
 Enterprise Integration Patterns

 Building message-oriented middleware with Apache Camel

Odysseas Neslechanidis

 Supervisor: Christos Gkogkos

October 10, 2022

Graduation Thesis

University of Ioannina

 Department of Informatics and Telecommunications

Enterprise Integration Patterns

Building message-oriented middleware with Apache Camel

Author: Odysseas Neslechanidis

Supervisor: Christos Gkogkos

Graduation Thesis

University of Ioannina

Department of Informatics and Telecommunications

This thesis was approved by a three-person examination committee.

Examination Committee

1 Christos Gkogkos

2 .

3 .

Affidavit

I hereby affirm that this Bachelor’s Thesis represents my own written work and that I

have used no sources and aids other than those indicated. All passages quoted from

publications or paraphrased from these sources are properly cited and attributed. The

thesis was not submitted in the same or in a substantially similar version, not even

partially, to another examination board and was not published elsewhere.

Signed,

Neslechanidis Odysseas

All Rights Reserved ©

i

Abstract

The term "Enterprise Integration Patterns (EIPs)" refers to a vocabulary of solutions to

common problems in the integration of enterprise systems. Of such vocabularies pattern

languages may be constituted to allow complex business flows of diverse form to be

described and handled in a uniform way.

Apache Camel is a framework that implements EIPs around a common interface based on

Java Message Objects. Camel also provides an IDE-friendly declarative Domain Specific

Language (DSL) oriented around this interface, which enables integration flows between

disparate systems ("Camel routes") to be described neatly as Java Messages passed

around between chained camel methods.

The specifics of the underlying communication protocols (FTP, http,

ActiveMessageQueue etc) are abstracted away and the flow of information is cleanly

described, leaving such considerations as availability, load balancing, validation, security

as the primary factors influencing the middleware's architectural complexity.

In this thesis production deployments of Java Spring middleware utilizing Apache Camel

will be studied. The most commonly used EIPs' Camel implementations will be

inspected, and a comparison with more established integration tooling will be made when

convenient, to ascertain the benefits of the Message-Oriented Middleware (MOM)-

backed Camel DSL approach.

Keywords: Enterprise Integration Patterns, Apache Camel, Message-Oriented

Middleware

ii

Table of Contents

Part I Enterprise Application Integration (EAI): the why and the how

1 Introducing EAI in an organization

1.1 Introduction..2

1.2 General challenges..3

1.3 Types of integration..4

1.3.1 Information Portals...5

1.3.2 Data Replication...5

1.3.3 Shared Business Functions...6

1.3.4 Service-Oriented Architectures and Distributed Business Processes...........6

1.3.5 Business-to-Business Integration..7

2 The Evolution of Enterprise Application Integration

2.1 Islands of automation and the advent of EAI...7

2.2 Point to point integration..8

2.3 Event-Driven Architecture and the hub-and-spoke pattern..................................9

2.4 Service Oriented architecture and the Enterprise Service Bus...........................14

2.5 SOA 2.0..21

Part II Engineering concepts and tools

3 Apache Camel: a framework for constructing Message-Oriented Middleware

3.1 Introduction..26

3.2 Basic Concepts...26

3.3 Example of a Camel Route...29

3.4 Debugging a Camel route...32

4 Introducing Enterprise Integration Patterns as a pattern language

4.1 Messaging Terminology variants...34

iii

4.2 Structure of a pattern..35

4.3 Patterns...37

4.3.1 Endpoint..37

4.3.2 Content-based Router...37

4.3.3 Message Filter...37

4.3.4 Splitter and Aggregator...38

4.3.5 Dynamic Router..38

4.3.6 Composed Message Processor..38

5 Apache Camel Components

5.1 Core components..39

5.1.1 Log..39

5.1.2 Bean..40

5.1.3 Direct..41

5.1.4 File..42

5.1.5 Timer...42

5.1.6 Validator...44

5.1.7 Other core components...44

5.2 Protocol components and provider components...46

Appendix: The API economy

iv

Abbreviations

API: Application Programming Interface

EAI: Enterprise Application Integration

EAS: Enterprise Application Software

EDA: Event-Driven Architecture

EIP: Enterprise Integration Patterns

EMS: Enterprise Messaging System

ESB: Enterprise Service Bus

MEP: Message Exchange Pattern

MOM: Message-Oriented Middleware

QoS: Quality of Service

List of figures

Figure 1 EDA, Broker topology...9

Figure 2 EDA, Mediator topology...10

Figure 3 Component-based, point-to-point architecture..14

Figure 4 Generic SOA...16

Figure 5: Event-driven SOA (SOA 2.0)..21

Figure 6 Camel Exchange..27

Figure 7 EIP Terminology in various Messaging Systems..34

v

Part I Enterprise Application Integration (EAI): the why and the

how

1 Introducing EAI in a organization

1.1 Introduction

Enterprise Application Software (EAS) is the term for computer programs used to satisfy the

needs of an organization rather than individual users. Almost all business operations, at

different points in time, have come to benefit from the proliferation of software in this space.

Commonly used acronyms used to categorize such software include ERP (Enterprise Resource

Planning), CRM (Customer Relationship Management), BI (Business Intelligence), CMS

(Content Management System), WMS (Warehouse Management System). They serve to

automate every business need of modern enterprises, from it's customer facing operations, to

keeping track of warehouse inventory, calculating billing and taxes, observing regulations, and

much more. While comprehensive enterprise software suites offering differing degrees of

customizability have come to exist, owing to the organizational similarity of enterprises above

a certain scale, switching costs, preservation of optionality in partnering with software

vendors[7], as well as other adjoining business considerations, have hindered their more

widespread adoption. Added to that, the employment of Domain-driven design, in recognition

of the maintainability and extensibility benefits domain-expert input in the refining of an

application's domain model confers, is a fact that has further complicated the effort of business

software consolidation.

In this setting, the introduction of a “software glue” stack has come to be a very common

business need, and much research in the space of EAI is aimed at providing insight for the

1

development of better solutions in this class of software. The established term for such

software is “middleware”[5, 15].

From the systematic study and development of solutions in this space, a particular subtype

termed Message-Oriented Middleware, or MOM, has emerged as one the most promising. A

vocabulary and a framework implementation for describing and building such middleware

constitute the main topic of this thesis.

1.2 General challenges

Prior to engaging with the path-dependent and hard technical aspects of Enterprise Application

Integration, it is necessary to consider a set of social and organizational features that the

development and adoption of such solutions typically necessitate or bring about.

Enterprise Application Integration often requires a significant shift in corporate politics. By

extension of Conway's law that postulates that “Organizations which design systems are

constrained to produce designs which are copies of the communication structures of these

organizations.”, it appears that the consolidation of enterprise software tools serving business

processes often necessitates a consolidation of the business units and IT departments involved

in those same processes.[7]

Furthermore, owing to the wide scope of a middleware integration solution bringing together

critical business functions, the novel risk of failure or misbehavior of such a system has to be

internalized. The risk profile and magnitude of reorganization around such a single point of

failure ought to be carefully considered.

Bordering the technical side, the feasibility of integrating systems by modifying them to better

fit the integration architecture, rather than by having to design the integration architecture to

2

work around the various systems' limitations and deficiencies, also often depends on political

factors. In that vein, unsupported legacy systems still in operation, systems under proprietary

licenses, and systems whose support is outsourced under more or less stringent long-term

agreements can adversely influence the complexity of the final product.

In terms of standardization, it bears mentioning that despite the benefit of convergence around

Web Services and a Service Oriented approach to middleware architecture (which will be

expounded upon in later chapters), the proliferation of new extensions or interpretations of the

standard, and most significantly the shift towards REST (and, more recently GraphQL) in

lockstep with the mobile revolution, has created new challenges for integration engineers.

REST, in particular, owing to it being an architectural style for software that expose http APIs

rather than a protocol for web services per se, is frequently implemented partially and/or

wrongly, often necessitating ad hoc code for the consumption of APIs exposed in this manner.

Finally, the operations aspect of utilizing middleware solutions presents a unique challenge, as

maintenance, deployment, monitoring and troubleshooting of such heterogeneous, distributed

systems commonly require mixes of skills which are not, as a matter of course, to be found in

single individuals. To companies or organizations of sufficient scale as to already necessitate a

formalized employee training regime, the overhead for the maintenance of such human capital

might be lower.[7]

1.3 Types of integration

While the above challenges generally apply to every approach in the broader category of

integration, many further issues have to be considered depending on the business aims that

dictate, and the technical aspects that come as a consequence of, the prospective type of

integration solution. The following categorization has been proposed:

3

1.3.1 Information Portals

Information portals serve to aggregate information from disparate systems within an

organization with the aim of making it more accessible to humans. They often facilitate the

collaboration between different departments and physical locations. They are also commonly

used in business decision processing and data analysis. Common features include multi-

window views serving information from different sources with automatic refresh of related

windows during navigation, search, tagging and other categorization schemes.

Various other more advanced features are common, but being as they cater to particular

business functions, employees roles or departments, no account of those will be attempted.

Indeed, one of the common abstract features, or aims, of such systems, is the personalization

of the displayed information, achieved through the profiling of users based on role,

experience, competencies, habits and expressed preferences.

1.3.2 Data Replication

Many business systems require access to the same data, but are designed to utilize their own,

separate datastores. The resulting data replication necessitates provisions for maintaining the

data synchronized. Commonly utilized for those purposes are the replication features built into

modern Database Management Systems, the file export and import functions supported by

many Enterprise Software Systems, and message-oriented middleware automating transport of

data via messages between arbitrary datastore solutions.

4

1.3.3 Shared Business Functions

Needless duplication can exist in code serving business functions as well as in data. Were

supported, invocation of shared business functions implemented as services1 can help avoid

the native implementation of redundant functionality.

Were feasible, the need for data replication can also be circumvented via this approach by

serving shared data as a service. In that vein, some criteria to be considered include the

amount of control to be had over the systems (calling a shared function is usually more

intrusive than loading data into the database) and the rate of change of the relevant data

(service invocation is costlier than data access, therefore is less efficient for relatively

frequently accessed, relatively static data).

1.3.4 Service-Oriented Architectures and Distributed Business Processes

Once an enterprise assembles a collection of useful services, managing the services becomes

an important function.

Service Oriented Architecture is a proposed style of service design and orchestration that

incorporates the best industry practices in structuring middleware solutions around services

that correspond to business functions. This particular approach to middleware architecture

shall be expounded upon in a later chapter.

A variant dubbed “Distributed Business Process”, is also to be found in the bibliography. It

concerns the design of management services that serve to coordinate the execution of the

relevant business functions that are implemented natively in an integrated system's constituent

1A service is a contract-defined function that is universally available, and responds to requests from “service
consumers” .

5

applications, in order to achieve each and every particular business process. Such schemes can

exist within larger SOA-abiding systems, and the lines between the two terms often blur.

1.3.5 Business-to-Business Integration

In many cases, business functions may be available from outside suppliers or business

partners. Business to Business (B2B) integration software provides the architecture needed to

digitize information and route it through an organization’s trading ecosystem (usually online

platforms) using the Electronic Data Interchange (EDI) format appropriate for the application.

In the following chapter, the various technical approaches to Enterprise Application

Integration will be discussed, beginning by retracing the historical contingencies defining the

evolution of the EAI field, and culminating with a direction of focus towards the widely

successful event-driven SOA approach and the message-oriented middleware used to facilitate

it, a particular implementation of which will be the topic of the rest of this thesis.

2 The Evolution of Enterprise Application Integration

2.1 Islands of automation and the advent of EAI

The term “Islands of automation” was a popular term introduced in the 1980s to describe the

status quo of automation systems existing within information silos. The rapid development

and adoption of enterprise software systems during this time came to pass with little regard for

the ability of those systems to communicate with one another.

Such fragmentation of automation systems turned out to significantly increase the cost of

operations within organizations, and contribute to a higher barrier of transaction cost for

cooperation across different enterprises. A major part of business operations requires

coordination between multiple departments/organizations, each with their own system of

6

automation. In this state of affairs, manual intervention is required to keep information

systems updated, human effort, data, infrastructure are often duplicated needlessly, and the

risk of costly human error is introduced at multiple points.

 The field of Enterprise Application Integration (EAI) is a field of study aiming to refine a

framework for rectifying these inefficiencies. The shifting nature of the business landscape

and of enterprises that operate within it, together with the continued innovation in, and

expansion of, the EAS space, has resulted in it being a complicated problem to tackle.

Enterprise software is adopted at different times, it is developed from different vendors, at

different points in time, oriented towards different business needs.

As previously noted, the role of middleware is to to facilitate communication or connectivity

between applications that were developed without such provisions, often through channels

beyond those available from the operating system serving as the platform, or across distributed

networks.[13, 3] In the early days of EAI, the development of custom middleware solutions

begun spreading as a practice.

2.2 Point to point integration

The conceptually simplest way to perform integration is by connecting information systems

directly in a point-to-point paradigm. In a common implementation, custom procedures are

called on both ends targeting the native filesystem as the locus of communication between the

systems, often in conjunction with a network file transfer protocol such as FTP. A system

assuming the client role executes a reporting routine to extract data to a text file in a specified

format. A routine is then run by the receiving application to import and process the data.

As similar point-to-point solutions begun to emerge, it nonetheless became apparent that the

net cost of development and maintenance of such solutions stood high, and steeply increased

with scale. This came as a result of the fact that in the point-to-point approach, the

7

introduction of one new system typically requires many specialized connections to the existing

systems, which in turn impose additional maintenance burden, reduce agility, and constitute

additional potential points of failure.

Additionally, the tight coupling makes reliability a challenge, especially for real-time

applications. For example, if the connection between two parties in a client-server connection

is interrupted, the data supposed to be received by the client will be lost during this

interruption, unless complex logic to deal with caching, session management and error

recovery on the server side is implemented.

Moreover, the synchronous nature of the communication ties up resources to handle the

interaction, which presents a bottleneck as the system scales both in service load and

complexity.

In retrospect, this model of integration remains suitable when the software entities in the

integrated system are relatively few, and/or the interactions are simple. It is in cases when

there are many entities, which need to interact in multiple ways and in particular sequences,

e.g. when the interactions are stateful, that the system's requisite topological complexity can

become onerous.

2.3 Event-Driven Architecture and the hub-and-spoke pattern

One notable alternative architectural approach that serves to address the downsides of the P2P

model first came to prominence as the hub-and-spoke pattern. Based on the concept of

“events”, this system is built around a “hub”, that serves as the common target for the systems

on either side, each assuming the role of either a “producer”, or a “consumer” of events. In the

simplest implementation of the hub, which makes no provision for central orchestration of the

events in transit, the hub's role is described as that of an “event broker”. The communication is

8

multicast, with each event produced being “published” to the broker, and received by all

consumers who have “subscribed” for receiving this event.

Figure 1 EDA, Broker topology

In a somewhat different topology, that requires a more complex hub implementation, the hub

is meant to act as an “event mediator”, centrally maintaining state regarding the event

notifications. This positions the hub as the programmable orchestrator of the communication

between systems, making more complex interactions possible and enabling it to act as a “load

9

balancer”, by allowing event notifications to be directed towards exactly one consumer, and to

be kept to be resent in case there is no consumer available (“event queue”).

Figure 2 EDA, Mediator topology

The above variations of the same pattern, utilize, as they may, different semantics to describe

their operation, evident in the terminology-laden paragraph above, they do nevertheless share

a set of essential characteristics to differentiate them from the previously mentioned point-to-

point pattern:

• Multicast communication: Each event can have more than one possible recipient-

subscriber.

10

• Asynchronous communication: The publisher does not wait for a subscriber to process

an event before sending a new event notification. Also called “fire-and-forget”.

• Loose coupling: Event publishers are not aware of how many, if any, subscribers to the

event there are, nor are they informed of how any particular event's processing

proceeds. Publishers may still be built to facilitate a stateful sequence of events, though

it is often preferable for such sequences to be mediated centrally, by the hub, rather

than by the participating applications.[10]

• Ontology: Event-driven systems commonly adopt a system-wide convention for

prioritization and grouping of events. This allows subscribers to subscribe to entire

categories of events or events that fall at some particular point in the hierarchical

sequence of events regulating a business process. To indicate the distinction,

subscribers are properly said to subscribe to “topics”, which can correspond to either

particular events or categories thereof.[12]

A further point to be made on this property of hub-and-spoke, and event-driven architectures

in general, is that ontologies produce what is called “semantic coupling”. Event groups or

hierarchies are only meaningful within the context of a system adopting the particular

ontology within which they are represented. This makes communication between systems

implemented with different ontologies impossible, unless an intermediate semantic matching

technique is employed. Research is currently active in this area.[6]

Event-driven architecture is properly constituted of subscribers that are both stateless and

context-free. Each event notification ought to contain just enough details to enable the event

handlers1 to guide the business flow in the intended direction e.g. by selecting among running

1Alt. subscribers

11

one of several stateless, functionally autonomous modules, that may or may not be event

emitters2 themselves, or halting.

Event notifications should not provide any additional context. Also, the behavior they trigger

should not depend in any way on the in-memory session state of the receiving applications.

All things considered, the Event-driven Architecture paradigm, confer as it may several

benefits over the point–to-point model in integrations of scale, is nevertheless ill-suited to

certain specifications commonly required of enterprise systems.

First of all, the ability to chain hierarchical interactions between modules, is only possible

through defining routing rules at the event mediator. While the convenience aspect of this

method due to the centralization of the more complex parts of the system is not to be

discounted, the degree of control over such interactions, in particular with regards to Quality

of Service considerations such as time-sensitivity, reliability etc is rather low.

Also, event mediation adoption comes at the price of relatively tight coupling between the

prospective event handlers and the mediation-capable hub.

Ultimately, event mediation can be an appropriate solution for a number of special cases in the

context of loosely-coupled IT infrastructure mirroring diffuse business process environments,

but is far from a satisfactory way to handle vertical interactions among functionally

autonomous modules.

For the reasons referenced above, event-driven systems, while highly performant, are not

suitable ways to integrate applications with time-sensitive interactions, e.g. Human-Computer

Interfaces in banking applications.

2Alt. publishers

12

It is also a point worth making separately, that provisions for reliability such as delivery

acknowledgment, transaction atomicity, security etc are formally unsuited to EDA systems'

design, and ad hoc interventions towards these ends can diminish EDA's inherent benefits.

Finally, the asynchronicity of EDA systems makes them more complex and harder to test,

owing to the introduction of event communication infrastructure such as the hub and event

channel implementations, and the non-deterministic nature of parallel computation.[10, 5]

2.4 Service Oriented architecture and the Enterprise Service Bus

A synchronous architecture meant to address the point-to-point paradigm's numerous

drawbacks in terms of technical debt accretion, agility and complexity, while factoring in

reliability provisions, is referred to as Service-Oriented Architecture, SOA for short.

Service Oriented Architecture is an evolution of predecessors such as component-based

architecture and Object Oriented Analysis and Design of remote objects e.g. the CORBA

standard

13

Figure 3 Component-based, point-to-point architecture

Component-based architecture emphasizes separation of concerns with respect to the various

functions provided in a given software system. Components are commonly implemented

around interfaces, that encapsulate the particulars of the components' implementation, and

narrow the available surface-area for wiring together the various functionally autonomous

modules. Cohesion is maintained by fitting additional modules onto the interfaces. The

modules, which can be of arbitrary origin, are rendered into components by implementing

their respective interfaces. The modules can exist as components locally within the same

14

virtual or physical machine, or in the context of distributed systems such as networks (e.g. as

web services or web resources).

In the SOA evolution of this approach, reusability and use in the context of distributed systems

is emphasized. To realize this architectural style's potential, the promulgation of Web Service

standards becomes instrumental.1

 In this way it is ensured that networked software components can be developed as generic

“Web Services”, or business function-specific components that are implemented without

knowledge or regard for the multitude of systems in which they may become involved.

Based on this, SOA can be defined as an architectural style focused around designing a system

as a dynamic collection of services capable of communicating with one another. If the

conventions are observed diligently, the need for an EAI hub and it's accompanying module-

specific connectors, database drivers and protocol adapters is theoretically obviated.

The Enterprise Service Bus (ESB) is the architectural feature of SOA systems enabling

communication in a special variant of the more general client-server model, wherein any

which service may behave as server or client. Universal availability and statelessness, both

criteria met by proper services, but not by traditional server-client component couples, are

prerequisites for the establishment of such as system.[12]

The ESB is equivalent to the “bus” design concept found in computer hardware architecture,

in this case used to refer to the technological infrastructure used to implement a model for

communication among independent, non-context aware software services running within

networks of disparate and independent computers.

1The effort towards this end has borne results through the W3C Web Services specification, though nowadays the
emergence of alternatives and the REST architectural style in particular has created a rift in the SOA ecosystem,
whose bridging is often handled by integration middleware.

15

Figure 4 Generic SOA

When working with more modern enterprise systems, which provide a Web Service-abiding

API interface, implementing the ESB pattern amounts to providing certain service

management capabilities, such as a means of controlled exposure of said APIs, using an

exposure gateway service.

16

The primary aim of service management is to facilitate service discovery and exposure via a

database called a Service Registry[16] - in this particular scenario, it's function being partly

substituted by the gateway - and an HTTP-accessible querying API. Reliance on human-

maintained interface documentation e.g. Swagger or human-to-human interaction has proven a

brittle strategy that erodes reusability, which, it is to be noted, is regarded as one of the main

advantages of SOA.

More complete service management solutions deal with additional aspects, namely service

negotiation i.e. the ability to set up a communication contract/connection with services,

implementation of a security model with patterns for access control, e.g. with user

roles/permission schemes, traffic control, encryption/redaction etc. Supplemental features can

comprise configurable web portals that may describe the available APIs, enable potential users

to issue keys automatically (self-subscribe) in order to use the APIs, provision analytics for

both users and providers of the APIs, etc.

In systems requiring advanced service management capabilities, the related functions are

commonly relegated to a separate database runtime known only to the gateway, introduced

earlier as the Service Registry. Furthermore, in more complex integration scenarios, such as

when unusual protocols or data formats are utilized, when compositions of multiple requests

are called for, or perhaps in cases where transactionality needs to be implemented, the

introduction of an integration engine existing as a separate runtime is, again, expedient. This

hub-like arrangement is only one, albeit very common, of many possible topologies that are in

accordance with the loose definition of ESB given above.

Even so, the term “ESB” has de facto come to refer to integration engine solutions adopting

the architectural approach of a hub, often federated, whose main purpose is to facilitate a

message-based communication model (termed Enterprise Message System, EMS) to be used

17

within a particular SOA system's context. Such integration engines commonly provide

auxiliary capabilities, which were found to be essential additions for constructing more

complex systems in the service-oriented style. They commonly contain logic for the

encapsulation of legacy formats, protocols (or informal specs) and APIs of the integrated

applications into an EMS compatible format, incorporate a service registry, and sport

numerous other features for message routing, mediation, transformation, enrichment,

validation etc.

A summary of the archetypal SOA model's features in axes of comparison common with those

of the aforementioned point-to-point and event-driven architectures could thus be:

• Unicast communication: Communication is established in provider-consumer pairs.

• Synchronous communication: A service consumer invokes a service provider through

the network and has to wait until the completion of the operation on the provider's side,

upon which a response is returned.

• Reusability/Interoperability: Services within a particular SOA context are defined by

standardized service contracts, which include the interface, the schema, the

communication protocol and various Quality of Service (QoS)1 policies. Each service

can have multiple contracts, aimed at supporting different consumers. While these

requirements result in tight coupling of services to the particular SOA context,

reusability and interoperability among contract-abiding services is high, and further

increased through the introduction of a service registry to facilitate discovery and

exposure.
1Quality of Service refers to the performance of a network service in multiple areas that commonly include
scalability, security, reliability, lossyness, delay etc.

18

• Domain-driven design: Loose internal coupling allows Domain-driven design to be

observed for a SOA system's constituent services. It's central idea is the creation of a

Ubiquitous Language with the assistance of domain experts, that embeds domain

terminology into the software components' naming and structure. This practice is

claimed reduce friction in the operations side and increase maintainability and creative

cross-domain collaboration.

• Business-centeredness: While many components within a SOA context may be

developed in such a way as to constitute candidate services, only a subset of those have

their service description exported, and perhaps published to a service registry, if there

is one. Exposure in a controlled way is ensured via the provision of a fitness-for-

purpose, or “litmus test”, that determines whether a given service implementation

meets certain business alignment, composability, reusability and technical feasibility

criteria.[11] This is facilitated greatly by the existence of accompanying service

contracts, that allow the evaluation of the service's technical characteristics to remain

separate from considerations concerning it's internal design.

In simpler scenarios, SOA systems are designed around a synchronous ESB, a property

derived from the synchronous nature of their constituent services. A common approach is that

of the service-oriented API gateway pattern, touched upon briefly in a previous section. It

refers to business-coupled deployments consisting of components wrapped as Web Services,

which are configured as to delegate service management to the system's gateway service. This

service is charged with receiving requests from it's external API, accessible to clients outside

the SOA system, aggregating the various services required to fulfill them, and returning the

response in a synchronous manner.

19

2.5 SOA 2.0

While taking an antidiametrical approach to communication with regards to EDA (pull vs

push - soliciting a response as opposed to publishing an event notification), thus evading many

of it's shortfalls, SOA, in practice, has come to serve as a useful complement in many EDA-

structured enterprise systems, with services commonly being wrapped as components

triggered by event handlers.

For most applications, communication then has to be framed within an Enterprise Messaging

System that enables information flow and routing through event-driven infrastructure, and into

synchronous services.

The popularity of such hybrid systems, combined with the aforementioned benefits of

dedicated SOA integration engines, has brought about a state of affairs where most

productized ESB implementations have come to rely on distributed, message-oriented

middleware, dubbed “ESBs”, introducing a federated hub and event-driven messaging

infrastructure as ubiquitous features of present-day SOA systems.[12]

20

Figure 5: Event-driven SOA (SOA 2.0)

21

This model of SOA has been called next-generation SOA, or “SOA 2.0”. To elucidate the

cause of the wide popularity of this hybrid, a pros-and-cons comparison of the two styles will

be attempted.

Traditional SOA can be advantageous for:

• Service chaining: Operations that involve interaction between vertical hierarchical

layers of functions packaged as services are common. The request-response model of

communication, supplemented by polling mechanisms for interactions involving more

than two services, ensures the interactions are performed in the correct order. The

implementation of such chains is further simplified by the assured existence of

contracts that specify the Quality-of-Service aspects of the modules involved.

• Human-Computer Interaction and other time-sensitive processes: The synchronous and

contract-bound nature of communication is expedient for the design of real-time

services, such as the decision-enablement and actuation capabilities that are expected

from modern enterprise systems.

• Transactionality: Interaction between service pairs can be said to implement “pull”

semantics. Information like response status codes can be propagated back down the

call stack, through service chains of arbitrary depth, until the original service consumer

receives their response. Mechanisms relying on this property can be put in place to

guarantee transaction atomicity1.

1Either all interactions occur successfully or no interaction occurs.

22

• Testing: Synchronicity makes contract specification possible, and contract-specified

policy boundaries increase the tractability of operations involving multiple services.

On the con side of SOA, it could be noted that, despite the the high internal interoperability of

systems designed in this manner, interfacing with external systems remains hard, as they

would have to be wrapped as services abiding to the particular ESB setup, and establish

connections bound to service-contracts composed often under unaccommodating assumptions.

Meanwhile, EDA exhibits it's own set of advantages in multiple areas:

• Business-to-business (B2B) integration: EDA implements “push” semantics. An event

emitter's active involvement in communication ends once it publishes an event

notification. Control of an operation's flow is shifted away from the event source,

being distributed/delegated to event handlers. An enterprise partner can integrate with

a preexisting EDA system with relative ease, by encapsulating their system's

components as event emitters that conform to the system's particular event semantics.

In case a partner already utilizes their own EDA system, a semantic matching solution

can alternatively serve to directly bridge the two systems.

• Business workflow and other arbitrarily-halting processes: Many business processes

involve human input in their workflow. A Warehouse Management System (WMS),

for example, has to be updated with the status of the physical warehouse by warehouse

employees, before moving forward with the processing of an inventory receipt. As

EDA is asynchronous and contract-free by design, it enables such operations to be

readily embeddable within an Enterprise Software-driven workflow.

23

• Ease of deployment: The EDA pattern is characterized by loose coupling which allows

independent deployment and unhindered horizontal scalability, as there are no

dependencies among the participating components. For solutions that require

maximum ease of deployment, event broker topology is a better option than event

mediator topology. This is due to the fact that in the event mediator topology,

relatively tight event mediator - event handler coupling can exist .

• Performance: Asynchronicity makes data parallelism via multi-core processing

possible

• Scalability: The above two points together, are essential elements for systems

envisioned to be scalable.

On the con side, EDA system testing is not easy due to the asynchronous nature of the

processing, and the concomitant lack of service contracts.

The introduction of an event-driven, message-oriented middleware at the core of a SOA-

inspired system increases the base complexity of the design, but can, in theory, result in a

SOA-EDA hybrid bestowed with advantages from both approaches while eliminating their

respective drawbacks. A resulting system would benefit from a performant, loosely coupled,

event-driven architecture, with a design amenable to Business-to-business connections and

hybridizable with SOAs encapsulated as event emission-capable services triggered by event-

handlers.

24

Part II Engineering concepts and tools

3 Apache Camel: a framework for constructing Message-Oriented

Middleware

3.1 Introduction

The convergence around hybrid SOA architectures and Enterprise Messaging Systems as the

default type of communication model for enterprise integration brought into focus the need for

a common, platform-independent language to describe the common capabilities and

architectural features of such systems. The resulting vocabulary is what is referred to as

“Enterprise Integration Patterns” (EIPs).[14]

Apache Camel is a framework for building message-oriented middleware. More generally, it

aspires to enable integrations designed around the Enterprise Integration Pattern (EIP)

vocabulary. In addition to native support via JMS for ActiveMQ and other message brokers

and infrastructure in the EDA paradigm, it provides features that enable most common SOA

architectures, modern and legacy alike. Standard SOAP Web Services, RESTful http Web

Services and more are natively supported, with Amazon Web Services, GraphQL and other

modern service-oriented technologies supported as extensions.

3.2 Basic Concepts

Arguably the most important aspect of Camel is message routing, which is utilized to enable

SOA-style service composition within the context of an event-driven integration system.

A Camel route begins from a consumer endpoint, which corresponds either to an event handler

passively receiving inbound messages published on a particular event topic, or to a polling

25

function synchronously monitoring a particular source by fetching messages at scheduled

intervals.

Components are batteries-included Camel factories for creating Endpoint instances. They

contain the protocol-specific logic for obtaining information from outside sources and

packaging it as inbound messages.

The inbound messages' carrier through the service chain representing a Camel route is called a

message exchange.

26

Figure 6 Camel Exchange

There are two types of Message Exchange Pattern (MEP). InOnly corresponds to operating as

an event handler. The incoming Message is an event notification, being used in one-way

communication where flow control is passed to the receiving module. InOut is a pattern used

to emulate a SOA-style request-response interaction, and is useful for chaining local services

with Web Services or other remote components.

The Camel Processor is the interface for incorporating custom logic, such as conventional

system components or services, into a Camel route's exchange channel.

Figure 7: Camel Route

Finally, by Camel's offering of a Domain Specific language, which is implemented simply as a

Java API that contains methods named after EIP terms, an integrated system's Camel Routes

are rendered into a prime leverage point for inspection and control of the logical flow of

integration.[8]

27

3.3 Example of a Camel Route

We maintain the middleware stack of a logistics company. One of our integration solution's

tasks is contacting the various couriers' APIs and issuing shipment vouchers for the goods that

need to be delivered, then updating the company's ERP with this knowledge through an http

callback. Open requests for issuing such vouchers are stored in a database. This is the Camel

route in full:

 from("timer://$Voucher?period=500000&repeatCount=-

1") .log(LoggingLevel.INFO,logger,"Starting polling

for open voucher requests")

.setHeader('courierCode').constant(configuration.courierCode)

.to("sql:classpath:sql/openVoucher.sql")

.log(configuration.name +'Voucher: Processing ${body.size}

voucher requests')

.setProperty('totalRequests').simple('${body.size}')

.split(body(),voucherAggregation)

28

 .log(LoggingLevel.INFO,logger,'Posting for voucher

for request: ${body}')

 .process("issueVoucherProcessor")

 .filter().simple('${body.voucherCallbackUrl} != null')

 .process('voucherCallbackProcessor')

 .end()

.end()

.log(LoggingLevel.INFO, logger, 'Successfully Updated

${property.successCount}/$ {property.totalRequests} requests')

The endpoint of the Camel route in question is a polling consumer firing periodically every

500000 seconds, The timer component is used just for the purpose of triggering the start of an

exchange, yielding an inbound message with an empty body:

 from("timer://$Voucher?period=500000&repeatCount=-

1") .log(LoggingLevel.INFO,logger,"Starting polling

for open voucher requests")

29

The empty message is wrapped in an exchange, which is propagated to the .to() Camel EIP.

The .to() EIP is an endpoint that, unlike .from(), which acts only as a message consumer, is

also capable of producing messages. In this case, it executes an SQL script against a database

whose address and credentials are stored in the system's configuration, and places the returned

records in the exchange's outbound message's body:

 The courierCode header value is injected into the sql query so as to draw open voucher

records only for the specific courier.

.setHeader('courierCode').constant(configuration.courierCode)

.to("sql:classpath:sql/openVoucher.sql")

Next, the open voucher records are split, so that they may be consumed one by one by the

issueVoucherProcessor. When the name of a Camel processor object is given as an argument

to a .process() EIP, the processor's process() method is invoked. In our scenario, that method

should be sending a POST request to a courier's API in order to receive the code of a new

shipment voucher:

.log(configuration.name +'Voucher: Processing ${body.size}

voucher requests')

.setProperty('totalRequests').simple('${body.size}')

.split(body(),voucherAggregation)

 .log(LoggingLevel.INFO,logger,'Posting for voucher

for request: ${body}')

30

 .process("issueVoucherProcessor")

 .filter().simple('${body.voucherCallbackUrl} != null')

 .process('voucherCallbackProcessor')

 .end()

.end()

.log(LoggingLevel.INFO, logger, Successfully Updated

${property.successCount}/${property.totalRequests} requests')

A few more things are happening here. A callback is sent to the company's ERP via the

voucherCallbackProcessor, to inform that a voucher has been issued. The relevant service is

invoked only for those vouchers among the issued, who originally provided a callback url.

 Finally, voucherAggregation is a function implementing the Aggregator EIP through the

respective Camel interface. It's function is to run on each iteration of the .split() pattern. In this

particular instance, it merely increments to the successCount property for each voucher

successfully issued.

3.4 Debugging a Camel route

Traditional debuggers are incapable of inserting breakpoints on Camel components within

Camel routes as they are laid out in the Java API DSL. The simplest way to insert a breakpoint

31

at any given point within the Camel route as to, for example, inspect the exchange’s contents,

is to use a dummy processor for debugging purposes. This debugProcessor (the component

instance is lowercase) would look like this:

package com.existanze.services.couriers.util

import org.apache.camel.Exchange

import org.apache.camel.Processor

import org.springframework.stereotype.Component

@Component

class DebugProcessor implements Processor{

 @Override

 void process(Exchange exchange) throws Exception {

 def x=10

 }

}

A breakpoint could then be set on def x = 10, whose scope is limited to within the Component

and serves no other purpose than provide a statement for the debugger to break on.

32

4 Introducing Enterprise Integration Patterns as a pattern language

4.1 Messaging Terminology variants

So far an effort has been made to utilize the original terminology to describe the various

architectural patterns. In the context of JMS, utilized by Camel, or other Messaging Systems,

however, various different yet related terms are used. Here is a table, adapted from the

Enterprise Integration Patterns book [7], that will aid in putting all those terms in their proper

context:

Enterprise

Integration

Patterns

Java Message

Service (JMS)

Microsoft MSMQ WebSphere MQ

Message Channel Destination MessageQueue Queue

Point-to-Point

Channel

Queue MessageQueue Queue

Publish-Subscribe

Channel

Topic —— ——

Message Message Message Message

Message Endpoint MessageProducer,

MessageConsumer

33

Enterprise

Integration

Patterns

TIBCO WebMethods SeeBeyond

Message Channel Topic Intelligent Queue

Point-to-Point

Channel

Distributed Queue Intelligent Queue

Publish-Subscribe

Channel

Subject —— IntelligentQueue

Message Message Document Event

Message Endpoint Publisher,

Subscriber

Publisher,

Subscriber

Publisher,

Subscriber

Figure 7 EIP Terminology in various Messaging Systems

4.2 Structure of a pattern

A pattern language, such as that put forth in the Enterprise Integration Patterns book, is

constituted of patterns. The individual patterns of this particular pattern language adopt the

following structure:

· Name – An identifier indicative of what the pattern does

34

· Icon – Diagrams are frequently used to facilitate communication in the are of software

architecture. A visual version of the verbal language is provided to accommodate this

common practice.

· Context - The scenarios in which one might come upon a problem that can be solved

with the particular pattern.

· Problem - A description of the problem faced, which enables the developer to quickly

identify whether a pattern is relevant to their work.

· Forces – Here the –often conflicting -constraints that make the problem difficult to

solve are analyzed.

· Solution – A template for pattern implementation.

· Sketch – An visual illustration of the solution template.

· Results – How the solution resolves the forces. New challenges that might be brought

about as a result of the implementation of the pattern are also discussed here.

· Next – This section refers to other patterns to be considered after applying the current

one.

· Sidebars – They contain relevant technical issues in more detail that strictly necessary

for pattern implementation.

· Examples – One or a few examples of pattern application.

35

4.3 Patterns

In this chapter, a few select Enterprise Integration Patterns descriptions, drawn from Camel In

Action and EIP books,, will be presented in a less structured format.

4.3.1 Endpoint

As covered in the first chapter of this part of the thesis, the Endpoint abstraction that models

the end of a message channel through which a system can send or receive messages. An

Endpoint in Camel is constructed through the use of a Camel component, selected by applying

the appropriate locator prefix such as ftp:// or timer:// (seen in a previous chapter) to a camel

endpoint’s Uniform Resource Identifier (URI). Camel components thus act as endpoint

factories.

4.3.2 Content-based Router

The Content-Based Router inspects the content of a message and routes it to another channel

based on the content of the message. Using such a router enables the message producer to send

messages to a single channel and leave it to the Content-Based Router to inspect messages and

route them to the proper destination. This alleviates the sending application from this task and

avoids coupling the message producer to specific destination channels.

4.3.3 Message Filter

The Message Filter is a special form of the Content-based Router. It only routes the incoming

messages to another channel if certain conditions are met. An implementation of said pattern

in Apache Camel is utilized in the Camel route code introduced in the seconds chapter of this

part.

36

4.3.4 Splitter and Aggregator

These are also used in the Camel Router code example of the second chapter of this part of the

thesis. A splitter may be used to split multi-line messages e.g. objects, returns from database

queries, or lists, into single-line messages that can be processed individually.

An Aggregator may then be used to recombine the messages back into a single message,

applying any custom logic that may be required in this process.

Unlike the other routing patterns, the Aggregator is stateful , as it has to store messages

internally until their default or custom aggregation conditions are met.

4.3.5 Dynamic Router

In addition to generic Content-based Routers, which are static, dynamic version can be

implemented. The core is to allow routing logic to be altered by sending control rules to a

designated control port.

4.3.6 Composed Message Processor

 A Composed Message Processor is the combination of Splitter, a Router and an Aggregator.

Participants operate concurrently and reassemble the replies into a single message. We can say

that these. patterns together manage the parallel routing of a message. A generic router in

Camel (a Camel route that has not received any extra parameters) is at once an EDA

decoupler (an event handler), and a mechanism to chain SOA compliant services via .to()

producers. A composed message processor can be constructed in Camel through composition

of the aforementioned patterns, an, example of which is presented in the second chapter of this

part of the thesis.

37

5 Apache Camel Components

5.1 Core components

5.1.1 Log

The Log component logs message exchanges to the logging mechanism provided in the

project’s configuration (The default for Camel Springboot is SLF4J). An example using

Camel’s Java API DSL [8]:

 from("timer://${configuration.name}Voucher?period=$

{configuration.pollingPeriod}&repeatCount=-1")

 .log(LoggingLevel.INFO,logger,"${configuration.name} - Voucher: Starting polling

for open voucher requests")

An example with a the log component being specified by providing an explicit endpoint URI:

from("activemq:orders").to("log:com.mycompany.order?

level=DEBUG").to("bean:processOrder");

Example within Spring XML Camel route declaration:

<route>

<from uri="activemq:orders"/>

<to uri="log:com.mycompany.order?level=DEBUG"/>

38

<to uri="bean:processOrder"/>

</route>

5.1.2 Bean

The term “beans” has been reused in several different contexts to refer to some kind of special

Java object. They are certainly not Plain Old Java Objects (POJOs). Spring beans, in

particular, are objects in the Spring Context stored within the JVM runtime, which represent

instances of singleton classes.

The Bean Camel component then, in a Spring context, is used to bind such beans to Camel

exchanges.

Here is an example of bean instantiation using this component in the Camel DSL style:

from("direct:start").bean(ExampleBean.class);

And here’s an example of an preexisting bean being invoked with Spring XML Came route

declaration. Notice the fully qualified (absolute) classpath is used:

<route>

<from uri="direct:start"/>

 <to uri="bean:com.foo.ExampleBean"/>

</route>

39

5.1.3 Direct

The Direct component provides direct, synchronous invocation of any consumers when a

producer sends a message exchange.

This endpoint can be used to connect existing routes in the same camel context e.g. the same

Java Virtual Machine.

Java DSL Example:

from("activemq:queue:order.in")

.to("bean:orderServer?method=validate")

.to("direct:processOrder");

Spring XML Example:

<route>

 <from uri="activemq:queue:order.in"/>

 <to uri="bean:orderService?method=validate"/>

 <to uri="direct:processOrder"/>

</route>

40

5.1.4 File

The File component provides access to file systems, allowing files to be processed by any

other Camel Components or messages from other components to be saved to disk.

Java DSL example:

from("file:inbox?charset=utf-8")

 .to("file:outbox?charset=iso-8859-1")

Spring XML example:

<route>

 <from uri="bean:myBean"/>

 <to uri="file:/rootDirectory"/>

</route>

5.1.5 Timer

The Timer component is used to generate message exchanges when a timer fires. You can

only consume events from this endpoint.

41

Multiple task scheduling components are available. They produce timer events that can be

used to trigger recurring camel routes via consumer EIPs, or otherwise provide a means of

time tracking for local or distributed tasks. The primary ones are scheduler (or it's simpler

variant, timer) and quartz.

The scheduler component utilizes the host JDK's timer and is intended for locally tracked tasks

that have no need for accuracy, as no provision is made against downtime.

The quartz component uses a database to store timer events and supports distributed timers,

and is therefore fault tolerant and suitable for scheduling distributed tasks.

Java DSL example:

from("timer://foo?fixedRate=true&period=60000")

.to("bean:myBean?method=someMethodName");

Spring XML example:

<route>

 <from uri="timer://foo?fixedRate=true&period=60000"/>

 <to uri="bean:myBean?method=someMethodName"/>

</route>

42

Quartz is note a core component, however, in the interest of cohesion, an example of it’s use

through the Java DSL will be presented here:

from("quartz://myGroup/myTimerName?cron=0+0/5+12-18+?+*+MON-FRI")

 .to("activemq:Totally.Rocks");

5.1.6 Validator

The Validation component performs XML validation of the message body using the JAXP

Validation API and based on any of the supported XML schema languages, which defaults to

XML Schema.

Spring XML example:

 <route>

 <from uri="direct:startNullHeaderNoFail"/>

 <to uri="validator:org/apache/camel/component/validator/schema.xsd?

headerName=issueVoucherProcessor;failOnNullHeader=false"/>

 <to uri="mock:valid"/>

</route>

5.1.7 Other core components

• Browse: Inspect the messages received on endpoints supporting BrowsableEndpoint.

• Class: Invoke methods of Java beans specified by class name.

43

• Control Bus: Manage and monitor Camel routes.

• Data Format: Use a Camel Data Format as a regular Camel Component.

• Dataset: Provide data for load and soak testing of your Camel application.

• Dataset test: Extends the mock component by pulling messages from another endpoint

on startup to set the expected message bodies.

• Direct VM: Call another endpoint from any Camel Context in the same JVM

synchronously.

• Kamelet: To call Kamelets.

• Language: Execute scripts in any of the languages supported by Camel.

• Mock: Test routes and mediation rules using mocks.

• Ref: Route messages to an endpoint looked up dynamically by name in the Camel

Registry.

• REST: Expose REST services or call external REST services.

• REST API: Expose OpenAPI Specification of the REST services defined using Camel

REST DSL.

• Saga: Execute custom actions within a route using the Saga EIP.

• Scheduler: Generate messages in specified intervals using

java.util.concurrent.ScheduledExecutorService.

44

• SEDA: Asynchronously call another endpoint from any Camel Context in the same

JVM.

• Stub: Stub out any physical endpoints while in development or testing.

• VM: Call another endpoint in the same CamelContext asynchronously.

• XSLT: Transforms XML payload using an XSLT template.

• XSLT Saxon: Transform XML payloads using an XSLT template using Saxon

5.2 Protocol components and provider components

There are also hundreds of Camel components used to generate endpoints for communication,

through specific protocols beyond File (http:, ftp:, jms:, amqp:, etc.), or with the APIs of

different service providers (AWS, DropBox, GitHub, etc.).

45

Appendix: The API economy

SOA, as mentioned previously, was devised as a way to shield interface consumers from

changes in the back end. But in a business landscape with an unrelenting drive towards

opening up to Business-to-Business integration, and constant competition for driving down the

cost through off-the-shelf integration solutions, how are the constantly changing needs of

service-consuming partner frontend applications to be accommodated?

The Backends for Frontends (BFF) pattern, now present in mobile apps, Single Page Apps

(SPAs) Progressive Web Apps (PWAs), and other modern solutions based on the browser

platform in general, was the first foray outside enterprise: APIs perfectly suited to the needs of

a prospective frontend, with rationalized data models, ideal granularity of operations,

specialized security models etc. This developer-orientation also marked a wholesale departure

from the idea of achieving API reusability through stability, a development that goes hand in

hand with a bigger investment in API management to lower the maintenance overhead this

new stance would entail.[1]

Modern API management solutions create APIs via configuration rather than coding, and the

task of creating or changing an API usually takes only minutes. The nature of an easily

managed API is simply that it is both defined and controlled by configuration. API

management solutions, while complex in their implementation and often costly as proprietary

offerings, render the maintenance of non-stable consumer-oriented APIs practical.

APIs are always designed to be attractive to the intended consumer, and they change as the

needs of the consumer change. Service interfaces, in contrast, are generally designed with

global cost and stability as the most important concerns. In a car analogy, the API is the race

46

car designed for looks and consumption, and the service interface is the regular car designed

for cost and mass production.

The interests of the parties involved in the development and maintenance of APIs are often

conflicting. A mobile developer in the employ of an enterprise partner just wants the API

consumption to be simple for their particular application. On the other side, the back-end team

wants everyone to use the same standardized service interface and data model.

Services are the means by which providers codify the base capabilities of their domains. APIs

are the way in which those capabilities (services) are repackaged, productized, and shared in

an easy-to-use form.

APIs are controlled, proxy views of the data and capabilities of a domain, optimized for the

needs of API consumers. As long as the cost of maintaining proxy APIs remains low, they can

be used to render a domain in multiple forms, optimized for each group of API consumers. In

big enterprises offering cloud services, a scheme comprising three tiers of APIs – public,

partner, and internal – is very common. The availability of the first two tiers provide the

opportunity for collaboration among loosely related parties. The resultant market-like

ecosystem has been dubbed the “API Economy”[2].

Orchestrated microservices riding on container-based “serverless” cloud infrastructure,

“Agile” software delivery models, and consumer-oriented partner APIs exposed through

advanced, proprietary service management solutions, aimed at 3d party developers, are the

enablers of today's API economy. These developments are all, however, beyond the scope of

this thesis. For illustration purposes, a few examples of what the “API Economy” entails are

quoted below[1]:

47

“The API economy emerges when APIs become part of the business model. Public and partner

APIs have been strategic enablers for several online business models. For example, Twitter

APIs easily have ten times more traffic than the Twitter website does. The company’s business

model deliberately focuses on Tweet mediation, letting anyone who wants to do so provide the

end-user experience. [...] Another example, Amazon, from the get-go, chose to be not only just

an Internet retailer but also a ubiquitous merchant portal. Amazon’s merchant platform is

deliberately built on APIs that allow easy onboarding of new merchants. APIs as business

network enablers aren’t new. Banks have built payment infrastructures and clearinghouses

based on well-defined APIs for decades. Modern APIs, however, are built explicitly for an

open ecosystem[...].”

Paypal and Stripe are two other wildly successful examples of businesses whose entire

business model rests on the API Economy. Uber can also be cited as example of a physical

service, the majority of the software stack of which comprises of glued-together partner APIs

In closing, it can be argued that the emergence of this late developmental trend, while

departing significantly from the original vision for SOA, nevertheless does credit to the

promise of reusability the idea of web service orientation has borne since it's inception.

48

References

[1] Dennis Ashby, Claus T. Jensen: APIs for Dummies, 3rd IBM Limited Edition, pp. 5 - 9.

John Wiley & Sons, Inc. (2018)

[2] George Collins, David Sisk: API Economy. Tech Trends 2015: The fusion of business and

IT. Deloitte Consulting LLP (2015)

[3] David A Chappell: Enterprise Service Bus. O'Reilly Media (2004)

[4] Martin Fowler: Patterns of Enterprise Application Architecture. Addison-Wesley

Professional (2002)

[5] Alexandros Gazis, Eleftheria Katsiri: Middleware 101, What to know now and in the

future. In: ACM Queue, vol. 20 issue 1 (2022)

[6] Souleiman Hasan, Sean O’Riain, Edward Curry: Approximate Semantic Matching of

Heterogeneous Events. ACM International Conference on Distributed and Event based‐

Systems, Berlin, Germany (2012)

[7] Gregor Hohpe, Bobby Woolf: Enteprise Integration Patterns, pp. 18, 32. Addison-Wesley

Professional (2003)

[8] Claus Ibsen, Jonathan Anstey: Camel in Action. Manning Publications (2008)

[9] Pontus Johnson: Enterprise Software System Integration, An Architectural Perspective.

Ph.D. thesis. Industrial Information and Control Systems KTH, Royal Institute of Technology,

Stockholm, Sweden (2002)

49

[10] Brenda M. Michelson: Event-Driven Architecture Overview. Patricia Seybold Group

(2006)

[11] Cécile Péraire, Mike Edwards, Angelo Fernandes, Enrico Mancin, Kathy Carroll: The

IBM Rational Unified Process for System z, Service Specification. IBM Corporation (2007).

URL http://deg.egov.bg/LP/soa.rup_soma/tasks/soa_service_qualification_E0D920A6.html

[12] Harihara Subramanian Pethuru Raj, Anupama Raman: Architectural Patterns, pp. 24, 25,

28, 210, 245. Packt Publishing (2017)

[13] Bobby Woolf: Event-Driven Architecture and Service-Oriented Architecture. IBM

Software Services for WebSphere, IBM Corporation (2006)

[14] Olaf Zimmermann, Cesare Pautasso, Gregor Hohpe, Bobby Woolf: A Decade of

Enterprise Integration Patterns: A Conversation with the Authors, pp. 13–19. IEEE Software,

vol. 33 issue 1 (2016)

[15] IBM Cloud Education: What is Middleware? (2022). URL

https://www.ibm.com/cloud/learn/middleware

[16] Redhat Technology Topics: What is a Service Registry? (2021). URL

https://www.redhat.com/en/topics/integration/what-is-a-service-registry

50

	1.1 Introduction
	1.2 General challenges
	1.3 Types of integration
	1.3.1 Information Portals
	1.3.2 Data Replication
	1.3.3 Shared Business Functions
	1.3.4 Service-Oriented Architectures and Distributed Business Processes
	1.3.5 Business-to-Business Integration

	2.1 Islands of automation and the advent of EAI
	2.2 Point to point integration
	2.3 Event-Driven Architecture and the hub-and-spoke pattern
	2.4 Service Oriented architecture and the Enterprise Service Bus
	2.5 SOA 2.0
	3.1 Introduction
	3.2 Basic Concepts
	3.3 Example of a Camel Route
	3.4 Debugging a Camel route
	4.1 Messaging Terminology variants
	4.2 Structure of a pattern
	4.3 Patterns
	4.3.1 Endpoint
	4.3.2 Content-based Router
	4.3.3 Message Filter
	4.3.4 Splitter and Aggregator
	4.3.5 Dynamic Router
	4.3.6 Composed Message Processor

	5.1 Core components
	5.1.1 Log
	5.1.2 Bean
	5.1.3 Direct
	5.1.4 File
	5.1.5 Timer
	5.1.6 Validator
	5.1.7 Other core components

	5.2 Protocol components and provider components

