
UNIVERSITY OF IOANNINA
DEPARTMENT OF INFORMATICS &

TELECOMMUNICATIONS

UNDERGRADUATE THESIS JOURNAL
Object Detection for Low Light Images

Dimitrios Mpouziotas

Supervisor Petros Karvelis

March 25, 2024

Page 1 of 103

OBJECT DETECTION FOR LOW LIGHT IMAGES

2

© Mpouziotas, Dimitrios, 5th Year Student.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Page 3 of 103

Δήλωση μη λογοκλοπής

Δηλώνω υπεύθυνα και γνωρίζοντας τις κυρώσεις του Ν. 2121/1993 περί Πνευματικής Ιδ-
ιοκτησίας, ότι η παρούσα πτυχιακή εργασία είναι εξ ολοκλήρου αποτέλεσμα δικής μου ερευν-
ητικής εργασίας, δεν αποτελεί προϊόν αντιγραφής ούτε προέρχεται από ανάθεση σε τρίτους.
΄Ολες οι πηγές που χρησιμοποιήθηκαν (κάθε είδους, μορφής και προέλευσης) για τη συγ-
γραφή της περιλαμβάνονται στη βιβλιογραφία.Επίσης δηλώνω πως η εφαρμογή chatGPT, δεν
χρησιμοποιήθηκε ποτέ με σκοπό την παραγωγή κειμένου ή κώδικα σε αυτήν την πτυχιακή,
εκτός από την αναζήτηση αναφορών, άρθρων, βάσεων δεδομένων, επιστημονικών άρθρων.

Page 4 of 103

Acknowledgements

The development of this thesis has been a challenging task, and I am grateful for the guidance
and assistance of the ever growing Darknet community, which improved the technical quality
of this thesis drastically. I would like to express my sincere gratitude to my professor and
thesis supervisor, Petros Karvelis, whose mentorship elevated my understanding and skills in
Computer Vision and Data analysis and enabled me to reach new heights and potential.

Finally, I am deeply grateful to my parents for their unwavering support and presence in
my life, especially as I approached the ending point of my academic journey as a bachelors
student, on my graduation day.

Page 5 of 103

ABSTRACT

Object Detection is a computer vision method that was developed for de-
tecting objects in images and videos. Although it has surpassed human per-
formance and it is considered practically solved, most object detectors strug-
gle to detect objects in sub-optimal lighting conditions. Various techniques
have been developed in order to enhance low light images to a much better
state. This thesis is about advancing further into the topic of object detec-
tion and computer vision, as well as determining a conclusion based on the
well known object detector YOLO (You Only Look Once). A statistical anal-
ysis of YOLOv4’s [1] performance on ExDark [2], the largest low light image
dataset. An exploration on various low light image enhancement techniques
such as GC [3], HE [4], and Kindling the Darkness aka KinD [5], in order
to increase YOLOv4’s performance. A deeper understanding of the problem
caused within low light conditioned images by using various data visualiza-
tion techniques, such as contour maps, sobel derivatives, 3D image plotting
and intensity value histograms.

Figure 1: Image with 2 target detections and 1 prediction (ExDark Image 03215)

This thesis operates as an academic research resource and aims to find a
conclusion on the performance of the YOLOv4 object detector using several
low light image enhancement techniques.

Page 6 of 103

ΠΕΡΙΛΗΨΗ (Abstract in Greek)

Η αναγνώριση αντικειμένων είναι μια μέθοδος μηχανικής όρασης η οποία

αναπτύχθηκε με σκοπό την ανίχνευση ορισμένων αντικειμένων πάνω σε εικόνες

ή/και βίντεο. Ακόμα και αν έχει ξεπεράσει την ικανότητα του ανθρώπου και
θεωρείτε σχεδόν λυμένο ως πρόβλημα, τα περισσότερα μοντέλα αναγνώρισης
αντικειμένων δυσκολεύονται στην ανίχνευση αντικειμένων σε εικόνες υποβα-

θμισμένης φωτεινότητας (Χαμηλής φωτεινότητας). Διάφορες τεχνικές υλοποιήθηκαν
με σκοπό την ενίσχυση των εικόνων, σε καλύτερη κατάσταση και φωτεινότητα.
Αυτή η πτυχιακή έχει ως στόχο την περαιτέρω πρόοδο στο θέμα της αναγ-

νώρισης αντικειμένων και μηχανικής όρασης, καθώς και τον καθορισμό ενός
συμπεράσματος χρησιμοποιώντας το περίφημο μοντέλο αναγνώρισης αντικειμένων

YOLO (You Only Look Once). Μια στατιστική ανάλυση της απόδοσης του
YOLOv4 στο ExDark, το μεγαλύτερο dataset με εικόνες χαμηλής φωτεινότη-
τας. Μια εξερεύνηση σε διάφορους αλγόριθμους ενίσχυσης εικόνων χαμηλής
φωτεινότητας, όπως το GC, HE και Kindling the Darkness επίσης γνωστό ως
KinD, με σκοπό την αύξηση της απόδοσης του μοντέλου YOLOv4. Μια βα-
θύτερη κατανόηση στο πρόβλημα των εικόνων χαμηλής φωτεινότητας χρησι-

μοποιώντας διάφορες τεχνικές οπτικοποίησης δεδομένων, όπως sobel παραγώ-
γους, χάρτες περιγραμμάτων, οπτικοποίηση φωτεινότητας εικόνων σε 3D δια-
γράμματα και ιστογράμματα τιμών εντάσεων.

Η πτυχιακή αυτή λειτουργεί ως ακαδημαϊκός επιστημονικός πόρος, που έχει
ως στόχο να βρει ένα συμπέρασμα στην αύξηση της απόδοση του μοντέλου

YOLOv4, χρησιμοποιώντας διάφορες τεχνικές ενίσχυσης φωτεινότητας εικόνων.

Page 7 of 103

Contents
1 Introduction 13

1.1 The Goals and Contribution . 14
1.1.1 Self-driving Autopilot Cars . 15
1.1.2 Satellite & aircraft systems . 15
1.1.3 Face Recognition Systems . 15

1.2 The Darknet Framework . 16
1.3 An Introductory to OpenCV . 17
1.4 Image Processing Using OpenCV . 17

2 The Low Light Condition Problem 17
2.1 Problems & Degradation of a Low Light Image 18
2.2 Data Visualization for Low Light Images . 18

2.2.1 Image Structure . 18
2.2.2 Introduction to Image Histograms 19
2.2.3 Image Contour maps . 20
2.2.4 Sobel Derivatives . 21
2.2.5 3D Image Plotting . 21

2.3 Determining The Light Levels of an Image 22
2.3.1 The Means Algorithm . 23
2.3.2 Determining the Light Level using Histograms 24

3 Convolutional Neural Networks, the Tool of Object Detection 25
3.1 Linear & Non-linear Problems . 26
3.2 The Perceptron . 27
3.3 Training a Perceptron . 28
3.4 The Structure of a Convolutional Neural Network 29

3.4.1 The Input Layer . 30
3.4.2 The Convolutional Layer . 30
3.4.3 The Pooling Layer . 31
3.4.4 The Classification Layer . 31

3.5 Object Detection using YOLOv4 . 31

4 Training Convolutional Neural Networks 32
4.1 Groundtruth Information in a CNN . 33
4.2 Creating a Dataset to Train a CNN . 34

4.2.1 Gathering & Annotating Images . 34
4.2.2 Structuring & Improving the dataset 35

4.3 Training Performance Evaluation Methods 36
4.4 Training YOLOv4 using Darknet . 38
4.5 Evaluating YOLOv4 . 39

Page 8 of 103

5 Object Detection in Low Light Conditions 41
5.1 Enhancing Degraded & Low Light Images 42
5.2 Enhancement methods . 43
5.3 Low Light Image Enhancement Algorithms 43
5.4 Histogram Equalization . 44
5.5 Gamma Correction . 45
5.6 Kindling the Darkness (KinD) . 46

6 The ExDark Dataset 47
6.1 ExDark’s Groundtruth Information . 48
6.2 Annotation Embedding Algorithm . 48

7 Implemented Algorithms & Frameworks 48
7.1 Implementing & Running the GC Algorithm 49
7.2 Implementing & Running the HE Algorithm 49
7.3 Building & Running Kindling The Darkness (KinD) 50
7.4 Building & Running The Darknet Framework 50
7.5 Advanced IoU & Average Precision calculator on the groundtruth information

for the YOLOv4 model using DarkHelp [6] & OpenCV [7] 52

8 The Analysis 52
8.1 Analyzing the Results with the Groundtruth Information 52
8.2 The Interpretation . 53

9 Applied Analytics 54
9.1 Inspection of the Enhanced Images . 54
9.2 Data Analysis & Results: Original Images 55
9.3 Data Analysis & Results: Gamma Correction 56
9.4 Data Analysis & Results: Histogram Equalization 58
9.5 Data Analysis & Results: KinD . 59
9.6 Statistical Comparison & Evaluation . 60

10 Analysis Using Data Visualization 60
10.1 Data visualization of Equalized Images . 61
10.2 Data Visualization of Gamma Correction . 62
10.3 Data Visualization of KinD . 62

11 Conclusion 64

12 Future Work 65

Appendices 70

A Gamma Correction 70

Page 9 of 103

M Histogram Equalization 71

N Backend for GC & HE 73

O Generate ExDark’s Groundtruth Images 77

P Determine Low Light Level using means 80

Q Generate Image Histograms 1 (Code to show RGB channels separately) 82

R Generate Image Histograms 2 (Simple Histogram) 83

S Data Augmentation 85

T Perceptron with Data Visualization 87

U Advanced IoU & Average Precision calculator on the groundtruth information
for the YOLOv4 model using DarkHelp [6] & OpenCV [7] 95

Page 10 of 103

List of Figures
1 Image with 2 target detections and 1 prediction (ExDark Image 03215) . . . 6
2 Faulty detection using an object detector. 14
3 A recent performance graph comparison of various YOLO object detector ver-

sions up to YOLOv7 . 16
4 Yolov4-tiny training time using a 2080 Ti graphics card. 16
5 The structure of an RGB Image. 19
6 The color channels of an Image. (ExDark Image 06365) 19
7 Histogram of an Image. 20
8 The contour map of a low light image (ExDark Image 06365) 20
9 The Sobel Derivative result of a low light image (ExDark Image 02453) . . . 21
10 3D Image Plot . 22
11 Top-down view of a 3D plot of an image. (ExDark Image 06365) 22
12 An image that contains both low and normal light level areas. (ExDark Image

02594) . 23
13 The histogram of a low light image (ExDark Image 06756) 24
14 The histogram of a low light image (ExDark Image 06756) 25
15 A visualization of an image being processed by a Convolutional Neural Network 26
16 A visualization using graphs of a linearly separable problem. The example image

is produced by the Perceptron algorithm [8] . 26
17 A visualization using graphs of a non-linearly separable problem. An example

of two clusters that cannot be linearly separated by drawing a straight line. . . 27
18 A visualization using graphs of a linearly separable problem using hyper-

planes. A 3D (3 features) example of class types that can be linearly separated
by drawing a hyperplane. 27

19 A visualization of a Perceptron with 2 features and 1 bias (X0) as the inputs,
the dot product and the step function [9] . 28

20 Convolutional Neural Network Structure 30
21 Convolutional Layer. Feature extraction layer. 30
22 Pooling Layer. Feature map compression 31
23 An old performance graph comparison of various YOLO object detector ver-

sions up to YOLOv4 . 32
24 Label-Studio Image: Preview of an Image being Labeled using Label-studio 34
25 A comparison of an image tiled onto 17 different images to match the network

size. Original Image size: 3840x2160 Image Tile Size:
640x640 . 35

26 YOLOv4 prediction results. This image contains 23 visible birds at an es-
timated altitude of 40 meters. The image on the left represents the prediction
results without the use of Image Tiling, and the image on the right is tiled
resulting in more accurate predictions. 36

27 Intersection over Union examples using YOLOv4-tiny & YOLOv4. Compari-
son of a model’s prediction bounding box with the groundtruth bounding box.
The percentage represents the IoU calculated using DarkHelp, OpenCV. . . . 37

Page 11 of 103

28 YOLOv4 Training charts of three different training sessions from worse to
better. Higher red line values is better. Lower Blue line values is better 39

29 Evaluated image result with a False Negative and a True Negative result,
where the negative class ”person” was identified and that is incorrect. 40

30 ExDark Low Light Image. An extremely low light conditioned image . . . 41
31 Visual System graph. A graph comparison of human eyesight with various

camera sensitivities . 42
32 HE Algorithm (ExDark Image 06542). Preview of an extremely degraded

image . 44
33 HE Algorithm (ExDark Image 02453). Preview of an original and equalized

image result. 45
34 Histograms from Figure 33. Histograms of an Original and Equalized image. 45
35 GC Algorithm (ExDark Image 03152). Preview of the original image, com-

pared to two different gamma value results. Left Image: Original (Or even
γ = 1) Middle Image: Increased Brightness γ = 2 Right Image: Decreased
Brightness γ = 0.5 . 46

36 KinD Algorithm (ExDark Image 02446). Preview of an original and KinD
image result. 47

37 Information given by the7 ExDark dataset 47
38 YOLOv4 Result by using the Darknet framework (ExDark Image 01611) . . 51
39 A preview comparison of detected clustered objects of YOLOv4 and the Groundtruth

image (ExDark Image 00200) . 53
41 (a): Original Image, (b): Gamma Correction, (c): Histogram Equalization,

(d): Kindling the Darkness . 55
42 Brief visual comparison of noise levels, between the Original and enhanced

image results. (ExDark Image 01468) . 57
43 Brief Visual comparison of an extremely degraded Image. (ExDark Image

01367) . 59
44 A comprehensive statistical comparison of the performance of each enhance-

ment algorithm compared to each other, using the YOLOv4 performance re-
sults. Retrieved in Sections [9.2, 9.4, 9.3, 9.5] 60

45 Comparison between the Original and Equalized Image. (ExDark Image 00301) 61
46 Comparison between the Original and Equalized Image. (ExDark Image 01437) 61
47 Comparison between the Original and Corrected Image. (ExDark Image 03278) 62
48 Comparison between the Original and Corrected Image. (ExDark Image 01489) 62
49 Comparison between the Original and KinD Image. (ExDark Image 00253) 63
50 Comparison between the Original and KinD Image. (ExDark Image 01468) 63
51 Original and KinD YOLOv4 result, compared to the Expected result. ExDark

Image 01468 . 64

Page 12 of 103

1 Introduction
Computer Vision has been a topic of intense study and growing interest. With computer vision,
we can build autonomous systems that can complete tasks without any human intervention.
One of those tasks is object detection, which was developed for computers to simulate and
mimic the human visual system [10].

Over the years, numerous systems for object detection have been proposed [11] and one
of the most well-known systems is YOLO models (You Only Look Once) [12]. YOLO is an
Object Detection algorithm, that uses the architecture of Convolutional Neural Networks [13]
to detect objects in colored images. YOLO is a state-of-the-art object detector, which was
developed and gradually improved to classify objects for images. It can detect a number of
objects at high performance and precision.

There are several YOLO models maintained within the Darknet framework [12]. Darknet
is fast and easy to install and supports CPU and GPU computing. In this work, YOLOv4 (ver-
sion 4) [1, 14] will be an important tool for the analysis of this thesis in order to determine a
conclusion.

Although object detectors report state-of-the-art accuracy in various datasets [11], often
images are captured under suboptimal lighting conditions [15].

By enhancing images in real life problems such as self-driving cars with object detection
systems, we can boost the models’ performance to detect objects even in bad weather or at
night [16], [17]. This is to minimize any possible errors that may occur during those events
and reduce accidents that could be caused by the lack of luminance in the image [18]. Systems
like these are required to be fast, accurate, and efficient to minimize the margin of error. In
order to face this problem and decrease the margin of error caused by the sub-optimal lighting
conditions for the object detector, this thesis will include various enhancement methods. This
way, the object detector, will be able to achieve higher detection rate and precision, while at
the same time maintaining high performance.

Another major problem with low light and especially on extremely low light images, is
that when applying several enhancements to it, the result will be a rather noisy image, or even
worse it may distort the image, making it nearly impossible to detect any object within it.
However, a wide variety of methods concerning standard image processing methods or Deep
Learning based methods exist in the literature of computer vision and image processing. In
Figure 2, a low light image is displayed and the result of an object detection method is also
depicted. It is clear that there are two cats. The cat on the left cannot be detected by the object
detection system (namely the YOLOv4), even though in the human eye, it is obvious. The
reason the model is unable to detect the other object is due to the outline of the cat’s head not
being visible enough, only the lower part of its body can be seen.

A solution to this problem could be by continuing the training of the model with darker
than usual images, but this solution is very time-consuming and hard to achieve. Instead, we
could employ image enhancement methods to the images and solve this issue.

This thesis involves analyzing YOLOv4 and how it operates under low light imaging con-
ditions. It also involves algorithms that enhance images to a point where the model can reach

Page 13 of 103

Figure 2: Faulty detection using an object detector.

its full potential and decrease its margin of error. These methods are namely Gamma Correc-
tion [19], Histogram Equalization [20] and Kindling the Darkness (KinD) [5] which they are
an important tool, in order to enhance low light images and measure the effect in YOLOv4’s
results.

This thesis also includes analyzing the evaluation results of YOLOv4 and how it oper-
ates on images with sub-optimal lighting conditions. YOLOv4 was evaluated on various low
light enhancement algorithms and the evaluation results were extracted, in order to calculate
YOLOv4’s performance. Various data visualization techniques were used to visually identify
the differences during the enhancement of an image, as well as any distortion generated during
the enhancement.

During the development of this thesis a strong introductory on the Perceptron and Convo-
lutional Neural Networks was included, as well as a brief study on the topic of training and
evaluating the YOLOv4 model. Various datasets were created on an unusually difficult task,
in order to solve an object detection problem. During the expansion of each dataset, various
methods were researched and applied into the datasets to minimize any possible errors be-
tween each class and negative classes [21]. This is to acknowledge how YOLOv4 visually
learns from images and how YOLOv4 struggles to detect certain objects in low light condi-
tioned images.

1.1 The Goals and Contribution
This topic is being researched due to its real world uses and several other inspirations of object
detection systems (e.g. Tesla’s Autopilot object detection system, face recognition systems,

Page 14 of 103

object detection in games, satellite and CCTV camera systems). The study of computer vision
is on-par with data science and general machine learning tasks, that can contribute to the
scientific community. This study is in development and is still being researched actively today.
In this topic of this research, YOLOv4’s behavior will be analyzed using several groundtruth
information given by the ExDark dataset [2] with several low light enhancement methods and
algorithms. The analysis behind this research is to increase the detection rate of the model
and the quality and luminance of the images in order to allow YOLOv4 to reach its maximum
potential.

The approach of this research in this thesis will first include various tests of low light
images on the YOLOv4 model. After a variety of information has been extracted from those
low light images, they will be enhanced and tested again with multiple enhancement methods
and algorithms. This way, a conclusion will be extracted and determine which enhancement
method and algorithm performs better or worse.

The research topic of this thesis will contribute to the scientific community by finding and
analyzing methods related to object detection for low light images. Several examples of the
importance of this research topic, can be the following.

1.1.1 Self-driving Autopilot Cars

Tesla self-driving cars, have been the center of attention for electric cars. Although they have
proven to be state-of-the-art systems, often times accidents were caused due to errors given by
the autopilot model. Those issues were caused due to objects not being detected as intended.
This isn’t necessarily because the model wasn’t trained well, but in several conditions where
the lighting is not enough for the object detector, in short during the night an autopilot system
will struggle to actively and accurately detect objects in those conditions.

This research will assist in minimizing the margin of error and number of accidents caused
by the self-driving car models not detecting objects as intended, as well as allow the model to
reach its maximum potential.

1.1.2 Satellite & aircraft systems

As technology improved, computer vision has advanced even to the military and space indus-
tries. Various systems are used in order to detect projectiles and predict incoming impacts.
This research will contribute to these systems in suboptimal lighting conditions, to evade ex-
pensive damages dealt by the impact.

1.1.3 Face Recognition Systems

Public forces like the military or the police regularly use systems to identify suspects in ques-
tion. Public forces use systems on cameras such as CCTV in order to identify a person,
movement, objects, or crime [22].

Regularly, those forces use enhancement algorithms in order to boost the quality or the
luminance of an image. Once again, this research will be able to contribute a conclusive
analysis for those systems to increase their precision and detection rate.

Page 15 of 103

1.2 The Darknet Framework
Darknet[12] is a framework that was originally developed by Joseph Redmon. Redmon grad-
uated in Middlebury, Vermont, and majors in Computer Science and Mathematics. Darknet
today is still regularly used daily, by many users, since it contains a variety of state-of-the-art
models for any user to install in their computer, in order to train or evaluate a neural net-
work. As of time of writing Stephane Charette is the current owner of the Darknet GitHub
repository [23], as well as various other tools that provide support to Darknet. The expansion
tools that provide extra support to Darknet, are DarkHelp [6] and DarkMark [24] [25], aka the
newly founded name DarkSuite (Darknet + DarkHelp + DarkMark). Darknet can be installed
in Linux and Windows. Stephane Charette provides a wide variety of information on how to
operate Darknet including DarkHelp and DarkMark [26].

As of the time of writing, YOLO version 7 has been developed and according to the graphs
given by Alexey B. Figure 3 it surpasses in terms of performance a lot of state-of-the-art object
detectors.

Figure 3: A recent performance graph comparison of various YOLO object detector versions up to YOLOv7

With the appropriate hardware and software installed into the system, training the yolov4-
tiny model, can take up to 2 hours. Figure 4 previews the training time YOLOv4-tiny needs in
certain scenarios.

Figure 4: Yolov4-tiny training time using a 2080 Ti graphics card.

In this thesis, Darknet is the primary tool in order to operate the YOLOv4 model and apply
various tasks such as model training or evaluation on images and videos.

Page 16 of 103

1.3 An Introductory to OpenCV
OpenCV is an image processing library that provides several tools for image & video pro-
cessing tasks. It was originally built for Image Processing developers and is a great tool for
performing Computer Vision tasks. Today it is considered to be the most famous image pro-
cessing tool for developers primarily in the topic of programming. OpenCV is open-source
and was developed by Intel[7]. The library is available in the programming languages C/C++,
Python and Java.

OpenCV is an important tool for the analysis of this thesis, in order to complete certain
tasks such as image enhancement, image processing and data visualization. OpenCV has a
variety of installation guides for each platform (Windows, Linux) and programming language.
Most tools in this thesis were developed using this library in the Python programming lan-
guage.

1.4 Image Processing Using OpenCV
Image Processing is the application of tools and algorithms on images in order to apply various
transformations. Image processing allows for automating various tasks on images, as well as
the first layer of a Convolutional Neural Network, which requires an image to be ”convoluted”.
OpenCV, as mentioned in Section 1.3, is regularly used in image processing by developers to
automate image processing applications.

Various image processing applications, are noise reduction, data augmentation [27], im-
age enhancement [28], image resizing and sampling [29], as well as image analysis or data
visualization.

Some of the more crucial methods mentioned during the development of this thesis is low
light image enhancement, data visualization and noise reduction methods. The thesis author
developed various algorithms using OpenCV and the Python programming language and were
included within the appendix of this thesis.

2 The Low Light Condition Problem
Low light conditions in an image is the lack of color and brightness, which can negatively
affect the visibility and detail of certain objects within the image. Low light conditions can
also result in bad detections for the object detector, as well as reduce the number of expected
objects to be predicted. In most low light conditioned images, degradation and noise is espe-
cially evident, making it difficult for any model to detect objects within that image. In images
with such lighting conditions, noise and lack of brightness could cause the differences between
objects and shapes to be less discrete, resulting in less detections for the object detector.

In real-world problems for object detection, we need to assume that an object detector
needs to be able to detect objects in images with sub-optimal lighting conditions. In order to

Page 17 of 103

assist object detectors to accurately detect objects within low light images, we can adjust the
brightness of the image with several methods by up-lifting the brightness of the image.

In order to reach this state, understanding and visualizing an image’s low light conditions
is an important step to, better understand the low light conditions of an image.

2.1 Problems & Degradation of a Low Light Image
Low light conditions in an image may degrade an image’s quality as well as detail.

2.2 Data Visualization for Low Light Images
By visualizing the data of an image, numerous information can be concluded that can assist
in understanding the low light condition problem. There are several methods to visualize or
measure an image’s low light conditions. In this section, several methods will be demonstrated
and implemented. With those methods, information that cannot easily be observed with the
human eye will be highlighted and clarified.

In order to visualize the data of a low light image, understanding the structure of an image
is an important step to determining that factor.

2.2.1 Image Structure

An image consists of a 2-Dimensional array that contains intensity values ranging from 0 to
255. Each image contains a certain color format with a set number of channels. There are
various color formats that determine the number of channels and information of an image,
the most common color format is RGB. The RGB color format consists of 3 different color
channels, Red, green and blue channels. This indicates that an image can be a 2-Dimensional
array consisting of multiple color channels. In other words, a 500x500 RGB image contains
a total of 500x500x3 intensity values and is equal to 250,000 total pixels but 750,000 total
information to process, Figure 5. In the other hand, the total color variations of a pixel in an
RGB image is 16,777,216 different colors, which is the total intensity value, powered by the
total color channels of the image. The human eye, is estimated to perceive up to 7 million
color variations [30].

Page 18 of 103

Figure 5: The structure of an RGB Image.

By using OpenCV, we can split the image into its 3 color channel variants and view each
color channel, Figure 6 and apply various changes to them.

(a) Red Channel (b) Green Channel (c) Blue Channel

Figure 6: The color channels of an Image. (ExDark Image 06365)

In image processing, we can also convert the image from the RGB color format, into the
CIELAB color space [31]. The CIELAB color space simulates the human vision

2.2.2 Introduction to Image Histograms

A method to visualize an image’s low light conditions is by using Histograms [32]. The
information that can be displayed in a histogram is the total count of intensity values, including
the contrast if all the color channels are displayed within the histogram, Figure 7.

Page 19 of 103

Figure 7: Histogram of an Image.

The x-axis represents the intensity values that ranges from 0 to 255. The Y-axis represents
the total count of the same intensity values within the image. This will allow us to understand
the overall brightness of the image, including the most common intensity values.

Histograms are an important tool in various implemented algorithms and are of use in the
data analysis of this thesis.

2.2.3 Image Contour maps

By using contours, we can visualize the limit of what an object detector can use as informa-
tion [33, 34]. Contours represent the outline of shapes of objects. Contours are used to find
differences of objects in images. Contours are basically curved lines drawn around the shapes
of objects. A display of an image can be seen in Figure 8

(a) ExDark Image (b) Contour Map Result

Figure 8: The contour map of a low light image (ExDark Image 06365)

By generating the contour map of a low light image, we can observe that in certain areas
of the contour map, due to the lack of brightness and color variations from the original image,
the people on the left side of the contour map are not visible enough, Figure 8.

Page 20 of 103

In the contour map, we can observe the brightest spots in the image. A spot where there
is very limited light and color variation will hardly contain any contours around those areas.
Contour maps are one of the methods used in simulating the limitations of the visual system
of an object detector.

2.2.4 Sobel Derivatives

Sobel derivatives is another method to determine the edge of shapes within an image [35].
OpenCV provides a function, called Sobel, that uses derivatives in order to detect and draw
the outlines of shapes within an image. This algorithm works by processing a kernel (Most
commonly a 3x3 sized kernel) and detecting the edges.

Mathematically, this algorithm approximates the differences between the pixels of an im-
age, in other words, it calculates the rate of change of the pixels within the kernels by using
derivatives. In order to draw the image appropriately, different gradient kernels are used for
both the x and y axis.

The result from this algorithm is displayed in Figure 9

(a) ExDark Image (b) Sobel Derivative Image

Figure 9: The Sobel Derivative result of a low light image (ExDark Image 02453)

Sobel derivatives simulate the visual limit of the object detector for low light images and
conducts an insight to the low light condition problem.

2.2.5 3D Image Plotting

By plotting an image into a 3D space, we can visualize a variety of information such as the
highest point of intensity values the brightest and darkest spots of the image and where it is
located. In order to graph a 3D image, the X and Y axis are used to fit the image, the Z axis is
used to display the intensity value of the image colored in a heatmap like color-spectrum. The
result of a 3D plotted image is displayed in Figure 10

Page 21 of 103

Figure 10: 3D Image Plot

In Figure 11 the 3D plot of an image is displayed on a top-down view. The Z axis was
colored based on the intensity value, the higher the intensity value, the more right in the JET
color map (A color map regularly used in Heat maps). In short, the brighter the pixel, the more
red the location of the graph will be.

(a) ExDark Image (b) 3D Plot

(c) JET Color spectrum: The higher the intensity value, the more right in the color spectrum

Figure 11: Top-down view of a 3D plot of an image. (ExDark Image 06365)

The 3D plot of an extremely low light image would contain mostly blue colored pixels.
This way, we can see the difference between the highest and lowest intensity values of an
image. Fundamentally, this algorithm produces a heatmap of an image.

2.3 Determining The Light Levels of an Image
Determining the light level of an image is important in order to determine whether a model
should enhance the image with a higher or lower value. This can contribute to conditions
where a model can dynamically determine whether the image should or shouldn’t enhance an
image, or even dynamically change values that adjust the lighting of an image.

Page 22 of 103

There are several methods to identify an image’s light levels. The most generic method is
to calculate the means of the total intensity values of an image. Another effective method to
determine the light level of an image is by using histograms. We can use various histograms
to see various details about which areas are the least or the most bright in an image.

In this thesis, the images will be identified into four categories:
Normal Lighting
Low Lighting
Very Low Lighting
Extremely Low Lighting
All the algorithms that determine the light level of an image were implemented using Python and OpenCV.

2.3.1 The Means Algorithm

A simple and effective method to calculate the light level of an image, is by calculating the
means of intensity values within the image, Equation 1.

Means =

∑W ·H
i=1 V i

W ·H
(1)

1: W ·H is the total pixels being processed, Vi is the Intensity value i. The result is the average intensity value
of a grayscale image

By converting the image into its gray counterpart, we can then calculate the total average
of intensity values. Each category contains a set bandwidth, or threshold, that will determine
the light level of the image based on the Means result.

This algorithm may be an efficient way to calculate the light level of an image. A lot of the
times it may identify images where most of the objects are located in a dark area of the image
and in another area the image is bright, this can affect the classification result of the algorithm.
For e.g. Figure 12.

Figure 12: An image that contains both low and normal light level areas. (ExDark Image 02594)

Page 23 of 103

The image, displayed in Figure 12 was classified as Normal Lighting and the total means
in that image is 125.0. This algorithm may very well not be accurate when it comes to the
most important information that could be located in the darkest spots of the image, as seen in
Figure 12.

2.3.2 Determining the Light Level using Histograms

Another method to determine an image’s low light condition levels is by using histograms.
The histogram of an image will be able to give information such as the brightness and contrast
of an image, including where the darkest and brightest spots of the image are located. An
example of an image’s Histogram is shown in Figure 13.

(a) ExDark Image (b) Histogram of Image

Figure 13: The histogram of a low light image (ExDark Image 06756)

As seen in Figure 13 the image contains a decent amount of light, the histogram will have
a fair distribution between the range of intensity values.

A darker than usual image would contain a really high count of intensity values on the
most left side of the histogram. An example of this can be displayed in Figure 14

Page 24 of 103

(a) ExDark Image (b) Histogram of Image

Figure 14: The histogram of a low light image (ExDark Image 06756)

In order to calculate the light level of the image using histograms is by attempting to
calculate the biggest cluster of intensity values and compare it to the rest of the image or the
rest of the clusters within that image. The algorithm that can be used in this case is K-Means
Clustering or several other machine learning algorithms.

3 Convolutional Neural Networks, the Tool of Object Detec-
tion

Most object detection models use CNN (Convolutional Neural Networks) in order to classify
objects within an image. CNNs work by feeding images into the model, it will then process
the image and extract information from it, Figure 15. The most visible and most important
results are the bounding box of a detected object and the classified type. The bounding box
is the square or rectangle that is generated to represent the location of a detected object in an
image. Next to the bounding boxes, the model will also include various other information,
such as the confidence of the model and the class type. The Confidence value represents how
determined the model is based on what it has classified. In many cases, a model can have 90
to 100% confidence on an x object, but in reality it could be something completely different
from what the model is predicting. The confidence value will also determine which object is
the class type that is displayed in the image.

In order to understand how Convolutional Neural Networks work, we will need to un-
derstand several other interpretations, such as what linear and non-linear problems are. The
perceptron

Page 25 of 103

Figure 15: A visualization of an image being processed by a Convolutional Neural Network

3.1 Linear & Non-linear Problems
It is important to understand the difference between linear and non-linear problems in order to
summarize object detection and Convolutional Neural Networks. Linear and non-linear prob-
lems are terms used to explain the complexity of a problem which is created by the features of
a dataset for a neural network to solve. A linear problem, graphically, is when two clusters of
data can be linearly separated by drawing a straight line between the two clusters, Figure 16.
Otherwise, if the two clusters cannot be separated by drawing a straight line, then the problem
is considered non-linear, Figure 17.

Figure 16: A visualization using graphs of a linearly separable problem.
The example image is produced by the Perceptron algorithm [8]

Page 26 of 103

Figure 17: A visualization using graphs of a non-linearly separable problem.
An example of two clusters that cannot be linearly separated by drawing a straight line.

There is a method to convert a non-linearly separable dataset into a linearly separable
dataset. This can be done by increasing the number of dimensions of a problem. In other
words, e.g. if a dataset with two features X1, X2 and K as the output is a non-linearly separable
dataset, we can add a new feature X3 in the dataset, this way we will increase the dimensions
up to 3 based on the number of features, Figure 18.

Figure 18: A visualization using graphs of a linearly separable problem using hyperplanes.
A 3D (3 features) example of class types that can be linearly separated by drawing a hyperplane.

3.2 The Perceptron
The Perceptron is an Artificial Neural Network that can be trained to predict an output, based
on the inputs. It will allow us to acknowledge and understand how the classification layer of

Page 27 of 103

the Convolutional Neural Network works. The perceptron and generally all neural networks
were inspired by the ideology of the human brain and its structure. The perceptron is an
artificial implementation of a biological human neuron.

The structure of a perceptron is separated in three phases, Figure 19. The features (in data
science the inputs of a dataset are called features) as the first phase, the dot product of the
features, the weights and the bias as the second phase and finally, the last phase is the unit step
function.

Figure 19: A visualization of a Perceptron with 2 features and 1 bias (X0) as the inputs, the dot product and the
step function [9]

The limitations of the perceptron, is that it can only return one output and can solve only
linear problems. In order to solve non-linear problems with a perceptron, we can build a multi-
layered perceptron network. This way we will be able to solve non-linear problems such as
object detection.

3.3 Training a Perceptron
The simplest Artificial Neural Network example is the Perceptron [9], which simulates one
neuron of the human brain. We can train a Perceptron by constantly feeding into the network
data from a dataset, that contain features and target class types. An implementation of a Per-
ceptron is provided in this GitHub page [8]

Features are the inputs of the network, for example, a pony’s height/weight vs horse’s
height/weight. The dimensionality of a perceptron will increase according to the number
of features that are included in the dataset. Class types is the value the network will clas-
sify based on the features. The example with a horse’s and pony’s height/weight is a linear
problem, non-linear problems are harder to solve and can regularly be unpredictable. Object
Detection problems are non-linear.

The linear formula that is used to calculate the difference of each class type is the dot
product of the weights and the features plus the bias. The bias is used to scale the result of the
linear separability formula in order to fit the data.

LinearOut = Feature[i] ∗ weights[i] + bias (2)

2: i = 1, 2, ... n, where n is all the different type of features (Height, Width, Weight etc)

Page 28 of 103

The output of the linear formula is then processed in the activation function or unit step
function. The output of the activation function will be either 1 or 0 based on the Linear Output.
The values 1 and 0 correspond to the class types, which can be a string or a number (e.g. cat
as the value 1 and dog as the value 0).

ActivationFunction =

{
1, if LinearOut >= 0

0, Otherwise
(3)

3: Activation function. Determines which class will be the output based on the Linear Output

The values that are adjusted when training a Perceptron are the weights. The weights can
be trained using the following formula

Weights[i] = Weights[i] + LR ∗ (Target− predicted) ∗ Feature[i] (4)

4: LR is the Learning Rate of the Neural Network, i = 1, 2, ... n, where n is all the different type of features

3.4 The Structure of a Convolutional Neural Network
The main difference between a Perceptron and a CNN is that the CNN contains various other
layers that prepare the image for the classification layer. Another important difference between
the two is that as mentioned in section 3.1 the Perceptron will only solve linear problems. In
the contrary, a CNN’s classification layer that is meant for object detection in images, will
need to to solve non-linear problems in order to satisfy the problem. This indicates that the
classification layer of the CNN will be a multi-layered [36] Perceptron.

The structure of a Convolutional Neural Network [36] generally consists of two major
parts, the feature extraction layers and the classification layer, Figure 20. The feature extrac-
tion layer works by decomposing and compressing the image into a processable state for the
classification layer. The classification layer’s design is a more complex version of the per-
ceptron, since we are attempting to solve a non-linear problem. In the classification layer,
we can use a multi-layered perceptron to identify objects from the decomposed image. There
are also several other architectures used to build an efficient classification layer, such as a
fully-connected layer and support vector machines.

Page 29 of 103

Figure 20: Convolutional Neural Network Structure

3.4.1 The Input Layer

The input layer of a CNN processes each color channel of the image (e.g. Images with the
color format RGB, are split into their counterparts, Red, Green, Blue color channels). The
network now has multiple perspectives of the image to process. After the image has been fil-
tered into multiple different layers, it is now easier for the network to process the information
the image contains.

3.4.2 The Convolutional Layer

After the image has been decomposed into its different color-channel variants, the image then
proceeds into the Convolutional layer of the network. The network will then process a subset
of pixels instead of every pixel at a time. That subset is called the Kernel, and it is used to
apply operations and extract features.

Most Kernels use a 3 (Height) x 3 (Width) space, to process the subset of the image.
The final result given by the convolutional layer will be the feature map, a compact map of
important information extracted from the image, Figure 21.

Figure 21: Convolutional Layer. Feature extraction layer.

Page 30 of 103

3.4.3 The Pooling Layer

As a final phase for the feature extraction layers, the decomposed feature map proceeds into
the pooling layer. The goal of the pooling layer is to reduce the feature map’s size in order
to increase computational performance, while at the same time, highlight the most important
information in the feature map.

There are two pooling algorithms, max pooling and average pooling. The pooling layer
uses the same feature extraction method, the Kernel, that was used in the convolutional layer,
to process a subset of features and extract the most valuable information. In that subset, either
the average or the max value is extracted into a new feature map, Figure 22. This helps reduce
noise and lower the process time by using the most important values instead. The max pooling
technique is usually more efficient for most CNN.

Figure 22: Pooling Layer. Feature map compression

To summarize, the pooling layer compresses the feature map and extracts the most impor-
tant values, decreases noise for higher precision helps with the performance of the network
and assists the classification layer to produce better results.

3.4.4 The Classification Layer

Finally, after the image has been decomposed and compressed by the feature extraction layers,
the feature map proceeds into the classification layer. Convolutional Neural Networks usually
use multi-layered classification perceptrons. By feeding multiple groundtruth images into the
network in order to train the network on a certain class type, the weights are gradually adjusted
to match the objects given by the groundtruth information.

After a certain amount of iterations and epochs, the network will be able to detect and
classify objects with very high average precision. It is important to note that the classification
layer will be classifying with non-linear functions in the case of object detection. Non-linear
classification is when a class type cannot be classified by linear space.

3.5 Object Detection using YOLOv4
The YOLOv4 model [1] originates from the Darknet framework [23]. It’s a deep learning
based method that uses Convolutional Neural Networks. Like most models in the Darknet

Page 31 of 103

framework, YOLOv4 was trained on the MS COCO dataset.

The MS COCO dataset [37, 38], is a large-scale object detection, segmentation, and cap-
tioning dataset. It was created by a team of contributors sponsored by Microsoft, Facebook,
CVDF (Common Visual Data Foundation), Mighty Ai.

YOLOv4’s structure is based on the CSPDarkNet53 [39] an advanced Convolutional Neu-
ral Network which uses DarkNet-53 [40] as the backbone aka YOLOv3. YOLOv4’s perfor-
mance outperforms most state-of-the-art object detectors nowadays, with high AP (Average
Precision and Performance (FPS) Figure 23.

Figure 23: An old performance graph comparison of various YOLO object detector versions up to YOLOv4

For advanced users, the Darknet developers have also created a different library which
includes different annotations and allows for more flexibility in managing Darknet’s models.

Darkhelp is a C++ API wrapper which provides a lot of functionalities, it allows the user
to annotate the model and include more results after the objects have been classified, such as
compile time, the classification threshold and more.

4 Training Convolutional Neural Networks
In this section a variety of methods were researched and applied, in order to efficiently train
a Convolutional Neural Network such as YOLOv4. The dataset that was created to generate
the example for this thesis, involves various bird species, such as corvids, pelicans, flamingos,
sparrows, gulls and various other common bird species in Greece. In terms of the topic of
object detection in low light images, this section provides a better in-depth understanding on
how various models like YOLOv4, detect objects and learn from images.

Training a CNN can be a very challenging task based on the problem required to solve.
Solving a CNN problem, is a very dynamic process that takes time, planning and a lot of re-
searching. Various factors that make training a CNN challenging, is the dataset that it will be
trained on. Each dataset creates a problem meant to be solved by the Convolutional Neural

Page 32 of 103

Network, several problems might be too similar with each other, so in order to identify each
and every one of them precisely, a careful analysis needs to be done.

The training of a Convolutional Neural Network is similar to the training of a Perceptron,
although the problems in question are non-linear. Similarly to the perceptron, a CNN’s train-
ing process is by feeding groundtruth information into the network. This task is repeated many
times until an acceptable state has been reached. The problem in question can be considered
solved when certain information such as mean Average Precision & Average Loss, have
reached a satisfying rate.

In order to train a Convolutional Neural Network, several steps need to be followed appro-
priately, such as creating a well structured dataset, using the right model like YOLOv4 [1] (or
higher version), or building a convolutional neural network and finally evaluating the model.

During the training of a convolutional neural network, each iteration is a batch size of
number of images, each epoch is a re-iteration of the same images again. The more times this
process is repeated, the more accurate the model will be based on the given dataset. We can
assume that a CNN is trained well, when the mAP (means Average Precision) is high enough
for the model to accurately predict objects and when the Average Loss is low enough.

4.1 Groundtruth Information in a CNN
The term Groundtruth Information [41] is regularly referenced, to state that a certain
pattern of features is an expected result, or Class Type and is usually applied to training
Perceptrons or Neural Networks. Groundtruth information in Convolutional Neural Networks,
are images with information that assist the model to understand, that in a specific location in
an image, there is a X class type. In short Groundtruth Information is the dataset that the Neu-
ral Network is trained on.

There are various forms of groundtruth information and in simple data science, it is a
pattern of inputs from a dataset that is available in the form of text. In the topic of object de-
tection, the groundtruth information is provided with the images themselves, with each image
containing a ’.txt’ file labeled as the image’s filename. That text file contains various informa-
tion based on the location of the expected class type and the label itself.

The CNN YOLOv4, by default, uses bounding boxes in order to classify objects within
images. Although, the detector can be modified to use circles or ellipses instead. A presenta-
tion of this exact example is done using Darkhelp [6], an extension for Darknet [23].

When training a Neural Network in your own dataset, it is important that the dataset is well
structured and various methods are applied onto the dataset in order to improve the model’s
precision.

Page 33 of 103

4.2 Creating a Dataset to Train a CNN
In order to create a dataset to train a CNN, several steps need to be followed appropriately
when building a well structured dataset. The first process is to research for a large image li-
brary or database. For example the class type, ”bird” or any bird species, has a large number of
public libraries with images available all over the world, in the following examples, eBird [42]
was used to train YOLOv4.

During the development of this thesis, various methods were researched on creating a well
structured datasets, in order to train the YOLOv4 model and improve its precision on past
training sessions.

4.2.1 Gathering & Annotating Images

A python tool was created to pull a number of images of certain bird species from the public
image library eBird [42]. After the image gathering and storing, the images need to be labeled
in order so that the model will be able to recognize the position of each object including the
class type.

A tool that can be used to train YOLOv4, using the Darknet framework, is Label-studio [43].
This tool works by importing several images and drawing bounding boxes on top of class types
we want the model to detect. During image labeling, each object, must not contain any space
in between, Figure 24.

Figure 24: Label-Studio Image: Preview of an Image being Labeled using Label-studio

After every image has been labeled appropriately, the images can then be exported as the
YOLO format, that evidently is supported by the YOLOv4 model.

Page 34 of 103

4.2.2 Structuring & Improving the dataset

Before training, the dataset is split into two different subsets, the testing and training dataset.
A typical training session action would be splitting the dataset at 90% training and 10% test-
ing. This allows the model to determine the mean Average Precision appropriately and not
based on the information it has already seen and is being trained on. Several methods such
as data augmentation [27], image tiling [44], and negative sampling [21], can increase the
model’s precision during the training as well as better evaluation results.

Data Augmentation or Synthetic Data [45] in CNN training, is used to improve the pre-
cision of the model, in order to minimize the worst case scenarios during the evaluation of the
network. Data Augmentation in practice, is when several transformations are applied to the
already existing images, such as blur or median blur, random brightness, channel switching,
image compression, image flip or rotation. A python library that is able to achieve something
like that is Albumentation [46]. Data augmentation is the opposite of enhancing a low light
image, degrading it to a state where objects are less visible. In this case, it is used to train the
model to identify objects in various real world conditions such as foggy weather, during sub
optimal lighting conditions and raining or snowfall.

Negative Samples [21] are images that contain no detections, based on the problem in
question. In practice, negative samples can be the background or several details we want the
model to not confuse with our training classes. For example, if the primary goal of the training
session was to train a model to detect several bird species, in order to include negative sam-
ples, a large number of images in the dataset will contain no birds at all in them. This method
helps reduce the False Negative errors during the evaluation of the network.

Image Tiling [44] is a technique that is regularly used by many convolutional neural net-
works. It works by tiling each image into multiple smaller pieces that match the network’s
size. This technique can dramatically increase the complexity of the problem, whilst the
model instead of processing one image, processes multiple images that are subsets of one.
The implication of getting this much accuracy using image tiling is a dramatic loss in the
computational performance of the model during evaluation, Figure 25.

Figure 25: A comparison of an image tiled onto 17 different images to match the network size.
Original Image size: 3840x2160
Image Tile Size: 640x640

Page 35 of 103

Each convolutional neural network will process an image based on a set network size. Any
image that is parsed into the network that is above the network size will be scaled down to fit
the network’s size itself [47]. This results in a great loss of information resulting in much less
accuracy and visibility.

Image tiling can become especially effective, based on the size of the objects we expect
the model to detect. An example of this occasion can be displayed in the following Figure 26.

(a) YOLOv4 Prediction Results (512ms) (b) YOLOv4 Prediction Results (1043ms)

Figure 26: YOLOv4 prediction results. This image contains 23 visible birds at an estimated altitude of 40
meters. The image on the left represents the prediction results without the use of Image Tiling, and the
image on the right is tiled resulting in more accurate predictions.

The left image which does not use this technique has a total of 34.78% mean Average
Precision (mAP), 8 True Positives (TP), and 15 False Positives (FP).
The image on the right which uses this technique has a total of 100% mean Average Precision
(mAP), 23 True Positives (TP), and 0 False Positives (FP).

4.3 Training Performance Evaluation Methods
During the evaluation of a neural network, various statistical information are extracted, by
evaluating the model on various data that it has not seen or been trained on. A model’s per-
formance is determined using the mAP (mean Average Precision) value. Data scientists use
this value to compare the performance with other models, as well as various other training
sessions that were deprecated due to poor results [48, 49], Figure 28.

mean Average Precision is the sum of all the average precisions for each class type, after the
model has been evaluated. The precision of a class is calculated based on the True Positives
and False Positives.

Recall is also another method to determine the performance of the model and is calculated
using True Positives and False Negatives

True Positive is when the model returns a prediction and is correct, based on the groundtruth
information.

Page 36 of 103

True Negative is when the model returns no prediction (Negative sample) and is correct,
based on the groundtruth information.

False Positives is when the model returns a prediction and is incorrect, based on the groundtruth
information.

False Negative is when the model returns no prediction and is incorrect, based on the groundtruth
information.

Average IoU (Intersection over Union) is a statistical comparison between the bounding
boxes of the model’s prediction and the groundtruth bounding box. The average IoU value
represents the difference between the prediction and the groundtruth’s bounding box of mul-
tiple objects. The higher the value, the better the prediction.

As outlined above, the average IoU is calculated using the groundtruth and the prediction
bounding box coordinates. In the case of Darknet and the YOLO models, we used DarkHelp
to extract the coordinates of each prediction of our model and compare those predictions to
the groundtruth boxes that we labeled. Darknet’s groundtruth labels consist of the following
format and are stored in ’.txt’ or ’.json’ files.
Class ID X Center Point Y Center Point Box Width Box Height

(a) IoU comparison results using the YOLOv4-tiny model.
Average IoU: 86.93%

(b) IoU comparison results using the YOLOv4 model. Average
IoU: 90.22%

Figure 27: Intersection over Union examples using YOLOv4-tiny & YOLOv4. Comparison of a model’s pre-
diction bounding box with the groundtruth bounding box. The percentage represents the IoU calculated using
DarkHelp, OpenCV.

In order to calculate the IoU probability, the intersection’s box coordinates need to be
defined. Using the Intersection coordinates we can calculate the Interception bounding box
area. Using the Intersection area we can calculate the Union’s bounding box area. The ratio

Page 37 of 103

of Intersection divided by Union is equal to the IoU value.

IntersectionTopLeft = [max(grtx, predx),max(grty, predy)]

IntersectionBotRight = [min(grtx + grtw, predx + predw),min(grty + grth, predy + predh)]

IntersectionWidth = IntersectionBotRight[0]− IntersectionTopLeft[0]

IntersectionHeight = IntersectionBotRight[1]− IntersectionTopLeft[1]

Intersection = IntersectionWidth · IntersectionHeight

Union = grtw · grth + predw · predh − Intersection

IoU = Intersection/Union

4.4 Training YOLOv4 using Darknet
YOLOv4 [1], can be trained using Darknet [23]. In order to train any YOLO model efficiently,
Darknet will need to be built with Cuda support in order to use the GPU of the computer,
thereby dramatically increasing the performance of the model.

The first step in training our own Neural network, assuming Darknet has been built, the
user can create a configuration file similar to the YOLOv4.cfg file but with customized settings
based on the problem in question. Within the configuration files, the user needs to change the
number of classes the model will operate on. The number of iterations per batch based on how
much VRAM the Graphics Card has and more. More information is given in the Darknet FAQ
website [26]

The second step is preparing the groundtruth information. In order to train YOLOv4,
Darknet requires the image files and ’.txt’ files, to be located in the same directory. Each
image contains a ’.txt’ file labeled as the image’s filename. The information that is inside the
’.txt’ file is the class label’s ID, the x and y location and the width and height of the bounding
box of the object. The YOLOv4 model has support for the YOLO format text file which is
specific to the YOLO models. There are also other formats similar to YOLO but may not be
supported by the model.

Image1.txt

• Class ID, x Center, y Center, Width, Height

During the training of YOLOv4 using Darknet, the user can observe a chart that represents
the mAP (mean Average Precision) and Average Loss. The mAP is determined by the testing

Page 38 of 103

dataset, while the average loss is the ratio for each miss-classifications per iteration for the
entire batch of the training dataset. After the training is complete, the user can then evaluate
the trained weights of the model and detect the objects it was trained on.

During the development of this thesis the YOLOv4 model was trained on 3 different
datasets with various bird species. The first dataset was a small scale dataset, with a total of
250 images and 18 class types. The second dataset is a large scale image dataset with random
images and a total of 16 class types and 2300 images. The last dataset was a well structured
dataset with a total of 2586 images and 16 class types, various methods were applied, such as
data augmentation, negative sampling, including various bounding box optimizations during
the labeling of the second dataset.

The resulting training chart for each training session was different from each other. The
first training session, was the unstructured dataset with a number of class types, but a very
small amount of images per class type, the chart of that training session is displayed in Fig-
ure 28a. The second training session since it was a larger scale dataset with random images, the
resulting training chart showed better results compared to the first training session, Figure 28b.
The third training session was a large scale and well structured dataset with data augmentation
and negative sampling applied to the dataset. The resulting training chart seemed to maintain
more balance for the total mAP, as displayed in Figure 28c.

(a) Training Chart 1 (b) Training Chart 2 (c) Training Chart 3

Figure 28: YOLOv4 Training charts of three different training sessions from worse to better. Higher red line
values is better. Lower Blue line values is better

4.5 Evaluating YOLOv4
The evaluation of YOLOv4 model, involves testing the trained weights, in either videos or
images. Within the first training session of the model, it was able to accurately detect in the
training dataset images, but it under-performed in images it has not seen before, this problem
is called overfitting [50] and is regularly observed during the training of a neural network.
The second training session, since the model was trained on a large scale image dataset, the

Page 39 of 103

results were much better overall and overfitting was not as evident. The mAP was a lot better
than the first session and overall produced a lot better results. During the evaluation of the
second training session 28b, there were no negative samples within the dataset, False Negative
predictions were regularly observed such as the one in displayed in Figure 29a.

In the other hand, on the 3rd training session 28c, the model was trained again with a
certain amount of negative samples contained inside the dataset. The result given by the
model is displayed in Figure 29b

(a) False Negative (b) True Positive

Figure 29: Evaluated image result with a False Negative and a True Negative result, where the negative class
”person” was identified and that is incorrect.

YOLOv4 contains a flag that allows the user to evaluate and extract the mAP and average
IoU values to quickly compare the performance of each model. One of the training sessions
that achieved the best results is displayed in the bellow table 1

Page 40 of 103

Test Dataset Best Weights

Class Type True Positive False Positive Groundtruth
Prediction Average Precision

Common Pochard 30 4 33 94,28%
Corvid 56 9 61 96,75%

Dunnock 42 2 42 99,94%
Eurasian Blackcap 28 3 30 92,07%
European Robin 25 0 25 100%

European Starling 18 0 19 94,74%
Great White Pelican 35 7 59 60,16%

Greater Flamingo 36 3 38 97,16%
Green-Winged Teal 38 2 40 99,46%

Gull 47 5 54 92,29%
Mallard 61 17 66 95,30%

Pigeon or Dove 42 13 49 86,25%
Sparrow 35 2 38 94,33%

Total: 493 Total: 67 Total: 554 mAP: 93,03%
Average IoU: 71,64%

Table 1: Training Evaluation Results Using The map Flag

It can be concluded that YOLOv4 and even most Convolutional Neural Networks in real
world problems need a large number of negative sample images and a decent amount of data
augmented images, to increase the mean average precision. The final result will be the reduc-
tion of the False Positives/Negatives results of the model.

5 Object Detection in Low Light Conditions
After the brief introduction on Convolutional Neural Networks and how they detect objects in
an image, we begin to realize that they heavily rely on images that have enough luminance.
When the shape of an object is not visible enough, the detector fails to classify that same
object. If the image does not have enough luminance, we begin to face a problem where the
image will not make it possible for the network to detect certain objects within it, Figure 30.
In most cases, images with low light conditions will cause this problem.

Figure 30: ExDark Low Light Image. An extremely low light conditioned image

Human vision heavily relies on bright environments, we are able to see color when light
falls into our eyes. The light we perceive are electromagnetic wavelengths that our brain

Page 41 of 103

processes into colors. Since we are a biological species, we are limited to a certain amount
of wavelengths that we are able to perceive. The human eyesight can perceive a wavelength
of 380 to 750 nanometers (400 - 790 Terahertz) of the color spectrum, Figure 31. In short,
the estimated human visual system can detect up to 7 million color variations[30] in the other
hand, the average image has a depth color of 24 bits which translates to 16,777,216 color
variations. This means that computer vision has an advantage in terms of the detail it can
perceive.

Figure 31: Visual System graph. A graph comparison of human eyesight with various camera sensitivities

Most Object detectors struggle to classify objects accurately within low light conditioned
images, this is due to the lack of brightness and color within the image.

We now begin to realize that most object detectors fail to detect objects in low light condi-
tions, due to the lack of color and brightness within the image. In the next section, this thesis
will include various methods that will be useful for computer vision models to detect objects
more effectively and accurately in low light conditions.

5.1 Enhancing Degraded & Low Light Images
Images with low light conditions often face problems with degradation. Degradation in an
image is when noise is evident, which can negatively affect any object detector.

By enhancing images in real life problems such as self-driving cars with object detection
systems, we can assist the model to consistently detect objects even on a bad weather or during
the night. This is to minimize any possible errors that may occur during those conditions and
reduce the risk of an accident that could be caused by those systems. Systems like these are
required to be fast, precise and efficient to minimize the margin of error.

In this thesis, I will use and reference multiple techniques to enhance images with low
light conditions, to achieve higher detection rates and average precision. Enhancing a low
light image can be a double-edged sword. After enhancing an image, noise gets up-lifted and
can negatively affect the model to be less accurate.

Page 42 of 103

5.2 Enhancement methods
Image enhancement works by applying filters to an image, each filter that is applied to the
image is done with the purpose of making the objects in that image more visible than before.
There are several methods to enhance an image, as well as removing noise.

Saturation & Contrast
Two very important components about enhancing an image’s quality is by adjusting the

saturation and contrast. By changing these two values, the image will be a lot brighter and
colorful.

Intensity Value Inverting
Inverting an image is regularly done to highlight the darker areas of the image. By in-

verting an image, the light and dark areas are reversed, this method is effective for increasing
the luminance of an image if combined with other filters, making the shapes and details much
more visible. This method is used in advanced low light enhancing algorithms.

Intensity value scaling
All algorithms use different methods to scale the intensity values of the image. Intensity

value scaling works by using a multiplier like the gamma correction algorithm to increase it.
The intensity value is the number of a color channel of an image. This value usually ranges
from 0 to 255.

Convolutional Neural Networks
Convolutional Neural Networks (CNN) are used for object detection as well as low light

image enhancement. As of today, these networks are one of the most powerful methods devel-
opers use to enhance low light images and are able to compete with state-of-the-art algorithms.

Degradation Removal or Denoising
Denoising or degradation removal methods are regularly used in state-of-the-art enhance-

ment algorithms in order to increase the level of detail in an image. Degradation removal is an
essential tool that removes noise that is evident in the image. Noise is up-lifted when adjusting
the luminosity of the image, decreasing the level of detail.

5.3 Low Light Image Enhancement Algorithms
The goal of enhancing a low light image is to increase the luminance and visibility of objects
that originally were not visible.

The tools used for this thesis to implement most algorithms are with Python, OpenCV and
NumPy.

Page 43 of 103

There are many algorithms specifically for low light enhancement, the most widely used
algorithms are Histogram Equalization, gamma correction and various Convolutional Neural
Networks methods.

5.4 Histogram Equalization
Histogram Equalization [4, 51] is a commonly used algorithm that uses histograms in order to
increase the luminosity of an image. The histogram that is created from the image represents
the count of intensity values of the equalized color space. The algorithm stretches out the most
frequent intensity values and creates a newer distribution that is wider and more regulated. By
doing that, we change the result will be brighter and contain more luminance.

Histogram Equalization works by equalizing the intensity values of the image, in other
words the most frequent intensity values are distributed equally to make a brighter image.
Histogram Equalization suffers in very low to extremely low light images due to the concen-
tration of intensity values, the result from those images will be an extremely degraded image,
Figure 32. An important note about Histogram Equalization is that there are several methods
to equalize an image. By equalizing either all the RGB color channels of the image or by
converting the color format of the image into HSV (Hue, Saturation, Value) and equalizing
the value color channel.

Figure 32: HE Algorithm (ExDark Image 06542). Preview of an extremely degraded image

An acceptable result from Histogram Equalization would be Figure 33.

Page 44 of 103

Figure 33: HE Algorithm (ExDark Image 02453). Preview of an original and equalized image result.

The Histogram distributions of the images in Figure 33 are previewed in Figure 34.

Figure 34: Histograms from Figure 33. Histograms of an Original and Equalized image.

Notice the newer distribution, that we acquired from the algorithm Figure 34, the intensity
values are further spread apart from each other and equalized in the entire intensity value
range. While the histogram of the original image is more compact and dense. Overall, the
algorithm can be effective in certain scenarios, but it will begin to fail in very low to extremely
low light conditions.

5.5 Gamma Correction
Gamma Correction[3] is one of the most famous low light enhancement algorithms regularly
used by many companies (E.g. Nvidia, game development, graphic driver companies, etc.). It
works by scaling each pixel in the image.

Gamma Correction uses the γ value that can be adjusted by the user. If the γ value is
greater than 1, the brightness of the image will increase. Otherwise, the brightness of the
image will decrease. The algorithm processes the intensity value by converting it from 0 - 255

Page 45 of 103

to 0 - 1. The Gamma Value is inverted, as seen in the Formula 5, in order to scale the intensity
values up.

ScaledIntensityV alue = i
1
γ (5)

5: GC Formula. Intensity Value Scaling Formula

This algorithm was implemented using OpenCV and NumPy in python. The result from
this algorithm can be previewed in Figure 35

Figure 35: GC Algorithm (ExDark Image 03152).
Preview of the original image, compared to two different gamma value results.
Left Image: Original (Or even γ = 1)
Middle Image: Increased Brightness γ = 2
Right Image: Decreased Brightness γ = 0.5

5.6 Kindling the Darkness (KinD)
Kindling the Darkness (KinD)[5] is a state-of-the-art deep learning based method that uses
convolutional neural networks to enhance low light images. KinD was inspired by the Retinex
theory. Its structure is divided into three layers, image decomposition, reflectance restoration
and illumination adjustment layer. These layers play an important role in enhancing the image
to boost the accuracy rate and detection rate of an object detector.

The decomposition layer works by decomposing the image into two different components,
the reflectance and illuminance maps. The illumination adjustment layer works by adjusting
the light levels of the map. The strength of the light adjustments depends on the ratio value α,
similarly to Gamma Correction’s γ value. Users can adjust the α value willingly from 0 to 5.0
during the testing phase of the network.

Finally, the reflectance restoration layer works by removing any degradation on the map.
Degradation removal (Noise Removal) is the act of removing any haze/noise that exists in an

Page 46 of 103

image and restore it into a clearer image. The act of removing degradation in an image can
assist the classifier to detect objects. Degradation removal and image Degradation has been
widely researched for the topic of computer vision. The reflectance restoration layer uses the
Block Matching (3D BM3D)[52] algorithm in order to restore the image. The result from
KinD will be the following Figure 36

Figure 36: KinD Algorithm (ExDark Image 02446). Preview of an original and KinD image result.

6 The ExDark Dataset
The ExDark Dataset is a collection of low light images of objects, all listed in certain cat-
egories. [2] ExDark contains a total of 7363 images (Total Size 1.40 GB uncompressed).
This research begun on May 29, 2018, and as of time of writing still being expanded. The
categories that are included in this dataset are displayed in Figure 37 and Table 2

Class Bicycle Boat Bottle Bus Car Cat Chair Cup Dog Motorbike People Table
N. Images 652 679 547 527 638 735 648 519 801 503 609 505

Table 2: ExDark dataset. The class labels and Number of images contained in each class.

Figure 37: Information given by the7 ExDark dataset

The ExDark dataset was created to provide in research for low light enhancement algo-
rithms for object detectors and image classification 37.

ExDark will be a valuable asset in this thesis, in order to feed ExDark’s images into the
YOLOv4 model and extract information from various low light conditions.

Page 47 of 103

6.1 ExDark’s Groundtruth Information
The ExDark dataset contains groundtruth information [53]. Within ExDark, there are 12 dif-
ferent folders labeled as the object classes that contain ’.txt’ files labeled as the corresponding
images. The information given, is the coordinates of the bounding boxes that represent the
location of a detected object, as well as a string name, that represents the class type of the
detected object.

6.2 Annotation Embedding Algorithm
The annotation embedding algorithm is a support algorithm that generates the groundtruth in-
formation given by ExDark as ’.txt’ files into the images. The algorithm works by reading the
information within each ’.txt’ file labeled as the corresponding image. The information given
in the text files are multiple bounding box locations and class type information. The algorithm
reads this information and re-generates the images, but this time with the bounding boxes and
class type information visualized in the image.
The generated images represent a visualization, not necessarily to train an object detector, but
in order to understand and visualize the groundtruth information.

ExDark has also referenced a Matlab toolbox that generates the bounding boxes from the
text files to the images, similarly to the algorithm mentioned before. Due to legal reasons, the
algorithm was re-implemented using Python and OpenCV.

7 Implemented Algorithms & Frameworks
This section includes a description of various algorithms implemented in this thesis. This
section’s importance is to maintain a clear and informative picture of the experiments and re-
search that was compiled in this thesis.

The algorithms that were implemented and mentioned before, are Gamma Correction,
Histogram Equalization. All the enhancement algorithms were implemented in such a way to
be able to read, filter and write in multiple images at the same time. A person with minimal
experience with pip and python can run these programs.

Several other algorithms were also implemented to assist in the experiments done in this
research. Including various other data visualization algorithms.

Those tools are, the annotation embedding algorithm for the ExDark dataset, an algorithm
that generates the Histograms of images, a simple progress bar to simulate the completed
processes of each algorithm. The algorithms mentioned above can be found in the following
GitHub repository [54].

External tools and Versions used in the experiments:
1. OpenCV Ver.: 4.5.5.62
2. Python Ver.: 3.10 64x bit
3. NumPy Ver.: (Any version will do)

Page 48 of 103

4. TensorFlow Ver.: 2.10.0
5. PIL Ver.: 9.0.0
6. Matplotlib Ver.: 3.5.1

7.1 Implementing & Running the GC Algorithm
Gamma Correction is a simple algorithm implemented using OpenCV, NumPy and several
other third party libraries in Python[3]. This algorithm was built in order to process and return
multiple images at once. It contains an input folder and an output. The algorithm transforms
the pixels using a lookup table and an inverse gamma value as explained in 5.5. OpenCV con-
tains a function, called LUT, that uses the lookup table to transform the pixels of the image.

The following code can be cloned using git in this GitHub repository [54] Running the Code
in a Command Line
C:\Users\UserName\Desktop\Project> python GammaCorrection.py

1 def GammaCorrectionMulti():
2 Gamma = 2
3 inverseGamma = 1 / Gamma
4 table = [((i / 255) ** inverseGamma) * 255 for i in range(256)]
5

6 table = np.array(table, np.uint8)
7

8 gammaCorrected = cv.LUT(image, table)
9 backend.writeImages(index, gammaCorrected, imageFilename)

10 print("\n\nImage Filtering Complete. View outputGC folder...")

The above code uses the gamma value and inverses it, in order to create a lookup table. The
OpenCV LUT function (Lookup Table) is used to as a colormap reference for the image, to
increase the intensity values. The result will be a gamma corrected image.

7.2 Implementing & Running the HE Algorithm
The histogram equalization algorithm is fairly easily implemented using the equalizeHist func-
tion from OpenCV. Similarly to the Gamma Correction, it accepts and outputs multiple images
to increase the ease of use of the algorithm. The algorithm first extracts the color channels of
the image into blue, green, red and equalizes them, afterwards the equalized color channels
are merged back together into a new image which results into the equalized image.

The following code can be cloned using git in this GitHub repository [54] Running the Code
in a Command Line
C:\Users\UserName\Desktop\Project> python HistogramEqualization.py

Page 49 of 103

1 import cv2 as cv
2 from src.Backend import backend
3

4 def histogramEqualizationMulti():
5 b, g, r = cv.split(img)
6

7 equ_b = cv.equalizeHist(b)
8 equ_g = cv.equalizeHist(g)
9 equ_r = cv.equalizeHist(r)

10 equ = cv.merge((equ_b, equ_g, equ_r))
11

12 print("\nImage Filtering Complete.")
13 cv.imshow("Equalized Image", equ)

The above code splits the color channels of the image using the OpenCV function split() and
applies histogram equalization for each color channel separately. The color channels are then
merged back together into the image. The result will be an equalized image.

7.3 Building & Running Kindling The Darkness (KinD)
Building KinD is an easy process using git to clone the GitHub page [5]. Due to backwards-
compatibility issues with the current available TensorFlow versions, the user will need to
manually change the model.py import files due to versions 1.x TensorFlow no longer avail-
able in the pip repositories. The changes will be provided with the thesis for ease of use.
Similarly to the algorithms GC and HE, the algorithm was modified to allow multiple inputs
and returns multiple outputs.

The algorithm will effectively run with the following requirements
1. Python version: 3.7 (64x bit) >=
2. TensorFlow Version: >= 1.10.0 (Will not work for any version 2.x and
above)
3. Other Libraries: NumPy, PIL
Running the Code in a Command Line
C:\Users\UserName\Desktop\Project> python evaluate.py

7.4 Building & Running The Darknet Framework
Darknet as explained before is a framework originally created by Joseph Redmon, as of time of
writing Joseph Redmon’s GitHub repository of Darknet, has been abandoned and is currently
maintained in another repository by Alexey Bochkovskiy and Stephane Charette. Stephane
Charette provides a variety of information in a FAQ website, including a well described guide
on building Darknet. [26]

There are three methods to build Darknet. A version where it supports CPU computing,
another version where it supports GPU computing and is primarily for training or high per-
formance object detection. Finally, there is a version that is more advanced in order to be

Page 50 of 103

built, that requires OpenCV’s DNN module and CUDA. This version allows OpenCV to be
built with CUDA support and increases the performance of the model. Building Darknet using
OpenCV with CUDA support, will require a lot of time [55].

In order to get started with Darknet, this part of the thesis will assume that Darknet has
already been built and installed into the computer [23]. We can use the pre-trained weights
given by Alexey Bochkovskiy in the GitHub page [23]. We can detect objects in an image
using Darknet with the following commands.
> darknet detector test cfg/coco.data cfg/yolov4.cfg yolov4.weights MyImages/myImage.jpg

When running the above command, a window will open containing the image with various
detected objects in it, Figure 38.

Figure 38: YOLOv4 Result by using the Darknet framework (ExDark Image 01611)

In the command line, various information will be printed depicting information from
YOLOv4’s CNN. The information that will be of use in this analysis is located at the end.
This information as explained in section 3 is the confidence of the model as well as the class
type of the detected object.

The argument cfg/coco.data , tells the model which classes to detect on and specifi-
cally on the classes trained using the COCO dataset.
The argument cfg/yolov4.cfg , tells the framework to use the YOLOv4 model.
The argument yolov4.weights , is the path to the weights file of the model. Alexey
Bochkovskiy provides pre-trained weights of the YOLOv4 model.

There are also various flags depending on what the user wants the output to be.
The flag -dont_show , prevents the pop-up window containing the image with the detected
objects to appear.
The flag -thresh 0.2 , changes the minimum confidence threshold to 20%, for any object
to be treated as detected for the final output.

Page 51 of 103

7.5 Advanced IoU & Average Precision calculator on the groundtruth
information for the YOLOv4 model using DarkHelp [6] & OpenCV [7]

An application that was developed using OpenCV and DarkHelp in the C++ programming
language. It compares the resulting predictions of the model and the groundtruth information
from the ’.txt’ files and finally calculates the IoU and average precision of each prediction.
If the IoU value exceeds 50% then the groundtruth bounding box will be drawn and the IoU
value will be displayed. An example of this algorithm’s result was displayed in Figure 27

8 The Analysis
The Analysis of this research includes testing the performance of YOLOv4 using a variety of
low light condition images from the ExDark dataset [2], as well as testing the same images
after applying several enhancement algorithms on them. The conclusion of this thesis will be
the determining factor of which enhancement algorithm performs best. The information that
will be extracted from YOLOv4 is the class type of the detected object, the confidence of the
model for each detection and the total average confidence.

The extracted information will be organized into tables and used to calculate statistical
values. The statistical information that will be extracted is the Recall and Precision of the
model for each image, including the total average recall and precision.

8.1 Analyzing the Results with the Groundtruth Information
Groundtruth information is a valuable asset in determining the performance of each enhance-
ment algorithm using real data and without any assumptions. Each result from YOLOv4 will
carefully be analyzed and compared to the groundtruth information. In short, the analysis is
limited to what the groundtruth information offers us.

An object will be evaluated if the location of the bounding box from YOLO and the
groundtruth information represent the same object. In other words, if two objects with the
same class are detected from YOLOv4 and one of the two is contained within the groundtruth
image, only the one that the groundtruth information contains will be evaluated.

Within the groundtruth images, multiple clusters of detections in a concentrated area are
compacted into one detection, YOLOv4 does not apply this. This could hinder the results,
so hand-selecting the images will be important. If that occurs and all the objects within that
cluster are correctly detected, it will be evaluated as one correct detection and not many. An
example of this is shown in Figure 39

Page 52 of 103

YOLOv4 Groundtruth Image

Figure 39: A preview comparison of detected clustered objects of YOLOv4 and the Groundtruth image (ExDark
Image 00200)

Lastly, some of the results from YOLOv4 will be counted as correct detections even if they
were not given by the groundtruth information as a class type, e.g. if the detection is a wine
glass and groundtruth states that, that exact object is a cup, it will be assumed as a correct
detection.

8.2 The Interpretation
In order to understand the process of the analysis, we need to understand some of the important
terms used in this thesis. An important side-note is to understand the difference between a
detection, prediction and classification.

Detection: Detection is either the object detector or the ground truth information states that
an object at a certain location has been detected to be there.

Prediction: Prediction is when an object detector has created a probability of a detected ob-
ject within an image to be a certain class type. (E.g. The model has predicted that this
object is a Cat with 95% confidence and 5% confidence that it is a Dog)

Classification: A general term used in machine learning. Classification is When a model
determines an output or class type from a pattern of features.

Detection Rate: The total number of detections given by the model, in comparison to the
number of groundtruth detections.

Average Confidence: The result of YOLOv4’s total accumulated means in confidence in the
same image.

Missing Detections: The number of detections that were not registered by YOLOv4 based
on the groundtruth information for each image.

Correct Prediction: Predictions given by the model which are correct based on the given
groundtruth information.

Page 53 of 103

Recall: The ratio between the correct predictions of the model and the missing detections
based solely on the groundtruth information. [49, 56]

Recall = Correct Predictions
Correct Predictions + Missing Detections (6)

6: Recall’s output ranges from 0 to 1, it can be scaled up, into a percentage.

Precision: The ratio between the Correct Predictions of the model and the Incorrect Classifi-
cations of the model, based solely on the groundtruth information. [49, 56]

Precision = Correct Predictions
Correct Predictions + Incorrect Prediction (7)

8: Precision’s output ranges from 0 to 1, it can be scaled up, into a percentage.

Performance: The overall performance of the model. The ratio between the correct predic-
tions of the model and the incorrect classifications and missing detections of the model,
based solely on the groundtruth information.

Performance = TP
TP + FP + FN (8)

9 Applied Analytics
In this section, a number of images are evaluated based on the information interpreted in Sec-
tion 8.2 in order to extract valuable information based on YOLOv4’s performance. Three
algorithms are analyzed, including the original images. Every image used in this analysis
was provided by the ExDark Dataset [2] as well as the groundtruth information that is in-
cluded. The algorithms, that were explained in prior sections, are Gamma Correction, His-
togram Equalization and Kindling the Darkness aka KinD.

This thesis, uses the pre-trained weights from Alexey Bochkovskiy, to determine the per-
formance of each enhancement algorithm using YOLOv4. Each section that involves a certain
test will include a large table with various information, in order to conclude from the results.

The images used for the analysis, in the latter sections, are randomly or deliberately se-
lected from the ExDark dataset.

9.1 Inspection of the Enhanced Images
This section provides a visual understanding of the difference between each enhancement
algorithm.

Page 54 of 103

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Figure 41: (a): Original Image, (b): Gamma Correction, (c): Histogram Equalization, (d): Kindling the Dark-
ness

9.2 Data Analysis & Results: Original Images
YOLOv4 alone is a very powerful model and will hardly struggle to accurately predict ob-
jects within the images as long as the weights of the model were trained appropriately. In

Page 55 of 103

this section and the next ones, several tables are displayed with various information that was
interpreted in Section 8.2.

The results, extracted from YOLOv4 which are also based on the groundtruth information
on the original images, are listed in the Table 3. Each image was referenced in order to depict
the exact image the analysis was applied on.

Original Images[2]

Image N. Groundtruth
Detections

Correct
Predictions

Incorrect
Predictions

Missing
Detections Recall Precision

00253 6 6 0 0 100% 100%
00301 2 1 0 1 50% 100%
00405 9 8 0 1 88.89% 100%
01367 10 10 0 0 100% 100%
01437 10 5 0 5 50% 100%
01468 15 13 0 2 86.67% 100%
01489 13 11 0 2 84.61% 100%
01611 5 5 0 0 100% 100%
01764 15 13 2 0 100% 86.67%
02049 5 4 0 1 80% 100%
02446 9 5 0 4 55.55% 100%
02453 3 3 0 0 100% 100%
02594 8 8 0 0 100% 100%
02756 6 4 0 2 66.67% 100%
03052 3 1 1 1 50% 50%
03215 2 1 0 1 50% 100%
03278 1 1 0 0 100% 100%
05380 2 1 1 0 100% 50%
05951 2 2 0 0 100% 100%
06077 3 3 0 0 100% 100%
06248 3 3 0 0 100% 100%
06255 5 5 0 0 100% 100%
06298 5 5 0 0 100% 100%
06365 9 9 0 0 100% 100%
06542 5 4 0 1 80% 100%

25 imgs Total: 156 Total: 130 Total: 4 Total: 21 Avg: 85.695% mAP: 95.466%

Table 3: Original image information based on the groundtruth images.

The results confirm YOLOv4’s performance by accurately predicting with very few detec-
tions without the use of an enhancement algorithm. The performance of the model for the
original images is 83.87%

9.3 Data Analysis & Results: Gamma Correction
Gamma Correction provides good results and will hardly hinder the performance of the object
detector in certain situations. Many times the algorithm was performing well with YOLOv4
and other times the given results were degrading the image, reducing recall and precision.

The information extracted from YOLOv4 and the groundtruth images by using the Gamma
Correction on the Original Images 3 are listed in the Table 4

Page 56 of 103

Gamma Correction γ = 2[3]

Image N. Groundtruth
Details

Correct
Predictions

Incorrect
Predictions

Missing
Detections Recall Precision

00253 6 6 0 0 100% 100%
00301 2 2 0 0 100% 100%
00405 9 9 0 0 100% 100%
01367 10 10 0 0 100% 100%
01437 10 8 0 2 80% 100%
01468 15 12 0 3 80% 100%
01489 13 11 0 2 84.61% 100%
01611 5 5 0 0 100% 100%
01764 15 12 0 3 80% 100%
02049 5 4 0 1 80% 100%
02446 9 5 0 3 66.67% 100%
02453 3 1 2 0 100% 33.33%
02594 8 8 0 0 100% 100%
02756 6 2 0 4 33.33% 100%
03052 3 1 1 1 50% 50%
03215 2 2 0 0 100% 100%
03278 1 1 0 0 100% 100%
05380 2 0 2 0 0% 0%
05951 2 2 0 0 100% 100%
06077 3 3 0 0 100% 100%
06248 3 3 0 0 100% 100%
06255 5 5 0 0 100% 100%
06298 5 5 0 0 100% 100%
06365 9 9 0 0 100% 100%
06542 5 3 0 2 60% 100%

25 imgs Total: 156 Total: 129 Total: 5 Total: 21 Avg: 84,58% mAP: 91,33%

Table 4: GC, information based on the groundtruth images

It can be observed from the results, that by using gamma correction, the object detector was
explicitly performing worse than with the original images. This is due to Gamma Correction
lifting the already existing noise of every image by scaling the pixels, resulting in a noisy
mess. The performance of the model for the gamma corrected images is 83.22%

YOLOv4 was unable to predict several objects within the background of the images, due
to loss of information from the noisy image, Figure 42.

(a) Original Image (b) Gamma Correction (c) Expected Result

Figure 42: Brief visual comparison of noise levels, between the Original and enhanced image results. (ExDark
Image 01468)

Page 57 of 103

9.4 Data Analysis & Results: Histogram Equalization

Histogram Equalization[4, 51]

Image N. Groundtruth
Detections

Correct
Predictions

Incorrect
Predictions

Missing
Detections Recall Precision

00253 6 5 0 1 83.33% 100%
00301 2 0 0 2 0% 0%
00405 9 9 0 0 100% 100%
01367 10 0 0 10 0% 0%
01437 10 3 0 7 30% 100%
01468 15 5 0 10 33.33% 100%
01489 13 8 0 5 61.53% 100%
01611 5 5 0 0 100% 100%
01764 15 5 1 8 38.46% 83.33%
02049 5 4 0 1 80% 100%
02446 9 4 0 5 44.44% 100%
02453 3 3 0 0 100% 100%
02594 8 8 0 0 100% 100%
02756 6 0 2 4 0% 0%
03052 3 1 0 1 50% 50%
03215 2 1 0 1 50% 100%
03278 1 1 0 0 100% 100%
05380 2 0 2 0 0% 0%
05951 2 2 0 0 100% 100%
06077 3 3 0 0 100% 100%
06248 3 3 0 0 100% 100%
06255 5 4 1 0 100% 80%
06298 5 4 0 1 80% 100%
06365 9 9 0 0 100% 100%
06542 5 0 0 5 0% 0%

25 imgs Total: 156 Total: 89 Total: 4 Total: 61 Avg: 62.043% mAP: 76.533%

Table 5: HE, information based on the groundtruth images

The results provided in Table 5 show that Histogram Equalization performs considerably
worse than the rest of the enhancement algorithms, including the original images. Due to the
extreme degradation of the algorithm, the resulting images rendered it impossible to predict
any object using the YOLOv4 model.

The average recall and precision compared to the rest of the enhancement algorithm re-
sults are substantially lower. The performance of the model for the equalized images is
57.79%. This performance indicates a drastic loss in the quality of the images and the overall
performance of the model whilst using HE.

The YOLOv4 result on the equalized image with the ID 01367 is displayed in Figure 43 to
visualize and observe the major degradation that resulted from the Histogram Equalization al-
gorithm. The equalized image in Figure 43 had reached a state where it rendered it impossible
to detect any objects within it.

Page 58 of 103

(a) Original (b) Histogram Equalization (c) Expected Result

Figure 43: Brief Visual comparison of an extremely degraded Image. (ExDark Image 01367)

9.5 Data Analysis & Results: KinD

KinD - Kindling the Darkness α = 5.0[5]

Image N. Groundtruth
Detections

Correct
Predictions

Incorrect
Predictions

Missing
Detections Recall Precision

00253 6 6 0 0 100% 100%
00301 2 1 0 1 50% 100%
00405 9 8 0 1 88.89% 100%
01367 10 8 0 2 80% 100%
01437 10 5 0 5 50% 100%
01468 15 11 0 4 73.33% 100%
01489 13 7 1 5 58.33% 87.5%
01611 5 5 0 0 100% 100%
01764 15 14 0 1 93.33% 100%
02049 5 4 0 1 80% 100%
02446 9 5 0 4 55.55% 100%
02453 3 3 0 0 100% 100%
02594 8 8 0 0 100% 100%
02756 6 4 0 2 66.7% 100%
03052 3 1 1 1 50% 50%
03215 2 1 0 1 50% 100%
03278 1 1 0 0 100% 100%
05380 1 1 1 0 100% 50%
05951 2 2 0 0 100% 100%
06077 3 3 0 0 100% 100%
06248 3 3 0 0 100% 100%
06298 5 5 0 0 100% 100%
06365 9 9 0 0 100% 100%
06542 5 5 0 0 100% 100%
06255 5 4 1 0 100% 80%

25 imgs Total: 156 Total: 124 Total: 4 Total: 28 Avg: 83.845% mAP: 94.7%

Table 6: KinD, information based on the groundtruth images

By comparing the results shown in Table 6 with the original image results, Recall and Pre-
cision were decreased by a very small margin. This is due to KinD’s noise reduction algorithm,
negatively afflicting YOLOv4’s performance on images with extremely low light conditions.
In the latter sections, that exact issue will be analyzed even further. The performance of the
model with the KinD results is 79,48%

Page 59 of 103

9.6 Statistical Comparison & Evaluation
This section provides a clearer image of the statistical comparisons between each
enhancement algorithm and the original images by averaging both Recall and Precision.

1) Original Result Performance to

• Gamma Correction: 0.78% Worse

• Histogram Equalization: 45.12% Worse

• Kindling the Darkness: 5.52% Worse

2) Gamma Correction Performance to

• Original Images: 0.77% Better

• Histogram Equalization: 44.00% Worse

• Kindling the Darkness: 4.7% Worse

3) Histogram Equalization Performance to

• Original Images: 31.09% Better

• Gamma Correction: 30.55% Better

• Kindling the Darkness: 27.28% Better

4) Kindling the Darkness (KinD) Performance to

• Original Images: 5.23% Better

• Gamma Correction: 4.49% Better

• Histogram Equalization: 37.53% Worse

Figure 44: A comprehensive statistical comparison
of the performance of each enhancement algorithm
compared to each other, using the YOLOv4 perfor-
mance results. Retrieved in Sections [9.2, 9.4, 9.3,
9.5]

The Figure 44, provides a general understand-
ing of the performance of each enhancement al-
gorithm, including the original images, by calcu-
lating the increase or decrease of each result. The
percentage is calculated by averaging recall and
precision and calculating the percentage change
for each result given by the Tables [3, 4, 5, 6]. In
order to create the Figure 44, the following equa-
tion 9 was used to calculate the percentages for
each result.

Change = OriginalResult - GCResult
GCResult

(9)
The percentage change is calculated by us-
ing the equation 9. If the ”Change” is
positive, then the original result has an in-
crease compared to the GC result. If
the ”Change” is negative, then the origi-
nal result has a decrease. Meaning that
for the original result, an increase is bet-
ter than the GC Result and a decrease is
worse than the GC result. The same is
applied to each enhancement result in Fig-
ure 44

Considering the results provided in Figure 44,
it can be observed that the result from the original
images, on average, performed better than any
other enhancement algorithm. KinD and Gamma Correction, fall short by a small margin,
while Histogram Equalization is outperformed by the original images by a very large margin,
of about 30%. Gamma Correction was unable to outperform both the result from the original
images and KinD. KinD outperformed the rest of the enhancement algorithms, excluding the
original result.

10 Analysis Using Data Visualization
The previous subsections provide a clear understanding of the overall performance, on aver-
age, for each enhancement algorithm, including the original image results. This section shows
the details to why the enhancement algorithms failed to produce a better result.

Page 60 of 103

Starting with Histogram Equalization, which performed poorly, it will be important to
visualize the contours as well as the color variation differences of the produced images (Sobel
Derivatives). By generating the sobel derivative images, the difference between the intensity
values will be drawn into the resulting image and showing the manifested noise as well as
imbalances.

10.1 Data visualization of Equalized Images
This section contains information of images that had no correct detections or all of the detec-
tions were missing listed in table 5 data visualizations

Left: Original — Right: Equalized

(a) (b)

Sobel Derivatives

(c) (d)

Contours

(e) (f)

Figure 45: Comparison between the Original and Equalized Image.
(ExDark Image 00301)

Left: Original — Right: Equalized

(a) (b)

Sobel Derivatives

(c) (d)

Contours

(e) (f)

Figure 46: Comparison between the Original and Equalized Image.
(ExDark Image 01437)

By equalizing the images using Histogram Equalization, it made it nearly impossible to
detect anything in the images, considering the amount of noise generated. The Sobel Deriva-
tive algorithm visualized all the noise that was manifested, and the contour map, visualized
the unbalanced contrast enhancement from Histogram Equalization.

Page 61 of 103

10.2 Data Visualization of Gamma Correction
Considering the results given in table 4 the visualized images will generate a better result than
the ones provided in Section 10.1.

Left: Original — Right: Corrected

(a) (b)

Sobel Derivatives

(c) (d)

Contours

(e) (f)

Figure 47: Comparison between the Original and Corrected Image.
(ExDark Image 03278)

Left: Original — Right: Corrected

(a) (b)

Sobel Derivatives

(c) (d)

Contours

(e) (f)

Figure 48: Comparison between the Original and Corrected Image.
(ExDark Image 01489)

That’s it! The results are very interesting and show an overall improvement in detail for
both figures. The contours and Sobel derivative results shown in Figure 47 have improved as
well. The contour map of the corrected image has revealed information that originally did not
exist in the original contour map. The same applies to the Sobel derivative result, with the
visibility of objects getting highlighted even better. Although, as mentioned before, the noise
was uplifted by the algorithm after the intensity values were scaled up, reducing the quality of
the image.

10.3 Data Visualization of KinD
It is expected that KinD will improve the color variation of several low-light-conditioned im-
ages and improve the overall result. Although it is also expected, considering the results given

Page 62 of 103

in Table 6, that it will negatively affect the original image and YOLOv4’s performance due to
KinD’s noise reduction algorithm. This section will provide further information on how KinD
affected YOLOv4’s performance negatively by a small margin and did not improve it.

Left: Original — Right: KinD

(a) (b)

Sobel Derivatives

(c) (d)

Contours

(e) (f)

Figure 49: Comparison between the Original and KinD Image. (Ex-
Dark Image 00253)

Left: Original — Right: KinD

(a) (b)

Sobel Derivatives

(c) (d)

Contours

(e) (f)

Figure 50: Comparison between the Original and KinD Image. (Ex-
Dark Image 01468)

The contour map of the enhanced image in Figure 49, displays more color variations and
higher intensity values. The image’s results given in KinD’s Table 6, are the same as the im-
age’s results in the Original Image Table 3. The same applies to the Sobel results, with the
enhanced image providing higher levels of detail for the objects within the image. YOLOv4
performed well for both, without any statistical loss or gain.

The same applies for Figures 50, although, KinD’s image results, Table 6, have a statisti-
cal loss compared to the original image results, Table 3. To quote the KinD developers, KinD
”over-smoothed” the image to a point of loss of information. The contours and Sobel deriva-
tive images of Figure 50, display how KinD degraded the image by denoising it. The expected
output of the Figure 50, is displayed in the below Figure 51

Page 63 of 103

Expected (a) Original YOLOv4 (b) KinD YOLOv4

Figure 51: Original and KinD YOLOv4 result, compared to the Expected result. ExDark Image 01468

11 Conclusion
It is clear that YOLOv4 does not receive any major benefits in terms of performance from
any of the given enhancement algorithms, mostly in extremely low light-conditioned images,
due to several problems mentioned in past sections for each algorithm. Although in low to
very low light images, YOLOv4 performs slightly better, improving the overall accuracy of
the model.

The algorithms Gamma Correction and KinD, decreased the average Recall and precision
by a small margin. Histogram equalization reduced Recall and precision, by a much larger
margin, with Recall at 62% with an increased count of missing detections and Precision at
76.5%. As mentioned in Section 9.4 this is because Histogram Equalization distorts images
with low light conditions, due to the lack of detail and color variation for the algorithm to
process, resulting in complete distortion.

Gamma Correction, overall had a negative effect on YOLOv4’s performance by a minimal
margin compared to the original image results. This is due to the uplifting of the already ex-
isting noise obscuring any information that is of use to the model. This resulted in YOLOv4
producing unsatisfactory results compared to the original image results. The algorithm in cer-
tain images did improve the given results as presented in Table 4, meaning the efficiency of the
algorithm is situational. This concludes that simply scaling the intensity values of the image
is not enough for any object detector to perform increasingly better than before.

Histogram Equalization performed with the least amount of overall performance. Apply-
ing this algorithm under images captured in extremely low-light conditions, the images were
degraded in such a state rendering it impossible to detect anything using the YOLOv4 model.
Considering the results in Table 5, it is now clear and can be concluded that Histogram Equal-
ization, is an algorithm that will drastically decrease the efficiency and performance of any
object detector including YOLOv4. Various studies have been created to analyze improved
versions of HE, such as RMSHE, RSIHE, RSWHE, and RSWHE-M [57] that preserve the
brightness and contrast of the enhanced images more efficiently than HE can.

Although KinD uses CNN [36] architectures and deep learning techniques to enhance im-

Page 64 of 103

ages, the evaluation results proved that KinD performed worse than the original image results
and Gamma Correction a simple non-linear enhancement algorithm. As mentioned and an-
alyzed in Section 9.5, this happens because of KinD’s degradation removal algorithm. An
improved version of KinD has been introduced. Zhang, Y., Guo, X., Ma, J. et al. state that
the improved version of KinD ”can alleviate visual defects (e.g. non-uniform spots and over-
smoothing) left in KinD”, where ”over-smoothing” was the root of the problem where KinD
was not performing so well with YOLOv4.

With the given results, it can be concluded that KinD and Gamma Correction, perform
well in certain levels of low light conditions, although it is also expected that the improved
version of KinD, KinD Plus[58], will improve YOLOv4’s performance on the enhanced low
light images.

12 Future Work
This study proved to be useful to determine the effectiveness of various enhancement al-
gorithms on the object detector YOLOv4, although there is more work to be done. More
advanced enhancement algorithms can be implemented and evaluated with the help of the
YOLOv4 model, including KinD plus [58]. Various other techniques such as noise or degra-
dation removal can be explored to further increase the potential of this study and improve the
effectiveness of various object detector models. In this study the only model that was evaluated
is YOLOv4, evaluating more object detectors such as YOLOv7-Tiny [59] & YOLOv7 [60]
will draw a clearer image on the performance of low-light enhancement algorithms on various
object detectors.

References
[1] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and Accu-

racy of Object Detection,” 2020.

[2] Y. P. Loh and C. S. Chan, “Getting to Know Low-light Images with The Exclusively
Dark Dataset,” Computer Vision and Image Understanding, vol. 178, pp. 30–42, 2019.

[3] A. Rosebrock, “OpenCV Gamma Correction,” Oct 5 2015.

[4] S. Bhattacharyya, “Histogram Equalization — a simple way to improve the contrast of
your image,” Oct 25 2019.

[5] Y. Zhang, J. Zhang, and X. Guo, “Kindling the Darkness: A Practical Low-light Image
Enhancer,” in Proceedings of the 27th ACM International Conference on Multimedia,
ser. MM ’19. New York, NY, USA: ACM, 2019, pp. 1632–1640. [Online]. Available:
http://doi.acm.org/10.1145/3343031.3350926

[6] S. Charette, “DarkHelp, C++ wrapper library for Darknet,” June 24 2022.

Page 65 of 103

https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
https://github.com/cs-chan/Exclusively-Dark-Image-Dataset
https://pyimagesearch.com/2015/10/05/opencv-gamma-correction/#:~:text=There%20are%20two%20(easy)%20ways,range%20%5B0%2C%20255%5D.
https://towardsdatascience.com/histogram-equalization-a-simple-way-to-improve-the-contrast-of-your-image-bcd66596d815
https://towardsdatascience.com/histogram-equalization-a-simple-way-to-improve-the-contrast-of-your-image-bcd66596d815
https://github.com/zhangyhuaee/KinD
https://github.com/zhangyhuaee/KinD
http://doi.acm.org/10.1145/3343031.3350926
https://github.com/stephanecharette/DarkHelp

[7] OpenCV, “OpenCV modules.”

[8] D. Mpouziotas, “A Perceptron Implementation By Dimitrios Mp.” May 17 2021.

[9] S. Verma, “Implementing the Perceptron Algorithm in Python,” Machine Learning From
Scratch: Part 6, Apr 17 2021.

[10] D. A. Forsyth and J. Ponce, Computer Vision - A Modern Approach, Second Edition.
Pitman, 2012.

[11] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, “A survey
of modern deep learning based object detection models,” 2021. [Online]. Available:
https://arxiv.org/abs/2104.11892

[12] J. Redmon, “Darknet: Open Source Neural Networks in C,” 2013–2016.

[13] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” 2015.
[Online]. Available: https://arxiv.org/abs/1511.08458

[14] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-YOLOv4: Scaling Cross Stage
Partial Network,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2021, pp. 13 029–13 038.

[15] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” 2018. [Online].
Available: https://arxiv.org/abs/1805.01934

[16] C. Kanellakis, S. Sharif Mansouri, M. Castaño, P. Karvelis, D. Kominiak, and
G. Nikolakopoulos, “Where to look: a collection of methods formav heading correction
in underground tunnels,” IET Image Processing, vol. 14, no. 10, pp. 2020–2027, 2020.
[Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ipr.
2019.1423

[17] C. Kanellakis, P. Karvelis, and G. Nikolakopoulos, “Image enhancing in poorly illumi-
nated subterranean environments for mav applications: A comparison study,” in Com-
puter Vision Systems, D. Tzovaras, D. Giakoumis, M. Vincze, and A. Argyros, Eds.
Cham: Springer International Publishing, 2019, pp. 511–520.

[18] G. Li, Y. Yang, X. Qu, D. Cao, and K. Li, “A deep learning based image enhancement
approach for autonomous driving at night,” Knowledge-Based Systems, 11 2020.

[19] S. Rahman, M. M. Rahman, M. Abdullah-Al-Wadud, G. D. Al-Quaderi, and M. Shoyaib,
“An adaptive gamma correction for image enhancement,” EURASIP Journal on Image
and Video Processing, vol. 35, 10 2016.

[20] O. Patel, Y. Maravi, and S. Sharma, “A comparative study of histogram equalization
based image enhancement techniques for brightness preservation and contrast enhance-
ment,” Signal & Image Processing : An International Journal, vol. 4, 11 2013.

Page 66 of 103

https://docs.opencv.org/3.4/index.html
https://github.com/ChilledFerrum/Neural-Networks/tree/main/MyPerceptron
https://towardsdatascience.com/perceptron-algorithm-in-python-f3ac89d2e537
https://www.amazon.com/Computer-Vision-Modern-Approach-2nd/dp/013608592X
https://arxiv.org/abs/2104.11892
http://pjreddie.com/darknet/
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/2011.08036
https://arxiv.org/abs/2011.08036
https://arxiv.org/abs/1805.01934
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ipr.2019.1423
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-ipr.2019.1423

[21] S. Charette, “What about negative samples?”

[22] B. Hong, Y. Zhou, H. Qin, Z. Wei, H. Liu, and Y. Yang, “Few-shot object detection
using multimodal sensor systems of unmanned surface vehicles,” Sensors, vol. 22, no. 4,
2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/4/1511

[23] J. Redmon, A. Bochkovskiy, and S. Charette, “Darknet GitHub.”

[24] S. Charette, “DarkMark C++ GUI Tool for Darknet - Code Run,” 2019 - 2023.

[25] ——, “DarkMark GitHub Page.”

[26] ——, “Stéphane’s Darknet FAQ,” Apr 2022.

[27] A. A. Awan, “A Complete Guide to Data Augmentation,” Learn about data augmenta-
tion techniques, applications, and tools with a TensorFlow and Keras tutorial., Novem-
ber 2022.

[28] J. Liu, D. Xu, W. Yang, M. Fan, and H. Huang, “Benchmarking Low-Light Image En-
hancement and Beyond,” International Journal of Computer Vision, vol. 129, 04 2021.

[29] E. A. da Silva and G. V. Mendonça, “4 - digital image processing,” in The Electrical
Engineering Handbook, W.-K. CHEN, Ed. Burlington: Academic Press, 2005,
pp. 891–910. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780121709600500645

[30] D. E. Kaplan, Introduction to Psychology – Chapter 4.2 Seeing, Feb 16 2017.

[31] B. Ly, E. Dyer, J. Feig, A. Chien, and S. Bino, “Research Techniques Made Simple:
Cutaneous Colorimetry: A Reliable Technique for Objective Skin Color Measurement,”
The Journal of investigative dermatology, vol. 140, pp. 3–12.e1, January 2020.

[32] C. Derouet and B. Parzysz, “How can histograms be useful for introducing continuous
probability distributions?” ZDM, vol. 48, pp. 757 – 773, Mar. 2016. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-03618056

[33] “Introduction to Contour Maps,” November 11 2022.

[34] OpenCV, “Contours in OpenCV.”

[35] ——, “Sobel Derivatives,” Jun 24 2022.

[36] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way,”
Dec 15 2018.

[37] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in European conference on com-
puter vision. Springer, 2014, pp. 740–755.

Page 67 of 103

https://www.ccoderun.ca/programming/darknet_faq/#negative_samples
https://www.mdpi.com/1424-8220/22/4/1511
https://github.com/AlexeyAB/darknet
https://www.ccoderun.ca/darkmark/
https://github.com/stephanecharette/DarkMark/
https://www.ccoderun.ca/programming/darknet_faq/
https://www.datacamp.com/tutorial/complete-guide-data-augmentation
https://www.researchgate.net/publication/348392363_Benchmarking_Low-Light_Image_Enhancement_and_Beyond
https://www.researchgate.net/publication/348392363_Benchmarking_Low-Light_Image_Enhancement_and_Beyond
https://www.sciencedirect.com/science/article/pii/B9780121709600500645
https://www.sciencedirect.com/science/article/pii/B9780121709600500645
https://saylordotorg.github.io/text_introduction-to-psychology/index.html
https://www.researchgate.net/figure/The-CIELAB-color-space-diagram-The-CIELAB-or-CIE-L-a-b-color-system-represents_fig1_338303610
https://www.researchgate.net/figure/The-CIELAB-color-space-diagram-The-CIELAB-or-CIE-L-a-b-color-system-represents_fig1_338303610
https://hal.archives-ouvertes.fr/hal-03618056
https://www.nationalgeographic.org/activity/introduction-to-contour-maps/
https://docs.opencv.org/3.4/d3/d05/tutorial_py_table_of_contents_contours.html
https://docs.opencv.org/3.4/d2/d2c/tutorial_sobel_derivatives.html
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://arxiv.org/abs/1405.0312

[38] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona,
D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft COCO: Common Objects in
Context,” 2014. [Online]. Available: https://arxiv.org/abs/1405.0312

[39] C.-Y. Wang, H.-Y. M. Liao, I.-H. Yeh, Y.-H. Wu, P.-Y. Chen, and J.-W. Hsieh, “CSPNet:
A New Backbone that can Enhance Learning Capability of CNN,” 2019. [Online].
Available: https://arxiv.org/abs/1911.11929

[40] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 2018. [Online].
Available: https://arxiv.org/abs/1804.02767

[41] C. Kozyrkov, “What is “Ground Truth” in AI? (A warning.),” A demo that shows why
you shouldn’t treat AI like a magical box of magic, February 2020.

[42] C. L. of Ornithology, “eBird - The Cornell Lab of Ornithology.”

[43] M. Tkachenko, M. Malyuk, A. Holmanyuk, and N. Liubimov, “La-
bel Studio: Data labeling software,” 2020-2022, open source soft-
ware available from https://github.com/heartexlabs/label-studio. [Online]. Available:
https://github.com/heartexlabs/label-studio

[44] G. Reina, R. Panchumarthy, S. Thakur, A. Bastidas, and S. Bakas, “Systematic evaluation
of image tiling adverse effects on deep learning semantic segmentation,” Frontiers in
Neuroscience, vol. 14, p. 65, 02 2020.

[45] G. Andrews, “What is synthetic data?” Synthetic data generated from computer
simulations or algorithms provides an inexpensive alternative to real-world data that’s
increasingly used to create accurate AI models, June 8 2021. [Online]. Available:
https://blogs.nvidia.com/blog/2021/06/08/what-is-synthetic-data/

[46] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A.
Kalinin, “Albumentations: Fast and flexible image augmentations,” Information, vol. 11,
no. 2, 2020. [Online]. Available: https://www.mdpi.com/2078-2489/11/2/125

[47] S. Charette, Apr 2022. [Online]. Available: https://www.ccoderun.ca/programming/
darknet faq/

[48] J. Solawetz, “What is Mean Average Precision (mAP) in Object Detection?” The com-
puter vision community has converged on the metric mAP to compare the performance
of object detection systems. In this post, we will dive into the intuition behind how mean
Average Precision (mAP) is calculated and why mAP has become the preferred metric
for object detection models., May 6 2020.

[49] F. Liang, “Evaluating the Performance of Machine Learning Models,” One of the most
common and quickest ways to evaluate a model, Apr 18 2020.

Page 68 of 103

https://doi.org/10.48550/arxiv.1405.0312
https://doi.org/10.48550/arxiv.1405.0312
https://arxiv.org/abs/1405.0312
https://doi.org/10.48550/arxiv.1911.11929
https://doi.org/10.48550/arxiv.1911.11929
https://arxiv.org/abs/1911.11929
https://doi.org/10.48550/arxiv.1804.02767
https://arxiv.org/abs/1804.02767
https://towardsdatascience.com/in-ai-the-objective-is-subjective-4614795d179b
https://ebird.org/explore
https://github.com/heartexlabs/label-studio
https://blogs.nvidia.com/blog/2021/06/08/what-is-synthetic-data/
https://www.mdpi.com/2078-2489/11/2/125
https://www.ccoderun.ca/programming/darknet_faq/
https://www.ccoderun.ca/programming/darknet_faq/
https://blog.roboflow.com/mean-average-precision/
https://towardsdatascience.com/classifying-model-outcomes-true-false-positives-negatives-177c1e702810

[50] D. Nikolaiev, “Overfitting and Underfitting Principles,” Understand basic principles of
underfitting and overfitting and why you should use particular techniques to deal with
them, Nov 2 2021.

[51] OpenCV, “Histogram Equalization,” Jun 24 2022.

[52] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising with block-
matching and 3D filtering,” Proceedings of SPIE - The International Society for Optical
Engineering, vol. 6064, pp. 354–365, February 2006.

[53] Y. P. Loh and C. S. Chan, “Getting to Know Low-light Images with The Exclusively
Dark Dataset,” Computer Vision and Image Understanding, vol. 178, pp. 30–42, 2019.

[54] M. Dimitrios, “Algorithms implemented in this Thesis,” june 2022.

[55] S. Charette, “Using CUDA with OpenCV,” Apr 2022.

[56] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for Machine Learning.
Cambridge University Press, 2020.

[57] O. Patel, Y. Maravi, and S. Sharma, “A Comparative Study of Histogram Equalization
Based Image Enhancement Techniques for Brightness Preservation and Contrast En-
hancement,” Signal & Image Processing : An International Journal, vol. 4, 11 2013.

[58] Y. Zhang, X. Guo, J. Ma, W. Liu, and J. Zhang, “Beyond brightening low-light images,”
International Journal of Computer Vision, vol. 129, no. 4, pp. 1013–1037, Apr 2021.
[Online]. Available: https://doi.org/10.1007/s11263-020-01407-x

[59] S. Hu, F. Zhao, H. Lu, Y. Deng, J. Du, and X. Shen, “Improving yolov7-tiny for infrared
and visible light image object detection on drones,” vol. 15, no. 13, 2023. [Online].
Available: https://www.mdpi.com/2072-4292/15/13/3214

[60] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7: Trainable bag-of-freebies
sets new state-of-the-art for real-time object detectors,” 2022.

Page 69 of 103

https://towardsdatascience.com/overfitting-and-underfitting-principles-ea8964d9c45c
https://docs.opencv.org/3.4/d4/d1b/tutorial_histogram_equalization.html
https://www.researchgate.net/publication/246418250_Image_denoising_with_block-matching_and_3D_filtering
https://www.researchgate.net/publication/246418250_Image_denoising_with_block-matching_and_3D_filtering
https://github.com/cs-chan/Exclusively-Dark-Image-Dataset/tree/master/Groundtruth
https://github.com/cs-chan/Exclusively-Dark-Image-Dataset/tree/master/Groundtruth
https://github.com/ChilledFerrum/Python
https://www.ccoderun.ca/programming/2021-03-08_cuda_and_opencv/
https://paperswithcode.com/paper/a-comparative-study-of-histogram-equalization
https://paperswithcode.com/paper/a-comparative-study-of-histogram-equalization
https://paperswithcode.com/paper/a-comparative-study-of-histogram-equalization
https://doi.org/10.1007/s11263-020-01407-x
https://www.mdpi.com/2072-4292/15/13/3214

Appendices

A Gamma Correction
Programming Language: Python
Requirements: opencv, numpy, Backend.py file

1 import numpy as np
2 from src.Backend import Backend
3 import cv2 as cv
4

5

6 inputFolder = "input/"
7 outputFolder = "out/"
8

9 backend = Backend()
10

11

12 def GammaCorrectionMulti():
13 Gamma = 2
14 inverseGamma = 1 / Gamma
15 for index, img in enumerate(backend.imagesBuffer):
16 table = [((i / 255) ** inverseGamma) * 255 for i in range(256)]
17

18 table = np.array(table, np.uint8)
19

20 gammaCorrected = cv.LUT(img, table)
21 backend.writeImages(index, gammaCorrected,

backend.imageName[index])↪→

22 print("\n\nImage Filtering Complete. View outputGCmulti folder...")
23

24

25 def run():
26 backend.setInputPath(inputFolder + "inputGC")
27 backend.setOutPath(outputFolder + "outputGC")
28

29 backend.run()
30 GammaCorrectionMulti()
31

32

33 if __name__ == "__main__":
34 run()

Page 70 of 103

M Histogram Equalization
Programming Language: Python
Requirements: opencv, numpy, Backend.py file

1 from src.Backend import Backend
2 import cv2 as cv
3 import numpy as np
4

5

6 inputFolder = "input/"
7 outputFolder = "out/"
8

9 backend = Backend()
10

11 def histogramEqualizationMulti():
12 for index, img in enumerate(backend.imagesBuffer):
13 b, g, r = cv.split(img)
14 h_b, bin_b = np.histogram(b.flatten(), 256, [0, 256])
15 h_g, bin_g = np.histogram(g.flatten(), 256, [0, 256])
16 h_r, bin_r = np.histogram(r.flatten(), 256, [0, 256])
17 # calculate cdf
18 cdf_b = np.cumsum(h_b)
19 cdf_g = np.cumsum(h_g)
20 cdf_r = np.cumsum(h_r)
21

22 # mask all pixels with value=0 and replace it with mean of the
pixel values↪→

23 cdf_m_b = np.ma.masked_equal(cdf_b, 0)
24 cdf_m_b = (cdf_m_b - cdf_m_b.min()) * 255 / (cdf_m_b.max() -

cdf_m_b.min())↪→

25 cdf_final_b = np.ma.filled(cdf_m_b, 0).astype('uint8')
26

27 cdf_m_g = np.ma.masked_equal(cdf_g, 0)
28 cdf_m_g = (cdf_m_g - cdf_m_g.min()) * 255 / (cdf_m_g.max() -

cdf_m_g.min())↪→

29 cdf_final_g = np.ma.filled(cdf_m_g, 0).astype('uint8')
30 cdf_m_r = np.ma.masked_equal(cdf_r, 0)
31 cdf_m_r = (cdf_m_r - cdf_m_r.min()) * 255 / (cdf_m_r.max() -

cdf_m_r.min())↪→

32 cdf_final_r = np.ma.filled(cdf_m_r, 0).astype('uint8')
33 # merge the images in the three channels
34 img_b = cdf_final_b[b]
35 img_g = cdf_final_g[g]
36 img_r = cdf_final_r[r]

Page 71 of 103

37

38 img_out = cv.merge((img_b, img_g, img_r))
39 # validation
40 equ_b = cv.equalizeHist(b)
41 equ_g = cv.equalizeHist(g)
42 equ_r = cv.equalizeHist(r)
43 equ = cv.merge((equ_b, equ_g, equ_r))
44 backend.writeImages(index, equ, backend.imageName[index])
45

46 print("\n\nImage Filtering Complete. View outputHE folder...")
47

48

49 def run():
50 backend.pathInput = inputFolder + "inputHE"
51 backend.pathOutput = outputFolder + "outputHE"
52 backend.run()
53

54 histogramEqualizationMulti()
55

56

57 if __name__ == "__main__":
58 run()

Page 72 of 103

N Backend for GC & HE
Programming Language: Python

1 import os
2 import os.path
3

4 # Change this to True if you do not want Progress Bar visuals,
otherwise > pip install curses↪→

5 disableProgressBar = False
6

7 if not disableProgressBar:
8 try:
9 import curses

10 except ImportError:
11 print("\033[91mModuleNotFoundError: No module named

'curses'\033[92m\n"↪→

12 "This module is primarily for visuals and can be
disabled\n"↪→

13 "Enable if you need the Progress Bar visuals\n"
14 "\nPossible Solutions:\033[0m\n"
15 " > Disable Progress Bar in src/Backend.py\n"
16 " > pip install curses")
17 exit(-1)
18

19 try:
20 import cv2 as cv
21 except ImportError:
22 print("ModuleNotFoundError: No module named 'cv2'\n"
23 "Please Install OpenCV to your Python environment")
24 exit(-1)
25

26 barChar = "="
27

28 bufferedString = ""
29 total = 0
30

31 def setMaxLimit(max):
32 global total
33 total = max
34

35

36 def progressBar(current, stdScr):
37 try:
38 completed = 100 * (current / float(total))
39 except ZeroDivisionError:

Page 73 of 103

40 completed = 0
41 barProgress = barChar * int(completed) + "-" * (100 -

int(completed))↪→

42

43 stdScr.addstr(0, 117, f"| {completed:.0f} %")
44 curses.init_pair(1, 22, -1)
45 stdScr.addstr(0, 0, f"Total Progress: |")
46 stdScr.addstr(0, 17, f"{barProgress}", curses.color_pair(1))
47 stdScr.addstr(1, 0, bufferedString)
48 stdScr.refresh()
49 if completed >= 100.0:
50 print(f"Total Progress: |\033[92m{barProgress}\033[0m|

{completed:.0f} %")↪→

51

52 class Backend:
53 def __init__(self):
54 if not disableProgressBar:
55 self.stdScr = curses.initscr()
56 curses.noecho()
57 curses.nocbreak()
58

59 self.imagesBuffer = []
60 self.imageName = []
61 self.pathInput = ""
62 self.pathOutput = ""
63 self.outputTemplate = "/"
64

65 self.numFiles = 0
66 self.numProcesses = 0
67 self.currentProcess = 0
68

69 self.files = []
70

71

72 def verify(self):
73 if not disableProgressBar:
74 global bufferedString
75 bufferedString = "Verifying Files...\n"
76 self.numFiles = len(self.files)
77 self.numProcesses = self.numFiles + self.numFiles * 2
78 setMaxLimit(self.numProcesses)
79

80 progressBar(0, self.stdScr)
81

82 for i, file in enumerate(self.files):
83 if not (file.endswith(".png")) and not

(file.endswith(".jpg")) and not (file.endswith(".JPG"))
and not \

↪→

↪→

84 (file.endswith(".JPEG")) and not
(file.endswith(".jpeg")):↪→

Page 74 of 103

85 print("Reading incorrect or unsupported file formats.
Supported file formats (jpg, jpeg, png")↪→

86 print("ERROR AT FILE:", file)
87 exit(-1)
88 if file.endswith(".png") or file.endswith(".PNG"):
89 os.rename(os.path.join(self.pathInput, file),

os.path.join(self.pathInput, ''.join([file])))↪→

90 elif file.endswith(".jpg") or file.endswith(".JPG"):
91 os.rename(os.path.join(self.pathInput, file),

os.path.join(self.pathInput, ''.join([file])))↪→

92 elif file.endswith(".JPEG"):
93 os.rename(os.path.join(self.pathInput, file),

os.path.join(self.pathInput, ''.join([file])))↪→

94 self.currentProcess += 1
95 if not disableProgressBar:
96 progressBar(self.currentProcess, self.stdScr)
97

98

99 def readingImages(self):
100 if not disableProgressBar:
101 global bufferedString
102 bufferedString = "Reading Images...\n"
103 # sys.stdin.flush()
104 progressBar(self.currentProcess, self.stdScr)
105 for i, file in enumerate(self.files):
106 if i == self.numFiles:
107 return
108

109 name = "/" + file
110 img = cv.imread(self.pathInput + name)
111

112 self.imagesBuffer.append(img)
113 self.imageName.append(name)
114 if not disableProgressBar:
115 self.currentProcess += 1
116 progressBar(self.currentProcess, self.stdScr)
117 if not disableProgressBar:
118 bufferedString = "Applying Filter..."
119

120

121 def writeImages(self, index, img, file):
122 if file.endswith(".png") or file.endswith(".PNG"):
123 cv.imwrite(self.pathOutput + file, img)
124 elif file.endswith(".jpg") or file.endswith(".JPG"):
125 cv.imwrite(self.pathOutput + file, img)
126 elif file.endswith(".JPEG"):
127 cv.imwrite(self.pathOutput + file, img)
128 if not disableProgressBar:
129 self.currentProcess += 1
130 progressBar(self.currentProcess, self.stdScr)
131 return

Page 75 of 103

132

133

134 def run(self):
135 if not (os.path.exists(self.pathInput)) or not

os.path.exists(self.pathOutput):↪→

136 print("Input or Output Path does not Exist")
137 exit(-1)
138

139 self.files = os.listdir(self.pathInput)
140

141 if not disableProgressBar:
142 curses.start_color()
143 curses.use_default_colors()
144 self.verify()
145 self.readingImages()
146

147

148 def setInputPath(self, input):
149 self.pathInput = input
150

151

152 def setOutPath(self, input):
153 self.pathOutput = input

Page 76 of 103

O Generate ExDark’s Groundtruth Images
Programming Language: Python
Requirements: opencv

1 import os
2 import cv2 as cv
3

4

5 datasetPath = "ExDark/Dataset"
6 groundtruthPath = "ExDark/Groundtruth"
7

8 subFoldersGT = [f for f in os.listdir(groundtruthPath)]
9 subFoldersData = [f for f in os.listdir(datasetPath)]

10 CategoryPathsGTruth = []
11 CategoryPathsData = []
12 for subFolder in subFoldersGT:
13 CategoryPathsGTruth.append(groundtruthPath + "/" + subFolder)
14 for subFolder in subFoldersData:
15 CategoryPathsData.append(datasetPath + "/" + subFolder)
16

17 CategoryPathsData.sort()
18 CategoryPathsGTruth.sort()
19

20 ClassColors = [(0, 0, 255), (0, 255, 0), (255, 0, 0), (255, 218, 90),
(0, 110, 204), (255, 110, 192),↪→

21 (192, 201, 255), (0, 255, 255), (255, 125, 111), (255, 255,
255), (129, 180, 128), (0, 48, 122)]↪→

22

23 count = 0
24 for (pathGT, pathData) in zip(CategoryPathsGTruth, CategoryPathsData):
25 FilesGTruth = [f for f in os.listdir(pathGT)]
26 FilesDataset = [f for f in os.listdir(pathData)]
27 FilesGTruth.sort()
28 FilesDataset.sort()
29 for (fileGT, fileData) in zip(FilesGTruth, FilesDataset):
30 FileName = fileGT.replace(".txt", "")
31

32 # if FileName != fileData:
33 # print("Groundtruth: ", pathGT + "/" + FileName, "\t

fileDataset: ", pathData + "/" + fileData)↪→

34 if FileName != fileData:
35 print("Incorrect File Matching!")
36 print("Groundtruth: ", FileName, "\tDataset: ", fileData)
37 else:

Page 77 of 103

38 fGT = open(pathGT + "/" + fileGT)
39 fGT.readline() # Skips first line
40 fData = cv.imread(pathData + "/" + fileData)
41 HEIGHT, WIDTH, _ = fData.shape
42 Lines = fGT.readlines()
43 for line in Lines:
44 Data = line.split()
45 ClassType = Data[0]
46 start_point = (int(Data[1]), int(Data[2]))
47 if ClassType == "Bicycle":
48 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[0], 2)

↪→

↪→

49 if ClassType == "Boat":
50 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[1], 2)

↪→

↪→

51 if ClassType == "Bottle":
52 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[2], 1)

↪→

↪→

53 if ClassType == "Bus":
54 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[3], 2)

↪→

↪→

55 if ClassType == "Car":
56 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[4], 1)

↪→

↪→

57 if ClassType == "Cat":
58 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[5], 2)

↪→

↪→

59 if ClassType == "Chair":
60 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[6], 2)

↪→

↪→

61 if ClassType == "Cup":
62 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[7], 1)

↪→

↪→

63 if ClassType == "Dog":
64 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[8], 2)

↪→

↪→

65 if ClassType == "Table":
66 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[9], 2)

↪→

↪→

67 if ClassType == "People":

Page 78 of 103

68 fData = cv.rectangle(fData, start_point,
(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[10], 1)

↪→

↪→

69 if ClassType == "Motorbike":
70 fData = cv.rectangle(fData, start_point,

(int(Data[3]) + int(Data[1]), int(Data[4]) +
int(Data[2])), ClassColors[11], 2)

↪→

↪→

71 cv.putText(fData,
72 ClassType,
73 tuple(map(sum, zip(start_point, (0, -7)))),
74 cv.FONT_HERSHEY_SIMPLEX,
75 0.5,
76 (255, 255, 255),
77 2)
78 cv.imwrite("Groundtruth_Images/" + FileName, fData)

Page 79 of 103

P Determine Low Light Level using means
Programming Language: Python
Requirements: opencv, numpy

1 import cv2
2 import os
3 import numpy as np
4

5 pathInput = "../images/"
6 pathOutput = "../images/"
7 files = os.listdir(pathInput)
8 Images = []
9 files.sort()

10 for index, file in enumerate(files):
11 print("Image ", index, ": ", file)
12

13

14 def ReadImages():
15 for index, file in enumerate(files):
16 Images.append(cv2.imread(pathInput + file))
17 if Images:
18 print("Files Read...\n")
19 else:
20 print("Folder Empty")
21 exit(-1)
22

23

24 def getLuminanceChannel(index, img):
25 LABimg = cv2.cvtColor(img, None, cv2.COLOR_BGR2GRAY)
26 # cv2.imwrite(pathOutput + "LumChannel" + str(index) + ".jpg",

LABimg[:, :, 0])↪→

27 meanLum = np.mean(LABimg)
28 return meanLum
29

30

31 def checkLuminanceThreshold(index, img):
32 LChannel = getLuminanceChannel(index, img)
33 # lumsum = 0
34 # count = 0
35 # for x in range(len(LChannel)):
36 # for y in range(len(LChannel[x])):
37 # lumsum += int(LChannel[x][y])
38 # count += 1
39 # rows = len(LChannel)

Page 80 of 103

40 # cols = len(LChannel[0])
41

42 # AverageLum = lumsum / (cols * rows)
43 return LChannel
44

45

46 def begin():
47 for index, img in enumerate(Images):
48 luminance = checkLuminanceThreshold(index, img)
49 if luminance > 100:
50 message = "Normal Lighting"
51 elif luminance > 85 and luminance <= 100:
52 message = "Low Lighting"
53 elif luminance >= 75 and luminance <= 85:
54 message = "Very Low Lighting"
55 elif luminance < 75:
56 message = "Extremely Low Lighting"
57 print("Image ", files[index], " Luminance: ", luminance,

"\nLevel: ", message, "\n")↪→

58

59 ReadImages()
60 begin()

Page 81 of 103

Q Generate Image Histograms 1 (Code to show RGB chan-
nels separately)

Programming Language: Python
Requirements: opencv, matplotlib, numpy

1 import cv2 as cv
2 import os
3 import numpy as np
4 import matplotlib.pyplot as plt
5

6 inputFolder = "Input - GenerateHist/"
7 outputFolder = "Output - GenerateHist/"
8 ImageList = os.listdir(inputFolder)
9 colorList = ('b', 'g', 'r')

10

11 for idx, imgName in enumerate(ImageList):
12 img = cv.imread(inputFolder + imgName)
13 fig = plt.figure()
14

15 channels = img.shape[2]
16 if channels > 1:
17 for i, col in enumerate(colorList):
18 histr = cv.calcHist([img], [i], None, [256], [0, 256])
19 plt.plot(histr, color=col)
20 plt.xlim([0, 256])
21 plt.savefig(outputFolder + "Histogram_" + imgName)
22 plt.clf()

Page 82 of 103

R Generate Image Histograms 2 (Simple Histogram)
Programming Language: Python
Requirements: opencv

1 import os, os.path
2 import sys
3 import numpy as np
4 import cv2 as cv
5 import matplotlib.pyplot as plt
6

7 img = cv.imread("2015_02453.jpg")
8 b, g, r = cv.split(img)
9 plt.hist(cv.cvtColor(img, cv.COLOR_BGR2GRAY).flatten(), 256, [0, 256],

ec='k')↪→

10 plt.title("Original Image Histogram")
11 plt.savefig('OriginalHist.jpg')
12

13 h_b, bin_b = np.histogram(b.flatten(), 256, [0, 256])
14 h_g, bin_g = np.histogram(g.flatten(), 256, [0, 256])
15 h_r, bin_r = np.histogram(r.flatten(), 256, [0, 256])
16

17 cdf_b = np.cumsum(h_b)
18 cdf_g = np.cumsum(h_g)
19 cdf_r = np.cumsum(h_r)
20

21

22 cdf_m_b = np.ma.masked_equal(cdf_b, 0)
23 cdf_m_b = (cdf_m_b - cdf_m_b.min()) * 255 / (cdf_m_b.max() -

cdf_m_b.min())↪→

24 cdf_final_b = np.ma.filled(cdf_m_b, 0).astype('uint8')
25

26 cdf_m_g = np.ma.masked_equal(cdf_g, 0)
27 cdf_m_g = (cdf_m_g - cdf_m_g.min()) * 255 / (cdf_m_g.max() -

cdf_m_g.min())↪→

28 cdf_final_g = np.ma.filled(cdf_m_g, 0).astype('uint8')
29 cdf_m_r = np.ma.masked_equal(cdf_r, 0)
30 cdf_m_r = (cdf_m_r - cdf_m_r.min()) * 255 / (cdf_m_r.max() -

cdf_m_r.min())↪→

31 cdf_final_r = np.ma.filled(cdf_m_r, 0).astype('uint8')
32

33 img_b = cdf_final_b[b]
34 img_g = cdf_final_g[g]
35 img_r = cdf_final_r[r]
36

Page 83 of 103

37 img_out = cv.merge((img_b, img_g, img_r))
38

39 equ_b = cv.equalizeHist(b)
40 equ_g = cv.equalizeHist(g)
41 equ_r = cv.equalizeHist(r)
42 equ = cv.merge((equ_b, equ_g, equ_r))
43 plt.figure()
44

45 plt.hist(cv.cvtColor(equ, cv.COLOR_BGR2GRAY).ravel(), 256, [0, 256],
ec='k')↪→

46 plt.title("Equalized Image Histogram")
47 plt.savefig('EqualizedHist.jpg')
48 plt.show()

Page 84 of 103

S Data Augmentation
Programming Language: Python
Requirements: albumentations, opencv

1 import albumentations as album
2 import cv2
3 import random
4 import os
5 from pathlib import Path
6

7 inputDir = "images/"
8 outputDir = "out/"
9 images = os.listdir("images")

10

11 DatasetPercent = 0.1
12 numImages = len(images)
13

14 startIndex = random.randint(0, numImages - int(numImages *
DatasetPercent))↪→

15 endIndex = startIndex + int(numImages * DatasetPercent)
16 print("Start: ", startIndex)
17 print("End: ", endIndex)
18

19 count = 0
20 for file in images[startIndex:endIndex]:
21 imageName = file.split(".jpg")
22

23 count += 1
24

25 filePath = inputDir + file
26 image = cv2.imread(filePath)
27 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
28

29 randLower = random.randint(10, 30)
30 randUpper = random.randint(randLower, 30)
31 # print("Rand Lower: ", randLower, "\nRand Upper: ", randUpper)
32

33 transform = album.Compose([
34 album.Blur(blur_limit=(3, 7), always_apply=True, p=0.9),
35

36 album.HorizontalFlip(p=0.5),
37

38 album.ImageCompression(quality_lower=randLower,
quality_upper=randUpper, p=1),↪→

Page 85 of 103

39

40 # album.CLAHE(6.0, (10, 10), p=1.0),
41

42 # album.Superpixels(p_replace=0.5, n_segments=1, p=1.0)
43

44 # album.ChannelShuffle(p=.5),
45

46 album.MedianBlur(blur_limit=7, p=0.5),
47

48 album.RandomBrightnessContrast(p=0.4),
49])
50

51

52 transformed = transform(image = image)
53 transformed_image = transformed["image"]
54

55

56 transformed_image = cv2.cvtColor(transformed_image,
cv2.COLOR_RGB2BGR)↪→

57 cv2.imwrite(outputDir+imageName[0] + "_Augmented.jpg",
transformed_image)↪→

58

59 print(count)

Page 86 of 103

T Perceptron with Data Visualization
Programming Language: Python
Requirements: pandas, numpy, matplotlib (pyplot)

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from matplotlib import cm
4 import pandas as pd
5 import random
6 #Copyright (c) 2022, Chilled Ferrum All rights reserved.
7

8 # Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

↪→

↪→

9

10 # Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.↪→

11

12 # Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the
distribution.

↪→

↪→

↪→

13

14 # All advertising materials mentioning features or use of this software
must display the following acknowledgement: This product includes
software developed by the ChilledFerrum.

↪→

↪→

15

16 # Neither the name of the ChilledFerrum nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

↪→

↪→

17

18 # THIS SOFTWARE IS PROVIDED BY ChilledFerrum AS IS
19 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
20 # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED.↪→

21 # IN NO EVENT SHALL ChilledFerrum BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY,↪→

22 # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES;↪→

23 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY,

↪→

↪→

Page 87 of 103

24 # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

↪→

↪→

25

26

27 # # Parameters...
28 # Play around with the Parameters Here is some hints
29

30 # urlDataset = 'dataset1.csv'
31 # n_rows = 100
32 # n_inputs = 3
33 # act_outputs = [1, -1]
34 # For the 3D dataset change to act_outputs = ['C1', 'C2']
35 # For the 3D dataset change urlDataset = 'dataset3D.csv'
36 # For the 3D dataset change n_inputs = 3
37

38

39

40 urlDataset = 'dataset1.csv' # Dataset URL
41 # Change this to train the dataset faster
42 learning_rate = 0.05
43 # Number of rows in the dataset
44 n_rows = 100
45 # Number of Inputs
46 n_inputs = 2 # Changes with the dataset
47 # Number of Epochs
48 seasons = 100
49 # Activation Function Outputs [First , Second]. Change this according

to the dataset that is being used↪→

50 act_outputs = [1, -1]
51

52 # Set Target Label Name...
53 t_label = 'Y'
54 # Set Label Starting Character
55 input_label = 'X'
56

57 # Execution Process parameters...
58 # View Real Time Plots (This will take time to finish according to the

computer's process speed)↪→

59 ViewRealTimePlots = True
60

61 # Stop at Set Seasons if Seasons is 10 it will stop at season 10 if
StopAtSetSeasons = True↪→

62 StopAtSetSeasons = True
63

64 # Use My Dynamic Learning Rate method
65 useDynamicLR = True
66 if useDynamicLR:
67 # Higher LRrate means higher Learning Rate values, 2D recommended

[0.01 - 0.015] 3D recommended at 0.2 +/-↪→

68 # LRrate is based on how big the linear Output is

Page 88 of 103

69 LRrate = 0.01
70 DynamicLearningRate = learning_rate
71

72 # Use weight & bias Randomization
73 useWeightRandomization = True
74

75 weights = np.zeros(n_inputs) # +1 is for the included weight for the
bias↪→

76 bias = 1
77

78 # Randomize weights & bias...
79 if useWeightRandomization:
80 for i in range(0, n_inputs):
81 weights[i] = random.uniform(-2.0, 2.0)
82 if weights[i] == 0:
83 weights[i] += 0.1
84 bias = random.uniform(-2.0, 2.0)
85

86

87 def initDataset(UrlDataset, n):
88 data = pd.read_csv(UrlDataset, nrows=n)
89 return data
90

91

92 # Returns 0 if the function of the linear output is greater or equal
than 0↪→

93 def activationFunc(Y):
94 return 1.0 if Y >= 0 else 0.0
95

96

97 # Load Data
98 dataset = initDataset(urlDataset, n_rows)
99 dataset = pd.DataFrame(dataset)

100 dataset = dataset.sample(frac=1)
101

102 df_target = pd.DataFrame(dataset, columns=[t_label])
103 target = df_target.to_numpy()
104

105

106 # Convert target outputs to 1 & 0
107 for idx, x in enumerate(target):
108 if x == act_outputs[0]:
109 target[idx] = 1.0
110 elif x == act_outputs[1]:
111 target[idx] = 0.0
112 # Invert StopAtSetSeasons (Works like a switch button)
113 StopAtSetSeasons = np.invert(StopAtSetSeasons)
114

115 Iter = 0
116 dfX_train = pd.DataFrame()
117 for col in dataset:

Page 89 of 103

118 if col != t_label:
119 Iter += 1
120 label = input_label + str(Iter)
121 dfX_train[Iter] = pd.DataFrame(dataset, columns=[label])
122

123 X_train = dfX_train.to_numpy()
124

125 if n_inputs == 2:
126 x = np.arange(0, np.max(X_train[:, [0]]), 0.1)
127 y = -(weights[0] / weights[1]) * x + (-bias / weights[1])
128 if ViewRealTimePlots:
129 plt.ion()
130 fig = plt.figure()
131 ax = fig.add_subplot()
132 ax.set_xlim([min(X_train[:, [0]]) - 2, max(X_train[:, [0]]) +

2])↪→

133 ax.set_ylim([min(X_train[:, [1]]) - 2, max(X_train[:, [1]] +
2)])↪→

134

135 line, = ax.plot(x, y)
136

137 # Activates only if n_inputs == 3
138 elif n_inputs == 3:
139 x = np.arange(np.min(X_train[:, [0]]), np.max(X_train[:, [0]]),

0.1)↪→

140 y = np.arange(np.min(X_train[:, [1]]), np.max(X_train[:, [1]]),
0.1)↪→

141 x, y = np.meshgrid(x, y)
142 if ViewRealTimePlots:
143 plt.ion()
144 fig = plt.figure()
145 ax = fig.add_subplot(projection='3d')
146 ax.set_xlim([min(X_train[:, [0]]) - 2, max(X_train[:, [0]]) +

2])↪→

147 ax.set_ylim([min(X_train[:, [1]]) - 2, max(X_train[:, [1]] +
2)])↪→

148

149 print("Starting Weights: ", weights, " bias: ", bias)
150 predicted = np.ones(n_rows)
151 current_season = 0
152 currently_predicted = np.zeros(n_rows)
153 while current_season < seasons:
154 miss = 0
155 hit = 0
156 for current_iter, xi in enumerate(X_train):
157 linear_output = 0
158 for i in range(0, n_inputs):
159 linear_output += xi[i] * weights[i]
160

161 linear_output += bias
162 predicted_y = activationFunc(linear_output)

Page 90 of 103

163 currently_predicted[current_iter] = predicted_y
164 if predicted_y != target[current_iter]:
165 if useDynamicLR:
166 DynamicLearningRate = learning_rate * (1 / 10) **

(linear_output * LRrate)↪→

167 print("Season ", current_season + 1, " & Iter ",
current_iter, " Learning Rate: ",
DynamicLearningRate)

↪→

↪→

168 for i in range(0, n_inputs):
169 weights[i] = weights[i] + learning_rate *

(target[current_iter] - predicted_y) * xi[i]↪→

170 miss += 1
171

172 bias = bias + learning_rate * (target[current_iter] -
predicted_y)↪→

173 else:
174 predicted[current_iter] = predicted_y
175 hit += 1
176 if n_inputs == 2 and ViewRealTimePlots:
177 y = -(weights[0] / weights[1]) * x + \
178 (-bias / weights[1])
179 ax.set(xlabel='X1',
180 ylabel='X2',
181 title="Season: " + str(current_season) + " Iter: " +

str(current_iter)↪→

182)
183 ax.set_xlim([min(X_train[:, [0]]) - 2, max(X_train[:, [0]])

+ 2])↪→

184 ax.set_ylim([min(X_train[:, [1]]) - 2, max(X_train[:, [1]]
+ 2)])↪→

185 ax.scatter(X_train[:, [0]], X_train[:, [1]], marker='o',
c=currently_predicted)↪→

186 ax.scatter(xi[0], xi[1], marker='o', c='r')
187 line, = ax.plot(x, y)
188 line.set_ydata(y)
189

190 fig.canvas.draw()
191 plt.pause(0.0005)
192 fig.canvas.flush_events()
193 ax.clear()
194

195 if n_inputs == 3 and ViewRealTimePlots:
196 z = (-weights[0] / weights[2]) * x + \
197 (-weights[1] / weights[2]) * y + \
198 (-bias / weights[2])
199 plt.title("Season: " + str(current_season) + " Iter: " +

str(current_iter))↪→

200 ax.set_xlim([min(X_train[:, [0]]) - 2, max(X_train[:, [0]])
+ 2])↪→

201 ax.set_ylim([min(X_train[:, [1]]) - 2, max(X_train[:, [1]]
+ 2)])↪→

Page 91 of 103

202 ax.set_zlim([min(X_train[:, [2]]) - 2, max(X_train[:, [2]]
+ 2)])↪→

203 ax.scatter(X_train[:, [0]], X_train[:, [1]], X_train[:,
[2]], marker='o', c=currently_predicted)↪→

204 ax.scatter(xi[0], xi[1], xi[2], marker='o', c='r')
205 surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm)
206

207 fig.canvas.draw()
208 plt.pause(0.005)
209 fig.canvas.flush_events()
210 ax.clear()
211

212 accuracy = (hit - miss) / n_rows * 100
213 if not useDynamicLR:
214 print("Season ", current_season + 1, " Accuracy Rate: ",

str(accuracy))↪→

215 else:
216 print("Season ", current_season + 1, " Accuracy Rate: ",

str(accuracy))↪→

217 temp = accuracy
218 print("Epoch Weights: ", weights, "\n")
219

220 if current_season + 1 == seasons and miss != 0 and
StopAtSetSeasons:↪→

221 seasons += 1
222 if miss == 0:
223 break
224 current_season += 1
225

226 if n_inputs == 2:
227 y = -(weights[0] / weights[1]) * x + (-bias / weights[1])
228 if ViewRealTimePlots:
229 plt.clf()
230 plt.close()
231

232 fig = plt.figure()
233 ax = fig.add_subplot()
234 ax.set_xlim([min(X_train[:, [0]]) - 2, max(X_train[:, [0]]) + 2])
235 ax.set_ylim([min(X_train[:, [1]]) - 2, max(X_train[:, [1]] + 2)])
236

237 plt.title("Season: " + str(current_season) + " Iter: " +
str(current_iter))↪→

238 ax.set_xlim([min(X_train[:, [0]]) - 2, max(X_train[:, [0]]) + 2])
239 ax.set_ylim([min(X_train[:, [1]]) - 2, max(X_train[:, [1]] + 2)])
240 ax.scatter(X_train[:, [0]], X_train[:, [1]], marker='o',

c=currently_predicted)↪→

241 ax.plot(x, y, 'r')
242 plt.draw()
243

244 if n_inputs == 3:

Page 92 of 103

245 z = (-weights[0] / weights[2]) * x + (-weights[1] / weights[2]) * y
+ (-bias / weights[2])↪→

246 if ViewRealTimePlots:
247 plt.clf()
248 plt.close()
249 fig = plt.figure()
250 ax = fig.add_subplot(projection='3d')
251 ax.set_xlim([min(X_train[:, [0]]) - 2, max(X_train[:, [0]]) + 2])
252 ax.set_ylim([min(X_train[:, [1]]) - 2, max(X_train[:, [1]] + 2)])
253

254 ax.set(xlabel='X1',
255 ylabel='X2',
256 zlabel='X3',
257 title="Season: " + str(current_season) + " Iter: " +

str(current_iter)↪→

258)
259 ax.set_xlim([min(X_train[:, [0]]) - 2, max(X_train[:, [0]]) + 2])
260 ax.set_ylim([min(X_train[:, [1]]) - 2, max(X_train[:, [1]] + 2)])
261 ax.set_zlim([min(X_train[:, [2]]) - 2, max(X_train[:, [2]] + 2)])
262

263 ax.scatter(X_train[:, [0]], X_train[:, [1]], X_train[:, [2]],
marker='o', c=currently_predicted)↪→

264 surf = ax.plot_surface(x, y, z, cmap=cm.coolwarm)
265 fig.canvas.draw()
266

267 final_target = ["" for x in range(n_rows)]
268 final_prediction = ["" for x in range(n_rows)]
269

270 # Conversion... To original binary outputs
271 for i, x in enumerate(target):
272 if x == 1:
273 final_target[i] = act_outputs[0]
274 elif x == 0:
275 final_target[i] = act_outputs[1]
276

277 for i, x in enumerate(currently_predicted):
278 if x == 1:
279 final_prediction[i] = act_outputs[0]
280 elif x == 0:
281 final_prediction[i] = act_outputs[1]
282

283 AllPredicted = True
284 countSuccess = 0
285 for i in range(0, n_rows):
286 if target[i] != currently_predicted[i]:
287 AllPredicted = False
288 else:
289 countSuccess += 1
290 print("Last Predicted Values: ", final_prediction[i], "\tExpected

Value: ", final_target[i])↪→

Page 93 of 103

291 # print("Last Predicted Values: ", predicted[i], "\tExpected Value:
", target[i])↪→

292

293 if AllPredicted:
294 print("All Training Data Predicted at ", countSuccess / n_rows *

100, '% Accuracy')↪→

295 if not AllPredicted:
296 print("Not all training Data was Predicted!", countSuccess / n_rows

* 100, '% Accurate')↪→

297

298 if n_inputs == 2:
299 print('bias =\t', bias, "\nW1 =\t\t", weights[0], "\nW2 =\t\t",

weights[1])↪→

300 print("Linear Function Formula -> Linear_Output = W0*bias + W1*x1 +
W2*x2\n",)↪→

301 if n_inputs == 3:
302 print('W3(bias) =\t', bias, "\nW0 = \t\t", weights[0], "\nW1 =

\t\t", weights[1], "\nW2 = \t\t",↪→

303 weights[2])
304 print("Linear Function Formula -> Linear_Output = W0*bias + W1*x1 +

W2*x2 + W3*x3\n")↪→

Page 94 of 103

U Advanced IoU & Average Precision calculator on the groundtruth
information for the YOLOv4 model using DarkHelp [6]
& OpenCV [7]

Programming Language: C++
Requirements: DarkHelp, OpenCV

1 #include <opencv2/opencv.hpp>
2 #include <DarkHelp.hpp>
3 #include <iostream>
4

5 #include <iterator>
6 #include <vector>
7 #include <typeinfo>
8 #include <algorithm>
9 #include <string>

10 #include <map>
11 #include <fstream>
12

13 using namespace cv;
14

15 #define rWidth 1280
16 #define rHeight 720
17

18 // Groundtruth Bounding Box Colors
19 std::map<int, Scalar> BboxColors = {
20 {0, (Scalar(0, 255, 0))},
21 {1, Scalar(255, 255, 0)},
22 {2, Scalar(0, 0, 0)}
23 };
24

25

26 float Round(double var)
27 {
28 float var2 = (float)var;
29 float value = (int)(var2 * 100 + .5);
30 return (float)value / 100;
31 }
32

33 struct Groundtruth{
34 int id;
35 Point2d pG1;
36 Point2d pG2;
37 bool predicted = false;

Page 95 of 103

38

39 };
40

41 struct returnVal{
42 double IoU, intersection, Union;
43 };
44

45 std::string btoStr(bool x){
46 if (x)
47 return "True";
48 else
49 return "False";
50 }
51

52 returnVal calculateIoU(double xP, double yP, double wP, double hP,
double xG, double yG, double wG, double hG){↪→

53 double inter_box_top_left_x = std::max(xP, xG);
54 double inter_box_top_left_y = std::max(yP, yG);
55

56 double inter_box_bottom_right_x = std::min(xP + wP, xG + wG);
57 double inter_box_bottom_right_y = std::min(yP + hP, yG + hG);
58

59 double inter_box_w = std::max(0.0, inter_box_bottom_right_x -
inter_box_top_left_x);↪→

60 double inter_box_h = std::max(0.0, inter_box_bottom_right_y -
inter_box_top_left_y);↪→

61

62

63 inter_box_w = std::max(0.0, inter_box_bottom_right_x -
inter_box_top_left_x);↪→

64 inter_box_h = std::max(0.0, inter_box_bottom_right_y -
inter_box_top_left_y);↪→

65

66

67 double intersection = inter_box_w * inter_box_h;
68 double Union = wG*hG + wP * hP - intersection;
69 double IoU = Union > 0 ? intersection / Union : 0.0;
70

71 return returnVal{IoU, intersection, Union};
72 }
73

74 class flagChecker{
75 private:
76 bool enableTiles = false;
77 bool useDuration = false;
78 bool drawBbox = false;
79 bool showConfidence = false;
80 double thresh = 0.25;
81 std::string fileName;
82 bool mAP = false;
83 bool IoU = false;

Page 96 of 103

84 bool Stats = false;
85

86 std::vector<std::string> imageList;
87 public:
88 bool isImageList = false;
89 flagChecker(char* argv[]){
90 tokenChecker(argv);
91 }
92

93 void flagNames(std::string flag){
94 if(flag == "enableTiles")
95 this->enableTiles = true;
96 else if(flag == "useDuration")
97 this->useDuration = true;
98 else if(flag == "drawBbox")
99 this->drawBbox = true;

100 else if (flag == "showConfidence")
101 this->showConfidence = true;
102 else if (flag == "map")
103 this->mAP = true;
104 else if(flag == "iou")
105 this->IoU = true;
106 else if(flag=="stats")
107 this->Stats = true;
108 }
109

110 std::string convertToString(char* message[], int si, int index){
111 int i;
112 std::string str = "\0";
113 for (i = 1; i < si; i++) {
114 str += message[index][i];
115 }
116 return str;
117 }
118 void tokenChecker(char* message[]){
119 int si = 0;
120 while(message[++si] != NULL);
121 for(int i = 1 ; i < si; ++i){
122 if(message[i][0] == '-'){
123 int sizeMessage = strlen(message[i]);
124 std::string str = this->convertToString(message,

sizeMessage, i);↪→

125 if(str == "thresh"){
126 this->thresh = std::stod(message[i+1]);
127 ++i;
128 }else if(str == "img"){
129 this->fileName = message[i+1];
130 ++i;
131 }else if(str == "txtInput"){
132 std::ifstream file;
133 file.open(message[i+1], std::ios::in);

Page 97 of 103

134 if(!file.is_open()){
135 std::cout << "Warning: text Input File Path Not

Found..." << std::endl;↪→

136 exit(0);
137 }
138 std::string line;
139 while(std::getline(file, line)){
140 this->imageList.push_back(line);
141 this->isImageList = true;
142 }
143 }
144 else
145 flagNames(str);
146 }
147 }
148 }
149

150 bool getStats(){return this->Stats;}
151 bool getIoU(){return this->IoU;}
152 bool getmAP(){return this->mAP;}
153 std::vector<std::string> getImageList(){return this->imageList;}
154 std::string getfileName(){return this->fileName;}
155 bool getEnableTiles(){return this->enableTiles;}
156 bool getuseDuration(){return this->useDuration;}
157 bool getdrawBbox(){return this->drawBbox;}
158 bool getshowConfidence(){return this->showConfidence;}
159 double getThresh(){return this->thresh;}
160 };
161

162 int main(int argc, char* argv[]){
163

164 flagChecker flagchecker(argv);
165

166 DarkHelp::Config cfg("data/YOLOv4/birdsProject.cfg",
"data/YOLOv4/birdsProject_best.weights",
"data/YOLOv4/birdsProject.names");

↪→

↪→

167 cfg.enable_tiles = flagchecker.getEnableTiles();
168 cfg.combine_tile_predictions = true;
169 cfg.annotation_auto_hide_labels = false;
170 cfg.annotation_include_duration = false;
171 cfg.annotation_include_timestamp = false;
172 cfg.threshold = flagchecker.getThresh();
173 cfg.names_include_percentage =

flagchecker.getshowConfidence();↪→

174 int numImage = 0;
175 double mAP = 0;
176 double IoU = 0;
177 int totalTP = 0, totalFP = 0, totalFN = 0;
178

179 std::vector<std::string> imageList = flagchecker.getImageList();
180 if(!flagchecker.isImageList)

Page 98 of 103

181 imageList.push_back(flagchecker.getfileName());
182

183 for(auto & image : imageList){
184 std::string filepath = image;
185 std::string fname, extension;
186 fname = filepath.substr(0, filepath.find("."));
187

188 size_t pos = 0;
189 std::string token;
190 while ((pos = filepath.find(".")) != std::string::npos) {
191 token = filepath.substr(0, pos);
192 fname = token;
193 filepath.erase(0, pos + 1);
194 }
195 extension = "." + filepath;
196 filepath = image;
197

198 std::ifstream file;
199 if(flagchecker.getdrawBbox()){
200 file.open(fname+".txt", std::ios::in);
201 if(!file.is_open()){
202 std::cout << "ERROR: Image Text File path not found" <<

std::endl;↪→

203 return -1;
204 }
205 }
206 ++numImage;
207

208 DarkHelp::NN nn(cfg);
209

210 // you can further modify the configuration even after the
neural network has been created↪→

211 nn.config.annotation_line_thickness = 1;
212 nn.config.combine_tile_predictions = true;
213

214 Mat img = imread(filepath, IMREAD_COLOR);
215

216 int imWidth = img.size[0];
217 int imHeight = img.size[1];
218 std::cout << "\nImage: " << image <<std::endl;
219 std::cout << "Width: " << imWidth << "\nHeight: " << imHeight

<< "\n";↪→

220 const auto results = nn.predict(img);
221

222 img = nn.annotate();
223

224 if(flagchecker.getdrawBbox()){
225 std::string line;
226 int numClasses = 0;
227 int id = 0;
228 Groundtruth Gtruth[1000];

Page 99 of 103

229 double xPoint_center=0, yPoint_center=0, wVal =0, hVal=0;
230 while(std::getline(file, line)){
231 std::stringstream ss(line);
232 int wordCount=0;
233 while(!ss.eof()){
234 std::string word;
235 getline(ss, word, ' ');
236 ++wordCount;
237 switch(wordCount){
238 case 1:
239 id = std::stoi(word);
240 break;
241 case 2:
242 xPoint_center = std::stod(word);
243 break;
244 case 3:
245 yPoint_center = std::stod(word);
246 break;
247 case 4:
248 wVal = std::stod(word);
249 break;
250 case 5:
251 hVal = std::stod(word);
252 break;
253 }
254 }
255 Point2d p1(xPoint_center, yPoint_center);
256 Point2d p2(wVal, hVal);
257 Gtruth[numClasses].id = id;
258 Gtruth[numClasses].pG1 = Point2d(xPoint_center,

yPoint_center);↪→

259 Gtruth[numClasses].pG2 = Point2d(wVal, hVal);
260 ++numClasses;
261 }
262 // std::cout << "Num Classes: " << numClasses << std::endl;
263 double totalIoUcount = 0, totalIoUsum = 0, TotalIoU = 0;
264 double x, y, w, h;
265 double AveragePrecision;
266 int TP = 0, FP = 0, FN = 0;
267 std::vector<Point2d> occupiedPositions;
268 for(const auto & det : results){
269 // Get Coordinates for every prediction
270 bool containsGroundtruth = false;
271 x = det.rect.x;
272 y = det.rect.y;
273 w = det.rect.width;
274 h = det.rect.height;
275 int predID = det.best_class;
276

277 for(int i=0; i < numClasses; i++){
278 double originalxG = Gtruth[i].pG1.x;

Page 100 of 103

279 double originalyG = Gtruth[i].pG1.y;
280 double originalwG = Gtruth[i].pG2.x;
281 double originalhG = Gtruth[i].pG2.y;
282

283 // Converting Coordinates to fit Canvas
284 double xG = originalxG*imWidth -

(originalwG*imWidth)/2;↪→

285 double yG = originalyG*imHeight -
(originalhG*imHeight)/2;↪→

286 double wG = originalwG*imWidth;
287 double hG = originalhG*imHeight;
288

289 // Calculating IoU and returning a structure of
three values (IoU, intersection, Union)
(double)

↪→

↪→

290 returnVal stats = calculateIoU(x, y, w, h, xG, yG,
wG, hG);↪→

291 // Creating points for Groundtruth Bounding Box
292 Point2d p1(xG, yG);
293 Point2d p2(wG+xG, hG+yG);
294

295 // Creating Location and color for Text message
296 Point2d pos(xG, hG+yG+12);
297

298 // Text Message Color
299 Scalar color(0, 0, 0);
300

301 // IoU threshold if message and BBox is drawn
302 if(stats.IoU > 0.5){
303 containsGroundtruth = true;
304 Gtruth[i].predicted = true;
305 if(Gtruth[i].id == predID)
306 ++TP;
307 else
308 ++FP;
309

310 stats.IoU *= 100;
311 stats.IoU = floor(stats.IoU*100.0)/100.0;
312 // std::cout << stats.IoU << std::endl;
313 std::string str = std::to_string(stats.IoU);
314 str.erase(str.find_last_not_of('0') + 1,

std::string::npos);↪→

315 str.erase(str.find_last_not_of('.') + 1,
std::string::npos);↪→

316

317 // Drawing Bounding box to image at with values
p1 and p2 (Point2d)↪→

318 Point2d temp1, temp2, temp3, temp4;
319 temp1 = pos;
320 temp2 = pos;
321 temp3 = pos;

Page 101 of 103

322 temp4 = pos;
323 // Checks if there is an occupied position from

the vector, if there is increase Y axis↪→

324 bool foundPosition = false;
325 bool positionOccupied = false;
326 while (!foundPosition) {
327 for (const auto& occupiedPos :

occupiedPositions) {↪→

328 if (std::abs(pos.x - occupiedPos.x) <
1e-5 && std::abs(pos.y -
occupiedPos.y) < 1e-5) {

↪→

↪→

329 positionOccupied = true;
330 break;
331 }
332 }
333 if (!positionOccupied)
334 foundPosition = true;
335 else
336 break;
337 }
338 if(positionOccupied)
339 break;
340 // Drawing Bounding box to image at with values

p1 and p2 (Point2d)↪→

341 rectangle(img, p1, p2,
BboxColors[Gtruth[i].id], 1.5);↪→

342 ++totalIoUcount;
343 totalIoUsum += stats.IoU;
344 // Putting Text message to image at pos

coordinates↪→

345 putText(img, str + "%", pos,
FONT_HERSHEY_TRIPLEX, 0.4, color, 1, 16);↪→

346 for(int j = 0; j < 10; j++){
347 // Create Occupied Position radius Points

and push_back to occupiedPositions
Vector

↪→

↪→

348 temp1.y += j;
349 temp2.y -= j;
350 temp3.x += j;
351 temp4.x -= j;
352 occupiedPositions.push_back(temp1);
353 occupiedPositions.push_back(temp2);
354 occupiedPositions.push_back(temp3);
355 occupiedPositions.push_back(temp4);
356 }
357 }
358 }
359 if(!containsGroundtruth)
360 ++FN;
361 }
362 for(int i = 0; i < numClasses; ++i){

Page 102 of 103

363 if(!Gtruth[i].predicted)
364 ++FP;
365 }
366 if(totalIoUcount != 0)
367 TotalIoU = totalIoUsum/totalIoUcount;
368 else
369 TotalIoU = 0;
370 AveragePrecision = double(TP)/double(TP+FP)*100;
371

372 IoU += TotalIoU;
373 mAP += AveragePrecision;
374 std::cout << "Total IoU: " << TotalIoU << std::endl <<

"Average Precision: " << AveragePrecision << std::endl↪→

375 << "TP: " << TP << std::endl
376 << "FP: " << FP << std::endl
377 << "FN: " << FN << std::endl;
378 totalTP += TP;
379 totalFP += FP;
380 totalFN += FN;
381 }
382

383 Mat Resized;
384 resize(img, Resized, Size(1024, 1024), INTER_LINEAR);
385 if(!flagchecker.isImageList){
386 imshow("MAIN", Resized);
387 waitKey(0);
388 }
389 if(flagchecker.isImageList)
390 imwrite("output/Image_" + std::to_string(numImage) +

"result.jpg", img);↪→

391 else
392 imwrite("result.jpg", img);
393

394 destroyAllWindows();
395 }
396 mAP /= numImage;
397 IoU /= numImage;
398 if(flagchecker.getmAP())
399 std::cout << "Mean Average Precision: " << mAP << "%" <<

std::endl;↪→

400 if(flagchecker.getIoU())
401 std::cout << "Mean Intersection over Union: " << IoU << "%" <<

std::endl;↪→

402 if (flagchecker.getStats()){
403 std::cout << totalTP << "TP - " << totalFP << "FP - " <<

totalFN << "FN" << std::endl;↪→

404 }
405 return 0;
406 }

Page 103 of 103

	Introduction
	The Goals and Contribution
	Self-driving Autopilot Cars
	Satellite & aircraft systems
	Face Recognition Systems

	The Darknet Framework
	An Introductory to OpenCV
	Image Processing Using OpenCV

	The Low Light Condition Problem
	Problems & Degradation of a Low Light Image
	Data Visualization for Low Light Images
	Image Structure
	Introduction to Image Histograms
	Image Contour maps
	Sobel Derivatives
	3D Image Plotting

	Determining The Light Levels of an Image
	The Means Algorithm
	Determining the Light Level using Histograms

	Convolutional Neural Networks, the Tool of Object Detection
	Linear & Non-linear Problems
	The Perceptron
	Training a Perceptron
	The Structure of a Convolutional Neural Network
	The Input Layer
	The Convolutional Layer
	The Pooling Layer
	The Classification Layer

	Object Detection using YOLOv4

	Training Convolutional Neural Networks
	Groundtruth Information in a CNN
	Creating a Dataset to Train a CNN
	Gathering & Annotating Images
	Structuring & Improving the dataset

	Training Performance Evaluation Methods
	Training YOLOv4 using Darknet
	Evaluating YOLOv4

	Object Detection in Low Light Conditions
	Enhancing Degraded & Low Light Images
	Enhancement methods
	Low Light Image Enhancement Algorithms
	Histogram Equalization
	Gamma Correction
	Kindling the Darkness (KinD)

	The ExDark Dataset
	ExDark's Groundtruth Information
	Annotation Embedding Algorithm

	Implemented Algorithms & Frameworks
	Implementing & Running the GC Algorithm
	Implementing & Running the HE Algorithm
	Building & Running Kindling The Darkness (KinD)
	Building & Running The Darknet Framework
	Advanced IoU & Average Precision calculator on the groundtruth information for the YOLOv4 model using DarkHelp Darkhelp & OpenCV OpenCVMainPage

	The Analysis
	Analyzing the Results with the Groundtruth Information
	The Interpretation

	Applied Analytics
	Inspection of the Enhanced Images
	Data Analysis & Results: Original Images
	Data Analysis & Results: Gamma Correction
	Data Analysis & Results: Histogram Equalization
	Data Analysis & Results: KinD
	Statistical Comparison & Evaluation

	Analysis Using Data Visualization
	Data visualization of Equalized Images
	Data Visualization of Gamma Correction
	Data Visualization of KinD

	Conclusion
	Future Work
	Appendices
	Gamma Correction
	Histogram Equalization
	Backend for GC & HE
	Generate ExDark's Groundtruth Images
	Determine Low Light Level using means
	Generate Image Histograms 1 (Code to show RGB channels separately)
	Generate Image Histograms 2 (Simple Histogram)
	Data Augmentation
	Perceptron with Data Visualization
	Advanced IoU & Average Precision calculator on the groundtruth information for the YOLOv4 model using DarkHelp Darkhelp & OpenCV OpenCVMainPage

