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Introduction

The lack of an exact theory of statistical inference dictates the acceptance of asymptotic methods as
legitimate solutions concerning inference problems of Statistics and Econometrics. About the Generalized
Linear Model, the econometric bibliography suggests two alternative size corrections of the size of the
t and F tests. These size corrections are based either on Edgeworth corrections of critical values or on
the Cornish-Fisher corrections of testing statistics. Using the exact distributions Student-# and F instead
of the corresponding asymptotic distributions (Normal and chi-squared) we find approximations which
are "locally exact” , i.e., that they reduce to the exact distributions for a sufficient simplification of the
model. In applied econometrics research most interesting economic phenomena can be described formally
using the mathematical formalism of the Generalized Linear Model, whose Variance-Covariance matrix of
stochastic terms is non-scalar. The econometric model which arises is estimated using the Generalized
Least Squares method and its validity is the statistical significance of the its parameters tested by the
t and F econometric test. In the framework of this Doctoral Thesis, a general mathematical expression
of the Generalized Linear Model is given, whose regressors may be stochastic. About the special cases
of the aforementioned model, Nagar, 1959 type refined asymptotic theory is used in order to derive size
correction formulae of the small sample t and F econometric tests. Specifically, this doctoral thesis is
concerned with the implementation of refined asymptotic size-correction techniques for the following

special cases of the Generalized Linear Model:

1. The Linear Model with Heteroskedastic and Autocorrelated Disturbances, which is presented
in chapters 1 and 2 (Proof are given in Appendix A). This specific model is a mixture of the
heteroskedasticity and autocorrelation problems, and suggests a process for the estimation of the
autocorrelation and heteroskedasticity parameters, as well as a process for the correction of these
econometric problems. Moreover, an experimental procedure is presented in section 2.6 for a

single-equation model with heteroskedastic and autocorrelated error terms.

2. The Generalized Model with panel data, which is presented in chapters 3 and 4 (Proof are given in
Appendix B). The basic assumption of this model is that the economic behaviour parameters are
the same for all economic agents, and this differentiates this model from the autocorrelated SUR

model (see Parks, 1967) which studies the causes of different economic behaviours.

3. A Special Case of The Generalized Linear Model with Panel Data, which is presented in chapters 5
and 6 (Proof are given in Appendix C). This model is a special case of the Generalized Model with

panel data.



Lastly, Lemmas and theorems from the existing bibliography used in all three models of this doctoral

thesis are presented in section Useful Results.

Notational Convensions

Throughout this Thesis, we use the tr, vec, ®, and matrix differentiation notation as defined in Dhrymes,
1978, and for any two indices i,j, we denote Kronecker’s delta as 6;;. Moreover, any n X m matrix L with

elements li]- is denoted as

L = [(lij)i=1,...m;j=1,..m),

with obvious modifications for vectors and square matrices. If [;; are n; X m; matrices, then L is the

Yini XY, jmj partioned matrix with submatrices the [;;’s. The matrices

Px X(X'X)'x’,

Py

Ir - X(X’X)"'X’

denote the orthogonal projectors into the spaces spanned by the columns of the matrix X and its orthogonal
complement, respectively. For any stochastic quantity (scalar, vector, or matrix) we use the symbols E(-)
and V() to denote the expectation and variance-covariance operators, respectively. Finally, we write N
for the standard normal distribution function; tq) and x( for the student-t and chi-square distribution
functions, respectively, with I degrees of freedom; Fqj for the F-distribution function with I and |
degrees of freedom. In this thesis we use the notation proposed by Abadir and Magnus, 2002 with minor
modifications properly clarified mathematics.

In this thesis to denote the accuracy of our stochastic approximations we use the order w(-) as follows:
“Let (S, |- ]), be a finite dimensional normed linear space and | a given set of indices, which, without loss
of generality, can be taken equal to the open interval (0,1). A collection x; (7 € J) of random elements of S
is said to be defined on the probability space (QQ, A, P) if all the mappings x, are measurable.

Let x; (1 € ]) be a collection of random elements of (S, || - ||) defined on a probability space (Q, A, P).
Given a g > 0, we say that x; is of order w(q) as T — 0, and we write x; = w(q), if there exists 0 < € < oo,
such that

P(llx;|l > (=In1)) = o(77) as 7 — 0. (1)

If equation (1) holds for all g > 0, then we write x; = w(00).” (Magdalinos, 1992)



Chapter 1

The Linear Model with Heteroskedastic and Autocorrelated

Disturbances

1.1 Introduction

Most of the single-equation econometric specifications in both applied and theoretical research can be
expressed in the form of the generalized normal linear regression model, provided that certain assumptions
are made about the structure of the error covariance matrix. Some of the disturbance specifications, most
frequently used in both applied and theoretical econometrics, are the AR(1), the heteroskedastic, and the
seemingly-unrelated-regressions structures of disturbances. The volume of theoretical and applied work
published in those areas can be attributed to this fact. Also, in order to cope with more complex economic
phenomena, in many cases, econometricians have focused on models with random errors which are generated
by a mixture of various disturbance specifications, such as models of seemingly unrelated regressions
with autocorrelated errors (see, e.g., Parks, 1967), or models with mixed heteroskedastic-autoregressive
disturbances, which can be estimated by using the heteroskedasticity-autocorrelation consistent (HAC)
estimators of the error covariance matrix (see, inter alia, White, 1980, MacDonald and MacKinnon, 1985,
Newey and West, 1987). In this chapter the normal linear regression model is presented, in which the
disturbances are specified as a mixed heteroskedastic-autoregressive process. In particular, we examine the
mixture of a stationary first-order autoregressive process with autocorrelation coefficient p, and a linear
heteroskedastic specification of the form var(u;) = z;G, where ¢ is a vector of heteroskedasticity parameters
(Amemiya, 1977). From the viewpoint of theoretical econometrics, a lot of effort has been devoted, up till
now, to the construction of estimators of ¢ and p in econometric models with error terms that are either
heteroskedastic or autoregressive, respectively. Thus, in the linear model with heteroskedastic variances,
var(u) = z;6, some of the most frequently used estimators of ¢, described in Subsections 1.3.1 and 1.3.3,
are the least squares or Goldfeld-Quandt estimator, the generelized least squares or Amemiya estimator,
the iterative Amemiya estimator, and the maximum likelihood estimator. Moreover, in the linear model
with AR(1) errors, some of the most frequently used estimators of p, described in Subsection 1.3.2, are
the least squares estimator, the Durbin-Watson estimator, the generalized least squares estimator, the
Prais-Winsten estimator, and the maximum likelihood estimator. However, although there are many
estimators of ¢ and p in models with exclusively heteroskedastic or exclusively autoregressive disturbances,
respectively, according to our knowledge, no procedure has ever been proposed for the estimation of

parameters ¢ and p in order to facilitate the theoretical investigation of linear models with a mixed
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heteroskedastic-autoregressive specification of the disturbances. Our purpose, in this chapter, is to derive

such an estimation procedure.

When a linear heteroskedastic specification is combined with a stationary first-order autoregressive
process in order to generate the disturbances in a generalized normal linear regression model, the
heteroskedastic variances, var(u;) = Gtz /(1 = p?), are functions of the first-order autocorrelation coefficient,
p. Due to this fact, the use of the standard estimators results in estimated heteroskedasticity parameters
which are functions of the first-order autocorrelation coefficient. This means that, although the parameters
¢ and p are theoretically identified, they cannot be properly distinguished by any of the estimators
¢ and p used in applied research. To account for this, a reparameterization of the model is being
introduced, in which the heteroskedasticity parameter vector is G, = (1 — p2)1/2. The use of this alternative
parameterization results in a multi-step estimation procedure that enables us to effectively distinguish,
from a theoretical viewpoint, the estimation of the heteroskedasticity parameters from the estimation of
the first-order autocorrelation coefficient. Such a distinction is extremely useful whenever a researcher
is interested in constructing an adjusted generalized linear model with disturbances that are exclusively
heteroskedastic or exclusively autoregressive, in order to examine certain distributional properties of the

estimators of ¢ and p, respectively.

1.2 The Model

Consider the linear regression model

y=Xp+ou (1.1)

where

yis a T X 1 vector of observations on the dependent variable,
X is a T X n matrix of observations on n exogenous regressors,
B is a n X1 vector of unknown structural parameters, and

ou (0 is a positive scalar) is a Tx1 vector of unobserved stochastic disturbances.

Assumption 1. The following assumptions hold:

1. The random vector u is distributed as N(0,£27!), where Q is a T X T positive definite and symmetric

matrix.

2. The matrix of the regressors has full column rank, i.e.,

r(X) = n. (1.2)
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3. The regressors are non-stochastic. The results of this Thesis would also be valid if the regressors

were stochastic, yet uncorrelated with the errors, i.e.,

E(X'u) =0,

but in such a case the proofs would be a little more complicated.

1.2.1 The random vector u

Let u; be the t-th element of the T X 1 random vector u. The element u; satisfies the following relationship:

w=ouy (t=1,...,7),

where u,; is the t-th element of a T X 1 random vector u. and o;

uncorrelated with elements u.;.

(1.4)

(t =1,...,T) are positive scalars,

The elements of the random vector u. are generated by a stationary, first order autoregressive AR(1)

stochastic process of the form

Uy = py—1 + &5 0<lpl<1 (t=2,...

where

Ut ~ N(Or 1/(1 - Pz))

and ¢&; are independent N(0, 1) random variables, i.e.,

1,  ift=¢

E(er ev) = ow =

0, if t#t

where 0y denotes Kronecker’s delta.

7

(1.6)

(1.7)

The time-series u (t =1,...,T) is a stationary AR(1) stochastic process provided that

ua=01-p

It is straightforward that

where

is a T X T positive definite and symmetric matrix.

)~tey  (fort =1).

(1.8)



8 Chapter 1  The Linear Model with Heteroskedastic and Autocorrelated Disturbances

Equations (1.4), (1.5), (1.6), (1.9) and (1.10) imply the following results:

E(uy) = E(o11t4) = 04 E(ua) =0, (1.11a)
O_Z
E(utz) = E(G%uft) = Of E(uft) = —tz, (1.11b)
(1-p?)
giop pltt!
tOp P
E(Mt Mt/) = E(O’tu*t Ot'u*t’) = 00y E(T/l*t T/l*tr) = —(1 — p2) p (111C)

for any t # t'. Note that if = # then (1.11c) implies (1.11b).

1.2.2  The specification of ; (t=1,...,T)

Let x; (t=1,...,T) be the rows of the T X n matrix X of the regressors in model (1.1), and let y;, u; be
the t-th elements of the T X 1 vectors y, u, respectively. Moreover, let z; be the rows of a T X m matrix Z
of observations on a set of m exogenous variables, some of which may be regressors too, i.e., they may
belong to the matrix X.
Further, let
G € Fs=R"\ {0}, (0is the m X 1 zero vector) (1.12)

be a m X 1 vector of unknown parameters. Then, the parameters o; (t =1,...,T) in (1.4) are assumed to

satisfy the linear functions

o?=zg (t=1,...,T), (1.13)

where

Z; = (ZtllthI'“/Ztm) (114)
is a vector with elements the t-th observations on the m exogenous variables: z; =1 (Vt) zy,...,z, and
C1

Cc2
c=| (1.15)

,Cm_

is a m X 1 non-zero vector of unknown parameters (see Hildreth and Houck, 1968, Nonlinear Methods in

Econometrics, 1972, Amemiya, 1977).

1.2.3 The specification of Q

The elements of the T X T matrix £ are functions of the (m + 1) X 1 vector

y=1(p.¢), (1.16)

where p is the autocorrelation coefficient and ¢ € R™ \ {0}.



1.2 The Model

The t-th diagonal element of Q7! is atz/(l — p?) [see (1.11b)], and the (t,')-th off diagonal element of
Q71is o100 p (1 = p?), [see (1.11¢)].

Thus, the T x T matrix 7! can be analytically written as follows:

2 T-1]
1 01020 0103p0 ... 0107p

2 T-2
0201p 05 02030 ... 020TP

=T : (1.17)

o701 pT=t orop™? o2
Define the T X T diagonal matrix
a2 0 0
0 o3 0
r= diag(of, o%, ..... , o% = ) , (1.18)
0 0 7]
which implies that
01 0 0
L 0 () 0
L'h = diag(o1, 02, .....,071) = , (1.19)
0 0 orT
and
L=rrp” (1.20)
Then by using (1.9), (1.10), (1.17) and (1.19) we can write
Q7' = L[R/(1 - pH]E™. (1.21)

Let D be a T X T band matrix whose (t,t')-th element is 1 if |t — #'| = 1 and 0 elsewhere. Also, let A be
a T X T matrix with 1 in the (1,1)-st and (T, T)-th positions and 0’s elsewhere. Then,

[R/IA-pH]™" = 1+ p)Ir-pD-p°A

(1.22)
1 —p ... 0]
-p 1+p> ... 0

= |: : (1.23)
-p 1+p* —p
0 -p 1]
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Then by combining (1.21) and (1.22) we can write the T X T matrix £ as follows:

Q= E7*[(1+ p*)Ir — pD - p*AIL™ (1.24)
where
L0 0
1 0o L ... 0
) 2 diag(1/01,1/09,....,1/oT) = . _2 . BE (1.25)
0 0 L
or

1.2.4 Identification and estimation of the parameters

Let y = (p,&’)’ be any consistent estimator of the parameter vector y = (p,¢’)’. For any function f = f(y)
we can write f = f(p). The feasible GLS estimators of  and o are

B =(XQX)'X'Qy (1.26)

and

& =[(y-XpyQy-XP)/(T-n)]". (1.27)

From (1.17) it is straightforward that the parameters ¢ and o; (f = 1,...,T) cannot be distinguished,
that is the parameters ¢ and ¢ cannot be simultaneously identified without the restriction ¢ = 1, under
which the estimate Q1 is supposed to be accurate, up to a multiplicative factor. This is not true in
small samples, and a reasonable method to account for this is to use the feasible GLS estimate of & from
(1.27) to compute the traditional ¢+ and F test statistics. This method is meaningless from the estimation

viewpoint, but its success in improving the size corrections must be the only criterion to judge its validity.

1.2.5 Regularity conditions

Let €, Q;j, etc. denote the T X T matrices of first-, second- and higher-order derivatives of the elements
of  with respect to the elements of the (m + 1) X 1 parameter vector y = (p,¢’)’.

Moreover, for any estimator p of y, define the (m +2) X 1 vector 6 with elements

(i=1,...,m) (1.28)

where 7 = ‘/LT is the asymptotic scale of our expansions.

The size corrections derived in this Doctoral Thesis are based on the following regularity conditions:

(1) The elements of Q and Q7! are bounded for all T, all p € (-1,1), and all vectors ¢ € F; = R™ \ {0}.
Moreover, the matrices

A=X'QX|T, F=XX'|T, T=2Z2Z/T, (1.29)

converge to non-singular limits as T — 0.
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(2) Up to the fourth order, the partial derivatives of the elements of £ with respect to the elements of
Y =(p,C1,...,Cm) are bounded for all T, all p € (-=1,1), and all vectors ¢ € F; = R \ {0}.

(3) The estimators p and & are even functions of #, and they are functionally unrelated to the parameter

vector B, i.e., they can be written as functions of X, Z, and ou only.

(4) The vector 6 admits a stochastic expansion of the form
O0=d +71dy, + a)(’cz), (1.30)

where the order of magnitude w(-) defined in the Notational Convensions, has the same operational

properties as the order O(-), and the expectations
E(did;), E(d; + VTdy) (1.31)
exist and have finite limits as T — oo.

Discussions on the Regularity Conditions:

The first two regularity conditions imply that the n X n matrices
A =X'QX|T, Aj=XQiX/T, Aj=XQQ"'QX/T (1.32)

are bounded and therefore the Taylor series expansion of f is a stochastic expansion (Magdalinos, 1992).
Since the parameters p and ¢ = (¢1,...,¢n)" are functionally unrelated to 8, regularity condition (3) is
satisfied for a wide class of estimators p and ¢ including the maximum likelihood estimators and the
simple and iterative estimators based on the regression residuals (Breusch, 1980, Rothenberg, 1984a).
Note that we need not assume that the estimators p and & are asymptotically efficient. Also, notice that
the regularity conditions (1) through (4) are satisfied by all the estimators of p and ¢ examined in the

next section.

1.2.6 Definition of parameters

Define the scalars Ay, «o, /lop, Kp, /\pp, the m X 1 vectors Ao, &, Ay, and the m X m matrix A as

follows:
Ao Aop /\6; Ko
Aop Mgy Ao | =Edid)); |i,| = E(di + VTd). (1.33)
Ao Aps Agg K

Also define the (m + 1) X 1 vectors A, k¥ and the (m + 1) X (m + 1) matrix A as follows:

A= Aop S k= Kp Aop Ape
Ke

; A= .
Ape Agg

(1.34)
APG
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1.2.7  Alternative model specification

Denote by 02 the variance of uy, i.e. [see (1.11b)],

o’ :aftzvar(ut)z T2

Uy

which implies that the standard deviation of u; is

Ot

Oy, = Oxt = m

Also, denote by 0.4 the covariance of u; and uy, i.e. [see (1.11¢)],

= _ 9101 |
Oupy = cov(u, up) = (1_—‘02)
= ot Ov___ v _
= (1 _ p2)1/2 (1 _ pz)l/zp = [586(136)]
= auouwp'l.

Further, define the m X 1 non-zero vector G. = (G1«,...,Gm=)" as follows

— iz — (i=1,...,m)

o= s

G
(1-p?)

Then, by combining (1.13), (1.35) and (1.38) we find that

2 Otz / 2 ’
A g =zle/(0-p)] =26, (t=1,...,T).

1

Moreover, by combining (1.13), (1.35) and (1.39) we find that
af = 05(1 - p?) = z{c.(1 - p°)

and

c=c¢(l-p?) = ci=ci(l-p?), (i=1,...,m),

where 6. € F; = R™ \ {0}.

Moreover, define T X 1 random vector #.., the t-th element of which is

1, U 1/,
U = — = —5r— =(1—pz)/a—i = (1 - p*) " u.

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)
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Then, since 14 ~ N(0,1/(1 = p?)) (t =1,...,T), the following results hold:
E(it.r) = B(1 = p?) 1) = (1 - p*)" B(u) = 0, (1.43)
E(uZ,) = E(1 - p*)ul) = (1 - p?) B@uZ) = (1 - p*)/(1 - p*) = 1. (1.44)
Equation (1.9) and (1.10) imply that
E(ttosttor) = E((1 = p)*us(l = p2)F10) = (1 = p?) EGusitr)
[t=t']
p t—'|
= (1-p% = , 1.45
Pa—p =P (1.45)
i.e., we can write more compactly that
E(u..) = 0 and E(u..u..) = R. (1.46)
Finally, since -1 = (1 — p?)"”114-1, by combining (1.5) and (1.42) we find that
Upi = (1 _ p2)1/2u*t — (1 _ p2)1/2(pu*t71 + gt)
= pl( - P uaa] + (1= p?)ey
= PUss-1 + &, (147)
where the random variables
e = (1-p?)Pe (1.48)

are independently distributed as N(0, (1 — p?)). Equation (1.47) implies that the elements of the random

vector u.. are generated by a stationary, first-order autoregressive (AR(1)) stochastic process with

autocorrelation coefficient p.

1.2.8 Alternative representation of the matrices 27! and Q

By combining (1.17), (1.35), and (1.36) we find that

02 04000 0a03p...0q07pl !
2
G,QO‘,,lp 0*2
Q=
T-2
0+T-101P" = ...t 0+T-10TP
| CL,TGHPT_l ...... GET

(1.49)
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Moreover, define the (T X T) matrix

L'r = diag(o.1, 0.2, ..., 0.1) = [see (1.36)]
1 1
R T R
= 1 I diag(o1,0y,...,071) = = pz)l/zE (1.50)
6i 0 ... 0] fou 0o ... o]
1 0 o ... 0 0 0o ... 0
= — = . 1.51
(1-p2)" : : Do ( )
0 0 oT | 0 0 04T

Also, define accordingly the (T X T) matrix

L7 = diag(1/0.a,1/0.,...,1/0.r) = [see (1.36)]

= (1-p»"diag(1/o1,1/0y,...,1/01) = (1 - p?)PE" (1.52)

(L 0 ... o]l [~ o 0]

o1 041

Lo L .0 o L ... 0
= a-p* . T =l T (1.53)

1 1

0 0 =] 1o o +

Note that
L't =1-p?)tE” (1.54)
and
1

rh=e_———p- 1.55
- 159

Then, (1.21) and (1.54) imply that

Q—l

1 1
1 1/
[(1 - Pz)l/zz H(l - pz)‘/zz ]
LRL, . (1.56)

Further, (1.24) and (1.55) imply that

Q

1 1
=1/ 2 _ 2 )
[(1 — ][(1 "ol mpbp A][(l —p ]
1 _1/ —1/p
- @ pz)z* P[(1 + p?)Ir — pD — p?A1L. . (1.57)
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1.2.9 Estimation strategy

Denote by LS, GL, IG, ML the least squares, generalized least squares, iterative GLS and maximum
likelihood estimation methods, respectively. Also, denote by ‘@1 any consistent estimator of f in model
(1.1), indexed by I (I=S, GL, IG, ML).

The discussion above suggests the following 7 steps of an estimation strategy:

Step 1: Estimate model (1.1) using the ,31 estimator. Then, the corresponding residual vector:

i =y-piX= [(ﬁt(l))t=1 ,,,,, T] (1.58)

is a consistent predictor of the disturbance vector u.

Step 2: Use one of the consistent estimators given in Subsection 1.3.1 in order to estimate the parameter

vector G, = (Gu1,---,GC«m) - Then, estimate matrix Y2 as

£7Y% = diag(1/64,,...,1/64,), (1.59)

where

1/2
By = (th_gx) Vi=1,...,T. (1.60)
Step 3: Estimate the heteroskedasticity-corrected residuals
ag = L7 = [(ﬁ*t(l))tzl,‘..,T]/ (1.61)

where

0
ey = At(l) vi=1,...,T, (1.62)

up

and ) is the predictor of u estimated by (1.58).

Step 4: Use one of the consistent estimators given in Subsection 1.3.2 in order to calculate an initial

estimate p. of the autocorrelation coefficient p.

Step 5: Use (1.41) and the consistent estimators &. and p. in order to estimate the parameter vector g as
c=e(l-pd) = e=ci(l-p) Vi=1,...,m (1.63)

Then, estimate matrix £~1/2 as
£72 = diag(1/64,...,1/67), (1.64)

where

1/2
&4 :(zzc)/ Vi=1,...,T. (1.65)
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Alternatively, ¢ can be estimated via the following asymptotically equivalent process:

(i) Use the initial estimator p, in order to transform model (1.1) into the autoregression-corrected

model

yu = Xup + up, (1.66)

.....

by the following formulae:
w = (1= pH"u1, wy=u—payg Vt=2,...,T. (1.67)

(if) Use one of the consistent estimators given in Subsection 1.3.1 in order to estimate the parameter

vector ¢, and then estimate matrix 72 via (1.64) and (1.65).

Although from the estimation viewpoint (1.63) is perfectly adequate as a consistent estimator of g,
the estimator & based on the residuals of model (1.66) enables the researcher to find the finite-sample

distributional properties of any consistent estimator of ¢ in Subsection 1.3.1.

Step 6: Premultiply model (1.1) by L71/2 given in (1.64), in order to derive heteroskedasticity-corrected

model

Yar = XaArP + Uar, (1.68)

.....

the following formula:

MAthut/ét Vt=1,...,T, (169)

where 6; are given in (1.65). Then, use one of the consistent estimators given in Subsection 1.3.2 in
order to estimate the autocorrelation coefficient p. The estimator p based on the residuals of model
(1.68) enables the researcher to find the finite-sample distributional properties of any consistent

estimator of p in Subsection 1.3.2.

Step 7: Use the estimators £71/2 and p from Steps 5 and 6, respectively, in order to calculate the estimator
Q = £72[(1 + pP)Ir — pD - p*A1L£712, (1.70)

which can be used for the feasible generalized least squares estimation of model (1.1).
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1.3 Asymptotically efficient estimators of y = (p,¢’)’
1.3.1 Estimators of . = (Ce1, -+, Cam)’
Some of the most frequently used estimators of G. in applied econometric research are:

1. The least squares (LS) or Goldfeld and Quandt, 1965 (GQ) estimator

T -1, T
Gis = G = (Zztz;) (Z‘ztﬁis)t), (1.71)

t=1 t=1
where @+ = yr — x;fLs and Ps is the least squares estimator pf f.

2. The generelized least squares (GL) or Amemiya, 1977 (A) estimator

T -1 7 -2
oL = Gp = (Z(ZZé*GQ)_ZZtZ;) Z (ZtGA*GQ) thl(ZLS)t. (1.72)

t=1 t=1

3. The iterative generalized least squares (IG) or iterative Amemiya (IA) estimator

T -1 7 -2
GG = Gun = (Z(Ziﬁ*l—l)QZtZ;) Z (226*1—1) Ztﬁil)y (1.73)
t=1 t=1

where 4,1 = y; — xt‘[?,-,l and &.-1 and Blfl (I = 2,...) denote the estimator of g. and the feasible

GLS estimator of § taken from the previous iteration. Note that for the first iteration . = &.a.

4. The maximum likelihood (ML) estimator, &, which can be obtained by maximising the log-

likelihood function

T T
LB,c)==11) " log(ze) =1/ ) (yi = Xip)*/(zc.). (1.74)
t=1 t=1

1.3.2  Estimators of p
Some of the most frequently used estimators of p in applied econometric research are:

1. The least squares (LS) estimator

T T 2
pA*LS = Z ﬁ(LS)**tﬁ(LS)“t_l/ Z (ﬁ(LS)**f) ’ (1'75)
=2 t=1

where i .+ = ﬁELs)/ 5fQ) = ﬁffs) /(z,é.c0)" are the least squares residuals.

2. The Durbin and Watson, 1950, 1951 (DW) estimator, which is computed via the DW-statistic

approximation as

pow =1- (%V) (1.76)

where DW is the Durbin-Watson statistic.
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3. The generalized least squares (GL) estimator

T

T 2
A*GL = ﬁ GL **tﬁ GL **t—l/ ﬁ eyt | 7 (1'77)
(GL) (GL) (GL)
1

=2 t=
where 1 ;. = QEGL) /65‘?) = AEGL) / (z){@m)l/2 are the generalized least squares residuals after correcting

model (1.1) for both the problems by using any asymptotically efficient estimators of ¢. and p.

4. The Prais and Winsten, 1954 estimator p.pw, which, together with the PW estimator ﬁpw minimises

the sum of squared GL residuals.

5. The maximum likelihood (ML) estimator, ppr, which satisfies a cubic equation with coefficients
defined in terms of the ML residuals in the heteroskedasticity-corrected regression model (1.68) (see
Beach and MacKinnon, 1978).

1.3.3 Estimators of ¢ = (¢1,...,¢m)

By using (1.41) we can calculate the following estimators of ¢:

¢co = (1-piséca (1.78)
éa = (1=pg)éa, (1.79)
Ga = (1-pHeua, (1.80)
e = (1= P8, (1.81)

where p is any asymptotically efficient estimator of p.



Chapter 2

Small-Sample size corrections of the t and F tests of the Linear

Model with Heteroskedastic and Autocorrelated Disturbances

2.1 Introduction

In this chapter we present the analytical forms of the Edgeworth and Cornish-Fisher size corrections of the
t and F tests in the Linear Model with Heteroskedastic and Autocorrelated Disturbances. The purpose of
this chapter is the creation of functional formulae for the calculation of corrections using quantities already
calculated during the estimation process, presented in the previous chapter. Indeed, the formulae given in
Theorems (1) and (2) are a considerable improvement compared to the formulae in Rothenberg, 1984b,
Rothenberg, 1988 and Magee, 1989 and they simplify the calculation of Cornish-Fisher and Edgeworth
corrections in the case of the linear model with disturbance terms which are a mixture of autocorrelation

and heteroskedasticity.

2.2 t-test

Let ey be a known scalar and e be a known n X 1 vector. To test the null hypothesis
¢f—e =0 (2.1)
against one-sided alternatives we use the statistic
t= (/B - eo)/[0%' (X' QX)e] . (2.2)
We define the (m + 1) X 1 vector I and the (m + 1) X (m + 1) matrix L as follows:
I=[(l)i=1,...me1], L =1[)ij=1,..,me1], (2.3)

where

li = e'GA;Ge/e'Ge, l;j = ¢’ GC;jGe/e' Ge, (2.4)

G=(X'QX/T)", Cj=A; -2A;GA;+A;/2, (2.5)
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and the matrices A;, A;; and A;;" are defined in the equation (1.32). The corrected critical value, using

the Edgeworth approximation of the t distribution is given by
72
* 2
ty =tq + E[pl + pZta ]tuu (26)

(see Edgeworth, 1903). Moreover, the corrected statistic from the Cornish Fisher approximation of the ¢
distribution is given by
T

r=t- ; [ +p2f]t, (2.7)

(see, inter alia, Cornish and Fisher, 1937, Fisher and Cornish, 1960, Hill and Davis, 1968). In order to
correct either the critical value or the t-statistic the required correction quantities p1, p, are given by the

following Proposition.

Proposition 1. The quantities pq, p2, required for the calculation of both the Edgeworth corrected critical

values of the t distribution, and the Cornish-Fisher corrected t-statistic are:

I'aAl

(2.8)

tr AL + +l'(1c+)§\)—1<0+/\0_

1
VAI=20A+Ag—2
p2 = . L (2.9)

P1

2.3 F-test

Let H be a r X n known matrix with rank(H) = r and h be a known r X 1 vector. The test of the null

hypothesis
HB-h=0 (2.10)

can be based on the Wald statistic
w = (HB - hy [HX'QX/T)'H']"\(Hp - h)/5>. (2.11)
We define the (m + 1) X 1 vector ¢ and the (m + 1) X (m + 1) matrices C, D as follows:
c = [(trAiP)iz1,..,m+1], C = [(tr CijP); j=1,.,m+1] and D = [(tr D;jP); j=1,..m+1] (2.12)
where matrices A; and C;; are defined in the equations (1.32), (2.5), respectivelly, and
P=GQG, Q=H'(HGH')'H, D;j = A;PA;/2. (2.13)

The corrected critical value, using the Edgeworth approximation of the F distribution is given by

Fy' = Fy + 7% [q1 + q2F 4] Fa, (2.14)
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(see Edgeworth, 1903). Moreover, the corrected statistic from the Cornish Fisher approximation of the F
distribution is given by

F =F—1%(q1 + q2F)F, (2.15)

(see, inter alia, Cornish and Fisher, 1937, Fisher and Cornish, 1960, Hill and Davis, 1968).
In order to correct either the critical value or the F-statistic the required correction quantities g1, g2

are given by the following Proposition.

Proposition 2. The quantities g, g, required for the calculation of both the Edgeworth corrected critical

values of the F distribution and the Cornish-Fisher corrected F-statistic are:

qr=&/r+(r—=2)/2, g2 =&/(r+2)—1/2, (2.16)

where
& = tw[A(C+D)]-cAc/d+ck+1[c’AJ2 — 19— (r—2)Ao/4] (2.17)
& = tr(AD) + [c’Ac— (r +2)(2c'A —rAg)]/4. (2.18)

2.4 Comparison of the t and F tests

We have that
H=¢,h=ey,r=1. (2.19)

Let
k=e/(e'Ge)", (2.20)

Equations (2.13), (2.19) and (2.20) we find
Q = H/'(HGH')'H =e(e'Ge) e’ = kk'

and (2.21)

P

GQG = GkK'G.
From equations (2.3), (2.4), (2.5), (2.12), (2.20) and (2.21) we get the following results:
l; = € GA;Ge/e’ Ge = kGA;Gk = tr kGA,;Gk = tr A;ikGGk = tr A;P (2.22a)

l,‘]‘ = e'GC,-]-Ge/e'Ge = kGCiij =tr kGCiij =tr C,‘jkGGk =tr C,‘jP (2.22b)
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Using equations

m+1 m+ m+1
1
o= L Z; Aij(lij + Z li(ki + )\zo) + )\o Ko~ 5 (2.23)
m+1 m+1 m+1
=—(ZZAI,U ZZZA0+/\O _ (2.24)
i=1 j=1
and
m+1 m+1 1 m+1 m+
= Z; ]Z; Aijltr CijP) = ; Z" Ail(tr AP)(tr A;P) - 2(tr A,PA;P)] +
m+1 ; ,_9
+ ;(Ki + E/\iO)(trAiP) — T’(Ko + TAO)
m+1 m+1 m+1
= Aijlli + ll i)+ 2 li(ki + 5 AzO) + Ao Ko, (2.25)
i=1 j=1
1 m+l m+ m+1 m+1
o= 1), Z Nj(tr APt AP) + 5 ) )" Ay(tr APA,P)
i=1 j=1 i=1 j=1
+2 % r(r+2
TZ Aig(tr A;P) + ut )AQ)
1 m+ m71 m+1
= Z Agjlily =2 Z lidio + Ao), (2.26)
i=1 j=1 i=1
We can prove that
1 h 1
f1=h—-z=p1, 2= —2 5= P2, (2.27)

(see Symeonides, 1991). Therefore, the corrected critical value, using the Edgeworth approximation of the
t distribution is

2
. T
top = tap, + ?(Pl + Pztza/z)tn'/z, (2.28)
and the corrected critical value, using the Edgeworth approximation of the F distribution is
Fy' = Fy + 2(q1 + g2F2)Fa, (2.29)

Using equations (2.27) (2.28), (2.29), and given that t%,, = F, we have that

2
T
[t«/2 + E(pl + ptha/z)tu/z]z

(tep)?

2
T
tza/z + 23(}?1 + pztza/z)t2n/2 + O(T4)

Fo + T2(q1 + q2Fa)Fa + O(t*) = Fy* + O(h). (2.30)
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2.5 Theorems

Theorem 1. Vectors I, ¢ and matrices L, C, D, in equations (2.3) and (2.12) can be calculated by the

following formulae:

[ T T 1]
[Zzlzl Zzzzl %( Zt/:l Zt:1 xmtwtt’ pxt’Kz )Pmm

[ T T 1l
[Zzlﬂ 222:1 %( Zt’=1 Z¢=1 Xie Wi 1 X1 16, )me

[ T T 1]
[qu:l 222:1 %( Zt’:l Zt:1 Xie t Wt Xt 1c )Psz

TR D39 2121529 29 29 JEUREEANEN Y |

K=1dr=1d1=1 =1 t=1 t'=1 t=1
T T
1 1
+§ Z Z T Z metwtt’ijxt'}cz P |7

where

L = [(ij)i,j=(p,1,....m))-

T T
2’21:1 Zﬁpl [%( Yot Li=1 Xt W p Xty )szm”

T T
ZZ1=1 Z’ZFl [%( L= Dute1 Xyt @it 1 Xy )Pqu]

c=|L

T T
221:1 Z'Zzzl [%( Zt’:l Zt:l X t Wty m Xt 1 )P:«mH

o = [ LN HELY Y o om)po |
5 31).3 39 2§25 YESSERRIA NG 3 ot

ko=ldo=1d1=1 t'=1 t=1 =1 t=1

where

C = [(cij)i j=(o.1,...m)]-

’
n n n T T T T
-2 Z [ Z Z Z [( Z Z %xmtﬂ)tt’ixnf’dl )g%(z Z %xdzta)tt/jxt'm)pkm]

Xt Wty j X1 1, )me ”

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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n T T T T
&y = ;z[ zzz[(z Y. gresoien (Y] Y prason peafpon | 27
K1 t=

%o=1dp=1dy=1  #'=1 =1 t=1

where

D = [(dij)i j=(p,1,....m)]- (2.38)

Theorem 2. Given the hypotheses of model (1.1) and for each asymptotically efficient estimator of p and
G, the parameters (1.33) are:

1 2 1 2
Ap = 2- 2a’ hm 2g|(1+g ( +ZZ _ 1_1p2(P21+P2(T_I+1)))

T+l j=ll+fi—t+1] T2l el f—t-1]
p p ) ]
1=1,..,T

1
_ ( 21 + 2(T—l+1)) _ _ _
1_p2p p ;p 1_p2 t:()p 1_p2

......

+a'Acca + O(th). (2.39)

lE=l]+]i—t|
p

T T ‘ .
Ko = -1+ Th_r){}\o( —tr g[(z Zr*”' Z:z %][W])H G ]) —a'ke +trAA.

’—

,,,,,

t=
-0O(t*) Tlgfolo [ — (@/2pa)[2(p* — na) + atr BarTar + tr AarBarTarBar]] + O(TZ)]

+a’_limc (_ 2[(1 +p*)p __P (p% — pPT-2+2) — Tz_‘i plt—l|+|l—t—1l]) (2.40)
PoT S0 1-p2  1-p? o 1=1,.,7] '
. (1+p?) _ Nt
Aop = —a’ lim g[( -2 _ppzp -L oA Y ot 1'])l= o ey
Aoe = lim 2¢ 1+p (1+p? 1 (0% + 2Ty _ 1 (p? + pAT1D)
0Og TS 00 1_p2 1_p2 1_p2p P 1_P2
B T+1 pp|t—l|+u—t+1| B T-1 pplt—l|+|l—t—1l) ]
=2 1-p? =0 1-p? 1=1,..,T

2)11m<;[( 2[ P )P Pp (P — P2y Zpu . 1|]) ]

_A;ga- (242)

App = Jim E(p:?) = a. (2.43)

: (1+ § + +
Ape :rhi?f[(_z[ 1_pp2)p - 1_pp (" -p 2)—29“ e 1']) } (2.44)
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For the GQ estimator of g, matrix A, can be estimated as

For the A, IA and ML estimators of ¢ matrix A, can be estimated as

At =2Gy.
Also, depending on the estimator of p being used we get:
krs = —[(n +3)p + (c1 — 2n)/2p],
where ¢; = atr BArI'ag + tr Aag tr BAgI ag tr Bag.
KGL = Kpw = Krs — aca/2p + (c1 — an)/2p,

where C = CKtl‘FARGAR.

KML = Kpw + p = KgL + p.
Kpw = Krs + 1.

Also, depending on the estimator of ¢ being used we get:

For the GQ estimator of ¢, x. expressed as
KC = _BEH/

where B = (Z'Z/T)™'. For the A estimator of ¢, k¥ can be estimated as

ke = _GHéHl - 4GH Z[AHGigHi - (Z/‘QHGiQH_lz/T)Bi

i=1

where A, = Z'Q
For IA and ML estimators of ¢ we have that

HGi

K,; = _GH§H2~

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

Qy'Z)T, i is the i-th column of matrix Gy and b; is the i-th column of matrix By.

(2.53)
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2.6 Experimental Procedure of The Linear Model with Heteroskedastic and Autocorre-

lated Disturbances

In this section we will theoretically describe an experimental procedure which could be used in order
to investigate the performance of various size corrections of the t- and F-tests in the case of the linear
model with heteroskedasticity and autocorrelation in the disturbances. The performance of various size
corrections of t- and F-tests can be measured as the difference between the true and the nominal size of

the corrected tests.

For the simulation we consider a four-parameter linear model as follows:

Yr = P1xn + PoXp + BaXiz + PaXu + olly, t=1,...,7), (2.54)

where f8; the parameters to be estimated and x;; = 1Vt. We considered sample sizes of T(15,20,30)

observations.

For the error term we assume that

2
E(w) = 0, 0,,* = var(u) = = 5 =76 = Zle/(1= )] (2.55)
where

zi = (1, %2, %13,21), 6= (C1,62,C3,Ca)- (2.56)

It is clear that, given the vectors z; (t =1,...,T) the variances 0,2, and consequently the intensity of the
considered mixture of heteroskedasticity and autocorrelation, depend on the values of the coordinates of
the vector ¢ and the parameter p. Multicollinearity describes a situation in which different variables reflect
related variation, where the A is the coefficient which states the intensity of multicollinearity between any

two interpretative variables except the constant.

Each combination of the values of the parameters p, ¢, and A constitutes a point of the experimental
space which we try to make representative of the parameter space defined by the sets of possible values of

the parameters p, ¢, and A.

For this purpose we considered six values of the vector ¢

gzl) = (glr 0/ 0/ 0)/ gzz) = (glrlr 0/ 0)/ GES) = (glr O/ 0/ 1)
‘;24) = (Clrlr 110)r §25) = (Clrlror 1)r ggé) = (Clrlr 1r 1)/ (257)
six values of the parameter p
p=+01, p==+05 p==+009, (2.58)

and four values of the coefficient which states the intensity of multicollinearity between any two interpreta-
tive variables except the constant, i.e., (A = 0.0, 0.1, 0.5, 0.9). At each experimental point the value of the

vector of the parameters ¢ is determined in a manner described in more detail below. Combining the values
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of the parameters p, ¢ and A, we can create our experimental space, which consists of 144 points. The
experimental space we use is representative of all the combinations of heteroscedasticity, autocorrelation,
and multicollinearity that can be encountered in applied econometric research. It contains points showing
high, moderate, low, or no multicollinearity, and autocorrelation combined with heteroscedasticity. The
cases p = 0 and p = 1 will not be studied experimentally because if p = 0 there is no autocorrelation
to be examined and if p = 1 the AR(1) process is not stationary. The cases ¢’ = (¢1,0,0,0) will be
studied experimentally because we are interested in investigating the consequences of the Edgeworth and
Cornish-Fisher corrections of the f and F tests in the case where the error term is homoscedastic. The
cases A = 0 are very rare in applied research but will be studied experimentally because they give us
information on the behavior of the Edgeworth and Cornish-Fisher corrections of the t and F tests in the

“ideal” case in which there is no multicollinearity and the regressors are linearly independent.

For each combination of the values of the parameters p, ¢ and A, a matrix of explanatory variables can
be created as follows: Using some random number generator, we can generate T independent observations
for the four independent N(0, 1) pseudorandom numbers s, G, Ci3, Cra (E=1,..., T). Following McDonald
and Galarneau, 1975 (p.409) we can construct the elements x;;, of the matrix of explanatory variables, X ,

using the following relations:

xj = 1(=1,...,Tandj=1)
and (2.59)
xj = (1-A)"Gi+ VAC (t=1,...,Tand j = 2,3,4),

from which it follows that the correlation coefficient between any two explanatory variables, excluding the
constant, is A. We must note that the matrix X can be accepted and used by the experiment under the
assumption that the matrix (X’X) can be inverted. If the matrix X is rejected, the procedure must be
repeated until we obtain a matrix X such that the matrix (X’X) is invertible. Since the variance o> for
each observation of the stochastic term u; is given by equation (2.55), it follows that the calculation of all
o2 (t=1,...,T) requires the knowledge of the matrix Z with z; = (zn, 212, 23, Z14) TOWS. From equation
(2.56) it is clear that the first three columns of matrices Z and X are identical. To construct the fourth
column of the Z matrix we generate T independent N(0, 1) pseudorandom observations. Consequently,
for every X matrix we also made a Z one. We must note that the matrix Z is accepted and used by the
experiment under the assumption that the matrix (Z’Z) can be inverted. If the matrix Z is rejected the

procedure is repeated until we obtain a matrix Z such that the matrix (Z’Z) is invertible.

Each pair of matrices X and Z, created for a given combination of the values of the parameters p, ¢,
and A, can be used in 10.000 replications of the experiment. For each of these replications we construct a

vector y. Next we will describe the construction of each of these 10.000 vectors.

Without loss of generality, our interest will be limited to the study of the case with 6,2 >1(t =1,...,T).

(Cases with 0 < 6,2 < 1 are handled by using the inverse of 0;? instead of o, for all t). For this purpose,
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for each replication of the experiment, we must create an error term vector # with elements u;, such that

var(uy)) =02 >1 (t=1,...,7). (2.60)

However, from equation (2.55) it is understood that, given the vector zj, the relation z/¢ > 1 is not
satisfied for every vector . This problem can be solved as follows: First, we assumed that the vector g is

of the form ¢’ = (0, ¢2, ¢3, G4), therefore

4
o =z,6= Zztjgj t=1,...,7). (2.61)
=2
Then we set 0, = mino,* (t=1,...,T) and calculated the first coordinate of the vector ¢ as ¢1 = 1 — G,

getting ¢’ = (1 — Opmin, C2,C3,¢a). Since zy =1 (t=1,...,T), from (2.61) we get:

4
o’ = ZiGg = Zzt]-cj =l-opp+o721(=1,...,7T). (2.62)

=1
The calculation of the first coordinate of the vector ¢ as ¢; = 1 =0y, ensures us that all the variances 0,2 will
be greater than or equal to 1. However, it creates serious problems by increasing the effect of the constant z;;
in shaping the value of 0;%> and consequently minimazing the intensity of the problem of heteroskedasticity.
Consequently, in order to be able to combine the existence of significant heteroskedasticity with variances
0/ > 1, we set an upper limit to the value of the first coordinate of the vector ¢. Specifically, since the
coordinates ¢p, ¢z and ¢4 take values of 0 or 1, we decided to discard each vector g for which the coordinate
¢1 is greater than or equal to 4 and to repeat the entire process initiating from the creation of the matrix
X until the calculation of vector ¢ which satisfies equation (2.62). Having calculated the variances ;> > 1
from equation (2.62) it is very easy to construct a vector of heteroskedastic and autocorrelated error terms,

u.

Using random numbers we can construct T for N(0,1/(1 — p?)) numbers w; (t = 1,...,T). The elements

u; of the error vector, u can be constructed using the relation:

Ut = OtUy4t, O = \/Gt2 (t = 1,.. .,T), (263)

from which it follows that the variance of each u; is equal to 6,2 > 1.

Knowing the vector u we can create the vector of the dependent variable, y, with elements, y;, using
equation (2.54) where f; are the parameters of the model to be estimated. From Theorem 5 of Breusch,
1980 p. 336, and taking into account that the t and F statistics arise as special cases of the Wald statistic,
it follows that the distributions of the t and F statistics for testing hypotheses (2.1) and (2.10) do not
depend on the true values of the parameters ; (j =1,...,4) of model (2.54), when the null hypothesis is
true. Since the study of the actual size of a test is done under the assumption that the null hypothesis

is true, it is clear that the results of the experiment do not depend on the values of the parameters
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Bi (j=1,...,4). So, we can set f; =0 (j=1,...,4). Thus, we simplified the computational procedure of
the experiment, while our results did not lose their generality. Setting §; =0 (j =1,...,4) in equation
(2.54) we get

yr=ou (t=1,...,20), (2.64)

from which we calculated the elements of the vectors y of the dependent variable for each of the 10.000

replications of the experiment, given the matrix of exogenous variables.

Since ;=0 (j =1,...,4) the null hypotheses of the tests are:

B1=0,p62=0,6=0,B4=0, (2.65)

and the null hypothesis of the F test is:

0100 0
HBF=h, whereH={0 0 1 0| and h={0]. (2.66)
0 001 0

Using the matrix of regressors, X, the matrix Z and the 10.000 different vectors of the dependent
variable, y, created for each of the 144 points of the experimental space, at each we can construct 10.000

replications of the procedure that is described below .

1. We estimate model (2.54) using the OLS estimator:

20 -1 g0
PoLs = [Z X1 Z Xt Y- (2.67)
=1 =1
Then, we calculate the OLS residuals:
flors = y — PorsX = [(ﬁt(OLS))tzl ,,,,, T] . (2.68)

2. We can use one of the consistent estimators given in Subsection 1.3.1 in order to estimate the parameter

vector G. = (Gs1,.-.,Cem)’- Then, we can estimate matrix 2:1/2 as
2712 = diag(1/6y,,...,1/64,), (2.69)

where

1/2
bu =(z06)" Vt=1,..,T (2.70)

fors = £ ors = [(ﬁ*t(OLS))tzl ..... T]/ (2.71)
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where

il
ilyors) = t(;OLS) Vt=1,...,T, (2.72)

Uy

and flprg is the predictor of u estimated by (6.4).

4. We can use one of the consistent estimators given in Subsection 1.3.2 in order to calculate an initial

estimate p. of the autocorrelation coefficient p.

5. We can use equation (1.41) and the consistent estimators &, and p. in order to estimate the parameter

vector ¢ as

t=e(1-p) = &=¢c(1-p2) Vi=1,...,m. (2.73)

Then, we can estimate matrix Z~/2 as
£712 = diag(1/64,...,1/67), (2.74)

where

1/2
or=(z¢) Vt=1,...,T. (2.75)
Alternatively, ¢ can be estimated via the following asymptotically equivalent process:

(i) We can use the initial estimator p. in order to transform model (2.54) into the autoregression-
corrected model

yu = Xuf + un, (2.76)

.....

the following formulae:
— 42)1/2 — A —
wa=0-p)""u, wy=u—payq Vt=2,...,T (2.77)

(ii) Then, we can use one of the consistent estimators given in Subsection 1.3.1 in order to estimate

the parameter vector ¢, and the matrix £7V/2 via (2.74) and (2.75).

Although from the estimation viewpoint the estimator (2.73) is perfectly adequate as a consistent
estimator of g, the estimator & based on the residuals of model (2.76) enables the researcher to find the

finite-sample distributional properties of any consistent estimator of ¢ in Subsection 1.3.1.

6. We can premultiply model (2.54) by £7/2 given in (2.74), in order to derive heteroskedasticity-corrected
model

Yar = XarP + tar, (2.78)

,,,,,

following formula:

uARt:ut/ﬁt vt:].,...,T, (279)
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where 6; are given in (2.75). Then, we can use one of the consistent estimators given in Subsection
1.3.2 in order to estimate the autocorrelation coefficient p. The estimator p based on the residuals of
model (2.78) enables the researcher to find the finite-sample distributional properties of any consistent

estimator of p in Subsection 1.3.2.

7. We can use the estimators £7/2 and p from Steps 5 and 6, respectively, in order to calculate the
estimator

Q = L272[(1 + pP)Ir - pD - p*A1E7'7, (2.80)

which can be used for the feasible generalized least squares estimation of model (2.54).

From this estimation strategy we calculate residuals that are exclusively autocorrelated and residuals that
are exclusively heteroscedastic in order to calculate the estimate of the parameters p and ¢, respectively.

Then we can calculate the feasible GLS estimator
B =(X'QX)"'X'Qy (2.81)

of the parameter vector B of model (2.54). Then, using Cornish-Fisher corrected t statistic #* = t —
%2 [p1 + pztz] t and Cornish-Fisher corrected F statistic & = F—12(q; +2F)F we can test the null hypotheses

Having at our disposal the estimators of the parameter p and the vector ¢ but also the GLS estimators of
the parameters of the model (2.54) and using the corrected statistic from the Cornish Fisher approximation
of the normal distribution that givens by and the corrected statistic from the Cornish Fisher approximation
of the F distribution that givens by we calculate the values of the t and F statistics as well as the values of
locally exact according to Cornish -Fisher corrected t and F statistics for testing hypotheses (2.65) and
(2.66) against the alternative hypotheses

Bi>0or ;<0 (j=1,...,4) (2.82)
and
Hp # h, (2.83)

respectively, where the matrix H and the vector h are defined in equation (2.66). Let It_,(-), it—,(-) be the
distribution and density functions, respectively, of a t-random variable with T —n d.o.f. Also, let t, be
the a% critical value of the t-distribution. Then, under the null hypothesis e’ — ey = 0, the distribution

function of the t-statistic admits an Edgeworth expansion of the form:
7 N 3
Pr(t < &) = Froa(®) = (1 + paE)Eiin() + O). (2:84)

Moreover, let Fi._ (-), fr_ () be the distribution and density functions, respectively, of a F-random
variable with r and T —n d.o.f. Also, let F, be the upper a% critical value of the F-distribution. Then,
under the null hypothesis HB — h = 0, the distribution function of the F-statistic admits an Edgeworth
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expansion of the form:
Pr(F < &) =Fr_ (&) — (g1 + 92ENEfy_ (&) + O(TY). (2.85)

Concluding our reference to the method of calculating the various statistics and the corresponding
significance levels, we consider it appropriate to emphasize that we use one-sided alternative hypotheses
(2.82) for two reasons: First, because the t-test for each of the hypotheses (2.65) against two-sided
alternative hypotheses is a special case of F test, and secondly, because the Edgeworth expansions of
the t-Student density functions are not symmetric about zero and therefore the level of significance
corresponding to the corrected critical value of the usual ¢ statistic for f =ty is generally different from the
corresponding significance level for ¢t = —t;. The procedure we have just described can be replicated 10000
times at each of the 144 points of the experimental space. By using the values of these statistics and the
density functions of the f-Student and F distribution respectivelly, we can calculate the corresponding
p-values.More specifically, we can calculate the significance level of the t statistic (see (2.7)) under the
assumption that it is distributed according to the #-Student and the significance level of the F statistic
under the assumption that it is distributed according to the F distribution. Furthermore, the significance
levels of the locally exact Cornish-Fisher corrected f and F statistics can be calculated under the assumption
that they follow the t-Student and F distributions, respectively. At this point it should be noted that
the Cornish-Fisher corrected F statistic (see (2.15)) may admit negative values, and in such a case we
have a major problem given that the Cornish-Fisher corrected F statistic (see (2.15)) is assumed to be
distributed as an F variable.

All that remains is the calculation of the significance levels corresponding to the Edgeworth corrected
critical values of the t and F statistics. First, we will calculate the values of the Edgeworth expansions of
the distribution functions of ¢ and F statistics in terms of t-Student (see (2.84)) and of the F (see (2.85))
distribution, respectively, for the specific values of these statistics. The required significance levels for
the F, and positive t statistics are equal to the values of the Edgeworth expansions of the distribution
functions of these statistics.

From the performance of random experiments concerning the case of linear regression model with
autocorrelation AR(1) as well as the case of the linear regression model with heteroskedasticity we deduced
the following: The performance of various t and F test forms is affected either from the specializations
of vector ¢ or from the theorized values of parameter A. About parameter p, locally exact Edgeworth
size corrections of t and F test are preferable for the t and F tests for small and intermediary values of
ple.g. p = £.1orp = £.5). In both experiments, locally exact Cornish-Fisher size corrections of t and F
tests are preferable to the respective locally exact Edgeworth corrections in almost every point of the
parameter space. Finally, for the t and F tests with a mixture of autocorrelation and heteroskedasticity,
we expect that the locally exact Edgeworth corrections to be preferable for A, ¢ as well as small and
intermediary values of p. Also, we expect Cornish-Fisher corrections to verify their theoretical advantages

over Edgeworth corrections on average.
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The Generalized Linear Model with Panel Data

3.1 The Model

Seemingly Unrelated Regressions (S.U.R.) model is a special case of the Generalized Least Squares (GLS)
model and refers to the case in which the disturbances of a system of equations are contemporaneously
correlated. In this case, regression coefficients in all equations are better estimated simultaneously, because
these estimators are at least asymptotically more efficient than those obtained by an equation-by-equation
application of least squares. Zellner, 1962 proposed a method of estimating seemingly unrelated regressions.
He assumed that the disturbances in each equation are not autocorrelated but the disturbances of two
different equations are contemporaneously correlated. Using the theory proposed by Zellner, 1962 about
S.U.R., this chapter is concerned with the Generalized Model with Panel Data, i.e., a combination of
correlated cross-sectional data with autoregressive time-series, which describe the individual behavior
both across time and across individuals and is described by a system of M regression equations, of form

(3.1), examined bellow.

3.1.1 Generalized Linear Model with Panel Data

Consider a Panel system of M contemporaneously regression equations of the form:

Yy = Xyp +ouy, (3.1)

where

yu is a T X1 vector of observations on the p-th dependent variable;

X, is a T X n matrix of observations on n exogenous variables of y-th unit ;
P is a n X 1 vector of unknown structural parameters;

and

ouy (0> 0) is a Tx1 vector of unobserved stochastic disturbances.

The model can be written as ) ) -
Y1 Xi U
Y2 X5 U

[ym] | Xm M
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More compactly, the model can be written as

y =Xp +ou, (3.3)
where - o o
Y1 X U
Y2 X U
y= , X = , U= (3 4)
| YM] | Xm] | 1M ]
and
E(uu') = Q7. (3.5)

Assumption 2. The following assumptions hold:

1. The random vector u is distributed as a N(0,7'), where Q is MT X MT positive definite and

symmetric partitioned matrix;

2. The matrix X, of the regressors has full column rank, i.e.

r(Xy) =n; (3.6)

3. The regressors are non-stochastic. The results of this thesis would also be valid if the regressors

were stochastic, yet uncorrelated with the errors, i.e.,
E(X;lu) =0, (3.7)

but in such a case the proofs would be a little more complicated.

3.1.2 Autoregressive extension of the Generalized Linear Model with Panel Data

Let uy, be the t-th observation of the random vector u, of the u-th equation. Then, we assume the

autoregressive scheme:
Uty = -t + ey 0<lpul <1 (t=2,...,T; u=1,...,M), (3.8)

where the random variables &, satisfy the conditions:
Fort#1lort #1,
E(er) =0 (t=1,...,T; u=1,...,M), (3.9)
Oy ift=tsu,pu' =1,...,M,

E(Etygt’y’) = 5tt’0py’ = , (310)
0 ittt p, 0 =1,...,M,
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where 0y is Kronecker’s delta. For ' =t =1 and y,u’ =1,...,M, E(&yép,r) becomes
E(e1pe1) = o (1= Puz)l/z(l - Pu’z)l/z/(l — PuPy) (3.11)
(see Parks, 1967).
The time series uy, , (t=1,...,T, u=1,...,M) is stationary provided that
uy = (1 - pu?)Pery, fort =1. (3.12)

Equations (3.8) and (3.12) imply that, forall t=1,...,T and y, u’ = 1,..., M, the disturbances uy, satisfy

the following conditions

E(uiy,) =0, (3.13a)
E(ui,) = 0 /(1 = p}), (3.13b)
E(utp uty’) = ayy’/(l - pypy’)- (313C)

Note that if g = p’ then (3.13c) implies (3.13b).

Let &f (t=1,...,T) be the rows of the T X M matrix E (i.e. & are the columns of E’). Also, let g,

(u=1,...,M) be the columns of E (i.e. & are the rows of E’). So,

E=|:|=[&)=1..7); E=le, ..., em] = [(&4)p=1,..m]- (3.14)

Then, equations (3.9) and (3.10) imply that

E(enen) ... Elenem) 011 ... OiM

E(ge) = : : =1 : : (3.15)
E(emen) ... E(emem)| |om ... omm

= [(ow)uw=1,..m1 =L, (3.16)

which is a (M X M) matrix of contemporaneous covariances between the t-th elements of any two

random variables ¢, and 5;4-
Similarly for any random vector ¢, it holds that

E(ey) =0, (3.17a)
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E(glpgly) E(glpgTy)
E(e.e,/) =
E(ngely) E(ngpr)

Moreover, for any two random vectors €, & (4 # ', u,u' =1,...,M)

Define the (TM X 1) vector

Then,

and
oudr

E(eg’) =

omlr

E(e) =0

ol

ommlr

3.1.3 Representation of the Generalized Linear Model with Panel Data

Define the (T x T) matrix (see Parks, 1967)

p=

The inverse of P, is

Then, equation (3.8) implies that

(1 - P,uZ)_l/2
1= p®) " py

(1= pu®) o™

,(1 B pyz)v2 0
~Pu 1
0 —Pyu
0 0
Uy, = Pysy.

By using equation (3.22), model (3.1) can be written as

Yu = Xuf + Puey.

~Pu

(3.17b)

(3.17¢)

(3.18)

(3.19a)

(3.19b)

(3.20)

(3.21)

(3.22)

(3.23)
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Define the (TM x TM) block diagonal matrix P as

P, ... O
P =
o Py
The inverse of matrix P is
pt o
pl=
(@] PM_l
Then, since
u = Peg,
model (3.3) can be written as
y=Xp + Pe.
Obviously,
E(u) = E(Pe) =PE(e) =0
and

E(uu') = Q' = E(Pee’P’) = PE(e€’)P’ = P(E @ I1)P’

011P1Pi OlMPlP;VI

GM1PMP£ oo O_MMPMP;VI

The TM x TM block diagonal matrix

P= [(6yy’Py);t,;t’:l,‘..,M]

and the T X T matrix

T pw pw’!
1
Ry = 70— P
T=pupw |
[T 1

(3.24)

(3.25)

(3.26)

(3.27)

(3.28a)

(3.28b)

(3.28¢)

(3.29)

(3.30)

As in equation (3.22) consider the T X 1 vectors y,. and the T X n matrices X,,. with non-autocorrelated

elements, satisfying the following relations:

Yo = Py, X = PUIXG,

(3.31)
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and define the MT X 1 vector y. and MT X n matrix X, as follows:

ye=|: |, X=| | (3.32)

yM* XM*

Then, premultiplying each regression in equation (3.1) by P,f1 we can derive the following model with

non-autocorrelated error terms:

P, 'y, = P'Xuf+Puy =

Yoo = Xuf+e, (3.33)

(see Zellner, 1962, Zellner, 1963 Zellner and Huang, 1962, Zellner and Theil, 1962). Alternatively, by
premultiplying (3.3) by the matrix P~ defined in (3.25) we take

Ply = P'XB+Plu=

y. = X.f+eg (3.34)

where y, = Ply, e =P 'u, X, = P'X.

3.1.4 The specification of Q
The elements of the T X T matrix Q are functions of the (M + M?) X 1 vector
y=(,¢), (3.35)

where p = (p1,..., pm) is the T X 1 vector of autocorrelation coefficients and ¢ = vec(L™!) € RM — O

where O is the subspace of RM in which I is not positive definite. Q can be written as

Q=P ' 'el;)P . (3.36)

Define, for any two indexes u,u’ =1,..., M, the composite index

((u') = g+ M = 1)) quy=1,..r2, (3.37)

It can be easily seen that the (uu’)-th element of vector ¢ denoted as ¢(uy’), is actually the ((u, u’)-th

element of matrix X!, denoted as g"*".
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3.1.5 Vectorization of the Model

The system of equations (3.31) or (3.32) can be seen as the outcome of vectorizing the following model:
Y. =ZB+E, (3.38)

which can be defined as in the S.U.R. model.
In the generalized linear model with panel data, the columns b, (u = 1,..., M) of the (kX M) parameter
matrix B obey the restrictions:

b‘u = lyyﬁ/ (339)

where W, are (k X 1) known matrices and f is a (1 X 1) vector of unknown parameters to be estimated.

Define the (Mk X n) matrix ¥ as

L 41
¥,
v=| (3.40)
Yy
By vectorizing model (3.38) we take
y.=X.p+e (3.41)

where

y. = vec(Y.), € = vec(E)
and
M
X, = (®2)Y =[O Dl - (W] = || Y 5 2%, | | = 2%,
p=1 u
VA 4 X«
= = : . (3.42)
VA 4 X
By partitioning y. and € according to X, in (3.42), model (3.41) can be decomposed as follows:
]/1* Xlx— &1
=| B+, (3.43)
YMx XM EM

where X,.. (u=1,...,M) are (T X n) matrices.
Note that:
Y, is a (T X M) matrix, X, is a (TM X n) matrix, X.X, is a (n X n) matrix, ¥ is a (Mk X n) matrix and

P(X. X)X/ is a (Mk X MT) matrix.
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3.1.6 Identification and estimation of the parameters

Let y = (p,&’) be any consistent estimator of the parameter vector y. For any function f = f(y) we can

write f = f(§). The feasible GLS estimator ¢ is
6 = [(y = X (PG, () @ PGy )(y — XB)/(MT = m)] ™. (3.44)

It is straightforward that the parameters ¢ and y cannot be simultaneously identified without the
restriction o = 1, under which the estimate £ is supposed to be accurate, up to a multiplicative factor.
This is not true in small samples, and a reasonable method to account for this is to use the feasible GLS
estimate of 6 from (3.44) in order to compute the traditional f and F test statistics. This method is
meaningless from the estimation viewpoint, but its success in improving the size corrections must be the

only criterion to judge its validity.

3.1.7 Regularity conditions

Denote as €;, Qj, etc., the MT X MT matrices of first-, second-, and higher-order derivatives of the

elements of Q with respect to the elements of the (M + M?) X 1 vector of nuisance parameters y=(p,¢).

Moreover, for any estimator J of y, define the (1 + M + M?) X 1 vector 8 with elements
6% —1 Pu—Pu. _ Slu) ~ S

60 = T ’ 6!’# = T 4 65(%#’) - T

(3.45)

where u=1,...,M, (u’)=1,...,M? and 7 = \LFT is the "asymptotic scale” of our expansions.

The suggested size corrections are based on the following

Regularity Conditions:

(1) The elements of matrices  and Q7! are bounded for all T, for all vectors p with elements pu € (1,1,

and for all vectors ¢ € F; = R™ \ {0}. Moreover, the matrices
A=X'QX|T, F=XX'|T, I'=Z'Z|T (3.46)

converge to non-singular limits as T — oo.

(2) Up to the fourth order, the partial derivatives of the elements of £ with respect to the elements of p
and ¢, are bounded for all T, for all vectors p with elements in interval (-1,1), and for all vectors

GeFs.

(3) The estimators p and & are even functions of #, and they are functionally unrelated to the parameter

vector B, i.e., they can be written as functions of X, Z and u only.
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(4) The vector 0 admits a stochastic expansion of the form

o
6 = [(©p,)u=1,..m] (3.47)
[(6Gw>)(W):l,...,MZ]'
= di +tdy + w(7?), (3.48)

where the order of magnitude w(-), defined in Notational Convensions, has the same operational

properties as the order O(+), and the expectations
E(d\d]), E(d + VTdy) (3.49)

exist and have finite limits as T — oo.

Discussions on the Regularity Conditions:

The first two regularity conditions imply that the n X n matrices
A =X'QX|T, Aj=XQ;X|T, Aj =X QQ'QX/T (3.50)

are bounded, and therefore the Taylor series expansion of f is a stochastic expansion (see Magdalinos, 1992).
Since the parameters p = (p1,...,pu)" and ¢ = (¢1,...,¢n)" are functionally unrelated to B, regularity
condition (3) is satisfied for a wide class of estimators p and & including the maximum likelihood estimators
and the simple and iterative estimators based on the regression residuals (see Breusch, 1980, Rothenberg,
1984a). Note that we need not assume that the estimators p and & are asymptotically efficient. Also,
notice that the regularity conditions (1) through (4) are satisfied by all the estimators of p and ¢ examined
in the next section. Some of the estimators of the elements p, (=1, M) of the vector p, are the least squares

(LS), Durbin-Watson (DW), generalized least squares (GL), Prais-Winsten (PW) and maximum likelihood

(ML) estimators. The elements of vector ¢ = vec(E~') can be estimated by
¢ = vec[(Y. — ZB) (Y. - ZB)/T] ™, (3.51)

where B is any consistent estimator of the parameter matrix B in the regression model (3.38).
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3.1.8 Definition of parameters

Finally, define the scalars Ag, %o, the M X 1 vectors A, %, the M? x 1 vectors A, the M x M matrix Ay,
the M? X M matrix Apc, and the M? x M? matrix A, as follows:

Ao A A Ko
A=|2, A, A|=Edd); x =|x,|=Ed + VTdy). (3.52)
Ao Ay A K.

We partition matrix A. and vector k. as follows:

Ao N
A A

K
, k=", A=
Kc

and A is a (M X M?) X (M x M?) matrix and A, k are (M X M?) x 1) vectors. The elements of A, and x, in

and [K(’] . (3.53)

K
Equation (3.52) and (3.53) imply that

/‘P
Ape

A, A
APC AC

A= (3.54)

equations (3.52), (3.53), and (3.54) can be interpreted as "measures” of the accuracy of the expansions of

52, Py and &y around the true values of the corresponding parameters.

3.1.9 A 3-step Estimation Process

Denote by LS, GL, IG, ML the least squares, generalized least squares, iterative GLS, and maximum
likelihood estimation methods, respectively. Also, denote by ﬁ; any consistent estimator of § in the
model (3.1), indexed by I (I=LS, GL, IG, ML). The discussion above suggests the following 3 steps of an

estimation strategy:
® Step 1: Single equation estimation of autoregressive parameters p,

Uuy = Yu—=XuPay

Z?:Z Aty U1
Py = —ZT 2 (3.55)
=2 2 (-1

® Step 2: Transform model (3.1) to obtain estimations of contemporaneous covariances o,/

i. Transorm the model in order to cancel out first-order autoregression

Ply, = P'X,B+P,'PLe,
or
Yo = Xuf+ & (3.56)
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ii. Estimate (3.56) via (I) to obtain the estimators ﬁ; and the residuals

Er = Yo = Xy - (3.57)
iii. Estimate covariances by
év(- lé*
n tCu
O = T (3.58)

to obtain ﬁ([).

e Step 3: Aitken estimation of (3.3) by using Q.

Since,

S
Il

P(EQI)P =

o

PYEeIPT. (3.59)
and

Bers X'QX)'X'Qy

(X' (P (£ ® INP'X]'X'[(P71Y (£ ® In)P ']y

(X (£, @ INP'X.]'X/(E ) ®In)y. . (3.60)

3.2 Asymptotically efficient estimators of p and B

3.2.1 Estimators of p
Some of the most frequently used estimators of p in applied econometric research are:

1. The least squares (LS) estimator

T
Py = Z Ty fi-1y/ Z (ﬁw)z, (3.61)

where iy, are the LS residuals in the regression model (3.1).

2. The Durbin-Watson (DW) estimator, which is computed via the DW-statistic approximation as

PPV =1- (%V) (3.62)

3. The generalized least squares (GL) estimator

T T 2
py = Z ﬁtya(t—l)p/ Z (ﬁty) ’ (363)

where 1, are the GL residuals in the regression model (3.1).
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4. The Prais and Winsten, 1954 estimator ﬁ5W7 which, together with the PW estimator ﬁﬂw minimises

the sum of squared GL residuals.

5. The maximum likelihood (ML) estimator, pAﬁ’IL, which satisfies a cubic equation with coefficients

defined in terms of the ML residuals in the regression model (3.1) (see Beach and MacKinnon, 1978).

3.2.2 Estimators of B

Some of the most frequently used estimators of B in applied econometric research are:

1. The unrestricted least squares (UL) estimator

Buy = (Z2'2)7'Z2'Y.. (3.64)

2. The restricted least squares (RL) estimator

vec (Bry)) = P(X/X) ' Xly.. (3.65)

3. The The generalized least squares (GL) estimator
vec (B = WIXI(E! @ INX.] ' X/(£] @ In)y., (3.66)

where ﬁ,‘l is the UL or RL estimator of X71.

4. The iterative generalized least squares (IG) estimator B(IG) which is computed by the iterative

implementation of GL estimator.

5. The maximum likelyhood (ML) estimator By which can be computed by iterating the GL

estimation process up to convergence (Dhrymes, 1971).
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Size Corrected Test Statistics

4.1 Introduction

This chapter specifies the analytical forms of the Edgeworth and Cornish-Fisher size corrections of the t
and F tests in the Generalized Linear Model with Panel Data. For this purpose, we calculate some useful

quantities.

4.2 t-test
Let ¢, be a known scalar and let e be a known n X 1 vector. To test the null hypothesis
Hy:e'f-¢e =0 (4.1)
for one-sided alternative hypotheses we use the statistic
t= (/B —ep)/[0%' (X' QX) le]”. (4.2)

We define the (M + M?) x 1) vector I and the (M + M?) X (M + M?)) matrix L as follows:

’
[ [(CA YY) G (A TS ve) (4.3)
_ [(lppp“/)y,y’:l ..... M] [(ZPHC(‘,‘,/))/.J:L...,M; v)=1,..., MZ] (4.4)
[(lc(w/)p,,)(vv’):l,A..,Mz; y:l,A..,M:I [(ZC(M,/)C(V‘,/))(yy’):l ,,,,, Mz?; (w)=1,..., M2]

where the elements of vector I and matrix L are defined as follows:

l,, = HGA,Gh,
Iy W GA. wn Gl
Lowpu W GC,, pw Gl
Lowcim WGCp,c,,,Gh, (4.5)
Lerpu WGC,,,,Gh,
ICW)C<W/) W GCCwu’)C(w’) Gh,
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where G = A™! = (X’QX/T)! is a (n x n) matrix, h = e/(e’Ge)'* is a (n x 1) vector and

Cowpr = Apup —240,GAp, +Ap,, 12,
Cppg(vv’) = Appg(w') - ZAPH GAQ(W’) + AP;LC(W’) /2’ (4'6)
CQ(M!’)g(W') = Ag(w’)g(w”) - ZAQ(;W') GA@(W’) + A;(H.ﬂ')g(w') /2’

with the obvious adjustments for C. Matrices A;, A;; and A;;* are defined in the equation (3.50).

)Pu*

The corrected critical value, using the Edgeworth approximation of the ¢ distribution is given by
2
* T 2
ta” =ta + 3[}71 + pata”lta, (4.7)

(see Edgeworth, 1903). Moreover, the corrected statistic from the Cornish Fisher approximation of the ¢
distribution is given by
T

F=t- ; [+ P2, (4.8)

(see, inter alia, Cornish and Fisher, 1937, Fisher and Cornish, 1960, Hill and Davis, 1968). In order to
correct either the critical value or the t-statistic the required correction quantities py, p, are given by the

following Proposition.

Proposition 3. The quantities pq, p2, required for the calculation of both the Edgeworth corrected critical

values of the t distribution, and the Cornish-Fisher corrected t-statistic are:

B rar -, A Ao —2
p1 = trAL+ R U+ 5) Ko+ — (4.9)
VAL =2I'A+ Ap -2
p = i (4.10)

4.3 The Wald and F Tests

Let H be a r X n known matrix with rank(H) = r and let hy be a known r X 1 vector. The test of the null
hypothesis
Ho IHﬁ—ho =0 (411)

is based in Wald statistic
w = (HB — ho) [HX'QX/T)""H'"\(HP - ho) /62, (4.12)
or on the degrees-of-freedom-adjusted F statistic

F = (HB - ho) [HX'QX/T)'H']"V(Hp - ho)/r6>. (4.13)
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Define the (n X n) matrix G and the (n X n) matrix 2 as follows:
G =A"1and E = GQG, (4.14)

where

A=X'QX/Tand Q = H(HGH')'H. (4.15)

Next, define the (M + M?) x 1 vector ¢ and the (M + M?) X (M + M?) matrices C, D as follows:

c= [[(Cp“)yzl,...,M]// [(CC(W/))(yy’):l,.“,le/] ’ (416)

[(Cp},pyr )y,y’:l,.,.,M] [(Cpu ) );1:1,...,M; (n)=1,..., MZ]

C= (4.17)

I:(CC(W’)py )(VV/)=1/-»~/MZ; H=1/-»~1M] [(CC(‘LW’)Q(W’) )(y‘u'):l,,_,,MZ; (VV'):l,_.,,MZ]_
and

(., Jupr=1,...m] [(dpyg(w/))yzl,...,M; (vv’):l,.,.,Mz] ’ (4.18)

[(dgw.ﬂ,pp)<w')=1,...,MZ; ,u=1,..-,M] [(dcw/)c(m)(yy’)=1,-~,M2; (w'):l,...,MZ]_

where the elements of the vector ¢ and of the matrices C, D are defined as follows:

Cpp = tr(Ap“ =),
Coupw = (Cpup, E),
Couconny = tr(cp!, g(w/)E)/
Coy = I (Aéw)E)' (4.19)
Councony = T(CopcunE)
dppe = tr(Dp,p,E),

d‘;(py/)g(vv’) = tr(DC(yy')C(w’):)’

dpcry = t1(DpyeiE)
where
D _ AP#':'AP#’
PuPy - 2 4
A, EA
_ Pu )
Doy = — (4.20)
D _ AG(WN):’A@(W')
SpHewy T 2 ’

d and D,

with the obvious adjustments for ¢, , v Pu

w? S Pu

The corrected critical value, using the Edgeworth approximation of the F distribution is given by

Fy' = Fo + 72 [q1 + q2F4] Fa, (4.21)
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(see Edgeworth, 1903). Moreover, the corrected statistic from the Cornish Fisher approximation of the F
distribution is given by

F = F - (1 + qP)F, (4.22)

(see, inter alia, Cornish and Fisher, 1937, Fisher and Cornish, 1960, Hill and Davis, 1968). In order to
correct either the critical value or the F-statistic the required correction quantities g1, 4o are given by the

following Proposition.

Proposition 4. The quantities g1, g, required for the calculation of both the Edgeworth corrected critical

values of the F distribution and the Cornish-Fisher corrected F statistic are:

q=&/r+(r—2)/2, gp=&/F+2)—71/2, (4.23)

where
& = tr[A(C+D)]-cAc/d+k+7r[c’AJ2 — Ko — (r —2)Ag/4] (4.24)
& = tw(AD)+[c’Ac— (r+2)(2c'A —rAg)]/4. (4.25)

4.4  Theorems

Theorem 3. Vectors I, ¢ and matrices L, C, D, in equations (4.3), (4.4), (4.5), (4.6), (4.16),(4.17),(4.18),
(4.19) and (4.20) can be calculated as follows:

(i) The Cp#py, matrix

M M M M
Copw = 3,2, Y. Y 0"0XIR,, M[ouRa - 2XGX] [TIR,, "'X;/ T

i=1 j=1 x=1 I=1
M M

+Y ) 0"XIR,,,, TX;/2T. (4.26)
i=1 j=1

(ii) The DP#P#' matrix

M M M M
Dy, = 2,02 )0 iRy, "X EX]R,, VX 2T, (427)
i=1 j=1 x=1 I=1
(iii) The C;W,)H(w,) matrix
CQW/)C(W/) = a;lv w = ZBW’GBw’ (4.28)
(iv) The D¢, matrix

D.,coy = BuwEBw/2. (4.29)

S(up")S ')
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(v) The Cp,c,,, matrix

M M
Cocor = 3, Y, 0"XIR, ¥[01uRy, — 2XGX}/TIR™ X,y /T
i=1 x=1

+XR,,"" X, 2T.

(vi)
(vii) The Dy, matrix
Dy, = ApEAg,, /2
M M
= )Y IR, X EXR X, /21
i=1 j=1
(viii) The CC(w'>Pu matrix
M M
liy’ pvv’ ’ 1j
Covpy = ), ) 0"XIR" [01Rys - 2X, GX]/TIR,, "X/ T
=1 j=1

+X|R,," X, /2T.

(ix) The D, matrix

M
D ZG’JX’RW X, EX/R,,X;/2T"

=1

[\1:

Swv')Pu

]
—_

i
(x) The u-th element of the (M + M?) x 1) vector I is

M M
b, = Y. 0HGX/R,X;Gh/T,

i=1 j=1

where
e

- (e’Ge)'”’

(xi) Similarly the (u, u')-th element of the (M + M?) X (M + M?)) matrix L is

M
PHP#’ }E:

i=1 j

M M
Y. ) 0" oIl GX/Ry, *[04Rw — 2X.GX]/TIR,,"X;G/T
=1

a[\’]z

x=1

M M
+Y Z; o'l GX/R,,p,, "X;Gh/2T.
i=1 j=

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)
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(xii) The u-th element of the (M + M?) x 1) vector ¢ is

M M - -
Y. Y o (X(R,, X,E/T).

i=1 j=1

(xiii) The (u, @')-th element of the (M + M?) X (M + M?)) matrix C is

M
CPHP#’ = Z

i=1 j

=

0™ o0 tr(X/Ry, *RuR,,, "X;E)/T

M
Z o"o" tr(X/R,,* X, GX] Ry, UX;E)/T
=1

“Mi M=
M= 1
M= 1=

—_
Il
—_

K

M M
Z Z o'l tr(X/ Ry, p,, "X;E) 2.
=

i=

+

(xiv) The (u, y')-th element of the (M + M?) X (M + M?)) matrix D is

=
=
=

PuPy’

M
Y o™l tr(X/R,, * X, EX|R,, 1X;2)/2T2.
j I=

1l
—_
1l
—_
A
I
—_

(xv) The (up’)-th element of the (M + M?) x 1) vector I is

! = WGX/R"“X, GhT.

Clup’)

(xvi) Similarly the ((ug’), (vv'))-th element of the (M + M?) X (M + M?)) matrix L is

lé(w’ﬁ(w’)

(xvii) The (up’)-th element of the (M + M?) x 1) vector c is

Cepy = (X[ RMX,E)T.

(xviii) The ((uy’), (vv'))-th element of the (M + M?) x (M + M?)) matrix C is

Oy tr(X[R* X, E) /T = 2(tr(X,RM X, GX|R" X,/ E) | T*.

CCw’>C(vv'>

(xix) The ((uy’), (vv')-th element of the (M + M?) x (M + M?)) matrix D is

d tr(X;, R* X, EX,R" X,/ E) /2T".

Sup") e )

oy GXR* X, Gh/T - 2h' GX| R*"' X, GX,R" X, Gh/T*.

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)
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(xx) Similarly the (u, (1'))-th element of the (M + M?) X (M + M?)) matrix L is

s ZZ "W GX[R,, [0/ Ry — 2XGX,/TIR" X, Gh/T
i=1 x=1
+h’GX;Rp“W'XV/Gh/2T. (4.45)

(xxi) The (u, (1v'))-th element of the (M + M?) X (M + M?)) matrix C is

M M
— iK ’ ik pKv RV =
Cover = ZZG O tr(X/R,, "RYR"™ X, E) /T
i=1 k=1

M M
4 4 4 = 2
-2 Z Y " tr(X[R,, *XGXR" X,/ E)/T

+tr(X|R,," X,/E)/2T. (4.46)
(xxii) The (u, (vv'))-th element of the (M + M?) X (M + M?)) matrix D is

M M
oy = Y, )0 t(X[R, TX;EXR" X, ) /2T, (4.47)
i=1 j=1

(xxiii) The (1), u)-th element of the (M + M?) X (M + M?)) matrix L is

M M
Lepe = Y. Y0l GX,R" [0,1Ry1 - 2X,, GX] [ TIR,,"X;Gh/T
=1 j=1

+W GXR,, "' X,,Gh/2T. (4.48)

(xxiv) The ((v), w)-th element of the (M + M?) X (M + M?)) matrix C is

=1 1

—.

M M
lj ! liy =
Conpe = ), 2,00 (R RyiR, IX,E)/ T
M

M
-2)" Y o' tr(X;R" X, GX|R,, /X, E)/T?
=1 j=1

+tr(X|R,, " X,/E)/2T. (4.49)
(xxv) The (1), u)-th element of the (M + M?) X (M + M?)) matrix D is

deorp ZZ ol tr(X,R"™ X, EX/R,, 1X;E) /2T, (4.50)
i=1 j=1
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Theorem 4. Given the assumptions of model (3.1), for each asymptotically efficient estimator of p and g,

the parameters (3.52) are:

(i)
Ao = %im E(¢%) = 0. (4.51)

(i)
AP = %I_I)l‘;lQ E(Uodlp) =0. (452)

(iif)
A¢ = lim E(oodsc) = 0. (4.53)

(iv)
A= E'@LHNE o L™). (4.54)

(v)
ko = tr[EZ7Y (At — AD]/M + n/M (I=UL, RL, GL, IG, ML ). (4.55)

(vi)
ke = vec[(M+K+1)E™' - LA E7]. (4.56)

(vii)
Kp, = —[puB +n) + (2n —c1)/2py]. (4.57)

(viii)
KPMGL = KpuLS — (1= pu®)ea/2py + [er = (1= p*)nl/2py- (4.58)

(ix)
KPHDW = KPHLS + 1. (4.59)

(%)
Agp = A, = 0. (4.60)



Chapter 5

A Special Case of The Generalized Linear Model with Panel Data

5.1 The Model

The Generalized Model with data that are cross-sectional heteroskedastic and AR(1) time series is a

special case of the Generalized Linear Model with Panel Data (3.1).

5.1.1 The Model

Consider a system of M regression equations, of which the typical p-th (n =1, . . . , M) equation is
Yu = X‘uﬁ + ouy, (51)

where

yu is a T X 1 vector of observations on the p-th dependent variable;

X, is a T X n matrix of observations on x exogenous variables of u-th unit ;
P is a n X 1 vector of unknown structural parameters;

and

ouy (0> 0)is a T x 1 vector of unobserved stochastic disturbances.

The model can be written as

Y1 X 231
Y2 X5 U
= ﬁ +0 (5 2)
[ym|  [Xm] (UM |

More compactly, the model can be written as

y=Xp +ou, (5.3)
where - - o
i1 X U
Y2 X5 U
y = , X = , U= (5 4)

| YMm | | Xm | | 240 |



54 Chapter 5 A Special Case of The Generalized Linear Model with Panel Data

and

Assumption 3. The following assumptions hold:

1. The random vector u is distributed as a N(0,£27!) random variable, where £ is MT x MT positive

definite and symmetric partitioned matrix;

2. The matrix X, of the regressors has full column rank, i.e.

r(Xy) =n; (5.6)

3. The regressors are non-stochastic. The results of this thesis would also be valid if the regressors

were stochastic, yet uncorrelated with the errors, i.e.,
E(X;u) =0, (5.7)
but in such a case the proofs would be a little more complicated.

5.1.2  Autoregressive extension of the Special Case

Let uy, be the t-th observation of the random vector u, of the u-th equation. Then, we assume the

autoregressive scheme:
Uty = Pt + &y —1<py <1 (t=2,...,T,u=1,...,M), (5.8)

where the random variables &, satisfy the conditions:

E(eyy) =0 (t=1,..., T,u=1,...,M), (5.9)
Oup ift=tu=y,
E(Etygt’y’) = 6tt’6yy’0-yy’ = (510)
0 ift£t or u+y,

where 6y and 0,y are Kronecker’s delta. (see Parks, 1967).
In addition to assumption p, € (“1,1), stationarity of AR(1) processes (5.8) implies the following

relationships on the initial conditions of the disturbances
u, = (1-p ) e, (5.11)

These relationships imply that, for all t =1,...,T and y,u’ =1,..., M, the disturbances Uy satisfy the
following conditions

E(uy) =0 (5.12a)
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E(uf) = 0 /(1 = pi?) = 04, (5.12b)
E(usy ugr) = Cov(uyy, uyy) = 0for y’ # u (5.12¢)
Euy, upy) = pli oy, 2 for t # (5.12d)
E(us, up) = 0for u’ # u (5.12¢)

Let s; (t=1,...,T) be the rows of the T X M matrix E (i.e. & are the columns of E’). Also, let 6;1
(u=1,...,M) be the columns of E (i.e. ¢, are the rows of E"). So,

E=|:|=[)=1.11 E=ler,...,eml = [(€p)u=1,..ml. (5.13)

Then, (5.9) and (5.10) imply that

E(esey) =

E(enen) ... E(éﬂ@tM) Oo#011011 ... OuO1MOIM
: =L, (5.14)

E(emen) ... Blemem) Ouomiomt ... Oubdpmomm

which is a (M x M) matrix of contemporaneous covariances between the t-th elements of any two random

variables ¢, and 8’“.

Similarly for any random vector ¢, it holds that

E(ey) =0 (5.15a)
E(Sl‘,gly) E(€1H€TH) 6},“6110!41 6yH61TaW
E(eue,) =| Co =l b | = [Owouie=,. 1] = oyt
E(ST},&H) ce E(ETHETH) 6##’6T10HH cen 6}4157”1"0”“
(5.15b)

Moreover, for any two random vectors ¢, g’p, (W, wu =1,...,M)

E(ey €,0) =[O0y Oy )t r=1,...7] = 0. (5.15¢)
Define the (TM X 1) vector
&1
e=vec(E)=|: |. (5.16)
&M

Then,
E(e) =0 (5.17a)
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and
(5111]" ‘oo 0

E(ee’) = = [(6y;t’0'y;t’IT)p,y’:1 ml=EZ®Ir. (5.17b)

.....

0 O'MMIT

5.1.3 Representation of the Special Case

Define the (T X T) matrix (see Parks, 1967)

1-p2t 0 .. 0
(1-pud) "py 1 ... 0
P, = . . (5.18)
a-pA 7t
The inverse of Py is
[(1-p2" 0 .. 0]
—pu 1 0 ... 0
P, = 0 -pp 1 ... 0] (5.19)
0 0 ... —pu 1]
Then, equation (5.8) implies that
u, = Pye. (5.20)
By using equation (5.20), model (5.1) can be written as
Yu = XuP + Pty (5.21)
Define the (TM x TM) block diagonal matrix P as
P, ... O
P= . (5.22)
o Py
The inverse of matrix P is
P! o
P! = . (5.23)
(@) PM_l

Then, since

u = Peg, (5.24)
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model (5.3) can be written as

y=Xp+Pe (5.25)
Obviously,
E(u) = E(Pe) =PE(e) =0 (5.26a)
and
E(uu') = Q' = E(Pee’P’) = PE(e€’)P’ = P(L @ I1)P’ (5.26b)
0'11P1Pi . (@)
= : : (5.26¢)
O e UMMPMP]/VI

The TM x TM block diagonal matrix P = [(6HH'PH)MV:1P-~/M] and the TX T

Lopp oo

1 Pu :
R,,=—— 5.27
| (527

" 1

As in equation (5.20) consider the T'X 1 vectors y,. and the T X n matrices X,. with non-autocorrelated

elements, satisfying the following relations:
Y = Py, X = P'X, (5.28)

and define the MT X 1 vector y. and MT X n matrix X, as follows:

vo=| [, x.=| | (5.29)

Y X

Then, premultiplying each regression equation of the form (5.1) by P,fl we can derive the following

model with non-autocorrelated error terms:

P, 'y, = P'Xuf+Puy =

Yoo = Xuf+e, (5.30)

(see Zellner, 1962, Zellner, 1963 Zellner and Huang, 1962, Zellner and Theil, 1962). Alternatively, by
premultiplying (5.3) by the matrix P~! defined in (5.23) we take

Ply = P'XB+Plu=

Y. X.B+¢, (5.31)
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where y. = Ply, e = P"'u, X, = P7!X.

5.1.4 The specification of

The elements of the T X T matrix  are functions of the 2M X 1 vector
Y=, ¢ (5.32)

.....

[(ay‘z)yzl ,,,,, wm]. It can be easily seen that the (u)-th element of vector ¢ denoted, as g**, is actually the

(4, w)-th element of matrix 7!, € can be written as
Q=P 'I)P, (5.33)

5.1.5 Vectorization of the Model

The system of equations (5.28) or (5.29) can be seen as the outcome of vectorizing the following model:
Y.=ZB+E, (5.34)

which can be defined as in the S.U.R. model. In the generalized linear model with panel data, the columns

b, (u=1,...,M) of the (k x M) parameter matrix B obey the restrictions:
b,=Y.p, (5.35)

where W, are (k X n) known matrices and 8 is a (n X 1) vector of unknown parameters to be estimated.

Define the (Mk X n) matrix ¥ as follows:

0
v,
w=| (5.36)
»lPM‘
By vectorizing model (5.34) we take
y.=X.p+e (5.37)

where

y. = vec(Y.), e = vec(E), and X, = Iy ® Z) V. (5.38)
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In the special case, the columns b M) of the (k X M) parameter matrix B obey the restrictions:

b, = V.8, (5.39)

where W, are (k X n) known matrices and 8 is a (n X 1) vector of unknown parameters to be estimated.

Define the (Mk X n) matrix W as

and

X, = Im®2D)¥ =[06uw2) p'l- [(Py) ']
zv, | | x.
= = | (5.40)
Zv | | X

By partitioning y. and & according to X, in (5.38), model (5.34) can be decomposed as follows:

Y1« Xl* €1
= |+, (5.41)

YM- XM« EM

where X,.. (u=1,...,M) are (T X n) matrices.

Note that:
Y, is a (T X M) matrix, X, is a (MT X n) matrix, X, X, is a (n X n) matrix, ¥ is a (Mk X n) matrix and

W(X.X,)'X, is a (Mk X MT) matrix.

5.1.6 Identification and estimation of the parameters

Let p = (p,&’)" be any consistent estimator of the parameter y. For any function f = f(y) we can write

f= f(). The feasible GLS estimator o is
& = [(y - XP) Pror(Ect @ INPZH)(y — XP)/(MT - m)]*, (5.42)

From (5.20) it is straightforward that the parameters ¢ and o; (f = 1,...,T) cannot be distinguished,
that is the parameters ¢ and s cannot be simultaneously identified without the restriction ¢ = 1, under
which the estimate Q7! is supposed to be accurate, up to a multiplicative factor. This is not true in
small samples, and a reasonable method to account for this is to use the feasible GLS estimate of § from
(5.33) in order to the traditional ¢t and F test statistics. This method is meaningless from the estimation

viewpoint, but its success in improving the size corrections must be the only criterion to judge its validity.
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5.1.7 Regularity conditions

Denote as ;, Q;j, etc., the MT X MT matrices of first-, second- and higher-order derivatives of the elements
of QQ with respect to the elements of the (M + M) X 1 vector of nuisance parameters y = (p’,¢’)".

Moreover, for any estimator y of y, define the (1 + M + M) X 1 vector 6 with elements

A

AD _ N
62 -1 GHH — ghu
6o = ;o 0p, = u? Ot = ————— (5.43)
T T T

where p=1,...,Mand 7 = % is the "asymptotic scale” of our expansions.

The suggested size corrections are based on the following
Regularity Conditions:

(1) The elements of matrices £ and 7! are bounded for all T, all vectors p with elements p, € (-1,1),

and all vectors ¢ € F; = R™ \ {0}. Moreover, the matrices
A=XQX|T, F=XX'|T, T =2Z'Z|T (5.44)

converge to non-singular limits as T — oco.

(2) Up to the fourth order, the partial derivatives of the elements of £ with respect to the elements of p

and ¢, are bounded for all T, all vectors p with elements in interval (—1,1) and all vectors ¢ € Fs.

(3) The estimators p and & are even functions of #, and they are functionally unrelated to the parameter

vector B, i.e., they can be written as functions of X, Z and u only.

(4) The vector 6 admits a stochastic expansion of the form

0o

(=)
Il
—_
—
n
R}
=
~
=
I
—_
g,
<

,,,,,

= di+1dy + w(7?) (5.45)

where the order of magnitude w(-) defined in Notational Convensions, has the same operational

properties as the order O(-), and the expectations
E(did;), E(di + VTdy) (5.46)

exist and have finite limits as T — oo.
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Discussions on the Regularity Conditions:

The first two regularity conditions imply that the n X n matrices
A =X'QX|T, Aj=XQ;X|T, Aj = X’Q,-Q’lﬂjX/T (5.47)

are bounded, and therefore the Taylor series expansion of § is a stochastic expansion (see Magdalinos,
1992). Since the parameters p = (p1,...,pu)" and ¢ = [(0##),,=1,.,m]" are functionally unrelated to B,
regularity condition (3) is satisfied for a wide class of estimators p and & including the maximum likelihood
estimators and the simple and iterative estimators based on the regression residuals [see Breush (1980);
Rothenberg (1984a)]. Note that we need not assume that the estimators p and & are asymptotically
efficient. Also, notice that the regularity conditions (1) through (4) are satisfied by all the estimators of p

and ¢ examined in the next section.

5.1.8 Definition of parameters

Finally, define
the scalars Ao, %o, the M X 1 vectors A, x,,, the M? x 1 vectors A., the M X M matrix Ap;

the M? X M matrix Ay, the M? x M? matrix A, as follows:

)\0 Ap’ Ag’ Ko
A=|A, A, A,|=E@dd); x =|x,|=Ed + VTd) (5.48)
Ao Ay A K.

We partition matrix A. and vector k., as follows:

/\0 A Ko
and (5.49)
A A K
where
A K A, A
A=|"P|, k=", a=|"" "7, (5.50)
Apc L Ape A

and A is a (M X M?) x (M x M?) matrix and A, x are (M X M?) x 1) vectors. The elements of A, and . in
equations (5.47), (5.48) and (5.49) can be interpreted as "measures” of the accuracy of the expansions of

62, Py and Gy around the true values of the corresponding parameters.
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5.1.9  3-step Estimation

Denote by LS, GL, IG, ML the least squares, generalized least squares, iterative GLS and maximum

likelihood estimation methods, respectively. Also, denote by ‘31 any consistent estimator of p in model
(5.1), indexed by I (I=S, GL, IG, ML).

The discussion above suggests the following 3 steps of an estimation strategy:

® Step 1: Single equation estimation of autoregressive parameters p,

ﬁ#(l) = Yu— XH:B(I)
T » 4
A _ L= Bt Be-1yugy
Puey = ZT o (5.51)
t=2 u(t*l)[.lu)
® Step 2: Transform model (5.1) to obtain estimations of contemporaneous covariances o,
i Transform the model in order to cancel out first-order autoregression
Py, = PIXB+PPe
u Jp u w tpcu
or
Yo = Xpf+ €p. (5.52)
ii Estimate (5.52) via (I) to obtain the estimators ﬁA; and the residuals
€0 = Yo = Xy (5.53)
iii Estimate covariances by
o ag
UWJ = m . (554)
to obtain ﬁ([).
e Step 3: Aitken estimation of (5.3) by using Q.
Since,
Q' = PERI)P =
Q = PYETeInP . (5.55)

and

ﬁcLs

(X' QX)X Qy

[X'P’*l(ﬁ([} ® IT)P’lX]*lX’[P”l(EA(’Dl ®InP 'y

[(X.(E, @ INP'X]'X(E) ®Ir)y. .

(5.56)
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5.2 Asymptotically efficient estimators of p and B

5.2.1 Estimators of p

Some of the most frequently used estimators of p in applied econometric research are:

1. The least squares (LS) estimator

T
pu= Z iy 1y Z (ﬁw)Z, (5.57)

where iy, are the LS residuals of regression model (5.1).

2. The Durbin-Watson (DW) estimator, which is computed via the DW-statistic approximation as

DW
po =1~ (—) (5.58)
2
3. The generalized least squares (GL) estimator
T T 2
Pu = Z Ayl -1y / Z (ﬁf#) ’ (5.59)
t=2 t=1

where 7y, are the GL residuals after correcting model (5.1).

4. The Prais-Winston (1954) estimator ﬁﬁw, which, together with the PW estimator ﬁiw minimises

the sum of squared GL residuals.

ML
wo

defined in terms of the (heteroskedasticity corrected) ML residuals in the (heteroskedasticity

5. The maximum likelihood (ML) estimator, §,/", which satisfies a cubic equation with coefficients

corrected) regression model (5.1) [see Beach and Mac Kinnon (1978)].

5.2.2 Estimators of B

Some of the most frequently used estimators of B in applied econometric research are (Symeonides et al.,

2016)

1. The unrestricted least squares (UL) estimator

Buy = (Z'2)7'Z'Y.. (5.60)

2. The restricted least squares (RL) estimator

vec(Bry) = P(X!X.) ' XLy.. (5.61)
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3. The The generalized least squares (GL) estimator
vec(Ber) = PIX(E  INX] ' XL @ In)y., (5.62)

where ﬁl_l is the UL or RL estimator of X71.

4. The iterative generalized least squares (IG) estimator B(IG) is computed by the iterative implementa-

tion of GL estimator.

5. The maximum likelyhood (ML) estimator By can be computed computed by the iterating the GL

estimation process up to convergence (Dhrymes, 1971).



Chapter 6

Size Corrected Test Statistics

6.1 Introduction

This chapter specifies the analytical forms of the Edgeworth and Cornish-Fisher size corrections of the t

and F tests in the Special Case of The Generalized Linear Model with Panel Data. For this purpose, we

calculate some useful quantities.

6.2 t-test

Let ¢, be a known scalar and let e be a known n X 1 vector.To test the null hypothesis
HO : e’ﬁ — ey = 0
for one-sided alternative hypotheses we use the statistic

t= (/B —ey)/[0% (X' QX) le]”.

We define the (M + M) X 1) vector I and the (M + M) X (M + M)) matrix L as follows:

- [(p)u=1,..m]
[(l(yy)) (up)=1,..., M]

I= [(lp“pﬂ/)y,y’:l,...,M] [(lpy(w))y 1,...M; (vw)=1,..M
[(l(vv)p“)(w):l,...,M; u=l,... ] [(l(yy) (vv) )(yy) =1,...M; (w)=1,..., M]

and

where the elements of vector I and matrix L are defined as follows:
lp“ = h’GApy Gh,

lw = WGAuGHh,

I = KGC

PuPu Gh’

PuPu’
ZPH(W) = K ch“(W)Gh,
Z(VV)Pp = h'GC(W)P“ Gh,

lywen = W GCupywn)Gh,

(6.2)

(6.5)
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and G = A7l = (X’QX/T) ! is a (n X n) matrix, h = e/(e’Ge)'” is a (n X 1) vector, and

Cowpr = Apup” —240,GAy, +App,. 12,
Coumy = Ap,m)” =245, GAwy) + Ap,m)/2, (6.6)
Cupen = Awpon” — 24w GAw) + Agpen /2,

with the obvious adjustments for C. ,,. Matrices A;, A;; and A;;" are defined in the equation (5.47). The

corrected critical value, using the Edgeworth approximation of the ¢ distribution is given by

2
) T
ta" =ta + ?[Pl +patalta, (6.7)

(see Edgeworth, 1903). Moreover, the corrected statistic from the Cornish Fisher approximation of the ¢
distribution is given by

F=t- %2 [+ p2f]t, (6.8)

(see, inter alia, Cornish and Fisher, 1937, Fisher and Cornish, 1960, Hill and Davis, 1968). In order to
correct either the critical value or the t-statistic the required correction quantities pi, p, are given by the

following Proposition.

Proposition 5. The quantities p1, p2, required for the calculation of both the Edgeworth corrected critical

values of the t distribution, and the Cornish-Fisher corrected t-statistic are:

pp = trAL+ LAl +1'(k+ %) - Ko + A04_ 2 (6.9)
VATI-2I'A+ Ay -2
py = 1 0 (6.10)

6.3 The Wald and F Tests

Let H be a r X n known matrix of rank(H) = r and let hy be a known r X 1 vector. The test of the null
hypothesis
Ho IHﬁ—ho =0 (611)

we use the Wald statistic
w = (HB — ho) [HX'QX/T)""H' " (HP - ho)/6>. (6.12)
or the degrees-of-freedom-adjusted F statistic

F = (HB - ho) [HX'QX/T)"'H']"Y(HP - ho)/r6>. (6.13)
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Define the (n X n) matrix G and the (n X n) matrix 2 as follows
G =A"1and E = GQG, (6.14)

where

A=X'QX/Tand Q = H(HGH')'H. (6.15)

Next, define the (M + M) X 1 vector ¢ and the (M + M) X (M + M) matrices C, D as follows:

c=[ [(cp)u=1,..m] } (6.16)

[eqm)=1,..ml

C= [(Cp“ppf)y,y’ﬂ ,,,,, M] [(Cp},(vv))pzl,...,M; (vw)=1,..M (6.17)
»[(C(Vv)p,,)(vv):l,...,M; p=1,..., M] [(C(yy)(w))(yy):l,.‘.,M; (w)=1,..., M]
and
D= (o0, =1, m] [(dp#(vv))‘u:LA..,M (vv):l,...,M] (6.18)
_[(d(VV)Pp)(VV)=1,~--,M; u=1,.., M] [(d(yy)(vv))(My):l,...,M; (vw)=1,..., M]
where the elements of matrices C, D and vector ¢ are defined as follows:
Cpy = tr(APHE),
CPNP;N = tr(prpy’ E)
Cpu (vv) = tr( CPH (vv) E)
Clup) = tI‘(A(W,)E), (619)
Cuwwy) = (CrupenE)
dpupy/ = tr(Dpupy, E),
Aoy =t DpenE),
de (VV) = tr(Dp“ (vv)/ E)
where
D B ApyEAp#,
PyP;x' - T/
A, EA
P (vv)
Dy, ) — (6.20)
AuwEA)
Duwwy = ——5——

with the obvious adjustments for Cov)pur d(w)p“ and D(W>Pp'

The corrected critical value, using the Edgeworth approximation of the F distribution is given by

Fy' = Fy + 72 [q1 + q2F4] Fa, (6.21)
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(see Edgeworth, 1903). Moreover, the corrected statistic from the Cornish Fisher approximation of the F
distribution is given by

F =F- Tz(ql + q2F)F, (6.22)

(see, inter alia, Cornish and Fisher, 1937, Fisher and Cornish, 1960, Hill and Davis, 1968). In order to
correct either the critical value or the F-statistic the required correction quantities g1, 4o are given by the

following Proposition.

Proposition 6. The quantities g, g, required for the calculation of both the Edgeworth corrected critical

values of the F distribution and the Cornish-Fisher corrected F statistic are:

q1=&/r+(r—=2)/2, g2 =&/(r+2)—1/2, (6.23)

where
& = w[A(C+D)]-cAc/d+ck+1[c’AJ2 =19 — (r—2)Ao/4] (6.24)
& = tr(AD) +[dAc— (r +2)2c’A —rAp)]/4. (6.25)

6.4 Theorems

Theorem 5. The vectors I, ¢ and the matrices L, C, D, can be calculated as follows:

(i) The Cp#py, matrix is

- Lo WX R B WX T — 2ghbgh' ¥ X! R, i / wex  T?
Cop = Ouwo" P XIR, Ry Rp M H X [T = 20" 0 ¥ X/ R, "X, GX /R, X /T

+0,uu 0" X/ Ry, o, X, /2T. (6.26)

(ii) The D,,,,, matrix is

B o - o ’
D,,, = o"ol'VX|R, "X,EXR, "X, [2T7. (6.27)

(iii) The Ciupyor) matrix is
Cluwm) = OuyOuuBuy — 2B GByy. (6.28)

(iV) The D(HP)(W) matrix is
Do) = BuuEB,, /2. (6.29)

(v) The Cp, ) matrix is

Coom) = OuwX|Ry, "X, /T — 20" X/ R, "X, GX,R"X,/T?

+0,0 X, Ry, X, /2T. (6.30)
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(vi) The Dp, ) matrix is
Dy, = "' X} R, M X, EX/R"X, [2T". (6.31)
(vii) The Cpy)p, matrix is
Covp, = OwX Ry X, /T — Z(JWX{,RV"XVGX}’JR‘OHW‘X#/T2
+6, X[ Ry, X, /2T. (6.32)
(viii) The D), matrix is
Diyp, = o"X;R"X,EX/R,, "X, /2T". (6.33)
(ix) The p-th element of the (M + M) x 1) vector I is
l, = o'W GX R, "X,Gh|T, (6.34)
where
e
h= ——. 6.35
(e’Ge)'”? ( )
(x) Similarly, the (up)-th element of the (M + M) X (M + M)) matrix L is
o = Ouwo "W GX R, M RyR, M X,y GR/T = 2010t * W GX| R, "' X, GX/, R, ,*'* X, Gh/T?
+Ouw o'W GX Ry, 0, "X, Gh/2T. (6.36)
(xi) The p-th element of the (M + M) x 1) vector ¢ is
¢ = o X Ry M XE/T). (6.37)

(xii)

(xiii)

(xiv)

The (uu)-th element of the (M + M) X (M + M)) matrix C is

= ot 'R M Hux  BIT) = 2gttgh 'R HU ’
Coupwr = Opwo tr(Xupr RWRW X, E[T) - 200 tr(Xpr“ XMGX;/

+Ou oM tr (X[ Ry, p, " X, E/2T).

The (u, p')-th element of the (M + M) X (M + M)) matrix D is
dpps = a”“a“’”’X@le“”XHEXL,RP#,“’“’Xy//ZTZ.

The (up)-th element of the (M + M) X 1) vector I is

lwy = WGX,R“X,Gh/T.

W = T2
R, " X, E/T?)

(6.38)

(6.39)

(6.40)
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(xv) Similarly, the ((uu), (vv))-th element of the (M + M) X (M + M)) matrix L is

o) = Owouh GX,R*X,Gh/T - 2h'GX,R*X,GX,R"'X,Gh/T*.

(xvi) The (uu’)-th element of the (M + M) X 1) vector c is

Cluy) = tr(X;R““X“E/T).

(xvil) The ((up), (vv))-th element of the (M + M) X (M + M)) matrix C is

Cr) = OOy tr(X R X, E)/T — 2 tr(X/ R X, GX,R"' X, E/T?).

(xviii) The ((uu), (vv)-th element of the (M + M) X (M + M)) matrix D is

d = tr(X;R"X,EX;R"X,E/2T).

(Hp)(vv)
(xix) Similarly, the (y, (vv))-th element of the (M + M) X (M + M)) matrix L is

Iy = HWG[0wX;Ry X, /T - 20" X[ R, "X, GX,R" X, /T* + 5, X, R,,

1

(xx) The (u, (vv))-th element of the (M + M) x (M + M)) matrix C is

Cout) = O trXL Ry MU X, ET)
—20M tr(X;, Ry, " X, EX,R" X, E/2T?)

+0, tr(X, Ry, " X, E/2T).

(xxi) The (u, (vv))-th element of the (M + M) X (M + M)) matrix D is

Ao,y = o (X R, "X, EX|R,, "X, E/2T?).

(xxii) The ((vv), y)-th element of the (M + M) X (M + M)) matrix L is

lop, = W G[0wX Ry X,/ T = 20" X R X, GX Ry, " X,/ T* + 5,0 X Ry," X, /2T| Gh

(xxiii) The ((vv), u)-th element of the (M + M) X (M + M)) matrix C is

Covyp, = (Swtl‘( X'R FHX H/T)
—20" tr(X;R" X,GX|,R,, "X ,E[T?)

+0, tr(X|R,,"" X, E/2T).

v V/:r] Gh.

(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

. (6.48)

(6.49)
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(xxiv) The ((vv), p)-th element of the (M + M) x (M + M)) matrix D is

doyp, = o tr(XRVX,EX R, "X ,E/2T?). (6.50)

Theorem 6. Given the asssumptions of model (5.1), for each asymptotically efficient estimator of p and g,

the parameters (5.48) are:

(i)
Ao = Tlim E(0o?) = 0. (6.51)

(ii)
Ap = Tllj?o E(Uodlp) =0. (652)

(iii)
)\g = %1m E(O’odlg) =0. (653)

(iv)
A =L (6.54)

V)
ko = tr[Z"Y(AcL — AD]/M + n/M (I=UL, RL, GL, IG, ML ). (6.55)

(vi)
k. = [(M + K + 1)o" - o"d;'o™)icy,_ul. (6.56)

(vii)
Kp, = —lpu@B+n) + (21 —c1)/2p,]. (6.57)

(viii)
KPHGL = KppLs -(1- pyz)cz/2py +[c1-(1- pyz)n]/2py. (6.58)

(ix)
T e (6.59)

(x)
Agp = A;,g =0. (6.60)
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Lemmas
Lemma UR.1. 1. Let X;, Yz, (1 € ]J) be two conformable collections of square random matrices. If

IT.

X;1, Y, are of order w(q) for some positive integer q, then outside a set of probability o(p),
p . .
(X, + 1Y)t = Z(—T)lplxgl + 7w (p), (UR.1)

i=0

When the quantity of interest is a more complicated function of the data, stochastic expansions can
be based on the Taylor expansion of the function. Let I', A be subsets of some finite-dimensional

vector spaces and consider the collection of random elements
z.=y+Tw(@) el (p,q>0) (UR.2)
and the collection of nonrandom elements
Ar=A+0(1)e A (UR.3)

Given any function f:I'X A — S, we write f(x—v,A;) for the x-order term of the Taylor expansion

of the function f(x, A;) around the point (y, A;).

Consider a measurable function

f:TXA—>S (UR.4)

and assume that, for some integer s < 2, all the partial derivatives (with respect to I') of orders s
and less exist and are continuous in a neighborhood of (y,A) € I' X A. Then, given the collections

(UR.2) and (UR.3) we have

m—1
flan A = Y fulze =y, A0) + T"w(g) (UR.5)
k=0

for all m > s —1, (see Magdalinos, 1992, Corollary 1, Corollary 2).

Lemma UR.2. If x is a N(0, X) vector, and A, B, C are symmetric constant matrices, then

E(x'Ax) = tr AL,
E(x’Axx'Bx) = tr AL tr BE + 2(tr AZBX), (UR.6)
E(x’Axx'Bxx'Cx) = tr ALtr BEtr CL + 2tr AL(tr BECX)

+2tr BE(tr ALCE) + 2 tr CE(tr ALBE) + 8(tr ACBECE), (UR.7)

(see Magnus and Neudecker, 1979).
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Lemma UR.3. If V is a T X 1 matrix, the rows of which are independent N(0, C) vectors and A is a

confomable matrix, then we have:

E(V'AV) = (tr A)C, E(VAV’) = (tr CA)Ir,
E(VAV) = A'C, E(V'AV') = CA/, (UR.8)
E(V'VAV'V) = T(tr CA)C + T(T + 1)CAC, (UR.9)

(Magdalinos, 1983, page 263 Lemma E.1).
We define the GLS estimator of § when the matrix £ is known.
B=XQX)"'X'Qy (UR.10)

By using the Theorem of Basu (Rothenberg, 1984a, Rothenberg, 1984b) and the definitions (1.26) and
(UR.10), we can show that ¥ and ff — f the distribute independently from the 3

Lemma UR.4. Applies that
B =B+o(b+1b.) (UR.11)

where

b= NT@-p)/o, b.=TPB-p)/o. (UR.12)

In addition, the following apply:

b = GX'Qu/VT,b~ N(0,G), where G = (X' QX/T)!
and (UR.13)
b. = GX'QMu, where M =1 - X(X'QX)"'X'Q.

Proof of Lemma UR.4. substituting equations (1.25) and (1.26) in the equation (UR.10) we find
B = (X' QX) X' QXB + ou) = B+ (X' QX)X Qou (UR.14)

and

B=X'QX)'X'QXB +ou) = B+ (X' QX/T)"'X'Qou. (UR.15)

Using (1.29) and substituting (UR.14) and (UR.15) in definitions (UR.13), we find:

S
Il

VTB - B)/o = VT(X'QX/T)' X' Qou/o = NT(X'QX/T)"' X' Qu/T

(X' QX)X Qu/ VT = GX'Qu/ VT, (UR.16)
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ii.

where

G=XQX/T)'=A"1. (UR.17)
From the assumptions of model (1.1) we have that
u~NQO Q™). (UR.18)
From equation (UR.16), and since b and b® are odd functions of u# we have
E(b) = GX’QE(u)/ VT = 0 hence E(b%) = 0. (UR.19)
Furthermore, by using equations (UR.16), (UR.17) and (UR.18) we find

Cov(b) = E(@b)=E(GX' Quu'QXG/T) = GX'QEuu')QXG/T = GX' QQ'QXG/T
= GX'QXG/T=GX'QX/T)G=GG'G=G=A"". (UR..20)

It follows that
b~ N(0,G), where G = A™! = (X’QX/T)™! (UR.21)

b. = TB-P)o=T[B+XQX) X' Qou-p - (X' QX)X Qoul/c
= TIX'QX)'X'Qu - (X' QX)" (X' QX)(X'QX)" X' Qu]
= T[X'QX)'X'Q[I - X(X'QX)'X'Qlu] = T(X'QX) ' X' QMu
= (X'QX/T)'X'QMu = GX'QMu, (UR.22)
where

G=XQX/T)'=A"1, A=X'QX/Tand M =1 - X(X'QX)'X'Q. (UR.23)

From the definitions of b and b. and the definition of T we find that Tob = ﬁ —p and 20b, = ﬁ - ﬁ_

Therefore we have
tob + t?0b, = to(b+1b.) = B-B+B-B=f—-B = B =B +10(b+1b.), (UR.24)

(see Symeonides, 1991, lemma B.1).
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7

The following matrices are defined:

trR

trR%/T

trR3/T

p2 where |r] < 1,

T — rR/T=1,
2

+p -1
1—p2+0(T ),
LRV UR.25
a—p ) (UR.25)
AR = trE=2,

1_p2T
RAR — trZ=2———,

1-p?

ARy =E* = trX =2(1+p"™™"),
2T
Z[sz(T—l) + 1-p ]
1-p2 [
(AR)® = AR(AR)* = EX = tr @ =2(1 +3p*T™D),

AR = W= —2 +o(T™), (UR.26)
1-p?

(see Symeonides, 1991, lemmas I'.1,T.2 and I'.5).

Theorems

Theorem UR.1. Isserlis’ Theorem or Wick’s probability Theorem is a formula that allows one to compute

higher-order moments of the multivariate normal distribution in terms of its covariance matrix.

E[X1X2X3X4] = E[X1X2] E[X3X4] + E[X1X3] E[X2X4] + E[X1X4] E[X2X3] (UR27)
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Notational Conventions

The Model

Lemma A.1. Define the T X T matrices R., R.,, R.p, as follows:

JR ’R
R.=[R/1-p)", Ry = =, Rypp = = Al
[R/( P )] 0 ap op 8P2 ( )
Then,
R., =2plt =D - 2pA, (A.2)
and
R.pp = 2(IT - A). (A.3)
Proof of Lemma A.1. Equations (1.22) and (A.1) imply that
R. = (1+ p)Ir - pD - p?4, (A4)

where It is the identity matrix, D is a matrix with elements 1 if |i — j| = 1 and O elsewhere, and A is a
matrix with elements 1 in (1,1)-st and (T, T)-th position and 0 elsewhere.

The following results hold:

i. Using equation (A.4), the first order derivative of R, is

_ aR* _ i 2 _ _ 2
R, = a0 - ap[(l + p)r — pD - p~A]
= 2pIr —D —2pA. (A.5)

ii. Using equation (A.5), the second order derivative of R, is

PR, 0 (aR*)

: dp> ~ Ip\ap

*Pp
= i(2 It — D —2pA)
= ap pit P
= 2Ir-2A
= 2(It - A). (A.6)
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O
Lemma A.2. Define the T X T matrices
R.; =R., + jpA, R.jj = Ripp +jA(j =1,2). (A7)
Then,
R., = R — pA = R, — 2pA, (A.8)
and
Ruyp =R —A =Ra - 24, (A.9)
Proof of Lemma A.2. Equation (A.7) implies that
R., = R.j— jpA (A.10)
and
R.pp = R.jj — jA. (A.11)
For j =1, the following results hold:
i
R., = Raq —pA, (A.12)
ii.
R.;p = Ra1 — A. (A.13)
For j =2, the following results hold:
i
R., = Ry —2pA, (A.14)
ii.
Ry,pp = Ry — 2A. (A.15)
O
Lemma A.3. The (t,t')-th element of the T X T matrix R, is
Fap = O + p*0u (1 = 011 = Oer) — p(Oypr+1) + Oes1yr)- (A.16)

Proof of Lemma A.3. The following results hold:

i. The (¢,t')-th element of matrix It is Oy, i.e., it is Kronecker’s delta.
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ii. The (t,t')-th element of the T X T band matrix D equals 1 if |t — #| = 1 and it equals zero otherwise.
Therefore, the (t,t’)-th element of matrix D is

Or(r+1) + O(ta1yp- (A.17)

ili. The T X T matrix A has 1 in the (1,1)-st and (T,T)-th position and zero’s elsewhere. Therefore, the
(t,t”)-th element of matrix A is

01:01 + O1tOn- (A.18)

Equation (A.4) implies that
R. = (1+ p)Ir - pD - p*A. (A.19)

By using the results (i.), (ii.) and (iii.), we can write the (f,#')-th element 7. of the T X T matrix R, as

follows:

(1 + pHSuw — p(Orwr+1) + Sg+1yr) — P*(O1:01 + O1eO1rr)

Vet

St + P*(Or — 6104 — OTi0w) — P(Otrr+1) + Ogesnyrr)
= O + p*Ouw (1= 81t — O1t) — p(St(r+1) + Ogesnyr)- (A.20)

Lemma A.4. Confirmation of equation (1.23)

Proof of Lemma A.4. Lemma A.3 implies the following results:

i. Elements on the principal diagonal:f = #’. equation (A.20) implies that

Tutt St + p20u(1 — 811 — 611) — P(Sir+1) + Oe1yt)

1+ p*(1 = 611 — 611 (A.21)
(1) Fort=2,...,T—1, 614 =0 and 67 = 0, and equation (A.21) implies that
ra=1+p> (t=2,...,T-1) (A.22)
(2) Fort=1, 614 =611 =1 and 071 = 611 = 0, and equation (A.21) implies that
rai=1+p’1-1-0)=1 (A.23)
(3) For t =T, 61t = 017 = 0 and 61+ = 67 = 1, and equation (A.21) implies that

rar=1+p’1-0-1)=1 (A.24)
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ii. Elements on the lower secondary diagonal: t =# + 1. Equation (A.16) implies that

Tatr = Twp+1)r

Sty + P2 0w 1y (1 — 8141y — O1(r+1) — PO +1) e +1) + O+1+1)r)

= —p. (A.25)

ili. Elements on the upper secondary diagonal: t = # — 1. Equation (A.16) implies that

Vapr = Vo -1)¢

8-ty + PO -1y (1 = S1(pr-1) = O1(r-1)) — PO(t-1)(t'+1) + O(pr—1+1)1")
= —p. (A.26)

iv. Lower off-diagonal elements: t =# + j (j > 2). Equation (A.16) implies that, for j > 2,

Tatr = Va4
S + P70 +jr (1 = Suprajy — O1w+) — P(Ow+jyier+1) + O jyr)
= 0. (A.27)

v. Upper off-diagonal elements: t =+ —j (j = 2). Equation (A.16) implies that, for j > 2,

r*ttl = r*(t’—j)t’

Sw—pp + PO i (1 = S1w—j) — O1e—p) — P(Ow—jyer+1) + O—jrye)
0. (A.28)

Lemma A.5. The (t,t')-th element of the T X T matrix Q is
_ -1 -1
Wiy = Vup O "Op (A.29)

where 1.y is defined in equation (A.16).

Proof of Lemma A.5. Equations (1.22), (1.24) and (A.1)—or (1.24), (A.19)—imply that
Q=xr""RE, (A.30)

Let oy be the (f,t')-th element of matrix L. Further, let 0. be the (f,t')-th element of matrix £~!, and

ot , YA
0. =(0")" be the (t,#')-th element of matrix X7,
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Equation (1.25) implies that the (t,#)-th element of the T X T diagonal matrix £~ is

/ 1
o = O — =bwoy !, (A.31)
Ot
which implies that
L7 = [0 1, 1] (A.32a)
= [(6tt’Gt_l)t,t’zl,...,T]' (A.32b)

Let wy be the (t,t')-th element of the T X T matrix Q, i.e.,

Q = [(ww)iy=1,.,71]- (A.33)

,,,,

Since 7.y is the (£, #)-th element of the T X T matrix R., equations (A.30), (A.32a) and (A.33) imply that

Q [(wy )t,t’:l,‘..,T]

—_
—~~
N
S
=
S
|
iR
—
=
=
I
L
)
—
—_
—~
=
x
-
3
~
=
=
h
N
=
Il
LN
)
=
—
—~~
o2
=
~
N
Y
|
-
—
<
R
Il
\D—‘
i—]
i

,,,,,,,,,,

T T
IR

[(ZE On, Oup Tur0Of Op ) ]

tp=1,.T

t=1t=1"~"—~— AL

L=t  p=p
= [(raro: 'or ip=1,.1], (A.34)
which implies that
wy = rypoy oy (A.35)
O
Lemma A.6. The following results hold:
1 1 1
=—, =—, wpy=(1+p)— (t=2,...,T-1
w11 o2 WTT or2 wp=(1+p )otz ( )
Wy =—p fort=t+1landt=¢t -1, (A.36)
0t0p

ww =0for t=t+jandt=t'—j (j>2).

(t'<t=3,...,T or t<t'=3,...,T)

Proof of Lemma A.6. Lemmas A.4 and A.5 imply the following results:
i. (a) Fort=2,...,T—1, equations (A.22) and (A.35) imply that

1
Wy = (1 + p2)0_—t2 (A37)



84 Appendix A

(b) For t =1, equations (A.23) and (A.35) imply that

1
w11 = O'_12 (A38)
(c) For t =T, equations (A.24) and (A.35) imply that
wrr = (A.39)
™= .
ii. For the lower secondary diagonal: t =t + 1. Equations (A.25) and (A.35) imply that
Wy = — L (A.40)
tH = thOt/ . .
iii. For the upper secondary diagonal: t = ' — 1. Equations (A.26) and (A.35) imply that
Wy = — ! (A.41)
= po_tat’ . .
iv. Lower off-diagonal elements of Q : ¢ =+ + j (j > 2). Equations (A.27) and (A.35) imply that
wy =0 (t/ <t=3,... ,T) (A42)

v. Upper off-diagonal elements of Q : t =+ —j (j > 2). Equations (A.28) and (A.35) imply that

wp =0 (t<t =3,...,7T). (A.43)

Lemma A.7. The T X T matrix £ can be written as follows:

1 1
? —pm e 0
1 2y 1 1
PO 1+0952  ~Prs (A.44)
. _ 1 :
pOT—mT

1 1

0 e —p or107 ?
Proof of Lemma A.7. The proof follows by using Lemma A.6. O

Lemma A.8. Let 7.4y, and r.4ppp be the first- and second- order derivatives of r. with respect to the

parameter p, i.e.,

&rm' 821’*”/

Tatpp = W, Tstt pp = 8—

= (A.45)

The following results hold:

Tarp = 2001 (1 = 01t — O1¢) — (Oprr+1) + Ot41)r),
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T’*tt’pp = 26”/(1 - 611} - 6Tt)- (A46)

Proof of Lemma A.8. Equation (A.16) implies that

Oy
Ip
= 2p0w (1 = 61t — O1t) — (O +1) + O )- (AA47)

Vit p =

Equation (A.47) implies that

P (921@”':1(@):&(1, )
*tt'pp apz ap 3[) ap =t p
= 26”/(1 - 6“ - 6Tt)‘ (A48)

Lemma A.9. Let R., be the first-order derivative of the T X T matrix R. with respect to p. Then, R., can

be analytically written as follows:

0 -1 0
-1 2p -1
R., = -1 2p . . (A.49)
-1
0 -1 0

Proof of Lemma A.9. Lemma A.8 implies the following results:

i. Elements on the principal diagonal t = #’. Equation (A.47) implies that

Tatp = 2p0u(1 = 61 — 611) — (Orr+1) + Ogr+1)t)
2p(1 = 61¢ — Omy). (A.50)

(a) For t =2,...,T—1, 614 = 0 and 67y = 0 and equation (A.50) implies that

Fatp = 2p, (£=2,...,T = 1). (A.51)

(b) For t =1, 614 = 611 =1 and 674 = 611 = 0, and equation (A.50) implies that

Te11p = 2p(1 -1- O) =0. (A52)

(c) For t =T, 614 = 617 = 0 and 07 = Opr = 1, and equation (A.50) implies that

r*TTp = Zp(l -0- 1) =0. (A53)
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ii. Elements on the lower secondary diagonal t =#' + 1. Equation (A.47) implies that

Tattrp = Ta+1)p

206 +1yr (1 = O1041) = O1(¢41)) — (O +1)#+1) + Opr+141)1)
_— (A.54)

iii. Elements on the upper secondary diagonal ¢ = # — 1. Equation (A.47) implies that

Tattrp = Ta-1)tp

200 -1yr (1 = O01¢0—1) = O1(¢=1)) — (Ow-1)(#'+1) + Or—1+1)r")
- -1 (A.55)

iv. Lower off-diagonal elements: f =+ + j (j > 2). Equation (A.47) implies that, for (j > 2),

Tarp = Taejtp
= 200 +jr(1 = O104+j) = O1(+j) — (O +j)+1) + O(pr+j+1y)
0. (A.56)

v. Upper off-diagonal elements: t =’ — j (j = 2). Equation (A.47) implies that, for (j > 2),

Ftrp = Tu(r=jp
= 200 -jy(1 = O1-j) = O1(-j)) — (O —j)+1) + O —jr1yt)
= 0. (A.57)

Equation (A.41) follows immediately from the results (i.) through (v.). O

Lemma A.10. Let R.,, be the second-order derivative of the T X T matrix R. with respect to p. Then,

R.pp can be analytically written as follows:

00 . 0
02 0 0

Rep=[0 0 2 "~ | (A.58)
0 0 0

Proof of Lemma A.10. Lemma A.8 implies the following results:
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i. Elements on the principal diagonal t = #’. Equation (A.48) implies that
Tsttpp = 264(1 = 61 — O14)
= 2(1 -6y — o). (A.59)
(a) Fort=2,...,T—1, 634 = 0 and 07 = 0 and equation (A.59) implies that
r*ttpp = 2, (t = 2, ey T - 1) (A60)
(b) For t =1, 614 = 611 =1 and 674 = 611 = 0, and equation (A.59) implies that
T:11pp = 2(1 -1- O) =0. (A61)
(¢) For t =T, 61y = 617 = 0 and 07 = O7r = 1, and equation (A.59) implies that
rerrpp =2(1-0-1) = 0. (A.62)
ii. Elements on the lower secondary diagonal t =’ + 1. Equation (A.48) implies that
Tarpp = Tx(+1rpp
= 20¢+1yr(1 = d14+1) — O1(rr+1))
= 0. (A.63)
iii. Elements on the upper secondary diagonal t = # — 1. Equation (A.48) implies that
Tatrpp = Te(r-Drpp
= 20@-1yr(1 = d1-1) — O1(rr—1y)
= 0. (A.64)
iv. Lower off-diagonal elements: t = + j (j > 2). Equation (A.48) implies that, for (j > 2),
Patrpp = Ta(+jrpp
= 20@+jr (1 = d1w+j) — O1w+j)
= 0. (A.65)
v. Upper off-diagonal elements: t =t — j (j = 2). Equation (A.48) implies that, for (j > 2),
Tattrpp = Te(e=j)t'pp
= Zé(t/_]‘)t/ (]. - 61(t/_]‘) - 6T(t'—j)) = 0 (A66)
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Equation (A.58) follows immediately from the results (i.) through (v.). O

Lemma A.11. Let wyyp, Wi pp be the first- and second-order derivatives of wy with respect to the parameter

p, ie.,
2
80)”/ 8 Wiy

Wirp = W, Wi pp = B_pz (A.67)

The following results hold:
Wirp = Tapp0r 0y, (A.68a)
Wty pp = r*tt’ppat_lat’_lr (A68b)

where 7., and 7., are defined in equation (A.46).

Proof of Lemma A.11. Equation (1.13) implies that o; is functionally unrelated to the parameter p.

Therefore, Lemma A.5 and equation (A.45) imply the following results:

dwyw  d a4 - LAY
Wirp = aptt = %(T’*tt'ﬁt top™h) :( 8: )Ut oyt
= httlpdt_lo'f/_l. (A.69)
Pww _ P -1 -1 Prav) 1
Wirpp = 8—p2 = a—pz(ﬁtt'at oy )Z( 9P ) t Oy
= Tarppor op (A.70)

O

Lemma A.12. Let Q,, £, be the first-and second order derivatives of the T X T matrix £ with respect

to p, i.e., ,
Q, = ‘;_f 0y = %‘j (AT1)
The following results hold:
Q, = LR,
Q,, = L"R,ET" (A.72)
where R,, = 88—1:;, and R.p, = &;_;(;

Proof of Lemma A.12. Equation (1.13) implies that the elements ot = 60,71 of the T X T matrix L2

are functionally unrelated to the parameter p. Therefore, equation (A.30) implies the following results:

i. The first order derivative of the T X T matrix £ with respect to p is

Q9 IR
_9Q 9 oy ot OR o iy o
=5 = 5 F R = E ( o )z LR, £, (A.73)
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ii. The second order derivative of the T X T matrix £ with respect to p is

829 82 1 1 1 azR* 1 1 1
= — = (& ER.E™ /2) =y /2(_)2— k= p-hR, ¥k, (A.74)
PP apz pz (9p2 PP
O
Lemma A.13. The T X T matrices £2, and €, can be analytically written as follows:
1
0 e 0
1 1 1
Tae P o
Q, = . (A.75)
1 1 1
T 01207111 pUT—lz T ora0r
1
0 _(7T—1UT 0
0 0 0
1
0 o7 0
Q,, = . (A.76)
0 0 0 25 0
0 0 0 0
Proof of Lemma A.13. Since,
'Qp = [(wtt’p)t,t’:l ,,,,, Tl, Qpp = [(a)tt’pp)t,t’:L,“,T]' (A.T7)

the proof of equations (A.75) and (A.76) follows by combining Lemma A.11 with Lemmas A.9 and A.10,

respectively. O

Lemma A.14. Let x; and z; be the t-th rows of the T X n matrix X and the T X m matrix Z, respectively.

The following results hold:

X'X =
£

xix;, Z'Z =
t

T T
24Z]. (A.78)

=1 =1

Proof of Lemma A.14. Since x; and z; be the t-th rows of the T X n matrix X and the T X m matrix Z,

respectively, x; and z; are the t-th columns of the matrices X’ and Z’, respectively, i.e., we can write that

J ’
Xy 2
X, z
!
X=("1, Z=|"|, X' =|x;, x, -, XT]/ Z:[le Z2, vy, ZT]' (A.79)
X! z!
[T | L=T ]
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Therefore,
X
X)) T
X'X = [xl, X2, **°, XT] = thx;. (A80)
: t=1
X7
Similarly,
z
z) T
7’7 = [Zl, Z2, ,ZT] | = ZZtZ;. (A81)
t=1
27 ]

O

Lemma A.15. Let o be the (t,t)-th diagonal element of the T x T diagonal matrix X7, i.e., by using
equation (1.18) we write that

1
O‘tt = O‘t_z = O_tz (A82)

Moreover, let ¢;*, 0;i"" be the first-and second-order derivatives of o' with respect to the element of the

m X 1 non-zero vector ¢ = (¢1,...,Sm), i.€.,

da"! do"!
t t
5 L 0ii . A.83
l dei” T deic; ( )

The following results hold:

to_ Zti
M= -

Gt4,

27424
Gi]‘[t = ﬂ (A.84)

O'té

Proof of Lemma A.15. Equation (1.13) and (A.82) imply that
o = (zjg) ™. (A.85)
Further, since Z~! = diag(a™), equation (A.85) implies that

(A< 0

0 (zhe)™ b ... 0
= 2 . (A.86)
0 0 0

0 0 e (207
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Let z;; be the i-th element of the 1 X m row vector z; i.e., z;; is the (t,i)-th element of the T X m matrix

Z.
Equations (A.83) and (A.85) imply the following results:

i. The first order derivative of o' with respect to the element of the m X 1 non-zero vector ¢ is

tt = a(Z;G)_l = i(L) = — Zti
¢ 9ci\(z6) (z/6)?
Zti

Gt4'

= [see (1.13)]

(A.87)

ii. The second order derivative of o with respect to the element of the m X 1 non-zero vector ¢ is

w_ PET 9 (8(z;c;)‘1
oij. =

dcidc; i\ g

- -t e
95\ (z)c) "oci\(z)c)

- [ ZZt;(ZQG)] 224z

=  —Zt| — =

(zio)* (zie)®
_ 2Zt,‘Zt]‘
= 5
Lemma A.16. Define the scalars
do; 20,
Ot =

9o = S0
dci” Y dcioc;

The following results hold:
Zti ZtiZtj

Ot = 5—, Otij=— 403
t

ZO't

Proof of Lemma A.16. Equation (1.13) implies that

or = (zg)"".

By combining equations (A.89) and (A.91), we find the following results:

d 1 d 1 1
. = B /)2 = _(Z -2 (! =

Zti

ZGt.

) = [see (A.87)]

11
2(z0)" "

(A.88)

(A.89)

(A.90)

(A.91)

(A.92)
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Otij

Lemma A.17. Define the scalars

The following results hold:

02 EN e
- 7 N\ R o 1 _
9¢idg; [(z:6)"] Jc; [5’@' (zi6) ] [see (A.92)]

0 (z)_z 9 (1)
Tq(zat) ) agj(at) = [see (A.91)]

Yol 1=~
zy 1
_Zmzti
_Ztith
40
3
(0°)i = 8_gi’ (0°);j =

3
(Uts)i = 5 0tZti, (Gts)ij =

2

Proof of Lemma A.17. Equation (A.91) implies that

By combining equations (A.94)

(Uts)i

(0t3)ij

o = (zj) .

r =32 d ’
Jeter ™ 3=t

d*a?
dcide;’

324z j
401}

and (A.96) we find the following results:

J e 3., un @,
8—@[(4;) r] = E(ztg)/ z(ztg) = [see (A.91)]

= O0tZt.
2

2
dcidg;
0 3 _ 3Zti J
(ng(zOtth)— > 9gj(at)

%th = [see (A.92)]

3z Ztj
2 2Ut
3z1izi
40',} )

i

[(z;6)"] = a%j[a%[(z;g)%]] = [see (A.97)]

= [see (A.89)]

(A.93)

(A.94)

(A.95)

(A.96)

(A.97)

(A.98)
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Lemma A.18. Define the scalar
1
B Ot0p !

Gtt

(A.99)

and let 0;""", 0;; be the first- and second-order derivatives of o' with respect to the elements of the m X 1

non-zero vector ¢ = (¢1,...,Sm), i.e.,

i 30”/ i azatt’
t t
w00 w90 A.100
l dci " Y dcidg; ( )
The following results hold:
ol =g | B gy o [T PR B R (A.101)
ZGtGy Gtz thz 40t0t/ Gt4 Otr4 UtZthz
Proof of Lemma A.18. Equations (A.99) and (A.100) imply the following results:
i. First order derivative of o with respect to the elements of the m X 1 non-zero vector ¢ is
, (1 1
t
o - = — —(os0p
l 8gi(atafr) (a0 )? 9, 71r)
1 7
= ————|oy=—(ov) + or=—/(0¢)| = [see (A.89
—53 015 (00) + 00 5= (00)| = [see (A.59)]
1 1
= ——5—|owowi + than][see Lemma (A.16), and equation (A.89)]
ot“0Op~L
S S P T ﬁ]
UtZO'tIZ L tZUt/ ! ZGt
- Zvi 2
20130 2004
1 Zti Zpi
_ 2o 2| A.102
ZGtUt/[Utz Gt/z ( )

ii. Second order derivative of 6" with respect to the elements of the m X 1 non-zero vector ¢ is

ot = 9_2(L) _ i[i
dcidci\owor ) dgjldg;
_ d Zyi Zti
B 07—6][ 20130 200,
_ Zti 0 1 Zyi J
a _?a_g,(af’_ot) 29

1
0t0p

(5

]

1

- (A.103)
pUt

(7=)
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To calculate (A.103), we must compute the following intermediate results:

(a) First we calculate the following quantity:

i(L) = —;i(o So1)
dcj\aloy (0Par)2adc !
1 5 0 d , ]
= - —(op) + op —
Utéﬁtz, [Ut agj(Gt) O agj(Ut )
= [see (A.89) and (A.94)]
1
= _Otéatz, [Ut30t'j + Ut’(at3)j]

= [see Lemmas (A.16) and (A.17), Equations (A.92) and (A.97), respectively.]

= - ! [03ﬁ+0 goz ]
3z Zyj
_ 5” - 3” _ (A.104)
2(71} oy 2C7t Gt/3
(b) Similarly, we find that [by interchanging indices ¢, t'].
J 1 3zpj Ztj
—( 3) =——r-— (A.105)
dci\oop 204°0; 207043
Equations (A.103) (A.104) and (A.105) imply that
G,,tf' _ _@[_ 3Zt]' _ Zt’j ]
K 2 ZGtSGt/ 20}30}/3
zﬁ[ Bz zj ]
2 ZthSGt ZO'tSGt/?’
_ 32424 ZtiZy 3zpiZy ZyiZtj
B 4Gt50t' 4Gtr30t3 4Gtat’5 4Gt30t/3
_ 1 [3ztizt]- 3zpizrj  Znzrj +zt,,-ztj] (A.106)
4C7t0t/ O't4 Ut/4 O-tzat’z
O

Lemma A.19. Confirmation of the results in Lemma A.18.

Proof of Lemma A.19. For t = ', Lemma A.18 implies the following results:

ot = _L[ﬁ + ﬁ] = _L[%]
i 20t2 Utz Ut2 zgtz Ut2
7.
= __t; = [see Lemma (A.15)]
Ot

= g (A.107)
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w1 73zuzy  Bzuziy  ZuZy + ZiZij
gij = 45,2 4 s 4
o Ot Ot Ot
1 [SZtith]
401}2 Gt4
2Zt,‘Zt]'
= = [see Lemma (A.15)]
Ut6
= 0. (A.108)
O
Lemma A.20. The (f,t')-th element of the T X T matrix £ can be written as
Wi = r*ttlo-tt/, (A109)
where 7.4 and o' are defined in equations (A.16) and (A.99), respectively.
Proof of Lemma A.20. The proof follows by combining Lemma A.5 and (A.99). O

Lemma A.21. Let wyyj, wypij be the first- and second-order derivatives of wy with respect to the elements

of the m X 1 non-zero vector ¢ = (¢1,...,¢n), i€,

dwyy 8ZCUtt'
Wi = =, Wwij = 53~ A.110
wi= 5o tij 9cdc; ( )
The following results hold:
Wi = Tapoi’” Wrij = r*tt’oijﬁ,- (A.111)

where ot and 01-]-”/ are defined in equation (A.101).

Proof of Lemma A.21. Equation (1.13) implies that o; is functionally unrelated to the parameter p.

Therefore, Lemma A.5 and equations (A.99) and (A.100) imply the following results:

O = dw _ a(,, o lop ) = ¢ i(_l )
tt'i - (99 - agl =t Ut t — Fxtt agl 010
&Gtt’
= r*ti"_
IGi
= raoi’. (A.112)
(92a)tt/ 82 (]" o _10_ _1) " 82 ( 1 )
Wiyij = T 5. — 55 Ot t =Vt 5=\ ——
K dcidc;  9cidg; dcidci\aop
2qt ,
= = r*tt’aijtt . (Al].?))

Vet =———
" dcidc;
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Lemma A.22. Let Q,, Q. be the first- and second-order derivatives of the T X T matrix £ with respect

to the elements of the m X 1 non-zero vector ¢ = (¢1,...,6n), i.e.,

2Q *Q
Q. =—, Q. =——. All4
Gi 8Ci s CiCj agiggj ( a)

The matrices €, and £, can be analytically written as follows:

Gi

_% _po‘ilz 0
—poi?t —(1+p)ZE  —po®
Q. = ) , (A.114Db)
T-1)(T-2 Z(r-)i _
—po TN 4 pz)% —pa (DT
(TN(T-1) Z7i
0 —po; —a
where
1 Zyi Z(tx1)i
ol - _ (ﬁ 4 e ’1) (A.114c)
2 2 2
0101\ 0} 01
and
[ 221,21/ 12
% —po’; 0
21 2y 222172 123
PUI-]- (1 + p )g_g paij
Q. = , (A.1144d)
_pal(“Tfl)(T—Z) a+ pz)zza—?zza—l)f _pGET)(Tfl)
] O(r-1) ]
—nMT-1) 2zrizr
0 POij %
where
ey _ 1 [3th'421‘]‘ 3Z(tiliiz(trl)j Zn‘Z(tﬂ)jz +2thz(t¢1)i (A114e)
i 4010111 o Opq 0,0,

Proof of Lemma A.22. Lemmas A.4, A.6, A.15, A.18, A.20, and A.21 imply the following results:
I. First-order derivatives

i. 1. For t=2,...,T -1, equations (A.22), (A.37), (A.84), (A.109), (A.111) imply that

wii = (1 + p?)o't (A.115a)
= —(1+p) (A.115b)
o

t

2. For t =1, equations (A.23), (A.38), (A.84), (A.109), (A.111) imply that

wii=1-0}" (A.116a)
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==L (A.116b)
9
3. For t =T, equations (A.24), (A.39), (A.84), (A.109), (A.111) imply that
wrri=1-0!" (A117a)
= (A117b)
or

ii. For the lower secondary diagonal t = ' + 1. Equations (A.25), (A.40), (A.101), (A.109), and
(A.111) imply that

N I [_ 1 (ﬁ @)]
Wi = —pot = —pao. = + A.118a
ti po; po; p 20,00 o? Utz/ ( )
= [and since ' =t —1] = P (Z—Z + %) (A.118b)
201011\07 07

ili. For the upper secondary diagonal t = ' — 1. Equations (A.26), (A.41), (A.101), (A.109), and
(A.111) imply that

, 1 (z4  zpi
Wy = — o'#t = — O't.(t+1) = — [— (i + L)] A.119a
tt'1 P i P i P 20th/ Gtz O_tz/ ( )
= [and since ' =t + 1] = P (Z—tzl + Zt;“ ) (A.119Db)
2010141 O} Ots1

iv. Lower off-diagonal elements: t =# +j (j > 2). Equations (A.27) and (A.111) imply that

Wi = 0 (t’ <t= 3,. . .,T). (A..].QO)

v. Upper off-diagonal elements: t =+ —j (j = 2). Equations (A.28) and (A.111) imply that

wwi =0 (t <t = 3,.. ,T) (A121)

II. Second-order derivatives

i. 1. Fort=2,...,T -1, equations (A.22), (A.37), (A.84), (A.109), (A.111) imply that

wwij = (1+ pz)ag% (A.122a)
22474
=(1+p? — L. (A.122b)

t

2. For t =1, equations (A.23), (A.38), (A.84), (A.109), (A.111) imply that

w1ij =1+ 0,-1]-1 (A.123a)
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ii.

iil.

iv.

272121
S| (A.123b)
91
3. For t =T, equations (A.24), (A.39), (A.84), (A.109), (A.111) imply that
wrrij =1 'GiTjT (A.124a)
2z1iZT;
-7 (A.124b)
or

For the lower secondary diagonal t = #' +1 (and since ' = t — 1). Equations (A.25), (A.40),
(A.101), (A.109), and (A.111) imply that

3z4izyi Bzpizpi  ZyZpi + Z4iZpi
_ o Ht-1) _ [ 1 ( ti4tj vist'j ti~t' | tj tz)]
Wi = —p0 = —po.; = — + + A.125a)
i = TP P9y 40y \ ot ot o?a? (
3znizij  BZg-1)iZ(t-1)j  ZtiZ-1)j T ZtjZ(-1)i
___Pp [ 2j | HEDEE-D) | ZHEE-D) T 2 >1]. (A.125b)
400111l ot ot 020

t t-1 t9t1
For the upper secondary diagonal t =t/ —1 (and since t’ = t + 1). Equations (A.26), (A.41),
(A.101), (A.109), and (A.111) imply that

, 1 (3zuzij  3zwizej  zZuzZyj + ZijZvi
S | (5 ) I [ ( ] J ] ] )]
Wi = —P0;; = —p0o = + + A.126a
i) p g P Y P 4Otot' Gt4 th4 O'tsztfz ( )
324Zt;  BZ+1)iZ+1)j  ZHZ(t+1)j T ZHiZ(+1)i
___P [ 4]+ ( )i )j ( >;2 ;( >]' (A.126b)
40:0141L o4 Ots1 01°014+1

Lower off-diagonal elements:t = + j (j = 2). Equations (A.27) and (A.111) imply that
Wipij = 0 (tl <t=3,... ,T) (A127)
Upper off-diagonal elements:t =t —j (j = 2). Equations (A.28) and (A.111) imply that

Wiyij = 0 (t <t = 3,..., T) (A128)
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Lemma A.23. Let £, be the second-order derivatives of the T X T matrix £ with respect to p and the

elements of m X 1 non-zero vector ¢ = (¢1,...,¢m)’, i.e.,

The T X T matrix €, can be analytically written as

where

pGi =

P
s = oae
(44
—o12
—ij—; -0%
—o2
(T-1)(T-2 _n o ET-Di
—oi 2p0(m>4
g (DT-1)
oD — 1 (@ Z(t+1)i )
l 2010121 \0? o>

t t£1

Proof of Lemma A.23. Equations (A.75) and (A.99)

g, (N(T-1)

0

i. 1. Fort=2,...,T —1, the t-th diagonal element of the T X T matrix Q, is

1
a)ttp = 2‘Da_t2

2pa'.

2. For t =1, the diagonal element of matrix €2, is

wnp =0.

3. For t =T, the diagonal element of matrix €, is

a)TTp =0.

(A.129)

(A.130a)

(A.130b)

(A.131)

(A.132)

(A.133)

ii. For the lower secondary diagonal t =" +1 (and since t' =t —1). The (t,t’)-th element of £, is

1
OO0y

Wiyp = —

(A.134a)

(A.134b)
(A.134c)

(A.134d)
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iii. For the upper secondary diagonal t =t —1 (and since t' = t +1). The (t,t’)-th element of £, is

1

Wirp = “oon (A.135a)
=o' (A.135b)
—gttD (A.135c¢)
= wt(Hl)p. (A135d)

iv. Lower off-diagonal elements:t =t +j (j > 2). The (t,t’)-th element of Q, is
Wiyp = 0 (t, <t=3.. ,T) (A136)

v. Upper off-diagonal elements:t = +' — j (j > 2). The (t,t’)-th element of £, is
Wiyrp = 0 (t <t = 3,.. ,T) (A137)

L. Derivatives of the diagonal elements of £, with respect to the elements of the m X 1 non-zero vector
¢=(¢1,...,Cm) . Equation (1.13) implies that o; is functionally unrelated to the parameter p.

Therefore, Lemma A.15 implies the following results:

i. 1. Fort=2,...,T -1, equations (A.83), (A.84) and (A.131) imply that

(92&)” 0 awﬁ J 0 8(7”
== —l— )= — = —(2 tt:2_ Al
W = ot = 5G] = g = 200" =205 (A.138a)
=2po"t (A.138Db)
Zti
=-2p—. A.138
P ( c)
2. For t=1, equation (A.132) implies that
32(4)11
) = = A.139
1191 apagi ( )
3. For t=T, equation (A.133) implies that
820)7“1"
) = = A.140
TTp; ap(?gi ( )

Moreover, Lemma A.18 implies the following results:

ii. For the lower secondary diagonal t =t + 1. Equations (A.100), (A.101), (A.134a) and (A.134b)
imply that, since t' =t —1,

82a)w _ J ((9a)tt/) J J 0

, =0 - 2 = /:__tt'z__t(t—l)
Wt pi 3paCi 8Ci 8{) ag,-wttp &gi( o ) &gi( o ) (A141a)
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= —g;/t-) (A.141b)
__ 1 [ﬁ ZH)"] (A.141c)
2010¢-ylo? o7,

iii. For the upper secondary diagonal t =t —1. Equations (A.100), (A.101), (A.134a), and (A.134b),
imply that, since t' =+ 1,

= —gtD (A.142Db)
- 20;(”1) [j—; ; ‘Z(:l”z] (A.142¢)

iv. Lower off-diagonal elements:t = + j (j = 2). Equation (A.136) implies that
wipi = 0. (A.143)

v. Upper off-diagonal elements:t =+ —j (j > 2). Equation (A.137) implies that
wipi = 0. (A.144)
O

Lemma A.24. Let A;, A;j be the first and second-order derivatives of the T X T matrix A with respect to p

and the elements of m X 1 non-zero vector ¢ = (¢1,...,¢m) i€,

T T
, 1
Ai =X QiX/T = [(aklkzi)K1,1<2=1 ..... n] = [(T Z Z xK1ta)tt’ixt’Kz) ] (A.145)
r=1 t=1 K1,42=1,...1
1 &
Ajj = X' QX T = [(@xyaij)is mo=1,..n] = [(]—, Z Z XKltwtf’ijxt’Kz) ] (A.146)
r=1 t=1 K1,42=1,..n
Proof of Lemma A.24.
A; = X'QX/T = [zt t=1.7] - (@1 )er=1,..7] - [(X0y)p=1,..,T, k3=1,..n]
1 &4
= |:(’1—_' tlZ:l ; XKltwtt/ixt/KZ)KLKz:l ,,,,, n]. (A147)
Aij = X'QuX|T= %[(xklt)mﬂ,»..,n, t=1..7] - [(@wier=1.1] - [(Xt1cy)r=1,..T, kp=1,..n]
1 &4
-\t i : A.148
[(T t,zzv{ ; Xt Wit Xt KZ)KLKz:l ,,,,, n] ( )
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Lemma A.25. By combining (1.21) and (A.114b) we have that

T T T T
* 7 - * 1
A if = X QlQ 1'(2])(/’11 = [(11 K1 Kzif)Kl,K2=1,-- = [(T Z Z Z Z Xy ta)tt’za) a)mr]erz) 1 :|
m= K1,K2=1,...,n

r=1 1#=1 t=1
(A.149)

Proof of Lemma A.25.

A*l']'

X' Q7' QX/T = +[(xe)=1,.m, t=1..7] - [(@w )1 p=1..7]

[(a)t m)t’,m:l...T] . [(a)mrj)m,rzl‘..T] : [(erz)r:l,...,T, 1<2=1,...,n]

1 T T T T
(5392 39 i s

r=1 m=1t+=1 t=1 x1,k2=1,...,
(]
Lemma A.26. By combining (A.145), (A.146),(A.149) and (2.5) we have that
Cij = A*ij - ZA,'GAj +Aij/2
1L LI
= (TZZZZX“””“"“ a)mr]xm) ]
r=1 m=1t=1 t=1 K1,K2=1,...n
LI MR S L
AL LD frowsafso L prasee)] ]
dy=1d1=1 t'=1 t=1 =1 =1 a=1,m
11 & &
2 (_ Frat@ijXe ) ] A.151
2[ T;; kit W ijA ol ( )

Proof of Lemma A.26.

Cij = A*,']'—ZA,'GA}‘+A1‘]‘/2

= [(a 1\11\2)1\] K2=1,..., n] 2[(a1<1d11) K1, d1 = 1, . ][(gd-ldz)dl d> ][(adZKZ])dZ Ko=1,..., l’l]
+%[(HK1K2i])k1 K= 1,..., n]
1
=%ZzzzwwwW%qpl]
r=1 m=1#+=1 t=1 1,K2=1,...,1n

aKldlgdldzadZKZ) . ]
K1,K2=

xKlta)tt’l]xt'Kz) ]
= K1,K2=1,...,n

T
1

T

r=1 m=1+t=1t AK2=Loeny
n

n T T T T
lx;\ltwtt'zxt/m gdldz %xdzta)tt'jxt’xz
T 1,..n

h=1d;=1 t'=1 t=1 =1 t=1 K1A2= 4,y

:

2
o
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T T
1
[(T szmtwtt’ijxt'}cz) ] (A.152)
=1 t=1 K1,K2=1,...1
O
Lemma A.27. Using (A.145) and (2.13) we have
L 1 L

Dij = AiPA;/2 = [( Z Z (T Z Z Xyt Wit iXpdy )Pd i (T Z Z xdztwtt',xt';cz)) ] (A.153)

d=1d=1 "~ =1 t= =1 t=1 K ka=1,..m

Proof of Lemma A.27.

|

=

)

-

<

~

N

|

N| =
—
—_
1=
1~
01~

=

ke

g

&

=
SN—
ke
=
=
e
=
AN

=

&>

SN

=

S

—
—
—_
=
1~
01~

Xdpt Wty jxt’Kz) ]
K1,62=1,...1n

1 n n 1 T T
= E[( Z Z (T Z Z Xt Wit iXpdy )Pdldz( Z Z Xt Wt jXprrcy (A.154)
di=1d,=1 t'=1 t= =1 t=1 K1,k2=1,....n
O
Lemma A.28. By using equations (A.145), (A.152) and (A.153) we have that
n n 1 T T
tI'Al'P = Z Z [T(Z Zxklta)”/,-xykz)pkzkl], (A155)
x1=1 k=1 =1 t=1
n n 1 T T T T
tr C’]P - [ Z Z [T( Z Z Z Z X, t W i@ a)mr]xmz )Pmm”
x1=1kp=1 r=1 m=1t=1 t=1
n n n n T T 1 T T 1
-2 Z [ Z Z Z [( Z Z Txklta)tt’ixt’dl )gdldz(z Z Txdztwtt’jxt’dg)pmkl”
x1=1L x=1dr=1d1=1 =1 t=1 =1 t=1
1 n n 1 T T
+§ Z Z [f( 2 Z xmta)tt/i,'xt'm)}?xm]. (A.156)
K1=1xr=1 =1 t=1

n

T T T T
wD,P= 1 Z [ Yy (DI IO ) L, | EORED

K2=1dp=1d1= =1 t=1 =1 t=1

Proof of Lemma A.28.

AP = ()=t =1, 7] - [(@pwp=1,.7]

[(xt’Kz)Kz 1.1, ¥=1,.., T][(pKZF)Kzr 1,. ]

[( Z [ Z ZXKltth’zxt’Kz]PKzr) - n] = (A.158)

=1 t=1 K1,r=1,...,
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trA;P = [ Z Z [%( i i xxlta)tt’ixt'Kz)pKZKl:I]- (A.159)

1 T T T T
@ - EEEE

r=1 m=1¢=1 =1 KL=l
n

] : [(ple)xz,lzl,...,n]

|
N
—
—
—_
[-1-
-1~
=
=
2
g
=
=
~——
=
>
—_
" ~
—-
Dngl
~l=
=
S
£
=
R
g
~—
—
[—
—
—
=
g
>
g
=
=
—

=
o
I
—_
<
I
—_
I
—_
X
I
—_
m

1
n T T T T
1
t'm
(T (Z Z Z Z Xy t Wiy j@W wmr]xrkz )pKzl) ]
" k1 l=1,..n

._.
1~
=

=
g
®
=
N—
99
W3
—_
-1~
1~
|-
=
2
S
Rl
3
—
=
3
~—

2

m

N,

=

| S

......

]. (A.160)
=1,..n

T

tr(C,'jP) = [( i (i i Z i xmtﬂ)tt’zﬂ) wmr]xmz pKzl) ]
x1,1=1,..
T ’ T
Xyt Wit i Xy dy )gMz ( Z

=1 dy=1d1=1 t'=1 t=1 =1 t=1

E
01
-
M- 1
[\lqﬂ

1
_xdztwtt' xt'kz ):lpkzl
T
Kl,lzl,...,

A
S
Il
—_
<X
Il
—_

t=

.....

23 (B[E L (L peemon (L)

k=1 dy=1d1=1 =1 t=1 =1

1 n 1 T T
+§ ( 2 (T Z Z xKlta)tt/[jxter)pkzkl). (A161)

Xt Wt jX 11, )]me )

et

>
=
|

1 noq T T 1 T T
A,-PA]-P/Z = §|:( Z 2 (T Z Z xmta)tt’ixt’d1) Pa,a Z(T Z Z xdzta)tt’jxt'Kz)) : [(ple)K2,1=1 ..... nl
K1,K2

di=ldy=1 = r=1 t=1 =1 t=1

1 n n n 1 T T 1 T T
E[( Z ( Z Z (T Z Z Xy t W i X' d, )Pd i (T 2 Z xdzta)tt’]xt'Kz))szl)
e ;

ko=1  di=1dp=1 r=1 t=1 t=
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T T T T
1 1
tr(D;;P) = 5 tl' |:( Z ( Z Z (T Z Z Xyt @it i Xy dy )pdldz (T Z Z xdzta)tt’]xt'Kz))szl) ]
k=1 di=1d,=1 =1 t=1 =1 t= x11=1,..n
n LI L
= 3 Z [Z Z Z [(Z Z TNt @ iXed, )pdldz(z Z Txdztwtt’jxt’m)pkzm]]- (A.163)
k1=1 bt x2=1dp=1d1=1 t'=1 t=1 =1 t=

O

Proof of Theorem 1.  I. For t-test it holds that H = ¢’ where e is a n X 1 known vector. So by setting

H = ¢’ we have

Q=Q;=H'(HGH') 'H = e(e’Ge) ‘e’ = kk’' (A.164)

where k = e/(e’Ge)'".
Therefore,

P=P;=GQG = Gee'G/e'Ge = Gkk'G (A.165)
Using definition (2.4) and Lemma A.28 we have that

i. Fori=(p,1,...,m) the following results hold:

I; = €GA;Ge/e’Ge =kGA;Gk = trkGA;Gk = tr AikGGk =tr A;P =
, = trAP=
T T
I, = [Z Z [ (Z Zxkltwft’lxt’Kz)pKzKl]] (A166)
1x=1 t'=1 t=
lP
L
I = [(Di=p,..m] =
lm_

[1(vT T
Zﬁlzl Zﬁzﬂ T( Zt’:l Zt:l xKlta)ft’pxt’Kz)pkzkl

L i J
i

Zﬁlzl Zzzﬂ %( ZtT/:l Zthl xkltwtt'lxt’Kz)pkzm
] | (A.167)

] S ]
Zzlzl ZZzzl %( Yp=1 L=t xKltwtt'mxt'Kz)Psz ]
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ii. Fori,j=(p,1,...,m) the following results hold:

l,‘j = e’GC,«,«Ge/e’Ge = kGCiij =tr kGCiij =tr C,‘jkGGk =tr C,‘jP =

l,] = trCZ-]-P:
n n 1 T T T T

T D29 2{ 152920 39 SR A
x1=1xo=1 =1 m=1t=1 t=

7
n n n

n T T T T
-2 Z |: Z Z Z [( Z Z %xkltwtt’ixt’dl )gdldz(z Z %xdztwtt’jxt’xz)szm]]
K1 t=

=1 K2=1 dz:l dlfl t'=1 t=1 =1
1 n n 1 T T
3 Z Z [?( Z Z x"”w”’i]'xt'Kz)PKzK]]- (A.168)
x1=1xp=1 =1 t=1
L = [(ij)i,j=(p,1,....m))- (A.169)

I1. For F-test, H # ¢’ therefore Qr # Q; = Pr # P;.

Let H a known r X n matrix with rank r < n. Matrix G is a n X n positive definite and symmetric.

Consequently, matrix HGH’ is a r X r positive definite and symmetric i.e.,
d
HGH’' = (HGH’)' > 0. (A.170)

Equation (A.170) implies that matrix (HGH’)™! is positive define and symmetric matrix i.e.,
d
(HGH’)™! > 0 which implies that matrix (HGH’)™" is positively semi-defined matrix i.e.,

(HGH')™! So. (A.171)
Equation (A.171) implies that for the n X n matrix Q we have
Qr =H'(HGH')'H < 0, (A.172)
and for the matrix P we have

d
Pr = GQG = G'QG > 0. (A.173)

Let A; the eigenvalues of the matrix P by the equation (A.173) we have that A; >0 (i=1,...,n). We
set the n X r matrix V = G”?H’ where G'” is a positive definite and symmetric matrix like G. The projector

in the space created by the columns of the matrix V is

Py =V(V'V)''V' = G*H'(HG"G"H)"'HG" = G"H'(HGH') 'HG" = G"QG". (A.174)
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Since, PyV = V(V'V)"'V'V = V, the columns of V are the eigenvectors of Py. Hence, by using the
definition (2.13), we find that

P=GQG = G*G"QG"G" = G"PyG". (A.175)

Since G is a symmetric, positive definite, and non-singular matrix the same holds for G'2. Therefore,
rank(P) = rank(Py) i.e.,
rank(P) = rank(G*PyG'"*) = rank(Py). (A.176)

However, matrix Py is idempotent matrix and its rank is equal to its trace.

rankPy = trPy=trV(VV) WV =tr], =r= (A.177)

rank P

. (A.178)

By using the relations A; >0 (i = 1,...,n) and rank P = r we conclude that r of eigenvalues of the matrix
P are positive and the remaining n —r are equal to 0. Let £ a n X n diagonal matrix and let eigenvalues A;
be the elements of matrix P. Also, let ‘W be a n X n diagonal matrix whose columns are the normalized

eigenvectors w; of matrix P. By using the Theorem of spectral analysis, matrix P can be write as follows:
n r
P=WLW =) \ww| =) Aww]. (A.179)
i=1 i=1
Using definition (2.12) and Lemma A.28 we have

i. The i-th element of vector c is

¢ = =trAP>
n n 1 T T
¢ = |:Z Z I:f(z Zxkltwtt’ixt’Kz)pkzkl]]' (A.180)
K1:1 K2:1 =1 t=1
,Cp.
. €1
c = [e)i=(p1,.... m]=
»Cm_

T T
221:1 Zﬁzzl [%( Y1 i x1<1twtt'pxt’1<z)pkm”

221:1 2@:1 [%( ZtT':l Zthl Xyt Wt 1 X )me]]
= |l . (A.181)

T T
ZZ1=1 ZzFl [%‘( Zt’:l Zt:l xKlf(‘)tt’mxf’Kz)pszl”
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ii. The (i,j)-th element of matrix C is

cGj = tr C,']'P =
n n T T T T
Gij = l:Z Z [ (Z Z Z Z xkltwi’t'lw a)mr]xrkz pkzkl]]
x1=1 k=1 r=1 m=1t+=1 t=
n n n T 1 T T 1
-2 Z [ [( Z Txrthtt’ixt’dl )gd]dz ( Z Z fxdztwtt’jxt'm )pKzK1 ”
7\1— K= 1d2 1d1:1 =1 t= =1 t=1
1 1 T T
+§ Z Z [T( xklta)ttli]-xykz)pkzkl]. (A182)
x1=1 =1 =1 t=1
C = [(cip)i j=(o1,..m0]- (A.183)

iii. The (i,j)-th element of matrix D is

di]' = tI‘DijP =
n T T 1 T T 1
dij = 5 Z [Z Z Z [(Z Z Tt @ iXvd, )pdlﬂz(z Z Txdztwwjxt/,(z)p,(z,q”. (A.184)
x1=1 L xo=1dr=1d:=1 =1 t=1 =1 t=1
D = [(di))i,j=(o,1,....m)]- (A.185)
O

We define the following matrices for the Linear Regression Models (1.1), (A.221) and (A.251)

A = X'QX/T, Asr = X,z QarXar/T, An = X;;,QuXn/T,

G = A, Gar=Am", Gu=Ay"",

A = ZQ*Z|T, Apr = ZQur*Z|T, Ay = Z/Q4Z|T,

G = A, Gar=A45% Gu=4;},

F = X'X/T, Far = X,z Xuar/T, Fu = X;;Xu/T,

B = F', Bax=Fax™', Bu=Fy', (A.186)
F = Far=Fy=2'7T,

B = Bur=By=F",

I' = X'Q'X/T, Tag = X)zgQur " Xur/T, T = X,,Qu ' Xu/T,

I = ZQ7?Z|T, T'ar = Z,xQar*Zar/T, Tn = Z,,Qu*Zy /T,
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According to Lemmas I'.1,I.2 and I'.5, (see Symeonides, 1991), the following quantities are defined:

trQ, Qi = tr(I-R)/p=0, trQar'A=2/a, trQ, Q" =2p/a.

Fori=1,2,p,
trQur'Q,, Qi = -2pT/a*+O(1),
tr(Q,,i Qg )? = 2T/a+O0(1),
tr Qar Q2 = 2Q2p ' = 1)T/a® +0(1),
Qi Qi) = 22 -3p)T/pa® +0(1)
trP, xQ,.; = (trAsrBag—na)/p+O(T?),
tr P, xQ,.Q,r = (n—trBarIar)/p +O(T?),
tr P xQ,, P xQix = (trAarBarTarBag/a — tr BarTar)/p + O(T?),
X, Xar/T = O(1?), X,zAXar/T = O(1%), X, g RXar/T = O(7?),

X\ g ARX4r/T = O(1%), XxRAXar/T = O(1?), X, xRARX 4 /T = O(7?).
Lemma A.29. We consider the T X T matrix
Q= E7"[(1+ p")Ir - pD - p*AIET",

where the T X T matrices I, D and A are defined in Lemma A.1. From (1.21) we know that

1 1 1 1 1
Q= I SE"RL" = E'PR/aL'”, where a =1 - p.
—-p
We define the
2
o= P
* 1 _ pz .
Let
Q, = 0Q/dp=L""[2pIr —D - 2pAlL™" = Q — pL~FAL™,
and
Q,, = 9°Q/dp* = L7F2Ir - 24]L7",
where

Qi = Q,+ipL PALT", Qi = Q, +iLTFALTE, (i=1,2).

(A.187)

(A.188)

(A.189)

(A.190)

(A.191)

(A.192)
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Using (A.191), The following results apply:

and

trQ,Q"' = oI,

tr(Q,Q7N? = 2/1-p)+O(Th,
(2,27 = 2(2-3p%)/p(1 - p? +O(T),

-1 _
trQ,,Q7 =

SN

_4
aT’

Proof of Lemma A.29. From (A.192) we have

Q.Q71 =

E7*[2pIr — D = 2pA + pA]JET L [R/(1 - pH)] L
L7'"[2pIr — D - pA][R/(1 — p*)]E"

%E_]/Z[ZPZIT — pD - PPAIIR/(1 — pA)IE

%21/2[(1 + Al - pD - pA - (1 - P)EIIR/(1 - p)IE"

%E”ZIR* ~ alr][R/a]E"

%E‘VZ[IT —R]L".

By using (UR.25), (A.191), (A.195) we find

-1
Q,Q

Q1 — pE AL = 0,7 — gz—%Az—‘/szZRzl/Z

Lp-rrr Rz - Pptap-rptRet
P o

1 ., i 1
~r1 - R - 2 AR
p o

2
Lyt R P AR)E"
‘0 04

1., .
52_ R[Ir - R — a E]Z".

From equation (UR.25) and (A.196) we have

trQ,Q T =tr %Z‘l/z[IT -R-a.EIE"/T = %(T -T-2a)/T =

By using (A.196) we have

Q7"

2a.
pT

1 1 1 1 —1 1
52_ PlIr — R - aE1X /ZEE 2[Ir — R - a,E]1E"

1 ., .
= ?2‘/2[IT—2R+R2+a*(ER+RE—2E)+a*2E2]Z/2.

=O(T™).

(A.193)

(A.194)

(A.195)

(A.196)

(A.197)

(A.198)
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From equations (UR.25) and (A.198) we have

1 . '
tr(Q,Q /T = p tr Z=#[I7 — 2R + R* + a.(ER + RE — 2E) + a.’E*1L"*/T
1 1 -1
= = tr Z2E7""[I; — 2R + R? + a.(ER + RE - 2E) + a.>E*]/T

1
= = tr[Ir — 2R + R? + a.(ER + RE - 2E) + a,*E?]/T

= %[trlT—ztrRﬂrRz+a*(trER+trRE—2trE)+a}trE2]/T
= %[trlT—ZtrR+trR2+a*(2trRE—2trE)+a*2trE2]/T

= %[trlT—ZtrR+trR2+2a*(trZ—trE)+a*2trX]/T

= %[trlT/T—ZtrR/T+trR2/T+O(T-l)]

= %[1 -2+ (1+pY)/(1-pH]+O(T™)

_ ¥ +O(TYH = 2 . o(T™) (A.199)
P p?) S 1-p? ’ '
By using (A.196) and (A.198) we have
1_., 1.
@71 = ?zf P[It — 2R + R* + a.(ER + RE — 2E) + aﬁEz]EVZEz P[Ir = R — a E]L"
1
= E,:-1/2[1T —2R + R? + a.(ER + RE - 2E) + a.*E*][Ir - R — a.E]1L"
1 .
= L[y -3R+3R* - R’ + &.(3ER + 3RE — 3E — RER - ER® - R’E)
P
—a,>(ERE + RE? + E’R - 3E%) - a.’E®|L'. (A.200)
From equations (UR.25) and (A.200) we have
1 :
tr(Q,Q7') /T = P tr Z=”[I7 — 3R + 3R> — R® + a.(3ER + 3RE — 3E — RER — ER? - R’E)

—a,2(ERE + RE? + E’R - 3E?) — o, °E®|L"*/T
= é tr Z2Z7""[Ir — 3R + 3R? — R® + 0.(3ER + 3RE - 3E — RER - ER? — R’E)
—-a,2(ERE + RE* + E’R - 3E?) — a.’E®]/T
= % tr[Ir — 3R + 3R* - R® + a.(3ER + 3RE — 3E — RER — ER? — R%E)
—-a,2(ERE + RE* + E°R - 3E?) — 0. ’E®|/T
= %[trlT —3trR+3trR*> —trR®> + a.(3tr ER + 3tr RE — 3tr E — tr RER — tr ER? — tr R%E)
—a2(trERE + tr RE? + tr R - 3tr E?) — a2 tr E°)/T
= %[trIT —3trR+3trR* —trR® + a.(6 tr RE — 3tr E — 3tr ER?)

—a2(3trRE? = 3trE?) — a.’ tr E°]/T
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= %[trIT—BtrR+3trR2—trR3+m(6trZ—3trE—3trlI/)
-2 B3tr® -3trX) — a.’ tr ®]/T
= %[trIT/T—3trR/T+3trR2/T—trR3/T+O(T1)]
1 _
= F[l_3+3(1+p2)/(1_p2)_(1+p4)/(1_p2)2]+O(T D)

= 2p*2-3pY)/p*(1 - p??* + O(T ™) =22 - 3p%)/p(1 - p?)* + O(T ). (A.201)
From (A.189), (A.191)

Q07" E7P2Ir - 2A]1E7 P2 R/ L

= L7[2Ir - 2A]R/a L'
= 2L7"[R/a - AR/a]E"

= % LR - EIL'. (A.202)

From equations (A.202) and (UR.25) we have

2 1 |
trQ,,Q /T ZwZ M [R-EIL?T
a

2
~tr L'’ R - E]/T

2 2 2 4
= —tr[R - = —[T-2]= — — —. A.203
S UIR-El=-—=[T-2]=— - ( )
O
Lemma A.30. By following equation (A.192) we know that
Q1 = Q,+pL AL,
Q = Q,+20L7 AL = Qq + pLT AL, (A.204)
The following results hold:
tr Q! =0, (A.205)

and

2
r 2,07 = Ep. (A.206)
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Proof of Lemma A.30. By using (UR.25) and Lemma A.31 we have
-1 ]- _1/2 1/2 1 1/2 _1/2 1
rQQ  =tr—L *[Ir-RIE?=—-tw L L™ *[I;-R]==][T-T]=0. (A.207)
P P P
and
trQ, Q7' = tr[Q +pL T PALTPIQT = r Q1 Q7 + ptr LTALTEQT
= wQQ "+ ptr AL PR [aE Y = tr Q71 + gtr LPE2AR
2
- w20+ PuaR=w 0 + PuE=0420 =2 (A.208)
a o a o«
O
Lemma A.31. We define the quantities
a; -EW' Q. u/T),
a, -E(W'Quu/T),
1,
ajj > E(u .Q;ig/.u/T), (A.209)
1 ’
App 5 E(w' Qppu/T),
p E(u' Qpu/T).
Also, we define the m X 1 vectors
a = [@)i=p1,...ml
ape = @) 1=1,...,m], (A.210)
and the m X m matrix
A=[@;j) i j=p1,...,m] (A.211)
In addition we define the scalars
wy = VNT@'Qu/T-1),
w; = N/T_"(u'Qgiu/T +ay),
w, = \/f(u'ﬂpu/T +a,),
wi = VT Qecu/T - 2ay), (A.212)
Wop = VT Qppu/T - 2a,,),

VT Qpeu/T - ay)).
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The following results are proved

E(wo) = 0,
E(w;) = 0,
E(w,) = 0,
Ewij) = 0, (A.213)
E(wp,) = 0,
E(w,)) = 0,
Ew)) = 2.

Proof of Lemma A.31.

E(wy) = E[VT(/'Qu/T-1)]= VI[E@ Qu/T)-1]= VT(1-1)=0, A.214

E(w;) = E[VTWQ.u/T+a;)]= VT[EW Q.u/T)+a;]] = VT(~a; +a;) =0, A.215

Ew,) = E[VT('Qu/T+a,)]= VT[E@'Qu/T)+a,] = VT(-a, +a,) =0, A.216

E(wpy) = E[VTW'Qppu/T - 2a,,)] = VT[E@ Qppu/T) = 2a,] = VT(2a,, — 2a,,) =0, (A.218

)
)
)
)
)
A.219)

(

(

(
Ewy;) = E[VTWQ.cu/T -2a;)] = VIIEW Q.. u/T) - 2a;]] = NT(2a;; — 2a;5) =0, (A.217

(

(

E(wy) = E[VTW'Qpu/T - a,)] = VT[EW Qpc,u/T) - ayj] = VT(ay; —a,;) =0

E(w?) E[ VT Qu/T - 1) VT’ Qu/T - 1)]

= E[u'Quu'Qu/T — 2u'Qu + T]
= E[u'Quu'Qu/T]-2E[u'Qu]+T

1
= f[u: QO 'trQQ ' +2rQQ'QQ N -2t QQ 7+ T

= %[T2+2T]—2T+T:T+2—2T+T:2. (A.220)

Two Discrete Models

Due to the estimation strategy, the model with heteroskedastic and autocorrelated disturbances can
be split into two discrete models,one concerning heteroskedastic disturbances and another concerning
autoregressive disturbances. The linear regression model with heteroskedastic disturbances and the linear
regression model with autocorrelated disturbances are estimated by Generalized Least Squares (GLS).
Conventional F and t-testing procedures of any linear hypotheses on the parameters for these model are

justified under the implicit assumption that the sample size is large enough to permit inference on the
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parameters estimates based on the chi-square or normal distributions. However, in finite samples there
is a considerable discrepancy between the true and the nominal size of the test, and this may results
in erroneous inferences and to incorrect structural specification. Also, the well-known conflict among
the classical testing procedures is mainly due to the fact that the Wald, likelihood ratio, and Lagrange
multiplier tests have different sizes. Given that the differences between the true and nominal size are
large, compared with the differences in power (e.g., Rothenberg, 1983, p. 529), the size correction should
eliminate most of the probability of conflict. Thus, once a size correction has been made, little may be lost
by using the F (or t) test, even in cases where there exists a second-order more efficient test. In particular,
Rothenberg, 1984b, 1988 derived general formulae giving the Edgeworth-corrected critical values for the
Wald and t-test statistics based on Edgeworth expansions of their corresponding asymptotic, chi-square
and normal distributions, respectively. This is done for a wide class of regression models used in practice.
Instead of using the asymptotic form of the tests, Magdalinos and Symeonides, 1995, 1996 recommended
to use the degrees of freedom adjusted forms of the above statistics and derived expansions in terms of

the F and t distributions, respectively.(Symeonides et al., 2007).

Linear Model with Heteroskedastic Disturbances

The Linear Model with Heteroskedastic Disturbances is
yu = Xuf + oun (A.221)

where

yn=(1-p)"y
Xy = (1-p?)"~x (A.222)

uy =(1- p2)1/2u

We note that x;t, z; are the rows of the T X n matrices Xy, Z respectively. Thus, they can be analytically

written as follows

’

1 T T

z x’
ul

Xa=|:| z=|:|, XI’{XH—(le,...,xHT)I : ‘_mex;t, 7z=) 27 (A.223)
X -

t=1 t=1

’

27

Tl

Lemma A.32. According to Lemma A.1, (see Symeonides, 1991) we have:

The TxT matrices Qy and .Q;Il can be written as follows:
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and
12
- 0 0
120
Qu=rLt= ) Uf ' = diag(o7?) = diag(w,) (A.224)
U = ]
and
a2 0 0
0 o7 ... 0
Q== - | (A.225)
0 0 o7
where
0? = zjg, (A.226)
and
zi=(1,z0,...,2m). (A.227)
We define the matrices:
0Q . dw
HGi = a—; = dlag(a)Ht,-), where Wyti = ﬁ,
8ZQH &20) t
Q.. = ——=di i), wh = — A.228
HGiGj &gl&g] lag(a)Hﬁ]) where CL)Htl] a‘;lggj ( )
The following will be proven later on
— )
wHti = 74“ = _a)itztil Qng = - dlag(zfi)Q%{/
t
2z4izij 3 . 3
Wytij = o =2w,,z1iztj, e, = 2 diag(zeize) 2. (A.229)

Proof of Lemma A.32. Using the fact that the matrices Qp, Q

following results:

t

e and €, ¢ are diagonals we find the

do Iz a ,
Wyti = 5" = 5Gi = &—Gi(l/ztg) = ~24/(zj6)* = ~zi/0} = ~a?zy = (A.230)
= Q. = diag(w,) = diag(—witzti) =— diag(wi,) diag(z)

—Q?, diag(zy) = — diag(z4)€Q,. (A.231)
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ii.

Pwy  d Pwyy I ) o d , w
Wytij = m = 3_9(3_(;1) = 8_C]'[_Ztl/(ZtG) 1= —thg—gj[l/(ztG) ]

= —zi[-22(z/6)/(2,6)*] = 2z1iz4j/ 0} = 207 ziizij

Q, ., = diag(wy,j) = diag(2w‘:’[tzﬁzt]-) = 2diag(a)‘:’[t) diag(ztztj)

ZQ?-I diag(ZtiZt]') =2 diag(thth).Q?_I.

Lemma A.33. We define the T X 1 vector v with elements
v = ZOtzx;tBHth - thBHI’HBHth,

and the T X 1 vectors i1,& and & with elements

= _ 2 2
uy = th 0%,

2 ’ / A/
& = Zthet — 16, €= thBHXHuH/ T,

& = Zthét - Tétz, e = x;tGHX;{.QHMH/ ﬁ,
respectively. The following will be proven:

Eait') = 2Q;7,
E(er) = 0/ VT, E(e) =0/ VT,
E(&) = ¥,Gpx,e/ VT, E(&) = XGx,/ VT,

(see Symeonides, 1991, Lemma A.3)

(A.232)

(A.233)

(A.234)

(A.235)

(A.236)

Proof of Lemma A.33. From the definition of the Linear Model with Heteroskedastic Disturbances we

know that ug ~ N(O, .QI_Jl). By using (A.224), (A.226) and (A.227) we find

a2 0 0
. 0 o3 ... O ,
Q;I =1. . . . :[(5tsf7t)t,s:1 ..... T]
0 0 a%_

(A.237)
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and
af 0 0
L, |0 o .0 \
Qr= . | = 0150} )t5=1,..,7] (A.238)
0 0 o7

where 0y is Kronecker’s delta. Therefore, for the T X 1 vector uy

ug = [(uy) t=1,...,T],

E(uy) = 0, E(upuyy) = [(0507)ss=1,..7]

E(?,) = 07, E(uit,s) = 00¢* = 85 B(u?,) (A.239)
e ~ N(0,0%) (A.240)
We define the variable
Yyt = Uye/0 (A.241)
for which apply
Pt = /oy ~N@O,1), 92, =u? /o] ~ xi (A.242)

where )(% is chi-square distribution with 1 degree of freedom. From equation (A.242) we have that

E@?) = B, /o}) =1, E[(Y%, —1)*] = E[(u},/07 —1)’] =2,

(A.243)
O
Lemma A.34. For 'Q%{ and Q%{ holds that
m
Q= Q% +21) QuQ,dr, + (1), (A.244)

i=1

where €2 is an estimator of matrix Q2 and di, is the i-element of d;_ vector, which is a sub-vector of

d1 = (00, p1,d;).

Proof of Lemma A.34. Using equations (1.13), (1.14), (A.223) and (A.224) we find that

QF, = diag(w?,), @, = (z16)"". (A.245)
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Therefore, using Lemma A.32 we find that the derivative of QIZ-I with respect to the elements ¢; is

o, . &wit . daw,t
7 = dlag(8_c,'i) = dlag(sztQ_gi)
= diagQRw,w,) = diag(w,,:) diag(w,:) = 2QuQ,,,. (A.246)

Doing Taylor expansion of Q? around Q%{ we have

R " 002 LiETeY. &i—ci
Q= Qiﬁz I'i(é,-—g,‘)+...=!2121+z nGize)

= 9 = i t
00?2
= O+ Z Lo, + w(t?), (A.247)
P
where 0., = @ Letting 0 = 1 we have that for the 6 vector applies that
bo
0= 0p (A.248)
[(6;,-)1':1 ..... m]
The 6., admits a stochastic expansion of the form:
Oc, = dig; — Ty, + w(T2) (A.249)

Using (A.246), (A.247) and (A.249)

m
@ = QY1) 2000, (e, - T + (1) + (1)
i=1

m
Q+21 ) QuQ, i, + (7). (A.250)
i=1
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The Linear Model with Autocorrelated Disturbances

According to Appendix I' (Symeonides, 1991) we have:

The Linear Model with Autocorrelated Disturbances is

Yar = XArP + 0liar, (A.251)
where
yar = L'y,
Xur = L7X, (A.252)
UAR = Ly,

Lemma A.35. We consider the T X T matrix
Qur = [R/(1-pH)] ™" = (1 + p*)Ir — pD - p*A, (A.253)

where It is the identity matrix, D is a matrix with elements 1 if |i — j| = 1 and O elsewhere, and A is a
matrix with elements 1 in (1,1)-st and (T,T)-th position and 0 elsewhere.

We know that Q;l%{ can be written as follows:

Q5 =[R/(1-pA)]. (A.254)
Let
2Q
Q. = a:R =201 - D -2pA = Q1 - pA,
and (A.255)
Qupp = 57 - A= 2(I-A),
where
'QAKi 'QARP + ipA
and (A.256)
QAR,',' ‘QARPP +iA.

Then, the following results apply

tr Q

Qur7/T O(T™), tr(€2,,pQ2ar™)?/T =2/(1 - p*) + O(T ™),

ARP.

(A.257)

tr(Q,pQar )’/ T

2(2-3p%)/p(1 - p?)* + O(T ).

ARP
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Proof of Lemma A.35. This equation’s proof is morphologically tautological with Lemma’s I'.3 proof,

(Symeonides, 1991, (App.I')) if matrix Q replaced by matrix Qg. O

Estimator of o

Since, estimators ¢ and p have been calculated we can find estimator Q of the T X T matrix Q as follows:

Q1 = LPR/(1-HIE =
Q = LM -pHIr - pD - pPAIET". (A.258)

Having calculated € we can find the feasible GLS estimators of § and ¢ as follows:

B =XQX)"'X'Qy (A.259)

and
6 = [(y - XB)'Qy — XB)/(T - m)] " (A.260)

Let
Q=PPando=1. (A.261)

Equation (1.1) can be transformed as follows:
Py = PXB + Pu (A.262)

Since Q is unknown we must use £ instead of Q and by letting Q = P’P we can write the transformed
equation (A.262) as follows
Py = PXB + Pu. (A.263)

Let f3 be the feasible GLS estimator of § and # the GLS residuals of (A.263).

From Lemma UR.4 we have

B=p+XQX)' X Qu (A.264)
and
B - B =1b+1b, = b+ (1), (A.265)

where b and b, have been defined in Lemma UR.4.
We define the n x 1
k= VT(B-B) = (B-B)/t=b+w). (A.266)

Also, combining equations (A.264) and (A.266) we find that

k= VT(B - B) = VI(X'QX)'X'Qu = (X' QX/T)' X' Qu/NT = (A.267)
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X' OX/Tk = (X'QX/T)X'OX/T) X' Qu/ VT = X’ Qu/ VT. (A.268)

From equations (1.1), (A.263) and (A.266) derives that

1S3
Il

Py - PXf = Py - Xp) = P(u + Xp - Xp) =
= Pl(u-1X(B - p)/t] = P(u - 1Xx). (A.269)

Thus using equations (A.268) and (A.269) we find

(u — 1XK)P'P(u — 1Xx) = (' — 16’ X")Q(u — 1XK) =

>
D
1]

= W - &X'/ ND)Q(u — X/ VT) = ' Qu — 2’ X' Qu/ VT + 1/ (XQX/T)x
= ' Qu -2k (X' QX/T)x + ' (XQX/T)x

= wQu-xX'QX/T)k = u'Qu — ¥’ Ax. (A.270)

Doing Taylor expansion of #’Qu around #’Qu and using Lemma A.31 and equation (1.28) we have

. m+1 00 1 m+1 m+1
wQu/T = /' QujT+ 2(»: D=+ 5 Y Z a u/T)(yz VG =)+ =
i=1 j=1
’ ’ Q (‘}?m+1 Vm+1) )
= WQuT + 7 3/ T) Z( /T)
72 p2te) Pms1 = Yme1)? o, @i=y) Pi=vj)
+_[( Y10V mi1 “T) 2 * Z Z(u 9%(% W T

i=1 j=1

W , &2(2 (?m+1 Vm+1) (7/] 7/]) 3\ _
2 Ty D - ]+a)(’[ ) =

= ' Qu/T+1W'Qou/T)5, + 1 Z(u Q. u/T)o,, + = [(u Qppu/T)é
i=1

+Z Z(u Q.. u/T)o 0., + ZZ(u Q. u/T)0,0 ] + () =

i=1 j=1

= —T\/_+T\/_(u Qu/T) + 1t \/_(u .qu/T) +Tﬁ{1p —aplo,
+1[1 \/TZ(u'Q u/T)+1 Ta; — a; i1o¢, + [T \/_(u Q,u/T) -2t \/fapp + 2app]6§

2 m m
+% Z Z[T \/T(u’ﬂgg]u/T) -27 \/Taij +2a;;]0.,0c,
i=1 j=1
m
+7 ) [ VT Qo T) = VTay + a0, + () =
j=1
= 1+7VT(@'Qu/T - 1) + [ VT Qou/T) + a,)16, — 1a,0,
+22 Y NTIW' Qe u/T) +ai)de — 7 Y aide,
i=1

i=1
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3
2 VTL0 Qi T) = 2,16, + P20,

% i Z VT Q.. u/T) - 2a;j16¢,6¢, + 72 i i ;0,0

i=1 j=1 i=1 j=1

+70 Y NTIW Qo ) T) = 81050, + 7 ) ayi0p0, + (7

j=1 =1

m
= 1+1[wo —apd, Zalégl]
i=1
m

+7 w0, + Z wide, + i i ij0¢,Oc; + Appdp” + i i pj0p0c,] + w(T°)

i=1 i=1 j=1 i=1 j=1
i ’
= 1+ t[wo—ay,6, —a’d.]

+T2[w,0p + W' B + 0LAD, + a,yp0,” + 0pt), O] + w(T®)
By using equation (1.30) we have that
6g = dlg — ’L'dzg + w(’L’Z)

and

op=p1+1p2+ a)(TZ)

substituting equations (A.272) and (A.273) in the equation (A.271) we have

W Qu/T = 1+1[wo—ap(p1 +1p2 + (%)) — @' (dic — Tdac + 0 (7))]

+72[wp(p1 +Tp2 + w(t?) + w'(dig — tdyc + w(t?))

+(di¢ — tdoc + (u(rz))'z‘i(dlg — 1dyc + w(T?)) + app(p1 + TP2 + cu(Tz))2

+(p1 + Tp2 + a)(’cz))a’pg(dlg - Tdae + 0(T%))] + (%)
= 1+1[wo—app1 —a'di] + T2[wpp1 +w'dic —appr +a'dy

Adlg + appp1 + pla dl.;] + a)(T3)

Using Lemma UR.4 and equation (A.266) we get

K’ Ax

b+ w(1)) (A + w(7))(b + w(1)) = b'Ab + 0(7) =
' Ax/T

b'Ab/T + w(7).
Using equations (A.270), (A.274) and (A.275) we find

a'a/T

W OQu/T -« Ax/T =

1+ 1[wo —a,p1 — a’dyc] + Tz[wppl +w'dy —a,pp +a'dy

+dy Ady + apppr” + pra, dic — b'Ab] + w(7°)

(A.271)

(A.272)

(A.273)

(A.274)

(A.275)

(A.276)
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Also, from the equation (A.269), the definitions of model (1.1) and since Q = P’P we get

52 = Wa/(T-n) = (T-nd*=i'it =
Wa/T = @52 = 6% — 6*nt? (A.277)
and
52 = 1+w(t) =
ont? = (1 +w(t)nt? = nt® + w(t®) (A.278)

Using equation (A.276) we have

6% = Wa/T+nt® + w(td)
= 1+1[wy —app1 — a'dic] + Plwppr + w'dic — apps + a'doc

+d;gfid1g + appplz + pla;,gdlg —b'Ab + n] + w(%). (A.279)

Using equations (1.28) and (A.279) we have

A2
6-—1
6 = — = [wo — a,p1 — a’dic] + t[wppr + W'di — appr + a'dye

+dy Adyc + appp1” + pra,cdic — b’ Ab + 1] + w(7°)

= 0¢+ 101 + (7%, (A.280)
where
op = Wo-— Llppl - a’dlg
and (A.281)
01 = Wy + w’dlg —app2 + u,dzg

+dj Ady¢ + Apppr” + prapdic —b'Ab + 1.
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Estimators of p

OLS estimator of p

Lemma A.36. Following Symeonides, 1991 the OLS estimator prs of p admits a stochastic expansion of

the form:

s = p + 1(p1 + 1p2) + w(7°),

where

p1 = —au, €, ouasr/2 T
and
p2 = —(au)xPx, 2,2Px,ar/2 - azu;‘RuARu;‘RQARzuAR/ZT).

Proof of Lemma A.36.

where ii,,; are the OLS residuals of (A.251) equation. From (A.284) it follows that

1.,
_ ~ ~ 2.2
N = EuARDuAR/Ta (o
and
~/ o~ 2 2
D = idygiiar/To%o,,,-

Let f be the OLS estimator of f. Since
YAR = XArP + ouar,
we have that
fiaR = Yar — Xarf = otar + Xarf — Xarpf = oluar — 7 ‘/TXAR([; —PB)/o]l = o(uar — 1Xarm),
where

m = NT@-PB)/o= VTI(X,zXar) X yar — Bl/c
VT(X, Xar) " X g (Xarf + ouar) — l/o

ﬁ(X,’qRXAR)_lx,,qRuAR = (X, x Xur/T) ' X g11ar/ VT.

By using (A.288) we have
Xy pttar/ VT = (X Xar/T)m.

(A.282)

(A.283)

(A.284)

(A.285)

(A.286)

(A.287)

(A.288)

(A.289)
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From (A.287) we have

i, Diiar/0> = 0*(uagr — 1Xarm) D(uar — ©Xarm)/c*

) Duar — 2m' (X, g Duar/ NT) + m’ (X, g DXar/T)m. (A.290)

From (A.285), (A.288), and (A.290) we have

1 ~/ ~ ~/ ~
N = EuARDuAR/Tazo,%AR = (uARDuAR/az)/ZToﬁAR

=, Duag/2T02,, — 2y Xar (X z Xar/T) "'/ VTI(X,xDutar/ VT)/2T 0>

UAR UAR

1 e Xar (X g Xar/T) "/ ﬁ](XARDXAR/T)[(XARXAR/T)_1X,'4RMAR/ VT/2To?

UAR

2
UAR

2

_ ’ 207 ’ 2
= u,zDuyr/2To,,,, + 17, Px,, DPx, uar /20, — Wy Px,  Duar/0;,,)

2
UAR

2

2
UAR - u:qRPXARDuAR/O‘ )

2
+ (), Px, DPx, AR /20 i

= p—p+t u:ARDuAR/ZTG

= p+1l \/T(M;‘RDMAR/ZTOZ -p)l+ Tz(u;‘RPXARDPXARuARﬁ - u;‘RPXARDuAR)/o2

UAR UAR

= p+1TNi+ 7°Na, (A.291)

where

Ni

T-1
ﬁ(u;ugDuAR/zToiAR -p)= ‘/T(Z Uttt/ TO%, = P)

=1
and (A.292)

Nz = (u:qRPXARDPXARuAR/Z—u;‘RPXARDuAR)/oﬁAR.

Similarly by using the equations (A.287), (A.288) and (A.289) we have

ﬁARﬁAR/OZ = az(uAR - TXARm)’(uAR - TXARTTZ)/OZ = u;‘RuAR - 2m’(X;1RuAR/ ﬁ) + m’(X;lRXAR/T)m

u:qRuAR - 2m’(X1’4RXAR/T)m + m’(XARXAR/T)m = u;‘RuAR - m’(XARXAR/T)m

UyRUAR ~ Wpp Px AR (A.293)

From the equations (A.285) and (A.293) we have

D = ilgiiar/To?0%, = (iygiiar/0®)/Tos,

_ ’ 2 2.7 2

= uARuAR/TGuAR =T ”ARPXARuAR/GuAR

_ _ ’ 2 _ 2.0 2
= 1-1+uyguar/To,,, — T U g Px,#aR/0y,,

= 1+1] \/T(u;‘RuAR/TagAR -] - TZML‘RPXARMAR/(F%AR

= 1+1D - 1°D,, (A.294)

where

Dl = \/T(u;‘RuAR/TOZ - 1), @2 = ugRPXARuAR/OZ (A.295)

UAR UAR "
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By using Lemma (UR.1) and equation (A.294) we have

D = 1+1D -172D, =
D! = [4+1D-D =1 -1(D1 — D)) + 4D — D,)* + T (T?)
1 - 1D + (D12 + D) + w(Td). (A.296)

From the equations (A.284), (A.291) and (A.296) we have

prs = ND™ = (p+1Ny+ N[l — 1Dy + T4(D1? + D)) + w(7°)]
= p-1pD; + sz(Dlz + D)+ TN] — N1 Dy + T3N1(.’D12 + Do) + *N, — °No Dy
+T N (D12 + D») + w(TP)

= p—1(pDi — Ny) + T[Ny = N1 Dy + p(Di? + D)) + w(7)

= p+1(pr+1p2) + w(70), (A.297)
where
p1 = —(pD1—N1)
and (A.298)

p2 = No—NiDy + p(Di” + D).
We know that ., = %. By using equations (A.253) and (A.256) we have
Q,2=Q,,+2pA =2pl =D —2pA +2pA =2pl - D. (A.299)

We will then express the quantities p; and p, as a function of Q,,». From the equations (A.292),
(A.295), (A.298) and (A.299) we find:

—(eD1—N1)=-Ip ‘ﬁ(u;RMAR/TGZ -1)- ﬁ(u;\RDuAR/ZTUZ -pl

UAR UAR

P1
- ﬁ(2pugRuAR —u, Duag)/2To%, = —u,z(2pI — D)ug/2 VTo?

UAR UAR

—au;‘RQARzuAR/Z ﬁ (A.300)

P2 = N, — N1D1 + p(D12 + Dz) =N, — le)l + lez + pDz =N, + pDz + Dl(pD1 - Nl)

Ny + pDy — Di[-(pD1 — N1)l = No + pDo — Dips. (A.301)
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From the equations (A.291), (A.295) and (A.299) we have

ZGﬁAR(Nz +pD,) = Zof,AR[(”:qRPXARDPXARuAR/Z - u:ARPXARDuAR)/GiAR + PuquPXAR”AR/GﬁAR]
= u,zPx, DPx, uar — 21, Px, . Duag + 2pu,  Px, AR
= u,x(I - Px,,)D(I — Px,)uar — 2t/ g (I — Px,.)Duag + 2pu’y o (I — Px, . )uar
=, Px,DPx, tiag + 1) s Duar — 2t g Px, . Duar — 20/, g Duag + 2u',n Px, . Duag
+2p1y 1R — 2pup Px, AR
= ) Px,DPx, tiar — 2pun Px,  uar + 201, qtiar — w,g Duag
= Wz Px, (D — 2pI)Px, upr + 1)y (D — 2pDuar

- _u%RPXARQARszARuAR + u:ARQARZuAR/ (A302)

due to matrix Py,, being idempotent. From the equations (A.295), (A.300), (A.301) and (A.302) we have

202 p2 = 200 [(N2+pDy)— Dipi]
= _u;\RPXARQARZPXARuAR + u;\R'QAR2uAR + 20—%1,41{ ﬁ(u%RuAR/TOﬁAR - 1)0(”:4R'QAR214AR/2 \/T
= =1, Px, 2,0 Px AR + Wy g Q2 0taR + Wy taR U 2 0taR [ TOh, — Wy, 0lar =
P2 = —uqupXAR-QARzPXARuAR/ZGﬁAR + uARuARuARQARZuAR/ZTUf,AR
= —(at g Px,n 2,0 Px, AR /2 — QU AR W) o 2, 0t aR /2T). (A.303)
O

By using equations (1.28) and (A.297) we find that the sampling error of frs:

5p° VT (prs — p) = (Brs — p)/T = [p + 1(p1 + Tp2) + w(7®) = pl/T

p1+ 102 + w(7?). (A.304)

P-W estimator

The Prais-Winston (1954) estimator is

prw = prs — T2l g Px, 2,0 Px s EARQARUAR + (1/2)1y e QaRE ARPX 11 2,00 P EARQARMAR] + @(T°),
(A.305)

where

Zar = Qar™" = Xar(X)rQ2arXar) ' X)ig = [Ir — Xar (X RQarXar) ' X g Qur1Qar ™" = MQar ™.
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By using equations (1.28) and (A.305) we find that the sampling error of ppw:

6GL

’ D 1 ’
= (3PLS - Ta[uARPXARQARZPXARE'QARuAR + _uARQAREPXARQARZPXARZ-QARuAR] + a)(TZ).

ML estimator

o= 8," = NT(ppw — p)

2

’ D 1 ’
[(PLs — p) — T2 [ty x Px1n 2,02 P, EQaRUAR + EuAR-QAREPXARQARZPXARE-QARuAR] +w(T)]/T

(A.306)

The maximum likelihood (ML) estimator, par, which satisfies a cubic equation with coefficients defined

in terms of the (heteroskedasticity corrected) ML residuals in the (heteroskedasticity corrected) regression

model (A.251) (see Beach and MacKinnon, 1978, Magee, 1985) is

pmL = Pew + Tlpa(ig1? + u,1?) — pl + w(T°).

By using equations (1.28) and (A.307) we find that the sampling error of Pp:

ML
Op

DW estimator

ﬁ(ﬁML -p)

[(ﬁPW - P) + TZ[P“(”AMZ + MARTZ) - P] + CL)(TS)]/T

8" + tlpalu,a® + %) — pl + (7).

The Durbin-Watson (DW) estimator is

pow =1-4d/2,

where d is the Durbin-Watson statistic. We know that

_ _ T (2 . 2
ZZ;Z(L[ARt B uARf—l)z _ Zt:z(”ARt B ZuARtuARt_l + uARf—l)

T ~2 T ~2
Li-1 Wkt Li-1 Wkt

T T ~ - T
_ thz Wt~ 2 Zt:Z Uypttypt-1 + Zt:Z w1
= T

Zt:l uARf

T 2 _ 22 T ~ T 2 _ 2
_ Zt:l uARt - u/\Rl -2 Zt=2 Uil ygi-1 + ZtZl uARt - uART
= Ty ,

Zt:l MARf
wherefore
T T-1 T
2 _ 2 2 2 _\V'2 .2 _\' =2 -2
Z Wt = (uAkl + Uor2 + + uART_l) + Wt = Wt + Wt = Z W rt-1 + LY

t=1

(A.307)

(A.308)

(A.309)

(A.310)

(A.311)
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From equations (A.309) and (A.310) we have that

T =2 T ~ = ~2 ~2 T ~ = ~2 ~2
i 2y Wy = Q2 pmg Wty + 70, g + 0 1) oo 2V Wyttt + 8 g +E g N
= T — - T iy
=1 Wt =1 Wt
T - = <2 ~2
. - 1 d/2 -1 1 Zt:Z uARtuARtfl + (uARl + MART)/Z
Pow = - ZT 2
t=1"  rt
T -~ - =2 =2 =2 =2 2 2
— Yot Wyttt (uARl + uART)/Z = pLs + (uARl + uART)/ZTG O uag
- T ~2 T ~2 = PLS T -2
Zf=1 uARt Zt:l MARf Zt=1 uARt/T0202MAR
~2 ~2 2 2 ~2 ~2 2
o 1 (uAR1 + uART)(l/a 0% 1iar) L 1 (uAR1 + uART)/a 5
= PstoryT o ) Pt g, el
Yo (@ /T)(1/0%0% ) O uyp
o~ 2 2 2 /2 3 A.312
= pPrs+Ttau a0 +ut )2+ w(T), (A.312)

- . . . T -~ . . . .
where i, is consistent predictor of ou,,; and ), 4 uiRt /T is a consistent predictor of 6202, with an error

UAR

of order w(t3).

By using equations (1.28) and (A.312) we find that

5" = NT(ppw - p)

= [(prs — p) + Pa(? 1 + 12 ;1) /2 + ()] /T

6p"° + TP 1 + U2 1) /2 + (TP, (A.313)

Estimators of ¢

Since,

yn = Xuf + oun, (A.314)

let di; be the vector of OLS residuals, we have that
le = Uy — XH(X[/_IXH)_le.IuH (A315)
Let i, be the t-th element of vector fiy. From equations (A.186), (A.235) and (A.315) we have that

My = gy —x (X, Xn) " Xpun = uy — % (X}, Xp/T) " Xjun/T

=ty — T BuXjun/ VT = u, — tey, (A.316)

where ¢; = x;tBHX;iuH/ VT.

According to our assumptions we can deduce that the T X 1 vector

e =[(er)=1,.,7] = O(1). (A.317)
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Thus,

2 _ 2_ .2 2,2 _ 2 2 _ 2
iy = (Uye — Ter)” = U™ — 2TUyper + 170 = Uy — T(QUyper — Te) = Uyy” — Ty, (A.318)

where ¢; = 2u,.e; — Te;>.

Let @iy be the T x 1 vector of the GLS residuals of equation (A.314), when the matrix £y is known. Then,
iy = uy — XH(X;{.QHXH)_1X;{.QHMH. (A.319)
Also, let 1,; be the th-element of vector fiy. From equations (A.186), (A.235) and (A.319), it follows that

¢ — X (X1 QuXn) " X Quuy

=

ut = Uy

=y —x (X5 QuXn/T) ' X} Quup /T

= Uy-— Tx;tGHXI’{.QHuH/ T = Uyt — T8, (A.320)
where ¢; = x;tGHX;J.QHuH/ VT. 1t is straightforward that the T X 1 vector
e = [(@)=1,..,r] = O(1). (A.321)
Thus,
ﬁit = (U, — 18)* = thz — 27U, 18 + 'czéf = thz — T(2u, 8 + Téf) = thz —T&, (A.322)

where & = 2u, ;e + Tétz. The most frequently used estimators of vector ¢ are:

GQ estimator of ¢

T 1r
Sco = [2 th£l Y 2y - %P, (A.323)

t=1 t=1
where f8 is the OLS estimator of B and y,; — x,: = il,;+ are the OLS residuals from equation (A.314). We
define the T X 1 vector U as follows:
U = (@ )s-1,..,7)- (A.324)

The GQ estimator of g is the OLS estimator of g from the equation

U=Zc+v, (A.325)

where

v ~ N(, Q7). (A.326)

This result is implied by equations (A.223), (A.324), (A.325) and (A.326) since
T 1o

Cos = (222U =) ztz;l Y 2y - x,4B) = &co. (A.327)
1

t=1 t=
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From equations (1.13), (1.14), (A.318), (A.325) and (A.326) we find that the t-th element of the T x 1

vector v = [(V¢)s=1,.. 7] is

vy = ﬁit -z,6= uf’t —Te— 0% = (i, — 0%) — Te; = 1y — &y,
where i1; = ﬁzt - Gtz. Thus,
H
v=1u-1¢ #=[(l)=1
From equations (A.223), (1.28), (1.30), (A.325), (A.327) and (A.329) we have
o = (Z2)'ZU=(Z'2)"'Z(Zs+v)
= (Z2)'Z2Zc+(Z'Z2)'Zv=¢c+(Z2Z2)'Zv=>
6% = VT(og-¢) = VT(Z'2)'Z'v = NT(Z'Z/T)'Z'v/T
= BZ'(i-1e)/ VT =BZ'u/ VT —1BZ e/ NT
= dlg - szg,

where

di. = BZ'a/NT, do. = BZ'¢/ VT.

A estimator of ¢

T 17
Ca = [Z(Z;GGQ)_ZZtZ;} Z(Z;GGQ)_ZZt(]/Ht - thﬁ)z,

t=1 t=1

(A.328)

(A.329)

(A.330)

(A.331)

(A.332)

where f8 is the OLS estimator of f and y,; — x4 = il,;+ are the OLS residuals from equation (A.314).
By using equations (A.223), (A.324), (A.325) and (A.326) we find that the A estimator of ¢ is the GLS

estimator of ¢ from the equation (A.325) because

ZQAz)y'z QAU

T -1 7
Z(ZZCGQ)_ZZtZE Z(z;CGQ)_ZZt(yHt —x,P)* = ¢éa,
t=1 t=1

&ats

where

Qp = Q,60 = diag[(z/¢co) ']

From equations (A.223), (1.28), (1.30), (A.325), (A.333) and (A.334) we have

éa = ZQP7)'7z7QXU = (27 Q172) 2/ Q% (Zs + v)
= (222700 Zc+ (ZQ}Z) ' 200 =+ (ZQ3Z) 2 Qv =
64 = VT(a—-¢) = NT(Z Q22 2720 = NT(Z/Q4Z/T) ' 2/ Q20T
= éHZ/Q%{U/ ﬁ,

(A.333)

(A.334)

(A.335)
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where

Gy = (ZQAZIT)", Qu=Q,c0 = diagl(z/¢c0) 1. (A.336)

From Lemmas UR.1, A.34 and equation (A.186), we have

N
o
)
N
~
~
1l

m
Z'QAZ)T + 21 Z(Z’QHC,QHZ/T)di? +w(t?) =
i=1

m
Ay = AH + ZTZAHszfQ? + CL)(TZ) =
i=1

Gu = Am)'=[An+21 Z A,cd?0 + w(@)] !
i=1

3

= A -2t) AYA AL + ()

i

I
—_

= GH—zT

(e

A, Grd;2 + w(7), (A.337)
i=1

where

A, =Z'QuQ, . Z|T. (A.338)
Furthermore, by using Lemma A.34 and equation (A.329) we have

7ZQo/NT = 7% —e)/NT

7/ Q3 (i1 — 1e) | NT + 21 Z[Z’.QHQHG,.(ﬁ — 7&)/ VTId2 + w(7?)
i=1

7' Q%) NT — 12/ Q%e/ NT + 21 Z(Z'QHQHg,.a/ VD2 + (%), (A.339)
i=1

By substituting equations (A.337) and (A.339) in equation (A.335) we find that

m
[Gr =27 ) GuAl, Guds? + w(T)] -
i=1

5

m
12/ Q%) NT — 12/ Q% e/ NT + 21 Z(Z’.QH.QHQ/ﬁ/ VDA + ()]
j=1

= GH(Z,QIZ{IZ/ ﬁ) - TGH(Z/Q%JE/ ﬁ) + 27 Z GH(Z,QHQHgIJZ/ ﬁ)dlch]
=1
—27 Z GHAHCI'GH(Z/Q%—IIZ/ ‘/T)di;Q + a)(’[z)
i=1
= Gu(Z' Q%u/NT) -
m m
_T[GH(Z/Q%—IE/ ﬁ) -2 Z GH(Z’.QHQH;,.ﬁ/ \/T)dlcf +2 Z GHAHG;'GH(Z,Q%{L_[/ ﬁ)dfg?] + a)(’(z)
=1 i=1
= di. —tdj) + (D), (A.340)
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where

A = GuZQu/NT)

and

5
I

i=1 i=1

IA estimator of g

-1
T T
Ca = [Z(Z;é"“l)_2ztz;l Z(Z;éa—l)_zzt(ym — & Bar)’,
=1 =1

(A.341)

GH(Z Qe NT) =2 ) Gu(Z' Qu, i VT2 +2 )" GuA, e Gu(Z' Qi NT)dTE.

(A.342)

where ﬁa_l, Ca-1 is the feasible GLS estimator of § and the corresponding estimator of &, according to the

previous repetition, and y,,; — x;tﬁa,l = 11,+ are the GLS residuals of equation (A.314). Let & = 4. Using

equation (1.13) as well as estimator 4 we find QH and using the GLS method we estimate ﬁl = ﬁA. For

a=2,3,..., we may easily prove that &, is the GLS estimator of § from the equation

U=Z¢+v,

where

and for v, equation (A.334) applies. By letting
Qp = Q, 51 = diag[(z]&s-1)7"],
we find that
605 = (Z 2z 'z A0

T
Y (za1) 22z
t=1

-1 T
Z(z;éafl)_zzt(ym - x;t,éafl)z = éa-
t=1

From Lemma A.34 and equations (A.336), (A.344), (A.345), and (A.346) we have

éo = Z2)'700 0= (204272 Q2 (Zs +v)

Z 2227+ (2 Z2) 2 Qv =+ (ZQ42)' 2 Qv >

=4
]
Il

V(6o =) = VT(Z'Q3,2)7'Z Gy

VI(Z R, Z/T) ' 2/ Q20T = GuZ' Qo) VT.

(A.343)

(A.344)

(A.345)

(A.346)

(A.347)
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In the case being studied, #,¢ are the GLS residuals of equation (A.314) , when matrix Qp is unknown.

Working as in the proof of equation (A.320) we get
g = Uy — Tx;tGHXI’{QHuH/ VT. (A.348)

Taking Lemmas B.2, B.3 of the PHD thesis, (Symeonides, 1991, p.229-234), of into consideration we get
that
Gu = Gy + w(1), Qn = Qy + w(7). (A.349)

By substituting equation (A.349) in equation (A.348), and taking into account equation (A.320) we find
Ayt = Uy — Gy X[ Quuy VT + w(1) = Ut — 18 + w(1). (A.350)

From equations (1.14), (1.15), (A.326), (A.343) and (A.350) we have that the t-th element of the T x 1

vector v = [(V)t=1,.. 1] is

v = ﬁit -z;6+w(1) = u}zit — T8 — 0% + w(T) = (uf{t - 0%) = 1& + w(T) = il — TE, (A.351)

where
iy =u>, - o;. (A.352)

Thus,
v=1d-7E+w(t?), i =[(l)=1,.. 1) (A.353)

Lemmas A.1 and A.34, equations (A.186) and (A.345) and working as in the proof of equation (A.337),
we find that

Gy = Gy — 21 Z GriA, i, Gudil. + w(7?), (A.354)
i=1

where matrix was defined in equation (A.338). Furthermore, from Lemma A.34 and equation (A.353) it

follows that

Z'Q%v/ VT Z' O - 7€ + w(t?)]/ VT + w(7?)

= Z’Qi[ﬂ — 18+ w(T?)]/ VT + 21 Z[Z’QHQH;. [ — 18 + w(T%)]/ ‘/T]dfgi + w(t?)
i=1

= 7 (a—-18)/ VT +21 Z[Z'QHQHC, (@ - 18)/ NTId{, + (7%
i=1

= ZQ%a/NT -2/ Q%e/NT + 21 Z(Z’QHQH;,ﬁ/ VD). + w(7?). (A.355)

i=1
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By using equations (A.341) (A.347), (A.354) and (A.355) and working as in proof of equation (A.340),
we find that

8¢ = Gu(Z'Q%a/NT) -
—1[Gu(Z' e/ NT) -2 i GH(Z QuQ,,c i/ NT)d, +2 Z GHA ., Gu(Z Q) NT)d. ] + w(1?)
= di. —td_ + (D), B B (A.356)
where
dl. = GuZQu/NT)
and (A.357)

ds. GH(Z e/ NT) =2 )" Gu(Z' Quyet/ VD)L, +2) " Gull,e Gu(Z Qyin/ NT)d. .
i=1

i=1

Proof of Theorem 2. The elements of matrix A and vector x

/\0 /\Op Al 0o 002 00pP1 Oodig

0¢
Aop  App A | = }lj{}OE[ p1 | (00, Plrdig)] =lim Eloopr  pi? pudy | = (A358)
Aog Ape Ag dic oodic  prdic dlcdig

Aog = %1_{210 E(00?), Agp = }1_{30 E(oop1), Aoc = Th_r){}o E(oodig), App = Th_l}(}o E(p1p1), (A.359)
Ape = lim E(prdre), Age = lim E(dedy) (A.360)

Ko ﬁao + 01
K| = %E)TJOE \/Tpl +p; | = (A.361)

K¢ ﬁdlg - ng
Ko = Tlim E( \/Tao +01), Kp = Tlim E( \/Tpl +p2), K = %im E( \/fdlg —dy) (A.362)

By using equation (A.281) we have

E(0o?) = El(wo—app —a'dic)’]
= E[(wg — ap,ol)2 —2(wo — a,pr)a’dyc + a’dlgdaga]
= E[w] — 2a,wop1 + (app1)* — 28’ wod¢ + 2a,a’ prdic + a'd.d; _a]
= E(w}) — 2a, E(wop1) + a,” E(p1?) — 2a’ E(wod:c) + 2a,a’ E(p1dic)
+a'E(dicd) )a = (A.363)
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By using Lemma A.31 and equations (A.359), (A.360) we have

Ay = lim E(g¢%) =2 -2a, lim E(wopy) + ay*Agp

T—oo

—2a’ %im E(wodic) — 2a,a’A e + a’Aca.

E(oop1) = El(wo —app1 —a’'di)pi]
= E[wop1 - ﬂpP12 —a'pidic]
= E(wop1) — a, E(p1?) — @’ E(p1drc) =
Aop = %1_{{)10 E(oop1) = %I_I& E(wop1) — apApp —a’ Ay
E(oodi;) = E[(wo —a,p1 —a’'dyic)dic]
= Eldi(wo —app1 — a'di)’]
= E[delg - appldlg - dlgdiga]
= B(wods.) - a, E(prdrc) — E(dhed) Ja =
Aog = 111_1;1;10 E(Godlg) = 111_1;1;10 E(Zl)odlg) - aP/\PC - Agga.

(A.364)

(A.365)

(A.366)

(A.367)

(A.368)

From Lemma A.36 and equations (A.300), (A.303), (A.309), (A.312) it follows that for all estimators of p

examined we can write:

p=p+101+ a)(Tz),

where

p1 = —au,p 2, 2tar/2 VT.

From Lemma UR.2 and equations (A.187), (A.303) , we have the following

B,z Q2 0tar) = tr Q,0Q4r"" = 2p/a.

t4 -
—— B,z Q,214r) =
Zﬁ ARS“AR Zﬁ

E(p1) B(—aut, o, 0uar /2 NT) =

2NTa

P
N

results:

tr QARZQAR_l

(A.369)

(A.370)

(A.371)

(A.372)



138

Appendix A

’ ’
By guartd)y g €2, ,201AR)

E(u:QRI_)X/\R 'QARZPXAR uAR)

(tr Q™) (tr Q20 Qar ™) + 2(trQur ™ Q2,2Qur ™)

= (1/a)(tr R)(trL, 0 Qar™") + 2(trQar Q2 2Q4r™")

= (T/a)2p/a) +2[-2pT/a? + O(1)]

= 2pT/a* —4pT/a* + O(1)

= —2pT/a*+ O(1). (A.373)

tr Py 2,2Px, Qar ™!

tr(I — Px,)Q2,.2(I — P, )Q2ar""

(22 2R ™ = Q2 PruC2ar™ = Pxue 2R + P 2,2 Pxn Qar ™)
trQ, 2Qar~" = 2tr Px, Q,0Qur " + tr Py, Q,,2Px, Qar ™"

2p/a —2(n — tr BarTaR)/p + (tt AarBaARTARBaR /@ — tr BArT 4g)/p + O(7?)
2p/a —2n/p + 2tr BArI ar/p + tr AarBaARI ARBar/ap — tr BarIar/p + O(Tz)
(1/p0¢)(2p2 —2na + atr BArIag + tr AagBarI'ARBAR) + O(Tz)

(1/p0¢)[2(p2 —na) + atr BarIag + tr AarBarIarBar] + O(7?), (A.374)

wherefore, since matrices .QAR_l, Q,.» and Px,, are symmetric, we have

where

tr QARZPXARQAR_l =tr QAR_lﬂAﬂPXAR = tI‘(QAR_lﬂARszAR)/ = tI‘PXARQARzﬂAR_l. (A375)

E(p2) =

E(VTp1 + p2)

/D D 27 /
—E(at g Px i €22 Px AR /2 — a1y gt AR U, n €2, 011 AR /2T)

2

2
_ _ o
’ ’ !
E(uARPXAR'QARZPXARuAR) + 2T E(uARuARuARQARZuAR)

|(@?/2T)(=2pT/a?)

—(a/2pa)[2(p2 —na) + atr BarI'ag + tI'AARBARTARBAR]] + O(TZ) (A.376)

VT E(p1) +E(p2) = —p + E(p2)

—(2p/a)(@/2) + (@®[2T)(=2pT/a?)

—(a/2pa)[2(p* — nav) + atr BarTar + tr AarBarTarBar] + O(7%)
—(1/2p)[2(n + 3)p* — 21 + 1] + O(7?) (A.377)

c1 = atr BArIAR + tr AARBARI ARBAR. (A.378)
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From Lemma A.36 and equations (A.372),(A.376) we have that

E(pis) = Elp+1t(p1 +1p2) + ()]

= p+1[E(p1) + TE(p2)] + O(7%)

= p+1| - @p/a)@/2NT) + 7] (@*/2T)(~2pT/a?)

—(a/2pa)[2(p* — na) + atr BarTar + frAARBARTARBAR]]] +0(7°)
= p- (TZ/Zp)[Zp2 + Zp2 + 2[p2 -n(1- pz)]

+atr BarTar + tr AagBarTarBar] + O(7°)
= p—(T*/2p)(6p* = 2n + 2np?

+atr BArTaR + tr AarBarTarBar) + O(7°)

= p—(7*/2p)[2(n + 3)p* — 2n + c1] + O(7%), (A.379)

where ¢1 = atr BaArI'ag + tr AARBArI ARBAR.

From equations (A.304) and (A.379) and the definitions of our model we find

kLS = Jim E( VT5,") = Jim E[T(p* - p)] = lim [E(p"°) - pl/72
= lim[p- (T*/2p)[2(n +3)p* = 2n + ¢1] + O(7°) — p]/7°
= lim[-(1/2p)[2(n + 3)p* = 2n +c1] + O(T~)]

= —[(n+3)p+(c1 —2n)/2p]. (A.380)

L =0 " = Xar(X) g Q2arXar) ' X5 (A.381)

From equation (A.381) we conclude that

ZQurE

and

LPx,,

[Qar™" = XAR(X), g RarXaR) ' X 1Q2aR[Qar ™ — Xur(X) g Q24rXAR) " X 5]

Qur T QurQar ™" = Xar(X g RaARXAR) ' X p QRurQar ™" — Qar T QarXAr(X ),z RarXar) Xz

+XAR(X) g 2arXAR) " X g QAR X AR (X, g 2ARXAR) " X1

Qur™" = 2X4r(X), g QArXAR) ' X )i + Xar(X),r QarXAR) ' X7

Qar™ = Xar(X g QarXar) ' Xy = L. (A.382)

[Qar ™" = Xar(X4 g RARXAR) " X2 1Px 1e
QR Px, — Xar(X g QarXaR) ' X 5[ — Xar(X,z Xar) " Xz ]
QR Px, — Xar(X ) QarXar) ' Xig + Xar (X g 2arXar) " Xy Xar (X Xar) Xz

Qur" Py, — Xar(X g QarXar) ' X)ig + Xar(X g QuarXar) ' Xz = Qar ' Px,,. (A.383)
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By using Lemma UR.2 and equations (A.187), (A.375), (A.382) and (A.383) we find the following

results:

E(u:qRPXARQARZPXAREQARuAR) tr pXARQARZPXAREQARQAR_l

= trQ, .Px, EPx,,

= trQ,oPx, Qur " Px,,

= trPx, Q2,.0Px, Q4r""

= tr(I = Px,)Q2,0Px, Qar ™!

= trQ, oPx, Qar" - tr Px,,Q,2Px, . Qar""

= trPx,Q2,2Qir " — tr Px,,Q,2Px,. Qar""

= (n—trBarTar)/p — (tr AsrBARTarBar/a — tr BarT4r)/p + O(7?)
= (n—tr BarTar — tr AurBarTarBar/a + tr BarTar)/p + O(7%)

= (I’l - tI’AARBARFARBAR/(X)/p + O(TZ). (A384)

By using Lemma UR.2 and equations (A.187), (A.375), (A.382) and (A.383) we find the following

results:

E() g QArEPx, 2,2 Px, EQaruAR) =
= tr QurEPx, 2,2 Px, EQarQar ™!
= trPx,,Q,2Px, EQarE
= trPx,,Q,2Px,E
= tr Px, Q,0Px, [Qar " — Xar(X4z QaArXAR) " Xz ]
= tr Px, Q,0Px, Qar " — tr Xar(Xz Xar) " X2 2,00 X 4R
(X Xar) X g Xar (X 2arXaR) " X)jx
= tr Py, 2,0Px, 2ar ™" — tr XarQ2, 0 Xar (X g 2arXar) " X/ Xar (X g Xar) ™"
= tr Py, Q2,0Px, Q4" — tr Xar(Q,1 + pA)Xar(X), g Q24rXaR) ™"
= tr Px, Q,0Px, Qar " — tr X2 2, 1 Xar (X g QarXar) ! — ptr X pAXar(X) g QaArXAR) ™"
= trPx, Q2,2Px, Q2ar" — (1/p) tr X/, (Qar — al)Xar(Xz QarXar) ™" + O(1)
= tr Py, Q2,0Px, 27" — (1/p)ltr X g QArXAr (X g 2arXAR) " — @ tr X/ e Xar(X),z R2arXar) ']+ O(1)
= trPx, Q,0Px, Qar" — (1/p)ltr I, — atr(X . Xar/T)(X g 2arXar/T) ] + O(1)
= —(tr AarBarTarBar/a — tr BarTar)/p — (n — a tr FarGag) + O(7%)

= —(n—tr AaurBarTarBar/a@)/p + (atr FARG ar — tr BarT 4r)/p + O(7?), (A.385)
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wherefore from the equation (A.187) we know that X’,,AXag = O(1). From equations (A.305), (A.384)
and (A.385) we have that

E(ppw) = Elprs — T2a[u)yz Px, 2,0 Px, EQarUAR + (1/2)1, g QAREPx, 2,0 Px, EQartAR] + @(T°)]
= E(prs) - Tl Px, 2,2 Px, EQarUAR) + (1/2) B g QAREPx, 2,2 Px, EZQaRMAR)] + O(T°)
= E(prs) — t°al(n — tr AarBarTarBar/@)/p
+(1/2)[=(n — tr AurBART arBar/@)/p + (a tr FArGar — tr BarT ar)/pl] + O(7°)
= E(prs) — (t°a/2p)[n — tr AsrBarTarBar/a + a tr FARGag — tr BarTar] + O(7%)
= E(prs) — (t%/2p)[na — (tr AARBarTArBar + @ tr BART ag) + a tr FAR G ag] + O(7°)
= E(pLs) — (t°/2p)[na — c1 — acy] + O(7%), (A.386)
where
c1 = trAarBarT'ArBar + atr BarIar
and (A.387)
co = atrFarGag.

From equations (A.306), (A.380), and (A.386) and the definitions of the model we have that

WOL = Kﬁw - %im E( ‘/T(SPPW) = %im E[T(prw — p)] = %im [E(ppw) — p]/,[z
= %I_I};)[E(pLS) -p- (T2/2p)[1’106 —-C1+ aCZ] + O(T3)]/’[2
= lim [[E(pis) - pl/7* = (1/2p)[na — &1 + aca] + O(T™)]

= Kés —acy/2p + (c1 — an)/2p. (A.388)

From the definitions of the Linear Model with Autocorrelated Disturbances we know that E(u,.?) = 1/a.
Thus,
E(u,12 + t,,7°) = B(u,1%) + B(u,,1°) = 1/a + 1/a = 2/a. (A.389)

Equations (A.386) and (A.389) imply that
E(p™MY) = Elppw + T [pa(u,a® + t,1?) — pl + ()]

= E(ppw) + T [pa E(u,,1° + u, 1) — p] + O(7°) = E(ppw) + T*(2pa/a — p) + O(7°)
E(ppw) + T°p + O(7°). (A.390)
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From equations (A.308), (A.388) and (A.390)

Kyt = lim E( VT5,My = lim E[T(p ~ p)] = lim [E(pa) ~ p)/7°
= Tlim [E(ppw) — p + T2p + O(T)]/ 7
= Jim [[E(opw) - pI/7* +p + O(T™%)]

= KIPJW +p= KSL +p. (A.391)

From equations (A.312) and (A.389) we have

E(ppw) Elprs + T2t + t,,77) /2 + ()]
= E(prs) + T a E(u,? + 1,79)/2 + O(7)
= E(pLs) + (T°a/2)(2/a) + O(7)

= E(pLs) + 7> + O(7%). (A.392)
By using equations (A.313) and (A.392) we find
k" = lim E(VTo,”") = lim E[T(ppw — p)] = lim [E(ppw) — p)/7°
= lim[E(pis) ~ p + 2+ O(t%)]/?

= lim [[E(pis) — pl/7* + 1+ O(T")]

= 1+ 1 (A.393)
From equations (A.235) and (A.239) we have
E(ii;) = E(up® — 0% =02 — 0> =0 = E(@) =E[@)t=1,...,T] =0. (A.394)

Also, since dic = dlgGQ = BZ'ii/ VT for é5Q and di. = dlgA = GH(Z’.QIZiﬁ/ VT) for ¢4, 8 and &ML
subsequently

E(dyc) = 0. (A.395)

Thus,

E(VTd,. — dy.) VTE(dy) — E(da) = —E(dy) =

Ke lim E( VTdy. - dy) = - lim E(dzc). (A.396)

By using Lemma A.31, equations (A.281), (A.372),(A.395), and since b ~ N(O, G), trAG =trI, =n
we get that

P
VT

E(co) = E(wo-app —a'dyc) = E(w) - a, E(py) — @ E(dhc) = ~B(u' Qyu/T)

P
"
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L__za* P 2a

VT PTNT  TNT

= —trQ,QYT (A.397)

Therefore,

2a.,

E(VToo + 01) E(VToo) + E(o1) = = VT
TNT

+ E(01)

2“* ’ ’
= - * E(wyp1 + w'dy; —appa + a'dy

+digfid1g + apppl2 + plu;,gdlg —b'Ab +n)

= 2;;* +E(w,p1) + E(w'dyc) — E(a,p2) + E(a’dy)
+E(d] Ady) + E(app1°) + E(p1a,.dic) — E(b'AD) +n
= 2;;* +E(w,p1) + E(w'dyc) — E(a,p2) + E(a’dy)
+trA E(digdlg) + E(appplz) + E(pla;)gdlg) —trAG +n
2a,

= T+ E(wpp1) + E(w'dyc) — E(ayp2) + E(a’dac)

+tr AB(d]_dyc) + Baypp®) + B(praj.dic) —n+n =

. Y T 2a, .
Ko = lim B( VTao + 01) = Jim E( VToo) + E(01) = lim ﬁT«/T + lim E(o)

= 1im 2% 4 Jim E(oy) = lim E(oy)
- T1—>n;o T T—o0 V= T—oo 1
= %im E(w,p1) + Tlim E(w'dy.) - %im E(app2) + %im E(a'dy.)

+ lim tr AE(d} ds) + lim B(appp1?) + lim E(p1aedsc)
= %im E(w,p1) + %im E(w'd) —a, %im E(p2) + a’(—x.)

+tr Al e + appApp + ) A pe. (A.398)

For the &gg estimator of ¢ and the frs estimator of p we have that

6 = 0.9, dic = di R, dy. = do .9,
5, = 0,55, pr=pitS, p2=palS,
00°? = wy- applLS - a’dlgGQ
01 = w,;" + wdi "2 - a,0." + a'dy 2 + digGQAdlgGQ + appplzLS + plLSa'pgdlgGQ
—b'Ab +n. (A.399)

For the &4 estimator of ¢ and the pgr estimator of p we have that

6. = 07, dic=dit, dyc = do?,
op = ‘SpGLr p1= PlGL = plLSr p2 = PzGL,
O'()A = Wy — ﬂpplGL - a’dlgA
ot = wppch +w'd - appch +a'dy + digAAdlgA + appplch + pcha'p;dlgA
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—b’Ab +n. (A.400)
For the &4 and the Gy, estimator of ¢ and f; (I=S, GL, IG, ML) estimator of p we have that

5‘; = (Sga, dlg = dlgA/ dZ:; = nga/

op = 6/3[/ p1= Pll = plLS, p2 = pzl,

Goa = Wy — Llpp1l — a’d1gA = OOA
- i
0" = wpp11 +w'd - appZI +a'dy " + digAAdlgA + appplz + pfa’Pgdl;A
—b’Ab +n, (A.401)

where [ is any estimator of p.

By using Lemma A.31 we have

T T
, 1
wO = ﬁ(u Qu/T_l) - ﬁ(?;;r*”/wtl’by —1],
1 L& z z
, ti vi
wi = VTWQu/T+a)= ﬁ{—ﬁ tZ:{ ;htt' [ﬁ + ;12] Yihy + ﬂi],
1 T T
w, = \/f(u’_qu/T + Llp) = ﬁ"(? Z Z r*tt;7¢t¢t’ + ﬂp] (A402)
=1 t=1
where
Yt = ut/oy. (A.403)

Using Lemma A.30 and equations (UR.25), (A.212), and (A.370) we find that

E[ \/T(u’ﬂu/T = 1) (—au 2, 2uar/2 \/7_")]

E(wop1)

—% E[(u Quu £, o X~ ") T — w £ Qo £~ u)]

—% E[v' Quu’ Qou/T — v’ Qou]

—%( E[uv' Quu’ Qou/T] — E[u'.Qzu])

—%( trQQ tr QT +2tr QQ1Q, Q7T — tr Qzﬂ_l)

—%( trItr Q07T+ 201007 T - tr 207)

—%(Ttr Q07T +20r Q07T - 1 2,07)

—%mrazfrl /T

—% tr(Qy + pL AL )

—%(tr Q1 Q7+ ptr ZFAL AL Ra L)

1 1 1 -1 1
—%(tr oE P = RIE™ + p tr £~ AR L")
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1 1 -1 1 -1
L —PE I - Rl + L £ E AR
T p a

2 iar-m+ Luwar)
T p a

ap
Taz

_ZTP =O(T™). (A.404)

Furthermore, by using equations (A.212), (A.370),(UR.25) and Lemma A.30 we have

WppP1

E(wppl)

VT QT + a,)(—atty g 2, 214z /2 NT)

a ’ ’ o ’ ’ ’
—E(u Qou/T + ap) (U, 2, 0UAR) = —E(u Qourdy, Qouar /T + apy g QouuaR)
—%(u'.quu’ZJ/ZQARZ):J/Zu/T +a, LR, o B )

—%(u’ﬂpuu'ﬂgu/T +au Qo) = (A.405)

Q1 — pE7PALTHQ7NQy + pLT AL QT
(QQ7! - pET ALY Q1 Q7 + pETPALTEQT

1 1

Q' - p):-‘/ZA/:—VZa):‘/ZR/:‘/Z)(an—1 + pE‘lhAE_]/zEZI/ZREVZ)
(@07 - ErraRE @0 + EEhaRE )

2
(@71 - 22—1/241{21/2:21_(2—1 + galg—lz—I/ZARzl/z - (g) (ZFARE") =
1 P =y 1, -1 P ~1y-1/. 1/ P 2 —1/ 172
(@02 - Lzt ARt Q107 + L (@0 ARE 2)—(;) tr(E""ARL'")

_P
04
tr(Q Q1) - (g)z tr(X)

tr(2,: Q7% + 0(1)

2
(@0 - Pz mARC Q07 + gtr(E‘l/zARﬂl/zﬂl.Q‘l) —(P ) tr(EPE AR

[04

2T/a + O(1) = (A.406)

—% E@'Qpuu'Qou/T + a,u’ Qru)
a 7 ’ ’
-5 (E@' Qpuu' Qou/T) + a, B Qou))
a 7 ’ ’ 7
-5 (@' Qpuu’ Qou/T) + (- E' Qyu/T)) B Qou))

1 1
—% []—,(tr Q0 tr Q0 +2trQ,Q7' Q7 - Tt Q,Q 7 tr Qzﬂ‘l]

a2 _ _
_E(T tr Q2,070 1)

-2 Q07 00
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-7 +ow)

-2+ 0O(T™Y). (A.407)

By using equation (A.370)
2
p1* = TR QuattaripQ atar = (A.408)

2
a ’ ’
E(p12) = 4_T E(uAR.QARzuARuARQARQuAR) — (A409)

By using Lemma UR.2 and (A.187) we have

-1 -1 -1 -1
E(uARQAKzuARu:qRQARZuAR) = trQAKzﬂAR tr.QARz.QAR +2trQAR2~QAR 'QARZ'QAR

= (rQ,0QaR" ") +2tr(Q2,,2Q4r ")

2
- Z_p) +2(2T)+O(1)
(04
47 4T
= Lo = (A.410)
E(p?) = % iz L 0(1)]
2
_ % +a+0(l) = a+ 0T = (A.411)
App = %Lrgo E(p:?) = a. (A.412)

By using equations (A.329), (A.352) and (A.403)

=i
|

—_
—~~

=i
=
el
=
L]
—

= [(Q- Pz)ut —0)=1,..,7]
= [0 = p*)* = )=, 1] (A.413)
By using equations (1.11a), (1.11b) and (1.11c) we have
- %
Ve =
E(@yy) = @:o (A.414)
t
2y _ E(“tz) o 1
E@y) = o on(l- pz) -2
Bprpy) = CU4t) _ aopp!™ _ pitl

ooy owop(l— 0?) T 1- p%
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By using equations (A.402), (A.413) and (A.414)

T T
1
woit/ VT = VT| = 3" ) raetpipe = 1| 0P 11 = pg® = 1/ VT

=1 t=1

1 T T

= —012(1 ‘02)221’*”/%%/ (1 Ul T ZZMMMPV
r=1 t=1 r=1 t=1
—012(1 - p2)17012 + 012 (A.415)
N

By using the Isserlis’ Theorem (UR.27) which is defined in the Useful Results’ chapter and (A.414) we

have

E(Sbtll/t”,blz) = E(¢t¢t’)E(¢l2) + 2E1r) E(Yigy)
plf—f'l 1 o plf—ll pll—f'l
1-p)(1-p>) “(1A-p)(1-p?)
pl=t' plt I+-t'|

- Gt (1 o (A.416)

By using equations (A.402) and (A.415) we get

T T T T
1 1
E []—,012(1 ) Z Z Far Py — 0!2f Z Z T Py

=1 t=1 =1 t=1

E(woit;/ VT)
-0 (1 - PPl + Uzz]

T T T T
= %012(1 - pz) Z Z ety E(I/Jtl/}tﬂ/’lz) - 012% Z Z Tt B(Priy)

r=1 t=1 =1 t=1

1, s r T plt—t’l plt—l|+|l—t’| ,1 r T plt
= 7o 1-p )er*tt'((l_ 2)2 +2(1 p2)2) 01 Tzzr*ttll—pz

1, r T p|H'| plt I+t ,1 T T
- oY Y (2 )_alizmt,

=1 t=1

1, Tr T plt—l\+|l—t’|
= TO'] Z‘zhtt'(z—l_pz )

~l =
S

N
1~
gy
—~~
>
+
,
I
PN
;_\
o«
:
9
>~]
N
©
—~~
>
N
=

+
>
T
=
=

|t=1|+|I-t'|
Y
( 1—92)

[t=I]+[I—=t'] [t=I|+|[—t'|

-
= %alz(iiéﬂ/pl_—p ZZP 6tt’(1_61t_6tT)p1 2

=1 t=1

Tr T p\t I+—#]
- Z Z POr+1) + 6(t+1)t')1—p2)

t'=1 t=1
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’\]IN

T
2.2
T

T plt I1+]1—t| T [=1]+1=H]
012( ;‘ On . + ;‘ p?0u(1 = 611 — 5tT)
T+1 |t I+-t+1]  T-=1 plt—l|+|l—t—1|
Z PGt + Ot+1)t- 1)) PGr+1) + 5(t+1)(t+1))—2)
=2 =0 l1-p
T _ T-1 _ T+1 4l T-1 =t
E012(2‘ pzu ] N Pz pZ\t ] + ppu I+|1—t+1] B ppu I|+|1—t 1)
r\g1i-p G 1-p & 1-p2 Z 1-p
2 ( 2|t 1| 2|1 1| ) p2|1—1| 5 p2|T—l\ 2|T 1l T-1 ) p2|t 1|
P -pP +p P + p
T’ Z 1 p? 1-p? 1-p? 1 p? ; 1-p?
T+l p=+-t+1] T plt—ll+|l—t—1|
i o )
=2 t=0
T T T+1 I+l T-1 It
Z(Z 2|t ] zP 2(1-1) p 2(T ) Zp 2\t ] + pplt I|+|1—t+1] B pplt I|+|1-t 1|)
- P = - A~ S = A
T 2|t 1] 2(1 1) uT-1) T+l [e=l+l-t+1]  T=1 [t=1|+]1—t-1]
1 2 2p _ p _ p
(( +p)21 pl p Pl_p2 t:2p 1_p2 tzop 1_p2
1+p°(1+p 1 2, AT-I+1) 1 20, AT-I+1)
— + -— +
[1—p2(1—p2 1_p2(p p ) 1_p2(p p )
T+l p=ll—t+1] T=1 je—li—t-1)
P p
- |, A 417
i W v ] (A417)

t=2
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which implies that by using equation (A.417) we have

E(woit/ VT) = El(woiti/ VT)i1,.,
_ 2 o1+ P 1+ p? 1 2, AT-I+1) 1 2 AT-I+1)
Tii pplt I|+1—=t+1] B Tz—i pp|t71\+|17t71| ]) ]
= 1-0 =R R N
_ 42 1+p°(1+p AT 1 A, AT-I+1)
= [(T ze| p(l_pz T ) = T )
T+1 ppu I+-t+1  IT-=1 ppu I1+]1— t—ll]) ]
=" 1-p? =" 1=p* Vi,r
1+p% (1+ p? p21- 1 -
- 7.z (T-i+1)y | _ 2 AT-I+1)
gT(l—pz( e )) ()
T+1 [t=l+ll-t+1  T=1 [t=1]+]I—t=1]
P p ) ]
-Y p———-) p—————— . (A.418)
=2 1-p? =0 1-p? I=1,.,T
By using equations (A.331), (A.341) and (A.418) we get the following results:
For GQ estimator
E(W()dlg) = E(WodlgcQ) = E(WQBZ’I/_!/ ﬁ)
= BZ E(woii/ VT) = BZ’E[(woﬁl/ VI)i=1,...,T]
_ , 1+p°(1+p AT-1+D 1 o AT-I+1)
= BZ'Zg T[(l p(l_p T p(p ) 1_p2(p +p )
) T+1 pp|t—1|+u—t+1| T-1 ppu [ +l—t— 1|) ]
' 1-p? =10 )y
_ o 1+p=(1+p A=) 1 20 AT-I+1)
= 2BZZ/Tc;[(1_p2(1_p = p(p ) 1_p2(p +p )
T+1 pplt—l|+\l—t+1| B T-1 pplt—ll+|l—t—1|) ]
t=2 1-p? t=0 1-p? 1=1,..,T
_ T+p? (1+p pAT-1+1) 1 2, 2AT-I+1)
- (1—p2(1—p 1- p2(p )iz e
T+1 [t=l+li-t+1  T=1 [t=1|+]I—t=1]
p p ) ]
-y p———-) p————— ) (A.419)
=2 1-p? =0 1-p? I=1,.,T

For A estimator

E(wod,.) E(wod1) = E(woG(Z' Q%) \T))

GZ' Q?E(woii) NT) = GZ' Q* E[(woiiy/ NT) 1 = 1,..., T]

1+p°(1+p _ 1 _
Z’QZZ _ 21 2AT-1+1)y | 21 2(T—1+1)
G T[(l—p (1_p2 1_p2(p +tp ) —1_p2(p tp )
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p 1-p? — P 1-p2

T+l =t TZ1 je=lfi—t-1)
P P ) ]
t=0 I=1,...,T

t=2

1+ p2 1+ p2 1 1
_ ' 2 11 2 _ 2 2AT=l+1)y | _ 2, AT-I+1)
2(Z'QPZ]T) ZQZ/Tg[(l_ 2(1_p2 1_p2(p +p ) 1—p2(p +p )
T+1 ppu Il+]I—t+1] ~ T-1 pplt—l+|l—t—1) ]
=2 1-p? £=0 1-p? I=1,..,T
= 2 1+ P 1+ p2 _ 1 (pzz " pz(T_1+1)) _ L(PZZ + p2(T—l+1))
1-p2\1-p* 1-p? 1-p?
e S T [ | R R s SN 2 [ | A |
p p ) ]
-Y p———-) p———— . (A.420)
=2 1-p? =0 1-p? I=1,.,T
By using equations (A.402), (A.413), (A.414) and (A.416) we have
wi/NT = \/_(u’Q u/T + )i/ NT
T
iz
= ( Zr [ =+ ]I[Jtl/)t/ +a; )0,2((1 Pyt = 1)/ NT
p=1 t=1 ot
T T z .
= A= C12N ) Y rae [+ S ey
p=1 t=1 o
L 1 Zti Zpi 2
Z Z >7" W[o > ]1/) Yy — o + aiot(1 - p?)Y)? (A.421)
=1 t=1 t
T T T
Bm/VT) = (=012 ) Y rue| 25 + 25| By
=1 t=1
L 2
+012 ; ; ﬁntﬂ[o—;; ?:l E(l/ltlpt/) + a;0; (1 P ) (1/112) — Lle'IZ
T T ) le=t| lE=1+[1-t'|
= (1-pYol(-1/2T [Z_f Z’n][P 2P ]
(1= pHoA(-1/ >Z{er it ol t2a oy
2 L 1 Zt Zyi Plt_tl
+0; ZZEJ‘*W[E C7t7]|:1—p21+aio-l —a;0]
=1 t=1
T T ) [t=# |t=1|+]1—'|
= o2(-1/2T r*,[ﬁﬁu Z’”][p +of ]
A1/ );; ortoallim
T T
1 Z Zyi p't l
2 ti i
tor S| 2+ 2| S|
; ;‘ 2T t t2 O't/ 1- p
T T ‘ . lt=Il+[1—t'|
= oA(-1)2T r. /[ﬁ + ﬁ][zp—]
A(-1/ )21; e e

T T I+ l—t
_ 21 Zti | 2k Plt =
= -0 = Vet —2 + —2 —2 =
T ot oy 1-p
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E@w /VT) = E[wiy/NT)1=1,...,T, i=1,...,m]
T T _ _¥
e e S T
- [( - ZZgl i{ tZ:: “ff’[j_tt; + Z—f;][pz_T_;_zt/ ])1_1,...,1 o m]

‘ o ol
[Z_¢12+Z_t12][pl : ]) ] —  (A422)
o oy —-p 1=1,..,T, i=1,..,m

By using equations (A.331), (A.341) and (A.422) we get the following results:

Il
|
N
Q
—
—_— ~3
[1-
[1-
£

For GQ estimator

E(w/dlt;) = E(w'dlgGQ) = E(tr w’dlgGQ) = E(tr dlgGQw’)

= trE(d “%w) = tr E[(BZ'#t/ VT)w'] = tr BZ' E(w’ / VT)

T T 2 2 plt—l|+|l—t'|
= —tr BZ,Z/TG[( Z r*tt’[_tlz + —hz [ﬁ]) }
P=1 t=1 Ot or -p 1=1,...T, i=1,..m
T T ' qp ol
= —tr(Z’Z/T)‘lz’Z/Tc;[(Z Y r*w[z—*’z + Z_flz][%]) ]
p=1 t=1 g Or P 1=1,...T, i=1,..,m

ZT" ZT: 2 Z pIt—llJrllft’I
- i g[( mt,[—2 + —2][—2 ]) ] (A.423)
o oy I-p I=1,..,T, i=1,...m

For A estimator

E(w'dy.) E(w'di.") = E(trw’dy ) = B(trdi S w’)

= = trE(d w') = tr E[Gu(Z Q%) VT)w'] = tr Gu(Z' Q% E(aiw’ / VT)

t=l+[~F|

T T
O VN R (s B
=1,..,T, i=1,..m

t'=1 t=1

T T i
- @z @iz (Y)Y | 2 e e
i ) o oL 1=p2 U p it

t'=1 t=1 , 1=1,...,

[ ii % 2t plt—l|+\l—t’\
R e | | iz
O ov L-p I=1,..,T, i=1,..,m

=1 t=1 , i=1,...,
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Calculation of matrix A

Since B and Gy are symmetric matrices, equations (A.186), (A.331), (A.341), (A.351), (A.358) and
Lemma A.33 imply the following results:

i. For GQ estimator we have that

d, %% =BZ'a/NT = (A.425)

E(dicd)) = E(di %) = E[(BZ'ai/ VT)(BZ'i/ NT)']
= E[BZ'uiw'ZB/T]| = BZ E@ai')ZB/T
= BZ'(2Q;})ZB/T =2B(Z'Q;?Z/T)B
= 2BIyB =
AR = lim E(d;.%9d,.%9) = lim 2BIyB. (A.426)

Thus, for the GQ estimator of ¢, matrix A, can be estimated as

A = 2BTyB. (A.427)

ii. For the A, TA and ML estimators of ¢ we have that

di A = GuZ/ Q) NT = (A.428)

E(died;) = E(di di"') = E[(GuZ' Qi) NT)(GuZ Qi) NTY ]

= E[GuZ Q%uiw' Q4ZGy/T] = GuZ Q4 E(ii )Q4ZG /T
= GuZ Q%204 ZGy|T

= 2Gu(Z'Q4Z|T)Gy = 2GuAnGy = 2Gy =

A" = lim E(di dv ") = lim 2Gy. (A.429)

Thus, for the A, TA and ML estimators of ¢, matrix A, can be estimated as

A =2Gy. (A.430)

We define the m X 1 vectors

T
074UtZt/T, 51—12 = Z o’4x;tGHthzt/T, (A431)
t=1

T
&u =) 0z, & =

T
t=1 t=1
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_ 52
where v; = ZGtx;tBHth - x;tBHFHBHth.

Calculation of vector x

Since matrices Qp, Q77 and Q, ., are diagonal, equations (A.186), (A.331), (A.341), (A.351), (A.396),

HEi

definition (A.431) and Lemma A.33 imply the following results:

i. For GQ estimator we have that

E(dy) = E(d°) =EBZe/NT)=BZ E(e)/ VT = BZ' (v/ NT)/ VT
= Bl 1)@=, 7]/T = BEy =
Ko = —}im E(62c) = — lim B&y (A.432)
Thus, for the GQ estimator of ¢, k. expressed as
k. = —B&y. (A.433)
ii. For A estimator of ¢ we have that
BIGu(Z'Q%e/NT)] = GuZ' Q2 E(e)/ NT = GuZ' Q2,(v/ NT)/ NT
= Gul(z)=1,..,r] diag(or H[(0)=1,., 71/ T
T
= GH Z Gt74UtZt/T = GHEHL (A434)
t=1
E[(Z'Q%i/ VT)d, 9] = E[(Z Qa/NT)B,Z'a/ NT)]
= E[(Z' Q% NT)(@ Zb;/ NT)] = E[(Z' Q% ait’ Zb;/T)]
= Z'Q4E(ai')Zb;/T = Z'Q*E(ai’)Zb;/T
= Z'Q%(2Q;})Zb;/T = 2(Z'Z/T)b; = 2Fb;, (A.435)

where b; is i-column of B matrix.

By working as in equation (A.435) we get

E[(Z'QuQ,,.ii/ NT)d,“C] E(Z' QuQ, . i’ Zb;|T) = Z'QuQ,,., E(ai')Zb;/T

Z'QpQ,2QHZh|T = 22/ Q,. Q' Z/T)b;.  (A.436)
By combining equations (A.341), (A.396), (A.434), (A.435) and (A.436) we find that

E(dy) = E(d™)

m m
EIGH(Z' Q%e/ VT +2 ) GuA, . Gu(Z' Qi) VD)0 =2 Y Gu(Z Qu €1/ VT ]

i=1 i=1
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iii.

i=1 i=1

m m

GHEHl +2 Z GHA_HQ GHZFBZ' -2 Z GHZ(Z’QH;,.QH‘lz/T)Bi =
i=1 i=1

- lim E(620)

a
S
I

- 7111’1’1 [GH"-(JHl +4 Z GHAH@GHFE,' -4 Z GH(Z/QH;i.QH_lz/T)Ei]
i=1 i=1

~ lim [Gr&,1 +4 Y [GHA, . GuFb; - Gu(Z' Q.. Q™ Z/ )b
i=1

- lim [Gpu&,1 +4Gn ;[AHQ Grei — (Z'Q,,. Q™ Z/Tb]]

m
= - lim [Gu&,1 +4Gy Y (A8 — (22, Q7' Z/ T |
i=1
Thus, for the A estimator of ¢, x can be estimated as
m
Ko = ~Gué 4Gy Y (A8, — (Z'Q,c Qu Z/ )b (A.438)
i=1

where A, = Z'Q,, . Qu ' Z/T, §; is the i-th column of matrix Gy and b; is the i-th column of matrix
By. Moreover,

FB =F(b,,...,b,) = (Eby, ..., Fb,) =1, = Fb; = ¢, (A.439)
where e; is the i-th column of matrix I,,.

For the IA and ML estimators of ¢ we have that

E[Gu(Z' Q%E/NT) = GuZ' Q% B(&)/NT = GuZ' Q2 (XuGrx,e/ VT)/ NT
= Gul(z)i=1,.,1] diag(Ut_4)[(x;tGHth)m,...,T]/T
T
= GHZGt_‘lx;tGHthzt/T:GH},'Hz, (A440)
t=1
E[(Z'Q%4a/VDdi,*] = E[Z'Q%a/NT)(FZ' Q%a/ NT)]

B[(Z'Q%a/ NT) @' Q3,Z3:/ NT)] = B(Z' Q' 2,73,/ T)

Z'Q B\ Q23| T = Z/ Q3207 Q3 28| T = 22/ Q1 23/ T

ZAHgHi/ (A441)

where g; is i-column of Gy matrix.

EIGu(Z'Q%e/ VT1+2) " GuA, . Gy E[(Z Qt/ NT)dr, %] - 2 ) G BI(Z Qu €,/ Ty ]

(A.437)
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By working as in equation (A.441) we get

B(Z' QuQ, i/ NT)di., "] = EZ'QuQ, . i Q}Z3:/T)

Z'QuQ, 20y 2Q475|T =27/ QuQ,,., 25| T

= 24,684 (A'442)

From equations (A.357), (A.440), (A.441) and (A.442)

E(dsc) E(dx")

= ElGu(Z'Q}E/NT) +2 ) Gud,o.Gu(Z Rt/ VD" =2 )| Gu(Z QuQ, i/ NT)er "]
i=1 i=1

= E[Gu(Z'Q}e/NT)] +2) " GuA,.,Gu EI(Z Q) NT)dr. "]
i=1

-2 GHEIZ Qu€, 1/ VT "]

i=1

m m
= Gu&p+2 Z GHA,,Gu2Apgi -2 Z GH2A,. i
P =

3 .

= GHéHZ +4 Z GHAHg,-GHAHgi -4 Z GHAHg,'gi = GH§H2 -
i=1 i=1
Ko = - 711_1;1;1o E((Szg) = - ]]:1_1;1‘;10 GHéﬂz. (A443)

Thus, for IA and ML estimators of ¢ we have that

Ke = —GH§H2. (A.444)
Some useful results
po= —au:qRQARzuAR/Z\/]_"
- _1 _1
= ——uw'L7"[2pI - D]1E"""u
2VT P
—-a U — U Ui
= —1 -4 2
2\/T[ p;‘ i = Ot Ot+1

T T-1
= —_az t2_2 tWP+
zﬁ[p;‘” ;w 1]

T T-1
I 2N ol A.445
N W ] (A.445)
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By using (A.413) and (A.445) we get

T
—a 2
ﬁ[p;lﬁ

= lpor(1-

7
L

p1i/ VT

Mﬂ ™

t

T-1
+07? Z ¢t¢t+1],
=1

1l
—_

which implies that

E(p1ii/ VT) =
T-1
+o/? Z E(lPtIPHl)]
t=
T 2lt—1|
_ "« _ P
= 7 |:pal 1 ;(1 e 2
T-1 [t=I|+|I—t— 1\
—02(1 - p? P +2 P
A P’;(a-p) )
T 2lt—1| T
—a 2 1 p 2
= _— 22— )-—
T[pal;(l—szr 1—p2) PO L=
-1 [t=I|+]1—£-1] I-1
2 p p 2 p
—0] +2 + 0
;(1—PZ 1=p t:ll—P
T 2|t 1]
_ —Q0]
- T [ 2 Z 1-p2 1 -
_(T— 1)P p|t—l|+|l—t—1| (T 1)P
1-p?

1-p2 = 1-p?
T-

1 jt=l+|l—t-1]
22 P ]
t=

Z\t 1l

l,Dtl,l}t+1]0!2[(1 - Pz)"b%

T-

Y i A

~1/VT

Y’ = poy zl,bt ~ (1~ pz)Zw Ve

(A.446)

T T T-1
_—f[poﬁa =) Y B@APA) - poit Y EWR) - 01 - p) Y Bt tid)
t=1 t=1 t=1

2)2)_p ! Z

=1

T-1
I 2p (1 +p? 1 - p2T721+2)) _ZZ plt-tl=t=1]
T [1-p2\1-p> 1-p? = 1-p?
—Zaalz[ p1+p? 1 o Tealen -1 plt=Ii=t= 1|]
- - (p? — p?T-2142) E | A.447
T |1 p( 2 1ol P ) —= 1-p? ( )

By using equation (A.447) we get

E(p1i1/ VT) El(p1i11/ VT)izy

.....

T-1 =1+ |i—t-1]
P

) (1 2) —21+
[( o (e il —pp2)2 (% = p 2)_;‘ ﬁ])’zl """ T]

(1—p2)2

Ze /T[( _ 2[(11+_ P;)P _

.....
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By using equations(A.425), (A.428) and (A.448) we have

E(pidi) = E(pdi°9) = B(p1BZ'it/ VT)

= BZ E(‘Olﬂ/ ﬁ

= BZ'E[(p1i;/ VT V), 7]

- BZ'Z/Tg[( 2[

_ g[( ~ 2[(1 +p)p

1-p2

P p v
T2 =l l—t=1] )
P’ Pz(p ) § ] 1=1,.., T]
P 2 2T-22 =+ li—t=1] )
Ty ~(p ) — Z P . (A.449)

E(midi) = E(pidi) = E(Pl(_;HZ'-Q2 i/ VT)

= GHZ'.Q%{ E(plﬁ/ \/_
(1+p%p

.....

_ 2
_ ’ O2 _
= GZQ ngg[( [

1-p?

T-
__P T2 lt=11+1~t- 1| )
1-p? (0™~ )- Z =1,..,T

=1 Ly

_ (1+p*)p p A T2+ lf=I+li—t-1] )
= g[( 2[ — T—p2 (p p ) ;p ] T = (A.450)

T-1
Y 21 2T-21+2y _ [t=1]+I—-t=1] . A.451
Ape ]ll_l)lolog[( 2[ 2 T1C p s(p” —p ) ;P ])HMT] (A.451)

From Lemmas A.31 and UR.2 and equation (A.197) we have

ap

a’% Oo(t).

—E@'Qu/T) = -trQ,Q' =0T =0

From Lemmas A.31 and UR.2 and equation (A.203) we have

App =

1, -
5 B/ Qppu/T) = tr Q,Q !

172 47 1 2
sla-arl= 2 ar

For the parameters (1.33) the following results hold:

(%) =

(A.452)

(A.453)

By using Lemma A.31 and equations (A.366), (A.404), (A.412) (A.451) and (A.452) we have

= }1_{{)10 E(wop1) —apApp —a’Ape

T—o0 T—o0

2
= lim O(T™") - aO(TZ)—a’limc[(—2[(1+_pz)p— _p (-

1 2
(0

1-p2 1-

T—
pAT-242) _ Z [l 4+~ 1|]) ]
1T

t=1

= _(p 2 T2y Zplt [ +1—t— 1\]) ]+ O(7?). (A.454)

.....
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By using Lemma A.31 and equations (A.368), (A.419), (A.420), (A.451) and (A.452) we have

Age

= 11m E(wodlg) ApApg — Agca
_ 1+p~(1+p pAT-1+1) 1 o T-I+1)
B Tlglozg[(l—pZ(l—p 1- p(p e
B T+1 pplt—l|+\l—t+1| B T-1 ppltl|+|lt1|) ]
=2 1-p? =0 1-p? I=1,..T

A+pp__p y
L B _ 2 _ 2T-21+2y _ [t=11+{1-t-1]
ﬂp%ﬂ&g[( ] —p 10 P ;‘ ’ ])lzl'""T]

—Agea
_ T+p> (1+p PAT-1+1) 1 20 2AT-I+1)
= gmaq(1 s (T e ) )
B T+1 pplt—l|+\l—t+1| B T-1 pplt—l|+|l—t—1|) ]
t=2 1-p? =0 1-p? 1=1,..,T

21 1+ Pz)P P 2 2T-2I+2 v lt=I|+1—t-1]
-O(t )}E};‘; ( 2[ _ pZ (" -p )- Z:J p ])171 T
= =1,..,

—Aca. (A.455)

By using Lemma A.31 and equations (A.404), (A.412), (A.419), (A.420), (A.451) and (A.452) we have

Ap =

. 2y _ . 2
%gl;lo E(o0) =2 - 24, %1_1)210 E(wop1) +a,"App
—2a’ }im E(wodic) — 2a,a'Ape + a’Agca

2-2a, %im O(T™) + aO(th)

‘s 1+p* (1+p PAT-1+1)
2 }g{}o%[(l_pz (1—p 1-p2 G )
T+1 [t=l+ll-t+1]  T=1 [e=1]+]1—t=1]
_ p p
_ ( 21 + 2T l+1)) _ _ —) ]
1_p2P g ZP 1-p? t:op 1-p? 1=1,..,T
oa.a' li [( [( +p2)P p (0% — p?T-242) Tz_'l‘ |t—l|+|l—t—1|]) ]+ A
—2a,a’ lim - - a a
pad MG 1-p2  1-p2 pe=pP L p A cs
1+p°(1+ p 1 2l AT
2 4 1 _ (T-1+1)
« lmg(l p( - T )

21

S T+1 plt—I|+|l—t+1| T-1 plt—l\+|l—t—1|
.
- ZP 1-p? “ L 1-p? )

t=0
l+pp 'S
_ AT _ _ 21 _ 2T-21+2y _ [t=1|+[1—t-1|
20())a %E’i‘f[( 2[ Tt pve Gl Ep DI:L...,T]

+a'Aca + O(th). (A.456)
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By using Lemma A.31 and equations (A.376), (A.407), (A.412), (A.423), (A.424) and (A.451) we have

Ko = %EI;OE( ﬁﬁo + 01)
= %im E(w,p1) + %im E(w'd) - %im a, E(p2) + a'(—x.)

+tr Al ge + appApp + ap A

Zt A pli=tieli=r1
= -2+ hm o)+ hm (—tr C[( 2 2 ,r*”' : *5 [ ]) ])
t' 1.7, i=1

-1 =1 o¢® 1=1,..,T, i=1,..,

) ]ll_I)l;Io [ - (zx/2pa)[2(p2 - 1’10() + atr Barl'ar + tI'AARBARFARBAR]] + O(’l’z)]

1 2 , x
+a[a - g A Al
P90 P vy N e
o B B 20 2T-20+2\ _ [t=l+I—t=1]
+“pc%1_r>§og[( 2[ 1-p> 1-p2 (7 =p : Z_: b ])l—le]

T T 2 Z plt I|+]I-t]
- 2epmore m(-ed( R Rl 215, )
4 — th 1- P 1=1,..,T, i=1

P t

.....

—0(7?) lim [ — (@/2pa)[2(p? — nex) + atr BarTag + tr AsgBagTarBar]] + O(t )]

+a[% - i] —a'Kg + trAAcc
T-1
P 2 2T-2i+2 [E=1+[1—t-1] )
| ( 2 - -
Tl—l;l;log[ [ -p? G ) ;‘ P ] 1=1,...,T

zi |zt i
= -1+ lim ( —tr g[(z r*tt’[_z + —2][1—2 ) ]) - a,K; + tI'AAgg
e 1=1 o Or TP et i

.....

t
~0(7) lim | - (@/2p)[2(p* - na) + a tr BarTag + tr AagBarTarBarl] + O(7?)]

;o1 (1+pY)p P 2 2T-2042 v =l +lI—t—1]
+up;%££10g[( - 2[ =2 = P (™ —p ) — ; P ])1:1,...,T . (A.457)

Subtracting autocorrelation or heteroskedasticity respectively, the cross elements Ay, are simplified as

follows:

i. If there is no autocorrelation, p = 0. Then,

Ape = 0. (A.458)

= O(7?). (A.459)

Aog = —Aggﬂ. (A460)

Ao =2—4a'g+a A a+O(T). (A.461)

ko = =1 —a'x; + tr AA.. + O(t?) (A.462)
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ii. If there is no heteroskedasticity, ¢ = 0. Then,

Ape = 0. (A.463)
Agp = O(7?). (A.464)
Age = 0. (A.465)

Ag = 2+ O(h). (A.466)

Ko = =1+ O(1%). (A.467)
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Matrix Q

.....

,,,,,

Then by using (3.29) we find that

P1 (@) O‘111T GlMIT Pi
Ql'=PERI)P = : :
_0 PM GMllT OMMIT (0]
0'11P1Pi . GlMPlP]/\/I (711R11
~O'M1PMP1 . GMMPMP;\/I GMlRMl
= [(0ijPiP)); j=1,..m] = [(0jRi})i j=1,...m]-
]
Equation (B.1) implies that
pt . o |[er ... oMIp][P!
Q = P/_1(271 ®IT)P71 =
o ... P |MIr ... JMIr|| O
[ 0111;1—11)1—1 GlMP1—1PM—1 SR
_GM1P;VI—1P1—1 GMMP]/\/[_lpM_l GM1RM1
= [P, PY); jea, ] = [(0TRY); o, ),

where

RI=P'Pt (i,j=1,...,M).

(0]
Py,
omRium
ommRmm
(B.1)
(0]
PM_1
GlMRlM
GMMRMM
(B.2)
(B.3)
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Matrices R;j, R;;, RY R and their Derivatives with respect to the elements Pis Pj

Equation (3.21) imply that

i1
Ri=p7'P" =
Obviously,
R" = PP,
>1+Pi
0

-1

(1-p2)" —pi 0

0 .. 0

[(1- p2)(1 = p)' + pip

—Pj
0
0
1 —pPi 0
-pi 1+p?
0
1+ piz
0 0 _pz
o] [o p
Pi
1+ p,'z_

(1+ pP)Ir — piD — pi?A,

o |[a-pp* o
—pi 0 —pPj
1 0
_Pi O
1+ pipj
1+ pipj
0 -p
.
1 A
0
Pi
pi 0f |0

o = O O

—Pj

pi]
(B.5)

where It is the identity matrix, D is a T X T matrix with elements 1 if |t — | = 1 and zeros elsewhere, and

Ais a T X T matrix with elements 1 in (1,1)-st and (T, T)-th positions and zeros elsewhere.

It can be easily seen that @ is the inverse of ®;; (Vi) since

Moreover,

RR; = R;R" =1.

B 8Rii
R, =5
pi

= 2‘01'IT -D - ZpiA,
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i _

ii

R,"=—=0,R,,"=——=0,R,,"= ———
Pj 9{3]‘ 0, PiPj &sz 0, pipj apjapi

R fﬂ-yRﬁ—zl 20 =2(Ir - A B.8
oo’ = o =21 = =2(Ir - 4), (B.8)
B aRii B 32Rii B p aZRii

=0, (Vi # j). (B.9)

Define the T X T matrix D; with (t,t”)-th element equals 1 if t —# =1 and zeros elsewhere, and the
T X T matrix D; with (t,t”)-th element equals 1 if t —# = —1. Also, define T X T matrix Ay with 1 in
(1,1)-st position and zeros elsewhere and define T X T matrix Apr with 1 in (T, T)-st position and zeros
elsewhere.

Then (B.4) implies that
R7 = (1+ pippIt = piD; = p;D;j = pipjArr + [(1 - pi#) *(1 = p*) " = 1A, (B.10)

Note that RY is not the inverse of R;j, since

1 —p 0 0
—pj 1+pip;
Rl']'_1 =10 = (1 + Pin)IT - p,‘Di — p]D] — pzp]A (B.ll)
L+pipj —pi
0 0 -p 1

Moreover, since

1 YA 1/,
-5 —p) F(1-p®) " 2p;

= —pi(l-pA)PA-pA =&, (B.12)

d 1/ 1/
= p= p)

~(1=pA) (1= pD) = P = A (1 = p)”

~(1=pA) 7 (1= pA) "1 - p + pi]

82 2\l 2\
o2 =) =pi)

= —(1-pA7k1- 10]'2)1/2 =& s (B.13)
&2 2\l 2\l 1 A AR
Eaﬂ—pﬂ 1-pi)" = —WEFAWO—pH (1-pj)
= pipi(L=p2) (1= pA) " = oy (B.14)
and
8111-]- 8211,']' 3211,']' 82{11‘]‘ . i
— =0 =0 =0 =0, Vu#i u#j), (B.15)

dpu  Ip? T Ipudpi T Ipudp;
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where a;; = (1 - p) (1 - pi»)"*.

We find
JdRI

Ry = 50 = pilr = Di = piddrr + &' jdin,

. ORI ’
R, = 5 = = pilr = Dj — pilArr + & (A1,
Pj
RV = & b1,
R pin = € (i,

RV = It = Arr + & A,

Rl]P# =0, R”PHPH =0, Rl]PuPI =0, Rl]PuPr =0, (Vp FiA p# ])

By using equation (B.6) we find that

I=07'Q [(0icRix)ipe=t, MR ) i1, ]

M

( Z UiKGK]RiKRK]>i,],=1 ///// Ml

k=1

which implies that

M
Z 00N R R = I,
p

and

M
Y 0ic0"RyRY = 0, (Vi # j).

k=1

Similarly, since I = QQ™! we find that

M
Z o R*R; = I,

k=1

and
M

Z "0 R*Ry; = 0, (Vi # j).

k=1

Along the same lines, since I = EX~! = E71E we find that
M M
Z o0 = Z 0o =1,
x=1 xk=1

and

M M
Z 0;,x0" = Z oo =0, (Vi#j),

k=1 k=1

(B.16)

(B.17)

(B.18)
(B.19)
(B.20)

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)
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Equation (B.23) implies that

M
E GiKGmR,‘KRKl = GiiGnR,‘,‘R” + Z OI‘KOKZR,‘KRKI

Similarly, equation (B.25) implies that

Derivatives of £ with respect to the element p,

Since, Q

.....

20
apuz

PuPu =

*Q

PuPu 3Py.0p'

k=1 K#D
GiiGiiI + Z UiKGKiR,'KRKi (B.29)
K#i
= (1 - GiiO'ii)I = Z GiKO'KiRl'KRKi (B30)
K#L
= 0i0'l = I-) 0i0"RR". (B.31)
K#D
M .
Z (7”\01 1Rm Ki — (7 UzzR Ru + Z iRZKRm'
k=1 K#D
ooyl + Z 0™ oiR (B.32)
K#l
= (1-d'o)l = ) 0"ouR"Ry (B.33)
K#i
=olloyl = I- Z 0™, i R*R,;. (B.34)
K#D
= [(a”RP“ ])l] 1,..m] = [see(B.7), (B.16), (B.17)]
= (040" Ry, +6u0"Rp, " + 6,100 Ry, )i ]
= (040" Rp, " +6ju0" Ry + 6,i0u0" Ry, )i 1, (B.35)
= [see(B.8),(B.18),(B.19)]
= [(6HiOHjRPuPqu + 6J#UiHRPHPLl & + 6Hi6]'#’ay‘LLRPLlprx#‘l)irf]’ (B36)
[see(B.9), (B.20), (B.21)]
[(64i0jur " Ry, p, " + Opi0ju0™ Ry, ™ + 01i0jubpic™ Ry, )i f]
[(6!”‘6]‘P'GHH,RP}APM’ oy (3;111'6]'#0”/#12()”)“, HE O)i,j]' (B.37)
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Derivatives of 27! ® It and £ with respect to the element o

Since,
L' ®Ir = [(071r)i j=1,..m],
and
¢ = vec(Z™) = [(Gij)i j1,. 0],
we find
Pl 0 8aifIT
Llely) = rlelr) =
&C(yy')( ® T) datt ( ® T) [( dott” )i,j—l,..A,M:|

= [(0uibjwIr)ij=1,..m] = [(6nibju)ij=1,.,m]1 ® I

= Awn @I,

where A,y is a (M X M) matrix with 1 in the (uu’)-th position and zeros elsewhere.

22 _ Jd d
E—C '®Ir) 3 [ 3
S(uw)6(m) Sy [ OG(uw)

(96,40 IT/ G )i j=1,..,m] = 0.

' IT)]

Since Q = P"Y(E7' @ IT)P~, (B.40) implies that

a-Q aQ _ P/—l [ a (2—1 ®IT)] P—l — Pl—l(A[J‘ul ®IT)P—1

Sy T m = W - dott’
= Ay ®P571Pj71 = [(5ui51’#’P§71ijl)ifj=1 fffff ]
= [(6yi6jy'Rij)i,j:1 ..... ml = [(6;11'5]'#'Ryyr)i,jzl ..... I

Similarly, (B.41) implies that

o B 2’°Q P 0 0Q
Sy &gw/)ag(wr) I L T
= [(964i0;wR7/96" )i j=1,..m] = O.

The Second-order cross derivatives and useful matrices
Equations (B.7),(B.16),(B.17) and (B.42) imply that

Jd [ 0Q d )1y — ij
QPM‘;(W') = Qg(vv’)p!‘ - a (W) B E(AVV’ ®Pl P] 1) = [(86V16]VIR]/apH)1/]]

(610 (0,iRp, ! + 01 Ry, ™ + 8,0 juRp, )]

[(6vi6jv’6yiRp#”j + 6vi6jv’6ijp#i” + 6vi6jv’6yi6]'prpHH)ij]

[(6vi6jv’6vap“HV/ + 6vi6jv'6v'pRp“V# + 6vi6jv’6pv61/’prN 'u‘”)ij]~

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)
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Obviously, ) .., =0 (Yv # pand Vv # p’) and Q) ¢, = Q¢ p,.-

* _ -1 _ * _ ’ -1 %/
Q PuPu T QPM’Q Q‘DN =Q Pu Pu — QPHQ QP“/ =Q PuPw

= [(GiKRpHiK)i,K=1,...,M][(UKIRKI)K,lzl,...,M][(GljRp“rIj)l,j:l,..A,M]

Z Z 0"0,40"Ry, “RyR,,, " . (B.45)

k=1 I=1 i,j=1,..,.M

But, equations (B.7), (B.16) and (B.17) imply that
R, ™ = 0,iRp, "™ + 6,uRp, ™ + 8,i0uRp, ¥, (B.46)

and
R, " = 6,iRp M7 +0jRy M + 0,100 R, HH (B.47)

Therefore,

R, "RuRp," = [04iRp, " +0uRp,™ + 0,0 Rp, "“IRl01Rp, H/ + 0 Ry, + 8100 Ry, HH']
= 0uidyiRp,""RuR,, H7 4 Opi0ju Rp,"“RiaR,,, ot 0i0u10jw Ry, **RiaRy,, wr
+0,u0uiRp, " RuRp 7 + 6,0 R, M RiaRy " + 01y0,10jur Ry, *RuR, ,#H
+04i0u0u1Rp, " RiaRo, *') + 8,100 Ry, R Ry, M

+6yi61<y6y’16jlu’prHHRKIRp“, y’y" (B48)

Moreover,

M M
) i ) ,
@ Z Z 0040700 1Ry, " RiaRp
k=1
k=1
M
= s R.ER NS ot Wi
= 0" o Ry, "Ry | 6ic" 'Ry, 1/, (B.49)

M
i 1j I
2) Z O-”\GKZG ]6P‘i6jﬂ/RP;1HKRK1RPr1' i

M
Z 6}41'6]‘“/0'“'(0;(10'1#’12%yKRKlRp“, lp” (B50)
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M
( ) 20 GKIG (S‘Luéy’léﬁ.ﬂl2 RKlRp“
I=

5 ,‘6]'#/0“"%;4'0# H RPH#KRK”,RPW Wy

Hl\’li EME

= s R.OER NS 5, gH W
= ‘7 O Rp, ™ Ry | 0,10 07 F R,

M M
. Ii . ,
(4) Z Z UIKGKZG ]61([.!6‘[,!’1Rpul‘uRKlprr H

=1
= iy WiR i Wi
= 0Vouwot Ry "Ry Ry,

k=1

M

, e . z
Z 0" 0107 6iudjuw Rp, " RiaRyp,, ¥
=1

(5)

1= if-1=

C u. dip i I
0ju 000 Ry, RuRp,

._\

I=
— g w'|s. iy iy
= [ 0u0 " RyuRp 10w 0 Ry, ™,

M M
p .
2 ,2 , lea]‘Swéwéﬂi’RPuWRKZRPH’Hy
=1

K=
= , oMW ROHR Wy
= Sjatouo Rp, "Ry Ry, "1,

T

T
o
@) 2 Z 00107 0,00 1Rp, M RaRp 1

k=1 I=1
= ottt L GHIR  HER. w
= Ouo* oo /Ry Ry Ry HY,

=1

[1= il~1=

5. ol WR pu I
0i0jur 0" 010" Ry "R Ry,

I’ Wl 8. gHUR B
yniy Rlepp/ 5/,11(3”145 Rp# ,
=1

Il
i Mg I\

M
. Ii 1
Z O'”\O'KZU ]6yi61<;16jy’RppyHRKZRPH’ :

(B.51)

(B.52)

(B.53)

(B.54)

(B.55)

(B.56)
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M M
i lj W

©) Z Z 0" 01407 Opidududju Ry, HRaR,, M

=1

- Mg P Ry PR

= Ouidjpottoywo R Ry, Rp/

K=

Equations (B.45), (B.48) and (B.49) through (B.57) imply that

M M
Z Z GIKO.KIGIJRPHIKRKIRPM/ lj
=1 I=1

M
= ik i ot'] wj
= Z [0} O_K‘U/RP“ RKHI 6‘1410 Rpp'

=

K=

1
M M
+ZZ§W w0 oo™ Ry “RyR,,

1 1=1
[ M
s R.ER NS5 gH w
+ Zo 0w Ro, "Ry | 6,000 Ry,
| k=1
iy WiR i wj
+0 00" 'Rp, "Ry Ry,
[ M
' w5, ~iu i
+ Zoulo RuR,,* 10jw "Ry,
=

ot W R i Wy
+0ju 0% 0w 0" Ry MRy Ry,

gtg L oIR. BER. wj
+0,i0" 0 0" Ry, "Ry Ry,

M

Iy’ 5 ol R, 1t

* Zoulg RuRp, " |80, 0" Ry,

I=1

e T wy
+0i0jur 0 o " Ry PR Ry,

= oitg gt fu , Wi
= o%ouwd" /R, "RywR,,

up up R. Wi
o HZO "o Rp, M Riqw | + 0o Ry MRy [ o iR,,

ot ' ' o e
+6j,0 0 Ry, Zoyla RuRy, " | + 000" " Ry Ry,

=1

[ M M

2 2 Iy’ Iy’
+6H"67H o* oot RP;IHKRKIRPM’ #
Lx=1 I=1

[ M
5. K ux ' W
+04i0ju ZU O Rp, " Ri 0" F Ry,
| k=1
M
S, Iu’ W gupR  up
+6H,6]#» ZO_#IO_ R‘ulRp“/ o RP#
=
Siotg Lo R BER W — .
+0i0juw 0" 0y 0" Rp MRy Ry, Wij.

’

Therefore equations (B.45) and (B.58) imply that

Q*p#p“/ = [(wi]‘)i,j=l,..‘,M]‘

(B.57)

(B.58)

(B.59)
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Qe = 2, Q7Q,, = [see (B.40) and (B.42)]
= P4 @ In)P'P(ERIT)P'P (A, @ Ir)P!
= P/_l(Ayy’ ®IT)(E ®IT)(AVV’ ®IT)P_1
= PN A LA, @ Ir)P!

= P (ol ®Ir)P7, (B.60)
because

Ay‘u’zAw’ = [(5yi61<;t’)i,1<=1 ..... M][(GKI)K,I=1 ..... M][(évléjv’)l,jzl,...,M]

M M
= [[Z Z 5‘uiéky’01<lévléjv’] ‘
i,j=1,...M

k=1 I=1

= [(6uiowvOjir)ij=1,..m]
= 0pv[(0pidj)ij=1,...m]

= G‘u'VA‘uV" (B61)
Equations (B.60) and (B.61) imply that

* -1 -1
Q = GH/VAWMX)P/{ Pj

Clup) S )

[(6;11"7;1’1/6]‘1/1)/“_11)1/_1)i,j=1 ..... M ]

|
—
—~~
S
=
=%
=
<
Q
=
<
c
‘i‘
\N-/
=
Il
MR
=<
jmit
S

(B.62)

.....

* — -1
Q PuSevy T QPMQ QC(W)

M M
= Z Z 0" 0aRp, “RyR 8,10
|\i=1 =1 ij=1,.,M

=

6]'1/’ GZKO-KVRp“ IKRKVRV]] }
i,j=1,..,.M

,
I
—_

K

=

=

K:

-

80" 0 Ry, *Ry, R ] ]
i,j=1,...M

0" owRy, “‘Rw] ) ]-V,RW'] } : (B.63)
i,j=1,..,M

1l
—_
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Similarly,

*

Sov)Pu

Define the (n X n) matrix

A =

where

Therefore,

Pu

PuPu’

.
Puby

Il
—
—~

Q. , Q0

JA

Ipy
X'Q, X/T = [(X))iz1,..mI[(0"Rp, )i =1, (X)) j=1,..m1/ T

M M
Y'Y oX(R,,X;/T,

[ \x=1 =1

| 'EM%

M
1j lj
Z g0 ]RV'IRP# !

S’y Pu

M

M
lj i 1j
Z Z 6vi6Kv’leG ]RlKRKlRp“ ]]
i,j=1,...M

OviOy lUljRW/ R, ZRPH i

(B.64)

=1

.....

.....

(B.65)
(B.66)

Bjj = X/RVX;/T.

= IX'QX/T)/dp, = X' (9Q/3p,)X/T

(B.67)

i=1 j=1

’’A
Ipudpy

M M
Z Z 0" XiRp,p, " X;/T,

i=1 j=1

= 82(X'QX/T)/8py3pyr = X’(&ZQ/(?pHpr/)X/T

(B.68)

X' 0, X/ T

M M
Z Z GZKOKIOZJRPHWRKZRPN y
Ke=1 i,j=1,.
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Aae

D= ip1=

1l
—_

()

C(up)S ")

*

PuGv')

CS(up) S )

APp Sov')

4 * _ ’ -1
X'Q PMC(W/)X/T =X'Q, Q Q.

1= 1=

-
1l
—_

8@(;[}4 a(;:(VV)
= X'(PQJIM Io"VX/T = X' Q.

M
Za”‘ w0 X!R,, “RyR,, "X;/T = [sec(B.59)]
=1

=

A
Il
—_

X.’wi,-Xj/T,

1

JA

()
X'Q

= (X' QX/T)/dc" = X' (9Q/do" )X /T

X/T = [see(B.42)]

Clup)
[(XD)i=1,... ][0 R ) =1, M) [(X))j=1,...m1/ T
X, R X, | T = [see(B.66)]

L

2
rA X' QX/T) /It dg"’

Slup) S )

X' Q X/T = [see(B.62)]

Sup") S )

[(X))it,.., M][((syzé]w%vww )ij=1,.mI[(X))j=1,..m]/ T

M M

i=1 j=1
0 X[ RM X, /T = [see(B.66)]

U‘LL’VB‘uV’

OprvAcy, ,

PA

3. 5.~ a2(}(’0}(/’1—')/a IS
apyaC(vv’) p}l v')

= X'(*Q/Ipudco)X/T

= [(X,‘,)i=1 ,,,,, M][(éw(S]V’Rp“l])z] 1,.., M][(Xj)j 1.m/T

M M

- Z Z 8i0j 0 X Ry, 1X/T = X,R,," X0 /T,

i=1 j=1

X/T = [see(B.63)]

Pu S’y

X/T = [see(B.43)]

=0,

(B.69)

(B.70)

(B.71)

(B.72)

(B.73)
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k=1

= [(X )1 ..... M] [(Z 6]1/’0 UKVR RKVRW ]
i,j=1,...M

.....

Similarly,

A*g(vv’)p# = X/Q*Q(WI)P#X/T = X’QQ(W/)Q_lgp“X/T = [See(B64)]

= [(X)i=1,..,ml

M
lj ¢ 1j
{Z 6‘/10‘]/10- 'R™ RV/ZRPH ]]
i,j=1,...M

=1

.....

=

84i010" X/ R Ry iR, X/ T

1= 1=

010" X, R RyiR,,"X;/T.

™= il=

-
]

—_
1l

—_

Define the n X n matrices

G=A"and E=GQG,

where

A=X'QX/T and Q = H(HGH') 'H.

By using equations (B.76) and (B.77) we find the following results:

b
]
I

o2 = [see(B.67)]
Z GIX/R,, 1X,E/T =
]:

[uy

1= 11

M
Z o'l tr(X/R,, TX;E/T).
j=1

tr(A4,,8) =

]
—_

App,E = [see(B.68)]
M

Z lJX’RpM,“ X;E/T =
J

I
—_

tr(Ap“ P E) =

= 1=
M=

]
—_

-

Il
—_

o' te(X/Ry,p,, " X;E/T).

(B.74)

(B.75)

(B.76)

(B.77)

(B.78)

(B.79)
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3.
A, B = [see(B.69)]
M M M M
= Y Y )Y 0"0u0X( R, *RaR,, UX;E/T =
i=1 j=1 x=1 I=1
M M M M ‘ ‘ ‘
tr(A"), 0, E) = Z Z Z Z 0o o' tr(X/Rp, " RuR,, l]X]-E/T). (B.80)
i=1 j=1 k=1 I=1
4.
A, E = [see(B.70)]
= By,E=
tr(Ag,,,8) = tr(BuE) = tr(X| R X, E/T). (B.81)
5. Since
AcconE = 0=[see(B.71)] =
tr(A;(‘u‘u’)g(w’)E) = 0' (B82)
6. Since
A*;W)C(‘@/)E = [see(B.72)]
= Gy/VAC(Wf)E =
tr(A*Q(M/)G(Wf)E) = g;l’v tr(Ag(w,)E) = [SGG(B.SI)]
= 0py (B E) = o tr(X, R X, E/T). (B.83)
7.
ApconE = [see(B.73)]
= X|R,"X,E/T=
tr(Ap,c,8) = t(X[Ry," X,Z/T). (B.84)
8.

A" 2 = [see(B.74)]

PuSevy=

M M
Z Z "0 X/ Ry, "Ry R X, E/T =

i=1 k=1
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M M
(A8 = Y Y 0" 0 tr(X/Ry, "R R" X, E/T). (B.85)
i=1 k=1
9.
A B = [see(B.75)]
M M
= Z 0,10 X, R RyiRy, VX E/T =
j=1 1=1
M M
(A0, E) = ZZU 107 (X, R RyiR,, TX;E/T). (B.86)
j=1 I=1
10.
Ap,GAp, = [see(B.67)]
M M M M
= Y dUX/R,,X;/T G[ZZaK’X,QR,%,K’Xl/T
i=1 j=1 k=1 I=1
M M M M
= Y. Y)Y dIX(R,, UX;GX R, X, T =
i=1 j=1 x=1 I=1
M M M M
= ij _Kklvyrr iy . / 1 = /T2
Ap,GA,E = Y Y Y'Y 00"X(R,, IX;GX(R,, " X,E/T* =
i=1 j=1 x=1 I=1
M M M M
tr(A,,GA,, B) = Y Y Y Y oo tr(X[R,, 'X;GX Ry, "X, Z/T?). (B.87)
i=1 j=1 k=1 I=1
11. Similarly, by substituting Z for G we find that
M M M M -
tr(A,, EA,,, E) :ZZZZ"”“KZ tr(X/R,, "X;EX/R,, " X,E/T?). (B.88)
i=1 j=1 k=1 [=1
12.
ACW)GA;W) = [see(B.70)]
= Byy’ GBVV/ =
A.,,GA,,E = B,GB,E=
tr(Ac,,,GA,,B) = tr(BywGB,E) = [see(B.66)]
= tr(X,R" X, GX,R" X, E/T?). (B.89)
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13. Similarly, by substituting = for G we find that
tr(A,, EA,,B) = tr(BuwEB,,E)
= (X[ R X, EX/R" X, E/T?). (B.90)
14.
Ap,GA,,, = [see (B.67) and (B.70)]
= Y 0UX/R,,"X;/T | GBy
i=1 j=1
M M
= Z Z 0"X/R,, "XGB,, /T = [see (B.66)]
i=1 j=1
M M
Ap,GA. B = Y Y 0"X/R,X;GXR" X, E/T* =
i=1 j=1
tr(Ay,GA,,E) = Z Z o' tr(X/R,, TX;GX,R"™ X, E/T?). (B.91)
i=1 j=1
15. Similarly, by substituting = for G we find that
tr(A,, EA,,B) = ) | ) o tr(X/R,, TX;EX,R" X, E/T?), (B.92)
i=1 j=1
16.
A, GAp, = [see (B.67)and (B.70)]
M M
= BwG|).) oX/R,X;/T
i=1 j=1
M M )
- Z Z 0B, GX[R,, X/ T = [see (B.66)]
i=1 j=1
M M
A, GALE = )Y 0"X|R"X,GX/R, 1X;5/T* =
i=1 j=1
M M
tr(Ac,,GAp,E) = YY) oTtr(X,R" X, GX/R,, TX;Z/T?) (B.93)
i=1 j=1
17. Similarly, by substituting E for G we find that
M M .
tr(A.,, EA,,E) = Z Z o'l tr(X,R" X, EX]R,, 1X,E/T?). (B.94)



178 Appendix B

Proof. [Proof of Theorem 3|

i a. From equations (B.68), (B.69) and (B.87) we have that

CP;IPH’ = A r ZAP}L GAP;(’ + AP;:P;N /2

M M M M
i =1 =1

M M
+ Z Y GUX/R,,,, 1X;/2T

M M
+ Z Y UXIR,,,, X;/2T. (B.95)

ii a. From equation (B.87) by substituting E for G we find that
DPHPM = Apy EApy’ /2
M M M M

= Y )Y Y 0"0"X(R,, IX;EX/R,, " X,/2T?

i=1 j=1 k=1 I=1

[by interchanging j <> kand j & []
Y o"oX/R, “ X EX|R,,"1X;/2T*. (B.96)

M=
M=
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iii a.
M M
GA,G = [see(B6T)]=G|Y Y o'X/R,"X;/T|G
i=1 j=1
M M
= )Y 0"GX/R,,X,G/T. (B.97)
i=1 j=1
iv a.
GCp,p, G = [see(B.95)]
M M M M ‘ .
= Y)Y ) *0"GX[R,, “[04Rq - 2XGX;/TIR,, "X;G/T
i=1 j=1 x=1 I=1
+ Z Y 0IGX[R,,,, X;G/2T. (B.98)
i=1 j=1
ib.
CQ(W’)Q(\'V’) = A*C(w’)%w’) 2A%(W)GAC(H’) +AQ(W 7)S () /2
= OHV S’y 2A€(M/)GA
= 0uvByu — 2B, GB,y. (B.99)
ii b.From equation (B.89) by substituting E for G we find that
Do, = AcynBEAc,, /2
= BuwEB, /2. (B.100)
iii b.
GA.,,G [see (B.70)]
= GB,G. (B.101)
iv b.
GC.\pcoyG = [see (B.99)]

= 0,/GBuwG —2GB,,GB,, G. (B.102)
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i c. From equations (B.73), (B.74) and (B.91)

C A*p -24,,GA.,,, +Ap.con /2

N

Pucwn) u

00w X/R, "R, R X, | T

Pu

M=
[\1:

T
kN
A
I
kN

-2 d'X/R, "X;/TGX,R" X, |T)

M=
M=

—_
1l
—_

i=

j
+X.R,," X, /2T
= [by interchanging j & k]
M M '
= Z Z O‘IKXZ{RPMZK[GKVRKV - ZXKGX(//T]RW/XV'/T

i=1 x=1
+X[R,," X, /2T. (B.103)

ii c. From equation (B.91), by substituting E for G we find that

iii c.

DP;( ') Pu

M M
= ZZO’JX' JIXEXRY X, [2T7, (B.104)
i=1 j=1

GCp,c,,G = [see(B.103)]
M M 4 ‘
= Z Z O‘lKGXi/RPHIK [(71<1/R1<V - 2XKGX1’//T]RVV'XV/G/T
i=1 k=1

+GX|R,," X, G/2T. (B.105)

i d. From equations (B.73), (B.75) and (B.93)

Covpe = Acpn =246, GAp, + Acp,

M M ' .
=Y Z 010" X, R RyiR,, UX;/ T
=1

/2

=1

M M
—“2(X'R" X, /T)G Z Z oX/R,, X/ T
=1 j=1

+X[R,,"" X, /2T

= [by interchanging i < I]

M M
= ) KR 0y1Rs - 2X, GX;/TIR,, X,/ T
=1 j=1

+X|R,," X, 2T. (B.106)
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ii d. From (B.93) by substituting Z for G we find that

DC(vv’)py AC(w’) /2

Z Z oI X, R™ X, EX/R,,1X;/2T>
i=1 j=1

iii d.

GC

S’ )Pu

G

[see (B.106)]

M M
Z Z 0"GX;R" [0,1Ry1 — 2X,,GX]/TIR,,"X;G/T
=1 =1

+GX|R, " X,/ G/2T.

1. a. The p-th element of the (M + M?) x 1) vector [ is

Ly, = e’GAp‘Ge/e’Ge=[see(B.97)]

= a'l GX' ’]X G/T
(e’ Ge)l/2 ; ]Z; Ry, / (e’ Ge)V2

M M - -
= Y.) o"WGX/R,, TX;Gh/T,

i=1 j=1
where

e
"~ (e'Ge)”’

2. a. Similarly, the (i, p')-th element of the (M + M?) x (M + M?)) matrix L is

_ I ’
ooy = €GCpp, Gele'Ge
e

e /7
(e/Ge)l/z GCPMP;/’ GW =h GCPMP;/ Gh = [see (B.98)]

M M M
- Z Z 2 "ol GX!R,, *[0,4Ry — 2X<GX[/TIR,,, "X;Gh/T

3. a. The p-th element of the (M + M?) X 1) vector c is

Il
-

Cp 1(Ap,E) = [see (B.78)]

u u

M M - -
Z Z o'l tr(X/R,, TX;E/T).

i=1 j=1

(B.107)

(B.108)

(B.109)

(B.110)

(B.111)

(B.112)
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4. a. The (i, ')-th element of the (M +M?) x (M + M?)) matrix C is
CPyP“/ = tr(Cp“p ,E) = [See (B95)]

i=1 j

0™ 00’ tr(X/Ry, *RuR,,, "X;E)/T

\ME

M
-2 Y o™l tr(X/R,, "X GX]R,, 1X;Z)/T*

=1

M M
+ Z Z o'l tt(X/R,,p,, 1X;E) 2T.

i=1 j=1

~M§ IP= 3
iP= 1
1= 1p=

—_
I
—_

i= = K

5. a. The (u, u)-th element of the (M + M?) X (M + M?)) matrix D is

doo = tr(Dp,p,E) = [see (B.96)]
M

=

M
Zam Y tr(X/Ry, "X EX[R,, X, 5) /2T

I
—_
-
I
—_
K
,_-
Il
—_

1. b. The (up’)-th element of the (M + M?) x 1) vector I is

I = [see (B.101)] = ¢'GA

S(up’)

Ge/e' Ge

Sup’)
/

e e
—GB,,,G———
(e'Ge)'> " (e’ Ge)'r:
= W GByyGh = [see (B.66), (B.70)]

= WGX/R"“'X, Gh/T.

2. b. Similarly, the ((uu’), (v'))-th element of the (M + M?) X (M + M?)) matrix L is

= ¢GC.

Suu)S’) Suu)S')

= WGC

Ge/e' Ge
sy GI = [see (B.102)]

= K(0,vGBuG —2GB,,,sGB,,,G)h
= ou/h'GBy Gh —2h' GB,, GB,, Gh
= owle,, —2h GByGB,,Gh

S’

= [see (B.70) and (B.106)]

= 0wl GX,R" X, Gh/T - 2I GXR"' X, GX,R"" X, Gh/T".

3. b.The (uy’)-th element of the (M + M?) X 1) vector c is

Cc = tr(A.

S(up)

,E) = [see (B.81)]

Clup’)

tr(X, R X,/ E)/T.

(B.113)

(B.114)

(B.115)

(B.116)

(B.117)
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4. b.The ((uu’), (v'))-th element of the (M + M?) X (M + M?)) matrix C is

Cg(w’ﬂ(w’

5. b. The ((uy’), (vv'))-th element of the (M + M?) x (M + M?)) matrix D is

d

)

C(uu)C )

tr(C,, Z) = [see (B.99)]

wu!)S )

Oy tr(AgW)E) -2tr(A.,,GA,,,E)

Clup)

[see(B.81) and (B.89)]

Oy tr(X[R* X, E) /T = 2(tr(X,RM X, GX|R" X, E) | T*.

tr(Buyw EB,,E)/2 = [see (B.66)]

tr(X; R X, EX,R" X, E) /2T,

tr(De e 2) = [see (B.100)] = tr(A

C(up’)

=A
s Ve

Gw’)

5)/2

1. c. Similarly, the (4, (1'))-th element of the (M + M?) X (M + M?)) matrix L is

! PuCwv)

€'GCp,c..,,Gele'Ge
e e

—GC, . ,G——
(E/Ge)l/z PuSw’) (e'Ge)l/Z

WGCp,c,,Gh = [see (B.103)]

M M
Y'Y 0K GX/R,, 0w R — 2X,GX,/TIR™ X, Gh/T

i=1 k=1
+W GX|R,," X,,Gh/2T.

2. c.The (u, (1'))-th element of the (M + M?) X (M + M?)) matrix C is

CP;: Sw)

[see (B.103)] = tr(C
M

’:‘)
—

PuCwv)

—_

i=1 «

Z Z 0", tr(X Ry, *R,R" X, E)/ T

M M
iK / i 71 PV’ = 2
—2)" Y o™ tr(X/R,, "X, GX,R" X, E)/T

i=1 x=1

+tr(X|R,, " X,/E)/2T.

3. ¢. The (u, ('))-th element of the (M + M?) X (M + M?)) matrix D is

dp

)

tr(D,

)

M M
Y. Y o r(X[R,, X,EXR" X,
i=1 j=1

—
)
—

)/2T2.

E) = [see (B.104)] = tr(A,,EA,,,/2)

(B.118)

(B.119)

(B.120)

(B.121)

(B.122)
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1. d. The ("), p)-th element of the (M + M?) X (M + M?)) matrix L is
Lnpe = e’GCQ(W,)p“Ge/e’Ge
= WGC,,,,Gh = [see (B.108)]
M M '
= YY) 'l GX,R" [0,iRy1 - 2X, GX; | TIR,, " X;Gh/ T
=1 j=1
+W GXR,, "' X,,Gh/2T. (B.123)
2. d.The ('), p)-th element of the (M + M?) X (M + M?)) matrix C is
Copnpn = (Cpuey ) = [see (B.106)]
M M '
= Z Z o'l tr(X,R" RyiR,, "X;E)/T
=1 j=1
M M '
-2 Z Z o' tr(X,R" X,» GX|R,,"X;E)/ T
=1 j=1
+tr(XR,," X,/ E)/2T. (B.124)
3. d.The ((v'), w)-th element of the (M + M?) X (M + M?)) matrix D is
e pu tr(De,,,p,Z) = [see (B.107)] = tr(A,,,,EA,, /2)
= YY) o t(X|R" X, EX/R,, TX;E)/2T*. (B.125)
i=1 j=1
O
Lemma B.1. For all estimators B, (I=UL, RL, GL, IG, ML) of B the following results hold:
B; =B+ 1B + w(7?), (B.126)
where
B\UL = (Z’Z/)T)'Z’E/ VT, (B.127)
RLy _ ’ -1y
vec(BiRY) = W(X!X./T) ' X'/ VT, (B.128)

GL) Vec(Bllc) = Vec(B1ML)

vec(B,

YIX(Z'®In)X. /T ' X(E' @ Ir)e/ VT.

(B.129)
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Proof of Lemma B.

il. Since

1. i

Bu = (Z'2)'72Y.=(Z'Z)'Z(ZB+E)

B+ (Z’Z)'ZE=B+1(ZZ/T)'ZE/NT

B + 1B Y.

by vectorizing (3.38) we take

Thus,

y. = vec(Y.)=vec(ZB +E) = vec(ZB) + vec(E)

= (I®Z)vecB)+e=(IQZ)Yp+e=X.f+e

veeBr) = WXX.)'Xy.
= PXX)'X(X.B+e)=PB+WPXX) Xe
= WB+tW(XX./T)'Xe/ VT = vec(B) + T vec(B, ") =
= B, = B+ 1B

iii. For any consistent estimator £~ of £7! it holds that

which implies t

Therefore,

vec(Ber)

L= o),

hat
El'eIr) = (Z'Ir) + w(7).

= YX(E'eINX)'X(E e I)y.

= YX(ETINX)'X(ETINX.B +€)

= WB+tP[X((E'®Ir) + w(0)X. /T X((E ® It) + w(1))e/ VT

(B.130)

(B.131)

(B.132)

(B.133)

(B.134)

(B.135)

(B.136)

= vec(B) + TP[(XUE ' @ I)X./T) + t(t®)] (XUE™ ® IT)e/ VT) + w(7?)]

= vec(B) + TP[(XUE ' @ INX./T) " + tw(XUE ® IT)e/ VT) + w ()]

= vec(B) + TP[X.(E @ ID)X. /T ' X (E7 @ In)e/ VT + w(1?)

= vec(B) + tvec(B:°") + w(t?) =

(B.137)
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BGL =B+ TB1GL + a)(’cz). (B]_38)

Since Bjg and By are the outcome of iterative use of the GL-estimation process, equation (B.138)

implies that

Bic = B+ 1B¢ + w(7?) (B.139)
and
By = B+ tB/M + w(7?), (B.140)
where
vec(B1¢) = vec(BiME) = vec(B;°h). (B.141)

So, equations (B.130), (B.133), (B.137), (B.139), (B.140) and (B.141) complete the proof.

O
Lemma B.2. For any conformable matrix I' lemma B.1 implies that
%im TE[(B; - Bu)T(B; - Byy)] = Thm E[(B,' - By""YT (B, - B"")]. (B.142)
Proof of Lemma B.2.
B; - By, = B+ 1B + w(t?) = (B + 1B1"t) = (B! = Bi"Y) + w(7?) = (B.143)
(B —Bur)T(B;—Bur) = [t(Bi' — Bi"") + w(t)]'T[1(By' — Bi"") + w(1?)]
= 7B/ -B")TB -B") +0(r) =
TE[B; - Bu)T(B; - Bu)l = E[B) -B")YI (B, -B"")]+0(1) =
lim TE[(B; — Bur)T(B; — Bur)] = lim E[(B:' - Bi"")T(B:' - B;"")]. (B.144)
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Lemma B.3. Since the rows & (t =1,...,T) of E are independent Ny(0, E) vectors, the matrix E’E has a

Wishart distribution with weight matrix X and T degrees of freedom i.e,

Then,

Proof of Lemma B.3.

E'E~W(Z,T), E(EE) =TE.

E(EEL'E'E)=T(M+T + 1)L.

o=
&r
T T
SEEL'EE = ) &L ) eve
t=1 =1
T
= Z ee L ee, + Z Z &e L epe,
=1 t=1 #=1

t£t

where & and g, are independent N(0, ) vectors for ¢ # t'.

Let g be any arbitrary (M X 1) non-stochastic vector. Then,

E(g’(stsgz’letsg)g)

g (&6 L e1e))g

tr(g'e:e, L &;€,8)

= tr(ejgg’ee, L e) = €,gg €16, L e =

E(eggg’stsgz‘lst)

= [ see Magnus and Neudecker, 1979, p.389]
= tr(gg’L)tr (E7'E) +2tr (gg’LL7'L)

= tr(g’Lg) tr (Im) + 2tr (g'Lg)

= Mg'Lg+2¢'Lg

= (M+2)g¢'Lg.

(B.145)

(B.146)

(B.147)

(B.148)

(B.149)
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Since &, and &, are independent vectors for t # t', equations (B.145) and (B.146) imply that

T T T
E|g 2£t£;2‘15t52+2 ee L leve) | g
1

t=1 t=1 t'=
t#£t

T T T
Z E[g’(stsgﬂ‘lsts;)g] + Z Z E[g’(stsgﬂ_let,.s;,)g]
=1

t=1 t'=1
t#t

E[g'(E'EL'E’'E)g]

T T T
Z E[g’(st.s;E‘lsts;)g] + Z Z g E(sts,{)E_l E(ere;)g
=1 =1 t'=1

t#t

= ZT"(M +2)g'Eg+ ZT" ZT: gLL kg

t=1 t=1 t'=1
t#t

= TM+2)gLg+T(T-1)g'Lyg
= TMM+T+1)g'Lg. (B.150)

Since g is any arbitrary non-stochastic vector, equation (B.147) implies that

E[g'(EEL'E'E)g]

g E[EEL'E'E]g=T(M+ T+ 1)g’'Eg

= E[E'EL"'E'E] TM+T+1)E. (B.151)
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Lemma B.4. Let E; be the residuals of the regression equation
Y.=ZB+E,
when the By (I=UL, RL, GL, IG, ML) estimator is used. Lemma B.1 implies that

Ef = Y.-ZB;=ZB+E-ZB+ 1B + w(1?)

= E-1ZB{ + (7).

For the £; (I=UL, RL, GL, IG, ML) estimator of L it holds that

£ = EE/T=[E-1ZB\ + w(t*)]'[E - 1ZBy' + w(t)]/T

= [E-1ZBi'T[E - 1ZB:"]/T + w(t*)

= [E —1B\"Z'[E - 7ZB:]/T + w(t%)

= FE/T-1EZB,'/T-1B\"Z'E/T + *B\"Z'ZB,/T + w(t*)

= FEE/T-1?E'ZB/'/NT - ©®Bi"Z'E/NT + ©*B.\"(Z'Z)T)B:" + (1%

= FE'E/T+[B,"(Z'Z/T)B,' = E'ZB,'/ NT - B;"Z'E/ NT] + w(7).
By using equation (B.127) we find that

B\"ZE/NT = B\"(ZZ/T\Z'Z/T)"'Z’E/NT = B\"(Z'Z/T)B; "*.

Similarly,

E'ZB\'/NT = B,"“(Z'Z/T)B,".
Since I' = Z'Z/T, equations (B.154), (B.155) and (B.156) imply that

A

o E'E/T + ©*[B:"TB;,! — By“"“TB,' — B;"I'B1"*] + w(*)

E—tVTE + tVTE'E/T + 2[B:"TB;' - By"“TB;' - By"TB,"!] + w(1%).
The following result holds:

B,"rB,! - B;"Y = rB,! - B,"IB;""
= B,"rB,!-B,Y""1B;! - B,"IB;""* + B{"*'rB,“* — B;“'rB, Yt
= (B -B""YI(B' - B\"") - (Z'Z/T)'ZE/NTI(Z'Z/T)(Z' Z/T) ' Z’E/ NT]
= B! -BYYr®B'-B"Y-FEz(Z'zZ/T)(2Z/TN(Z'Z/T)'Z’E/T
= B/'-B""IB/-B")-FZ(Z'2)'ZE

= (B -B""Yr(B,' - B;"*) - E'P;E,

(B.152)

(B.153)

(B.154)

(B.155)

(B.156)

(B.157)

(B.158)
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where Pz = Z(Z'Z)™'Z’'. Thus, equations (B.157) and (B.158) imply that

L = Z+1[VI(E'E/T - E)] + 2[B:' - Bi"YY (B! - BiU") — E'PZE] + w(7%)

L4175 + 2L, + (7))

= E+7(E + L) + w(7), (B.159)
where
L, = VI(E'E/T - E) (B.160)
and
L) = B, - B""yI(B,' - B,'") - E'P4E. (B.161)

Equation (B.159) implies that

£ = [E+t(E + 1B + w(P)] T

— E_l _ Tz_l(zl + Tzé)z—l + ,.L_Zz—l(zl + TEIZ)E_l(El + TZ;)E_l + CU(T3)
= L' D -2 e+ AR T E I + w(TP)

= LD + AL T L LT - BT D + w()

= L —ar 'L+ I ET R - DI + w(T)

= L' =18 + 28 + w(Td), (B.162)

where
S =Ll (B.163)
S =L ML 2L - EHE (B.164)

Moreover, the following results hold:

E(Z,) E[VI(E'E/T - E)] = VT[E(E'E)/T - £] = [see (B.145)]

= VT[TL/T-Z]=0. (B.165)

ii. Since E'E ~ ‘W(Z,T) and since Pz = Z(Z'Z)"'Z’ is idempotent with
rank(Py) = tr (Pz) = tr[Z(Z’Z)'Z' | = &t (Z’Z) ' Z'Z] = tr Ik = K, (B.166)

it follows that
E'P,E ~ W(L,K). (B.167)
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Furthermore,

iii.

iv.

= EEZ'EiLT)

E(E'PZE) = tr (Pz)E = KE [see Magnus and Neudecker, 1979].

E(Z.Z7'E)

E(S1) = E(E'E, 27" = 7 E(Z)E ! = 0 [see (B.165)].

E[VT(E'E/T - )L VT(E'E/T - E)]

= E[T(EEL'F'E/T>+EZ-FEE/T-FEE/T)]
= E(E'EL'F'E/T + TE - 2E'E)

= E(E'EL'F'E)/JT -2E(E'E)+TL

= TM+T+1)E/T-2TE+TL

= ME+TE+X-2TE+TE=XM+1).

E(Z)) E[(B,' - By""YI'(B,' - B,"") — E'P4E]

E[(Bi' - B,"")T (B, - B;"")] - E[E'P,E]

E[(By' - B;"*YT(B;' - B;"")] - KZ

L EEHET!

L YE[B! - B T(B,! - B;Uh) Lt —KEZ T EE!

L YE[B)! - Bi"YT(B! - B;Uh) |t — K&

vi. Thus equationS (B.164), (B.170) and (B.172) imply that

E(Sy")

E[E N (Z,Z7'E - EDHETY]

131 DD D IRD MD SR M 9 My

EEE ETIL)ET - EETiEET

(M+1)ELE! + KE' - ZVE[(By! - ByULY T(By! - B;UM)|Z

M+ K+ 1)L — 27 E[(By! - B{YLYT(B,! - B;"H)E7L.

(B.168)

(B.169)

(B.170)

(B.171)

(B.172)

(B.173)
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Lemma B.5. We estimate the model

y.=Xp+e (B.174)

by using the I estimation process, and we estimate (£7! ® It) by using the estimator
A -1
(X ®Ir). (B.175)

Then by using (B.175) we estimate (B.174) via the GL-estimation method. Let £j the estimation of by

using the GL residuals, &g, = vec(Egy) say, from equation (B.174) i.e.,
ﬁ] = EA:,GLEGL/T- (B.176)

Let ﬁcL be the GL estimator of § in (B.174). For the 6% (I=UL, RL, GL, IG, ML) estimator of 6> holds
that

& = (y.—Xper) (E ®In(y. - Xfor)/(TM — 1)
= &, (57 @I /(TM - n)
= [vecEa)'(Z; " ®Ip)[vec(E)l/(TM - n)
= tr[Bo (B YEL 1/ (TM —n) = tr £ Bl B /(TM — n)
= tr(E]'TED/(TM = n) = tr (£, L))/ (TM - n)/T)
= tr(EL)/M=n/T) = tr (£71L)) /(M - ). (B.177)

By using equations (B.159), (B.160) and (B.161) we take

Lj=L+1E+ ’L'ZE£ +w(T°), (B.178)
where
L = VI(EE/T - E) (B.179)
and
L) = B, - B,"")I(B, - B;"") - E'P,E. (B.180)

Then, equations (B.162),(B.164), (B.177) and (B.178) imply that

)fl_lﬂl = [E7' =181 + S + w(][E + tLq + TZEQ +w(t)]
= L'L+1E7 L+ PE7 L) - 1812 - 2811 + 128, L + w(7°)
= Iy+tL 5 + L E) L L LT L - PETID BT + PR ST E - EDETIE + w(e)

= Iy+TLYE - E) +w(®) = (B.181)
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(L) = twhy+ P [Z7NE - ED] + w(d)
= M+2u[ZVE -]+ o) = (B.182)
6% = tr (71 L) /(M = n) = [M + T tr [EY(E) - ED]I/(M - T21) + w (7). (B.183)

Moreover,

i) - £D ENEEE - LEiE + 2 - ED)

= L(EEL - L) - (LiZT' 5 - I))]
= LNEE L - LHE ' L - L N(E 7L - E)ETE

= SlE-SlL=(S,-shr= (B.184)

tr[Z7NE - Z)] = tr (S)' - $))L (B.185)

Thus, equations (B.183) and (B.185) imply that
62 = [M + T2 tr[(S2) = S)EN/(M — 1) + (7). (B.186)
Lemma B.6. Define the M X M matrices
M; = lim E(S,) (B.187)

and

A= %im TE[(B; - Byu,)T(B; - Byy)] (I=UL, RL, GL, IG, ML) (B.188)

and the (M? x M?) matrix N with elements
V(ij)(kl) = UiKUjl + O'ilO'jK (i, j, K,l = 1, . ,M). (B.189)

The following results hold:

M;

lim E(Sy) = (B.173)

= (M+K+DZ™ - £ [lim E[B,' - B,"")T(B,' - B,"")]IE™
= [see Lemma (B.2)]

= (M+K+DE™ — £ [lim TE[B; - Buw) T(B; — Bu)llL™!

= [see (B.188)]=(M+K+1EL!'-LA L= (B.190)
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M;—Mg))E = [M+K+DE'—ZA L - M+ K+ DE + Z7MAq 2 HE

A -2 A L HE =2 A - ADETIE

LN Aq - A)). (B.191)

ii.

E[(Sy' —=S,)E] = [E(Sy) = E(S)))IE = [see (B.173)]
= [M+K+1)£ - ZE[B) - B;"")I(B,' - B;"")|L™!
M+ K+ 1)L+ £ E[(B) - By T(B, - B E
= —L'E[B -BYY 1B -BUYhHZE

+ZYE[(B) - B\YYYT(BY - BiETlE = (B.192)

Hm E[(Sy' - S2))Z] -t Him E[(B)' - B,""YT(B,' - B,"")]
+Lt %an}o E[(B - Bi"YYT(B,) — B;")] = [see Lemma B.2]
= —L™" lim E[(B; ~ Bur) T(B; ~ Buy)]

+L1 Thi?o E[(B; — Bup)'T(B; — Byp)] = [see  (B.188)]

= LA+ LA =27 A - A) = 27 AqL - A)), (B.193)

because the I estimation method is the GL method.

iii. Moreover,

$i = Ilnl=

vec(Sy) [(Z7YY @ Z7 ] vec(Z1) = (E7' @ L) vec(Zy) =

(vec(S1))(vec(S1)) [(E7 @ L) vec(ENI(E™ ® £7') vec(Z)]

= ('L Y (vec(Z))(vec(Z)) (E @ L. (B.194)
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Since E'E ~ ‘W(E, T) and E(E’'E) = TE, equation (B.160) implies that the matrix

W = VTL, = T(EE/T - L) =FE-TL (B.195)

is a Wishart matrix in deviations from its expected value. Let w;; be the (i, j)-th element of W.

Then, since o;; is the (i, j)-th element of X, by using definition (B.189) and following Zellner, 1971
p.389, (B.58), we find that

cov(wijwy) = E(wijwy) = T(0ix0j1 + 010 i) = Tv(ij)i)- (B.196)
Then, (B.194), (B.195) and (B.196) imply that

E[(vec(S1))(vec($1))'] = (Z7'® Z™)El(vec(Ey))(vec(Zy)) (ET @ £7)
= (E77®@L7N(1/T) E[(vec( VTEy))(vec( VTLy)) [(ETT @ E71)
= (Z'®Z7)(1/T) E[(vec(W))(vec(W)) I(E™ ® L)
= (Z'e ZHA/DIEwijwn)ipmlE" @ Z7)
= (' EYA/DITvim)ijpmlE" @ L)
= ET I N(Wapm)apmlET® L™

= eI )NETeL) = (B.197)

lim E[(vec(S1))(vec(S1))]1 = (E1@ ZHN(Z @ ™). (B.198)

Lemma B.7. Calculation of A; (I=UL,RL,GL, IG, ML)
Since, y. = vec(Y.), X. = (Im ® Z)W, & = vec(E) and vec(B) = Wf where y., € are (TM X 1) vectors and
(IM®2Z), ¥ and X, are TM X Mk, Mk X n and TM X n matrices, respectively, the following results hold:

(i)

B\ = (ZZ/T)'Z’E/NT =T(Z'Z)'Z’E/NT
= VT(Z'z)'ZE> (B.199)
vec(Bi"Y) = vec[VT(Z'Z)'Z'E]

VT vec[(Z'Z)' Z'E]

VT[Ly ® (Z'Z) ' Z'] vec(E)

VT ® (Z'2)7'Z']e. (B.200)
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(ii)
vec(B1R) = W(X!X./T) 'Xe/ VT = NTW(X!X.) ' X e. (B.201)

(iii) Similarly,

vec(B:°t) = vec(Bi°) = vec(B,M) =

YIX/(E' R InX. /T X/(Z " @ Ir)e/ VT

VIPIX(Z ' @ INX.] ' X(Z @ Ip)e. (B.202)
Moreover,

Bi-Bu = 1B -B") + w(7?) = [see (B.143)] =

VT(B; - Buy) VT[(B,' — B;"") + w(?)]

= B/ -Bi")+w() = (B.203)
vec| VI(B; - Bu)l = VTvec(B; - Buy)
= Vec(B{ - B1YY) + w(). (B.204)
Define the matrix @; such that
VT®,¢ = vec(B,! — B;UL). (B.205)

Then equations (B.204) and (B.205) imply that

VT vec(B; — Bur) = VT®je + w(7). (B.206)

By using equations (B.199), (B.200), (B.201), and (B.205), we find the following results:

I For I =UL
VT®e = VTDy e = veeB U - BiUL) = 0 = Dy, = 0. (B.207)
II For I = RL
VI®e = VT®gre = vec(BRE — ByUM) = VTW(X!X.) ' Xle — VT[Iy ® (Z'Z/T)'Z e
= VIPXX)'X - [Iu®(Z'Z/T)'Z'|]e =
Dp = PXX)X -[Iye(Z'Z/T)'Z]. (B.208)

III Similarly, for I = GL,IG, ML

ﬁ@[f = ﬁq)GL£ = \/’1_—'(1)1@8 = ﬁq)MLS
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VeC(Bch - B1UL) = vec(Bllc - BlLIL) = VeC(BlML - BlLH‘)

VIPIX(E @ InX.] ' X(E @ Ir) - [In® (ZZ/T) " Z' e =

D = D=0y =VX(ERQINX]'X/(E'®Ir) - Iy ®(Z'Z)'Z']. (B.209)

Let I be any arbitrary M X 1 vector and let L = II’ be any (M X M) symmetric matrix i.e.,

I =[(li)i=1,.,m] (B.210)
and
ll 1111 ce lllM
L = [(pij=r,.ml =10 =|:|(,...,Im) =
lM lMll ce lMlM
= [(Llj)ij=1,..m1 =
l,']' = lilj Gj=1,...,M). (B.211)
Then,

I'By' -B""YT(B,' -B,"")l = tr[I'(B, - B,"")YT(B,' - B,"")I]
= tr[(B) - B\"")YT(B)' - B,"")II']
= tr[(B)' - By"")T(B,' - B;"")L]
= [vec(Bi' — Bi"M)] vec[I'(B;' — B;"")L]
= [vee(B' - Bi"™M)]' (L’ @ I'[vec(B,' - B;")]

= [vec(B,! - Bi')['(L®I)[vec(B,' — B;YY)].  (B.212)

By using equations (B.205), and (B.212) and since E(eg’) = £ ® I, we find that

I'(By' — Bi"'y (B! - B;UM)1 (NT®e) (L I)(NTDj¢) =

T D(LRT)De

Ttr (¢ (LRI Dre)

= Ttr(PULIT)Dee) =

E[l'(B:! - By"tyYT(B,! - B;"1)1] T tr (®)(L ® I D, E(ee’))

= Tt(D(LND(ERIY)). (B.213)

Then, Lemma B.2 and equations (B.188) and (B.213) imply that

I'Ajl I’ lim E[(B,' - B,"")T(B,' -~ B,"")]I
= lim E[I'(Bi! - ByULYT(By — B{UM)I]

= lim[Tr(D{LeDPHES )] (B.214)
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The following results hold:

(a) Equations (B.207) and (B.214) imply that

I'Ayl = 71111’1 [Ttr((D{lL(L IOy (ERIT))] =0= Ay =0. (B215)

(b) Since X! = [X],,..., X}, ] we take

Xi. y
XX = X, Xpl| 0 =) XX =
=1
X« !
M -1
xx)" = Y X Xe| =
u=1
Vil -1
wXX)'X, = Y XX | XD X
»WMA u=1
M -1
= ||w ) x.x.| x| | (B.216)
p=1 ij

Moreover,
(Z2'2)'z' 0
e (Z'2)7'7] = = diag[((Z'2)'Z)/]
0 Zz'z)'z
= [(6Z'2)'2);j]. (B.217)
Therefore,
Qp = YXX)X -[Iu®(Z'2)'Z)]
M -1
= II],‘ Z X’ *}(y,f X]/* — 6ij(Z/Z)—lzf
u=1 ij
= [(Di")], (B.218)
where
M -1
" = | Y X[ X | X[ -04(Z2)7Z . (B.219)
u=1
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Thus,
Dy (LOT) = [(Di")irc|[[(eg)eq] ® T = [(@i™ )i e[l )g| = HZ lw(D,KRL’F] (B.220)
and
M
Op(E®IT) = [(q)quL)q,y][[(Gyj)y,j]®IT] = [(q)q‘uRL)q,‘u][(ijIT)p,j] = Z O‘yj(pquL . (B.221)
u=1 .
q,]
Then, equations (B.220) and (B.221) imply that
[( M M
@ (LT D (ERI) = [Z qu(I)mRL’F] Y 0@
| \x=1 iq u=1 Y
[((M M M ]
- 2 Z Lo @i T D, | | = (B.222)
| g=1 x=1 pu=1 ij
M M M
= tr[@f LONDpE I = tr|[ YY) Loy @i Ty,
=1 x=1 p=1 ij
M M M M
- Z Z Z Z L0 i te( @y RV T D R, (B.223)

=1 g=1 x=1 u=1

Since X;. = ZW; and I = (Z'Z/T), equation (B.219) implies that

RL/ RL
QR TR

-1

M

w;| ) X)X,

p=1

M - M
.. [ZX X, ] 0222221, [Z XX,
p=1 p=1

M -1 M -1 M -1
4 Ay ’ U / 1 (7! 1 \—1 1
X | Y. X0 X0 | WIZZ%,| ) XX, | X[ - 00X | Y X)X | WIZZ)Z'2)7'2Z
p=1 p=1 p=1

~0w(Z’2)'Z1(Z'ZIT) - [

ZX’* e

NV ARV A

1
X, = 6q(Z'2)'Z']/T

-1
-4 Z(Z'Z)N(Z'2)¥, Zx;,*xp*] X, + 010, Z(Z’2) (2'2)2'2)"'Z')]T

p=1

-1

M -1 M M -1
Xee| Y X0 X0 | @0 @®)| Y X0 X | X} = 09X | Y X0 X, | (20
p=1 p=1 p=1

-1
M
~5i(ZW,) [Z XXp] e+ 00 Z(Z'Z) 2| T

p=1
M
’
Y X%,
p=1

M
Y XX,
p=1

-1

(Xi) (X4

-1

X[, — 0guXe

-1

[XK* (Xi*)/

M
Y XX,

p=1
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M -1
~5e(Xye) ngxp,&] X, +0ubquZ(Z2)7'Z'))T =
p=1
M -1 M B
(@ TDy) = el Y XX /T| (X0 Xge/ T | Y X0 X/ T| (X[ X/ T) | /T
p=1 p=1
M - ]
“dqutr || Y X0 X /T| (X[ X/ T)|/T
p=1

-1 7
M

~bi tr [ZX’*XP*/T] (XX, /T)|/T
p=1 ]

+0iOg tr(P2)/T.

Since Z is T X k, equation (B.166) implies that

Since X;. = Pi'X;, X = Pj_lXj, and since P,-_l'Pj_1 = RY, we find that for any i,j=1,..

Therefore,

So,

and similarly

Furthermore,

= fr
L p=1

tl'(Pz) =k.

X!X;./T = X/P;,"VP;'X;/T = X/RVX;/T = Bj; [see (B.66)].

M M
Y X, X,/T = ) By =
p=1 p=1

M -1 M -1

Y X.X,/T| = [Z B,,,,] :

p=1 p=1

. 3 P
tr [ZX’*XP*/T] (X[ X /T)| = tr [Z Bp,,] ;3
L p=1 A

p=1

M -1 M ]
tr ZX'*X,%/T] (X[, X,./T)| = tr [ZBW] B
p=1 ]

p=1
tr[

-1

(X X/ T)

pr

-1
X)X,/ T] (X! X,./T)

M
Y X)X /T
p=1
-1 M -1

Bj, [Z Bpp] B |-

p=1

(B.225)

M

(B.226)

(B.227)

(B.228)

(B.229)

(B.230)

(B.224)
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Thus, equations (B.224), (B.225), (B.228), (B.229), and (B.230) imply that

M -1 M -1 M -1
(@ TR =t [Z B,,,,] B, [Z Bpp] By |/T = 6 tr [Z Bp,,J Bi|/T

p=1 p=1 p=1
M -1
~Oitr|| Y Byp | Byg|/T + 0ic0uK/T. (B.231)
p=1
Since Iy, = Ikl (see (B.211)), equations (B.210) and (B.223) imply that

tr [@h (LOT)Dr(ERIT)] = LeqO i tr( @i Ty, R

1= IP=
=

I
—_

i
1= iP=

Leoyi tr (@i )T D, ),

= ilM= 1=
M= iD=

Oui tr(qb,«KRL'rquRL)] 1=
kaq

I
—_

u
[T(P (L O PrL(E® I7))]

Il
=
85 /=
i
NN

U'Agel

li
T—o0

=

M= iD=

~

= lim/ ( 0uT tr(cDiKRL’Fd)WRL)]

: M
= fm [Z

i=1 p

kg1

a,,iTtr(q),-KRL'rcprL)] 1=
kql

1l
—_

T—o0

M M
A, = lim [ZZGWTtr((I),-KRL'T(DWRL)] . (B.232)
i=1 u=1 k.

By using (B.231) we find

=

M M M M -1 M -1
Z 0, T (@ RUT D, R = ZZayitr ZB,,,, ;) 23,,,, By

i=1 p=1 i=1 u=1 p=1 p=1
M M M -1 M M M -1
=YY ouibgute|| Y By | Bic| =YY oudictr|[ Y By | By
i=1 u=1 pr=1 i=1 u=1 p=1
M M
+3 ) uididquK
i=1 u=1
M M M - M -t M M -1
= Y Y outr||Y.By| Bi|).By| Buc|- ) outr||Y By| Bi
i=1 p=1 p=1 p=1 i=1 p=1
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So, equations (B.232) and (B.233) imply that

I
—_
I
—_
I
—_

(c) Since X, = (Iu®Z)¥ and X, =Z¥, (u=1,..., M) (see (3.42)), we find that

V(LW

The following result holds:

D (E® IT)(I)/GL

Y(LRZZ/T)V =V (LRZZ)¥/T
= W[IyeZI|LeI|ly®Z|¥/T
= [Im®@Z2)PI L IT][(Im ® 2)W]/T

= X’[L®IT]X /T = [(X')][(L]IT)z;][(X Dil/T

M
- ZZ 1i(X[ X,/ T) = ZZZ,](X’ “VPIX;/T)
i=1 j= 1
o T
= Y Y LxRIXT) = Y Y 1B (B.235)
i=1 j=1 i=1l j=1

PIX/(Z' @ InX] ' X/(E" e In) - [Iue (ZZ) ' Z(EQIr) -
[PIX(E'QINX]'X(E eIy - [Iu®(Z'Z2)'Z'])
[PIX(E'INX]'X(E'®Ir) - [Iu®(ZZ) ' Z|(E®I7) -
(TR I)X[X(E'INX] "W - [Iu®Z(Z'Z) ']
YIX(E' o INX] ' X(ET @ INERID)E @ IT)X, -
X/(Z'eInX.] '

~YIX(ERINX ] X/(E R INEQIN) Iy ®Z(Z'Z) ]
—In®Z'Z)7'ZNER I E INX[X/(E @ In)X.] ' W’
+In®(Z'Z2) ' ZNERIN) I ®Z(Z'Z)™']

YX/(Z'InX.] W

~YIX(E' R INX]  (In ® 2) P [In ® Z(Z'Z) ']

I ®(Z'2)7 21Uy @ Z)P][X(E' @ I X.] ' W’
+[E®((Z'Z2)7(Z2'2)(Z'Z2)]

YX(ZleInX.] v

~YIX(E'INX] W (I Z)Iu® Z(Z'Z) ]

-In®(Z'Z)7'Z Iy @ Z)P[X(Z' @ ID)X.] ' W
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+[E®((Z'Z2)7']
= YX(Z'eI)X]'w
~YIX/(Z'QINX.] W (Iy ® Ix)

~(InI)WIX(Z' @ INX] W +[E0(ZZ2)7]. (B.236)
Since X, = P'X, and Q7! = P(E® I)P’, we find that

X/ (L' ®In)X. X'PVEI®I)PIX

= XOQX= (B.237)

X/(Z'eInX.] ! = (X'QX)L (B.238)

Also, since I' = (Z’'Z/T), A = (X’QX/T), and G = (X’QX)"! = A7, by using equations (B.236),
(B.237) and (B.238) we find that

T®cL(E @ IT) D, Y(X'QX/T) "W - (X' QX/T) ' W' (Iy ® Ix)

(I )P X'QX/T)'W +[Ee(Z'Z/T)']

PGV - PGV - PGV +(E0GH)=(Z®G ) - WGV .(B.239)

......

A = X’.QX/T=[(X-')‘][(Uinij)ij][(Xj)j]/T
M

= Z 0ij(X/RIX;/T) = ZZG,]BU:)

i=1 j=1 i=1 j=1

Q
I

M
XQX/T) P =A"1=( ZaijBij)—l. (B.240)

j=1

Mz

1l
—_

i

Thus, by using equations (B.235), (B.236), (B.239) and (B.240) we find that

Ttr @, (EQIr)®, (LST)

tr (EL ® Ix) — tr[GW/ (L ® W]

= tr(EL)tr(IK)—tr[

[( M
= Ktr(Zl'l) - tr [Z

i=1 j=1 i=1 j=1
[ M M
= Ktr('Zh-tr|) Y 1;GBy
=1 =1
M M
= I'(KE) - Z Z I tr (GB))l;
i=1 j=1

= I'(KD)I-I'[(tr (GBy))); i1l
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= I'[KE-[(tr (GB;j)lll =
For any arbitrary vector 1

lIAGLl lIA[Gl = Z/AMLZ

= lim[Ttr @4 (LONPcL(Z @ I7)]
= Tlii{}o[l'[KE = [(tr (GB))); ;1111
= I'[KE - [(tr (GBy));,jlll =

=
1=

AL =Aic = AmL = KE - [( tr[ UijBij]_lBiJ'),-/j]'

i

1l
—_
.
I
—_

Lemma B.8. The LS estimator g, of p, admits the stochastic expansion
pu = pu + 10V + P + (%),

where

pﬂ(l) — _(P;LD;L(l) _ Ny(l))

and

pu® = N,® - N,OD, + p [(D, V) +D,®].

Proof of Lemma B.8. Since

T T T-1 T
~ - 2 ~
Pu= Z Uyl -1y / Z Uy, = ) et/ Z ty, = Nu/Dy,
=2 =1 =1 =1
where
N L Dii, /T
w= M iy /Tou,
and
D, = ﬁ;,ﬁy/TaM“ ,
where

Uy ~ N, U‘uy/(l - Pi)) = Gu“Z = Gy;t/(l - P;ZA)

and D is a matrix with (¢,t')-th element equal to 1 if [t — /| = 1 and zero elsewhere.

Let [;’ be the LS estimator of B in the (u)-th equation

Yu = X +uy.

(B.241)

(B.242)

(B.243)

(B.244)

(B.245)

(B.246)

(B.247)

(B.248)

(B.249)

(B.250)
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Then,
iy, = yu-X.p=Xp+u,—X.,p
= u,—-t ﬁXy(ﬁ - ﬁ)
= uy, —1X,0,, (B.251)
where

CD
=
1l

VT(B-P) = VTI(X,X) " X,y — Bl

VTI(X X)X (X + 1) — B

VI(X[ X)X, X, + V(X[ X,) " X u, — VT

VT(X[ X)) Xy, = (XX /T) " X,/ NT = (B.252)

X,/ VT = (X, X,/ T)0,. (B.253)

But, equation (B.251) implies that

w,Dii, = (u,—1X,0,)D(u, —X,0,)
= (u;, - TGLX;)D(L!M -1X,0,)

= u,Duy, —20,,(X/Du,/ T) + 0/,(X/ X,/ T)6,. (B.254)
Then by using equations (B.247), (B.252) and (B.254) we find that

N, = u@,Di,/2To,,>

= u,Duy/2To,,* - 2[u/ X,(X|X,/T)""/ VTI[X,Du,/ VT]/2T0, 2
+[u!, X, (X[ X, /T) ™ VTI(X DX,/ T)[(X, X,/ T) "' X[,/ VT1/2T0, 2

= u,Du,/2To,,” — ?u, X, (X, X,) "' X Du,/0,,”
+70u, X, (X1, X,) ' X0 DX (X, X,) 7 Xy /204,

= u;Duy/ZTau“2 - Tzu;PXyDuy/au“2
+Tzu;lPX“DPquy/20u”2

= pu—pu+u,Duy/2To,” + ©*(u, Px, DPx,u, /2 — u,Px,Du,)/0,,’

= pu+1l \/Tl_"(u;lDuy/ZTGL,“2 - pu)l+ ’62(u;,PXHDPX#uy/2 - u;lPX“DuH)/Uu“2

= pu+NY +72N,9, (B.255)
where
T-1
N, = VT(u,Du, /2To,,2 - p,) = \/”T( 2 Ut 10/ 2T00,* = Py (B.256)
t=1
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and

N,® = (u,Px,DPx,u,/2 - w,Px,Du,)/0,,>. (B.257)

Similarly, equations (B.251), (B.252) and (B.253) imply that

iy = (wy—1Xu0,) (uy —1X,0,) = (u), — 10, X))y — 1X,.0,)
= wuy, —20/,(X,u,/ NT) + 0,(X,X,/T)6,
= wluy, —20,(X/X,/T)0, + 0,(X/X,/T)0,
= wuy, — 0,(X,X,/T)0,
=y — X,/ VT)(X[ X,/ T) ™ (X[ X,/ T)(X] X,/ T) 7 (X, / VT)

= wuy, - u:lXH(X;Xy)‘lX;luH = wyuy, — u, Px,uy. (B.258)

Thus, equations (B.248) and (B.258) imply that
D, = ﬁ;lﬁH/Tauyz = u;,u#/Tau“2 - u;lPX“uy/Taup2

= 1-1+u,u,/To,” —u,Px,u,/To,’

= 1+1[ \/T(u;uH/Tau“2 -D]- Tzu;PXpuy/aupz

= 1+,Y-7D,®, (B.259)
where
D, = VT(u,u,/To,,* - 1) (B.260)
and
D#(Z) = uLPXHuH/auf. (B.261)

Thus, by using equation (B.259) we find that

S
I

1+17(D,Y -1D,?) =

D, = [1+tDY -, =1-vD,"V-D,?)+*D,"Y - 1D,?) + w(7?)

1-1D," + ?[(D,V)* + D,?] + (7). (B.262)
By using equations (B.246), (B.255) and (B.262) we find that

pu = N, =(p,+ND+ N1 - D,V +[(D,V) + D, ] + w(r%)]

pu — tpuD Y + 0 (DY) + D,@] + N, Y - 2N, YD, D + N, ? + w(7?)

Pu— T(pHDH(l) - Ny(l)) + TZ[NM(Z) - Np(l)DH(l) + p#[(Dy(l))2 + DH@)]] + ()

pu + (0" + 10,?) + (), (B.263)
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where
puM = —(puD,P = N, ) (B.264)
and
p:? =N,®-N,YD,D + p,[(D,V)? + D,?]. (B.265)
Since .
1 Pu oo putt
, 1 Pu
Ry, =P,P, = T=p2| , (B.266)
»ppT_l 1
it is straightforward that
Ry ™ =P, 'P, 7 = RM = (1+ p,2)Ir — puD — p,°Afsee  (B.5)]. (B.267)
Then,
Ry, " = IR [9p, = 2p,Ir — D — 2p,A [see  (B.7)] (B.268)
and
Ry, = "R [p,* = 211 — 24 = 2(It — A) [see  (B.8)]. (B.269)
Define the (T X T) matrices
R#* =R, " +ip,A, R =R, " +iA (i=1,2). (B.270)
Then,
R = R, M +2p,A=2p,Ir —D —2p,A +2p,A
= 2p,Ir - D. (B.271)
The quantities py(l) and py(z) can be written as functions of Ry** as follows:
i
pM = —(puDyM - N, V) = [see (B.256) and(B.260)]
= —lpu \/T(u;luH/Taupz -1)- \/T(u;lDuy/ZTau“2 n)
= - \/Y_"(Zpyu;luy - u;lDu“)/ZTaup2
= —u,2pulr — D)u,/2 \/fauuz = [see (B.271)]
= —u:lRZ/'Wu‘u/Z \/'1_—'0"!‘2‘ (B272)
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ii.

p® = N®-NOD,O+p,[(D,V)+D,]
— NH(Z) _ Ny(l)Dy(l) + Py(Du(l))z + Pqu(Z)
= N,%+p.D,?+D,Yp,D,V - N, D) = [see (B.272)]
= N,?+p.D,? - D, V[—(p, D,V = N, V)] = [see (B.272)]

= N2+p,D,®-D,Mp, M. (B.273)

By using equations (B.256), (B.257), (B.260), (B.261), and (B.271) we find that

zouM2(NH(2) + pyDy(Z)) =
= 20,,°[(u, Px,DPx,u,/2 -, Px,Duy) /0y, + pust, Px, 4, /0u,”]
= u,Px,DPx,u, — 2u, Px Du, + 2p,u, Px,u,
=, (It - Px,)D(Ir — Px,)u, — 2u, (It — Px,)Du, + 2p,u, (It — Px,)u,
= u,Px,DPx,u, +u,Du, — 2u; Px Du, — 2u; Du,
+2uy, Px, Duy, + 2p,ujmy — 2p,u, Py, uy,
= u,Px,DPx,u, — 2p,u, Px,uy, + 2p,m,u, — u,Du,
(since Py, is idempotent)
= u;ll_’xﬂ (D - 2p,Ir)Px,u, + u,(2p,Ir — D)uy

= _MLPXHRZH#PX“”‘LL + u;RZW‘uy. (B274)

Similarly, equations (B.249), (B.260), (B.261), (B.273), and (B.274) imply that

Pu

@

204,204 = 20, 2[(N,@ + p,D, @) — D, Vp, D]

ZGUHZ(N}J(Z) + puDH(Z)) _ 2Uupsz(1)Py(l)

—u, Px, Ryt Px, uy + u, Ry uy, + 20%2 \/T(u;luy/Ta,,“z = 1)(u, RoH*uy /2 ﬁauﬂz)
—HLPX“szl_)XMuy + u;sz‘“uH + u;uyu;Rz“"uy/Tauﬂz - u;le“Pu” =

—uLPX,, Ry Px,u,, /Zauﬂ2 + g, Rotuy, /2Tou#4. (B.275)
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Lemma B.9. The following results hold:

i) By using (B.243) the sampling error of the Least Squares estimator of p, is

001 = P = VT3~ py) = lseo (B213)
= VTlpu + (0 +10,?) + 0(2) — py]

= py(l) + pr(z) + w(t%)

= doy"* + 1" + w(T), (B.276)
where
day™ = pu ™ = —u,Ro"u, /2N T, (B.277)
and
d(z)HLS =p,? = _u;ll_’X“Rz“”l_’Xqu/20u#2 + u;u},u;,Rz“"uH/ZTauf. (B.278)

ii) The iterative Prais-Winsten estimator of p, is (see Magee, 1985, p. 279-281)

1-p2)
prw = phs - 72—( Pu )[u,ﬁPx,, Ry"Px, VR*u, + uR*VPy, Ry"*Px VR"u, /2]

Oup
+w(73), (B.279)
where
V= Ry — XX RX,)'X) = [I - X,(X[R*X,)"' X} R, ]JR*
= W,RH (B.280)
and
Wy = T = X, (X[ R X,) 7 X Ry (B.281)

The iterative Prais-Winsten estimator of p, is equal to its GL estimator, i.e., ﬁpw = ﬁGL. Thus, by

using equations (B.279), (B.280), and (B.281), the sampling error of iterative Prais-Winsten estimator

of p, is
6[)“GL:(5PPPW = ﬁ(ﬁﬁw_P‘u)
= [(p~° -p,) - 2—(1_p“2)[ ' Px. Ro**Px, VRMu, + 1/, R VPx RoMPx VRM, /2]
B Pu =P =T Ouu xR Xy Wy T Uy X2 Xy Uy
+a)(73)]/”c
1-p.)
= 5P [, Px Ry Px VR*u, + 1/, R VPx Ry*'Px VRu, /2] + w(7?
= 0p, T - u, Px,R,* Px, Uy +u, x, Ro"" Px, u, w(T7)
= do. +1ld LS—(l_p“z)[ ' Py Ry Px VRMu, + 1/ R*VPx Ry™ Py VRMu1,/2]] + w(7>
= My T1a©2)u o—u“ X, %2 X, uy +u, X, X2 X, Uy w(T7)

pp
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= d(l)yLS + ’Id(z)yGL + a)(’tz),
where

dow = —uPx Ro"Py,u/20,7 + u,uu,Ro"u, /2T, *
1-p2) -
( _ Pu )[u; Px, Ry*'Px, VR, + 1, R*VPy, Ry"* Px, VR*'1,/2].
uy

iii) The ML estimator of p,, is

1- Puz)
pu

AML

ot = pi" + lpy (1 + ur®) = pul + (7).

(see Beach and MacKinnon, 1978 p. 52-54, Magee, 1985 p. 281-284).

Thus, by using equation (B.284), the sampling error of ML estimator of p, is

(B.283)

(B.284)

(B.285)

(B.286)

5o, M = VTN = p) = [ = pu) + Lpu(1 = pu?) i + ur®) = pul + w(T)]/7
PW (1- p#Z) 2 2 2
= 0p, + tlpy——— (1" + ury”) — pul + w(7°)
i
1-p%)
= day" + tld, " + P#—P(ulyz +ur,’) = pul + w(t?)
= d(DHLS + Td(z)HML + CL)(TZ),
where )
(I -pu)
doyp™ = dy St + Ppo—y(uluz +ury”®) = pu
g

iv) The Durbin-Watson estimator of p, is
pa" =1-Dw,/2,
where Dy, is the Durbin-Watson statistic, i.e.,

po . T 2 T ~2 T ~ =
ZZ:Z(”W - u(H)H)z B Y2 Uy, + Y u(t,l)y -2 Ut U(-1)u

I = T ~2 T =~2
Zle utlJ Zt:l uty

T 2 ~2 T =2 ~2 T ~ =~
Zt:l um - uly + Zt:l ”w - uTy -2 thz UrpU(t-1)u

T -~
Zt:l utzy

T = T ~ =~ - ~
2 Zt:l utZH - (2 Zt:z utyu(t—l)y + u%# + M%H)

T =2
Zt=1 ut#

T - = 2 2
ZZtZZut“u(t,l)H+u + 1

1 Tu
T ~2 :
Zt=l uty

(B.287)

(B.288)

(B.282)
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Equations (B.287) and (B.288) imply that

T ~ =~ _ -
Zt:Z Uy U(e-1)u + (Mil + M%H)/Z
T -

Lio1 ”fy
T ~ =~ ~2 =2
Yi=a BBy (ulu + iig,)/2
T - T -~
Zt:l utzy Zt:l u?y
. (ﬁfﬂ + ﬁ%p) /2Tofly
T ,~
Y (”il/T)(l/Cf%y)

1-11-

~2 ~2
1 (uly + uTy)

P+ (1 = p Ay + ur ) /20,4 + (), (B.289)

because i, is a consistent estimator of uy, and so Zthl ﬂtzy /T is a consistent estimator of Oumz with

an error of order w(7%). Therefore, equation (B.289) implies that the sampling error of DW estimator

of p, is

op,°" = NTEDY - pu) =[P - pu) + 7°

= 6()“

= day'® + tlde," +

= d(l)F,LS + ’l'd(z)wa + a)(T2),

where

LS T(l - pi’)

(1- Pyz)
pp

(1,2 + ury?)/2 + w(t)]/7 = (see (B.276))

(1, + ur,®)/2 + (%)

Lemma B.10. The following results hold:

i) Equations (B.267), (B.268), and (B.270) imply that

which implies that

LR - (- p 20,
Pu

(1-p.%
P 1,2 + 1) /2] + ()
pp
(B.290)
DW s, (- pu’) 2 2
dop™" = dou ™ + (t1” + ur,)/2. (B.291)
pp
RP“## + pul =2p,Ir =D -2p, A+ pyA =2p,Ir =D - p,A
1 1
p_[2P#2IT - puD - PMzA] = p_[IT + PHZIT —puD - PH2A —Ir+ PHZIT]
H u
1
p_[(l + pyz)IT = puD - PyZA -(1- PHZ)IT]
‘ll
(B.292)
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1 1
le‘AuR‘u‘u = p—‘u[RH.u — (1 - pp_z)IT]Ryy = p_y[R‘uyR}i[l - (1 - p}iz)R.“#]
1
= —[Ir— (1 - pu”)Ry,l.
Pu

Then, equations (B.270) and (B.271) imply that

RyH#

R1HH+pyA =

R R

pp (Ri* + pu ARy, = Ri* Ry, + pu ARy

1
= p_[IT = (1= p*)Ryy] + puARyy.
‘U

Furthermore,
(R Ry)? = [Ri* Ry + ppAR IR ™Ry + puARy,]
= (Ri™Ry)” + puRi"RyyAR s + puARy Ri““ Ry + p ARy AR
ii)
PX},RZWJPXHR‘LW = PX# [R," + pqu]PX“R(u‘u
= PXHRlyHPXpRy‘u + p#poAPXpRHH‘
Similarly,
Py, R:MPx VRH = Py [Ri* + p,AlPx, VR
= Py R"Px VR" + p,Px APx VR*
and

R““VPx Ro'“Px VR* = R““VPx [Ri* + p,A]Px, VR

RUMVPyx, Ri"Px, VR* + p,R*'VPx, APx, VR

iii) Then, by using (B.266)
T

1 |
trR,, = 1=—
9% 7
1- py2 ; 1- py2

we find that
tr[(1-p )Rl =1 - p ) tr Ry, =T

(B.293)

(B.294)

(B.295)

(B.296)

(B.297)

(B.298)

(B.299)

(B.300)
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By using equations (B.293) and (B.300) we find that

tr (R1"'Ryy) = pi[trIT —(1-p A trRyl = pi[T -T]=0. (B.301)
8 I

Let 6;; be the (i, j)-th element of A. Then, 6;j =1fori=j=1andi=j=T and 6;; = 0 elsewhere.
Moreover, the (i, j)-th element of Ry, is 1= Zp““ /. Then, the (i, j)-th element of AR, is

T
. 1 ~ 1 y
o = Z 6”‘1 -p zp#h 1= i pu? Pu“ A, (B.302)

T T T
1 1
trAR = 6 — 6 p li—i| = (3
HH i i u ii
;‘ ;‘ 1-p 1-py? ;‘
2
= 5 (611 + 017) 5 (B.303)
1 H 1- u
The (i, j)-th element of the matrix R, ARy, is
T 1 T .
51] = pﬂli_Kl(SKf* = p}lll Kl KK p‘ulK_jl
;1_9#2 KZ:fl u? 1-py?
1 . . 1 ) ]
= — = 5 liFlHIfs li=TI+IT~jl
(- p 2P T a2t T
1 L y
- a = 0.2 (o2 + pu*7), (B.304)
u

which implies that

tr (R, AR )

T
il fe s

T
- 1 ) Zp”% y ZP 21| = [defining the index j = T — i +1]
(1 B p‘u i=1 j=1
Yo
2 g
(1 Pu i=1
2 T
= 23i-1) —
- Pu = [defining the index j =i —1]
(1 - pa22? ; ¢
2 O 4
= G pap L = definingr = p,7)
=0
5 T-1 ) L
(1 - pu?) & ' (1=pu)? 1=r

_ 2 1- P#ZT _ 2(1 - PuzT) B.305
S U -pd A-pP (B-305)
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Along the same lines as in equation (B.302) we find that the (i, j)-th element of the (ARW)2 is

T T
o e % 2 : 1 i—k 1 K—j
51’]’ = E 6i1< 6K]' = 511'1 — P 2PH‘ l hKl — pyz pﬁll 4

T
1 . . 1 ) . ) '
by — Zékkl)y“_KMK_]l — 6ii—(Py|l_1l+ll_]|511 + Pyll_THlT_]l(STT)

i (1 pHZ)Z o (1 _ py2)2
1 ; L
i e, (B.306)
which implies that
T T 1
tr [(ARML)Z] = 25”0 - Zéil > z(pH (i-1) +p 2T ,))
i=1 i=1 (1 -pu?)
1 B - —
611(1 — py2)2 (py2(1 D4 pHZ(T 1)) + 5TT(1 7 (leZ(T DI pPZ(T T))
2
R A B.307
a-pap TP (B.307)

By using equation (B.306) we find that the (i, j)-th element of the matrix RW(ARW)2 is

T T 1
o5 = |i7K|61<'O = 7K|61<1< ( tK+j72+ 2T7K7]‘)
i Pu j - 1= p, 2P P, Pu
1 i i i 1 i - »
o P o+ T+ Orr sl o 4 )
# u
— (1 = 2)3 (pyH—]_Z + py2T+l_]_2 + p1”2T—z+]—2 + pyZT_Z_])/ (B308)
u
which implies that
T .
tr[Ryu(AR,)*] = Zéﬂ Ty 2)3 Z(p“m 120,272 + p, 2T
1 - . y
= m[zjﬂpyﬂ 2, Z Puz( D4 Zpyz(T ]
i=1 i=1
= [defining the indeces ] =i—landx =T —1]
_ 2AT-1)
T - 2)3[2pr +Zp‘]+zépf
2 T-1
= ﬁ[Tpf(T Dy Z Pu 2] = [defining r = Pu 2]
j=0

_ 2 2T-1) i1 _ 2 areny , 1=1T
= 1 py2)3 [pr + ;; r] = —(1 — Py2)3 T‘D# + 1T—r

= 2 a1y, LT p#ZT
T (1-p2) [TP# 0+ 1-p2 | (B.309)
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By using equations (B.302) and (B.306) we find that the (i, j)-th element of the matrix (ARW)3 =
AR, (AR, is

T
. 1 . .
6”(*6 o 2 : (3” Py|1—K|6KK—(pHK+]—2 + pHZT—K—])
=1 - 2 (1- P;tz)z

1 o y a . »
iim[éllpylZ 1l(pp] Ly PVZT ! ) +6TTP;1I TI(PpTH o+ ,DyT Nl
~ Pu
1 i+j-2
= 6iim[py I
u

MH

+
(5,']' =

=
Il
—_

Il
>

+ pH2T+i—j—2 + Psz—i+j—2 n psz—i—j]l (B.310)

which implies that

T T
tr[(AR,)°] = Z Z(S T 2)3(‘0”2(1—1) +2p, 2T 4 p, 2T-D)
=1 i=
_ _ 1 ) .
611( — 2)3 (p 27V +3p, 2T + 6TT—(1 o (3p, 2TV + p, AT-D)
2 -
= m(l +3p, 7). (B.311)

Let w;; be the (i, j)-th element of the matrix RW3. Then, the (i, j)-th element of the matrix ARW?’ is

T
5,‘]‘¢ = Z 5,',<ZUK]‘ = (S,‘,‘w,‘j, (B.312)
k=1
because 6; = 0 V¥ x # i. Therefore,
T T
tr[AR,,°] = Z it = Z Oiiw;i = 611wt + OTTWTT = Wit + WTT. (B.313)
i=1 i=1

Let wy be the I-diagonal element of matrix Rw,g, ie.,

T T
_ |I—k |+ —m|+|m—I|
o= Z‘ Z 1- Pu2)3p

_ =Py I+ (B.314)

wherei=m—land j=x—-Iwithij=1-1...,T-lLand j—i=xk—-I-m+Il=x—m.
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Figure 1
i=j
o i
q11) T
s2
S3
Figure 1 implies that
wy = 2(51+ S + S3) — Sy, (B.315)
where
(i)
T-I 1 T-I
Sy = ——p M= 7l = [by defining r = p,?]
i;l (1 _ pH2)3 H (1 Pu 2)3 IZI H
1 L+r T-1+1 ]
= B.31
(1_py2)3[ — (r+r ) (B.316)
(i)
Tl T-I 1 1 T-1 [ T=1 i-1
s P10 — p.2 =Y pu¥| = [by defining r = p,’]
= a1- Pu 2)3 S (1—Pp2)3 ZO‘ = S P u H
1 TZ—I‘ Tz—l‘r]_ - 1 Tz—i[l_rr—m _1_ri—1+1]
(1= pu?P = |4 I-p2P & 1-r -7
1 TZ_I‘ pio— pT-141 ~ 1 ZzT—_Ol - ZT I T-1+1
A-p2P & 1-7 C(1-pu2)? 1-r
1 1- T-1+1 T-1+1 T-1+1
r— ¢ e § (B.317)
1-p2?| A=1)02 1-r
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(iii)
-1 T-l 1 ) o1
5 = ——p, T = -2i ) 2j
2 i;;“”WW (Pwﬂééwpy
1 -1 ‘ T-1 ‘
= —1 - Z py—21 Z pyzl = [by settingk = —iwithk=1,...,1—1]
(=P 52 =
1 -1 T-1 ‘
= 1 - p.2)? Z P}:zk Z P,uz] = [by defining r = pyz]
p” k=1 j=1
1 -1 T-1
1- pHZ)s ; -
_ 1 O e T §
A= peP 1-7r 1-r
1 r’ T-1 _ T-1 _ -1
S Wopara-pe ol (B.318)
’.l
(iv)

0 0
1 i j—i
= zlzz(u—mqﬂmt”“ -1

0
1 P . ..
- m Z PH_ZI(I +1) - 1] = [by settingk = —iwithk =0,...,[—1]
w7 li=1-1
i
= (1-kp,* - 1] = [by defining r = pyz]
(1-pu?P? =
-1 -1
1 k k
= — =Y k-1
(1-pu?? = pary l
B LN et € el Gl 0 O o Ul Vi Y
T A-p2p| 1-r L1
B 1 A=A - —r+lr == =1 -r)?
- (1-p2P (172
_ 1 1—r—r 4+ — s I =1 4 1427 — 12
- (1 - PHZ)B (1 - 7)2
1 2+ (=Dt = (1 -2)r*!
= . B.31
aT=p (TP (5319

By combining equations (B.317), (B.318), and (B.319) we find that

S. = S51+5+85;
1 1—#T-H1 (T =]+ 1)1 r? T-1_ Tl _ -1
- (1—p;¢2)3[(1—7’)2 B 1-r +(1_1,.)2[1+r - - ]
R S (e et VL
(1 _ Py2)3 (1 - 7’)2
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5. - 5 _1p 5 (1-7)2 [1 T (T = I 1)(1 = )T 2 4 f T2 T2 o2 02 )l (g = 2)rz+1]
u
- 5 1 5 (1-7)2 [1 C AT (T L 1) T (T = [ 1) T2 4 T T2 ()l — (= 2)rl+1]
= ;‘z)—s =) 2 [T+ 5T = 1 = (T =1+ 2T (T = T2 = = 1], (B.320)
~ Pu

Equation (B.320) implies that

T T
1
S = ———— Y Q-1+ (-1 = (T=1+2 T (T =12 - (1 - 1)/
; (1_%2)3;( | (1= 1) —( ) (T-1) (1 - 1)r*1]
1 _
= m(l -2 [T(l +T Y 451 +5, + 53 +S4]
T+1
_ 1 T +7r )+sl+s2+53+54 , (B.321)
(I-p2P| Q=102 (1-1)2
where the quantities s1, 55, 53,54 are computed as follows:
@
T T T T T+1 T
_ o i M -(T+Dr +Tr ] r(1-17)
sio= Y. (-1 =) 0 = =y —
I=1 I=1 I=1
=T+ D)™+ T2 — (1 - 1)1 —1T)
B (1-7r)?
=T+ DM+ T2 — (1 —r =T T
- (I-r7?
= (TH+ DM+ TrT2 —p 4 2 4 pTH T2
- (I-r7?
2 _ T T+1 T-1 T+2
B el (0 e il (B.322)
(1-r)?
(IT) By setting i =T —1 withi=0,...,T —1 we find that
T T-1 . T-1 ‘
o= Y AT=142 ==Y (42 = —r ) (i +2)
= i=0 i=0
T-1 T-1 T-1 T T
_ L il rf1=-Tr+(T-1)r"] 20 -71")
= err +22r = r[ A=r? + T
i=0 i=0
_ - (T)rT + (T = 1)rT 1 +2(1 = r)(1 = T)
a (1-7)
=P+ TT (T =12 4 2r(1 —r =T + T4
- (I-r7
=P T (T =172 — 2 + 272 4 29T+ — 2142
- (1-7r2
) 2 T+2 T+1 _ T+1 T+2
_ r+r-+(T+2)r (T+r . (B.323)

1-r7
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(III) Similarly, by using the index i =T —[ with i =0,...,T — 1 we find that
T-1 T-1
sy = Z(T T2 N 2 2§
i=0 i=0
_ 2 r[l —TrT1 + (T - )rT]
B (1-r)?
2= TrT*2 4 (T = 1)rT*3
A= 7 (B.324)
(IV) By setting k=1—-1withk=0,...,T -1 we find that
T T T-1 T-1
Sy = Z —(I -1 = —Z(l — 1)r-D+2 = kk*2 = 2y kK
I=1 k=0 k=0
_ _rzr[l TrT=1+(T - 1)rT]
(1-r)y
-3 + TrT*2 — (T - 1)rT+3
= Ty (B.325)
Since equations (B.324) and (B.325) imply that
S4 = —S3, (B326)
by using equations (B.322) and (B.323) we find that
S1+S2+8S3+S4 = 81+Sy+53—83
= Q-2 -Tr™ ' + (T -T2 = 2r + P + (T + 2)r™ = (T + 1)r"*?]
= (1-r)722r% = 2r + 2/771 = 2772
= 20 -172[? —r+ Tt =12 (B.327)
By setting i =T —1+1 withi=1,...,T and by using equation (B.316) we find that
. 1+r 1
SO — [ (T’I + rT—l+l)]
; Z 1- p},2)3 T 1-r
T T
1 T(l +7) 1 / T_141
= - r+ ) r
(1-pu2)? _ 1-7r 1- r(;‘ ;‘
[ T T
1 [ra+n 1 l l
= — r+ r
(1—pH2)3> 1-r 1—r[; ;
[ T
(1-pu?)? 11—
B 1 -T(l +r) 2 r(l —rT)
o A-p»P| 1-r  1-r 1-7
1 [T(1 + 2r(1 =T
_ U+ 2rd-r )] (B.328)

1=-p23| 1=71 (1-7r)?



220

Appendix B

By using equations (B.315), (B.316), and (B.320) we find that the l-diagonal element of the matrix

RW3 is

wy =

2(51 + 55 +53) —-S59=25.-5

o2 2L =1 = (= L T 7 - 1)

a —1p£)3 H i: "1 - S0+ rr_m)]

m(l —r) R[22 2= D = AT = 14+ 2T 2T = D72 = 21 = 1)
—aj%gga—nZM+na—n+a-nw+WWHﬂ

mu =) R[22 2= D = 2T — 14+ 2T+ 2T = D72 - 2= 1)
—m(l =) 2 [1= R = =T e T

Tt R[22 - D - @ - P+

R SO L G i ¢ (B.329)

By omitting terms that tend to zero as T — oo and since r = py2 with |r] < 1, we find that

Similarly,

_1
1- Pu2)3

1 1+7r _
= G- )

1 1+ PHZ -1

= +o(T

a-parapa )

1+p° .

- m +o(T™h). (B.330)

w11 (1-r)2 [1 +r—rt+ 1’2] +o(T™h)

wrr = m(l -2 [1 +12 = 3r - rz] +o(T™h)
~Pu
3 1 1-3r 1
= q py2)3 a=rp +0o(T™)
1 1- 3pl12 -1
= +o(T
a-para—pr )
1-3p,>
= ﬁ +0(T_1). (B331)
u
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Thus, equations (B.313), (B.330), and (B.331) imply that

1+p,%+1-3p,*
(1- PHZ)S
2-2p,°

= —(1 YT +o(T™)
2(1-p?) .
= —(1 — p‘ug)5 + O(T 1)

= ﬁ +o(T™h). (B.332)

tI‘[ARM,S] = w1 +wWrr = + O(T_l)

Moreover, by using equations (B.315), (B.320), (B.321), (B.327), and (B.328) we find that the trace of

the matrix RWS/T is

T T T T
1 1 1
wRy)T = 7Y wi=g ) [25+5+5) =Sl =} 25~ ) Sl
=1 =1 =1 =1
~ 1 2[TA+™Y) 20 =202 —r+ /T =442
T A-pPT| A= 1-72

1 1[TA+7r) 2r(1—7T)
_(1—pH2)3T[ 1-r (1-r2 ]

1 [2(1 + T 4@ — 4 T = TH2) 14y . 2r(1 —rT)
AI-p23 | A=rp2 (1-r)* 1-r TQA-r)?

]. (B.333)
By omitting terms that tend to zero as T — oo and since r = py2 with |r| < 1, we find that

tr (Ry.*)/T

1 [ 2 1+r+0(T1)]

L-p2P l@A-n? 1-
1 2—-(1+nNA-r _
= Ty a-p T
~ 1 2-1+7 B
= d-pr a-nz )
L e (B.334)
- 1- sz)g 1- P;:2)2 - (1- py2)5 ' '

Finally, note that in all traces examined in this Lemma, there appear terms of the form T"rT where n is a

positive integer. Since r = py2 with 0 <r <1,

n

T
lim 7" = lim — = —. (B.335)
T—oo T—oo 1~ o0
By applying L’Hospital rule we find that
" JaT"[dT n 1
. n, T _ . R — . —
P T = i o = A ST T T i 7T
n! 1 n!
_ lim —= = T_. B.336
(~Inr)r To T (—Inr)r e’ ( )
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Therefore, since all terms of the form T"rT tend to zero as T — o0, all the traces computed in this Lemma

are bounded as T — oo.

Furthermore, the first regularity condition implies that the matrices
X;,R”“XH/T and X;lXH/T (B.337)

converge to non-singular matrices as T — oo.
Let x;; and 0;; be the (i, j)-th element of the matrices X, and A respectively. Then equation (B.337)
implies that the element x;; (i =1,...,T; j=1,...,n) are bounded.

The following results hold:

(a) The (i, j)-th element of the matrix X]AX|, is

T T
nij = szitétsxsj:

t=1 s=1 t
X X1j + XiTXTj, (B.338)

T
XitOsxtj = x1011X1j + XiTOTTXT]
=1

which is bounded and consequently the matrix

X, AX, /T = O(T™). (B.339)

(b) By defining the indeces k=s—-1(k=1,...,T-1)and =T -s(=1,...,T—1), the (i, j)-th element
of the matrix X;ARM X, is (see (B.302))

*

T
Mj = Z
t=1 s=1 s=1
- 1
= X101 P 1 S‘x i+ x;7OTT P 'T’Slx ]
; [ ! 1 “ 5] ! 1-— Puz IS s]

1 T T

T 1,2 [xil (Z ijPHS_l] +Xir (Z XSJ'PHT_SH =
py s=1 s=1
1 T-1 T-1

= 1-p.2 [Xil [ x(k+1)]‘p‘uk] + XiT [Z X(l+1)jp“l]:|
Pu k=0 1=0
1 T-1

= 1z 5 (xi1 + xi7) (Z x(1+1)jpyl]. (B.340)
Pu 1=1

Since XJ, is bounded, i.e., ¥ I(I=1,...,T—1) it holds that
Xl < g <00 =
' ! 'S ! ' I 1-lpul"
= Zx(lﬂ)jpy < ‘x(l+1)]‘| |Py ‘ < qz |py | = ql_—|py|, (B.341)
1=0 1=0 1=0
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which implies that 7;;* is bounded for every (i,j =1,...,1) and so the matrix

X, AR X, [T = O(T™).

Along the same lines we can prove that

X, RMAX, [T = O(T™).

(¢) The (i, j)-th element of the matrix AR" A is (see (B.302))

T
my = ) 0dy = 55
k=1

which implies that the (7, j)-th element of the matrix X[’JARWAX# is

Mij

o

P~ 2D
[~ i

T T
XitT)iXsj = Z Z XitOts OssXsj = [see (B.302)]

t=1 s=1

t—
XitOrt pyl sléssxsj

1-p,?

.-,
Il

—_
Il

—_

s
T

1 T

) E lt=sl,. .

— 2 XitOtt 6sspy Xsj
o=l s=1

—_

-1 t-T
— Z xS (611p" M1 + Srrpu Moy
Pu™ i3

1
1-py
1
1-p?

—_

T-1 T-1
xin(x1j+pu’ x1)) +xir(py X1+ ij)] .

Thus, equation (B.345) implies that 7;;° is bounded so that

X, ARM"AX, /T = O(T™).

(d) The (i, j)-th element of the matrix X RMX, is

T

T T T
1, 1 _
mit =), ) —p 7Pu' X = 7 s DIPIE TS
u u

t=1 s=1

1-1 T-1 T-1 T-T
Z[xiléll(Py X1+ pu X)) + Xirorr(py” T x1j + py ij)]

(B.342)

(B.343)

(B.344)

(B.345)

(B.346)

(B.347)

and it is bounded given that x;; and xs; are bounded for every i,j =1,...,n and every t,s =1,...,T.

Therefore,

X, R X, /T = O(T™).

(B.348)
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By using equations (B.294), (B.301), and (B.303) we find that
tr (R2"Ryy) = tr[(Ri* + puA)Ry,] = tr (R1*Ry,) + py tr(AR )
2 2
O . (B.349)
1-p2 1-p2
Similarly, by using equation (B.293) we find the following results:
(a)
b = 1 2
PuRI™ Ry ARy, = Pup_[IT — (1= pu )RulAR,
u
= ARy, —(1-p,)RyuAR,, = (B.350)
tr (0 R1" Ry, AR,,) = tr(ARy,) — (1 - pu®) tr (Ry,AR,,,) = (see (B.303) and (B.305))
= L -(1- 2)2(1_—‘0“2T)
1-py? o (1= pu?P
_ 2 A-pdh (B.351)
1-p2  (I-p2P
(b)
tr (puARy R Ry) = tr(puRi" R, AR,,)
_ o2 A-pd) (B.352)
T-p2  (1-pg?)?
(¢) By using equation (B.307) we find that
tr (pyzAprARyy) = ftr [P;:Z(ARW)Z] = Pyz tr [(AR““)Z]
ZPHZ
= —————(1+p,2T). B.353
(d) Moreover, by using equation (B.293) we find that
RIRL)? = [l — (1 - p 2Rl —IIr - (1 - p )R
( 1 yy) - _[T_( _py) ‘uy]_[T_( _Py) ‘uy]
Pu Py
1
= 7[1T = 2(1 = p )Ry + (1 = p >Ryl (B.354)

Py



Appendix B

225

Defining j = k—i with j =1—1,...

[-diagonal element of matrix RWZ, ie.,

Therefore,

S(i)

_ li—ki+lk—il _
Z 1 - pu 2)2 Pu

T—i

- ¥

_r
et (1 - pu?)?
T—i

1 ; 1
= — ) —
(1 - pyz)z j;—i (1 - Pyz)z

} (_1_2#2)2;?”#@2?1: .

1 [#(1 — 7D 1-
r(l—r )+ r

,T —i and setting j =

T—i+1with j=1,...,T, let vy be the

pyzm = (defining r = Puz)

(1_Py2)2 L
1 —1+r_
¢ _Pu2)2 | 1-r
1 [1+7

ri + rT—i+1
1-r

ri+rJ]

A-p22|1-r 1-71

T

IEULES)

tr (Ry,*)/T

- 1- Pu2)2

e

! [1 T (B.355)

B 27
—-r 1-r|

(1-pu?) 1-

1 [1+7

1 T(1+r) 2 ;
2)? r _1—rZr /T

i=1

1- Puz)z
1 [1+7

_1—1’_

2 r(1-r")
Td-r) 1-71)

1- Pyz)z

_1—1’_

2r(l = rT)] (B.356)

T(1 -r)?

and omitting terms that tend to zero as T — oo we find that

tr(RyD)/T = !

1

(1-pu

1+r
221-r

+o(T™)

+ 2
Pt o)

(1- Pu2)2 1- P#

+ Py
py2)3

(1-

2

+o(T™H). (B.357)
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By combining equations (B.300), (B.354), and (B.357) we find that
1
(R Ryl = p_yz[tr (I) = 2tr [(1 = pu*)Rypu] + (1 = p®) tr (R, )]
- L [T 2T+ (1- 2)2T1+—p“2 ; 0(1)]
Pu’ P = py
1 1+p,° T [-1+p.°+1+p,?
= —|-T+T s +o(l)|=— > +o(1)
Pu 1-pu Pu 1-pu
2Tp,? 2T
= ——— +0(l) = —— +0o(1). B.358
sz(l - Pyz) 1- pH2 ( )
By combining equations (B.295), (B.351), (B.352), (B.353), and (B.358) we find that
tr[(RZy'uRluy)z]/T = tr [(Rl'Upry)z]/T +tr (pleny‘upARyy)/T
+tr (puAR Ri" Ryy)/ T + tr (0, AR, AR,)/ T
2(1 — 2T
_ 2 2+0(T-1)+3 2 20-pu7)
L= pu T|1-p> (1-pu?7?
2p,°
+—— " _(1+p,2TD B.
T(1 - pyz)z( Pu ) (B.359)
and omitting terms that tend to zero as T — oo we find that
tr[(RZWRW)z]/T = 5+ oT™H =
I-pu
2
tr[(Ro"'Ry)?] = T +o0(1). (B.360)
— pu

(e) By using equations (B.294) and (B.295) we take

(Ro""Ryy)?

(Ro" Ryyyr) (R Ryyy)

[(leRW)z + puRIR ARy + Py ARy RyMUR y + PyZARWARW] '
[RlWRHH + pHARHH]

(Ri*“Ryy)’ + pu(R1 " Ryy)*AR s + puRi M Ry ARy Ry Ry,
+p#2R1WRWARWARW + PpAR R Ry RiM Ry,

+pu? ARy R Ry ARy + p* ARy ARy Ri* Ry

+pu ARy AR, ARy

(Ri"" Ry’ + pu(R1** Ryy)* ARy + puR1 M Ryyy ARy Ry MRy

+0u R Ryu(ARy)* + puAR u (R1* R y.)°

+pu ARy R Ry ARy + 0 (AR ) Ri* Ry

+p (AR ), (B.361)
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which implies that

tr [(Ro""Ry)’] = tr[(Ri"Ryu)’] + 3 tr [pu(Ri"* Ruy)* ARy, ]

+3tr [ Ri* Ry (AR y)*] + tr [p (AR, ). (B.362)

Since, equation (B.354) implies that

(leRuu)zARW

1
F[IT =2(1 = ") Ry + (1 = pu°)* Ry *JARy,
u

1
= F[ARW -2(1 - p)RyAR,, + (1 - p 2Ry *AR,, ], (B.363)
u

it follows that

p
tr[pu(R1"““Ry,)? AR,y ] = p—*‘z[tr AR, —2(1 - p2) tr Ry ARy, + (1 - p,2)? tr Ry 2AR,, ]
u

= [see (B.303), (B.305), and (B.332)]
1] 2 20-pAHA-p2) L2 pu*)
pu |1 - py? (1-pu?)3 (I-pu»*
1[ 2 2(1 - pg*") 2 ) ]
= — - + +O(T
b |10 @pdr T apr )
[2-2p,2-2+2p,*T +2

= i p}l 5 fy + O(T—l)

Pu | 1-p,?)

2(1 - p’ + pu®")

= o= ) +O0(TH= (B.364)

+ O(Tl)]

21 - p® + ")
Tpu(1 = py?)?

tr[pu(Ri" Ryyy)* ARy, /T = +0(1). (B.365)

Moreover, since equation (B.293) implies that

1
leRyy(Apr)z P_[IT -(1- PyZ)Ryy](ARyy)z
u

1-p2
MRW(ARW)Z, (B.366)

1
= —(AR,,)? -
Pu e
it follows that

tr [Pyle‘uHRyy(ARup)z] Putr [(ARWJ)Z] - py(l - puz) tr [Ryy(ARyy)z]

= [see (B.307) and (B.309)]

_ 2pu (1 + p, 2Ty - 20u(1 = pu®) [T 2T 4 1- PuzT]
(1= pu®P g (1= pa?P 1-py?
2P ! _ _ (1 —p ZT)
m 1+ p, 2T —Tp 2D _ # = (B.367)
" u
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200 |1 oy (A-ph) .
tr [PHZRly’”RML(ARyy)ZJ/T = m [T [1 + pyZ(T h_ # - pyz(T b, (B.368)

By using equations (B.293) and (B.354) we find that

(lelRny (Rlnyyy)(RlpyRyy)z

1 1
= P_[IT -(1- pyZ)Ryy]F[IT -2(1- Pyz)Ryy +(1- p,le)ZRy[JZ]
u U

1
= F[IT -2(1- Pyz)Ryp +(1- pyz)zRMtz -(1- Pyz)Ryp
u
+2(1 - pyz)szz -(1- pHZ)SRHHB]

1
= F[IT =301 - p )Ry +3(1 = p®Y Ry — (1 - pu®)° Ryl (B.369)
y

and by using equations (B.299), (B.334), and (B.357) we find that

1
tr [(Rl’“yRyp)?’] = F tr[Ir —3(1 - pyz)Ryy +3(1 - PpZ)ZRWZ -(1- py2)3Rpp3]
u
1
= F[tr Ir = 3(1 - p2) tr (Ryy) + 3(1 = p 2 tr (Ry®) — (1= p®) tr (R )]
u
1 T (1+p2T 1+pHT
= —[T-31-p)— +3(1 - pfP—55 — (1 - p2)° —5= +0(1)]
p‘u3 ( Py )1 _ p‘uz ( p{l ) (1 _ Py2)3 ( py ) (1 _ py2)5 ( )
1| 1+ Pyz) 1+ pp4)
= p_y?’ T—3T+3T(1_p#12) —T(1 —Pyz)z +0(1)
T [20-p2P+30-pH-1-p,*
o (1= p2P ro
. L [—2+4p,* -2p,* +3-3p,  —-1-p,* +0(1)
pud | (1 - pu?)?
T F4P¢2—6P:4 2T(2_3P 2)
= Sl |t =g o). (B.370)
pu® | (L= pu?) pu (1= py?)

By combining equations (B.311), (B.362), (B.365), (B.368), and (B.370) we find that

tr[(RZH”Ryy)S]/T tr [(Rlny;Ly)B]/T +3 tr[Py(Rlnyyy)zARyp]/T

+3 tr[pu Ri" Ry (AR,,)1/T + tr [py (AR, )*1/T
2 (2 - 3pP2) -1
= — L 40T
Pu (1- pyz)z (T)
3 [Z(pHZT —pA+1)
TP[LL(l - p,uz)

] +0(1)
2py 1

+3(1 - pu)? [T
L
T(1-py?)?

1 +3p,2TY) (B.371)
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and omitting terms that tend to zero as T — oo we find that
2 (2- 3Py2)
(R Ry )’l/T = ————= +o(T) =
(R2 iy Py (1- pHZ)Z
2T 2 - 3Py2)
(R R, = ———— +0(1). (B.372)
i pr (L= pa27
(f) Equation (B.292) implies that
HE = ! R N = [Py RF - (1 Hp B.37
Px Ri"" = Px,—[R" — (1 — py")Ir] = —[Px,R" — (1 - p,")Px,] (B.373)
Pu Pu
and since Py, is orthogonal projector into the spaces spanned by the columns of the matrix X,,, we
have that
Py, X,(X; X)X}, =
tr(Px,) = tr[(X; X)X/ X,]=trl, =n, (B.374)
from which we find that
1
tr(Px ™) = -t (P R — (1~ pu’) tr (Px,)]
u
1 4 - !
= I X XRY) ~ (1= ) r (P )]
u
1 , , _
= SR TYXX,/T) -1~ pa®) tr (Px,)]
u
1 _
= p_[tr [(ByuPuy 1)] -(1- Puz)n]/ (B.375)
u
where
By, = X;RWXP/T and F,, = X;XF/T. (B.376)
Then, equation (B.294) implies that
Px,Ro!" = Py, (R"" + p,A) = Px,Ri"* + p,Px A, (B.377)
which implies that
tr (Px,Ro") = tr(Px,Ri*) + p, tr[X, (X, X,) "' X[ A]
= tr(Px,Ri") + py tr [(X} X,/ T) (X, AX,, /T)] = [see (B.339)]
1 _ _
=5 [tr [(BuuFu ™1 = (1 = pu)nl + O(T ). (B.378)

U
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Moreover, equation (B.293) implies that

1 1
Py, Ri**Ry,, = Px, P_H[IT -(1- Puz)Ruu] = p_H[PX" = (1= P#z)PXHRw] =

1 o\l
tr[Px, Ri" Ryl = p—y[tr(PXH)—(l—ppz)tr(X“(XyXy) X/ Ryl

= pl“[tr (PXH) - (]- - pH2) tr [(X‘;XF/T)*l(XLRMUXH/T)]]

1 _
= a[n -(1- pp2) tr (Fyy 1@;41)]/

where

O = X[ R, X, /T.

Thus,

Px,Ro"" Ry, = [see (B.294)] = Px, [Ri*" + p AIR,y = Px, Ri* Ry + puPx, AR,

which implies that

tr (Px, Ro"" Ry, tr(Px, R1*“* Ryy) + py tr[ X, (X[ X,) "' X AR, ]
= tr(Px, Ri"Ryy) + py tr[(X}, X,/ T) (X} AR, X,/ T)]
= [see (B.342)] = tr(Px, R1""R,,) + O(T ™)

= Lo p ) el 0,01 + 0T,
’.l

Furthermore, equation (B.292) implies that since Py, is idempotent, we find

1
Px,Ri"'Px, Ry = Px},p—H[RW—(1—py2>IT1PXPRW

1
_[PX“RHHPX“R;W -(1- sz)PX!,RW],

Pu
which implies that
1
tr(Px, Ri""Px, Ryy) = p_[tr(PXHRHyPX#Ryp) — (1= p®) tr(Px, Ryp)]
u
1 4 - ! ! - 7
= p—[tr(XH(X#XH) X RMX (X X)X Ry
u
1 4 - !
_P_[(l - Puz) tr(Xy(XHXu) 1XyRyy)]
1%

u

1
_p_,u[(l - Puz) tI‘(X;Xy/T)_l (XLRMJXp/T)] =

1
= 5 [tr(X; X, /T) ™" (X[ RM X,/ T)(X[ X,/ T) (X[ Ry X,/ T)]

(B.379)

(B.380)

(B.381)

(B.382)

(B.383)

(B.384)
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1 _ . -
tr(Px, Ri"'Px, Ry = p—[trFW "BuuFuy ' O — (1= pu ) trFu 7' O] (B.385)
u

Moreover, by using equation (B.294) we find that

PX“RZHHPX“RHF = PX#(R#‘H + PyA)PXHRyy = PX“Rl‘uHPX“RHH + PyPX“APX“R‘uy = (B386)

tr (Px, R2"*Px, Ryy) tr (Px, R1"*Px, Ry) + py tr (Px,APx, Ry,

= tr(Px,Ri""Px Ry + putr[X, (X;XH)‘lX;AX},(X;XH)‘1X;,RW]

= tr(Px,Ri""Px,Ryy) + py tr [(X} X,/ T) (X, AX, / T)(X, X,/ T) (X4 Ry X,/ T)]
= [see (B.339)] = tr (Px, Ri"'Px,R,,) + O(T ™)

1 _ _ _ _
= p—[tr (Fuy 'BuuFuu ' Ouy) — (1= pu ) tr (Fu 7' Ou)] + O(T ). (B.387)
u

(g) By using equation (B.293) we find that

1 1
RyRM™Ry = RWP_M[IT -(1- Pyz)RW] = p_H[RW -(1- P+t2)th2] =

tr (Ry Ri""Ry,) = pi[tr(RW)—(l—pyz)tr(RWZ)] = [see (B.299) and (B.356)]
u
11 T 1+p,2
T _(1 - pu2) (1 + py )]
= — 1
il (-pP @
T[ —2p.°
e pfﬂ)Z} Fo)
-2T
[ﬁ] +0(1). (B.388)
u

Then, equation (B.294) implies that
Ry R Ry = Ryy(Ry™ + puM)R,y = Ry Ry™ Ry + puRyy AR,y = (B.389)

tr(RyuRo" Ry )/T = tr(RyuRi* Ryy) /T + pyytr(RyuAR )/ T

20, 20-py")
(1-pu2? (A=p23T

[see (B.305)] = +o(T™H (B.390)

and by omitting terms that tend to zero as T — oo we find that

ERRR)T = ——2P 4oy
TR 2™ Ry T A= p2ert°

- pu’)
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2T
tr(RWRzuﬁRW) = m + 0(1) (B391)
u

By using equation (B.354) we find that

R#H(leRW)z

tr [pr (lelpr)Z]

1
= RM!F[IT =2(1 = )Ry + (1 = pu*) Ry’
U
1
0,2 [Ruy —2(1 = pu®)Ry® + (1 = p®)Ry°] = (B.392)
‘Ll

%[tr (Rup) = 21— p2) tr Ry + (1 = pu2)* tr (Ry?)]
u

[see (B.299), (B.334) and (B.357)]

1 T 1+ sz)T 1+ py4)T ]
| _2(1=p)— L 4+ (1=0.2)?2 1
D2 [1 — 02 1 -pu )(1 — i) 1 -p.5) aA=p2p P2 1
: [ S p)T (Lt T + 0(1)]
pu*(l = pu?) 1-p2)  (1-p2)72
o2 =p2p [T(1 - pu®)?* = 2T +2p,*T + T + p,*T] + 0(1)
Iz u
A= i s [T -2p, T + p*T = 2T + 2p,* T+ T + p,*T] + 0(1)
u Il
m[4pu4 -2p,”] +o(1)
13
2Tp,*2py* — 1)
TR
u Pu
2T(2p,* - 1)
————— +o(1). B.393
(1 - py2)3 ( ) ( )

Then, equation (B.295) implies that

Ry (RZWRW)Z

Ruu[(Ri*Ryy)* + puRi*" Ry ARy + puARyu R MRy + > ARy AR ]
Ryu(R1* Ry)” + puRyuR1 "™ Ryy ARy + puR ARy R Ry,

+pu’Ruu(ARy)* = (B.394)

tr[Ruu(Re"* Ry’ /T = tr[Ruu(Ri*™Ryuu)*1/T + py tr[RuuRi "™ Ry AR, 1/ T

+pu tr[Ryu AR Ry MRy /T + py r[Rup(ARy)*1/T. (B.395)
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But, equation (B.293) implies the following results:

1
Ryy(Ri" Ry ARy, = RWP_[IT — (1= pu)RuulAR
u

1
= p_[RWARW ~ (1= pu")(Ry)* ARyl =
H

1
putr(RyuR1"™ R, AR,,)/T = pyp—[tr(RWARW) - (1-p ) tr(Ry AR,/ T
u
= tr(RuuARy)/T — (1 - pu®) tr(Ry*AR )/ T

= tr(RuuARy)/T — (1 - p®) tr(AR,,%)/T.

Moreover,

1 1
Ry ARy (RMRyy) = RWAthp_y[IT (1= Puz)RW] = p_y[RWARHH -(1- pHZ)RHHARWz] =

pu tr(Ryy AR Ry"¥Ry,,) /T

1
p,,p—[tr(RWARW) - (1= pp) tr(Ryu AR A1/T
‘Ll

tr(R,uAR,)/T — (1 — p,®) tr(AR,,)/ T.
Thus, equations (B.393), (B.397), and (B.399) imply that

tr [Ryy(RZMLRyy)Z]/T

tr [Ryu(Ri**Ry,0)*1/T + 2 tr(R,u ARy )/ T
—-2(1 - p ) tr(AR,%)/T + p,2 tr[Ryu(AR,)1/T

= [see (B.305), (B.309), (B.332) and (B.393)]

_ 2(2pp2 -1 1 2(1 - pyZT)
= —(1 — Py2)3 +o(T™) + Z—T(l — Pu2)3
2
AT T

1- szT

2(T-1
pr( )+ 1_pH2

N S
P A= p 2T

and by omitting terms that tend to zero as T — oo we find that

20202 -1
tr [Ryu(Ro" R 1/ T (p“—”) +o(T) =
(1 - Py )
20202~ 1)T
tr [Ryyu(Ro" Ryy)] % +o(1).
U

(1-

(B.396)

(B.397)

(B.398)

(B.399)

(B.400)

(B.401)
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Px,R,*"Px Ry, = (I-Px,)R"(I-Px, )R,

= RM"Ry, — R"Px Ry, — Px, Ry Ry + Px, Ro"'Px, Ry,  (B.402)
where PXu =1I- Px,. Since Rz““,RW,PXM are symmetric matrices the following results holds:
tr (R Px, Ryy,) = tr (R, Ro" Px,) = tr [(RyuRo" Px,)'] = tr (Px, Ro""'Ryy), (B.403)
which implies that

tI'PX“RZH‘uPX“RM, = ftr (RZnyyy) —2tr (PX“RQ‘UHRW,)

+tr (Px, Ro"'Px, Ryy) = [see (B.349), (B.380) and (B.387)]
2002 _ .
= ;)f - p—H[n -1 -pA)tr(Fu 0,1+ 0T

1 _ _ _ _
+p_[tr (F‘uy lBpr‘uy l@pp) -(1- pyz) tr (pr 1@;4!)] +0(T 1)
i

2pu 2n N (1-p?)
1-pa®  pu Pu

1 [2(p.* = n(1-p,?) _ - _
= —|— 2 E= (1= ) tr (Fuy ™ @) + tr (Fuy ' By Fu ™' 04
Pu 1-pu
+O(T™). (B.404)

_ 1 _ _ _
tr (Fup " O ) + p—ytr(FW "BuuFuy'0,) + O(T™)

By using equation (B.280) the following results hold:

(1)
VRV = [Ryu— X, (X R X,)"' X} JR*[Ry, — X, (X[ R X,) ' X ]
— ’ —1~7
= Ry R¥R,, — R, R X, (X R X)X,
v —1~7 ' —1~7 ’ =1~y
— X, (X R X,) ™ X, Ry RM + X, (X[ RMX,) T X RAX, (X R X)X,
= Ry — X (X[ R™X,)'X], = V. (B.405)
(2)
VPX“ = [Ruy_Xy(X;RH#Xy)_lle][I_PXP]

— ’ 1~
= Ryu — RyPx, - X, (X RHX,)' X,
+X, (X, RM X)X XL (X X)X,

= Ryy[I - PXH] = RnyX“- (B.406)
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Thus,

tr (PX“ RZH‘LLPX“ V)

tr (RQ‘UHPX“ VPX“) = [see (B406)]

tr (RQ#‘UPX“R“HPX“) =ftr (pX“RQWJPXHRW,)

tr [(I - PX“)RZHMPXMRFH]

tr (RZWZPX“R;W) —tr (PX;,RZWJPX,,RWJ)

because the matrices PXW Ry, and RyM are symmetric are equal to
tr (RyuRo"' Px,) — tr (Px, Ry Px, R )

tr [(R‘uyRZMIPXH)/] —tr (PX“RZHPPX“R;W)

tr (PX“RQ‘M‘LIR“H) —tr (PX“R2WPXHRW,) = [see (B.383) and (B.387)]

L - p 2 elE,. 0,1
Pu

1 _ _ - -
_P_[tr (Fyy 1By,quy 1@;41) - (1 - p,uz) tr (pr 1@;41)] + O(T 1)
u

1 - _ -
p—[n —tr (Fuu 'BuuFuy ' ©u)] + O(T ™). (B.407)
u
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Moreover, equations (B.280), (B.292), (B.294) (B.339), (B.387), and (B.406) imply that

tr (R VPx, Ry*Px, VR*'R,,) =

tr (Px, R,"*Px, VR*'V)

tr (Px, Ry"'Px, V)

tr [Px, Ro"" Px, [R,y, — X, (X[ RM X)X 1]

tr (Px, Ry Px, Ry) — tr (Px, Ry Py, X, (X[ RM'X,) ' X],)

tr (Px, Ro" Py, Ryy) — tr (X, (X[, X,) ' X[, Rt X, (X, R X)X, )
tr (Px, Ro"" Py, Ry) — tr [(X[ R X, ) (X[ R* X,,) ']

tr (Px, Ro""Px, Ryy) — tr [(X[,(Ri" + p,4)X,) (X, R X)) ™'

tr (Px, R Px R,y — tr [(X;lle‘“X,,)(X;RWXH)‘l]

—py tr (X AX,) (X[ RMX,,) 7]

tr (PX;,RZ'“HPXHRMJ)

- tr[X;piH[RW - (1 - pAIrIXu (X, R X,) 7' = O(1)
tr (Px, Ra"'Px, Ryy) — piy tr [(X},RM X, ) (X[ RM X,,) 7]
+(1_p—p"2) tr X! X, (X, R* X,)™'] + O(1)
u
tr (Px, Ry P, Ry) — piy[tr (L) = (1 = p,2) tr (X, X,/ TYX,RAX, T)™1] + O(1)

1 _ _ -
p_[tr (Fyy 1Bw11:'uy 1@}41) - (1 - sz) tr (Fyy 1@yu)]
u
1 _ -
_P_[n -(1- Pyz) tr (FP»AUB!J;E)] +O(T™)
u

1- Puz)
Pu
+O(T™). (B.408)

1 _ _ _ _
p—[tr (Fuu ™' ByyFuy ™' Oy) — 1l + [tr (Fu. ™' By) = tr (F ™' O]
u

Lemma B.11. By using Magnus and Neudecker, 1979 we can prove the following results:

(i) By using equation (B.349) we have

E(u, Ry uy) Opp tr (R R )

20,0
- Pulm (B.409)

1-ps2
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(ii) By using equations (B.349) and (B.360), and omitting terms that tend to zero as T — oo, we find
that

[see (UR.2)]

E(u}, Ro"* 1), Ryt )/ T
= o Tt (RoM1 Q) tr (R Q) + 2 tr (RoM Q2 R Q)1 T

= o [ltr (Ro" Ry )T + 2[tr (Ro** Ry)*11/ T

2040\ 2T0,,2
- ( P “*2‘) /T+2[ “"2+O(1)]/T
1-pu 1-pu
40,,°
= 2 Lor = (B.410)
1-py?
B, Ro" u, i, Ry u ) = Aoy +0(1) (B.411)
uH 2 uyuy 20 Uy —1_p“2 ’ .

because equation (B.349) implies that

2
tr (RyH Ry )/ T = - Ph — O = tr (Ry"Ryy) = O(1). (B.412)
~ Pu

(iii) Equations (B.299),(B.349), and(B.391) imply that

B(u,uuu, Ro"uy) = 0, tr (IR tr (Ro™ Ryyy) + 20,,,° tr (IR, RoM' Ry )

0 [1 —Tp},z - ipsyz " 2( q _225 e+ 0(1))]

- 2[ 2Tpy  4Tpy
lA-p2? (A-p22
2Tpu0”

- (1- PyZ)Z

] +0(1)

+0(1). (B.413)

(iv) Equation (B.404) implies that

E(u, Px,Ro* Px,u,) = oy tr(Px,Ro" Px,Ry,)
1 2(sz -n(l- sz)) _ _ _
= GWP_H 1-p2 + (1= pu®) tr (Fuy ™ Opy) + tr (Fuy ™ ByuFuy ™ Oy)
+O(T™). (B.414)

(v) Equation (B.407) implies that

E(MLPX“RQ‘U"HPX“ VRWuH) OHH tr (PXMRQMIPX“VR‘“HRW,)
= O-y‘u tr (PXMRZMIPXHV)

_ O -1 -1 -1
= - By Ey T €)1 O (BALY)
y.
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(vi)
E(u;iRWVPXyRZW‘PXH VR"u,) = oy tr (R VPx R*Px, VRMR,,)
= Oy tr (R VPx RMPx, V) = [see (B.408)]
_ Oup -
- —[tI' (le B Fp[u @yu) - 1’1]
Pu
0uu(1 = py®) - -
+p—y[tr (Fuu "Buy) — tr (Fu 7101
+O(T™). (B.416)
(vii)

E(u;, Ro! " uttl, RoM' ) = 0000 [tr (R Ryy) tr (Ro"¥ Ryy) + 2tr (R Ry Ro* ¥ Ry )]. (B.ALT)
Since (B.294) implies that

(RM Ry )(Ro* M Rypy) = [Ri™Ryy + puARuu IR ¥ Ry + puwAR ]

! ‘w ‘u’ !
(Ri“RyRi¥¥ Ryre) + pulR R ¥ Ry + poRi Ry ARy

+PuPw AR ARy, (B.418)
it follows that

tr (R Ry R ¥ Ryyr) = tr (Ri™RyuRi¥F Ryryw) + pu tr(AR Ry ¥ ¥ Ry )

+pu tr(RiI™ Ry ARy ) + pupp tr(AR AR ). (B.419)
Moreover, (B.293) implies that

" 1 1
(Rl'“Hpr)(Rly H Ry'y’) = P_[IT -(1- PHZ)RMJ]_[IT -(1- py’z)R;t’p’]
y

= [Ir — (1 - p PRy — 1 = pu” )Ry
b P PR

+(1 - pyz)(l - Py’z)Rnyy’p’]- (B.420)

vii.a Since the (i,j)-th element of the matrix Ry, is mpyh_ﬂ, the (i,j)-th element of the matrix

RyuRyy is

Z - pyZ)(l o Z)Ppll klpy k=l (B.421)

Therefore, the i-diagonal element of the matrix Ry R,/ is

T
1 . .
— [i—K| [k—1|
eii = p Pu . (B.422)
- A1 - pu?) Z‘k=1 HoP
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Define the index j=k—i(j=1-14,...,T—1i) and set r = pyp,r. Then,
T ' T—i T—i '
Z ikl |k—z| _ (Pu p“,)m
k=1 j=1—1 j=1-i
T—i -1 T—i i—1 T—i
= = Z My v = Z AR er
j=1-i j=1-i j=0 jHi=1 j=0
i-1 1) T—i+1 i T—i+1
B ' I I s r=r+1l-r
B rr Z 1-r 1-r 1-7
k=1
1+ _ + T—i+1
_ 4+ 1(irr ) _ [setting j=T—i+1(=1,...,T)]
A+r=F+1) 1+r-27
_ . === (B.423)
Thus, equations (B.422) and (B.423) imply that
1 1+7r—2r
= B.424
A —pe) 17 (B2
T T ;
1 1+r 27
tr (R, Ry )/ T ei/T [ - ]
IR Z T TA- P = pyw );. 1-r 1-r
T
_ 1 T+n 2 Zri
TA-p A -pp?) | 1-7 1-ri
1 1+7 2r  r(1—rT)
_ _ ) B.425
(1—py2)(1—pp/2)[1—r T1-7r) 1-7r ] ( )
and by omitting terms that tend to zero as T — oo we find that
1 1+r
tr (R Ry )/T = +o(TH = (B.426)
HETHER (1 - p,u2)(1 - py’z) 1-r
T(1+ pupyw)
tr (R, Ry ) = +0(1). (B.427)
A R T 2 [ )

By combining equations (B.299), (B.420), and (B.427) we find that

tr (R1"* R Ri*“ " Ry )

[tr(I7) — (1 - sz) tr(Ryy)]

PuPw
L 1= gD R ) — (1= 21 = p?) tr(R Ry )]
PuPw
1 T T
= T-(1-p2)———(1-
PupPy [ ( Py )(1 - sz) ( )(1 - )]
1 [A=p A= pp)TA+ pupw) ]
1
PuPy [ (1= pu®)A = pp?)1 = pupy) o
1 T(l + pupy’)]
= T+ — 1
PuPw [ - PuPu) rol) =
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1 T+ Tpupyw + T+ Tpupy

tr (Ri" R, Ri*F Ryyw) = +o(1)
b e PuPw (1= pup)
2T
= —— +o(1). B.428
L= pupy ( )

vil.b Let 6;; be the (i,j)-th element of the matrix A. Then, 617 = 677 =1 and 6;; =0 ¥ i,j # 1 and

i,j # T. Moreover, let 1_P“2py|l_]| be the (i,j)-th element of the matrix R,,. Then, the (i,j)-th
element of the matrix AR, is (see (B.302))

. 1 .
S = 51.1,1 — 2pull ]l (B.429)
u
Since equation (B.293) implies that
1
Ri"¥Ryy = 5 —[Ir - 1 - pu*)Ryp], (B.430)
w
we find that
RI¥RywAR, = —[Ir—(Q DRy ]1AR
1 Wy up = p_y’[ T _( — P ) y'g.t’] up
1
= p—[ARW - (1= pw®)RywAR,]. (B.431)
y/

The (i,j)-th element of the matrix R,/ AR, is

1 .
- Iz kI I o |
% Z'(1 pu?) Z‘(1 P z)p“ (1—Pu2)p”
1

— l,ll 1] 5 11—l lll T, IT-jl
- pAA-p A" P T A= p A= p M P
1 i— -] i— -
= 1- pyZ)(l _ py,z)[P#’l 1|PH|1 N+ p#'l Tlpy‘T ]‘] (B.432)
and the i-diagonal element of the matrix R, ARy is
" 1 =11, 1] li=Tl ) ITil
N T L
1 i —i
= A= [(ppp) ™ + (pupy) . (B.433)
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Therefore, setting j = T—i+1(j=1,...,T) and r = p,p,), and setting | =i—-1(=0,...,T-1),
equation (B.433) implies that

|
-1~
>
£,

tr (RywAR,,)
i=1

1=

T
1 1 T—i

T
Zr11+2r11} = pyz)(l p2)le

i=1 ]:

Il
—_

Il
—

(1-py? (1 pur?)

1—+T
(1-py? (1 Pw Z)Z (1- Puz)(l pw?) 1-1

1- g - g T
_ 22 i (Pups ) _ 2[ (Puf; )] (B.434)
I-p)A=pp?) T=pupy A= pu®)A = pu?)L = pupy)
Therefore, equations (B.303), (B.431), and (B.434) imply that
,i 1
tr (Ri"* RywARy,) = p—[tr(ARW) — (1= pp?) tr(RywAR,,)]
w
~ L[ 2 PP 2[1 = (pupp)'] }
pw [1-pu? Pu (1= p)(A = puw?) A = pupy)
21 - (pupw)T
_ i[ z - [ 2(p‘p”)] ] (B.435)
pw [1-pu> A =pu>)A = pupw)

vii.c By using equation (B.302) we find that the (i,j)-th element of the matrix AR, ARy is

T
1 :
Oi O™ E (3” pl - o k=1l
Z ’ - 2)* M= )

1 e
= 11 (1 pyz)(l p 2) [p,lll 1| |1 jl +p‘u| T|p[“/\T ]|]’ (B436)

61']'00

which implies that the i-diagonal element of the matrix AR, AR,/ is

1 . ,
Si [0, =1, -1 4
A=pAA-p,A e PR

= ii 1 [i-1] [i-T|
= O (1- Pyz)(l - Pu’2)[(p“p”/) +(Pupw)™ ] (B.437)

[e]e]
oi " =

li-T| . |T—i
pw" "]

Therefore,

1
1-pHA - py?

T
tr (AR ARy ) = Z 0;°° = Z Oiil(pupw D4 (Pupw =T
i=1

T
C -y 2)1(1—p 5 2, 10ul(pupi )™+ () 1+ Brrl(pupu) ™ + ()1
¢ W
2

= 1+ (pupp) '] B.4
= p) A= e+ ubw) ] (B.438)
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Thus, equations (B.419), (B.428), (B.435), and (B.438) imply that

2T/T
(1= pupw)
1 [ 2 201~ (pupp)'] ]
pu 11-p®  (1=p®)(A = pupw)
1 |: 2 2[1- (py’pp)T] )] /T

p#,P_y 1- Pu'z - 1- Py’z)(l — PwPu
2

=D = pud)

tr (Ry"* Ry Ro* "' Ry )T = +o(T™)

TPy

+

[1+ (pup) 1/, (B.439)

and by omitting terms that tend to zero as T — oo we find that

tr (Ro" RyuRo* ¥ Ry ) /T = m+o(T—1):>
uPw
o 2T
tr (Ry" Ry RoM ¥ Ryy) = W+o(1). (B.440)
uPu

Therefore, equations (B.417), (B.349), and (B.440) imply that

20u0uy 2w Oy
(1= pu?) 1= pyp?)
204,00y
1= pupw

E(uLRZWu#uL,RZW’uH' )/T
+o(T™ (B.441)

and by omitting terms that tend to zero as T — oo we find that

4T0 0w

E@ Ro" u,u’ , Ro ¥ u ) =
p prw 2 B _
# 1= pupw

+o(1). (B.442)
Lemma B.12. The following results hold:
Let &4 be the (t,i)-th element of the matrix E. Then, the (i,j)-th element of the matrix E'E/T is

e,']' =

T
eirerj/T, (B.443)
=1

t

Since 0j; is the (i,j)-th element of the matrix I, by using equations (B.160) and (B.443) we find that the

(i,j)-th element of the matrix X is

T
Uij(l) = \/T[Z Sitftj/T—Oij] = \/T(eij_oij)- (B.444)

t=1
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Moreover, since 0¥/ is the (i,j)-th element of the matrix L', by using equation (B.163) we find that

the (i,j)-th element of the matrix S; is

M M M M
Si]‘(l) = ZZO’Zkal(l)G” = ﬁzzglk(ekl —le)Gl]

I
<
1=
1=
QN
;;v‘
NQC
|
1=
1=
QN
SR*
5&

Thus, equations (B.445) and (B.446) imply that

M M
VT Z Z o*eyotl — o l

5 =
k=1 I=1

Since equation (B.443) implies that

ei]‘ = 8;81‘/T
where e; is the i-th column of the matrix E we find that

M M
1)

k=1 I=1

o™ (e,&/T)a" - aifl )

Therefore the (i,j)-th element of (1 X M?) vector [vec(S1)]’ is

M
(40 R ) .
(ij) = Sii

S

ik(slisl/T)alf - oif] .
k=1 I=1
Equation (3.22) implies that

uy = SFPH and u, = Pye, =

u;le““uH = EZLPLRZHHPHSH.

By using Lemma UR.2 and since (3.17b) implies that (see Magnus and Neudecker, 1979)

E(), P Ry Pyey) = 0,y tr (PR PuIr) = 0y tr (PR P,),

we find that

(B.445)

(B.446)

(B.447)

(B.448)

(B.449)

(B.450)

(B.451)

(B.452)

(B.453)
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E(e,’(ele;PLRzF‘“Pyey) = tr(oxlr)tr (GWPLRZP‘”P#) +2tr (aklawPLsz‘“PH)
= CTk]UWthI' (PLRQMLP#) + zaklayy tr (P;RQMAP“)
= O_klayy(T + 2)tr (P;lRZMIPH), (B.454)
and since (B.1) implies that
PP, =Ry, (B.455)
by combining equations (B.349) (B.454), and (B.455) we find that
E(gem, Rottuy) = E(sksls P R,"Pe,) = 01a0uu(T + 2) tr (P RMPy,)
= O-klo-[,ly(T +2) tr (Rp" ‘LLP P ) = O'k[O"L,H(T + 2) tr (RpM* RW’)
2py
= opouu(T + 2) 5 (B.456)
~ Pu
Therefore,
El(g&/Du, Rt uy] = E(gem R uy)/T
20,
le(j#yl (T+2)/T
2P# 4py
OO yu——= + OKo —/T (B.457)
Hy 1-— pyz I 1-— p#Z
and by omitting terms that tend to zero as T — oo we find that
20, 1
E[(e,’(sl/T)u Rottuy] = o0 ju——— T=p2 5+ o(T™). (B.458)
Equation (B.450) implies that
M M )
sV R 2MHuy, = ZZG”‘ 17 (skel/T)u Ry, | - a”u;sz‘“uJ. (B.459)

k=1 I=1

Equations (B.409), (B.446), and (B.459) imply that

M M
E(s Dy RyH Huy) = VT ZZ kGUE[( (ge&r/ Ty Rouy ] -l E(u), Ry"uy)

(l]) B

k=1 I=1
M M
- y 2p
= T o* oo L — ol —t + o(T™)
s p
kZ':‘ ZZ:‘ 1-py? 1-py?
zpf’ SR ik i —1/
= ToWl % ZZU ool — o[ + O(T™")
k=1 I=1
= O(T "=

|

(B.460)
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lim E(s\ !, Ro"u,) = 0.

i) ~#

Proof of Theorem 4. Define the ((1 + M + M?) X 1) vector

where for 0 =1

is a scalar,

is a M X 1 vector with element

and

is a (M2 x 1) vector with elements

Sup’ ~ Suw

Sup’ = T

Moreover, 6 admits a stochastic expansion of the form

6=d +1d, + a)(Iz)

which implies that 6o, 6, and 6. admit the following stochastic expansions:

8o = 00 + 701 + w(T?)

0, =dip + tdyy + w(’cz)

O0c =dic + tdyc + w(t?),

(B.461)

(B.462)

(B.463)

(B.464)

(B.465)

(B.466)

(B.467)

(B.468)

(B.469)

(B.470)

(B.471)

where 0 and 01 are scalars, dy, and dp, are (M X 1) vectors and dy; and dy are (M? x 1) vectors.

Define the scalars Ag and % the (M X 1) vectors A, and &, the (M? X 1) vectors A and ., the (M x M)
matrix Ap, the (M? x M?) matrix A, the (M? X M) matrix Agp and the (M X M?) matrix Ape by the

following relations:

Ao A, A Ko

"o~

Ao Ay Apc|=lim E@did)); |x, | = lim E(VTd; + do)

Ac A A ke

(B.472)
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By combining equations (B.468), (B.469), (B.470), (B.471), and (B.472) we find that

Ao A, AL 00
Ao Ay Apc| = lim E(did)) = lim E|\dp | [00 dy, d ]
/\c Acp Ac dlc
(702 O-Od/lp O‘()dig
= %I_I)I;IOE O'()dlp d1pdip d1pdig (B-473)
O‘odlg d1;d'1p dlgdllg
which implies that
Ao = lim E(00?), (B.474)
Ap = %1_{{1.0 E(Godlp), (B475)
/\c; = %E’)I;lo E(O’odlg), (B476)
Ay = }1_1){)10 E(dlpdip), (B.477)
A = %Lngo E(dlgdig), (B.478)
Ay = Tl:n(}o E(dlgd{p), (B.479)
Ny = Th_r}g E(dlpdig). (B.480)
Obviously Agp = A;,g.
Similarly,
Ko VTog + 0
K, | = lim E( VTd, + dy) = lim E| VTdy, + dyy (B.481)
K¢ \/leg + dzg
which implies that
o = lim E( VToo + 1), (B.482)
K, = lim E(VTdy, + dyp), (B.483)
e = lim E( VTdy. + dy.). (B.484)

The estimator ; (I=UL, RL, GL, IG, ML) of ¢ is

& = vec[(Y.—ZB)) (Y. - ZB))/T]™ "] = vec[(E}E;/T) "]
= vec(£;!) = [see (B.162)]
= vec[Z7! = 181 + 128" + w(7®)]
= vec(Z™Y) — tvec(Sy) + 2 vec(Sy) + w(t®)

= ¢—1vec(St) + 12 vec(Sy) + w(t®) = (B.485)
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o, = ‘;IT_ © - —vec(S1) + Tvec(Sy!) + w(t?)
= dic+1dy + w(T?), (B.486)
where
di. = —vec(S;) and dy. = vec(Sy)). (B.487)
By using equations (B.186) and (B.463) we find that
&' = @GI-1/t=61/t-1/1
1
= [M+ 7 te[(So) - S)EN /(M - Pn)T — —+ w(7?)
1
= [M/t+tt[(Sy) — S.))EN/ (M — 2n) — —+ (7). (B.488)
By using Lemma UR.1 we find that
1/M-1*n) = M-7n)7"'=[MA-*n/M)] =M1 - ?n/M)™
= M1+ %n/M+ w(t)] = (1 + 22n/M)/M + w(t). (B.489)
Thus, equations (B.476) and (B.477) imply that
ool = M/t +Ttr[(Sof = SY)ENIA + /MM + w(th)] - 1/1 + w(T?)
= [1/t+ 1Sy = SH)E/M]IA + /M) — 1/7 + w(7?)
= 1/t + /M + ttr[(S2! — $)E/M = 1/7 + w(T?)
= 1[tr[(S2! — S, )E] + n]/M + w(7?). (B.490)
By combining equations (B.469) and (B.490) we find that
00 =0, o1 = [tr[(Sy! = $)E] + n]/M. (B.491)
By using equations (B.474), (B.475), (B.476) and since g = 0 (see (B.491)) we find that
Ao = lim E(00%) =0, (B.492)
/\p = %1m E(Godlp) =0, (B493)
Ag = 7lwlII’l E(Uodlg) =0. (B494)
Moreover, equations (B.198), (B.478), and (B.487) imply that
Ag = lim E(diod;,) = lim E[(vec(S1))(vec(S1))']
= 'L HNE L. (B.495)
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By using equations (B.469) and (B.491) we find that

ko = lim E(VToo +01) = lim E(01) = lim E[tr{(S; - $2)E] + n]/M

tr{ lim E[(Sy' — S,))E]1/M + n/M = [see (B.193)]

= tr[Z Y AcL — AD]/M + n/M (I=UL, RL, GL,IC, ML ), (B.496)
where
Auyr = Ofsee (B.215)],
M M M 4 M 4
aw = (L Yot B) Bl Y B) "]
i=1 u=1 p=1 p=1
M M 1 M M -1
=Y oute[(Y By) Bi] =) oucte[()By) Bu+ aqKK) ] [see (B.234)],
i=1 p=1 u=1 p=1 kaq
M M —1
Acc = A=Ay = KE - [(tr[z Z ai]»Bij] Bij)i ]] [see (B.242)]. (B.497)
i=1 j=1 ’

Furthermore, equations (B.484) and (B.487) imply that

ke = lim E( VTdy. + dy.) = lim E( VT (= vec($1)) + (vec(S,')))
= lim E[vec| VT(=$1) + S]]
= vec[lim E[ VT(=81) + $,'1]
= vec[Jlim[- VT E(S1) + E(S:)]] = [see (B.169)]
= vec[lim E(S,)] = [see (B.190)]
= vec[M+K+ 1Lt -rtar, (B.498)

where AUL/ ARL and AGL = A[G = AML have been defined in (B497)

For the I estimator of p, (I=LS, GL, PW, ML,DW) equations (B.276), (B.277), (B.282), (B.285), and
(B.290) imply that

day'® = day®" = da™" = da,”" =~ R u, /2VTa,?
1-o0,2
= —T(O—py)uLRQW‘uy/Z =dayy- (B.499)
Hp
Therefore,
dyudyy, = uLRZ“”uyuLRZWu#/4TG,,H4. (B.500)

Moreover, for p # ¢’ we find that

dayud = u;le””uyu;l,Rzyr“'u;,/ /4To,,yzau“,2. (B.501)

7
(€874
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Equations (B.477) and (B.500) imply that, since g,

Oup

the p-diagonal element of the matrix A, is

= D
%im E(d(l)lidzl)y) Thm E(u}, Ro!uyu, R uy)/4Tau
_ [4Tou? 4
= [see (B.411)] = hm T=p.2 +0(1)| /4Toy,
~ Pu
4To
= lim [A O(T‘l)}
T—eo [ (1 — pp )4Tau“
4To
i’
= o T (1-p.). (B.502)
A= pu 4T 27
Similarly, equations (B.442) and (B.501) imply that, since ouf =@ ;“ 5 Ouy” = 1oy W for u# u' the
up’-th off-diagonal element of the matrix A, is
lim E(dayudiy),,) Tim E(u;, Ro w11, Ro ) [4T 0y, 204, *
= lim ATOuOw 5+ o(T™Y)
T—eo (1= pupw )4Toul Ou,
OupOu 1-p A1 -pp?)
= o oww = N (B.503)
(1= Pubu) @2 5, PuPu
Moreover, for the J estimator of p, (I=LS, GL, PW, ML,DW) it holds that since
d(l)p = d(l)#LS = d(l)HGL = d(1)HML = d(l)HDW = —u;,Rz“”uH/Z ﬁﬁu}lz, (B.504)
the following results holds:
—2pu0uu , 20
E(VTd = —E@,R*"u,/2 =—p, =
(\/_ (1);1) (u 2 uy/ Ou, ) 1- Pu (1 _Pyz) Pu
lim E(VTday) = —pp. (B.505)

By using equations (B.278), (B.413), and (B.414) we find that

E(d(z)#Ls) = —E(u,Px,R,"Px, uy)/Zouyz+E(u:luyu;Rz“”uH)/ZTo,,#4
o [2(ps® —n(1 = pu?)) _ _
- _Zﬂ[ ; 1- /o ou,? + (1= p) tr (Fuu ™ ©) /00, + tr (Fuy ™ BuyFuy ™' O y) /0,2
Pu Py’
+OTY) - [(f“_“;‘y + 0(1)] /2Ta,,*
Pu
1 2p %0 2no W -1 Oup ]
= —— - +(1- tr (F, (¢}
20, | (1 _p‘le)GMHZ Uu“ (1-pu )t ( i HH) 5
r 2
1 _ _ O“U.‘Lt Zp‘uo‘!‘.“ —
-— |tr (F,, "B, F., 'O +— [+ O(T!
20, _r( pp BupLpp W’) (1 - p2)2ou,* ()
1 2pu 0y 2”“## 2 -1
= "2, = 2y Gw w + (1= pu)tr (Fuy @uu) ow
# P )Tps  Tpd p?
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2 2
o 20,04

-1 -1 pp O
tr (™ BypFuy ™ Ou) —5

[J (1_0;12)

-1
2 +O(T™)

(1- p2P s
u a-p2%

+O(T™).

By combining equations (B.483), (B.505), and (B.506) we find that

1 _ _ _
—$[4py2 =2n(1 - p?) + (1= pu®)* tr (Fup " Opp) + tr (Fup ' BupFu 10,0 (1 = pu?)]
u

(B.506)

Kp, lim E(VTdy +da, ")
. 1 _ _ _ _
= Tlgrolo —E[prz +4p,2 = 2n(1 - p®) + (1 = pu®)? tr (Fuy ' Oyp) + tr (Fup 'BuuFuy ' @)1 — p 2] + O(T )
1 _ _ _
= _$[6puz —2n- anyz + (1 - pyz)z tr (Fyy 1@;41) +tr (Fuy 1BWFW 1@;1;1)(1 - puz)]
u
1 _ _ _
= —$[2py2(3 +n)—-2n+(1- pyz)((l — pyz) tr (Fpy 1@},!4) +tr (Fuy 1BWFW 1@W))]
u
= —lpuB+n)+@2n—-c1)/2p,], (B.507)
where
a =1 -p A= p®) tr (Fu ' Ou) + tr (Fuy ' BuyFuu ™ ©,0))- (B.508)
By using equations (B.278) and (B.283) we find that
Aoy CF = dp ™ d-p) ' Px Ro"#Px VRM ' RUVPx Ry Px VRMu,, /2 B
@u  =dou — ——[u,Px,Ro"Px, Uy +u, x, Ro" P, u,/2]. (B.509)

pp

Therefore, equations (B.415) and (B.416) imply that

1-p2)
E —%[u;PX“RZF‘“PX“ VRMu, + u R VPy Ry Py, VR'u, /2])
pp
(1-pu®) o - -
= _G—Wﬁ[n — tr (Fuu "By Fuu ' O]
(1-p2)o _ _
+O_f‘%[n —tr (Fuy ' BuuFuu ' ©,0)1/2
pp p
1- Pyz) O—,uy(l - pp2) 1 -1 —1
— - [tr (FuuByh) — tr (Fuu ' ©)1/2 + O(T™)
(1-p?) . - (1-pu®)
= —p—y[” — tr (Fuy ™' ByyuFyy ™ Op)1/2 = — p
p u
(1 - PyZ) =
lim E |-——[u],Px, Ro" Px, VR*'u, + u/ RV Py, Ry Py, VR" 1, /2]
T 00 O i il u # H
3 1- Pyz)

Pu
(1= puH(L = pu®) tr (Fu ™' Ope) + tr (Fus ™' ByuFuu™ ©)1/2p,

—(1 = p*) tr (FuuByp) /20, — (1= pu2)n/2p,
[er —(1- p‘u2)n]/2py -(1- P;LZ)Cz/zpy,

[tr (Fu.Byp) — tr (Fuu ' ©,,)]/2 + O(T ") =

[1’1 —tr (Pyy_pryPyy_l @py) + (1 - p,uz) tr (PyyB;;ll) - (1 - puZ) tr (Fuy_l @Wl)]/z

(B.510)
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where

= (1= p,)tr (FuBy).
Thus, from equations (B.505), (B.506), (B.507), (B.509), and (B.510) we find that

Kp, O = x,, T = Jim E( VTdy, +do, ") = Jim E[( VTdy, + do, ")
B (1- Puz)

Oup
= K, = (1= pAe2/2p, + [c1 — (1 = pAnl/2p,.

By using equations (B.283) and (B.286) we find that

(1 - puz)
Hy

ML GL
Aoy = deyu™ + pu (u1® + ury?) = py-

Since
2 20w

E(ulyz + uTHZ) = E(Lllyz) + E(uTyz) = O’u“2 + O'u“2 = 20',4“ = (1——p2)’
u

we find that

(1-pu®) 204 p
o (1=p2)

= E(du"") +2pu — pu = Edeyp™) + pu-

E(d@,"")

Edey ) + py

Thus, by combining equations (B.505), (B.512), (B.513) and (B.515) we find that

K, %1_{?0 E( \/ley +da, M) = ]1“1—>II010 E[( ﬁdlu + ) + pul

u

= x5, pu =10, + p
By using equations (B.278) (B.291) we find that

(1- PHZ)
p

(1- Puz) 20,/2

oup (1= pu®)

Ede”") = E(dwp.")+

= E(d(z)HLS) +
= Edp,") +1.
Thus, by combining equations (B.505), (B.507), and (B.517) we find that

1- 2
+( Pu’)
Opp

Ko, PV = Jim E( VTdy, +dy,”") = lim E[( VTdy, + dy, ™)

LS
Kp, ~ + 1.

[u;,PXPRQWPX“ VRWuy + u;R“”VPXHRZWPX“VRWuH/Z]]

(E(u1,2) + E(ur,2))/2 = [see (B.514)]

(ulpz + uTyz)/Z]

(B.511)

(B.512)

(B.513)

(B.514)

(B.515)

(B.516)

(B.517)

(B.518)
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By using equations (B.470), (B.471), and (B.472) we define the M x M? matrix A, as follows:
Apc = Tlim E(dipd;,), (B.519)

where the p-th element M X 1 vector dlp is

u, RoMuy, u sz‘”uy 1-p 2
Ay = —— = =- = (u, Ry (B.520)

2 ﬁau}lz 2 \/_ Uuu 2 \/TGW

(-p,2

and the 1 x M? vector 171’1g is defined as
dj, = [-vec(S1)]". (B.521)

From equation (B.450) we have that the (ij)-th element of d_is

M M
8}) Z Z a’kal](el’cel/T) - oY (B.522)

k=1 I=1

[y

with (if) = 1,..., M2,

By combining equations (B.520) and (B.521) we find that the (u, (ij))-th element of the (M x M?)

matrix APg is

1- pyz M Mo )
da (—5(3?) = [_ (' RoMt'u l)] T o Gli(el &/ T) - o
OAN) 7 \/"._FUW p ¢ 1; ; X
(1- pyZ) M ity ) o
T 204, /; Zf o/ [(gre/ T)(u Rouy)] — 0 (u, Ry |, (B.523)

which implies that by using equation (B.460) we find that

1- Pyz) N .
E(@ayp(-sy) = Z o™ o' E[(¢}&1/ T) (1, Ry )] — o' E(u;RZWu,l)l
k=1 I=1
= O(T‘l/z) =
Ape = lim E(dyu(=sg) = 0. (B.524)
Finally, we find that
A=A, =0. (B.525)
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Matrix Q

Equations (5.26b) and (5.26c) imply that Q! = P(X ® IT)P’ where L = [(6j0ii)ij=1,..m] and P =
[(6ijP))j=1,.,m] is a block diagonal matrix. Let P! and P! be the inverse of P and P’ respectively
and let £71 = [(6;j0™); j=1,.,m] be the inverse of L.

Then by using equations (5.17b) and (5.22) we find that

>P1 (@) 0111T (@) Pi (@)
Ql'=PLI)P =
_O PM (@) UMMIT (@) PIIVI
0'11P1Pi . (0] 011R11 . (@)
(0] . GMMPMP;\/I (0] . UMMRMM
= [(6ijoijRij)ij=1,..m] = [(0ijoiiRii)i j=1,...m]- (C.1)
Equation (C.1) implies that
pt ... o |l ... o |l ... O
Q = P,71(£_1 ®IT)P_1 =
o ... PO ... MO ... Py
PPt 0 'R ... O
o) .. oMp eyt | o L oMMRMM
= [(6;j0"RY); j=1,..m] = [(6ij0" R j=1,..m], (C.2)

where

Ri=P7'P7 (i=1,...,M). (C.3)
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The Matrices R;;, R and their Derivatives with respect to the elements Pi, Pj

Equation (5.19) imply that

(1- pA)"* —pi 0 ... 0 ] 1-p2% 0 0 0
Ri=p'p' = 0 Lo=pi 0 —pi 1 0 0
l —p; 0 —pi 1 0
0 .. 0 1] 0 0 —pi 1

(1 pPA = p2)E+pipi —pi 0 ... 0]

—pi 1+ pipi
= 0
1+pipi —pi
0 0 —pi 1
1 -pi 0 0
-pi 1+ pl-2
=10 (C.4)
1+p? —pi
0 0 —pi 1
Obviously,
[1+p2 0 o] [o p 0] 072 0]
pi - 0
R = - .
pi 0
| 0 L+p?] | pi 0] |0 pi]
= 1+ pAIr - piD - piA, (C.5)

where It is the T X T identity matrix, D is a T X T matrix with elements 1 if |t —#'| = 1 and zeros elsewhere,

and A is a T X T matrix with elements 1 in (1,1)-st and (T, T)-th positions and zeros elsewhere.

It can be easily seen that

RR; = R;R" =1. (C.6)

Moreover,
1
i OR

Rpi = 8_p, = 2‘01'IT -D - ZpiA, (07)
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aZRii

Ry, = = =2I; -2A =2(I; - A
pipi 3p1'2 T ( T )/
Ri=R g g iR g g, i PR =0, (Yi# )
pi = apj =Y e T 3pj2 =M Trpipj T 3,01‘9,01‘ et -
The Derivatives of £ with respect to the element p,
Since, Q = [(6ijaiiRii)i,j:1 ,,,,, Mm] we find that
_oQ _ i
Pu Py = [(90;j0"R"/dpy)]
= [(6ij0"Rp,")ij=1,..m]
= [(6ij0,i0™ Ry, ™) j] = [see(C.T)]
= [(6u0™2pilr — D = 2piA))iy=1,..m),
’Q iipy i
Pubu — ﬁ = [(861‘]‘0 RPp /apﬂ)]
Pu

[(6:j0"Rp,p,")ij=1,..,m]

[(8ij0ui0™ Rp,p,")i 1 = [see(C.8)]

,,,,,

Il
—
—

>
T,
QN.
=
—~
N
—~
P
—
|
[N
~
=
=
1
—
=
—

The Derivatives of £7! ® It and £ with respect to the element ¢

Since,
L ®Ir = [(8ij0"Ir)i j=1,.,m],
and
G = [(Gii)i=1,...,M]/
we find

8 -1 _ 96,-]-0”'IT
dott & el = [( okt )

......

= [(640uilr)i j=1,..m] = [(OpiOuj)ij=1,..] ® It

= Agwelr,

where A,y is a (M X M) matrix with 1 in the (uu)-th position and zeros elsewhere.

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)
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T IR
W(Z ®Ir) = P [m(z ®IT)]
= [(@0uj0uilr/dc™);j=1,.,m] = 0. (C.15)

Since Q = P'"1(E7' @ It)P~!, equation (C.14) implies that

Qo = oot ool

Ay ® PP = (0,05 P; T Py e, ]

00 _ pt [i(z-l ®1T)] Pl=P (A, ® )P

|
—_
—~~
<2
=
=2
=7
=
=
=i
o
e
I
=
=
=
Il
—_
—~
=
E,
=2
=7
=
=
=
=
?/
<
I
N
<
=

(C.16)

..........

Similarly, equation (C.15) implies that

o P09 (o0
(ppvv) = JoHEIGVY - dov \ dott
(C.17)

.....

|
—_
—~~
N8
>
B,
>
=
=
=
=
~
NB]
)
<
<
v
<
KA
g
Il
o

The Second-order cross derivatives and useful matrices

Equations (C.10) and (C.16) imply that

9 (0Q) o, 9
o = oten = W(E)_ Ipu Ipu
[(90,i0;,R™ [dpp)ij] = [(6vi0jRp, "™ )i j=1,...m]

[Ouw0vidj Ry, ™ )ij=1,...m]- (C.18)

(Aw ® Pll‘_lpj_l)

Equations (C.1) and (C.10) imply that

* -1 _ * _ ’ -1/ _ */
Q Pu’ Pu QPH’Q QP#‘ - Q P Pu ™ QP,LLQ QP}J' - Q

PuPyu’

|
—_
—~
>
g
=2
T
Q\..
=
=
:
=
=
=
1l
(=
<
—_
—~
>
[
Q
a
=
=
=
A
~
g
I\
—
2,
—_
—~
=
=
Asg
=
QN
=
=
=
=
=
<.
]
-
<
—_—

rrrrrrrrrr

M M
H l ’ H l ’
Z Z 6i1<6yi61<161j51y'GZHGKKG H Rp“kakRp#, H
k=1 I=1 i,j=1,...M

.....

(C.19)

[(@'féuiéu'j‘fwaii‘ﬂ” R, " RiR,, " ) i=

AyyZAvv = [(5yi6y1<)i,K:1,...,M][(67\'1010()7(,1:1 ,,,,, M][(évlévj)l,jzl ..... M]

M M
= |:(ZZépiéykéxlévlévjak%] ]
ij

k=1 I=1
[(6;11'6#1/61/]'0;1‘11)1’,]'] = 5‘uvayyAyv (020)
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Equations (C.1), (C.16)

va

Equations (C.1), (C.10)

Q iy,

Define the n X n matrix

A

where

and (C.20) imply that

_ -1
o) = Qw2 Q)

= PN A, ®In)P'PER )PP (A, ®I)P!

= P/_l(A‘uy ® IT)(E ®IT)(AVV ® IT)P_l
= P7Y(AEA, ®Ir)P!

= P70l ® IT)P
and (C.16) imply that

% -1
Q) o) = £2p, 27 Q)

M M
. . i
= Z Z 6ikéyié1<l(3v15jvawGKKRppIHRKKR]
| \x=1 [=1 ij

(5yi(51v5jv0i“ UiiRpui‘u RiiRW)l.].]

= [(uononre ), L]

.....

j=1

M
2.
=1
M
- Z o' X/RIX;/T
l;[l
2.

B;i = X/R"X;/T.

Therefore, by using equations (C.10), (C.11) and (C.19) we have that

AP# =

O%A = (X' QX/T)/dp, = X' (9Q/Ip,)X/T
u

M M M

Z Z 0ij0uio " Xi Ry, " X;/T = Z Ouic " Xi Ry M Xi/ T
i=1 j=1 i=1

o' X! R, X, /T,

(C.21)

[(6iK6pi‘7i'LlRp}‘i#)i,K=1 ..... M][(éK]O-KKRKK)K,Izl ,,,,, M][(évléijlj)l,jzl ,,,,, M]

(C.22)

(C.23)

(C.24)

(C.25)
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aZA 2y 172
App = P *(X'QX/T)/dp.dp, = X'(0°Q2/dp.dp)X/T
PuoPu
= X'Qp 0, X/T = [(X))i=1,. mI[(6:j0i0" Ry, p," )i j=1,. . MI[(X)j=1,..m1/ T
M M
- ZA 61’]'61“1'OWX1'/RP;IPHlij/T
i1 j=1
= ) 0,0 X[Ry,p, WX/ T
i=1
= "X Ry, X,/ T, (C.26)
A*p“py, X'.Q*p“p“, X/T
= [(X,-' )i=1,.,.M ] [(51']'5;”'5”, jo* oo Ry, " RiR,,,’ y,)i,jzl,...,M] [(Xj) jzl,...,M]/ T
M M ‘ ‘ A A
= Y)Y 86udwjot ool X/R,, FRiR,, ¥ X;/ T
i=1 j=1
= 6##'GHPGW‘GH/H/XLRP;IHHRW‘RP;A’ W/Xu’/ T
= Ouwot " X[ Ry, " Ry R, X, | T. (C.27)
Also, by using equations (C.16), (C.17) and (C.21) we have
A = 2A o Qx/T) /90" = X990 X /T
(yy)—m_( /T)/do" = X" (d€/do")X/
= X'Q,X/T
= [(X))iz1,..MmI[(04i0juR*); =1, mI[(X)) j=1,..m]/ T
M M
= Y)Y 80 X/R¥X; = X[ RFX,,/T
i=1 j=1
= =[see(C.24)] = By, (C.28)
A A = (X' QX/T)/dotdc™
(up)(wvv) W - ( / )/ 9 o
= X'(0°Q/9o""95")X|T = X' Q)X /T = [see(C.17)] = 0, (C.29)
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Aoy = X' (uenX/T = [see(C.20)]

,,,,,

M M

= )Y 000400 X{RIX/ T
i=1 j=1

= w0 X R"X, /T = [see(C.20)]

= 50X RX, /T

= OwouuBuy

= 5HVGHHA(P#)’ (0.30)
Moreover by using equations (C.18)
’A

dpudat
= X'(0°Q/dp,da")X/T

Ap},(vv) = A(vv)p# = = 82(X'.QX/T)/8pH80(W)

.....

M

M
= Y Y 0000 XIRy, " Xi/T = 6, X Ry, " X, T, (C.31)
i=1 j=1

Awp, = Ap,on = XD punX/T = X'Qp Q7 QX /T = [see(C.22)]

.....

M

M
= )Y 0ududp X/ R, X/ T

i=1 j=1
= SuwX| R, "X, /T. (C.32)

Define the n X n matrices
G=A"!and E=GQG, (C.33)

where

A=XQX/T and Q = H(HGH')'H. (C.34)

By using (C.33) and (C.34) we find the following results:

=)

Pu=

BS
]
Il

[see(C.25)]

MY R X E
o" X! R, X, E/T =
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tr(Ap,8) = o (X Ry, "X, E/T). (C.35)
2.
App, B = [see(C.26)]
= o““XLRPMPH"“XHE/Tﬁ
tr(Ap,p,B) = 6Wo”“tr(XLRpMP“WXyE/T). (C.36)
3.
AppsE = [see(C.27)]
= Ouwo " X/ Ry, " RyuR,y M Xy EIT =
(A, p, E) = Ouwot ™ (X R, M RyuR, M X E[T). (C.37)
4.
ApwE = [see(C.28)]
= By,E=
tr(ApnE) = tr(BWE):tr(X;,RWXHE/T). (C.38)
5. Since
A(“#)(W)E = 0= [See(c.29)] =
tI‘(A(ML)(VV)E) = 0. (0.39)
6. Since
A*(Mt)(w)E = [see(C.BO)]
= OwOuAupE =
tr(A*(HH)(W)E) = 5},,,0”, tr(AHHE) = [see(B.81)]
= Ouopuu tr(BuuE) = 60y tr(XLRM‘XHE/T). (C.40)
7.
Ap,mE = [see(C.31)]
= X)R,"XE/T =
tr(Ap,omE) = tr(X[R,, "X, E/T). (C.41)
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8.
A'pmE = [see(C.32)]
= OwX Ry " XEIT =
(A%, mE) = O tr(X,R, "X, E/T). (C.42)
9.
A, E = [see(C.32)]
= OowX Ry "X EIT =
(A%, mE) = 0w tr(X,R, "X, E/T). (C.43)
10.
Ap,GAp, = [see(C.25)]

= ("X Ry, "X, /T) G (0" ¥ X!, R, ¥ X, |T)

= Ghughey i ’ W' x T2
= oo XHRPH XHGXH,RPH, Xy /T =

E = gUgHE X' R b ’ we'x = /T?
Ap, GAy E = oMo XIR, X, GX Ry, Xy E/T

tr(Ay,GAp, E) = ota!' tr(X| Ry, "X, GX, Ry, X, E/T?). (C.44)

11. Similarly, by substituting = for G we find that

R

= =) = ghbgh ¥ 'R.MEX F
tr(A,, EA,  E) = otf'o tr(Xpr# X,E -

o X EIT). (C.45)

12.

AuwGAwy = [see(C.28)]

= B,GB,, =

AuGAwE = ByGB,E =
tr(A(uyGAwE) = tr(BuuGB,E) = [see(C.24)]

= tr(X,R"X,GX,R"X,E/T). (C.46)

13. Similarly, by substituting E for G we find that

(A EA)E) = tr(B,EB,,E) = tr(X, R X, EX|R" X, E/T). (C.47)
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14.

Ap,GApyy = [see (C.25) and (C.28)]
= (o““ X/R, "X, /T) GB,,

= "X R, " X,GB,, /T = [see (C.24)]

A, GAwWE = "X R, "X,GX,R"X,E/T* =

tr(Ap, GAwnE) = ot tr(X]R,, "X, GX|R"X,E/T?).

15. Similarly, by substituting = for G we find that

tr(Ap, EAonE) = 0¥ tr(X,R,, " X, EX,R" X, E/T?).
16.
AwGAp, = [see(C.25) and (C.28)]

= B,G(o"X/R,,"X,/T)

= o"B,,GX' R, "X,/T = [see (C.24)]
W Pu H

AwnGAp E " X/R"X, GX[’JRPH XL E/ T’ =

tr(A(W) GA Ou E)

tr(A o4 GApn) )

= o tr(X;R"X,GX R, "X, E/T?).

17. Similarly, by substituting E for G we find that

tr(AoEA,, E) = o' tr(X;R"X,EX/R,, " X,/ T?).

Proof. [Proof of Theorem 5]

i a. From (C.26), (C.27) and (C.44) we have that

C Apoy —2A,,GA,, + Ay, /2

PuPy PuPw

= oW X R HU WX T — gt gt ¥ X! R 1 ’ Wy, IT?
= Ouwd" "X Ry " RyRy X [T = 20" E X R, X, GX R, M X /T

G pp
+0,0 MU X[ Ry, o, X, /2T,

ii a. From (C.44), by substituting E for G we find that

D Ay EA,, |2

PuPu’

LEGHE X R OHEX BX w'x  10T2
oot P X, Ry MMXLEX, Ry, P X, [2T<.

(C.48)

(C.49)

(C.50)

(C.51)

(C.52)

(C.53)
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iii a.
GA,,G = [see(C.25)] = G(c"X;R,, " X,/T)G
= " GX|R,,"X,G/T. (C.54)
iv a.
GCp,p, G = [see(C.52)] = 60" GX| Ry, " RyuR, ' X G/T

—20t40" 1 GX| Ry, " X, GX|, R, H¥ X,y G T? + 6,0 0" GX[ Ry, " X, G/2T. (C.55)
i b. From (C.29), (C.30) and (C.46) we have that

C(yy)(w) = A*(yy)(W) - ZA(#H)GA(W) + A(w)(vv)/ 2
= OO Ay — 244 GAw)

OuvOuuByy — 2By GByy. (C.56)

ii b.From (C.46) by substituting = for G we find that

D(HH)(W) = A(W)EAM)/Z
= ByEB,./2. (C.57)
iii b.
GAuwG = [see (C.28)] = GB,G. (C.58)
iv b.

GCuwo)G = [see (C.56)]

G[0,v0 By — 2B, GB,,]G. (C.59)
i c. From (C.31), (C.32) and (C.48)

Co.ov) = A'p,om) =245, GAwy) + Ap,m)/2
= 05X, Ry, "X, /T
—20"'X! R, "' X,,GB,, /T
+6,u X, Ry, " X, /2T
= OwX/R, "X, /T - 20" X R, "X, GX/R"X,/T*

+0,0 X, Ry, "' X, /2T. (C.60)
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ii c.From (C.48), by substituting Z for G we find that
Dp,ov) = Ap,EAwy/2
= 0"X|R, "X, EB,,/2T
= o"“XLRpM““XHEX{,RWXV/ZTZ. (C.61)
iii c.
GCp, oG = [see (C.60)]
= G[0wX,R,, "X, /T - 20" X R, "X, GX,R"X,/T? + 8,, X,R,,"' X, /2T| G. (C.62)
i d.From (C.31), (C.32) and (C.50)
Covp = A'wwip, = 240 GAp, + Awyp, /2
= 5wX|Ry, X, /T
—20" X R" X, GX} R, "X, /T
+6, X Ry, X, /2T. (C.63)
ii d.From (C.50), by substituting = for G we find that
D(VV)Pp = A(VV)EAPLI /2
= dXRVX,EX|R,, "X, /2T (C.64)
iii d.
GCyp,G = [see(C.63)]
= G[6,X[ Ry, X, /T - 20" X, R" X, GX Ry, "X, /T + 5, X/ R,," X, /2T | G. (C.65)
1. a. The p-th element of the (M + M) X 1) vector [ is
l,, = €GA, GeleGe = [see (C.54)]
e e
= —° (oMM GX'R, tu -
(e'Ge)'" (G GX#RPP XA“G/T) (e’Ge)'"
= "W GX|R,,"X,Gh/T, (C.66)
where
e
h=——. C.67
(e, Ge)l/z ( )
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2. a. Similarly, the (up’)-th element of the (M + M) X (M + M)) matrix L is

— 4 ’
lpw = €GCyp, Gele'Ge

el

e
——GCpp, G—r
(e'Ge)'" PuPu (e’Ge)'"
= Oy "W GXR, " RyuR, " X,y Gh/T = 206" ¥ I GX| R, "X, GX], R, ,* "' X, Gh /T

=hW GCp,p, Gh = [see (C.52)]

+6,0 01 GX[, Ry, " X,,Gh [2T. (C.68)

3. a. The p-th element of the ((M + M) X 1) vector c is

cp, = tr(Ap,E) =[see (C.35)]

o (X Ry, " X, B/ T). (C.69)

4. a. The (uu’)-th element of the ((M + M) X (M + M)) matrix C is

CPHP,/ = tr(prpH/ E) = [See (C.52)]
3 ‘o i = . i o
= Ouwot " tr (X Ry MRy Ry, " X E/T) = 20" tr(X[ R, "X, GX[, R, M X\, B/T")

+6W,/0W tr(X;lRppp“W‘XyE/ZT). (C.70)

5. a. The (uu’)-th element of the (M + M) X (M + M)) matrix D is

Pyp#’ = tr(DpH‘[)P/ E) = [See (C.53)]

oot tr(X R, M X, EXT R, X E[2T). (C.71)

1. b. The (uu)-th element of the (M + M) X 1) vector [ is

Z(ML) = [see (C28)] = e’GA(W)Ge/e’Ge
e e
GB,,G
(e'Ge)> M7 (e'Ge)'

= K GB,,Gh = [see (C.24),(C.28)]

= IGX,R'"X,Gh/T. (C.72)

2. b. Similarly, the ((up), (vv))-th element of the (M + M) X (M + M)) matrix L is

o) = € GCupmGele' Ge
= K GCuuym)Gh = [see (C.59)]
= W Gl,,0,uByuy — 2B,,GB,,1Gh
= 8u0,ul GB,,Gh — 21/ GB,,GB,,Gh

= 6}11/0;1#[(}41) —Zh/GBM,GBWGh =
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luwww = [see(C.24) and (C.72)]
= Ouwoul GX R X, Gh/T - 2h' GX R"'X,,GX,R"' X, Gh/T". (C.73)

3. b.The (uu)-th element of the (M + M) X 1) vector c is

Cup = tr(AgwE) = [see (C.38)]

tr(X, R X,E/T). (C.74)

4. b.The ((uy), (vv))-th element of the (M + M) X (M + M)) matrix C is

Cuw) = t(ClupenE) = [see (C.56)]
GA()E)

OOy tr(AnE) — 2tr(Ag

= [see(C.24)]
Oy Oy tr(X[ R X, E) /T — 2(tr(X, R* X,GX,R"' X, E/T?). (C.75)

5. b. The ((uu), (vv))-th element of the (M + M) X (M + M)) matrix D is

d(py)(w) = tr(D(W)(W)E) = [see (0.57)] = tr(A(W)EA(W)E)/Z

tr(ByuEB,,E)/2 = [see (C.24)]

= (X, R*X,EX;R"X,E/2T). (C.76)

1. c. Similarly the (u, (vv))-th element of the (M + M) X (M + M)) matrix L is

lpuy = €GCpam)Gele'Ge
e e )
= @G GG e = GG Gh = [see (C.62)]

I G [0 X Ry, "X,/ T = 20" X Ry, " X, GX,R" X, [ T? + 5,0 X Ry, X, /T| Gh. (C.77)

2. c.The (y, (vv))-th element of the (M + M) X (M + M)) matrix C is

Com) = [see (C.60)] = tr(CPN(W)E)
= O tr(XR,, "X, E/T)
—20" tr(X}, Ry, " X,,GB,,E/T)
+Ou tr(X[ Ry, " X, E/2T)
= [see (C.24)] = 6, tr(XLRPMWXHE/T)
—20" tr(X R, " X, EX,R" X, E/2T?)

+0y tr(X, Ry, "' X, E/2T). (C.78)
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3. c¢. The (u, (vv))-th element of the (M + M) X (M + M)) matrix D is

dpp(w) = tI‘(Dpy(W)E) = [see (C61)] = tI‘(AppEA(W)/Z)

ot tr(X, Ry, " X, EB,, E/2T)

ot tr(X) R, M X, EX| R, WX, E/2T?).

1. d. The ((vv), u)-th element of the (M + M) X (M + M)) matrix L is

l(w)p“ = BIGC(W)F)H Ge/e’Ge = h/GC(W)p“ Gh = [see (C.65)]

2. d.The ((vv), y)-th element of the (M + M) X (M + M)) matrix C is

Covp, = tr(Canyp,E) = [see (C.63)]

= O tr(X, Ry, "X, E/T)

Pu
—20* tr(X;R"X,GX|,R,, MX,E/T?)

+0, tr(X| Ry, " X, E/2T).

3. d.The ((vv), u)-th element of the (M + M) X (M + M)) matrix D is

d(vv)p,, = tl‘(D(w)pHE) = [see (C.64)] = tI‘(A(W)EAPP /2)

ot tr(X,R" X,EX} R, "' X,E/2T").

(C.79)

G 6, X[ Ry, "X, /T - 20" X R" X, GX/ Ry, "' X,, /T + 6,0 X/ Ry, " X,,/2T | Gh. (C.80)

(C.81)

(C.82)

Lemma C.1. For all estimators By, (I=UL, RL, GL, IG, ML) of B the following results hold:

Bl =B+ TB1I + (4)("[2),

where

BUL =(Z'Z/T)"'Z’E/ VT,

vec(BiRY) = W(X!X./T) ' X e/ VT,

GL) Vec(Bllc) = Vec(B1ML)

vec(B,

YIX(Z '@ In)X. /T ' X (E' @ Ir)e/ VT.

(C.83)

(C.84)

(C.85)

(C.86)
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Proof of Lemma C.1.

il. Since

i

Bu = (Z'2)'72Y.=(Z'Z)'Z(ZB+E)

B+ (Z’Z)'ZE=B+1(ZZ/T)'ZE/NT

B + 1B Y.

by vectorizing (5.34) we take

Thus,

y. = vec(Y.)=vec(ZB +E) = vec(ZB) + vec(E)

= (I®Z)vecB)+e=(IQZ)Yp+e=X.f+e

vec(Br) = WX/ X.)'Xy.

= PXX)'X(X.B+e)=VB+WPXX) X

= WB+tW(XX./T)'Xe/ VT = vec(B) + T vec(B, ") =

=Brr = B+ TBlRL.

iii. For any consistent estimator £~ of £7! it holds that

which implies that

Therefore,

vec(Ber) =

L= (),

El'eIr) = (Z'Ir) + w(7).

XL eInX.)  X/( £ ®IT)y.

YX(ER@INX) ' X(ET R IT)(X.B + €)

YB + WX ((Z7' ®I7) + w(0)X. /T X ((E @ I) + w(t))e/ VT
vec(B) + TP[(X(E' @ InNX./T) + ()] [(XUE " @ Ine/ VT) + w(12)]

vec(B) + TP[(X(E' @ InNX./T) ™" + tw(P)|[(XUE @ Ine/ VT) + w(12)]

vec(B) + TP[X(E' @ In)X./TI ' X (E7' ®@ IT)e/ VT + w(7?)

vec(B) + T vec(B:°h) + w(7?) =

(C.87)

(C.88)

(C.89)

(C.90)
(C.91)

(C.92)

(C.93)

(C.04)
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N

Ber = B+1B %+ w(7d). (C.95)

Since Bjc and By are the outcome of iterative use of the GL-estimation process, equation (C.94)

implies that

Bic = B+ B¢ + w(?) (C.96)
and
By = B+ 1BM + (1Y), (C.97)
where
vec(B1'°) = vec(BiM) = vec(B;°F). (C.98)

So, equations ((C.87), (C.90), (C.94), (C.96), (C.97) and (C.98)) complete the proof.

O
Lemma C.2. For any conformable matrix I' lemma C.1 implies that
lim TE[(B; - By,)T(B; - Byy)] = %im E[(B:! - Bi"*Y'T(B,' - B;YM)]. (C.99)
Proof of Lemma C.2.
B; — Bur = B+ 1Bi! + w(t?)) = (B + 1B1"Y) = t(By! — Bi") + w(1?) = (C.100)
B -Bu)T(B; - Bur) = [t(By' - Bi"") + o(t)I'T[t(By' - By"") + w(1?)]
= 7By -B""TB/ - B") + w(7’) =
TE[(B; - Bur)T(B;— Bu,)l = E[By' -B"")T(B,' - B;"")]+O(1) =
lim TE[(B; - Bur)T(B; — Buy)] = lim E[(B)' - B;"")T (B, - B;"")]. (C.101)
O

Lemma C.3. Since the rows & (t =1,...,T) of E are independent N (0, E) vectors, the matrix E’'E has a

Wishart distribution with weight matrix X and T degrees of freedom i.e,
E'E~W(,T), E(EE)=TL. (C.102)

Then,
E(EEL'E'E)=T(M+ T+ 1)L. (C.103)
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Proof of Lemma C.3.

€ r
EE=(e,....en)| i |= ) &g (C.104)
A
&r
T T
SEELEE = ) &L ) e
t=1 =1
T T
= Z e L g, + Z &e L el (C.105)
=1 t=1 t'=1

t#t

where & and g, are independent N(0, X) vectors for t # t'.

Let g be any arbitrary (M X 1) non-stochastic vector. Then,

g (&6 L7 ee))g

E(g’(stsg)l‘leteg)g)

tr(g e, L €€,8)

tr(ejgg el L ey) = €]gg ere] L7 ey =

E(e/gg e, L er)

[see Magnus and Neudecker, 1979 p.389]

tr(gg’ L) tr (E'E) + 2tr (g¢’ L' E)

tr(g’' Lg) tr (Im) + 2tr (§'Lg)

Mg'Lg+2g'Eg

M+2)g'Lg. (C.106)

Since € and ¢, are independent vectors for t # t', equations (C.102) and (C.103) imply that

Elg(EEZ'E'B)g] =

T T T

El|g Z£t£§2‘1£t£;+z e L leve, | g
1

t=1 t=1 t'=
t#£t

T T T
Z Elg (&6, e1e))g] + Z Z El¢ (e, evel)g]
t=1

t=1 t'=1
t#t

T T T
Z E[g’(sts;Eflstsg)g] + Z Z g E(stsg)Z*I E(ere;)g
=1

t=1 t'=1
t#t

i(M +2)g’'Eg + i ZT‘ gLE 'Lg
t=1

t=1 t'=1
t#

TM+2)g'Eg+T(I'-1)g'Eg

TM+T+1)g'Eg. (C.107)
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Since g is any arbitrary non-stochastic vector, equation (C.104) implies that

E[g(EEL'E'E)g] = ¢ EIEEL'E'Elg=TM+T+1)g'Eg

= E[EEL'E'E] = TM+T+1)E.

Lemma C.4. Let E; be the residuals of the regression equation
Y.=ZB+E,
when the B; (I=UL, RL, GL, IG, ML) estimator is used. Lemma C.1 implies that

Ef = Y.-ZB,=ZB+E-ZB+ 1B + w(1?)

= E-1ZB: + w(7?).

For the £; (I=UL, RL, GL, IG, ML) estimator of X it holds that

£ = EE/T=[E-1ZB) + w(t*)]'[E - 1ZBy' + w(t)]/T

= [E-1ZBi'T[E - 1ZB:']/T + w(t*)

= [E —1B\"Z'[E - 7ZB:1/T + w(7%)

= FE/T-1EZB,'/T-1B\"Z'E/T + *B,\"Z'ZB,'/T + w(t*)

= FEE/T - ?E'ZB/'/NT - ©®Bi"Z'E/NT + ©*B\"(Z'Z) T)By' + (1%

= FE'E/T+[B,"(Z'Z/T)B,' = E'ZB,'/ NT - B;"Z'E/ NT] + w(7).
By using equation (C.84) we find that

B\"Z'E/NT B."(Z'Z)T)Z'Z/T)Z’ E/NT

= B"(Zz'Z/T)B,"".

Similarly,

E'ZB,'/NT = B\Y""(Z'Z/T)B;".

Since I' = Z'Z|T, equations (C.111), (C.112) and (C.113) imply that

L1 = FE/T+[B/"IB - B"IB, - Bi"TB;"*] + w(?)

L —tVTE + tVTE'E/T + 2[B:"TB;' - By"“TB;' - B;"TB,"*] + w(1%).

(C.108)

(C.109)

(C.110)

(C.111)

(C.112)

(C.113)

(C.114)
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The following result holds:
B1[/1—~B1[ _ BluLll—vBll _ Bllll—-BluL
— Bller_lI _ Bl UL/I'Bll _ BlI/FBl UL + B1 UL/rBllIL _ BllJL/TBllJL
= B/ -B")T®B - B"") - [(Z'Z/T)'ZE/NTV(Z' Z/T)(Z Z/T)" Z'E/ VT]
= B! -BYYr®B'-B"Y-FEZz(Z'Z/)T)(2Z/TN(Z'Z/T)'Z’E/T
— (Bll _ BluL)lF(Bll _ B1UL) _ E/Z(Z/Z)flz/E
= B/ -BYY1(B -B") - EPE, (C.115)
where Pz = Z(Z'Z)™'Z’. Thus, equations (C.114) and (C.115) imply that
L = Z+1VT(E'E/T - )]+ (B - By""YT (B! - B;YY) — E'P,E] + w(t*)
= X4+l + szé +w(7)
= Z+1(X+ TEé) + w(7%), (C.116)
where
L, = VT(E'E/T - £) (C.117)
and
£ =B/ -B,"Yr(B,' - B;"") - E'P4E. (C.118)
Equation (C.116) implies that
£ [Z+7(Ly + L) + ()]
E 22N + tZ)ET + LN E + tEDETNE + tEDET + w(7Y)
El g 2 -2 R e PRI T E I 4 w(TP)
E o n B AL R L e - T E T w(TP)
E ' E B+ R E ETE - ZDET + w(T)
L7 — 181 + 128, + w(7®), (C.119)
where
Si=L'Lix, (C.120)
S)! =L ML 2L - EhHE (C.121)
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Moreover, the following results hold:

E(Z) E[VT(E'E/T - L)] = VTIE(E'E)/T - £] = [see (C.102)]

VT[TZ/T - £] = 0. (C.122)

ii. Since E’E ~ ‘W/(X, T) and since Pz = Z(Z'Z)"'Z’ is idempotent with

rank(P;) = tr (Pz) = tr[Z(Z’Z)'Z'| = tr [(Z'Z) ' Z'Z] = tr Ix = K, (C.123)
it follows that
E'P,E ~ W(L,K). (C.124)
Furthermore,
E(E'PzE) = tr (Pz)E = KE [see Magnus and Neudecker, 1979]. (C.125)
iii.
E(S;) = E(Z'L LY = Z7VE(Z)E™ = 0 [see (C.122)]. (C.126)
iv.
E(Z:£7'Ly) = E[VI(E'E/T - E) L 'VI(E'E/T - £)]

= E[T(EEL'F'E/T>?+EZ-FEE/T-FEE/T)]
= E(E'EL'F'E/T + TE - 2F'E)

= E(E'EL'F'E)/JT -2E(E'E)+TL

= TM+T+1)EL/T-2TE+TL

= ME+TE+X-2TE+TE=XM+1). (C.127)

E(Z)) E[(Bi' - By"')T(B,' - B;""') - E'P,E]

E[(B:' - B")'T(B,' — B;"")] - E[E'P2E]

E[(B,! - B;"}yr(B,! - B;"')] - KL (C.128)

= EE'Lirt) = rlEEhrt

L YE[B: - Bi"Y'T(B, - BiUh) Lt —KZ Lt

L 'E[B: - B T(B - ByUH)Zt —KZ . (C.129)
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vi. Thus equationS (C.121), (C.127) and (C.129) imply that

E(S)) = E[LN(ZET'L-EDET]
= EBE'5riprt-rEle
= E'EEZL)E - EETEi T
= M+1)IL'EL + KZ ' - 2 E[(By! - ByULYT(By - By ULy !

= M+K+1DZ' -ZTE[B - BYYY (B, - B Yh 1z

Lemma C.5. We estimate the model

yv.=X.pte&

by using the I estimation process, and we estimate (27! ® It) by using the estimator

A1
(X ®Ir).

(C.130)

(C.131)

(C.132)

Then by using (C.132) we estimate (C.131) via the GL-estimation method. Let £; the estimation of £ by

using the GL residuals, &g; = vec(Egy) say, from equation (C.131) i.e.,

L =EEq/T.

(C.133)

Let Bcr be the GL estimator of B in (C.131). For the 62 (I=UL, RL, GL, IG, ML) estimator of ¢ holds

that

67 = (y.—Xpor) (& ®In(y. - Xfor)/(TM - n)
= &, (57 @I /(TM - n)
= [vec(Bo) (& ® Ir)[vec(Eay)]/(TM — n)
= tr[Ba(EVEL1/(TM =n) = tr £ Bl By /(TM — n)
= tr(E]'TL)/(TM = n) = tr (E7'£))/(TM = n)/T)
= tr(£7L)/(M = n/T) = tr (£ L)/ (M - T°n).

By using equations (C.116), (C.117) and (C.118) we take
L= L+1L + 2L + (),

where

L = VI(EE/T - L)

and

£} = B/ - Bi'"'YI(B/ - B;"") - E'PE.

(C.134)

(C.135)

(C.136)

(C.137)
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Then, equations (C.119),(C.121), (C.134) and (C.135) imply that

ﬁ;lﬂj = [E7' =18 + %S,  + (L + 1L + Tzﬂé +w(t%)]

LE+ 77y + 227 E] - 1812 - 7281 L + 728,/ L + (1)

I+t Ly + 227 L) - cE L B - 2T R BT + 2N (S BT - EDETIE + w(7)

= Iy+TLNZ-E) +w(®) = (C.138)
(L) = thy+ P [Z7NE - I+ w(d)

= M+7u[ZVE -]+ w(@®) = (C.139)

6% = tr (E71 L) /(M = tn) = [M + T tr [EY(Z) - ED]I/(M - T1) + (7). (C.140)

Moreover,

LN -£) = LNEETE - LT E + E) - £

L(EZ LT - B - (5 E71E - E))]

LN EE - - (g e - zg)z—lz

SSE-SlL=(S,-shr= (C.141)

tr[Z7NE - Z)] = tr (S)' - $))L (C.142)

Thus, equations (C.140) and (C.142) imply that
62 = [M + T2 tr[(S2! = S EN/ (M — 2n) + (7). (C.143)
Lemma C.6. Define the M X M matrices
M; = %ij?o E(S,)) (C.144)

and

A = %im TE[(B; — By)'T(B; — Byp)] (I=UL, RL, GL, IG, ML) (C.145)
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The following results hold:
i.
M; = lim E(S,) = (C.130)
= M+K+1DE - %im E[(B:! - Bi"tYT(B,! - B;"})]1L!
= [see Lemma (C.2)]
= M+K+1)E™" - E_l[jlij{)lo TE[(B; - Bu) T(B; — Bup)lJ1E™"
= [see (C.145)]=M+K+DE!'-LA L= (C.146)
M -Mg))E = [(M+K+DE ' —ZA L - (M+K+1)E' + LA 27N E
= CUgE - A HE =L Ag -ADETIE
= LY Ag - A)). (C.147)
ii.
E[(Sy' —=S,))E] = [E(Sy) — E(S2))IE = [see (C.130)]
= [M+K+1)L -z E[B - By T(B,! - BYh!
~-M+K+ 1L+ ZE[(BY - BULYT(BY - BiYH)EHE
= -L'E[By -B"YT(B - B"")Z'E
+ZYE[B) - BYYYT(BY - B/ ETlE = (C.148)
}im E[(S'-S)E] = -£! %im E[(B, - B,"")T(B, - B;"")]
+x! lim E[(B)) — By"'YT(By — B;Y")] = [see Lemma C.2]
= -z %g{}o E[(B; — Bur)'T(B; — Buy)]
+r! 71111‘[ E[(BI - BUL)/F(B] - BUL)] = [see (0145)]
= LA+ LA =E7A - A) = £V AL - A)), (C.149)

because the I estimation method is the GL method.
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iii. Moreover,

S, = K5z = VT 'FPEL Y T-£7'28)
= VIE'FEEYT-L

= w0ii )ik=1,... MI[(Ox& &/ D=1, mI[O1j00 ) j=1,...m] = (030 )i j=1,..m
VT |[Gnoi™) 1[(6x&&1/T) 1(Srjou™) 1 - [0 7") ]
M M
= VT [(Z Z 5ik6kl(§l/'0'ii710'1171fllcfl/T)ij] = (6501 )i ]
k=1 I=1
= \/T[((Sijoii‘lojj‘lslfsj/T - 61‘]‘01’1'_1)1',]']. (C.150)

Moreover, we define the ii-th elements of matrix S;

nglz)) = \/T[Oii_l(Oii_lE;fi/T -1)], (C.151)

and

s1= [(sg))izt,.m]’ (C.152)

Since E'E ~ W(E, T), & ~ Nm(0, E), & ~ Nm(0,0;Ir) and E(E’'E) = TE we have that

E(sisg) = O,‘,‘IT, (C.153)
E(ge)) = L, (C.154)
E(EI,-E,') = TOI'I', (C.155)

and equation (C.117) implies that the matrix
W = VTE, = T(EE/T-X£) = FE-TE (C.156)

is a Wishart diagonal matrix in deviations from its expected value. Let w;; be the (i, i)-th element of

W. Then, since oj; is the (i, i)-th element of Z, following Zellner, 1971 p.389, (B.58), we find that

G,’z‘(l) = ﬁ(E;Ej/T - G,‘,’) = E(O‘ii(l)) =0 (C.157)
VTV = T(e)&;/T — 0) = E(wy) = 0 (C.158)

|

and by using Theorem UR.1 we have

cov(wi,-w]-]-) E(wi,-w]-]-) = T(G,’]’G,’j + (71‘]0,']') =0 (0.159)

cov(wiwi) = E(wiwi) = T(0ii04 + 0504) = 2Taii? (C.160)
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E[sisj]] = E

By using Lemma (UR.2) and equation (C.151) and since & ~ N(0,0;Ir) we have

E(e/Ire;)

E(e/Ire;e ITe;)

El(siV)*]

511(1)
1)
522
s ® s sy ™]
__SMM(l)_
m?2 Mg, @)
S11 5117822
2
522(1)511(1) 522(1) 522(1)533(1)
[spam sy @

tr(oilr) = Toj;

T?0;* +2To;* = (T* +2T)oi” =

E[ VTo; (0 'e]e:/T - 1)]I?

s11Wspm

2
sapm™?

TE[aii_z(aii_zslfsie;si/Tz - 20,‘,'_181’-81'/T +1)]

TG,‘,‘74 E(E;Ei)z/Tz - 2T01‘f3 E(E;Ei)/T + TG,','72

4 (TZ + ZT)GZ',‘Z
i T s

To 2

201','72.

E[(si"sj;")] = 0.

T ..
- 2T0'ii_3%

+ TO,','_Z

By using equations (C.164) and (C.165), equation (C.161) can be written as

E[s1s]]

>2(711_2 0 ce 0
0 262272 0

2

0 0 20mm~ ]

tr(oilr) tr(oidr) + 2 tr(oilroilr) = (Toi)(Toi) + 2(Toi?)

(C.161)

(C.162)

(C.163)

(C.164)

(C.165)

(C.166)
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26,2 0 ... 0
0 2022_2 0
fm s =
0 o0 20

Lemma C.7. Calculation of A; (I=UL,RL,GL, IG, ML)

(C.167)

Since, y. = vec(Y.), X, = (Im ® Z)W, & = vec(E) and vec(B) = Wf where y., € are (M X 1) vectors and
(IM®Z), ¥ and X, are TM X Mk, Mk X n and TM X n matrices, respectively, the following results hold:

(i)

B\YL = (ZZ/T)'ZE/NT =T(ZZ)'ZE/NT
= VI(Z'2)'ZE=
vec(BiU) = vec[VI(Z'Z)'Z’E]

VT vec[(Z'Z)'Z'E]

VT ® (Z'Z) ' Z'] vec(E)

VT[Iy ® (ZZ)'Z ]e.

vecB*h) = W(X!X./T) ' Xle/ VT = VTW(X/X.) ' Xe.

(iii) Similarly,

vec(B:°Y) = vec(Bi'€) = vec(B;M)
= YX(Z'QI)X./T'X/(E' @ Ir)e/ VT
= VIYIX(E'@IDX]'X/(E' @Iy
Moreover,
B -By = t(Bi'-BY) + w(t?) = [see (C.100)]

= VT(B; - Bur) = VT[t(Bi' - Bi") + w(7?)]

(Bi'-B") + w(1) =

VEC[ ﬁ(B[ — BUL)] = \/TVGC(EI - BUL) = VEC(B[ - BUL) + a)(’c).

(C.168)

(C.169)

(C.170)

(C.171)

(C.172)

(C.173)
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Define the matrix @; such that
VT®,e = vec(B;! - B;Uh). (C.174)

Then equations (C.173) and (C.174) imply that

VT vec(B; - Bur) = VT®;¢ + (7). (C.175)

By using equations (C.168), (C.169), (C.170), and (C.174), we find the following results:

I ForI=UL
VT®e = VT e = vec(Bi Y- — BiUE) = 0 = @y = 0. (C.176)
II For I = RL
VI®e = VTdgee = vec(BX - BiY) = VTW(X!X.) ' Xle — VT[Iu ® (Z'Z/T)'Z' ¢
= VIPXX)'X - [Iu®(Z'Z/T)'Z']]e =
Dpp = PXX)X -[Iye(Z'Z/T)'Z]. (C.177)

IIT Similarly, for I = GL,IG, ML

\/Y_"(Dls = \/]_"(DGLE. = \/f(DIGE = \/Y_"(DMLS
= vec(B;°t — B! = vec(B ! — Bi") = vec(B;ME — B;'h)
= VIPX(E'QINX] ' X(E'Ir) - [Iu® (Z'Z/T) ' Z |]le =
D, = Dig=Dyy = PIX(E'QINX]'X(ET®I) - [Iu® (Z'Z)'Z']. (C.178)

Let I be any arbitrary M X 1 vector and let L = II' be any symmetric matrix i.e.,

I =[(li)i=1,...m] (C.179)
and
11 1111 ce l1lM
L = [(pij=r,.ml =10 =|:|,...,Im) =
ZM ZMZ1 ce lMlM

[(ilj)ij=1,..m] =

W G j=1,...,M). (C.180)

N
sl
|
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Then,

I'B)'-B""YT(B)' -B,"") = tr[I'(B,' - B,"")T(B,' - B;"")I]
= tr[(B)' - By"")YT(B)' - B,"")Il')
= tr[B - B"")YT(B, - B,"")L]
= [vec(B' - Bi"™)] vec[I'(B,' - B;"")L]
= [vec(By' - B"M]'(L’ ® I[vec(B,' - B;"")]

= [vec(B, - Bi'")['(L®I)[vec(B,' — B;YL)].  (C.181)
By using equations (C.174), and (C.181) and since E(ee’) = Z® I, we find that

U'(B' - BiUYT(B)' - B,") = (VT®De)(L @) (VTDye) =

Te D(LRTDe Ttr (€ @(LRTI)Dre)

= Tt (PLST)Dee’) =

E[I'(B,' - B;""YT(B,' - B;"")1] T tr (@)L ® IND; E(ee'))

= Tt(P(LRINDP(ESIT)). (C.182)
Then, Lemma C.2 and equations (C.145) and (C.182) imply that

ragl

I lim E[(By' - B;""YT(By' - B;")]l
— Yhm E[l,(Bll _ BluL)lF(Bll _ BluL)l]

= lim[Ttr (@)L O DPUESI7)]. (C.183)

The following results hold:
(a) Equations (C.176) and (C.183) imply that

V'Ayl= 7lwll’I'l [T(‘D&L(L IOy (ERIT))] =0= Ay =0. (0184)

(b) Since X! = [x],, ..., X},] we take

X

¥ M
XX = X, Xl 0 =) XX =
X .
M -1
xx)" o= Y X Xe| =
u=1
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]
WYX/ X)X/

M -1
[Z X;,*Xw] X, ..., X,]

p=1
Yu

M -1
= [lp,- fo;,*xw] X]] . (C.185)
AN ij

Moreover,
(Z'2)"17' 0
Iue(Z'2)'2] = = diag[(Z'2)"'Z’)/]
0 (Zzz)'z
= [(6:(Z'2)7'Z);,]. (C.186)
Therefore,
@p = YXX)'X -[Iu®(Z'Z2)'Z]
M -1
= |[w|)] X;HXW] X, -6i(2'2)"'Z
p=1 i,j
= [(@i"");], (C.187)
where
M -1
" = | Y X\ X | X[ -04(22)7Z" . (C.188)
u=1
Thus,
(D}{L(L ® F) = [((I)iKRL,)i,K:I[[(lKL])KL]] ® F] = [((I)iKRL,)i,K][(quF)Kq]
M
= [[Z qu(DﬁcRL/rJ (C.189)
x=1 iq
and
Or(E®IT) = [((quRL)q,y][[(6;tj(7yy),tt,j] ®Ir] = [((quRL)q,y][(6yja;tyIT)y,j]
M
= [[Z 5#1’%#%#“] } = [(0q/")g ) (C.190)
#=l 9.
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Then, equations (C.189) and (C.190) imply that

M
(D;?L(L ® F)(DRL(E ® IT) = [Z lK 11<RL,T] [(Ujjq)quL)q ]]
k=1 iq ’
M M
= |12 ) oy @i T, | | = (C.191)
q:l k=1 ij
M M
= tr[@ (LON PR (EZRI)] = tr|[ Y ) lgo)®; T,
q=1 x=1 i
M M M
= Z Z Z‘ quGii tI‘((D,‘KRL’FquRL). (C.192)

=1 g=1 x=1
Since X;. = ZW; and I = (Z’'Z/T), equation (C.188) implies that

-1 -1

M M
OTOR = (WY X)X, | X.-0:(Z2)'ZV(ZZIT)-[¥, ZX’*X,,*] |~ 0,(Z'2)7Z']
p=1 p=1
M -1 -1
= Xe|Y. XX | Wl -0nZ(Z2) N2 2)Y, ZX: | X.-0u2zz'Z)T
p=1 p=1
M -1 M -1 M -1
- x| Y. xx.| wzze,|Y xx.| x-0,x.|Y x.x.| Y@Zz2zZ
p=1 p=1 p=1
M -1
-4 Z(ZZ)N(Z'2)¥, ZXX,, X!, + 6105 Z(Z'Z2) (2’ Z2)(Z'2)'Z']/T
p=1
M -1 M -1 M -1
= Xe| Y. XX | @0 @)Y X0 X0 | X - 05X | Y XX | (20
p=1 p=1 p=1
M -1
~5i(ZW) | Y X X | X + 000y Z(Z2) Z') T
p=1
M -1 M -1 M -1
= X | Y X0 X | (X)X | Y X0 X0 | XE = 00X | ) X0 X | (XY
p=1 p=1 p=1
M -1
~0i(Xg)| Y XXp] X[, + 616, 2(Z'2)" Z )T =
M -1 -1
(D R T DY) = tr [ZX@XP*/T] (X! X,./T) [Z X X */T] (XX | /T
p=1

-1
M
—bgi tr [ngxp*/T] (X! X/ T)| /T
p=1
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M -1
Z X! X,/ T
p=1

+61'K64i tr(Pz)/T.

—tr |5 (X! X,./T)|/T

*

Since Z is T X k, equation (C.123) implies that

tr(Py) = k.

Since X;. = P;'X;, X;. = P;7'X;, and since P;"VP; ™" = §;;R, we find that for any i,j =1,..

X;X]'*/T = X{Pi‘l'Pj‘lXj/T = (SZJX;RLJX]/T = 5,‘]‘Bi]' = Bii [see (024)]

Therefore,
M M
Y X, X, /T = Y By=
p=1 p=1
M -1 M -1
Y. XX /T| = |).By
p=1 p=1
So,

[( M -1 M -1
tr [Z X)X, /T| (X[ Xe/T)|=tr [ZBW] 5iBi

and similarly

1=
o]
3
—_—
Oﬂ —
E

r -1
M
tr [Z X)X, /T| (X, X,/T)| = tr [

Furthermore,

-1

[( m -1 M
[Z X;,*Xp*/T] (X..X,./T) [Z X)X, T] (X! X,./T)
[\ p=1 p=1

(M -1 M -1
ZBW 6iqBiq ZABW 6iKBiK .
| p=1 p=1

Thus, equations (C.193), (C.194), (C.197), (C.198), and (C.199) imply that

t

=1

Il
-
o

(C.194)

M

(C.195)

(C.196)

(C.197)

(C.198)

(C.199)

M -1 M -1 M -1
(@ TR = [Z Bp,,] 5iyBiy [Z Bm,] OB |/ T = 8 tr [Z Bm,] 8iBix |/ T
p=1 p=1 p=1

-1
M
—Oj tr { Bpp] 6iqBiq /T + (SiK(Sq,‘K/T.
p=1

(C.200)

(C.193)
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Since Iy, = Il (see (C.180)), equations(C.179) and (C.192) imply that

tr [P, (LR T)Dri(E® I7)]

Il
iP=
iz

1=
=
:q
=
S
A
=
~

)

£

M M M
= Z Z Z ZKGii tr((pi1<RL’F®qiRL)lq
=1 g=1
M
=T [[Z i tr((DmRL’F(I)mRL)] ]1:
kg

I'Agrl 0 [T(Pf (L@ T)Prr(E @ 1I7))]

I
B

-~

N ]
= lim/l [Z GiiTtr(‘DikRL/r(pqiRL)]
[\ i=1 kaq

» :
= I'lim [Z oiiTtr(QikRL’FCinRL)] =
|\i=1 kg

M
Age = lim [[ZaiiTtr(d)i,cRL’Fd)q,'RL)J ] (C.201)
kiq

i=1

By using (C.200) we find

M
-1
Bpp) 6i1<Bz1< 6q1 tI‘ ZBpp 6IKB1K

Mz

M
Z 0i T tr(@y T D, 1)

M M
Y o,,[ tr[() By) |

i=1 i=1 pr=1 p=1 p=1
M
o tr[( ) Byy) 5,,,qu + 51,<5,,,1<}
p=1
M M M
= g0y tr ( Z BPP Z BPP qK — OgxOpg tr Z BPP
p=1 p=1 p=1
M
~dgeatr[( ) Byy) K,,] + 5ge0geK. (C.202)

p=1

So, equations (C.201) and (C.202) imply that

» M 5 M
BPP) Bw:( Z BW) BqK] — Oqu0gqg tr Z BPP fiK
p=1 p=1

-1
By) B+ 5qKaqu)kq]. (C.203)

App = [(6%0% tr(

M= 1=

—Og O tr [(

<
]
—_



Appendix C

287

(c) Since X, = (Iy®Z)¥ and X,. =ZW¥, (u=1,..., M), we find that

V(L)W

The following result holds:

Do (ERIND;;, =

= W(LRZZT)V =V (L ZZ)¥/T

YNIyeZ]LeIr|[Iy®Z]|¥Y/T

[ ® Z)PTL Ir][(In ® Z)W]/T

XL @ IT]X./T = [(X;)il[iIr)i, 1[(X);1/ T

M M
(X, X./T) =ZZZ,](X’ P VP;IX/T)

o
Oilyf(XIRVX;/T) = Y ) 034lBij =

i=1 j=1 i

ll

[\’]z

1
—_
.
1
—_

M= iPl=
Mi I'l\’lg

-
1l
—_

YIX/(Z' @ InX] ' XI(Z" @ In) - [Iu® (Z’2) ' Z(E®Ir) -

(PIX(Z' o INX] ' X(Z7 &Ir) - Im® (Z'2)' 2T

[PIX(E' INX] ' X(E ®Ir) - [Iu® (ZZ) ' Z|(E®I7) -

[(E'INX[X/(EZ'INX] W - [In® Z(Z'Z)']]
YIX(E'INX] ' X/(E QI ERIT)ET @ In)X. -
X/(Z'oI)X] '
“PX(E'INX]'X(EINERIT)IN®Z(Z'Z) ]
[y ®(Z'Z)'Z|(ER )L @ INX[X(Z' ® I1)X.] ' ¥’
+HIy®(Z'Z)'ZNEI) Iy ® Z(Z'Z) ']

YX/ (Ll eInX.] 'Y

~YIX(E'INX.] (M ® Z) P [In © Z(Z'Z) ']

[ ®(Z'Z)7'Z'][(Iy ® Z)P][X(E' @ I1)X.] ' W’
+E®((Z'Z2)7(Z2'2)(Z'Z2)7']

YIX/ (Ll eInX.] 'Y

~YIX(ERINX] W Iy Z) Iy Z(Z'Z) ]

-y ®(Z'2)'Z'|(Iy ® Z)P[X(E @ ID)X. ] W’
+[L®(Z'Z2)]

YX/(ZleInX.]'w

~YIX/(Z'QINX.] W (Iy ® Ix)

(I INVP[X/(E'QINX.] W + [E®(Z2)7].

(C.204)

(C.205)
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Since X, = P'X, and Q! = P(E® IT)P’, we find that

X (ZleIDX, = XPVEIlel)P'X
= X'QX= (C.206)
X/(ZleInX.] ! = (X'QX) L (C.207)

Also, since I' = (Z'Z/T), A = (X’QX/T), and G = (X’QX)™! = A7, by using equations (C.205),
(C.206) and (C.207) we find that

T®cL(E Q IT) D, YX'QX/T)'W - X' QX/T)'W Iy ® Ix)
(I N¥YX'QX/T) W +[£E®(Z'Z/T)']

PGV -YGY - PGV +(E0GH=(LZ®G) - WwGY .(C.208)

Moreover, since £ = [(8;j0"R"); =1, m] we take

A = X'QX/T = [(X))][(6:j0"R")i j][(X));]/T
M M
= 0i(X/R"X;/T) = ) 0iBi =
i=1 i=1
M
G = xox/T) =47 =() oiBi) . (C.209)
i1

Thus,

Ttr @, (EQIr)P, (LOT)

tr (EL ® Ix) — tr[GW/ (LR ) W]

£oa] [0

i=1 i=1

M 1M
= Ktr (Zl/ l) —tr {[Z O'iiB,','] [Z l,'iBi,']

= tr(XL)tr (Ix) —tr

i=1 i=1

=

= Ktr(TEl)—tr {Z 1;GB;;
i=1

M

= I(KD)- ) litr (GBy)l;
i=1

= U(KE)I - I'[(tr (GBy)); ]l

= lI[KE - [(tI‘ (GBji))i,i]]l = (0210)
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For any arbitrary vector I

U'Agill = TAgl=1Ayl
= lim[Ttr @ (L& PcL(E @ I7)]
= lim [F[KE — [(tr (GB:));]l1]
= I'[KE - [(tr (GBy))illl =

M
Agr = Ajg = Ay = KE — [( tr[z OiiBii]_lBii)i,i]'

i=1
Lemma C.8. The LS estimator p, of p, admits the stochastic expansion
pu=pu+1pa + 70 + (),

where

pﬂ(l) - _(Ppr(l) _ Ny(l))

and

pu? = N,® - N,OD, + p [(D,V)? + D,®].

Proof of Lemma C.8. Since

T T T-1 T
<~ _ O 2 _ o 2
Pu= Z Ay tle-1y/ Z Uy, = Ay tlts 1)/ Z ty, = Nu/Dy,
=2 t=1 t=1 t=1
where
1., .
N, = EupDuy/Touy
and
Dy =i, /Tow,”,
where

Uty ~ N(O, oy,u/(l - Pi)) = Gu,lz = Oyy/(l - P;ZJ)
and D is a matrix with (¢, #')-th element equal to 1 if |t — /| = 1 and zero elsewhere.

Let [;’ be the LS estimator of B in the (u)-th equation

Yu = Xuf + 1y

Then,

iy Yu— X =X +uy — X,p
Uy — 1 ﬁXy(ﬁ = p) = u, —1X,0,,

(C.211)

(C.212)

(C.213)

(C.214)

(C.215)

(C.216)

(C.217)

(C.218)

(C.219)

(C.220)
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where

0, = VT(B-P) = VTI(X/X,) "Xy, - B
VTI(X,X,) 7 X (X, + ) - B

VI(X, X)X X, + VT(XX,) ™ X, — VI

VT(X, X)Xy = (X[ X,/ T) " X,/ VT =

X,/ NT = (XX, /T)0,.

But, equation (C.220) implies that

w,Dii, = (uy—7X,0,)D(uy —X,0,)
= (u, —70,X,)D(u, — tX,6,)

= u,Duy - 20,(X/Duy/ NT) + 0,,(X/X,,/T)0,..

Then by using equations (C.216), (C.221) and (C.223) we find that

where

and

Ny

i, Dt /2Ta,,”

w,Du,, [2To,, 2 - 2[u, X, (X, X, /T)™" / VT|[X,Du,/ NT]/2To, 2
+[), X, (X X, /T) ™ NTI(X DX,/ T)(X, X, /T) "' X[/ VT1/2T0,, 2
u;Duy/2Tou“2 - ’(Zu;,X“(XLXy)_1X;,Duy/au#2

+70u, X, (X1, X,) 7 X, DX (X[, X)) Xy /204,

u,Duy / ZTGuPZ - Tzu[’lPX# Du,/ auyz

+72u;[ Px,DPx,u, /20y, 2

Pu—pPu+ u;Duy/ZTauﬂ2 + Tz(u;lPXyDPX“u},/2 - uLPX“Du},)/aup2

pu+1[ \/T(u;lDuH/ZTau“2 - pu)l+ Tz(u;lPXHDPX“u,,/Z - u;JPX”DuH)/auP2

Put+ TNH(1> + TZNH(Z),

T-1
Nu(l) = \/T(uLDuH/ZTUWZ - py) = ﬁ( Z uu,u(Hl)H/ZTUWZ — Pu

t=1

N,® = (u; Px,DPx,u,/2 - u,Px, Du,)/0,,”.

(C.221)

(C.222)

(C.223)

(C.224)

(C.225)

(C.226)
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Similarly, equations (C.220), (C.221) and (C.222) imply that

iy = (wy —1Xu0,) (uy — 1X,0,) = (u, — 10, X))y — 1X,0,)
= wu, —20/,(X,u,/ NT) + 0,(X,X,/T)0,
= wu, —20,(X,X,/T)0, + 0,(X,X,/T)6,
= wu, — 0,(X,X,/T)0,
= wuy — X,/ V)X X,/ T) ™ (X[ X0/ T)X] X,/ T) 7 (X, / VT)

= wuy, - u;lXH(X;XH)_lX",u“ =y, — uw, Px,u. (C.227)

Thus, equations (C.217) and (C.227) imply that

where

and

_ ~/ ~ 2 _ 2 _ 2
D, = uyu},/Tauu = u},u“/Touy uHPX“uy/Tou“
= 1-1+ uLuH/TOqu - u;PX“u”/TGuM2

= 1+1[ \/"._F(u;luH/Tou“2 -] - 'czuglpxﬂuy/auﬂ2

= 1+,Y-1D,?, (C.228)
D, = VT(,u,/To,,* - 1) (C.229)
D,® =u,Pxu,/0,’. (C.230)

Thus, by using equation (C.228) we find that

= 1+ T(Dy(l) - TDM(Z)) =

n1+0,"Y -, =1-vD," -1D,?) +*D,? - 1D, ?)* + w(7?)

1-1D," + ?[(D,V)* + D, @] + (7). (C.231)

By using equations (C.215), (C.224) and (C.231) we find that

where

N, D, = (p, + N,V + 2 N1 - D,V + 2?[(D,V)* + D,P] + w(1%)]
Pu— prDy(l) + szy[(DH(D)z + DH(Z)] + TNy(l) - TZNP(DDH(D + TZNF(Z) + ()
pu — t(puD,Y = N, V) + [N,@ - N, YD, D + p,[(D,V)* + D] + w(7?)

pu+ 1(pu” +10,%) + (), (C.232)

p = (0D, - N, D) (C.233)
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and
py(z) = Ny(2) - Ny(l)DH(l) + py[(DH(D)2 + DH(Z)]. (C.234)
Since
1 pu - put
, 1 Pu
Ry = PP, = — 2| , (C.235)
P! 1
it is straightforward that
Ry =P, 'P, 7 = RM = (1+ p,2)Ir — puD — p,*Afsee  (C.5)]. (C.236)
Then,
R, " =dR" [dp, =2p,Ir — D —2p,A[see (C.7)] (C.237)
and
R, " = PR [dp,* = 2Ir —2A = 2(Ir — A) [see  (C.8)]. (C.238)
Define the (T X T) matrices
R =Ry, " +ip,A, Ryt = Ry " +iA (i=1,2). (C.239)
Then,
R = RPHW +2p,A =2p,Ir — D = 2p,A +2p,A

2p,Ir - D. (C.240)

The quantities p," and p,® can be written as functions of Ry** as follows:

pu? = =(puDu"Y = N,V) = [see (C.225) and(C.229)]

~[pu VT u, /Ty, * = 1) = NT(w,Duy /2To,,2 — pp)]

- \/T_"(Zpyu;luy - u;lDup)/ZTau“2

—u,(2puIr — D)u,/2 ﬁou}lz = [see (C.240)]
= —uRo"u,/2VTo,,”. (C.241)
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ii.

p® = NP-N,OD,D 1 p,[(D,V)+D,]
- NH(Z) _ Np(l)Dy(l) + Py(Dy(l))Z + PyDy(Z)
= N2+ p,D,®+D,Yp,D,D - N, V) = [see (C.241)]
= N2+ p,D,? -D,V[—(p,D,V = N, )] = [see (C.241)]

= N@+p,D,®-D,Mp, 0. (C.242)

By using equations(C.225), (C.226), (C.229), (C.230), and (C.240) we find that

204, *(N,? + puD,?)
= 20,,°[(u, Px,DPx,u,/2 =, Px,Duy) /0y, + pust, Px, 4,/ 0u,”]
= u;lPX#DPX“uH —2u, Px,Du, + ZpMuLPX“uH
=, (It - Px,)D(Ir — Px,)u, — 2u, (It — Px,)Du, + 2p,u, (It — Px,)u,
= u;ll_’XpDI_’qu,J + uLDuH - 2u;nyDuy - 2u;1Du,J
+2uy, Px, Duy, + 2p,ujmy, — 2p,u,, Px,uy,
= u,Px,DPx,u, — 2p,u, Px,uy, + 2p,m,u, — u,Du,
(since Py, is idempotent)
= u;ll_’xﬂ (D - 2p,Ir)Px,u, + u,(2p,Ir — D)uy

= _MLPXHRZHHPX“”‘LL + u;RZW‘uy. (C243)

Similarly, equations (C.218), (C.229), (C.230), (C.242), and (C.243) imply that

Pu

@

204,204 = 20, [N, + p,D, @) — D, Vp, D]

ZGUHZ(N}J(Z) + puDH(Z)) _ 2Uupsz(1)Py(l)

—u, Px, Ryt Px, uy + u, Ry uy, + 20%2 \/T(u;luy/Ta,,“z = 1)(u, RoH*uy /2 ﬁauﬂz)
—HLPX“szl_)XMuy + u;sz‘“uH + u;uyu;Rz“"uy/Tauﬂz - u;le“Pu” =

—u;ll_’xy Ry Px,u,, /Zauﬂ2 +uguu, Rot 'y, /2Tou#4. (C.244)
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Lemma C.9. The following results hold:

i) By using (C.212) the sampling error of the Least Squares estimator of p, is

5,15 = p”;p“ = VT(p, - py) = [see (C.212)]

Pu
= \/f[py + T(p#(l) + Tp#(z)) +w(t®) - Pl

= py(l) + pr(z) + (%)

= da" + 1" + (), (C.245)
where
day"® = pu" =~ Ro"u, )2 VT2 (C.246)
and
doy'® = pu® = —u, Px Ro" Px,u,/20,,% + 10, Ro*'u, /2T, 2. (C.247)

ii) The iterative Prais-Winsten estimator of p, is (see Magee, 1985)

1-p2)
prw = phs - 72—( Pu )[u,ﬁPx,, Ry"Px, VR*u, + uR*VPy, Ry"*Px VR"u, /2]

Oup
+w(td), (C.248)
where
V= Ry — XX RX,)'X) = [I - X,(X[R*X,)" X} R, ]JR*
= W,RH (C.249)
and
Wy = T = X, (X[ R X,) 7 X Ry (C.250)

The iterative Prais-Winsten estimator of p, is equal to its GL estimator, i.e., ﬁpw = ﬁGL. Thus, by

using equations (C.248), (C.249), and (C.250), the sampling error of iterative Prais-Winsten estimator

of p, is
6[)“GL:(5PPPW = ﬁ(ﬁﬁw_P‘u)
= [(p~° -p,) - 2—(1_p“2)[ ' Px. Ro**Px, VRMu, + 1/, R VPx RoMPx VRM, /2]
B Pu =P =T Ouu xR Xy Wy T Uy X2 Xy Uy
+a)(73)]/”c
1-p.)
= 5P [, Px Ry Px VR*u, + 1/, R VPx Ry*'Px VRu, /2] + w(7?
= 0p, T - u, Px,R,* Px, Uy +u, x, Ro"" Px, u, w(T7)
= do. +1ld LS—(l_p“z)[ ' Py Ry Px VRMu, + 1/ R*VPx Ry™ Py VRMu1,/2]] + w(7>
= My T1a©2)u o—u“ X, %2 X, uy +u, X, X2 X, Uy w(T7)

pp
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= d(l)yLS + ’Id(z)yGL + a)(’tz),
where

dow® = —uPx Ro"Py,u,/20,7 + u,uu,Ro"u, /2T, *
1-p2) -
( _ Pu )[u; Px, Ry*'Px, VR, + 1, R*VPy, Ry"* Px, VR*'1,/2].
uy

iii) The ML estimator of p,, is

1- Puz)
pu

AML

ot = pi" + lpy (1 + ur®) = pul + (7).

(see Beach and MacKinnon, 1978, Magee, 1985).

Thus, by using equation (C.253), the sampling error of ML estimator of p, is

6ML

(C.252)

(C.253)

Pu = ‘ﬁ(ﬁﬁﬂ - Py) = [(ﬁﬁw - Pp) + Tz[Py(l - Pyz)(ulyz + MTyz) - Py] + C‘)(TS)]/T

1- PyZ)

pp

Sp, " + tlpy (11,2 + ury?) — pul + w(7?)

1-p%)
= day" + tld, " + P#—P(ulyz +ur,’) = pul + w(t?)

LS ML
d(ny + Td(z)y + CL)(TZ),

where

ML GL
dow™ = deu ™+ pu—— (g

iv) The Durbin-Watson estimator of p, is
pa" =1-Dw,/2,
where Dy, is the Durbin-Watson statistic, i.e.,

o T o yT = T oo
22;2(uty — flg-1)p)* 3 Y= T, + Y=o Wy, =2 Yip a1y

W= T =2 T ~2
Y Uy L1 Ui

T 2 _ 2 T 2 _ T o o
Y1 Uy, — ”m + Y1 Uy, — uTH -2%i0 UrpU(t-1)u

T ~
Zt:l utzy

T - T . o _ _
2Y, ufy — (2 X g1y + uil + u%y)

T =2
Zt=1 ut#

T - = 2 2
ZZtZZut“u(t,l)H+u + 1

1 Tu
T =2 '
Zt=l uty

(C.254)

(C.255)

(C.256)

(C.257)

(C.251)



296

Appendix C

Equations (C.256) and (C.257) imply that

T ~ =~ _ -
Zt:Z Uy U(e-1)u + (Mil + M%H)/Z
T -

Lio1 ”fy
T ~ =~ ~2 =2
Yi=a BBy (ulu + iig,)/2
T - T -~
Zt:l utzy Zt:l u?y
. (ﬁfﬂ + ﬁ%p) /2Tofly
T ,~
Y (”il/T)(l/Cf%y)

1-11-

~2 ~2
1 (uly + uTy)

P+ (1 = p Ay + ur ) /20,4 + (), (C.258)

because i, is a consistent estimator of uy, and so Zthl ﬂtzy /T is a consistent estimator of Oumz with

an error of order w(73). Therefore, (C.258) implies that the sampling error of DW estimator of Pu is

DW
0p,

where

LS
I ou T

VT(E™ = p) = [P = pu) + 72

1- Pyz)

d(l);uLs + T[d(Z)MLS +

d(l)”LS + Td(z)HDW + a)(’cz),

(1- Pyz)
pp

(1,2 + ur,2) /2 + ()] = (see (C.245))

(u1,” + ury?)/2 + (%)

Lemma C.10. The following results hold:

i) Equations (C.236), (C.237), and (C.239) imply that

LR (- p 21,
Pu

1-— 2
m(umz +ur,?)/2] + w(t?)
Opp
(C.259)
DW s 1=pd) 2 2
doy " =doy” + ———— (1" +ury”)/2. (C.260)
pp
R, M+ pyA =2p,Ir = D = 2p,A + pyA = 2p,Ir =D — p,A
1 1
p_[zpyle —puD - PyzA] = p_[IT + Pyle - puD - pyzA —Ir + pyle]
IS u
1
P_[(l + pyz)IT - p,uD - PyZA - (1 - pyz)IT]
u
(C.261)
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which implies that

1 1
le‘AuR‘u‘u = p—‘u[RH.u — (1 - pp_z)IT]Ryy = p_y[R‘uyR}i[l - (1 - p}iz)R.“#]
1
= —[Ir— (1 - pu”)Ry,l.
Pu

Then, equations (C.239) and (C.240) imply that

RyHH

R1HH+pyA =

R R

pp (Ri* + pu ARy, = Ri* Ry, + pu ARy

1
= p_[IT = (1= p*)Ryy] + puARyy.
‘U

Furthermore,
(R Ry)? = [Ri* Ry + ppAR IR ™Ry + puARy,]
= (Ri™Ry)” + puRi"“RyyAR s + puARy Ri““ Ry + p ARy AR
ii)
PX},RZWJPXHR‘LW = PX# [R," + pqu]PX“R(u‘u
= PXHRlyHPXpRy‘u + p#poAPXpRHH‘
Similarly,
Py, R:MPx VRH = Py [Ri* + p,AlPx VR
= Py R"Px VR" + p,Px APx VR*
and

R“VPx Ro'“Px VR* = R““VPx [Ri* + p,A]Px, VR

RUM VP, Ri"Px, VR* + p,R*VPx, APx, VR

iii) Then, by using (C.235)
T

1 |
trR,, = 1=—
1% 7
1- py2 ; 1- py2

we find that
tr[(1-p )Ryl =1 - p ) tr Ry, = T

(C.262)

(C.263)

(C.264)

(C.265)

(C.266)

(C.267)

(C.268)

(C.269)
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By using equations (C.262) and (C.269) we find that

tr (R1"Ryy) = l[trIT -(1- ppz) trRy,] = i[T -T] =
p# Pp

(C.270)

Let 6;; be the (i, j)-th element of A. Then, 6;j =1fori=j=1andi=j=T and 6;; = 0 elsewhere.

Moreover, the (i, j)-th element of Ry, is 1= Zp““ /. Then, the (i, j)-th element of AR, is

T
. 1 o 1 -
(3ij = E 6i1<1 —p zp}lh = 111 _ pyzpu‘l ]lr

T T T
1 1
trAR = 6 — 6 p li—i| = (3
HH i i u ii
;‘ ;‘ 1-p 1-py? ;‘
(611 + O77) = —2
= 11 TT
1-p,2 1-p,2
The (i, j)-th element of the matrix R, ARy, is
T 1 T .
51] = p;lli_Kl(SKj* = Ppll x5 x Ple_jl
;1_9#2 KZ:fl u? 1-py?
1 . . 1 ) ]
= — = 5 liFlHIfs li=TI+IT~jl
(1-pu?)? P T a-p22 Pu TT
1 L y
= T
u

which implies that

tr (R, AR )

T
il fe s

(C.271)

(C.272)

(C.273)

T
- 1 ) Zp”% y ZP 21| = [defining the index j = T — i +1]
(1 B p‘u i=1 j=1
Yo
2 g
(1 Pu i=1
2 T
= 23i-1) —
- Pu = [defining the index j =i —1]
(1 - pa22? ; ¢
2 O 4
= G pap L = definingr = p,7)
=0
5 T-1 ) L
(1 - pu?) & ' (1=pu)? 1=r

2 1- Psz _ 2(1 - szT)
(1- Pyz)z (1- PyZ) B (1- Pyz)S ’

(C.274)
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Along the same lines as in equation (C.271) we find that the (i, j)-th element of the (ARW)Z is

T T
o e % 2 : 1 i—k 1 K—j
51’]’ = E 6i1< 6K]' = 511'1 — P 2PH‘ l hKl — pyz pﬁll 4

T
1 , 4 1 , . . ,
5._— z 6Kkpy\z—1<|+\1<—]| - 5ii—(pyll_1l+|1_]|511 " Pull_THlT_]l(STT)

i (1 pHZ)Z o (1 _ py2)2
1 ; L
i e, (C.275)
which implies that
T T 1
tr [(ARML)Z] = 25”0 - Zéil > z(pH (i-1) +p 2T ,))
i=1 i=1 (1 -pu?)
1 B - —
611(1 — py2)2 (py2(1 D4 pHZ(T 1)) + 5TT(1 7 (leZ(T DI pPZ(T T))
2
= A C.276
a-pap TP (c.216)

By using equation (C.275) we find that the (i, j)-th element of the matrix RW(ARW)2 is

T T 1
5~ = |1'7K|6k.o — 71<|6KK ( lK+j72 + 2T*K*]‘)
i Pu i - aA=p.22 0.7 P, Pu
1 i i i 1 i - »
gt O T S s 4 )
— (1 = 2)3 (pyH—]_Z + py2T+l_]_2 + p1”2T—z+]—2 + pyZT_Z_])/ (0277)
u
which implies that
T .
tr[Ryu(AR,)*] = Zéﬂ Ty 2)3 Z(p“m 120,272 + p, 2T
1 - . y
= o L +pr“ L
i=1 i=1
= [defining the indexesj =i—landx =T —1i]
_ 2AT-1)
T - 2)3[2pr +Zp‘]+zépf
2 T-1
= —( ~ o [Tpf(T D4 Z Pu 2] = [defining r = Pu 2]
7=0

_ 2 e i1 _ 2 areny , 1=1T
= 1 py2)3 [pr + ;; r] = —(1 — Py2)3 T‘D# + 1T—r

= 2 a1y, LT p#ZT
(- P2 [pr 0+ 1-p2 | (C.278)
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By using equations (C.271) and (C.275) we find that the (i, j)-th element of the matrix (ARW)3 =
AR, (AR, is

T
. 1 . .
6”(*6 o 2 : (5” PyII_K|61<K—(pHK+]_2 + pyZT_K_])
=1 - 2 (1- P;tz)z

1 o y a . »
iim[éllpylZ 1l(pp] Ly PVZT ! ) +6TT,0;1| TI(PpTH o+ ,DyT Nl
~ Pu
1 i+j-2
= 6iim[py I
u

MH

+
(5,']' =

=
Il
—_

Il
>

+ pH2T+i—j—2 + PyZT—i+j—2 n psz—i—j]l (C.279)

which implies that

T T
tr[(AR,)°] = Z Z(S T 2)3(‘0”2(1—1) +2p, 2T 4 p, 2T-D)
=1 i=
_ _ 1 ) .
611( — 2)3 (p”Z(l 1) +3PHZ(T 1)) + 6”m(3p”2(T 1) +sz(T T))
2 -
= T (C.280)

Let w;; be the (i, j)-th element of the matrix RW3. Then, the (i, j)-th element of the matrix ARW?’ is

T
5ift = Z OixWyj = Oiiwij, (C.281)
k=1
because 6; = 0 V¥ x # i. Therefore,
T T
tr[ARHHS] = Z 6,‘,‘1 = Z Ojiwi; = 611w11 + OTTWTT = W11 + WTT™ (C.282)
i=1 i=1

Let wy be the I-diagonal element of matrix Rw,g, ie.,

T T
_ |I—k |+ —m|+|m—I|
o= Z‘ Z 1- Pu2)3p

_ > pu A, (C.283)

wherei=m—land j=x—-Iwithij=1-1...,T-lLand j—i=xk—-I-m+Il=x—m.
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Figure 1
-(I-1) T
Figure 1 implies that
wy = 2(S1 + S2+ S3) — So, (C.284)
where
(i)
T-1 1 T—1
S = M= ——— 1 = [by defining r = p,?]
i;l (1= pu?P o (1= pu 2)3 IZ‘I Pu
1 1 1
T oa- 0.2)° [1 t 4 1= r(”l + TT_IH)]- (C.285)
u
(i)
T—1 T-1 1 . 1 =i [ }
S1 . 3pyz+]+]—l - - pHZJ _ pHZJ = [by defining r = pyz]
=0 j=i (1_p ) (1_p‘“ ) i=0 ; j=0
1 T—1 TZ—I rj B i—1 ri _ 1 T-1 [1 — T4l 1— ri—1+1]
- T (1—=0n2)3 — - _
(1= pu?) i=0 | j=0 =0 (1-pu?) pry 1-7r 1-7r
1 i i — Tl _ 1 ZlT Ol 7 ZzT;()l ,T-1+1
(1= pu?)? i=0 L—r _(1_Pu2)3 1-r
1 1— T (T =14 1)/T 1
2)3 2 _ : (C.286)
I-pu2P| 1-7) 1-vr
(iii)

-1 T-I -1 T-I
S I N e R o D I MO
i=1-1 j=i Pu i=1-1 j=1
1 -1 T-1

= —(1—P 23 2 P;fmz,oyzj = [by settingk = —iwithk=1,...,1-1]
i=1-1 j=1
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-1 T-1
1 : :
S = 1-pa2)3 Z pu* Z pu*l = [by defining r = p,’]
p# k=1 j=1
, i T-I
= ~Y
— 23
(1-pu) =1 =1
_ o1 =) -
= (1_p#2)3 1—71 1-7r
1 72 T-1 T -1
= [1 4771 =T 4, (C.287)

(1 - puz)S (1 - r)z

0 0
1 —i+j—ji
S = ZZm[pu 1]

i=1-1 j=i
1 [& . .
T A= p2)p pu "((+1)=1| = [by settingk = —iwithk=0,...,1-1]
P 55
= — 1-kp % _ 1] = [by definingr =p 2]
— 0, 2)3 IS u
(I -pu?) =
ri-1 1-1
1 k k
= ——= r— Y kr*f -1
(A= pu? = k=0 l
_ 1 [1= -1+ D+ -1
C (1-p»?| 1-7 (1-r2
3 1 A=-nA-r—r+lr == =1 -r)?
- A=p) (1-1)?
B 1 1-r—r+M =+l =+ 4 1427 — 12
C (1-p2P 1= rp
1 =2+ (-1)f = (-2
= (1 _ p}12)3 (1 _ 1,)2 . (0.288)
y combining equations (C.286), (C.287), an .288) we find that
B b C C d (C find th
S. = 5+5+8;
_ 1 1—T (T =1+ 1) . 2 TR N SIES
1=p2P | L=1)? 1T-r (1-ry
N 1 2+ (-1 = (-2
(1 -p®P (1-r2
1
= m(l -2 [1 — T (T =1+ 1)1 = )T 2 T2 T2 12 2 -1y — (1 - 2)rl+1]
~Pu
1

= s 1- r)—z [1 Tl (T—-1+ 1)TT—I+1 +(T—1+ 1)rT—l+2 I Y S S S5 (- 1)7,1 —(- 2)r’+1]
13

= ﬁ(l O L AR (S VER A B ) PV AE e (B i B (C.289)

~Pu
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Equation (C.289) implies that

T T
— 1 -2 T+1 ! T-1+1 T—-1+2 I+1
Zs* = mZ(l—r) [+ 4 (=D = (T = 1+2™ 0 4 (T = 1™ 2 = (1 - 1)
=1 =1
_ 1 -2 T+1
= m(l—r) [T(1+r N+ +sz+s3+s4]
1 T(l + T’T+1) S1+ Sy +5S3+ 54
- ) C.290
= p> [ -7 T - (€290
where the quantities s1, 5, 53,54 are computed as follows:
(I
T T T T T+1 T
_ o i M -T+Dr +Tr ] r(1-17)
sio= Y. (-1 =) 0 = =y —
=1 =1 =1
=T+ D)™+ T2 — (1 =) (1 —1T)
B (1-r)2
=T+ DM+ T2 — (1 —r =T T
- (1-1r)2
= (TH+ DM+ TrT2 —p 4 2 4 TH T2
- (1-7r2
> = (T)r™ + (T = 1)rT+2
= =T (C.291)
(IT) By setting i=T -1 withi=0,...,T—1 we find that
T T-1 4 T-1
o= Y AT=1+2 M ==Y (42 = —r Y i+ 2
=1 i=0 i=0
T-1 T-1
4 1 =Tr ' +(T-1)"] 201 - rT)]
= —r ir+2y r =—r[ +
—_2 _
[i:() iZO‘ 1-r 1-7r
B r— (Tl + (T -1 +2(1 - r)(1 —1T)
- (1-rp
P T (T -T2 4+ 2r(1 =7 =T + T
- (1-ry
=P T (T = )2 = 2 + 207 4 2¢TH — 2y T2
- (1-ry
=2r + 1% + (T + 2)r™! — (T + 1)rT+?
_ 2 , (C.292)
(III) Similarly, by using the index i =T — I with i =0,...,T — 1 we find that
T -1 -1
sz = Z(T DT =N it =2y gy
I=1 i=0 i=0
=TT (T - 1))
- (1-r)2
3_TT+2+ T-1 T+3
roTr (T (C.293)

(1-r)?
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(IV) By setting k=1—-1withk=0,...,T —1 we find that

T T T-1 T-1
o= )~ ==Y -1 =Y A = 2 Y
I=1 =1 k=0 k=0
_ e 1 =TrT1 4+ (T = 1)rT]
B (1-7r2
—3 4+ TyT+2 _ (T _ 1)1,T+3
= . 294
A= (C.294)
Since equations (C.293) and (C.294) imply that
S4 = —83, (C.295)

by using equations (C.291) and (C.292) we find that

$1 45y + 53+ 54 S1+82 +853 =853
= Q-2 =T + (T -Dr"? = 2r+ 2+ (T+ 2™ — (T +1)r"]
= (1-172[2r% = 2r + 271 = 2¢742]

= 21 -1 —r+ T =72, (C.296)

By setting i =T —[+1 withi=1,...,T and by using equation (C.285) we find that

T T

1 1+7r 1
SO — [ _ (Tl + rT—l+l)]
IZ_; ;(1—()“2)3 1-r 1-r

1 [ra+n 1
I=pu2P| 1-7 1-7

1 [ra+n 1
I-pu2P| 1=r 1-r

~ 1 [Ta+n 2 &,
T W-p| 1oy ‘1—rZrl
B 1 [T(1+7) 2 r(1-r+7")
o A-p»P| - 1-r 1-7
1 [T +7)  2r(1=1T)
I-p®3| 1-7 (1-r7

(C.297)

By using equations (C.284), (C.285), and (C.289) we find that the 1-diagonal element of the matrix

R, is

wy = 2(51+Sy+S3)—5p)=25.—5g
- ﬁZ(l =2 [T e = D = (T = 1+ 2T (T = D2 - (- 1)
Y
1 1+r 1, 1im
_(l—py2)3[1—1’_ T )] -
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wy = m(l -7 [2 F 2T 21— 1) = 2(T = 1+ 2)T1#1 4 2(T = 1) T-142 Z (1 1)r7+1]
_m(l A+ =)+ Q=@ + T
) Eiﬂﬁu_ﬂqp+%m+%Fﬂw—ﬂT4+mﬂ“HQG—mmu_m-nwﬂ
_ﬁ(l -n7 [1 T rT—l+2]
= m(l -n7 [1 +2r Ty 21— 1) — - 1) rz]
_m(l -7 [(2(T D+ 3) T (T 1) - 1)1,T—l+2] . (©.298)

By omitting terms that tend to zero as T — oo and since r = py2 with |r| < 1, we find that

1
wy = m(l -2 [1 +r—r*+ 1,2] +o(T™
u
_ 1 1+7r 1
S aopyra-m )
1 1+p, -1
= +o(T
A= pr a-p22 o)
1+p 2
= ﬁ + O(T_l). (C299)
u

Similarly,

wrr = ﬁ(l -7 [1 +7° —3r— ;,2] +o(T™)
~ Pu
1 1-3r _
= appa )
1 1-3p,2 _
= Tpma )

1-3p,° .

Thus, equations (C.282), (C.299), and (C.300) imply that

1+p2+1-3p,2
(1—pu?)°
2- ZPH2 _
= —(1 — Py2)5 +o(T 1)
2(1- sz) _
= —(1 — p‘uz)5 + O(T 1)

- af%m+dru (C.301)

+o(T™)

tI‘[ARM,S] = w1 +wrr =



306 Appendix C

Moreover, by using equations (C.284), (C.289), (C.290), (C.296), and (C.297) we find that the trace of
the matrix RWS/T is

T T

tr(Ry,*)/T = % Z wi = 2[2(51 +Sy+8S3) = Sol = —[Z 26, — Z Sol
1 =1 =1

1 % |:T(1 + T+ . 20 -1202 —r+ rT+1 _ T+2)]

1-p2PT] (1-1)? (1-r2
1 TA+r) 2r(1-r")
1- py)3T 1-7r (1-7r)
T+1 2 _ T+l _ ,T+2 _ T
_ 1 21 +r )+4(r r+r r )_1+r+21’(1 ') . (C.302)
AI-p23 ] A=r2 (1-r)* 1-r T@A-r)?
By omitting terms that tend to zero as T — oo and since r = py2 with |r] < 1, we find that
1 2 1+7
3 _ _ -1
tr (Ry,”)/T = A= pp [(1—7)2 1—r+0(T )]
_ 1 2-(1+n1-r) 1
STy a0
1 2—-1+72 1
T G a0
1 1+ pH4 -1 + Pp4 -1
= +0o(T™) = ——=+o(T). C.303
(1-pu2P 1 —pu2)7? ( (1 -pu?)p ) ( )

Finally, note that in all traces examined in this Lemma, there appear terms of the form T"rT where n is a

positive integer. Since r = py2 with 0 <r <1,

n

T
lim 7" = lim — = —. (C.304)
T—o0 T—oo 1~ (o)
By applying L’Hospital rule we find that
" oT"/dT n T
. mn. T _ _ . —
%I—IEGT "= %1_1)‘{)10 rT Th—>oo orT/oT ~ —Inr %1_{1;10 T

! 1 !

= " _jim—=—"_1Im =0 (C.305)

(=Inr)" T5e0 r T (=Inr)" Toeo

Therefore, since all terms of the form T"rT tend to zero as T — oo, all the traces computed in this Lemma

are bounded as T — oo.

Furthermore, the first regularity condition implies that the matrices
X;,R““XH/T and X;X‘,/T (C.306)

converge to non-singular matrices as T — oo.

Let x;; and 0;; be the (i, j)-th element of the matrices X, and A respectively. Then equation (C.306)
implies that the element x;; (i =1,...,T; j=1,...,n) are bounded.
The following results hold:
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(a) The (i, j)-th element of the matrix X]AX|, is

T
Z Z XitOtsXsj = Z XitOuXtj = X1011X1j + XiTOTTXT]

t=1 s=1 t=1
Xi1X1j + XitrXTj, (C.307)

i

which is bounded and consequently the matrix

X, AX, /T = O(T™). (C.308)

(b) By defining the indexes k=s—-1(k=1,...,T-1) andI=T—-s(=1,...,T —1), the (i, j)-th element
of the matrix X;ARF'X,, is (see (C.271))

T T T
771';'* = Z Z xitéts*xSJ Z xltél’l’ p‘ultislxsj
t=1 s=1 s=1
. 1
= Z [leéu plull_s‘xsj + XiTOTT 5 Ple_slxs]]
o T=pyu
1 T T
= 9 Pu 1_,2 [le (Z XSijs_l] +Xir (Z ijPyT_SH =
s=1 s=1
1 T-1 T-1
— k )
T 1-p2 [xﬂ [ X(k+1)jPu ] +Xr [Z X(@+1)jPu H
k=0 =0
T-1
= L (xi1 + xi) Zx 0, (C.309)
- 1-p2 il iT (+1)jPu |- .
Pu 1=1
Since X{, is bounded, i.e., YI(I=1,...,T —1) it holds that
[X@41)jl £ g <00 =
T-1 l T-1 g i |p“|
i Zx(lﬂ)fpu < ) [xan| x| qZ|P#| q T—lp,l (C.310)
1=0 =0
which implies that 7;;* is bounded for every (i,j =1,...,n) and so the matrix
X, ARMX, /T = O(T™). (C.311)
Along the same lines we can prove that
X, RMAX,, /T = O(T™). (C.312)
(c) The (i, j)-th element of the matrix AR A is (see (C.271))
T
N = Z Oik"Okj = 04" 0jj, (C.313)

k=1
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which implies that the (i, j)-th element of the matrix X] AR**AX), is

o

T T
XitT)iXsj = Z Z XitOts OssXsj = [see (C.271)]

T T
D)
t=1 s=1 t=1 s=1
T T
= Z Z XitOu = zpylt_sléssxsj
t=1 s=1
T T
= 1 théttZ(S P lt_slx i
1- p > i ssfPu sj
] s=1

l - —
T Py’ inté”(éllpﬂlt Uxyj + Srrpy " Mxry)
=1

1-1
5 %0011 (0" a0 + p " oery) + xirbrr (o + pu” ij)]

.
|

— pHZ

xi1(x1j + pHTflxl]') + x,-T(p#Tflxlj + XT]')] . (C.314)

o

Thus, equation (C.314) implies that 1;;° is bounded so that

X, ARMAX, /T = O(T™). (C.315)

(d) The (i, j)-th element of the matrix X RX,, is

T T T T
1 —
M = 22“1 s 7P 1z .2 szitpult g (C.316)
U u

t=1 s=1

and it is bounded given that x;; and xs; are bounded for every i,j =1,...,n and every t,s = 1,...,T.
Therefore,

X, R X, /T = O(T™). (C.317)

By using equations (C.263), (C.270), and (C.272) we find that

tr (R Ryy) = tr[(Re"™ + ppA)Ry] = tr (R1*Ryy,) + pyu tr(AR )
2 2
S L . (C.318)
1-pyu 1-py

Similarly, by using equation (C.262) we find the following results:
(a)

by = 1 2

PRI Ry ARy, = PHP_[IT = (1= p )R u]AR,,
u
= AR, - (1-pARyuARy, = (C.319)

tr (PRI RARy) = tr(ARy) — (1 - pu®) tr (RuAR,,) = (see (C.272) and (C.274))
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2 2(1 - PHZT)
tr (o R1" Ry AR,) = ———— —(1-p)———
Pul™ Ry ARy 1-p.2 A= p2)
2(1-p 2
_ 2 A-p) (C.320)
1-ps2  (1-pu?)?
(b)
tr (ppARy R Ryy) = tr(puRi" Ry AR,,)
2 21 - p,*")
= ~ - p“z . (C.321)
1-pyu (1-pu®)
(¢) By using equation (C.276) we find that
tr (0, AR WAR,,) = tr[p 2 (AR = pu® tr [(AR )]
ZPHZ _
= ma +p2T). (C.322)
(d) Moreover, by using equation (C.262) we find that
(Rl'“HRyy)z = P_[IT -(1- P;LZ)RW] [IT -(1- Pu )Ry;t]
= —[1 —2(1 - pH)Ruy + (1 = pu®)’R.2. (C.323)
P T Pu” My Pu pu

Defining j =k—iwith j =1—-14,...,T—7 and setting j =T —-i+1 with j =1,...,T, let vy be the

I-diagonal element of matrix sz, ie.,

T
0 Z( - 2)2@“ e =

= Z zpyzm = (defining r = pyz)

T—i 1

T—-i
- —(1 o Z S 2)2{2 rm+§ﬂ]

j=1-i j=1-i

[ i-1 T—i i
- i B B ]

|j+i=1

1 VT’(l _ rl—l)) N 1- FT_H'l B 1 r_ 1’1 +1— rT—i+1
A-p22| 1-r 1—7r _(1—pH2)2 1_¢

1 (147 P41
(1_,0;12)2 hl_T’ 1-r B

_ 1
(1= pu?)?

1 [1+7r 47
A-p2*[1=-r 1-71

(C.324)

T+r 2r
-r 1-r|
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Therefore,

T i
tr (Ry,2)/T Z (0)/T = 2[(1_ [11 12;””
T

B 1 T(1+r) 2 ;
T (A-p2P e rZ’

1=

B 1 [1+r 2 r(1-r")
(1—1%2)2 [1-r TQA-7) (1-7)
1 [1+7 2r(1—1T)

T (@-pR|1-r T TP ] (C.325)

and omitting terms that tend to zero as T — oo we find that

1 1+r

1-p2P1-r

1 1+ p!l 1

= +0T

(1-pu?)?1-pu? )
+py’

1
e Rlun! (C.326)

tr (RWZ)/T +o(T™)

By combining equations (C.269), (C.323), and (C.326) we find that

1
tr[(leRyy)Z] = P_yz[tr (Ir) —2tr[(1 - pyz)Ryy] +(1- Pyz)z tr (Ryyz)]
1 +p? ]
= —|T-2T+(1-p ) T—== +0(1
pu [ =PV T pu?)? M
. 1+p2+1+p,°2
_ L[T +T p*+(1)] T[ Pu zp“]+o(1)
Py’ T-pyu u 1-pu
2o o) - 1) (C.327)
= —— + o0(1). .
pu*(1 = pu?) - pu®

By combining equations (C.264), (C.320), (C.321), (C.322), and (C.327) we find that

tr[(Ry" Ry )*1/ T tr [(Ri*R )/ T + tr (pu R Ry AR )/ T

+1tr (pu AR R " Ry /T + tr (p,*AR,,AR,,) /T

21 - p 2T
= 2, o(T™Y) + 2|2 _2-p)
1- p;tz T[1- sz (1- pHZ)Z
2 2
Pu 1+ p,2T7Y) (C.328)
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and omitting terms that tend to zero as T — oo we find that

tr[(R" Ry )1/ T = +o(T™) =

1-py?

2T
tr[(Rznyyp)z] = 1=

o2 + o(1).
u

(e) By using equations (C.263) and (C.264) we take

(RZHHRML)3 (RZHHRML)Z(RZHMRMJ)

= [(leRw)z + PuRIM Ry ARy + puARy Ry PRy + PFZARWARW] :

[RlWRW + p#ARHH]

= (Ri"Ry) + pu(Ri" Ryy)* ARy + puR1 ™ Ryy ARy R Ry
+pH2R1WRHHARWARH# + PpAR R Ry RMER

2 2
+pu ARy Ry "Ry ARy, + p ARy AR Ry MR

3
+pu ARy AR ARy

= (Ri"Rup)® + pu(R1" Ry ARy + puR1 " Ryy ARy Ri MRy

+pu R Ryu(ARy ) + puAR (R R )
+pHZARHHR1WRWARHH + P#Z(ARW)ZleRW

+pu’ (AR,

which implies that

tr [(RZWIRML):%] = fr [(Rlnyy[u)3] +3tr [(Rlnyyy)2ARyy]

+3tr [ Ri*“ Ry (AR )*] + tr [p (AR, )]

Since, equation (C.323) implies that

(Rl MLR‘uy)ZARuy
u

1
= F[ARW = 2(1 = pu®)RyuARyy + (1 = p®Y Ry ® ARy,

u

it follows that

1
F[IT =21 = PRy + (1 = pu°)* Ry " JARy,

(C.329)

(C.330)

(C.331)

(C.332)
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tr [Py (Rl WRyy)zARyp]

tr [pu(R1""Ry,u)* AR, /T =

- %[trARW —2(1- p2) tr Ry AR, + (1 - p 2P tr R, 2 AR ]
u

= [see (C.272), (C.274), and (C.301)]

[ 21 - p A1 -p*T)  2(1-pu2)?
_ i 2 - ( Pu )(ZBPH )+ ( puzi +O(T1)]
Pu 1= pu (1-pu?) (1=pu®)
r 2(1 — 2T
S22, 2 22+O(T‘1)]
Pull=pu (1-p.?) (1=p?)
[2-2p,2-2+2p,2T +2
TS e e g PO
Pu | (1 -pu?)
2(1 — 2+ 2T
_ A pu b ) oy = (C.333)
pul = pu?)

21 = pu” + pu”")
Tpu(l = pu?)?

+0(1). (C.334)

Moreover, since equation (C.262) implies that

it follows that

1
leRHH(ARHH)Z = P_y[IT -(1- p#2)Ryy](ARyy)2
1 (1- P 12)
= p—(Alw2 - —Ru(AR,,), (C.335)
u

tr [Pyle‘uHRyy(ARyp)z] = putr [(ARWI)Z] - .0;1(1 - pyz) tr [Ryy(ARyy)z]

tr[p°Ri"* Ry (AR,,)1/T =

= [see (C.276) and (C.278)]

_ %P (14 p, 20Dy 2041~ py*) [T 2T i]
(1-pu)? 3 (1-pu2? 1-pu?
Zpy [ 2AT- - (1- pHZT)]
S N F R TSN T VNl L) N C.336
(1- p2? Pu P 1-p2 ( )
2p 1 oy (@=p) _
= pu o [T [1 4 PHZ(T 1 _ # _ PHZ(T Dy, (C.337)
g u

By using equations (C.262) and (C.323) we find that

(Rl wlRyy)S

(Rl ny;Ly)(Rl H'URy(u)2

1 1
P_[IT -(1- Pyz)Ryy]F[IT -2(1- p‘le)R‘uH +(1- Py2)2Ryy2]
u r

1
F[IT -2(1- pHZ)RHH +(1- pyz)szz -(1- pHZ)R#H
u

+2(1 _ P;LZ)ZRWZ _ (1 _ Py2)3pr3]

1
F[IT =3(1 = pu®) Ry +3(1 = p*)Ry” = (1= pu*) Ry °] (C.338)
u
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and by using equations (C.268), (C.303), and (C.326) we find that

1
tr[(Ri““Ry)’l = —5 tr[lr = 3(1 = pu®)Ryy + 3(1 = p°Y’Ryy® = (1 = p, )Ry’
u
= —3[tr It —3(1 - Pyz) tr (Ryy) +3(1 - P;lz)z tr (Ryyz) -(1- P;12)3 tr (Rny)]

(1+p AT
1- P#2)3

1+ PH4)T

T
[T =30 = pS)y— 5 +30 = p)" (=P = o)

[ (1+p,2) (1+puh) ]

= — |T-3T+3T -T +o(1

_ T—pd  Ta-pe) W

T [-2(1- p,uz)z +3(1 - py4) -1- Py4
pu® | (1-pu?)?

+0o(1)

(-2 +4p,2-2p,*+3-3p, —1-p,*
_ % Pu Pu 22Pu p“]+0(1)
L (1= pu?)
_2T(2-3p,%)
py(l_Pyz)Z

[4 2_6 4
O o +0(1)

p3 | @=p272 +o(1). (C.339)
po L u

By combining equations (C.278), (C.331), (C.334), (C.337), and (C.339) we find that

tr[(RZ#yRyy)S]/T = ftr [(lelRyy)B]/T +3 tl‘[Pp (Rlnyyy)zARyy]/T
+3 tr[puR1" Ry (AR )1/ T + tr[pu (AR,)1/ T
2-3p.?
- 282%0)
pu (1= pu?)
2(p, 2T - p 2+ 1
(Pu Pu ) +o(1)
Tpu(l = pu?)
2py 1 2AT-1) (1-ps*") 2AT-1)
+3(1 - pu?)? [:_r [1 G S 1- Pu’ P
+2p—"3(1 +3p,2TD) (C.340)
T(l — PMZ)S B
and omitting terms that tend to zero as T — oo we find that
t[(RM Ry’ T = 2 2=3p,") +o(T™h) =
) = £ "7
py Pu (1 _ pHZ)z
2T (2-3p,?)
tr(RM R, = ———-2 +0(1). C.341
2 ot py (1 — sz)z ( ) ( )
(f) Equation (C.261) implies that
1 2 1 I 2
Py, R = nyp—[RW -(1=pIr] = p_[PX},RHJ - (1-pu)Px,] (C.342)
u u

and since Px, is orthogonal projector into the spaces spanned by the columns of the matrix X, we

have that
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X,(X[ X)X, =

u

tr (P X, )

tr[(X,X,) ' X, X, ] = tr L, = n, (C.343)

from which we find that

1
Pu

1
= p—[tr (X,(X[ X)X R — (1= p,®) tr (P, )]
u

tr (Px, Ry

[tr (Px, R") = (1 - pu°) tr (Px,)]

= L [ RIX, TYX X, /T) ] — (1= p,2) b (Px,)]

Pu
1 _
= P_[tr [(Bnyyy 1)] -(1- Pyz)n]/ (C.344)
u
where
By = X R"X,/T and Fyy = X[ X, /T. (C.345)

Then, equation (C.263) implies that
PXHRZWJ = PXM(Rlyy + pPA) = PXHlel + p[“PX#A, (C346)

which implies that

tr (Px,Ro"*") tr (Px, Ri**) + py tr [ X, (X[ X,) "' X[, A]
= tr(Px,Ri*) + py tr [(X}, X,/ T) (X}, AX,,/T)] = [see (C.308)]

1 _ _
= p—[tr [(BuuFuu 1= (1= pHn] + O(T ™). (C.347)
u
Moreover, equation (C.262) implies that

1
Px,Ri" Ry = Px, P

1
_[IT - (1 - sz)Ryp] = p_[IJXH - (1 - pyz)PXyR‘u‘u] = (0348)
H H

1
tr [Px, R1 "Ry p—y“r (Px,) — (1 - pu*) tr(X, (X[, X,) ' X Ryy)]
1
= E[tr (Px,) = (1= p,2) tr [(X, X,/ T) ™ (X Ry X,/ T

1
= P_u[n —(1-p A tr(Fu ' Ou)l, (C.349)

where

O = X/ Ry X, /T. (C.350)
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Thus,
PX“RZWJRHH = [see (C263)] = PXH [Rﬂw + pP‘A]R## = PX“Rly‘uRMi + pF‘PXyARM” (C351)
which implies that
tr (Px,Ro""Ry,) = tr(Px,Ri*Ryy) + pu tr[Xu (X, X,) " X[ AR, ]
= tr(Px, Ri""Ryy) + pu tr[(X[ X, /T) (X[ AR 4, X,/ T)]
= [see (C.311)] = tr(Px, Ry"Ry,) + O(T ™)
1 _ _
= p—[n —(1-p )t [(Fuy 'O )1 + O(T ). (C.352)
u
Furthermore, equation (C.261) implies that since Px, is idempotent, we find
1
Px,Ri""Px,R,, = Px, p—p[R‘*“ - (1 - pu)Ir]Px, Ry,
1
= p—H[PX”RWPX“RW - (1-p*)Px, Ry, (C.353)
which implies that
1
tr(Px,Ri"Px,Ry,) = p—[tr(PX“RWPX“RW) - (1-p ) tr(Px,Ryy)]
u
1 ! - 4 4 - 4
= p—#[tr(xy(x},xy) X0 RMX (X X)X R )]
1 ! - !
~5- 10 = ) UKL X)X R,)
1 4 - ’ 4 - 4
= SO ORI X,/ ) R X,/ T
u
1 ’ - !
o la- i) (X X,/ T) 7 (X R 1 X0/ T)]
y
1 _ _ _
= p—[trFW "BuuFuy 'O — (1 - p®) trFuy 7' O, (C.354)
u
Moreover, by using equation (C.263) we find that
PX“Rz‘u‘uPX#RW, = PX#(Rl!l,U + p‘LlA)PX“R‘Lly = PXpRl'u'uPXMR‘up + pHPXpAPXyRHH = (0355)

tr (PX#RZHHPXPR;W)

tr (Px, Ri"*Px, Ryu) + py tr (Px, APx, Ry)

tr (Px, R1"" Px, Ryy) + py tr [X,(X[ X,) ™ X, AX, (X[ X,) 7 X Ry,

tr (Px, Ri"" Px, Ryy) + py tr [(X] X,/ T) ™ (X[, AX,, /T)(X,, X,/ T) " (X, R 1y X,/ T)]
[see (C.308)] = tr (Px,Ri""Px,Ryu) + O(T™)

1 _ _ _ _
p—[tr (Fuu " BuuFup ' Opu) — (1= pu?) tr (Fu 'O )1 + O(T 7). (C.356)
u
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(g) By using equation (C.262) we find that

1 1
RyRi"Ryy = Ryy—I[Ir = (1= p )Ryl = — Ry — (1= pu")Ryy "1 =
Pu Py
tr (R, Ri""Ry,) = pi[tr(RW) -(1- p},z) tr(RWZ)] = [see (C.268) and (C.325)]
u
1] T 1+ pa? ]
= — ~1-pHT—L_|+0(1
po [ T=p P Ta—p ]
T[(Q- Pyz) -1+ PHZ)
= p— (1 — 2)2 + O(].)
wl Pu
T[ -2p.°
= P_y —(1 —pyz)z +0(1)
Tp},
[(1 — pyz)z + o(1).

Then, equation (C.263) implies that

Ry R Ry = Ry (R + pu ARy, = Ry RiI™ Ry + puRy ARy, =

tr(Ryu Ro" Ry /T = tr(RuuRi" Ryy) /T + py tr(R ARy )/ T
—2py 2(1- PHH)

N (1 - pyz)z (1 - P;12)3T

and by omitting terms that tend to zero as T — oo we find that

up _ —2pyu -1
tr(Ry Ro"R )/ T = —(1 =) +o(T7) =
u
i —2Tpy
tr(Ry R Ryy) = —(1 o) +0(1)
u

By using equation (C.323) we find that

1
RW(leRW)Z R#HF[IT —-2(1- pHZ)RHH +(1- PyZ)ZRWZ]
u

1
F[RW -2(1 - p ARy + (1 - p 2Ry’ =
‘Ll

[see (C.274)] = + +o(T™)

(C.357)

(C.358)

(C.359)

(C.360)

(C.361)
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1
tr [R##(lelRyy)Z] = F[tr (Ryp) —2(1 - Puz) tr (Ryyz) +(1- Pyz)z tr (Ryys)]
13
= [see (C.268), (C.303) and (C.326)]
1 T 1+ P;LZ)T 1+ pp4)T ]
= —|l——-20-p)——x+(1-p2)P——=+001
Py2 [1 - pHZ ( ; ) (1 - Py2)3 ( Pu ) (1 - sz)S ( )
_ 1 [ L A+p AT L+ pHT .\ 0(1)]
pu*(1 = pu?) (1-pu?) (1= pu?)?
1
TR [T(1 - p,2)? = 2T +2p,*T + T + p,*T] + o(1)
u p
1
= A=A [T -2p, T + p*T = 2T + 2p,* T+ T + p,*T] + 0(1)
u p
- T 4 2
= WMPH - Zpy ] + 0(1)
2Tp,*(2p,* — 1)
= —p 21= p o) +0(1)
p Pu
2T(2p,2 - 1)
- Ta _; 2)3 +0(1). (C.362)
u

Then, equation (C.264) implies that

Ruyu(Ro"Ryy)? = Ruul(Ri™Ry)® + puRi* RyyuAR s + puAR R Ry + py* ARy ARy ]

= RW(leRW)Z + PuRu R Ry ARy, + pu Ry ARy Ry PR,

+pu Ruu(AR)* =

tr[Ruu(Re"* Ry’ /T = tr[Ruu(Ri*™Ryuu)*1/T + py tr[ Ry, R Ry AR, 1/ T

+pu tr[Ryu AR Ry M Ry 1/ T + py® tr[Ryu(AR,)?1/T.

But, equation (C.262) implies the following results:

1
R(uy(Rl‘uyRyy)ARyy = RH'“P_H[IT -(1- pyz)Ryy]ARyy

1
= p_[RHHARW = (1= pu®) (R )’ ARyl =
‘Ll

1
Pu tr(RyuR“ Ry AR /T = pya[tr(RW,ARW)—(l—pyz)tr(RWZARW)]/T

= tr(RuuAR,)/T - (1 - p®) tr(Ry2AR,)/ T

= tr(RuyAR,)/T - (1 - p,®) tr(AR,,%)/T.

(C.363)

(C.364)

(C.365)

(C.366)
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Moreover,

pp

Py tr(Ryp ARy R Ryyyi) /T

tr(RuuAR)/T — (1 = pu ) tr(AR,,)/T.

Thus, equations (C.362), (C.366), and (C.368) imply that

tr [Ryu (R Ry,0)*1/T tr [Ryu(R1"* Ryuu)*1/T + 2 tr(Ryu ARy, /T

—-2(1 - p ) tr(AR %) /T + py® tr[Ru(AR )1/ T

= [see (C.274), (C.320), (C.343) and (C.362)]

B 22p2 - 1) ) 2(1-p,*)

= T-p2p 0P +o(T™) + Z—T(l BT
2

—2(1 - sz)T(l_—w +0o(T™?)

2 1- p 2T
yp 2= |rpar-n P
e a =T [P 1-p2

and by omitting terms that tend to zero as T — oo we find that

tr [Ryu (R Ry,0)*1/T Z(ZP“—Z_D +o(TH=
1- Pu2)3
tr [Ryu(Ro"' R0l = % +o(1).
(h)
Px,R"Px, Ry, = (I-Px,)R"(I-Px,)Ry,

1
p#p—[tr(RWARW) - (1 - p}) tr(Ruu AR, A1/ T
u

Ro" R,y — Ro"'Px, Ry — Px, Ro"" Ry + Px, Ro"*Px, Ry,

1 1
Ry AR, (Ri" Ryy) = RWARWP—H[IT—(l—puz)RW] = p—H[RwARW—(1—py2)RWARW2] = (C.367)

(C.368)

(C.369)

(C.370)

(C.371)

where ny =1- PXp' Since Rz“",Rw,PX“ are symmetric matrices the following results holds:

tr (Ro" Px, Ryy) = tr (RuRo"'Py,) = tr [(RyuRo!*Px,)'] = tr (Px, Ro"'Ryyy),

(C.372)
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which implies that

tr PX“ RZWIPX“ RM‘ =

tr (RQFHRHI) —2tr (PXHRZ‘U‘MR‘L[#)

+tr (Px, Ry""Px, R,,,) = [see (C.318), (C.352) and (C.356)]
20,
1-py?
e (Fuy ' BuuFus ' 0) — (1 = p.2) tr (Fuy 'O o
+p [tr( pp Duptup py) ( Pu )tr( up yp)]"' (T™)

u

2p 2n (1-pg?) _ 1 _ _ _
- P (R TlO) + o tr (Fuu ' BuuFup @) + O(T ™)
u 1

B PE[” = (1= pu®) tr (Fuu ™' O)] + O(T™)
u

1-pu®  pu
1 [2py® —n(1-p,?) _ _ _
— ! 1 2 - pu) tr (Fu™ @) + tr (Fyy ™' BuuFuy ™ O
Pu ~ Pu
+O(T ™). (C.373)

By using equation (C.249) the following results hold:

(1)

VR#V = [Ry, — X, (X[ R"X,)" X IR™[R,, — X, (X[ R X,)'X]]
= Ry R™Ry, — Ry RMX, (X[ RMX,) X,
7 -1~ ’ -1~ ’ -1~
— X, (X RMX )7 X Ry RM + X, (X RMX,) T X RMX (X RMX, )X
= Ry — X (X[ R™X,)'X], = V. (C.374)
VPX” = [Ruy - Xy(X;RH#Xy)_lle][I - PX“]
= Ry~ RyuPx, - Xu(X R X)X
+X, (X, RM X)X X (X X)X,
= Ry[I-Px]=R,Px,. (C.375)
Thus,

tr (PXN Rz‘“HPX“ V)

tr (RZHHPX“ VPX“) = [see (0375)]

= tr(Ry""Px, R,y Px,) = tr (Px, Ro"'Px Ry,

= tr[(I - Px,)R"'Px,Ry,]

= tr(Ry"Px,Ry,) — tr (Px, R Px R,,)

= Dbecause the matrices Px,, Ry and Ry are symmetric are equal to
= tr(Ry R Px,) — tr (Px, Ry Px, R,,;,)

= tr [(RnyZH'“PXH)’] —tr (PXPRZH#PXHR;W)
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tr (PX“ RZH‘LLPX“ V)

tr (PX“R2PHRM1) —tr (PX“RZWIPX“R“#) = [see (0352) and (C356)]

= - a-pdulEL e
Pu

1 _ _ - -
_P_[tr (pr 1Bthyp 1@yy) - (1 - pyz) tr (Fyy 1(9;1;1)] + O(T 1)
u

1 _ _
= p—[n —tr (Fuy 'BuuFuu @)l + O(T ). (C.376)
u

Moreover, equations (C.249), (C.261), (C.263) (C.308), (C.356), and (C.375) imply that

tr (RnyPX},RZWIPX“ VR”“RW) =

tr (Px, Ry Py, VRV

tr (Px,Ro"' Py, V)

tr [Px, Ro" P, [R,, — X, (X, R*X,) 7 X ]]

tr (Px, Ro"" Px, Ry) — tr (Px, Ry"'Px X, (X;,R*‘“XH)‘lX;,)

tr (Px, Ro"*' Py, Ryyy) — tr (X, (X, X,) ™' X}, Ry X, (X[ R X,) ' X))
tr (Px, Ro"" Px, Ryyy) — tr [(X[ Rt X, (X R*' X,) ']

tr (Px, Ry Px, Ryy) — tr [(X[,(Ri" + p,4)X,)(X, R X,) ']
tr (Px, Ry Px, Ryy) — tr [(X[, R X, ) (X[ RM' X,,) 7]

—py tr [(X[,AX,) (X, RMX,,) 7]

tr (Px, Ro""Px, Ry

, 1 , _

- tr[Xyp—y[RW — (1= p ) Ir]X, (X, RMX,) 7] = O(1)
1 ! 4 —

tr (PX,,RZ‘uHPXMRyy) - p_y tr [(XyRMle)(XyRMHXy) 1]

1-— 2
+( Pu)
Pu
tr (PX!IRz‘“yPXHRMJ) -

tr X, X, (X[ R X,) '] + O(1)
1
u

1 _ _ _
p—[tr (Fuu ™' ByyFyy ™ O) = (1= pu®) tr (Fuyy ™ O]
u

[tr (I,) — (1 = p,2) tr (X, X,/ T)(X[ R X, /T) '] + O(1)

—pi[n (- p ) tr (EBib] + O(T )
u

up

1 _ _ (1-pu®) _ _

P_[tr (Fyy 1Bnyyy 1@;41) -n]+ p—“[tr (Fyy 1Byy) —fr (Fuy 1@@41)]
u u

+O(T™). (C.377)
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Lemma C.11. By using Magnus and Neudecker, 1979 we can prove the following results:

(i) By using equation(C.318) we have

E(u, Ro"uy) Opp tr (R2"Ryy)

= PO (C.378)

(ii) By using equations (C.318) and (C.329), and omitting terms that tend to zero as T — oo, we find
that

E(u;le”“uyu;le”“uH)/T [see (UR.2)]

= o Tt (RoM1 Q) tr (R Q) + 2 tr (RoM Q2 R Q)1 /T

= o [ltr (Ro" Ry )T + 2[tr (Ro* Ry)*11/ T

2 2
- (ZP “‘7““) IT+2 [2TOW2 + 0(1)] /T

1-py® 1= py
40,,°
= Lo+ O(TTh = (C.379)
1-pu
4Toy,?
E(u;ley‘uu‘uu‘:leyluu‘u) = 1 p > + O(].), (C380)
— Py
because equation (C.318) implies that
2 -1 _
tr (Ry"Ry,)/T = T=p ™ O(T™) = tr (R"Ryy) = O(1). (C.381)
~ Pu

(iii) Equations (C.268),(C.318), and(C.360) imply that

O tr (IRy) tr (RMRyyy) + 20,,° tr (IR, R Ryyp)

- OWZ[ T 2% +2( —2Tpu +O(1))]

’ ’
E(u,u,u, Ro"uy,)

1-py? 1- Py’ (1= pu?)?
2Tp, 4Tp
= o) 2 [ ¢ - E ] + O 1
Hy (1 _ pyz)z (1 _ pyz)z ( )
2Tpuouy”
= — =+ 0(). C.382

(iv) Equation (C.373) implies that

E(u‘;PXNRz’UHPX“u#) = Ouu tI'(PX“RZHFPX#R#H)

_ o L[l —n@-p)
" pu 1-p?

+O(T™). (C.383)

+ (1= pu?) tr (Fuu ™ Opy) + tr (F ™' ByyFuy™ Opy)
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(v) Equation (C.376) implies that

E(u;iPXHRQ‘LWPXH VRWuH) = O‘Ml tr (nyRzy‘uPXH VRH‘URM,)
= GHH tr (PXHRQWJPX“V)

_ Oupp -1 -1 -1
= o [n—tr (Fuy B, Fu, @W’)] +O(T™). (C.384)
y

(vi)
E(u,R*VPx, Ro"Px VRM'u,) = o, tr (R*“VPx Ry Px, VRIR,,)
= 0y tr (RMVPx, Ry" Py, V) = [see (C.377)]
o
= L (Fuu™ BuyFuu ™ Opy) = 1]
Pu
(1= pu®) _ B}
+%[tr (Fuu 'Buy) — tr (Fu 10,1
+O(T™). (C.385)
(vii)

E(u, Ro! w1ty Rot'tay) = 0000 [t (R Ryy) tr (R Ry ) + 2 tr (R Ry RoH ' Ryry)]. (C.386)
Since (C.263) implies that

(Ro" Ry )(Re" Rypyr) = [Ri¥'Ryy + pudRyy J[R*H Ry + py ARy ]

(Ri*“ Ry R Ryvy) + puAR R Ry + e R R AR o

+0upw AR ARy v, (C.387)
it follows that

tr (Ro" Ry Ro" " Ryyy) = tr (Ri" Ry R Ryy) + pu (AR Ry M ¥ Ry )

+p tr(RI“R AR ) + pupy tr(AR AR ). (C.388)

Moreover, (C.262) implies that

y 1 1
(R1"Ry)(R1* Y Ry ) p—[IT -(1- p,,Z)RW]p—[IT ~ (1= pur)Ruyv]
u W

1
= [Ir —(1- pﬂz)th -(1- pH’z)RH’H’
PuPy

+(1 - P#z)(l - py’z)Rnyy’y']~ (C.389)
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vil.a Since the (i,j)-th element of the matrix R, is ﬁpy”_ﬂ, the (i,j)-th element of the matrix
u
R, Ry is

=g, W, (C.390)

Z(l pﬁ)(l o) ¥

Therefore, the i-diagonal element of the matrix Ry, R,/ is

T
1 , .
_ z li=kl k=i
e = P Pu ] . (C.391)
1- Pyz)(l - Pu’z) = # ¢

Define the index j=k—i(j=1-14,...,T —1i) and set r = p,p,r. Then,

T T—i
Z ikl o |k—r| _ Z pu Pu Z(p ) il
k=1 j=1-i —i
T—i -1 T—i i-1 T—i
= i = Z e N = Z AL er
j:lfi j:lfi =0 j+i=1 =0

rl_r(ll) 1-— Tz+1 _i+1_T—i+l
_ "k"‘Z ( )+ _r—r T

e~ 1-r 1-r
1+ _ + T—i+1
_ @+ 1(irr ):[settingj:T—i+1(j:1,...,T)]
A+r-=F+1) 1+r-27
= = . . 2
1-r 1-r (C.392)
Thus, equations (C.391) and (C.392) imply that
1 1+r-2r
e = C.393
A-pAA=-pu?) 1-7 ( )
T T ;
1 1+7r 2r!
tr(R R, ')/T eu/ [ - ]
HETH IZ T TA- 20— ppd) IZ_: 1-r 1-r
T
1 T(1+7) 2 ;
T TA-pdI-pud)| 1-r 1- 2.’
p# pH' ) ¥ ¥ i=1
1 1+7 2r  r(1—r1T)
_ _ ) C.394
(1-p2)1=pu?) [1 -r TA-7r) 1-7r ( )
and by omitting terms that tend to zero as T — oo we find that
1 1+r
tr (R, R, )/T = +o(TH = C.395
ppr (1‘Py2)(1_PH’2)1_7 ( )
T(1+ ,
tr (RyuRyy) = L+ pupuc) +o(1). (C.396)

(1= p DA = pu)(1 = pupyw)
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By combining equations (C.268), (C.389), and (C.396) we find that

tyr 1
tr (Ry" R Ri\"F Ry ) = [tr(I7) — (1 = p®) tr(Ry,)]
PuPw
1
- Pl [(1- Pp'z) tr(Ryy) — (1 - Puz)(l - Py’z) tr(Ruu Ry )]
1 T T
= T-(1-p2)— —(1- ,2—]
pup [ e R
1- 0,21 = p)TA + pupuw
1 [( Pu 2)( Pu 3 ( pry)_'_o(l)]
pupw | (1= pu®)(A = pp?)A = pupw)
T+ )
_ 1 [_T+ (L+ pupy >] ot
PupPuw (1= pupw)
-T+Tp,pp+T+T v
_ 1 PuPy Puby ] +o(1)
PuPw (1= pupw)
2T
= —— +o(1). C.397)
L= pupy (

vii.b Let 6;; be the (i,j)-th element of the matrix A. Then, 617 = 677 =1 and 6;; =0 ¥ i,j # 1 and

i,j # T. Moreover, let 1_1p 2p#“’j' be the (i,j)-th element of the matrix R,,. Then, the (i,j)-th
u
element of the matrix AR, is (see (C.271))

) 1 y
6 = by (C.398)
u
Since equation (C.262) implies that
o 1 )
Ri" " Ry = p_[IT — (1= p )Ry ], (C.399)
v
we find that
R““Ry AR, = ——[Ir (1 )R, ]AR
1 pww ARy = P_y’[ 7= (1= pu )Ry ARy,
1
= lAR,, - (1- iRy AR ). (C.400)
v

The (i,j)-th element of the matrix R, AR, is

T

1 ,
57 = li—kls, * ik k=]l
j IZ‘ 1-pa? Pu kj Z (1-pw z)P@ kk = ppz)p”
1 . 1 .
= li=1] 5 11=jl 4 llz T, IT—jl
A-pAA-p A P A pa-pAM
1 . . . >
T - P21 = pu?) lpw"™ o+ o Tp ] (C.401)
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and the i-diagonal element of the matrix R,/ vAR,,, is

1 o1
(1 - puz)(l - py’z) a

1 . .
- (1- p#Z)(l _ Py’z) [(p!lpy')|171| + (pﬂp}t’)lTﬂl]' (C.402)

[i=T]

ot = =]

11—
Pu- " FPw Py

Therefore, setting j = T—i+1(j =1,...,T) and (r = pyp,), and setting [ =i—-1(1=0,...,T-1),
equation (C.402) implies that

|
ip1-
o
N-J‘
:

tr (R ARyy)
i=1

1=

(Pyp# Z (Pupﬂ }
i=1

(1-py? (1 P@z)[
T

— i-1 j—1 11
e M } - pﬁ)(l—pﬁ)z

i=1

I
—_

i

T-1

1—+T
- Qa- Py’ (1 pw?) Z (1- P#z)(l pp?) 1=r
2 1= (pupw)’ 2[1 = (pupw)']

1 -pAA=pp?) T=pupw  (1=p )1 =pp?)(1 - pppp')( )

Therefore, equations (C.272), (C.400), and (C.403) imply that

1
p_[tr(Apr) -(1- P;L’z) tr(Rp"u’ARyp)]
v
- 1 [ 2 1= pu?) 201 = (pupw)'] ]
P [1=py? Pr A= 0D = pu (A = puppr)
_ 1 [ 2 2[1 ~ (pupu)'] ]
pu |1=pu® (1 =pAA=pupu) |

tr (R1"* Ry wAR,,,)

(C.404)

vii.c By using equation (C.271) we find that the (i,j)-th element of the matrix AR, AR, is

T
1 .
0ij°° Oix Oxj” = 6” 2 pull o 2 pﬂ’lk_]l
D Z e L )
1 ji-1]

Oii - =l
1- Puz)(l - Py’z) o™

Mt p, T, T, (C.405)

which implies that the i-diagonal element of the matrix AR, AR,/ is
5 1 o101 4
A-pHA-pe) Tt T :
1

— .. i1 [i=T]
= i T pD)- py,2)[(PﬂpH’) + (Pupu)' ] (C.406)

oo
oi =

li=T| . [T
pu' "l
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Therefore,
T 1 T
tr (AR ARy ) = ) 0i™ = Sil(pupy)™ + (pupu) M
ARy ;‘ 1-p D)1= pu?) ; PuPu PuPy
1 T
= (611 [(pupu) ™ + (upu)™ T+ 011l (pp)™™ + (pup) ]
(1= pD)(1 - pu?) ; 111 PuPu PuPu TTI\PuPu PuPu
2
= [1+ (pupp) 1 C.407
A= pA =)+ PuPr (€407
Thus, equations (C.388), (C.397), (C.404), and (C.407) imply that
» 2T/T
tr (Ry““R, R Ry )T = ————— +0(T)
HH HH (1 _ Pypy’)
pu— [ 2 2= (pupe)'] ] ;
Yow [1=p2 (1= p2) (1 = pupy)
p i |: 2 B 2[1- (py’py)T] ] /T
“oull-pp? (1= pp?)1 = ppy)
2
+ [1+ (pup) "1/ T, C.408
A pad—p) PePs (€409
and by omitting terms that tend to zero as T — oo we find that
tr (Ro"' Ry Ro* "Ry ) /T = ———— +o(T) =
L= pupw
' 2T
tr (Ry" Ry R Rypyr) = ————+o(1). (C.409)
L= pupw
Therefore, equations (C.386), (C.318), and (C.409) imply that
200y 20w Oy
E@ Ry"* u,u, Ro**u, )/ T
(u‘u 2 u‘uu‘u 2 uy )/ (1 _ pluz) (1 _ p‘u/z)
20,0y
—HER L oT Y (C.410)
L= pupy
and by omitting terms that tend to zero as T — oo we find that
v ATopuow
E(u;Rz““u“uL,sz‘ Puy) = ———— +o(1). (C.411)

1= pupw
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Lemma C.12. The following results hold:
Let &4 be the (t,i)-th element of the matrix E. Then, the (i,i)-th element of the matrix E'E/T is

T
e = Z eitet,-/T. (0.412)
t=1

Since oy is the (i,i)-th element of the matrix X, by using equations (C.117) and (C.412) we find that the

(i,i)-th element of the matrix L is

T
oil) = \/7_"[2 €ireri/ T — Uz‘i] = VT(ei — o). (C.413)

t=1

Moreover, since o' is the (i,i)-th element of the matrix £~, by using equation (??) we find that the (i,i)-th

element of the matrix Sq is

si = [0w0™)ix=1,. MI0x10a M) 1=1,. 1010 )y j=1,.. 1]
M M
- Z Z Sixdado" oMo'l = 6;j0" 0 Vol
k=1 I=1
= \/Z_F[Giieiiaii - oo 0] = \/Z_F[oiieiiaii —a"l. (C.414)

Since L71EX! = £71 the (i,i)-th elements of the matrices £~ and E~'EE"! are identical, i.e.,

0" = [(6i0™)ipemt,. MO0 wt)c =1, ml[(S10™ )y j=1,.. ]
M M
= Z Z 5,‘,<(3K161]'(7ik0k](71j = 6ij6iio‘ij(7jj
k=1 =1
= ogyot = o (C.415)

Thus, equations (C.414) and (C.415) imply that
S,‘z‘(l) = \/Y_"[Giieiiaii - Gii]. (C.416)

Since equation (C.412) implies that
ej; = £;£i/T (0.417)

where e; is the i-th column of the matrix E we find that
siV = ﬁ[aii(elfs,-/T)a"i —a'. (C.418)
Therefore the (i,i)-th element of (1 X M) vector s; is

58 =s;V = ﬁ[oii(sgsi/T)aii - o' (C.419)



328 Appendix C

Equation (3.22) implies that

u, = g,P,andu, = Pyg, = (C.420)

u, Ro"uy, = &, P, Ro"' Pye,. (C.421)

By using Lemma UR.2 and since (5.15b) implies that (see Magnus and Neudecker, 1979, p.389)

E(e, P Ry Pygy) = oy tr (PR Pulr) = 0y tr (PR P), (C.422)

I’

we find that

E(ele; £ R2 HP,e,) = (see Magnus and Neudecker, 1979 p.389)
= fr (GiiIT) tr (O"WP;’RZHPPH) +2tr (O’iicf},yP'LRz‘uHPy)
= O'j,'O'HHTtI‘ (P;RQMLPH) + 2(71'1()'”‘u tr (P,:lewiPP)

= 0;i0uu(T +2) tr (P, Ry*Py), (C.423)

and since (C.1) implies that

(C.424)

P,P, =Ry,

by combining equations (C.318) (C.423), and (C.424) we find that

E(eeie, PR Pyey) = 0iio (T + 2) tr (PR Py)

G,','O'yH(T + 2)tr (RZH“P“PL) = O'iiO'[“y(T +2) tr (RZMIRHH)

2py
~ Pu

E(E:-Eju;,Rz‘uHu”)

(C.425)

0ii0uu(T + 2) 5

Therefore,

E[(egei/T)u;,Rz*‘“uu] E(E;E,'u, RQMLMH)/T

20,
Oii0 T . (T +2)/T

2P# 4py
1=,z T ooy 3 pyz/T (C.426)

0ii0Ouu
and by omitting terms that tend to zero as T — oo we find that

ZpH

E[(ngi/T)u;iRZ‘uHu‘u] = O—iio—pyl_—z

+O(T™). (C.427)
Equation (C.419) implies that

() Rt = NT[(0") (€} &/ T Ry u,, — 0"/, RoH¥u ]. (C.428)
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Equations (C.378), (C.415), and (C.428) imply that

(s Ro'u,) = VTI(o") El(ej&i/ T)u| Rotuy] - 0" E(u Ro"u,)]

2pu
1-py?

-
VT[(6")?03i0 4,

3 2p B
- Gllﬁyyﬁ + O(T 1)]

o(T™ ") =
lim E(s()u/ Ro*uy) = 0.

(i)

Proof of Theorem 6. Define the ((1 + M + M) X 1) vector

oo
5=|s,
[

where for 0 =1

is a scalar,

is a M X 1 vector with element

A

Pu = Pu

T

Op, =

and

6; = [(6gw )yy,:l,...,M]

is a (M x 1) vector with elements
par—
Gl = ————.
T

Moreover, 0 admits the following stochastic expansions:
6 =d +tdy + w(?)

which implies that 89,6, and 6. admits a stochastic expansion of the form
S0 = 0o + To1 + w(T?)

(Sp = dlp + "L'dzp + CU(TZ)

Oc =dic + tdoc + w(T?),

where og and o7 are scalars, d1, and d», are (M X 1) vectors and di; and dy; are (M X 1) vectors.

(C.429)

(C.430)

(C.431)

(C.432)

(C.433)

(C.434)

(C.435)

(C.436)

(C.437)

(C.438)

(C.439)

(C.440)
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Define the scalars Ao and xo the (M X 1) vectors A, and &, the (M X 1) vectors A, and &, the (M X M)
matrix Ay, the (M X M) matrix Ag, the (M X M) matrix Agp and the (M X M) matrix Ay by the following

relations:
Ao /\;) AIC Ko
Ao Ay Apc|=lim E@dd)); |k, | = lim E(VTd; + do) (C.441)
As Ay A L

By combining equations (C.437), (C.438), (C.439), (C.440), and (C.441) we find that

Ao /\;J /\; (oN))
Ap Ay Apc|= %1_{{)10 E(did}) = TIEEOE dip [oo dip dig]
Ao Ay Ag dig
002 Oodip Godig
= ImE|oody, dipd;, dipd;, (C.442)
00d1g dl‘;dip dlgd;g
which implies that
Ao = }im E(00?), (C.443)
Ap = 711—1;1;10 E(O'()dlp), (0444)
/\g = 711_1;1;10 E(O'()dlg), (0445)
Ay = %1_{210 E(dlpd’lp), (C.446)
A= %1_1}20 E(dlgdig), (C.447)
Agp = Th_r)go E(dlgdip), (C.448)
Apg = Tll_r}olo E(dlpdig). (C.449)
Obviously Agp = A;,g.
Similarly,
Ko \/cho +01
Kp | = lim E( VTd, + dy) = lim E| VTd, + day (C.450)
K. \/leg + dz;
which implies that
ko = lim E( VTog + 01), (C.451)
Ky = lim E(VTdy, + dop), (C.452)

e = lim E( VTd, + dye). (C.453)
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By using equations (C.119), the estimator &; (I=UL, RL, GL, IG, ML) of ¢ is

£V = (BE/T) T =ET-185 + 778 + w(T’) =

= ¢—1s1 + 128 +w(T’) = (C.454)
o, = CIT_ &= —s1 + 180! + w(rz)
= dig + 1dy + w(7%), (C.455)
where
dlg = =51 and dzg = Szl. (0456)

By using equations (C.143) and (C.432) we find that

5o 6% -1)/t =6/t -1/t

M + 22 tr[(S! — SSHEN/ (M - w2n)t — % + w(?)

[IM/7 + Ttr[(Sy! = S EN/ (M = 2n) — % + w(7?). (C.457)
By using Lemma UR.1 we find that

1/M-1*n) = M-7*n)7"'=[MA-*n/M)] =M1 - ®n/M)™!

= M1+ 2n/M+ w(t)] = (1 + 22n/M)/M + w(t). (C.458)
Thus, equations (C.445) and (C.446) imply that

Sl = [M/t+ttr[(So) = SHENIA + /MM + w(t)] - 1/7 + w(T?)
= [1/7 + ttr[(S2! = SHE/MIIA + 2 /M) — 1/ + w(7?)
= 1/t + /M + ttr[(S2) — S)E/M - 1/7 + w(?)

= 1[tr[(S2! — SNE] + nl/M + w(T?). (C.459)
By combining equations (C.438) and (C.459) we find that
00 =0, o1 = [tr[(Sy! — $)E] + n]/M. (C.460)
By using equations (C.443), (C.444), (C.445) and since og = 0 (see (C.460)) we find that

Ao = %im E(6o?) = 0, (C.461)
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/\p = %1m E(Godlp) = 0, (0462)
A; = lim E(oodic) = 0. (C.463)
Moreover, equations (C.167), (C.447), and (C.456) imply that
A, = %1_1)130 E(didy,) = %1_2)10 E[sis]]
2002 0 ... 0
0 2022_2 0
= lim
T—oo
| 0 e 0 ZO'MM_ZA
= 2 (C.464)
By using equations (C.438) and (C.460) we find that
Ko = lim VToo + 01) = lim E(01) = lim E[tr[(S,! — S,))E] + n]/M
= trflim E[(Sy' — S,))E]I/M + n/M = [see (C.149)]
= tr[Z (AL — A)]/M +n/M (1=UL, RL, GL,IG, ML), (C.465)
where
Ay = Ofsee (C.184)],
M a1 M -1 M -1
ApL = [(5%0% tr [( Z BPP) qu( Z BPP) qu] — Ogi0yq tr [( Z BPP) BqK]
p=1 p=1 p=1
M -1
~dgeocte[( ) By) Bug] + @,Kaqu) ] [see (C.203)],
p=1 kq
M -1
AGL = AIG = AML =KX - [( tI‘[Zl OiiBii] Bii)i,z] [see (0211)] (0466)
Furthermore, equations (C.453) and (C.456) imply that
Jim E[ VI(=$1) + '] = Jim E(S,) = [see (C.146)]
= M+K+1)L ! -rclarct! (C.467)

ke = lim B(VTdi +dao) = lim B(VT(=s1) + 52)
= [see (C.467)] = [(M + K + 1)0" — o"d;i' o)1 ml,

(C.468)
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where d;; is the (ii)-th element of matrix A;. Ay, Arp and Ay = Ajg = App have been defined in (C.466).

For the I estimator of p, (I=LS, GL, PW, ML,DW) equations (C.245), (C.246), (C.251), (C.254), and

(C.259) imply that

LS
Ay

Therefore,

Moreover, for u # p’ we find that

G
= dap

L ML
= dayy
1- 2
_T( Pu’)

Oup

DW
= dyy

u;le””uy/Z = d(l)#.

d(l)#dzl)p = u;le‘*”uyuLsz‘”uH/élTou”‘l

’ . up ’ wy 2 2
d(l)[vld(l)‘u' —usz uyuH,Rz u,/4Toy, Ou,y

= —u, Ro"uy 2 \ﬁauf

(C.469)

(C.470)

(C.471)

Equations (C.446) and (C.470) imply that the u-diagonal element of the matrix A, is

JI"LH;IO E(d(l)#dzl)p)

Similarly, equations (C.411) and (C.471) imply that since oy,

lim E(u, RZWuHu Rzy”uy)/ﬁlTau

T—o0

4T0W
[see (C.380)] = lim =

o + 0(1)] /4Ta,,*
u

4 My -1 2 _
714)00 [m + O(T )] (Slnce O_u“

4TOW

=(1-pd).

O'“

(1 _Py )4T 1-p, 2)2

2 _ _9up 2 _
= Tp) 7 Oue

pp’-th off-diagonal element of the matrix A, is

%Ero‘o E(d(l)ﬂd(l)p')

Moreover, for the J estimator of p,, (I=LS, GL, PW, ML,DW) it holds that since

LS
dayu = day

the following results holds:

E(VTdyy,) = —E@,Ru,/20,2) =

T—oo
4T .0,
— pupQ + O(T—l)
T—>oo (1= pupw )4T0uM 0,,H

OupOpw

= lim E(u/ Rz““uyu RZ’”‘uH )/4Tau Ou, 2

O

(1- py2)

(C.472)

=T ‘P 2),f0ry¢p the

Opp Oy
pu?) (1=pur?)

(1 - pupy )(1

GL ML DW
=dap " =day =day =

—2pu0uu 204y

_a- pu®)(1 = ppr?)
(1= pupw)

—1, Ro"uy 2 \/Taupz,

(C.473)

(C.474)

A-pd) (-p2 7
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Jim E( VTday,) = —pu. (C.475)

By using equations (C.247), (C.382), and (C.383) we find that

E(dp.”®) = - E(u;lPX#RZWPXPu;,)/Zouy2 + E(uLuMuLRZ”“uM)/ZTG,,#‘l

Ouu [2(pu* = n(1 = pu?)) _ _ _
30 [ ; - /G”MZ + (1= pu®) tr (Fuy 1@;1#)/‘7%2 + tr (Fuu ™ By Fug 1@;4#)/0w2

2py 1-p,?

+O(T) - [(f*‘—"z‘)z + 0(1)] /2o, !
Pu

1 [ 2p4°0u 210y 2 1 GHP]
= —— - +(1-p2)tr (Fuy 0,2
20, _(1 — 0 D)0n?  0u? (1= pu") tr (Fu ””)ouf
1 oy 2P2 Wz
—— |tr (Fu "By Fuy '@ H‘+”— +O(T™
20, | 1 (Fuy™ BuyFyy u#) (1— 2P0, (T™)
1 — 20,0y Z”Uu# 2 -1
= _E (1 0.2) T + (1= py%) tr (Fuy @uu) %y
S (1- Pu (17Pp2) (1- Pp
2 2
1 -1 -1 Oup 20,00y .
5 tr (Fuy 7 By Fuys ™ 0p)— | o
H | 1-p2) (1 Pu ) T=p27

1 _ _ _
= _5[4%2 =2n(1 = p®) + (1= p®)* tr (Fup ' Opp) + tr (Fup ' BupFu 10,0 (1 = pu?)]
u

+O(T™). (C.476)

By combining equations (C.452), (C.475), and (C.476) we find that

Kp, =

where

lim E( VTdy, +dy, ™)

%E];lo __[4py 2”(1 - Pyz) + (1 - pyz)z tr (P,uy_l @yy) +tr (Fyy_lBnyyy_l@yy)(l - PHZ)] + O(T_l)
1 - - -
pr [6‘0” -2n- 2np”2 + (1 - pyz)z tr (Fyy 1@;41) +tr (Fuy 1BWFW 1@;1;1)(1 - puz)]
1

—g[pr@ +n)—-2n+(1- pyz)((l - pyz) tr (Fyy_l@w) +tr (FW_lBWFW_l@W))]
u

—[puB+n) + (2n —c1)/2p,], (C.477)

a =1 -p A= p®) tr (Fu ' Opp) + tr (Fuy ' BuyFuu ™ ©,0)). (C.478)

By using equations (C.247) and (C.252) we find that

GL LS
doy ™ =deyu ™ =

(1- P;LZ)

—— [, Px, Ry Px, VR** 1, + u R"'VPy, Rot“Px, VRu, /2] (C.479)
p
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Therefore, equations (C.384) and (C.385) imply that

1-p2) -
E(—M[MLPX”RZHPPXU VRWu}, + u;,RnyPX“RQHHPX“ VRWu},/Z])

Oup
(1-pu)o . -
= _Ty‘upi:[n —tr (Fyy 1B‘U.[,LF‘Ll‘u 1@;41)]
(1-pu)o . -
+Ty“;—’”“[n—tr(m 'BuuFuu10,,)1/2
(1-pu?) ou(l = pi®) . . .
-— £ ; S [tr (FuuBp) — tr (Fuy ' 0,172+ O(T ™)
Hy H
1-pu?) i i} (1 -pa*) . _ .
- L2 ln — tr (Fuy " BuyFup ' ©,0)1/2 - — S [tr (FuuByp) — tr (Fuy ' 0,172+ O(T) =
u p
: A-p 5 up up QUK up up
%lm E _O-—[uHPXPRZ PX”VR Uy + uHR VPX“RQ PX”VR uH/Z]
(1-ps? . 1 2 -1 2 -1
= —P—[n —tr (Pyy BuyFyy @yy) + (1 ~ Pu )tr (FyyByy) - (1 ~ Pu )tI‘ (Puy @,uy)]/z
u

= (1- P;:z)[(l - P,uz) tr (Fyu_l@yy) +tr (Fyy_prpry_l @uy)]/zpy
—(1 = pu®) tr (BB /20 — (1= p®)n/2p,
= [a-(1- Py2)”]/2Py -(1- Pp2)52/2Py/
where
o =01-p)tr (FW,B;; )

Thus, from equations (C.475), (C.476), (C.477), (C.479), and (C.480) we find that

k% =k, = lim B(VTdyy, +dp, ) = lim B(VTdy, + do, ")
_ 1- sz)

Ouu
= k"0 = (L= pA)ea/2pu + [e1 = (1 = pP)nl/2p,.

[uLPX“Rzy‘HPXH VR””uH + MLR‘u‘”VPX“Rz‘“HPXP VR“HMH/Z]

By using equations (C.252) and (C.255) we find that
ML GL 1
o™ =du ™+ pu—— (1

Since
20y

E(MMLZ + MTyz) = E(ulpz) + E(uTyz) = Gupz + Gupz = 26”#2 = (1 -p 2)’
u

we find that

(1-p.®) 204 _
Oup (1 - sz) ‘
E(d(2)ycL) + 20y = pu = E(d(Z)HGL) + Pu-

E(d(Z)uML) E(d(chL) + Pu

(C.480)

(C.481)

(C.482)

(C.483)

(C.484)

(C.485)
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Thus, by combining equations (C.475), (C.482), (C.483) and (C.485) we find that

Ko, ML = lim E( VTdy, + dp,M) = Jim E[( VTdy, +do, ) + p, ]

u

KP;AGL + P# = KPyPW + p}l (0486)

By using equations (C.247) (C.260) we find that

(1 - 12)
E@dey”™") = Ed,™) + —a:f (E(u1,%) + E(ur,2))/2 = [see (C.484)]
(1= pu®) 204/2
ou (1= pu?)
= E(dp"’) +1. (C.487)

= E(dp,") +

Thus, by combining equations (C.475), (C.477), and (C.487) we find that

1-p,2
K, P = Jim E( VTdy, +dp, ") = lim E[( VTdy, + da, ) + (Gi)(um2 +ur,?)/2]
—00 —00 i
= K0+ 1 (C.488)

By using equations (C.440), (C.442), and (C.449) we define the M X M matrix A, as follows:
Ape = %Ln(}o E(dipd),), (C.489)

where the u-th element M X 1 vector dy, is

dy, = R WRMu 1pa? ey (C.490)
Dy = — = — = — u 207U 490
(D 2 \/T"Gu 5 2T iwz 2VTo g y
H (1-py?) up
and the 1 X M vector d;g is defined as
di =[-s1]" (C.491)

From equation (C.419) we have that the (ii)-th element of dj_is

—581.)) = —VT[o"(¢/&;/T)o" - 6"] (C.492)

with (i) = 1,..., M.
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By combining equations (C.490) and (C.492) we find that the (y, (i))-th element of the (M x M) matrix
Apg is
dap(=s) = L Rt | [ VLot e T - o]
2VToy, '
1- Pyz)
20

[a"i(s;si/T)(u;Rz““u#) - oi"(uLRzﬁ‘“u“)] , (C.493)
Hp

which implies that by using equation (C.429) we find that

A-p® 7, , o
Eu(-s) = ——— [o" El(ejer/T)Ro" u,)] — 0" Blut, R, |
pu
= O(T "=
Ape = lim E(d(l)y(—s&)))) =0. (C.494)
Finally, we find that
A=A =0. (C.495)






Bibliography

Abadir, K., & Magnus, J. (2002). Notation in Econometrics: A Proposal for A Standard. Econometrics
Journal, 5, 76-90.

Amemiya, T. (1977). A Note on a Heteroscedastic Model. Journal of Econometrics, 6, 365-370.

Beach, C., & MacKinnon, J. (1978). A Maximum Likelihood Procedure for Regression with Autocorrelated
Errors. Econometrica, 46(1), 51-58.

Breusch, T. (1980). Useful Invariance Results for Generalized Regression Models. Journal of Econometrics,
13, 327-340.

Cornish, E., & Fisher, R. (1937). Moments and Cumulants in The Spesification of Distributions. Revue de
I’ Institute International de Statistic, 4, 1-14.

Dhrymes, P. (1971). Equivalence of Iterative Aitken and Maximum Likelihood Estimators for a System of
Regression Equations. Australian Economic Papers, 10, 20-24.

Dhrymes, P. (1978). Introductory Econometrics. Springer-Verlag.

Durbin, J., & Watson, G. S. (1950). Testing for Serial Correlation in Least Squares Regression: I. Biometrika,
37(3), 409-428.

Durbin, J., & Watson, G. S. (1951). Testing for Serial Correlation in Least Squares Regression: II.
Biometrika, 38(1), 159-177.

Edgeworth, F. (1903). The Law of the Error. Proceedings of the Cambridge Philosophical Society, 20,
36-141.

Fisher, R., & Cornish, E. (1960). The Percentile Points of Distributions Having Known Cumulants.
Technometrics, 2(2), 209-225.

Goldfeld, S., & Quandt, R. (1965). Some Tests for Homoscedasticity. Journal of the American Statistical
Association, 60(310), 539-547.

Hildreth, C., & Houck, J. (1968). Some Estimators for a Linear Model with Random Coefficients. Journal
of the American Statistical Association, 63(322), 584-595.

Hill, G. W.,; & Davis, A. W. (1968). Generalized Asymptotic Expansions of Cornish-Fisher Type. The
Annals of Mathematical Statistics, 39(4), 1264-1273.

MacDonald, G., & MacKinnon, J. (1985). Some heteroskedasticity-consistent covariance matrix estimators
with improved finite sample properties. Canadian Journal of Economics, 29(3), 305-325.
Magdalinos, M. (1983). Applications of the Refined Asymptotic Theory in Econometrics [Doctoral

dissertation, University of Southampton, Faculty of Social Sciences].
Magdalinos, M. (1992). Stochastic Expansions and Asymptotic Approximations. Econometric Theory,
8(3), 343-367.

339



340 Bibliography

Magdalinos, M., & Symeonides, S. (1995). Alternative Size Corrections for Some GLS Test Statistics: The
Case of the AR(1) Model. Journal of Econometrics, 66(1-2), 35-59.

Magdalinos, M., & Symeonides, S. (1996). A reinterpretation of the tests of overidentifying restrictions.
Journal of Econometrics, 73(2), 325-353.

Magee, L. (1985). Efficiency of Iterative Estimators in the Regression Model with AR(1) Disturbances.
Journal of Econometrics, 29, 275-287.

Magee, L. (1989). An Edgeworth Test Size Correction for the Linear Model with AR(1) Errors. Econo-
metrica, 57, 661-674.

Magnus, J., & Neudecker, H. (1979). The Commutation Matrix: Some Properties and Applications. The
Annals of Statistics, 7, 381-394.

McDonald, G., & Galarneau, D. (1975). A Monte Carlo Evaluation of Some Ridge-Type Estimators.
Journal of the American Statistical Association, 70(350), 407-416.

Nagar, A. (1959). The Bias and Moment Matrix of the General k-class Estimator of the Parameters in
Structural Equations. Econometrica, 27, 575-595.

Newey, W. K., & West, K. (1987). A Simple, Positive Semi-Definite, Het- eroskedasticity and Autocorre-
lation Consistent Covariance Matrix. Econometrica, 55(3), 703-708.

Nonlinear Methods in Econometrics. (1972). North-Holland Publishing Company.

Parks, R. W. (1967). Efficient Estimation of a System of Regression Equations when Disturbances are
Both Serially and Contemporaneously Correlated. Journal of the American Statistical Association,
62, 500-5009.

Prais, S. J., & Winsten, C. B. (1954, February). Trend Estimators and Serial Correlation.

Rothenberg, T. (1983, February). Comparing Alternative Asymptotically Equivalent Tests. In W. Hilden-
brand (Ed.), Advances in Econometrics (pp. 255-262). Cambridge University Press.

Rothenberg, T. (1984a). Approximate Normality of Generalized Least Squares Estimates. Econometrica,
52(4), 811-825.

Rothenberg, T. (1984b). Hypothesis Testing in Linear Models when the Error Covariance Matrix is
Nonscalar. Econometrica, 52(4), 827-842.

Rothenberg, T. (1988). Approximate Power Functions for some Robust Tests of Regression Coefficients.
Econometrica, 56(5), 997-1019.

Symeonides, S. D. (1991, July). APPLICATIONS OF REFINED ASYMPTOTIC THEORY IN ECONO-
METRIC TESTING [Doctoral dissertation, Athens University of Economics and Business|.

Symeonides, S. D., Tzavalis, E., & Kandilorou, H. (2007). Cornish-Fisher Size Corrected t and F Statistics
for the Linear Regression Model with Heteroskedastic Errors. In G. D. A. Philips & E. Tzavalis
(Eds.), The Refinement of Econometric Estimation and Test Procedures: Finite Sample and
Asymptotic Analysis (pp. 173-204). Cambridge University Press.

Symeonides, S. D., Tzavalis, E., & Karavias, Y. (2016). Size Corrected Significance Tests in Seemingly
Unrelated Regressions with Autocorrelated Errors. Journal of Time Series Econometrics, 9(1),

1-40.



bibliography 341

White, H. (1980). A Heteroscedasticity-Consistent Covariance Matrix Estimator and a Direct Test for
Heteroscedasticity. Econometrica, 48(4), 817-838.

Zellner, A. (1962). An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for
Aggregation Bias. Journal of the American Statistical Association, 57(298), 348-368.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics. John Wiley & Sons.

Zellner, A. (1963). Estimators for Seemingly Unrelated Regression Equations: Some Exact Finite Sample
Results. Journal of the American Statistical Association, 58(304), 977-992.

Zellner, A., & Huang, D. S. (1962). Further Properties of Efficient Estimators for Seemingly Unrelated
Regreesion Equations. International Economic Review, 3(3), 300-313.

Zellner, A., & Theil, H. (1962). Three-Stage Least Squares: Simultaneous Estimation of Simultaneous
Equations. Econometrica, 30(1), 54-78.



