every integers d ≥ 2, k ≥ 1 and every connected graph
H containing a valid list L of size d − 1, procedure Addlayer adds to H a
set W of k new vertices such that MaxNDeg−(w) = d,∀w ∈ W , in O(k+ d)
time. All the edges added to H lie in L× (W ∪L). Also, degH(a) ≤ d,∀a ∈ L
and the updated graph remains connected and contains a new valid list of size
d− 2.

It is necessary to note that the Proposition 4.2 holds for the open neigh-
borhoods and can not be used to incrementally compute the realizations. For
example, for σ = (ddl+1

l ) unlike the scenario of MaxNDeg realization, there
is no MaxNDeg− realization that contains a valid list. For this reason we
define pseudo-valid lists.

Definition 4.3. A list L = (a1, a2, . . . , at) in a graph H is said to be pseudo-
valid with respect to H if,

1. for each i ∈ [1, t], deg(ai) = 2 and

2. the vertices of L form an independent set.

It is easy to verify that the only deviation that prevents L from being a
valid list is that deg(a1) = 2 instead of 1.

Lemma 4.8. [10] For every two integers d > d̄ ≥ 2, the profile σ = (dd, d̄1)
is MaxNDeg− realizable. Also, in O(d) time we can compute a connected
realization that contains a valid list of size d− 1.

Proof. We need to construct the graph G. So, we consider a vertex z and
connect it to d−1 other vertices v1, . . . , vd−1. We consider now another vertex,
say y, and connect to v1, . . . , vd̄−1. Moreover connect z to the vertex y. In the
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graph G, we have that deg(z) = d, deg(y) = d̄ and deg(vi) ≤ 2,∀i ∈ [1, d− 1].
Note that vd−1 is not adjacent to y, since d̄ < d, so deg(vd−1) = 1. It is easy to
verify that MaxNDeg−(z) = d̄,MaxNDeg−(y) = d and MaxNDeg−(vi) =
d,∀i ∈ [1, d−1]. Therefore, the list (vd−1, . . . , vd̄−1, . . . , v2, v1) is valid inG.

Lemma 4.9. [10] For every integer d ≥ 2, the profile σ = (dd=1) is
MaxNDeg− realizable. Also, a connected realization that contains an in-
dependent set having d− 1 vertices of degree 2 can be computed in O(d) time.
However, none of the graphs realizing σ can contain a vertex of degree 1.

Proof. We follow a similar construction for the graph G as in the previ-
ous lemma. We consider two vertex sets, let U = {u − 1, u2} and W =
{w1, . . . , wd−1}. We add to G the edge (u1, u2) and for every i ∈ [1, d − 1],
add to G the edges (u1, wi) and (u2, wi). This procedure makes us sure that
deg(u1) = deg(u2) = d and deg(wi) = 2,∀i ∈ [1, d − 1]. Now, the graph
G contains d + 1 vertices with MaxNDeg− equal to d. Moreover, W is an
independent set of size d− 1 in G and deg(wi) = 2, ∀wi ∈ W .

Next, we consider any MaxNDeg− realizing graph, say H, of σ. The
graph H must contain two vertices, let x and y, of degree d, since a single
vertex of degree d in H makes us sure that MaxNDeg− = d for at most d
vertices. We note that N [x] = N [y], since otherwise H will contain more than
d+ 1 vertices. So all the vertices other x and y are adjacent to both x and y.
Therefore, every vertex in H must have at least degree 2.

In the next lemma we show that AddLayer outputs a valid list, even when
the input list is pseudo-valid.[10]

Lemma 4.10. [10] In procedure AddLayer the list Lnew is valid list, even
when the list Lold is pseudo-valid and the parameter d satisfies d ≥ 3.

Proof. We will use the proof of Lemma 4.4. We have again two different cases
depending on whether or not k < d. Firstly, we take the case k ≤ d− 1. It is
valid from Lemma 4.4 that (w1, . . . , wk, a1, . . . , ai−1) is a valid list of length at
least d− 1 when degHold

(a1) = 1. We take the case when Lold is pseudo-valid
and degHold

(a1) = 2. The list Lnew is still valid if k ≥ 2 since the degree of
a1 in Hnew is at most 3 and the position in Lnew is 3 or greater. So the case
is k = 1. In this case i = d − 1, since the only vertex w1 belonging to W is
connected to ad−1 in Algorithm 1. Moreover, degHold

(ad−1) = 2 and ad−1 is
connected to vertex w1, so to makes us sure that deg(dd−1) = d. Since ad−1 is
never connected to vertex a1, degHnew(a1) = degHold

(a1) = 2. This shows that
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the sequence (w1, . . . , wk, a− 1, . . . , ai−1) = (w1, a1, . . . , ad−2) is a valid list of
length d − 1. Truncating it to length d − 2 results a valid sequence. In case
k ≥ d, a′1s degree does not play role, therefore the argument from Lemma 4.4
works as it is.

Remark 4.1. The condition d ≥ 3 is very important in Lemma 4.10 because
in a pseudo-valid list all the vertices have degree exactly 2. However, procedure
AddLayer works only in the case when the degree of each vertex in the list
is at most d − 1, which does not be true for a pseudo-valid list when d = 2.
Therefore, we give a different method for the profile (dd=1, 2k).

4.2.2 MaxNDeg− realization of the profile σ = (dd+1, 2k)

The next lemmas shows that σ = (dd+1, 21) is not MaxNDeg− realizable
when d ≥ 3, but σ = (dd+1, 2k) is MaxNDeg− realizable when d ≥ 3 and
k ≥ 2.[10]

Lemma 4.11. [10] For any integer d ≥ 3, the profile σ = (dd+1, 21) is not
MaxNDeg− realizable.

Proof. We first assume that σ is MaxNDeg− realizable by a graph G. Also
we consider a vertex w ∈ V (G), such that MaxNDeg−(w) = 2. The graph
must contain at least 2 vertices, let x and y, of degree d, since a single vertex
of degree d can guarantee MaxNDeg− of d for at most d vertices in the graph.
We take the next 2 cases.

1. N [x] = N [y] In this case the MaxNDeg− of all vertices in N [x] =
N [y] is at least d ≥ 3, since they are adjacent to one of the vertices
x or y. So, w /∈ N [x], which implies that V (G) = N [x] ∪ {w}, since
|N [x]| = d + 1 and |V (G)| = d + 2. Moreover, w cannot be adjacent to
any vertex in N [x], because if w is adjacent to a vertex w0 ∈ N [x], then
deg(w0) = 3, in contradiction to the assumption MaxNDeg−(w) = 2.
Therefore, the only possibility left is that w is a singleton vertex, which
is a contradiction.

2. N [x] ̸= N [y] In this case the vertex set of G is equal to N [x]∪N [y] since
his size must be at least d+ 2 and is also at most |V (G)| = d+ 2. This
means that all the vertices of G are adjacent to one of the vertices x or
y, which contradicts the fact that MaxNDeg−(w) = 2, since deg(x) =
deg(y) = d ≥ 3.
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Lemma 4.12. [10] For any integers d ≥ 3 and k ≥ 2, the profile (dd+1, 2k)
is MaxNDeg− realizable. Also, we can compute a connected realization in
O(d+ k) time.

Proof. We have to construct the graph G. We consider a vertex u1 and con-
nect it to d other vertices v1, . . . , vd. Next, consider another vertex u2 and
connect it to vertices v2, . . . , vd, and a new vertex vd+1. Finally we take a path
(a1, a2, . . . , aa) on a = k−2 new vertices and connect a1 to vd+1. In the graph
holds that deg(u1) = deg(u2) = d and deg(vi), deg(aj) ≤ 2,∀i ∈ [1, d+ 1] and
j ∈ [1, k−2]. Now, the vertices u1, u2 have maximum degree in their neighbor-
hood 2, so MaxNDeg−(u1) = MaxNDeg−(u2) = 2, i.e. (22). Every vertex
vi is adjacent to u1, u2,∀i ∈ [1, d+1], so its MaxNDeg− is d, i.e. (dd+1). And
the MaxNDeg− of vertices on the path (a1, a2, . . . , aa) is 2, i.e. (2

k−2), since
they have a neighbor of degree 2.

4.2.3 The main algorithm

We give instructions for the construction of a graph realizing the profile
σ = (dnl

l , . . . , dn1
1 ) ̸= (ddl+1

l , 21) that satisfies that dl ≤ min{nl, n − 1} and

d1 ≥ 2, where n = n1 + · · ·+ nl. If σ is equal to (ddl+1
l , 2k) for any k ≥ 2, we

use Lemma 4.12 to realize σ.

If not, we realize the graph G differently as follows (see Algorithm 3 below
for the pseudocode).

1. If nl ≥ dl + 2, we use Lemma 4.7 to initialize G to be a MaxNDeg−

realization of the profile (dnl
l ). Note that G contains an independent set,

let W = {w1, . . . , wdl}, satisfying the case that the degree of the first 2
vertices is 1 and the degree of the remaining vertices is at most 2. We
consider Ll−1 to be the list (w1, . . . , wdl−1−1). It is obvious that this list
is valid.

2. If nl = dl + 1, then a realization of (ddl+1
l does not contains a valid

list. Therefore we use Lemma 4.9 to initialize G to be a MaxNDeg−

realization of the profile (ddl+1
l ) that contains a pseudo-valid list. We

showed thatG contains an independent set, letW = {w1, w2, . . . , wdl−1},
such that degree of each w ∈ W is 2. We set Ll−1 to be the list
(w1, w2, . . . , wdl−1−1).
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3. If nl = dl, then the sequence (ddll ) is not realizable. Therefore we initial-
ize G to be the graph realization of (dnl

l , dl−1) as obtained from Lemma
4.8. We consider Ll−1 to be a valid list in G of size dl−1 − 1 and we
reduce nl−1 by 1, since G contain a vertex with MaxNDeg− = dl−1.

Now, ∀i = {l − 1, . . . , 1} we make the following steps.

1. We take as an input the valid list Li of size di−1 and execute procedure
AddLayer (G,Li, ni, di) to add ni new vertices to G. The procedure
returns a valid list Li−1 of size di − 2.

2. Truncate list Li−1 to contain only the first di−1 − 1 vertices. The list
now remains valid since it is a prefix of a valid list.

Correctness Let V̄l be the set of vertices in graph G initialized in each
step of the 3 cases for the value of nl, i.e. in steps 6, 10 and 14, of Algorithm
3. For every i ∈ [1, l − 1], let V̄i be the set of new vertices added to graph G
in iteration i of for loop. For every i ∈ [1, l], let Gi be the graph induced by
vertices V̄i ∪ · · · ∪ V̄l.

We note that if nl = dl, then the graph is initialized in the first step of
the case where nl = dl, i.e. in step 14, and contains nl + 1 vertices , of which
one vertex, let z has MaxNDeg−(z) = dl−1 and the other vertices have
MaxNDeg− = dl. If nl = dl, then let Z = {z}, differently Z = ∅. We set
Vl = V̄l \Z, Vl−1 = V̄l−1 ∪Z and Vi = V̄i,∀i ∈ [1, l− 2]. So |Vi| = ni,∀i ∈ [1, l].

In [10] is given a Lemma which proves the correctness (we will omit it).
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Algorithm 3: MaxNDeg− realization of σ = (dnl
l , . . . , dn1

1 ).

input : A sequence σ = (dnl
l , . . . , dn1

1 ) ̸= (ddl+1
l , 21) satisfying d1 ≥ 2

and dl ≤ min{n− 1, nl}.
1 if σ = (ddl+1

l , 2k) for some k ≥ 2 then
2 Use Lemma 4.12 to compute a realization G for profile σ.
3 end
4 else
5 case nl ≥ dl + 2 do
6 Let G be graph obtained from Lemma 4.7 that realizes profile

(dnl
l ).

7 Set Ll−1 to be a valid list in G of size dl−1 − 1.

8 end
9 case nl = dl + 1 do

10 Let G be graph obtained from Lemma 4.8 that realizes profile

(ddl+1
l ).

11 Set Ll−1 to be a pseudo-valid list in G of size dl−1 − 1.

12 end
13 case nl = dl do
14 Let G be graph obtained from Lemma 4.9 that realizes profile

(ddll , dl−1).
15 Set Ll−1 to be a valid list in G of size dl−1 − 1.
16 Decrement nl−1 by 1.

17 end
18 for (i = l − 1 to 1) do
19 Li−1 → AddLayer (G,Li, ni, di).
20 Truncate list Li−1 to contain only the first di−1 − 1 vertices.

21 end

22 end
output: G.
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4.2.4 A full characterization for MaxNDeg− realizable profiles

At this point we will give some basic and sufficient conditions for a profile
to be MaxNDeg− realizable.

Lemma 4.13. [10] A necessary condition for the profile σ = (dnl
l , . . . , dn1

1 )
with n = n1 + · · ·+ nl to be MaxNDeg− realizable is dl ≤ min{nl, n− 1}.

Proof. Consider that σ is MaxNDeg− realizable by a graph H. So there
exists at least 1 vertex, let u of degree dl in the graph. Thus, |N(u)| = dl and
|N [u]| = dl + 1, which means that the number of vertices in the graph with
MaxNDeg− = dl must be at least dl, so nl ≥ dl. Moreover, the number of
vertices in H, i.e. n, must be at least dl + 1.

We suppose a profile σ = (dnl
l , . . . , dn1

1 ) realizable by a graph G. If d1 = 1
then the realizing graph must contain a vertex, let x, such that each vertex
in N(x) has degree 1. Let deg(x) = d and v1, . . . , vd be the neighbors of x.
Then deg(v1) = · · · = deg(vd) = 1. Therefore in this case the realizing graph
is a star k1,d with MaxNDeg− profile σ = (dd, 11). Now, if d1 ≥ 2 then
by Lemma 4.13, for σ to be realizable, we need that dl ≤ min{nl, n − 1}.
Lemma 4.11 makes us sure that σ must not be (dd+1, 21), but we know that
σ is always realizable.[10]

Theorem 4.4. [10] A profile σ = (dnl
l , . . . , dn1

1 ) ̸= (dd+1, 21) with n =
n1+ · · ·+nl is MaxNDeg− realizable by a connected graph if and only if one
of the following holds.

1. dl ≤ min{nl, n− 1} and d1 ≥ 2 or

2. σ = (dd, 11) for some positive integer d > 1 or

3. σ = (12).

For general graphs holds the next theorem.

Theorem 4.5. [10] A profile σ is MaxNDeg− realizable by a general graph
if and only if σ can be split into two profiles σ1 and σ2 such that both of the
following holds.

1. σ1 has a connected MaxNDeg− realization and

2. σ2 = (12a) or σ2 = (dd, 12a+1) for some integers d ≥ 2, a ≥ 0.
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4.3 Counting the numbers of realizable sequences

We denote CCon(n) and OCon(n) the number of length n sequences
that are MaxNDeg and MaxNDeg−, respectively, realizable by a connected
graph. Also, we again denote as CGen(n) and OGen(n) the number of length
n sequences that are MaxNDeg and MaxNDeg−, respectively, realizable by
a general graph. The following theorem summarizes the results. [10]

Theorem 4.6. [10] For n ≥ 5 holds that,

1. CCon(n) = 2n−3

2. OCon(n) = 2n−2 − 1

3. CGen(n) = 2n−1+(−1)n

3

4. ⌈2n−2
3 ⌉ − ⌈n−4

2 ⌉ ≤ OGen(n) ≤ 2n−1 − 1

First of all, we note that there are (n − 1)n sequences of length n on the
integers 1, . . . , n−1. We want to count the number of non-increasing sequences,
denoted by Sn. Let f(i, j, k) be the number of non-increasing sequences of
length k on the integers i, . . . , j. So, by definition, we have that Sn = f(1, n−
1, n).

Proposition 4.3. f(i, j, k) =

(
k + j − i

k

)
.

4.3.1 Connected graphs in the closed neighborhood profile

As we mentioned in Theorem 4.2, σ = (dnl
l , . . . , dn1

1 ) ∈ Sn can be realized
with a connected graph in the closed neighborhood if and only if one of the
following holds.

• n ≥ 3, dl ≤ nl − 1 and d1 ≥ 2 or

• n = 2 and σ = (12), i.e. d1 = 1.

Lemma 4.14. [10] CCon(2) = 1 and CCon(n) = 2n−3,∀n ≥ 3.

Proof. By the first part of characterization, we consider that n ≥ 3 and let
d = dl. By the second part, the first d = 1 values in every realizable sequence
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must be d. The sequence of length n− d− 1 is non increasing on the numbers
2, . . . , d. By the definition of f , for i = 2, j = d and k = n − d − 1 and by
Proposition 4.3 we have the number of such sequences.

f(2, d, n− d− 1) =

(
(n− d− 1) + d− 2

n− d− 1

)
=

(
n− 3
d− 2

)
The value of d ranges from 2 to n− 1. So, the total number is

CCon(n) =
n−1∑
d=2

(
n− 3
d− 2

)

Now, we set i = d− 2 and finally we have,

n−3∑
i=0

(
n− 3
i

)
= 2n−3

Example 4.1. We give an example for the 4 and 8 MaxNDeg realizable
sequences of length 5 and 6 with connected graphs.

Length 5 : (45), (35), (34, 2), (25).

Length 6 : (56), (46), (45, 3), (45, 2), (36), (35, 2), (34, 22), (26).

4.3.2 Connected graphs in the open neighborhood profile

As we mentioned in Theorem 4.4, σ = (dnl
l , . . . , dn1

1 ) ∈ Sn can be realized
with a connected graph in the open neighborhood if and only if one of the
following holds.

• n = 2 and σ = (12) or

• n ≥ 3 and σ = ((n1)
n−1, 11), i.e. a star graph, or

• n ≥ 3, dl ≤ nl, d1 ≥ 2 and σ ̸= ((n− 2)n−1, 21).

Lemma 4.15. [10] OCon(2) = 1,OCon(3) = 2,OCon(4) = 4 and OCon(n) =
2n−2 − 1, ∀n ≥ 5.
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In [10] there is the proof of the Lemma 4.15, but we will omit it. However,
as shown in the proof, it is easy to verify that OCon ≈ 2 ∗CCon. This is due
to the looser constraints.

Example 4.2. We give an example for the 7 and 15 MaxNDeg− realizable
sequences of length 5 and 6 with connected graphs.

Length 5 : (44, i),∀i ∈ {4, 3, 2, 1},
(35), (33, 22), (25).

Length 6 : (55, i),∀i ∈ {5, 4, 3, 2, 1},
(44, i, j), ∀i, j ∈ {4, 3, 2},
(36), (35, 2), (34, 22), (33, 23), (26).

4.3.3 General graphs in the closed neighborhood profile

As we mentioned in Theorem 4.3, σ = (dnl
l , . . . , dn1

1 ) ∈ Sn can be realized
with a general connected graph in the closed neighborhood if and only if one
of the following holds.

• n ≥ 2, dl ≤ nl − 1 and d1 ≥ 2 or

• n ≥ 2, dl ≤ nl − 1 and n1 is even.

Lemma 4.16. [10] For every n ≥ 2, CGen(n) =
2n−1 + (−1)n

3
.

Proof. It is obvious that there are no realizable sequences of length 1. So
CGen(1) = 0. Also, the only sequence of length 2 is (12) and so CGen(2) = 1.
We now consider that n ≥ 3. From Theorem 4.3 it results that a profile which
cannot be realized by a connected graph, then must contain an isolated edge.
Therefore, holds CGen(n) = CCon(n) + CGen(n − 2). And, finally we get
that

CGen(n) = CCon(n) +CGen(n− 2) = CGen(n− 2) + 2n−3.

The above claim holds for 2 different cases n = 1 and n = 2, since if we
substitute in the type we have (20 + (−1)1)/3 = 0 and (21 + (−1)2)/3 = 1
respectively. So, consider the case n−2 is correct and we will take, CGen(n−
2) = (2n−3 + (−1)n−2)/3. Finally, it results that
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CGen(n) = (2n−3 + (−1)n−2)/3 + 2n−3 = (2n−1 + (−1)n)/3.

Example 4.3. We give an example for the 5 and 11 MaxNDeg realizable
sequences of length 5 and 6 with general graphs.

Length 5 : (45), (35), (34, 2), (25), (23, 12).

Length 6 : (56), (46), (45, 3), (45, 2), (36), (35, 2), (34, 22), (34, 12), (26),
(24, 12), (16).

4.3.4 General graphs in the open neighborhood profile

This case is more difficult to study and there is no exact value of OGen(n).
The main problem is that no way has been found to avoid counting a sequence
more than once. For example, assume the sequence (36, 22, 11). It can be
realized by a cycle of size 4 that is connected to a vertex of degree 1 and
the MaxNDeg− sequence is (33, 22) and a star of size 4 and its MaxNDeg−

sequence is (33, 11). The problem is that if we extract the star and count the
number of realizations for the other sequences would count more than once
sequences from which we can extract stars.

So, [10] describes a different strategy that controls the upper and lower
bounds of OGen(n) and proves that ⌈2n−2

3 ⌉− ⌈n−4
2 ⌉ ≤ OGen(n) ≤ 2n−1 − 1.

Example 4.4. We give an example for the 9 and 21 MaxNDeg− realizable
sequences of length 5 and 6 with general graphs.

Length 5 : (44, i),∀i ∈ {4, 3, 2, 1},
(35), (33, 22), (25), (23, 12), (22, 13).

Length 6 : (55, i),∀i ∈ {5, 4, 3, 2, 1},
(44, i, j), ∀i, j ∈ {4, 3, 2},
(36), (35, 2), (34, 22), (34, 12), (33, 23),
(33, 2, 12), (33, 13), (26), (25, 1), (24, 12), (16).
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CHAPTER5
Minimum Degree in Vertex
Neighborhoods

In this chapter, we study again a graph realization problem that pertains
to degrees in vertex neighborhoods. More specifically, we study the minimum
degree in vertex neighborhood profile, which we denote it MinNDeg.

First of all, it is very important to give the necessary and sufficient condi-
tions for a profile σ to be MinNDeg realizable.

Proposition 5.1. [7] A profile σ = (dnl
l , . . . , dn1

1 ) is MinNDeg realizable,
when the following necessary conditions hold.

di ≤ n1 + n2 + · · ·+ ni − 1,∀i ∈ [1, l] (NC1)

dl ≤ ⌊ n1d1
d1 + 1

⌋+ ⌊ n2d2
d2 + 1

⌋+ · · ·+ ⌊ nldl
dl + 1

⌋ (NC2)

And the sufficient condition is that

di ≤ ⌊ n1d1
d1 + 1

⌋+ ⌊ n2d2
d2 + 1

⌋+ · · ·+ ⌊ nidi
di + 1

⌋, ∀i ∈ [1, l] (SC)

We note that these conditions and the realizing graphs, when any exists,
can be all computed in polynomial time. [7]

For the special case of l bounded by 3, it holds that the profile σ is
MinNDeg realizable if and only if along with NC1 and NC2, the next condi-
tion is also satisfied.

d2 ≤ ⌊ n1d1
d1 + 1

⌋+ ⌊ n2d2
d2 + 1

⌋, or d3 +1 ≤ n1 +n2 +n3 − (1+ ⌈d2 − n2

d1
⌉) (NC3)
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Acyclic Realization : When the required graph is acyclic, then for any
sequence σ holds that

ϕ( σ) = d2l + 1 +
l∑

i=1

(ni − 1)(di − 1)2 +
l−1∑
i=1

di(di − 1)

Also, a sequence σ is MinNDeg realizable by a tree if and only if both of
the following necessary conditions are true.

d1 = 1 and ϕ(σ) ≤ n(σ) (NC-Tree)

We recall here that n(σ) =
∑l

i=1 ni. Observe that when we have the profile
(1n), condition NC-Tree amounts to claiming that (1n) is realizable for every
n ≥ 2. Indeed, the star graph provides such a realization.

Now, if we want ϕ(σ) to be independent of d1 and n1 when l > 1, but we
know that n1 appears to n(σ), then the condition NC-Tree can be rewritten as
ϕ(σ)−

∑l
i=2 ni ≤ n1. So, the left side is absolutely independent of d1 and n1.

Therefore, for any sub-profile, say σ′ = (dnl
l , . . . , dn2

2 ) of σ can be realized if it
is expanded into a full profile σ = (dnl

l , . . . , dn1
1 ) for which n1 is large enough.

So, in a sense, these n1 vertices are leaves or neighbors of leaves, and control
the realizability of the profile.[7]

5.1 Realizations on acyclic graphs

In this section we give a full characterisation for a profile to be realizable
by acyclic graphs.

5.1.1 The main algorithm

Proposition 5.2. [7] Any sequence σ = (dnl
l , . . . , dn1

1 ) satisfying d1 = 1 and
ϕ(σ) ≤ n(σ) is MinNDeg realizable over trees.

Proof. Let H be a star with a root r and dl leaves. Denote the first set of
dl+1 vertices as X0. Holds that |X0 \{r}| = dl > l−1, since d1 = 1. Now, we
separate X0 \ {r} into 2 different sets, let Z1 and Z2 of size l− 1 and dl− l+1
respectively. We label the (i − 1)th vertex in Z1 as vi,1, ∀i ∈ [2, l]. Note that
|Z2| ≥ 1.
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The algorithm below builds H in l rounds, i = l, . . . , 1. (See Algorithm 4
for pseudocode).

Corollary 5.1. Before the beginning of round i, we set the vertex vi,1 to be
a leaf node in the partially constructed tree H and its neighbor r has always
degree at least dl ≥ di.

Now, we are ready to give the description of rounds of the algorithm.

Description of round i (i > 1) : Take the leaf vi,1 ∈ X0. Add ni − 1
new vertices, say vi,2, . . . , vi,ni and connect each vi,j to vi,j−1, for 2 ≤ j ≤ ni.
Let Vi denote the set {vi,1, . . . , vi,ni}. Note that Vi forms a simple path, as
we can see in the Figure 5.1. Note also that by our corollary, the neighbor of
vi,1 (other than vi,2 in H) had degree at least di. So, we take the following
conditions.

1. All vertices in Vi have degree di.

2. All neighbors of vertices in Vi have degree at least di.

Figure 5.1: An example that realizes the description of round i.
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In order to ensure condition 1, we move on as follows: (i) Since the vertices
vi,1, . . . , vi,ni−1 have degree 2 in the Hi, they are connected to di − 2 new
vertices and (ii) the vertex vi,ni is connected to di − 1 new vertices. In the
process, we add ni(di − 2) + 1 new vertices, and we denote them as Ai.

In order to ensure condition 2, we connect each a ∈ Ai to di − 1 new
vertices. Let Bi be the set of these new vertices. Then, |Bi| = |Ai| · (di − 1).

We need to compute the size of Vi ∪Ai ∪Bi. So, we have that,

|Vi ∪Ai ∪Bi| = ni + (ni(di − 2) + 1) + (ni(di − 2) + 1)(di − 1)

= ni + di(ni(di − 2) + 1)

= ni(di − 1)2 + di

Description of round 1 : Add a set Y0 of n(σ)− ϕ(σ) new vertices to H.
We can observe that n(σ)− ϕ(σ) ≥ 0 thanks to the assumption. Connect the
root node r in H to each of the vertices in Y0. We need to prove that holds
|V (H)| = n(σ).

|V (H)| = |X0|+
l∑

i=2

(|Vi ∪Ai ∪Bi| − 1) + |Y0|

= dl + 1 +
l∑

i=2

[ni(di − 1)2 + di − 1] + n(σ)− ϕ(σ)

= d2l + 1 +
l∑

i=2

(ni − 1)(di − 1)2 +
l−1∑
i=2

di(di − 1) + n(σ)− ϕ(σ)

= n(σ)

Correctness analysis Let V1 be the set V (H) \ ∪l
i=2Vi. It is obvious that

|Vi| = ni,∀i ∈ [2, l]. Also, since |V (H)| = n(σ) it results that |V1| = n(σ) −∑l
i=2 ni = n1. So, we need to show that ∀u ∈ Vi,MinNDeg(u) = di, ∀i ∈

[1, l]. Observe that the degrees of vertices in Vi∪Ai don’t change after round i,
so conditions 1 and 2 we saw before, continue to apply for every Vi, ∀i ∈ [2, l].
This ensures us that for any u ∈ Vi,MinNDeg(u) = di, ∀i ∈ [2, l]. We need
now analyse the set V1. More specifically, we have:

V1 = (X0 \∪l
i=2{vi,1})∪Y0∪ (∪l

i=2(Ai∪Bi)) = {r}∪Z2∪Y0∪ (
∑l

i=2(Ai∪Bi))

For 2 ≤ i ≤ l the set Bi contains only leaves and each node in Ai must
have a neighbor in Bi. So, the vertices in ∪l

i=2(Ai ∪Bi) have MinNDeg = 1.
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Also, we need to check the vertices of {r} ∪ Z2 ∪ Y0, of which the vertices in
Z2 ∪ Y0 have already degree 1. However, r is adjacent to vertices with degree
1, in Z2, so MinNDeg(r) = 1.

Algorithm 4: Computing a tree MinNDeg realization for a profile σ.

input : A sequence σ = (dnl
l , . . . , dn1

1 ) satisfying d1 = 1 and
n(σ) ≥ ϕ(σ).

1 Initialize H to be a star with a root r and dl leaves.

2 Label the ith leaf in H as vi,1,∀i ∈ [2, l].
3 for i = l to 2 do
4 Add ni − 1 new vertices to H, namely vi,2, . . . , vi,ni .
5 Connect each vi,j to vi,j−1, ∀2 ≤ j ≤ ni.
6 Add to H a set Ai of ni · (di − 2) + 1 new vertices.
7 Connect each vi,j , ∀1 ≤ j ≤ ni − 1, to di − 2 isolated vertices in Ai.
8 Connect vi,ni to di − 1 isolated vertices in Ai.
9 Add to H a set Bi of |Ai| · (di − 1) new vertices.

10 Connect each a ∈ Ai to di − 1 isolated vertices in Bi.

11 end
12 Add n(σ)− ϕ(σ) new vertices to H as children of the root r.

output: H.

5.1.2 Tightness criterion

In this section, we want to show that the above construction is tight.
For example, a sequence is MinNDeg realizable by trees if and only if it is
realizable by the procedure we described in Proposition 5.2.

Proposition 5.3. [7] For a sequence σ = (dnl
l , . . . , dn1

1 ) satisfying d1 = 1 a
necessary condition to be MinNDeg realizable over trees is ϕ(σ) ≤ n(σ).

Proof. Take any profile σ = (dnl
l , . . . , dn1

1 ), and let T be a MinNDeg tree
realization of the profile on V . Let r ∈ V (T ) be a vertex that satisfies
MinNDeg(r) = dl. Let also node r be the root of the graph T . For i = 1, . . . , l,
let Vi = {v ∈ V (T ) | MinNDeg(v) = di}. We can see that for every i < l,
there exists at least one edge, denoted (yi, xi) ∈ E(T ), where yi is the parent
of xi, satisfying the next conditions. First of all, xi ∈ Vi and also none of the
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vertices in the tree path r → T yi lie in Vi. These edges have a very important
role in the tight bound on ϕ(σ). We denote,

A = {xi | MinNDeg(yi) < di, for i < l},
B = {xi | MinNDeg(yi) > di, for i < l}.

For every w ∈ V (T ), let Cw and GCw denote the set of the children and
grand-children of w in T , respectively. Moreover, CA = ∪w∈ACw.

Now, we are able to define a function Γ : V → 2V (see Figure 5.2 for an
example).

Γ(w) =


{r} ∪ Cr ∪ GCr, w = r
Cw ∪ (GCw \ CA), w ∈ A
GCw \ CA, otherwise

Figure 5.3 realizes the sub-tree which is caused by {w} ∪ Cw ∪GCw, for any
vertex w.

Figure 5.2: An example of a tree MinNDeg realization for the profile σ =
(41, 31, 22, 122). The number in every node denotes its MinNDeg. Also, the
edges (y1, x1), (y2, x2) and (y3, x3) are colored green, red and blue respectively.
Moreover, A = {x3} and B = {x1, x2}.
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Figure 5.3: Γ(w) is the set of vertices in the blue line if w = r, in the red one,
if w ∈ A and finally in the green line otherwise. Assuming that z1, z2 ∈ A.

Next, we will use 2 claims in order to prove the Proposition 5.3.

Claim 5.1. [7] Γ(w) ∩ Γ(v) = ∅ for any v, w ∈ V (T ) such that v ̸= w.

Proof. We first take the case v = r. If w /∈ Cr or w /∈ A, then the result holds.
However, if w ∈ Cr, then it is obvious that MinNDeg(r) ≥ MinNDeg(w),
implying therefore that w /∈ A.

Now, we assume that we have any 2 vertices, let v ̸= w ∈ V (T ) \ {r}. We
consider to the contrary that Γ(v) ∩ Γ(w) contains a vertex, say z. Then z
must be a child of 1 of the vertices v or w and the corresponding node must
lie in A. We take the scenario that z ∈ Cw and w ∈ A. Since z ∈ Cw ⊆ CA,
then z /∈ GCv \ CA. So z cannot be a child of v, implying that z /∈ Γ(v). So,
finally we have that Γ(v) ∩ Γ(w) must be empty.

Claim 5.2. [7] For any v ∈ Vi, 1 ≤ i ≤ l, it is true the following,

|Γ(v)| ≥
{

di(di − 1), if v ∈ A ∪B
(di − 1)2, if v /∈ {r} ∪A ∪B

Proof. We take a vertex v ∈ Vi, for any i ≤ l. We can see that each u ∈ Cv
must have degree at least di and satisfy the condition |Cu| ≥ di−1. Now, let z0
be v′s parent and z1, . . . , zt be the vertices in Cv ∩A. Since z0 is a progenitor
of z1, . . . , zt, then by definition of A ∪ B, the MinNDeg of all the vertices
z0, z1, . . . , zt must be distinct.
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Without loss of generality, we can consider that MinNDeg(zt) > · · · >
MinNDeg(z1). So, by definition of A, holds that MinNDeg(z1) > di. We
now define a new variable, let ∆ = maxtj=0MinNDeg(zj). Therefore, we have
deg(v) ≥ ∆. Also, since ∆ ≥ MinNDeg(zt) > · · · > MinNDeg(z1) > di,
then we have that ∆ ≥ dl + t. Therefore,

|Cv \A| = deg(v)− t− 1 ≥ ∆− t− 1 ≥ (di − 1) (5.1)

We now are able to consider 3 different cases according to v, i.e. whether
v lies in A or B or V \ ({r} ∪A ∪B).

1. If v ∈ A : By Equation 5.1, we have |GCv \ CA| ≥ (di − 1)2 and |Cv| ≥
di − 1. Combined, we take that |Γ(v)| = |GCv \ CA|+ |Cv| ≥ di(di − 1).

2. If v ∈ B : Using the definition of B, we have that MinNDeg(z0) > di.
So, MinNDeg(zj) > di, for any j ∈ [0, t]. Also, it holds that MinNDeg
of z0, . . . , zt are distinct. Therefore, ∆ ≥ di + (t + 1) and |Cv \ A| =
deg(v)− t ≥ ∆− t ≥ di. Implying that |Γ(v)| = |GCv \ CA| ≥ di(di − 1).

3. If v /∈ {r} ∪ A ∪ B : By Equation 5.1, we have |GCv \ CA| ≥ (di − 1)2.
This implies that |Γ(v)| ≥ (di − 1)2.

And now the claim follows.

We note that Γ(r) contains at least d2l + 1 vertices, because the degrees of
r and of its children are at least dl. Now, we are able to prove the bound over
ϕ(σ). For simplicity, we will denote the vertex r, as xl.

n(σ) = |V (T )| ≥ |Γ(r)|+
l∑

i=1

∑
v∈Vi\{xi}

|Γ(v)|+
l−1∑
i=1

|Γ(xi)|

≥ d2l + 1 +
l∑

i=1

(ni − 1)(di − 1)2 +
l−1∑
i=1

di(di − 1) = ϕ(σ)

The proof is complete now.
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Corollary 5.2. For a sequence σ = (dnl
l , . . . , dn1

1 ) satisfying d1 = 1 is MinNDeg
realizable over forests if holds ϕ(σ) ≤ n(σ).

Proof. If we have a sequence which is MinNDeg realizable as a forest, then
we can split it into 2 sub-sequences σ1, . . . , σk corresponding to each of its
connected components. By Proposition 5.3, we have that n(σi) ≥ ϕ(σi),∀i ∈
[1, k]. So, n(σ) =

∑k
i=1 n(σi) ≥

∑k
i=1 ϕ(σi) ≥ ϕ(σ). It is easy to verify that

the last inequality follows from the definition of ϕ.

It is true that a tree always contains vertices of degree 1. So,by Corollary
5.2 and Proposition 5.2, and from this fact, results the following theorem.

Theorem 5.1. [7] A sequence σ = (dnl
l , . . . , dn1

1 ) is MinNDeg realizable over
acyclic graphs if and only if hold the following conditions.

1. d1 = 1 and

2. ϕ(σ) ≤ n(σ).

5.2 Realizations in General graphs

In this section we will see some new definitions, so we need to define them
first, for our construction. Therefore, let G = (V,E) be any graph. For some
vertex v ∈ V , we define leader(v) to be a vertex in N [v] of minimum degree
and if there is more than one choice we pick the leader arbitrarily. Note,
these arbitrarily chosen leaders need not be consistent across neighbors. For
example, it is possible that 2 vertices, let w and u, are the leaders of each
other. In other words, leader(u) ∈ arg min{deg(v)|v ∈ N [u]}.

Next, let σ = (dnl
l , . . . , dn1

1 ) be the minimum degree sequence of G. So, let
Vi denote the set of those vertices in G whose minimum degree in the closed
neighborhood is di, and then we have that |Vi| = ni. Moreover, let Li be
the set of those vertices in G who are leaders of at least one vertex in Vi,
equivalently, Li = {leader(v)|v ∈ Vi} and denote by L = ∪l

i=1Li the set of all
the leaders in the graph. We can see that the sets V1, . . . , Vl form a partition
of the vertex set of G.

Now, we have to define the follower. So, a vertex v in G is said to be a
follower, if leader(v) ̸= v. Let, Fi = {v ∈ Vi|v ̸= leader(v)} be the set of all
the followers in Vi. Additionally, we need to define R = V \L. This is the set
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of all the non leaders. Finally, we define F = ∪l
i=1Fi to be the set of all the

followers.

in Figure 5.4 we give an example for the definitions we talked about.

Figure 5.4: A MinNDeg realizable graph for the sequence σ = (33, 21, 12).

In Figure 5.4 holds that MinNDeg(v1) = MinNDeg(v2) = deg(v1) = 1,
MinNDeg(v3) = deg(v2) = 2 and MinNDeg(vi) = 3, ∀i ∈ {4, 5, 6}. It is
obvious that leader(v2) = v1 and leader(v3) = v2. So, v2 is a leader and a
follower as well.

Our goal here is that there exist realizable sequences σ for which any graph
G realizing σ and any leader function over G, the sets L and F have non empty
intersection. For instance, assume the sequence in Figure 5.4, σ = (33, 21, 12).
It is easy to verify that σ has only 1 realizing graph and in it, the leader and
follower sets are non disjoint.[7]

So, we can sort the sequences that accept disjoint leader and follower sets
as follows.

Definition 5.1. A sequence σ = (dnl
l , . . . , dn1

1 ) is said to admit a Disjoint
Leader−Follower (called DLF) MinNDeg realization if there exists a graph
G realizing σ and a leader function under which the sets L and F are mutually
disjoint, i.e., L ∩ F = ∅.

Theorem 5.2. [7] For every σ = (dnl
l , . . . , dn1

1 ) that is MinNDeg realizable
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by a graph, let G, must be met the following necessary conditions.

di ≤ (
i∑

j=1

nj)− 1,∀i ∈ [1, l] (NC1)

dl ≤
l∑

j=1

⌊ njdj
dj + 1

⌋ (NC2)

Moreover, for every leader function defined over G and i < l, if Li∩Vi ̸= ∅,
then

di ≤
i∑

j=1

⌊ njdj
dj + 1

⌋.

Proof. Firstly, we give a lower bound on the size of the leader set Li. Note

that for every i ∈ [1, l], holds |Li| ≥ ⌈ ni

di + 1
⌉. Next, we take a vertex a ∈ Li.

Since |N [a]| = di+1, then the vertex a can be considered as leader for at most
di + 1 vertices. This can verify that |Li| ≥ ni

di+1 . So, since |Li| is integer, the
claim arises.

Proof of (NC1). Let w be any vertex in G such that deg(w) = di. Then
w and all the neighbors of w must be contained in ∪i

j=1Vj , and so we take the
following.

di + 1 = |N [w]| ≤ | ∪i
j=1 Vj | =

∑i
j=1 nj

And this proves the condition (NC1).

Proof of (NC2). We consider the case where w is a vertex in G such that
MinNDeg(w) = dl. Therefore, N [w] can not contain vertices of degree less
than dl and follows that N [w] ∩ Li = ∅, ∀i < l. So, |N [w]| ≤ n −

∑l−1
i=1 |Li|.

Moreover, the degree of the vertex w must be at least dl. Finally, we take the
following.

dl + 1 ≤ |N [w]| ≤ n−
l−1∑
i=1

|Li| = nl +
l−1∑
i=1

(ni − |Li|) ≤ nl +
l∑

i=1

⌊ nidi
di + 1

⌋

If we consider the case nl ≤ dl, then we have nl − 1 = ⌊ nldl
dl+1⌋ and therefore

dl ≤
∑l

i=1⌊
nidi
di+1⌋. Now if nl ≥ dl +1 then nldl

dl+1 ≥ dl and follows that ⌊ nldl
dl+1⌋ ≥

dl, because dl is integer.
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Proof of the last claim. We consider a vertex lying in Li ∩ Vi, say w,
and we have that MinNDeg(w) = deg(w) = di. Note that for any j < i, the
vertices in the set Lj have degree strictly less than di. We know that N [w] can
not contain vertices of degree less than di, so for every j < i, N [w] ∩ Lj = ∅.
Moreover, vertices in Vi+1 ∪ · · · ∪ Vl can not be adjacent to any vertex in
{w} ∪ (∪i−1

j=1Lj), so we have that N [w] and ∪i−1
j=1Lj are both contained in

∪i
j=1Vj . Finally, we take the following.

di+1 = |N [w]| ≤ |∪i
j=1Vj |−|∪i−1

j=1Li| = ni+
∑i−1

j=1(ni−|Lj |) ≤ ni+
∑i−1

j=1⌊
njdj
dj+1⌋

If ni < di, then holds ni − 1 = ni − ⌈ ni

di + 1
⌉ = ⌊ nidi

di + 1
⌋ and therefore

di ≤
∑i

j=1⌊
njdj
dj + 1

⌋.

Now, if we consider the case ni ≥ di + 1 ⇐⇒ ni · di ≥ di · (di + 1) ⇐⇒
ni · di
di + 1

≥ di. Since di is integral results ⌊
nidi
di + 1

⌋ ≥ di.

Theorem 5.3. [7] Every sequence σ = (dnl
l , . . . , dn1

1 ) satisfying the sufficient
condition,

di ≤
i∑

j=1

⌊ njdj
dj + 1

⌋, ∀i ∈ [1, l] (SC)

is MinNDeg realizable. Also, we can compute a realizing graph, let G, and a
leader function defined over G that satisfies the condition L ∩ F = ∅.

Proof. First of all, we will consider the most simple case, the realizability of
uniform sequences and after that, we will see the case of general sequences.

Uniform Sequences. Firstly, we assume the sequence σ = (dn). If n ≥
d + 1, we can have a realization for the sequence σ. We consider 2 integers,
let q ≥ 1 and r ∈ [0, d], satisfying n = q · (d + 1) − r. Next take a set, say A
of q vertices, namely ai, where i ∈ [1, q] and another set, say B of dq vertices,
namely bij , where i ∈ [1, q] and j ∈ [1, d]. Connect each vertex ai to bi1, ..., bid.
Therefore, the vertices in A will have degree d and the vertices in B will have
in their neighborhood a vertex of degree exactly d.
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Now, if r > 0, then we have to merge b1j with b2j , ∀j ∈ [1, r], thus decreasing
r vertices in B. Recall that b1j and b2j exists since r > 0 only when q ≥ 2.
So, |A|+ |B| = n and every vertex in A still has degree d. Thus we have the
following.

|A| = n+ r

d+ 1
= ⌈ n

d+ 1
⌉ and |B| = n− |A| = ⌊ nd

d+ 1
⌋ ≥ d

The last step is to add edges between each pair of vertices in B in order to
make it a clique of size at least d. This entail that the vertices in set B will
have degree at least d. It is easy to verify that MinNDeg(v), ∀v ∈ A ∪ B is
d. In our constructed graph the set A is the leader set, and the set B is the
follower set.

In the rest of proof, we will denote as Graph(n, d,A,B) a function that
returns the edges of the graph as constructed above whenever provided with
four parameters n, d,A,B satisfying n ≥ d+ 1, |A| = ⌈ n

d+1⌉ and |B| = ⌊ nd
d+1⌋.

General Sequences. We take the case σ = (dnl
l , . . . , dn1

1 ). First of all, we
consider that G is an empty graph. Our algorithm uses l rounds. (Refer
to Algorithm 5.) In every round, we add to G a set Vi of ni new vertices
and partition Vi into 2 sets, let Li with size ⌈ ni

di+1⌉ and Ri with size ⌊ nidi
di+1⌋. If

ni > di+1, then we can solve this round by adding to G all the edges returned
by Graph(ni, di, Li, Ri). Note that if ni ≤ di +1, then the set Li will contain
only one vertex, let ai. In this case, we need to add edges between ai and
all the vertices in Ri. Moreover, we add edges between ai and any arbitrarily
chosen di + 1 − ni vertices in ∪j<iRj . This can be possible since holds the
following.

di + 1− ni = di − ⌊ nidi
di + 1

⌋ ≤
i−1∑
j=1

⌊ njdj
dj + 1

⌋ =
i−1∑
j=1

|Rj |

After the l rounds are completed, we finally add edges between each pair of
vertices in R = ∪l

i=1Ri, in order to make it a clique.

Now, we are able to take bounds on the degree of vertices in Li and Ri.

1. Every vertex in Li has degree di. Note that we add edges to vertices
in Li only in the ith iteration of the for loop. If ni > di + 1, then the
degree of each vertex in Li is di. Now, if |Li| = 1 or ni ≤ di + 1, then
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|Ri| = ni − |Li| = ni − 1 and therefore the degree of the vertex ai ∈ Li

is (ni − 1) + (di + 1− ni) = di.

2. Every vertex in Ri has degree at least dl. For every i ∈ [1, l], if holds
that ni > di + 1, then |Ri| = ⌈ nidi

di+1⌉, and even in the case ni ≤ di + 1,

we take |Ri| = ni − |Li| = ni − ⌈ ni
di+1⌉ = ⌈ nidi

di+1⌉. So, we have that

|R| =
∑l

i=1 |Ri| =
∑l

i=1⌈
nidi
di+1⌉ which is bounded below by di. It is true

that every vertex in R is adjacent to at least 1 vertex in ∪iLi and since
|R| ≥ dl, then the degree of vertices in R is at least dl.

Next, we show that for any vertex v ∈ Vi, MinNDeg(v) = di, where
i ∈ [1, l]. We will consider 2 cases.

• If v ∈ Li, then MinNDeg(v) = di, because every vertex in Li has degree
di and is adjacent to only vertices in R which have degree at least dl ≥ di.

• If v ∈ Ri, then MinNDeg(v) = di, also because every vertex in Ri

is adjacent to at least 1 vertex in Li and N [v] is contained in the set
R ∪ (∪j≥iLj) and its vertices have degree at least di.

The leader function over V constructs as follows. For every vertex v ∈
∪l
i=1Li we set leader(v) = v and for every v ∈ Ri we set leader(v) to be

any neighbor of v in Li. It is true that for every vertex in L = ∪l
i=1Li =

{leader(v) | v ∈ V } is a leader of itself. So, the sets L and R which are leader
and follower respectively, must be disjoint.

The following theorem is a consequence of the above results.

Theorem 5.4. [7] The sequence σ = (dn2
2 , dn1

1 ) is MinNDeg realizable if and
only if d1 ≤ ⌊ n1d1

d1+1⌋ and d2 ≤ ⌊ n1d1
d1+1⌋+ ⌊ n2d2

d2+1⌋.

Proof. We first assume that σ is realizable. Then Theorem 5.2 implies the
following.

1. n1 ≥ d1 + 1 which implies d1 ≤ ⌊ n1d1
d1+1⌋.

2. dl = d2 ≤ ⌊ n1d1
d1+1⌋+ ⌊ n2d2

d2+1⌋.

Finally, the converse follows from Theorem 5.3.
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Algorithm 5: Computing a MinNDeg realization for a given special
σ.

input : A sequence σ = (dnl
l , . . . , dn1

1 ) satisfying di ≤
∑i

j=1⌊
njdj
dj+1⌋ for

every 1 ≤ i ≤ l.
1 Initialize G to be an empty graph.
2 for i = 1 to l do
3 Add to G a set Vi of ni new vertices.
4 Partition Vi in 2 sets Li, Ri such that |Li| = ⌈ ni

di+1⌉ and

|Ri| = ⌊ nidi
di+1⌋.

5 if (ni > di + 1 or |Li| > 1) then
6 Add to G all the edges returned by Graph(ni, di, Li, Ri).
7 end
8 if (|Li| = 1) then
9 Let ai be the only vertex in Li.

10 Connect ai to all vertices in Ri and any arbitrary di + 1− ni

vertices in ∪j<iRj .

11 end

12 end

13 Add edges between each pair of vertices in R = ∪l
i=1Ri to make it a

clique.
output: G.
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5.2.1 Sequences admitting disjoint Leader-Follower sets

Here, we will see a theorem that gives results on sequences admitting disjoint
Leader-Follower sets.

Theorem 5.5. [7] A sequence σ = (dnl
l , . . . , dn1

1 ) is MinNDeg realizable by a
graph G having disjoint leader set, say L, and follower set, say F , with respect
to some leader function, if and only if, for every i ∈ [1, l], di ≤

∑i
j=1⌊

njdj
dj+1⌋.

Proof. First of all, we consider that there exists a leader function over G for
which L ∩ F = ∅. Then, for every i ∈ [1, l], Li ⊆ Vi. This is true because if
for some i, there exists w ∈ Li \ Vi, then deg(w) = di ̸= MinNDeg(di), which
implies that w is a leader and follower too. By Theorem 5.2 and by the fact
that Li ⊆ Vi, then di ≤

∑i
j=1⌊

njdj
dj+1⌋, ∀i ∈ [1, l]. By Theorem 5.3 results the

converse claim.

5.2.2 MinNDeg realization of tri-sequences in general graphs

In this section, we will take the case when a sequence has only three dis-
tinct degrees. In the following theorem is given a complete characterization of
sequence σ = (dn3

3 , dn2
2 , dn1

1 ).

We will omit the proof of the Theorem 5.6, but there is on [7].

Theorem 5.6. [7] The necessary and sufficient conditions for a sequence
σ = (dnl

l , . . . , dn1
1 ), when l = 3, to be MinNDeg realizable, is the following.

1. d1 + 1 ≤ n1

2. d2 + 1 ≤ n1 + n2

3. d3 ≤ ⌊ n1d1
d1+1⌋+ ⌊ n2d2

d2+1⌋+ ⌊ n3d3
d3+1⌋

4. either d2 ≤ ⌊ n1d1
d1+1⌋+ ⌊ n2d2

d2+1⌋ or d3 + 1 ≤ n1 + n2 + n3 − (1 + ⌈d2−n2
d1

⌉)
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CHAPTER6
Conclusions

6.1 Tables of Computational Complexity

In this section we summarize the results of computational complexity, for
the different problems and the different classes of graphs, many of which we
mentioned in the previous chapters. The results are taken from the literature
and are reported exactly in the tables.

More specifically we give the results in separate tables based on the type
of graph, i.e. whether it is weighted or unweighted.

Table 6.1: Results for realization with unweighted graphs.

Graph family Range-DR Set-DR

General 2-Range-DR is NP-hard[11] 2-Set-DR is NP-hard[11]
1-Range-DR is polynomial[24] 1-Set-DR is polynomial[24]

Tree 3-Range-DR is NP-hard[12] 2-Set-DR is NP-hard[11]
1-Range-DR is polynomial[24] 1-Set-DR is polynomial[24]

Star Range-DR is polynomial[11] Set-DR is polynomial[11]

Path 2-Range-DR is polynomial[11] 2-Set-DR is polynomial[11]
Range-DR is NP-hard[11] 5-Set-DR is NP-hard[11]

Cycle 2-Range-DR is polynomial[11] 2-Set-DR is polynomial[11]
Range-DR is NP-hard[11] 5-Set-DR is NP-hard[11]
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Table 6.2: Results for realization with weighted graphs.

Graph family Range-DR Set-DR

General Range-DR is polynomial[29] Open problem

Tree 3-Range-DR is NP-hard[12] 2-Set-DR is NP-hard[11]
1-Range-DR is polynomial[6] 1-Set-DR polynomial[6]

Star Range-DR is polynomial[11] 2-Set-DR is polynomial[11]
6-Set-DR is NP-hard[11]

Path 2-Range-DR is polynomial[11] 2-Set-DR is polynomial[11]
Range-DR is NP-hard[11] 5-Set-DR is NP-hard[11]

Cycle 2-Range-DR is polynomial[11] 2-Set-DR is polynomial[11]
Range-DR is NP-hard[11] 5-Set-DR is NP-hard[11]

We also give below the complete characterization for the MaxNDeg real-
ization problem for both cases the closed and the open neighborhood.

Table 6.3: MaxNDeg realization.

Graph family Characterization

General dl ≤ nl − 1, d1 ≥ 2 or n1 is even [10]

Connected dl ≤ nl − 1, d1 ≥ 2 or σ = (12) [10]

It is interesting to contrast the behavior of the MinNDeg and MaxNDeg
profiles. For general graphs, MinNDeg appears to be more difficult, since
it is non monotone when edges are added or deleted, while the MaxNDeg
profile is monotone. For trees, on the other hand, the realizability of the
MinNDeg profile depends only on the leaves and their parents, which sim-
plifies the analysis, but no a similar simplifying property was found for the
MaxNDeg profile.

At this point, we present the table for MinNDeg realization problem.
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Table 6.4: MaxNDeg− realization.

Graph family Characterization

General σ can be split into two profiles σ1 and σ2 such that
(i) σ1 has a connected MaxNDeg− realization, and
(ii) σ2 = (12a) or σ2 = (dd, 12a+1), for integers d ≥ 2, a ≥ 0 [10]

Connected dl ≤ min{nl, n− 1}, d1 ≥ 2 or σ = (dd, 11) or σ = (12)

σ ̸= (ddl+1
l , 21) [10]

Table 6.5: MinNDeg realization.

Graph family Characterization

General Open problem

Acyclic A sequence σ can be MinNDeg realizable over trees if satisfies
(i) d1 = 1, and
(ii) ϕ(σ) ≤ n(σ) [7]

6.2 Open Problems

In the field of mathematics, theoretical computing is clearly a very impor-
tant field and there are many applications even in our everyday life. Therefore,
it stands to reason that there are many open problems that would be inter-
esting to study.

In chapter 3, we introduce and study the Set Distance Realization problem,
which is an extension of the Range Distance Realization problem. We study
the computational complexity of k-Set-DR and k-Range-DR, as function of k,
in various graph families.

It is clear that there are still many open questions, including the following.

• Range-DR in weighted general graphs can be solved in polynomial time,
but the status of Set-DR is currently unclear.

• 3-Range-DR and 2-Set-DR are NP-hard in trees, but the status of the
2-Range-DR problem remains unsettled.

• For stars, the hardness of the k-Set-DR problem is unsettled for k =
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3, 4, 5.

• For paths and cycles the k-Set-DR problem is unsettled for k = 3, 4.

• The status of Range-DR for paths and cycles is an open problem.

In chapters 4 and 5, we study the MaxNDeg and MinNDeg realization
problems, which have similar logic but certainly MinNDeg seems to be more
difficult in the case of general graphs. So the next question arises, which is
also an open problem.

Open Question. Does there exist a closed form characterization for real-
izing MinNDeg profiles for general graphs?
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[3] Althöfer, I. On optimal realizations of finite metric spaces by graphs.
Discrete & computational geometry 3, 2 (1988), 103–122.

[4] Arikati, S. R., and Maheshwari, A. Realizing degree sequences in
parallel. SIAM Journal on Discrete Mathematics 9, 2 (1996), 317–338.

[5] Augustine, J., Choudhary, K., Cohen, A., Peleg, D., Sivasub-
ramaniam, S., and Sourav, S. Distributed graph realizations. IEEE
transactions on parallel and distributed systems 33, 6 (2021), 1321–1337.

[6] Baldisserri, A., et al. Buneman’s theorem for trees with exactly n
vertices. arXiv preprint arXiv:1407.0048 (2014), 1.

[7] Bar-Noy, A., Choudhary, K., Cohen, A., Peleg, D., and Rawitz,
D. Minimum neighboring degree realization in graphs and trees. In 28th
Annual European Symposium on Algorithms (ESA 2020) (2020), Schloss-
Dagstuhl-Leibniz Zentrum für Informatik.

[8] Bar-Noy, A., Choudhary, K., Peleg, D., and Rawitz, D. Re-
alizability of graph specifications: Characterizations and algorithms. In
International Colloquium on Structural Information and Communication
Complexity (2018), Springer, pp. 3–13.

75



Chapter 6 Bibliography

[9] Bar-Noy, A., Choudhary, K., Peleg, D., and Rawitz, D. Graph
profile realizations and applications to social networks. In WALCOM:
Algorithms and Computation: 13th International Conference, WALCOM
2019, Guwahati, India, February 27–March 2, 2019, Proceedings 13
(2019), Springer, pp. 3–14.

[10] Bar-Noy, A., Choudhary, K., Peleg, D., and Rawitz, D. Graph
realizations: maximum degree in vertex neighborhoods. Discrete Mathe-
matics 346, 9 (2023), 113483.

[11] Bar-Noy, A., Peleg, D., Perry, M., and Rawitz, D. Graph re-
alization of distance sets. In 47th International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2022) (2022), Schloss-
Dagstuhl-Leibniz Zentrum für Informatik.

[12] Bar-Noy, A., Peleg, D., Perry, M., and Rawitz, D. Composed
degree-distance realizations of graphs. Algorithmica 85, 3 (2023), 665–
687.

[13] Barrus, M. D., and Donovan, E. A. Neighborhood degree lists of
graphs. Discrete Mathematics 341, 1 (2018), 175–183.

[14] Burstein, D., and Rubin, J. Sufficient conditions for graphicality of
bidegree sequences. SIAM Journal on Discrete Mathematics 31, 1 (2017),
50–62.

[15] Chernyak, A. A., Chernyak, Z. A., and Tyshkevich, R. I. On
forcibly hereditary p-graphical sequences. Discrete mathematics 64, 2-3
(1987), 111–128.

[16] Chung, F., Garrett, M., Graham, R., and Shallcross, D. Dis-
tance realization problems with applications to internet tomography.
Journal of Computer and System Sciences 63, 3 (2001), 432–448.

[17] Culberson, J. C., and Rudnicki, P. A fast algorithm for constructing
trees from distance matrices. Information Processing Letters 30, 4 (1989),
215–220.

[18] Dress, A. W. Trees, tight extensions of metric spaces, and the cohomo-
logical dimension of certain groups: a note on combinatorial properties
of metric spaces. Advances in Mathematics 53, 3 (1984), 321–402.

[19] Erdös, P., and Gallai, T. Graphs with prescribed degrees of vertices
(in hungarian). mat. lapok.

76



Chapter 6 Bibliography

[20] Even, S., Itai, A., and Shamir, A. On the complexity of time ta-
ble and multi-commodity flow problems. In 16th annual symposium on
foundations of computer science (sfcs 1975) (1975), IEEE, pp. 184–193.

[21] Feder, T., Meyerson, A., Motwani, R., O’Callaghan, L., and
Panigrahy, R. Representing graph metrics with fewest edges. In Annual
Symposium on Theoretical Aspects of Computer Science (2003), Springer,
pp. 355–366.

[22] Gupta, G., Joshi, P., and Tripathi, A. Graphic sequences of trees
and a problem of frobenius. Czechoslovak Mathematical Journal 57
(2007), 49–52.

[23] Hakimi, S. L. On realizability of a set of integers as degrees of the
vertices of a linear graph. i. Journal of the Society for Industrial and
Applied Mathematics 10, 3 (1962), 496–506.

[24] Hakimi, S. L., and Yau, S. S. Distance matrix of a graph and its
realizability. Quarterly of applied mathematics 22, 4 (1965), 305–317.

[25] Hammer, P. L., and Simeone, B. The splittance of a graph. Combi-
natorica 1 (1981), 275–284.

[26] Havel, V. A remark on the existence of finite graphs. Casopis Pest.
Mat. 80 (1955), 477–480.
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