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Today's data-driven world has made it essential to manage and analyze large vol-

umes of temporal data efficiently. This thesis addresses the problem of identifying 

the top 𝑘 time intervals that best intersect with a query interval within a given 

temporal data domain. In pursuit of addressing this issue with maximal efficiency, 

we further develop the HINTm index to support ranking queries.  

HINTm, is a Hierarchical Index for Intervals in arbitrary domains designed for main 

memory and defines a hierarchical domain decomposition which assigns each inter-

val to at most two partitions per level. It has previously been recognized as the most 

efficient interval index in the literature, has undergone numerous optimizations to 

avoid unnecessary comparisons and expedite range query responses over extensive 

collections of intervals. Building on its optimizations, this work adapted HINTm to 

effectively handle top 𝑘 queries. 

The ranking criterion is defined by the absolute interval intersection, enabling the 

identification of intervals that intersect better with a given query interval. Except 

from the naive approach that simply traverses the index and scans its partitions for 

results, various methods were developed to prioritize partitions that contain larger 

intervals first. In reference, “Top-down”, “Depth-first”, “Ordered” and “Sorted” tra-

versals aim to optimize the processing speed of top 𝑘 queries. Additionally, a pruning 

mechanism was implemented to bypass scanning index partitions that are guaran-

teed not to contain intervals of the final set. This pruning mechanism, termed "Upper 

bounds", was deployed in two distinct versions. The first version assigns a static 

Upper bound to each index partition based on the partition's endpoints. The second, 

an updated version, incorporates the metadata information of the maximum interval 

within each partition.  
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Extensive experiments were conducted on four datasets with varying characteristics, 

measuring the number of queries executed per second. These experiments aimed to 

understand system scalability concerning different query extents and values of 𝑘. 

The results indicate that larger query extents and higher values of 𝑘 are associated 

with reduced throughput. However, the application of the “Upper bounds” acceler-

ates the overall process. Finally, metadata Upper bounds provide even better perfor-

mance, always with respect to the diverse characteristics of datasets being utilized. 
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Στην παρούσα εποχή, όπου τα δεδομένα κυριαρχούν, η αποδοτική διαχείριση και 

ανάλυση μεγάλων όγκων χρονικών δεδομένων αποτελεί ζήτημα υψίστης σημασίας. 

Αυτή η μεταπτυχιακή διπλωματική εργασία πραγματεύεται το πρόβλημα της ανα-

γνώρισης των κορυφαίων 𝑘 χρονικών διαστημάτων που επικαλύπτουν καλύτερα 

ένα δοθέν διάστημα-ερώτημα εντός ενός δεδομένου χρονικού τομέα. Στην προσπά-

θεια να αντιμετωπιστεί αυτό το ζήτημα με μέγιστη αποδοτικότητα, αναπτύξαμε 

περαιτέρω το ευρετήριο HINTm για να υποστηρίξει ερωτήματα κατάταξης. 

Το HINTm, είναι ένα ιεραρχικό ευρετήριο για διαστήματα σε ακαθόριστους τομείς. 

Σχεδιασμένο για την κύρια μνήμη ορίζει μια ιεραρχική διχοτόμηση του τομέα, η 

οποία αναθέτει κάθε διάστημα σε το πολύ δύο διαμερίσματα ανά επίπεδο. Έχει 

αναγνωριστεί ως το πιο αποδοτικό ευρετήριο διαστημάτων στη βιβλιογραφία και 

έχει υποστεί πολυάριθμες βελτιστοποιήσεις για την αποφυγή περιττών συγκρίσεων. 

Διακρίνεται για την ταχύτητα των απαντήσεων ερωτημάτων εύρους σε μεγάλες 

συλλογές από διαστήματα. Βασιζόμενοι στις βελτιστοποιήσεις του, προσαρμόσαμε 

τον HINTm για να διαχειρίζεται αποτελεσματικά ερωτήματα κατάταξης (top k). 

Το κριτήριο κατάταξης ορίζεται ως η επικάλυψη διαστήματος ευρετηρίου με διά-

στημα ερωτήματος, επιτρέποντας την αναγνώριση των 𝑘 διαστημάτων που επικα-

λύπτουν καλύτερα το δοθέν διάστημα του ερωτήματος. Εκτός από την απλή μέθοδο 

που διασχίζει το ευρετήριο και σαρώνει τα διαμερίσματά του για αποτελέσματα, 

αναπτύχθηκαν διάφορες μέθοδοι διάσχισης ευρετηρίου για να δώσουν προτεραιό-

τητα σε διαμερίσματα του που περιέχουν μεγαλύτερα διαστήματα. Αναφορικά, οι 

μέθοδοι «Από πάνω προς τα κάτω», «Πρώτα σε βάθος», «Ταξινομημένη» και 

«Διατεταγμένη» διάσχιση έχουν ως στόχο να βελτιώσουν την ταχύτητα επεξεργα-

σίας των ερωτημάτων κατάταξης. Επιπλέον, υλοποιήθηκε ένας μηχανισμός 
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κλαδέματος για να παρακάμπτει τη σάρωση διαμερισμάτων του ευρετηρίου που 

είναι εγγυημένο ότι δεν περιέχουν διαστήματα του τελικού συνόλου. Αυτός ο μη-

χανισμός κλαδέματος, ονομαζόμενος «Ανώτατα όρια», αναπτύχθηκε σε δύο δια-

κριτές εκδοχές. Η πρώτη εκδοχή αναθέτει ένα στατικό ανώτατο όριο σε κάθε δια-

μέρισμα του ευρετηρίου με βάση τα άκρα του διαμερίσματος. Η δεύτερη πιο βελ-

τιωμένη εκδοχή, ενσωματώνει την μεταπληροφορία του μέγιστου διαστήματος μέσα 

σε κάθε διαμέρισμα υπολογίζοντας έτσι το ανώτατο όριο κάθε διαμερίσματος. 

Διεξήχθησαν εκτενείς πειραματισμοί σε τέσσερα σύνολα δεδομένων με διαφορετικά 

χαρακτηριστικά, μετρώντας τον αριθμό των εκτελούμενων ερωτημάτων ανά δευτε-

ρόλεπτο. Τα πειράματα αποσκοπούσαν στην διερεύνηση της κλιμάκωσης του συ-

στήματος σε σχέση με διαφορετικές εκτάσεις ερωτημάτων και τιμές του 𝑘. Τα 

αποτελέσματα υποδεικνύουν ότι οι μεγαλύτερες εκτάσεις ερωτημάτων και οι υψη-

λότερες τιμές του 𝑘 συνδέονται με μειωμένη απόδοση. Ωστόσο, η εφαρμογή των 

«Ανώτατων ορίων» επιταχύνει τη συνολική διαδικασία. Τέλος, τα ανώτατα όρια 

μεταδεδομένων παρέχουν ακόμα καλύτερη απόδοση, πάντα σε σχέση με τα ποικίλα 

χαρακτηριστικά των συνόλων δεδομένων που χρησιμοποιήθηκαν. 
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1.1 Contributions 

1.2 Outline 

 

Effective temporal data management solutions are critically needed to address the 

complexities and demands of handling time-variant information in modern data-

driven applications. Temporal data, characterized by its time-varying nature, is ubiq-

uitous across various domains such as transport, healthcare, finance, social media 

and sensor networks. Additionally, several applications call for the management of 

big interval collections. Each tuple in a temporal database has a validity interval that 

represents the amount of time the tuple is valid (duration) [1]. In data anonymiza-

tion, attribute values are frequently generalized into value ranges [2]. Interval search 

is a module used in many computational geometry problems [3] (e.g., windowing). 

Intervals can be used to model and control the internal states of window queries in 

stream processors [4]. 

In the realm of temporal data analysis, the challenge of efficiently ranking intervals 

within a dataset is a critical problem with wide-ranging applications. From temporal 

data analysis in financial markets to genomic range queries in bioinformatics, the 

need to quickly and accurately rank intervals from vast collections is increasingly 

essential. This thesis addresses this challenge through the development of novel 

techniques for ranking queries over range data, specifically focusing on identifying 

the top 𝑘 intervals based on a specified ranking criterion. 

The core problem can be succinctly stated: given a collection of intervals and a query 

interval, how can we efficiently determine the top 𝑘 intervals that have the most 
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significant intersection with the query? This problem is pivotal in scenarios where 

rapid response times and high precision are crucial, such as real-time monitoring 

systems, database querying, and various temporal data management applications. 

Some instances of these queries across various data domains are as follows: 

• Healthcare, find the 𝑘 larger periods of symptoms that a patient had during 

an episode of medical concern. 

• Weather monitoring, find the top 𝑘 time intervals of significant weather events 

that best intersect with a given period of abnormal weather conditions. 

• Traffic analysis, find the top 𝑘 intervals of heavy traffic congestion that best 

intersect with a given period of a traffic incident. 

• Social media analysis, find the top 𝑘 periods of high social media activity that 

best intersect with a given event or campaign duration. 

• Energy consumption, find the top 𝑘 intervals of high energy usage that best 

intersect with a given period of peak demand. 

• Network security, find the top 𝑘 intervals of high network activity that best 

intersect with a given period of a security breach. 

• Market analysis, find the top 𝑘 periods of high sales activity that best intersect 

with a given promotional event duration. 

Despite the importance and broad application of ranking queries over temporal data, 

several challenges persist. Firstly, the sheer volume of data necessitates efficient in-

dexing and querying mechanisms to ensure timely responses. Secondly, the temporal 

aspect introduces the need for time-aware methods that can efficiently manage and 

query temporal datasets while maintaining accuracy. This thesis aims to contribute 

to this field by investigating novel methods for efficiently processing top 𝑘 queries 

over temporal data using the preexisting work of HINTm [5] a hierarchical index 

for intervals that can handle valid time data, suitable for applications that manage 

large collections of intervals. 

HINTm indexes a large collection 𝑆 of objects (or records) based on an interval 

attribute that characterizes each object. Each object 𝑠 ∈ 𝑆  is modeled as a triple (𝑠. 𝑖𝑑,

𝑠. 𝑠𝑡, 𝑠. 𝑒𝑛𝑑), where 𝑠. 𝑖𝑑 is the object’s identifier, which can be used to access any 

other attribute of the object, and [𝑠. 𝑠𝑡, 𝑠. 𝑒𝑛𝑑] represents the interval’s endpoints. 

HINTm also uses various optimizations to accelerate its performance. To date, 

HINTm has supported range queries and Allen's interval relations [6]. The present 
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research concentrates on the appliance of ranking queries in the domain of HINTm, 

while we endeavor to leverage its optimizations. 

Given a query interval 𝑞 = [𝑞. 𝑠𝑡. 𝑞. 𝑒𝑛𝑑], and a positive integer 𝑘, the objective is to 

find the top 𝑘 objects that belong to 𝑆 and overlap with 𝑞 by using the index of 

HINTm. The ranking of them will be determined by their absolute overlapping du-

ration score. This score can be easily computed for every interval 𝑠𝑖 that intersects 

with the query 𝑞, by the following, min(𝑞. 𝑒𝑛𝑑, 𝑠𝑖. 𝑒𝑛𝑑) − max⁡(𝑞. 𝑠𝑡, 𝑠𝑖. 𝑠𝑡). The fol-

lowing figure 1.1 illustrates the problem's formation in a straightforward manner. 

The task involves selecting the three intervals that have the highest degree of overlap 

with a given query within a specified domain of intervals. 

 

 

Figure 1.1: Example of top 3 

We investigate various methodologies for traversing the optimized index of HINTm 

aiming to reduce the computational load while searching for the top k records. This 

exploration is undertaken with consideration of the diverse characteristics of the 

index as well as of the datasets being utilized. Finally, we conduct experiments with 

various query extents across different values of k. For this purpose, we utilized four 

datasets with distinct characteristics. 

 

In summary, this thesis makes the following contributions: 
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• We further developed the Hierarchical Index for Intervals in arbitrary do-

mains (HINTm) to support top 𝑘 queries. 

• We proposed traversal methods for the index that prioritize larger intervals 

first, along with two versions of a pruning mechanism that accelerate the 

execution of top 𝑘 queries. 

• We evaluated our methods using four real datasets with distinct characteris-

tics, conducting experiments on different query ranges and values of 𝑘. 

 

The rest of this paper is organized as follows: Chapter 2 reviews the existing litera-

ture on top 𝑘 processing and interval indexing, providing a comprehensive overview 

of related methods and techniques with a particular focus on the HINTm index and 

its optimizations. Chapter 3 formally defines the problem addressed in this thesis 

and the criteria used for ranking the intervals based on their absolute overlap dura-

tion with the query interval. Chapter 4 details the methods for traversing the index, 

incorporating the pruning mechanism of "Upper bounds" to enhance the efficiency 

of the query process. Chapter 5 presents an extensive experimental analysis con-

ducted on various datasets, exploring the performance of the proposed methods with 

different query extents and various values of 𝑘. Chapter 6 summarizes the key find-

ings of the thesis and discusses potential directions for future research.
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2.1 Top-k processing 

2.2     Interval Indexing  

2.3     HINT & HINTm 

        2.3.1 HINT 

        2.3.2 HINTm 

        2.3.3 Optimized HINTm 

 

 

Top-k processing is a crucial aspect in databases and information retrieval systems, 

where the objective is to efficiently retrieve the top k objects with the highest overall 

scores from ranked inputs. Several approaches and algorithms have been proposed 

to address this challenge, focusing on reducing computational cost, memory usage, 

and the number of object accesses. 

A seminal work in this domain is by Fagin et al. [7], which introduces the concept 

of aggregating scores from multiple attributes to determine the top 𝑘 objects. Each 

object in the database has multiple scores, one for each attribute, and these scores 

are combined using a monotone aggregation function such as min or average. The 

naive approach to this problem requires accessing every object in the database to 

compute its combined score, which is inefficient. Fagin's Algorithm (FA) provides a 

more efficient solution for certain monotone aggregation functions. However, FA has 
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limitations, including the requirement for large, potentially unbounded buffers as 

the database size increases. To address these limitations, Fagin et al. propose the 

Threshold Algorithm (TA). TA is optimal for all monotone aggregation functions 

and operates efficiently across all databases. Unlike FA, TA maintains a small, con-

stant-size buffer, making it more scalable. Additionally, TA supports early stopping, 

allowing for an approximate version of the top 𝑘 results when exact precision is not 

necessary.  

Mamoulis et al. [8] build upon these foundations and propose enhancements to 

further optimize top-𝑘 queries. Their work identifies two critical phases that any 

top-𝑘 algorithm based on sorted accesses must undergo. Leveraging these phases, 

they introduce a new algorithm designed to minimize the number of object accesses, 

computational cost, and memory requirements for top-𝑘 searches using monotone 

aggregate functions. A key contribution of their research is the development of a 

multiway top-𝑘 join operator, which offers significant advantages over traditional 

evaluation trees constructed from binary top-𝑘 join operators. This operator im-

proves the efficiency of combining multiple ranked inputs by reducing redundancy 

and the number of intermediate computations. Moreover, they explore the concept 

of top-𝑘 cubes and their efficient computation, which facilitates the implementation 

of roll-up operations in multi-dimensional top-𝑘 queries. The proposed methods 

demonstrate superior performance compared to previous techniques. Their approach 

accesses fewer objects and achieves faster execution times, highlighting the practical 

benefits of their optimizations in real-world applications.  

 

 

This subsection discusses epigrammatically the main-memory indices for intervals 

employed by the authors of HINT/HINTm for comparative analysis of their work. 

Interval indexing has seen various innovative approaches aimed at efficiently man-

aging and querying interval data. Among these, the interval tree developed by Edels-

brunner [9] stands out as a widely utilized data structure. This tree is suited for 

stabbing and range queries, organizing intervals around a center point to balance 

the tree. Intervals that include the center point are stored at the root, while left and 
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right subtrees handle intervals before and after the center, respectively. Two lists 

sorted by interval start and end values are maintained at each node. The interval 

tree requires numerous comparisons for most range query results, which is a notable 

drawback. 

A simpler yet effective structure is the 1D-grid, which divides the data domain into 

non-overlapping partitions. Each interval is assigned to all partitions it overlaps with, 

ensuring comprehensive coverage of the data domain. However, this approach can 

lead to duplicate results if a query intersects multiple partitions, complicating the 

retrieval process [10]. 

Another structure is the period index [11], which considers both interval durations 

and values. This self-adaptive structure, like a 1D-grid, partitions the time domain 

and hierarchically organizes intervals within each partition based on their locations 

and durations. This method effectively supports range and duration queries. 

The timeline index [12], derived from the time index [13], is designed for general-

purpose temporal data access. It maintains a sorted event list (table of triples [𝑡𝑖𝑚𝑒,

𝑖𝑑, 𝑖𝑠𝑆𝑡𝑎𝑟𝑡] denoting the interval's timing, identifier, and whether it is a start or end 

point) of all interval endpoints, prioritized by time and secondly by 𝑖𝑠𝑆𝑡𝑎𝑟𝑡 (11 if 

the triple refers to start else 0 for an end) in descending order. Checkpoints define 

specific timestamps where all intervals that overlap with it are considered a whole. 

To process a range query, the method locates the nearest checkpoint preceding the 

query start and initializes an active set of its intervals. The event list is then scanned 

from this checkpoint, updating the set with intervals starting or ending at this event. 

This method, however, can be inefficient as it often accesses more data and makes 

more comparisons than necessary. 

Among these methods, the HINT/HINTm interval index has been identified as the 

superior structure, outperforming the Interval Tree, Timeline Index, 1D-Grid, and 

Period Index according to recent studies [5]. This indicates a significant advancement 

in the field of interval indexing, offering more efficient data management and query 

processing. 
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In this subsection, we will review the foundational work upon which this thesis is 

based, specifically the Hierarchical Index for Intervals (HINT) designed for main 

memory [5]. It defines a hierarchical domain decomposition and assigns each inter-

val to at most two partitions per level. The primary goal of the index is to minimize 

the number of comparisons during query evaluation, while keeping the space re-

quirements relatively low, even when there are long intervals in the collection. HINT 

applies a smart division of intervals in each partition into two groups, which avoids 

the production and handling of duplicate range query results and minimizes the 

number of intervals that must be accessed. Here we will describe shortly the first 

version of the index, HINT, which avoids comparisons overall during query evalua-

tion, but it is not always applicable and may have high space requirements. Subse-

quently, we will provide a detailed examination of the general version of the index, 

HINTm, which is applicable to intervals in arbitrary domains. The latest version of 

the index, along with its optimizations, utilized to developed top 𝑘 query examina-

tion. The following table presents the notations that will be employed throughout 

the remainder of this research.  

 

Table 2.1 Useful notations 

Notation Description 

𝑠. 𝑖𝑑, 𝑠. 𝑠𝑡, 𝑠. 𝑒𝑛𝑑 interval id, interval start, interval end 

𝑞. 𝑠𝑡, 𝑞. 𝑒𝑛𝑑 query start, query end 

𝑝𝑟𝑒𝑓𝑖𝑥(𝑘, 𝑥) 𝑘-bit prefix of integer 𝑥 

𝑃𝑙,𝑖 𝑖-th partition at level 𝑙 of HINT/HINTm 

𝑃𝑙,𝑓⁡(𝑃𝑙,𝑙) first (last) partition at level 𝑙 that overlaps with 𝑞 

𝑃𝑙,𝑖
𝑂 ⁡(𝑃𝑙,𝑖

𝑅 )  subpartition of 𝑃𝑙,𝑖 with originals (replicas) 

𝑃𝑙,𝑖
𝑂𝑖𝑛⁡(𝑃𝑙,𝑖

𝑂𝑎𝑓𝑡
) intervals in 𝑃𝑙,𝑖

𝑂  ending inside (after) the partition 

 

 

HINT is appropriate in the case of a discrete and not very large domain 𝐷. Specifi-

cally, assume that the domain 𝐷 where from the endpoints of intervals in 𝑆 take 
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value is [0, 2𝑚 − 1]. HINT defines a regular hierarchical decomposition of the domain 

into partitions, where at each level 𝑙 from 0 to 𝑚, there are 2𝑙 partitions, denoted by 

array 𝑃𝑙,0, …⁡, 𝑃𝑙,2𝑙−1. Figure 2.1 illustrates the hierarchical domain partitioning for 

𝑚 = 4. 

 

 

Figure 2.1: Hierarchical domain partitioning for m=4. 

 

Each interval 𝑠 ∈ 𝑆 is assigned to the smallest set of partitions which collectively 

define 𝑠. It is not hard to show that s will be assigned to at most two partitions per 

level. For example, in Figure 2.1, interval [5, 9] is assigned to one partition at level 

𝑙 = 4 and two partitions at level 𝑙 = 3. The assignment procedure is described by 

Algorithm 1. 
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Figure 2.2: Pseudocode for Assigning an Interval to Partitions. 

 

In a nutshell, for an interval [𝑎, 𝑏], starting from the bottom-most level 𝑙, if the last 

bit of 𝑎 (resp. 𝑏) is 1 (resp. 0), the interval is assigned to partition  

𝑃𝑙,𝑎⁡(resp. 𝑃𝑙,𝑏) and increase 𝑎 (resp. decrease 𝑏) by one. Then 𝑎 and 𝑏 are updated 

by cutting-off their last bits (i.e., integer division by 2, or bitwise right-shift). If, at 

the next level, 𝑎 > 𝑏 holds, indexing [𝑎, 𝑏] is done. 

The main operation of the index is the execution of range queries. A range query 𝑞 

can be evaluated by finding at each level the partitions that overlap with 𝑞. Specifi-

cally, the partitions that overlap with the query interval 𝑞 at level 𝑙 are partitions 

𝑃𝑙,𝑝𝑟𝑒𝑓𝑖𝑥(𝑙,𝑞.𝑠𝑡) to 𝑃𝑙,𝑝𝑟𝑒𝑓𝑖𝑥(𝑙,𝑞.𝑒𝑛𝑑), where 𝑝𝑟𝑒𝑓𝑖𝑥(𝑛, 𝑥) denotes the 𝑛-bit prefix of integer 

𝑥. These partitions are called relevant to the query 𝑞. All intervals in the relevant 

partitions are guaranteed to overlap with 𝑞 and intervals in none of these partitions 

cannot possibly overlap with 𝑞. However, since the same interval 𝑠 may exist in 

multiple partitions that overlap with a query, 𝑠 may be reported multiple times in 

the query result. For this reason, there is a technique that avoids the production and 

therefore, the need for elimination of duplicates and, at the same time, minimizes 

the number of data accesses. For this, the intervals in each partition 𝑃𝑙,𝑖 are divided 

into two groups: originals 𝑃𝑙,𝑖
𝑂  and replicas 𝑃𝑙,𝑖

𝑅 . Group 𝑃𝑙,𝑖
𝑂  contains all intervals 𝑠 ∈
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𝑃𝑙,𝑖 that begin at 𝑃𝑙,𝑖 i.e., 𝑝𝑟𝑒𝑓𝑖𝑥(𝑙, 𝑠. 𝑠𝑡) = 𝑖. Group 𝑃𝑙,𝑖
𝑅  contains all intervals 𝑠 ∈ 𝑃𝑙,𝑖 

that begin before 𝑃𝑙,𝑖 i.e., 𝑝𝑟𝑒𝑓𝑖𝑥(𝑙, 𝑠. 𝑠𝑡) ≠ 𝑖. Each interval is added as original in 

only one partition of HINT. For example, interval [5, 9] in Figure 2.1 is added to 

𝑃4,5
𝑂 , 𝑃3,3

𝑅  and 𝑃3,4
𝑅 . 

Given a range query 𝑞, at each level 𝑙 of the index, we report all intervals in the first 

relevant partition 𝑃𝑙,𝑓 (i.e., 𝑃𝑙,𝑓
𝑂 ⁡⋃⁡𝑃𝑙,𝑓

𝑅 ). Then, for every other relevant partition 𝑃𝑙,𝑖 , 

𝑖 > 𝑓, we report all intervals in 𝑃𝑙,𝑖
𝑂  and ignore 𝑃𝑙,𝑖

𝑅 . This guarantees that no result is 

missed, and no duplicates are produced. The reason is that each interval 𝑠 will 

appear as original in just one partition, hence, reporting only originals cannot pro-

duce any duplicates. At the same time, all replicas 𝑃𝑙,𝑓
𝑅  in the first partitions per level 

𝑙 that overlap with 𝑞 begin before 𝑞 and overlap with 𝑞, so they should be reported. 

On the other hand, replicas 𝑃𝑙,𝑖
𝑅  in subsequent relevant partitions (𝑖 > 𝑓) contain 

intervals, which are either originals in a previous partition 𝑃𝑙,𝑗, 𝑗 < 𝑖 or replicas in 

𝑃𝑙,𝑓
𝑅 , so, they can safely be skipped. Algorithm 2 describes the range query algorithm 

using HINT. 

 

 

Figure 2.3 Pseudocode for Range query on HINT. 

 

For example, consider the hierarchical partitioning of Figure 2.4 and a query interval 

[5, 9]. The binary representations of 𝑞. 𝑠𝑡 and 𝑞. 𝑒𝑛𝑑 are 0101 and 1001, respectively. 

The relevant partitions at each level are shown in bold (blue) and dashed (red) lines 
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and can be determined by the corresponding prefixes of 0101 and 1001. At each 

level 𝑙, all intervals (both originals and replicas) in the first partitions 𝑃𝑙,𝑓 (bold/blue) 

are reported while in the subsequent partitions (dashed/red), only the original inter-

vals are. 

 

 

Figure 2.4: Accessed partitions for range query [5, 9]. 

 

The version of HINT described above finds all range query results, without conduct-

ing any comparisons. This means that in each partition 𝑃𝑙,𝑖, we only must keep the 

ids of the intervals that are assigned to 𝑃𝑙,𝑖 and do not have to store/replicate the 

interval endpoints. In addition, the relevant partitions at each level are computed by 

fast bit-shifting operations which are comparison free. To use HINT for arbitrary 

integer domains, first all interval endpoints should be normalized by subtracting the 

minimum endpoint, to convert them to values in a [0, 2𝑚 − 1] domain (the same 

transformation should be applied on the queries). 

 

HINTm is used for intervals in arbitrary domains and uses a hierarchical domain 

partitioning with 𝑚 + 1 levels, based on a [0, 2𝑚 − 1] domain 𝐷; each raw interval 

endpoint is mapped to a value in 𝐷, by linear rescaling. The mapping function 𝑓(𝑅 →

𝐷) is 𝑓(𝑥) =
𝑥−min(𝑥)

max(𝑥)−min(𝑥)
∗ (2𝑚 − 1), where min(𝑥) and max(𝑥) are the minimum 

and maximum interval endpoints in the dataset 𝑆, respectively. Each raw interval 

[𝑠. 𝑠𝑡, 𝑠. 𝑒𝑛𝑑] is mapped to interval [𝑓(𝑠. 𝑠𝑡), 𝑓(𝑠. 𝑒𝑛𝑑)]. The mapped interval is then 

assigned to at most two partitions per level in HINTm, using Algorithm 1. For the 

ease of presentation, assume that the raw interval endpoints take values in [0, 2𝑚′ −
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1], where 𝑚′ > 𝑚, which means that the mapping function 𝑓 simply outputs the 𝑚 

most significant bits of its input. As an example, assume that 𝑚 = 4 and 𝑚′ = 6. 

Interval [21, 38] = [0𝑏010101, 0𝑏100110] is mapped to interval [5, 9] =

[0𝑏0101, 0𝑏1001] and assigned to partitions 𝑃4,5, 𝑃3,3 and 𝑃3,4, as shown in Figure 

2.1. So, in contrast to HINT, the set of partitions where an interval s is assigned in 

HINTm does not define 𝑠, but the smallest interval in the [0, 2𝑚 − 1] domain 𝐷, 

which covers 𝑠. As in HINT, at each level 𝑙, we divide each partition 𝑃𝑙,𝑖 to 𝑃𝑙,𝑖
𝑂  and 

𝑃𝑙,𝑖
𝑅 , to avoid duplicate query results. 

For a range query 𝑞, simply reporting all intervals in the relevant partitions at each 

level (as in Algorithm 2) would produce false positives. Instead, comparisons to the 

query endpoints may be required for the first and the last partition at each level that 

overlap with 𝑞. Specifically, consider each level of HINTm as a 1D-grid and go 

through the partitions at each level 𝑙 that overlap with 𝑞. 

For the first partition 𝑃𝑙,𝑓, verify whether s overlaps with 𝑞 for each interval 𝑠 ∈ 𝑃𝑙,𝑓
𝑂  

and each 𝑠 ∈ 𝑃𝑙,𝑓
𝑅 . For the last partition 𝑃𝑙,𝑙 , verify whether 𝑠 overlaps with 𝑞 for each 

interval 𝑠 ∈ 𝑃𝑙,𝑙
𝑂 . For each partition 𝑃𝑙,𝑖 between 𝑃𝑙,𝑓 and 𝑃𝑙,𝑙, report all 𝑠 ∈ 𝑃𝑙,𝑖

𝑂  without 

any comparisons. As an example, consider the HINTm index and the range query 

interval 𝑞 shown in Figure 2.5. 

 

 

Figure 2.5: Avoiding redundant comparisons on HINTm.  

 

The identifiers of the relevant partitions to 𝑞 are shown in the Figure 2.5 (and some 

indicative intervals that are assigned to these partitions). At level 𝑚 = 4, comparisons 
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must be performed for all intervals in the first relevant partitions 𝑃4,5. In partitions 

𝑃4,6,..., 𝑃4,8 we just report the originals in them as results, while in partition 𝑃4,9 we 

compare the start points of all originals with 𝑞, before confirming whether they are 

results or not. At the first and the last partition of each level 𝑙 overlap tests can be 

simplified based on the following: At every level 𝑙, each 𝑠 ∈ 𝑃𝑙,𝑓
𝑅 ⁡is a query result 

𝑖𝑓𝑓⁡𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑. If 𝑙 > 𝑓, each 𝑠 ∈ 𝑃𝑙,𝑓
𝑂  is a query result 𝑖𝑓𝑓⁡𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑. Resulting 

from the fact that for the first relevant partition 𝑃𝑙,𝑓 at each level 𝑙, for each replica 

𝑠 ∈ 𝑃𝑙,𝑓
𝑅 , 𝑠. 𝑠𝑡 < 𝑞. 𝑠𝑡, so 𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑 suffices as an overlap test and for the last parti-

tion 𝑃𝑙,𝑙, if 𝑙 > 𝑓, for each original 𝑠 ∈ 𝑃𝑙,𝑓
𝑂 , 𝑞. 𝑠𝑡 < 𝑠. 𝑠𝑡, so 𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑 suffices as an 

overlap test. 

One of the most important findings in the study and a powerful feature of HINTm 

is that at most levels, it is not necessary to do comparisons at the first and/or the last 

partition. For instance, in the previous example, comparisons do not have to be 

performed for partition 𝑃3,4, since any interval assigned to 𝑃3,4 should overlap with 

𝑃4,8 and the interval spanned by 𝑃4,8⁡is covered by 𝑞. This means that the start points 

of all intervals in𝑃3,4 is guaranteed to be before 𝑞. 𝑒𝑛𝑑 (which is inside 𝑃4,9). In 

addition, observe that for any relevant partition which is the last partition at an 

upper level and covers 𝑃3,4 (i.e., partitions {𝑃2,2, 𝑃1,1, 𝑃0,0}), we do not have to conduct 

the 𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑 tests as intervals in these partitions are guaranteed to start before 

𝑃4,9. The following formalizes these observations: If the first (resp. last) relevant 

partition for a query q at level 𝑙⁡(𝑙 < 𝑚) starts (resp. ends) at the same value as the 

first (resp. last) relevant partition at level 𝑙 + 1, then for every first (resp. last) rele-

vant partition 𝑃𝑣,𝑓(resp. 𝑃𝑣,𝑙) at levels 𝑣 < 𝑙, each interval 𝑠 ∈ 𝑃𝑣,𝑓⁡(resp. 𝑠 ∈ 𝑃𝑣,𝑙⁡) sat-

isfies 𝑠. 𝑒𝑛𝑑 ≥ 𝑞. 𝑠𝑡 (resp. 𝑠. 𝑠𝑡 ≥ 𝑞. 𝑒𝑛𝑑). Algorithm 3 is a pseudocode for the range 

query algorithm on HINTm. 
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Figure 2.6: Pseudocode for Range query on HINTm. 

 

The algorithm accesses all levels of the index, bottom-up. It uses two auxiliary flag 

variables 𝑐𝑜𝑚𝑝𝑓𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 to mark whether it is necessary to perform com-

parisons at the current level (and all levels above it) at the first and the last partition, 

respectively. At each level 𝑙, offsets of the relevant partitions to the query are found, 

based on the 𝑙 − 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑠 of 𝑞. 𝑠𝑡 and 𝑞. 𝑒𝑛𝑑 (Line 4). For the first position 𝑓 =

𝑝𝑟𝑒𝑓𝑖𝑥(𝑞. 𝑠𝑡), the partitions holding originals and replicas 𝑃𝑙,𝑓
𝑂  and 𝑃𝑙,𝑓

𝑅  are accessed. 

The algorithm first checks whether 𝑓 = 𝑙, i.e., the first and the last partitions coincide. 

In this case, if 𝑐𝑜𝑚𝑝𝑓𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 are set, then all comparisons are performed 

in 𝑃𝑙,𝑓
𝑂  and apply what described previously in 𝑃𝑙,𝑓

𝑅 . Else, if only 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 is set, the 

𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑 comparisons can be safely skipped; if only compfist is set, regardless 
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whether 𝑓 = 𝑙, 𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑 comparisons are performed to both originals and repli-

cas to the first partition. Finally, if neither 𝑐𝑜𝑚𝑝𝑓𝑖𝑟𝑠𝑡 nor 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 are set, all inter-

vals are just reported in the first partition as results. For the last partition 𝑃𝑙,𝑙 if 𝑙 > 𝑓 

(line 17) then 𝑃𝑙,𝑙
𝑂  is examined by just applying the 𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑 test for each interval 

there. Finally, for all partitions in-between the first and the last one, all original 

intervals there are simply reported. 

 

As previously discussed, the primary advantage of HINT/HINTm is its ability to 

minimize the number of comparisons during the evaluation of a range query. Con-

sequently, for most examined partitions, specifically intermediate partitions, there is 

no need to access the endpoints of intervals. Instead, only the interval 𝑖𝑑𝑠 are re-

quired to report a range query result. This observation led the authors to design 

certain optimizations that involve retaining only the interval 𝑖𝑑𝑠. 

However, in the context of ranking queries, where it is necessary to determine the 

rank of a result based on the overlap between the interval and the query, the interval 

endpoints must be accessed each time. Therefore, optimizations that do not involve 

accessing the interval endpoints are unsuitable for the evaluation of ranking queries. 

This subsection will discuss the optimization techniques that applied on the evalua-

tion of range queries and are appropriate for retrieving ranking queries results also. 

The main method ‘Subdivisions and space decomposition’ [5] reduces the number 

of partitions in HINTm where comparisons are performed and avoids accessing un-

necessary data. Recall that, at each level 𝑙 of HINTm, every partition 𝑃𝑙,𝑖 is divided 

into 𝑃𝑙,𝑖
𝑂 (holding originals) and 𝑃𝑙,𝑖

𝑅 (holding replicas). Now the authors propose 

to further divide each 𝑃𝑙,𝑖
𝑂 into 𝑃𝑙,𝑖

𝑂𝑖𝑛 and 𝑃𝑙,𝑖
𝑂𝑎𝑓𝑡, so that 𝑃𝑙,𝑖

𝑂𝑖𝑛 (resp. 𝑃𝑙,𝑖
𝑂𝑎𝑓𝑡) holds 

the intervals from 𝑃𝑙,𝑖
𝑂𝑖𝑛 that end inside (resp. after) partition 𝑃𝑙,𝑖. Similarly, each 

𝑃𝑙,𝑖
𝑅 is divided into 𝑃𝑙,𝑖

𝑅𝑖𝑛 and 𝑃𝑙,𝑖
𝑅𝑎𝑓𝑡. Consider a range query 𝑞, which overlaps 

with a sequence of more than one partition at level 𝑙. As already discussed, if com-

parisons must be conducted in the first such partition 𝑃𝑙,𝑓, should be done for all 

intervals in 𝑃𝑙,𝑓
𝑂and 𝑃𝑙,𝑓

𝑅. The subdivision of 𝑃𝑙,𝑓
𝑂and 𝑃𝑙,𝑓

𝑅, concludes to the follow-

ing: If  𝑃𝑙,𝑓 ≠ 𝑃𝑙,𝑙 each interval 𝑠 in 𝑃𝑙,𝑓
𝑂𝑖𝑛⋃⁡𝑃𝑙,𝑓

𝑅𝑖𝑛 overlaps with 𝑞 𝑖𝑓𝑓⁡𝑠. 𝑒𝑛𝑑 ≥ 𝑞. 𝑠𝑡; 

and all intervals 𝑠 in 𝑃𝑙,𝑓
𝑂𝑎𝑓𝑡and 𝑃𝑙,𝑓

𝑅𝑎𝑓𝑡 are guaranteed to overlap with 𝑞. Follows 

directly from the fact that 𝑞 starts inside 𝑃𝑙,𝑓 but ends after 𝑃𝑙,𝑓. Hence, just one 
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comparison is needed for each interval in 𝑃𝑙,𝑓
𝑂𝑖𝑛⋃⁡𝑃𝑙,𝑓

𝑅𝑖𝑛, whereas all intervals 

𝑃𝑙,𝑓
𝑂𝑎𝑓𝑡⋃⁡𝑃𝑙,𝑓

𝑅𝑎𝑓𝑡 can be reported as query results without any comparisons. 

 As already discussed, for all partitions 𝑃𝑙,𝑖 between 𝑃𝑙,𝑓 and 𝑃𝑙,𝑙 , intervals in 

𝑃𝑙,𝑖
𝑂𝑖𝑛⋃⁡𝑃𝑙,𝑖

𝑂𝑎𝑓𝑡are just reported as results, without any comparisons, whereas for the 

last partition 𝑃𝑙,𝑙, one comparison is performed per interval in 𝑃𝑙,𝑙
𝑂𝑖𝑛⋃⁡𝑃𝑙,𝑙

𝑂𝑎𝑓𝑡. If the 

range query 𝑞 overlaps only one partition 𝑃𝑙,𝑓 at level 𝑙, the authors use following to 

minimize the necessary comparisons: If 𝑃𝑙,𝑓 = 𝑃𝑙,𝑙 then each interval 𝑠 in 𝑃𝑙,𝑓
𝑂𝑖𝑛 over-

laps with 𝑞 𝑖𝑓𝑓⁡𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑⁡˄⁡𝑞. 𝑠𝑡 ≤ 𝑠. 𝑒𝑛𝑑, each interval s in 𝑃𝑙,𝑓
𝑂𝑎𝑓𝑡 overlaps with 

𝑞, 𝑖𝑓𝑓⁡𝑠. 𝑠𝑡 ≤ 𝑞. 𝑒𝑛𝑑, each interval 𝑠 in 𝑃𝑙,𝑓
𝑅𝑖𝑛 overlaps with 𝑞, 𝑖𝑓𝑓⁡𝑠. 𝑒𝑛𝑑 ≥ 𝑞. 𝑠𝑡, all 

intervals in 𝑃𝑙,𝑓
𝑅𝑎𝑓𝑡 overlap with 𝑞. All intervals 𝑠 ∈ 𝑃𝑙,𝑓

𝑂𝑎𝑓𝑡and end after 𝑞, so 𝑠. 𝑠𝑡 ≤

𝑞. 𝑒𝑛𝑑 suffices as an overlap test. All intervals 𝑠 ∈ 𝑃𝑙,𝑓
𝑅𝑖𝑛 start before 𝑞, so 𝑠. 𝑠𝑡 ≤

𝑞. 𝑒𝑛𝑑 suffices as an overlap test. All intervals 𝑠 ∈ 𝑃𝑙,𝑓
𝑅𝑎𝑓𝑡 start before and end after 

𝑞, so they are guaranteed results. 

Overall, the subdivisions minimize the number of intervals in each partition, for 

which we must apply comparisons. Figure 2.7 shows the subdivisions which are 

accessed by query 𝑞 at level 𝑙 = 2 of a HINTm index. In partition 𝑃𝑙,𝑓 = 𝑃2,1, all four 

subdivisions are accessed, but comparisons are needed only for intervals in 𝑃2,1
𝑂𝑖𝑛 

and 𝑃2,1
𝑅𝑖𝑛. In partition 𝑃2,2, only the originals (𝑃2,2

𝑂𝑖𝑛 and 𝑃2,2
𝑂𝑎𝑓𝑡) are accessed and 

reported without any comparisons. Finally, in 𝑃𝑙,𝑓 = 𝑃2,3, only the originals (𝑃2,3
𝑂𝑖𝑛  

and 𝑃2,3
𝑂𝑎𝑓𝑡) are accessed and compared to 𝑞. 

 

 

Figure 2.7: Partition subdivisions in HINTm level 2. 

As can be easily summarized, the intervals in each subdivision can be kept sorted, 

to reduce the number of comparisons for queries that access them. For example, by 

examining the last partition 𝑃𝑙,𝑙, that overlaps with a query 𝑞 at a level 𝑙. Any can 
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conclude that if the intervals 𝑠 in 𝑃𝑙,𝑓
𝑂𝑖𝑛 are sorted on their start endpoint (i.e., 𝑠. 𝑠𝑡), 

then the intervals can be reported until the first 𝑠 ∈ 𝑃𝑙,𝑙
𝑂𝑖𝑛, such that 𝑠. 𝑠𝑡 > 𝑞. 𝑒𝑛𝑑. 

Or binary search can be performed to find the first 𝑠 ∈ 𝑃𝑙,𝑙
𝑂𝑖𝑛, such that 𝑠. 𝑠𝑡 > 𝑞. 𝑒𝑛𝑑 

and then scan and report all intervals before 𝑠. Table 2.2 summarizes the sort orders 

for each of the four subdivisions of a partition that can be beneficial in range query 

evaluation. For a subdivision 𝑃𝑙,𝑙
𝑂𝑖𝑛, intervals may have to be compared based on 

their start point (if 𝑃𝑙,𝑖 = 𝑃𝑙,𝑓), or based on their end point (if 𝑃𝑙,𝑖 = 𝑃𝑙,𝑙), or based on 

both points (if  𝑃𝑙,𝑖 = 𝑃𝑙,𝑓 = 𝑃𝑙,𝑙). Hence, they choose to sort based on either 𝑠. 𝑠𝑡 or 

𝑠. 𝑒𝑛𝑑 to accommodate two of these three cases. For a subdivision 𝑃𝑙,𝑖
𝑂𝑎𝑓𝑡, intervals 

may only have to be compared based on their start point (if 𝑃𝑙,𝑖 = 𝑃𝑙,𝑙). For a subdi-

vision 𝑃𝑙,𝑖
𝑅𝑖𝑛, intervals may only have to be compared based on their end point 𝑃𝑙,𝑖 =

𝑃𝑙,𝑓. Last, for a subdivision 𝑃𝑙,𝑖
𝑅𝑎𝑓𝑡, there is never any need to compare the intervals, 

so, no order provides any search benefit. 

 

Table 2.2: Beneficial sort orders 

Subdivision Beneficial sorting 

𝑃𝑙,𝑖
𝑂𝑖𝑛 by 𝑠. 𝑠𝑡 or by 𝑠. 𝑒𝑛𝑑 

𝑃𝑙,𝑖
𝑂𝑎𝑓𝑡 by 𝑠. 𝑠𝑡 

𝑃𝑙,𝑖
𝑅𝑖𝑛 by 𝑠. 𝑒𝑛𝑑 

𝑃𝑙,𝑖
𝑅𝑎𝑓𝑡 no sorting 

 

Thus far, we have thoroughly examined all the significant contributions made by 

Christodoulou et al. in [5]. The subsequent sections of this paper will delve into the 

definitions, methodologies, and techniques that contribute to the development of 

HINTm, aiming to efficiently support ranking (top 𝑘) queries.
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3.1     Top-k Query 

3.2     Overlap-Intersection 

3.3     Ranking Problem 

 

 

In the context of computer science and information retrieval, top 𝑘 query is a type 

of query that retrieves the top 𝑘 items from a dataset based on some specified criteria. 

The scientific definition encompasses the following key aspects: 

• Definition: A top 𝑘 query is an operation that returns the 𝑘 highest rank-

ing results from a collection of items, based on a given score or a ranking 

function. 

• Ranking Function: The ranking function 𝑓(𝑥) assigns a numerical score 

to each item 𝑥 in the dataset. The function reflects the relevance, similarity, 

or preference according to the specific application or query context. 

 

In mathematics, an interval is a fundamental concept used to describe a continuous 

range of numbers. There are various types of intervals, this study focuses particularly 
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on closed intervals. A closed interval is a set of real numbers that includes both its 

endpoints. It is denoted by [𝑎, 𝑏], where 𝑎 and 𝑏 are the two endpoints of the interval, 

and all numbers between 𝑎 and 𝑏 including 𝑎 and 𝑏 themselves, belong to the 

interval [14]. 

When considering multiple intervals, a common problem is determining their inter-

section (overlap). The intersection of two intervals refers to the set of points that are 

contained within both intervals. For two closed intervals [𝑎, 𝑏] and [𝑐, 𝑑], their inter-

section is also a closed interval if they do overlap. Mathematically, the intersection 

of these intervals is defined as [max(𝑎, 𝑐) ,min⁡(𝑏, 𝑑)]. This intersection is valid and 

non-empty: 

 

• 𝑖𝑓𝑓 max(𝑎, 𝑐) ≤ min(𝑏, 𝑑). 

 

If this condition is not met, the intervals do not overlap, and their intersection is the 

empty set. For example, consider two closed intervals [1, 5] and [3, 7]. The intersec-

tion of these intervals would be [max(1, 3) ,min(5, 7)] = [3, 5]. This resultant interval 

includes all numbers that lie within both original intervals. 

In this study, we refer to this concept as the absolute overlap or intersection between 

two intervals, which will determine the ranking function examined. More explana-

tory, given as data input a set of closed intervals 𝑆 and a closed interval 𝑞 as a query. 

We determine the intersection or overlap of an interval 𝑠 ∈ 𝑆 based on the following: 

 

• Absolute intersection: |𝑠 ∩ 𝑞| = [max(𝑞. 𝑠𝑡, 𝑠. 𝑠𝑡) ,min(𝑞. 𝑒𝑛𝑑, 𝑠. 𝑒𝑛𝑑). 

 

Given a large collection of intervals 𝑆, a positive integer 𝑘 and a query interval 𝑞. 

We address the problem of finding the top 𝑘 intervals of the collection 𝑆 that best 

overlap with the query 𝑞. The ranking score 𝑠𝑠𝑐𝑜𝑟𝑒 is computed by the endpoints of 

absolute intersection between query 𝑞 and interval 𝑠 ∈ 𝑆, formulated as: 

 

• Intersection score: 𝑠𝑠𝑐𝑜𝑟𝑒 = min(𝑞. 𝑒𝑛𝑑, 𝑠. 𝑒𝑛𝑑) − max(𝑞. 𝑠𝑡, 𝑠. 𝑠𝑡). 
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• For each interval: 𝑧 ∈ 𝑆⁡𝑎𝑛𝑑⁡|𝑧 ∩ 𝑞| = ∅ ⇒ 𝑧𝑠𝑐𝑜𝑟𝑒 = 0. 

 

The goal is to identify the 𝑘 intervals with the highest overlapping scores, thus 

ranking them based on how well they intersect with the query. Formally, 

 

Input: 

• Finite set of intervals: 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} 

• Positive integer: 𝑘 

• Interval query: 𝑞 

Output: 

• Subset: 𝑇𝑂𝑃𝑘 ⊆ 𝑆, such that |𝑇𝑂𝑃𝑘| = 𝑘 and each interval 𝑠 ∈ 𝑇𝑂𝑃𝑘 has 

one of the 𝑘 highest 𝑠𝑠𝑐𝑜𝑟𝑒 with 𝑞. 

The Figure 3.1 below presents a comprehensible example that encapsulates the con-

cepts discussed so far. 

 

 

Figure 3.1 Ranking example 
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4.1 Naïve Traversal 

4.2 Top-Down Traversal 

4.3 Upper Bounds 

        4.3.1 Static Upper Bounds 

        4.3.2 Metadata Upper Bounds 

4.4 Naïve & Top-Down with Upper Bounds 

4.5 Depth-First Traversal 

4.6 Ordered Traversal 

4.7 Sorted Traversal 

 

The primary objective of this study is to address the interval ranking problem with 

maximum efficiency. To achieve this, we enhance the HINTm index to support top-

𝑘 queries. This development incorporates the HINTm index along with the optimi-

zations detailed in the subsection 2.3. To accomplish this, we initially use Algorithm 

1 “Assignment of an interval to partitions” (figure 2.2) to index all intervals of 𝑆. 

Subsequently we modify Algorithm 3, “Range Query on HINTm” (figure 2.6) so that 

each time a range query result s is reported, its intersection score is computed. If the 

𝑇𝑂𝑃𝑘 set is not yet full, the interval is added to the set. Otherwise, its score is 

compared to the 𝑘-th highest score in the 𝑇𝑂𝑃𝑘 set. If the score meets the necessary 

threshold, the interval is added to the top-𝑘 set; otherwise, the algorithm proceeds 

to the next range query result. For the remainder of this study, this process will be 
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referred to as "update 𝑇𝑂𝑃𝑘." To check if the 𝑇𝑂𝑃𝑘 set is not full, we will use the 

condition: 

• |𝑇𝑂𝑃𝑘| < 𝑘 

It is necessary to indicate that if the query overlaps fewer than 𝑘 intervals, the results 

should be output directly. While for tracking the best of the results we are using a 

min-heap data structure due to its efficient insertion and removal operations. In the 

rest of this section, we will examine the different methods of traversing the HINTm 

index aiming to extract the top 𝑘 results as efficiently as possible. 

 

The initial approach is a naive method that traverses the index in a bottom-up 

manner, as exactly described previously, modifying the Algorithm 3 “Range Query 

on HINTm”. Each time the algorithm reports a range query result, the overlap score 

between the query's endpoints and the result's endpoints is computed. Based on this 

score, it is then determined whether the result should be included in the 𝑇𝑂𝑃𝑘 set. 

This process, “update 𝑇𝑂𝑃𝑘”, continues until all potential range query results have 

been examined. 
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Figure 4.1: Pseudocode for Naïve Traversal.  

 

It is evident that longer intervals are more likely to overlap significantly with the 

query. In the context of HINTm, partitions closer to the root are larger and therefore 

tend to contain longer intervals compared to those nearer the bottom. Consequently, 

the Top-Down approach traverses the HINTm from the root towards the bottom. 

This method prioritizes potentially higher scores in the ranking and reduces unnec-

essary insertions as the traversal nears the lower levels of the index. To benefit from 

the nature of HINTm, adjustments to the 𝑐𝑜𝑚𝑝𝑓𝑖𝑟𝑠𝑡 and 𝑐𝑜𝑚𝑝𝑙𝑎𝑠𝑡 flags are needed. 

Specifically, before initiating the top-down scanning to gather the top 𝑘 results, the 

index is first scanned bottom-up to determine the level 𝑐𝑜𝑚𝑝𝑙𝑒𝑣𝑒𝑙 of HINTm where 
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the flags compfirst and complast are met. Subsequently, the index is scanned starting 

from the root, avoiding comparisons until complevel. Comparisons are then per-

formed from that level until the bottom. 

 

 

Figure 4.2 Pseudocode for Top-Down Traversal. 
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To further expedite the retrieval of the top 𝑘 intervals, we introduce Upper bounds 

that serve to eliminate unnecessary scans of partitions. They are used when it is 

guaranteed that the partition of HINTm to be scanned does not contain any intervals 

that could be part of the 𝑇𝑂𝑃𝑘 set. This approach consequently reduces redundant 

computations and score comparisons. Upper bounds are applied to each partition of 

the index, indicating the maximum potential interval that it may contain. Subse-

quently, the intersection score between this potential maximum interval and the 

query is calculated, establishing the upper bound for our approach. 

To ensure no potential results are not skipped, Upper bounds are employed only 

after the 𝑇𝑂𝑃𝑘 set is fully populated. If the set is not yet full, any result will be 

added regardless of its score. Thus, before utilizing upper bounds, it is necessary to 

verify that the 𝑇𝑂𝑃𝑘 set is full. If so, the Upper bound is compared with the 𝑘-th 

score. The partition is scanned only if the Upper bound exceeds the 𝑘-th score. 

Formally, assume 𝑠′ possible maximum interval a partition 𝑃 can offer. 

 

• We define as static Upper bound: 𝑈𝑏. 𝑃 = 𝑠𝑠𝑐𝑜𝑟𝑒
′  

 

• Pruning condition whether to scan the 𝑃: 

 𝑖𝑓⁡(|𝑇𝑂𝑃𝑘| < 𝑘)||(𝑈𝑏. 𝑃 > 𝑘𝑡ℎ−𝑠𝑐𝑜𝑟𝑒) ⇒ 𝑠𝑐𝑎𝑛⁡𝑃 

 

In the subsequent analysis, we evaluate two distinct versions of the Upper bounds. 

The initial version employs the endpoints of the partitions (𝑃. 𝑠𝑡, 𝑃. 𝑒𝑛𝑑, 𝑃. 𝑒𝑥𝑡𝑒𝑛𝑡 =

𝑃. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡) along with those of the queries (𝑞. 𝑠𝑡, 𝑞. 𝑒𝑛𝑑) to compute static bounds 

for each subdivision of a partition accessible during a top-𝑘 query. The revised ver-

sion utilizes metadata to further refine and tighten the upper bounds. 

 

As discussed in the section 2.3 for a first relevant partition 𝑃𝑓 , both originals and 

replicas should be accessed. We introduce the static upper bounds, 𝑈𝑏. 𝑃𝑓
𝑂𝑖𝑛, 

𝑈𝑏. 𝑃𝑓
𝑂𝑎𝑓𝑡

, 𝑈𝑏. 𝑃𝑓
𝑅𝑖𝑛, 𝑈𝑏. 𝑃𝑓

𝑅𝑎𝑓𝑡
, for each subdivision. 
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• An Original in subdivision contains intervals that begin and end in this par-

tition. The potential maximum intersection score that a first relevant Original 

in can provide is: 𝑈𝑏. 𝑃𝑓
𝑂𝑖𝑛 = 𝑃. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 figure 4.3. 

• A Replica in subdivision consists of intervals that begin before this partition 

and end inside it. The estimated maximum intersection score that a Replica 

in on a first relevant can provide is: 𝑈𝑏. 𝑃𝑓
𝑅𝑖𝑛 = 𝑃. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 figure 4.3. 

 

 

Figure 4.3: Upper Bound of First rel. Partition for Oin & Rin. 

 

• An Original after subdivision contains intervals that begin in this partition but 

end after. The potential maximum intersection score that an Original after on 

a first relevant can provide is: 𝑈𝑏. 𝑃𝑓
𝑂𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 figure 4.4. 

• A Replica after subdivision consists of intervals that begin before this partition 

and end after it also. The hypothetical maximum intersection score that a 

Replica after on a first relevant partition can provide is: 𝑈𝑏. 𝑃𝑓
𝑅𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 −

𝑞. 𝑠𝑡 figure 4.4. 
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Figure 4.4: Upper Bound of First rel. Partition for Oaft & Raft. 

 

For an intermediate 𝑃𝑖𝑛 or a last relevant 𝑃𝑙 partition only originals must be accessed 

section2.3. We introduce the static upper bounds, 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑖𝑛, 𝑈𝑏. 𝑃𝑖𝑛

𝑂𝑎𝑓𝑡
, 𝑈𝑏. 𝑃𝑙

𝑂𝑖𝑛, 

𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

, for these cases. 

• The possible maximum intersection score that an Original in on an interme-

diate relevant partition can provide is: 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑖𝑛 = 𝑃. 𝑒𝑥𝑡𝑒𝑛𝑡 figure 4.5. 

 

 

Figure 4.5: Upper Bound of Intermediate rel. Partition for Oin. 

 

• The potential maximum intersection score that an Original after on an inter-

mediate relevant partition can provide is: 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑎𝑓𝑡

= 𝑃. 𝑒𝑥𝑡𝑒𝑛𝑡 + 𝑞. 𝑒𝑛𝑑 −

𝑃. 𝑒𝑛𝑑.figure 4.6. 
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Figure 4.6: Upper Bound of Intermediate rel. Partition for Oaft. 

 

• The likely maximum intersection score that an Original in on a last relevant 

partition can provide is: 𝑈𝑏. 𝑃𝑙
𝑂𝑖𝑛 = 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡 figure 4.7. 

• The prospective maximum intersection that an Original after on a last rele-

vant partition can provide is:⁡𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡 figure 4.7. 

 

 

Figure 4.7: Upper Bound of last rel. Partition for Oin & Oaft. 

 

 

In the revised methodology for determining the Upper bounds, rather than presup-

posing the expected extended interval that each subclass might offer, we save the 

longest interval present within each subdivision. This preserved metadata is then 
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utilized to compute the upper bounds. The tracking of the maximum interval for 

each subdivision is conducted concurrently with the assignment of intervals to their 

respective partitions. Formally, assume the longest interval max 𝑠 that exists on a 

partition 𝑃: 

 

• We define metadata upper bound: 𝑈𝑏. 𝑃𝑚𝑎𝑥 = max 𝑠𝑠𝑐𝑜𝑟𝑒 

 

In such manner, we introduce the metadata upper bounds for every subdivision of 

a partition 𝑃, 𝑈𝑏. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛 , 𝑈𝑏. 𝑃𝑚𝑎𝑥

𝑂𝑎𝑓𝑡
, 𝑈𝑏. 𝑃𝑚𝑎𝑥

𝑅𝑖𝑛 , 𝑈𝑏. 𝑃𝑚𝑎𝑥
𝑅𝑎𝑓𝑡

. In an effort to further tighten 

the upper bounds, while keeping in mind that the minimum bound is the more 

suitable. It is important to acknowledge that the superiority of the metadata bounds 

over the static ones remains uncertain in some cases. Consequently, the implemen-

tation will integrate both metadata and static upper bounds in the following manner. 

 

For the first relevant partitions: 

• Originals in 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑓
𝑂𝑖𝑛 = min(Ub. 𝑃𝑓

𝑂𝑖𝑛, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛 ), minimum between the 

static and the metadata bound. 

• Originals after 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑓
𝑂𝑎𝑓𝑡

= min(Ub. 𝑃𝑓
𝑂𝑎𝑓𝑡

, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑎𝑓𝑡

), minimum between 

the static and metadata upper bound. 

• Replicas 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑓
𝑅𝑖𝑛(𝑅𝑎𝑓𝑡)

= 𝑈𝑏. 𝑃𝑓
𝑅𝑖𝑛(𝑈𝑏. 𝑃𝑓

𝑅𝑎𝑓𝑡
), static bounds. 

 

For the intermediate relevant partitions: 

• Originals in 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑖𝑛
𝑂𝑖𝑛 = 𝑈𝑏. 𝑃𝑚𝑎𝑥

𝑂𝑖𝑛 , metadata bound. 

• Originals after 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑖𝑛
𝑂𝑎𝑓𝑡

= 𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

, static bound. 

 

For the last relevant partitions: 

• Originals in 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑙
𝑂𝑖𝑛 = min(Ub. 𝑃𝑙

𝑂𝑖𝑛, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛 ) minimum between the 

static and the metadata upper bound. 

• Originals after 𝑢𝑝𝑝𝑒𝑟⁡𝑏𝑜𝑢𝑛𝑑𝑙
𝑂𝑎𝑓𝑡

= 𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

,⁡static upper bound. 

 

In the remainder of this section, we update the naive and top-down methods intro-

duced in the preceding subsections 4.1 and 4.2. Furthermore, we explore novel 
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approaches for traversing the index. This time, however, we employ the discussed 

Upper bounds to eliminate redundant scans of partitions. The table 4 summarizes 

the Upper bounds discussed so far. 

 

Table 4.1: Static & Metadata Upper Bounds for relevant partitions 

Rel. partition &  

subdivision 

Static  

Upper Bounds 

Metadata  

Upper Bounds 

First rel. Oin 𝑈𝑏. 𝑃𝑓
𝑂𝑖𝑛 = 𝑃. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 min(Ub. 𝑃𝑓

𝑂𝑖𝑛, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛 ) 

First rel. Oaft 𝑈𝑏. 𝑃𝑓
𝑂𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 min(Ub. 𝑃𝑓
𝑂𝑎𝑓𝑡

, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑎𝑓𝑡

) 

First rel. Rin 𝑈𝑏. 𝑃𝑓
𝑅𝑖𝑛 = 𝑃. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 𝑈𝑏. 𝑃𝑓

𝑅𝑖𝑛 

First rel. Raft 𝑈𝑏. 𝑃𝑓
𝑅𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑞. 𝑠𝑡 𝑈𝑏. 𝑃𝑓
𝑅𝑎𝑓𝑡

 

Intermediate rel. Oin 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑖𝑛 = 𝑃. 𝑒𝑥𝑡𝑒𝑛𝑡 𝑈𝑏. 𝑃𝑚𝑎𝑥

𝑂𝑖𝑛  

Intermediate rel. Oaft 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑎𝑓𝑡

= 𝑃. 𝑒𝑥 + 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑒𝑛𝑑 𝑈𝑏. 𝑃𝑖𝑛
𝑂𝑎𝑓𝑡

 

Last rel. Oin 𝑈𝑏. 𝑃𝑙
𝑂𝑖𝑛 = 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡 min(Ub. 𝑃𝑙

𝑂𝑖𝑛, 𝑈. 𝑃𝑚𝑎𝑥
𝑂𝑖𝑛 ) 

Last rel. Oaft 𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

= 𝑞. 𝑒𝑛𝑑 − 𝑃. 𝑠𝑡 𝑈𝑏. 𝑃𝑙
𝑂𝑎𝑓𝑡

 

 

 

In this subsection, we refine the Naive and Top-Down methods by integrating the 

Upper bounds discussed previously. This enhancement aims to optimize the traversal 

process by pruning unnecessary partitions. Through this approach, we seek to im-

prove the efficiency and effectiveness of our methods. Incorporating the Upper 

bounds into the Naïve and Top-Down traversal methods is a straightforward process. 

The primary requirement is to apply the pruning condition delineated in the previ-

ous subsection each time the methods are poised to scan a partition. Specifically, 

immediately prior to calling “update 𝑇𝑂𝑃𝑘” in both the Naive and Top-Down meth-

ods, the appropriate Upper bound is applied, depending on the subdivision of the 

partition and its relevance position. This ensures that only those partitions which 

meet the established criteria are further examined, thereby streamlining the search 

process. 
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Explanatory, for example, before scanning the first relevant partition 𝑃𝑓
𝑂𝑖𝑛of the orig-

inal in subclass, we apply the following pruning condition: 

 

• 𝑖𝑓⁡(|𝑇𝑂𝑃𝑘| < 𝑘)||(𝑈𝑏. 𝑃𝑓
𝑂𝑖𝑛 > 𝑘𝑠𝑐𝑜𝑟𝑒

𝑡ℎ ) ⁡⇒ 𝑠𝑐𝑎𝑛⁡𝑃𝑓
𝑂𝑖𝑛⁡  

 

By implementing this condition before every partition’s scanning of the methods, we 

establish their optimized versions: Naive with Upper bounds and Top-Down with 

Upper bounds. 

 

Continuing the endeavor to prioritize the longer intervals that populate the index 

first, as initiated in the Top-Down subsection, we introduce a novel method that 

traverses the index in a depth-driven manner. This technique diverges from tradi-

tional approaches by adopting a more intricate scanning process. Initially, we con-

duct a top-down traversal, covering only the first relevant partitions. Following this, 

we examine, in the same way, all the intermediate partitions and finally we scan all 

the last relevant partitions. The figure 4.8 below shows the relevant partitions that 

are traversed top-down (first blue, then green and last yellow). 

 

 

Figure 4.8: First, Intemediate & Last relevant Partitions. 
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Furthermore, we incorporate the 𝑐𝑜𝑚𝑝𝑙𝑒𝑣𝑒𝑙 parameter to strategically bypass unnec-

essary comparisons, mirroring the optimization techniques employed in the Top-

Down method. Additionally, we apply the upper bounds discussed previously to 

every call of the 𝑇𝑂𝑃𝑘 update. 

 

 

Figure 4.9: Pseudocode for Depth-First Traversal. 
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In our quest to further enhance the efficiency of index traversal, we present a novel 

method termed the Ordered Traversal. This technique focuses on scanning the par-

titions of the index in a specific, strategic order to optimize the retrieval process. By 

systematically organizing the sequence in which partitions are examined, we aim to 

maximize the likelihood of quickly identifying intervals that overlap greater with the 

query while minimizing unnecessary computations. This method builds upon the 

principles (𝑐𝑜𝑚𝑝𝑙𝑒𝑣𝑒𝑙 and Upper Bounds) outlined in previous sections. Through 

this ordered approach, we strive to achieve a more streamlined and effective data 

management solution. 

After identifying, with a bottom-up traverse what the 𝑐𝑜𝑚𝑝𝑙𝑒𝑣𝑒𝑙 is. The process of 

this method unfolds as follows. The index is scanned in a top-down fashion, while 

leveraging the upper bounds to enhance efficiency. The scanning procedure, starting 

from the root, is meticulously ordered in distinct stages:  

• First, we scan all the Originals and Replicas after for the first relevant parti-

tions figure 4.10. 

 

Figure 4.10: First relevant partitions Originals and Replicas after 

 

• Second, we examine all the Originals after for the intermediate relevant parti-

tions 4.8. 
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• Third, we inspect all the Originals in for the intermediate relevant partitions 

figure 4.11. 

 

Figure 4.11: Intermediate relevant partitions Originals and Replicas after. 

 

• Fourth, we look at all the Originals and Replicas in for the first relevant 

partitions figure 4.12. 

 

Figure 4.12: First relevant partitions Originals and Replicas in. 

 

• Fifth, we scan the Originals in and after for the last relevant partitions figure 

4.13. 
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Figure 4.13: Last relevant partitions Originals in and after. 

 

By following this specific order, the method ensures that the most promising parti-

tions are prioritized, aiming to improve the overall effectiveness of the scanning 

process. Each stage of the scan is carefully designed to build upon the previous one, 

targeting a comprehensive yet efficient traversal of the index. 
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Figure 4.14: Pseudocode for Ordered Traversal. 



 

38 

 

 

In our ongoing effort to optimize index traversal, we introduce the Sorted Traversal 

of the HINTm. This method takes a comprehensive approach by first gathering all 

the subclasses of the relevant partitions and then sorting them based on their Upper 

bounds. By organizing the subdivisions of the partitions in this manner, we can 

prioritize the most promising candidates for efficient scanning. This technique lev-

erages the previously discussed Upper bound principles. 

The process of this method consists of three distinct stages. In the first stage, the 

index is scanned in a bottom-up fashion (like Naïve Traversal), during which every 

subclass of the relevant partitions is gathered to a list. The second stage involves 

sorting these subclasses in descending order according to their upper bounds. This 

sorting process ensures that the partitions with the highest potential intersections are 

prioritized. In the final stage, the list of subclasses are scanned sequentially, starting 

from the subdivision with the greatest Upper bound, and continuing until the fol-

lowing termination condition is satisfied. 

More specifically, each time a sub-partition is scanned, it is necessary to verify 

whether the top-𝑘 set is complete. Subsequently, if the 𝑘-th score within the top-𝑘 

set is greater than or equal to the Upper bound of the next sub-partition for scanning, 

this condition ensures that no other subclass can provide a superior interval result 

for the 𝑇𝑂𝑃𝑘 set. If this criterion is met, it is guaranteed that further scanning of 

remaining subclasses will not yield better results for the 𝑇𝑂𝑃𝑘 set, thus allowing the 

process to terminate efficiently. Formally, assume that 𝑃′ the partition that is about 

to get scanned: 

 

• 𝑖𝑓⁡(|𝑇𝑂𝑃𝑘| = 𝑘)⁡𝑎𝑛𝑑⁡(𝑈𝑏. 𝑃′ < 𝑘𝑠𝑐𝑜𝑟𝑒
𝑡ℎ )⁡𝑡ℎ𝑒𝑛⁡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒⁡𝑝𝑟𝑜𝑐𝑒𝑠𝑠. 

 

This methodical approach guarantees that the most significant partitions are exam-

ined first. 
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Figure 4.15: Pseudocode for Sorted Traversal 
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5.1     Datasets & Queries 

5.2     HINTm & Methods 

5.3     Query Extent 

5.4     Static vs Metadata Upper Bounds 

5.5     Parameter k 

 

We employed a system featuring an Intel Core i5 7200U CPU, equipped with 2 cores 

and 4 threads, operating at a clock rate of 2.5 GHz. The system was configured with 

8 GB of RAM. For the operating system, we utilized Linux Ubuntu 22.04.4 in 64-

bit mode, and the code was compiled using GCC version 11.4.0. 

 

The experimental analysis utilized four distinct datasets representing various real-

time intervals. The first dataset, referred to as "BOOKS," (https://www.odaa.dk) en-

compasses time intervals corresponding to instances when books were borrowed 

from Aarhus libraries in 2013 and contains relatively large intervals. The second 

dataset, "TAXIS"(https://www.nyc.gov/site/tlc/index.page), includes shorter time pe-

riods denoting the pick-up and drop-off times of taxi trips within New York City 

during a specific period in 2013. Additionally, we conducted experiments using the 

"BIKES” (https://citibikenyc.com/), which refers to the time spans during which bi-

cycles were rented in New York City in 2020, this dataset has similar characteristics 
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with the “TAXIS”. Lastly, the "FIRES” (https://www.fs.usda.gov/rds/archive/cata-

log/RDS-2013-0009.4) dataset includes time intervals corresponding to instances of 

wildfires occurring in the United States between 1992 and 2015. The particular da-

taset contains lesser intervals but the average duration of them is between the interval 

duration of the other datasets. 

Table 5.1: Dataset characteristics 

 
BOOKS TAXIS BIKES FIRES 

Number of intervals 2.050.707 43.167.001 19.474.352 778.410 

Domain size [sec] 31.413.600 31.542.251 31.947.359 757.382.940 

Min. duration [sec] 1 1 1 1 

Max. duration [sec] 31.406.400 2.148.385 3.786.188 9.988.800 

Avg. duration [%] 6,98 0,0024 0,0041 0,013 

m [index’s levels] 10 17 16 16 

 

As interval queries, we employed predefined percentage intervals relative to the do-

main size of individual datasets. Specifically, the query intervals were set at 0,01%, 

0,05%, 0,1%, 0,5%, and 1%. Each dataset underwent straightforward testing with 

10.000 randomized queries per percentage interval, focusing on measuring total 

throughput expressed in queries per second. This approach was chosen deliberately 

over assessing average query time, particularly in contexts where large volumes of 

interval data are processed.  

 

The methods described in the section 4 were built on the top of HINTm index, 

enhanced with the optimizations discussed in the subsection 2.3. For the m param-

eter (table 5.1), the optimal value was used, determined automatically for each da-

taset by the already existing code of HINTm. The detailed process for determining 

the optimal m value was explained in the prior work [5]. 
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All methods were tested on each dataset. We distinguished the methods based on 

whether the Upper Bounds (static or metadata subsection 4.3) were applied. The 

table 5.2 below summarizes the methods of our experiments.  

Table 5.2: Top-k Querying Methods examined. 

without upper bounds  with static upper bounds with metadata upper bounds 

Naive Naive Naive 

Top-Down Top-Down Top-Down 

- Depth-First Depth-First 

- Ordered Traversal Ordered Traversal 

- Sorted Traversal  Sorted Traversal  

 

 

In the first phase of our experimental evaluation, we focused on exploring the impact 

of query extent variation through top-𝑘 queries across the datasets. Each dataset was 

subjected to top-𝑘 queries representing a range of domain coverage percentages 5.2, 

thereby investigating how query scope influences system performance. Throughout 

these experiments, we maintained a constant value of 𝑘, set at 10, to ensure con-

sistency in methods’ complexity and evaluation metrics. The following subsection 

presents a detailed analysis of our findings, highlighting the outcomes observed 

across varying query extents. 

For the datasets "TAXIS", "BIKES", and "FIRES", which feature relatively small 

duration intervals, we observed a high throughput, while decreasing, across query 

extents ranging from 0,01% to 0,1% of the domain size. However, beyond this range, 

there is a noticeable decline in throughput. In contrast, the "BOOKS" dataset, char-

acterized by larger duration intervals, exhibited consistently low throughput across 

all query extents tested. Moreover, we noted that applying static upper bounds ac-

celerated query processing across “TAXIS”, “BIKES” and “FIRES”. For the dataset 
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of “BOOKS” the outcomes remain at almost the same levels. We use the x-axis to 

represent query extent (fixed percentage of the domain) and the y-axis for through-

put, employing a logarithmic scale for "TAXIS" and "BIKES" to accurately depict 

the performance. Here, we applied static Upper Bounds. 

 

Figure 5.1: Throughput of methods on BOOKS dataset across query extents, k=10. 

 

Figure 5.2: Throughput of methods on FIRES dataset across query extents, k=10. 



 

44 

 

 

Figure 5.3: Throughput of methods on BIKES dataset across query extents, k=10  

 

Figure 5.4: Throughput of methods on TAXIS dataset across query extents, k=10 

(log scale). 
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Continuing our analysis, we compared the performance with the application of 

metadata upper bounds. Our observations indicate that the throughput consistently 

remains higher for all query extents when using metadata upper bounds compared 

to static ones. Still the dataset of “BOOKS” does not show any significant advantage 

in its performance. Notably, the 'top-down' method, when coupled with metadata 

upper bounds, emerges as one of the best performing methods. Here, we depict only 

the methods when Upper Bounds are applied. 

 

 

Figure 5.5: Throughput of methods with static and metadata Upper Bounds on 

BOOKS dataset across query extents, k=10. 
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Figure 5.6: Throughput of methods with static and metadata Upper Bounds on 

FIRES dataset across query extents, k=10. 

 

Figure 5.7: Throughput of methods with static and metadata Upper Bounds on 

BIKES dataset across query extents, k=10 
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Figure 5.8: Throughput of methods with static and metadata Upper Bounds on 

TAXIS dataset across query extents, k=10 (log scale). 

 

In the second stage of our experiments, we systematically varied the parameter 𝑘 

and repeated the aforementioned tests for each specified value: 5, 10, 50 and 100. 

This iterative approach enabled us to observe and analyze the performance charac-

teristics of our methods when tasked with reporting larger sets of top 𝑘 results. By 

adjusting 𝑘, we aimed to uncover how the scale of the result set influences system 

throughput across different datasets.  

We present outcomes of the top-down method with and without upper bounds for 

different values of 𝑘, while keeping the query extent fixed at 0,1% of the initial 

domains. Notably, we exclude results from the “BOOKS” dataset, as it consistently 

did not exhibit any remarkable variations. The following figures detail the observed 

performance across the “TAXIS”, “BIKES”, and “FIRES” datasets. 
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Figure 5.9: Scaling of Top-Down method (static & metadata Upper Bounds em-

ployed) on BIKES dataset for different values of k with query extent 0,1% of the 

domain. 

 

 

Figure 5.10: Scaling of Top-Down method (static & metadata Upper Bounds em-

ployed) on FIRES dataset for different values of k with query extent 0,1% of the 

domain. 
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Figure 5.11: Scaling of Top-Down method (static & metadata Upper Bounds em-

ployed) on TAXIS dataset for different values of k with query extent 0,1% of the 

domain (log scale). 

 

As we see, the throughput declines as we apply larger values of k for the three 

datasets, with 'BIKES' showing slightly better performance compared to 'TAXIS' and 

'FIRES.' This pattern is consistent across the different query extents we tested. As 

well as for the methods that employ upper bounds. 

 

 

Figure 5.12: Scaling of Naive method (static & metadata Upper Bounds employed) 

on BIKES dataset for different values of k with query extent 0,01% of the domain 

(log scale). 
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Figure 5.13: Scaling of Naive method (static & metadata Upper Bounds employed) 

on FIRES dataset for different values of k with query extent 0,5% of the domain 

(log scale). 

 

Figure 5.14: Scaling of Depth-First, Ordered & Sorted traversals on FIRES dataset 

for different values of k with query extent 0,01% of the domain. 
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Figure 5.15: Scaling of Depth-First, Ordered & Sorted traversals on TAXIS dataset 

for different values of k with query extent 1% of the domain. 

 

 

Summing up this section, our experimental evaluation highlights several key insights 

into the performance of top 𝑘 query processing with index of HINTm under varying 

conditions. Firstly, larger query extents are associated with reduced throughput. 

However, the application of static upper bounds significantly accelerates the overall 

process, and extending these bounds to their metadata versions yields even better 

results. In terms of traversal methods, simpler approaches tend to offer superior 

performance. Specifically, the Top-Down method, which prioritizes traversing parti-

tions with potentially larger intervals first, combined with metadata upper bounds, 

demonstrates the best performance among the tested methods. 

Furthermore, the parameter 𝑘, representing the size of the top-𝑘 set, notably impacts 

implementation performance. Larger 𝑘 values result in more frequent updates to the 

final set, thereby affecting throughput. Last but not least, the nature of the dataset 

plays a crucial role in system scalability. Datasets with larger intervals, such as 

'BOOKS,' show different performance characteristics and appear less affected by the 

optimizations that benefit datasets with smaller intervals. 
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6.1 Summary 

6.2 Future Work 

 

We enhanced the HINTm index to efficiently handle ranking queries. Subsequently, 

we integrated a pruning technique utilizing Upper bounds, allowing the algorithm 

to bypass unnecessary partitions during the execution of top 𝑘 queries. We further 

refined these Upper bounds to their metadata versions. In addition, we introduced 

novel methods that traverse the index in various ways, equipping these methods 

with the Upper bounds. Extensive experiments were conducted on four datasets to 

measure overall throughput. Initially, we assessed the system's performance across 

different query extents and then across varying 𝑘 values. The results indicated that 

larger query extents and higher 𝑘 values tend to reduce throughput. However, the 

application of Upper bounds, particularly the tighter metadata version, significantly 

improved the system's scalability, especially for datasets with relatively short average 

interval durations. Finally, among the developed methods, simpler approaches 

demonstrated slightly better performance, provided they were complemented by the 

metadata Upper bounds which has been proven to play the primary role in the 

overall performance. 
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For future research, our initial objective is to explore alternative ranking functions 

beyond the absolute overlap. Subsequently, we will assess whether reporting results 

below a specified threshold score influences performance in comparison to reporting 

the top k results. Additionally, we intend to establish also lower bounds for each 

partition of the index. Lastly, we intend to study the performance of HINT on top k 

temporal joins. 
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