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MeplAndn

To elooywYxd TEMTO XEPAAUO TOPOVCLELEL T U TALOTA TNE NULYEWO TROPIXAS X TNG
dUixng Muiyews teogxic e€iowone. T'iveton n e€aywyn v 500 GUOTNUGTWY XoL AVoPERE-
o 1) TEOUTOVEST) TNE XUPTOTNTAC TV AUCEWMY OTOV YWEO YL TN METABACT amd TNV TEWTN
otn Beltepn. Xty nopoloa epyasta 1 Suixr Nuyews Teopixy e&lowaor anotekel o Pooixd
avTixeldevo evaoyoAnone.

[o v e€orydryoude T BUIXYH MUIYEOOTEOPIXT EEI0WON amd AUTHY OE QPUOXES CUVTETAY-
wéveg Yo xavniolue uéow evog uétpou eixdva xon Va xatariouue ot pla e&lowon cuvéyelog
yioe pétpar ye muxvotnTo. Axour, VYo anodelEouue 6Tl To cLOTNUA ToEOPEVEL ACLUTIETTO,
ONAad”| 6Tl 1 SuinY) Tary T elvon TEdio Undevixnc andxilong.

Ev cuveyela Yo oplooupe Tt etvan plo actevic Abom yio T Ui NuLYEwa Teogixy e€lowon.
Yy nogeta avalAtnone e oxéong mou TEETEL Vo ixavoTolel piot Abom Tng SUIXAC NuLyew-
otpoprc eglowong Yo opicoupe tn Abon tng cuvridoug dlopopnhc e€lowong yLoL TNV av-
tlotolym eor|, n omolo Yo Tatgel onuavTind pdro. Mdhiota, Yo det&ouue xou evoLapépouceg
WwotNTES TG Abong avtic. ‘Emeita, Yo npofolue otny enthuon tou mpoflifuatoc Utapdng
Nooewv. Zexwvdue ue Ty eVpeot) ac¥evny Aooewy ohxd otov yedvo. I va to tethyouue
aUTO Vot XATAOHEVACOUUE [ULoL OLXOYEVELD TROCEYYLOTIXWY AUoewY xat Yo Beodue uio cuy-
xhivouoa umaxoloutia, To 6plo g omolog Vo etvar 1 Intoduevn Abon.

‘Ocov agopd toyupdtepee hoelc Yo deifouue 6Tt unopolue va €youpe helec Aoelc (Oyt
UE TNV xhaowr Evvold, aAAd Ue TNV aoUevr] EVVoLa GTOV YOPEO X0k OTOV YEOV0, OTIOU TORA
o€ x&e ypovixh oty Ao eivar Aelor 0Ttov ¥Wpo) Tomxd duwe otov ypdvo. H ouy-
xexpyévn Moo, 1 Urtoedn Tng onolag TEOXUTTEL HECK TwV (BLwV BNUAT®Y X0t ETLYELONUSTLY
OTWE TEONYOLUEVKCS, ATOBEXVUETOL OTL lvon povadixr. Autd emiTuyydvetal delyvovTag 6Tt
yioe 800 Aboelg, ot avtiotowyes hoelg (poéc) tne mpoavagepieicos cuvidous dlapoptxic
ellowong elvan {oec péow tne yerong evog emyepruatoc Gronwall xar ye v Bordela
xouTUAGOY TapeuBolrc (interpolating curves).

Y10 téhog e SlateBrig mapartiteton Eva mopdp T 6ToU €Y0LY XoToYEAPEl 6G0 TO BUVATOY
TEPLOCOTERES UOUNUATIXES EVVOLES XAl TPOTACELS, OL OTOLES YENCILOTOLUNXAY OTNV TaEOoUG

OatELPn.






Abstract

We begin with the introduction of the equations that we are going to study. We start
by mentioning the Semi-Geostrophic equation (which we abbreviate as SG) in physical
variables, for which we explain thoroughly the notations we are going to use throughout
the thesis. After that, we make a formal derivation of the aforementioned SG system
and we insert the convexity-in-space requirement for their solutions.

Then, we move on to deriving the dual SG system, which will be the main object
of study in this thesis. The reason one moves past the SG system is that, at a first
glance at least, it provides no evolution equation for the velocity. In order to obtain
the dual SG equations, we first try to understand the continuity equation for a measure
with density. Lastly, we show that the dual velocity (velocity of the dual SG system) is
divergence free as well.

In the second chapter we formulate the equation of a weak solution to the dual SG
system, taking the Lagrangian point of view (for the coordinates describing the image
of the physical flow). We then proceed to solve the dual SG system, in the weak sense
(sometimes referred to as distributional) we have just discussed. We show that we can
have global in time weak solutions, but we do not show any uniqueness result. To obtain
these solutions we construct a family of approximate ones and we prove that their limit
leads to a solution for the dual SG system. We do so with subsequences, which do
not yield uniqueness, unless they are shown to yield the same limit. The approximate
solutions are obtained by solving the measure continuity equation we obtained, with
the help of ordinary differential equations. We also show some interesting properties
while studying the existence of weak solutions to the dual SG equation.

In the next chapter we prove the existence and uniqueness of a smooth solution,
though this time our solution is only local in time. We follow the same steps as in
the proof of existence of weak solutions. We build an approximate sequence and then
we take its limit. Moving on, this time, we can prove uniqueness. We show that if
two solutions exist, then they coincide. We reduce the question of the existence of a
unique solution to the uniqueness of the respective flow, that is, the solution of the
aforementioned ODE. To achieve our goal we implement a Gronwall type argument and
an interpolation argument.

In the final chapter, we try to relate the dual SG system (rewritten as a coupled system
of a continuity equation and a Monge-Ampére equation) to the 2d incompressible Euler
in vorticity-stream formulation. Before we work on this, we briefly present some facts
about the Euler and the Navier-Stokes equations. At last, we show that local smooth
solutions of the dual SG system converge, under some norm, to the 2d incompressible
Euler equation in vorticity-stream formulation.

Finally, this thesis contains an appendix, where there was made an effort to gather
together mathematical notions and results used in this thesis.
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CHAPTER

THE SEMIGEOSTROPHIC EQUATIONS

The semigeostrophic (hereafter SG) equations are used in meteorology to describe at-
mospheric flows in large scale. The SG equations can be derived (with Boussinesq and
hydrostatic approximations, under a strong Coriolis force) from those of the 3d incom-
pressible Euler system.

To make our first glance simpler we will present the 2-dimensional periodic SG sys-
tem.

These equations can be found in [23] [20] [29] [7] [16] [14]

1.1 The SG system in physical variables

The 2d periodic SG system is:

0 Vi + (ug, V)Vpy + V?t +up =0 (2,t) € R? x [0,400)
divu; =0 (z,t) € R? x [0, 400) (1.1.1)

po=7p x = (21, 72) € R?

where we omit the spatial variable (argument) x and we use the subscript ¢ to denote
the time variable.

Remark.
From now on, when we write zero 0 with no subscripts or superscripts, we will mean
the corresponding zero of the space we work on.

1.1.1 Explaining the notation

Having an insight on the SG system (1.1.1) , it consists of the time dependent functions
u : R? — R? and p; : R? — R denoting the velocity and pressure respectively.



Chapter 1 1.1. The SG system in physical variables

We choose to notate the time dependence by writing the subscript . So, we iden-
tify a function f(x,t) as fi(x). Sometimes it is useful to identify the function f(z,t) as
fz(t) (e.g. when differentiating with respect to time).

A convention

We view vectors either as rows or as columns.

With this convention in mind we use the following notations:
Vt > 0 and Vr = (21,29) € R?
The velocity vector field u; : R? — R?

u(z,t) = w(x) = wy(xy, x0) 1= (u%(ml,xg),u?(xl,xg)) = (u%(x),uf(a:))

Remark.

Early on we “quietly” utilize the convention of considering R™ as the vector space con-
taining the row vectors or the column vectors depending on the usefulness regarding
the presentation and correctness in the mathematical context. If we wanted to be con-
sistent with the definition of vector-valued functions, then we should have written u; as
a column vector. But column vectors are rather lenghty and for this case it does not
affect us to view u; as a row vector.

The pressure function p; : R? = R
p(z,t) = p(x) = p(z1,22)

The use and no use of subscripts

We “split” the derivatives depending on time ¢ and space x as well. We continue to
use the subscript ¢ to refer to everything about time. We avoid the use of any special
symbol to denote the differentiation with respect to the space variables, instad we only
abbreviate when possible (partial derivatives).

Thus we have the following:

The time derivative:
9 _y
ot

which is a (one out of three) partial derivative for our time-depending (space-depending
as well) functions.

The abbreviated spatial partial derivatives 0;

0
oy T
0
By O %



Chapter 1 1.1. The SG system in physical variables

which denote the differentiation with respect to the corresponding fisrt and second spa-
tial variables ;1 and x9

The differential operator gradient V , which equals the first derivative D when the
function is differentiable, but can be defined even if the function in discuss is assumed
to only be partially differentiable

V = (01,02) = D when the function is differentiable

and it is used to denote the differentiation with respect to the space variables, notated
with the symbol “nabla’”.

Remark.
recall that the terms gradient and derivative (since they do not have a subscript) refer
to the differentiation with repsect to the space variable.

Thus the term gradient of pressure reads:
Vpt = (01,02)(pt) = (O1pt, O2pt)

Remark.

Notice that since the pressure p; : R? — R is a real-valued function, its gradient
Vp: : R?2 — RY? is a row vector by definition (we do not have to “change” our view of
R? to view it as such). We do identify it as a column vector on R?*!, when we want to
differentiate (since it is a vector-valued function).

We also implement the term perpendicular gradient V1 denoting the clockwise (math-
ematically negative direction) “rotation” of the “vector” V by /2

VE = (85, -01)

Thus
Ve = (82, —00)(pt) = (Oapr, —01p1)

We move on to the time derivative of pressure’s space derivative, that is 0;Vp;. Here
and every time we differentiate we must be careful with the dimensions. We view
Vp: : R2 — R? with respect to its time variable i.e. as Vp; = Vp, : R — R2. Thus its
time derivative 0;Vp; = 9;Vp, : R — R**! is a column vector, which (like the velocity
u¢) we view as a row vector.

So,

0:Vpy = (0101pt, 0 O2py)



Chapter 1 1.1. The SG system in physical variables

Remark.
This needs to be done in order to avoid the use of the traspose matrix, but still be

right in terms of mathematical correctness otherwise we wouldn’t be able to sum the
vector-valued functions in the first equation of the SG system (1.1.1).

And now we proceed to the last term (also a differential operator) for the fisrt equation
2
(g, V) = > uid; = w0 + uj 0y
i=1

Hence
2 .
<Ut7 V)th = Z Uiaivpt
=1

2
= Z uff& (81]9157 82pt)
=1
2 ‘
= Z(ué@iau?t, Ufgaza?pt)

i=1

2 2
(Z ui0; 01y, Z Uiaiaﬂ%)
i—1 =1

And finally, the last-last term, the divergence differential operator:
2 .
divuy = (V,ur) = ((01,02), (uf,u7)) = Oruf + Oyuf =Y duj
i=1

The initial value data p is a time independent function from R? to R

The SG system in component form

Combining all the above we can rewrite the SG system in its component form. To do
that, we firstly substitute each of the previous into the first equation of the SG system
((1.1.1)). So,

0= 0;Vps + (ug, VYVps + VLPt +up =

2 2
= (0uO1pt, 0:Oapt) + <Z uidopr, Y Uiaza?pt) + (D2ps, —O1pe) + (uf,uf)
=1 i=1

6



Chapter 1 1.1. The SG system in physical variables

Thus, we obtain the SG system in component form:

p

2
0:O1pt + Zui@alpt + Oopy + utl =0 z€R?>t>0
i=1

2
0i0apr + D uj0idopy — 1pr +uf =0 x€R? >0

=1

(1.1.2)
Oy + Ogul =0 reR2t>0

Po=Dp x € R?

1.1.2 Derivation of the SG equation

This part can be found on Cullen’s book [16].

We will derive the SG equations from the 2d incompressible Euler equations with Boussi-
nesq and hydrostatic approximations under a constant Coriolis force F¢.

The 2d hydrostatic incompressible Boussinesq Euler equations under a constant Coriolis
force F. = (K., F.) read:

Dyuy + Vpy = Bouf

divus =0

Remark.
In reality, there is one more equation “D;f = 0” mentioned by Cullen, but since we will
not make use of it, we omit it. § denotes the temperature of the fluid/flow.

When it comes to the study of a flow in atmosphere (at a large scale), we consider that
the velocity comes from the geostrophic and ageostrophic wind.

Thus, we have:

a.
up = uf + ug?

where the ageostrophic wind is the difference between the actual wind and the geostrophic
wind, a result of the (geostrophic) balance between the horizontal pressure and the Cori-
olis force. In nature, due to friction, the geostrophic wind does not equal the total wind.
But we consider this disturbance to be small i.e. Dyuy? =0
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The SG approximation to the above equations are the following;:

Dtuf + Vp = cutl
Ve = —Fouf (1.1.3)

divu; =0
Remark.
The second equation is exactly the geostrophic balance.
Thus, the geostrophic balance reads:
Ruf = ~Vpi
Expanding the first equation of the SG approximation (1.1.3), while normalizing by
setting Fo = 1 and inserting the geostrophic balance we have:

Dy + Vpy = Eouj-
opud + (ug, Vyu! + Vp; = ui
0 (=Vpr) + (ur, V) (=V'pr) + Vpr = uj-
_8tVJ]_9t — (ut, V>vat + Vp = Utl

We now prove that 9,V p; = (8; V)t and (u, V>V]L9t = ((u, V)Vplt)l

Indeed, since (a,b)* = (b, —a) we have:

&:Vf?t = (0402pt, —001p¢)
= (041011, Dy Oapr) ™
= (8; V)t

and
(ur, V)Vpr = (Z utidapr, Z u;0;(—01pt) )
2 . 2 .
= (Z u;0;Oopy, — Z UW@lPt)
i=1 i=1

2 2 +
= (Z u@c‘)i@lpt, Z uiaiaﬂjt)
=1 =1



Chapter 1 1.1. The SG system in physical variables

= ((ug, V) V)

So, the first equation of the SG approximation (1.1.3) becomes:

—(O:Vp)*t — ((ue, VIV + Vi = uf-

Next, we claim that (]“-)l =—f

Indeed, let f = (f1, f2), then

( ) = ((f1, f2) )
= ((fa—f1))"
= (= f1,—f2)

—(f1, f2)
=—f

Also the perpendicular is a linear operator, that is (f4+¢)* = f++g* and (af)* = af*

Indeed, let f = (f1, f2) and g = (g1, g2), then

(f+9)t=(f+a. fotg)t
(f2+92, f1 +91))
= (fo+g2,—f1—9g1)

= (f2,—f1) + (92,—91)

_ fL _|_gL
and

(af)t = (afi,afo)*

= (afa, —af1)
= a(f2, —f1)
=aft

Thus, the first equation of the SG approximation (1.1.3) finally reads:
O Vpy + (ug, V)Vpy + Vi?t = -

which is the first equation of the SG system in physical variables (1.1.1). Adding the
incompressibility condition divu; = 0, we have derived the SG system.

One can find in bibliograpy that the SG system can be rewritten inserting a convex
function, which is reasonable, in terms of physics, to consider. Simple calculations,
as they will be shown below, will lead to a reformed SG system that “envelopes” the
convexity requirement.



Chapter 1 1.1. The SG system in physical variables

1.1.3 SG system and convexity

Energy considerations, as studied in [16] [14] [15], have shown that it is reasonable to
assume that p; is (—1)convex, meaning that

2
|||

Pi(z) :=pi(x) + 5

is convex.
From p; to P;
With P; defined like this, we try to change our equations “substituting” p;

We can prove that these four properties hold true:

1) th = VPt - X ll) atht = 8tVPt 111) <’U,t, V)a: = Ut
iv) Vpy = (VP — z)*

Remark.
Usually we omit the argument = when writing functions.

Proof.
Indeed, somewhat simple and apparent computations lead to the desired:

1) th VPt — X

VP, = (01,02)(P,) = (011, 02 P;)

<(91 pt + HIHQ a2<pt+ |$22>>
=

Orpr+ Oh (52 | apy + p(275727) )
= (Owpt + 21, Oapr + x2)
= (O1pt, Oapy) + (1, 22)

= (01,02)(pt) + (21, 22)
=Vp:t+x q.e.d.

11) 8tht = 8tVPt

Since pg,P; : R?2 — R both Vp:,VP; are vector fields from R? to R?. We now want
to differentiate with respect to the time variable ¢, thus we view our functions as

10



Chapter 1 1.1. The SG system in physical variables

Vps : R — R? and VP, : R — R?

So their time derivatives 0;Vp;,0;V P, are matrices belonging in the space R?*! i.e.
they are column vectors. In order to avoid a lengthy proof we actually consider them as
row vectors, since this consideration does not impact the arguments nor alter anything
meaningful.

9 Vpe = 0 ((01,02)(pr))
= 0 ((01ps, Dopr) )
= (901ps , OpDapy)

OV P, = (8,01 P,, 0,05 P;)

2
I

0101 (pt + W) , 0102 (pt + Hg ) >
II? 112

001pt + 8t61”’37 , 8t02pt + 8t82||510T )

OtO1pt + 01 5 OpOapt + Op2 )
6t81pt +0 N 8,582]?75 +0 ) q.e.d.

7N

|
AA/—\

i) (ug, V)z =y

Similarly we view the functions Id (that is x) and w; as row vectors instead of col-
umn vectors.

(ug, V)(z) = uf 01 (z) + ulds(x)
= uj 01 (w1, 29) + uda (1, 2)
= u; (1,0) + u7(0,1)
= (ug,0) + (0, 47)

= (uf, u})

\Y
_ (az(pt Y oy ( - ) )
~(anro(-1) . ~an-a(-14))

It | —61Pt+81(””2”2)>

= (2P — w2, —O1P, + 1)

11
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= (2P, =0\ P;) + (—x2, 1)
= (0o Py, —OW P;) — (z2,—21)

= VJ_Pt - IEJ_
= (VP —2)*t
which concludes the proof of the properties O

Substituting ii),iii),iv) on the SG system (1.1.1) and omitting the bar symbol over zero,
we have:

VP, + (ug, VIVpy + (VP — 2)* + (u, Viz =0 (z,t) € R? x [0, +00)

divuy =0 (z,t) € R? x [0, +00)

P, convex (z,t) € R? x [0, +00)
2

Py(z) = po() + 13- z € R2

Summing first equation’s second term, which still includes the pressure p;, with the
fourth term we get:

VP + (uy, VY (Vpr +2) + (VP —2)t =0 (2,t) € R2 x [0, +00)
divuy =0 (z,t) € R? x [0, +00)
P, convex x,t) € R? x [0, +00)
Py =po + @ xr € R?
Using now i) and substituing py with the initial data p we have the SG system involving
convexity:
VP + (uy, VIVP + (VP —2)" =0 (,t) € R2 x [0, +00)
divuy =0 (z,t) € R? x [0, +00) (11.4)
P, convex (z,t) € R? x [0, +00) o
P=p+1dt x € R?

with the boundary conditions that P(x) — Hx” and u;(z) are periodic.

1.2 The dual SG system

The two aforementioned SG systems (1.1.1) , (1.1.4) are rather “strange”, due to the
fact that they do not include anything resembling an evolution equation for the veloc-
ity u;. Moreover tackling them seems quite difficult. For this reason we will proceed
implementing the dual SG system.

12



Chapter 1 1.2. The dual SG system

Searching for an other evolution equation

We define the pushforward measure p; of the Lebesgue measure on R? by the vector
field VP, : R? — R2.
Pt = (VPt)#(lz) == V.Pt#dl'

that is V¢ > 0 and V B € B(R?)

(B =1*((VP)'(B))

A simplification of the notation

If no parentheses are used in a pushforward measure notation, then it is always implied
that the “push function” is whatever appears before the # symbol and the measure
comes after this.

Remark.

12 denotes the Lebesgue measure on R?, which (depeding again on the context, in an
effort to make the presentation more well-received by the reader) we also denote as dx
(especially when integrating).

We also denote B(R?) the Borel o—algebra on R?, which is the smallest o—algebra
containing the open sets and a subcollection of the o-algebra of Lebesgue measurable

sets on R? denoted as M = M2 = L(R?)

The derivation of the dual SG system is formal, which means that enough smoothness
(classic derivatives) and possibly several other requirements, allowing the calculations
to be performed, are met by the quantities involved.

1.2.1 Continuity equation for measures with densities

The evolution equation we want to “achieve” is a continuity equation for p; and U
(which will be defined later on) i.e.

8,5,0;5 + diV(tht) =0

Remark.
pt is considered the dual density and Uy is considered the dual velocity. This means
that they are density and velocity, respectively, in the space of dual variables.

In order to satisfy the evolution equation above for p;, we have to make sense of it first.
Since p; is a measure, we will be understanding the equation in a weak sense.

We rewrite the continuity equation in a more general context and we formulate the

13



Chapter 1 1.2. The dual SG system
equation that a solution (in the weak sense) has to satisfy.

Definition 1.1 (solution to the measure continuity equation).

For every time ¢t > 0 let V; : R* — R" be a family of LL (R") functions and oy be
a family of finite measures on R", absolutely continous with respect to the Lebesgue
measure ["". We say that oy is a (weak) solution to the continuity equation

oo + div(o V) =0

1 <= VY € C°(R") the following two properties hold true:

The function h(t) = / ¢ doy is differentiable

and Bt/gpdat /Vga,‘/} doy

R’Il

Clarification 1.1.1.
The differentiality of the function h, stated in this definition, is the classic one. Even
though the solution has been attributed the characterization weak.

Remark.

Note that the functions V; are not assumed any differentiable at all (even in the weak
sense). This will be explained now that we will derive the equation for the weak solution.

Deriving the equation of a solution to the measure continuity

We will follow the same strategy, one would follow to define the weak derivative of a
function. We will calculate the integral of test functions with respect to the measure p;.
We use the fact that p; has density (with respect to the Lebesgue measure) to obtain
a time dependent function inside the integral. We differentiate over time and pass the
time derivative inside the integral. We will then integrate by parts to find the desired.
Integration by parts formula can be found in the appendix of Evan’s book [18§]

Indeed, we (at least) formally deduce:

Let ¢ € C2°(IR?), hence it is integrable (measurable and the integral is finite).

We know that each measure o, is absolutely continous with respect to the Lebesgue

measure [" (symbolically oy < ™ or equivalently we also write oy = oy dx), thus there
exists an {"—a.e. unique function (the density, denoted by the same symbol) oy, for

which it holds:
/ pdoy = / poy dx

14



Chapter 1 1.2. The dual SG system

:>8t/cpdat:8t/goatdx

R Rn

Passing the differentiation inside the integral we have:

8t/<,0 dUt = /8t((p0t) dx
Rn R”

Since ¢ € C2°(R?) has no time dependence we get:

&g/«pdat = /go@tatdm
R Rn

Assuming that the density oy satisfies the continuity equation, that is
Orot + diV(O’tV;g) =0

we get:
ooy = —div(oVj)

Thus, we are lead to the following;:

6t/(p dO’t = —/(pdiV(UtW) dz

R7 R7

Since ¢ has compact support, there exists 9 > 0 such that suppy C B(0, 7). We then
choose 71 > ro and we set U := B(0,71). Due to the fact that { z € R? | o(z) =0} C
suppy C U we can rewrite the equation above as:

Bt/cp doy = /gpdiv(o*tVt) dx

U U

Performing integration by parts on the right hand side we have that:

/Lpdiv(atVt) de = /gp(ﬁ,UtVt) dsS — /(Vgp,atVt) dx

U ou U

where 7 denotes the outward pointing unit normal vector field along the surface defined
by the smooth boundary of U.

Due to the fact that z € U = x ¢ suppyp, the integral over the boundary equals
ZETO.

Hence,

/godlv oVy) d / (Vop,0:Vi) d
U

U
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= /Ut<V<,0,W> dx

U

since the density oy is a real-valued function

Density’s integral property implies:

/W(V%Vt /V%Vt doy

U U

815/@ th = /<Vg0,%> dO’t

U U

Thus, we have:

Finally, because every integrand (integrated quantity) becomes zero (since it involves
the compactly supported ¢) outside of U (that is the complement of U in R™) we get:

/wdot /V%Vt doy

which is the property that needs to be satisfied for a time dependent family of measures
ot, in order to be a solution for the continuity equation

8tat -+ diV(O’tV;f) =0
with known V;

In fact, the opposite direction is also true. This can be shown using the same method
(formally).

Let o, V; satisfy the following proprety for every ¢ € C2°(R?):

at/SO doy = /<V90,Vt> doy
R» Rn

Assume that oy has a density, denoted by the same symbol.

Then, passing the differentiation inside the integral and integrating by parts (like above)

we get respectively:
(%/(pdat _8t/g00'tdl'

Rn R™

= /go@tat dz

R”

16



Chapter 1 1.2. The dual SG system

and
/(Vg@, V;f> dO't == /O't(VQO, ‘/;5> dl’
R7 R™

= /(Vg&, ot Vi) dx

Rn

= —/(pdiV(UtW) dx

]Rn

So, combinig we have:

/4,03,50} dx = —/(pdiv(at‘/}) dx

R R
Thus, for all ¢ € C°(R?):
/go(@tat + div(oV;)) dz =0
Rn
Hence, we are lead to the satisfaction of the measure (with density) continuity equation:

8tat + diV(O’t%) =0

1.2.2 Formal passage from SG to dual SG

Resuming back to our target, that is to find an evolution equation (the continuity equa-
tion we have mentioned earlier).

We let ¢ € C°(R?) and calculate:

8t/80 dpy

R’I’L

The pushforward measure p; = VP, 4dx satisfies a property similar to the change of
variables !, that is the following equality for all ¢:

/sodpt = /«poVPt dx
R? (VP)~1(R2)

1See PropositionA.23 for the “pushforward change of variables”

17



Chapter 1 1.2. The dual SG system

Due to the fact that the pre-image (inverse image) of the whole space is the entire
domain of the function i.e. (VP;)™1(R?) = Dyp, = R? we get:

/sodptz/cpoVPt dx
R2 R2

Then, we pass the differentiation inside the integral 2 to obtain:

8t/g00Vde:/8t(cp0VPt)dx

R2 R2

Thus, we have so far:

&s/sodpt = /&s(gooVPt) da

R2 R2
We now proceed to calculate the time derivative of the composition ¢ o VFP;.

To do that in the right way, we have to view the involved vector-valued functions
“like we should” i.e. as column vectors.

Since we want to differentiate with respect to time, we view the function VP(z,t)
as the time function VPy,(t). So, we have the following:

VP, :R — R?
= VP, : R — R>*!
= O, VP, : R? - R?*!

recall that, since there is no subscript under the nabla, the derivative of ¢ stated in
the chain rule is its spatial (only) derivative Vo = Dy € R'*?2

More on the convention

For all the computations below (until the end of proof at least), we will clarify (we
will do this “over-clarification” of the dimensions only in the introductory first chapter)
when a vector-valued function on R?

1. is considered as a column vector on R?*! (usually when it is identifed as a vector-
valued function by definition)

2. and when it is viewed as a row vector on R*? (usually when it is identifed as the
derivative of a real-valued function)

2This is the Liebniz integral rule, which holds true under the assumptions of PropositionA.31

18



Chapter 1 1.2. The dual SG system

We return back to the composition ¢ o VP;, where ¢ : R? = R and we are wiewing
VP, : ]Rar — R? with respect to its time dependence.

Differentiating with respect to time ¢t and applying the chain rule 3 we get:
o (p(VP)) chaiprule Vp(VF) o0V P

Then, isolating, in the first equation of the SG system with convexity (1.1.4) the first
term, we obtain that:

8tVPt = —(ut, V>th — (VPt — I’)l

Hence, the equality (9t(g0(VPt)) = Vp(VP,) o 0,VP, becomes:
Ou(#(VR)) = V(P o (—(u, V)VP = (VP —2)") =

3 (p(VP)) = —Vo(VEB) o (u, V)VP, — Vo(VP) o (VP —z)*

Remark.

Note that for the matrix multiplication to be well-defined (that means we must have
the right dimensions e.g. k x [ , [ x m) we have to consider ;VP, = —(us, V)V P, —
(VP, — )" as a column vector in R2*! since ¢ is in the space R1*2,

As we have said earlier, in order to avoid the use of transpose and “cut in length” of
the presentation, we identify vector-valued functions as either column vectors or row
vectors while we can (that is as long as nothing is impacted by that consideration) and
when it is no more unavoidable we will “roll back” to the dimension where we should
have from the beginning.

Since we already have

at/so dps = /at(SD(VPt)) dr
R2 R2

From the above equality involving 0 (gp(VPt)) we obtain that:

Oy / ©dp, = / —V(VP) o (u, VIVP, —Vo(VP,) o (VP, — z)* da
R2 R2

= —/w(vpt) o (uy, VYV P, da — /w(vpt) o (VP — )t do
R2 R2

We continue evaluating each quantity seperately.

Before we do so, we will briefly discuss our plan. This “conversation” is a comple-
ment to the computations below and not a stand alone proof.

3See PropositionA.36 for the details of the chain rule
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Chapter 1 1.2. The dual SG system

One target is to show that the first quantity’s integral equals zero. We will start by
showing that Vp(VP) ¢ ((ut, V>VPt> is equal with the inner product of the functions

V(p o VFP;) and u;. Writing the standard inner product as its (by definition) sum of
the respective component elements, we will then use integration by parts and the in-
compressibility (divu; = 0) of the fluid to obtain the wanted result.

The other target is to show that the second quantity equals the inner product of Vi
and U; composed with the function VP, (calculated at that point), where Uy is the new
“dual” velocity vector field defined “through the help” of the Legendre transform P} for
the convex “pressure” P;. The aforementioned equality is shown using fact that VP,
and V P} are reverse functions.

At last, we will prove that the newly defined dual velocity Uy is divergence free, which
combined with the change of variables for the pushforward measure p; = VP, 4 dx (this
enables us to return in integration with respect to p; instead of dx, since the inner
product of Ve and Uy is composed with the vector field VP;) shows that the second
quantity’s 1>—integral equals the p;—integral of diveU;. This, in turn, will allow us to

reach our final destination i.e.
é?t/so dps = /<<P, Ut) dpt
R2 R2

This equality leads to an evolution equation for p;, that is the measure p; satisfies the
continuity equation Definitionl.1 in the weak sense we have already discussed.

We begin our computations with the first quantity, starting with (us, V)V P,

(us, VIV P = u} - 01V P +u? - 0,V P

= up 01 (01 Py, 0o Py) + uldo (01 Py, D2 P;)
(u%@lﬁlpt , u%@lﬁgPt) (u?(‘)g@lPt , ufagagPt)
(utﬁlPt , ut(?l((?gPt) (ufagalPt , u?@%Pt)
=(u LOIP, + u20201P; | ul 0100 P + uZ03P; )
= (ut

yo (AP DR
t 000 P, 2P,

recalling our previous “conversation” (the convention) about the dimensions, we are

actually interested in the transpose matrix of the above product. Moreover due to the
convention that when we write a vetor-valued function we mean either the row vector
or the column vector notation. Here, we view u; as a column vector.

(2P, 0P\ [ul
<ut’v>vpt_<8162Pt a2p, ) < \w?

= DQPt O Ut

So,
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Thus, for the first quantity we have

Vo(VE) o (us, V)IVP, = Vo(VP) o D?P; o uy
= Do(VP) oD (VPE) ou
=D (poVP)ou
=V (poVP)ou

Setting h := ¢ o VP;, we obtain:

Vo(VP) o (u, V)VP, = Vh o uy
Since ¢ : R? = R and VP; : R? — R?
their composition h = p o VP; : R? — R is a real-valued function.
Hence, its spatial derivative Vh : R? — R'*2 is a (row) vector-valued function.

The matrix multiplication Vh ¢ u; can be viewed as the inner product of the vector-

valued function Vh with the row vecotr (uf,u?) , which we can also denote u; as well,

due to the convention of identifying the space R? as either R™*2 or R?*! when it comes
to the values of a vector-valued function.

Thus, we have shown for the first quantity that:
ch(VPt) < <Ut, V}VPt = <Vh, ’LLt>

We now integrate to obtain:

/V(,O(VPt) o (uy, V)V P, dx = /<Vh,ut> dx

R2 R2

The next (and last one regarding the first quantity) “move” is to show that:

/<Vh, ug) de = 0

RQ

Indeed, since ¢ has compact support so does h, so (similarly with the argument followed
in subsubsection “Deriving the equation for a weak solution” when integrating by parts
too) there exists B(0,r) := U 2 supph

Integrating by parts we get:

/<Vh, ut> dx = /h(n, u)y dS — /h - divug dx

U ou U
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h =0 on JU , because of the inclusion supph C U and moreover the velocity u; satisfies
the incompressibility condition divu; =0

Hence we are lead to the fulfilment of the first target.

Thus, we are now left with the term:

(%/cp dpt = —/V@(VPt) o (VP —z)*" du
R2 R2
= /ch(VPt) o(x—VP)" dx
R2

Because Vi € R*2 and 2 — VP, € R*? we can view again the matrix multiplication
as the (standard) inner product i.e.

Vo(VP)o(x—VP)" = (Ve(VP),(x — VP)")

Now, we define the Legendre transform (sometimes also called the convex conjugate) of
the function P i.e.

Py (y) := s;%(@,x) — Py(z))

The property we are going to use, in order to achieve our target is the fact that VP,
and VP are inverse functions. This result holds true under some assumptions which
are mentioned in the appendix (at the corresponding section) and we assume that are
satisfied.

Thus, we can write z as VP}(VP(z)), which we abbreviate (omitting the argument
variable z) as VP (VE,).

So,

Vo(VP)o(z—VP) = (Ve(VE) , (VPI(VE)—VP)")
= (VgpoVP , (VP —Id)oVF)")
=(Ve, (VP —1d)* Yo VP,

Defining the velocity vector field in the dual space as:
U := (VP — Id)™*

we get:
Vo(VPE) o (z—VP)" = (Ve,U;) o VP

Hence, integrating over R? we obtain:

/VQD(VPt) <& (.7) — th)L dr = /<V§0, Ut> o VPt dr

R2 R2
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Chapter 1 1.2. The dual SG system

Due to the definition of p; as the pushforward measure VP, ,dx using the formula? for
change of variables through the pushforward measure we have that:

/<V()07 Ut> © VPt dx = /<VSO7 Ut> dpt
R2 R2

Thus, we have reached to this:

8t/<P dp; = /(Vso, Uy) dpy
R2 R2

Since this is shown for every ¢ we are lead to the continuity equation:
Bt,ot + diV(tht) =0

Gathering all the data we have the system:

8tpt + diV(tht) =0 (J?,t) € R? x [0, —|—OO)

U = (VP —Id)*Y  (z,t) € R? x [0, +00)

Pt = V.Pt#dﬂ? te [0, +OO)

2

Py=p+ gt z € R?
Note that the last equation is just the relation between the initial data of the dual
SGsystem and the classic (in physical variables) SG system, as such we don’t have to

include it in the dual SG system description. We only need to define p or Py respectively
satisfying this equality in order to pass from one SG system formulation to the other.

Remark.
We do not cover the backwards passage, from the dual SG system to the classic SG
system

Thus the dual SG system is the following:

8tpt + diV(tht) =0 ((L‘,t) € R? x [O, —|—OO)
U = (VP —Id)*Y  (z,t) € R? x [0, +00) (1.2.1)
Pt = VPt#da: t e [0, +OO)

Velocity of dual SG equation is divergence free

The dual velocity U; is divergence free i.e. divU; = 0 and it satisfies the property

4See PropositionA.23
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<(p, Ut> = le(¢ Ut)

Both relations follow from two more general results, which we will state and prove
now.

Proposition 1.1 (the rotated gradient of a function is divergence free).

Let U : R?2 — R? be a function which is written as the rotated gradient of a real
valued C? function i.e. U = (Vf)* with C2(R2) 3 f : R? — R, then divU =0

Proof.

Since f : R? — R is C? we have

Vf=Df:R* = R? with Vf = (d f,d2f)

Thus,
U= (Vf)" = (dof, —dif)
= divU = dldgf + d2(_d1f)
= didaf — dody f
= didaf — didof
=0
O
Remark.

In terms of the dual SG system we have that

U, = (VP — Id)*+

(o)

112
H—HJ:W%R

where setting f equal to

which can be assumed C? since the passage is formal, implies that for each ¢ € [0, +00)
the velocity vector field Uy is divergence free.

The second property of the dual velocity is implied from the following:

Proposition 1.2. Let w : W open C R" — R” and g : V open C R™ — R be two
partially differentiable functions with w = (w, ..., wy) , then

div(g - w) = g - divw + (Vg,w)
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Chapter 1 1.2. The dual SG system

Proof.

div(g-w) =01(g-w1) + -+ (g - wy)
=g 01wy +019- w1+ -+ g Opwy + Ong - wy
=g (Owwr+ -+ Opwy) + 019 w1+ + Opg - wy

n n
:Q‘Zaiwz’ +Zaig’wi
i=1 i=1

= ¢ - divw + (Vg,w)

Corollary 1.2.1. In particular, if divw=0, then

div(g - w) = (Vg,w)

Setting g = ¢ and w = Uy for all t > 0, which is divergence free (as we have just proved
that divU; = 0) , we have shown the second one.
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CHAPTER

GLOBAL IN TIME WEAK SOLUTIONS
FOR THE DUAL SG SYSTEM

Now we focus our attention on solving the dual SG system (1.2.1). We can show that
there exists indeed, globally in time, at least one weak solution for our problem.

Before we do so, we must first introduce what we call a weak solution for the dual
SG system:

Orp + div(pUy) =0 (x,t) € R? x [0, +00)

U = (VPr—Id)*"  (x,t) € R2 x [0, +00)

pt = VP ydx t € [0,+00)

with initial data pg

2.1 Formulation of weak solution for the dual SG

We change our view to Lagrangian coordinates, we consider the particle trajectory for
the particles of the fluid (aquatic or atmospheric) which we study.

That is, we view the space variable z as a time dependent function X (t) € R? ini-
tially located at z € R2.

t — X(t) is called: space trajectory of the fluid particle being at x initially.

Since the velocity is the time derivative of the displacement (change in position), X (t)
must satisfy:

XX (t) = u (X (1)) = u(X(t),t)
X(0) ==z

One would expect a particle, starting its movement at a specific point of the space, to
follow one unique trajectory.

Let us assume that we can uniquely solve this ordinary differential equation for each y,
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Chapter 2 2.1. Formulation of weak solution for the dual SG

and let us call the solution X, (t) (since it is dependent on the particular y which we
solved it for)

Then, we deduce that the map sending x to X,(t) is a function, due to the fact that
for every x the solution X,(t) is unique.

We denote X, (t) also as X (y,t) and X;(x)

Hence, X (z,t) satisfies:

X (z,t) = u(X(w,t),t)
X(z,0) ==

which we abbreviate like we usually do (omitting the space variable and putting the
subscript ¢ to denote time dependence) writing:

X = Ut(Xt)
Xo=1Id

We present one important property of the particle trajectory, which is also true in R™

For all times ¢ the function X; is measure preserving

Proposition 2.1 (flow is measure preserving). Let X : R™" x [0, +00) — R™ be a smooth
function where VX, is invertible for all x i.e. for every x the map ¢ — X, (t) is invertible
with (VXC,;)_1 being the inverse. Also the following is satisfied:

X (z,t) = u(X(z,1),)
X(z,0) ==

then
det(VXy) =1 Vt € [0, +00)

Proof.

The Jacobi formula says that, if we consider a matrix A with coefficients depending
on time i.e. we can view it as a matrix-valued function A(t) = A; then

815 (det(At)) = tr(adet O 8tAt)

and if A; is invertible
Ot (det(At)) = det(At) . tI'(A;l <& 8tAt)
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With this, knowing that X; is smooth enough and VX, (t) is invertible with (VXx)_l

being the inverse, we get:

01 (det(VX2) ) = det (VXy) - tr((VX,) ' 0 0,9,

We recall that the flow X; satisfies the system:

0X; = Uy (Xy)
Xo=1d

Differentiating with respect to x, the chain rule and the identity VO; = 0,V give the
following:

vatXt = VUt (Xt) < VXt

det(VXo) =1

Using the first equation, the Jacobi formula now reads:

01 (et (VX)) = det (VXr) - tr( (V) o VU (X1) 0 VX,

where VX; = VX(x,t) = VX,

We also know that for any square matrices A, B with B ivertible, the trace satisfies
the equality

tr(B_lAB) = tr(A)
hence:

) (det(vxt)) = det(VX;) -tr(VUt (Xt))

The trace of a matrix satisfies one more property, which comes in handy:

tr(Vf) =divf

Implementing this, the Jacobi formula finally becomes:

0, (det(VX,) ) = det (V) - div(1(X0) )

because divU; = 0 and the functions are all defined for ¢ in the closed and connected
[0, +00) we get that det(VXy) is constant with respect to time.

This implies that it is equal to its value at any specific value of ¢, in particular for
t =0, we get that:
For every t € [0, 400)

det(VX;)= det(VXp)=1
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Chapter 2 2.1. Formulation of weak solution for the dual SG

Now what we wanted for X}, that is, measure preservation, will follow from the (below)
corollary (of the proposition above).

Corollary 2.1.1. Assume that X; is 1 — 1 and onto R"”, then

/ﬂwwzgﬂ&@»m

]Rn
/fdy:/f(Xt)d$
Rn Rn

for all Lebesgue measurable functions i.e. f € L'(R")

or equivalenty written

Proof.

Since det(VX};) = 1, the change of variable y = VX (x) implies:
| = [ i)
VX¢(R™) R”

VX, being onto R™ means that VX;(R") = R" O

At last, setting f = Xx,(0 leads to measure preservation I?(X;(Q)) = I?(Q)

)

where x is the characteristic function of the set noted on its subscript.

w52

Because it holds true that Xx,(9) (Xi(z)) = Xq, (7) for every set Q

We resume back on finding an equation that a weak solution of the dual SG equa-
tion has to satisfy.

Let ¢ € C(R? x [0, +00))

We are interested in the time derivative of the function §(VP(X (x,t),t),t) which
like usual we abbreviate as & (VPt(Xt))

The reason we “are led to” do that is because we know that VP, satisfies the 1st
equation of SG involving convexity (1.1.4) i.e.

VP, + (u, VIVP, = (z — VP)*
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Setting x to be X (x,t) implies the following identity:

€
atVPt(Xt) + (ut(Xt), V>th(Xt) = (Xt — th(Xt))
where the quantity of each hand side is calculated at the point x, which we usually omit.

Proposition 2.2. Let f: R? x [0, +00) — R? smooth then

O (fie(X1)) = Ocfe(Xp) + (we(X), V) fi(X3)
;g{i O fe + (ut, V) fi

Proof. Let
f(xvt) = (fl(xat)v f2($7t))

and consider the auxiliary function:

g:R? x [0, +00) = R% x [0, +-00)
g(z,t) :=(X(z,1),1)
where
X ::(X17X2)
gi:=X;fori=1,2
g3(z,t) ==t

or equivalently written (all of the above) with the subscript ¢ and omitting the space
variable x

ft :(ft17 ft2)
gt =(X¢, 1)
Xt ::(thv Xt2)
gf = Xf fori=1,2
g; =t
And the chain rule implies:

Remark.
Here D refers to the differentiation with respect to space and time, while V = (91, 93)

D(fog)=Df(g)oDg
with
fog:R?x[0,400) — R?
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fogi=((fogn, (fogh)

where for each function the derivative (with respect to both space and time) is as
follows:

_(O0i(fog)r Oo(fog) O(fogh
Difea) = <31(fog)z 9u(f o 9): at<fog>2>

= (81(f09)782(f09>78t(fog))
o o
bf= ( Y aifi)

o1 f2
a1‘,fl (Xtv t))
8tf2<Xt7 t)

and

O f1
0o f2

Sine g = (X¢,t) we get:

o 8 f (Xtvt)
Dflg) = <3if;(Xt,t)

with 0;f;(Xy,t) being abbreviated as 0; ftj (X¢) (meaning that each partial derivative
0;f7 is calculated at the point with its last, third in our case, coordinate being the time
variable t) for all indices i € {1,2,t} and j € {1,2}, we rewrite:

Df(g) = <81ft1(Xt) O fi (X1) atftl(Xt))

02 f1(X¢, 1)
02 f2(X¢,t)

NfHXy) Ooff(Xy) OfE(Xy)
and

3191 (9291 3t91
Dg = | 0ig2 0292 0:g2
0193 0293 Oig3
0191 O2g1 Or Xy
= | 0192 0292 O Xo
0 0 1
31.91 8291 3tXt1
= [ Oig2 Ooga O X}
0 0 1

since ggs =t and g; = X; fori = 1,2
So,

2
Zaiftl(Xt) LX)+ O fH(Xy)

=1

2
Zaz‘ff(Xt) O X+ O fR(Xy)

=1

Df(g) o Dg =

Thus, we deduce that:

2 2
O (fog) = (Zaiftl(Xt) LOXG O (X)) D 0ufA(X) - X+ 3tft2(Xt))
=1

i=1
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Chapter 2 2.1. Formulation of weak solution for the dual SG

Due to the fact that:
Xy = Ut(Xt)

it follows that:
O X{ = uy(Xy)

With this we have for all ¢ and j in {1, 2}:
O f1 (X0) - 0 X] + 0] (X2)
=0 f] (Xe) - ui(Xe) + Ouff (Xu)
=uy(X) - i f] (Xe) + O fl (Xy)

Hence, for j = 1,2
2
D Of(X0) - 0X] + O f] (X0) = (ue, VI (X0) + 0ufL (X0)
i=1
Since, we know that

(ug, V) fr = ((ue, V) 1, (ue, V) F7)
and O,f; = (Ouf}, Ouf?)

we get:
(f o g) = (w(Xy), V) fu(Xe) + Oufi(X2)
i.e.
O (fi( X)) = (ue(X1), V) fi(Xe) + Ocfi(Xe)
and the proof is completed. O

Setting f(x,t) = VP(z,t) & f; = VP, we get that:
Oy (VH(Xt)) = (ut(Xt), V>th(Xt) + 8tVPt(Xt)
— (X = VP(Xy)"
Proposition 2.3.

Let ¢ € CY(R? x [0,400)) and h : R? x [0,+00) — R? x [0,400) with h(z,t) =
(hi(z,t), ho(z,t),t) which is also first order differentiable, then

O (o h) =(VE(h), dy(h1, ha)) + O (h)

Proof.
The chain rule implies:
D(§oh) = D¢(h) o Dh

For the derivatives we have:

D(§oh) = (01( 0 h),02(E 0 h),0p(E 0 h))
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and
DE(h) = (1&(R), D2&(h), D& (R))
and
81h1 82}11 athl
Dh = | O1tha 0O2ha  Otho
o1t Oot Ot
81h1 82}11 athl
= 01 ha 82h2 8th2
0 0 1
Thus,
2
D¢(h) o Dh = ( #, > _0:6(h) - Ophs + a@(h))
i=1
Hence,
2
O(€oh) =Y 0:&(h) - Othi + DrE(h)
=1
= (VE(h), O(ha, ha)) + 0:&(h)
so we have proven the desired O

Setting h(z,t) = (VP(Xy),t) < (h1, ho) = VP(X;) we get:

O (f o (VPt(Xt)vt)> = (VE(VP(Xy),t), 0:(VP(Xy)) ) 4 0:E(VPi(Xy), 1)

We abbreviate once more, we write (-, ¢) as &. This leads to:

a, (gt (VPt(Xt))) — (V&(VP(X)), 0,(VP(X) ) + 0y (VX))
= (V&(VP(Xy)), (X — th(Xt))L> + 0i& (VP(Xy))
We integrate over time ¢ to get:
+o00

/ 8, <§t(VPt(Xt))) dt =

0
—+o00
_ / (Ve (VX)) s (X — VP(X))S) + 0 (VP(X,)) dt
0
Using the fundamental theorem of calculus

+o00

/ o (&(VRAX))) dt = lim_&(VR(X,)) = &o(VR(X0))

S—+00
0
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Chapter 2 2.1. Formulation of weak solution for the dual SG

Since ¢ € C(R? x [0,+00)) there is a ¢y > 0 such that & = 0 for all t > t; and
Xo =1Id < Xo(x) =z we get:

—+00

/&f <§t (VPt(Xt))> dt = = (VFR)

0

We, now integrate over the space variable x:

/ - SO(VPO) dr =
R2

= /<v5t (VPAX1)), (Xi = VP(X) ") + 06 (VPAXy)) di da

R2x[0,+00)

For the second integral (right hand side) det(VX;) = 1 (X; being measure preserving)
we have:

= /<V§t (VP(Xy)) s (Xi — VPt(Xt))L> + 06 (VP(Xy)) dt dx

R2x[0,+00)

_ / / (VE(VP(XD)) , (Xi = VP(X0))) + 04 (VPU(XL)) da dt

[0,400) R2

:/ / <V§t(VPt) s (IL’ — VPt)J_> + 8t£t(VPt) dx dt

[0,4-00) RZ

= /(Vft(VPt) N (l‘ - VPt)J_> + 8t§t(VPt) dt dx
R2x[0,+00)

Thus, we get:

/ —&(VPy) da = /(Vﬁt(VPt) (= VP)Y) + & (VP dt da
R2 R2x[0,+00)

We simplify this even further.
We follow the same method with ¢ = 0 for the left hand side’s integral.
We perform the change of variables y = VP(z) < x = VP (y)

Since VP, and V P} are inverse to each other we have VP,(VP/(y)) = y in partic-
ular.
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With these we obtain:

/ — &o|det(D*Py)| dy = / ((V&, (VP —y)) + 0i&) |det (D2 Py) | dt dy

R2 R2x[0,+00)
We will later show Proposition4.4 that the pushforward equation of the dual SG equation
pt = VPudx
implies the Monge-Ampére equation

py = |det(D*Py)|

Also, for the dual SG, the velocity is given by U; = (VP — Id)*

So, utilizing them:

/ —&opo dy = /(<Vft,Ut> + Di&t) pr dt dy
R? R

2x[0,400)

and we have finally arrived at the equation of a weak solution to the dual SG system

/(&:& +(VE&,Up))pr dt dy + /&Jpo dy =0

R2x[0,+00) R2

Before we move on to the existence of a weak solution satisfying this specific equation,
we clearly state the definition of a weak solution to the dual SG system.

Definition 2.1 (weak solution of the dual SG system).

We call p;, P/ a weak solution to the dual SG system

Orpr + div(pUy) =0 (z,t) € R? x [0, +00)
U = (VPr—Id)*Y  (x,t) € R2 x [0, +00)
pt = VP ydx t € [0,400)
with initial data pg
iff
V¢ € C°(R? x [0, +00))

/(8t£t + (V& Up))pe dt dy + /Eopo dy =0
R2x[0,400) R2
and

U = (VP — Id)*
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Chapter 2 2.1. Formulation of weak solution for the dual SG

We can now pursue our target, that is to prove the existence of such (weak in the defi-
nition we just gave) a solution for the dual SG.

There is a particular result that will be useful, and can be found in [23] [20] [7] [29] [13]

Theorem 2.1 (Probability measures on the torus).
Let u,v be two probability measures on the torus T?

If w = fdx with f 5 0, then there exists an, up to additive constant, unique con-
vex function P : R? — R such that:

o v=VPupu
e P(x)— % is Z2—periodic
e VP is a.e. Z>-periodic, that is VP(z) is Z2-periodic for a.e. x € R?

e VP :T? = T? is the p—a.e. unique optimal transport map sending p onto v

and
2
IVP(z) — z|| < diam(T?) = \g for a.c. x € R?
Additionally, if
v = g dx and
there exist constants A, A such that 0 < A < f,g <A

then P is a strictly convex Alexandrov solution of the Monge-Ampére equation

/
g(VP)

det(D*P) =

This theorem will be used on the construction of approximate solutions (for the section,
existence of weak solutions below), in order to obtain a convex function from the inital
data pg.

Actually it will be used twice, since we will follow the same (logical) steps to build
a sequence of approximate solutions at the existence of smooth solutions as well.
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Chapter 2 2.2. Existence

2.2 Existence

We proceed now to prove that there is indeed, at least one, weak solution of the dual
SG system existing globally in time.

Theorem 2.2 (Existence of global weak solution for the dual SG).

Assume that pg is absolutely continuous with respect to Lebesgue measure and a prob-
ability measure on the torus.

If 3m, M € R such that 0 <m < pg < M

then 3 p;, P, weak solution to the dual SG system on R? x [0, +00), which satisfies the
following:

0<m<ps <M forae t>0

and p; € L™ ([0, +00), L= (R?))

Remark.

The condition that pg is absolutely continuous with respect to the Lebesgue measure
and a probability measure on the torus, is not a “tough” one. If we set pg = (z+Vp)pdx
(recall this is the initial condition connecting the initial data between the SG system
and the dual SG system) we can have this requirement fulfilled.

The proof will be split into three parts.

The first part (Part I) consists of the approximate solution construction. In essence,
we mollify the initial data Uy (defined with the help of pp) and we build a sequence of
smooth functions that satisfy seperately (not as coupled equations) the equations the
dual SG system consists of.

We wiil achieve that by solving the measure continuity equation with the time-frozen,
mollified Up. In this part we will need the so-called flow function, which is the (unique)
solution of a non-autonomous first order ode.

We continue taking their limits (under weak convergence). The last two parts belong
to the “bigger category” of the limit passage in the distributional sense (thus proving
that they are indeed a weak solution to the dual SG).

First (Part II), we show that the product of the density with the velocity (sequence)
converges to the product of their limits (which for the weak convergence is not true in
general).
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And finally (Part III), we show that the limit of the velocity satisfies the condition
which “connects” it with the convex conjugate of pressure.

Proof.

We begin with the first part

2.2.1 Part I: Constructing the approximate solution

Applying Theorem2.1 with py and the Lebesgue measure, we obtain a unique (up to
additive constant) convex Py such that:

PO = VPO#dZE

2
Py — HQ;HQ is periodic

5
IV Py — Id|| < \g

We define:
Uy := (VB — Id)™*

We will utilize Uy to define the flow and solve 0;p; + div(p:Up) = 0. But we will need
to mollify it first, in order to have the needed regurality.

The reason we must have the velocity mollified, is because the flow actually help us
solve the respective transport equation dyp; + (Vpy, Ug) = 0. This equation is equiva-
lent to our continuity equation, when our functions are smooth enough and the velocity
is divergence free.

Let e >0
First iteration

We restrict to t € [0, €]

We define the time (freezed) and epsilon independent pressure and velocity
P =D

Ui :==Uy
We then mollify the velocity defining:
Uf"; = Ug =g * Up
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Chapter 2 2.2. Existence

where * denotes the convolution of function, that is:

L@u):@m*mg@y:/}xx—@UM@dzvxeR2
R2

Since Uy € R? we identify the integral above (and any integral of a vector-valued
function) as its component integrals:

/ng(m —2)Uy(z) dz = /775(95 — Z)U&(Z) dz, /775($ — z)Ug(z) dz

R2 2 R2

where Uy = (Ug, Ug)

Next, we proceed to show that Uy 9 i Lipschitz and divergence free.
Indeed,

Evans “tells us” that Uf’(s € C°(R? : R?) and

VU = Vs * Ug

2
Also, since VP, o VP = Id and |VP, — Id| < \2[, by setting x as VP (z) and t =0

we get:
V2 V2
1Uoll < -5 10| oo 2y < >
Thus,
[ = %
Lo°(R2) 2
and
9087 <
L= (R?)

Hence, Uf’é (x) is Lipschitz in R? for all times ¢ € [0, €]

Epsilon (¢) and delta (§) do not play any particular role in the next step, so this
part will be presented in a more general context.

Solving 0:p; + div(pUt) = 0 for t > 0 with konwn U,

Since the velocity U(x,t) is continuous and Uy is Lipschitz we are able to uniquely solve
the initial value problem for every y € R%:

XX(t)=U(X(),t)
X(0)=y
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that is V initial data y € R? 3! (time) function Y, : R — R? which solves this differen-
tial equation i.e.

{@Yy(t) = U(Y,(1),1)
Yy(O) =Y

where t — Y, has one order higher regurality than (z,t) — U(x,t), since it is given as
the composition ¢ — (Yy(t),t) — U(Y,(t),t)

The uniqueness of the solution for this problem allows us to define a (space) function
for all times ¢

Y, : R? 5 R? | Vt € [0,00)
This function is the map sending y to the unique Y} (t) i.e. y — Y, (t) which we also
identify as Yi(y).

This map is indeed a function, since for all ¢ > 0

Y1 = Y2
Yy1 (t) = sz (t)

unique

solution

= Yi(y1) = Yi(y2)

So, actually, we have obtained a time differentiable and space dependent function
Y (y,t) which we also denote Y;(y) or Y (¢)

Now we can rewrite the flow initial value problem in the usual way we have chosen
to denote our time and space dependent functions (that is with the time ¢ as a sub-
script and omitting the space, “main”, variable x or y).

Hence

%Y = U(Yy)
Yo =1d

Then, taking advantage of the flow Y;, we can obtain a weak solution for the measure
continuity equation:
8,5/),5 + diV(tht) =0

We define V¢ € [0, +00)
pt = Yiupo

Let us check that this measure is indeed a solution i.e. it satisfies the measure continuity
equation in the weak sense Definitionl.1 we have already discussed.

Obviously, p; is well-defined, since for t =0

Youpo = Idypo = po
We proceed to show that Vo € C2°(R?)

at/so dpy = /W% Us) dpy
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Let ¢ € C°(R?), we compute:

First of all, since ¢ is continuous, it is also Lebesque measurable, hence it is Borel
measurable as well.

Next, we claim that for every time ¢ the flow Y; is a bi-Lipschitz homeomorphism.

More precisely it satisfies:

e yr — w2l < Ve(yr) = Ye(w2)l| < e™llyn — ]

Indeed,

Let 41, y2 € R?, as we have seen, the initial value problem has a unique solution for all
Yy

Thus, for i = 1,2

Yo(yi) = vi

Subtracking the two equations and taking their norms, we have:

10:Y:(y1) — .Y (y2)|| = ||Us (Ye(y1)) — Us (Ye(y2))||

1Yo(y1) — Yo(y2)ll = [ly1 — w2l

{atmyi) = Uy (Ya(w1))

Using the inequality ’@Hf(t)”‘ < ||0cf(t)]| along with the fact that the derivative is a
linear operator, we get:

1Y) = Yal)l| < 10Yelwn) - OrYi(ae) |
The velocity U; is K-Lipschitz i.e.
|Ut(21) = Up(a2)[| < K|a1 — 22| Vi, 22 € R

Choosing z1 = Y;(y1) and z9 = Y;(y2) combined with the result above, we have:

el Ye(yr) — Ye(y2)ll| < K[[Ye(y1) — Ye(y2)ll
1Yo(y1) — Yo(y2)ll = lly1 — vz

Expanding the absolute value and utilizing the two Gronwall lemmas for the respective
inequalities (K and —K) with ¢(t) := ||Y:(y1) — Y2(y2)|| in both cases, we have proved
the desired.

Thus, Y; is (B(R?), B(R?))-measurable, since it is a continuous function. The “change
of variables” for the push forward measure implies:

poY;isin Ll(po)
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/@dptz / poYidpo

R? (o)~ (R?)

The inverse image (Y;) *(R2) is equal to the function’s domain Dy, = R2
Next we show the three needed conditions to apply the Liebniz integral rule PropositionA.31.

i) We have already shown (at the push forward change of variables earlier) that for
every t the function y +— @ oY is in LY (pp).

ii) For every y the function ¢ — ¢ oY, is differentiable (Picard-Lindel6f’s theorem
for the ordinary differential equation guarantees a classic, in terms of differentiability,
solution to the initial value problem).

iii) Moreover, the chain rule PropositionA.36 leads to:

O (poY) =VpoY,00Y,
:<vgpo}/;f78tyt>

By Cauchy-Schwarz’s inequality we get:

10 (p o Yo)| < [[Vep o Vil - [|0: Y]]

We also have that:

>

Y, = U (Yy) , where ||Uy < 5

and for all ¢
{IIVso oYi|| <M  when Yi(y) € suppVyp

[VeoYi =0  when Yi(y) ¢ suppVe
because V is continuous with compact support.

Hence, by setting

{h(y) =MY¥2  when y € (¥;) ' (suppVe)
h(y) =0 when y ¢ ()™ (suppVe)

which belongs in L!(pg) we have completed the proof of the three criteria.

Hence,

at/sodptzfat(soom dpo
R2 R2

= /<V<PO Y:, 5th> dpo
R2
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- /<ont, Uy o V2) dpo
R2
= /‘<v907 Ut> OYthO
R2

With (p, Ut> , Y; being continuous and (}/;5)_1 (R?) = R?, we use again the push forward
change of variables to obtain:

8t/<P dp = /(Vso, Uy) dpy
R2 R2

Proposition 2.4 (0; = Y;4dpg is the unique solution of the continuity equation with
initial data pg).

Let o4 be a solution of
8tpt + diV(tht) =0

with o9 = pg, then
ot = Yiudpo

Proof.
For a proof look at Figalli’s [23] section2.1 O

Proposition 2.5 (equation for the density of the measure solution Y;4dpy).
If pg has a density, then so does p;

and

Proof.
Let p € C°(R?)

The pushforward change of variables (p; = Y;4dpo) and the fact that pg has a desnity

implies:
/sodptz/sooYtdpo
R2 R2
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Z/po-(sooYt)dy
R2

Since Y; is measure preserving i.e. det(VY;) = 1 for all times ¢, as shown in Proposition2.1,
the classical change of variables z = Y;(y) < Y, *(2) = y leads to:

/PO'(SDOYt)dy:/SO'(POOYtl)dx

R2 R?

Thus, for all ¢ € C°(R?)

/@dmz/@-(ﬂooYtl)dw
R2 R2
The arbitrariness of ¢ implies the desired. O

Adding everywhere epsilon,delta (g,0) as a superscript, we can return to our case and
view.

We define for consistency
by
P’ =P 2P
t t e ¥ 0

since the next step will have § playing its role in the definition of pressure.

Remark.
Py needed no mollification, due to the fact that a convex function is two times a.e.
differentiable.

So, we have built a triplet pi’a, Pf’é, U; 9 which is an approximate solution to the dual
SG system i.e. satisfies each equation individually.

O’ +div(p]°US°) =0 (w,t) € R? x [0,¢]
USY = s+ (VP — 1) (z,8) € R2 x [0,¢]
p0 = VPf’5#daj t €[0,¢]

with initial data pg

and it also satisfies:
PP =Y 400 tef0e
m < pi’(s <M (z,t) €R%x[0,¢]
ERER

\ <
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Remark.
Notice that pi’é is well-deifned because YOE’(s =1d

Indeed,
,0
=Yy upo = Idypo = po
We have to “restrict” our triplet, in terms of time, even further, leaving € out.

The reason we have to do this, is because we want to avoid conflict with the next
interval g, 2¢).

Otherwise our functions would have to coincide in the value € of time ,which is not
guaranteed.

In fact it would have meant that Py = P. and Uy = U. where P.,U. are defined
utilizing p?é and implementing Theorem2.1 like we did with po.

Remark.
This is exactly the second step being followed in the procedure to construct the approx-
imate solution. which comes next (see below) in the proof.

We rewrite and “sum up” what we have built so far:

OpS’ + div(pU) =0 (2,t) e R2 x [0,¢)
USY = s+ (VPEY —Id)" (z,1) € R2 x [0,¢)
e’ = VP’ do telo,e)

P’ =Y 4po t €0l
O<m<ps’6<M (z,t) € R? x [0,¢]
Jor?] < 5

Even though pressure and Velocity do not necessarily coincide when ¢t = ¢, p; will, due
to the fact the flow satisfies Yz = Id

So, we can repeat those steps above on the next time interval.

Repeating the process, second iteration
€ [e,2¢)

We apply Theorem2.1 with pg’é (and the Lebesgue measure) to obtain an up to additive
constant unique convex P9 such that:

p2® = VP ydx
2
peo HJUQHQ is periodic

46



Chapter 2 2.2. Existence

oo —ai < 5

We define:
U=t i (VP - Id)l

0 . ped
Pl =p

and we mollify
UP® = s x U

We also define the flow, the unique solution of:
at}/ts,(; _ U;:,& (}/ts,é)
We define, once more, the measure
,0?5 = Yf’é#dp?(s
which is well defined since

Ve =1d =
P2 = Idydp2® = p2°

and a waek solution to the measure continuity equation
0rp;” + div(p; U ") = 0

Thus, for the second iteration we have:

(0,05° + div(p°US°) =0 (2,t) € R2 x [¢, 2¢)
USY = s+ (VB —I1d)" (z,1) € R2 x [g, 2¢)
pef = VPf’é#da: t € [e,2¢)

7’ =Y 4po t € [e, 2]
0<m<pi® <M (z,t) € R? x [g, 2¢]
HUf’5 ( < \f (z,1) € R2 x [¢, 2€)

Repeating the process we obtain the following approximate solution:

O’ + div(p’US) =0 (a,t) € R? x [0, +00)

US® =g (VPO — 1d)"  (,t) € R2 x [0, +00)

P =P do t € [ke, (k + 1)e)

7’ =Y o t €10,+00)

O<m§pf’6§M (z,t) € R? x [0, +00)
\ U’ ) < \f (z,t) € R? x [0, +00)

Having constructed the approximate solution, we move on to the next part.
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2.2.2 Part II: Taking the limit
This section is based on [23].

For this part, we set ¢ = 6§ = % to obtain a triplet of sequences pi, P/*, U;* that satisfy:

Opy + div(piU") =0 (z,t) € R? x [0, +00)
U =1 (VR - 1d)" (z,t) € R2 x [0, +00)
kl —VPt pd teki, (k+1)1)
=Y{" udpo t €[0,400)
0<m§p?§M (z,t) € R? x [0, +00)
ny L V2
ol < <

Hence, the sequences p}, U;* are uniformly bounded in time and space.

Brezis end of page 116 C.(ii) implies that there are functions p;, Uy such that
o = py in LES, (B? x [0, +00))

U —=* Uy in LfS, (R? x [0, 400) : R?)

PRUR —* pUp in LS, (R? x [0, +00) : R?)
Proposition 2.6. Let f: R"™ — R then the following are true

Vg € [1,+00),p € [1,+00] and V CC R?

LAy <1 KU Ml zavy
2. LI(V) C LYV)
3. LY

lOC(RQ) < Llloc(RQ)
4 lyraqy < ellf s
5. Wha(V) C WhL(V)

6. WhU(R?) C WL (R?)

loc

T (Wl @) c (Whiry)

8. Iflly < cllfllx = L=(A, X) € L>(A,Y)
9. L=°(B) C IP

loc

(B) VB C R?

where
[ f1lax = supeall /()] x <400
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Combining the above, we can show that:

£ ([0, +00), (Wil (®9)") < Lh,. (10, +00), (W (R2) )

and
L% ([0, +00), L*(R?)) € Lf,, ([0, +00), L}, (R*))
We will prove that
PP — prin LY ([0, +00), (W ’q(]R2)) ) V¢>1,p>1lands>0
Indeed,

Let ¢ € C2°(R?), then integration by parts gives:

/ Ydiv(py Uy / (V, o U dy + / (YprUR,n) dS
B(0,r)

B(0,r) oB(0,r)

since 1 has compact support, sending r to infinity yields:

/ Gdiv(opUP) dy = — / (Y, 42U dy
R2 R2
/w —div(ppUy")) dy = /<V¢,0?U?> dy

R2

So,

The Cauchy-Schwarz inequality combined with the uniform bounds of p}, U;*
2
0<pf <M and ||U| < \Qf imply that:

(Vo i U7) < IVl - o U7l

= IVl - |pe| - [JUE]

= IVl - pi - ULl
V2

< ||V 'M7

Hence,

/¢ (o UD)) dy < CIVE e,
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Thus, —div(ppU;*) € (Wl’l(]RQ))* uniformly in time i.e.

loc
—div(ppuy) € L= ([0, +00), (Wi (®2)))
where using 9;pf = —div(ppU;*) and the inclusion we have shown. we get:
oot 1 (1 o0, (wi289) )

Also,
pi € L}, ([0,+00), L} (R?))

loc loc
due to the fact that:
pi € L ([0,+00), L>(R?))
since 0 < p? < M = sup |pP| < M and Vt y > pP(y) € L=(R?)
t€[0,400)
Having proved that:
oy € I, (10, +00), (WhI(®?)")

loc oc

o€ L ([0, 4+00). L, (B2))

loc loc

the Aubin-Lions Lemma [23]| implies that p} is precomapct in the space
Ly ([0,400), (W9(R%)") Vg>1,p>1ands>0

loc loc
We will prove that
Ul —* Uy in L® ([0, +oo), W,g(’j(R?)) Vre (0,1) and 1<k < 2
Indeed,

Proposition 2.7. Let f : R? — R smooth, convex and Lipschitz function on every
neighbourhood then Vr > 0 3C, > 0 such that

JRC R

B(zo,r)
Proof.
Let 7 > 0 and z € R

We know that f is smooth, thus there exists its hessian H f = D?f(z) at each point z,
which is a symmetric matrix.

Since f is convex, its hessian is positive semi-definite
Combining the two above we get that for every = the matrix D?f(z) has non-negative
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eigenvalues \;(z) with i € T'(d).

Choosing the matrix norm to be the 2,2-norm, see DefinitionA.29 discussed in the
subsection of matrix norms, then PropositionA.8 implies:

2
1Dl = masc A

So, omitting the 2,2 matrix norm, we get:

d

DA

i=1

| D? max {\;}

i€T(d)

<

fHLlB(xo,r) -

LlB(:E(],T) LIB(I(),T)

Moreover, we know that:

Af(x) = tr(DQf(x)) = Z)\,(w)

d

>

i=1

= HAfHLlB xo, )

L1 B(zo,r)

Hence,
HDQfHLlB(xO,T) = ||Af||L1B(:to,T)

Green’s formula (also known as divergence theorem) implies that:

19 sy < IV sty = [ (9
OB (zo,r)

where 7 is the outward pointing, unit, normal vector field along the surface of the
boundary

Due to the fact that f is Lipschitz on every neighbourhood we have that
3K, >0 Ve B(xo,r) [|[VSf] <K,

Hence, the result follows from the inequality

/ <Vf,ﬁ>dss / IV A1l 7] ds

OB (zo,r) B(zo,r)

<K, / 1dS

OB (zo,r
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Setting f equal to P"*, which is Lipschitz on every neighbourhood because on the ball
B(xo, 1)
2
VPRl < 224

Indeed,
IVE!(z)| = [[VP(z) — = + |
<|IVP(z) =l + ||=|
V2

< 1=
_2—|—7“

when z € B(zg,7)

Thus, we get the inequality:
[ e <c,
B(zo,r)
which leads to
Up € £ ([0, +00), Wil (RY))

loc
By fractional Sobolev emdeddings we have that Vr € (0,1) and 1 <k < 17—2H*

£ ([0, +00), Wiy (R2)) € £ ([0, +00), Wik (R))

loc loc

Choosing s =r = % and ¢ =k = %(< %) yields the desired.

We proceed with the third and final part, which is to show that the limit U; and
the convex function P; whose gradient sends p; to dx satisfy the relation that connects
them in dual SG.

2.2.3 Part IIL: U, = (VP — Id)*

For every time t, we apply Theorem2.1 with p; and the Lebesgue measure to obtain a
unique (up to additive constant) convex function such that:

Pt = VPt#d:v

2
212

P, — >

is periodic

5
VP, — Id|| < \2[
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Since pf! — py in Lf ([0, +00), (Ws’q(Rz))*) Vg >1,p > 1 and s > 0 we deduce that:

loc loc

pim — prin (W2UR?))" for ae. t >0

oc

Since pj € L> ([0, 4+00), L>°(R?)) we deduce that:

pin —* pyin L%(R?) for ae. t >0

By stability of optimal transport maps we deduce that:

vptkm* — VP in L}OC(RQ) for a.e. £t >0

Since U =1 (VP — Id)™ it follows that:

Ul — (VP — Id)*" in L}, (R?) for a.e. t >0

Due to the fact that U =* Uy in L™ (R? x [0, +00) : R?)

U, = (VP — Id)*"
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CHAPTER

LOCAL IN TIME SMOOTH SOLUTIONS
FOR THE DUAL SG SYSTEM

Now, we move past the weak solutions to discover strong/smooth solutions of the SG
system (1.2.1). Although we will have to “step down” in terms of the time of existence
of our solutions. We have to sacrifice the global, in order to achieve classic solutions for
the dual SG system.

Hence, we state below our main theorem for smooth local solutions, which we will
prove in two parts. First, we will prove the existence of local smooth solutions following
the logic and mimicking the arguments in the proof of weak global solutions. Secondly,
we will prove the uniqueness of our existing local smooth solutions, splitting the proof
in three parts.

Theorem 3.1. If
Ja € (0,1) and A\, A > 0 such that 0 < A\ < pg < A and py € C¥%(T?)

then

ElT)wA,HPOHCo,a(-ﬂ-z) > 0 ,unique py, P/ on [0, 7] solving the dual SG system (1.2.1)

and satisfying
0<A<p <A, peL>(0,T],CO*T?) , P;eL>([0,T],C>*(T?))

Before we begin proving Theorem3.1, let us present the basic ideas and notions used, in
order of appearance. We will do so using a sketch of proof paragraph first, in which we
will describe our reasoning, followed then by a short diagram “exposing” the very key
elements and “expanding” the important steps even further.
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3.1 Existence

Sketch of proof

Main steps to build an approximate solution

The idea is to obtain a convex function using Theorem2.1 and freeze in time the velocity
vector field U;. Then, we define the flow Y; of the velocity and we utilize the pushforward
measure of pg with the flow function to define p;

Why one iteration isn’t enough

Of course, by doing so, we will have not solved the dual SG’s continuity equation
Opr + div(Uyp) = 0 that we wanted to. Because the solution which we have found on
the previous step needs a given velocity vector field in order to ba obtained (so we only
know that it satisfies the equality of Definitionl.1). Thus, we do not know if it satisfies
the equality of Definition2.1 that is needed in order to be a weak solution of the dual
SG system.

The sequence of approximate solutions

That is why we repeat the process. We introduce the (random, with no particular
choosing) natural number n, which we fix and then we repeat the steps as described
above. Leading us to a family (sequence) of approximate solutions in the same interval,
for our problem. After that we will send n to infinity (weak convergence under some
norm) giving us (not immediately) the time-evolving solution.

Local in time
The main steps above can be followed in the entire time line [0, +00), but the choice of
a specific T' > 0 and the restriction of our study to [0, 7], hence the local character of

the solution presented, is necessary for the estimate of p; with respect to C%* norm to
hold.

Inequalities

When it is time for us to estimate the approximate solution we created, two things
stand out the most. Firstly, Cafarelli’s regularity theory. Secondly, the estimates we
get through Gronwall’s lemma using the flow.
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The proof diagram

Main steps, first iteration (n = 1)

Co = 2||pollco.o(r2)

|
We start off using the initial data pg

by Theorem?2.1
3! (up to additive constant) convex P
such as pg = VP udx

2
and Py — @ is periodic

|
We define the “time-freezed” velocity vector field
1

Up = (VPJ _ Id)
|

For all ¢ € [0, +00)

we solve 0yp; + div(pUp)
with the help of Y; the flow of Uy

|
We define the solution p; := Y;4p0

to the aforementioned measure continuity equation

In order to construct the desired sequence
we define its first term:
Pl := Py and U} := U,
pfi=prand V! =Y,
as well

\
Thus forn =1

we have:
(019} + div(pfUP) = 0
Ur = (VP — Id)"
oy = VP ydu

up? =Y 4ro
|

3.1. Existence

We choose the suitable 7' > 0, for which p; remains Holder continuous

We then restrict everything on t € [0,7] = [0, L] for n =1
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Repeating the procedure (n = 2)

We split [0,77] in half, that is [0, 2) U [L, T)

For t € [0, 1] Fort e [2,7)
we have exact same process utilizing p,, /2
| |
Py by Theorem?2.1 we have by Theorem?2.1 that
| . L 3! (up to additive constant) convex P, ,
Uy = (VP — Id) such as p,.,, = VP,  dz
| C B g oorinds
Y, flow of Uy and P, /2 ‘2 is periodic
. ‘Y We define the “time-freezed” velocity
Pt = Y00 n
| Uy i= (VP* - Id)
We define on ¢ € [0, %) & | T/
2 ._
P :=F We define Y; the flow of Up/q
2 /
Ur =0y |
P = py We define the solution of coninuity equation
VP =Y, pt = %#PT/z
We define on t € [%, T)
P? = Pry
Ut2 = Ur/2
pi =
Y2 =i

Thus for n = 2 we have:

(0,p + div(ppU) = 0 for t € [0, T]

Up = (VP —Id)" fort € [0,T] (O} + div(p}U}") =0
Py = VP! yda for t € [0,7) Ur = (VP —1d)*

n n T = n n T T
e = VB ydx for t € [5,7) Py = VP ydx for t € [i, (i +1)77)
op = Vi ypo for t € [0, ) oF = Y ypizyn for t € [iL, (i +1)L)

pi =Y yprys for t € [5,T)

for i € To(n — 1)
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Estimates

Caffarelli’s regularity theory can be found in [23] section 5.1 and [11]

By Caffarelli’s regularity theory
D2 P || co.er2y < C1(A A, C)

|
||VUZI||L00(T2) <Ci+1:=0s
Yy (y) = Up (V" (y)
Yo'(y) =y

differentiating with respect to y
{atvyt”(y) = (VUr (77 () 0 VY ()
VYbn(y) = Iaxo

|

H|IVY (W)l < Cof [VY ()]

VYl =1
|

e” R <[V (y)] < e

Also, since
i =poo (Y™

A< <A PPl coarzy < Co

So aggregated /collectively /combined we have the following

|D? P | co.a(r2) < Ch
VU oo (r2) < C2
e < [VY(y)]] < e

o7 [l o T2y < Co
A<pi <A

99
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Proof.

3.1.1 Constructing the approximate solution

We set Co := 2[|pol|co.e(r2)y and let n € N. Since pg and the Lebesgue measure are
probability measures on the torus, we apply Theorem2.1 to obtain a unique convex
function Py : R? — R whose gradient sends pg to dz i.e.

PO = VPO#dCC

2
and such as Py — @ is periodic.

Let b > 0 for ¢t € [0,b] we proceed to “freeze” the velocity vector field on this inter-
val. We define

Ul = (VP — 1d)™

Remark. Notice that by definition both the pressure P/* and the velocity U;* are con-
stant in terms of ¢t and n. That is why we say that we have “frozen” the velocity, meaning
that it is time independent.

By Caffarelli’s regurality theory for the Monge-Ampére equation we also have that

3C1(A, A, Co) >0 ||D*PP|goarey < C

Thus, we can obtain a bound (time ¢ and space y independent) for the gradient of the
velocity vector field, indeed:

First, we notice that since P/"* is C*® and due to the definition of the velocity as

Up = (VP - Id)l we have that U is C1. Indeed, we can take the classical gra-
dient.

Then we calculate the gradient using the fact that the gradient of a perpendicular
vector equals the perpendicular of the gradient of the vector.

Up = (VP —1d)" =

VU =V (VP —1d)T) = (V(VEM -1 d))L = (D2 — Inx)™

And now we calculate the L°°-norm using the fact that the norm of a perpendicu-
lar vector is the same as the norm of the vector itself.
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. triangle inequality

VUl poor2) = I1(VUP) (|oo ey = [[D* P — Incallpoo r2)
<|ID?P|| poo 12y + [[Taxall oo (12)

It holds that || D?P{"" || pec(q2y < |[D*P/""
[H2x2[| oo (r2) = max{[|(1,0)|| oo (g2)» (0, D)l ooy } =1

So, by combining the two above, we have that |[VU||gec(12) < C1 + 1

|C0,0¢(’H‘2) < (4 and

Remark. As we have already discussed in Subsection2.2.1, since the gradient of U™ (y, t)
is bounded in time as well as in the spatial variable y, the flow is indeed well defined
(the initial value problem has a unique solution) in the whole interval [0, b]. Existence is
of course needed, but the uniqueness is also crucial because we want to define a function
y — Y"(y) and to do so we need the initial value problem to have a unique solution for
the initial data y = Y"(0)

We then define for every y € R? and the fixed n € N the flow Y;* of U}, which is the
unique solution of the initial value problem

{@Y”(t} = U™ (Y™(t),t)
Yr0)=y

The n isn’t a variable (for now), flow is n-invariable in every step. The flow is the first
function to be time-dependent so far, and it will help us to make things actually “flow”
in time.

To this end, we define the density p}* using the flow Y;"(y) to send it to pg
Pt =Y upo
Thus, pf := V)l =—= <P <A
us, Py poo (Y{") Npo<h S P =

To obtain a bound for the C%®-norm of p! we will “pass through” a bound for the
Euclidean norm of the flow Y;". We can rewrite flow’s initial value problem to read as:

{@Yﬁ(y) = Ul (Y"(y))
Yi(y) =y

Notice that due to the fact that the velocity field U is C!, the time derivative of the
flow is also C'. We then differentiate with respect to y and by the chain rule we get:

{vam"@) = (VU (7)) 0 VY ()
VY (y) = Lax2

Using the symmetry of second derivatives by Schwarz’s theorem for mixed partials we
have that Vo,Y/"(y) = 0,VY;*(y). Hence,
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{atwﬂ(y) = (VUr () e VYY)

VYJ' (y) = I2x2

{Hatvn"(ym = | (vor o) o vy
VY@l = 2o

Our goal now is to apply Gronwall’s lemma on the function ||VY;"(y)

3.1. Existence

||, to do so we

need to find an estimate for its time derivative involving the function itself. We set out

to prove that

VY W)l < V()]

Proposition 3.1. Let f : A CR — (R", (-,-)) with f € C*(A), that is f is continuously

differentiable then

2@ < o)l (3.1.1)
Proof.
Dl F ] = o/ TP, F)| =" M.z@m, f(t)>|
1 V320 1
= -8, 7 20~ g, 7 <
‘ HON >>| (@t 0] =" s [(Ous ). 10 <
Canchy-Sehwar 1[0,/ (1)[|- |1/ _ 106701 - 117 0| _
wais gy ol
]

Using the proposition above we obtain: ’@HVY[‘(@/)H‘ < ||10: VY (y)|

Since we have shown that ||, VY;"(y)|| = H (VUt" (Y;”(y))) o VY;"(y)H

Using the Frobenius norm submultiplicativity PropositionA.6 we have that:

|(vur o)) o vyviw)|| < || (Vo o w) || 119 Y

)|

And because of the time and space boundness of the velocity vector field’s gradient:

[[VUE| oo (12) < C2 we have aggregately proved that indeed

VY ()| < Cal |9y ()]

If we expand the absolute value in the inequality above we have that

G| VY ()l < Al IVY ()] < Cof[ VY ()]

62



Chapter 3 3.1. Existence

So, right now, we are able to put in use both Gronwall lemmas to obtain the inequalities:

e_CQtHVYOnH < Hvy;n” < eCQtHV}/O"H Vit € [Oyb] W
o=

e VY| < e

The next step is to show that the defined density (the solution of continuity equa-
tion is a function as it has been discussed in the Subsection2.2.1) p is C%®. To do so,
we will show that [|p}|[co.e(2) < €C2th0HCO,a(’H‘2) and we will finally choose a particu-
lar T' > 0, which will preserve the Holder continuity for the approximate solutions and
make them (and the actual solutions) local in time.

To prove the asserted inequality we will show that the composition of a Lipschitz con-
tinuous function with a Holder continuous function is Holder continuous as well.

Before we move on to state and prove the proposition we are going to need, let’s check
out that this is indeed our case. Thanks to the bound e~“2! < ||[VY;?|| < e“?! of the
spatial derivative of the function Y;* : R? — R? we have that it is actually a bi-Lipschitz
homeomorphism i.e. we have that e~“?*||z —y|| < ||V} (2) — Y (v)|| < || —y|| and
Y;* is an injective and surjective function from R? to R?. So Y;" is invertible, hence
vte (0,5 I (V) R2 SR

onto

Also

Definition 3.1 (reverse Lipschitz). We call a function f : U C R" — R™ reverse
Lipschitz with constant K : <= 3K >0 ||f(z) — f(y)|| > K||z —y|| Y,y € U

Clarification 3.1.1. The norm symbol appearing in the above inequality refers to the
Euclidean (or any equivalent) norm on the respective spaces i.e. R™ and R™.

Proposition 3.2. Let f, g be two functions where g is real-valued, f is invertible with
f(Df) € Dy = D,. If f~!is reverse Lipschitz with constant K and g is C%%, then go f
is also C0@.
Moreover if K <1 we have that:
1
lg o fllcoap,) < Ko gllco.e(p;) (3.1.2)

Proof. For simplicity we will denote the domain Dy of f as U. By definition we know

that:
g Fllenay = sup lgo f| + sup L) 9 W)
U wiy ||z —yl|

r)cu
We proceed estimating each quantity: sup [go f| = sup |g] < sup |g]
U F(0) U

Since f is invertible, 3f~!: f(U) (iiti) U which means that for all x,y € U there exist
unique z,w € f(U) such that f~!(z) =2 & 2z = f(z) and f~}(w) =y < w = f(y).
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Also x = y & fHz) = f'(y) & 2z = w, because f~! is an injective (which im-
plies the straightforward direction of the equivalence) function (justifies the reverse
direction). Thus we can rewrite the seminorm as:

19— g(w)
o 1771 = T (w)
f()

Now we will make use of the fact that f~! is a reverse K-Lipschitz function, which
implies that 3K > 0 such ||f~4(&) — f~Y(®)|| > K||Z — g|| Vz,y € f(U) (we use the
tilde symbol to avoid confusion and conflict with the previously used x and y). Choosing
T =z and § = w, since z # w, we have that:

74 1 1

“1/y g1 _
1@ = ol Kl =l 2 iy = 1wl = K —wll =

exponent a>0 1 < 1
positive bases || f71(2) — f~H(w)||* T K[|z — wl||*

Putting together all the above we have shown that:

l9(f(x)) — g(f(v))]

llg o fllco.e@y = Sup lgo f| + sup

oty || — y|*
U
l9(2) — g(w)]
< sup|g| + sup — —
W lgl S ) Tl
F(U)
1 l9(z) — g(w)]
< su + — sup —~>F0————
Up 91 K~ z;ﬂll)) ||z — wl|
F(0)
1 _
< suplg + -1 sup l9(z) — g(w)]
U

K oz |2 — wl|®
U
To finalise the proof we discern the three possible cases of K > 0

i) If K =1 then immediately we obtain: ||go fl[co.a@y < [|g]lco.e@

i) If K <1 then 25 > 1= 1< 7 and since sup |g| > 0 we obtain:
U

1
Hg © fHCOvO‘(U) < ﬁHgHCO,Q(U)

iii) If K > 1 then % < 1 and since the seminorm is positive we obtain:

g o fllcoawy < llgllco.eq

Remark.

The special case where sup |g| = 0 or sup loz)=g(w)l - _
U zFWw

e—wlfe = 0 does somewhat easily imply

U
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the same result. Indeed if the supremum of a non-negative quantity is zero, then the
quantity itself is constant and equals zero. Thus g =0 or g(z) = g(w) Vz,w € f(U) =
D, which both imply that the function g is constant so g o f is constant as well, hence
the proposition is proven.

O]

Returning to our particular case. In order to implement Proposition3.2, we firstly
recall that pf = poo(¥;")*. So we readily choose g = pg € C%*(T?) and f = (Y;*) " for
each time t. Since the flow is a bi-Lipschitz homeomorphism of the whole space to itself,
it follows that (Y7*) ' (R?) = R2. Now all it remains to be shown is that f~' is reverse
Lipschitz. Indeed, f~' = Y} for which it holds that e=C2!||z — y|| < ||Y*(z) — Y*(v)]|-
Hence f~! is Lipschitz with positive constant e~ ¢?* < 1, since t > 0 and Cy > 0.
Because the Lipschitz constant is also space-independent (i.e. it doesn’t depend on
the space variable, although it is time-dependent) we can apply the recently proven
proposition to obtain the following bound for the C%®norm of the measure p

1 c
o oo T2y < (e Gty l[pol|co.a(r2y = € 21t|’/)0’|c*(w(1r2)

Since « € (0,1), Cy > 0 and t > 0 we have that aCot < Cyt. The monotonicity of the
exponential implies that e®2t < “2t. Hence

C.
108 lcoa(rzy < €*|lpollco(r2)

At last, it is time to choose the T that will work for us. Our purpose is to show that the

measure p} is C%®. So, we specifically choose a (there are plenty numbers satisfying

this property) positive real number 7" such T' < % The chosen T' > 0 satisfies the

inequality e“?T < 2
Thus ||p} ||co.e(r2) < 2[|pol|co.e(T2) = Co

And we restrict the entire previous study in the time interval [0, %]

Before we repeat the procedure and “initiate” the second iteration, let us gather here
what we have so far to help us understand better what we have achieved.

So, collectively, for t € [0, %) with ¢t = % included for p; , for every y € R? and all

n € N we have constructed a triplet of sequences P*(y) U{*(y) p{ , for which the
followings are true:

Py =Y/ ypo = O} +div(Ui'p’) =0
Up = (VP —1d)"
0 = YO”#po = Idypo = po = VPyydr = VP ,dx

LPF =Y ypo
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Orpy + div(Upp) = 0
Up = (VB —1d)"

Py = VP ydz

pi = Y{" 4po

Second iteration t € [%, 2%) with 2 < n
We repeat the process with pf. In in the place of pg
We note that, by restricting in ¢ € [0, %) previously with ¢ = £ included for p}, we have

n
shown that:
vt € [0, 1]

C!
||p?”00,a(11‘2) <e 2t”p[)”00,a(qr2)

é’ Pt /| oy < e [l pollo.a(re)
and
A<pi <A
=A< ppj, SA
and

0% (| co.a(r2y < Co

>

CO,a(TQ) -
We define for

teZ2hywith2<n

the quantities
Ptn = PT/n

Ul = (VP — 1d)"
and
Py = tn#P%/n
=y = Py 0 (V)7

where
oY = U(Yy")
YT/n == Id
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Due to

Co,a(']p) - CO

Caffarelli’s regurality theory [23| section 5.1, holds true with the same constant C,
because it only depends on A, A, Cy which have remained the same.

ID* B | o 2y < €

Hence,

HUZl”Loo(qp) <Cy:=C1+1

Replacing in the calculations above, ¢ > 0 with ¢ — % > 0 since t € [%, 2%) now and
P = pr/m o (Y;*)~!, we have that:

Co(t—L
HP?HCO)W(TZ) <e 2(t n)HpT/nHCO,a(']IQ)
< eCz(tfg)eCz%HPOHCO,Q(TQ)

C
= e Zt”po”co,a(qrz)
< €C2T”POHCO@(T2)

< 2[|poll co.o (12
= CO

We follow the same process to obtain sequences on the whole time interval [0, 7] with
the same estimates remaining true.

Inductively, let us assume that at the i-th iteration t € [iZ, (i +1)L) with ¢ = (i + 1)L
included for p? and ¢ < n we have:

@
HP?HCO&(W) <e QtHPOHCO»a('H‘?)

and
A<pl <A

9% | o 12y < Clo

then at the next iteration ¢ € [(i + 1)L, (i +2)L) with ¢t = (i +2)Z included for p} and
i+ 1 < n we will have as well that:

C
”p?HCO»a(’P) <e 2tHP0HcO,a(T2)

and
A<p/ <A

1ot | go.a(r2) < Co
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Indeed, it is true that

c, G+DT
> lpoll o2y

Hp(iJrl)T/nHCO,a(Tz) <e

and
A< pnyrm S A

<
0, (TQ) - CO

Hp?iJrl)T/n

We define for

tel@i+1DL, (i+2)L) withi+1<n

the quantities
P = Piyiyr/n
U= (VB — 1d)™"
Py = Ytn#P(z‘H)T/n

where

oY = U(Yy")
Yiryrm =1d

Calffarelli’s regurality theory holds true with the same constant Cy

HDQP?HC(W(TQ) <G

Hence,
HUgl”Loo(qrz) <(Cy:=C1+1

(i+1)T

- since p}' = p(i11)T/n © (Y;*)~! we have that:

Setting t as t —

(t— (i+1)T

) Hp(i—‘rl)T/nHCo,a (T2)

_ G+DT (i+1)T
< C2(t="0) Co HPOHCOA(T?)

c
HP?HCQ‘I(TQ) <e

C

=€ 2tHP0||(,*(La(11‘2)
CoT

<e? ||P0||(10,a(11‘2)

< 2”00”00@(1#)

Existence

A similar argument to that of Part IT & III of the existence of weak solutions shows the

existence of smooth solutions as well.
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Chapter 3 3.2. Uniqueness

3.2 Uniqueness

To show that the local smooth solution of Theorem3.1, whose existence we established
in the previous section, is unique, we will utilize a combination of many facts and ar-
guments. So, we are again splitting the proof in several parts.

We again start off with a sketch of proof like we did for the existence part.

Sketch of proof

Equality of flows implies equal solutions

Let us assume we have two solutions as in Theorem3.1. It is enough to show that their
respective flows are equal (it is hinted in Subsection2.2.1 by the uniqueness of measure
solution o). Indeed notice that for a solution with the properties of Theorem3.1 the
velocity vector field is C' and we can apply the theory discussed in Subsection2.2.1
without mollifying.

Equality of flows will be proven with Gronwall’s lemma

In our effort to prove that the respective flows are equal, we want to prove that the
integral of the norm, of their difference, squared, over the torus is zero. To achieve that
we will show that th time-dependent integral aforementioned satisfies the condition in
Gronwall’s lemma.

Construction of the interpolating curve and proving its bounds

To show that the Gronwall lemma is satisfied we will have to estimate several integrals.
We start with the flows, we “pass through” the velocities leading to the convex conju-
gates of pressures. In order to ‘“return” to the flows we create an interpolating curve
and utilize the minimality of the optimal transport map from the one density to the
other. The bounds will be proved using arguments from the Monge-Ampére equation
and will help us “get rid”(bound by a constant) of everything else except the integral
over the torus of the squared norm, of the flows difference.

We now proceed to prove that the existing solution of Theorem3.1 is indeed unique.

Proof.

Let ,o,},Pt*’1 and ,o?,Pt*’2 be two (weak) solutions of the dual SG system (1.2.1) both
satisfying the properties stated in Theorem3.1 i.e.
opt 4+ div(piUf) =0 (x,t) € R? x [0, +00)
Ul = (VP —Id)* (x,t) € R? x [0, +00)
pi = VP dx t € [0,400)
. 2
Pi=p+ 12k z € R?

(3.2.1)
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Chapter 3 3.2. Uniqueness

Satisfying for ¢ = 1,2 the following;:

0<A<pi <A, pieL>(0,T],0%(T?), P/* e L>([0,T],C**(T?))

Representing the measures pi by their flows

Since P;*" € L*® ([0, T],C%(T?)) we have that sup ||Pt*7i||c2,a(']r2) < 400
t€[0,T]

Thus there exist two constants, time and space independent, that act as an upper
bound for the C?®—norm of the respective pressures’ convex conjugates P;”', that is:

3C; > 0 such that ||Pt*7i|‘c2,a('1[‘2) < C; Vtel0,T)

and now we repeat unaltered the exact same arguments to prove that the respective
velocities U} are C'! and Lipschitz.

First, we notice that since Pti’* is C>* and due to the fact that the velocities sat-
) . L .
isfy the SG equations (3.2.1) i.e. U} = (VP;’* - Id) , we have that both U} are Ch.

Hence, U} are C'.

Then we calculate the gradient using the fact that the gradient of a perpendicular
vector equals the perpendicular of the gradient of the vector.

. . L
Ui = (VP -1d) =
i 0% 1\ 7% L . 2 i,* L
VUi = V((VP* = 1d)") = (VYR ~ 1d)) = (D*P" = a)
And now we calculate the L°°-norm using the fact that the norm of a perpendicu-
lar vector is the same as the norm of the vector itself.

triangle inequality

) 7 €L 7%
IVU | oo (r2y = II(VUE) " M oo 2y = ID? P = Ipxal| oo 2y
< ||D2P™|| Lo (r2) + | H2x2|| oo (12)

It holds that ||D?P}"*
252 oo (r2) = max{[|(1,0)|[ oo (z2)» (0, D)l poop2y } = 1

|Loo(’]I‘2) < HD2PZ’*HCO,Q(T2) < () and

So, by combining the two above, we have that ||[VU{|| e (r2) < C; + 1

Thus each velocity U} is Lipschitz. So, as it has already been mentioned earlier in
the existence proof using SubsectionA.8.1, we can define the respective flows Y} of the
velocities Uf. Moreover we can rewrite the satisfied differential equation of the flows as:

0y} = U (V)
Y = Id
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Chapter 3 3.2. Uniqueness

So, as it has already been shown in Subsection2.2.1, the unique solution for the conti-
nuity equation of the dual SG system with initial data pg is ¥}’ #£P0-

Hence each measure pi in (3.2.1) equals Y}’ 2P0

3.2.1 Flows’ equality is enough to provide uniqueness

Before we proceed to actually prove that Y,! = Y;2, let us verify that this equality pro-
vides indeed the wanted result.

If we assume that Y,! = Y;? then p} = Y;l#po = Yf#po = p? = pi = p.

Since pi satisfy the equations of the dual SG system (3.2.1), we also have that p} =
VPtl#dx and p? = VPtQ#dx

Thus, we can write the measure p} as both VPtl#dx and VPtQ#d:c. Due to the (up
to an additive constant) uniqueness of the convex function P that Theorem2.1 states,
we obtain that Jc € R such as P! = P? + ¢

= P =P} 4 e= VB =V (P +¢) = VP + Ve VS VR =

1,% 2% 1,% 1 2% 1
= VP~ 1= VP ~Id= (VP'" —1d) = (VP}" ~1d) =
UtletQ

3.2.2 The Gronwall argument

And now we resume to the main purpose, to apply the Gronwall lemma on the function
O = / ||t — Y;QHS dy. Thus we calculate its time derivative.
TQ
2
o [ Iv2 — Y2l dy =
TQ

Leibniz

— 1 y2 2
integr;‘l rule /11,2 at| ’Y; Y;‘, H2 dy

= [ o (v Y2 )y

2<}/tl_}/1§2 , 8t(}/1§1_}/1§2)>dy

(R
T

2<Y;§1_}/t2 , 8t}/1£1_at}/152>dy

Y} flows
orntoy L2 V=Y LU () <02 (72) ) dy
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Chapter 3 3.2. Uniqueness

= [ 2(v ¥R U~ Ul () + UL () - U (V2) ) dy
T2
by the linearity of the inner product followed by that of the integral, we have that:

2
@/Hﬁ—ﬁmwz
']1‘2

:/ 2(Y, — Y2, UMY - U (Y2) Y dy +
T2
I PR
T2
Using the PropositionA.30 we respectively obtain the inequalities

L2 =2 vl () -0 () Yy <

o ML R I A OB (ol

and

[ 2v - y? Ul () - U (v2) Yy <
T2
< [Py [0k ) 02 0)

Since U} is HVUt1||Loo(T2)—Lipschitz , because HVUtlHLoo('EQ) < (Cy+1=:C3, it holds
that: Vz,z € R?
10 () = U ()|l < VU] zoogre) - |2 = 2l

By choosing z = Y;}(y) and z = Y;2(y) V¢ € [0,T] , we have that:
10 (V) = U (V2)lly < IVU oo (r2y - 1Yy = Y2l < Cs - |IYy = Y2

Since every norm is non-negative and the constant Cj is positive we square the inequality
to obtain: ) )
1y/1 1/y/2 2 1 2
U (Y7) = U (YOl < G- (1Y =Y/l

Integrating over the torus and combining with the respective inquality above, we have
shown that:

L2ty uh o)~ 0l (02) ydw < (4 G- [ =2 ay

In order to apply the Gronwall lemma, we are left with estimating the / HU,;1 (Y?) - U? (Ytz) H;dy
'I[*Q

This is the demanding part, where it will be needed to make several estimates through
constructing interpolating curves.

Before we arrive there we can make an estimate without constructing anything yet.
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Chapter 3 3.2. Uniqueness

Utilizing the measures py , p? and its bounds to “get rid of” the flow Y;? and then

A 2
“replace” the velocities U to remain with / VPtl’* - VPE’* dy to estimate. Indeed
2

'I[*Q

Because 0 < A< pg=1< % and it also holds true that 0 < pt2 < A. So
Lot ) =2 02w < [ 500 () — U2 () o =
1 1 (v2 2 (v2\2 1 1 2 2112
=A/HMOH—UAKW¢M=A/WWQ—mwnnwmz
T2 T2

#PO 1 2
5 L8 = U2l dot =

2_y2
P=Yy

1 2 p
= /\/EQHUtl_UgHzOKtQ dpo

1 2 P%SA A 2
_/ P?'HUtl_UEHz dy < / HUtl—UfHQdy
A T2 A>0 )\ T2

And now we evaluate the quantity ||U}! — U?| ];

Ut - U], = H (VP}* - Id)L - (vzaﬁ* - Id)L
2

- H (VR =1 — (VPP - Id))L 2

- H (vrbr - VPE*")L

2

2

= HVPtL* - vPtz* 9 — ||Ut1 - UEH; = HVPtL* - VPE’* 9

Thus we have shown that:

2

A . .
/ U (v2) - U (Y2)|[ dy < A/ HVPQ’ — VP dy
T2 T2 2

To “finish” the Gronwall argument we would like to estimate above the integral /
TZ

by the integral / ||V — Y?H; dy
T2

To achieve this final goal, we now implement the aforementioned interpolation argu-
ment.

3.2.3 The interpolation argument

Before we actually construct the interpolating curves, let us present their properties
which we would like to have. After listing the requirements that we want to cover,
we “explain” the reasoning behind our thinking process. With those “assumptions” we
argue to “show” that they indeed provide the result.
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Chapter 3 3.2. Uniqueness

Remark. We don’t actually prove that they give us the result, this will be done in the
next paragraphs "Constructing the interpolating curves" and "Proving the properties".

The main idea is to construct interpolating curves p? U, P for 6 € [1,2] in such a way
that they will satisfy all the following:

Oupl] -+ div(pU?) = 0 (A)
1 0 0
a <p; <Cy and Hpt HCO,a(']I‘2) <Cy (B)
Pty ) oz
t ol peo(r2y t Le(r2)
2 2
[ oty = [ ot 1R~ 1a][} ay (D)
T2 T2
where R; is the optimal transport map sending p; to p?
2
1,% 2 % 0,%
VP~ —VP = /aQVPt do (E)
1

Because if we have all of the above in our hands , then (E) together with Holder’s
inequality imply that:

2
valv*—vpl* Ly < Ha vrtellr as
t tll, = Ot (e
T2 1
In addition (A),(B),(C) imply that:
Ha vrt |t <0 HUG’* “d
oV Iy £2(T2) > Pt t oy Y

']1*2
At last equality (D) gives:

2
/p?-HUf’ Qdy—/ptl Ry — 1d])3 dy

T2 T2

And since R, is the optimal transport map sending p} to p?, that is it minimizes the
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Chapter 3 3.2. Uniqueness

integral /||S(a:) — z||3dp} () over all functions S such as p? = Supt, we can show that

T2
2
/p% Ry - Id2 dy < A/HY? 2 dy
T2 T2

The above quantities have no dependence on 0, hence integrating with respect to 8 over
the interval [1,2] we obtain the desired result i.e.

/ HVPtl’* — VP>
TQ

2 1 212
L4y < ACs [ [V} = Y75 dy
'I[*Q

Remark.
Benamou and Brenier in Chapter 3 at equation (32) of [6] note that the optimal choice
of a flow X (¢,z) is given by X (t,z) =z 4+ (V¥(z) — z).

Inspired by this, in our effort to relate Uf to R; — Id and since a solution to the
measure continuity equation is obtained utilizing the flow, the definition of p{ is quite
logical to be the pushforward measure of p} with a similar (to Benamou and Brenier’s
aforementioned flow X) function.

Constructing the interpolating curves

We move on to construct the interpolating curves pf U? Pf for 6 € [1,2]

Here, in this subsection we will define each curve and we will restrict ourselves to
only “noticing” simple remarks about them. These remarks will be useful in the next
subsection where we will prove the previously declared properties (A) (B) (C) (D) (E).

Since p; is the pushforward of the Lebesgue measure ( p; = VP! pdz ), it follows
that p} is dominated by (absolutely continuous with respect to) dx = [2. Thus, p; has

a non-negative density denoted also p} i.e. p; = pidx

The density is positive almost everywhere, due to the fact that the measure p; sat-
isfies the bound 0 < A < p} (by contradiction)

Also p} and p? are probability measures on the torus, hence they are both finite.
So, by Theorem2.1 we find a p}—a.e. unique optimal transport map R; sending p}

onto p?, which can be written as the gradient of an, up to additive constant, unique
convex function P; and satisfies the relations:

p% = Rt#p% and Rt = VPt
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Remark.

Be cautious of ¢ which for all calculations and quantities considered below is noth-
ing more than a fixed “parameter”. 6 is considered the time variable thoughout the
construction.

We now define for each t the curve of measures p! in R? as the measure p} pushed by
the function y + (0 — 1)(R:(y) — y) i.e.

pl = 1d+ (0 = 1)(R, — Id)

Trying to rewrite the “push”-function as the gradient of some other function we define
for each ¢ the curve of functions P/

2
) =202 4 0~ 1R

Now, it is easy to see that VP! = Id + (6 — 1)(R; — Id) , hence
P? = VPtG#P%
Indeed, we will prove that VP (y) =y + (6 — 1)(Re(y) — v)

2
PO = 2~ 00 4 01 == P =

- (81(<2—9>”y2”+(0—1>a<y)) (-0

0 and t play the role of constants for the partial derivatives 01,02 with respect to the
spatial variable. So, VP! (y) equals

(2-6)

(&5 20 +0-varw . B ol +0-n0:nw)

y=(y1,92) = lyllI* = 47 + 43 = Ailly|® = 2, for i = 1,2. So, VP(y) equals
(@=0m+©0-D0RG)  2=0p+0-1)%AW)
2-0=1-(0—-1)= (2—0)y; =y; — (0 — 1)y; for i = 1,2. So, VP!(y) =
= (1= (0= Dy + (O~ VAPY) . y2— (0~ D+ (6 - VP())
= (11 + (0= DA — (0= Dy, 42+ (0 D2Pi(y) — (0 - Dy2)

= (p) + (0= D(APE), RAE)) = O=D(0n.p2)

= (1, p2) + (0—=1)VP — (0-1)(y1,92)
=1 p2) + (0—1)R — (0—1)(y1,v2)

76



Chapter 3 3.2. Uniqueness

= (r,2) + (0= DR~ (v1,3))
=y + (0~ 1(R—y)

Having written p{ as VP! # pt and since we want to obtain property (D) which relates U/
to R, —Id, it seems rational (due to the change of variables property of the pushforward
measure) to finally define for each ¢ the curve of velocities U{ as:

Ul == (R, — Id) o VP
where Pta’* is the Legendre transform of P! satisfying VPtG’* (VP{’ (y)) =y

It remains now is to check that the constructed curves p{,Pf ,Uf provide us indeed
with the wanted properties (A)—(E). After this, we will finalize the proof concluding
the Gronwall argument we have started earlier.

Before we do so, we summarize what we have defined/constructed so far in term of
f-curves:

Pl = vpte#/’tl

2

Pl(y) = (2-0)14E 1+ (9 - 1)P(y)

VP (y) =y+ (0 —1)(Ri(y) —y)

Ul == (R, — Id) o VP

Proving the properties

We begin by showing that property (A) holds.

To show that 9yp! + div(p{U?) = 0 , it suffices to prove that for every ¢ € C°(R?)
8e/sodp?=/<vso,Uf>dpf

Proof. Let ¢ € C°(R?), then since p! = VP! #dp% formula (change of variables through
pushforward measure) of PropositionA.23 implies that:

/sodpfz/s@OVPfdptl

Setting for each t the function f(y,0) := ¢ (VPf(y)) for (y,0) € R? x [1,2] we ought
to prove that it satisfies the conditions of PropositionA.31.

Indeed
39/90650? = 39/900VP5’ dp; = /30 (sDOVPf) dpy

7



Chapter 3 3.2. Uniqueness

Using the chain rule we have that 9y (p o VP?) = (VpoVP?) o (99VPf). So, 89/90dpf
equals

/ (Voo VP!) o (0sVPY) dp}

Utilizing the fact that the gradient of pressure’s interpolating curve PY and the gradient
of its Legendre transformation are inverse functions i.e. VPte’* (VPte(y)) = y. We obtain

that: 8@/(,0 dp =
= / (Voo VP!) o (VP! o VP o VPP dp}

— [ (Voo @ oY) 0 VE! iyl

Since p! = VP! #ptl, PropositionA.23 for the change of variables through the pushfor-

ward measure implies that: Jp / @ dp =

= / Ve o (09V P! o VP™) dp]

Recalling that VP = Id + (6 — 1)(R; — Id) differentiating with respect to theta () we
get: OyVP! = R, — Id.

Furthermore we have defined U? as (R; — Id) o VPf’* , hence

89/9@@?2/%@@@? dp]

¢ :R? 5 R = Vy € R"*2 and Uf : R? — R? where for a vector-valued function we
identify R? with R2*!. Due to their dimensions we can rewrite the matrix product as
the inner product, that is

8e/sodp?=/<v<p,Uf> dp]
Proving property (A) O

The proof of properties (B) and (C) can be found in paragraph 5.2.4 of [23]. Here, we
will show the auxiliary property, which is needed for the proof

1
det(D?P) = L
pi © VB

Indeed
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We denote the densities of the corresponding measures with the same notation but
also putting a tilde above. Then, by PropositionA.25 we have:

/(sooVPf) Pt dw:/onPf dpy

Making use again of the equality p! = VPte#p% and the change of variables for the
pushforward measure PropositionA.23 we obtain:

/(sDOVPf) - pf do = /@dpf
Using PropositionA.25 one more time we are led to:
[ (eovrt)-siae= [ it ay

Setting y = VP?(z) a change of variables for the a.e. one-to-one (1-1) and continuously
differentiable VP{ gives:

/ (gp o VP,?) Pt da = / ((p ° vpf) - (ﬁf ° vpf) : ’det (D2Pf) ‘ dz

= / (@oVRﬁ) . <f)t1 - (ﬁ?ovpta) ‘det(Dsz)D de — 0

PropositionA.32 implies that:
5l - (ﬁf o vpf) ‘det (D2Pf) ‘ —0 12— ae
= (5? o VPf) ‘det (DQP[’)’ = 5

recalling that the measure pf is positive, hence so is its density, thus we have that:

~1
2p0\| _ Pt
det(D2P!)| = oo

recalling the definition of P as (2 — 9)% + (0 — 1)P(y), since P; and the squared

9
norm || - ||? [due to PropositionA.35] are convex and ?,9 — 1 are non-negative

PropositionA.33 implies that their linear combination i.e. Pf is convex as well.

Pte being convex it follows that its hesian is positive semi-definite, thus the determinant
of its hesian is non-negative, that is det (D2Pt9) > 0. So,

~1
det<D2Pt0> = %
pi © VB

Proving the auxiliary property. O

We then prove that property (D) is satisfied.
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Proof. Utilizing once more the pushforward measure pf = VPf# p} and the change of
variables via the push forward function PropositionA.23 we have that:

st =

Since UY = (Ry — Id) o VPte’* and VPte’*, VP! are inverse functions we get:

2
o] det = [ 1~ 2ai ao!

pt is absolutely continuous with respect to the Lebesgue measure (dy), thus using
PropositionA.25 we can insert the densities into the integrals.

2
[ el = [ ot i - 1a3ay

concluding this way the proof. O

2 2
Lo VP! dp} = / HUf ° VPfH2 dp}

Lastly, property (E) is an immediate application of the Fundamental Theorem of cal-
culus.

Concluding the Gronwall and thus the proof

As we have discussed using the bounds of the iinterpolating curves, we deduce:

/ HVPtl’* — VP>
TQ

2 1 212
LAy < G [ IV} = Y7|I; dy
']1‘2

Since,
2

2 A . .
Aﬂwﬁﬁ—WOﬁM@éAAJW%—Vﬁ’ﬁy

we obtain that:

A
[0t (v2) = 02 )y < con [ = v2
TQ

which in turn leads to:

2 ~ 2
@ﬂMhﬁ%@sgﬂM—W%@
T2 T2

So, the Gronall PropositionA.40 implies:

2 ~ 2
/H?—Kﬂb@ée“/mﬁ—ﬁﬂywzo
’]1‘2 TQ

80



CHAPTER

CONVERGENCE OF SMOOTH
SOLUTIONS TO THE EULER
EQUATION

4.1 Preliminaries on the 2d Euler equation

Whatever is mentioned here, is taken (and can be found there in more detail) from
Majda’s and Bertozzi’s book [31].

Here, we will briefly “discuss” some things that will help us have a better understanding
of the Euler equation which we are going to use.

Before we proceed to the “depths” of the final chapter, that is, the convergence of
smooth solutions to the Euler equation, we will make a short interlude to present a few
things about the two-dimensional Euler equation.

Navier-Stokes and Euler

We start off noting the Navier-Stokes for an incompressible, homogenous fluid with
constant viscosity v and external force Fj.

We do so in both two and three dimensions.

{atut + (ug, VIuy = =Vp + vAw + Fy - (z,t) € R" x [0, 400) (4.1.1)

divu, =0 (x,t) € R™ x [0, +00)

with A being the Laplace operator

d
A= Z o}
i=1

where we have abbreviated (like usual) the second partial derivatives, that is

A
A 8$ial’j
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Chapter 4 4.1. Preliminaries on the 2d Euler equation

and when ¢ = j we simply write:

) 02 02

ai = 895263:1 B 870?

We assume that there is no external force acting on our fluid i.e F} = 0.

Thus, the Navier-Stokes now reads:

{@ut + (ue, Vyug + Vpy = vAug  (2,t) € R" x [0, +00) (4.1.2)
divu; = 0 (z,1) € R" x [0, +00)
Setting ¥ = 0 (no viscosity) the Navier-Stokes reduces to the incompressible Euler
equation:
{@ut + (ug, Vyug + Vp =0 (z,1) € R" x [0, 400) (4.1.3)
divay = 0 () € R" x [0, +00)

In the following sections we will derive two equivalent formulations of the Navier-Stokes
equation.

The first one will provide us with an equation involving only the velocity u; (Leray’s
formulation).

The other will consist of an equation involving two quantities, the vorticity w; and
a stream function 14 (vorticity-stream formulation).

4.1.1 Leray’s formulation

Taking the divergence on both sides of the equation i.e. letting the operator to act on
the function of each hand side, while also using the facts that

diVUt =0
div ((ug, V)ug) = tr((Vut)2>
and that when divu; = 0 we have

diVAUt =0

We can extract a Poisson equation for pressure p; involving the velocity wuy
Ap; = — tr((Vut)Q)
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Chapter 4 4.1. Preliminaries on the 2d Euler equation

Assuming that w; is known we can solve this equation, leading us to the equivalent
system (to that of Navier-Stokes) for (z,t) € R™ x [0, 400)

Opug + (ug, Viuy + /9(:0 ) tr((Vut(y))2) dy = vAu,
R
divuy =0

Since we have reformulated the problem in a form containing only the velocity field
(the pressure can then be obtained by solving the above Poisson equation).

Although, we are technically done, there is another way to formulate the Navier-Stokes
using the Leray projection P

Proposition 4.1 (Helmholtz decomposition).

Let F € L?(R™ : R") then there exist a divergence free vector field w and a scalar
potential h such that F' can be written as the sum of w plus Vh the gradient of the
scalar potential i.e.

Jw,h : F=w+Vh

with
divw =0

Definition 4.1 (Leray projection).

We define the above w to be the Leray projection of F', this means that:
PF :=w

where w is given by the Helmholtz decomposition of F'.

After some formal computations we can derive an equivalent Leray formulation of the
Navier-Stokes:

Opur + P ((ug, Vyug) = vAuy
divu; =0

Remark.
Both Leray formulations are equivalent to the Navier-Stokes equation.
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Local in time reguralized solution to the Navier-Stokes

We firstly mollify (in a certain way) our equation, in order to show existence and
uniqueness of local in time solution to the Navier-Stokes.
We define the mollification operator J.

Je(f) i=mex f

where 7 is a standard mollifier and the scaling of it n.(z) = = (%)

Defining the rescaled velocity and pressure as well:

uj (x) == ut(g

)

pi() = m(7)

We are now ready to consider the mollified Navier-Stokes:

NS {&guf + J. ((Jeuf, V) Ju) + V5 = vJo(Adou) 414

divu; =0

Projecting on the space of divergence free functions, using the Leray projection, we get
(omitting the incompressibility condition):

[L— NS 0w +P(J: ((Joui, V) Joug)) = v (AJouf) (4.1.5)

By defining the operator:

Fe(x) := VJ&(AJaf) - P(Je (<J€f7 V>Jsf))
The L — NS; (4.1.5) becomes:
Opui = Fe(uy)
Proposition 4.2 (autonomous ODE system in Banach space).

Let B be a Banach space. Let F' : B — B be a locally Lipschitz map. Let also
H : B x [0,400) — B be a locally Lipschitz map, then for the autonomous system
(initial value problem)

O¢H; = F(Hy)
Hy=G

there exists a time 7" > 0 and a unique map H € Cl([O, T],IB%) satisfying the above (i.e.
it is a solution of the aforementined autonomous equation)
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We denote V™ the space consisting of the functions belonging in the Sobolev space
W2 with (weak) divergence being equal to zero.

recalling that we call the Hilbert space W™? as H™, we have that V™ is the space
having the divergence free functions of H™.

Note that V™ as a closed subset of a Sobolev space (Sobolev spaces are Banach spaces)
is also a Banach space itself.

Due to its definition F; has no dependence on time.
It can be shown that F; : V'™ — V™ and also that F; is locally Lipschitz.

Hence, forall ¢ > 0 there exists a unique, local in time, smooth solution u; to the
mollified Navier-Stokes.

We call such a solution, a reguralized solution.

Local in time solution to the Navier-Stokes
Taking the limit as ¢ — 0T, it has been proved [31] that we can obtain a solu-

tion to the Navier-Stokes (not the mollified one) equation such that it belongs in
c(l0,7),v™) 0 CY ([0, T), V-2)

Global in time smooth solution for the 2d incompressible Euler

Setting v = 0 and restricting ourselves to the two (spatial) dimensions n = 2, we have
the following result (see [31]):

Using the Beale-Kato-Majda criterion we can expand the previous local in time, smooth
solution into a global in time, smooth solution for the 2d incompressible Euler.

4.1.2 Vorticity-stream formulation
One more useful formulation of the Navier-Stokes equation is the vorticity-stream for-
mulation. We manage to “get rid of” the velocity u;.

Here, we will mention results for the 2d incompressible Euler only.
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We define the vorticity:
wy = curluy

which in two dimensions is a scalar field (a real-valued, multivariable though function).
Taking the curl on the 2d incompressible Euler equation i.e. letting the operator to

act on both sides, we get:
8tLUt + <ut, V>wt =0

But, since this equation still has the velocity, we have not finished yet.

Due to the fact that the vorticity in two dimensions is a scalar field, we compute to
make our equation simpler:

2
(ug, Vwy = Z ué@iwt
i=1

= <'U,t, th>

Thus, we have:
atwt + <’LLt, th> = O

We will make use of the following fact:

Proposition 4.3.
A conservative vector field can be written as the gradient of a scalar field.

We assert that —ui- = (—u?,u}) = —ule; + ujey is conservative.

Indeed,

Utilizing the Gauss-Green theorem we have:

yg —uley +ujes dl = //31ut1 — Oo(—u?) dx dy

c D

= //&ug + Ogu? dx dy

D

= ﬂ divu; dz dy

D
=0

yfufdzzo
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Hence, there exists a scalar field ¢, which we will call stream, such that

—ui = Vi

Since (fJ-)L = —f we get:
€
ur = Vb
Substituting this into dwwy + (ug, Vwy) = 0 we get:

Buwr + (Y, Viwy = 0

Since u; = VJT_/Jt is divergence free, it is true that:

<Vj’l_ﬁt, th> = div(thiDt)

. €
Also, since u; = V4 and w; = curlu; we get:

wp = Ay

So, we have obtained the 2d incompressible Euler equation in vorticity-stream formu-
lation:

&gwt + div(th%pt) =0
wr = Aty

Remark.
The incompressibility condition div(V@t) = 0 holds true, because we have shown that
Propositionl.1 the rotated gradient of a scalar field is divergence free.

4.2 The dual SG equations as a coupled system of continu-
ity and Monge-Ampeére equation

In order to “see” that the dual SG equation “looks like” the Euler equation, we have to
reformulate it.
We begin by rewriting the equation p; = VP,4dz of the dual SG system, in its more

standard counterpart using the Monge-Ampére equation.
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Proposition 4.4 (Formal passage from the pushforward equation to the Monge-Am-
pére equation).

Let the measure p; satisfy the pushforward equation
Pt = VPt#dx

where P; is C? then its density p; (denoted by the same symbol) satisfies the Monge-
Ampére equation

pr = det(D?F))
Proof.

Let ¢ € C°(R?) (thus measurable). Since VP, is continuous, it is also (B(R?), B(R?))-
measurable.

The push forward change of variables thus implies:

/s@dptszoVPtdy
R2 R2

We perform one more change of variables setting
y = VP(x)

Due to the fact that for all times ¢ the functions VP, VP are inverse to each other,
we get that
z = VP (y)

So, we have:

/@ oVP, dy = /go‘det (V(VP))| dx

R? R?

= /go‘det(DZPt*)‘ dz

R2

Since the measure p; has density it holds true that:

/cpdpt—/wptdx
R2 R2

Thus, we aggregately get:
/gopt dx = /go‘det(DQPt*)‘ dx
R2 R2
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N /@(pt ~ det(D?F})]) = 0

Using PropositionA.32 and/or the arbitrariness of ¢ we deduce that:
Pt — |det(D2Pt*)‘ =0 for a.e. z € R?
pr = ‘det(DQPt*)|
At any point, the hessian of any convex real-valued, multivariable function (i.e. scalar

field) is positive semi-definite

The result now follows immediately. O

We can prove that the reverse direction is also true, that is, one can pass from Monge-
Ampére equation to the pushforward equation.

Hence, both formulations (pushforward and Monge-Ampére) are considered equivalent.

Proposition 4.5 (Formal passage from the Monge-Ampére equation to the pushfor-
ward equation).

Let the density p; of the measure (denoted by the same symbol) p; satisfy the Monge-
Ampeére equation
pr = det (DQPt*)

then the measure p; satisfies the pushforward equation

Pt = VPt#da:
Proof.

We define the auxiliary measure:
Ot = th#dl'

Let ¢ € C2°(R?) (thus measurable). Since VP, is continuous, it is also (B(R?), B(R?))-
measurable.

The push forward change of variables then implies:
/cpdat:/onPtdy
R2 R2

Since o is absolutely continuous with respect to the Lebesgue measure TheoremA.1
provides us with a density, which we denote with the same notation o; and satisfies:

/gpatdxz/godat

R2 R2
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Z/SOOVPtdy
R2

Setting = as VP,(y), due to the fact that for all times ¢ the functions VP, VP are
inverses, we get that + = V P/ (y)

So, we have that:
[eovray= [elaamwr)|
R2 R2
_ /¢\det(p23*)\ da
R2

= /SO,Ot dx

RQ

Hence, we deduce that for all ¢ € C>°(R?)

/wt dx = /s@pt dx

R2 R2
:>/g0(at—pt)dx20
R2

The arbitrariness of ¢ implies that
Ot = Pt

q.e.d. O

So, we have shown that:
Orpt + diV(tht) =0 O¢pr + diV(tht) =0
U = (VP —Id)t & U = (VP —Id)*
Pt = VPt#dl‘ Pt = det (DQPt*)

With this, we can rewrite the dual SG system, bringing it down to two “tightly-packed”
equations.

Inserting the Monge-Ampére equation and substituing the velocity U; in the continuity
equation, the dual SG system

Orpy + div(pU) = 0

U, = (VP — Id)*

Pt = VPt#dz
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becomes
Bipi + div(p (VP — Id)") =0
pt = det (DQPt*)

We define the scalar field:

2
oo pe_ Ll
t - t 2

Thus we can rewrite:

VP —1Idas Vg

and
D?P} as D¢ + I

Substituting these as well, we obtain:

0tpt + div(ptV5t) =0
pr = det(Dth + Ig)

Remark.
Note that this system above is equivalent to the dual SG system.

The reason for this is that p; remained unchanged. Also, if we have a solution P/
of the dual SG equation then we can obtain a solution ¢; of the above system, and vice
versa, if we have a solution ¢; of the above system then we can obtain a solution P} of

2 2
the dual SG system, just by setting q; := P} — @ and P/ = q; + @ respectively

i.e. we have
8tpt + diV(,OtUt) =0

U, = (VP —Id)- &

{@pt + diV(ptVJ(jt) =0
pt = VPydx

pr = det(D?q; + I)

The dual SG system now looks pretty similar to the two dimensional Euler equation in
vorticity-stream formulation:

(‘3twt + div(th@t) =0
wr = Aty

with p; to be the analogous of wy, even though the first one is density in a dual space.

The obvious difference between them is that instead of a Poisson (for ;) coupled with
the continuity equation, we have to deal with a Monge-Ampére equation (for its analo-

2
gous q; + @) coupled with the continuity equation.

2
However, we can linearize the Monge-Ampére equation (for ¢ + @) and make her
“look like” a Poisson equation (for q;).

91



4.2. The dual SG equations as a coupled system of continuity and Monge-Ampére
Chapter 4 equation

The reason for this is that near identity the determinant behaves like the trace.

Furthermore, the trace of the hessian equals the Laplace operator.

Proposition 4.6 (trace of hessian equals Laplace operator).
tr (Dz) =A
Proof.

Let f:R™ — R be a C? function

Since f be a real-valued function we get:

Df:(alf)ana"'aanf)

and differentiating one more time, we have:

Oif owaf - Owmf
D2 — 32.1f 8%f 62.nf
On1f Opaf - Oif
Hence,
tr(D2) = Zn:(‘)f =A
i=1
the arbitrariness of the function proves the desired ]

Now it is left to show that det (Dth + Ig) is close to 1 + Aq;

Motivation

Proposition 4.7 (near identity the determinant behaves like the trace).

Let A € R?*? be a symmetric matrix then
det(I +cA) =1+ etr(A) + 2 det(A)

and
det(I +eA) =1+¢etr(A) + O(e?) for e — 0T

Proof.

Because A is a real symmetric matrix, there exists an orthonormal basis consisting
of eigenvectors v; for ¢ = 1, 2.
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Thus, there are 2 distinct eigenvalues A; for ¢ = 1,2 corresponding to the respective
eigenvectors v;.

And there exists and orthogonal matrix P (PTP = PPT = I,) such as:
PfAP=D
where D is the diagonal matrix consisting of the eigenvalues.

It holds true that:
2
tr(A) = tr(P'AP) = tr(PTAP) =) N = M + Xy
=1

since the inverse of an orthonormal matrix is its transpose.

and
2

det(A) = det(PTAP) = [T A = M
=1

due to the multiplicativity of determinant.
It is also true that the eigenvalues of €A are e\; for i = 1,2

The characteristic polynomial of €A then reads:

det(eA — slz) = (s —eAi)(s —eXa)
=57 — (M + A2)s 4+ 2 A\
= 52 —ctr(A)s + 2 det(A)
Setting s = —1 we get:

det(Iy +cA) = 1 +etr(A) + &* det(A)

Let eg € R
Since ’52 det(A) ‘
I~ Jder(a)
Assuming that det(A) # 0 we deduce that:
IM :=|det(A)] >0 VeeR ‘62(15;5(14)‘§M
Let ¢ > 0, the above implies the following three:
IM >0 3I(>0 Vee (e9—Ce0+) ‘62(1;;(14)‘§M
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1.e.

e2det(A) = O(e?) for e — 0T
If det(A) = 0, then all the previous work still holds true for every M > 0. O

For ¢ — 07, 2 — 0. Hence, we can say that O(g?) ~ 0
So, Proposition4.7 for the symmetric D?¢; gives:
det (12 + 6D2qt) =1+ 5tr(D2qt) + O(e?) for e — 0

that is
det(I +eD%q) ~ 1+ eAg

leading to

det (Ig + 5D2qt) being close to 1 4+ eAgq; for small enough &

We bring back to our minds that p, = det (D2qt + IQ).
So, if p¢ is close to 1, one would expect ¢; to be small. In turn, det (Dth) would be small.

From Schwarz’s theorem for mixed partial derivatives, D?q; is symmetric and using
again Proposition4.7 we get:

det(I + D%q;) = 1+ tr(D?q;) + det(D?q)

Since we expect det (qut) to be small, the above equality can be considered as:
det (I + D2qt) =1+ tr(Dth) + O(det(D2qt))

with O(det (Dth)) ~0

Therefore, we have:

pr = det (Dth + Ig) = det(Ig + qut) ~ 14+ Ag

That is
pr— 1~ Ag

where p; — 1 also satsfies:

8t(pt — 1) + diV((pt — 1)V5t) = 8tpt + diV(ptVi]t — Vét)
== 8tpt + le(pthqt) - le(qut)
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= 8tpt + diV(ptvat)
=0

because the differential operator div is linear, the gradient of a rotated vector field is
divergence free Propositionl.1 and p; satisfies the dual SG system.

In other words, if we assume to have initial data pg which is close to 1 (meaning that
po — 1 is small)

Then someone expects that for a solution pg, ¢ of the dual SG system, the quanti-
ties p — 1, ¢; would stay close to a solution wy, ¢ (respectively) of the incompressible
Euler equation in vorticity-stream formulation:

8twt + diV(th@t) =0
wr = Ay

To take advantage of the aforementioned information, in order to truly show that a so-
lution p; — 1, ¢; of the dual SG system converges (under some norm) to a solution wy, ¥
(respectively) of the incompressible Euler equation in vorticity-stream formulation, we
rescale.

1 t
For € > 0 we multiply with — and we rescale in time setting ¢ as —
€ €

4.3 SG; rescaling the dual SG system

Let p¢, q: be a solution of the dual SG system. Let € > 0 as well.

We define: )
pf = g(pt/s - 1)

1
g = EQt/a

We compute to describe the equations above in terms of p; and ¢; respectively

1

i = Z(pye = 1)
= epi +1=pye
= epyt+tl=np

where in the first step we multiplied the equation by € and in the second step we set ¢
as et

Similarly,
¢ = EQt/s
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= G = e
= &gy =

Since py, g; satisfy the dual SG system, we have that:

atpt + div(ptvat) =0
Pt = det(Dth + Ig)

Inserting p; = epZ; + 1 and ¢ = eqf; we get:
Oulepz, + 1) + div((ep +1) V (0% ) = 0
eps + 1 = det(D?(eq,) + I2)

We calculate each quantity seperately:

Oi(ep +1) = €di(pzy)
= 58tp§t . 8t(8t)
=cOpS - €

2 G
=¢£ &fpst

Due to the convention that V1 refers to differentiation with respect to the space vari-
able only, the function ¢, is not a composition and its derivative can be computed
directly (at time et)

Also, we know that the differential operator div is linear.

Hence,
div((ep% + 1)V (eaZ) ) = div((ep% + 1) eV )
= div (520215 quit =+ EVJ@;)
= 2div(pS, Vi) + ediv(V )
. €
= 52d1V(P§t \% Q:t)

because the rotated gradient of a real-valued function (namely ¢,) is divergence free
Propositionl.1

Combining them with the fact that D?(eqg,) = eD?q¢5, we have that:

20 ply + 2div(psy V%Jgt) =0
eps + 1 = det(e D¢, + 1)

With ¢ being positive, we divide with €2 # 0 to get:

Oyp2y + div(pg Végt) =0
eps + 1 = det(e D3¢, + 1)
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“Scaling back” we set ¢t as ¢ to obtain the following system for pf, ¢;

QP + div(p; VgE) = 0

4.3.1
epf + 1 = det(eD?q; + I2) ( )

[SG. system] {

which is precisely what we will call the SG, system from now on.

Remark.
The dual SG system is equivalent to the SG. system

The direction dual SG system = SG; system has just been shown. We now prove the
reverse:

Indeed, if we have a solution pf, ¢; of the SG. system

upf + div(pf V) =0
epf + 1 = det(eD?q; + I2)

then we can follow the process above (to derive SG. system) backwards (exactly as done
earlier) to obtain:

Or(epzy +1) + diV((El)gt +1) Vl(WSt)) =0
eply +1 =det(D*(eq5) + I2)

Setting
pri=epz +1

Q=g

we are lead to a solution of the system:

Avpr + div(ps V) =0
Pt = det(D2qt + ]2)

which is equivalent to the dual SG system as it has been previously shown.
Thus,

dual SG system < SG, system

Having derived the rescaled dual SG system, SG., we proceed to state and prove the
main theorem of this chapter.
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4.4 Convergence of smooth solutions

We are now ready to state the theorem:

Theorem 4.1.

Let we, Y be a solution to the incompressible Euler equation in vorticity-stream for-
mulation

Oy + div(th#j}t) =0
wy = Aty

such that w € CE_(T? x [0, +00))

Let also € > 0 with pj be a family of probability measures on the torus, initial data to
SG. system such that:

Jaec(0,1) INAER : 0< A< pj <A and pf € CO¥(T?)

and .
£0— 0 is bounded in W*(T2)
€

then

3 a family pf, ¢ of solutions to the SG. system such that

e _ Vit —V
VS>0 Jeg>0 Vee (0,e) : X 6““, % - i
are uniformly bounded (no dependence on ¢,¢) in L*([0, 5], Whee(T?))

Proof.

Before we begin proving anything at all, let us firstly check what is enough to show
instead.

We define for all y, t, e
a4 —

(>
—w
g; == Pt L and hi ==
S
So, we actually need to show that || g7 ||jy1.00 » [|VAE][j1,00 are uniformly bounded.

Let us assume that the following inequality holds true
1Ml o2y < Cllglgz.a ey (1 F 195 lco.a(r2)) (4.4.1)

Then, for the quantity ||VAF||;1..c which we want to estimate, the following facts hold
true.

Due to the inclusions
CQ,a(TQ) C CQ(TQ) C CI,I(TQ)
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and the fact that the W5 norm is equivalent to the Lipschitz norm C%! on bounded
sets with smooth boundary, that is

H'HWLOO(’JI‘?) ~ H'HCOJ(W)
we get:
VR [woe(r2y < ClIVAL o2y < CllAEll 112y < CllAEl 072
Also, the inclusion C%'(T?) C C%%(T?) holds true and using again the equivalency of

the aforementioned norms, we have

19t co.a(r2y < Cligillcon(ry < Cllgs llw.oo (2

Thus, utilizing the inequality (4.4.1) we obtain
V8 oo ey < Clotnn sy (1 1 1. r2)
Poincaré inequaltiy implies that |[g7[[ ;00 (p2) < C[VGf| oo 2y

Since ||g[lyy1. is by definition equal to the sum ||gf|| oo (g2) + [[V§ | oo (r2) we deduce
that

||Vh§||W1,oo(T2) < Cuwt”CQ,a(Tg) (1 + ||V9§||Loo(1r2)) (4.4.2)

Hence, it is enough to prove that ||V g;||;« is uniformly bounded and that the inequality
(4.4.1) holds true.

We begin proving the former.

H Vg; is uniformly bounded

=
w € CE . (T? x [0,+00)) implies that:

VS >0 e L®([0,5],C3T?)

The condition that each pj are bounded and Holder continuous provides us for each ¢
with a local smooth solution pf, g; of the dual SG system.

Since dual SG system < SG. system we have a solution pf, ¢; of the SG; i.e.

dupf + div(pf Vg5) =0
epf +1= det(&tDQq,;E + Ig)
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recall that we have defined:

c _ g __
9; = PEZ 5t and RS = G — Vi
£ €

Thus we have:
p; = eg; +wi and qf = ehi +

and the SG, now reads:

O(egf + wi) + div((eg + wi)V(hs + ¢y)) =0 (4.4.3)
e(egi +wi) + 1 = det(eD*(eh§ + ) + I2)
We compute making calculations for each quantity individually.
Oe(eg; + wt) = €0rg; + Opwr

We continue with the divergence differential operator div and the quantity
div((egf + we)V (ehf + 1))
Utilizing the fact that the rotated gradient of a real-valued function is divergence free
Propositionl.1 we get:
divV (ehs + ) = 0
We make use of Corollaryl.2.1 to obtain

div((egf +wi)V (ehf + 1)) = (V(egi +we), V (ehi + ) )
= (Vi + Vi, eV hE + Vi )

By the linearity of inner product we have:

div((egf + wi)V (ehi + 1)) = £(Vgi, eV hi + V) + (Ve ,V BE) + (Ve , V)

Again, since divV@t = 0 (divergence of rotated gradient), we have that:
<VOJt ,V#M = div(th#l)t)

So,
8twt + <th ,V@Q = 8twt + diV(thi/)t) = 0

because wy, 1, are a solution to the incompressible Euler equation in vorticity-stream
formulation.

Thus, the first equation of SG,
O(egs +wr) + div((sgf + wt)VL(shf + ¢t)) =0
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becomes .
edg; +¢(Vy; , sVﬁzi + V) + e(Vwy ,Vﬁﬁ} =0

that is .
0 + (Vg5 , eV S + Vi) + (Ve VRS = 0
Differentiating with respect to space, we get:

VO + (eV I + V) o V(Vgl)+
FV(EVE + Vi) o Vgl + V(Vr) o VI + V(VE) o Vi, = 0

Since V(eVhi + V) = V- (eVhS 4+ Vi) and also Viwo Vz = Vwo Vz for every w, z

we have:

VG + (eV B + Vi, V)Vgi+
+ (eD2hE + D2y) 0 Vi + D2w; 0 V hE + D2hs 0 Vg, = 0

Thus, we obtain

Vg + (eV b + Vi, V)Vgi =
= —(eD%hS + D*y) o Vigi — D2wy 0 V'hi — D?hi o Vg =: f¢

where we define the right hand side of the equality as a function f;.

In order to make “easier” the process of estimating ||Vgf| ;o through | ff]l;« , we
simplify our notation a little bit.

Let us define the functions
u; := Vg; and bf := EVth + VY

v := Vh; and ay:= Vi, B := Vuwy

Then, we obtain from the equality above that

s + (b5, Vyus = —(eVo§ + Vag) ouf — Vo (v5)F — Vi o Bi- =1 ff (4.4.4)

So, we begin making computations with || ff ||«

15l = || ~(V0F + Var) 0w = Fhio () = Ve o8|

The triangle inequality implies

1]l oo

101



Chapter 4 4.4. Convergence of smooth solutions

< ell(VeR) o e + I(Var) 0wl + | VB0 01|+ Voo 8|

Cal I 25 1 o7
< ellof o 65 o + I8l el e + el lof e + 1105 o el

< ellof ol e + Wl el e + oot 0l o+ etz 105 .

= &lof e e + el el e + 2ltll 10 .

= VA oy IV e + 1t 195 1 e + 2lotllcal| VS o

< el Voill peollugll oo + [[Varll poollug | oo + IV Btll oo

Hence, using inequality (4.4.2) we get

£l oo <EC) )1z (1 + 1V GE N oo ) IV G [ oo+
¢l o2 1V | e + 2llwtll oo Cpefl oo (1 + 1V GEll 1)

Utilizing the inclusion C%%(T?) C C?(T?), we have
£l oo <EC) el 2wtz (1 + 165 Lo ) IV GE | oo+
+ Ol pnalwellgnna I VIE N 22 + Clgal panaflwell o (1 + 11951 22)

we get
1fllzee < CE)A + |Irllze +ellrllZe), te[0,T]. (4.4.5)

Of course, since 1; and w; are in C2(T?) for any t € [0,7] for any T > 0 (due to the
global existence of smooth solutions for the Euler equation in T?), the time-dependent
constant C(t), t € [0,T], in (4.4.5) can be estimated for any 7" > 0 by

Cr = max C(t), T >0,
t€[0,T]

such that (4.4.5) becomes

£,z < Cr(+1lgi (¢, )l +ellgi (¢, )ll7~), ¢ € 10,T]. (4.4.6)

Now, assuming X (¢t,z), t > 0, X(0,2) = x, is the Lagrangian flow corresponding to
the transport equation (4.4.4)

8tg§(t’ :E) + bf(t7x) ’ v.gts(tvm) = fs(tvx)v gts(o’ .T) = To(x)7
that is,

X(t,z) =b5(t, X(t,z)), X(0,z) =,

we obtain for z(t) := ¢f (t, X (¢, z))

£(t) = Oy (t, X (t, x)) + (Vg; (t, X (¢, 2))) X (¢, z)
= Oy (t, X (t, x)) + 0 (¢, X (¢, 2)) - Vg; (¢, X (¢, x))
= fe(t> X(ta l‘))
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and hence

Gt X (1, 7)) = g5(0,2) + /0 F5(s, X (s, )) ds

or, equivalently,

t
6i(t.7) = FOX N (ta) + [ X (s Xt ) ds.
from which we obtain
t
|97 (t, )| < 195 (0, X' (¢, 2))| +/0 1£2(s, X (s, X7\ (t,2)))| ds

t
< g (0, )l + /0 1£(s, ) e ds

and thus

t
195 (6 Mz < 1195 (0, )1z + / 1£ (5. )l ds
which by (4.4.6) becomes

t
95 (8 )z < 1195 (0, )]l Lo + CT/O (1+ 1195 (5, ) lzee +€llgi (5, )7 ) ds, ¢ € [0,T).
(4.4.7)

Then a generalized Gronwall estimate in integral form, which is attributed to Bihari
(in [5]), yields the desired.

Proof of (4.4.1)

Expanding the second equation of (4.4.3), satisfied by hf, using the fact that det(A +eB) =
det A+ e(tr Atr B — tr(AB)) + % det B we get

ARS = —& ((AYy) ARS — tr((D*y)D?hS)) — * det D*hS — det D*yy + g5.  (4.4.8)

We will show that from this equation we obtain the estimate (4.4.1)

To obtain (4.4.1) we first get by Schauder estimates, see e.g. [25], that the solution
of (4.4.8) satisfies

1l ozacr) < Clellelozacme 1 llozarey + 1A 2.0 2y + [@lE2.0(r2y + 19F coa(rz))
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for all € > 0, where C' > 0 is a constant independent of € > 0 and any of the appearing
functions.

Since 1); is a known function, which moreover is, under sufficient regular initial data
imposed on wy, as smooth as we like, recalling ¢ = [[¢t|c2.0(r2) and setting a :=
[AZllc2.0(T2) > 0, We obtain

a< C(apa + 82(12 + 902 + ”gfnco,a(rﬂa))

< C’(scpa + 62CL2 + 902 + 1+ ||gﬂ|00,a('ﬂ*2))
< (14 [lgillgoacr))C(1 + epa + €%a’ + %)

and thus
a<C(p,p)(1+ea+e%a?), e>0, (4.4.9)

where

. C(d,p) = CL(O)A + |lgi llgo.(r2),  C1(0) == (1 + ¢+ ¢)C.

We claim now that the estimate (4.4.9) implies that there exists a constant Ca(¢) > 0
depending only on C1(¢) and an €y > 0 such that

a < Cg(gb)(l + Hgfnco,a(Tz)), €€ (0,50). (4410)

(Clearly, if (4.4.10) holds true, then we obtain (4.4.9) for € € (0,&¢) just by replacing
C1(¢) by C2(¢) in C(o,p).)

Assume now that there is no constant Ca(¢) > 0 and no g9 > 0 such that (4.4.10)
holds true, but that still (4.4.9) is satisfied. Then, for any n € N there exists an
O<e, < % such that

a>nC(¢,p) >0 for e=¢e, neN,
and dividing (4.4.9) for € = ¢, by aC(¢, p) > 0 we obtain

1 1
7—7—5n§£,21a, n €N,

C(¢,p)

and thus, for ny € N with ng > max{4,2C(¢, p)} we have

1 1 1 )
- < ———e,<¢ka
a

(P
C(p,p) a -

Cal90) = 16067 = 30(6,0)

neN, n>ng.
(4.4.11)

On the other hand, from regularity theory for the Monge-Ampére equation we obtain
that there exists a C' > 0 independent of € > 0 and any functions, such that

g; lo2.(r2) < Cllptllco.a(rey, € >0,

104



Chapter 4.4. Convergence of smooth solutions

where we recall ¢f = ¢ + €hf, pi = wt + €95, such that we obtain by the triangle
inequality

ellhillcaemy < illc2em) + g lc2e @) < Cl¢,wr,97), €€ (0,1),

where

C(d,wi,97) = [Ptllcze(rey + Clllwillcoa(rzy + 1197 coo(r2))-

Recalling now the abbreviation a = [|h¢||c2.e(r2y and (4.4.11), which holds true for
the sequence (g,,) introduced above with 0 < g,, < %, we thus have

nCa(érp) < BP0 < Clpwngf), neN, n>no,

En

which yields an obvious contradiction, since C5(¢, p) > 0. Thus, the assumption that
(4.4.10) fails is not true, and establishes the latter. With that, the proof is completed.
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APPENDIX

APPENDIX

This appendix has been created using the following books [1] [2] [3] [27] [12] [9] [34] [4]
[18] [19] [26] [33] [36]

A.1 Notations

Here we will summarize the symbols we are going to use in order to denote some notions.
Of course, many of the notions below have multiple notations that are being used to
describe them.

Definition A.1. Let n € N
R" 3¢;:=(0,...,0,1,0,...,0)
where the 1 is placed in the i-th position, where i € T'(n)

Clarification A.1.1. T'(m) symbolizes the set containing all natural numbers up to m,
including it. Thus,

T(m):={ieN|i<m}={1,2,3.... m—2,m—1,m}

we consider 1 (and not 0) to be the smallest natural number.
Remark. Unless otherwise stated the symbol n is used to denote a natural number, so

when we write n we shall always mean that n € N.

Definition A.2 (standard inner product). Let u,v € R™ be two vectors with represen-
tations u = (uy, ug, ..., Up—1,uy) and v = (v, Ve, ..., Vy—1,y,) on the standard basis of
R"™. We denote their standard inner product as:

n
(u,v) := zjulvZ = uvy + - + upvn
i=1
Clarification A.2.1. We consider vector to be row vectors and we denote the column

u1

vectors with the transpose matrix. v = (u1,...,u,) and v’ =
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Chapter A A.1. Notations

Remark. So, we actually identify the vector space R” with the matrix space R'*", when
we are referring to vectors and inner products.

We use a special symbol to denote the matrix multiplication instead of the usual dot -

Definition A.3 (matrix multiplication symbol). Let the matrices A € R™*" and B €
R™*F with m,n, k € N we denote their product as:

AoB=A-B
Proposition A.1. u,v € R" = (u,v) =uov’

Real-valued function spaces
Definition A.4 (compactly contained CC).
VccU:<= VCV CU andV is compact

Definition A.5 (L” norm). Let f : U — R be a Lebesgue measurable function, then
we define )
_ J g lf@)Pdx)r pel,+00)
1l ooy =
esssupy |f(z)]  p=o0

Definition A.6 (L? space). For p € [1, 400] we define the space of Lebesgue measurable
function with finite LP-norm, which is the following:

LP(U) :=={f:U—=R | fis Lebesgue measurable and || f|| ;pny < 400 }

Definition A.7 (local spaces). Whichever function space on U has the subscript joc
contains the functions belonging in the respective space for every V compactly contained
in U e.g.

Lp

loc

Definition A.8 (C(U)).

U)={f:U=R | fel (V)VV CCU}

CWU):={f:U—R | fis continuous on U }

Definition A.9 (C(U)).
C(U):={feCU) | fisuniformly continuous on bounded subsets of U }

Definition A.10 (multi-index). The vector a = (a1,...,a,) € Nj is called a multi-
index of order |a| =" | a;

Clarification A.10.1. No := NU{0} is the set of natural numbers along with zero and Nf
refers to the set { (b1,...,b,) € R"|by,...,b, € Ny}, the n-dimensional product space
of natural numbers including zero.
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Chapter A A.1. Notations

Definition A.11 (multi-index/partial derivatives). For the multi-index a and the func-
tion f: U open C R™ — R we define the derivatives of order |a|

|al
(D*f) (&) = D*f(x) =~ ()

a Oz{* -+ Ozy"
Clarification A.11.1. When we write D* we refer to one of the (many) derivatives with
order |a|, which we will specify when needed.

Example. Let u:R?> - R

then Du(z) = D'u(x) denotes either %(m) or %(a:)

Clarification A.11.2. In the special scenario where the multi-index is the zero vector,
we define the following:

DYf(z) := f(z) and

f(x) = f(z)

80
0x9

(3

For every multi-index a, we abide by the convention:

Gl (@) = f(x)

Definition A.12 (partial derivative, gradient operator and nabla symbol). Let f :
U open C R"™ — R be a partially differentiable function we define its gradient as:

9
81'1

VI@) = (gt g f ) = @1 00)

Definition A.13 (vector-valued functions). Let U be an open subset of R". A vector-
valued function f: U — R™ is denoted as:

f
f=1 =t )
fm

which is an abbreviation of the term f(z) = (fi(z), fa(z), ..., fm-1(z), fm(ac))T where
every component function of the vector-valued function f is a real-valued function,
meaning that f; : U - R Vi € T(m)

Remark. So, in the case of vector-valued functions we identify the space R with the

matrix space R™*1

Definition A.14 (partial derivatives, gradient of vector-valued functions). Let f :
U open C R™ — R™ be a partially differentiable function with f = (f1, fo, ..., fm)’,
we define its gradient as:

a1 o g Vh
Vi@) = + . =]

worfm o g fm V fm

109



Chapter A A.1. Notations

Definition A.15 (derivative). We call the function f : U open C R™ — R™ differen-
tiable at x € U : <=
f(z+v) = f(z) — D(v)

3 linear map D : R™ — R™ such as lim =0
v—0 [[v]l2

For our purposes we consider the vector spaces R¥ (k = n,m and such...) with the
standard bases consisting of the vectors e; for every i € T'(k). Hence, we identify every
linear map with its corresponding matrix regarding the standard bases. Thus for us,
the derivative is nothing more than a matrix

dn din
dml dmn
belonging in the matrix space R™*". So, we can rewrite the definition as

_ _ D T B
E| matrix D . Rn N Rmxn SllCh as hm f(fL' + U) f((l?) (U < ) — 0
v—0 H’UHQ

By identifying the space R™*™ with the space R™"™ we can define the k-th derivative
of a vector-valued function in the exact same manner.

In the case we have a real-valued function, that is m = 1, we define the following
function spaces

Definition A.16 (C*(U)).
CMU):={f:U =R | fis k-times continuously differentiable on U }
Definition A.17 (C>(U)).
ce(U) = () cHU)
keN
Definition A.18 (C*(0)).
CH(U):={ f e C*U) | D*f is uniformly continuous on bounded subsets of U
V multi-index a : |a| < k }
Definition A.19 (C*(U)).
C>(U) =) CHO)
keN

Definition A.20 (compact support spaces). Whichever function space on U has the
subscript . contains the functions belonging in the respective space and having compact
support i.e.

CHU):={ feCkU) | f has compact support }

110



Chapter A A.2. Norms and inner product

Vector-valued function spaces

Definition A.21. Let f : U open C R™ — R™ be a vector-valued function, then the
respective function spaces are denoted with the same symbols adding : R next to the
domain U. And they consist of those vector-valued functions whose each component,
real-valued function belongs to the respective real-valued function space i.e.

CFU:R™) :={f:U—=R™ | fie CKU) YieT(m)}
LP(U:R™) :={f:U—=R™ | f;e LP(U) YiecT(m)}

ete

Proposition A.2.

Lef f : R® — R” partially differentiable function with f = (f1,..., f.)7, then

tr(Vf) =divf

Indeed
ofi - Oufi
v =1
Ofn - Ontn
Thus, .
(V) = 0ifi = (V, f) = divf
i=1

A.2 Norms and inner product

A.2.1 Inner product
Definition A.22 (Inner product, complex).

Let V be a vector space over the field of complex numbers C then the map (-,-) :
V x V — C is called an inner product if and only if the following conditions hold true:

1. conjugate symmetry
Ve,yeV

(z,y) = (y,x)
2. linearity in the first argument
Ve,yeV and Va,beC
{ax + by, z) = alx, z) + by, 2)
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3. positive definiteness
VaeeV\ {0y}

(x,x) >0

Remark.
Except some definitions where it is explicitly written, zero 0 refers to the zero of the
respective space, without the use of any subscript to notate it.

Proposition A.3.

The properties of its definition immediately imply:
(x,2) =0 2=0

and conjugate linearity in the second argument

(x,ay + bz) = a(z,z) + b(y, 2)

In the case where the field of real numbers is chosen, the definition remains the same
but conjugate symmetry reduces to symmetry.

Since ¢ = ¢ when ¢ € R

Definition A.23 (Inner product, real).

Let V be a vector space over the field of real numbers R then the map (-,-) : VxV — R
is called an inner product if and only if the following conditions hold true:

1. symmetry
Ve,yeV

{z,y) = (y, )
2. linearity in the first argument
Vez,yeVandVa,beR
{ax + by, z) = alx, z) + by, 2)

3. positive definiteness
VeeV\{0y}

(x,x) >0

The same properties as above hold true, with the only difference being that now we
have linearity in the second argument.
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Proposition A.4.

The properties of the definition now imply:
(x,x)y=0&2=0

and linearity in the second argument

(x,ay + bz) = a{x, z) + b(y, 2)

In contrast to our choice depending the norm notation in each case (using subscripts),
for the inner product we stick to the same symbol. The reason we do that is because
we usually compute with the standard inner product being involved.

A.2.2 Norms

Most of the time the Euclidean (or any equivalent norm in R") is written with the
absolute value |- | symbol. And the typical norm ||| symbol is reserved to characterise
function spaces’ norms.

But we will not oblige by this rule.

We will explicitly “declare” which norm is considered in each case by mentioning it
or by putting a suitably chosen subscript. Usually, when we are referring to a non-
specific norm or the standard/Euclidean one, then we will use the symbol without a
subscript.

Remark.
A non-specific norm is a (generic) norm having no special “structure”, that is satisfying
only the properties of the definition and their consequences.

Definition A.24 (absolute value | - |).
| - | denotes the absolute value on R

Definition A.25 (norm). Let X be a vector space over a field (for our purposes that
will usually be the real numbers). We call norm a non-negative function ||| : X — R
with the following three properties

1. positive definiteness
H:EH =0r & x=0x

2. absolute homogenity

[|Az|| = |A| ||z]] YA€ R and z € X
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Chapter A A.2. Norms and inner product

3. triangle inquality (or subadditivity)
|z +yll < [l=]| + [lyl| Yo,y € X

Clarification A.25.1.
Ry :={x €R | x>0} is the set of non-negative real numbers. The non-negativity of
the norm function is also a (the “hidden” fourth) requirement.

Remark. The absolute value is a norm.

We now introduce the notation we are going to use for some well-known and commonly
used norms, such as:

Definition A.26 (Euclidean norm or 2-norm || - ||2).
|| - ||2 denotes the Euclidean (standard) norm on R"
Let z € R™ with = = (z1,...,z,) then

Izl := (Za:>

=1

N |=

A.2.3 Matrix norms

The next one is a matrix norm (meaning that the aforementioned vector space X is
R™*™) which goes by the names Lg 2 norm or Frobenius norm.

Definition A.27 (Frobenius norm || - ||z or L??-norm || - ||2.2).

Let A € R™" with

Gn1 - Onm

then

1
2

1Allp = > ai

i=1 j=1

We now prove that the map we have just defined is indeed a norm.

Proposition A.5 (|| - ||r is a norm). The Frobenius norm is indeed a norm.
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Proof.

The idea behind the proof is to use known inequalities for the (Euclidean) 2-norm
|| - ||2, which looks very similar to this norm. In fact, L?? or Frobenious norm || - || is
a summation of standard 2-norms (Euclidean vector norms). Indeed, if we write

air o Qi Ay
A=(ay)=1| 1+ .  |=

Gn1 - Anm Ay

m
where A; = (ai1,...,aim) Vi € T(n), then we have that

2
azzj = [|4ill5
J=1

n 2
Hence, ||Al|r = (ZHAMS) . Now we start proving the requirements:
i=1

Obviously the Forbenius “norm” is a function || - ||g : R™™ — R

Next, we prove the three requirements:

i) Let A € R™™
1
- 2\’ S 2 | 4i[13>0
[Allr =0 <= | > _I4ill;] =0 <= > JAill;=0==
i=1 i=1 €T (n)
= VieT(n) |A]3=0 < ||Aill, =0 <= A; =0gmn <

< A == ORnXm

ii) Let A € R and A € R™*™

1w 3 " 3
|rAA|rF=<Z<A||Ain)2> =(ZA2|rAi|r§) =<A22\|Ai||§> =
=1 =1

=1

i n
= (A?)? (ZHAM%) = A (ann%) = [\l [|A]lr
=1 =1

N =

iii) Let A, B € R™ "™ then:
Since || - ||2 is a norm in R™ we have that:
Vi€ T(n) |[Ai+ Billz < ||Aill2 + || Bil|2

-|[2>0 . ?
s2 M on s>0
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summing ZHA +B"2<Z |’AH2+HBH)

over i

= (ZHA +BH2> = (ZTZ:(HAZ-HH\IBZ»HQV)é

i=1
Because || - ||2 is a norm in R™, we also have that:
Vo,y € R* ||z +yll2 < [lz]l2 + [yll2
If we write z,y as (z1,...,2y),(Y1,- - ., Yn) respectively, then
1
n n 2
VieT(n) Va,y; €R (Z(:UZ + ;) ) (Za: ) <Z yf)
i=1 i=1

Choosing z; = ||A;||2 and y; = || B;||2 for i € T'(n), we obtain:

(e ) s () ()

=1

Combining the inequalities with the same term, we have shown that:

1 1 1

n 2 n b n b

(ZIIAﬁBz-II%) S(ZHMI%) +<Z||Bi|r%>
=1 =1 =1

< [[A+ Bllz < ||All2 + [|Bll2 O

Proposition A.6 (||-||r is submultiplicative). The Frobenius norm is sub-multiplicative
in the space of square matrices, that is VA, B € R™*" the following inequality holds

|4 Bl[r <|[|AllF - [|Bllr

Proof. To prove this result, all we are going to need is the Cauchy-Schwarz inequality
for the Euclidean norm || - ||2 on R™.

Let u = (u1,...,u,) € R" and v = (vy1,...,v,) € R™ then

2
[, 0)] < [ullz - [Jollz & (u,0)” < [[ull3 - [lv]]3

(&) < (54 (£)

Let A, B € R™*" with A = (ai;) and B = (b;j) then Ao B = (c;;) where ¢;; = > aby;.

k=1
So

=
N[

|4 Bllp = ch?j ZZ Zazkbm )’

i=1 j=1 i=1 j=1 "7
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Choosing | = k and u; = uy, = a;x, , vy = vy = b; we have from the squared Cauchy-

Schwarz inequality that:
n 2
(Z aik bkj)
k=1

n n
< () (o)
k=1 k=1
Thus )
n n 2 n n 2
(3 auhy)’ | < S ) S)| =
=1 j= k=1 =1 j=1 k=1 -

1
n
Since the quantity (Z a?k) is j-independent, we can treat it as a constant coeflicient
k=

with respect to the summation over all j and factor it out
i=1 j=1

We do the same “trick”, as we now factor out the term Z Z b2 ) which is ¢-independent
k=1

3
N[

S () - (S a)

j=1 "= i=1 k=1
1
n n n n 2
_ 2 2
= E b - E ik,
=1 k=1 i—1 k=1
1
n n n n 2
_ 2 2
= E bij - E ik,
k=1 j=1 i=1 k=1

Since we have separated each sum to have different quantities involved in its computa-
tion, the index of summation does not play any particular role and we can freely change
it (even use the same symbols as indices)

[

n o n n.on
2 2
=220 DD )
=1 j5=1 =1 j=1
1
n o n non 2
2 2
= |2 el - DD
=1 j=1 i=1 j=1
1 1
n o n 2 n.n :
2 2
ZZ%‘ ’ ZZ%
i=1 j=1 =1 j=1
= |l4o Bllr < [|Allr - |IBllr -
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recall that an equivalent norm to the Euclidean one is the p-norm.

Likewise we can define the more general case LP9-norm.

Definition A.28 (LP%-norm || -||zp.a)-

Let A € R™™ with

ail A1m
A:(aij): .
Gn1 Anm
then
oy 1
n m p\ 1
1A= | D |ai;|”
i=1 \j=1

We continue with another matrix norm, which will be useful in estimating the integral
over a ball (L' norm) of the Hessian of a Lipshitz, convex real-valued function.

Definition A.29 (2,2 norm).

Let A be a matrix in R™*™ then we define its 2, 2-norm as follows:

[ Azl
[[A]lg,5 :=sup
227 k0 Izl

where Az € R™! with z viewed as a column vector in R™*! for the matrix multiplica-
tion to be well-defined

And Az, z also viewed as their transpose counterparts, i.e. row vectors in R, in
order to then take their Euclidean norm.

Both |||, norms are the same standard, Euclidean vector norm.

Proposition A.7 (||-||,, is a norm).

The above map A — [|Al|5, is indeed a norm.
Proof.

Let A € R™*"

118



Chapter A A.2. Norms and inner product

i) Obviously, [|Afly5 >0

ii)
[Allyy =0=A=0

Indeed, by definition we have

[ Az,
[All,2 =sup
22 z£0 |1l
Hence, for all non-zero vector x
[Az]|
|| : < HAHZQ
z[
Let ||Ally4 = 0, then for every x # 0
4z, _
1]l

since || Az||,, [|z]|, > 0 for every non-zero vector x

A
Az, _,
]l
=l Az], =0
”HQ 1s A.T:O
a norm

because the last equality is true for all x # 0, we get:

A=0
iii) The triangle inequality holds true
Indeed, let A, B € R™*", then:
(A + B)z||
IA+ Bllyp = sup ———"—=
z#0 H$||2
B |Az 4+ Bz||,
#£0 HxHQ

Since, ||-||5 is a norm, its subadditivity “tells” us that:

| Az + Bzlly < [|Azlly + [ Bz|,
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Thus,
Azx||, + ||Bx
’ x#0 ||$"2
A B
— p (Wl 1221
220 \ [l [E4[PS

Because sup (f + g) <sup f+ sup g, we have that:
x xT x

A B
4+ Bl < sup L0l qup 15
7 | P S | i

= [14llo2 +[1Bll22

The || |5, matrix norm enjoys a useful relation.

Proposition A.8 (matrix norm and eigenvalues).

Let A € R™™™ be a real and symmetric matrix, then

Al ., = \i
[All52 ing%I \

where \; are its eigenvalues.

Proof.

Since A is symmetric and real, it has an orthonormal basis consisting of eigenvectrors
v, © € T'(n) with \; being their respactive dicrete eigenvalues i.e.

AUZ‘ = )\ﬂ}i

Thus, every vector x can be written as a unique linear combination of v;.

n
T = Z C;U;
i=1
with ¢; € R

So, due to the linearity of A viewed as a linear mapping
n
Az = A (Z civi>
=1
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n
= E C; Avi
=1

Let (-,-) be the standard inner product, then using its linearity and the fact that the
basis {v; | ¢ € T'(n) } is orthonormal we get:

[Az[|5 = (Y cidvi, Y cjAvy)
i—1 =1

= zn: zn: CiCj <A’Ui, Avj>

i=1 j=1

n n

:E E cici(Aivi, Ajvj)
i=1 j=1
n

=" cicihidi(vi,v))

i=1 j=1
n

= Z znz CiCj)\i)\j(sij

i=1 j=1

n
_ 242
—E CiA;
i=1

where 0;; is the delta of Kronecker
1 ,i=y
0ij = Y
0 ,i#7

n
2
Izl = cf
i=1

And similarly,

Thus, for every non zero vector x

n
212
CiN?
A 2N
o _
CHEY
=1
cg %%zcz)&
—1 €T (n
<=
>
=1
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=max? \;
€T (n)

Since ||-||; > 0 (every norm is non-negative) squaring out we get:

||A$||2 — x ‘)\|
lzlly —iertm)

where the right hand side has no dependence on x, so taking the supremum:

Al , < \i
([ All2,2 _igﬁ%\ il

For the opposite inequality, we have:
| Avill3 = (Avi, Av;)
= (Aivi, Aivi)
= X} (vi, 1)

200, 112
= A [lvill2
So, (the eigenvectors are non zero vectors):

_ [1Avifl,

 lwilly

| il

[Az]

x#£0 ||36H2

= [[All;.2

Thus,
| ||2,2 _iIeITH?};)| il

A.3 Convexity
We present some basic facts concerning the notion of convexity.
Definition A.30 (Convex set).

We call a set C C R™ convex : <

Vz,y e C VA€ (0,1) we have that Az + (1 — ANy e C
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Definition A.31 (Convex combination).

If A; >0 with 7" | A; = 1 we call the sum

m
§ i
i=1

a convex combination of the points x;

Remark. The previously introduced convex combination depends on the given points
x; € R™

Definition A.32 (Convex hull).

We define the convex hull of a set A C R"
conv(A):={>" Nz, [meN, \;>0,z;€¢ A VieT(m) and > " N\ =1}

Remark. In all of the above R™ can be replaced by a vector space V.

Definition A.33 (Convex function on a convex set).

Let f: C — RU{+o0},
C convex C R™. We call the function f convex : <= Vz,y € C' VA € (0,1) we have
that f(Az + (1= A)y) <Af(2) + (1= A)f(y)

Remark. In the above definition we need the convexity of C, so that VA € (0,1) Az +
(1 — Xy lies in C thus the expression f(Azx + (1 — \)y) has meaning.

Definition A.34 (Convex function on an open set).

Let f: U —=RU {+o0}, U open C R™. We call the function f convex : <= There is
an expansion f : R” — R U {400}, which is convex.

Remark. The convexity of f that DefinitionA.34 states is that of DefinitionA.33 i.e. f
is a convex function on the convex set R™

Clarification A.34.1.
The calculations involving infinity are subject to the usual laws governing computations
with the “quantity” of infinity i.e.

Proposition A.9.

The term convex function is well defined, since for a convex and open! S C R™ the
DefinitionA.33 is equivalent to the DefinitionA.34.

Proof

!Such a set exists, for example the open "box" (0,1)". In fact, there are plenty of them, infinitely
many, the sets (a,b)" Va,b € R with a # b.
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Let S convex and open C R™ and f: S — RU {+oc}
(=) Let us assume that f is convex by the standards of DefinitionA.33 then
Voe,y € S VA€ (0,1) we have that f(Ax + (1 —N)y) < Af(z)+ (1 —=N)f(y)

f(x) €8
+oo ¢S

We define f : R” — R U {+o0} with f(z) := { thus

f is an expansion of f.

We will now show that f is convex on R™, in the sense of DefinitionA.33.
Let z,y € R™ and X\ € (0,1), we discern the following four cases:

i) if z,y € S then f(Ax + (1 — N)y) < Af(z) + (1 —N)f(y) and
Az + (1 = A)y € S because S is convex, thus we have
fOz+ (1 =Ny) < Af() + (1 =N f(y)

ii)if v ¢ S,y € S?and Az + (1 — Ny € S then f(Az + (1 —N)y) =
= fAz+ (1= A)y) < +oo = Af(z) + (1 = A)f(y) because
A>0and f(x) =400 and (1 —\)f(y) € (—o0, +0]

iii) ifx ¢ S,y € S and Az +(1—- )y ¢ S then by the same reasoning fOz+1=Ny) =
+oo = Af(x) + (1 =N f(y)

iv)ifx ¢S, y¢Sand Az + (1 —A)y ¢ S then we have accordingly
fQz 4+ (1= Ny) =+oo = Af(z) + (1 =N f(y)

Thus we have shown that f is convex by the standards of DefinitionA.34

(<) Converesely, let us assume that f is convex by the standards of DefinitionA.34 then
there is an expansion f : R” — RU{+oc}, which is convex in the sense of DefinitionA.33,
that is Va,y € R™ and VA € (0,1) we have that: f(Az+(1—=N)y) < Af(z)+(1=N)f(y)
(1)

Let 2,y € § S0 Ao (1-M\)y € S %% FOz+(1=N)y) < < M (@)+(1-N)f(y)
O

Proposition A.10.

For every A C R"” the equality below holds
conv(A) =N{C CR"” | C DO A and C convex }

Corollary A.10.1. The convex hull of a set A is the smallest convex set
containing A

2Similarly, the same result holds true if z € S and y ¢ S.
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A.3.1 Legendre transform and the subdifferential
Definition A.35 (Legendre transform).

Let a function f: C' — R where
C convex C R"™, we then define the Legendre transform f* as follows

f*(p) = igg((pw)—f(x)) . peC

C*:={peR" | sup((p,x) — f(x)) < +o0}
zeC
Clarification A.35.1.
Often, the independent variable p is also denoted x*. But we will stick with this notation

(at least for the definition) for historical reasons rooted in analytic mechanics.

Proposition A.11.

f = f* Theoreml.11 (Fenchel-Moreau) Brezis Functional Analysis [9]
Definition A.36 (subdifferential at a point).

Let a function f : U — R with U open and convex C R™. We define the sub-differential
of f at the point x € U as the set:

df(x) ={z eR" | vy e U f(y) = f(z) = (z,y —x) }
Definition A.37 (subdifferential at a set).

Let f as above and S C U then

df(S) = | df ()

zeS

Proposition A.12. If f is convex, then the subdifferential is non empty at every point
in its domain.

Remark.
If f is not convex, then df (z) can be the empty set. Even df(S) for every S can be the
empty set.

Ezample. f(z) = —||z|?

Proposition A.13.

Let f be a convex function, then the following holds
f is differentiable at x. <= f has a unique subdifferential at x.

Corollary A.13.1.

Whenever f is differentiable we have that:
df(x) = {Vf(z)}
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For a proof look at [33] page 242 theorem 25.1.

Proposition A.14.

Let U open C R" and f : U — R a convex function, then
zedf(x) <= xe€df*(z)

Proof.

(=)l zedf(x)= fly) - flx) 2 (z,y—=x) VyeU

= (z,x) — f(x) > (2,9) — f(y) VyeU

=z € df*(z)

(<) Conversely, since f = f**, all we have to do is follow the same steps O

A.4 Measure Theory

Definition A.38 (o-algebra). Let X be a set and A C P(X) a collection of subsets of
X. We call A a g-algebra if the next three conditions are met:

A+ (A.4.1)

A°c A VAc A (A4.2)
+oo

UJAneA v(4,), CA (A.4.3)

n=1
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Clarification A.38.1. P(X) denotes the power set of X i.e. P(X):={S|SC X} In
general, a collection (sometimes also called a family) is a set containing sets. In our
case the collection A contains subsets of X. From now on, we will usually denote a
collection/family of sets using calligraphic letters.

Proposition A.15. Equivalent definitions result if we replace the according require-
ments by whichever of the following:

@ € A (interchangeable with first condition)

X € A (interchangeable with first condition)

+oo
N A, € A V(An)neN C A (interchangeable with third condition)
n=1

Proposition A.16. From our definition it is obvious that if A is a o-algebra then

+o0
A\BeA VA BeA and () A,€A Y(A)nen C A
n=1

Proposition A.17. If (Ai)ie[ are o-algebras then (] A is a o-algebra.
i€l

Proposition A.18. V& C P(X) 3! o-algebra A : A is the minimum o-algebra con-
taining £.

Definition A.39 (0(£)). We call the above unique o-algebra the o-algebra produced
by the collection £ and we denote it o(E).

Definition A.40 (Borel sets). Let (X, T) be a topological space, we define B(X) :=
o(1). We call this o-algebra the Borel o-algebra of X and the sets contained in it the
Borel subsets of X.

Remark. B(R™) = o({open subsets of R"})
Proposition A.19. B(R") = o({closed subsets of R"}) = (&) = 0(&2) where

&= {ﬁ[bz,—i—oo) ‘ bie R Vi € T(n)}

=1

52 = {H(azybz] | a; < bi R ai,bi cR Vi € T(n)}

=1

Definition A.41 (Measure). Let X be a set and A a o-algebra on X. We call a function
w: A — [0, 400] measure on (X, A) : <=

w(@) =0 and

V(An)neN C A sequence of two by two disjoint sets, (countably additive) we have

that N
2 (U An> = ZM(An)
n=1 n=1
Clarification A.41.1. We call (X, .A) measurable space and (X, A, u) measure space.
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Proposition A.20. If y, v are measures on (X,.A) and a € R then
i+ v and |a|p are also measures.

Clarification A.41.2. We define (u + v)(A) := u(A) + v(A4) and (ap)(A) = ap(A)
vAe A

Proposition A.21. If (X, A, i) is a measure space, then VA, B € A
AC B = u(A) < u(B)
u(A) < +oo = u(B\ A) = pu(B) — u(A)

Proposition A.22. If (X, A, i) is a measure space, then V(An)neN cA

+oo [e'¢)
u <U An) <> (A
n=1 n=1
(countable subadditivity).
Definition A.42 (Types of Measures). Let (X, .4, 1) be a measure space, then we call
the measure p
i) finite if pu(X) < 400

ii) probability measure if pu(X) =1

A.4.1 The pushforward measure

Definition A.43 ((A, B)-measurable function). Let (X, .A) and (Y, B) two measurable
spaces and a function f: X — Y. We call the function f
(A, B)-measurable : <= VB e B f1(B)e A

Definition A.44 (Pushforward measure). Let (X, A) and (Y, B) be two measurable
spaces and a (A, B)-measurable function f: X — Y. If 4 is a measure on (X, .A), then
we define the pushforward measure v on (Y, B) as follows:

v:B—[0,+00] v(B):=p(f1(B))
Remark. We denote the pushforward measure as fup = po f=1

Proposition A.23. Let (X,.A) and (Y, B) be two measurable spaces and a (A, B)-
measurable function f : X — Y. If p is a measure on (X, A) and g : ¥ — R a
measurable function then

/ g dfyp = / go fdu (A.4.4)
B f-4(B)

A.4.2 Absolute continuity of measures
Definition A.45 (absolute continuity < of measures).

Let (X,.A) be a measurable space and u,v be two measures in it. We say that v is
absolutely continuous with respect to v and we write v < p : <

VAe A pu(A)=0=v(A)=0
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Remark. We also say that v is dominated by pu.

Proposition A.24.

Let (X, .A) be a measurable space and p,v be two measures in it, then
vy = Ye>0 30>0 VAc A p(A)<di=v(A) <e (A.4.5)

Theorem A.1 (Radon-Nikodym on finite measures).

Let (X,.A) be a measurable space and u,v be two finite measures in it such as v < p,
then

3lu-a.e. measurable function f: X — [0, +o00) with v(A) = / fdup (A.4.6)
A

Remark. The above function f we will call density of the measure v with respect to p.

Proposition A.25.

Let (X, A) be a measurable space and p,v be two finite measures in it such v < pu
and f the unique function of TheoremA.1, then

/g dv = /g - fdp ¥V measurable g : X — [0, +00] (A.4.7)
Proposition A.26.

Assume that p = fudx where f is (A, A)-measurable and a non-singular (non-degenerate)
map i.e. its pre-image (inverse image) preserves null (negligible) sets

fH(A)=0VAcA:I"(A)=0

then
p <L dx

As found in Benamou-Brenier |7] equation (21)

Proposition A.27 (continuous functions are pair measurable).

Let f: (X,B(X)) — (X,B(X)) be a continuous function where B(X) denotes the
Borel g-algebra defined by a topology of X

then f is (B(X), B(X))-measurable

Proof. We define O
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A.5 Weak derivative and Sobolev spaces

Here we will mention some definitions and results, mostly from [18] about weak deriva-
tives and Sobolev spaces.

Definition A.46 (Weak derivative).

Let v : R — R be an Llloc real-valued function and a be a multi-index, then we

call D¢u : R™ — R the a-th order weak derivative of w iff:

/uDago dr = (—1)|a|/<pD$]u dx

R™ Rn

Proposition A.28 (Weak derivative is a.e. unique).

If the weak derivative (of any order) of u exists, then it is uniquely defined up to a
set of zero Lebesgue measure (this means that it differs from the other function only in
a set with Lebesgue measure zero)

Definition A.47 (Sobolev space W?).

Let p € [1,+00] and k € Ny, then we define:

WEP(R™) :={ f € L, .(R") | V multi-index a : |a| < k 3D2f € LP(R") }

The k,p Sobolev space consists of all locally summable scalar (real-valued) functions
f : R™ — R such that for every multiindex a of order less or equal to k& the weak
derivatives D{ f exist and belong in LP.

Definition A.48 (Sobolev space norm).

Let f be a function belonging in W*P?(R™), then we define its W*? (Sobolev) norm
as:

Sl

la| <K
> [IDgfPdz | pell o)

a multi
index R

1w mny =
la|<k
Z ess supga DG, f| p =00

a multi
index
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Proposition A.29 (Sobolev space is Banach).

The Sobolev space W*P with its respective norm |||y, is a Banach space

A.6 About the torus T?

Now we are going to give the definition of the two-dimensional torus and introduce the
norm we will use on it.

Definition A.49 (T? equivalence relation). Let X = R? we then define the equivalence
relation ~ as follows:
T~y = x—yel?

We use this equivalence relation to define the torus as the quotient set of X by ~

Definition A.50.
T? = R?/Z* == X/

Clarification A.50.1. It is useful to recall that the quotient set is defined with the help of
the notion of the equivalence class X/ :={[z] | z € X}, where [z] :={se X | s~
x}

Remark. Notice that the two-dimensional torus is nothing more than the plane R? “split”
in squares with vertices two consecutive points on the grid defined by the lattice of the
integers Z2.

On torus we define a new distance, in this way we will be able to “count” using “only”
the points lying in the set [0, 1]¢. This along with the previous remark is the reason we
consider the integrals calculated on torus to be over the set [0, 1]¢.

Definition A.51 (distance on torus). Let [z], [y] € T? we define their distance as:

d([a], [y]) = sup lz —y +pll2

A.7 Useful propositions

Proposition A.30. Let z,y € (R”, (- >), then the following inequality holds true:

2(z,y) < Izl +[lyll”

where || - || is the norm induced by the inner product
Proof. (x —y,z —1vy) = ||z — y||> > 0 and using the properties of inner product we have
(r—yz—y) =
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=(z,2—y)—(y,z—y)
= (z,z) —(2,9) — (y,2) + (¥, 9)
= (||| = (z,y) — (z,y) + Iyl
= [|z[[* = 2(z, y) + |lyl|?

So, the desired inequality is proven. ]

Remark. The space R™ can be replaced with any vector space and the same result still
holds.

Proposition A.31 (Liebniz Integral rule on measure spaces).
Let (X, A, 1) be a measure space, I an interval of the real numbers and f: X x I — R
be a function with the following properties:

i) The map = ~ f(z,t) belongs to L'(u) Vt €T

ii) The map t — f(x,t) is differentiable for almost all z € X
We denote its time derivative as Oy fi(x) = %f(az, t)

iii) 3 an L!(u) function h : X — R such that |0, f;(z)| < h(x)
for y—a.e. xand Vvt el

Then O;f; € L'(u) Vt € I and the function ¢t — /f(x,t) du is differentiable with

derivative

0 [ £ty du = [ 0usi(e) d

[27] page 142 differentiation lemma

Proposition A.32 (integral zero implies f zero a.e.).
Let (X, A, 1) be a measure space and f,g: X — R := [0, +o0] then:

i) faie'gﬁ/fduz/gdu

ii) fa':e'0<:>/fd,u:0
Proposition A.33 (non-negative linear combination of convex is convex). Let f, g :

convex CR"™ — R be two convex functions and a,b > 0 two non-negative constants,
then h := af + bg is convex too.

Proof.

If a =0 or b = 0, then the result holds true by simply multiplying the inequality
of convexity for the respective function with the other constant.
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Remark.

In the case where the other constant is zero as well the linear combination equals the
constant function zero, which is trivially convex (the inequality is satisfied as an equality.
The same result holds true if we multiply convexity’s inequality with zero).

If @ # 0 and b # 0 then since f, g are convex we have that:

FOz+ (1= Ny) <Af(x)+ (1 =N f(y)
g(Az + (1= N)y) < Ag(@) + (1 — Ng(y)

Multiplying with the positive numbers a, b we get:

VA € (0,1) and Va,y € C {

apz0 | af (Az+ (1= N)y) < Aaf(z)+ (1= Naf(y)
bg(Az + (1= N)y) < Abg(x) + (1 — A)bg(y)

Adding each hand-side of the two inequalities above we have:
af(Az+ (1= N)y) +bg(Az + (1 = N)y)

<

Aaf(z)+ (1= Naf(y) + Abg(x) + (1 — A)bg(y)

= h(Az + (1= A)y) < A(z) + (1 — Ah(y) 0

Proposition A.34 (every norm is convex).
Let || - || be a norm on a vector space X, then it is convex.

Remark.

Note that it makes sense to examine convexity on a vector space, since for every z,y € X
and k,l € R by definition kx + ly belongs to X. Thus a vector space can be viewed as
a convex set.

Proof. This result is immediate by the triangle inequality of a norm. Indeed YA € (0,1)

A>0
1Az + (1 =Nyl < Azl +1Q =Nyl = Al + (1 = Nly]
Defining the function f(z) := ||z]| , for all z € X we have showed that f(Az+(1-\)y) <
Af(x) + (1 =A)f(y) -
Proposition A.35 (every natural power of the norm is convex).
Let || - || be a norm on a vector space X, then the function || - ||™ is convex Vm € N

Proof. Let m € N we define the two following functions:
Ry — R with f(s) = s™
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g: X — R{ with g(z) = ||z
Then f is convex and increasing, and g is convex as well.

Remark.
RS’ is convex, hence it makes sense to talk about convexity.

So, for z,y € X and A € (0,1) because g is convex we have that:
g(Az+ (1= Ny) < Aglx) + (1= Ng(y)

g%% f<g(m+ (1- A)y)> < f(Mg(@) + (1= Ng(y))

Since f is also convex and g(z), g(y) € Ry we have that:

F(hg(@) + (1= Ng(y)) <Af(g(x) + (1 =N f (9(x))

Thus we have showed that:
F90a+ (1= Ny)) < Af (g() + (1= N)f (9(2))
That is f o g is convex.

Noticing that (f o g) (z) = f (g(z)) = f(||=]|) = ||z||™, this concludes the proof. O

Proposition A.36 (chain rule).
Let f:open U C R” — R¥ and g : open V. C R¥ — R™ be two functions such as
f(U) CV (meaning that their composition can be defined on all U).
If f is differentiable at x and g is differentiable at f(x) then for their composition we
have:

go f:U CR"™ — R™ is differentiable at x

D(go f)(z) = Dg(f(x)) o Df(x)

Clarification A.51.1.
By omitting the argument z (like we usually do) the above chain rule can be rewritten
as:

D(go f)=Dyg(f)oDf

In our case, we have inserted in one more variable (time ¢), which we seperate from the
spatial variable x. The next result is an immediate application of the chain rule.

Corollary A.36.1.
Let f:R""! — R" and g : R” — R be two functions.

We denote a point of R**1 as (x,1).

We also denote D the derivative with respect to (z,t)
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D, the derivative with respect to x
and 0; the derivative with respect to ¢

If f, g are differentiable (in their whole domains), then we have:

Oi(go f)=Dyg(f) oo f

Proof.
In the vector (21, T, ..., Zn, Tny1) of R" we have chosen to seperate the last variable
ZTpy1 and denote it t € R, from the other variables x1, xo, ..., x, consisting the vector
x € R™
o 0 0 0
Thus, instead or writting Das | —, —,...,—, ——
8901 82?2 8$n axnﬂ
ite D o 0 0 0
wewrite D= —,—,..., —, —
Ox1’ Oxo’ " Ox,, Ot

which we abbreviate as:
D= (01,02,...,0,,0)
So, with the notation D, in mind we also have:
Dy = (81,...,0y) that implies D = (D, ;)
The composition go f : R"* — R is well-defined and chain rule implies that:
D(go f)(x,t) = Dg(f(x,t)) o Df(x,t)
Since g o f : R"*! — R we have D(go f) € RM*"+D with
D(go f)w,t) = (81(g0 f) (@), .. 0ulg0 ) (@), 0(g0 f) (1))
Since g : R" = R we have Dg(f(z,t)) € R™" with
Dy(f(z,6) = (r9(f(@,1). ., Ong(f (1))

Since f: R™ = R”, let f = (f1,..., fn)" we have Df(z,t) € R** "+ with

81f1(56,t) 82f1(56,t) anfl(xvt) 8tf1($’t)

ofa(x,t) Oafae(z,t) -+ Onfoz,t) Oufa(z,t)
Df(x’ t) — . S t. t. '

81fn.(l‘vt) 82fn(mvt) anfn(mvt) 8tfn.(x’t)
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Thus, while omitting (z,¢) the chain rule reads:

(01(g0 f)s- -1 0ulgo f),du(go f)) =

Ofi Ooft -+ Onft Oih
Oifa Oafs -+ Onfo Oifo
= (1g(f)s--- . Ong(f)) o | : EE - :

= (Z 0ig(f)-Onfin Y 0ig(f) - afis- .Y 0ig(f) - Onfir Y Dig(f)- @fi)
=1 =1 =1 =1

Hence,
Bi(go f)=>_ ig(f)- ot
=1
O f1
atfn
=D,g(f) < 0f
and the proof is completed O

Proposition A.37 (identity of material derivative).
For any smooth function f : R? x [0, +00) — R? the following holds true:
ou(F(X(.1)) = Df . 1) + {u, V) fa1)
where z = X (t)
Proof. Indeed,
Let f:R? x [0, +00) — R? with f(z,t) = (fi(z,t), f2(2,1)) =: (f1, f2)(,1)
Since X : [0, 400) — R? the composition f(X(t),t) is well defined.
We set g := (X, Id) , where t — (X(t),t) = (X1(t), Xa(t), 1)
Thus, f(X(t),t) can be written as (f o g)(t)
Then, the chain rule implies that:
0(f o g)(t) = Df(g(t)) o Dg(t)
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where
_ (O fi(X(@),t) Oafi(X(1),t) Of1(X(1),1)
bf (9<t))‘<alf2(X<t>,t) Oafa (X (1), 1) atfz(X@),t))

0, X1(t) ur (X (t),1)
Dg(t) = (atXQ(t)) = (uQ(X(t),t))

and

Ot

because 9, X (t) = u(X (t),t) where u = (uy, uz)

So, we get that 0;(f o g)(t) equals

2

Z(aifl (X(t),¢) - wi (X(t),t)) + 0 f1(X (1), 1)

=1

2

Z(@ifg(X(t),t) -ui(X(t),t)> + 02 (X (), 1)

i=1

which can be written as:

2

8i X 5 U,LX N
; A(X (D), 1) - ua(X(2),¢) (atfl(x(t)’t))
+

Of2(X (1), 1)

2
> 0ifa(X (1), t) - ui (X (2), 1)
=1

2
Since (u, V) = > u;0;
i=1

2

2 2
(W, V) f = widif = wdi(fi, f2) = Y widi(f1, f2)"
i=1 i=1

i=1
Hence, we have:
B (fog)(t) = (u, V) F(X (), t) + Ouf (X (2), )
that is:
Ou(F(X().1)) = AF(X(0),) + (w, V) F (X (0),1)

substituing X (¢) with  on the right hand side we have proved the desired. O

Proposition A.38 (Taylor theorem).
Let f:R™ — R™ be a function in C* (k-times continuously differentiable) and a point

137



Chapter A A.8. Ordinary differential equations

zo € R™ then
there exists a function hg, : R” — R" such that
D f(xo)
f(z) = Z T(w — )l + Z Py (@ — 0)!
la|<k la|=k
a multi index a multi index
where

Hm A, (z) =0

T—xQ

A.8 Ordinary differential equations

Let F': R™ x [0,400) — R™. We consider the initial value problem

{&X(t) — F(X(t),1)

Y0 o0 (A.8.1)

The reason we chose t to be non-negative in the definition of the function F' is solely
because the semigeostrophic equations that we study involve time. This specific initial
value problem (actually, the most general first order differential equation form) has
been studied on many sets and has a rich theory. Here we are going to present only the
results that we will need and use for our purposes.

A.8.1 Initial value problem and Lipschitz continuity

It has been proven that (among many other conditions) the Lipschitzianity of the func-
tion F (alone) is enough to provide a unique solution existing in an entire interval [0, b]

Definition A.52 (K-Lipschitz on product space).
Let F': R” x R — R” be a function.

We say that the function F; : R™ — R"™ is K-Lipschitz on § C R” with S x R C Dp
i<= JK >0 V(x,t) and (y,t) € S
|F(z,t) — F(y,1)[| < K|z —y]|

Proposition A.39 (Existence of a unique solution to the ivp).
Consider the flow (A.8.1) where F' : R x [0,400) — R™ is a continuous function

and F}; : R™ — R"” is a K-Lipschitz function, then the initial value problem has a unique
solution X : [0,b6] — R"
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A.8.2 The Gronwall lemma

The Gronwall lemma comes in various “shapes and sizes”. The one that we are going to
use here is a rather elementary version of the inequality, as it assumes (strong/classic)
differentiality for every ¢ in the time interval instead of other weaker assumptions.

Proposition A.40 (Gronwall lemma for C).
Let the function ¢ : [0,400) — R be differentiable for which we have that
3C > 0 such that ¢/(t) < C¢(t) (where ' = 0; denotes the derivative) then:

o(t) < e“(0)

In this special case of Gronwall lemma we can show that a similar result holds true if
we replace C' with —C', just by simply following the exact same proof. Hence, we will
state the other lemma as well and we will prove only this one.

Proposition A.41 (Gronwall lemma for —C').
Let the function ¢ : [0,400) — R be differentiable for which we have that
3C > 0 such that ¢/(t) > —C¢(t) (where ' = 9, denotes the derivative) then:

o(t) > e “'p(0)

Proof. We define the function
f(t) = o —Cdt — =Ct 5 , t€[0,+00)
S () = —Ce~Ct = —Cf (1)

Since f is positive, we can define for all ¢t € [0,+00) the function (; for which by the

quotient derivative rule we have that:

0,2) _ &) f (1) — () f'(t) 1220 —Co(t) () — d(0) f'(t) _

f(t) F2(t) B F2(t)

_ =0 f() —o()(=CFt) _ =Co)f{t) + Cot)f(t)

72() 720 =0

Thus, the function ¢ is non-decreasing (increasing and/or constant). Thus,

¢/ f ¢(t) (b(O) def (b(t) ¢(0) e Ct>0 _
P20=5 50 2 H0) e et 2y 00 2 ¢ Co(0)

O

Corollary A.41.1 (Gronwall in other intervals).

With the same “technique” we can have the same result in intervals of the form [0, b]
for whatever b > 0 (since the right endpoint didn’t matter in the proof). And we also
obtain a similar property (exactly the same inequality) in the interval [a,400) or [a, ]
if we replace ¢(0) with ¢(a)
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Chapter A A.8. Ordinary differential equations

Remark.
Notice that in our case ¢ does not need to be non-negative (which is a usual assumption

in Gronwall inequalities)

One can obtain similar results if instead of a constant a function of ¢t “makes its ap-

pearence” in the inequality.
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