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ABSTRACT

Aggeliki Dougia, M.Sc. in Data and Computer Systems Engineering, Department of
Computer Science and Engineering, School of Engineering, University of Ioannina,
Greece, June 2024

Thesis Title: Data Storytelling via Sibling Queries and Highlight Extraction

Advisor: Panos Vassiliadis, Professor

Business Intelligence relies on (a) hierarchical multidimensional data, coming in the
form of data cubes and dimension hierarchies for the representation of information,
and (b) advanced querying operators for the extraction of interesting facts from the
available data.

In this Thesis, we propose a querying operator that takes a chart specification as its
input and produces a data story as its output. The motivation for this Query-As-A-
Chart operator lies in the observation that traditional queries, including Business
Intelligence ones, are inadequate to express the higher-level knowledge goals that
analysts currently have.

To the extent that query results are typically visualized, the operator takes this fact
as input, and complements its specification with the type of graphical representation
(chart) expected to be produced, in the form of a line-chart, bar-chart, or scatter plot.
Apart from this first extension to traditional querying, in the form of extending the
query specification, a second extension includes the extension of how query results
are handled. In the context of this Thesis, two extensions are added to the original
query execution. The first concerns complementing the original query with auxiliary,
sibling queries that provide results of similar subsets of the data space to the original
one. So, for example, if the original query concerns an atomic filter of the form “city
= loannina”, we want to automatically generate sibling queries for all the cities that

pertain to the same country as Ioannina, i.e., Greece, and contrast the results. A second

v



extension has to do with the application of models to the resulting data. Assuming
one of the grouper dimensions is time, thus producing a timeseries as a result of the
query, models like trend, unimodality, bimodality, or dominance, can be applied over
the different timeseries produced for the different queries and compared for com-
monalities and exceptions. The extracted highlights are appropriately scored, ranked
and pruned on the basis of a simple rank-n-prune filter.

The result of the entire process is (a) a set of charts that visualize the results, but
most importantly, (b) a combined report, or data story, that combines the graphical
representations, along with a textual description of the detected highlights, to be

returned to the analyst.
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EKTETAMENH NEPIAHWVH

Avyyeauxn Aodyro, A M.Z. otn Mryoviny) AeSopévwy xal YToAOYLoTIXWY ZVoTNUE-
Ty, TpAua Mnyavixdy H/Y xow TTAnpopopxvc, TToAvteyvixny Tyxohy, Hoavertotiuto
Iwavvivewy, Iobviog 2024
Tithog Aratoifrig: EELotépnon Aedouévwy pe Opopa Epwtiuoto xor EEoywyn Ato-
xexpLLévwy Evpnudtwy

Emprénwv: Baotietddng Havayrdtng, Kobnyntig

H Emyetpnotoxs vonuoobvy (Business Intelligence) otnpileton o o) og Ltepopyixd
TOALSLATTOTOL SESOUEVDL, TTOV EPYOVTUL UE TN LOPPT XOBwY Sedopévmy %ol SLoaTA-
OEWVY PE LEPOPYLES YLOL TNV OVOTOLPAGTAOY TTANPOQOELLY Xal B) TEONYIEVOLS TEAE-
OTEC EQWTNUATWY YLow TNY EEOYWYN EVILOPEQOVTLV PULYOUEVLY amtd Tow dtabéatpa
dedopéva.

Ye oT TNV EPYOLO, TTPOTEIVOLUE EVOLY TEAEGTY] EQWTALATOS TTOV TTOLLPVEL TOY TTPOO-
dLopLopd evdg Ypapuatog wg eloodo xo mopdyel pla totopion dedopévwy (data
story) w¢ é£080. To xivnteo yLor avTéy Tov TeAeoth Query-As-A-Chart éyxettal otny
THEUTAENOYN OTL To TOEOSOOLOKE EQWTAULOTO, CLUTEQLAUPBOVOUEVLY GUTWY TNG
ETUYELONOLOKUNG VONUOOVOYYG, ELVOIL OVETIOPXY] YLOL YO EXPEATOVY TOUG GTOYOVS YVK-
ong VYNAGTEPOL ETLTEDOV OV €XOVY ETIL TOL TAPOVTOS OL AVOAVTEG.

2Ty TEPITTWON TOL TO ATOTEAECUATA TOV EQWTAUNTOS UTTOPOVY VO OTTTLXOTTOLN-
0obv, o teAeatig AouPavel To epdTNUA WG €l00d0 poll Pe TOV TTEOGOLOPLOUS TNG
YooupLxuig mopdiotaong (Yoophuatog) mov eméAeEe 0 ovoAluTthg Yo vou det. Ot Sto-
Béotpec emhovéc eivar yoouutxé yodoenuo (line-chart), pafdéypoppo (bar-chart)
%o ypdepnuo Staomopds (scatter-plot).

Extég omtd v mpddtn emtéxtocy oty Topadootoxy] avolnTtnoy, LE TOV TEOG3LOEL-
oub YOOPNUOTOG Hall e TO €pWTNUO, ULlo deVTEPN ETEXTAON TEPLAOUBAVEL TNV

ETMEXTOOY] TOL TPOTTOV YELOLOULOD TWV ATTOTEAEGUATWY TWY EQWTNUATWY. XTO TAXLGLO

vii



g epyaoiog, mEooTihevTol dV0 ETEXTACELS OTNY QXEXIXY] EXTEAEOT €pwTHUOTOS. H
TEWOTN APOPE. TOL OPYLXOV EQWTARATOS e PBondntixd epwtnata, ovopaldpeva
(sibling), o omoior TOPEYOLY ATTOTEAECUOTOL TLAPOLLOLWY LTTOGUYOAWY TOL YDEOL
Sedopévwy pe Tov opyLxot. ‘Etot, yior Topddelypa, GV TO opytx0 EQWTNUO 0POPE
gval atoptrd PIATPO TNG HoPPNG «TOAY = lwdvvivor», BEhovue va Snutovpyroovue
owtopoto epwtirote sibling yio 6Aeg TLg TOAELS TTOL ALPOPOVY TNV (Lot YWEO PE TOL
Iwévviva, dnAadn v EAAGSa, xow vou avtimopoarovpe tor aoteréopoto Tovg. H
3e0TEEN ETMEXTOOY, APOPSL TNY EQAEUOYT LOVTEAWY 0T SESOUEVO TWY ATTOTEAETUE-
Twv. Yobétovtag 6tL pion amd Tig Stootdoelg opodormoinong eivor o ypbvog, dn-
ULOLEYWYTOG ETOL UL YOOVOOELPA WG ATTOTEAEOUOL TOU EQWTAUOTOS, LOVTEAX OTTWG
trend, unimodality, bimodality, or dominance, pumopobdv va e@apudélovtol oe Stopo-
PETLXEG TLAPAYOUEVES YOOVOOELPES YLOL TO DLAPOPO EQWTALATOL X0l CUYXQIVOYTUS TO
LETOED Toug Lo opotdtnTeg xon dtapopés. Ta eEaybueva highlight Babuoioyodvron,
ToELvopovvtol xot eLATpdpovTal pe éva @iktpo rank-n-prune.

To amotéleopa OAOXANENG Tng Stadixaoiog eivor (o) évar GHVOAO YPOPNUETHY TTOL
omeLxovifouy To. amoTeEAéoUarT, OAAG TO TTLo onpovTtixd, (B) pior cuvdvacpévn ava-
@OopA4 1) LoToplo DESOUEVWY, TTOL CLYIVALEL TLG YOOPLXES TTOPAOTACELS, LOLL YE ULo
TIEQLYQOPT] XELUEVOL TWV XVPELOTEPWV OVLYVELOUEVWY ONUELWY, YLOL VO ETILOTOOQEL

OTOY OVOALTY.
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CHAPTER 1

INTRODUCTION

1.1 Goals

1.2 Thesis Structure

In the first section of this chapter, we present a brief description of our work and
refer to the main directions and the main purpose of our research. In the second

section of this chapter, we refer to the structure of this Thesis.

1.1 Goals

The advancement of technology and computer science has facilitated processes that
were once laborious and time-consuming. The evolution of databases and especially
the optimization of Relational Database Management Systems (RDBMS), played a
significant role in the advancement of computing technology. Over time, RDBMSs
have become established in a plethora of environments, notably in the business sec-
tor.

The increasing popularity of RDBMS in the business world has also created a de-
mand for familiarity with data handling tools. Data handling tools allow users to
query and retrieve data from an RDBMS without requiring the user to be proficient
in database concepts.

However, their advantage evolved over time into their disadvantage. The reason for

this, is that the need arose for further analysis of the data and not simply for

1



retrieving the data. In the daily life of businesses, it is important to retrieve data,
analyze it, make decisions and query new or old data again and again.

This endless business cycle of data retrieval-analysis-and-finding needs to be auto-
mated and done as fast as possible. Furthermore, the available data is increased
daily making the process even more difficult. All these requirements have been a
challenge for the computer science sector in recent decades. What emerged through
the research was that the traditional database management systems and data han-
dling tools are not capable of solving all the above issues and that it is necessary to
evolve these systems into Business Intelligence systems, which process multidimen-
sional data located in data warehouses.

This master thesis provides the extension of a Business Intelligence system with a
new subsystem with which an analyst will be able to register a query that interests
him and receive graphical visualizations of the query that was performed, and for
auxiliary queries. Also, the system automatically passes the results of these queries
through extraction algorithms to extract highlights and produces a report with rank-
ings and comparisons between the results of the original query and the auxiliary,
and finally produces a report (data story).

Initially, the analyst completes the required text inputs from the GUI (cubeName,
groupers, selection filters, aggregation function and a measure) and selects his de-
sired graph visualization type {line-chart, bar-chart and scatterplot}. Supposing the
analyst has selected for grouper! (x-axis) a valid time dimension, thus producing a
timeseries from the query results, the system responds with graph visualizations of
the original chart and the auxiliary queries, and if the results are of a unique time
series, it displays two extra windows, one containing the table with rankings of
models for the queries along with the comparisons (unique, common or nothing)
between original and auxiliary queries and one info table containing the name of
query, the type (basic or sibling) and the sql expression that corresponds to. Finally,
and most importantly, the system automatically produces an html report (data story)
containing images of charts along with a textual description of the detected and most
important highlights extracted from models.

The main contributions of this Thesis are as follows:



1.2

We propose a new querying operator, the Query-As-A-Chart operator, that
takes a chart specification (line-chart, bar-chart, or scatter plot) as its input
and produces a data story as its output.

The operator includes the extension of the traditional single-query execution,
with a palette of related, automatically generated auxiliary queries that will
produce the data story. We utilize sibling queries that exploit selection filters
of the original query and automatically generate queries with similar selection
tilters, in order to contrast the results of the original query to the results of its
similar siblings.

The results of the queries are passed through models, like, for example, trend,
unimodality, bimodality, or dominance. Then, the models of the different que-
ries can be compared for commonalities and exceptions

The query result is ultimately a data story, consisting of a fully automatically
generated page with graphical representations and textual descriptions of the

detected interesting findings.

Thesis Structure

This Thesis consists of 5 sections. Its structure is as follows: In Section 2, we present

the necessary related work and the background of this Thesis. In Section 3, the

implementation details for the generation of graphs and extraction algorithms and

extraction of report is described along with the tests that were planned. In Section

4, we experimentally evaluate the proposed method, and report on our methodology

and the results of the experiments, as well as to the conclusions drawn from them.

In Section 5, we discuss the conclusions and the results of this Thesis and we refer

the reader to potential future work.






CHAPTER 2

RELATED WORK

2.1 Fundamental Concepts
2.2 Related work on Automatic Discovery of Knowledge and Interactive

Learning

In this chapter, we review fundamental concepts that are necessary for the better
understanding of our work and related work. Moreover, we make a quick overview

of recent related work in the area of data exploration and knowledge discovery.

2.1 Fundamental Concepts

2.1.1 Multi-Dimensional Data

In the context of databases, "multi-dimensional data" refers to data that can be or-
ganized and analyzed across multiple dimensions or attributes simultaneously.
Briefly, multidimensional data is classified into two main types: (a) facts with asso-
ciated numerical measures and (b) dimensions that characterize the facts and are
more textual [JePT10]. Dimensions are used to group or filter records and the values
of dimensions are either categorical (e.g., "City") or temporal (e.g., "Month").
Measures are numerical columns (e.g., "Sales") where certain operations of aggrega-
tion (e.g., SUM) can be performed [MDHZ21].

Data models that are used to represent and process multidimensional data are char-
acterized Multidimensional. Multidimensional models have many important appli-
cation areas within data analysis. The 3 most significant application areas are data

warehousing, OLAP systems and data mining [JePT10].



2.1.2 OLAP Systems

The term OLAP abbreviates On-Line Analytical Processing [JePT10]. OLAP systems
are systems that facilitate complex analysis of large volume of multi-dimensional
data. Furthermore, the analysis in these systems, occurs "On-Line", i.e., fast, "inter-
active" query response is implied [JePT10]. OLAP systems come in three broad cat-
egories: ROLAP systems, MOLAP systems, and HOLAP systems [JePT10].

ROLAP systems store data in traditional relational databases and generate SQL que-
ries on the fly to retrieve data. They provide flexibility and can handle larger datasets
but might have slower query performance compared to MOLAP systems. On the
other hand, MOLAP systems store data in a multidimensional array-type represen-
tation, providing fast query performance due to pre-aggregated data and efficient
indexing. Finally, HOLAP systems (hybrid systems) combine the technologies of both
MOLAP and ROLAP, allowing users to leverage the advantages of both approaches
[Mbaa21].

2.1.3 OLAP Cube

A cube generalizes the tabular spreadsheet such that there can be any number of
dimensions and not only two as in spreadsheets [JePT10]. Although instinctively one
would think that a cube can only have 3 dimensions, a cube can have any number
of dimensions. In this context, dimensions are used for two purposes: the selection
of data and the grouping of data at a desired level of detail. Furthermore, each
dimension is organized into a containment-like hierarchy composed of a number of
levels, each of which represents a level of detail that is of interest to analyses to be
performed [JePT10]. For that reason, the term hypercube is sometimes used instead
of cube [JePT10], underscoring the multidimensional and hierarchical nature of data
representation for advanced analytical purposes.

A cube consists of uniquely identifiable cells at each of the dimensions’ intersections.
A non-empty cell is called a fact [JePT10]. Typically, a fact derives from the combi-
nation of two or more-dimension values. Facts usually have associated numerical
properties that are called measures [JePT10]. A measure consists of two parts: a

numeric property linked to a fact and a formula for aggregating multiple numeric



values into one. For example, in Figure 2.1, there is a cell that expresses the fact that
the product juice was sold in quantity of 10 million for the north region of a country
and for month January. In this example, measure is the attribute of total sales, while
dimensions are the Region, Time, and Month. The type of product “Juice”, “the
North Region”, and the “January Month” are instances of dimensions and the value
of 10 million is the measure quantity.

However, a cell may also be empty, without any association with a measure, meaning
that there is no information to record for the given combination. Depending on the
percentage of the facts (non-empty cells) in cube, cubes are classified in two main
categories: dense cubes (higher percentage of cells that are facts) and sparse cubes
(lower percentage of facts). In general, increasing dimensions and determining finer
granularity of dimension values leads to sparse cubes.

Although there is no theoretical limit to the number of dimensions, typically most
cubes in real-world scenarios can have 4-12 dimensions [JePT10, KiRo02, Dyre96].
Generally, only 2 or 3 of the dimensions can be viewed at the same time and that
happens due to the inability of the human eye to perceive things larger in more than
three dimensional axes. Thus, the dimensionality of a cube is reduced at query time
by projecting it down to 2 or 3 dimensions and aggregating of the measure values
across the projected-out dimensions [JePT10].

For example, in Figure 2.2, we depict an OLAP cube for loans and orders, that is
illustrated through MySQL database-schema. Tables: account, payment_reason, date
and status are the dimensions of the OLAP cube, while tables orders and loans are
fact-tables. Fact-tables can have “independent” attributes (without any association
with other dimensions); for example, in the case of table orders: the “bank_to”,
“account_to” and “amount” are independent, and simultaneously an order is a fact
because is characterized by the intersection of “order_id” (primary key associated
with order dimension), an “account_id” (foreign key associated with account dimen-
sion) and a “reason_id” (foreign key associated with payment_reason). Moreover,
tables: account, payment_reason, date and status have the “All” attribute, which is
an aggregation of their measure values, used in query time. An example of how a
fact-table (orders) in tabular form(attributes) and data records (rows) is presented

in the Figure 2.3.
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Figure 2.1 A three-dimensional cube (dimensions: Region, Month, Product)
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Figure 2.2 A database-schema for an OLAP cube.



order_id account_id bank_to account_to amount reason_id

P 29401 1 YZ 87144583 2452 1
2402 2 ST 89597016 33727 4
29403 2 QR 13943797 7266 1
29404 3 WX 83084338 1135 1
29405 3 c 24485939 327 5
2406 3 A8 S9072357 353 2
29407 4 uv 26693541 2078 1
29408 4 uv 5848086 1285 1
29409 5 GH 37390208 2668 1

Figure 2.3 Fact-table with some records.
2.1.4 EDA

EDA stands for Exploratory Data Analysis, and is an essential step in the data anal-
ysis process that involves examining and understanding the data to uncover patterns,
relationships, and insights before proceeding to formal modeling or hypothesis test-
ing. EDA is primarily used in data analytics to gain a better understanding of the
dataset and to make informed decisions about data preprocessing and modeling
strategies. EDA is a tedious task, but it has attracted a lot of attention lately due to
its importance.

The current view on interactive visual data analysis has been primarily shaped by
John Tukey’s emphasis on EDA, who considered data analysis in two stages: explor-
atory analysis and confirmatory analysis [GHG+22]. Exploratory analysis is the ini-
tial stage in which the primary goal is to understand the data, identify patterns,
detect anomalies, and generate hypotheses. Confirmatory analysis is the subsequent
stage that involves testing specific hypotheses based on prior knowledge or theories
performed in exploratory analysis stage.

Contemporary useful tools in the EDA are the EDA notebooks, interactive notebooks
that allow the visual and statistical exploration of datasets using deep learning which
supposes having access to lots of former analysis or pre-analyzing datasets for com-

puting so-called insights.

2.1.5 Highlights

There is no clear and typical definition for the term of highlights. However, in gen-

eral we use the term to refer to the significant and noteworthy insights or results

9



that emerge during the process of examining and interpreting data. For example, in
the study [MDHZ21], the authors define highlights and they use the term Metaln-
sights. In general, examples of significant and noteworthy insights can be various
patterns, trends, correlations, anomalies, or other statistical metrics that stand out
and are of particular importance. Graphically, these insights can be identified, for
example, as spikes or dips in data patterns, clusters of similar data points. Highlights
often revolve around KPIs (Key Performance Indicators) that provide a snapshot of
the overall health or success of a business or project [Twin23].

For example, a Sales Manager is analyzing the sales data for retail company and
notices that during a Black Friday sale event, the company experienced a 30% in-
crease in online sales compared to the previous year’s Black Friday, resulting in
record-breaking revenue. Sales Manager wants to measure the online sales growth

and for this reason defines the following KPI:

(Total Online Sales for Current Year — Total Online Sales for Previous Year)
Total Online Sales for Previous Year

® (Annual Online Sales Growth) =

Moreover, Sales Manager sets the KPI to achieve a minimum of target to 20% annual
online sales growth. Achieving this KPI would be a critical performance measure for
the company.

In this example, the highlight is the significant increase in online sales during the
Black Friday sale event compared to the previous year, graphically identified as an
upward trend. The KPI: "Annual Online Sales Growth," aggregates Online Sales for

each day of the year, including Black Friday’s event, which serves as a highlight.

2.1.6 Interestingness of Highlights

The "interestingness of highlights" refers to the degree to which certain highlights
in data capture the attention of audience. In other words, it is the process of char-
acterizing the highlights meaningful. Often, this characterization takes the form of
interestingness scores [MaPV19] for retrieved data or patterns [GeHa06, Bie13]. Typ-
ically, a high interestingness score for a finding, expresses how interesting or im-

portant it is compared to other findings. Therefore, in most cases, the findings are
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classified by their interesting scores, rated by a human, system, or data metrics
[MaPV19].

2.1.7 KPIs

KPI stands for Key Performance Indicator, a quantifiable measure of performance

over time for a specific objective [Twin23]. Business users often make decisions to

achieve KPIs such as increasing customer retention or sales or decreasing costs. From
finance and HR to marketing and sales, key performance indicators help every area
of the business move forward at the strategic level.

Although it may at first sight appear that a KPI is just a metric, they are not the

same. KPIs are the key targets that business users should track to make the most

impact on their strategic business outcomes [Ruso23]. KPIs support business strategy
and help business teams focus on what’s important. An example of a KPI is, “tar-
geted new customers per month”. On the other hand, Metrics measure the success
of everyday business activities that support KPIs. While they impact the outcomes,
they’re not the most critical measures. For example, a metric is monthly store visits.

Analysis Services provide a framework for defining KPIs is provided, exploiting the

business data stored in cubes [VaZil4]. Each KPI uses a predefined set of properties.

The predefined set consists of 5 properties, which are MDX expressions (query lan-

guage used to retrieve and manipulate data from multidimensional databases) that

return numeric values from a cube. The properties are described next [VaZil4], using
as an example a KPI called "Online Sales Performance":

e Value, which returns the actual value of the KPI. Value is a mandatory charac-
teristic of a KPI. For example, the "Value" property of the KPI: "Online Sales
Performance", would return the actual value of online sales for a specific period,
such as $500,000 in online sales for current month.

e Goal, which returns the goal of the KPI. For example, the "Goal" property would
return the target the company has set for online sales during the same period.
Let’s say the goal for the current month is $550,000 in online sales.

e Status, which returns the status of the KPI. To best represent the value graph-
ically, this expression should return a value between -1 and 1. For example, the

"Status" property would return a value that represents how close the company is
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to achieving its online sales goal. Status could be calculated as a ratio of actual
sales to the goal. If the status value is 0.91, it means the company has achieved
91% of its online sales target.

e Trend, which returns the trend of the KPI over time. As with Status, it should
return a value between -1 and 1. The "Trend" property would provide insight
into the direction of the online sales performance over time. It could be calculated
as the change in online sales compared to the previous period. If the trend value
is 0.05, it means online sales have increased by 5% compared to the previous
month.

e Weight, which returns the weight of the KPI. If a KPI has a parent KPI, we can
define weights to control the contribution of this KPI to its parent. Usually, busi-
ness enterprises have various KPIs related to the different strategies. If they have
a parent KPI that represents overall company performance, they can assign
weights to individual KPIs to control their contribution to the parent KPI. For
example, if "Online Sales Performance" is just one of several KPIs, its weight
could be set to 0.3, indicating that it contributes 30% to the overall company
performance KPI.

Overall, KPIs are important for organizations and businesses as they provide a meas-

urable way to assess success, support data-driven decision-making, and drive per-

formance improvement. By establishing specific metrics to evaluate achievements,

organizations gain a clear understanding of whether objectives are being met.

2.1.8 Data Storytelling

Data storytelling is a process for communicating information, tailored to a specific
audience, with a compelling narration. Data storytelling is the last “ten feet” of the
exploratory data analysis and arguably the most important aspect [Yeol20].

Data storytelling merges three key fields of expertise: Data science, Data visualization
and Data narration. Data science is the process of collecting, analyzing, and extracting
insights from data while Data visualization is the practice of representing data graph-
ically, often using charts, graphs, and visual elements. Data narration is the process
of telling stories with insights extracted from data science and data visualization

tields. Data narration is an instance of data science where the pipeline focuses on
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data collection and exploration, answering questions, structuring answers, and finally
presenting them to stakeholders [MaPA23]. Data narration is a way of making data
and information more engaging, relatable, and understandable for the audience. In-
stead of just presenting raw data and statistics, data narration uses storytelling ele-
ments to bring the data to life and create a meaningful context for the information

being shared.

2.2 Related Work on Automatic Discovery of Knowledge and In-

teractive Learning

Interactive visual data analysis systems have as a primary objective to help business
users to make data-driven decisions. However, there are many obstacles that the
current analysis process needs to override, especially challenges associated with an-
swering decision leading questions, in order to help business users refine validate
hypothesis. The main challenges that the current analysis process face are: the limi-
tation of human working memory and cognitive overload, the difficulty on the scale
of interactive exploratory analysis due to increased size and complexity of data, and
the fact that the business users may struggle with decision making questions because
the suggested solutions may not align with their intuitions.

To address these problems, the authors in [GHG+22] suggest that today’s commercial
tools must provide four functionalities to enable business users to interactively learn
and reason about the relationships (functions) between sets of data attributes thereby
facilitating data-driven decision making. These four functionalities are named Driver
Importance Analysis, Sensitivity Analysis, Goal Inversion Analysis and Constrained
Analysis.

Driver Importance Analysis enables users to implicitly learn functions (models) al-
lowing them to understand the relationships between drivers (input) and KPIs (out-
put) along with the artifacts of these learned relationships. For example, let’s say a
Sales Manager (business user) cares about the Deal Closing rate (KPI) and has in
disposal a dataset with data performed in the past six months, containing columns
with information about activities such as making calls, starting chats, attending meet-
ings, opening marketing emails etc. from previous client-users. The forementioned

column-activities are the drivers (input), while there is a column named: Deal
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Closed? containing a Boolean value (yes or no), from which KPI (output) is derived.
Using the Driver Importance Analysis, the Sales Manager can implicitly learn rela-
tionships between the drivers (activities) and the KPI (Deal closed), such as what
are the top three drivers of deal closing goal. The Driver Importance Analysis is
performed by training machine learning models (from Scikit-learn library) to predict
KPI values. For continuous KPIs, the authors use linear regression models and for
discrete KPIs random forest classifiers. For the linear-regression coefficients and for
the random-forest feature importances, the authors choose the driver importance
values. To ensure that the model’s coefficients are not misleading, the authors verify
the importances using traditional measures such as Shapley, Pearson, and Spearman
rank. The importance values range between -1 and 1 with extremes showing high
negative and positive importance to the KPI respectively while closer to 0 shows low
importance to the KPI.

The second functionality, named Sensitivity Analysis, enables users to dynamically
evaluate relationships for arbitrary driver values and observe the changes in KPI
values. Sensitivity Analysis is performed by making perturbations in the original
dataset, such as setting absolute or percentage perturbation magnitudes, and then,
perturbated KPI is compared with the original KPI (KPI without perturbations). For
example, in continuation with the deal closing rate KPI forementioned scenario, the
Sales Manager found from driver importance analysis that the 3 important prospect
activities are opening marketing emails, renewing contracts and making calls. Now,
the Sales Manager can perform changes in these prospective activities and observe
the effects on deal closing rate. He observes that by increasing 100% the rate of open
marketing emails, the deal closing rate raises by 4.05%, while by increasing 300%
the rate of sending marketing emails, the deal closing rate raises by 5.35% (+1.3%).
Therefore, the company will benefit from encouraging activities that lead prospects
to open marketing emails instead of sending marketing emails.

The third functionality, named Goal Inversion Analysis, enables the users to inter-
actively set goals such as specific target values or optimization objectives (maximiza-
tion or minimization) for the KPIs and observe multiple scenarios on how the driver
values need to change to achieve the desired goals. Goal Inversion Analysis is per-
formed by setting a desired KPI value (maximum, minimum, or target) and running

Bayesian optimizer model (using Scikit-Optimizer’s Bayesian optimizer) to receive
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the driver values that will achieve the desired-specified KPI. For example, the Sales
Manager observes and sets multiple times what prospect activities will increase the
deal closing rate by 75%? So, optimizing the KPI ‘s driver to a 75% target gives
78.38 deal closing rate with high confidence and simultaneously receives the values
of prospect activities that will enable this goal to be achieved.

The fourth functionality, named Constrained Analysis, allows a user to interactively
set conditions over how the learned functions (models) are evaluated or inverted,
enabling users to incorporate their domain knowledge such as business constraints
and common sense to regulate these functions. For example, consider that the sales
manager is under a budget and cannot invest in increasing all the activity values to
optimal ones as proposed by Goal Inversion analysis functionality. So, the Sales
Manager sets constraints to the minimum and/or maximum value, constraining the
range value of some prospect activities, (let’s say: 5%-10% increasing on open mar-
keting emails) and perform goal inversion analysis that satisfy these constraints. On
specifying these constraints, and performing goal inversion analysis, the Sales Man-
ager finds that the maximal deal closing rate that can be achieved is about 46%
which is still an uplift of about 4 from the original deal closing rate and is feasible
for the company.

To this end, in the study [GHG+22], the authors created SYSTEMD, an interactive
visual data analysis system enabling business users to experiment with the data by
asking what-if questions (performing the forementioned functionalities). The authors
evaluated the system through three business use cases: marketing mix modeling,
customer retention analysis, and deal closing analysis, and report on feedback from
multiple business users. Overall, business users found the SYSTEMD functionalities
highly useful for quick testing and validation of their hypotheses around their KPIs

of interest, clearly addressing their unmet analysis needs.

Exploratory Data Analysis (EDA) emphasizes in gaining knowledge of data and is
a primary step in facilitating further in-depth analysis. In recent years, automatic
EDA, which focuses on automatically discovering pieces of knowledge in the form
of interesting data patterns, has been an emerging topic.

However, the knowledge conveyed by the suggested data patterns of EDA is dis-

jointed or lacks organization. Therefore, it is difficult for users to gain structured
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knowledge (i.e., knowledge of how facts or concepts are organized by certain rela-
tions). As the number of suggested patterns grows, these stand-alone patterns are
likely to motivate users to conduct follow-up analysis. This in turn hinders the sug-
gested patterns being effectively utilized to facilitate EDA.

In the study [MDHZ21], the authors propose a structured representation of
knowledge extracted from multidimensional data, named Metalnsight, which aims
to facilitate EDA effectively. Specifically, the authors propose a novel formulation of
basic data patterns to capture essential characteristics of raw data distribution for
knowledge extraction. For example, the “Outstand” data pattern is illustrated as a
subspace with the highest aggregate values, “Trend” as an upward or downward
trend, “Outlier” as position of outlier data points, “Seasonality” as length of season-
ality period and “Unimodality” as position of extreme point of a U-shaped valley or
peak shape, etc. Furthermore, because of the multiple data patterns that exist in data
science field, the authors provide in their proposed work the capability of addition
of custom-user data patterns in the basic data patterns.

For better understanding of their work, the authors in [MDHZ21] provide three basic
definitions for what is Subspace, Sibling group and Breakdown. The authors define
a subspace s = {si, ..., sa} as a size-d set of filters on each dimension of the multidi-
mensional dataset, where si € dom(coli) U { * }, where si={ * } refers to “any” value in
dimension with index i of s (i.e., empty filter), and dom(coli) refers to available
values for column with index i. For example, a subspace can be {City: Los Angeles,
House Style: *, Month: *}. As a Sibling group, the authors define the subspaces that
differ from each other in one non-empty filter, for example {City: Los Angeles, April}
and {City: Yuba, April}. Last, the authors define a Breakdown dimension as the
dimension where group by operator is performed. The Result of the application of
a breakdown dimension in a subspace is the generation of a sibling group. For
example, when we break down {Los Angeles, Month: *} by dimension “Month”, we
obtain a sibling group like: {{Los Angeles, Jan}, {{Los Angeles, Feb}, ...}.

Using the three above definitions, the authors define a Data Scope, ds, as a tuple
containing a subspace, a breakdown dimension, and a measure (= a numerical di-
mension of the dataset where an aggregation operator can be performed). To facili-
tate the data pattern generation of the Metalnsight Algorithm, first, a user must

provide a Data Scope from the dataset. For example, ds: {{Los Angeles, Month: *,
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..., Sales: *}, Month, SUM(Sales)}, is a data scope with subspace = {Los Angeles,
Month: *, ..., Sales: *}, breakdown dimension = Month and a measure= SUM(Sales).
Then, based on the user’s determined data scope, a query is constructed internally.
For the above example: “SELECT Month, SUM(Sales) FROM DATASET WHERE
City= “Los Angeles” GROUP BY Month” is the constructed query. After the execu-
tion of the query, a sibling group is generated automatically. Then, follows the iden-
tification of basic predefined data patterns, constrained by the type of breakdown
dimension (for example for Month: Temporal), and a highlight or highlights are
generated. For the above example, let’s say the type of highlight that was discovered
is “Unimodality” and the point that was observed the extreme point is the month
“April”. The forementioned result can be interpreted in natural language as “Los
Angeles has minimum Sales in April”.

After the discovery of a highlight/basic data pattern for a given data scope, the next
step is the creation of Homogeneous Data Scope (HDS). An HDS for a given data
scope, is a set of data scopes and is generated through Subspace Extending or Meas-
ure Extending or Breakdown Extending strategy. For example, for the previous
scenario: “Sales in Los Angeles”, with Subspace Extending we obtain data scopes
that correspond to sales in different cities over months. With Measure Extending,
we have a set of data scopes with different measures (e.g., SUM(Sales), SUM(Profits),
AVG (Profit Rate)) in Los Angeles over Months. Finally, with Breakdown Extending,
we obtain a set of time series of sales in Los Angeles with different granularities
(e.g., “Day”, “Week”, “Month”).

After the generation of the Homogeneous Data Scope HDS, the next steps are the
generation of Homogenous Data Pattern within HDS and furthermore the categoriz-
ing of basic data patterns into commonness(es) and exceptions. Homogenous Data
Pattern is a set of type-induced data patterns derived from an HDS. For example,
let’s say by Subspace Extending, we obtain data patterns that are identical (Month
and SUM(Sales)) and only differ in the subspace (different city), so they form and
HDS but in addition to this fact, it seems from the charts, that all data patterns within
HDS also contain the same generated type of Highlight that is Unimodality. So fi-
nally, the form an HDP. After that, data patterns within the same HDP are catego-
rized into commonness sets, and exception set. Two data patterns or more, belong

to the same commonness set if they have the exact same highlight (meaning they
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have the same highlight type and the same value position of the highlight). For
example, let’s say that three cities of California, have minimum SUM(Sales) in April,
while two other cities of California, have minimum SUM(Sales) in October. Then, we
have two commonness sets, one with cardinality 3 and the other with cardinality 2.
Exceptions denote the data patterns that do not belong to any commonness set. For
example, we have only one city with minimum SUM(Sales) in July, then this data
pattern belongs to the exception set.

Finally, for the definition of a Metalnsight within the same HDP, the authors provide
the extracted commonness sets and the extracted exceptions set. This way, the Me-
talnsight concretizes knowledge obtained by induction and validation processes
which are typically performed in EDA.

Furthermore, the authors in order to automatically discover high-quality Metaln-
sights, propose a novel scoring function to quantify the usefulness of Metalnsights,
as an effective mining procedure and a ranking algorithm. The evaluation of their
proposed work was conducted on both real-world datasets and user studies, demon-

strating the effectiveness and efficiency of Metalnsight in facilitating EDA.
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CHAPTER 3

DATA STORIES FOR CHART QUERIES

3.1 Problem Definition and Method Overview
3.2 Extending Delian Cubes for Chart-Query Execution
3.3 Validation of the System

In this chapter, we first address the problem definition and resolution by explaining
the purpose of the DelianCubeEngine software, the necessary programming tools for
its deployment, and presenting our new method overview. Next, we describe step-
by-step process for Chart-Query execution. Finally, we describe planned validation

tests for verifying the system’s performance and accuracy.

3.1 Problem Definition and Method Overview

3.1.1 The Delian Cubes Query Engine

DelianCubeEngine [DeCe18] is an OLAP query answering system. More specifically,
the system provides a connection to a database, receives as input specially formatted
queries designed for the system, cube queries, and returns the query results in tab-
delimited text files.

The format of the input queries, can be either conventional query (queries defined
with CubeName, Name, Aggrfunc, Measure, Gamma and Sigma, standard words) or nat-
ural language query (queries expressed in a language that resembles the human
natural language, i.e., “Describe the avg of loan amount per account_dim.district_name
and date_dim.month for account_dim.region is ‘north Moravia’ as LoanQuery11_S1_CG-

Pril”).
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In addition to the various forms that the system can receive as input query, it can
furthermore process the query results, producing statistical models (model package),
and furthermore analyze the query itself, producing additional relative queries that
may offer important insights for the analysis of the input data (analyze package).
We detail cube queries and models in Section 3.1.4 and the system architecture in

the subsequent sections.

3.1.2 Problem Definition

The goal of this Thesis is to explore the possibility of (a) defining a query as a chart
to be constructed, and (b) to enrich the result of the query with (b1) results of
auxiliary queries and (b2) highlights from model extraction algorithms, applied over
the query results. The entire result is wrapped as a data story composed of text and
graphical representations summarizing the phenomena that have been detected via
the model extraction algorithms.

A side effect of the effort is the addition of the graphical visualization via charts for
the results of the input query and for the results of the additional relative queries

produced in the DelianCubes query engine.

3.1.3 Method Overview

The main steps of the solution of the problem are the following:

1. First, the analyst specifies the intended cube query as a chart, which can be a
bar-chart, line-chart or scatter-plot. This means that practically, the query will
have two grouper attributes (dimension levels) that will be visualized in the
two axes of the chart, and, consequently an aggregated measure. Filters are
also parts of the specification

2. Second, in order to analyze the results of the original query, auxiliary queries
are automatically generated, in order to contextualize and assess the results of
the original query.

3. The queries are executed by Delian Cubes over the underlying data cube, and
their results are produced.

4. The results can be immediately visualized, but most importantly, they are
passed through a set of pattern checkers / highlight extractors where they are

checked for interesting properties that they might hold. Such highlights

20



include the existence of trend, unimodality, bimodality in time-series query
results (where one grouper is time), the existence of a strong linearity in the
results as demonstrated by a strong linear regression score, and others.

5. The highlights of the original query are contrasted to the ones of the auxiliary
ones, to identify commonalities or exceptions in them.

6. A story maker combines charts, highlights and the text automatically gener-

ated for them in a data story presented to the user.
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Figure 3.1 Method Overview

3.1.4 Queries and Models
A cube query is a type of query used in OLAP (Online Analytical Processing) systems

to retrieve and manipulate data stored in an OLAP data cube.

Before being able to handle queries, a query answering system must have the data
cubes registered by the analyst. In our Delian query server, a Data cube can be
parsed and defined via input files in the form of .ini file. However, to create a data

cube, we need to define the dimensions and the hierarchies of the cube following
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the Delian’s cube grammar and syntax (CubeSqlLexer, CubeSqParser and CubeSql.g).

An example of a valid .ini file is shown in Figure 3.2.

product category: Text DATASOURCE product_category
JWITH ID: p;cduct_categcry AND DESCRIPTICN: product_category,
CE TE LEVEL RLL WITH ATTRIBUTES{

all product: Text DATASQOURCE all product
JWITH I_D: all_product AND DESCRIFTICN: all_product

1
HIERRRCHY product_only > product_name > product_subcategory = product_category > ALL
DATASOURCE product;|

CRERTE DIMENSION store_dim
LIST OF L LS {
CREATE LEVEL store_only WITH RTTRIBUTES{
stors id: Number DRTASCURCE store_id,
stom:name: Text DATASOURCE store_name
store_id AWD DESCRIPTICH: store_name,
EVEL store_city WITH RTTRIBUTES{
ity: Text DATRSOURCE store_city
store_city RND DESCRIPTICON: store_city,
VEL store_state WITH ATTRIBUTES({
store state: Text DATASOURCE store_state
} WITH 1'5_: store_state RND DESCRIPTICN: store state,
CREATE LEVEL store_country WITH RTTRIBUTES{
store country: Text DATASQOURCE store_country
} WITH ID: store_country RND SCRIPTION: store_country,
CREATE LEVEL ALL WITH ATTRIBUTES({
211 store: Text DRTASOURCE all store
JWITH ID: all store RND DESCRIPTION: all store

1
HIERRRCHY store_only > store_city > store_state > store_country > ALL
DATRSOURCE store;

CREATE DIMENSION date_dim
LIST OF LEVELS {
CREARTE LEVEL date_only WITH ATTRIBUTES{
tims id: Number DATASCOURCE time_id,
the date: Date DATASOURCE the_date
} WITH _1'5: time_id AND DESCRIFTICH: the_date,
CREATE LEVEL year and month WITH ATTRIBUTES{
year and month: Text DATASOURCE year_ and month
} WITHE ID: year_and month AND DESCRIFTION: year_and month,
CE TE LEVEL year_ guarter WITH ATTRIBUTES{
year guarter: Text DATASOURCE year gquarter
} WITH ID: year_guarter RND DESCRIPTION: year guarter,
CREARTE LEVEL year WITH ATTRIBUTES{
year: Number DATASCOURCE the_year
} WITH ID: the_year and DESCRIPTION: the_year,
CE TE LEVEL RLL WITH ATTRIBUTES{
all date: Text DATASOURCE all_date

} WITHE ID: all_date RND DESCRIPTICN: all_date

1
HIERRRCHY date only > year and month > year guarter > year > ALL
DRTRSOURCE date;

CRERTE CUBE sales_cube
DATASOURCE sales

MERSUE
REF]

sts AT sales.store_sales

CES DIMENSICON product_dim AT sales.product_id,
store_dim AT sales.store_id,
date_dim AT sales.time id;

Figure 3.2 Configuration File for a data cube

A cube query in the Delian cube server is defined as follows:

22



e CubeName: Name of the cube

e Name: Name for the cube query

e AggrFunc: Aggregation Function € {SUM, COUNT, AVG, MIN, MAX]}

e Measure: Measure, a fact column of the cube

e Gamma: Grouper levels -- columns used in GROUP BY SQL query

e Sigma: A conjunction of atomic filters of the form Level = value, mapped to
the respective atoms in the WHERE clause of an SQL query.

The notation that we use for cube queries is as follows

1= ”D1(.lfig,(DA2L2 (@) ¢ /\Di'Li s

where C is the cube name, o, is the sigma selection condition, M is the measure, agg
is the aggregate function applied to it, and v is the group-by operator with the two
grouper levels as subscripts and the aggregated measure as superscript.
The semantics of a cube query in SQL are as follows:

SELECT D1.L1, D2.1.2, Agg(M)

FROM C

WHERE 0,,(C)

GROUP BY ¥p111p212
An example of a Delian cube query for the corresponding cube sales_cube:

CubeName: sales

Name: SalesQuery11_S1_CG-Prtl

AggrFunc: Avg

Measure: store_sales

Gamma: date_dim.Ivl2, store_dim.lvl2

Sigma: date_dim.lvl3 = ‘1997, store_dim.Ilvl3= ‘USA’.

A particularity of our chart-queries extension to Delian Cubes is that once a cube
query has been issued, we are interested to find auxiliary queries that contextualize
and assess the results of the original query. An auxiliary query is a query that is
semantically related to the original query, but comes with some planned mutation
that allows to complement the original results with similar data — for example, we
can retain the same Measure and aggregation function but change the filter condi-

tions to produce “peer” queries that cover different parts of the data space than the
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original one, or/and, to change the groupers in order to attain coarser or more de-
tailed information.
In the context of this master thesis, auxiliary queries are sibling queries, that derive
from the original with “relaxation” of its filter conditions. First, we formalize the
construction of sibling queries. A sibling query is produced in the following way:
For every atomic filter condition of the sigma selection condition say D.L = v, we
(a) change the filter to D.parent(L) = parent(v)
(b) replace one of the groupers with D.L
(c) keep the other conditions and the other grouper unchanged.
This practically means that for every atom, two sibling queries are generated, one

for each grouper that is replaced with D.L.

We give an example to illustrate the concept. Assume the original query with name
SalesQuery11_S1_CG-Prtl. The query has two atomic filter conditions: date_dim.lvl3
= ‘1997 and store_dim.lvl2 = ‘USA’. The hierarchy of the dimension store_dim
(Figure 3.2) is defined as:

store_only > store_city > store_state > store_country > ALL.
The semantics behind the hierarchy is that a store_only belongs to a store_city, a
store_city belongs to a store_state and a store_state belongs to a store_country and a

store_country to all.

An example of auxiliary query produced from the original is depicted in the follow-
ing table. For date_dim, the level year is changed to the parent level that belongs to
“ALL” and simultaneously the grouper of date_dim becomes 1vl3 = year, that was

the filter condition level from the original.

CubeName: sales CubeName: sales

Name: SalesQuery11_S1_CG-Prtl Name: SalesQuery12_S1_CG-Prtl
AggrFunc: Avg AggrFunc: Avg

Measure: store_sales Measure: store_sales

Gamma: date_dim.lvl2, store_dim.lvl2 | Gamma: date_dim.lvl3, store_dim.lvl2

Sigma: date_dim.lvl3 =‘1997", Sigma: date_dim.lvl4 = ‘ALL’,
store_dim.lvl3= ‘USA’. store_dim.lvl3= ‘USA’.
Original query Sibling Query
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We consider different query classes in our setup. Here we list the four more relevant

to this thesis:

The most general query class concerns simple cube queries: Simple cube que-
ries are the most general case of cube queries with any levels of different
dimensions as groupers, and no particular relationship of filters with group-
ers.

Time-series cube queries, also referred to as timeseries: for this query class,
the first grouper (obligatorily) concerns a level of a time-related dimension
(e.g., month, year, decade etc.). This allows the result to be a timeseries of
aggregate measurements for the second grouper (and, thus visualized as a
line-chart, with time in the horizontal axis). The relationship of groupers with

filters can be arbitrary.

_ ., aggM) ) T =
1T=Yr 1 p2.12 ("‘P(C))"”' /\D“Ll =l

Single grouper pinned queries: in this case, the filter includes a selection filter
for a grouper. Thus, assuming a grouper of the form D.L#, for dimension D
and level L&, this query class also includes a filter of the form D.LS = wvalue,
for the same dimension and a level L* which is higher or equal to L8. If L is
identical to L&, then the query produces a single value for the respective
grouper.

A time-series where the second grouper has been pinned to a single value is
a Unique Time-series Query. In other words, the first grouper concerns time,
and the second grouper includes a filter at the same level as the grouper,
resulting in a single timeseries as the query result.

_., aggM) B
1= VT-L,DZ.LZ (Uq,(C)),(p 3D,L, =v

Apart from query classes in our setup, we determine mathematical models that aim

to extract interesting phenomena found in results for both the original and auxiliary

queries. We have implemented the following models only for Time-series cube que-

ries presented above with their names in Delian:

AbsoluteTrendModel: Model that finds if timeseries is absolutely monoton-

ically increasing (uptrend) or decreasing (downtrend) or none of them.
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ContributorModel: Model that finds if timeseries has a time x-axis value that
contributes > 50% (Mega contributor) in the produced results.
KendallBasedModel: Model that finds if timeseries is monotonically increas-
ing(uptrend) or decreasing(downtrend) based on the Kendall tau coefficient.
In this thesis, we use the Kendall coefficient from Apache Commons.
ModalityModel: Unimodality or Bimodality finder for the timeseries. A
timeseries is considered unimodal when it forms a U-shaped valley or peak
shape. A timeseries is considered bimodal A when it has two distinct peaks
or modes in its distribution

RegressionModel: Model that performs Linear Regression using Sim-

pleRegression provided by Apache Common library.

To determine the importance of results of the model we determined a score function

trom each, producing a score in the range [-1,1]:

AbsoluteTrendModel score:

—1, downtrend
score = 0, no trend
1, uptrend

ContributorModel score: The score is computed as the ratio of the maximum
measure of grouperl values to the sum of measures across all grouper1 in-
stances.
KendallBasedModel score: score = abs(tau) where tau is Kendall’s coefficient.
ModalityModel score:
To compute the score for the timeseries we follow the above steps:

o Divide the series into segments from the start to each point where the

sign of y changes.
o For each segment, if the initial or final y-values are negative, deter-

mine the offset by taking the absolute value of the minimum of the

|maxValue|— |minValue|)

initial and final y-values ( score =
|maxValue|

o We adjust values by adding the offset plus one to both the initial and
tinal y-values to make them positive.
o Use the adjusted positive values to compute the score for segment us-

ing the standard formula applicable for positive values.
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o Finally, we compute the score for the timeseries by calculating the av-

erage of the scores from all segments:

(ﬁ SN-1score(segment), where N the number of segments).

e RegressionModel score: score = 1- MSE (Mean Square Error) produced from

Linear Regression provided by Simple Regression Apache Common Library.

Furthermore, some models may not offer some important info (highlights) that
shouldn’t be concluded to the final produced story. For that reason, we filter the
highlights according to their score. As it was mentioned before, the score range
between [-1,1]. Some negative scores are important (for example downtrend) and for
that reason we consider the absolute value of every score. We determined a thresh-
old 6 (in our deliberations, § = 0.5) above which a highlight is important.

The formula for highlight selection is described below:

important, score > 6

Highlight = {unimportant score < 0

3.1.5 Example of Usage
The execution process of our work starts when a user selects from the MainApp
window, in the horizontal menu, the option “Work”. Then, the user selects the option

“Run Chart Query” from the window that appears (Figure ‘3.3D.

&1 Delian Cubes Client Application - O b

Connect Help

ABBISEIEN S G ey

Run Stored Queries

Run Chart Query

Close

Figure 3.3 Addition of “Run Chart Query” in initial window of DelianCube Appli-
cation

After clicking the option “Run Chart Query”, a new window pops up with name

“ChartQueryEditor”. The user may enter the necessary text fields (Cube name, Data
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series Grouper 1, Data series Grouper 2, Measure Column, Filter Column name and
Filter Column value), selects Aggregation Function and specify Chart (available op-
tions: Bar chart, Scatter Plot and Line Chart) and finally click the button “Run
Query” (Figure 3.4).

B ' Chart Query Editor — O X

Define Groupers:

Data Series Grouper 1 (x-axis): Data Series Grouper 2:

Define Measure:

Measure Column (y-axis): Select Aggregation Function: | pqax -
Define Filter:
Filter Column Name: Filter Column Value:

Add Additional Filter

Specify Chart: Bar Chart
Scatter Plot
Line Chart

Run Query

Figure 3.4 Chart Query Editor window

The process of executing the user request is as follows. First, the system converts the
user’s input (text fields and selected Aggregation Function) to an “analyze query”.
Then, the analyze query with the selected chart option are packed into a “chart
request object” and sent to the back end of the Delian Cubes system.

Subsequently, the chart request object is further processed in order to produce aux-
iliary queries (specifically sibling queries) via the ANALYZE package. Then, the
results of produced queries, are passed through model extraction algorithms to ex-
tract highlights from the data. Finally, (a) graphical visualizations of the original and
the auxiliary queries are returned to the user, (b) a report (datastory) is produced

in the folder OutputFiles of Delian project, containing produced charts along with
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extracted highlights and if the original query produced a Unique Time-series Query,
the report contains extra a comparison between the original query ‘s highlights and
its siblings. A very naive workflow of how timeseries is processed and in the case

that is Time-series and in the case that is a unique Time-series is presented in Figure

3.5.

transformed
in Cube Query

=>

‘ Yes

Figure 3.5 Workflow for handling Timeseries type.

To make the execution process more understandable, the following example is pro-
vided [from now on will be referred as example 1]. Consider the following scenario,
that the user gives the following input in the ChartQueryEditor window (Figure
3.6):
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B Chart Query Editor - [m| X

Cube Name: | |5,

Define Groupers:

Data Series Grouper 1 (x-axis): | manth Data Series Grouper 2! | dictrict name

Define Measure:

Measure Column (y-axisk | smount Select Aggregation Function: | iy -

Define Filter:

Filter Column Mame: year Filter Column Value: | 1ggg

Add Additional Filter

Additional Filter Column Na... Additional Filter Column Val..

region Prague

Specify Chart: (@ Bar Chart
Scatter Plot

Line Chart

Run Query

Figure 3.6 Example of user Input in ChartQueryEditor window

The user’s input is converted to the following analyze query: “ANALYZE MIN
(amount) FROM loan FOR year = ‘1998 AND FOR region = ‘Prague’ GROUP BY
month, district_name AS analyze_query”. This is extended with the visualization
type via the following chart request object: cr = < “ANALYZE MIN (amount) FROM
loan FOR year = ‘1998° AND FOR region = ‘Prague’ GROUP BY month, dis-

trict_name AS analyze_query”, “Bar Chart”>.

cubeName

analyze_query- i amount month, Year BarChart
AnalyzeBaseQuery district_name ="1998,
re-
gion="Pra-
gue’

Table 3.1.5: Base Cube Query of Example 1
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The queries that are produced through the analyze operator (package that already
exists in Delian) with the addition of chart specification are the following:
i.  The basic cube query resulting from the direct translation.

ii.  The sibling queries of the original one

cubeName Gamma Sigma Chart

loan analyze_query- min amount month, year =1998’, Bar-
AnalyzeSiblingQuery_ region region="ALL’ Chart
loan Analyze_query-Ana- min amount year, Year ="ALL’, Bar-
lyzeSiblingQuery_ dis- Region="Pra- Chart
trict_name gue’

Table 3.1.6 Sibling Queries of Example 1.

Afterwards, the results from the execution of the generated Cube Queries, as well as
details about their visualization as charts, are saved to a markdown file (md) in the
OutputFiles folder with the name File-ChartQueries_Report.md.

After the creation of the file, we parse the file to take the results of the queries and
pass through model extraction algorithms to extract highlights. Then, the highlights
are reported to the File-ChartQueries_Report.md (as the result is a multiple series).
Finally, the report File-ChartQueries_Report.md is again parsed to create the graph
visualizations of the original and the auxiliary queries. Furthermore, a new window
with the models that take place and the extracted highlights from each model and
query is presented, and finally a report (datastory) with name report.html is created
automatically in outputFolder. The pop-up windows for chart queries for example

1 is presented (figure 3.7) and a preview of the report in figure 3.8.

31




ot
sam
. .

woce

Bar Chart 1

Bar Chart i
T Type: Sibling
:
M
H
i
I |
e e mws wek wwe e il
Time
i s | Wi Pk
1 ModelFor Chart A ey Queries - @ %
Bar Chart 2 Model Type Resutt
Type: Sibling Kendalt ased Tend [ [ S——
Kendatt ased Trend Siing? . Proha ha no e rend.
Kendal ased Trend Siing2 Prague has o clar rend
contlBohers has o ea verd.
rclue Tend ssie
‘ sbschte Terd Siing! i, P hs no ceae end
" |1 Aonchte Terd Sting2 ot Merevi:orth Morarishs o e rend
orth Bohemia: nrth Boharmia has o lear tren.
A =2l conalBoema:comal Bohea ha 10 e rend
| | d ot B south Scham has o cea e
I | | Al et Boherie: et Bohersahes i cwr e
J L I e east Bohemia eact Bshamia ha o cleartrend.
e H s Mosaie st Moavie s 0 cles e
i3 F P OB OB OB O3 O§ B @ Hleoss hace M. P have o cleae Modeiy.
H E & & : L
= P ety saing! i ot e o s Mosslty.
modatty siing2 s o clear sl
I o Morsvi [l nort Baberss [l centro Sohemia [l west Bobemis ! s s cleae Mocly
oot soherss. [ south oo [l ewtsohers [ Praue el Bohers hos o ior Moda

Figure 3.7 Chart Visualizations and models windows

Chart Queries Report:
The results for the original query and auxiliary queries are summarized below.
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Figure 3.8 Preview of Report.html
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3.2 Extending Delian Cubes for Chart-Query Execution

The implementation of the chart query in Delian is described below, based on each

stage of preprocessing and execution, until the extraction of the results.

3.2.1 Necessary programming tools for deployment of DelianCu-
beEngine

The project was developed within the Eclipse environment, with its core code written

in Java 1.8, while uses maven 3.8.1 as a building tool for its deployment. JavaFX

graphic packages are utilized for creating graphical interfaces and representations.

The system supports a MySQL 8.0.28 database.

3.2.2 Conversion of User Input to Chart Request Object

The class ChartQueryEditorController.java is responsible for handling the user ‘s
input fields and converting them into an expression that can be parsed and executed
from the AnalyzeOperator in the server. More specifically, method constructQuery

in the file ChartQueryEditorController.java constructs the following expression:

ANALYZE <aggrfunc>(<measure>) FROM <cubeName> FOR <list of atomic fil-
ters> GROUP BY <grouperi, grouper2> AS first_query

Below is described how the method works in reference to the figure 3.1.4:

The field aggrfunc, is the “Select Aggregation Function” option chooser with availa-
ble options {MIN, MAX, AVG, SUM}. The measure field is the text field “Measure
Column(y-axis)”, the cubeName is the text field “Cube Name”. The list of atomic
tields is created by determine the first atomic field in the input text fields “Filter
Column Name” and “Filter Column Value”. Any additional atomic field can be
added, by clicking the button “Add Additional Filter” and inserting input in the
fields “Additional Column Name” and “Additional Column Value”. The fields
groupery, groupers are determined by the text fields “Data series grouper 1(x-axis)”
and the “Data series grouper 2”. Moreover, it is worth noting that the ’analyze’
package can compute an expression for more than 2 groupers. However, for chart
design purposes in the two-dimensional space, we are restricted to specifying only 2

groupers. Finally, the “Specify chart” radio button is used to save the selected option
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for chart with available options {Bar chart, Scatter plot, Line Chart} and handler
method is the plot Selected.
The number of input parameters in the Chart Query Editor window required to

execute a chart query is presented in the table below:

Input Parameter Corresponding ~ Number Of Input Pa- Range Value of In-

Name Analyze Expres- rameter put Parameter

sion Parameter

‘Select Aggregation aggrfunc {AVG, MIN, MAX,
Function’ SUM}
‘Measure Column (y- measure 1 Any valid word (

axis)’ numeric column in
DB)
‘Cube Name’ cubeName 1 Any valid word
(cube schema in
DB)
‘Filter Column Name’ list of atomic 1..% Any valid pair
‘Filter Column Value’ filters tield-value(column
and value contained
in column in DB)
‘Data Series Grouper list of groupers 2 grouper; (Date col-
1 (x-axis)’ (grouperi, umn)
Data Series Grouper 2 groupers) groupers; (Any col-
umn)
‘Specity chart’ - 1 {Bar chart, Scatter
plot, Line Chart }

Table 3.2.1 Input Parameters of ChartQueryEditor

For the creation of the chart and the computation of extracted models we need to
transfer the analyze expression and the chart selected option from client to server in
a more compact way. For this purpose, a new object “ChartRequest” has been cre-

ated.
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3.2.3 Architecture of Chart Request Object (chartRequestManage-

ment package)

As mentioned in the previous paragraph, the chart request object was created to
transfer information from the client package to the server package in a more compact
manner. In the future, the ability to create more complex chart requests could be
added, containing additional parameters beyond the currently provided chart selec-
tion and query (e.g., allowing users to select specific statistical models they want to
see). For this purpose, the architecture of chartRequestManagement package uses
the Builder design pattern. Secondarily, the Factory design pattern is used, to make
easier the addition of “new” chartRequestBuilders.

The chartRequestManagement package contains the classes ChartRequest, Char-
tRequestFactory, ChartRequestBuilderImpl and the interface IChartRequestBuilder.

The ChartRequest class is the object/entity that contains the user’ query and selected
chart option. Furthermore, it implements the Serializable Interface as the Delian
project uses RMI (Remote Method Invocation) server, and because of that it can send
and accept only serializable objects. The ChartRequestFactory creates IChartRequest-
Builder objects, practically is responsible for creating the different Builders that will
create differently the chart requests. The ChartRequestBuilderImpl is the concrete
and only one implementation of the IChartRequestBuilder for the time being. Finally,
the interface IChartRequestBuilder functions as a contract that all concrete Builders
must implement.

The overall architecture of chartRequestManagement package with the addition of
client’s class ChartQueryEditorController in the form of UML diagram is demon-

strated in Figure 3.9.
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client.gui_controllers

o cubeMameTextField: TextField
o dataSeries 1: TextField
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o y_axis: TextField
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o w hereColumn: TextField
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o group: ToggleGroup

o barchart: RadioButton

v scafterplot: RadioButton
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@ executeAndDis play ChartQuery{ChartRequest)int
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Figure 3.9 Overall architecture of chartRequestManagement
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3.2.4 Method answerCubeQueryF romChartRequest in IMainEngine

and SessionQueryProcessorEngine.

From ChartQueryEditorController (client class) the ChartRequest object is transferred
via the call of method answerCubeQueryFromChartRequest. Like all existing meth-
ods that make a call from the client to server in Delian, the method answer-
CubeQueryFromChartRequest must also be declared in the interface IMainEngine,
while its implementation is found in the SessionQueryProcessorEngine, a class that
implements the interface IMainEngine. The method accepts a ChartRequest param-
eter and returns a ResultFileMetadata object (Delian ‘s exististing class that imple-
ments Serializable interface).

Practically, the method answerCubeQueryFromChartRequest sequentially performs
four tasks. At first, the method initializes a connection between SessionQueryProces-
sor and ChartManager. Secondly, initializes the connection between between Chart-
Manager and AnalyzeOperator. The connection with AnalyzeOperator is required,
because the AnalyzeOperator will process the analyze expression (query) and execute
to provide results. After that, the method initializes the ChartManager ‘s fields with
the necessary information (type and query) provided by ChartRequest parameter.
Finally, method generates and executes the chartQueries via the calls of ChartMan-

ager ‘s methods generateQueries and executeQueries.

3.2.5 Reporting of ChartQueries in File Chart Queries Report.md

With the completion of field initialization, all the information necessary to generate
and execute queries by the Analyzer is available. Subsequently, these queries can be
reported in the Chart_Queries_Report.md file. Initially ChartManager’s method gen-
erateQueries(), calls the method execute() of AnalyzeOperator that will parse the
expression-query and produce analyze-queries of 3 types basic, sibling and drill-
down. In the master thesis, we are only interested in the types basic and sibling. So,
we remove from ChartManager ‘s producedQueries list the drill-down queries. The

reason for that, is that we want to be able to extract conclusions for phenomena in
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the same level of detail with the original basic. The drill-down queries provide a
view to a more increased level of detail but not in the same level with the original.
After that, ChartManager calls the method reportChartQueriesDetails() of the Visu-
alizationManager class. Method reportChartQueriesDetails() is the main Method of
VisualizationManager, taking as parameters a list of ChartQueries (produced By An-
alyzer operator) and the user’s selected type chart, and is responsible for reporting
in file Chart_Queries_Report.md. The method starts with initializing a FileWriter
object (java.io.FileWriter) in order to print the results in a file. To initialize the
FileWritter, we must determine a filename and a filepath. For the time being, file-
name and filepath are fixed with values: File-ChartQueries_Report.md and Output-
Files.
For every query result produced we print in File-ChartQueries_Report.md the fol-
lowing info:

e Visualization: default or small multiplies.

e Type: Base or Sibling.

e Details: -/ what changed in comparison with the base query.

e An array with 3 columns: Grouper 1, Grouper 2, Measure containing the

results.
o X_axis values: the distinct values for x_axis (date values of grouper 1).

e Series: the distinct categories from Grouper 2.

Next, we break down the utility of every piece of info in file:

Visualization with value default, means that for the different categories contained
in series, one chart will be created. Visualization with value small multiplies means
that will be created one figure with many small charts, one for each distinct category
containing in series. Method decideVisualizationType() of VisualizationManager is
responsible for determining the value(default or small multiplies). The method re-
turns “small multiplies” if the number of distinct categories in array is greater than
5, else “default”. The number 5 may seem arbitrary and is indeed, but it was decided
for the quicker and effective processing of results from human eye.

Type with value basic or sibling as these are the two types of analyze queries that

we process. The type is required for the title of every chart.
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Details with value an empty string for basic query or details for what changed in
tilter value and grouper for the produced sibling query. Details are required for
determining for every additional chart query produced (sibling) what has changed
in conditions (filters and groupers), in comparison to basic query.

An array with 3 columns: Grouper 1, Grouper 2, Measure with dimension (number
of results produced) X 3. The results produced for every query. Containing a point
represented in x-axis from value in Grouper! column and in y-axis from Measure
column. The Grouper 2 is used for the group of values in a category.

X_axis values with value the distinct date values for Grouper 1. For laying the x-
axis values in graph.

Series: the distinct categories from Grouper 2. For keeping the info of how many

distinct categories has the produced chart.

3.2.6 Method answerCubeQueryF romChartRequest AndReturnAsChar-

tResponse in IMainEngine and SessionQueryProcessorEngine.

From ChartQueryEditorController (client class) the ChartRequest object is transferred
via the call of method answerCubeQueryFromChartRequestAndReturnAsChar-
tResponse in the case that the result is a unique time-series. Like the method an-
swerCubeQueryFromChartRequest must also be declared in the interface IMainEn-
gine, while its implementation is found in the SessionQueryProcessorEngine, a class
that implements the interface IMainEngine. The method accepts a ChartRequest pa-
rameter and returns a ChartResponse object (Delian ‘s new class that implements
Serializable interface and is saved under path chartManagement/utils).

Practically, the method answerCubeQueryFromChartRequestAndReturnAsChar-
tResponse sequentially performs the same four tasks with answerCubeQueryFrom-
ChartRequest. Their difference is that answerCubeQueryFromChartRequest reports
the necessary info for chart visualizations, models e.t.c into an .md file and returns
the ResultFileMetadata object, which contains the location and the name of the file,
to the client but answerCubeQueryFromChartRequestAndReturnAsChartResponse
returns immediately to the client a new serializable Object ChartResponse containing
the necessary info chart visualizations, models and scores of highlights.

Furthermore, ChartResponse class contains 2 fields:
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e List of ChartVisModel items
e List of ChartScoreModel items.
ChartVisModel class is a helper class, containing all the necessary info for the chart
visualization of the query in the client. More specifically:
e List of DataPoint items: helper class to hold the information of the triple
<grouperl, grouper2, measure> for every point of chart.
e ChartVisType: to hold the chart type that was selected in ChartQueryEditor
window
e QueryType: to hold the type of query Base or Sibling; (where i is index num-
ber in the list of siblings)
o List of x_axis_values: to hold the x_axis values
¢ SQLexpression: to hold the cube query’s corresponding sql expression
ChartScoreModel class is a helper class, containing all the necessary info for the score
of extraction algorithm model in the client. More specifically:
e Score: a double value showing how important a highlight is.
¢ Name: the name of the model
e ChartVisModel: The chartVisModel object that belongs to.
e Result: A string result that contains the result of the extraction algorithm

model.

3.2.7 Computation And Reporting of Models for ChartQueries

After reporting of chartQueries in the file File-ChartQueries_Report.md (for multiple
time-series) or creating the list of ChartVisModel via the call reportChartQue-
ryDetailsForChartResponse in VisualizationManager (for unique-timeseries), the
ChartManager calls the suitable method of ModelManager class.

For (multiple time-series) ChartManager calls the method reportModelsForChart-
Type. The method starts with initializing a FileWriter object to print the results
extracted from models in the file File-ChartQueries_Report.md. The result of every
model is computed with the call of compute method, that returns 0 if it has success-
fully parsed the results array from file File-ChartQueries_Report.md. After that, we
print the results as 2D string array that has 3 columns for each model executed for

every query with column names: Model, Type and Result.
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Briefly, every column in the array contains the following info:

¢ Model: containing the name of the model that was executed.

o Type: type of query (basic or sibling)

¢ Result: the result of the model for the query’ results.
For (unique time-series) ChartManager calls the method getScoreModelsFor-
ChartVisModels. The method takes as parameter the List of ChartVisModel items
and returns a list of ChartScoreModel items. For every new ChartScoreModel that is
created the 4 fields: score, name, chartVisModel and result are initialized accord-
ingly. The score is computed via the call of method computeScore of ChartModel
and returns a double value in the range [-1,1] as it was described for every model

in 3.1.4 Queries and Models.

Next, we describe how every model sets the result for the query:

ContributorModel: Initially, because the results for basic and sibling queries have
been saved in the same 2-dimensional array, we create a list containing smaller two-
dimensional arrays, one for every query. The small array contains the query’s results,
so we pass it from method findContributionInArray().

If the query’s results have only one distinct value for grouper 2 (one unique series)
then the result that is returned is: “Series has a mega contributor for x =’value of
the grouper_1 with greatest measure’. Else, for multiple series, we return the series

with the sum(max_measure) for every grouper_1 value.

AbsoluteTrendModel: Initially, as previously, we create a list containing smaller two-
dimensional arrays, one for every query. The small array contains the query’s results,
so we pass it from method findTrendInArray().

If the query’s results contain measures such that from older to newer date the meas-
ure is increasing, then we have an uptrend. The returned result is “Series has an
absolute uptrend.”. In the opposite case, that from older to newer date the measure
is decreasing then we have a downtrend. The returned result is “Series has an ab-
solute downtrend.”. If nothing from above facts is valid then the result that is re-

turned is “Series has not a clear trend.”.
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KendallBasedTrendModel: Likewise AbsoluteTrend model, but computes the corre-
lation between x_values and measures, using the Kendall’s coefficient. Then if Ken-
dall’s coefficient > 0.5 and Kendall’s coefficient< 1 returns “Series name” has an
uptrend. Else if Kendall’s coefficient > -0.5 and Kendall’s coefficient< 0.5 1 returns

“Series name” has no clear trend. Else “Series name” has a downtrend

ModalityModel: Initially, as previously, we create a list containing smaller two-di-
mensional arrays, one for every query. The small array contains the query’s results,
so we pass it from method findModalityInArray().

For every query list of measures, we create a new list that contains the differences
between sequential x-axis values. After that, we iterate through the list, and we
increment a counter if the product of two sequential differences is negative. The
reason for that action is that if two sequential differences have product negative, the
monotony of graph has changed (we had ascending order and instantly after de-
scending order or the opposite). In the end: if the number of changes equals 1 then
we Unimodality meaning that we had only one extreme point in graph, so we return
“has Unimodality”. Else if the number of changes equals 3, then we have Bimodality,
because we have detected two valleys or two peaks. In any other case we return

“has no clear modality”.

RegressionModel: Initially, as previously, we create a list containing smaller two-
dimensional arrays, one for every query. The small array contains the query’s results,
so we pass it from method findRegressionInArray().

For every query list of measures and for every series we perform linear regression
provided from Apache library [Apac99]. Apache Library provide the SimpleRegres-
sion class and via the method add() we can add every point (x,y) of the series.To
get the linear’s regression intercept we use method getIntercept() and for slope we
use method getSlope(). In the end, for every category it is returned as a result:
"Linear regression for series (series name) with intercept: regression’s intercept and

slope: regression’s slope."
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3.2.8 Architecture of ChartManagement package

The chartManagement package is designed to facilitate the creation of chart visuali-
zation in the client package and the computation of extracted phenomena from the
data. Internally contains the packages models and utils (demonstrated in Figure
3.10). Package utils has been created with purpose to contain helper classes, and for
the time being it only contains the class DataPoint, that is used for the representation
of a data point in the results array. The models package contains the forementioned

model classes and the classes ChartModel, ModelListFactory and ModelManager.

1

««Java Package=>
f#chartManagement

—1 A — Y

==Java Package== <«Java Package==
$ChﬁmﬂllﬂQEmEIlLUﬂ|S ECI’I&I’LM&I]&QEI’I’IEI]LI’I’IOUHS

Figure 3.10 Subpackages of chartManagement

The architecture of the package models utilizes the Factory Method design pattern
to manage the creation of ChartModel objects. The abstract class ChartModel serves
as the base class, defining the common interface and behavior for all ChartModel
types. The concrete subclasses: ContributorModel, DominanceModel, ModalityModel,
RegressionModel and TrendModel, extend this abstract class, each providing specitic
implementations of the required abstract methods with most important the abstract
compute() method. The ModelListFactory class encapsulates the instantiation logic
within its createModelsForChartType() method, which returns a list of ChartModel
objects. This method instantiates various subclasses of ChartModel and aggregates
them into a single collection. The single collection that is returned depends on the
method ‘s parameter (IChartQueryNModelGenerator object). The method call is
made by the ModelManager class, which acts as a coordinator for the package mod-

els. The architecture of models package is demonstrated in Figure 3.11.
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Figure 3.11 Architecture of package models.

Apart from the subpackages models and utils, the ChartManagement package con-
tains the classes: ChartManager, VisualizationManager, ChartQueryGeneratorFacade,
LinechartQueryGenerator, ScatterplotQueryGenerator and BarchartQueryGenerator
and the interface IChartQueryNModelGenerator.

The connection between classes leverages both the Factory Method and Strategy
design patterns. The IChartQueryNModelGenerator interface defines the contract for
the different types of charts, implemented by concrete classes LinechartQueryGener-
ator, ScatterplotQueryGenerator and BarchartQueryGenerator. The ChartQueryGen-
eratorFacade class encapsulates the creation logic, producing instances of the
IChartQueryNModelGenerator interface based on specified string type of chart. The
ChartManager class holds a reference to an IChartQueryNModelGenerator object and
delegates the execution of the methods to the IChartQueryNModelGenerator and
furthermore uses the ChartQueryGeneratorFacade to create the object in the first

place. Within the VisualizationManager class, the reportChartQueryDetails method
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is executed based on the selection of the appropriate IChartQueryNModelGenerator

object, provided by the ChartManager (Figure 3.12).
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Figure 3.12 Connection between main classes of ChartManagement package.
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3.3 Validation of the System

The correctness of the main methods used in the package ChartManagement and
client’s package new file: ChartQueryEditor.java is verified through unit tests. The
unit tests are executed using JUnit 4, and Mockito and for the file ChartQueryEd-
itor.java that uses extensively the JavaFX library, TestFX is used for the testing of
the main method.

All the test cases use the structure Arrange-Act-Assert. In the Arrange phase, we set
up the preconditions and initialize the objects or resources that the test requires. In
the Act phase, we perform the actual action or behavior that we want to test, prac-
tically the execution of the method we want to test. In the last phase, the Assert we

verify that the action taken in the "Act" phase produces the expected results.

Test for method constructQuery in the class ChartQueryEditor

The method constructQuery is responsible for gathering the user’s input and con-
verting it into an expression that is executable from the analyze operator. We tested
if we insert info in the different fields of the ChartQueryEditor window and after
call the method constructQuery if the returned constructed query is the same with

the expected query. The result of the test is demonstrated in the Figure 3.11.

3
f=1
(A=}
L
(%]

tit] chartManagement.ChartQueryEditorControllerTest [Runner: JUnit 4] (0.
gk testConstructQuery (0.937 5)

Figure 3.11 Test for constructQuery in ChartQueryEditorController class.

Test for methods reportSiblingQuery and reportBaseQuery in the
VisualizationManager.

The methods reportSiblingQuery and reportBasicQuery are responsible for reporting
the results for a query of type Sibling and Basic, respectively. In tests testReport-
BaseQuery and testReportSiblingQuery, we test the scenario that given input in a

specific format and some grouper and sigma values as input, the reported String that
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is returned is the expected. The results of the tests are demonstrated in the Figure
3.11.

|;'"E:| testReportBaseCuery (0.045 =)
|£E:| testReportSiblingCuery (0.000 =)

Figure 3.11 Tests for reportBaseQuery and reportSiblingQuery in VisualizationMan-
ager.

Tests for method checkDateFormat in the VisualizationManager.

The method checkDateFormat in VisualizationManager is responsible for returning
the format of the Date passed. Two formats are supported so far "yyyy-MM", "yyyy".
For the testing of the method, we pass as input to the method real Dates in the
specific format and check if the right form is returned from method. The results of

the tests are demonstrated in the Figure 3.13.

|;'_’E:| testDateFormaty™™ ™y _MM (0,000 =)
tE] testDateFormatYYYY (0.001 5)

Figure 3.13 Tests for dateFormat in VisualizationManager.

Test for method returnSiblingHeader in the VisualizationManager.

The method returnSiblingHeader in VisualizationManager is responsible for return-

ing the header of a sibling query. The sibling header contains details about the
changes in the groupers and filters from the original "basic" query. In the test named
testReturnSiblingHeader we test if these changes are passed correctly. The result of

the test is demonstrated in the Figure 3.24

¢ testReturnSiblingHeader (0,000 <)

Figure 3.24 Test for returnSiblingHeader in VisualizationManager.
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Test for methods readDataFromStringForBaseQuery and readData-

FromStringForSiblingQuery in the VisualizationManager
The methods readDataFromStringForBaseQuery and readDataFromStringForSib-
lingQuery are responsible for reading the string results for Base and Sibling queries,
respectively and returning an array of DataPoints for their visualization. However,
the string results contain and other details and not only DataPoints. The tests
testReadDataFromStringForSiblingQuery,  testReadDataFromStringForBaseQuery
check that the result array is the correct one and for both methods we skip the

correct number of lines. The result of the tests is demonstrated in the Figure 3.15

fE| testReadDataFromStringForBaseQuery (0.024 <)
ﬂ testReadDataFrom5StringForSiblingCQuery (0.007 <)

Figure 3.15 Tests for readDataFromStringForBaseQuery and readDataFromString-
ForSiblingQuery in VisualizationManager.

Test for method sortResults in the VisualizationManager

The method sortResults is responsible for sorting the input DataPoints in ascending
order according to grouper! (x-axis). In test we give as input an array with arbitrary
order and we expect the method sortResults to sort the array in ascending order.

The result of the test is demonstrated in Figure 3.16.

|£| testSortResults (0,002 =)

Figure 3.16 Test for sortResults in VisualizationManager.

Test for method decideType in the VisualizationManager

The method decideType is used to determine whether the visualization in a Barchart

will be "small multiplies" or "default". In the implementation code we have
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determine that if the series number is greater than 5, small multiplies is selected

otherwise default. The result of the test is demonstrated in Figure 3.17.

g testDecideType (0.000 s)

Figure 3.17 Test for decideType in VisualizationManager.

Test for processResultsForVisualization in VisualizationManager

Similarly, with the decideType, but it takes more parameters and calls internally the

decideType. The result of the test is demonstrated in Figure 3.18.

|-_L"E:| testProcessResultsForVisualization (0,539 =)

Figure 3.18 Test for processResultsForVisualization in VisualizationManager.

Test for returnModelList in the ModelManager

The method returnModelList is implemented in ModelManager class and returns a
list with models according to the field chartGenerator of type IChartQueryNMod-
elGenerator. In the test, we check if we set the field’s type: BarchartQueryGenerator
(concrete implementation of IChartQueryNModelGenerator) if the list will return the
models Dominance and Contributor, which are determined from the ModelListFac-

tory. The result of the test is demonstrated in 3.19.

ti] testReturnModelList (0.001 <)

Figure 3.19 Test for returnModelList in ModelManager.

Test for findContributionInArray in ContributorModel

The method findContributionInArray is implemented in ContributorModel class and

returns a String result that contains the percentage (%), for every category in series
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that contributes to the result. In the case, that a series contain only one category,
then we have 100% contribution to the result. In the test, we check for two different
query results, one with one category and one with two categories and a dominator
category, if method findContributionInArray will return the right percentage. The

result of the test is demonstrated in 3.20.
|i'E] testfindContributionin&rray (0.077 =)

Figure 3.20 Test for findContributionInArray in ContributorModel class.

Test for findModalityInArray in ModalityModel
The method findModalityInArray is implemented in ModalityModel class and re-
turns a String result that informs if there is a Unimodality or Bimodality or no Clear
Modality in query’s results. In the test, we check for these three cases, if method will
return the right String result. The result of the test is demonstrated in 3.21.

te testfindModalitylnArray (0.001 5)

Figure 3.21 Test for findModalityInArray in ModalityModel class.

Test for findRegressionInArray in RegressionModel

The method findRegressionInArray is implemented in RegressionModel class and
returns a String result that contains the linear regression coefficients: intercept and
slope. In the test, we insert specific points (dates,measure) in query’s result and we
check if linear ‘s regression coefficients returned from method are the expected ones.

The result of the test is demonstrated in 3.22.

|'_‘"E] testfindRegressioninArray (0.010 =)

Figure 3.22 Test for findRegressionInArray in RegressionModel class.

Test for findTrendInArray in TrendModel. The method findTrendInArray is imple-
mented in TrendModel class and returns a String result that informs if there is an

uptrend or downtrend or no clear trend in query’s results. In the test, we check for
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these three cases, if method will return the right String result. The result of the test

is demonstrated in 3.23.

el testfindTrendModellnArray (0,002 5)
Figure 3.23 Test findTrendInArray in TrendModel class.
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CHAPTER 4

EXPERIMENTS
4.1 Experimental Setup
4.2 Impact of the number of filter values on execution time.
4.3 Impact of number of Siblings in the Execution Time

In this Chapter, we experimentally evaluate the behavior of the constructed soft-

ware in relation to the parameters of the data that can affect this behavior.

4.1 Experimental Setup

The experimental objective concerns the study of the execution time of the Query-
As-A-Chart operator for different queries and data.

For the experimental evaluation of this thesis, three experiments were conducted for
three different parameters of the problem. The parameters evaluated are the size of
the data set, the number of selection levels of the query. The experiments measured
the execution time of the operator from start to finish, as well as the individual
execution steps, in order to determine which execution step causes the most delay.
The individual execution steps that were timed for result unique time series are

depicted in Figure 4.1.
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Execution Step Methods Delian Class
Conversion of User Input to convertUserInput2Char- | ChartQueryEditorController
ChartRequest Object tRequest
Execution of Queries and reportChartQue- VisualizationManager
Report Chart ryDetailsForChar-
tResponse
Execution of Models getScoreModelsFor- ModelManager
ChartVisModels
Creation of Datastory createDatastory ChartQueryEditorController

Table 4.1 Individual Execution Steps for Unique Series.

The execution times presented are the average of five measurements. The system on

which the experiments were conducted is Windows 10, with an AMD Ryzen 7 4800H
CPU @ 2.90 GHz, 8GB RAM, and a 490GB SSD.

The datasets that were used in the experimental process are the following:

Dataset Number of Dimen- Number of levels Number of Tu-
sions ples

Loan Cube (Data- 3 12 100.000

base
pkdd99_star_100K)

Loan Cube (Data- 3 12 1.000.000
base

pkdd99_star_1M)

Loan Cube (Data- 3 12 10.000.000
base

pkdd99_star_10M)

4.2 Impact of the number of filter values on execution time

We conducted three queries for this experiment, which have fixed structure in terms
of aggregate function, grouping levels (always 2) and type of chart but have one,
two and three levels of selection respectively. The goal is to understand the effect

that the number of selection levels may have on the execution time of the operator,
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keeping the structure of the rest of the query constant, which includes two levels of

grouping, type of query, a cube and an aggregate function.

Conversion ol User Input Lo CharlRequest Object, Conversion of UserInput to ChartRequest Object,
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Figure 4.1 Execution Time in ms for the first two individual steps: 1) Conversion of User Input to Char-
tRequest Object Execution 2) Execution Of Queries And Report Chart.
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Figure 4.2 Execution Time in ms for the last two individual steps: 3) Execution of Models 4) Creation of
Datastory (* the real time measurement is 95% shorter, by accident the save of chart images has been calculated
in).
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Concerning the first two steps of the processing, it appears that the execution time is
pretty much around the same values as the number of filters varies (Figure 4.1)
However, for dataset with size 100K and 1M seems that the middle value for filters
(filters =2) succeeds the best execution time.

Observing the individual execution steps, we can comment that the conversion of
user input to ChartRequest object doesn’t seem to be affected from some logic factors
as the number of filters or the size of dataset. As for the execution step ‘Execution
of Queries and Report Chart’, seems that for every size of Dataset, the median value
for filters (filters=2) leads to smallest execution time. The fact that we always have
two groupers, and when we test for two filters, we determine filters that belong to
the same dimensions as groupers, leads to shortest execution time from package
analyzer.

With a close look at Figure 4.2, we can observe the same phenomenon we notice
and for the next execution step ‘Execution of Models’ which seems to be a logic
consequence of the previous execution step. Finally, observe that the creation of
Datastory for 10M takes a longer time in comparison with the time that takes for
100K and 1M, adding time to the total. It seems reasonable in a way, because it
writes more data in the html file and if the selection of the filter was successful,

succeeds to extract many matching results from the database.

4.3 Impact of number of Siblings in the Execution Time

For this experiment, we tried to set up queries with many sibling queries and observe
if the increase in number of siblings leads to important increase in execution of the
time. We conducted the experiment with fixed parameters, dataset size: 1M, number
of filters = 2, the same query parameters except the one filter condition that triggers
the analyzer to create siblings for a specific dimension. The values that we have
tested for number of siblings are {1, 8, 10, 11, 14}. As we see (in Figures 4.4 and
4.5), both for the individual executions steps and for the total execution process, the
increased number of siblings does not mean an increased execution time in general.

This occurs because the analyzer operator creates one sibling query for every
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different dimension and not for every different value in the dimension, resulting in

a quite stable execution time independently of the number of sibling queries.

Conversion of User Input to ChartRequest Object Execution Of Queries And Report Chart
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Figure 4.4 Execution time for different number of siblings.
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Figure 4.5 Total Execution time for different number of siblings.
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CHAPTER 5

CONCLUSIONS

5.1 Summary of Results
5.2 Future Work

5.1 Summary of Results

The aim of this Diploma Thesis has been to extend an Business Intelligence system,
specifically the Delian Cubes Engine, with a Query-As-A-Chart operator. The Query-
As-A-Chart operator allows to construct a query not via the typical SQL syntax but in
a friendlier way with the addition of specification of chart type. The result of the
operator is (a) a set of charts that visualize the results, but most importantly, (b) a
combined report in html, or data story. For the creation of the Query-As-A-Chart
operator, two new packages were added to the Delian: ChartManagement and Char-
tRequestManagement responsible for the server and the client respectively. For the
addition of new features in client (creation of query and display of charts), we used
the JavaFX library extensively.

Upon completion of the operator implementation, an experimental evaluation was
conducted as detailed in Chapter 4. This evaluation involved timing measurements
aimed at assessing the impact of variables such as number of filters and number of
siblings within the intentional query and dataset on the operator’s execution time.
In conclusion, the execution time is largely influenced by the time required for result
completion and reporting, while extracting highlight models also play a significant

role.
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5.2 Future Work

The implementation of Query-As-A-Chart operator can be extensively optimized and
enabled with new features, but most importantly to be corrected in ambiguous
points.

First, for the time being, the system reads from serializable object the data for a
unique time-series, while for multiple time-series, it reads the data from the mark-
down file: File-ChartQueriesReport. In the future, the multiple series data can be
transferred through the same serializable object.

Furthermore, the ranking of highlights is available only for unique-timeseries and
not for multiple time-series and is something that can be implemented with a more
careful look.

Simultaneously, there is the need for models like mega contributor to take into con-
sideration the selected type of aggregation function of the chart query and change
the calculation of score accordingly.

Finally, it would be nice in the future, the Query-As-A-Chart operator to enable visu-
alizations for standard cube queries without the need for setting one time-dimension.
Also, the operator should be able to create a suitable visualization type if the user

does not specify a desired chart option.
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