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Περίληψη

Τα περισσότερα γραφοθεωρητικά προβλήματα είναι γνωστό πως είναι NP-πλήρη
στα γενικά γραφήματα· δεν θεωρείται πίθανο να υπάρχει αλγόριθμος πολυωνυμι-

κού χρόνου για την επίλυσή τους. Με κίνητρο το γεγονός ότι πολλά από αυτά τα

προβλήματα έχουν εφαρμογές στον πραγματικό κόσμο, οι ερευνητές έχουν επι-

κεντρωθεί στην σχεδίαση όλο και γρηγορότερων ακριβών αλγορίθμων εκθετικού

χρόνου και όλο και καλύτερων προσεγγιστικών αλγορίθμων για την επίλυσής

τους. Μία άλλη κατεύθυνση της έρευνας — αυτή που ακολουθούμε στην πα-

ρούσα διατριβή —, η οποία έλαβε μεγάλη ώθηση τα τελευταία χρόνια λόγω της

ανακάλυψης νέων ισχυρών εργαλείων στο πλαίσιο της Παραμετροποιημένης Πολυ-

πλοκότητας, είναι η μελέτη αυτών των προβλημάτων σε συγκεκριμένα γραφήματα

που εμφανίζουν διαφόρων ειδών εσωτερική δομή. Σχεδιάζοντας αλγορίθμους που

εκμεταλλεύονται αυτή την εσωτερική δομή, ενδέχεται να παράσχουμε καλύτερες

εγγύησεις σε χρόνο εκτέλεσης ή/και ποιότητα λύσης σε αυτά τα συγκεκριμένα

γραφήματα. Ενδέχεται επίσης να δείξουμε ότι η δυσκολία ενός προβλήματος δια-

τηρείται σε αυτά τα γραφήματα, παράγοντας με αυτόν τον τρόπο περαιτέρω γνωση

πάνω στα είδη δομής που κάνουν το πρόβλημα δύσκολο στην επίλυση.

Στην παρούσα διατριβή, μελετούμε Προβλήματα Συνόλου Τερματικών Κο-
ρυφών: δοθέντων ενός γραφήματος (με βάρη στις κορυφές) και ενός υποσυνόλου
κορυφών των γραφήματος, που καλείται το σύνολο τερματικών κορυφών, ανα-

ζητούμε υποσύνολο κορυφών του γραφήματος ελαχίστου μεγέθους (βάρους) το

οποίο τέμνει (κρούει) κάθε υποσύνολο κορυφών των γραφήματος που περιέχει
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τερματική κορυφή και επάγει υπογράφημα που εμφανίζει συγκεκριμένη δομή που

εξαρτάται από το πρόβλημα. Αυτή η κλάση προβλημάτων περιέχει εξέχοντα γρα-

φοθεωρητικά προβλήματα τα οποία έχουν εφαρμογές τόσο εντός όσο και πέραν

της Επιστήμης Υπολογιστών. Εστιάζουμε την μελέτη μας σε δύο συγκεκριμένα

προβλήματα.

Το ένα είναι πρόβλημα κρούσης κύκλων και είναι γνωστό στην σχετική βιβλιο-

γραφία ως το Πρόβλημα Στοχευμένα Ακυκλου Επαγόμενου Υπογραφήμα-
τος (SFVS): δοθέντων ενός γραφήματος (με βάρη στις κορυφές) και ενός συ-
νόλου τερματικών κορυφών, αναζητούμε υποσύνολο κορυφών του γραφήματος

ελαχίστου μεγέθους (βάρους) το οποίο κρούει κάθε υποσύνολο κορυφών του

γραφήματος που περιέχει τερματική κορυφή και επάγει κύκλο. Μελετούμε το

SFVS σε υποκλάσεις των AT-ελεύθερων γραφημάτων και σε υποκλάσεις των
χορδικών γραφημάτων, τα οποία είναι γραφήματα που είναι γνωστό ότι εμφα-

νίζουν πλούσια εσωτερική δομή. Παρέχουμε αλγορίθμους πολυωνυμικού χρόνου

για την επίλυση του έμβαρου SFVS στις ακόλουθες κλάσεις γραφημάτων: γρα-
φήματα διαστημάτων (χρόνου O(nm)), γραφήματα μεταθέσεων (χρόνου O(m3)),
συνδιμερή γραφήματα (χρόνου O(n4)) και γραφήματα μονοπατιών ριζωμένων δέν-
δρων (χρόνου O(n2m))· και δείχνουμε ότι το μη-έμβαρο SFVS είναι NP-πλήρες
στα γραφήματα μονοπατιών μη-κατευθυντικών δένδρων. Επιπλέον, για το έμβαρο

SFVS, παρέχουμε έναν αλγόριθμο για την επίλυση του στα γραφήματα με φύλλω-
μα το πολύ k ο οποίος τρέχει σε χρόνο nO(k)

και δείχνουμε είναι W[1]-δύσκολο
παραμετροποιημένο από το k. Μελετούμε επίσης το SFVS στα H-ελεύθερα γρα-
φήματα, τα οποία είναι γραφήματα που εμφανίζουν ένα είδος εσωτερικής δομής

ως αποτέλεσμα απουσίας ενός άλλου. Για το έμβαρο SFVS, παρέχουμε έναν
αλγόριθμο πολυωνυμικού χρόνου για την επίλυση του στα 4K1-ελεύθερα γρα-

φήματα και δείχνουμε ότι είναι NP-πλήρες στα 5K1-ελεύθερα γραφήματα. Για το

μη-έμβαρο SFVS, παρέχουμε έναν αλγόριθμο για την επίλυση του στα (k+1)K1-

ελεύθερα γραφήματα ο οποίος τρέχει σε χρόνο nO(k)
. Το SFVS αποτελεί γε-

νίκευση του κλασικού Προβλήματος Ακυκλου Επαγόμενου Υπογραφήματος
(FVS): δοθέντων ενός γραφήματος (με βάρη στις κορυφές), αναζητούμε υπο-
σύνολο κορυφών του γραφήματος ελαχίστου μεγέθους (βάρους) το οποίο κρούει

κάθε υποσύνολο κορυφών του γραφήματος που επάγει κύκλο. Το έμβαρο FVS
είναι γνωστό πως είναι επιλύσιμο σε πολυωνυμικό χρόνο στα AT-ελεύθερα γρα-
φήματα και στα χορδικά γραφήματα. Παρέχουμε έναν αλγόριθμο για την επίλυση

του στα (k + 1)K1-ελεύθερα γραφήματα ο οποίος τρέχει σε χρόνο n
O(k)

και για

το μη-έμβαρο FVS, δείχνουμε ότι είναι W[1]-δύσκολο παραμετροποιημένο από το
k μέσω μίας αναγωγής η οποία είναι διαφορετική από αυτή που υπάρχει στη βι-
βλιογραφία και ότι στα (k+1)K1-ελεύθερα γραφήματα δεν μπορεί να επιλυθεί σε

χρόνο f(k) · no(k)
υπό την ETH.
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Το άλλο πρόβλημα στο οποίο εστιάζουμε είναι ένα πρόβλημα κρούσης μονοπα-

τιών και είναι γνωστό στη σχετική βιβλιογραφία ως το Πρόβλημα Διαχωρισμού
Συνόλου Κορυφών (NMC): δοθέντων ενός γραφήματος (με βάρη στις κορυφές)
και ένα σύνολο τερματικών κορυφών, αναζητούμε υποσύνολο κορυφών του γρα-

φήματος ελαχίστου μεγέθους (βάρους) το οποίο δεν περιέχει τερματικές κορυφές

και κρούει κάθε υποσύνολο κορυφών του γραφήματος που επάγει μονοπάτι μετα-

ξύ δύο τερματικών κορυφών. Για το μη-έμβαρο NMC, παρέχουμε έναν αλγόριθμο
πολυωνυμικού χρόνου για την επίλυση του στα 3K1-ελεύθερα γραφήματα και δε-

ίχνουμε ότι είναι NP-πλήρες στα 4K1-ελεύθερα γραφήματα μέσω μίας αναγωγής

η οποία στηρίζεται στον περιορισμό ότι η λύση στο NMC δεν περιέχει τερματικές
κορυφές. Με κίνητρο αυτό το γεγονός, θεωρούμε επίσης το NMC χωρίς αυτόν
τον περιορισμό και το καλούμε Πρόβλημα Απεριόριστου Διαχωρισμού Συνόλου
Κορυφών (UNMC). Για το έμβαρο UNMC, παρέχουμε έναν αλγόριθμο πολυω-
νυμικού χρόνου για την επίλυση του στα 3K1-ελεύθερα γραφήματα και δείχνουμε

ότι είναι NP-πλήρες στα 4K1-ελεύθερα γραφήματα. Για το μη-έμβαρο UNMC, πα-
ρέχουμε έναν αλγόριθμο για την επίλυση του στα (k+1)K1-ελεύθερα γραφήματα

ο οποίος τρέχει σε χρόνο nO(k)
και δείχνουμε ότι είναι W[1]-δύσκολο παραμε-

τροποιημένο από το k και ότι στα (k + 1)K1-ελεύθερα γραφήματα δεν μπορεί να

επιλυθεί σε χρόνο f(k) · no(k)
ύπο την ETH.

Η παρούσα διατριβή δομείται ως ακολούθως: Το Κεφάλαιο 1 αποτελεί μια ει-

σαγωγή στο αντικείμενο μελέτης. Το Μέρος I παρέχει το απαραίτητο θεωρητικό
υπόβαθρο: Στοιχεία της Θεωρίας Πολυπλοκότητας και της Θεωρίας Γραφημάτων

δίνονται στα Κεφάλαια 2 και 3 αντίστοιχα και οι ορισμοί των υπό μελέτη προ-

βλημάτων μαζί με προηγουμένως γνωστά αποτελέσματα σχετικά με την πολυπλο-

κότητά τους δίνονται στο Κεφάλαιο 4. Το Μέρος II παρέχει τα αποτελέσματα μας
σε αλγορίθμους και πολυπλοκότητα: Μετά την παροχή των απαραίτητων προκα-

ταρκτικών στο Κεφάλαιο 5, παρουσιάζουμε τα αποτελέσματά μας σε υποκλάσεις

των AT-ελεύθερων γραφημάτων, σε υποκλάσεις των χορδικών γραφημάτων και
σε H-ελεύθερα γραφήματα στα Κεφάλαια 6, 7 και 8 αντίστοιχα. Το Κεφάλαιο 9
ολοκληρώνει την διατριβή μας με μερικά σχόλια και ανοικτά προβλήματα που πα-

ρέχουν κατευθύνσεις για μελλοντική έρευνα.
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Abstract

Most graph-theoretic problems are known to be NP-complete on general
graphs; it is considered unlikely that there exist polynomial-time algorithms
for solving them. Motivated by the fact that many of these problems have
real-world applications, researchers have been primarily focused on designing
faster and faster exact exponential-time algorithms and better and better ap-
proximation algorithms for solving them. Another direction of research —
the one that we follow in this thesis —, which gained a lot of momentum in
recent years due to the discovery of new powerful tools within the framework
of Parameterized Complexity, is to study these problems on particular graphs
that exhibit various kinds of internal structure. By designing algorithms that
leverage this internal structure, we may provide better running time and/or
solution quality guarantees on these particular graphs. We may also show that
a problem’s hardness persists on these graphs, thusly yielding further insight
into the kinds of structure that make the problem hard to solve.

In this thesis, we study Terminal Set problems: given a (vertex-weighted)
graph and a vertex subset of the graph, called the terminal set, we search
for a minimum-sized (minimum-weighted) vertex subset of the graph which
intersects (hits) every vertex subset of the graph that contains a terminal
and induces a subgraph exhibiting a particular structure dependent on the
problem. This class of problems contains prominent graph-theoretic problems

v



which have applications both within and beyond the field of Computer Science.
We focus our study on two particular problems.

The one is a cycle hitting problem and is known in the relevant literature
as the Subset Feedback Vertex Set (SFVS) problem: given a (vertex-
weighted) graph and a terminal set, we search for a minimum-sized (minimum-
weighted) vertex subset of the graph which hits every vertex subset of the
graph that contains a terminal and induces a cycle. We study SFVS on sub-
classes of AT-free graphs and on subclasses of chordal graphs, which are graphs
that are known to exhibit rich internal structure. We provide polynomial-time
algorithms for solving weighted SFVS on the following graph classes: interval
graphs (O(nm)-time), permutation graphs (O(m3)-time), cobipartite graphs
(O(n4)-time) and rooted path graphs (O(n2m)-time); and we show that un-
weighted SFVS is NP-complete on undirected path graphs. Moreover, for
weighted SFVS, we provide an algorithm for solving it on graphs with leafage
at most k which runs in nO(k) time and we show that it is W[1]-hard pa-
rameterized by k. We also study SFVS on H-free graphs, which are graphs
that exhibit a kind of internal structure as a result of absence of another.
For weighted SFVS, we provide a polynomial-time algorithm for solving it
on 4K1-free graphs and we show that it is NP-complete on 5K1-free graphs.
For unweighted SFVS, we provide an algorithm for solving it on (k + 1)K1-
free graphs which runs in nO(k) time. SFVS consists a generalization of the
classical Feedback Vertex Set (FVS) problem: given a (vertex-weighted)
graph, we search for a minimum-sized (minimum-weighted) vertex subset of
the graph which hits every vertex subset of the graph that induces a cycle.
Weighted FVS is known to be polynomial-time solvable on AT-free graphs and
on chordal graphs. We provide an algorithm for solving it on (k + 1)K1-free
graphs which runs in nO(k) time and for unweighted FVS, we show that it is
W[1]-hard parameterized by k via a reduction which is different than the one
existing in the literature and that on (k+1)K1-free graphs it cannot be solved
in f(k) · no(k) time under the ETH.

The other problem that we focus on is a path hitting problem and is known
in the relevant literature as the Node Multiway Cut (NMC) problem: given
a (vertex-weighted) graph and a terminal set, we search for a minimum-sized
(minimum-weighted) terminal-free vertex subset of the graph which hits every
vertex subset of the graph that induces a path between two terminals. For
unweighted NMC, we provide a polynomial-time algorithm for solving it on
3K1-free graphs and show that it is NP-complete on 4K1-free graphs via a
reduction which relies on the constraint that the solution to NMC is terminal-
free. Motivated by this fact, we also consider NMC without this constraint
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and we call it the Unconstrained Node Multiway Cut (UNMC) problem.
For weighted UNMC, we provide a polynomial-time algorithm for solving it on
3K1-free graphs and we show that it is NP-complete on 4K1-free graphs. For
unweighted UNMC, we provide an algorithm for solving it on (k + 1)K1-free
graphs which runs in nO(k) time and we show that it is W[1]-hard parameter-
ized by k and that on (k+1)K1-free graphs it cannot be solved in f(k) · no(k)

time under the ETH.

This thesis is structured as follows: Chapter 1 consists an introduction to
the subject of study. Part I provides the necessary theoretical background:
Elements of Complexity Theory and Graph Theory are given in Chapters 2
and 3 respectively and the definitions of the studied graph-theoretical prob-
lems along with previously known results on their complexity are given in
Chapter 4. Part II provides our algorithmic and complexity-theoretic results:
After providing the necessary preliminaries in Chapter 5, we present our re-
sults on subclasses of AT-free graphs, on subclasses of chordal graphs and on
H-free graphs in Chapters 6, 7 and 8 respectively. Chapter 9 concludes our
thesis with some remarks and open problems providing directions for future
research.
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1
Introduction

1.1 Cycle Hitting Problems

In the (weighted) Subset Feedback Vertex Set (SFVS) problem, we
are given a (vertex-weighted) graph G = (V,E) and a terminal set S ⊆ V and
we are asked to find a set U ⊆ V of minimum size (weight) that intersects every
cycle passing through at least one terminal. SFVS was introduced by Even et
al. who obtained a constant-factor approximation algorithm for its weighted
version [30]. The (weighted) SFVS problem is a generalization of the classical
(weighted) Feedback Vertex Set (FVS) problem, in which we are given
a (vertex-weighted) graph G = (V,E) and we are asked to find a set U ⊆ V
of minimum size (weight) that intersects every cycle; for S = V , the SFVS
problem is equivalent to the NP-complete FVS problem [52]. Both problems
find important applications in several aspects that arise in optimization theory,
constraint satisfaction, and bayesian inference [1, 2, 30, 32].

We begin with an brief overview of related work on the complexity of FVS
and SFVS restricted to graph classes. FVS is known to be NP-complete on bi-
partite graphs [75] and on planar graphs [37], whereas it becomes polynomial-
time solvable on chordal graphs [24, 73], on interval graphs [60], on permu-
tation graphs [10, 11, 12, 57], on their superclass of cocomparability graphs
[58] and even on their superclass of AT-free graphs [54]. Clearly, on graph
classes on which the FVS problem is NP-complete, so is the SFVS problem,
as the latter is a generalization of the former. Therefore, it is natural to study
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the complexity of SFVS on graph classes on which FVS is polynomial-time
solvable. Prior to our work, very little was known regarding the complexity
of SFVS on such graph classes. In fact, it was only known that SFVS is NP-
complete on split graphs [35]. However, such a result already implies that there
is a difference in the complexity of the two problems, as FVS is polynomial-
time solvable on their superclass of chordal graphs. The NP-completeness of
SFVS even on split graphs motivated a considerable amount of work by several
researchers to obtain fast exponential-time algorithms for solving it even when
restricted to chordal graphs or even further to split graphs [22, 33, 35, 41, 71].

We continue with an brief overview of related work on the parameterized
complexity of FVS and SFVS. FVS is known to be in FPT parameterized by
treewidth [26] and cliquewidth [15], which implies that FVS can be solved in
polynomial time on graphs with bounded such parameters. Jansen et al. [51]
showed that unweighted FVS is W[1]-hard parameterized by the clique cover
number and that it can be solved on graphs with maximum induced matching
number at most µ in nO(µ) time, so it is in XP parameterized by the maximum
induced matching number. Jaffke et al. proposed an algorithm that solves
weighted FVS on graphs withmaximum-induced-matching--width (mim-width)
w in nO(w) time [49]. Independently from the work of [49], Bergougnoux and
Kanté showed the same result through the notion of neighbor equivalence [4].
Despite their related names, graphs with bounded maximum induced matching
number are not related to graphs with bounded mim-width as indicated in [74].

The approach of [49] provides a powerful mechanism, as it unifies polynomial-
time algorithms for solving weighted FVS on several graph classes, including
interval graphs and permutation graphs. Such a mechanism raises the question
of whether the algorithm given in [49] can be extended to the more general
setting of weighted SFVS. However the proposed algorithm is based on the
crucial fact that the forest formed by deleting the nodes of a solution has
bounded number of internal nodes which is not necessarily true for the respec-
tive induced subgraph of weighted SFVS. Thus it seems difficult to control the
size of the solution whenever S ⊂ V .

Cygan et al. [28] and Kawarabayashi and Kobayashi [53] independently
showed that unweighted SFVS is in FPT parameterized by the solution size,
while Hols and Kratsch [45] provided a randomized polynomial kernel for the
problem. Moreover, by standard algorithmic techniques, weighted SFVS is in
FPT parameterized by treewidth. Bergougnoux et al. [5] recently proposed an
algorithm that solves weighted SFVS in nO(w2) time given a decomposition of
the input graph of mim-width w.
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Subclasses of AT-free Graphs

A graph is AT-free if for every triple of pairwise non-adjacent vertices, the
neighborhood of one of them separates the two others. The class of AT-free
graphs is well-studied and it properly contains interval graphs, permutation
graphs and cocomparability graphs [13, 42]. Let us briefly argue that the ap-
proach of [54] to solving the weighted FVS problem on AT-free graphs cannot
be directly extended towards solving the weighted SFVS problem on (sub-
classes of) AT-free graphs. One of the basic tools in [54] relies on growing a
small representation of an independent set into a suitable forest. Although
such a representation is rather small on AT-free graphs, when considering
SFVS it is not necessary that the respective set is an independent set which
makes it difficult to control how the partial solution may be extended.

Here we initiate the study of SFVS restricted to graph classes from the
positive perspective. We consider its weighted version and give the first pos-
itive results on interval graphs and permutation graphs, both being proper
subclasses of AT-free graphs. Interval graphs and permutation graphs are un-
related to split graphs and are both characterized by a linear structure implied
by certain vertex orderings [13, 42, 73]. For both classes of graphs we design
polynomial-time algorithms based on dynamic programming of subproblems
implied by their natural linear ordering. One of our key ingredients is that we
augment our subproblems with a few additional vertices which are always in-
cluded in the subsolutions. Although for interval graphs such a strategy leads
to a simple algorithm, the case for permutation graphs requires augmenting
with more vertices, resulting in more numerous and complex recursive rela-
tions.

Moreover, towards the unknown complexity of the problem on the class
of AT-free graphs, we consider the class of cobipartite graphs and settle its
complexity status. Interestingly, most problems that are NP-hard on AT-free
graphs are already NP-hard on cobipartite graphs (see, for example, [62]).
Cobipartite graphs are the complements of bipartite graphs and are unrelated
to interval graphs and permutation graphs. We show that weighted SFVS
admits a simple solution on cobipartite graphs, and, thus, we eliminate the
possibility of obtaining NP-hardness on AT-free graphs through NP-hardness
on cobipartite graphs. Therefore, we provide the first positive results regarding
the complexity of the SFVS problem on subclasses of AT-free graphs. In
particular, we show that weighted SFVS can be solved

� on interval graphs in O(nm) time,

7
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� on permutation graphs in O(m3) time and

� on cobipartite graphs in O(n4) time.

Subclasses of Chordal Graphs

Several fundamental optimization problems are known to be intractable
on chordal graphs, however they admit polynomial-time algorithms when re-
stricted to a proper subclass of chordal graphs such as interval graphs. Typical
examples of problems that exhibit this behavior are domination and induced
path problems [6, 8, 25, 44, 46, 66]. Although SFVS does not fall under
the themes of domination or induced path problems, it is known to be NP-
complete on chordal graphs [35], whereas it becomes polynomial-time solvable
on interval graphs [69]. Towards a better understanding of why many in-
tractable problems on chordal graphs admit polynomial-time algorithms on
interval graphs, we consider the algorithmic usage of a structural parameter
called leafage. Leafage, introduced by Lin et al. [59], is a graph parameter
that captures how close a chordal graph is to being an interval graph. As it
concerns chordal graphs, leafage essentially measures the smallest number of
leaves in a clique tree, an intersection representation of the given graph [39].
Thus our study of SFVS on subclasses of chordal graphs constists an investiga-
tion of the extent to which the structure of the underlying tree representation
influences the computational complexity of SFVS.

Habib and Stacho [43] showed that the leafage of a connected chordal graph
can be computed in polynomial time. Their described algorithm also con-
structs a corresponding clique tree with the minimum number of leaves. Re-
garding other problems that behave well with the leafage, we mention the
Minimum Dominating Set problem which Fomin et al. [34] showed to be in
FPT parameterized by the leafage. We show that

� weighted SFVS can be solved on chordal graphs with leafage at most
ℓ in O(n2ℓ+1) time, which is polynomial time on chordal graphs with
bounded ℓ.

In particular, we provide an algorithm that given a chordal graph and a tree
model of it with ℓ leaves solves the problem in O(n2ℓ+1) time. Thus, by com-
bining the algorithm of Habib and Stacho [43] with our algorithm, we deduce
that weighted SFVS is in XP parameterized by the leafage. Our algorithm
works on an expanded tree model that is obtained from the given tree model
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and maintains all intersecting information without increasing the number of
leaves. Then in a bottom-up dynamic programming fashion, we visit every
node of the expanded tree model in order to compute partial solutions. At
each intermediate step, we store all necessary information of subsets of vertices
that are of size O(ℓ).

One advantage of leafage over mim-width is that we can compute the leafage
of a chordal graph in polynomial time, whereas we do not know how to com-
pute the mim-width of a chordal graph in polynomial time. However we note
that a graph with bounded leafage implies a graph with bounded mim-width
and, further, a decomposition of bounded mim-width can be computed in
polynomial time [34]. This can be seen through the notion of H-graphs. For
some fixed graph H, a graph is an H-graph if it is the intersection graph of
connected subgraphs of some subdivision of H. The intersection model of
subtrees of a tree T having ℓ leaves is a T ′-graph where T ′ is obtained from
T by contracting nodes of degree two. Thus the size of T ′ is at most 2ℓ,
since T has ℓ leaves. Moreover, given an H-graph and its intersection model,
a (linear) decomposition of mim-width at most 2|E(H)| can be computed in
polynomial time [34]. Therefore, given a graph with leafage at most ℓ, there
is a polynomial-time algorithm that computes a decomposition of mim-width
O(ℓ). Combined with the algorithm for solving weighted SFVS on graphs of
bounded mim-width [5], one can solve weighted SFVS on graphs with leafage
at most ℓ in nO(ℓ2) time. Notably, our nO(ℓ)-time algorithm is a non-trivial
improvement on the running time obtained from the mim-width approach.

We complement our algorithmic result by showing that

� weighted SFVS isW[1]-hard parameterized by the leafage via a reduction
from the Multicolored Clique problem.

Thus we can hardly avoid the dependence of the exponent in the stated running
time. Our reduction is inspired by the W[1]-hardness of unweighted FVS
parameterized by mim-width given by Jaffke et al. [50]. However we note that
our result holds on graphs with arbitrary vertex weights and we are not aware
if unweighted SFVS admits the same complexity behaviour.

Leaf power graphs are a subclass of chordal graphs that admit a decomposi-
tion of mim-width one [47], thus via the algorithm proposed by Bergougnoux
et al. [5] weighted SFVS can be solved in polynomial time on leaf power graphs
if an intersection model is given as input. However, to the best of our knowl-
edge, it is not known whether an intersection model of a leaf power graph can
be constructed in polynomial time. Rooted path graphs are the intersection
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graphs of directed paths in a rooted tree. They form a subclass of leaf pow-
ers and we observe that they form a class of unbounded leafage. Although
rooted path graphs admit a decomposition of mim-width one [47] and such
a decomposition can be constructed in polynomial time [29, 40], the running
time obtained through the bounded mim-width approach is rather impractical
as it requires to store a table of size O(n13) even in this particular case [5].
We show that

� weighted SFVS can be solved on rooted path graphs in O(n2m) time.

As a byproduct of our dynamic programming scheme and the expanded tree
model, we show how our approach can be extended in order to handle rooted
path graphs. By analyzing further subsets of vertices at each intermediate
step, we manage to derive an algorithm for weighted SFVS on rooted path
graphs that runs in O(n2m) time. Observe that the stated running time is
comparable to the O(nm) time of the previously known algorithm on interval
graphs [69]. Interval graphs form a proper subclass of rooted path graphs.

Inspired by the algorithm on graphs with bounded leafage, we also consider
the natural relaxation of the leafage that is the vertex leafage of a graph.
Chaplick and Stacho [19] introduced the vertex leafage of a graph G as the
smallest number k such that there exists a tree model for G in which every
subtree corresponding to a vertex of G has at most k leaves. As leafage
measures the closeness to interval graphs (graphs with leafage at most two),
vertex leafage measures the closeness to undirected path graphs which are the
intersection graphs of paths in a tree (graphs with vertex leafage at most two).
We prove that

� unweighted SFVS is NP-complete on undirected path graphs

and, thus, the problem is para-NP-complete parameterized by the vertex
leafage. An interesting trait of our NP-completeness proof is that our reduction
comes from the Max Cut problem as opposed to known reductions for SFVS
which are usually based on, more natural, covering problems [35, 70]. From
our results for rooted path graphs and undirected path graphs, we obtain a
complexity dichotomy of the problem with respect to the vertex leafage: if the
vertex leafage is at most one (rooted path graphs) then SFVS is polynomial-
time solvable; otherwise, if the vertex leafage is at least two, SFVS is NP-
complete. Our findings regarding the complexity of SFVS on subclasses of
chordal graphs are summarized in Figure 1.1.
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Chapter 1 1.1. Cycle Hitting Problems

H-free Graphs

We consider classes of H-free graphs which are characterized by a bounded
structural parameter. In particular, we consider (α+ 1)K1-free graphs which
are exactly the graphs with independent set number at most α. Notice that
cobipartite graphs are 3K1-free graphs.

We completely characterize the complexity of SFVS with respect to the
independent set number α. In particular, we show that

� weighted SFVS can be solved in polynomial time on graphs with α ≤ 3
by exploiting a structural characterization of the solution which involves
the distances from vertices to terminals, whereas it remains NP-complete
on graphs with α ≥ 4 via a reduction from unweighted Vertex Cover
on tripartite graphs.

Weighted FVS is polynomial-time solvable on graphs with bounded α [51].
Thus we expand our knowledge on the complexity difference of the two prob-
lems with respect to a structural graph parameter. In order to complement
our results, we show that

� unweighted SFVS can be solved in nO(α) time, which is polynomial time
on graphs with bounded α.

Thus we provide a complexity difference between the weighted and the un-
weighted versions of the problem with respect to a natural structural param-
eter. We also show that

� weighted FVS can be solved in nO(α) time, which is polynomial time on
graphs with bounded α, via an algorithm that is simpler and faster than
the one implied by [51] and

� unweighted FVS is W[1]-hard parameterized by α via an reduction from
Multicolored Intependent Set which is different than the one given
in [51] and linear in α, and thus it cannot be solved in f(α) · no(α) time
under the Exponential Time Hypothesis (ETH) by combining our alter-
native reduction with the conditional lower bound given in [20], which
implies that the running times of our algorithms for solving unweighted
SFVS and weighted FVS are tight.

Our findings regarding the complexity of FVS and SFVS on graphs with
bounded α are summarized in Figure 1.2.
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1.2 Path Hitting Problems

In the (weighted) Node Multiway Cut (NMC) problem, we are given a
(vertex-weighted) graphG = (V,E) and a terminal set T ⊆ V and we are asked
to find a set U ⊆ V \ T of minimum size (weight) that intersects every path
between two terminals. Interestingly, there is a simple reduction from the NP-
complete NMC problem to the weighted SFVS problem where |S| = 1 [35].
We also consider a relaxation of NMC in which the solution U is allowed
to include terminals and we call it the Unconstrained Node Multiway
Cut (UNMC) problem. NMC is known to be in FPT parameterized by the
solution size [21, 61] and even above guaranteed value [27]. For further results
on variants of NMC we refer to [17, 38, 55].

H-free Graphs

We completely characterize the complexity of NMC with respect to the
independent set number α. In particular, we show that

� weighted NMC can be solved in polynomial time on graphs with α ≤ 2,
whereas unweighted NMC remains NP-complete on graphs with α ≥ 3
by adapting the reduction for weighted SFVS for α ≥ 4.

We also completely characterize the complexity of UNMC with respect to
the independent set number α. In particular, we show that

� weighted UNMC can be solved in polynomial time on graphs with α ≤ 2
by invoking our algorithm for weighted SFVS on graphs with α ≤ 3,
whereas it remains NP-complete on graphs with α ≥ 3 via a reduction
from unweighted NMC, and

� unweighted UNMC can be solved in nO(α) time, which is polynomial time
on graphs with bounded α, using an idea similar to the polynomial-time
algorithm for the unweighted SFVS problem, it is W[1]-hard parameter-
ized by α via a reduction from Multicolored Indepedent Set which
is linear on α, and thus it cannot be solved in f(α) · no(α) time under
the ETH, which implies that the running time of our algorithm is tight.
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2
Complexity Theory

Complexity Theory provides a mathematical framework for comparing the
efficiency of algorithms in terms of their requirements in time and space inde-
pendently of specific implementation or executing machine.

2.1 Computational Complexity

Computational Complexity aims to answer the following question (among
others): Given input of size n, how many elementary operations must an al-
gorithm perform in the worst case in order to terminate successfully? Thus,
we are interested in determining the running time of the algorithm as a func-
tion of the input size n. We are particularly interested in determining the
behaviour of this function as the input size n grows arbitrarily large, that is,
its asymptotic behaviour as n → ∞. For every function g : N → R+, we define
the following collections of functions f : N → R+:

O(g(n)) =

{
f(n)

∣∣∣∣ lim sup
f(n)

g(n)
< ∞

}
Θ(g(n)) = O(g(n)) ∩ Ω(g(n))

Ω(g(n)) =

{
f(n)

∣∣∣∣ lim inf
f(n)

g(n)
> 0

}
o(g(n)) =

{
f(n)

∣∣∣∣ lim f(n)

g(n)
= 0

}
If the running time is f(n) ∈ O(g(n)) where g is a polynomial function of n,
then we say that the running time is polynomial.
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Chapter 2 2.1. Computational Complexity

In this thesis, we distinguish two kinds of problems: decision problems and
optimization problems. In a decision problem, the goal is to determine the
truth value of a proposition regarding the input. In an optimization problem,
the goal is to determine the optimal value of a function of the input.

2.1.1 Computational Complexity Classes

Problems that exhibit similar behaviour with respect to their complexity
form complexity classes. A natural starting point is to consider problems
which are polynomial-time solvable. These decision problems form the first
complexity class.

Polynomial (P)

A decision problem is in the class P if it is solvable in polynomial
time.

The desire is for decision problems to be in the class P. However, most prob-
lems of interest are not known to be polynomial-time solvable. Of particular
interest are the problems for which the problem of verifying a solution to
them is polynomial-time solvable. These decision problems form the second
complexity class.

Nondeterministic Polynomial (NP)

A decision problem is in the class NP if it is verifiable in polynomial
time.

It is not difficult to show that P ⊆ NP holds. However, it is not known
whether P ⊂ NP or P = NP holds. This is known as the P versus NP problem
and is considered one of the most difficult to resolve open problems in all of
Mathematics.

2.1.2 Hardness and Completeness

In tackling the P versus NP problem, we focus on the problems in NP which
are the hardest to solve. Consider two decision problems A and B. A reduction
from A to B is a polynomial-time algorithm that given an instance X of A
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constructs an instance Y of B such that X is a yes-instance of A if and only
if Y is a yes-instance of B. If there exists a reduction from A to B, we say
that A reduces to B and we write A ≤ B. Notice that if A reduces to B and
B is in P, then A is also in P; a polynomial-time algorithm for solving A is
the following: given an instance X of A,

Step 1. we call a reduction from A to B on X to get an instance Y of B,

Step 2. we call a polynomial-time algorithm for solving B on Y , and

Step 3. we return the latter’s answer.

Therefore, A ≤ B implies that A is not harder to solve than B or, in other
words, that B is at least as hard to solve as A. Now consider a complexity
class C of decision problems. A problem is said to be C-hard if every problem
in C reduces to it, and it is said to be C-complete if it is both in C and C-hard.
The definition implies that the C-complete problems are the problems in C
which are the hardest to solve. Observe that P = NP if and only if there exists
an NP-complete problem in P.

The problem which was first shown to be NP-complete by Cook and in-
dependently by Levin is the Boolean Satisfiability problem on formulas
in conjunctive normal form [23, 56]. A number of additional problems were
subsequently shown to be NP-complete by Karp via chained reductions from
this problem [52]. Garey and Johnson (1979) [37] contains a long list of NP-
complete problems from many fields, including Graph Theory.

Instead of the aforementioned problem, we may first show that the Circuit
Satisfiability problem is NP-complete. A boolean circuit is a circuit con-
sisting only of input gates, and-gates, or-gates, not-gates and a single output
gate.

Circuit Satisfiability

Input: A boolean circuit C.
Question: Is there an assignment on the inputs of C for which the

output of C is true?
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2.2 Parameterized Complexity

One of the ways of tackling NP-hard problems is to study their complexity
as a function of more than just one variable. All variables beyond the first one,
which must be the input size n, are called parameters. We typically consider
only one parameter which we denote by k.

2.2.1 Parameterized Complexity Classes

The goal of Parameterized Complexity is the design of algorithms with
running times that depend on the size n as weakly as possible. In particular,
the desire is for problems to be fixed-parameter tractable parameterized by the
parameter k.

Fixed-parameter Tractable (FPT)

A decision problem having instances of size n with parameter k is in
the class FPT if it is solvable in f(k) ·nO(1) time for some computable
function f .

“Slicewise” Polynomial (XP)

A decision problem having instances of size n with parameter k is in
the class XP if it is solvable in f(k)·nO(g(k)) time for some computable
functions f and g.

It is not difficult to show that FPT ⊆ XP. Notice that if a problem is in XP,
then it is in P when restricted to instances with parameter k = c for every
constant c, hence the name of the class XP.

para-NP

A decision problem having instances of size n with parameter k is
in the class para-NP if it is verifiable in f(k) · nO(1) time for some
computable function f .

It is not difficult to show that FPT ⊆ para-NP. A problem is para-NP-hard
if there exists a constant c such that the problem is NP-hard when restricted
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to instances with parameter k = c. It is known that a para-NP-hard problem
cannot be in XP, unless P = NP.

2.2.2 Parameterized Hardness and Completeness

The framework of Parameterized Complexity also provides the tools to show
that it is unlikely for a problem to be in FPT under plausible complexity-
theoretic assumptions.

Consider two problems A and B. A reduction from A to B is a parameterized
reduction if given an instance X of size n with parameter k it constructs in
f(k) · nO(1) time an instance Y of size n′ with parameter k′ ≤ g(k) for some
computable functions f and g. Notice that if there exists a parameterized
reduction from A to B and B is in FPT, then A is in FPT.

We will now define additional parameterized complexity classes with respect
to which we will consider hardness and completeness. The depth of a boolean
circuit is the maximum length of a path from an input gate to the output
gate and its weft is the maximum number of gates with more than two inputs
contained on a path from an input gate to the output gate.

Weighted Circuit Satisfiability (WCS)

Input: A boolean circuit C and a number k ∈ N.
Question: Is there an assignment on the inputs of C such that exactly

k inputs are true for which the output of C is true?

W-hierarchy

For every t ∈ N∗, a decision problem is in the class W[t] if there exists
d ∈ N∗ such that there exists a parameterized reduction from the
problem to WCS on boolean circuits of depth at most d and weft at
most t.

It is not difficult to show that W[t] ⊆ W[t + 1] for all t ∈ N∗. It is known
that FPT ⊆ W [1] and that FPT ̸= W [1] implies that P ̸= NP. To show
that a problem is unlikely to be in FPT, we show that it is W[1]-hard via a
parameterized reduction from a known W[1]-hard problem.
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Chapter 2 2.2. Parameterized Complexity

2.2.3 Parameterized Complexity Lower Bounds

For problems that are shown to be in FPT or in XP, there is a desire for a
more fine-grained analysis of the running time with respect to the computable
functions f and g. In particular, there is a desire for determining assymptotical
lower bounds on f and g under plausible additional complexity-theoretical
assumptions. Such an assumption is the following:

Hypothesis (Exponential Time Hypothesis (ETH)). The 3-SAT problem on
clauses on n variables cannot be solved in 2o(n) time.

It is known that the ETH holding implies that FPT ̸= W[1]. Under the
assumption that the ETH holds, we can show parameterized lower bounds on
the complexity of other problems via appropriate parameterized reductions.
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3
Graph Theory

3.1 Graphs

A pair G = (V,E) is called a graph if E ⊆ {X ⊆ V | |X| = 2}. The sets V
and E are called the vertex set and the edge set of the graph G respectively
and their elements are called vertices and edges respectively. Unless otherwise
stated, we denote the vertex set and the edge set of a graph G by V (G)
and E(G) respectively and we use n and m to denote |V (G)| and |E(G)|
respectively. A weighted graph G = (V,E) is a graph where each vertex v ∈ V
is assigned weight that is a positive integer number. We denote by w(v) the
weight of each vertex v ∈ V . For a vertex subset X ⊆ V , the weight of X is∑

v∈X w(v).

For every set X, we denote by P2(X) the collection {X ′ ⊆ X | |X ′| = 2}.
Let G = (V,E) be a graph. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E∩P2(V

′). For every X ⊆ V , the subgraph of G induced by X is the
graph (X,E∩P2(X)) and is denoted by G[X]. Moreover, we denote by G−X
the graph induced by the vertices of V \X. If X = {u}, we also write G− u.
The neighborhood of a vertex x of G is NG(x) = {v ∈ V : xv ∈ E} and the
degree of x is |NG(x)|. A leaf is a vertex whose degree is at most 1. We say that
two vertices u, v ∈ V are adjacent if uv ∈ E. We further say that two vertices
are true twins (resp. false twins) if they are adjacent (resp. non-adjacent) and
they have the same neighborhood. For X ⊆ V , NG(X) =

⋃
v∈X NG(v) \ X

and NG[X] = NG(X) ∪X.
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Chapter 3 3.1. Graphs

A clique is a set of pairwise adjacent vertices, while an independent set
is a set of pairwise non-adjacent vertices. A path is a sequence of vertices
⟨v1v2 · · · vk⟩ where each pair of consecutive vertices vivi+1 forms an edge of
G. A graph is connected if there is a path between any pair of vertices. A
connected component of G is a maximal connected subgraph of G.

3.1.1 Elementary Graphs

Complete Graphs

A graph is a complete graph if its vertex set is a clique. The complete graph
on n vertices is denoted by Kn.

Paths and Cycles

A graph is a path if there exists an ordering of its vertices such that two ver-
tices are adjacent if and only if they are consecutive elements in the ordering.
The path graph on n vertices is denoted by Pn.

A graph is a cycle if there exists an ordering of its vertices such that two
vertices are adjacent if and only if they are consecutive elements in the ordering
or the first and last vertices. The cycle graph on n vertices is denoted by Cn.
We call cycles on three and four vertices triangles and squares respectively.

Forests, Trees and Stars

A graph is a forest if it has no cycle as a subgraph. A forest is a tree if it is
connected. A tree is a star if its vertices are all leaves except one. Notice that
this implies that the leaves of a star are all adjacent to its remaining vertex.
A star with ℓ leaves is called an ℓ-star.

Multipartite Graphs and Their Complements

For every k ∈ N, a graph is a k-partite graph if its vertex set can be
partitioned into k independent sets. For the cases of k = 2 and k = 3, k-partite
graphs are also called bipartite graphs and tripartite graphs respectively.

For every k ∈ N, a graph is a co-k-partite graph if its vertex set can be
partitioned into k cliques. For the cases of k = 2 and k = 3, co-k-partite
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Chapter 3 3.2. Graph Classes

graphs are also called cobipartite graphs and cotripartite graphs respectively.

3.2 Graph Classes

Graph classes are collections of graphs that exhibit common structure. A
property that holds for and only for the graphs of a class is called a character-
ization of the class. In particular, the definition of a class is a characterization
of the class; and further characterizations of a class can be viewed as alter-
native equivalent definitions of the class. In this thesis, we are particularly
interested in the following two types of characterizations.

H-free Graphs

Let H be a (possibly infinite) collection of graphs. A graph G is an H-free
graph if no graph in H is an induced subgraph of G. For the case of H = {H},
H-free graphs are also called H-free graphs.

In this thesis, we are particularly interested in the classes of H-free graphs
where H = (k + 1)K1, k ∈ N. Observe that for every k ∈ N, co-k-partite
graphs are a subclass of (k + 1)K1-free graphs.

Intersection Graphs

Let X be a set and let C be a collection of subsets of X. Set M = (X, C).
We define G(M) to be the graph (C, {{U1, U2} ∈ P2(C) | U1 ∩ U2 ̸= ∅}). We
say that M is an intersection model of G(M) and G(M) is an intersection
graph of M.

Let H be a graph and let C be a collection of subgraphs of H. Set M =
(H, C) and set M′ = {V (H), {V (H ′) | H ′ ∈ C}}. We define G(M) to be the
graph G(M′). We say that M is an intersection model of G(M) and G(M)
is an intersection graph of M.

3.2.1 AT-free Graphs

A set of three vertices of a graph is called an asteroidal triple if for every two
vertices of the set there exists a path containing them that does not intersect
the neighbourhood of the third one. A graph is an AT-free graph if it has no
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asteroidal triple. We note that co-k-partite graphs are a subclass of AT-free
graphs if and only if k ≤ 2.

Interval Graphs

A graph is an interval graph if it is the intersection graph of (R, I) where I
is a collection of closed intervals of R. We will subsequently call such an inter-
section model an interval model. Whether a given graph is an interval graph
can be decided in linear time and if so, an interval model can be constructed
in linear time [36]. It is known that every induced cycle of an interval graph
is a triangle [60, 73].

Permutation Graphs

Given a permutation π = (π(1), . . . , π(n)) over {1, . . . , n}, the inversion
graph of π, denoted by G(π), has vertex set {1, . . . , n} and two vertices i, j are
adjacent if and only if (i−j)(π(i)−π(j)) < 0. A graph is a permutation graph
if it is isomorphic to the inversion graph of a permutation [13, 42]. Permutation
graphs can also be characterized as a particular class of intersection graphs.
A graph is a permutation graph if it is the intersection graph of a collection of
line segments with one endpoint lying on L0 and the other on L1 where L0, L1

are two parallel lines of the plane. We refer to the two parallel lines as the
top and bottom lines. We will subsequently call such an intersection model
a permutation model. Whether a given graph is a permutation graph can be
decided in linear time and if so, a permutation model can be constructed in
linear time [63]. It is known that every induced cycle of a permutation graph
is either an triangle or a square [10, 11, 12, 57, 73].

A graph is a k-permutation graph if it is the intersection graph of a collection
of polygonal chains on k+1 points with the i-th point lying on Li−1 for every
i ∈ [k + 1] where L0, L1, . . . , Lk are k + 1 parallel lines in ascending order of
their distance to the first one and descending order of the distance to the last
one among them. It is not difficult to show that permutation graphs are 1-
permutation graphs and k-permutation graphs are (k+1)-permutation graphs
for every k ∈ N∗.
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Chapter 3 3.2. Graph Classes

Trapezoid Graphs

A graph is a trapezoid graph if it is the intersection graph of a collection
of trapezoids with one base lying on L0 and the other on L1 where L0, L1 are
two parallel lines of the plane. It is not difficult to show that interval graphs
and permutation graphs are trapezoid graphs.

We call the union of k trapezoids a k-trapezoid if there exists an ordering of
the k trapezoids and for every trapezoid, there exists an ordering of its bases,
such that the second base of the i-th trapezoid is also the first base of the
(i+ 1)-th trapezoid for every i ∈ [k − 1]. We conclude that a k-trapezoid can
be specified by a sequence of k + 1 bases. A graph is a k-trapezoid graph if
it is the intersection graph of a collection of k-trapezoids with the i-th base
lying on Li−1 for every i ∈ [k + 1] where L0, L1, . . . , Lk are k + 1 parallel
lines of the plane in ascending order of their distance to the first one and
descending order of the distance to the last one among them. It is not difficult
to show that trapezoid graphs are 1-trapezoid graphs and k-trapezoid graphs
are (k + 1)-trapezoid graphs for every k ∈ N∗.

Cocomparability Graphs

A graph is a cocomparability graph if it is the intersection graph of a col-
lection of curves with one endpoint lying on L0 and the other on L1 where
L0, L1 are two parallel lines of the plane. It is known that k-trapezoid graphs
are cocomparability graphs.

3.2.2 Chordal Graphs

A graph is a chordal graph if every cycle of the graph that is not a triangle
has a chord or, equivalently, if every induced cycle of the graph is a triangle.
Chordal graphs can also be characterized as a particular class of intersection
graphs: A graph is a chordal graph if it is the intersection graph of (T, T )
where T is a tree and T is a collection of subtrees of T . We will subsequently
call such an intersection model a tree model.

Split Graphs

A graph is a split graph if its vertex set can be partitioned into a clique and
an independent set. Observe that the host tree of a tree model of a split graph
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can be an ℓ-star where ℓ is the size of the independent set in the bipartition
of the split graph’s vertex set.

Strongly Chordal Graphs

A chord of an even cycle is odd if the distance of its endpoints in the cycle
odd. A graph is a strongly chordal graph if it is a chordal graph and every
even cycle of the graph that is not a square has an odd chord. Thus strongly
chordal graphs are chordal graphs by definition.

Leaf Powers

Let G be a graph. We denote by T (G) the collection of all trees T such
that L(T ) = V (G). The graph G is a leaf power graph if there exist k ∈ N∗

and T ∈ T (G) such that two vertices of G are adjacent if and only if their
distance in T is at most k. It is known that leaf power graphs are strongly
chordal graphs.

Undirected/Directed/Rooted Path Graphs and Interval Graphs

A number of subclasses of chordal graphs are defined as the classes of inter-
section graphs of tree models restricted to various kinds of trees and subtrees.
These are

� undirected path graphs if all subtrees are paths,

� directed path graphs if the host tree is a directed tree and all subtrees
are directed paths,

� rooted path graphs if the host tree is a rooted tree and all subtrees are
directed paths, and

� interval graphs if the host tree is a path.

Structural properties and recognition algorithms are known for all these graph
classes [18, 65, 68]. It is not difficult to see that interval graphs are rooted path
graphs, which are directed path graphs, which are undirected path graphs.
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Chapter 3 3.3. Graph Parameters

3.3 Graph Parameters

3.3.1 Graph Parameters of General Graphs

Parameters of graphs that are being studied in the literature generally fall
into one of two categories. The numbers are sizes of optimal substructures of
graphs and the widths are measures indicative of the complexity of the global
structure of graphs.

Clique Cover Number

A collection C of subsets of a set S is called a cover of S if ∪C = S. A cover
C of a set S is called a partition of S if all elements of C are non-empty and
pairwise disjoint. Given a cover C of a set S and a total order ≤ on C, it is not
difficult to show that the collection C′ = {X \ ∪{X ′ ∈ C | X ′ < X} | X ∈ C} \
{∅} is a partition of S such that |C′| ≤ |C|.

A collection C of vertex subsets of a graph G is called a clique cover of G if
C is a cover of V (G) and all elements of C are cliques of G. The clique cover
number of a graph G, denoted by κ(G), is the minimum cardinality of a clique
cover of G.

Independent Set Number

A set I of vertices of a graph G is called an independent set of G if there
are no edges in G[I]. The independent set number of a graph G, denoted by
α(G), is the maximum cardinality of an independent set of G. Observe that
α(G) ≤ κ(G) for every graph G.

Maximum Induced Matching Number

A set P of pairwise-disjoint edges of a graph G is called an induced matching
ofG if there are no edges inG[∪P ] beside the ones in P . Themaximum induced
matching number of a graph G, denoted by µ(G), is the maximum cardinality
of an induced matching of G. Observe that µ(G) ≤ α(G) for every graph G.
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Chapter 3 3.3. Graph Parameters

Maximum-Induced-Matching--width (Mim-width)

For every graph G and for every bipartition {V1, V2} of V (G), we define
G[V1, V2] to be the graph G[V1 ∪ V2] minus all edges in G[V1] and all edges in
G[V2]. Thus, G[V1, V2] is a bipartite graph and {V1, V2} is a bipartition of its
vertex set into independent sets.

Let G be a graph. We denote by T≤3(G) the collection of all trees T with
maximum degree at most 3 such that L(T ) = V (G). For every tree T ∈ T≤3(G)
and for every edge e of T , we denote the two connected components of T−e by
T e
1 , T

e
2 . Then {Le

1(T ) = L(T )∩V (T e
1 ), L

e
2(T ) = L(T )∩V (T e

2 )} is a bipartition
of L(T ) = V (G). The mim-width of G is the number:

min{max{µ(G[Le
1(T ), L

e
2(T )]) | e ∈ E(T )} | T ∈ T≤3(G)}

3.3.2 Graph Parameters of Chordal Graphs

For the class of chordal graphs in particular, a couple of parameters have
been introduced that measure the structural complexity of a chordal graph
via measuring the size of an optimal tree model of the graph.

For every chordal graph G, we denote the collection of all tree models of G
by Mtree(G).

Leafage

The leafage of a chordal graph G is the minimum number of leaves that the
host tree of a tree model of G can have.

ℓ(G) = min{L(T ) | (T, T ) ∈ Mtree(G)}

Vertex Leafage

The vertex leafage of a chordal graph G is the minimum maximum number
of leaves that a subtree of a tree model of G can have.

vℓ(G) = min{max{L(T ′) | T ′ ∈ T } | (T, T ) ∈ Mtree(G)}

Notice that by definition vℓ(G) ≤ ℓ(G) for every chordal graph G.
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4
Subgraph Hitting Problems

As mentioned in the previous chapter, graphs lend themselves very well to
modelling real world structures, be they physical or virtual. Thus, it comes
at no surprise that solving problems defined on graphs tend to have various
diverse real world applications. In this thesis, we consider a number of hitting
problems on graphs and we consider them both as decision problems and as
optimization problems.

In this chapter, we provide these problems’ definitions. First, we introduce
some relevant definitions and notation. We say that a set A hits a set B if
A ∩ B ̸= ∅. Given a collection C of subsets of a set X and a set A ⊆ X, we
say that A is a hitting set of C if A hits all elements of C. For any collection
C of graphs, we denote by V(C) the collection of vertex sets of all elements of
C. For every collection C ⊆ P(V (G)), we use max

weight
C to denote the collection

argmax{w(U) | U ∈ C}.

4.1 Path Hitting Problems

For any graph G and k ∈ N, we denote by Pk(G) the collection of all
Pk subgraphs of G. Furthermore, for any graph G, we denote by P(G) the
collection

⋃{Pk(G) | k ∈ N}, and for any T ⊆ V (G), we denote by P(G,T )
the collection of all paths of G with endpoints in T .
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Chapter 4 4.1. Path Hitting Problems

4.1.1 Vertex Cover (VC)

Decision Problem

Vertex Cover (VC)

Input: A (vertex-weighted) graph G = (V,E) and a number k ∈ N.
Question: Is there a set U ⊆ V which is a hitting set of E of cardinality

(weight) at most k?

Optimization Problem

Vertex Cover (VC)

Input: A (vertex-weighted) graph G = (V,E).
Output: A set U ⊆ V which is a hitting set of E of minimum cardi-

nality (weight).

Notice that the edge set E of a graph G is exactly the collection V(P2(G)).

4.1.2 Node Multiway Cut (NMC)

Decision Problem

Node Multiway Cut (NMC)

Input: A (vertex-weighted) graph G = (V,E), a set T ⊆ V and a
number k ∈ N.

Question: Is there a set U ⊆ V \T which is a hitting set of V(P(G,T ))
of cardinality (weight) at most k?

Optimization Problem

Node Multiway Cut (NMC)

Input: A (vertex-weighted) graph G = (V,E) and a set T ⊆ V .
Output: A set U ⊆ V \ T which is a hitting set of V(P(G,T )) of

minimum cardinality (weight).
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4.1.3 Unconstrained Node Multiway Cut (UNMC)

Decision Problem

Unconstrained Node Multiway Cut (UNMC)

Input: A (vertex-weighted) graph G = (V,E), a set T ⊆ V and a
number k ∈ N.

Question: Is there a set U ⊆ V which is a hitting set of V(P(G,T )) of
cardinality (weight) at most k?

Optimization Problem

Unconstrained Node Multiway Cut (UNMC)

Input: A (vertex-weighted) graph G = (V,E) and a set T ⊆ V .
Output: A set U ⊆ V which is a hitting set of V(P(G,T )) of minimum

cardinality (weight).

4.2 Cycle Hitting Problems

For any graph G and k ∈ N such that k ≥ 3, we denote by Ck(G) the
collection of all Ck subgraphs of G. Furthermore, for any graph G, we denote
by C(G) the collection

⋃{Ck(G) | k ∈ N, k ≥ 3}, and for any T ⊆ V (G), we
denote by C(G,T ) the collection of all cycles of G that are hit by T .

4.2.1 Feedback Vertex Set (FVS)

Decision Problem

Feedback Vertex Set (FVS)

Input: A (vertex-weighted) graph G = (V,E) and a number k ∈ N.
Question: Is there a set U ⊆ V which is a hitting set of V(C(G)) of

cardinality (weight) at most k?
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Optimization Problem

Feedback Vertex Set (FVS)

Input: A (vertex-weighted) graph G = (V,E).
Output: A set U ⊆ V which is a hitting set of V(C(G)) of minimum

cardinality (weight).

4.2.2 Subset Feedback Vertex Set (SFVS)

Decision Problem

Subset Feedback Vertex Set (SFVS)

Input: A (vertex-weighted) graph G = (V,E), a set T ⊆ V and a
number k ∈ N.

Question: Is there a set U ⊆ V which is a hitting set of V(C(G,T )) of
cardinality (weight) at most k?

Optimization Problem

Subset Feedback Vertex Set (SFVS)

Input: A (vertex-weighted) graph G = (V,E) and a set T ⊆ V .
Output: A set U ⊆ V which is a hitting set of V(C(G,T )) of minimum

cardinality (weight).
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5
Preliminaries

We begin this chapter with some general mathematical definitions and nota-
tion. Then we give our definitions and notation regarding the SFVS problem.
Finally, we present our dynamic programming scheme for solving SFVS on
classes of graphs that exhibit a suitable structure.

For every p ∈ N, we use [p] and −[p] to denote the sets {1, 2, . . . , p} and
{−1,−2, . . . ,−p} respectively. A binary relation over a set is called a partial
order if it is reflexive, transitive and antisymmetric. Let X be a set and let
≤ be a partial order on X. For all X ′ ⊆ X, we use min≤X ′ and max≤X ′

to denote the sets of all minimal and maximal elements of X ′ with respect to
≤ respectively. Any two elements u and v of X are called comparable with
respect to ≤ if u ≤ v or v ≤ u; otherwise, u and v are called incomparable with
respect to ≤. If u ≤ v and u ̸= v, then we simply write u < v. A partial order
on a set is called a total order if any two elements of the set are comparable
with respect to the order. In the particular case that ≤ is a total order on X,
we use min≤X ′ and max≤X ′ to denote the (unique) minimum and maximum
element of X ′ with respect to ≤ respectively. We omit explicit textual or
symbolic reference to the particular relation if it can be safely inferred from
context.
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5.1 Subset Forests and Subset Feedback Vertex Sets

Let G be a graph and let S ⊆ V (G) be a set of terminals to be given as
input to the SFVS problem. We say that

� a cycle (resp. triangle, square) is an S-cycle (resp. S-triangle, S-square)
if it contains a vertex in S;

� a subgraph F of G is an S-forest of G if F does not contain an S-cycle;
and

� a set U ⊆ V (G) is an S-fvs of G if G− U is an S-forest.

We use FS to denote the collection of all S-forests of G. In such terms, SFVS
can be restated as follows:

Subset Feedback Vertex Set (SFVS)

Input: A graph G and a set S ⊆ V (G).
Output: An S-fvs of G of minimum weight.

5.2 Solving SFVS via Dynamic Programming

For solving SFVS we consider the following more convenient problem:

Induced Subset Forest (ISF)

Input: A graph G and a set S ⊆ V (G).
Output: A set U ⊆ V (G) of maximum weight such that G[U ] ∈ FS .

Notice that a set U is a solution to ISF on (G,S) if and only if V (G) \ U is
a solution to SFVS on (G,S). On classes of graphs that exhibit a suitable
structure, we solve SFVS via a dynamic programming scheme. We consider
the following subproblems of ISF:

Partial Induced Subset Forest (PISF)

Input: A graph G and sets S,X, Y ⊆ V (G) such that X ∩ Y ̸= ∅.
Output: A set U ⊆ X of maximum weight such that G[U ∪ Y ] ∈ FS .
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Observe that a set is a solution to ISF on (G,S) if and only if it is a solution to
PISF on (G,S, V (G),∅). We use AY

X to denote an arbitrary solution to PISF
on (G,S,X, Y ). For every two expressions e1 and e2 involving such arbitrary
solutions, we write e1 ↔ e2 to denote that the collection of all evaluations of
e1 equals the collection of all evaluations of e2. Clearly AY

∅ ↔ ∅ for every
Y ⊆ V (G). For each considered graph class, we derive recursive formulas
for computing AY

X for particular sets X and Y necessary for that class and
we show that it is sufficient to compute AY

X only for a polynomial number
of sets X and Y . Within the scope of our algorithms, we use AY

X to denote
the particular solution to PISF on (G,S,X, Y ) that we compute instead of
an arbitrary one and we use max

weight
C to denote an arbitrary element of the

collection argmax{w(U) | U ∈ C} instead of the collection itself.

In the proofs of statements appearing in subsequent chapters, we will make
implicit use of the following Observation:

Observation 5.2.1. Let X,Y ⊆ V (G) such that X ̸= Y .

(1) For every x ∈ X, if no subset of X ∪ Y containing x induces an S-cycle
of G, then AY

X ↔ AY
X\{x} ∪ {x}.

(2) For every y ∈ Y , if no subset of X ∪ Y containing y induces an S-cycle

of G, then AY
X ↔ A

Y \{y}
X .

Proof. We show the first statement. Showing the second statement is com-
pletely analogous. Let x ∈ X such that no subset of X ∪ Y containing x
induces an S-cycle of G. Clearly, for every U ⊆ X, if G[U ∪ {x} ∪ Y ] ∈ FS ,
then G[U ∪Y ] ∈ FS . Now let U ⊆ X such that G[U ∪Y ] ∈ FS . We show that
G[U ∪ {x} ∪ Y ] ∈ FS as well. Assume for contradiction that a subset C of
U ∪{x}∪Y induces an S-cycle of G. If x /∈ C, then we obtain a contradiction
to G[U ∪ Y ] ∈ FS . If x ∈ C, then we obtain a contradiction to the property
of x. We conclude that no subset of U ∪ {x} ∪ Y induces an S-cycle of G,
completing our proof.
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6
SFVS on Subclasses of AT-
free Graphs

In this chapter, we provide polynomial-time algorithms for solving SFVS
on interval graphs, permutation graphs and cobipartite graphs. These are
the first polynomial-time algorithms for solving SFVS on particular classes of
graphs appearing in the literature. The results presented in this chapter were
published in the following works:

� Charis Papadopoulos and Spyridon Tzimas. Polynomial-Time Algo-
rithms for the Subset Feedback Vertex Set Problem on Interval Graphs
and Permutation Graphs. 21st International Symposium on Fundamen-
tals of Computation Theory (FCT 2017). Lecture Notes in Computer
Science (LNCS), 10472:381–394 (2017).

� Charis Papadopoulos and Spyridon Tzimas. Polynomial-time algorithms
for the subset feedback vertex set problem on interval graphs and per-
mutation graphs. Discrete Applied Mathematics, 258:204–221 (2019).
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Chapter 6 6.1. Interval Graphs

6.1 Interval Graphs

We begin with the case of interval graphs. An example of an interval graph
is shown in Figure 6.1. Let G = (V,E) be a vertex-weighted interval graph.
We compute an interval model (R, I) of G. Without loss of generality, we
assume that the endpoints of the n intervals in I are 2n distinct points of R.
We sort the vertices of G in ascending order of the right endpoints of their
corresponding intervals in I. To simplify our presentation, we identify the
sorted vertices of G with the integers of [n]. For every i ∈ [n], we denote
the left and right endpoints of its corresponding interval in I by ℓ(i) and r(i)
respectively.

We consider the two relations on [n] that are defined by the endpoints of the
intervals as follows: i ≤ℓ j ⇔ ℓ(i) ≤ ℓ(j) and i ≤r j ⇔ r(i) ≤ r(j). Since ≤ is
a total order on R, we get that ≤ℓ and ≤r are total orders on [n]. For every
i ∈ [n], notice that [i] = {h ∈ [n] : h ≤r i} and [n] \ [i] = {x ∈ [n] : i <r x}.

We define two different types of predecessors of the interval i with respect
to ≤r, which correspond to the subproblems that our dynamic programming
algorithm wants to solve. These are i − 1 and <◁i := max({0} ∪ [i] \ N [i]).
Intuitively, if we consider time increasing from left to right, then i − 1 is the
last interval that ends before i ends and <◁i is the last interval that ends before
i begins. For both predecessors, our definition returns 0 if and only if such an
interval does not exist. For the example of Figure 6.1, denoting the red, green,
blue, cyan, magenta and yellow vertices by r, g, b, c, m and y respectively, the
following hold:

0 < c ≡ 1 < m ≡ 2 < b ≡ 3 < r ≡ 4 < y ≡ 5 < g ≡ 6

[r] = {r, b, c,m} r − 1 = b <◁r = c
[g] = {r, g, b, c,m, y} g − 1 = y <◁g = 0
[b] = {b, c,m} b− 1 = m <◁b = 0
[c] = {c} c− 1 = 0 <◁c = 0
[m] = {c,m} m− 1 = c <◁m = c
[y] = {r, b, c,m, y} y − 1 = r <◁y = b

Observation 6.1.1. Let i ∈ [n] and let j ∈ [n] \ [i] such that ij ∈ E. Then,

(1) [i] = [i− 1] ∪ {i} and

(2) [i− 1] = [<◁j] ∪ ([i− 1] ∩N(j)).
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Figure 6.1: Illustration of an interval graph G and an interval model of G.

Proof. Notice that [0] = ∅. The first statement trivially holds. For the second
statement, observe that [i−1] can be partitioned into the set of non-neighbors
and the set of neighbors of j contained in [i−1]. The definition of <◁j implies
that [<◁j] = [j] \N [j]. Since i < j and ij ∈ E, we get that <◁j ≤ i − 1 < j,
so [<◁j] ⊆ [i− 1] ⊂ [j]. We conclude that [<◁j] = [i− 1] \N(j).

Lemma 6.1.2. Let i ∈ [n]. Then A∅
[i] ↔ max

weight

{
A∅

[i−1], A
{i}
[i−1] ∪ {i}

}
.

Proof. By Observation 6.1.1 (1), [i] = [i−1]∪{i}. If i /∈ A∅
[i], then we get that

A∅
[i] ↔ A∅

[i−1]. Otherwise, we get that A∅
[i] ↔ A

{i}
[i−1] ∪ {i}.

To simplify the proofs in the forthcoming lemmas, we use the following
observation.

Observation 6.1.3. Let i ∈ [n] and let x, y ∈ [n] \ [i] such that x <ℓ y and
iy, xy ∈ E. Then ⟨i, x, y⟩ is a triangle of G.

Proof. Assuming r(i) < ℓ(y) results in vertices i and y being non-adjacent, a
contradiction to iy ∈ E, so we have ℓ(y) < r(i). This inequality along with
r(i) < r(x) and ℓ(x) < ℓ(y) yields ℓ(x) < r(i) < r(x), which implies that
ix ∈ E. Therefore, ⟨i, x, y⟩ is a triangle of G.

Lemma 6.1.4. Let i ∈ [n] and let x ∈ [n] \ [i]. Moreover, let {x′, y′} = {i, x}
such that x′ <ℓ y

′.

(1) If ix /∈ E, then A
{x}
[i] ↔ A∅

[i].

(2) If ix ∈ E, then A
{x}
[i] ↔


max
weight

{
A

{x}
[i−1], A

{x′}
[<◁y′] ∪ {i}

}
, if i ∈ S or x ∈ S

max
weight

{
A

{x}
[i−1], A

{i,x}
[i−1] ∪ {i}

}
, if i, x /∈ S.
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Proof. Assume first that ix /∈ E. Then r(i) < ℓ(x), because we already have
r(i) < r(x), so x has no neighbor in G[[i] ∪ {x}]. Thus no subset of [i] ∪ {x}
containing x induces an S-cycle of G, implying that A

{x}
[i] ↔ A∅

[i].

Next assume that ix ∈ E. If i /∈ A
{x}
[i] , then, by Observation 6.1.1 (1), we

get that A
{x}
[i] ↔ A

{x}
[i−1]. In what follows, let us assume that i ∈ A

{x}
[i] . We

distinguish two cases according to whether i and x belong to S.

� Let i ∈ S or x ∈ S. By Observation 6.1.1 (1), we have A
{x}
[i] \ {i} ⊆

[i − 1]. If there exists a vertex h ∈ A
{x}
[i] \ {i} such that hy′ ∈ E, then,

by Observation 6.1.3, ⟨h, x′, y′⟩ is an S-triangle of G. Thus, we have

hy′ /∈ E for every vertex h ∈ A
{x}
[i] \ {i}. By Observation 6.1.1 (2), we

get that A
{x}
[i] \ {i} ⊆ [<◁y′]. Observe that the neighborhood of y′ in

G[[<◁y′]∪{x′, y′}] is {x′}. Thus, no subset of [<◁y′]∪{x′, y′} containing

y′ induces an S-cycle of G. We conclude that A
{x}
[i] ↔ A

{x′}
[<◁y′] ∪ {i}.

� Let i, x /∈ S. By Observation 6.1.1 (1), we get A
{x}
[i] ↔ A

{i,x}
[i−1] ∪ {i}.

Therefore, in every case, we obtain the desired formula.

Lemma 6.1.5. Let i ∈ [n] and let x, y ∈ ([n] \ [i]) \ S such that x <ℓ y and
xy ∈ E. Moreover, let {x′, y′, z′} = {i, x, y} such that x′ <ℓ y

′ <ℓ z
′.

(1) If iy /∈ E, then A
{x,y}
[i] ↔ A

{x}
[i] .

(2) If iy ∈ E, then A
{x,y}
[i] ↔

 A
{x,y}
[i−1] , if i ∈ S

max
weight

{
A

{x,y}
[i−1] , A

{x′,y′}
[i−1] ∪ {i}

}
, if i /∈ S.

Proof. First assume that iy /∈ E. Then r(i) < ℓ(y), because we already have
r(i) < r(y), so the neighborhood of y in G[[i]∪{x, y}] is {x}. Thus, no subset of
[i]∪{x, y} containing y induces an S-cycle of G. It follows that A

{x,y}
[i] ↔ A

{x}
[i] .

Next assume that iy ∈ E. By Observation 6.1.3, ⟨i, x, y⟩ is a triangle of

G. If i /∈ A
{x,y}
[i] , then, by Observation 6.1.1 (1), we have A

{x,y}
[i] ↔ A

{x,y}
[i−1] . If

i ∈ S, then ⟨i, x, y⟩ is an S-triangle of G, so i /∈ A
{x,y}
[i] . In what follows, we will

assume that i /∈ S and i ∈ A
{x,y}
[i] and we will show that A

{x,y}
[i] ↔ A

{x′,y′}
[i−1] ∪{i}.
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As i ∈ A
{x,y}
[i] , by Observation 6.1.1 (1), we get that A

{x,y}
[i] ↔ A

{i,x,y}
[i−1] ∪ {i}.

By definition, A
{i,x,y}
[i−1] and A

{x′,y′}
[i−1] are subsets of [i−1] of maximum weight such

that their unions with {i, x, y} = {x′, y′, z′} and {x′, y′} respectively induce
an S-forest of G. Observe that no vertex of {x′, y′, z′} belongs to S by the
hypothesis on x, y and the assumption on i. Given a subset U of [i− 1] such
that U ∪{x′, y′, z′} induces an S-forest of G, it is clear that U ∪{x′, y′} induces
an S-forest of G as well. Let U be a subset of [i − 1] such that U ∪ {x′, y′}
induces an S-forest of G. We show that U∪{x′, y′, z′} induces an S-forest of G.
Assume for contradiction that a subset of U ∪{x′, y′, z′} induces an S-triangle
⟨v1, v2, z′⟩ of G. Since z′ /∈ S, without loss of generality, assume that v1 ∈ S.
This particularly means that v1 ∈ U , because x′, y′ /∈ S as well. By the fact
that v1 ∈ [i − 1], we have v1 <r x′, y′, z′. Recall that x′ <ℓ y

′ <ℓ z
′ and that

⟨x′, y′, z′⟩ is a triangle of G. By Observation 6.1.3, we get that ⟨v1, x′, y′⟩ is
an S-triangle of G, a contradiction to U ∪ {x′, y′} inducing an S-forest of G.

We conclude that A
{i,x,y}
[i−1] ↔ A

{x′,y′}
[i−1] . Therefore, A

{x,y}
[i] ↔ A

{x′,y′}
[i−1] ∪ {i} as

desired.

Now we are equipped with the necessary tools to obtain the main result of
this section, namely a polynomial-time algorithm for solving SFVS on interval
graphs.

Theorem 6.1.6. The weighted SFVS optimization problem can be solved on
interval graphs in O(nm) time.

Proof. We briefly describe such an algorithm based on Lemmas 6.1.2, 6.1.4,
and 6.1.5. In a preprocessing step, we compute <◁i for all intervals i ∈ [n].
We visit all intervals from 1 to n in ascending order with respect to <r. For
every interval i that we visit, we first compute A∅

[i] according to Lemma 6.1.2

and then compute A
{x}
[i] and A

{x,y}
[i] for every x, y ∈ [n] \ [i] such that x <ℓ y

and xy ∈ E according to Lemmas 6.1.4 and 6.1.5 respectively. We output
[n] \A∅

[n], as already explained. The correctness of the algorithm follows from
the aforementioned Lemmas.

Regarding its running time, recall that n ≤ m. Computing <◁i for a single
interval i ∈ [n] can be done in O(m) time, because the intervals are sorted
with respect to <r. The computation of a single set AY

X takes constant time.

Moreover, for each i ∈ [n], the number of sets A
{x}
[i] and A

{x,y}
[i] being computed

are at most n + m. Therefore, the overall running time of the algorithm is
O(nm).
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6.2 Permutation Graphs

We continue with the case of permutation graphs. An example of a per-
mutation graph is shown in Figure 6.2. Let G = (V,E) be a vertex-weighted
permutation graph such that G = G(π) for some permutation π. Then V = [n]
and E = {ij ∈ P2([n]) | (i− j)(π−1(i)− π−1(j)) < 0} by definition. We con-
struct an equivalent permutation model as follows: For every i ∈ [n], the line
segment corresponding to the vertex i is the line segment with one endpoint
being the i-th point of the top line and the other being the (π−1(i))-th point
of the bottom line.

To simplify our presentation, we also consider the line segment with end-
points being the 0-th points of both lines and extent π to include 0 7→ π(0) = 0.
The orderings of the considered line segments’ endpoints on the top and bot-
tom lines of the permutation model induce two total orders on {0}∪ [n] which
we denote by ≤t and ≤b respectively. In terms of the permutation π, these
orders are defined as follows: i ≤t j ⇔ i ≤ j and i ≤b j ⇔ π−1(i) ≤ π−1(j)
for all i, j ∈ {0} ∪ [n].

We define X := {ii := {i} | i ∈ {0} ∪ [n]} ∪E. We define two partial orders
≤ℓ and ≤r on X as follows: gh ≤ℓ ij ⇔ (g ≤t i and h ≤b j) and gh ≤r ij ⇔
(g ≤b i and h ≤t j) for all gh, ij ∈ X such that g ≤ h and i ≤ j. Intuitively,
every element of X corresponds to the union of one or two intersecting line
segments and ≤ℓ and ≤r correspond to partial orders with respect to their
leftmost and rightmost endpoints on both lines respectively. We particularly
write <ℓ and <r to denote that the inequalities on both lines are strict. For
every set X ⊆ {0} ∪ [n], we define X [X] := {ij ∈ X | i, j ∈ X}. If X ̸= ∅,
then it is not difficult to see that the minimum element of X [X] with respect
to ≤ℓ and its maximum element with respect to ≤r are min≤b

Xmin≤t X and
max≤b

Xmax≤t X respectively and, consequently, are the unique elements of
min≤ℓ

X [X] and max≤r X [X] respectively.

Let ij ∈ X such that i ≤t j. We define Vij := {h ∈ [n] | hh ≤r ij}. We next
define the predecessors

⊵

ij, ⊴ij, ◁ij and <◁ij of ij with respect to ≤r to be
the (unique) elements of max≤r X [{0} ∪ Vij \ {i}], max≤r X [{0} ∪ Vij \ {j}],
max≤r X [{0}∪Vij\{i, j}] and max≤r X [{0}∪Vij\N [{i, j}]] respectively. These
are precisely the greatest predecessors of ij with respect to ≤r such that they
have no element in {i}, {j}, {i, j} and N [{i, j}] respectively. Given gh ∈ X ,
we also define gh ▷◁ ij to be the (unique) element of max≤r X [{0}∪(Vgh∩Vij)],
which is the greatest common predecessor of gh and ij with respect to ≤r.
For the example of Figure 6.2, denoting the red, green, blue, cyan, magenta
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Figure 6.2: An example of a permutation graph G and a permutation model
of G.

and yellow vertices by r, g, b, c, m and y respectively, the following hold:

0 < y ≡ 1 < m ≡ 2 < r ≡ 3 < c ≡ 4 < b ≡ 5 < g ≡ 6

Vrr = {r} Vcg = {r, g, b, c,m, y} Vmb = {r, b,m, y}
Vrg = {r, g} Vcb = {r, b, c,m, y} Vmm = {m, y}
Vgg = {g} Vcc = {r, c,m, y} Vyr = {r, y}
Vbg = {r, g, b, y} Vmr = {r,m, y} Vyg = {r, g, y}
Vbb = {r, b, y} Vmg = {r, g, b,m, y} Vyy = {y}

⊵rr = ⊴rr = ◁rr = <◁rr = 00

⊵

gg = ⊴gg = ◁gg = <◁gg = 00

⊵

bb = ⊴bb = ◁bb = <◁bb = yr

⊵

cc = ⊴cc = ◁cc = <◁cc = mr

⊵mm = ⊴mm = ◁mm = <◁mm = yy

⊵yy = ⊴yy = ◁yy = <◁yy = 00

⊵

rg = gg ⊴rg = rr ◁rg = 00 <◁rg = 00

⊵bg = yg ⊴bg = bb ◁bg = yr <◁bg = 00

⊵cg = mg ⊴cg = cb ◁cg = mb <◁cg = 00

⊵

cb = mb ⊴cb = cc ◁cb = mr <◁cb = yr

⊵

mr = yr ⊴mr = mm ◁mr = yy <◁mr = 00

⊵

mg = bg ⊴mg = mb ◁mg = bb <◁mg = 00

⊵mb = bb ⊴mb = mr ◁mb = yr <◁mb = yy

⊵yr = rr ⊴yr = yy ◁yr = 00 <◁yr = 00

⊵yg = rg ⊴yg = yr ◁yg = rr <◁yg = 00

Observation 6.2.1. Let gh, ij ∈ X such that i ≤t j. Then (1) V ⊵ij = Vij\{i},
(2) V⊴ij = Vij \ {j}, (3) V◁ij = Vij \ {i, j}, (4) V<◁ij = Vij \ N [{i, j}] and
(5) Vgh▷◁ij = Vgh ∩ Vij.
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Proof. We show the first statement. The remaining statements are shown in
similar fashion. By the definition of ⊵ij, we have hh ≤r

⊵ij for every vertex
h ∈ Vij \ {i}, so Vij \ {i} ⊆ V ⊵ij . We show that V ⊵ij ⊆ Vij \ {i} as well. Let

⊵ij = i′j′ such that i′ ≤t j
′. Then i′, j′ ∈ Vij \ {i}, which implies that j′ ≤t j

and i′ <b i. Consider a vertex h ∈ V ⊵ij . Then h ≤t j
′ ≤t j and h ≤b i

′ <b i,
which implies that h ∈ Vij \ {i}. Thus V ⊵ij ⊆ Vij \ {i} as well. We conclude
that V ⊵ij = Vij \ {i} as desired.

Observation 6.2.2. Let ij ∈ X such that i ≤t j and let x ∈ [n] \ Vij. Then

(1) Vij = V ⊵ij ∪ {i} = V⊴ij ∪ {j} = V◁ij ∪ {i, j},

(2) V◁ij = V<◁ii ∪ (V◁ij ∩N(i)) = V<◁jj ∪ (V◁ij ∩N(j)),

(3) V<◁ii = V<◁ij ∪ (V<◁ii ∩N(j)), V<◁jj = V<◁ij ∪ (V<◁jj ∩N(i)), and

(4) V◁ij = V(◁ij)▷◁(<◁xx) ∪ (V◁ij ∩N(x)).

Proof. The first statement consists an alternative formulation of the first three
statements of Observation 6.2.1.

For showing the first equality of the second statement, it suffices to show
that V<◁ii = V◁ij \N(i). Notice that ii ≤r ij implies that Vii ⊆ Vij ⇒

⇒ Vii \ ({i, j} ∪N(i)) ⊆ Vij \ ({i, j} ∪N(i))
⇒ Vii \N [i] ⊆ (Vij \ {i, j}) \N(i) (if i <t j, then j /∈ Vii)
⇒ V<◁ii ⊆ V◁ij \N(i). (Observation 6.2.1 (3)–(4))

We show that V◁ij \ N(i) ⊆ V<◁ii as well. Let ◁ij = i′j′ such that i′ ≤t j
′.

Then i′, j′ ∈ Vij \ {i, j}, which implies that j′ <t j and i′ <b i. Consider a
vertex h ∈ V◁ij . Then h ≤t j

′ <t j and h ≤b i′ <b i. Assume that hi /∈ E.
Since we already have h <b i, we get that h <t i and h <b i, which implies
that h ∈ Vii \N [i] = V<◁ii. Thus V◁ij \N(i) ⊆ V<◁ii as well. We conclude that
V<◁ii = V◁ij \ N(i) as desired. Completely symmetrical arguments show the
second equality.

For showing the first equality of the third statement, it suffices to show that
V<◁ij = V<◁ii \N(j). Notice that ii ≤r ij implies that Vii ⊆ Vij ⇒

⇒ Vii \N [{i, j}] ⊆ Vij \N [{i, j}]
⇒ (Vii \N [i]) \N(j) ⊆ Vij \N [{i, j}] (if i <t j, then j /∈ Vii)
⇒ V<◁ii \N(j) ⊆ V<◁ij . (Observation 6.2.1 (4))
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We show that V<◁ij ⊆ V<◁ii \N(j) as well. Let <◁ij = i′j′ such that i′ ≤t j
′.

Then i′, j′ ∈ Vij \ N [{i, j}], which implies that j′ <t i ≤t j and i′ <b j ≤b i.
Consider a vertex h ∈ V<◁ij . Then h ≤t j

′ <t i ≤t j and h ≤b i′ <b j ≤b i,
which implies that h ∈ (Vii \N [i]) \N(j) = V<◁ii \N(j). Thus V<◁ij ⊆ V<◁ii \
N(j) as well. We conclude that V<◁ij = V<◁ii \ N(j) as desired. Completely
symmetrical arguments show the second equality.

For showing the last statement, it suffices to show that V(◁ij)▷◁(<◁xx) = V◁ij\
N(x). Notice that V◁ij ∩V◁xx ⊆ V◁ij ⇒ (V◁ij ∩V◁xx)\N(x) ⊆ V◁ij \N(x) ⇒

⇒ V◁ij ∩ (Vxx \N [x]) ⊆ V◁ij \N(x) (Observation 6.2.1 (3))
⇒ V◁ij ∩ V<◁xx ⊆ V◁ij \N(x) (Observation 6.2.1 (4))
⇒ V(◁ij)▷◁(<◁xx) ⊆ V◁ij \N(x). (Observation 6.2.1 (5))

We show that V◁ij \ N(x) ⊆ V(◁ij)▷◁(<◁xx) as well. Let ◁ij = i′j′ such that
i′ ≤t j

′. Then i′, j′ ∈ Vij \ {i, j}, which implies that j′ <t j and i′ <b i. Since
x /∈ Vij , we have j <t x or i <b x. Without loss of generality, assume that
j <t x. Consider a vertex h ∈ V◁ij . Then h ≤t j′ <t j and h ≤b i′ <b i.
Assume that hx /∈ E. Since we already have h <t x, we get that h <t x
and h <b x, which implies that h ∈ V◁ij ∩ (Vxx \ N [x]) = V◁ij ∩ V<◁xx =
V(◁ij)▷◁(<◁xx). Thus V◁ij \ N(x) ⊆ V(◁ij)▷◁(<◁xx) as well. We conclude that
V(◁ij)▷◁(<◁xx) = V◁ij \N(x) as desired.

Our dynamic programming algorithm for this section solves SFVS on per-
mutation graphs by recursively solving appropriate subproblems as previously.
However, it differs from our dynamic programming algorithm for the previous
section in the following manner: for solving SFVS on interval graphs we con-
sider subproblems that correspond to elements of {0}∪ [n], whereas for solving
SFVS on permutation graphs we consider subproblems that correspond to el-
ements of X . Recall that for solving SFVS on interval graphs it suffices to
compute solutions AY

X to subproblems for cases of Y consisting of at most two
elements of {0} ∪ [n]. In the following lemma, we show that for solving SFVS
on permutation graphs it suffices to compute solutions AY

X to subproblems for
cases of Y being the union of at most two elements of X .

Lemma 6.2.3. Let gh ∈ X , g ≤t h and let a, b, c, d, e, f ∈ ([n] \ Vgh) \ S such
that ab ∈ E, a <t b and gh <r ab, cd ∈ E, c <t d and gh <r cd, ef ∈ X ,

e ≤t f and

{
gh <r ef , if ef ∈ E
h <t f or g <b e, if e = f

and ab <ℓ cd <ℓ ef . Then, for

every U ⊆ Vgh, the following statements are equivalent:
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(i) G[U ∪ {a, b, c, d, e, f}] ∈ FS (iii) G[U ∪ {a, b, c, d, f}] ∈ FS

(ii) G[U ∪ {a, b, c, d, e}] ∈ FS (iv) G[U ∪ {a, b, c, d}] ∈ FS

Proof. In the context of this proof, we consider statement (i) only if ef ∈ E,
statement (ii) only if ef ∈ E or e = f such that g <b e, and statement (iii)
only if ef ∈ E or e = f such that h <b f . Notice that this is sufficient,
because statements (i), (ii), and (iii) are equivalent if e = f . We next show all
directions among the four statements.

(i) ⇒ (ii) ⇒ (iv) and (i) ⇒ (iii) ⇒ (iv). These facts are trivial, because an
induced subgraph of an S-forest of G is also an S-forest of G.

(iv) ⇒ (ii). Assume for contradiction that a subset of U∪{a, b, c, d, e} contain-
ing e induces an S-cycle C of G. Since every induced cycle of a permutation
graph is either a triangle or a square, C is either an S-triangle or an S-square.

� Let C be the S-triangle ⟨v1, v2, e⟩. Since e /∈ S, without loss of generality,
assume that v1 ∈ S. Then v1 ∈ U , because a, b, c, d /∈ S as well. Since
gh <r ab, cd and g <b e, we have v1 ≤t h <t b, d and v1 ≤b g <b a, c, e.
For v1e ∈ E to hold, we get that e <t v1. By ab <ℓ cd <ℓ ef , we
also have a <t c <t e and b <b d <b c. Putting it all together, we
get that a <t c <t v1 <t b and v1, b <b a, c, and in particular that
v1a, v1c, bc ∈ E. If additionally v1b ∈ E or ac ∈ E, then ⟨v1, a, b⟩ or
⟨v1, a, c⟩ is an S-triangle of G; otherwise, ⟨v1, a, b, c⟩ is an S-square of G.

� Let C be the S-square ⟨v1, v2, v3, e⟩. If v1 ∈ S or v3 ∈ S, then we obtain
that there exists a subset of U ∪ {a, b, c, d} that induces an S-cycle of
G by following the exact previous argumentation. Let us assume that
v2 ∈ S. Then v2 ∈ U . Since gh <r ab and ab <ℓ cd <ℓ ef , we have
v2 ≤t h <t b and v2 ≤b g <b a as well as a <t e ≤t f and b <b f ≤b e.
Moreover, for v1v2, v2v3, v3e, ev1 ∈ E to hold, either v1, v3 <t v2, e and
v2, e <b v1, v3 hold, or v2, e <t v1, v3 and v1, v3 <b v2, e hold. Assume the
former. Then v1, v3 <t b and b <b v1, v3, so v1b, v3b ∈ E. If additionally
v2b ∈ E, then ⟨v1, v2, b⟩ is an S-triangle of G; otherwise, ⟨v1, v2, v3, b⟩
is an S-square of G. Now assume the latter. Then a <t v1, v3 and
v1, v3 <b a, so v1a, v3a ∈ E. If additionally v2a ∈ E, then ⟨v1, v2, a⟩ is
an S-triangle of G; otherwise, ⟨v1, v2, v3, a⟩ is an S-square of G.

Thus, there exists a subset of U ∪{a, b, c, d} that induces an S-cycle of G in all
cases, which is a contradiction to statement (iv). Therefore, no subset of U ∪
{a, b, c, d, e} containing e induces an S-cycle of G. This fact and statement (iv)
imply statement (ii).
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(iv) ⇒ (iii). Symmetrical arguments to the previous case show this direction.

(ii) ⇒ (i). Assume for contradiction that a subset of U ∪ {a, b, c, d, e, f} con-
taining f induces an S-cycle C of G.

� Let C be the S-triangle ⟨v1, v2, f⟩. Since f /∈ S, without loss of gener-
ality, assume that v1 ∈ S. Then v1 ∈ U , because a, b, c, d, e /∈ S as well.
Since gh <r ab, cd, ef , we have v1 ≤t h <t b, d, f and v1 ≤b g <b a, c, e.
For v1f ∈ E to hold, we get that f <b v1. By ab <ℓ cd <ℓ ef , we
also have a <t c <t d and b <b d <b f . Putting it all together, we
get that v1, a <t b, d and b <b d <b v1 <b a, and in particular that
v1b, v1d, ad ∈ E. If additionally v1a ∈ E or bd ∈ E, then ⟨v1, a, b⟩ or
⟨v1, b, d⟩ is an S-triangle of G; otherwise, ⟨v1, b, a, d⟩ is an S-square of G.

� Let C be the S-square ⟨v1, v2, v3, f⟩. If v1 ∈ S or v3 ∈ S, then we obtain
that there exists a subset of U ∪ {a, b, c, d, e} that induces an S-cycle of
G by following the exact previous argumentation. Let us assume that
v2 ∈ S. Then v2 ∈ U . Since gh <r ab and ab <ℓ cd <ℓ ef , we have
v2 ≤t h <t b and v2 ≤b g <b a as well as a <t e <t f and b <b f <b

e. Moreover, for v1v2, v2v3, v3e, ev1 ∈ E to hold, either v1, v3 <t v2, f
and v2, f <b v1, v3 hold, or v2, f <t v1, v3 and v1, v3 <b v2, f hold.
Assume the former. Then v1, v3 <t b and b <b v1, v3, so v1b, v3b ∈ E.
If additionally v2b ∈ E, then ⟨v1, v2, b⟩; otherwise, ⟨v1, v2, v3, b⟩ is an S-
square of G. Now assume the latter. Then a <t v1, v3 and v1, v3 <b a,
so v1a, v3a ∈ E. If additionally v2a ∈ E, then ⟨v1, v2, a⟩ is an S-triangle
of G; otherwise, ⟨v1, v2, v3, a⟩ is an S-square of G.

Thus, there exists a subset of U ∪ {a, b, c, d, e} that induces an S-cycle of G
in all cases, which is a contradiction to statement (ii). Therefore, no subset
of U ∪ {a, b, c, d, e, f} containing f induces an S-cycle of G. This fact and
statement (ii) imply statement (i).

(iii) ⇒ (i). Symmetrical arguments to the previous case show this direction.

Notice that all other directions ((ii) ⇒ (iii), (iii) ⇒ (ii), and (iv) ⇒ (i)),
follow from the previous cases. Therefore, all four statements are equivalent,
as desired.

The following lemmas provide recursive formulas to be used for the com-
putation of AY

X in the cases that are considered by our algorithm. We first
address the cases of X = Vii, i ∈ [n].
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Lemma 6.2.4. Let i ∈ [n]. Then A∅
Vii

↔ A∅
V◁ii

∪ {i}.

Proof. Notice that we have h <t i and h <b i for every h ∈ Vii \ {i} by
definition, so i has no neighbor in G[Vii]. This implies that no subset of Vii

containing i induces an S-cycle of G. By Observation 6.2.2 (1), it follows that
A∅

Vii
↔ A∅

V◁ii
∪ {i}.

Lemma 6.2.5. Let i ∈ [n] and let x ∈ [n] \ Vii.

(1) If ix /∈ E, then Axx
Vii

↔ A∅
Vii

.

(2) If ix ∈ E, then Axx
Vii

↔ Axx
V◁ii

∪ {i}.

Proof. First assume that ix /∈ E. Then either i <t x and i <b x hold or x <t i
and x <b i hold. Since x /∈ Vii, we get that i <t x and i <b x must hold. We
also have h ≤t i and h ≤b i for every h ∈ Vii by definition. We conclude that
h <t x and h <b x for every h ∈ Vii, so x has no neighbor in G[Vii ∪ {x}].
This implies that no subset of Vii ∪ {x} containing x induces an S-cycle of G.
Hence, Axx

Vii
↔ A∅

Vii
follows.

Next assume that ix ∈ E. Notice that i has no neighbor in G[Vii], so the
neighborhood of i in G[Vii∪{x}] is {x}. This implies that no subset of Vii∪{x}
containing i induces an S-cycle of G. By Observation 6.2.2 (1), it follows that
Axx

Vii
↔ Axx

V◁ii
∪ {i}.

Lemma 6.2.6. Let i ∈ [n] and let x, y ∈ ([n] \ Vii) \ S such that xy ∈ E,
x <t y and ii <r xy.

(1) If iy /∈ E, then Axy
Vii

↔ Axx
Vii

.

(2) If ix /∈ E, then Axy
Vii

↔ Ayy
Vii

.

(3) If ix, iy ∈ E, then Axy
Vii

↔
{

Axy
V◁ii

, if i ∈ S

Axy
V◁ii

∪ {i}, if i /∈ S.

Proof. First assume that iy /∈ E. Then either i <t y and i <b y hold or y <t i
and y <b i hold. Since xy ∈ E, x <t y and ii <r xy, we have i <t y and i <b x.
Putting it all together, we get that i <t y and i <b y must hold. We also have
h ≤t i and h ≤b i for every h ∈ Vii by definition. We conclude that h <t y
and h <b y for every h ∈ Vii, so the neighborhood of y in G[Vii ∪ {x, y}] is
{x}. This implies that no subset of Vii∪{x, y} containing y induces an S-cycle
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of G. Hence, Axy
Vii

↔ Axx
Vii

follows. If ix /∈ E, then completely symmetrical
arguments apply in showing that Axy

Vii
↔ Ayy

Vii
.

Next assume that ix, iy ∈ E. Notice that i has no neighbor in G[Vii], so
the neighborhood of i in G[Vii ∪ {x, y}] is {x, y}. We distinguish two cases
according to whether i belongs to S. Suppose that i ∈ S. Then ⟨i, x, y⟩ is an
S-triangle of G, so i /∈ Axy

Vii
. By this fact and Observation 6.2.2 (1), it follows

that Axy
Vii

↔ Axy
V◁ii

.

Next suppose that i /∈ S. We will show that no subset of Vii ∪ {x, y} con-
taining i induces an S-cycle of G. Assume for contradiction that a subset of
Vii ∪ {x, y} containing i induces an S-cycle C of G. Recall that every induced
cycle of a permutation graph is either a triangle or a square. If C is the
S-triangle ⟨v1, v2, i⟩ of G, then {v1, v2} = {x, y}, as we recall that the neigh-
borhood of i in G[Vii ∪ {x, y}] is {x, y}. However, this implies a contradiction
to {v1, v2, i} containing a vertex that belongs to S, because i, x, y /∈ S. If
C is the S-square ⟨v1, v2, v3, i⟩ of G, then {v1, v3} = {x, y}, which implies a
contradiction to v1v3 /∈ E, because xy ∈ E. Therefore, no subset of Vii∪{x, y}
containing i induces an S-cycle of G. By this fact and Observation 6.2.2 (1),
it follows that Axy

Vii
↔ Axy

V◁ii
∪ {i}.

Lemma 6.2.7. Let i ∈ [n] and let x, y, z ∈ ([n] \ Vii) \ S such that xy ∈ E,
x <t y and ii <r xy and xy <ℓ zz.

(1) If iz /∈ E, then Axy∪zz
Vii

↔ Axy
Vii

.

(2) If iz ∈ E, then Axy∪zz
Vii

↔
{

Axy∪zz
V◁ii

, if i ∈ S

Axy∪zz
V◁ii

∪ {i}, if i /∈ S.

Proof. First assume that iz /∈ E. Then either i <t z and i <b z hold or
z <t i and z <b i hold. Since z /∈ Vii, we get that i <t z and i <b z must
hold. We also have h ≤t i and h ≤b i for every h ∈ Vii by definition. We
conclude that h <t z and h <b z for every h ∈ Vii, so the neighborhood of z in
G[Vii∪{x, y, z}] is a subset of {x, y}. Now completely analogous arguments as
in the proof of Lemma 6.2.6 apply in showing that no subset of Vii ∪ {x, y, z}
containing z induces an S-cycle of G. Hence, Axy∪zz

Vii
↔ Axy

Vii
follows.

Next assume that iz ∈ E. Then either i <t z and z <b i hold or z <t i and
i <b z hold. Since xy ∈ E, x <t y and ii <r xy and xy <l zz, we have i, x <t y
and i, y <b x as well as x <t y, z and y <b x, z. Putting it all together, we
get that either i, x <t y, z and y <b z <b i <b x hold or x <t z <t i <t y and
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i, y <b x, z hold. In particular, the former implies that iy, xz ∈ E and the
latter implies that ix, yz ∈ E. Notice that i has no neighbor in G[Vii], so the
neighborhood of i in G[Vii∪{x, y, z}] is a subset N of {x, y, z}. We distinguish
two cases depending on whether i belongs in S.

� Let i ∈ S. We will show that i /∈ Axy∪zz
Vii

. For the sake of contradiction,

let i ∈ Axy∪zz
Vii

. If ix, iy ∈ E, then ⟨i, x, y⟩ is an S-triangle of G. If ix /∈ E,
then iy, xz ∈ E must hold. If additionally yz ∈ E, then ⟨i, y, z⟩ is an
S-triangle of G; otherwise, ⟨i, y, x, z⟩ is an S-square of G. The case for
iy /∈ E is completely symmetric. We conclude that there always exists a
subset of {i, x, y, z} containing i that induces an S-cycle of G, which is
a contradiction, so i /∈ Axy∪zz

Vii
. By this fact and Observation 6.2.2 (1),

it follows that Axy∪zz
Vii

↔ Axy∪zz
V◁ii

.

� Let i /∈ S. Given a subset U of Vii\{i} such that U∪{i, x, y, z} induces an
S-forest of G, it is clear that U∪{x, y, z} induces an S-forest of G as well.
Let U be a subset of Vii \ {i} such that U ∪ {x, y, z} induces an S-forest
of G. We show that U ∪ {i, x, y, z} induces an S-forest of G. Assume
for contradiction that a subset of U ∪{i, x, y, z} induces an S-cycle C of
G. If C = ⟨v1, v2, i⟩, then {v1, v2} ⊆ N , which implies a contradiction to
{v1, v2, i} containing a vertex that belongs to S, because i, x, y, z /∈ S.
If C = ⟨v1, v2, v3, i⟩, then {v1, v3} ⊆ N , which implies that v2 must
belong to S and, consequently, v2 ∈ U . The case for {v1, v3} = {x, y}
implies a contradiction to v1v3 /∈ E, because xy ∈ E. Assume that
{v1, v3} = {y, z}. Then yz /∈ E and, consequently, iy, xz ∈ E must
hold. If additionally v2x ∈ E, then ⟨y, v2, x⟩ is an S-triangle of G,
which implies a contradiction to v2 ∈ U ; otherwise, ⟨y, v2, z, x⟩ is an
S-square of G, which implies a contradiction to v2 ∈ U as well. The
case for {v1, v3} = {x, z} is completely symmetric. Therefore, we obtain
a contradiction in all cases. By Observation 6.2.2 (1), it follows that
Axy∪zz

Vii
↔ Axy∪zz

V◁ii
∪ {i}.

Thus, in every case, we show that the stated formula holds, which completes
our proof.

Lemma 6.2.8. Let i ∈ [n] and let x, y, z, w ∈ ([n] \ Vii) \ S such that xy ∈ E,
x <t y, zw ∈ E, z <t w and ii <r xy, zw and xy <ℓ zw.

(1) If iw /∈ E, then Axy∪zw
Vii

↔ Axy∪zz
Vii

.

(2) If iz /∈ E, then Axy∪zw
Vii

↔ Axy∪ww
Vii

.
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(3) If iz, iw ∈ E, then Axy∪zw
Vii

↔
{

Axy∪zw
V◁ii

, if i ∈ S

Axy∪zw
V◁ii

∪ {i}, if i /∈ S.

Proof. First assume that iw /∈ E. Then either i <t w and i <b w hold or
w <t i and w <b i hold. Since zw ∈ E, z <t w and ii <r zw, we have i <t z
and i <b w. Putting it all together, we get that i <t w and i <b w must
hold. We also have h ≤t i and h ≤b i for every h ∈ Vii by definition. We
conclude that h <t w and h <b w for every h ∈ Vii, so the neighborhood of
w in G[Vii ∪ {x, y, z, w}] is a subset N of {x, y, z}. Given a subset U of Vii

such that U ∪{x, y, z, w} induces an S-forest of G, it is clear that U ∪{x, y, z}
induces an S-forest of G as well. Let U be a subset of Vii such that U∪{x, y, z}
induces an S-forest of G. We show that U ∪ {x, y, z, w} induces an S-forest
of G. Assume for contradiction that a subset of U ∪ {x, y, z, w} containing
w induces an S-cycle C of G. If C = ⟨v1, v2, w⟩, then {v1, v2} ⊆ N , which
implies a contradiction to {v1, v2, w} containing a vertex that belongs to S,
because x, y, z, w /∈ S. If C = ⟨v1, v2, v3, w⟩, then {v1, v3} ⊆ N , which implies
that v2 must belong to S and, consequently, v2 ∈ U .

� The case for {v1, v3} = {x, y} implies a contradiction to v1v3 /∈ E,
because xy ∈ E.

� Assume that {v1, v3} = {y, z}. Then yz /∈ E and v2z ∈ E must hold.
Since xy ∈ E, x <t y, zw ∈ E, z <t w and ii <r xy, zw and xy <ℓ zw,
we have i <t y, w and i <b x, z as well as x <t z <t w and y <b w <b z.
For yz /∈ E to hold, we get that v2 ≤t i <t y <t z and v2 ≤b i <b w <b z,
and in particular that v2z /∈ E, which is a contradiction.

� Assume that {v1, v3} = {x, z}. Then xz /∈ E and v2z ∈ E must hold.
Since xy ∈ E, x <t y, zw ∈ E, z <t w and ii <r xy, zw and xy <ℓ zw,
we have i <t y, w and i <b x, z as well as x <t z <t w and y <b w <b z.
For xz /∈ E and v2z ∈ E to hold, we get that x <t z <t v2 ≤t i <t y and
v2 ≤b i <b x <b z and y <b x <b z, and in particular that yz ∈ E. If
additionaly v2y ∈ E, then ⟨x, v2, y⟩ is an S-triangle of G, which implies
a contradiction to v2 ∈ U ; otherwise, ⟨x, v2, z, y⟩ is an S-square of G,
which implies a contradiction to v2 ∈ U as well.

Therefore, we obtain a contradiction in all cases. We conclude that Axy∪zw
Vii

↔
Axy∪zz

Vii
. If iz /∈ E, then completely symmetrical arguments apply in showing

that Axy∪zw
Vii

↔ Axy∪ww
Vii

.
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Now assume that iz, iw ∈ E. Putting together the inequalities implied by
this fact along with xy ∈ E, x <t y, zw ∈ E, z <t w and ii <r xy, zw and
xy <ℓ zw, we get that x <t z <t i <t y, w and y <b w <b i <b x, z, and in
particular that ix, iy, xw, yz ∈ E. Notice that i has no neighbor in G[Vii], so
the neighborhood of i in G[Vii∪{x, y, z, w}] is {x, y, z, w}. Assume that i ∈ S.
Then ⟨i, x, y⟩ is an S-triangle of G, which implies that i /∈ Axy∪zw

Vii
. By this

fact and Observation 6.2.2 (1), it follows that Axy∪zw
Vii

↔ Axy∪zw
V◁ii

. Now let us
assume that i /∈ S. Given a subset U of Vii \ {i} such that U ∪ {i, x, y, z, w}
induces an S-forest of G, it is clear that U ∪ {x, y, z, w} induces an S-forest
of G as well. Let U be a subset of Vii \ {i} such that U ∪ {x, y, z, w} induces
an S-forest of G. We show that U ∪ {i, x, y, z, w} induces an S-forest of G.
Assume for contradiction that a subset of U∪{i, x, y, z, w} containing i induces
an S-cycle C of G.

� If C = ⟨v1, v2, i⟩, then {v1, v2} ⊂ {x, y, z, w}, which implies a contra-
diction to {v1, v2, i} containing a vertex that belongs to S, because
i, x, y, z, w /∈ S.

� If C = ⟨v1, v2, v3, i⟩, then {v1, v3} ⊂ {x, y, z, w}, which implies that v2
must belong to S and, consequently, v2 ∈ U . Moreover, v1v3 /∈ E must
hold, so either {v1, v3} = {x, z} or {v1, v3} = {y, w}. Assume that
{v1, v3} = {x, z}. If additionally v2y ∈ E, then ⟨x, v2, y⟩ is an S-triangle
of G, which implies a contradiction to v2 ∈ U ; otherwise, ⟨x, v2, z, y⟩ is
an S-square of G, which implies a contradiction to v2 ∈ U as well. The
case for {v1, v3} = {y, w} is completely symmetric.

Therefore, we obtain a contradiction in all cases. By Observation 6.2.2 (1), it
follows that Axy∪zw

Vii
↔ Axy∪zw

V◁ii
∪ {i}.

Based on Lemmas 6.2.4–6.2.8, we can compute AY
X in the cases of X = Vii,

i ∈ [n] that are considered by our algorithm. In the remaining lemmas, we
address the cases of X = Vij , ij ∈ E.

Lemma 6.2.9. Let ij ∈ E such that i <t j. Then,

A∅
Vij

↔


max
weight

{
A∅

V ⊵ij
, A∅

V⊴ij
, Aii

V<◁jj
∪ {i, j}, Ajj

V<◁ii
∪ {i, j}

}
, if i ∈ S or j ∈ S

max
weight

{
A∅

V ⊵ij
, A∅

V⊴ij
, Aij

V◁ij
∪ {i, j}

}
, if i, j /∈ S.
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Proof. If i /∈ A∅
Vij

, then it follows that A∅
Vij

↔ A∅
V ⊵ij

by Observation 6.2.2 (1).

Likewise, if j /∈ A∅
Vij

, then it follows that A∅
Vij

↔ A∅
V⊴ij

. Let i, j ∈ A∅
Vij

. We
distinguish two cases according to whether i or j belongs to S.

� Assume that i, j /∈ S. Then A∅
Vij

↔ Aij
V◁ij

∪ {i, j} by definition.

� Assume that i ∈ S or j ∈ S. We show that the vertices of A∅
Vij

\ {i, j}
are all non-adjacent to i or all non-adjacent to j. Let h ∈ A∅

Vij
\ {i, j}

such that hi, hj ∈ E. Then ⟨h, i, j⟩ is an S-triangle of G, yielding a
contradiction to h, i, j ∈ A∅

Vij
. Thus, for every h ∈ A∅

Vij
\ {i, j}, we

have hi /∈ E or hj /∈ E. Let g, h ∈ A∅
Vij

\ {i, j} such that gj, hi ∈ E

and gi, hj /∈ E. Then g, h <t j and g, h <b i. For gj, hi ∈ E and
gi, hj /∈ E to hold, we get that g <t i <t h and h <b j <b g, and in
particular that gh ∈ E. Hence, ⟨g, h, i, j⟩ is an S-square of G, yielding
a contradiction to g, h, i, j ∈ A∅

Vij
. Thus, if a vertex of A∅

Vij
\ {i, j} is

adjacent to i (resp. j), then every vertex of A∅
Vij

\{i, j} is non-adjacent to

j (resp. i). By Observation 6.2.2 (2), it follows that A∅
Vij

\ {i, j} ⊆ V<◁jj

or A∅
Vij

\ {i, j} ⊆ V<◁ii. Suppose A∅
Vij

\ {i, j} ⊆ V<◁jj . Observe that the

neighborhood of j in G[V<◁jj ∪{i, j}] is {i}. This implies that no subset
of V<◁jj ∪ {i, j} containing j induces an S-cycle of G. We conclude that
A∅

Vij
↔ Aii

V<◁jj
∪ {i, j}. Symmetrically, if A∅

Vij
\ {i, j} ⊆ V<◁ii, then it

follows that A∅
Vij

↔ Ajj
V<◁ii

∪ {i, j}.

Therefore, the stated formula follows.

Lemma 6.2.10. Let ij ∈ E such that i <t j and let x ∈ [n] \ Vij. Moreover,
let {i, j, x} = {x′, y′, z′} such that x′y′ <ℓ z

′z′.

(1) If ix, jx /∈ E, then Axx
Vij

↔ A∅
Vij

.

(2) If ix ∈ E and jx /∈ E, then

Axx
Vij

↔



max
weight

{
Axx

V ⊵ij
, Axx

V⊴ij
, Aii

V<◁jj
∪ {i, j}, Ajj

V<◁ix
∪ {i, j}

}
, if i ∈ S

or j ∈ S

max
weight

{
Axx

V ⊵ij
, Axx

V⊴ij
, Aij

V(◁ij)▷◁(<◁xx)
∪ {i, j}

}
, if i, j /∈ S

and x ∈ S

max
weight

{
Axx

V ⊵ij
, Axx

V⊴ij
, Ax′y′∪z′z′

V◁ij
∪ {i, j}

}
, if i, j, x /∈ S.
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(3) If ix /∈ E and jx ∈ E, then

Axx
Vij

↔



max
weight

{
Axx

V ⊵ij
, Axx

V⊴ij
, Aii

V<◁xj
∪ {i, j}, Ajj

V<◁ii
∪ {i, j}

}
, if i ∈ S

or j ∈ S

max
weight

{
Axx

V ⊵ij
, Axx

V⊴ij
, Aij

V(◁ij)▷◁(<◁xx)
∪ {i, j}

}
, if i, j /∈ S

and x ∈ S

max
weight

{
Axx

V ⊵ij
, Axx

V⊴ij
, Ax′y′∪z′z′

V◁ij
∪ {i, j}

}
, if i, j, x /∈ S.

(4) If ix, jx ∈ E, then

Axx
Vij

↔


max
weight

{
Axx

V ⊵ij
, Axx

V⊴ij

}
, if i ∈ S or j ∈ S or x ∈ S

max
weight

{
Axx

V ⊵ij
, Axx

V⊴ij
, Ax′y′∪z′z′

V◁ij
∪ {i, j}

}
, if i, j, x /∈ S.

Proof. First assume that ix, jx /∈ E. Since ij ∈ E and x /∈ Vij , we have i <t j
and j <b i as well as j <t x or i <b x. For ix, jx /∈ E to hold, we get that
i <t j <t x and j <b i <b x. We also have h ≤t j and h ≤b i for every h ∈ Vij

by definition. We conclude that h <t x and h <b x for every h ∈ Vij , so x has
no neighbor in G[Vij∪{x}]. This implies that no subset of Vij∪{x} containing
x induces an S-cycle of G. Hence, Axx

Vij
↔ A∅

Vij
follows.

Next assume that ix ∈ E or jx ∈ E. If i /∈ Axx
Vij

, then it follows that Axx
Vij

↔
Axx

V ⊵ij
by Observation 6.2.2 (1). Likewise, if j /∈ Axx

Vij
, then it follows that

Axx
Vij

↔ Axx
V⊴ij

. Let i, j ∈ Axx
Vij

. We distinguish the following cases according to
whether ix or jx belongs to E.

� Assume that ix ∈ E and jx /∈ E. Since x /∈ Vij , we have j <t x or
i <b x. Let i <b x. Then, for ix ∈ E to hold, we get that x <t i <t j
and j <b i <b x, and in particular that jx ∈ E, contradicting our
assumption. Thus, we have j <t x. For ix ∈ E and jx /∈ E to hold, we
get that i <t j <t x and j <b x <b i. We also have h ≤t j and h ≤b j
for every h ∈ Vjj by definition. We conclude that h <t x and h <b x for
every h ∈ Vjj , so x has no neighbor in G[Vjj ]. We further distinguish
subcases depending on whether i, j or x belongs to S.

– Let i ∈ S or j ∈ S. We show that the vertices of Axx
Vij

\ {i, j} are

all non-adjacent to i or all non-adjacent to j. Let h ∈ Axx
Vij

\ {i, j}
such that hi, hj ∈ E. Then ⟨h, i, j⟩ is an S-triangle of G, yielding a
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contradiction to h, i, j ∈ Axx
ij . Thus, for every h ∈ Axx

Vij
\ {i, j}, we

have hi /∈ E or hj /∈ E. Let g, h ∈ Axx
Vij

\ {i, j} such that gj, hi ∈ E

and gi, hj /∈ E. Then g, h <t j and g, h <b i. For gj, hi ∈ E and
gi, hj /∈ E to hold, we get that g <t i <t h and h <b j <b g,
and in particular that gh ∈ E. Hence, ⟨g, h, i, j⟩ is an S-square of
G, yielding a contradiction to g, h, i, j ∈ Axx

Vij
. Thus, if a vertex of

A∅
Vij

\{i, j} is adjacent to i (resp. j), then every vertex of A∅
Vij

\{i, j}
is non-adjacent to j (resp. i). By Observation 6.2.2 (2), it follows
that Axx

Vij
\ {i, j} ⊆ V<◁jj or Axx

Vij
\ {i, j} ⊆ V<◁ii.

First suppose Axx
Vij

\{i, j} ⊆ V<◁jj . Observe that the neighborhoods

of j and x in G[V<◁jj ∪ {i, j, x}] are both {i}. This implies that no
subset of V<◁jj ∪{i, j, x} containing j or x induces an S-cycle of G.
We conclude that Axx

Vij
↔ Aii

V<◁jj
∪ {i, j}.

Now suppose Axx
Vij

\{i, j} ⊆ V<◁ii. Let h ∈ Axx
Vij

\{i, j}. Then h <t i

and h <b i. We show that hx /∈ E. Assume for contradiction that
hx ∈ E. Recall that i <t j <t x and j <b x <b i. For hx ∈ E
to hold, we get that h <t i <t j <t x and j <b x <b h <b i,
and in particular that hj ∈ E. Hence, ⟨h, j, i, x⟩ is an S-square
of G, yielding a contradiction to h, i, j ∈ Axx

Vij
. Thus, for every

h ∈ Axx
Vij

\ {i, j}, we have hx /∈ E. By Observation 6.2.2 (3), it

follows that Axx
Vij

\ {i, j} ⊆ V<◁ix. Notice that the neighborhood

of x in G[V<◁ix ∪ {i, j, x}] is {i}, so no subset of V<◁ix ∪ {i, j, x}
containing x induces an S-cycle of G. Hence, Axx

Vij
↔ Aij

V<◁ix
∪{i, j}

follows. Also notice that the neighborhood of i in G[V<◁ix ∪ {i, j}]
is {j}, so no subset of V<◁ix ∪ {i, j} containing i induces an S-cycle
of G. We conclude that Axx

Vij
↔ Ajj

V<◁ix
∪ {i, j}.

– Let i, j /∈ S and x ∈ S. Let h ∈ Axx
Vij

\{i, j}. Then h <t j and h <b i.

We show that hx /∈ E. Assume for contradiction that hx ∈ E.
Recall that i <t j <t x and j <b x <b i. For hx ∈ E to hold, we
get that h, i <t j <t x and j <b x <b h <b i, and in particular that
hj ∈ E. If additionally hi ∈ E, then ⟨h, i, x⟩ is an S-triangle of G,
which implies a contradiction to h, i ∈ Axx

Vij
; otherwise, ⟨h, j, i, x⟩ is

an S-square of G, which implies a contradiction to h, i, j ∈ Axx
Vij

.

Thus, for every h ∈ Axx
Vij

\ {i, j}, we have hx /∈ E. Notice that the

neighborhood of x in G[V(◁ij)▷◁(<◁xx) ∪ {i, j, x}] is {i}, so no subset
of V(◁ij)▷◁(<◁xx) ∪ {i, j, x} containing x induces an S-cycle of G. By

Observation 6.2.2 (4), it follows that Axx
Vij

↔ Aij
V(◁ij)▷◁(<◁xx)

∪ {i, j}.
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– Let i, j, x /∈ S. By Observation 6.2.2 (1), it follows that Axx
Vij

↔
Ax′y′∪z′z′

V◁ij
∪ {i, j}.

� The case for ix /∈ E and jx ∈ E is completely symmetric.

� Assume that ix, jx ∈ E. If a vertex of {i, x, y} belongs to S, then ⟨i, j, x⟩
is an S-triangle of G, which implies a contradiction to i, j ∈ Axx

Vij
. Thus,

no vertex of {i, x, y} belongs to S. By Observation 6.2.2 (1), it follows

that Axx
Vij

↔ Ax′y′∪z′z′
V◁ij

∪ {i, j}.

Therefore, we obtain the stated formulas in all cases.

Lemma 6.2.11. Let ij ∈ E such that i <t j and let x, y ∈ ([n] \ Vij) \ S
such that xy ∈ E, x <t y and ij <r xy. Moreover, if iy, jx ∈ E, then let
{i, j, x, y} = {x′, y′, z′, w′} such that x′y′ <ℓ z

′w′.

(1) If iy /∈ E, then Axy
Vij

↔ Axx
Vij

.

(2) If jx /∈ E, then Axy
Vij

↔ Ayy
Vij

.

(3) If iy, jx ∈ E, then

Axy
ij ↔


max
weight

{
Axy

V ⊵ij
, Axy

V⊴ij

}
, if i ∈ S or j ∈ S

max
weight

{
Axy

V ⊵ij
, Axy

V⊴ij
, Ax′y′∪z′w′

V◁ij
∪ {i, j}

}
, if i, j /∈ S.

Proof. Assume that iy /∈ E. Since ij <r xy, we have j <t y and i <b x. For
iy /∈ E to hold, we get that i <t j <t y and j <b i <b y. We also have h ≤t j
and h ≤b i for every h ∈ Vij by definition. We conclude that h <t y and
h <b y for every h ∈ Vij , so the neighborhood of y in G[Vij ∪ {x, y}] is {x}.
This implies that no subset of Vij ∪ {x, y} containing y induces an S-cycle
of G. Hence, Axy

Vij
↔ Axx

Vij
follows. If jx /∈ E, then completely symmetrical

arguments apply in showing that Axy
Vij

↔ Ayy
Vij

.

Assume that iy, jx ∈ E. If i /∈ Axy
Vij

, then it follows that Axy
Vij

↔ Axy
V ⊵ij

by

Observation 6.2.2 (1). Likewise, if j /∈ Axy
Vij

, then it follows that Axy
Vij

↔ Axy
V⊴ij

.

Let i, j ∈ Axy
Vij

. We show that i, j /∈ S. If ix ∈ E or jy ∈ E, then ⟨i, j, x⟩ or

⟨i, j, y⟩ is a triangle, otherwise ⟨i, j, x, y⟩ is a square. Thus, if i ∈ S or j ∈ S,
then we get that a subset of {i, j, x, y} induces an S-cycle of G, which is a
contradiction to i, j ∈ Axy

Vij
. Hence, we have i, j /∈ S. By Observation 6.2.2 (1),

it follows Axy
Vij

↔ Ax′y′∪z′w′

V◁ij
∪ {i, j}.
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Lemma 6.2.12. Let ij ∈ E such that i <t j and let x, y, z ∈ ([n] \ Vij) ∪ S
such that xy ∈ E, x <t y and ij <r xy and xy <ℓ zz. Moreover, if iz ∈ E or
jz ∈ E, then let {i, j, x, y, z} = {x′, y′, z′, w′, a′} such that x′y′ <ℓ z

′w′ <ℓ a
′a′.

(1) If iz, jz /∈ E, then Axy∪zz
Vij

↔ Axy
Vij

.

(2) If iz ∈ E or jz ∈ E, then

Axy∪zz
Vij

↔


max
weight

{
Axy∪zz

V ⊵ij
, Axy∪zz

V⊴ij

}
, if i ∈ S or j ∈ S

max
weight

{
Axy∪zz

V ⊵ij
, Axy∪zz

V⊴ij
, Ax′y′∪z′w′

V◁ij
∪ {i, j}

}
, if i, j /∈ S.

Proof. First assume that iz, jz /∈ E. Since z /∈ Vij , we get that i <t j <t z and
j <b i <b z. This implies that the neighborhood of z in G[Vij ∪ {x, y, z}] is a
subset of {x, y}. We show that no subset of Vij ∪{x, y, z} containing z induces
an S-cycle of G. Assume for contradiction that a subset of Vij ∪ {x, y, z}
containing z induces an S-cycle C of G. If C = ⟨v1, v2, z⟩, then {v1, v2} =
{x, y}, which implies a contradiction to {v1, v2, z} containing a vertex that
belongs to S, because x, y, z /∈ S. If C = ⟨v1, v2, v3, z⟩, then {v1, v3} = {x, y},
which implies a contradiction to v1v3 /∈ E, because xy ∈ E. Thus, no subset
of Vij ∪ {x, y, z} containing z induces an S-cycle of G. Hence, Axy∪zz

Vij
↔ Axy

Vij

follows.

Assume that iz ∈ E or jz ∈ E. If i /∈ Axy∪zz
Vij

, then it follows that Axy∪zz
Vij

↔
Axy∪zz

V ⊵ij
by Observation 6.2.2 (1). Likewise, if j /∈ Axy∪zz

Vij
, then it follows that

Axy∪zz
Vij

↔ Axy∪zz
V⊴ij

. Let i, j ∈ Axy∪zz
Vij

. We show that i, j /∈ S. If ix ∈ E or

jy ∈ E, then ⟨i, j, x⟩ or ⟨i, j, y⟩ is a triangle, otherwise ⟨i, j, x, y⟩ is a square.
Thus, if i ∈ S or j ∈ S, then we get that a subset of {i, j, x, y} induces
an S-cycle of G, which is a contradiction to i, j ∈ Axy∪zz

Vij
. Hence, we have

i, j /∈ S. Observe that no vertex of {x′, y′, z′, w′, a′} belongs to S. Applying
Lemma 6.2.3 on gh = ◁ij, ab = x′y′, cd = z′w′ and ef = a′a′, we get that
for every subset U of V◁ij , the set U ∪ {x′, y′, z′, w′} induces an S-forest of
G if and only if the set U ∪ {x′, y′, z′, w′, a′} induces an S-forest of G. By

Observation 6.2.2 (1), it follows that Axy∪zz
Vij

↔ Ax′y′∪z′w′

V◁ij
∪ {i, j}.

Lemma 6.2.13. Let ij ∈ E such that i <t j and let x, y, z, w ∈ ([n] \ Vij)∪ S
such that xy ∈ E, x <t y, zw ∈ E, z <t w and ij <r xy, zw and xy <ℓ zw.
Moreover, if iw, jz ∈ E, then let {i, j, x, y, z, w} = {x′, y′, z′, w′, a′, b′} such
that x′y′ <ℓ z

′w′ <ℓ a
′b′.
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(1) If iw /∈ E, then Axy∪zw
Vij

↔ Axy∪zz
Vij

.

(2) If jz /∈ E, then Axy∪zw
Vij

↔ Axy∪ww
Vij

.

(3) If iw, jz ∈ E, then

Axy∪zw
Vij

↔


max
weight

{
Axy∪zw

V ⊵ij
, Axy∪zw

V⊴ij

}
, if i ∈ S or j ∈ S

max
weight

{
Axy∪zw

V ⊵ij
, Axy∪zw

V⊴ij
, Ax′y′∪z′w′

V◁ij
∪ {i, j}

}
, if i, j /∈ S.

Proof. First assume that iw /∈ E. Since ij ∈ E, i <t j, xy ∈ E, x <t y,
zw ∈ E, z <t w and ij <r xy, zw and xy <ℓ zw, we have i <t j <t y, w and
j <t i <b x, z as well as x <t z <t w and y <b w <b z. For iw /∈ E to hold, we
get that i <b w. This implies that the neighborhood of w in G[Vij∪{x, y, z, w}]
is a subset N of {x, y, z}. Given a subset U of Vij such that U ∪ {x, y, z, w}
induces an S-forest of G, it is clear that U ∪ {x, y, z} induces an S-forest of G
as well. Let U be a subset of Vij such that U ∪ {x, y, z} induces an S-forest
of G. We show that U ∪ {x, y, z, w} induces an S-forest of G. Assume for
contradiction that a subset of U ∪{x, y, z, w} containing w induces an S-cycle
C of G.

� Let C = ⟨v1, v2, w⟩. Then {v1, v2} ⊆ N , which implies a contradiction to
{v1, v2, w} containing a vertex that belongs to S, because x, y, z, w /∈ S.

� Let C = ⟨v1, v2, v3, w⟩. Then {v1, v3} ⊆ N . Since x, y, z, w /∈ S, we get
that v2 must belong to S, so v2 ∈ U .

– The case for {v1, v3} = {x, y} implies a contradiction to v1v3 /∈ E,
because xy ∈ E.

– Assume that {v1, v3} = {y, z}. Then yz /∈ E and v2w ∈ E must
hold. For yz /∈ E to hold, we get that v2 ≤t j <t y <t z and
v2 ≤b i <b w <b z, and in particular that v2z /∈ E, which is a
contradiction.

– Assume that {v1, v3} = {x, z}. Then xz /∈ E and v2z ∈ E must
hold. For them to hold, we get that x <t z <t v2 ≤t j <t y
and v2 ≤b i <b x <b z and y <b x <b z, and in particular that
yz ∈ E. If additionaly v2y ∈ E, then ⟨x, v2, y⟩ is an S-triangle of
G, which implies a contradiction to v2 ∈ U ; otherwise, ⟨x, v2, z, y⟩
is an S-square of G, which implies a contradiction to v2 ∈ U as
well.
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Therefore, we obtain a contradiction in all cases. We conclude that Axy∪zw
Vij

↔
Axy∪zz

Vij
. If jz /∈ E, then completely symmetrical arguments apply in showing

that Axy∪zw
Vij

↔ Axy∪ww
Vij

.

Now assume that iw, jz ∈ E. If i /∈ Axy∪zw
Vij

, then it follows that Axy∪zw
Vij

↔
Axy∪zw

V ⊵ij
by Observation 6.2.2 (1). Likewise, if j /∈ Axy∪zw

Vij
, then it follows that

Axy∪zw
Vij

↔ Axy∪zw
V⊴ij

. Let i, j ∈ Axy∪zw
Vij

. We show that i, j /∈ S. If iz ∈ E or

jw ∈ E, then ⟨i, j, z⟩ or ⟨i, j, w⟩ is a triangle, otherwise ⟨i, j, z, w⟩ is a square.
Thus, if i ∈ S or j ∈ S, then we get that a subset of {i, j, z, w} induces
an S-cycle of G, which is a contradiction to i, j ∈ Axy∪zw

Vij
. Hence, we have

i, j /∈ S. Observe that no vertex of {x′, y′, z′, w′, a′, b′} belongs to S. Applying
Lemma 6.2.3 to gh = ◁ij, ab = x′y′, cd = z′w′ and ef = a′b′, we get that
for every subset U of V◁ij , the set U ∪ {x′, y′, z′, w′} induces an S-forest of
G if and only if the set U ∪ {x′, y′, z′, w′, a′, b′} induces an S-forest of G. By

Observation 6.2.2 (1), it follows that Axy∪zw
Vij

↔ Ax′y′∪z′w′

V◁ij
∪ {i, j}.

Based on Lemmas 6.2.9–6.2.13, we can compute AY
X in the cases of X = Vij ,

ij ∈ E that are considered by our algorithm. Observe that all recursive
formulas provided by Lemmas 6.2.4–6.2.13 reduce the computation of a single
set AY

X to the computation of solutions to strictly smaller subproblems that
can also be computed via these formulas. We are now ready to present our
claimed polynomial-time algorithm for solving the SFVS optimization problem
on permutation graphs.

Theorem 6.2.14. The weighted SFVS optimization problem can be solved on
permutation graphs in O(m3) time.

Proof. Let us describe such an algorithm. Recall that we consider connected
graphs with n ≤ m for the analysis of its running time. Given a permutation
π, that is, the ordering of the vertices of the input graph with respect to ≤b,
we first construct the set X . Observe that |X | = 1 + |[n]|+ |E| = 1 + n+m.
In a preprocessing step, for every ij ∈ X , we compute

⊵

ij, ⊴ij, ◁ij, <◁ij
and (◁ij) ▷◁ (<◁xx) for all x ∈ [n] \ Vij . Note that such a simple application
requires O(n2) time for a single ij ∈ X , yielding a total running time of
O(n2m) for this step. Next, we iterate over the elements of X according to
their ascending order with respect to ≤r. For each ij ∈ X , we compute A∅

X

according to Lemmas 6.2.4 and 6.2.9, and we iterate over the elements of
X [[n] \ Vij ] in descending order with respect to ≤ℓ. For each xy ∈ X [[n] \ Vij ],
we compute Axy

Vij
according to Lemmas 6.2.5, 6.2.6, 6.2.10 and 6.2.11, and we
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A B

AS BS

AR BR

X

Z

Y

W

1

Figure 6.3: Illustrating the partition {X,Y, Z,W} of a maximal S-forest F of
the cobipartite graph G.

iterate over the elements of X [[n]\Vxy] in descending order with respect to ≤ℓ.
For each zw ∈ X [[n] \ Vxy], we compute Axy∪xw

Vij
according to Lemmas 6.2.7,

6.2.8, 6.2.12 and 6.2.13. The set A∅
π(n)n is a maximum weighted S-forest of

G, so [n] \ A∅
π(n)n is a minimum subset feedback vertex set of (G,S) and the

output of the algorithm. Observe that the number of sets AY
X being computed

is O(m3) and the computation of a single set AY
X takes constant time. We

conclude that the total running time of the algorithm is O(m3).

6.3 Cobipartite Graphs

Here we show that the number of minimal subset feedback vertex sets on
a cobipartite graph is polynomial, which implies a polynomial-time algorithm
for solving the SFVS optimization problem on the class of cobipartite graphs.

Theorem 6.3.1. The number of maximal S-forests of a cobipartite graph is
at most 16n4 and they can be enumerated in O(n4) time.

Proof. The key observation here is that for every clique C of G, an S-forest
of G containing a vertex of C ∩ S contains at most two vertices of C. Let
G = (V,E) be a cobipartite graph and let {A,B} be a partition of V into two
cliques. We consider the partition {AS , AR, BS , BR} of V into the four cliques
AS = A ∩ S, AR = A \ S, BS = B ∩ S and BR = B \ S. Let {X,Y, Z,W} be
the partition of the vertex set of a maximal S-forest F of G such that X ⊆ AS ,
Y ⊆ AR, Z ⊆ BS and W ⊆ BR (see Figure 6.3). Then we have |X| ≤ 2 and
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|Z| ≤ 2. Moreover, if |X| ≥ 1 (resp. |Z| ≥ 1), then we also have |X|+ |Y | ≤ 2
(resp. |Z|+ |W | ≤ 2). By examining the nine cases corresponding to the value
combinations of |X| and |Z|, we show that there exist at most 22n4 maximal
S-forests of G and they can be enumerated in O(n4) time. For every two sets
L and R, we denote by L △ R their symmetric difference, which is the set
(L \R) ∪ (R \ L).

� Let X = ∅ and Z = ∅. Then F contains no vertex of S = AS ∪BS . No
subset of V \S = AR ∪BR induces an S-cycle of G. Thus, the partition
of the vertex set of F in this case is

1. {X = ∅, Y = AR, Z = ∅,W = BR}.
� Let X = {aS} and Z = ∅. Then either Y = ∅ or Y = {aR}. First
assume that Y = ∅. Let U be a subset of BR. Then {aS}∪U induces an
S-cycle of G if and only if U consists of two neighbors of aS . We conclude
that W must contain at most one neighbor of aS , so the partition of the
vertex set of F in this subcase is

2. either {X = {aS}, Y = ∅, Z = ∅,W = {bR} ∪ (BR \N(aS))},
where bR ∈ N(aS),

or {X = {aS}, Y = ∅, Z = ∅,W = BR},
if no such bR exists.

Next assume that Y = {aR}. Let U be a subset of BR. Then {aS} ∪ U
induces an S-cycle of G if and only if U consists of two neighbors of aS .
Moveover, {aS , aR}∪U induces an S-cycle of G if and only if U consists
of a neighbor of aS and a (not necessarily distinct) neighbor of aR. We
conclude that W must contain at most one neighbor of aS and that if
W contains a neighbor of aS , then W must contain no neighbor of aR.
Thus, the partition of the vertex set of F in this subcase is

3. {X = {aS}, Y = {aR}, Z = ∅,W = {bR} ∪ (BR \N({aS , aR}))},
where bR ∈ N(aS) \N(aR);

4. {X = {aS}, Y = {aR}, Z = ∅,W = BR \N(aS)}.
� Let X = ∅ and Z = {bS}. Completely symmetrical arguments apply in
showing that the partition of the vertex set of F in this case is

5. either {X = ∅, Y = {aR} ∪ (AR \N(bS)), Z = {bS},W = ∅},
where aR ∈ N(bS),

or {X = ∅, Y = AR, Z = {bS},W = ∅},
if no such aR exists;
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6. {X = ∅, Y = {aR} ∪ (AR \N({bS , bR})), Z = {bS},W = {bR}},
where aR ∈ N(bS) \N(bR);

7. {X = ∅, Y = AR \N(bS), Z = {bS},W = {bR}}.

� Let X = {aS} and Z = {bS}. Then either Y = ∅ or Y = {aR} holds as
well as either W = ∅ or W = {bR} holds, so the partition of the vertex
set of F in this case is

8. {X = {aS}, Y = {aR}, Z = {bS},W = {bR}},
where aR, bR are such that G[{aS , aR, bS , bR}] is an S-forest;

9. {X = {aS}, Y = {aR}, Z = {bS},W = ∅},
where aR is such that G[{aS , aR, bS}] is an S-forest,
if no bR ∈ BR is such that G[{aS , aR, bS , bR}] is an S-forest;

10. {X = {aS}, Y = ∅, Z = {bS},W = {bR}},
where bR is such that G[{aS , bS , bR}] is an S-forest,
if no aR ∈ AR is such that G[{aS , aR, bS , bR}] is an S-forest;

11. {X = {aS}, Y = ∅, Z = {bS},W = ∅},
if no cR ∈ AR ∪BR is such that G[{aS , bS , cR}] is an S-forest.

� Let X = {aS , a′S} and Z = ∅. Then Y = ∅. Let U be a subset of BR.
Then {aS} ∪ U (resp. {a′S} ∪ U) induces an S-cycle of G if and only if
U consists of two neighbors of aS (resp. a′S). Moreover, {aS , a′S} ∪ U
induces an S-cycle of G if and only if U consists of a neighbor of aS and
a (not necessarily distinct) neighbor of a′S . We conclude that W must
contain at most one neighbor of aS and at most one neighbor of a′S , and
that if W contains a neighbor of aS , then W must contain no neighbor
of a′S , and vice versa. Thus, the partition of the vertex set of F in this
case is

12. either {X = {aS , a′S}, Y = ∅, Z = ∅,W = {bR}∪(BR\N({aS , a′S}))},
where bR ∈ N(aS) △ N(a′S),

or {X = {aS , a′S}, Y = ∅, Z = ∅,W = BR \ (N(aS) ∩N(a′S))},
if no such bR exists.

� Let X = ∅ and Z = {bS , b′S}. Completely symmetrical arguments apply
in showing that the partition of the vertex set of F in this case is

13. either {X = ∅, Y = {aR} ∪ (AR \N({bS , b′S})), Z = {bS , b′S},W = ∅},
where aR ∈ N(bS) △ N(b′S),

or {X = ∅, Y = AR \ (N(bS) ∩N(b′S)), Z = {bS , b′S},W = ∅},
if no such aR exists.
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� Let X = {aS , a′S} and Z = {bS}. Then Y = ∅ holds as well as either
W = ∅ or W = {bR} holds, so the partition of the vertex set of F in
this case is

14. either {X = {aS , a′S}, Y = ∅, Z = {bS},W = {bR}},
where bR is such that G[{aS , a′S , bS , bR}] is an S-forest;

or {X = {aS , a′S}, Y = ∅, Z = {bS},W = ∅},
if no such bR exists.

� Let X = {aS} and Z = {bS , b′S}. Then either Y = ∅ or Y = {aR} holds
as well as W = ∅ holds, so the partition of the vertex set of F in this
case is

15. either {X = {aS}, Y = {aR}, Z = {bS , b′S},W = ∅},
where aR is such that G[{aS , aR, bS , b′S}] is an S-forest;

or {X = {aS}, Y = ∅, Z = {bS , b′S},W = ∅},
if no such aR exists.

� Let X = {aS , a′S} and Z = {bS , b′S}. Then Y = ∅ and W = ∅, so the
partition of the vertex set of F in this case is

16. {X = {aS , a′S}, Y = ∅, Z = {bS , b′S},W = ∅}.

Notice that every one of the above 16 forms of the partition {X,Y, Z,W} of
the maximal S-forest F of G involves choosing at most 4 distinct vertices of
G. This implies that every one of these forms describes at most n4 maximal
S-forests of G. Therefore, the maximal S-forests of G are at most 16n4 in
total.
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7
SFVS on Subclasses of
Chordal Graphs

In this chapter, we present our results for SFVS on particular subclasses of
chordal graphs beyond interval graphs. The chapter is structured as follows:
In Section 7.2, we make an important observation that we apply extensively
in order to obtain the two polynomial-time algorithms that we provide in this
chapter. In Section 7.3, we show how to transform a tree model of a chordal
graph into one which satisfies a property that is required by our algorithms.
In Section 7.4, we provide a polynomial-time algorithm for solving SFVS on
graphs with bounded leafage and we establish W[1]-hardness of the weighted
SFVS problem on chordal graphs parameterized by leafage. In Section 7.5, we
provide a polynomial-time algorithm for solving SFVS on rooted path graphs
and we establish NP-hardness of SFVS on undirected path graphs. The results
presented in this chapter were published in the following works:

� Charis Papadopoulos and Spyridon Tzimas. Computing a Mininum Sub-
set Feedback Vertex Set on Chordal Graphs Parameterized by Leafage.
33rd International Workshop on Combinatorial Algorithms (IWOCA 2022).
Lecture Notes in Computer Science (LNCS), 13270:466–479 (2022).

� Charis Papadopoulos and Spyridon Tzimas. Computing a Mininum Sub-
set Feedback Vertex Set on Chordal Graphs Parameterized by Leafage.
Algorithmica (2023).
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7.1 Preliminaries on the Tree Model Structure

Let T be a rooted tree. We use r(T ) to denote its root. We assume that
the edges of T are directed away from r(T ). We denote the unique directed
path from a node s to a node t by s → t. If s → t exists in T , we say that t is
a descendant of s and that s is an ancestor of t. The leaves of an undirected
tree T are exactly the nodes of T having degree at most one. The leaves of
a rooted tree T are exactly the nodes of T having in-degree at most one and
out-degree zero. For any tree T , we use L(T ) to denote the set of its leaves.
Observe that for an undirected tree T we have |L(T )| = 1 if and only if T has
no edges, whereas for a rooted tree T we have |L(T )| = 1 if and only if T is a
directed path.

A binary relation defined on a set is called a partial order if it is transitive
and anti-symmetric. Let X be a set and ≤ be a partial order on X. We say
that two elements u and v of X are comparable with respect to ≤ if u ≤ v or
v ≤ u; otherwise, u and v are called incomparable with respect to ≤. If u ≤ v
and u ̸= v, then we simply write u < v. For all X ′ ⊆ X, we write min≤X ′

and max≤X ′ to denote the sets of all minimal and maximal elements of X ′

with respect to ≤ respectively. Given a rooted tree T = (VT , ET ), we define a
partial order on the nodes of T as follows: for every x, y ∈ VT , x ≤T y ⇔ y → x
exists in T . Regarding ≤T we make the following observations.

Observation 7.1.1. Let T = (VT , ET ) be a rooted tree. For every x, y, y′ ∈
VT , if x ≤T y and x ≤T y′, then y and y′ are comparable with respect to ≤T .

Proof. Let x ≤T y and x ≤T y′. Then by definition y → x and y′ → x exist
in T . Since T is a rooted tree, every node has at most one parent in T . By
induction, for every k ∈ N, every node has at most one ancestor at distance
k in T . We set yc and yf to be the nodes among y, y′ which are the closest
and the farthest away from x respectively. Then observe that yf → x contains
yc and in particular yf → yc exists in T , which implies that yc ≤T yf by
definition, so y and y′ are comparable with respect to ≤T .

Observation 7.1.2. Let T be a rooted tree and let T ′ be a subtree of T . For
every l, r ∈ V (T ′) such that l < r, every node b ∈ V (T ) such that l < b < r is
also in V (T ′).

Proof. By definition, l < b < r implies that r → b and b → l exist in T .
In other words, r → l exists in T and contains b. Since T ′ is connected and
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l, r ∈ V (T ′), we conclude that all the nodes in r → l are in V (T ′). In particular
b ∈ V (T ′).

Observation 7.1.3. Let T be a rooted tree and let V be a set of pairwise
incomparable nodes of T with respect to ≤T . Then |V | ≤ |L(T )|.

Proof. Notice that for every node x of T , there exists a leaf l of T such that
l ≤T x. Assume that |L(T )| < |V |. Then there exists a leaf l of T and two
distinct nodes x, y ∈ V such that l ≤T x, and l ≤T y. By Observation 7.1.1,
the nodes x and y are comparable with respect to ≤T , a contradiction. We
conclude that |V | ≤ |L(T )|.

Leafage and vertex leafage A tree model of a graph G = (VG, EG) is a
pair (T, {Tv}v∈VG

) such that (1) T is a tree, called a host tree1, (2) for each
v ∈ VG, Tv is a subtree of T , and (3) for each u, v ∈ VG such that u ̸= v,
uv ∈ EG if and only if V (Tu)∩V (Tv) ̸= ∅. It is known that a graph is chordal
if and only if it admits a tree model [16, 39]. The tree model of a chordal
graph is not necessarily unique. The leafage of a chordal graph G, denoted by
ℓ(G), is the minimum number of leaves of the host tree among all tree models
of G, that is, ℓ(G) is the smallest integer ℓ such that there exists a tree model
(T, {Tv}v∈VG

) of G with |L(T )| = ℓ [59]. Moreover, every chordal graph G
admits a tree model for which its host tree T has the minimum |L(T )| and
|V (T )| ≤ n [19, 43]; such a tree model can be constructed in O(n3) time [43].
Thus the leafage ℓ(G) of a chordal graph G is computable in polynomial time.

A relaxation of the leafage is the vertex leafage introduced by Chaplick and
Stacho [19]. The vertex leafage of a chordal graph G, denoted by vℓ(G), is
the smallest integer vℓ such that there exists a tree model (T, {Tv}v∈VG

) of G
where |L(Tv)| ≤ vℓ for all v ∈ VG. Clearly, we have vℓ(G) ≤ ℓ(G). Unlike the
leafage, deciding whether the vertex leafage of a chordal graph is at most vℓ
is NP-complete for every fixed integer vℓ ≥ 3 [19].

Notice that for any tree model (T, {Tv}v∈VG
) and for any ℓ, vℓ ∈ N∗ such that

|L(T )| ≤ ℓ and |L(Tv)| ≤ vℓ for all v ∈ VG, after rooting T in an arbitrary node,
the same conditions still hold. Henceforth, we will only consider tree models
with host trees that are rooted trees unless otherwise stated. Under these
terms, observe that (1) ℓ(G) ≤ 1 ⇔ G is an interval graph2, (2) vℓ(G) ≤ 1 ⇔ G

1The host tree is also known as a clique tree, usually when we are concerned with the
maximal cliques of a chordal graph [39].

2If the host tree T is an undirected tree, then ℓ(G) ≤ 2 ⇔ G is an interval graph [19].
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is a rooted path graph, and (3) vℓ(G) ≤ 2 if G is an undirected path graph.

7.2 Preliminaries for Solving SFVS

Let G = (VG, EG) be a chordal graph, let S ⊆ VG and let X,Y ⊆ VG such
that X ∩ Y = ∅ and G[Y ] ∈ FS . A partition P of X is called nice if for any
S-triangle St of G[X ∪ Y ], there is a part P ∈ P such that V (St) ∩ X ⊆ P .
In other words, any S-triangle of G[X ∪ Y ] is involved with at most one part
of any nice partition of X. With respect to the defined optimal solutions AY

X ,
we observe the following:

Observation 7.2.1. Let G = (VG, EG) be a chordal graph, let S ⊆ VG and
let X,Y ⊆ VG such that X ∩ Y = ∅ and G[Y ] ∈ FS. Then the following hold:

(1) AY
X ↔

⋃
P∈P

AY
P for any nice partition P of X.

(2) AY
X ↔ AY ′

X where Y ′ = Y ∩N(X ′) for any X ⊇ X ′ ⊇ X \ {u ∈ X \ S |
Y ∩N(u) ⊆ Y \ S}.

Proof. For the first statement, assume that there is an S-triangle St in G[X ∪
Y ]. Then it must contain a vertex of some part P of P, as G[Y ] is an S-forest.
By the definition of a nice partition, we have V (St) ∩X ⊆ P . Therefore, we
deduce AY

X ∩ P ↔ AY
P , which shows the claim.

For the second statement, observe that G[Y ′] ∈ FS , as Y
′ ⊆ Y and G[Y ] ∈

FS . Also, notice that any S-triangle in G[X ∪ Y ′] remains an S-triangle in
G[X ∪ Y ]. Consider an S-triangle in G[X ∪ Y ] induced by {x, y, z} where
x ∈ X and y ∈ Y . We show that y ∈ Y ′ and z ∈ X ∪ Y ′. If x ∈ X ′, then
y ∈ Y ′ and z ∈ X ∪ Y ′ by the fact that Y ′ = Y ∩ N(X ′). Suppose that
x ∈ X \ S such that Y ∩N(x) ⊆ Y \ S. Then y ∈ Y \ S and z ∈ X ∪ (Y \ S).
This means that z must be in S and in particular z ∈ X ∩ S ⊆ X ′. By the
fact that Y ′ = Y ∩N(X ′), we conclude that y ∈ Y ′. Thus, any S-triangle in
G[X ∪ Y ] remains an S-triangle in G[X ∪ Y ′], which concludes the proof.

Observation 7.2.1 suggests how to reduce the computation of AY
X to the

computation of optimal solutions to smaller instances. More precisely, by
Observation 7.2.1 (1), if we obtain a nice partition P of the vertex set X, then
we can reduce the computation of AY

X to the computation of AY
P for every P ∈
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N−
T (x)

x
N+

T (x) 7−→ N−
T (x)

x−kr x0 xkl
N+

T (x)

Figure 7.1: We replace node x of T by the directed path ⟨x−kr , . . . , x0, . . . , xkl⟩
such that in T ′ the node of N−

T (x) points to x−kr and all nodes of N+
T (x) are

pointed by xkl instead.

P, which are optimal solutions to smaller and pairwise-independent instances,
and Observation 7.2.1 (2) states that for computing AY

X , it is sufficient to
consider only the vertices y of Y which have neighbours x in X such that at
least one of x and y is in S.

7.3 Expanded Tree Model

Given a tree model of a chordal graph, we are interested in defining a partial
order on the vertices of the graph that takes advantage of the underlying tree
structure. For this purpose, it is necessary that each of the subtrees of the
tree model corresponds to at most one vertex of the graph. Here we show how
a tree model can be altered in order to obtain this property in a formal way.
Assume that G is a chordal graph.

Definition 7.3.1. A tree model (T, {Tv}v∈VG
) of G is called expanded tree

model if the sets of the collection {{r(Tv)}}v∈VG
∪ {L(Tv)}v∈VG

are paiwise-
disjoint.

We show that for any tree model M of a chordal graph G, there exists
an expanded tree model M ′ of G that is structurally close to M . In fact,
we provide an algorithm that, given a tree model of G, constructs such an
expanded tree model of G.

Lemma 7.3.1. For any tree model (T, {Tv}v∈VG
) of G and for any ℓ, vℓ ∈ N∗

such that |L(T )| = ℓ and |L(Tv)| ≤ vℓ for all v ∈ VG, there is an expanded tree
model (T ′, {T ′

v}v∈VG
) of G such that:

� |L(T ′)| = |L(T )| = ℓ and |L(T ′
v)| = |L(Tv)| ≤ vℓ for all v ∈ VG, and

� |V (T ′)| ≤ |V (T )|+ (1 + vℓ)n.
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Moreover, given (T, {Tv}v∈VG
), the expanded tree model can be constructed in

time O(n2).

Proof. Consider a node x of T . Assume that x is the root of kr subtrees
Tv−1 , . . . , Tv−kr

and a leaf of kl subtrees Tv1 , . . . , Tvkl
of {Tv}v∈VG

where kr +
kl ≥ 2. We replace the node x in T by the gadget shown in Figure 7.1. We
also modify every subtree Tv of {Tv}v∈VG

as follows:

� If there exists an i ∈ −[kr] such that Tv = Tvi and Tv ̸= Tvj for all
j ∈ [kl], then we replace x in Tv by the part of the gadget involving the
vertices xi, . . . , x0, . . . , xkl .

� If Tv ̸= Tvi for all i ∈ −[kr] and there exists a j ∈ [kl] such that Tv = Tvj ,
then we replace x in Tv by the part of the gadget involving the vertices
x−kr , . . . , x0, . . . , xj .

� If there exists an i ∈ −[kr] such that Tv = Tvi and a j ∈ [kl] such that
Tv = Tvj , then we replace x in Tv by the part of the gadget involving
the vertices xi, . . . , x0, . . . , xj .

� If Tv ̸= Tvi for all i ∈ −[kr] and Tv ̸= Tvj for all j ∈ [kl], then

– if x is a (necessarilly internal) node of Tv, we replace x in Tv by the
whole gadget, otherwise T ′

v = Tv.

To see that (T ′, {T ′
v}v∈VG

) is indeed a tree model of G, observe that for every
Tu, Tw ∈ {Tv}v∈VG

:

� if x ∈ V (Tu) ∩ V (Tw), then x0 ∈ V (T ′
u) ∩ V (T ′

w), and

� if x /∈ V (Tu) ∩ V (Tw), then x−kl , . . . , xkr /∈ V (T ′
u) ∩ V (T ′

w).

Thus the intersection graph of (T ′, {T ′
v}v∈VG

) is isomorphic to G. Observe that
among the sets {r(Tv−kr

)}, . . . , {r(Tv−1)}, L(Tv1), . . . , L(Tvkl
), the node xi is

only in {r(Tvi)} for all i ∈ −[kr] and only in L(Tvi) for all i ∈ [kr]. Iteratively
applying the above modifications to (T, {Tv}v∈VG

) results in an tree model of
G that satisfies Definition 7.3.1 for being an expanded tree model.

Observe that the iterative procedure described above preserves the number
of leaves of the tree and of all subtrees in the collection of the tree model. Let
us now bound |V (T ′)|. Recall that every subtree in {Tv}v∈VG

has at most vℓ
leaves. In the worst case, every subtree in {Tv}v∈VG

has exactly vℓ leaves and
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Figure 7.2: Illustration of a chordal graph G (top left), a tree model of G (top
center) and an expanded tree model of G obtained via the iterative procedure
described in the proof of Lemma 7.3.1 (bottom). The paths of the two models
corresponding to each vertex of G are the ones formed from the nodes con-
taining the color of that vertex.

no node of T is the root of one subtree and a leaf of no subtree of {Tv}v∈VG

or vice versa. In this case, the iterative procedure described above will add∑
v∈VG

(|{r(Tv)}| + |L(Tv)|) = (1 + vℓ)n nodes to T . We conclude that the
procedure adds at most (1 + vℓ)n nodes to T as well as to the n subtrees in
{Tv}v∈VG

, resulting in the total running time of O(n2).

An example of an expanded tree model produced by the iterative procedure
described in the proof of Lemma 7.3.1 is shown in Figure 7.2. Hereafter we
assume that (T, {Tv}v∈VG

) is an expanded tree model of G. For any vertex u
of G, we denote the node r(Tu) by r(u) for simplicity. We define the following
partial order on the vertices of G: for all u, v ∈ VG, u ≤G v ⇔ r(u) ≤T r(v).
In other words, two vertices of G are comparable with respect to ≤G if and
only if there is a directed path between their corresponding roots in T . Since
we defined ≤G and ≤T on disjoint sets, we will subsequently omit mentioning
the relevant partial order explicitly.

Observation 7.3.2. Let u, v, w, z ∈ VG. Then, the following hold:

(1) If uv ∈ EG, then u and v are comparable.

(2) If u ≤ v, z ≤ w, and u and z are comparable, then v and w are compa-
rable.

(3) If u < v < w and uw ∈ EG, then vw ∈ EG.
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Proof. For the first statement, assume that x ∈ V (Tu) ∩ V (Tv), which exists
as uv ∈ EG. Then the paths r(u) → x and r(v) → x exist in T . Equivalently,
x ≤ r(u) and x ≤ r(v) hold. By Observation 7.1.1, we get that r(u) and r(v)
are comparable, which implies that u and v are also comparable.

For the second statement, assume first that u ≤ z. Then r(u) ≤ r(z) ≤
r(w) because also z ≤ w. Additionally r(u) ≤ r(v) because u ≤ v. Just as
before, by Observation 7.1.1, we get that r(v) and r(w) are comparable, which
implies that v and w are also comparable. The case for z ≤ u is completely
symmetrical.

For the third statement, observe that u < v < w implies that r(u) < r(v) <
r(w). We show that r(v) ∈ V (Tw). Since u and w are adjacent, there exists
a node x ∈ V (Tu) ∩ V (Tw). Then the paths r(u) → x and r(w) → x exist
in T , implying that x ≤ r(u) and x ≤ r(w). Since x, r(w) ∈ V (Tw) and
x < r(v) < r(w), by Observation 7.1.2, we get that r(v) ∈ V (Tw), so v and w
are adjacent.

For all u ∈ VG, we define Vu to be the set {u′ ∈ VG | u′ ≤ u}. We also
define ◁u to be the set max{u′ ∈ VG | u′ < u} = max(Vu \{u}). Moreover, for
all uv ∈ EG, we define ◁uv to be the set max{u′ ∈ VG | u′ < u, v and (u′u /∈
EG or u′v /∈ EG)} = max((Vu ∩ Vv) \ (N [u] ∩N [v])). Recall that for any edge
uv ∈ EG, either u < v or v < u by Observation 7.3.2 (1). If u < v holds,
then ◁uv = max(Vu \ (N [u]∩N(v))). For all U ⊆ VG, we define VU to be the
collection {Vu}u∈U . For the example of Figure 7.2, denoting the red, green,
blue, cyan, magenta and yellow vertices by r, g, b, c, m and y respectively, the
following hold:

Vr = {r,m, y} ◁r = {m, y} ◁gb = {m, y}
Vg = {r, g,m, y} ◁g = {r} ◁rg = {m} ◁gc = {r}
Vb = {r, g, b, c,m, y} ◁b = {c} ◁rb = {y} ◁gy = ∅
Vc = {r, g, c,m, y} ◁c = {g} ◁rm = ∅
Vm = {m} ◁m = ∅ ◁ry = ∅ ◁bc = {r}
Vy = {y} ◁y = ∅ ◁bm = ∅

Having defined all the primary components, we can now provide a brief
outline of our dynamic programming algorithms.

Step 1: Construction of expanded tree model. From a tree model of the
chordal graph G that we are given as input, we produce an expanded
tree model (T, T ) as described in the proof of Lemma 7.3.1.
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Step 2: Computation of auxiliary vertex sets. Traversing T from its leaves
to its root, upon reaching each node v ∈ VT , if there exists a vertex
u ∈ VG such that r(u) = v, then we compute the set ◁u. Similarly for
all other auxiliary vertex sets that are necessary for each algorithm.

Step 3: Computation of optimal solutions to subproblems. Traversing
T again from its leaves to its root, upon reaching each node v ∈ VT , if
there exists a vertex u ∈ VG such that r(u) = v, then we compute
the optimal solution A∅

Vu
from previously computed optimal solutions to

smaller subproblems. Similarly for optimal solutions to all other sub-
problems that are necessary for each algorithm.

The following two lemmas provide nice partitions of X, to be used in the
application of Observation 7.2.1 (1), in certain cases of X that are considered
by both our algorithms.

Lemma 7.3.3. For every u ∈ VG, the collection V◁u is a partition of Vu \{u}
into pairwise disconnected sets. For every u, v ∈ VG such that u < v and
uv ∈ EG, the collection V◁uv is a partition of Vu \ (N [u]∩N(v)) into pairwise
disconnected sets.

Proof. We prove the first statement. The proof of the second statement is
completely analogous. Firstly notice that, by definition, the vertices of ◁u are
pairwise incomparable. Consider two vertices u′1 and u′2 such that u′1 ≤ u1
and u′2 ≤ u2 where u1 and u2 are two vertices of ◁u. Clearly, u′1 ∈ Vu1 and
u′2 ∈ Vu2 . By Observation 7.1.1 and Observation 7.3.2 (1–2), it follows that
the vertices u′1 and u′2 are distinct and non-adjacent.

Lemma 7.3.4. For every u ∈ VG, the collection V◁u is a nice partition of
Vu \ {u}. For every u, v ∈ VG such that u < v and uv ∈ EG, the collection
V◁uv is a nice partition of Vu \ (N [u] ∩N(v)).

Proof. We prove the first statement. The proof of the second statement is
completely analogous. Let X = Vu \ {u} and Y ⊆ VG such that X ∩ Y = ∅.
Suppose that St is an S-triangle of G[X∪Y ] for which the intersection of V (St)
and a part of V◁u is non-empty for at least two such parts. Assume that P1 and
P2 are two of those parts and let u1 ∈ V (St) ∩ P1 and u2 ∈ V (St) ∩ P2. Then
u1 and u2 must be adjacent, which is in contradiction to Lemma 7.3.3.

The following Lemma simplifies the calculation of Y ′ in Observation 7.2.1 (2)
in the case of X = Vu for some u ∈ VG.
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Lemma 7.3.5. Let u ∈ VG and Y ⊆ VG \ Vu. Then Y ∩N(Vu) = Y ∩N(u).

Proof. From the facts that u ∈ Vu and Y ⊆ VG \ Vu, it directly follows that
Y ∩N(u) ⊆ Y ∩N(Vu). We will now show that also Y ∩N(Vu) ⊆ Y ∩N(u).
It suffices to show that N(Vu) ⊆ N(u). Let w ∈ N(Vu). Then there exists a
vertex v ∈ Vu such that vw ∈ EG. It suffices to show that w ∈ N(u). Assume
that u ̸= v, as otherwise the claim trivially holds. Then v < u, because v ∈ Vu.
Moreover, Observation 7.3.2 (1) implies that either w < v or v < w. Since
w < v < u contradicts the fact that w /∈ Vu, we conclude that v < w. Then by
applying Observation 7.3.2 (2) we obtain that u and w are comparable. Since
w /∈ Vu, it must be that v < u < w and by Observation 7.3.2 (3) we conclude
that uw ∈ EG.

We are now ready to show the first recursive expressions of optimal solutions
to subproblems, to be used for the computation of AY

X in certain cases of X
and Y that are considered by both our algorithms. Both statements involve
the application of Observation 7.2.1 in combination with Lemma 7.3.4 and
Lemma 7.3.5.

Lemma 7.3.6. Let u ∈ VG and Y ⊆ VG \ Vu. If u /∈ AY
Vu
, then AY

Vu
↔⋃

u′∈◁u

A
Y ∩N(u′)
Vu′

.

Proof. Since u /∈ AY
Vu
, we have AY

Vu
↔ AY

Vu\{u}. According to Lemma 7.3.4,

the collection V◁u is a nice partition of Vu \ {u}. By Observation 7.2.1

and Lemma 7.3.5, we get AY
Vu\{u} ↔ ⋃

u′∈◁uA
Y
Vu′

↔ ⋃
u′∈◁uA

Y ∩N(Vu′ )
Vu′

↔⋃
u′∈◁uA

Y ∩N(u′)
Vu′

.

Lemma 7.3.7. Let u ∈ VG. If u ∈ A∅
Vu
, then A∅

Vu
↔ {u} ∪

⋃
u′∈◁u

A
{u}∩N(u′)
Vu′

.

Proof. Assume that u ∈ A∅
Vu
. Then A∅

Vu
↔ {u} ∪ A

{u}
Vu\{u}. Recall that

the collection V◁u is a nice partition of Vu \ {u}. By Observation 7.2.1

and Lemma 7.3.5, we get A
{u}
Vu\{u} ↔ ⋃

u′∈◁uA
{u}
Vu′

↔ ⋃
u′∈◁uA

{u}∩N(Vu′ )
Vu′

↔⋃
u′∈◁uA

{u}∩N(u′)
Vu′

.
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7.4 SFVS on Graphs with Bounded Leafage

In this section our goal is to show that SFVS can be solved in polyno-
mial time on chordal graphs with bounded leafage. In particular, we consider
chordal graphs that have an intersection model tree with at most ℓ leaves and
we show that SFVS can be solved in nO(ℓ) time. We subsequently assume
that we are given a chordal graph G that admits an expanded tree model
(T, {Tv}v∈VG

) with |L(T )| = ℓ due to Lemma 7.3.1.

Given a set of vertices of G, we collect the nodes and the leaves and of their
corresponding subtrees: for every U ⊆ VG, we define V (U) =

⋃
u∈U V (Tu) and

L(U) =
⋃

u∈U L(Tu). Notice that for any non-empty U ⊆ VG, the sets V (U)
and L(U) are also non-empty, and the nodes of L(U) admit a partial order
≤T . Moreover, given a set of nodes of T , we collect the vertices corresponding
to the subtrees of which they are leaves: for every V ⊆ VT , we define L−1(V )
to be the set {u ∈ VG | L(Tu) ∩ V ̸= ∅}.

Observation 7.4.1. Let U ⊆ VG and V ⊆ L(U). Then L−1(V ) ⊆ U .

Proof. The fact that V ⊆ L(U) yields L−1(V ) ⊆ L−1(L(U)). We will show
that L−1(L(U)) ⊆ U . Let u be a vertex of G such that u /∈ U . Then,
since (T, {Tv}v∈VG

) is an expanded tree model, Definition 7.3.1 implies that
L(Tu) ∩ L(U) = ∅. Thus u /∈ L−1(L(U)).

For every U ⊆ VG, we define the representation of U to be the set R≤2(U) =
R1(U) ∪R2(U) where R1(U) = L−1(minL(U)) and R2(U) =
L−1(minL(U \R1(U))). Observation 7.4.1 implies that R≤2(U) ⊆ U for every
U ⊆ VG. Observe that for any V ⊆ VT , the set minV of minimal nodes of V
is a set of pairwise-incomparable nodes, so |minV | ≤ |L(T )| = ℓ by Observa-
tion 7.1.3. This implies that |R≤2(U)| ≤ 2ℓ for all U ⊆ VG. Representations
have the following property.

Observation 7.4.2. Let u ∈ VG and let Y ⊆ VG \ Vu. Then V (Y )∩ V (Vu) =
V (R1(Y )) ∩ V (Vu) and V (Y \R1(Y )) ∩ V (Vu) = V (R2(Y )) ∩ V (Vu).

Proof. We show that the first equation holds. Showing that the second equa-
tion holds is completely analogous. By Observation 7.4.1, we get R1(Y ) ⊆
Y ⇒ V (R1(Y )) ⊆ V (Y ) ⇒ V (R1(Y ))∩V (Vu) ⊆ V (Y )∩V (Vu). We will show
that also V (Y ) ∩ V (Vu) ⊆ V (R1(Y )) ∩ V (Vu). Let b ∈ V (Y ) ∩ V (Vu). Then
there exist u′ ∈ Vu and v ∈ Y such that b ∈ V (Tu′)∩V (Tv). Since b ∈ V (Tu′),
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we get b ≤ r(u′). Since b ∈ V (Tv), there exists an l ∈ L(Tv) ⊆ L(Y ) such that
l ≤ b. Then there exists an l′ ∈ minL(Y ) such that l′ ≤ l. By definition of
R1(Y ), there exists a vertex v′ ∈ R1(Y ) such that l′ ∈ L(Tv′). Putting it all
together yields l′ ≤ l ≤ b ≤ r(u′) ≤ r(u) < r(v′). By Observation 7.1.2, we
conclude that b ∈ V (Tv′) ⊆ V (R1(Y )).

We subsequently show that for computing AY
X , the vertex set Y can be

substituted by its representation R≤2(Y ) in certain cases of X and Y that are
considered by the algorithm of this section.

Lemma 7.4.3. Let u ∈ VG and W ⊆ VG \ Vu such that W ̸= ∅, G[W ] ∈ FS

and {u} ∪W is a clique, and let u ∈ AW
Vu
.

� If ({u}∪W )∩S ̸= ∅, then W = {w} and no vertex of Vu∩N(u)∩N(w)

belongs to A
{w}
Vu

.

� If ({u} ∪ W ) ∩ S = ∅, then A
({u}∪W )∩N(u′)
Vu′

↔ A
R≤2(({u}∪W )∩N(u′))
Vu′

for

every vertex u′ ∈ ◁u.

Proof. Assume that some vertex of {u}∪W is in S. Further assume that |W | ≥
2. Then there are w1, w2 ∈ W such that {u,w1, w2}∩S ̸= ∅. Since {u}∪W is
a clique, we have that {u,w1, w2} induces an S-triangle, contradicting the fact
that u belongs to AW

Vu
. We deduce that W = {w} because W ̸= ∅. Observe

that for any u′ ∈ Vu ∩ N(u) ∩ N(w), the vertex set {u′, u, w} induces an S-
triangle, since u and w are adjacent. Thus, no vertex of Vu ∩N(u) ∩N(w) is

in A
{w}
Vu

.

Assume that no vertex of {u} ∪ W is in S. Consider a vertex u′ ∈ ◁u.
Observe that for any two vertices a ∈ Vu′ and b ∈ VG \ Vu′ to be adjacent,
since r(a) ≤ r(u′) < r(b) already holds, there must exist an l ∈ L(Tb) such
that l < r(a) also holds. Let W ′ = ({u} ∪W )∩N(u′) and R = R≤2(W

′). We
will show that AW ′

Vu′
↔ AR

Vu′
.

� Assume there are two vertices u′′1, u
′′
2 ∈ Vu′ and a vertex w′ ∈ W ′ such

that {u′′1, u′′2, w′} induces an S-triangle. Then u′′1, u
′′
2 are adjacent and

consequently, by Observation 7.3.2 (1), comparable, so without loss of
generality we may assume that r(u′′1) < r(u′′2). Let l′ ∈ L(Tw′) such
that l′ < r(u′′1). By definition of R, there is a vertex w′′ ∈ R for which
there is a node l′′ ∈ L(Tw′′) such that l′′ ≤ l′. This implies that the set
{u′′1, u′′2, w′′} also induces an S-triangle.
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� Assume there is a vertex u′′ ∈ Vu′ and two vertices w′
1, w

′
2 ∈ W ′ such that

{u′′, w′
1, w

′
2} induces an S-triangle. Let l′1 ∈ L(Tw′

1
) and l′2 ∈ L(Tw′

2
) such

that l′1, l
′
2 < r(u′′). By definition of R, there are two distinct vertices

w′′
1 , w

′′
2 ∈ R for which there are nodes l′′1 ∈ L(Tw′′

1
) and l′′2 ∈ L(Tw′′

2
) such

that l′′1 ≤ l′1 and l′′2 ≤ l′2. This implies that the set {u′′, w′′
1 , w

′′
2} also

induces an S-triangle.

We next show that Lemma 7.3.6, Lemma 7.3.7 and Lemma 7.4.3 suffice
for the development of a dynamic programming scheme. As the size of the
representation of any subset of VG is bounded by 2ℓ, we need to store only a
bounded number of optimal solutions to subproblems. In particular, we show
that we need to compute AY

X only for O(n) cases of X and only for cases of
Y such that |Y | ≤ 2ℓ holds.

Theorem 7.4.4. There is an algorithm that, given a connected chordal graph
G and an expanded tree model (T, T ) of G with |L(T )| = ℓ, solves the weighted
Subset Feedback Vertex Set problem in O(n2ℓ+1) time.

Proof. Let umax denote the (unique) vertex of maxVG. Our task is to solve
SFVS on G by computing A∅

Vumax
. For doing so, we device a dynamic pro-

gramming algorithm that visits the nodes of T in a bottom-up fashion starting
from its leaves and moving towards its root. At each node v ∈ VT , if there
exists a vertex u ∈ VG such that r(u) = v, we store the values of A∅

Vu
and AW

Vu

for every W ⊆ VG \Vu such that W ̸= ∅, G[W ] ∈ FS and {u}∪W is a clique.
In order to compute A∅

Vu
, we apply Lemma 7.3.6 and Lemma 7.3.7. In par-

ticular, after retrieving all necessary values being stored on the corresponding
descendants of v, we apply the formula

A∅
Vu

= max
weight

{ ⋃
u′∈◁u

A∅
Vu′

, {u} ∪
⋃

u′∈◁u

A
{u}∩N(u′)
Vu′

}
.

Proof: The first case in the above formula is the case of u /∈ A∅
Vu

and is due
to Lemma 7.3.6, whereas the second case is the case of u ∈ A∅

Vu
and is due to

Lemma 7.3.7. ⌟

For computing AW
Vu
, we apply Lemma 7.3.6 and Lemma 7.4.3. In particular,

depending on W , after retrieving all necessary values being stored on the
corresponding descendants of v, we apply the appropriate formula, as follows:
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� If ({u}∪W )∩S ̸= ∅ and |W | ≥ 2, then we apply AW
Vu

=
⋃

u′∈◁u

A
W∩N(u′)
Vu′

.

Proof: Lemma 7.4.3 implies that u /∈ AW
Vu
. By Lemma 7.3.6 we get the

above formula. ⌟

� If ({u} ∪W ) ∩ S ̸= ∅ and W = {w}, then we apply

AW
Vu

= max
weight

{ ⋃
u′∈◁u

A
{w}∩N(u′)
Vu′

, {u} ∪
⋃

u′∈◁uw

A
{u,w}∩N(u′)
Vu′

}
.

Proof: The first case in the above formula is the case of u /∈ A
{w}
Vu

and

is due to Lemma 7.3.6. For the second case, assume that u ∈ A
{w}
Vu

.

Lemma 7.4.3 implies that A
{w}
Vu

↔ {u} ∪ A
{u,w}
Vu\(N [u]∩N(w)). According

to Lemma 7.3.4, the collection V◁uw is a nice partition of Vu \ (N [u] ∩
N(w)). By Observation 7.2.1 and Lemma 7.3.5 we get A

{u,w}
Vu\(N [u]∩N(w)) ↔⋃

u′∈◁uw A
{u,w}
Vu′

↔ ⋃
u′∈◁uw A

{u,w}∩N(Vu′ )
Vu′

↔ ⋃
u′∈◁uw A

{u,w}∩N(u′)
Vu′

. ⌟

� If ({u} ∪W ) ∩ S = ∅, then we apply

AW
Vu

= max
weight

{ ⋃
u′∈◁u

A
W∩N(u′)
Vu′

, {u} ∪
⋃

u′∈◁u

A
R≤2(({u}∪W )∩N(u′))
Vu′

}
.

Proof: The first case in the above formula is the case of u /∈ A
{w}
Vu

and is due to Lemma 7.3.6. For the second case, assume that u ∈
AW

Vu
. Then AW

Vu
↔ {u} ∪ A

{u}∪W
Vu\{u} . According to Lemma 7.3.4, the

collection V◁u is a nice partition of Vu \ {u}. By Observation 7.2.1,

Lemma 7.3.5 and Lemma 7.4.3 we get A
{u}∪W
Vu\{u} ↔ ⋃

u′∈◁uA
{u}∪W
Vu′

↔⋃
u′∈◁uA

({u}∪W )∩N(Vu′ )
Vu′

↔ ⋃
u′∈◁uA

({u}∪W )∩N(u′)
Vu′

↔⋃
u′∈◁uA

R≤2(({u}∪W )∩N(u′))
Vu′

. ⌟

Regarding the correctness of the algorithm, we show that applying any of
the above recursive formulas requires only sets that can also be computed via
these formulas. Notice that an induced subgraph of a graph in FS is also a
graph in FS and that a subset of a clique is also a clique. Now observe that
applying any of the above recursive formulas requires only sets A∅

Vu′
and AW ′

Vu′

where u′ ∈ VG andW ′ ⊆ VG\Vu′ such thatW ′ ̸= ∅, G[W ′] ∈ FS and {u′}∪W ′

is a clique. We conclude that all sets AY
X that are required for the application

of any of these formulas can also be computed via these formulas.
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We now analyze the running time of our algorithm. We begin by determin-
ing for every pair (x, y) of distinct nodes of the host tree T whether x < y or
not. As the act of discovering all nodes x that precede a node y in ≤T takes
O(n) time by traversing T once, we complete this task in O(n2) time. We
then compute the sets ◁u and ◁uv for all u ∈ VG and for all v ∈ VG such that
uv ∈ EG. Since any such set can be computed in O(n) time by traversing T
once, we compute all such sets in O(n(n+m)) time, which is simply O(nm)
time as G is connected. Let us also bound the size of such sets. Observe
that by definition any such set U is a set of pairwise-incomparable vertices.
By definition of ≤G, this implies that the set V = {r(u) | u ∈ U} is a set of
pairwise-incomparable nodes, yielding |V | ≤ |L(T )| = ℓ by Observation 7.1.3.
We conclude that any such set U contains at most ℓ vertices. We proceed with
the computation of the sets AY

X where X,Y ⊆ VG such that X ∩ Y = ∅ and
G[Y ] ∈ FS . According to the recursive formulas shown above and due to the
fact that |R≤2(U)| ≤ 2ℓ for all U ⊆ VG, it is sufficient to compute for every
u ∈ VG the sets AY

X whereX = Vu and either Y = ∅ or Y ⊆ N(u)\Vu such that
G[Y ] ∈ FS , {u}∪Y is a clique and |Y | ≤ 2ℓ. Therefore, it suffices to compute
O(n2ℓ+1) sets AY

X . Now consider such a set AY
X . Its computation requires the

retrieval of a number of stored values. Due to the bound on the size of the aux-
iliary sets shown above, that number is at most 2ℓ. If the set AY

X is computed
via the last of the formulas shown above, we must also compute at most ℓ rep-
resentations R≤2(U) = R1(U)∪R2(U) of sets U ⊆ VG such that |U | ≤ 2ℓ+1.
Consider one such set U . Computing R1(U) (resp. R2(U)) requires the com-
putation of minL(U) (resp. minL(U \R1(U))), which in turn requires deter-
mining for every pair (x, y) of distinct nodes in L(U) (resp. L(U \ R1(U)))
whether x < y or not. Since all these are predetermined, it suffices to retrieve
a number of stored values. Recall that |L(Tv)| ≤ ℓ for all v ∈ VG. We get
that |L(U \R1(U))| ≤ |L(U)| =∑v∈U |L(Tv)| ≤ (2ℓ+ 1)ℓ, which implies that
the number of stored values to be retrieved is O(ℓ4). We conclude that the
running time for computing the set AY

X is O(ℓ5), which is constant time. Thus
the total running time of our algorithm is O(n2ℓ+1).

Notice that in the special case of ℓ = 1, the number of sets AY
X that the

algorithm of Theorem 7.4.4 computes is actually O(nm) and consequently its
total running time is O(nm). If we let the leafage of a chordal graph be the
maximum leafage over all of its connected components, then we obtain the
following result.

Corollary 7.4.5. The weighted Subset Feedback Vertex Set problem
can be solved on chordal graphs with leafage at most ℓ in nO(ℓ) time.
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Figure 7.3: The subtree T ({x+i , x−i , yij , x+j , x−j }) of T for some i, j ∈ [k] such
that i < j.

Proof. Let G be a chordal graph. For every connected component C of G,
we first recongize if C is an interval graph and if so construct a tree model
M(C) of C in linear time [9], otherwise we determine the leafage of C and
construct a tree model M(C) of C via the O(n3)-time algorithm of Habib
and Stacho [43]. We then construct an expanded tree model M ′(C) from
M(C) in O(n2) time by Lemma 7.3.1. Applying Theorem 7.4.4 on M ′(C),
we compute A∅

V (C) in nO(ℓ) time. It is not difficult to see that the collection

{V (C) | C is a connected component of G} is a nice partition of V (G). Thus
by Observation 7.2.1 the set A∅

V (G) is the union of A∅
V (C) over all of the con-

nected components C of G. Therefore, all above steps result in solving SFVS
on G and can be carried out in nO(ℓ) time.

Notice that in the special case of the input graph being an interval graph,
the algorithm of Corollary 7.4.5 actually runs in O(nm) time, which is also
the running time of the previously known algorithm for solving SFVS on in-
terval graphs [69]. We next prove that we can hardly avoid the dependence of
the exponent in the stated running time, since we show that weighted Sub-
set Feedback Vertex Set is W[1]-hard parameterized by the leafage of a
chordal graph. Our reduction is inspired by the W[1]-hardness of Feedback
Vertex Set parameterized by the mim-width given by Jaffke et al. [50].

Theorem 7.4.6. The weighted Subset Feedback Vertex Set decision
problem on chordal graphs is W[1]-hard when parameterized by its leafage.

Proof. We provide a reduction from the Multicolored Clique problem.
Given a graph G = (V,E) and a partition {Vi}i∈[k] of V into k parts, the
Multicolored Clique (MCC) problem asks whether G has a clique that
contains exactly one vertex of Vi for every i ∈ [k]. It is known that MCC is
W[1]-hard when parameterized by k [31, 72].
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Let (G = (V,E), {Vi}i∈[k]) be an instance of MCC. We assume that k ≥ 10

and without loss of generality that there exists p ∈ N such that Vi = {vji }j∈[p]
for every i ∈ [k]. We consider the k

2 (k + 3)-star T with internal node r and
leaves x+i , x

−
i for every i ∈ [k] and yij for every i, j ∈ [k] such that i < j.

We modify the star T as follows: for every i ∈ [k], through a series of edge
subdivisions, we replace the edge ⟨r, x+i ⟩ by the path ⟨r = x0i , x

1
i , . . . , x

p
i = x+i ⟩

and the edge ⟨r, x−i ⟩ by the path ⟨r = x0i , x
−1
i , . . . , x−p

i = x−i ⟩. Given a set X
of nodes of T , we write T (X) to denote the minimal subtree of T containing
all nodes of X. The subtree T (X) for a particular choice of X is depicted in
Figure 7.3. We define the following subtrees of T :

� For every i, j ∈ [k] such that i < j and for every a, b ∈ [p] such that

vai v
b
j ∈ E, we define eabij = T ({xai , xa−p

i , yij , x
b
j , x

b−p
j }). We denote by R

the collection of all these subtrees.

– For all i ∈ [k], we denote by Ri the collection
{eabij ∈ R | j ∈ [k] and a, b ∈ [p]} ∪ {ebaji ∈ R | j ∈ [k] and a, b ∈ [p]}.

– For all i ∈ [k] and for all a ∈ [p], we denote by Ra
i the collection

{eabij ∈ R | j ∈ [k] and b ∈ [p]} ∪ {ebaji ∈ R | j ∈ [k] and b ∈ [p]}.
– For all i, j ∈ [k] such that i < j, we denote by Rij the collection

{eabij ∈ R | a, b ∈ [p]}.

� For every i ∈ [k] and a ∈ [p], we define sa,1i = sa,2i = T [{xai }] and

s−a,1
i = s−a,2

i = T [{x−a
i }]. We denote by SV the collection of all these

subtrees.

– For all i ∈ [k], we denote by Si the collection
{sa,ci ∈ SV | a ∈ −[p] ∪ [p] and c ∈ {1, 2}}.

– For all i ∈ [k] and for all a ∈ [p], we denote by Sa
i the collection

{sa′,ci ∈ SV | a′ ∈ −[p− a] ∪ [a] and c ∈ {1, 2}}.

� For every i, j ∈ [k] such that i < j, we define sij = T [{yij}]. We denote
by SE the collection of all these subtrees.

We further denote by S the collection SV ∪SE and by T the collection R∪S.
We construct a graph G′ that is the intersection graph of the undirected tree
model (T, T ). Notice that G′ is a chordal graph of leafage at most k

2 (k + 3).
We identify the vertices of G′ with their corresponding subtrees in T . By the
construction of (T, T ), regarding the adjacencies between vertices of G′ we
observe the following:
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� R is a clique, because all its elements contain the node r.

� For every i ∈ [k] and a ∈ −[p] ∪ [p], we have N(sa,1i ) ∩ S = {sa,2i } and

N(sa,2i ) ∩ S = {sa,1i }.

� For every i ∈ [k] and a ∈ [p], we have N(e) ∩ Si = Sa
i for all e ∈ Ra

i .

� For every i, j ∈ [k] such that i < j, we have N(sij) = Rij .

We set the weight of all vertices of R, SV and SE to be p
2 , 1 and p

2m, respec-
tively. We will show that (G, {Vi}i∈[k]) is a Yes-instance of MCC if and only

if there exists a solution to SFVS on (G′, S) having weight p
2(m− k

2 (k − 9)).

For the forward direction, let {va11 , . . . , vakk } be a solution of MCC on (G,
{Vi}i∈[k]

)
. We set RC to be the collection {eaiajij ∈ R | i, j ∈ [k]}. Observe

that RC contains exactly one element of Rij for each i, j ∈ [k] such that i < j.
We further set U = (R \RC) ∪

⋃
i∈[k] S

ai
i . Now observe that in G−U each of

the remaining vertices of S has exactly one neighbour. Thus U is a solution
to SFVS on (G′, S) having weight p

2(m− k
2 (k − 1)) + 2pk = p

2(m− k
2 (k − 9)).

For the reverse direction, let U be a solution to SFVS on (G′, S) having
weight p

2(m − k
2 (k − 9)). Notice that no element of SE can be in U . Conse-

quently, for every i, j ∈ [k] such that i < j, we have |Rij \ U | ≤ 1, since any
two elements of Rij along with sij form an S-triangle of G′. Any remaining
S-triangle of G′ is formed by either

� an element of Ra
i and two adjacent elements of Sa

i or

� an element of Ra
i , an element of Ra′

i and an element of Sa
i ∩ Sa′

i

for a particular choice of i ∈ [k] and a, a′ ∈ [p]. Let i ∈ [k].

Claim 7.4.7. If |Ri \ U | ≥ 1, then |Si ∩ U | ≥ p.

Proof: Assume that e ∈ Ri \U . Then there exists an a ∈ [p] such that e ∈ Ra
i .

We conclude that for every a′ ∈ −[p− a] ∪ [a], at least one of sa
′,1

i , sa
′,2

i must
be in U , yielding |Si ∩ U | ≥ p. ⌟

Claim 7.4.8. If |Ri \ U | ≥ 2, then |Si ∩ U | ≥ 2p.

Proof: Assume that e, e′ are two distinct elements of Ri \U . Then there exist
a, a′ ∈ [p] such that e ∈ Ra

i and e′ ∈ Ra′
i . Without loss of generality, assume

that a ≤ a′. We conclude that
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� for every a′′ ∈ −[p− a′] ∪ [a] both sa
′′,1

i and sa
′′,2

i must be in U and

� for every a′′ ∈ (−[p−a]∪ [a′]) \ (−[p−a′]∪ [a]) at least one of sa
′′,1

i , sa
′′,2

i

must be in U ,

yielding |Si ∩U | ≥ 2((p− a′) + a) + 1(((p− a) + a′)− ((p− a′) + a)) = 2p. ⌟

Claim 7.4.9. If |Ri \ U | ≥ 3, then |Si ∩ U | = 2p only if there exists a ∈ [p]
such that Ri \ U ⊆ Ra

i .

Proof: Assume that e, e′, e′′ are three distinct elements of Ri \ U . Then there
exist a, a′, a′′ ∈ [p] such that and e ∈ Ra

i , e
′ ∈ Ra′

i and e′′ ∈ Ra′′
i . Without loss

of generality, assume that a ≤ a′ ≤ a′′. We conclude that

� for every a′′′ ∈ −[p− a′] ∪ [a′] both sa
′′′,1

i and sa
′′′,2

i must be in U and

� for every a′′′ ∈ (−[p−a]∪[a′′])\(−[p−a′]∪[a′]) at least one of sa′′′,1i , sa
′′′,2

i

must be in U ,

yielding |Si ∩ U | ≥ 2p + 1(((p − a) + a′′) − ((p − a′) + a′)) = 2p + (a′′ − a).
Therefore, for |Si ∩U | to be 2p, it must hold that a = a′ = a′′, so it must hold
that e, e′, e′′ ∈ Ra

i . ⌟

Assume that |{i ∈ [k] | |Ri\U | = 1}| = k′ and |{i ∈ [k] | |Ri\U | ≥ 2}| = k′′.
Then notice that |R \U | ≤ k′ + k′′

2 (k′′ − 1), so |R ∩U | ≥ m− k′ − k′′

2 (k′′ − 1).
Also, according to Claims 7.4.7 and 7.4.8, we have |SV ∩U | =∑i∈[k] |Si ∩ U | ≥
p(k′ + 2k′′). Lastly, recall that |SE ∩ U | = ∅. Consequently, the weight of U
must be at least

p

2

(
m− k′ − k′′

2
(k′′ − 1)

)
+p(k′+2k′′) =

p

2

(
m+ k′ − k′′

2
(k′′ − 9)

)
= B(k′, k′′).

Clearly, k′, k′′ ∈ {0, 1, . . . , k}. Regarding the values of B, we observe the
following:

� B(k′, k′′) < B(k′ + 1, k′′) for all k′ ∈ {0, 1, . . . , k − 1} and for all k′′ ∈
{0, 1, . . . , k},

� B(k′, k′′) ≥ B(k′, 9) for all k′ ∈ {0, 1, . . . , k} and for all k′′ ∈ {0, 1, . . . , 8},
and
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� B(k′, k′′) > B(k′, k′′ + 1) for all k′ ∈ {0, 1, . . . , k} and for all k′′ ∈
{9, 10, . . . , k − 1}.

These imply that B(k′, k′′) is minimum if and only if k′ = 0 and k′′ = k.
Therefore, a weight of p

2(m − k
2 (k − 9)) = B(0, k) is within bounds for U

only if k′ = 0 and k′′ = k. Furthermore, the weight of U is B(0, k) only
if |R \ U | = k

2 (k − 1) and |Si ∩ U | = 2p for all i ∈ [k]. Now recall that
|Rij \ U | ≤ 1 for all i, j ∈ [k] such that i < j. We deduce that |Rij \ U | = 1
for all i, j ∈ [k] such that i < j, which implies that |Ri \ U | = k − 1 for all
i ∈ [k]. Then, by Claim 7.4.9, for every i ∈ [k], there exists an ai ∈ [p] such
that Ri \ U ⊆ Rai

i . We conclude that the set {va11 , . . . , vakk } is a solution to
MCC on (G, {Vi}i∈[k]).

7.5 SFVS on Graphs with Bounded Vertex Leafage

7.5.1 Rooted Path Graphs

Here we show how to extend our previous approach to solving SFVS to
rooted path graphs. Recall that rooted path graphs are exactly the intersection
graphs of directed paths on a rooted tree. We observe that rooted path graphs
are a graph class of unbounded leafage.

Proposition 7.5.1. There are rooted path graphs on n vertices having leafage
Θ(n).

Proof. Let G be the graph obtained from the ℓ-star with ℓ ≥ 2 by subdividing
all of its edges. Notice that n = 2ℓ + 1. We show that G is a rooted path
graph having leafage ℓ− 1.

Let v1, . . . , vℓ be the leaf vertices of G, let u1, . . . , uℓ be the vertices of G
such that uivi ∈ E(G) for every i ∈ [ℓ] and let t be the remaining vertex
of G. To show that G is a rooted path graph, we construct a tree model
(T, {Tv}v∈V (G)) of G as follows. We obtain the host tree T as the union of
paths P0 = (xℓ, xℓ−1, . . . , x1), Pℓ = (yℓ, xℓ) and Pi = (xi, yi), i ∈ [ℓ − 1]. We
choose the subtrees to be Tt = P0, Tui = Pi and Tvi = (yi), i ∈ [ℓ]. Notice
that T is a tree rooted on yℓ such that L(T ) = ℓ− 1 and all Tv, v ∈ V (G) are
directed subpaths of T . It is not difficult to see that (T, {Tv}v∈V (G)) is a tree
model of G, which shows that G is indeed a rooted path graph.
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Let us now show that for every tree model (T ′, {T ′
v}v∈V (G)) of G, it holds

that |L(T ′)| ≥ ℓ − 1. The maximal cliques of G are Ci = {t, ui} and Di =
{ui, vi}, i ∈ [ℓ]. For every maximal clique C of G, there exists a node c ∈ V (T ′)
such that for every v ∈ V (G), it holds that c ∈ V (T ′

v) ⇔ v ∈ C. Moreover,
all these nodes are pairwise distinct. For every Ci and for every Di, we select
one such node and denote it by ci and di respectively. For all V ⊆ V (T ′), we
define ▷V to be the (unique) node of the set min{y ∈ V (T ′) | ∀x ∈ V : x ≤ y}.
Observe that for every v ∈ V (G), for every V ⊆ V (T ′

v), the node ▷V is also
in V (T ′

v) because T ′
v is connected. For all i ∈ [ℓ], we denote by bi the node

▷{ci, di} where {ci, di} ⊆ V (T ′
ui
). For all i, j ∈ [ℓ], we denote by aij the node

▷{ci, cj} where {ci, cj} ⊆ V (T ′
t).

Claim 7.5.2. For every i, j ∈ [ℓ], if di < dj holds, then di < aij < dj holds.

Proof: For every i, j ∈ [ℓ], we have that the following relations hold:

ci ≤ bi di ≤ bi cj ≤ bj dj ≤ bj ci ≤ aij cj ≤ aij

By Observation 7.1.1, we obtain that aij is comparable to both bi and bj .
Assume that di < dj holds. By Observation 7.1.1, we obtain that bi is compa-
rable to both bj and dj . If di < dj ≤ bi holds, then by Observation 7.1.2, we
obtain that dj ∈ V (Tui), which is a contradiction, so di ≤ bi < dj ≤ bj must
hold. Now by Observation 7.1.1, we obtain that aij is comparable to dj . If
ci ≤ bi < dj ≤ aij holds, then by Observation 7.1.2, we obtain that dj ∈ V (T ′

t),
which is a contradiction, so aij < dj must hold. Assume aij ≤ bi holds. Then
both ci ≤ aij ≤ bi and cj ≤ aij < bj hold. By Observation 7.1.2, we obtain
that aij ∈ V (T ′

ui
)∩ V (T ′

uj
), which is a contradiction to (T ′, {T ′

v}v∈V (G)) being
a tree model of G. We conclude that di < aij < dj holds. ⌟

We will show that there are at least ℓ − 1 pairwise incomparable nodes in
D = {di}i∈[ℓ]. Assume that there exist i, j, k ∈ [ℓ] such that di < dj < dk
holds. Then by Claim 7.5.2, we obtain that di < aij < dj < ajk < dk holds,
and by Observation 7.1.2, we obtain that dj ∈ V (T ′

t), a contradiction. Now
assume that there exist i, j, k, l ∈ [ℓ] such that both di < dj and dk < dl hold
and dj and dl are incomparable. Then by Claim 7.5.2, we obtain that both
di < aij < dj and dk < akl < dl hold. Let a be the node ▷{aij , akl} where
{aij , akl} ⊆ V (T ′

t). By Observation 7.1.1, we obtain that a is comparable to
both dj and dl. If both a ≤ dj and a ≤ dl hold, then by Observation 7.1.1
we obtain that dj and dl are comparable, a contradiction, so at least one of
dj < a and dl < a holds. Without loss of generality, assume that dj < a holds.
Then by Observation 7.1.2, we obtain that dj ∈ V (T ′

t), a contradiction. We
conclude that there exists at most one node in D that succeeds another node
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in D, which implies that at least ℓ− 1 nodes in D are pairwise incomparable.
By Observation 7.1.3, we obtain that |L(T ′)| ≥ ℓ − 1, which concludes the
proof.

Our goal in this section is to device an algorithm for solving SFVS on rooted
path graphs in polynomial time. Just as for the algorithm of Section 7.4,
we will derive recursive formulas for optimal solutions AY

X and subsequently
bound the number of optimal solutions to subproblems that the algorithm
requires for solving the complete problem.

Assume thatG = (VG, EG) is a rooted path graph, S ⊆ VG and (T, {Tv}v∈VG
)

is an expanded tree model of G. For every u ∈ VG, we denote by l(u) the
(unique) leaf of its corresponding directed path Tu. For devicing the algo-
rithm of this section, further special vertices and subsets are required. For
every u, v ∈ VG such that u < v, we define u◁v to be the (unique) vertex of
max({u} ∪ {u′ ∈ VG \ S | u < u′ < v and u′ ∈ N(u)}) = max({u} ∪ {u′ ∈
VG \ S | l(u′) < r(u) < r(u′) < r(v)}. Moreover, for every V1, V2, V3 ⊆ VG, we
define the following subsets of VG \ S:

V [V1; ; ] = {u ∈ VG \ S | ∄v1 ∈ V1 : l(u) < r(v1)}
V [;V2; ] = {u ∈ VG \ S | ∃v2 ∈ V2 : l(u) < r(v2) < r(u)}
V [; ;V3] = {u ∈ VG \ S | ∃v3 ∈ V3 : r(u) ≤ r(v3)}

V [V1;V2; ] = V [V1; ; ] ∩ V [;V2; ]
V [V1; ;V3] = V [V1; ; ] ∩ V [; ;V3]
V [;V2;V3] = V [;V2; ] ∩ V [; ;V3]

V [V1;V2;V3] = V [V1; ; ] ∩ V [;V2; ] ∩ V [; ;V3]

For any u, v ∈ VG, we denote the set Vu ∪ V [; {u}; {v}] by Vu,v for simplicity.
Observe that the set Vu,u is simply Vu.

Lemma 7.5.3. Let u,w ∈ VG such that u < w and uw ∈ EG. Then the
collection V = {V [◁uw; ;◁u]} ∪ {Vu′,u′◁u}u′∈◁uw is a nice partition of X =
(Vu \ {u}) \ (N(u) ∩N(w) ∩ S) for every Y ⊆ VG \X such that Y ∩ S = ∅.

Proof. We first show that V is a partition of X. Recall that ◁uw is a set of
pairwise incomparable vertices by definition. Consider a vertex u′′ ∈ X. Then
exactly one of the following statements holds:

∃u′ ∈ ◁uw : r(u′′) ≤ r(u′)
∃u′ ∈ ◁uw : l(u′′) < r(u′) < r(u′′)
∄u′ ∈ ◁uw : l(u′′) < r(u′)

⇔


∃u′ ∈ ◁uw : u′′ ∈ Vu′

∃u′ ∈ ◁uw : u′′ ∈ V [; {u′}; {u′◁u}]
u′′ ∈ V [◁uw; ;◁u]
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By Observation 7.1.1 and the definition of ≤G, the vertex u′ ∈ ◁uw in the first
two cases above is unique, otherwise we obtain a contradiction to the vertices
of ◁uw being pairwise incomparable. This fact implies our claim.

Now let Y ⊆ VG \X such that Y ∩ S = ∅ and consider an S-triangle St of
G[X ∪Y ]. Then there exists a vertex u′ ∈ ◁uw such that V (St)∩Vu′ ∩S ̸= ∅.
Since St is a triangle, every vertex in V (St) \ Vu′ is adjacent to every vertex
in V (St) ∩ Vu′ . Then by Lemma 7.3.5, for every vertex u′′ ∈ V (St) \ Vu′ , the
vertex u′′ is adjacent to u′, which implies that l(u′′) < r(u′) < r(u′′) holds.
We conclude that V (St) ⊆ Vu′,u′◁u.

Observation 7.5.4. Let X,Y ⊆ VG such that X ∩ Y = ∅ and G[Y ] ∈ FS

and let X ′ ⊆ X. If P is a nice partition of X for Y , then P ′ = {P ∩X ′ | P ∈
P : P ∩X ′ ̸= ∅} is a nice partition of X ′ for Y .

Proof. The fact that P ′ is a partition of X ′ follows trivially from the definition.
For showing that P ′ is a nice partition of X ′ for Y , it suffices to notice that
any S-triangle in G[X ′ ∪ Y ] remains an S-triangle in G[X ∪ Y ].

We are now ready to show the recursive expressions that hold exclusively
for G being a rooted path graph and are required by the algorithm of this
section. First we obtain an expression to be used for the computation of sets
AY

X in case of X = Vu and Y = {w} where u,w ∈ VG such that u < w and
uw ∈ EG.

Lemma 7.5.5. Let u,w ∈ VG such that u < w and uw ∈ EG, and let u ∈
A

{w}
Vu

.

� If u ∈ S or w ∈ S, then A
{w}
Vu

↔ {u} ∪
⋃

u′∈◁uw

A
{u,w}∩N(u′)
Vu′

.

� If u,w /∈ S, then A
{w}
Vu

↔ {u} ∪ V [◁uw; ;◁u] ∪
⋃

u′∈◁uw

A
{u,w}∩N(u′)
Vu′,u′◁u

.

Proof. Observe that A
{w}
Vu

↔ {u} ∪A
{u,w}
Vu\{u} by definition. Regarding triangles

of G[Vu ∪ {w}], we observe the following property:

(P1) By the hypothesis, the vertices u and w are adjacent. Thus, for any
u′ ∈ Vu ∩N(u) ∩N(w), the vertex set {u′, u, w} induces a triangle.
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If u ∈ S or w ∈ S, then no vertex of Vu ∩ N(u) ∩ N(w) is in A
{w}
Vu

be-

cause of (P1). By definition, we get A
{u,w}
Vu\{u} ↔ A

{u,w}
Vu\(N [u]∩N(w)). Accord-

ing to Lemma 7.3.4, the collection V◁uw is a nice partition of Vu \ (N [u] ∩
N(w)). By Observation 7.2.1 and Lemma 7.3.5, we get A

{u,w}
Vu\(N [u]∩N(w)) ↔⋃

u′∈◁uw A
{u,w}
Vu′

↔ ⋃
u′∈◁uw A

{u,w}∩N(Vu′ )
Vu′

↔ ⋃
u′∈◁uw A

{u,w}∩N(u′)
Vu′

.

If u,w /∈ S, then no vertex of Vu∩N(u)∩N(w)∩S is in A
{w}
Vu

because of (P1).

LetX = (Vu\{u})\(N(u)∩N(w)∩S). By definition, we get A
{u,w}
Vu\{u} ↔ A

{u,w}
X .

According to Lemma 7.5.3, the collection {V [◁uw; ;◁u]}∪{Vu′,u′◁u}u′∈◁uw is
a nice partition of X for Y = {u,w}. By Observation 7.2.1 and Lemma 7.3.5,

we get A
{u,w}
X ↔ A

{u,w}
V [◁uw;;◁u] ∪

⋃
u′∈◁uw A

{u,w}
Vu′,u′◁u

↔
V [◁uw; ;◁u] ∪⋃u′∈◁uw A

{u,w}∩N(Vu′ )
Vu′,u′◁u

↔
V [◁uw; ;◁u] ∪⋃u′∈◁uw A

{u,w}∩N(u′)
Vu′,u′◁u

.

We next obtain recursive expressions to be used for the computation of sets
AY

X in case of X = Vu,v where u ∈ VG and v ∈ VG \ S such that u < v and
uv ∈ EG. The first two Lemmas follow directly from the definition of sets AY

X

and the fact that Vu,v \ {v} = Vu,u◁v for every u, v ∈ VG such that u < v.

Lemma 7.5.6. Let u ∈ VG and v ∈ VG \ S such that u < v and uv ∈ EG and
let Y ⊆ VG \ Vu,v. If v /∈ AY

Vu,v
, then AY

Vu,v
↔ AY

Vu,u◁v
.

Lemma 7.5.7. Let u ∈ VG and v ∈ VG \ S such that u < v and uv ∈ EG. If

v ∈ A∅
Vu,v

, then A∅
Vu,v

↔ {v} ∪A
{v}
Vu,u◁v

.

Lemma 7.5.8. Let u ∈ VG and v, w ∈ VG\S such that u < v < w and {u, v, w}
is a clique and let v ∈ A

{w}
Vu,v

. Then A
{w}
Vu,v

↔ {v} ∪ V [◁vw; {u}; {u◁v}] ∪⋃
u′∈Vu∩◁vw

A
{v,w}∩N(u′)
Vu′,u′◁v

.

Proof. Observe that A
{w}
Vu,v

↔ {v} ∪ A
{v,w}
Vu,v\{v} ↔ {v} ∪ A

{v,w}
Vu,u◁v

by definition.

Regarding triangles of G[Vu,v ∪ {w}], we observe the following property:

(P2) By the hypothesis, the vertices v and w are adjacent. Thus, for any
u′ ∈ Vu,v ∩N(v) ∩N(w), the vertex set {u′, v, w} induces a triangle.

Since v, w /∈ S, no vertex of Vu,v∩N(v)∩N(w)∩S is in A
{w}
Vu,v

because of (P2).

Let X = (Vv \ {v}) \ (N(v)∩N(w)∩S) and X ′ = Vu,u◁v \ (N(v)∩N(w)∩S).

94



Chapter 7 7.5. SFVS on Graphs with Bounded Vertex Leafage

By definition, we get A
{v,w}
Vu,u◁v

↔ A
{v,w}
X′ . Now notice that X ′ ⊆ X. According

to Lemma 7.5.3 and Observation 7.5.4, the collection {V [◁vw; {u}; {u◁v}]}∪
{Vu′,u′◁v}u′∈Vu∩◁vw is a nice partition of X ′ for Y = {v, w}. By Observa-

tion 7.2.1 and Lemma 7.3.5, we get A
{v,w}
X′ ↔

A
{v,w}
V [◁vw;{u};{u◁v}] ∪

⋃
u′∈Vu∩◁vw A

{v,w}
Vu′,u′◁v

↔
V [◁vw; {u}; {u◁v}] ∪⋃u′∈Vu∩◁vw A

{v,w}∩N(Vu′ )
Vu′,u′◁v

↔
V [◁vw; {u}; {u◁v}] ∪⋃u′∈Vu∩◁vw A

{v,w}∩N(u′)
Vu′,u′◁v

.

Now we are in position to state our claimed result, which is obtained via an
algorithm similar to the one in the proof of Theorem 7.4.4.

Theorem 7.5.9. The weighted Subset Feedback Vertex Set problem
can be solved on rooted path graphs in O(n2m) time.

Proof. We first describe the algorithm. Given a rooted path graph G =
(VG, EG), we construct a tree model (T, {Tv}v∈VG

) of G such that all sub-
trees Tv, v ∈ VG are directed paths in O(n + m) time [29, 40]. We apply
the iterative procedure described in the proof of Lemma 7.3.1 and obtain an
expanded tree model (T ′, {T ′

v}v∈VG
) of G such that all subtrees T ′

v, v ∈ VG are
directed paths in O(n2) time. As the host tree T of G has at most n nodes
[19, 43], the expanded host tree T ′ has O(n) nodes. If G is an interval graph,
then SFVS can be solved via the algorithm described in the proof of Corol-
lary 7.4.5 in O(nm) time. Otherwise, we solve SFVS by computing A∅

Vumax

where umax is the (unique) vertex of maxVG.

For this purpose, we device a dynamic programming algorithm for comput-
ing A∅

Vumax
. The algorithm works on T ′ traversing it in a bottom-up fashion

starting from its leaves and moving towards its root. It maintains tables for
storing the values of computed sets AY

X in the following four cases of X and
Y :

� X = Vu and Y = ∅ for every u ∈ VG.

� X = Vu and Y = {w} for every u,w ∈ VG such that u < w and uw ∈ EG.

� X = Vu,v and Y = ∅ for every u ∈ VG and v ∈ VG \ S such that u < v
and uv ∈ EG.

� X = Vu,v and Y = {w} for every u ∈ VG and v, w ∈ VG \ S such that
u < v < w and {u, v, w} is a clique.
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For computing these sets, we derive the following recursive formulas:

� Let u ∈ VG. Lemma 7.3.6 and Lemma 7.3.7 imply that

A∅
Vu

= max
weight

{ ⋃
u′∈◁u

A∅
Vu′

, {u} ∪
⋃

u′∈◁u

A
{u}∩N(u′)
Vu′

}
.

� Let u,w ∈ VG such that u < w and uw ∈ EG. Lemma 7.3.6 and
Lemma 7.5.5 imply the following:

– If u ∈ S or w ∈ S, then

A
{w}
Vu

= max
weight

{ ⋃
u′∈◁u

A
{w}∩N(u′)
Vu′

, {u} ∪
⋃

u′∈◁uw

A
{u,w}∩N(u′)
Vu′

}
.

– If u,w /∈ S, then

A
{w}
Vu

= max
weight

{ ⋃
u′∈◁u

A
{w}∩N(u′)
Vu′

,

{u} ∪ V [◁uw; ;◁u] ∪
⋃

u′∈◁uw

A
{u,w}∩N(u′)
Vu′,u′◁u

}
.

� Let u ∈ VG and v ∈ VG \ S such that u < v and uv ∈ EG. Lemma 7.5.6
and Lemma 7.5.7 imply that

A∅
Vu,v

= max
weight

{
A∅

Vu,u◁v
, {v} ∪A

{v}
Vu,u◁v

}
.

� Let u ∈ VG and v, w ∈ VG \ S such that u < v < w and {u, v, w} is a
clique. Lemma 7.5.6 and Lemma 7.5.8 imply that

A
{w}
Vu,v

= max
weight

A
{w}
Vu,u◁v

,

{v} ∪ V [◁vw; {u}; {u◁v}] ∪
⋃

u′∈Vu∩◁vw

A
{v,w}∩N(u′)
Vu′,u′◁v

 .

Regarding the correctness of the algorithm, observe that applying any of
the above recursive formulas requires only sets AY

X that can also be computed
via these formulas.

To evaluate the running time of the algorithm, we assume that the in-
put graph is a connected rooted path graph. If not, observe that we can
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simply run our algorithm on each connected component of the input graph
and subsequently combine all output solutions into a solution for the input
graph. Notice that the number of sets AY

X described above that the algo-
rithm computes and subsequently stores their values in corresponding table
entries is O(nm). Computing a single such set AY

X via any of the recursive
formulas shown above requires the retrieval of stored values from O(n) entries.
These entries are determined via precomputed auxiliary objects. For some of
these formulas, their application additionally requires the computation of a
set V [V1;V2;V3]. It is not difficult to see that any such set can be computed
via a single transversal of the host tree T ′. As there are O(n) nodes in T ′,
traversing it once takes O(n) time. Thus the total processing time is O(n2m).
Now consider the aforementioned auxiliary objects: they are the vertex sets
◁v, ◁vw and Vu ∩ ◁vw and the vertices u◁v for appropriate u, v, w ∈ VG.
For computing the vertex sets ◁v, it is sufficient the traverse T ′ once for ev-
ery v ∈ VG. Similarly, for computing the vertex sets ◁vw, it is sufficient to
traverse T ′ once for every v, w ∈ VG such that v < w and vw ∈ EG, and
for computing the vertices u◁v, it is sufficient to traverse T ′ once for every
u, v ∈ VG such that u < v and uv ∈ EG. We also determine for every pair
(x, y) of distinct nodes of T ′ whether x < y or not. As mentioned in the proof
of Theorem 7.4.4, this can be accomplished in O(n2) time. Then for every
u, v, w ∈ VG such that u < v < w and {u, v, w} is a clique, we compute the
vertex set Vu ∩ ◁vw in O(n) time by checking for every u′ ∈ ◁vw whether
u′ ≤ u. Thus the total preprocessing time is O(n2m). Therefore, the total
running time of our algorithm is O(n2m).

7.5.2 Undirected Path Graphs

The results of Theorem 7.4.4 and Corollary 7.4.5 motivate us to investigate
whether our approach can be further extended to provide similar results on
larger classes of chordal graphs. The class of graphs with bounded vertex
leafage is a natural candidate to consider for such an investigation. However
we show that Subset Feedback Vertex Set is NP-complete on undirected
path graphs which are a subclass of graphs with vertex leafage at most two.
In particular, we provide a polynomial reduction from the NP-complete Max
Cut problem. Given a graph G, the Max Cut problem concerns the finding
of a partition of V (G) into two sets A and A such that the number of edges
with one endpoint in A and the other one in A is maximum among all such
partitions. For two disjoint sets of verticesX and Y , we denote by E(X,Y ) the
set {{x, y} | x ∈ X and y ∈ Y }. The cut-set of a set A ⊆ V (G) in G is the set
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of edges of G with exactly one endpoint in A, which is E(A, V (G)\A)∩E(G).
In such terminology, Max Cut concerns the finding of a set A ⊆ V (G) such
that its cut-set in G is of maximum size. The Max Cut problem is known
to be NP-hard on general graphs [52] and to remain NP-hard even when the
input graph is restricted to be a split or 3-colorable or undirected path graph
[7]. We mention that our reduction is based on Max Cut on general graphs.

Towards the claimed reduction, to any graph G on n vertices and m edges,
we will associate a graph HG on 12n2 + 4n + 2m vertices. First we describe
the vertex set of HG. For every vertex v ∈ V (G), we consider the following
sets:

� X(v) = {x1v, x2v, . . . , x2nv } and X(v) = {x1v, x2v, . . . , x2nv },

� Y (v) = {y1v , y2v , . . . , y2n+1
v } and Y (v) = {y1v, y2v, . . . , y2n+1

v },

� Z(v) = {z1v , z2v , . . . , z2n+1
v , z1v, z

2
v, . . . , z

2n+1
v }, and

� W (v) = {(v, v′) | {v, v′} ∈ E(G)}.

We consider all these sets to be pairwise-disjoint. The vertex set of HG is
precisely the union of all these sets. Notice that for every edge {u, v} ∈ E(G),
the ordered pairs (u, v) and (v, u) are both vertices of HG. We denote by W (v)
the set {(v′, v) | {v′, v} ∈ E(G)}. The edge set of HG contains precisely the
following:

� all edges required for the set
⋃

v∈V (G)(Y (v)∪Y (v)∪W (v)) to be a clique
and

� for every vertex v ∈ V (G):

– all elements of the sets E(X(v), Y (v)), E(X(v), Y (v)),
E(X(v),W (v)), E(X(v),W (v)),

– for every i ∈ [n], the edges {xiv, xn+i
v }, {xiv, xn+i

v }, and
– for every j ∈ [2n+1], the edges {yjv, zjv}, {yjv, zjv}, {yjv, zjv}, {yjv, zjv}.

Observe that xiv, x
n+i
v are true twins and xiv, x

n+i
v are true twins, whereas zjv, z

j
v

are false twins. This completes the construction of HG. An example of a graph
G and its associated graph HG is given in Figure 7.4.

Lemma 7.5.10. For any graph G, the graph HG is an undirected path graph.
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a

b

c

k

G

Z

X X

r
T (HG)

X(a) X(b) X(c) X(a) X(b) X(c)

Y (a) Y (b) Y (c) Y (a) Y (b) Y (c)

ab ac ba bc ca cb

Z(a)

Z(b)

Z(c)HG

2n

2n+ 1

4n+ 2

Figure 7.4: Illustration of a graph G on three vertices (top left) and its as-
sociated undirected path graph HG (bottom). We also show the tree T (HG)
described in the proof of Lemma 7.5.10 (top right). The vertices of HG that
lie in the gray area form a clique.

Proof. In order to show that HG is an undirected path graph, we construct an
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undirected tree T (HG) such that the vertices of HG correspond to particular
paths of T (HG). To distinguish the vertex sets between G and T (HG), we
refer to the vertices of T (HG) as nodes. In order to construct T (HG), starting
from a particular node r, for every vertex v ∈ V (G), we consider the following
paths:

� PX(v) = ⟨r, x(v)1 , . . . , x
(v)
n ⟩ and PX(v) = ⟨r, x(v)1 , . . . , x

(v)
n ⟩ and

� for every j ∈ [2n+ 1], PZ(v, j) = ⟨r, z(v,j)1 , z
(v,j)
2 ⟩.

Notice that the initial node r is contained in all these paths. We consider
them to be otherwise pairwise-disjoint. The tree T (HG) is precisely the union
of all these paths. Next, we describe the paths of T (HG) that correspond to
the vertices of HG.

� For every v ∈ V (G) and i ∈ [n], to each of the vertices xiv, x
n+i
v (resp. xiv,

xn+i
v ) we correspond the path ⟨x(v)i ⟩ (resp. ⟨x(v)i ⟩).

� For every v ∈ V (G) and j ∈ [2n+ 1],

– to the vertices yjv and yjv we correspond the paths

⟨x(v)n , . . . , x
(v)
1 , r, z

(v,j)
1 , z

(v,j)
2 ⟩ and ⟨x(v)n , . . . , x

(v)
1 , r, z

(v,j)
1 , z

(v,j)
2 ⟩) re-

spectively, and

– to the vertices zjv and zjv we correspond the paths ⟨z(v,j)1 ⟩ and ⟨z(v,j)2 ⟩
respectively.

� For every {u, v} ∈ E(G), to the vertices (u, v) and (v, u) we correspond

the paths ⟨x(u)n , . . . , x
(u)
1 , r, x

(v)
1 , . . . , x

(v)
n ⟩ and ⟨x(v)n , . . . , x

(v)
1 , r, x

(u)
1 , . . . , x

(u)
n ⟩

respectively.

Now it is not difficult to see that the intersection graph of the collection that
contains precisely all these paths is isomorphic to HG. Observe that all paths
containing node r correspond to the vertices of the clique

⋃
v∈V (G) Y (v) ∪

Y (v) ∪ W (v) and for every v ∈ V (G), all paths that are subpaths of PX(v)
and PX(v) correspond to the vertices of X(v) and X(v) respectively, and all
paths that are subpaths of PZ(v, j), j ∈ [2n+ 1] correspond to the vertices of
Z(v). Therefore, HG is an undirected path graph.

Let us now show that to any cut-set in G, there is an associated subset
feedback vertex set in HG. We first introduce some additional notation: X =
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⋃
v∈V (G)X(v), X =

⋃
v∈V (G)X(v), Y =

⋃
v∈V (G) Y (v), Y =

⋃
v∈V (G) Y (v),

Z =
⋃

v∈V (G) Z(v), W =
⋃

v∈V (G)W (v) =
⋃

v∈V (G)W (v) and for every A,B ⊆
V (G), W (A,B) = (

⋃
a∈AW (a)) ∩ (

⋃
b∈B W (b)). For every A ⊆ V (G), we

denote by A the set V (G) \A for simplicity. We also define the vertex set

U(A) =

(⋃
v∈A

(X(v) ∪ Y (v))

)
∪

⋃
v∈A

(X(v) ∪ Y (v))

 ∪ (W \W (A,A)).

Observe that |U(A)| = n(2n+(2n+1))+ (2m−|W (A,A)|) = 4n2+n+2m−
|W (A,A)| and |W (A,A)| is the size of the cut-set of A in G.

Lemma 7.5.11. Let G be a graph and let A ⊆ V (G). Then U(A) is a subset
feedback vertex set of (HG, S) where S = X ∪X ∪ Z.

Proof. We show that the undirected path graph HG − U(A) is an S-forest.
Assume for contradiction that there is an S-triangle St in HG − U(A). Then
St contains at least one vertex of S. We consider the following three cases:

� Let x ∈ V (St) ∩ X. Then there exists v ∈ V (G) such that x ∈ X(v).
Since X(v′) ⊆ U(A) for every v′ ∈ A, the vertex v must be in A. By
the construction of HG, any vertex of X(v) has exactly one neighbor
in X(v). Thus there exists y ∈ V (St) such that y /∈ X(v). Again
by the construction of HG, the neighborhood of any vertex of X(v) in
HG −X(v) is Y (v)∪W (v), which implies that y ∈ Y (v)∪W (v). Hence
we reach a contradiction to the definition of U(A), since Y (v) ⊆ U(A)
and W (v) ⊆ W \W (A,A) ⊆ U(A).

� Let x ∈ V (St) ∩X. Arguments that are completely symmetrical to the
ones employed in the previous case yield a contradiction to the definition
of U(A).

� Let z ∈ V (St) ∩ Z. Then there exists v ∈ V (G) such that z ∈ Z(v)
and by the construction of HG, there exist y ∈ Y (v) and y ∈ Y (v) such
that N(z) = {y, y}. Thus V (St) must be {z, y, y}, which implies that
y, y /∈ U(A). Hence we reach a contradiction to the definition of U(A),
since either Y (v) ⊆ U(A) and Y (v) ∩ U(A) = ∅ or vice versa.

Since we obtained a contradiction in all three cases, we conclude that there is
no S-triangle in HG − U(A).
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Now we are ready to show the main result of this section. Its forward
direction follows from the previous lemma. Its reverse direction is obtained
through a series of claims. These claims imply a procedure which progressively
reconfigures any arbitrary initial subset feedback vertex set of HG until it
becomes one that is associated to a cut-set of G.

Theorem 7.5.12. The unweighted Subset Feedback Vertex Set decision
problem is NP-complete on undirected path graphs.

Proof. We provide a polynomial reduction from the NP-complete Max Cut
problem. Given a graph G on n vertices and m edges for the Max Cut prob-
lem, we construct the graph HG. Observe that the size of HG is polynomial
and the construction ofHG can be done in polynomial time. By Lemma 7.5.10,
HG is an undirected path graph. We set S = X ∪X ∪Z. We claim that G ad-
mits a cut-set of size at least k if and only if (HG, S) admits a subset feedback
vertex set of size at most 4n2 + n+ 2m− k.

Lemma 7.5.11 provides the forward direction. Here we show the reverse
direction. For every U ⊆ V (HG), we denote by U the set V (HG) \ U for
simplicity. We also define the vertex set AU = {v ∈ V (G) | X(v) ⊆ U}. Let
U be a subset feedback vertex set of (HG, S). Then it is not difficult to see
that U(AU ) = U holds if and only if U satisfies the following four properties:

(1) Z ⊆ U .

(2) For all v ∈ V (G), either X(v) ⊆ U or X(v) ⊆ U , and either X(v) ⊆ U
or X(v) ⊆ U .

(3) For all v ∈ V (G), either X(v)∪ Y (v) ⊆ U and X(v)∪ Y (v) ⊆ U , or vice
versa.

(4) W \W (AU , AU ) ⊆ U and W (AU , AU ) ⊆ U .

For every i ∈ {0, 1, . . . , 4}, we say that a subset of V (HG) is a tier-i sfvs if it
is a subset feedback vertex set of (HG, S) that satisfies the first i properties
listed above. Notice that if a subset of V (HG) is a tier-i sfvs, then it is a tier-j
sfvs for all j ∈ {0, 1, . . . , i}. Also notice that any subset feedback vertex set of
(HG, S) is a tier-0 sfvs. We will now show through a series of claims that for
every tier-0 sfvs, there exists a tier-4 sfvs of at most equal size.

Claim 7.5.13. For every tier-0 sfvs U , there exists a tier-1 sfvs U ′ such that
|U ′| ≤ |U |.
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Proof: Let U be a tier-0 sfvs. If Z ∩ U = ∅, then U is already a tier-1 sfvs.
Assume otherwise. Then there exist v ∈ V (G) and j ∈ [2n + 1] such that
{zjv, zjv}∩U ̸= ∅. We construct the set U ′ = (U \{zjv, zjv})∪{yjv}. Notice that
|{zjv, zjv}∩U | ≥ 1 and |{yjv} \U | ≤ 1, yielding |U ′| ≤ |U |. Observe that by the
construction of HG, the neighborhoods of zjv and zjv in HG − U ′ are the same
subset of {yjv}, thus neither zjv nor zjv is a vertex of any triangle of HG−U ′. As
zjv and zjv are the only vertices being removed from a tier-0 sfvs, this implies
that U ′ is also a tier-0 sfvs. Iteratively following this argumentation for every
v ∈ V (G) and j ∈ [2n+ 1] such that {zjv, zjv} ∩ U ̸= ∅, we obtain a tier-1 sfvs
U ′ such that |U ′| ≤ |U |. ⌟

Claim 7.5.14. For every tier-1 sfvs U and v ∈ V (G), it holds that |(Y (v) ∪
Y (v)) ∩ U | ≥ 2n+ 1.

Proof: Let U be a tier-1 sfvs. Consider a vertex v ∈ V (G). Then Z(v) ⊆ U .
Since Z(v) ⊂ S also holds, the triangles induced by the sets {yjv, yjv, zjv},
j ∈ [2n + 1] are 2n + 1 vertex-disjoint S-triangles of HG. Therefore, at least
2n+1 vertices of Y (v)∪Y (v) must be in U , because HG−U is an S-forest. ⌟

Claim 7.5.15. For every tier-1 sfvs U , there exists a tier-2 sfvs U ′ such that
|U ′| ≤ |U |.

Proof: Let U be a tier-1 sfvs. Consider a vertex v ∈ V (G) such that both
X(v) ∩ U ̸= ∅ and X(v) ∩ U ̸= ∅. Assume that x ∈ X(v) ∩ U . By the
construction of HG, we have that N(x) \ X(v) = Y (v) ∪ W (v) is a clique.
Since X(v) ⊂ S and HG−U is an S-forest, at most one vertex of Y (v)∪W (v)
is in U . We construct the set U ′ = (U \X(v)) ∪ (Y (v) ∪W (v)). Notice that
|X(v)∩U | ≥ 1 and |(Y (v)∪W (v)) \U | ≤ 1, yielding |U ′| ≤ |U |. The set U ′ is
a tier-1 sfvs. This follows from the fact that by the construction of HG, there
are no triangles in HG[X(v)] and N(X(v)) = Y (v)∪W (v) ⊆ U ′. Now consider
a vertex v ∈ V (G) such that both X(v) ∩ U ̸= ∅ and X(v) ∩ U ̸= ∅. Via
completely symmetrical arguments, the set U ′′ = (U ′ \X(v))∪ (Y (v)∪W (v))
is a tier-1 sfvs such that |U ′′| ≤ |U ′|. Iteratively following the argumentations
regarding all applicable cases for every v ∈ V (G), we obtain a tier-2 sfvs U ′

such that |U ′| ≤ |U |. ⌟

Before we continue with our claims, we observe that for every tier-0 sfvs U
and v ∈ V (G), if X(v) ⊆ U , then Y (v) ∪W (v) ⊆ U , and if X(v) ⊆ U , then
Y (v) ∪ W (v) ⊆ U . This follows from the facts that HG − U is an S-forest,
X(v) ∪X(v) ⊂ S and by the construction of HG, for every y ∈ Y (v) ∪W (v)
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(resp. y ∈ Y (v) ∪ W (v)), the set {x1v, xn+1
v , y} (resp. {x1v, xn+1

v , y}) induces
a triangle of HG. In proving our remaining claims, we implicitly apply this
observation.

Claim 7.5.16. For every tier-2 sfvs U , there exists a tier-3 sfvs U ′ such that
|U ′| ≤ |U |.

Proof: Let U be a tier-2 sfvs. Consider a vertex v ∈ V (G). Then exactly one
of the following holds:

(1) X(v) ∪X(v) ⊆ U

(2) X(v) ⊆ U and X(v) ⊆ U

(3) X(v) ⊆ U and X(v) ⊆ U

(4) X(v) ∪X(v) ⊆ U

Assume that (1) holds. Then Y (v)∪ Y (v) ⊆ U holds. We construct the set
U ′ = (U \Y (v))∪X(v). Notice that |Y (v)∩U | = 2n+1 and |X(v) \U | = 2n,
yielding |U ′| < |U |. It is not difficult to show that the set U ′ is a tier-2 sfvs.

Now assume that (2) holds. Then Y (v) ⊆ U holds. We construct the set
U ′ = U \ Y (v). Clearly, |U ′| ≤ |U |. It is not difficult to show that the set U ′

is a tier-2 sfvs. Assuming that (3) holds, completely symmetrical arguments
yield that the set U ′ = U \ Y (v) is a tier-2 sfvs such that |U ′| ≤ |U |.

Lastly assume that (4) holds. By Claim 7.5.14, we have |(Y (v) ∪ Y (v)) \
U | ≤ 2n + 1. Without loss of generality, assume that |Y (v) \ U | ≤ n. We
construct the set U ′ = (U \ (X(v) ∪ Y (v))) ∪ (Y (v) ∪ W (v)). Notice that
|(X(v)∪Y (v))∩U | ≥ 2n+0 = 2n and |(Y (v)∪W (v))\U | ≤ n+(n−1) < 2n,
yielding |U ′| < |U |. It is not difficult to show that the set U ′ is a tier-2 sfvs.

Iteratively following the argumentation regarding the appropriate case for
every v ∈ V (G), we obtain a tier-3 sfvs |U ′| such that |U ′| ≤ |U |. ⌟

Claim 7.5.17. For every tier-3 sfvs U , there exists a tier-4 sfvs U ′ such that
|U ′| ≤ |U |.

Proof: Let U be a tier-3 sfvs. Consider a vertex w ∈ W . Then there exist
u, v ∈ V (G) such that w = (u, v) is the (unique) vertex of W (u) ∩ W (v).
Assume that w ∈ W \ W (AU , AU ). Then u /∈ AU or v /∈ AU , which implies
that X(u) ⊆ U or X(v) ⊆ U . In both cases, it follows that w ∈ U . Now
assume that w ∈ W (AU , AU ). Then u ∈ AU and v ∈ AU , which implies
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that X(u) ⊆ U and X(v) ⊆ U . By the construction of HG, we have that
N(w) ∩ S = X(u) ∪ X(v). It follows that the set U ′ = U \ W (AU , AU ) is a
tier-4 sfvs such that |U ′| ≤ |U |. ⌟

To conclude our proof, we assume that U is a tier-0 sfvs such that |U | ≤
4n2+n+2m−k. Due to Claims 7.5.13, 7.5.15–7.5.17, there exists a tier-4 sfvs
U ′ such that |U ′| ≤ |U |. Then U(AU ′) = U ′ holds. Recall that |U(AU ′)| =
4n2 + n+ 2m− |W (AU ′ , AU ′)| and |W (AU ′ , AU ′)| is the size of the cut-set of
AU ′ in G. All of the above imply that the size of the cut-set of AU ′ in G is at
least k.
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8
SFVS, FVS, NMC and
UNMC on H-free Graphs

In this chapter, we present our results for SFVS, FVS, NMC and UNMC on
H-free graphs and in particular on (α+ 1)K1-free graphs, α ∈ N. Section 8.1
contains our results for SFVS: a polynomial-time algorithm for solving the
weighted SFVS problem on 4K1-free graphs, NP-hardness of the weighted
SFVS problem on 5K1-free graphs and a polynomial-time algorithm for solving
the unweighted SFVS problem on (α + 1)K1-free graphs. In Section 8.2, we
provide a polynomial-time algorithm for solving the weighted FVS problem
on (α+1)K1-free graphs and an alternative reduction for showing a matching
W[1]-hardness of the unweighted FVS problem. Our results for the unweighted
NMC and weighted UNMC problems which are corollaries of the results in
Section 8.1 are contained in Sections 8.3 and 8.4 respectively. In Section 8.4,
we also provide a polynomial-time algorithm for solving the unweighted UNMC
problem on (α + 1)K1-free graphs. All of the above are results of a study of
these problems on graphs with bounded independent set number. Recall that:

� graphs with independent set number at most α ≡ (α+1)K1-free graphs

� graphs with clique cover number at most α ≡ co-α-partite graphs

Also observe that the relations illustrated in Figure 8.1 hold. The results
presented in this chapter were published in the following works:
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independent set number
at most α

clique cover number
at most α

independent set number
exactly α

clique cover number
exactly α

independent set number
exactly α

∩ clique cover number
exactly α

⊆

⊇

⊇ ⊆

⊆

Figure 8.1: Relations between the graph classes appearing in this chapter.

� Charis Papadopoulos and Spyridon Tzimas. Subset Feedback Vertex Set
on Graphs of Bounded Independent Set Size. 13th International Sym-
posium on Parameterized and Exact Computation (IPEC 2018). Leib-
niz International Proceedings in Informatics (LIPIcs), 115:20:1–20:14
(2019).

� Charis Papadopoulos and Spyridon Tzimas. Subset feedback vertex set
on graphs of bounded independent set size. Theoretical Computer Sci-
ence, 814:177–188 (2020).

However, we note that the results are presented in reanalysed form in light
of the aforementioned relations between the graph classes considered in this
chapter.

8.1 SFVS on Graphs with Bounded Independent
Set Number

Let us give a couple of observations on the nature of SFVS on graphs with
bounded independent set number. Firstly note that the bound on the size of
an independent set is a hereditary property; for every induced subgraph H of
G, we have α(H) ≤ α(G). Moreover for any clique C of G, any S-forest of G
contains at most two vertices of S ∩ C.
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Observation 8.1.1. Let G be a graph with α(G) ≤ α and let S ⊆ V .

(1) For every set X of at least 2α+ 1 vertices, there exists a cycle in G[X].

(2) Every S-forest of G has at most 2α vertices from S.

Proof. Let X be a set of at least 2α+1 vertices. Assume that G[X] is a forest.
As an induced subgraph of G, any independent set of G[X] has size at most α.
Since G[X] is acyclic, there is a proper 2-coloring A,B of the vertices of G[X]
such that |A| ≥ |B|. By the fact that |A| ≤ α, we conclude that |A|+|B| ≤ 2α,
leading to a contradiction that |X| ≥ 2α+ 1. Thus G[X] contains a cycle.

For the second statement, let F = (VF , EF ) be an S-forest of G. By the
first statement, if S ∩ VF has at least 2α + 1 vertices then there is a cycle in
F [S ∩ VF ], which implies an S-cycle in F . Thus |S ∩ VF | ≤ 2α.

We note that Observation 8.1.1 allows us to construct by brute force all
possible subsets of S belonging to any S-forest in nO(α) time.

8.1.1 Weighted SFVS

Here we consider the weighted SFVS problem and we show a complexity
dichotomy result with respect to the independent set number. We first pro-
vide a polynomial-time algorithm for solving the weighted SFVS optimization
problem on graphs with independent set number at most three and then we
show that the weighted SFVS decision problem is NP-complete on graphs with
independent set number at least four.

Let (G,S) be an instance of the weighted SFVS optimization problem such
that α(G) = α. Let H = (VH , EH) be an induced subgraph of G. Let
S0 = S ∩ VH and let S1 = NH(S0). Furthermore, we denote by S≤1 the set
S0 ∪ S1. We partition the graph H into two induced subgraphs H≤1 and H>1

as follows:

� H≤1 is the subgraph H[S≤1] of H that is induced by the vertices that
are at distance at most one from the vertices of S0.

� H>1 is the subgraph H − S≤1 of H that is induced by the vertices that
are at distance at least two from the vertices of S0.
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v1 v2 v3 v4

s1 s2 s3

F≤1

F>1

A1 = {v1, v2}
A2 = {v2, v3}
A3 = {v4}

C1 C2 C3

Figure 8.2: Illustrating an S-distance partition (F≤1, F>1) of an S-forest F
with S = {s1, s2, s3} that shows the connected components C1, C2, C3 of F>1.
The edges inside F>1 are not drawn in order to highlight that the cut satisfies
the given tuple (A1, A2, A3).

Such a partition is called the S-distance partition ofH, denoted by (H≤1, H>1).
The set of edges of H having one endpoint in H≤1 and the other in H>1 is
called the cut of the partition (H≤1, H>1). Notice that a vertex of H≤1 that
is adjacent to a vertex of H>1 belongs to S1.

Let (C1, . . . , Cd) be an ordering of the partition of the vertices of H>1 such
that each Ci, 1 ≤ i ≤ d, induces a connected component in H>1. Because
H>1 is an induced subgraph of G, it is clear that d ≤ α. Let (A1, . . . , Ad) be
a tuple of d subsets of S1, i.e., each Ai ⊆ S1 holds. Observe that (A1, . . . , Ad)
neither partitions nor covers the set S1. We say that the cut satisfies the tuple
(A1, . . . , Ad) if for any vertex v ∈ Ci, we have (N(v)∩ S≤1) ⊆ Ai. Recall that
an S-forest is an induced subgraph of G. Thus, an S-forest F of G admits an
S-distance partition (F≤1, F>1). The notion of an S-distance partition of F
with the corresponding cut is illustrated in Figure 8.2.

We now utilize the S-distance partition of H in order to construct an al-
gorithm that solves the weighted SFVS optimization problem on graphs with
independent set number α and subsequently show that this algorithm is effi-
cient for α ≤ 3. Our general approach relies on the following facts:

� By Observation 8.1.1 (2), we try all subsets S′ of S with at most 2α
vertices and keep those sets that induce a forest. This step is used in
constructing the vertices of S within the graph H≤1. In particular, for
each such set S′, we construct all H≤1 such that S0 = S′. We will show
that the number of such subsets produced is bounded by nO(α).
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� For each of the potential subgraphs H≤1 constructed in the previous
step, and for each d ≤ α, we determine all possible tuples (A1, . . . , Ad)
with Ai ⊆ S1 having the following property: every induced subgraph
of G whose S-distance partition’s first part is H≤1 and its cut satisfies
the tuple (A1, . . . , Ad) is indeed an S-forest F of G. We show that
considering only these tuples is sufficient in Lemma 8.1.2.

� Up to that point, we can show that all steps can be executed in time
nO(α). However for the next and final step we can only achieve polyno-
mial running time if we restrict ourselves to α ≤ 3 due to the number of
connected components of F>1. For each tuple computed in the previous
step, we find connected components C1, . . . , Cd of maximum cumulative
weight such that the cut of (F≤1, G[C1 ∪ · · · ∪ Cd]) satisfies the tuple.
For doing so, we take advantage of the small number of connected com-
ponents (d ≤ 3) and an efficient way of computing a vertex-cut between
such components.

We begin by showing that the S-distance partition of H provides a useful
tool towards computing a maximum S-forest. Given a set of verticesX ⊆ N [S]
and d subsets Ai of X \ S, we construct the graph auxA1,...,Ad

(X) that is
obtained from G[X] by adding d vertices w1, . . . , wd such that every vertex wi

is adjacent to all the vertices of Ai. In what follows, we always assume that
G is a graph having independent set size α.

Lemma 8.1.2. Let F be an S-forest of G with S-distance partition (F≤1, F>1)
such that S0 ̸= ∅. Then for some d ≤ α, there is a tuple (A1, . . . , Ad) with
Ai ⊆ S1 such that

(i) the cut of (F≤1, F>1) satisfies (A1, . . . , Ad) and

(ii) every induced subgraph H of G with S-distance partition (H[S≤1], H −
S≤1) that satisfies (A1, . . . , Ad) is an S-forest.

Proof. Let (C1, . . . , Cd) be an ordering of the partition of the vertices of F>1

such that every Ci induces a connected component in F>1. We define a tuple
(A1, . . . , Ad) in which every Ai = N(Ci) ∩ S≤1, for 1 ≤ i ≤ d. Clearly Ai ⊆
S1 since every vertex F>1 is at distance at least two from S0. Thus, by
construction, the cut of (F≤1, F>1) satisfies the tuple (A1, . . . , Ad).

For the next claim, we first show that Ĝ := auxA1,...,Ad
(S≤1) is an S-forest.

Assume for contradiction that there is an S-cycle Ĉ in Ĝ. Since F≤1 does not
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contain any S-cycle, Ĉ contains a vertex wi and at least two vertices ui, vi
from Ai, for some 1 ≤ i ≤ d. By the fact that Ai = N(Ci) ∩ S≤1, there are
vertices xi and yi, not necessarily distinct, in Ci that are adjacent to ui and
vi, respectively. Since Ci induces a connected component of F>1, there is a
path between xi and yi that lies entirely in F>1[Ci]. This means that we can
replace the vertex wi of Ĉ by a path between xi and yi for every i, to obtain
an S-cycle in F , leading to a contradiction. Thus, Ĝ is an S-forest.

Let H be an induced subgraph of G with S-distance partition (H[S≤1], H−
S≤1) that satisfies (A1, . . . , Ad). Observe that H[S≤1] = F≤1 as they are
induced subgraphs of the same vertex set of G. Thus H[S≤1] does not contain
any S-cycle, because F is an S-forest. Since the cut of (H[S≤1], H − S≤1)
satisfies (A1, . . . , Ad), there is a partition (T1, . . . , Td) of the vertices ofH−S≤1

such that Ti is a connected component of H − S≤1 and N(Ti) ⊆ Ai, for
1 ≤ i ≤ d. We show that H is indeed an S-forest. For contradiction, assume
an S-cycle C in H. There are no S-cycles in H[S≤1] which implies that
C ∩ Ti ̸= ∅, for some 1 ≤ i ≤ d. For every such set, we replace the part
C ∩ Ti by a vertex w′

i. Denote by H ′ the resulting graph. Notice that H ′[C]

is a subgraph of Ĝ[C] because NH′(w′
i) ⊆ N

Ĝ
(wi). This, however, implies

an S-cycle in Ĝ, which gives the desired contradiction. Therefore, H is an
S-forest.

Notice that G−S is trivially an S-forest of G. Moreover, G−S is maximal
among all S-forests of G such that S0 = ∅. In what follows, we assume that
S0 ̸= ∅ and show how to bound the vertex set S≤1 of F≤1.

Lemma 8.1.3. Let F be an S-forest of G such that S0 ̸= ∅.

1. If |S0| ≤ 2α− 2 then |S≤1| ≤ 4α− 2.

2. If |S0| ≥ 2α− 1 then |S≤1| ≤ 2α.

Proof. Let F be such an S-forest of G with |S0| ≥ 1. By Observation 8.1.1 (2),
we know that |S0| ≤ 2α. Notice that |S≤1| = |S0| + |S1|. We consider sepa-
rately the two cases of the claim.

Case 1. Let 1 ≤ |S0| ≤ 2α− 2. Assume for contradiction that |S≤1| > 4α− 2.
We show that F [S1] contains a matching with at least α edges. Applying
Observation 8.1.1 (1) shows that there is a cycle C in F [S≤1]. Since F is an
S-forest, this is not an S-cycle, so all vertices contained in C are vertices of
S1. Let VM = ∅. Iteratively adding the two endpoints of an edge of C to VM
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and applying Observation 8.1.1 (1) to F − VM as long as |S≤1 \ VM | > 2α, we
identify α edges of S1 such that all their endpoints are distinct. Thus, F [S1],
and in particular F [VM ], contains a matching M with at least α edges.

Let C1, . . . , Cd be the connected components of F [S0]. Notice that d ≤ α
because F [S0] is an induced subgraph of a graph with maximum independent
set size α. By construction, every vertex of S1 is adjacent to at least one
vertex of S0. If the endpoints of an edge of M in S1 are adjacent to vertices of
the same component Ci, 1 ≤ i ≤ d, then there is an S-cycle in F since every
vertex of Ci belongs to S. Thus the endpoints of every edge of M are adjacent
to different connected components of F [S0]. Now obtain a bipartite graph by
contracting every component Ci into a single vertex and every edge of M into
a single vertex and keep only the adjacencies between the components and
the edges of M . Let (A,B) be the bipartition of the resulting bipartite graph
such that A contains the components of F [S0] and B contains the edges of M .
Since |A| ≤ |B| and every vertex of B is adjacent to at least two vertices of
A, there is a cycle in the bipartite graph. Then, it is not difficult to see that
the cycle of the contracted vertices corresponds to an S-cycle in F . Therefore
there is an S-cycle in an S-forest, leading to a contradiction.

Case 2. Let 2α−1 ≤ |S0| ≤ 2α. Assume for contradiction that |S≤1| > 2α. We
pick a subset W of S1 such that |S0|+ |W | = 2α+1. Notice that 1 ≤ |W | ≤ 2.
Then Observation 8.1.1 (1) implies that there is a cycle in F [S0 ∪W ]. Since
W has at most two vertices, we conclude that the induced cycle of F [S0 ∪W ]
has at least one vertex from S, hence it is an S-cycle in F . Therefore, we
reach a contradiction which implies that |S≤1| ≤ 2α.

Lemma 8.1.3 shows that we can compute all possible candidates for S≤1 in
polynomial time as follows.

� We first construct, by brute force, all subsets S′ of S having at most 2α
vertices, according to Observation 8.1.1 (2).

� Then, for each such subset S′, we incorporate a set Y ⊆ N(S′) \ S
for which either |S′| + |Y | ≤ 4α − 2, or |S′| + |Y | ≤ 2α, according to
Lemma 8.1.3.

� Given the described sets S′ and Y , we check if G[S′ ∪ Y ] induces an S-
forest and, if so, we include S′∪Y into a list L1 containing all candidates
for S≤1.
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The correctness follows from Observation 8.1.1 and Lemma 8.1.3. Regarding
the running time, notice that we create at most nO(α) subsets for each of S′

and Y ⊆ N(S′)\S. Thus, in nO(α) time we can compute a list L1 that contains
all possible candidates for (the solution’s) set S≤1.

Let S≤1 be a set of L1. We now focus on the graph G′ = G − (S≤1 ∪ S)
that contains the vertices that are at distance of at least two from S0. Recall
that we assume S0 ̸= ∅, by the discussion prior to Lemma 8.1.3. Let d be the
number of connected components of G′. It is clear that d ≤ α. In fact, since
|S0| ≥ 1 and the vertices of G′ are at distance of at least two from S0, we have
d < α.

By brute force, we find all tuples (A1, . . . , Ad) such that the following hold:

(i) Ai ⊆ S1, for every 1 ≤ i ≤ d, and

(ii) the graph auxA1,...,Ad
(S≤1) is an S-forest.

Notice that by the proof of Lemma 8.1.2 (ii) it is sufficient to consider only
such tuples. Since Ai ⊆ S≤1, d < α, and |S≤1| ≤ 4α, the number of tuples
is αO(α), so that we can obtain the desired set of tuples that satisfy both
conditions in polynomial time.

In what follows, we consider the case for α ≤ 3. By the previous arguments,
we are given a set S≤1 ⊆ N [S] and tuples of the form A1 or (A1, A2) which
are subsets of S1. Our task is to compute a subset V ′ of the vertices of G′

such that the vertices of S≤1 ∪ V ′ induce a maximum S-forest and the cut of
(G[S≤1], G[V ′]) satisfies A1 or (A1, A2), respectively. We distinguish the two
cases with the following two lemmas.

Lemma 8.1.4. Let X ⊆ N [S] and let A1 be a subset of X \ S such that both
G[X] and auxA1(X) are S-forests. There exists a polynomial-time algorithm
that computes a maximum S-forest F such that S≤1 = X and the cut of its
S-distance partition (F≤1, F>1) satisfies A1.

Proof. Since F≤1 is a fixed S-forest of F , we need to determine the vertices
of V \ (X ∪ S) that are included in F>1. By the desired cut of (F≤1, F>1), we
are restricted to the vertices of V \ (X ∪ S) whose neighbors in F≤1 are only
vertices of A1. Those vertices can be described as follows:

B1 = {w ∈ V \ (X ∪ S) | N(w) ∩ S≤1 ⊆ A1} .
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Since the cut satisfies a single subset A1, we have at most one connected com-
ponent of G[B1] in F>1. In order to choose the correct connected component
of G[B1], we try to include each of them in F>1 and select the one having
the maximum total weight. Notice that adding any component of G[B1] into
F>1 cannot create any S-cycle, because auxA1(X) is an S-forest. Thus, by
Lemma 8.1.2, we correctly compute a maximum S-forest with the desired
properties. Clearly the set B1 can be constructed in polynomial time. Since
the number of connected components G[B1] is at most two, all steps can be
executed in polynomial time.

Next, we consider the case when we have a tuple (A1, A2).

Lemma 8.1.5. Let X ⊆ N [S] and let A1, A2 be subsets of X \S such that both
G[X] and auxA1,A2(X) are S-forests. There exists a polynomial-time algorithm
that computes a maximum S-forest F such that S≤1 = X and the cut of its
S-distance partition (F≤1, F>1) satisfies (A1, A2).

Proof. Similar to the proof of Lemma 8.1.4, we first construct the sets B1 and
B2 that contain all vertices of V \ (X ∪ S) whose neighbors in F≤1 are only
vertices of A1 and A2 respectively:

B1 = {w ∈ V \ (X ∪ S) | N(w) ∩ S≤1 ⊆ A1} and

B2 = {w ∈ V \ (X ∪ S) | N(w) ∩ S≤1 ⊆ A2} .

As the desired cut of (F≤1, F>1) satisfies (A1, A2), there are two connected
components of F>1 which are subsets of the two sets B1 and B2, respectively.
Let C1 and C2 be the connected components of F>1 such that C1 ⊆ B1 and
C2 ⊆ B2. Now observe that there should be two non-adjacent vertices c1 ∈ B1

and c2 ∈ B2 that belong to C1 and C2, respectively. We iterate over all possible
pairs of non-adjacent vertices c1 ∈ B1 ∩ C1 and c2 ∈ B2 ∩ C2 in O(n2) time.
Assuming a given choice for c1 and c2, observe the following:

� Since c1 and c2 are vertices of different connected components of F>1, the
components themselves are further restricted to be subsets of B1 \N [c2]
and B2 \ N [c1], respectively. That is, C1 ⊆ (B1 \ N [c2]) and C2 ⊆
(B2 \N [c1]).

� Since F has at least one vertex of S, c1, c2 ∈ V \ (X ∪ S) are non-
adjacent, and by the fact d ≤ 3, we have that B1 \N [c2] and B2 \N [c1]
induce cliques in G. Thus B1 \ N [c2] ⊆ N [c1] and B2 \ N [c1] ⊆ N [c2],
respectively.
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Then by the second statement it is not difficult to see that B1 \ N [c2] and
B2 \N [c1] are disjoint. Let B′

1 = (B1 \N [c2]) \ {c1} and B′
2 = (B2 \N [c1]) \

{c2}. Now in order to find the maximum induced S-forest under the stated
conditions and our assumption that c1 and c2 belong to the two connected
components of F>1, it suffices to find the maximum subset C1 ∪C2 of B′

1 ∪B′
2

such that there are no edges between the vertices of C1∩B′
1 and the vertices of

C2 ∩B′
2. This boils down to computing a minimum weighted vertex cover on

the bipartite graph G′ obtained from G[B′
1∪B′

2] and removing the edges inside
G[B′

1] and G[B′
2]. By standard techniques using maximum flow arguments,

we compute a minimum weighted vertex cover U on G′ in polynomial time
[64, 67]. Therefore, G[B′

1∪B′
2]−U contains the connected components C1\{c1}

and C1 \ {c2}, as required.

Now we are equipped with the necessary tools in order to obtain our main
result, namely a polynomial-time algorithm that solves weighted SFVS on
graphs with independent set number at most 3.

Theorem 8.1.6. The weighted SFVS optimization problem can be solved on
graphs with independent set number at most 3 in nO(1) time.

Proof. Let us briefly explain such an algorithm for computing a maximum
S-forest F of a graph G having independent set size at most three. Initially
we set F ∗ = G − S. Then, for every set X ⊆ N [S] with |X| ≤ 4 · 3 such
that G[X] is an S-forest, we try by brute force every tuple A1 and (A1, A2)
with Ai ⊆ (X \S) and check whether auxA1(X) or auxA1,A2(X) is an S-forest.
For each of such subsets, we find a maximum S-forest F with an S-distance
partition (G[X], F>1) having a cut satisfying A1 or (A1, A2), respectively, by
applying the algorithms described in Lemma 8.1.4 and Lemma 8.1.5. At each
step, we maintain the maximum weighted S-forest F ∗ by comparing F with
F ∗. Finally we provide the vertices V \ V (F ∗) as the set with the minimum
total weight that are removed from G.

By Lemma 8.1.3, it is sufficient to consider the described subsets X. Since
every induced subgraph of G − X contains at most two connected compo-
nents, Lemma 8.1.2 implies that all possible subsets A1 or (A1, A2) with the
described properties are enough to consider. Thus, the correctness follows
from Lemmata 8.1.3–8.1.5. Regarding the running time, notice that whether
a graph contains an S-cycle can be tested in polynomial time. Thus, we can
construct all described and valid subsets in nO(1) time. Therefore the total
running time of the algorithm is nO(1), since each of the algorithms given in
Lemma 8.1.4 and Lemma 8.1.5, respectively, requires polynomial time.
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Let us now show that extending Theorem 8.1.6 to graphs with larger inde-
pendent set number is not possible. More precisely, with the following result
we show that weighted SFVS is para-NP-complete parameterized by the inde-
pendent set number.

Theorem 8.1.7. The weighted SFVS decision problem on graphs with inde-
pendent set number exactly α and clique cover number exactly α is NP-complete
if a ≥ 4.

Proof. We will a provide a polynomial reduction for α = 4 which can be
trivially generalized to any α ≥ 4. The reduction is from the unweighted VC
decision problem on tripartite graphs which is NP-complete [37]. Let G be a
tripartite graph on n vertices and let {A,B,C} be a partition of V (G) into
three cliques. We construct a weighted graph G′ from G in polynomial time
as follows.

� We assign unary weight to all vertices of G.

� We add a vertex s and two vertices rI , tI for every I ∈ {A,B,C}. We
assign weight n to all added vertices.

� For every I ∈ {A,B,C}, we add the edge {rI , s} and all edges necessary
for turning {rI , tI} ∪ I into a clique.

This completes the construction of G′. Since {s, tA, tB, tC} is an independent
set and {{s}, {rA, tA} ∪ A, {rB, tB} ∪ B, {rC , tC} ∪ C} is a partition of the
V (G′) into cliques, the constructed graph G′ is such that α(G′) = κ(G′) = 4.

Next we set S = {s} and we claim that G has a vertex cover of size at most
k < n if and only if G′ has an S-fvs of weight at most k. Consider a vertex
cover U of G of size at most k. By definition, U hits all edges of G, so G− U
is an independent set. It follows that {rA, tA} ∪ (A \ U), {rB, tB} ∪ (B \ U)
and {rC , tC}∪ (C \U) are the connected components of G′ − ({s}∪U). Since
s is only adjacent to rA, rB and rC , no vertex set containing s induces a cycle
of G′ −U . Thus G′ −U is a connected S-forest. Therefore U is an S-fvs of G′

of weight at most k, because all vertices of G have unary weight in G′.

For the opposite direction, consider an S-fvs U of G′ of weight at most
k < n. If U ⊈ V (G), then its weight is at least n. Thus U ⊆ V (G). Assume
that U is not a vertex cover of G. By definition, there is an edge of G that
U does not hit. Without loss of generality, assume that the endpoints of this
edge are the vertices a ∈ A and b ∈ B. Then ⟨s, rA, a, b, rB⟩ is an S-cycle in
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G′ − U , which contradicts the fact that U is an S-fvs of G′. Therefore, U is
a vertex cover of G of size at most k, because all vertices of G have unary
weight in G′.

Combining the results of Theorems 8.1.6–8.1.7, we obtain the following
complexity dichotomy results for weighted SFVS.

Corollary 8.1.8. Weighted SFVS on graphs with independent set number at
most α is in P if α ≤ 3 and NP-complete otherwise. The same holds for
weighted SFVS on graphs with independent set number exactly α, on graphs
with clique cover number at most α, on graphs with clique cover number exactly
α, and on graphs with independent set number exactly α and clique cover
number exactly α.

8.1.2 Unweighted SFVS

Here we show that despite the existence of the above complexity dichotomy
results for weighted SFVS, unweighted SFVS can be solved in polynomial time
on graphs with bounded independent set number.

Theorem 8.1.9. The unweighted SFVS optimization problem can be solved
on graphs with independent set number at most α in nO(α) time.

Proof. Let G be a graph such that α(G) ≤ α and let S ⊆ V (G). Consider a
minimum S-fvs U of G. Then F = G − U is a maximum S-forest of G. By
Observation 8.1.1 (2), the set S ∩ V (F ) = S \U contains at most 2α vertices.
We now claim that the set U \S also contains at most 2α vertices. To see this,
observe that if U \ S would contain more than 2α vertices, then S would be
an S-fvs of G of size smaller than the size of U , leading to a contradiction to
the optimality of U . Thus both S \ U and U \ S contain at most 2α vertices.

We conclude that in order to find such a set U , it suffices to consider all
sets S′ ⊆ S and U ′ ⊆ V (G) \ S containing at most 2α vertices as candidates
for S \U and U \S respectively. To see this, observe that U ∩S = S \ (S \U).
The number of such sets S′ and U ′ is at most 2n2α+1. Moreover, checking
whether an induced subgraph of G is an S-forest takes O(n + m) time [14].
Therefore, in nO(α) time we compute a minimum S-fvs showing the claimed
result.
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8.2 FVS on Graphs with Bounded Independent Set
Number

Here we show that in addition to unweighted SFVS, weighted FVS can also
be solved in polynomial time on graphs with bounded independent set number.

Theorem 8.2.1. The weighted FVS optimization problem can be solved on
graphs with independent set number at most α in nO(α) time.

Proof. Let G be a graph such that α(G) ≤ α. By Observation 8.1.1 (1), every
forest of G has at most 2α vertices. Thus, in order to compute a minimum-
weighted fvs of G, it suffices that we proceed as follows: We construct all sets
V ⊆ V (G) of size at most 2α. Then, for every such set V , we check whether it
induces a forest in O(n+m) time and if so, we construct the set U = V (G)\V .
Finally, we pick a set with the smallest weight among the constructed sets U .
Therefore, the total running time of our algorithm is nO(α).

Regarding the dependence of the exponent on the independent set num-
ber in the running time of the algorithms given in Theorems 8.1.9 and 8.2.1,
note that we can hardly avoid this fact, since unweighted FVS is W[1]-hard
parameterized by the clique cover number as explicitly shown in [51] via a
reduction from the Independent Set problem. The same W[1]-hardness can
also be shown via an appropriate modification of the reduction from the Mul-
ticolored Clique problem given in [48] for showing that unweighted FVS
on H-graphs is W[1]-hard parameterized by mim-width. However, this latter
reduction is quadratic in the parameter k. In the following result, we provide
a simpler reduction which is linear in the parameter k.

Theorem 8.2.2. The unweighted FVS decision problem is W[1]-hard param-
eterized by the clique cover number.

Proof. The reduction is from the Multicolored Independent Set prob-
lem: given a graph G and a partition V = {Vi}i∈[k] of V (G) into k parts,
decide whether G has an independent set of size k containing exactly one ver-
tex from each part of V. We call such a set a multicolored independent set
of G. It is known that Multicolored Independent Set is W[1]-hard pa-
rameterized by k [31, 72]. Let (G, {Vi}i∈[k]) be an instance of Multicolored
Independent Set such that |V (G)| = n. We construct a graph G′ from G
as follows.
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� For every i ∈ [k], we add a vertex li and all edges necessary for turning
the set Vi ∪ {li} into a clique.

� We add a vertex r and make it adjacent to every vertex of V (G).

This completes the construction of G′. Note that |V (G′)| = n + k + 1. We
define the sets L = {li}i∈[k] and I = {r}∪L. Observe that I is an independent
set of G′ of size k + 1 and {{r}} ∪ {Vi ∪ {li}}i∈[k] is a partition of V (G′) into
k + 1 cliques. We conclude that α(G′) = κ(G′) = k + 1. We claim that G has
a multicolored independent set if and only if G′ has a fvs of size at most n−k.

Let Imis = {vi ∈ Vi}i∈[k] be a multicolored independent set of G. Consider
the graph F = G′[I ∪ Imis]. By the construction of G′, the graph F is a tree.
Therefore, the set V (G′) \V (F ) = V (G) \ Imis constitutes a fvs of G′ of n− k
size.

For the opposite direction, let U be a fvs of G′ of size at most n− k. Then
F = G′ − U is a forest of G′ that has at least 2k + 1 vertices. We claim that
the forest F contains exactly one vertex from each set Vi, i ∈ [k]. Recall that
a forest contains at most two vertices from any particular clique. Since the
sets Vi ∪ {li}, i ∈ [k] are cliques of G′, the forest F must contain at most two
vertices from each one of these cliques. Then it is not difficult to see that
F must contain exactly two vertices from each set Vi ∪ {li}, i ∈ [k] as well
as the vertex r, because otherwise it would contain less than 2k + 1 vertices.
In particular, the forest F must contain at least one vertex from each set Vi,
i ∈ [k]. Since the sets {r} ∪ Vi, i ∈ [k] are also cliques of G′, the forest F
must also contain at most two vertices from each one of these cliques. In
particular, the forest F must contain at most one vertex from each set Vi,
i ∈ [k]. We conclude that the forest F contains exactly one vertex from each
set Vi, i ∈ [k]. Let Imis = {vi ∈ Vi}i∈[k] be the set V (F ) \ I. Without loss of
generality, assume that v1 and v2 are adjacent. Then ⟨r, v1, v2⟩ is a cycle in
F , which is a contradiction to F being a forest. Therefore, the set Imis is a
multicolored independent set of G.

Chen et al. [20] showed that Multicolored Independent Set admits
no f(k) ·no(k)-time algorithm under the ETH. Since the reduction provided in
the proof of Theorem 8.2.2 is linear in the parameter k, we get the following
result conditioned on the ETH:

Corollary 8.2.3. Unweighted FVS on graphs with independent set number
exactly k and clique cover number exactly k cannot be solved in f(k) · no(k)

time, unless the ETH fails.
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The lower bound stated in Corollary 8.2.3 implies that if the ETH holds,
then the running times of the algorithms given in Theorems 8.1.9 and 8.2.1
are tight for all graph classes considered in this chapter.

8.3 NMC on Graphs with Bounded Independent
Set Number

Here we completely characterize the complexity of NMC on graphs with
bounded independent set number. In particular, for graphs with independent
set number exactly α and clique cover number exactly α ≥ 3, we adapt the
reduction given in Theorem 8.1.7.

Theorem 8.3.1. NMC on graphs with independent set number at most α is
in P if α ≤ 2 and NP-complete otherwise. The same holds for NMC on graphs
with independent set number exactly α, on graphs with clique cover number
at most α, on graphs with clique cover number exactly α and on graphs with
independent set number exactly α and clique cover number exactly α.

Proof. Let (G,T ) be an instance of the weighted NMC optimization problem
such that α(G) = α ≤ 2. If G[T ] contains an edge, then we conclude that
(G,T ) is a no-instance of the problem, since we are not allowed to include any
vertex of T in its solution. Otherwise, T is an independent set, so |T | ≤ α ≤ 2.
If |T | ≤ 1, then the solution to the problem is ∅, and if |T | = 2, then we can
solve the problem by standard maximum flow techniques [67].

Now we will provide a polynomial reduction to the unweighted NMC de-
cision problem on graphs with independent set number exactly α and clique
cover number exactly α for α = 3 which can be trivially generalized to any
α ≥ 3. The reduction is from the NP-complete unweighted VC decision prob-
lem on tripartite graphs and is similar to the one given in Theorem 8.1.7. Let
G be a tripartite graph and let {A,B,C} be a partition of V (G) into three
cliques. We construct a graph G′ from G by adding three vertices tA, tB and tC
and turning the three vertex sets {tA}∪A, {tA}∪B, and {tA}∪C into cliques.
Since {tA, tB, tC} is an independent set and {{tA} ∪ A, {tA} ∪ B, {tA} ∪ C}
is a partition of V (G′) into cliques, the constructed graph G′ is such that
α(G′) = κ(G′) = 3. We set T = {tA, tB, tC} and claim that G has a vertex
cover of size at most k if and only if G′ has a vertex subset of V (G′)\T = V (G)
of size at most k which hits every vertex set that induces a path in G′ between
vertices of T . Consider a vertex cover U of G of size at most k. By defini-
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tion, U hits all edges of G, so G − U is an independent set. It follows that
{tA}∪(A\U), {tB}∪(B\U) and {tC}∪(C \U) are the connected components
of G′ − U . Thus U is a vertex subset of V (G) with the desired property. For
the opposite direction, consider a set U ⊆ V (G) with the desired property.
Assume that U is not a vertex cover of G. By definition, there is an edge of
G that U does not hit. Without loss of generality, assume that the endpoints
of this edge are the vertices a ∈ A and b ∈ B. Then ⟨tA, a, b, tB⟩ is a path in
G′ − U between vertices of T , leading to a contradiction. Therefore, U is a
vertex cover of G of size at most k.

8.4 UNMC on Graphs with Bounded Independent
Set Number

Due to the difficulty of NMC even in its unweighted version and on graphs
with small independent set number, we consider UNMC as a relaxed variant
of NMC.

8.4.1 Weighted UNMC

Regarding the weighted version of UNMC, we provide a dichotomy result
with respect to the independent set number. In particular, for graphs with
independent set number at most α ≤ 2, we add a vertex of appropriately large
weight, we make it adjacent to all terminals and we invoke the algorithm for
solving the weighted SFVS optimization problem given in Theorem 8.1.6; and
for graphs with independent set number exactly α and clique cover number
exactly α ≥ 3, we assign appropriately large weight to all terminals and we
reduce from the closely related unweighted NMC decision problem.

Theorem 8.4.1. Weighted UNMC on graphs with independent set number
at most α is in P if α ≤ 2 and NP-complete otherwise. The same holds
for weighted UNMC on graphs with independent set number exactly α, on
graphs with clique cover number at most α, on graphs with clique cover number
exactly α and on graphs with independent set number exactly α and clique cover
number exactly α.

Proof. Let (G,T ) be an instance of the weighted UNMC optimization problem
such that α(G) ≤ α ≤ 2. We create an instance (G′, S) for the weighted SFVS
optimization problem as follows. We construct a graph G′ from G by adding
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a vertex s of weight w(T ) + 1 and making s adjacent to all vertices of T .
Since we added exactly one vertex to G, the constructed graph G′ is such that
α(G′) ≤ α + 1 ≤ 3. We also set S = {s}. Next we claim that every solution
to the weighted UNMC optimization problem on (G,T ) is also a solution to
the weighted SFVS optimization problem on (G′, S) and vice versa. Observe
that a set P ⊆ V (G) induces a path in G between vertices of T if and only
if {s} ∪ P induces an S-cycle in G′. It directly follows that a set U ⊆ V (G)
hits all paths in G between vertices of T if and only if U is an S-fvs of G′.
Notice that G′ − T is an S-forest of G′. This implies that w(U) ≤ w(T ) for
every minimum S-fvs U of G′. Thus no minimum S-fvs of G′ contains s. We
conclude that U ⊆ V (G) for every minimum S-fvs U of G′. Therefore, by
running the algorithm for solving the weighted SFVS optimization problem
given in Theorem 8.1.6 on (G′, S), we obtain a solution to the weighted UNMC
optimization problem on (G,T ) in nO(1) time.

Now let (G,T, k) be an instance of the unweighted NMC decision problem
such that α(G) = κ(G) = α ≥ 3 and k < n. We assign weight n to all
vertices of T and unary weight to all remaining vertices. Thus no solution
to the weighted UNMC decision problem on (G,T, k) contains vertices of T ,
which implies that the unweighted NMC and weighted UNMC problems are
equivalent on (G,T, k). Since the unweighted NMC decision problem on graphs
with independent set number exactly α and clique cover number exactly α is
NP-complete if α ≥ 3 by Theorem 8.3.1, it follows that the same holds for the
weighted UNMC decision problem on the same graph class.

8.4.2 Unweighted UNMC

Next we show that the unweighted UNMC optimization problem can be
solved in polynomial time on graphs with bounded independent set number
using an idea which is similar to the one that we used in proving Theorem 8.1.9.

Theorem 8.4.2. The unweighted UNMC optimization problem can be solved
on graphs with independent set number at most α in nO(α) time.

Proof. Let (G,T ) be an instance of the unweighted UNMC optimization prob-
lem such that α(G) ≤ α. Notice that G−T trivially contains no path between
vertices of T . This implies that |U | ≤ |T | for every solution U to the problem.
Assume that |T | ≤ α. We construct all sets U ⊆ V (G) of size at most |T |.
Then, for every such set U , we check whether G−U contains a path between
vertices of T in nO(1) time and if so, we discard the set U . Finally, we pick
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one with the smallest size among the remaining constructed sets. Thus the
total running time in this case is nO(|T |), which is bounded by nO(α).

Now assume that |T | > α. Recall that for every induced subgraph H of G,
α(H) ≤ α(G). We consider the graph G[T ]. Since α(G[T ]) ≤ α(G) ≤ α < |T |,
the set T is not an independent set. Thus G[T ] contains at least one edge.
Since every edge of G[T ] is trivially a path between vertices of T , every solution
to the problem must hit all edges of G[T ] or, equivalently, every solution to
the problem must be a superset of a vertex cover of G[T ]. We construct all
sets T ′ ⊆ T of size at most α. Then, for every such set T ′, we check whether
it is an independent set in nO(1) time and if so,

Step 1. we construct the vertex cover Uvc = T \ T ′ of G[T ],

Step 2. we consider the graph G′ = G− Uvc,

Step 3. we obtain a solution U ′ to the problem on the instance (G′, T ′) as
described in the previous case, because α(G′) ≤ α(G) ≤ α and |T ′| ≤ α,
and

Step 4. we construct the set U = Uvc ∪ U ′.

Finally, we pick a set with the smallest size among the sets U constructed in the
previous step. Therefore, the total running time in this case is |T |O(α) ·nO(α),
which is bounded by nO(α). Thus in both cases we output a solution to the
problem in nO(α) time.

Let us also show that we can hardly avoid the dependence of the exponent
on the independent set number in the running time of the algorithm given
in Theorem 8.4.2. Observe that the unweighted UNMC decision problem on
an instance (G,T = V (G), k) is equivalent to asking whether the graph G
contains an independent set of size at least n− k. That is, it is equivalent to
the unweighted Independent Set decision problem on the instance (G,n−k).

Theorem 8.4.3. The unweighted Independent Set decision problem is
W[1]-hard parameterized by κ + k where κ is the clique cover number and
k is the solution size.

Proof. The reduction is from the Multicolored Independent Set prob-
lem. Let (G, {Vi}i∈[k]) be an instance of Multicolored Independent Set.
We construct a graph G′ from G by simply adding all edges necessary for turn-
ing the set Vi into a clique for every i ∈ [k]. Observe that α(G′) ≤ κ(G′) ≤ k.
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Now it is not difficult to see that a set U ⊆ V (G) is a solution to Multicol-
ored Independent Set on (G, {Vi}i∈[k]) if and only if U is a solution to the
unweighted Independent Set decision problem on the instance (G′, k).

Notice that the reduction provided in the proof of Theorem 8.4.3 is linear in
the parameter k. Thus, we get the following result conditioned on the ETH:

Corollary 8.4.4. Unweighted Independent Set on graphs with clique cover
number at most k cannot be solved in f(k) · no(k) time, unless the ETH fails.

The lower bound stated in Corollary 8.4.4 implies the same lower bound for
unweighted Independent Set on all graph classes considered in this chapter
and that if the ETH holds, then the running time of the algorithm given in
Theorem 8.4.2 is tight for all these graph classes.
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9
Concluding Remarks

In this thesis, we provided a systematic study of the complexity of SFVS on
subclasses of AT-free graphs and on subclasses of chordal graphs, and of the
complexity SFVS, FVS, NMC and UNMC on (k+1)K1-free graphs. Towards
tackling the complexity of SFVS on AT-free graphs, we proposed algorithms
for solving SFVS on interval graphs, on permutation graphs and on cobipartite
graphs which were the first positive results regarding the complexity of SFVS
restricted to graph classes appearing in the literature. In order to cope with the
known NP-hardness of SFVS on chordal graphs, we considered the structural
parameters of leafage and vertex leafage as natural tools to exploit insights
of the corresponding tree representation. We also considered the structural
parameter of independent set number and we completely characterized the
complexity of all studied problems with respect to this parameter.

9.1 Open Problems

Recalling the graph classes and the relationships between them illustrated
in Figure 3.1, we observe that the complexity status of SFVS is still open in
a few of them. There are also parameterized hierarchies of graph classes for
which conditional lower bounds have not yet been established, thus it is not
yet known whether their respective known complexities are tight. Let us state
all these open problem explicitly.
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Subclasses of AT-free Graphs

Regarding subclasses of AT-free graphs, due to the algorithm proposed by
Bergougnoux et al. [5], weighted SFVS is polynomial-time solvable on every
graph class depicted in Figure 3.1 which we did not address in this thesis
except for cocomparability graphs and AT-free graphs thermselves, which do
not have bounded mim-width. Thus we ask the following:

Question 9.1.1. What is the complexity of SFVS on cocomparability graphs?

Question 9.1.2. What is the complexity of SFVS on AT-free graphs?

Moreover, for the hierarchies of k-permutation graphs and k-trapezoid graphs,
which are known to be graphs with mim-width O(k) [3], SFVS may be solv-
able faster, as no conditional lower bound with respect to k has yet been
established, motivating us to ask the following:

Question 9.1.3. Is SFVS on k-permutation graphs solvable in no(k2) time?

Question 9.1.4. Is SFVS on k-trapezoid graphs solvable in no(k2) time?

Subclasses of Chordal Graphs

Regarding subclasses of chordal graphs, the graph classes depicted in Fig-
ure 3.1 which we did not address in this thesis are directed path graphs and
(split ∩) strongly chordal graphs. Thus we ask the following:

Question 9.1.5. What is the complexity of SFVS on directed path graphs?

Question 9.1.6. What is the complexity of SFVS on (split ∩) strongly chordal
graphs?

Moreover, on the complexity of SFVS on graphs with leafage ℓ no condi-
tional lower bound with respect to ℓ has yet been established, and in particular
for its unweighted version not even W[1]-hardness has yet been shown, moti-
vating us to ask the following:

Question 9.1.7. Is weighted SFVS on graphs with leafage ℓ solvable in no(ℓ)

time?

Question 9.1.8. Is unweighted SFVS on graphs with leafage ℓ solvable in
f(ℓ) · nO(1) time?
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Structural Parameters

Regarding the hierarchies of co-k-partite graphs and (k+1)K1-free graphs,
we have completely characterized the complexity of the SFVS, FVS, NMC and
UNMC problems, including showing W[1]-hardness results and lower bounds
conditioned on the ETH, thus there are no open problems.

We close this section, chapter and thesis with two open problems that are
not evident from the illustration of Figure 3.1. On graphs with mim-width w,
weighted FVS is known to be solvable in nO(w) time [4, 50], whereas weighted
SFVS is known to be solvable in nO(w2) time [5]. As no respective conditional
lower bounds have yet been established:

Question 9.1.9. Is weighted FVS on graphs with mim-width w solvable in
no(w) time?

Question 9.1.10. Is weighted SFVS on graphs with mim-width w solvable
in no(w2) time?
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