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ETXAPISTIEY

Me v ohoxhpwon e Metamtuyloxrc pou AwateBhc, o fieha vo ameu-
YOve Eva VepuoTaTO EUYAPLOTE, EX PEOTC X0Edl0G, TEOS 6AoUE 6GOUE GTAUTXY
6imha pou o autod To Tkl xou pe Boryinoay vo to pépw el Tépac. BEEapétng, Vu
foeha Vo euyoplo TAoW ToV EMPBAETOVTA wou, x. Ercudépio Nixohddxr, Enixoupo
Kodnynt tou Havemotnuiou Inavvivey, tapotpdvoel Tou onolou acyolfinxa
ME aUTO TO TOGO eVOlapépoy Véua. Me Tic mapatneroel Tou xou Tig GUUPBOVAES
Tov, énanie xadoploTixd POAO O BAUOEPWST| AUTOL TOU ATOTEAEGUATOC.

Enfong, Ya fdela vo evyoaptothon toug x.x. lwdvvn Hovpvopd xoa Avdpéa
Toha, twv onolwv eiya v tOyN va undelw pointhic, téco oe Ilpomtuyloxd
600 xou oe Metantuytoxd eninedo, xat oi omolol mhaoudvouy TNy EZetactinng
Emitpony], yia Tov Ypovo TOU apiEpmooy Xal Yl TNV ETEAELL UE TNV omola
TPOGEYYIoUV TNV EpYATlal AUTH.

Téhog, To UEYUAVTERO EUYUPLOTW TO AMELTVVL GTOUS BLX0US Pou ovlp®droug,
GTNY OXOYEVELY LOL %ot 6TOUE plhoug pou. H avidloterric aydmn toug, n apéplotn
CUUTAPAOC TAOT) TOUG Xou 1 adtdxony oThEE Toug xatd TN didpxela Tou Metom-
TUYLOXOU YOU ATAV 1) XURLOTEET TNYY| OOVOUNG Kol EUTIVEUCTC YLol EUEVA, KoL OEV
Yo SLoTACW Vo TO Tw, OTL Var Aoy ad0vaTo vor Tar Xatapépw ywels autoig!






[IEPIAHTYH

Xx0omo¢ NG TopoNong YeTamTuytoax g Otate3ric elvan 1 auotney| Yeueilnon oto
mhaioto e Madnuatixic Avdhuong dVo onuavtxedy timwy e Iewpetpwrg
Oewplag Métpou, yvwotov we Tonol Area xau Coarea.

H Boun mou Ho axorovdnooupe eivar 1 €€hc: To 600 mpwta xePdAota TNG
gpyootag pag elvon elcoywywd. e autd avantdocovue Ty anopaitnTn Yewpla
0L TEETEL VoL YVORICEL 0 Avary VOO TNG, TEOXEWEVOU VoL XUTAVOTOEL TO TEPLEY OUEVO
NE TpoxeWEvNg epyactac. Avolutixdtepa, oto Ilpwhto Kepdhato napouvoidlovto
ol Baoixég évvoleg g Oewplog Métpou xou Vepehivovton tor epyaieior Tave
ota onola Yo avamtdZouue TNy Vewplo poc. Xto Acltepo Kegdhono, opileton
to Métpo Hausdorff, to onolo mpwtaywwviotel otoug mpoavagepdévree TOmoUG
%ol AmodeEVOoVTOL avahUTIXG Ol WBLOTNTES Tou. Axoholing, Topouctdloupe TNV
oudueTpixonolnon Steiner, tnv omola xou aflomololue yior Vo xatadetouue Ty
Aeyopévn Ioodopetoin) Avicdtnta, xatadfyoviog o éva e€apetixfic onuaciog
anotéleopar TNy TadTion Tou Yétpou Lebesgue ye to n-didotato yétpo Hausdorff.

Axololidne, oto Teito Kegpdhowo optllouue tnv évvoia tng anewdvione Lips-
chitz xou ndte auty) Yo xokeiton drapopiorn xan amodetxvioupe To OeDENU TOU
Rademacher, to onolo pog e€acpolilel TNy oyeddv movTo) SLopopLoIOTNTOL JLOG
Tétotag anexovionc. To xepdhato emo@paylleton UE TNV TOEOVCIICT| OPLOUEVKY
WothTey Tov Feoyuwdy Aneixovicewy tou R™, xou pe ) Borideior Tou Oewpr-
uatog tng IHHohAc AvomopdoTaong, XaTahYOUUE OF Wial XUTHAANAT Evvola yia
Vv ToxwBlovy) wag Lipschitz anewdvione.

Metd omd ot T Bladpopr], UTOpOUUE Vo TROYWENCOLUE TNV anddelln Tou
ToOnou Area, 1 onola anoteiel xou TN Vepoatoroylor Tov Tetdptou Kegarolov.
Mehetolpe amewovicewc Lipschitz f : R" — R™ vy n < m xou e&dyoupe
XAMOLOUG Y oeoxTNELoTIX00E TUToUS Yot To Ohoxhfpwua e ToxwBlavic toug.
Apyix®dg amodexviovTol Tol TEOTURUOXEVAGTING AYUUOTA XoL 5T CUVEYELNL TO
xevtpwo Yewpnua. To xepdhono ohoxhnpwveton Ye TNV TopdUeot OploUEveY
YOEUXTNELOTIXWY EQUOUOY V.

299

To IIéunto Kegdhoo aoyoleiton pe v “Ouixhy” pop@y| Tou mpolAfuatoc,



onAadY) Ty uerétn amewxovicewyv Lipschitz f : R™ — R™ yio n > m, auth
N @opd. H dour| Tou npoxeévou Kegahatou uipeitar to mponyniév Tétapto Ke-
pdhono: Iopovoidloupe apyixd T Afuuato Tou Yog odnyolv oty omodelln Tou
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VETOL UE TNV TopdlecT) xdmolwy anoteheoudtwy mépay and tny I.O.M., ta onola
otnetlovton otoug tumoug Area xar Coarea xoL QAVELWVOLY TNV CNUAVTIXOTNTA
AUTOV TV ERYUAElY ot xdle TTUY T TwV Madnuotixoy.

ii






v



ABSTRACT

The aim of the present Master’s Thesis is to establish rigorously, within
the framework of Mathematical Analysis, two mathematical Formulas, known
as Area and Coarea Formula. The structure of the Thesis is the following;
The first two chapters are introductory. In them we offer a thorough overview
of all the concepts the reader needs to be familiar with, in order to better
understand the content of our work.

In particular, in the Chapter 1 we deal with elements of Measure Theory
and we lay the groundwork for the tools on which our work will be based on.
In Chapter 2, we define the Hausdorff Measure, which will play a leading part
in the aforementioned formulas, and we prove its properties. We then intro-
duce the Steiner Symmetrization, which we use in order to prove the so-called
Isodiametric Inequality, reaching to a result of high importance; The identifi-

cation of the Lebesgue Measure with the n-dimensional Hausdorff Measure on
Rn.

Afterwards, in Chapter 3, we define the notion of a Lipschitz map and
determine when that map is differentiable and in which sense and we prove
Rademacher’s Theorem, which ensures us that such a map is almost-everywhere
differentiable. We end this Chapter by stating some properties of Linear maps
of R, and via the Polar Decomposition Theorem, we conclude with an appro-
priate notion for the Jacobian of a Lipschitz map.

After all of this journey, we are able to proceed in the proof of the Area
Formula, which is the subject of Chapter 4. We study Lipschitz mappings
of the form f : R® — R™ for n < m and we derive some special formulas
regarding the Integral of their Jacobian. We begin by proving the preparatory
Lemmas and then the main theorem. The Chapter is concluded with some
characteristic applications.

Chapter Five deals with the “dual” form of the problem, i.e. the study of
Lipschitz mappings f : R” — R™ forn > m this time. Its structure mimics
the preceding Ch. 4; Firstly, we present in great detail the Lemmas which



guide us towards the proof of the Coarea Formula, and then we state and
prove the Theorem. Finally, we present some typical applications. The thesis
is culminated by presenting some extra results, beyond the G.T.M., which are
based on the Area and Coarea formulas and highlight the importance of these
tools, across every aspect of Mathematics.
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CHAPTER

PROTHEORIA [: ELEMENTS OF
MEASURE THEORY

In this Chapter, we offer a basic overview of standard measure theory. We
start by referencing some definitions of abstract measure and integration the-
ory, reaching up to product measure and Fubini’s theorem. We then quickly
shift our focus on Radon measures. We establish the Differentiation Theorem
for Radon measures and we state three important theorems: Lebesgue Differ-
entiation theorem, Lebesgue Density theorem and an “Exhaustion” theorem
of open sets with balls.

The content of the present Thesis is primarily influenced by the book of
Lawrence C. Evans and Ronald F. Gariepy ( see [8] and [7] ). Our journey
through Measure Theory follows the approach of H. Federer [10], in parallel
with [24] and other bibliographic sources; [9, [15] [5].

1.1 Measures & measurable sets

Let X denote a non-empty set and 2% the collection of all subsets of X.
Definition 1.1. A mapping p : 2% — [0,00] is called a measure on X pro-
vided that

1. w(@) =0 and

2. if AC|J A then
k=1

u(A) <> p(Ag).
k=1

!Protheoria: The greek word “Protheoria” (Ilpodewpic) referred to the introductory part
of Medieval & Byzantine music codices, which used to include the key concepts & ideas, as
well as some explanatory notes, for what was presented in the following sheets. Since we
mimic the same pattern, we assumed its use in this Thesis.
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REMARK. We are highly aware that the vast majority of mathematical
texts would call such a mapping an outer measure, reserving the name
measure for p restricted to the collection of p-measurable subsets of X (see
the definition below).

However, we will adhere to this definition, due to the advantages we get by
being able to “measure” even the non-measurable sets.

Definition 1.2. A set A C X s called pu-measurable if for each B C X we
have

w(B) =u(BNA)+ p(B\ A).

Theorem 1.1 (Elementary properties of measure). Let p be a measure
on X.

1. IfAC BCX, then u(A) < u(B).
2. A set A is u-measurable if and only if X \ A is p-measurable.

3. The sets @ and X are u-measurable. More generally, if p(A) = 0, then
A is u-measurable.

4. For any C C X; Fach pu-measurable set is also pC-measurable, where
by puLC we denote the following

(W C)(A) = w(ANC).

Theorem 1.2 (Sequences of measurable sets). Let {A;}7° | be a sequence
of nu-measurable sets.

o0 o0
1. The sets U A and m Ay are p-measurable.
k=1 k=1

2. If the sets { Ay}, are disjoint, then
M(U Ak) = ulAr).
k=1 k=1

3. IfAl Q g Ak g Ak—i—l g veey then
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4. If Ay D ... D A D Apy1 2 ... with p(Ay) < oo, then

e =(4)

Definition 1.3. Let X be a non-empty set and A a collection of subsets of X.
We say that A is a o-algebra of X, provided that

1. 9, X € A,

2. Ac A= X\NAe A,

3. AveAk=12,.)=|]A e A
k=1

Theorem 1.3 (Measurable sets constitute a c-algebra). If u is a mea-
sure on a non-empty set X, then the collection of all pu-measurable subsets of
X is a o-algebra.

Definition 1.4.
If C C 2% is any collection of subsets from X, the o-algebra generated by
C, denoted as o(C), is the smallest o-algebra containing C.

Definition 1.5.

1. The smallest o-algebra containing the open sets of R™ is called Borel
o-algebra.

2. Its elements are called Borel-measurable sets.

3. We call u a Borel measure if every Borel set is pu-measurable.

Definition 1.6.

1. A measure u on X is regular, if for every set A C X there exists a
p-measurable set B such that A C B and p(A) = u(B).

2. A measure pu on R™ is Borel-regular, if i is Borel and for each set
A C R" there exists a Borel-measurable set B such that A C B and

u(A) = u(B).

3. A measure u on R" is Radon measure, if u is Borel regular and
w(K) < oo for each compact set K C R™.
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Theorem 1.4.
Let u be a regular measure on X. If Ay C ... C A C Agy1 C ..., then

e =(J4)

REMARK. In contrast with the previous result, here, the sets { A3 }7° | need
not be y-measurable.

Theorem 1.5. Let i be a Borel measure on R"™ and B a Borel set.

1. If W(B) < o0, there exists, for each € > 0, a closed set C such that

CCB, u(B\C) <e.

2. If i is a Radon measure, there exists, for each ¢ > 0, an open set U such
that
BCU, u(U\NB) <e.

Theorem 1.6 (Approximation by open and by compact sets).
Let pu be a Radon measure on R™. Then;

1. For each set A CR",
w(A) =inf{u(U)| A C U, Uopen}.
2. For each p-measurable set A C R",

wu(A) =sup{(K)| K C A, Kcompact}.

The following criterion is a useful way to verify whether a measure p is
Borel.

Theorem 1.7 (Carathéodory’s criterion). Let u be a measure on R™. If
for all sets A, B C R", we have

AU B) = u(A) + ((B) whenever dist(A, B) > 0,

then u is a Borel measure.
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Proof. First, for clarification reasons, we shall state the specific notion of “set-
theoretic” distance that we will use;

We denote
dist(A, B) = inf{d(e,b) |« € Aand b € B}

for any metric d on R".

Now, let A,C C R™ with C : closed. It suffices to show that
n(A) > p(ANC) + p(ANC), (*)
since from sub-additivity we get that
pw(A) = p((ANCYU(AURNC))} <u(ANC) + p(An (RN C)).
Observe that, if pu(A) = oo, then (ED is obvious. Therefore, we continue

assuming that u(A) < oco. For n = 1,2, ..., we define sets

Cy = {xGR"

dist(z, C) < 1}.

n

Then, dist(A\Cy,, ANC) > 1, since for all @ € A\C), we have that dist(a, C) >
1

Therefore, our hypothesis implies that

(AN Co) + (AN C) = (AN Cp) U (AN C))
< u(AU(ANC)) < p(A). (x)

Claim:

lim u(ANCp) = u(ANC).

n—oo

Proof of claim: For k =1,2,..., take

1 1
= Al —— 1 < = 3.
Ry, {:UE ’k+1<dlst(;r,0)_k}

o
Note that; if z € U Ry, then z € Ry, for some k, > n.

k=n
1
< dist(z,C') < — and thus z ¢ C. Consequentially,

Therefore, 0 < A

1
ko +1

(ANC) U | Rr=A4ANC

k=n

7
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Hence

(AN Cy) < p(ANC) = ( (ANGy) URk>

< u(ANGy) + Z u(Ry).
k=n

It suffices now to show that the countable sum > 77, u(Ry) < oo, and thus,
the “tail” will converge to zero as n — oo, establishing the claim.

For j >4+ 2, we have that R; N R; = @ and

1 1_]—1—1> 1

dist(B By) = 29 = 5= 5070 256+ 0 "

Summing on the indices, via our hypothesis, we get that

and, for the odd indices,
> (Ropyr) = ( U R2k+1) < u(A).
k=0 k=0
Now, we bring these results together and allow m — oco. Consequentially,
> n(Re) < 2u(A) < oo
k=1

This concludes our claim.

Combining the Claim and (ED gives us

()
WANC) + pu(ANnC) = ILm (AN CL) + p(ANC) < u(A).
This proves (ED Hence, the closed set C' is u-measurable, and consequentially,
all Borel sets are u-measurable. O
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REMARK. Let it be noted that the converse also holds true;
If 1 is a Borel measure, then u splits additively on positively
separated sets.

Indeed, let A, B C R™ with dist(A, B) > 0. Observe that
A=(AUB)NA and B=(AUB)\ A
Therefore, we get that
w(A) + pu(B) = pu((AUB)NA) + u((AUB)\ A). (%)
Now, since A is Borel measurable, applying the definition on (E]), we get that
u(A) + u(B) = n(AUB).

Hence, p is additive on A, B.

Notation. Henceforward, we will denote with |« | the Euclidean norm (the
2-norm) of R™. Circumstantially, when there is need for clarification on the
dimension, we will turn to the “customary” notation of |+||;, where d will
denote the dimension of the argument of the norm.

1.2 Measurable functions

We now extend the notion of measurability from sets to functions.
Let u be a measure on a non-empty set X, and, let Y be a topological space

Definition 1.7.

1. A function f : X — Y 1is called p-measurable if for each open set
UCY, the set

)

s u-measurable.

2. A function f : R™ =Y is called Borel-measurable if for each open set
UCY, the set

)

is Borel-measurable.
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Theorem 1.8.

1. If f + X = Y is p-measurable, then f~1(B) is pu-measurable for each
Borel set BCY.

2. If f :R™ =Y is continuous, then f is Borel-measurable.

Definition 1.8 (Measurability of functions on the extended real num-
ber line). A function f: X — [—o0, 00| is pu-measurable if and only if

fﬁl([_oo7 a))
is p-measurable for each o € R.

Theorem 1.9 (Algebra of p-measurable functions).

1. If f,g: X — [—00,00] are p-measurable functions, then so are

[ £y,

provided that pu({f = too}) = 0 = p({g = £oo}), or (alternatively) that
f g is assigned with a specific real value, whenever the “pathological”
cases of oo — 0o and —o0 + 0O occur.

2. If f,g: X — [—00, 00| are p-measurable functions, then the functions

fg, |f], min(f,g), max(f,g)

are also p-measurable.

The function i s also pu-measurable, provided that g # 0 on X.
g

3. If the functions fi : X — [—00, 00| are pu-measurable (k=1,2,... ) then
k—o0

inf fr, sup fx, liminf f; and limsup fx
k>1 k>1 k—o0

are also p-measurable.

REMARK. It is customary in Measure Theory to take 0 - (£o00) = 0. How-
ever, an appropriate definition for co 4= co is problematic, hence we imposed
those extra conditions in (1.).

10
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Theorem 1.10. Assume f : X — [0,400] is p-measurable. There exists an
(at-most) countable family of p-measurable sets { Ay}, in X such that

1
>l
k=1
REMARK. Note that; The sets {A}72; in the preceding Theorem need not

be disjoint. Also, note that the assertion is valid, even if the image of f is not
a countable set.

Proof. We shall use the so-called “strong” induction.
First, we define

A= {z e X | f(x) > 1)
and inductively, for k = 2,3, ...

w\H

S

We will show that; For all m = 1,2, ..., we have the estimate

Ak::{xeX‘f(:c)Z

1
> Z ~XA;
=17
"
Assume that the hypothesis holds for all m < k. Then f > Z ~XA;-
— J
7j=1
For the k + 1 index, we have that; If x ¢ Agq, then

k+1 1 1 k 1 k 1

k
1 1
and for z € Apiq, we get f(z) > —— + g —x4,; (7)
J

k+1 ot
1 k 1 k+1 1
XAk-H( ) + Z ~XA; (1‘) = Z —~XA ( )
T kt1 — j — j
Jj=1 j=1
k+1 1
Hence, for every case we have that f(z) > X (x) for all z € X
j=1

11
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Therefore, we can take the limit as £ — 0o, and conclude that
1
k=1

Now, it is clear that, if f(xz) = oo, then z € A for all k. Otherwise, if
0 < f(z) < oo, then the finiteness of the countable summation above implies
that x ¢ A,, for infinitely many n. Hence

i
L

0< fle) <~ + X (2)

S|
e
Il
ol

1

for all such n. Taking the limit as n — oo completes the proof. O

1.3 Integrals & Limit theorems

We now present some basic concepts in Integration Theory with respect to
a measure.

For this section, we abide by the following Notation;
f+ = max(f,O), f_ = max(—f,O), f = f+ 7f_'
Let p be a measure on a non-empty set X.

Definition 1.9. A function g : X — [—00,00] is called a simple function if
the image of g is countable.

REMARK. Doing this, we allow for more functions to be taken into account.

Definition 1.10.

1. If g is a non-negative and simple u-measurable function, we define its

integral to be
/g dp= > yulg{y}).

0<y<oo

2. If g is a simple p-measurable function for which either [ gTdu < co or
[ g du < 00, we call g a p-integrable simple function and define its

integral to be
/gd;w:/g* dﬂ—/g dp.

It is clear that we allow the integral [ g dp to take values £oo.

12
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Therefore, combining the two definitions, if g is a p-integrable simple
function, we get that

/gdu:: > wulg ).

—oo<y<oo

To verify that, simply observe that we can decompose the inverse image
of g into the union of two disjoint sets; The set of all arguments which give
a non-negative value and the set of those arguments which yield a striktly
negative argument. Thus, we only need to calculate that

/gdu:/fdu—/g_du

= > () My = D wel(le) Hy})

0<y<oo 0<y<oo

= > (@) My = > Y)e(e) =YY
0<y<oo 0=-Y<oo

= > wlgH M)+ X Yulle) VY
0<y<oo —0o=y=0

S y(u((g*)‘l{y})+M((g_>_1{—y})>

= > (gt —9) )

= > ynls M)

Notation. The expression
U — a.e.

is an abbreviation of the phrase almost everywhere with respect to mea-
sure W, meaning that the aforementioned assertion is valid for all elements of
the space X except possibly from a set A with pu(A4) = 0.

Of course this set could be the @, but that just means that the assertion is
valid for the whole space X.

Definition 1.11.

1. Let f: X — [—o0,00]. We define the upper integral
/ fdu = inf{/g du ’ g: pu-integrable simple g > f p — a.e.}

13
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and the lower integral
/f dp = sup{/g du ‘ g: u-integrable simple g < f pu— a.e.}.
*

2. A p-measurable function f : X — [—00,00] is called u-integrable if
/ fdu= /f du and, therefore, we write

/fdu::/*fduz/*fdu-

REMARK. We shall specify that the term integrable differs from most
texts. For our purposes, a function is integrable whenever “it has an
integral”, even if this integral equals +o00 or —oo.

REMARK. It is immediate that a non-negative pu-measurable function is
always p-integrable.

First, assume that p({f = 0o}) = u({z € X | f(z) = c0}) > 0. Then, for
any ¢ > 0, we employ the simple function ¢ = ¢ x{y—} and the definition of
J[. fdu, in order to obtain

/*fdu>/tx{foo}:tu({f:oo}), for any ¢ > 0.

Thus /f dp = oo and since f*fdu > f*fd,u, we also get that /f dp = oo.
*
Hence f is p-integrable, with /f du = oo.

Now, suppose that ,u({f = oo}) = 0. Then f(x) < oo for p-ae. x € X.
Let t > 1. We define

Ep={zeX|th< flz)<tFt!}, kel

Notice that the sets { Ej}rez are disjoint and p-measurable. Furthermore, we
define the simple function

kEZ

Then X \{f =0} = U Ej) and assigning the value 0 to g on {f = 0}, we
keZ
have that g(x) < f(z) < tg(x), u-a.e. x € X. We get that

[ raus [to@ au=t [ow anse [ 1

14



Chapter 1 1.3. Integrals & Limit theorems

for all t > 1. Taking the limit ¢ — 17, we get that /f du < | f du,

which yield the equality of the integrals, and hence, the u—integrabilit}; of the
function f.

Finally, from the estimate above, we get that / fdu>0.

Definition 1.12.

1. A function f: X — [—00,00] is pu-summable if fis u-integrable and
/ |fl dp < o0.

2. We say that a function f: X — [—o00, 0] is locally p-summable if f|x
s u-summable for each compact set K C R™.

Theorem 1.11 (Fatou’s lemma). Let fi, : X — [0,00] be u-measurable for
k=1,2,....Then

/lim inf f dy < lim inf/fk dp.
k—o0 k—o0

Lemma 1.1. Let f, : X — [0,00] be an increasing sequence of not necessarily
integrable functions, for which fi < ... < fr < fro1 < ... p-a.e. Then

* *
lim / fr du :/ lim fy dup
k—o00 k—o00

Proof. 1t is clear that, from the monotonicity of the sequence, the limit on the
left-hand side exists and that

* *
lim / fr dp < / lim fy dup
k—o00 k—o00

From the Infimum Property, we choose ¢ simple y-integrable functions, such

that 0 < fr < ¢ and
* 1
/@kdué/ fkdu+27

This implies that
* *
/ lim f; < /liminfgok du < liminf/gok dp < lim / frdu
k—o00 k—o0 k—oo k—o0
and the proof is complete. ]

15



Chapter 1 1.3. Integrals & Limit theorems

As a consequence, we get the following;

Theorem 1.12 (Monotone Convergence Theorem). Let f, : X — [0, 0]
be p-measurable (k= 1,2,...), with fi < ... < fi < fit1 < .... Then

/ lim f dpy = lim /f;C du.

k—o00 k—o0

Theorem 1.13 (Dominated Convergence Theorem). Assume g > 0 be
a p-summable function and f, fi: p-integrable. Suppose that

fi—=f p—ae

and

[fel<g (k=1,2,.)
Then;

tim [ 1= g1 dp =0
and so

/fkdu%/fdu-

Finally, in preparation of our groundwork, we shall include here a Proposi-
tion [Lemma] from Measure Theory, concerning the upper integral, which will
be crucial towards the end of our thesis.

Lemma 1.2. Let fi, : X — [0,00] be a decreasing sequence of not necessarily
integrable functions, for which

*
lim sup fr(y)dy = 0.
k—oo JRM

Then
fely) =0 (L™ —ae.y € R™).

Proof. Let us suppose that the conclusion does not hold. This implies that;
There exists a subset By C R™ of positive measure L™(Bj) > 0, such that

0< lign inf fr(y) < limsup fx(y) forally € By.
—00

k—o0

SR
——

lim sup fx(y) >

k—o0

limsup fi(y) > 5} = {y € B

neN

BlIU{yEBl

>0

16



Chapter 1 1.4. Product measures & Fubini’s theorem

Therefore, there exists a § > 0 and a By C By C R™, such that;

limsup fx(y) > 6, forally € Bs.

k—o0
Recall now the definition of the limes superior and that f; is a decreasing

point-wise sequence of functions, and so;

limsup fx(y) = klgrolo fr(y) =9, forally € Bs.

k—o0

Consequently,
fe(y) =9, forally € By,

and, for all £ =1,2,.... Therefore, we obtain that;

* * *
/ sz/ foz [ 6=scmBy) >0,
m B B

hence,
*
lim sup fr > 0L™(B2) >0,
k—oco JR™
which is a contradiction. The proof is complete. O

1.4 Product measures & Fubini’s theorem

Consider non-empty sets X and Y.

Definition 1.13. Let u be a measure on X and v be a measure on Y. We
define the measure u x v : 2X*Y — [0, 00] by

(1 x v)(S) = inf {Zu(Ai)V(Bi)},
=1

for each S C X XY, where the infimum is taken over all collections of p-
measurable sets A; C X and v-measurable sets B; CY (i =1,2...) such that

s

Il
—

2

The measure p X v is called the product measure of u and v.

17



Chapter 1 1.4. Product measures & Fubini’s theorem

Definition 1.14. Let X be a non-empty set and u a measure on X.

1. A subset A C X is o-finite with respect to u if it can be expressed

as
oo
A= U By,
k=1

where each set By, is p-measurable with p(By) < oo fork =1,2, ...

2. A function f: X — [—00, 00| is o-finite with respect to u, when f is
p-measurable and {z | f(x) # 0} is o-finite with respect to .

Theorem 1.14 (Fubini’s theorem). Let u be a measure on X and v a
measure on Y.

1. Then p X v is a regular measure on X X Y, even if u and v are not
reqular.

2. If A C X is u-measurable and B C'Y is v-measurable, then A x B s
(u X v)-measurable, with

(4 V)(A x B) = u(A)v(B).
8. If S C X XY is o-finite with respect to pu x v, then the cross section
Sy ={z|(z,y) € 5}

is u-measurable for v-a.e. y €Y, and

Sy = {y‘(xvy) € S}

is v-measurable for p-a.e. v € X.

Moreover, y — p(Sy) is v-integrable & x — v(S;) is p-integrable, with

(e 0)(8) = [ n(S,) dvtw) = [ v(S.) duta).

X

4. If fis (u X v)-integrable and f is also o-finite with respect to pu x v (in
particular, if fis (u X v)-summable) then the mapping

yH/Xf(:L‘,y) du(x)

18
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1s v-integrable, and the mapping

e /Y f(.y) du(y)

s u-integrable.

Moreover, we have that

/Xxyfd(ﬁ‘x v) :/Y[/X f(z,y) du(z)} dv(y)

1.5 Lebesgue measure

Definition 1.15. We define the one-dimensional Lebesgue measure on
R! as

LY(A) = inf {Z diam C;

i=1

= inf {i diam I;

i=1

Ag[jci, CZ-QR}

i=1

o0

AC U I;, I; interval in R }
i=1

Definition 1.16. We define, inductively, the n-dimensional Lebesgue mea-

sure L on R! by

Lr=Lrtx =t <o ox £t (ntimes)

Theorem 1.15 (Equivalent characterisation of Lebesgue measure).
We have

£ =LrFxck
for each k € {1,...,n — 1}.
Notation. We will write “dx”, “dy” etc. rather than “dL™” in integrals taken
with respect to L. However, when we need to emphasize on the dimension

and/or the variable of integration, we shall do so, by writing the “explicit”
notation, like so dL"(z).

We will now, for the sake of completeness, state a well-known Theorem
concerning the Lebesgue measure of the image of a set under a linear trans-
formation, without proof.

19



Chapter 1 1.6. Differentiation of Radon Measures

Theorem 1.16 (Behavior of Lebesgue Measure under Linear Maps).
Let L : R™ — R"™ q linear map and A be a L™-measurable set. Then the image
set L(A) is also L™-measurable and it holds;

L7 (L(A)) = |det A| L(A).
1.6 Differentiation of Radon Measures

Let p and v be Radon Measures on R™.

Definition 1.17. For each point x € R", we define

Doa lim S(l)lp :Eggi’:i) if W(B(x,r)) >0 for all r >0
W - r— )
“+o0 if wW(B(z,r)) =0 for somer >0
and
o(z) = liIrIl_)i(I]lf :Egg’:g) if W(B(z, 7)) >0 for all r >0
= ’

+o0 if W(B(xz,r)) =0 for somer >0

Definition 1.18. If D,v(x) = D,v(z) < +oo, we say v is differentiable
with respect to u at x and write

Dyv(x) = Dyv(z) = D,v(x).
Therefore,

_ i VBl 1)
PR = Bz, )

D,v is the derivative of v with respect to . We also call D,v the density
of v with respect to .

Theorem 1.17 (Differentiating measures). Let i and v be Radon Mea-
sures on R"™. Then

1. Dyv(x) exists and is finite p-a.e., and,

2. Dyv(x) is p-measurable.

20



Chapter 1 1.7. Lebesgue Differentiation & Density Theorem

Definition 1.19. Let u and v be measures on R". The measure v is abso-
lutely continuous with respect to u, and we denote this as

v u
provided that u(A) =0 implies v(A) =0 for all A CR"

Definition 1.20. Let u and v be Borel measures on R"™. We say that u and
v are mutually singular, and we denote this as

vliluy
if there exists a Borel B C R"™ such that
1(R"\ B) = v(B) = 0.

Theorem 1.18 (Radon-Nikodym Theorem). Let u, v be Radon measures
on R™ with v << . Then

V(A) = /A Dy dp

for all p-measurable sets A C R™.

1.7 Lebesgue Differentiation & Density Theorem
Notation. 1. We denote by

LY(X, p)
the set of all y-summable functions on X, and by

Lige(X, 1)

the set of all locally p-summable functions.

2. Similarly, if 1 < p < 0o, we denote by
LP(X, )

the set of all u-measurable functions f on X, such that |f|P is u-summable, and
by
Lin (X, )

the set of all y-measurable functions f on X,such that | f|? is locally y-summable.
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Chapter 1 1.7. Lebesgue Differentiation & Density Theorem

Notation. We denote the average value of f over the set E with respect to

a measure p by
1
fdp = / [ dp,
]{E WE) Jg

provided that 0 < pu(E) < oo and the integral is defined.

Theorem 1.19 (Lebesgue Differentiation Theorem). Let i be a Radon
measure on R™ and f € L (R™, u). Then

lim fdp=f(z)

r—0 B(J}J’)
for p-a.e. x € R™.

Theorem 1.20 (Lebesgue Density Theorem). Let A C R" be L™ -measurable.
Then (B A
L LM(B(,r) N A)

—1 [ g zeA
" L7 (B(z, 1)) Lh—ae we

and

lim LM(B(z,r)NA)

= " _a.e. "\ A.
M = B ) 0 L ae. x€R"\ A

Theorem 1.21 (Exhaustion theorem: Filling open sets with balls).
Let U C R"™ be open set and 6 > 0. There exists a countable collection € of
disjoint closed balls in U such that diam B < § for all B € € and

E”(U\ U B) =0

Bec¢
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CHAPTER

PROTHEORIA 1I: HAUSDORFF
MEASURES

In this Chapter, we introduce certain “lower dimensional” measures on R",
which enable us to “measure” some “very small” subsets of R®. These are
called Hausdorff measures. We begin by proving some fundamental properties
and we proceed to show the isoperimetric inequality, an important tool in
order to show that H™ = L™ on R".

For a deeper understanding of Hausdorff measures, we refer to [12], [20],
[25] and [4, @]. For a better visualisation Steiner Symmetrization, we suggest
[28] and [15].

2.1 Definitions & elementary properties

Definition 2.1. Let ACR", 0<s< o0, 0<d <oo. We define

H3(A) = inf{ Za(3)<(har;0j> ‘ Ac| ey, diamC < 5}
j=1

=1

where

(SIS

s

U =15
and T'(s) = / e "z dx (0 < s < 00) is the Gamma function.
0

We call

HP(A) = lim H5(A) = sup H3(A)
6—0 >0

the s-dimensional Hausdorff measure of A on R™.
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Chapter 2 2.1. Definitions & elementary properties

REMARKS.

1. Our demand that § — 0 forces the coverings to “follow the local geome-
try” on A.

2. Observe that H3(A) is a decreasing sequence with respect to 8. There-
fore, the limit and the supremum are well-defined.

3. Recall that, for s > 0 we have that I'(s + 1) = sI'(s). Therefore, if
s =n € N, by induction, we have that I'(n) = (n — 1)!, n=1,2,....

4. Finally, observe that L™(B(z,r)) = a(n)r™ for every ball B(z,r) C R™.
Especially, we shall demonstrate later on that, whenever s = k£ € N,
the H”* agrees with the ordinary “k-dimensional surface area” on some
“nice” sets, and this is the reason for “adding” a(s) to the definition, so
as it serves as a normalising constant.

Theorem 2.1 (Hausdorff measures are Borel). For all 0 < s < oo,
‘H? is a Borel regular measure in R™.

Proof. We will proceed in steps.
Claim #1: Hj is a measure for every 0 < § < oo.
Proof of claim: Let 0 < 6 < oco. Obviously, Hj(@) = 0.
[o¢]

Suppose {A}72; CR"and A C U Ag. Fore > 0and k = 1,2, ... we consider

k=1
a covering {C’k} °, of Ay of the form A, C U C with diam C"C < 4, so that
7=1
s diam C’k
ACUUC’“and’H(;Ak %ZZQ ( >
k=1j=1 j=1
Then
o o © o rdiamCb
_ J
e+kZIH5 (Ag) _kzl( +H; Ak)>2;z;a(s)<2>
= = ]:

> inf{-} = Hi(A).
Now, by letting ¢ — 0 we get that

H3(4) < S H(Ap).
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Claim #2: H® is a measure.

Proof of claim: Again, it is obvious that H*(&) = 0.
Let {A;}32, CR" and A C U Ag. Then, for every 0 < § < oo, we have that
k=1

o0

MHi(A) < Hi(Ap) < ZSHP H (Ay) ZH (Ap).
k=1

_ =1 9>0

Now the right-hand side does not depend on & and is an upper bound for
H5(A). Consequently,

Ho(A) < H (A,
k=1

Claim #3: H?® is a Borel measure.

Proof of claim: We are going to use Carathéodory’s criterion. For this, let us
choose sets A, B C R™ with dist(A, B)> 0. Select 0 < § < idist(A, B) and
o0

suppose that AU B C U Cj, with diam Cy < 4.
k=1

o0
Notice that, for z € A, we get that z € U C, hence z € C. for possibly more

k=1
than one indices. The same holds for any w € B. We collect those members

of our initial cover and form families
A={C;|C;nA#o} and B:={C;|C;NB# o}.
Hence, we have that

Ac |J ¢ and BC |J G, with CinGj=2.
CjG.A CjEB

for C; € A and C; € B. Therefore

;a (dlamc ) > Jz: a(s)<dlam0 > 3 o <d1amC >

C,eB
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Taking the infimum over all such sets {Cy}32,, we find that H3(A U B) >
H5(A) + H5(B) provided that 0 < 49 < dist(A4, B).

Letting § — 0, we obtain
H (AU B) > H(A) + H*(B)

for all A, B C R™ with dist(A, B)> 0.

The reverse inequality follows from Claim 2, since H® is a measure.
Carathéodory’s criterion implies that H?® is a Borel measure.

Claim #4: H? is a Borel-regular measure.

Proof of claim: We are familiar with the property that diam C' = diam C' for
all C; hence

H(4) = inf{ 3 a(s) (dr;C >

AC U Cj, diam C; <9, C; closed}.
j=1

J=1

Choose A C R™ such that H*(A) < co. Then, it is obvious that H5(A) < oo
for all § > 0.

For each k > 1,choose closed sets {C’k} °, so that AC U C’k with diam Cj]? <
J=1

° dlaka 1
Zoz (s < > < HI(A) + T
k

S

for which

Now, letting Ay, = U C and B = m Ay, B becomes a Borel set. Moreover,
k=1
A C Ay foreachkandsoACB

Furthermore,

Pay s diam C¥ \*
#(B)=Hj (ﬂ Ak> < () = ntf) £ 3a(e) (T )

k

k=1 j=1
1
<HI(A)+ —.
3 k
Therefore, we obtain that
HI(B) = lim Hy(B) ——— i 9} (B) < lim (#](4) + ) =H'(4)
= (B) S . oo\ h k)~
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Finally, recall that A C B, and thus H*(A) < H*(B), since H® is a measure
(Claim 2). Hence H*(B) = H*(A).

O]

REMARK. In the proof of Assertion (4.) we used a slightly “different”
definition for H§, namely that

(e 9]

Hi(A) = inf{ Za(s) <dlamC’]> ’ AC U Cj, diam C; <6, Cj Closed}.

; 2 ,
Jj=1 j=1

Truly, the equality holds.
Let A C R". Define

diam F, >
Ui( mf{z < am ]> 'Ag UFj’ diam F; <0, chlosed}.

— j=1

It is immediate that since we restrict ourselves in the sub-set of closed cover-
ings, that

F (o.9]
Us(A 1nf{ Z <d1am J ) ' AC U F;, diam F; <9, Fj closed}

— j=1
> %5(A).

Moreover, since diam C' = diam C' for any set C, we can treat some of the F
sets as being the closures of other sets, not necessarily closed or open or none
oo

of the above. Hence, for any cover A C U C; C U ﬁ] with diamC; <4

Jj=1 Jj=1
consisting now of closed sets, we have that

\IIE(A)SEQ(S)<dIamC ) 20‘ <d1amC >

In this case, W§(A) simply becomes a lower bound for #Hj(A), and thus
Us(A) < H3(A), proving the equality.

REMARK. #H? is NOT a Radon measure if 0 < s < n, since R” is not
o-finite with respect to H?. (see the REMARK following Theorem for
the justification).
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Theorem 2.2 (Properties of the Hausdorff measure).

1. H° is the counting measure.

2. H' = £ on RL.

3. H* =0 on R" for all s > n.

4. H*(ANA) = NHP(A) for all A > 0, A CR™

5. H¥(L(A)) = H*(A) for all affine isometries L : R — R", A C R™.
Proof.

1. It is easy to calculate that «(0) = 1 and so H’({a}) = 1, for each a € R™.
Now, (1.) follows.

2. Choose A C R and 6 > 0. Observe that

LYA) = inf{ Zdlam c;lAac| o }
j=1 j=1
< 1nf{ Y diamC; | AC | Cj, diamC; < 5}
j=1 j=1
=H;s(A)

since I'(3) = @ and a(1) = 2. Hence £!(A) < H!(A).

oo

For the reverse inequality, we choose sets {C;}72, such that A C U C;. Let
j=1

Iy, = [kd, (k + 1)4], for k € Z. Then, for all j, k we have that

diam (C;N1I;) <6 and Y diam (C;N 1) < diam C; (j : fixed).

k=—o00

Now, simply observe that

AclJo=(CnR) = (ij U Ik> = U( U CJmIk>
j=1 j=1 j=1 k=—o00 j=1 \k=—o0
= U ©@n)
L
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Hence,

<Z Z diam (C; N I,) _Zdlaij.

j=1k=—o0 j=1

and so H}(A) becomes a lower bound for £1(A), since

AC ch}.
j=1

Therefore, we end up with H}(A) < £!(A) for all § > 0, hence

LYA) = inf{ ) diam C;

J=1

H!(A) < L£N(A),

which, by taking into account the reverse inclusion from above and that this
holds for all A C R, provides us with the equality we were aiming for, namely
that £' = H! on R™.

3. Fix an integer m > 1. The unit cube @ in R™ can be decomposed into m”
cubes with 31de — and diameter (length of body diagonal) VR Therefore

3\3
s
ngh
2
/_\
\—/cn
=
e
3
i

where the last term tends to zero, as m — oo, for s > n.
Hence H*(Q) = 0, and by “exhausting” R™ with homocentric scaled versions
of Q, say of the form { kQ }7°,, we get that H*(R"™) = 0.

4. Fix A > 0. Then, for an arbitrary but fixed é > 0, we get that

Hi(NA) = inf{za(s)<‘m2c’“> ) M C | G, diam €y < 5}
k=1

k=1
. > diam C}, \° > Cy )
:1nf{Za(s)<2> 'AQ U()\>,d1amC’k §5}.
k=1 k=1
Set 5; = % Then diauma;C = %diam Cp < ; and so
s . - Adiam Cj, \* <~ — 5
H5(NA) = mf{; a(s)(z) ' AC kL_Jl Cy, diam Cj, < )\}
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AC U Cl, diam C},

o0 —_— —
. . }
k=1

= int] S ot (B | 4 ¢ () G o < i}

k=1

>| >

Sending § — 0, and since the above hold true for any A C R™ and any A > 0,
we get the equality we were aiming for, namely H5(\A) = A¥H*(A).

5. Let an affine isometry L : R®™ — R™ and A C R™. A well-known result from
Analytic Geometry gives us a beautiful and complete description for all these
maps;

Any affine isometry of R™ is given as

L(z) =0z +b,
where O is an orthogonal matrix and b a fixed vector of R™.

o
Let § > 0. Take sets {C}}32, such that A C U C), with diamC), < 4.

k=1
Consequently,
L(A)gL(UCk>:UL = J(0Ck +b).
k=1 k=1 k=1

Let Cp = OCy + b.
Then

diamCj, = sup |(Oz +b) — (Oy + b)|
7yecl€

= sup ‘(O) (x — )‘: sup |x—y‘—d1aka
z,y€Cy, z,y€Ck

Hence, we get that

H5(L(A)) = inf{z a(s)(diaszkf ‘ L(A) C U By, diam By, < 5}

k=1 k=1

<3 a(s) (‘mgc’“) =Y a(s) (W)
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Therefore, #3(L(A)) becomes a lower bound for Hj(A), hence
H3(L(A)) < HF(A).
Letting § — 0, gives us
H(L(A)) < H(A).
Now, the proof is essentially complete, since, L is also an epimorphism, and
the inverse map L~! is also an affine isometry (L~1(y) = O~y —b',b’ = O~ 'b)
and hence
H(L(A)) < H(A) = HY(LTH(L(A))) < H*(L(A))
and so, H*(L(A)) = H*(A). O

Lemma 2.1. Suppose A C R" and Hj(A) = 0 for some 0 < § < co. Then
H3(A) = 0.

Proof. First of all, for s = 0, the conclusion is obvious;

As we proved in the previous Lemma, H is the counting measure.
Now, assume that A # @. Then there exists o € A, and so

H3(A) = Hi({a}) = 1.

Hence
HI(A) > 1 forall § > 0.

We reached a contradiction. Hence, A = @. The conclusion is immediate.
Now, we study the case of s > 0. Fix € > 0. Then there exist sets {C;}72,

with diam C; < 4, such that A C U C; and
j=1

> (dlamC )
Za <e.
7j=1

Now, for each 7 we get that
1

diam C; < 2(5)> = 5(e).

a(s
Hence
Since 0(g) — 0 as € — 0, we get that H*(A) = 0. O
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Lemma 2.2. Let ACR" and 0 < s <t < 0.
1. If H3(A) < oo, then H'(A) = 0.
2. H'(A) >0, then H5(A) = o0

Proof. 1. Let H*(A) < oo and § > 0. From the infimum characterisation
and the definition of Hausdorff measure, there exist sets {C;}32; such that

A c | G with diam C; < 6 and
j=1

> afs <dlam09 ) <HI(A)+ 1< H(A) + 1.
7=1

Hence, we have that

j=1

at) oy N diam C} am

CHER R 9(F5) ey
<;):((325 t(StS(HS(A) )

By sending § — 0, we conclude that H!(A) = 0. This proves (1.)
2. Now, let H!(A) > 0. For s < t we get that

M (4) = lim H3(A

= lim inf{
6—0

= lim inf{
6—0

e =

a(s)(dlamC’j> ‘A C U Cj, diam C; < 5}

2 .
j=1

<.
I
—_

“

ot Ziii 2 (dmgc ) (diam €, )

1 j=1

J

>%l—>o a((j; o {ia <dlam0 ) 'Ag GCj’

Jj=1 Jj=1
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diam C; < 5}
. 1 s > diam Cj} o
_%g%(stsmf{Za < > QUC
j=1 j=1
diaij S 5}
= +OQ
O

Definition 2.2. The Hausdorff dimension of a set A C R"™ is

Hgim(A) = 1nf{0<s<oo]’Hs —0}
= sup{0 < s < oo | H*(4) = 400 }.

REMARKS. 1. We saw in the previous Lemma that if there exists s > 0 so
that H*(A) < oo, then H'(A) = 0 for all ¢ > s. Hence the set of indices for
which H*(A) = 0 is bounded from below, and thus the first definition is well
posed.

2. For the second definition, the justification is similar; From the previous
Lemma, we saw that if there exist a t > 0 such that 0 < H!(A) < oo, then

HY(A) = 400, &' <t ()

H* (A) =0, t<s".

From (%) we get that the set of indices where {H*(A) = 400} is bounded from
above, with Hg;m(A) being an upper bound, hence

sup{O < s <00 ’ HS(A) = +OO} < Hdim<A) and Hdim(A) ={.

Now, it shall be perfectly clear that the inequality above “collapses” into
equality, since, had the inequality been strict, there would have been § with
sup{-} < & < t where (2.) from Lemma would imply H*(A) = +oo, which is
a contradiction to the definition of the supremum.
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Note that if there is no s > 0 so that 0 < H*(A) < 400, the above quanti-
ties “collapse” into a minimum/maximum (respectively) and, again, the point
where the “discontinuity” of the map d +— H%(A) occurs, is the Hausdorff
dimension.

Finally, in the case that Hgim(A) = inf{0 < s < co|H*(A) =0} =0, for
example, when A is a finite set, the set {H" = oo} is empty and we ignore it
( equivalently we “adopt” the convention that sup{@} =0 ).

This concludes the proof of the equality (and consequentially, the equiva-
lence) between the two definitions.

3. An immediate observation is that Hgim(A) < n;

Suppose that Hgim(A) > n, strictly. Then we immediately stumble upon a
contradiction, since in Assertion (3.) of Theorem 2.2 we saw that H® = 0 on
R™ for all s > n, and in that case Hgim(A) would not be an infimum.

4. Let s = Hgim(A). Then, from the definition of Hausdorff dimension, we
get that H!(A) = 0 for all t > s and from the second assertion of the previous
Lemma, we also get that H!(A) = +oo for all ¢ < s.

An intuition behind this is that the volume of a painting on a sheet of paper
is zero, and that the “length” of a surface, let’s say of a prism for example, is
infinite.

5. At the borderline case of s = Hgin(A) we cannot have any general non-
trivial information about the value of 7*(A); all three cases are possible.
6. Based on the above, we can say that, for a fixed set E, the function
d — HA(E) is decreasing and attains a finite non-zero value at most once.

Theorem 2.3 (Properties of the Hausdorff dimension).

1. Let A,BCR". If AC B, then Hgm(A) < Haim(B).

2. Let {A;}22, CR™. Then Haim < U Ai> = sup { Haim(4;) | i € N }.
=1

Proof.

1. Let s > Hgim(B). From the sub-additivity of the H*-measure and the defi-
nition of the Hausdorff dimension, we get that H*(A) < H*(B) = 0. Therefore,
Hgim(A) < s. Since this is true for all s > Hgiy, (B), we immediately get that
Hdim(A) < Hdim(B)-

o0
2. First, we notice that for every j = 1,2, ..., we have that A; C U A;. Hence,

i=1
by passing onto the supremum, we get
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sup { Haim(Ai) } < Haim ( U Ai) :

i=1

For the reverse inequality, let s > sup { Hgim(A;) } Then, for all : = 1,2, ...
i
we have that H*(A;) = 0 and by the sub-additivity of the H*-measure, we get

that H° < U Ai> < ZHS(Ai) = 0. Therefore, Hgim ( U Ai> <s.
i=1 i=1 i=1

Taking infimum over all such s, implies that

Hgim < G Ai) < sup { Haim(4i) }-

Hence, we get the desired equality. O

REMARKS. 1. Essentially, what the above theorem tells us is that Haus-
dorff dimension behaves nicely, namely, that it preserves monotonicity in the
C-order and is stable with respect to countable unions.

2. Needles to say that in the finite case, the supremum “collapses” into max-

k
imum, namely; Hgqim ( U AZ-) = izrllaxk{ Hgim (A5) }

=1

REMARK. (R" is not a o-finite with respect to H? for s < n)

Having established the groundwork, we are now ready to present the proof of
this Claim we stated earlier in this Chapter.

Let us suppose, momentarily, that R™ is o-finite with respect to H?*, for
s <mn. Then R™ can be decomposed as

R" = U Ay, where we have that H*(A;) < oo (k=1,2,...).
k=1

However, this would imply that Hgim,(Ag) < s, for all £ = 1,2, ..., thus from
the above Theorem we get that

Hgim (R™) = Hdim( U Ak> = sup { Hyim(Ap)} < s <n.
k=1

Hence, we have reached a contradiction, thus proving our claim.
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2.2 Isodiametric inequality

Our goal in this section is to prove that H" = L" on R™. This is not
obvious at all, since £L" is defined as the n-fold product of the one dimensional
Lebesgue measure £' and therefore

LM(A) = inf{ ZLTI(QZ) ’ Q;cubes, A C U Ql}
i=1 i=1

Let it be noted that, the above justification would imply the use of rectangular
coverings, induced by the Cartesian product of intervals. However, since cubes
are a sub-class of rectangles & rectangles can be decomposed into cubes, we
can transition into the above definition of £".

On the other hand, H™ is computed with use of arbitrary coverings of small
diameter.

REMARK. In the definition of L™, we could even take balls as coverings.

Lemma 2.3. Let f: R™ — [0,00] be L™-measurable. Then the region “under
the graph of f”

A::{(ac,y)‘xGR”,yER,OSySf(x)}

is L measurable.

Proof. Consider a function g : R™ x R — [0, co] defined as

g(z,y) = f(z) —y

with € R” and y € R. Then g is £""!-measurable and thus

A={(z,y) ]y >0} n{(z,9)] g(z,y) > 0}
is £ 1-measurable. O
Notation. Fix a,b € R", with |a| = 1. We define
Ly ={b+ta|tecR}
the line passing through b in the direction «, and
P,={zeR" |z -a=0}

the plane through the origin perpendicular to a.

36



Chapter 2 2.2. Isodiametric inequality

Definition 2.3. Fiz an o € R", with |a| =1, and let A CR™. We define the
Steiner symmetrization of A with respect to the plane P, to be the set

Sa(4) = | {b—i—ta t]gé?—[l(Ang)}.

bE Py
ANL§#2

Theorem 2.4 (Properties of Steiner Symmetrization).

1. diam S, (A) < diam A.
2. If A is L™-measurable, then so is Sq(A), and
L"(S4(A)) = L"(A).

Proof. 1. Clearly, if diam A = oo, the inequality holds trivially.

Therefore, we will assume that diam A < oo and, without loss of generality,
we may suppose that A is closed.

Fix € > 0 and select z,y € S,(A) such that
diam So(A) < |z —y|+e.

Set
b=z—(r-a)a and c=y—(y o).
Then b, c € P,, since

la|=1
r-ao—x-a=0.

ba=(x—(z-a)a) - a=z -a—(z-a)a

In the exact same way, we prove that ¢ - a = 0, thus ¢ € P,, as well.
Let

r=inf{t|b+ta € A},

s =sup{t|b+ta € A},
w=inf{t|c+ta € A},
v:=sup{t|c+ta € A}.

Then, by construction, we get that z = b+ (z - a)a € So(A) and also that
y=c+ (y-a)a€S,(A), hence

1 1
|z al < 57—[1(14014‘}) and |y-ao| < 57—[1(14(71'@),
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and, also that

s—r=sup{t|b+tac A} —inf{t|b+tac A} > HY(ANLY)
and
v—u=sup{t|c+ta € A} —inf{t|c+tac A} >H (ANLY).

Here, without any loss in generality, we may assume that we have already
chosen our points in such a way, that v —r > s — u. We have

1

v—rzi(v—r)—i- (s —u)
1

:§(S—T)+§(v—u)
> %’Hl(A NLY) + %Hl(A N L%

— N

> lz-al+y-of

>lz-a—y-al
Moreover,
(diam Sy (A) —€)? < |z — y|?
=0+ (z-)a) = (c+ (y - @)a)]

=|b-c)+(z-a—y-a)l?
=b—cP+lz-a-y-aflaf+2(z-a-y-a)(b—c) a

2

by the Pythagorean Theorem
= |b — C|2 + |£L‘ o=y - Oé|2 because b,c € P,, plane
<b—cf+(v—r)?

2 via the Pyth Th
= (b +ra) = (e +va)l” "Lud ecause bic e Pa planc

< (diam A )?,

since A is closed and b+ ra, c+ va € A.

It follows that diam S,(A) — e < diam A. Since ¢ is arbitrary, we end up
with the desired inequality

diam S, (A) < diam A.

2. Since L" is rotation invariant, we are going to assume that o = e, =
(0,...,0,1). Then P, = P,, = R"!. Since £! = H' on R and £" = L} x L}
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we employ Fubini’s Theorem and get

) = [ e

— / xA(z,9) dL™(z, )
Rr—1xR

/Rnl/x,wcy ) AL (y) dL" ().

Now let A, = {y € R|(z,y) € A}. Then

xa,(y) = {(1)’ szx = {(1)’ E?Z; Z ﬁ = xa(z,y).

Since the nested integral in the equality above is independent of x, we can
continue our calculations as follows

n _ 1 n—1
c= [ ( [t ac <y>) ac' (x)
= / LYA,) dL™ H(x).
Rn—l
Let the map f : R"™ ! — R be defined as
f(b) =H' (AN L),

where a,b € R", with |a] = 1. It is clear that f is £" '-measurable. Now,
recall from Measure Theoryﬂ that £! is translation invariant, thus we get

£ (A) = /R LA AL ()
- / LHANLE) dLm ()
RTL 1
= HYANLY) dL™ 1 (b)
R’!L*l

= / f(b)dLcm1(b).
Rn_l

2See [24], Proposition 4.6.1.
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Notice, also, that

Sald) = {um
beP,
ANLE %@

1
o< AN I

N |

— {(b’y)‘ _%Hl(Ang‘) <y< Hl(AﬁL?)}
\{(b,O)’ijﬂA:@}

— {(b,y)‘ _g(b) <y< f(;)}\{(b,o))Ang:@}.

From Lemma [2.3] it follows that the first part of the union is £"-measurable,
as the union of two L"-measurable sets, namely “The region under the graph”
of our function f and its reflection with respect to R®~1. Let

B:={(b,0)| AN L} = o}.

Then B¢ = {(b,0) ’ AN LY # @} = projga-1(A), where (+)¢ denotes the
complement of a set into its ambient space and projgrn-1(A) is the projection
onto the “floor” of R”, i.e. R*~! of the set A. This is an £"-measurable set,
hence B is also L™-measurable.
This concludes the £"-measurability of the set Sy (A).
Let
B={beR"ANL] # &}

Observe that; For b € R* '\ B, we have f(b) = H' (ANLY) = H'(2) = 0 and
L"(B) = 0, since it belongs in a hyperplane of R”, namely B C R*~! x {0}.

Consequentially, we have

IN

£(Sa(4)) = £ <{<b,y> e R x R‘ SUpY f<2b>}

\{(b,O)‘LﬁﬂAz@})
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X{(b,y) GEXR‘ #Syg@} dLm

x5(b) - X[=40 10)] (y) L™ (b) dL (y)

T

n—1yxR

where by employing Fubini’s Theorem, we get

~ xg®) </RX[—f(b) 01 () dﬁl@)) dL" = (b)

Il
%\%\%\%\%\ %\
~—
=
o)l
=
kﬁ
=
+
>
e
7
=
oy
=
~
=
SN—
Q.
D
3
AN
=

Hence, we ended up with our desired equality, namely

£ (Sa(A) = [ 50 db= ().

Theorem 2.5 (Isodiametric inequality). For all sets A C R",

£7(A) < a(n) (dia;nA )n

Proof. If diam A = oo the inequality is trivial. Hence, we will safely assume

that diam A < co. Let {ey,...,e,} be the standard basis for R". Define
Al = Sel (A), A2 = S62 (Al), ceey An = ey, (Anfl)
Write A* = A,,.
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Claim #1: A* is a symmetric with respect to the origin.

Proof of claim: Clearly, A; is symmetric with respect to P.,. Let 1 <k <n
and suppose that Ay is symmetric with respect to P, ..., P.,. We will prove
that Ai4; is symmetric with respect to P, ..., Pepyy-

First, by definition, we have that Ay = S, (Ax) is symmetric with respect

to P, - Wefix 1 < j < kandlet S;: R" — R" be the reflection through P .
Let b € P, . Since we assumed symmetry of Ay with respect to P, we have

that S;(Ag) = Ai. Moreover

HY (AR N LZkJrl) =H! (Sj(Ak N szﬂ)) — ! (Sj(Ak) n Sj(LZkJrl))
=H' (AN LY.
J

Notice that, by definition, we have

1 e
< SH (A mekH)}.

Apy1 = Sepy (Ar) = U {b +tegt1
bEPey
ANL £o

Also, from Sj(Ay) = Aj, we get the following expression
Ak’-i-l = SekJrl(Ak) = S€k+1(Sj(Ak))

= U Sib+tegy1
AkzsAj(Ak)aézsjb,
bEPe,
Akng’;j;l £3

SjbEPek+1
AkmL‘;’;tl;«é@

1 e
1< AN LE) )

1 c
[t < SH'(4xN Lb’““)}.

Consequently,
{t ’ b+ t€k+1 € Ak+1} = {t | Sjb+t€k+1 S Ak+1}.

Thus Sj(Agt1) = Agy1, which implies that Ay is symmetric to ;. There-
fore, from the “strong” induction, we get that A* = A, is symmetric with
respect to P, , ..., Pe, . Hence, it is symmetric with respect to the origin, since
each point in A, ends in its catercorner position after being reflected iteratively
through all P, , ..., P, .
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Claim #2: L7(A*) < a(n)(dl&m;A> .

Proof of claim: Choose x € A*. Then —x € A* by Claim #1, and so diam A >
diam A*
2|z|. Thus AC B (0, MI;) and consequentially

L ary < £ <B (0, diamf)) — a(n) (dlar;”ly

diam A \"
5 )

Claim #3: L"(A) < a(n)(

Proof of claim:
Since A is L"-measurable, by an iterative application of Theorem we get
that

L£7(A) = £7(So, (D)) = L7(AT) = £ (Sey (A1) = - = £ (Ay) = £ ((A)*),
and, doing the same for the diameter of (A4)*, we end up with
L*((A)*) =L£"(A) and diam(A4)* <diam A = diam 4.

Therefore, we have

£(4) < £() = £((4)) < al) (5 )
§a(n)(dlamA> :a(n)(dlamA> ’
2 2
which proves our assertion. O

REMARK. We do not require A to be enclosed in a ball of diameter diam A .
In fact, there exist sets for which this is not possible.
Take, for example, the equilateral triangle of side length ¢. Its diameter, i.e.
the largest distance between two of its points, is

diam (triangle) = sidelength = ¢.
Yet, the smallest ball containing the set has the circumcircle of the triangle as
great circle, thus having a diameter of

ide length l
diam (ball) = diam (circumcircle) = — S(lf e' ene ) =—=
sin(facing angle 3

&
Sl %
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Therefore diam (ball) > diam (triangle), which means that we cannot cover
the equilateral triangle with a ball of the same diameter.

Theorem 2.6 (The n-dimensional Hausdorff & Lebesgue measure).
We have
H"=L" on R".

Proof. We will proceed in steps.

Claim #1: L"(A) < H"(A) for all A C R"™.

o0

Proof of claim: Fix 6 > 0. We choose sets {C;}72, so that A C U Cj, with
j=1

diam C; < 4. Now, from the Isodiametric Inequality (Thm. , we get

<Zm Z <dlam0 )

Taking infimum, we find that £"(A) < HF(A), and thus L"(A) < H"(A).

Furthermore, from the definitionf’] of £ as £' x - x £, we can deduce
that, for all A C R™ and § > 0,

(0.9] [0.9]
= inf{ > L@ ’ Qi cubes , A C | J Qi, diam Q; <6 }
i=1 i=1
Hence, from now on we will consider only cubes with vertices parallel to the
coordinate axes of R™.

Claim #2: H" is absolutely continuous with respect to L.

Proof of claim: Observe that, for any cube ¢Q C R" of side length ¢, we have

n
Take Cy, == a(n) (?) . Then for each cube @ C R"™, we have that

a(n) <dia‘2“Q >n — O, L(Q),

3See more on [24], Chapter 3.

44



Chapter 2 2.2. Isodiametric inequality

Thus, since we are restricting ourselves to countable coverings consisting of
cubes, we have

[e.9]

HI(A) < inf{ S a(n) (dlm;‘Q)n ’ Ac Qi diam@; < 5}
=1

=1

- inf{ > Cn LMQ))

=1

AcJ @i diam@; < 5}

i=1
=C) inf{ iﬁ"(@i) ’ AC [j Q;, diam @Q); < 5} =C, L"(A).
i=1 i=1
Now, by implementing the definition of H", we see that the right-hand side is
an upper bound for H}(A), and so, we end up with
H'(A) < Cp L7(A).
Claim #3: H"(A) < L"(A) for all A C R™.
Proof of claim: Fix § > 0 and ¢ > 0. We can select cubes {Q;}°, so that

AcC U Q; with diam Q; < ¢ and ch Qi) < L™(A) +

=1 =1
Now, according to Theorem for each ¢ there exist disjoint closed balls
{Bi}%° | contained in Q¢ (= interior of Q;) such that

diam B}, < and L”(Qi v U B,i) :L”(Q;’ v U B,@) =0
k=1 k=1

o0
From Claim 2, we get that H" (QZ \ U B,@) = 0. Thus
k=1

i=1 i=1 k=1 k=1
o . o0 ; o0 o " ; [o.¢] oo dlam Bi; n
<> HIUBi| <> D HiBI) < a(n)( ——
=1 k=1 =1 k=1 =1 k=1
=Sy e =3 (U B) = X @) < e+
i=1 k=1 =1 k=1 =1
Letting d,& — 0 completes the proof. ]
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CHAPTER

LIPSCHITZ FUNCTIONS & LINEAR
MAPPINGS

In the first part of this chapter, we define Lipschitz functions and prove
an important Theorem that connects them with Hausdorff measures and then
proceed with the proof of Rademacher’s Theorem. In the later part, we state
some definitions and properties of linear functions and give our definition of
the Jacobian.

A comprehensive exposition on Lipschitz functions can be found in [9, 20].
We also suggest [2],[27] and [3] for a detailed substantiation on topics from
Linear Algebra.

3.1 An Extension Theorem

Definitions 3.1.1.

1. Let A C R™. A function f : A — R™ is called Lipschitz continuous
(or sometimes simply “Lipschitz”) provided that

[f(z) = f(y)| < Clz -y (%)
for some constant C' and all x,y € A.

2. The smallest constant C such that @ holds for all x,y is denoted as
[f(z) = f(v)]

[z — |

Lip(f) = Sup{

m,yeA,w#y}

Thus
|f(z) — f(y)| < Lip(f)lz —y| (2,y € A)
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3. A function f: A — R" is called locally Lipschitz continuous if for
each compact K C A, there exists a constant Cg, such that

|f(z) = f(y)l < Cklz —y|
forall xz,y € K.

Theorem 3.1 (Extension of Lipschitz mappings). Assume A C R"™ and
let f : Aj R™ be a Lipschitz function. There exists a Lipschitz continuous
function f: R™ — R™ such that

1. f=f on A, and

2. Lip(F) < v Lip(f).
Proof. First, we are going to assume that f : A — R. Define
F) = int {f(e) + Lin(Hlw —al} (z € RY).

Let b € A.
Since f is Lipschitz on A, we deduce with ease that; For every a € A,

f(0) = f(e) < [f(b) — fe)] < Lip(f)[b - af.

Thus,
f(@) +Lip(f)|b—a| > f(b).

Taking the infimum over all @ € A, we get f(b) > f(b). For the reverse
inequality, we observe that (since b € A)

F(6) = Int {(6) + Lip(f)[z = b} < J() + Lin(H)Ib =] = f(b).

Hence, we get the desired equality on elements of A.
Moreover, if z,y € R"™, then

F(w) = inf {f() + Lin(f)[z — o}
< inf {f(a) + Lip(/)(ly — ol + |z = y])}
= ;relg{f(a) +Lip(f)ly — a| + Lip(f)|z — y|}
= (ilelg{f(a) + Lip(f)ly — o} + Lip(f)[x — y| since the last term

= f(y) + Lip(f)|z — yl.
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In a symmetrical way, we can also see that
fy) < F(z) +Lip(f)lz —yl.

Hence, the extension f : R” — R is also a Lipschitz function with constant

Lip(f) < Lip(f).
In fact, we have something stronger; From the definition of the Lipschitz
constant, we get that

Lip(f) = Sup{w ’ z,y ER™ x# y}
RV I
f=fZOnAsup{ |z =yl ‘ wed 7“!} Lip(f)-

Therefore, we get that for the Lipschitz constant extension f : R” — R satisfies

Lip(f) = Lip(f).

For the general case, let f : A — R™ be a Lipschitz function. We can
decompose f as f = (f1, f2, ..., fm), where each map f; : A — R.

Notice that

[filx) = fily)| < [f (@) = f)] < Lip(f)lz —yl.

Therefore, the components f; are Lipschitz functions with constants Lip(f;),
for which we get the estimate

Lip(f;) < Lip(f).

We employ the “baby-case” from above m-times, for each function f;;

There exists Lipschitz continuous extensions fi:R" R (i=1,..,m),
with Lip(f;) = Lip(fi). Therefore

F@) =TI =3 [Fi@) = )P < > Lip(£)2le — yP?
=1

=1

<> Lip(f)*|lz —yf?
=1

= mLip(f)?|z — y|*.
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We have demonstrated that

[f(2) = f(y)] < v/mLip(f)lz —yl.

Hence,

Lip(f) < Vim Lip(f).

REMARKS.

1. Of course, the extension is NOT unique. We could also define f as

f(@) = sup{f(a) — Lip(f)|z — al}.

a€A

and attain the exactly same result.
One can also verify with ease, that these two extensions are not at all
similar, that is of course outside of the set A.

2. At last, Kirszbraun’s Thorem asserts that, in fact, there exists an exten-
sion f with the same Lipschitz constant. Its proof differs substantially
from what we have presented above, therefore, it is omitted.

Theorem 3.2 (Hausdorff measure under Lipschitz maps).

1. Let f : R™ — R™ be Lipschitz continuous, A C R"™ and 0 < s < oo.
Then
e (£(A)) < (Lin(£))° Ho(A).

2. Suppose n > k and let P : R* — R* denote the projection. Assume
ACR" and 0 < s < 0o. Then

H*(P(A)) < H°(A).
Proof. 1. Fix 6 > 0 and choose sets {C;}7°, so that A C UC"’ with

i=1
diam C; < 6. Now, we have that

diam £(C)) < Lip(f) diam C; < Lip(f)s and £(4) | ] F(CY).
=1

Thus

Mo () = Y- ae) (PO < win)* Y ate) (5.

i=1
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Taking infima over all sets {C;}32,, we find

s F(A)) < (Lip(F)* H3(A).
Send & — 0 to finish the proof.
2. Assertion (2.) follows immediately from (1.), since Lip(P) = 1.

To verify that, simply take two distinct points of R™, namely = = (z1, ..., )
and ¥y = (Y1, ..., Yn)-
Then, since P is the projection onto the first k-coordinates, we get that

1P(x) = Pyl = l[(x1 =y, 2% — vr) [

Simplifying our notation, we write

|P(z) — P(y)| < |z —yl.

Thus Lip(P) < 1.
Moreover, from the definition, by taking =’ = (x1, ..., 2,0, ...,0) € R™ and
v = (Y1, -, Yk, 0, ..., 0) € R™ we get that

Lip(P) = sup{w
_ sup{ |P(z) = P(y)lly

lz = yll,

%yGRTw#y}

LyERﬂx#y}

k
1P(=") = P(y)llx _ > i (T — yi)?
Y

Hence, Lip(P) > 1, thus proving the equality. O

Definition 3.1. For f : R® — R™ and A C R", we denote the graph of f
over A by

=1.

G(f; A)={(z,f(z)) |z € A} CR" x R™ = R"™™,

Theorem 3.3 (Hausdorff dimension of graphs). Assume that f :R"™ — R™
and L"(A) > 0.

1. Hain(G(f; A)) > n.

o1
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2. If f is also Lipschitz continuous, then Ham(G(f; A)) =

Proof. 1. Let P : R"™™ — R" denote the standard projection. Then
H'(G(f;A)) = H" (P(G(f;A))) =H"(A) >0
and thus Hain, (G(f; A)) > n

2. Let @ denote any cube R™ of side length 1. Subdivide @ into ™ sub-
cubes of side length % We name these subcubes @1, ..., Qx» and observe that

diam Q; = % Define

i. = i a d b = a 4 ) = 1,..., .
= min fi(x) and b = max f(x) (i m)

Since, f is Lipschitz continuous, we get that

=[S

b — ai| < Lip(f) diam Q; = Lip(f)

We now define C; = Q; x H a
=1
aé- < filz) < b; for i =1,...,m. Thus

G(FANQ)) ={(w. f(2)) |2 € QN A} C C;.
Moreover, letting €2 := H;’;l(aé, b;) we have that

],b; Then for any z € Q; we get that

; , LR n . n
diam Q? = Z b — j‘z < ZLlp(f)Q? = lep(f)Z?.

Therefore,
. . . 9N ) 1
diam Cj2 < diam Qj2 + diam Q? = /-c2 + mLip(f)? yE) n(l + lep(f)Q)ﬁ
k" k™
. . : C
Since G(f; ANQ) = | J G(f: AnQ;) C | J Cj, for which diam C; < —» where
j=1 j=1

C = v/n(1 + mLip(f)2), we have

K . \n
HE (G AN @) < 3 o) (T2 )
i=1
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Now, if we let k — oo, because the right-hand side of the inequality is a
bounded quantity independent of k, by application of the definition of Haus-
dorff measure, we find that

H'(G(f;ANQ)) < 0.

Consequentially, Hqim (G(f; ANQ)) < n. Since we work this estimate for any
cube of R™ of side length 1, we can “exhaust” A with an (at-most)countable
collection of such cubes, and by use of Theorem we get eventually that
Hain (G(f; A)) < n. O

3.2 Rademacher’s Theorem

Definition 3.2. A function f : R™ — R™ is called differentiable at x € R",
if there exists a linear mapping L : R™ — R™ such that

i £ @) = f(z) — L(y — 2)]

y—a ly —

:07

or, using the little-o notation,

fly) = flx)+ Ly —x) + o(ly — z|) as y — .

NOTATION - REMARK. If such a mapping L exists, it is unique, and we
will denote it as

Df(x)
We call Df(z) the derivative of f at z.
Proof: Suppose that there exist two linear maps Li, Ly : R™ — R™ such that
the equation above is satisfied.

Fix = and take any u € R™ with |u| = 1. Let y = x + tu. Then |y — x| =
|tu| = |t| and so y — x becomes t — 0. We now have that

Ut ) — () — L)
t—0 ’t’

=0

and
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Observe that;

lim ‘Ll (tu) — L2<tu)‘ _
t—0 ‘t‘
o [+ ) — f(@) — La(tw) — (F(o+ ) = F () — Laftu)|
t—0 \t’
i @ t0) = f@) = L], | (a4 tu) — (@) = Lotw)] _
t=0 |t] t—0 |t]
Therefore
lim |L1(tu) — Lg(t’u,)| — lim ]t(Llu — L2U)|
t—0 |t‘ t—0 ’t’

— lim |tHL1u — L2u|

= 1‘ L — L — 0.
t—0 |t] tg%’ B 2u|

Hence, we end up with

Li(u) = La(u) for alluw € R™ with |u| = 1.
For the general case; Let z € R" (z # 6) Then, by the linearity of the maps
and the preceding relation, we get;

Ly(z) = L1(|x||z> _ mg(i')
= |$!L2<‘i> = Lz(lx\é|> = Ly(x).

We have demonstrated that the two maps we contended earlier are identical.
This concludes our proof. O

Theorem 3.4 (Rademacher’s Theorem). Assume that f : R"™ — R™ is a
locally Lipschitz function. Then f is differentiable L™-a.e.

Proof. Without loss of generality, we may assume at first, that m = 1 and
that f is Lipschitz continuous, since differentiability is a local property.

Step 1: Fix any u € R” with |u| = 1, and define

D, f(x) :=lim fz+tu) — f(z)

t—0 t

(z € R"),

provided that the limit exists.
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Claim #1: D, f(x) exists for L™-a.e. .

Proof of claim: Since f is continuous,

flx+tu) — f(x) flx +tu) — f(x)

Dy, f(x) = limsup = lim sup
t—0 t k—>ooo<|t‘<% t
teQ

is Borel measurable. The same holds for

D, f(z) = liminf flw+tu) = f(ac)

t—0 t

Thus

A, = {z € R" | D, f(z) does not exist}
={z eR"|D,f(z) < Duf()}

is Borel measurable.

For each x,u € R" with |u| = 1, we define ¢ : R — R by
o(t) = f(x+tu) (teR).

It is easy to see that ¢ is Lipschitz continuous, thus absolutely continuous,
and thus differentiable £!-a.e. Hence

@' (t) = %%w
o f@t (b)) = f@+ )
A0 h
iy JE ) + ) — f(z + tu)
= 50 h
= D, f(z + tu).

exists H!-a.e.
In other words, D, f(X) exists H!-a.e for X € L, = {x + tu|t € R} line, and
since z is arbitrary, we can deduce that

H'(A,NL)=0
for each line L parallel to u. Fubini’s Theorem then implies that

LM (A,) = 0.
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Indeed, we have that
L"(Ay) = /XAu dLr
=/ XA, (Y, 2) dL"(y, 2)
Rr—1xR
~ [ [ dc@aci.
Rn—1 JR

Now let AY = {z € R|(y,2) € Ay}. Then

) 1, ze€ A} 1, (y,2) € A, (. 2)
Z) = = = 7Z .
XAY 0, =¢ Ay 0, (y,2)¢ A, XA\Y

Since the nested integral in the equality above is independent of x, we can
continue our calculations as follows

e = ( [ xa) dcl<z>) ac™(y)
= [ e ),
Rn-1

For each fixed y € R"!, we define the map

¢y AY - A,NL
z = (y, 2)

where L is the line passing from (y,+) € R™ and parallel to u. It is clear that
¢y is an isometry. Therefore

LA = . HY (A, NL)dL" ! = 0.

An immediate consequence of this is that

grad () = (fa, (2), -, fa, ()

exists for L™-a.e. point z.

Step 2: We will show that

D,f(x) =u-grad f(z) for L" — a.e.point

o6
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Write u = (uq,...,u,) and let ¢ € C°(R™;R). It is easy to confirm that the
following equality holds true

/n[f(aﬂrtl;)—f(x)]c(w)dx:_/nf(x)[C(x)—g;(x—tu) de. ()

Indeed, simply by performing a linear change of variables, namely the trans-
lation = — x — tu, we see that;

flz+tu)((x) de = f(z)((x — tu) dx.
R™ R™

F))

1
Multiplying both sides with n and then substracting the term "
R

€T
implies ().

Consider now the following sequence of functions; We define ¢ : R® — R

X lu — X

orla) = TEEEN IO )
k
Observe that;
X lu — xr
e
k
< KLip(f) [+ v~ 216()| = Lip(Dlull¢(@)] = Lin(A)¢(@),
where

/ Lip(£)[¢(x)] da = / Lip(£)[¢(x)] da < +00,
R"l

supp(¢)

since ¢ € C°(R™; R), and finaly that

i gy(2) e gy T =

C(@) = Duf(x)¢(2).

Thus, all of the requirements of the Dominated Convergence Theorem are
fulfilled, and so we can invoke the Theorem alongside with (x), in order to
deduce that;

o7



Chapter 3 3.2. Rademacher’s Theorem

Rn o0 Rn
1
= lim flat Ezf) _ f(aj)((a:) dx
k—oo Rn E
1
Y _ lim f(x) [C@) — Cl(x — 1Y dx
k—oo Jrn 7
—— [ j(©)Dut(w) d.
]Rn

where the last equality stems by employing the Dominated Convergence The-
orem on the right-hand side of (%), in an analogous setting.

Therefore, we can continue our calculations, and get that;

Dy f(x)¢(x) do = — - f(@)Du((z) dx

= [ s <Zu< (@) do

Rn

=1 R
=1 R

— [ (ugrad s (@)(a) d

where we also made use of Fubini’s Theorem and the absolute continuity of f
on lines. Since the above equality holds for all ( € C2°(R™; R), we get that

D,f(x) =wu-grad f(z) for L —a.e x.
Indeed, by setting;

T(x) =Dyf(z) —u-grad f(z) (z € R").

we have shown that; T (z)¢(x) dz =0, for all ¢ € C(R™;R).
Rn

o8



Chapter 3 3.2. Rademacher’s Theorem

fz +tu) — f(2)
t

Since D, f(x) = %ir%
—

with ease that;

exists L" — a.e. x € R™, we deduce

| Duf ()| ;e < Lip(f) for all u € R" such that |u| = 1.

Moreover,
lgrad f(z)|| o = sup {|fz,[} = sup {|De, f[} < Lip(f).
1<i<n 1<i<n

Hence, we get that;

IT ()l oo = [[Duf () —u- grad f(z)| Lo
< |[Duf (@)l oo + llgrad f(z) || Lo = 2Lip(f) < +o0.

Therefore, T € L*(R") and so T € L} .(R") with / T(x)((z) dz = 0, for all
Rn

¢ € CX(R™ R). This evokes the Lebesgue Differentiation Theorem (Theorem
1.19), which, once employed here, gives us

lim TdL" =T (x)
r—0 B(z,r)
for L™ — a.e. x € R™, namely;

1
lim —— T(y) dy = T (x).
P Bl Jayy W W =T

for £ — a.e. x € R™, where |+ | was used to denote the Lebesgue measure, in
order to simplify the notation.
Notice now that; For all n € N we can find a suitable ¢, € C2°(R"™; R) with

1
supp(¢n) C B <x, ) such that;
n

1 / 1
TR AT T(y dy—/ T(y)en(y) dy | < —.
B )] o Y T B@ 0] Sy O W] <2
However, / T(y)Cn(y) dy = T, dL™ = 0, leaving us with;
B(z,1/n) R
1 1
_ T(y) dy | < .
BT oy 70 | <
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for all n € N. Therefore, by the Lebesgue Differentiation Theorem, we obtain
that;

1
|T(z)| < = L" —ae. xzeR™

n2
Hence,
T(x)=0 L" —a.e. z € R",
which concludes the proof of this step.

Step 3: We will show that f is differentiable £L™-a.e.
We begin by choosing € := {u;}7°, to be a countable, dense subset of 0B(1)
(:= the topological border of the closed ball of R” of center 0 and radius 1).

Claim #2: Let n > 0. There exists a finite subset (2, C 2, which is n-dense
in 0B(1).

Proof of claim: Fixn > 0. Since dB(1) is compact in R", it is totally bounded,
hence there exist M € N and vy, ...,vps € OB(1) such that

6BU)zzB<mjg>U--wJB<vM,g>

Since Q2 dense, there exists z; € Q (i = 1, ..., M) such that |v; —z;| < g Define
Q, ={z1,...,zm}. Then Q, is a finite subset of Q and for all v € 0B(1), from
the total-boundedness, there exists 1 < ¢ < M, such that v € B(vi,ﬁ).

2
Therefore .
non_

\v—zi\g\v—vi\+lvi—zi‘<2 5

7.
This concludes the proof of the Claim.

Let, for k=1,2, ...,
Ap={z eR" | D, f(z) & grad f(z) : exist, Dy, f(z) = uy, - grad f(z)}
and define -
A:ﬂ&.
k=1

Notice that, Step 2 implies L"(R" \ A;) = 0 (k = 1,2,...). Immediately, we
can deduce that
LMR"NA)=0.
It suffices to show that;
Claim #3: f is differentiable at each point z € A.
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Proof of claim: Fix any € A. Choose u € 0B(1), t € R\ {0} and define the

quantity
Q) = FoH =10

Then, for any w € 0B(1), we have that

|Q(z,u,t) — Q(z,w,t)|
(f(fv +tu) — f(x)

—u - grad f(z).

t

— u-grad f(x))

_<ﬂw+wo—ﬂm
t

- 0)

<‘ﬂx+mo;fW+¢ww+ku_wygmdﬂ@(
< Lip(f) u — w| + |grad £ (z)|[u — ]
< (Vi + 1) Lip(f) Ju — wl. (*)

Let it be noted that for the last step, we used the estimate

lgrad f(z)| < /nLip(f).

Indeed, we have that grad f(z) == (fa, (2), ..., fz,(z)) and for each compo-
nent we get that

of — lim f(:l?l, ey Ty 0, T, :En) — f(:El, ey Ty T 1y oeey l‘n) < Llp(f)
aCCZ' t—0 t
Hence
2 N[0T L
jgrad f(@)]* =) | 5| <nLip(f)*
i=1 !
5
Now, fix € > 0. From Claim 2, by letting n = - we obtain a
" e+ DLin(f)
finite n-dense subset of 9B(1), meaning that;
For each u € 0B(1), there exists ug, k € {1,..., N(n)}, such that
fu— | < : (%)
u—ug| < . .
2(vn+1) Lip(f)
Substituting (xx) in (x) for w = uy gives us
€
|Q(z,u,t) — Q(x,uk, t)| < 7 (% % %)
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Moreover, since x € A, by construction, we get
li t)=0 (k=1,...,N).
tg% Q(.’I},Uk, ) ( 30y )
and thus, there exists d > 0 so that
|Q(z, ug, )| < % forall0 < |t| <6, k=1,...N (% % * %)

Simply, choose 6 = min{d; |k =1,..., N}.

Consequently, taking into account -, we get that for each
u € 0B(1), there exists k € {1,.., N} such that

|Q(z,u,t)| < |Q(z,ug, t)| +|Q(z,u,t) — Q(x,ug, t)] < &

for 0 < [t| < 0. Note also that the same ¢ > 0 holds for all u € 9B(1).
y—x

ly —

Finally, choose any y € R"”, y # x. Write u =

, so that y can be

expressed as y = x + tu for t = |y — z|. Then

f(y) = f(x) — grad f(z) - (y — ) = f(x + tu) — f(x) — tu-grad f(z)
(t)
(ly — ).

o
o

Hence, f is differentiable at z, with

Df(x) = grad f ().

For the general case; Let us decompose our map f : R® — R™ into its
components f; : R” — R (1 <i < m). As we have seen, each map f; is also a
Lipschitz map. Therefore, we can apply Rademacher’s Theorem on each one
of them, and so we get that each f; is differentiable £™-a.e., with

Dfi(x) = grad fi(z) = (gfl ey g§;>7 i=1,....,m.
Hence, we may define
grad f1
I grafi f2
grad f
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Observe now that; For y € R", y # = we have;
1f(y) = f(@) = Ly — 2)[lgm _

Hy—l’HRn

W) Fn@)) = (@) (@)~ (VA — @), V() — )]

rw-w

I fily) = fil@) = Vil )l

lv—zl
1/2
lly—xll Zlf@ — Vfi(z)(y x)P]
_fj(m<> fi(@) — V() mgQ”Q
2 Iy — 2l

However, we also have that; For ¢ = 1,...,m, and for any x € R"™ where f; is
differentiable, we get;

|f(y) — f(z) = Vfi(z)(y — z)|

lim =0.
y—e ly — =]
Hence, for L™ — a.e. x € R™ we end up with
_ Ly — .
i F®) = @) = Ly = 2)llgm _
y—e 1y — | gn
which concludes our proof. ]

Theorem 3.5 (Differentiability on level sets).

1. Let f : R™ = R™ be a locally Lipschitz continuous function and
Z ={z eR"| f(z) =0}.
Then Df(x) =0 for L™-a.e. point x € Z.
2. Let f,g: R™ — R"™ be a locally Lipschitz continuous and
Y = {z € R" | g(f(x)) = z}.

Then
Dg(f(z))Df(x) =1 for L" —a.e.z €Y.
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Proof. 1. We may assume, without loss of generality, that m = 1 and L"(Z) >
0. Choose = € Z so that Df(x) exists and
n
lim L"(Z N B(x,r))
r—0  L"(B(x,r))

= 1. (%)

Here, the Lebesgue Density Theorem reassures us that £™-a.e. point =z € Z
will do. Then

fy) = @)+ Df(x) - (y —x) + oy — z)
=Df(z)-(y—2) +olly —z|), asy— = (%)

We will denote o = D f(z) and assume that o # 0, and define the set

1
a-u > |a|}.
2

Moreover, for for each r > 0, we define the set

S = {u € 0B(1)

Sr::{/\u]O<)\§r,u€S}.

It is immediate that S, C B(r) and that S, = r5;.
For each u € S and ¢ > 0, substituting y = z + tu in , we get

t
flz+tu) = a-tu+ o|tu]) > ’206‘+0(t)>0, ast — 0.

Hence, there exists R > 0 such that
flx+tu) >0, 0<t<R,ue€s.

In particular, for all 0 < r < R, we get that f > 0 on x + .5,., thus
ZNB(x,r) C B(x,r)\ (z + 5;).

Consequently, for all 0 < r < R, we get

L"(Z N B(x,r)) < L"(B(z,7)\ (z+ S)) ) L"(z+ Sy)

Lr(B(x,r)) — L(B(x,r)) N L(B(x,r))
()
- LY(B(x,r))
—1_ E”(rSl)
L*(B(x,r))
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Wﬁ%&)_l_EW&)

=1- rra(n) a(n)

Hence, lim sup £2(Z 0 B(z,r)) <1- £7(51)
o L (B, ) a(n)

L"(S1)
a(n)

therefore, we have reached a contradiction. The assertion is proved.

, which, in view of (H), implies

that 1 — > 1, thus, £"(S1) = 0. However, S; has non-empty interior,

2. To prove assertion 2. we first define sets
A={z| Df(x) exists} and B = {z | Dg(x) exists}.

Moreover, define
X=YnAnf(B).

Now, if € Y\ X, then z €Y and z ¢ X, thus 2 ¢ Aor z ¢ f~1(B).
Therefore, if z ¢ A, we get

zeY\fN(B),

hence
f(z) e R"\ B,

and so
2 = g(f()) € g(R"\ B).

Combining all of the above
z€ (R"NA)Ug(R"\ B).
and thus we end up with
YNX C(R"\NA)Ug(R"\ B). (% % %)

Now, since f and g are locally Lipschitz functions, according to Rademacher’s
Theorem, they are differentiable almost-everywhere on any compact subset of
R", and by “exhaustion”, differentiable almost-everywhere on R™. Therefore,

LM(R"NA) =0 and L"(R"\B)=0.

Moreover, since g is locally Lipschitz, we can apply Theorem [3.2] locally on
compact sets, and again by “exhaustion”, so as to obtain that

H"(g(R"\ B)) = 0.
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which, in view of , implies
LMY\ X) = 0.

Finally, if x € X, then Dg(f(z)) and D f(z) exist; We then apply the Chain
rule, and so

Dg(f(x))Df(x) = D(g o f)(x)

exists. Also, on Y we have that (g o f)(z) — 2 = 0, and assertion 1. implies

D(gof)=1 L"—a.e.onY.

3.3 Linear mappings & Jacobians

Definitions 3.3.1.

1. A linear map O : R™ — R™ is orthogonal if
(Ox)-(Oy) =z -y

for all x,y € R™.
2. A linear map S : R™ — R" is symmetric if
z-(Sy) = (Sz) -y

for all x,y € R™.

3. A linear map D : R™ — R" is diagonal if there exist dy, ...,d, € R such
that
Dz = (dyxy, ..., dpzy)

for all x € R™.

4. Let A : R™ — R™ be linear. The adjoint of A is the linear map A* :
R™ — R™ defined by the relation

(Az) -y =z - (A%y)

for allz e R* y € R™
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We continue by stating some standard facts from Linear Algebra, even
though we presume them to be familiar to all readers.

Theorem 3.6.
1. A" = A for any A:R" — R™ linear map.

2. Let A:R™ - R™ and B : R®™ — R" be linear maps. Then

(Ao B)" = B" o A™.

3. O* =071 if O :R"* = R" is orthogonal.
4. S*=54f §:R" = R” is symmetric.

5. If § : R®™ — R" is symmetric, there exists an orthogonal map O: R —
R"™ and a diagonal map D : R™ — R™ such that

S=00DoO L.

6. If O : R™ — R™ is orthogonal, then for n < m, we have

O*o0O =1 onR",
000" =1 on O(R") C R™,

REMARK. Essentially, what assertion (5.) says, is that all symmetric real
matrices are orthogonally diagonalizable.

Proof. Since the proof of the first four Assertions is a direct consequence of the
Definition of the Adjoint, we shall omit them, and focus only on Assertion 6.

Let O : R™ — R™ be an orthogonal map. Since O is an isometry, therefore
a 1-1 map, we get that Ker O = {6Rn}. Hence, from the First Isomorphism
Theoremlﬂ7 we obtain that;

dim (Rn/KerO) =n=dimIm(0) <m.

Moreover, from the Defining Property of the Adjoint, we get that; For all
x,y € R"”
x-y=0z-0y=x-(0%o0y).

Hence,
O*oOy =y forally € R".

4Refer to [27] for a detailed exposition on Isomorphism Theorems and other topics on
Linear Algebra.
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which concludes the first part of this proof, namely that;
O*o0O =1,, onR".
For the second part, we will need to show that
0o O*w = w, for allw € O(R") CR™.
Therefore, we will need to show that;
v-(OoO*w)=v-w

for all v € R™ and all w € O(R™) C R™. We proceed in steps.
Take any v € O(R"™) C R™. Then, there exists z € R" such that v = Ou.
Set y = O*w € R™. Therefore;

v-(0oO0*w)=0x-Oy=z-y=2-O'w=0z-w=v-w.

Now, take any v ¢ O(R™). Then v can be written as v = v1 + v, where
v1 € Im(O) and vy L Im(O)H

Since v; € Im(O), we already have that v; - (O 0 O*w) = vy - w, for all

w € O(R™). Moreover vy - (0O oO*w) = 0, in view of O(O*w) € Im(O). Hence;
v+ (0o O0*w) = (vy +v2) - (0o O*w)

v1 - (O 0 O*w) + vz - (O o O*w)

=71 W.

However, we also have that;
vow=(vy+vy) w=v -w+veWwW=1v] W,
since v L Im(O). Therefore
v- (00 O*'w)=v;-w="v-w,

which concludes our proof. O

5See more on Orthogonal Complement in the following Lemma
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Theorem 3.7 (Polar decomposition). Let L : R™ — R™ be a linear map.

1. If n < m, there exists a symmetric map S : R™ — R™ and an orthogonal
map O : R™ — R™ such that

L=00oS.

2. If n > m, there exists a symmetric map S : R™ — R™ and an orthogonal
map O : R™ — R™ such that
L=S00".
Proof. ( 1. ) Define C' = L* o L; then C' : R — R". We immediately observe

that
(Cx)-y=(L*oLx)-y=Lx-Ly=x-(L*oLy)=x-(Cy)

and also
(Cz)-xz = (L*oLx) -z = Lz - Lv = | Lz||* > 0.

Thus C' is symmetric and non-negative definite.Hence,there exist 1, ..., >0
and an orthogonal basis {x1}}_; of R" such that

Crxr = prprr (k=1,...,n).
Since all {u}7_, are non-negative,we can represent them as p, = A7, A\ > 0.

Claim: There exists an orthonormal set {z;}}_; in R™ such that

Lz = Mz (BE=1,...,n).

1
Proof of claim: If A\ # 0, define z, = )\—ka. Then, if Ag, Ay # 0,
k

1

1 1
— — LapLay = ——(L* o Lay) - 20 = ——(Cay) -
akee =y LagLag /\k)\f( o Lxy) - xy )\k)\ﬂ( TE) - Ty
2
Zﬁxk‘w:ﬁxk'xe:ﬁ%e
YRV by, A¢

where 6 is Kronecker’s delta.
Thus the set {zk | A # 0} is orthonormal. Finally, in the case that there is a
A = 0 we get that u, = 0, and so, Cxp, = 0. Consequently,

HL.CC]CHZ = CJIk T = 0.

Thus, Lz, = 0 and this is consistent with our claim, in a trivial way. Therefore,
in this case, we can assign to that index any unit vector zj, so that the set
{2k}, is orthonormal.
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Now, define S : R" — R" by
Sz =My (K=1,....,n)

and O : R™ — R™ by
Oz =z, (k=1,...,n).

Then O o Sl‘k = O(/\kxk) = )\k(Oa:k) == )\kzk = Ll‘k, and so
L=0oS.
Observe that the mapping S is symmetric; Let x :Z agry and y = Z Bexyp .

k=1 /=1
Then

z-S(y)= (Z Oék%) -5 (Z ﬂzfﬂe) = (Z aki??k:) : (Z Be S(iﬁe))
k=1 (=1 k=1 (=1

= > owBray - S(x)

=1
n n
= > aBrar- Mewe=>_ axfel|zil”
kl=1 k=1

since {x}}}_, is an orthogonal basis. Also, we have that

n

S(x)-y= (Z OékS(SUk))(Z 5ﬂz> =Y B S(ar)-ze =Y apBrielkl®
k=1 =1 k=1

k(=1

Hence, we end up with; S(z)-y = x-S(y), thus proving that S is symmetrical.
In a similar way, we can demonstrate that O is orthogonal, which concludes
the proof for this assertion.

2. The proof is analogous to the preceding case, when applied to L*: R™ — R".
O

Definition 3.3. Let L : R™ — R™ be linear.

1. If n < m, we write L =00 S as above, and we define the Jacobian of

L to be
[L] = |detS].
2. If n > m, we write L = S0 O* as above, and we define the Jacobian of
L to be
[L] =|detS]|.
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REMARK. An immediate observation is that

[£] = [£].

Theorem 3.8 (Jacobians and adjoints).

1. If n <m,

[L]? = det (L* o L).
2. If n>m,

[L]? = det (Lo L*).

REMARK. A consequence of this Theorem is that the definition of [[L]] is
independent of the particular choices of O and S.

Proof. 1. Assume n < m and write L =0 0 S & L* = S o O*. We then have
L*oL=800%0008=S0l0S =252
since O is orthogonal. Therefore,

det (L* o L) = (det 5)* = [L]°.
2. Assertion (2.) follows easily. O

Theorem 3.9 (Norm of the Adjoint). Let L : R™ — R™ be a linear map.
Then
Illop = 1L 1lp

Proof. Indeed, take any x € R™ with |z| = 1. Then;
|Lz|?> = Lz - Lv = (L* o L)z - = < |(L* o L)z| |z|
< |IL7 o L 2
< LFHIEN-
Thus, we end up with

2
105 < WL lop HEAlop -

Hence
0o < L7y -
Consequently, by substituting L* in place of L and by the property L** = L
(Theorem 3.6) we get that;
1L lop < L™l gp = NILlop -
This concludes our proof. O
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Jacobians of Lipschitz maps

Now, let f : R” — R™ be Lipschitz continuous. By Rademacher’s Theorem,
applied component-wise, f is differentiable £"-a.e.. Therefore, D f(z) exists
L"-a.e. x € R” and can be regarded as a linear mapping from R" into R"™.

Notation. For f:R™ — R™, f = (f!,..., f™), we write the gradient matrix

1. 1
x1 T
Df(x) = :
fmo e

at each point where D f(x) exists.

Definition 3.4. For L™-a.e. point x, we define the Jacobian of f to be

Jf(x) = [Df@)].

3.4 Binet-Cauchy formula

Notation.
Let n < m. We denote by ®(m,n) the set of all maps {1,...,n} — {1,...,m}.
Moreover, we define

S(m,n) = {\ € ®(m,n) | A : injective}.
Especially, when m = n, we will use the abreviation ¥,, = ¥(n,n), i.e., ¥, is
the set of premutations of {1,...,n}.
Finally, we define the set of indicatrices as
A(m,n) = {X:{1,...,n} — {1,...,m} | X : strictly increasing},

and for each A € A(m,n), the indexed projection Py : R™ — R" as

Py(w1, o, ) = (TA(1)s -+ Ta(n))-
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Chapter 3 3.4. Binet-Cauchy formula

Theorem 3.10 (Binet-Cauchy formula). Let n < m and L : R" — R™ q

linear map. Then
[L]P= Y (det(ProL))”
AEA(m,n)

REMARK. What this Theorem essentially tells us is that; We can calculate
the [[L]] 2 by adding the squares of the determinants of all (n x n)-submatrices
of the “larger” (m x n)-matrix identifying the linear map L.

Proof. Let (Lij)mxn be the corresponding matrix induced by the linear map
L, with respect to the standard coordinate basis.
We define the (n x n)-matrix A := L* o L, having elements (A;;), given as

m m
= (L*)irLij = Y LpiLyj-
k=1

k=1

Recall that, the determinant of any (n x n)-matrix M with entries (m;;) is
given - via the Leibniz formula - as

det M = Z sgn(o) ﬁmw(i).
i=1

UGZ’I’L

Hence, we proceed with the calculations. We have that

n

[[L]] =det A = Z sgn(o H o) = Z sgn(o H Z Li Lo

oes, i=1 ocES, =1 k=1
= Z sgn(o Z HL¢ iLo(i)o
€Y, $€@(m,n) i=1
n
(:) Z sgn(o) Z HL¢>(z’)z‘L¢(i)0(i)‘
oeYX, peX(m,n) i=1

Where we passed with equality in (f), because for a non-injective map ¢ €
®(m,n), we would get

n

> sen(o) [T LowiLowor =0,

TEY, i=1

which would does not infect the “general” sum.
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Notice also that, each ¢ € 3(m,n) can be written uniquely as ¢ = o6, where
A € A(m,n) and 6 € ¥,,. Hence, we can continue our calculations, as follows;

[[L]]2 = Z Sgn Z Z H L/\09 (3), zL/\OG (3),0()

oET, AEA(m,n) €, i=1

= Z sgn(o Z Z H Lxoo(i),iLroo(i),o (i)
oES, AEA(m,n) 0ESn {z’—@*l(j) 11<j<n}

=D sm(0) Y > HLA () LrG),000-10)
oES, AEA(m,n) 0€X, j=1

= > D) sen(o) [[ Lag e Lac)oon)
1

)\EA(m,n) 0eX, o€Xn,

S Yy e

AeA(m,n) 0€X, {o=pof—1|peX,} i

=

Il
—_

Liy,00) Lai),000(0)

Note that sgn(o) = sgn(p) - sgn(d). Hence

n

Y D > senlp)-sen(d) ] Ly A(0),0(3)

)\GA(TTL,TZ) aezn pEEn =1

Z Z sgn(h) Z sgn(p

AEA(m,n) 0€X, PEXS

Z Z Sgﬂ(@)[ Z Sgl’l(p H A(@),p(i ] HL)\(z

AEA(m,n) 0€X, PEXA i=1

" 2
= Z ( Z sgn(6) HL)\(Z'),Q(Z‘)> (1)
)

AEA(m,n) \ X, =1

= Y (detPyoL).

AEA(m,n)

NOXOL2YONI0)

3 " ®

Note that the equality in (1) stems from the Leibniz formula; For a fixed
A € A(m,n), we get that

1, when j = A(i)

m
PoL E (Py) = Ly(»; since (Py);; =
\ ik ( A(3)j (Px)ij {0, elsewhere.

=1
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Chapter 3 3.5. Hadamard’s inequality

REMARK. The Binet-Cauchy equality admits an elegant geometric inter-
pretation;

Indeed, let us consider a set {2 with unitary Lebesgue measure. We iden-
tify the linear maps with the matrices they induce. Let L : R®™ — R™ be
a linear map and take C' = L({2). Then, using the notation we established
earlier, Py o L is but the projection from R™ to the n-dimensional subspace
spanned by the canonical basis vectors {€y(1), ..., €x(n) }. Therefore, up to sign,
the det Py o L is the measure of the projection Py(C), and the Binet-Cauchy
formula can be restated as

LveR= Y £(r(e)’ ()

AEA(m,n)

Now, the above equation reads as follows; The squared volume of an n-
dimensional parallepiped contained in R™ is the sum of the squared volumes
of its projections to all possible subspaces.

This brings us to the beauty of the special case where n = 1. Here, the
parallepiped collapses to an interval and Py(C) declare the projections to the
coordinate axes. Hence, equation @ can be interpreted as a multidimensional
analogue, of “algebraic” nature, of the Pythagorean Theorem.

3.5 Hadamard’s inequality

We now turn our attention to an important tool of Linear Algebra, the
so-called Hadamard’s inequality, which will prove itself useful later on.
Algebraically, it is a bound on the determinant of a matrix in terms of the
lenghths of its column vectors. Geometrically, we can say that Hadamard’s
inequality gives us an upper bound for the volume of a parallepiped indicated
by vectors uq, ..., u, of R”, which is the product of the lengths of those vectors.

Theorem 3.11 (Hadamard’s inequality). Let A be a (n x n)-matriz and
denote by a; (1 < eqn) its i-th column. Then

[det A| < laa]] - [lan]-

Proof. First, if the matrix A is singular, i.e. not invertible, then the result
holds trivially. Hence, we can safely assume that det A # 0 and so we can
write A as

A= [al as - an].
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Chapter 3 3.5. Hadamard’s inequality

By dividing each column by its length, we get the induced matrix

al a2 G

~ Llaall a2 llanll ] °

where each column has lenght 1. Here, the Hadamard’s inequality, once
proven, gives us that
|det M| < 1. (%)

Now, the geneality is achieved once we consider that

[det A| = <Hllaill>|detM\ < [T llasll-
=1 =1

Therefore, it suffices to show that (ED holds.

Indeed, let us consider the matrix P = M*M. We immediately see that P
is a symmetric real matrix, therefore P is diagonalisable (from the Spectral
Theorem) with eigenvalues Ay, ..., \,. Moreover, for 1 <1i < n we have that;

n n

n a2,
(P)ii = Z(M*)zk(M)]m — Z(Mkz)2 _ Z ki

2 =
k=1 k=1 i Ml

Since every element of the diagonal of P is equal to 1, we have that the trace of
P is equal to n. Hence, by the famous Arithmetic-Geometric Means inequality,
we get that

detP:ﬁ)\i < <,r1lzn:/\l>n: <,rlltrp>n:1":1.
=1

i=1

which essentially concludes our proof, since det M = v/det P = 1. O
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CHAPTER

THE AREA FORMULA

In the proceeding two Chapters, we will study Lipschitz continuous map-
pings of the form
f:R* > R™
and derive some special formulas regarding the integral of the Jacobian.

We begin by breaking the problem into two parts, according to the relative
size of n and m. For n < m, we get the Area formula. This is what we will
study in this Chapter. We start by proving some introductory lemmas, and
then the aforementioned formula. We conclude by presenting some important
applications.

This Chapter is still primarily influenced by Evans & Gariepy [8, 7], who, in
their own words, follow the work of Hardt in [13] whose work is in turn built
upon Federer [I0]. We have also consulted the exposition of [I8] and [12].

Throughout this Chapter, we assume

n<m.

4.1 Preliminaries

Lemma 4.1. Suppose L : R™ — R™ is a linear map, with [[L]] > 0.
We consider

v(A) = H"(L(A)) for A CR"

Then v s a Radon measure.

Proof. We will proceed in steps.
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Chapter 4 4.1. Preliminaries

Step 1: v is a measure of R".

We immediately observe that

v(@) =H"(L(9)) = H" (@) =0,

(o)
and, if A C R™ with A C | J A;, we have that
i=1

y<£2AO::H”<L<£2AJ> H”(LJL >z§§§HﬁQXAD)

Step 2: v is a Borel measure.

From Theorem we have the following decomposition
=000,

for a symmetric map S : R — R” and an orthogonal map O : R™” — R™.
Moreover, according to Definition [L]] = |det S| > 0.

Let B C R™, a Borel set. Now, for every X C R", we get that

v(XNB)+v(X\B)
= H"(L(X N B)) + H*(L(X \ B))
=H"(0 0 S(X N B))+H"(0 0 S(XN\ B)) "
=H"(S(XNB))+H"(S(X\B))
= L’"(S(X B)) + L"(S(X \ B)) from Theorem 28]
L(S(X)NS(B)) + LM(S(X)\ S(B)) since S:1-1
(X)

= L (S (X)) o e K s e menwraty
=H"(S(X)) since S(x) CR"

=H"(0 o S(X))

=H"(L(X)) = v(X).

Hence, the Borel set B we started with is v-measurable, and since B is chosen
arbitrarily, this holds for all Borel sets. Thus, v is a Borel measure.
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Step 3: v is a Borel-regular measure.

Let A C R"™. Then, since L™ is Borel-regular, there exists a Borel-measurable
set B such that B D S(A) and L"(B) = L"(S(A)).

Set B == S~Y(B). Now, B is Borel and A C B, with

v(A) = H"(L(A)) = H"(0 0 S(A4)) = L"(S(A)) = L"(B) = L(S(B)) = v(B)

Step 4: v is a Radon measure.

Let K C R", K: compact. It is easy to see that
v(K) = H"(L(K)) = H" (O o S(K)) = L"(5(K)) < oo,
since S is continuous,ergo S(K) is compact, and £" is a Radon measure. [J
Lemma 4.2. Suppose L : R™ — R™ is a linear mapping. Then
H'(L(A) = [L] £"(A
for all A C R"™.

Proof. Using the Polar Decomposition Theorem ( Thm. ) we get that L
can be expressed as L = O o S for a symmetric map S : R® — R™ and an
orthogonal map O : R™ — R™, with [L] = |det S|.

We explore the following two cases;

Case 1: [[L]] =0.

In this case, we get |det S| = 0. Now, recall the dimension formula for
linear maps; n = dim Ker(S) + dim Im(S). Since detS = 0, S is not in-
vertible, hence S is not one-to-one, and so Ker(S) # {0}. Consequently,
dim Ker(S) > 1, which in turn implies that dim Im(S) = dim S(R") <n — 1.
Hence dim L(R™) < n — 1 < n. Therefore #™(L(R")) = 0.

Case 2: [[L]] > 0.
Now, we have that (z € R", r > 0)

H”(L(B(:L",r))) _ %”(OOS(B(a:,r))) _ "(S(B(z,71)) )
L (B(z,r)) L (B(z,r)) E”(B(x,r))
_ LM(S(B(x,r) _ L£™(S(B(1))
B L (B(z,r)) B a(n)

=|detS|=[L],
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where we have used the rotation invariance of H" and Theorems [[.16] & [2.6]

Defining v(A) = H"(L(A)) for A CR" as in the above lemma, we get that
v is a Radon measure, with v << L". Indeed;

Since L : R® — R™ is a linear map between finite dimensional spaces, we
can employ the Operator norm and get that;

|L(u)| < [|L][,p [ul, forallu € R"

And so, simply by taking u = x —y for z,y € R", from the linearity of L stems
that

|L(x) = L(y)| < [[Lllp Iz = yl-
Hence, L is a Lipschitz map with Lip(L) = ||L||,, < +oc, the latter following

immediately from the definition of the Lipschitz constant and the Operator
norm.

Now, let E C R™ such that £"(E) = 0. Then H"(E) = 0 ( Theorem [2.6]) and
Theorem [3.2] tells us that

v(E) = H"(L(E)) < (Lip(L))" H"(E) = 0.

which concludes our assertion.
Notice that;

Thus, for all Borel sets B C R", Theorem implies that
/ Dpnv(z) dL™ (@ / [L] dc™=[L] (B

Since both v and [[L]][,” are Radon measures, which coincide on Borel sets,
we get the desired equality

H(L() = [L] £4(4)

for all A C R™. O

REMARK. For the last argument in the proof earlier, we used a small
Proposition from Measure Theory, which states that;
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Proposition 4.1. Two Borel-regular measures coincide on R™, provided that
they do so on all Borel subsets of R™.

Proof. Let p; and py be Borel-regular measures on R™ and A C R”. There
exists a Borel set B C R", B D A for which p;(B) = pi(A). Then pi(A) =
;{1(3) = ua(B) > /@(14). In a similar way, there exists a Borel set B C R™,
B 2 A for which pz(B) = pa(A). Thus, pa(A) = p2(B) = pi(B) = p(A).
Hence p1(A) = pa(A), for all A C R™. O

Lemma 4.3.
Let f : R" — R™ be a Lipschitz function and A C R™ a L™-measurable set.
Then

1. f(A) is H™-measurable,

2. the mapping y — H° (A N ffl{y}) 18 H™-measurable on R™, and

3.
[ AN £ ) ane < L)L ()

REMARK. The mapping y — H° (A N f‘l{y}) is often referred as the
multiplicity function.

Proof. Without loss of generality, we may assume that A is bounded. General-
ity can be achieved, eventually, by “gluing” together “copies” of the basic case.
From Theorem there exist compact sets K; C A, (i = 1,2,...) such that

LK) > LM(A) — %

Since L"(A) < oo and A is L"-measurable, we get that L"(A\ K;) < —, thus

S|

E"(A\ GKZ> =0.

i=1
Moreover, since f is continuous, f(K;) is compact and thus H"-measurable.

Hence f(U KZ> = U f(K;) is H™-measurable, and so
i=1 i=1
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m(ﬂA)\f@Ki)) SH"<f<A\QKi>>

< (Lip(f))"£" (A \ GK) —0.

i=1
Thus f(A) is H"-measurable, and this proves (1.)

(2.) For k=1,2,... we define sets

Bk::{Q Q:>n< <Ci Ci+1:|7 CiEZ}v

I 9k ok

i.e. the collection of half-open/closed dyadic cubes of R™. We immediately
notice that each Bj contains countably many cubes, and so, we can adopt an
“enumeration” By = {(Q;)ien | Qi as described above} and follow it whenever
necessary. Note also that for a fixed k, any cube Q¥) € By, can be “decom-
posed” as;

2n
@ = (J QI+, with QU4 € By,
=1

and, that

R'=JBr= |J @i

Qi€By,
where the unions above are disjoint.

Now, we define functions g : R™ — R

9r(y) = Z Xf(Ame)(y)'
i€N

At first, we notice that (1.) ensures the H"-measurability of all g5 functions.
Therefore, we shall dive deeper and explore their properties.

An keen observer notices immediately that g acts like an “enumerator”, mean-
ing that, for y € R™,

gr(y) = number of cubes Q € By, such that f~ {y} N (ANQ) # @

Claim 1: (gr)ken iS a point-wise increasing sequence.
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Indeed, fix an index k; For every y € R, we have that

9k(y) = # {Q €BL : QN (fH{y}nA) # @}
<#{oie B (U Qi) NG N 4) £ o)
i—1

< {Q’ € By : QN y)nA) £ @} — gei(y):

Claim 2: gi(y) < HO(AN f~H{y}) for all y € R™.

Let y € f(ANQF). Then there exists z € AN Q¥ such that f(x) =y. This
implies that € AN Q¥ N f~1{y}.

On the other hand, for y ¢ f(A N QF), we get Xf(Ame)(y) = 0 and
ANQFN f~Y{y} = @. Hence;

H (A N f_l{y} N Qf) > Xf(Ame)(y)‘
Therefore, we get that

HU(ANfHy}) = <U AnfHyyn Qf) =Y H(AN S Hykn Q)
ieN ieN
> Z Xf(AﬂQi?)(y) = gr(y).
€N
Claim 3: H°(ANnf~{y}) is the point-wise supremum of g (y) for all y € R™.

We will demonstrate that; For all y € R™ and for all M € N such that
M <H°(An f~'{y}), there exists k € N such that g(y) > M.

Indeed; Since H°(ANf~{y}) > M, we can find M distinct points @1, ...,z €

AN f~Hy}. Take k large enough, such that pr — Ty
1 <p<p < M. Since the cubes which are contained in By are disjoint and

> \2/,?, for all indices

have a diameter of \QQ’ each point z, is contained in exactly one cube, for all

1 <p < M. Let us denote that cube as Qf(p), where the indicatrix p N i(p) is
an 1 — 1 map. Consequently;

gk(y) = ZXf(Ame)(y) > ) Xr(angk,) = M-
ieN 1<p<M

Consequentially, we have obtained that; As k — oo,

gr(y) = HO(AN FH{y})
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for each y € R™; and so y — H(AN f~1{y}) is H"-measurable, as the limit
of H"-measurable maps.

( 3. ) From the Monotone Convergence Theorem, we get that
/ HO(AN fH{y}) dH" = lim / g dH™
R™ k—o0 Jpm

= lim / D Xgangy () dH"
ieN

k—o00

=lm > s 0
= lim Y H"(F(ANQ)))
1€EN
< limsup ) (Lip(f))"L"(AN QF)
k=00 eN
= (Lip(f))"L"(A).
O

REMARK.
From (8.) we deduce that f~1{y} is at-most countable for H"-a.e. y € R™.

Proof. Fix any compact set K C R”. Then, K is closed and bounded,
and so is its image under f ( since f is continuous, it preserves compactness ).
Hence by Assertion (3.) we get that

/ HO (KN f {y)) dH" < / HO(K N f~{y}) dH" < Lip(f)"L"(K) < 00
f(K) Rm

Consequentially, for H"-a.e. y € f(K) we get that
HO(Kﬁ f_l{y}) < 00,

since,otherwise,the multiplicity function would take infinite values for a set of
positive measure,and thus the aforementioned integral would not be finite.
Hence, the set KN f~'{y} contains finitely many elements for H"-a.e.y € R™.
The final step consists of exhausting R™ with an increasing union of compact
sets. Then, each intersection with f~!'{y} will be the empty set or a set
containing a finite number of elements. Elementary results from Set Theory
and Measure Theory imply that the union of such sets is at-most countable
and has Lebesgue measure zero. This concludes the proof of the remark. [
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The next Lemma we are about to present plays an important role in the
proof of both Area and Coarea formula.

The brilliant idea presented here, introduced initially by Federer in [10], is
that we can utilise linear automorphisms in order to “approximate” - in a sense
- a Lipschtz map, the same way we do in fundamental Calculus, with linear
functions and C' maps, where the continuity of the gradient is employed, so
as to deduce that the latter are locally constant.

Finaly, we shall state that, for reasons still to be clarified, the following
Lemma, along with its many congener results, are generally known as Lin-
earisation Lemmas for Lipschitz maps.

REMARK. A last Remark before proceding to the Lemma, of Algebraic &
Computational nature. Given a (nxn)-matrix L and considering the Operator
norm on the induced linear map, i.e. taking [|L[,, = sup{||Lz| : [z]| = 1}
we observe that;

|Lz|| = || L(x1e1 + - - - + xnen)|| = ||x1Ler + - - - + xn Ley ||
n
< |z | Lexll + -+ + |zl [ Lenll <D [ Lejl| -
j=1

Therefore, given a matrix L we have an estimate of the “size” of its Operator
norm via its columns, given as;

n
ILllop < > IIZej]l -
j=1
Without further a do, we proceed to the Lemma.
Lemma 4.4. Let f: R™ — R™ be a Lipschitz function and t > 1. Define
B :={x| Df(z) : exists, and, Jf(z) > 0}

Then there exists a countable collection {Ey}72, of Borel subsets of R™ such that

x
1. B= U Ey,
k=1

2. flg, is one-to-one (k=1,2,...), and

3. foreach k = 1,2, ... there exists a symmetric automorphism Ty, : R™ — R"
such that

Lip((flg,) o T ") < t, Lip(Ti o (flg,) ") < t,
tin| det T}, ‘ < Jf‘Ek < tn‘ det T}, |
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Proof. (1.) Fix € > 0 such that

1
¥+€<1<t—€.

Since R™ is separable, take C to be a countable dense subset of B. Now consider
the space of symmetric automorphisms of R™. We endow the space with the
operator norm. We will construct a countable dense subset, as follows;

Let S = (s;5) be a symmetric automorphism of R". We define the symmetric
matrix S, such that ¢; == (SM);; € Q, keeping all other entries the same
as in . Due to the Rationals being dense in R, we can choose a suitable ¢;
such that det S £ 0 and

op = Z H(S — 5Wejll =Is11 — @] <e.
=1

=

We repeat the process, with S™) in place of S, meaning that; We induce a
symmetric matrix S such that ¢y = (5(2))12 = (5(2))21 € Q, keeping all
other entries the same as in (). Again, we shall choose a suitable go, in order
to ensure that det S®) # 0 and HS(I) - 5(2)H0p < e. Finally, after a finite

number of steps, we will have ended up with a symmetric matrix S’ consisting
of rational entries, for which det S’ # 0, and such that

5" =5, <e

Gathering all such matrices, we end up with a countable subset, let’s call it
S, of symmetric automorphism of R”, which is dense in the Operator norm.

For each c€ C,T € S and i = 1,2, ..., we define set E(c,T,i) to be the set
1
ofallbe BNB <c, > satisfying
i

(1 i ) Tul < [Df(b)ul < (t —&)[Tul (*)

for all v € R™ and

|f(@) = f(b) = Df(b) - (a = b)| < e|T(ex = b)| (%)

for all a € B(b, 2).
Note that E(c,T,1i) is a Borel set, since D f is Borel measurable.
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From (ED and @ follows that
|f(a) = f(O) < [f(a) = f(b) = Df(b) - (a = b)| + [Df(b) - (= b)

elT(a =b)|+ (t —&)[T( = b)]
(),
=t|T(a — b)].

In a similar way, using the so-called “reverse” triangular inequality, we get that
|f(a) = f(b)] >t 1T (a—b)|.
Hence, we have the estimate
=T (a—b)| < |f(a) = f(O)] < t{T(a—b)| (% x %)
for b€ E(c,T,i),o € B(b, 2).
Claim: If b € E(c,T,1i), then

(t L) det T | < Jf(b) < (t—e)"| det T|.

Proof of claim:
By the Decomposition Theorem, we have that Df(b) = L = O o S, and so

75 = [DI®)] = |det 5 |

According to @, we have that
1
(t + 6) |Tu| < [(O o S)u| = |Su| < (t —¢)|Tul

for u € R™, and so, by setting Tu = v and again renaming the result back to
u-notation, we have that

<1 +€> lul <|(SoT Mu| < (t—e)|u| (ueR").

Thus
(SoT™1)(B(1)) C B(t—e),

and so, passing onto Lebesgue measures, we get

LM((So T )(B(1))) = |det (SoT™) |a(n)
and L7(B(t —¢)) = a(n)(t — &)
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and so,
|det (S o T’l) | < (t—e)".

Hence,
|det S| < (t —e)"|detT|.

The proof of the other inequality follows in a similar way.

Now, we will “re-brand” our collection of

{E(c,T,i)|ceC, TeS, icN} as {Ep}p2;.

oo

We want to show that; If b € B, then b € U FE;.. We turn our attention once
k=1

again to the Polar Decomposition Theorem; We have that Df(b) = O o S, for

a symmetric map S : R® — R" and an orthogonal map O : R™ — R™. Since
b € B, we can deduce with ease that S is invertible;

Had we had S being non-invertible, we would have |det S| = 0 and so
Jf(b) = 0, which is a contardiction to the definition of the set B. Further-
emore, S is an epimorphism; Otherwise, Im(S)would be a proper subspace
of R™, therefore S would not be invertible. Consequently, S : R® — R" is a
symmetric automorphism of R".

From the density of S, we can find a suitable T" € S such that

Lip(ToS ™) <t '4e)and Lip(SoT™!) <t —e.

Indeed; Since S is a symmetric automorphism, then for any € > 0 there

T _
exists T € S such that || — S|| < e. Thus, |(|5|Y)(x)|
T

<ex# 0, and so;
|Tx — Sx| < €l|x|.
Substituting = S~y gives
IT(S™y) = S(S™ )| < e[Sy,

thus
(T oS (y) =yl <e||S7H 1yl

which implies
(To S —I)(y)l

" <el[S7Y, forally € R", y # 0.
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Therefore, we get
[7os 1] <efls .

Furthermore, for any = € R™ we have;

(T oS™H(x)| = (T oS™)(z) —a+a| < |[(ToS™)(z) - | +|z|
=|[(ToS™ = I)(x)| + ||
< HToS_1 - IH |z| + |z
<e| ST |z| + |z
= (e||S7 + )=l

Hence
[ToS™| <1+€|S™

)

which implies
Lip(ToS ™) <14e¢ HS_IH .

L tefs) = <1+5>_1,

(1 —i—s) (T+e|s7H)) =1

Expanding on the terms and solving the equation at hand with respect to €
results in;

We want

or, equivalently

1-— % —€
N ”
eS¢
Consequently, such a symmetric automorphism 7' exists, for the specific €
we have calculated above. For the other inequality, we simply mimic the
calculations above.

Let u € R™. We now have that

(T oS )ul < Lip(T o S~ Hu| < (t7 + &)~ Jul,

and, by substituting « = S(u) and “re-naming” back to u-notation, we get
1
(7 +¢)iral <1sul = 00 8 = IDf 0yl

Moreover, we have that

[Df(b)u| = |(O 0 Syu| = |Su| = (S o T~)(Tw)|
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(S o T~ (Tu) — (S o T~H)(T0)]
Lip(S o T71)|Tu|
(t —&)|Tul.

VANVAN

Hence, for all v € R™ holds the following

(1 +5) (Tul < [Df(b)ul < (¢t - )|Tul.

1
Now, the density of C in B, allows us to select ¢ € C, so that |b — ¢| < -, for
i
1 sufficiently large. At last, from the differentiability of f on b, we get that

[f(a) = f(b) = Df(b)(e — D)

li =0.
asb o — 0] 0
Hence, for % > 0, there exists § > 0, such that; For | — b| < §, we
Lip(T—1)
have
€
— f(b) = Df(b —b —_ .
(@) = £(6) = DFO) @ =] < s

Thus, for any 7 such that % < 0, we get that; For all « € B(b, %), holds

3

7(@) = 76) = DIO)@ = b)| £ prsla—b
= T T T)
< ﬁmp(rl)ym — T|
=¢e|T(a—b)|.

Thus b € E(c, T, ). Since this conclusion holds for all b € B, we get

oo
BC ] Ey.
k=1
oo
The reverse inclusion U E, C B, is trivial, and follows directly from the
k=1

definition of Fj (namely, of E(c,T,i)). Assertion (1.) is proved.
Assertion (2.) is trivial, considering (b * ).
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Finally, take any set E}, of the form E(c,T,1), for some ¢ € C,T € S and
1=1,2,.... Take T} in place of T on . Then, we have that

tHTi(a = b)| < |£(a) — f(b)| < t|Tie(a — b)]

for all b € Ej and all a € B(b, 2).

Notice that Ey C B(c, 1), by definition, and that B(c, 1) C B(b, 2);
Let z € B(c, 1). Since b € Ey, by definition, b € BN B(c, 1), hence |b — ¢[< 1.
Thus; [z —b| < |z —c|+]c—b < T+ 1 =2

Consequently Ey C B(b, %), and so;

tHTi(a = b)| < |f(a) — f(b)] < t|Tie(a — b)] ()

holds for all a,b € Ey. Letting Tpao = o and Tpb = E, thus a = Tk_l& and
b= T,;lb, gives

tHa — b < |f(T &) — f(T,'D)| < tla — 0],

thus N N _
a0 < |(fo Ty )(@) — (Fo Ty (@) < tla bl

Consequentially,
Lip((f|p,) o Ty 1) < t.

In a similar way, from the left inequality of , we have
7 Ti(a = b)| < | () = f(b)]-
Substituting & = f(a) and b = f(b), results in
(T o f71)(@) = (Tho fH(B)| < tla—b].

Hence,
Lip(Ti o (flg,) ") <t

Finally, passing with limits on Claim, provides the estimate
7" det Ty | < Jf|g, <t"|detT}]|.

Assertion (3.) is proven. O
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REMARK 1. It is trivial to state that, we can “forge” the countable col-
lection {E}}32, so that it consists of disjoint sets, without this affecting any
one of our conclusions. Henceforward, we will impose this contention, without
further justification.

REMARK II. We have demonstrated, essentially, that; For a Lipschitz map
f:R" - R™(n < m) the set {Jf > 0} can be partioned into a countable
familly of Borel sets {E}}72,, so that the restriction of f to each and every
one of them is an injection. Furthermore, by choosing a parameter of approx-
imation t > 1, we acquired an even stronger result; There exists a countable
collection of linear automorphisms 7T}, : R™ — R"™ such that f|g, o7} Lis almost
an isometry of R™ into R™ . To this we own the appellation “Linearisation”,
which seemed rather “arbitrary” at first, to say the least.

REMARK III. Before proceeding any further, it is important to state a final
direct consequence of the Linearisation Lemma. It is immediate that, uppon
passing with limits on (%), we effectively acquire that;

For all z € Ej, we have;
tYTu| < |Df(x)u| < t|Tul
for all uw € R™. Therefore, by means of a simple substitution, we get;
t7Yu| < |Df(z) o T7lu| < tju| (u€RM).

Hence
|Df(z)o T <t.

At last, in the same spirit, since x € B, we get that

|ToDf(x)~"| <t
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4.2 The Area formula

In Geometric Measure Theory, the Area formula provides an interest-
ing relation between the Jacobian integral (the integral of the jacobian) of
a Lipschitz map over some suitable set and the n-dimensional Hausdorff
area, namely the H™-integral of the multiplicity function, also referred as the
H"-measure of the image f(A) counted with multiplicity.

Theorem 4.1 (Area formula). Let f : R®™ — R™ be Lipschitz continuous.
Then for each L™-measurable subset A C R",

/Jf dx:/ HO(AN fHy}) dH (y).
" m

Proof. In view of Rademacher’s Theorem, we may as well assume D f(z) and
Jf(z) exist for all x € A. Also, without loss of generality, we will suppose

L'(A) < 0.
Case 1: AC{Jf >0}

Fix ¢t > 1 and choose a collection of disjoint Borel sets {£}}7°; such as in
Lemma[4.4] Similarly, we define By, as in Lemma and consider sets

FI=E;NQ;NA (Qi=QFeByandi,j=12,..).

Immediately we see that the sets F]’ are disjoint and their union decomposes A
since

[j F;: [j (EQOA):Am( Ej (EjﬂQi)>

1,7=1 1,7=1 i,7=1

:AQ<GE]’QGQ¢>
:Aﬂ({Jif>0} an) = A.

Using Lemma [4.4] and Theorem [3.2] we deduce that

H'(f(F))) = H" (flg, o T; o Ty(F})) = H"((flg, o T, ) T3(F}))
< (Lip(flg; o T; 1)) " H™(Ty(F}))
< "W (Ty(F}))
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and

LNT(F)) = - (T (F)) = H' (T3 (Fle,) ™" o F(F) < "W (F(F)):

J

Therefore, we get the following estimation

CEHNHE) < O TED) = e Ty |2 < [ Tpda

and / Jfde <t*det Ty | L™(F}) = t"L™(T(F})) < 2" H"(f(F})),
F?
J

i.e.

tH(f(F))) < /F Jf dw < EPH(f(F))).

Now, summing on ¢ and j, and taking advantage of the decomposition of A,
we get that

£y H(f(F))) < / Jfdz <> HY(f(F)). (%)
i,j=1 A i,j=1
Claim 1:
T SO H(HED) = [ WA ) )
ij=1

Proof of claim: Let us define functions g; : R™ — R as

1,j=1

In Lemma [4.3] we have established the H"-measurability of g,. Moreover, we
see that gx(y), for y € R™, acts like an “enumerator”, counting the number of
Fj’ sets, for which FJZ Nyl # a.
Since f|g, is one-to-one, from Lemma this holds true for f|p: as well.
. J
Hence f(F}) = f(E; N Qi N A) = f(E;) N f(Q:) N f(A). Moreover, we notice

o0

that A C {Jf(z) > 0} implies that f(A) C U f(Ej), also a consequence of
j=1

Lemma (44
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Finally, a keen observer notices that our definition of g closely resembles
the one in Lemma [4.3] Therefore, if we mimick our previous work, we obtain
that; As k — oo,

gr(y) = HO (AN FH{y}).

Now, from the Monotone Convergence Theorem follows that

lim H"(f(F;)) = lim /Z Xy(Fi) dH"

i,7=1 7,0=1
= lim [ gp dH"
k—o0

:/ lim g, dH"
k—o00

= /m HO(AN fHy}) dH ().

Taking limits as k — oo in (ED and making use of Claim 1, we get that
=2 HO(AN f~Hy}) dH" (y) < / Jfdo <" HO(AN f{y}) dH"(y)
R™ A Rm

Sending ¢ — 17 concludes the proof of Case 1.

Case 2: AC{Jf =0}
Fix 0 < € < 1. We make use of the following expression for our function f:

f=poyg,
where g : R” — R™ x R” is the mapping

g(x) = (f(z),ex),

and, p : R™ x R™ — R™ is the projection in the first argument, i.e.
Py, 2) =y
Claim 2: There exists a constant C' such that
0<Jg(x) <Ce

for z € A.
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Proof of claim:

Writing down g analytically, we get g = (f*, ..., f™, ex1, ...,ex,). Hence

Dg(x) = (Dg(f))(wrm)x"

Since Jg(z)? equals the sum of the squares of the (n x n)-subdeterminants of
Dg(z), due to the Binet-Cauchy formula, we have that

Jg(z)? > 2" > 0.

For the upper estimate we will need a little more effort;

First, we notice that the first m rows of the Dg(z) matrix are simply V f(z).
Hence, we get that

IVfi(@)|| = |Df ()] < VaLip(f’) < VaLip(f) = 9.
Furthermore, using again the Binet-Cauchy formula, we compute that

sum of squares of n—dimensional sub—determinants,
of matrices having at — least one row in el

Jg(a)® = Tf(2)® + {

Since 0 < ¢ < 1 and the rows of D f(x) are bounded in norm by 9, each minor
i.e. (n xn)-subdeterminant of the latter type is bounded by ¢ - max(1,9" 1),
via Hadamard’s inequality ( Theorem ). Upon careful consideration, since
we have already taken into account all those minors forming the Jf(z)?, we

are left with <n + m) — <m> summands.
n n

Hence, for each x € A C {Jf = 0}, we get

Tg(x)? < Jf(2)? + ((“m) - <m>>52 max(1, 9" 1)2.

n n

Therefore, we end up with Jg(z) < Ce, where

o= (") - (1) st

This concludes the proof of our claim.
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Now, recall that p : R™ x R" — R™ is a projection. Thus, we may employ
what we obtained in Case 1 above, in order to get

H"(f(A)) < H"(g9(A))

- / aH" (. 2)
g(A)

< [ w@ang ) o)
Rn+m

= /AJg(a:) dx
<eCL"(A) < o0.

Letting € — 0, we obtain that H"(f(A)) = 0.
Moreover, since supp{ HO (A N f_l{y})} C f(A), we conclude that

/]R HO(A N f_l{y}) dH"(y) = 0.
Consequentially,

/ HO(Aﬂf_l{y}) dH" (y) :O:/ Jf dx.
m A

Case 3: AC{Jf >0} for every x € A.

In the general case, we write A = A; U Ao, with 47 C {Jf > 0} and
A; C {Jf =0} and employ Cases 1 and 2 as above. O
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The role of the Multiplicity function

Although we have gone through a detailed and analytical proof of the Area
Formula, and we have established its validity, a question might still linger on
the exact purpose of the Multiplicity function as an integrand. We target this
question with the following example.

Definition. A Lipschitz function f : R® — R™ is called a local isometry,
provided that Df(z) : R™ — R™ is an orthogonal map for a.e. x € R".

Remark. This definition is in full accord with the “classical” bibliographic
definition of locality using differentials, since the differential of a linear map
is its induced matrix.

Thus, for a local isometry, we calculate that
Jf(z)=[Df(z)] =det(Df(z)" o Df(z)) = (deth(a:))2 =12=1.

In this case, the left-hand side of the Area Formula (Theorem is simply
L"(A). Now, if we make the assumption that our local isometry is also in-
jective, then we get that H°(A N f~'{y}) = 1 on the image of f and zero
elsewhere, and so,

) = [ 1aH(y) = (),
Therefore, for an injective local isometry, we ened up with;
H(f(A)) = L"(A).

Note that, local isometries are not injective in general. Let us consider the
function f :R? — R?, defined by

if 0
flanan) = 1072 T
(—:El,wg) ,lf I S 0.
It is immediate that f is a local isometry. Therefore, by taking the open cube
Q = (—1,1)? to be our “test-subset”, we get that £2(Q) = 4, yet,
(@) =244=£4Q) = [ J1

This is the case, evidently, because f, as a map, folds R? onto {x1 > 0}, having
HO(f~1({z})) = 2 for all x = (21, x2) € R? for which z; > 0.

Conclusion. Therefore, to answer our question, Multiplicity function “emer-
ges” in a natural way, and it is there so as to compensate for “overlap effects”
in the image of our function.
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Theorem 4.2 (Change of Variables). Let f : R®™ — R™ be a Lipschitz
function. Then for each L™-summable function g : R — R, we have

[ sta)is(a) do = / [ > g<x>] aH" (1),
o

zef~Hy}

Proof. We will proceed in steps.
Case 1: g > 0. We recall that for such a function g, from Theorem [I.10]stems
the following expression

=1
i=1

for appropriate £"-measurable sets {A4;}3°,. Employing the Monotone Con-
vergence Theorem and the Area formula, we have

/n g(x)J f(z) do = / (Z 1XA,-(3:)> Jf(z) dz =
Rn

i=1

:ii/nXAide:E
:i;/A.dex

=1 g

) (Z S <x>> aH" (y)

Rm zef~H{y} \i=1
=/ [ > g(x)] dH"(y).
R Lzef—1{y}

Case 2: Let now, in favor of generality, g be any £"-summable function.

Simply, we write g = g™ — g~ and apply Case 1 on g™ and g~ O
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4.3 Applications

For reasons of simplicity and elegance, we restate the Area formula in a
more “practical” way, in the form that we will need in the Applications;

AREA FORMULA. Let f : R — R™ (n < m) be Lipschitz continuous.
Then for each £™-measurable subset A C R",

/Jf dx:/ HO(AN fFHy}) dH"(v).
A £(A)

It is clear that for any y ¢ f(A), we get H°(AN f~'{y}) = 0, which does not
contribute anything to the integral.

A. Length of a curve. Assume f: R — R™ (m > 1) is Lipschitz and 1-1.

dft df™
Let us denote f = (f!,..., f™) andso Df = ( j;t . ’flt) Therefore

2(5) - on-[3]

i=1

Jf =\ (Df)- (D))" =

Consider —oo < a < b < oo and define the curve C = f(]o, b]) C R™.

Since f is injective, for any y € C there exists a unique = € [a, b] such that
f(x) = y. Hence, in this case H([o, 0] N f~1{y}) = 1.
Consequentially, by the Area formula we get that Then

/ab.]f(t) dE"(t):/f([ab] 1 dH( / dH' = HY(C).

This, effectively, proves that

HY(C) =

df
— || dt
dt H
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B. Surface area of a graph. Assume g : R™ — R is a Lipschitz function.
We define f : R™ — R**! as

fx) = (2, 9(x)).

Hence
1 0
Df = : - :
0o --- 1
Gor = 9o i)
and

(Jf)? = sum of squares of (n x n) — subdeterminants

n 2
:1+Z<§i>

=1+ Dyl

Now, for each open set U C R", we define the graph of g over U as
G =G(g;U) = {(z,9(x)) |z €U} =U x g(U) CR".

It is easy to notice that f is one-to-one, hence, as we saw previously, for any
y € G = f(U) we get that H*(U N f~*{y}) = 1. Consequently,

/ JF(z) dL"(z) = / L dH" (y) = H(G).
U G
Thus, we get that

H"(G) = surface area of G = / (1 + HDgH2)%d;p_
U
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C. Surface area of a parametric hypersurface. Assume f : R" — R*+!
is Lipschitz function and 1-1. Denote f as f = (f*, ..., f**1). Thus

1 1
1 Tn
Df=1{ : S
n+l .., n+1
z1 Tn  /(n+1l)xn

Therefore

(Jf)? = sum of squares of (n x n) — subdeterminants

fk: 1 fk-i-l ) .7fn+1) 2

:Ela o xn)

n+1

—Z

Now, for each open set U C R", we write S = f(U) C R™*! Hence,

H"(S) = n — dimensional surface area of S

n+1 a(fl,...,fk_l,fk+1,...,fn+1) 2 %
:/U<Z[ Az, ..., Tp) ] de.

k=1
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D. Submanifolds. Let M C R™ be a n-dimensional embedded Lipschitzian
submanifold. Suppose that U C R™ and f : U — M a chart for M. Let
A C f(U) a Borel subset and set B := f~1(A). We denote

of _(oft o
a%‘i o 8:@-’ ’ 6:@ .

Define
__9of of
gl] N 6.%1 695]-’

Then, the metric g induces the following matrix

G = (9ij) = (Df)" o Df

(i,j=1,..,n).

and so

Jf =detG .

Therefore, by applying the Area Formula, we get that
/ Vdet G dx :/ HO(BN fF{y}) dH™(y)
B f(B)
=/, HO(FHA) N FHy)) dH (y)

Fi-1 n
= rae)
= H"(A).

Hence

H"(A) = volume of A in M = / Vdet G dz.
B
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CHAPTER

THE COAREA FORMULA

In this Chapter, we will present the so-called Coarea formula, which is
the other side of the problem we are studying, involving Lipschitz continuous
mappings of the form

f:R* > R™
for n > m, this time.

We start by proving some introductory lemmas, and then proceed to the
formula. We conclude by presenting some important applications, showcasing
the vast spectrum of results, stemming from both Formulse.

For a detailed listing of the Bibliographic sources used in the present Chap-
ter, we direct to the References and notes paragraph on p

Throughout this Chapter, we assume

n>m.

5.1 Preliminaries

Lemma 5.1. Suppose L : R™ — R™ is a linear map, and A C R" is a
L"-measurable set. Then

1. The mapping y — H"™™ (A N L_l{y}) is L™-measurable.

2.
/m Hm (AN L () dy = [L] £(A).
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Proof. We will proceed by examining the different cases.
Case 1: dim L(R"™) < m.
Then for £L™-a.e. y € R™, we have that AN L~{y} = @, hence

W (AN L Hy}) =0,

This concludes the measurability of the map y — H"™™ (A N Lil{y}).

Moreover, by Polar Decomposition Theorem we have that L = S o O*, for a
symmetric map S : R™ — R™ and an orthogonal map O : R™ — R”. Hence,
O* : R — R™ and so L(R") = S(O*(R")) = S(R™). Thus dim S(R™) < m
and [L] =|det S| =0. Assertion (2.) is proven trivially.

Case 2: L = P = orthogonal projection of R™ onto R™.
Then for each y € R™, the inverse image P~'{y} is an (n — m)-dimensional
affine subspace of R™ and a translate of P~'{0}. Indeed, via elementary
calculations, we can see that for a fixed y € R™, we get;
Py} ={z e R"| P(x) = y}

={z=(z,w) e R" xR" ™| P(z,w) =y}

={r=(z,w) eR" xR" ™| z=y}

={(y,w)[weR"™}

={(%,0) + (0,w) [ w e R*"™"™}

= ©,0) +{(0,w) [ w e R*"™™}

=(y,0) +{z=0,w) e R"|w e R" ™ & P(x) =0}

= (y,0) + P~'{0}.

Then Fubini’s Theorem implies
y s H" (AN P Yy}) is L™ — measurable

and

/m H' (AN P Hy}) dy = L"(A). (%)

Indeed, simply let A, = {z € R"™™|(y,2) € A}. Then x4,(2) = xa(y, 2).
Hence, we compute as follows

£ = [ aln) aem) = [ ( [ dc“—m<z>> aL" (y)

= [ LV(Ay) dL™(y)
R
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= [ ) den)

= / A (AN P~ Hy}) dL™(y).

Case 3: dim L(R") =m.
Again, by Polar Decomposition we get the L = S o O* expression, for a

symmetric map S : R™ — R" and an orthogonal map O : R™ — R™. This
time, since S has full rank, we have that [L] = |det S| > 0.

Claim: We contend that; There exists an orthogonal map @ : R” — R" such
that

O*=PoQ
where P is the orthogonal projection of R onto R™.

Proof of claim: We will construct the map @ in steps; Let {ey,...,en} the
canonical base of R™. Since O : R™ — R" is an orthogonal map, we set
v; = O(e;) for 1 <i < m, and define

Q(’Ul) = (61,6) cR"

Q(vy) = (em,ﬁ) cR"”

We extend the set {vy,...,v,,} to an orthonormal base of R™, let us denote it
as {U1, ..., Um, Um41, ---, Un }, and we set

Q) =w; e R" (i=m+1,..,n),

where the choice of w; is such that

-,

{(ei,O) ci=1, ,m} U {me, ...,wn}

is an orthonormal base of R™. For ease of our notation, we will denote by
w; = (e;,0) for i = 1,...,m. And so;

Qv) =w;, (1=1,...,m,m+1,...,n),

where both the sets {v1, ..., Um, Um+1, ..., Un } and {wi, ..., Wi, Wit 1, ..., wy } are
orthonormal bases of of R"™. Therefore, the map @ : R™ — R"™ is orthogonal.

We now turn our attention to its adjoint, @* : R — R™. From the defining
property, for any = = (x1, ..., Tm,0,...,0) € R™ we get that;

Z-Q(y) =Q"(z) -y forall y € R".
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Observe that;

n n m

Q) =Y (y-v)Qv:) = > (y-viywi =Y Niles,0) + > Nwy,

i=1 =1 i=1 i=m+1

where \; = (y - v;). Moreover, from the orthogonality between the vectors of
the {w; : i =1,...,n}, we get that

wj - (ei,ﬁ) =0 forallj=m+1,...,nand alli =1,...,m,

which results in the first m coordinates of {w; : i = m + 1,...,n} being equal
to zero. Hence, we get the following expression;

0
0
w; = *1 foralli=m+41,...,n.
*2
*n—m
Therefore, we have that;
T A1 0
2 A2 0
Q@) y=|zm | || ]|+ 0 Z)\1$1+"'+)\n$nzz>\i$i
0 0 *1 i=1
0 0 *n—mn,
= Z(y . U,’)xi = ZwZ(O(eZ) . y) = O<Z a:iei) ‘Y = 0(53) -y
i=1 i=1 i=1

for all y € R™. Hence, we end up with the following equality
Q" (1, ..., Tm,0,...,0) = O(z1, ..., Tpy)

for all z = (z1, ..., xym) € R™. Moreover, from the defining property of the Ad-
joint, after “feeding” it with the canonical basis vectors of R and performing
the necessary calculations, we get that;

P* (21, .., ) = (1, .0y Ty, 0, ..., 0) € R™.
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Consequently,
O=Q"o P,
which gives;
0" =(Q o P*)" = (P")" o (Q7)" = PoQ,

which concludes the proof of our contention.

Returning to our proof; It is easy to deduce that L=1{0} is an (n — m)-
dimensional subspace of R™ and L~'{y} is a translate of L=*{0} for all y € R™.

Hence Fubini’s Theorem implies the L™-measurability of the map
y = H (AN Ly,
Now, we employ Case 2 from above, applying it on the projection map P, and
we make use of our Claim, in order to calculate that

LM(A) = L*(Q(A))

[ HTQUA)N Py dy

= | AN @ o P ) dy

We perform a simple “re-branding” of our variable, employing the help of our

symmetric map S, by setting z = Sy. Thus

dz
/m H(AN(Q T o P o STHz])) et S| =

Observe, now, that L = S0 O* = S0 Po () and what @ essentially gives us
is that

L"(A). (%)

/m W (AN (LY 2})) dz = |det S| £(A) = [L] £"(A).

The proof of the Lemma is now complete. ]

REMARK. For the first case of our Lemma, we made a delicate contention, we
would like to adress here, namely that; For an Orthogonal map O : R™ — R"
(m < n), we have that

namely, that O* is onto, i.e. an epimorphism to its image.

We adress this contention, via the following well-known Proposition of
Linear Algebra;
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Proposition 5.1. Let T : R™ — R™ be a linear map and T* : R™ — R™ be
its adjoint. Then
(Ker T)* = Im(T*),

where by V1 we denote the orthogonal complement of a subset V' of a vector
space X, namely the set;

Vi={zeX|v-2=0, foral veV}.

Proof. We prove the two set-inclusions seperately;
Claim 1: Im(T*) C (Ker T)*.

Let x € Im(T*). Then there exists a y € R™ such that z = T*y. Now, for
all u € Ker T, we get that;

r-u=T'y - u=y -Tu=0.

Hence, by definition, we get that x € (Ker T)* .
Claim 2: (Ker T)*+ C Im(T*).

For this part of the proof we will work in a clever way, and we will show

instead that;
Im(T*)* C Ker T.

This is possible, since we work in finite dimensional spaces, due to the following
well-established properties;

ACB= Btc At & (At =A

Indeed, let € Im(T*)*. Then, for all v € Im(T*), we get that v -z = 0.
Since v belongs in the image of T*, and the above holds for the whole of
Im(T*), we deduce that;

T y-x =0, for all y € R™.
Hence, by the defining property of the Adjoint, we get that
y-Tx =0, forall y € R™.

Therefore, we must have that Tx = 0, ergo € Ker T, which concludes our
proof.

Now, for the matter at hand; Since O : R™ — R" is an Orthogonal map,
therefore an isometry, we get that Ker O = {6} Hence, it is trivial to observe
that;

O*(R™) = Im(0*) = (Ker 0)* = {0}*+ =R™,

which concludes the proof for our contention. O
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Lemma 5.2. Let f : R — R™ be a Lipschitz continuous map and A C R™
be a L™-measurable set. Then

1. An f~Yy} is H""™-measurable for L™-a.e. y € R™,
2. The mapping y — H" ™ (AN f~{y}) is L™-measurable.

3.

(n —m)a(m)

[owman ) ap< (Lip(f))"£"(4).

a(n)

Proof. We shall proceed in a retrograde motion.

From the measurability of set A, we deduce that: For each j = 1,2, ... there
exist closed balls {B]}22, such that

e e}
for which Y ~ £™(B!) < L™(A) + ;
i=1

1

o
AC U Bg with diamBg < ;

i=1

We define functions gij :R™ — [0, 00) as

; diam B7 \"~"
g} =a(n—m) 5 X (Bl

Observe that gg are L"-measurable.

Moreover, note that for all y € R™, we have that

W™ (AN HyY) <D gl (w),
’ i=1

since
AnfHyy (D Bf) nf 'y} = G(BZ Nnfy}) with
=1 =1
diam (B! N f~{y}) < diam B! < ;
and thus

> jfam (B N f! nem
M (AN £ ) < 3ol - (SRR

=1
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0 diam B \"™™ >,
<> atn—m) (TRE) i =Sl
i=1 =1

In order to proceed further, since the measurability of the map y — H"™™ (Aﬁ
f *1{y}) is yet to be proved, we will employ the upper integral we defined in
for the Lebesgue measure. With this and also with Fatou’s Lemma and
the Isodiametric Inequality, we compute

*

- H' (AN Yy} d

:/* fim 1 (A0 o)) dy

Rm ]—)OO

< lim inf g] dy
oty

m ]*)OO

< limi J

< %g}fZ/ L9
=1
o0

o diamBZj nom
:hjrglolgf; Rma(n—m)<2> Xy(59) dy
> diam B? \"~
:hjrglor.}fz:a(n—m)< 5 > /m X y(B7) dy

(
< hjn_l)(l)rolfz n —m) (W)nma(m) (dlam;‘(Bj)>m
gl

diam Bg >m

diam B >”_ma(m)(Lip(f))m< 2

_ w (Lip(f h}g inf Z <d1am B! )

i=1

= a(n_—m(Lip(f))mhmmfiﬁ" BY)

a(n) j—o0

T (Lip(f)™L"(A).

IN
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Thus

a(n —m)a(m)

CH(AR f ) dy < Lip(f)"L(A4). (%

R™ a(n)

Recall that (3.) will stem from (i) once we establish (2.).

Case 1: A compact.

Fix t > 0 and for each positive integer ¢, we define U; as the set of points
y € R™, for which there exist finitely many open sets Sy, ...,.S¢ such that

V4
AnfMyrc s
j=1
. 1
diam §; < -
i
V4

(%)

1
<t+ -
1

a(n — m)<d1ar;15j )

7j=1

Claim 1: Uj; is open.

Proof of claim: Assume y € U; (for some ¢ = 1,2,...). Then there exist sets
S1, ..., S¢ such that (%) hold. We contend that; There exists r > 0 such that

l
AN N r) < S
j=1

where N (+,7) is used to denote the open ball with radius r > 0.

Let us suppose that there is no such » > 0. Then, we can locate a sequence
(yn)Nen in R™ converging to the point y, such that;

14

For every N € N, there exists zy € f Hyn} N AN U S;.
j=1

l
Since A is taken to be compact and S; (1 < j < ¢) are open, then A\ U S;
j=1
is also a compact set. From the Sequential compactness we deduce that the
sequence (zy)yen C€ AN Ule S; has a convergent sub-sequence, which we
will denote the same way, “abusing” slightly our notation, namely;
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¢
TNy — € AN U S;.
j=1
Now, the continuity of f implies that

f(z) =1lim f(zy) = limyy = y.
l
Hence z € f~'{y} N A\ U Sj. We have reached a contradiction.
j=1
This, essentially, concludes the proof of our first Claim, since the preceding
contention implies that N(y,r) C U;.

Claim 2: {y |H" ™(ANnf Hy}) <t} = ﬁ Ui.
=1

Proof of claim: We will prove the two inclusions.
Let y € {y | H""™(AN f~'{y}) < t}. Then, since H" ™ (AN f~Hy}) <,
we get that for all § > 0,

Hy (AN T Hy)) <t

1
Now, fix an index ¢. We will choose § € <0, > The definition of #Hj ™™
i

measure, implies the existence of a cover {5;}72, for which

AnfHyre s,

j=1

. 1
diam S; <4 < —
)

> diam S; \"™™" 1
Za(n—m) — <t+§

\ J=1

We may as well assume that S; are open; Recall that in the Remark following
Theorem 2.1, we made a similar contention, by taking a closed cover. The
justification in the present contention is analogous. Now, since AN f~{y} is
compact, there exists a finite subcollection {Sj, ..., Sy} covering AN f~1{y}.
Consequentially, y € U;. Finally, seeing that ¢ was arbitrary, we get that;

{y[H™(ANfHy}) <t} (U

i=1
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oo
On the other hand, if y € ﬂ U;, then conditions hold, resulting in
i=1

HI™ (A N fﬁl{y}) <t+ 1 (for each 7)
B 7

and so

H (AN FH{y}) <t
Hence

Ui S {y |7 ™(ANfHy}) <t}

=1

completing the proof of our second Claim.

Consequently, the set {y | H™ (A N f_l{y}) < t} is Borel. Hence, for a
compact set A, the mapping y — H"™™ (A N ffl{y}) is a Borel map.

Case 2: A is open.

We can “exhaust” A by compact sets, i.e. there exist compact sets K; C
Ky C--- C A, such that
o0
A=K
i=1

Hence for each y € R™, from regularity of the H"™™ measure, we get that

H (AN YY) =H""”<UK¢ N f‘l{y}>

=1

—wen( Quwns o) )

i=1
= lim H" " (K; 0 f{y}).
1—00
Therefore, the mapping y — H" ™ (AN f~'{y}) is Borel measurable.
Case 3: L"(A) < 0.

There exists a countable family of open sets V4 D V5 D --- D A, such that
L"(V1) < oo and

ilirg(}ﬁ”(%\A):L”(ﬁ(%\A)) :L”((ﬁm) \A) = 0.
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Moreover, observe that V; C AU (V; \ A), hence
HT (Vi ) S H (AN Y + HTT (VN A) 0 F ).

Thus, we now get that

liHLSUP /Rm (H ™ (Vin ) = H (AN YY) | dy

< lim sup H((ViNA) N fHyY) dy
71— 00 Rm™

(1) —

D i sup 2= malm)
1—00 a(n)

(Lip(f))"L"(Vi\ A) = 0.
Consequently, by employing Lemma [1.2] we obtain that;
H (VN fHy)) = H (AN YY) (27— ael).
Since V; are open sets, we may employ Case 2, and conclude that
y = HT(AN )

is £L™-measurable,as the limit of measurable maps y — H"™ ™ (VZ N f_l{y}).

Moreover, we deduce that H"~™((V;\ A)N f~{y}) — 0 (L™ — a.e) and so
ANf~Hy} is H"~™-measurable for L™ —a.e y, since we can “decompose” it as

ANy} = (ﬂ%) nfy}n (ﬂ ((Vi\A) ﬂf‘l{y}>>-
i=1

=1

Case 4: L"(A) = 0.
We express A as a union of an increasing sequence of bounded £"-measurable

sets and apply Case 3 in order to prove the "~ ™-measurability of AN f~1{y}
for L™ — a.e.y and the £™-measurability of the map

y = 1T (AN FTHyY).

This concludes the proof of (1.) and (2.). Then (3.) follows directly from ().
O
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REMARK. We will offer here a “replacement” for Assertion (3.) above.
Mimicking essentially the preceding proof, we will demonstrate that;

[oean ) an) < S0 win(ny w4

for a Lipschitz map f : R® — R and an arbitrary k € [0, 00), for all A C R™,
i.e. without the additional assumption for £"-measurability of the set A.

Proof: From the definition of Hk{% measure,we get that; For each j = 1,2, ...
J

There exists a cover {C] ©, consisting of closed sets, such that A C U C]
i=1

; 1
with diam CY < =, for which
J

= diam €3\ |
> alk+0) <m;> < HE(A) 4 =
i=1 j

We define functions gij : R — [0,00) as

. diam 7 \*
ot (B

Clearly gij are L™-measurable. Moreover, observe (in a similar way as above)
o0
that for all y € RY, we get H% (AN FHy}) < Zgzj(y)
J ;

Once again, we make use of Fatou’s Lemma and the Isodiametric Inequality,
and compute that

/* H (AN fHy)) dH
R¢

:/ lim H¥ (AN Hy}) dH’
R

¢ j—00
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> diam Cij k
o) : J\k )
= hjrgg)lfz a(k) <dlan2] ¢ > H* (f(czj))
i=1
> iam €7 \* i
= hjrg(l)roleOz(k) (d 5 G ) Eé(f(czj»
i=1
= diam 7 \* diam f(C7) \*
< 11]H_1>£f 2 a(k)( 5 > (@( 9 )
a(k)a(0) S diam 7 "
< a1 o Le!)’ h}g})gf;a(k 5)( 5 )
alk)al) . o 1
< 200D Lip() amine (W+ () + 1)
_a(Balt) .
— W(Llp(f))e HkH(A)-

REMARK. The preceding inequality in Assertion (3.) of Lemma 5.2 and
its variant in the Remark above is known as Eilenberg’s Coarea Inequal-
ity or simply “the Coarea inequality”. It is considered to be a tool of great
importance in Geometric Measure Theory, playing a key-role in the proof of
the Coarea formula.

The inequality essentially says that the average size of “fibers” of f, “cap-
tured” by the integrand H'(f~'{y} N A), is bounded by a term based on the
Lipschitz constant, the dimensions and the original size of the set we are in-
terested in, namely H*(A).

Eilenberg’s Coarea Inequality’s historical “journey” showcases the collabo-
rative and evolving nature of mathematical research; Proved first by Eilenberg
in 1938, for the case when the function was the distance to a fixed point in
a metric space, it was later generalized by Eilenberg and Harold, in 1943,
to the case of any real-valued Lipschitz function on a metric space, with the
burden of some extra assumptions. In the next years, Federer sought a proof
which would get rid of those additional assumptions, being convinced that
they were unnecessary. He achieved a partial result in 1954, but a complete
proof remained elusive. Only in 1984, R.O. Davies’ work on Hausdorff mea-
sures provided the insights necessary, so that the inequality could finally be
proved, they way it was predicted.
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Lemma 5.3. Lett > 1 and assume h : R™ — R” be a Lipschitz function. We
define set
B = {x | Dh(x) : exists, Jh(z) > 0}

Then there exists a countable collection {Dy}72 | consisting of Borel subsets
of R™ such that

1. E”(B\ GDk> =0,

k=1

2. h|p, is one-to-one (k=1,2,...), and

3. For each k = 1,2, ..., there exists a symmetric automorphism Si : R™ —
R™ such that

Lip(S;l © (h|Dk)) <t Lip((h|Dk)_1 0 Sk) <t,
t™ " det Si | < Jh|p, < t"|det Sk |.

Proof. We will proceed in a “constructive” way.

First, we will employ Lemma [£.4 on h, in place of f, in order to get disjoint
Borel sets {E}}7°, and symmetric automorphisms 7} : R" — R"(k = 1,2, ...)
such that

o0
i. B= U Ey,
k=1

ii. h|g, is one-to-one (k =1,2,...),
iii. Lip((h|g,) o T, ") <t, Lip(Tj o (h|g,)~!) < ¢, and
t™"|det Ty, | < Jh|g, < t"|det Ty |.

Claim 1: (h|g,)"!is a Lipschitz continuous map.

Proof of claim: Since T,;l and T} o h@i are both Lipscitz maps, then their
composition
-1 -1 -1
h’Ek =T, o (Tk ° h’Ek)
is also a Lipschitz map, with constant Lip(h|;3i) <t HTk_l H

Thus, the Extension Theorem (Thm. provides us with a Lipschitz
continuous mapping hy : R™ — R"™ such that hy = h\Ei on h(Ey).
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Claim 2: Jhy >0 L" — a.e. on h(Ey).

Proof of claim: Since hy o h(x) = x for all x € Ej, Theorem implies that
Dhy(h(z)) o Dh(x) =1 L" — a.e on Fy,

hence
Jhi(h(x))Jh(z) =1 L" —a.eon Ej.

Again, employing the (iii.) from above, we get that Jhg(h(z)) > 0 for L™- a.e.
x € Fy. Now, since h is Lipschitz continuous, it is immediate that Jhy > 0
L" — a.e. on h(E}).

Once again, we will employ Lemma to each and every hy (k= 1,2,...);
There exists a collection of disjoint Borel sets {ij}]o';l and symmetric auto-

morphisms R;? : R™ — R™ such that

iv. L" (h(Ek) \ fj Ff) =0,

k=1

V. hg|pr is one-to-one (k =1,2,...),
J

vi. Lip((he|pr) o (R)™") <t, Lip(R} o (ha|p)™") <t, and
7" det R | < Jhy|pr < t"|det RY|.
J

Now, we define
Dj’- = Ek M hil(FJk) and S]k = (R;C)il (k - 17 27 )
Claim 3: £”<B\ U Df) = 0.
k,j=1

Proof of claim: We have that

Ry (h(Ek) \ G Ff> =p! (h(Ek) \ G Ff)
=1 j=1
=h (h(ER))\ K (G Ff) = E,\ G hH(EFY).
j=1 i=1
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Moreover,
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where we denoted by (+)¢ the complement of a set. We have demonstrated

that;
hy, (h(Ek) U Ff) =B\ | Dj.
j=1

Jj=1

Therefore, from (iv.) follows

L (Ek \ D Df) =L" (hk (h(Ek) \ G Ff))
j=1 j=1

< (Lip(hy))" L™ (h(Ek) \ G Ff) = 0.
k=1

This, essentially, concludes the proof of Claim 3;

(o 7))+ 0 0)

k,j=1 J=1

Furthermore, it is easy to see that; Since h|g, is one-to-one and D;i’ C Fg,
for all k = 1,2, ... the map h|,x is one-to-one.
J
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Claim 4: For k,j7 =1,2,... we have

Lip((S§)~' o (hlpr)) < t, Lilo((hID;.e)‘1 0 SF) <t and
7" det SF | < Jh|pr < t"| det S¥ .
J

Proof of claim: Observe that

Lip((S§) ™" © (bl p)) = Lip(R} o (k)

hlEk:hlzl (UZ)

< Lip(R}o (hk’FJE)il) < t
Also

Lip((h]px) ™ o 85) = Lip((hl )~ o (RE)™)

-1
b, =hi (vi.)

< Lip((h|Ff)o (RF)™") <.
And recall that

Jhi(h(z))Jh(z) =1 L" —a.e on Df.

Therefore
-n -n - 1
J
(vi.) 1 1
< = <K
= Jhk\pk J(hk‘F]k) = Jh’D;“
J
< ———— =t"|det S} |.
| det R | J

Finally, the {Dy}72 ;of the Lemma arise from a much-needed “re-branding”
of {Di}zojzl following after the removal of those “few” points which do not
fall into the last estimation. O
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REMARK 1. A keen observant would immediately notice the striking re-
semblance of this Lemma and Lemma [£.4] This is no coincidence, as Lemma
[5.3]is also a Linearisation Lemma, in the sense we described in the previous

chapter. Therefore, we turn our attention to Remark I, corollary of Lemma

[4:4] Tt is natural to expect a similar estimate to hold here, as well.
Indeed; Since we invoked Lemma on each hy map (kK = 1,2,...), we

immediately get that; For all x € E}, we have
t Y Riu| < [Dhg(h(z))u| < t|Rhu| (ueR™).

Thus
tH(SF) ) < [Dhy(h(z))ul < t[(SF) " ul.

Consequently
t7Yu| < |Dhy(h(z)) o S]ku\ <tlu| (ueR").
Therefore, in the laguage of the Operator norm, we get

HDth@»oSf

<t

and similarly;
|58y~ 0 DRk || < ¢

However, we shall not forget that
Dhy(h(z)) o Dh(z) =1, L™ — a.e on Ej.
Hence, for L"-a.e. x € Df, we have;
Dh(z) = Dhy(h(z)) L.
Consequently, we end up with
| ph@)tosi]| <

and
H(s]’?)*l oDh(az)H <t

REMARK II. Finally, after the “filtration” we performed on our notation
in the end of the Lemma, the endgame of Remark I can be re-stated as;

For all z € Dy (k=1,2,...), we have that
| Dh(z) ™" o S| < ¢

and
|S;" o Dh(z)|| < t.
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5.2 The Coarea formula

Theorem 5.1 (Coarea formula). Let f : R™ — R™ be Lipschitz continuous.
Then for each L™-measurable subset A C R"™,

/AJf da::/mH"m(Aﬂfl{y}) dy.

REMARK. It is obvious that the Coarea formula coincides with the Area
formula for n=m.

Proof. In view of Lemma we may as well assume D f(x) and Jf(x) exist
for all x € A. Also, without loss of generality, we will suppose L"(A) < oo.
We will proceed in steps.

Case 1: AC{Jf > 0}.
We define the following set of indicatrices;
A(n,n—m)={X:{1,...,n—m} — {1,...,n} | X : strictly increasing }
and for each A € A(n,n —m) the indexed projection Py : R” — R™™"™ as
Pr(z1, s 2n) = (T1)s -+ TA(n=m))-

The main idea here is quite interesting; We want to approximate f by its
derivative. There, we will employ the Polar Decomposition theorem. The
Orthogonal part, as we will see, does not contribute much to what is taking
place. We will target the Symmetric part and we will try to extract it, using
the following trick; For each A € A(n,n —m) we “decompose” f as

f=qohy,
where hy : R™ — R™ x R"™™ and ¢ : R™ x R"™™ — R™ are defined as
ha(z) = (f(z), Pr(z)) (z €R")

and
a(:2) =y (yeR™andz € R"™)

respectively. We denote
Ay ={x € A|det Dhy # 0}.
Expanding on h) we see that

h)\(l') = (f(x),P)\(x)) = (fl(-’L'), "'7fm($)7x)\(1)7"'7'%')\(n—m))-
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Notice that;

A= |J A

AEA(n,n—m)

Finally, we observe that the indicator set A(n,n — m) is finite. This leaves
us with a great advantage; We can simplify the framework of the problem, by
demanding that A is a-priori contained in some set Ay, namely that A C Ay
for some A € A(n,n —m).

Fixt > 1. By applying Lemmato h = hy, we obtain Borel sets { Dy }7° ,,
which we assume to be disjoint, and symmetric automorphisms S : R® — R”
for which Assertions (1.)-(2.)-(3.) of that Lemma hold true.

Set G, = AN Dy,.

Claim 1:
t" [[qoSk]] <Jflg, <t" [[qoSk]].

Proof of claim: Our previous “decomposition” of f, implies that; For £"-a.e
we get

Df = D(goh) = qo Dh
=gqoSyoS, ' oDh
=qoSpoC.

where C = S,;l o Dh.

From Remark IT of Lemma [5.3 we deduce that
[C7Y| <t and |C| <t

on Dy, therefore on Gy as well. Interpreting the Operator norm, we obtain
that
t7u| < |Cul| < tlu| on Gy, (u € R™). (%)

Employing the Polar Decomposition Theorem for Df, g o S, : R® — R™,
we get
Df=S500" and qo Sy =T o P*.

where S, 7T : R™ — R™ are symmetric and O, P : R™ — R"™ orthogonal maps.
Consequently,
SoO*=ToPoC, (%)
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hence
S=ToP*oCoO.

Since G € A C {Jf > 0} we have that det S # 0, thus det T # 0. Therefore,
for u € R™, we get that

| T o Su|=|P*oCoOul

This implies
(T~ 0 8)(B(1)) € B(t),

and so, passing with Lebesgue measures on the inequality, we get
|det T~ o S| <t
Moreover, it is easy to see that
[q0Sk]* = [ToP*]* =detTo P*o(ToP*)* =detToP* oPoT"
=detT oI, o T* = det T?.
Consequently
Jf =|detS|=|detTo(T 'o8)|=|detT||det T oS
<t"|detT|=1t"[qo Sk].
Similarly, we have that
S1=(ToP*cCo0) =0 toC o(P)toT !
=0*cC loPoT™},
thus, for u € R™, we have that
|S™ o Tu| = \O*oc_loPu|B§ﬂ|C_1oPu\
Y Pul
= tlul.
Hence, by mimicking the calculations above, we end up with the estimate
[goSk] =|detT| <¢"|detS|=1t"Jf.

Thus, completing the proof of our Claim.
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We continue with some calculations.

4—3n+m - Hrm (Gk N fﬁl{y}) dy

= o / CHT(GRN (g0 )Ty} dy
_ t—3n+m/ H (G N h o g Hy)) dy
= [ e (G N ) dy

— ¢—3ntm anm((hfl OSk)(Sk_l(h(Gk)ﬂqfl{y}))) dy
R™

Lemmal5.3|

< gsmbmygnem [ qnem(§oY (@) ngHy))) d

Theorem 2 o (S (M(Gr) g H{y})) dy

=7 [ HTT((S o (G N (S oa D wh) dy

=t | TS e (G N (ae ST H)) dy

Lemgam t—2n [[q ° Sk]] ‘C”((Skfl o h)(Gk))

Lemmal5.3]
<

—2n 4n n ince for G CR™
= t t"lqgo Sk | L"(G) .5 KR
Theorem[3.2] [[ ]] we have that H"=L

=t " [[q o Sk]] L"(Gy)

Claim 1
< / Jf dx.
Gy

Moreover,

/G Jf dz

2 /thn [q0Sk] da
=" Hq o Sk]] L"(Gy)
=" [qo Sk £7((S" o h)7H (S 0 h)(Gw)))

=" [qo 8] L7((h™ 0 Si) ((Sy" 0 h)(G)))

Theorem[3.2
= [0 5] £1(57" o h)(G)

vl | (S e G N (a0 5) 7 ) dy
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— ¢2n i anfM((Sk—l o h) (Gk N (hfl o q—l){y})> dy
Theorem[3.2]

< gmgnem [ogmem(Goon (go B)THyY) d
Lemmal5.3] R™ ( k (q © ) {y}) Yy

=3 m /Rm H" " (Ge N fHy}) dy.

Eventually, we have derived the following estimate
t_3”+m/ H"_m(Gk N f_l{y}) dy < / Jf dx
m Gk

< ginom / B H(GR N YY) dy.

Now, taking into account that
[ee]
E”(A\ U Gk> =0.
k=1

which stems from the initial invocation of Lemma and that the sets
{Gr}2, are constructed to be disjoint, we can sum on k and, finally, let
t — 17. Thus, we conclude that

H Gr N f—l{y}> dy = Jf da.
/Rm <kL:J1 /UEO1 G

Moreover, employing Eilenberg’s Inequality ( Lemma) again, gives us;

/ H”—’”((A\ G Gk> n f‘l{y}> dy
R™ k=1

_aln—m)a(m) (A\ ¥ Gk) _o.

a(n) e

Hence, we conclude that

H (AN YY) dy = / H"’"((A \ Gk) n fl{y}) dy
Rn 1

R"’L k:

+/ H”‘”"‘( Gkﬂf‘l{y}) dy
Rm™ k=1
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:O—i-/ Jf dx
Uiile

= / Jf dx —|—/ Jf dx
ANURZ; Gr Ur=1 Gk

= / Jf dx.
A
Case 2: AC{Jf =0}
We fix 0 < € < 1 and define maps g : R” x R™ — R™ and p : R® x R™ — R™
as
9(@,y) = f(x) +ey and p(z,y) =y.

Then

Dg = (Df,el)

mx(n+m)
and we have the following estimate

e™ < Jg=[Dg] =[Dg*] < Ce,

where C is a constant, analogous to the one we calculated in Claim 2 of the
proof of the Area formula (Theorem 4.5).

Claim 2: For y,w € R™, we define a B := A x B(1) C R"™™. We have that

& if w¢ B(1)

Bng Yy} np Huw} = {(Aﬂ fHy —ew}) x {w} if we B(1).

Proof of claim: We have (x,z) € BN g~ {y} Np~{w} if and only if
(x,2) € B and g(x,z) =y and p(z,z2) = w,

which implies
xe€A ze€B(l), f(x)+ez=y and z =w,

and so
r€A, z=we B(l) and f(x) =y — ew,

thus
we B(1) and (z,2) € (AN fH{y —ew}) x {w}.
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Consequently, for all (y,w) € R™ x R™, we get the following;
X)) H (AN 7 y — ew)) x {w}) = W (BAg T yknp~ {w})
Now, we are able to compute that

/m H' (AN FH{y}) d

= H (AN Yy - ew}) dy for allw € R™
]Rm

=— HT(AN fTH{y —ew}) dy dw
a(m) Jpo,1) Jrm ( { D

L s 2040 £ ) dya

ubini 1 n—m —
b m)/ / XBon (W) H"™ (AN fHy — ew}) dwdy.

We continue our calculations;

K m(Aﬂf Hy}) dy

xaon ()1 (A0 f 7 y = cw)) x {w}) dwdy

m m

)/m (B gy np T w)) dwdy

a(m

Clalrn 2

Eilenberg’s 1 a(n — m)a(m)

ineq;ality a(m) a(n)

/m H”(Bﬂg_l{y}) d
= a(nm)/ﬂw ’H"(Bﬂgil{y}) dy

a(n)

case 1 (N — m)

/ Jgdrdz
a(n) B

ga(nm)/supJgdxdz
a(n) B B
a(n —m)
= ————=L""(B)sup J
() (B) up Jg

a(n —m)

= Wﬁ"(fl)a(m) s%p Jg
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— aln —m)a(m) L"(A)sup Jg
a(n) B

< CN'e.

n —m)a(m)CL"(A)
a(n)
Letting € — 0, gives us

~ «
where C = ( is constant.

/mH"m(Aﬁ fHy}) dy=0= /AJf de.

Case 3: AC{Jf >0} for every x € A.

In the general case, we write A = A; U Ag, with 47 C {Jf > 0} and
A; C {Jf =0} and employ Cases 1 and 2 as above. O
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Fubini-Tonelli’s analogue in Curvilinear Coordinates

Theorem 5.2 (Change of Variables). Let f : R" — R be a Lipschitz
function. Then for each L™-summable function g : R™ — R, we have

/ g(@)f () do = / [ / g dH™ ™
R LJzef—1{y}

Proof. We will proceed in steps.
Case 1: g > 0. We recall that for such a function g, by Theorem we get
the following expression

1

for appropriate L£"-measurable sets {4;}7°,. Then we employ the Monotone
Convergence Theorem and the Coarea formula, and thus we get

dy.

[e.9]

/n g(z)J f(z) dov = / (Z 1XA¢(1’>> Jf(z) doe =

=1
1
=35 [ xadi s
i=1 ¢ JR"
:Zl,/ Jf dzx
i1 LA
1
=5 [ ) dy
=1

= [ S AT ) dy
Rm =1

L _ ince A;Nf~! i
cmma / /g Xf-1 {y} daH"™ (ZE) dy ;;ffm —?n];as;l{f;blse
Rm

_ / [ / gcmn—m] ”
Rm LJzef—1{y}

Case 2: Let now, in favor of generality, g be any £"-summable function.

Simply, we write g = g — g~ and apply Case 1 on g™ and g~ O
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5.3 Applications

THEOREM A. (Polar coordinates) Assume g : R” — R be £L™-summable.

Then
/ gdxr = / / g dH™ ! |dr.
n 0 OB(r)

d
r B(r) OB(r)
for L'-a.e. >0

Proof: Let f : R” — R be f(z) = ||z||; Then, for  # 0, we have that

More specifically,

Therefore

RL

:/ / g d?-["_1] dy
R LJ|jz]|=y
0 x€0B(y)

Taking f|p() : B(r) € R™ — [0, 7], proves the second Assertion.

133



Chapter 5 5.3. Applications

THEOREM B. (Integration over level sets.) Assume f : R" — R be
Lipschitz continuous. Then

/n |nydx=/ZH”1({f:t}) dt

2. Assume also essinf |[Df| > 0, and take a function g : R” — R to be
L"-summable. Then

g n—1
gdxr = / dH ds.
/{f>t} /t ( (=3 IDF]
il Sy R
— gdr | = — —— dH"
dt( (7>t} ) (7=t IDf]

for Ll-a.e. t € R.

3. Moreover,

Proof: (1.) Since Jf = |Df|, Coarea formula implies immediately that

| opside = [t @ @y a= [ (g =) a

(2.) We consider sets E; == {f > t} and we employ Theorem to get that

g
dx = ——|Dfl| d
/{f>t}g T /RnXEt’Df" f’ €L
-/, (XE"IDf!>de$
= dH" | d
/ (/6]9 |Df|XEt " ) ’

- N I_ a1 ds.
/t (/aE 2] ’

(3.) We simply differentiate both sides.
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THEOREM C. (Level sets of distance functions.) Let K C R" be a
(non-empty) compact set. As usual, we denote by

d(x) = dist(z, K)

the distance function of a point € R™ from K. Then for each 0 < a < b we
have

/b?‘-["_l ({d=1t}) dt = L"({z | a < d(z) < b}).

Proof: For a given x € R"”, since K is a compact subset of R, hence closed
and bounded, we denote by ¢ the element from K for which the distance is
attained, i.e.

d(z) =dist(z, K) = |z — ¢|.

Thus, for any other point y € R™, we get that
d(y) — d(x) = dist (3, K) — [z — | = inf {ly — K|} — |z —
€K
Sly—d-lz—c<ly—c) —(@—0)]=ly—a|

Working in a symmetrical way, interchanging the roles of x and y, we get,
eventually, that

|d(y) — d(x)] < |y — |.

Consequently,
Lip(d) <1,

and so, from Rademacher’s Theorem, it follows that the distance function is
L"-a.e. differentiable.

Observe that, for any point = outside of K at which Dd(x) exists, we get from
the definition of the derivative, that |Dd(x)| < 1. Moreover

ditz + (1 —t)c) = |tx + (1 —t)c — | = t|lz — |

for all t € [0,1] and ¢ € K as above. Now, from the differentiability of d, we
have that
d(z) =d(c) + Dd(z) - |z — ¢| + o(|x — ¢|),
and so
c-S
|z —¢| = Dd(z) - |x —c| < |Dd(x)||x — ¢

Thus

|Dd(z)| > 1.
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Hence,
|Dd(z)| =1 L"—a.e.inR"\ K.

Finally, we employ Theorem B. from above (Integration over level sets) and
the results follows immediately once we restrict ourselves on the domain where
0<a<dist(,K)<b.

5.3.1 Crofton’s formula

Let O*(n,m) denote the set of orthogonal projections P of R™ onto m-
dimensional subspaces. For topological reasoneﬂ there exists a unique proba-
bility measure v on @*(n,m) which is invariant under Euclidean motions.

For any Borel set B,we define the so-called integral-geometric measure as
HY(BN P {y})dL™(y) dy(P)
ﬁ(nv m) Pc0*(n,m) JycImage(P)=R™ ( )

where B(n,m) is a normalising constant defined as
r m+1 r n—m+1
2 2
] .
r ( nt ) JT
2
Furthermore, a set £ C R" will be called m-dimensional rectifiable,

if there is a countable family of Lipschitz maps f; : R”™ — R™ for which
H™(E) < oo and

T™(B) =

pBn,m) =

H™ <E \ D f(Rm)> = 0.

i=1

THEOREM D1. (Crofton’s formula)

For an m-dimensional rectifiable set A, its integral-geometric measure is equal
to its H™-measure, namely

T™(A) = H™(A).

We will now proceed a step further, into some more general settings. Again,
the results we state spring from the Coarea formula, yet a solid substantiation
requires highly advanced tools of Algebraic and Geometric nature, such as
the double fibration technique, as well as some “heavy” notions from Integral
Geometry and Integral Calculus on Manifolds, hence reaching far beyond the
scopes of the present thesis.

6See [15)] for a detailed explanation.
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Denote by Graff!(R") the set of all affine hyperplanes in R” and by
Graff "~ }(R") the set of affine lines in R™. Then we get the following;
THEOREM D2. (Crofton’s formula for curves)

Let H be an affine hyperplane H € Graff'(R") and take C' a simple closed
C?-differentiable curve, parameterised by arclength. Then, the function

Graff'(R") > H — H'(HNO)

is measurable and

n—1

Tz
L")
where |dV,| is the volume density associated with a suitable metric g on
Graff ' (R").

THEOREM D3. (Crofton’s formula for sub-manifolds)

Let L an affine line L € Graff" !(R") and M a (n-1)-dimensional sub-
manifold of R™. Then, the function

HY(C)

/ HO(H N C) |dVy(H)| = a(n — 1) length of C' =
Graff 1 (R")

Graff " '(R") 5 L — H°(L N M)
is measurable and

n n
“r(3)
HO(LN M) |dp| = Vol,—1(M)
/C'raﬁ'”_l(R") F<n;1)F<n+1>

2

where |dji| is defined appropriately, in order to coincide with the density on
Graff "1 (R").

Notice that, for n = 2, as curve in R? can be regarded as a co-dimension 1
submanifold of R?, thus “bringing together” the preceding two Theorems.
Hence, we get the following result

COROLLARY. (Crofton’s formula in R?)
Let C be a curve of R, Then

length of C = / HO(LNC)
L € Graff}(R2)

This essentially means that we can relate the length of a curve to the expected
number of times a “random” line intersects it.
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5.3.2 Sard-type Corollaries

THEOREM. Let f: R™ — R™ be a Lipschitz function.
i. If n < m, applying the Area formula to the set E::{x eR"|Jf(x) = 0}
= {Jf =0}, results in

/m HO(EN f{y}) dH"(y) = 0.

This implies H°(E N f~'{y}) = 0, therefore f(E) N {y} = @, for H"-a.e.
y € R™. Consequentially, H”(f(E)) = 0 and thus Jf > 0 on f~'{y} for
H"-a.e. y € R™.

ii. If n > m, then the Coarea formula applied on E = {Jf = 0} implies
that

- H ™ (EN f_l{y}) dy = 0.

Consequently, H"™(E N f~'{y}) = 0 for L™-a.e. y € R™. Hence, Jf >0
H"™-ae. on f~Hy} for LM-ae. y € R™.

The above theorem is a weak variant of the Morse-Sard Theorem, which
we will state right away, after establishing some preliminary definitions;

DEFINITIONS. Let f : R™ — R™ be an arbitrary function. A point x € R"
is said to be a critical point, if D f(x) is not of maximum rank. Equivalently,
when Jf(x) =0. A point y = f(x) is said to be a critical value, when x is
a critical point of f.

The “classical” Morse-Sard Theorem states the following;

THEOREM. (Morse-Sard) Let f: R” — R™. We distinguish two cases;
i. If n < mand f is of class C', then the set of critical values has £™-measure
Z€eTO.

ii. If n > m and f is of class at-least C™ ™+ or higher, then the set of
critical values is a set of L™-measure zero.

REMARK. Let it be noted that the condition in (ii.) cannot be weakened,
as it is possible to construct functions not smooth enough, that hold a set
of critical values of positive measure. This highlights the importance of the
weakened variant stated above, because the only requirement for f is to be a
Lipschitz function.
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5.3.3 An Application in sample distribution theory

PRELIMINARIES. Let (2, 3, p) be a probability space, consisted of a sam-
ple space (, a oc-algebra ¥ C 29 called events and a countably additive
probability measure p. Take X to be a (vector valued) random variable, i.e.
a Y-measurable map X :  — R". X is sometimes called the data.

Let Y be any measurable function of the data X, namely, Y is a random
variable, defined as Y = ¢(X) for some function ¢ : R” — R™. Now, Y is
often called a statistic. One problem somebody addresses in Sample Distri-
bution Theory is finding the probability distribution of the statistic Y knowing
the distribution of X.

THEOREM. Let (2,3, p) be a probability space and n,m € N with n > m.
Consider a random variable X : 2 — R", which is absolutely continuous to
the Lebesgue measure, i.e. if px is the distribution of X, then px << L7,
having a probability density function fx. Take ¢ : R™ — R™ be a Lipschitz
map with a differential D¢ of maximum rank a.e..

Then the statistic Y = ¢(X) is again an absolutely continuous to the £™-
measure random variable, having probability density function fy given as

frto) = [ ) T ) for £ — e,y € 9(R)

and is 0 elsewhere.

Proof: Let A C R™. Since ¢ is Lipschitz mapping and its differential has max-
imum rank, we get, as we saw in the Sard-type Corollary earlier, that J¢ > 0
H" ™-a.e. on f~Hy}, for LM-a.e. y € R™. Hence

py(A) =p(YH(A4)) = p(XH(671(4)))

= / fx(x) dx
#~1(A)

—/MA) P Tola) o

where by employing the Coarea formula we get

. fX( ) n—m(,.
_/ A))/xaz: 1{y} Jo(x) AT () dy

//m » D @) dy, n
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References and notes

The primary source for this Chapter has been the book of Evans & Gariepy
[8,[7]. Our goal throughout this Thesis was to shed plenty of light on those fine
concepts of all the techniques and ideas we employ in our journey, in a way
that the material could be comprehended in-depth by our readers. Therefore,
we shall also point-out, once more, to [12] and [9].

In our brief paragraph of Crofton’s Formula and some of it’s generalised
results, we have consulted [16] and [23], alongside with [I5]. The definition
of m-dimensional Rectifiable set is differentiated slightly from the “original”
one, given by Federer in [10], and resembles more the one found in [21] or [20],
corresponding to what Federer would call a countably (H™, R™)-rectifiable set.

For the Sard-type Corollaries, we have consulted D.W.M. van Dijk’s ex-
position in [29]. At last, and in order to demonstrate the vast spectrum of
the Applications of Coarea Formula, we have included a result from Sample
Distribution Theory, presented in [22].
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