

Ranking Queries over Range Data

A Thesis

submitted to the designated

by the General Assembly

of the Department of Computer Science and Engineering

Examination Committee

by

Georgios Kotsinas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

IN DATA AND COMPUTER SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

June 2024

Examining Committee:

• Nikolaos Mamoulis, Professor, Computer Science and Engineering Depart-

ment, University of Ioannina (Supervisor).

• Panagiotis Vasiliadis, Professor, Computer Science and Engineering Depart-

ment, University of Ioannina.

• Apostolos Zarras, Professor, Computer Science and Engineering Department,

University of Ioannina.

I would like to dedicate this thesis to my father.

I would like to express my deepest gratitude to my supervisor, Professor Nikolaos

Mamoulis, for his invaluable guidance, support, and encouragement throughout the

course of my research. His knowledge and insightful feedback have been instrumen-

tal in shaping this thesis. I am also profoundly thankful to my mentors, George

Christodoulou and Panagiotis Bouros, whose expertise and advice have been crucial

to the progression of my work. Their willingness to share their knowledge and their

constant support have been a source of inspiration and motivation. Lastly, I wish to

extend my heartfelt thanks to my family. Their unwavering support, patience, and

understanding have been my foundation throughout this journey. Their love and

belief in my abilities have given me the strength to persevere and achieve my goal.

Ioannina, June 2024

Georgios Kotsinas

i

Dedication

Acknowledgments

Contents

List of Figures

List of Tables

Abstract

Εκτεταμένη περίληψη

CHAPTER 1 Introduction

1.1 Contributions

1.2 Outline

CHAPTER 2 Related works

2.1 Top-k Processing

2.2 Interval Indexing

2.3 HINT & HINTm

2.3.1 HINT

2.3.2 HINTm

2.3.3 Optimized HINTm

CHAPTER 3 Problem Definitions

3.1 Top-k Query

3.2 Overlap-Intersection

3.3 Ranking Problem

CHAPTER 4 Traversing Methods

4.1 Naïve Traversal

4.2 Top-Down Traversal

4.3 Upper Bounds

4.3.1 Static Upper Bounds

ii

4.3.2 Metadata Upper Bounds

4.4 Naïve & Top-Down with Upper Bounds

4.5 Depth-First Traversal

4.6 Ordered Traversal

4.7 Sorted Traversal

CHAPTER 5 Experimental Evaluation

5.1 Datasets & Queries

5.2 HINTm & Methods

5.3 Query Extent

5.4 Static vs Metadata Upper Bounds

5.5 Parameter k

CHAPTER 6 Conclusions

6.1 Summary

6.2 Future Work

References

iii

Figure 1.1: Example of top 3 .. 3

Figure 2.1: Hierarchical domain partitioning for m=4. ... 9

Figure 2.2: Pseudocode for Assigning an Interval to Partitions. 10

Figure 2.3 Pseudocode for Range query on HINT. .. 11

Figure 2.4: Accessed partitions for range query [5, 9]. ..12

Figure 2.5: Avoiding redundant comparisons on HINTm......................................13

Figure 2.6: Pseudocode for Range query on HINTm. ..15

Figure 2.7: Partition subdivisions in HINTm level 2. ... 17

Figure 3.1 Ranking example ..21

Figure 4.1: Pseudocode for Naïve Traversal. ... 24

Figure 4.2 Pseudocode for Top-Down Traversal. ... 25

Figure 4.3: Upper Bound of First rel. Partition for Oin & Rin. 27

Figure 4.4: Upper Bound of First rel. Partition for Oaft & Raft. 28

Figure 4.5: Upper Bound of Intermediate rel. Partition for Oin. 28

Figure 4.6: Upper Bound of Intermediate rel. Partition for Oaft. 29

Figure 4.7: Upper Bound of last rel. Partition for Oin & Oaft. 29

Figure 4.8: First, Intemediate & Last relevant Partitions. 32

Figure 4.9: Pseudocode for Depth-First Traversal. ... 33

Figure 4.10: First relevant partitions Originals and Replicas after 34

Figure 4.11: Intermediate relevant partitions Originals and Replicas after. 35

Figure 4.12: First relevant partitions Originals and Replicas in. 35

Figure 4.13: Last relevant partitions Originals in and after. 36

Figure 4.14: Pseudocode for Ordered Traversal. .. 37

Figure 4.15: Pseudocode for Sorted Traversal ... 39

Figure 5.1: Throughput of methods on BOOKS dataset across query extents, k=10.

 .. 43

iv

Figure 5.2: Throughput of methods on FIRES dataset across query extents, k=10.

 .. 43

Figure 5.3: Throughput of methods on BIKES dataset across query extents, k=10

 .. 44

Figure 5.4: Throughput of methods on TAXIS dataset across query extents, k=10

(log scale). .. 44

Figure 5.5: Throughput of methods with static and metadata Upper Bounds on

BOOKS dataset across query extents, k=10. ... 45

Figure 5.6: Throughput of methods with static and metadata Upper Bounds on

FIRES dataset across query extents, k=10. ... 46

Figure 5.7: Throughput of methods with static and metadata Upper Bounds on

BIKES dataset across query extents, k=10 ... 46

Figure 5.8: Throughput of methods with static and metadata Upper Bounds on

TAXIS dataset across query extents, k=10 (log scale). 47

Figure 5.9: Scaling of Top-Down method (static & metadata Upper Bounds

employed) on BIKES dataset for different values of k with query extent 0,1% of

the domain. .. 48

Figure 5.10: Scaling of Top-Down method (static & metadata Upper Bounds

employed) on FIRES dataset for different values of k with query extent 0,1% of

the domain. .. 48

Figure 5.11: Scaling of Top-Down method (static & metadata Upper Bounds

employed) on TAXIS dataset for different values of k with query extent 0,1% of

the domain (log scale). ... 49

Figure 5.12: Scaling of Naive method (static & metadata Upper Bounds employed)

on BIKES dataset for different values of k with query extent 0,01% of the

domain (log scale). ... 49

Figure 5.13: Scaling of Naive method (static & metadata Upper Bounds employed)

on FIRES dataset for different values of k with query extent 0,5% of the domain

(log scale). .. 50

Figure 5.14: Scaling of Depth-First, Ordered & Sorted traversals on FIRES dataset

for different values of k with query extent 0,01% of the domain. 50

Figure 5.15: Scaling of Depth-First, Ordered & Sorted traversals on TAXIS dataset

for different values of k with query extent 1% of the domain.51

v

Table 2.1 Useful notations .. 8

Table 2.2: Beneficial sort orders ..18

Table 4.1: Static & Metadata Upper Bounds for relevant partitions31

Table 5.1: Dataset characteristics .. 41

Table 5.2: Top-k Querying Methods examined. .. 42

vi

Georgios Kotsinas, M.Sc. in Computer Science, Department of Computer Science and

Engineering. University of Ioannina, Greece, June 2024.

Ranking Queries over Range Data.

Advisor: Nikolaos Mamoulis, Professor.

Today's data-driven world has made it essential to manage and analyze large vol-

umes of temporal data efficiently. This thesis addresses the problem of identifying

the top 𝑘 time intervals that best intersect with a query interval within a given

temporal data domain. In pursuit of addressing this issue with maximal efficiency,

we further develop the HINTm index to support ranking queries.

HINTm, is a Hierarchical Index for Intervals in arbitrary domains designed for main

memory and defines a hierarchical domain decomposition which assigns each inter-

val to at most two partitions per level. It has previously been recognized as the most

efficient interval index in the literature, has undergone numerous optimizations to

avoid unnecessary comparisons and expedite range query responses over extensive

collections of intervals. Building on its optimizations, this work adapted HINTm to

effectively handle top 𝑘 queries.

The ranking criterion is defined by the absolute interval intersection, enabling the

identification of intervals that intersect better with a given query interval. Except

from the naive approach that simply traverses the index and scans its partitions for

results, various methods were developed to prioritize partitions that contain larger

intervals first. In reference, “Top-down”, “Depth-first”, “Ordered” and “Sorted” tra-

versals aim to optimize the processing speed of top 𝑘 queries. Additionally, a pruning

mechanism was implemented to bypass scanning index partitions that are guaran-

teed not to contain intervals of the final set. This pruning mechanism, termed "Upper

bounds", was deployed in two distinct versions. The first version assigns a static

Upper bound to each index partition based on the partition's endpoints. The second,

an updated version, incorporates the metadata information of the maximum interval

within each partition.

vii

Extensive experiments were conducted on four datasets with varying characteristics,

measuring the number of queries executed per second. These experiments aimed to

understand system scalability concerning different query extents and values of 𝑘.

The results indicate that larger query extents and higher values of 𝑘 are associated

with reduced throughput. However, the application of the “Upper bounds” acceler-

ates the overall process. Finally, metadata Upper bounds provide even better perfor-

mance, always with respect to the diverse characteristics of datasets being utilized.

viii

Γεώργιος Κοτσίνας, Δ.Μ.Σ. στη Μηχανική Δεδομένων και Υπολογιστικών Συστημά-

των, Τμήμα Μηχανικών Η/Υ και Πληροφορικής, Πολυτεχνική Σχολή, Πανεπιστήμιο

Ιωαννίνων, Ιούνιος 2024.

Ερωτήματα Κατάταξης σε Δεδομένα Εύρους.

Επιβλέπων: Νικόλαος Μαμουλής, Καθηγητής.

Στην παρούσα εποχή, όπου τα δεδομένα κυριαρχούν, η αποδοτική διαχείριση και

ανάλυση μεγάλων όγκων χρονικών δεδομένων αποτελεί ζήτημα υψίστης σημασίας.

Αυτή η μεταπτυχιακή διπλωματική εργασία πραγματεύεται το πρόβλημα της ανα-

γνώρισης των κορυφαίων 𝑘 χρονικών διαστημάτων που επικαλύπτουν καλύτερα

ένα δοθέν διάστημα-ερώτημα εντός ενός δεδομένου χρονικού τομέα. Στην προσπά-

θεια να αντιμετωπιστεί αυτό το ζήτημα με μέγιστη αποδοτικότητα, αναπτύξαμε

περαιτέρω το ευρετήριο HINTm για να υποστηρίξει ερωτήματα κατάταξης.

Το HINTm, είναι ένα ιεραρχικό ευρετήριο για διαστήματα σε ακαθόριστους τομείς.

Σχεδιασμένο για την κύρια μνήμη ορίζει μια ιεραρχική διχοτόμηση του τομέα, η

οποία αναθέτει κάθε διάστημα σε το πολύ δύο διαμερίσματα ανά επίπεδο. Έχει

αναγνωριστεί ως το πιο αποδοτικό ευρετήριο διαστημάτων στη βιβλιογραφία και

έχει υποστεί πολυάριθμες βελτιστοποιήσεις για την αποφυγή περιττών συγκρίσεων.

Διακρίνεται για την ταχύτητα των απαντήσεων ερωτημάτων εύρους σε μεγάλες

συλλογές από διαστήματα. Βασιζόμενοι στις βελτιστοποιήσεις του, προσαρμόσαμε

τον HINTm για να διαχειρίζεται αποτελεσματικά ερωτήματα κατάταξης (top k).

Το κριτήριο κατάταξης ορίζεται ως η επικάλυψη διαστήματος ευρετηρίου με διά-

στημα ερωτήματος, επιτρέποντας την αναγνώριση των 𝑘 διαστημάτων που επικα-

λύπτουν καλύτερα το δοθέν διάστημα του ερωτήματος. Εκτός από την απλή μέθοδο

που διασχίζει το ευρετήριο και σαρώνει τα διαμερίσματά του για αποτελέσματα,

αναπτύχθηκαν διάφορες μέθοδοι διάσχισης ευρετηρίου για να δώσουν προτεραιό-

τητα σε διαμερίσματα του που περιέχουν μεγαλύτερα διαστήματα. Αναφορικά, οι

μέθοδοι «Από πάνω προς τα κάτω», «Πρώτα σε βάθος», «Ταξινομημένη» και

«Διατεταγμένη» διάσχιση έχουν ως στόχο να βελτιώσουν την ταχύτητα επεξεργα-

σίας των ερωτημάτων κατάταξης. Επιπλέον, υλοποιήθηκε ένας μηχανισμός

ix

κλαδέματος για να παρακάμπτει τη σάρωση διαμερισμάτων του ευρετηρίου που

είναι εγγυημένο ότι δεν περιέχουν διαστήματα του τελικού συνόλου. Αυτός ο μη-

χανισμός κλαδέματος, ονομαζόμενος «Ανώτατα όρια», αναπτύχθηκε σε δύο δια-

κριτές εκδοχές. Η πρώτη εκδοχή αναθέτει ένα στατικό ανώτατο όριο σε κάθε δια-

μέρισμα του ευρετηρίου με βάση τα άκρα του διαμερίσματος. Η δεύτερη πιο βελ-

τιωμένη εκδοχή, ενσωματώνει την μεταπληροφορία του μέγιστου διαστήματος μέσα

σε κάθε διαμέρισμα υπολογίζοντας έτσι το ανώτατο όριο κάθε διαμερίσματος.

Διεξήχθησαν εκτενείς πειραματισμοί σε τέσσερα σύνολα δεδομένων με διαφορετικά

χαρακτηριστικά, μετρώντας τον αριθμό των εκτελούμενων ερωτημάτων ανά δευτε-

ρόλεπτο. Τα πειράματα αποσκοπούσαν στην διερεύνηση της κλιμάκωσης του συ-

στήματος σε σχέση με διαφορετικές εκτάσεις ερωτημάτων και τιμές του 𝑘. Τα

αποτελέσματα υποδεικνύουν ότι οι μεγαλύτερες εκτάσεις ερωτημάτων και οι υψη-

λότερες τιμές του 𝑘 συνδέονται με μειωμένη απόδοση. Ωστόσο, η εφαρμογή των

«Ανώτατων ορίων» επιταχύνει τη συνολική διαδικασία. Τέλος, τα ανώτατα όρια

μεταδεδομένων παρέχουν ακόμα καλύτερη απόδοση, πάντα σε σχέση με τα ποικίλα

χαρακτηριστικά των συνόλων δεδομένων που χρησιμοποιήθηκαν.

1

1.1 Contributions

1.2 Outline

Effective temporal data management solutions are critically needed to address the

complexities and demands of handling time-variant information in modern data-

driven applications. Temporal data, characterized by its time-varying nature, is ubiq-

uitous across various domains such as transport, healthcare, finance, social media

and sensor networks. Additionally, several applications call for the management of

big interval collections. Each tuple in a temporal database has a validity interval that

represents the amount of time the tuple is valid (duration) [1]. In data anonymiza-

tion, attribute values are frequently generalized into value ranges [2]. Interval search

is a module used in many computational geometry problems [3] (e.g., windowing).

Intervals can be used to model and control the internal states of window queries in

stream processors [4].

In the realm of temporal data analysis, the challenge of efficiently ranking intervals

within a dataset is a critical problem with wide-ranging applications. From temporal

data analysis in financial markets to genomic range queries in bioinformatics, the

need to quickly and accurately rank intervals from vast collections is increasingly

essential. This thesis addresses this challenge through the development of novel

techniques for ranking queries over range data, specifically focusing on identifying

the top 𝑘 intervals based on a specified ranking criterion.

The core problem can be succinctly stated: given a collection of intervals and a query

interval, how can we efficiently determine the top 𝑘 intervals that have the most

2

significant intersection with the query? This problem is pivotal in scenarios where

rapid response times and high precision are crucial, such as real-time monitoring

systems, database querying, and various temporal data management applications.

Some instances of these queries across various data domains are as follows:

• Healthcare, find the 𝑘 larger periods of symptoms that a patient had during

an episode of medical concern.

• Weather monitoring, find the top 𝑘 time intervals of significant weather events

that best intersect with a given period of abnormal weather conditions.

• Traffic analysis, find the top 𝑘 intervals of heavy traffic congestion that best

intersect with a given period of a traffic incident.

• Social media analysis, find the top 𝑘 periods of high social media activity that

best intersect with a given event or campaign duration.

• Energy consumption, find the top 𝑘 intervals of high energy usage that best

intersect with a given period of peak demand.

• Network security, find the top 𝑘 intervals of high network activity that best

intersect with a given period of a security breach.

• Market analysis, find the top 𝑘 periods of high sales activity that best intersect

with a given promotional event duration.

Despite the importance and broad application of ranking queries over temporal data,

several challenges persist. Firstly, the sheer volume of data necessitates efficient in-

dexing and querying mechanisms to ensure timely responses. Secondly, the temporal

aspect introduces the need for time-aware methods that can efficiently manage and

query temporal datasets while maintaining accuracy. This thesis aims to contribute

to this field by investigating novel methods for efficiently processing top 𝑘 queries

over temporal data using the preexisting work of HINTm [5] a hierarchical index

for intervals that can handle valid time data, suitable for applications that manage

large collections of intervals.

HINTm indexes a large collection 𝑆 of objects (or records) based on an interval

attribute that characterizes each object. Each object 𝑠 ∈ 𝑆 is modeled as a triple (𝑠. 𝑖𝑑,

𝑠. 𝑠𝑡, 𝑠. 𝑒𝑛𝑑), where 𝑠. 𝑖𝑑 is the object’s identifier, which can be used to access any

other attribute of the object, and [𝑠. 𝑠𝑡, 𝑠. 𝑒𝑛𝑑] represents the interval’s endpoints.

HINTm also uses various optimizations to accelerate its performance. To date,

HINTm has supported range queries and Allen's interval relations [6]. The present

3

research concentrates on the appliance of ranking queries in the domain of HINTm,

while we endeavor to leverage its optimizations.

Given a query interval 𝑞 = [𝑞. 𝑠𝑡. 𝑞. 𝑒𝑛𝑑], and a positive integer 𝑘, the objective is to

find the top 𝑘 objects that belong to 𝑆 and overlap with 𝑞 by using the index of

HINTm. The ranking of them will be determined by their absolute overlapping du-

ration score. This score can be easily computed for every interval 𝑠𝑖 that intersects

with the query 𝑞, by the following, min(𝑞. 𝑒𝑛𝑑, 𝑠𝑖. 𝑒𝑛𝑑) − max⁡(𝑞. 𝑠𝑡, 𝑠𝑖. 𝑠𝑡). The fol-

lowing figure 1.1 illustrates the problem's formation in a straightforward manner.

The task involves selecting the three intervals that have the highest degree of overlap

with a given query within a specified domain of intervals.

Figure 1.1: Example of top 3

We investigate various methodologies for traversing the optimized index of HINTm

aiming to reduce the computational load while searching for the top k records. This

exploration is undertaken with consideration of the diverse characteristics of the

index as well as of the datasets being utilized. Finally, we conduct experiments with

various query extents across different values of k. For this purpose, we utilized four

datasets with distinct characteristics.

In summary, this thesis makes the following contributions:

4

• We further developed the Hierarchical Index for Intervals in arbitrary do-

mains (HINTm) to support top 𝑘 queries.

• We proposed traversal methods for the index that prioritize larger intervals

first, along with two versions of a pruning mechanism that accelerate the

execution of top 𝑘 queries.

• We evaluated our methods using four real datasets with distinct characteris-

tics, conducting experiments on different query ranges and values of 𝑘.

The rest of this paper is organized as follows: Chapter 2 reviews the existing litera-

ture on top 𝑘 processing and interval indexing, providing a comprehensive overview

of related methods and techniques with a particular focus on the HINTm index and

its optimizations. Chapter 3 formally defines the problem addressed in this thesis

and the criteria used for ranking the intervals based on their absolute overlap dura-

tion with the query interval. Chapter 4 details the methods for traversing the index,

incorporating the pruning mechanism of "Upper bounds" to enhance the efficiency

of the query process. Chapter 5 presents an extensive experimental analysis con-

ducted on various datasets, exploring the performance of the proposed methods with

different query extents and various values of 𝑘. Chapter 6 summarizes the key find-

ings of the thesis and discusses potential directions for future research.

5

2.1 Top-k processing

2.2 Interval Indexing

2.3 HINT & HINTm

 2.3.1 HINT

 2.3.2 HINTm

 2.3.3 Optimized HINTm

Top-k processing is a crucial aspect in databases and information retrieval systems,

where the objective is to efficiently retrieve the top k objects with the highest overall

scores from ranked inputs. Several approaches and algorithms have been proposed

to address this challenge, focusing on reducing computational cost, memory usage,

and the number of object accesses.

A seminal work in this domain is by Fagin et al. [7], which introduces the concept

of aggregating scores from multiple attributes to determine the top 𝑘 objects. Each

object in the database has multiple scores, one for each attribute, and these scores

are combined using a monotone aggregation function such as min or average. The

naive approach to this problem requires accessing every object in the database to

compute its combined score, which is inefficient. Fagin's Algorithm (FA) provides a

more efficient solution for certain monotone aggregation functions. However, FA has

6

limitations, including the requirement for large, potentially unbounded buffers as

the database size increases. To address these limitations, Fagin et al. propose the

Threshold Algorithm (TA). TA is optimal for all monotone aggregation functions

and operates efficiently across all databases. Unlike FA, TA maintains a small, con-

stant-size buffer, making it more scalable. Additionally, TA supports early stopping,

allowing for an approximate version of the top 𝑘 results when exact precision is not

necessary.

Mamoulis et al. [8] build upon these foundations and propose enhancements to

further optimize top-𝑘 queries. Their work identifies two critical phases that any

top-𝑘 algorithm based on sorted accesses must undergo. Leveraging these phases,

they introduce a new algorithm designed to minimize the number of object accesses,

computational cost, and memory requirements for top-𝑘 searches using monotone

aggregate functions. A key contribution of their research is the development of a

multiway top-𝑘 join operator, which offers significant advantages over traditional

evaluation trees constructed from binary top-𝑘 join operators. This operator im-

proves the efficiency of combining multiple ranked inputs by reducing redundancy

and the number of intermediate computations. Moreover, they explore the concept

of top-𝑘 cubes and their efficient computation, which facilitates the implementation

of roll-up operations in multi-dimensional top-𝑘 queries. The proposed methods

demonstrate superior performance compared to previous techniques. Their approach

accesses fewer objects and achieves faster execution times, highlighting the practical

benefits of their optimizations in real-world applications.

This subsection discusses epigrammatically the main-memory indices for intervals

employed by the authors of HINT/HINTm for comparative analysis of their work.

Interval indexing has seen various innovative approaches aimed at efficiently man-

aging and querying interval data. Among these, the interval tree developed by Edels-

brunner [9] stands out as a widely utilized data structure. This tree is suited for

stabbing and range queries, organizing intervals around a center point to balance

the tree. Intervals that include the center point are stored at the root, while left and

7

right subtrees handle intervals before and after the center, respectively. Two lists

sorted by interval start and end values are maintained at each node. The interval

tree requires numerous comparisons for most range query results, which is a notable

drawback.

A simpler yet effective structure is the 1D-grid, which divides the data domain into

non-overlapping partitions. Each interval is assigned to all partitions it overlaps with,

ensuring comprehensive coverage of the data domain. However, this approach can

lead to duplicate results if a query intersects multiple partitions, complicating the

retrieval process [10].

Another structure is the period index [11], which considers both interval durations

and values. This self-adaptive structure, like a 1D-grid, partitions the time domain

and hierarchically organizes intervals within each partition based on their locations

and durations. This method effectively supports range and duration queries.

The timeline index [12], derived from the time index [13], is designed for general-

purpose temporal data access. It maintains a sorted event list (table of triples [𝑡𝑖𝑚𝑒,

𝑖𝑑, 𝑖𝑠𝑆𝑡𝑎𝑟𝑡] denoting the interval's timing, identifier, and whether it is a start or end

point) of all interval endpoints, prioritized by time and secondly by 𝑖𝑠𝑆𝑡𝑎𝑟𝑡 (11 if

the triple refers to start else 0 for an end) in descending order. Checkpoints define

specific timestamps where all intervals that overlap with it are considered a whole.

To process a range query, the method locates the nearest checkpoint preceding the

query start and initializes an active set of its intervals. The event list is then scanned

from this checkpoint, updating the set with intervals starting or ending at this event.

This method, however, can be inefficient as it often accesses more data and makes

more comparisons than necessary.

Among these methods, the HINT/HINTm interval index has been identified as the

superior structure, outperforming the Interval Tree, Timeline Index, 1D-Grid, and

Period Index according to recent studies [5]. This indicates a significant advancement

in the field of interval indexing, offering more efficient data management and query

processing.

8

In this subsection, we will review the foundational work upon which this thesis is

based, specifically the Hierarchical Index for Intervals (HINT) designed for main

memory [5]. It defines a hierarchical domain decomposition and assigns each inter-

val to at most two partitions per level. The primary goal of the index is to minimize

the number of comparisons during query evaluation, while keeping the space re-

quirements relatively low, even when there are long intervals in the collection. HINT

applies a smart division of intervals in each partition into two groups, which avoids

the production and handling of duplicate range query results and minimizes the

number of intervals that must be accessed. Here we will describe shortly the first

version of the index, HINT, which avoids comparisons overall during query evalua-

tion, but it is not always applicable and may have high space requirements. Subse-

quently, we will provide a detailed examination of the general version of the index,

HINTm, which is applicable to intervals in arbitrary domains. The latest version of

the index, along with its optimizations, utilized to developed top 𝑘 query examina-

tion. The following table presents the notations that will be employed throughout

the remainder of this research.

Table 2.1 Useful notations

Notation Description

𝑠. 𝑖𝑑, 𝑠. 𝑠𝑡, 𝑠. 𝑒𝑛𝑑 interval id, interval start, interval end

𝑞. 𝑠𝑡, 𝑞. 𝑒𝑛𝑑 query start, query end

𝑝𝑟𝑒𝑓𝑖𝑥(𝑘, 𝑥) 𝑘-bit prefix of integer 𝑥

𝑃𝑙,𝑖 𝑖-th partition at level 𝑙 of HINT/HINTm

𝑃𝑙,𝑓⁡(𝑃𝑙,𝑙) first (last) partition at level 𝑙 that overlaps with 𝑞

𝑃𝑙,𝑖
𝑂 ⁡(𝑃𝑙,𝑖

𝑅) subpartition of 𝑃𝑙,𝑖 with originals (replicas)

𝑃𝑙,𝑖
𝑂𝑖𝑛⁡(𝑃𝑙,𝑖

𝑂𝑎𝑓𝑡
) intervals in 𝑃𝑙,𝑖

𝑂 ending inside (after) the partition

HINT is appropriate in the case of a discrete and not very large domain 𝐷. Specifi-

cally, assume that the domain 𝐷 where from the endpoints of intervals in 𝑆 take

9

value is [0, 2𝑚 − 1]. HINT defines a regular hierarchical decomposition of the domain

into partitions, where at each level 𝑙 from 0 to 𝑚, there are 2𝑙 partitions, denoted by

array 𝑃𝑙,0, …⁡, 𝑃𝑙,2𝑙−1. Figure 2.1 illustrates the hierarchical domain partitioning for

𝑚 = 4.

Figure 2.1: Hierarchical domain partitioning for m=4.

Each interval 𝑠 ∈ 𝑆 is assigned to the smallest set of partitions which collectively

define 𝑠. It is not hard to show that s will be assigned to at most two partitions per

level. For example, in Figure 2.1, interval [5, 9] is assigned to one partition at level

𝑙 = 4 and two partitions at level 𝑙 = 3. The assignment procedure is described by

Algorithm 1.

10

Figure 2.2: Pseudocode for Assigning an Interval to Partitions.

In a nutshell, for an interval [𝑎, 𝑏], starting from the bottom-most level 𝑙, if the last

bit of 𝑎 (resp. 𝑏) is 1 (resp. 0), the interval is assigned to partition

𝑃𝑙,𝑎⁡(resp. 𝑃𝑙,𝑏) and increase 𝑎 (resp. decrease 𝑏) by one. Then 𝑎 and 𝑏 are updated

by cutting-off their last bits (i.e., integer division by 2, or bitwise right-shift). If, at

the next level, 𝑎 > 𝑏 holds, indexing [𝑎, 𝑏] is done.

The main operation of the index is the execution of range queries. A range query 𝑞

can be evaluated by finding at each level the partitions that overlap with 𝑞. Specifi-

cally, the partitions that overlap with the query interval 𝑞 at level 𝑙 are partitions

𝑃𝑙,𝑝𝑟𝑒𝑓𝑖𝑥(𝑙,𝑞.𝑠𝑡) to 𝑃𝑙,𝑝𝑟𝑒𝑓𝑖𝑥(𝑙,𝑞.𝑒𝑛𝑑), where 𝑝𝑟𝑒𝑓𝑖𝑥(𝑛, 𝑥) denotes the 𝑛-bit prefix of integer

𝑥. These partitions are called relevant to the query 𝑞. All intervals in the relevant

partitions are guaranteed to overlap with 𝑞 and intervals in none of these partitions

cannot possibly overlap with 𝑞. However, since the same interval 𝑠 may exist in

multiple partitions that overlap with a query, 𝑠 may be reported multiple times in

the query result. For this reason, there is a technique that avoids the production and

therefore, the need for elimination of duplicates and, at the same time, minimizes

the number of data accesses. For this, the intervals in each partition 𝑃𝑙,𝑖 are divided

into two groups: originals 𝑃𝑙,𝑖
𝑂 and replicas 𝑃𝑙,𝑖

𝑅 . Group 𝑃𝑙,𝑖
𝑂 contains all intervals 𝑠 ∈

11

𝑃𝑙,𝑖 that begin at 𝑃𝑙,𝑖 i.e., 𝑝𝑟𝑒𝑓𝑖𝑥(𝑙, 𝑠. 𝑠𝑡) = 𝑖. Group 𝑃𝑙,𝑖
𝑅 contains all intervals 𝑠 ∈ 𝑃𝑙,𝑖

that begin before 𝑃𝑙,𝑖 i.e., 𝑝𝑟𝑒𝑓𝑖𝑥(𝑙, 𝑠. 𝑠𝑡) ≠ 𝑖. Each interval is added as original in

only one partition of HINT. For example, interval [5, 9] in Figure 2.1 is added to

𝑃4,5
𝑂 , 𝑃3,3

𝑅 and 𝑃3,4
𝑅 .

Given a range query 𝑞, at each level 𝑙 of the index, we report all intervals in the first

relevant partition 𝑃𝑙,𝑓 (i.e., 𝑃𝑙,𝑓
𝑂 ⁡⋃⁡𝑃𝑙,𝑓

𝑅). Then, for every other relevant partition 𝑃𝑙,𝑖 ,

𝑖 > 𝑓, we report all intervals in 𝑃𝑙,𝑖
𝑂 and ignore 𝑃𝑙,𝑖

𝑅 . This guarantees that no result is

missed, and no duplicates are produced. The reason is that each interval 𝑠 will

appear as original in just one partition, hence, reporting only originals cannot pro-

duce any duplicates. At the same time, all replicas 𝑃𝑙,𝑓
𝑅 in the first partitions per level

𝑙 that overlap with 𝑞 begin before 𝑞 and overlap with 𝑞, so they should be reported.

On the other hand, replicas 𝑃𝑙,𝑖
𝑅 in subsequent relevant partitions (𝑖 > 𝑓) contain

intervals, which are either originals in a previous partition 𝑃𝑙,𝑗, 𝑗 < 𝑖 or replicas in

𝑃𝑙,𝑓
𝑅 , so, they can safely be skipped. Algorithm 2 describes the range query algorithm

using HINT.

Figure 2.3 Pseudocode for Range query on HINT.

For example, consider the hierarchical partitioning of Figure 2.4 and a query interval

[5, 9]. The binary representations of 𝑞. 𝑠𝑡 and 𝑞. 𝑒𝑛𝑑 are 0101 and 1001, respectively.

The relevant partitions at each level are shown in bold (blue) and dashed (red) lines

12

and can be determined by the corresponding prefixes of 0101 and 1001. At each

level 𝑙, all intervals (both originals and replicas) in the first partitions 𝑃𝑙,𝑓 (bold/blue)

are reported while in the subsequent partitions (dashed/red), only the original inter-

vals are.

Figure 2.4: Accessed partitions for range query [5, 9].

The version of HINT described above finds all range query results, without conduct-

ing any comparisons. This means that in each partition 𝑃𝑙,𝑖, we only must keep the

ids of the intervals that are assigned to 𝑃𝑙,𝑖 and do not have to store/replicate the

interval endpoints. In addition, the relevant partitions at each level are computed by

fast bit-shifting operations which are comparison free. To use HINT for arbitrary

integer domains, first all interval endpoints should be normalized by subtracting the

minimum endpoint, to convert them to values in a [0, 2𝑚 − 1] domain (the same

transformation should be applied on the queries).

HINTm is used for intervals in arbitrary domains and uses a hierarchical domain

partitioning with 𝑚 + 1 levels, based on a [0, 2𝑚 − 1] domain 𝐷; each raw interval

endpoint is mapped to a value in 𝐷, by linear rescaling. The mapping function 𝑓(𝑅 →

𝐷) is 𝑓(𝑥) =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
∗ (2𝑚 − 1), where min(𝑥) and max(𝑥) are the minimum

and maximum interval endpoints in the dataset 𝑆, respectively. Each raw interval

[𝑠. 𝑠𝑡, 𝑠. 𝑒𝑛𝑑] is mapped to interval [𝑓(𝑠. 𝑠𝑡), 𝑓(𝑠. 𝑒𝑛𝑑)]. The mapped interval is then

assigned to at most two partitions per level in HINTm, using Algorithm 1. For the

ease of presentation, assume that the raw interval endpoints take values in [0, 2𝑚′ −

13

1], where 𝑚′ > 𝑚, which means that the mapping function 𝑓 simply outputs the 𝑚

most significant bits of its input. As an example, assume that 𝑚 = 4 and 𝑚′ = 6.

Interval [21, 38] = [0𝑏010101, 0𝑏100110] is mapped to interval [5, 9] =

[0𝑏0101, 0𝑏1001] and assigned to partitions 𝑃4,5, 𝑃3,3 and 𝑃3,4, as shown in Figure

2.1. So, in contrast to HINT, the set of partitions where an interval s is assigned in

HINTm does not define 𝑠, but the smallest interval in the [0, 2𝑚 − 1] domain 𝐷,

which covers 𝑠. As in HINT, at each level 𝑙, we divide each partition 𝑃𝑙,𝑖 to 𝑃𝑙,𝑖
𝑂 and

𝑃𝑙,𝑖
𝑅 , to avoid duplicate query results.

For a range query 𝑞, simply reporting all intervals in the relevant partitions at each

level (as in Algorithm 2) would produce false positives. Instead, comparisons to the

query endpoints may be required for the first and the last partition at each level that

overlap with 𝑞. Specifically, consider each level of HINTm as a 1D-grid and go

through the partitions at each level 𝑙 that overlap with 𝑞.

For the first partition 𝑃𝑙,𝑓, verify whether s overlaps with 𝑞 for each interval 𝑠 ∈ 𝑃𝑙,𝑓
𝑂

and each 𝑠 ∈ 𝑃𝑙,𝑓
𝑅 . For the last partition 𝑃𝑙,𝑙 , verify whether 𝑠 overlaps with 𝑞 for each

interval 𝑠 ∈ 𝑃𝑙,𝑙
𝑂 . For each partition 𝑃𝑙,𝑖 between 𝑃𝑙,𝑓 and 𝑃𝑙,𝑙, report all 𝑠 ∈ 𝑃𝑙,𝑖

𝑂 without

any comparisons. As an example, consider the HINTm index and the range query

interval 𝑞 shown in Figure 2.5.

Figure 2.5: Avoiding redundant comparisons on HINTm.

The identifiers of the relevant partitions to 𝑞 are shown in the Figure 2.5 (and some

indicative intervals that are assigned to these partitions). At level 𝑚 = 4, comparisons

14

must be performed for all intervals in the first relevant partitions 𝑃4,5. In partitions

𝑃4,6,..., 𝑃4,8 we just report the originals in them as results, while in partition 𝑃4,9 we

compare the start points of all originals with 𝑞, before confirming whether they are

results or not. At the first and the last partition of each level 𝑙 overlap tests can be

simplified based on the following: At every level 𝑙, each 𝑠 ∈ 𝑃𝑙,𝑓
𝑅 ⁡is a query result

𝑖𝑓𝑓⁡𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑. If 𝑙 > 𝑓, each 𝑠 ∈ 𝑃𝑙,𝑓
𝑂 is a query result 𝑖𝑓𝑓⁡𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑. Resulting

from the fact that for the first relevant partition 𝑃𝑙,𝑓 at each level 𝑙, for each replica

𝑠 ∈ 𝑃𝑙,𝑓
𝑅 , 𝑠. 𝑠𝑡 < 𝑞. 𝑠𝑡, so 𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑 suffices as an overlap test and for the last parti-

tion 𝑃𝑙,𝑙, if 𝑙 > 𝑓, for each original 𝑠 ∈ 𝑃𝑙,𝑓
𝑂 , 𝑞. 𝑠𝑡 < 𝑠. 𝑠𝑡, so 𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑 suffices as an

overlap test.

One of the most important findings in the study and a powerful feature of HINTm

is that at most levels, it is not necessary to do comparisons at the first and/or the last

partition. For instance, in the previous example, comparisons do not have to be

performed for partition 𝑃3,4, since any interval assigned to 𝑃3,4 should overlap with

𝑃4,8 and the interval spanned by 𝑃4,8⁡is covered by 𝑞. This means that the start points

of all intervals in𝑃3,4 is guaranteed to be before 𝑞. 𝑒𝑛𝑑 (which is inside 𝑃4,9). In

addition, observe that for any relevant partition which is the last partition at an

upper level and covers 𝑃3,4 (i.e., partitions {𝑃2,2, 𝑃1,1, 𝑃0,0}), we do not have to conduct

the 𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑 tests as intervals in these partitions are guaranteed to start before

𝑃4,9. The following formalizes these observations: If the first (resp. last) relevant

partition for a query q at level 𝑙⁡(𝑙 < 𝑚) starts (resp. ends) at the same value as the

first (resp. last) relevant partition at level 𝑙 + 1, then for every first (resp. last) rele-

vant partition 𝑃𝑣,𝑓(resp. 𝑃𝑣,𝑙) at levels 𝑣 < 𝑙, each interval 𝑠 ∈ 𝑃𝑣,𝑓⁡(resp. 𝑠 ∈ 𝑃𝑣,𝑙⁡) sat-

isfies 𝑠. 𝑒𝑛𝑑 ≥ 𝑞. 𝑠𝑡 (resp. 𝑠. 𝑠𝑡 ≥ 𝑞. 𝑒𝑛𝑑). Algorithm 3 is a pseudocode for the range

query algorithm on HINTm.

15

Figure 2.6: Pseudocode for Range query on HINTm.

The algorithm accesses all levels of the index, bottom-up. It uses two auxiliary flag

variables 𝑐𝑜𝑚𝑝𝑓𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 to mark whether it is necessary to perform com-

parisons at the current level (and all levels above it) at the first and the last partition,

respectively. At each level 𝑙, offsets of the relevant partitions to the query are found,

based on the 𝑙 − 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠 of 𝑞. 𝑠𝑡 and 𝑞. 𝑒𝑛𝑑 (Line 4). For the first position 𝑓 =

𝑝𝑟𝑒𝑓𝑖𝑥(𝑞. 𝑠𝑡), the partitions holding originals and replicas 𝑃𝑙,𝑓
𝑂 and 𝑃𝑙,𝑓

𝑅 are accessed.

The algorithm first checks whether 𝑓 = 𝑙, i.e., the first and the last partitions coincide.

In this case, if 𝑐𝑜𝑚𝑝𝑓𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 are set, then all comparisons are performed

in 𝑃𝑙,𝑓
𝑂 and apply what described previously in 𝑃𝑙,𝑓

𝑅 . Else, if only 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 is set, the

𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑 comparisons can be safely skipped; if only compfist is set, regardless

16

whether 𝑓 = 𝑙, 𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑 comparisons are performed to both originals and repli-

cas to the first partition. Finally, if neither 𝑐𝑜𝑚𝑝𝑓𝑖𝑟𝑠𝑡 nor 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 are set, all inter-

vals are just reported in the first partition as results. For the last partition 𝑃𝑙,𝑙 if 𝑙 > 𝑓

(line 17) then 𝑃𝑙,𝑙
𝑂 is examined by just applying the 𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑 test for each interval

there. Finally, for all partitions in-between the first and the last one, all original

intervals there are simply reported.

As previously discussed, the primary advantage of HINT/HINTm is its ability to

minimize the number of comparisons during the evaluation of a range query. Con-

sequently, for most examined partitions, specifically intermediate partitions, there is

no need to access the endpoints of intervals. Instead, only the interval 𝑖𝑑𝑠 are re-

quired to report a range query result. This observation led the authors to design

certain optimizations that involve retaining only the interval 𝑖𝑑𝑠.

However, in the context of ranking queries, where it is necessary to determine the

rank of a result based on the overlap between the interval and the query, the interval

endpoints must be accessed each time. Therefore, optimizations that do not involve

accessing the interval endpoints are unsuitable for the evaluation of ranking queries.

This subsection will discuss the optimization techniques that applied on the evalua-

tion of range queries and are appropriate for retrieving ranking queries results also.

The main method ‘Subdivisions and space decomposition’ [5] reduces the number

of partitions in HINTm where comparisons are performed and avoids accessing un-

necessary data. Recall that, at each level 𝑙 of HINTm, every partition 𝑃𝑙,𝑖 is divided

into 𝑃𝑙,𝑖
𝑂 (holding originals) and 𝑃𝑙,𝑖

𝑅 (holding replicas). Now the authors propose

to further divide each 𝑃𝑙,𝑖
𝑂 into 𝑃𝑙,𝑖

𝑂𝑖𝑛 and 𝑃𝑙,𝑖
𝑂𝑎𝑓𝑡, so that 𝑃𝑙,𝑖

𝑂𝑖𝑛 (resp. 𝑃𝑙,𝑖
𝑂𝑎𝑓𝑡) holds

the intervals from 𝑃𝑙,𝑖
𝑂𝑖𝑛 that end inside (resp. after) partition 𝑃𝑙,𝑖. Similarly, each

𝑃𝑙,𝑖
𝑅 is divided into 𝑃𝑙,𝑖

𝑅𝑖𝑛 and 𝑃𝑙,𝑖
𝑅𝑎𝑓𝑡. Consider a range query 𝑞, which overlaps

with a sequence of more than one partition at level 𝑙. As already discussed, if com-

parisons must be conducted in the first such partition 𝑃𝑙,𝑓, should be done for all

intervals in 𝑃𝑙,𝑓
𝑂and 𝑃𝑙,𝑓

𝑅. The subdivision of 𝑃𝑙,𝑓
𝑂and 𝑃𝑙,𝑓

𝑅, concludes to the follow-

ing: If 𝑃𝑙,𝑓 ≠ 𝑃𝑙,𝑙 each interval 𝑠 in 𝑃𝑙,𝑓
𝑂𝑖𝑛⋃⁡𝑃𝑙,𝑓

𝑅𝑖𝑛 overlaps with 𝑞 𝑖𝑓𝑓⁡𝑠. 𝑒𝑛𝑑 ≥ 𝑞. 𝑠𝑡;

and all intervals 𝑠 in 𝑃𝑙,𝑓
𝑂𝑎𝑓𝑡and 𝑃𝑙,𝑓

𝑅𝑎𝑓𝑡 are guaranteed to overlap with 𝑞. Follows

directly from the fact that 𝑞 starts inside 𝑃𝑙,𝑓 but ends after 𝑃𝑙,𝑓. Hence, just one

17

comparison is needed for each interval in 𝑃𝑙,𝑓
𝑂𝑖𝑛⋃⁡𝑃𝑙,𝑓

𝑅𝑖𝑛, whereas all intervals

𝑃𝑙,𝑓
𝑂𝑎𝑓𝑡⋃⁡𝑃𝑙,𝑓

𝑅𝑎𝑓𝑡 can be reported as query results without any comparisons.

 As already discussed, for all partitions 𝑃𝑙,𝑖 between 𝑃𝑙,𝑓 and 𝑃𝑙,𝑙 , intervals in

𝑃𝑙,𝑖
𝑂𝑖𝑛⋃⁡𝑃𝑙,𝑖

𝑂𝑎𝑓𝑡are just reported as results, without any comparisons, whereas for the

last partition 𝑃𝑙,𝑙, one comparison is performed per interval in 𝑃𝑙,𝑙
𝑂𝑖𝑛⋃⁡𝑃𝑙,𝑙

𝑂𝑎𝑓𝑡. If the

range query 𝑞 overlaps only one partition 𝑃𝑙,𝑓 at level 𝑙, the authors use following to

minimize the necessary comparisons: If 𝑃𝑙,𝑓 = 𝑃𝑙,𝑙 then each interval 𝑠 in 𝑃𝑙,𝑓
𝑂𝑖𝑛 over-

laps with 𝑞 𝑖𝑓𝑓⁡𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑⁡˄⁡𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑, each interval s in 𝑃𝑙,𝑓
𝑂𝑎𝑓𝑡 overlaps with

𝑞, 𝑖𝑓𝑓⁡𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑, each interval 𝑠 in 𝑃𝑙,𝑓
𝑅𝑖𝑛 overlaps with 𝑞, 𝑖𝑓𝑓⁡𝑠. 𝑒𝑛𝑑 ≥ 𝑞. 𝑠𝑡, all

intervals in 𝑃𝑙,𝑓
𝑅𝑎𝑓𝑡 overlap with 𝑞. All intervals 𝑠 ∈ 𝑃𝑙,𝑓

𝑂𝑎𝑓𝑡and end after 𝑞, so 𝑠. 𝑠𝑡 ≤

𝑞. 𝑒𝑛𝑑 suffices as an overlap test. All intervals 𝑠 ∈ 𝑃𝑙,𝑓
𝑅𝑖𝑛 start before 𝑞, so 𝑠. 𝑠𝑡 ≤

𝑞. 𝑒𝑛𝑑 suffices as an overlap test. All intervals 𝑠 ∈ 𝑃𝑙,𝑓
𝑅𝑎𝑓𝑡 start before and end after

𝑞, so they are guaranteed results.

Overall, the subdivisions minimize the number of intervals in each partition, for

which we must apply comparisons. Figure 2.7 shows the subdivisions which are

accessed by query 𝑞 at level 𝑙 = 2 of a HINTm index. In partition 𝑃𝑙,𝑓 = 𝑃2,1, all four

subdivisions are accessed, but comparisons are needed only for intervals in 𝑃2,1
𝑂𝑖𝑛

and 𝑃2,1
𝑅𝑖𝑛. In partition 𝑃2,2, only the originals (𝑃2,2

𝑂𝑖𝑛 and 𝑃2,2
𝑂𝑎𝑓𝑡) are accessed and

reported without any comparisons. Finally, in 𝑃𝑙,𝑓 = 𝑃2,3, only the originals (𝑃2,3
𝑂𝑖𝑛

and 𝑃2,3
𝑂𝑎𝑓𝑡) are accessed and compared to 𝑞.

Figure 2.7: Partition subdivisions in HINTm level 2.

As can be easily summarized, the intervals in each subdivision can be kept sorted,

to reduce the number of comparisons for queries that access them. For example, by

examining the last partition 𝑃𝑙,𝑙, that overlaps with a query 𝑞 at a level 𝑙. Any can

18

conclude that if the intervals 𝑠 in 𝑃𝑙,𝑓
𝑂𝑖𝑛 are sorted on their start endpoint (i.e., 𝑠. 𝑠𝑡),

then the intervals can be reported until the first 𝑠 ∈ 𝑃𝑙,𝑙
𝑂𝑖𝑛, such that 𝑠. 𝑠𝑡 > 𝑞. 𝑒𝑛𝑑.

Or binary search can be performed to find the first 𝑠 ∈ 𝑃𝑙,𝑙
𝑂𝑖𝑛, such that 𝑠. 𝑠𝑡 > 𝑞. 𝑒𝑛𝑑

and then scan and report all intervals before 𝑠. Table 2.2 summarizes the sort orders

for each of the four subdivisions of a partition that can be beneficial in range query

evaluation. For a subdivision 𝑃𝑙,𝑙
𝑂𝑖𝑛, intervals may have to be compared based on

their start point (if 𝑃𝑙,𝑖 = 𝑃𝑙,𝑓), or based on their end point (if 𝑃𝑙,𝑖 = 𝑃𝑙,𝑙), or based on

both points (if 𝑃𝑙,𝑖 = 𝑃𝑙,𝑓 = 𝑃𝑙,𝑙). Hence, they choose to sort based on either 𝑠. 𝑠𝑡 or

𝑠. 𝑒𝑛𝑑 to accommodate two of these three cases. For a subdivision 𝑃𝑙,𝑖
𝑂𝑎𝑓𝑡, intervals

may only have to be compared based on their start point (if 𝑃𝑙,𝑖 = 𝑃𝑙,𝑙). For a subdi-

vision 𝑃𝑙,𝑖
𝑅𝑖𝑛, intervals may only have to be compared based on their end point 𝑃𝑙,𝑖 =

𝑃𝑙,𝑓. Last, for a subdivision 𝑃𝑙,𝑖
𝑅𝑎𝑓𝑡, there is never any need to compare the intervals,

so, no order provides any search benefit.

Table 2.2: Beneficial sort orders

Subdivision Beneficial sorting

𝑃𝑙,𝑖
𝑂𝑖𝑛 by 𝑠. 𝑠𝑡 or by 𝑠. 𝑒𝑛𝑑

𝑃𝑙,𝑖
𝑂𝑎𝑓𝑡 by 𝑠. 𝑠𝑡

𝑃𝑙,𝑖
𝑅𝑖𝑛 by 𝑠. 𝑒𝑛𝑑

𝑃𝑙,𝑖
𝑅𝑎𝑓𝑡 no sorting

Thus far, we have thoroughly examined all the significant contributions made by

Christodoulou et al. in [5]. The subsequent sections of this paper will delve into the

definitions, methodologies, and techniques that contribute to the development of

HINTm, aiming to efficiently support ranking (top 𝑘) queries.

19

3.1 Top-k Query

3.2 Overlap-Intersection

3.3 Ranking Problem

In the context of computer science and information retrieval, top 𝑘 query is a type

of query that retrieves the top 𝑘 items from a dataset based on some specified criteria.

The scientific definition encompasses the following key aspects:

• Definition: A top 𝑘 query is an operation that returns the 𝑘 highest rank-

ing results from a collection of items, based on a given score or a ranking

function.

• Ranking Function: The ranking function 𝑓(𝑥) assigns a numerical score

to each item 𝑥 in the dataset. The function reflects the relevance, similarity,

or preference according to the specific application or query context.

In mathematics, an interval is a fundamental concept used to describe a continuous

range of numbers. There are various types of intervals, this study focuses particularly

20

on closed intervals. A closed interval is a set of real numbers that includes both its

endpoints. It is denoted by [𝑎, 𝑏], where 𝑎 and 𝑏 are the two endpoints of the interval,

and all numbers between 𝑎 and 𝑏 including 𝑎 and 𝑏 themselves, belong to the

interval [14].

When considering multiple intervals, a common problem is determining their inter-

section (overlap). The intersection of two intervals refers to the set of points that are

contained within both intervals. For two closed intervals [𝑎, 𝑏] and [𝑐, 𝑑], their inter-

section is also a closed interval if they do overlap. Mathematically, the intersection

of these intervals is defined as [max(𝑎, 𝑐) ,min⁡(𝑏, 𝑑)]. This intersection is valid and

non-empty:

• 𝑖𝑓𝑓 max(𝑎, 𝑐) ≤ min(𝑏, 𝑑).

If this condition is not met, the intervals do not overlap, and their intersection is the

empty set. For example, consider two closed intervals [1, 5] and [3, 7]. The intersec-

tion of these intervals would be [max(1, 3) ,min(5, 7)] = [3, 5]. This resultant interval

includes all numbers that lie within both original intervals.

In this study, we refer to this concept as the absolute overlap or intersection between

two intervals, which will determine the ranking function examined. More explana-

tory, given as data input a set of closed intervals 𝑆 and a closed interval 𝑞 as a query.

We determine the intersection or overlap of an interval 𝑠 ∈ 𝑆 based on the following:

• Absolute intersection: |𝑠 ∩ 𝑞| = [max(𝑞. 𝑠𝑡, 𝑠. 𝑠𝑡) ,min(𝑞. 𝑒𝑛𝑑, 𝑠. 𝑒𝑛𝑑).

Given a large collection of intervals 𝑆, a positive integer 𝑘 and a query interval 𝑞.

We address the problem of finding the top 𝑘 intervals of the collection 𝑆 that best

overlap with the query 𝑞. The ranking score 𝑠𝑠𝑐𝑜𝑟𝑒 is computed by the endpoints of

absolute intersection between query 𝑞 and interval 𝑠 ∈ 𝑆, formulated as:

• Intersection score: 𝑠𝑠𝑐𝑜𝑟𝑒 = min(𝑞. 𝑒𝑛𝑑, 𝑠. 𝑒𝑛𝑑) − max(𝑞. 𝑠𝑡, 𝑠. 𝑠𝑡).

21

• For each interval: 𝑧 ∈ 𝑆⁡𝑎𝑛𝑑⁡|𝑧 ∩ 𝑞| = ∅ ⇒ 𝑧𝑠𝑐𝑜𝑟𝑒 = 0.

The goal is to identify the 𝑘 intervals with the highest overlapping scores, thus

ranking them based on how well they intersect with the query. Formally,

Input:

• Finite set of intervals: 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛}

• Positive integer: 𝑘

• Interval query: 𝑞

Output:

• Subset: 𝑇𝑂𝑃𝑘 ⊆ 𝑆, such that |𝑇𝑂𝑃𝑘| = 𝑘 and each interval 𝑠 ∈ 𝑇𝑂𝑃𝑘 has

one of the 𝑘 highest 𝑠𝑠𝑐𝑜𝑟𝑒 with 𝑞.

The Figure 3.1 below presents a comprehensible example that encapsulates the con-

cepts discussed so far.

Figure 3.1 Ranking example

22

4.1 Naïve Traversal

4.2 Top-Down Traversal

4.3 Upper Bounds

 4.3.1 Static Upper Bounds

 4.3.2 Metadata Upper Bounds

4.4 Naïve & Top-Down with Upper Bounds

4.5 Depth-First Traversal

4.6 Ordered Traversal

4.7 Sorted Traversal

The primary objective of this study is to address the interval ranking problem with

maximum efficiency. To achieve this, we enhance the HINTm index to support top-

𝑘 queries. This development incorporates the HINTm index along with the optimi-

zations detailed in the subsection 2.3. To accomplish this, we initially use Algorithm

1 “Assignment of an interval to partitions” (figure 2.2) to index all intervals of 𝑆.

Subsequently we modify Algorithm 3, “Range Query on HINTm” (figure 2.6) so that

each time a range query result s is reported, its intersection score is computed. If the

𝑇𝑂𝑃𝑘 set is not yet full, the interval is added to the set. Otherwise, its score is

compared to the 𝑘-th highest score in the 𝑇𝑂𝑃𝑘 set. If the score meets the necessary

threshold, the interval is added to the top-𝑘 set; otherwise, the algorithm proceeds

to the next range query result. For the remainder of this study, this process will be

23

referred to as "update 𝑇𝑂𝑃𝑘." To check if the 𝑇𝑂𝑃𝑘 set is not full, we will use the

condition:

• |𝑇𝑂𝑃𝑘| < 𝑘

It is necessary to indicate that if the query overlaps fewer than 𝑘 intervals, the results

should be output directly. While for tracking the best of the results we are using a

min-heap data structure due to its efficient insertion and removal operations. In the

rest of this section, we will examine the different methods of traversing the HINTm

index aiming to extract the top 𝑘 results as efficiently as possible.

The initial approach is a naive method that traverses the index in a bottom-up

manner, as exactly described previously, modifying the Algorithm 3 “Range Query

on HINTm”. Each time the algorithm reports a range query result, the overlap score

between the query's endpoints and the result's endpoints is computed. Based on this

score, it is then determined whether the result should be included in the 𝑇𝑂𝑃𝑘 set.

This process, “update 𝑇𝑂𝑃𝑘”, continues until all potential range query results have

been examined.

24

Figure 4.1: Pseudocode for Naïve Traversal.

It is evident that longer intervals are more likely to overlap significantly with the

query. In the context of HINTm, partitions closer to the root are larger and therefore

tend to contain longer intervals compared to those nearer the bottom. Consequently,

the Top-Down approach traverses the HINTm from the root towards the bottom.

This method prioritizes potentially higher scores in the ranking and reduces unnec-

essary insertions as the traversal nears the lower levels of the index. To benefit from

the nature of HINTm, adjustments to the 𝑐𝑜𝑚𝑝𝑓𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 flags are needed.

Specifically, before initiating the top-down scanning to gather the top 𝑘 results, the

index is first scanned bottom-up to determine the level 𝑐𝑜𝑚𝑝𝑙𝑒𝑣𝑒𝑙 of HINTm where

25

the flags compfirst and complast are met. Subsequently, the index is scanned starting

from the root, avoiding comparisons until complevel. Comparisons are then per-

formed from that level until the bottom.

Figure 4.2 Pseudocode for Top-Down Traversal.

26

To further expedite the retrieval of the top 𝑘 intervals, we introduce Upper bounds

that serve to eliminate unnecessary scans of partitions. They are used when it is

guaranteed that the partition of HINTm to be scanned does not contain any intervals

that could be part of the 𝑇𝑂𝑃𝑘 set. This approach consequently reduces redundant

computations and score comparisons. Upper bounds are applied to each partition of

the index, indicating the maximum potential interval that it may contain. Subse-

quently, the intersection score between this potential maximum interval and the

query is calculated, establishing the upper bound for our approach.

To ensure no potential results are not skipped, Upper bounds are employed only

after the 𝑇𝑂𝑃𝑘 set is fully populated. If the set is not yet full, any result will be

added regardless of its score. Thus, before utilizing upper bounds, it is necessary to

verify that the 𝑇𝑂𝑃𝑘 set is full. If so, the Upper bound is compared with the 𝑘-th

score. The partition is scanned only if the Upper bound exceeds the 𝑘-th score.

Formally, assume 𝑠′ possible maximum interval a partition 𝑃 can offer.

• We define as static Upper bound: 𝑈𝑏. 𝑃 = 𝑠𝑠𝑐𝑜𝑟𝑒
′

• Pruning condition whether to scan the 𝑃:

 𝑖𝑓⁡(|𝑇𝑂𝑃𝑘| < 𝑘)||(𝑈𝑏. 𝑃 > 𝑘𝑡ℎ−𝑠𝑐𝑜𝑟𝑒) ⇒ 𝑠𝑐𝑎𝑛⁡𝑃

In the subsequent analysis, we evaluate two distinct versions of the Upper bounds.

The initial version employs the endpoints of the partitions (𝑃. 𝑠𝑡, 𝑃. 𝑒𝑛𝑑, 𝑃. 𝑒𝑥𝑡𝑒𝑛𝑡 =

𝑃. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡) along with those of the queries (𝑞. 𝑠𝑡, 𝑞. 𝑒𝑛𝑑) to compute static bounds

for each subdivision of a partition accessible during a top-𝑘 query. The revised ver-

sion utilizes metadata to further refine and tighten the upper bounds.

As discussed in the section 2.3 for a first relevant partition 𝑃𝑓 , both originals and

replicas should be accessed. We introduce the static upper bounds, 𝑈𝑏. 𝑃𝑓
𝑂𝑖𝑛,

𝑈𝑏. 𝑃𝑓
𝑂𝑎𝑓𝑡

, 𝑈𝑏. 𝑃𝑓
𝑅𝑖𝑛, 𝑈𝑏. 𝑃𝑓

𝑅𝑎𝑓𝑡
, for each subdivision.

27

• An Original in subdivision contains intervals that begin and end in this par-

tition. The potential maximum intersection score that a first relevant Original

in can provide is: 𝑈𝑏. 𝑃𝑓
𝑂𝑖𝑛 = 𝑃. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 figure 4.3.

• A Replica in subdivision consists of intervals that begin before this partition

and end inside it. The estimated maximum intersection score that a Replica

in on a first relevant can provide is: 𝑈𝑏. 𝑃𝑓
𝑅𝑖𝑛 = 𝑃. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 figure 4.3.

Figure 4.3: Upper Bound of First rel. Partition for Oin & Rin.

• An Original after subdivision contains intervals that begin in this partition but

end after. The potential maximum intersection score that an Original after on

a first relevant can provide is: 𝑈𝑏. 𝑃𝑓
𝑂𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 figure 4.4.

• A Replica after subdivision consists of intervals that begin before this partition

and end after it also. The hypothetical maximum intersection score that a

Replica after on a first relevant partition can provide is: 𝑈𝑏. 𝑃𝑓
𝑅𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 −

𝑞. 𝑠𝑡 figure 4.4.

28

Figure 4.4: Upper Bound of First rel. Partition for Oaft & Raft.

For an intermediate 𝑃𝑖𝑛 or a last relevant 𝑃𝑙 partition only originals must be accessed

section2.3. We introduce the static upper bounds, 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑖𝑛, 𝑈𝑏. 𝑃𝑖𝑛

𝑂𝑎𝑓𝑡
, 𝑈𝑏. 𝑃𝑙

𝑂𝑖𝑛,

𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

, for these cases.

• The possible maximum intersection score that an Original in on an interme-

diate relevant partition can provide is: 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑖𝑛 = 𝑃. 𝑒𝑥𝑡𝑒𝑛𝑡 figure 4.5.

Figure 4.5: Upper Bound of Intermediate rel. Partition for Oin.

• The potential maximum intersection score that an Original after on an inter-

mediate relevant partition can provide is: 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑎𝑓𝑡

= 𝑃. 𝑒𝑥𝑡𝑒𝑛𝑡 + 𝑞. 𝑒𝑛𝑑 −

𝑃. 𝑒𝑛𝑑.figure 4.6.

29

Figure 4.6: Upper Bound of Intermediate rel. Partition for Oaft.

• The likely maximum intersection score that an Original in on a last relevant

partition can provide is: 𝑈𝑏. 𝑃𝑙
𝑂𝑖𝑛 = 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡 figure 4.7.

• The prospective maximum intersection that an Original after on a last rele-

vant partition can provide is:⁡𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡 figure 4.7.

Figure 4.7: Upper Bound of last rel. Partition for Oin & Oaft.

In the revised methodology for determining the Upper bounds, rather than presup-

posing the expected extended interval that each subclass might offer, we save the

longest interval present within each subdivision. This preserved metadata is then

30

utilized to compute the upper bounds. The tracking of the maximum interval for

each subdivision is conducted concurrently with the assignment of intervals to their

respective partitions. Formally, assume the longest interval max 𝑠 that exists on a

partition 𝑃:

• We define metadata upper bound: 𝑈𝑏. 𝑃𝑚𝑎𝑥 = max 𝑠𝑠𝑐𝑜𝑟𝑒

In such manner, we introduce the metadata upper bounds for every subdivision of

a partition 𝑃, 𝑈𝑏. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛 , 𝑈𝑏. 𝑃𝑚𝑎𝑥

𝑂𝑎𝑓𝑡
, 𝑈𝑏. 𝑃𝑚𝑎𝑥

𝑅𝑖𝑛 , 𝑈𝑏. 𝑃𝑚𝑎𝑥
𝑅𝑎𝑓𝑡

. In an effort to further tighten

the upper bounds, while keeping in mind that the minimum bound is the more

suitable. It is important to acknowledge that the superiority of the metadata bounds

over the static ones remains uncertain in some cases. Consequently, the implemen-

tation will integrate both metadata and static upper bounds in the following manner.

For the first relevant partitions:

• Originals in 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑓
𝑂𝑖𝑛 = min(Ub. 𝑃𝑓

𝑂𝑖𝑛, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛), minimum between the

static and the metadata bound.

• Originals after 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑓
𝑂𝑎𝑓𝑡

= min(Ub. 𝑃𝑓
𝑂𝑎𝑓𝑡

, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑎𝑓𝑡

), minimum between

the static and metadata upper bound.

• Replicas 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑓
𝑅𝑖𝑛(𝑅𝑎𝑓𝑡)

= 𝑈𝑏. 𝑃𝑓
𝑅𝑖𝑛(𝑈𝑏. 𝑃𝑓

𝑅𝑎𝑓𝑡
), static bounds.

For the intermediate relevant partitions:

• Originals in 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑖𝑛
𝑂𝑖𝑛 = 𝑈𝑏. 𝑃𝑚𝑎𝑥

𝑂𝑖𝑛 , metadata bound.

• Originals after 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑖𝑛
𝑂𝑎𝑓𝑡

= 𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

, static bound.

For the last relevant partitions:

• Originals in 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑙
𝑂𝑖𝑛 = min(Ub. 𝑃𝑙

𝑂𝑖𝑛, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛) minimum between the

static and the metadata upper bound.

• Originals after 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑙
𝑂𝑎𝑓𝑡

= 𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

,⁡static upper bound.

In the remainder of this section, we update the naive and top-down methods intro-

duced in the preceding subsections 4.1 and 4.2. Furthermore, we explore novel

31

approaches for traversing the index. This time, however, we employ the discussed

Upper bounds to eliminate redundant scans of partitions. The table 4 summarizes

the Upper bounds discussed so far.

Table 4.1: Static & Metadata Upper Bounds for relevant partitions

Rel. partition &

subdivision

Static

Upper Bounds

Metadata

Upper Bounds

First rel. Oin 𝑈𝑏. 𝑃𝑓
𝑂𝑖𝑛 = 𝑃. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 min(Ub. 𝑃𝑓

𝑂𝑖𝑛, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛)

First rel. Oaft 𝑈𝑏. 𝑃𝑓
𝑂𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 min(Ub. 𝑃𝑓
𝑂𝑎𝑓𝑡

, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑎𝑓𝑡

)

First rel. Rin 𝑈𝑏. 𝑃𝑓
𝑅𝑖𝑛 = 𝑃. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 𝑈𝑏. 𝑃𝑓

𝑅𝑖𝑛

First rel. Raft 𝑈𝑏. 𝑃𝑓
𝑅𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 𝑈𝑏. 𝑃𝑓
𝑅𝑎𝑓𝑡

Intermediate rel. Oin 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑖𝑛 = 𝑃. 𝑒𝑥𝑡𝑒𝑛𝑡 𝑈𝑏. 𝑃𝑚𝑎𝑥

𝑂𝑖𝑛

Intermediate rel. Oaft 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑎𝑓𝑡

= 𝑃. 𝑒𝑥 + 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑒𝑛𝑑 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑎𝑓𝑡

Last rel. Oin 𝑈𝑏. 𝑃𝑙
𝑂𝑖𝑛 = 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡 min(Ub. 𝑃𝑙

𝑂𝑖𝑛, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛)

Last rel. Oaft 𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡 𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

In this subsection, we refine the Naive and Top-Down methods by integrating the

Upper bounds discussed previously. This enhancement aims to optimize the traversal

process by pruning unnecessary partitions. Through this approach, we seek to im-

prove the efficiency and effectiveness of our methods. Incorporating the Upper

bounds into the Naïve and Top-Down traversal methods is a straightforward process.

The primary requirement is to apply the pruning condition delineated in the previ-

ous subsection each time the methods are poised to scan a partition. Specifically,

immediately prior to calling “update 𝑇𝑂𝑃𝑘” in both the Naive and Top-Down meth-

ods, the appropriate Upper bound is applied, depending on the subdivision of the

partition and its relevance position. This ensures that only those partitions which

meet the established criteria are further examined, thereby streamlining the search

process.

32

Explanatory, for example, before scanning the first relevant partition 𝑃𝑓
𝑂𝑖𝑛of the orig-

inal in subclass, we apply the following pruning condition:

• 𝑖𝑓⁡(|𝑇𝑂𝑃𝑘| < 𝑘)||(𝑈𝑏. 𝑃𝑓
𝑂𝑖𝑛 > 𝑘𝑠𝑐𝑜𝑟𝑒

𝑡ℎ) ⁡⇒ 𝑠𝑐𝑎𝑛⁡𝑃𝑓
𝑂𝑖𝑛⁡

By implementing this condition before every partition’s scanning of the methods, we

establish their optimized versions: Naive with Upper bounds and Top-Down with

Upper bounds.

Continuing the endeavor to prioritize the longer intervals that populate the index

first, as initiated in the Top-Down subsection, we introduce a novel method that

traverses the index in a depth-driven manner. This technique diverges from tradi-

tional approaches by adopting a more intricate scanning process. Initially, we con-

duct a top-down traversal, covering only the first relevant partitions. Following this,

we examine, in the same way, all the intermediate partitions and finally we scan all

the last relevant partitions. The figure 4.8 below shows the relevant partitions that

are traversed top-down (first blue, then green and last yellow).

Figure 4.8: First, Intemediate & Last relevant Partitions.

33

Furthermore, we incorporate the 𝑐𝑜𝑚𝑝𝑙𝑒𝑣𝑒𝑙 parameter to strategically bypass unnec-

essary comparisons, mirroring the optimization techniques employed in the Top-

Down method. Additionally, we apply the upper bounds discussed previously to

every call of the 𝑇𝑂𝑃𝑘 update.

Figure 4.9: Pseudocode for Depth-First Traversal.

34

In our quest to further enhance the efficiency of index traversal, we present a novel

method termed the Ordered Traversal. This technique focuses on scanning the par-

titions of the index in a specific, strategic order to optimize the retrieval process. By

systematically organizing the sequence in which partitions are examined, we aim to

maximize the likelihood of quickly identifying intervals that overlap greater with the

query while minimizing unnecessary computations. This method builds upon the

principles (𝑐𝑜𝑚𝑝𝑙𝑒𝑣𝑒𝑙 and Upper Bounds) outlined in previous sections. Through

this ordered approach, we strive to achieve a more streamlined and effective data

management solution.

After identifying, with a bottom-up traverse what the 𝑐𝑜𝑚𝑝𝑙𝑒𝑣𝑒𝑙 is. The process of

this method unfolds as follows. The index is scanned in a top-down fashion, while

leveraging the upper bounds to enhance efficiency. The scanning procedure, starting

from the root, is meticulously ordered in distinct stages:

• First, we scan all the Originals and Replicas after for the first relevant parti-

tions figure 4.10.

Figure 4.10: First relevant partitions Originals and Replicas after

• Second, we examine all the Originals after for the intermediate relevant parti-

tions 4.8.

35

• Third, we inspect all the Originals in for the intermediate relevant partitions

figure 4.11.

Figure 4.11: Intermediate relevant partitions Originals and Replicas after.

• Fourth, we look at all the Originals and Replicas in for the first relevant

partitions figure 4.12.

Figure 4.12: First relevant partitions Originals and Replicas in.

• Fifth, we scan the Originals in and after for the last relevant partitions figure

4.13.

36

Figure 4.13: Last relevant partitions Originals in and after.

By following this specific order, the method ensures that the most promising parti-

tions are prioritized, aiming to improve the overall effectiveness of the scanning

process. Each stage of the scan is carefully designed to build upon the previous one,

targeting a comprehensive yet efficient traversal of the index.

37

Figure 4.14: Pseudocode for Ordered Traversal.

38

In our ongoing effort to optimize index traversal, we introduce the Sorted Traversal

of the HINTm. This method takes a comprehensive approach by first gathering all

the subclasses of the relevant partitions and then sorting them based on their Upper

bounds. By organizing the subdivisions of the partitions in this manner, we can

prioritize the most promising candidates for efficient scanning. This technique lev-

erages the previously discussed Upper bound principles.

The process of this method consists of three distinct stages. In the first stage, the

index is scanned in a bottom-up fashion (like Naïve Traversal), during which every

subclass of the relevant partitions is gathered to a list. The second stage involves

sorting these subclasses in descending order according to their upper bounds. This

sorting process ensures that the partitions with the highest potential intersections are

prioritized. In the final stage, the list of subclasses are scanned sequentially, starting

from the subdivision with the greatest Upper bound, and continuing until the fol-

lowing termination condition is satisfied.

More specifically, each time a sub-partition is scanned, it is necessary to verify

whether the top-𝑘 set is complete. Subsequently, if the 𝑘-th score within the top-𝑘

set is greater than or equal to the Upper bound of the next sub-partition for scanning,

this condition ensures that no other subclass can provide a superior interval result

for the 𝑇𝑂𝑃𝑘 set. If this criterion is met, it is guaranteed that further scanning of

remaining subclasses will not yield better results for the 𝑇𝑂𝑃𝑘 set, thus allowing the

process to terminate efficiently. Formally, assume that 𝑃′ the partition that is about

to get scanned:

• 𝑖𝑓⁡(|𝑇𝑂𝑃𝑘| = 𝑘)⁡𝑎𝑛𝑑⁡(𝑈𝑏. 𝑃′ < 𝑘𝑠𝑐𝑜𝑟𝑒
𝑡ℎ)⁡𝑡ℎ𝑒𝑛⁡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒⁡𝑝𝑟𝑜𝑐𝑒𝑠𝑠.

This methodical approach guarantees that the most significant partitions are exam-

ined first.

39

Figure 4.15: Pseudocode for Sorted Traversal

40

5.1 Datasets & Queries

5.2 HINTm & Methods

5.3 Query Extent

5.4 Static vs Metadata Upper Bounds

5.5 Parameter k

We employed a system featuring an Intel Core i5 7200U CPU, equipped with 2 cores

and 4 threads, operating at a clock rate of 2.5 GHz. The system was configured with

8 GB of RAM. For the operating system, we utilized Linux Ubuntu 22.04.4 in 64-

bit mode, and the code was compiled using GCC version 11.4.0.

The experimental analysis utilized four distinct datasets representing various real-

time intervals. The first dataset, referred to as "BOOKS," (https://www.odaa.dk) en-

compasses time intervals corresponding to instances when books were borrowed

from Aarhus libraries in 2013 and contains relatively large intervals. The second

dataset, "TAXIS"(https://www.nyc.gov/site/tlc/index.page), includes shorter time pe-

riods denoting the pick-up and drop-off times of taxi trips within New York City

during a specific period in 2013. Additionally, we conducted experiments using the

"BIKES” (https://citibikenyc.com/), which refers to the time spans during which bi-

cycles were rented in New York City in 2020, this dataset has similar characteristics

41

with the “TAXIS”. Lastly, the "FIRES” (https://www.fs.usda.gov/rds/archive/cata-

log/RDS-2013-0009.4) dataset includes time intervals corresponding to instances of

wildfires occurring in the United States between 1992 and 2015. The particular da-

taset contains lesser intervals but the average duration of them is between the interval

duration of the other datasets.

Table 5.1: Dataset characteristics

BOOKS TAXIS BIKES FIRES

Number of intervals 2.050.707 43.167.001 19.474.352 778.410

Domain size [sec] 31.413.600 31.542.251 31.947.359 757.382.940

Min. duration [sec] 1 1 1 1

Max. duration [sec] 31.406.400 2.148.385 3.786.188 9.988.800

Avg. duration [%] 6,98 0,0024 0,0041 0,013

m [index’s levels] 10 17 16 16

As interval queries, we employed predefined percentage intervals relative to the do-

main size of individual datasets. Specifically, the query intervals were set at 0,01%,

0,05%, 0,1%, 0,5%, and 1%. Each dataset underwent straightforward testing with

10.000 randomized queries per percentage interval, focusing on measuring total

throughput expressed in queries per second. This approach was chosen deliberately

over assessing average query time, particularly in contexts where large volumes of

interval data are processed.

The methods described in the section 4 were built on the top of HINTm index,

enhanced with the optimizations discussed in the subsection 2.3. For the m param-

eter (table 5.1), the optimal value was used, determined automatically for each da-

taset by the already existing code of HINTm. The detailed process for determining

the optimal m value was explained in the prior work [5].

42

All methods were tested on each dataset. We distinguished the methods based on

whether the Upper Bounds (static or metadata subsection 4.3) were applied. The

table 5.2 below summarizes the methods of our experiments.

Table 5.2: Top-k Querying Methods examined.

without upper bounds with static upper bounds with metadata upper bounds

Naive Naive Naive

Top-Down Top-Down Top-Down

- Depth-First Depth-First

- Ordered Traversal Ordered Traversal

- Sorted Traversal Sorted Traversal

In the first phase of our experimental evaluation, we focused on exploring the impact

of query extent variation through top-𝑘 queries across the datasets. Each dataset was

subjected to top-𝑘 queries representing a range of domain coverage percentages 5.2,

thereby investigating how query scope influences system performance. Throughout

these experiments, we maintained a constant value of 𝑘, set at 10, to ensure con-

sistency in methods’ complexity and evaluation metrics. The following subsection

presents a detailed analysis of our findings, highlighting the outcomes observed

across varying query extents.

For the datasets "TAXIS", "BIKES", and "FIRES", which feature relatively small

duration intervals, we observed a high throughput, while decreasing, across query

extents ranging from 0,01% to 0,1% of the domain size. However, beyond this range,

there is a noticeable decline in throughput. In contrast, the "BOOKS" dataset, char-

acterized by larger duration intervals, exhibited consistently low throughput across

all query extents tested. Moreover, we noted that applying static upper bounds ac-

celerated query processing across “TAXIS”, “BIKES” and “FIRES”. For the dataset

43

of “BOOKS” the outcomes remain at almost the same levels. We use the x-axis to

represent query extent (fixed percentage of the domain) and the y-axis for through-

put, employing a logarithmic scale for "TAXIS" and "BIKES" to accurately depict

the performance. Here, we applied static Upper Bounds.

Figure 5.1: Throughput of methods on BOOKS dataset across query extents, k=10.

Figure 5.2: Throughput of methods on FIRES dataset across query extents, k=10.

44

Figure 5.3: Throughput of methods on BIKES dataset across query extents, k=10

Figure 5.4: Throughput of methods on TAXIS dataset across query extents, k=10

(log scale).

45

Continuing our analysis, we compared the performance with the application of

metadata upper bounds. Our observations indicate that the throughput consistently

remains higher for all query extents when using metadata upper bounds compared

to static ones. Still the dataset of “BOOKS” does not show any significant advantage

in its performance. Notably, the 'top-down' method, when coupled with metadata

upper bounds, emerges as one of the best performing methods. Here, we depict only

the methods when Upper Bounds are applied.

Figure 5.5: Throughput of methods with static and metadata Upper Bounds on

BOOKS dataset across query extents, k=10.

46

Figure 5.6: Throughput of methods with static and metadata Upper Bounds on

FIRES dataset across query extents, k=10.

Figure 5.7: Throughput of methods with static and metadata Upper Bounds on

BIKES dataset across query extents, k=10

47

Figure 5.8: Throughput of methods with static and metadata Upper Bounds on

TAXIS dataset across query extents, k=10 (log scale).

In the second stage of our experiments, we systematically varied the parameter 𝑘

and repeated the aforementioned tests for each specified value: 5, 10, 50 and 100.

This iterative approach enabled us to observe and analyze the performance charac-

teristics of our methods when tasked with reporting larger sets of top 𝑘 results. By

adjusting 𝑘, we aimed to uncover how the scale of the result set influences system

throughput across different datasets.

We present outcomes of the top-down method with and without upper bounds for

different values of 𝑘, while keeping the query extent fixed at 0,1% of the initial

domains. Notably, we exclude results from the “BOOKS” dataset, as it consistently

did not exhibit any remarkable variations. The following figures detail the observed

performance across the “TAXIS”, “BIKES”, and “FIRES” datasets.

48

Figure 5.9: Scaling of Top-Down method (static & metadata Upper Bounds em-

ployed) on BIKES dataset for different values of k with query extent 0,1% of the

domain.

Figure 5.10: Scaling of Top-Down method (static & metadata Upper Bounds em-

ployed) on FIRES dataset for different values of k with query extent 0,1% of the

domain.

49

Figure 5.11: Scaling of Top-Down method (static & metadata Upper Bounds em-

ployed) on TAXIS dataset for different values of k with query extent 0,1% of the

domain (log scale).

As we see, the throughput declines as we apply larger values of k for the three

datasets, with 'BIKES' showing slightly better performance compared to 'TAXIS' and

'FIRES.' This pattern is consistent across the different query extents we tested. As

well as for the methods that employ upper bounds.

Figure 5.12: Scaling of Naive method (static & metadata Upper Bounds employed)

on BIKES dataset for different values of k with query extent 0,01% of the domain

(log scale).

50

Figure 5.13: Scaling of Naive method (static & metadata Upper Bounds employed)

on FIRES dataset for different values of k with query extent 0,5% of the domain

(log scale).

Figure 5.14: Scaling of Depth-First, Ordered & Sorted traversals on FIRES dataset

for different values of k with query extent 0,01% of the domain.

51

Figure 5.15: Scaling of Depth-First, Ordered & Sorted traversals on TAXIS dataset

for different values of k with query extent 1% of the domain.

Summing up this section, our experimental evaluation highlights several key insights

into the performance of top 𝑘 query processing with index of HINTm under varying

conditions. Firstly, larger query extents are associated with reduced throughput.

However, the application of static upper bounds significantly accelerates the overall

process, and extending these bounds to their metadata versions yields even better

results. In terms of traversal methods, simpler approaches tend to offer superior

performance. Specifically, the Top-Down method, which prioritizes traversing parti-

tions with potentially larger intervals first, combined with metadata upper bounds,

demonstrates the best performance among the tested methods.

Furthermore, the parameter 𝑘, representing the size of the top-𝑘 set, notably impacts

implementation performance. Larger 𝑘 values result in more frequent updates to the

final set, thereby affecting throughput. Last but not least, the nature of the dataset

plays a crucial role in system scalability. Datasets with larger intervals, such as

'BOOKS,' show different performance characteristics and appear less affected by the

optimizations that benefit datasets with smaller intervals.

52

6.1 Summary

6.2 Future Work

We enhanced the HINTm index to efficiently handle ranking queries. Subsequently,

we integrated a pruning technique utilizing Upper bounds, allowing the algorithm

to bypass unnecessary partitions during the execution of top 𝑘 queries. We further

refined these Upper bounds to their metadata versions. In addition, we introduced

novel methods that traverse the index in various ways, equipping these methods

with the Upper bounds. Extensive experiments were conducted on four datasets to

measure overall throughput. Initially, we assessed the system's performance across

different query extents and then across varying 𝑘 values. The results indicated that

larger query extents and higher 𝑘 values tend to reduce throughput. However, the

application of Upper bounds, particularly the tighter metadata version, significantly

improved the system's scalability, especially for datasets with relatively short average

interval durations. Finally, among the developed methods, simpler approaches

demonstrated slightly better performance, provided they were complemented by the

metadata Upper bounds which has been proven to play the primary role in the

overall performance.

53

For future research, our initial objective is to explore alternative ranking functions

beyond the absolute overlap. Subsequently, we will assess whether reporting results

below a specified threshold score influences performance in comparison to reporting

the top k results. Additionally, we intend to establish also lower bounds for each

partition of the index. Lastly, we intend to study the performance of HINT on top k

temporal joins.

[1] Michael H. Böhlen, Anton Dignös, Johann Gamper, and Christian S.

Jensen. Temporal Data Management - An Overview. In eBISS 2017.

[2] Pierangela Samarati and Latanya Sweeney. Generalizing Data to Pro-

vide Anonymity when Disclosing Information. In ACM PODS 1998.

[3] Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Over-

mars. Computational geometry: algorithms and applications, 3rd Edi-

tion. Springer 2008.

[4] Ahmed Awad, Riccardo Tommasini, Samuele Langhi, Mahmoud

Kamel, Emanuele Della Valle, and Sherif Sakr. D2 IA: User-defined

interval analytics on distributed streams. Information Systems 104

2022.

[5] George Christodoulou, Panagiotis Bouros, Nikos Mamoulis. HINT: A

Hierarchical Index for Intervals in Main Memory. SIGMOD 2022.

[6] George Christodoulou, Panagiotis Bouros, Nikos Mamoulis. HINT: a

hierarchical interval index for Allen relationships. VLDB 2023.

[7] Ronald Fagin, Amnon Lotem, Moni Naor: Optimal Aggregation Algo-

rithms for Middleware. PODS 2001.

[8] Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, David W. Cheung :

Efficient top-k aggregation of ranked inputs. ACM Trans. Database

Syst. 2007.

[9] Herbert Edelsbrunner. Dynamic Rectangle Intersection Searching.

Technical Report 47. Institute for Information Processing, Technical

University of Graz, Austria 1980.

[10] J. Dittrich and B. Seeger, “Data redundancy and duplicate detection in

spatial join processing,” in IEEE ICDE 2000.

[11] Andreas Behrend, Anton Dignös, Johann Gamper, Philip Schmiegelt,

Hannes Voigt, Matthias Rottmann, and Karsten Kahl. Period Index : A

Learned 2D Hash Index for Range and Duration Queries. In SSTD

2019.

[12] Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter M.

Fischer, Donald Kossmann, Franz Färber, and Norman May. Timeline

index: a unified data structure for processing queries on temporal data

in SAP HANA. In ACM SIGMOD 2013.

[13] R. Elmasri, G. T. J. Wuu, and Y. Kim, “The time index: An access

structure for temporal data,” in 16th International Conference on Very

Large Data Bases. Brisbane, Queensland, Australia, Proceedings, D.

McLeod, R. Sacks-Davis, and H. Schek, Eds. Morgan Kaufmann, 1990.

[14] George Christodoulou. Interval Data Management in Main Memory.

Ph.D. dissertation, Department of Computer Science and Engineering.

University of Ioannina, Greece 2023.

[15] Richard T. Snodgrass and Ilsoo Ahn. 1986. Temporal Databases. Com-

puter 19, 9 1986.

