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Περίληψη

Η τυρβώδης ροή είναι ένα φαινόμενο που χαρακτηρίζεται από χαοτικές και α-

πρόβλεπτες μεταβολές στο πεδίο ταχύτητας και πίεσης του ρευστού και απασχολεί

τους επιστήμονες από τα αρχαία χρόνια καθώς η παρουσία της είναι καθολική στην

φύση. Η κατανόηση των θεμελιωδών αρχών της διαδραματίζει καθοριστικό ρόλο

σε πολλούς επιστημονικούς κλάδους όπως την αεροναυπηγική, την μηχανική, την

μετεωρολογία και πολλούς άλλους. Η ραγδαία εξέλιξη της τεχνολογίας και των

Η/Υ τις τελευταίες δεκαετίες, καθιστά δυνατό να υπολογίζονται πολλοί παράμε-

τροι στην εμφάνιση της τύρβης και ως συνέπεια έχει την έντονη ενασχόληση των

επιστημόνων με αυτό το φαινόμενο. Η παρούσα εργασία έχει ως στόχο να ανα-

λύσει τις αρχές που διέπουν την τυρβώδη ροή, ερμηνεύοντας την εμφάνισή της σε

“ταχείες ροές” (μεγάλα Reynolds), να την μοντελοποιήσει μαθηματικά αλλά και
να αναλύσει τα μοντέλα μέσω των οποίων την προσομοιώνουμε, με την βοήθεια
υπολογιστικών προγραμμάτων. Στην παρούσα εργασία θα γίνει χρήση των υπολο-
γιστικών προγραμμάτων Matlab και Ansys Fluent, σε συνδυασμό με προηγμένες
μαθηματικές τεχνικές και την βοήθεια της υπολόγιστικής ρευστοδυναμικής αυτή

η μελέτη επιδιώκει να εμβαθύνει την κατανόησή μας για την χαοτική συμπεριφορά

της τύρβης και να συμβάλει στο ευρύτερο σύνολο γνώσεων στο πεδίο.

Συγκεκριμένα στην εργασία εισάγονται οι έννοιες της στρωτής και τυρβώ-

δους ροής και εισάγεται η συσχέτιση τους με τον αδιάστατο αριθμό Reynolds.
Επίσης εισάγονται οι περίφημες εξισώσεις Navier-Stokes οι οποίες με την συν-
εισφορά τους έχουν θεμελιώσει τον κλάδο της ρευστοδυναμικής. ΄Υστερα αναλυε-
ται ενδελεχώς το μοντέλο μέσων τιμών που πρότεινε ο Osborne Reynolds και
παρουσιάζονται οι φαινόμενες τάσεις ή τάσεις Reynolds που προκύπτουν, οι
οποίες έχουν κυρίαρχο λόγο στην μελέτη των τυρβώδων ροών. Οι τάσεις αυτές
όντας δύσκολες στον υπολογισμό τους καθώς είναι μη γραμμικοί όροι αντιμετω-

πίζονται με την αρωγή των μοντέλων τύρβης στα οποία γίνεται αναφορά στο 3ο
κεφάλαιο της εργασίας. Παρουσιάζεται η υπόθεση του Boussinesq το, μήκος
ανάμιξη του Prandtl και η συνεισφορά του στον υπολογισμό της τυρβώδους
ροής. Εν συνεχεία, στο τέλος τους δεύτερου κεφαλαίου αναλύονται ο “νόμος
του τοίχου”, η συχέτιση της ταχύτητας τριβής με την κανονικοποιημένη απόσ-
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ταση από το σύνορο και τελικά η κλίμακα Kolmogorov αλλά και οι κλίμακες
ενέργειας και αλληλουχίας.

Στο τρίτο κεφάλαιο γίνεται κατηγοριοποίηση των μοντέλων τύρβης σε αλγε-

βρικά, μίας εξίσωσης, δύο εξισώσεων, εξισώσεων διάτμησης και προσομοίωση
των μεγάλων δινών (LES). Αναπτύσσονται λεπτομερώς τα αλγεβρικά μοντέλα
των Cebeci και Smith και των Baldwin και Lomax, το μοντέλο μίας εξίσωσης
των Spalart-Allmaras όπως επίσης και τα μοντέλα δύο εξισώσεων k−ε και k−ω
τα οποία αποτελούν σύγχρονα μοντέλα τύρβης με εξαιρετική ακρίβεια.

Εν συνεχεία με την ανάπτυξη σειριακού κώδικα στο πρόγραμμαMatlab, παρουσιά-
ζονται οι αριθμητικές λύσεις ορισμένων εσωτερικών αλλά και εξωτερικών ροών

καθώς και υλοποιούνται μαθηματικές προσομοιώσεις σε πολύ εξελιγμένους κώδικες

πεπερασμένων όγκων και πιο συγκεκριμένα στο Ansys Fluent.
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Abstract

Turbulent flow is a phenomenon characterized by chaotic and unpredictable
changes in the velocity and pressure field of fluid and has been of concern to
scientists as its presence is universal in nature. The understanding of its fun-
damental principles plays a decisive role in many scientific disciplines such as
aeronautics, engineering, meteorology, and many others. The rapid develop-
ment of technology and computers in recent decades has made it possible to
calculate many parameters in the appearance of turbulence and as a conse-
quence has the intense preoccupation of scientists with this phenomenon. This
thesis aims to analyze the fundamental principles governing turbulent flow ex-
plaining why appears in “fast flows” (large Reynolds number), to model it
but also analyze the models through which we simulate it with the help of
computer programs. This work will be done using the computer programs
Matlab and Ansys Fluent, in combination with advanced mathematical tech-
niques and the help of computational mathematics this study seeks to deepen
our understanding of the chaotic behavior of turbulence and contribute to the
wider knowledge in the field.

Specifically, the concepts of laminar and turbulent flow are introduced and
their correlation with the dimensionless Reynolds number is introduced, also
the famous Navier-Stokes equations are introduced, which by their contribu-
tion they have established the field of fluid dynamics. Then is analyzed in the
averaging method proposed by Osborne Reynolds, else called Reynolds decom-
position, and presented the apparent stresses or Reynolds stresses that arise,
which have a dominant place in the study of turbulent flow. These stresses are
difficult to approximate as they are nonlinear terms and they are treated with
the help of the turbulence models referred to in Chapter 3. The hypothesis
of Boussinesq is presented, the mixing length of Prandtl, and his contribution
to the calculation of turbulent flow. Finally, at the end of the second chapter,
the ”law of the wall” is analyzed, the correlation of friction velocity with the
normalized distance from the boundary, and finally the Kolmogorov scale as
well as the energy scale and cascade.
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The third chapter categorizes the models of turbulence into algebraic, one
equation, two equations, shear equations, large eddy simulation (LES), and
direct numerical simulation (DNS). The algebraic models of Cebeci and Smith
and Baldwin and Lomax are present in detail, the model of one equation of
Spalart-Allmaras as well as the models of two equations k−ε and k−ω which
are modern models of turbulence with very good accuracy in comparison with
experimental data.

Finally, with the development of specific codes in Matlab, the numerical
solutions of some internal and external flows are presented as well and mathe-
matical simulations are implemented in very sophisticated finite volume codes
and more specifically in Ansys Fluent.
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CHAPTER1
Introduction

Turbulence is a complex phenomenon that occurs universally in nature. Sci-
entists have been studying turbulence for centuries, and many theories have
been supported about its fundamental principles. The modern study of tur-
bulence started about 150 years ago and continues to evolve rapidly as it is
one of the unsolved problems of the classical sciences. Some of the greatest
mathematicians and physicists have dealt with the enigmatic nature of tur-
bulence such as Kolmogorov, Boussinesq, Prandtl, Reynolds and many more.
On the journey to understanding turbulence, scientists introduced turbulence
models which are crucial tools in addressing this problem, including advanced
mathematics tools. These models incorporate advanced mathematical tools
that are closely related to the physical interpretation of turbulence. Numer-
ous classical models were introduced in the 20th century, and to this day, a
multitude of models is created by experienced scientists, and some of them are
remarkably embraced by the academic community.

1.1 Ηistorical Review

The observation of fluid behavior near solid boundaries dates back to an-
cient times with the Heron of Alexandria and continues with scholars such
as Leonardo Da Vinci with his famous paintings of fluid flow in a pool. An-
cient and medieval scientists observed this chaotic motion of flow but lacked
mathematical modeling to analyze it. Da Vinci was a pioneer and with his
observations in the 15th century laid the foundation for future studies. In
the last decades of the 19th century Osborne Reynolds in 1883 introduced
the concept of dimensionless Reynolds number [44] which is very useful until
today for understanding the circumstances where turbulence occurs and the
characterization of flow. Continuing, Albert Einstein in 1905 [9] with his pa-
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per on Brownian motion laid the groundwork for understanding the stochastic
nature of turbulent fluctuations, and in the 30s and 40s, the statistical prop-
erties of turbulence started to be studied with the help of Ludwig Prandtl’s
turbulent boundary layer and its behavior near a solid wall as well Andrey
Kolmogorov with his work in 1941 [15], the birth of energy cascade concept
and the scaling laws for turbulent fluctuations. The need for more advanced
mathematical modeling of turbulence has led John Lumley and George Batch-
elor [38] to introduce the eddy viscosity concept, a tool that proved vital for
the development of RANS equations which was first given birth by Osborne
Reynolds. With this contribution, the field experienced tremendous growth
with the turbulence modeling theory, with Launder and Spalding introducing
the k − ε model, Wilcox, introduced his famous k − ω model [43], the first
widely used RANS model, its frequent use is due to its practical ease of sim-
ulation of turbulence. With the development of computers, science evolved
with more advanced models such as LES and DNS and in the last decade of
the 20th century and the first two of the 21st, the attention is focused on
the hybrid models between one or two equations models and DNS or LES, to
lower the computational cost and increase the precision comparatively with
experimental data. Finally with the development of artificial intelligence, tur-
bulent flows can be predicted through big databases of previously calculated
flows, this field of turbulence modeling is rapidly expanding and more scien-
tists are starting to interact with neural networks and machine learning since
its possibilities are unlimited.

Figure 1.1: Leonardo’s drawing of turbulent flow as water flows with the effects
of turbulence into a pool.
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1.2 Laminar and Turbulent Flow

The boundary layer (B.L.) is crucial in fluid mechanics with countless appli-
cations, the transition from the laminar B.L. to the turbulent one that occurs
is an essential aspect of fluid mechanics and plays a crucial role in a wide range
of applications such as aircraft design, power generation, and hydrodynamics.
A boundary layer is a layer of fluid that develops near the surface of a solid
object when it is exposed to a fluid flow. It can be classified into two types
laminar and turbulent. The laminar B.L. is described by smooth flow, whereas
the turbulent B.L. is described by chaotic, irregular flow.

The transition from laminar to turbulent B.L. is a significant occurrence in
many engineering and scientific applications. It is an area of ongoing research,
as understanding the transition mechanism is crucial for predicting the perfor-
mance of fluid systems [8]. The transition from laminar to turbulent boundary
layer can occur in a variety of ways, including through natural fluctuations in
the flow, the introduction of disturbances from the surface, or the presence
of roughness on the surface. The onset of turbulence can be predicted using
various criteria, including the Reynolds number, which is the ratio of inertial
forces to viscous forces in the flow and is dimensionless.

The first scientist to notice this strange state of fluid motion was Leonardo
Da Vinci who named it “Turbulence”. In modern times turbulence is examined
by Osborne Reynolds in 1883

Leonardo Da Vinci was probably the first to distinguish this special state of
the fluid motion and use the term “turbulence”. Modern turbulence started
with the experiments of Osborne Reynolds in 1883, who examined the condi-
tions leading to the transition of smooth fluid flows in pipes to turbulent ones.
In this process, he concluded with the creation of a dimensionless quantity,
called “Reynolds number” which represents quantitative measurement so that
we can decide on the fluid state as they flow.

Re =
inertial forces

viscous forces
=
uL

ν
,

where u is the free stream velocity and L is a characteristic length scale of the
flow. Reynolds number determines fluid flow behavior by comparing inertial
forces to viscous forces in a given system, crucial for predicting turbulence. In
fluid dynamics, Reynolds number serves as a dimensionless quantity, indicating
the transition between laminar and turbulent flow in various applications.
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Chapter 1 1.2. Laminar and Turbulent Flow

Figure 1.2: Visualization of the transition from laminar to transitional and to
turbulent flow on B.L.

In the laminar B.L., the flow is defined as smooth and ordered, the velocity
profile is parabolic in shape. However, as the fluid moves downstream, the
mean velocity profile becomes flat, and the flow becomes unstable. Small
disturbances in the flow can be amplified, leading to the formation of vortices,
which cause the flow to become increasingly chaotic.

As the B.L. transitions from laminar to turbulent, the velocity fluctuations
increase, resulting in greater mixing of the fluid. This mixing leads to an
increase in the rate of mass and heat transfer, which can have significant
effects on the performance of fluid systems. For example, in aircraft design,
the transition from laminar to turbulent B.L. has significant impact on drag
and consequently fuel efficiency.

Figure 1.3: Laminar and turbulent flow in a channel [19].
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Chapter 1 1.3. Navier Stokes Equations

Several factors can influence this transition, a determining factor is the
Reynolds number. When the Reynolds number overcomes a critical value, the
laminar B.L. becomes unstable and the flow transitions [11] to a turbulent
regime. The critical Reynolds number is influenced by the shape of the object
that interacts with the flow, the viscosity of the fluid, and the flow velocity.
Another factor that can influence the transition is the surface roughness of
the object. Roughness can cause disturbances in the flow, leading to the
amplification of vortices and the onset of turbulence.

1.3 Navier Stokes Equations

The need to describe and predict fluid flows led to describe the equations
of motion of ideal fluids, Euler used Newton’s second axiom and derived a
relative equation. Analogously, Navier and Stokes arrived at equations of
motion of real fluids (µ ̸= 0) which connected the kinematic characteristics
of the flow with the equivalent dynamic characteristics of the flow. In vector
form, the system of equations that describe the laminar flow of homogeneous,
incompressible and real fluids are :

Dq

Dt
= F − 1

ρ
∇p+ ν∇2

q,
Dq

Dt
=
∂q

∂t
+ (q · ∇) · q (1.1)

where q = (u, v, w) is the velocity vector, p : pressure, ρ : density, ν: kinematic
viscosity.

On the left side there is the Stokes operator D
Dt which is applied to velocity

q, the first term ∂q
∂t is called local derivative and it represents the change of

velocity in terms of time for the same point of space. The term (q · ∇) · q
represents the change of velocity due to the motion of the fluid and it is called
convective derivative [44].

In cartesian coordinates,

u
∂u

∂x
+ v

∂u

∂y
= Fx −

1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
, x-momentum

u
∂v

∂x
+ v

∂v

∂y
= Fy −

1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
, y-momentum (1.2)

∂u

∂x
+
∂v

∂y
= 0, continuity eq.
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Chapter 1 1.3. Navier Stokes Equations

the above system of PDE’s describe the homogeneous, incompressible, real
fluids for the two-dimensional flow, in steady state, in orthogonal coordinates
(x,y).

On the left side of Navier-Stokes equations, there are the inertial terms,
which they are in equilibrium with the right side terms of pressure, friction
outer forces. Under the influence of the no-slip condition the fluid particles
that adhere to the solid boundary stick to it. The boundary surface is static
which means that the velocity of fluid particles is zero.

The Navier-Stokes equations are the cornerstone for the modeling of turbu-
lence, as they lack the ability to turbulent flows, a new method will introduced
in the next chapter to achieve the modeling of the deterministic part of the
phenomenon.
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CHAPTER2
Mathematical Modeling of
Turbulent Flow

2.1 Mean values Mathematical model-RANS

In this chapter is introduced and analyzed the mathematical modeling of
turbulent flows. Turbulent flow is defined as a flow, in which macroscopic
mixing is observed between the fluid layers, as it flows. Turbulence is char-
acterized by chaotic changes in velocity and pressure gradient and appears
in a multitude of natural phenomena, this is the reason why scientists are so
interested in its study. To this day it is one of the open problems of classical
studies since it has no mathematical analytical solutions.

Reynolds introduced the averaging concept in his paper in 1894 [29] with
his consideration, he analyzed every function in the flow (velocity, pressure,
temperature) to mean value plus its fluctuating part, so in every point of
space, every function can be described as the mean value of the function and
the fluctuating part. Turbulence can be characterized by its velocity mean
value, if the average velocity does not vary with time, this is called stationary
turbulence (statistically steady), on the contrary, we call it non-stationary
turbulence, as can be seen in the Figure 2.1. The heart of turbulence is
in the motion of a single fluid “point” in non-stationary, non-homogeneous
turbulence, as this non-idealized fluid may be relevant to transport to decaying
real phenomena flows.

In this work, it will be studied the case of isotropic and homogeneous tur-
bulence, although it is an idealization case of turbulence that is not found in
nature, it is widely used by scientists because it is applied as a step for under-
standing more complex turbulence phenomena and it provides us with useful
information about the nature of turbulence. Additionally, more properties of
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turbulence must be defined, especially flows are defined as isotropic if rotation
and buoyancy effects can be neglected since they are considered insignificant.
Turbulence is also defined as homogeneous if the spatial gradients are absent
in any averaged quantity, so it can be assumed that rotation and buoyancy
forces don’t suppress vertical motions and create anisotropy between vertical
and horizontal directions [27].

2.1.1 Mean Values and Fluctuations

There are 3 basic forms of averaging that are utilized in turbulence mod-
eling, these are time average, spatial average, and ensemble average. Spatial
averaging is being used for homogeneous turbulence on turbulent flows that,
on average, are uniform in all directions. To achieve the result we average over
all spatial coordinates by doing a volume integral. In the ensemble average, it
must be done N conducted identical experiments, with initial and boundary
conditions whose differences are only small random infinitesimal perturba-
tions, from their results we take the average of these experiments. Due to the
nature of turbulence, the principle of time averaging was introduced as a tool,
aiming to describe the turbulent fluctuations via statistical measures. This
principle is not only of theoretical value but is mandatory for the development
of turbulence models, in every applicable way. Time average is appropriate for
stationary turbulence flows that on average do not vary with time [43]. Via
time averaging, the flow variables are separated into mean flow and fluctuating
components.

Figure 2.1: Stationary and non-stationary turbulence.
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Chapter 2 2.1. Mean values Mathematical model-RANS

Thus, any flow point in a turbulent flow can be defined as the combination
of the average and fluctuating part (time-varying). This process is called
Reynolds decomposition. For example, in a two-dimensional flow, the variables
that are of interest are the two components of velocity and pressure, so:

u = u+ u′, v = v + v′, p = p+ p′. (2.1)

Through statistical knowledge, the mean value is given by the integral:

u =
1

T

∫ T

0
u(t)dt or

1

T

∫ T+t0

t0

u(t)dt, (2.2)

with all the instantaneous values (f ′) over a large enough period T to be
zero, this occurs due to the definition of the mean value. Thus, for a random
function f :

f ′ = f − f ⇒ f ′ = f − f
f=f
===⇒ f ′ = 0. (2.3)

So, in three-dimensional flow the mean values of the fluctuating part of the 3
components of velocity u, v, w, and pressure p are zero.

u′ = 0, v′ = 0, w′ = 0, p′ = 0.

The mean square value of a fluctuation is not zero and indeed physically it
describes the intensity of the turbulence:

u′
2
=

1

T

∫ T

0
u′2dt ̸= 0.

Βelow are listed properties of the average value [32]. If f and g are two
functions:

f = f, f + g = f + g, f · g′ = 0, f · g = f · g, f · g = fg + f ′ · g′,

and some properties of the derivative:

∂f

∂x
=
∂f

∂x
,

∂2f

∂x2
=
∂2f

∂x2
.

By substituting the variables, with the Reynolds decomposition approach, in
the Navier-Stokes equations some extra terms occur which are called apparent
or Reynold stresses, these terms cannot be explained physically so they are
considered to behave as stresses, contribute to the flow as additional viscosity
and are termed universally in the literature [41]. They can characterized as
convective acceleration terms because the density appears in them.
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Proposition 2.1.1. The equation of continuity, in a turbulent flow, is satisfied
by mean and fluctuating velocity components in incompressible fluids.

Proof. Getting started by substituting, with the Reynolds decomposition, in
the continuity equation:

∇⃗ · q⃗ = 0 ⇒ ∂u

∂x
+
∂v

∂y
+
∂w

∂z
+
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0. (2.4)

This equation is very useful because if we apply the averaging approach, with
the help of the time average properties above, the result will be:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
+
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0. (2.5)

But it is proven that the following terms are zero:

u′ = 0 , v′ = 0, w′ = 0. (2.6)

In conclusion:
∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0. (2.7)

Which has a direct consequence:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.8)

Eventually, the divergence of the mean velocity component is zero as well
the divergence of the fluctuating component is zero. So they both satisfy the
equation of continuity for incompressible fluids:

∇⃗ · q⃗ = 0 & ∇⃗ · q⃗′ = 0, q⃗ = (u, v, w). (2.9)

2.1.2 Apparent-Reynolds Stresses

By applying the Reynold decomposition in momentum equations of steady
Navier-Stokes we can observe:
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•Quadratic terms in time average remain unchanged because they are stable over time.

• Linear terms (
∂u′

∂t
,
∂2u′

∂x2
, ...) become zero due to u′ = 0.

•Mixed terms (uu′) become zero for the same reason as linear terms.

And the momentum equations for a three-dimensional steady-state flow are
transformed as follows:

ρ

(
u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
= −∂p

∂x
+ µ∇2u− ρ

[
∂u′

2

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

]

ρ

(
u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
= −∂p

∂y
+ µ∇2v − ρ

[
∂u′v′

∂x
+
∂v′

2

∂y
+
∂v′w′

∂z

]

ρ

(
u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
= −∂p

∂z
+ µ∇2w − ρ

[
∂u′w′

∂x
+
∂v′w′

∂y
+
∂w′2

∂z

]

These equations are the same as steady Navier-Stokes for the mean values,
but they have some additional terms, due to turbulent fluctuations of the
flow. These terms are called turbulent stresses or else known as Reynolds
stresses because they have a dimension of stress. They are summed with the
viscous terms of Navier-Stokes. So they have a similar influence in the flow,
for which they are caused by eddy viscosity [32] and their tensor matrix form
is :

−ρ

 u′2 u′v′ u′w′

v′u′ v′2 v′w′

w′u′ w′v′ w′2

.

2.1.3 Stresses Tensor

The relation that is formed between turbulent stress tensors and the turbu-
lent rate of deformations can be expressed asσ′x τ ′xy τ ′xz

τ ′xy σ′y τ ′yz
τ ′xz τ ′yz σ′z

 = −ρ

 u′2 u′v′ u′w′

v′u′ v′2 v′w′

w′u′ w′v′ w′2


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The tensor is symmetric, because is assumed homogeneous isotropic turbu-
lence. So there are six additional unknowns added in the equations of motion,
as a result, the problem becomes under-defined because the number of un-
knowns is greater than the number of equations. This means that we either
need to :

• Generate six additional equations for the apparent stresses, or

• Express stress tensor components in terms of flow variables to make the
problem solvable (well-posed) without having to add extra equations.

This challenge is referred to as the Turbulence Closure Problem and it is what
motivated researchers over many decades to develop general ways to address
closure, which “gave birth” to the turbulence mathematical modeling field.
Finally the relation of stresses-rate of deformation [32] are given by:

Perpendicular stresses:

σx = −p+ 2µ
∂u

∂x
− ρu′

2
,

σy = −p+ 2µ
∂v

∂x
− ρv′

2
,

σz = −p+ 2µ
∂w

∂x
− ρw′2.

(2.10)

Shearing stresses:

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
− ρu′v′,

τxz = µ

(
∂u

∂z
+
∂w

∂x

)
− ρu′w′,

τyz = µ

(
∂v

∂z
+
∂w

∂y

)
− ρv′w′.

(2.11)

Apparent (eddy) stresses are greater than laminar (viscous) stresses, as is
verified experimentally. As a result, the latter may be omitted in many cases
with a good degree of approximation [32].

2.2 Turbulence Kinetic Energy (TKE)

A useful tool for measuring the intensity of turbulence in a flow is turbu-
lence kinetic energy or TKE, which is widely used in turbulence modeling.
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Turbulence kinetic energy (TKE) is a universal quantity used to describe the
magnitude of turbulence in fluid flows. It takes place in various sectors, in-
cluding engineering and atmospheric science [8].

Turbulence kinetic energy is connected with the energy that is related to the
random motion of fluid particles within a turbulent flow field. Essentially is a
measure of the fluctuations in velocity, and its magnitude directly corresponds
to the level of turbulence present in the system. Turbulence kinetic energy
is very important in many phenomena such as mixing processes, heat trans-
fer, and pollutant dispersion and is defined as the sum of the three normal
Reynolds stresses and multiplied by 1

2 , we denote by symbol k.

k =
1

2
u′iu

′
i =

1

2
(u′

2
+ v′

2
+ w′2). (2.12)

Many turbulence models seek to predict k but don’t predict individual com-

ponents, assuming that the fluctuations are isotropic: u′
2 ≈ v′

2 ≈ w′2 [43].
By definion kinetic energy is given by the expression 1

2mv
2 so:

k =
Kinetic Energy

unit mass
,

in terms of dimensions k is defined as the mean kinetic energy per unit mass
for a turbulent flow.

The significance of TKE lies in its ability to approximate the energy cascade
from large-scale motions to smaller eddies within a turbulent flow. Accurate
measurement of TKE is critical for ratifying and optimizing turbulence models.

Continuing is introduced the TKE Budget equation below [8]. The partial
differential equation helps in the understanding of vital parts of the Navier-
Stokes and RANS equations such as the turbulent production and advection
behavior of the pressure and diffusion terms. To conclude for the stability and
the capabilities of flow in production and diffusion the turbulence terms are
utilized by analyzing the contribution of each of the above budget terms in
equation (2.13). With this analysis, a detailed picture of the turbulent flow
behavior can be derived and utilized for complex models such as LES or DNS.

To summarize, the TKE budget refers to the analysis of the different pro-
cesses that contribute to the generation, transport, and dissipation of the
kinetic energy of a flow. The TKE budget equation is derived from the Navier-
Stokes equations and it is provided by the following partial differential equa-
tion:
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∂k

∂t
+ uj

∂k

∂xj
= −u′iu′j

∂ui
∂xj

− ν
∂u′i
∂xj

∂u′i
∂xj

+
∂

∂xj

[
ν
∂k

∂xj
− 1

2
u′iu

′
iu

′
j −

p′u′j
ρ

]
, (2.13)

where:

• ∂k
∂t is the local derivative

• uj
∂k
∂xj

is the advection term.

• −u′iu′j
∂ui
∂xj

is a production term.

• −ν ∂u′
i

∂xj

∂u′
i

∂xj
is the turbulent viscous dissipation term (per unit mass),

which is usually denoted as ε.

• ν ∂k
∂xj

is a molecular diffusion term.

• −1
2u

′
iu

′
iu

′
j is the turbulent transport term.

• −p′u′
j

ρ is the pressure diffusion term or Buoyancy flux.

2.3 Turbulent Boundary Layer

The turbulent Boundary Layer is a fundamental problem that exists in every
flow in nature that includes solid boundaries, it is widely examined by many
researchers and it is used in modern Fluid Mechanics, as it is a crucial factor
for energy saving and good overall performance of an airfoil.

The system of equations that describe the turbulent B.L., for the two-
dimensional, steady-state case is [32]:

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+
∂

∂y

(
ν
∂u

∂y
− u′v′

)
,

∂p

∂y
= 0,

(2.14)
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with boundary conditions, y = 0 : u = v = 0, y → ∞ : u = U∞

Remarks:

• Compared to the typical Navier-Stokes equations, the velocity, and pres-
sure terms are replaced by their time averages.

• The term ∂
∂x(v

′2 − u′2) which is generated by the normal stresses (after
replacing the time-averaged terms), due to the boundary layer simplifi-
cations, can be ignored.

• Originally, the term ∂p
∂y is equal to −∂v′2

∂y but is typically presumed that
this term is negligible within the boundary layer(it is roughly 0.4% of
free stream dynamic pressure) and as a result, ∂p

∂y = 0.

• The inertia terms and the pressure term remain unchanged while the

friction term ν ∂2u
∂y2

is replaced by ∂
∂y

(
ν ∂u
∂y − u′v′

)
. Thus, the laminar

viscous force per unite volume ∂τl
∂y shall be replaced by ∂

∂y (τl − τt).

• The aforementioned quantity τt = εt = −ρu′v′ is the Reynolds stress
term (apparent turbulent stress term) [32].

2.4 Eddy Viscosity

Eddy viscosity is crucial and plays a vital role in turbulence mathemati-
cal modeling. The first turbulence models were eddy viscosity models and
they continue to be used today because of their simplicity, small computa-
tional cost, and easy implementation. The first scientist who tried to solve
the closure problem was Joseph Valentin Boussinesq to achieve his goal he in-
troduced the concept of eddy viscosity. In 1877 Boussinesq proposed relating
the turbulence stresses to the mean flow [43], through an eddy (or turbu-
lent) viscosity, denoted as µt. The Reynolds stresses are treated as laminar
stress terms, where instead of using fluid viscosity it is replaced with eddy
viscosity. Boussinesq’s hypothesis is at the heart of eddy viscosity models,
which are widely used in the examination and numerical solving of turbulent
flows. In practice, Reynolds stress models reduce to eddy viscosity models.
Their biggest disadvantage is that they are based on local equilibrium con-
cepts because they consider the transport terms in the governing equations to
be negligible so they lack generality [36].
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For the simplicity of eddy viscosity in the use of turbulence models, some
approaches compute the mixing length, a variable that is related to the mean
free path in a gas, via the kinetic theory of gases. In this hypothesis, there
is a crucial difference that must be emphasized, molecular viscosity is a prop-
erty of the fluid, contrariwise to the eddy viscosity, consequential to mixing
length, which is a property of the flow. Due to this fact, the eddy viscosity
must be determined in advance, in algebraic turbulence models through an
algebraic relation between eddy viscosity and length scales of the mean flow.
Consequently, algebraic models are incomplete turbulence models since some
information for the flow is needed before the simulation. In differential turbu-
lence models, the solution is obtained through some differential equations, for
the desired quantities, different for each model, and then obtain the eddy vis-
cosity values. This is not restrictive, for incomplete models, as they have been
proven to be very efficient and to be in very good agreement with experimental
results in many fluid mechanics fields [43].

2.4.1 Molecular Transport of Momentum

The movement of molecules is responsible for the creation of stresses that
needed to be studied to advance in the analysis of turbulent flows. In this
section, the momentum transport at the molecular level will be analyzed. An
important remark is that molecules and eddies are fundamentally different.
The molecular transport is vital for the understanding of the Boussinesq ap-
proximation, crucial in turbulence modeling, as it is a cornerstone of a group
of models known as eddy viscosity models.

Theorem 2.4.1. The shear stress resulting from the molecular transport of
momentum in a perfect gas is provided by:

τxy = µ
du

dy
, (2.15)

where µ:molecular viscosity, defined as µ = 1
2ρvthlmfp

Proof. In order to prove the following theorem we must examine the micro-
scopic level of fluid mechanics and more specific the molecules movement. In
the figure below we consider the flux of momentum across the plane y=0, a
molecule is moving with random magnitude and direction. Molecules migrat-
ing across y=0 to the upward or downward direction. This motion of a lump
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of molecules moving up brings a momentum deficit and vice versa, this process
is creating a shear stress τxy [43].

Figure 2.2: Shear flow with two fluid particles (lump of fluid) Q and P [43].

At the molecular level, the decomposition of velocity can be provided by
the following expression:

u = u+ u′′, (2.16)

where u is the average velocity and u′′ the random molecular motion. The
instantaneous flux of a molecular cross y = 0 is proportional to the velocity
normal to the plane which, for this flow, is v′′. So instantaneous flux in x-
momentum dpxy across dS normal to the y direction is:

dpxy = ρ(u+ u′′)v′′dS, (2.17)

and by performing an ensemble average over all molecules the result is the
following:

dpxy = ρu′′v′′dS. (2.18)

The stress in y = 0 is:

σxy =
dpxy
dS

. (2.19)
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Finally by using σij = pδij − τij , where τij : viscous stress tensor the result is
the same to the Reynolds-stress tensor.Thus:

τxy = −ρu′′v′′. (2.20)

Tennekes and Lumley (1972) [38] made a hypothesis, a stress that is gener-
ated as a momentum flux can always be written in this form. The only real
difference is that, at the macroscopic level, the turbulent fluctuations, u′ and
v′, replace the random molecular fluctuations, u′′ and v′′. This resemblance is
at the heart of the eddy-viscosity approximation by Boussinesq.

Additionally, considering the average number of all lump of molecules mov-
ing across the unit area in the positive y direction. By the kinetic theory of
gases, it is known that molecular velocities follow the Maxwelian distribution,
so all directions are probable, so half of the number of molecules move down-
ward and the other half upwards. For the motion of a lump of molecules,
start from a point P crosses the y = 0 plane and they cover the distance of
one mean free path, the mean free path being the average distance a molecule
travels between collisions with other molecules [43]. Each molecule starting
from a point P below y = 0 brings a momentum deficit of m[u(0)−u(−lmfp)],
where m is the molecular mass and lmfp is the mean free path [43]. Hence,
the momentum flux from below is:

∆Ρ =
1

4
ρuth[u(0)− u(−lmfp)] ≈

1

4
ρuthlmfp

du

dy
, (2.21)

where uth is the thermal velocity.
For the final equation (2.21), is used the Taylor expansion of term u(−lmfp),
by taking the two first terms and using the definition of density ρ = mn.
Similarly, the momentum flux from above is:

∆Ρ+ =
1

4
ρuth[u(lmfp)− u(0)] ≈ 1

4
ρuthlmfp

du

dy
. (2.22)

So, the final shearing stress is:

τxy = ∆Ρ+ +∆Ρ =
1

2
ρuthlmfp

du

dy
. (2.23)

We conclude that the shear stress from the molecular transport of momentum
is:

τxy = µ
du

dy
, (2.24)

where µ is the molecular viscosity, µ = 1
2ρvthlmfp
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This last equation (2.24) is the same as the experimental law of Newton in
a laminar flow which case is analogous to a perfect gas. The arguments that
lead to the last two equations are approximate, but they are very accurate as
it is verified experimentally. From the kinetic theory of gases, it is known that
an analytical solution yields µ = 0.499ρvthlmfp. In conclusion, the fact that
the Taylor series was used and that the assumption holds that u′′ remained
Maxwellian does not affect the validity of the equations [43].

2.4.2 Boussinesq’s hypothesis

Boussinesq took advantage of this theorem by assuming that turbulent
stresses behave like viscosity stresses, which entails that the turbulent stresses
are proportional to the velocity gradient.

Definition 1. The coefficient of proportionality is called the “eddy viscosity”
and is defined by:

τtur = −ρu′v′ = ρεt
du

dy
, (2.25)

where εt is the kinematic eddy viscosity or turbulent kinematic viscosity so that

εt =
µt
ρ
.

This relation can also be written as:

τtur = −ρu′v′ = µt
du

dy
, (2.26)

where µt is a mixing factor for the Reynolds stresses. So, Boussinesq proposed
shear stress with strain rate relationship for time-averaged flows of a one-
dimensional nature of the form:

τlam + τtur = ρ(ν + εt)
du

dy
. (2.27)

By Newton’s experimental law τlam can calculated as:

τlam = µ
∂u

∂y
. (2.28)

The general idea behind (2.27) is that the effect of the turbulent mixing of mo-
mentum (τtur) is analogous to the molecular transport of momentum, which
leads to the laminar stress τxy. Thus we might imagine that the role of tur-
bulence is to increase the effective viscosity from ν to ν+ εt, where εt is much
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greater than ν [8]. The concept of an eddy viscosity is now commonly used
for flows of arbitrary complexity, and the three-dimensional generalization of
the above equation is:

tturb = tij = −ρu′iu′j = µt

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δijk, (2.29)

where k = 1
2u

′
ju

′
i depicts the turbulent kinetic energy.

2.4.3 Prandtl’s mixing length

Definition 2. The term µt is called dynamical eddy viscosity by Prandtl and
is calculated by the relation that is given below:

µt = ρl2
∣∣∣∣∂u∂y

∣∣∣∣ , (2.30)

where l is called the mixing length of the turbulent eddies.

Prandtl’s mixing length can be modeled in various ways, this is the corner-
stone problem of turbulence models, the calculation of this quantity, Prandtl
modeled it with the help of mixing length l, a property of the flow. Prandtl’s
consideration of the mixing length is analogous to the “mean free path” of
molecules in the kinetic theory of gases. More specifically, microscopic move-
ment is studied in the kinetic theory of gases of molecules. The use of mixing
length by Prandtl leads to the mesoscopic motion of large aggregates of liq-
uid particles study. Near a solid wall, l is approximately proportional to the
distance from the wall and Von Karman suggested:

l ≈ k · y, (2.31)

where k is called Von Karman constant ≈ 0.41 after experiments [43].

The choice of length and velocity scale is a big issue in modern times and
it is very challenging for scientists. By equation (2.25) it can be derived that
the dimensions of εt ∼ length×velocity.

By substituting (2.30) in (2.26) :

τtur = −ρu′v′ = ρl2
∣∣∣∣∂u∂y

∣∣∣∣ ∂u∂y . (2.32)
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So, it can be observed, from equations (2.23) and (2.32) that there is an anal-
ogy, of the mean free path lmfp with the mixing length l and this of the mean
molecular speed with the gradient of velocity, this Boussinesq’s motivation.

All seems perfect, but the kinetic theory of gases deals with molecules that
collide and by definition are discrete, in contrast with turbulence which is a
continuous phenomenon. Prandtl in essence proposed that with eddy viscosity
certain eddies of macroscopic size are moving as a whole and thus their motion
approximate the motion of free molecules of a gas. But these two considera-
tions are different. Since the motion of the molecules of a gas is determined by
the temperature of the gas and is not affected by the fluid motion, molecular
viscosity is a property of a fluid in contrast with eddy viscosity which isn’t.
Prandtl with his empirical mixing length l replaced Boussinesq’s εt and con-
cluded that for flows near solid boundaries, the mixing length is proportional
to the distance from the surface. Finally, for free shear flows the mixing length
is proportional to the width of the layer δ and it is observed that the mixing
length is different for every flow thus someone must know it in advance to ob-
tain a solution, and that is the reason why all models who use eddy viscosity
are incomplete.

Another interesting observation is that by substituting (2.25) to (2.14), the
two-dimensional, steady-state turbulent boundary layer can also be written in
a very useful form that is usually used in computational fluid dynamics:

∂u

∂x
+
∂v

∂y
= 0,

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+
∂

∂y

[
(ν + εt)

∂u

∂y

]
,

∂p

∂y
= 0.

(2.33)

2.5 Turbulence Scales and the Cascade

For turbulence modeling, turbulence scale and cascade is an important topic
that is very useful for understanding turbulence. The turbulence scale repre-
sents the range of sizes or lengths over which turbulent structures exist within
a flow, and these scales can range from large-scale (Integral scales) to small-
scale (Kolmogorov scales) eddies. The identification and characterization of
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these scales are essential for the development of effective turbulence models.

A fundamental concept associated with turbulence scales is the cascade pro-
cess. The cascade describes the transfer of energy from larger scales of motion
to smaller scales in a turbulent flow as a spectrum because turbulence is a
continuum phenomenon and not discrete. These eddies interact and as a re-
sult, larger vortices transform into smaller eddies, releasing energy that drives
the turbulence at smaller scales. This cascade phenomenon is fundamental for
understanding the phenomenon of energy dissipation within turbulent flows,
and turbulence models such as the family of Large Eddy Simulation utilize
the energy cascade.

Turbulence is made of a continuous spectrum of scales, which varies from
large to small eddies. To visualize turbulent flow with a spectrum of scales, it
can be translated into a problem of eddies. Turbulent eddy can be defined as a
local swirling motion whose scale is quantified by the local turbulent scale or in
a more mathematical definition the k-wavelength definition will be introduced.
Wavelength resulting from the Fourier transform in the spatial direction [43].
Eddies have a unique feature, larger eddies carry smaller ones so a large eddy
can contain multiple, smaller scale, eddies and all of them are moving as one,
structure.

Figure 2.3: Representation of larger eddies carry smaller ones [25].

The second fundamental feature is the cascade process which can be de-
scribed as a procedure of eddies which, as the turbulence decays, become
smaller and so its kinetic energy transfers from large to small eddies. At the
final stage, the smallest eddies dissipate into heat or increase of entropy and
acoustics through the action of molecular viscosity. So, it can be concluded
that similarly to any viscous flow, any turbulent flow is always dissipative [43].
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In Figure 2.4 this procedure is being visualized.

As David C Wilcox states “The state of a turbulent flow at a given position
depends upon upstream history and cannot be uniquely specified in terms of
the local strain-rate tensor as in laminar flow”. In a typical boundary layer,
the larger eddies are estimated thirty times the width of the flow (thickness
of boundary layer) l ∼ 30δ [43].

In conclusion, turbulence behavior is dominated by the large eddies, which
are the main factor for the enhanced diffusivity and the stresses in the flow.
For the smaller eddies it can be proposed that they dissipate turbulence energy
through viscous actions [43] and the rate of dissipation is controlled by the rate
at which they receive energy from the larger ones. This is a very important
factor in the creation of turbulence models.

Figure 2.4: Representation of energy cascade with small-medium-big eddies
[8].

2.5.1 Kolmogorov’s scale

Turbulence is a continuum phenomenon as this follows from the fact that
the smallest scales are much larger (orders of magnitude) than the molecular
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length scale. In this subsection, it will be analyzed the magnitude of these
molecular scales and the physics of turbulence at small scales.

Turbulence Kinetic Energy (TKE) plays a vital role in turbulence, the dis-
sipation of TKE through molecular physics happens at a small time scale in
contrast with large eddies where the time scale is large (slow), so the smallest
scales are relatively unaffected by the larger ones. Hence the rate at which
small eddies dissipate energy through molecular viscosity must be the same as
the rate at which smaller eddies receive energy from the large ones, that was
the thought of Andre Nikolaevich Kolmogorov through one of the premises
that he made in the Universal Equilibrium theory. His results included that
the motion of smaller eddies should depend on the rate at which the larger
eddies supply energy ε and on the effect of kinematic viscosity.

Definition 3. Turbulent viscous dissipation per unit mass measuring the en-
ergy loss due to the conversion of turbulent kinetic energy into thermal energy
within a fluid, per unit mass of the fluid, ε is:

ε = −dk
dt

where k : TKE. (2.34)

With the help of dimensional analysis, the dimensions of ε are length2/time3

and so Kolomogorov introduced the following length (η),time (τ) and velocity
(v) scales with the help of ε and kinematic viscosity (ν).

η = (ν3/ε)1/4, τ = (ν/ε)1/2, v = (νε)1/4. (2.35)

These small scales are known by the name of their creator, Kolmogorov scales
and they are affected only by µ, ν and ε. To understand further the magni-
tude of how small these scales are, in a typical boundary layer under specific
circumstances, the Kolmogorov length scale is η ≈ 4.5 · 10−4 cm, and the
mean free path of molecules is lmfp = 6.3 · 10−6 cm [43]. So the difference in
magnitude is approximately two scales of magnitude. It has been calculated
experimentally that:

η

lmfp
≈ 72. (2.36)

2.5.2 Kolmogorov’s -5/3 Law

As mentioned above, turbulence consists of a spectrum (continuous) of
scales, and for its study is convenient to discuss the spectral distribution of
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energy. This spectral representation is made through Fourier decomposition
into wave numbers κ or in another way into wavelengths λ = 2π/κ, where
E(κ) is the TKE contained between wave numbers κ and κ + dκ, it can be
said:

k =

∫ ∞

0
E(κ)dκ, (2.37)

where k is the turbulent kinetic energy per unit mass and E(κ) is the energy
spectral density (or energy spectrum function) which is connected with the
Fourier transform of k. A useful observation that emerges is that:

• Low wave numbers represent the largest scales of energy.

• Large wave numbers represent the smallest scales of energy.

Because large eddies have a strong influence in the turbulence it is observed
that E(κ) is a function of length(l) and the mean strain rate S [43]. So Taylor
in 1935 with the help of dimensional analysis concluded that [37]:

ε ∼ k3/2

l
⇒ k ∼ (εl)2/3. (2.38)

The characteristic length scale l is the main tool for the simulation of many
turbulence models. So in this case it is assumed that there is a wide variance
of scales and l is much larger than the Kolmogorov length scale.

l ≫ η. (2.39)

With the help of the equations above, it can be created a dimensionless quan-
tity similar to Reynolds number :

ηu

ν
= 1, (2.40)

this is expected because the small-scale motion is viscous so the Reynolds
number should be small. By substituting (2.35) and (2.38):

l

η
=

l

(ν3/ε)1/4
∼ l(k3/2/l)1/4

ν3/4
∼ Re

3/4
T , (2.41)

where ReT = k1/2l
ν . This quantity is called turbulence Reynolds number. Thus

with the assumption that l ≫ η, it can be resulted that ReT is large and this is
expected as an inviolable condition for turbulence is a high Reynolds number,

ReT ≫ 1. (2.42)
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Finally, with Kolmogorov’s assumption of a wide separation of scales through
turbulence, he added that for large Reynolds there is a large number of scales
between the largest and smallest eddies for which the cascade process is inde-
pendent of the statistics of the energy-containing eddies and the direct effects
of molecular viscosity, so l and ν can be ignored [43]. So, he concluded with
the famous Kolmogorov’s -5/3 Law :

Theorem 2.5.1. The Kolmogorov’s -5/3 Law is:

E(κ) = CKε
2/3κ−5/3,

1

l
≪ κ≪ 1

η
, (2.43)

where CK is the Kolmogorov constant and κ is the wavenumber.

This law has been confirmed experimentally and can be visualized in Fig-
ure 2.5. It can be stated that spatial scales (eddies) are divided into three
subranges, regarding their energy spectrum. In this figure, three regions can
be pointed out:

1. The region of energy containing large eddies which are referred to as the
integral scale.

2. The mid-range which is between large and small ones where the energy
spectrum is calculated by the -5/3 Kolmogorov’s Law.

3. The small eddies region where the eddies dissipate when they reach the
Kolmogorov scale.

Figure 2.5: Energy spectrum for a turbulent flow [35].
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In turbulence simulations, a widely used concept is this of fully turbulent
flow. As flow transitions, from laminar to turbulent with the help of a grid
into the path of a laminar flow, as it can be seen in the figure 2.6(a), a field
of turbulence is generated. Initially, vortices are starting to create, as it is
observed in 2.6(b)-stage(i) and after this, stage(ii) follows where we find a
field of fully developed turbulence. This region contains the full range of scales
from the bigger eddies (integral scale) to the smaller ones, the most dissipative
eddies (Kolmogorov’s scale). This state of turbulence is also referred to as the
asymptotic state of turbulence. Additionally, we have the freely evolving or
freely decaying turbulence 2.6(b)-stage(iii) which is a continuation of stage(ii),
in this region the larger eddies dominate the turbulence as the smaller ones
decay faster. Finally, there is a stage(iv) where the turbulent flow is going to
a complicated laminar flow which is not of importance to discuss and is not
shown in the Figure 2.6 [8]. In 2.6(c) it can be seen the flow visualization of
grid turbulence using smoke from Davidson [8] which experimentally confirms
the stages(i-iii).

Figure 2.6: (a) Generation of grid turbulence. (b) Visualization of the various
stages of development of grid turbulence. (c) Flow visualization of grid tur-
bulence using smoke [8].

2.6 Law of the Wall

The law of the wall is an empirically determined relationship in turbulent
flows near walls or more general bounded flows. It is very useful for turbulence
mathematical modeling, it is discovered experimentally and it is valid for all
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types of flows (internal or external). Ιs interpreted as the streamwise velocity
in the flow near the wall changes logarithmically with distance from the surface
u ∼ log(y). This result is known as the law of the wall or universal law. It can
be also observed, in high Reynolds numbers, that the pressure gradient very
close to the wall is very small [43].

The behavior of the flow close to the surface in a turbulent flow is affected
by several factors. The first is the rate at which momentum is transferred to
the surface, per unit area per unit of time, which is equal to the local shear
stress, τ , also by molecular diffusion of momentum, which plays a crucial role
close to the boundary. In the far region from the boundary, the details of the
eddies are of little importance to the near-wall flow statistics [43]. The shear
stress in turbulent flow is known and it is provided by the relation:

τw = µ
∂u

∂y
− ρu′v′, (2.44)

the turbulent fluctuation can be erased because near the wall the eddies are
very small (and increase with the distance from the wall) so by mixing length
of Prandtl l ≪ 1 we consider the term ρu′v′ = 0.

It is verified experimentally that eddies close to the wall are small and grow
with the distance from the wall. This arises from the fact that δ increases with
Reynolds number and this creates a wide variety of scales in high Reynolds.
Although τ varies near the surface, the variation with distance from the sur-
face, y, is fairly slow. Hence, for the dimensional-analysis arguments to follow,
the surface shear stress, τw, can be used in place of the local shear stress. Since
turbulence behaves the same in gases as in liquids, it is reasonable, to begin
with, τw

ρ and kinematic viscosity, ν = µ
ρ , as primary dimensional quantities,

effectively eliminating fluid density, ρ, as a primary dimensional quantity.

The next step is to examine the dimensions of τw
ρ , it is observed that they

are (length / time)2. So by using the square root, it is derived a new velocity
known as friction velocity:

uτ =

√
τw
ρ
, (2.45)

with dimension length / time. This quantity is important because it defines
a velocity scale that represents velocities close to the wall. It also derived the
quantity ν/uτ which is a length scale because the dimensions of kinematic
viscosity(ν) are length2 / time and it follows that ν/uτ has a dimension of

length. The next step is to introduce a correlation between
∂u

∂y
and uτ ,

ν

uτ
.The
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result with the help of dimensional analysis is:

∂u

∂y
=
uτ
y
F
(uτy
ν

)
, (2.46)

where F (uτy/ν) is presumed to be a universal function. Many scientists en-
gaged with the introduction of this function by gathering data about various
boundary layers and more especially Coles and Hirst indicate that as a good
leading order approximation:

F (uτy/ν) →
1

k
as

uτy

ν
→ ∞, (2.47)

where k: Von Karman’s constant. This constant is dimensionless and in recent
years is calculated experimentally between 0.35-0.42 in most cases it is univer-
sally accepted as k ≈ 0.41. The fact that function F (uτy/ν) has a constant
value is valid with the consideration that viscous effects decreases as it moves
away from the boundary wall moving towards the potential flow [43].

Another very important result follows from integrating 2.46 over y:

u

uτ
=

1

k
ln

(uτy
ν

)
+ c, (2.48)

where c is a dimensionless constant with value c ≈ 0.5 but it depends in some
cases on the wall roughness. This last equation (2.48) is the famous “Law of
the Wall” or else “Logarithmic Law” and it is vital in simulations near solid
boundaries [43]. Dimensionless quantities are additionally defined :

u+ =
u

uτ
and y+ =

uτy

ν
. (2.49)

Theorem 2.6.1. In viscous sublayer, for y+ < 5 the following hold, u+ = y+.

Proof. For the region close to the surface of the viscous sublayer it is proven
that:

τw = µ
∂u

∂y
−���ρu′v′ ⇒ u =

τwy

µ
. (2.50)

From (2.49)

u =
u+

uτ
and y =

y+v

uτ
. (2.51)

By substituting (2.51) to (2.50):
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uuτ =
twy

+v

µuτ
⇒ u+ =

τwµρy
+

µρtw
⇒ u+ = y+. (2.52)

Figure 2.7: Visualization of the Log Law [8].

Remark:

The graph can be divided into 3 regions:

• Very close to the wall viscous forces dominate, this region is called the
viscous sublayer, we proved that in this region u+ = y+ and additionally
it is validated experimentally is discovered that this region is for y+ < 5.
In this region the Reynolds shear stress is insignificant compared with
the viscous stress. For 5 < y+ < 30 exists the buffer layer which is a
transitional region.

• The next area for y+ > 30 is called the Log Layer and in this region
exists the law of the wall and the equation (2.48) hold.

• Eventually, the “defect layer” or outer layer is the region where u+

reaches the free stream velocity (u∞) where the effect of viscosity is
negligible.
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• In summary, the Law of the Wall is a specific empirical relationship used
to describe the velocity profile in the turbulent boundary layer near a
solid wall.

2.7 Velocity Distribution in Turbulent B.L.

To obtain the behavior of velocity distribution in the turbulent boundary
layer, Prandtl’s mixing length hypothesis is used to divide the profile into
three major zones:

• The region that is close to the boundary and is influenced by the presence
of the wall is called the Inner Region or Near-wall Region. It is important
to note that only 15% of the turbulent boundary thickness is found at
the top of the Near-wall zone.

• As a result, the Near-wall region can be divided into two sub-zones:

– A thin zone, near the wall where the boundary layer is practically
laminar, is called Laminar Sublayer. The reasoning behind this
phenomenon is mostly because, within the region, turbulence is
suppressed by viscosity.

– The zone at the end of the laminar sublayer, where the turbulent
effect starts to increase but the shear stresses effects still exist and
though the laminar influence is still present, is called Buffer Zone.

– The free stream turbulent effects slowly increase in strength through
the inner layer, and the laminar behavior is lost, although the pres-
ence of the wall still influences the flow

• The zone where the Near-Wall region transitions to the Outer Layer is
called the Overlap layer

• Beyond the Near-wall region is the edge of the boundary layer, a zone
where free stream turbulence effects dominate the flow and is called the
Outer Layer or Defect Layer.

This distribution can be visualized in Figure 2.8, in which the distinction of
the layers is highlighted. This visualization is important in applications and
in the understanding of turbulence modeling.
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Figure 2.8: Turbulent Boundary Layer Velocity Distribution.
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CHAPTER3
Turbulence Models

In this chapter, it will be presented the most prevalent turbulence models,
which are utilized to solve the RANS closure problem. The closure problem
refers to the procedure, in solving the RANS equations, or the process of solv-
ing any variation of Navier Stokes equations with the utilization of Reynolds
decomposition. As presented in the previous chapter RANS equations for the
three-dimensional case consist of three momentum and the conservation of
mass equations, but the number of unknown variables is ten. Therefore, to
solve these equations there are two options, the first one is to articulate the
stress tensor components regarding flow variables, which is what algebraic or
else zero equation models do, the second option is to add more PDEs in the
RANS system, to calculate some selected variables, that describe properties
of the flow, such as turbulent kinetic energy or energy dissipation, and finally
with the use of these additional variables the stress tensor can be calculated
as a function of the latter.

Turbulence models are at the heart of turbulence modeling in pursuit of
getting the numerical solution, and they occupy scientists until today with
great discoveries of new elegant mathematical models. Many of them evolve
existing models or modify them to increase accuracy, some even discover new
interesting ways to solve RANS by creating original modern ones. A thorough
understanding of the basic principles governing turbulent flow, as described in
the previous chapter, is pivotal for comprehending the function of these models
and for this reason, the great scientific discoveries in the field are made by very
experienced and renowned scientists.

The absence of advanced computers, in the past, forced researchers to limit
the study of turbulent flow problems to simple geometries. At first, the initial
tries to predict the B.L. were empirical and were based on algebraic equations,
by the middle of this century, a leap forward in computers took place. This
development had a tremendous result, since the mid-60s the development of
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models based on some partial differential equations. The development of com-
puters but also the need to study turbulent flow in complex geometries and
large problems in terms of space, have forced scientists, over the decades, to
develop enough turbulence models approximating this complex phenomenon.
Some of these family of models are:

1. Algebraic or zero-equation models. These models use algebraic
equations-relations between the eddy viscosity and some properties of
the flow to calculate the Reynolds stress tensor (mixing length theory).

2. One equation models. These models use a partial differential equation
for the turbulent viscosity along with the mean flow equations.

3. Two-equation models. They are models that use an additional partial
differential equation from the previous ones. That is, except for the
partial differential equation for turbulent velocity(fluctuating parts) also
use one more equation for an additional parameter e.g. ω, ε.

4. Models of shear equations. These models use some differential equa-
tions for all terms of the Reynolds stress tensor.

5. Large Eddy Simulation - LES. In that method, calculations are made
for the three-dimensional, time-dependent structure of large eddies, as
well as the use of RANS equations for the small energy scales of turbu-
lence.

6. Direct Numerical Simulation - DNS. In that method no turbulence
model is used, the complete spectrum of turbulence scales is resolved
from the smallest eddies (Kolmogorov’s scale) to large energy-bearing
eddies (Integral scale) via stress tensor, it is extremely computationally
expensive.

The most simple of all turbulence models are characterized as algebraic, they
are the oldest and simplest in understanding and implementation, their great
advantage is their correctness which is confirmed by experiments combined
with their easy application in scientific computer programs. Nowadays these
models stop to evolve as the scientific community exhausts their potential by
hitting the peak of their amplifiers. The most popular models, which are still
used by scientists, are the Cebeci-Smith and the Baldwin-Lomax which is an
improved version of the previous one. One or two-equation models use partial
differential equations as an advanced evolution of algebraic ones to achieve
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better accuracy in numerical solutions of turbulence. The models most com-
monly employed by scientists are the two-equations models and hybrid models
that include two-equation models, which are the most precise out of the three
above categories and they are evolving with the help of the academic commu-
nity, in their journey for optimal solutions in many real-world applications like
flows near airfoils, airplanes in fields such as hydrodynamics, hemodynamics,
aerodynamics and many others. These methods are still in progress and have
a great perspective on the effort being made for better and more precise re-
sults. Finally, there is the LES, it seems that this is the technique that will be
able to accurately handle the complex and difficult flows in geometry with the
exchange of the large computational cost and DNS which resolves all scales of
energy but has a huge cost that only a lucky few can use due to the titanic
computing power they require.

3.1 Algebraic Models

Algebraic models like all turbulence models are divided into two categories
the differential and the integral ones. The differential models have a direct
hypothesis for the turbulent shear stresses in every point and they are seek-
ing the solution of the equations, algebraic or differential, that describe the
problem. On the other side, integral models contain integral parameters of
the boundary layer such as momentum thickness or coefficient of skin friction
drag. The advantage of integral models is that direct resolution of partial dif-
ferential equations is avoided, something that is very useful because in most
cases this solution is very difficult or even impossible to acquire [45].

3.1.1 Cebeci-Smith Model

Cebeci-Smith model calculates the turbulent kinematic viscosity εt, so it is
an eddy viscosity model [4]. This model produces quite accurate results as its
correctness has been confirmed by experimental data in many different types
of flows. It has also been confirmed to achieve accurate results for a lot of
physical applications that concern engineers. It is widely used for boundary
layer simulation and in a wide variety of fluid flows such as simulations near
a solid boundary. The heart of this model is that εt is a bifurcated function,
particularly the flow field in the boundary layer consisting of internal and
external regions, with each region having its viscosity formula. This model is
described in detail in [3]. More specifically, the turbulent kinematic viscosity
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is given by the relation:

εt =

{
(εt)i , if y ≤ ycrossover,

(εt)o , if y > ycrossover,

where (εt)i is the inner eddy viscosity, (εt)o is the outer and ycrossover is the
smallest distance from the surface where (εt)i = (εt)o. Εddy viscosity in inner
regions, for the two dimensions case, is given by:

(εt)i = l2
∣∣∣∣∂u∂y

∣∣∣∣ γtrγ. (3.1)

For completeness, the model must additionally relate the length l to the ge-
ometry flow characteristics, as it is said the algebraic models are incomplete.
The main parameter is the distance from the wall, so Prandtl’s and Karman’s
hypothesis (2.30) and (2.31) was later modified by Van Driest (1956) with
the purpose of all these expressions to described by a single function, so by
including a damping function to improve precision:

l = ky

[
1− exp

(
− y+

A+

)]
, (3.2)

where k is the Von Karman constant, and constant A+ depends on the condi-
tions of the flow such as the pressure gradient, wall roughness, etc. Its value
for a smooth impervious plate is equal to 26. Likewise, the Van Driest damp-
ing coefficient can be different than 26 for special conditions and approached
as:

A+ = 26
ν

N
u−1
τ , N =

[
p+

u+w
[1− exp(11.8u+)] + exp(11.8u+)

]1/2
, (3.3)

to improve the estimation accuracy for pressure gradient boundary layers, for
incompressible flows. In compressible flows, damping coefficient A+ will be

multiplied by
(

ρ
ρw

)1/2
.

Quantities γtr and γ are given by:

γtr = 1− exp

[
−Gtr(x− xtr)

∫ x

xtr

dx

ue

]
, γ = FK , (3.4)

with Gtr = 8.33 · 10−4u
3
e

ν2e
(Rx)

−1.34 , Rx =
uex

νe
. (3.5)
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The term γtr is an intermittency factor that is being used for the transition
region from laminar to turbulent flow. The other term γ, in literature, is being
named as FK , is a second intermittency factor that is used for the reason that
in the region of free stream, turbulence becomes discontinuous. Additionally,
the term Gtr has dimensions of velocity × (length)2 and is calculated at the
point of transition of the flow from laminar to turbulent.

Finally, the eddy viscosity in outer regions is given by:

(εt)o = K

∣∣∣∣∫ ∞

0
(ue − u)dy

∣∣∣∣ γtrγ, (3.6)

where K = 0.0168 is the Clauser’s constant and the Klebanoff intermittency
function FK = γ:

FK =

[
1 + 5.5

(y
δ

)6
]−1

. (3.7)

FK is utilized to deal with the discontinuities created due to the iterative
transition from laminar to turbulent flow in a B.L.

3.1.2 Baldwin-Lomax Model

The Baldwin-Lomax model was created for advanced flows where the bound-
ary layer thickness, δ, and displacement thickness, δ∗v , are difficult to deter-
mine. The great advantage of this model is that it is created to avoid deter-
mining the edge of the boundary layer of the Cebeci-Smith model. This model
shares the same principle as that of C-S, because it consists of an internal and
an external area for the modeling of turbulent kinematic viscosity, with each
region having its unique type for it. More specifically, the turbulent kinematic
viscosity is defined as:

εt =

{
(εt)i , if y ≤ ycrossover

(εt)o , if y > ycrossover.

For two-dimensional flows and for the internal region, Baldwin-Lomax con-
siders, essentially, Prandtl-Van Driest modeling, given by the relation:

(εt)i = l2|ω|, y ≤ ycrossover, (3.8)

where l is the mixing length which is provided by the expression:

l = ky

[
1− exp

(
− y+

A+

)]
, (3.9)
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and |ω| is the vorticity vector for dimensional flows (two and three dimen-
sional). For three dimensional flows |ω| is given by:

|ω| =

√(
∂u

∂y
− ∂v

∂x

)2

+

(
∂v

∂z
− ∂w

∂y

)2

+

(
∂w

∂x
− ∂u

∂z

)2

, (3.10)

where u, v, w are the velocity components. For the two dimension case, the
vorticity is given by:

|ω| =
∣∣∣∣∂u∂y − ∂v

∂x

∣∣∣∣ , (3.11)

where u, v are the components of the velocity in x and y direction. By using

the boundary layer assumptions for two dimensional flows
(
∂v
∂x ≪ ∂u

∂y

)
vorticity

yields as:

|ω| =
∣∣∣∣∂u∂y

∣∣∣∣ . (3.12)

For (εt)o is being used the Clauser constant K = 0.0168 and considered as:

(εt)o = KCCPFWAKEFK, y > ycrossover, (3.13)

where FK is the Klebanoff intermittency function, CCP = 1.6 is a constant
and FWAKE is defined as:

FWAKE =


yMAXFMAX

or

CWKyMAXU
2
DIF/FMAX,

(3.14)

where CWK = 0.25, for the selection of FWAKE every time it is used the smaller
quantity of equation (3.14). Quantities yMAX and FMAX are determined by:

F (y) = y|ω|
[
1− exp

(
− y+

A+

)]
, (3.15)

In case of a wake (the region of recirculating flow immediately behind a

moving or stationary blunt body, caused by viscosity) quantity exp
(
− y+

A+

)
is

zero, FMAX is the maximum of F (y) and yMAX is the point of y which F (y)
is maximum. The discontinuous Klebanoff intermittency function FKLEB is
defined as:

FKLEB(y) =

[
1 + 5.5

(
CKLEB·y

yMAX

)6
]−1

, (3.16)
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where CKLEB = 0.3. Finally UDIF is the difference between maximum and
minimum speed. So, for two-dimensional flows it is provided by the expression:

UDIF = (
√
u2 + v2)MAX − (

√
u2 + v2)MIN. (3.17)

The term (
√
u2 + v2)MIN is always zero except in the case of a wake, for

boundary layers it is always zero. The equations ((3.12)-(3.14)) that calculate
eddy viscosity in the outer region can be used in a wake or a boundary layer
with or without separation. The terms yMAX × FMAX is replacing δ∗vUe and
yMAXU

2
DIF/FMAX is replacing δUDIF in C-S modeling.

The main difference between B-L and C-S is that in B-L the calculation
of the edge of the boundary layer is omitted due to the use of vorticity, to
determine the scale of various lengths characteristic of the boundary layer.

These two models are the most popular algebraic models, their results have
been verified and they yield quite accurate results for applications such as fully
developed channel flow and flow over a solid boundary and these models stem
from Prandtl’s mixing length theory. A notable remark is that in channel
flows even the smallest difference in a model’s prediction for Reynolds stress
can direct to a different velocity profile and this is a common dilemma that is
treated differently in each turbulent case. The results from these models are
also reasonably well for mild adverse pressure gradients and not very intense
pressure gradients [43].

Their disadvantage is located in the accuracy of separated flows, because of
their incapacity to consider flow history effects since the turbulent eddies near
separation occur in a time scale independent of the mean strain rate. Tries to
avoid this problem have been made by some modified models such as Johnson
and King [13] which solve an extra differential equation and it is defined as a
half-equation model.

3.2 One equation Models

The development of one-equation models came after the creation of alge-
braic models, since the mixing length is based on correlations of simple shear
flows, its physical application is limited and it is not accurate enough for very
complex flows, therefore, the use of more advanced turbulence models is re-
quired. The first who tried this were Prandtl and Kolmogorov, they proposed
that the turbulent viscosity has to be described by a differential equation
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rather than an algebraic model. More especially they proposed a correlation
between eddy viscosity and turbulent kinetic energy and not the gradient of
velocity or vorticity as C-S and B-L models perform. One equation models
are more accurate and more complex than algebraic as they solve an extra
partial differential equation. Nowadays these models have been abandoned as
they are less accurate than two-equation turbulence models.

Many models have been proposed through time with the most popular be-
ing the Spalart-Allmaras model which was developed in the early 90s and is
known for its cheap computational cost with good accuracy in comparison
with experimental data. Baldwin-Barth is a modern model that simulates
flows which is widely being used for large Reynolds numbers.

3.3 Two equations Models

Two equations models are the most popular and widely used family of
turbulence models. The researchers need to eliminate the calculation of mixing
length, related to its position within the flow, which led to the creation of two-
equation turbulence models. These models consist of two transport equations
to describe flow properties due to turbulence. This allows a two-equation
model to account for effects like convection and diffusion of turbulent energy.
These turbulence models continue to make an impact in research and modern
two-equation models are in the process of continued development. At most
times the first variable is, calculated by the first partial differential equation,
k TKE, this is not pejorative a lot of models don’t use TKE. The choice of
the second variable varies across turbulence models. The most common is ω
which is the specific dissipation rate or ε, turbulent dissipation [43]. A lot
of models with modified variables have been proposed as these of Robinson-
Harris-Hassan [30] for axisymmetric and planar free shear flows k-ζ model
where ζ is enstrophy, or Coakley [6] who developed k1/2 − ω model for the
compressible Navier-Stokes equations.

This family of turbulence models has been the main tool in turbulence CFD
development through the past four decades. The vital difference between one
and two-equation models is the incompleteness that characterized the one-
equation models in contrast with two-equation models which are complete
since they calculate for both k and length scale. In this thesis, it will be
presented analytically both the k − ε model and k − ω, as two cornerstone
models of the family of two-equation models.
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3.3.1 The k − ε Model

In this section will introduce the three most popular k−ε versions, Standard,
RNG, and Realizable, these three models have a similar structure since they
use two transport equations for the determination of k and ε. Their greatest
differences are about the turbulent viscosity (µt) calculation, the importance
of the Prandtl number in the equations (for flows with heat exchange), and
the generation and destruction terms in the ε equations. In general, these
three versions of this model are very similar and each is an improved version
of the previous one, either for better accuracy or for the expansion in a wider
range of flows.

The first version, which will be analytically described, is the Standard k−ε
model, its robustness, low computational cost, and quite a good accuracy
for a broad spectrum of turbulent flow justify the significant utilization by the
scientific community. It is a semi-empirical model since the transport equation
for ε is obtained using physical reasoning. In the derivation of the k−ε model,
the assumption is that the flow is fully turbulent and the effect of molecular
viscosity is negligible, so it is valid only for full turbulent flows [17]. It does not
perform well for complex flows, like flows that involve great pressure gradient,
separation, and strong streamline curvature. The weakness of this model is
the insensitivity to flows with adverse pressure gradients and the numerical
stiffness when equations are integrated through the viscous sublayer which is
treated with damping functions that have stability issues [20].

The transport equations of the Standard k − ε model for the turbulence
kinetic energy k and its rate of dissipation ε yields by the following PDE’s:

∂

∂t
(ρk)+

∂

∂xi
(ρkui) =

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
+Pk+Pb−ρε−YM +Sk (3.18)

∂

∂t
(ρϵ) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
µ+

µt
σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Pk + C3εPb) (3.19)

− C2ερ
ε2

k
+ Sε.

The calculation of turbulent viscosity is given by:

µt = ρCµ
k2

ε
, (3.20)
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where ρ: density, k: TKE, ε: rate of dissipation and Cµ: constant. The term
Pk stands for the production:

Pk = −ρu′iu′j
∂uj
∂xi

. (3.21)

The effect of buoyancy:

Pb = βgi
µt
Prt

∂T

∂xi
, (3.22)

where Prt is the turbulent Prandtl number for energy and gi is the component
of the gravitational vector in the ith direction. For the standard and realizable
- models, the default value of Prt is 0.85. The coefficient of thermal expansion,
β , is defined as:

β = −1

ρ

(
∂ρ

∂T

)
p

. (3.23)

Finally, the Standard model constants are:

C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3 C1ε = −0.33,

these values have been determined from experimental data with fluids like air
or water for a wide range of turbulent shear flows.

In the equations above the term Pk describes the generation of TKE due to
the mean velocity gradients, the term Pb describes the generation of TKE due
to buoyancy and YM represents the contribution of the fluctuating dilatation
in compressible turbulence to the overall dissipation rate [17].

The next version of k−εmodel is the RNG which uses renormalization group
theory, a statistical technique. The difference with the Standard version is that
it solves an extra differential equation for turbulent viscosity (µt) but for high
Reynolds number the turbulent viscosity is calculated as the Standard k − ε
method. The main advantage of this model in comparison with the Standard
version is that the RNG has an extra term in the ε transport equation which
increase significantly the accuracy for rapidly strained flows. The effects of
swirl are also included in RNG which means greater accuracy for swirling flows.
Finally, the Standard version is a high-Reynolds model in contrast with RNG
which has a special formula for the calculation of viscosity for low-Reynolds
which makes it more popular and widely used for this case. However, the
accuracy of this depends on the appropriate treatment of the near-wall region.

Last but not least is the Realizable k − ε method which is the latest of the
three versions and has been verified for a wide range of flows [34]. It differs
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from the Standard and RNG k−ε in the formulation of the turbulent viscosity
because Cµ is not a constant but it is computed separately for every flow and
it is a function of the mean strain and rotation rate, the angular velocity
and k and ε, to increase accuracy in complex geometries where the other two
versions perform poorly. The second vital difference is the transport equation
for ε which is now derived from an exact equation for the transport of the
mean-square vorticity fluctuation [34].

The term realizable comes from the fact that this model satisfies certain
mathematical constraints on the Reynolds stresses consistent with the physics
of turbulent flows, the latter two versions are not realizable. Its greater ad-
vantage is its superior performance for flows involving rotation and bound-
ary layers under strong adverse pressure gradients. As Launder and Spalding
mention, after experiments, in their original paper, “The results show that the
present model performs better than the standard k−ε model in almost all the
cases tested.” in which case they include rotating homogeneous shear flows,
boundary-free shear flows, channel flow, boundary layer flows and backward-
facing step flows [34]. Due to the RNG and Realizable being modern models,
there is not yet a sufficient amount of work to have a clear conclusion as to
which is more accurate.

Many studies have been published that compare the latter three k − ε ver-
sions, like the paper of Qinfu Hou and Zongshu Zou [12] in which they com-
pare Standard and Renormalization k–ε models in simulation of swirling flow
tundish. Another study [33] compares the Standard and RNG k − ε, in this
work it is discussed the latter comparison in curved and confluent channels.

3.3.2 The k − ω Model

This family of models also uses two transport equations one for the turbulent
kinetic energy k and one for the specific dissipation rate ω, or else the rate
of dissipation of TKE into thermal energy. The first effort for a k − ω model
was made by Andrey Kolmogorov in 1942, many more followed his idea with
models like Wilcox’s k − ω model (1988), Menter’s SST variation and more
modern k−ω models like Wilcox’s modified model (2006). In this subsection,
it will be discussed Wilcox’s k−ω model of 1988 [42]. The Figure 3.1 presents
a short history timeline of the most important versions of this family of models
in the last eighty years, starting from Kolmogorov in 1942 and ending with
the last modified version of Wilcox k−ω turbulence model which is also called
as the standard k − ω model.
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Figure 3.1: The development, timeline, of k − ω models over the years.

The following equations describe Wilcox’s k − ω model from his paper in
1988 [42]. Eddy viscosity is given by:

εt =
k

ω
. (3.24)

Turbulence kinetic energy yields from the following PDE’s:

∂k

∂t
+ uj

∂k

∂xj
= τij

∂ui
∂xj

− β∗kω +
∂

∂xj

[
(ν + σ∗εt)

∂k

∂xj

]
. (3.25)

The specific dissipation rate by:

∂ω

∂t
+ uj

∂ω

∂xj
= α

ω

k
τij
∂ui
∂xj

− βω2 +
∂

∂xj

[
(ν + σεt)

∂ω

∂xj

]
. (3.26)

And finally the closure coefficients and auxiliary relations:

α =
5

9
, β =

3

40
, β∗ =

9

100
, σ =

1

2
, σ∗ =

1

2
, ε = β∗ωk. (3.27)

The most used variation of k − ω models is Menter’s SST k − ω model [21]
which has a unique feature, combining the advantages of k−ε and k−ω models.
The Shear Stress Transport model mixes the robust and accurate formulation
of the k − ω model in the near-wall region with the free-stream independence
of the k− ε model in the outer region. The blending function that is used has
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the role of making the solution smooth and both the standard k − ω and the
transformed k−ε model are multiplied by this function. It is created in a way
to be one in the near-wall region, which activates the standard k − ω model,
and zero away from the surface, which activates the transformed k− ε model.
It is the most efficient as it provides excellent results for flows with separation
than most RANS models and also it is known for its good accuracy in adverse
pressure gradients.

Figure 3.2: SST k−ω model visualization combining two important turbulence
mathematical models.

Some adjustments in the standard k − ω model of Wilcox(1998) make the
SST more accurate and it is widely used by scientists for a wide variety of
flows with great and well compared results.

Every new model of Wilcox’s k−ω is more accurate in some cases than the
previous one or it covers a wider variety of flows, the most important difference
in Wilcox’s model (2006) is that he added a “cross-diffusion” term and a built-
in “stress limiter”, modification that express eddy viscosity as a function of k
and ω and effectively the ratio of turbulence-energy production of turbulence-
energy dissipation [43]. Additionally, these improvements in previous models
expand the range of its applicability, retains the advantages of previous ones
and increases significantly the accuracy in free shear flows or separated flows,
where previous k − ω models face accuracy problems. Finally, as Wilcox
mentions the version of 2006 is as good as that of 1988 for attached boundary
layer, mildly separated flows and backward-facing steps, Wilcox’s (1988) is of
great agreement with measurements for these flows. This model also applies
to both wall-bounded and free-shear flows, as this is a great advantage, of any
turbulence model, because complex flows include both types [43].
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3.4 Models of shear equations

Models of shear equations are also called models of many equations. These
models use differential equations to express each term of the stress tensor
or Reynolds tensor. So, as it is understood for these models, the number of
equations to be solved is very large, since in the RANS equations that describe
the flow are added, at best, another three differential equations to describe
turbulence. However, the calculations become very extensive and cumbersome.
The result of this is that the evolution of these models is relatively small due
to the high computational cost that is required.

3.5 Large Eddy Simulation - LES

This method is a combined approach between RANS and DNS due to the
computation of both the mean flow by RANS and the large energy-containing
eddies exactly like DNS does. The small-scale structures, in this method, are
parameterized by some simple mathematical model or RANS approach [8].

The main idea of this model is that the energy travels down the energy
cascade, also called as forward cascade, and not in a reverse way, by larger
eddies to smaller ones, for this reason, the main information is at the integral
scale, the large eddies and smaller eddies are somewhat passive with main
action to dissipate the energy that is coming from the larger ones.

Figure 3.3: A schematic of LES, the energy flux in vertical axis and the
wavenumber κ in horizontal one [8].

The attraction of LES lies in the fact that it is the large scales that are
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the most important. For example, they dominate the transfer of momentum,
heat, and chemical pollutants or reactants. So, if the spectrum is being cut at
some point, and provides a dustbin for the energy flux, then the large scales
will not notice the lack of smaller scales as it can be seen in Figure 3.3 [8].

The main concern of scientists in these models is the computational cost,
more expensive methods provide better accuracy, so scientists try to balance
out the accuracy and cost with the intention of achieving the best possible
result. The comparison between the computational cost of the latter methods
and some hybrid models between them can be summarized in Figure 3.4.

Figure 3.4: Computational cost of the introduced mathematical turbulence
models RANS, LES, DNS and hybrid methods.

3.6 Direct Numerical Simulation-DNS

In 1972 Orszag and Patterson demonstrated that a direct way of simulation
of a fully developed turbulent flow is possible [24]. This was groundbreaking
because DNS does not need a turbulence model to parameterize the influence
of turbulent eddies. It uses the progress of Navier-Stokes equations in time in
a certain domain and it can be seen as an experiment, but better because in
this experiment the initial conditions can be changed with ease, so they are
called numerical experiments [8]. This method does not need to make any
simplifications to the Navier-Stokes equations, but they are solved directly to
give a solution for quantities like velocity, pressure, density, and temperature.
This method reveals the chaotic nature of RANS equations.

The great benefit is that the initial conditions can be controlled very easily
with the touch of a button, unlike the physical experiment which is difficult
to achieve an initial condition. However, the amount of data is very large due

57



Chapter 3 3.6. Direct Numerical Simulation-DNS

to the history of u(x, t) which is available for inspection.

As stated in the previous chapter, the Kolmogorov microscale, or the ap-
proximate size of the smallest eddies is given by:

η = Re−3/4l, (3.28)

where l is the size of eddies in integral scale, the large energy-containing eddies,
and as mentioned the bigger the Re the smallest the η. It is easy to estimate
how the number of grid points at which u must be calculated to analyze every
eddy in the turbulence spectrum. The spatial separation of the sampling
points, ∆x, cannot be very large compared to η, so the simulation is accurate
enough. A minimum, we require ∆x ∼ η ∼ Re−3/4l. So the number of points
which is needed at any instant for a three-dimensional simulation is:

N3
x ∼

(
LBOX

∆x

)3

∼
(
LBOX

l

)3

Re9/4, (3.29)

where Nx is the grid points in any direction and LBOX is a linear dimension of
the computational domain. Α useful observation can be derived if we transform
the equation into the following form:

Re ∼
(

l

LBOX

)4/3

N4/3
x . (3.30)

The relation between the Reynolds number and the number of grid points is
nonlinear consequently, for large Reynolds numbers a very large number of
grid points is required [8], in real life application Reynolds number is high
therefore this increases significantly the computational cost and makes this
method a very computational expensive tool.
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CHAPTER4
Numerical Solutions of
Turbulent Flow

In fluid mechanics, the process of acquiring a numerical solution, through
computational mathematics, is at the heart of turbulence nature as exact
solutions are absent. The comparison of turbulent numerical solutions with
experimental data is vital, due to the chaotic nature of various real-world
phenomena and practical applications in mechanical problems. This chapter
will introduce the processes through numerical results with the succor of tur-
bulence models, as described in the third chapter. Advanced computational
methods with the purpose of achieving the best results possible for the de-
sired flows will be introduced. Additionally, will be utilized the fundamental
principles, presented in the second chapter, of turbulence nature and useful
semi-empirical laws, for example, the logarithmic law of the wall and numeri-
cal techniques that offer a comprehensive description of this turbulent aspect
of fluid dynamics.

4.1 Numerical Schemes Overview

4.1.1 Finite Volume Method (FVM)

The Finite Volume Method, used in this thesis, is a second-order accuracy
method, due to the difference scheme used to discretize the governing equations
representing conservation laws over differential volumes. This method trans-
forms partial differential equations, linear or non-linear, into discrete algebraic
ones over finite volumes. Initially, F.V.M. discretizes the geometric domain
into control volumes (finite volumes) as presented in Figure 4.1. Then, the
system of partial differential equations is discretized into a system of algebraic
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equations by integrating over each discrete control volume. Finally, the system
of algebraic equations is solved with any desired solver to obtain the values of
the dependent variable on each of the cells (every discrete volume) [22].

Bottom wall

In
le
t

Top wall

O
u
tl
et

Figure 4.1: A discretized domain with F.V.M. of a rectangle (channel) with
square control volumes with ∆x = ∆y.

In the F.V.M. the terms in the conservation of mass equation are trans-
formed into face fluxes and evaluated at the finite volume faces. Because the
flux entering a given volume is identical to that leaving the adjacent volume,
the F.V.M. is strictly conservative and divergence-free, ∇ · q = 0 condition is
required, so in every control volume an integral conservation law statement is
imposed.

Definition 4. An integral conservation law asserts that the rate of change of
the total amount of a flux with density u in a fixed control volume T is equal
to the total flux of the substance through the boundary ∂T .

d

dt

∫
T
udx+

∫
∂T
f(u) · dη = 0, η : normal unit vector. (4.1)

Another advantage of the F.V.M. is that it can be formulated in the physical
space on unstructured polygonal meshes, thus it is easy to implement a variety
of boundary conditions in a noninvasive manner since the unknown variables
are evaluated at the centroids of the volume elements, not at their boundary
faces [22].

All these advantages have made the F.V.M. method a great tool for solv-
ing difficult CFD, and related transport phenomena problems which include
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heat or mass transfer [26]. With the progression of numerical analysis and
computational mathematics, this method has proven effective for all kinds of
complex geometries.

Figure 4.2: Control Volume (CVi) of
Finite Volume Method.

As mentioned, the first step of the
method is the discretization of the
domain Ω into subdomain CVi ⊆
Ω, i = 1, 2, ..., N, the second step
is to integrate the governing differen-
tial equations over each control vol-
ume CVi, as can be seen in Figure
4.2, with the resulting discrete alge-
braic equations contain the unknown
parameters, such as the velocity com-
ponents or the pressure, on the grid
points with one equation of difference
for each CV. At the end of this pro-
cess, a solver is used to calculate the
values of the unknown parameters,
on the grid points. Finally, present
the corresponding plot to visualize
the desired flow or pressure field. In the Finite Volume Method, these re-
solved values form the numerical solution, resulting in a more practical and
easy-to-implement method [26].

The Finite Volume Method has consolidated as a fundamental discretiza-
tion scheme, in a wide variety of flows from simple to complex geometry ones,
the great advantage that placed this method in a top position in the scien-
tific community is the Integral Conservation Law, which ensures that each
volume respects the conservation physical laws that represent CFD problems.
It makes it possible to represent natural phenomena such as transport phe-
nomena, mass, momentum and energy conservation. The applications of this
method are countless in various sectors of fluid mechanics such as Magnetohy-
drodynamic and Ferrohydrodynamic effects in a channel flow [5], in biomedical
applications and hemodynamics which study the cardiovascular system and
especially the Magnetohydrodynamic effects on a pathological vessel [16] or
aerodynamic applications such as of wind-turbine-blade profile study [31].

The Finite Volume Method is being used in this thesis for the discretization
of RANS and RABL equations for the numerical solution of turbulent chan-
nel flow and turbulent B.L. flow respectively, as well as for the preliminary
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results of the backward step flow. The discretization plays a crucial role in
the stability and quality of the obtained results and has to be chosen properly,
considering the particular needs of the flow.

4.1.2 Upwind Scheme

The Upwind Scheme is a discretization method that transforms a system of
partial differential equations in discrete-algebraic form similarly to the Finite
Volume Method, it is also referred to as the donor-cell method or the upstream
difference scheme. The first work that laid the groundwork for this method
was by Courant, Isaacson and Rees and after many modifications resulted in
the modern model that is widely used in the twenty-first century.

The Upwind Scheme tries to correct the central differencing scheme by
erasing the admission that the convected property Φe is the average of ΦE

and ΦP and exploits the direction of the flow by considering that, for the
convection term, the value of Φe is calculated by the value of Φ at the grid
point on the upwind side of the face [26]. This scheme is essential for turbulent
flows and generally for flows with flow reversal. This method provides very
good results compared to experimental data, since it is developed for strong
convective flows with suppressed diffusion effects. The scheme is based on the
backward differencing scheme, so it is proven that the accuracy of the method
is first order, in contrast with the F.V.M. which is a second order method and
it is preferred in cases where accuracy is vital, especially in complex flows.

Specifically:

Φe = ΦP , if Fe > 0, (4.2)

Φe = ΦE , if Fe < 0, (4.3)

where the variable Φe is the convection mass flux.

Figure 4.3: Visualization of the Upwind Scheme for positive Fe [40].
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In Figure 4.3 the Upwind Scheme is visualized, for the calculation of cell
face value, in the case where Fe is positive, and the direction of the flow is from
west to east. In this thesis, it is utilized for the simulation of turbulent B.L.
and turbulent channel flow in the advanced computational program Fluent
(Ansys,Canonsburg, Pennsylvania).

4.1.3 Newton’s Method

Μost phenomena in nature are described by nonlinear differential equations
systems, and through their transformation into nonlinear algebraic systems,
arises the need to solve them. The most widely-known method for solving
nonlinear algebraic systems is Newton’s method, also known as the New-
ton–Raphson method, which is based on the relationship of a function to
its tangent at a point (initial guess) close to where the roots of the equation
exists. The initial guess is crucial for the convergence of the method, also
defined as a local method [28].

A system of n equations and n unknown variables is assumed, this system
will be solved after the process of discretization such as the Finite Volume
Method or Upwind Scheme discretization. So the system is defined as:

f(x) = 0, (4.4)

where f = (f1, ..., fn)
T , x = (x1, ..., xn)

T and 0 = (0, ..., 0)T .
To start the method an initial guess is needed x(0) that is not a root of f so
f(x)(0) ̸= 0. Taylor series expansion is required so that: f

(
x(0) +∆x(0)

)
= 0.

We seek the first-order Taylor series information around x(0):

f
(
x(0) +∆x(0)

)
= f

(
x(0)

)
+ Jac

(0)
∆x(0), (4.5)

where Jac is the n× n Jacobian matrix:

Jac(0) =
(
∇f1

(
x(0)

)
, ...,∇fn

(
x(0)

))T
. (4.6)

It is demanded that f
(
x(0) +∆x(0)

)
= 0 so arises the need to compute the

term ∆x(0) and this can be computed approximately as:

∆x(0) ≈
(
Jac(ν)

)−1
f
(
x(ν)

)
. (4.7)
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The vector x is updated as:

x(ν+1) = x(ν) +∆x(ν) = x(ν) +
(
Jac(ν)

)−1
f
(
x(ν)

)
, (4.8)

where ν, is the Newton iteration. This algorithm is iteratively performed until
the error between two successive iterations is less than the specified tolerance
that it is picked and the algorithm stops as it has obtained the solution and has
updated the vector x(ν+1). If the error is higher than the specified Newton’s
iteration is increased by one and the process is repeated [7].

The convergence is guaranteed after certain conditions and the method is
not globally convergent, and the initial guess must be close enough to the
roots. The Newton’s method is called a locally convergent method.

Trust Region Algorithm

The trust region method is a procedure that generates steps through a
quadratic model of the desired function with the aim of minimizing it. More
specifically, they create a region all around the current iteration which they
trust, to be a valid approximation of the function and they choose a step to be
the approximate local minimizer. The choice of the direction and length of the
step is implemented at the same time. If this step is not achieving to reduce
the function, these models reduce the size of the region and try to find a new
minimizer. The size of the step is vital for the trust region as there are risks
of error, in the case of a small step a chance of fast reduction of the function is
lost, in the other case if the size of the step is very large the minimizer of the
trust region model can be in long distance from the minimizer of the desired
function locally. So, the size of the trust region is vital for the performance of
the model, in most cases after previous work done with the model, the choice
can be easily made to achieve an optimal performance. For a reliable and
well-tested model, the size of the trust region can be increased and take a
larger step, consequently have a faster convergence [23].

One of the most commonly used model functions is the quadratic so with
the use of Taylor series expansion the objective function of f around the point
xk is:

mk(p) = f(xk) +∇T
f(xk)p+

1

2
pTBkp, (4.9)

where mk = f(xk + p) is the model function which is used iteratively for

each k and Bk is a symmetric matrix which replacing the term ∇2
f(xk + tp).
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The error that we allow, with this substitution, is O(||p2||) which is small

because also ||p|| is small, due to the assumption that Bk = ∇2
f(xk + tp),

this assumption leads to the trust-region Newton method [23]. To obtain each
step, we seek a solution to the sub problem:

min
p
mk(p) = min

p

(
f(xk) +∇T

f(xk)p+
1

2
pTBkp

)
, ||p|| ≤ ∆k, (4.10)

where ∆k is the radius of the trust-region. The trust-region method solves a
sequence of problems 4.10 in which the objective function and constrain are
both quadratic. More details about this method can be found in [23].

4.1.4 SIMPLE Algorithm

The SIMPLE algorithm is an iterative numerical method developed to solve
the Navier-Stokes equations and stands for Semi Implicit Method for Pressure
Linked Equations. Proposed by Patankar and Spalding, it follows a path of
initial guess and find procedure to obtain the corrected pressure and then
the velocity field. It is widely used by the scientific community because of
its convenient solving strategy, as well as all of its advanced variations like
SIMPLEC or SIMPLER [26].

Figure 4.4: Stages of the SIM-
PLE algorithm.

A direct way to deal with the Navier-
Stokes equations in two or three dimensions
is to solve the coupled system of partial dif-
ferential equations, 2 or 3 momentum equa-
tions (2D or 3D case) coupled with conser-
vation of mass equation. This algorithm
proposes a slightly different approach than
the direct method. The problem will be
defined, along with the preferred equations
and the boundary conditions for the de-
sired problem will be applied as can be
seen in Figure 4.4. Then an initial guess
is required for the pressure values, in each
flow they are proposed different strategies
for applying the initial guesses by bibliog-
raphy. In the first step of SIMPLE the dis-
cretized momentum equations are solved
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with the pressure to be known and equal to the initial guess. The conserva-
tion of mass isn’t included in the first step, so the solution for the components
of velocity won’t verify it. In the second step, a pressure corrector equation
, is derived from the continuity and momentum equation, and is solved to
approximate more accurate the pressure (pressure correction equation-Poison
equation). In the third step, the updated pressure is used to correct the veloc-
ity components but this time coupled with the conservation of mass equation,
in order to verify it. These last results for velocity in addition with the cor-
rected pressure are the result of the algorithm. At the fourth step, any other
transport equations are solved to acquire the quantities that are studied, for
example in turbulent flows and especially in two differential equations turbu-
lence models like k − ω or k − ϵ the desired quantities would be the T.K.E.
k, specific dissipation rate ω and dissipation rate ε. The whole process is re-
peated iteratively until a convergence criterion that has been chosen is reached
[40] as depicted in Figure 4.4.

4.2 Turbulent Boundary Layer

The turbulent B.L. occurs after the transition from laminar and transitional
B.L. and is a phenomenon that concerns scientists, who try to deal with it effi-
ciently, to achieve the best results possible, for example, to optimize the shape
of an airplane or airfoil in order to reduce the drag and consequently save fuel
and money. In fluid mechanics, fluid particles in a flow near a solid boundary,
are slowed down by wall friction. If the flow is sufficiently decelerated due
to the effect of an adverse pressure gradient, the momentum, and equivalent
energy, of those particles will be interrupted by both wall shear stresses and
pressure gradient. At the separation point, a location between forward and
inverse flow where the wall shear stress is zero, the viscous layer leaves from
the surface, the streamlines will leave the body. Thus it can be stated that
the B.L. separation occurs.

The phenomenon of separation of the boundary layer is associated with large
energy losses, something that mechanics and engineers try to avoid at any cost,
and so most of the times the performance of many practical devices is directly
associated with the separation point. For example, if separation is postponed,
we have the following benefits, the pressure drag of a steep body, like a ball, is
reduced, the circulation and hence the lift of an airfoil at a high angle of attack
is increased and the pressure recovery of a diffuser is improved. When we refer
to boundary layer control, we include any mechanism or process through which
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the boundary layer is disturbed and behaves differently than it normally would.
A wide range of examples can be mentioned such as the delay of transition
or separation of the boundary layer, the reduction of skin friction or pressure
drag, heat transfer, or lift. In aerodynamics it is desired to postpone the
separation of the boundary layer so that form drag (pressure drag) is minimum,
stall is delayed or avoided at all and lift is increased. Flow separation is
currently employed, for example with the help of vortex generators, blown flaps
or slats on older generation supersonic fighters, or leading edge extensions and
strakes on newer generation, or cooling, heating of the wall by blowing air from
slots [10]. The most acceptable technique for turbulent boundary-layer control
is the suction/injection technique. Another technique is the localized suction
which is to apply continuous suction in a region confined between x = a and
x = b, 0 < a < b < L where L is the whole length of the boundary surface.

Τurbulent boundary layer due to its chaotic nature is at the center of in-
terest for scientists, trying to study and control it. In many cases where there
are no practical solutions, nature is observed and mechanics try to imitate it,
such as the examples of winglets or shark skin. Winglet technology was imple-
mented by Richard Whitcomb’s research in the 1970s at NASA resulting in the
reduction of drag in airplanes. German airline company Lufthansa installed
artificial shark skin throughout her fleet, which led to drag reduction. This
artificial shark skin consists of small geometries with the shape of triangles
or rectangles called riblets, which allow the fluid to flow with small resistance
and reduce the skin friction drag similarly to shark skin effect.

4.2.1 Numerical Solutions of Turbulent Boundary Layer

Many research works have been published, throughout the years, in nu-
merical solutions of the turbulent boundary layer with the effect of pressure
gradients, adverse or favorable, with separation control like suction/injection
or riblets, additionally heat and mass transfer are studied or Magnetohydro-
dynamics and Ferrohydrodynamics [14].

An interesting work that combines some of the latter, is this of Kafoussias
and Xenos (2000) [14] which presents a numerical investigation of 2D turbulent
B.L. with an adverse pressure gradient, for compressible flow with suction and
injection with heat transfer, over a finite smooth surface. In this thesis, we
will analyze this work only for the case of the adiabatic wall (SW = 1), which
means we won’t deal with heat transfer (heating/cooling of the wall).

Initially, this work formulates the problem and more specifically, the steady
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two-dimensional compressible boundary layer flow over a smooth flat perme-
able surface. The surface is located at:

y = 0, 0 ≤ x ≤ L, −∞ < z <∞, (4.11)

it is parallel to the free stream of a perfect gas flowing with velocity u∞. The
equations that describe this kind of flow are the Reynolds averaged boundary
layer equations which can be written in orthogonal coordinates (x,y) as follows:
continuity equation

∂

∂x
(ρ u+ ρ′u′) +

∂

∂y
(ρ v + ρ′v′) = 0. (4.12)

x-momentum equation

(ρ u+ρ′u′)
∂u

∂x
+(ρ v+ρ′v′)

∂u

∂y
= −∂p

∂y
+
∂

∂y

[
µ
∂u

∂y
− (ρu′v′ − ρ′u′v′)

]
. (4.13)

y-momentum equation
∂p

∂y
= 0. (4.14)

By the Reynolds Averaged Navier Stokes it is known that for the instantaneous
quantities (u,v,p) it is true that f = f ′ + f , where f is the mean value and f ′

is the fluctuating part. With the use of Bernoulli’s equation, the term ∂p/∂x
in the x-momentum can be substituted by:

−∂p
∂x

= −dp
dx

= ρeue
due
dx

. (4.15)

Also by using the abbreviation ρv for ρ v + ρ′v′, and omitting, for simplicity
the overbars on the basic time average variables u, v, p and ρ. Also the eddy
kinematic viscosity εt is defined by the expression:

εt =
−u′v′

∂u
∂y

. (4.16)

By applying the latter to the equations(4.2-4.4) the new system of equations
can be written as:

∂

∂x
(ρu) +

∂

∂y
(ρv) (4.17)

ρu
∂u

∂x
+ ρu

∂u

∂y
= ρeue

due
dx

+
∂

∂y

[
(µ+ ρεt)

∂u

∂y

]
(4.18)
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y = 0 : u = 0, v = vw(x), (4.19)

y = δ : u = ue(x), (4.20)

where ue(x) is the external velocity which is given by Howarth’s flow formula:

ue(x) = u∞(1− x), (4.21)

where u∞ is the free stream velocity, x = x/L and L is the boundary permeable
surface (porous wall). Additionally, vw is the suction/injection velocity at the
wall which is given by:

vw =
1

2
v0[1 + tanhβ(x− a)], 0 < x ≤ a+ b

2
, (4.22)

and

vw =
1

2
v0[1− tanhβ(x− a)], x >

a+ b

2
, (4.23)

where for this work a = 0, b = 1.2m, β = 10 and v0 is a constant as described
above. Furthermore, the authors introduce the compressible version of the
Falkner-Skan transformation which is defined as:

η(x, y) =

∫ y

0

√
ue(x)

ve(x)x

ρ(x, y)

ρe(x)
dy, (4.24)

ψ(x, y) =
√
ρeµeuexf(x, y), (4.25)

and the definition of stream function ψ for compressible flow, that satisfied
the continuity equation, by the relations:

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (4.26)

Finally with the help of transformation and the definition of stream function
Kafoussias and Xenos [14] conclude in the final system of equations. The
turbulence model that is used is the simplest algebraic model, of Cebeci and
Smith and for the numerical scheme, they use a backward difference modifica-
tion of the Keller’s-box method and the resulting non-linear algebraic system
is solved using a multidimensional Newton-Raphson iteration scheme.

To show the effects of mass transfer in the compressible boundary layer,
authors conducted numerical calculations with different values of free stream
Mach numbers. In this study, will discuss the case of adiabatic flow (Sw = 1),
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flow with no heat transfer, in such a case it is worth examining only the velocity
field and the skin friction coefficient.

Drag consists of two main components pressure and friction drag. The
skin friction coefficient is a parameter, dimensionless, which is defined at any
point of a surface that is subjected to the free stream, it will vary at different
positions. It is worth analyzing it in such cases because an object like an airfoil,
an aerodynamics object, by definition has small pressure stresses which results
in small pressure drag. So, it is not worth examining pressure stresses, on the
contrary, the component of stresses that dominates in objects like airfoils, are
skin friction stresses which lead to large skin friction drag. Εngineers try to
minimize skin friction drag to limit the energy losses. So all the methods that
try to prevent the separation of boundary layer and consequently the energy
loss, attempt to minimize the skin friction drag and more especially local skin
friction coefficient which is provided by the relation:

Cfx =
τw

1
2ρeu

2
e

, (4.27)

where τw is the stresses at the wall, given by the experimental law of Newton,
or else the skin friction drag.

The following results, presented in the paper of Kafoussias and Xenos [14],
depict the dimensionless mean velocity profiles with dimensionless distance, at
a distance x = 2.0m from the leading edge of the plate, in the cases of no suc-
tion/injection and the cases of continuous suction and injection. It is observed
that in low Mach numbers such as 0.75 in Figure 4.5, the application of suction
reduces the mean velocity and of injection has the same effect even more, the
mean velocity. In the case of larger Mach numbers such as 3.0 in Figure 4.6
continuous suction increases the mean velocity and continuous injection de-
creases it. In conclusion, the velocity field is affected by the suction/injection
velocity applied on the wall as by the free stream Mach number.

From Figure 4.7 it can be observed that for various Mach numbers, the
application of continuous injection helps in the reduction of friction drag but
it moves the separation point downstream, and this is more intense for large
Mach numbers. An interesting observation that is to be made, is that when
the local skin friction drag coefficient becomes zero then there are no skin
friction stresses so the separation of the boundary layer has occurred. Another
interesting observation from this figure is that with the use of suction, the value
of the skin friction coefficient is larger at any point but in return, separation
is delayed and this is desirable as we want the separation to be delayed as far
as possible.
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Figure 4.5: Variations of dimensionless velocity for Minf = 0.75 [14].

Figure 4.6: Variations of dimensionless velocity for Minf = 3.0 [14].

In Figure 4.8 it can be observed that an increase in Mach numbers with
no suction or injection results in a decrease in local skin friction coefficient at
first, but the separation point moves closer which means that the separation
occurs faster, a phenomenon undesirable.
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Figure 4.7: Variations of local skin friction coefficient Cfx [14].

Figure 4.8: Variations of local skin friction coefficient Cfx [14].

Finally, the effect of continuous or localized suction/injection is presented
in Figure 4.9 for Minf = 2.0. By blowing air through the permeable wall the
skin friction coefficient can be reduced at first stages, however the separation
point moves downward in both cases of injection, localized or continuous, so
the separation occurs faster. In the case of suction, the separation of turbulent
boundary layer is delayed but the skin friction coefficient increases its value
at the first stages.
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Figure 4.9: Variations of local skin friction coefficient Cfx [14].

4.2.2 Bubble Formation after B.L. separation

Another interesting work in the study of the after region of the thermal
boundary layer is the bubble formation, in this thesis we will present the
results of Xenos (2022) [46]. The BL before the separation point is depicted
and these calculations are based on the classical formulation. The simulation
below shows the velocity contours and the temperature distribution.

A notable quantity in mechanical applications, as mentioned, is the skin
friction coefficient, so in many studies, this quantity is being examined and
evaluated. Figure 4.10 presents the skin friction coefficient, Cfx, for the three
studied cases, M = 0.2, 0.33, and 1.0, under adverse pressure gradient [46].
The skin friction coefficient begins from a large value and reduces as x in-
creases, until it becomes zero, revealing the exact point of flow separation.
The figure reveals the point of separation for each case. So, in detail and
for Mach number M = 0.2 the flow separates at xs = 0.9594 m, from the
leading edge of the flat plate. For the other two cases, M = 0.33 and 1.0 the
separation point is xs = 0.9544 and 0.8994 m, respectively.

The numerical data that has been obtained from the mathematical descrip-
tion of the laminar bubble formulation (inverse problem) for three different
Mach numbers is also presented [46]. The numerical results of bubble for-
mation in low Reynolds numbers reveal that after separation creation of a
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laminar bubble in all studied cases, Mach numbers, M = 0.2, 0.33 and 1.0.
The flow after separation reverses close to the wall and finally reattaches in
the x-direction. More precisely, for the case where M = 0.2, a small recircula-
tion region is observed close to the wall. The velocity is substantially reduced.
After reattachment, the BL is again established but at a much lower energy
level, and the velocity field is substantially reduced, compared to the initial
flow field. The BL, due to the adverse pressure gradient, moves upward as
shown in Figure 4.12 below.

Figure 4.10: Skin friction coefficient, Cfx, of the laminar boundary layer for
Mach numbers, M = 0.2, 0.33 and 1.0 and corresponding separation locations,
xs [46].

Figure 4.11: Velocity vectors and temperature distribution of the laminar
BL for Mach number, M= 1.0, location of separation from the leading edge,
xs = 0.8994m [46].
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Figure 4.12: Velocity contours of bubble formation after separation for various
Mach numbers, M = 0.2, 0.33 and 1.0 [46].
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4.2.3 Turbulent Boundary Layer with Cebeci-Smith model

The turbulent B.L. differs significantly from the laminar B.L. and needs
thorough study, its many real-life applications such as in aviation and ship-
building push the scientific community to research more about this phenomenon.
Many studies have been published about the turbulent B.L. Some of them
have been the initial step for the creation of turbulent models, which used as
a test study for the model accuracy, the turbulent B.L. some examples are the
Cebeci-Smith [36] and the Baldwin-Lomax [1].

In this thesis, the turbulent B.L. numerical solution is simulated with the
help of finite volume method discretization, the use of advanced mathematical
computing programming language Matlab and the algebraic turbulent model
of Cebeci and Smith as it is described in Chapter 3.1.1. It will be examined the
case of a turbulent B.L. over a flat plate in which the no-slip condition exists
in the plate and the geometry of interest is a rectangle with a height of H=0.2
and width of L=1 with a graded mesh, else called boundary layer mesh, since
it is widely used in B.L. numerical solutions. This mesh is finer near the plate,
the height of cells becomes bigger as it gets away from it as it can be observed
in Figure 4.13. The mesh and geometry are generated through Matlab with
the use of a technique that takes advantage of the geometric progression. The
equations that are used are the RABL equations as described in the next
section.

Reynolds Average Boundary Layer equations

Initially, the problem must be mathematically formulated, so the steady-

state

(
∂q

∂t
= 0

)
, two-dimensional, incompressible turbulent B.L. is described

by the Reynolds Average Boundary Layer (RABL) equations. The problem
under consideration can be described by the continuity and the momentum
PDEs, Equations (4.28)-(4.30). The RABL equations, in closed form, are:

∇ · q = ∂u

∂x
+
∂v

∂y
= 0, continuum equation (4.28)

∂u2

∂x
+
∂(uv)

∂y
= −1

ρ

∂p

∂x
+

∂

∂y

[
(ν + εt)

∂u

∂y

]
, x-momentum (4.29)

∂(uv)

∂x
+
∂v2

∂y
= −1

ρ

∂p

∂y
+

∂

∂y

[
(ν + εt)

∂v

∂y

]
. y-momentum (4.30)
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To ensure that the problem is well-defined, to the above equations must be
added the following boundary conditions:

y = 0 : u = 0, v = 0,

y = δ : u = u∞,

where u∞ is the free stream velocity out of the boundary layer, in the dynamic
flow region.

Numerical Result of the Turbulent Boundary Layer

With the use of the F.V.M. method, details can be found in the Appendix,
and by replacing each term in the system of Equations (4.28)-(4.30) that de-
scribe the turbulent B.L. we conclude in the following discrete form-equation
of differences:
Conservation of Mass

(uE − uW )∆y

2
+

(vN − vS)∆x

2
= 0, (4.31)

x-momentum

(u2E − u2W )∆ y

2
+

(
uNvN − uSvS

2

)
∆x = −1

ρ
(PE − PP )∆y

+

[
(ν + (εt)n)

uN − uP
∆y

− (ν + (εt)s)
uP − uS

∆y

]
∆x, (4.32)

y-momentum(
uEvE − uW vW

2

)
∆ y +

(v2N − v2S)∆x

2
= −1

ρ
(PN − PP )∆x

+

[
(ν + (εt)n)

vN − vP
∆y

− (ν + (εt)s)
vP − vS

∆y

]
∆x. (4.33)

Geometry and Mesh of Boundary Layer

The geometry of the problem under consideration is this of a turbulent flow
over a flat plate with length L and height H. For the problem that is being
studied in this thesis H=0.2 and L=1. The initial velocity that is being applied
in the inlet of the geometry is constant and equal to u0 = 10 m/s.
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With a large velocity gradient close to the bottom wall, and consequently,
large wall shear stresses that are created, we are obliged to impose a graded
mesh, or else called boundary layer mesh since it is necessary for turbulent B.L.
flow study. The ability of the mesh to resolve the smallest scales of turbulence
can be verified by the value of y+ as it is presented in Chapter 2. In most
laminar cases a uniform mesh can cope well enough but in turbulent flow near
solid boundaries, graded mesh is required. It is described by a graded mesh
from the bottom to the upper wall in the y-direction, which implies that the
height of the cells is smaller closer to the wall, finer mesh, and uniform in the
x-direction, equal width for the cells. The height of the cells starts to increase
at a certain rate (K) that we apply.

Figure 4.13: The 2D pipe channel geometry and grid.

The grid is constructed with the help of Matlab and according to the source
[2], y-direction (height) graded mesh that is used in this thesis is described by
the geometric progressions that have the property that the ratio of the lengths
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of any two adjacent intervals is a constant, so hi = Khi−1 where the distance
to the i−th line is provided by:

yi = h1
Ki − 1

K − 1
, i = 1, 2, ..., J, K > 1, (4.34)

h1 =M

(
K − 1

KJ − 1

)
.

The second relation ensures that the grid stops at M, at the end of the geom-
etry barriers, at the end of the geometry height. The two parameters that is
being used are h1 which is the length of the first ∆y-step and the second is K,
the ratio of two successive steps. In the existing problem h1 = 6.8057 · 10−5

and K = 1.08 for the final solution that is obtained in a 70×70 grid. The
visualization of this grid can be observed above in Figure 4.13.

Results in Turbulent Boundary Layer

The two-dimensional steady-state flow over a smooth plate with the geometry-
grid-system of equations, as discussed above using the advanced mathematical
computing programming language Matlab numerical solution is obtained, with
the discretization using F.V.M. The inlet velocity was set as constant and equal
to 10m/s and the fluid properties viscosity has to be adjusted, µ = 2 ·10−5 kg

ms ,

density ρ = 1 kg
m3 , these properties are approaching good enough the properties

of air.

The RABL equations with the use of the F.V.M. are transformed to algebraic-
discrete equations (4.31)-(4.33). The mesh is created in the rectangle domain,
creating volumes via the F.V.M. applied to the RABL equations transforming
them from a differential system into a system of coupled non-linear algebraic
equations. The desired variables are the unknown values of u-v velocity com-
ponents and pressure at each control volume at the mesh grid. For the solution
of the non-linear coupled algebraic system a non-linear solver is required, the
most common one is the Newton-Raphson method as described in subsection
4.1.3. The vector x(ν) represents unknown variables created by the mesh grid,
while f

(
x(ν)

)
represents the interconnected algebraic functions (system) as-

sessed at x(ν). The numerical solution given for a complex problem like that
of the turbulent boundary layer is of great interest and will therefore be thor-
oughly analyzed. The numerical solution is obtained in a direct way, using
Newton’s solver which adds robustness to the results as the equations remain
unchanged.
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The boundary conditions are applied and remain unchanged, in the domain,
the geometry has been divided into rectangles as it is described, with a grid of
70×70 used, so there are 4900 of each variable equation or 4900 × 3 = 14700
Degrees of Freedom. The algebraic system is given by evaluating each of
the discretized equations in each control volume of the partition so in the x-
momentum equation in each control volume an algebraic equation is generated,
in the grid 70× 70 there are generated 70× 70 algebraic equations. By doing
the same in y-momentum and conservation of mass equations which have
the same amount of equations, the final number of equations, that form the
algebraic system and need to be solved, is 3 × 70 × 70 = 14700. Finally, the
whole domain’s equations (three equations for each control volume) are solved
simultaneously at each iteration of Newton’s algorithm as described in 4.1.3.

The aforementioned procedure results in the numerical solution to the stud-
ied problem, as well as for the RANS equations of turbulent channel flow in
the next subsection. The magnitude of velocity and pressure distribution are
presented and commented on below, in-depth information related to u-velocity
and v -velocity components is available in the dedicated Appendix. The tur-
bulent B.L. is a phenomenon that occurs after the transition of a laminar
boundary, all laminar B.L. will transition to turbulent if they have an infinite
plate. The mixing motion in turbulence is important for the drag of turbulent
flows, and for the friction drag. As presented in Chapter 2, the turbulent B.L.
velocity distribution consists of three main regions where the turbulent and
laminar stresses change their behavior, depending on the region. Similarly to
the laminar B.L. the changes in the x-momentum can be taken to be small
enough to be neglected in the main flow direction ∂/∂x ≪ ∂/∂y. The shear
stress consists of two components the molecular exchange (laminar) and the
additional due to turbulent exchange.

Remark: In a B.L. the flow is laminar if Re < 5 · 105 and turbulent if
Re > 5 · 105.

The analysis of the magnitude of the velocity umag =
(√

u2 + v2
)
is crucial

for the investigation of the turbulent B.L. The boundary layer thickness is
decreased in comparison with the laminar boundary layer and this is because
shear stresses near a solid boundary are more intense since turbulence transfers
momentum closer to the walls and reduces the thickness of the B.L. In the vis-
cous region (laminar sublayer) of the B.L. the viscous shear stress dominates,
in contrast with the outer layer in which the turbulent shear stresses over-
come the laminar ones, due to the eddy viscosity effects through macroscopic
movement of eddies. So, in Figure 4.14 it can be observed the contours of the
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magnitude of the turbulent B.L., this can be divided into two big regions, the
outer region where dynamic flow is preserved and the inner layer of the B.L.
which is the region that the viscous effects create the laminar sublayer, the
boundary layer thickness (δ) is noticeably smaller than laminar B.L. as the
enhanced mixing that due to turbulence (macroscopic mixing, as the eddies
are a collection of molecules that moves as whole) brings more momentum
close to the wall, because the more intense turbulence is mixing more effective
the fluid near the surface, consequently the velocity gradient is reducing as
well as the thickness of the boundary layer.

The pressure of the boundary layer is increased at the starting region and
it instantaneously becomes zero as observed in Figure 4.15, this increase in
pressure is due to viscosity in reaction to the velocity that is applied in the
inlet. This is typical behavior of the pressure distribution, in contrast with
the turbulent pipe, in which the difference of pressure is moving the fluid and
the pressure is gradually descending.
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Figure 4.14: Magnitude of Turbulent Boundary layer
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Figure 4.15: Pressure in Turbulent Boundary Layer

The profile of u-velocity in the B.L. is compared to that of outlet u-velocity
in Figure 4.16, the inlet velocity is constant and equal to 10m/s, the outlet
velocity is following the analysis that is done in the previous chapter in which
the velocity goes through all the layers of inner layer (viscous sublayer), in
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which the viscous stresses dominate, then from the overlap layer and finally
from the outer layer in which the velocity is almost constant as it is anticipated,
due to the increased momentum transfer which leads to a rapid raise of the
velocity and consequently a homogenization of the velocity profile. The profile
presents a maximum value as it enters the outer layer and this is a common
behavior that is studied in the bibliography, as our inlet velocity is constant
and not parabolic, in any of these two cases the profile in the outlet is steeper
than the laminar one.
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Figure 4.16: Comparison of Inlet (red) and Outlet (blue) u-velocity profile in
Turbulent Boundary Layer.

In the following figures, some important properties of the flow can be ob-
served. Initially in Figure 4.19 the y-plus (y+) value is less than 5, so the first
cell of the simulation is in the viscous sublayer, and all the scales are resolved
properly. Another property of the turbulent flow is the mixing length which
is increasing as we move away from the plate, this is expected as the mixing
length is proportional to the height of the geometry. Finally, the stresses at
the wall are presented in Figure 4.17, they follow Newton’s experimental law
as the effects of Reynolds stresses near the wall, in the laminar sublayer, are
negligible. The stresses are slightly increased in comparison with the laminar
B.L. as the gradient of velocity in the y-direction is larger, the behavior of the
stresses is decreasing as the stresses are smaller because the gradient of the
velocity is essentially reducing.
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Figure 4.17: Stresses at the wall in Turbulent Boundary Layer.
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Figure 4.18: Mixing length in channel length.
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Figure 4.19: Yplus value across the channel length.
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Turbulent Boundary Layer with k − ω model

In this section the turbulent boundary layer with k−ω model is implemented
through the help of the advanced fluid mechanics program Ansys Fluent, the
properties of the fluid remained unchanged as in the case of Cebeci-Smith
so the inlet velocity was set as constant and equal to 10m/s and the fluid
properties viscosity has to be adjusted, µ = 2 · 10−5 kg

ms , density ρ = 1 kg
m3 .

The geometry is a rectangle with a length of L=1 and height of H=0.2 and
the mesh is a graded mesh with a finer grid at the bottom of the geometry,
as can be seen in Figure 4.20 to fully resolve the smaller scales. The model
k−ω is included in the family of two differential partial equations turbulence
models, which is a vital difference in comparison with C-S which is an algebraic
model as described in Chapter 2. The discretization of the RABL equations
is implemented with the use of the Upwind scheme as described in 4.1.2 and
the solver that is used is one of the most common ones in the fluid mechanics
scientific community, the algorithm SIMPLE as described in 4.1.4.
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Figure 4.20: Graded grid for Turbulent Boundary Layer.

The variation of the k−ω model that is used is Wilcox’s 2006 variation [43]
which is considered the standard version of k− ω models due to his advanced
accuracy and the wide range of flows that it covers. This model uses two
extra quantities the turbulent kinetic energy (k) and the specific dissipation
rate (ω) and with the use of these two the eddy viscosity variable is obtained as
discussed in a previous chapter. In Figure 4.21 it is presented the magnitude
of the flow in comparison with the C-S model in Figure 4.22. This result
is identical to our flow in terms of the qualitative comparison as the flow
is closer to the wall (thickness of B.L. is thinner compared to laminar one)
due to the enhanced mixing and increased momentum transfer in macroscopic
level (turbulent). Additionally the momentum transfer due to molecules move
(laminar), in the wall the no-slip condition exists so the velocity is zero in the
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flat plate.

Figure 4.21: Magnitude of Turbulent Boundary Layer with k − ω model.

Figure 4.22: Magnitude of Turbulent Boundary Layer with Cebeci-Smith
model.

The quantitative comparison is very difficult to achieve in turbulent flows
due to a lack of analytical solutions and since the differences in discretization
and the solver selection are creating reasonably quantitative differences. The
only two ways to obtain a quantitative study are by collecting experimental
data for the problem or by implementing DNS, neither of the two are of interest
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in this thesis.

The differences that are expected in this comparison are negligible to the
simplicity of the geometry and the low Reynolds number as we are at the
threshold of the turbulent regime in turbulent B.L., Re = 5× 105 − 5× 106.

Figure 4.23: Pressure Distribution in Turbulent B.L. with k − ω model.

For the pressure distribution, the same conclusions can be drawn with the
C-S model since the pressure shows a rapid increase at the beginning of the
geometry. This is due to the balance of viscous forces, and momentum transfer
and then gradually drops to zero. The increased pressure at the bottom left
part of the geometry is due to the momentum transfer which overcomes the
viscous forces and sets the fluid in motion.

4.3 Turbulent Internal Flows

Turbulence in internal flows is a common phenomenon in engineering and
nature as pipes, and ducts are essential for the understanding of turbulence
nature which have a lot of applications in the world of fluid mechanics like
industrial pipelines, water distribution systems on aerospace engineering the
jet engines flows or in biomedical engineering problems such as the blood flow
in arteries or veins. The case of internal turbulent flows is special since near
solid boundaries the gradient of velocity have large changes that need finer
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grids and large computational power. Turbulence in pipes occurs when the
Reynolds number is high enough to transition from laminar to turbulent flow
which leads to an increase in momentum and kinetic energy.

This thesis focuses on examining the internal turbulent flow within a pipe of
height H=2 and L=10 in a pipe that follows the no-slip condition in the upper
and bottom wall with an initial stable velocity of u0 = 5m/s that is applied
in the inlet of the pipe. The mesh of this pipe is a graded mesh in both walls,
which is designed to be denser near the two walls and the cell height becomes
more sparse while is reaching the center of the pipe, the mesh is symmetrical
with an axis of symmetry the line y=1. The grid size that is being used after
the independence grid study is defined to be 70×70.

4.3.1 Turbulent Pipe Flow with Cebeci-Smith model

The case that is being studied in this section is this of the incompressible,

steady-state

(
∂q

∂t
= 0

)
two-dimensional turbulent pipe channel which is de-

scribed by the Reynolds Average Boundary Layer (RANS) equations. The
problem under consideration can be described by the continuity and the mo-
mentum PDEs, equations (4.35)-(4.37). The RANS equations, in closed form,
are:

∇ · q = ∂u

∂x
+
∂v

∂y
= 0, (4.35)

∂u2

∂x
+
∂(uv)

∂y
= −1

ρ

∂p

∂x
+

∂

∂x

[
(ν + εt)

∂u

∂x

]
+

∂

∂y

[
(ν + εt)

∂u

∂y

]
, (4.36)

∂(uv)

∂x
+
∂v2

∂y
= −1

ρ

∂p

∂y
+

∂

∂x

[
(ν + εt)

∂v

∂x

]
+

∂

∂y

[
(ν + εt)

∂v

∂y

]
. (4.37)

To ensure that the problem is well-defined, to the above equations must be
added the following boundary conditions:

y = 0 and y = h : u, v = 0, (4.38)

x = L : p = c, (4.39)

where uinf is the free stream velocity out of the boundary layer, in the dynamic
flow region.
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Numerical Result of the Turbulent Pipe

With the use of F.V.M. method, Appendix provides a detailed examination
of the method, and by replacing each term in the starting system of the equa-
tions in turbulent B.L. we conclude in the following discrete form-equation of
differences:
Conservation of Mass

(uE − uW )∆y

2
+

(vN − vS)∆x

2
= 0, (4.40)

x-momentum

(u2E − u2W )∆ y

2
+

(
uNvN − uSvS

2

)
∆x = −1

ρ
(PE − PP )∆y

+

[
(ν + (εt)n)

uN − uP
∆y

− (ν + (εt)s)
uP − uS

∆y

]
∆x (4.41)

+

[
(ν + (εt)e)

uE − uP
∆x

− (ν + (εt)w)
uP − uW

∆x

]
∆y,

y-momentum(
uEvE − uW vW

2

)
∆ y +

(v2N − v2S)∆x

2
= −1

ρ
(PN − PP )∆x

+

[
(ν + (εt)n)

vN − vP
∆y

− (ν + (εt)s)
vP − vS

∆y

]
∆x (4.42)

+

[
(ν + (εt)e)

vE − vP
∆x

− (ν + (εt)w)
vP − vW

∆x

]
∆y.

Geometry and Mesh of Turbulent Pipe

Turbulent pipe geometry is described by two parallel walls, with both upper
and down to obey the no-slip condition and the inlet velocity to be a constant
with the value of u0 = 5m/s. The walls have a length of L=10 and a height
of H=2. The mesh that is required in turbulent pipe flows, is graded at both
walls, in y-direction, because of the large shear stresses that occur close to the
solid boundaries. The mesh in the x-direction is uniform, and for this case, a
70x70 mesh is used. For the generation of a graded mesh in both directions
in y-direction the hyperbolic tangent function is being used, this is a common
technique for the generation of stretched structured grids. Many variations of
hyperbolic tangent meshes have been published such as this of [39].
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The variant exploited in this thesis is described below:

c =
2i− J − 3

J − 1
, yi =

[
1 + tanh(K · c)

K1

M

2

]
, i = 1, 2, ..., J (4.43)

where K = 1.2, K1 = tanh(K).

In this variation J is the number of points in the y-direction, M is the height
of the pipe, and K is the stretch rate at which the mesh becomes more or less
graded in each wall with the same rate. The need for graded meshes is born
from the fact that the gradient of velocity near solid boundaries in turbulent
flows is large and so the velocity profiles are steep, in order to resolve correctly
all the scales of the energy spectrum a graded mesh is required.

Figure 4.24: The 2D pipe channel geometry and grid.
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Root Mean Square

The Root Mean Square (RMS) value of a matrix is the scalar quantity that
corresponds to the type above:

xRMS =

√√√√ 1

N

N∑
n=1

|xn|2, (4.44)

where xn is the elements of the matrix. The RMS gives a measure of the
magnitude or else the average value of the matrix. This value is used for
the grid independence study that is being conducted in the next chapter to
decide about the percentage differences between different grids. Independence
grid study is a crucial approach to decide what is the optimal grid, with the
purpose of minimization of computational cost.

Grid Independence Study

To optimize the CFD code that is presented, a grid independence study
is needed to obtain the smallest possible grid, with the purpose of saving
computational cost, by calculating the percentage difference and demanding
the error to be smaller than 2%, compared to the largest grid of 80×80. To
compare the grids, Root Mean Square (RMS) is utilized.

Table 4.1 presents the results of percentage differences over all grid sizes
and at the final line can be seen that the percentage difference is smaller than
2% in all three quantities, thus is can be concluded that the optimal grid size
has achieved.

Turbulent Pipe-Percentage Changes

Grid size U-Velocity V-Velocity Pressure

30-80 1,88 % 16,73% 15,75%

40-80 1,11% 12,24% 13,40%

50-80 0,70% 8,57% 7,35%

60-80 0,41% 4,49% 3,38%

70-80 0,18% 1,63% 1,32%

Table 4.1: Percentage Changes in Turbulent Pipe
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The percentage error is calculated through the following type:(
RMSixi −RMS80X80

RMS80X80

)
100%, i = 30, 40, 50, 60, 70. (4.45)

Results in Turbulent Pipe

The fully turbulent pipe flow numerical solution is obtained through the
above procedure including the equations, geometry, grid and the solver. The
procedure of numerical solution is described analytically in the subsection
“Results in Turbulent Boundary Layer”. The properties of the fluid are density
ρ = 1 kg

m3 the viscosity µ = 0.001 kg
ms and the velocity is constant in the inlet

as u0 = 5m/s, these properties lead to a smaller Reynolds number than in
Turbulent B.L.

The fully developed flow of a turbulent pipe can be driven either by gravi-
tational forces that create the hydrostatic pressure. In pipes in most cases is
negligible, due to the small height of the pipe or by the difference in pressure
at the inlet and outlet of the pipe. The viscous force is resistant to the flow
whose magnitude, is the same as the force that is created due to the pressure
difference, in a fully turbulent flow. So, the flow is moving with no acceleration
and maintains its velocity. If the fluid has zero viscosity then it would be ideal
and the pressure would be constant, except for its small fluctuations that are
caused by hydrostatic pressure.

In the inlet region where the flow is not fully developed, the fluid is acceler-
ating or decelerating, so there is a balance between pressure forces, viscosity,
and inertia and this balance drives the pressure along the pipe. The magni-

tude of the gradient of the pressure
∂p

∂x
is bigger at the inlet compared to the

fully developed region where pressure is approaching a constant value, so the
following remark can be made:

Remark: Due to the balance of forces, the force due to pressure is required
to overcome the forces due to viscosity, to get the fluid flow.

The main difference in laminar and turbulent flows in pipes is the shear
stresses, in laminar flow the shear stresses are a result of momentum transfer
between randomly moving fluid molecules, so the phenomenon is due to the
microscopic molecules motion. In turbulent pipes, the phenomenon can be de-
scribed as macroscopic as the shear stresses are a result of momentum transfer
between randomly moving fluid elements. So, the quantity τw is fundamentally
different in these two cases.
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Remark: In a pipe flow, the flow is laminar if Re < 2300 and turbulent if
Re > 4000 [40].

Turbulent flow is characterized by a high mixing of the fluid, in laminar
flow the mixing is orders of magnitude smaller, for this reason. It is easier
to mix a cream in a coffee mug than two different paints, where the flow will
be laminar due to the high viscosity. The effects of laminar flow are valuable
because the pressure difference at the inlet-outlet is smaller, for example in a
biomedical application, the heart provides blood to our body. This flow can
be characterized as laminar and this is vital to retain our good health, as high
Reynolds numbers could increase the shear stresses and rupture the arteries
[43].

The stresses τw in turbulent flow don’t follow the experimental law of New-
ton as the laminar flow does, by substituting the velocity u with the mean
value of velocity, it is experimentally verified that it is not accurate and this
is due to the nature of turbulence. As it is described in Theorem 2.4.1, the
molecules that move create shear stresses, these shear stresses are much larger
in the turbulent case since in laminar flows lumps of molecules are moving
in small distances and travel in streamlines. In contrast in turbulent flows
packages of molecules (eddies) are moving together so the shear stresses that
created are much larger and can’t be calculated by the Newton’s experimental
law. These additional stresses, as stated in Chapter 2, are called eddy viscosity
and are treated as stresses.

So the chaotic behavior of the velocity components (velocity fluctuations)
contributes to momentum transfer and consequently to the shear stresses.
Close to the wall in the turbulent pipe the same velocity distribution as the
turbulent B.L. applies. To connect this with the theory, in the velocity dis-
tribution of the turbulent layer, close to the wall at the viscous sublayer the
laminar stresses dominate. Then, then turbulent stresses are negligible, in the
overlap layer both turbulent and laminar stresses have an influence. At the
outer layer turbulent stresses are orders of magnitude greater than the laminar
ones.

The velocity profiles of turbulent flows have been observed to be more steep
than those of laminar flows and are becoming steeper as the Reynolds number
increases. This fact is a characteristic difference between the two cases and
is explained as follows. The increased momentum transfer homogenizes the
velocity profile and the large velocity values are mixed with the smaller ones
driving the creation of a steeper profile as it can be observed in Figure 4.29.
In this figure, we present respectively the results, of outlet velocity, in laminar
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and turbulent pipe flow. In the pressure distribution, that is observable in
Figures 4.27 and 4.28 for laminar and turbulent cases. respectively, it can be
pinpointed that the intensity of the pressure is much larger, in turbulent case.
As it has more intense behavior at the starting region and takes larger values
overall. Something that is expected and tends to reach zero as the fluid flows.
This is a vital observation as this is the reason for the fluid motion and the
pressure difference in inlet-outlet in both laminar or turbulent cases.

In Figures 4.25 and 4.26 the magnitude of velocity (umag =
√
u2 + v2) for

laminar and turbulent flow is presented, the values of magnitude are larger
for the turbulent case due to the higher u0 velocity that is applied in the inlet
and consequently the higher Re number more specific in laminar case (u0 =
1, µ = 0.01, Re = 200) and in turbulent case (u0 = 5, µ = 0.001, Re =
10000). The B.L. thickness for each wall is thinner in the turbulent case as
expected due to the increased mixing, and enhanced momentum transfer as it
has higher mixing which makes the boundary layer thickness thinner.
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Figure 4.25: Magnitude of velocity in laminar case
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Figure 4.26: Magnitude of velocity in turbulent case
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Figure 4.27: Pressure Distribution in laminar case
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Figure 4.28: Pressure Distribution in turbulent case
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Figure 4.29: Comparison of outlet u-velocity profiles in Laminar (blue) and
Turbulent (red) case.

Remark: The stresses near the wall are larger in turbulent flows since
higher velocity exists close to the wall due to higher momentum transfer and
enhanced mixing.
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The following Figures 4.30 and 4.31, present the stresses at the wall for
laminar and turbulent pipes. It is observed that the turbulent pipe has larger
stresses at the wall because of the reasons mentioned before. Quantitatively
it can be pointed out that in the turbulent case there is an increase by ap-
proximately 25%. The percentage of difference in stresses, as the center of the
pipeline is reached, is increasing exponentially.
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Figure 4.30: Stresses at the wall (τw) in laminar pipe.

Channel length.

S
tr
es
se
s
at

th
e
w
a
ll

Figure 4.31: Stresses at the wall (τw) in turbulent pipe.

Finally, some other turbulence properties of turbulence can be shown, ini-
tially the mixing length, which is a property of the flow is presented for half
of the pipe. The other half-pipe is the symmetrical of the Figure 4.32. As it
is expected it is increasing as the center of the pipe is reached. Moving away
from the wall and getting closer to the center of the tube the vortices start to
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become bigger. Additionally, the yplus value (y+) is presented in Figure 4.33,
this value is an important indicator as it needs to be less than 5 to ensure
that the laminar sublayer (viscous sublayer) is fully resolved due to the very
small eddies that exist in this region. This is an important indicator for every
turbulent flow simulation.
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Figure 4.32: Mixing length in half channel length.
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Figure 4.33: Yplus value across the channel length.

Turbulent Pipe with k − ω model

In this section, the two-dimensional, steady-state turbulent pipe flow numer-
ical solution is studied. The solution is obtained through the computational
fluid mechanics program Ansys Fluent. The properties of the fluid are density
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ρ = 1 kg
m3 the viscosity µ = 0.001 kg

ms , and the velocity is constant in the inlet
as u0 = 5m/s, the geometry is a rectangle with height H=2 and width L=10.
The grid of the geometry is 70×70, defined in Figure 4.34 as graded at the top
and bottom walls with the intention to fully resolve from the smaller scales to
the bigger ones.
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Figure 4.34: Graded grid for turbulent pipe with k − ω model.

The numerical solution is obtained with the use of the Upwind discretiza-
tion scheme and the use of the advanced fluid mechanics iterative algorithm
SIMPLE. The turbulence model that is used is Wilcox’s (2006) k − ω model
which utilizes the turbulent kinetic energy k and specific dissipation rate ω to
calculate the eddy viscosity values in the scope of solving the closure problem.

The SIMPLE solver results to the solution presented in Figure 4.35, the
behavior of the velocity magnitude is expected as the profile of outlet velocity
is flatter than the laminar one due to the increased momentum transfer in
a macroscopic level that overcomes the viscous forces and creates a thinner
region of viscous sublayer near the wall. The Figures 4.35 and 4.37 below are
a direct comparison of the C-S and k−ω velocity magnitude in which it can be
pinpointed that the differences are negligible as the two models are accurate
in simple geometry problems like this of the turbulent pipe. The pressure
distribution in Figure 4.37 is characterized by a sudden increase in the starting
region where the initial velocity is applied and the viscous stresses exert an
opposite force to retard the flow. In the next region of pipe the pressure is
decreasing gradually until the end of the pipe where the pressure reach the
zero value.
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Figure 4.35: Magnitude velocity for turbulent pipe with k − ω model.
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Figure 4.36: Magnitude velocity for turbulent pipe with Cebeci-Smith model.
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Figure 4.37: Pressure distribution for turbulent pipe with k − ω model.

99



Chapter 4 4.3. Turbulent Internal Flows

100



CHAPTER5
Advanced Concept in Fluid
Dynamics - Backward Facing
Step Flow

Most physical phenomena are described by complex geometries, a factor
that adds computational complexity and requires special handling due to the
large grids that require, especially in the three-dimensional world. Boundary
layers for example can occur in the top and bottom of an airfoil that has
an optimal shape such as tear droplets, and not a straight line as in the
example of the previous chapter. Pipes or ducts can also be bent or even
don’t have solid boundaries and move as the arteries in hemodynamics, with
severe consequences in the life of the patient, a rupture can occur.

An advanced concept in fluid mechanics will be studied, the two-dimensional,
time-dependent, backward-facing step flow, a problem that is fundamental to
testing new models of solving fluid mechanics problems with separation and
calculating their performance. The main reason of interest in this problem is
the complex geometry that is used, which creates eddies in the lower part of
the geometry in both laminar and turbulent cases. The main interest of this
thesis remains, as in previous chapters, the turbulence behavior of fluids at
high Reynolds numbers.

Initially, in Figure 5.1, in which the geometry can be observed, the scheme
consists of three parts, the A1 which is a rectangle with a height of 2, 5m and
width of 7m, for A2 part the height is 2, 5m and the width is 23m and finally
the part A3 which presents the most interesting behavior in this simulation
consists of a height of 5m and width of 23m. The grid that is being used is
as in Chapter 4 numerical solutions collocated and structured and consists of
the 3 sub-grids of A1-A2-A3. The grids are boundary layer grids (graded) to
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achieve good results in the center of the geometry. So for A1 and A2 the mesh
is finer near the bottom and starts to become coarser as it goes up. In contrast
the A3 is reversed, it is finer in the upper boundary and becomes coarser as
it goes down. This is a common technique to achieve good enough results in
the backward step [18].

Figure 5.1: Geometry and Grid point nodes for the Backward Facing Flow.

A problem such this one, is difficult to solve with the use of RANS equations
as the fluctuations play a crucial role in this problem due to the recyclings of
flow in the part A3 of the geometry. So, a Large Eddy Simulation model
is needed to resolve properly this problem. This family of models (LES) is
described in Chapter 3. The purpose of this study is to achieve preliminary
results through the help of the advanced commercial program, ANSYS FLU-
ENT.

The fluid that is used is the air with its properties, density ρ = 1.225kg/m3

and dynamic viscosity µ = 1.7894 · 10−5 kg/m s. The velocity in the inlet of
the part A1 is constant and equal to u0 = 1 m/s. The solver that is used is
the SIMPLE algorithm used in the Turbulent Boundary Layer and Turbulent
Pipe problem as is described in Section 4.1.4.

The LES model which is used is the Smagorinsky-Lilly variation which is
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described in [40] by the following:

τij −
1

3
τkkδij = −2 (Cs∆)2

∣∣S̄∣∣Sij . (5.1)

In the Smagorinsky-Lilly model, the eddy viscosity is modeled by,

µsgs = ρ (Cs∆)2
∣∣S̄∣∣ . (5.2)

Where the filter width is usually taken to be,

∆ = (Volume)
1
3 (5.3)

and

S̄ =
√
2SijSij . (5.4)

The effective viscosity is calculated from,

µeff = µmol + µsgs. (5.5)

The Smagorinsky constant has the value:

Cs = 0.1. (5.6)

The Smagorinsky-Lilly model is used to solve the complex geometry of the
backward-facing step, this model takes advantage of the large eddies that
resolve properly and the computational equilibrium that offers, as it solves
only the large scales since these scales have the full information of the flow as
Kolmogorov’s scale requires the direction of the scales to be from the larger
to smaller eddies and not in the reverse direction. For spatial discretization,
the finite volume method is used as described in previous chapters, and for
time discretization (transient) a second-order implicit method is used, for the
calculations a time step equal to 1 second per frame is used and the total time
of the simulation is 200 seconds which corresponds in 200 different frames per
second.
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Figure 5.2: Different time frames for the Backward Facing Flow.
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In figure 5.2, it can be observed the evolution of the magnitude of veloc-
ity at different moments. It can be concluded that as time passes the flow
transitions to fully turbulent as large and medium-sized vortices are being
formed, since the LES resolve fully only the large and medium size vortices,
excluding the smaller ones as they are computationally expensive leading to a
non-efficient simulation. In LES the fluctuations are resolved in constant with
RANS models so the eddies that are included in the simulation are a result of
both mean values and fluctuating components. In A3 the shear layer rolls up
forming a large-scale structure behind the step and as this structure grows,
the reattachment location travels downstream. The location between the step
and the reattachment locations is called the recirculation zone in which large
vortices occur.

5.1 Conclusions and Future Steps

In this thesis, the fundamental principles governing turbulent flow were
analyzed, as well as the mathematical modeling of turbulence which was thor-
oughly described. The case of the turbulent boundary layer is of great interest
to scientists so the velocity distribution is presented. The cornerstone problem
of turbulent flows is the closure problem, which needs turbulence modeling, so
the turbulence models categories were introduced and some of the most pop-
ular of each category were analyzed and compared with each other. One such
case was the k − ϵ family models which are two-equations models family and
the three most popular variations were compared (Standard-RNG-Realizable).

Also, a wide range of internal and closed flows was studied, with different
discretization methods such as upwind and finite volumes for steady and un-
steady state (time-dependent) flows with iterative methods such as SIMPLE
but also direct methods such as the direct solution approach coupled with
Newton’s method as it is described in Chapter 4, which give robustness to
the obtained numerical results. Advanced mathematics programs were used,
more specifically the programming language Matlab is utilized, in which in-
ternal and closed flows numerical solutions were studied, using code as well
as commercial programs such as Ansys Fluent. For the modeling of eddy
viscosity, the algebraic turbulence model of Cebeci-Smith is utilized, and the
two differential equation model of k − ω, to cover a wide range of turbulence
models. Additionally, LES and more specifically the Smagorinsky-Lilly varia-
tion is used and some preliminary results were presented, all of the above are
visualized in Figure 5.3.
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Figure 5.3: A summary of key simulations in this thesis.

Some of the future steps include:

• More advanced turbulence models simulation such as variations of the
family of LES models or the simulation of Direct Numerical Simulation
in the advanced programming language Matlab.

• The coupling of MHD and turbulence is of great interest as it is directly
applicable to astronomical applications.

• Aerodynamics applications, such as the flow past airplanes or airfoils
simulation, phenomena that are described by turbulent flows.

• The three-dimensional turbulent flow over an airfoil would be a chal-
lenge that would have enormous scientific value, as most scientists who
interact with such problems, work on commercial codes and not on fully
adjustable codes in programming languages.

• Finally, the energy equation can be utilized to study temperature changes
in flows.
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APPENDIXA
Appendix

A.1 F.V.M. Discretization for Turbulent Flows

A.1.1 RABL Discretization

Initially for the RABL equations, the discretization with the help of the
Finite Volume Method.
Conservation of Mass

•
∫∫

CV

∂u

∂x
dx dy =

∫ e

w

∂u

∂x
dx

∫ n

s
1 dy = u

∣∣∣e
w
∆y = (ue − uw)∆y

= (
uE + uP

2
− uP + uW

2
)∆y =

(uE − uW )∆y

2

•
∫∫

CV

∂v

∂y
dx dy =

∫ n

s

∂v

∂y
dy

∫ e

w
1 dx = v

∣∣∣n
s
∆y = (vn − vs)∆x

= (
vN + vP

2
− vP + vS

2
)∆x =

(vN − vS)∆x

2

x-momentum For the Diffusion terms and more specific for the Pressure:

•
∫∫

CV

∂p

∂x
dx dy = (PE − PP )∆y

For the Laplacian term:

•
∫∫

CV

∂

∂y

[
(ν + εt)

∂u

∂y

]
dy dx =

∫ n

s

∂

∂y

[
(ν + εt)

∂u

∂y

]
dy

∫ e

w
1 dx[

(ν + εt)
∂u

∂y

]n
s

=

([
(ν + εt)

∂u

∂y

]
n

−
[
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∂y

]
s

)
∆x =[

(ν + (εt)n)
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∆y
− (ν + (εt)s)
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∆y

]
∆x,
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where the eddy viscosity calculated in north and south is provided by the
following:

(εt)n =
(εt)N + (εt)P

2
, (εt)s =

(εt)P + (εt)S
2

.

Convective terms
In order to use the F.V.M. scheme we have to transform the convective terms
in their closed form.

u
∂u

∂x
+ v

∂u

∂y

(closed−form)
=

∂u2

∂x
+
∂(uv)

∂y

•
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CV

∂u2
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∫ e

w
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∂x
dx

∫ n

s
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2
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2

•
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∫ e
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1 dx = [uv]ns∆x
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2
− uP vP + uSvS

2

)
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2

)
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y-momentum For the RHS terms and more specific for the Pressure:

•
∫∫

CV

∂p

∂y
dy dx = (PN − PP )∆x

For the Laplacian term:

•
∫∫

CV

∂

∂y

[
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]
dy dx =
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where the eddy viscosity calculated in north and south is provided by the
following:

(εt)n =
(εt)N + (εt)P

2
, (εt)s =

(εt)P + (εt)S
2

.
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Convective terms
In order to use the F.V.M. scheme we have to transform the convective terms
in their closed form.

u
∂v

∂x
+ v

∂u

∂y
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A.1.2 RANS Discretization

The RANS differential system of equations is being discretized with the
F.V.M. method in the following discrete equations.
Conservation of Mass

•
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2

x-momentum For the RHS terms and more specific for the Pressure:

•
∫∫

CV

∂p

∂x
dx dy = (PE − PP )∆y
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For the Laplacian term:

•
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where the eddy viscosity calculated in north and south is provided by the
following:

(εt)n =
(εt)N + (εt)P

2
, (εt)s =
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.
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where the eddy viscosity calculated in north and south is provided by the
following:

(εt)e =
(εt)E + (εt)P

2
, (εt)w =

(εt)P + (εt)W
2

.

Convective terms
In order to use the F.V.M. scheme we have to transform the convective terms
in their closed form.

u
∂u
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y-momentum For the RHS terms and more specific for the Pressure:

•
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For the Laplacian term:
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where the eddy viscosity calculated in north and south is provided by the
following:

(εt)n =
(εt)N + (εt)P

2
, (εt)s =

(εt)P + (εt)S
2

.

•
∫∫

CV

∂

∂x

[
(ν + εt)

∂v

∂x

]
dy dx =

∫ e

w

∂

∂x

[
(ν + εt)

∂v

∂x

]
dx

∫ n

s
1 dy[

(ν + εt)
∂v

∂x

]e
w

∆y =

([
(ν + εt)

∂v

∂x

]
e

−
[
(ν + εt)

∂v

∂x

]
w

)
∆y =[

(ν + (εt)e)
vE − vP

∆x
− (ν + (εt)w)

vP − vW
∆x

]
∆y,

where the eddy viscosity calculated in north and south is provided by the
following:

(εt)e =
(εt)E + (εt)P
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(εt)P + (εt)W
2

.

Convective terms
In order to use the F.V.M. scheme we have to transform the convective terms
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in their closed form.
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A.2 Additional Results in Turbulent Flows

A.2.1 Turbulent Boundary Layer with Cebeci-Smith model

The following remarks are some additional insights about the turbulent flow
in B.L., providing more specific details on the v velocity component with the
Cebeci-Smith turbulence model. The u component exhibits similar behavior
with the magnitude of velocity as this component is larger since the main
information of the flow is presented in the x-direction, additionally, the v
component is highly affected by the conservation of mass equation. The graph
of the u component of velocity is identical to the magnitude of velocity as it
is described in Chapter 4.

Remarks:

• The no-slip condition applies in the wall, in consequence, the velocity in
the wall is zero.

• The v velocity component is much smaller than the u component because
the motion of fluid in the y-direction is negligible in comparison with the
x-direction.

• The v component of velocity is described by an increase in the leading
edge of the plate in order to verify the conservation of mass equation. This
creates a rapid increase in motion upwards.
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Figure A.1: v Velocity component in Turbulent Boundary Layer.

A.2.2 Turbulent Boundary Layer with k − ω model

The following remarks supply additional insights into turbulent flow within
the boundary layer, offering specific details on the v velocity component us-
ing the Cebeci-Smith turbulence model. The behavior of the u component
in velocity magnitude resembles that of the main flow direction in the x-axis,
while the v component is greatly influenced by the conservation of mass equa-
tion. The graph of the u component of velocity is similar to the magnitude of
velocity as it is described in Chapter 4.

Figure A.2: v Velocity component in Turbulent Boundary Layer.

• The no-slip condition is verified in the wall, consequently, the velocity in
the wall is zero.

• The contours of u-velocity present similar behavior with the velocity mag-
nitude figure in Chapter 4 as u component of velocity dominates the velocity
magnitude.
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• The v velocity component is significantly smaller than the u component
because the motion of fluid in the y-direction is negligible in comparison with
the x-direction.

• The vertical velocity component,v velocity, presents an increase in the
leading edge of the plate, as it confirms the conservation of mass equation,
leading to a rapid upward acceleration in motion.

A.2.3 Turbulent Pipe with Cebeci-Smith model

Some additional information about the turbulent pipe flow with the Cebeci-
Smith model are analyzed in the following remarks. The two components
of the two-dimensional steady-state turbulent pipe compose the magnitude
of velocity. In the following figures present the comparison of the u and v
components of velocity in laminar and turbulent cases.

• The no-slip condition is applied in both walls, consequently, the velocity
in the wall is zero.

• The u velocity contours graph is divided in two regions the dynamic flow
where the velocity is constant and equal to the free stream velocity and the
inner region of the B.L. close to both walls where the B.L. is created and the
viscous forces dominate (laminar sublayer).

• The u velocity takes significantly higher values in the turbulent case in
comparison with the laminar case and the flow is moving closer to the walls
as the momentum transfer is increased due to the strong mixing of the fluid,

• The v velocity component is significantly smaller than the u component
because the motion of fluid in the y-direction is negligible in comparison with
the x-direction.

• The vertical velocity component,v velocity, presents an increase in the
leading edge of the plate, as it confirms the conservation of mass equation,
leading to a rapid upward acceleration in the lower region of the plate and a
declaration in the upper region. This fact follows from the fact that at the
upper region, the flow tends to go lower and at the lower region the flow tends
to go upwards.

• The values of v velocity are increased in the turbulent case since the
turbulence increases the horizontal and vertical motion of the fluid.
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Figure A.3: u Velocity component in laminar case.
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Figure A.4: u Velocity component in turbulent case.
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Figure A.5: v Velocity component in laminar case.
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Figure A.6: v Velocity component in turbulent case.

A.2.4 Turbulent Pipe with k − ω model

Some additional observations follow from the study of the turbulent pipe
with the use of the k − ω turbulence model. Specifically the two components
of velocity in the two-dimensional steady-state case.
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The following presented remarks are important to note:

• The velocity at the walls is equal to zero as the no-slip condition is applied
in both walls.

• In the graph of u velocity the flow follows the velocity distribution of
the B.L. velocity near the walls, the region near the wall is dominated by
the viscous forces(laminar sublayer) and in the outer region the velocity is
constant and equal to the free stream velocity.

• The u velocity takes significantly higher values in the turbulent case in
comparison with the laminar case and the flow is moving closer to the walls
as the momentum transfer is increased due to the strong mixing of the fluid,

• The v velocity component is significantly smaller than the u component
because the motion of fluid in the y-direction is negligible in comparison with
the x-direction.

• The vertical velocity component, v velocity, presents an increase in the
leading edge of the plate, as it confirms the conservation of mass equation,
leading to a rapid upward acceleration in the lower region of the plate and a
declaration in the upper region. This fact follows from the fact that at the
upper region, the flow tends to go lower and at the lower region the flow tends
to go upwards.

• The values of v velocity are increased in the turbulent case since the
turbulence increases the horizontal and vertical motion of the fluid.

Figure A.7: u Velocity for turbulent pipe with k − ω model.
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Figure A.8: v Velocity for turbulent pipe with k − ω model.
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