Ranking Queries over Range Data

A Thesis

submitted to the designated
by the General Assembly
of the Department of Computer Science and Engineering

Examination Committee

by

Georgios Kotsinas

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE
IN DATA AND COMPUTER SYSTEMS ENGINEERING

WITH SPECIALIZATION

IN DATA SCIENCE AND ENGINEERING

University of Ioannina

June 2024

Examining Committee:

e Nikolaos Mamoulis, Professor, Computer Science and Engineering Depart-

ment, University of Ioannina (Supervisor).

e Panagiotis Vasiliadis, Professor, Computer Science and Engineering Depart-

ment, University of loannina.

e Apostolos Zarras, Professor, Computer Science and Engineering Department,

University of loannina.

DEDICATION

I would like to dedicate this thesis to my father.

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my supervisor, Professor Nikolaos
Mamoulis, for his invaluable guidance, support, and encouragement throughout the
course of my research. His knowledge and insightful feedback have been instrumen-
tal in shaping this thesis. I am also profoundly thankful to my mentors, George
Christodoulou and Panagiotis Bouros, whose expertise and advice have been crucial
to the progression of my work. Their willingness to share their knowledge and their
constant support have been a source of inspiration and motivation. Lastly, I wish to
extend my heartfelt thanks to my family. Their unwavering support, patience, and
understanding have been my foundation throughout this journey. Their love and

belief in my abilities have given me the strength to persevere and achieve my goal.

Ioannina, June 2024

Georgios Kotsinas

CONTENTS

Dedication
Acknowledgments
Contents

List of Figures

List of Tables
Abstract

Extetapévy mepiAndy

CHAPTER 1 Introduction

(R I 070 01 w1 O X w10) o Y= ORI

1.2 QUL ettt et eestvaneeestenansassennnnanns

CHAPTER 2 Related works

2.1 Top-k Processingcccceevvvvvrvrvrsrersresnesrisensnensnesnennnes
2.2 Interval IndeXingccocevvuervrrirsiinsnernsncnneinsneisnncnnnnens
2.3 HINT & HINTM..cocviiiiiiiiiiiiiiiiiiinicicneecsenienns
2,30 HINT .ottt
2.3.2 HINTI ettt
2.3.3 Optimized HINTM ...ccocvviininniiniiniiniiniinienn

CHAPTER 3 Problem Definitions

3.1 Top-k QUETY...cooiivviiniiiiiiiniiniiiicnnecniecreenresnecnnees
3.2 Overlap-Intersectioncc.ceeenienneenneenneeneennneennes
3.3 Ranking Problemccccconniiniininniinniinniiniininniinienne

CHAPTER 4 Traversing Methods

4.1 Naive Traversal.........ciiniininninniiniiniineiiiininnennes
4.2 Top-Down Traversal........c.iiinnn.
4.3 Upper Bounds......iiiiiiiininicnininenenn.

4.3.1 Static Upper Bounds.......cccoeeeveivicnsuecivennnecns

iii

4.3.2 Metadata Upper Bounds.........uiiiiiniininniniiniiniiniinieieninen,
4.4 Naive & Top-Down with Upper Boundscoevevvienicniivcnncnscnecnecnncnnnes
4.5 Depth-First Traversal......c.iiiiniiiniiniiniiiniiiineeneseneeneon
4.6 Ordered Traversal......c..iiiiiiiiieieneesnesssessssessseses
4.7 Sorted Traversal.......ciiiiiiieeeeesressesssessesaes
CHAPTER 5 Experimental Evaluation
5.1 DatasetS & QUETIES cuuuueeiiiiiiiiiiriiiiieieeeeeerirrsiiiseeeeeeeersssssssssessssesssssssssssesssssssssssssnne
0.2 HINTM & MethodS..cccoouiiiiiiiiiiiiiiiiiiiienitiecteeceteesete et e st e s saeesessneens
0.3 QUETY EXIENT .ccuiiiitireierrriererererretecrerenreeseeeeeescnnesssesesessnnssssesensesssnssssesennessssasns
5.4 Static vs Metadata Upper Bounds........cuiiiiniiniiniiniininiiiieninne.
0.0 Parameter K.....ciiiiiiiiiiiiiiiiiiiiiniinieiestsstesisssssss st ssasssssssssssssssens
CHAPTER 6 Conclusions
6.1 SUIMNIMATY c.eetrereerrerrererereneeesnereresenneesresensessnnesssessnsessnnesssesensessnnesssessssessssessssssssens
6.2 FUture WOTK ..cccciiiiiiiiiiiiiiiiiiiiiiiniiiiintinitciesstssicssiesseesssesessesssssssssssssens
References

1i

40
40
41
42
45
47

52
52
53

54

LIST OF FIGURES

Figure 1.1: Example of tOp 3 ...ccuiiiiiiiiiiiiiiiiiiiiiiiii 3
Figure 2.1: Hierarchical domain partitioning for m=4.cccccvviniinnninniinnnniinn. 9
Figure 2.2: Pseudocode for Assigning an Interval to Partitions.cceeeeeenin. 10
Figure 2.3 Pseudocode for Range query on HINT.cccccoiiiiiiiiiiiii 11
Figure 2.4: Accessed partitions for range query [5, 9. cooooovviiiiiiiiiiiiiiiiiiiiii, 12
Figure 2.5: Avoiding redundant comparisons on HINTM........ccccooeiiiiiiiiiiiinnnnnnnnn. 13
Figure 2.6: Pseudocode for Range query on HINTM.cceeiiiiiiiiiiiiiiiiiinn 15
Figure 2.7: Partition subdivisions in HINTm level 2.cccoooiiiiiiiiiiiiiiiiiiiinnnnnn. 17
Figure 3.1 Ranking examplecccoooiiiiiiiiiiiiiiiiiiiiiiii 21
Figure 4.1: Pseudocode for Naive Traversal.........ccccooeviiiiiiiiiiiniiin. 24
Figure 4.2 Pseudocode for Top-Down Traversal.cccoooeviiiiiiiiiiniiin. 25
Figure 4.3: Upper Bound of First rel. Partition for Oin & Rin.........cccoooeiiiiiininnnin. 27
Figure 4.4: Upper Bound of First rel. Partition for Oaft & Raft........................... 28
Figure 4.5: Upper Bound of Intermediate rel. Partition for Oin. 28
Figure 4.6: Upper Bound of Intermediate rel. Partition for Oaft. 29
Figure 4.7: Upper Bound of last rel. Partition for Oin & Oaft..............oeeeeiiiiiiin. 29
Figure 4.8: First, Intemediate & Last relevant Partitions........ccccceeviiiiiiiinnnnnnn. 32
Figure 4.9: Pseudocode for Depth-First Traversal.cccccccceiiiiiiiiiiiiiiinnnn. 33
Figure 4.10: First relevant partitions Originals and Replicas after......................... 34
Figure 4.11: Intermediate relevant partitions Originals and Replicas after. 35
Figure 4.12: First relevant partitions Originals and Replicas in..........cccccceeeeeeeeen. 35
Figure 4.13: Last relevant partitions Originals in and after...............ccccccoeeiiiiiiio 36
Figure 4.14: Pseudocode for Ordered Traversal.ccccooooiiiiiiiiiiiiiiiiiiiiiiiiiiiinnn, 37
Figure 4.15: Pseudocode for Sorted Traversal...........cccccvviimiiiiiiiiiiiiiiiiiiinnnn, 39

Figure 5.1: Throughput of methods on BOOKS dataset across query extents, k=10.

1ii

Figure 5.2: Throughput of methods on FIRES dataset across query extents, k=10.

Figure 5.4: Throughput of methods on TAXIS dataset across query extents, k=10
(LOG SCALE). ..ceeueeteeittee ettt ettt ettt e ettt e e ettt e e ettt e e abt e e s bbe e e ebteeesabaeeeas b4
Figure 5.5: Throughput of methods with static and metadata Upper Bounds on
BOOKS dataset across query extents, k=10.ccccccceeviiiiiiiiiiiiiiiiiiiinnniinnninnn, 45
Figure 5.6: Throughput of methods with static and metadata Upper Bounds on
FIRES dataset across query extents, k=10.cccccccceeiiiiiiiiiiiiiiiiiininnn, 46
Figure 5.7: Throughput of methods with static and metadata Upper Bounds on
BIKES dataset across query extents, k=10cccccccuriiiiiiiiiiiiiiiiiiiinnnninnnninnn. 46
Figure 5.8: Throughput of methods with static and metadata Upper Bounds on
TAXIS dataset across query extents, k=10 (1og scale).......cccocveerrruveernuecennneen. 47
Figure 5.9: Scaling of Top-Down method (static & metadata Upper Bounds
employed) on BIKES dataset for different values of k with query extent 0,1% of
the domaiN..........uuiiiiiiiiiiiii 48
Figure 5.10: Scaling of Top-Down method (static & metadata Upper Bounds
employed) on FIRES dataset for different values of k with query extent 0,1% of
the domaiN.........cuiiiiiiiiiiiiii 48
Figure 5.11: Scaling of Top-Down method (static & metadata Upper Bounds
employed) on TAXIS dataset for different values of k with query extent 0,1% of
the domain (10g SCALE).......cerruuiiiriiiiiiiiiee ettt et 49
Figure 5.12: Scaling of Naive method (static & metadata Upper Bounds employed)
on BIKES dataset for different values of k with query extent 0,01% of the
domain (10g SCALE). ...cceeuuiiiiiiiieeiiet ettt ettt ettt e st e e sieeeeas 49
Figure 5.13: Scaling of Naive method (static & metadata Upper Bounds employed)
on FIRES dataset for different values of k with query extent 0,5% of the domain
(IOG SCALL). ..ceeueeeeeietee ettt ettt ettt e et e e et e e st e e s bt e e s bteeeeaneeeeas 50
Figure 5.14: Scaling of Depth-First, Ordered & Sorted traversals on FIRES dataset
for different values of k with query extent 0,01% of the domain. 50
Figure 5.15: Scaling of Depth-First, Ordered & Sorted traversals on TAXIS dataset

for different values of k with query extent 1% of the domain......................... o1

iv

LIST OF TABLES

Table 2.1 Useful NOtationseuviiiiiiiiiiiiiiiiiiiiiii s 8
Table 2.2: Beneficial sOrt Orderscccceviiiiiiiiiiiiiiiiiiiiiii 18
Table 4.1: Static & Metadata Upper Bounds for relevant partitions 31
Table 5.1: Dataset characteristiCS.........cooviiiiiiuuiiiiiiiiiiiiiiiii e 41
Table 5.2: Top-k Querying Methods examined............ccccceeeiiiiiiiiin. 42

ABSTRACT

Georgios Kotsinas, M.Sc. in Computer Science, Department of Computer Science and
Engineering. University of loannina, Greece, June 2024.
Ranking Queries over Range Data.

Advisor: Nikolaos Mamoulis, Professor.

Today’s data-driven world has made it essential to manage and analyze large vol-
umes of temporal data efficiently. This thesis addresses the problem of identifying
the top k time intervals that best intersect with a query interval within a given
temporal data domain. In pursuit of addressing this issue with maximal efficiency,
we further develop the HINTm index to support ranking queries.

HINTm, is a Hierarchical Index for Intervals in arbitrary domains designed for main
memory and defines a hierarchical domain decomposition which assigns each inter-
val to at most two partitions per level. It has previously been recognized as the most
efficient interval index in the literature, has undergone numerous optimizations to
avoid unnecessary comparisons and expedite range query responses over extensive
collections of intervals. Building on its optimizations, this work adapted HINTm to
effectively handle top k queries.

The ranking criterion is defined by the absolute interval intersection, enabling the
identification of intervals that intersect better with a given query interval. Except
from the naive approach that simply traverses the index and scans its partitions for
results, various methods were developed to prioritize partitions that contain larger
intervals first. In reference, “Top-down”, “Depth-first”, “Ordered” and “Sorted” tra-
versals aim to optimize the processing speed of top k queries. Additionally, a pruning
mechanism was implemented to bypass scanning index partitions that are guaran-
teed not to contain intervals of the final set. This pruning mechanism, termed "Upper
bounds", was deployed in two distinct versions. The first version assigns a static
Upper bound to each index partition based on the partition’s endpoints. The second,
an updated version, incorporates the metadata information of the maximum interval

within each partition.

vi

Extensive experiments were conducted on four datasets with varying characteristics,
measuring the number of queries executed per second. These experiments aimed to
understand system scalability concerning different query extents and values of k.
The results indicate that larger query extents and higher values of k are associated
with reduced throughput. However, the application of the “Upper bounds™ acceler-
ates the overall process. Finally, metadata Upper bounds provide even better perfor-

mance, always with respect to the diverse characteristics of datasets being utilized.

vii

EKTETAMENH NEPIAHWYH

'edpyrog Kotolvag, A.M.X. ot Mnyovixn Asdouévwy xot YTOAOYLOTIXWY ZLOTNUA-
Ty, Tuqua Mnyovixey H/Y xow [TAnpopopixne, [loAvtexvixn XyxoAy, llavemiotiuio
[wavvivewy, Todviog 2024.

Epwtipoto Katdtakng oe Aedopéva Ebpouc.

Emiprénwv: Nixdroog Mapoving, Kabnyntie.

2Ny TaEoVoa ETTOYY, OTTOL T SESOUEVO XVELOPYOVY, N oTtoS0TLXY OLaYELPLON KoL
OVEALGY PEYEAWY GYXWY XPOVLXWY BESOUEVWY amoTeAEl {NTnuar LPioTNG oNuaociag.
Aut) 7 petamTUY Lo SLTAWPLOTINY EQYOOLOL TTOYLOTEVETOL TO TTROPANLO TNG OLVOL-
YVOELONG TWY XOPLPALWY K YEOVIXWY SLHCTNUATWY TOL ETLXAADTTTOVY XAAVTEQX
éva 000€v DLATTNUU-EPWTNUX EVTOS EVOG GESOUEVOL XPOYILXOD TOUEN. LTV TTPOOTIA-
Oetar voo avtipetwmiotel oawtd To {NTNUOL LE ULEYLOTN aTtOdOTIXOTNTO, OVOTTOEOUE
TepatTéPw To eVPETNPEL0 HINTM yior vor vmootnplEet epwTRUATO XOTATOENC.

To HINTm, elvaw éva Lepopyind evpeTNPELO YLoL SLOTAROTO O oxafOpLoTOVG TOUELS.
ZyeOLaoPEVO YLow TNV xVpLor pynun optlel pior Lepoyixy SLYOTOUNOoM TOL TOUEX, T
omoioe avalbétel xdbe ddotnua oe to TOAD dV0 dropeplopoto ova enimedo. ‘Exet
oVOYVWELOTEL WG TO TLO ATTOSOTIXO EVPETNPLO SLUOTNUATWY 0T BLAtoypopion xou
€xeL LTOOTEL TTOALAPLOUES BEATLOTOTIOLNOELS YLOL TYY XTTOQUYY] TTEPLTTWY OLYXPLOEWVY.
Avoxpivetor yior TV ToOTNTO TOY OTOVTNOEWY EQWTNUATWY EVPOVG OE UEYOAAES
oLAAOYES aTtd drooTiuota. Baotlduevol otig BEATLOTOTTOLNOELS TOV, TTPOCAPUOCOLE
tov HINTm yro var Stoyerpiletot omoteAeopotind epwtipoto xotdtakng (top k).
To xprtnpLo xotatokEng oplletar we N EMXAALYY] SLATTNULATOS EVPETNELOL LE OLAL-
OTNUO EQWTNLATOS, ETLTPETOVTOS TNV OVOYVWELON TWY k SLoTNUATWY TTOL ETTLXO-
AOTTTOLY XOADTEPR TO DOBEY dLdotnua TOL EpWTAULOTOG. ExTdg artd tnv ot nébodo
oL SLaoyLlEL TO ELPETNPLO KoL TUPWVEL TA OLAUEPIOUOTE TOV YLO TTOTEAECULOTAL,
ovamtoyinxav Stapopeg pLébodot dLéoyLong eLEETNELOL YLOL VO BTOVY TTPOTEPALO-
TNTO OE OLOUEPLOUOTA TOV TIOV TEPLEYOLY UEYOAVTEQN SLOCTNUOTA. AVOQOPLXA, OL
pnebodol «ATO ThVL TPOG Ta xATw», «llpwTtor o Babog», «Takvounuévn» xou
«AtoteTarypévn» SLAoyLon EYOVY WG OTOYXO Vo BEATLOO0LY TNV TayOTNTA eTteEepyo-

olog TV EQWTNUATWY xotatolns. EmimAéov, vAomoumbnxe évag UNovLopog

viii

XAOBEUATOG YLOL VO TIOOXGLTITEL TY] GOPWOY OLOUEPLOUATWY TOL EVPETYPLOL TTOL
elvol eyyYuNUEVO OTL DEV TTEPLEYOLY OLACTNUATO TOU TEALXOV GLYOAOL. ALTHG O UT-
XOVLOUOG XAXDEUATOS, OVOULOLOUEVOS «Avitotor Optor», avorttoybnxe o dvo dio-
%xpLtég exdoyéc. H mpwtn exdoyn avabétel éva otatixd avadtoto dpLo o xdbe Sra-
pépLtopor Tou evpetnElov pe Baon Ta axpa tov dropepiopotos. H dedtepy Lo PBeA-
TLOUEYT EXDOYY], EVOWUATWVEL TNV LETATTANPOPOPLX TOL LEYLOTOV SLUGTAULATOS LETO
oe xabe dropépLopo LTTOAOYLLoVTOG ETOL TO AVWTATO OPLO XA&bE SLapePloUATOG.

AreEnybnoay extevelic Telpopatiopol oe T€aoepo GUVOAX SESOUEVWY LE OLOPOPETLXA
XOQOKXTNOLOTLXA, UETPWVTOG TOV 0PLOUO TWY EXTEAODUEVWY EQWTNUATWY OVA JEVTE-
poAeTtto. Tar TELPAUOTA ATTOOXOTIOLAAY OTYY SLEPEVYNON TNG XALUAXWOYG TOV OL-
OTNUOTOS OE OYEOY] UE OLOPOPETIXES EXTACELS EQWTNUATWY ot TLéES Tov k. To
OTTOTEAEGUATO. DTTOJELXVOOLVY OTL OL LEYAAVTEQEG EXTAOELS EQWTNUATWY %Ol OL LYY-
AOTEPES TLUEC TOL k oLVIEOVTOL UE UELWUEVY] amddoay. QoTdoo, 1 EQPOEUOYN TWY
«AvOTaTwY 0plwv» ETLTAYOVEL TN GLYOALXY] dtodixaoio. TEAog, Tor avwTOTA OPLX
ULETUOESOUEVWY TTOLPEYOVY AXOULO XOADTEPT ATTHB00Y, TTAVTO. OE OYXECT UE TO. TTOLXLAXL

XOQOXTNOLOTLXA TWY CUVOAWY OESOUEVWY TTOL YENOLUOTTOLONXOY.

ix

CHAPTER 1

INTRODUCTION

1.1 Contributions

1.2 Outline

Effective temporal data management solutions are critically needed to address the
complexities and demands of handling time-variant information in modern data-
driven applications. Temporal data, characterized by its time-varying nature, is ubiq-
uitous across various domains such as transport, healthcare, finance, social media
and sensor networks. Additionally, several applications call for the management of
big interval collections. Each tuple in a temporal database has a validity interval that
represents the amount of time the tuple is valid (duration) [1]. In data anonymiza-
tion, attribute values are frequently generalized into value ranges [2]. Interval search
is a module used in many computational geometry problems [3] (e.g., windowing).
Intervals can be used to model and control the internal states of window queries in
stream processors [4].

In the realm of temporal data analysis, the challenge of efficiently ranking intervals
within a dataset is a critical problem with wide-ranging applications. From temporal
data analysis in financial markets to genomic range queries in bioinformatics, the
need to quickly and accurately rank intervals from vast collections is increasingly
essential. This thesis addresses this challenge through the development of novel
techniques for ranking queries over range data, specifically focusing on identifying
the top k intervals based on a specified ranking criterion.

The core problem can be succinctly stated: given a collection of intervals and a query

interval, how can we efficiently determine the top k intervals that have the most

significant intersection with the query? This problem is pivotal in scenarios where
rapid response times and high precision are crucial, such as real-time monitoring
systems, database querying, and various temporal data management applications.
Some instances of these queries across various data domains are as follows:
o Healthcare, find the k larger periods of symptoms that a patient had during
an episode of medical concern.
o Weather monitoring, find the top k time intervals of significant weather events
that best intersect with a given period of abnormal weather conditions.
o Traffic analysis, find the top k intervals of heavy traffic congestion that best
intersect with a given period of a traffic incident.
e Social media analysis, find the top k periods of high social media activity that
best intersect with a given event or campaign duration.
e Energy consumption, find the top k intervals of high energy usage that best
intersect with a given period of peak demand.
o Network security, find the top k intervals of high network activity that best
intersect with a given period of a security breach.
o Market analysis, find the top k periods of high sales activity that best intersect
with a given promotional event duration.
Despite the importance and broad application of ranking queries over temporal data,
several challenges persist. Firstly, the sheer volume of data necessitates etficient in-
dexing and querying mechanisms to ensure timely responses. Secondly, the temporal
aspect introduces the need for time-aware methods that can efficiently manage and
query temporal datasets while maintaining accuracy. This thesis aims to contribute
to this field by investigating novel methods for efficiently processing top k queries
over temporal data using the preexisting work of HINTm [5] a hierarchical index
for intervals that can handle valid time data, suitable for applications that manage
large collections of intervals.
HINTm indexes a large collection S of objects (or records) based on an interval
attribute that characterizes each object. Each object s € S is modeled as a triple (s.id,
s.st, s.end), where s.id is the object’s identifier, which can be used to access any
other attribute of the object, and [s.st, s.end] represents the interval’s endpoints.
HINTm also uses various optimizations to accelerate its performance. To date,

HINTm has supported range queries and Allen’s interval relations [6]. The present
2

research concentrates on the appliance of ranking queries in the domain of HINTm,
while we endeavor to leverage its optimizations.

Given a query interval g = [q.st.q.end], and a positive integer k, the objective is to
find the top k objects that belong to S and overlap with g by using the index of
HINTm. The ranking of them will be determined by their absolute overlapping du-
ration score. This score can be easily computed for every interval s; that intersects
with the query g, by the following, min(q.end, s;.end) — max (g.st, s;.st). The fol-
lowing figure 1.1 illustrates the problem’s formation in a straightforward manner.
The task involves selecting the three intervals that have the highest degree of overlap

with a given query within a specified domain of intervals.

COLLECTION OF INTERVALS

| c[2, 6]] f[8, 9]
| | I I

o
—
=
&
—_—
o
=
P |

10

interval query [2, 7]

TOP 3 ={c, d, b}

Figure 1.1: Example of top 3

We investigate various methodologies for traversing the optimized index of HINTm
aiming to reduce the computational load while searching for the top k records. This
exploration is undertaken with consideration of the diverse characteristics of the
index as well as of the datasets being utilized. Finally, we conduct experiments with
various query extents across different values of k. For this purpose, we utilized four

datasets with distinct characteristics.

1.1 Contributions

In summary, this thesis makes the following contributions:

o We further developed the Hierarchical Index for Intervals in arbitrary do-
mains (HINTm) to support top k queries.

o We proposed traversal methods for the index that prioritize larger intervals
first, along with two versions of a pruning mechanism that accelerate the
execution of top k queries.

o We evaluated our methods using four real datasets with distinct characteris-

tics, conducting experiments on different query ranges and values of k.

1.2 Qutline

The rest of this paper is organized as follows: Chapter 2 reviews the existing litera-
ture on top k processing and interval indexing, providing a comprehensive overview
of related methods and techniques with a particular focus on the HINTm index and
its optimizations. Chapter 3 formally defines the problem addressed in this thesis
and the criteria used for ranking the intervals based on their absolute overlap dura-
tion with the query interval. Chapter 4 details the methods for traversing the index,
incorporating the pruning mechanism of "Upper bounds" to enhance the efficiency
of the query process. Chapter 5 presents an extensive experimental analysis con-
ducted on various datasets, exploring the performance of the proposed methods with
different query extents and various values of k. Chapter 6 summarizes the key find-

ings of the thesis and discusses potential directions for future research.

CHAPTER 2

RELATED WORKS

2.1 Top-k processing
2.2 Interval Indexing
2.3 HINT & HINTm
2.3.1 HINT
2.3.2 HINTm
2.3.3 Optimized HINTm

2.1 Top-k Processing

Top-k processing is a crucial aspect in databases and information retrieval systems,
where the objective is to efficiently retrieve the top k objects with the highest overall
scores from ranked inputs. Several approaches and algorithms have been proposed
to address this challenge, focusing on reducing computational cost, memory usage,
and the number of object accesses.

A seminal work in this domain is by Fagin et al. [7], which introduces the concept
of aggregating scores from multiple attributes to determine the top k objects. Each
object in the database has multiple scores, one for each attribute, and these scores
are combined using a monotone aggregation function such as min or average. The
naive approach to this problem requires accessing every object in the database to
compute its combined score, which is inefficient. Fagin’s Algorithm (FA) provides a

more efficient solution for certain monotone aggregation functions. However, FA has

5

limitations, including the requirement for large, potentially unbounded buffers as
the database size increases. To address these limitations, Fagin et al. propose the
Threshold Algorithm (TA). TA is optimal for all monotone aggregation functions
and operates efficiently across all databases. Unlike FA, TA maintains a small, con-
stant-size buffer, making it more scalable. Additionally, TA supports early stopping,
allowing for an approximate version of the top k results when exact precision is not
necessary.

Mamoulis et al. [8] build upon these foundations and propose enhancements to
further optimize top-k queries. Their work identifies two critical phases that any
top-k algorithm based on sorted accesses must undergo. Leveraging these phases,
they introduce a new algorithm designed to minimize the number of object accesses,
computational cost, and memory requirements for top-k searches using monotone
aggregate functions. A key contribution of their research is the development of a
multiway top-k join operator, which offers significant advantages over traditional
evaluation trees constructed from binary top-k join operators. This operator im-
proves the efficiency of combining multiple ranked inputs by reducing redundancy
and the number of intermediate computations. Moreover, they explore the concept
of top-k cubes and their efficient computation, which facilitates the implementation
of roll-up operations in multi-dimensional top-k queries. The proposed methods
demonstrate superior performance compared to previous techniques. Their approach
accesses fewer objects and achieves faster execution times, highlighting the practical

benetfits of their optimizations in real-world applications.

2.2 Interval Indexing

This subsection discusses epigrammatically the main-memory indices for intervals
employed by the authors of HINT/HINTm for comparative analysis of their work.
Interval indexing has seen various innovative approaches aimed at efficiently man-
aging and querying interval data. Among these, the interval tree developed by Edels-
brunner [9] stands out as a widely utilized data structure. This tree is suited for
stabbing and range queries, organizing intervals around a center point to balance

the tree. Intervals that include the center point are stored at the root, while left and
6

right subtrees handle intervals before and after the center, respectively. Two lists
sorted by interval start and end values are maintained at each node. The interval
tree requires numerous comparisons for most range query results, which is a notable
drawback.

A simpler yet effective structure is the 1D-grid, which divides the data domain into
non-overlapping partitions. Each interval is assigned to all partitions it overlaps with,
ensuring comprehensive coverage of the data domain. However, this approach can
lead to duplicate results if a query intersects multiple partitions, complicating the
retrieval process [10].

Another structure is the period index [11], which considers both interval durations
and values. This self-adaptive structure, like a 1D-grid, partitions the time domain
and hierarchically organizes intervals within each partition based on their locations
and durations. This method etfectively supports range and duration queries.

The timeline index [12], derived from the time index [13], is designed for general-
purpose temporal data access. It maintains a sorted event list (table of triples [time,
id, isStart] denoting the interval’s timing, identifier, and whether it is a start or end
point) of all interval endpoints, prioritized by time and secondly by isStart (11 if
the triple refers to start else 0 for an end) in descending order. Checkpoints define
specific timestamps where all intervals that overlap with it are considered a whole.
To process a range query, the method locates the nearest checkpoint preceding the
query start and initializes an active set of its intervals. The event list is then scanned
from this checkpoint, updating the set with intervals starting or ending at this event.
This method, however, can be inefficient as it often accesses more data and makes
more comparisons than necessary.

Among these methods, the HINT/HINTm interval index has been identified as the
superior structure, outperforming the Interval Tree, Timeline Index, 1D-Grid, and
Period Index according to recent studies [5]. This indicates a significant advancement
in the field of interval indexing, offering more efficient data management and query

processing.

2.3 HINT & HINTm

In this subsection, we will review the foundational work upon which this thesis is
based, specifically the Hierarchical Index for Intervals (HINT) designed for main
memory [5]. It defines a hierarchical domain decomposition and assigns each inter-
val to at most two partitions per level. The primary goal of the index is to minimize
the number of comparisons during query evaluation, while keeping the space re-
quirements relatively low, even when there are long intervals in the collection. HINT
applies a smart division of intervals in each partition into two groups, which avoids
the production and handling of duplicate range query results and minimizes the
number of intervals that must be accessed. Here we will describe shortly the first
version of the index, HINT, which avoids comparisons overall during query evalua-
tion, but it is not always applicable and may have high space requirements. Subse-
quently, we will provide a detailed examination of the general version of the index,
HINTm, which is applicable to intervals in arbitrary domains. The latest version of
the index, along with its optimizations, utilized to developed top k query examina-
tion. The following table presents the notations that will be employed throughout

the remainder of this research.

Table 2.1 Useful notations

Notation Description
s.id,s.st,s.end interval id, interval start, interval end
q.st,q.end query start, query end
prefix(k,x) k-bit prefix of integer x
P ; i-th partition at level [of HINT/HINTm

P s (Py) first (last) partition at level [that overlaps with ¢

PG (PF) subpartition of P;; with originals (replicas)
Poin (Plgaf 5 intervals in P; ending inside (after) the partition

2.3.1 HINT

HINT is appropriate in the case of a discrete and not very large domain D. Specitfi-
cally, assume that the domain D where from the endpoints of intervals in S take

8

value is [0, 2™ — 1]. HINT defines a regular hierarchical decomposition of the domain

into partitions, where at each level [from 0 to m, there are 2! partitions, denoted by

array Pjg,..,P,,i_;. Figure 2.1 illustrates the hierarchical domain partitioning for
m =4,
Po,0
P1,0 P1,1
P2,0 P21 P22 P23
011 100
P30 P31 Pa2 P33 P34 P35 P3s P37
o1
Pio | Paa | Paz | Pas | Pag | Pas | Pyg | Paz | Pag | Pag | Psao| Pasi | Paqz | Paaa | Paga | Pass
[

Figure 2.1: Hierarchical domain partitioning for m=4.

Each interval s € S is assigned to the smallest set of partitions which collectively
define s. It is not hard to show that s will be assigned to at most two partitions per
level. For example, in Figure 2.1, interval [5,9] is assigned to one partition at level
l =4 and two partitions at level [= 3. The assignment procedure is described by

Algorithm 1.

Algorithm 1: Assignment of an interval to partitions

input: HINT index, interval s
output: updated HINT indexing s
1 o < sst; b <«—s.end, mask s endpoints
2 level «— m; start at the bottom-most level

3 while level=0 and o =b do

4 if last bit of ais 1 then

5 add s to HINT.Py 5, update partition

6 o <« o+1;

7 if last bit of b is 0 then

8 add s to HINT.P p; update partition

9 b «—b-1;

10 o< 0:2;, b<+—b:2; cut last bit

11 level «— level - 1: repeat for upper level

Figure 2.2: Pseudocode for Assigning an Interval to Partitions.

In a nutshell, for an interval [a, b], starting from the bottom-most level [, if the last
bit of a (resp. b) is 1 (resp. 0), the interval is assigned to partition
P, (resp.P,;,) and increase a (resp. decrease b) by one. Then a and b are updated
by cutting-off their last bits (i.e., integer division by 2, or bitwise right-shift). If, at
the next level, a > b holds, indexing [a, b] is done.

The main operation of the index is the execution of range queries. A range query g
can be evaluated by finding at each level the partitions that overlap with g. Specifi-
cally, the partitions that overlap with the query interval q at level | are partitions
Piprefix(iq.st) 1O Prprefix(iq.ena), Where prefix(n,x) denotes the n-bit prefix of integer
x. These partitions are called relevant to the query q. All intervals in the relevant
partitions are guaranteed to overlap with q and intervals in none of these partitions
cannot possibly overlap with gq. However, since the same interval s may exist in
multiple partitions that overlap with a query, s may be reported multiple times in
the query result. For this reason, there is a technique that avoids the production and
therefore, the need for elimination of duplicates and, at the same time, minimizes
the number of data accesses. For this, the intervals in each partition P;; are divided

into two groups: originals P’ and replicas Pf%. Group P, contains all intervals s €

10

P,; that begin at P;; i.e., prefix(l,s.st) = i. Group Pl’i- contains all intervals s € P;;
that begin before P;; i.e., prefix(l,s.st) # i. Each interval is added as original in
only one partition of HINT. For example, interval [5,9] in Figure 2.1 is added to
P25, P¥; and P§,.

Given a range query q, at each level [of the index, we report all intervals in the first
relevant partition P, (i.e., Pl?f U P{}). Then, for every other relevant partition P,
i > f, we report all intervals in P’ and ignore Pf. This guarantees that no result is
missed, and no duplicates are produced. The reason is that each interval s will
appear as original in just one partition, hence, reporting only originals cannot pro-
duce any duplicates. At the same time, all replicas P in the first partitions per level
[that overlap with q begin before q and overlap with g, so they should be reported.
On the other hand, replicas Pj in subsequent relevant partitions (i > f) contain
intervals, which are either originals in a previous partition P, j < i or replicas in
Pff, so, they can safely be skipped. Algorithm 2 describes the range query algorithm
using HINT.

Algorithm 2: Range query on HINT

input: HINT index, query interval gq
output: set R of all intervals that overlap with g
1 R «0;

2 for each level in HINT do

3 p «— prefix(level, q.st);

4 add to R every s in pr and PFp;
5 while p < prefix(level, g.end) do
6 p<«—p+1;

7 add to Reach s in P,_?r, ;

8 returnR;

Figure 2.3 Pseudocode for Range query on HINT.

For example, consider the hierarchical partitioning of Figure 2.4 and a query interval
[5,9]. The binary representations of g.st and q.end are 0101 and 1001, respectively.

The relevant partitions at each level are shown in bold (blue) and dashed (red) lines

11

and can be determined by the corresponding prefixes of 0101 and 1001. At each
level [, all intervals (both originals and replicas) in the first partitions P, s (bold/blue)
are reported while in the subsequent partitions (dashed/red), only the original inter-

vals are.

0
Po,0
0 1
P1,0 P11
o 10
P2,0 P21 P22 P23
010 100
P3o P3,1 P32 P33 P34 P35 P36 P37
| — - |
0101 1001
Pao | Pys | Paa | Pas | Paa [Pas | Pyg | Pag | Pag | Pag | Pao | Pa11 | Pagz |Pasa | Paaa | Pass
PEE——— [] _— [|

Figure 2.4: Accessed partitions for range query [5, 9].

The version of HINT described above finds all range query results, without conduct-
ing any comparisons. This means that in each partition P;;, we only must keep the
ids of the intervals that are assigned to P;; and do not have to store/replicate the
interval endpoints. In addition, the relevant partitions at each level are computed by
fast bit-shifting operations which are comparison free. To use HINT for arbitrary
integer domains, first all interval endpoints should be normalized by subtracting the
minimum endpoint, to convert them to values in a [0,2™ — 1] domain (the same

transformation should be applied on the queries).

2.3.2 HINTm

HINTm is used for intervals in arbitrary domains and uses a hierarchical domain
partitioning with m + 1 levels, based on a [0,2™ — 1] domain D; each raw interval

endpoint is mapped to a value in D, by linear rescaling. The mapping function f (R -
D) is f(x) =

and maximum interval endpoints in the dataset S, respectively. Each raw interval

%* (2™ — 1), where min(x) and max(x) are the minimum

[s.st,s.end] is mapped to interval [f(s.st), f(s.end)]. The mapped interval is then
assigned to at most two partitions per level in HINTm, using Algorithm 1. For the

ease of presentation, assume that the raw interval endpoints take values in [0, 2™ —
12

1], where m’' > m, which means that the mapping function f simply outputs the m
most significant bits of its input. As an example, assume that m =4 and m' = 6.
Interval [21,38] = [0b010101,00100110] is mapped to interval [5,9] =
[0h0101,0b1001] and assigned to partitions P,s, P33 and P34, as shown in Figure
2.1. So, in contrast to HINT, the set of partitions where an interval s is assigned in
HINTm does not define s, but the smallest interval in the [0,2™ — 1] domain D,
which covers s. As in HINT, at each level [, we divide each partition P;; to Plf’i and
Pf. to avoid duplicate query results.

For a range query q, simply reporting all intervals in the relevant partitions at each
level (as in Algorithm 2) would produce false positives. Instead, comparisons to the
query endpoints may be required for the first and the last partition at each level that
overlap with g. Specifically, consider each level of HINTm as a 1D-grid and go
through the partitions at each level [that overlap with gq.

For the first partition P, f, verify whether s overlaps with g for each interval s € Pl‘,)f
and each s € P{}. For the last partition P;;, verify whether s overlaps with g for each
interval s € Pl‘?l. For each partition P;; between P, s and Py, report all s € Pf‘)i without
any comparisons. As an example, consider the HINTm index and the range query

interval g shown in Figure 2.5.

Po,0
P1,0 P11
P2,0 P21 P22 P23
|
010
P3o P31 P32 P33 P34 Pas Pas P27
0101 1001
Pag Py4 Paz | Pagz | Pas | Pus Pyg Paz Pag | Pag | Paso | Pagt | Paaa Poss | Paaa Pyis

.

q

Figure 2.5: Avoiding redundant comparisons on HINTm.

The identifiers of the relevant partitions to q are shown in the Figure 2.5 (and some

indicative intervals that are assigned to these partitions). At level m = 4, comparisons

13

must be performed for all intervals in the first relevant partitions P,s. In partitions
Py¢....., P,g we just report the originals in them as results, while in partition Pyq we
compare the start points of all originals with g, before confirming whether they are
results or not. At the first and the last partition of each level [overlap tests can be
simplified based on the following: At every level [, each s € Pf is a query result
iff g st <s.end. If | > f, each s € Pl?f is a query result iff s.st < q.end. Resulting
from the fact that for the first relevant partition P, at each level [, for each replica
s € P, 5.5t < q.st, so q.st < s.end suffices as an overlap test and for the last parti-
tion Py, if [> f, for each original s € Pl?f, q.st < s.st, so s.st < q.end suffices as an
overlap test.

One of the most important findings in the study and a powerful feature of HINTm
is that at most levels, it is not necessary to do comparisons at the first and/or the last
partition. For instance, in the previous example, comparisons do not have to be
performed for partition P34, since any interval assigned to P;, should overlap with
P, g and the interval spanned by P, g is covered by q. This means that the start points
of all intervals inP;, is guaranteed to be before g.end (which is inside P,q). In
addition, observe that for any relevant partition which is the last partition at an
upper level and covers P; 4 (i.e., partitions {P, ,, P; 1, Py }), we do not have to conduct
the s.st < g.end tests as intervals in these partitions are guaranteed to start before
P,o. The following formalizes these observations: If the first (resp. last) relevant
partition for a query q at level [(I < m) starts (resp. ends) at the same value as the
first (resp. last) relevant partition at level I + 1, then for every first (resp. last) rele-
vant partition P, ((resp. P,;) at levels v < I, each interval s € P, ¢ (resp. s € P,,;) sat-
isfies s.end > q.st (resp. s.st = q.end). Algorithm 3 is a pseudocode for the range

query algorithm on HINTm.

14

Algorithm 3: Range query on HINTm

20

21

22

23

24

input: HINTm index, query interval q

output: set R of all intervals that overlap with g

R <« 0;

compfirst «— TRUE; complast <— TRUE;

for level =m to 0 do bottom-up
a<—prefix(level, g.st); b<— prefix(level, g.end);
fori=atobdo

if i = a then first relevant Partition

if i = b and compfirst and complast then

add to R every s in P;© that g.st<s.end & s.st<q.end;
add to R every s in PUH that g.st <<s.end;

else if i = b and complast then

add to R every s in PUG that s.st<Cg.end;

add to Revery sin PUH;
else if compfirst then
| add to R every s in PUG & PUR that g.st<s.end;

else
| add to R every s in PUG & PUR;
else if i = b and complast then last relevant Partition, b > a

| add to R every s in P|;C that s.st < qg.end:

else intermediate or last, no comp.

| add to R every s in p”O ;

if amod 2 = 0 then last bit of a is 0

| compfirst <— FALSE:

if b mod 2 = 1 then last bit of b is 1

| complast «— FALSE;

25 return R;

Figure 2.6: Pseudocode for Range query on HINTm.

The algorithm accesses all levels of the index, bottom-up. It uses two auxiliary flag
variables compfirst and complast to mark whether it is necessary to perform com-
parisons at the current level (and all levels above it) at the first and the last partition,
respectively. At each level [, offsets of the relevant partitions to the query are found,
based on the | —prefixes of q.st and q.end (Line 4). For the first position f =
prefix(g.st)., the partitions holding originals and replicas P’ and P are accessed.
The algorithm first checks whether f = [, i.e., the first and the last partitions coincide.
In this case, if compfirst and complast are set, then all comparisons are performed
in P’ and apply what described previously in Pf. Else, if only complast is set, the

q.st < s.end comparisons can be safely skipped; if only compfist is set, regardless

15

whether f = [, q.st < s.end comparisons are performed to both originals and repli-
cas to the first partition. Finally, if neither compfirst nor complast are set, all inter-
vals are just reported in the first partition as results. For the last partition P,; if [> f
(line 17) then P} is examined by just applying the s.st < q.end test for each interval
there. Finally, for all partitions in-between the first and the last one, all original

intervals there are simply reported.

2.3.3 Optimized HINTm
As previously discussed, the primary advantage of HINT/HINTm is its ability to

minimize the number of comparisons during the evaluation of a range query. Con-
sequently, for most examined partitions, specifically intermediate partitions, there is
no need to access the endpoints of intervals. Instead, only the interval ids are re-
quired to report a range query result. This observation led the authors to design
certain optimizations that involve retaining only the interval ids.

However, in the context of ranking queries, where it is necessary to determine the
rank of a result based on the overlap between the interval and the query, the interval
endpoints must be accessed each time. Therefore, optimizations that do not involve
accessing the interval endpoints are unsuitable for the evaluation of ranking queries.
This subsection will discuss the optimization techniques that applied on the evalua-
tion of range queries and are appropriate for retrieving ranking queries results also.
The main method ‘Subdivisions and space decomposition’ [5] reduces the number
of partitions in HINTm where comparisons are performed and avoids accessing un-
necessary data. Recall that, at each level | of HINTm, every partition P;; is divided
into P,;° (holding originals) and P,;® (holding replicas). Now the authors propose
to further divide each P, into P,;°™ and P, ;°**, so that P,;°™ (resp. P,;°*’*) holds
the intervals from Pl‘iom that end inside (resp. after) partition P;;. Similarly, each
Pl,l-R is divided into Pl,iRi” and Pl,iRaf £, Consider a range query q, which overlaps
with a sequence of more than one partition at level [. As already discussed, if com-

parisons must be conducted in the first such partition Py, should be done for all
intervals in P, foand P fR. The subdivision of P} foand P fR , concludes to the follow-
ing: If P,; # P;; each interval s in Pl,fOi"U Pl,fRi" overlaps with q iff s.end > q.st;
and all intervals s in Pl,foaf fand Pl,fRaf L are guaranteed to overlap with g. Follows

directly from the fact that g starts inside P,y but ends after P, ;. Hence, just one
16

comparison is needed for each interval in Pl,fomU Pl,me, whereas all intervals

Pl‘anf ‘U Pl,fRaf ! can be reported as query results without any comparisons.

As already discussed, for all partitions P;; between P ; and Pj;, intervals in
Pl'iOi"U P,;°**are just reported as results, without any comparisons, whereas for the

last partition P;;, one comparison is performed per interval in PuOi"U Pl,loaf £ If the

range query q overlaps only one partition P, ¢ at level [, the authors use following to

minimize the necessary comparisons: If P,y = P;; then each interval s in P, fom over-

laps with q iff s.st < q.end A q.st < s.end, each interval s in Pl’foaft overlaps with

q, iff s.st < q.end, each interval s in Pl‘fRi" overlaps with g, iff s.end > q.st, all

oaft

intervals in P, fRaf t overlap with q. All intervals s € P, ¢ and end after q, so s.st <

q.end suffices as an overlap test. All intervals s € Pl,fRi" start before g, so s.st <

q.end suffices as an overlap test. All intervals s € Pl,fRaf ! start before and end after
q. so they are guaranteed results.

Overall, the subdivisions minimize the number of intervals in each partition, for
which we must apply comparisons. Figure 2.7 shows the subdivisions which are
accessed by query g at level [= 2 of a HINTm index. In partition P, = P, 4, all four
subdivisions are accessed, but comparisons are needed only for intervals in Pz'loi”
and P, ;™. In partition P,,, only the originals (P,,°™ and P,,°*") are accessed and

reported without any comparisons. Finally, in P, s = P,3, only the originals (P, 0™

and P,3°%") are accessed and compared to q.

Rait P2,1
0in P22
0in P2,1
Oaft P22
Rin P2,1 Oaft P2,1 oin P2 3
OaitPp 3
P20 P21 Pao Pa3

q

Figure 2.7: Partition subdivisions in HINTm level 2.

As can be easily summarized, the intervals in each subdivision can be kept sorted,
to reduce the number of comparisons for queries that access them. For example, by

examining the last partition P;;, that overlaps with a query g at a level [. Any can

17

conclude that if the intervals s in P} fOi" are sorted on their start endpoint (i.e., s.st),

then the intervals can be reported until the first s € Pl‘lom, such that s.st > g.end.

Or binary search can be performed to find the first s € Pl,lom, such that s.st > q.end
and then scan and report all intervals before s. Table 2.2 summarizes the sort orders
for each of the four subdivisions of a partition that can be beneficial in range query
evaluation. For a subdivision Puom, intervals may have to be compared based on
their start point (if P,; = P, ¢), or based on their end point (if P;; = P;;), or based on
both points (if P;; = P, = P;;). Hence, they choose to sort based on either s.st or
s.end to accommodate two of these three cases. For a subdivision Pl,ioaf ¢ intervals
may only have to be compared based on their start point (if P;; = P;;). For a subdi-
vision Pl,iRi", intervals may only have to be compared based on their end point P;; =

Py s. Last, for a subdivision Pl,iRaf £, there is never any need to compare the intervals,

so, no order provides any search benefit.

Table 2.2: Beneficial sort orders

Subdivision Beneficial sorting
P o™ by s.st or by s.end
P, ;0Mt by s.st
p, R by s.end
p Rt no sorting

Thus far, we have thoroughly examined all the significant contributions made by
Christodoulou et al. in [5]. The subsequent sections of this paper will delve into the
definitions, methodologies, and techniques that contribute to the development of

HINTm, aiming to efficiently support ranking (top k) queries.

18

CHAPTER 3

PROBLEM DEFINITIONS

3.1 Top-k Query
3.2 Overlap-Intersection

3.3 Ranking Problem

3.1 Top-k Query

In the context of computer science and information retrieval, top k query is a type
of query that retrieves the top k items from a dataset based on some specified criteria.
The scientific definition encompasses the following key aspects:

e Definition: A top k query is an operation that returns the k highest rank-
ing results from a collection of items, based on a given score or a ranking
function.

¢ Ranking Function: The ranking function f(x) assigns a numerical score
to each item x in the dataset. The function reflects the relevance, similarity,

or preference according to the specific application or query context.

3.2 Overlap-Intersection

In mathematics, an interval is a fundamental concept used to describe a continuous

range of numbers. There are various types of intervals, this study focuses particularly
19

on closed intervals. A closed interval is a set of real numbers that includes both its
endpoints. It is denoted by [a, b], where a and b are the two endpoints of the interval,
and all numbers between a and b including a and b themselves, belong to the
interval [14].

When considering multiple intervals, a common problem is determining their inter-
section (overlap). The intersection of two intervals refers to the set of points that are
contained within both intervals. For two closed intervals [a, b] and [c, d], their inter-
section is also a closed interval if they do overlap. Mathematically, the intersection
of these intervals is defined as [max(a, c), min (b,d)]. This intersection is valid and

non-empty:

e iff max(a,c) < min(b,d).

If this condition is not met, the intervals do not overlap, and their intersection is the
empty set. For example, consider two closed intervals [1,5] and [3,7]. The intersec-
tion of these intervals would be [max(1,3), min(5,7)] = [3,5]. This resultant interval
includes all numbers that lie within both original intervals.

In this study, we refer to this concept as the absolute overlap or intersection between
two intervals, which will determine the ranking function examined. More explana-
tory, given as data input a set of closed intervals S and a closed interval q as a query.

We determine the intersection or overlap of an interval s € S based on the following:

e Absolute intersection: |s N q| = [max(q.st, s.st),min(q.end,s.end).

3.3 Ranking Problem

Given a large collection of intervals S, a positive integer k and a query interval q.
We address the problem of finding the top k intervals of the collection S that best
overlap with the query g. The ranking score s, is computed by the endpoints of

absolute intersection between query g and interval s € S, formulated as:

e Intersection score: s, = min(q.end, s.end) — max(q.st, s.st).

20

e For each interval: ze€Sand |[zNq| =0 = Zsore = 0.

The goal is to identify the k intervals with the highest overlapping scores, thus

ranking them based on how well they intersect with the query. Formally,

Input:
e Finite set of intervals: S = {s;, 55, ..., S}
e Positive integer: k
e Interval query: q

Output:

e Subset: TOPk € S, such that |TOPk| = k and each interval s € TOPk has
one of the k highest sg 4. With g.
The Figure 3.1 below presents a comprehensible example that encapsulates the con-

cepts discussed so far.

COLLECTION OF CLOSED INTERVALS

I C=[2,E] I f=[8,9]
| 1 | |

b=[1,4] [e=[6,9]
| |
| a=[1,3] | | d=[4,7] |
| | |
0 1 2 3 4 5 6 7 8 9 10
| |
i 9=[2,7] |
OVERLAP SCORES
ascore = 1
bscore = 2
=4

TOP 3 ={c, d, b}
dscore = 3
€score = 1
fscore = 0

Figure 3.1 Ranking example

21

CHAPTER 4

TRAVERSING METHODS

4.1 Naive Traversal
4.2 Top-Down Traversal
4.3 Upper Bounds
4.3.1 Static Upper Bounds
4.3.2 Metadata Upper Bounds
4.4 Naive & Top-Down with Upper Bounds
4.5 Depth-First Traversal
4.6 Ordered Traversal

4.7 Sorted Traversal

The primary objective of this study is to address the interval ranking problem with
maximum efficiency. To achieve this, we enhance the HINTm index to support top-
k queries. This development incorporates the HINTm index along with the optimi-
zations detailed in the subsection 2.3. To accomplish this, we initially use Algorithm
1 “Assignment of an interval to partitions” (figure 2.2) to index all intervals of S.
Subsequently we modity Algorithm 3, “Range Query on HINTm” (figure 2.6) so that
each time a range query result s is reported, its intersection score is computed. If the
TOPk set is not yet full, the interval is added to the set. Otherwise, its score is
compared to the k-th highest score in the TOPk set. If the score meets the necessary
threshold, the interval is added to the top-k set; otherwise, the algorithm proceeds

to the next range query result. For the remainder of this study, this process will be

22

referred to as "update TOPk." To check if the TOPk set is not full, we will use the
condition:

e |TOPk|<k
It is necessary to indicate that if the query overlaps fewer than k intervals, the results
should be output directly. While for tracking the best of the results we are using a
min-heap data structure due to its efficient insertion and removal operations. In the
rest of this section, we will examine the different methods of traversing the HINTm

index aiming to extract the top k results as efficiently as possible.

4.1 Naive Traversal

The initial approach is a naive method that traverses the index in a bottom-up
manner, as exactly described previously, modifying the Algorithm 3 “Range Query
on HINTm”. Each time the algorithm reports a range query result, the overlap score
between the query’s endpoints and the result’s endpoints is computed. Based on this
score, it is then determined whether the result should be included in the TOPk set.
This process, “update TOPk”, continues until all potential range query results have

been examined.

23

Naive: Top k query on HINTm

20

21

22

23

24

input: HINTm index, query interval q

output: set TOP-k with the k intervals that have the highest score with q
TOP-k <« 0;

compfirst «— TRUE; complast < TRUE;

for level = m to 0 do bottom-up

a <—prefix(level, g.st); b<— prefix(level, g.end);
fori=atobdo

ifi = athen first relevant Partition

if i = b and compfirst and complast then

update TOP-k for every s in PUD that g.st = s.end & s.st = g.end,
update TOP-k for every s in PUR that g.st = s.end;

else if i = b and complast then

update TOP-k for every s in PLP that s.st = g.end;

update TOP-k for every s in P|:iR;
else if compfirst then
| update TOP-k for every s in P|_iD & PUH that g.st = s.end;

else
| update TOP-k for every s in P|_iD & P|IiR;
else if i = b and complast then last relevant Partition, b > a

| update TOP-k for every s in PLP that s.st = g.end;
else intermediate or last, no comp.

| update TOP-k for every s in PLP ;

if amod 2 = 0 then last bit of a is 0
| compfirst <— FALSE;

if bmod 2 = 1 then last bit of b is 1
| complast <— FALSE;

25 return TOP-k;

Figure 4.1: Pseudocode for Naive Traversal.

4.2 Top-Down Traversal

It is evident that longer intervals are more likely to overlap significantly with the
query. In the context of HINTm, partitions closer to the root are larger and therefore
tend to contain longer intervals compared to those nearer the bottom. Consequently,
the Top-Down approach traverses the HINTm from the root towards the bottom.
This method prioritizes potentially higher scores in the ranking and reduces unnec-
essary insertions as the traversal nears the lower levels of the index. To benefit from
the nature of HINTm, adjustments to the compfirst and complast flags are needed.
Specifically, before initiating the top-down scanning to gather the top k results, the

index is first scanned bottom-up to determine the level complevel of HINTm where

24

the flags compfirst and complast are met. Subsequently, the index is scanned starting
from the root, avoiding comparisons until complevel. Comparisons are then per-

formed from that level until the bottom.

Top-down: Top k query on HINTm

input: HINTm index, query interval q

output: set TOP-k with the k intervals that have the highest score with g
1 TOPk <« O;
compfirst «— TRUE; complast < TRUE;

[+

3 for level = mto O do bottom-up to find complevel

4 | a = prefix(level, g.st); b <«—prefix(level, q.end);

5 | if compfirst or complast then

6 if a mod 2 = 0 then last bit of ais 0

7 |compﬁrst <« FALSE;

8 if b mod 2 = 1 then last bit of b is 1

9 |complast <«— FALSE;

10 | else

11 | complevel <«— level;

12 for level = 0 to complevel do top-down until complevel no comp.
13 a < prefix(level, g.st); b <« prefix(level, g.end);

14 | fori=atobdo

15 if i =athen first relevant Partition

16 | update TOP-k for every s in PLiO & PUH;

17 else intermediate or last relevant Partition
18 | update TOP-k for every s in PLiO ;

19 for level = complevel to m do top-down until bottom with comp.

20 | a«— prefix(level, q.st); b<— prefix(level, g.end);

2t |fori=atobdo

22 if i = a then first relevant Partition
23 if i = b then

23 update TOP-k for every s in PLP that g.st = s.end & s.st =g.end;

24

update TOP-k for every s in P|:iR that g.st = s.end,;

25 else

26 | update TOP-k for every s in PLiO & PUH that q.st < s.end;
27 elseif i=b and last relevant Partition

28 | update TOP-k for every s in PLiO that s.st =< qg.end;

29 else intermediate relevant no comp.
30 update TOP-k for every s in PLP ;

(%]

1 return TOP-k;

Figure 4.2 Pseudocode for Top-Down Traversal.

25

4.3 Upper Bounds

To further expedite the retrieval of the top k intervals, we introduce Upper bounds
that serve to eliminate unnecessary scans of partitions. They are used when it is
guaranteed that the partition of HINTm to be scanned does not contain any intervals
that could be part of the TOPk set. This approach consequently reduces redundant
computations and score comparisons. Upper bounds are applied to each partition of
the index, indicating the maximum potential interval that it may contain. Subse-
quently, the intersection score between this potential maximum interval and the
query is calculated, establishing the upper bound for our approach.

To ensure no potential results are not skipped, Upper bounds are employed only
after the TOPk set is fully populated. If the set is not yet full, any result will be
added regardless of its score. Thus, before utilizing upper bounds, it is necessary to
verity that the TOPk set is full. If so, the Upper bound is compared with the k-th
score. The partition is scanned only if the Upper bound exceeds the k-th score.

Formally, assume s’ possible maximum interval a partition P can offer.
e We define as static Upper bound: Ub.P = Sgcore

e Pruning condition whether to scan the P:

if (ITOPk| < k)||(Ub.P > kip—score) = scan P

In the subsequent analysis, we evaluate two distinct versions of the Upper bounds.
The initial version employs the endpoints of the partitions (P.st, P.end, P.extent =
P.end — P.st) along with those of the queries (q.st, g.end) to compute static bounds
for each subdivision of a partition accessible during a top-k query. The revised ver-

sion utilizes metadata to further refine and tighten the upper bounds.

4.3.1 Static Upper Bounds
As discussed in the section 2.3 for a first relevant partition P; , both originals and

replicas should be accessed. We introduce the static upper bounds, Ub.PfOi”,

Ub_Panft, Ub_pri”, Ub. }}Raft, for each subdivision.

26

An Original in subdivision contains intervals that begin and end in this par-
tition. The potential maximum intersection score that a first relevant Original
in can provide is: Ub.PfOi" = P.end — q.st figure 4.3.

A Replica in subdivision consists of intervals that begin before this partition
and end inside it. The estimated maximum intersection score that a Replica

in on a first relevant can provide is: Ub. P].Bi" = P.end — q.st figure 4.3.

Original & Replica in Subdivisions of partition P

Qin
Rin
Qin
Rin
Ub_pfOin&RIn =6
—
16
P.st P.end
10 18
Q.st Q.end

Figure 4.3: Upper Bound of First rel. Partition for Oin & Rin.

An Original after subdivision contains intervals that begin in this partition but

end after. The potential maximum intersection score that an Original after on

Oaft
F

a first relevant can provide is: Ub. = q.end — q.st figure 4.4.

A Replica after subdivision consists of intervals that begin before this partition
and end after it also. The hypothetical maximum intersection score that a

Raft
F

Replica after on a first relevant partition can provide is: Ub. =q.end —

q.st figure 4.4.

27

Original & Replica aft Subdivisions of partition P

Oaft

Raft

Oaft

Raft

Ub_pEOaﬂ&Hiﬂ =8

]

Pt Pend

10 18
Q.st Q.end

Figure 4.4: Upper Bound of First rel. Partition for Oaft & Raft.

For an intermediate P;, or a last relevant P, partition only originals must be accessed
section2.3. We introduce the static upper bounds, Ub. Pi?li", Ub. Pi?laf £ Ub. ppm,

Oaft
Ub.P, af , for these cases.
e The possible maximum intersection score that an Original in on an interme-

diate relevant partition can provide is: Ub. PO = P.extent figure 4.5.

Original in Subdivision of partition P

Ub.Pi,O" = 8
I ——
2] 16
P.st Pend
6 18
Qust Q.end

Figure 4.5: Upper Bound of Intermediate rel. Partition for Oin.

e The potential maximum intersection score that an Original after on an inter-

mediate relevant partition can provide is: Ub.Pizaf " = P.extent + q.end —

P.end figure 4.6.
28

Original aft Subdivision of partition P

Ub.P;, 05 = 10

P.st Pend

51 18
Qust Q.end

Figure 4.6: Upper Bound of Intermediate rel. Partition for Oaft.

The likely maximum intersection score that an Original in on a last relevant
partition can provide is: Ub. P’™ = q.end — P.st figure 4.7.

The prospective maximum intersection that an Original after on a last rele-

vant partition can provide is: Ub. Ploaf “=gq.end — P.st figure 4.7.

Original in&aft Subdivisions of partition P

Oaft
Oin
Oaft
Oin
Ub. PIOIn&aﬂ =6
———————————————
8 16
P.st P.end
10 14
Q.st Q.end

Figure 4.7: Upper Bound of last rel. Partition for Oin & Oaft.

4.3.2 Metadata Upper Bounds

In the revised methodology for determining the Upper bounds, rather than presup-

posing the expected extended interval that each subclass might offer, we save the

longest interval present within each subdivision. This preserved metadata is then

29

utilized to compute the upper bounds. The tracking of the maximum interval for
each subdivision is conducted concurrently with the assignment of intervals to their
respective partitions. Formally, assume the longest interval maxs that exists on a

partition P:
e We define metadata upper bound: Ub. P4y = max Sgcore

In such manner, we introduce the metadata upper bounds for every subdivision of

a partition P, Ub. P2, Ub. P2 Ub. PR Ub. PR’ In an effort to further tighten
the upper bounds, while keeping in mind that the minimum bound is the more
suitable. It is important to acknowledge that the superiority of the metadata bounds
over the static ones remains uncertain in some cases. Consequently, the implemen-

tation will integrate both metadata and static upper bounds in the following manner.

For the first relevant partitions:

e Originals in upper bound?™ = min(Ub. P?™, U. B95%), minimum between the

static and the metadata bound.

e Originals after upper bound]? oft = min(Ub.P}oaf U, P2YY), minimum between

the static and metadata upper bound.

e Replicas upper boundﬁin(Raf Y = yb. P]Ein(Ub.PfRaf Y, static bounds.

For the intermediate relevant partitions:
e Originals in upper bound?™ = Ub. P, metadata bound.

e Originals after upper boundglaf f= Ub.Ploaf !, static bound.

For the last relevant partitions:
e Originals in upper bound?™ = min(Ub. P°™, U. P2L) minimum between the
static and the metadata upper bound.

dloaf f= Ub.Ploaf , static upper bound.

e Originals after upper boun
In the remainder of this section, we update the naive and top-down methods intro-

duced in the preceding subsections 4.1 and 4.2. Furthermore, we explore novel
30

approaches for traversing the index. This time, however, we employ the discussed
Upper bounds to eliminate redundant scans of partitions. The table 4 summarizes

the Upper bounds discussed so far.

Table 4.1: Static & Metadata Upper Bounds for relevant partitions

Rel. partition & Static Metadata
subdivision Upper Bounds Upper Bounds

First rel. Oin Ub.PP™ = P.end — q.st min(Ub. PP, U. BA)

First rel. Oaft Ub.Pfoaft =gq.end — q.st min(Ub.F;coaft, U.Prggt)

First rel. Rin Ub.P]f"i" =P.end — q.st Ub.PfRi”

First rel. Raft Ub_PfRaft =gq.end — q.st Ub.PfRaft
Intermediate rel. Oin Ub. P2™ = P.extent Ub. PR
Intermediate rel. Oaft | yp, p2¥* = P.ex + q.end — P.end Ub.POY*

Last rel. Oin Ub.PP™ = q.end — P.st min(Ub. P°™, U. BOI)

Last rel. Oaft Ub.P°Y" = q.end — P.st Ub.P°V*

4.4 Naive & Top-Down with Upper Bounds

In this subsection, we refine the Naive and Top-Down methods by integrating the
Upper bounds discussed previously. This enhancement aims to optimize the traversal
process by pruning unnecessary partitions. Through this approach, we seek to im-
prove the efficiency and effectiveness of our methods. Incorporating the Upper
bounds into the Naive and Top-Down traversal methods is a straightforward process.
The primary requirement is to apply the pruning condition delineated in the previ-
ous subsection each time the methods are poised to scan a partition. Specifically,
immediately prior to calling “update TOPk” in both the Naive and Top-Down meth-
ods, the appropriate Upper bound is applied, depending on the subdivision of the
partition and its relevance position. This ensures that only those partitions which
meet the established criteria are further examined, thereby streamlining the search

process.

31

Explanatory, for example, before scanning the first relevant partition Pfomof the orig-

inal in subclass, we apply the following pruning condition:
o if (ITOPk| < K)||(Ub.PP™ > kil,.) = scan PP™

By implementing this condition before every partition’s scanning of the methods, we
establish their optimized versions: Naive with Upper bounds and Top-Down with

Upper bounds.

4.5 Depth-First Traversal

Continuing the endeavor to prioritize the longer intervals that populate the index
first, as initiated in the Top-Down subsection, we introduce a novel method that
traverses the index in a depth-driven manner. This technique diverges from tradi-
tional approaches by adopting a more intricate scanning process. Initially, we con-
duct a top-down traversal, covering only the first relevant partitions. Following this,
we examine, in the same way, all the intermediate partitions and finally we scan all
the last relevant partitions. The figure 4.8 below shows the relevant partitions that

are traversed top-down (first blue, then green and last yellow).

HINTm

First relevant partitions Last relevant partitions

Intermediate relevant partitions

Q

Figure 4.8: First, Intemediate & Last relevant Partitions.

32

Furthermore, we incorporate the complevel parameter to strategically bypass unnec-
essary comparisons, mirroring the optimization techniques employed in the Top-
Down method. Additionally, we apply the upper bounds discussed previously to
every call of the TOPk update.

Depth-first traversal: Top k query on HINTm

input: HINTm index, query interval q

output: set TOP-k with the k intervals that have the highest score with g
1 TOPk < 0;
2 compfirst «— TRUE; complast < TRUE;

3 forlevel = mto 0 do bottom-up to find complevel

4+ | a = prefix(level, g.st); b <«—prefix(level, g.end);

5 | if compfirst or complast then

6 if a mod 2 = 0 then last bit of ais 0

7 |compﬁrst <« FALSE:

8 ifbmod 2 = 1 then last bit of b is 1

9 |c:omplasl «— FALSE;

10 | else

11 | complevel <— level;

12 for level = 0 to complevel do top-down first rel. until complevel na comp.

13 | a <« prefix(level, q.st);

1 |if (TOP-k is not full) || (Ub.P2O&R > k-thgeore) then Upper bound condition
1 | update TOP-k for every s in PLaO & P‘:aH;

16 for level = complevel to m do top-down first rel. until battom with comp.

17 | a <«—prefix(level, g.st); b <—prefix(level, q.end);

18 | ifa=Db and then

19 if (TOP-K is not full) || (UbAP\Iao > K-thgeore) then Upper bound condition

20 | update TOP-k for every s in PLao that g.st=<s.end & s.st =q.end;

21 if (TOP-K is not full) || (Ub.P\IaR > K-thseore) then Upper bound condition

22 | update TOP-k for every s in PLaR that g.st=s.end;

23 | else

24 if (TOP-k is not full) || (Ub.P) s9%R > k-thscore) then Upper bound condition
25 | update TOP-k for every s in Ptao & PLaP‘ that g.st=s.end;

26 for level = 0 to m do top-down intermediate rel. until bottom no comp.

27 | a < prefix(level, q.st); b < prefix(level, g.end);

28 | fori=a+1tob-1do

29 if (TOP-K is not full) || (Ub.PUCJ > k-thseore) then Upper bound condition
30 | update TOP-k for every s in PUO :

31 for level = 0 to complevel do top-down last rel. until complevel no comp.
32 | b « prefix(level, g.end);

33 | if (TOP-k is not full) || (Ub.P;,© > k-thgcore) then Upper bound condition
34 | update TOP-k for every s in P‘_bo :

35 for level = complevel to b do top-down last rel. until bottom with comp

3 [b < prefix(level, g.end);

a7 | if (TOP-kis not full) || (Ub.P,C > k-thscore) then Upper bound condition
38 | update TOP-k for every s in PLbO that s.st=<q.end;

39 return TOP-k;

Figure 4.9: Pseudocode for Depth-First Traversal.

33

4.6 Ordered Traversal

In our quest to further enhance the efficiency of index traversal, we present a novel
method termed the Ordered Traversal. This technique focuses on scanning the par-
titions of the index in a specific, strategic order to optimize the retrieval process. By
systematically organizing the sequence in which partitions are examined, we aim to
maximize the likelihood of quickly identifying intervals that overlap greater with the
query while minimizing unnecessary computations. This method builds upon the
principles (complevel and Upper Bounds) outlined in previous sections. Through
this ordered approach, we strive to achieve a more streamlined and effective data
management solution.
After identifying, with a bottom-up traverse what the complevel is. The process of
this method unfolds as follows. The index is scanned in a top-down fashion, while
leveraging the upper bounds to enhance efficiency. The scanning procedure, starting
from the root, is meticulously ordered in distinct stages:

e [irst, we scan all the Originals and Replicas after for the first relevant parti-

tions figure 4.10.

First relevant, Originals & Replicas Aft

Oaft

Raft

Oaft

Q_

Figure 4.10: First relevant partitions Originals and Replicas after

e Second, we examine all the Originals after for the intermediate relevant parti-

tions 4.8.

34

e Third, we inspect all the Originals in for the intermediate relevant partitions

figure 4.11.
Intermediate relevant, Originals Aft & In
Qin
Oaft
Qin
Qin
.| Oaﬂ
|
Oaft
Q

Figure 4.11: Intermediate relevant partitions Originals and Replicas after.

e Fourth, we look at all the Originals and Replicas in for the first relevant
partitions figure 4.12.

First relevant, Originals & Replicas In

Rin

Qin

Q_

Figure 4.12: First relevant partitions Originals and Replicas in.

o Fifth, we scan the Originals in and after for the last relevant partitions figure

4.13.

Last relevant, Originals In & Aft

Qin

Oaft
QOin

—Q

Figure 4.13: Last relevant partitions Originals in and after.

By following this specific order, the method ensures that the most promising parti-
tions are prioritized, aiming to improve the overall effectiveness of the scanning
process. Each stage of the scan is carefully designed to build upon the previous one,

targeting a comprehensive yet efficient traversal of the index.

36

Ordered scanning traversal: Top k query on HINTm

input: HINTm index, query interval g

output: set TOP-k with the k intervals that have the highest score with q
1 TOP-k < 0;
2 compfirst «— TRUE; complast <— TRUE;

2 forlevel=mto 0do bottom-up to find complevel

4 | a < prefix(level, g.st); b <—prefix(level, g.end);

5 | if compfirst or complast then

6 if a mod 2 = 0 then lastbit of a is 0

T |compiirst <«— FALSE;

8 if b mod 2 = 1 then last bit of b is 1

a |complast <«— FALSE;

10 | else

11 | complevel «— level;

12 forlevel=0to complevel do top-down first rel. Oaft&Raft until complevel no comp,

13 | a <« prefix(level, g.st);

| if (TOP-k is not full) || (Ub.P; a9af&Raft 5k theoore) then Upper bound condition

1’ | update TOP-k for every s in P, ,03M & p; Rafl;

16 for level = CDITIp|EVE| to mdo top-down first rel. Gaft&Rait until bottom with comp.
17 | a< prefix(level, g.st);

18 | if (TOP-k is not full) || (Ub.P ;03 > k-thgore) then Upper bound condition

18 | update TOP-k for every s in P_aoa" that s.st =<q.end;

20 | if (TOP-k is not full) || (Ub.P ;78 > k-thgcore) then Upper beund conditicn

21 | update TOP-k for every s in P, Aat that:

22 for level = 0 to m do top-down intermediate rel. Qaft until bottom ne comp.
23 | a< prefix(level, g.st); b < prefix(level, g.end);

24 | fori=a+1tob-1do

25 if (TOP-k is not full) || (Ub.P;;0af > k-thgeore) then Upper bound condition
26 |updare TOP-k for every s in P, iOaﬂ :
27 for level = 0 to m do top-down intermediate rel. Oin until bottem no comp.

28 | a< prefix(level, g.st); b < prefix(level, g.end);
29 [fori=a+1tob-1do

30 if (TOP-k is ot full) || (Uo.P;ON > k-thggore) then Upper bound condition
3 |updare TOP-k for every s in P‘_iOi“;
32 for level = 0 to complevel do top-down first rel. Oin&Rin until complevel no comp.

33 [a< prefix(level, q.st);

a4 | if (TOP-k is not full) || (Ub.P,;0N&RIN 5 k.tho ore) then upger bound sondition

35 | update TOP-k for every s in P, O & p; _Fin;

36 for level = complevel to mdo top-down first rel. Qin&Rin until botiom with comp.
37 | a< prefix(level, g.st); b < prefix(level, g.end);

38 [if a=Dband then

3 it (TOP-k is mot full) || (Ub.P .97 > k-thscore) then Upper bound condition
40 |updare TOP-k for every s in P, ,ON that q.st<s.end & s.st=tq.end;

41 if (TOP-k is not full) || (Ub.P; 2R > k-thscore) then Upper bound condition
42 |update TOP-k for every s in P, RN that q.st=ts.end;

43 | else

44 it (TOP-k is not full) || (Ub.P;.0M&RIN » e thgpore) then Upper bound conditon
45 | update TOP-k for every s in P ,ON&p, ;RN that q.st <<s.end;

46 for level = 0 to complevel do top-down last rel. Oin&aft until complevel no comp.
47 | b « prefix(level, g.end);

48 it (TOP-K is not full) || (Ub.P\IbO > K-thscore) then Upper bound condition

48 | update TOP-k for every s in P, bo ;

50 for level = complevel to b do top-down last rel. Oin&aft until bottom with comp.
51 | b <« prefix(level, g.end);

52 | if (TOP-k is not full) || (UbAP\IbO > k-thgcore) then Upper bound condition

53 | update TOP-k for every s in PLbO that s.st=<q.end;

54 return TOP-k;

Figure 4.14: Pseudocode for Ordered Traversal.
37

4.7 Sorted Traversal

In our ongoing effort to optimize index traversal, we introduce the Sorted Traversal
of the HINTm. This method takes a comprehensive approach by first gathering all
the subclasses of the relevant partitions and then sorting them based on their Upper
bounds. By organizing the subdivisions of the partitions in this manner, we can
prioritize the most promising candidates for efficient scanning. This technique lev-
erages the previously discussed Upper bound principles.

The process of this method consists of three distinct stages. In the first stage, the
index is scanned in a bottom-up fashion (like Naive Traversal), during which every
subclass of the relevant partitions is gathered to a list. The second stage involves
sorting these subclasses in descending order according to their upper bounds. This
sorting process ensures that the partitions with the highest potential intersections are
prioritized. In the final stage, the list of subclasses are scanned sequentially, starting
from the subdivision with the greatest Upper bound, and continuing until the fol-
lowing termination condition is satisfied.

More specifically, each time a sub-partition is scanned, it is necessary to verify
whether the top-k set is complete. Subsequently, if the k-th score within the top-k
set is greater than or equal to the Upper bound of the next sub-partition for scanning,
this condition ensures that no other subclass can provide a superior interval result
for the TOPk set. If this criterion is met, it is guaranteed that further scanning of
remaining subclasses will not yield better results for the TOPk set, thus allowing the
process to terminate efficiently. Formally, assume that P’ the partition that is about

to get scanned:

e if (|ITOPk| =k)and (Ub.P' < kt!,..) then terminate process.

This methodical approach guarantees that the most significant partitions are exam-

ined first.

38

Sorted scanning traversal: Top k query on HINTm

10

ih

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

28

29

an

w

1

input: HINTm index, query interval g
output: set TOP-k with the k intervals that have the highest score with g
TOP-k <« 0;
compfirst «=— TRUE; complast <— TRUE;
PartitionsToScan <— 0;
for level = m to 0 do bottom-up
a «—prefix(level, g.st); b <—prefix(level, g.end);
fori=atobdo
ifi = a then first relevant Partition
if i = b and compfirst and complast then
add P, © to PartitionsToScan;
add PR to PartitionsToScan;
else if i = b and complast then
add P, © to PartitionsToScan;
add Py ;R to PartitionsToScan;
else if compfirst then
|ao‘d P,© & PR to PartitionsToScan;

else
|ao‘d P© & PR to PartitionsToScan;
else if i = b and complast then last relevant Partition, b > a

| add P,;© to PartitionsToScan;
else intermediate or last, no comp.

| add P, ;© to PartitionsToScan;

if amod 2 = 0 then last bit of a is 0
| compfirst <— FALSE:
ifbmod 2 = 1 then last bit of b is 1

| complast <«—FALSE;

sort PartitionsToScan; based on their upper bounds

for P in PartitionsToScan start from parition with greater upper bound

update TOP-k for every s in P; with respect to comp.

if (TOP-K is full) and (Ub.Pqy; < K-thgcore) then termination continion
break;

return TOP-k;

Figure 4.15: Pseudocode for Sorted Traversal

39

CHAPTER 5

EXPERIMENTAL EVALUATION

5.1 Datasets & Queries

5.2 HINTm & Methods

5.3 Query Extent

5.4 Static vs Metadata Upper Bounds

5.5 Parameter k

We employed a system featuring an Intel Core i5 7200U CPU, equipped with 2 cores
and 4 threads, operating at a clock rate of 2.5 GHz. The system was configured with
8 GB of RAM. For the operating system, we utilized Linux Ubuntu 22.04.4 in 64-

bit mode, and the code was compiled using GCC version 11.4.0.

5.1 Datasets & Queries

The experimental analysis utilized four distinct datasets representing various real-
time intervals. The first dataset, referred to as "BOOKS," (https://www.odaa.dk) en-
compasses time intervals corresponding to instances when books were borrowed
from Aarhus libraries in 2013 and contains relatively large intervals. The second
dataset, "TAXIS"(https://www.nyc.gov/site/tlc/index.page), includes shorter time pe-
riods denoting the pick-up and drop-off times of taxi trips within New York City
during a specific period in 2013. Additionally, we conducted experiments using the
"BIKES” (https://citibikenyc.com/), which refers to the time spans during which bi-

cycles were rented in New York City in 2020, this dataset has similar characteristics

40

with the “TAXIS”. Lastly, the "FIRES” (https://www.fs.usda.gov/rds/archive/cata-
log/RDS-2013-0009.4) dataset includes time intervals corresponding to instances of
wildfires occurring in the United States between 1992 and 2015. The particular da-

taset contains lesser intervals but the average duration of them is between the interval

duration of the other datasets.

Table 5.1: Dataset characteristics

BOOKS TAXIS BIKES FIRES
Number of intervals | 2.050.707 | 43.167.001 | 19.474.352 778.410
Domain size [sec] | 31.413.600 | 31.542.251 | 31.947.359 | 757.382.940
Min. duration [sec] 1 1 1 1
Max. duration [sec] |31.406.400 | 2.148.385 | 3.786.188 | 9.988.800
Avg. duration [%] 6,98 0,0024 0,0041 0,013
m [index’s levels] 10 17 16 16

As interval queries, we employed predefined percentage intervals relative to the do-
main size of individual datasets. Specifically, the query intervals were set at 0,01%,
0,05%, 0,1%, 0,5%, and 1%. Each dataset underwent straightforward testing with
10.000 randomized queries per percentage interval, focusing on measuring total
throughput expressed in queries per second. This approach was chosen deliberately
over assessing average query time, particularly in contexts where large volumes of

interval data are processed.

5.2 HINTm & Methods

The methods described in the section 4 were built on the top of HINTm index,
enhanced with the optimizations discussed in the subsection 2.3. For the m param-
eter (table 5.1), the optimal value was used, determined automatically for each da-
taset by the already existing code of HINTm. The detailed process for determining

the optimal m value was explained in the prior work [5].
41

All methods were tested on each dataset. We distinguished the methods based on
whether the Upper Bounds (static or metadata subsection 4.3) were applied. The
table 5.2 below summarizes the methods of our experiments.

Table 5.2: Top-k Querying Methods examined.

without upper bounds | with static upper bounds | with metadata upper bounds
Naive Naive Naive

Top-Down Top-Down Top-Down

- Depth-First Depth-First

- Ordered Traversal Ordered Traversal

- Sorted Traversal Sorted Traversal

5.3 Query Extent

In the first phase of our experimental evaluation, we focused on exploring the impact
of query extent variation through top-k queries across the datasets. Each dataset was
subjected to top-k queries representing a range of domain coverage percentages 5.2,
thereby investigating how query scope influences system performance. Throughout
these experiments, we maintained a constant value of k, set at 10, to ensure con-
sistency in methods’ complexity and evaluation metrics. The following subsection
presents a detailed analysis of our findings, highlighting the outcomes observed
across varying query extents.

For the datasets "TAXIS", "BIKES", and "FIRES", which feature relatively small
duration intervals, we observed a high throughput, while decreasing, across query
extents ranging from 0,01% to 0,1% of the domain size. However, beyond this range,
there is a noticeable decline in throughput. In contrast, the "BOOKS" dataset, char-
acterized by larger duration intervals, exhibited consistently low throughput across
all query extents tested. Moreover, we noted that applying static upper bounds ac-

celerated query processing across “TAXIS”, “BIKES” and “FIRES”. For the dataset
42

of “BOOKS” the outcomes remain at almost the same levels. We use the x-axis to
represent query extent (fixed percentage of the domain) and the y-axis for through-
put, employing a logarithmic scale for "TAXIS" and "BIKES" to accurately depict

the performance. Here, we applied static Upper Bounds.

BOOKS k=10 static upper bounds

600

400

qls

200

1e0.01% qe0.05% qe0.1% qe0.5% qel%

M naive [topdown [naiveub [l topdownub [depth-firstub [ordered ub [sorted ub

Figure 5.1: Throughput of methods on BOOKS dataset across query extents, k=10.

FIRES k=10 static upper bounds

400000

300000

® 200000
o

100000

0
qe0.01% e0.05% qe0.1% e0.5% qel%

W naive [topdown [naiveub [topdownub [depth-firstub [ordered ub I sorted ub

Figure 5.2: Throughput of methods on FIRES dataset across query extents, k=10.
43

BIKES k=10 static upper bounds

100000
50000
10000
5000 I|
1000 II -

qe0.01% qe0.05% qe0.1% qe0.5% qel%

g/s (log scale)

B naive [topdown [naiveub [l topdownub [depth-firstub [ordered ub [sorted ub
Figure 5.3: Throughput of methods on BIKES dataset across query extents, k=10

TAXIS k=10 static upper bounds

100000

50000

10000
5000
1000

qe0.01% e0.05% qe0.1% qe0.5% qel1%

g/s (log scale)

(=]
o

B naive [topdown [naiveub [l topdownub [depth-firstub B ordered ub [sorted ub

Figure 5.4: Throughput of methods on TAXIS dataset across query extents, k=10
(log scale).

b4

5.4 Static vs Metadata Upper Bounds

Continuing our analysis, we compared the performance with the application of
metadata upper bounds. Our observations indicate that the throughput consistently
remains higher for all query extents when using metadata upper bounds compared
to static ones. Still the dataset of “BOOKS” does not show any significant advantage
in its performance. Notably, the "top-down” method, when coupled with metadata
upper bounds, emerges as one of the best performing methods. Here, we depict only

the methods when Upper Bounds are applied.

BOOKS k=10 static upper bounds (ub) VS metadata upperbounds (md ub)

800

600

400
200
0

qls

qe0.01% qe0.05% qe0.1% qe0.5% qel1%
M naiveub [top down ub depth-firstub Wl ordered ub [sorted ub [naive md ub [top down md ub
[depth-first md ub ordered md ub [sorted md ub

Figure 5.5: Throughput of methods with static and metadata Upper Bounds on
BOOKS dataset across query extents, k=10.

45

FIRES k=10 static upper bounds (ub) VS metadata upperbounds (md ub)

500000

400000
300000
200000
100000

0

qe0.01% qe0.05% qe0.1% qe0.5% qe1%

qls

B naiveub [l topdownub [depth-firstub [ordered ub W sorted ub [naive md ub [top down md ub
I depth-first md ub ordered md ub [sorted md ub

Figure 5.6: Throughput of methods with static and metadata Upper Bounds on
FIRES dataset across query extents, k=10.

BIKES k=10 static upper bounds (ub) VS metadata upperbounds (md ub)

300000

200000
100000 | |

qe0.01% qe0.05% qe0.1% qe0.5% qel1%

als

B naveub [topdownub | depth-firstub [ordered ub [sorted ub [naive mdub [] top down md ub
I depth-first md ub ordered md ub [sorted md ub

Figure 5.7: Throughput of methods with static and metadata Upper Bounds on
BIKES dataset across query extents, k=10

46

TAXIS k=10 static upper bounds (ub) VS metadata upperbounds (md ub)

100000
50000
10000
5000
1000 |I
Aala

g/s (log scale)

qe0.01% qe0.05% qe0.1% qe0.5% qe1%
B naiveub [top down ub depth-firstub [ordered ub [sortedub [naive mdub [top down md ub
I depth-first md ub ordered mdub [sorted md ub

Figure 5.8: Throughput of methods with static and metadata Upper Bounds on
TAXIS dataset across query extents, k=10 (log scale).

5.5 Parameter k

In the second stage of our experiments, we systematically varied the parameter k
and repeated the aforementioned tests for each specified value: 5, 10, 50 and 100.
This iterative approach enabled us to observe and analyze the performance charac-
teristics of our methods when tasked with reporting larger sets of top k results. By
adjusting k, we aimed to uncover how the scale of the result set influences system
throughput across different datasets.

We present outcomes of the top-down method with and without upper bounds for
different values of k, while keeping the query extent fixed at 0,1% of the initial
domains. Notably, we exclude results from the “BOOKS” dataset, as it consistently
did not exhibit any remarkable variations. The following figures detail the observed

performance across the “TAXIS”, “BIKES”, and “FIRES” datasets.

47

BIKES qe0.1%

300000

200000

qls

100000

L Ll i u
(] k10 k50 k100

W topdown M top down static ub top down metadata ub

Figure 5.9: Scaling of Top-Down method (static & metadata Upper Bounds em-
ployed) on BIKES dataset for different values of k with query extent 0,1% of the
domain.

FIRES qe0.1%

500000
400000

300000

afs

200000

| —
100000 — & =

k5 k10 k50 k100

B topdown M top down static ub top down metadata ub

Figure 5.10: Scaling of Top-Down method (static & metadata Upper Bounds em-
ployed) on FIRES dataset for different values of k with query extent 0,1% of the
domain.

48

TAXIS ge0.1%

100000

50000

10000 ‘\1\‘\.

5000

qfs (log scale)

— 0= - -
5] K10 (&) k100

W top down M top down static ub top down metadata ub

Figure 5.11: Scaling of Top-Down method (static & metadata Upper Bounds em-
ployed) on TAXIS dataset for different values of k with query extent 0,1% of the
domain (log scale).

As we see, the throughput declines as we apply larger values of k for the three
datasets, with 'BIKES’ showing slightly better performance compared to "TAXIS” and
'FIRES.” This pattern is consistent across the different query extents we tested. As

well as for the methods that employ upper bounds.

BIKES qe0.01%
250000
200000

100000

als

50000 L — —— -

k6 k10 K50 k100

B naive M najve static ub naive metadata ub

Figure 5.12: Scaling of Naive method (static & metadata Upper Bounds employed)
on BIKES dataset for different values of k with query extent 0,01% of the domain
(log scale).

49

FIRES qe0.5%

250000

200000

160000

als

100000

50000

— -
Qo
k5 k10 k50 k100
W naive M naive static ub naive metadata ub

Figure 5.13: Scaling of Naive method (static & metadata Upper Bounds employed)
on FIRES dataset for different values of k with query extent 0,5% of the domain
(log scale).

FIRES qe0,01% Metadata upper bounds

500000
400000 -_— =1

300000

qls

200000

100000

k5 k10 k50 k100

W depth-first metadata ub W ordered metadata ub sorted metadata ub

Figure 5.14: Scaling of Depth-First, Ordered & Sorted traversals on FIRES dataset
for different values of k with query extent 0,01% of the domain.

50

TAXIS gel1% Metadata upper bounds

80000

60000

1) 40000
=2

20000

—

k5 k10 k50 k100

W depth-first metadata ub ordered metadata ub sorted metadata ub

Figure 5.15: Scaling of Depth-First, Ordered & Sorted traversals on TAXIS dataset
for different values of k with query extent 1% of the domain.

Summing up this section, our experimental evaluation highlights several key insights
into the performance of top k query processing with index of HINTm under varying
conditions. Firstly, larger query extents are associated with reduced throughput.
However, the application of static upper bounds significantly accelerates the overall
process, and extending these bounds to their metadata versions yields even better
results. In terms of traversal methods, simpler approaches tend to offer superior
performance. Specifically, the Top-Down method, which prioritizes traversing parti-
tions with potentially larger intervals first, combined with metadata upper bounds,
demonstrates the best performance among the tested methods.

Furthermore, the parameter k, representing the size of the top-k set, notably impacts
implementation performance. Larger k values result in more frequent updates to the
final set, thereby affecting throughput. Last but not least, the nature of the dataset
plays a crucial role in system scalability. Datasets with larger intervals, such as
'BOOKS,” show different performance characteristics and appear less affected by the

optimizations that benefit datasets with smaller intervals.

51

CHAPTER 6

CONCLUSIONS

6.1 Summary

6.2 Future Work

6.1 Summary

We enhanced the HINTm index to efficiently handle ranking queries. Subsequently,
we integrated a pruning technique utilizing Upper bounds, allowing the algorithm
to bypass unnecessary partitions during the execution of top k queries. We further
refined these Upper bounds to their metadata versions. In addition, we introduced
novel methods that traverse the index in various ways, equipping these methods
with the Upper bounds. Extensive experiments were conducted on four datasets to
measure overall throughput. Initially, we assessed the system’s performance across
different query extents and then across varying k values. The results indicated that
larger query extents and higher k values tend to reduce throughput. However, the
application of Upper bounds, particularly the tighter metadata version, significantly
improved the system’s scalability, especially for datasets with relatively short average
interval durations. Finally, among the developed methods, simpler approaches
demonstrated slightly better performance, provided they were complemented by the
metadata Upper bounds which has been proven to play the primary role in the

overall performance.

52

6.2 Future Work

For future research, our initial objective is to explore alternative ranking functions
beyond the absolute overlap. Subsequently, we will assess whether reporting results
below a specified threshold score influences performance in comparison to reporting
the top k results. Additionally, we intend to establish also lower bounds for each
partition of the index. Lastly, we intend to study the performance of HINT on top k

temporal joins.

53

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Michael H. Bohlen, Anton Dignos, Johann Gamper, and Christian S.

Jensen. Temporal Data Management - An Overview. In eBISS 2017.

Pierangela Samarati and Latanya Sweeney. Generalizing Data to Pro-

vide Anonymity when Disclosing Information. In ACM PODS 1998.

Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Over-
mars. Computational geometry: algorithms and applications, 3rd Edi-

tion. Springer 2008.

Ahmed Awad, Riccardo Tommasini, Samuele Langhi, Mahmoud
Kamel, Emanuele Della Valle, and Sherif Sakr. D2 ITA: User-defined
interval analytics on distributed streams. Information Systems 104

2022.

George Christodoulou, Panagiotis Bouros, Nikos Mamoulis. HINT: A
Hierarchical Index for Intervals in Main Memory. SIGMOD 2022.

George Christodoulou, Panagiotis Bouros, Nikos Mamoulis. HINT: a

hierarchical interval index for Allen relationships. VLDB 2023.

Ronald Fagin, Amnon Lotem, Moni Naor: Optimal Aggregation Algo-
rithms for Middleware. PODS 2001.

Nikos Mamoulis, Man Lung Yiu, Kit Hung Cheng, David W. Cheung :
Efficient top-k aggregation of ranked inputs. ACM Trans. Database
Syst. 2007.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Herbert Edelsbrunner. Dynamic Rectangle Intersection Searching.
Technical Report 47. Institute for Information Processing, Technical

University of Graz, Austria 1980.

J. Dittrich and B. Seeger, “Data redundancy and duplicate detection in

spatial join processing,” in IEEE ICDE 2000.

Andreas Behrend, Anton Dignds, Johann Gamper, Philip Schmiegelt,
Hannes Voigt, Matthias Rottmann, and Karsten Kahl. Period Index : A
Learned 2D Hash Index for Range and Duration Queries. In SSTD
2019.

Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter M.
Fischer, Donald Kossmann, Franz Farber, and Norman May. Timeline
index: a unified data structure for processing queries on temporal data

in SAP HANA. In ACM SIGMOD 2013.

R. Elmasri, G. T. J. Wuu, and Y. Kim, “The time index: An access
structure for temporal data,” in 16th International Conference on Very

Large Data Bases. Brisbane, Queensland, Australia, Proceedings, D.

McLeod, R. Sacks-Davis, and H. Schek, Eds. Morgan Kaufmann, 1990.

George Christodoulou. Interval Data Management in Main Memory.
Ph.D. dissertation, Department of Computer Science and Engineering.

University of Ioannina, Greece 2023.

Richard T. Snodgrass and Ilsoo Ahn. 1986. Temporal Databases. Com-
puter 19, 9 1986.

